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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technology
transfer in control engineering. The rapid development of control technology has
an impact on all areas of the control discipline. New theory, new controllers,
actuators, sensors, new industrial processes, computer methods, new applications,
new philosophies. .., new challenges. Much of this development work resides in
industrial reports, feasibility study papers and the reports of advanced collaborative
projects. The series offers an opportunity for researchers to present an extended
exposition of such new work in all aspects of industrial control for wider and rapid
dissemination.

A common engineering approach to complex problems is to look for a set of
simple characterising features and then construct an engineering paradigm based
on a parsimonious analysis that succinctly and efficiently captures the identified
characteristics. In control engineering, a good example is the use of first-order-
plus-dead-time (FOPDT) and second-order-plus-dead-time (SOPDT) models to
represent the key features of a range of process responses. The elements of
this model class have just a few parameters (time constants, second-order model
parameters, delay time, zero positions) that are able to depict a wide set of process
dynamics.

This particular control engineering approach links model identification to the
use of process step responses or to relay experiment data. The simplicity of these
two test procedures and their interrelation to the tuning rules for proportional-
integral-derivative (PID) controllers has led to an extensive literature that is still
developing today, despite the fact that the tuning rules of Ziegler and Nichols were
devised over 60 years ago. A modern version of this idea is to widen the class of
controllers chosen, to accept that the model representation is not accurate and use
robust methods to ensure the fidelity of the control design. This is one of the paths
followed in the monograph being introduced here.

A good demonstration of the ingenuity that can be brought to these basic ideas is
found in this Advances in Industrial Control monograph entitled Industrial Process

vii
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Identification and Control Design: Using a Step/Relay Test by Tao Liu and Furong
Gao. The two questions posed by the authors are:

1. How can we identify models from the FOPDT and SOPDT model class using
step response and relay experiment data for stable, integrating and unstable
processes?

2. How can we exploit the parsimonious FOPDT/SOPDT model structure in
control system designs for: SISO processes, two degree of freedom controllers,
cascade control systems, multiloop control, decoupling control and batch process
control?

The monograph is divided into two parts that pursue these two questions. Part I
(Chaps. 1-6) deals with the identification issues and Part II (Chaps. 7-12) explores
the six control design topics of the question above; one topic per chapter. Closing
the monograph is a summary chapter (Chap. 13) that looks again at the outcomes of
the authors’ extensive and comprehensive research and goes on to discuss and list
some remaining unresolved issues.

The step test and relay experiment results follow an analytical route that brings
rewards in the enhanced clarification of the possible outcomes for the two identifi-
cation methods when used with different types of processes. The comprehensive set
of results presented by the authors look ideal for further use in a possible industrial
process identification toolbox.

The sequence of chapters in Part II uses the internal model control (IMC)
framework to investigate the six control system design problems. IMC is modified
for the various control structures and objectives. In the batch process control chapter,
the iterative learning control (ILC) method is used. Inherent within these study
topics is the use of the FOPDT/SOPDT class of process models, robust methods to
overcome model inaccuracy and PID controllers for implementation where feasible.
Each chapter is comprehensive in its coverage of such issues as setpoint tracking,
disturbance rejection, robustness and noise rejection, and presents comparative
examples to demonstrate performance.

This monograph follows previous Advances in Industrial Control monographs
for this and the related process identification field, notably the volumes
Identification of Continuous-Time Models from Sampled Data edited by H. Garnier
and L. Wang (ISBN 978-1-84800-160-2, 2008), Practical Grey-box Process
Identification: Theory and Applications by T. Bohlin (ISBN 978-1-84628-402-
1, 2006) and Autotuning of PID Controllers: Relay Feedback Approach by C.C. Yu
(ISBN 978-3-540-76250-8, 1999 (second edition ISBN 978-1-84628-036-8,2006))
There have also been Advances in Industrial Control volumes on PID and related
control aspects including, Practical PID Control by A. Visioli (ISBN 978-1-84628-
585-1, 2006), Structure and Synthesis of PID Controllers by A. Datta, M.-T. Ho and
S.P. Bhattacharyya (ISBN 978-1-85233-614-1, 1999) and Advances in PID Control
by K.K. Tan, Q.-G. Wang and C.C. Hang with T.J. Hiagglund (ISBN 978-1-85233-
138-2, 1999).
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Readers from the engineering disciplines of the process industries and academics
and postgraduate students from the control field will find this monograph of new
results and ideas by Tao Liu and Furong Gao an invaluable companion to these
previous volumes.

Industrial Control Centre M.J. Grimble
Glasgow M.A. Johnson
Scotland, UK
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Preface

In the process industries, model-based control strategies are well known to result
in superior system performance in set-point tracking and load disturbance rejection.
Accordingly, control-oriented model identification methods have been increasingly
explored in recent years. Among various excitation signals used for system identifi-
cation, the step response test is most widely practised owing to its implementation
simplicity and economy. To prevent the process output from drifting too far away
from the set-point, closed-loop identification methods from relay feedback tests
have been developed on an ad hoc basis in the past two decades. For pioneering
works, see Atherton (1982), Tsypkin (1984), Astrom and Higglund (1984) and
Luyben (1987). Recent monographs concerned with relay feedback identification
can be seen in Wang et al. (2003), Yu (2006) and Sung et al. (2009).

Motivated by the above observation, a series of model identification methods
have recently been developed by the authors based on the use of a step response test
or relay feedback test. This monograph summarises these results into a systematic
identification methodology based on a typical classification of open-loop response
characteristics for various industrial processes: stable, integrating and unstable. The
low-order model structures of first-order-plus-time-delay (FOPDT) and second-
order-plus-time-delay (SOPDT) are mainly studied here, owing to the fact that such
models are most widely used for control system design and controller tuning in
industrial engineering practice. A few higher-order model identification algorithms
are also given to facilitate advanced control design for industrial processes with
special requirements. Moreover, identification methods for estimating the process
frequency response from a step or relay test are provided, including robust estima-
tion algorithms against measurement noise, in particular for the low-frequency range
which is of primary concern for control design and tuning in engineering practice.

In a coherent manner, a series of model-based control methods also developed
by the authors are subsequently integrated into this monograph for practical appli-
cations — single-input-single-output (SISO) processes, cascade control processes,
multiple-input-multiple-output (MIMO) processes and batch processes. These con-
trol methods are developed based on the internal model control (IMC) theory
(Morari and Zafiriou 1989), robust control theory (Zhou et al. 1996; Skogestad
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Xviii Preface

and Postlethwaite 2005) and iterative learning control (ILC) theory (Moore 1993).
A common feature of these control methods is that all controllers in these control
schemes are analytically derived in the form of design formulae. Each of these
formulae, intuitively or essentially, has only a single adjustable parameter that can
be monotonically tuned to meet the best trade-off between the control performance
and robustness (robust stability), thereby facilitating the control implementation in
practical applications.

For ease of reading, the technical development of the proposed identification and
control methods are presented in a self-contained manner. Readers are only assumed
to have a basic knowledge of linear algebra and complex analysis. Illustrative
examples and experimental applications are given for all the proposed methods in
an easy-to-follow manner. It is believed that the monograph should be of interest
to control engineers and researchers in the process industries, and could also be
used for undergraduate and graduate students in control engineering, process system
engineering, chemical engineering, mechanical engineering, electrical engineering,
biomedical engineering and industrial automation engineering.

The book is divided into two parts — Part I: Process Identification (Chaps. 1-6)
and Part II: Control System Design (Chaps. 7-12). Part I provides a basis for
applying the control methods presented in Part II. In fact, both parts are self-
contained and can be read independently by readers with different demands. A quick
preview of the contents is given below:

Chapter 1, the first chapter in Part I, provides an introduction to the scope and
objective of process identification, the excitation signals commonly used for open-
loop and closed-loop identification tests and the model fitting criteria.

Chapter 2 presents step response identification methods for open-loop stable
processes using an open-loop or closed-loop step test. A frequency response esti-
mation method is given. The model structures chosen for identification are FOPDT,
SOPDT and a higher-order model with time delay. A robust identification method is
proposed for practical applications subject to unsteady initial process conditions and
unexpected load disturbance. Moreover, a piecewise model identification method
is given for simultaneously identifying the process model and the deterministic
(inherent) load disturbance model from a step test.

Chapter 3 presents step response identification methods for integrating and
unstable processes using an open-loop or closed-loop step test. Identification
algorithms for obtaining the most widely used FOPDT and SOPDT models are
detailed, followed by a practical application to the start-up heating control of barrel
temperature for an industrial injection moulding machine.

Chapter 4 presents closed-loop identification methods for stable processes using
a relay feedback test. The implementation of a relay test of biased or unbiased
type is briefly introduced, followed by the guidelines for model structure selection
together with a list of different relay response shapes for reference. Analytical relay
response expressions are subsequently derived for the most widely used FOPDT
and SOPDT models, along with the corresponding model identification algorithms.
Furthermore, based on developing a frequency response estimation algorithm, a



Preface Xix

generalised relay identification method for obtaining a model of any order with time
delay is presented, which can be used to identify the process static gain independent
of the choice of biased or unbiased relay.

Chapter 5 presents relay feedback identification methods for integrating pro-
cesses. By deriving analytical relay response expressions for the widely used
FOPDT and SOPDT models, the existence of the limit cycle in the use of a
relay test is clarified. Based on the developed relay response expressions, the
corresponding model identification algorithms are subsequently presented, followed
by a practical application to the barrel temperature maintenance for an industrial
injection moulding machine.

Chapter 6 presents relay feedback identification methods for unstable processes.
A limiting condition to forming steady oscillation under a relay test is revealed
by deriving the analytical relay response expressions for a FOPDT model. Identi-
fication algorithms for obtaining the widely used FOPDT and SOPDT models are
detailed.

Chapter 7, the first chapter in Part II, provides an introduction of control
engineering specifications in both the time and frequency domains, along with the
closed-loop robust stability criteria used here. Based on a brief review of the IMC
design, an enhanced IMC design for improving load disturbance rejection is pro-
posed. The corresponding proportional-integral-derivative (PID) tuning formulae
for the use of the unity feedback control structure are given to facilitate practical
application.

Chapter 8 presents advanced two-degrees-of-freedom (2DOF) control methods
for the separate optimisation of set-point tracking and load disturbance rejection for
stable, integrating and unstable processes.

Chapter 9 presents two 2DOF control schemes for open-loop stable cascade
processes, and a 3DOF control scheme for open-loop unstable cascade processes.

Chapter 10 provides an introduction of the selection criteria for the input-output
pairing of multivariable control, along with the multi-loop structure controllability.
An IMC-based multi-loop PID tuning method for the economic operation of such
control systems is proposed.

Chapter 11 presents advanced decoupling control methods for multiple-input-
multiple-output (MIMO) processes. An IMC-based control scheme is proposed for
two-input-two-output (TITO) processes with time delays. An analytical decoupling
control design for MIMO processes with time delays is presented in the framework
of the unity feedback control structure. Moreover, a 2DOF control scheme for
MIMO processes is proposed to improve decoupling regulation performance in both
set-point tracking and load disturbance rejection for individual channels.

Chapter 12 provides an introduction to batch process control and the implemen-
tation requirements. An IMC-based ILC scheme for realising the perfect tracking of
a desired output trajectory in the presence of process time delay and time-varying
uncertainties is proposed.

Finally, Chap. 13 summarises the main contributions of this monograph, along
with some suggestions and open issues for future research exploration.
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Abbreviations

ARMAX auto-regressive moving-average with eXogenous inputs
ARX auto-regressive with eXogenous inputs
CSTR continuous stirred tank reactor

DOF degrees-of-freedom

DP disturbance response peak

FIR finite impulse response

FOPDT first-order-plus-dead-time

GM gain margin

IAE integral-of-absolute-error

ILC iterative learning control

IMC internal model control

ISE integral-of-squared-error

ITAE integral-of-time-weighted-absolute-error
ITSE integral-of-time-weighted-squared-error
1AY instrumental variables

LFT linear fractional transformation

LHP left-half-plane

LMI linear matrix inequality

LS least-squares

LTI linear time invariant

MIMO multiple-input-multiple-output

MP minimum phase

MPC model-based predictive control

MSE mean square error

NMP non-minimum phase

NSR noise-to-signal ratio

P proportional

PI proportional-integral

XXiii
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PID proportional-integral-derivative

PM phase margin

PRBS pseudo-random binary signal

RGA relative gain array

RLS recursive least-squares

SISO single-input-single-output

SNR signal-to-noise ratio

SOPDT  second-order-plus-dead-time

SP Smith predictor

SVD singular value decomposition

TITO two-input-two-output

w.p. with probability

W.I.t. with respect to

General Symbols

N field of real numbers

Ny field of nonnegative real numbers

N real vectors with a dimension of n

g m X n real matrices

C field of complex numbers

C- (@_) open (closed) left-half complex plane

C+(Cy) open (closed) right-half complex plane

crmxn m X n complex matrices

o0 infinity

j V-1

n the set of imaginary numbers

Ly (—00, 00) time domain Lebesgue space (Hilbert space)

Loo(GN) the set of functions bounded on Re(s) = 0 including at oo
(Banach space)

Hy(jN) subspace of L,(j9) with functions analytic in Re(s) > 0

H2l Gn) subspace of L,(j9) with functions analytic in Re(s) < 0

Hoo(jN) the set of Loo(j9) functions analytic in Re(s) > 0

prefix R real rational, e.g., RHs, and RH,

y(t) output response in time domain

Vsp(t) desired output trajectory in time domain (or the set-point
profile)

y(t) model output response in time domain

Ay(t) output deviation to the input change

() measured output response in time domain

L() measurement noise in time domain

u(t) process input (control output) in time domain

output error in time domain
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di ()
do(?)
Y(s)
AY(s)

Y (s)

Y (s)

£(s)

U(s)

E(s)

G(s)

G(s)

Mr(s)
Ms(s)
s=a+ jo

Ap
Am

We

Omxn

A= a;]

mXn

T
mXxn

adj(A) = [A7]
diag{ai }nxn
A>0

A>0

(A, B,C, D)
O

<

load disturbance entering into the process from its input side
load disturbance entering into the process from its output side
Laplace transform of output response in frequency domain
Laplace transform of Ay (z)

Laplace transform of y ()

Laplace transform of y(¢)

Laplace transform of ¢ (¢)

Laplace transform of process input in frequency domain
Laplace transform of output error in frequency domain
process transfer function

model transfer function

maximal peak of the complementary sensitivity function
maximal peak of the sensitivity function

Laplace operator, « is the real part and w is the imaginary
part (frequency)

additive uncertainty

multiplicative uncertainty

time scaling factor or a tuning parameter in IMC
steady-state offset

sampling period

the rise time of a step response

the settling time of a step response

the time corresponding to the N -th sampled data

process static (or proportional) gain

process time constant

process time delay

closed-loop system bandwidth

cutoff angular frequency

gain crossover frequency

referential cutoff angular frequency

phase crossover frequency

measurement noise variance

identity matrix of dimension m X n

zero matrix of dimension m x n

a m x n matrix with a;; as the i—th row and j—th column
element

adjoint matrix of a m x n matrix (4) with AY as the
complement minor of a;;

an x n diagonal matrix with a; as the i—th diagonal element
the matrix A is positive definite

the matrix A is positive semi-definite

state-space realization of a transfer function

end of proof

end of remark
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Abbreviations and Symbols

Operators and Functions

det(A)
trace(A)
A(A)
o(4)
a(A)
a(4)

0i (A)

[l All
A1l

41|
F)(s)

defined as

approximately equal to

far greater than

far smaller than

angle

exist

to any (all)

belong to

subset

tend to

supremum

infimum

minimize

maximize

absolute value (magnitude) of a€C or Euclidean norm (||a||,) of aeR”
the first derivative of y(¢) in time domain

the second derivative of y(¢) in time domain
Laplace transform of g(¢) in time domain

real part of G € C

imaginary part of G € C

relative order of a rational transfer function G € R H, (a order of the
numerator over the denominator of G w.r.t. the Laplace operator, s)
inner product

Knonecker product

direct product (Hadamard product)

convolution of g(¢) and f(¢) in time domain
orthogonality, i.e., (g, f) =0

matrix transpose

complex conjugate transpose of the matrix A
inverse of the matrix A

pseudo inverse of the matrix 4

determinant of the matrix 4

trace of the matrix 4

eigenvalue of the matrix A

the set of spectrum (singular value) of the matrix A
largest singular value of the matrix A

smallest singular value of the matrix A

i—th singular value of the matrix A

spectral norm of matrix A: || 4| = 6(A)
2-norm of matrix A € L,

infinity-norm of 4 € L

the n-th order derivative of F(s) € Hoo W.I.t. 8
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Chapter 1
Introduction

1.1 The Scope and Objective of Control-Oriented Process
Identification

With a wide application of model-based control strategies to pursue superior system
performance in set-point tracking and load disturbance rejection in the process
industries, control-oriented model identification methods have been increasingly
explored in recent years. Process modeling in industrial and chemical engineering
has been generally based on the first-principle equations, such as the conservation
law related to mass or energy equations, or the equilibrium relationship from
thermodynamics, chemical kinetics, equipment geometry and so forth (Seborg
et al. 2004). In contrast, control-oriented process identification aims at obtaining
a transfer function model that reflects the dynamic response relationship between
the manipulated variable(s) and the controlled variable(s) of a process from the
viewpoint of system operation. Figure 1.1 shows a typical scenario of industrial
process identification. In this scenario the process itself is primarily considered in
process modeling, while the augmented process for system operation is completely
considered in control-oriented process identification. An excitation signal is added
to the process input or the set-point of system operation to cause the process
dynamic response for model identification, which is generally not the case in the
classical process modeling.

For example, let us consider the industrial stirred-tank blending system shown in
Fig. 1.2, where Stream 1 is a mixture of two chemical species, A and B. Through
the gate valve, the mass flow rate, denoted by w;, may be regarded as a constant, but
the mass fraction of A, denoted by x|, may be time-varying with the feedstock and
therefore, should be viewed as a source of load disturbance. Stream 2 is composed
of pure A, and thus, x, = 1. The mass flow rate, denoted by w,, can be manipulated
using a control valve. In the exit stream, the mass fraction of A is denoted by x and
the mass flow rate by w. The control objective is to blend the two inlet streams to
produce an outlet stream that has the desired composition, x,p,, which is also called

T. Liu and F. Gao, Industrial Process Identification and Control Design: Step-test 3
and Relay-experiment-based Methods, Advances in Industrial Control,
DOI 10.1007/978-0-85729-977-2_1, © Springer-Verlag London Limited 2012
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Fig. 1.1 Schematic of control-oriented process identification

the set-point in the framework of a control system. Based on the mass conservation
law, a process modeling strategy (Seborg et al. 2004) may give the following state
equation to reflect a balanced relationship between the manipulated variable (w,)
and the controlled variable (x),

d(Vpx)
dt

= wiXxX; +wy —wx (1.1)

where V' and p denote the liquid volume of the tank and the liquid density,
respectively, according to the assumption of perfect mixing. Correspondingly, an
incremental or differential form of the above-stated equation with respect to x and
wy may be written as

d(Ax)
dt

Vp = Aw, —wAx (1.2)
with the preliminary assumption that Vp, x;, and w are fixed for modeling the input—
output dynamic relationship. Taking the Laplace transform of both sides of (1.2), it
follows that

1
L(Ax) = ——L(Aw,) (1.3)
as + ap
where a; = Vp > 0 and ap = w > 0. Obviously, this expression indicates a

first-order stable transfer function relating the input increment (Aw,) to the output
increment (Ax).

For a control scheme that uses the composition controller (AC) shown in Fig. 1.2
to achieve the above control objective, the effects from the control valve, the
composition transmitter (AT) and the potentially long transmission distance of the
control and measurement signals must be envisaged in practice. For instance, a step
response test typically turns out the result shown in Fig. 1.3, where an obvious
time delay in the output response is observed. In addition, the output response
characteristics associated with the control valve or the composition transmitter is
often nonlinear in many practical cases. For fitting the experimental data to reflect
the real process response for control design, the following model structure is, in fact,
more suitable:

L(Ax) = e I L(Aw,) (1.4)

s + 1
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Fig. 1.3 Process response in a step identification test

where fdenotes the output response delay to the input change, k indicates the
steady-state gain relating the input to the output, and 7 is a time constant reflecting
the inertial characteristics of the transient response. Such a model structure,
however, can only be conjectured for identification rather than be derived from a
process modeling method based on the first-principle methods as aforementioned.
Moreover, if the nonlinear dynamics of the control valve and the composition
transmitter have to be carefully considered when modeling the transfer function
relating Aw, to Ax, a higher order or more complex model structure will be
derived if a theoretical process modeling is used based on the first-principle
equations of physics and chemistry. By comparison, a process identification method
based on fitting the real process response data may effectively facilitate deter-
mining a suitable low-order model structure for the purpose of control system
design.

In fact, there exists no distinct watershed for using process identification or
process modeling in practical applications. Both can be alternatively utilized to
establish a process model for describing the process dynamic response character-
istics. For instance, process modeling may, in principle, determine the manipulated
variable(s) and the controlled variable(s) of a process for regulation. Following such
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a choice, process identification may be used to determine a suitable transfer function
model for control system design or online tuning. On the other hand, process
identification may be adopted to verify whether the pairing of manipulated and
controlled variables chosen from the process modeling is reasonable, or establish
a process model with no prior knowledge of the process to facilitate control system
design, i.e., “black-box identification” (Soderstrom and Stoica 1989; Ljung 1999;
Pintelon and Schoukens 2001).

For the control objective of set-point tracking and load-disturbance rejection, or
for the online regulation of a process in practice, process identification is usually
performed around an operating level (or set-point) of the process to establish a
linear transfer function model with or without time delay for the convenience
of control design. This is because most industrial and chemical processes are
essentially nonlinear (Ogunnaike and Ray 1994; Shinskey 1996; Seborg et al.
2004). If necessary, a multiple (or piecewise) model identification strategy may
be adopted for a highly nonlinear process by dividing multiple operating regions,
and correspondingly, a gain scheduling control strategy may be adopted for system
operation.

In practical applications, process uncertainties usually exist from time to time,
or from cycle to cycle in batch process operation. From the frequency response
view point, such process uncertainties are mainly composed of high frequency
components and are in effect similar to random measurement noise (Shinskey
1996; Seborg et al. 2004). Linearized model identification to capture the dynamic
response characteristics of such uncertainties is therefore difficult and injudicious.
Low-order process models that ignore high-frequency response fitting have mostly
been adopted in model-based control methodologies, owing to the fact that model
mismatch is allowed to some extent or a prescribed upper bound in the framework
of these robust control theories (see Morari and Zafiriou 1989; Ogunnaike and
Ray 1994; Chen and Bruce 1995; Shinskey 1996; Zhou et al. 1996; Goodwin
et al. 2001; Astrom and Hiégglund 2005; Johnson and Moradi 2005; Skogestad
and Postlethwaite 2005). To accommodate time-varying dynamic response char-
acteristics, online adaptive identification methods in terms of a low-order model
structure, such as by using an updating strategy to update the model parameters
through online identification tests, have been developed for practical application
(Ljung 1999; Pintelon and Schoukens 2001; Wang et al. 2003; Mikle$ and Fikar
2007; Sung et al. 2009).

In control system design, industrial and chemical processes are generally classi-
fied into three types — stable, integrating, and unstable — based on the observation
of the output response to a step change in process operation. Intuitively, the step
response of a stable process moves into a new steady state in response to a
step change of the input; the step response of an integrating process increases or
decreases monotonically, rather than moving into any steady state; the step response
of an unstable process, however, is irregular from case to case, but will commonly go
beyond the output limit in any case. Note that if the initial process response is in the
opposite direction to where it eventually heads toward, such a process is specifically
called an inverse response type, which is usually identified in conjunction with any
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of the above three types. Correspondingly, there exists a model type classification
in the frequency domain: for a stable process, a transfer function model should have
only left-half-plane (LHP) pole(s); for an integrating process, a transfer function
model should have at least one pole at the origin (s = 0) and may also have LHP
pole(s); for an unstable process, a transfer function model should have at least one
right-half-plane (RHP) pole, and may also have LHP pole(s) and/or pole(s) at the
origin. In addition, an inverse response process corresponds to a model with RHP
zero(s). Up to the present, process identification methods have mostly been devoted
to obtaining these model types (Soderstrom and Stoica 1989; Ljung 1999; Pintelon
and Schoukens 2001; Zhu 2001; Wang et al. 2003; Astrom and Hiégglund 2005; Yu
2006: Garnier and Wang 2008; Sung et al. 2009) to meet the needs of advanced
process control design.

1.2 Excitation Signals for Identification Tests

A variety of excitation signals have been utilized for model identification, e.g., pulse,
step, sinusoid, rectangular wave, and pseudorandom binary sequences (PRBS),
in the existing literature (Soderstrom and Stoica 1989; Ljung 1999; Pintelon and
Schoukens 2001; Wang et al. 2003; Astrom and Higglund 2005; Yu 2006; Garnier
and Wang 2008; Sung et al. 2009). Each excitation signal has, of course, its own
advantage and disadvantage in different system identification scenarios.

Owing to its implementation simplicity and economy, the step response test is
most widely practiced for model identification in various process industries. Unlike
other tests, no signal generator is needed to perform a step test. The process output
response to a step change, however, usually lacks high frequency components,
and thus is likely to have a low signal-to-noise ratio (SNR) in the presence of
measurement noise. Developing robust step response identification methods is,
therefore, among the main contributions of this monograph.

Since the pioneering works of the 1980s, (see Atherton 1982; Tsypkin 1984;
Astrom and Higglund 1984; Luyben 1987), the relay feedback test has obviously
received increasing attention in the past two decades from both academics and
practitioners. Only a cheap relay function module is needed to perform a relay
feedback test in a closed-loop structure, which can generate sustained oscillations
of the controlled output response for effective identification of its fundamental
dynamic response characteristics. Moreover, a relay feedback test will not cause
the output response to drift too far away from its set-point, a necessary condition
for many practical applications, in particular for highly nonlinear processes with
rigorous operating conditions. There are, in general, two types of relay feedback
tests: unbiased (symmetrical) and biased (asymmetrical). Using a biased relay test,
the process gain can be obtained as the ratio of a periodic integral of the process
output to that of the relay output, but gain error may result from unexpected
load disturbance. In an unbiased relay test, the influence of load disturbance
can be detected intuitively, but the process gain cannot be derived as in the
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biased case because such a periodic integral is, in fact, equal to zero. To enhance
the identification efficacy, research efforts have recently been focused on using
a single relay test for model identification (Hang et al. 2002; Atherton 2006).
A systematic relay feedback identification methodology that uses a single relay
test is, therefore, presented in this monograph for different types of industrial and
chemical processes, based on a series of research results explored by the authors in
recent years.

1.3 Open-Loop and Closed-Loop Identification Tests

From the viewpoint of interfering with the process operation to perform an
identification test, there are typically two types of test, open-loop and closed-loop.
An open-loop identification test usually requires stopping the process operation or
feedback control to observe the output response by adding an excitation signal
to the manipulated input, as shown in Fig. 1.1. An obvious merit is that there
exists no correlation between the input and output variables throughout the dynamic
response of the test, which may facilitate model identification. For safety and
economic reasons, many industrial and chemical processes, such as integrating
and unstable processes, are not permitted to run in an open-loop manner. Closed-
loop identification methods have, therefore, been developed in the literature (see
Ljung 1999; Pintelon and Schoukens 2001; Wang et al. 2003; Sung et al. 2009).
A closed-loop identification test is illustrated in Fig. 1.4, where the process actually
denotes the augmented process shown in Fig. 1.1 for simplicity. The controller is
used for maintaining system stability, which is installed for process operation prior
to the identification test. Note that the controller may not be needed in a process
with an inherent feedback mechanism. In a closed-loop identification test, there are
generally two input ports to which an excitation signal can be added — one is at the
process input and the other is at the set-point input.

Based on the use of a step signal, open-loop and closed-loop identification
methods will be presented in this monograph for stable, integrating, and unstable
processes according to a series of research results recently explored by the
authors.

Set-point Output

Process -

Fig. 1.4 Schematic of a closed-loop identification test
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1.4 Model Fitting Criteria

Given the experimental data from an identification test, it is necessary to verify
the effectiveness of a model structure adopted for fitting and the accuracy of the
corresponding model parameters. A number of fitting objective functions and model
validation methods for using different excitation signals for system identification
have been presented in the literature (Soderstrom and Stoica 1989; Astrém and
Higglund 1995; Ljung 1999; Pintelon and Schoukens 2001; Wang et al. 2003).
Without loss of generality, the following two model fitting criteria are mainly
adopted in this monograph for model identification:

1. The time domain fitting criterion
| & 2
U Y [ykT) =56 | < 1.5)

where y(kT;) and y(kTy) denote, respectively, the output responses of the
process and the model in an identification test, € is a user-specified fitting
threshold, 7 is the sampling period, and N, T is the time length of the dynamic
(transient) response. In a step response test, N;T; may be taken as the settling
time that is usually defined as the time to move into an error band of 5%
with respect to the final steady-state output deviation in response to a step
change. In a relay feedback test, N;7; may be taken as the limit cycle period,

and correspondingly, y(kTy) and y(kT) should be the output responses of the
process and the model in the limit cycle.
2. The frequency domain fitting criterion

G . _ - .
ERR = max {|2U2—GUI| _ (1.6)
©€[0,0pm) G(jw)

where G(jw) = Y(jw)/U(jw) and @(ja)) = )A’(ja))/ U(jw) denote, respec-

tively, the transfer functions of the process and the model, Y (jw) and Y (jw)
are, respectively, the frequency responses of the process and the model, U(jw) is
the Laplace transform of the excitation signal added to the inputs of the process
and the model, ¢ is a user-specified fitting threshold, and w,, denotes a user-
specified frequency range for model fitting, e.g., w,, = @, is the cutoff angular
frequency corresponding to ZG(jw,) = —m which is mostly of concern in the
proportional-integral-derivative (PID) controller tuning (Astrém and Higglund
1995, 2005; Yu 2006; Visioli 2006; Sung et al. 2009).
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1.5 Summary

The scope and objective of process identification in industrial and chemical
processes has been outlined, in contrast with theoretical process modeling based
on the first-principle equations of physics and chemistry.

To facilitate model-based control design for system operation, model structures
for identification have been presented according to the classification of practical
process response types — stable, integrating, and unstable — from the view of control
engineering.

The motivation of using the step response test and the relay feedback test for
model identification in this monograph has been elucidated, together with the
main contributions to be presented for the use of an open-loop or closed-loop
identification test in industrial and chemical engineering practices.

For model validation, two fitting criteria, one in the time domain and the other in
the frequency domain, that are widely used in practical applications are introduced
to evaluate the fitting accuracy and the robustness of identification algorithms
presented in this monograph.
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Chapter 2
Step Response Identification of Stable Processes

2.1 Implementation of a Step Test

Generally, an open-loop step test is performed when the process is at zero initial
state or in a nonzero steady state, so that an obvious dynamic (or transient) response
of the process to a step change of the process input can be observed and measured for
model identification. Certainly, a larger magnitude of the step change can facilitate
a better observation of the transient response. This, however, is subject to operating
constraints of the process in practice. Most existing step response identification
methods have been developed based on the above process conditions for a step test,
to enumerate a few, Rake (1980), Huang et al. (2001), Wang et al. (2001), Astrom
and Higglund (1995, 2005), Ahmed et al. (2007), and Liu and Gao (2010a). Note
that a nonzero initial steady state can be normalized as a zero input case by using a
steady-state relationship between the process input and output.

In the presence of measurement noise, multiple step tests can be performed to
facilitate consistent parameter estimation or model verification according to the
statistical averaging principle. To reduce the cost of performing an identification
test, robust step identification methods have been developed using a single step test
(Bi et al. 1999; Wang et al. 2001; Ahmed et al. 2007).

In practical applications with nonzero initial process conditions, when measure-
ment noise or unexpected load disturbance exists, it is often difficult to tell if the
process steady state has been reached for a step test that is suitable for application
of the aforementioned identification methods. Moreover, waiting for such a “steady”
state to appear for having a step test can be quite time-consuming and troublesome
for industrial processes with slow time constants or long time delays. By defining
the initial states of the process output and its derivatives as part of the parameters
to be identified, Ahmed et al. (2008) developed a robust identification algorithm
that can be used under unsteady or unknown initial process conditions. Liu et al.
(2007) suggested the use of multiple piecewise step tests for model identification
under nonzero initial process conditions or load disturbance with slow dynamics.
By comparison, Wang et al. (2008) developed an alternative algorithm to improve

T. Liu and F. Gao, Industrial Process Identification and Control Design: Step-test 13
and Relay-experiment-based Methods, Advances in Industrial Control,
DOI 10.1007/978-0-85729-977-2_2, © Springer-Verlag London Limited 2012
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identification robustness in the presence of unknown initial process conditions and
static disturbance. Liu and Gao (2008) proposed the use of transient response
data from adding and subsequently removing a step change of the test, so that an
independent least-squares (LS) regression for unbiased parameter estimation can
be established to overcome the influence of unknown initial process conditions or
unexpected load disturbance.

In a closed-loop step response identification test, the step change is usually added
to the set-point rather than the process input because any external signal added to
the process input acts like a load disturbance that may be rejected by the closed-loop
feedback mechanism. Also, a closed-loop step test is generally performed after the
closed-loop system has already moved into a steady state of operation. To facilitate
identifying a process model from a closed-loop step test, the closed-loop controller
should be prescribed in a simple form like the proportional (P), proportional-
integral (PI), or proportional-integral-derivative (PID) type of controllers, so that an
analytical or quantitative relationship between the process response and the closed-
loop response can be explicitly established (Zheng 1996). Therefore, a closed-loop
step test is generally preferred for online tuning with a fixed controller like PID to
improve system performance, in contrast with an open-loop step test.

2.2 Model Identification from an Open-Loop Step Test

For the use of an open-loop step test, which is generally performed in terms of zero
or nonzero steady initial process conditions, early references such as Luyben (1990),
Astrom and Higglund (1995), Shinskey (1996), Rangaiah and Krishnaswamy
(1996) and Huang et al. (2001) presented step response identification methods
based on fitting several representative points in the transient output response to a
step change. Inspired by the graphical area ratio method (Astrom and Higglund
1995), Bi et al. (1999) developed a first-order-plus-dead-time (FOPDT) model-
fitting algorithm using numerical integrals to derive the time domain expression
of a step response. This approach was further extended to obtain a second-order-
plus-dead-time (SOPDT) or a higher-order model (Wang et al. 2001). Applying a
linear filter to the step response, Ahmed et al. (2007) proposed an iterative procedure
involving LS fitting to determine the optimal time delay model.

A frequency domain step response identification method (Liu and Gao 2010a, b)
is presented here for application. By introducing a damping factor to the step
response for the realization of Laplace transform, a frequency response estimation
algorithm is first presented. Model fitting algorithms are then developed based on the
use of the estimated frequency response of the process in a user-specified frequency
range for control system design.

For the choice of the model structure, low-order models such as FOPDT and
SOPDT are the most widely used in control system design and online tuning
in various process industries, since industrial and chemical engineering processes
usually contain time delay in response to the set-point change (Shinskey 1996;
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Fig. 2.1 Illustration of choosing « in a step response test

Astrém and Higglund 1995, 2005; Seborg et al. 2004). Correspondingly, identifica-
tion algorithms for obtaining these low-order models are detailed in the following
two subsections. In fact, the true model structure of the process to be identified
often cannot be known exactly in practical applications, especially for higher-order
processes. Apparently, a higher-order model can give better fitting accuracy on the
process dynamic response characteristics. A generalized identification algorithm
is, therefore, presented for obtaining an nth order process model (n > 2) in
the subsequent section. Moreover, to improve model fitting accuracy over a user-
specified frequency range, e.g., the low frequency range with a phase change from
zero to —m, which is of primary concern in control system design and controller
tuning (Shinskey 1996; Goodwin et al. 2001; Wang et al. 2003; Astrom and
Higglund 2005; Yu 2006), another generalized identification algorithm is presented
accordingly in the final subsection.

2.2.1 Frequency Response Estimation

When a step change is added to the process input in a step identification test as
shown in Fig. 2.1, it is well known that the Fourier transform of the output response
does not exist because Ay(t) # 0 fort — oo, where Ay(t) = y(t) — y(to) and
y(to) denotes the initial output value in a steady state. However, by substituting
s = « + jo into the Laplace transform of the step response,

o0
AY(s) = / Ay(t)e™'dt, 2.1
0
one can formulate

AY(a + jo) = /Oo [Ay(t)e™ |e /" d1. (2.2)
0
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Note that if &« > 0, there exists y(t)e " = 0 for ¢t > ty, where ty can be
numerically determined using the condition that Ay (zy)e™~ — 0, since Ay(r)
reaches a steady value after the transient response to a step change.

Therefore, by regarding o as a damping factor of the step response for the
Laplace transform, one can compute AY (e + jw) from the N step response data
points as

AY(a + jo) = /N [Ay(t)e ™ e~/ d1. (2.3)
0

For a step test under an initial steady state of the process, i.e., y(t) = ¢ fort < t,
as shown in Fig. 2.1, by using a time shift of #; (i.e., letting ) = 0), one can denote
the step change to the process input as

0, t<0;
Au(t) = W =0 2.4)

where 4 is the magnitude of the step change. Its Laplace transform for s = o + jw
with o > 0 can be analytically derived as

h
a+ jo

o0
AU(a + jo) = f he™@tiot gy = (2.5)
0

Hence, a frequency response estimation of the process can be derived using (2.3)
and (2.5) as

o+ jo

G+ jow) =

AY(a + jw), «a>0. (2.6)

Remark 2.1. Note that it is not applicable to evaluate G(jw) in terms
of the fast Fourier transform (FFT) and its inverse transform, G(jwy) =
FFT{FFT ' {G (o + jowi)}e* "5}, where Ty is the sampling period for computing
the numerical integral in ( 2.3), as shown in the relay identification monograph
(Wang et al. 2003). The reason lies in the fact that the step response is not a periodic
signal that can be topologized for such FFT computation. o

Note that G(e + jw) — 0 when ¢ — c0. On the contrary, « — 0 will make
ty much larger for computing (2.6). A proper choice of « is therefore required.
Considering that all the transient step response data should be used to ensure good
estimation of the process frequency response, the following condition is suggested
to choose «,

|AY (tse)| Tse ™ > § 2.7)

where Ay (tser) = y(tser) — y(0) denotes the transient output response to the step
change in terms of the settling time (s), in which y(0) indicates the initial steady
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output value before the step test, 7 is the sampling period for the computation of
the numerical integral in (2.3), and § is a computational threshold which can be
practically taken smaller than |Ay (tset)| Ts ¥ 107°.

It follows from (2.7) that

< L In |Ay(tsel)| Ts.

2.8
- 5 8

To ensure computational efficiency in frequency response estimation with respect
to the complex variable, s = o + jw, the lower bound of « can be taken with a
reference to §, if there exists no specific limit on the time length of the step test.

Once « is chosen in terms of the above guideline, the time length, ¢y, can be
determined from a numerical constraint for computing (2.3), i.e.,

|Ay(tn)| Tee ™™ < § (2.9)
which can be solved as
1 Ay(n)| T
fy > L1 122N TS (2.10)
o 1)

Hence, it can be seen from (2.3) and (2.6) that the numerical integral for
frequency response estimation depends on the choice of «, rather than the time
length of the step response.

Remark 2.2. For a very slow process in practice, any value of « chosen to comply
with (2.8) may also satisfy « < &, which will affect the efficiency in computing
(2.6). In such a case, it is suggested that a time-scaled output response be used to
perform the Laplace transform, i.e., L[Ay(t/A)] = AAY [A(e + jw)], where A is
a time scaling factor. Therefore, the scaled frequency response, G[A(@ + jw)], can
be effectively obtained for model identification. 3

Note that the following Laplace transform with an initial steady state of the
process exists,

L [/t Ay(r)dt:| _ AY©) 2.11)
0 S

To enhance identification robustness against measurement noise, it is suggested
that the frequency response be computed through

AY(a+jow)

. atjo (Ol+]a))2 w ! - —jw
Gla+ jo) = AU(:—ji-jw) = h /0 /0 Ay(r)dt e e 7 dr (2.12)
atjo

It is seen that, rather than using individual output response points (Ay(t) =
y(t) — y(tp)) measured from the step test, a time integral for the measured
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output response points, fot Ay(t)dz, is used to compute the outer-layer integral
in the frequency response estimation. This facilitates a reduction of the influence
from measurement noise of high frequencies, according to the statistical averaging
principle.

2.2.2 The FOPDT Model or a Higher-Order Model
with Repeated Poles

An FOPDT model is generally expressed as

G(s) = Koo (2.13)

where kj, denotes the process static gain, ¢ the process time delay, and 7, the process
time constant.

Based on the above process frequency response estimation, a model identification
algorithm is presented here for a more general case — a time delay model with single
or repeated poles. That is,

Gl — Ko e
G(s) = s + l)me (2.14)

where m denotes the number of repeated poles that also indicates the process order.
It is obvious that m = 1 corresponds to an FOPDT model.

To avoid confusion, hereafter denote the nth order derivative for a complex
function of F(s) with respect to the Laplace operator, s, as

T Es). nz1 (2.15)

F™(s) = y
N

It follows from (2.2) and (2.6) that
1 o0
GY(s) = - / (1 —st)Ay(r)e™dt, (2.16)
0

G(s) = %/oot(st —2)Ay(t)e *'dt. (2.17)
0

Hence, by letting s = o and choosing « as well as the guideline for computing
(2.3), the numerical integrals in (2.16) and (2.17) can be computed. The correspond-
ing time lengths of 7y can be determined using the numerical constraints,

(1 —aty)Ay(ty)| Te "™ < 6, (2.18)
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[t (@ty —2)Ay(ty)| Tse ™Y < 6. (2.19)

Regarding s € N4 and taking the natural logarithm on both sides of (2.14), one
can obtain

In[G (5)] = In(k,) — m In(zps + 1) — Os (2.20)

Then, taking the first and second derivatives on both sides of (2.20) with respect
to s yields

6(1)(s) . mt,

- — -0, (2.21)
G(s) s + 1

—~ —~ —~ 2
6766 -[6"] 2

— _ . (2.22)
G (s) (tps + 1)

For simplicity, the left-hand side of (2.21) is denoted by Q1 (s) and the left-hand
side of (2.22) is denoted by Q»(s).
~ ~ (1 ~ 2
By substituting s = o, G(@) = G(a), G' )(a) = GV (a), and G' )(a) =
G (a) into (2.22), it can be derived that

—00>(a) + mOs() it 02 0r(c) —m > 0:

2 _
7, = @ Qa(0) —m (2.23)

@0x(@) + VMO a

m — o Q(a)

Consequently, the remaining two model parameters can be derived from (2.14)
and (2.21) as

_ _ m‘cp
0=-0i() et 1 (2.24)
ky = (ryor + )" G (a)e™. (2.25)

Hence, the above algorithm named Algorithm-SS-I for obtaining a time delay
model with single or repeated poles can be summarized as follows.

Algorithm-SS-1

(i) Choose « and ¢y in terms of (2.8), (2.10), (2.18), and (2.19) to compute G (),
G (a) and G? () from (2.6) (or (2.12)), (2.16), and (2.17);
(i1) Compute Q1() and Q,(«) from the left-hand sides of (2.21) and (2.22);
(iii) Compute the process time constant, 7,, from (2.23);



20 2 Step Response Identification of Stable Processes

(iv) Compute the process time delay, 8, from (2.24);
(v) Compute the process static gain, kp, from (2.25).

By letting m = 1, an FOPDT model can be obtained easily from the above
algorithm. Note that a referential cutoff angular frequency of the process, @y, can
be derived from such an FOPDT model by using the critical phase condition,

—Owy. — arctan(tpwe) = —7. (2.26)

In practice, @, can be used to determine the frequency range in frequency
response estimation and model fitting, in particular, in the presence of measurement
noise, as will be further interpreted later in the identification algorithms and
examples.

In applying Algorithm-SS-I, one should check if Q,(e) > 0 when choosing «,
since an FOPDT or a higher-order model with repeated poles may not be suitable
for representing those processes with complex response characteristics, as will be
illustrated later through Example 2.3 in Sect. 2.2.7.

2.2.3 The SOPDT Model
An SOPDT model with two different poles is generally expressed as

Gy = —s s (2.27)
as? +ays + 1
where k;, denotes the process static gain, 0 the process time delay, and a; and a, are
positive coefficients that reflect the fundamental dynamic response characteristics
of the process.
Taking the first and the second derivatives on both sides of (2.27) with respect to
s yields

2a,8 + ay
= — 2.28
i) axs*+ais + 1 (2:28)
2a%s% +2 2_2
Qz(S) _ ass” + 2aiaxs + aj ay (2.29)

(ays? +as + 1)2

where Q(s) and Q»,(s) are the same as the left-hand sides of (2.21) and (2.22),
respectively, and can be computed in terms of the proposed frequency response
estimation formulae of (2.6) (or (2.12)), (2.16), and (2.17).

Then, substituting s = « into (2.29) and reorganizing the resulting expression
yields

0s(a) = — (a”‘a% + a%al + 20’ajay + 2%ay + 20a1) Qx(ar)
+ 20¢2a§ + 2uaja, + af —2a,. (2.30)



2.2 Model Identification from an Open-Loop Step Test 21

To solve for a; and a; from (2.30), one can reformulate (2.30) into

V() =)y (2.31)
where

V(a) = QOa(a),
¢(a) =[—4, —2007(a), 20% — a4Q2(a), 200 — 2a3Q2(a), 1— ozzQz(a)]T,

V= [azyal,ag,alaz,af + 2a2]T.
(2.32)

Therefore, by choosing five different values of « in terms of the guide-
line given in (2.8) and denoting ¥ = [V(a), ¥ (a2), ..., ¥ (as)]” and & =
[p(crr). p(a2), ....¢(as)]T, the following LS solution can be obtained

y=(@To) o (2.33)

It is obvious that all the columns of ® are linearly independent of each other, so
@ is guaranteed to be nonsingular for computing (2.33), corresponding to a unique
solution of y.

In the sequel, the model parameters can be retrieved from (2.33) as

a=y() (2.34)
ar=y(?2)
Note that there exist three redundant fitting conditions in the parameter estima-
tion of y, which can undoubtedly be satisfied if the model structure matches the
process. In the case of model mismatch, inconsistent parameter estimation may
result. To improve the model fitting accuracy, especially when identifying a high-
order process, one can use y(1), y(2), y(3), and y(4) together to establish an
LS-based fitting solution by taking the natural logarithm of a; and ay, i.e.,

10 Iny(1)
01 Ina, | | Iny(2)
20 |:lna11| | Iny3) |’ (2.35)
11 Iny(4)

Consequently, the remaining model parameters can be derived from (2.28) and
(2.27), respectively, as

2a,00 + ay
aro? +ajo+1

0=-0i() - (2.36)
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ky, = (ax0® + ayo + 1 2G(Ot)e"‘e. (2.37)
p

Hence, the above algorithm named Algorithm-SS-II for obtaining an SOPDT
model with two different poles can be summarized as follows.

Algorithm-SS-II

(i) Choose « and ¢y in terms of (2.8), (2.10), (2.18), and (2.19) to compute G(«),
GY(x), and G? () from (2.6) (or (2.12)), (2.16), and (2.17);
(i) Compute Q;(«) and Q> () from the left-hand sides of (2.21) and (2.22);
(iii) Compute a, and a; from (2.33) and (2.34) (or (2.35));
(iv) Compute the process time delay, 0, from (2.36);
(v) Compute the process static gain, kp,, from (2.37).

2.2.4 A Higher-Order Model with Different Poles

A higher-order model with different poles is generally expressed as

bys™ +bm—lsm_1 + o+ bys _|-l)0€79‘Y

G(s) =
() Ans" + ap1 8"+ Fas + 1

(2.38)

where by denotes the process static gain (kp), a; > 0 (i = 1,2,...,n) for a stable
process, and n > m indicates strict properness of the process transfer function.
Substituting (2.38) into (2.6) yields
a,s"AY(s) + ap_15" P AY (s) 4 - a sAY (s) + AY(s)
m m—1 h —0s
= (bys" 4 byu—1s" ™'+ -+ bys + bo) e (2.39)

which can be reformulated into the LS form of

Vi) =)y (2.40)
where
V(s) = AY(s),
B(s) =[—5"AY(s), =" VAY(s), ..., —sAY(s), hs" e . he™" he™%s]",
Y = lan, @p—1, ..., a1, by, ..., b1, bo]".
(2.41)

Therefore, by letting s = « and choosing different values of o with a number
of My, where M, = n +m + 1, and denoting ¥ = [y (), ¥ (2), . .., ¥(aa,)]”
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and ® = [¢p(o)), P(a2), ... ,¢(aMp)]T, one can solve (2.40) for model parameter
estimation with a prior knowledge of the process time delay (0). If M, > n+m + 1
is chosen, an LS fitting algorithm can be correspondingly established in the form of
(2.33).

For implementation, an approximate estimation of the process time delay can
be read from the step response test or obtained from an FOPDT model derived
using Algorithm-SS-1. This estimation may be taken as an initial value in a one-
dimensional search that uses the following fitting condition of the time domain step
response,

1 & ~ 2
err = — y(kTy) —y(kTs)| <e¢ (2.42)
o ]

where y(kT;) and y(kT) denote the process and model outputs to the step change,
respectively, T is the sampling period, and N7 is the settling time. Therefore,
given a user-specified fitting threshold of ¢, a feasible solution of the model
parameters can be derived from (2.40) and (2.41) by monotonically varying 6 within
a possible range for computation. The one-dimensional search step size may be
taken as a multiple of T for simplicity. The optimal fitting can be determined by
deriving such a model that yields the smallest value of err.

Hence, the above algorithm named Algorithm-SS-III for obtaining a higher-order
model with different poles can be summarized as follows.

Algorithm-SS-IIT

(i) Choose o and ty in terms of (2.8) and (2.10) to compute AY(ax) (k =

1,2,..., M,) from (2.3);

(i1) Obtain an initial estimate of the process time delay, 6, from the step test, or an
FOPDT model derived using Algorithm-SS-I or Algorithm-SS-II;

(iii) Solve the remaining model parameters from (2.40) and (2.41);

(iv) End the algorithm if the fitting condition in (2.42) is satisfied. Otherwise, go
back to step (iii) by monotonically varying 6 for a one-dimensional search
within a possible range as observed from the step test.

2.2.5 Improving Fitting Accuracy Against Model Mismatch

The above identification algorithms, Algorithm-SS-I, Algorithm-SS-II, and
Algorithm-SS-III, can ensure identification accuracy if the corresponding model
structure matches the process, as will be illustrated by examples later. In case there
exists model mismatch when identifying a higher-order process, an accurate fitting
may not be guaranteed since the above algorithms establish frequency response
fitting only around the zero frequency (i.e., @ = 0). To improve the model fitting
accuracy over a user-specified frequency range, e.g., the low frequency range with
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a phase change from zero to — that is mainly referenced for control system design
and controller tuning (Shinskey 1996; Goodwin et al. 2001; Wang et al. 2003;
Astrém and Higglund 2005; Yu 2006), another identification algorithm is proposed
as the following.

Lets =a+ jwx (k =1,2,..., M), where M is the number of representative
frequency response points in the specified frequency range, an objective function
for model identification is proposed as

M
— 2
Jopt = Zpk‘G(a+ja)k)—G(a+jwk) < ER (2.43)
k=0

where G(o 4+ jwyi) and G (o + jwy) denote the frequency response points of the
process and the model, respectively, ER is a user-specified threshold for assessing
the fitting accuracy, and pr (k = 1,2,..., M) are weighting coefficients for
emphasizing the frequency response fitting over the specified frequency range.

To guarantee identification robustness against measurement noise, it is suggested
to choose

wy = (1.0 ~ 2.0)wr (2.44)
M

o =1 / > o0t n€0.9.0.99] (2.45)
k=0

owing to that the step response inherently has a low signal-to-noise ratio (SNR)
of the high-frequency part to measurement noise. Note that, if there exists middle-
or low-frequency noise, a denoising low-pass filter should be devised based on the
process response characteristics and the measurement sensor to exclude or reduce
the influence of such noise.

It should be noted that owing to Yt pr ER> = ER?, the objective function
in (2.43) can accommodate the widely used frequency response error specification
(Pintelon and Schoukens 2001; Wang et al. 2003; Yu 2006),

ERR = max {‘[G(ja)) - 6(jw)] /G(ja))‘} (2.46)
w€[0,0]
where @, is the cutoff angular frequency corresponding to ZG(j w.) = —n. In fact,

the exact value of w, is difficult to find in practice. Using the above w), in place of
. should suffice for the purpose of computation.

Substituting (2.6) and (2.38) into the left-hand side of (2.43) by letting it equal
to zero, and then organizing the resulting expression into the form of (2.40), the
following weighted LS solution for parameter estimation can be derived accordingly

y =@ wWo) 'oTwy (2.47)
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wherey = [a,,ap—1,...,a1,by, ... ,bl,bo]T, W = diag{pi,...,pm>P1>---»PM}>
\i’ _ Re[\IJ] ’ (i) _ Re[@] ’
Im[W] Im[ D]

U= [Yla + jo), ¥+ jo),....¥(@ + jou)]".® = [p(@ + jo),
G+ jwr),....pa + jou)]", v(a + jor) and ¢p(a + jwy) are the same as
those in (2.41), except for s = o + j k.

It can be easily verified that all the columns of ® are linearly independent of each
other, so (&7 W ®)~! is guaranteed to be nonsingular for computation. Accordingly,
there exists a unique solution for parameter estimation. For implementation, M €
[10,50] is suggested for a good trade-off between identification accuracy and
computational efficiency.

Also note that a prior knowledge of the process time delay () is needed to derive
the remaining model parameters from (2.47). Similar to the above Algorithm-SS-
I11, a one-dimensional search of 6 in terms of the fitting criterion in (2.42) can be
implemented for optimal parameter estimation.

Hence, the above algorithm named Algorithm-SS-IV for improving the model
fitting accuracy over a specified frequency range can be summarized as follows.

Algorithm-SS-IV

(i) Choose « and ¢y in terms of (2.8) and (2.10) to compute AY (¢ + jwy) (k =
1,2,..., M) from (2.3), where w,. for the choice of w); can be determined
from an initial model obtained using Algorithm-SS-I or Algorithm-SS-II;

(i1) Obtain an initial estimate of the process time delay, 6, from the step test, or a
model obtained using Algorithm-SS-I or Algorithm-SS-1I;

(iii) Solve the remaining model parameters from (2.47);

(iv) End the algorithm if the fitting condition in (2.42) is satisfied. Otherwise, go
back to step (iii) by monotonically varying 6 for a one-dimensional search
within a possible range as observed from the step test.

Remark 2.3. It can be seen from (2.41) that only a single integral is needed in
Algorithm-SS-IIT or Algorithm-SS-IV for the identification of an nth order model
(n > 2). This single integral can be computed relatively independent of the time
length of the step response. Moreover, only M points of the frequency response
estimation are needed for model fitting, unlike previous step identification methods
based on time domain LS fitting with multiple integrals to a large number of step
response data. 3

It should be noted that minimization of the time domain fitting condition in
(2.42) can lead to the minimum of the frequency domain objective function in
(2.43), if the model structure adopted matches the process. In the case that there
exists model mismatch, the combination of (2.43) and (2.42) for deriving the model
parameters can guarantee a good compromise between time domain response fitting
and frequency response fitting, but may not realize the global minimization of (2.43)
or (2.42).
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2.2.6 Consistent Estimation Analysis and Model Structure
Selection

For practical application with measurement noise, the capability of consistent esti-
mation needs to be verified for the proposed identification algorithms. Obviously,
Algorithm-SS-I and Algorithm-SS-II can ensure convergent parameter estimation,
owing to the development of analytical formulae. Whether consistent estimation
can be reached or not depends in essence on the unbiasedness of the frequency
response estimation algorithm presented in Sect. 2.2.1, which will be analyzed in
this subsection. Regarding Algorithm-SS-IIT and Algorithm-SS-1V, the use of the
time domain fitting criterion in (2.42) needs to be clarified for consistent parameter
estimation, even if unbiased frequency response estimation is used for model fitting.
To address the unbiasedness of the proposed frequency response estimation
algorithm in the presence of measurement noise, the following theorem is given:

Theorem 2.1. Given Gaussian white measurement noise, {(t) ~ N(O, o?), in the
step response tests for identification, unbiased frequency response estimation can
be obtained by

M.
N G .
Y+ jo) = lim — > Yi(a + jo) (2.48)
’ Si=1

and the estimation error variance is bounded by

T2o0?
Mg—>00 1 — e 2T«

(2.49)

where Y(a 4+ jow) = L[y(t)], I?,-(a + jw) = L[y;(t)], y(¢t) is the true value of the
step response, y;(t) = y(t) + {;(t) is the measured output response in each test,
M is the number of the step tests, and T is the sampling period.

Proof. Taking the Laplace transform of y; () = y(¢)+¢; (¢) interms of s = a+ jw
with a > 0 yields

Yile + jo) = Y(a+ jo) + & @+ jo) (2.50)

where
A oo ) IN; )
Yi( + jow) = / [yA,-(t)e_“’]e_]“”dt = / [)7, (t)e_‘”]e_“”dt (2.51)
0 0

E(o+ jo) =/0 [Ci()e " Je™/*"d1. (2.52)



2.2 Model Identification from an Open-Loop Step Test 27

Without loss of generality, the above Laplace transform of the output response
is based on a zero initial process state for the convenience of generating the proof.
According to the guideline for choosing ¢y, in (2.10), one can see that

[e¢] . IN; .
f [¢i(t)e™ e ™ dr = [ [¢i(t)e " |e™ /" d1. (2.53)
0 0
For M > 1, it follows from (2.50) that
1 Ms 1 Ms
Y(a+ jo) = E;Yi(a+ja))—ﬁs;&(a+jw). (2.54)
Let f y = max {tn,},i = 1,2,..., M, one obtains

M, Ty [ M
Z (e + jo) = / [Z Gi (t)} e~@tiok gy (2.55)
0

i=1 i=1

In view of the fact that the Gaussian distribution of measurement noise holds for
all the step tests, there exists

My
lim > i) =0. (2.56)

i=1

Hence, substituting (2.55) and (2.56) into (2.54) yields (2.48) as shown in
Theorem 2.1. Correspondingly, the variance of & (o + jw) = L[G@)], i =
1,2,..., M, can be evaluated as

*

1 M; ?N . N .
2 _ ; —(a+1a))td :||:/ : —(0(+ja))td :| . 2.57
o= [ | ate [ aoe . esn

i=l1

Let N =1y /T. One can compute (2.57) numerically as

L N—1 N—1
08 =2 D | D0 TGk T)e ™ HEFIen | 3 DTG (kT e e
Si=1| k=0 k=0
2 M N—1 N—1k—1

=D 1D GUT)eT X2 3 TN G (TG (I T)e ™ cos [(k — Do Ty]
k=0

k=11=0
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T2 N—1T M,
— T e e

k=0 Li=l1

)72 N—lk—1 ([ M,
+ 7 /; ; § [; &(kTE (1 TS):| e K cos [(k — DTy} . (2.58)

Note that ; (kT;) is independent of &; (ITy) fork # 1,i = 1,2,..., M. Thatis,
they are uncorrelated with each other, corresponding to

M
. I <
M{lgloo M ,E:] (kT (ITy) =0, for k #1. (2.59)

Besides, there exists

M.
. I e 2
Jim A ; G(kT,) = of. (2.60)

Substituting (2.59) and (2.60) into (2.58) and using the mathematical inequality
of e721s* < | to sum up, one obtains (2.49) as shown in Theorem 2.1. This
completes the proof. |

It can be seen from (2.49) that 03 is proportional to Tsz, and therefore, is far
smaller than the measurement noise variance (672) with M; — oo, since T, < 1
should be used for the numerical computation of (2.57). If Ty > 1 is adopted for
a slow process, a time-scaling factor as introduced in Remark 2.2 may be used to
rescale 75 to much smaller than unity, so the above conclusion holds as well. For
practical applications, it is generally suggested to take My = 5 ~ 20, for which
illustrative results will be shown in examples later.

With the above unbiased frequency response estimation, the following corollary
can be drawn accordingly:

Corollary 2.1. Given Gaussian white measurement noise, {(t) ~ N(O, 0?), in
the step response tests for identification, based on unbiased frequency response
estimation from Theorem 2.1, consistent parameter estimation can be guaranteed
by Algorithm-SS-1II or Algorithm-SS-1V in terms of using the time domain fitting
criterion in (2.42).

Proof. Denote the measured step response as y(t) = y(t) + {(¢) in such a step

test, where y(¢) is the true value of the step response. Assume that y(¢) is the
step response of a model identified using Algorithm-SS-III or Algorithm-SS-IV. It
follows from (2.42) that

Ny
err= > [s&r) - 567)] @61)



2.2 Model Identification from an Open-Loop Step Test 29

To assess the standard deviation for model fitting, one can take the mathematical
expectation of (2.61) as follows:

E(err) =E(5 —y)?

—E(r+¢- )
=E(y =)’ +2E[L(y = )]+ E©)’. (2.62)
Since ¢(kTs)(k = 1,2, ..., Ny) is a Gaussian random sequence with zero mean

for Ny — o0, it is certainly uncorrelated with any time sequence such as y(kT;) —

y(kT)(k =1,2,...,Ny),ie., E[l(y — )] = 0. Meanwhile, there exists E () =
og for Ny, — oo. Therefore, one obtains

E(err) = E(y —y)* + 0} (2.63)

which indicates that the lower bound, min(err), can be reached if and only if

E(y — y)? is minimized. In other words, only the optimal model can result in this
lower bound, regardless of the influence of measurement noise.

Note that given a preliminary value of the process time delay (), the re-
maining model parameters can be uniquely derived from either Algorithm-SS-III
or Algorithm-SS-IV based on the above unbiased frequency response estimation.
Hence, by monotonically varying 6 in a one-dimensional search within a possible
range, the minimum of (2.61) can be uniquely determined, leading to consistent
parameter estimation for model identification. This completes the proof. O

In practical applications, the true model structure of the process to be identified
is often not known exactly, especially for high-order processes. Although a low-
order model of FOPDT or SOPDT is widely used in control system design and
tuning (Ogunnaike and Ray 1994; Shinskey 1996; Seborg et al. 2004), a higher-
order model may be preferred if it can result in a significantly smaller fitting error
of time or frequency domain response. It is, therefore, desirable to determine the
optimal model for representing the process dynamic response characteristics from a
step test. A guideline is given accordingly as follows:

Theorem 2.2. Given a general model structure as shown in (2.38), despite the
presence of Gaussian white measurement noise, ¢(t) ~ N (0,0?), in the step
response tests for identification, the model order for obtaining optimal fitting can
be uniquely determined using Algorithm-SS-1V and a hypothesis testing condition,

Ns

2
Y [0 = 3KkTY] L,
Hy:1-*! > p (2.64)

3 [s6m)- 5]

n=ni
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where y(kTy) and y(kTy) denotes, respectively, the measured process output and
the model output in such a step test, ny is the current model order, ny is a higher
model order to be verified, and B is the significance level.

Proof. Owing to E(3 — y)> > 0 for models of any order, it follows from (2.63)
that

min(err) > E(y — }Op)z + 0;2 (2.65)

where }Op(t) denotes the step response of the optimal model. It is obvious that

min(err) = og ify = yop, corresponding to a perfect match of the identified model
and the process.

Given the order of the model structure shown in (2.38), it follows from Corollary
2.1 that the optimal parameter estimation can be uniquely obtained using Algorithm-
SS-IV. Therefore, by monotonically increasing the model order for parameter
estimation using Algorithm-SS-IV, the optimal model order that gives the lower
bound of (2.65) can be uniquely determined using the statistical hypothesis testing
condition given in (2.64). This completes the proof. O

For implementation, it is generally suggested that § = 0.9 be taken for
verification. It can be seen from (2.64) that this choice corresponds to the acceptance
of a higher-order model if the resulting err shown in (2.61) is no larger than one
tenth of that of the current model.

2.2.7 Illustrative Examples

Four examples studied in the recent literature are used here to illustrate the
effectiveness of the presented algorithms for frequency response estimation and
model identification. Examples 2.1-2.3 are given to show the good accuracy of
the presented algorithms in identifying low-order processes in terms of the exact
model structures, together with measurement noise tests to demonstrate identifi-
cation robustness. Example 2.4 is used to show the effectiveness of the presented
algorithms for the identification of higher-order processes. The measurement noise
level is evaluated in terms of the noise-to-signal ratio (NSR),

mean(abs(noise))

NSR = (2.66)

mean(abs(signal))
or reciprocally, SNR, SNR = 20log;,(1/NSR))(dB). The time domain fitting crite-
rion in (2.42) is used to assess identification accuracy.
Example 2.1. Consider the FOPDT process studied by Bi et al. (1999),
1

Gl = e .
s+ 1
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Fig. 2.2 The frequency response estimation error for Example 2.1 regarding different choices of «

Based on a unity step response test, Bi et al. (1999) gave an FOPDT model,
Gnm = 1.00e719/(0.997s + 1), by using a time domain LS fitting algorithm.
For illustration, the same step test is performed here with a sampling period
Ts = 0.01 (s). According to the guidelines given in (2.8) and (2.10), « = 0.5
and ty = 30 (s) are chosen to apply Algorithm-SS-1, resulting in the exact FOPDT
model.

To demonstrate identification robustness regarding different choices of «,
the frequency response estimation errors (ERR) resulting from taking o =
0.1,0.2,...,1.0 under a variety of random measurement noise levels (NSR =0,
5%, 10%, 15%, 20%, 25%, 30%) are plotted in Fig. 2.2. It is seen that different
choices of « result in ERR = 0 for no presence of measurement noise (NSR = 0),
leading to the exact identification of the FOPDT model. When NSR # 0, a smaller
value of o gives a smaller ERR for the same noise level, which indicates that a
better statistical averaging effect against measurement noise can thus be obtained
for frequency response estimation in terms of (2.6) (or (2.12)). In particular for
o = 0.1, it is seen that ERR becomes almost zero for different noise levels.

To demonstrate consistent estimation against measurement noise, the results of
frequency response estimation for G;(0.5) = 0.4044 under a variety of random
noise levels (NSR = 5%, 10%, 20%, 30%) are listed in Table 2.1 based on a number
of step tests (My = 1,5,10,20). Note that different step tests are simulated by
randomly varying the “seed” of the noise generator. The last row in Table 2.1
shows the identified models for M = 20, where the model parameters are shown
by the mean of identification results, along with the sample standard deviation in
parentheses. It is seen that good identification accuracy is obtained against different
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noise levels, and consistent estimation of the frequency response can gradually be
reached as the number of step tests increase. Moreover, it can easily be verified that,
given a random noise level, the sample standard deviation of frequency response
estimation error is much smaller than that of the measurement noise, as clarified by
Theorem 2.1.

Example 2.2. Consider the SOPDT process studied by Ahmed et al. (2006) and Liu
et al. (2007),

_ 1.25 002345
0.2552 4+ 0.7s + 1 '

G

For illustration, a unity step change is used for the step response test. The output
response is like the one shown in Fig. 2.1. The sampling period is taken as Ty =
0.01 (s), which in fact is not an integer multiple of the process time delay. According
to the guidelines given in (2.8) and (2.10), « = 0.2 and 5y = 100 (s) are chosen to
apply Algorithm-SS-1, resulting in an FOPDT model,

1.2505 o708

Gy = —22
w0032 £ 1

Correspondingly, a referential cutoff angular frequency of the process frequency
response can be derived as w,. = 3.4786 (rad/s). Taking ¢ = 0.2,0.4,0.6,0.8, 1.0,
it can be easily verified that Algorithm-SS-II and Algorithm-SS-III result in the
exact model. Also, it can be verified that Algorithm-SS-IV gives the exact model
based on 11 points of frequency response estimation, G(0.2 + jwy), where wx =
kw/10and k =0,1,2,...,10.

To demonstrate identification robustness against measurement noise, assume
that there exists a random measurement noise of N (O, og = 0.024), causing
NSR = 10%. By performing 200 Monte Carlo tests in terms of varying the “seed”
of the noise generator from 1 to 200, Algorithm-SS-IV using the above frequency
response estimation gives

_ 1.25( £ 0.006) —0.234(£0.04)s
0.25( & 0.03)s2 + 0.7(£0.03)s + 1 '

Gm—2

It is seen that further improved identification robustness is thus obtained,
compared to the results shown by Ahmed et al. (2006) and Liu et al. (2007).

Moreover, to demonstrate the achievable identification robustness of Algorithm-
SS-1V without using the unbiased frequency response estimation in the presence
of measurement noise, i.e., model identification based on frequency response
estimation for each test, Fig. 2.3 shows the identification results for a variety of
random noise levels (NSR = 1%, 5%, 10%, 15%, 20%, 25%, 30%), where the
result for each model parameter to a given noise level is shown as a vertical linear
segment along with the sample standard deviation in parentheses for 200 Monte
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Fig. 2.3 The results of 200 Monte Carlo tests for the identification of Example 2.2 against
measurement noise

Carlo tests. The square solid point in each linear segment denotes the mean of the
200 identification results, and the upper and lower bars correspond to the maximum
and the minimum of parameter estimation, respectively. Note that a possible range
of the time delay is estimated from the worst case of NSR =30% as 6 € (0,0.5]
for a one-dimensional search using a search step size that equals the sampling
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errx 104
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Fig. 2.4 The step response fitting error for Example 2.2 regarding different choices of «

period, together with the parameter estimation constraints: @; > 0 and a, > 0. It
is, therefore, demonstrated that Algorithm-SS-IV can maintain good identification
robustness, even without using the unbiased frequency response estimation.

In addition, to demonstrate identification robustness with respect to different
choices of «, the step response fitting error for « = 0.1,0.2,...,1.0 and the
frequency range of (0.5 ~ 5.0)w;. under the noise level of NSR = 10% for applying
Algorithm-SS-1V is plotted in Fig. 2.4. It is seen that for the same frequency
range for model fitting, different choices of « result in almost the same err. Note
that err increases gradually with respect to the frequency range for model fitting,
due to lower estimation accuracy for the process frequency responses at higher
frequencies corresponding to lower SNR. This fact demonstrates why frequency
response estimation in the low-frequency range is of primary use for model fitting
from a step response test.

Example 2.3. Consider the SOPDT process with a right-half-plane (RHP) zero,
widely studied in the references (Wang et al. 2001; Ahmed et al. 2006; Liu et al.
2007),

—4s 41
=— ¢
952 +2.4s +1

—S

G3

By performing a step test as in Example 2.1, Algorithm-SS-III gives the process
model,

—3.9989s + 0.9998
= e
9.0183s2 + 2.3951s + 1

—s

Gm
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Fig. 2.5 Frequency response estimation for Example 2.3

by taking « = 0.05,0.1,0.15,0.2, ty = 200 (s), and an initial estimation of
the time delay as zero for a one-dimensional search with the fitting threshold of
err < 1 x 107*. Correspondingly, a referential cutoff angular frequency of the
process frequency response can be derived as w,. = 0.366 (rad/s). Note that using
these choices of o, Algorithm-SS-I and Algorithm-SS-II cannot give an acceptable
FOPDT or SOPDT model due to severe model mismatch. This fact was also found
by Wang et al. (2001).

Figure 2.5 shows the frequency response estimation of G3(0.2 + jwy), where
wr = kw/10and k = 0,1,2,..., 10, demonstrating good accuracy. Accordingly,
Algorithm-SS-IV results in the exact model.

To demonstrate identification robustness against measurement noise, assume that
there exists a random measurement noise of N (O,UE2 = 0.015) in the step test,
causing NSR = 10%. The frequency response estimation of the above points is also
plotted in Fig. 2.5 for comparison, which indicates good identification robustness.
Accordingly, the proposed Algorithm-SS-IV gives a model,

_ —3.96945s + 0.9978 o103
©9.0537s2 4 2.3906s + 1

which results in err = 1.93 x 107> in terms of the settling time of f; = 50 (5),
compared to that of Wang et al. (2001), which gave err = 6.25 x 107*. It can
be verified that an unbiased frequency response estimation can be obtained using
5 ~ 10 tests for a precise identification of the process model under this noise level.
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Example 2.4. Consider the high-order process studied by Wang et al. (2001),

_2.15(=2.7s + 1)(158.55% 4 65 + l)e—”s

G4 .
(17.55 + 1)*(20s + 1)

By performing the same step test as these two references, Algorithm-SS-I with
a = 0.01 and ¢ty = 800 (s) gives an FOPDT model,

2.1434 e—49.2712$

Gm—1= 3507
53.2173s 4+ 1

which corresponds to err = 4.54 x 1073 in terms of the settling time of t,; =
500 (s).

Note that improved fitting accuracy can be obtained using Algorithm-SS-IV
based on the frequency response estimation of G4(0.01 + jwy), where w; =
kwe /10, k = 0,1,2,...,10, and o, = 0.0407 (rad/s), that is derived from the
above FOPDT model. The resulting FOPDT model is

21771 oo,
= — :
55.0668s + 1

m—1

which corresponds to err = 3.41 x 1073,
For comparison, Algorithm-SS-1V is also used to yield an SOPDT model,

2.1413¢7 279

Gm—2 = >
1903.0013s% + 70.9754s + 1

which corresponds to err = 2.74 x 1074, and a third-order model,

244.055952 + 9.0939s + 2.1507 s 4
- 25
27587.1611s% 4 2297.219152 + 79.61365 + 1

Gm—3

which corresponds to err = 3.67 x 107°, and a fourth-order model,

33.1113s> + 340.8036s5% + 13.7927s + 2.1486 21285
= e .
320502.2355% 4 45289.5023s3 + 2879.9862s2 + 85.7314s + 1

m—4

which corresponds to err = 6.81 x 107,
According to the model structure selection guideline in (2.64) with § = 0.9,
the third-order model can be determined as the optimal model for the step response

fitting.
It should be noted that Wang et al. (2001a) derived an SOPDT model cor-
responding to err = 4.53 x 1073, and a third-order model corresponding to

err = 3.86 x 107>, Wang et al. (2001b) gave an SOPDT model corresponding
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Fig. 2.6 Step response fitting of identified SOPDT models for Example 2.4

to err = 5.68 x 107*. The step responses of these SOPDT models are plotted
in Fig. 2.6. Note that the step response of the proposed third-order model almost
overlaps with that of the process and thus is omitted.

2.3 Robust Identification Under Unsteady Initial Process
Conditions and Load Disturbance

To cope with unsteady initial process conditions and unexpected load disturbance
in practical applications, a modified implementation of the step response test is
proposed here. Consequently, three robust identification algorithms are presented
for obtaining the widely used low-order models of FOPDT and SOPDT (with or
without a zero).

2.3.1 Implementation of a Step-Like Test

It is widely recognized that only the process transient response data to a step
change are useful for model identification (Rake 1980; Shinskey 1996; Astrém and
Hégglund 2005). To facilitate robust identification under unsteady initial process
conditions and unexpected load disturbance, a modified implementation of the step
response test is proposed as illustrated in Figs. 2.7 or 2.8, where 7y denotes the time
when the step change is added. The time when the step change is subsequently
removed, denoted by f, is determined in terms of the transient response to the step
change being nearly completed. Note that the proposed step-like test differs from
the conventional step test in that the process transient response after removing the
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Fig. 2.7 A modified step test under unsteady initial process conditions and load disturbance
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Fig. 2.8 A modified step test under unsteady initial process conditions, measurement noise and
load disturbance

step change is also observed for identification. Also the proposed test differs from a
standard pulse or rectangular wave test, where the duration of the excitation signal
is predetermined (Soderstrom and Stoica 1989; Hwang and Lai 2004).

To effectively extract transient response data from the proposed step-like test, the
step change should be added to initiate an observable dynamic response in contrast
to measurement noise, and then be removed when the process response is observed
to have almost entered into a steady state, as illustrated in Figs. 2.7 or 2.8. Note
that both segments of the step response data — one corresponding to the addition of
the step change (i.e., 71 ~ fy/2) and the other to the removal (i.e., fy/2+1 ~ IN) —
will be used for model identification. An important merit of such a choice is that the
excitation sequence and the corresponding output sequence, composed of the two
segments of data, are no longer correlated to the time sequence or any other time-
oriented sequences like the transient response sequence resulting from unsteady
initial process conditions or load disturbance. The uncorrelated relationship will
be used in the identification algorithms to be presented later.
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When adding the step change in the proposed test, the process output trend
should be monitored beforehand. If the initial process output, y (), has a decreasing
trend, i.e., y(fy) < 0, a positive step change to the process input («) is suggested,
as shown in Fig. 2.7, so that an obvious turning point in the output response can
be observed. The starting point (#1) of the first segment of the step response data
can then be taken for identification. If the initial process output has an increasing
trend, a negative step change should be introduced accordingly. If the trend of the
initial process output cannot be observed clearly, especially in the presence of severe
measurement noise as shown in Fig. 2.8, either a positive or a negative step change
may be used, the magnitude of which should be set reasonably large to create an
observable and admissible fluctuation of the process output. The final point (y,2) of
the first segment of data can be taken as the time when the step change is removed
or slightly earlier, where N is the number of step response data points used for
identification.

It is, of course, ideal to remove the step change after the process response has
completely moved into a steady state. However, this may be difficult to observe in
the presence of measurement noise and load disturbance. It is, therefore, suggested
to remove the step change when the process response is observed to have almost
moved into a steady state. Correspondingly, the first obvious turning point of the
output response after the step change is removed may be taken as the starting point
(tn/2+1) of the second segment of data for identification. The final point (¢y) of the
second segment of data can be taken as the time after which the process response has
almost recovered to a steady state, as shown in Figs. 2.7 or 2.8. Note that if there
surely exists no load disturbance, it will not be needed to wait for such a steady
state before removing the step input. The reason can be seen from the identification
algorithms presented later.

The total number of data points (N) making up the two segments used for
identification is suggested to be in the range of 50 ~ 200 for a good trade-off
between identification accuracy and computational efficiency.

2.3.2 Model Identification

For the identification of a low-order process model to facilitate control design, a
representative model structure is

bis + by o0

= 2.67
ars? +ays + 1 ( )

which corresponds to the time domain response of

ay(t) +ary(t) + y(t) = byt — 0) + bou(t — 0) + 1(1) (2.68)
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where y(¢) denotes the process output, u(t) the process input, /(¢) the output
deviation caused by load disturbance, 6 the process time delay, and by is customarily
named as the process static gain. For b} < 0, (2.67) or (2.68) indicates an SOPDT
model with an RHP zero. b; = 0 corresponds to an SOPDT model of either one
of three response types — underdamped, critically damped, and overdamped. The
combination of b; = 0 and a, = 0 leads to an FOPDT model.

For clarity, the development of the identification algorithm for obtaining an
SOPDT model with a zero (Case 1) is presented in detail. Then, the development of
the identification algorithms for obtaining an SOPDT model without zeros (Case 2)
and an FOPDT model (Case 3) is briefly described.

Case I SOPDT model with a zero. Given the nonzero initial conditions of y(zy) #
0 and u(ty) = h, h € N, by using a time shift of 7y, i.e., letting o = 0, it follows
from implementation of the modified step test that

h, 0<t<89,
u(t) = h+Ah, 6<it<ts+0; (2.69)
h, >t + 0.

Note that for t; < ¢t < t, + 6, where t; > 1y + 0, it can be derived in terms of
fo = O that

t 0 t
/ u(t)dt = / hdt—l—/ (h + Ah)dt = (h 4+ Ah)t — AhO (2.70)
0 0 9
t [/ 0+ t
/ u(t)dt :/ 0dt+/ it(t)dl—i—/ 0dt = Ah. (2.71)
0 0 60— 0

Similarly, it can be derived for z,s + 60 <t <ty that

t 0 tss+0 t
/ u(t)dt = / hdt+/ (h + Ah)dt +/ (h + Ah)dt = Ahtg + ht
0 0 6 1,

s +0
(2.72)
t 0_ [ tos+0— tos+04 t
/ it(t)dt:/ Odz+/ zk(t)dt+/ Odt+/ zk(t)dt+/ 0dt =0.
0 0 0 04 tssH0— tss+04
(2.73)

For clarity, denote multiple integrals for a time function of f(¢) as

(m)

t Tm—1 71
f(l) = / / / f(l’())d‘l,’od‘[] ceed Ty, m>2. (2.74)
0 0 0

(0]
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Fort; <t <t + 0, by using (2.70) it follows that

(2) 6 T1 t
f u(t) =/ hdrodrl—i-/ [(h + Ah)t — Ahld T

[0.]

A
_kt hz 2 _ Aht 0+—92 (2.75)

Analogously, it can be derived that

h+ Ah Ah
o T Ano+ 202 g <t <i+ 6
/ u) =4, 2 A 2 (2.76)
[0.1] 5,2 + Ahtyt — 7[35 — Ahtg 0, t >t + 0.
o) h +6Aht3 - %hzze + Azhzez - %93. <t <tx+0;
/ u(t)=
0] hz + A—ht&tz AR B (A—hzz Ahtsst) 6+ A—htssez 1> 1+ 0.
o s 6 s 9 s 2 ’ ss
(2.77)
@ Ah(t —0), 0 <t <ts+0;

/ iut) = t=9) - (2.78)

[0,7] AhlSS7 >t + 6.

Ah Ah
) — 12— ARt + —0%, O <t <t,+0;
/ i) =14 2 Al 2 (2.79)
[0.1] Ahtgt — TZSZS — Aht B, t>ts+ 0.
ON @)
[RECE f Y6 = 3y (2.80)
[0,1] [0.7]
@ )
| 5= / Y6 y(O) ~ 5 5(O) (2.81)
[0.7] [0,¢]

With the description of (2.69), one can reformulate the time domain response of
(2.68) as

ar V() + a1y () + y(t) = byu(t) + bou(t) + 1(¢). (2.82)
By integrating both sides of (2.82) three times and rearranging the resulting

equation using (2.77), (2.79)—(2.81), one can obtain the LS form of parameter
estimation,

Y(t) =¢" (1)y + &) (2.83)
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where £(¢) denotes the residual error, and

(3)
() = / Y0,

[0.]

M ® T
1) = —/ y(1), —/ y(1), Fo(t). Fi(t), F>(t), F3(1), 12,07, ...t |
[0.] [0.]

0.

T
y = [az,a1.bo. bo® — by, bo6* — 2b16,bo6° — 3516, 0o, 1. M2, ... 7] -

(2.84)
h+ Ah
+6 t3’ 9<[§tss+9;
Fo(t) = 2.85
o(?) h, Ah ., Ah, Ak, (2.85)
g[ + 7[55[ - TZSSI + ?[ss’ t >t + 0.
Ah
-t 0 <t <ty+0;
F) = )7 (2.86)
71523 — Ahtgt, t >t +0.
Ah
- 0 <t =<ts+0;
R (1) = (2.87)
A—ht t >t +0
2 SS»s SS .
Ah
— O<t<t 0;
By =13 6 ThET (2.88)
0, >t + 0.

Note that in the parameter vector y to be estimated, n;(i = 0,1,2,...,9)
are used for the Maclaurin series approximation of the unforced output response
resulting from a nonzero initial state of the process and the load disturbance
response, according to the linear superposition principle for analysis of system
response. That is, the effect of y(0), ¥(0) and /() on the LS fitting of (2.83) is
approximately quantified as

q
o)=Y nt/ (2.89)

j=0

which is based on the fact that the time domain response arising from nonzero initial
process conditions and load disturbance can generally be expressed as follows:

()= aje (2.90)
i =0
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where o; = Zfzo citl,c; € M, Re(B;) € d4, r is limited by the number of
repeated poles of the process and the input type, m is the number of different poles
of the process, and there exist

12 o N3 . N
TRV = 1-Re(B)1 + [Re(fvj)] £+ [ Re3(|ﬂ/)] £t ot Re,il?—])] 1"+ Ry (1)
' ' ' (2.91)
- o [_Re(ﬂ./)t]nH —sRe(Bj)t _
r]_l)rglo Rn(l) = t]—l>rgo Wé’ =0, §¢€ (O, 1) (2.92)

For instance, if there exists no load disturbance, i.e., /() = 0, it can be concluded
using (2.80) and (2.81) that ¢ = 2 for (2.89) is sufficient to solve the LS fitting of
(2.83),and no = 0, n; = a,y(0), and 7, = [a;y(0) + a2y(0)]/2 can be explicitly
derived from the formulation of (2.83). In the presence of a static load disturbance,
ie.,l(t) = c,c € N, itcan be similarly verified that g = 3 is sufficient for parameter
estimation, if the model structure matches the process.

In cases where a nonstatic load disturbance occurs in such a modified step test,
the order of ¢ for representing the corresponding output response with respect to
the time used in the test depends on the achievable approximation of (2.89). This
explains why it is necessary to remove the step change after the process response
has almost moved into a steady state. Thereby, the transient response resulting
from nonzero initial process conditions and load disturbance can be sufficiently
represented by (2.89).

Note that the influence of a time-varying load disturbance that cannot be
effectively approximated by (2.89) may distort the LS fitting of (2.83). However,
the influence is likely to be observed according to the guideline for removing
the step change. In such a case, the modified step test may simply be repeated
for verification, owing to the fact that the proposed algorithms are developed
specifically for practical application subject to nonzero initial process conditions.

To determine a suitable order of g for solving the LS fitting of (2.83), a statistical
hypothesis test can be used. That is, with an initial estimation of ¢ = 3 for iteration
using the same transient response data collected for identification, the updating law,
q(k + 1) = q(k) + 1, can be used if the following convergent condition is not
satisfied at the kth iteration step,

p

J, = %Z [y — pb-1()] < e (2.93)

i=1

where ¢ is a user-specified threshold for assessing the fitting variance of the
model parameters, and p is the number of model parameters to be identified. It
can be seen from (2.84) that y(i) (i = 1,2,...,p) correspond to the model
parameters, which are relatively independent of the Maclaurin series coefficients
(nj,j =0,1,2,...,q) for approximation.
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Hence, by using the two proposed segments of step response data and letting ¥ =

[W(t), ¥ (t),....v(ty)]" and ® = [¢(t1), d(t2),....$(tx)]", one can establish

an LS algorithm for parameter estimation,
v = Py. (2.94)
Accordingly, the parameter vector can be solved as
y = (@ o) ol (2.95)

To clarify the invertibility of ®7 ® in solving (2.95), the following theorem is
given.

Theorem 2.3. ®7 ® is guaranteed invertible by a modified step test as shown in
Fig. 2.7.

Proof. Note that the last g columns in @ are all time vectors with different integral
exponents, so they are linearly independent of each other. The first two columns in
®, sequences of single and double integrals for the process output, are obviously
linearly independent of the last ¢ columns. Owing to the modified step test, F; ()
for j =0, 1,2, 3 are all piecewise continuous-time functions, so the corresponding
columns in ® are not only linearly independent of each other, but also linearly
independent of the remaining columns in ®. Therefore, ® is guaranteed to have
full column rank. Since rank(®” ®) = rank(®), one ensures that &7 ® is invertible
for the computation of (2.95). This completes the proof. O

Remark 2.4. If a conventional step test is used for identification, the transient
response data correspond only to the first segment of data of the modified step test.
It can be seen from (2.85)—(2.88) that the resulting F; (¢) for j = 0, 1,2 will all be
time functions, while F3(¢) becomes a constant. The corresponding columns will
definitely be linearly dependent of the last ¢ + 1 columns in ®, causing ®7 ® to be
not invertible for computation. It is, thus, demonstrated that a conventional step test
is not suitable for parameter estimation under unsteady initial process conditions or

load disturbance. 3
In the sequel, the model parameters can be retrieved from y (i) (i=1,2, ..., p) as

fa2.a1.b0. b1, 61" =[7(1).2). y3). = V2@ GG, I + v (@] /y3)]
(2.96)

Obviously, a positive b; indicates a minimum-phase process, and a negative b,
corresponds to a nonminimum-phase process with an initial inverse response, i.e.,
the output response to a step change will initially be in the opposite direction to its
final value, which can evidently be observed in practice. Hence, there can only be
one unique choice of b;.
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It should be noted that the redundant fitting condition, y(6), can surely be
satisfied if the model structure adopted fits the real process well. In case there exists
model mismatch, the condition may be used to establish an LS fitting of the model
parameters to enhance the model fitting accuracy, as introduced in Sect. 2.2.3.

In the presence of measurement noise, ¢(¢), there exists y(1) = y(t) + (1),
where y(¢) denotes the measured process output and y(¢) the true process output.
Substituting y(¢) into (2.82) and then triply integrating both sides of (2.82), one can
obtain

V() =¢" (t)y +v(t) (2.97)

where

3)
o) = / 5(0),

[0.1]

T

) @

$() = [—[ §0. =~ [ 30 R o). 0. ) 1,z,t2,...,rq} ,
[0.¢] [0.£]

y = [az,al,bo, bo@ - bl, b0¢92 - 2b19,b093 — 3b192, No, N1, M2, -+, nq]T,

1) () 3)
V(1) = az (1) + ay ]C(t)+ g(1).

[0.7] [0, (0.1]

(2.98)

Itis seen from (2.97) and (2.98) that ¢ (¢) is now correlated with v (¢), which is the
influence of measurement noise. Therefore, parameter estimation from (2.95) may
not be consistent. To circumvent this issue, the instrumental variable (IV) method
(Soderstrom and Stoica 1989) can be used. There is, however, no unified choice
of the IV matrix for consistent estimation. A feasible choice is proposed in the
following theorem.

Theorem 2.4. With Z = [z1,22,... ,zN]T chosen as the 1V matrix where z; =

[l/tip+l, l/tip, S Vi ti,tiz, e tiq]T, which satisfies the two limiting condi-

tions: 1. the inverse of lim (ZT®)/N exists; 2. lim (ZTv)/N = 0, where
N—o00 N—o0

v o= [(t).v(®).....v(tx)], a consistent parameter estimation is given by
y=ZT®) ' ZTy.

Proof. The two limiting conditions in Theorem 2.4 are sufficient for consistent
estimation (Soderstrom and Stoica 1989), which, in fact, indicate that the instru-
ments must be correlated with the regression variables but uncorrelated with the
measurement noise. It is, thus, required to demonstrate that the proposed IV matrix
complies with these two limiting conditions.
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For the first limiting condition, which is equivalent to saying that (Z7 ®)/N is
guaranteed nonsingular for N — oo, it has been shown that both ®7 and Z” have
full row rank for N > dim(y). Note that

rank(Z7) = rank(®7) (2.99)
rank(Z7) = rank(Z) = rank(Z” Z) (2.100)
rank(®7) = rank(®) = rank(®’ ®) (2.101)
Besides, there exists
1 T ! 1 T T 1 T
—7ZT® —ZTo) =" (—2zZT ). (2.102)
N N N2
Here, denote
A= ! zz" 2.10
=z . (2.103)

For0 <1t <t, <--- < ty,itcan easily be verified that
XTAX >0, vXeRV and XTAX=0&X=0 (2.104)
which indicates that A is positive definite. Accordingly, it follows that
rank(®7 AP) = rank(®7). (2.105)

Hence, one can conclude from (2.102) and (2.105) that (Z” ®)/ N is nonsingular.

For the second limiting condition, it follows for N — oo that the measurement
noise sequence, ¢(#;)(i = 1,2,..., N), can be viewed as a Gaussian white noise
sequence with zero mean. The corresponding v(z;)(i = 1,2,..., N) can, thus, be
determined as a random distribution with zero mean, which is independent of the
time origin or any other time such as 7y used in the modified step test. Therefore,
the random vector v is uncorrelated with the rows of Z7 that are time vectors
with different integral exponents. For the row of Z containing constants only, i.e.,

[1,1,...,1],its inner product with v can be derived as
|
Jim > () =0. (2.106)

i=1

Hence, the second condition is also satisfied. This completes the proof. |
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Case 2 SOPDT model without zeroes. By letting b; = 0, the above identification
algorithm can directly be applied to obtain an SOPDT model without zeroes. The
only difference is that the parameter vector in (2.84) should be amended to y =

[az, ai, bo, bo, by62, b6, N0s N1, N25 -+ -+ » nq]T. Accordingly, the model parameters
can be retrieved as

[az,a1.b0,0]" = [y(1),7(2),7y(3),y@/y3)". (2.107)

Case 3 FOPDT model. Since by = 0 and a, = 0, by doubly integrating both
sides of (2.82) and rearranging the resulting equation using (2.76) and (2.78), one
can formulate an LS fitting similar to (2.83), for which

V() = [ ).

i T
() = [~ [y O, F@), A, P, 12t (2.108)
Y= [al,bo, by, by6?, No, M5 M2 -+ qu]T-

h+ Ah
+ 12, 0 <t <ts+0;
Fo) =1 2 AR @109
El‘ + Ahtgt — TISS, t>ts+ 6.
—Aht, O <t <tyx+0;
Fi(r) = (2.110)
—Ahty, t >1t,+ 0.

- A0 <t <ts+06; e
2(f) = .
0, t >t + 0.

It can easily be verified that g = 1 for (2.89) is sufficient to solve the LS fitting if
there exists no load disturbance, for which ny = 0 and 1; = a;y(0) can be derived
accordingly. In the presence of a static load disturbance, it can also be verified that
q = 2 is sufficient for parameter estimation, if the model structure matches the
process.

Accordingly, the model parameters can be derived using (2.95) and (2.108) as

[a1.bo. 01" = [y(1).7(2).y(3)/y(2)]". (2.112)

For consistent estimation against measurement noise, the corresponding IV can
be taken according to Theorem 2.4 asz; = [1/¢}, 1/63,1/t2,1/t;, 1,8, 67, ..., t]]T.

Remark 2.5. By letting u(0) = 0 (i.e., h = 0 fort < ty = 0), all the above
identification algorithms can be directly applied for zero or steady nonzero initial
process conditions, regardless of whether load disturbance exists or not. In such a
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case, ¢ = 0 can be used if there is no load disturbance. It should be noted that
the above identification algorithms can be extended transparently to the case where
the initial process input is also time varying, because the variation in such a case is
usually under control in practice and, thus, is known and can be expressed explicitly
for computation. 3

2.3.3 Illustrative Examples

Three examples from existing literature are used here to illustrate the effectiveness
and accuracy of the above robust identification algorithms. For assessing the
achievable identification accuracy, the transient response error criterion shown in
(2.42) is adopted for reference.

Example 2.5. Consider the SOPDT process studied by Ahmed et al. (2006) and Liu
et al. (2007),

1.25¢702%

Gs = .
0.2552 4+ 0.7s + 1

The corresponding time domain response is in the form of
0.255(¢) + 0.7y(t) + y(t) = 1.25u(t — 0.234) + I(1).

Based on zero initial process conditions and /() = 0, Liu et al. (2007) derived
an SOPDT model using multiple step response tests, and Ahmed et al. (2006)
developed an SOPDT algorithm using a random binary signal (RBS) for excitation.
For illustration, assume that the initial conditions are y(#y) = 0.6, y(¢y) = —0.06,
and u(tp) = 0.5, as shown in Fig. 2.7. In view of the fact that the initial process
output has a decreasing trend, a step change of A4 = 0.2 is added at tp = 3 (5s),
ahead of which a load disturbance with a slow dynamic of G; = 0.2/(0.5s + 1)
is injected into the process output at ¢ = 2 (s). The step change is removed at
tss = 10 (s) before the load disturbance becomes steady.

Using the process output data in the time intervals of [3.5, 10](s) and [10.5,
20](s), the identification algorithm for Case 2 taking N = 100 and ¢ = 8 gives
amodel listed in Table 2.2 (NSR = 0), which indicates good accuracy. Note that the
Maclaurin approximation for the effect of the nonzero initial process state and the
load disturbance converges at ¢ = 8 with a prescribed threshold of ¢ = 5%.

To demonstrate identification robustness in the presence of measurement noise,
assume that a random noise of N (0, o,z\, = 0.45%), causing NSR = 10%, is added
to the process output measurement, while a step-type load disturbance with a
magnitude of 0.1 is added to the process input at ¢ = 2 (s), as shown in Fig. 2.8.
Repeating the above step test and using the process output data in the time intervals
of [4, 10](s) and [11, 25](s) that are obvious for observing the process dynamic
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Table 2.2 Identification results under a variety of measurement noise levels

NSR Example Identified model Fitting error (err)
1.2507¢ 02536

0 2.5 3.88 x 1072
0.2503s52 + 0.6994s + 1

(—4.000s + 1.0000)e =1 0187
9.0000s2 + 2.4000s + 1
1.247¢—0-2501s

1% 2.5 6.19 x 107
0.2548s% + 0.7021s + 1

(—4.0039s + 0.9971)e~1-018%
9.0459s2 4 2.41255 + 1
1.2202¢ 02234 .
10% 2.5 9.22 x 10
0.299852 + 0.7153s + 1
(— 4.0425s + 0.9726)e 02307
9.421s2 4+ 2.52555 + 1
1-19146_0'233SS
. 22 311 %1073
’ 0.3209s2 + 0.6886s + 1

(— 4.0968s + 0.9437)¢ 0823
9.8338s2 42,6765 + 1

2.6 4.04 x 107°

2.6 2.76 x 107

2.6 1.08 x 1073

2.6 4.4x 1073

response to the addition and removal of the step change, the above identification
algorithm with ¢ = 3 gives a model listed in Table 2.2, which demonstrates good
identification robustness. The results for NSR = 1% and 20% are also listed in
Table 2.2 to show the achievable accuracy.

Example 2.6. Consider the SOPDT process with a RHP zero studied by Wang et al.
(2001), Ahmed et al. (2008), and Liu et al. (2007),

(s e

Gg= —— 1%
0 952 ¥ 245 + 1

The corresponding time domain response is in the form of
95() +2.4y(@) + y(t) = —du(t — 1) +u(t — 1) + (¢).

Zero initial process conditions were assumed by Wang et al. (2001) and Liu et al.
(2007), and nonzero initial conditions but with no load disturbance were assumed by
Ahmed et al. (2008). Here, the initial conditions are considered to be y(0) = 0.5,
y(0) = —0.026, and u(0) = 0.5, which are extracted from the process transient
response to a step change with a magnitude of 0.5, subject to a slowly changing
load disturbance as in Example 2.5.

By performing a modified step test as in Example 2.5, the identification algorithm
for Case 1 taking N = 100 and ¢ = 7 in terms of the output response data in
the time intervals of [6.5, 10](s) and [15, 35](s) gives a model listed in Table 2.2
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Fig. 2.9 Step response fitting for Example 2.7

(NSR = 0), which once again demonstrates good accuracy. Also it is shown that
using a longer time length to collect the second segment of data reduces the
Maclaurin approximation order of ¢ with respect to ¢ = 5% as used in Example
2.5. Repeating the measurement noise tests in Example 2.5 and taking ¢ = 35 (s),
the corresponding identification results obtained using ¢ = 3 in terms of the output
response data in the time intervals of [8, 35](s) and [40, 65](s) are also presented in
Table 2.2, which again demonstrates good identification robustness.

Example 2.7. Consider the high-order process studied by Wang et al. (2006),
25y(t) + 355(t) + 11y(t) + y(¢t) = u(t —2.5) + 1(2)

with the initial conditions of y(0) = 2, y(0) = 0.4, j(0) = —0.4, and u(0) = 0,
together with a static load disturbance of /(¢) = 1. For illustration, the same initial
conditions but with a nonzero input of u(0) = 1.5 are considered here. In view
of the fact that the initial process output has an increasing trend, a step change of
Ah = —0.5 is added at f, = 0 (s) and then is removed at t;; = 10 (s).

Using the process output data in the time intervals of [5, 10](s) and [15, 45](s),
the identification algorithm for Case 3 taking N = 100 and ¢ = 3 gives an
FOPDT model, Gy, —1 = 1.0192¢762227$ /(8.8339s + 1), corresponding to err =
7.42 x 107*. In contrast, the identification algorithm for Case 2 gives an SOPDT
model, G,—2 = 1.0025¢734815 /(25213152 + 10.0171s + 1), corresponding
to err = 1.32 x 107>, It should be noted that Wang et al. (2006) derived an
SOPDT model,Gy, = 0.03411e7315/(s2 + 0.3486s + 0.03366), corresponding
to err = 1.46 x 107*. For comparison, the unity step responses of these models
are shown in Fig. 2.9. It can be seen that both SOPDT models offer better fitting
than the FOPDT model, while the proposed SOPDT model shows further improved
fitting accuracy.
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2.4 Piecewise Model Identification Under Inherent Load
Disturbance

In the presence of a deterministic load disturbance, which is common in various
repetitive industrial control systems and batch processes that are frequently or
periodically initiated by a step change to the set-point, the resulting step response
may be viewed as the pure process response plus load disturbance response
according to the linear superposition principle. Such load disturbance is herein
named inherent-type load disturbance. Modeling the pure process response only
might not be sufficient to describe the overall dynamic response characteristics
for control system design or controller tuning. For instance, a water pump in an
air conditioning system obviously gives different step responses under different
loads. Modeling both the pure pump response to the set-point without load and
the disturbance response of load can facilitate the control design for the pump
operation under a number of load levels. For the injection velocity (IVE) control
of an industrial injection molding machine (Tian and Gao 1999; Tan et al. 2001),
the open-loop response of the injection velocity to a step change of the valve
opening will gradually decrease during the filling process because of the presence
of mold cavity pressure that gradually increases until the mold is filled. Modeling
the influence of the mold cavity pressure can facilitate advanced control design for
maintaining the injection velocity during the filling process to guarantee product
consistency and quality.

To facilitate step response identification subject to an inherent-type load distur-
bance, a piecewise model identification method is therefore presented for practical
application. Both the process model and the inherent-type load disturbance model
can be simultaneously derived from a step test.

2.4.1 Partition of Step Response Data

When performing a step response test for model identification, if there exists
an inherent-type load disturbance, the corresponding turning point in the output
response can be observed, as illustrated in Fig. 2.10. This turning point should,
therefore, be taken as the starting point (z4) of the load disturbance response for
identification. Practically, it is suggested to take #4 as the time slightly before the
observed tuning point to ensure identification effectiveness against measurement
noise, in consideration of time delay usually existing in the process response.

Hence, the transient step response data in the time interval [#;, f4), as shown
in Fig. 2.10, can be used to identify a model of the pure process response.
Correspondingly, the step response data in the time interval (74, fy] subtracted by
the obtained process model response can be used to identify the load disturbance
model, where ¢ty may be taken as roughly the time after the output response has
recovered to a steady state.
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Fig. 2.10 Step response test under an inherent-type load disturbance

In the case where the inherent-type load disturbance occurs at the early stage
of a step test, a reasonable partition of the observed transient response data is
needed to identify the pure process response model and the load disturbance model
separately. That is, the number of transient response data points (M ) chosen in terms
of the obvious turning point in the step response should be large enough for the
identification of the pure process model. In general, it is suggested that M should
at least be twice as large as the number of parameters to be estimated in such an LS
fitting algorithm to guarantee effectiveness of the model identification. This will be
illustrated later with an experimental example in Sect. 2.4.4. To ensure a sufficient
number of transient response data points for model fitting, a compromise can be
made between the two segments of data chosen, respectively, for the identification
of the pure process model and the inherent-type load disturbance model. For the
worst case, where the obvious turning point appears at a very early stage of a step
test, causing insufficient data for the identification of the pure process model, the
standard step test cannot allow for independent identification of the process model
against the influence of load disturbance, as discussed in Liu and Gao (2008).
A modified step test can, therefore, be performed to apply a robust identification
algorithm for the identification of the pure process model, as presented in Sect. 2.3.
Then, the inherent-type load disturbance model can be identified using the piecewise
identification method to be presented in the next section.

In the case where the overall transient response to a step change can be effectively
described by a single model structure or the modeling aims at controller tuning
after the inherent-type disturbance response has become steady, the identification
effort can be correspondingly reduced to the determination of only a single low-
order model for describing the dynamic response characteristics of interest to the
control design. In other words, there is no further need to choose a 74 for model
identification.
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2.4.2 Model Identification

Under a step test, the process output response to the step change and the inherent-
type load disturbance can be generally expressed as

Y(s) = G(s)U(s) + Ga(s)Ua(s) (2.113)

where G(s) and G4(s) denote, respectively, the process model and the disturbance
model, and U(s) and Uy(s) denote, respectively, the step change and the inherent-
type load disturbance. For the convenience of model identification, here Uy(s) is
normalized as a unity step signal, and correspondingly, the static gain of Gy(s)
reflects the magnitude of the inherent-type load disturbance.

As the low-order process models of FOPDT and SOPDT are two of the most
widely used in control system design, the following model structures are used here,

k
G(s) = ——2——¢ % 2.114
) ars? +ays + ¢ ( )
kd -0
G = ———¢ 2.115
als) S ( )

where k;, denotes the process static gain,  the process time delay, a; and a, are
positive coefficients that reflect the process dynamic characteristics; kq denotes the
magnitude of the inherent-type load disturbance, 6, the time delay of the disturbance
response, and 74 the time constant of the disturbance response. _

Note that the time delay in (2.115) can be decomposed as 63 = 64 + ¢4, where
tq is the observed turning point of the process response to the inherent-type load
disturbance. By using a time shift of #4 (i.e., letting zg = 0), 64 can be separately
derived for fitting the load disturbance response in the time interval [#4, ¢y ].

Using the linear superposition principle, the time domain response of (2.113) can
be decomposed as

Y=+ (2.116)
arye(t) + ayye(t) + ye(t) = kpu(t — 0) (2.117)
7aya(t) + ya(t) = kqua(t — 64) (2.118)

where y, denotes the pure process response to the input change and y4 is the
inherent-type load disturbance response.

Note that, by letting a, = 0, the expression of (2.114) is reduced to an
FOPDT model similar to (2.115). The development of an identification algorithm for
obtaining an SOPDT model (Case 1) is described in detail and then the development
of another identification algorithm for obtaining an FOPDT model (Case 2) is briefly
summarized.
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To allow for practical identification with unsteady or nonzero initial process
conditions, here the initial process state for a step test is considered as u(ty) = h,
h € N, and y(t)) # O, as illustrated in Fig. 2.10. Accordingly, the following
identification algorithms are developed based on the raw step response data to
facilitate practical applications.

Case 1 SOPDT model. With initial process conditions as described above, by using
a time shift of 7y (i.e., letting 5 = 0), the process input under a step test can be
expressed as

h, 0<t<6;

u(t) =
© h+ Ah, t>80.

(2.119)

where 6 denotes the process time delay to be identified.

Fort > 6, it can be derived that

t 0 t
/ u(t)dt = / hdt+/ (h + Ah)dt = (h + Ah)t — ARG, (2.120)
0 0 0

Denote the multiple integrals for a time function of f(¢) as in (2.74). It can be
derived for ¢ > 6 that

@ Ah
/ u(t) = ht Ahzz — At + —6? (2.121)
[0.1] 2 2
@ h+Ah 5 Ah, — Ah Ah
)= ———1 - —0+ —16*— —¢° 2.122
[[0 =" ST x @122)
2) t
/ Y () =/ y(t) — y(0)t (2.123)
[0,7] 0
(3) ) (2) 1 5
/ y(2) =/ y(t) — Ey(O)t (2.124)
[0.1] 0]
® ! 1.,
/ y(t)=/ y(t)—y(O)t—Ey(O)t (2.125)
[0.1] 0

Note that y(t) = y:(t) fort < t3 as shown in Fig. 2.10. With the input de-
scription of (2.119), the time domain response shown in (2.117) can be equivalently
expressed as

arJi(t) + a1y (t) + ye(t) = kpu(t). (2.126)
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By triply integrating both sides of (2.126) and rearranging the resulting equation
using (2.122), (2.124). and (2.125), one can obtain

v(t) =" (t)y (2.127)

where

(3)
V(o) = / Y0,

[0.1]

, © r
@) = —/ y(1), —/ y(t), (h + A3 /6,12/2,t/2, — AhJ6 |
0 [0,7]

y = [as, a1, ky, — AhkyB + a25(0) + a1y (0), Ahky8> + 2a2y(0), ky0°]" .
(2.128)

Hence, using the step response data in the time interval [f;, t4) as shown
in Fig. 2.10 (e, tp < 11 < B < -+ < ty < ), and letting ¥ =

W (1), ¥ (1), .... ¥ ()] and @ = [¢p(11),d(t2).....¢d(tyr)]", one can obtain a

linear LS algorithm for parameter estimation,
v = Py. (2.129)
Accordingly, the parameter vector can be solved as
y = (@7 o) oW, (2.130)

Note that the first two columns of ®, vectors of single and double integrals
for the process output, are obviously independent of the remaining columns of @,
while the third to fifth columns of ® are all time vectors with different integral
exponents. All columns of @ are, therefore, linearly independent of each other.
Correspondingly, ® is guaranteed to have full column rank. Owing to the matrix
property, rank(®” ®) = rank(®), one can ensure that ®” ® is invertible for the
computation of (2.130), corresponding to a unique solution of y.

Consequently, the model parameters can be retrieved from (2.130) as

a y(1)
aj Y(2)

= . 2.131
k Y () 150

0 Vr(6)/y(3)

Note that the initial state of the process output can be estimated from (2.128) and
(2.130) as
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y(5) — Ahk,6?

y(0) = %

(2.132)

$(0) = aiz[y(4) + Ahky6 — a;y(0)]. (2.133)

The above estimation of the initial process state can, therefore, be used to
represent the step response test for evaluating the fitting accuracy of the identified
model under unsteady or nonzero initial process conditions.

Moreover, in the case of model mismatch in the identification of a higher-
order process, enhanced fitting accuracy may be achieved by using the preliminary
knowledge of initial process conditions. That is, apart from the other model
parameters, the process time delay can alternatively be estimated from the redundant
fitting conditions in (2.128) as

1
9 =
Ahk,

_[y(5) —2a2y(0)
0 = ,/—Ahkp (2.135)

or the mean of the three values computed from (2.131), (2.134), and (2.135). The
best choice can be determined from the model fitting of the step response.

[a2y(0) + a1y(0) — y(4)] (2.134)

or

Remark 2.6. By doubly integrating both sides of (2.126), an identification algorithm
with less computation effort can be obtained in a similar way, but its identification
robustness against measurement noise may be inferior to the above algorithm. It
can be seen from (2.128) that, rather than using individual output response points
measured from the step test, single to triple integrals of the output response points
are used for parameter estimation, which reduces the influence of measurement
errors according to the statistical averaging principle. <

To guarantee the parameter estimation consistency in the presence of measure-
ment noise, a feasible choice of the IV matrix for consistent estimation is given
according to Theorem 2.4 as

Z=1lu.2,....2u)" (2.136)

where z; = [1/t;, 1/, 63,2, 4;,1]7.

1271071
Correspondingly, the consistent parameter estimation can be obtained as

y=(Z"o)'z"v (2.137)
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Case 2 FOPDT model. For the identification of an FOPDT model for the inherent-
type load disturbance in the time interval (z4,/5], as shown in Fig. 2.10, the load
disturbance response can be computed as

Ya=y—Y, (2.138)

where y, denotes the above identified process model response of the step test.

Because the inherent-type load disturbance is normalized as a unity step signal,
it follows by letting 74 = 0 in 63 = 64 + t4 that

(2.139)

With the disturbance description of (2.139), the time domain response shown in
(2.118) can be equivalently expressed as

taya(t) + ya(t) = kaua(?). (2.140)
By doubly integrating both sides of (2.140) and rearranging the resulting

equation using (2.121), (2.123), and (2.139), one can formulate a linear LS fitting in
the form of (2.127), for which

?2)
V(o) = / Ya(t).

[0.2]
t T
o) = [—/ yd(t),t2/2,z,1/2} , (2.141)
0

- ~.T
y = [rd,kd, — kafly + rdyd(O),kdeg] .

Accordingly, the model parameters can be derived using (2.130) and (2.141) as

T y(D)
k=] yo | (2.142)

Oa VY@ /v

To guarantee consistent estimation against measurement noise, the corresponding
IV is suggested to be

=1/t 6.1 (2.143)

Remark 2.7. In case different step tests are used to verify the identification
effectiveness of the load disturbance model, particularly in the presence of a high
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noise level, different choices of #4 will result in different éd. Therefore, verification
of the time delay of the load disturbance model should be made in terms of
04 = 64 + t4. That is, the model verification should be made in terms of a time

2
domain response fitting criterion, Z/ivd=1 [}d(kTs) — yd(kTs)] /Nq < &, where

y4(kTy) is the disturbance model response obtained by adding a unity step change
to the disturbance model as shown in (2.115 ), yq(kTy) is the disturbance response
obtained from ( 2.138), 7, the sampling period, N4T; the transient response time,
and ¢ a user-specified threshold for model fitting. o

For the identification of an FOPDT process model in the time interval [#, f4), by
doubly integrating both sides of (2.126) with a, = 0 and rearranging the resulting
equation using (2.121) and (2.123), one can formulate a linear LS fitting in the form
of (2.127), for which

(2)
(o) = [M Y ).

! T
¢) = [_/0 y(t), (h + Ah)t*/2,t, Ah/2] , (2.144)

y = [ar, kp, — Ahkyb + a1y (0), kp6]" .

Hence, the model parameters can be retrieved the same as (2.142). Also,
consistent parameter estimation against measurement noise can be obtained using
the IV given in (2.143).

2.4.3 Illustrative Examples

Two examples from the literature are used to demonstrate the effectiveness and
accuracy of the above identification algorithms. Example 2.8 is given to demonstrate
the good accuracy of these algorithms in identifying first- and second-order
processes, together with measurement noise tests for demonstrating identification
robustness. Example 2.9 is given to demonstrate the identification effectiveness for
higher-order processes. In all tests, the number of transient response data points
is taken to be M = 100 for computation, together with the sampling period of
T; = 0.01 (s). In assessing the model fitting error, the transient response error
criterion shown in (2.42) is adopted for reference.

Example 2.8. Consider the second-order process studied by Ahmed et al. (2008),

1.2e76s -
U(s) +

e
V()= — <
)= 57245 11 s+ 1

Ud(S).
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Note that an FOPDT model studied by Bi et al. (1999) is used here to represent
the dynamics of an inherent-type load disturbance. For illustration, assume that the
initial process conditions are y(t)) = 1.2, y(t9) = 0.01, and u(ty) = 1.0. A step
change of Ah = 0.2 is added to the set-point at ¢, = 3 (s) for model identification,
and an inherent-type load disturbance with a magnitude of —0.1 is added through
the above FOPDT model to the process at t = 18 (s).

For illustration, ¢ = 19 (s), corresponding to an obvious turning point in the
step response as shown in Fig. 2.10, is chosen for the inherent-type load disturbance
identification. The transient response data points in the time interval [10, 19)(s) are
used to derive the process model. The result is presented in Table 2.3, along with the
fitting error of the transient response used for identification. It is seen that applying
the algorithm to Case 1 results in good accuracy.

Subsequently, using the load disturbance response estimated in the time interval
[19, 26](s), that is, subtracting the resulting SOPDT process model response from
the step response, an FOPDT disturbance model is, therefore, derived as presented
in Table 2.3, which also indicates good accuracy. Note that the static gain of the
FOPDT disturbance model is reduced by 10 times, as the magnitude of the load
disturbance is normalized to unity for model identification. The fitting error of the
load disturbance response is correspondingly evaluated in terms of the transient
response in the time interval [19, 26](s).

To demonstrate identification robustness in the presence of measurement noise,
assume that a random noise N (0, 0;2 = 0.0012%), causing NSR = 2%, is added to
the output measurement. By performing 100 Monte Carlo tests in terms of varying
the “seed” of noise generator from 1 to 100, the proposed algorithms based on the
above time intervals of the step response data give the results presented in Table 2.3,
where the model parameters are shown by the mean of the 100 Monte Carlo tests,
along with the sample standard deviation in parentheses. The results for NSR = 10%
and 30% are also given in Table 2.3 to show the achievable identification accuracy
and robustness.

Note that, for NSR =10% and in the absence of load disturbance but with
nonzero initial conditions of y(z)) = 0.2, y(tp) = 0.01, and u(#y) = 0, Ahmed et al.
(2008) gave the identification results based on 100 Monte Carlo tests and using the
settling time length of ty = 50 (s) and M = 500 for computation,

1.2( £ 0.007)e~>-93(£036)s
9.1(£0.8)s% +2.41(£0.16)s + 1

Gm(s) =

which obviously achieved better accuracy than the results presented in Table 2.3.
Nevertheless, if the same time length of the transient response to the step change
is used for the identification of the process model, the algorithm for Case 1 using
M = 100 for computation gives the following results,

1.2( & 0.0003)e~6-065(£0-22)s

Gm(s) = .
(s) 8.98( £ 0.21)s2 + 2.39( £ 0.09)s + 1




61

2.4 Piecewise Model Identification Under Inherent Load Disturbance

. I+ s(1L°0 F)68vT1 ) 14 S(LT F)8558°€ + ¢5(60°T F )9TLY'S
+—01 X 106 - - —0I X 20'¥ - - %0E
s6roF)szss0—2(CSO0F)SOPT'0 ssL0)6s01—2(SSOOF)ITEST'T
T+ 5(6L°0F 6811 T+ 58T F)SE16T + ¢5(STT F et
«—01 X $0'9 + - - 01 X I8¢ i < ﬂ. %01
strzomIscss0—2(9V0 0F)ETIT'O s68°0)s16z9—2(LYOOF)IYSIT'T
I+ s(9¢0F)I1100°T I+ 5(9¢°0 F)TIThT + 5(S€°0 F )9t66'8
9—01 X STT il - - 01 XTS'S i < i - %T
V‘Am_.cH_uvocMc._\mAmﬁo 0+ VG~O~ 0 P.GN.cunvwmwc.e\mAM~O 0+ VNOON 1
) I+ S1000°1 ) I+ S100¥°'C + 56666'8
101 X 59T _ 01 XTI : 0
sz6101—20001°0 5299709—2000C" 1
FAE] [epow douBQINISIP PRO] 44D [opow $$3001J ASN
S[QAQ] 2STOU JUSWRINSLIW JUAIIYIP Jopun § g o[dwrexy Joj uoneoynuapr asuodsar doig ¢z dqel,



62 2 Step Response Identification of Stable Processes
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Fig. 2.11 Step response fitting for Example 2.9

It is seen that the proposed algorithm can also give very good accuracy in
the absence of load disturbance but with nonzero initial process conditions, thus
demonstrating good applicability for various step tests in practice.

Example 2.9. Consider the high order process studied by Wang et al. (2001),

1 1
Y(S) = mU(S) + mUd(S)

Note that the eighth-order process model studied by Bi et al. (1999) is used to
describe the dynamics of an inherent-type load disturbance. Assume that the initial
process conditions are y(fp) = 1.0, y(to) = 0, and u(ty) = 1.0. A step change
of Ah = 0.2 is added to the set-point at fp = 0 (s) and an inherent-type load
disturbance with a magnitude of —0.1 is added to the process at t = 10 (s). The
corresponding step response is shown in Fig. 2.11.

Using the process transient response in the time interval [2, 12](s), the
identification algorithm for Case 1 gives an SOPDT process model, G, =
0.9976e 2% /(3.48255% + 3.1803s + 1), corresponding to err = 1.74 x 1073
in the time interval [0, 12](s). Note that further enhanced fitting accuracy can
be obtained using the known initial process conditions and the corresponding
identification formula of (2.134) as G, = 0.9976e 7% /(3.4825s% 4 3.1803s + 1),
which corresponds to err = 3.42 x 107 Then, using the load disturbance response
estimated in the time interval [14, 30](s) with zg = 12 (s), which is slightly ahead
of the observed turning point at ¢ = 14 (s) (i.e., subtracting the above SOPDT
model response from the step response), an FOPDT disturbance model is, therefore,
derived as Gg = 0.1045¢739% /(3.7663s + 1), corresponding to err = 2.14 x 10™*
for the transient response in the time interval [12, 30](s). The combined step
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Fig. 2.12 A block diagram
of the 2DOF IMC plus
feedforward control scheme
for inherent-type disturbance
rejection

response of the above SOPDT process model and the FOPDT disturbance model
for representing the step response are also plotted in Fig. 2.11 for comparison,
which demonstrates good fitting accuracy.

To demonstrate identification robustness to different choices of the time length
of the transient response associated with the turning point chosen for the piecewise
model identification, Table 2.4 lists the identification results when different time
lengths of the transient response are used. The results indicate that the proposed
piecewise model identification method is not sensitive to different choices of turning
point and transient response data for model fitting.

To demonstrate the achievable control effect based on the identified models, a
two-degrees-of-freedom (2DOF) internal model control (IMC) plus feedforward
control scheme is correspondingly proposed for load disturbance rejection, which
is shown in Fig. 2.12, where C; is the set-point tracking controller, C is the closed-
loop feedback controller, and Fy is the feedforward controller. According to the
aforementioned normalization of the inherent-type load disturbance as a unity step
signal, the process input can be derived as

Fa(s)
s

U(s) = C($)R(s) + Cr() E(s) +

(2.145)

where R(s) and E(s) denote the Laplace transforms of r and e, respectively.
To combat the inherent-type load disturbance, it is ideal to let

Ga(s) = G(s) Fa(s). (2.146)

Substituting (2.114) and (2.115) into (2.146), one obtains

kd(a2s2 +ays + 1)6_(9d—0)x_

F — idea -
d — ideal (5) oy (ras + 1)

(2.147)

It is seen that the ideal feedforward controller is not physically proper. A first-
order low-pass filter, 1/(Ags + 1), is therefore introduced for implementation,
resulting in

kd(azsz + ais —+ 1) e_(gd_e)s

Fa(s) = ko(tas + D(hgs + 1)

(2.148)
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where the filter time constant is suggested to be Ay = (0.1 ~ 1.0)74 to adjust the
feedforward control action. When A4 is zero, the feedforward control is ideal, but
tends to be sensitive to model mismatch and measurement noise. On the contrary,
increasing A4 mitigates the control action so that unexpected model mismatch can
be accommodated.

In the nominal case, i.e., when G = Gy, and so is for the feedforward control,
there is an “open-loop” control for the set-point tracking. Based on the process
model of (2.114), the desired system transfer function according to the IMC theory
(Morari and Zafiriou 1989) to be presented in Sect. 7.3 is in the form of

efﬁs

where Ay is an adjustable time constant for obtaining desirable set-point tracking
performance. Using the nominal relationship of T;(s) = G(s)Cs(s), the set-point
tracking controller can be inversely derived as

2
1
Cs = w_ (2.150)
kp(Ass + 1)

The closed-loop structure set between the process input and output is used for
eliminating the output error in the presence of model mismatch and other process
uncertainties. Note that if there exists model mismatch in the feedforward control,
the redundant control signal (Auy) may be viewed as a load disturbance (denoted as
d;) that enters into the process input. If G = Gy, the transfer function from uq to ug
can be derived as

Hg(s) = G(s)Cx(s) (2.151)

which is exactly equivalent to the nominal “open-loop” system transfer function
for set-point tracking. According to the optimal load disturbance rejection strategy
developed in Liu et al. (2005), the desired closed-loop transfer function is in the
form of

—0s

Ti(s) = Hy(s) = m

(2.152)

where A¢ is an adjustable time constant used to tune the closed-loop performance
for disturbance rejection.
Substituting (2.114) and (2.152) into (2.151) yields

2
1
Cr = w (2.153)
kyGres + 1)
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which is similar to the form of Cs in (2.150). However, the tuning of C: is
subject to a stability constraint of the closed-loop structure. According to the IMC
theory (Morari and Zafiriou 1989), tuning C; aims at a good trade-off between
the disturbance rejection performance of the closed-loop structure and its robust
stability, i.e.,

[Am($)TR(s)[ + [W()[1 = Ti(s)]] < 1 (2.154)

where A (s) = [G(s)—Gm(s)]/ G(s) defines the process multiplicative uncertainty,
and W(s) is a weighting function of the closed-loop sensitivity function, Sg(s) =
1 — Ti(s). For instance, W(s) = 1/s can be taken for a step change in the
load disturbance that enters into the process input. Decreasing A¢ can improve the
disturbance rejection performance of the closed-loop structure, but degrades its
robust stability in the presence of process uncertainties. In contrast, increasing A¢
can strengthen the robust stability of the closed-loop structure, but in exchange for
a degradation in its disturbance rejection performance.

According to the small gain theorem (Zhou et al. 1996), the closed-loop structure
for disturbance rejection holds robust stability if and only if

[Am($)Tr(s)[loo < 1 (2.155)

Substituting (2.152) into (2.155), one can obtain the robust stability constraint

for tuning A,
,/A%(uz + 1> An(jw), VYo =0 (2.156)

which can be intuitively checked by observing whether the magnitude plot of the
left-hand side of (2.156) is larger than the right-hand side for w € [0, 00). Therefore,
given an upper bound of A, as usually specified in practice (e.g., the maximal range
of the model parameters), the admissible tuning range of A¢ can be numerically
ascertained from (2.156).

The above control scheme is applied in comparison with the standard 2DOF
IMC control structure (see Fig. 8.1). For the above initial process conditions and
the set-point change with an inherent-type load disturbance as in the above step test,
the control results are shown in Fig. 2.13. It is seen that given the same control
parameters (i.e., A; = 0.5 and A¢ = 1.0), the standard 2DOF IMC control structure
that uses the identified SOPDT process model gives similar set-point tracking
performance but better load disturbance rejection compared to the structure that uses
the real process model. To obtain the same disturbance rejection performance, the
tuning parameter A¢ of Cy should be increased to 1.6 if the identified SOPDT process
model is used, which, in fact, facilitates better closed-loop stability according to
the IMC theory. Note that, based on the identified FOPDT disturbance model, the
proposed control scheme with A, = 0.5, Ay = 1.6, and Aq = 2.0 obviously gives an
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Fig. 2.13 A comparison of control effects for Example 2.9

improved load disturbance response. This goes to demonstrate that identifying both
the model of the process and the model of the inherent-type load disturbance from
a step test facilitates advanced control design and performance.

2.4.4 Application to Injection Velocity Control

Consider the injection velocity control of an industrial reciprocating screw injection
molding machine (Chen-Hsong, model no. JIM88-MKIII-C), the schematic of which
is shown in Fig. 2.14. The injection velocity is regulated by a proportional valve
(4WRP-10-63S-1X/G24724/W), denoted as PV1 in Fig. 2.14, and is measured
with an MTS Temposonics III displacement and velocity transducer (RH-N-0200M-
RGO-1-VO-1). A 16-bit data acquisition card (PCL-816) from ADVANTECH
is used for analog-to-digital (A/D) and digital-to-analog (D/A) conversions. For
illustration, a rectangular mold of length 150(mm), width 200(mm) and thickness
2(mm), corresponding to a weight of 27.8(g), is used for the injection molding
experiments. The plastic material is higher-density polyethylene (HDPE).

For an open-loop step test in which the valve opening of PV1 suddenly goes
through a change from 0% to 40% (as a percentage), the injection velocity response
measured in a sampling period of 0.005(s) is plotted in Fig. 2.15. It is seen that
the injection velocity response starting from an initial value of about —2(m/s) has
an obvious overshoot, and then drops to a roughly steady value of about 28(m/s)
in the time interval [0.1, 0.2](s). Because of the presence of mold cavity pressure,
which increases gradually during the filling process, the injection velocity decreases
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Fig. 2.15 Open-loop step test for injection velocity response

continuously until the end of the filling process. In view of the obvious overshoot in
the step response, an SOPDT model structure is adopted for identification. It can be
seen from the corresponding LS fitting algorithm shown in (2.128) that the number
of parameters to be estimated (dim(y)) is 6. To ensure identification effectiveness,
the turning point is chosen as t = 0.13 (s) for determining the starting point of
the load disturbance response. Accordingly, the transient response data points in the
time interval [0.05, 0.13](s) are used to identify the dynamic response of injection
velocity to the valve opening, corresponding to M = 17, which complies with the
guideline given in Sect. 2.4.1 for a piecewise model identification.

By using a low-pass third-order Butterworth filter with a cutoff frequency of
fe = 20(HZ) for predenoising the measured data, the identification algorithm for
Case 1 gives the SOPDT model,
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B 71.1198¢0-05
T 1.0792 x 107452 4+ 6.6425 x 1035 + 1

Gm

Then, by letting 3 = 0.12 (s) in consideration of the process time delay, the load
disturbance response in the time interval [0.13, 2.5](s), estimated by subtracting
the above SOPDT model response from the step response, is used for modeling
the influence of mold cavity pressure. An FOPDT disturbance model is, therefore,
derived as

23.025¢ 7013
0.4726s + 1

4=

For comparison, the SOPDT model response and the combined model response
for representing the step test are also plotted in Fig. 2.15, which shows good fitting
effect.

Based on the identified models, the 2DOF IMC plus feedforward control scheme
shown in Fig. 2.12 is applied for closed-loop control of the injection velocity
(IVE) at a desired constant value, IVE = 30 (m/s),for the filling process of
injection molding. For implementation, the control sampling period is taken as
T, = 0.01 (s), and the one-step backward discretization operator, é(kT,) =
le(kTy) —e((k — 1)Ty)] /T;, is used for computational simplicity. Experimental
results based on the tuning parameters of A; = 0.2, Ay = 0.5, and Aq = 0.1 are
plotted in Fig. 2.16. It is seen from Fig. 2.16a that fast set-point tracking without
overshoot is obtained using the proposed control method. A slight drop of the
injection velocity during the time interval [0.6, 1](s) is due to model mismatch in
describing the influence of the mold cavity pressure, which, however, is quickly
compensated by the feedback controller (Cy). Figure 2.16b shows the valve opening
(as a percentage) and the controller outputs. For comparison, the control result
obtained by using the standard 2DOF IMC scheme is also plotted in Fig. 2.16a,
which indicates that the set-point tracking is obviously slower and the filling time is
longer, when the feedforward control based on the identified disturbance model is
not used.

To further demonstrate the achievable control performance, assume that the
injection velocity profile shown in Fig. 2.17a (dash line) is prescribed for molding
a product of the convex shape. The proposed control scheme with the above tuning
parameters gives the result shown in Fig. 2.17a, b. Note that, for the set-point change
from 30 to 40(m/s) or the reverse, the output of the set-point tracking controller Cy is
implemented one sampling step ahead of the set-point change to compensate for the
identified time delay of the injection velocity response. Correspondingly, the tuning
parameters of Cs and C¢ are adjusted to A; = 0.05 and Ay = 0.1 to deal with the
step change, so that an implementation constraint of moderating a step change of
the set-point into a ramp type (Tian and Gao 1999; Tan et al. 2001) is no longer
necessary.
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Fig. 2.16 Closed-loop control of injection velocity during the filling process

2.5 Model Identification from a Closed-Loop Step Test

Generally, a closed-loop step test is performed by adding a step change to the set-
point and then collecting the transient output response data for model identification.
The closed-loop test is based on a simple low-order controller like PID for the
closed-loop configuration, as shown in Fig. 2.18, where G denotes the process to be
identified and C is the closed-loop controller, r denotes the set-point, u the process
output, and y the process output.

With a prescribed closed-loop controller, one can ensure the closed-loop system
has entered into a steady state before adding a step change to the set-point for
a closed-loop step test (Jin et al. 1998; Li et al. 2005). This can facilitate model
identification around the set-point for online autotuning, in contrast with an open-
loop step test.
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response test

2.5.1 Frequency Response Estimation

A typical closed-loop step response is shown in Fig. 2.19. It is seen that the Fourier
transform of the closed-loop step response does not exist because Ay(t) # 0 for
t — oo, where Ay(t) = y(t) — y(t), ¥(t) denotes the initial steady output value
corresponding to the set-point value. However, by letting s = « + jw in the Laplace



72 2 Step Response Identification of Stable Processes

Closed-loop step response

Output

0 bt 50 100 150 200
Time (sec)

Fig. 2.19 Illustration of choosing « in a closed-loop step test

transform for the step response,

AY(s) = / ” Ay(t)e™dt (2.157)
0

one can obtain
oo .
AY (o + jo) =/ [Ay(t)e™ |e™/“ d1. (2.158)
0

Therefore, similar to the frequency response estimation introduced in Sect. 2.2.1,
by regarding « as a damping factor of the closed-loop step response in the Laplace

transform, one can compute AY (¢ + jw) from a finite number of step response
points as

IN
AY(a + jo) =/ [Ay()e " ]e /" d1. (2.159)
0

For a closed-loop step test in a steady state initially, i.e., y(t) = r(t) = c for
t < 1y, where c is a constant and #, is the moment for the step test, one can formulate
the step change of the set-point by using a time shift of 7y (i.e., letting 7o = 0) as

0, t<0;
Ar(t) = { N 0 (2.160)
, t>0.

where / is the magnitude of the step change. Its Laplace transform for s = o + jow
with @ > 0 can be explicitly derived as

h
a+ jo

o0
AR(x + jw) =/ he=@tiol gy = (2.161)
0
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Correspondingly, the closed-loop frequency response can be derived using
(2.159) and (2.161) as

. o+ jo
T+ jo)= J

AY (o + jo), a>0. (2.162)

Note that the guideline for choosing « and ¢y is the same as that presented in
(2.8) and (2.10).

Also, in the presence of measurement noise, enhanced identification robustness
can be obtained by computing the closed-loop frequency response through

AY(a+jw)

. +j (@+ jo)* (VT [ -
T(a+ jo)= A;‘(af}w) = p i i Ay(t)dt [e e /2 dt.
atjo

(2.163)

According to the definition of the nth order derivative for a complex function
of F(s) with respect to the Laplace operator, s, as shown in (2.15), it follows from
(2.157) and (2.162) that

TW(s) = %/ (1 —st)Ay(t)e "' dt (2.164)
0

TO(s) = %/ t(st —2)Ay(t)e " dt (2.165)
0

Hence, by letting s = « and choosing « according to the guideline for computing
(2.159), the time integral in (2.164) and (2.165) can be numerically computed using
a finite number of step response points. The corresponding time lengths 5 can be
determined using the numerical constraints,

(1 —aty)Ay(ty)| Tee ™™ < § (2.166)

[ty (aty —2)Ay(ty)| Tee ¥V < §. (2.167)
Note that the closed-loop transfer function can be derived from Fig. 2.18 as

o) — GOICO)

= 1 6LICE) (2.168)

Hence, with a known form of C(s) for closed-loop step test, the process
frequency response can be inversely derived from (2.168) as

T(s)

O = Ccon-Te

(2.169)
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Accordingly, the first derivative of G(s) can be derived from (2.169) as

G — TWC + COT(T - 1)

2.170
c2(1-T)* ( )
and the second derivative of G (s) can be derived as
GO CT? +2cOTOT + COT(T — 1)
B C2(1-T)*
2CTW +cOT(T - D)[CcVYA-T)-—CTY
ATV COT@ - DIC-T)—CT
C3(1-T)

For example, assume that a conventional PID controller is used in the closed-
loop configuration as shown in Fig. 2.18 for the step test, which is generally in the
form of

1 DS
C(s) =k —
() C+r1s+rps+l

(2.172)

where k¢ denotes the controller gain, 7 the integral constant, 7 the derivative
constant, and tr a filter constant that is usually taken as g = (0.01 ~ 0.1)1p
for implementation. It can be derived that

1 D
cCVs)=——— + —M— (2.173)
©) Tus?  (tps + 1)?
2 2
COs) = o (2.174)

usd (tps 4+ 1)°

Hence, by substituting s = o+ joy (k = 1,2,..., M)into (2.169), where M is
the number of representative frequency response points in a user-specified frequency
range for identification, the process frequency response, G(« + jwy ), can thus be
estimated for model fitting.

2.5.2 Model Identification

Based on the above frequency response estimation of the process, the identification
algorithms presented in Sect. 2.2 can be used for model identification. If the model
structure adopted matches the process, all the identification algorithms presented in
Sect. 2.2 will give good fitting accuracy. For simplicity, the analytical identification
algorithms — Algorithm-SS-I and Algorithm-SS-II — presented in Sects. 2.2.2
and 2.2.3 are preferred for application. When there exists a model mismatch, in
particular for the identification of higher-order processes, the Algorithm-SS-IV
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presented in Sect. 2.2.5 is preferred to improve the fitting accuracy over a specified
frequency range of interest to control design and online autotuning.

In practical applications, low-order process models of FOPDT and SOPDT are
most widely used for online controller autotuning such as the PID autotuning for
improving system performance of load disturbance rejection. When there exists
a model mismatch, especially in the identification of higher-order processes, the
following identification algorithm for improving fitting accuracy over the low fre-
quency, which is similar to Algorithm-SS-IV presented in Sect. 2.2.5, can be used.

Substituting the process frequency response in (2.169) with s = o + joy (k =
1,2,..., M) and the process model of FOPDT in (2.13) or SOPDT in (2.27) into
the left-hand side of (2.43) and letting it equal zero, a weighted LS solution for
parameter estimation can be derived accordingly as

y=(@"wo)yloTwu (2.175)

where W = diag{pi,...,pm>P1>---»PM}>

- Re[V] - Re[D]
\I’ = 5 @ = ’
Im[¥] Im[D]
where W = [y(a + jon), ¥ (@ + jan),.... ¥ (@ + jou)]" @ = [p(a + jor),
d(a+ jwn),...,¢(a+ jwu)]”. For obtaining an FOPDT model shown in (2.13),
V(e + jwg), (e + jwy), and y assume the form of
V(o + jor) = Gila + jox),
Plo+ jor) = [—(a + jor)Gi(a + jog), e @Hi@fT, (2.176)
V= [Tpvkp]T-
For obtaining an SOPDT model shown in (2.27), ¥ (a + jwk), ¢ (@ + jwi), and
y assume the form of
Vo + jor) = G + jwx),
Pla+ jor) = [—(a + jor)Ga(o + jwx),
. (2.177)
— (0 + jor)Gala + joy), e “H/ 0T
y = [al,ag,kp]T.
It can easily be verified that all the columns of ® are linearly independent of
each other, so (®7 W ®)~! is guaranteed to be nonsingular for computation. Accord-
ingly, there exists a unique solution for parameter estimation. For implementation,

M € [10,50] is suggested for a good trade-off between the fitting accuracy and
computational efficiency.
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Accordingly, the FOPDT model parameters can be retrieved as
i v() (2.178)

and the SOPDT model parameters can be retrieved as

a; = y(1)
a =y(Q2) (2.179)
kp =y (3)

Note that a preliminary value of the process time delay (0) is needed to derive
the remaining model parameters from (2.175). In fact, an approximate estimate of
the process time delay can be obtained from the step response or a time delay model
derived from Algorithm-SS-I or Algorithm-SS-II, which may be used as an initial
value in a one-dimensional search that uses a convergent condition for fitting the
closed-loop step response,

N.
| & o
err = F;; [Ay(kTS) - Ay(kTs)] <e (2.180)

where Ay(kT;) and Ay(kT;) denote, respectively, the process and model outputs to
the closed-loop step test, and N, T is the settling time. Therefore, given a specified
threshold of &, a suitable solution of the model parameters can be obtained by
monotonically varying € in a possible range for computation. The one-dimensional
search step size may be taken as a small multiple of the sampling period for
implementation. The optimal fitting can be determined by deriving such a model
that yields the smallest value of err.

It is obvious that minimization of the time domain fitting condition in (2.180)
can lead to the minimum of the frequency domain objective function in (2.43),
if the model structure adopted matches the process. When there exists a model
mismatch, the combination of (2.43) and (2.180) for deriving the model parameters
can guarantee a good compromise between the time domain response fitting and the
frequency response fitting, but may not realize the global minimization of (2.43) or
(2.180).

2.5.3 Illustrative Examples

Three examples studied in the recent literature are used here to illustrate the effec-
tiveness of the presented algorithms for closed-loop frequency response estimation
and model identification. In all identification tests, the sampling period is taken to
be Ty, = 0.01 (s) for implementation.
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Example 2.10. Consider the FOPDT stable process studied by Padhy and Majhi
2000,

1
G — —O.Ss.
(s) s+ 1 ¢

Based on a closed-loop relay feedback test with two P controllers, Padhy and
Majhi (2006) derived an FOPDT model, G, = 1.0e7%%/(0.9996s + 1). For
illustration, the unity feedback control structure with a proportional controller
of k¢ = 3.5, which is equivalent to that in Padhy and Majhi (2006), is used
here for a closed-loop step test. By adding a step change with a magnitude of
h = 0.5 to the set-point, the closed-loop step response is like the one shown
in Fig. 2.19. According to the guidelines given in (2.8) and (2.10), « = 0.1
and 1y = 200 (s) are chosen to apply Algorithm-SS-I, resulting in an FOPDT
model, Gy, = 1.0e7%°%25/(0.9998s + 1), which indicates good accuracy for no
model mismatch or measurement noise. Also, the identification algorithm given in
Sect. 2.5.2 based on the frequency response estimation of G(0.1 + jwy), where
wry = ko /10, k = 0,1,2,...,10, and w,, = 3.6718 (rad/s) that is estimated
from the above FOPDT model, can result in the exact process model.

To demonstrate identification robustness with regard to different choices of
a(e = 0.1,0.2,0.5), the results of frequency response estimation for the choices
of « = 0.1,0.2,0.5 under a variety of noise levels (NSR =0, 5, 20%) are listed
in Table 2.5 based on a number of closed-loop step tests (N = 1,10, 20). Note
that different step tests are simulated by randomly varying the “seed” of the noise
generator, and correspondingly, the results for N = 10 and N = 20 are denoted by
amean value along with the sample standard deviation in parentheses. It is seen that
precise frequency response estimation is obtained with regard to different choices
of o for NSR = 0. Given these noise levels, taking a smaller value of « facilitates
better identification robustness, and so does using a larger number of tests, which is
in accordance with the statistical averaging principle.

To demonstrate the consistent parameter estimation of the identification algo-
rithm given in Sect. 2.5.2, which uses the time domain fitting criterion of (2.180),
assume that a random noise N (0, oé? = 0.94%), causing NSR =20%, is added
to the process output measurement, which is then used for feedback control. By
performing 100 Monte Carlo tests in terms of varying the “seed” of the noise
generator from 1 to 100, the identified results are obtained as

__1.0003(0.006) g sorao0us
0.9904(£0.25)s + 1

m

where the model parameters are shown by the mean of 100 Monte Carlo tests, along
with the sample standard deviation in parentheses. It is thus demonstrated that this
identification algorithm results in consistent parameter estimation under the severe
noise level.
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Example 2.11. Consider a high-order process studied by Skogestad (2003),

—s +1
= e
(65 + 1)(2s 4+ 1)°

s

G(s)

By using an analytical model reduction method, Skogestad (2003) gave an
SOPDT model, G, = 1.0e73/[(6s + 1)(3s + 1)], to tune a PID controller,
C = (14+1/6s)(3s+ 1)/(0.03s + 1), for the closed-loop control. By performing
a closed-loop step test with a unity step change using the above PID controller,
Algorithm-SS-I taking « = 0.01 and ¢ty = 1,500 (s) gives an FOPDT model,
Gm—1 = 0.9992¢662685 /(521485 + 1), corresponding to the closed-loop transient
response error err = 6.39 x 1072 in the time interval [0, 30]s. In contrast,
Algorithm-SS-II based on ¢« = 0.01,0.11,0.21,0.31,0.41 and ty = 1,200 (s)
gives an SOPDT model, G, _» = 0.9107¢73185/(23.6983s% + 5.4853s + 1),
corresponding to err = 3.09x 1072, To improve model fitting accuracy over the low
frequency range concerned for controller tuning, the identification algorithm given
in Sect. 2.5.2 based on the frequency response estimation of G(0.01 + jwy ), where
wr = kw/10,k =0,1,2,...,10, and w,. = 0.3188(rad/s) that is estimated from
the above FOPDT model, gives G, —» = 0.9986e 3% /(18.6132s% +8.7483s +1),
corresponding to err = 6.04 x 107>, Note that the SOPDT model in Skogestad
(2003) corresponds to err = 1.98x 10~*. The Nyquist plots of the identified SOPDT
models are shown in Fig. 2.20. It is seen that the Nyquist curve of the proposed
SOPDT model almost entirely overlaps that of the real process, especially in the
low frequency range.
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Example 2.12 Consider another high-order process studied by Huang et al. (2005),

1
(452 +2.85 + 1)(s + 1)°

—2.2s

G(s) =

Based on a closed-loop relay feedback test for frequency response estimation,
Huang et al. (2005) gave a PID tuning, C = 0.314(14+1/2.59s+2.103s)/(0.1s+1).
By performing a closed-loop step test with a unity step change using the above PID
controller, Algorithm-SS-I taking « = 0.05 and ty = 500 (s) gives an FOPDT
model, G, — = 1.0005e 27485 /(1.754s + 1), corresponding to err = 1.09x 1073
in terms of the closed-loop transient response in the time interval [0, 50]s. Based
on the frequency response estimation of G(0.05 + jwy), where wp = kwy /10,
k =0,1,2,...,10., and w, = 0.4657 (rad/s) that is estimated from the above
FOPDT model, the identification algorithm given in Sect. 2.5.2 gives an SOPDT
model, G, —» = 0.9934e 3% /(5.5069s + 3.40955 + 1), corresponding to err =
1.51 x 107>, The Nyquist plots of the identified models are shown in Fig. 2.21. It is
seen that the Nyquist curves of both the FOPDT and SOPDT models almost entirely
overlap that of the real process in the low frequency range, while the SOPDT model
gives improved fitting at higher frequencies.



2.6 Summary 81
2.6 Summary

The step response test has been widely practiced for model identification in various
process industries. There are typically two types of step response test — open-
loop and closed-loop. The guidelines for implementing these step tests have been
presented in Sects. 2.2 and 2.5.

For the use of an open-loop step test, a frequency response estimation algorithm
has been presented (Liu and Gao 2010a) by introducing a damping factor to the
step response for the realization of Laplace transform. Based on the proposed
frequency response estimation, four model identification algorithms (Algorithm-SS-
I, Algorithm-SS-II, Algorithm-SS-III and Algorithm-SS-IV) have been presented
to meet different requirements of identification accuracy and computation effort
in practical applications. Note that these algorithms can reduce n-fold multiple
integrals to a single integral for the identification of an nth order model (n > 2),
while being insensitive to the time length of the step response, compared to
most existing step identification methods using multiple integrals to establish time
domain LS fitting. Moreover, Algorithm-SS-IV is able to obtain the optimal fitting
accuracy for a given model structure over a specified frequency range of interest
for control design. To deal with model mismatch in the identification of high-order
processes, as encountered in engineering practice, a guideline for model structure
selection to realize the optimal fitting has been given accordingly. Four examples
from the literature have demonstrated that the proposed frequency response estima-
tion algorithm maintains good robustness with respect to different choices of the
damping factor for computation. All of these identification algorithms have been
demonstrated to result in good accuracy if the model structure adopted matches the
process, together with good identification robustness against measurement noise.

For practical application of step response identification subject to unsteady or
unknown initial process conditions, or unexpected load disturbance, a modified
implementation of the step response test is suggested in Sect. 2.3. Correspondingly,
a robust step identification method (Liu and Gao 2008) has been detailed for
obtaining the widely used low-order process models of FOPDT and SOPDT with
or without zeroes, which can also be transparently extended to obtain a specific
higher-order model. A distinguishing feature of the modified step test is that the
process transient response from removing the step change is also included for
model identification. It is, therefore, demonstrated that the conventional step test
is not suitable for parameter estimation in the presence of unsteady initial process
conditions or unexpected load disturbance. Multiple integrals of the differential
system equation have been used to establish a linear regression, through which
individual output response points that are likely to be subject to measurement noise
are avoided for deriving the model parameters, thereby facilitating identification
robustness. With a user-specified threshold for convergence, the Maclaurin series
approximation for representing the influence of nonzero initial process conditions
and load disturbance can be conveniently implemented in the proposed identification
algorithms. As nonzero initial process conditions are considered, the proposed
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identification method can easily be repeated online, if unexpected load disturbance
impedes convergence. A practical IV method has also been given to guarantee con-
sistent estimation against measurement noise. The applications to three examples
from the references have demonstrated that the proposed identification method can
give good accuracy and robustness.

For step response identification subject to inherent-type load disturbance in
practical applications, a piecewise model identification method (Liu et al. 2010)
has been presented in Sect. 2.4 that allows the use of raw step-response data
for simultaneously identifying the pure process model and the inherent-type load
disturbance model from a step test, based on an intuitive partition of the transient
step response data. Identification algorithms have been detailed for obtaining the
widely used low-order models of FOPDT and SOPDT. Note that these identifica-
tion algorithms can be transparently extended to obtain higher-order models for
describing more complex dynamic response characteristics of the process and the
inherent-type load disturbance. Two illustrative examples have demonstrated that
good identification accuracy and robustness can be obtained through the use of the
piecewise model identification method. Accordingly, a 2DOF IMC plus feedforward
control scheme has been proposed for improving process operation against inherent-
type load disturbance. The application to the velocity control of injection molding
has demonstrated the effectiveness of the piecewise model identification method and
the corresponding control method.

For the use of a closed-loop step test, a frequency response estimation algorithm
similar to that given in Sect. 2.2.1 is presented to estimate the closed-loop frequency
response (Liu and Gao 2010b). Accordingly, the process frequency response can
be analytically derived from the closed-loop frequency response with knowledge
of the loop controller. Based on the estimated frequency response points of the
process, the identification algorithms given in Sect. 2.2 for open-loop step test
can also be applied for the identification of models of any specific order. To cope
with model mismatch in the identification of high-order processes, an identification
algorithm is detailed for improving the fitting accuracy over a specified frequency
range in terms of an FOPDT or SOPDT model structure that is most widely
used for online controller tuning. This algorithm is based on using a weighted LS
fitting for multiple frequency response points estimated in the specified frequency
range. The applications to three examples from the literature have demonstrated the
effectiveness and merits of the proposed closed-loop step response estimation and
identification algorithms.
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Chapter 3
Step Response Identification of Integrating
and Unstable Processes

3.1 Practical Implementation Issues

Some industrial and chemical processes, e.g., heating boilers and continuous-
stirred-tank-reactors (CSTRs), show integrating or unstable dynamics to the input
change, such as a step or ramp signal that often occurs in process operations. Such
a dynamic response can be intuitively observed from the phenomenon: Given a step
change or a load disturbance to the process input, the process output will not recover
the previous state or move into another steady state, but keep on varying beyond the
output limit of system operation. A monotonically increasing or decreasing response
case is usually indicative of a process of an integrating type, and in contrast, other
cases with irregular behavior that exceed the output limits are classified as unstable
processes.

For safety and economic reasons, integrating and unstable processes are usually
not allowed to be operated in an open-loop manner (Morari and Zafiriou 1989;
Shinskey 1996; Seborg et al. 2004). A closed-loop step test is therefore necessary for
model identification. For the convenience of implementation, a low-order controller
such as a P-, PI-, or PID-type controller may be initially used for closed-loop
stabilization, based on a preliminary knowledge or experiences of the process
operation.

Generally, a closed-loop identification test is performed in terms of the unity
feedback control structure as shown in Fig. 3.1, where G denotes the process to be
identified and C is the closed-loop controller, r denotes the set-point, u the process
input, y the process output, and d indicates external signal such as load disturbance
entering into the process.

There are two alternative choices for adding an excitation signal to conduct
a closed-loop identification test (Soderstrom and Stoica 1989; Pintelon and
Schoukens 2001), i.e., adding it to the process input or the set-point. For the

T. Liu and F. Gao, Industrial Process Identification and Control Design: Step-test 85
and Relay-experiment-based Methods, Advances in Industrial Control,
DOI 10.1007/978-0-85729-977-2_3, © Springer-Verlag London Limited 2012
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Fig. 3.1 The closed-loop d
configuration for an r +Y u

identification test ’T > C G

identification of an integrating or unstable process, it is suggested to add the
excitation signal to the set-point of the closed-loop system. The reason is given
below:

From Fig. 3.1, the transfer function relationship relating r and d to y and u can
be derived as

Y<

G(s)C(s) G(s)
y|_| T+ GECE) 14+ G()C(s) [V} G0
ul C(s) 1 d|’ ’
14+ G()C(s) 1+ G(s)C(s)
Denote the closed-loop transfer function by
T(s) = —2WCE) (3.2)

1+ G(s)C(s)

Substituting (3.2) into (3.1) yields

[y]z[ T(s) G(s)[l—T(s)]][r]' a3
u C[1-T()] 1—T() d

Note that the closed-loop system holds internal stability if and only if all the four
transfer functions shown in (3.3) are maintained to be stable, according to the robust
control theory (Zhou et al. 1996). If C(s) is tuned to keep 7 (s) stable, the closed-
loop sensitivity function, S(s) = 1 — T(s), will satisfy the asymptotic tracking
constraint,

lim S(s) = 0 (3.4)

which implies that, besides a P-type controller, a low-order controller of PI- or PID-
type can also maintain C(s)[1 — T'(s)] stable, if such a controller has been tuned to
keep T (s) stable.

For a stable process, it can be seen from (3.3) and (3.4) that the excitation signal
for a closed-loop identification test in terms of a low-order controller of P-, PI-, or
PID- type may be added to the set-point or the process input (through ), without
affecting the closed-loop system stability.

However, for an integrating or unstable process, even if 7'(s) is maintained to be
stable, the closed-loop system may not hold internal stability, because the transfer
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function from d to y, G(s)[1 — T'(s)], may not be stable due to the unstable pole(s)
in G(s). That is, the closed-loop controller is required not only to keep 7 (s) stable
but also to let 1 — 7'(s) contain the corresponding zero(s) to cancel out the unstable
pole(s) in G(s), if the excitation signal is added to the process input (through d).
Since the process is in fact to be identified, such excitation will evidently bring
more difficulties to the tuning of C(s) for the closed-loop stabilization, compared to
adding the excitation signal to the set-point.

Based on the above analysis, it is suggested to add the excitation signal of a step
change to the set-point for closed-loop identification of an integrating or unstable
process, for the convenience of tuning the closed-loop controller for stabilization
while preventing the process output from drifting too far way from its working
range.

For integrating processes, it has been clarified that using the standard relay
feedback control structure can undoubtedly result in steady oscillation for model
identification (Liu and Gao 2008). In fact, the standard relay feedback structure can
be reduced to the unity feedback control structure with a P-type controller, by letting
the relay hysteresis and the negative switch of the relay output to be zero. Therefore,
it is suggested for simplicity to use a P-type controller for stabilization to conduct
a closed-loop step test. The gain of the P-type controller may be initially taken as a
small value, and then be gradually increased online to facilitate the observation of
the transient step response for model identification.

For unstable processes, the above closed-loop step test in terms of a P-type
controller may be used for identifying such processes with no or small time delays,
in consideration of that the standard relay feedback structure can only result in
steady oscillation for such cases (Tan et al. 1998; Liu and Gao 2008). For unstable
processes with longer time delays, knowledge or experience of the process operation
should be used to tune a low-order controller (e.g., PI or PID) for closed-loop
stabilization, including the trial-and-error methods (Seborg et al. 2004; Astrom and
Hiégglund 2005). Accordingly, a closed-loop step test can be conducted as above,
together with a precaution of the controller windup to guarantee identification
effectiveness.

It should be noted that the closed-loop step test may be performed iteratively
to facilitate a better observation of the closed-loop transient response for model
identification, based on an improved tuning of the closed-loop controller with a
model identified from the initial closed-loop step test.

Since the pioneering work of using a simple P-type controller to stabilize an
unstable process for a closed-loop step test (Deshpande 1980), only a few closed-
loop step response identification methods have been reported for integrating and
unstable processes, in particular in the presence of time delay. Following an early
idea of considering the process response delay as the closed-loop system delay,
Ananth and Chidambaram (1999) proposed an FOPDT model identification method
for unstable processes by assigning the dominant closed-loop system pole for model
fitting. This work was further extended in the references (Sree and Chidambaram
2006; Cheres 2006) by using the peak values of a closed-loop step response.



88 3 Step Response Identification of Integrating and Unstable Processes

Using the so-called pseudo-derivative feedback (PDF) for closed-loop stabilization,
Paraskevopoulos et al. (2004) developed another FOPDT identification algorithm
by establishing amplitude fitting conditions of a closed-loop step response. For
integrating processes, closed-loop step identification algorithms with a P-type
controller for stabilization were simultaneously developed to obtain an FOPDT
or SOPDT model for model-based controller tuning on-line (Sung and Lee 1996;
Kwak et al. 1997, Jin et al. 1998).

Note that monotonically increasing or decreasing the process output in a certain
range around the set-point may be allowed for operating some industrial integrating
processes involving the regulations of temperature, pressure, and liquid level etc. An
open-loop step response test is therefore possible for model identification around
the set-point, for the control design of set-point tracking and load disturbance
rejection (Luyben 1990). Moreover, a stable model structure with a large time
constant may be considered for describing the dynamic response characteristics of a
slowly integrating process, to facilitate the closed-loop controller tuning in practice
(Astrom and Higglund 1995).

Accordingly, an open-loop step response identification method (Liu et al. 2009)
is first presented here for identifying an integrating process. Then, a closed-loop step
response identification method (Liu and Gao 2010) is presented for the identification
of integrating and unstable processes.

3.2 Open-Loop Step Response Identification of Integrating
Processes

Generally, zero initial process state or nonzero steady state is required for the
implementation of an open-loop step test. To identify an integrating process, zero
initial process state is preferred for the test, since a nonzero steady state of such a
process usually is not available in practice. In the case where the process dynamic
response characteristics around a nonzero set-point value is required for control
design or on-line controller tuning, a reasonable zero initialization of the nonzero
initial process conditions is needed to perform an open-loop step test, based on a
preliminary knowledge of the process operation conditions. This will be illustrated
by the experimental example in Sect. 3.4.

To describe the fundamental dynamic response characteristics of an integrating
process, a low-order model structure of FOPDT or SOPDT is mostly adopted for
control-oriented identification in engineering practice (Luyben 1990; Astrom and
Hiagglund 1995), not only for simplicity but also for effectiveness to accommodate
process uncertainties. Correspondingly, a low-order model identification method is
presented in the following subsection.
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3.2.1 Low-Order Model Identification

A low-order integrating process model is usually expressed as

T s(ms + 1) '

where kj, is a proportional gain, 6 is the process time delay, and 7, is a time constant
reflecting the process inertial characteristics. Note that if 7, — 0, the above model
is reduced to describe a purely integrating process.

In an open-loop step test, by lettingu = hfort > 0(h € N)andu =0 fort <0
in terms of a zero initialization of the process state, the time domain response of an
integrating process described in (3.5) can be derived as

y(@) =0, 0<t<6;

.. . (3.6)
V() + y(@) = kph(t —0), t>0.
Triply integrating both sides of (3.6) for ¢ > 6 yields
t (%) t 1
f / y(r)dtdrn = —Tp[ y(o)dt + gkph(t —0)° (3.7)
0o Jo 0
which can be rewritten as

y(t) = ¢ )y (3.8)

where ¥(1) = [! [P y(m)dndn, ¢(t) = [h3/6, —ht?/2. ht]2. —h/6,
— [T y(@)dx]T, and y = [ky. ky0. kp02, k83, 7, ]

In view of that ¥ (t) = y(t) = 0 fort < 0, it is suggested to choose the time
sequence, t; (i = 1,2,..., N), with a limitation of 8 <1, <t, < --- <ty for model
fitting. In fact, the process time delay may not be explicitly known beforehand,
especially in the presence of measurement noise. It is therefore suggested to choose
t; slightly larger than the observed response delay from the step test.

Then by letting ¥ = [(11), ¥ (12),- . ¥ (tn)]" and @ = [$(11),$(12), -,
¢ (ty)]", an LS algorithm for parameter estimation can be established as

y = (') oW (3.9)
It can easily be verified that all the columns of ® are linearly independent with

each other, such that ® is guaranteed non-singular for computing (3.9). Accordingly,
there exists a unique solution of y for the time sequence.
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For practical application, the number of data points (N) for fitting may be
taken in a range of 50-200, for a good trade-off between the fitting accuracy and
computational efficiency.

In the sequel, the process time constant can be retrieved as

7, = y(5) (3.10)

Note that, besides k, = y(1) and k,0 = y(2), there exist two redundant fitting
conditions, k,0> = y(3) and k,0° = y(4), which can certainly be satisfied if the
model structure matches the process. To procure the fitting accuracy for a higher
order process, one may take the natural logarithm for both sides of these fitting
conditions to obtain

10 Iny(1)
11 Inky, | | Iny(2)
12 [m@ } | Iny®3) G-10)
13 Iny(4)

Thus, k, and 6 can be retrieved from (3.11) through an LS fitting algorithm.

By letting 7, = 0, the above algorithm can be transparently applied to identify
an FOPDT integrating model, G, = kpe’e“' /s, which, however, is inferior to
an SOPDT model for describing a higher order process in practice, due to the
deficiency of representing the inertial characteristics in the transient response, as
demonstrated by Liu and Gao (2008).

Besides, it should be noted that the step response of an integrating process will
increase infinitely as # — 0o, and therefore, should be limited in an admissible range
around the set-point. Obviously, a larger range of the step response corresponding
to a longer time sequence can facilitate a better identification accuracy.

In the presence of measurement noise, ¢ (), during the step response test, there
is y(t) = y(t) + £(¢), where y(¢) denotes the measured output and y(¢) is the true
output. It follows from (3.7) that

U=0y+v (3.12)

where v = [§(t1),8(12), ..., 8(tn)]" and 8(r) = [, [i* ¢(m)dridra+1p [ {()dT.
In view of that ® is now correlated with v, the LS estimation given in (3.9) may not
be consistent. A solution to this problem is the use of the IV method (Soderstrom
and Stoica 1989). A feasible choice of such an IV matrix is given in the following
theorem:

Theorem 3.1. WithZ = |[z1,20,... ,ZN]Tchosen as the 1V matrix wherez; =

(1/t2, 1/t;, 1, t;, t] fori = 1,2,..., N, which satisfies the two limiting con-

ditions: (1). the inverse of lim (ZT ®)/Nexists; (2). lim (ZTv)/N = 0, a
N—o00 N—o00

consistent estimation is given byy = (ZT®)~' ZW.
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Proof. The two limiting conditions in Theorem 3.1 are sufficient for consistent
estimation (Soderstrom and Stoica 1989). It is therefore required to demonstrate
that the proposed IV matrix satisfies them. For the first condition, one can derive
that

_ZTe
lim
N—oo N
[ h 1 XN h ]
glvli)mwﬁi; v 0 0 0
h 1 , h N h
s N 5 Ty B2 0 0
I O T TR A T T A S R h 1,
Tl s Nli>moo N (gl ) 2 ngnoo N (gl g 2 N]gnoo N i§| f 6 _ngnoo N Jo ¥z
hoo 1 X, . s h 1N, h 1N R T
6 Nli>moo N ,Z:] f 2 ng;noo N ;1 f 2 Nli>moo N ,-; i 6 Nli>moo N ,-;1 i Nh—inoo N y(@de
o1 N ) Nooh oo U N o 1N o
Loy 5% Todmoy D g im B Teim y I iy o y(@dr |
(3.13)
Note that
. IN
lim — =c¢ (3.14)
N—oo N
where ¢ € N 4. For instance, ¢ = Ty is for the case where t; = t; + Ts(i — 1)

(i = 1,2,...,N) and T; is the sampling period for identification. Therefore, all
rows or columns in the square matrix of (3.13) are nonzero vectors and linearly
independent of each other, which guarantee

T
det( lim z CD) #0. (3.15)

N—oco N

Hence, the first condition in Theorem 3.1 is satisfied.
For the second condition, it can be derived that

im 2%~ 00 tim L3 5) lim - 368G lim - 3° 28 '
N1—r>noo N o Nl—I}lOONi; ! Ngnooﬁigl ! Ngllooﬁi;i ! '
(3.16)

Note that the measurement noise sequence, {(#;) (i = 1,2,...,N), may be

viewed as white noise for N — oo, and correspondingly, its mean tends to zero.
So, it follows from §(¢) = [y [;* ¢(r1)dnidt + T [y {(v)d 7 that

N
N@lm;s(ri) =0 (3.17)
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which indicates that §(z;) (i = 1,2,...,N) is also a random noise sequence for
N — oo and thus is uncorrelated with the time sequence, t; or tiz (i=12,...,N).
Hence, the last two elements in the vector at the right-hand side of (3.16) also
become zero for N — oo. This completes the proof. d

3.2.2 Ilustrative Examples

Two examples from the existing literature are used here to illustrate the effectiveness
of the above identification algorithm. Example 3.1 is given to demonstrate good
accuracy of this algorithm for identifying a low-order integrating process in terms
of the exact model structure, together with measurement noise tests to demonstrate
identification robustness. Example 3.2 is used to show the effectiveness of this
algorithm for identifying higher order integrating processes. In all the step tests,
the sampling period is taken as 75 = 0.01(s) for computation.

Example 3.1. Consider the SOPDT integrating process studied by Kaya (2006),

e—lOs

- s(20s + 1)

Based on a unity step response test with zero initial process conditions, the
proposed identification algorithm using the measured output data in the time interval
[8, 30](s) gives a SOPDT model, G, = 1.OOOOe_IO'OIS/s(2O.0000s + 1), which
demonstrates good accuracy.

Now, suppose that a random noise N (0, 052 = 0.0127) is added to the process
output measurement, causing NSR = 5%. Using the measured output data in the
above time interval, the proposed IV identification method results in a model,
Gm = 1.0362¢79820% /5(21.1995s + 1). According to the time domain fitting
criterion shown in (2.42), the identified model corresponds to err = 1.15 x 1073,
thus demonstrating good identification robustness. Then assume that the noise level
is increased to NSR =30% by introducing a random noise N (0,052 = 0.572),
the proposed IV identification method based on the above time interval of output
data gives a model, G, = 1.0541e7°26865 /5(22.2082s + 1), corresponding to
err =2.82x 1072,

Example 3.2. Consider the high-order integrating process studied by Ingimundar-
son and Higglund (2001),
_ 1 —5s
G=" e
s(s+1)

Based on the unity step response data, Ingimundarson and Hiagglund (2001) gave
an FOPDT model, G, = 1.0000e~!1:00%0s /s Using the measured data in the time
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Fig. 3.2 Nyquist plots of identified models for Example 3.2

interval [10, 30](s) of the unity step response, the proposed identification algorithm
gives a SOPDT model,

0.9936 541455
™ S(1.7364s + 1)

For comparison, by letting 7, = 0 the proposed algorithm can also be used to
obtain an FOPDT model, G,, = 0.9811e7'9%02% /5 The Nyquist plots of these
models are shown in Fig. 3.2. It can be seen that the proposed FOPDT model
exhibits improved fitting over that of Ingimundarson and Higglund (2001), while
the proposed SOPDT model obtains apparently better fitting.

3.3 Closed-Loop Step Response Identification of Integrating
and Unstable Processes

Based on a closed-loop step response test, as shown in Fig. 3.1, the closed-loop
frequency response can be computed using the frequency response estimation
algorithm presented in Sect. 2.5.1. Also, the process frequency response can be
inversely derived from the closed-loop transfer function, with a known form of the
closed-loop controller. The corresponding computation formulae are the same as
given in Sect. 2.5.1 and thus are omitted.
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3.3.1 The FOPDT/SOPDT Model for Integrating Processes

Based on the frequency response estimation of the process, identification algorithms
are analytically developed here for obtaining a low-order integrating model of
FOPDT or SOPDT. Consider the following SOPDT integrating model,

- ﬂ (3.18)
' s(tps + 1) '
where k, denotes a proportional gain, 0 is the process time delay, and T, is a time
constant reflecting the process inertial characteristics. Note that letting 7, = 0 in
(3.18) leads to an FOPDT model.

Regarding s € N and taking the natural logarithm for both sides of (3.18), one
can obtain

In[G1(s)] = In(k,) —In(s) — In(zps + 1) — Os. (3.19)
According to the definition of a derivative for a complex function with respect to

the Laplace operator, s, as shown in (2.15), one may take the first derivative for both
sides of (3.19) with respect to s, obtaining

GV(s) 1 T

=——— -6 3.20
Gi(s) s s+ 1 ( )
Also, the second derivative for both sides of (3.19) can be obtained as
2
GG -G _ 15 Ga)
G2(s) 2 (s + 1) '

For simplicity, the left-hand side of (3.20) is denoted by Q(s) and the left-hand
side of (3.21) is denoted by Q,(s).
By substituting s = « into (3.21), it can be derived that

1 —a?0x(e) + Va2 0r(@) — |

2
oA Qs(@) > —
o

. o 0s(e) — 20 .
D et et T 2
20 — a3 0, () ’ : a?’

Note that there exists a limiting condition of Q»(a) > 1/a>.

Consequently, the remaining model parameters can be derived from (3.20) and
(3.18) as

T
T + 1

1
9=—Q1(05)—5— (3.23)
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ky = a(tpa + 1)Gi(a)e’ (3.24)

Hence, the above algorithm named Algorithm-SI-I for obtaining an SOPDT
model for an integrating process can be summarized as follows.

Algorithm-SI-I

(i) Choose « and ¢y in terms of (2.8), (2.10), (2.166), and (2.167) to compute
T (), T (), and T () from (2.162) (or (2.163)), (2.164), and (2.165).
(i) Compute C(er), CV(e), and C?@ () such as from (2.172), (2.173), and
(2.174).
(iii) Compute Gi(a), G\ (), and G («) from (2.169), (2.170), and (2.171).
(iv) Compute Q(«) and Q> (o) from the left-hand sides of (3.20) and (3.21).
(v) Compute the process time constant, z,, from (3.22).
(vi) Compute the process time delay, 8, from (3.23).
(vii) Compute the proportional gain, k,, from (3.24).

Note that by letting 7, = 0 Algorithm-SI-I can be applied to obtain an FOPDT
model. Accordingly, a referential cutoff angular frequency of the process, @, can
be derived in terms of the critical phase condition,

i
-5 arctan(t,wy) = —1 (3.25)

In practice, w, can be used to determine the low-frequency range that is of
primary concern in control design for the model fitting.

For implementation, it is suggested to check if Qs(a) > 1/a® when choosing
« for applying Algorithm-SI-I to obtain an SOPDT model, because a too large o
might not result in a positive solution of 7, due to the computation loss on the
transient response for the Laplace transform.

3.3.2 The FOPDT Model for Unstable Processes

An FOPDT model for an unstable process is generally in the form of

Gu_y = ‘ (3.26)

where k;, denotes the proportional gain, 6 the process time delay, and 1, a positive
coefficient that reflects fundamental dynamic response characteristics of the process.

By taking the natural logarithm for both sides of (3.26) with regardto 0 < s <
1/7,, one can obtain

In[-Gy - (s)] = In(kp) — In(1 — 7,5) — Os. (3.27)
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Taking the first and second derivatives for both sides of (3.27) with respect to s
yields

G{Jl)—l(s) )
G ~ T~ 0 (3.28)
.L,Z
0:(5) = —2— (3.29)

1- tle)2

where Q,(s) = d[Q1(s)]/ds and Q1(s) denotes the left-hand side of (3.28).
By substituting s = « into (3.29), it can be derived that

VO Je@ B
o1 a1

(3.30)

i JO:@
ay/0x(e) +1°

Note that there exists a limiting condition of Qs(a) > 0. For Qs(ar) > 1/a?,
one may determine a suitable solution based on the model fitting accuracy for the
closed-loop step response.

ﬁ&@fé.

Remark 3.1. The use of 0 < s < 1/, for deriving (3.27)—(3.30) is implied by the
guideline of choosing the damping factor («) for frequency response estimation. If
the resulting 7, does not satisty & < 1/t,, an inverse assumption of s > 1/7, may
be used to derive 7, following a similar procedure as above. o

Consequently, the remaining model parameters can be derived from (3.28) and
(3.26) as

0 =—0(a)+—2

(3.31)
I —ro

ky = (o — )Gy (@)e*’ (3.32)
Hence, the above algorithm named Algorithm-SU-I for obtaining an FOPDT
model for an unstable process can be summarized as follows.
Algorithm-SU-I

(i) Choose « and ty in terms of (2.8), (2.10), (2.166), and (2.167) to compute
T (), TV (er), and T (e) from (2.162) (or (2.163)), (2.164), and (2.165).
(ii) Compute C(x), CV (), and C?(«) such as from (2.172), (2.173), and

(2.174).
(iii) Compute Gy_ (), G (@), and G | (a) from (2.169), (2.170), and
2.171).

(iv) Compute Q;(«) and Q,(«) from the left-hand sides of (3.28) and (3.29).
(v) Compute the positive coefficient, 7,, from (3.30).

(vi) Compute the process time delay, 8, from (3.31).

(vii) Compute the proportional gain, k;, from (3.32).
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3.3.3 The SOPDT Model for Unstable Processes

A SOPDT model for an unstable process is generally in the form of

_ kpe—Qs
T (us—D(ms + 1)

Gu—s (3.33)

where k,, denotes the proportional gain, 6 is the process time delay, and 7; and 7,
are positive coefficients that reflect fundamental dynamic response characteristics
of the process.

By taking the natural logarithm for both sides of (3.33) with regardto 0 < s <
1/7;, one can obtain

In[-Gy—2(s)] = In(kp) — In(1 — 715) — In(z2s + 1) — bOs (3.34)

Taking the first and second derivatives for both sides of (3.34) with respect to s
yields

G(l)
v2® o m (3.35)
Gy—2(s) 1—1s s + 1
72 72
02(s) = ! R (3.36)

1—19* (s + 1%

where Q(s) = d[Q1(s)]/ds and Q1(s) denotes the left-hand side of (3.35).
Substituting s = « into (3.36) yields

0x() = [207 —a* Qs(e)] 113 + [20 — 207 Q2 ()] (72 — T173)

+ 40’ Qx()tira + [1 — &? Qa(@) | (xf + 13) + 20 Q2 () (11 — T2)
(3.37)

To solve 17 and 1, from (3.37), one can reformulate (3.37) into

V() =)y, (3.38)
where
V() = 02(a),
P(a) = 207 — a* Qs(), 20 — 20 Qs (@), —a?Qa(@), 1, 2aQa(a)]”,

T
2.2 2 2 2 2 2 2
y = [rlrz, T — 1T, T + 1 —4nn, 1 + 135, 11—12] .
(3.39)
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By choosing five different values of « in terms of the guideline given in (2.8) and

denoting ¥ = [y (1), ¥ (a2), ..., ¥(as)]” and @ = [p(a1), p(2), ..., d(as)]T,

the following LS solution can be obtained:
y = (T d) ol w (3.40)

It is obvious that all the columns of @ are linearly independent with each other, so
that ® is guaranteed to be non-singular for computation, corresponding to a unique
solution of y.

In the sequel, the model parameters can be retrieved from the relationship,

11—1n =y(05)
y(2) (3.41)
1T = m
which can be solved as
5
o ? T e VES; . (3.42)
n=1-y(5)

Note that there exist three redundant fitting conditions in the parameter estima-
tion of y, which can certainly be satisfied if the model structure matches the process.
To procure fitting accuracy for a higher order process, one can use y(1), y(3), and
y(4) together with y(2) and y(5) to establish an LS fitting solution by taking the
natural logarithm of 7; and 1,

i Iny(1) ]
[(4) 7/(3)]
22
11 [lnr]i|_
= y(5 1 y(2) (3.43)
B e e )
5 1
ln|:%)+§ 2(5)+4V8}—y(5)

Consequently, the remaining model parameters can be derived from (3.35) and
(3.33) as

T %)
-t no+1

0 =—-01(a)+ (3.44)

ky = (i — )(naa + 1)Gy—2(a)e®’ (3.45)
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Hence, the above algorithm named Algorithm-SU-II for obtaining an SOPDT
model for an unstable process can be summarized as follows.

Algorithm-SU-II

(i) Choose o and ¢y in terms of (2.8), (2.10), (2.166), and (2.167) to compute
T(cr), TV (ar), and TP (e) from (2.162) (or (2.163)), (2.164), and (2.165).
(ii) Compute C(x), CV(ar), and C® (@) such as from (2.172), (2.173), and

(2.174).
(iii) Compute Gy _1(@), G (@), and G (@) from (2.169), (2.170), and
2.171).

(iv) Compute Q () and Q,(«) from the left-hand sides of (3.35) and (3.36).
(v) Compute the positive coefficients, t; and 1, from (3.42) (or (3.43)).

(vi) Compute the process time delay, 0, from (3.44).

(vii) Compute the proportional gain, k,, from (3.45).

3.3.4 Improving Fitting Accuracy Against Model Mismatch

The above Algorithm-SI-I, Algorithm-SU-I and Algorithm-SU-II can give good
fitting accuracy if the model structure adopted matches the process to be identified.
In case there exists a model mismatch for the identification of a higher order process,
the resulting fitting accuracy might not be optimal since these algorithms establish
frequency response fitting only around the zero frequency (w = 0). To improve
the fitting accuracy over a user specified frequency range, e.g., the aforementioned
low frequency range for control design and on-line tuning, another identification
algorithm named Algorithm-SU-II1 is derived as follows.

Given a user-specified frequency range for model fitting, one can let s = «+ j wi
(k = 1,2,..., M), where M is the number of representative frequency response
points in the specified frequency range. The corresponding objective function for
model identification can therefore be determined as (2.43), which has been used for
improving the fitting accuracy for the identification of a high-order stable process in
Sect. 2.2.5.

To improve the fitting accuracy over the low-frequency range that is mostly
concerned for control design, it is suggested to choose wy = (1.0 ~2.0)w,
and py = ¥/ ZII{MZI n*, n€[0.9, 0.99], where w, is a referential cutoff angular
frequency of the process that can be estimated from an FOPDT or SOPDT model
derived from the above algorithms.

Substituting s = o + jor (k = 1,2,..., M), the process frequency response
estimated by (2.169), and the process model of (3.18), (3.26), or (3.33) into (2.43),
a weighted LS solution for parameter estimation can be derived accordingly

y =@ we)"'o"Tww (3.46)

whereW = diag{pi,...,pm,P1,---»PM}>

o=t ) ®= il
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v = [W(O{ + ja)l)’ W(O{ + ja)2)7"' 71//(05 + ja)M)]T’
O =g+ jor) ¢+ jan),....¢p@+ jou)] .

To obtain an SOPDT model for an integrating process, ¥ (& + j w ), ¢ (@ + jwi ),
and y assume the form of

V(e + jor) = (@ + jor)Gi(a + joy),
Pl + joyr) = [—(ot + jor)* Gl + jwk),e_("‘ﬂ“’“e]T, (3.47)

V= [Tpvkp]T~

To obtain an FOPDT model for an unstable process, ¥ (o + jwy), ¢ (o + jwy),
and y assume the form of

V(e + jor) = Gu-i(a + jwx),

ple+ jor) = [(@ + jo) G+ jor), —e @Hionf]"  (3.48)
T

v = k]

To obtain an SOPDT model for an unstable process, ¥ (o + jwy), ¢ (o + jwy),
and y assume the form of

V(e + jor) = Guoa(a + jwr),
pla+ jor) = [(@+ jor)’ Guala + jor). (@ + jor)Gu—(e + jox),

— i T
— g~(etione)T

y = [‘L’l‘L'z, T — rz,kp]T.
(3.49)

It can easily be verified that all the columns of ® for each case are linearly
independent with each other, such that (®” W®)~! is guaranteed to be non-
singular for computation. Accordingly, there exists a unique solution for parameter
estimation. Generally, M € [10, 50] is suggested for practical application to meet a
good trade-off between the computational efficiency and fitting accuracy.

In the sequel, the SOPDT model parameters for an integrating process can be
retrieved as

7 = y(1)

, (3.50)
kp =y(2)

which is the same for obtaining the FOPDT model parameters for an unstable
process.
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The SOPDT model parameters for an unstable process can be retrieved as

2 1
0="2 4 L e e
n=1-Yy2) (3-51)
ky, =y(3)

Note that a preliminary value of the process time delay (6) is needed to derive the
remaining model parameters from (3.46). In fact, a rough estimation of the process
time delay can be obtained from the step response or an FOPDT or SOPDT model
derived from Algorithm-SI-I, Algorithm-SU-I, or Algorithm-SU-II, which may be
taken as an initial value in an one-dimensional search that uses a convergence
condition for fitting the closed-loop step response,

N,
| & P
err= 5 k§=1: [Ay(kTs) - Ay(kTs)] <e, (3.52)

where Ay (kTy) and Ay(kTs) denotes respectively the process and model outputs
to the closed-loop step test, and N7 is the settling time.

Given a user specified threshold of ¢, a suitable solution of the model parameters
can be derived by monotonically varying 6 in a possible range for computation. The
one-dimensional search step size can be taken as a small multiple of the sampling
period for implementation. The optimal fitting can be determined by deriving such
a model that yields the smallest value of err.

Hence, the above algorithm named Algorithm-SU-III for improving fitting
accuracy in a user specified frequency range can be summarized.

Algorithm-SU-IIT

(i) Choose « and zy in terms of (2.8) and (2.10) to compute T (¢ + jwy) (k =
1,2,..., M) from (2.162) (or (2.163)), where w,, for the choice of w,; can be
determined from an initial model obtained using Algorithm-SI-I, Algorithm-
SU-I or Algorithm-SU-II.

(i1) Compute C(a + jwy) (k = 1,2, ..., M) such as from (2.172).

(iii) Compute G(o + jwy) (k = 1,2,..., M) from (2.169).
(iv) Obtain an initial estimate of the process time delay, 6, from the step test, or a
model obtained using Algorithm-SI-I, Algorithm-SU-I, or Algorithm-SU-II.

(v) Solve the remaining model parameters from (3.46) to (3.51).

(vi) End the algorithm if the fitting condition in (3.52) is satisfied. Otherwise, go
back to Step (v) by monotonically varying 6 for a one-dimensional search
within a possible range as observed from the step test.

Note that in the presence of measurement noise, Algorithm-SI-I, Algorithm-
SU-I, and Algorithm-SU-II can give convergent parameter estimation owing to the



102 3 Step Response Identification of Integrating and Unstable Processes

development of analytical formulae. Whether a consistent estimation can be reached
or not depends in essence on the unbiasedness of the closed-loop frequency response
estimation algorithm as presented in Sect. 2.5.1. Regarding Algorithm-SU-III, the
use of time domain fitting criterion in (3.52) needs to be clarified for consistent
parameter estimation, even if unbiased frequency response estimation is used for
model fitting. Following the proof of Corollary 2.1 in Sect. 2.2.6, the below corollary
can be given:

Corollary 3.1. Given Gaussian white measurement noise,((t) ~ N (0,0?), in
a closed-loop step test, consistent parameter estimation can be obtained by
Algorithm-SU-III in terms of using the time domain fitting criterion in (3.52).

3.3.5 [Illustrative Examples

Five examples studied in the existing literature are used to demonstrate the
effectiveness of the presented identification algorithms. Examples 3.3-3.5 are given
to demonstrate the accuracy of the presented algorithms for identifying first- and
second-order integrating and unstable processes, respectively. Examples 3.6 and 3.7
are given to show the effectiveness of the presented algorithms for the identification
of higher order integrating and unstable processes. Measurement noise tests are
also included in Examples 3.3-3.5 to demonstrate the identification robustness of
the presented algorithms. In all identification tests, the sampling period is taken as
T = 0.01 (s) for computation.

Example 3.3. Consider the SOPDT integrating process studied by Sung and Lee
(1996),

e—O.Zs

5015+ 1)

Based on a closed-loop step test using a P-type controller (k¢ = 3) by adding a
unity step change to the set-point, Sung and Lee (1996) derived an SOPDT model,
G = e %179 /[5(0.122s + 1)]. For illustration, the same test is performed here.
According to the guideline given in (2.8) and (2.10), « = 1.0 and ty = 20(s) are
chosen to apply Algorithm-SI-I, resulting in an FOPDT model listed in Table 3.1,
which indicates good accuracy. The fitting error is given in terms of the closed-loop
transient response in the time interval [0, 5]s. Note that taking « = 0.5 and ty =
40 (s), or @ = 2.0 and ty = 10 (s), can result in the exact model as well, which
demonstrates that the closed-loop frequency response estimation algorithm pre-
sented in Sect. 2.5.1 maintains good robustness with regard to different choices of «.

To demonstrate identification robustness against measurement noise, assume that
a random noise N (0, a,%, = 0.36%), causing NSR = 5%, is added to the process
output measurement which is then used for feedback control. By performing 100
Monte Carlo tests in terms of varying the “seed” of the noise generator from 1
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to 100, the identified results are shown in Table 3.1, where the model parameters
are respectively the mean of 100 Monte Carlo tests, and the values in the adjacent
parentheses are the sample standard deviation. The results for the noise levels
of NSR=10% and 20% are also listed in Table 3.1 to show the achievable
identification accuracy and robustness.

Example 3.4. Consider the FOPDT unstable process studied by Padhy and Majhi
(20006),

1 —0.8s
_e -
s—1

Based on relay feedback tests with two P-type controllers, Padhy and Majhi
(2006) derived an FOPDT model, G, = 1.0e7%8%335 /(1.0007s—1). For illustration,
a closed-loop step test by adding a step change of 7 = 0.05 to the set-point and using
a P-type controller of k¢ = 1.2, which is equivalent to that of Padhy and Majhi
(2006), is performed here. Algorithm-SU-I taking @ = 0.1 and ¢ty = 150(s) gives
an FOPDT model listed in Table 3.1, again demonstrating good accuracy. The fitting
error is given in terms of the closed-loop transient response in the time interval [0,
50]s. Identification results for the measurement noise levels of NSR = 5%, 10%, and
20% are also shown in Table 3.1, which demonstrates good identification robustness.

Example 3.5. Consider the SOPDT unstable process studied in the literature
(Cheres 2006; Sree and Chidambaram 2006; Liu and Gao 2008),

1

_ —0.5s
G_(m—4x0$+1)

Based on a closed-loop step test using a PID controller (k¢ = 2.71,71 = 4.43
and tp = 0.3191in (2.172)) and adding a unity step change to the set-point, Cheres
(2006) derived an FOPDT model for controller tuning, as was also done in Sree and
Chidambaram (2006). By performing the same closed-loop step test, Algorithm-
SU-II based on the choice of « = 0.1, 0.15, 0.2, 0.25, 0.3 and 7y = 300(s) gives
Gm—2 = 0.9999¢ 704965 /(2.00005s—1)(0.5000s + 1), and Algorithm-SU-III results
in almost the exact SOPDT model, as listed in Table 3.1. The fitting error is given
in terms of the closed-loop transient response in the time interval [0, 30]s.

To demonstrate consistent parameter estimation of Algorithm-SU-III against
measurement noise, 100 Monte Carlo tests are performed under the noise levels
of NSR =5%, 10% and 20%, respectively. Identification results obtained using a
search range of [0.3, 0.7](s) for the time delay and a computational constraint of
positive solution for the remaining model parameters are also shown in Table 3.1,
which demonstrate good identification accuracy and robustness.

Example 3.6. Consider the high-order integrating process studied by Ingimundar-
son and Higglund (2001),
64

— —5s
O T E6 1618
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Fig. 3.3 Nyquist plots of identified models for Example 3.6

Based on an open-loop step test, Ingimundarson and Héagglund (2001) derived
an FOPDT model, G, = 1.0e7%% /5. For illustration, assume that the process is
operated in a closed-loop manner with a PI controller (k¢ = 0.101 and 77 = 39.6)
tuned by the so-called SIMC method (Skogestad 2003, taking 7¢ = 3) in terms
of the above model. By adding a unity step change to the set-point in a closed-
loop step test, Algorithm-SI-I taking ¢ = 0.05 and zy = 500 (s) gives an
FOPDT model, Gy, — 1 = 0.9984¢=81135 /5 corresponding to err = 2.71 x 107
in terms of the closed-loop transient response in the time interval [0, 200]s, and
a SOPDT model, Gy, _» = 1.0000e=>7%15 /[5(1.1698s + 1)], corresponding to
err = 9.32 x 1078, Algorithm-SU-III based on the frequency response estimation
of G(0.05 4+ jwy), where oy = kw./10, k = 0,1,2,...,10, and w,, =
0.2306 (rad/s) derived from the above FOPDT model, gives a SOPDT model,
Gm—_» = 1.0000e™>77 /[5(1.1616s + 1)], corresponding to err = 7.12 x 1075,
The Nyquist plots of the above FOPDT models and the proposed LS-based SOPDT
model are shown in Fig. 3.3.

To demonstrate the achievable control performance, assume that a unity step
change is added to the set-point and a load disturbance with a magnitude of —0.07 is
added at ¢ = 200 (s). The closed-loop output responses resulting from the above PI
controller and a PID controller (kc = 0.1029, 71 = 38.868, and tp = 1.1616) tuned
by the SIMC method (taking tc = 4) based on the proposed LS-based SOPDT
model, are shown in Fig. 3.4, in terms of the same set-point tracking speed for
comparison. It can be seen that the proposed SOPDT model facilitates obtaining
improved control performance.
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Fig. 3.4 Comparison of closed-loop control performance for Example 3.6

Subsequently, assume that the process time delay is perturbed to be 30% larger.
The perturbed output responses are shown in Fig. 3.5, which demonstrates that the
proposed SOPDT model also facilitates control robustness.

Example 3.7. Consider the high-order unstable process studied by Majhi (2007),

e—O.Ss

O = G oD@ F D05 1 1)

Using a relay feedback test, Majhi (2007) derived an SOPDT model, G, =
1.001e7%9% /(10.354s% + 2.932s — 1), from a state-space analysis on the pro-
cess relay response. For illustration, by performing a closed-loop step test as in
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Fig. 3.5 Comparison of perturbed output response for Example 3.6

Example 3.3 but with 2 = 0.1 and k¢ = 2.0 for the closed-loop stabilization,
Algorithm-SU-1, taking « = 0.1 and ty = 150 (s), gives an FOPDT model,
Gm—1 = 0.9907¢7%792/(5.037s — 1), corresponding to err = 1.53 x 1073 in
terms of the closed-loop transient response in the time interval [0, 150]s.

To improve fitting accuracy over the low frequency range, Algorithm-SU-III
based on the frequency response estimation of G(0.1 4 j wy), where wy = kw, /10,
k =0,1,2,...,10, and w, = 0.3963 (rad/s) estimated from the above FOPDT
model, gives Gn—1 = 0.9492¢7277% /(5.2644s — 1), corresponding to err =
4.12 x 1074,

Note that Algorithm-SU-II, taking « = 0.02, 0.04, 0.06, 0.08, 0.1 and
ty = 1,000 (s), gives an SOPDT model, Gy, —» = 0.9808¢ 02215 /(4.8996s — 1)
(2.0874s + 1), corresponding to err = 1.89 x 10~*. Further improved fitting
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Fig. 3.6 Nyquist plots of identified SOPDT models for Example 3.7

accuracy can be obtained by Algorithm-SU-III based on the above frequency
response estimation, which results in an SOPDT model, Gy, —» = 1.0000e 702385 /
(5.0107s —1)(2.0773s + 1), corresponding to err = 1.31 x 10~7. The Nyquist plots
of these identified SOPDT models are shown in Fig. 3.6. It should be noted that the
SOPDT model of Majhi (2007) corresponds to err = 3.92 x 1077,

3.4 Application to the Heating-Up Control of Barrel
Temperature in Injection Molding

Consider the barrel temperature control of an industrial Chen-Hsong reciprocating
screw injection molding machine (model no. JM88-MKIII-C), the schematic of
which is shown in Fig. 3.7. There are 6 temperature zones in the heating barrel.
Each zone is equipped with an electric heater with a capacity of 1,040(W), which
is regulated via a zero-crossing solid state relay (SSR) with pulse-width modula-
tion (PWM). Each zone temperature is measured using a K-type thermocouple.
A 16-bit data acquisition card (AT-MIO-16X) from National Instruments (NI)
is used for analog-to-digital (A/D) and digital-to-analog (D/A) conversions. The
semi-crystalline material of high-density polyethylene (HDPE) is used for the
injection molding experiment. According to a ramp-up heating technique for the raw
materials, the rear three zones, 4—6, are primarily used for heating the raw materials
below a temperature of 200°C, while the front three zones, 1-3, are required to
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Fig. 3.7 Schematic of an injection molding machine

reach the melting temperature of 220°C and tightly maintain the temperature, e.g.,
within £0.5°C, for injection molding. Therefore, identification and control tuning
are herein focused on the front zones 1-3 for illustration. It should be noted that
all of these heating zones have positive correlation with each other for both the
heating-up process and the injection molding process of cycling, the individual
loop control structure (i.e., multiloop) is therefore adopted for simplicity. The
positive correlation between these heating zones is also considered in the following
identification procedure to ensure identification-effectiveness.

To identify an integrating SOPDT model for representing the heating-up response
characteristics for each of the three zones, an open-loop step response test is con-
ducted for each zone: First, the three zones are heated to a temperature over 210°C,
and then, the corresponding heaters are shut off for cooling down by air convection
to the environment, in order to have a zero initialization of the temperature response
for each zone; When the temperature of the zone to be identified drops to 210°C,
the three zones are simultaneously heated with the corresponding heaters turned
fully on, until the temperature of the zone to be identified reaches the set-point
temperature of 220°C. The experimental results with a sampling period of 200(ms)
are shown in Fig. 3.8. It can be seen that due to air convection, the temperatures of
zones 1-3 drop slowly before increasing to 220°C. The time of temperature drop
can be viewed as time delay of the heating-up response, which may be referenced to
choose the initial point of the transient response for model identification. To reduce
the influence of measurement noise, a third-order Butterworth filter with a cutoff
frequency, f. = 0.5 (Hz), is used in both the forward and reverse directions to
recover the noisy data for identification, as shown by the thick dashed lines in
Fig. 3.8. Using the open-loop step response identification algorithm presented in
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Fig. 3.8 Open-loop step response tests for zones 1-3

Table 3.2 Heating-up Zone Proposed method Z-N method

response models for zones

1-3 1 0.2842¢ 73323 0.1337e~7

5(147.1585s 4+ 1) s

5 0.1719¢~2501s 0.1463¢763
5(56.7819s + 1) K

3 0.197¢=2504s 0.1431¢768s
s(78.52s + 1) s

Sect. 3.2.1, SOPDT integrating models of these three zones are obtained as listed
in Table 3.2 together with the FOPDT integrating models obtained using the early
Ziegler-Nichols (Z-N) step response method (Astrém and Higglund 1995).

Accordingly, an internal model control (IMC) based scheme is constructed for
the heating-up control of zones 1-3, which is shown in Fig. 3.9, where the heating
zone to be controlled plus the heater are treated together as the process (denoted by
G) to be controlled, Gy, is the process model as above identified, C is the controller,
r is the set-point temperature, y is the measured temperature of the heating zone
to be controlled, and d, denotes load disturbance with a transfer function of Ggy,
including air convection and heat absorption from the raw materials.

From Fig. 3.9, the closed-loop transfer function can be derived as

B GC
B 1+(G_Gm)c

r

(3.53)
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Fig. 3.9 Block diagram of P
the IMC-based temperature
control structure

Heater+Plant

In the nominal case (G = Gp,), the transfer function can be simplified to
T,=GC.

Based on the above identified SOPDT integrating model for each zone, the
desired closed-loop transfer function can be determined according to the IMC theory
(Morari and Zafiriou 1989), as will be introduced in the later Sect. 7.3, in the form of

e—&s

Ti=—, 3.54
(Ans + 1)% G54

where A}, is an adjustable closed-loop time constant.
The corresponding closed-loop controller, C, can then be derived from the
nominal relationship, 7. = G,C, as

s(tps + 1)

kp(Ans + 1)° (3.35)

It is seen that A;, becomes the adjustable parameter of C, which can be tuned to
obtain a desirable heating-up performance.

Note that due to the heat loss from air convection or radiation to the environ-
ment, which is viewed as load disturbance, the control output should actually be
augmented with a certain value to prevent temperature drop during or after the
heating-up stage, i.e.,

U= Ur—p + Ug, (3.56)

where 1 corresponds to the heating power required for balancing the heat loss from
air convection or radiation, which can be ascertained from an open-loop test of
maintaining the set-point temperature.

It should be noted that there exists an implemental constraint of 0 < u < 1,
corresponding to 0-100% of the heater power.

The load disturbance transfer function from dj to y shown in Fig. 3.9 can be
derived as

Hy(s) = Ga(s)(1 = Ti(s)), (3.57)
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where G4(s) is a stable transfer function that reflects the fundamental dynamics of
the load disturbance. It can be verified using the above 7;(s) in (3.54) that

Yh_r)no Hy(s) =0, (3.58)
which indicates that the influence of a step-type load disturbance entering into the
process from its output side can be eliminated completely. Note that no step-type
load disturbance could enter into the process input since it is purely manipulated by
the controller as shown in Fig. 3.9, so the influence of such load disturbance does
not need to be considered here, though it may cause control system instability as
discussed by Liu et al. (2005).

Based on the above control system design, a heating-up test is performed, starting
from an initial temperature of 210°C. That is, zones 1-3 are heated to slightly
over 210°C, and then, the control scheme shown in Fig. 3.9 is switched over
after the temperature of any one of the three zones drops to 210°C via shutting
off the corresponding heaters. The sampling period for control implementation is
taken as 7y = 0.5(s), in view of that the maximal temperature increment (A7) is
actually no larger than 0.1°C/s, as can be verified from the filtered signals shown
in Fig. 3.8. Accordingly, a first-order backward discretization operator, é(kT) =
le(kTy) —e((k — 1)Ty)] /Ty, is used for the differential computation.

To reduce the influence of measurement noise for computing the control output,
an on-line noise spike filtering strategy (Seborg et al. 2004) is adopted for feedback
control,

J?((k - 1)Ts) + AT, ﬁ(kTs) - )A}((k - l)Ts) = AT;
y(kT) = { $((k = )T = AT, F(T) — H((k — )T, < —AT;  (3.59)
y(kTy), else.

where y(kTs) denotes the filtered temperature for feedback control, y(kTy) the
measured temperature, and AT = 0.005°C a specified threshold for filtering
measurement noise.

By setting the control parameters as A, — | = Ap—2 = Ap—3 = 20, respectively
for zones 1-3, the experimental results are shown in Fig. 3.10. It is seen that fast
heating-up without the temperature overshoot has been obtained for all these three
zones, compared to the Z-N PID tuning method (Astrém and Higglund 1995) based
on using the FOPDT integrating models listed in Table 3.2. For comparison, using
the identified SOPDT integrating models, the control results obtained from the
IMC-based PID tuning method (Skogestad 2003) with the parameter settings of
To— 1 =Tc—2 =Tc—3 =30 are also shown in Fig. 3.10. It is seen that apparently
improved heating up performance is obtained by using the identified SOPDT
integrating models for these three zones, while the proposed IMC design gives better
control performance. Note that the control signals have a practical range of [0, 100],
corresponding to the heating power in a range of 0—100%. This implies that no
negative control output can be used to bring down the temperature. In the case of
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Fig. 3.10 The heating-up responses (a—c) and control signals (d—f) of zones 1-3

overheating, only load disturbance from the air convection can help to drop down
the temperature, unavoidably leading to a prolonged settling time (Yao and Gao
2007). Besides, it can be seen from Fig. 3.10d—f that after the heating-up process,
each of the control outputs maintains a constant value to balance the heat loss from
air convection.
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3.5 Summary

For the identification of integrating and unstable processes to facilitate control
design in engineering practice, a step response test is generally preferred to be
performed in a closed-loop structure, such as the unity feedback control loop with
a prescribed low-order controller of PID for stabilization. It is clarified that the
excitation signal like a step change should be added to the set-point, rather than
the process input, to facilitate the implementation of a closed-loop identification
test. Guidelines of choosing a low-order controller for implementing a closed-loop
step response test have been given accordingly.

For the identification of integrating processes, the response feature of monotoni-
cally increasing or decreasing to a step change can be used for the implementation
of an open-loop step test from zero initial process state, or around a nonzero set-
point for operation but subject to a limit of the output range. Correspondingly,
an open-loop step response identification algorithm (Liu et al. 2009) has been
presented to obtain the widely used low-order models of FOPDT and SOPDT for
controller tuning, based on an LS fitting of the transient response data in terms
of a time integral approach to the linearly differential expression of the model
structure for identification. At the same time, a practical IV method has also been
given to guarantee consistent parameter estimation against measurement noise. The
applications to two examples from existing references have demonstrated that the
proposed identification method can give good accuracy and robustness.

For the use of a closed-loop step test, the closed-loop frequency response
estimation algorithm presented in Sect. 2.5.1 can be adopted to estimate the
process frequency response. Note that this algorithm can also be applied in the
case where the closed-loop output response has not yet moved into a steady state
before stopping the identification test. This advantage can obviate the requirement
of controller tuning for stabilization to perform a closed-loop identification test.
Correspondingly, three model identification algorithms, Algorithm-SI-I, Algorithm-
SU-I, and Algorithm-SU-II, have been analytically developed (Liu and Gao 2010)
in the frequency domain to obtain the low-order models of FOPDT and SOPDT,
for the identification and control of integrating and unstable processes. To deal with
model mismatch, as encountered for the identification of a higher order integrating
or unstable process, a weighted LS fitting algorithm, Algorithm-SU-III, has also
been presented based on the frequency response estimation in the low frequency
range that is mostly concerned with control design, which in fact can be extended to
obtain a very specific model with more descriptive parameters. The applications to
five examples from the existing literature have demonstrated the effectiveness and
merits of these identification algorithms.

An experimental application to the barrel temperature control of an injection
molding machine has been detailed, including practical implementation issues
such as the denoising strategies for identification. The experiment results well
demonstrate the effectiveness of the above open-loop step response identification
method for integrating processes, and the good performance of a model-based IMC
scheme for the heating-up control.
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Chapter 4
Relay Feedback Identification of Stable

Processes

4.1 Implementation of a Relay Feedback Test

Owing to the fact that a relay feedback test can generate sustained oscillations of
the controlled output for closed-loop identification, model identification from the
relay feedback has attracted significantly increasing attentions in the process control
community, since the pioneering works of the 1980s, see Atherton (1982), Tsypkin
(1984), Astrom and Higglund (1984), and Luyben (1987). Compared to an open-
loop identification test such as using a step or pulse signal, the fundamental dynamic
response characteristics of the process may be better observed from the sustained
oscillations under relay feedback, especially in the presence of measurement noise.
Moreover, a relay feedback test will not cause the process to drift too far away from
its set-point. This is very necessary in many practical applications, in particular for
the control-oriented piecewise identification of a highly nonlinear process that is
subject to rigorously operating conditions (Luyben 1987).

Generally, there are two types of relay feedback tests — unbiased (symmetrical)
and biased (asymmetrical). A biased relay function, which is depicted in Fig. 4.1,
can be specified as

uy for{e(t) > eyx}or{e(t) > e_and u(t—-) = uy}
u(t) = 4.1)
u_ for{e(t) <e_}orfe(t) <erandu(t_) =u_}

where uy = Ap + o and u— = Ap — o denote, respectively, the positive and
negative relay magnitudes; e+ and e_ denote, respectively, the positive and negative
switch hystereses. The initial output of the relay is assumed as u_ for zero input,
as commonly set in a commercial relay module in industrial applications. Note that
letting A = 0 and |e4| = |e—| leads to an unbiased relay function.

To capture the process dynamic response characteristics around the set-point for
online tuning, a closed-loop relay test is usually performed in terms of nonzero
steady initial process conditions. A typical closed-loop configuration for a relay test

T. Liu and F. Gao, Industrial Process Identification and Control Design: Step-test 119
and Relay-experiment-based Methods, Advances in Industrial Control,
DOI 10.1007/978-0-85729-977-2_4, © Springer-Verlag London Limited 2012
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is shown in Fig. 4.2, where r denotes the set-point, y the process output, and u the
relay output. Correspondingly, an online relay identification test can be constructed
as shown in Fig. 4.3, where the scaling unit (r — y) is set to normalize r and y for
computing the output error, e.

To implement a relay feedback test online, the magnitudes of u and u_ should
be set based on an admissible fluctuation range of the process output around the
set-point. It is obvious that a larger magnitude of the relay output will facilitate the
observation of more details in the process dynamic response. To avoid measurement
noise causing incorrect relay switches, it is suggested that the magnitudes of £ and
e_ should be set at least twice larger than the noise band, together with an upper
limit almost equal to 0.95 times of the absolute minimum of #4 and u— (Wang
et al. 2003). After the process has moved into the operating range, a short “listening
period” (e.g., 20—100 samples) should be referenced to set e and e_ properly.

A scenario of the relay feedback response online is shown in Fig. 4.4a, where the
process output response and the relay output are plotted together for illustration. It
can be seen that the relay feedback test begins at 1 = 20(s) while the set-point is
taken as r = 5. Then, the process output response moves into a steady oscillation
after several relay switches. For the convenience of analysis, the initial relay
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Fig. 4.4 On-line relay feedback response (a) and the shifted version for analysis (b)

response of the process output can be shifted to the origin in the reference coordinate
plane, as shown in Fig. 4.4b, where A4 denotes the positive amplitude in the steady
oscillation that is specifically named the “limit cycle,” and A— indicates the negative
amplitude. The steady oscillation period is computed as P, = Py + P—, where P
denotes the half period corresponding to the relay output u, and P_ is the other half
period corresponding to u—. Thus, by decomposing the process dynamic response
from the set-point value, the resulting limit cycle can be separately studied for model
fitting of the dynamic response.

In the presence of measurement noise, if the noise level is low (e.g.,
NSR < 10%), the statistical averaging method can be used in terms of 5 ~ 20
steady oscillation periods to recover the limit cycle for model identification. To
cope with a higher noise level, a low-pass Butterworth filter is suggested to recover
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the limit cycle for a relay feedback test or offline denoising. The Butterworth filter
can be determined by specifying the filter order, n¢, and the cutoff angular frequency,
we, 1.€.,

by + bzt + b3z 4 -+ b1z ™

Butter(ns, w.) =
(e, ) l+az ' +asz2 4+ apprz7™

4.2)

where Butter(ng, @.) denotes the filtering function with two input parameters of ng
and w..In view of the fact that measurement noise is mainly composed of high-
frequency components, a guideline for choosing the cutoff angular frequency is
given as

w. > 5w, = 107/ P, 4.3)

where w, = 27/ P, is the angular frequency of the limit cycle that can be computed
from the measurement of P,.

Thus, in an online relay feedback test, the measured output components only
within the frequency band around w, can be passed through for feedback control.
Note that the phase lag caused by the low-pass filter almost does not affect the
measurement of the oscillation period and the amplitude of the limit cycle, because
the relay output has the same phase lag under the filtered feedback control.

Moreover, a further improved denoising effect can be obtained by using an offline
denoising strategy, i.e., filtering the noisy limit cycle data in both the forward and
reverse directions with the same low-pass Butterworth filter.

4.2 Guidelines for Model Structure Selection

Owing to the fact that low-order models of FOPDT and SOPDT have been most
widely used in practical applications, relay identification methods have been mainly
devoted for identifying these low-order process models. Generally, FOPDT and
SOPDT models are expressed as

k —0s
Gy = 26 (4.4)
s + 1
kpe—Gs
Gm-2 = (4‘5)

t2s? + 2855 + 1

where k;, denotes the process static gain and 6 is the process time delay. Note that
7, denotes the process time constant in an FOPDT model, while in an SOPDT
model, it is a positive coefficient equal to the reciprocal of w, that is named the
natural frequency of the process. The positive coefficient, £, in the denominator of
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Table 4.1 Relay response shapes of FOPDT models with different parameter settings

H#y=1.0, Au=0.3
£,=02,¢6=-02

6=0.1 6=1.0 6=5.0 6=10

an SOPDT model is named the damping ratio of the process response. Typically,
a classification of three types — underdamped (0 < & < 1), critically damped
(¢ = 1), and overdamped (¢ > 1), has been widely used to describe different process
dynamic response characteristics with respect to a step change in engineering
practice (Ogunnaike and Ray 1994; Shinskey 1996; Seborg et al. 2004).

Given different output response shapes in relay identification tests, it is desired
to choose a suitable low-order model structure for fitting the relay response shape of
a process to be identified. For reference, Tables 4.1 and 4.2 show the relay response
shapes of FOPDT and SOPDT models with different parameter settings under a
biased relay test of o = 1.0, A = 0.3, and e = —e_ = 0.2. All of the model
static gains have been fixed as the unity for benchmark comparison.

From these relay response shapes given in Tables 4.1 and 4.2, the guidelines for
model structure selection are deduced as follows:

1. For FOPDT models, similar ratios of 6/t result in the similar relay response
shapes. This is also true for SOPDT models with a fixed damping ratio (§).

2. For FOPDT models and overdamped SOPDT models, the relay response shapes
are similar to a triangular waveform with sharp edges and peaks. When 6/t >
1, the relay response shapes of FOPDT models and critically damped SOPDT
models tend to be a rectangular waveform following the relay output shape.

3. For underdamped and critically damped SOPDT models, the relay response
shapes are similar to a sinusoidal waveform with smooth curvature and rounded
peaks, and such characteristics become more apparent when & becomes smaller.
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Table 4.2 Relay response shapes of SOPDT models with different parameter settings

5.0

1.0

0.5

0.2

=0.3
0.2, £ =-0.2

10, Au

Ho
8+

4. For FOPDT models and critically damped and overdamped (§ > 1) SOPDT

models, the relay responses move into a limit cycle almost after a single period
of the relay output. The first relay response period is very similar (or even the

same) in magnitude and shape to the following periods.
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5. For an underdamped SOPDT model, when & becomes smaller, more switches of
the relay output are needed for the relay response to move into a limit cycle, and
multiple peaks are likely to occur in the limit cycle when 6/t > 1.

6. For an FOPDT model, the amplitude of the limit cycle is inversely proportional to
the process time constant and directly proportional to the process time delay, until
the relay response becomes a rectangular waveform following the relay output
shape.

7. For all these three types of SOPDT models, the amplitude of the limit cycle is
proportional to the ratio of /7 with respect to a fixed &, and proportional to &
with respect to a fixed ratio of 6/t.

With the above guidelines, a suitable model structure can be intuitively chosen by
comparing the relay response shape of the process to be identified with the reference
relay response shapes shown in Tables 4.1 and 4.2. Note that the use of a biased or
unbiased relay test or the height of the relay does not change the relay response
shape of the process or any one of the above models. A reasonable estimation of
& and the ratio of 6/t can also be made with reference to the model parameter
settings in Tables 4.1 and 4.2. Accordingly, parameter identification for the chosen
model structure can now proceed to capture good fitting accuracy.

4.3 Low-Order Model Fitting Algorithms

Relay feedback identification methods for obtaining low-order process models of
FOPDT and SOPDT have been increasingly reported in the past two decades. It
is a trend to use only one relay feedback test for model identification to facilitate
practical applications, as surveyed by Hang et al. (2002) and Atherton (2006).
Based on an unbiased relay test, Luyben (2001) developed an FOPDT model
identification method by defining a curvature factor for the relay response shape
of the process; Vivek and Chidambaram (2005) derived another FOPDT algorithm
based on the Fourier analysis of the process response; Panda and Yu (2005) gave
an FOPDT algorithm by deriving an analytical expression for the unbiased relay
response, which was then extended to obtain an underdamped SOPDT model
(Panda 2006); Huang et al. (2005) developed an alternative identification method
for obtaining FOPDT and underdamped SOPDT models based on the analysis of
ultimate frequency; Majhi (2007a, b) derived relay response expressions and low-
order model identification algorithms in terms of a state-space description of the
relay control system. To resolve the difficulty associated with the derivation of the
process static gain under an unbiased relay feedback test, biased relay identification
methods have been developed (Li et al. 1991; Shen et al. 1996). Based on a biased
relay test, Wang et al. (1997) derived an FOPDT algorithm by using the algebraic
properties of periodic oscillations; Sung and Lee (1997) suggested a frequency
response estimation algorithm for model fitting from the Fourier analysis; Srinivasan
and Chidambaram (2003) also proposed such an FOPDT identification algorithm to
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effectively represent the process response over the low-frequency range, which was
further extended to obtain an overdamped SOPDT model for improving fitting effect
of the process frequency response (Ramakrishnan and Chidambaram 2003). Using
complex function analysis, Kaya and Atherton (2001) developed a so-called A-locus
identification algorithm for obtaining an FOPDT model or an overdamped SOPDT
model.

It is well known that under a relay test the process response moves into the
limit cycle. Following an early idea of deriving the relay response expression of the
limit cycle for a linear time-invariant system (Atherton 1982; Tsypkin 1984), relay
response expressions based on an unbiased relay test had been derived for FOPDT
and SOPDT models (Thyagarajan and Yu 2003; Panda and Yu 2003). For generality,
analytical relay response expressions (Liu and Gao 2008; Liu et al. 2008) for
assessing the process response under an unbiased or biased relay test are presented
here, based on a low-order model structure of FOPDT or SOPDT that is chosen
for fitting the relay response. Accordingly, quantitative relationships between the
measured limit cycle information and the model parameters are established from
these relay response expressions for parameter estimation.

For clarity, these relay response expressions and identification algorithms are
detailed in the following two subsections for obtaining FOPDT and SOPDT models,
respectively.

4.3.1 The FOPDT Model

Consider an FOPDT model shown in (4.4), the following proposition gives the
corresponding relay response expression under a biased relay test:

Proposition 4.1. For a first-order stable process modeled by ( 4.4) under a biased
relay test as shown in Fig. 4.5, the resulting limit cycle of the process output response
is characterized by

Y+(t) = kp (Ap + po) = 2kppoEe @, t €0, Py] (4.6)
y—(t) = ky (Apt — po) = 2kppoFe @, t €0, P-] 4.7

where y4+(t) is the monotonically ascending part for t € [0, Py], y—(t) is the
monotonically descending part for t € [0, P_] that corresponds tot € [Py, Py] in
the limit cycle, P, = P+ + P_ is the oscillation period, and

_r=

1—e @
E=-—"— 4.8)
l—e @
_r+
l—e @

F=-—"" _ 4.9)

l—e @
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Fig. 4.5 Limit cycle analysis for an FOPDT model

Proof. The initial step response of an FOPDT stable process in (4.4) arising from
the relay output, u(t) = Au — o, can be derived as

yo®) = ky (A= puo) (1-¢77) (4.10)

When it comes to the first relay switch point denoted by #y as shown in Fig. 4.5,
the relay output changes to A + o, indicating that a step change of 2 is added
to the process input. According to the linear superposition principle, the process
output response can be derived as

_i=6
y1(t) = yo (t + to) + 2kppio (1—6 ® ) (4.11)

By using a time shift of 7y + 6, (4.11) can be rewritten as

V1) |sire = Yo (t + 10 + 0) + 2kppo — 2kppoe ™ (4.12)

When it comes to the second relay switch point, the relay output changes to
Ap — W, indicating that a step change of —2u is added to the process input.
According to the linear superposition principle, the process output response can be
derived as

ya(t) = 31 (1 + Py) = 2o (1 -7 ) (413)

By using a time shift of 7y + 6 + Py, (4.13) can be rewritten as

it f
Y2(D)lghiee = Yo ¢ + 10 + 0 + P1) + 2kppuo (1 — 1) — 2kppoe ™ (e - 1)

4.14)
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At the third relay switch point, the relay output changes back to Au + o,
indicating that a step change of 2 is once again added to the process input. The

process output response with a time shift of zy + 6 + P, can be derived as

V3() i = Yo (t + 1o+ 0 + Pu) + 2kppo (1 —1+1)

—L T _ =
— 2kpppe (e Po—e +1)

(4.15)

The process output response following the fourth relay switch point is the result
of four interlaced step changes, respectively, with a magnitude of 24y. The process

output response with a time shift of 7o + 6 + P, + P4 can thus be derived as

Ya)|gire = Yo (t +to+ 0 + Py + Py) + 2kppo (1= 1+ 1—1)

- 2kpuoe_$ (e

_PutPy Py P+

? —e ®4e » —1

(4.16)

Hence, the time shifted process output response after each relay switch point can

be summarized as

Vo1 (O)|spig = Yo (¢ + 10+ 0 +nPy) + 2kp,bL() - 2kp/,LOE€_¥

Vo2 (O)|ghise = Yo (t + 10+ 0 +nPy + Py) —2kppoFe ®

wheren =0,1,2,...,and

_kPy _(k—l)Pu+P—)

n
E:l—}—Z(e P —e »
k=1

_khutry kf)

n
F:Z(e v o—e
k=0

Note that 0 < e~ P/ < 1. Tt follows for n — oo that

Substituting (4.21) into (4.19) and (4.20), respectively, one can obtain

_P= _ =
e l—e @
o —m —

P l—e @ l—e @

4.17)

(4.18)

(4.19)

(4.20)

4.21)

4.22)
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_rt
_r+ 1 l—e ™

F = (e ™ —1)- — = — — (4.23)
l—e ™ l—e ™

It can be seen from (4.10) that yo(t +to + 6 +nPy) = yo(t +to+ 6 + nP, +
Py) = ky (Ap — o) forn — oo. Hence, in the limit cycle it follows that

y4(@) = M yaus1(O)ghise = kp (Apt + po) — 2kppoEe ., 1 €0, Py]
(4.24)

y—(1) = lim ysni2(t) e kp (A — juo) — 2kppoFe @, ¢ €10, P-]
(4.25)

In view of the fact that £ > 0, F < 0, and e /% decreases monotonically
with respect to ¢, one can conclude from (4.24) and (4.25) that y4(¢) increases
monotonically for ¢ € [0, P4], while y_(¢) decreases monotonically for ¢ € [0, P_]
that corresponds to ¢ € [P+, P,] in the limit cycle.

From the above derivation for (4.24) and (4.25), it can be seen that the limit cycle
can be definitely formed for an FOPDT stable process. It should be noted that before
the process output response moves into the limit cycle, the time intervals between
the relay switch points may not be equal to the corresponding half periods in the
limit cycle. Nevertheless, one can equalize them as done in (4.13)—(4.16) to derive
the exact expression of the limit cycle, in view of the fact that the limit cycle does
not reflect these initial response differences. In other words, the process response
in steady oscillation has the same limit cycle with that of the corresponding ideal
oscillation, which has identical time intervals between the sequential relay switch
points from beginning to end. This completes the proof. |

If an unbiased relay feedback test is used, there exist Ay = O and PL = P_ =
P, /2. By substituting them into (4.6)—(4.9), one can obtain the corresponding relay
response expression,

(1) = —y_(t) = kppo — 2kppoEe ™ (4.26)
where y (¢) is fort € [0, Py/2], y—(t) is fort € (Py/2, P,], and

Ee— 1 4.27)

_ Lu
1+e er

Note that in the limit cycle, the process output is a periodic function with respect
to the oscillation angular frequency, w, = 27/ P,. Using the idea of a time shift, one
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may view it as a periodic signal from the very beginning, so its Fourier transform
can be derived as

Pu . tOS+PU .
Y(jw,) = lim N Yos(D)e T/ dt = lim N y(@®)e I™'dr (4.28)
N—oo 0 N—o0

los

where yos(t) = y(¢) fort € [tys, 00) and t,s can be taken as any relay switch point
in steady oscillation, such that the influence from the initial process response to the
above periodic integral can be excluded.
Similarly, it follows that
tos+ Py
U(jw, = lim N / u(t)e /@ d (4.29)
N—o00 fo

S

Thereby, the process frequency response at w, can be obtained as

08 Pu — 7w
C Y(wow) ST y@e It
UGjow) [l Pu()eionds

G(jwy) = Aye/% (4.30)

In fact, the numerical integral in (4.30) can be computed using the trapezoidal rule
or the fast Fourier transform (FFT) for Y (jw,) and U(j w,).

It should be noted that /G (jw,) = — had been used for parameter identifica-
tion in many existing references (e.g., Atherton 1982; Astrom and Higglund 1984;
Luyben 1987; Liet al. 1991; Shen et al. 1996; Huang et al. 2005; Yu 2006), based on
the describing function analysis. Such exercise will result in degraded identification
accuracy since ZG(jw,) is actually larger than —m due to the phase lag caused by
the relay, as will be illustrated by the later identification algorithms and examples.

When a biased relay test is used, the process static gain can be derived from
(4.30) as

tos+ P,
0s u y (t)dt

kp =G(0) = =2 —— (4.31)
S22 u(r)de

Note that Proposition 4.1 indicates that the process time delay can be intuitively
measured as the time taken to reach the peak of the process output response from
the initial relay switch point in a half period of the relay, which is denoted as 7, as
shown in Fig. 4.5. Correspondingly, it follows from (4.6) and (4.7) that

P+

V+(Pt) = kp (Ap + po) = 2kppoEe ™» = Ay (4.32)

_P=
y—(P-) = kp (Ap — po) = 2kppoFe ® = A (4.33)
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Py —0

V4 (P4 —0) = ky (Ap+ o) —2kppoEe = —e (4.34)

P_—0

y—(P-—0) = ky (A — po) = 2kppoFe @ = —ey (4.35)

Substituting (4.32) into (4.34) yields

0
iy VT (4-36)
kp(Aptpo)—A+
Alternatively, substituting (4.33) into (4.35) yields
= —9 4.37
T = I kp(Ap—pio)+e .37
kp(Ap—po)—A—

Therefore, the process time constant can be derived from (4.36) or (4.37). It is
preferred to use (4.36) for better accuracy in the presence of model mismatch, in
view of that the positive fitting part in a half period of the limit cycle occupies a
larger percentage compared to the negative fitting part in the other half period, and
vice versa.

Hence, the above identification algorithm named Algorithm-RS-FA1 for obtain-
ing an FOPDT model under a biased relay test can be summarized.

Algorithm-RS-FAI

(1) Measure P, and A, from the limit cycle.

(ii) Measure the process time delay as 6 = 7;'.
(iii) Compute the process static gain, kp, from (4.31).
(iv) Compute the process time constant, tp, from (4.36).

Note that by substituting the FOPDT model in (4.4) into (4.30), one can obtain
the process response fitting conditions at the oscillation frequency,

kp
—— =4, (4.38)
Vhes +1
—6w, — arctan (rpa)u) =@y (4.39)
It can be seen from (4.39) that ¢, € (—m, —m/2), rather than ¢, = — that had

been conventionally used in the describing function analysis (Atherton 1982).
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Accordingly, the process time constant and time delay can be derived from (4.38)
and (4.39) as

! ks 1 4.40

l'p = w—u A_lzl - ( . )
1

0 =—— [(pu + arctan (rpwu)] 4.41
Wy

Hence, an alternative identification algorithm named Algorithm-RS-FA2 for
obtaining an FOPDT model under a biased relay test can be summarized.

Algorithm-RS-FA2

(i) Measure P, from the limit cycle.

(i) Compute G (jw,) from (4.30).

(ii) Compute the process static gain, kp, from (4.31).
(iii) Compute the process time constant, 7,, from (4.40).
(iv) Compute the process time delay, 0, from (4.41).

Owing to the fact that the process response at the oscillation frequency is
precisely represented by the FOPDT model derived from Algorithm-RS-FA2, it
can be used to obtain enhanced identification accuracy for a higher order process
compared to Algorithm-RS-FA1, but at the cost of more computation effort.

When an unbiased relay test is used, it can also be verified by substituting Ay =0
and P = P_ = P,/2 into Proposition 4.1 that the process time delay can be
directly measured as the time taken to reach the peak of the process output response
from the initial relay switch point in a half period of the relay, i.e., t;f, as shown in
Fig. 4.5. Accordingly, solving (4.32) and (4.34) together to eliminate k, yields

_ Pu _ Pu pu—20
ey (1 i pr) — A, (1 Fe T —2¢ ) (4.42)

Note that the left-hand side of (4.42) is monotonically decreasing with respect to
7p, subject to a practical constraint of 0 < 7, < Py. Only finite solutions of 7, can,
therefore, exist for (4.42), which may be derived using any iterative algorithm such
as the Newton-Raphson method. The initial estimation for iteration may be taken as

T, = Py/2— 0, in consideration of the fact that the influence from the process time
constant to the relay response corresponds to this time interval.
The process static gain can then be derived from (4.32) as

Ay (1+e7%)

ky = - (1 - e_z%) (4.43)
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Note that in the case where multiple solutions of 7, and k, are obtained from the
above computation, a suitable solution pair of 7, and k, can be determined by
comparing the relay response of the resulting model with that of the process, or
by using the critical oscillation conditions from the describing function analysis
(Atherton 1982; Yu 2006).

Hence, the above identification algorithm named Algorithm-RS-FB1 for obtain-
ing an FOPDT model under an unbiased relay test can be summarized.

Algorithm-RS-FB1

(i) Measure P, and A from the limit cycle.

(ii) Measure the process time delay as 6 = 7.

(iii) Compute the process time constant, 7,, from (4.42) by using the Newton-
Raphson iteration method. The initial estimation for iteration may be taken
ast, = P/2—-0.

(iv) Compute the process static gain, ky,, from (4.43).

(v) Determine the suitable solution pair of 7, and k, by comparing the relay
response of the resulting model with that of the process or by checking if

IN (A1) G (jwy)| — 1and ZN (A4)+£G (jw,) — — are satisfied, where
N (Ay) = 4upe™ ami"(‘“r/AJr)/ (w A+ ) denotes the describing function of the

unbiased relay and G (jwy) is the FOPDT model response at the oscillation
frequency.

With the process time delay directly measured from the limit cycle, the process
static gain and time constant can also be derived from the fitting conditions at the
oscillation frequency as shown in (4.38) and (4.39),

1
T, = w—tan (—pu —Owy), @y € (—m,—7/2) (4.44)

ky = Auy/T202 + 1 (4.45)

To procure fitting accuracy for the identification of a higher order process as
encountered in practice, a one-dimensional search of 6 can be implemented in terms
of the following time domain fitting condition of the relay response,

Np

1 . 2
er=— Y [V OT 1) =3 0T+ 1] <e (4.46)
P =1

where y (kTs + fo5) and y (kT + tos) denote the relay responses of the process and
the model in the limit cycle, respectively, T is the sampling period corresponding to
N, = Py/Ts, and ¢ is a user-specified fitting threshold for computation. The optimal
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fitting can be determined by deriving such a model that yields the smallest value of
err. Improved fitting accuracy can thus be obtained for the identification of a higher
order process, compared to Algorithm-RS-FB1.

Hence, an alternative identification named Algorithm-RS-FB2 for obtaining an
FOPDT model under an unbiased relay test can be summarized.

Algorithm-RS-FB2

(i) Measure P, and the process time delay (6 = tg‘) from the limit cycle.

(i) Compute G(jw,) from (4.30).

(iii) Compute the process time constant, 7,, from (4.44).

(iv) Compute the process static gain, kp, from (4.45).

(v) End the algorithm if the fitting condition of relay response shown in (4.46)
is satisfied. Otherwise, go back to Step (iii) by monotonically varying 6 for
a one-dimensional search within a possible range as observed from the initial
step response in the relay test.

4.3.2 The SOPDT Model

According to the classification of the three types — underdamped, critically damped,
and overdamped — for identifying different process response characteristics, the
corresponding model identification algorithms are presented as follows:

Type 1 The Critically Damped SOPDT Model
A critically damped second-order process is generally in the form of

Gie = kpe—_az (4.47)
(rps +1)

The following proposition gives the exact relay response expression under a
biased relay test.

Proposition 4.2. For a critically damped second-order process modeled by (4.47)
under a biased relay test as shown in Fig. 4.6a, the resulting limit cycle of the
process output response is characterized by

_r Eit+ E
P (6) = Ky (Agt -+ 1) — 2ppige ™ (El N %) rel0.Py] @a8)
P

_r Fit + F
Y- (t) = ky (Ap— o) — 2kppoe” (F1 + 11—2) . tef0.P] (449
P
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where yy(t) is fort € [0, P+] while y_(t) is fort € (P+, Py], E; < 0 < Ej,
Fl <0< Fz, and

_ =
1 _ T
El=-—C " (4.50)

_Pu
l—e ™

- = P
h )

E, = 3 — 4.51)
(1 —e‘ﬁ) l—e
_r+
l—e ™
=7 (4.52)
l—e @
_Pu _r+
pue (1 —e ) _rt
p+e ®
F,=— + — (4.53)

u\ 2
(1—8_%> l—e ™

Proof. The initial step response of a critically damped SOPDT process in (4.47)
arising from the relay output, u(¢) = Ap — o, can be derived as

—0 _t=6
Yo(t) = kp (Ap — o) [1 - (1 ! )e E } (4.54)

Tp

When it comes to the first relay switch point denoted by #, as shown in Fig. 4.6a,
the relay output changes to Au + o, indicating that a step change of 2 is added
to the process input. According to the linear superposition principle, the process
output response can be derived as

t—0\ _i=¢
y1(#) = yo (¢ + t0) + 2kppo — 2kpito (1 +— ) e ™ (4.55)
p

By using a time shift of 7y + 6, (4.55) can be rewritten as

t _t
yl(t)|shift =)o (l + 1t + 9) + ZkP,lLo — 2kppl,0 (1 =+ ‘C_) e (4.56)
P

When it comes to the second relay switch point, the relay output changes to
Ap — wo, indicating that a step change of —2u is added to the process input.
According to the linear superposition principle, the process output response can be
derived as

t—0\ =t
y2(t) = yi(t + Py) — 2kppo + 2kppio (1 + . )e » 4.57)
P
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A/,L+/.LO | + + +

—Ho

Fig. 4.6 Limit cycle analysis for a critically damped SOPDT model

Using a time shift of 7o + 6 + P4, (4.57) can be rewritten as

Y2(O)|ghiee = Yo (& + 10+ 0 + Py) + 2kppuo (1 — 1)
(P 1 _h+ _h+
— 2kpppe {e -1+ — [r (e P — 1) + Pre ]}
T
(4.58)
At the third relay switch point, the relay output changes back to Ay + o,

indicating that a step change of 2 is once again added to the process input. The
process output response with a time shift of o+ 6 + P, can be derived accordingly as
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Y3(O)|shise = Yo (¢ +10 + 6 + Pu) + 2kppo (1 =14+ 1)
_t( _Pu _ P 1 _Pu _ = ) _P=
—2kppoe P e ® —e P 14— [l (e P —e +1)+Pue »—P e W ]}
Gy
(4.59)
where P, = P+ + P_.

The process output response following the fourth relay switch point is the result
of four interlaced step changes, respectively, with a magnitude of 24y. The process
output response with a time shift of 7o + 6 + P, + P4+ can thus be derived as

S (N S PO 1 _htty A Py
—2kppoe Pje P —e ® fe ® —1+—|:t e ™ —e ®H4e W —1

p

_hutPy _h _Pt
+ (Py+ Py)e » —Pye ® +Pre :|}

(4.60)
It can be summarized from (4.56)—(4.60) that

_L Et + E
Vout1() |gnire = Yo (¢ + 1o + 0 +nPy) + 2kppuo — 2kpppoe ™ |:51+Mi|

Tp
4.61)
_r Fit + F
y2”+2(t)|shift =y (t +to+ 0 +nP,+ Py)— 2kp[L0€ » [F] + %}
P
(4.62)
wheren =0,1,2,...,and
" _kPy k=D Pyt+P—
E1:1+Z(e D —e » ) (4.63)
k=1
" k& _k=DPy+P—
Ey =Y kP @ =) [(k—1)P,+ P_]e e (4.64)
k=1 k=1
" _kPutry kP
F = Z (e D —e¢ @ ) (4.65)
k=0
n _kPu+P+ _kPu
F=>" [(kPu +Py)e  ® —kPe W } (4.66)

k=0
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In view of the fact that 0 < e~ /% < 1, it follows for n — oo that

" _kn 1

D¢t =—x (4.67)
k=0 l—e ™
Note that
n _ﬁ n _ﬂ n _kPu n _kPu _ﬂ
i, ) kb =,,1£20Pu<26 THY Tt ) e e )
=1 k=1 k=2 k=n—1

P,

) P, _h 2R _Ge=bh _ahy
=lm ——-|e ®+e ®» +---+e * +e ®

(4.68)

By substituting (4.67) and (4.68) into (4.63)—(4.66), one can obtain the simplified
forms of Ey, E;, F}, and F5, as shown in (4.50)—(4.53).

Note that yo(t + 10+ 0 +nPy) = yo(t + 10+ 0 +nPy + Py) = ky(Ap — o)
for n — oo. Hence, in the limit cycle it follows that

y+() = nll)rgo Yant+1(0) |spige = kp (Ap + o)

(Eit + E»)

—2kp/,L()e_$ |:E1 +
23

] . tel0,Py] (4.69)

y-(1) = nlggo Van+2(0)|ghine = kp (A — o)

n (Fit + F»)

— 2kp,u0e_ft71 |:F1
T

} . tel0,P] (4.70)

where y4(¢) denotes the ascending output response in a half period, P, corre-
sponding to a positive step change of the relay output, while y_(¢) denotes the
descending output response in the other half period, P_, corresponding to a negative
step change of the relay output.

Note that £, shown in (4.51) can be reformulated as

—Pu

_r= _r=  _P+
Pie @ (1—@ ‘P)—I—p_e P (e W —1)

E, = 4.71)

_run2
(=)
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Let

R
— 1

g(x) = Te x € (0,00) (4.72)

It follows that

dgx) (5 +1)ev -1
dx x2

<0 4.73)

Thus, one can conclude that g(Py) > g(P-) since Py < P_ < P,
Accordingly, it can be concluded from (4.71) that £, < 0. In a similar way, one

can ensure that F, > 0. This completes the proof. a
If an unbiased relay test is used, as shown in Fig. 4.6b, there exist A = 0 and
P = P_ = P,/2. By substituting them into (4.48)—(4.53), one can obtain the
corresponding expression,
_r Eit+ E
Y(t) = —y_(t) = kppro — 2kptoe” ™ (E1 + 17—2) (4.74)
P
where yy (¢) is fort € [0, Py/2], y—(¢) fort € (Py/2, P,], and
1
1 + e er
£
B3
Ey=—— D¢ " (4.76)

_pun2
2(1 te 2,,,)

When a biased relay test is used, the process static gain can be derived from
(4.31). It can be derived from (4.48) and (4.49) that

dy+(t)  2kppo (Ert + Ez)e—i

= 4.77

dt ‘L'pz ( )
dy_(t 2k Fit+F) _.

ydt() _ p/io(tzl + 2)e L 4.78)

p

It can, therefore, be concluded that y4(¢z) does not increase monotonically for
t € [0, P4], and correspondingly, y_(z) does not decrease monotonically for
t e (P +, P, u]-

By substituting the process model in (4.47) into the frequency response fitting
condition shown in (4.30), the process time constant can be derived as

_ Lk 1 (4.79)
‘L'p = @ Au .
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and then using the phase fitting condition,
—Ow, — 2arctan (Tpwy) = @u,  @u € (-7, —7/2) (4.80)

the process time delay can be derived as

0= —L [gou + 2 arctan (rpa)u)] (4.81)

u

Hence, the above algorithm named Algorithm-RS-SC1 for the identification of a
critically damped SOPDT model under a biased relay test can be summarized.

Algorithm-RS-SC1

(i) Measure P4 and P_ from the limit cycle.
(i) Compute G(jw,) from (4.30).
(iii)) Compute the process static gain, kp, from (4.31).
(iv) Compute the process time constant, 7, from (4.79).
(v) Compute the process time delay, 6, from (4.81).

When an unbiased relay test is used, by letting (4.77) equal zero one can compute
the time to reach the peak value of y4 (¢) (or y_(¢)) as

E u
P R | S— (4.82)

Ey 2(1+e2%)

In fact, the time to reach the output response peak from the initial relay switch
point in a half period of the relay, t;‘ , can be measured as shown in Fig. 4.6b. It
follows that

=1ty —0 (4.83)

Substituting (4.81) and (4.82) into (4.83) yields

DPu
Pu
2(1+eM)

It can be seen that both sides of (4.84) increase monotonically with respect
to 7,. For 7, € (0,00), the left-hand side gives a value in the range of
(17 + @u/u, 1) + (T + @u)/wy), while the right-hand side is in the range of
(0, py/4). Therefore, there exists only finite solutions of 7, for (4.84), which
can be derived using any iterative algorithm such as the Newton-Raphson method.

1
ty + o [¢u + 2arctan(tyw,) | = (4.84)

The initial estimation of t,, for iteration may be taken as 7, = P,/2 — t;‘ , in view
of the fact that the influence from the process time constant to the relay response
corresponds to this time interval.
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The process time delay can then be derived from (4.81), and the process static
gain can be inversely derived from the magnitude fitting condition as used in (4.79),
ie.,

ky = A, (rgwf + 1) (4.85)

In the case where multiple solutions of 7, are obtained for (4.84), the time
domain fitting condition shown in (4.46) may be used to screen out the most suitable
solution.

Alternatively, with a prespecified value of the process time delay (8), the process
time constant can be derived from the phase fitting condition shown in (4.80) as

= tanf(—gu — 00) /2], ¢ € (7. ~7/2) (486)

u

Correspondingly, a one-dimensional search of 6 is needed in combination with the

fitting condition of relay response shown in (4.46) to determine the optimal fitting.
Hence, the above algorithm named Algorithm-RS-SC2 for the identification of a

critically damped SOPDT model under an unbiased relay test can be summarized.

Algorithm-RS-SC2

(i) Measure P4, P_, and t; from the limit cycle.
(i) Compute G (jw,) from (4.30).
(iii) Compute the process time constant, 7,,, from (4.84) using the Newton-Raphson
iteration method, or from (4.86) based on a prespecified time delay (0). The

initial estimation of t, for iteration may be taken as t, = P,/2 — tf, or
alternatively, a one-dimensional search of # can be implemented within a
possible range as observed from the initial step response in the relay test.

(iv) Compute the process time delay, 0, from (4.81) if 7, has been computed from
(4.84).

(v) Compute the process static gain, kp, from (4.85).

(vi) End the algorithm if the fitting condition of relay response shown in (4.46) is
satisfied. Otherwise, go back to Step (iii) by changing the initial estimation of
Tp, or monotonically varying 6 for a one-dimensional search.

Note that for a critically damped second-order processes with a dominant
time delay (8/t > 1), y+(¢) increases monotonically while y_(¢) decreases
monotonically, owing to that £, — 0 and > — 0. Accordingly, the process time
delay can be directly measured as the time to reach the positive peak (A4+) of the
output response from the initial relay switch point in a negative half period of the
relay, so that the process time constant and static gain can then be derived from
(4.86) and (4.85) for simplicity.
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Type 2 The Overdamped SOPDT Model
An overdamped second-order process is generally in the form of

—0Os
kpe

Gso =
(s + 1) (s + 1)

(4.87)

where t; > 1, > 0 is assumed without loss of generality. The following proposition
gives the exact relay response expression under a biased relay test:

Proposition 4.3. For an overdamped second-order process modeled by (4.87)
under a biased relay test as shown in Fig. 4.7a, the resulting limit cycle of the
process output response is characterized by

E, _. E, _i.
y+(t) = kp(A/L-f-/Lo)—kay,o( ki e I — DLEe e rz) , tel0,Pq]
T1— T TN
(4.88)
T F1 _r T2F2 _t
Y1) = k(A — p10) — 2k ( oo 2b ) . refo.P]
1 — Ty 1 — T
(4.89)
where 0 < E; < E», F5> < F} <0, and
=
l—e n
Ef\= — (4.90)
l—e =
e
l—e =
E= ——+— 4.91)
l—e ™
_r+
l—e =
Fl = ———r (4.92)
l—e n
_r+
l—e =
Fh=——7: (4.93)
l—e =

Proof. The initial step response of an overdamped SOPDT process in (4.87) arising
from the relay output, u(¢) = Ap — o, can be derived as

Tl _1=0 (%) _1=6
Yo(t) = kp (A = o) (1 - e+ e n ) (4.94)
1—T2 11—
Following a similar analysis as in the proof for Proposition 4.2, the time shifted
output response from the initial to the fourth relay switch point can be derived,
respectively, as
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Fig. 4.7 Limit cycle analysis for an overdamped SOPDT model

. (%) _t
e 1 — e

Y1Olsnire = Yo (¢ + to + ) + 2kppto = 2kpjto (Tl ) -0
(4.95)

Y2(O)|gire = Yo ¢ + 10 + 0 + Py) + 2kppuo (1= 1)

_r _Pt L _rt
—2kp,uo[ 1 (e I —1) _ % (e n _1)]
T — T T — T

(4.96)

V3(0) | gire = Yo (t + 10 + 60 + Py) + 2kppo (1 — 1+ 1)

t Py _P= . _ b _P=
—2kp//,0[ U (eiﬁ—e g +1)— 25 (e n—¢ © +1):|

1 — T2 T1— T
4.97)
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Ya()|guire = Yo (t + 1o + 0 + Py + Py) + 2kppeo(1 =14+ 1—1)

T _tf _PutPy _ Py _Py
— 2kp o e 1le 1 —e u4e n —1

T, i _htby _P _ht
— e 2le 2 —e 2 4+e 2 —1 (4.98)

The general relay response can, therefore, be summarized as

nE _+ nEk, _+
y2n+1(t)|shiﬂ:y0(l‘+t0+9+nPu)+2kp,u,0—2kp/L0( 12— - 222, Tz)
T1—12 T1—T2
(4.99)
nly _+ ol _+
y2n+2(z)|shiﬂ=y0(z+z0+9+nPu+P+)—2kpu0( P pmo = 272, rz)
1 — T2 1 — T
(4.100)
wheren = 0,1,2,...,and
n kPy (k=) Py+P—
Er=1+) (en —eT a ) (4.101)
k=1
" kP _(k=DPytP—
E2=1+Z(e o —e o ) (4.102)
k=1
n _kPutPy _kPy
F=Y" (e T —e u ) (4.103)
k=0
n kPy+Py kPy
=Y (e_ R e‘rz) (4.104)
k=0

By substituting (4.67) into (4.101)—(4.104), one can obtain the simplified forms
of E, E», Fi, and F,, as shown in (4.90)—(4.93).

Note that yo(t + 1t + 0 +nPy)=yo(t +to+ 0 +nPy, + Py)=k, (A — o)
for n — oo. Hence, in the limit cycle it follows that
y4+(1) = nll)ﬂgo Yan+1(0) i = kp (A + po)

‘L'lEl _ L ‘L’2E2
e 1 —
11— T1—T

—2kpuo( e‘r’z), te[0,PL]  (4.105)
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y-@) = nll)ngo Van+2(0)ghise = kp (A — o)

‘L’1F1 _r ‘L'2F2
e ] —
TN T — 102

— 2ky 1o ( e‘r’z) . te[0,P] (4106

It can be derived from (4.105) and (4.106) that

dy (1) 2kp o _L _L

to = (Ele l — Eye z) (4.107)
dy_(t) . 2kppL0 _L _L

aat— (Fle T — Fe z) (4.108)

To see if (4.105) and (4.106) have any positive solution for the time variable, ¢,
here, define z = x/ P_,a = P_/ P,, and a fractional function,

P

l—e 5
fo) = —— 7 X €(0,00) (4.109)
l—e >
It follows that
1 _1
et
f@)=——— (4.110)
1l—e @
_atl1
d e« (e —aeaa+a—l)
@) _ ( 4.111)
dz azz(l _ e—f)z
Let
g(z) = et —aew +a—1 (4.112)
It can be verified that
d 1
8 _ _(ea%_e%) ) (4.113)
dz 22
lim g(z) =0 (4.114)
Z—>00

It can, thus, be concluded that g(z) < 0 for z € (0, 00), and correspondingly,

L(Z)<O

4.115
dz ( )
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Hence, f(z) decreases monotonically with respect to z and so does for f(x) with
respect to x. One can then conclude from f (7)) < f(zp) that E, > E; > 0.
Following a similar analysis, it can be concluded that F, < F; < 0. This

completes the proof. |
If an unbiased relay test is used as shown in Fig. 4.7b, by substituting Ay = 0
and P+ = P_ = P,/2 into (4.88)—(4.93) one can obtain the corresponding relay
response expression,
E, _- E, _-
V() = —y_(0) = kyjio — 2kppto ( 2L - 222, ) (4.116)
1 — Ty 1T
where
1
l4+e
1
Ey= ——- (4.118)
l+e ™

When a biased relay test is used, the process static gain can be derived from
(4.31). Substituting (4.87) into the frequency response fitting condition shown in
(4.30), one can obtain

kP
J(@or+1) (Bei +1)

—Ow, — arctan (11w,) — arctan (,w,) = @y, @y € (-, —7/2) (4.120)

= A, (4.119)

dy—(1)

By letting == = 0, the time to reach the single extreme value of y_(7) can be
derived as
%) F2
t, = ——In— 4.121
Tln-n A ( )

Note that the time to reach the single extreme value of y_(#) from the initial relay
switch point in a negative half period of the relay, t;i, can be measured as shown in
Fig. 4.7a. It follows that

o =17 —0 (4.122)

Substituting (4.119), (4.120), and (4.121) into (4.122) to eliminate 7, and 0 yields

F 1
1% 4022 4 [ + arctan (toy) + arctan (mwy)] (4.123)
1 — T F] P— Wy
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where

! ks 1 (4.124)
n=—/—7F"— " — .
2T o\ A2 (P2 + 1)

It is seen that (4.123) is a transcendental equation with respect to 7;. One
can solve this equation with the numerical Newton-Raphson method. The initial
estimation of t; for iteration may be taken as

_ 1 |k
T = —, 21 (4.125)
wu V Au

which is estimated from (4.119) by letting 7; = .

The other time constant and the process time delay can then be derived from
(4.124) and (4.120).

Alternatively, substituting (4.124) into (4.120) yields a transcendental equation
with respect to 7y, where the process time delay () is prespecified for computation.
Correspondingly, a one-dimensional search of 6 is needed in combination with the
fitting condition of relay response shown in (4.46) to determine the optimal fitting.

Hence, the above algorithm named Algorithm-RS-SO1 for the identification of
an overdamped SOPDT model under a biased relay test can be summarized.

Algorithm-RS-SO1

(i) Measure Py, P_, and t; from the limit cycle.

(i) Compute G(jw,) from (4.30).

(iii) Compute the process static gain, kp, from (4.31).

(iv) Compute the process time constant, t;, from (4.123) using the Newton-
Raphson iteration method, or from the equation resulting from substituting
(4.124) into (4.120) based on a prespecified time delay (f). The initial
estimation of 7; for iteration may be taken from (4.125), or alternatively, a
one-dimensional search of 6 can be implemented within a possible range as
observed from the initial step response in the relay test.

(v) Compute the process time constant, 7,, from (4.124).

(vi) Compute the process time delay, 8, from (4.120) if 7; has been computed from
(4.123).

(vii) End the algorithm if the fitting condition of relay response shown in (4.46) is
satisfied. Otherwise, go back to Step (iii) by changing the initial estimation of
71, or monotonically varying 6 in a one-dimensional search.

When an unbiased relay test is used, it follows from (4.116) that there exist two
boundary conditions

P TnE;  _Pr—2 E, _pn—29
y+(—u_9)=kplL0_2kpM0( 1 le o T Lo PR )=8+

2 1 — T 1 — T
(4.126)
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(4.127)

e e

0k _» nEk, _»
01— =A_
I1— D0 I1— D0

Y+ (tp) = kppo — 2kppio (

where 1, is the time to reach the single extreme value of y4 (f) (or y_(¢)), which
dy4 (1)

can be derived from 4 = 0as
E
b= 2 22 (4.128)
1 — T E1
Note that
th = t; . (4.129)

where 77 is the time to reach the single extreme value of y () (or y—(¢)) from the
initial relay switch point in a half period of the relay, which can be measured from
the limit cycle.

It follows from dividing (4.126) by (4.127) that

£y (1_ 201 E; e_% i Z‘CZEZE_?;) —4 (1 _ 201 Eq e_PuT—]w i 20, E, e_PuZ?ZZG)

T — 10 T1—n TN 1 — T2

(4.130)

Using the frequency response fitting condition as shown in (4.119) and (4.120),
one can obtain

ko = Auy/ (202 + 1) (G + 1) @.131)

1
6 = - [¢u + arctan (tyw,) + arctan (tow,)] (4.132)

u

Substituting (4.128) and (4.132) into (4.129) yields an implicit equation with
respect to t; and 1,

Fi(t,1) =0 (4.133)

Similarly, substituting (4.128) and (4.132) into (4.130) yields another implicit
equation with respect to t; and 1,

F(t1,10) =0 (4.134)

Therefore, one can solve (4.133) and (4.134) together to obtain the solution pair
of 7 and 7,. This can be performed by using a nonlinear programming algorithm.
The initial values of 7| and 7, for iteration may be approximately estimated from
the reference relay response shapes shown in Table 4.2. The search direction may



4.3 Low-Order Model Fitting Algorithms 149

be chosen as the gradients of Fj (71, 72) and F, (11, 72). The iterative procedure can
be programmed using a first-order Taylor expansion as

0F) JF)
Fi (tig+1, k+1) = Fi (T, 0op) + a—l At + —| A (4.135)
Tl Tik a‘L’z Ti k
JIF IF
B (t1p41, k1) = Fo (Tip, Top) + 8_2 At 4+ —2| An  (4.136)
L2 P 97 Tik

where F; (7, 12 ) denotes the value of F;(zy, 12) at the kth iteration step fori =

1,2, while aﬂ is the partial derivative of F;(t, 7o) with respect to 7; at the
0t Tk

kth step for i = 1,2. The step size is denoted as At; (i = 1,2), which may be
practically chosen no larger than 0.01 to guarantee the computation accuracy. The
optimal objective function for convergence can be specified as

1
Jin = \/5 [FE (T1h+1. k1) + FF (Tt ops1)] <8 (4.137)

where § is a convergent threshold that can be practically set no larger than 1% for
implementation. To avoid any local optimal solutions of 7| and 1, the relay response
fitting condition shown in (4.46) can be used to screen out the most suitable solution
pair.

The process static gain and time delay can then be derived from (4.131) and
(4.132), respectively.

Alternatively, substituting (4.131) into (4.126) to eliminate k,, yields an implicit
equation with respect to 7; and t,. By prespecifying a value of the process time
delay (), this implicit equation together with (4.132) may be solved using the
above nonlinear programming. A one-dimensional search of 6 is, therefore, needed
in combination with the fitting condition of relay response, shown in (4.46), to
determine the optimal fitting.

Hence, the above algorithm named Algorithm-RS-SO2 for the identification of
an overdamped SOPDT model under an unbiased relay test can be summarized.

Algorithm-RS-SO2

(1) Measure Ay (or A_), Py, and t;‘ from the limit cycle.
(i1)) Compute G (jw,) from (4.30).

(iii) Compute the process time constants, t; and 7, from (4.133) and (4.134) using
the nonlinear programming algorithm given in (4.135)—(4.137), or from (4.132)
and the implicit equation resulting from substituting (4.131) into (4.126) based
on a prespecified time delay (0). The initial values of t; and t, for iteration
may be estimated from the reference relay response shapes shown in Table 4.2,
or alternatively, a one-dimensional search of 6 can be implemented within a
possible range as observed from the initial step response in the relay test.

(iv) Compute the process static gain, kp,, from (4.131).
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(v) Compute the process time delay, 6, from (4.132) if 7; and 7, have been
computed from (4.133) and (4.134).

(vi) End the algorithm if the fitting condition of relay response shown in (4.46) is
satisfied. Otherwise, go back to Step (iii) by changing the initial estimation of
71 and 1, or monotonically varying 6 in a one-dimensional search.

It should be noted that for an overdamped second-order process with a dominant
time delay (6/t; > 1 and /1, > 1), y4(¢) increases monotonically while y_(¢)
decreases monotonically, owing to that £y ~ E; ~ 1l and F| ~ F, ~ —1.
Therefore, the process time delay can directly be measured as the time to reach
the positive peak (A+) of the process output response from the initial relay switch
point in a negative half period of the relay. The process time constants 7; and ,
can then be derived by solving (4.130) and (4.132) together, or alternatively, from
(4.132) and the implicit equation resulting from substituting (4.131) into (4.126),
in terms of the fitting condition of relay response shown in (4.46) to determine the
optimal solution.

Type 3 The Underdamped SOPDT Model

An underdamped second-order process is generally in the form of (4.5), where £ €
(0, 1) is named the damping ratio of the process response. The following proposition
gives the exact relay response expression under a biased relay test.

Proposition 4.4. For an underdamped second-order process modeled by (4.5)
under a biased relay test as shown in Fig. 4.8a, the resulting limit cycle of the
process output response is characterized by

2k _& t
V() = ky (Ap+ o) — %e % sin (Z— + wl) . te[0,Py] (4.138)
p

2k _& t
Vo () = ky (At — pro) + $e " sin (’7— + wz) . re[0,P] (4.139)
Tp

where n = 1 —§82, py = JU? + V2, pp = JU; + V2, ¥ = arctan(V; /Uy),
¥, = arctan(V,/Us), ¢ = arctan(y/1 — £2/§), and

_mE pP, 2R
y=1—2e » cos— +e (4.140)
T
_ Ak Py = P _ At P
Uy =cos¢p—e ™ cos(«;&—]7 )—e » |:cos(¢+n—)—e » cos(¢—n—+)i|
5y T 3y

(4.141)
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Fig. 4.8 Limit cycle analysis for an underdamped SOPDT model

_ Put P,
Vi =sing —e ® sin(q&—n u)

Tp

_ Pt P_ _ Pt P
—e ™ [sin((ﬁ—i—n—)—e P sin(q&—)7 +)]
s ™

s nPy
Uy=cos¢p—e ™ cos|¢p—

Tp

_Ptf P _ Pt P_
—e ™ |:cos (¢+ 7)_+) —e ™ Cos (¢_77_):|
T o

. — Rt nPy
V,=sin¢g—e ™ sin|¢—

Tp

_ P+t P _ bt P_
—e @ |:sin (¢+ 77_+) —e ™ sin (¢_77_):|
T T

151

(4.142)

(4.143)

(4.144)
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Proof. The initial step response of an underdamped SOPDT process arising from
the relay output, u(t) = Au — o, can be derived as

Yo(t) = kp (A — o) [1 - %esu;e) sin (77(t——9) + ¢)i| (4.145)

Tp

Following a similar analysis as in the proof for Proposition 4.2, the time shifted
output response from the initial to the fourth relay switch point can be derived,
respectively, as

Yoo _& [t
YO e = Yo (¢ + fo + 0) + 2keppro — Z"Oe ¥ sin (Z— 4 ¢) (4.146)
P

Y2()|gire = Yo (¢ + 10+ 0 + Py) + 2kppuo(1 — 1)

2 _a [ P4t
_ Mé ™ [e j[; sin (M + ¢) —sin (n_[ +¢)i|
T

n T p
(4.147)
V3O lshiee = Yo (¢ + 10+ 0 + Pu) + 2kppo (1 =1+ 1)
2k _E | Pt t+ P,
_ Zkppto 5| sm(wﬂ,)
n s
_ =t t+ P t
— ¢ sin (M + ¢) + sin (’7— + ¢) } (4.148)
5 7
VaO)lgise = Yot + 10+ 0 + Py + Py) + 2kppo (1 —1+1-1)
2k _a [ _utPyx t+ P+ P
_ oo —% [ T (MM)
n T
_ bt t+ P P4t t+ P t
—e ™ sin(m_ﬂp) +e sin(u _|_¢) —sin(n— +¢)}
Tp ‘[p IP
(4.149)
The general relay response can therefore be summarized as
koo
Yan+1(O)spire = Yo (t +1o + 0 +nPy) + 2kppo — pROZ (4.150)
ka/,L()F _&
Yont2(O)|ghige = Yo (& + 10+ 0 +nPy + Py) — ———e ™ (4.151)
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wheren =0,1,2,...,and

t UL kR t + kP,
E:s]n(r’_+¢)+ze Y Sln(u+¢)
7 h

=1 g

[k=DPutP—]& t k— 1P, + P_
—Ze 0 sin(”[ tk-DA ]+¢) (4.152)

Tp

(kPu+P % kPut
Z [ e sin (n(t + kbt Py) + ¢) —e fp sin (—n(t kR +¢)]

Tp Tp

(4.153)

Using the Euler formula, it follows that

kPut
m kP t+ kP, " e w 0 tkPy) kP
dew sin(g +¢)zz;(ejl Sl _ i1 +¢1)

k=1 P k=1 2J

(4.154)

Then, using the convergent formula shown in (4.67), one can obtain

o kput
Ze iz sin(—n(t+kPU)~|—¢)

T
k=1 P

ot _eont
Bt 1 wne—in oSBT P kmetin
= e By _—_ e P

2j k=1 2j k=1

i _ PuE=jn) _ent _ PuGtjn
e./( = +¢) e e e /(Tp +9¢) e ,p

S PuG—jn) : ’ PuE+jn)
2] l—e_ufpm 2] 1_e_uip1n

‘ — Bt (=P
gy ) (g
=—sin|—+¢ |+ o T (4.155)
o 1—2e¢ ™ cos % +e

Similarly, it can be derived that

Z (kPu-‘rP—)E ) (7](l+kP +P ) )
e sSin

in (457

2PaE

P.

_ Pt Py
e |:sm(’7(t+P_)+¢)—e D g

ne=Py) +¢)i|

(4.156)

Pyt P
1—2e ™ cos”“—i—e ™



154 4 Relay Feedback Identification of Stable Processes

Substituting (4.155) and (4.156) into (4.152) yields

_ P _ s [ _nE _p
sin(%—i—qﬁ)—e » sin(wrif“)-i—qﬁ)—e ® [sm("“‘t%+¢)—e ® sm("“ri:*)—i-(p)]

E = I 2Py
1 —26_f cos % +e_$
P sin (ZT: + 1/fl)
h y
(4.157)
where p; = /U} + V2, ¢y = arctan(V;/Uy), and
_ P NPy 2kt
y=1—2¢e » cos— +e @ (4.158)
o
_ Pk P,
Uy =cos¢p—e ™ cos(¢>— i u)
Tp
_ Pt P_ _ Pt P
—e @ [cos (¢>+ '7_) —e ™ Cos (¢—n—+)i| (4.159)
T T
_ Pk P,
Vi =sing —e ® sin(¢>— 0 u)
Tp
_ Pt P_ _ Pt P
e W [sin(¢+"—)—e g sin(qs—" +)] (4.160)
Tp Tp
Following a similar derivation, one can obtain
p2 sin (Z—; + lﬂz)
F=——~°® 7 (4.161)
14
where p, = 4/ U22 + V2, ¥, = arctan(V5/U,), and
iyt nPy,
Uy=cos¢p—e ™ cos|¢p—
Tp
_PgE P _ Pk P
—e T |:cos (¢ 4 ’7—+) — e cos (¢ — ’7—)] (4.162)
T T
. — Rt nPy
V), =sing—e ™ sin|¢—
T
_ P4t P _Put P_
—e ™ |:sin (¢+ 77_+) —e ™ sin (¢_ﬂ_):| (4.163)
Tp Tp
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Note that yo(t +1to + 0 +nPy) =yo(t +to + 0 +nPy + Py) =kp(Au — o)
for n — oo. Hence, in the limit cycle it follows that

. 2k [LoE _&
Y4+() = Im yau41()|gnire = kp (Ap + o) — e, tel0,Py]
n—>o00 r’
(4.164)
2kp/LOF &
Y—(t) = yan+2(O)lgnie = kp (Apt — pro) — ———e *», 1 €[0, P_] (4.165)

This completes the proof. O

If an unbiased relay feedback test is used, as shown in Fig. 4.8b, by substituting
Ap = 0and P = P_- = P,/2 into (4.138)—(4.144) one can obtain the
corresponding expression,

2k 0P _& . t
ya ) = =y-(0) = kppto — —222L 5 in (Z— + w) (4.166)
P
where p = /U2 + V2, ¢ = arctan(V/U), and
— nPy
U=cos¢p—e ™ cos|¢p—
s
_ Pug P _ Pug P,
—e ™ [cos (¢ 4+ “) —e ™ cos (¢— 1 “)} (4.167)
27, 27
_ Pk P,
V =sing —e ™ sin (¢— u)
T
_ Puf P, _ Pk P
—e ™ [sin (¢ 4+ ) — e~ sin (¢>— d )] (4.168)
21, 27,

When a biased relay test is used, the process static gain can be derived from
(4.31). By using the frequency response fitting condition shown in (4.30), one can
obtain

= A, (4.169)

2
2,2 27242
\/(l—rpwu + 4§° 1 w;

2 u
—Ow, — arctan (ér—pw) =@y, @u€ (—m,—1/2) (4.170)
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It follows from (4.169) that

wLu\/l—ZEZ-i-,/ﬁ—é+4§2(§2—1)0ra%u\/1—2$2—,/i—§+4§2($2—1). 0<E<+/2/2;
=
fu\/l—252+,/’;—§+452<52—1>, £> V3.

4.171)
1 2 u

0 = —— | ¢y + arctan Sf—ps)z (4.172)
wy 1-— T4

It can be derived from (4.138) and (4.139) that

2 _ &
dy4(t) _ kpptops e ™ |:;7005 (n_t + lﬂl) — &sin (r)_t + W1)1| (4.173)
p Tp

dt nyt

dy_(t 2k _& t
y-() = Zekof2 -3 |:71 cos (77_ + 1/f2) — Esin (n_t + Wz)] (4.174)
dt ny o o o

Then, by letting % = 0and % = 0, the time to reach the peak of y(¢)

or y_(t) can be obtained, respectively, as

b )= r—;(qﬁ—% +km), k=0,1,2,.... (4.175)
fp,.k=%p(¢—1#z+kn), k=0,1,2,.... (4.176)

In fact, if there exist several peaks of y4 (¢) (or y_(¢)) as shown in Fig. 4.8a, the
time to reach the largest peak denoted as A4 (or A—) from the terminal relay switch
point in the corresponding half period of the relay, t;‘+ (or t;‘+ ), can be measured. It
follows that

T * *
foy g —lo_j = ;p(wz ) =Pr 041, - (P_ -0 +tp_)

P —P_+ t;+ - t;‘_ (4.177)

It can be seen from (4.177) that bk~ k gives the same value as long as the
corresponding peaks of y4(¢) and y_(¢) are measured for computation.

Substituting (4.171) into (4.177) to eliminate 7, yields a transcendental equation
with respect to £. One can solve this equation using the Newton-Raphson iteration
method. The initial value of ¢ for iteration may be approximately estimated from
the reference relay response shapes shown in Table 4.2. Note that the practical
constraint, 0 < £ < 1, can be used to limit the search range and intuitively exclude
those unsuitable solutions.
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Accordingly, the process time constant and time delay can then be derived from
(4.171) and (4.172), respectively. Note that if 0 < & < +/2/2, the excessive
solution of 7, as shown in (4.171) can be excluded through the iterative algorithm
for computing &. To relieve the computation effort, it is suggested to first use the
search step size, § = 0.01, to locate 6 and 1, with a relaxed fitting constraint of the
relay response, and then to reduce the step size such as & = 0.001 in conjunction
with a much tighter fitting threshold for better computation accuracy.

Alternatively, substituting (4.171) into (4.170) to eliminate T, yields a transcen-
dental equation with respect to &, where the process time delay (0) is prespecified
for computation. A one-dimensional search of 6 is, therefore, needed in combination
with the fitting condition of relay response shown in (4.46) to determine the optimal
fitting.

Hence, the above algorithm named Algorithm-RS-SU1 for the identification of
an underdamped SOPDT model under a biased relay test can be summarized.

Algorithm-RS-SU1

(i) Measure Py, P, 17, and £ from the limit cycle.

(i1) Compute G (jw,) from (4.30).

(iii) Compute the process static gain, kp,, from (4.31).

(iv) Compute the process damping ratio, &, from the equation resulting from
substituting (4.171) into (4.177) by using the Newton-Raphson iteration
method, or from the equation resulting from substituting (4.171) into (4.170)
based on a prespecified time delay (). The initial value of £ for iteration may
be estimated from the reference relay response shapes shown in Table 4.2,
or alternatively, a one-dimensional search of 6 can be implemented within a
possible range as observed from the initial step response in the relay test.

(v) Compute the process time constant, t,, from (4.171).

(vi) Compute the process time delay, 6, from (4.172) if £ has been computed from
the equation resulting from substituting (4.171) into (4.177).

(vii) End the algorithm if the fitting condition of relay response shown in (4.46) is
satisfied. Otherwise, go back to Step (iv) by changing the initial estimation of
&, or monotonically varying 6 in a one-dimensional search.

It should be noted that although one can derive from (4.169) that

1 k; 2
= = 2.2
£ o \/ ye (1 2 wu) (4.178)

and then numerically solve 7, from a transcendental equation resulting from
substituting (4.178) into (4.177), the computation effort may be much larger than
that of solving &, because the initial estimation of 7, becomes more difficult and
so is for determining its possible range. Hence, it is not recommended unless an
approximate value or range of 7, can be known from a prior knowledge of the
process operation.
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When an unbiased relay test is used, it follows from (4.166) that

P, 2%k s P, —20
1o (=) == B (AP )

2 27,
(4.179)
2kpop - n
v+ (tp) = kppo — =2 3 sin [ =2 + v ) = A4 (4.180)
ny Tp
where #, is the time to reach the largest peak of y () if there exist several peaks as
shown in Fig. 4.8b, which can be derived from % =0as
23
I = ;(¢—w+k7r) (4.181)

where k may be determined from the practical constraint,
ty = —“—9+z; (4.182)

where 77 is the time to reach the largest peak of y(¢) (or y—(¢)) from the terminal
relay switch point in the corresponding half period of the relay; i.e., k should be
taken to satisfy

* Pu *
<ty < S+ (4.183)

It follows from dividing (4.179) by (4.180) that
20 _ t, 20 _EPu=20) P, —26
e+ |:1 — —pe ® sin (ﬁ + W)] = A4 |:1 - —pe 7 sin (M + Ip)i|
ny T ny 27,
(4.184)

By using the frequency response fitting condition shown in (4.169) and (4.170),
one can obtain

ky = Au\/<l - rgwg) + 4827202 (4.185)
1 2
0 = —— | ¢, + arctan ﬂ (4.186)
N 1— rga)f

Substituting (4.181) and (4.186) into (4.182) to eliminate #, and 6 yields an
implicit equation with respect to 7, and &,

H (5,6) =0 (4.187)
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Similarly, substituting (4.181) and (4.186) into (4.184) to eliminate #, and 6
yields another implicit equation with respect to 7, and &,

H; (15,6) =0 (4.188)

Therefore, one can solve (4.187) and (4.188) together to find the solution
pair of 7, and £. This can be performed by using a nonlinear programming as
introduced in Algorithm-RS-SO2. The initial values of 7, and & for iteration may be
estimated from the reference relay response shapes shown in Table 4.2. The practical
constraint, 0 < £ < 1, may be used to limit the search range and intuitively exclude
those unsuitable solution pairs.

The process static gain and time delay can then be derived from (4.185) and
(4.186), respectively.

Alternatively, substituting (4.185) into (4.179) to eliminate k, yields an implicit
equation with respect to 7, and . By prespecifying a value of the process time
delay (), this implicit equation and another implicit equation of (4.186) may be
solved together by using a nonlinear programming as in Algorithm-RS-SO2. A
one-dimensional search of 6 is, therefore, needed in combination with the fitting
condition of relay response shown in (4.46) to determine the optimal fitting.

Hence, the above algorithm named Algorithm-RS-SU?2 for the identification of
an underdamped SOPDT model under an unbiased relay test can be summarized.

Algorithm-RS-SU2

(i) Measure A (or A_), P, and tlf from the limit cycle.
(i) Compute G(jw,) from (4.30).

(iii) Compute the process time constant, 7,, and damping ratio, &, from (4.187)
and (4.188) by using a nonlinear programming as in Algorithm-RS-SO2, or
from (4.186) and the implicit equation resulting from substituting (4.185) into
(4.179) based on a prespecified time delay (6). The initial values of 7, and & for
iteration may be estimated from the reference relay response shapes shown in
Table 4.2, or alternatively, a one-dimensional search of 6 can be implemented
within a possible range as observed from the initial step response in the relay
test.

(iv) Compute the process static gain, kp, from (4.185).

(v) Compute the process time delay, 6, from (4.186) if 7, and § have been
computed from (4.187) and (4.188).

(vi) End the algorithm if the fitting condition of relay response shown in (4.46) is
satisfied. Otherwise, go back to Step (iii) by changing the initial estimation of
7, and &, or monotonically varying € in a one-dimensional search.

4.3.3 Illustrative Examples

Eight examples from existing literature are used here to illustrate the effective-
ness and merits of the above identification algorithms. Example 4.1 is given
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to demonstrate the fitting accuracy of Algorithm-RS-FAl, Algorithm-RS-FA2,
Algorithm-RS-FB1, and Algorithm-RS-FB2 for identifying a first-order process,
based on a biased or unbiased relay test. Measurement noise tests are also included
to illustrate identification robustness. Examples 4.2 and 4.3 are used to show the
effectiveness of these algorithms for identifying higher order processes. Examples
4.4,4.5, and 4.6 are given to demonstrate the fitting accuracy of Algorithm-RS-SC1,
Algorithm-RS-SC2, Algorithm-RS-SO1, Algorithm-RS-SO2, Algorithm-RS-SUT,
and Algorithm-RS-SU2 for identifying a second-order process in terms of the exact
model structure, together with measurement noise tests to illustrate identification
robustness. Examples 4.7 and 4.8 are used to show the effectiveness of these SOPDT
algorithms for identifying higher order processes. In all the relay tests, the sampling
period is taken as 75 = 0.01(s) for computation.

To assess the model fitting error, the widely used step response fitting error, err,
as shown in (2.42), is adopted for reference, together with the maximal frequency
response error,

ERR = max M

: x 100%
w€[0,wc] G(]w)

where G(jw) and (A}( jw) denote the frequency responses of the process and
the model, respectively, and w. is the cutoff angular frequency corresponding to
/G(jw.) = —mn. In consideration of the fact that w, can be intuitively measured
from a relay test and is only slightly smaller than w, it is adopted here to compute
ERR for convenience.

Example 4.1. Consider the first-order process widely studied in the literature (Shen
et al. 1996; Srinivasan and Chidambaram 2003; Vivek and Chidambaram 2005),

e—Zs

T 105+ 1

Based on a biased relay test, Shen et al. (1996) derived an FOPDT model,
Gm = 0.999¢729055 /(81185 + 1), and Srinivasan and Chidambaram (2003) gave
a model, G, = 1.03¢723/(10.3s + 1). Using an unbiased relay test, Vivek and
Chidambaram (2005) derived a model, G, = 0.9467¢725/(9.5028s + 1).

For illustration, a biased relay test using u4 = 1.3, u— = —0.7, and ¢4 =
—e_ = 0.2 is performed for model identification. The measured limit cycle data
are listed in Table 4.3. The corresponding algorithms, Algorithm-RS-FA1 and
Algorithm-RS-FA2, are used to obtain the process model, respectively. The results
are also shown in Table 4.3, which demonstrate good accuracy. For comparison, an
unbiased relay test using u4+ = —u— = 1.0 and ¢4 = —e_ = 0.2 is also performed
for model identification. Correspondingly, Algorithm-RS-FB1 and Algorithm-RS-
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Table 4.4 Identification results for Example 4.1 under different measurement noise levels

% Error in the Limit cycle data

Identified model

Algorithm-RS-

Algorithm-RS-

NSR  Denoising Aq A_ Ay Du FAl FA2
0.9939¢ 1% (.9939¢ 2009
5%  Averagi 15  —037 —389 —2.08
¢ veraging 9.5672s + 1 9.9402s + 1
10236 —1.928s 1.0236 —1.9971s
10%  Averaging 274 —236 —928 —532 ¢ ¢
9.3637s + 1 1023315 + 1
10108 —2.134s 10108 —2.2417s
10%  Filtering 172 —096 419 —2.05 ¢ ¢
1041725 + 1 10.1769s + 1
. . 1.02926_2‘2223 1.02926_2‘221“
30%  Filtering  —091 278 271 —2.68
10.85825 + 1 10.3754s + 1

FB2 are used, obtaining the results listed also in Table 4.3, together with the limit
cycle data measured for computation. It is seen that these two algorithms also give
good accuracy.

Now, suppose that a random noise N (0, a3 =0.01 12%) is added to the process
output measurement, causing NSR = 5%. The corrupted output measurement is then
used for relay feedback control. It can be seen from Table 4.4 that both Algorithm-
RS-FA1 and Algorithm-RS-FA2 maintain good identification robustness, based
on using the statistical averaging method to obtain the limit cycle data from 10
steady oscillation periods, e.g., in the time interval of [60,220] (s). Note that
similar identification results can also be obtained using Algorithm-RS-FB1 and
Algorithm-RS-FB2, and thus are omitted. When the noise level is increased to
NSR =10%, it can be seen from Table 4.4 that the process time constant is
somewhat underestimated by Algorithm-RS-FA1l in comparison with Algorithm-
RS-FA2. To enhance identification robustness, a first-order Butterworth filter with
a cutoff angular frequency, w. = 4.0 (rad/s), according to the guideline given in
(4.3), is used to recover the corrupted limit cycle and also for relay feedback control.
The corresponding results are also listed in Table 4.4, which demonstrate that
improved accuracy for the measurement of limit cycle data and model identification
can thus be obtained. Even in the case where the noise causing NSR =30% is
added, the proposed filter together with the averaging for 10 oscillation periods can
ensure good identification robustness, as illustrated by the resulting models listed in
Table 4.4.

Example 4.2. Consider a high-order process studied in the literature (Wang et al.
1997; Kaya and Atherton 2001),

. (=s+1)e™
ICESTR

Based on a biased relay test, Wang et al. (1997) derived an FOPDT model, G, =
1.00e=*2%/(2.99s + 1), and Kaya and Atherton (2001) gave an FOPDT model,
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Fig. 4.9 Nyquist fitting of FOPDT models for Example 4.2

Gm = 1.00e7>0825 /(2.2925 + 1). The biased relay test in Example 4.1 is performed
for comparison. Correspondingly, Algorithm-RS-FA1 and Algorithm-RS-FA2 are
used to derive the FOPDT models, which are shown in Table 4.3. The Nyquist plots
of these FOPDT models are shown in Fig. 4.9. It is seen that Algorithm-RS-FA2
gives the best fit, owing to the use of the precise fitting condition of the process
response at the oscillation frequency, i.e., (—0.686, —j0.1628), as shown in Fig. 4.9.
Note that the FOPDT model obtained from Algorithm-RS-FA2 corresponds to
ERR = 2.71%, while that of Kaya’s method led to ERR = 11%. In contrast,
Algorithm-RS-FA1 gives slightly inferior fitting, but with a less computation effort.

Example 4.3. Consider a third-order process studied in the literature (Luyben
2001),

-s

G:e—3
8(s+1)

Based on an unbiased relay test, Luyben (2001) derived an FOPDT model, G, =
0.284¢719%/(5.97s + 1). For illustration, an unbiased relay test using uy =
—u_ = 1.0 and e = —e_ = 0.1 is performed here for model identification.
Correspondingly, Algorithm-RS-FB1 and Algorithm-RS-FB2 are used, obtaining
the results listed in Table 4.3, together with the limit cycle data measured for
computation. The Nyquist plots of these FOPDT models are shown in Fig. 4.10.
It is seen that Algorithm-RS-FB2 yields the best fitting, in particular in the preferred
low frequency range, owing to the fact that the model response coincides with the
process at the oscillation frequency, i.e., (—0.0276, —j0.0854).
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Fig. 4.10 Nyquist fitting of FOPDT models for Example 4.3

Example 4.4. Consider an overdamped second-order process widely studied in the
literature (Li et al. 1991; Shen et al. 1996; Srinivasan and Chidambaram 2003;

Ramakrishnan and Chidambaram 2003),

e—ZS

= s+ ne+D

By using two different relay tests in terms of precise measurement of the process
time delay, the so-called ATV method (Li et al. 1991) gave an SOPDT model, G, =
0.853¢7%/(7.4165 + 1)(1.15s + 1). Using a single biased relay test, Ramakrishnan
and Chidambaram (2003) derived an SOPDT model, G, =1.05¢~"%1%/(9.7665 4 1)

(1.271s + 1).
For illustration, a biased relay test with uy = 1.3 and u— = —0.7 and an

unbiased relay test with uy = —u_ = 1.0 are performed, respectively, together with
e+ = —e_ = 0.2 to avoid incorrect relay switches caused by measurement noise.
Correspondingly, Algorithm-RS-SO1 and Algorithm-RS-SO2 are used to obtain the
process models as listed in Table 4.5, together with the limit cycle data measured for
computation. It is seen that good accuracy is obtained, corresponding to very small
fitting errors.

Note that Ramakrishnan and Chidambaram (2003) derived an SOPDT model,
Gm = 1.06e72%%/(10.73s 4+ 1)(0.92s + 1), on condition that a random mea-
surement noise N (0, 0]2\, = 0.5%) is added to the relay feedback channel. It can
be verified that this measurement noise causes NSR =2%. By using the statistic
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averaging method on the measurement of 10 oscillation periods in the time interval
[60,260] (s), Algorithm-RS-SO1 results in the process model listed in Table 4.6,
which indicates good identification robustness. Note that a similar result can be
obtained using Algorithm-RS-SO2 and thus is omitted.

To further demonstrate identification robustness against measurement noise, a
random noise N (0, o,z\, = 0.055%) is added to the process output measurement and
relay feedback, causing NSR = 10%. It can be seen from Table 4.6 that the statistic
averaging method results in notable identification errors for the model parameters,
which, however, seem still acceptable from a view of control design in practice.
To enhance identification robustness, a first-order Butterworth filter with the cutoff
angular frequency, w. = 3.5 (rad/s), according to the guideline given by (4.3), is
used for the output measurement and relay feedback, leading to apparently improved
identification robustness, as indicated by the resulting model shown in Table 4.6.
Note that even in the case where a random noise causing NSR = 30% is added, using
the proposed filter together with the averaging method on 10 oscillation periods,
e.g., in the time interval [100,320] (s), can also guarantee good identification
robustness, as indicated by the resulting model and fitting error listed in Table 4.6.

Example 4.5. Consider a critically damped second-order process studied in the
literature (Thyagarajan and Yu 2003),

e—lOs

ety

Based on an unbiased relay test, Thyagarajan and Yu (2003) gave an approximate
estimation of the corresponding SOPDT model. By performing a biased and an
unbiased relay tests as in Example 4.4, respectively, the corresponding Algorithm-
RS-SC1 and Algorithm-RS-SC2 give the process models as listed in Table 4.5,
which once again demonstrate good accuracy.

To demonstrate identification robustness against measurement noise, the noise
tests in Example 4.4 are performed. The corresponding identification results
obtained using Algorithm-RS-SC1 are shown in Table 4.6, together with the limit
cycle data measured for computation. It is seen that good identification robustness
is, therefore, maintained.

Example 4.6. Consider an underdamped second-order process studied in the litera-
ture (Panda 20006),

ef7s

s24+0.4s +1

Based on an unbiased relay test, Panda (2006) derived an SOPDT model, G, =
1.05e768%25 /(1.035> + 0.41s + 1). By performing a biased (u; = 0.3 and
u— = —0.2) and an unbiased (u+ = —u— = 0.2) relay tests with e = —e_ = 0.1,
respectively, Algorithm-RS-SU1 and Algorithm- RS-SU2 result in the SOPDT
models shown in Table 4.5, which demonstrate that good identification accuracy
can, therefore, be obtained.
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Fig. 4.11 Nyquist fitting effect for Example 4.7

To demonstrate identification robustness against measurement noise, the noise
tests in Example 4.4 are also performed. The resulting models from Algorithm-RS-
SUT1 are shown in Table 4.6, which also demonstrate good identification robustness.

Example 4.7. Consider a high-order process studied in the literature (Li et al. 1991;
Ramakrishnan and Chidambaram 2003),

e—4s

T 055+ 1)

Based on a biased relay test, the ATV method of Li et al. (1991) gave an FOPDT
model, Gy, = 1.0841e=*%%/(1.63625s + 1), and Ramakrishnan and Chidambaram
(2003) derived an overdamped SOPDT model, G, =1.0046¢*423% /(0.22865+1)
(0.8839s + 1).

For illustration, a biased relay test as in Example 4.4 is performed for model
identification. According to the guidelines given for model structure selection in
terms of the reference relay response shapes shown in Table 4.2, Algorithm-RS-SC1
is chosen to derive a critically damped SOPDT model, which is shown in Table 4.5.
For comparison, the Nyquist plots of the above models are shown in Fig. 4.11. It is
seen that evidently improved fitting is obtained by the proposed SOPDT model.
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Fig. 4.12 Nyquist fitting effect for Example 4.8

Example 4.8. Consider another high-order process studied in the literature (Wang
et al. 1997; Kaya and Atherton 2001),

e—().Sx

O T D1 D)

Based on a biased relay test, Wang et al. (1997) derived an FOPDT model, G, =
1.00e=%!5/(1.152s + 1), and Kaya and Atherton (2001) gave a critically damped
SOPDT model, Gy, = 1.00e™"633 /(0.785s + 1)°.

For illustration, the biased relay test in Example 4.4 is performed for model
identification. According to the guidelines given for model structure selection in
terms of the reference relay response shapes shown in Table 4.2, Algorithm-RS-SU1
is chosen to derive an underdamped SOPDT model, resulting in the process model
shown in Table 4.5. For comparison, the Nyquist plots of the above models are
shown in Fig. 4.12, which once again demonstrate that obviously improved fitting
is obtained using the proposed algorithm. Note that the proposed model response
at (—0.676, —j0.18) corresponding to the oscillation frequency coincides precisely
with that of the process.

To demonstrate the achievable control performance in terms of the above
identified models, the standard IMC method (Morari and Zafiriou 1989), as will
be introduced in Chap. 7, is used here for benchmark comparison. If a perfect
knowledge of the process is used, the IMC controller should be designed as
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Fig. 4.13 Nominal system response for Example 4.8

Op = (s +1)(s> + 54+ 1)/(Aps + 1)3, where Ap is an adjustable control parameter.
Using the proposed SOPDT model, the corresponding IMC controller should be
Oa = (0.9744s% + 1.4194s + 1)/(Aas + 1)%. If the SOPDT model of Kaya
and Atherton (2001) is used, the corresponding IMC controller should be Ok =
(0.785s + 1)2/(Ags + 1)2. If the FOPDT model of Wang et al. (1997) is used, the
corresponding IMC controller should be Qw = (1.152s + 1)/(Aws + 1).

By adding a unity step change to the set-point of the standard IMC system and
then a step-type load disturbance with a magnitude of —0.5 to the process, and
taking Ap = 2.0, Ax = Ag = 2.2, and Ay = 3.0 to obtain the same rising
speed of the set-point response for comparison, the corresponding output responses
are shown in Fig. 4.13, respectively. It is seen that the proposed SOPDT model
facilitates good control performance. Then, assume that the process is perturbed to
the form of Go = e¢2°/(0.5s + 1)(s> + 0.5s + 1) due to practical uncertainties,
the perturbed output responses are shown in Fig. 4.14, which demonstrate that the
proposed SOPDT model also facilitates control robustness.

4.4 A Generalized Relay Identification Method

As introduced in the above section, under a biased relay test, the process static
gain can be separately derived as the ratio of a periodic integral of the process
output to that of the relay output, but the gain error may arise from unexpected
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Fig. 4.14 Perturbed system response for Example 4.8

load disturbance. In contrast, under an unbiased relay test, the influence from load
disturbance can be intuitively detected in terms of the symmetric shape of the limit
cycle, but the process static gain cannot be derived like that under a biased relay
test, because such a periodic integral results in zero.

A unified gain identification algorithm is, therefore, presented here for applica-
tion under a biased or unbiased relay test. Moreover, a general model identification
method is presented for identifying a model of any order, based on the frequency
response estimation under a relay test.

Consider a general model structure that can describe both time delay and
nonminimum phase (NMP) processes,

kp (—‘L'()S + 1)8_93

G =)

(4.189)

where k, denotes the process static gain,  the time delay, 1/ 1, the right-half-plane
(RHP) zero, 7, the time constant, and m is a positive integer indicating the model
order. Note that 7p = 0 and 6 = 0 corresponds to a linear and stable process; 7o = 0
but 6 # 0 corresponds to a time delay process; 7o # 0 but & = 0 corresponds to
an inverse response process; tp 7% 0 and 6 # 0 corresponds to an inverse response
process with time delay.

Hence, apart from identifying the process static gain, there are three specific
cases for model identification: (i) identify 7, and 8 with 7y = 0; (ii) identify 7o and
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7, with 6 = 0; and (iii) identify 7o, 7,, and 6. Note that the model order, m, is user—
specified, based on the process response characteristics, and is usually taken as 1, 2,
or 3 for low-order modeling and controller tuning. Correspondingly, identification
algorithms will be detailed for these three cases.

4.4.1 Relay Response Expression

For the convenience of assessing the fluctuation range of relay response or deter-
mining the model order for proper fitting, a general relay response expression for
the model structure in (4.189) is given in the following proposition:

Proposition 4.5. For a process described by (4.189) under a biased relay test, the
resulting limit cycle is characterized by

Yo (1) = k(A + po) — 2kppioe ™

1 1 1+ /7
E —_E — oot —————FE. 4|, te]l0,P
[0+ 1+2, » + +(m—1)!r£,"_1 m—1 [0, Py]
(4.190)
y-(t) = kp(Ap — jro) — 2kppuoe ™™

1 14+ 1w/t
FQ—I- F1+—F2+"'+—O/llm—l ’ ZE[O,P_]

2172 (m — 1)lgr!
(4.191)

where y4 (t) denotes the output response in the half period P, while y_(t) denotes
the output response in the other half period P_ corresponding tot € (P4, Py,
Py=Py+ P py=e /0, py = e/, p=e""/%, and

n—>0o0 . n—>o00 )
Ei=t+ Y plt+kP) —p- Y 7't +Po+(k—DP).
k=1 k=1
i=0,1,2,....m—1. (4.192)
n—>00 ) n—>00 )
Fo=py Y pht+ Py +kP) = > pht+kP). i=012....m—1
k=0 k=0

(4.193)
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Proof. The step response of the mth order process shown in (4.189) can be
derived as

2 m—1
y(t)=ky { 1- [1 prt e, dre/)i-0) } e_(’_e)/rp§

Tp 2!r1§ (m— 1)!11')”—1
(4.194)

By using a time shift of 6, the initial process response arising from the relay
output, u(t) = A — [o, can be written as

Yo(t) = (Ap — po)y(t + 0) = kp(Ap — o)

t [2 1+ Zm—]
1_|:1+_+_+...+%:|61/Tp§ (4.195)

X
20 (m — 1)lgp—!

After the first relay switch point, the relay output changes to be Au + uo,
indicating that a step change of 2u is added to the process input. According to
the linear superposition principle, one can obtain the process output response with
a time shift of 7, + 0 as

y1(t) = yo(t + to) + 2kpjio

t [2 1+‘L’ T tm—l
1— 1+_+_2+...+% e/
27 (m — Dl

(4.196)

where t is the time to reach the first relay switch point.

After the second relay switch point, the relay output changes to be Au —
Mo, indicating that a reverse step change of 2u is added to the process input.
Accordingly, the process output response with a time shift of 7o + 6 + P4 can
be derived as

ya(t) = yolt + to + Py) + 2kypo(1 — 1) — 2kypuge™"/™

1

1
X {e‘P+/’P—1+— [(t+Pp)e P+ — 1]+ [(t + P+)2e‘P+/fv—t2]

Tp 2172
1
+ .- L/Tp_l [(l + P+)m—]efP+/rp _ tmflil
(m =Dz}

(4.197)

After the third relay switch point, the relay output changes again to be Ay +
Mo, indicating that a step change of 2u( is once again added to the process input.
Accordingly, the process output response with a time shift of 7y + 8 + P, can be
derived as
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y3(t) = yo(t + 1o + Pu) + 2kpjuo(1 — 1 + 1) = 2kypuge ™"/ ™

1
><{pu—p_+1+;[pu(z+Pu)—p_(z+P_)+r]
P

1 1+ /7
o [t + PO = oo+ PP+ 2] R .U
2lz; (m — D!yt
X [pult + P = pote + P ) (4.198)
where Py = P+ + P_,p, = e D/® p, = e P+/% and p_ = e~ /%,

The process output response following the fourth relay switch point is the result
of four interlaced step changes, respectively, with a magnitude of 214y. Using a time
shift of 7o + 0 + P4+ + P, the process output response can be similarly derived as

Ya(t) = yolt + to + Py + Pu) + 2kppuo(1 — 1+ 1= 1) — 2kppuoe /™

1
p+pu_pu+p+_1+T_[p+pu(t+P++Pu)_Pu(t+Pu)
p

1+ 1/7 _
+po+(t + Py) —t] +--- + TT,:_I[PHM(Z + Py + P)"!
T
—pu(t + P)" " 4 it + P — t’"“}} (4.199)

It is, therefore, summarized from (4.196)—(4.199) that

Vant1(t) = yo(t + to +nPy) + 2kppo — 2kppoe /™

1 1 1
X |:Eo + 7;_E1 +E+-+ /% Eml] (4.200)

b 2!ty (m — D!
Yanga(t) = yo (t +to + Py +nPy) — 2kypioe /™

1 1 1+ 1/7
[Fo+ —Fi4+—F+- 0/

ST LV By - 4201
2122 +(m—1)!fgf—1 ‘} (4201)

wheren =0,1,2,..., E;and F; (i =0,1,2,...,m— 1) are shown in (4.192) and
(4.193).
Owing to 0 < p, < 1, it follows for n — oo that

n ‘ 1
> ook =——r (4.202)
1 —py
k=0
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Note that there exists a recursive relationship,

n d n
kK" p* =p,— kM1 ok 4.203
> k"l =p Y (; pu) (4.203)

k=1

Therefore, all the infinite series shown in (4.192) and (4.193) are uniformly
convergent for n — oo, and the corresponding summations can be derived using
(4.202) and (4.203).

It can be verified from (4.195) that yo(t + to + nPy) = yo(t + to + P+ +nPy)
= kp (Ap — o) for n — oo. Hence, in the limit cycle (4.200) and (4.201) converge
to the forms shown in (4.190) and (4.191). This completes the proof. O

It is, therefore, concluded from the above derivation that the limit cycle can
be definitely formed for a process that can be described by (4.189). The limiting
condition to forming steady oscillation is only related to the choice of the relay
function, e.g., ¢4 = —e_ = (0.1 ~ 0.95) max {|u+|, |u—|} to avoid incorrect relay
switches caused by measurement noise. A short “listening period,” e.g., 20-100
samples, may be referenced to perform a relay test.

Note that, by letting Py = P_ = P,/2in (4.190) and (4.191), the relay response
expression under an unbiased relay test can be obtained accordingly. If letting 7y =
0 in the resulting relay response expression, it can be used to summarize the relay
response expressions presented in the previous section for first- and second-order
processes.

4.4.2 Frequency Response Estimation

In the limit cycle, the process output response is a periodic function with respect
to the oscillation angular frequency, w, = 27/ P,. Using a time shift, it can be
viewed as a periodic signal from the very beginning, so its Fourier transform can be
derived as

2P,

Pu . .
Y(jou) =/ Yos(t)e ™' dt +/ Yos(t)e™/ ™ dr + -+
0

u

Py '
= lim N/ Vos (1)e ™ N dt
0

N—oo

tos+ Py

= lim N y(t)e /Nt dt (4.204)
N—o00 fos

where yos(t) = y(t) fort € [tos, 00), and t,5 can be taken as any relay switch point

in steady oscillation, such that the influence from the initial unsteady relay response

can be excluded.
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Similarly, it follows that

tﬂS+PLl .
U(jws) = lim N / u(t)e i d (4.205)
lo

S

The process frequency response at w, can, therefore, be derived as

Yoo Loty (eI ent dy
UGG [ y(r)e=iouds

G(jwy) = Aye/® (4.206)

which can be numerically computed using the trapezoidal rule for numerical integral
or the FFT series.

To estimate the process frequency response other than at w,, one can decompose
the relay response as

tos1 o0
Y(s) = / y(r)e™*'dr + / y(t)e *'dt (4.207)
0 tos1

where #,5; denotes the time to reach steady oscillation under a relay test.
In view of the fact that y(z) becomes a periodic signal after #., the second
integral in (4.207) can be derived as

oo tos1+Pu tos1 +2Py
/ y(t)eS'dt = / y(@)e*'dt +/ y(t)eS'dt + ---

los1 tos1 tos1+ Pu
tos1+Pu
— (1 + e—Pus 4 e—2Pus 4 ) y(t)e—stdt
Los]
1— e_”PuS tosi+Py
= lim ——PS/ y(t)e_”dt
n>oo I —e™ s Jy | (4.208)

Note that if Re(s) > 0, there exists e+ — 0 for n — oo0. One can thus obtain
tos1 1 tos1+Pu
Y(s) = / y(t)e™'dt + ﬁ/ y(t)e 'dt (4.209)
0 —e N tosi
Similarly, it follows for Re(s) > 0 that
Tos1 1 fos1+ Py
U(s) = / M(l)e_Std[ + ]——Ps/ u(t)e_”dt (4.210)
0 —e ! Tos1

The process frequency response transfer function for Re(s) > 0 can be derived
accordingly as
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Y(s)  (1—e™™) [ y(e™de + [ p(n)e™tdi

G(S) = =
Us) (1 —ePus) [ u(t)esdt + ftzsl“LP“ u(t)e—s'ds

4.211)

Substituting s = o + jo into (4.211) yields

Gla + jw) = Age’%
(1 — e~ hulatjo) )ffosl [y(t)e o”]e Jjot gy +fttos1+Pu y(t)e_“’]e Jjot q¢

(1 — emPuletjo) [rort [y (p)e—at |eiwtds + f;““JFP“ [u(t)e—ot)e—Jotdt
4.212)

where @ € N4 may be viewed as a damping factor for the Laplace transform, as
introduced in Sect. 2.2.1.

Note that G(jw + @) — 0/0 as « — oo. The guideline for choosing « is,
therefore, suggested as

o >4

(4.213)
, |y (tosl + Pll) e_a(losl‘i‘Pu)Tsi} >

min {|u (tos1 + Py) e @losi+h

where § denotes the computational precision that can be practically taken smaller
than 107° x min {|u(tos; + Pu)Ts| . |y (fos1 + Pu)Ts|} and Ty is the sampling period
for computing the numerical integrals in (4.212).

Thereby, both the initial and steady oscillation responses of y(¢) and u(¢) can be
effectively included in the computation of (4.212). Note that #,s; can be chosen as
any moment in the steady oscillation, which can be verified from (4.208). For the
convenience of computation, it is suggested to take 7o5; as a small multiple of P,.

Accordingly, one can compute multiple frequency response points of G (x4 j wy )
from (4.212) for wy = kw,/My(k =0,1,2,..., Ny — 1), where Ny = MyP,/T;
and M, should be taken as an even integer for efficient computation of the FFT
series.

Using the inverse Laplace transform of g(¢t)e™ = L™![G (« + jw)], one can
obtain

G(0) = FFT{FFT™'{G (@ + jw)} e} (4.214)

=0
where FFT{-},_, denotes the first element corresponding to wy = 0 in the resulting
FFT series.

It is seen from (4.214) that the process static gain, k,,, can be separately derived
from the other model parameters, regardless of whether the relay test is unbiased or
biased.

Note that there exists G(a + jw;) = G(a + jw,) in the case where w; > w
while Py(w; —w1) = 2hm and w, —w; = 2l7 /T are satisfied, and both / and [ are
positive integers. Frequency response estimation from (4.214) is, therefore, limited
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not only by the sampling frequency for computing the numerical integrals in (4.212)
but also by the frequency range of w € [0, 2 - 10"), where r is the minimal integer
that satisfies P, - 10" = h.

In the presence of measurement noise, to enhance identification robustness under
a low noise level, e.g., NSR < 10%, it is suggested to use 10 ~ 20 periods in the
steady oscillation for the frequency response estimation. Note that the relay output,
u(t), remains as a constant for each half period of the limit cycle, and thus can be
used for measuring the averaged oscillation period, P,. Accordingly, the averaged
frequency response estimation can be computed as

o tt()‘s+1vsPu y(t)e—](t_)utdt _ .
G(jwy) = ‘t‘“ v F — = Aye’/? (4.215)
St u(ryemidudr

G(a + jw)
(1= emPteckion) st [y e e emiondr 4 [ FOGED [y (r)eer] ooty
(1 = e=Ptortion) it FMP ugyemar] e=sordr 4 [ ENED u(r)emar)e=sords
(4.216)
where @, = 2m/P,, Ni is the number of steady oscillation periods used for

averaging, which may be taken in the range of 5-20, and N| may be taken as large
as possible but subject to a numerical constraint similar to (4.213) for computation
effectiveness.

To cope with the measurement noise causing a high NSR level, a low-pass
Butterworth filter can be used for measuring the process output that is also used
for relay feedback control, or offline denoising to improve identification accuracy,
as introduced in Sect. 4.1.

4.4.3 Model Fitting Algorithms

Based on the process frequency response estimated in the above section, frequency
response fitting conditions can be established in terms of the general model structure
shown in (4.189).

For the process frequency response at w,, by substituting (4.189) into the left-
hand side of (4.206), one can obtain

— A, (4.217)

—BOw, — arctan (tow,) — m arctan (rpa)u) =@y (4.218)
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Substituting the process model of (4.189) with s = o + jw, into the leftmost
side of (4.212), one can obtain the fitting conditions of the shifted process frequency
response with respect to w, as

—1? 2,2
kpe ™ =D +oo _ 4 (4.219)

[(arp +1)7 4+ ‘L’SC{)&:I

—Ow, — arctan (ﬁ&) — m arctan ( p% ) = Qg (4.220)

— T aty, + 1

For the identification Case (i), with the process static gain separately derived
from (4.214), the process time constant and time delay can then be derived from
(4.217) and (4.218) as

L (k" | 4.221)
,=—1/— ] - .
P Y\ 4y
1
0 = —— [pu + marctan (g0, | (4.222)
Wy

For the identification Case (ii), it can be derived from (4.217) that

1 Au\? m
— u 2,2 _
= Wy \/( kp) (pru + 1) 1 (4223)

Substituting (4.223) into (4.218) yields a transcendental equation with respect
to p,

AN (a2 1) - 4.224
— arctan k_p (tpwu + ) —1 | —marctan (ry0,) = @y (4.224)

which can be numerically solved using any iterative algorithm such as the Newton-
Raphson method. Since the left-hand side of (4.224) is monotonically decreasing
with respect to 1, there exists only an unique solution of t,,. Then, 7o can be derived
from (4.223).

For the identification Case (iii), by subtracting (4.218) from (4.220) one can
obtain

ToWy TpWy
Qo — @u = arctan (tow,) — arctan + m|arctan (tyw,) — arctan | ———
1 —ar at, + 1

(4.225)
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Substituting (4.223) into (4.225) yields a transcendental equation with respect
to 7p, which can be solved using the Newton-Raphson method. The other time
constant, 7y, can then be solved from (4.223). Consequently, 6 can be derived from
(4.218) as

0 = —L [(pu + arctan (tow,) + m arctan (rpa)u)] (4.226)
u

Note that in the case where multiple solutions of 7, are obtained from (4.225), a
time domain fitting constraint of the relay response, as shown in (4.46), can be used
to determine the most suitable solution.

To further enhance the fitting accuracy over a user specified frequency range
rather than only at the oscillation frequency (v = w,), e.g., the low-frequency range
primarily concerned for controller tuning in practice, multiple frequency response
fitting conditions can be established based on the frequency response estimation
from (4.212). Such fitting conditions may also be used to obtain a very specific
process model with more descriptive parameters, compared to the general form of
(4.189). To minimize the fitting error, a weighted LS objective function similar to
that introduced in Sect. 2.2.5 is proposed here,

M

Jopt = Z:Ok

k=0

2
Ga+jox)—Gla+ joyr)| <& (4.227)

where G (o + jwg ) and a(oz + jwy ) denotes the frequency responses of the process
and the model, respectively, ¢ is a user-specified threshold for convergence, M is
the number of frequency response points for fitting, and px (k = 0,1,2,..., M) are
the weighting coefficients.

To emphasize frequency response fitting over the low frequency range, it is
suggested to choose wy = (1.1 ~ 2.0)wy and pp = nk/z,iw:o n*, where
M € [520] and n € [0.9,0.99] may be taken for computation. It can be
verified from (4.218) that wy, < ., where . is the cutoff angular frequency
corresponding to ZG(jw.) = —m. Therefore, the above choice of wys should
suffice for computation.

To establish a linear regression for parameter estimation, assume that the process

. . ~li—1] . . . .
model is obtained as G (s) at the (i — 1)-th iteration, e.g., a model obtained
from one of the above identification algorithms for Cases (i—iii), one can expand the
model to be derived at the ith iteration using the multivariable Taylor series as

~li—1]
~1i] ~[i—1] sG s ; i
G (s)=G (s) — YERTETIY (s) (r([)'] — ré' 1])
(—1’0 s+ 1)
~ 1]
msG () (o i-0) _ g g (ol — gli-1
— (=Y —sG (s)(9’—9’ )
(tg_l]s + 1) ( P P )

~[i—1] . .
=G (s)+H (Y -yl (4.228)
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where y = [to,rp,Q]T and H = [—sé[i_l](s)/(—r(gi_l]S+ 1), —msa[i_]](s)/
i ~i—1

(rg U 4+ 1), —sG[ ](s)]T.
Let

~li

. —1
Z@+ jor)=Ga+ jor)+ H (@ + jor)y' =G ](a—l—ja)k)

(4.229)

Substituting (4.228) and (4.229) into (4.227), one can obtain a recursive objective
function,
T =Y "ol H @+ jo) YV = Z (@ + jop)| (4.230)
k=1

Denote that ® = [H (« + jwi),....H (@ 4+ jou)] . ¥ =[Z (@ + jo),...,
Z(+ jou)|", W =diag{pi.....pm.p1.-...pu} and

= Re[®] = Re[V]
[Im[dﬂ} ’ [Im[‘l’]
The recursive LS solution of (4.230) can be derived as

yil = (W) T ww (4.231)

It can be easily verified that all the columns of ® are linearly independent

. = =\—1 . . . .
with each other, so (CDT WCD) is guaranteed nonsingular for each iteration.
Accordingly, the optimal solution can be derived to a given threshold of ¢, unless it
is prescribed too small to be satisfied.

4.4.4 Illustrative Examples

Four examples from existing literature are used here to illustrate the effectiveness
and merits of the above identification algorithms. Examples 4.9 and 4.10 are given
to demonstrate good accuracy for identifying a time delay and a NMP processes
in terms of the exact model structure, together with measurement noise tests to
demonstrate identification robustness. Examples 4.11 and 4.12 are used to illustrate
the effectiveness of the presented algorithms for identifying high-order processes, in
particular in the case of model mismatch. In all the relay tests, the sampling period
is taken as 7g = 0.01 (s) for computation.

Example 4.9. Consider the first-order process with time delay widely studied in
existing literature,

e—25

T 105+ 1




182 4 Relay Feedback Identification of Stable Processes

Based on an unbiased relay test, Vivek and Chidambaram (2005) derived an
FOPDT model, G, = 0.9467¢72/(9.5028s + 1), and Majhi (2007a) gave an
almost exact model by using a prior knowledge of the process static gain such as
obtained from the ratio of the output response to the relay output using mutiple
relay tests. Based on a biased relay test, Shen et al. (1996) derived a model,
Gm = 0.999¢72095 /(8.118s 4 1), and Srinivasan and Chidambaram (2003) gave a
model, G, = 1.03¢7235/(10.3s5 + 1).

For illustration, an unbiased relay test using u+ = —u— = 1.0 and e; = —e_ =
0.2 is performed here. Taking « = 0.01 for the frequency response estimation, the
process static gain can be separately derived using the formula in (4.214) with a
choice of My = 4 as k, = 1.0062. A very similar result can be obtained based
on a biased relay test using uy+ = 1.2, u— = —0.8, and ¢4 = —e_ = 0.2.
Accordingly, the identification algorithm for Case (i) results in the process model
listed in Table 4.7, together with the measured limit cycle data for computation and
the maximal frequency response error (ERR) for w € [0, w,]. It is seen that good
identification accuracy is obtained.

Example 4.10. Consider the inverse response process studied in the literature
(Majhi 2007a),

_5(=3s+1)
@2s +1)°
An unbiased relay test with uy = —u— = 1.0 and e = —e_ = 0.5 is performed

similar to that in Majhi 2007a. Taking ¢ = 0.01 for the frequency response
estimation, the process static gain can be separately derived using the formula in
(4.214) with a choice of My = 2 as k, = 5.0179. Note that if k, is scaled to
the unity, it can be identified precisely as 1.0017. Accordingly, the identification
algorithm for Case (ii) gives the other model parameters as shown in Table 4.7,
which once again demonstrate good identification accuracy.

Now assume that a random noise N (0, o5 = 0.03) is added to the process output
measurement, which is then used for the relay feedback control, causing NSR = 5%.
Using the statistical averaging method for 10 steady oscillation periods, e.g., in the
time interval of [60, 230] (s), the estimation errors for G(jw,) and G(« + jw,), the
identified model, and the maximal frequency response error for w € [0, w,] are listed
in Table 4.8, which demonstrate good identification robustness. For comparison, a
first-order Butterworth filter with a cutoff angular frequency, w. = 5.0 (rad/s),
according to the guideline given in (4.3), is used to recover the corrupted limit
cycle and also for the relay feedback control. The corresponding results are listed
in Table 4.8, which demonstrate that improved accuracy for frequency response
estimation and model identification can, thus, be obtained.

Then, assume that a random noise N (0,03 = 1.104) as used in Majhi 2007a
is added to the output measurement, which is then used for the relay feedback
control, causing NSR =30% (or SNR = 10dB). The relay test fails due to the
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Fig. 4.15 Recovered limit cycle under a noise level of SNR = 10 dB

relay chattering. The above filter is, therefore, used to restore the relay test. The
corresponding identification results are listed in Table 4.8, which indicate that the
proposed denoising method works well under the high noise level. Note that if the
noise affects only the process output measurement as assumed in Majhi 2007a,
then offline denoising can be performed. Using a third-order Butterworth filter
with a cutoff frequency of f. = w./2m = 0.25 (Hz), the recovery effect is
shown in Fig. 4.15 by performing the filtering in both the forward and reverse
directions. It can be seen that the corrupted limit cycle has been well recovered. The
corresponding identification results are listed also in Table 4.8, which demonstrate
that evidently improved accuracy is thus obtained, compared to the offline denoising
result given in Majhi 2007a based on the Fourier series fitting.

Example 4.11. Consider a high-order process studied in the literature (Majhi
2007a),

_ 1
s+ 1)

By performing an unbiased relay test as in Example 4.9, the frequency response
estimation formula in (4.212) using ¢ = 0.01 together with the FFT formulae of
gkTy) = FFT7'{G (a + jow)} e and G(jwr) = FFT{g (kT,)};_;, gives
the frequency response estimation for 9 points (wy = kw,/4, k = 0,1,...,8),
which are shown in Fig. 4.16a. It is seen that good accuracy is obtained. Note that
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G(0) and G (j2w,) are evidently misestimated by the frequency response estimation
algorithm given by Ma and Zhu (2006). The reason lies with the fact that the
conventional Fourier transform of s = jw was adopted by Ma and Zhu (2006)
to develop a frequency response formula similar to (4.212), such that the first part
in either the numerator or the denominator of (4.212) with s = jkw, becomes zero
for the computation of G(jkw,) (k =0,2,3,....).

To obtain an SOPDT model for the PID controller tuning as done in Majhi 2007a,
the identification algorithm for Case (i) is used accordingly, giving a model listed
in Table 4.7. For comparison, the Nyquist plots of the proposed SOPDT model and
that of Majhi 2007a (with the exactly known static gain, k, = 1.0) are shown in
Fig. 4.16b. It is seen that improved fitting over the low frequency range of interest
to controller tuning is obtained by the proposed SOPDT model. The corresponding
maximal frequency response error for v € [0,w,] is ERR = 7.62%, while
the SOPDT model of Majhi 2007a yields ERR = 11.26%. To further improve
the fitting accuracy over the low frequency range of w € (0, w,], the proposed
recursive LS algorithm is then performed once based on the above nine frequency
response points, resulting in G, = 1.0076e~-%8% /(1.8123s + 1)? that corresponds
to ERR = 5.68%. The corresponding Nyquist plot almost overlaps with that of the
proposed SOPDT model listed in Table 4.7, except for better fitting over the low-
frequency range, and thus is omitted.

Example 4.12. Consider a high-order process with inverse response studied in the
literature (Wang et al. 1997; Kaya and Atherton 2001),

G- (—s + l)i_s
(s+1)

It has been introduced in Example 4.2 that based on a biased relay test, Wang et al.
(1997) derived an FOPDT model, G, = 1.0e=*%% /(2.995+1), and by comparison,
Kaya and Atherton (2001) gave an FOPDT model, G, = 1.0e %825 /(2.2925 + 1),
and an SOPDT model, G,, = 1.0e=412>5/(1.4767s + 1)2.

For illustration, the same biased relay test as in Example 4.2 is performed here.
Taking @ = 0.02 for the frequency response computation, the process static gain can
be separately derived as k, = 0.9992 using the formula in (4.214) with a choice of
My = 2, which once again demonstrates good accuracy compared to the above use
of an unbiased relay test in Examples 4.9, 4.10, and 4.11. Note that a similar result
can also be obtained using an unbiased relay test as in Example 4.9. Accordingly,
it can be verified that the identification algorithm for Case (iii) can give almost
the exact process model. To make comparison with the referred references, low-
order models of FOPDT and SOPDT are derived using the identification algorithm
for Case (i), which are listed in Table 4.7. The Nyquist plots of these low-order
models are shown in Fig. 4.17. It is seen that improved fitting is captured by the
proposed FOPDT and SOPDT models, and the frequency response of the proposed
models at (—0.6864, —j0.1613), which corresponds to the oscillation frequency,
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Fig. 4.16 Frequency response estimation (a) and Nyquist fitting effect (b) for Example 4.11

coincides precisely with that of the process. The maximal frequency response error
the FOPDT model given by Kaya and Atherton (2001) that yields ERR = 9.82%.

for w € [0,w,] is ERR
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Fig. 4.17 Nyquist fitting effect for Example 4.12

The proposed SOPDT model corresponds to ERR = 0.84% compared to that of
Kaya and Atherton (2001) yielding ERR = 3.99%. The Nyquist plots shown in
Fig. 4.17 indicate that improved fitting can be obtained using a higher order model
like SOPDT in contrast to FOPDT.

4.5 Application to Barrel Temperature Maintenance
in Injection Molding

Consider the barrel temperature control of an industrial injection molding machine
as introduced in Sect. 3.4. To identify the temperature response models of zones
1-3 around the set-point temperature, 220°C, for injection molding, online relay
tests are conducted for these three zones, respectively. The relay magnitudes are set

as uy = 20 and u— = 0, while the relay switch conditions are set as ¢4 = 0.1
and e = —0.2, for implementation of a biased relay test. Note that u; = 20
corresponds to the use of 20% of the heating power and u— = 0 corresponds to
shutting off the heater, while the relay switch conditionsof ey = 0.1 ande_ = —0.2

corresponds to the zone temperatures of 220.1°C and 219.8°C, respectively. A third-
order Butterworth filter with a cutoff frequency, f. = 0.5(HZ), is used to filter the
temperature measurement for the relay feedback control, in view of that it can result
in more regular oscillation periods compared to the use of a noise spike filter as
introduced in Sect. 3.4.
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Table 4.9 Temperature response models for zones 1-3

Limit cycle data

Zone P, Ay Dy Model for set-point operation
2.6212¢ 24

1 3674 79775 29144 o022
(153.0371s + 1)
62.7337¢ =275

2 3744 90318 —28298 —
(145.29985 + 1)
31.4213¢~ 24

3 3024 48005 —2.8246 ‘

(113.3369s + 1)2

To reduce the interaction between zones 1-3 under a relay test for each zone, the
other two zones are similarly heated or cooled following the relay switch conditions
for the zone to be identified. The experimental results are shown in Fig. 4.18. It is
seen that the biased relay test for each zone has been effectively implemented, and
meanwhile, there exist process uncertainties and unexpected load disturbance that
cause slight irregularity between steady oscillation cycles of each zone.

To ensure identification effectiveness against process uncertainties and load
disturbance, five similar oscillation periods are averaged for determining the limit
cycle. According to the guidelines of model structure selection based on the
reference relay response shapes shown in Table 4.2, a critically damped SOPDT
model structure is chosen for model identification. Correspondingly, Algorithm-RS-
SCl1 is applied, obtaining the models of three zones as listed in Table 4.9, together
with the limit cycle data measured for computation.

Based on these identified models, the control scheme shown in Fig. 3.9 is
implemented to maintain the set-point temperature of 220°C for injection molding.
According to the desired closed-loop transfer function shown in (3.54), the corre-
sponding controller can be derived from the nominal relationship, 7; = G,C, as

_ (7ps + 1)2
" kp(Ass + 1)

where Ay is an adjustable parameter that corresponds to the closed-loop time
constant, which can be monotonically tuned to obtain a desirable closed-loop
performance specification.

The mold shape is rectangular with a length of 150 mm, width of 200 mm, and
thickness of 2 mm. The cycle time for turning out a product with a weight of 27.8 g
is nearly 40 s. For illustration, 20 cycles are run to test the control performance.
The experimental results are shown in Fig. 4.19, by taking A, = A,_, =
As—3 = 20 for the heating zones 1-3, respectively, together with the first-order
backward discretization operator and the noise spike filtering strategy introduced
in Sect. 3.4 for implementation. Note that only filtered temperature responses are
shown in Fig. 4.19 for clarity. It can be seen that the temperatures of zones 1-3
are well maintained within the error band of +0.5°C, except for the initial load
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Fig. 4.18 Relay identification tests for the heating zones 1-3
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Fig. 4.19 Temperature responses of zones 1-3 by using the stable type models from relay tests

disturbance response arising from feeding the raw materials to start the injection
molding (though initial preheating has been considered by taking a nonzero initial
moment for the injection molding test, as seen from the time axis in Fig. 4.19).

For comparison, the experimental results based on the heating-up control scheme
using the integrating type models presented in Sect. 3.4, are shown in Fig. 4.20.
Also, the experimental results based on the Z-N method and the IMC-based PID
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Fig. 4.20 Temperature responses of zones 1-3 by using the heating-up integrating type models

tuning method (Skogestad 2003) introduced in Sect. 3.4, are shown in Fig. 4.21. It
can be seen that the obvious improvement in the temperature control performance
is obtained by using the above-identified models and the corresponding control
scheme. The temperature responses based on the heating-up control scheme using
the integrating type models are somewhat oscillatory compared to the use of the
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above models identified from the relay tests, due to a lower accuracy in representing
the process response characteristics around the set-point temperature of 220 °C, but
are still acceptable from a practical view of system operation.

4.6 Summary

Relay feedback identification has received significantly increasing attention in the
process control community, since the pioneering works that occurred in 1980s
(Atherton 1982; Tsypkin 1984; Astrom and Higglund 1984; Luyben 1987). An
important merit of using a relay test is that the process will not be propelled too
far away from the set-point of system operation. This is especially necessary for a
piecewise linearized model identification of a highly nonlinear process to facilitate
control design. Generally, there are two types of relay feedback test — unbiased
(symmetrical) and biased (asymmetrical). The guidelines for implementing such
a relay test have been given in Sect. 4.1, along with online denoising strategies
to prevent relay chattering. Moreover, offline denoising strategies to consolidate
identification robustness against measurement noise have also been presented.

The low-order models of FOPDT and SOPDT have been widely used for model-
based control design and online tuning in engineering practices, which can describe
typical three types of dynamic response characteristics — overdamped, critically
damped, and underdamped — for a wide variety of industrial processes. Reference
relay response shapes of these low-order models have, therefore, been presented in
Sect. 4.2 for comparison, together with the guidelines for model structure selection.

For assessing the fluctuation range of the process response under a relay
test, relay response expressions have been analytically developed in Sect. 4.3 for
FOPDT and SOPDT models under a biased or unbiased relay test. Correspondingly,
Four alternative identification algorithms (Liu and Gao 2008) — Algorithm-RS-
FA1, Algorithm-RS-FA2, Algorithm-RS-FB1, and Algorithm-RS-FB2 — have been
presented for obtaining an FOPDT model to meet with different requirements of
identification accuracy and computation effort in practical applications. For identi-
fying an SOPDT model, six alternative algorithms (Liu et al. 2008) — Algorithm-RS-
SC1 and Algorithm-RS-SC2 for the critically damped type, Algorithm-RS-SO1 and
Algorithm-RS-SO2 for the overdamped type, Algorithm-RS-SU1 and Algorithm-
RS-SU2 for the underdamped type — have been presented for application under a
biased or unbiased relay test. Illustrative examples have demonstrated that all of
these identification algorithms can result in good accuracy if the model structure
adopted matches the process, together with good identification robustness against
measurement noise. Moreover, the improvement on control performance by using
the identified model for a higher order process has been well illustrated.

A generalized relay identification method (Liu and Gao 2009) has been presented
in Sect. 4.4, for identifying time delay or NMP processes of any order. An important
merit is that the process static gain can be separately derived from a unified formula
developed here under an unbiased or biased relay test. The relay response expression
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has been derived based on a general model structure, which can summarize the relay
expressions for FOPDT and SOPDT models as given in Sect. 4.3. A frequency
response estimation algorithm with good accuracy has been proposed based on
the Fourier/Laplace transform analysis of the relay response. By establishing fitting
conditions for the process response at the oscillation frequency, three identification
algorithms have been transparently developed based on a classification of the
model parameters to be identified. To enhance the fitting accuracy over a user
specified frequency range for identifying a high-order process, in particular in the
low frequency range, a recursive LS algorithm has been given based on estimating
multiple frequency response points in the specified frequency range. This algorithm
can also be used to identify a very special model with more describing parameters
for an industrial process with a known model structure but different from the low-
order models as aforementioned. The applications to four examples from existing
literature have demonstrated that these algorithms can give good identification
accuracy and robustness.

An experimental application to maintain the barrel temperature in injection
molding (Liu et al. 2009) has been presented in Sect. 4.5, in comparison with
using the heating-up integrating type models introduced in Sect. 3.4, and the
Z-N and IMC-based PID tuning methods also introduced in Sect. 3.4. The advantage
for using a relay test for online identification around the set-point operation has,
therefore, been well demonstrated.
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Chapter 5
Relay Feedback Identification of Integrating
Processes

For identifying an integrating process under a relay test, a few references presented
identification algorithms for obtaining the low-order FOPDT and SOPDT models
that are widely used for control system design and online tuning. Early literature
(Ho et al. 1996) presented simple relay identification algorithms to facilitate online
tuning of integrating processes, based on the standard relay feedback structure as
shown in Fig. 4.2. Tsang et al. (2000) suggested the use of a derivative filter in the
relay feedback channel to enhance identification accuracy of the process dynamic
response characteristics. Using a state-space description of the relay control system,
Majhi and Atherton (2000) gave an identification algorithm for obtaining the
above low-order models based on the describing function theory. By comparison
with Luyben (2003) who used the step-response data for identifying integrating
processes with inverse response, Gu et al. (2006) presented an improved relay
identification method based on the time domain relay response analysis. Using
the so-called A-locus analysis, Kaya (2006) proposed a robust relay identification
method against static load disturbance. Few references, however, reported the
limiting conditions in forming steady oscillation from relay feedback for integrating
processes. To guarantee identification stability, a few relay identification methods
using a P- or PI-type controller for closed-loop stabilization have been developed
(Kwak et al. 1997; Sung et al. 1998; Sung and Lee 2006).

To address relay feedback stability for integrating processes, the existence of
the limit cycle for an integrating process under a relay test is first clarified here,
by analytically deriving the relay response expressions of FOPDT and SOPDT
integrating type models. Subsequently, identification algorithms for obtaining these
low-order models are presented.

T. Liu and F. Gao, Industrial Process Identification and Control Design: Step-test 197
and Relay-experiment-based Methods, Advances in Industrial Control,
DOI 10.1007/978-0-85729-977-2_5, © Springer-Verlag London Limited 2012



198 5 Relay Feedback Identification of Integrating Processes

5.1 Existence of the Limit Cycle

Generally, the widely used FOPDT and SOPDT models are expressed as

k e—és
G, = (5.1)
Gy = Jo" (5.2)
s(tps + 1)

where ky, is the proportional gain, 6 the process time delay, and 7, a time constant
reflecting the process inertial characteristics.

For clarity, a biased relay feedback test is used here to derive the relay response
expressions for integrating processes. The following proposition is given for a first-
order integrating process:

Proposition 5.1. Under a biased relay feedback test as shown in Fig. 5.1, the output
response of a first-order integrating process shown in (5.1) converges to the limit
cycle characterized by

V() =kp (Ap+ o)t +kp (Ap— po)to, 1 €0, Py] (5.3)

V(1) = ky (A — 1) (t + 10) + ko (A + po) Poy 1€[0.P]  (5.4)

Ap+pg

—€

e,
Au—p1

Time

Fig. 5.1 Relay response depiction for an FOPDT integrating process
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where yy(t) is the monotonically ascending part for t € [0, P+], y—(t) is the
monotonically descending part for t € [0, P_] that corresponds to t € [P+, P,] in
the limit cycle, and P, = P+ + P_ is the oscillation period.

Proof. The initial step response of an FOPDT integrating process arising from the
relay output A — i can be obtained as

yo(t) = kp (Ap = po) (2 — 0) (5.5)

When it comes to the first relay switch point, denoted as 7 in Fig. 5.1, the relay
output changes to be A it + 149, which indicates that a step change of 24 is added to
the process input. According to the linear superposition principle, the process output
response can be derived as

y1(t) = yo (t + to) + 2kppo(t — 0) (5.6)
By using a time shift of 7y + 0, (5.6) can be rewritten as
V1O |ghiee = Yo (2 + 1o + 0) + 2kppuot (5.7)
When it comes to the second relay switch point, the relay output changes to
be Au — o, indicating that a step change of —2u is added to the process input.

According to the linear superposition principle, the process output response can be
derived as

y2(2) = yi (1 + P4) — 2kppao(t — 0) (5.8)

Using a time shift of 7o + 6 + P4, (5.8) can be rewritten as
Y2()|pie = Yo (¢ +to + 0 + Py) + 2kppot (1 — 1) + 2k o P+ (5.9)
At the third relay switch point, the relay output changes back to Au + o,

indicating that a step change of 211 is once again added to the process input. The
process output response can be correspondingly derived as

¥3(6) = y2 (t + P) + 2kppaolt — 6) (5.10)

Using a time shift of 7o + 6 + P,, (5.10) can be rewritten as
V3()|shite = Yo (¢ + 1o+ 0 + P,) + 2kpuot (1 =14+ 1) + 2kppo P+ (5.11)
The process output response following the fourth relay switch point is the result

of four interlaced step changes, respectively, with a magnitude of 2j4y. Using a time
shift of 7o + 6 + P, + P4, the process output response can be written as

Vil = Yo (t + 10+ 6 + Py + Py) + 2kppior (1 — 1+ 1 — 1) + 2kppto - 2P
(5.12)
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Hence, the time shifted output response after each relay switch point can be
generally expressed as

Yon+1(O) |gnige = Yo (t +fo + 0 +nPy) + 2kppeot + 2kppio - n Py (5.13)

Yon+2(O) gy = Yo (t + 10 + 0 +nP, + Py) + 2kppo - (n + )Py (5.14)

wheren =0,1,2,....
Substituting (5.5) into (5.13) and (5.14), respectively, one can obtain

Van+1(8) [gnise = kp (At + o) t + kp (A — po) to
+ kpn [(Ap — o) Pu + 20 Py] (5.15)

Yan+2(8)lsnire = Kp(Ap — o)t + to) + kp(Ap + o) P+
+ kpn [(Ap — o) Py + 2100 P4 ] (5.16)

Note that n — oo as t — oo. The condition for the process output response to
move into steady oscillation is, therefore, required as

(Ap — o) Py +2p0P+ =0 (5.17)

Hence, in the limit cycle the output response is expressed by (5.3) and (5.4).
It can be easily seen from (5.3) and (5.4) that y4 (¢) increases monotonically for
t € [0, P4+] while y_(t) decreases monotonically for ¢t € (P4, P,].

Note that there exists an inherent relationship between y4 (¢) and y_(?),

y+(0) = y_(P-) (5.18)
which can be reformulated using (5.3) and (5.4) as
(Ap— o) P— + (Ap+ po) P+ =0 (5.19)

It can be easily verified that (5.19) coincides with (5.17). Therefore, it can be
concluded that under a relay test the limit cycle can surely be formed for an FOPDT

integrating process. In particular, there exist Ax = 0 and P, = 2Py when
an unbiased relay test is used, so that (5.17) is obviously satisfied for V. This
completes the proof. O

If an unbiased relay test is used, there exist Ay = 0 and Py = P_ = P,/2.

Substituting them into (5.3) and (5.4), the corresponding relay response expression
can be obtained as

Y+(1) = —y-(t) = kppo (1 — o) (5.20)
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Fig. 5.2 Relay response depiction for an SOPDT integrating process

where y4 (¢) is the ascending part for ¢ € [0, P,/2], and y_(t) is the descending
part fort € (P,/2, P,] in the limit cycle.

For a second-order integrating process, the following proposition gives the relay
response expression for steady oscillation:

Proposition 5.2. Under a biased relay test as shown in Fig.5.2, the output response
of a second-order integrating process shown in (5.2) converges to the limit cycle
characterized by

Y4 (1) = ky (Ap + po) (1 — 1) + kp (A — o) to + 2kppotyEe” @, 1 €0, P4]

(5.21)
y—(1) = kp (Ap — po) (t +to— Tp) + kp (Ap + po) P+
+ 2kppory Fe ®, 1 €0, P_] (5.22)
where
1 =
—e 5y
E = — (5.23)
l—e @
_rt
l—e @
F=——"" _ (5.24)
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Proof. The initial step response of an SOPDT integrating process arising from the
relay output Ay — po can be derived as

Yo(t) = ky (A — po) [t — 0+, (e_,z_p@ - 1)] (5.25)

Following a similar analysis as in the above proof for Proposition 5.1, the time
shifted output response from the initial to the fourth relay switch point can be
derived, respectively, as

V1) |gire = Yo (¢ + t0 + 0) 4 2kppo (t — 1) + 2kppotpe @ (5.26)
Y2(O)|gpire = Yo (t + 10 + 6 + Py) + 2kppo (t — 1) (1 — 1) + 2kppao P+
e f Pt
+ 2kppotpe ® (e P 1) (5.27)
V3O |guire = Yo (1 + 10 + 6 + Pu) + 2kppo (1 — 7p) (1 = 1+ 1) + 2kpp0 Py

—L _ By _Pr=
+ 2kppoToe (e P —e T + 1) (5.28)

YaOlgin = Yot + 120+ 60 4+ Pu+ Py) 4+ 2kppo (t — 1) 1 =1+ 1-1)

_t f _hutry _u It
+ 2kppto - 2Py + 2kppotpe ™ (e ?o—e P 4e —1)

(5.29)
The general relay response can, therefore, be summarized as
Yant+1(0) lgpine = Yo (¢ + 10 + 0 + nPy) + 2kppuo (1 — 1)
+ 2o - n Py + 2kppoty e ® (5.30)
Yant2 (D) |giee = Yo ¢ + 10+ 0 +n P, + Py) + 2kypo - (n + 1) Py
+ 2kyppory Fe (5.31)

wheren =0,1,2,..., and

" _kPy k=D PutP—
E:l—i—Z(e D —e ® ) (5.32)
k=1



5.1 Existence of the Limit Cycle 203

n _kPu+P+ _kPu
F = Z (e T —e @ ) (5.33)
k=0

Note that 0 < e~ /™ < 1. 1t follows for n — oo that

" kpy 1

Ze P = (5.34)

k=0 l—e @

Substituting (5.34) into (5.32) and (5.33), respectively, one can obtain

! = 1 _p=
e —e W
E = — — — = — (5.35)
l—e ™ l—e ™ l—e @
_r+ _r+
e » —1 l—e ™
F = — = = — (5.36)
l—e @ l—e ™
Note that
_ittgtnby _tHiotnPut Py
lim e » = lim e » =0 (5.37)
n—>00 n—>oo

Substituting (5.25) and (5.37) into (5.30) and (5.31), respectively, one can obtain

Yon+1 () |gnire = kp (Ape + po) (¢ — 1) + kp (Ape — o) to

+ kpn [(Ap — po) Py + 2po P4] + 2kppot,Ee »  (5.38)

Yant2 () |ire = kp (A — po) (¢ + o — 1) + kp (Ape + jo) Py
+ kpn [(Ap — o) Py + 210 P+] + 2kppot, Fe @ (5.39)

In view of that n — oo as t — oo, the condition for the output response to move
into steady oscillation is, therefore, required as

(Ap = o) Py +2p0P1 =0 (5.40)

Note that (5.40) is the same as (5.17) for an FOPDT integrating process.

Hence, in the limit cycle the output response is expressed by (5.21) and (5.22),
where y4 (¢) denotes the ascending output response in the half period P4, and y_(t)
is the descending output response in the other half period P_.
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According to the inherent relationship between y4 () and y_(t), there exists
y+(0) = y—(P-) (5.41)
Substituting (5.21) and (5.22) into (5.41), one can obtain
(Ap— po) P— + (Ap+ po) P+ =0 (5.42)

It can be easily verified that (5.42) coincides with (5.40), indicating that the limit
cycle can surely be formed for an SOPDT integrating process under a biased or
unbiased relay test. This completes the proof. O

Following a similar analysis as in the proofs for Propositions 5.1 and 5.2, the
conclusion on the existence of the limit cycle can be transparently generalized to a
high order integrating process.

5.2 The FOPDT Model

It follows from Proposition 5.1 that the process time delay can intuitively be
measured as the time to reach the peak of the process output response from the
initial relay switch point in a half period of the relay, which is denoted as l;‘ in
Fig. 5.1.

Correspondingly, it follows from (5.3) and (5.4) that

V+(0) = kp (Ap — po) to = A- (5.43)

y=(0) = kp (Ap — po) fo + ky (Ap + po) P+ = Ay (5.44)
Substituting (5.43) into (5.44) yields

Ap — A

ky= —780Z— — 5.45
P = (st i) Pr 44

It should be noted that the process gain cannot be derived from a biased relay
test as

S y(n)de

k=GO = Sl u(r)dt

(5.46)

which has been introduced in Chap. 4 for identifying a stable process. The reason
lies in G(0) — oo for an integrating process, as seen from the low-order process
models in (5.1) and (5.2).
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Hence, the above algorithm named Algorithm-RI-F1 for identifying an FOPDT
integrating type model can be summarized as follows.

Algorithm-RI-F1

(i) Measure Py, P_, A4, and A_ from the limit cycle;
(i1) Measure the process time delay as ¢*, which is the time to reach the positive
peak (A4+) of the process output response from the initial relay switch point in
a negative half period of the relay (P-);
(iii) Compute the proportional gain, k,, from (5.45).

Note that the above algorithm is based on the fact that the positive part of the
relay response occupies a larger percentage compared to the negative part, as shown
in Fig. 5.1. If the opposite case happens in practice, a similar identification algorithm
can be developed in terms of the negative part of the limit cycle for model fitting.

Moreover, the process response at the oscillation frequency can be computed in
terms of the frequency response estimation formula shown in (4.30), i.e.,

tos+ Py —Jjwyt
Lo y(e It de

G(jw,) = Aye/? =
! ! f;}””-'—P u(t)e=/ et dt

(5.47)

where 7,5 can be taken as any relay switch point in steady oscillation.

For practical applications subject to measurement noise, it is suggested to average
the measured values of Py, P_, A4, and A_ in 5 ~ 20 steady oscillation periods as
P, P_, Ay, and A_, respectively, for applying the above identification algorithm.
The oscillation period can, thus, be computed as P, = P, + P_. Accordingly, the
process response at the oscillation frequency can be computed as

G(jd) = Ayl = 1otV (e i dy (5.48)
SNy () emiou di

where @, = 2m/P,, N is the number of steady oscillation periods used for
averaging, which can be practically taken in the range of 5-20. Note that the relay
output, u(t), remains as a constant for each half period of the limit cycle, so it can
be used for the measurement of the oscillation period.

Note that the above use of the measured parameters is based on the statistical
averaging principle for eliminating the random measurement errors, and therefore,
can guarantee identification robustness in the presence of a low noise level (e.g.,
NSR < 10%). For a higher noise level, a low-pass Butterworth filter is suggested for
the implementation of a relay test or offline denoising, as introduced in Sect. 4.1.

In the case where a static type load disturbance occurs in a relay identification
test, which is denoted as L D = ¢, where ¢ € N, it follows that

P o
/ ce /™idr = c/ e /®ldt =0 (5.49)
0 0



206 5 Relay Feedback Identification of Integrating Processes

Thus, one can ensure that

Gy = do 3 @eT/d [T () + JeTedr
U uweiedr [ e

(5.50)

which indicates that the computation of the process response at the oscillation
frequency is not affected by a static type load disturbance.
Note that the influence of nonstatic load disturbance may be intuitively excluded
by comparing the uniformity of the sequential steady oscillation periods.
Substituting the FOPDT integrating type model in (5.1) into the left-hand side of
(5.47), one can obtain
kp
— = A, (5.51)

Wy

O, — % = 0u, u € (=1, —7/2) (5.52)

The proportional gain and time delay can, therefore, be derived from (5.51) and
(5.52) as

ky = Ay (5.53)
2
9 = At (5.54)
2wy

Hence, an alternative identification algorithm named Algorithm-RI-F2 for ob-
taining an FOPDT integrating type model can be summarized.

Algorithm-RI-F2

(i) Measure P, from the limit cycle;

(ii) Compute G(j w,) from (5.47);
(iii) Compute the proportional gain, kj,, from (5.53);
(iv) Compute the process time delay, 6, from (5.54).

Owing to that the process response at the oscillation frequency is exactly
represented by the FOPDT model derived from Algorithm-RI-F2, this algorithm
can be used to obtain better fitting accuracy for identifying a high-order integrating
process compared to Algorithm-RI-F1, but at the cost of more computation effort.

5.3 The SOPDT Model

According to Proposition 5.2, it can be derived from (5.21) and (5.22) that

dy, (1)
dt

= ky (A + 20) — 2kppoEe (5.55)
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dy_(1)

= ko (A — o) = 2kppoFe v (5.56)

By letting w =0 and % = 0, the time to reach the single extreme value

of y4(t) and y_(¢) can be derived, respectively, as

20 E
fy, = 1yln 02 (5.57)
+ Ap+ po
210 F
b = 1pln 0 (5.58)
- Ap— o

dr? dr?
time to reach the minimum of y, (¢), while #,  is the time to reach the maximum of
y-(0).
Note that the time, t;,’ to reach the maximum of y_(¢) from the initial relay
switch point in a negative half period of the relay can be measured, as shown in
Fig. 5.2. It follows that

2 2., .
It can be easily verified that CZ U 0 and 2=9 . Therefore, tp+ is the

th =ty —0 (5.59)
Likewise, there exists
by = t;+ - (5.60)

where t;‘ is the time to reach the minimum of y, () from the initial relay switch

+
point in a positive half period of the relay, as shown in Fig. 5.2.
Subtracting (5.59) from (5.60) yields

*

o, —lp_ =1y — 1 (5.61)
Substituting (5.57) and (5.58) into (5.61), one can obtain

pP—

—A l—e » Iy —1y
mE 2l L (5.62)
Mo+ Ap l—e @ T

Define z = x/P_,a = P_/ P4, and

[l = 1_;,4 x € (0, 00) (5.63)

l—e™>
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It follows that

1
l—e =
1l —e a
_atl (1 il
d e a ez —aex= +a—1
J;(Z) - ( — ) (5.65)
¢ azz(l — e‘a’z)
Let
1 1
g(x) =e: —aex +a—1 (5.66)
It can be verified that
dg(z) 1 /1 1
Iz _Z—2<ea~—ee)<0 (5.67)
lim g(z) =0 (5.68)
7—>o0
It can, therefore, be concluded that g(z) > 0 for z € (0, c0) and
d
ZACI (5.69)
dz

Hence, f(z) increases monotonically with respect to z, and so is f(x) with
respect to x.

Consequently, it can be concluded that the left-hand side of (5.62) increases
monotonically with respect to tp,. Meanwhile, it is obvious that the right-hand side
of (5.62) decreases monotonically with respect to 7,. Note that there exists for
7, € (0, +00),

l—e @ -
0<in——" <= (5.70)
l—e ™ P+

It can, thus, be ascertained that there exist only finite solutions of z, for (5.62),
which can be computed using any numerical algorithm such as the Newton-Raphson
method.

Substituting the SOPDT model shown in (5.2) into the process response fitting
condition at the oscillation frequency as shown in (5.47), one can obtain

ky

wy/Ti0d + 1

= A, (5.71)
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—Ow, — % —arctan(tpwy) = ¢y,  @u € (-7, —7/2) (5.72)

It can be derived from (5.71) and (5.72) that

ky = Aua)u,/tgwg +1 (5.73)

g —_ [% + % + arctan (rpwu)] (5.74)

u

Note that in the case where 0/, > 1, y4 (t) may decrease monotonically for ¢ €
(0, P+) while y_(¢) increases monotonically for ¢t € (P4, P,]. Correspondingly,
there exists

l;+ = tlj‘_ =0 (5.75)

The process time constant can then be derived inversely from (5.74) as

1 T
= o tan (—Qa)u —5 gau) (5.76)

Subsequently, the proportional gain can be derived from (5.73).
However, the process time constant should not be derived from (5.76) if

tan (—qu — % — (pu> <0 (5.77)

Therefore, the practical constraint in (5.77) can be used to check whether the
process time delay should be derived from (5.75).

Hence, the identification of an SOPDT integrating type model can be summa-
rized in the following algorithm named Algorithm-RI-S1.

Algorithm-RI-S1

(i) Measure Py, P_, tl:+’ and tg‘_ from the limit cycle;

(i1) Compute G(jw,) from (5.47);

(iii) Compute the process time delay from (5.75) as 6 = t;‘+, and then check
whether (5.77) is satisfied. If yes, go to step (vi);

(iv) Compute the process time constant, t,, from (5.76), and then check whether
8/7, < 1is satisfied. If yes, go to step (vi);

(v) Compute the proportional gain, &, from (5.73). Then go to step (ix).

(vi) Compute the process time constant, 7,, from (5.62) using the Newton-
Raphson iteration method. The initial estimation of 7, for iteration may be
taken as t;‘ (or tl;" );

n _
(vii) Compute the proportional gain, k,,, from (5.73);
(viii) Compute the process time delay, 6, from (5.74);
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. . . . .. N
(ix) End the algorithm if the ﬁzttlng condition of relay response, ) ,_,
[y (kTy + tos) — y(kTy + 105) | /N <e, is satisfied, where y (kT + to5) and

y (kT + tos) denote, respectively, the process and model responses in the
limit cycle, T the sampling period corresponding to N = P,/T;, and ¢ is a
user-specified fitting threshold that may be practically set no larger than 1%.
Otherwise, change the initial estimation of 7, and then go back to step (vi).

Alternatively, with a known value of the process time delay (6), which can
be initially estimated from the step response in the relay test, the process time
constant and the proportional gain can then be derived from (5.76) and (5.73).
Correspondingly, a one-dimensional search of 6 can be performed in combination
with the above fitting condition of relay response to determine the optimal fitting.

Hence, an alternative identification algorithm named Algorithm-RI-S2 for ob-
taining an SOPDT integrating type model can be summarized.

Algorithm-RI-S2

(i) Measure P, from the limit cycle;

(i) Compute G(jw,) from (5.47);

(iii) Compute the process time constant, 7, from (5.76) based on a preestimated
time delay (0). A one-dimensional search of 6 can be implemented within a
possible range as observed from the initial step response in the relay test;

(iv) Compute the proportional gain, kp, from (5.73);

(v) End the algorithm if the fitting condition of relay response, ,](V - [ V(kTs+105)—

y (kT + tos) ]2 /N <e, is satisfied. Otherwise, go back to step (iii) by
monotonically varying 6 in a one-dimensional search.

5.4 TIllustrative Examples

Three examples from existing literature are used to illustrate the effectiveness and
merits of the above identification algorithms. Examples 5.1 and 5.2 are given to
demonstrate the fitting accuracy of Algorithm-RI-F1, Algorithm-RI-F2, Algorithm-
RI-S1, and Algorithm-RI-S2 for identifying a low-order model in terms of the exact
model structure. Example 5.3 is given to show the effectiveness of these algorithms
for identifying a higher order integrating process. In all the relay tests, the sampling
period is taken as T, = 0.01 (s) for computation.

Example 5.1. Consider the FOPDT integrating process studied in the literature
(Majhi and Atherton 2000),

e*SS

G ="—
N
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Based on an unbiased relay test, Majhi and Atherton (2000) derived an FOPDT
model with each parameter error within the limit of +0.1%.

For illustration, an unbiased relay test with uy = — u_=0.5 and ¢4 = —
e—=0.2 is performed here. Correspondingly, Algorithm-RI-F1 is used for model
identification, obtaining the exact process model as listed in Table 5.1. Note that
Algorithm-RI-F2 can also result in the exact process model, which can be verified
using the measured limit cycle data listed in Table 5.1 for computation.

Example 5.2. Consider the SOPDT integrating process studied in the references
(Ho et al. 1996; Kaya 2006),

e—lOs
Gy= ——
s(20s + 1)
Based on a biased relay test with u4 =0.7, u—- = — 0.5, and e = —e¢_ =0.1,

Kaya (2006) derived an almost exact SOPDT model, showing quite improved
accuracy in comparison with Ho et al. (1996).

For illustration, a biased relay test as used in Kaya (20006) is performed here.
Correspondingly, Algorithm-RI-S1 is used for model identification, obtaining the
almost exact process model as listed in Table 5.1. Note that Algorithm-RI-S2 can
result in the exact process model, based on a one-dimensional search of 6 in the
range of [5, 15] that is intuitively observed from the initial step response in the relay
test.

Example 5.3. Consider the high-order integrating process studied in the literature
(Ingimundarson and Héagglund 2001),

(=54 De™
B s(s +1)°

Based on the step-response data, Ingimundarson and Higglund (2001) derived
an FOPDT model, G, = 1.0e7!1¢ /5.

For illustration, a biased relay test withuy = 0.5, u— =—0.3,and ¢4 = —e_ =0.1
is performed here. The measured limit cycle data are listed in Table 5.1. Corre-
spondingly, Algorithm-RI-F1 gives an FOPDT model, G, = 0.8675¢~!!2% /s, and
Algorithm-RI-F2 and Algorithm-RI-S1 result in the FOPDT and SOPDT models
listed in Table 5.1. Note that Algorithm-RI-S2 can give a very similar model to that
of Algorithm-RI-S1 and, thus, is omitted.

For comparison, the Nyquist plots of these models are shown in Fig. 5.3. It can be
seen that the FOPDT model obtained from Algorithm-RI-F2 procures better fitting
compared to the other FOPDT model, owing to that the model response coincides
with the process at the oscillation frequency, i.e., (—7.3134, —j0.9873). In contrast
with these FOPDT models, the SOPDT model obtained using Algorithm-RI-S1
shows apparently improved fitting effect.
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-0.9873
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- = = Algorithm-RI-S1
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-12 -10 -7.3134 -4 -2 0 2 4
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Fig. 5.3 Nyquist fitting of identified models for Example 5.3

5.5 Experimental Tests for the Barrel Temperature
Maintenance

Consider the barrel temperature control of an industrial injection molding machine
as introduced in Sect. 3.4. To identify the temperature response models of zones 1-3
around the set-point temperature, 220°C, for injection molding, online relay tests are
conducted for these three zones, respectively, as presented in Sect. 4.5. Based on the
experimental results shown in Fig. 4.18, Algorithm-RI-S2 is applied to obtain the
SOPDT integrating type models for these zones, in view of that the time delay of the
temperature response of each zone can be intuitively measured from the initial step
response for heating or cooling in these relay tests. In contrast with the identification
of stable type models around the set-point temperature as presented in Sect. 4.5, the
motivation for identifying the integrating type models for these heating zones is that
a relatively larger heating power around the set-point temperature may cause the
temperature response of each zone to behave in an integrating manner, similar to the
heating-up control introduced in Sect. 3.4.

Correspondingly, these identified models are listed in Table 5.2, based on
averaging five similar oscillation periods for determining the limit cycle as done
in Sect. 4.5.

To demonstrate the effectiveness of these identified models, the control scheme
shown in Fig. 3.9 is implemented to maintain the set-point temperature of 220°C in
injection molding. According to the desired closed-loop transfer function shown in
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Table 5.2 Integrating type temperature response models for zones 1-3

Limit cycle data

Zone Py Ay o Model for set-point operation
0.2046¢ 2945

1 3674 79775 —29144 @—8u——
5(65.3475s 4+ 1)
0.2159¢ 72785

2 3744  9.0318 —2.8298 — ———
5(60.4314s 4+ 1)
0.1386¢ 234

3 302.4  4.8005 —2.8246

$(46.4496s + 1)

(3.54) for the heating-up control, the corresponding controller can be derived from
the nominal relationship, 7, = G,,C, as

_ s(ps+ 1)
 ky(As 4+ 1)°

where Ag is an adjustable parameter that corresponds to the closed-loop time
constant, which can be monotonically tuned to obtain a desirable closed-loop
performance specification.

For comparison with the stable type models identified for these zones as listed
in Table 4.9 in Sect. 4.5, the same injection molding tests are performed here. The
experimental results for 20 cycles are shown in Fig. 5.4, by taking As— | = A, —, =
As—3 = 20 for the heating zones 1-3, respectively, together with the first-order
backward discretization operator and the noise spike filtering strategy introduced
in Sect. 3.4 for implementation. Note that only filtered temperature responses are
shown in Fig. 5.4 for clarity.

It can be seen that the temperatures of zones 1-3 are well maintained within
the error band of +0.5°C, similar to the results obtained by using the stable type
models as shown in Fig. 4.19 in Sect. 4.5. Compared to the results shown in Fig.
4.20 that were obtained from the heating-up control scheme with the integrating type
models from open-loop step tests, both the integrating and the stable type models
identified from the relay tests facilitate evidently better control performance, thus
demonstrating the advantage of using an online relay test for model identification.

5.6 Summary

For relay feedback identification of integrating processes, the limit cycle can
undoubtedly be formed for an integrating process under a biased or unbiased relay
test, which has been clarified by analytically deriving the relay response expressions
of the integrating type FOPDT and SOPDT models (Liu and Gao 2008).

Based on the limit cycle information and the relay response expressions de-
rived here, four identification algorithms — Algorithm-RI-F1, Algorithm-RI-F2,
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Fig. 5.4 Temperature responses of zones 1-3 using the integrating type models from relay tests
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Algorithm-RI-S1, and Algorithm-RI-S2 — have been developed for obtaining the
low-order integrating type FOPDT and SOPDT models that are widely used for
the control of integrating processes in engineering practice. As illustrated by the
three examples from existing references, all of these algorithms can give good
accuracy if the model structure matches the process. For identifying higher order
integrating processes, these algorithms can be chosen alternatively to meet with
different requirements of identification accuracy and computational effort in prac-
tice. Compared to an FOPDT model, an SOPDT model identified hereby has been
demonstrated to have the capacity of obtaining further improved frequency response
fitting for a higher-order integrating process, and therefore, can be effectively used
to represent various integrating processes for advanced control system design or
controller tuning.

Experimental tests for maintaining the barrel temperature in injection molding
(Liu et al. 2009) have been presented in Sect. 5.5, based on the use of integrating
type models identified from the presented Algorithm-RI-S2. Compared to the use
of heating-up integrating type models identified from step tests as presented in
Sect. 3.4, apparent improvement on the control performance has been obtained. The
control performance is similar to that obtained from using the stable type models as
present in Sect. 4.5, which were also identified from the relay tests. It is, therefore,
demonstrated that using a relay test for online identification can effectively facilitate
control design and online tuning around the set-point operation.
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Chapter 6
Relay Feedback Identification of Unstable

Processes

For identifying an unstable process under a relay test, existing references have been
mainly devoted to identification algorithms for obtaining the low-order FOPDT and
SOPDT models to facilitate control system design and online tuning. Based on
the standard unbiased relay test as shown in Fig. 4.2, Tan et al. (1998) proposed
an FOPDT identification algorithm in terms of the gain and phase conditions for
steady oscillation; Shiu et al. (1998) used two relay response points with the
minimal and maximal gains to estimate the unstable type FOPDT and SOPDT
models; Vivek and Chidambaram (2005) adopted the Fourier series approximation
of the relay response to derive the FOPDT identification formulas for online PID
tuning; Majhi (2007) developed FOPDT and SOPDT identification algorithms based
on a state-space description of the relay control system and using the second
derivative information of the limit cycle for analysis. Using a biased relay test,
Park et al. (1998) presented an FOPDT identification algorithm in terms of the
magnitude and phase conditions for steady oscillation; Kaya and Atherton (2001)
proposed alternative FOPDT and SOPDT identification algorithms in terms of the
so-called A-locus analysis; Ramakrishnan and Chidambaram (2003) presented an
SOPDT identification algorithm using the Laplace transform of the relay response
to construct model parameter fitting conditions at the oscillation frequency. The use
of two different relay tests was suggested by Marchetti et al. (2001) to ensure the
identification effectiveness for control-oriented modeling of unstable processes.

It has been recognized that the standard relay feedback structure cannot guarantee
steady oscillation for various unstable processes, especially for unstable processes
with large time delay. Some limiting conditions for forming steady oscillation under
an unbiased relay test have been reported in the literature (Tan et al. 1998; Majhi
and Atherton 2000; Thyagarajan and Yu 2003; Lin et al. 2004; Co 2010). To ensure
identification stability, closed-loop identification methods with a P-, PI-, or PID-type
controller for closed-loop stabilization have been developed (to enumerate a few,
Jin et al. 1998; Ananth and Chidambaram 1999; Majhi and Atherton 2000; Forssell
and Ljung 2000; Paraskevopoulos et al. 2004; Sree and Chidambaram 2006; Cheres
2006). A modified relay feedback structure with a proportional-derivative (PD) type

T. Liu and F. Gao, Industrial Process Identification and Control Design: Step-test 217
and Relay-experiment-based Methods, Advances in Industrial Control,
DOI 10.1007/978-0-85729-977-2_6, © Springer-Verlag London Limited 2012
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controller to stabilize an unstable process was presented by Padhy and Majhi (2006)
for identifying an FOPDT model based on the describing function analysis.

To address relay feedback stability for unstable processes, a limiting condition
to forming steady oscillation for an unstable process under a biased or unbiased
relay test (Liu and Gao 2008b) is presented here, along with the relay response ex-
pressions of FOPDT and SOPDT unstable type models. Subsequently, identification
algorithms for obtaining these low-order models are given for practical application.

6.1 The Limiting Condition for Steady Oscillation

Generally, the widely used FOPDT and SOPDT unstable type models are ex-
pressed as

kpe—es
Gu_; = (6.1)
Tp8 — 1
k e—Gs
Gy P (6.2)

T s — 1) (ms 1 1)

where k;, is the proportional gain, 6 the process time delay, 7, (r; and 12) positive
coefficient(s) reflecting fundamental dynamic response characteristics of the pro-
cess.

For a first-order unstable process as shown in (6.1), the following proposition
gives a limiting condition to forming steady oscillation under a relay test and the
corresponding relay response expression:

Proposition 6.1. Under a biased relay test as shown in Fig. 6.1, a limiting condition
to forming steady oscillation for a first-order unstable process shown in (6.1) is

0 2k 2k
— < min{In pHo , In pHO } (6.3)
Tp kp (o — Ap) + &4 kp (Ap + po) — e—
and the resulting limit cycle is characterized by
P €L
2kp/L0 (l —ew )erp
y+(1) = —kp (Ap + po) + 7 , 1€][0,Py] (6.4)
l]—ew
Py i
2kp o (e o 1) ew
y-(0) = Ky (o — App) + . 1e0.P](65)

l—e®
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Fig. 6.1 Relay response depiction for an FOPDT unstable process

where y4(t) increases monotonically for t € [0, P+],y—(t) decreases monotoni-
cally for t € [0, P_] corresponding to t € [P+, P,] in the limit cycle, and P, =
Py + P_ is the oscillation period.

Proof. The unity step response of an FOPDT unstable process shown in (6.1) can
be derived as

y) = ky (e% ~1) 6.6)

It can be seen from Fig. 6.1 that according to the initial relay output A — o,
there exist

Yo) =ky (A= o) (¢ = 1) €[00+ 6] 6.7)

Yo (o) = —e4 (6.8)

Using (6.8) one can obtain

Yo (to + ) = —ky (A= uo) + [kp(Ap = po) —eJe™  (6.9)

After the time of 7y 4+ 6, the process output begins to respond to the switched
relay output A + (o in the form of

t—tg—6 t—tg—0

y(@) = yo(to+0)e = +kp(A/L+pL0)(€ » —1), te(to+ 0.t + 6]
(6.10)
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It follows from (6.10) that

dy(t 1 ==Y
%Z?[Yo(lo-i-@)"i‘kp@ﬂ‘i‘ﬂo)]e ® (6.11)
P

To form steady oscillation, y(¢) should have an ascending tendency in the time
interval (fo + 0,1, + 6], therefore requiring that

Yo (to +0) +kp (Ap + po) >0 (6.12)

By substituting (6.9) into (6.12), one can obtain

2kppio
— < = (6.13)
Tp kp (o — Ap) + &4
Analogously, it follows from (6.10) and y(¢;) = —e_ that
6
y(t +0) = —kp (Ap+ po) + [kp (Ap + o) —e—Je™ (6.14)

It can be seen from Fig. 6.1 that after the time of #; + 6, the process output begins
to respond to the switched relay output A — g in the form of

t—t1—0 t—t—6

YO =y (6 + )¢ +kp(AM—M0)(€”’ —1), L€ (040,004 6]

(6.15)
It follows from (6.15) that
dy(t 1 1= =0
DO~ Ly 0+ 0) +ky (A= )] e (6.16)
P

To form steady oscillation, y(¢) should have an descending tendency in the time
interval (¢; 4 6,1, + 6], therefore requiring that

vyt +0)+ky(Ap—po) <0 (6.17)
Substituting (6.14) into (6.17), one can obtain

2k
2 “n pHo
Tp kp (o + Ap) — e

(6.18)

Combining (6.13) with (6.18), one can obtain the limiting condition to forming
steady oscillation as shown in Proposition 6.1.
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In the sequel, the time shifted output response from the initial to the fourth relay
switch point can be derived, respectively, as

Y1 (t)lshif[ =y (t+1t+ 0) - 2kp/vLO + ka/vboeg (6.19)

1+ Pt
320 = Yo (¢ + t0 4+ 0 + Py) — eppto1 — 1) + 2kpptge (e W 1)
(6.20)

. Py Pr—
V3 |gmin=o (t +t0+ 0 + P,) — 2kpuo(l — 1 + 1)+2kppoe™ (e P —e +1)

(6.21)
Ya(O)lsine = Yo ¢ + 10+ 6 + Py + Py) = 2kppo(1 — 1+ 1-1)
o PutPy Py Pt
+ 2kppoe (e Po—e® fe® — 1) (6.22)
The general relay response can therefore be summarized as
Yan+1(Olshire = Yo (t + 1o + 0 +nPy) — 2kppo + 2kppoEe™ (6.23)
Vo2 ()| iy = Yo (t + 10+ 0 + nPy, + Py) + 2kpuoFe™ (6.24)
wheren =0,1,2,...,and
" N | (n=DPy
kPy (k=D)Py+P— Py P— — P
E=1+Z(ew —e w )=l+(e’v —efv)e—m (6.25)
k=1 l—e®
n kPy+P. P 2
Sl kPy + l—em™
F=Z(e z —efp):(efp—l)—epu (6.26)
k=0 l—ew
It follows from (6.7) that
t+1g+nPy
Yot +1to+0+nP,) =ky,(Ap— o) (e - 1) (6.27)
t+ig+n Pyt Py
Yot +to+0+nP,+ Py) =k, (Ap— o) (e ™ —1) (6.28)
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Substituting (6.25)—(6.28) into (6.23) and (6.24), respectively, one can obtain

t
by

ke
Yanti g (1) = —kp (Ap + o) + . Py

l—em™
nPy P\ fo _Pt P
X {e » [(AM—MO) (l—efp)e’r’ — 240 (1—e » )i| + 20 (l—e » )}
(6.29)
k efLP
Yon+2laninc (1) = kp (o — Ap) + = 7
l—e™
nPy P\ Py Py Py
X {e P [(Au—uo) (l—e ’P)e o —2Uo (e - 1)i| +2u10 (e » —1)}
(6.30)

Note that n — o0 as t — o0. It can be seen from (6.29) and (6.30) that there
exists an inherent constraint for steady oscillation,

P\ fo Pt
(Ap,—p,o)(l—efv)e’r’—2,u0(l—e fP):O (6.31)

Hence, in the limit cycle the output response is expressed by (6.4) and (6.5).
It can easily be seen from (6.4) and (6.5) that y4 () increases monotonically for
t € [0, P4+] while y_(t) decreases monotonically for ¢ € (P4, P,].

It can be verified from (6.4) and (6.5) that the inherent relationship between
y+(t) and y_(¢) is satisfied, that is,

y+(0) = y-(P-) (6.32)
y+ (Py) = y-(0) (6.33)
This completes the proof. O

If an unbiased relay test is used, the limiting condition for steady oscillation
can be obtained by substituting Ay = 0 and ey = —e_ = 0 into (6.3), that is,
6/, < In2, which is exactly the limiting condition reported in the references (Tan
et al. 1998; Majhi and Atherton 2000; Thyagarajan and Yu 2003). Correspondingly,
the relay response expression can be obtained as

2k, efLP
ya() = —y-(t) = —kppo + =2 — (6.34)
1+e%

For a second-order unstable process, the following proposition gives the corre-
sponding relay response expression in the limit cycle.
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Fig. 6.2 Relay response depiction for an SOPDT unstable process

Proposition 6.2. Under a biased relay test as shown in Fig. 6.2, the resulting limit
cycle for a second-order unstable process shown in (6.2) is characterized by

2k TnE| : 2k nkE, _+
pMOTI 1811 I pMOT2 2e

1) = —ky (Ap + o) + @, 1€[0P
yel0) = —ky (Ap+ o) + =2 - [0, P
(6.35)
koot Fy o 2kypotaFr o
Y1) = ky (o — D) + TRV oy TRROBT o5 e o, P
1+ 10 1+ 10
(6.36)
where 0 < E; < E», F, < F| <0, and
p—
l—en
El = —— (6.37)
l—en
l—e =
Ey= —— (6.38)
l—e =
P4
l—en
Fi = —— (6.39)
l—ewn
P+
l—e =
Fh=———W (6.40)
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Proof. The initial step response of an SOPDT unstable process arising from the
relay output Ay — po can be derived as

(t) = ky (A Y P - R (6.41)
= — e u e T — .
Yo pAAH T Ho 1+ 0 1+ 0

Following a similar analysis as in the above proof for Proposition 6.1, the time
shifted process output response from the initial to the fourth relay switch point can
be derived, respectively, as

7] L 7, _t
B hire = t+to+0)+ 2k B o — 1 6.42
Y1) i = Yo (¢ + 10+ 0) + pMO(Tl‘i‘Tze +t.+rze ) (6.42)

2k MHoT1 o Py
Y2(O)lgire = Yo (t + 10 + 0 + Py) — 2kypo(1 — 1) + =—F——e7 (e —1

T+ 10

2k cf M+

+ ﬂe—g (e o — 1)
1+ 10

(6.43)

2k Tl o
pHOT1 ¢

T

y3(t)|shift =)o (t + 1 + 0 + Pu) - 2kp/1»0(1 -1+ 1) 4+
T+ 1n

ZkP/,L()‘L'z _ L
—e

Py P Py _P=
x(en —en +1)+ 2 (e ©—e © +1) (6.44)
T+ 1D

YaO)lgise = Yo (t + 10+ 6 + P, + Py) = 2kppo(1 =14+ 1-1)

2kppoT) 1 PutPy P Py
+ﬂe; e 7 _e?;‘_’_en _l

1+ n
2k oty i [ PutPy Py _rt

| Zottora (e e f o _1) (6.45)
1+ 10

The general relay response can therefore be summarized as

2k /,LoE*‘L'l i 2k ;L()Ez‘[z _t
Vons1 ()| ge=yo (t +to+0+nP,) —2kypo + ——T—ew + — "¢
1+ 0 T+ 10

(6.46)

2k OF*‘L’ t 2k /L()Fz‘lfz _ L
Yont+2(O)|gnige = Yo (t +1to + 60 +nP, + Py)+ LI e =
1+ T T1+1n0

(6.47)
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wheren =0,1,2,...,and

Py

( Py Pr— 1 =D Py

N N R en —en )( —e " )

Ef =14y (e —e ) =14 (6.48)
k=1

l—en
n 1 =
kPy _ (k=) Py+P— —e ™
PR (e— Bt ) “l2 2 e
k=1 l—e =

(6.50)

‘ kPutPy kPu 1_ o
K=Y (e_ 5 —e—fi) ¢ (6.51)
k=0

It follows from (6.41) that

) = (n i rze% t1:-2126’_w_ )
(6.52)
Yo(t 410 +0+nPy+ Py)
e B (T1 11 tzeM * 7 fi rze_% - 1)
(6.53)

Substituting (6.48)—(6.53) into (6.46) and (6.47), respectively, one can obtain

T+ 1T T+ 10

2k E 2k E
pMOTI lertl n pMOT2 28_;

Yan+1(0) |gnige = —kp (Apt + po) +

P P
kpti  r+e—nr, wtr 2o (e T—en )
I (A o) e .
ntn l—en

(6.54)
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T

2k [LQ‘L’]F] t 2k [,Lo‘L'ze _ 1
Yan+2(O)lgire = kp (o — Ap) + = en + —F e r

T+ 17 T+ 7T
Py
2 =1
kot rhnry WtPy Ho (e )
—F_—e n (Ap—po)e @ - &
n+n l—em
(6.55)
where
p—
1l—em
l—en
P4
1l—e™
Fl=———+ (6.57)
l—emn

In view of that n — oo as t — o0, one can see from (6.54) and (6.55) that there
exists an inherent constraint for steady oscillation,

u hy P
(A — o) (1—e?)en—2uo(1—e—f) -0 (6.58)

Note that this constraint is essentially the same as that shown in (6.31) for a
first-order unstable process.

Hence, in the limit cycle the output response is expressed by (6.35) and (6.36),
where y () denotes the ascending response in the half period P, corresponding to
a positive step change of the relay output as shown in Fig. 6.2, while y_(¢) denotes
the descending response in the other half period P_, corresponding to a negative
step change of the relay output.

It can be verified from (6.35) and (6.36) that the inherent relationship between
y4+(t) and y_() is satisfied, i.e.,

y+(0) = y_(P-) (6.59)

y+(Py) = y-(0) (6.60)

Define z = x/11,a = 11/12, and

fx) = 1_—ei x € (0, 00) (6.61)

l—e =
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It follows that

1—¢f
fO=—= (6.62)
— ez
d e‘f(a+1)e™* —ge~@thi
f@ _elatD : ] 6.63)
dz (1 — e—az)
Let
g(@) = (a+ e @ —qe “th: (6.64)
It can be derived that
d
fz(;) —a(a 4+ 1)e e =1) <0 (6.65)
lin(l) gz) =0 (6.66)
7>
Thus, it can be concluded that g(z) < 0 for z € (0, 00), and accordingly,
d
aqa@ (6.67)
dz

Hence, f(z) decreases monotonically with respect to z, and so is f(x) with
respect to x. One can then conclude from f (p—) > f (py) that

0<E <E, (6.68)

Following a similar analysis, it can be concluded that

F2 < F] <0 (669)
This completes the proof. |
If an unbiased relay test is used, substituting Ay = 0 and e = —e_ = 0 into

(6.35)—(6.40), one can obtain the corresponding relay response expression,

2k E, 2k E ‘
pMOTI1 le?—}— pMOT2 23_

D= —v (1) = —k o 6.70
y+(0) y-(2) pMo + p——— p——. (6.70)
where
1
E=—% (6.71)
I+em
1
Ey= —+ (6.72)
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6.2 The FOPDT Model

It follows from Proposition 6.1 that the process time delay can be measured as the
time to reach the peak of the process output response from the initial relay switch
point in a half period of the relay, which is denoted as t;‘ in Fig. 6.1.

When a biased relay test is used, the proportional gain, k,, can be derived as

tos+ Pu y([)d[

kp =—G(0) = =& (6.73)
Lo u)de
where 7,5 can be taken as any relay switch point in the steady oscillation.
Correspondingly, it follows from (6.4) and (6.5) that
P+ P
2kppoe ™ (1 —e™ )
y+ (P1) = —ky (Ap + po) + " = Ay (6.74)
l—e™
r= (Pt
2kppoe ™ (e " — 1)
Y= (P-) =kp (o —Ap) + " = A- (6.75)
l—e™
P+—9 P
2kppoe ™ (1 —ew )
Vi (P —0) = —ky (A + o) + - = (676)
I—em
P——0 Py
2kppoe ™ (e P — 1)
Y- (P——0) =k (o — Ap) + = =—e4  (6.77)
I—e™
Substituting (6.74) into (6.76), one can obtain
. 0
T Tt At AL (6.78)
kp(po+Au)—e—
Alternatively, substituting (6.75) into (6.77) yields
0
T, = (6.79)

1 kp(po—Ap)—A—
kp(uo—Ap) et

The process time constant can then be derived from (6.78) or (6.79). It is
preferred in practice to use (6.78) for better fitting accuracy, in view of that the
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positive part of the limit cycle occupies a larger percentage compared to the negative
part, as shown in Fig. 6.1. If the opposite case happens, the formula in (6.79) is
preferred accordingly.

Hence, the identification of an FOPDT unstable type model under a biased relay
test can be summarized in the following algorithm named Algorithm-RU-FAI.

Algorithm-RU-FA1

(1) Measure P4, P_, A4, and A_ from the limit cycle.
(i) Measure the process time delay as t;, which is the time to reach the positive
peak (A4 ) of the process output response from the initial relay switch point in
a negative half period of the relay (P-).
(iii) Compute the proportional gain, k,,, from (6.73).
(iv) Compute the process time constant, t,, from (6.78).

Note that the process response at the oscillation frequency can be computed in
terms of the frequency response estimation formula shown in (4.30), i.e.,

tost Py y(l‘)e—jw“tdl

r — j‘pu _ Jlos
Gjou) = Auwe’™ = fos+ Pu

Tos

(6.80)

u(t)eJ/ou ds

Substituting the FOPDT unstable type model in (6.1) into the left-hand side of
(6.80), one can obtain

1 [k}
D= yoi 1 (6.81)
1
0 = —— [pu + 7 —arctan(rowu) |, @u € (-7, —7/2) (6.82)

u

Hence, an alternative identification algorithm named Algorithm-RU-FA2 for ob-
taining an FOPDT unstable type model under a biased relay test can be summarized.

Algorithm-RU-FA2

(i) Measure P, from the limit cycle.
(i) Compute G(jw,) from (6.80).
(iii) Compute the proportional gain, k,,, from (6.73).
(iv) Compute the process time constant, t,, from (6.81).
(v) Compute the process time delay, 6, from (6.82).

Note that the process response at the oscillation frequency is exactly represented
by the FOPDT model derived from Algorithm-RU-FA2. Therefore, it can be used to
obtain better fitting accuracy for identifying a high-order unstable process compared
to Algorithm-RU-FA1, but at the cost of computation effort.
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When an unbiased relay test is used, substituting (6.74) into (6.76) to eliminate
kp, one can obtain

Pu

- (1 _ e*%) — A, (2e’% e 1) (6.83)

Note that the left-hand side of (6.83) is monotonically decreasing with respect
to 1, together with a practical constraint of 0 < 7, < P,. Therefore, only finite
solutions of 7, exist for (6.83), which can be derived using any numerical algorithm
such as the Newton—Raphson method. Correspondingly, the proportional gain can
then be derived from (6.74) as

A+ (821)7‘11’ + 1)
kP = Pu
Mo (eﬁ - 1)

Therefore, the identification of an FOPDT unstable type model under an unbiased
relay test can be summarized in the following algorithm named Algorithm-RU-FB1.

(6.84)

Algorithm-RU-FB1

(i) Measure P, and A+ from the limit cycle.

(i) Measure the process time delay as 6 = tl;‘ .

(iii) Compute the process time constant, 7,, from (6.83) by using the Newton—
Raphson iteration method. The initial estimation for iteration may be taken
as T, = Py/2.

(iv) Compute the proportional gain, kp, from (6.84).

(v) Determine the suitable solution pair of 7, and k, by comparing the relay
response of the resulting model with that of the process, or checking if

[N (A+) G (Jou)| > land ZN (A+)+L@ (jwy) — —m are satisfied, where
N(Ay) = 4pge™/ @esine+/4+) /(r A, ) denotes the describing function of the

unbiased relay, and G (jwy) is the FOPDT model response at the oscillation
frequency.

With the process time delay measured from the limit cycle, the proportional gain
and time constant can also be derived from the fitting conditions at the oscillation
frequency as shown in (6.81) and (6.82), i.e.,

1
= w—tan (7 4+ @y + Owy) (6.85)

kp = Auy/T202 + 1 (6.86)

To procure fitting accuracy for identifying a higher-order unstable process in
practice, a one-dimensional search of 6 can be implemented in terms of the
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aforementioned fitting condition of the relay response. The optimal fitting can be
determined by deriving such a model that yields the smallest value of the fitting
error with respect to the limit cycle. Improved fitting accuracy can therefore be
obtained for identifying a high-order process compared to Algorithm-RU-FBI1.
Hence, an alternative identification named Algorithm-RU-FB2 for obtaining an
FOPDT unstable type model under an unbiased relay test can be summarized.

Algorithm-RU-FB2

(i) Measure P, and the process time delay (6 = l;) from the limit cycle.
(i) Compute G(jw,) from (6.80).
(iii) Compute the process time constant, t,, from (6.85).
(iv) Compute the proportional gain, kp, from (6.86).
(v) End the algorithm if the fitting condition of relay response, ZII{V=1 [ (kTs + tos)—

YT, + to)]?/N < &, is satisfied, where y (kT + tos) and y (kT + to5)
denote, respectively, the process and model responses in the limit cycle, Ty is
the sampling period corresponding to N = P,/T;, and ¢ is a user-specified
fitting threshold that may be practically taken no larger than (0.1-1.0)%.
Otherwise, go back to step (iii) by monotonically varying 6 in a one-
dimensional search within a possible range as observed from the initial step
response in the relay test.

6.3 The SOPDT Model

According to Proposition 6.2, it can be derived from (6.35) and (6.36) that

dy+(1) 2kpjro L L
= Eien — Eye™ = 6.87
7 E—— ( 1€ 20 ) (6.87)
dy_(t) 2kp,u() L _L
= Fien — Fre™ = 6.88
77 -y 72< 1e 2e ) (6.88)

By letting % =0 and % = 0, the time to reach the single extreme value
of y4(t) and y_(¢) can be derived, respectively, as

T2 E,

t,, = In — 6.89

P+ 1+ 10 f E ( )
TIT2 )

t, = ——In— 6.90

P 1+ 10 " F ( )

2
It can be easily verified that % > (0 and < 0. Therefore, 1, " is the

time to reach the minimum of y (), while #,_ is the time to reach the maximum of
y-().

d?y_()
2
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Note that the time, t;,"_, to reach the maximum of y_(¢) from the initial relay
switch point in a negative half period of the relay can be measured, as shown in
Fig. 6.2. So is for t;,“+ which is the time to reach the minimum of yy (¢) from the
initial relay switch point in a positive half period of the relay. It follows that

o =17 —0 6.91)
b, =17 — 0 (6.92)

Subtracting (6.91) from (6.92) yields

by, —t_ =1, —1 (6.93)

+ S

Substituting the SOPDT model in (6.2) into the frequency response fitting
condition shown in (6.80), one can obtain

kP
J(@o+1) (Bei +1)

—Ow, — m + arctan (tyw,) — arctan (tow,) = @y, @y € (-7, —7/2)  (6.95)

= Ay (6.94)

It can be derived from (6.94) and (6.95) that

! ko 1 6.96)
= oV R @) ©
1
0 = —— [y + m — arctan (twy) + arctan (Towy)] (6.97)
Wy

Note that the proportional gain, kp, can be derived from (6.73). Substituting
(6.89), (6.90), and (6.96) into (6.93), one can obtain a transcendental equation with
respect to ;. This equation can be solved numerically using the Newton—Raphson
iteration method. The initial estimation of t; for iteration may be taken as

I
n= o E (6.98)

which has been derived in Algorithm-RU-FA2 for computing the single time
constant of an FOPDT unstable type model.

Alternatively, substituting (6.96) into (6.95) yields a transcendental equation with
respect to 7;, where the process time delay (6) is preestimated for computation.
Correspondingly, a one-dimensional search of 6 is needed in combination with the
aforementioned time domain fitting condition of the relay response to determine the
optimal fitting.
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Therefore, the above algorithm named Algorithm-RU-SA for identifying an
SOPDT unstable type model under a biased relay test can be summarized.

Algorithm-RU-SA

(i) Measure P4, P_, t;+, and t;‘_ from the limit cycle.

(i) Compute G(jw,) from (6.80).

(iii) Compute the proportional gain, k,,, from (6.73).

(iv) Compute the process time constant, tj, from the equation resulting from
substituting (6.89), (6.90), and (6.96) into (6.93), by using the Newton—
Raphson iteration method, or from the equation resulting from substituting
(6.96) into (6.95) based on a preestimated time delay (6). The initial estimation
of 1) for iteration may be taken from (6.98), or alternatively, a one-dimensional
search of # can be implemented within a possible range as observed from the
initial step response in the relay test.

(v) Compute the process time constant, 7,, from (6.96).

(vi) Compute the process time delay, 8, from (6.97) if ; has been computed from
(6.93).

(vii) End the algorithm if the fitting condition of relay response, 2,1:;1 [y (kTs + tos)—

Y (kT + tos)]?/ N < &, is satisfied. Otherwise, go back to step (iv) by changing
the initial estimation of 7; or monotonically varying 6 in a one-dimensional
search.

When an unbiased relay test is used, it follows from (6.70) that

P, 2k E, rn—2  2kyuotaE, P20
Y+ (_ - 9) = —kppo + i Lol lePZﬂ2 + Loltor2 B 2e7 m =

e+
2 1+ 1+ 17

(6.99)

According to the amplitude fitting condition at the oscillation frequency as shown
in (6.94), one can obtain

ko = Auy/ (G202 + 1) (G2 + 1) (6.100)

Substituting (6.100) into (6.99) to eliminate k;, yields an implicit equation with
respect to 7; and 7. By preestimating the process time delay (0), this implicit
equation together with (6.95) of the phase fitting condition at the oscillation
frequency can be solved using a nonlinear programming method introduced in
Section 4.3.2 (see (4.135)—(4.137)). A one-dimensional search of 6 is therefore
needed in combination with the aforementioned time domain fitting condition of
the relay response to determine the optimal fitting.

Hence, the above algorithm named Algorithm-RU-SB for identifying an SOPDT
unstable type model under an unbiased relay test can be summarized.
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Algorithm-RU-SB

(i) Measure A (or A—) and P, from the limit cycle.

(i) Compute G(jw,) from (6.80).

(iii) Compute t; and 1, using a nonlinear programming algorithm as given in
(4.135)—(4.137) to solve together (6.95) and the implicit equation resulting
from substituting (6.100) into (6.99), based on a preestimated time delay ().
A one-dimensional search of 6 can be implemented within a possible range as
observed from the initial step response in the relay test.

(iv) Compute the proportional gain, k,,, from (6.100).

(v) End the algorithm if the fitting condition of relay response, Z,]{V:l [y (kTs + tos)—

y (kT +to)]>)/N < e, is satisfied. Otherwise, go back to step (iii) by
monotonically varying 6 in a one-dimensional search.

6.4 Illustrative Examples

Three examples from existing literature are used to illustrate the effectiveness and
merits of the above identification algorithms. Examples 6.1 and 6.2 are given to
demonstrate the fitting accuracy of these algorithms for identifying a low-order
model in terms of the exact model structure, together with measurement noise tests
for demonstrating the identification robustness. Example 6.3 is given to show the
effectiveness of these algorithms for identifying a higher-order unstable process. In
all the relay tests, the sampling period is taken as 7y = 0.01(s) for computation.

Example 6.1. Consider the first-order unstable process studied in the reference
(Marchetti et al. 2001),

—0.4s
e
G =

s—1

Based on using two different unbiased relay tests, Marchetti et al. (2001) derived
the process model, G,, = 0.928¢7032%/(0.757s — 1), demonstrating enhanced
identification accuracy in comparison with previous methods.

For illustration, a biased (u+ = 1.2 and u— = —0.9) and an unbiased
(uy = —u_ = 1.0) relay test, along with ¢, = —e_ = 0.1, are performed for
model identification. Correspondingly, Algorithm-RU-FA1, Algorithm-RU-FA2,
Algorithm-RU-FB1, and Algorithm-RU-FB2 are used, obtaining the results shown
in Table 6.1, together with the measured limit cycle data for computation. It is seen
that all of these algorithms can give good accuracy.

Example 6.2. Consider the SOPDT unstable process widely studied in the refer-
ences (Park et al. 1998; Majhi and Atherton 2000; Ramakrishnan and Chidambaram
2003; Vivek and Chidambaram 2005),
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e—O.Ss

T 2s— 1055+ 1)

G,

Based on an unbiased relay test, Vivek and Chidambaram (2005) derived an
FOPDT model, G, = 0.7534¢7 194125 /(2.16425 — 1). Based on a biased relay
test, Park et al. (1998) derived an FOPDT model, G, = 1.002e_1'0673/(2.347s —1),
and Ramakrishnan and Chidambaram (2003) gave an SOPDT model, G,,—, =
€925 /(1.9999s — 1)(0.4837s + 1). Using a P-type controller for closed-loop
stabilization to perform an unbiased relay test, Majhi and Atherton (2000) derived
an FOPDT model, G,, = 1.0e"%15 /(2.875s — 1), with a prior knowledge of the
proportional gain (k).

For illustration, a biased relay test using uy = —u— = 1.0, ey = 0.1, and
e_ = —0.2 is performed here. Correspondingly, Algorithm-RU-SA can give almost
the exact process model shown in Table 6.1, based on the measured limit cycle
data for computation. For comparison, Algorithm-RU-FA1 is used to obtain an
FOPDT model, G, = 1.0001e~"%8/(2.9336s — 1), and Algorithm-RU-FA2 gives
an FOPDT model, G, = 1.0001e=19538/(2.1279s — 1). The Nyquist plots of
the FOPDT models obtained from these two algorithms, Park et al. (1998) and
Majhi and Atherton (2000), are shown in Fig. 6.3. It can be seen that apparently
improved fitting is captured by Algorithm-RU-FA2 over the low-frequency range,
owing to the use of the precise fitting condition of the process response at the
oscillation frequency, i.e., (—0.6449, —j0.1912), as shown in Fig. 6.3. With a lower
computation effort, the FOPDT model obtained from Algorithm-RU-FA1 gives
an inferior Nyquist fitting compared to that of Algorithm-RU-FA2, but is still
comparable with that of Majhi and Atherton (2000).

If an unbiased relay test using uy = —u_ = 1.0 and e = —e_ = 0.1 is
performed, Algorithm-RU-SB can give almost the exact process model as shown
in Table 6.1. Note that Algorithm-RU-FB1 can be used to obtain an FOPDT
model, G, = 1.0097¢7'365/(2.74s — 1), while Algorithm-RU-FB2 gives an
FOPDT model, G, = 0.9936e~"%3/(2.1703s — 1). Compared to the FOPDT
model obtained by Vivek and Chidambaram (2005), both Algorithm-RU-FB1 and
Algorithm-RU-FB2 give evidently improved identification of the proportional gain
(kp), and it can easily be verified through the Nyquist plot that Algorithm-RU-FB2
gives the best fitting owing to the use of the precise process response information at
the oscillation frequency.

Note that Vivek and Chidambaram (2005) gave an FOPDT model, Gy, —; =
0.5332¢7088075 /(1.35245 — 1), in the case where a random noise with zero
mean and the standard deviation 03 = 0.01 is added to the process output
measurement, which is then used for relay feedback control. It can be verified that
the noise causes NSR = 1.6%. Based on averaging 10 steady oscillation periods to
determine the limit cycle data, Algorithm-RU-FA1 and Algorithm-RU-FA2 give the
FOPDT models, G, = 0.9992¢18% /(4.0701s — 1)and G, = 0.9992¢1:047s
(2.1449s — 1), respectively. The identification errors resulting from Algorithm-
RU-SA are listed in Table 6.2, which demonstrate good identification robustness.
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Fig. 6.3 The Nyquist fitting of identified FOPDT models for Example 6.2

To further demonstrate the identification robustness, assume that the noise level is
increased to NSR = 10%, it can be seen from Table 6.2 that noticeable errors are
caused in measuring the positive and negative magnitudes of the limit cycle, but the
computation of the process response at the oscillation frequency is slightly affected
owing to the use of all the measured data in the 10 oscillation periods. Accordingly,
only the stable time constant () of the process is notably underestimated. To
enhance the identification robustness, a third-order Butterworth filter with a cutoff
frequency, f. = 0.5(HZ), according to the guideline given in (4.3) in Section
4.1, is used to recover the corrupted limit cycle data and also for relay feedback
control. The corresponding results listed in Table 6.2 demonstrate that significantly
improved accuracy for the measured limit cycle data and model identification can
thus be obtained. For illustration, the recovery effect for a noise level of NSR =20%
is shown in Fig. 6.4, using the above filter for off-line denoising in both the forward
and reverse directions. It is seen that the corrupted limit cycle has been well-
recovered against the severe noise level, corresponding to the small identification
errors shown in Table 6.2.

Example 6.3. Consider the high-order unstable process studied in the reference
(Majhi 2007),

8—0.53

T Gs— 125 + D055 + 1)

G;
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Table 6.2 Identification errors for Example 6.3 under different measurement noise levels

% Error in the measured data % Error in the model parameters
NSR  Denoising A4 A_ Ay Oy kp 7 2 0
1.6%  Averaging 149 —-2.6 —0.96 —0.05 —0.08 0.21 —244 352
10%  Averaging 20.35 —26.19 1.39 047 —0.02 —0.82 —11.8 5.94
10%  Filtering 1.96  —0.97 0.58 041 —0.01 0.76 —-0.78  1.94
20%  Off-line 2.21 —1.86 1.34 0.58 0.02 0.87 —6.04 436
filtering
1.4 T
=== Uncorrupted
Noisy
—— Recovered

Output

90 100 110 120 130 140 150 160
Time (s)

Fig. 6.4 Recovered limit cycle for Example 6.2 subject to NSR = 20%

Based on an unbiased relay test, Majhi (2007) derived an SOPDT model, G, =
1.001e7%93% / (10.354s + 2.932s5 — 1) in terms of a state-space description of the
relay response.

For illustration, a biased relay test (uy+ = —u— = 1.0, e = 0.1, and
e— = —0.15) and an unbiased relay test (u+ = —u— = 1.0, 64 = —e_ = 0.1) are
performed here for model identification. Correspondingly, Algorithm-RU-FA1 and
Algorithm-RU-FA2 give the FOPDT models G, = 1.0001e75%/(13.4749s — 1)
and G, = 1.0001e7328215 /(5.7663s — 1), respectively. In contrast, the SOPDT
models obtained using Algorithm-RU-SA and Algorithm-RU-SB are listed in
Table 6.1. It is seen that Algorithm-RU-SA and Algorithm-RU-SB result in the very
similar SOPDT models. The Nyquist plots of these models are shown in Fig. 6.5.
It is seen that both SOPDT models derived from Algorithm-RU-SA and Majhi
(2007) obtain very close fitting in almost all the frequency range. Compared to
Algorithm-RU-FA1, Algorithm-RU-FA2 gives better fitting over the low-frequency
range, owing to that the model response coincides with the process at the oscillation
frequency, i.e., (—0.6553, —j0.1367).
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Fig. 6.5 The Nyquist plots of identified models for Example 6.3

6.5 Summary

For relay feedback identification of unstable processes, the standard biased or
unbiased relay test may not guarantee steady oscillation for various unstable
processes in practice, especially for unstable processes with large time delay.
A limiting condition to forming steady oscillation is revealed for reference, by
analytically deriving the relay response expressions of FOPDT and SOPDT unstable
type models (Liu and Gao 2008a, b).

For the use of a biased relay test, Algorithm-RU-FA1 and Algorithm-RU-
FA2 have been developed for obtaining an FOPDT unstable type model, while
Algorithm-RU-SA has been given for obtaining an SOPDT unstable type model. For
the use of an unbiased relay test, Algorithm-RU-FB1 and Algorithm-RU-FB2 have
been developed for obtaining an FOPDT unstable type model, while Algorithm-RU-
SB has been given for obtaining an SOPDT unstable type model.

As illustrated by three examples from the existing references, all of these
algorithms can give good accuracy if the model structure matches the process.
For identifying higher-order unstable processes, these algorithms may be chosen
alternatively to meet with different requirements of identification accuracy and
computational effort in practice.

The results for identifying a higher-order unstable process subject to model
mismatch have demonstrated that an SOPDT model thus obtained evidently outper-
forms such an FOPDT model for the frequency response fitting, even very close to
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the process response in the entire low-frequency range of interest to control design.
Therefore, advanced control performance can be expected based on using such an
SOPDT model for control system design or controller tuning.
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Chapter 7
Control of Single-Input-Single-Output (SISO)
Processes

7.1 Control Engineering Specifications

For control system design and engineering practice, a number of performance
specifications and robust stability criteria have been developed to evaluate control
system performance and stability. In industrial process control, the following widely
used error criteria, time domain and frequency domain performance specifications,
and robust stability criteria are introduced here for reference.

For clarity, hereafter a capital letter is generally used to denote a variable in
frequency domain, while the corresponding lower-case letter denotes the variable in
time domain. Exceptions will be definitely stated in the context. For simplicity, the
time operator, ¢, in a time domain variable or function, and the Laplace operator,
s, in a frequency domain variable or function, will be omitted in showing the
corresponding variable or function when this does not cause any confusion.

7.1.1 Error Criteria

To evaluate the control system performance, a fundamental criterion is that there
exists no steady-state output error with respect to the set-point or load disturbance,
ie.,

lim e(r) = lim [y(1) = yp()] =0 (7.1)

where y(#) and y.,(#) denotes the process output and the set-point values, respec-
tively. Note that 7 is limited to a finite time length for industrial batch processes and
repetitive control systems.

T. Liu and F. Gao, Industrial Process Identification and Control Design: Step-test 243
and Relay-experiment-based Methods, Advances in Industrial Control,
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To further evaluate the dynamic output performance of set-point tracking or
load disturbance rejection, the following error criteria are widely used in practical
applications,

1. The criterion of integral-of-squared-error (ISE)

ISE = / e>(t)dt (7.2)
0

2. The criterion of integral-of-absolute-error (IAE)
o0
IAE = / le(t)|dt (7.3)
0
3. The criterion of integral-of-time-weighted-squared-error (ITSE)
oo
ITSE = / te’(t)dt (7.4)
0
4. The criterion of integral-of-time-weighted-absolute-error (ITAE)
o0
ITAE = / tle(t)|dt (7.5)
0

The above error criteria have been extensively studied in the existing literature
for control system design and online controller tuning (Morari and Zafiriou 1989;
Seborg et al. 2004; Astrém and Higglund 2005; Skogestad and Postlethwaite 2005).
Note that ISE and IAE criteria have been alternatively used for controller design to
optimize the set-point tracking or load disturbance rejection. By comparison, the
ITSE and ITAE criteria have been primarily used for enhancing the output response
speed of set-point tracking or load disturbance rejection, but at the cost of robust
stability against process uncertainties.

7.1.2 Time Domain Performance Specifications

Generally speaking, time domain performance specifications have been mainly
developed in terms of a step response test to evaluate the dynamic performance
of a control system. As shown in Fig. 7.1, the following specifications are widely
referenced for control system design:

1. The rise time (#;), usually defined as the time that the output response first reach
90% of its final steady-state value in response to a step change of the set-point

2. The settling time (#s), usually defined as the time after which the output moves
into the error band of +5% with respect to its final steady-state value in response
to a step change of the set-point



7.1 Control Engineering Specifications 245

Am
Step response

= — / AN 1.05
= Vsp= I/ N\ 0.95
5 09 N—

[oR

=]

(@)

tl’ tm tset
Time

Fig. 7.1 An illustration of time domain performance specifications

Fig. 7.2 The unity feedback
control structure

3. The overshoot (Ay,), usually defined as the output peak value in response to a
step change of the set-point, or alternatively, a ratio of the output peak value to
the final steady-state value (Am/ysp)

4. The steady-state offset (es), usually defined as e; = tl_l)r})lo [y (t) — ysp], where yp

denotes the set-point value

7.1.3 Frequency Domain Performance Specifications

For the convenience of introduction, the unity feedback control structure is shown
in Fig. 7.2, where G denotes the process and K is the closed-loop controller. yq, ()
denotes the time domain set-point value, corresponding to the Laplace transform
of Yp(s) in frequency domain, u(¢) is the controller output, corresponding to
U(s) in frequency domain, and y(¢) is the process output, corresponding to Y (s)
in frequency domain. d;(¢) denotes load disturbance entering into the process at
its input side, corresponding to D;(s) in frequency domain, and d,(¢) denotes
load disturbance entering into the process from its output side (through a transfer
function, G4(s), in terms of a normalized input, c?o (t) = 1), corresponding to D(s)
in frequency domain.
In Fig. 7.2, it can be seen that the loop transfer function is

H = GK (7.6)
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Fig. 7.3 The Nyquist plot of AIm
H(jw) for a depiction of GM
and PM P

\
L_GM ® = +oo | lie
-1 ™ 11
/
H(jo) ) /
\ /
\ /
AN /
H(jo) >~ e
the closed-loop sensitivity function is
S = : (7.7)
1+ H '

and the closed-loop complementary sensitivity function is

_H
1+ H

(7.8)

Correspondingly, the following specifications are widely referenced for control
system design:

1. The phase crossover frequency (w.), as shown in Fig. 7.3, defined as the
frequency by which the Nyquist curve of H(jw) crosses the negative real axis
between these two real points, —1 and 0, i.e.,

LH(jwy) = —7 (7.9)

2. The gain crossover frequency (wgc), as shown in Fig. 7.3, defined as the frequency
by which | H(jw)| crosses the unity circle in the complex plane, i.e.,

|H (jog)| =1 (7.10)
3. The gain margin (GM), as shown in Fig. 7.3, defined as

GM = 1/ |H (jos)| (7.11)
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Fig. 7.4 The magnitude plots of |S(jw)| and |T(jw)| for a depiction of the closed-loop
bandwidth

. The phase margin (PM), as shown in Fig. 7.3, defined as

PM = ZH (jou) + 7 (7.12)

. The maximal peak of the sensitivity function (Ms), defined as

Ms = max |S(jw)| (7.13)

. The maximal peak of the complementary sensitivity function (Mr), defined as

My = max |T(jo)| (7.14)

Note that Mg and M7y differ at most by unity, since S + 7 = 1. A large
value of Mg (or Mt) usually indicates poor control performance (or poor robust
stability). The upper bound of Mt has been commonly used for control system
design in the classical M-circles and Nichols chart methods.

. The bandwidth, usually referred to the frequency, @y, which is shown in Fig. 7.4,

by which |S(jw)| reaches the value of 1/4/2 = 0.707 (~ —3 dB) from @ = 0.
Alternatively, it is referred in some references to the highest frequency, wgt, by
which | T'(jw)| reaches the value of 1/+/2 = 0.707 (=~ —3 dB) from & = 0.

Note that a larger bandwidth corresponds to a smaller rise time in a step response

test, owing to that a wider frequency range of the input is allowed to pass through
the control system to excite the output response. However, a higher bandwidth also
indicates that the closed-loop system is more sensitive to measurement noise or
high-frequency disturbance. On the contrary, a smaller bandwidth will result in a
slower output response but in exchange for better robust stability.



248 7 Control of Single-Input-Single-Output (SISO) Processes
7.2 Robust Stability Criteria

In practical applications, there are ubiquitous process uncertainties, e.g., unmodeled
dynamic response uncertainty, control valve stiction, and measurement sensor
nonlinearity. For the convenience of analysis, different process uncertainties can be
represented by the additive or multiplicative form as shown in Fig. 7.5. The process
family described by an additive uncertainty can be written as

My = { Galjoo) : 'G(jw) ~G(jw)

< AA§ . w € 0,00) (7.15)

where é(s) denotes the nominal process or an identified model, and A, indicates
the upper bound of A, (jw) for w € [0, 00), i.e.,

|Aa(jo)| < Ax, @ €0, 00) (7.16)
Thus, a member of the above family can be expressed as
Ga(jo) = G(jo) + Ax(jo) (7.17)

By comparison, the process family described by a multiplicative uncertainty can
be written as

Iy =41 Gu(jow) : M <Am ., e€l0, 00) (7.18)
G(jo)

where Ay denotes the upper bound of Ay (jw) for w € [0, c0), i.e.,
|Am(j)| < Ay, € [0,00) (7.19)
Correspondingly, a member of this family can be expressed as
Gu(jo) = G(jo) [1 + Au(jo)] (7.20)

A transformation between A4 and Ay can therefore be defined as

Am(jw) = ——— (7.21)

Ay
v v
~ + Yy + _ y
u G L—» G —»

Fig. 7.5 Additive (a) and multiplicative (b) uncertainty
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Fig. 7.6 The Nyquist plot of A Im
robust stability conditions in
terms of the multiplicative
uncertainty

L H(jo)

TN

Without loss of generality, unmodeled process dynamics uncertainty together
with other sources of system uncertainty can be lumped into a single unified multi-
plicative uncertainty for robust stability analysis in practical applications (Skogestad
and Postlethwaite 2005). Correspondingly, the Nyquist stability condition is given
in the following theorem:

Nyquist Stability Theorem. Assuming (by design) stability of the nominal closed-
loop system (i.e., Ay = 0) as shown in Fig. 7.2, the closed-loop system holds robust
stability against the multiplicative uncertainty described by Ay as shown in Fig.
7.5b, if and only if the loop transfer function, Hyy = Gy K = GK(1 + Ayy), does
not encircle the point (—1, jO) in the complex plane, V Gy € Iy

Figure 7.6 shows a graphical interpretation of the above Nyquist stability
condition, where H(jw) = G(jw)K(jw) is the nominal loop transfer function.
It can be seen from Fig. 7.6 that the stability condition in the above theorem is
equivalent to

|H(jo)Am(jo)| < |1+ H(jow)|, Yo €]0,00) (7.22)

or
T (jo)Am(jo)| <1, Vo €[0,00) (7.23)
where T'(jw) = H(jw)/[1 + H(jw)] is the nominal closed-loop transfer function.
Following an algebraic derivation (Skogestad and Postlethwaite 2005), equiva-

lent robust stability conditions can be derived, respectively, as

11+ Hy(jo)| #0, VGy eIy and o €[0,00) (7.24)

Il + Hu(jo)| >0, ¥YGyeIly and o € [0,00) (7.25)
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Fig. 7.7 The M — A w, e,
structure for robust stability A
analysis +

M

According to the robust control theory (Zhou et al. 1996), the M — A structure
can in general be adopted for robust stability analysis, which is shown in Fig. 7.7,
where M denotes a stable p x ¢ transfer function matrix, A € R H, describes the
process uncertainty, e.g., Ay or Ay shown in Fig. 7.5, w; and w, denote external
signals or disturbances added to the input(s) and output(s) of M. Correspondingly,
the following robust stability theorem is given not only for SISO systems but also
for MIMO systems:

Small Gain Theorem. Assuming M € RHy and letting y > 0, the intercon-
nected system shown in Fig. 7.7 holds robust stability for all A € RHy with
@) Al < 1/y if and only if [|[M(s)|oo < ¥ (D)]|A]l < 1/y if and only if

IM($)oo = v-

By letting y = 1, it can be seen by comparison with (7.23) that the small gain
theorem is essentially equivalent to the above Nyquist stability theorem for SISO
systems.

It should be noted that, based on the above robust stability theorems, a number
of robust stability conditions have been developed by assuming specific model
structures or uncertainty forms in the existing literature. Those not being used in
this monograph are omitted.

As far as robust control performance is concerned, the following criterion is
commonly used for assessment (Morari and Zafiriou 1989; Zhou et al. 1996;
Skogestad and Postlethwaite 2005)

IT(jo)Am(jo)| + [wsS(jw)| <1, Vo €[0,00) (7.26)
< s[up )[IT(jw)Am(jw)l + wsS(jo)[] <1 (7.27)
w€[0,00

where wy is a weighting function that should be chosen in terms of the set-point type
or the frequency range considered for control. For instance, wy = 1/s may be taken
for a step change of the set-point.

7.3 Review of the Internal Model Control (IMC) Design

The IMC design theory (Morari and Zafiriou 1989) has been widely recognized
and applied in control system design (Braatz 1995; Seborg et al. 2004; Skogestad



7.3 Review of the Internal Model Control (IMC) Design 251

Fig. 7.8 The internal model
control structure

y +
sp C

A4
Q

and Postlethwaite 2005). Figure 7.8 shows the standard IMC structure, where G
denotes the process, G the process transfer function model in frequency domain, C
the controller, and G4 load transfer function corresponding to a normalized input,
do(t) = 1.

Comparing Fig. 7.2 with Fig. 7.8, it can be seen that the IMC structure is
equivalent to the unity feedback control structure if the controllers satisfy the
following relationship,

c
1-GC

K =

(7.28)

For a stable process, the IMC controller design can be summarized as

1. Factorize the process model (G) into an all-pass portion (E;ap) and a minimum-
phase (MP) portion (G np). R

2. Choose a low-pass filter (F) such that /G holds bi-properness for imple-
mentation. For instance, the type I filter is prescribed for a step-type set-point,
ie.,

1

where A is an adjustable parameter and 11,y = deg{@mp}. The type 11 filter is for
a ramp-type set-point, i.e.,

B NmpAs + 1

3. The IMC controller is correspondingly obtained as

C =— (7.31)

Gump
which corresponds to the nominal closed-loop transfer function,

T =GyF (7.32)
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Note that the above IMC design can achieve the H, optimal performance
objective (i.e., ISE), min |e||,, for tracking the set-point or rejecting load distur-
bance from the process output side (denoted as d, in Fig. 7.8). Another important
merit is that there exists only a single adjustable parameter (A1) in the controller,
corresponding to the sole time constant of the nominal closed-loop transfer function
in (7.32). This parameter can be monotonically tuned to meet a good trade-off
between the control performance and robust stability of the closed-loop system.

Example 7.1. Consider a second-order process with time delay,

1

G=——¢7% 7.33
452 + 25 + 1e ( )

According to the above IMC method for the nominal case (G = é), there are
Gy =e> (7.34)

1

Gup = —————— 7.35
TP 452 4 25+ 1 ( )

Assume that the set-point is of step-type, it follows from (7.29) that

1

= 7.36
(As +1)° (7.36)

Substituting (7.35) and (7.36) into (7.31), the IMC controller can be obtained as

_4s2—|—2s+1

7.37
(As + 1)? 737

Accordingly, the nominal closed-loop transfer function can be derived from
(7.32) as

1 —3s

The corresponding time domain output response to a step change of the set-point
can be analytically derived from (7.38) as

0 t<3

0= N 739
0 1—(1+—tk3)e_lt>3 739

which indicates that there is no overshoot in the nominal set-point response and its
time domain specification can be quantitatively tuned. For instance, the time domain
specification, rise time, can be analytically derived from (7.39) as ¢, = 3.8897A + 3.
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Fig. 7.9 A step response for Example 7.1 using the IMC method

Assume that the rise time is required as #, < 7(s) for implementation. It can be
determined from the above formula that the control parameter should be limited to
A < 1.0284. Taking A = 1 and adding a unity step change of the set-point and a

= 30(s),

step load disturbance with a magnitude of 0.2 to the process input at ¢t =
the output response is shown in Fig. 7.9. It is seen that the IMC method results in

smooth output response with no overshoot, while satisfying the required rise time
(y( = 7) = 0.9). Moreover, there is no steady output offset in the presence of the
load disturbance.

It should be noted that the standard IMC structure cannot be directly used for
the control of an integrating or unstable process (Morari and Zafiriou 1989). For
such a process, a transformation to the unity feedback control structure is required
for implementation, subject to the asymptotic constraints associated with controller
parameterization for holding the internal stability of the closed-loop system.

The internal stability of a closed-loop system is in theory defined as that the
transfer functions relating all possible inputs to the outputs of the system are
maintained to be stable (Zhou et al. 1996). In industrial process control, the standard
IMC structure shown in Fig. 7.8 holds internal stability in the nominal case (G = G)

if the following transfer function matrix is maintained to be stable,
Ysp

y GC G G(1-GC) 1-GC :
u|l=| ¢ 0o -GC —C o (7.40)
y GC G -G*C -GC 0

where i denotes an external signal that enters into the controller output and then

feeds through both the process (G) and its model (G).
It is seen from (7.40) that the second column elements of the transfer matrix

remain uncontrollable, which implies that the standard IMC structure cannot hold
internal stability for an integrating or unstable process when there exists an external

disturbance like u.
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In contrast, the unity feedback control structure shown in Fig. 7.2 holds internal
stability in the nominal case if the following transfer function matrix is maintained
to be stable,

GK G 1

1+GK 1+-GK 1+GK ||
[y} | - " d; (7.41)
u K ~GK -K

0

1+GK 1+GK 1+ GK

It is seen from (7.41) that the controller is included in all elements of the transfer
matrix and, therefore, can hold the internal stability of the closed-loop system if it
is designed to maintain the stability of each element in the transfer matrix.

For integrating and unstable processes, the following constraint is required for
controller design in the unity feedback control structure to hold the internal stability
(Morari and Zafiriou 1989),

Iim(1-7)=0, i=1,2,...,m (7.42)
S=>pi
where p; (i = 1,2,...,m) are closed-RHP poles of such a process.

7.4 Enhanced IMC Design for Load Disturbance Rejection

Load disturbance rejection is one of the most important issues in the context of
industrial process control. The standard IMC method can be used for controller
tuning, which leads to the H, optimal performance, i.e., the minimization of ISE,
for tracking the set-point or rejecting a step-type load disturbance entering into the
process from its output side (denoted by d, in Fig. 7.8). In engineering practice, it
is often encountered that load disturbance enters into the process from its input
side, denoted by d; in Fig. 7.8. Moreover, in many industrial applications, load
disturbance (c?o) with a transfer function (G4) can be transformed or lumped into
d; to deal with (Shinskey 1996; Goodwin et al. 2001; Seborg et al. 2004). It can be
seen from Fig. 7.8 that the transfer function relating d; to y is

Hy=G(l—T) (7.43)

where T is the closed-loop transfer function (i.e., the complementary sensitivity
function).

It is seen from (7.43) that the load disturbance response is unavoidably subject
to the influence of the process time constant(s), if the standard IMC method is used
to only optimize 7" for tracking the set-point or rejecting the output side disturbance
(d,), which corresponds to Hy, = 1 — T. For a slow process with a large time
constant, the recovery trajectory of the disturbance response is subject to “a long
tail” (i.e., sluggish load disturbance suppression), as early reported by Horn et al.
(1996).
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To reduce the influence arising from the process time constant(s) to the load
disturbance response, it is of course ideal to eliminate the corresponding pole(s)
from the characteristic equation of (7.43). It is thus expected that 1 — 7T (i.e., S),
rather than T, has the corresponding zero(s) to cancel the pole(s) of G, such that
the characteristic equation is governed only by the time constant of 7 (i.e., an
adjustable parameter in the IMC filter). Using an idea of eliminating the slowest
pole of G, Horn et al. (1996) suggested an improved IMC filter design for some
delay-free processes and first-order processes with small time delay that can be
properly approximated by the first-order Padé expansion. Further extended IMC-
based PID tuning methods were presented by Shamsuzzoha and Lee (2007) for
improving closed-loop disturbance rejection performance.

For an industrial process modeled with time delay, the numerator in 1 — T
is unavoidably involved with time delay factor(s), so it cannot be analytically
factorized to make exact zero-pole cancelation with the denominator of G. The
following asymptotic constraint(s) is, therefore, proposed to realize the above idea,

lim (1-7)=0, i=12,....m (7.44)

s—>—pj

where p; is the reciprocal of the process time constant(s) and m is the corresponding
number.

Based on the widely used low-order process models of FOPDT and SOPDT, a
modified IMC design is detailed in the following two subsections to improve load
disturbance rejection for stable processes.

7.4.1 For FOPDT Stable Processes
Given an FOPDT process model, G (s) = kpe_es / (rps + 1), the conventional IMC

filter should be configured as

1
As + 1

Fivic-1 = (7.45)

where A is a user-specified time constant, i.e., an adjustable parameter. Correspond-
ingly, the nominal closed-loop complementary sensitivity function is obtained as

e—@x

As +1

Timc-1 = (7.46)

To improve the load disturbance response, the conventional IMC filter in (7.45)
is here rectified as

as + 1

—_— 7.47
(Aes + 1)2 747

Frive—1 =
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where o is an additional parameter used to satisfy the following asymptotic
constraint

lim (1-T7)=0 (7.48)
s—>—1/1,
Accordingly, it follows that
(as + 1)e™%
Trivme—1 = ———— 7.49
RIMC—1 s 1 1) (7.49)

Substituting (7.49) into (7.48) yields

_ A Yes
a=1|1— T_p_l e w (7.50)

It is thus seen that « is a function of A¢. So, there is essentially a single adjustable
parameter, Ay, in the proposed IMC filter. R

Using the nominal closed-loop relationship, 7 = GC, the modified IMC
controller is obtained as

(s + 1) (tps + 1)
kp(Aes + 1)

Crivc-1 = (7.51)

Remark 7.1. Note that Crimc—1 = 1/kp when A; is tuned as 7, (or 7q of Gg),
for which Trpe—1 becomes the same as G (or Gy). When A is tuned larger
than 7, (or 1q), the load disturbance response will be slower than G (or Gy).
Hence, it is suggested to tune A; < 7, for load disturbance rejection, unless it is
intentionally violated to obtain sustainable closed-loop stability for accommodating
process uncertainties. o

By substituting the FOPDT process model and (7.49) into (7.43) and taking an
inverse Laplace transform, the time domain output response to a step change of d;
can be derived as

0. t <0,
ko (1 — e_[T), 0 <t <26;
_ _6
Yai (1) e T+ (E—De _i=2
kp l—e @ + P—(l _ 29) e M, t > 26.

At
(7.52)
Note that yg4(¢) increases monotonically in the time interval ¢ € (6,20] and

dyy (t)/dt | =29 7# 0. The output peak value should be reached in the time interval
(26, 00). The time to reach the disturbance response peak (DP) can be derived by
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solving dy, (t)/dt = 0 for the final phase as

top = 20 + 5 (7.53)
ot (i—g)e ®

Substituting (7.53) into (7.52) yields

—%ffp
A _0 ),
ya, (top) = kyp [1 + (—f — 1) e fp} o HE)TT (7.54)
Tp

To make clear the tuning relationship between A; and DP, the following proposi-
tion is given.

Proposition 7.1. For an FOPDT process, the DP of load disturbance response (y4;)
increases monotonically with respect to A.

_8 _6
Proof. Letting A = 1 + (? — 1) e »and B = 1 — e ™, the first derivative of
P
va, (tpp) shown in (7.54) can be derived as

dy,, (top) _ l&eg—%q 1 B
d),f Tp

Owing to the fact that A > B > 0, there exists dyy, (fpp) /d A¢ > 0. Hence, the
conclusion in Proposition 7.1 follows. O

Note that the above analysis of DP can be utilized to assess the maximal
output deviation from the set-point in the presence of load disturbance in practical
applications.

Define the recovery time, #., as the time from the moment that a step change
of load disturbance is added to the process to the moment that the load disturbance
response recovers into the error band of £5% that is usually specified for set-point
tracking in practice. It follows from (7.52) that

_b te—20 Ag _6 fre—26
l—e » + 1+ — - e » | =0.05e * (7.55)
Af ‘L'p

Obviously, (7.55) is a transcendental equation, which cannot be solved analyti-
cally. Numerical computation based on the Newton—Raphson algorithm is therefore
explored to disclose the quantitative tuning relationship between A¢ and f.. By
sweeping over the ratio ranges of A¢/7, € [0.1,2.0] and 6/7, € [0.1, 2.0], numerical
results based on the scaled recovery time, t/kp, are plotted in Fig. 7.10. Note that
7, = 1 is assumed to obtain the scaled recovery time shown in Fig. 7.10. Given
7, # 1, the recovery time can be graphically read as f,e = 7 tre |Ip:1, in view of that
tre/ T and tre|1p=1 correspond to the identical solution of A;/t, in (7.55).
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t /k

Fig. 7.10 The recovery time for an FOPDT process

Remark 7.2. Though the mathematical Lambert W function, defined as the multi-
inverse function for w — we®, can be employed to solve (7.55) to give an “ana-

lytical” formula, t,, = 26 + )Lf[—W(—e_%/B) — A/B], where A = 20(1 — e_%)
and B = 20[1 + (Af/ T, — 1) e ], it may lead to an incorrect solution because the
principle branch value of the Lambert W function is generally given by commercial
symbolic software packages (Hwang and Cheng 2005). Note that in the above
formula, —W(—e_% /B) — A/ B should be positive since #,, > 26, but this formula
may give a negative value because W(—e_%/B) > W(—Ae_%/B) = —A/B is
obtained from the principle branch of the Lambert W function. According to the
numerical results shown in Fig. 7.10, the secondary real branch of the Lambert W
function should be used to compute f,, from the above formula. S

According to the standard M — A structure for robust stability analysis (Zhou
et al. 1996), the transfer function relating the input to the output of the process
multiplicative uncertainty block can be derived in terms of the IMC structure shown
in Fig. 7.8, which is exactly equivalent to the closed-loop complementary sensitivity
function, T'. Hence, it follows from the small gain theorem that the perturbed closed-
loop system described with the process multiplicative uncertainty holds robust
stability, if and only if

1
loo < 17—
A e

T (7.56)

where A = (G — é) / G denotes the process multiplicative uncertainty.
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Note that for a SISO system, there exist |7 ||, = sup (|7 (jw)|) and [|A|l, =
sup (JA(jw)|), Yo € [0,+00). Denote |A|,, = sup (|A(jw)|) hereafter for the
convenience of analysis.

It follows from (7.49) that

Votw? +1
T(j = — 7.57
TGOl = iy (757)
The first derivative can be obtained as
T(j o (a? =212 — o?X20?
d|T(jo)| _ o (o? =24} —a’Aje?) 7.58)

dw (Afw? + 1)2 ?w?+1

It can be verified by solving d |T(jw)|/dew = 0 that ® = 0 is the unique
extreme point to reach sup (|7 (jw)|) for Ay > a/+/2. That is, sup (|T(jw)|) =
|T(0)| = 1.

For 0 < Af < a/+/2, there are two extreme points w; = 0 and w, =
Vo2 — 222/ (ay).

Substituting the latter into (7.57) yields

O12

2/%‘,/0[2 — 21%

It can be concluded from a? — 242 > 0 that |T'(j )| > 1. Therefore, it follows
that

|T(jwn)| =

1, At > /N2

sup (|7 (jw)|) = o? 0 < <a/vi (7.59)

ZAf,/ozz — 2/\%

To make clear the robust stability constraint to tuning A¢, the following proposi-
tion is given:

Proposition 7.2. There is only a positive real root, Ay = [2 — lew 4+

2
2
\/(2 - %e%) + 4(e% — 1)],f0r the equation of Ay = Efp[l _ (i, _ 1>2e_%],

Ve > 0, which increases monotonically with respect to ¢.

2 _6
Proof. Substituting o = ‘L’p[l - (i‘—; - 1) e TP] into Ay = e yields

A 21 e o
(_f — 1) + —ew L _ew = (7.60)
e T
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Then it can be derived from (7.60) that there exist two real roots

1 & 1 o
Af—1,2=% Z—Ze’P:I:\/(Z—geTP) —|—4< ZP—l) >0

In view of that A; is an adjustable parameter of C, the negative real root should
be disregarded.

I 62 i
Define a function with respect to ¢, f(8)=2—£€ » 4 \/<2—%e TP) +4 (e » —l),

the first derivative of f(¢) can be derived as

[}
d 1 2 2—165
f(g)z—efv 1+ >0

B RGO R E

Hence, f(¢) increases monotonically with respect to &, and so is for A with
respect to ¢. This completes the proof. O

For A > &/~/2, it can be solved using Proposition 7.2 that

A > %[2 V2et + \/(2—«/§ef)2+4(e‘3—1)} (7.61)

Accordingly, it can be seen from (7.59) that once A is increased into this range,
the upper bound of |T'(jw)]| is fixed as unity, such that |A|,, < 1 must be required
for the closed-loop stability, regardless of the tuning of Ay in this range. In other
words, tuning A¢ in this range will not affect the permissible upper bound of |A|,,.

For 0 < A < &/ +/2, it follows from Proposition 7.2 that

Af < % |:2—x/§efgp + \/(Z—ﬁefp)2+4(ei —I)J (7.62)

Combining (7.56) with (7.59), the robust stability constraint can be determined as

o? 1

<
225y a2 —222  1Blm

(7.63)

It follows from solving (7.63) that

(7.64)
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Denote

1—/1— A2 1+ /1-]A]
fﬁ'y: e —

2

Tp 1 ¢ 1 & 2 A
Pl e 2_Zew 4lewr —1 < As
2 ne +J( ne ) - (e ) :
7 1 o 1 2)\2 0
<2 la_Zew 4 (2= —ew +4(e’P—l> (7.65)
2 14 14

Note that < 1/+/2 and y > 1/+/2. Comparing (7.62) and (7.65), one can
obtain the robust tuning constraint,

Tp 1 & 1 & 2 A
—|2——e® + (2——efp) +4(eTP—1> < Ag
2 n n

<%|:2—«/§efp+ \/(2—«/§efi)2+4(ei—1)J (7.66)

Remark 7.3. In the presence of the process gain uncertainty, Ak,, the robust
stability constraint of (7.56 ) is equivalent to the Nyquist stability criterion,
|T(jow)| < 1/]|A(jw)|, since Ak, € R. However, the above robust tuning constraint
of (7.66 ) may be somewhat conservative for other process uncertainties. For
instance, the model uncertainty arising from a variation of the time constant or
time delay is far less likely to result in a phase change over —m in practice, so
sup (T (jw)|) < 1/|A],, is not necessary if |T'(jw)| < 1/|A(jw)] is satisfied for
w € [0, 00). o

7.4.2 For SOPDT Stable Processes

Consider an SOPDT process described generally in the form of

2
kwn —0Os

—_— 7.67
52+ 2Ewys + a)ge (7.67)

G, =

where w, denotes the natural frequency and £ is the damping ratio.
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According to the IMC theory, the conventional IMC filter should be configured as

1

— 7.68
(As + 1)? (7.08)

Fve— =

To improve the load disturbance response, the conventional IMC filter shown in
(7.68) is rectified as

2
as” + Bs + 1
Frive—2 = —ﬂ4 (7.69)
(AfS + 1)
where o and § are utilized to satisfy the following asymptotic constraints

lim (1-7)=0 (7.70)

S§—>—p1
lim (1-7)=0 (7.71)

S§—>—p2

where

wn<$—j\/1—§2),0<§<1; wn(§+j,/1—§2),0<g<1;
» P2 =

(,()n(ég-—v%‘z—1>, EZl wn(é"_\/fi‘.z_l), ng

Note that —p; and —p, are the two poles of G,. When & = 1, there exists

P1 = P2 = @y, 0 (7.70) becomes the same as (7.71). Another asymptotic constraint
should therefore be imposed to derive « and B, i.e.,

P =

d
lim —(1—-T)=0 (7.72)
s=>—p1 ds

Accordingly, the nominal closed-loop complementary sensitivity function can be
derived as

(s> + Bs + 1) e
(Aes + 1)*

TrRimc—2 = (7.73)

When £ # 1, substituting (7.73) into (7.70) and (7.71), respectively, one can obtain

=002 pode — 1D = pre P (pi s — 1)* —
oo Pre (p2As = 1)" = pe™ P (p1As—1)" — p1 + p2 (7.74)

p1p2(p2— p1)

g = PP (pahe = ' = pie” " (prde =)'~ pi + 13 (7.75)
p1p2(p2— p1)
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When £ = 1, substituting (7.73) into (7.70) and (7.72), respectively, one can obtain

o« = % [1+ ¢ @nie = 17 (1 4+ 048 + 3okt — 02627 | (7.76)

n

B = L [2 + e (waht — 1)* (2 4+ 0nb + 200A¢ — w,%exf)] (7.77)

n

Hence, it is seen that both o and f are functions of A;. So, there is still a single
adjustable parameter, Ay, in the proposed IMC filter. Correspondingly, the controller
can be derived as

(as® + Bs + 1) (s* + 26wns + @)
kw2(Aes + 1)*

CriMC—2 = (7.78)

By substituting (7.67) and (7.73) into (7.43) and taking an inverse Laplace
transform, the time domain output response to a step change of d; can be derived
from

k 2,—0s 2 1
o) = L7 @n® [1 _w At e—%} (7.79)
5 (52 4 26wps + w?) (Ags + 1)

In view of that DP cannot be analytically solved from (7.79), numerical guide-
lines are explored to disclose the quantitative tuning relationship between DP and Ay.
It can be verified from (7.79) using a scaled complex variable, s = s/ (§w,), that,
given the values of A¢ (Ew,) and 6 (Ew,), DP/k is determined only by &, regardless
of w,. By sweeping over the ranges of A; (Ew,) € [0.2,2] and 6 (§w,) € [0.1,2],
numerical results based on three cases of £ = 0.5, § = 1.0, and § = 1.5 are plotted
in Fig. 7.11, respectively. It can be seen that DP/k becomes larger when & becomes
smaller. Figure 7.11a indicates that the admissible tuning range of A¢ will be severely
narrowed when £ is small. Figure 7.11b, ¢ show that DP/k increases monotonically
with respect to As (Ew,) and 6(Ew,), respectively. Note that DP for other values of
& can be quantitatively evaluated using a linear interpolation method.

In the case where the load disturbance c?o affects the process output with a first-
order transfer function as usually modeled for simplicity in practice,

kq

=< ot (7.80)
a8 + 1
it can be derived from Fig. 7.8 that
28 Gy(1-T) (7.81)

I W

0
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Fig. 7.11 The disturbance response peak for an SOPDT process
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To reduce the influence arising from the time constant of G4 to the load
disturbance response, the IMC filter is rectified accordingly as

as + 1

Frive—3 = ——— (7.82)
(Aes +1)°
where « is utilized to satisfy the following asymptotic constraint
lim 1-7)=0 (7.83)

s—>—1/1q

Note that the closed-loop complementary sensitivity function is therefore ob-
tained as

as+1  _,

_est L 7.84
O+ 17 (7:89)

Trivc—3 =

Substituting (7.84) into (7.83) yields

3
o=1 [1 + (i—df — 1) efd:| (7.85)

Accordingly, the IMC controller can be derived as

(as + 1) (s2 + 28wy + a)g)
kw2(Aes +1)°

Crivc—3 = (7.86)

It can be seen from (7.84) and (7.85) that DP/k4 is related to A¢/7g and 6/ 1y,
regardless of the time delay, 64. By sweeping over the ranges of A¢/t4 € [0.2, 2] and
0/t4 € [0.1, 2], the numerical tuning relationship is plotted in Fig. 7.12.

In the controller design for rejecting a load disturbance entering into the process

from its input side, to ascertain the robust tuning constraints of A, it follows from
(7.73) that

\/(azwz _ 1)2 + f2w?

T(jw)| =
|T(jo)| (k%a)z—i—l)z

(7.87)

The first derivative can be obtained as

d|TGo) _ o [Za(awz—l)wz (20 + 1)

do (Afw? + 1)3 \/(0[(4)2 —1)> 4 p2w?

— 4A%\/ (@w?—1)* + ﬂ2w2] (7.88)
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Fig. 7.12 The disturbance response peak for a first-order load disturbance transfer function

Obviously, @ = 0 is an extreme point corresponding to |7(0)| = 1. For w # 0,
it follows from d | T (jw)| /dw = 0 that

20727 x% + [3AF(B* — 200) — 20%| x + 4A] 4+ 20 — B =0 (7.89)

where x = 2. Denote Ay = 20°A%, By = 34} (B? — 2a) — 2a%, and Cp = 447 +
20— 2, the quadratic discriminant of (7.89) can be expressed as 8o = B3 —44,Co.
Correspondingly, a robust stability constraint to the tuning of A¢ is given in the
following proposition.

Proposition 7.3. For an SOPDT process described in (7.67 ), the closed-loop
system shown in Fig.7.8 holds robust stability if and only if sup(|T (jw)|) < 1/|A|,,
where

max {1, [T(jwi)[} 8o > 0,Co < 0;
maX{l, |T(ja)1)|, |T(]w2)|} 80> 0,By <0,Cy > 0;

max{1,|T(j ;T?g)} S0 = 0, By < 0 ’

1 else.

sup (IT(jo)|) =
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—Bo + /B2 — 44,C, —By— /B2 —440C,

= d =
w1 4, and w; 2o

Proof. There is a classification of six cases for deriving sup (|7 (jw)|). In the above
expression, §o > 0 is in cases (i) and (ii). Case (iii) is “6op = 0, By < 0.” Case
(iv), “else,” includes three subcases, i.e., “6p < 0,” “§g > 0, By > 0,Cy > 0,” and
“8p = 0, By > 0,” which lead to no positive real solution of (7.89).

For 6 > 0, there are two real roots for (7.89), i.e.,

—By + /B2 —44,C,

2Ao

X12 =

If Cy < 0, i.e., case (i), it can be seen that /8§y > | Bo|, corresponding to x; > 0
and x, < 0. Accordingly, there is only one positive real root of x = ?, i.e.,
w1 = 4/X1. So, sup (|]T(jw)|) can be reached at @ = 0 or w;. In case (ii), it can
be seen that /3y < | Bo|, corresponding to x; > 0 and x, > 0. Accordingly, there
exists two positive real roots of x = ?, ie, o = /x1 and @2 = /x3. So,
sup (|7 (jw)|) can be reached at ® = 0, w; or w;.

In case (iii), it can be seen that (7.89) has a dual positive rootat x = —By/ (2A4o).
Correspondingly, sup (|7 (jw)|) can be reached at @ = 0 or /—By/ (2A4p).

In the case where 6y < O, there is no real roots for (7.89) according to the
solvability of a linear quadratic equation. Thus, sup (|7 (jw)|) can only be reached
at w = 0. This conclusion can be similarly drawn for the other two subcases of
case (iv).

Hence, using the small gain theorem, the conclusion in Proposition 7.3 follows.

O

In the controller design for rejecting c?o from the process output side with a first-
order transfer function, it follows from (7.84) that

. alw? +1
Tjo)=—= (7.90)

G0+ 1)

The first derivative can be derived as
d|\T(j a? (Mo +1
NGO = @ - (i ) -3 Valw? + 1
dw (Mw? +1)° o’w? + 1

Note that @ = 0 is an obvious extreme point corresponding to |7°(0)] = 1.

A robust stability constraint to tuning A¢ is given in the following proposition.
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Proposition 7.4. For an SOPDT process described in (7.67), the closed-loop
system shown in Fig.7.8 for rejecting load disturbance from the process output side
with a first-order transfer function holds robust stability if and only if|A|,, < 1.

Proof. It follows from d |T'(jw)| /dw = O that
o (Mo? +1) =32 (P’ +1) =0 (7.91)
The solution of (7.91) can be derived as

) o? — 3/\%
w? = TQA% (7.92)

To obtain a positive solution of w, it requires that

o
Af < — 7.93
£ < \/5 ( )

The extreme point can thus be derived as

Vo2 —3A2
w = (7.94)

T V2ak
Substituting (7.94) into (7.90) yields
3
IT(jw)| = m (7.95)
Let g (A¢) be a function with respect to Ay,
g (k) = 333 (@ — A2) (7.96)
The first derivative of g (A¢) can be derived as
g (Ap) =3V3(a? —323) (7.97)

Combining (7.93) with (7.97), it can be seen that g’ (A¢) > 0. Thus, A = oz/ﬁ
is the unique extreme point to reach the maximum of g (1y), i.e.,

2
X — N R — 143
max {g (Af)} = 3+/3 7 |:a (ﬁ) :| 2a (7.98)
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Substituting (7.98) into (7.95) yields
|IT(jw)| <1, Yo >O0.

Hence, sup (|7'(jw)|) is reached only at w = 0, i.e., sup (|7 (jw)|) = 1.
Using the small gain theorem, one can conclude that sup |A(jw)| < 1 is required
to hold the closed-loop stability. O

Remark 7.4. 1t is implied by Proposition 7.4 that tuning A¢ does not affect the
closed-loop robust stability since sup (|7 (jw)|) = 1 for Ay € (0, 4+00). Hence,
tuning A¢ can be purely focused on the closed-loop performance for rejecting such
load disturbance. o

7.5 Proportional-Integral-Derivative (PID) Tuning

In the unity feedback control structure shown in Fig. 7.2, a PI- or PID-type controller
is widely used in practical applications. Here, an IMC-based PID tuning method is
given accordingly.

From the equivalent relationship between the IMC structure and the unity
feedback control structure, as shown in (7.28), it can be easily verified from the
IMC controller design, e.g., (7.31), (7.51), or (7.78), that

lim K(s) = (7.99)

s—0

This indicates that an IMC-based controller in the unity feedback control
structure has a property of integral, which can thus eliminate the output error with
respect to the set-point.

Therefore, one can approximate the above IMC-based closed-loop controller into
a PID form for implementation. The analytical approximation method based on the
mathematical Maclaurin series, as developed in the reference (Lee et al. 1998; Zhang
et al. 2002; Liu et al. 2005), is presented here for simplicity. Let K(s) = M/s, it
follows that

K(s) = 1[M(O)+M(O) + ;(O) 24 } (7.100)

Obviously, the first two terms in the above Maclaurin expansion can constitute a
PI controller, and the first three terms can constitute a PID controller.
Generally, a PID controller is in the form of

1 N
K=ke+—+—2
10 RS + 1

(7.101)
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where k¢ denotes the controller gain, 77 the integral constant, tp the derivative
constant, and tf a filter constant that is usually taken as 7z = (0.01 ~ 0.1)1p
for practical implementation.

Comparing (7.100) with (7.101), the PI or PID parameters can be derived as

ke = M'(0)
= 1/M(0) (7.102)
™ = M"(0)/2

Remark 7.5. Based on a low-order process model of FOPDT or SOPDT, an IMC-
based PI or PID controller can also be analytically derived by simply approximating
the time delay with a first-order Taylor or Padé expansion. Such an exercise may
save computation effort but at the cost of an inferior approximation accuracy,
compared to the PID formula given in (7.102). o

According to the small gain theorem (Zhou et al. 1996), the closed-loop system
shown in Fig. 7.2 holds robust stability in the presence of the process multiplicative
uncertainty (A), if and only if

GoK(jo) | _ 1

5 GGwKGe)| “aGey S 0

Hence, given a specified norm bound of A(jw) in practice, an admissible tuning
range of the essentially single adjustable parameter, A (or A), in the above PI or PID
controller can be determined by observing whether the magnitude plot of the left-
hand side of (7.103) is below that of the right-hand side for @ € [0, co). For practical
application, it is generally suggested to initially take A = 6 (or Ay = 6). A desirable
trade-off between the closed-loop disturbance rejection performance and its robust
stability can be conveniently reached through monotonically tuning A online.

Alternatively, one can use the robust stability constraint in (7.103) to evaluate an
admissible upper bound of | A(jw)| to a fixed tuning of A (or A¢), based on the above
controller design.

7.6 Illustrative Examples

Examples 7.2 and 7.3 are given to demonstrate the advantage of the modified IMC
design for load disturbance rejection for first- and second-order processes with slow
dynamics. Example 7.4 is given to illustrate the effectiveness of the presented PID
tuning method for disturbance rejection for a high-order process.

Example 7.2. Consider a slow industrial process modeled in an FOPDT form of
6—305

G=——
100s + 1
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A conventional IMC filter should determine the controller shown in Fig. 7.8 for
load disturbance rejection as

100s + 1

C =
IMC — 1 Ts + 1
Using the proposed IMC design formula in (7.51), it follows that

(as + 1)(100s + 1)
(Ass + 1)?

CriMC—1 =

where & = 100[1 — (0.01X; — 1)%e~*?].

For comparison, adding a unit step change for d; as shown in Fig. 7.8 to the
process and taking A = Ay = 40, the corresponding output response is shown in
Fig. 7.13. It is seen that obviously improved load disturbance rejection is obtained
by the proposed IMC filter. The conventional IMC filter has led to a long “tail” in
the load disturbance response, due to the influence of the slow time constant of the
process. To obtain the same DP with the proposed IMC filter, A = 20 is required
in the conventional IMC filter, as shown in Fig. 7.13, but the recovery time is still
about 50% longer.

Assume that there exists 30% error in the process modeling. The worst case is
that the process time constant is actually 30% smaller and the time delay 30% larger.
The corresponding output response is shown in Fig. 7.14, which indicates that the
proposed IMC filter performs better against the severe process uncertainties.

Example 7.3. Consider the second-order process studied by Skogestad (2003),

-s

e
= anr D+

Skogestad (2003) derived an IMC-based PID controller, C = 10(0.125/s + 1)
(2s 4+ 1), to optimize the system performance against load disturbance, of which
the adjustable parameter, t. = 1.0, corresponds to A = 1.0 in the conventional IMC
filter shown in (7.68). The IMC controller in Fig. 7.8 should be configured as

(205 + 1) (25 + 1)
(As + 1)?

Cnvc-2 =
Using the proposed IMC filter shown in (7.69), it follows from (7.74), (7.75), and
(7.78) that

(s> +Bs +1)(20s + 1) 2s + 1)
(Ass + 1)*

where @ = 2.6957 (0.5A; — 1)* — 42.2769 (0.05A; — 1)* + 40, B = 0.1348
(0.5 — 1)* —21.1384 (0.051; — 1)*422.

CRIMC—Z =
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0.4 R —— Proposed (A=40)
I/ kY ---- Conventional (A=40)
\ .
03k Y i Conventional (A=20)
AN
- \\
3
"5 02 \\
O \\
0.1}
0 ! ! T~-~7=:5@ .
0 100 200 300 400 500 600 700 800
Time (sec)
0.2 —— Proposed (A+=40)
0 -=-=-- Conventional (A=40)
------- Conventional (A=20)
< —0.2 3
>
» —04r
£ 06
c
(o)
O -08
-1t
-1.2

0 100 200 300 400 500 600 700 800
Time (sec)

Fig. 7.13 Nominal output responses of Example 7.2

For comparison, adding a unit step change for d; as shown in Fig. 7.8 to the
process and taking A = Ay = 1.0, the output response is shown in Fig. 7.15.
It is again seen that apparently improved load disturbance response is obtained
using the proposed IMC filter. To obtain the same DP with the proposed IMC
filter, A = 0.09 and 7. = 0.15 are required in the conventional IMC filter and the
IMC-based controller of Skogestad (2003). It is seen that the recovery time cannot
be efficiently reduced by using the conventional IMC filter, and in contrast, the
controller of Skogestad (2003) turns out a slightly oscillatory response. Moreover, it
can be verified that, if the process time delay is actually 20% larger and the slower
time constant (t; = 20) is 20% smaller, the proposed IMC filter can maintain well
the closed-loop stability, whereas the conventional IMC filter with A = 0.09 cannot
hold the closed-loop stability any longer, and the IMC-based controller of Skogestad
(2003) with 7. = 0.15 will give very oscillatory response.

To demonstrate the achievable performance for rejecting load disturbance from
the process output side (denoted as c?o in Fig. 7.8) with a slow dynamics, e.g., Gg =
e72/ (10s + 1), the proposed IMC filter shown in (7.82) should be used to design
the controller as
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Fig. 7.14 Perturbed output responses of Example 7.2

(s +1)20s+1)(2s + 1)
(Ass + 1)°

Crimc—3 =

where o = 10[1 + (0.1A¢ — 1)38_0'1]. Assume that there exists 50% error in
estimating the time constant of the load disturbance transfer function. The worst
case is that the time constant is actually 50% smaller. Note that the time delay,
64 = 2, in the load disturbance transfer function does not affect the disturbance
response performance as discussed in the filter design procedure in Sect. 7.4.2. By
adding a unit step change for 30, and taking A = Ay = 1.0, A = 0.45, and . = 0.6
for comparison, the output response is shown in Fig. 7.16. It is seen that the proposed
IMC filter results in apparently improved disturbance rejection, given the severe
modeling error of the time constant in the load disturbance transfer function.

Example 7.4 Consider a high-order process studied by Huang et al. (2005),

1
(452 +28s+ 1) (s + 1)°

G(S) — —2.2s
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Fig. 7.15 Nominal output responses of Example 7.3

Based on a closed-loop relay feedback test for the frequency response estimation,
Huang et al. (2005) gave a PID controller, C = 0.314(1 + 1/2.59s + 2.103s)/
(0.1s + 1), which has shown evident improvement for load disturbance rejection,
compared to other model-based PID tuning methods including the standard IMC
method.

Based on an SOPDT model, G, —» = 0.9934¢™*3%/ (5.5069s + 3.4095s + 1),
which is obtained using the identification algorithm presented in Sect. 2.5.2 in terms
of a closed-loop step test with the above PID controller (see Example 2.12), the
controller formulas of (7.74), (7.75), (7.78), (7.100), and (7.102) give the PID
controller parameters, kc = 0.3717, 7y = 9.2698, and tp = 0.6079, by taking
A = 2.25 for comparison with Huang et al. (2005). By adding a unit step change
for the load disturbance to the process input, the load disturbance response is shown
in Fig. 7.17. It is seen that the recovery time is reduced almost by 25% in terms of
the same disturbance response peak.
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Fig. 7.16 Output responses of Example 7.3 in the presence of a slow load disturbance
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7.7 Summary

For the control of SISO processes, the widely used output error criteria, control
performance specifications in the time and frequency domains, and robust stability
conditions have been introduced for reference. Subsequently, a brief overview of the
IMC theory (Morari and Zafiriou 1989) has been given for control system design and
controller tuning, along with an illustrative example for application.

For load disturbance rejection, which is a common concern in industrial process
operation, a modified IMC design (Liu and Gao 2010) has been presented for
improving the disturbance rejection performance for slow processes with large
time constant(s). The key lies with countering the influence from the slow time
constant(s) of the process or load disturbance by establishing asymptotic canceling
constraints through the closed-loop transfer function. Based on the widely used low-
order process models of FOPDT and SOPDT, the corresponding controller formulas
have been analytically developed, together with the quantitative tuning guidelines
and robust stability constraints. In view of the fact that a PI- or PID-type controller
is widely applied in engineering practice, an IMC-based PID tuning method has
been presented for practical application.

Three examples from existing references have been used to demonstrate the
effectiveness and merits of the enhanced IMC design and PID tuning method, based
on a low-order model of the process or the inherent load disturbance.
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Chapter 8
Two-Degrees-of-Freedom (2DOF) Control
of SISO Processes

8.1 The Advantage of a 2DOF Control Scheme

A two-degrees-of-freedom (2DOF) IMC structure is shown in Fig. 8.1, where G

denotes the process, G is the process transfer function model in frequency domain,
C is a feedforward controller, C; is a feedback controller, and GAd is the load
disturbance transfer function corresponding to a normalized input, do(¢) = 1. In

the nominal case (G = E}), it follows that

Y _ G, 8.1)
;
Y _¢
2 =G(1-GO) (8.2)
RAYE
= = Gall - GG, (8.3)

It is seen that C; is responsible for the set-point tracking, and Cy is for the load
disturbance rejection, such that both the set-point tracking performance and load
disturbance rejection performance can be separately tuned or optimized. Compared
to the standard IMC structure shown in Fig. 7.8, where the IMC controller is
responsible for both set-point tracking and load disturbance rejection, the advantage
of a 2DOF control structure is evident, in particular, for rejecting various load
disturbances that are different from the set-point in the signal type (Morari and
Zafiriou 1989; Skogestad and Postlethwaite 2005).

Note that even for the same type of set-point and load disturbance, the water-
bed effect between the set-point response and the load disturbance response will
become very severe for an integrating or unstable process in the unity feedback
control structure (Zhou et al. 1996). Since the standard IMC structure cannot hold
internal stability for an integrating or unstable process, as discussed in Sect. 7.3,

T. Liu and F. Gao, Industrial Process Identification and Control Design: Step-test 279
and Relay-experiment-based Methods, Advances in Industrial Control,
DOI 10.1007/978-0-85729-977-2_8, © Springer-Verlag London Limited 2012
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Fig. 8.1
Two-degrees-of-freedom
IMC structure

Cy

the standard 2DOF IMC structure shown in Fig. 8.1 can only be used for stable
processes to guarantee the internal stability for system operation. A number of
2DOF control schemes have therefore been developed for integrating and unstable
processes (Huang and Chen 1997; Tian and Gao 1999; Kwak et al. 2001; Chien
et al. 2002; Yang et al. 2002; Zhong and Mirkin 2002; Zhong and Normey-Rico
2002; Normey-Rico and Camacho 2002, 2009; Hang et al. 2003; Tan et al. 2003;
Kaya 2004; Zhang et al. 2004, 2008; Liu et al. 2005a, b; Lu et al. 2005; Garcia et al.
2006; Garcia and Albertos 2008; Rao and Chidambaram 2007).

For clarity, a 2DOF IMC design based on a classification on different cases of
load disturbance entering into a stable process will be first presented. Subsequently,
a unified 2DOF control scheme based on the 2DOF control methods developed by
Zhang et al. (2004) and Liu et al. (2005a, b) will be presented for integrating and
unstable processes.

8.2 The 2DOF IMC Design for Optimizing the Set-Point
Tracking and Load Disturbance Rejection

In the standard 2DOF IMC structure shown in Fig. 8.1, the controller Cs for set-
point tracking can be designed the same as that in the standard IMC structure
(see Sect. 7.3); by the virtue of that, the standard IMC design can achieve the H,
optimal performance objective (i.e., ISE), min ||e||,, for set-point tracking (Morari
and Zafiriou 1989).

For the design of Cy to optimize the load disturbance rejection performance, it
depends on individual cases of load disturbance entering into the process in practice.
Four cases that are mostly encountered in practical applications are considered
here:

Case (i): There exists only load disturbance that affects the process from its output
side, denoted as d, in Fig. 8.1, which is the same type with the set-point.
Correspondingly, Cr can be designed the same as Cy, owing to the above merit
for performance optimization.
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Case (ii): There exists only load disturbance, denoted as c?o in Fig. 8.1, with
obviously different dynamics compared to the set-point, corresponding to d, =
Gdcio. If d, is a ramp-type signal while the set-point is a step-type signal, the
type I IMC filter, see (7.30), should be used to design Cy, while the type I IMC
filter, see (7.29), should be used to design Cs, and vice versa. If G4 is an evidently

slower transfer function compared to E}, the enhanced IMC design in Sect. 7.4
can be used to design Ct for optimizing the disturbance rejection performance
based on an identified low-order disturbance model of FOPDT or SOPDT.

Case (iii): There exists only load disturbance denoted as d; in Fig. 8.1. If the process
dynamic characteristics do not give sluggish load disturbance response, i.e., a
long “tail,” the above controller design for Case 1 can be used. Otherwise,
the enhanced IMC design in Sect. 7.4 can be used to design C; for improving
the disturbance rejection performance based on an identified low-order process
model of FOPDT or SOPDT.

Case (iv): There exists two different types of load disturbance, denoted as d; and
d, in Fig. 8.1, e.g., step and ramp types. The worst case, i.e., the corresponding
transfer function has more poles at the origin (s = 0), should be considered
to design Cs for optimizing the disturbance rejection performance, which can
therefore guarantee no steady-state output error in the presence of both d; and d,.

In the case where load disturbance is unexpected or unknown, it is generally
suggested to use the controller design for Case 1 for implementation. Based on
knowledge or experience of the process operation, the controller designs for other
cases can be adopted accordingly to deal with a deterministic-type load disturbance.

8.3 A 2DOF Control Scheme for Integrating Processes

For an integrating or unstable process, the 2DOF control methods developed by
Zhang et al. (2004) and Liu et al. (2005a, b) have shown evident superiority in
comparison with many existing methods. The control structures in these authors’
methods are shown in Fig. 8.2a, b, respectively, where G denotes the process, Cy
the feedforward controller for set-point tracking, and C; the feedback controller for
load disturbance rejection. 7; in Fig. 8.2a is a desired transfer function for set-point
tracking, and G, in Fig. 8.2b is an auxiliary controller of P or PD type used for
stabilizing the set-point response and the delay-free part (Gn,,) of the process model
(Gm = Gmoe™%). r is the set-point, y the process output, y, the desired (reference)
output response, u the process control input, u. the output of Cs, us the output of
Cy, d; the load disturbance entering into the process from its input side, and c?o
the load disturbance entering into the process from its output side with a transfer
function, Gy.

Note that by comparing the expressions derived in Zhang et al. (2004) and
Liu et al. (2005a) for the set-point response of a first-order unstable process as
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Fig. 8.2 The 2DOF control

structures: (a) Zhang et al. a
(2004) and (b) Liu et al.
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commonly studied, and comparing the expressions derived in Zhang et al. (2004)
and Liu et al. (2005a) for the load disturbance response, it can be seen that the
achievable system performance in both set-point tracking and load disturbance
rejection is identical in these two control structures. Therefore, a unified 2DOF
control scheme will be given here.

In engineering practice, first- and second-order integrating process models are
widely used for control system design and controller tuning, which are respectively
in the form of

k
G1_1 = —pe_es (84)
S
k
Gio= —"——e %, (8.5)

2T s(tps + 1)e

where k, denotes the proportional gain, 6 the process time delay, and 7, a time
constant reflecting the inertial characteristics. Note that the above SOPDT model
can be effectively used to describe the dynamic response characteristics for a wide
variety of higher-order integrating processes (Liu and Gao 2008, 2010a).
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Based on the above models, the following controller design formulae are
developed in terms of the 2DOF control structure shown in Fig. 8.2a, which can
be similarly derived in terms of the equivalent 2DOF control structure shown in
Fig. 8.2b.

8.3.1 Controller Design

According to the IMC controller design presented in Sect. 7.3, the feedforward
controller for set-point tracking can be derived for an FOPDT integrating process
model in (8.4) as

S
= 8.6
Cobl = 0¥ ) (8.6)

which corresponds to a desired set-point response transfer function,

1
Tri1 = e, 8.7
Acs + 1

where A, is an adjustable parameter for tuning the set-point tracking speed.
Similarly, the feedforward controller for an SOPDT integrating process model in
(8.5) can be derived as

s(tps + 1)
Con=— "= (8:8)
kp(Acs + 1)
which corresponds to a desired set-point response transfer function,
1 —0Os
Tio = ———>¢ . (8.9)

= e
(Aes + 1)2

By performing the inverse Laplace transform for 7;.1; and 7}.1,, one can obtain
the corresponding time domain set-point responses to a step change,

0 t<90
yea (1) = { | e 1 5 g (8.10)
0 t<0
yea(t) = { L= (14 52O/ > g (8.11)

It can be seen from (8.10) or (8.11) that there is no overshoot in the nom-
inal set-point response, and the time domain performance specification can be
quantitatively tuned through the single adjustable parameter A, of Cs 1 or C 5.
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For instance, a tuning formula for the rise time of the set-point response can
be numerically determined from (8.10) as ¢, = 2.3026A. + 0 for a first-order
integrating process as shown in (8.4), and from (8.11) as t, = 3.8897A. + 6 for
a second-order integrating process as shown in (8.5).

For load disturbance rejection, the transfer functions relating d; and dAo to y for
the nominal case can be derived from Fig. 8.2 as

y G

LA - 8.12

4 1+GC .
G

y__ T (8.13)

d, 1+GC

Note that the complementary sensitivity function of the closed-loop structure set
between the process input and output can be derived as

GC;

Ty= ——
14+ GG

(8.14)

which is exactly equivalent to the transfer function relating d; to the controller
output, us.
Hence, (8.12) and (8.13) can be rewritten as

=G(1—Ty) (8.15)

= Gq(1 — Ty). (8.16)

Sol= s

In the ideal case, a desired complementary sensitivity function of the closed-loop
structure should be Ty(s) = e~ % Thatis to say, when a load disturbance, d;, enters
into the process, the feedback controller Cy should detect the corresponding output
error immediately after the process time delay and then compute an equivalent
signal us to counteract it. There, however, exist the following asymptotic tracking
constraints in practice:

lim(1 — 7y) = 0 (8.17)

lim(1-Ty) =0, i=12,....m. (8.18)

S—>pi

where p; (i = 1,2,...,m) is the RHP pole of the process. The constraints in (8.17)
and (8.18) must be satisfied in order to hold internal stability of the closed-loop
structure for load disturbance rejection.

For an integrating process, the constraints in (8.17) and (8.18) are identical in
essence. Therefore, another asymptotic constraint should be imposed,



8.3 A 2DOF Control Scheme for Integrating Processes 285

d
lim —(1 — Ty) = 0. 8.19
lim ds( a) (8.19)

If p; is a double RHP pole of the process, the following asymptotic constraint
should be imposed accordingly:

lim i(1 — Ty =0 (8.20)
ds

S=>Di

If p; is a multiple RHP pole of the process, additional asymptotic constraints can
be imposed by taking higher order derivatives to 1 — 7§, as in (8.20).

Based on the H, optimal performance objective of the IMC theory, a desired
closed-loop complementary sensitivity function is proposed as

S ast +1
_ =1 —0
d = We S, (821)

where A¢ is an adjustable parameter of the closed-loop transfer function, [ the
relative degree of the process model, m the number of RHP poles of the process
(a multiple RHP pole should be counted multiple times), and «; can be determined
from the asymptotic constraints in (8.17)—(8.20).

Accordingly, the feedback controller can be inversely derived from (8.14) as

1 Ty
C=—- . 8.22
TG -1, 822
For a first-order integrating process in (8.4), there are [ = 1 and m = 1. It
follows from (8.21) that
1
Tyry = 2 o5, (8.23)

Obviously, it satisfies the asymptotic constraint in (8.17). Then, it follows from
(8.19) that

d 1
lim = [1 — LJrze—"S} —0. (8.24)

Solving (8.24) obtains oy = 2A¢ + 6.
Substituting (8.4) and (8.23) into (8.22) yields

s(ays + 1) 1
= s + 17 T— 829
pUAE (hrs+1)?
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Fig. 8.3 Closed-loop unit for In Out
implementation '+® >
T
Note that the second multiplier in (8.25) satisfies
li —1 =1 8.26
s—l>rgc _o_os+l s T ( : )
(Ars+1)?
lim ———~ = 8.27
ST ol e - ° (8.27)
(Aps+1)2
2
fm— =222 4 400 + 62 (8.28)
s—>0 | — st ,—6s Bt f ’ ’
(Aps+1)?

Hence, this multiplier can be viewed as a special bi-proper integrator with a
double zero at s = 0, thus capable of eliminating the output error caused by a step
change of d; or d,. In fact, it can be practically implemented using the closed-loop
unit shown in Fig. 8.3.

For a second-order integrating process in (8.5), there are / = 2 andm = 1. It
follows from (8.21) that

+1
Tos = —2 T, (8.29)

Similarly, it follows from (8.19) that

d 1
lim = [1 _ L“LBe—‘)S] —0. (8.30)
(Aes + 1)

Solving (8.30) obtains &y = 3A; + 6.
Substituting (8.5) and (8.29) into (8.22) yields

o s(tps + D[BAs + 0)s + 1] 1 831
f12 = ko Gas £ 1) 1 — Ghetf)stl gy (831)
plAf (As+1)°

where the second multiplier can also be implemented using the closed-loop unit
shown in Fig. 8.3.

For an integrating process with slow dynamics, corresponding to a large time
constant (7p) in the SOPDT model shown in (8.5), in order to reduce the influence
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of the slow dynamics to the load disturbance response, the following asymptotic
constraint is imposed to the controller design:

lim (1—Ty) =0, (8.32)

s—>—1/t

where T = 1,
Correspondingly, the closed-loop transfer function for rejecting a step-type load
disturbance occurring at the process input side is proposed as

ms?+ms+1 _y

, 8.33
(Aes + 1)* (8.33)

Tyis2 =

where 1, and 7, are taken to satisfy the asymptotic constraints in (8.19) and (8.32).
Substituting (8.33) into (8.19) and (8.32), one can obtain

m =4r+6

| (A 4 4 . (8.34)
M =1 +71, T——l e » —1
P

Hence, substituting (8.5) and (8.33) into (8.22) yields the corresponding feedback
controller,

c s(tps + 1) (n2s® + ms + 1) 1 (8.35)
f1s2 = V 3 ’ ms2 s+l g ’
kp(AfS +1) 1-— s+ e

To reject a step-type load disturbance occurring at the process output side with
a slow transfer function of G4 = kq/(7qs + 1), the closed-loop transfer function is
correspondingly proposed as

ms +1 —0Os

S 8.36
(Aes +1)° (8.36)

Ty102 =

Substituting (8.36) into (8.32) with T = t4, one can obtain

X 3
— [(ﬁ - 1) et 1} . (8.37)
T4

Accordingly, substituting (8.5) and (8.37) into (8.22) yields the corresponding
feedback controller,

_s(mps + D(ms + 1) . 1

kp(Ass +1)° 1- ﬁe—es’

Cf—IO-Z

(8.38)
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Note that if a PID-type controller is preferred in practice, the Maclaurin
approximation formulae in (7.100)—(7.102) can be used to approximate the above
controllers for implementation.

8.3.2 Robust Stability Analysis

Based on a low-order process model shown in (8.4) or (8.5), together with the
process uncertainties described in a multiplicative form, one can use the standard
M — A structure for robust stability analysis (Zhou et al. 1996). It can be seen
from Fig. 8.2a or b that, as far as the closed-loop structure between the process
input and output is concerned, the transfer function connecting the input and
output of the process multiplicative uncertainty is exactly equivalent to the closed-
loop complementary sensitivity function, 7y. Hence, it follows from the small
gain theorem that the perturbed closed-loop system with the process multiplicative
uncertainty holds robust stability if and only if

1
T _ 8.39

where A = (G — é)/ G denotes the process multiplicative uncertainty.
For a first-order integrating process shown in (8.4), substituting (8.23) into (8.39),
one obtains the closed-loop robust stability constraint for tuning As in Cepq,

1

2 ¢+ 6 1
' %H < (8.40)
(s +1)7 o 1AG)loo
For instance, given the process gain uncertainty, A = Ak,/k,, the robust
stability constraint for tuning A¢ can be determined as
Mo +1 Ak
i L v [0, +00). (8.41)

Jo+oo 41 Ko

For the time delay uncertainty, A8, which can be converted to a multiplicative

uncertainty form, A(s) = e~2% — 1, the robust stability constraint for tuning A can
be determined as
J @A+ 070 + 1 {

< - , Vo € [0, 4+00). 8.42
Aw? +1 e~ iAo _ [ ) (8.42)
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Fig. 8.4 The tuning relationship between DP and A for a first-order integrating process

For the process uncertainty of both gain and time delay, which can be converted
to a multiplicative uncertainty form, A(s) = (1+ Ak—];")e_Ags — 1, the robust stability
constraint for tuning A¢ can be similarly derived and thus is omitted.

For the corresponding PID tuning in practical applications, simulation tests
are motivated to explore the quantitative tuning guideline. Define the disturbance
response peak (DP) as the closed-loop output response peak to a unit step change
for d; shown in Fig. 8.2a. Also define the recovery time as the time interval from
the moment that d; is added to the moment that the closed-loop output response is
damped down to no larger than 5% of DP, subject to 10% error in estimating the
process time delay. Simulation results based on using the PID form in (7.100) for
approximating (8.25) are shown in Figs. 8.4 and 8.5 for reference.

For a second-order integrating process shown in (8.5), substituting (8.29) into
(8.39), one obtains the closed-loop robust stability constraint for tuning A¢ in Cg.,

3+ 6)s + 1 1
H( t¥6)s + H < (8.43)
(s + 1) I A lloo
Following a similar analysis, the robust stability constraint for tuning A; in Cgys.»
(or Cr10.2) for an integrating process with slow dynamics can be derived and thus is
omitted.
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Fig. 8.5 The tuning relationship between the recovery time and A; in the presence of 10% error in
estimating 0

It should be noted that, in order to compromise the control performance with
the robust stability of the closed-loop structure for load disturbance rejection, the
following robust performance constraint should be satisfied (Morari and Zafiriou
1989):

AGo) Ta(jo)| + [W(jo)[1 = Ta(jw)l| < 1. Vo € [0, +00). (8.44)

where W(jw) is a weighting function of the closed-loop sensitivity function,
S(jw) = 1 — Ty(jw). For instance, W(jw) can be taken as 1/s for a step-type
load disturbance.

Hence, in practical applications, tuning A¢ in C (e.g., Cpyy or Cgy,) aims at
a good trade-off between the nominal disturbance rejection performance of the
closed-loop structure and its robust stability. Generally speaking, decreasing A¢
can speed up the disturbance response of the closed-loop structure, but degrade its
robust stability in the presence of the process uncertainties. In the opposite direction,
increasing A¢ can strengthen the closed-loop robust stability, but in exchange for a
degradation in the disturbance rejection performance.

8.4 A 2DOF Control Scheme for Unstable Processes

Since the dynamic response characteristics of unstable processes may be different
from each other to a large extent, a variety of model structures have been studied to
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describe various unstable processes in industry. Here the following low-order model
structures that are widely used for control system design and controller tuning in
practical applications are considered,

Gua(s) = Z”Se:a; (8.45)
Guals) = % (8.47)
Gua(s) = —Ko¢ " (8.48)

(‘E]S — 1)(‘[2.5‘ - 1)’

where k;, denotes the proportional gain, 6 the process time delay, and 7,,, 7, 71, and 72
are positive time constants reflecting the process dynamic response characteristics.

The corresponding controller design formulae are developed in terms of the
2DOF control structure shown in Fig. 8.2a, which can also be similarly derived
in terms of the control structure shown in Fig. 8.2b.

8.4.1 Controller Design

According to the IMC design presented in Sect. 7.3, the feedforward controller
for set-point tracking can be determined for an FOPDT unstable process model in
(8.45) as

T8 — 1
Covl = —0—— 8.49
T Qs + 1) (8.49)
which corresponds to a desired set-point response transfer function,
1 —0s
Trua = , (8.50)

Aes + le

where A, is an adjustable parameter for set-point tracking.
Similarly, the feedforward controller for an SOPDT unstable process model in
(8.46) can be derived as

(tis — D(r2s + 1)
kp(Aes + 1)°

Couva = (8.51)
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which corresponds to a desired set-point response transfer function,

1 —0
Tr-U-2 = mé’ . (852)

For a second-order model with an integrator shown in (8.47), the feedforward
controller can be derived accordingly as

s(ts — 1)
Ciuyz = —— (8.53)
T kples +1)°
which corresponds to a desired set-point response transfer function,
1 —0s
Tus=-—""75¢€¢". (8.54)

= e
(es +1)°

For another second-order model with two RHP poles shown in (8.48), the
feedforward controller can be derived accordingly as

_(us—D(ms— 1)

Csus = (8.55)
s-U-4 kp()tcs—l-l)z
which corresponds to a desired set-point response transfer function,
1 ‘
Ta = ————e . (8.56)

(s + 12°

Following a similar analysis as in Sect. 8.3.1, the time domain performance
specification can be quantitatively tuned through the single adjustable parameter
Ac in each of the above controllers, such as the rise time for a step change of the
set-point.

For load disturbance rejection, the desired closed-loop complementary sensitivity
function in (8.21) can be used to derive the feedback controller, Cy, in Fig. 8.2a.

For a first-order unstable process shown in (8.45), thereare /| = 1 and m = 1. It
follows from (8.21) that

1
Tov1 = L—i_ze—é)s. (8.57)

Obviously it satisfies the asymptotic constraint in (8.17). Then, it follows from
(8.18) that

I
lim [1 - LJrze—‘“} — 0. (8.58)
s—=1/7p (Aes + 1)
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Solving (8.58) obtains

At 24
@ =7 [(T—* + 1) e — 1]. (8.59)
p

Substituting (8.45) and (8.57) into (8.22) yields

aps + 1 Tps — 1

Crya = 5 - (8.60)
kp(kfs + 1) 1— (:\X;:T)ze Os
Note that there exists an implicit RHP zero-pole canceling at s = 1/7, in

(8.60), which may cause the controller to work unstably. Therefore, the second
multiplier at the right-hand side of (8.60) cannot be directly implemented using
the closed-loop unit shown in Fig. 8.3. A rational approximation is therefore
needed for implementation. The analytical approximation based on the Maclaurin
expansion series, as shown in (7.100), can be used to yield a PID form by letting
Ciy.1 = M(s)/s, since the second multiplier has an integral property to eliminate
the system output deviation from the set-point.

For better approximation, the following analytical approximation formula based
on the linear fractional Padé expansion (Liu et al. 2005b) can be used,

J
DN/N(S) =D o

s Y ¢st
i=0

N .
Z djS]
=0

(8.61)

where N is a user-specified order to achieve the desirable performance specification
for load disturbance rejection, and ¢; and d; are determined by the following two
linear matrix equations:

d() b() 0 0 .o 0 B Co
d] b] bo 0 - 0 C1
N ) i ) . (8.62)
dy by by—1 by -+ b1 | Lenva
by byoy - by ci [ by
by+1 by - b3 €2 by+a
. = - . , (8.63)
byn—2 bay—3 -+ by CN—1 L ban—i
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where b; = M@ (0)/i'andi = 0,1,...,2N — 1 are the Maclaurin coefficients of
(7.100) and ¢y should be taken as

I, ¢ =0;
co = . (8.64)
—1, c < 0.

Note that there exists an integrator in (8.61), which guarantees such an approxi-
mation essentially consistent with the ideally desired controller in (8.60).

For instance, letting N = 2 in (8.61) obtains an approximation formula in the
form of PID,

1 1
F =k — , 8.65
2/2(8) ( c+ - + TDS) s 1 (8.65)
where
di 1 dy Cl
kc=—, n=—, m=—, T=—,
Co bo Co €o
b;
d() zbOCO» dl =blc0+b0C], d2 =b2C0+blcla cp = _b_'
2
Letting N = 3 gives a third-order approximation formula,
d383 + d2S2 +dis + d
F = , 8.66
3(s) s(c28? + ¢15 + ¢p) (8.66)
where
bybs — b3by bf — b3bs
aA=—% 753 » =5 —F
by —byby by —brby

do=boco, dy =bico + bocy, dy =barco + bicy + boca, dz =bzco + bacy + bics.

In fact, the above third-order approximation can be implemented by three low-
order controllers, i.e.,

d3s* + dys + d; dy

F35(8) = ,
y3(s) s +cy1s+cog s(cas? + c1s + ¢o)

(8.67)

where the first part is exactly a second-order lead-lag controller, and the second part
is an integrator in tandem with a second-order lag controller.

Remark 8.1. Note that each of the above approximation formulae for implementing
the feedback controller is actually tuned by the single adjustable parameter A shown
in (8.60). The choice of ¢y is to keep all of ¢; (i =0, 1,..., N — 1) the same sign in
order to prevent any RHP zero from being enclosed in the denominator of such an
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approximation. According to the Routh-Hurwitz stability criterion, it is obvious that
a low-order approximation in terms of N < 3 can ensure the closed-loop internal
stability. For N > 4, the same signof ¢;(i = 0,1, ..., N — 1) still cannot guarantee
no presence of RHP poles, and therefore, the Routh-Hurwitz criterion should be
used for verification in combination with tuning A s, before such an approximation
is adopted for implementation. It is obvious that a higher-order approximation
facilitates better closed-loop performance for load disturbance rejection. Hence,
it depends on the user choice of a trade-off between the achievable disturbance
rejection performance and the approximation complexity for implementation. ¢

For a second-order unstable process in (8.46), there are [ = 2 and m = 1. It
follows from (8.21) that

ais +1 g
Tovas = ————e ™. (8.68)

Similarly, it follows from (8.18) that

I
lim [1 - Lﬂe—ﬂ =0, (8.69)
s=>1/7 (Aes + 1)

Solving (8.69) obtains

)Lf 3 0
o =1 (r_ + 1) en —11. (8.70)
1

Substituting (8.46) and (8.68) into (8.22) yields

(25 + )(ays + 1 718 — 1
Cruz = — e 3 ). ;1s+1 05" (8.71)
kpOis + 71— sty

For a second-order model with an integrator shown in (8.47), there are [ = 2 and
m = 2. It follows from (8.21) that

rs? +ays + 1 iy

Tous = (8.72)
T T s+ )°
Using the asymptotic constraints in (8.18) and (8.19), one can obtain
. s’ +as+1 _,
lim [1-———F—¢77|=0 (8.73)
s—>1/t (Afs + 1)
d 2 1
lim & [1 _oas tonst 1 _ﬂ 0. (8.74)
s—=0 ds (Afs +1)
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Solving (8.73) and (8.74) yields

ap = 4Ar +6;

4
a =1’ ﬁ—}-l e%—ﬂ— ‘ (.75
T T

Substituting (8.47) and (8.72) into (8.22) yields

2 1 —1
Crus = “23 ;“” +4 . s(fi +)1 _. (8.76)
_ apsttags —0s
p(Aes +1) 1 et €

For another second-order model with two RHP poles shown in (8.48), there are
| =2 and m = 2. It follows from (8.21) that

rs? +ays + 1 iy

Tava = (8.77)
d-U-4 st 1)
Similarly, it follows from (8.18) that
2 1
lim [1 - we—“} —0 (8.78)
s=>1/7 (Aes + 1)
2 1
lim [1 - we—ﬂ = 0. (8.79)
s—>1/1 (Ags + 1)
Solving (8.78) and (8.79) yields
1 A ‘e A s
o = §122|:(—f+1) e’gz—l:|—r,2|:(—f+1) efgl—l:|§
T — 1T (%) T
. (8.80)
2 4 2 4
o — T2 [(E—l—l) oL _1} g [(ﬁ—i-l) e;‘z_l}
T, — 1 T] =7 T
Substituting (8.48) and (8.77) into (8.22) yields
2 1 -1 —1
Croa = s + oy + ‘ (118 )(T2s ) 8.81)

4 _ s’ togstl ,—ps°
kp(es +1)7 1 — e

Due to the fact that there exists RHP zero-pole canceling in the controller
formulae of (8.71), (8.76), and (8.81) for second-order unstable processes, none
of them can be directly implemented in practice. The analytical approximation
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formulae in (7.100)—(7.102) should be used to give a corresponding PID form
for implementation. Alternatively, higher-order approximation formulae in (8.61)—
(8.64) can be used to improve the control performance.

For an unstable process with slow dynamics, corresponding to a large time
constant (73) in the SOPDT model shown in (8.46), in order to reduce the influence
of the slow dynamics to the load disturbance response, the following asymptotic
constraint is imposed to the controller design:

lim (1—Ty) = 0. (8.82)

s—>—1/1

Correspondingly, the closed-loop transfer function for rejecting a step-type load
disturbance occurring at the process input side is proposed as

ms>+ms+1 _y

8.83
(s + 1) ©59

Tyyuso =

where 1; and 7, are taken to satisfy the asymptotic constraints in (8.18) and (8.82).
Substituting (8.83) into (8.18) and (8.82), one can obtain

1 2 Af 4 9 P )Lf 4 _6
|l —+1)en — ——1 2| +1—
m T1+T2|:1(Tl ) 2 o e =T
At Yy '
n =t} |:(—t+ 1) e —1] —Tm
T

Hence, substituting (8.46) and (8.83) into (8.22) yields the corresponding
feedback controller,

(125 + 1) (125> + 15 + 1)

Ciysa = D(s), (8.85)
kp(Aes + 1)
where
715 — 1
D(s) = T (8.86)
(Ags+1)*

It is seen that there exists RHP zero-pole canceling in (8.86). A rational
approximation is therefore needed for implementation, which can be obtained using
the above formulae in (8.61)—(8.64).

To reject a step-type load disturbance occurring at the process output side with
a slow transfer function of G4 = kq/(7qs + 1), the closed-loop transfer function is
correspondingly proposed as

ms +1 —0Os

_ 8.87
(hes + 1)° ®57

Tyvor =
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Substituting (8.87) into (8.32) with t = t4, one can obtain

A.f 3 _0
nm =714 (— — 1) e @ +1]. (8.88)
Td

Accordingly, substituting (8.46) and (8.88) into (8.22) yields the corresponding
feedback controller,

_ (tis — D(zas + D(ms + 1) ' 1

Cruo2 ‘
kp(hss +1)° I e ™

, (8.89)

where the second multiplier can be practically implemented using the closed-loop
unit shown in Fig. 8.3.

8.4.2 Robust Stability Analysis

Since the same control structure shown in Fig. 8.2 is used for both integrating and
unstable processes, the sufficient and necessary condition for maintaining robust
stability of the closed-loop structure can be similarly developed. Specifically, when
the process multiplicative uncertainty is considered for the convenience of analysis,
robust stability constraints can be derived similar to those given in Sect. 8.3.2,
according to the small gain theorem (Zhou et al. 1996).

For a first-order unstable process shown in (8.45), substituting (8.57) and (8.59)
into (8.39), one can obtain the closed-loop robust stability constraint for tuning A¢
in Cry.1,

1

l(Ae/7p + D2 — 1]s + 1 - .
o TAG)eo

(Ats 4+ 1)%

(8.90)

For a second-order unstable process shown in (8.46), substituting (8.68) and
(8.70) into (8.39), one can obtain the closed-loop robust stability constraint for
tuning A¢ in Ce.y.,

i R R (] I
(s 4 1)° I AS oo’

o

(8.91)

For a second-order model with an integrator as shown in (8.47), substituting
(8.72) and (8.75) into (8.39), one can obtain the closed-loop robust stability
constraint for tuning A¢ in Cr.y.3,
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A 4 D'et = B )2 4 @hr 4+ 0)s + 1
(hes + 1)*

1
< .
T TAO

(8.92)

For another second-order model with two RHP poles, as shown in (8.48),
substituting (8.77) and (8.80) into (8.39), one can obtain the closed-loop robust
stability constraint for tuning A¢ in Cy.y 4,

(8.93)

azsz—i—als—i—lH - 1
Qs+ DY e TAG) oo

For a second-order model shown in (8.46) with a large time constant (),
substituting (8.83) and (8.84) into (8.39), one can obtain the closed-loop robust
stability constraint for tuning A; in Crys to reject a step-type load disturbance
occurring at the process input side,

ms? + s + 1 1

Jdes TR T I 8.94
PR Hof 20 (59

Similarly, the robust constraint for tuning A¢ in Cr.yo. to reject a step-type load
disturbance occurring at the process output side can be obtained by substituting
(8.87) and (8.88) into (8.39).

8.5 Illustrative Examples

Six examples from existing references are used to demonstrate the effectiveness and
merits of the presented 2DOF control scheme and controller designs, respectively,
for integrating and unstable processes.

Example 8.1. Consider a first-order integrating process studied in the references
(Majhi and Atherton 2000; Matausek and Micic 1999),

e—Ss

G =

N

In the modified Smith predictor (SP) control scheme for 2DOF tuning (Majhi
and Atherton 2000), the parameters of three controllers were taken as k, = 0.5,
T; =1, Ky = 1,and K; = 0.105. In the modified SP scheme of MatauSek and
Micic (1999), the parameters for tuning three controllers were taken as k, = 1,
1=57T, =1/06,,, =64°, anda = 0.4
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Using the controller formulae of (8.6) and (8.25), it follows for the 2DOF control
scheme shown in Fig. 8.2a that

s
Co =
s-1-1 ACS-}-l
s(ays + 1) 1
Cipl = > T antl e
As+1)" 1 — AT e

(Aps+1)2

where a; = 2A¢ + 5.

For comparison, take A, = 2.0 in order to obtain a similar rising speed of the set-
point response with those of Majhi’s and Matausek’s methods, and take A¢ = 3.0 for
load disturbance rejection. Using the PID tuning formula in (7.100) to approximate
C¢1.1 for implementation, it follows that

1 0.5069s

Cirm = 0.2576 .
FPID t 5155 T 0055+ 1

By adding a unit step change to the set-point and a negative step load disturbance
with a magnitude of 0.1 to the process input at = 50(s), the control results are
shown in Fig. 8.6. It is seen that the proposed control design gives obviously
improved load disturbance response, and the IMC-based PID tuning shows a
comparable performance.

Assume that there exists 10% error in estimating the process time delay, e.g., it
is actually 10% larger. The perturbed system responses are shown in Fig. 8.7. It is
seen that the proposed control design holds robust stability well.

For illustrating the 2DOF performance optimization, simulation tests for the
above perturbed process are made for three cases of tuning the controller parameters
of A, and Ay, which are listed in Table 8.1 together with the corresponding controller
forms. The control results are shown in Fig. 8.8. It is seen that there exists
relative independence in tuning A. and A; for separate optimization of the set-
point tracking and load disturbance rejection. Monotonically increasing A¢ decreases
the oscillation in the load disturbance response. On the other hand, gradually
increasing A, decreases the set-point response oscillation. Hence, it is convenient to
tune A; monotonically to reach a good trade-off between the disturbance rejection
performance and robust stability of the closed-loop structure in the 2DOF control
scheme shown in Fig. 8.2. So is for tuning A, to meet a good trade-off between the
tracking performance and robustness of the set-point response.

Example 8.2. Consider a second-order integrating process studied in the reference
(Normey-Rico and Camacho 2009),

01
2T sGs+ 1)
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Fig. 8.6 Nominal output responses of Example 8.1

A 2DOF SP control scheme was given by Normey-Rico and Camacho (2009),
where the two controllers for the set-point tracking and load disturbance rejection
were designed as C = 1.667(5s + 1)/(0.5s + 1) and F; = (175 + 1)/(6s + 1).
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Fig. 8.7 Perturbed system responses of Example 8.1

Table 8.1 Tuning controller parameters for the perturbed case of Example 8.1

Tuning parameters Cor11 C.1.1 (PID form)

Ae =2.0, Ar=30 s kc = 02576, 1 =51.5, 1 = 0.5069
25 + 1

Ae =2.0, Ar=50 u kc =0.1932, 17 =287.5 1p =0.3306
2s + 1

Ae =60, A=15.0 d kc =0.1932, 1 =287.5 1p =0.3306
6s + 1

Using the controller formulae of (8.8) and (8.31), it follows that

s(5s + 1)
Coro=—"3
0.1(Aes + 1)
555 + D[BAr+ 5)s + 1] 1
f12 = 00 G 1) "] Ghts)stl s

(Ass+1)3

Note that the second multiplier in Cry, can be implemented using the closed-
loop unit shown in Fig. 8.3.

To further enhance disturbance rejection design, the controller formulae of (8.34)
and (8.35) for rejecting a step-type load disturbance occurring at the process input
side give
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Fig. 8.8 Perturbed system responses of Example 8.1 in terms of tuning the controller parameters

c s(3s + D(mas®> + mis + 1) 1
182 = 4 ) ms> s+l s
0.1(Aes + 1) | - s,
7’]1 = 4Af + 5

M =501 + 25024 — D)*e ! =25

For comparison, taking A, = 3 and Ay = 3.6, the control results are shown
in Fig. 8.9 for adding a unit step change to the set-point and then to the process
input at = 50(s). It is seen that the load disturbance response is recovered faster
by the enhanced IMC design of (8.35), in terms of the similar set-point tracking
speed and the same magnitude of disturbance response peak. Note that the IMC-
based disturbance rejection design of (8.31) results in a very close response with the
enhanced IMC design of (8.35) when using the above controller parameters. Given
the same set-point tracking speed (by taking A, = 3), if A = 2 is tuned to improve
the load disturbance response, it is seen from Fig. 8.9 that A; = 1.5 is required by
the IMC-based design of (8.31) to obtain the same disturbance response peak, but
still with a longer recovery time.

Note that, if the process time constant is larger, e.g., 7, = 20, the advantage
of the enhanced IMC design of (8.35) for load disturbance rejection will become
more obvious, as shown in Fig. 8.10, where the recovery time for load disturbance
response is reduced almost by 30% in terms of the same disturbance response peak.

Then assume that the process proportional gain (k) and time constant (t,) are
actually 20% larger. The perturbed output response is shown in Fig. 8.11, indicating
good robust stability of the 2DOF control scheme shown in Fig. 8.2.
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Fig. 8.9 Nominal output responses of Example 8.2

To demonstrate the control performance for rejecting a load disturbance from the
process output side with a slow dynamics, assume that the load disturbance transfer
function is G¢ = 1/(10s + 1), but is actually estimated with 20% error for the

control design, i.e., Gy =1 /(8s + 1). The corresponding controller formulae of
(8.37) and (8.38) give

_s(5s+ D(ms + 1) 1
Cii02 = 010 + 1) Tl st s
A (est1)

n = 8(0125/’\{— 1)367_0'625 + 8

Taking A; = 2 for comparison, the control results are shown in Fig. 8.12 in the
presence of a unit step change of the load disturbance. It is seen that apparently
improved disturbance response is obtained by the enhanced IMC design of (8.38),
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Fig. 8.10 Output responses of Example 8.2 with 7, = 20 in the presence of a step-type load
disturbance from the process input side

which demonstrates that based on estimating the deterministic load disturbance
dynamics, further enhanced disturbance rejection performance can thus be obtained.

Example 8.3. Consider a first-order unstable process widely studied in existing
literature,

—0.4s
e
G; =

s—1°

In the modified 2DOF IMC scheme (Tan et al. 2003), the controller parameters
were taken as kg=2, A=0.4, K, =2.079, and T, =0.156. In the modified
SP scheme (Majhi and Atherton 2000), the control parameters are taken as
ky=1, T;=04, Ty= — 03, K;=2, K;=15811, according to the tuning
formulae.
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Fig. 8.11 Perturbed system responses of Example 8.2

Using the controller formulae of (8.49) and (8.60), it follows that

s—1
Covl = ———
s-U-1 ACS +1
(s—=D(ays +1) 1
Cryg = Oes 1 1)2 : T Ry
£ (Ars+1)2
where a; = (A¢ + 1)%e%% — 1.
For comparison, take A, = 0.4 in order to obtain the same rise speed of the
set-point response with those of Tan’s and Majhi’s methods. For load disturbance
rejection, taking Ay = 0.4 and using the PID tuning formula in (7.100) to

approximate Cyy.; for implementation, it follows that

Corp = 2.8972 + — 1 4 0469
FPID = 2 0.724s ' 0.04s + 1
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Fig. 8.12 Output responses of Example 8.2 in the presence of a slow load disturbance from the
output side

Table 8.2 Comparison of ISE
ISE for load disturbance
rejection in Example 3

Proposed Tan Majhi
Attenuation 0.3098 0.3429 0.966

By adding a unit step change to the set-point and an inverse step change of
load disturbance to the process input at # = 5(s), the control results are shown in
Fig. 8.13. The ISE specifications of load disturbance response resulting from these
methods are listed in Table 8.2, which indicates that improved disturbance rejection
performance is obtained by the proposed PID tuning.

Now suppose that there exists 20% error in estimating the process time delay and
the unstable time constant, e.g., both of them are actually 20% larger. The perturbed
system responses are shown in Fig. 8.14, demonstrating that the proposed PID
tuning method holds well the control system robust stability compared to the other
two methods. Note that by monotonically increasing the single adjustable parameter,
A, in Ceppp, the control system robust stability can be further enhanced, but at
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Table 8.3 Controller settings for Example 8.3
Tuning parameters Csu.1 Cru.1 (PID form)
s—1
Ae =104, A;=05 —_— ke = 2.634, = 0.9566, = 0.4058
c > f 0.4ds + 1 c T D
s—1
Ac =08, A=0.6 P a— ke = 2.4394, = 1.2191, = 0.3596
! 08s+1 _"C " o

the cost of a degradation in the disturbance rejection performance. For illustration,
two groups of simulation test are made for the above perturbed unstable process,
as listed in Table 8.3. The control results are shown in Fig. 8.15. It is seen that
increasing As has decreased the oscillation in the load disturbance response. On the
other hand, increasing A. has decreased the set-point response oscillation. Hence, it
is convenient to monotonically tune A, and A¢ for the optimization of the set-point
tracking and load disturbance rejection, respectively, especially in the presence of
process uncertainties as usually encountered in practice.

Example 8.4. Consider the third-order unstable process studied in the reference
(Tan et al. 2003),
1

_ —0.5s
T (s —1D@2s+ 1)(0.55 + 1)

Gy

An IMC-based 2DOF control scheme was presented by Tan et al. (2003), where
three low-order controllers of PD or lead-lag type were configured for the set-point
tracking and load disturbance rejection.
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parameters
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Based on an SOPDT model identified in example 6.3 of Chap. 6, G, =
1.0e70%5 /(55 —1)(2.07s + 1), the IMC design in (8.51) and (8.71) gives the 2DOF
controllers,

(55 — 1)(2.07s + 1)

Csvua =
v (Aes + 1)?
Cru2
(2075 + D[55(0.24; + 1)°e1%8 — 55 + 1] 55 —1
o (Ass + 1)° | L0285+ 1) OIS 15+ 1, oa”

(Ags+1)3

Note that the second multiplier in Cr.y_; includes a RHP zero-pole canceling and
therefore needs to be approximated by using (8.61)—(8.64) for implementation.

For a unit-step type load disturbance entering into the process input as assumed
by Tan et al. (2003), taking Ay = 0.85 to obtain the same disturbance response peak
with that of Tan et al. (2003) for comparison, it follows from (8.61) to (8.64) for the
second multiplier in Cy.y, that

0.1611s* + 1.0761s> + 2.4857s% + 2.4195s + 0.8515
5(0.0489s2 + 0.0886s + 1) i

Dwic-4/2 =

In contrast, using the enhance IMC design in (8.84)—(8.86) for load disturbance
rejection gives the controller,

(2.07s + 1) (s> + mis + 1) 55 — 1
Cryuso = (s + 1)4 ) 1 — n252+ms+le—0.94x
(Aes+1)*

m =3.5361(0.2A; + 1)*e*188 —0.6061(0.48311; — 1)*e™ 0441 _2.93
n2 =25[(0.2A¢ + 1)*e*1% — 1] — 5p, '

By taking Ay = 1.05 for comparison, the second multiplier in Ceys., is
approximated using (8.61)—(8.64) as

1.953s* + 5.7424s% + 7.1852s% + 4.19255 + 0.9479

2= 5(0.141452 + 2.09735 + 1)

The corresponding output responses are shown in Fig. 8.16. It is seen that the load
disturbance response is recovered faster by the enhanced IMC design in terms of the
similar set-point tracking speed and the same magnitude of disturbance response
peak. Note that, compared to the IMC design in (8.71), more obvious improvement
can be observed by tuning a smaller value of A;. For instance, take Ay = 0.8 in the
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Fig. 8.16 Output responses of Example 8.4 in the presence of a step-type load disturbance from

the input side

enhanced IMC design in (8.84)—(8.86) and Ay = 0.6 in the IMC design in (8.71),

corresponding to

1.4729s* + 5.1566s° + 7.938152 4+ 5.8091s + 1.6604

Dy =

Divc—42 =

5(0.034752 4 2.0795s + 1)

0.1045s* + 0.7826s> + 2.2491s2 + 2.8652s + 1.3558

5(0.0379s2 + 0.0165 + 1)

The resulting output responses are also plotted in Fig. 8.16 for comparison. Note
that the control signal of the IMC design in (8.71) becomes somewhat oscillatory,
implying a marginal stability to allow for process uncertainties.
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Fig. 8.17 Output responses of Example 8.4 in the presence of a slow load disturbance from the
output side

To demonstrate the control performance for rejecting a load disturbance from
the process output side with a slow dynamics, the case used in example 8.2 is also
performed here. The enhance IMC design in (8.88) and (8.89) for such case gives

(55 — 1)(2.07s + 1)(ms + 1) !
Cruoz = s + 1) ] — st ,—0.94
f Qst1)°

n = 8(0.1254; — 1)%e 0117 1 g,

Note that the second multiplier in Cgyo., can be implemented using the closed-
loop unit shown in Fig. 8.3.

With the above controller parameter settings, the output responses are shown
in Fig. 8.17. It is seen that apparently improved disturbance response without a
long “tail” is obtained by the enhance IMC design in (8.88) and (8.89), which
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once again demonstrates that using an estimation on the deterministic-type load
disturbance dynamics for the controller design can evidently improve disturbance
rejection performance.

Example 8.5. Consider the integrating and unstable process studied by Lee et al.
(2000),

e—O.Zs
T S5 — 1

In Lee’s method, the tuning parameters of the closed-loop PID controller were
taken as K¢ = 0.8412,7; = 3.3066, and tp = 2.8113, and the set-point filter was
chosen as fr = 1/(8.4593s% 4 3.3607s + 1).

Using the controller formulae of (8.53) and (8.76), it follows that

s(s—1)
Cus=—7"3
(Aes + 1)
co S =D’ tans + 1) !
T G QT

(Ars+1)*

where a; = 4A¢ + 0.2 and o, = (A¢ + 1)*e%? — @y — 1. The controller parameters
are taken as A, = Ay = 36 = 0.6 to test the control performance and robustness.
Using the PID tuning formula in (7.100) to approximate Cyy.3 for implementation,
it follows that

1 2.4804s

Cipp = 1.4738 .
F-PID t 172465 T 0055 + 1

By adding a unit step change to the set-point and an inverse step change of
load disturbance to the process input at t =25(s), the control results are shown
in Fig. 8.18. It is seen that the proposed control scheme results in significantly
improved system performance in both the set-point tracking and load disturbance
rejection.

Now suppose that there exists 20% error in estimating the process time delay
and the unstable time constant (z = 1.0). The worst case is that the process time
delay is actually 20% larger and the unstable time constant is 20% smaller. The
corresponding output responses are shown in Fig. 8.19, indicating that the proposed
control scheme holds good robust stability in the presence of the severe process
uncertainty.

Example 8.6. Consider the unstable process with two RHP poles studied by Tan
et al. (2003),

26—0.35

G = G oo
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Fig. 8.19 Perturbed system responses of Example 8.5

In Tan’s method, the controllers for the set-point response were taken as ko = 4s,

ki = (3s + 1)(s + 1)/[2(0.5s + 1)?], and the controller, k,, for load disturbance
rejection, had two choices, a PD form of k; = 1 + 3.7s and a high-order form of
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_66.8(s + 0.27)(s + 6.667)

k> 3
s+ 145 + 121.31

Using the controller formulae of (8.55) and (8.81), it follows that

CGs—Ds—1)
T s + 1)
(Bs — 1)(s — D) (as® + ays + 1) 1
Crus = 7 . 5 ,
2(A¢s + 1) 1 — eesttas+l ,—0.35

(Aps+1)*

where oy = 4.5(A¢/3 + 1)*%! —0.5(As + 1)*e%3 —4 and o, = 1.5(A; + 1)%e%3 —
4.5(A¢/3 + 1)*e%! + 3.

For comparison, take A. = 1.76 = 0.51 for obtaining the same rising speed
of the set-point response with Tan’s method. For load disturbance rejection, taking
A¢ = 1.760 = 0.51 and using the PID tuning formula in (7.100) to approximate
Ct.u.4 for implementation, it follows that

1 4.0642s

Cipmp = 1.7638 .
f-PID t 10595 T 0.05s + 1

In contrast, taking N = 3 and A+ = 1.560 = 0.45 to apply the analytical
approximation formula in (8.67) for implementation, it follows that

32.825% + 439.415 + 232.64 . 129.79
0.56s2 + 0.8s + 100 5(0.5652 + 0.85 + 100)”

Ds33(s) =

By adding a unit step change to the set-point and an inverse step change of
load disturbance to the process input at = 15(s), the control results are shown
in Fig. 8.20. It is seen that the proposed third-order controller results in the best
disturbance rejection performance. The IMC-based PID controller is similar to the
PD controller of Tan’s method for load disturbance rejection, but both are inferior
to the high-order controllers.

Now suppose that there exists 10% error in estimating the process time delay
and the two unstable time constants, e.g., all of these parameters are actually 10%
larger. The perturbed system responses in terms of these two high-order controllers
are shown in Fig. 8.21. It is seen that the proposed third-order controller maintains
well the load disturbance response robustness against the severe process uncertainty.
Note that both the PID form of the proposed feedback controller (Cr.y.4) and the
PD controller of Tan’s method cannot hold the control system stability any longer,
which, therefore, demonstrates that the conventional PID controllers are indeed
incapable of rejecting load disturbances with robustness for unstable processes with
multiple RHP poles, as studied in some references, e.g., Yang et al. (2002).
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Fig. 8.21 Perturbed system responses of Example 8.6
8.6 Summary

The advantage of a 2DOF control structure has been elucidated in comparison with
the conventional unity feedback control structure or the standard IMC structure. An
important merit is that both the set-point tracking and load disturbance rejection can
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be separately tuned or optimized in terms of a 2DOF control scheme. This can be
more important for the control of an integrating or unstable process for which the
water-bed effect between the set-point response and the load disturbance response
may become severe or even inadmissible if using the conventional unity feedback
control structure.

Based on a classification on different cases of load disturbance entering into
a stable process, the corresponding controller designs in terms of a 2DOF IMC
structure have been itemized. Moreover, an enhanced IMC design (Liu and Gao
2010b) has been suggested to further improve disturbance rejection performance
for slow processes with large time constant(s).

Since the standard 2DOF IMC structure cannot be used for the control of
integrating and unstable processes with internal stability (Morari and Zafiriou 1989),
a united 2DOF control scheme based on the 2DOF control methods developed by
Zhang et al. (2004) and Liu et al. (2005a, b) has been presented for such a process.
Correspondingly, analytical controller formulae have been presented in terms of
a few low-order model structures that are widely used for describing integrating
and unstable processes in practical applications. Moreover, to overcome sluggish
load disturbance rejection involved in integrating and unstable processes with slow
dynamics, further enhanced IMC design formulae (Liu and Gao 2011) have been
presented based on a classification on the ways through which a deterministic load
disturbance enters into the process as detected from a preliminary knowledge or
experience of the process operation. In the presence of unknown load disturbance,
the proposed controller design for the case of a step-type load disturbance entering
into the process from its input side can in general be used to improve disturbance
rejection performance.

For all the proposed controller designs, the corresponding PID tuning method
has also been presented to facilitate practical applications based on the Maclaurin
approximation approach introduced in Sect. 7.5. Due to the fact that there exists
implicit RHP zero-pole canceling in the desired feedback controller for an unstable
process, an analytical approximation method based on the linear fractional Padé
expansion (Liu et al. 2005b) has been presented for implementation or improving the
approximation accuracy in contrast with the Maclaurin approximation approach. At
the same time, the robust stability constraints for controller tuning have been given
in terms of the small gain theorem and the multiplicative description of process
uncertainties.

Six examples from existing references have been used to illustrate the proposed
2DOF control scheme and controller designs, respectively, for integrating and
unstable processes. By comparison with the control results given in these references,
the effectiveness and merits of the proposed 2DOF control scheme and controller
tuning methods have been well demonstrated.
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Chapter 9
Cascade Control System

9.1 The Advantage of Cascade Control and Implementation
Requirements

It is well known that the conventional unity feedback control system can only give
a corrective action to load disturbance after the system output has deviated from the
set-point, i.e., output error entails feedback control. If a measurement on a secondary
(intermediate) process output is available to detect the final output error in advance,
a secondary feedback controller or structure can be correspondingly constructed,
such that the load disturbance rejection performance can be significantly improved,
in particular for slow processes with large time constant(s) or time delay, e.g.,
industrial furnaces for heating raw materials (Ogunnaike and Ray 1994; Seborg
et al. 2004), and chemical distillation columns with large time delays (Morari and
Zafiriou 1989; Shinskey 1996). This control strategy, called cascade control, has
been widely applied in industrial and chemical processes relating to temperature,
flow, and pressure control issues (Shinskey 1996; Seborg et al. 2004).

Generally, a cascade control structure is composed of two control loops, i.e.,
a secondary inner loop nested in the primary outer loop for closed-loop system
operation, based on a precondition that the intermediate process can be measured
conveniently or cost-effectively in practice. Load disturbance that enters into the
inner loop is expected to be counteracted before it extends to the primary outer
loop. Therefore, it is crucial that the inner loop gives a faster dynamical response
compared to the outer loop, in the presence of such load disturbance.

Rule-of-thumb tuning rules for operating cascade control systems have been
introduced in the control bibliographies (Luyben 1990; Astrom and Higglund 1995;
Seborg et al. 2004). Improved PID tuning methods can be found in the references
(Hang et al. 1994; Huang et al. 1998; Lee et al. 1998, 2002; Tan et al. 2000;
Song et al. 2003). The Smith predictor was also introduced into the conventional
cascade control structure to improve disturbance rejection performance for time
delay processes (Kaya 2001).

T. Liu and F. Gao, Industrial Process Identification and Control Design: Step-test 321
and Relay-experiment-based Methods, Advances in Industrial Control,
DOI 10.1007/978-0-85729-977-2_9, © Springer-Verlag London Limited 2012
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Note that cascade control tuning procedures in existing methods are mostly
implemented in a sequential manner. That is, the primary loop controller is first
put on manual and the secondary loop controller is tuned. After the secondary loop
controller is commissioned, the primary controller is tuned to accomplish the tuning
procedure. If the resulting control system performance is not satisfactory, the whole
tuning procedure has to be repeated over again. This can be very time consuming
and cumbersome, especially for slow processes with large time constant(s) or time
delay. Moreover, the load disturbance response of the inner loop is heavily coupled
with the set-point response supervised by the outer loop.

To overcome the above deficiencies, two 2DOF cascade control schemes and
a 3DOF cascade control scheme are presented here for application, based on a
classification of open-loop stable and unstable cascade systems. The corresponding
control designs are detailed in the following two sections.

9.2 Two 2DOF Control Schemes for Open-Loop Stable
Cascade Processes

For an open-loop stable process, if the intermediate process can be measured for
cascade control design, two 2DOF cascade control structures are proposed, as shown
in Fig. 9.1a, b, where P; denotes the secondary process and P, the final process,
while P; and P, denote their models, and P indicates the overall process model
identified for control design. C; is the primary outer loop controller for set-point
tracking and load disturbance rejection of P,, and C is the secondary controller in
the inner loop for rejecting load disturbance that enters into the secondary process
Py, which is therefore called as load disturbance estimator. y; is the secondary
process output and y; is the final process output. B

In the nominal case, i.e., P, = P; and P, = P, (or P = P, P,), there is an
“open-loop” control from the primary set-point r to the final output y; in the cascade
control structures shown in Fig. 9.1a, b. This corresponds to

H,(s) = % — C.P,P,. 9.1)

Hence, the nominal set-point response is decoupled from the inner loop load
disturbance response. That is, both responses can be separately tuned by the set-
point tracking controller C, and the load disturbance estimator Cy. B

Note that the cascade control structure shown in Fig. 9.1a is based on using P
and P, obtained from process modeling such as the process energy equations or
equilibrium relations, or from process identification test(s). Usually the secondary
process model, P, can easily be derived from such a modeling or identification
method. The final process model, P,, however, may not be able to carry out in a
similar way. Indirect modeling methods are therefore required for cascade control
design (Shinskey 1996). For instance, by identifying the overall process model, P,
as shown in Fig. 9.1b, the final process model may be derived from P, = P/P;.
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Fig. 9.1 2DOF cascade control structures using the final process model (a) and the overall process
model (b)

In fact, such an indirect modeling method may increase model error or mislead the
description of the final process response characteristics, causing undesired control
performance degradation. In such a case, the cascade control structure shown in
Fig. 9.1b is preferred for practical application. However, when a load disturbance,
denoted as d; or d», enters into the secondary process (P), not only the load
disturbance estimator (Cy) but also the set-point tracking controller (Cs) in the
cascade control structure shown in Fig. 9.1b will give a counteraction, which will
cause oscillation of the final output (y,) as encountered in the conventional cascade
control structure. Therefore, the cascade control structure shown in Fig. 9.1b will
unavoidably be subject to certain performance degradation for load disturbance
rejection when compared to the cascade control structure shown in Fig. 9.1a.

For general application, the following model structures are considered for
controller design:

Me_e”

P1 (S) = kl Al(s) (92)
B By
o) = kP ©3)

where A;(0) = B;+(0) = B;—(0) = 1, 45(0) = B,+(0) = B,_(0) = 1, and all
zeros of Ai(s), Ax(s), Bi—(s), and B,_(s) are located in LHP, while all zeros of
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B4+ (s) and B,y (s) are located in RHP. Denote deg {A;(s)} = n;, deg{Bi—(s)} =
miy, deg{Bi4+(s)} = mi, deg{Aa(s)} = na, deg{Br_(s)} = my, and
deg { B>+ (s)} = may. Practically, it follows that m | + m, < ny and my; + my <
n,, which indicate that a cascade process to be controlled is physically proper.

Based on the above description of a cascade process, the controller design of Cj
and Cy can be identical for both cascade control structures shown in Fig. 9.1a, b for
practical implementation, which is therefore uniformly presented in the following
section.

9.2.1 Controller Design

For the set-point tracking, the H, optimal performance objective, min || e |3, is
adopted to design Cs. That is, this controller should be designed to achieve the output
performance specification, min || W(1 — H,(s)) |3, where H,(s) is the nominal
set-point transfer function shown in (9.1), and W is a weighting function of the
set-point. Since a step change of r is typical in practice, W is correspondingly taken
as 1/s.

Using a v/v order all-pass Padé approximation for the time delay, it follows that

Bi1(s)Bi—(s) Qw(—H1s)

PO == o 0nw O
. Bair(s)Ba—(s) O (—02s)
A N S A )
where
_ N (2v— )W N
vi(eis) - Zm(elé‘)}, 1 = 1,2

j=0

and v can be chosen large enough to guarantee that the introduced approximation
error is neglectable in comparison with the process uncertainties.

Substituting (9.4) and (9.5) into the above performance specification, one can
obtain

W (1= He(s)); =

Hl (1 _c (S)k1k231+(S)Bz+(S)Bl—(S)Bz—(S)vi(—els)Qw(—ezs))

) AI(S)AZ(S)QW(QIS)vi(GZS)

vi (91.9) vi (925) BL_(S)B;_{_(S)
50 (=015) Qv (—025) Bi+(s) Ba+(5)
kikaBY, (s) By, (s) Bi—(s) Bo—(s)

sA1(s)Aa(s)

2

2

2
_Cs(s)

2
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where B, (s) and BJ, (s) are complex conjugates of By (s) and By (s), respec-
tively. It is obvious that B4 (s)/ B}, (s) and B, (s)/ B, (s) are all-pass filters.

Note that 0,,(0) = B, (0) = B}, (0) = 1 and all zeros of Q,, (—9s),
0O,y (—025), B+ (s), and B,y (s) are in RHP. It follows from an orthogonal property
of the H, norm that

A1(5)Az(s) — k1kaC(8) Bf () BS,.(8) B1—(5) Bo—(s) ||

sA1(s)Az(s)

0w (015) 0 (928) B, (5) By, () — Qi (—015) Q1 (—025) B1+ (5) Ba ()
5O (—015) Q1 (—025) Bi+(s) B2+ (5)

IW (1 —H,(5))]3 = H

2
2

|

2

Minimizing the right-hand side, i.e., letting its first term equal zero, one can
obtain the ideally optimal controller,

Ai1(s5)Aa(s)
kika B}, (s) B3, (s)Bi—(s) Ba—(s)

Cs — ideal (S) = 9.6)

It can be easily verified from the process models in (9.2) and (9.3) that Cs — jgear (5)
is not physically proper and thus cannot be realized in practice. A low-pass filter is
therefore introduced to allow it to be implemental,

1
F(s) = ——. 9.7
(hes + D"
2 2
where [y = ) |n; — > my; ).
i=1 j=1
Hence, a practically suboptimal controller is obtained as
Ai(s)A
C(s) 1(5)42(5) 9.8)

" kikaBE, (5) B, (5)Bi_(5) By (5) (hes + D)

where A, is an adjustable parameter. When A is tuned to zero, the controller
recovers the optimality.
Substituting (9.8) into (9.1) yields the nominal set-point transfer function,

1 Bi4(s) By (s) o~ (01+62)s
(Aes + 1)1S B, (s)B3, (s)

H(s) = 9.9)

It is seen that the nominal set-point response can be quantitatively tuned through
the adjustable controller parameter, A.. For example, if P; and P, have no RHP
zero, it follows that

H.(s) e~ 1 +0)s (9.10)

T (s + D
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By performing an inverse Laplace transform with respect to a step change of the
set-point, one can obtain

0 t <0 +6,
— t t2 tls_l .
»2(1) 1 — 1+_+_2+..._|_—1_1 e~ =0=0)/h 4 >0+ 6,
e | A2 (s — DL
9.11)

It shows that there is no overshoot in the nominal set-point response, and the time
domain system response specification can be quantitatively achieved by tuning A..
For instance, a tuning formula for the rise time can be numerically determined as
t, = 23026\, +0; + 0, forl, = 1,0rt, = 3.8897\, + 0; + 0, for [, = 2, and so
on.

For rejecting load disturbance that enters into the inner loop, it can be derived
from Fig. 9.1a or b that the nominal load disturbance transfer functions of the inner
loop are

Hy, (s) = Z—j =P (1-Ty) 9.12)

Hg,(s) = cyi—l =1-Ty. (9.13)

where Ty, is the complementary sensitivity function of the inner loop,

u
Ty = d—f = P\C;. 9.14)

Following a similar analysis as in Sect. 8.3.1, a desired closed-loop complemen-
tary sensitivity function is proposed as

1 B1+(s)e—613
(Ags + 1)1f B;k+(s)

Ty (s) = , (9.15)

where Iy = ny — mj; — myp, and Ay is an adjustable parameter for tuning load
disturbance response of the inner loop.
Substituting (9.2) and (9.15) into (9.14) yields the load disturbance estimator,

A1 (s)

Ci(s) = .
) k1 B, () Bi—(s)(hs + D)

(9.16)

Remark 9.1 Note that the controller in (9.16) was derived in the reference (Liu
et al. 2005a) for application in the inner loop shown in Fig. 9.2. In effect it can be
verified that the corresponding disturbance rejection performance is the same with
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Fig. 9.2 An equivalent inner
loop

the inner loop shown in Fig. 9.1a or b because there is the same desired closed-
loop complementary sensitivity function, as shown in (9.15). Hence, the inner loop
shown in Fig. 9.1a or b can be viewed as a simplified version of that given in the
reference (Liu et al. 2005a). <o

9.2.2 Robust Stability Analysis

It is obvious that the primary outer loop in either of the cascade control structures
shown in Fig. 9.1a, b is the standard IMC structure. According to the IMC theory
(Morari and Zafiriou 1989), the outer loop holds robust stability if and only if

[ H: ()]l oo < 9.17)

1
1Al

where A = (P, — 132)/152 for Fig. 9.1a(or A = (P — IA’)/IAJ for Fig. 9.1b) denotes
the final (or overall) process multiplicative uncertainty. Note that the secondary
process uncertainty in the inner loop may be lumped into the final (or overall)
process multiplicative uncertainty for the convenience of analysis in practice.

Substituting (9.9) into (9.17), a robust stability constraint for tuning A, can be
obtained as

Is
(Ao +1)2 > |A(jw)|, VYo € [0,+00). (9.18)

For the inner loop shown in Fig. 9.1a, b, it is similar to the closed-loop structure
set between the process input and output in a 2DOF IMC structure shown in Fig.
8.1. Following the robust stability analysis given in Sect. 8.3.2, one can conclude
that the inner loop holds robust stability if and only if

A1 T4 lloo <1, 9.19)

where A defines the multiplicative uncertainty of the secondary process P;. That

is, it describes the process family, IT; = {Pl (s): Pi(s) = (1 + Al)f’](s) }
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Substituting (9.15) into (9.19), a robust stability constraint for tuning A¢ can be
obtained as

1
(202 +1)7 > A (jo)|. Yo € [0, +00). (9.20)

It is seen that the above robust stability constraints respectively for tuning A,
and A are similar to each other, which therefore facilitates the stability analysis in
practical applications.

According to the closed-loop performance analysis in the IMC theory (Morari
and Zafiriou 1989), the following constraints between the control performance and
robust stability of the output and inner loops need to be satisfied for tuning A,
and As:

[A(jo)H(jo)| + [Wi(jw) [1 - H(jw)] < 1. Vo €[0,+00) 9.21)

|A1(jo)Ta,(jw)| + [Wa(jo) [I = Ta, (jo)l| <1, Vo €[0,400),  (9.22)

where W, and W, are weighting functions of the corresponding closed-loop
sensitivity functions. For a step-type load disturbance entering into the outer or inner
loop, both can be chosen as 1/ for assessment.

It can be seen from (9.9) and (9.15) that tuning A, (or A¢) to a small value can
speed up the set-point response (or the disturbance response of the inner loop),
but will degrade the robust stability in the presence of process uncertainties. In
the opposite, increasing A. (or A¢) can strengthen the outer (or inner) loop robust
stability, but in exchange for a degradation in its control performance. In general,
it is suggested to initially tune A. (or A¢) around the overall (or secondary) process
time delay. By monotonically increasing or decreasing A. (or A¢) on line, a good
trade-off between the closed-loop system performance and robust stability can be
obtained in a transparent manner.

9.3 A 3DOF Control Scheme for Open-Loop Unstable
Cascade Processes

In some unstable industrial processes, e.g., continuous-stirred-tank-reactors
(CSTRs) and thermal distillation columns, a measurement on the process
intermediate variable such as temperature or flow rate can be obtained for cascade
control design to improve disturbance rejection performance (Ogunnaike and Ray
1994; Shinskey 1996; Seborg et al. 2004). Due to that the water-bed effect between
the set-point response and the load disturbance response will become very severe
for an unstable process in the unity feedback control structure, the conventional
cascade control structure is inevitably subject to this deficiency because of the
double-loop structure. By adding two prefilters or weighting functions respectively
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Fig. 9.3 A 3DOF cascade control structure for open-loop unstable cascade processes

to the set-points of the inner and outer loops in the conventional cascade control
structure, a few cascade control methods have been developed to alleviate rather
than overcome the above deficiency (Lee et al. 2002; Nagrath et al. 2002; Saraf
et al. 2003).

An open-loop unstable process is usually divided into a stable secondary process
and an unstable final process, for the convenience of cascade control design in
practical applications. Correspondingly, the following low-order model structures
are mostly adopted for the cascade control system design in the existing literature:

kle—els

P = — 9.23

1(s) s 1 (9.23)
k —92s

Pys) = 25— (9.24)
T8 — 1

where k; and k, denote the proportional gains of the secondary and final processes,
respectively, 0; and 0, denote the corresponding time delays, t; and T, are positive
time constants reflecting the dynamic response characteristics.

Given the above description of an open-loop unstable process in practice, a 3DOF
cascade control scheme (Liu et al. 2005b) is presented here. The control structure is
shown in Fig. 9.3, where P; denotes the secondary process, P, is the final process,

and 131 is a model identified for P;. T; is a desired transfer function for set-point
tracking, C; is a feedforward controller for set-point tracking, C¢_  is the inner loop
feedback controller set for rejecting load disturbance that enters into P, which is
therefore called as load disturbance estimator, and Cr_ is the outer loop feedback
controller for load disturbance rejection of P,. y; is the secondary process output,
¥, is the final process output, and y; is a desired (referential) output response.
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9.3.1 Controller Design

For the set-point tracking, there is an “open-loop” control for the nominal case

(P = i’l and P, = P 2), corresponding to the transfer function,

Ti(s) = Hi(s) = 2 = C,P\ . 9.25)

Hence, following a similar procedure as in Sect. 9.2.1, one can obtain

_(us+ D(rs—1)

s(s) = .26
YW 20

Ti(s) e~ O1F02)s (9.27)

T s+ 1)

where A is an adjustable parameter for tuning the set-point response. It follows
from the time domain response shown in (9.11) that the time domain specifications,
e.g., the rise time, can be conveniently satisfied by monotonically tuning ..

For rejecting load disturbance that enters into the secondary process P, it can
be seen that the inner loop structure is exactly the same with that in Fig. 9.1a or b.
Therefore, the corresponding controller design method in Sect. 9.2.1 can be used.
Substituting (9.23) into (9.16) yields

Ts+ 1

Coi(s) = — 8+
r-1(5) ki(h—1s + 1)

(9.28)
where A¢_ is an adjustable parameter for tuning the load disturbance response of
the inner loop. The corresponding closed-loop complementary sensitivity function is

1
Ta_1(s) = me—elf. (9.29)

For rejecting load disturbance that enters into the final process P, it can be seen
that the outer loop structure is exactly the same with the 2DOF control structure
shown in Fig. 8.2a for an unstable process. Therefore, the corresponding controller
design method in Sect. 8.4.1 can be used. Substituting (9.23) and (9.24) into (8.22)
along with (8.71) yields

(tis + D(tas — D(aps + 1) ‘ 1

kika(hf—os 4+ 1)° 1— (M“_‘;%me—(eﬁ%)s

A—2 3 040
m=n|(TH1) e 1], 9.31)
2

Ci—a(s) =

(9.30)
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where A¢_, is an adjustable parameter for tuning the load disturbance response of
the outer loop. The corresponding closed-loop complementary sensitivity function is

1
Ty_s(s) = L3e—(91+92)5_ (9.32)
(M—2s+1)

Note that there exists a RHP zero-pole canceling at s = 1/1; in (9.30), which
may cause the controller to work unstably. A rational approximation is therefore
needed for implementation. The analytical approximation based on the Maclaurin
expansion series, as shown in (7.100), can be used to give a PID controller for
implementation, by letting Cy—, = M(s)/s, since it has an integral property to
eliminate the final output deviation from the set-point. For better approximation, the
higher-order analytical approximation formulae given in (8.61)—(8.64) can be used
to obtain further enhanced control performance.

Remark 9.2 Note that the 3DOF control structure shown in Fig. 9.3 is essentially
equivalent to that in the reference (Liu et al. 2005b), which may be verified through
the same nominal set-point response transfer function and the complementary
sensitivity functions of the inner and outer loops. Hence, the 3DOF control structure
shown in Fig 9.3 can be viewed as a simplified version of that given in the reference
(Liu et al. 2005b). o

9.3.2 Robust Stability Analysis

Owing to an open-loop control manner for the set-point tracking in the presented
3DOF cascade control structure, robust stability analysis may be focused on the
inner and outer loops.

For the convenience of analysis, process uncertainties may be lumped into the
multiplicative forms with regard to the secondary process and the final process,
respectively. Accordingly, the small gain theorem (Zhou et al. 1996) can be used to
derive the robust stability constraints.

Since the inner loop is the same with that in Fig. 9.1a or b, a robust stability
constraint can be derived similar to that given in Sect. 9.2.2 as

VMo 102+ 1> [A(jw)|. Yo e [0,+o0), (9.33)

where A defines the multiplicative uncertainty of the secondary process P;. That
is, it describes the process family, IT; = {Pl (s): Pi(s) = (1 + A1)131(S) }.
For instance, given the process time delay uncertainty A6;, which may be

converted to the multiplicative uncertainty, A;(s) = e~2%% — 1, a robust stability
constraint for tuning A;_ | can be derived as
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VA 02+ 1> e /A% — 1] Vo € [0, +00). (9.34)

In the presence of the control actuator uncertainty of the secondary process, e.g.,
Ai(s) = (s+0.2)/(s + 1), which may be loosely interpreted as the secondary
process input fed by the corresponding actuator increases by up to 100% uncertainty
at high frequencies and by almost 20% uncertainty in the low frequency range, the
corresponding robust stability constraint for tuning A¢_ | can be derived as

2 10.04
N I b 2++] . Vo [0, +00). (9.35)

In the case where the secondary process output measurement has an uncertainty,
e.g., Ai(s) = —(s+0.3)/(2s + 1), which may be physically viewed as the sec-
ondary process output measurement offered by the corresponding sensor decreases
by up to 50% uncertainty at high frequencies and by almost 30% uncertainty in the
low frequency range, the corresponding robust stability constraint for tuning As_
can be derived as

w? 4+ 0.09
Ay 1w2+1 10 2+1 , Yo € [0,4+00). (9.36)

Regarding the outer loop in the presented 3DOF cascade control structure,
substituting (9.32) into the small gain condition yields the robust stability constraint
for tuning A¢_»,

3 e,+92
tz[(xfz—i—l) 1:|s+1 !

Ovas + 1) ~ 1A®)

oo

(9.37)

where A = (PP, — 131 P 2)/ (}31 132) defines the overall multiplicative uncertainty
of the cascade process.

Meanwhile, according to the closed-loop performance analysis in the IMC
theory (Morari and Zafiriou 1989), the following constraints between the control
performance and robust stability of the inner and output loops need to be satisfied
for tuning A¢—; and As_5:

A1) Ta—1(w)| + [Wi(jo) [I = Ta—1(jw)]| <1, VY €[0,400) (9.38)

|AG0)Ta—2(jo)| + [W2(jw) [1 = Ta—2(jw)l <1, Vo €[0,+00), (9.39)
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where W, and W, are weighting functions of the corresponding closed-loop
sensitivity functions. For a step-type load disturbance that enters into the inner or
outer loop, both can be chosen as 1/s for assessment.

It can be seen from (9.29) and (9.32) that tuning A¢—; (or Af—>) to a small
value can speed up the disturbance response of the inner (or outer) loop, but will
degrade the robust stability in the presence of process uncertainties. In the opposite
direction, increasing As— | (or A¢—7) can strengthen the inner (or outer) loop robust
stability, but in exchange for a degradation in its control performance. In general,
it is suggested to initially tune A¢—; (or Ar—»,) around the secondary (or overall)
process time delay. By monotonically increasing or decreasing Af— (or Af—») on
line, a good trade-off between the disturbance rejection performance and robust
stability can be obtained in a transparent manner.

9.4 Illustrative Examples and Real-Time Tests

Five examples from the existing literature are used to demonstrate the effectiveness
and merits of the presented 2DOF and 3DOF control schemes and controller
designs. Examples 9.1 and 9.3 are given for open-loop stable processes with time
delay or RHP zeros. Real-time tests are performed for Example 9.2, based on the KI
101 type process simulator of KentRidge Instruments in Singapore. Examples 9.4
and 9.5 are given for open-loop unstable processes with time delay.

Example 9.1 Consider a stable cascade process studied in the references (Tan et al.
2000; Song et al. 2003),

e
PG = o571
e
Z(S) (S + 1)2

Both Tan’s and Song’s methods were based on the conventional cascade control
structure. In Tan’s method, the primary and secondary controllers were respectively
designed as a PI-type controller, i.e., G,y = 0.39(1 + 1/1.44s) and G., =
0.53(1+1/0.17s). In Song’s method, the controllers were tuned as G,; = 0.6592+
0.3536/s + 0.2886s/(1.4392s + 1) and G, = 0.603 + 2.277/s. In the proposed
2DOF cascade control schemes shown in Fig. 9.1a, b, using the controller formulae
given in (9.8) and (9.16), and taking A, = 1.0 and Ay = 0.1 for comparison, it
follows that

0.1s + 1

Cy(s) =
(s) o

Cf(S) =1.
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Fig. 9.4 Nominal system responses of Example 9.1

By adding a unit step change to the set-point and an inverse unit step change
of load disturbance to the secondary process output at t = 30(s), the control results
are shown in Fig. 9.4. It is seen that there is no overshoot in the set-point response
by using either of the proposed cascade control structures. Moreover, apparently
improved load disturbance response is obtained using either of the proposed cascade
control structures. The cascade control structure shown in Fig. 9.1a (thick solid line)
outperforms the other cascade control structure shown in Fig. 9.1b (thin solid line)

in that no oscillation occurs in the load disturbance response.

Then, assume that both time delays of the secondary and final processes are
actually 20% larger and the time constant of the secondary process is 20% smaller.
The perturbed system responses are shown in Fig. 9.5. It is seen that the proposed

cascade control structures hold good robust stability.

Example 9.2 Consider a real-time cascade process studied by Tan et al. (2000),

e—O.lx

s+ 1

Pi(s) =

e—S

Py(s) = m
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Fig. 9.5 Perturbed system responses of Example 9.1

which is reconstructed here through the KI 101 type process simulator of KentRidge
Instruments in Singapore for real-time tests, as shown in Fig. 9.6. The simulator
is connected to an industrial-type computer (PCI-1730) of ADVANTECH in
Taiwan, via two 8-bit data acquisition cards (PCL-727 and PCL-818 L) respectively
for analog-to-digital and digital-to-analog conversions. A window-based software
platform, LabView 6.0, is used for system monitoring. The sampling period is taken
as T, = 10 (ms). Correspondingly, the one-step backward discretization operator,
é(kT;) = [e(kTs) —e((k — 1)Ty)] /T, is used for differential computation of the
control output. Real-time measurements of the secondary and final process outputs
are corrupted by a random noise with the amplitude of 0.05.

Note that in the conventional cascade control structure used by Tan et al.
(2000), the primary and secondary controllers were respectively tuned as a PI-type
controller, G, = 0.34(1 4+ 1/1.88s) and G.» = 0.21(1 + 1/0.583s).

Using the proposed 2DOF cascade control schemes shown in Fig. 9.1a, b, it
follows from the controller formulae given in (9.8) and (9.16) that

s+ 1)
CO=oa1 1
Cils) = s+ 1
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Fig. 9.7 Nominal system responses of Example 9.2
For comparison, A, = 1.0 and Ay = 0.5 are taken for real-time tests. By

adding a unit step change to the set-point and an inverse unit step change of
load disturbance to the secondary process output at t = 60(s), the control results
are shown in Fig. 9.7. It is seen that quick set-point response without overshoot
is obtained by either of the proposed cascade control structures, and obviously
enhanced load disturbance response is obtained in comparison with that of Tan
et al. (2000). For load disturbance rejection, the cascade control structure shown
in Fig. 9.1a (solid line) outperforms the other cascade control structure shown in
Fig. 9.1b (dotted line), owing to the use of the final process model identified.
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Fig. 9.8 Perturbed system responses of Example 9.2

Then, the cascade process is perturbed for test. The time constant of the
secondary process is modified 30% smaller in the simulator, while the time delay
of the final process is enlarged by 20%. The perturbed system responses are shown
in Fig. 9.8, which again demonstrates that the proposed cascade control structures

hold good robust stability.

Example 9.3 Consider a NMP stable cascade process studied by Lee et al. (2002),

3e—3s
Pi(s) = —0
)= 3310

10(=5s + 1)e™
PZ(S) = 3 5"
(30s + 1)*(10s + 1)

The conventional cascade control structure was used in Lee’s method, where the
primary and secondary controllers were respectively configured as a PID controller,
ie., Gep = 0.12(1 + 1/87.88s + 21.215),Gos = 1.62(1 + 1/7.44s + 1.37s).
Moreover, there were two prefilters in front of the outer and inner loops, respectively

chosenas gs1 = 1/(59.34s + 1) and g o = 1/(5.78s + 1). In the proposed 2DOF
cascade control schemes shown in Fig. 9.1a, b, using the controller formulae given
in (9.8) and (9.16), and taking A, = 10 and A; = 1.5 for comparison, it follows that

(13.3s + 1)(30s + 1)°
Ci(s) = 3
30(55 + 1)(10s + 1)

133s + 1
Ci(s) = ——22
)= 30531
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Fig. 9.9 Nominal system responses of Example 9.3

By adding a unit step change to the set-point and an inverse unit step change of
load disturbance to the secondary process output at t = 750(s), the control results
are shown in Fig. 9.9. It is seen that a smooth set-point response without overshoot
is obtained using either of the proposed 2DOF cascade control structures. Lee’s
method results in sluggish set-point response due to the use of a prefilter with a
relatively large time constant to the primary set-point. It is true that better load
disturbance response is obtained by Lee’s method in terms of the same recovery
time, but this method seems to be more sensitive to the process uncertainties.
For instance, assume that the secondary process is actually perturbed to P; =
3e73%/(9.31s + 1). It can be verified that Lee’s method cannot hold the system
stability any longer, but the proposed cascade control structures maintain robust
stability well, as demonstrated by the results shown in Fig. 9.10.

For further illustration, assume that both time delays of the secondary and
final processes are actually 50% larger and the time constant of the secondary
process is 50% smaller. Neither of the proposed cascade control structures in
terms of the above controller parameters can maintain stability any longer due
to the severe process uncertainties. Nevertheless, gradually increasing the single
adjustable parameter A¢ in Cr to 3.0 can recover the stability easily, as indicated by
the results shown in Fig. 9.11.

Example 9.4 Consider a chemical CSTR studied by Lee et al. (2002), of which the
secondary stable process and the final unstable process are respectively identified as
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26—25
P —_
) = 2571
e—4s
P =
29) = 30,7

In Lee’s method, the primary and secondary controllers in the conventional
cascade control structure were respectively tuned as G., = 3.31(1 + 1/36.22s +
3.08s) and G.; = 6.92(1 + 1/4.6s + 0.79s), together with two prefilters in front
of the outer and inner loops which were chosen as g1 = 1/(32.91s + 1) and
qr2 = 1/(3.66s + 1). In the proposed 3DOF cascade control structure shown in
Fig. 9.3, it follows from the controller design formulae given in (9.26)—(9.31) that

(205 + 1)(20s — 1)

Cs
(s) 200 + 1)
1
Ti(s) = ——e™®
) (hes + 1)
20s + 1
Ce_ =
r—1(5) 20t s+ 1)
(20s + 1)(20s — 1)(ays + 1) 1
Cr-a(s) = 3 : a6’
2()\4‘_25' +1) ] — X5 p—0s

(h—2s+1)°

where @) = 20 [(o.osxf_z F1)%e03 - 1].

For comparison, take A, = 6, Ay—; = 0.5, and A—, = 6. Using the
analytical approximation formula in (7.100), a PID form to approximate Cy_ , for
implementation can be obtained as

1 n 28.0736s
30.6256s  0.2s +1°

Ci_o_pp = 1.9785 +

Also taking N = 3in (8.61) for a higher-order approximation of C;_ 5, it follows
that

40.4166s% + 28.7214s + 1.9881 N 0.0327
2.1204s2 4+ 0.29255 + 1 $(2.120452 4 0.2925s + 1)

Ci—2-33(5) =

By adding a unit step change to the set-point and an inverse unit step change
of load disturbance to the secondary process output at = 100(s) and an inverse
step change of load disturbance with a magnitude of 0.2 to the final process
output at # =200(s), the control results are shown in Fig. 9.12. It is seen that the
proposed cascade control structure gives obviously improved set-point response
without overshoot for the nominal system. Note that the rise time of the set-point
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Fig. 9.12 Nominal system responses of Example 9.4

response, which can be numerically computed from (9.11) as #, = 29.3382(s), is
identical with the result shown in Fig. 9.12. Besides, it is seen that compared with
the PID form of C_ 5, the third order approximation leads to further improved load
disturbance response, owing to a better approximation for implementation.

Assume that a random noise with the amplitude of 0.02 is added to both
measurements of the secondary and final process outputs, which are then used for
feedback control. The corresponding results are shown in Fig. 9.13, demonstrating
good robustness of using the proposed cascade control method.

Then, assume that there exists 10% error in estimating the process parameters of
time delay and time constant. The worst case is that both 6; and 0, are actually 10%
larger while both t; and 1, are 10% smaller. The perturbed system responses are
shown in Fig. 9.14. It is seen that the proposed cascade control method maintains the
closed-loop system robust stability. Note that Lee’s method cannot hold the system
stability any longer and thus is omitted. In fact, further enhanced robust stability of
the proposed control system can be conveniently obtained on line by monotonically
increasing the single adjustable parameter of C;, Cy— |, and C;_ 5, respectively. For
illustration, letting A, = 8 and A;_, = 8 gives

1 23.4708s

Ci—r—pp = 1.5527
f-2-PD t 1816055 025 11

35.1847s2 + 24.8678s + 1.5707 0.0208

Cr—p-3/3(s) = ‘
P=2-3/3(9) 2.565% + 0.86555 + 1 T S@3657 1 086555 + 1)
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Fig. 9.14 Perturbed system responses of Example 9.4 in the presence of the process uncertainties
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Fig. 9.15 Perturbed system responses by increasing the adjustable controller parameters

The corresponding control results are shown in Fig. 9.15, which demonstrate that
increasing these adjustable parameters can effectively improve control robustness
for set-point tracking and load disturbance rejection. Hence, it is convenient in
practice to monotonically vary A¢_1 and As—; on line to achieve the best trade-
off between the nominal performance and robust stability of the inner and outer
loops, respectively, while A, can be monotonically tuned to optimize the set-point
response.

To demonstrate the robust stability of the proposed cascade control system in the
presence of the control valve uncertainties, assume that there exists a multiplicative
input uncertainty, A;(s) = (s + 0.2)/(s + 1). The perturbed system responses are
shown in Fig. 9.16. It is once again demonstrated that the proposed cascade control
method facilitates good robust stability. Note that Lee’s method still cannot hold the
system stability and thus is omitted.

Example 9.5 Consider an unstable process studied by Tan et al. (2003),

e—O.939s

T Q05+ DGs—1)

P(s)

Here it is used to demonstrate that the proposed 3DOF cascade control structure
is superior to a 2DOF control scheme for an unstable process, if the secondary
process can be measured for control design. The process is assumed to be composed
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Fig. 9.16 Perturbed system responses of Example 9.4 in the presence of the control valve
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of the secondary process, Pi(s) = e %% /(2.07s + 1), and the final process,
Py(s) = e7033% /(55 — 1).

In Tan’s method, the controllers were taken as Ko(s) = 2(2.07s + 1), K (s) =
(55 +1)/(0.2s + 1), and K»(s) = 3.584(2.45 + 1). In the proposed 3DOF cascade
control structure shown in Fig. 9.3, it follows from the controller design formulae
given in (9.26)—(9.31) that

2.07s + 1)(5s = 1)

Ci(s) =
) (Aes + 1)2
1 —0.939s
) = e 7
) (hes + 1)?
2.07s +1
Ci_ Tt
t—1(5) s 41
(2.07s + 1)(55s — 1)(ays + 1) 1
Cf_Z(S) - 3 ) aps+1 _ ’
(M—2s+1) | — —cus+l _,—0.939s

(v—2s+1)3

where o] = 5[(0.2hs_ 2 4 1)%e%1878 — 1],

For comparison, take A, = 1, Ay(—; = 0.6, and Ay—, = 1.2. Using the
analytical approximation formula in (7.100), a PID form to approximate Cy_ , for
implementation may be obtained as
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By adding a unit step change to the set-point and an inverse unit step change
of load disturbance to the secondary process input at = 30(s) and an inverse step
load disturbance with a magnitude of 0.2 to the final process output at t = 60(s), the
control results are shown in Fig. 9.17. It is seen that the proposed 3DOF cascade
control structure results in obviously improved load disturbance response, based on
the secondary process output measurement for feedback control.

Then, assume that there exists 10% error in estimating the process parameters of
time delay and time constant. The worst case is that both 6, and 6, are actually 10%
larger while both t; and t, are 10% smaller. The perturbed system responses are
shown in Fig. 9.18. It is again seen that the proposed cascade control structure holds
good robust stability in the presence of the severe process uncertainty.

9.5 Summary

Cascade control strategies have been explored to improve load disturbance rejection
performance for long time delay or slow processes in industry, based on measuring
the secondary (intermediate) process output for feedback control. To overcome
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the deficiencies of the conventional cascade control structure, two 2DOF cascade
control structures have been presented for open-loop stable processes, respectively
for whether the final process model can be obtained for control design or not.
These two cascade control structures are simplified versions of those developed
by Liu et al. (2005a). For the convenience of application, the controller designs
are unified for these two cascade control structures. An important merit is that
there exists only a single adjustable parameter in each of these two controllers,
which can be monotonically tuned with relative independence to optimize the outer
loop performance of set-point tracking and the inner loop performance of load
disturbance rejection. Robust stability constraints for tuning the two controllers have
been given for practical applications.

To alleviate the water-bed effect between the set-point response and the load
disturbance response that is commonly encountered in the unity feedback control
structure for unstable processes, a 3DOF cascade control structure has been
presented for open-loop unstable processes. Accordingly, the set-point tracking
and load disturbance rejection can be separately optimized. This cascade control
structure is a simplified version of that developed by Liu et al. (2005b). There
are three controllers which are responsible for tuning the set-point response, the
inner loop response, and the outer loop response, respectively. Each controller has
a single adjustable parameter which can be monotonically tuned for performance
optimization. Note that the proposed 3DOF cascade control scheme can be trans-
parently extended to the case where the secondary process is unstable and the final
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process is stable. If higher-order models are identified for control design, the model-
based controller designs given in Chaps. 7 and 8 can be used for the corresponding
controller formulation.

Five examples from the existing literature have been used to illustrate the
effectiveness and merits of the presented 2DOF and 3DOF cascade control schemes,
respectively for open-loop stable and unstable processes. Real-time tests have also
been performed using the KI 101 type process simulator of KentRidge Instruments
in Singapore to demonstrate the effectiveness and robustness of the proposed
cascade control methods against measurement noise and process uncertainties.
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Chapter 10
Multiloop Control of Multivariable Processes

10.1 Selection of the Input—Output Pairing

For a multivariable process, a change in a manipulated variable, say u;, will affect
not only the corresponding output variable (y;) but also other output variables (y»,
V3, ...), which is generally defined as interaction in process operation. Suitable
input—output pairing is therefore a prerequisite for multivariable control system
design. For instance, consider a multivariable process with #n manipulated variables
and n controlled variables, there exist n! possible choices for the pairing selection!
Moreover, an incorrect pairing will severely hinder the closed-loop control perfor-
mance or jeopardize the system stability (Shinskey 1996). A number of criteria
have been explored for analyzing cross interaction in multivariable systems (see
Bristol (1966), McAvoy (1983), Jensen et al. (1986), Huang et al. (1994, 2003),
Shinskey (1996), Lee and Edgar (2004), Salgado and Conley (2004), Skogestad
and Postlethwaite (2005), and He et al. (2009)). Among these criteria, relative gain
array (RGA) and singular value decomposition (SVD) have been widely recognized
in practice, which are briefly introduced as follows.

10.1.1 Relative Gain Array (RGA)

The concept of relative gain was early proposed by Bristol (1966). For a multivari-
able process with n manipulated variables and n controlled variables, the relative
gain, A;, between a controlled variable y; and a manipulated variable «; is defined
as a dimensionless ratio of two steady-state gains:

()
&\ =0kt

(&)
Ui/ ye=0k#i

T. Liu and F. Gao, Industrial Process Identification and Control Design: Step-test 349
and Relay-experiment-based Methods, Advances in Industrial Control,
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A , i, j=1,2,....n. (10.1)

<

=8}
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where (dy; /du j)uk=0,k oy is usually called open-loop gain, which denotes a partial
derivative that is evaluated with all the manipulated variables except u; being held
constant. It therefore corresponds to the process static gain matrix element, g(0);.
By comparison, (dy; /du j)yk=0,k i is called closed-loop gain, which is evaluated
with all the controlled variables except y; maintained to the corresponding set-point
values (or as closely as possible by using a multiloop control).

Correspondingly, the RGA is denoted by

A A o A
Aol Az cer Ao
A= ] ] ) (10.2)
Anl A112 e Ann
and this has several important properties for assessing the interaction:

1. It is dimensionless and thus independent of input and output scaling.
2. Its rows (or columns) sum to 1. A positive A; indicates positive interaction
between y; and u;. In contrast, a negative value indicates inverse interaction.

. It is the identity matrix if the process transfer matrix is upper or lower triangular.

4. Its diagonal dominance means weak interaction between y; and u; (i # j),
which facilitates multiloop control of individual output variables with relative
independence.

5. Alarge Aj; implies strong interaction between y; and u; (i # j), corresponding
to an ill-conditioned transfer matrix.

W

Based on the evaluation of RGA, the following pairing rules suggested by Bristol
(1966) and McAvoy (1983) have been widely used in industrial applications:

Fairing rule 1. Select input—output pairings along the diagonal that results in RGA
close to the identity matrix as much as possible.

Fairing rule 2. Avoid pairing on negative RGA elements.

Note that only static gains of the process transfer matrix are considered for
the interaction measure in the above pairing rules. To further consider the process
dynamic response characteristics, a modified RGA for dynamic interaction measure
was proposed by Skogestad and Postlethwaite (2005):

RGA(G) = A(G) 2 G & (G7")' (10.3)
where G denotes the process transfer function. Accordingly, an enhanced pairing

rule 1 was given:

Enhanced pairing rule 1. Prefer pairings such that the rearranged system, with the
selected pairings along the diagonal, has an RGA matrix close to the identity matrix
at frequencies around the closed-loop bandwidth.
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For applying the above enhanced rule 1, one can compute the RGA-number for
the diagonal pairings:

RGA — number 2 |A(G) —I|| (10.4)

sum
where the norm is defined as || A|lg,, = > ;. j |aij | Obviously, a small RGA-number
is preferred for pairing selection. The RGA-number for other pairings may be
computed by subtracting 1 for the selected pairings. For example, the off-diagonal
pairing for a two-input-two-output (TITO) process may be selected in terms of
computing the RGA-number:

RGA — number = HA(G) — [0 1i| (10.5)

10

sum

10.1.2 Singular Value Decomposition (SVD)

In contrast with the above RGA approach for pairing selection, an alternative
approach has been developed in terms of the singular value decomposition (SVD)
analysis (Skogestad and Postlethwaite 2005).

Consider a multivariable process described by

Y(s) = Gs)U(s) (10.6)

where G(s) = [gij]mxn. Correspondingly, the static gain matrix is written as G(0) =

Fy ij (0)]mxn-

It is obvious by checking if the determinant of G(0) is zero to verify the linear
independence between the controlled variables.

For a fixed frequency, w € [0, 00), the transfer function matrix can be expressed
by SVD as:

G(jw)=UxVT (10.7)

where ¥ = [Z,0]ifm < n,or¥ = [210]T ifm > n,¥; = diag[oi]ixi,
[ = min{m, n},

o, = VA (GG*), i=12,...,1 (10.8)

which are listed in a descending order along the diagonal of ¥ to indicate the
maximal singular value (¢ = o07) and the minimal singular value (¢ = o7).

U e C"" and V € C"™" are unitary matrices satisfying

vuT =1 (10.9)

vl =1. (10.10)
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Note that all columns in U, denoted by u; (i = 1,2,...,1) satisfying ||u; ||, = 1
and orthogonal to each other, indicate the output directions of the transfer function
matrix. All columns in V, denoted by v; (i = 1,2,...,[) satisfying ||v;||, = 1
and orthogonal to each other, indicate the input directions of the transfer function
matrix. Correspondingly, the singular value o; indicates the proportional gain of the
transfer function matrix in the ith direction, that is,

G .
o =19 o, =12 (10.11)

[Ivill,

Hence, two important merits of SVD for analyzing the gains and directions of a
multivariable process transfer function matrix are that

1. The singular values indicate the process gains in the corresponding directions.
2. The directions of the process transfer function matrix thus obtained are orthogo-
nal to each other.

The condition number of G can be used for the interaction measure, which is
evaluated as a dimensionless ratio of the maximal to the minimal singular value:

5(G)

y(G) = 2G)’

(10.12)

A large condition number usually refers to an ill-conditioned transfer matrix. For
a non-singular square process, it follows from o(G) = 1/6 (G_l) that

y(G) =6(G)5 (G™) (10.13)

which implies that the condition number tends to be large if G and G~ have large
elements.

10.2 Multiloop Structure Controllability

For the control of a multivariable process, a widely used control structure is
multiloop (or named decentralized control). This control structure has a few merits
for implementation, e.g., economic configuration, tuning simplicity, loop failure
tolerance, etc. (Shinskey 1996; Seborg et al. 2004). Due to the interactions between
individual loops, closed-loop tuning methods developed for SISO processes cannot
be simply extended to multiloop systems (Morari and Zafiriou 1989; Skogestad and
Postlethwaite 2005). To avoid complexity, TITO processes are usually considered
for multiloop control in practical applications. Many industrial processes with a
dimension beyond two are preferred to be divided as several TITO subsystems for
the convenience of control design and system operation (Luyben 1990; Ogunnaike
and Ray 1994; Seborg et al. 2004).
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Fig. 10.1 Multiloop control
structure for a TITO process
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Consider a TITO process generally described in the form of:

_ | guls) gia(s)
o= [gZI(S) gzz(s)] (10.14)

where g;(s) = go.j ()e % i, j = 1,2, and 8o.ij (s) are physically proper and
stable transfer functions.

A multiloop control structure for a TITO process described in (10.14) is shown
in Fig. 10.1, where ¢; and ¢, are the multiloop controllers and #; and u, denote the
corresponding controller outputs.

The closed-loop system transfer function matrix can be derived accordingly as:

H=GC(+GC)™! (10.15)

where C is a diagonal controller matrix, i.e., C = diag{ci,c2},,.

It implies by (10.15) that absolute decoupling control of the binary system is
impractical in the framework of a multiloop control structure. This can be clarified
by a proof of contradiction as given below.

Assume that absolute decoupling control could be realized, that is, the nominal
closed-loop system transfer matrix could be led to the diagonal form, H = H =
diag{hy,hy},,,. Taking the matrix inverse for both sides of (10.15) gives H™! =
(GC)™'+1I.Note that H~! is also a diagonal matrix in such a case. Hence, (GC)™!
must be a diagonal matrix, thus requiring the process transfer matrix G to be a
diagonal matrix. The requirement contradicts the process description in (10.14).
This completes the proof.

For analysis, the multiloop control structure shown in Fig. 10.1 is rearranged into
the block diagonal closed-loop structure shown in Fig. 10.2, where G is composed
of the diagonal elements in G, i.e., G = diag{g11,822},x,>» Which connects the
desired pairings of the binary system inputs and outputs. Meanwhile, G — G is
viewed as an additive uncertainty of G. According to the small gain theorem
(Zhou et al. 1996), the larger is the H infinity norm of G — G, the worse is
the closed-loop system stability, and correspondingly, the lower is the multiloop
structure controllability. Hence, it is necessary to configure the process transfer
matrix in terms of diagonal dominance. Specifically, it is desirable to have the
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Fig. 10.2 A block diagram G-G
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column diagonal dominance of a TITO transfer matrix, i.e., |[g11 (jw)| > |g21(jo)|
and |g2(jw)| > |g12(jw)| for @ € [0, +00), which can be verified by comparing
the corresponding magnitude plots of frequency response. An intuitive but not strict
judgment on the diagonal dominance is to compare these static gains, i.e., check if
1€11(0)[ > |21(0)] and |g22(0)[ > |g12(0)[.

In the case where the process transfer function matrix cannot be configured
diagonal dominance as constrained by the process operation, some existing meth-
ods, e.g., Chen and Seborg (2002, 2003), suggested to add a static decoupler, i.e.,
D(0) = G~'(0), in front of the process inputs, and then to design the multiloop
controllers for the augmented plant, in expectation of further enhanced control
performance. In fact, such a static decoupler may be incorporated into the multiloop
controller design and therefore may not be regarded as an advantage. This will be
illustrated by Example 10.2 later.

For additional discussions on multiloop structure controllability, the readers are
referred to the existing literature, e.g., Campo and Morari (1994), Lee and Edgar
(2000), Cui and Jacobsen (2002), and Skogestad and Postlethwaite (2005).

10.3 Multiloop Control Design

Different approaches have been developed for multiloop control design. To enu-
merate a few, the Gershgorin band criterion in combination with the frequency
domain specifications of gain and phase margins have been intensively studied
for tuning multiloop PI/PID controllers (Ho et al. 1997; Lee et al. 1998; Wang et
al. 1998; Chen and Seborg 2002, 2003). Using the linear fractional transformation
(LFT) in terms of a M — A structure, Hovd and Skogestad (1993) and Giindes and
Ozgiiler (2002) developed independent tuning methods for multiloop controllers.
Zhang et al. (2002) further extended the dominant pole placement approach for
SISO systems (Astrom and Higglund 1995) to TITO processes, which can lead
to evidently improved system performance compared to the well-known biggest
log modulus tuning (BLT) method developed by Luyben (1986). To overcome the
deficiency of the conventional PID-type multiloop controllers causing excessive
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oscillation in the set-point responses compared to the PI-type controllers, Chien
et al. (1999) proposed a modified implementation of such PID controllers in a
multiloop system. Desbiens et al. (1996) developed the Smith predictor (SP)-based
multiloop control scheme for TITO processes with time delays. Using the sequential
relay feedback identification to realize autotuning of multiloop PI controllers has
been studied by Chiu and Arkun (1992), Loh et al. (1993), Shen and Yu (1994),
etc. In contrast, Palmor et al. (1995), Halevi et al. (1997), Wang et al. (1997),
etc. developed simultaneous relay identification methods to obtain the ultimate
frequency response information for tuning multiloop PI/PID controllers. Following
the IMC theory (Morari and Zafiriou 1989), Jung et al. (1999) suggested a one-
parameter tuning method for multiloop control systems, and Cha et al. (2002)
developed a two-step IMC tuning of multiloop PID controllers. Both the IMC-based
tuning methods, however, were based on using numerical frequency response fitting
algorithms, requiring relatively high computation effort for implementation.

Here an analytical multiloop PI/PID controller design method (Liu et al. 2005)
is presented for application, by proposing a practically desired closed-loop diagonal
transfer matrix and introducing a dynamic detuning matrix to reduce the interactions
between individual loops.

10.3.1 Desired Diagonal Transfer Matrix

From Fig. 10.2, it can be seen that the nominal diagonal transfer matrix of the
closed-loop system without the additive uncertainty is

H=GC(I+Gc)™. (10.16)

Following some linear algebra, the diagonal controller matrix can be inversely
derived as

c=G'H"-1)" (10.17)

Correspondingly, the multiloop controllers can be obtained from (10.17) as

i=1,2. (10.18)

Note that g;; contains time delay 6;;. It can be seen from (10.18) that if the
desired transfer function /; relating the system input r; to the output y; were not
to include 6;;, the corresponding controller ¢; would behave in a predictive manner.
Moreover, if g;; has any RHP zeros, h; is required to include them such that the
resulting controller ¢; will not include them as unstable poles.
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Based on the above observation, using the H, optimal performance objective
of the IMC theory (Morari and Zafiriou 1989), the desired closed-loop diagonal
transfer functions for implementation are proposed as

h e ]q_[ S TR (10.19)
i = - N 1 =1, .
CT (s 4+ P stz

where A; is an adjustable parameter to tune the i-th loop response, deg(go.i;) = pi,
s =z withk = 1,2,...,g; are RHP zeros of go;;, and z is the complex conjugate
of zi.

Substituting (10.17) into (10.15) yields the real multiloop control system transfer
matrix, i.e., the transfer matrix of the perturbed diagonal closed-loop system with
the additive uncertainty G — G shown in Fig. 10.2:

— -1

H=GG™ (A =1 (1+667 (A~ - 1))

1

Il
Q

(A7 =1)G +G)~

Il
Q

(H' (I -H)G + HG))

Il
Q

(G+H(G-G) A (10.20)

Usually there exists G # G in practice. Therefore, the diagonal transfer
functions relating the system inputs to the outputs will not be in the form of (10.19)
if the multiloop controllers are derived directly from (10.18). This can be practically
interpreted as that the additive uncertainty, G — G, will inevitably result in the
interactions between individual loops. To realize the desired closed-loop diagonal
transfer functions shown in (10.19) for the selected pairings of the system inputs
and outputs, a diagonal dynamic detuning matrix, D = diag{d,,d»},,, is therefore
proposed to modify the diagonal system transfer matrix shown in (10.16), that is,

DH=GC(I+GC) ™. (10.21)

Accordingly, the multiloop controller matrix can be inversely derived as

c=GYA'D-1)"". (10.22)

Substituting (10.22) into (10.15) obtains the corresponding multiloop system
transfer matrix

H=G(D'6+H(G-G)) 'H (10.23)
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Letting
diag{G(D™'G + H (G- G)) "'} = 1. (10.24)

one can obtain the diagonal transfer functions of the resulting multiloop transfer
matrix as shown in (10.19).

Substituting (10.14) and (10.19) into (10.24), the dynamic detuning factors can
be derived as

d= 2811822
(hy — h) g12g21 + guigaz + (=" \/[(hl—hz)glzgzl — gngnl’ — 42118281281 (1—h)h
(10.25)
2
dy = 811822
(ha—=h1)g12821 + g11822 + (=" \/[(hl — h2) g12821 — 8118221 —4g11822812821(1—h1) >
(10.26)
where

0, 0 0) > 0;
. £11(0)g22(0) (10.27)

1, £11(0)g0(0) <0.

Note that the choice of m in (10.27) is to ensure d; (0) = d»(0) = 1, such that the
multiloop transfer matrix shown in (10.23) will be led to the identity matrix in the
final steady state, i.e., H(0) = I. That is, the diagonal dynamic detuning matrix is
reduced to the identity matrix in the steady-state system transfer matrix, introducing
no steady offset in the system outputs. This is also the reason for discarding the
other solution of (10.24). Concerning d;(0) = d»(0) = 1, it can be easily verified
using /1(0) = h»(0) = 1 from (10.19).

Even in the case where G = G, i.e., g2 = g2 = 0, it can be verified from
(10.25) and (10.26) that d; = d, = 1. This indicates that the proposed diagonal
dynamic detuning matrix is reduced to the identity matrix for a diagonal process
transfer matrix and therefore is generally applicable to different TITO processes.

Hence, to realize the desired closed-loop diagonal transfer functions shown in
(10.19), the modified diagonal transfer matrix for deriving the multiloop controllers
can be determined as

die~fis I (—zes + 1)
(Ais + D)7 bl @s+1D |’

H = DH = diag i=1,2. (10.28)
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10.3.2 Multiloop PI/PID Controller Design

Substituting (10.28) into (10.22), one can obtain the ideally desired multiloop
controllers in the form of

1 dih;

— L i=1,2. 10.29
gii 1—dih; : ( )

Cideal—i =

By substituting (10.19), (10.25), and (10.26) into (10.29), it can be seen that
both the numerator and denominator of (10.29) are involved with time delays
in a complex manner and therefore are difficult for practical implementation.
Moreover, if g;; has any RHP zeros, there will exist RHP zero-pole canceling
in (10.29), causing the controllers to work in an unstable manner. Therefore, a
rational approximation is needed for practical implementation of the ideally desired
controller form shown in (10.29).

Since PI- and PID-type controllers have been widely used in industry to facilitate
economic operation of multiloop control systems, the analytical approximation
formula based on the Maclaurin series expansion shown in (7.100) is used here
for multiloop PI/PID controller design. Using (10.19), (10.25), and (10.26), it can
be verified that

lim (1 —dih) =0, i=1.2 (10.30)
s—0

which implies that the ideally desired multiloop controllers shown in (10.29) have
an integral property that can eliminate the output deviations from the corresponding
set-points. Therefore, letting

M;(s) = sCigea—i (8), 1 =1,2, (10.31)

one can obtain the corresponding PID-type controllers in the form of (7.102), where
the first two terms may compose a PI-type controller.

Obviously, the above PID-type controller is capable of better closed-loop
performance than such a PI-type controller. Further enhanced control performance
can be obtained using the higher-order approximation formulae given in (8.61)—
(8.64).

Note that each of the proposed multiloop PI/PID controllers is essentially tuned
by a single adjustable parameter A; (i = 1, 2), which is used to tune the ith output
response as shown in (10.19).

10.4 Robust Stability Analysis

To evaluate robust stability of a multiloop control system in the presence of process
uncertainties, the following stability theorem developed from the generalized
Nyquist stability theorem is first presented:
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Theorem 10.1. (Skogestad and Postlethwaite 2005) Assume that the nominal
system M(s) and the perturbations A(s) are stable in the M — A structure shown
in Fig. 7.7. Consider the convex set of perturbations A, such that if A is an allowed
perturbation then so is €A’ where ¢ is any real scalar such that |e| < 1. Then
the M — A system is stable for all allowed perturbations, if and only if any of the
following equivalent conditions is satisfied:

1. The Nyquist plot of det(I — MA(s)) does not encircle the origin, VYA, i.e.,
det(I — MA (jw)) # 0,Vo,VA

2.4 (MA (jw)) #1,Vi,Vo,VA

3. p(MA(jw)) < 1,Vo,YA

4. mAaxp(MA (jw)) < 1,Vo

Based on the above stability lemma, the following corollary is evolved for a TITO
multiloop control system shown in Fig. 10.1.

Corollary 10.1. A TITO multiloop control system holds the nominal stability if and
only if

1. ¢1/ (1 + guic1) and 2/ (1 + gaca) are stable

0 1glzfl
200 ener +;6“c1 <1, Yo.
1+gnc

Proof. By transforming the multiloop control structure shown in Fig. 10.2 into the
standard M — A structure shown in Fig. 7.7, one can see that the t{ansfer matrix
relating the input to the output of the additive uncertainty A = G — G is

= 1

M =-C(I +GC) (10.32)

which is obviously a diagonal transfer matrix owing to G = diag{g11,822},x, and
C = diag{ci,c2},x, and consists of the two transfer functions shown in the first
condition of Corollary 10.1.

Since the multiloop controllers have been devised in the form of PI/PID for
implementation, the first condition is surely satisfied for a stable transfer matrix G.

Then by substituting A = G — G and (10.32) into the third equivalent
stability condition in Theorem 10.1, the second condition of Corollary 10.1 follows
accordingly. O

Note that the second condition in Corollary 10.1 can be practically checked
by observing if the magnitude plot of the spectral radius falls below the unity for
€ [0, +00). An admissible tuning range of the adjustable parameters A; (i = 1,2)
can thus be determined. Moreover, it can be seen from the desired closed-loop
diagonal transfer functions shown in (10.19) that each of the output responses is
essentially regulated by A; and A,, respectively. When A; (i = 1,2) is tuned to a
smaller value, the corresponding output response will become faster, but the output
energy of ¢; and the corresponding actuator action needs to be larger, and more
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Fig. 10.3 Multiplicative
input (a) and output (b)
uncertainties

aggressive dynamic behavior of the corresponding output response will occur in
the presence of process uncertainties. Alternatively, tuning A; to a larger value can
slow down the corresponding output response, but the output energy of ¢; and the
corresponding actuator action is required smaller, and accordingly, less aggressive
dynamic behavior of the corresponding output response will occur in the presence
of process uncertainties. Hence, tuning the adjustable parameters A; (i = 1,2) aims
at a good trade-off between individual loop performance, robustness, and the output
capacities of ¢; (i = 1,2) and the corresponding actuators.

In the presence of process uncertainties, the multiloop system transfer matrix
may become very complex, and therefore, the closed-loop system may lose
stability in an intangible manner. A practical way to evaluate the closed-loop
system robust stability in the presence of process uncertainties such as the process
parameters perturbations, actuator uncertainties, and output measurement uncer-
tainties is to lump multiple sources of uncertainty into a multiplicative form
(Skogestad and Postlethwaite 2005). In view of the multiplication sequence of
transfer matrices, two cases consisting of the process multiplicative input and
output uncertainties are analyzed here, which are shown in Fig. 10.3. The process
multiplicative input uncertainty shown in Fig. 10.3a describes the process family
I = {61(5) 1 Gi(s) = G(s) (I + Ay }, where Ap is assumed to be stable. The
process multiplicative output uncertainty shown in Fig. 10.3b describes the process
family ITo = {Go(s) : Gols) = (I + Ao) G(s) J» Where Ao is assumed to be
stable.

According to the standard M — A structure shown in Fig. 7.7 for robust stability

analysis, the transfer matrices relating the outputs to the inputs of Ay and Ag can be
derived, respectively, as

M =—-C(+GC)'G (10.33)

Mo =-GC(I +GC)™! (10.34)

Note that the nominal system stability has been ensured by tuning A; and A,.
Accordingly, the closed-loop transfer matrix shown in (10.15) is stable. That is,

Cc(I+ GC)_1 is maintained stable. Hence, M} and Mg in (10.33) and (10.34) are
also maintained stable for a stable transfer matrix G.
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Substituting (10.33) and (10.34) into the third equivalent stability condition in
Theorem 10.1, respectively, one can obtain

o (C(I + GC)_IGAI) <1,Vo (10.35)
o (GC(I + GC)“AO) <1,Vo. (10.36)

Hence, given a specified bound of Aj or Ag in practice, one can use (10.35)
or (10.36) to evaluate the multiloop system robust stability, that is, observe if the
magnitude plot of the left-hand sides of (10.35) or (10.36) falls below unity for

w € [0, +00).
Generally, it is suggested to first tune each of the adjustable parameters A; (i =
1,2) around the time delay 6;;(i = 1,2) of the diagonal transfer functions in

the process transfer matrix, respectively. Then by monotonically varying these
adjustable parameters on line, desirable output response performance of individual
loops can be obtained in a transparent manner. To cope with process uncertainties
in practice, it is suggested to monotonically increase A; and A, on line, so that
the output responses will be slowed down to obtain enhanced closed-loop robust
stability. If by doing so, the control system performance and robust stability
still cannot be acceptable from a practical view, process re-identification can be
performed to obtain a more precise process model for deriving the mutiloop
controllers, such that the process unmodeled dynamics can be effectively reduced to
facilitate improving system performance and robust stability.

10.5 Illustrative Examples

Two examples from the existing literature are used to demonstrate the effectiveness
and merits of the presented multiloop control method. Example 10.1 is the widely
studied Wood-Berry process with diagonal dominance. Example 10.2 is a TITO
process with off-diagonal dominance, which is used not only to demonstrate the
effectiveness of the proposed multiloop control method but also to compare control
results with or without a static decoupler. For simulation tests, the simulation solver
option is chosen as ode5 (Dormand-prince) and the simulation step size is fixed as
0.02(s).

Example 10.1. Consider the widely studied Wood-Berry binary distillation column
process (Wood and Berry 1973):

12.8¢7°  —18.9¢7%
16.7s +1 2ls+1

6.6e7" —19.4e7%
109s +1 14.4s + 1
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Table 10.1 PI controller parameters for Example 10.1

PI parameters k¢ T ke T2
Chen 0.436 25.2294  —0.0945 —164.0212
Jung 0.19 44.7895  —0.099 —86.6667
Proposed 0.2448  22.2954 —0.0723 —86.8922
1.0 :
—A,=25, 1,=6

...... A=2.5, A,=6 for AI
—-=Ay=2.5, Ay=6 for Ao ||
—— Mq=5, A,=3 for Ao

0.6

0.4

0.2

 (rad/sec)

Fig. 10.4 The magnitude plots of spectral radius for Example 10.1

Two multiloop PI/PID control methods given by Chen and Seborg (2003) and
Jung et al. (1999) are used here for comparison. The corresponding PI controller
parameters are listed in Table 10.1.

In the proposed method, take A; = 2.5 and A, = 6 for obtaining the similar rise
speed of the set-point response for comparison with the above two methods. Using
the controller design formula in (10.29), together with (10.19), (10.25)-(10.27),
and the analytical approximation formula in (7.100), the resulting PI controller
parameters are also listed in Table 10.1.

Figure 10.4 shows the magnitude plot of the spectral radius condition in
Corollary 10.1 to verify the nominal system stability in terms of the proposed
method (thin solid line). It is seen that the maximum magnitude of the spectral
radius for the nominal system is smaller than unity, indicating good system stability.

By adding a unity step change to the binary set-points at t = 0(s) and r = 100(s),
respectively, and an inverse step change of load disturbance with a magnitude
of 0.1 to both of the binary process inputs at t = 200(s), the control results are
shown in Fig. 10.5. Note that the time scale is altered from the minute unit of the
original process to the second unit of the simulation model for the convenience of
test and illustration. It is seen that the proposed multiloop PI controllers result in
comparable binary output responses in comparison with the above two methods.
For further comparison, the binary output responses obtained using the PID-type
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Fig. 10.5 Nominal system responses of Example 10.1 using PI controllers
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Fig. 10.6 Nominal system responses of Example 10.1 using PID controllers

controllers in terms of the above adjustable parameter settings (i.e., adding the
derivative terms, tp; = 0.0624 and tppy = —0.078, to the PI controllers listed
in Table 10.1) are shown in Fig. 10.6 in comparison with the PID controllers
of Jung et al. (1999), ¢; = 0.27(1 4+ 1/6.91s +3.935s) / (1.81s+ 1) and ¢, =
—0.103 (1 4+ 1/5.9s 4+ 1.88s) / (0.175s + 1). It is seen that both PID tunings lead
to improved output response compared to the results in Fig. 10.5. Note that the PID
tuning in Jung et al. (1999) was obtained by using numerical calculation with a
considerable computation effort rather than simply adding a derivative term to the
PI tuning that was also based on numerical calculation.
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A1=2.5, A2=6 for A
— A1=2.5, \2=6 for Ao 1.6
—— A=5, A2=3 for Ao

. A1=2.5, A2=6 for A
0.2 1 0 AN — A1=2.5, A;=6 for Ao
“\J — A;=5, A2=3 for Ao

0 50 100 150 200 250 300 0 50 100 150 200 250 300

Time (sec) Time (sec)

Fig. 10.7 Perturbed system responses of Example 10.1

To demonstrate the multiloop system stability by using the proposed
method, assume that there exists the process multiplicative input uncertainty,
Ar = diag{(s+0.3)/(s+1).(s+0.3) / (s + 1)},4,, which may be practically
interpreted as the binary process inputs fed by the corresponding actuators
increasing by 100% at high frequencies and by almost 30% in the low-frequency
range. In the other case, assume that there exists the process multiplicative
output uncertainty, Ag = diag{— (8 +0.2) /(2s+ 1), — (s +0.2) / 2s + D},y,
which may be practically viewed as the binary process measurements offered by
the output sensors decreasing by 50% at high frequencies and by almost 20%
uncertainty in the low-frequency range. Figure 10.4 shows the magnitude plots
of the spectral radius conditions in (10.35) and (10.36) for the above Aj and
Ao, both of which indicate that the proposed method can maintain good robust
stability. The corresponding output responses are shown in Fig. 10.7. It is seen
that the proposed multiloop control system retains robust stability well. Moreover,
in the proposed method the set-point response oscillation of the output y; can
be alleviated by gradually increasing A; on line at the cost of a degradation in
the disturbance rejection performance. On the other hand, a faster response of
the output y, can be conveniently obtained by gradually decreasing A, on line at
the cost of a degradation in the loop stability. For illustration, take A; = 5 and
A, = 3, corresponding to the PI controllers of k¢; = 0.1807, t;; = 38.2206,
kco = —0.091, and 77, = —57.9281. The control result is also shown in Fig. 10.7
for comparison, which demonstrates the relative independence for tuning individual
output responses.

Example 10.2. Consider the industrial polymerization reactor studied by Chen and
Seborg (2002) and Chien et al. (1999):

22.89¢702 —11.64¢70% —4.243¢704
|:y1(s):| | 45725 +1 1.807s + 1 |:u1(s)] n 3.4455 + 1

4.689¢702 5. 8p704s us(s) —0.601e704

21745 +1 1.801s + 1 1.982s + 1

y2(s) 4(s).
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Table 10.2 PI controller parameters for Example 10.2

PI parameters ke T ke T2
Chen 6.67 0.1559 1.67 0.9401
Chien 0.263 5.3992 0.163 10.8589
Proposed without decoupler 0.2908 16.1502 0.0869 15.5504
Proposed with decoupler 7.7294 0.5 1.2136 1.7

14 14
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Fig. 10.8 System output responses of Example 10.2

It is obvious that the second column of the process transfer matrix has off-
diagonal dominance. Chen and Seborg (2002) suggested to use a static decoupler
D(0) = G~'(0) in front of the binary process inputs and then to design multiloop
PI controllers for the augmented system. Chien et al. (1999) gave a multiloop PI
controller tuning method for the original process. For comparison, two cases are
performed by using the proposed method: One case is for the original process, and
the other case is for the augmented system with the above static decoupler. By taking
Ay = 0.3 and A, = 1.5 to obtain the similar rising speeds of the set-point responses
with those of Chen and Seborg (2002), the corresponding PI controller parameters
are listed in Table 10.2, along with those of the above two methods.

By adding a unit step change to the binary set-points at = 0(s) and = 20(s), re-
spectively, and then a unity step change of the load disturbance d (s) at t = 50(s), the
control results are shown in Fig. 10.8. It is seen that improved system performance
for both the set-point tracking and load disturbance rejection is obtained using
the proposed method. Moreover, it is demonstrated that using a static decoupler
does not help to obtain further improved system performance. Note that simulation
tests under process uncertainties as assumed in example 10.1 demonstrate that the
multiloop system robust stability is maintained well using the proposed method,
regardless of whether the static decoupler is used or not, and therefore are omitted.
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10.6 Summary

For multivariable processes, input—output pairing is the first step for control system
design. Two widely used approaches developed respectively based on the RGA and
SVD analysis for the pairing selection have been briefly introduced.

The multiloop control structure has been widely applied in various industrial
and chemical contexts, owing to the simplicity and economic configuration for
operation. Based on a TITO process description as mostly adopted in practical
applications to facilitate the design and implementation of a multiloop control
system, the multiloop structure controllability has been analyzed, along with
a conclusion that absolute decoupling regulation is generally impractical to be
realized by a multiloop structure.

An analytical multiloop PI/PID controller design method (Liu et al. 2005) has
been presented for TITO processes with time delays. By proposing the desired
closed-loop diagonal transfer functions relating the selected pairings of the process
inputs and outputs and introducing a dynamic detuning matrix to realize these
diagonal transfer functions in the multiloop system, the ideally desired multiloop
controllers are inversely derived. For practical application, the Maclaurin approx-
imation approach introduced in Sect. 7.5 can be used to derive the corresponding
PI or PID controllers for implementation. An important merit is that there is
essentially a single adjustable parameter in the proposed PI or PID multiloop
controllers, respectively, which can be monotonically tuned to optimize individual
loop responses, therefore facilitating the multiloop system operation in practice.
Sufficient and necessary constraints for tuning each of the adjustable parameters
to maintain the nominal system stability and its robust stability have been derived
with respect to the process multiplicative input and output uncertainties. These
stability constraints can be graphically checked through the magnitude plots of the
corresponding spectral radius conditions.

Two examples from existing literature have been used to illustrate the proposed
multiloop control method, one with diagonal dominance and the other with off-
diagonal dominance. It has also been demonstrated that a static decoupler obtained
as the inverse of the process static gain matrix has little advantage for the multiloop
control design.
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Chapter 11
Decoupling Control of Multivariable Processes

11.1 Decoupling Control Design for Two-Input-Two-Output
(TITO) Processes

For multivariable process control, two-input-two-output (TITO) processes are
mostly established for the convenience of control system design and system
operation. Many industrial processes with higher dimensions are practically divided
as several TITO subsystems for operation (Luyben 1990; Ogunnaike and Ray 1994;
Seborg et al. 2004).

As time delay is usually associated with process operation in engineering prac-
tice, its presence in an individual loop in a multivariable process can severely prevent
a high gain of the closed-loop controller from being used, causing sluggish output
performance (Holt and Morari 1985). Moreover, multiloop control performance
may be degraded severely for TITO processes without diagonal dominance, causing
inadmissible interactions between individual loops, which can be seen from the
examples given in Chap. 10. To improve decoupling regulation of the binary system
outputs, different control strategies have been developed in the literature. Earlier
references (Alevisakis and Seborg 1973; Ogunnaike and Ray 1979; Watanabe et al.
1983; Jerome and Ray 1986, 1992; Desbiens et al. 1996; Wang et al. 2000b)
applied the Smith predictor (SP) structure that is specially for time-delay SISO
systems to TITO processes with time delays for obtaining a delay-free characteristic
equation of such a system transfer matrix, and then extended decoupling control
methods well developed for linear multivariable systems free of time delay to
enhance decoupling regulation performance. Based on frequency response data
estimated from relay feedback identification tests, online sequential tuning methods
for decoupling control have been developed by Shiu and Hwang (1998), Toh and
Rangaiah (2002), and Gilbert et al. (2003). Using a decoupler in front of the process
inputs to obtain diagonal dominance of the augmented process transfer matrix, a
number of decoupling control methods have been devoted to tuning the multiloop
controllers, such as the references (Astrom et al. 2002; Chen and Seborg 2003; Lee
et al. 2005) based on a static decoupler, i.e., the inverse of the process static gain

T. Liu and F. Gao, Industrial Process Identification and Control Design: Step-test 369
and Relay-experiment-based Methods, Advances in Industrial Control,
DOI 10.1007/978-0-85729-977-2_11, © Springer-Verlag London Limited 2012
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Fig. 11.1 Multivariable C G
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transfer matrix, and other references based on a dynamic decoupler (Perng and Ju
1994; Wang et al. 2000a, b; Pomerleau and Pomerleau 2001; Waller et al. 2003).
It should be noted that a static decoupler has little impact on the dynamic system
output responses, and in contrast, a dynamic decoupler is difficult to be configured
precisely in practice, especially for TITO processes with long time delays, due to
the requirements of physical properness and causality for implementation (Waller
et al. 2003).

Here, an IMC-based decoupling control method (Liu et al. 2006) is presented
for application. A multivariable IMC structure is shown in Fig. 11.1, where G =

[gij]zxz denotes the process, G is the process model, and C = [cij ]2X2 is a
controller matrix for decoupling control. R is the set-point vector, U is the process
control input vector, and Y is the process output vector.

A TITO process with time delays is usually described as

—0O11s —0O12s

kne klze
ms+1 tps+1

—ba1s

G(s) = (11.1)

koe 16226_922‘Y

s+ 1 s+ 1

where kij, 7;;, and 4917 denote the static gain, time constant, and time delay
in the transfer functions relating the corresponding input and output variables,
respectively.

Before proceeding with decoupling control design, it is preferred to have an
analysis of the preconditions for decoupling control of TITO processes as follows.

11.1.1 Decoupling Control Preconditions

From a multivariable IMC structure shown in Fig. 11.1, it can be seen that for

the nominal case, i.e., G = G, there is an “open-loop” control for the set-point
responses, so the system transfer matrix can be simplified as

H=GC = |:g11 g121| |:611 612:| (11.2)
821 822 €21 €22
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Obviously, the nominal system can maintain stability if the controller matrix C
is designed to be stable. The decoupled output responses correspond to a diagonal

system transfer matrix,
hy 0
H = (11.3)
0 hy

where the diagonal elements /; and h, are stable and proper transfer functions.
Therefore, two fundamental decoupling control preconditions can be ascertained as
below:

(a) Both G and C should be nonsingular at s = 0, i.e., det[G(0)] # 0 and
det[C(0)] # 0.
(b) There exists no cross-coupling in tuning the controllers in each column of C.

The first condition (a) is a sufficient and necessary condition for the decoupling
control of a TITO process, which can be verified from (11.2) and (11.3). Moreover,
it can be easily seen from (11.2) that the first condition implies kj1kyy # kiokoi.
Note that although some industrial processes can be modeled in a stable form, like
(11.1), the output responses in a closed-loop control scheme appear unexpectedly to
be sensitive to model mismatch or process perturbations. The reason lies in essence
with det [G(0)] — 0. Such process modeling should be avoided for the decoupling
control design.

The second condition (b) is an operational requirement to facilitate the de-
coupling regulation in practice. The reason can be intuitively seen from the
postmultiplication relationship between G and C in (11.2) for obtaining a desired
diagonal system transfer matrix shown in (11.3).

11.1.2 Desired System Transfer Matrix

It can be seen from (11.2) that if the desired diagonal system transfer matrix in the
nominal case can be determined in the first place, the decoupling controller matrix
can then be inversely derived as

_ adj(G)
C=G'H-= 11.4
det(G) (11.4)
where adj(G) = [GY ]szz is the adjoint of G and G” denotes the complement

minor corresponding to g;; in G, i, j = 1,2.
Note that the process transfer matrix determinant can be formulated as

G''G? (1= G°e™2%), 011 + 62 < 612 + 65

e—Abs

det(G) =
—GzgH (1 — %5 ) O11 + 02 > 012 + 61

(11.5)
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where
AO = |01 + 02 — 012 — 0a1]

o _ kikar  (tis + 1) (z225 + 1)
kikan (tizs + 1) (ta1s + 1)

Without loss of generality, consider the case where 011 + 625 < 05 + 6 in some
TITO processes. It can be seen from (11.2) and (11.3) that each column controllers
in C are related to the same diagonal element in H. For instance, the first column
controllers are

G 1 (tns + 1) e’
cin = hy = —nh = —a~h (11.6)
det(G) G2 (1 — Goe=2) ki (1 — Goe=40%)
. G" b = G" b= kai (tiis + 1) (tps + 1) e @it =
o det(G) ' G11G22 (1 - GOE_AGS) e kllkzz ('[215 + 1) (1 —_ Goe—AQS) !

11.7)

Obviously, it can be seen from (11.6) and (11.7) that if the desired diagonal
transfer function /; were not to include an equivalent time delay to balance 6, the
controller ¢;; will behave in a predictive manner, and so does ¢, if 611 + 025 > 65;.
The predictive manner violates the causal law in nature and therefore cannot be
implemented in practice. This can be perceived through the fact that either of the
binary process outputs can only begin to track the corresponding set-point after
certain time delay of the process. Moreover, if the polynomial 1 — G°e~2% in the
denominators of (11.6) and (11.7) contains RHP zeros, A is required to include
these RHP zeros so that ¢ and ¢, will not contain them as unstable poles.

Based on the above analysis and using the robust H, optimal performance
objective for set-point tracking (Morari and Zafiriou 1989), the desired diagonal
transfer function /; is proposed as

e L sty
hy = 11.8
: )Lls+li1:[1(s+z?‘) (11.8)

where A; is an adjustable parameter used to tune the first process output y;, 6, =
max {01,011 + 0 — 0}, s =z (i = 1,2,...,q) are RHP zeros in 1 — G°e™2%,
and z;' is the complex conjugate of z;.

Thus, one of the first column controllers in C can be implemented in a
proper and rational form, while the other controller in the first column can be
practically implemented in tandem with a specified dead-time compensator such
that independent regulation of the first process output y; can be realized.
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Following a similar analysis, a desired diagonal transfer function #, is pro-
posed as

e L sty
= 11.9
: A2s+1i1:[1(s+z?‘) (11.9)

where A, is an adjustable parameter for tuning the second process output y, and
0, = max {0y, 01 + 022 — 012}.

In the case where 011462 > 015465 in other TITO processes, the desired diago-
nal transfer functions /; and %, can be proposed almost the same as above. The only
difference is that 8; = max {612, 612 + 021 — O}, 0, = max {6y, 012 + 021 — 011},
ands =z (i = 1,2,...,q) are RHP zeros in 1 — e~ 25 /G°.

Note that by proposing a desired diagonal system transfer matrix as above, the
time-domain performance specifications of the system output responses can be
quantitatively tuned through the adjustable parameters A and A,. For instance, for
TITO processes with no RHP zeros in det(G), i.e., | — G°e™2% (if ), + 02 <
12 + B21) or 1 —e™205/G® (if 11 + 65, > 615 + 651) has no RHP zeros, the desired
diagonal transfer functions /2, and /4, can be simplified as

hy = e (11.10)

1

=———¢ ™ 11.11
Aos + 1e ( )

h

By performing an inverse Laplace transform with respect to unit step changes in
the binary set-points, the time-domain binary output responses can be obtained as

0 t <0, 11.12
)’I(Z) - 1 — e~ =60)/A1 t > 0, e
0 t<6 11.13
»n(t) = 1 —e =0/ ;5 ¢, e

It is therefore demonstrated that there is no overshoot in either of the nominal
output responses, and the time-domain response specifications can be quantitatively
tuned through the adjustable parameters A; and A,, as analyzed in (9.11) in
Sect. 9.2.1.

Hence, it is convenient to tune A; and A, to obtain the desirable process output
responses, which in fact are executed through each column controllers in C.
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Fig. 11.2 Positive feedback In Out
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11.1.3 Decoupling Controller Matrix Design

According to the desired diagonal system transfer functions 4; and %, shown in
(11.8) and (11.9), the ideally optimal decoupling controller matrix C can be in-
versely derived from (11.4). However, there exist some constraints for implementing
G~! in practice. For instance, when there exist RHP zeros in det(G), it can be
seen from (11.4) together with (11.8) and (11.9) that there will be RHP zero-pole
canceling in all controllers in the ideally optimal decoupling controller matrix,
causing the controller matrix to be unstable for implementation. To determine a
practical form for implementing the above ideal decoupling controller matrix, a
design procedure is proposed in terms of two cases: Case 1 is that there exist no
RHP zeros in det(G), and case 2 is the opposite.

In case 1, it can be seen from (11.5) that no RHP zeros in det(G) indicates that
1 — G205 (if 011 + 63 < 012+ Oa1) or 1 —e 2% /G° (if 011 + 625 > 012 + 631)
has no RHP zeros. Correspondingly, 1/ (1 — G°e_A9“) orl/ (1 — e_M‘Y/G") isa
stable transfer function.

First, consider the case where 01 + 62 < 015 + 6. Substituting (11.8) into
(11.6) yields

s+ 1 e~ (B1=611)s
c = . 11.14
U ki (1= Goe85)  Ays + 1 (119
which can be rearranged in the form of
1) e~ @1 —=011)s
oy = st De : (11.15)

ki (Ais+1)

where F = 1/(1 — G°e~2%). Obviously, the first part in ¢;; can be practically
implemented using a first-order lead-lag controller in tandem with a dead-time
compensator, and the second part F' can be implemented using a positive feedback
unit, as shown in Fig. 11.2. Note that this control unit maintains internal stability
because its transfer function has no RHP poles and G° is bi-proper and stable for
implementation.

Similarly, the remaining controllers in C can be derived as

kot (zus + 1) (o + 1) e” 10—

: - F 11.16
kiika (s + ) (As + 1) ( )

€1 = —
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ki» (ti1s + 1) (1225 + 1) e~ (02+012—011—62)s
kiika (tias + 1) (A2s + 1)

Clp = - F (11.17)

(‘L’22S + 1) 8_(92_022)S
C = B
2 ko (Aas + 1)

(11.18)

Then, in the case where 6,1 + 65, > 61, + 651, each column controllers in C can
be similarly derived as

ko (zias + 1) (s + 1) e” 10200

=  kioka (25 + 1) (A1s + 1) o (a1
e — ki (mas+ 1) (zas + 1) e~ (0240 —0=0)s F (11.22)

_klzkzl (tiis + 1) (As + 1)

where F = 1/(1—e72%/G®). Note that G° is bi-proper and stable and so is
1/G°. Therefore, F can be implemented using a control unit similar to that shown
in Fig. 11.2.

It is seen from the above controller formulas that each column controllers in C
are exactly tuned in common by a single adjustable parameter (4;). Consequently,
there is no cross-coupling in tuning each column controllers in C. Moreover, C is
maintained nonsingular at s = 0.

Combining the desired diagonal transfer functions shown in (11.8) and (11.9), it
can be seen that the adjustable parameters A; and A, can be monotonically tuned
to obtain desirable output responses. That is, when A; and A, are tuned to smaller
values, the output responses y; and y, will become faster, but the output energy of
C and its corresponding actuators will be required to be larger, and vice versa.

Based on a large amount of simulation analysis, it is suggested to first tune A; and
A in the ranges of (2 — 10)6; and (2 — 10)8,, respectively. If the resulting output
responses are not satisfactory, then by monotonically varying A; and A, online, a
good trade-off between the output performance and the capacities of C and the
corresponding actuators can be conveniently reached.

In case 2, it can be seen from (11.5) that all RHP zeros are located in 1 — G°e 205
(f 011 + 02 < O12 + B21) or 1 —e™ 205 /GO (if By + B2 > 012 + B21). The number of
these RHP zeros can be ascertained by observing the Nyquist curve of —G°e ™20
(or —e~2%5 /G°). Note that the times of encircling the point (—1, jO) in the complex
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plane by the Nyquist curve is equal to the RHP zero number of det(G) since it has
no RHP pole. Alternatively, all RHP zeros in det(G) can be numerically computed
by solving 1 — G°e™2% = 0 (or 1 —e~2%/G° = 0) from a mathematical software
package like the MATLAB toolbox.

When 6,; + 0 < 61, + 6,1, substituting the desired diagonal system transfer
functions shown in (11.8) and (11.9) into (11.4) yields

1 —(61—611)s
o = s+ e D (11.23)

ke Gas + D) [T (s + 2)

i=l1

ko1 (tiis + 1) (tas + 1) e~ (011021—011—02)s

ki1ka (s + D) Ms+ 1) [T (s +2F)

i=1

€21 -D (11.24)

ki» (tiis + 1) (tas + 1) e~ (02 +012—011—02)s

ki1ka (ti2s + D) (s + 1) T (S—G—Z;-k)

i=1

C12 = -D (11.25)

1) e~ (O2—022)s
e = TS+ De D (11.26)

ka (Azs 4+ 1) [T (s + 2F)
i=1

where

n

[T (=s+z)

D = =1 11.27
1 — GPoeAbs ( )

Obviously, the first part in all controllers shown in (11.23)—(11.26) can be
implemented using a lead-lag controller, together with a dead-time compensator or
not, but the second part, D, cannot be directly implemented due to the occurrence of
RHP zero-pole canceling. A rational approximation is therefore needed for practical
implementation.

Following the analytical approximation method introduced in Sect. 8.4.1, the
mathematical Padé expansion is used here to construct a linear fractional approxi-
mation formula,

Dyyy = 22— (11.28)
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where U and V are user-specified orders for approximation and the constant
coefficients a; (i =1,2,...,U) and b;(j =1,2,...,V) are determined by the
following two matrix equations:

ao d() 0 0 ce 0 bo
ai d dy 0 0 b
=1 . . . . (11.29)
ay dy dy— dy— -+ dy—y by
dy dy—1 -+ dy—y4i by dy
dy+1 dy -+ dy-v+2 by dy+2
. . . .= . (11.30)
dyyv—1 dyyyv— -+ dy by dy+v
where di(k =0,1,...,U + V) are constant coefficients in the Maclaurin series
expansion of D shown in (11.27),
1 .. d*D
1, b,’ > 0;
by = ' (11.32)
—1, bj < 0.

Note that (11.29) and (11.30) can be transparently derived by substituting
(11.28) into the Maclaurin series expansion of D and then comparing the constant
coefficients of each term with the same index exponent of the complex variable (s)
at both sides.

For instance, letting U = V = 1 gives a first-order approximation formula,

as + ap
Doy — 11.33
V= 5s + by ( :
where
d>
bl = _d_’ ay = d]b() + dobla agp = d()b(]-
1

It can be seen from (11.27) that G°e~2% goes to the origin much faster when
s — 0o, compared to the rational numerator polynomial. Hence, it is definite that
a rational linear fractional approximation for D can give good accuracy. For the
convenience of implementation, a simple approximation can be obtained as

Ms+2) s +2)
p = =! = = (11.34)

_ (Jo ki2k
1=G20) O e
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Note that whether det(G) has infinite many RHP zeros or not can be verified
by checking if [kiokoiti1722/ (k11k2aTi2t21)] > 1 (when 6i1 + 6 < 6in +
021) or [kitkoatiata1/ (kizka1Tii72)] > 1 (when 011 + 0 > 01 + 021). The
reason is that the Nyquist curve of —G°e~2% (or —e~2%/G°) will encircle the
origin for infinite many times with a radius of kjyky 711122/ (k11k22T12721) (O
ki1kaptiata/ (kizka1ti1T22) When 01 + 6 > 0p + 051) for o € [0, +00), if
there exist infinite many RHP zeros in det(G). Since off-dominant RHP zeros in a
system transfer function have little impact on the achievable system performance
(Astrom and Hiigglund 1995; Skogestad and Postlethwaite 2005), it is suggested to
use only dominant RHP zeros in det(G) to formulate the desired diagonal transfer
functions, as shown in (11.8) and (11.9), such that the decoupling controller matrix
can be analytically derived in a simple way except for a slight degradation in the
output performance.

It should be noted that the choice of by shown in (11.32) is to keep all
bj(j =1,2,...,V) the same sign in order to exclude any RHP zeros from being
enclosed in the denominator of (11.28). Note that such a high-order approximation
(i.e., V. > 3) may be still involved with RHP poles, which can be further
verified by the Routh-Hurwitz stability criterion. Therefore, it is suggested to
use the Routh—Hurwitz stability criterion to verify the stability of such a high-
order approximation before using it in practice to obtain further enhanced output
performance. Nevertheless, such a linear fractional approximation in terms of V' < 2
can be reliably implemented without such verification, and thus is preferred for
implementation simplicity.

When 6] 4 0, > 05 + 051, following a similar design procedure as above, each
column controllers in C can be derived as

ko (ti2s + 1) (215 + 1) e~ (01+02—012—021)s

C11 =—k 2 m -D (11.35)
PR s+ D Qus + DT (s +27)
i=1
1) e~ 1=012)s
oy = T e D (11.36)
ki (Ais + 1) T (s + 2)
i=1
1) e~ (O2—021)s
ey = ST )en D (11.37)
ko (Aas + 1) TT (s + 2)
i=1
k 1 1) e~ 62F011—612—021)s
- o (tos + ) (s + De D (11.38)

ki2koy (tis + 1) (as + D) [T (s + 2)

i=1



11.1 Decoupling Control Design for Two-Input-Two-Output (TITO) Processes 379

where
n
H (—=s +z)
D:ijmr- (11.39)
1-25

Note that D can be implemented as well using the analytical approximation
formula shown in (11.28).

11.1.4 Robust Stability Analysis

Given a stable decoupling controller matrix as designed in the above section, a
multivariable IMC structure shown in Fig. 11.1 obviously maintains stability for
the nominal system response of a stable TITO process. When there exist process
uncertainties, the system transfer matrix becomes

-1
H:JX{I+(G—@)C} (11.40)

which may be very complex in the presence of various process uncertainties and
tends to lose stability in an intangible manner. The controller matrix C designed
above in terms of the nominal process model may not guarantee the control system
robust stability anymore. An evaluation of the control system robust stability is
therefore necessary for practical application.

There are three types of process uncertainty commonly encountered in practice:
additive, multiplicative input and output uncertainties. Note that many other types
of unstructured or structured process uncertainties can be treated by being lumped
into these uncertainties (Skogestad and Postlethwaite 2005).

First, consider the process additive uncertainty shown in Fig. 11.3, which

describes the process family, IT, = {@A(s) :Ga(s) = G(s) + Ap }, where Ay is
assumed to be stable. According to the standard M — A structure for robust stability
analysis, it can be derived from Fig. 11.3 that

U=CE (11.41)
E=R— (Y -GU) (11.42)
Y=GU+V (11.43)

Solving (11.41)—(11.43) yields

v=cli+(6-6) C]_IR—C[I +(o-0) crv (11.44)
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Fig. 11.3 Perturbed control
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Thus, the transfer matrix from V to U is obtained as
R -1
TA=—C|:I+ (G—G) Ci| (11.45)

Given G = G for the nominal system, one can further simplify (11.45) as

Ty = —C (11.46)

Owing to that C has been designed stable for the nominal system, 74 is surely
maintained stable.

According to the small gain theorem, the perturbed system with additive
uncertainty maintains robust stability if and only if

1
[AAlloo

1€ loo < (11.47)

In view of the equivalent relationship between the small gain theorem and the
spectral radius stability criterion (Skogestad and Postlethwaite 2005), the above
robust stability constraint can be equivalently transformed as

p(CAp) < 1,Vo (11.48)

Hence, it is practical to evaluate robust stability of the multivariable IMC
structure by checking if the magnitude plot of the spectral radius in (11.48) falls
below unity for w € [0, +00).

Then, consider the process multiplicative input and output uncertainties that

describe the process families, IT} = {GI(S) :Gi(s) = G(s) (I + AI)} and I1p =

{Go(s): Gols) = (I + Ag) G(s) |- respectively, where Ay and Ao are assumed
to be stable; the transfer matrices relating the corresponding inputs and outputs can
be derived, respectively, as

Ti=-C[I +(G-G)C]'G (11.49)

To = —GC[I +(G - G)C]™! (11.50)
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Similarly, the equivalent spectral radius robust stability constraints can be
obtained as

p(CGAY) < 1,V (11.51)

p(GCAo) < 1,YVo (11.52)

Hence, given a specified bound of A; or Ag in practice, the control system
robust stability can be intuitively evaluated by checking if the magnitude plot of
the spectral radius in (11.51) (or (11.52)) falls below unity for @ € [0, +00).
In this way, admissible tuning ranges of the adjustable parameters A; and A, in
the decoupling controller matrix can be numerically ascertained. To accommodate
unknown process uncertainties in engineering practice, it is suggested to monoton-
ically increase the adjustable parameters A; and A, in the decoupling controller
matrix online so that the nominal system response will be slowed down in exchange
for further enhanced robust stability.

11.1.5 Ilustrative Examples

Two examples from the existing literature are used to demonstrate the effectiveness
and merits of the presented TITO decoupling control method, one with no RHP zero
in det(G) and the other with infinite many RHP zeros in det(G).

Example 11.1. Consider the widely studied Wood—Berry distillation column pro-
cess (Wood and Berry 1973),

12.8¢75 —18.9¢™%
16.7s +1 2Is+1

6.677  —19.4e7%
109s +1 14.4s +1

G =

According to the classification of a TITO process transfer matrix determinant
in (11.5), there is 011 + 6 = 4 < 015 + 61 = 10. It can be easily verified
using the Nyquist curve criterion that there is no RHP zero in det(G). Hence,
using the analytical design formulas givenin (11.15)—(11.18) obtains the decoupling
controller matrix,

16.7s + 1 —0.0761(16.7s + 1)(14.45 + 1)e™2
128(Ais + 1) Qls+ 1) (Aas + 1)
C=F-
0.0266(16.7s + 1)(14.45 + 1)e™ —(14.45 + 1)

(1095 + 1) (Ays + 1) 19.4 (Ays + 1)
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where

1

1 — 05023(167s+ D (14.45+1) , g
2ls+1)(10.95+1)

F =

which can be implemented using the control unit shown in Fig. 11.2.

For illustration, two groups of simulation test are performed by taking A; = 2
and A, = 4,and A; = 4 and A, = 6, respectively. By adding a unit step change
to the binary set-point inputs at f = 0 (min) and ¢+ = 100 (min), respectively, the
output responses are shown in Fig. 11.4. It is seen that the binary output responses
have been absolutely decoupled from each other, and there is no overshoot in the set-
point responses. Moreover, according to the time-domain system response analysis
given in (11.12) and (11.13), the rise time of set-point response can be conveniently
obtained as #,; = 2.3026A; + 1 for the first output y, and t,, = 2.30264, + 3
for the second output y,. Hence, it is convenient to tune the adjustable parameters
A1 and A, for obtaining desirable binary output responses, respectively. Note that
tuning A; and A, aims at a good trade-off between the output response performance
and the output capacities of the decoupling controller matrix and the corresponding
actuators. Figure 11.4 has also illustrated the compromise effect, i.e., the binary
control outputs in terms of A; = 2 and A, = 4 are required to be more aggressive
than those of A = 4 and A, = 6.

Besides, it can be seen from Fig. 11.4 that the binary control outputs u; and
u, are somewhat oscillatory in the transient response, which may wear out the
corresponding actuators in a quick fashion. The reason lies with the implementation
of F in the decoupling controller matrix C, of which the denominator is involved
with a time-delay factor unfavorably entailing the decoupling controller matrix to
create oscillatory output signals. This phenomenon is not allowed for operating
many industrial and chemical processes in practice. It is therefore suggested to
use the analytical approximation formulas given in (11.28)—(11.32) to approximate
F for implementation. For instance, a second-order approximation formula can be
correspondingly obtained as

73.648s% 4+ 51.077s + 2.01
150.66252 + 32.283s + 1

2/2 =

Substituting it into the above decoupling controller matrix C and also taking
A1 = 4 and A, = 6 for comparison, the control results are shown in Fig. 11.5. It
is seen that the binary process output responses are still completely decoupled from
each other, while the binary control outputs u#; and u, become evidently smoothed.
In contrast, the degradation in the output performance appears to be negligible from
a practical view.

To demonstrate the control system robust stability, assume that the static gains
of the first column elements in the process transfer matrix are actually 20% larger
and those of the second column elements are 30% larger, while all time delays and
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Fig. 11.4 Decoupled output responses of Wood—Berry distillation column
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Fig. 11.5 Output responses in terms of a second-order controller approximation
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Fig. 11.6 The magnitude plot of spectral radius for the perturbed system

time constants in the process transfer matrix are actually 20% larger. According to
the robust stability analysis in Sect. 11.1.4, the magnitude plot of the spectral radius
in (11.48) for verifying the control system robust stability is shown in Fig. 11.6.
It is seen that the peak value is far smaller than unity, indicating that the proposed
control system maintains good robust stability. The corresponding output responses
are similar to those shown in Fig. 11.5 and thus are omitted.

Example 11.2. Consider a TITO process with time delays studied by Wang et al.
(2000a),

—0.51e75 1.68¢~2
G| G2+ 1)?*@2s +1) (2854 1)*Q2s + 1)
—1.25¢728s 478115

(43.6s+1)9s+1) (48s+1)(5s+1)

For decoupling control design, a first-order transfer matrix model was identified
by Wang et al. (2000a) as

—0.5332¢ 71958385 71717 148701s
67.7099s + 1 48.3651s + 1
—1.2585¢ 843055 4 786149768
48.7805s + 1 49.75125 + 1

Here, it is also used to derive the decoupling controller matrix in the presented
IMC-based decoupling control method. The Nyquist curve of det(G,,) is plotted in
Fig. 11.7, which indicates that there are infinite many RHP zeros in det(G,,). Using
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Fig. 11.7 The Nyquist curve of the transfer matrix determinant of the TITO process model

the MATLAB toolbox to numerically solve det(G,), it can be verified that there
is only one dominant RHP zero at s = z; = 0.0129, which is therefore used to
determine the desired system transfer matrix. Note that 0;; + 6, = 24.5606 >
012 + 621 = 23.3296. Using the corresponding design formulas in (11.35)—(11.39)
obtains the decoupling controller matrix,

2.2148 (48.3651s + 1) (48.7805s + 1) — (48.7805s + 1)
(49.75125 + 1) (77.5194s + 1) (A;s + 1) 1.2585(77.5194s + 1) (Aas + 1)
C=D
(48.36515 + 1) e 34737 —0.2467 (48.36515 + 1) (48.78055 + 1) e=+7047s
17171 (77.5194s + 1) (s + 1) (67.7099s + 1) (77.5194s + 1) (A»s + 1)
where
1—77.5194s
D =

1.1809 (48 36515 + 1) (48.7805s + 1)
(67.7099s + 1) (49.75125 + 1)

—1.231s

For simplicity, the first-order approximation formula shown in (11.33) is adopted
to approximate D which is involved with a RHP zero-pole canceling, obtaining
Dy = —(373.2751s + 5.5271) / (4.4191s + 1) for practical implementation.

For comparison, take the adjustable parameters, A; = 40 and A, = 100, in
order to obtain similar rising speeds of set-point tracking with those of Wang et al.
(2000a). By adding a unit step change to the binary set-point inputs at ¢ = 0 (s)
and ¢t = 1,500 (s), respectively, and then adding an inverse step change of load
disturbance with a magnitude of 0.1 to both the process inputs at ¢t = 3,000 (s),
the results are shown in Fig. 11.8. It is seen that there is no overshoot in the binary
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Fig. 11.8 Nominal output responses of Example 11.2
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output responses using the presented IMC-based decoupling control method, while
both the output responses are almost decoupled from each other. It should be noted
that further enhanced output performance can be obtained in the proposed method
by using a higher-order approximation formula for D or simply decreasing the
adjustable parameters.

To compare the control system robust stability, assume that the static gains of
the first column elements in the process transfer matrix are actually 10% larger
and those of the second column elements are 20% larger, while all time delays are
assumed to be 10% larger. The perturbed system responses are shown in Fig. 11.9,
which demonstrates that the presented decoupling control method maintains good
robust stability.

11.2 Decoupling Control Design
for Multiple-Input-Multiple-Output (MIMO) Processes

For a multivariable process with higher input-output dimensions (n > 2), the inverse
transfer matrix of the process (G~!) is much more difficult to be configured for
practical implementation compared to a TITO process, especially in the presence
of multiple time delays in individual channels. Based on classifying different cases
of the RHP zero distribution in det(G), a decoupling control design is presented
here in terms of the classical unity feedback control structure that is widely used in
engineering practice. The control diagram is shown in Fig. 11.10, where G denotes
the multivariable process required for decoupling regulation, C is the decoupling
controller matrix, R denotes the set-point vector, ¥ is the output vector, U is
the controller output vector, D; and D¢ indicate load disturbances entering into
the process from the input and output sides, respectively, and No denotes output
measurement noise vector.

Before proceeding with decoupling control design, it is preferred to have an
analysis on the preconditions for decoupling control of MIMO processes as follows.

11.2.1 Decoupling Control Preconditions

Consider a general transfer matrix for a MIMO process with time delays,

g1 - &im
G = o (11.53)
8ml **° &mm
where g;; = go,,je_e"fs, i,j=1,2,...,m,and go;; is arational and stable transfer

function.
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Fig. 11.9 Perturbed output responses of Example 11.2



390 11 Decoupling Control of Multivariable Processes

Fig. 11.10 Multivariable D, Do
unity feedback control
structure

From Fig. 11.10, it can be seen that the closed-loop system transfer matrix is
H=GC(+GC)™! (11.54)

Ideally, the decoupled system response transfer matrix should be in the form of

h” 0 0
0 hypy 0--- 0
H— o (11.55)
0 . . 0
0 0 hmm

where h;; is a proper and stable transfer function, and h;; = O fori # j,i,j =
1,2,...,m. Thatis to say, H should be a nonsingular diagonal transfer matrix, i.e.,
H = diag[h;;],,«,, and det(H) # 0.

Combining (11.54) and (11.55), a fundamental decoupling precondition can be
ascertained as det[G(0)] # 0, which means that the multivariable process required
for decoupling regulation must be nonsingular in essence, or not ill-conditioned.

Moreover, it can be seen from (11.54) that the controller matrix C should
be nonsingular and take the responsibility for maintaining (/ + GC)™' stable.
In addition, to facilitate system operation, there should be no cross interaction
between tuning each column controllers in C because each column controllers
have the same input signal and there is a postmultiplication relationship between
G and C. Correspondingly, decoupling regulation for individual output variables
can be implemented in a transparent manner.

11.2.2 Desired Closed-Loop Transfer Matrix

For a multivariable process, the individual output performance is constrained by
the multiple time delays involved and RHP zeros in the process transfer matrix
determinant (Morari and Zafiriou 1989; Skogestad and Postlethwaite 2005). It is
therefore motivated to determine a desired closed-loop response transfer matrix cor-
responding to the achievable optimal output response performance. Consequently,
the desired decoupling controller matrix can be inversely derived from the unity
feedback control structure, as shown in Fig. 11.10.
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Note that the inverse of H in (11.55) is also a diagonal transfer matrix.
Substituting (11.55) into (11.54), the controller matrix can be derived as

-1 _ adj(G) . % hii }
1 mxXm

C=G'"(H"-1) (11.56)

- d
det(G) VT = i

where adj(G) = [Gif]T

mxXm

minor corresponding to g;; of G. Denote by C = [c,-j]me the controller matrix.
According to the postmultiplication relationship between a square matrix and a
diagonal matrix, each column controllers in C (with the same subscript of i) can

be obtained as

is the adjoint of G, G" denotes the complement

Gy
Cji = : , L,j=12,...,m. (11.57)
det(G) 1—]’1,'[
Let
GY y .
Pi = Gagy = PO gelis, i j=1,2,...,m. (11.58)

where pg;; denotes the “delay-free” part of p;;, i.e., at least one term in either of
the nominator and denominator polynomials of pg;; does notinclude any time delay

and thus is rational. It can be seen from (11.56) and (11.58) that G~ = [pij];)(m.
Define the “inverse relative degree” of po;; as n;; (i, j = 1,2,...,m), which is

the largest integer that satisfies

snij—l

lim =0 (11.59)
5§—>00 pOJj
and let
Ni =max{n;;j = 1,2,....m}, i=12,....m (11.60)
6 =max{L;;j =1,2,....m}, i=12,....m (11.61)

It can be seen from (11.56) that each column controllers in C are related to the
same diagonal element in H, which means thatall c;;(j = 1,2,...,m) correspond
to the same diagonal transfer function 4;;(i=1,2,...,m). Note that 6; in (11.61)
is positive, as can be verified from (11.58). If the desired diagonal transfer function,
h;;, for the ith output response does not include an equivalent time delay to balance
0;, some or even all the ith column controllers ¢;; (j = 1,2,...,m) will not be
physically realizable. Also, it can be seen from (11.57) that if the relative degree of
the delay-free part in /;; is lower than N;, some or even all ¢;;(j = 1,2,...,m)
will not be proper and thus not realizable. In addition, det(G) may contain RHP
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zeros and, therefore, if /;; does not include these RHP zeros, all c;; (j=1,2,...,m)
would be bundled with them as unstable poles, which is definitely not allowed in
practice.

Combining the H, optimal performance objective of the IMC theory (Morari and
Zafiriou 1989) with the above implemental constraints, practically desired diagonal
elements of the closed-loop system transfer matrix are proposed as

e—@is qi — + Zk

Cus+ DML s g

i=1,2,....m (11.62)

ii
1

where A; is an adjustable parameter for obtaining a desirable performance of the ith
output variable and zx(k = 1,2, ...,q;) are RHP zeros in det(G) excluding those
canceled by the common RHP zeros of Gl (j=1,2,...,m), q; is the number, and
2y is the complex conjugate of zj.

With the above desired diagonal elements shown in (11.62), it can be ascertained
from (11.57)—(11.61) that at least one of each column controllers in C can be
practically implemented in a proper and rational form, while the other controllers
of the corresponding column can be implemented using prescribed dead-time
compensators. Thus, the desired diagonal closed-loop transfer matrix shown in
(11.55) can be realized, leading to decoupling regulation of all output variables.

The number of RHP zeros in det(G) can be ascertained from the Nyquist curve of
det(G) in the complex plane. For instance, if det(G) has no RHP pole, the number
of times its Nyquist curve encircling the origin is equal to the number of RHP zeros
in det(G), according to the Nyquist stability criterion. Alternatively, the RHP zeros
in det(G) can be computed numerically using a mathematical software package, like
the MATLAB toolbox.

For MIMO processes with multiple time delays, det(G) may have infinite many
RHP zeros due to multiple time-delay terms involved. In the case where det(G) has
infinite many RHP zeros but finite left-half-plane (LHP) zeros, the desired closed-
loop system transfer matrix can be determined with the following diagonal elements:

e_gis ¢(S)e(9max_9min)5 9i -8 — Zk

S s+ DN $(=) i1 STEH 7

i=1,2,....,m (11.63)

ii

where z;(k=1,2,...,q;) denote the LHP zeros in det(G), excluding those equiv-
alent to the complex conjugates of the common RHP zeros in G/ (j=1,2,...,m)
and O, is the minimum of all time-delay factors involved in det(G) and O,
is the corresponding maximum. The term, ¢(s), is defined from the following
formulation:

Pls)e

det(G) = W

(11.64)
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where ¥ (s) is the least common denominator of all terms in det(G) and ¢ (s) is the
corresponding numerator polynomial in which there is at least one term that does
not contain any time delay and thus is rational. Apparently, det(G) has the same
zeros with ¢ (s).

Note that ¢p(—s) in (11.63) is the complex conjugate of ¢(s) and, correspond-
ingly, all zeros in ¢ (—s) are located at the mirror zeros of ¢ (s) across the imaginary
axis in the complex plane. Moreover, it can be seen that ¢(—s) may include
time prediction factors that are not allowed in a physical all-pass filter, of which
Omax — Omin 18 the maximal time prediction length. Hence, the second part of 4;;
shown in (11.63)

¢(S)e(9max_6min)s 9i —8 — Zk

o)

can be viewed as an all-pass filter, facilitating the realization of the H, optimal
performance objective for individual output responses. Note that there inevitably
exists RHP zero-pole cancelation in this filter, which, however, cannot be removed
directly for implementation. A rational approximation, as introduced in (11.28), can
be used for practical implementation.

It should be noted that although det[G(s)] / det [G(—s)] can be directly used to
configure the all-pass part of diagonal elements in the closed-loop system transfer
matrix, an additional all-pass filter, ¥ (—s)/¥ (s), will be introduced unfavorably,
which may degrade system performance and thus is not recommended.

In the case where det(G) has infinite many RHP and LHP zeros, it is suggested
to use only dominant RHP zeros in det(G) to determine the desired closed-loop
system transfer matrix. This will facilitate analytical design of the decoupling
controller matrix in a transparent manner, though at the loss of certain output
performance. Note that it has been well recognized in frequency-domain control
theory (Morari and Zafiriou 1989; Ogunnaike and Ray 1994; Astrom and Higglund
1995; Shinskey 1996; Skogestad and Postlethwaite 2005) that off-dominant zeros in
a control system characteristic equation have little impact on the achievable system
performance in practice.

To sum up, by classifying four possible cases of the RHP zero distribution in
det(G), desired diagonal system response transfer matrices are correspondingly
listed in Table 11.1.

11.2.3 Decoupling Controller Matrix Design

According to the desired diagonal closed-loop system transfer matrix listed in
Table 11.1, the ideally desired decoupling controller matrix C can be inversely
derived from (11.56). For instance, in case 2 in Table 11.1 that det(G) has finite
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RHP zeros, each column controllers in the desired decoupling controller matrix can
be derived accordingly as

e lis ﬁ stz
G Gus+DM 2 sHa
det(G) 1 e—bis di —s+2;

T s+ kl;ll stz

i,j=12....m.  (11.65)

Cideal,ji =

For a MIMO process with multiple time delays, it can be seen from (11.58) that
the first part in (11.65) is not a rational transfer function and thus difficult to be
realized in practice. In addition, the RHP zeros in det(G) will cause RHP zero-
pole cancelation in (11.65), entailing the decoupling controller matrix to behave
in an unstable manner. A rational approximation is therefore needed for practical
application.

Using (11.58)—(11.61), one can rearrange (11.65) in the form of

Dij 8_(9[_Li/)s 1

cjl: , i,j=1,2,...,m

(Ais + DN f‘[ (s+77) 1- <= f‘[ =St
! Pl k Ais+DNi Pl stz

(11.66)

where A; becomes the common adjustable parameter in each column controllers in
C and

qi
Dy =po.ij [ ] (=s+z) (11.67)
k=1

which can be rationally approximated using (11.28) for practical implementation.
Note that a physical constraint, U — V' < N; + gq;, is required to use (11.28)
for approximation in order to maintain the properness of ¢;; for implementation.
Generally, V' may be specified first, and then U can be takenas U = V + N; + g;
to obtain the best approximation. From a mathematical point of view, it is preferred
to first formulate po;; in (11.58) as

a(s) [1 4+ ni(s)e™ + -+ + Dy (s)e™=44]
B [T+ E10)e + m + Enu(s)e ]

Do.ij =

where «(s) and f(s) are rational polynomials, o > 0(k = 1,2,...,m — ), 6 >
0k=1,2,...,m—v), u < m,and v < m. Then, U can be initially taken as the
order of a(s) and V the order of B(s), in view of that time-delay terms in both the
nominator and the denominator decay much faster than «(s) and 8(s) when s — oo.
It is obvious that increasing the orders of U and V' will give a better approximation
but at the cost of a higher computation effort and implementation complexity.
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Fig. 11.11 Positive feedback In Out
control unit -
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Note that the second multiplication term in ¢;; has the following properties:

1
lim _ =1 (11.68)
§—>00 _ e—bis l_[ —s+zi
is+1)N k=1 s+z;
. 1
lim _ =00 (11.69)

s—>0 e—bis —s+zx

T Qus+DYi i S

Thus, it can be viewed as a special integrator with a relative degree of zero which
can eliminate the output deviation from the corresponding set-point. In fact, this
integrator can be realized using a positive feedback control unit, as shown in
Fig. 11.11.

For the other cases of the RHP zero distribution in det(G)  as listed in Table 11.1,
the desired decoupling controller matrix can be correspondingly derived following
a similar design procedure as above. The results are summarized in Table 11.1 for
clarity, where D;; in each case can be rationally approximated using (11.28) for
practical implementation.

11.2.4 Robust Stability Analysis

As a rational approximation is utilized to achieve the ideally desired decoupling
controller matrix in Table 11.1 for implementation, the stability of the resulting
control system needs to be verified. Moreover, there usually exist unmodeled
process dynamics in practice. Given specified bounds of the process uncertainties in
practical applications, an evaluation of the control system robust stability is required
so that admissible tuning ranges of the adjustable parameters in the decoupling
controller matrix can be determined.

For the nominal control system (i.e., G = é where G denotes the process model
identified), it can be derived from Fig. 11.10 that the transfer matrix relating the
system input vectors, R, Dy, Do, and Np, to the output vectors, ¥ and U, is

R
Y| _ | Gcau+60)™" (I+4+60)7'G 1-GCUI+GC)T' —GC(UI +GO)™! Dy
U cI+G60O)™" —cu+6o)7'c c(I+6o)™! —-Cc(+6C)™! Do

No

(11.70)



11.2 Decoupling Control Design for Multiple-Input-Multiple-Output (MIMO) Processes 397

It can be seen that R, Do, and N have similar impact on ¥ and U. Hence, stability
analysis for the nominal system can be limited to the submatrix relating R and D,
toY and U.

Note that G has been assumed to be nonsingular and stable, and that there is an
equivalent transformation,

GC(I+GC)y'=I-(I+GC)™! (11.71)

It can therefore be concluded that a sufficient and necessary condition for retaining
the nominal system stability is that (/ + GC)~' must be maintained stable. This
condition can be checked graphically by using the Nyquist curve stability criterion
or numerically by computing if det (/ + G C) has any RHP zeros.

In the presence of process uncertainties, robust stability analysis is herein focused
on the process additive, multiplicative input, and output uncertainties, as commonly
encountered in practical applications. Generally, the process additive uncertainties,
as shown in Fig. 11.3, may be viewed as parameter perturbations to the process
transfer matrix identified. Correspondingly, the process family may be described

by My = {6;/\(5) S Gals) = G(s) + Ax }, where A, is assumed to be stable.
The process multiplicative input uncertainties, as shown in Fig. 10.3a, may be
loosely interpreted as the process input actuator uncertainties, and correspondingly

the process family may be described by I1; = {E}I(s) :Gi(s) = G(s)(I + Ay 1,
where Ay is assumed to be stable. The process multiplicative output uncertainties, as
shown in Fig. 10.3b, may be practically viewed as the process output measurement
uncertainties, and correspondingly the process family may be described by [1p =

{Go(s): Gols) = (I + Ao)G(s) J» Where Ao is assumed to be stable.

By reorganizing the perturbed control system in the form of the standard M — A
structure for robustness analysis, the transfer matrix from the outputs to inputs of
Ap, Ay, and Ag can be derived, respectively, as

My=—-C(I+GC)™! (11.72)
M =-C(I +GC)'G (11.73)
Mo =—-GC(I +GC)™! (11.74)

Note that M, My, and Mo maintain stability provided that the nominal control
system has been maintained stable, i.e., the transfer matrix shown in (11.70) has
been maintained stable.

Then using the small-gain theorem, the robust stability constraints can be
obtained, respectively, as

1
N FAVN (S

HC([ n GC)_IH (11.75)
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HC([ n GC)—‘GHOo < T (11.76)
HGC(I + GOy Hoo IIAloll . (11.77)

The robust stability constraints shown in (11.75)—(11.77), however, are not
analytical, and the computation effort for an Hy norm may be considerably
large, especially for MIMO processes with multiple time delays. To mitigate the
computation burden, the equivalent relationship between the small-gain theorem
and the multivariable spectral radius stability criterion (Skogestad and Postlethwaite
2005) is therefore used, i.c.,

IMA|y, <14 p(MA) < 1,Vo € [0, 00) (11.78)

Thus, the above robust stability constraints can be reformulated, respectively, as

o (C(I n GC)—‘AA) <1,Vo € [0, 00) (11.79)
p (C(I n GC)_IGAI) <1,V € [0, 00) (11.80)
p (GC(I + GC)—‘AO) <1,Yw € [0,00) (11.81)

Note that the spectral radius stability constraints shown in (11.79)—(11.81) can
be checked graphically by observing if the magnitude plots of the left-hand sides of
(11.79)—(11.81) fall below unity for @ € [0, +00).

Given a specified bound of Aa, Ay, or Ap in practice, as will be illustrated
in the examples later, the above spectral radius stability constraints can be used
to intuitively evaluate the control system robust stability. In this way, admissible
tuning ranges of the adjustable parameters (A;, i = 1,2,..., m) in the decoupling
controller matrix (C) can be numerically determined for process operation.

Combined with (11.62), it can be seen that a smaller value of A; in the
decoupling controller matrix will result in a faster response of the corresponding
ith output variable, but the output energy of the ith column controllers in C and
the corresponding actuators’ signals will become larger, tending to surpass the
output capacities in practice. Moreover, more aggressive dynamic behavior of the
ith output response will occur in the presence of process uncertainties. On the
contrary, increasing A; will slow down the ith output response, but the output energy
of the ith column controllers in C and the corresponding actuators’ actions will
be required to be smaller. Consequently, a less aggressive dynamic behavior of
the ith system output response will occur in the presence of process uncertainties.
Therefore, tuning the adjustable parameters A; (i = 1,2,..., m) needs to meet a
good trade-off between the achievable output performance and the output capacities
of C and the corresponding actuators.
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Based on extensive simulations, it is generally suggested to initially take these
adjustable parameters A;(i = 1,2,..., m) in the range of (1.0 — 10)6;. Then, by
monotonically varying them online, a desirable output performance can be gradually
reached.

To cope with process uncertainties, it is suggested to increase monotonically
these adjustable parameters A;(i = 1,2,..., m) in C so that the nominal system
response will be slowed down in exchange for further enhanced system robust
stability. Note that, if by doing so, the control system performance and robust
stability are still not acceptable, process reidentification can be performed to obtain
a more accurate process model for designing C so that the unmodeled process
dynamics can be effectively reduced to obtain better system performance and robust
stability.

11.2.5 Ilustrative Examples

Two examples from the existing literature are used to demonstrate the effectiveness
and merits of the presented MIMO decoupling control method, one with no RHP
zero in det(G) and the other with infinite many RHP zeros in det(G).

Example 11.3. Consider the widely studied 3 x 3 industrial distillation column
(Tyreus 1979),

[ 1.986e 071 —524e760s 59847224 ]
66.7s + 1 400s +1 14295 +1
—0.0204e705%  0.33¢7068 2387042
(7.14s + 1) (2385 4+ 1)* (1435 + 1)?
—0.374¢777%  11.3¢737% 9811~
22225 +1  (21.74s+1)> 11.36s +1

The Nyquist curve of the process transfer matrix determinant is plotted in
Fig. 11.12. It is seen that the Nyquist curve does not encircle the origin, indicating
there is no RHP zero in det(G). According to the presented MIMO decoupling
control method, it follows from (11.58) that L{; = 0.71, L1, = 0.8, and L3 =
—1.4. Thus, 6; = 0.8 can be determined in terms of the definition in (11.61).
Then, using (11.59) obtains n;; = 1, n; = 1, and n13 = 0. Hence, Ny = 1 can
be determined in terms of the definition in (11.60). Similarly, the use of (11.58)—
(11.61) yields 68, = 0.68 and 83 = 1.85,and N, = 2 and N3 = 1. According to the
design formula for case 1 in Table 11.1, the diagonal elements of the desired system
response transfer matrix can be determined as

e—O.Ss e—O.685 6_1‘85S

hy = hy = ————, h33 = .
11 Ts + 1 22 s + 1)2 33 Aoy 1 1

)
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Fig. 11.12 The Nyquist curve of the transfer matrix determinant of Example 11.3

Hence, the decoupling controller matrix can be derived using the analytical
design formulas given in Table 11.1, together with the approximation formulas
in (11.28)—(11.32) for practical implementation. For illustration, to obtain similar
controller orders with those of Wang et al. (2003) for comparison, the following
executable controller forms in the decoupling controller matrix are derived:

145435% + 256.3578s + 0~55026—0.o9s

= T s + 1)(438.7353s + 1)
1239153 4 746.211652 + 9.7508s + 0.0199
C = .
T s + 1) (3940.3524+-447.8424s + 1)
/ 1736.55% — 21.7287s — 0.8474s — 0.002 _, ,.
31 = J1°

(A1s + 1) (4815.452+449.8302s + 1)

47739005 — 66206005 — 32862005 — 5323805° — 410455” — 52617915 = 0.296 _5 75,

2=t (A2 + 1) (61170054 +10951053+1212852+465.93135 + 1)
13471000s° +3306200s° +892990s*+117120s3 +6709.95s% 4+142.01485+0.3149
=1 -
»=/2 (A2s+1)? (33657054 +3346553+9959.252+461 38115 + 1)
/ —197040s° — 104730s* — 2909953 — 4024.95% — 171.92335 — 0. 374 _20s
C3=J2" '

(A2s+1)2 (25730054+5590753+1025452+461.93465 + 1)
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40093054 4335365 +1342.35%+31.527954+0.2638 _, 1,

3= 3005 1 1) (3302557 + 3869.952+447.5041s + 1)
I 16790s°+1582.952+39.2646540.0885
3= f3-
BT OGs + 1) (511.4853524+440.02335 + 1)
219553+4212.30575245.215754+0.01 (1,
C = . .20
P Oas + 1) (1319.152+441.8636s + 1)
where
1 1 1
f1=1W7 fz:W’ f3=1ew~
T Ais+1 - (Aas+1)2 T as+l

Note that fi, f>, and f3 can be implemented using the feedback control unit shown
in Fig. 11.11.

The adjustable parameters are taken as A; = 15, A, = 12, and A3 = 18 to
obtain the similar rising speeds of set-point tracking with those of Wang et al.
(2003). By adding a unit step change to the ternary set-point inputs at ¢t = 0 (s),
t = 200(s), and ¢ = 400 (s), respectively, and then adding a step change of load
disturbance with a magnitude of 0.1 to all the three process inputs at = 600 (s),
the output responses are shown in Fig. 11.13. It is seen that there is no overshoot
in the set-point responses using the presented MIMO decoupling control method,
while the three process output responses are almost decoupled from each other.
Moreover, obviously improved load disturbance rejection performance is obtained.
Note that further improved system performance for both the set-point tracking and
load disturbance rejection can be transparently obtained in the proposed method
by gradually decreasing the adjustable parameters A, A,, and A3, together with
a higher-order controller approximation for implementation. Besides, it should be
mentioned that the conventional PID controllers cannot be used to obtain acceptable
output performance or even cannot stabilize the system output responses due to
low approximation capacity for the ideally desired decoupling controller matrix, as
shown in Table 11.1. The same conclusion was drawn by Wang et al. (2003) from a
comparison of the Nyquist curve fitting.

To demonstrate the robustness of the presented MIMO decoupling control
method, the perturbation tests in Wang et al. (2003) are performed here. That is,
all static gains in the process transfer matrix are assumed to be actually 40% larger.
In another case, all time constants in the process transfer matrix are assumed to be
40% larger to represent the unmodeled process dynamics. According to the robust
stability analysis in Sect. 11.2.4, the magnitude plots of the spectral radius condition
in (11.79) for checking the robust stability of the corresponding perturbed systems
are shown in Fig. 11.14. It can be seen that both the peak values (dotted and dash
dot lines) are much smaller than unity, indicating that the corresponding system
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Fig. 11.13 Nominal output responses of Example 11.3
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Fig. 11.14 The magnitude plots of spectral radius for Example 11.3
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maintains good robust stability. Accordingly, the perturbed output responses are
shown in Fig. 11.15a—c, d—f, respectively. Note that Fig. 11.15a—c also demonstrates
that the perturbations of the process static gains do not affect decoupling regulation
of the output responses, as also indicated by the analytical controller matrix design
procedure presented in Sect. 11.2.3. The corresponding three control outputs indeed
vary little compared to those shown in Fig. 11.13, and thus are omitted.

To further demonstrate the control system robust stability in terms of the pre-
sented MIMO decoupling control method, assume that there actually exist the pro-
cess multiplicative input uncertainties, A; = diag[(s+0.3)/(s+1),(s+0.2)/(s+1),
(s + 0.2)/(s + 1)]3x3, which can be loosely interpreted as the first process input
actuator has up to 100% uncertainty at high frequencies and almost 30% uncertainty
in the low-frequency range, while the other two process input actuators have up
to 100% uncertainty at high frequencies and almost 20% uncertainty in the low-
frequency range. In another case, assume that there exist the process multiplicative
output uncertainties, Ag = diag[—(s + 0.2)/(2s + 1), — (s + 0.2)/(2s + 1),
— (s 4+ 0.3)/(2s + 1)]3x3, which may be practically viewed as the first two process
output measurements offered by the corresponding sensors decrease by up to
50% uncertainty at high frequencies and by almost 20% uncertainty in the low-
frequency range, while the third process output measurement decreases by up to
50% uncertainty at high frequencies and by almost 30% uncertainty in the low-
frequency range. Figure 11.14 shows the corresponding magnitude plots of the
spectral radius conditions in (11.80) and (11.81) based on the assumed A (thin solid
line) and Ao (thick solid line), which indicate that the proposed control system can
maintain robust stability well. The corresponding perturbed output responses are
shown in Fig. 11.16, well verifying the above robust stability analysis.

Example 11.4. Consider the binary process studied by Jerome and Ray (1992),

1.05¢—4-58s 0.32
B 1.6ds +1 (1.6s +1)(1.61s+ 1)
| 1a8e s 0.9

3.6s+1 (455 + )(A51s+ 1)

It was ascertained by Jerome and Ray (1992) that there are infinite many RHP zeros
and four LHP zeros in the process transfer matrix determinant, and the four LHP
zeros are approximate roots of the following polynomial:

x(s) = (1.64s + 1) (4.05425 + 1) (40.459s” + 11.1165 + 1)

Thus, this process belongs to Case 4 in Table 11.1.

According to the presented MIMO decoupling control method, one can first write
the process transfer matrix determinant in the form of

[0.945(1.65 + 1)(1.61s + 1)(3.65 + 1) — 0.3776(1.64s + 1)(4.55s 4 1)(4.51s + 1)e™10:025] p =458

det(G)= (1.64s 4+ 1)(4.55 + 1)(4.51s 4+ 1)(1.6s + 1)(1.61s + 1)(3.65 + 1)
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Fig. 11.15 Perturbed output responses of Example 11.3 subject to the process static gains (a—c)
and time constants (d—f) variations
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Fig. 11.15 (continued)
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Fig. 11.16 Perturbed output responses of Example 11.3 subject to the process multiplicative
uncertainties

It follows that Oy, = 4.58, Onax = 15.2, and ¢ (s) is the polynomial in the square
bracket of the numerator and v (s) is the denominator polynomial.

Subsequently, using (11.58)—(11.61) yields 6; = 6, = 4.58 and Ny = N, = 2.
Thus, the diagonal elements of the desired system response transfer matrix can be
determined as

B D¢(S)e—4.58s B D¢(S)e—4.58s
L x()(As + 1) 2 () (Aas + 1)
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where

e (—1.645 4+ 1) (—4.05425 + 1) (40.459s — 11.1165 + 1)
T70.945(—1.65 + 1) (—1.61s + 1) (—3.65 4+ 1) e—10625 — 0.3776 (—1.64s + 1) (—4.55 + 1) (—4.515s + 1)

Note that D cannot be directly implemented due to the occurrence of RHP zero-pole
cancelation. The analytical approximation formulas in (11.28)—(11.32) are therefore
used to obtain a low-order approximation by taking U =2 and V = 1,

20.1786s% + 10.0787s + 1.7624

D =
2N 0.5868s + 1

Then, the use of the design formula for case 4 in Table 11.1 gives the decoupling
controller matrix,

0.9F1 (1.64s+1) _0.32F(1.64s+1)(4.55+1)(4.51s+1)
C—D (Ais+1) (Aas+1)2(1.6s+1)(1.615+1)
e _ LISFI(1.64s+1)(4.55+ D)(4.51s+ e 152 1.05F>(4.55+1)(4.51s+ 1)e 458
(A1s+1)2(3.65+1) (Aas+1)%
where
D. — D>/ (1.6s + 1)(1.61s + 1)(3.65s + 1) P 1
c x(s) ’ = _ Dyjg(s)e 4385 7

x(5)(Ays+1)>
1

. D2/1¢(s)e_4'58“ N
2(5)(Aas+1)?

F =

Note that both F} and F, can be practically implemented using the feedback control
unit shown in Fig. 11.11.

Based on the standard IMC structure, Jerome and Ray (1992) suggested a
controller matrix design that seemed to be able to move undesired dynamics
of individual outputs to a single-output response to obtain apparently improved
response performance in the other outputs. For comparison, the optimization of the
second output at the cost of severely degraded response performance in the first
output is performed here. In the presented MIMO decoupling control method, the
adjustable parameters are taken as A; = 3.5 and A, = 3.0 to obtain similar rising
speeds of set-point tracking with those of Jerome and Ray’s method. By adding a
unit step change to the binary set-point inputs at # = 0 (s) and 150 (s), respectively,
and an inverse step change of load disturbance with a magnitude of 0.1 to both
the process inputs at £ = 300 (s), the output responses are shown in Fig. 11.17.
It is seen that entirely decoupled output responses have been obtained using the
presented MIMO decoupling control method (solid line), while the second output
response is comparable with that of Jerome and Ray’s method, barring a small time
delay that is specifically adopted to obtain the decoupled output responses. Note
that Jerome and Ray’s method has resulted in severe oscillation in the first process
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Fig. 11.18 Perturbed output responses of Example 11.4

output response and the oscillatory control outputs are far from acceptable from
a practical viewpoint of application. It is therefore demonstrated that the idea of
sacrificing dynamic response performance in one process output for improving the
other process output responses is trivial for practical application when compared to
the presented decoupling control method.

To demonstrate the control system robust stability, assume that all time constants
in the process transfer matrix are actually 20% larger to introduce unmodeled
dynamics. The perturbed system output responses are shown in Fig. 11.18. It is
once again seen that the proposed decoupling control system maintains good robust
stability in the presence of the severe process uncertainties. Note that the control
outputs of the proposed control system have varied slightly and thus are omitted.

11.3 A 2DOF Decoupling Control Scheme for MIMO Processes

To facilitate separate optimization of the set-point tracking and load disturbance
rejection for a MIMO process, a 2DOF control structure, which has been intensively
studied for the control of SISO processes as presented in Chap. 8, can be explored
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Fig. 11.19 Multivariable
2DOF decoupling control
structure R

r | I { NO

for application. Using the Hs, norm optimization approach, a few 2DOF control
methods have been reported in the literature (Limebeer et al. 1993; Prempain and
Bergeon 1998; Lundstrom and Skogestad 1999), where an integrated controller
matrix was eventually derived for both the set-point tracking and load disturbance
rejection, and therefore, cannot implement independent regulation of the set-point
tracking and load disturbance rejection online. Huang and Lin (2006) proposed an
alternative 2DOF decoupling control structure to realize separate optimization of
the load disturbance rejection, which showed evident improvement when compared
to previous methods in the literature, but more than two controller matrices
computed from numerical iteration algorithms were used, involving a considerable
computation effort for practical application, especially for online tuning.

The 2DOF decoupling control method (Liu et al. 2007b) is presented here
for practical application. The multivariable 2DOF control structure is shown in
Fig. 11.19, where g;;(s) = gosj(s)e % i,j = 1,2,...,m, and go;;(s) is
a rational and stable transfer function. C; = [cjj]mxm is a controller matrix
for the set-point tracking; H, = diag[h;;]mxm is a diagonal transfer matrix
offering the referential output trajectories, Y; = [yr.i]mx1. The controller matrix,
Cr = [Cfij]me’ installed in the feedback channels of the closed-loop structure
set between the process inputs and outputs, is for rejecting load disturbance and
eliminating output error. LD = [d;],,«, denotes load disturbances entering into
individual channels of the process, and No = [n;],,5; is the output measurement
noise vector, R = [r;],,»; denotes the set-point vector, ¥ = [yi],,x; is the output
vector, and U = [u;],,, 18 the controller output vector.

For a general transfer matrix of a MIMO process with multiple time delays, as
shown in (11.53), it can be seen from Fig. 11.19 that an “open-loop” control for the

set-point tracking can be realized in the nominal case (G = E;) if
H, = GC; (11.82)

Note that without model mismatch, the output error signal, £ = [e;]nx1, is zero
if no load disturbance (L D) and measurement noise (Np) occurs. In the presence of
load disturbance and measurement noise, the error signal (£) will no longer be zero
and thus trigger the closed-loop controller matrix, C, to adjust the process inputs
for counteraction.
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Hence, the 2DOF control structure shown in Fig. 11.19 allows separate regulation
of the set-point tracking and load disturbance rejection. Note that the referential
diagonal system transfer matrix, H;, can be viewed as a frequency-domain model
predictive control (MPC) strategy for the set-point tracking. For decoupling regula-
tion, these two controller matrices, Cs and Ct, should be designed to realize diagonal
transfer matrices for both the set-point response and load disturbance response.

Considering that the achievable system performance for a MIMO process with
multiple time delays is practically constrained by the time delays in individual
channels and possible NMP characteristics, as previously analyzed in Sect. 11.2,
an analysis on the desired transfer matrices for the set-point tracking and load
disturbance rejection is given as follows.

11.3.1 Desired Set-Point and Closed-Loop Transfer Matrices

From (11.82), the controller matrix for the set-point tracking can be inversely
derived as

adj(G)

Ci=G'H, = 41 (C) H, (11.83)

where adj(G) = [GY ];Xm is the adjoint of G and G" denotes the complement

minor corresponding to g;; in G.

According to the postmultiplication relationship between a square matrix and a
diagonal matrix, each column controllers in C; (with the same subscript of i ) can be
obtained as

i i, j=1,2 11.84
i GerG) i,j=12,....,m. (11.84)
Let
PG gelis i j=1,2,....m (11.85)
sz—det(G)—pO,z/ 5 s J= L, 4,000 m. .

According to the “inverse relative degree” defined in (11.59), let

6 =max {Lj; j=1,2,...om}, i,j=12,....m. (11.86)

ne; =max{n;;j=12...m}, i, j=12,....m. (11.87)
It can be seen from (11.84) that each column controllers in C; are related to

the same diagonal element in H;, ie., all ¢;;(j= 1,2,...,m) are corresponding to
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the same h,; fori=1,2,...,m. Note that 6,;(i=1,2,...,m) defined in (11.86)
is positive, which can be verified from (11.85) using the algebra of linear matrix.
Some or even all the ith column controllers ¢;; (j = 1,2,...,m) derived in (11.84)
will not be realizable if the corresponding diagonal element 4,; in H; does not
include an equivalent time delay to balance 6;;. This constraint is due to the fact
that each output can only respond to the corresponding set-point after certain time
delay arising from the process response. It can also be seen from (11.84) that if
the relative degree of the delay-free part in 4, ; were lower than n,;, some or even
all ¢;;(j=1,2,...,m) would not be proper and thus cannot be implemented in
practice. In addition, det(G) possibly includes RHP zeros that are not canceled out
by the common RHP zeros of GV (j =1,2,...,m). If hy; does not include these
RHP zeros, each of ¢;;(j = 1,2,...,m) would be bundled with them as unstable
poles, which is definitely not allowed in practice.

Hence, similar to the determination of a desired system transfer matrix presented
in Sect. 11.2.2, the desired diagonal elements in H, are proposed as

e—er,,‘S 4q

T Qes + )

s+

*

S+Zk

B i=12....m (11.88)

=1

where A.; is an adjustable parameter for tuning desirable set-point tracking perfor-
mance for the ith process output and zx (k = 1,2, ..., g;) are RHP zeros of det(G)
excluding those canceled out by the common RHP zeros of GV (j=1,2,---,m),q;
is the number, and z;; is the complex conjugate of z.

With the desired diagonal elements prescribed in (11.88), it can be ascertained
from (11.84)—(11.87) that at least one of each column controllers in Cy can be
implemented in a proper and rational form, while the other controllers of the
corresponding column in Cs can be implemented using dead-time compensators
prescribed. Thereby, decoupling regulation for the set-point tracking can be realized
for all output variables.

Note that the closed-loop structure set between the process inputs and outputs is
used for load disturbance rejection. The transfer matrix of load disturbance response
(from LD to Y, as shown in Fig. 11.19) can be derived as

Hy=G( + CG)™! (11.89)

Correspondingly, the closed-loop complementary sensitivity function matrix can
be determined as

Ty = GG(I + CiG)™! (11.90)

Note that it is in fact equivalent to the transfer matrix relating the load disturbances
(LD = [d;],,x) to the controller matrix output vector, F' = [ fi],,x1-

Ideally, it is expected that when a load disturbance, d;, enters into the ith process
input, the resulting output error, £ = [e;],,x;, should be detected by the controller
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matrix Cr immediately after the process time delay. Then Ct turns out a control
signal f; (i.e., F = [0,0,.. .,ﬁ,O,...,O]lTXm) to counteract the disturbance. To
reject multiple load disturbances entering into the process inputs at different times,
Tq is expected to be a diagonal transfer matrix, i.e., Tq¢ = diag{ta;}mxm, such
that the control signals, f;(i=1,2,...,m) can be separately tuned for disturbance
rejection. In this way, all the load disturbance responses can be separately regulated
in a transparent manner.

Note that the inverse of Ty, i.e., Td_', is also a diagonal matrix if Ty itself is
obtained as a diagonal transfer matrix. It follows from (11.90) that

C=(T;'-Dn'¢™" (11.91)

Correspondingly, each row controllers in Cr (with the same subscript of j) can
be obtained as

f fai G’ +, i, j=12 (11.92)
cfy; = ——— - s 1,] =1,2,...,m. .
T 1=ty det(G) J

It can be seen from (11.92) that each row controllers in Cy are related to the same
diagonal element in Ty, i.e., all cfij(j = 1,2,...,m) correspond to the same #4; for
i=1,2,...,m.

Using the definitions in (11.58) and (11.59), let

Oq.i =max{Lj,-;j= 12m} i=1,2,...,m. (11.93)

ng; = max{nj,-;jz 12m} i=1,2,...,m. (11.94)

Hence, following a similar analysis as above, one can determine the desired
forms of #t4;(i= 1,2, ..., m) for implementation.

In fact, there are four possible cases of the RHP zero distribution in det(G),
as categorized in Table 11.1. Accordingly, the desired forms of H, and Ty are
summarized in Table 11.2 for clarity.

11.3.2 Controller Matrix Design

With the desired H, and Ty, as listed in Table 11.2, the ideally desired controller
matrix C for set-point tracking and the desired closed-loop controller matrix Cy
for load disturbance rejection can be inversely derived from (11.84) and (11.92),
respectively. For instance, in case 2 that det(G) has finite RHP zeros, each column
controllers in C; and each row controllers in Cy can be derived, respectively, as
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Di/' e~ (Ori—Lij)s

cji = - , Lj=12,....m (11.95)
Aeis + D" T (s +2f)
k=1
e (Gt | .

injz E 7 . - 7 , I,j=1,2,....m

. ng * _ e Ui —s+zx

(Aris + 1) kl;ll (S + Zk) 1 (Aris+1)"97 kl;ll s+
(11.96)

where A ; is the common adjustable parameter in each column controllers in Cs and
At; is the common adjustable parameter in each row controllers in C¢, and

qi
Dy = poij [ | (=5 +2) (11.97)
k=1
gi
Dji = po,ji l_[ (—s + zx) (11.98)
k=1

Obviously, it can be seen from (11.85) that both D;; and D;; are not of
rational transfer function for a MIMO process with time delays, thus difficult
to be implemented in practice. Moreover, the RHP zeros in det(G) will result
in RHP zero-pole cancelation in D;; and Dj;, entailing Cs and C; to behave
in an unstable manner. Analytical approximation formulas in (11.28)—(11.32) are
therefore suggested for practical implementation of D;; and D ;.

Note that the second multiplication term in c¢f;; shown in (11.96) satisfies the
two conditions presented in (11.68) and (11.69) and, therefore, can be regarded as
a special integrator with relative degree of zero which can eliminate output error.
This integrator can be practically implemented using a positive feedback control
unit shown in Fig. 11.11.

For the other cases of the RHP zero distribution in det(G), as categorized
in Table 11.2, the corresponding executable forms of Cs and Cy can be derived
analytically following a similar procedure as above. The results are summarized
in Table 11.2.

Note that for the first three cases in Table 11.2, D;; (or D ;) can also be factorized
into two parts as D;; = G Dyjj (or Dj; = Gj"Do,j,‘) such that only the second
part, Do ;; (or Dy ;;), needs to be approximated for implementation. Such exercise
can give better approximation accuracy but at the cost of a higher complexity
for implementation. Generally, a low-order approximation, e.g., second-order, is
preferred to facilitate practical application.
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11.3.3 Robust Stability Analysis

In the nominal case (G = é), it can be seen from Fig. 11.19 that assessing the
control system stability can be limited to the closed-loop structure set between the
process inputs and outputs, provided that the controller matrix C; for the set-point
tracking has been configured stable. As far as the closed-loop structure is concerned,
the inputs are U, LD, Y;, and No, and the outputs are ¥ and F. Note that U and
L D have similar impact on the closed-loop structure and so do Y; and Ng. Hence,
assessing the nominal system stability can be further limited to the transfer matrix
relating LD and Npoto Y and F,i.e.,

N -1 f— 3 [ -1
[Y} - [ G(I + GG) GGl +GCy) } [LD] (11.99)

Fl | GGUI+CG)™" ¢ +GCp™! No

Obviously, if all elements in the transfer matrix shown in (11.99) are maintained
stable, the closed-loop internal stability can be guaranteed so that the overall control
system stability can be ensured. To relieve the computation effort for checking the
stability of all elements in the above transfer matrix, a simplified stability condition
is given below based on the stability theorem developed in the conventional unity
feedback control structure (Zhou et al. 1996):

Corollary 11.1. The nominal control system shown in Fig. 11.19 maintains internal
stability if and only if (I + C;G)~" is stable.

Proof. Note that there exist the following equivalent relationships:
GG +CG) ' =T1—-U+CG)™! (11.100)
CG(I + CiG) ' =G + GCy)™lG (11.101)

Substituting (11.100) and (11.101) into (11.99), it can be seen that the stability
condition in Corollary 11.1 guarantees the internal stability of the nominal control
system for a stable MIMO process, G. This completes the proof. O

Note that the stability of (I 4+ C¢G)™' can be verified by checking if
det (I 4+ C¢G) has any RHP zeros, which can be performed using the Nyquist
curve criterion or any numerical solving method like the MATLAB toolbox.

In the presence of process uncertainties, robust stability analysis can also be
limited to the closed-loop structure, owing to the open-loop control manner for the
set-point tracking. The process additive (A4 ), multiplicative input (Ay), and output
uncertainties (Ag), as shown in Fig. 11.20, are commonly encountered in practical
applications. By rearranging the perturbed closed-loop structure shown in Fig. 11.20
in the form of the standard M — A structure for robustness analysis (Zhou et al.
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Ce

Fig. 11.20 The closed-loop structure with process additive, multiplicative input, and output
uncertainties

1996), the transfer matrices relating the outputs to the inputs of A, Aa, and Ao can
be derived as

U %]
Upn | =M | Va (11.102)
Uo Vo
where
—(I +CG)'CG —(I + C:G)7'¢y —(I + C:G)7' ¢y
M= (I +CGG)™ —(I+CG6G)'Cr —(I+CGG)™'¢r | (11.103)
(I+GC)™'G  (I+GC)™"  —(I+GC)'GG

Note that there exist the following equivalent transformations:
(I +CG)'CiG =1—( + CG)™! (11.104)
(I+GC)'=1—-(I+GC)'GCr (11.105)
Using the equivalent transformation,

Ci(I +GCy) = (I + CG) C; (11.106)
yields
(I +CG) 'Cr=Ce(I +GCp)™! (11.107)

Besides, it follows from (11.101) that

(I +GC)~'GCr=G(I + C:G) ¢y (11.108)
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Hence, it can be concluded by using (11.100), (11.101), and (11.104)—(11.108)
that M retains stability if the nominal control system is maintained stable, i.e.,
(I + C¢G)™ " is kept stable.

Then the multivariable spectral radius stability criterion (Skogestad and Postleth-
waite 2005) can be used to obtain the robust stability constraint,

o(MA) < 1,V € [0, ) (11.109)

For instance, in the presence of the process additive uncertainties, the spectral
radius stability constraint can be derived as

o ((1 + ch)—'cfAA) <1,V € [0, 0) (11.110)

When assessing the control system robust stability with the process multiplicative
input and output uncertainties, the spectral radius stability constraint can be
derived as

(I +CG)'C6 —(I+C6)7'¢r [ A o
o . . < 1,Yo € [0,00)
(I+GC)™'G —(I+GC)'GCr || 0 Ao

(11.111)

For implementation, the spectral radius stability constraints shown in (11.110)
and (11.111) can be checked graphically by observing if the magnitude plots of the
spectral radius fall below unity for @ € [0, +00). In this way, admissible tuning
ranges of the adjustable parameters of Cy can be ascertained. Given a specified
bound of A, Ay, or Ag in practice, (11.110) and (11.111) can be used to evaluate
the control system robust stability, which will be illustrated in the examples later.

Combining the desired system transfer matrix shown in Table 11.2 with (11.82),
one can see that when the adjustable parameter A.; (i=1,2,...,m) in Cj is tuned
to small, the corresponding ith output response becomes faster for the set-point
tracking, but the outputs of the ith column controllers in Cy and the corresponding
actuators will be required to be larger. More aggressive dynamic behavior of the
ith output response will be turned out in the presence of process uncertainties.
On the contrary, gradually increasing A.; will slow down the corresponding ith
output response, but the outputs of the ith column controllers in Cs and the
corresponding actuators can be reduced. Correspondingly, a less aggressive dynamic
behavior of the ith system output response will occur in the presence of process
uncertainties. Hence, tuning A.; (i=1,2,...,m) aims at a good trade-off between
the achievable set-point tracking performance and the output capacities of Cs and
the corresponding actuators.

Following a similar analysis, one can conclude that decreasing the adjustable
parameter Ar; (i=1,2,...,m) in Cf can enhance the closed-loop performance for
rejecting load disturbance d; entering into the ith process input, but the outputs
of the ith row controllers in C; and the corresponding actuators will be required
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to be larger, leading to lower robust stability of the closed-loop structure, and vice
versa. Therefore, tuning A¢; (i=1,2,...,m)in Cyaims at a good trade-off between
the nominal closed-loop performance for load disturbance rejection and its robust
stability in the presence of process uncertainties.

Based on a large amount of simulation studies, it is recommended to initially
take A.; and A¢; in the range of (1.0 —10)6,; and (1.0—10)8y,; fori=1,2,...,m,
respectively. Then by varying them monotonically online, a desirable performance
for the set-point tracking and load disturbance rejection can be reached in a
transparent manner.

11.3.4 Ilustrative Examples

Two examples from the existing literature are used to demonstrate the effectiveness
and merits of the presented 2DOF decoupling control method, one with no RHP
zero in det(G) and the other with a dual RHP zero in det(G).

Example 11.5. Consider again the 3 x 3 process of Example 11.3 for illustration.
It has been introduced in Example 11.3 that this process belongs to case 1 in
Table 11.1. For designing the controller matrix for the set-point tracking, it follows
from the definitions in (11.85)—(11.87) that 6, ; = 0.8, 6, » = 0.68, and 6; , = 1.85
and n; | = 1,n,2 = 2, and n; 3 = 1. According to the design formulas for case 1
in Table 11.2, the diagonal elements in the desired system response transfer matrix
can be determined as

e*O.Ss 670.683' 671.855‘

h = = hy=—
! Geas + 12707 Aeas + 1

r2

)Lcyls +1’

which are exactly the same as those of the presented MIMO decoupling control
method for Example 11.3. Correspondingly, the controller matrix for the set-point
tracking can be derived the same as those for Example 11.3, except for that the
control unit, f;(i = 1,2,3), in all elements in the decoupling controller matrix
should be removed.

For designing the closed-loop controller matrix for load disturbance rejection, it
follows from the definitions in (11.93) and (11.94) that 64,y = 0.71, 63, = 1.85,
and 033 = 1.59and ng | = nq.3 = 1 and nq » = 2. Thus, the closed-loop controller
matrix can also be derived using the design formula for Case 1 in Table 11.2. For
comparison with existing decoupling control methods (Wang et al. 2003; Huang
and Lin 2006) in terms of similar controller orders, the controller elements in this
controller matrix are derived as

1454352 4+ 256.3578s + 0.5502

=D, -
S = P T 1) (438.73535 + 1)
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—5757900s° — 3439700s* — 56294053 — 414825? — 526.4265 —0.296 _5 7¢.
o3

=D -
G2 =D (At 15 + 1) (61590054 + 11636053+ 1251052 +466.76555 + 1)
£ =D 4009305*4-335365>+1342.35?+31.52795+0.2638 _ s,
C, = . e .
13 " rs + 1) (3302553 + 3869.952+447.5041s + 1)
1239157 4 746.21165” 4 9.75085 + 0.0199 _, o5,
¢far = D2+ '

(A2s + 1)% (3940.352+447.8424s + 1)

134710005°+3306200s° +892990s* 411712053 +6709.95> +142.014854-0. 3149 —117s

cf, =Ds-
(Ar2541) (33657054 +334655349959.2524+461.38115 + 1)
y 1679053 +1582.95%439.26465+0.0885
Cfyy = .
BT s + 1) (511.485352+440.0233s5 + 1)
£ =D 1736.55% — 21.72875% — 0.8474s — 0.002 _, g9,
C = . e el
T T s + 1) (4815.452+449.83025 + 1)
f =D —197040s% — 104730s* — 29099s> — 4024 952 — 171.9233s5 — 0374 s,
C = . -
32 } (A 3541) (2573005445590753+10254s2+461.93465 + 1)
y b 2195534212.3057s2+5.2157540.01
C = .
BT Aeas + 1) (1319.1s2+441.86365 + 1)
1 1 1
Dy = PR Dy = ——=m— D3= P
R YETES| B (/\ﬁzs-‘rl)z T Xpastl

where D, D,, and D3 can be implemented using the control unit shown in
Fig. 11.11.

For illustration, to obtain the similar rising speeds of set-point tracking with those
of Wang et al. (2003) and Huang and Lin (2006), the adjustable parameters in Cy
are taken as A, | = 8, Ao = 10, and A, 3 = 15. To compare with Huang and
Lin (20006) for load disturbance rejection in terms of a 2DOF control structure, the
adjustable parameters in Cy are taken as A¢ | = 0.2, Ay, = 18, and A¢ 3 = 15.

By adding a unit step change to the three set-point inputs at ¢t = 0 (s), 300 (s),
and 600 (s), respectively, and then adding an inverse step change of load disturbance
with a dynamics of G, = [1.986¢%715/(66.7s + 1), —0.0204¢ 3% /(11.49s + 1),
—0.374e777%/(22.225 + 1)]” to all the process outputs at = 900 (s), as assumed
by Huang and Lin (2006), the output responses are shown in Fig. 11.21. It is seen
that the ternary set-point responses without overshoot have been obtained using
the presented 2DOF decoupling control method (solid line), and the three process
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Fig. 11.21 Nominal output responses of Example 11.5



11.3 A 2DOF Decoupling Control Scheme for MIMO Processes 423

e 3 T T T T

= 2DOF Decoupling
=== 1DOF Decoupling
=-= Wang H
----- Huang (Full form)

1 1 1 1
0 300 600 900 1200 1400
Time (sec)
f 0.5 T T T

T
— 2DOF Decoupling
=== 1DOF Decoupling
=== Wang
----- Huang (Full form) 1

L

600 900 1200 1400
Time (sec)

Fig. 11.21 (continued)

output responses are almost entirely decoupled from each other. Moreover, both the
presented 2DOF control scheme and Huang and Lin (2006) have led to obviously
enhanced load disturbance rejection owing to the use of a 2DOF control structure.
The same set-point tracking performance is obtained by the presented 2DOF control
method and the 1DOF decoupling method based on the unity feedback control
structure, owing to the use of the same controller forms and adjustable parameters
for the set-point tracking. Note that better system performance for both the set-
point tracking and load disturbance rejection can be independently obtained in
the presented 2DOF control scheme by monotonically decreasing the adjustable
parameters of C; and C;.

To demonstrate the control system robust stability, one of the process parameter
perturbation tests in Wang et al. (2003) is performed here. That is, all time constants
in the process transfer matrix are assumed to be actually 40% larger to introduce the
unmodeled process dynamics. The perturbed system output responses are shown
in Fig. 11.22, which indicates that the presented 2DOF decoupling control system
maintains robust stability well in the presence of the severe process parameter
perturbations (solid line). The control signals have not varied much compared to
the nominal case and thus are omitted. Note that better robust stability can be
conveniently obtained in the presented 2DOF control system by monotonically
increasing the adjustable parameters of Cr.
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Fig. 11.22 Perturbed output responses of Example 11.5

Example 11.6. Consider the binary process studied in the literature (Jerome and
Ray 1986; Wang et al. 2000b; Huang and Lin 2006),

(=s + l)e™

0.5(=s + 1)~

24+ 155+ 1
0.33(—s + 1)e™®
(4s+1D(Bs+1)

(=s 4+ e
452 4+ 65 + 1

2s+1)3Bs+1)
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Obviously there is a common RHP zero, s = 1, in each element in the process
transfer matrix. Thus, it is a dual RHP zero of det(G). It can be verified that det(G)
has no additional RHP zeros. It follows from the definitions in (11.85)—(11.87) that
61 = 2,620 =3,and n,; = n,» = 1. According to the design formula for case 2
in Table 11.2, the controller matrix for the set-point tracking can be derived as

2+ 155+ 1 _0.5(s> + 1.55 + D)(4s> + 65 + e
c Ae1s+ D+ 1) (Ae.2s + D(s + D(2s + D(3Bs + 1)
=D-
’ | 0.33(s2 + 155 + D(ds? + 65 + De™™ 452 465 + 1
(Ae.1s + (s + 1)(ds + 1)(5s + 1) (he2s + D(s + 1)
where
1
D =

1— 0.165(s2+1.5s+1)(4s2+6s+1)e_ss
2s+1D)@Bs+1)4s+1)(5s+1)

Note that D can be implemented using the control unit shown in Fig. 11.11.

For designing the closed-loop controller matrix for load disturbance rejection, it
follows from the definitions in (11.93) and (11.94) that 64, = 2, 64, = 3, and
ng.1 = ng.2 = 1. So the closed-loop controller matrix can be similarly derived as

s2 4+ 1.55 + 1 _0.5(s* + 1.5 + 1)(4s + 65 + De ™
Gris+ D+ " Mis+ D6+ D2s+DBs+1) !
Cf=D N
_0.33(s> + 1.5 + D(4s” + 65 + De ™™ 452 + 65 + 1
(25 + D5+ Ds+ DGs+ 1) 7 Aas+ D+ D7
where
1 1
Di=—— D)=

1 (—s+1)e—2s

_ 1 (—s+1)e3s °
(Af,1s+1)(s+1)

T GrastD(FD

Note that D and D, can be implemented using the control unit shown in Fig. 11.11.

For comparison with Huang and Lin (2006), which had demonstrated superiority
over Jerome and Ray (1986) and Wang et al. (2000b), the adjustable parameters of
C; are takenas A, ; = 2 and A. , = 2 to obtain the similar rising speeds of set-point
tracking, and the adjustable parameters of Cy are taken as A¢ ; = 0.8 and As, = 1.5
to obtain the similar load disturbance response peak.

By adding a unit step change to the binary set-point inputs at + = 0(s) and
100 (s), respectively, and then adding an inverse step change of load disturbances
with a dynamics of G, = [e™*/(25s + 1),e~* /(255 4+ 1)]” to both the process
outputs at ¢ = 200 (s), as assumed by Huang and Lin (2006), the output responses
are shown in Fig. 11.23. It is seen that the presented 2DOF decoupling control
method results in entirely decoupled output responses with no overshoot for the set-
point tracking (thick solid line). To allow a simple implementation of D included in
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Fig. 11.23 Nominal output responses of Example 11.6
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Fig. 11.24 The magnitude plots of spectral radius for Example 11.6

C; and Cy, the first-order rational approximation formula in (11.33) is therefore used,
obtaining Di;; = (8.227s + 1.1976)/(9.142s 4 1). The corresponding output
responses are also shown in Fig. 11.23 for comparison, which indicates that a
negligible degradation in the output performance occurs.

To compare the control system robust stability, the perturbation test used in Wang
et al. (2000b) is performed here. That is, the static gains and time delays in diagonal
elements in the process transfer matrix are assumed to be actually increased by
20% and 30%, respectively. According to the robust stability constraint given in
(11.110), the magnitude plot of the spectral radius for checking robust stability
is shown in Fig. 11.24. It is seen that the peak value (dotted line) is evidently
smaller than unity, indicating that the presented 2DOF decoupling control system
can maintain good robust stability. The corresponding output responses are shown in
Fig. 11.25. It is seen that obviously enhanced robust stability is therefore obtained,
given the similar nominal output performance. Moreover, increasing the common
adjustable parameter A._ | in the first column controllers in Cs can gradually suppress
the oscillation of the set-point response for the process output y;, such as the case
of Ac.1 = 5 shown in Fig. 11.25 (thick solid line). On the other hand, increasing the
common adjustable parameter A | in the first row controllers in Cr will gradually
suppress the oscillation of load disturbance response for y;, such as the case of
Ag 1 = 3 shown in Fig. 11.25. Correspondingly, a smaller peak value of the spectral
radius is seen, as shown also in Fig. 11.24 (solid line), which indicates further
enhanced robust stability. Note that both the set-point response and load disturbance
response of the process output y, have almost not been affected by the tuning of
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Fig. 11.25 Perturbed output responses of Example 11.6

Ac.1 and Ay . It is thus demonstrated that each of the adjustable parameters in Cy
can be independently tuned online to optimize the set-point tracking performance
of the corresponding output variable, and so does for tuning each of the adjustable
parameters in Cr to optimize the load disturbance rejection performance of the
corresponding output variable.

11.4 Summary

For the decoupling regulation of MIMO processes, in particular in the presence
of multiple time delays involved with individual loops, three decoupling control
methods have been presented, respectively, based on the IMC structure, the unity
feedback control structure, and a 2DOF control structure.

For stable TITO processes, an analytical decoupling control design (Liu et al.
2006) based on the standard IMC structure has been presented, which can realize
absolute decoupling regulation of the nominal binary output responses. Owing to
the analytical design procedure, the computation effort is small in comparison with
previous decoupling control methods based on numerical algorithms. Moreover,
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there exists a quantitative tuning relationship between the adjustable control pa-
rameters and the nominal binary output responses, therefore facilitating the system
operation in practice. Robust stability constraints developed in terms of the spectral
radius stability criterion can be used to graphically determine an admissible tuning
range of the single common adjustable parameter in each column controllers in the
decoupling controller matrix, given specified upper bounds of the process additive
or multiplicative uncertainties in practice.

For MIMO processes, an analytical decoupling controller matrix design (Liu
et al. 2007a) has been presented in the framework of the unity feedback control
structure that is widely used in engineering practice. It has been demonstrated that
the proposed method can realize significant or even absolute decoupling regulation
for the nominal system. The key lies with the formulation of a practically desired
closed-loop system transfer matrix through an analysis of the NMP characteristics
of the process inverse transfer matrix (i.e., G™'). A new concept of “inverse
relative degree” has been defined with respect to all elements in G~!. Based
on a classification of different cases of the RHP zero distribution in det(G), the
decoupling controller matrix can be inversely derived from determining a desired
closed-loop system transfer matrix. For practical implementation, an analytical
approximation method has been given to achieve the ideally desired decoupling
controller matrix, efficiently reducing the computation effort compared to existing
decoupling control methods based on numerical iteration algorithms. Stability has
been analyzed for both the nominal system and the perturbed system with process
additive, multiplicative input, and output uncertainties. Tuning the decoupling
controller matrix to meet a good trade-off between the nominal system performance
and its robust stability can be conveniently executed owing to that each column
controllers in the decoupling controller matrix are tuned in common by a single
adjustable parameter in a monotonic manner.

To further enhance system performance for the set-point tracking and load
disturbance rejection, a 2DOF decoupling control scheme (Liu et al. 2007b) has
been presented for MIMO processes with multiple time delays. In the result, both
the set-point tracking and load disturbance rejection can be separately regulated
and optimized online, while significant or even absolute decoupling regulation
performance can be obtained. In the controller matrix for the set-point tracking,
each column controllers are tuned in common by a single adjustable parameter,
while in the closed-loop controller matrix for load disturbance rejection, each row
controllers are tuned in common by a different single adjustable parameter. Each of
these adjustable parameters can be tuned online in a monotonic manner to reach the
best trade-off between the nominal performance of the control system and its robust
stability, therefore facilitating practical application. Robust tuning constraints have
been derived in terms of the multivariable spectral radius stability criterion, which
can be graphically checked through the corresponding magnitude plots.

Five examples from the existing literature have been used to illustrate these
three decoupling control methods. The effectiveness and merits of these decoupling
control methods have been well demonstrated in terms of different cases of the RHP
zero distribution in the transfer function matrices of these examples.
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Chapter 12
Batch Process Control

12.1 The Implementation Requirements

Batch processes have been widely applied in modern industries to manufacture a
large quantity of products with good consistency and high efficiency. Typical batch
processes include robotic manipulators, semiconductor product lines, injection
molding, pharmaceutical crystallization, etc. Generally, a batch process is defined as
“a process that leads to the production of finite quantities of material by subjecting
quantities of input materials to an ordered set of processing activities over a finite
period of time using one or more pieces of equipment” (Instrument Society of
America 1995).
For batch process operation, there are fundamental requirements as follows:

1. A sequential execution of the processing activities to turn out expected products
or output performance

2. A finite operating time in each batch, specifically called cycle

3. Resetting initial process conditions to zero or fixed nonzero values for running
each cycle

Accordingly, the control tasks for batch process operation are

1. Realize perfect tracking of the desired set-point trajectory in each cycle for time-
invariant batch processes

2. Eliminate the influence of repetitive load disturbance occurring from cycle to
cycle

3. Robustly track the desired set-point trajectory as close as possible, in the presence
of time-varying uncertainties in each cycle or cycle-to-cycle uncertainties

4. Maintain control system robust stability against process uncertainties in both the
time direction in each cycle and the batchwise direction from cycle to cycle

5. Comply with the process input and output constraints for implementation

To meet the above requirements, different control methodologies have been
developed in the past three decades (Bonvin et al. 2006; Wang et al. 2009). Among

T. Liu and F. Gao, Industrial Process Identification and Control Design: Step-test 433
and Relay-experiment-based Methods, Advances in Industrial Control,
DOI 10.1007/978-0-85729-977-2_12, © Springer-Verlag London Limited 2012
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these methodologies, iterative learning control (ILC) has been widely recognized
and practiced in recent years for various industrial and chemical batch processes
(Moore 1993; Ahn et al. 2007; Wang et al. 2009). This methodology is in principle
based on using repetitive operating information of a batch process from historical
cycles to progressively improve tracking performance from cycle to cycle. As
surveyed by Bonvin et al. (2006), Ahn et al. (2007), and Wang et al. (2009), quite a
number of ILC methods have been developed in both continuous- and discrete-time
domains which can realize perfect tracking for time-invariant linear or nonlinear
batch processes. Presently, the challenges for practical application of ILC are
primarily related to robust convergence and stability against process uncertainties.

To deal with process uncertainties, a number of robust ILC methods have been
developed in recent years for delay-free or fixed-delay batch processes (Lee et al.
2000; Xiong and Zhang 2003; Shi et al. 2005, 2006; Harte et al. 2005; Nagy and
Braatz 2003; Nagy et al. 2007; Wijdeven et al. 2009). As time delay is usually
associated with process operation, which may be uncertain or even time-varying
from cycle to cycle, Xu et al. (2001) extended the Smith predictor control structure
that is well known for superior control of a time delay SISO process to improve
tracking performance of ILC for a batch process with time delay. A state-space ILC
method (Li et al. 2005) was developed to allow for fixed state and control delays,
based on a two-dimensional (2D) linear continuous-discrete Roesser’s model of
the process. By comparison, Tan et al. (2009) developed a phase lag compensation
method to perform ILC in the presence of the input delay.

In view of that time-delay mismatch is usually involved with other process
uncertainties in operating a time-delay batch process in practical applications, a
robust ILC method based on the IMC structure is therefore presented for practical
application. Sufficient conditions for the convergence of ILC are explored for
time-delay batch processes with or without model uncertainties. To facilitate the
controller design, a unified controller structure using the standard IMC controller
form is proposed for implementation.

12.2 An IMC-Based Iterative Learning Control (ILC) Scheme

It is well known that perfect tracking can be obtained by the standard IMC structure
(Morari and Zafiriou 1989) only when there exists no process uncertainty and load
disturbance. Given a constant or step-type set-point as commonly practiced, the
IMC structure can be used to guarantee no steady-state offset for a batch process
if the cycle time (7p) is long enough. Moreover, the IMC structure can be used
to maintain the closed-loop system robust stability, that is to say, accommodating
process uncertainties. These merits of IMC motivate the development of an IMC-
based ILC control scheme here. Note that given any bounded signals entering into
an IMC system subject to process uncertainties, including the feedforward control
signal of ILC that may be independently designed for perfect tracking, only bounded
output will be in the result if the IMC system maintains robust stability.
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Fig. 12.1 A block diagram of the IMC-based ILC scheme

12.2.1 The IMC-Based ILC Structure

The IMC-based ILC control scheme is shown in Fig. 12.1, where the transfer
function block diagram encircled by a dashed line is the ILC part, and the rest is
the standard IMC structure; R (i.e., r in time domain) denotes the set-point, Y (i.e.,
y in time domain) is the process output, and D is the load disturbance. C is the IMC
controller and also used for implementation of ILC, G, = Groe % is the process
model, and G is the load disturbance transfer function. “Memory” is a storage used
for recording the current cycle information of process output (Y;), model output
()A’k = GnUy), and control input (Uy) to the process, while providing the last cycle
information of process output (yx—1), model output (yx—1), and control input (Uy—_).
Vi is the ILC updating information used to compute the control increment (Uc) for
adjusting Uy.

For implementation, the initial run (k = 1) of this control scheme is exactly an
IMC strategy with a zero initialization of the ILC control law (i.e., V; = Uy = 0).
Starting from the second run (kK > 2), the whole control structure is implemented
as an ILC scheme, based on the IMC control law (U;) stored in the “Memory.”
The key idea behind such an implementation is that, based on an IMC control
law prescribed to allow for the process uncertainties with certain stability margin,
the ILC control law, which is essentially of feedforward control, is subsequently
implemented to progressively realize perfect tracking, according to the linear
superposition principle. Hence, relative independence can be obtained for designing
the IMC control law to maintain the control system robust stability and the ILC
control law to realize perfect tracking, respectively.
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A time-delay process denoted as G in Fig. 12.1 is generally modeled in the
transfer function form of

Gm(s) = Gmoe ™, (12.1)

where Gy, is a rational proper transfer function and 6, indicates the process
response delay. For operation of open-loop stable batch processes, as considered
here for ILC design, one can further express G, as

B4 (s) B—(s)

Gmo(s) = kp A(s) s

(12.2)

where k,, denotes the process static gain, A(0) = B1(0) = B_(0) = 1, all zeros
of A(s) and B_(s) are located in the complex LHP, and all zeros of B4 (s) are
located in the complex RHP. Denote deg{A(s)} = m, deg{B_(s)} = ny, and
deg{B+(s)} = ny, respectively. Generally, there exists n; + n, < m in practice,
which indicates that G, is strictly proper.

Denote Yj (i.e., yq in time domain) as the desired output trajectory. It is assumed
that the initial resetting condition is satisfied, i.e., 7(0) = y4(0) = y;(0), where k
denotes the cycle number. Without loss of generality, zero initial values of y4(0) =
V1 (0) = 0 are considered here for the convenience of analysis, since nonzero initial
constant values can be easily converted to zero for study.

12.2.2 The IMC Design

With the process description in (12.1) and (12.2), in order to achieve the H, optimal
set-point tracking performance, it follows from the IMC design presented in Sect.
7.3 that the controller should be configured as

A(s)
kpB_(5)BL(5)(hes + D" 1

Civc(s) = (12.3)

where A. is an adjustable parameter for controller tuning and B} (s) denotes the
complex conjugate of By (s), corresponding to all zeros in LHP. It can be easily
verified that the above controller is bi-proper and therefore executable in practice.
Assume that the process is located in a family of I[1 = {G : |G(jw) — Gn(jw)|/
|Gn(jw)| < |An(jw)|}, where An(jw) denotes the process multiplicative

uncertainty. According to the small-gain theory (Zhou et al. 1996), the IMC system
maintains robust stability if and only if

1An(jo)T(jo)| < 1, Vo € [0,00). (12.4)

where T = G,,Cpvc is the closed-loop system transfer function in the nominal case
(G = Gn).
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Substituting (12.3) and the process model of (12.1) into (12.4) yields the robust
tuning constraint,

m—nj

(A2 +1) 2 >|An(jw)|, Yo €l0,00). (12.5)

Hence, given a specified upper bound of A, (jw) in practice, the closed-loop system
stability can be assessed graphically by observing if the magnitude plot of the left-
hand side of (12.5) is above that of the right-hand side for w € [0, 00).

To facilitate the subsequent implementation of ILC for perfect tracking, the above
IMC design for an initial run of the proposed control scheme should of primary aim
at holding the control system stability with good robustness margin.

12.2.3 Robust ILC Design

The objective of an ILC control law is to progressively achieve perfect tracking
along the cycles, which can be mathematically expressed as

lim [[ya — yell =0, (12.6)
k—o00

where yq denotes the desired time-domain output trajectory which is usually
identical with the set-point (r) unless the set-point is not a continuous signal. For
instance, if 7 is a step change as often adopted in practice, a low-pass filter can be
used to turn out a smooth trajectory, i.e., Y4 = FR, where F can be practically
taken as a first-order stable transfer function with a small time constant.

Due to the existence of the process response delay, the above objective should be
modified as

lim [yse™® — yi|| =0, (12.7)
k—00

where 6 denotes the process response delay.
If 6 cannot be known exactly in practice, the objective function for design of an
ILC updating law is proposed accordingly as

lim | yge™™ — yi| = 0. (12.8)
k—o0

Since the ILC strategy shown in Fig. 12.1 is essentially of feedforward control
based on using the last cycle information of process output (Y;—;) and control input
(Ux — 1), the control input in the current cycle can be derived as

Uy =Uc_ +C [R - (Yk - ?k) + Vk] . (12.9)
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Considering that the IMC control law has been stored as U after an initial run of
the IMC strategy as shown in Fig. 12.1, the output error information, R— (Yk - I?k),

should be removed from the above ILC updating information in the current cycle so
that relative independence can be obtained for designing the control system stability
(through IMC) and the convergence rate (through ILC) for perfect tracking.

It follows from (12.8) that the tracking error in the current cycle can be
evaluated as

Ep = Yee ' — v, (12.10)

which can also be assessed in a predictive manner by multiplying e?»* to both sides
of (12.10),

Ekeems — Yd _ Ykegms. (121 1)

Due to the fact that Yze cannot be known in advance for computation, the
above error prediction can be estimated using the model response as

Eref™ = Yy — Ve (12.12)
which can therefore be used to compute the control increment (Uc) for adjusting Uy
so that perfect tracking can be realized against the influence from the process time
delay.

Besides, the influence of a repetitive-type load disturbance, which can be
estimated from the last cycle as

GaD = Yi_i — Y1, (12.13)
where ?k_l = G Ui—1, should be included in the ILC updating information (V})

in the current cycle for load disturbance rejection.
Based on the above analysis, the ILC updating information is proposed as

Vi = Yy— R + (Yk _ ?k) — s (?k F Y — ?,H) . (12.14)
By substituting (12.14) into (12.9), the ILC control law can be derived as
U=U,+C [Yd — s (?k + Y — )?,H)] . (12.15)

In the case where Y4 = R, as shown in Fig. 12.1, (12.14) and (12.15) can be
simplified, respectively, as

Vi = Vi — Yj — e (?k F Y — ?k_l) , (12.16)
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Ug=Uc_1 + C [R _ ofms (fk F Y — f'k_l)] . (12.17)

Multiplying both sides of (12.15) by G and using the following equalities,

Y. = GU; + Gy4D, (12.18)
G (Ve = Yie) = G (T = Fi ). (12.19)

together with the feature of a repetitive-type load disturbance,

GaD =Y, — Yy = Yiy — Yy, (12.20)
one can obtain
1+ C (Gmo — Ge') GC
Y, = Yoo + —— Y, 12.21
k 1+ GumoC TG (12.21)

It follows from (12.11) that

Y = Yge O — E, (12.22)

Y1 = Yae 5 — Epy. (12.23)
Substituting (12.22) and (12.23) into (12.21) yields

14 C (Gro— Ge™)
k= 1+ GpoC

Ej 1. (12.24)

It can be easily verified that (12.24) holds as well in the case where Y4 = R.
Denote the transfer function in (12.24) as

GCems

—_—. 12.25
17 Gl ( )

0s) =1~

It can be seen that the tracking error will not be enlarged from cycle to cycle, if
C is designed to keep Q(s) stable.

Note that Q(s) in (12.25) is free of delay in the denominator, thus inheriting the
important merit of a Smith predictor scheme for obtaining a linear characteristic
equation for a time-delay process. Hence, the closed-loop pole assignment can
be easily configured in terms of the dynamic response requirements of system
operation.
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A sufficient condition to the convergence of the proposed ILC method is given in
the following theorem:

Theorem 12.1. If [[Q(s)[loc = SUP,e0.00) |Q(J@)| < 1, perfect tracking, i.e.,
limg o0 Ex = 0, can be realized by the ILC scheme shown in Fig. 12.1.

Proof. Taking the 2-norm for both sides of (12.24) gives

14 C (Gmo — Ge'm?)
1+ GnoC

I Exll, = | Ex—1ll,- (12.26)

2

According to the well-known Parseval’s theorem, there exists

IEx(j@)llz = llex@)ll2, (12.27)

where e (1) = yq(t) — yk(¢) is the time domain tracking error in the kth cycle.
Note that the following norm relationship holds for a SISO system,

— Oms _ Oms

1+C (Gmo Ge ) < 1+C (Gmo Ge ) (1228)

14+ GyoC 14+ GyoC

2 0o
Substituting (12.25), (12.27), and (12.28) into (12.26) yields

ek ()1l < 12 () loollex—1(D)l5- (12.29)

Using the induction method to (12.29), it follows that
lex (@)l < 110l leo(@) - (12.30)

Hence, using the sufficient condition given in Theorem 12.1, the conclusion
follows accordingly. This completes the proof. O

In the nominal case, G = Gy,, a sufficient condition to the convergence of this
ILC method can be similarly obtained from (12.25) as

Corollary 12.1. If sup,coo0) |1/ (1 + GmoC)| < 1, perfect tracking, i.e.,
limg o0 Ex =0, can be realized by the ILC scheme shown in Fig. 12.1 for batch
processes without model uncertainty (G = Gp,).

If a batch process is in a family described by a multiplicative uncertainty,
IMI={G:|G(jw) —Gu(jo)|/|Gn(jo)| <|An(jow)|}, a sufficient condition to
the convergence of the proposed ILC method can be obtained from (12.25) and
(12.30) as
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Corollary 12.2. If |1 — Gpo(jo)C(jo)An(jo)| < |1 + Guo(jo)C(jo)|, Yo €
[0, 00), perfect tracking, i.e., limy_oo Ex = 0, can be realized by the ILC
scheme shown in Fig. 12.1 for a batch process in the family of T1 =
{G:[G(jw) = Gn(jo)|/ |Gn(j®)| < [An(jw)}.

With the sufficient conditions given in the above theorem and corollaries for
convergence analysis, one can go on to analyze whether the above IMC controller
can be used for implementation of ILC or not.

In the nominal case, G = G,,, denote

1
S = —\ 12.31
2() 15 G ( )
Substituting (12.3) into (12.31) yields
1
Sa(s) = ) (12.32)
+ B_T_(S)(/\cs-'r])mi"l
It can be easily verified that
1
S$,(0) = > (12.33)
Sr(oc0) = 1. (12.34)

Therefore, the sufficient condition given in Corollary 12.1 can only be satisfied
in the low-frequency range. In fact, the tracking error from cycle to cycle will
not contain high-frequency components if the initial run of IMC does not generate
an oscillatory output response containing high-frequency components and Q(s) in
(12.25) is maintained stable with a proper design of C. Moreover, the desired output
trajectory in practical applications is usually prescribed in the low-frequency range,
that is to say, accurate tracking is usually required within the closed-loop bandwidth
(wyp) of interest for system operation.

Note that the convergence rate is fixed as shown in (12.33) for the direct-current
(DC) component of the tracking error if the above IMC controller is used, which
can heavily affect the overall convergence rate of ILC because the DC component
usually takes a large percentage in the desired output trajectory such as a step-type
profile. To overcome this deficiency, the above IMC controller is slightly modified
for implementation of ILC, i.e.,

ke A(s)

W) = B OB ) e + 7

(12.35)
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Correspondingly, it follows that

1

S,(0) = .
20) =7 T ke

(12.36)

It is seen that S;(0) is inversely proportional to k. in Cyc.

Compared to the IMC controller shown in (12.3), there exists an adjustable gain,
k., in the above ILC controller. By letting k. = 1, the above ILC controller is
reduced to the IMC controller in (12.3). Therefore, the ILC controller shown in
(12.36) can be taken as a unified form for implementation of the IMC-based ILC
scheme.

In the case where the process is in the family of [T = {G : |G(j®) — Gu(jo)|/
|Gm(jo)| < |Am(jw)|}, one can denote

1 —GmoC Ay

S = 12.37
3(5) 1+ G ( )

It follows from substituting (12.3) into (12.37) that

1—An(0)

$3(0) = 5

(12.38)

which implies that —1 < A, (0) < 3 is required to ensure |S3(0)] < 1 for the
convergence of ILC.
If the above ILC controller is used, it follows that

1 —kcAn(0

The first derivative with respect to k. can be obtained as

dS;(0) _ —1- An(0)

= . 12.40
dk. (1 +ke) (1240
It can be verified that
min [$3(0)] = { |An(0)], —1 < An(0) < 0; (12.41)
0, An(0) > 0.

Hence, it can be concluded from (12.41) that A,,(0) is not allowed to be smaller
than negative unity for the convergence of ILC. Note that for —1 < A (0) < 0,
S3(0) monotonically decreases with respect to k. and min |S3(0)| can be reached
only when k. — co. In the case where A, (0) > 0, min |S3(0)| = 0 can be reached
when k. = 1/A4(0).
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To quantify the tuning constraint of the adjustable time constant, A, in the above
ILC controller, a necessary condition for the convergence of ILC can be used,

|Q(jw)| < 1, Yo < wy, (12.42)

where wp denotes the closed-loop bandwidth of the IMC system, which can be
estimated from the nominal closed-loop sensitivity function, i.e.,

1
[1 = Gu(jp)Cive(jwp)| < 7 (12.43)

Substituting (12.3) into (12.43) yields

_
V2

Based on the above estimation of the closed-loop bandwidth, a tuning constraint
of A, for the above ILC controller can be quantitatively established.

In the nominal case, G = Gy,, by substituting (12.31) and (12.35) into (12.42),
one can obtain

B r —J Omwy
’ +(j@p)e (12.44)

 BE(jwp)(JAewy + 1)

‘ ke By (je) 1. Yo <o (12.45)

Bi(jo)(jAew + 1"

In the case where the process is in the family of [T = {G : |G(jw) — Gn(jw)|/
|Gn(jw)| < |An(jw)|}, by substituting (12.35) and (12.37) into (12.42), one can
obtain

' + kcB+(jw)
B (jo)(jAw + D"

., Yo <

‘1  kBi(jo)An(jo)
B (jo)(jAw + D"
(12.46)

Note that the above tuning constraints can be graphically checked similar to the
robust tuning constraint in (12.5). Therefore, the convergence performance can be
assessed intuitively.

Owing to the unified controller form for both IMC and ILC in the presented
control scheme, the adjustable parameters, A. and k., can be conveniently tuned to
satisfy the robust stability constraint of IMC and the convergence conditions of ILC,
respectively. For the convenience of implementation, A, may be first tuned in terms
of the robust stability constraint of IMC and then used for ILC. If the convergence
rate is preferred to be faster, k. can be subsequently increased for this purpose. If
the corresponding convergence stability cannot be guaranteed, A, may be retuned in
terms of the convergence conditions shown in (12.42)—(12.46).
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12.2.4 Implementation Against Measurement Noise

Measurement noise may bring false output error into the updating information
of ILC, causing confusion in the control action or even jeopardize the control
system stability. It is therefore necessary to evaluate the ILC robustness against
measurement noise for practical application.

It can be seen from (12.14) that the ILC updating information is likely affected by
measurement noise, which may hinder the convergence as can be verified from the
ILC control law shown in (12.15). Nevertheless, the proposed controller formula
in (12.35) has a low-pass property, which facilitates reducing the influence of
measurement noise.

To enhance the convergence robustness against measurement noise, it is sug-
gested to use an online noise-spike filtering strategy (Seborg et al. 2004) for filtering
Y} in the current cycle. In view of that all the process output data and ILC control
law in the last cycle are available when computing the ILC updating law in the
current cycle, an off-line denoising strategy can be used for the computation through
a low-pass Butterworth filter,

bo+ bzt + bz - by ™
L+aiz ' + a2+ +agz™

Butter (ny, fo) = , (12.47)

where ny is a user-specified filter order and f; is the cut-off frequency. That is, the
uncorrupted output data and ILC control law in the last cycle can be recovered by
filtering the corresponding data with the same low-pass Butterworth filter in both
the forward and reverse directions so that no phase lag or amplitude distortion will
be created.

Owing to the fact that measurement noise is mainly of high frequency, the
guideline for choosing the cut-off frequency is suggested as

- (10 ~ 20)a)b’
- T

Je (12.48)

where wy, can be estimated from (12.43).

12.3 Illustrative Examples

Two examples from the existing literature are used to demonstrate the effectiveness
and merits of the presented IMC-based ILC method. Example 12.1 is given to
demonstrate the tracking performance for a desired output trajectory, together with
perturbation tests including time-delay mismatch for illustrating the convergence
robustness. Example 12.2 is given to show the effectiveness of the presented
ILC method for batch process operation against load disturbance, including a
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measurement noise test. The simulation solver option is chosen as ode5 (Dormand—
Prince), and the step size is fixed as Ty = 0.01 (s) throughout all tests. For assessing
the tracking performance, the mean-square-error (MSE) fitting criterion is used,
namely,

No
MSE = Nl Y ey =y (TP,
3

i=1

where yq4(i Ty) and y (i T;) denote the desired output trajectory and the process output
in a cycle time of Ty, respectively, and Ny = T,/ T is the number of sampled data
points in the cycle time.

Example 12.1 Consider the time-delay batch process studied by Xu et al. (2001),

I _
G](S): s+1€ s,

Using a process model, Gp,(s) = e~2/(s + 1), Xu et al. (2001) gave an ILC
control algorithm based on a Smith predictor control structure with a PD controller,
C = 0.5(s + 1), for tracking a desired output trajectory,

0, t <1;
ya(t) =415 —-1), 1<t =<7,
9, 7<t<8.

This method can realize almost perfect tracking after 11 cycles, based on an
initial run of the Smith predictor control scheme using the PD controller.

For comparison, using the above process model, a unified controller for both IMC
and ILC can be determined from the controller formula in (12.35) as

k(s + 1)
Cs) = Aes +1°

By taking A, = 1 and k. = 1 for an initial run of IMC and also for the subsequent
ILC, i.e., C(s) = 1, the tracking results are shown in Fig. 12.2. It is seen that the
presented IMC-based ILC method results in almost perfect tracking after 10 cycles.
Figure 12.2c demonstrates that apparently faster convergence is obtained by the
proposed method. As shown in Fig. 12.2, the initial run of IMC gives enhanced
tracking performance compared to the PD controller of Xu et al. (2001). Figure 12.3
shows the magnitude plot of O with respect to the frequency, which demonstrates
that Q(wp = 0.25) = 0.5116 can guarantee the convergence though max 10| =

1.218 > 1 occurs beyond the low-frequency range.
To demonstrate the convergence robustness in the presence of the time-delay
mismatch, assume that the process time delay randomly fluctuates in a range of
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Fig. 12.2 Comparison of tracking performance for Example 12.1
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Fig. 12.3 The magnitude plot of Q for Example 12.1
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Fig. 12.4 The MSE plot for Example 12.1 with uncertain time delay

[0.8, 1.2](s) from cycle to cycle. Figure 12.4 shows the MSE plot with respect to the
cycle number, which demonstrates good robustness of the proposed ILC method.

Note that the above ILC design is based on exact modeling of the rational part in
the process transfer function, as assumed in Xu et al. (2001) for test. To demonstrate

the convergence robustness in the presence of an entire model mismatch as likely

encountered in practice, assume that the rational part of the process is actually
perturbed to Go(s) = 2/(1.55 + 1), together with the above time-delay variation.

The corresponding MSE results are plotted in Fig. 12.5. It is seen that the presented
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Fig. 12.5 The MSE plot for Example 12.1 with model mismatch and time delay variation

ILC method still maintains good convergence robustness with respect to the cycle
number.

Example 12.2 Consider the batch process studied by Chin et al. (2004),

2.5 o

G20 = 30057+ 355 £ 1¢

Based on a process model, Gy, (s) = 1.56_9“‘/ (27Os2 + 33s + 1), Chin et al.
(2004) gave an ILC scheme for the delay-free case, § = 6, = 0, to overcome
a repetitive load disturbance with a slow dynamics of Gq4(s) = 1/(10s + 1). For
illustration, 6 = 3 and 6, = 10 are first assumed for test, together with a control
input limit in a range of [—10, 10]. According to the controller formulae in (12.35),
the unified controller can be determined as

ke (2705 4 335 + 1)
1.5(Aes + 1)?

C(s) =

The cycle time is assumed to be 7;, = 400 (s). The set-point is a unit step change,
and a low-pass filter, F(s) = 1/(3s+ 1), is used to shape a desired output trajectory.
A repetitive load disturbance with the above dynamics and a magnitude of —0.5 is
added at ¢t = 200 (s). By taking A, = 5 and k. = 1 for an initial run of IMC and
taking A, = 8 and k. = 1.5 for the subsequent ILC, the tracking results are shown in
Fig. 12.6. It is seen that perfect tracking can be obtained almost after 20-30 cycles.
The corresponding MSE plot is shown in Fig. 12.7 (solid line). Note that the MSE
value converges to a very small constant rather than zero is due to the time-delay
mismatch between the desired output trajectory and the process output response.
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Fig. 12.7 The MSE plots of three tests for Example 12.2

To demonstrate the convergence robustness in the presence of the time-delay
variation, assume that the process time delay randomly fluctuates in a range of
[0, 5](s) from cycle to cycle. Figure 12.7 shows the MSE plot with respect to the
cycle number (dashed line), which once again demonstrates good robustness of the
presented ILC method against the time-delay variation.
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Fig. 12.8 Tracking performance for Example 12.2 against measurement noise

To demonstrate the convergence robustness in the presence of measurement
noise, assume that a random noise N (0,0]%, = 0.38%), causing NSR = 5%, is
added to the process output measurement. The worst case of the time-delay
mismatch, i.e., # = 0 and 6, = 10, is considered for test. According to the
denoising strategy presented in Sect. 12.2.4, the ILC updating law is computed
based on filtering the noisy output and ILC control law in the last cycle with a low-
pass Butterworth filter using a cutoff frequency, f. = 0.3 (Hz), in both forward and
reverse directions. The tracking result is shown in Fig. 12.8, which demonstrates that
good tracking can thus be obtained after 10 cycles. The filtered output response in
terms of the initial run of IMC is also shown in Fig. 12.8, indicating good denoising
effect. The corresponding MSE plot is also shown in Fig. 12.7 (dotted line) for
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comparison. It can be seen that the MSE value converges almost to a small constant
which is indeed close to the variance of the measurement noise, thus demonstrating
good convergence robustness.

12.4 Summary

For the control of industrial batch processes, especially in the presence of time-delay
and time-varying uncertainties from cycle to cycle, an IMC-based ILC method (Liu
et al. 2010) has been presented for robust tracking of the desired output trajectory.
Relative independence is therefore obtained for designing the IMC control law to
maintain the control system robust stability and the ILC control law to realize perfect
tracking, respectively. Sufficient conditions for the convergence of ILC have been
derived. It is a remarkable merit that the developed characteristic equation of the
ILC transfer function connecting the tracking errors from cycle to cycle is free of
delay, which can facilitate the pole assignment of the closed-loop system and the
corresponding controller design.

For the convenience of implementation, a unified controller form has been
proposed for implementing IMC in the initial run and the subsequent ILC for
perfect tracking. To cope with process uncertainties, robust tuning constraints of the
unified controller have been derived, respectively, for maintaining the control system
stability and the convergence for tracking a desired output trajectory. For practical
application, the unified controller can be monotonically tuned through a single
adjustable parameter to meet a good trade-off between the tracking performance
and robust stability of the closed-loop system.

To deal with measurement noise that may hinder the convergence of ILC in
practice, a denoising strategy has been presented for filtering each cycle data to
compute the ILC updating law.

Two examples from existing literature have been used to illustrate the presented
ILC method. It has been demonstrated that perfect tracking can be efficiently
realized by the presented ILC method for time-invariant batch processes, no matter
whether there exists model mismatch or not. In the presence of time-varying
uncertainties from cycle to cycle, including measurement noise, the presented
ILC method has been shown to maintain good system stability and convergence
robustness.
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Chapter 13
Concluding Remarks

In this monograph, we have presented two series of our research results on industrial
process identification and control system design. The contents are divided into two
parts. Part I (Process Identification) presents a series of continuous-time model
identification methods for describing the dynamic response characteristics of open-
loop stable, integrating, and unstable industrial processes. The widely practiced step
response test and relay feedback test have been considered for developing the pro-
posed identification methods, together with robust identification methods that allow
for unsteady or unknown initial process conditions and load disturbance in practical
applications. Part II (Control System Design), corresponding to the control-oriented
model identification methods in Part I, presents a series of model-based control
methods developed by the authors for single-input-single-output (SISO) processes,
cascade control processes, multiple-input-multiple-output (MIMO) processes, and
batch processes.
The main contributions of Part I can be summarized as follows:

1. Process frequency response estimation under an open-loop or closed-loop step
test, or a relay feedback test.

2. For the use of an open-loop step test to identify a stable or integrating process,
identification methods have been detailed for obtaining the low-order process
models of first-order-plus-time-delay (FOPDT) and second-order-plus-time-
delay (SOPDT), which have been most widely used for control system design
and controller tuning in industrial engineering practices. A few higher-order
model identification algorithms have also been given for obtaining a very special
model with more parameters to facilitate advanced control design for industrial
processes with special requirements.

3. For the use of an open-loop step test subject to unsteady or unknown initial
process conditions and unexpected load disturbance, robust identification algo-
rithms have been presented for obtaining FOPDT and SOPDT models based
on a modified implementation of the step test. Moreover, a piecewise model
identification method has been presented for simultaneously identifying the

T. Liu and F. Gao, Industrial Process Identification and Control Design: Step-test 453
and Relay-experiment-based Methods, Advances in Industrial Control,
DOI 10.1007/978-0-85729-977-2_13, © Springer-Verlag London Limited 2012
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process model and the disturbance model in the presence of a deterministic
(inherent) type of load disturbance.

4. For the use of a closed-loop step test, the guidelines for implementing the
identification test with a simple proportional (P), proportional-integral (PI),
or proportional-integral-derivative (PID) controller for closed-loop stabilization
have been provided. The corresponding identification algorithms have been
detailed for obtaining FOPDT and SOPDT models for stable, integrating, and
unstable processes, respectively.

5. For the use of a relay feedback test, the guidelines for model structure selection
have been provided together with a list of various relay response shapes
for reference. By deriving analytical relay response expressions, it has been
clarified that the steady oscillation can definitely be formed for stable and
integrating processes. A limiting condition to forming steady oscillation for
unstable processes has been revealed. Given a biased or unbiased relay test,
identification algorithms have been detailed for obtaining FOPDT and SOPDT
models for stable, integrating, and unstable processes, respectively. Moreover, a
generalized relay identification method has been developed for identifying any
order models for stable processes, from which the process static gain can be
separately identified, independent of whether a biased or unbiased relay test is
used.

The main contributions of Part II can be summarized as follows:

1. Based on a review of the internal model control (IMC) theory, an enhanced IMC
design for load disturbance rejection has been presented together with a set of
IMC-based PID tuning formulae.

2. For SISO processes, advanced two-degrees-of-freedom (2DOF) control schemes
have been presented for separate optimization of set-point tracking and load
disturbance rejection. Based on a classification of different cases that a load
disturbance may enter into a process of stable, integrating, or unstable type,
enhanced IMC design formulae have been correspondingly developed for im-
proving the load disturbance rejection performance.

3. Advanced cascade control strategies have been presented for time delay or slow
processes to improve the load disturbance rejection performance based on the
available measurement of a secondary (intermediate) output of such a process
for feedback control. An important advantage of these control schemes is that
both the set-point tracking and load disturbance rejection can be separately tuned
and optimized, compared to a conventional cascade control structure.

4. For multiloop control of MIMO processes, an analytical multiloop PI/PID
controller design method has been presented based on a two-input-two-output
(TITO) process description that is mostly established for the implementation
convenience of multiloop control. The multiloop structure controllability has
been discussed, along with the conclusion that it is generally impractical for
entire decoupling regulation to be realized by a multiloop structure.

5. For decoupling control of MIMO processes with time delays, an analytical
decoupling control design based on the standard IMC structure has been
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presented for stable TITO processes with time delays. The control design can
realize absolute decoupling regulation of the nominal binary output responses.
Moreover, an analytical MIMO decoupling controller matrix design has been
presented in the frame of the unity feedback control structure that is most widely
used in engineering practice, which can realize significant or even absolute
decoupling regulation for the nominal system. In addition, a 2DOF MIMO
decoupling control scheme has been developed to realize separate regulation
and optimization of the set-point tracking and load disturbance rejection for
individual channels.

. For industrial batch processes, an IMC-based iterative learning control (ILC)

method has been presented for robust tracking of the desired output trajectory,
especially in the presence of time delay and time-varying uncertainties. Relative
independence is therefore obtained for designing the IMC control law and the
ILC control law, the former for maintaining the robust stability of the control
system and the latter for realizing the perfect tracking.

Although we have tried to make this monograph as self-contained as possible,

there indeed exist a number of underdeveloped or untouched research topics related
to our discussed topics. We therefore conclude by offering some suggestions and
open issues for future research exploration:

1.

Robust frequency response estimation in the middle- to high-frequency range
required for advanced control of some industrial processes in the presence
of measurement noise. Modified step or relay tests that are simple enough
for practical application are desired for developing such frequency response
estimation methods.

. Consistent parameter estimation for model identification using multiple step or

relay tests subject to nonstatic or time-varying load disturbance, including the
transient type of disturbance that exists for only a short duration.

. Design of open-loop or closed-loop step test(s) for effective excitation of the

dynamic response of a MIMO process with no diagonal dominance to facilitate
control-oriented model identification.

. Design of relay feedback test(s) for the sustainable oscillation of a MIMO

process to form the limit cycle, together with the stability conditions for relay
feedback identification of MIMO processes in terms of a specified multiloop or
decoupling control structure.

. Step or relay identification of non-square MIMO processes that are associated

with input—output pairing and no diagonal dominance.

. Model identification or parameter estimation of nonlinear processes like the

Hammerstein- or Wiener-type from simple or modified step or relay test(s).

. Anti-windup IMC designs for SISO processes subject to the input or output

constraints, together with the robust stability conditions.

. Advanced cascade control methods to deal with different cases of load distur-

bance entering into the process, together with the control input constraints.

. Multiloop control design for non-square MIMO processes, in particular for the

PID tuning methods that facilitate economic operation.
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10.

11.

12.

Decoupling control design for non-square or unstable MIMO processes with time
delays, including the robust stability conditions.

Two-dimensional (2D) ILC design for batch processes to realize robust tracking
in both the time direction during a cycle and the batchwise direction from cycle to
cycle, especially in the presence of time delay (including variation) in the control
implementation or the output measurement.

High-performance discretization of continuous-time control systems for practical
applications in industrial computers and distributed digital controllers (DDC),
especially in the presence of an input or output time delay that is not an integer
multiple of the sampling period.
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