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Preface

C++ Programming Made Simple — Second Edition is intended as an introduction to
programming in the C++ language as codified by the 1998 ISO C++ Standard. It is not
a reference book and does not pretend to be in any way comprehensive. The intention is
to provide an accessible starting-point to people who:

¢ have no programming experience

¢ have programmed in some other high-level language

¢ know C or an earlier version of C++ and need an update
¢ in any case need a working, practical, knowledge of C++.

This book owes a good deal to its two 1997 predecessors C Programming Made Simple
and C++ Programming Made Simple. At the time I wrote these, it was still customary to
present C++ as an extension of C. Because C++ was then relatively new, many people
were in a position of knowing C and needing an ‘upgrade’ to C++. This situation has now
changed. The distinction between C and C++ has blurred if not disappeared: in the ISO
Standard, C++ incorporates C. It can no longer be assumed that people will have a
knowledge of C before approaching C++. What is called for — and, I hope, provided by
this book —is an integrated coverage of C++ including the parts of C that are not obsolete.

Achieving this has involved much more than simply merging the two previous texts. First,
C++ had priority: where a C idiom is replaced by a newer C++ construct, the former is
no longer covered. Second, a great deal has changed in C++ in the six years since the
original two Made Simples. The language has been ‘tweaked’ in a thousand details. The
C++ Library and the Standard Template Library in particular are largely new. A complete
revision was necessary; I hope that it is evident that this is a new book and not just a re-
hash of two old ones.

This book does not try to take a rigorous approach to C++. Coverage of the language aims
to be adequate for practical needs, not complete. Many of the ‘dark corners’ of C++ (and
some not-so-dark ones) are not covered. Even with this selectiveness, the book still comes
out at over 300 pages. I estimate that a completely comprehensive coverage of modern
C++, including the Standard Library, would weigh in at more than 1,500 pages. The
objective, then, is to get you “up and running’ with useful C++ grounded in clear, practical,
program examples.

The book has 14 chapters, which I don’t list here: you can see them in the Table of
Contents. I think of it as having four main parts:
¢ In time-honoured fashion, a lightning overview of C++ essentials (Chapter 1)

¢ The ‘C-heavy’ part of the book, with C++ syntax integrated as appropriate
(Chapters 2 to 7)

¢ Traditional C++, involving classes and inheritance (Chapters 8 to 10)
¢ Modern C++, including templates and the Standard Library (Chapters 11 to 14)

IX



At those points where a topic could grow beyond the scope of a Made Simple book, 1
acknowledge the fact, and make suggestions for further reading.

I have enjoyed the various aspects of writing this book: using some material from the
previous Made Simples; eliminating obsolete aspects of C; updating the C++ syntax and
adding completely new sections. It may be optimistic of me to ask you to enjoy reading
it; [ hope at least that you find it useful.

Conor Sexton
Dublin
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Background to ISO C++ language

The C++ programming language is an object-oriented (OO) derivative of C. It is
almost true to say that C is a subset of C++. In fact, every ISO C program written in the
modern idiom (specifically, with new-style function headers) and avoiding certain
C++ reserved words is also a C++ program, although it is not object-oriented.

This book owes a good deal to two of my previous publications in the Made Simple
series, C Programming Made Simple (0-7506-3244-5) and C++ Programming
Made Simple (0-7506-3243-7) both published by Butterworth-Heinemann in
1997. Since that time, and, particularly, since the September 1998 ratification of
the ISO C++ Standard, C has been completely subsumed by C++. C as a language
no longer exists in its own right; it is therefore no longer acceptable to take what
was once the conventional approach and treat C and C++ separately. Accordingly,
this book presents a fully-integrated treatment of the ISO C++ language incorpo-
rating C. Parts of the original C language and library are still valid but have been
replaced by superior C++ facilities. Examples of such C constructs include void
parameter lists and library functions including printf, malloc and others. This book
does not deal with the (obsolescent) C mechanisms, but concentrates on the
facilities provided by C++. Finally, from now on in this book, the simple term
‘C++’ should be taken to mean ‘ISO C++’

It is the aim of this first chapter to get you up and running quickly with C++. The
remaining chapters go into somewhat more depth on a variety of C++ constructs
and programming techniques.

C++ is for technical computer programming and is suitable for development of
‘techie’ software like operating systems, graphical interfaces, communications
drivers and database managers. In the modern Web context, C++ is one of the three
or four languages of choice for implementation of applications in the so-called
middle tier. These applications constitute what is often called the business logic:
the body of application code resident on an intermediate system between the
(browser-based) user and the (typically database) resource at the back end.

The main alternative to C++ is Java. Java is the medium in which the Java 2
Enterprise Edition (J2EE) web application architecture is implemented. Java has
an advantage over C++ in not having to be compiled for every type of computer
on which programs written in the language must run; it is therefore more easily
portable (movable between different systems) than C++ and particularly suitable
for web applications.

At the time of writing, there are two main web application architecture ‘camps’,
J2EE — originating from Sun Microsystems Inc. —and Microsoft’s C# (pronounced
‘C-sharp’) and .Net combination. J2EE exclusively uses Java; C#/.Net allows use
of C++ (called ‘Managed C++), C# and Visual Basic. The predecessor to the C#/
Net architecture, the Component Object Model (COM), is still widely in use and
employs C++ and Visual Basic as its two primary languages.



Although Java has an advantage of portability over C++ in the web applications
context, C++ is still widely present on the web, very often written in the form of
COM objects or CGI (Common Gateway Interface) programs. C++ also retains the
advantages of performance and flexibility over Java. Line for line, because Java
is not compiled into an optimised executable form, C++ is likely to be faster in
execution on a given system. In addition, C++ retains constructs (such as pointers,
eliminated by Java) that allow it full access to all operating system and machine
facilities, with corresponding flexibility and power.

C++ was originally developed in the early 1980s at AT&T Bell Laboratories by Dr
Bjarne Stroustrup. In the almost 20 intervening years, there has been a myriad of
twists and turns to the development and standardisation of the language. Mostly,
these are no longer important. It’s enough to refer to the standardisation process,
which was started by the American National Standards Institute (ANSI) in 1990
when it formed the standardisation committee X3J16. About the same time, the
International Organization for Standardization (ISO) formed its committee, [SO-
WG-21, also for the purpose of standardising C++ on a worldwide basis. The
efforts of the two committees were made joint from 1990 and it was at the time
expected that a ratified ANSI/ISO C++ standard would be approved by 1994. In the
event, there were significant additions to the scope of the work involved — most
notably the addition of the C++ Standard Library including the Standard Template
Library (STL) — and the Final Draft International Standard (FDIS) was not
published until late 1997. The International Standard (IS) was ratified in Septem-
ber 1998. Its ISO title is Information Technology — Programming Languages —
C++, with associated document number ISO/IEC 14882-1998. Though originated
by ANSI, the standard is an ISO one; the documented one is distributed by national
standards bodies subordinated to ISO (ANSI in the case of the United States).

ISO C++ (also called ‘Standard C++’) is now the single unified definition of the
C++ language, and it is becoming increasingly difficult to find books and compilers
that do not at least claim to conform to the Standard. The first edition of this book
(C++ Programming Made Simple, 1997) is not ISO-Standard compliant, but is
close to being so. If you know to make a few small but significant changes to the
structure and syntax of programs, that book still serves as a viable presentation of
the C++ language. This edition presents and explains the necessary changes, as
well as a subset of the extensions (mostly in the area of the Standard Library) that
are mandated by the Standard.

Some of the major characteristics of C++ are these:

[ 1C++ provides a powerful, flexible and expressive procedural language (along-
side an object-oriented or class-based) component grounded in the earlier C
language.

[ C++ implements objects, defined as classes, which incorporate data defini-
tions, along with declarations and definitions of functions that operate on that



data. This encapsulation of data and functions in a single object is the central
innovation of C++.

[Vnstances of classes may automatically be initialised and discarded using
constructors and destructors. This eliminates program initialisation errors.

[T'he way in which C++ classes are defined enforces data hiding; data defined
in a class is by default only available to the member functions of that class.
External, or client, code that uses a class cannot tamper with the internal
implementation of the class but is restricted to accessing the class by calling its
member functions.

[ IC++ allows overloading of operators and functions. More than one definition of a
function may be made having the same name, with the compiler identifying the
appropriate definition for a given function call. Ordinary operators such as “++’
and ‘->’ can also be overloaded with additional meanings.

[ IC++ allows the characteristics of the class type — data and functions — to be
inherited by subclasses, also called derived classes, which may in turn add
further data and function definitions. This encourages reuse of existing code
written in the form of shareable class libraries and consequent savings in the
cost of the software development process. Multiple inheritance allows for
derived classes to inherit characteristics from more than one base class.

[ IC++ allows classes to define virtual functions: more than one definition of a
function, with the decision as to which one is selected being resolved at
program run-time. This is polymorphism, with the run-time selection among
function definitions being referred to as late binding or dynamic binding.

[lemplate classes can be defined which allow different instances of the same
class to be used with data of different types but with unchanged code. This
further promotes code reuse.

[1SO C++ introduces the standardised C++ Library, which includes the Stand-
ard Template Library (STL). The Standard Library incorporates and improves
the old (see the first edition of this book) Stream 1/O library and adds many
utilities and other features. The STL provides programmer-friendly implemen-
tations of many common data structures — including list, stack, queue, string
— along with the operations necessary to manipulate them. Thus, many of the
‘cool” programming techniques familiar to advanced C programmers of the
1980s and early 1990s are now packaged and made invisible for you, much in
the same way that the operation of a car’s engine is hidden from the average
owner by the bonnet (or hood, depending on where you live!).

++ facilities for object-oriented programming are characterised by classes, inher-
itance and virtual functions. These facilities make C++ particularly suitable for
writing software to handle a multitude of related objects. A typical use of C++ is
in implementing graphical user interfaces (GUIs), where many different but related
objects are represented on a screen and are allowed to interact. Using the object-



oriented approach, C++ stores these objects in class hierarchies and, by means of
virtual functions, provides a generic interface to those objects (e.g. draw object),
which saves the programmer from having to know the detail of how the objects are
manipulated. This makes it easier for the programmer to develop and maintain
code, as well as rendering less likely the introduction of bugs into existing code.
C++ and other object-oriented languages are also, as we have seen, central to the
modern component-based architectures such as .Net and J2EE, in which reuse of
proven and tested objects improves prospects for reliability of applications of ever-
increasing complexity.

That’s enough overview stuff. Let’s write our first program!



The do-nothing program

The minimal C++ program is this:

main(){}

This is a complete C++ program. Every C++ program must consist of one or more
functions. The code shown above is a program consisting exclusively of a main
function. Every C++ program must have one (and only one) main function. When
it is executed, the program does nothing.

A more strictly-correct C++ form of the do-nothing program is this:

#include <iostream>
int main(){return 0;}

The whole program shown is stored in a file called donowt.cpp. The .cpp part is
necessary, meaning that the file contains a C++ program; ‘donowt’ is at your
discretion. iostream is a standard header file that contains useful declarations for
compilation and execution of the program that follows. If you are aware of the
syntax of pre-ISO C++, you’ll know that the name of the header file was
iostream.h; this form is still usable.

iostream is an alternative to but does not replace the C standard header file cstdio.
Again, in pre-ISO C++, this was called stdio.h; the ‘h’ has now been removed at
the behest of the C++ standardisation committee and the leading ‘c” added to make
clear the header file’s C Library lineage. iostream declares C++ library functions
and facilities (see Chapters 12 and 13); cstdio does the same for Standard C Library
functions such as printf. The int preceding main is the function’s return type. It
specifies that the program returns a value (in this case, zero) to the operating system
when it is run. The function’s parentheses are empty: the function cannot accept
any parameters. When the program finishes executing (it does nothing), the return
statement returns execution control to the operating system.

Here’s the most-correct (by ISO criteria) version of donowt:

#include <iostream>
using namespace std;
int main(){}

The standard, or std, namespace is introduced. This has no practical effect as yet,
but its purpose is to allow objects of the same name to be used in different contexts
without a name-clash: you might want to use the standard-output object cout to
mean two different things, so the first version would belong to the standard
namespace, while the second would belong to another namespace. More of this
later; for now (and for most of the book) we’ll confine ourselves to the standard
namespace.

Notice also that the return statement is gone. ISO C++ no longer requires this; you
may include the line but, if you don’t, the C++ system inserts an implicit one for
you and ensures that control is correctly returned to the operating system.



Here is a rather complex version of the do-nothing C++ program, donowt.cpp. It
uses a trivial C++ class to produce no output:

/I donowt.cpp - program using a simple C++
/I class to display nothing

#include <iostream>
using namespace std;

class nodisp

{

private:

public:
void output()
{

return;

}
¥

int main()
nodisp screen;

screen.output();

This time, the program declares a C++ class, nodisp, of which the only member is
a function, output. In the main function, we define an instance of the class:

nodisp screen;

The function nodisp::output() (the member function output of the class nodisp)
when executed from main with the line screen.output(); simply returns control to
the following statement. As this is the end of main, donowt.cpp stops without
making any output.

Brackets and punctuation

A note on the different kinds of brackets: the names of standard header files are
enclosed in angle brackets <>; function argument lists, after the function name, in
parentheses (); and code blocks in curly braces {}. Statements, such as return; must
be terminated with a semicolon. C++ programs are free-form — you can write the
code in any format, jumbled up on one lien of text if you want. The structured layout
shown in this book is not strictly necessary but is a good idea for readability and
avaoidance of error.



Building and running a C program

The filename suffix for C++ programs is usually .cpp on PCs. On computers
running the UNIX operating system, the C++ source code filename may end with
any of several suffixes, including .c, .C, .cxx and .cpp. This book uses exclusively
the suffix .cpp.

The donowt.cpp program, in any of the forms shown above, must first be converted
by compiler and linker programs into executable code. For this book, I’m assuming
use of the Borland C++ Builder 5 development suite. This has a vast range of
supporting facilities for development of GUI and component-based objects in
C++; it also has a very good command-line compiler, which is what [ use in this
book. If you’re using a PC with the Borland C++ Builder 5 compiler and linker, you
can compile donowt.cpp using this command line:

bcec32 donowt.cpp

This produces an output file called donowt.exe, which you can run at the command
line, admiring the spectacular lack of results that ensues.

For some Microsoft C++ compilers, you can use ‘c-ell’:
cl donowt.cpp

More usually, you use the integrated development environment (IDE) provided by
the Microsoft Visual C++ 6.0 or .Net environments.

If you’re using a UNIX system, you can compile and /oad (UNIX-speak for link)
the program using a number of different command-line formats, depending on the
UNIX variant. I can’t specify the precise command-line input for your UNIX
system, so I present a few possibilities below (note that UNIX distinguishes
between upper- and lower-case characters entered at the command line):

CC donowt.C / UNIX System V
g++ donowt.cpp // Linux
c++ donowt.C /I Also Linux, .cxx and .c suffixes OK too

Whichever command line is correct for your system (you’ll have to experiment a
bit), the resulting executable program is in a file called a.out (for assembler output,
believe it or not).

Some programs can be built (compiled and linked) at the command line in the ways
shown. Programs that make GUI displays, as well as programs for the modern
component environments such as Microsoft’s .Net, cannot in practical terms be
built using the command line. It’s more likely that you will use an IDE provided
by Microsoft, Borland, IBM or another supplier. The IDE uses a menu-driven
interface that is better for managing programs of significant size.

It’s not the subject of this book to tell you how to use the IDEs of any software
supplier. I assume that the information you now have will enable you to build at
least simple C++ programs, and we move forward now to writing programs that
actually do something.



Here’s one, called message1.cpp:

/I message.cpp - program to display a greeting

#include <iostream>
using namespace std;

int main()

cout << "Hello C++ World\n";

The double-slash notation is a comment: all characters following the double slash,
/1, on the same line are ignored. The /*........... */ notation is also used in C++ but,
for short comments, // is preferred.

The header file iostream contains class and function declarations that are #included
by the preprocessor in the source code file and are necessary for C++ Library
facilities to be used. These facilities include cout, of the class type ostream;
ostream is declared in the iostream header file.

cout is an object representing the standard output stream. The characters to the
right of the << operator are sent to cout, which causes them to be displayed on the
user’s terminal screen, assuming that is the standard output device. The << operator
is in fact the bitwise left-shift operator overloaded by the C++ system to mean
‘insert on a stream’. The C++ Stream I/O system is explained in Chapter 13.

You should try entering this program at your computer and building it. As an
exercise, make message.cpp display two lines:

Ask not what your country can do for you
Ask rather what you can do for your country

If you were to omit the line
using namespace std;

you would get a compilation error complaining about cout being an ‘undefined
symbol’. This is because cout needs to be specified as being part of some
namespace. This can be specified explicitly as:

std::cout << "Hello C++ World\n";
with the same result as if using namespace.... had been retained.

Here’s a class-based version of the message program, message2.cpp, that pro-
duces exactly the same output — Hello C++ World — as the simpler form of the
program shown above:



/I message2.cpp - program using a simple C++
/I class to display a greeting

#include <iostream>
using namespace std;

class message

{

private:
public:
void greeting()

cout << "Hello C++ World\n";

}
J»

int main()
message user;

user.greeting();

}

You’ll see much more about classes throughout this book and, in particular, in
Chapter 8. For now, I’ll briefly describe the message class and its contents.
Everything within the enclosing curly braces following message is a member of
the class message. All the members of message are declared public; they are
generally accessible. message only has one public member, a function called
greeting which has no return type or argument list.

In the function main, we define an instance of the message class, called user. The
greeting function is called and the Hello C++ World message displayed by the
function call:

user.greeting();

Use of a class in this case is overkill, but from it you should be able to understand
simple characteristics of the class construct.



Enough C++ to get up and running

Variables

While message2.cpp does produce a visible result, it’s not very useful. To produce
more functional C++ programs, you must know a minimum set of the basic
building-blocks of the C++ language. This section presents these building blocks,
under a number of headings:

[Variables

[ Operators

[Expressions and statements

[—Functions

[Branching

[—Looping

[ Arrays

[Classes

[—Constructors and destructors

[DOverloading

[lnheritance

Variables in C++ are data objects that may change in value. A variable is given a
name by means of a definition, which allocates storage space for the data and
associates the storage location with the variable name.

The C++ language defines five fundamental representations of data:

boolean

integer

character

floating-point

double floating-point

Each of these is associated with a special type specifier:

bool specifies a true/false value

int specifies an integer variable

char specifies a character variable

float specifies a fractional-number variable

double specifies a fractional-number variable with more decimal places

Any of the type specifiers may be qualified with the type qualifier const, which
specifies that the variable must not be changed after it is initialised.

A data definition is of the following general form:

<type-specifier> <name>;

1



Operators

12

A variable name is also called an identifier. The following are some examples of
simple data definitions in C++:

int apples; /I integer variable

char c; /I character value eg: 'b'

float balance; /I bank balance

const double x = 5; /I high-precision variable
/I value fixed when set

bool cplusplus = TRUE;

C++ has a full set of arithmetic, relational and logical operators. The binary
arithmetic operators in C++ are:
+ addition - subtraction

* multiplication / division
% modulus

There is no operator for exponentiation; in line with general C++ practice, this is
implemented as a special function in an external library.

Both + and - may be used as unary operators, as in the cases of -5 and +8. There is
no difference between +8 and 8.

The modulus operator, %, provides a useful remainder facility:
17%4 /I gives 1, the remainder after division

The assignment operator, =, assigns a value to a memory location associated with
a variable name. For example:

a=71;
pi = 3.1415927;
Relational operators in C++ are:
< less than > greater than
>=  greater than or equal to <= less than or equal to
= not equal

== test for equality

Care is needed in use of the equality test ==. A beginning programmer will at least
once make the mistake of using a single = as an equality test; experienced
programmers do it all the time!

Writing
x=75;

assigns the value 5 to the memory location associated with the name x.



The statement

x == 5;
on the other hand, tests the value at the memory location associated with the name
x for equality with 5. Confusion here can result in serious program logic errors. It

is a good idea, with the editor, to check all usages in the source code of = and ==
manually. The compiler will not catch these mistakes for you.

True and false

Logical operators provided by C++ are:

&& AND
l OR
! NOT (unary negation operator)
If two variables are defined and initialised like this:

int x =4;
inty=5;

then
(x ==4) && (y == 5) 1s TRUE
(x==4)|| (y==23) is TRUE
X is FALSE

In C++, any non-zero variable is inherently TRUE; its negation is therefore
FALSE. The quantities TRUE and FALSE are not themselves part of the C++
language; you can define them with the preprocessor:

#define TRUE 1
#define FALSE 0

or as const-qualified declarations:

const int TRUE = 1;
const int FALSE = 0;

By convention in C++, truth is defined as non-zero and falsehood as zero. This,
unfortunately, is the opposite of the interpretation adopted by operating systems
including UNIX. Thus, while a C++ program will use zero internally to represent
a failure of some kind, it will probably, when it terminates, return zero to the
operating system to indicate success.

C++ also supplies the bool type and the associated true and false keywords, which
can be used instead of the more-traditional preprocessor form:

13



/I boolean.cpp - program to test bool, 'true’ and 'false’

#include <iostream>
using namespace std;

int main()
int x = 4;
inty = 5;

if ((x == 4) && (y == 5)) == true)
cout << "Both\n";

if ((x ==4)[| (y == 3)) == true)
cout << "Just one\n";

if (('x) == false)
cout << "Not-X is false\n";

The displayed output of this program is:

Both
Just one
Not-X is false

Expressions and statements

14

An expression is any valid combination of function names, variables, constants,
operators and subexpressions. A simple statement is an expression terminated by
a semicolon.

The following are all expressions:

a=>5

cout << "Hello World\n"
a=b+c
a=b+(c*d)

Every expression has a type, depending on the types of its constituents, and a
boolean value. The expression:

a=b+c;

assigns to a the sum of the values of variables b and c. Expressions in C++ can be
complex. Here is a slightly less simple one:

a=b+c*d
In this case, the order of arithmetic evaluation is important:
a=b+(c*d)



Functions

1S not the same as
a=(b+c)*d

because the precedence of the operators is different. We can summarise the order
of precedence of common C++ operators as follows:

0O Sub-expressions surrounded with parentheses (high precedence)
!- The unary negation operator and unary minus

*1 % The arithmetic operators

+ - The plus and minus binary arithmetic operators

<<=>>= The relational operators
I= == The equality operators
&& > The logical operators (low precedence)

Statements may optionally be grouped inside pairs of curly braces {}. One or more
statements so grouped form a compound statement:

cout << "Two statements...\n";
cout << "that are logically one\n";

}

That a compound statement is a single logical entity is illustrated by the conditional
statement:

if (s == 2)

cout << "Two statements...";
cout << " that are logically one";

}

If the variable s has the value 2, both output lines are executed. Where the two
statements are simple and not compound:

if (s == 2)

cout << "Two statements...";

cout << " that are logically distinct");

the second output statement is executed even if s is not equal to 2.

A function is a body of C++ code executed from another part of the program by
means of a function call. Functions usually contain code to perform a specific
action. Instead of duplicating that code at every point in the program where the
action is required, the programmer writes calls to the function, where the single
definition of the code resides. Every C++ program is a collection of functions and
declarations.

main, as we’ve seen, is a special function: it must be present in every C++ program.
When the program is run, the operating system uses main as the entry-point to the

15



program. main in turn usually contains calls to an arbitrary number of programmer-
defined functions.

The following is a simple general form for all functions:

<returntype> <functionname>(<arglist>)

<statements>

}

Here is a C++ program, twofunc.cpp containing two functions:

#include <iostream>

using namespace std;

void myfunc(); /I 'myfunc' declaration
int main()

void myfunc()

}

cout << "Main function" << endl;
myfunc();

cout << "Myfunc" << endl;

16

In this program, main contains two statements, first the cout we have already seen,
followed by the second, a call to the function myfunc, which contains a further,
slightly different, cout statement.

When it is run, this program displays the lines of text:

Main function
Myfunc

on the standard output device (usually the screen display).
The statement

myfunc();
is the call from main to the function myfunc.

On execution, control is passed to myfunc from main. When the single statement
in myfunc has been executed, control is returned to the first statement in main after
the function call. In this case, there is no such statement and the whole program
immediately stops execution.

The function myfunc is expressed in three parts, the declaration (also called a
function prototype):



void myfunc();

which announces to the compiler the existence of myfunc; the call:
myfunc();

and the definition of the function itself:
void myfunc(void)

cout << "Myfunc" << endl;

}

Note that the function call is a statement and must be terminated with a semi-colon.
The prototype is not a statement but is distinguished from the header of the called
function by a terminating semicolon. The header must not be appended with a
semicolon. Every C++ function must be fully described in three parts using a
declaration, call and definition.

Branching

You can use the if statement to allow decisions and consequent changes in the flow
of control to be made by the program logic. The following is the general form of
if:
if (<expression>)
<statement1>
else
<statement2>
The else part is optional: an if statement with one or more subject statements and
no alternative provided by else is legal. For example:
if (nobufs < MAXBUF)
nobufs = nobufs + 1;
Here, if the number of buffers used is less than the allowed maximum, the counter
of used buffers is incremented by one. Two or more statements may be made
subject to an if by use of a compound statement:

if (day == 1)
{

cout << "Monday" << endl;
week = week + 1;

}
if (day == 2)

cout << "Tuesday" << endl;
run_sales_report();

}

else should be used where the program logic suggests it:

17



Looping

if (day == 1)
{

cout << "Monday" << endl;
week = week + 1;

}

else
if (day == 2)
{

cout << "Tuesday" << endl;
run_sales_report();

}

Use of else here stops execution of the Tuesday code if the value of day is 1. end|
in all the above cases is a C++ manipulator that has the effect of appending a
newline to the text just displayed; the cursor moves to the next line as a result.

It’s possible to nest if statements:

if (month == 2)
if (day == 29)
cout << "Leap Year!!" << endl,
else

cout << "February" << endl;

Nesting of ifs can be performed to arbitrary depth and complexity while the whole
construct remains syntactically a single statement.

Where the if statement allows a branch in the program flow of control, the for, while
and do statements allow repeated execution of code in loops.

#include <iostream>
using namespace std;

int main()
int x;

Xx=1;
while (x < 100)

cout << "Number " << x << end|;
X=x+1;

18

This program displays all the numbers from 1 to 99 inclusive.



#include <iostream>
using namespace std;

int main()
int x;

for (x =1; x<100; x=x+ 1)
cout << "Number " << x << endl;

This program does exactly the same. The for statement is often used when the
condition limits — in this case 1 and 100 — are known in advance. The general form
of the for statement is this:
for (<expr1>;<expr2>;<expr3>)
<statement>

Any of the expressions may be omitted, but the two semicolons must be included.
For example, the statement:

for (;;);
results in an infinite loop.

The do statement is a special case of while. It is generally used where is it is required
to execute the loop statements at least once:

do

¢ = getchar();
if (c == EOF)
cout << "End of text" << endl;
else
/* do something with ¢ */
} while (c != EOF);

The symbolic constant EOF is defined in cstdio as the numeric value -1. The
keystroke sequence required to generate this value is system-dependent. On UNIX
systems, EOF is generated by Ctrl-D; on PCs by Ctril-Z. Use of do instead of while
is relatively rare: perhaps 5% of all cases.

The following example illustrates use of the C library functions putchar and
getchar, as well as if and one of the iterative statements.

Notice the getchar function call embedded in the while condition expression. This
is legal and also considered good practice in concise programming.

/*
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*

*

*/

#include <iostream>
#include <cstdio>
using namespace std;

int main()

Program 'copyio.cpp': copy standard input to
standard output stripping out newlines

int c;
while ((c = getchar()) = EOF)

if (c !="\n")
putchar(c);

Arrays

An array is an aggregate data object consisting of one or more data elements all of
the same type. Any data object may be stored in an array. You can define an array
of ten integer variables like this:

int num[10];

The value within the square brackets, [], is known as a subscript. In the case above,
ten contiguous (side-by-side) memory locations for integer values are allocated by
the compiler. In this case, the subscript range is from zero to 9. When using a
variable as a subscript, you should take care to count from zero and stop one short
of the subscript value. Failure to do this will result in unpleasant program errors.
The following is a simple example of use of arrays:

/*

*

*/

#include <iostream>
using namespace std;

int main()

‘array.cpp': fill integer array with zeros, fill
character array with blanks

int n[20];
char c[20];
int i;
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}

for (i=0;i<20;i=i+1)

}

n[i] = 0;
cli]=""%

Notice that i starts the iteration with value zero and finishes at 19. If it were
incremented to 20, a memory location outside the bounds of the array would be
accessed. No array-bound checking is done by the C++ compiler or run-time
system. To implement such checking, you have to implement the [] enclosing the
array bounds as an overloaded operator (see later in this chapter and in Chapter 9,
Class services).

A traditional string is a character array terminated by the null character "\0', also
known as binary zero. (The C++ Library introduces the string class (see Chapters
2 and 12), which encapsulates in a standard class much of the functionality possible
with traditional strings. Traditional strings are widely known as C-strings, reflect-
ing the language in which they originated).The C standard library (function
declarations in the header files cstdio, cstring and cstdlib) contains many functions
that perform operations on C-strings. Here are three:

gets(<string>); /I Read a string into an array
atoi(<string>); /I Convert ASCII to integer
atof(<string>); /I Convert ASCII to float

Using the following definitions:

char instring[20];
int binval;
double floatval;

the statement
gets(instring);

reads from the standard input device a string of maximum length 20 characters,
including the null terminator "\0'. There is nothing to stop the entry of data greater
than 20 characters long; if there are more than 20 characters, the extra characters
are written into whatever memory follows, perhaps causing this or another
program to malfunction.

The terminated character array instring may then be converted into its integer
numeric equivalent value using the library function atoi:

binval = atoi(instring);

instring may be converted into its double floating-point numeric equivalent value
using the library function atof:

floatval = atof(instring);
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Classes
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C++ provides language support for the object-oriented programming (OOP)
approach. A class consists of a number of members, which can be either variables
or functions. You can use a class to describe a real-world object such as, for
example, an insurance policy.

In the insurance business, a policy records information including (at least) the
policy-holder’s name and address, the policy number, the value of the entity
insured and the premium to be paid for the insurance. At least four operations are
possible on this information: you can open or close a policy; you can pay the
premium to renew the policy; and you can make a claim. Using a C++ class, you
could record the data and operations like this:

class policy

private:
char name[30];
char address[50];
char polnol8];
double ins_value;
double premium;
public:
void pol_open();
void pol_close();
void renew();
bool claim(double);

5

This is a class declaration: in making it, you have informed the C++ compiler that
the class exists, that instances of it will be of the format set down and that you may
later want to make instances of the class. When an instance is created, 30 character
spaces are reserved for the policy name, 50 for the address and 8 for the policy
number. Items that may be fractional numerics are defined as variables of type
double. Four functions are declared, one for each of the operations earlier specified.

You can define an instance of the class — often also referred to as a class object or
class variable — like this:
policy myPolicy;

When coding the policy class, you would most likely store its declaration — shown
above —in a header file (say, classes.h) #included in your program. You must then
define — write the code of — each of the class’s member functions in a program file
(say, progdfile.cpp). Here’s how you might define the member function claim:

bool policy::claim(double amount)

/I check amount of claim is OK
/I pay claim to policy holder



return(true);

}

The actual code of the function is unimportant, which is why it’s given as
comments. What is relevant here is the form of the function header:

bool policy::claim(double amount)

The scope resolution operator :: indicates that the function claim is a member
function of the policy class. claim also returns a value of the boolean type bool (only
true and false values are allowable) and takes a single parameter of type double.

When you’ve declared your class and defined the code of all its member functions,
the full definition of the class is complete. With an instance of the class such as
myPolicy, you can now make the claim:

myPolicy.claim(1000000.0);

There are two parts to the class policy, private and public. The private keyword
means that the class members declared following it are only accessible to member
functions of the class policy — pol_open, pol_close, renew and claim. The public
keyword means that any other function may make a call to any of these four
functions.

The data hiding that is enforced by the private part of the class means that you can’t
access the private member functions from code other than that defined in the
member functions of the policy class. All that is available to external, or client, code
is the class’s function call interface; the internal implementation of the class
remains a black box.

This mechanism results in the production of highly modular code that you and other
programmers can use without having to know anything about the code other than
how to call it.

The general class policy can be refined using derived classes that take on the
characteristics of policy and add new ones. For example, the class motor might add
areserve (the unpaid first part of a claim) and a no-claims-bonus function; and the
class life might add a term or a fixed sum assured. This is an intuitive example of
class inheritance.

Constructors and destructors

In the policy class example, you have to remember to open and close the policy
when necessary. You do this by using an instance of the class to call the pol_open
and pol_close functions. A common source of errors in all programs is when
initialisation such as this is omitted.

In C++, automatic initialisation and discarding are done using constructors and
destructors. A constructor is a member function of a class which initialises a
variable of that class. The constructor function name is always the same as the class
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name. A destructor is a member function of a class which performs housekeeping
operations, before the class instance is itself destroyed. The destructor function
name is the same as the class name and is prefixed with a tilde, ~.

The constructor function is called as part of the definition of the class instance; the

destructor is called not explicitly but automatically when the variable goes out of scope
(is discarded).

Here is the policy class reworked to use constructors and destructors:
class policy

private:
char name[30];
char address[50];
char polno[8];
double ins_value;
double premium;
public:
policy();
~policy();
void renew();
bool claim(double);

b

The constructor function policy() is called automatically every time you define an
instance of the class policy, such as myPolicy. The constructor does whatever is
involved in setting up myPolicy as an open policy object immediately after
myPolicy is created. When the myPolicy instance is destroyed or goes out of scope,
usually at the end of a function, the destructor function ~policy() is automatically
called. The destructor does whatever is necessary to de-initialise the instance
myPolicy immediately before it is destroyed on exit from the function. Here’s an
example where the constructor and the destructor are called in turn:

void clientFunc()
policy herPolicy; /I define class instance

/I also quietly call constructor policy()
/I do some processing

/I destructor quietly called here to tidy up
}

You can specify constructor functions with arguments, but not destructors. We’ll
see more of this in Chapter 9, Class services.



Overloading

C++ provides two kinds of overloading: function overloading and operator
overloading. This section gives an example of both, using the policy class.

Using function overloading, you can use more than one version of a function with
the same name. The appropriate version is called according to the parameter types
used by the function. Using operator overloading, you can make a standard C++
operator, such as + or -, take on a new meaning.

Here’s the policy class declaration changed to include an overloaded function and
an overloaded operator.

class policy

private:
char name[30];
char address[50];
char polnol8];
double ins_value;
double premium;
public:
policy();
~policy();
void renew();
void renew(double newPrem);
bool claim(double);
bool operator-=(double claimAmt);

5

The function renew is overloaded. Prototypes of two versions of it are declared.
The appropriate version is selected depending on the absence or presence of
arguments in the function call. if you wanted to specify a non-default premium
amount in renewing the policy, you could call the second renew member function
like this:

myPolicy.renew(500.00);

The standard C++ operator -= (subtract whatever is on the right-hand side from the
variable on the left) is overloaded, to provide an alternative way of claiming money
on the policy. The keyword operator announces that the -= operator is to be given
a special meaning when it is used with an instance of the class policy. operator-=
is itself a function declaration, specifying a return type of bool.

Here are possible definitions of the overloaded renew and operator-= functions:

void policy::renew(double newPrem)

{

premium = newPrem);

}

bool policy::operator-=(double claimAmt)
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/I subtract claimAmt from claim fund

return(true);

}

If you call the renew function with one argument:

int main()

policy.hisPolicy;

hisllz’olicy.renew(250.00);

}

then you get the instance of the function shown above. If, on the other hand, you’d
like to do a special claim, you could do this:

hisPolicy-=20000; // now emigrate!!

When the compiler sees this special use of the -= operator, in the context of an
instance of the policy class, it ‘knows’ to call the member function operator-= as
shown above. So, although this superficially looks like a subtraction from the class
instance hisPolicy, it’s really just a call to a member function of that instance.

Inheritance

26

Class inheritance is one of the main characteristics of the OOP approach. If you
have a base class, you can also declare a derived class that takes on all the attributes
of the base and adds more. The derived class is said to inherit the base class. You
can build derived-class hierarchies of arbitrary depth.

Single inheritance occurs when a derived class has only one base class; multiple
inheritance is when a derived class has more than one base class. You’ll see
multiple inheritance in Chapter 10.

Here is a simple example of single inheritance based on the policy class:

class policy

protected:
char name[30];
char address[50];
char polnol8];
double ins_value;
double premium;
public:
policy();



~policy();

void renew();

void renew(double newPrem);

bool claim(double);

bool operator-=(double claimAmt);

2

The keyword private, which might be expected in the base class policy, is instead
protected so that its characteristics can be inherited by the derived class motor.
Member functions of derived classes are allowed access if protected is used. Now
you can declare the derived policy class, motor:

class motor : public policy

{

private:
double reserve;
public:
void no_claims_bonus();
¥
motor inherits all non-private data and function members of the base class policy.
motor adds the data member reserve. A member function of motor can now directly
access any of the data members of policy. None of these data members can be
accessed directly by code other than member functions of the class hierarchy.
Member functions of the base class can’t access members of the derived class.

motor inherits all member functions of the base class. If, in motor, inherited
functions are redeclared, those redeclarations are said to override the inherited
functions. Inherited functions, however, need not be overridden; they may be
declared for the first time in a derived class and join inherited data and functions
as members of the derived class.

The main function defines p1 and p2 as objects of type policy and motor
respectively:

int main()

{
policy p1;
motor p2;

/I Calls here to 'policy' and 'motor’ member
/I functions
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The C++ /O system

The C++ environment provides the Stream I/O library. This is called Stream I/O
and is based on the declarations contained in the header file iostream. This section
introduces some of the simple facilities offered by Stream 1/O.

The iostream header file overloads the shift operators >> and << to be input and
output operators. You can use these operators with the four standard input and
output streams, which are:

cin  Standard input stream

cout Standard output stream

cerr Standard error stream

clog Buffered equivalent of cerr, suitable for large amounts of output

The standard input stream typically represents the keyboard; the standard output
stream the screen. cin is of type istream, a class declared in iostream. The other
three streams are of type ostream, also declared in iostream.

If you define four variables:
char c;
int i;
float f;
double d;
you can display their values by ‘inserting on the output stream’:
cout << c <<j<<f<<d<<end,
You can read from the input stream in much the same way:

cin>>c>>i>>f>>d;

Here are two program examples showing some other C++ I/O facilities:

#include <iostream>
using namespace std;

int main()
char c;

while (cin.get(c))
cout.put(c);

The get member function of class istream extracts one character from the input
stream and stores it in c. The put member function of class ostream inserts one
character on the output stream.
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#include <iostream>
using namespace std;

const int MAX = 80;

int main()
char buf[MAX];
while (cin.getline(buf, MAX))
{ int chars_in;

chars_in = cin.gcount();
cout.write(buf, chars_in);

getline extracts at most MAX - 1 characters from the input stream and stores them
in buf. getline by default finishes extracting characters after a newline is entered.

gcount returns the number of characters extracted by the last call to getline.
cout.write inserts at most chars_in characters on the output stream.

The effect of these two programs is to copy characters and strings from standard
input to standard output (keyboard to screen).
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Your first real C++ program

You now know enough about C++ to understand a non-trivial program and to get
it working.

Here’s program implemented with classes in C++ that provides a simple model of
the operation of a bank account. It is organised in three files: the header file
accounts.h; the function program file accfunc.cpp; and the main program file
accounts.cpp, which acts as a “driver’ for the functions declared as part of the class
cust_acc. First, the accounts.h header file:

class cust_acc
{
private:
float bal;
int acc_num;
public:
void setup();
void lodge(float);
void withdraw(float);
void balance();
5
accounts.h declares the cust_acc class, which has two private data members and
four public member functions. The definitions of those member functions are given
in accfunc.cpp:
/*
* Program file 'accfunc.cpp'
* defines 'cust_acc' member functions.
*/

#include <iostream>
using namespace std;

#include "accounts.h"

I

/[ customer_account member functions
I

void cust_acc::setup()

{

cout << "Enter number of account to be opened: ";
cin >> acc_num;
cout << "Enter initial balance: ";
cin >> bal;
cout << "Customer account " << acc_num
<< " created with balance " << bal << endl;
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}

void cust_acc::lodge(float lodgement)

bal += lodgement;
cout << "Lodgement of " << lodgement << " accepted" << end];

}
void cust_acc::withdraw(float with)
if (bal > with)
bal -= with;

cout << "Withdrawal of " << with
<< " granted" << endl;
return;
}
cout << "Insufficient balance for withdrawal of " << with << endl;
cout << "Withdrawal of " << bal << " granted" << endl;

bal = (float)0;
}
void cust_acc::balance()
{
cout << "Balance of account is " << bal << endl;
}
Finally, here is the accounts.cpp program file. It contains a main function that acts
as a ‘driver’ of the functions declared in the class cust_acc. In the simulation, an
account object called a1 is created. The function setup is called immediately after
the creation to initialise the object in memory. This is done by prompting the
program’s user for initial balance and account-number values. Then, an amount of
250 is lodged to the account and 500 withdrawn. The account balance is reported
after each of these operations.
/*
* Program file 'accounts.cpp'
* drives the 'cust_acc' class
*/

#include <iostream>
using namespace std;

#include "accounts.h"
int main()

cust_acc a1;
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al.setup();
al.lodge(250.00);
al.balance();
a1.withdraw(500.00);
al.balance();

32

The header file iostream is included in both accfunc.cpp and accounts.cpp. It
contains, among other things, all declarations necessary to allow use of the input
and output streams cin and cout. accounts.h is also included in both files, making
the class declaration of cust_acc visible throughout the program.

The four member functions of the class cust_acc are called from main, in each case
being qualified by the class object a1. To call the functions from main without
qualification would result in compilation errors. The data members of cust_acc can
only be used within those functions.

The bank-account program is a very straightforward use of classes and the object-
oriented programming approach. Using the Borland C++ Builder 5 compiler, |
built it using the command-line:

bcc32 accounts.cpp accfunc.cpp

producing the executable program accounts.exe. To execute the program, use the
command-line:

accounts

You should yourself enter and build the program. When you run it as shown, you
should get results like these (bold indicates values entered by the user):

Enter number of account to be opened: 12345
Enter initial balance: 750

Customer account 12345 created with balance 750
Lodgement of 250 accepted

Balance of account is 1000

Withdrawal of 500 granted

Balance of account is 500



Summary

We have travelled at warp speed through many of the essential constructs of the
C++ language. So far, I’ve simply not dealt with a number of important aspects of
it. The focus is on rushing you along the short path to minimal competency in C++
programming. Then, you will be more ready to face the other 90% of the language.
Concepts you will have to understand include these, which are covered in the
remaining chapters:

[iThe ‘C language subset’ in Chapters 2 to 7

[nitialisation and assignment

[Advanced overloading

[—Friends

[ Virtual functions

[—Bingle and multiple inheritance

[l'emplates

Although there’s a lot you’ll have to know about these topics to be a fully-fledged
C++ developer, most of them are, so to speak, variations on themes already stated

in this chapter. The most important thing for you do to do is to ‘get a handle’ on the
way [’ve presented C++ in this chapter.
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Exercises

34

Design and implement a C++ class to hold data and operations pertaining to a car
object. There should be at least four data members: weight, length, colour and the
maximum speed. Member functions could include start, stop and accelerate
operations, as well as turn and reverse.

Extend the class cust_acc with a derived class called savings. This should include
interest and calc_interest data and function members while inheriting everything
in cust_acc. Implement the calc_interest function in accfunc.cpp.

Include an overloaded += operator in cust_acc to provide an alternative to the
lodge function for adding money to the account’s balance.



2 How C++ handles dafa

Basic data types and qualifiers
Arithmetic operations
Different kinds of constants
Pointers and references

The C++ ‘string’ class

Type conversion

Exercises




Basic data types and qualifiers

C++'s dafa types

To be able to use the power of C++ effectively in your programs, you need to know
more about the ways in which the language represents data. As you can see in
Chapter 1, there are five simple data types in C++, which are used as type specifiers
in the definition of variables:

bool true/false value; size dependent on system

char usually a single byte, storing one character

int an integer of a size dependent on the host computer
float a single-precision floating-point (real) number

double a double-precision floating-point (real) number
You can qualify the simple data types with these keywords:

signed long unsigned  const
short volatile mutable

On computers for which the 8-bit byte is the smallest addressable memory space,
and therefore the basic data object, the char type specifies a variable of one byte
in length. char specifies enough memory to store any member of the local system’s
character set.

On a computer with a 32-bit processor — 32-bit addressing and integer size — and
any of the Windows operating systems since late versions of Windows 95, the
default integer size is 32 bits. The same is true of most UNIX variants, although
there are now some 64-bit UNIX implementations. In this book, I assume 32-bit
processor and integer size. Given this assumption, an int in a C++ program is 32
bits (4 bytes). A float is also usually implemented in 32 bits, while a double takes
up 64 bits or eight bytes.

You can combine the basic types with the qualifiers listed above to yield types of
sizes varying from the defaults. The table below gives possibilities for combination
of the basic data types and the qualifiers.

Qualifier\Type char int float double
signed X X

unsigned X X

short X

long X X
const X X X X
volatile X X X X
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The default integer type is signed int. If the leftmost bit in the (32-bit) integer bit-
pattern is 1, the number is treated as negative; 0 indicates positive. The types int and
signed int are synonymous. unsigned int forces the integer value to be positive. The
sign-bit is not used and it is possible to accommodate in an unsigned int a positive
value twice as large as for an ordinary int.

With an int size of 32 bits, short int is generally 16 bits and long int is 32 bits. You
can simplify short int to just short, unsigned int to unsigned and long int to long.

In addition to the possibilities listed in the table above, signed short int and
unsigned short int are both legal, as are signed long int and unsigned long int.

const, volatile and mutable qualifiers

The qualifier const may be prefixed to any declaration, and specifies that the value
to which the data object is initialised cannot subsequently be changed. In normal
C++ programs, the const qualifier is widely used. volatile and mutable are much
rarer.

The qualifier volatile informs the compiler that the data object it qualifies may
change in ways not explicitly specified by the program of which it is part.

For ordinary variable definitions, many C++ compilers are allowed to carry out
optimisation on the assumption that the content of a variable does not change if it
does not occur on the left-hand side of an assignment statement. The volatile
qualifier causes the suppression of any such optimisation.

For example, volatile could qualify the definition of a variable, as in:
volatile int clock;

The value of clock might be changed by the local operating system without any
assignment to clock in the program. If it were not qualified volatile, the value of
clock might be corrupted by compiler optimisation.

The mutable qualifier is used to specify that an attribute of a class or structure
remains changeable, even if the instance of the class or structure is declared as
const. There is more on this in Chapter 4.

Numeric capacities of data types

Here are some example declarations that assume a system with a natural 32-bit integer:

short x; /I x is 16 bits long and can hold integer values
/l'in the range -32767 and 32767

inty; /l'y is 32 bits long and holds integer values in the range
/I 2147483647 to 2147483647

long z; /I same as 'int' above
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unsigned short a; // sign-bit disabled, can hold positive integer
/I values up to 65535

unsigned b;  //'int' definition with sign-bit disabled, can hold
/I positive integer values up to 4294967295

float c; /I c is 32 bits long and can hold a fractional number in a
/I floating-point form in the range 3.403 X 10”38 to
/1 1.175 X 10"-38

double d; /I d is 64 bits long and can hold a fractional number in
/I the range 1.798 X 107308 to 2.225 X 107-308

Here is a program, maxint1.cpp, which finds the largest possible numeric value that
can be stored in an int on your computer:

/***************************************************************************

*

*  'maxintl.cpp’' — Program to find the largest number that can
* be stored in an 'int' on this computer

**************************************************************************/

#include <iostream>
using namespace std;
int main()

int max, accum = 1;
/I Increment accum in a loop until accum goes negative
while(accum > 0)

max = accum;

accum = accum + 1;

}

cout << "Maximum int value is " << max << endl;
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This program does the job in the obvious but crude way: counting starts at 1 and
the variable accum is repeatedly incremented by 1 until the sign-bit changes and
the integer goes negative. Just a few years ago, on 32-bit systems that could ‘only’
do ten million or so additions per second, this program took around 4 minutes of
execution time to increment accum to its maximum signed value of more than two
thousand million. But — an undoubted sign of progress — my multi-Gigahertz PC
can now run this program in 5 seconds (more than 400 million while loop iterations,
assignments and additions per second!).

Fast as the new hardware is, maxint1.cpp remains crude and ‘brute-force’. In
addition, as soon as the normal integer size goes to 64 bits, the problem ‘goes off
the scale’. The maximum signed integer size that can be stored in 32 bits is



2,147,483,647 — divide by 400 million loops per second and you can see that
maxint1.cpp executes in about 5 seconds. The maximum signed integer size for 64
bits is, however, 9,223,372,036,854,775,807! At 400 million loops per second, it
will take more than 731 years to increment accum by steps of 1 to a negative value.
So, we need a better way. The program maxint2.cpp provides it, in a good example
of how C++ lends itself to clever ‘bit-level” programming:

/************************************************'k**************************

*
*
*
*

#include <iostream>
using namespace std;

int main()

{

'maxint2.cpp' — Program to find the largest number that can

'k*************************************************************************/

int shift = 1, accum = 0;

while(shift > 0)

cout << "Maximum int value is " << accum << endl;

be stored in an 'int' on this computer

loop until a further shift would set the sign bit

/I add shift to the accumulator and double it
accum = accum + shift;
shift = shift * 2;

Instead of many billions of repeated additions, maxint2.cpp relies on repeated
multiplication, each time by two. Each multiplication shifts the leftmost bit
leftwards as the (binary) number gets larger in the sequence 1, 10 (decimal 2), 100
(decimal 4), 1000 (decimal 8) and so on. Even on a 64-bit system, after just 64
multiplications, the leftmost (64th and sign) bit of the number is set to 1. At that
point, the number goes negative and the maximum value is left in accum.
Regardless of the size of integer being dealt with, maxint2.cpp executes in a split-
millionth of a second.

When you run either maxint1.cpp or maxint2.cpp, the output will be something like
this:

Maximum int value is 2147483647

with the great difference in efficiency between the two versions noted. This output
indicates, by the way, that I ran the program on a 32-bit system (DOS virtual
machine under Windows XP, to be specific).
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Initialisation and assignment

Expression

40

When you define a variable in a C++ program, you should assume that it will
initially be set to a garbage value. You should therefore initialise variables, where
necessary, when you define them.

In maxint.cpp, the variables shift and accum are initialised as part of their
definition:

int shift = 1, accum = 0;

Initialisation means that a variable is set to a value at the point of definition;
assignment separates the setting of value from the definition:

int shift;
shift = 1;

You can initialise a variable of type long int like this:

long big_num = 1000000L;
The trailing L explicitly tells the compiler that the 1000000 is to be a long integer.
A variable of type char can be initialised to a character (or numeric) value:

charc ="'a";.
char d = 97; // same thing: 97 is ASCII 'a'

fype

Every expression has a type. If the expression contains an assignment, its type will
be that of the variable being assigned to; if not, the expression will be of a type
determined by its constituent parts. Ideally, in a given assignment expression, all
the variables and data should be of the same type:

int result;
inta=>5;
intb =6;

result =a + b + 7; // value of result becomes 18

Here, all the variables and data are of type int (the literal 7 is implicitly of type int); the
additions and assignment are straightforward. Sometimes, however, it isn’t so easy:

int result;

inta=>5;

double b = 6.357291;
result=a+b+7;

The expression a + b + 7 is of type double — in effect, the highest common
denominator of the types of the three operands. The result of the addition is
18.357291, but this is truncated across the assignment to 18. Because the type of
result is int, the type of the expression (double) on the right-hand side of the
assignment is forced ‘downwards’ to match, with corresponding loss of data.



Type casting

If it were an ideal world, you would ensure that all variables you use in a given
expression were of the same type. Then no conversions would be needed, for
example between integer and fractional, or between character and integer, quan-
tities. But, as we know, life isn’t that simple. Sometimes, to keep things correct, we
must explicitly force conversions between data types. This operation in C++ is
referred to as fype casting.

Type casting is done using the unary typecast operator, which is a type specifier,
enclosed in parentheses and prefixed to an expression. The cast does not change the
value of the expression but may be used to avoid the consequences of unintended
type conversions.

Type conversion can be vital. Imagine you’re calculating the total number of days
that have elapsed since January 1, 1900. The computation would look like this:

days_total = (long)yy * 365 + no_leaps + days_year + dd;

On a 16-bit integer system, the intermediate calculation yy * 365 exceeds the 32,767
integer size limit if the date is later than September 18, 1989. The intermediate
calculation (long)yy * 365, forcing yy temporarily to be long, works on all systems,
having a capacity of 2,147,483,647 in both 16- and 32-bit environments.

In C++, the expression 5/7 gives zero, as a result of integer division. If you didn’t
want this, you could use the typecast operation:

(float)5/(float)7
to get the fractional result, .71428...

There are two available forms of unary typecasting as shown by the program
oldcast.cpp:

#include <iostream>
using namespace std;

int main()

{
double pi = 3.1415927;

cout << pi << endl;
cout << (int)pi << endl;
cout << int(pi) << endl; // alternative

}

The mechanism of unary typecasting shown here originates with the earliest (early
1970s) definition of the C language. Over the years, the old-style cast (as it is
sometimes known) has sometimes been badly used, effectively to switch off the
otherwise strong C/C++ typing rules. As a consequence, the ISO C++ Standard has
introduced into the language, a number of explicit type-conversion operators.
These are introduced later in this chapter, in the section Type conversion. You
should be aware that old-style casting, while it still works, is considered to be
deprecated (ISO for obsolete!)
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Naming conventions
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Variables are defined or declared by association of a type specifier and variable
name. For simple data objects, declarations and definitions are usually the same;
it is enough for now to say that all definitions are declarations but that the converse
is not true.

There are in C++ some simple rules concerning the names that may be used for
variables. These names are also called identifiers.

A variable name must not be one of the set of C++ keywords (reserved words). You
should not use library function names as variable names.

A variable name is a sequence of letters and digits. Distinction is made between
upper and lower case letters. The underscore character, _, also counts as a character
and should be used for clarity in variable names:

next_record from_file

being more readable than nextrecordfromfile. Names with internal capitalisation
have also become acceptable and good practice:

nextRecordFromFile

You shouldn’t use punctuation, control and other special characters in variable
names. Also, don’t use the underscore character at the start of variable names; if
you do, there may be a clash with the names of certain library functions. Variable
names may be any length, but keep your variable names to a maximum of 31
characters; some C++ compilers may treat only the first 31 as significant, ignoring
further characters.

Here are some examples of incorrect variable name definitions:
int bank-bal // Wrong! incorrect hyphen
int 1sttime  // Wrong! leading number
int new?acc // Wrong! invalid character



Arithmetic operations

In your C++ programs, you can perform calculations with these basic arithmetic

operators:
+  addition - subtraction
*  multiplication / division

%  modulus

I also introduce variants of these, four operators that are very characteristic of C++,
so that you understand them when you see them in program examples that follow.

++ add one to a variable, as in var++

-~ subtract one from a variable, as in var--

+= add a quantity to a variable, as in var+= 5

-=  subtract a quantity from a variable, as in var-= 7

Use of the division operator, /, with two or more integer operands causes integer
division and consequent truncation:

3/5 equals zero
5/3 equals 1

The modulus or ‘remainder’ operator, %, may only be used with operands of type
int or char. You can’t use it with float or double operands. Multiplication, division
and modulus operations are done before addition and subtraction. Unary minus
operations (for example, -(a + b), as opposed to the binary a - b) are carried out
before any of these. You can see the precedence of the arithmetic operators from
this series of assignments:

int x =5;

inty =6;

intz=7;

int result;

result=x +vy*z; / result == 47
result=y/x* z 1 result ==7
result = (x +y) * z; 1l result == 77
result = -y * z + x; 1 result == -37
result=z/x % y; I result ==

Finally, you may have noticed that there is no operator for exponentiation: you have
no way of expressing something like x fo the power 5. To do this, you must use the
pow library function described in Chapter 14.

Here is an example program, called sum1ton.c, that implements the so-called
Abelian series after the famous mathematician Abel. As a bright 10-year-old,
young Abel and his class at school were set time-killing exercises by their teacher.
One such was the job of adding all the numbers from 1 to 100. Abel, using his series,
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was able instantly to present the result to his teacher. The series is described by the
equationt=n(n+ 1)/2, where tis the total and n is the number at the end of the series.
Here’s the program:

/************************************************************************

*

*  'sumiton.cpp' — Program to calculate the sum of all the integers
* in the range 1 to n, using the Abelian formula (n * (n + 1))/2

***********************************************************************/

#include <iostream>
using namespace std;

int main()
{

int n, sum1toN;

cout << "Enter a number: ";
cin >>n;

sumitoN = (n * (n + 1))/2;

cout << "Sum of the integer series 1 to "
<<n<< "is" <<sum1toN << endl;
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Try entering and building this program. When you run it, you are prompted to enter
a number that will be the limit of the series to be summed. The input stream, cin,
is used to read your answer from the keyboard. The separate characters of the
number you entered (‘1’, ‘0” and ‘0’ of the number 100) are collectively converted
to the numeric form and are stored in n. Abel’s formula calculates the sum of the
series, which is displayed by the cout statement. Here’s the expected display (user
input in boldface):

Enter a number: 100
Sum of the integer series 1 to 100 is: 5050



Different kinds of constants

Every basic data object — bool, char, int, float, double — is a number. A number used
explicitly, not as the value of a variable, is a constant. Constants are such things as
the integer 14, the character 'a' and the newline "\n'.

The kinds of constants that you can use in C++ expressions include these:

Integer constants Character constants
String constants Floating-point constants
Special character constants Enumeration constants

Integer constants

Character

The integer constant 14 is a data object inherently of type int. An integer constant
such as 500000, that on a 16-bit system is too large to be accommodated by an int
is treated by the compiler as a long int.

An integer constant can be prefixed with a leading zero: 014 is interpreted as being
of base 8 (octal) and equals decimal 12. An integer constant can have the prefix Ox
or 0X:

0x14 or 0X14

0x2F or OX2F

The compiler treats these constants as hexadecimal (base 16). Hexadecimal 0x14
equals decimal 20. Ox2F equals decimal 47.

constants

A character constant is a single character, written between single quotes: 'a’. A
character constant is a number. After the definition and initialisation:

charch ="'a";

ch contains the numeric value decimal 97. Decimal 97 is the numeric representa-
tion of 'a' in the ASCII character set, which is used in nearly all PCs and UNIX
systems. If a different character set is used, for example EBCDIC (used largely on
IBM and compatible mainframes), the underlying numeric value of 'a' is different.

Another example: '0' (character zero) is a character constant with ASCII value 48.
'0' has nothing at all in common with numeric zero, so after the definitions:
intn=0;
char c¢="0}
the integer n contains the value zero; the character ¢ contains the value 48.
To summarise: a character is represented in C++ by a small (in the range 0 to 255)
number that corresponds with the position reserved for that character in the
character set being used. If that number (say 98) is interpreted as a character, it is

treated as the letter ‘b’. Interpreted as a number, the character may be used in
arithmetic like any other number.
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String constants

You specify character constants with single quotes; /literal string constants by
contrast use double quotes:

"This is a string constant”

A string constant is also known as a string literal. The double quotes are not part
of the string literal; they only delimit it.

Floating-point constants

Floating-point constants are always shown as fractional and can be represented in
either normal or scientific notation:

1.0

335.7692
-.00009
31.415927e-1

Floating point constants are of type double unless explicitly suffixed with f or F,
as in:

1.7320508F
which is of type float.

Special character constants

The newline character \n' is a character constant. There is a range of these special
character constants — also known as escape sequences.

They are:

\n // newline

\r /I carriage-return

\t //tab

\f // formfeed

\b // backspace

\v // vertical tab

\a // audible alarm - BEL

\\ // 'escape' backslash

\? // 'escape' question-mark
\' /] 'escape’ single quote
\" // 'escape' double quote.

The escape sequences are used in place of the less-intuitive code-table numeric
values. In cout statements, "\n' is sometimes used at the end of the format string to
denote advance to a new line on the standard output device (note that the
manipulator endl is preferred). You could instead use the equivalent ASCII (octal)
numeric code "012' but this is less intuitively clear, as well as not being portable
to systems using code tables other than ASCII.
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Other characters can also be escaped out. Use of the lone backslash causes any
special meaning of the following character to be suppressed. The following
character is treated as its literal self. For example, the statement

cout << "This is a double quote symbol: \"" << endl;
causes this display on the standard output:
This is a double quote symbol: "

There are many other special characters which do not have an identifying letter and
are represented by their number in the character set, delimited by single quotes.
These are examples from the ASCII character set:

#define SYN '\026' /I synchronise
#define ESC "033' /I escape

This is a good use of the preprocessor, equating symbolic constants with numeric
control characters. The symbolic constant ESC in the middle of a communications
program makes more sense than "\033'".

Here is a program, charform.c, that shows how the contents of a char variable can
be interpreted differently using the format codes of the C Library printf function:

/********************************************************************

*

*  'charform.cpp' — Program to show interpretation of a
* character's value according to various
* 'printf' format codes

*******************************************************************/

#include <iostream>
using namespace std;

#include <cstdio>
int main()
{

int c;

printf("Enter a character: ");
¢ = getchar();

printf("Character %c, Number %d, Hex, %x, Octal %o0\n", c, c, ¢, c);

The printf function uses the %-prefixed format codes to tell it how to interpret the
variables following: %c means ‘character’; %d means ‘(decimal) number’, and so
on. The most important purpose of this program is to confirm that a character is no
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more than a number and that it can be interpreted as different kinds of numbers. Try
running it yourself to confirm this. Here’s what the display should look like. The
character that I input for interpretation was the question mark.

Enter a character: ?
Character ?, Number 63, Hex, 3f, Octal 77

Enumeration constants
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The enumeration constant is a list of integer constant values; for example:
enum seasons {SPRING,SUMMER,AUTUMN,WINTER};

The four names in this example have values associated with them of 0, 1, 2 and 3
respectively, unless the programmer chooses to depart from the default:

enum seasons {
SPRING=1,
SUMMER=2,
AUTUMN=3,
WINTER=4
2
Having made either of the above declarations, you can define a variable associated
with the enumeration constant and with type enum seasons:

enum seasons time_of _year;

time_of _year can only have the values SPRING, SUMMER, AUTUMN or WIN-
TER. You can now do a test like this:
if (time_of_year == SUMMER)
go_sunbathing();

Arithmetic operations on enumeration constants may be allowed by individual
compilers but are illegal in the ISO C++ language definition.

Enumeration constants have limited application, but they are useful in a few
specialised types of application program. In any situation where input data can be
only one of several mutually-exclusive types, the type can be recorded using an
enumerated constant:

/I enum might be used in a spreadsheet
enum inputType {INTEGER, FRACTION, STRING};

enum inputType dataType;

/I set default data type
dataType = INTEGER,;



Pointers and references

Pointers and addresses

A pointer is a data type; a variable of that type is used to store the address of a data
object in memory. A variable definition allocates space for the data and associates
aname with that data. The data name refers directly to the data stored at the memory
location. Pointers, on the other hand, are data objects that point to other data
objects.

You can define a character variable and a character pointer like this:

char c;
char *cptr;

cptr is a pointer to a data object of type char.
The statement:
cptr = &c;

uses the address-of operator to assign the address of ¢ to the character pointer cptr.
After the assignment, cptr points to c; *cptr dereferences the pointer and is the
contents of or the object at the pointer cptr. “cptr equals c. Note that it’s always an
error to dereference a pointer which has not been initialised to the address of a data
object to which memory has been allocated.

You can define and use an integer pointer (a pointer that should be used only with
variables of type int).

inti=6;

int *ip = &i;
Taking the example of the integer pointer, you can reflect on the following truisms:

i ==
ip == the address of the integer i
*ip == the object at the address, 6

A major confusion arises from the dual use of the *ip sequence. The definition of
the pointer:

int *ip = &i;
specifies that the variable ip is of type int *, or integer pointer. On the other hand,
when the pointer is later used and dereferenced:

*ip
the object at the pointer ip (6) is retrieved. If you keep in mind the difference
between the sequence *ip used when the pointer is being defined and *ip used to
retrieve the value stored at the pointer, you will move a long way toward being
fluent in the use of C++ pointers.
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Pointers to data objects

You can use pointers with all data objects that may be defined in C++, including
arrays, structures and other pointers. In this section, we’re particularly interested
in arrays, especially character arrays.

In the definition of the integer pointer above, the address-of operator & is used in
the initialisation of the pointer ip with the address of the integer i:

inti=6;

int *ip = &i;
The address-of operator must be used when initialising pointers — except when the

address of an array is being assigned to a pointer of the same type as the array. In
the sequence:

char instring[50];
char *cptr = &instring;

cptr is in fact initialised to the address of the address of the pointer. An array name
is the array’s address; to initialise the pointer with the array’s address

char *cptr = instring;

is all thatis needed to do the job correctly. The fact that an array’s name is its address
while the name of any other variable is not is one of the quirks of the C++ language
that causes most inconvenience even for experienced programmers.

Next, we define and initialise a character array and set a pointer pointing to the start
of the array:

char textline[50] = "Many a time and oft on the Rialto";
char *cp = textline;

The value of textline[0] is the letter 'M'; the value of textline[1] is 'a' and so on.
Similarly, the value of *cp after the pointer has been initialised is 'M'. The value of
*(cp+1) is 'a' and the value of *(cp+2) is 'n'. You will see more in Chapters 4 and
7 of pointers used with arrays.

Here is an example program, litptr.cpp, that uses pointers to traverse a character
array one character at a time, displaying each character on the way.

/************************************************************************

*

*
*
*

***********************************************************************/

#include <iostream>
using namespace std;

int main()

'litptr.cpp' — Program to display each character in a literal
string using a simple character pointer
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char litstr[50] = "The quality of mercy is not strained";
char *start, *p;

start = p = litstr;
while(*p !="0")
{
cout << *p;
pt+;

cout << "\nString is " << p-start << " chars long" << endl;

Apart from wondering who said "The quality of mercy..." and in what Shakespeare
play, you can examine the pointer technique shown by the program. The array litstr,
is initialised at the point of its definition with the literal string "The quality of
mercy...". The contents of the array are now a C-string terminated with a null
character, \0’, implied by the double quotes in “The quality of mercy...”. Both the
pointers start and p are set pointing to the start of litstr. Then, while the contents of
p are not the null character, all the characters in the array are displayed individually,
along with the length of the string:

The quality of mercy is not strained
String is 36 chars long

In case you think that this stuff with pointers might only be used by nerds and code-
freaks, be disabused of the notion now. Text processing, and other use of pointers,
is central to C++ programming. To be a good C++ programmer, you have to be
good at pointers. On that consoling note, be happy that you have now surmounted
one of the steeper obstacles presented by the C++ language.

References

C++provides an alternative to the system of pointer initialisation and dereferencing
shown above. This is the reference type. A reference is not a copy of the variable
to which it refers; neither is it a pointer (although ‘under the covers’, the C++
system may implement references with pointers). You should think of a reference
as an alias for the name of a variable, one which, when set (or ‘seated’) cannot be
re-set. References are used mostly when passing arguments to functions — more in
Chapter 3 — but, for now, here’s a simple use of the reference type:

#include <iostream>
using namespace std;
int main()
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intn1 =7,
int n2 = 8;
int &ref N =n1;

ref n*=5;
cout <<ref n<<""<<n1<<"\n"

}

In this program, the reference ref_n is assigned — made an alias for — the integer
variable n1. The numeric quantity referenced — 7 — is multiplied by 5 and the result
displayed. The ampersand (&) is used to denote ref_n as a reference. This usage is
unfortunate, because, as you’ve seen, the & also acts as the address-of operator
during pointer assignment. This double-use of the ampersand symbol is confusing,
and you just have to learn the difference according to the context in which the & is
used.

When a reference object is used, no pointer-like de-referencing is needed: you just
use ref_n, not *ref_n. This simplification of syntax is a point in favour of references
but, for many, the dual-use ampersand confusion is an unfortunate price to pay.



The C++ ‘string’ class

Generations of C and C++ programmers — your current author included — acquired
great expertise in manipulation of C-strings of type char * along the lines shown
in the (simple) string-manipulation program litptr.cpp in the last section. Countless wet
afternoons were spent on the delights of direct handling of strings using char
pointers, finding, searching and replacing. The Standard C Library provides some
useful functions for string-handling; examples include strlen to find the length of
a C-string and strstr to find the position of one string of text within another.

With the advent of C++, the string-handling experts used the class construct to
encapsulate the C-string. Now, strings could be assigned using the overloaded =
operator and joined together (concatenated) using the overloaded +=. Member
functions of the encapsulating class could search, replace and find substrings
within strings. There was no limit to the extent of the possible refinements; the
overriding objective was to present a high-level interface to the programmer using the
class, hiding the nasty string/pointer details. In this way, reliability, reusability,
saved time and all the other benefits of object-orientation would accrue. Many class
libraries were developed and marketed that also included classes for handling strings.

ISO C++ took even this diluted form of fun away. The Standard C++ Library now
supplied an extremely comprehensive string class (in fact a template, but more of
that later). There is no longer any need for the C++ programmer directly to handle
character strings with pointers, the standard string class provides all the function-
ality you’ll need and probably a lot more. Have no fear though: C strings and the
possibility of writing string classes from scratch are still available in case you’re
pining for them on one of those wet afternoons. It’s just that you don’t have to use
them any more.

I could write an entire book on the string class. The string class is, in fact, just an
aspect of a C++ template called basic_string, which is to be found in the STL, and
which is in turn part of the C++ Standard Library. The STL doesn’t provide support
just for strings, but for containers in general. A string is a container of information
in the same way as lists (like a list of names in a phone book), sets (any unordered
collection) and queues (first in, first out, like a bus queue), even though the different
kinds of container behave slightly differently in detail. For example, inserting a
character into a string is the same fundamental type of operation as is adding a
member to a queue but, under the covers, the operations differ. The STL hides all
these details and differences from you and allows you to use the different kinds of
containers in the same way. From all this, you probably, and correctly, get the sense
that a Made Simple book of this size cannot exhaustively cover the string class, let
alone the STL. This section provides a quick introduction, with more information
given in Chapter 12 (The Standard Library).

Here’s a program called string1.cpp, which sets up a few instances of the string
class and does some basic operations:
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#include <iostream>
using namespace std;
#include <string>

int main()

{
string s1 = "Now is the time\n";
string s2;

string s3("to come to the aid\n");
s2 = "for all good men\n";

cout << s1 + s2 + s3 << end|;

s1 +=s2 += s3 += "of the party";
cout << s1 << endl;
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Notice first that the string header file is #included for the sake of its declaration of
the standard string class and attributes. The main function defines three instances
of the string class and in various slightly different ways (all legal and of similar
effect) initialises them with strings of text. The line:

cout << s1 +s2 + s3 << endl;

uses the overloaded + operator (defined withing the standard string class; you don’t
have to worry about how) to concatenate the three lines of text. In a further
operation:

s1 +=s2 += s3 += "of the party";

concatenates and assigns to s1 all of the text, plus a new line added on. The
displayed result of the program’s execution is this:

Now is the time
for all good men
to come to the aid

Now is the time
for all good men
to come to the aid
of the party

The advantage of using the standard string class is that you just don’t have to be
concerned with how all the underlying assignments and concatenations are done.
You justdo the operations at an intuitive level using +, = and += operators and leave
the ‘system’ to do the rest.The next example is a development of the above
program, called string2.cpp.

The string instance is set to the text of the same verse as is the case in string1.cpp.
A number of operations provided as standard by the string class are then performed:
we find the length of the text in terms of the number of characters; the position in



#include <iostream>
using namespace std;
#include <string>

int main()

{

string s1 = "Now is the time\n";
string s2;
string s3("to come to the aid\n");

s2 = "for all good men\n";
s1 += s2 += s3 += "of the party";

cout << s1 << endl| << endl;

cout << "Total string length " << s1.length() << endl;
cout << "Position of string " << s1.find("men") << endl;
s1.replace(s1.find("men"), 3, "people");

cout << endl;
cout << s1 << endl;

the text of a particular substring; and, finally, replace that text with something more
politically correct. Here is the output that is displayed on execution of string2.cpp:

Now is the time
for all good men
to come to the aid
of the party

Total string length 64
Position of string 29

Now is the time
for all good people
to come to the aid
of the party

The total interface provided by the standard string class — the full set of possible
operations —is very large and is beyond the scope of this book to describe. For more
information, you could do worse than look at my own The C++ Users Handbook
(Butterworth-Heinemann, 2003) or The C++ Standard Library, Josuttis, (Addison-
Wesley, 1999).
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Type conversion
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The traditional C/C++ typecast mechanism is explained earlier in this chapter. This
section introduces the new, stricter, typecasting operators made available with
Standard C++. They are:

const_cast <type> (expr) remove const variable qualification

dynamic_cast <type> (expr)  runtime determination of type of object pointed
to; used mainly with RTTI (see Chapter 12)

reinterpret_cast <type> (expr) interpretation of bit patterns
static_cast <type> (expr) explicit typecast, replaces unary typecast

I’lllook at two ofthese here. The dynamic_cast operator is used with polymorphism
and run-time type identification and is covered in Chapter 11. reinterpret_cast is
really beyond the scope of a Made Simple book; in summary, it forces the compiler
to attempt conversion of types that are very ‘far apart’, such as pointer-to-double
(double *) and pointer-to-char (char *). Doing this involves manipulation by the
compiler of the actual bit-patterns of the pointer values. Results tend to be
unpredictable and are implementation-defined (not portable from one C++ envi-
ronment to another).

The conversion operator static_cast is used for explicit conversion operations that
can be done by the compiler implicitly although perhaps generating warning
messages. Here’s a program, static.cpp, that illustrates its use:

#include <iostream>
using namespace std;

int main()

int result;
inta=>5;
double b = 6.357291;

cout << "Intermediate result " << a+b+7 << end;

cout << "Typecast intermediate result "
<< atstatic_cast<int>(b)+7 << end];

result = a + static_cast<int>(b) + 7;
cout << "Truncated result " << result << endl;

}
The program’s displayed output is this:

Intermediate result 18.3573
Typecast intermediate result 18
Truncated result 18

Constant (const) declarations can be overridden temporarily by using the const_cast
conversion operator. If you define two pointers:



char *cp;
const char * ccp;

And set them both pointing to something, it is illegal to try to convert the const-
qualified pointer to a non-const:

Cp = ccp;
The example program const.cpp shows how to make the conversion:

#include <iostream>
using namespace std;

int main()

{

char stg[50] = "Now is the time";
const char *ccp = stg;

cout << "Constant C-string is " << ccp << end|;
char *cp;

cp = const_cast<char *>(ccp);
cout << "Non-const C-string is " << ¢cp << end|;

}

The conversion of ccp to cp is legal as shown.

You should be careful with mixing types and converting them, whether with the
old-style casts or with the new conversion operators. Types, and the unwillingness
of C++ to convert them with abandon, are there for a reason: to reduce program
bugs caused by data and type conversions. It’s best, if possible, not to convert at
all: make all the variables of an expression the same type. If you must convert types,
you should be aware that you’re doing so, and of the possible consequences —
double-to-int truncation like that shown in static.cpp above can cause its own
problems. If you plan to convert, don’t hope for the best and let the compiler do it
implicitly. Make the conversion explicit, either with old-style casts or (preferably)
with the cast operators.

57



Exercises
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Write a program that defines and initialises an instance of the standard string class.
The initialising text should contain a pattern that repeats at least once. The code of
your program should search for and replace all occurrences of this pattern.

Write a program that displays the fully-qualified file pathname C:\MSVC\BIN. If
you’re using UNIX, and prefer forward slashes, just humour me and do it with
backslashes anyway.

Write a program that displays two literal strings, delimited by double-quotes in this
way: "String1","String2".

Write a program that defines a double variable to store the number 1.732050808
and then uses a loop to multiply the number by itself three times. Display the result.
What do you get?

Write a program that defines two char variables, initialises them with the letters 'h'
and 'g'. respectively. Add the variables together and display the result as a
character. What do you get?
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Organisation of a C++ program

Every C++ program is organised as a number of functions (including, exactly once,
main). Functions can belong to (be in the scope of) classes, namespaces or can be
global. All the functions that make up a C++ program are stored in at least one
program file, or translation unit. Each program file must (on PCs at least) have a
file name suffixed with .cpp. There can be as many program files as you like
collectively making up a whole C++ program. Here is a program made up of two
program files. The program doesn’t do very much — each function except main
makes a one-line display — but it is contrived to show the typical layout of a modern
C++ program made up of multiple program files. If you understand this, you’ll be
able to read and write much more complex programs that, in spite of their
complexity, obey the same layout rules. The first program file is skelf1.cpp:

I Program file (translation unit) skelf1.cpp
#include <iostream>

#include "skelhead.h"

void c::funci()

std::cout << "In class func1()" << std::endl;
=func1();

int main()

{
c c_inst;
c_inst.func1();
func2();
func3();

void func1()

std::cout << "In global func1()" << std::endl;

}

*/

The second translation unit is skelf2.cpp:

I Program file (translation unit) skelf2.cpp
#include <iostream>

#include "skelhead.h"

void func2()

std::cout << "In global func2()" << std::endl;
}
void func3()

std::cout << "In global func3()" << std::endl;

}

*/
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You can see that the functions do not have to be in any special order. There is
exactly one main function, as there must be, regardless of the number of program
files. Any function may call any other, subject to the restrictions of global,
namespace and class scope. Functions must not be nested: you can’t define a
function within a function. Function prototypes and other necessary declarations
are are stored in the header file skelhead.h:

class c
{
private:
public:
void func1(); // prototype of c::funci()
5

void func1(); // prototype of global func1()
void func2(); // prototype of global func2()
void func3(); // prototype of global func3()

Let’s start with the header file. It contains the declaration of the class ¢, which in
turn has a prototype for the member function func1. The header file also contains
declarations for the three global functions func1, func2 and func3. skelhead.h is
#included in both of the program files, skelf1.cpp and skelf2.cpp, making all its
declarations available to both.

The file skelf2.cpp contains the definitions of the global functions func1 and func2.
skelf1.cpp contains the code for all the other functions, including main and the one,
func1, in the scope of the class c:

void c::func1()

std::cout << "In class func1()" << std::endl;
=func1();

The first line specifies that this is the version of func1 that belongs to the class c.
As noted in Chapter 1, the operator :: is called the scope resolution operator; it
specifies the scope to which the function belongs, in this case the scope of the class
c. By contrast, the function definition:

void func1()

std::cout << "In global func1()" << std::endl;

}

is in global or default scope and therefore does not have to have its scope resolved
with the :: operator. The call to c::func1 from the main function is this:

c_inst.func1();

Prefixing the function name with an instance of the class c specifies explicitly that
the version of func1 that is to be called is the one belonging to the class, not the
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global func1. To call the latter from main, you would use the simpler syntax:
func1();

In fact, within c::func1, we want to make a call to the global version of func1. That’s
what the following line does:

:func1();

This use of the scope resolution operator tells the compiler to go ‘outside’ the scope
of the class c to the enclosing (global) scope and call the global function funcl.

A related point: all the programs up to now have started with the two lines:

#include <iostream>
using namespace std;

In skelf1.cpp and skelf2.cpp, the namespace line is missing. The effect of this is
that we must now explicitly specify the scope of the cout object and endl
manipulator every time they are used:

std::cout << "In class func1()" << std::endl;

The prefix std:: is now needed for every use of any object in the Standard Library’s
scope. Considering the frequency with which such objects are used, the once-for-
all specification

using namespace std;

is a convenience. In the above program, with no namespace specified, the one in
force is the default (global) namespace that is supplied by the C++ runtime
environment. In that global namespace, all functions are visible, but the library
objects are not; hence the need for qualified specifications such as std::cout.

A final word on the syntax of header file inclusion:
#include <iostream>
#include "skelhead.h"

Any line in a C++ program that has as its first non-whitespace character the # (hash,
pound to North American readers) symbol is processed, before compilation by the
C++ preprocessor. The contents of both header files are as a result included directly
in the source code of both skelf1.cpp and skelf2.cpp, both of which files are then
compiled. Use of angle brackets in the case of ostream tells the preprocessor to
search for the file in the system-standard directory (usually called INCLUDE). In
the case of skelhead.h, use of double quotes adds the user’s home directory and the
current directory to the list of directories searched. With skelhead.h in the current
directory and not in the system directory, the specification #include <skelhead.h>
wouldn’t work.

Lastly, why the .h suffix on skelhead and not on iostream? This is because the I[SO
standardising committee couldn’t agree on what suffix to use and so agreed on
none. Use of .h is still allowable.



Functions

Prototype

Header

A function is a sequence of C++ code executed from another part of the program
by a function call. Every function’s definition consists of two parts, the header and
a compound statement. You should also specify a function prototype, or declara-
tion. For the purpose of this section, I’'m assuming, for simplicity, functions in
global scope. In the previous section, there are two versions of the function func1:

void c::func1(){}
void func1(){}

one of which is in the scope of the class c, the other being global. All the rules of
function declaration, definition and specification apply to both equally, so I use the
global form below.

A prototype is an announcement to the compiler of the existence in the program of
a function definition with a header matching the prototype. A function prototype
means the same thing as a function declaration or a function signature.When the
function is called after the compiler has seen the prototype, the compiler can check
that the form of the function call is correct.

Although it is not always strictly necessary, you should always declare all your
functions in advance to the compiler using a prototype:

int power(int, int); // function prototype

You should make sure that the type of the return value and the number and types
of arguments specified in the prototype exactly match those in the function header
and in the call to the function.

Where you write many of your own functions, it’s a good idea also to create your
own header file (see skelhead.h in the previous section) and to store all the function
prototypes there. Then you can #include the header file in all your program files,
saving the bother of explicitly including the prototypes in every program file.

A function header consists of a return type, the function name and the parameter
list, also called an argument list, enclosed in parentheses. The terms ‘argument’
and ‘parameter’ are often used interchangeably; being strictly correct, the function
call contains arguments and the function header parameters. In a function call,
arguments are copied to matching parameters in the header of the function being
called. A synonym for ‘argument’ in this context is actual parameter, while the
term formal parameter can be used instead of ‘parameter’.

Look at these definitions and function call:

int result, num, n;
result = power(num, n); // function call
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The header of the called function is this:
int power(int num, int n) /I function header

In the header, the first int is the function’s return type. This means that a value
returned by the function across the assignment to result is an integer. int is the
default return type for functions. power, the function name, is an identifier, as the
term is defined in the section on naming conventions in Chapter 2 (page 42). In the
function call, the arguments num and n are copied to the parameters declared in the
header of the called function power.

The function starts at the first character to the right of the opening parenthesis in
the header. You can use the parameters enclosed in the parentheses inside the
function in the same way as ordinary variables defined inside the function’s main
compound statement.

When you call the function, the values of the arguments used in the call to the
function are copied into the parameters defined in the header. When control is
returned from the called function to the statement following the function call, the
values of the parameters are not returned. This means that an ordinary function in
C++ cannot change the original values of arguments with which it is called.

If there are no arguments in the function call, their absence is in C++ explicitly
specified in both the prototype and the function header by means of parentheses
surrounding an empty argument list:

int power(); /I prototype
result = power(); // call
int power() /I header

This tells the compiler explicitly that the power function takes no parameters. If the
call is made using arguments, the compiler reports an error.

A function’s definition is its header followed by the body of the function (a
compound statement). Here’s a skeleton definition for the power function declared
and called above:

int power(int num, int n) // function header
/I function body
int result;

/I calculate num to the power n, assign to result
return(result);

The last act of the function is to return the calculated result to the assignment in the
function call. Here is the full example program, power.cpp, which contains a real
definition of the power function:



/*************************************************************************
*

*

'power.cpp' — Program to raise numbers to a specified power,
using a 'power' function.

*
*

************************************************************************/

#include <iostream>
using namespace std;
long power(int, int);
int main()

int num, n;
long result;
cout << "Enter number and exponent: ";
cin >> num >> n;
result = power(num, n);
cout << num << " to the power "
<< n<<"is" << result << endl;

}

long power(int mantissa, int exponent)

long result = (long)mantissa;
while (exponent > 1)

result = result * mantissa;
exponent--;

return(result);

Here, the arguments num and n are copied from the function call to the parameters
mantissa and exponent in power. mantissa and exponent are used within the
function’s body as easily as is the local variable result. When mantissa has been
raised to the power exponent, the value of the exponentiation is returned in result
to the point at which the function was called. Notice that, although exponent is
repeatedly decremented in power, the value of its corresponding variable, n, in
main after the function call, is unchanged. When you run the program, the display
is similar to this:

Enter number and exponent: 2 5
2 to the power 5 is 32

with user input in boldface. Typed input is accepted using the standard input stream
cin.
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Return values and parameters

A function has two ways of returning information to the calling function: by return
value and by parameters. As in the example of the power function, the return
statement is used to return a value from a function to where the function was called.

If you use return; (without a value being returned) in a function, the result is
unconditional return of control from the called function to the calling function. No
particular value are returned from the function in this case. It is more usual to use
return in a function to return control to the calling function with a value which is
some use there. Typical uses are these:

return FALSE;
return(ERR_NO);
return result;

The parentheses surrounding the returned expression values are optional.

The alternative to return for sending back information from a called function is use
of parameters. All arguments passed between functions in C++ are copied. A call
to a function passing arguments by value (copying them to the parameters declared
in the header) is known as a call by value.

C++ supports both call by value and call by reference. The latter is the means by
which the values of arguments supplied in a function call are changed on return
from the function. You can find more information on call by reference in the next
section.

Here is a simple example, addnos1.cpp, of passing arguments to a function by
value, returning the result to the point of call using a return statement:

/**********************************************************************

EEE T R

*********************************************************************/

#include <iostream>
using namespace std;

float add_nos(int, float);  // prototype

'‘addnos1.cpp' — Program that calls a function to add two

numbers which sends back the result using
return’.

int main()

int x = 14;
float y = 3.162, sum;

cout << "Numbers in: " << x << "" <<y << endl;
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sum = add_nos(X, Y);
cout << "Sum of "<<x<<"and" <<y <<"is" << sum << end|;

}

float add_nos(int a, float b)

return(a+b);

Calling a function to add two numbers smacks of overkill, but it effectively
demonstrates the argument-passing mechanism.

First, using return, the called function add_nos returns its data, converted to type
float, to the floating-point variable sum in main. add_nos is supplied with its data
from the arguments x and y specified in the function call in main. These values are
copied to the parameters a and b in the header of add_nos. You don’t have to use
different names for the arguments in the function call and the parameters in the
function header. The latter could be x and y; they are named differently here for
clarity only.

In main, x is defined as an integer and y as a floating-point value. Their values are
copied to a and b inadd_nos which are (and should be) defined with identical type.
It’s vital that the types of the corresponding arguments and parameters are the
same; if they are not, the compiler will attempt automatic type conversion for you
— not always with the results you might have expected. The arguments and
parameters correspond by position and it’s also essential that the order of the
arguments is the same as that of the parameters. When you run the program, you
get this:

Numbers in: 14 3.162
Sum of 14 and 3.162 is 17.162
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Function call by reference

You’ve seen function call by value. Now we’re going to look at call by reference.
The distinction between the two types of call is very important. Call by value means
that the values of the arguments sent by the calling function are copied to the
parameters that are received by the called function. Call by reference means that
the called function is using the same data (as opposed to a copy of the original) as
that sent by the calling function.

Therefore, call by value does not change the values of the arguments in the calling
function, no matter what is done to the parameters in the called function. Call by
reference does change the values of the arguments in the calling function.

Call by reference with pointers

The program addnos1.cpp uses a return value to pass back the result of the function
add_nosto the point ofiits call in main. Here is the equivalent program, addnos2.cpp,
changed so that the computed sum is returned to the calling function as the changed
value of the second argument supplied to add_nos:

/**********************************************************************

*

*
*
*
*

*********************************************************************/

#include <iostream>
using namespace std;

void add_nos(int, float *);  // prototype

int main()

{
int x = 14;
floaty = 3.162;
float z = y;

}

void add_nos(int a, float *b)

{

'‘addnos2.cpp' — Program that calls a function to add two

cout << "Numbers in: " << x << " " <<y << endl;
add_nos(x, &y);
cout <<"Sumof " <<x<<"and"<<z<<"is" <<y <<endl

*b="b +a;
return;

numbers which sends back the result using
pointers as parameters
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As you can see, the type of y and b is no longer a simple float, but a pointer to float.
The second argument supplied to add_nos is no longer just y, but the address of
(which means the same as pointer to) y. The value copied to b is not the value of
y, but a memory address for y. Altering the object at, or contents of, the pointer b
in add_nos:

*b ="b + a;

does not change the pointer b, but the object to which b is pointing, namely the value
of the original y. The value of y displayed by the second cout statement in main
reflects the change made by add_nos. The program’s displayed output is the same
as that of addnos1.cpp.

Array arguments

To have a function change the value of a data object supplied to it as an argument,
the argument must be a pointer (or reference, more below) to the data object. In the
case of arrays, the name of an array is its address. That address can be used as a
pointer to the array’s contents. It follows that, if an array name is used as an
argument in a function call, the called function can change the object at the pointer
(the array’s contents) such that the change is seen in the calling function. In short,
whenever you pass an array as an argument to a function, the contents of the array
may have changed when control is returned from the called function.

Let’s look at an example program, arrayarg.cpp, where a function, get_data, is
called with three array arguments. The purpose of the function is to accept data
from the standard input and place that data in the arrays.

/*

*

*/

{

arrayarg.cpp

#include <iostream>
using namespace std;

void get_data(char [], char [], char []); // prototype
int main()

char dd[5],mm[5],yy[5];

get_data(dd,mm,yy);

cout << "Day " << dd << " Month "

<<mm << " Year " <<yy << endl;
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void get_data(char day[], char month[], char year]])
{

cout << "Enter day: ";

cin >> day;

cout << "Enter month: ";

cin >> month;

cout << "Enter year: ";

cin >> year;

The addresses of the three character arrays are copied to the variable names in the
function header get_data. The three arrays may then be used within get_data in the
ordinary way. If the values of the array elements are changed, as they are here by
user input, the change is reflected in the values of the arrays in main. The user’s
input/output sequence with this program is (input in boldface):

Enter day: 27

Enter month: 02

Enter year: 1974

Day 27 Month 02 Year 1974

C++ reference type

For many years, use of pointers and dereferencing, as in addnos2.cpp above, was
the only means C programmers had of calling functions with reference arguments
so that changes to their values would be reflected on return from the call. Although
the pointer and dereferencing usage is the same as anywhere else in the language,
it was felt necessary to simplify it somewhat. This was done by introduction of the
reference type, referred to already in Chapter 2 under Pointers and references. Here
is a program, addnos3.cpp, which does the same as addnos2.cpp, but with
references instead of pointers:

/**********************************************************************

*

'‘addnos3.cpp' — Program that calls a function to add two numbers which
sends back the result using C++ references as parameters

*
*
*

khkkkkhkkkhkkhkhkhkhhkhhkhhkhhkhhhhhhhhkhhkhhhhhhhhhhhkhhkhhhhhhhhhhhhhhhhhhhhkkx /
#include <iostream>
using namespace std;

void add_nos(int, float&);  // prototype

int main()

{
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int x = 14;
floaty = 3.162;
float z = y;

cout << "Numbers in: " << x << " " <<y << end|;
add_nos(x, y);
cout << "Sumof " <<x<<"and"<<z<<"is"<<y<<endl

}
void add_nos(int a, float &b)
{
b=Db+a;
return;
}

The add_nos function prototype:
void add_nos(int, float&); /I prototype

pinpoints the change. The type of the second parameter is now changed to float&
(reference to float) from float * (pointer to float). The same change is made in the
add_nos function header. Otherwise, the arguments used in the function call and
the parameters used within the add_nos function now dispense with address-of and
dereferencing operators and are used in their simple form. Many people prefer this
simplicity and use of reference types, as opposed to pointers, is now preferred in
C++ for function call by reference.
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Storage class and scope

Every variable has a sforage class. The storage class determines the scope
(visibility) and extent (longevity) of the variable. It decides within how much of the
program it is visible and how long it remains in being.

There are two storage classes, automatic and static. The C++ runtime system
allocates, and deallocates, automatic storage during program execution. The
compiler allocates static storage at compile time.

If you define a variable within a function, it’s a local variable, also called an internal
variable. The local variable is of automatic storage class and only exists for the
duration of execution of that function. It’s also only visible, or in scope, for the code
of that function.

On the other hand, a variable defined outside all functions (an external, or global
variable) is of static storage class and exists for the duration of execution of the
program. An external variable is in scope for all the code in all functions in your
program.

A variable defined within a function and qualified with the keyword static is an
internal variable but has static storage class; it also exists for the duration of the
program’s execution.

There are four storage class specifiers which you can use to specify explicitly a
variable’s storage class:

auto
register
static
extern

Auto and register specifiers
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For a variable to be of automatic storage class, it must be defined within a function.
All the variables we have so far defined within functions are automatic, or auto,
data objects.

This means that memory space for these variables is allocated each time the
function is entered and that the space is discarded upon exit from the function.
Because of this, an automatic variable cannot be accessed from any other function.
The value of an automatic variable is lost on exit from the function in which it is
defined. The integer definition

int x;
means the same thing as

auto int x;

if it is within a function and not otherwise qualified. However, auto is the default
storage class specifier and need not be explicitly declared. (It rarely is.)



You can define a variable with the storage class specifier register. This is the same
as auto in every way except that the compiler, on seeing the register specifier,
attempts to allocate space for the variable in a high-speed machine register, if such
is available.

stafic storage class

Y ou can define a variable with static storage class by placing it outside all functions
or within a class or function prefixed with the keyword static. A static variable has
its memory allocated at program compilation time, rather than in the transient
manner of auto.

A static internal (defined within a function) variable retains its value even on exit
from that function. A static internal variable cannot be accessed by other functions
in the program — it is in scope only for the code of its own function — but a value
assigned to it will still exist the next time the function is entered. A static variable
defined as a member of a class is in scope for all members of that class. There is
only one copy of such a static member, no matter how many instances of the class
are created — a static class data member is often referred to as a class variable. An
external variable is, by default, of static storage class.

Ifa static variable is not explicitly initialised, its value is set to zero at compile time,
when space for it is allocated. Here is an example of how a static variable internal
to a function retains its value even on exit from the function:

void run_total(void)
static int total = 1;

total = total + 1;

}

At compilation time, the compiler allocates space for total and sets its value to 1.
This is done only once, not every time the function is entered. Every time the
function is executed, the value of total is incremented by one. The fourth time that
the function is entered, the value of total is 4.

The extern specifier

The last storage class specifier is extern. An external variable may be accessed by
any function in the program file in which it is defined. Its definition may be
accessed by any function in another program file if it is specified in that program
file with the keyword extern.

Here is a trivial pair of program files that illustrate an extern declaration used in one
to allow its code to access a global variable defined in the other. The files are
extern1.cpp and extern2.cpp:
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/[ extern1.cpp

#include <iostream>
using namespace std;
void func1(); // prototype

int x=5; // global variable

int main()

{
cout << "Value of x is: " << x <<endl;
X=7;
func1();

cout << "Value of x is: " << x <<endl;

}

/I extern2.cpp
#include <iostream>
using namespace std;

extern int x; /I external reference to global variable
void func1()

{

cout << "Value of x is: " << x <<endl;
X=09;
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The first action in the main function is to report the initialised value of the global
variable x, which is then assigned the value 7. Then, the function func1 (in the
second program file) is called to report the new value and again reassign x. Control
is returned to main, where the final value of x is reported. From this, it is clear that
the global variable is visible in both program files; for x to be in scope for any other
program file that might be added, that program file must contain the same extern
declaration as does extern2.cpp above. The displayed output of the program is this:

Value of x is: 5
Value of x is: 7
Value of x is: 9

Functions are not variables, but they are external objects: they are accessible
throughout the whole program. The start of a function is the first character to the
right of the opening parenthesis, in front of the formal parameter declarations. All
data objects declared within a function are internal. The function name is external
because it is not part of the function itself. This in turn means that functions must
not be nested: you can’t define a C++ function within another function.



Putting it all together

At the start of this chapter, I refer to three kinds of scope: global (file), namespace
and class. C++ has two additional scopes: function (only relevant with the goto
statement (more in Chapter 6); and local (enclosing {} block) Here is an example
program, stored in the program files progf1.cpp and progf2.cpp, that illustrates
many aspects of global, namespace, class and local scope. First, a header file,
proghead.h, containing necessary class, namespace and function declarations:

namespace ns1

void func1();

}

namespace ns2

void func1();

}

class c

{

private:
int x;

public:
static int y;
void func1();

|3

void func1(); // prototype of global func1()
void func2(); // prototype of global func2()
void func3(); // prototype of global func3()

You can see that there are to be (quite deliberately!) four versions of the function
func1. There is one in each of the namespaces ns1 and ns2, one in the class ¢ and
one in global scope. The program following shows how func1 is called in each case
by indicating the scope of the version of the function that is required.

/*

* Program file (translation unit) progf1.cpp
*/

#include <iostream>

#include "proghead.h"

int x = 30; // global variable
int c::y = 50; // class static variable

void c::func1()
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x = 20; // assign to class-instance variable

std::cout << "In class func1()" << std::endl;

std::cout << "Global x is " << ::x << " Class x is " << ¢::ix
<< " Class static y is " <<y << std::endl;

}

int main()
{
c c_inst;
c_inst.func1();// call class func1
func1(); /[ call global func1
func2();
c_inst.func1();
func3();
func3();
ns1::funci1(); // call func1 in first namespace
ns2::funci(); // call func2 in second namespace

}

void func1()

std::cout << "In global func1()" << std::endl;

}

void ns1::funci()

std::cout << "In ns1::func1()" << std::endl;

}
This is the second program file, progf2.cpp:
/*
* Program file (translation unit) progf2.cpp
*/

#include <iostream>

#include "proghead.h"

extern int x;  // reference to global variable
void func2()

int x = 10; // local (func2) variable

std::cout << "In global func2()" << std::endl;
:x =31; // assign to global variable

c::y = 51; // assign to static class variable

}

76




void func3()

{

void ns2::funci()

}

static int y = 40;

std::cout << "In global func3()" << std::endl;

std::cout << "Value of local static is " << y << std::endl;
y = 50;

std::cout << "In ns2::func1()" << std::endl;

This program is a bit complex but is very useful in that it displays in one place so
many of the possibilities. Do your best to follow it; you’ll find it worth it when
handling real, complex, C++ programs.

As well as there being four versions of func1, there are three different declarations
of the variable x. The first of these is the definition and initialisation of the global
x at the top of progf1.cpp. The second is a member of the class ¢ (declared in the
header file). The third is a local (automatic storage class) definition of x, to be found
in the global function func2 in program file progf2.cpp.

The main function creates an instance of the class ¢ and calls its member function
func1 to assign a value to c::x and report its value and the value of global x.

The static class-member variable c::y is initialised in global scope before the main
function:

int c::y = 50;// class static variable

The function that now does most of the ‘business’ is global func2, called from main.
It reassigns the global variable x and the class static c::y. When control returns to
main, c::func1 is again called to report the new values of the global and class static
variables. The global function func3 is then called twice to show the behaviour of
the internal (to func3) static variable y. Finally, use of two namespaces, ns1 and ns2
shows how we can have two more instances of func2, neither in global nor class
scope, and neither clashing with the other.

The program is compiled and linked with the following command-line sequence:
bcc32 progf1.cpp progf2.cpp

and run with the command
progf1

Its displayed output is this:

In class func1()
Global x is 30 Class x is 20 Class static y is 50
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In global func1()

In global func2()

In class func1()

Global x is 31 Class x is 20 Class static y is 51
In global func3()

Value of local static is 40

In global func3()

Value of local static is 50

In ns1::funci()

In ns2::func1()

Declaration vs definition
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The terms ‘declaration’ and ‘definition’ tend to be used as synonyms, which they
are not. In C++, the difference is very important. A declaration is an announcement
to the compiler that there is or will be a definition somewhere else in the program.
A declaration does not have any memory space allocated to it. Different kinds of
declarations include function prototypes, class declarations and extern specifications.

A definition is the actual object, not just an announcement of it. Every definition
has memory allocated for it. Examples include the code (header and body) of a
function as opposed to its prototype; a class instance; and the definition of a global
variable, as opposed to a corresponding extern declaration.

Because declarations do not have memory allocated for them, they are suitable for
inclusion in header files. It is possible, but not advisable, to put definitions in header
files. A header file containing a definition will cause linker errors if it is included
twice or more in the program files that make up the program as a whole.



Overloaded functions

C++ introduces overloaded functions. You can use a single function name to refer
to more than one instance of the function, with each instance of the function having
different argument lists. The compiler discriminates between function instances
using the different argument lists in their prototypes.

Function overloading gives you flexibility: you can use the same function name to
carry out operations on different data without having to be aware of how those
operations are implemented. Suppose, for example, you want to find the product
of two numbers, either of which may be of type int or double. You declare and
define four functions, all with the same name, to ensure a correct result regardless
of the types of the arguments used in a call to the function.

/I Overloaded function prototypes

int prod_func(int, int);

double prod_func(int, double);
double prod_func(double, int);
double prod_func(double, double);

The full text of the functions is not shown; we assume that the types and arithmetic
operations are properly handled by them. The C++ compiler chooses the appropri-
ate function instance depending on the syntax of the function call that you write:

double prod;

prod = prod_func(15, 2.718281828);
This code causes the function declared by the second prototype to be called.

Example: overloaded functions

Here’s a program, fnovl1.cpp, that uses overloaded functions to find the squares of
numbers.

#include <iostream>
using namespace std;

/I Function 'sqgr_func' overloaded

float sqgr_func(float);
double sqr_func(double);
double sqr_func(float, float);

int main()

{
float f=1.7320508;
double d = 2.236068;

cout << "Square of " << f << "is: " << sqr_func(f) << endl;
cout << "Square of " << d << "is:; "<< sqr_func(d) << endl;
cout << f << " multiplied by itself is " << sqgr_func(f, f) << end|;

79



float sqr_func(float f)

return(f * f);

}
double sqr_func(double d)

return(d * d);
}

double sqr_func(float f1, float f2)

return(f1 * f2);
}

The results output by this program are:

Square of 1.73205 is: 3
Square of 2.23607 is: 5
1.73205 multiplied by itself is 3

There are three instances of sqr_func, all with different argument lists. The
compiler selects the appropriate function depending on the arguments used in the
function call. The criteria the compiler uses to make the selection are explained in
the next section. Some basic selection rules follow.

[_The compiler does not use the return type of the function to distinguish between
function instances.

[_The argument lists of each of the function instances must be different.

[ Whether or not argument names supplied in a function call match the corre-
sponding parameter names in the function definition does not affect the
selection process.

Use of prototypes such as these, with matching function definitions later in the
code, results in compilation errors:

float sqr_func(float);
double sqr_func(float);

The compiler regards the function sqr_func as having been defined identically
twice, regardless of the different return types.

Function call resolution

When you call an overloaded function, there are three possible results:

[_A single function instance is matched by the compiler to the function call and
this instance is called.

[_Multiple, ambiguous, matches are found by the compiler, which is unable to
select between them. A compilation error results.

[ No match can be found by the compiler and a compilation error results.
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This program, fnovl2.cpp, illustrates all three cases. Note that two of these cases

cause compilation errors that are explained below.

#include <iostream>
using namespace std;
float sqr_func(float);
double sqgr_func(double);
int main()

{

}
float sqr_func(float f)

}
double sqr_func(double d)

}

float f=1.7320508;

double d = 2.236068;

int i=25;

int  *ip = &i;

cout << "Square of " << f<<"is: "
<< sqr_func(f) << endl;

cout << "Square of " << d <<"is: "

cout << "Square of " <<i<<"is:"

cout << "Square of " << ip << "is: "

return(f * f);

return(d * d);

<< sqr_func(d) << end];
<< sqgr_func(i) << endl;

<< sqr_func(ip) << endl;

The calls to the function sqr_func using double and float arguments are success-
fully matched.

The call using the integer argument is matched by promotion of the integer to either
float or double type but is ambiguous and causes a compilation error: the compiler
does not know which function instance to call as either promotion is equally valid.

There is no matching function declaration or definition for the call using the pointer
argument. This causes a compilation error.

When using overloaded functions, you should ensure that the order and type of
arguments in the call match the argument list in one (and only one) instance of the
overloaded function. If the match is not exact, the C++ compiler will try very hard
to resolve the function call to a match, but it’s better to avoid this altogether.
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Function templates

C++ provides function templates so that you can define a function capable of
operating on arguments of any type. You declare a function template by prefixing
a function declaration with the template keyword followed by a pair of angle
brackets containing one or more identifiers that represent parameterised types.
This construct is called the template specification.

C++ is a strongly typed language. This is mostly a benefit, promoting program
reliability, but it causes problems when you need to call a simple function with
arguments of types that may vary from call to call. A good example is a function,
called min, that must find the minimum of two values supplied as arguments. If the
function on a first call is to compare two ints and on the second two doubles, then
conventionally you have to make two definitions of the function to handle the two
different calls.

Templates provide an elegant solution to this problem as you can see from the
following example program:

#include <iostream>
using hamespace std;

/I template declaration
template<class num>

num min(num n1, num n2);

int main()

{
inti1, i2;
double d1, d2;

cout << "Enter two integers: ";
cin >> i1 >>i2;
cout << "minimum is: " << min(i1, i2) << endl;

cout << "Enter two doubles: ";
cin >>d1 >> d2;
cout << "minimum is: " << min(d1, d2) << endl;

}

/I template definition
template<class num>
num min(num n1, num n2)

{
if (N1 < n2)
return (n1);
return (n2);
}
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In this program, we define a function template that expects one type parameter,
represented by the place-holder num specified between angle brackets following
the template keyword. On the first call to min:

min(i1, i2)
an instance of the function template is created. This process is said to instantiate
a template function. The resulting template function has the type of the two

arguments, int, substituted for the placeholder num and compares two integers. On
the second call to min:

min(d1, d2)

a second template function is instantiated. This function has double substituted for
num and compares two double floating-point numbers. The program’s input/
output sequence is this:

Enter two integers: 3 4
minimum is: 3

Enter two doubles: 3.5 4.5
minimum is: 3.5

You should be able to see that the compiler instantiates two template functions
called min. In general, template functions are instantiated when the function is
called or its address taken. The types of the arguments used in the function call
determine which template function is instantiated:

min(i1, i2);

This causes a template function to be instantiated with the type parameter num
becoming int.
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Exercises
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1 Write a program that, in its main function, repeatedly calls the function run_total
with a single integer argument. The matching parameter in the header of run_total
is called increment. Within the function, add increment to an accumulator and
display the accumulator’s value. That value should be the cumulative value for all
the times run_total has so far been called.

2 Write a program that, in its main function, calls the function get_num with a single

address-of-integer argument. get_num should read a number from the standard
input. On return from get_num, display that number.
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Defining and initialising arrays

Definition
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Here is a definition of an array of data objects of type int:
int  numbers[10];

Ten integer data objects are defined. They are individually accessed by means of
the identifier numbers suffixed by a subscript enclosed in square brackets.

numbers[0] is the first (element zero), leftmost integer in the array.
numbers[1] is the second.

numb.é.rs[g] is the last, or rightmost, element.

Subscripts in C++always start at zero and stop one short of the subscript limit given
in the array definition. Subscript values at the time of array definition must be
constants. C++ does not allow variable-bound array definitions. You can define
arrays of objects of any data type. Both the following are fine:

char charray[20];
float flarray[50];

You can also define arrays of pointers and arrays of aggregate data types, including
arrays, structures and other, programmer-defined, data objects.

Here is a definition of a multi-dimensional array — an array of arrays:
int  matrix[20][15];
You can define arrays in any number of dimensions. If you find it easy to use arrays

of four or more dimensions, then your intelligence is superior to mine. Considering
the array matrix:

[_There are 20 rows, counted from zero to 19.

[_There are 15 columns, counted from zero to 14.

[_inatrix[14][11] can be thought of as the element at row 14, column 11.
[_inatrix[14][11] is more accurately thought of as the 11th element of array 14.

[_The array matrix is not, in fact, organised in memory as a rectangle of integer
data objects; it is a contiguous line of integers treated as 20 sets of 15 elements
each:

[_The subscripts of matrix are specified in row-column order — matrix[r][c] —
and the column subscript varies more rapidly than the row subscript, in line with
the way in which the array elements are stored in memory.

matrix[20][15]

[0][0] [01[14] [1][0]1  [1][14] (19101  [19][14]



Initialisation

You can explicitly initialise an array using an initialiser list consisting entirely of
constant values. Any initial values of automatic array elements that are not
explicitly initialised are garbage; for static arrays, the array elements are zero.

You can enclose array initialiser lists in curly braces, as in the example below, or,
in the case of string initialisation, use a string literal enclosed by double quotes.

You could define and initialise an array, mdd, to hold the number of days in each
month of the year:

int mdd[13] = {0,31,28,31,30,31,30,31,31,30,31,30,31};

The data used to initialise an array must be a set of constants enclosed in curly
braces, separated by commas and terminated with a semicolon.

In the same way, you could set up a character array:

char arr[5] = {'n','e","l''l','0"};
If there are more initialising data objects within the curly braces than implied by
the subscript limit, the compiler reports an error. If there are fewer initialising data

objects than the subscript limit, all excess elements in the array are set to zero for
a static array, but have garbage values for an automatic array.

You initialise two- and multi-dimensional arrays like this:

int tab[3][4] = {

{1,2,3,4},

{5,6,7,8},

{9,10,11,12}
Here the outside curly braces are necessary, while the internal ones are optional but
are included for readability. The first array bound, [3], is the number of rows and
the second, [4], represents the number of columns. The array tab consists of three
four-element integer arrays. The contents of some of its elements are:

tab[0][0] ==
tab[1][2] ==
tab[2][3] ==12
You can leave out one of the array bounds, but not both:

int tab[][4] = {

{1,2,3,4},

{5,6,7,8},

{9,10,11,12}

¥

87



Strings, subscripts and pointers

Definition of C-string
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You’ve already seen (in Chapter 2) the difference between C-strings and instances
of the C++ Standard Library class string. This section is concerned with C-strings.
C-strings are arrays of elements of type char terminated by the first null character,
\0', encountered in the array. The definition from the last section:

char arr[5] = {h','e",I"I''0'};
is a character array; elements 0 to 4 of the array are initialised with the five letters
of “hello”. The definition:

char arr[6] = {h'/e"I"1,'0'\0');
is a C-string initialised to “hello” and null-terminated. To accommodate the null
character, the second definition of arr needs one more element.

The last definition is equivalent to:
char arr[6] = "hello";

Recall that a character constant, which can only represent one character, is
delimited by single quotes as in 'a' and "\n'. A string literal is delimited by double
quotes. The double quotes imply the existence of a terminating null character. If
you forget to add one more array element to accommodate the null character, ISO
C++ does not add one for you and ‘get you out of trouble’. However, your C++
compiler will probably do it for you, as shown by the program null.cpp:

#include <iostream>
using namespace std;

int main()
char arr[5] = "hello";
for (int i=0; i<10; i++)
if (arrfi] == "\0")
cout << " Null ";

else
cout << arrfi] << " ";

}
The displayed output on my system is:

hello Null Null Null,y

which shows that space was allocated for at least one "\0' character following the
five characters of “hello”.

The single-quoted sequence 'a' is the mechanism used in C++ to represent the
ASCII code-table entry for the letter a. By contrast, "a" is a null-terminated C-
string, equivalent to the character pair 'a’,\0".



You can use string literals in the same way as variable C-strings, and even access
individual characters of a string literal by suffixing the literal with a subscript:

"hello"[1] == "¢’

Each time you use a string literal in a program, the compiler may allocate new
memory space for it — an unnamed static array — even if it is identical to a string
literal used earlier in the program. By contrast, a variable array, once defined either
externally or internally, will only have one memory allocation made for it at any
given time. You shouldn’t use an error message such as:

"Error: can't open file"

repeatedly in a program in its string-literal form. Instead, it’s best to use the literal
to initialise a variable and then to use the variable with successive printf calls.

Finding string length using subscripts

The program that follows, slengths.cpp, calculates the length (counting from 1, not
zero) of a C-string. The call to slength — which traverses the C-string to find its
length — is included as part of the second cout statement in main. Every function
has a return value and type. slength is of type int, so the call to it is treated as an int
in the cout statement.

/***********************************************************************

'slengths.cpp' — Find the length of a C-string stored in

*

**********************************************************************/

#include <iostream>
using namespace std;

int slength(char []);

a character array, using subscripts

int main()

char instring[50];

cout << "Enter input string ";
cin >> instring;
cout << "String length is " << slength(instring) << endl;

}

int slength(char instring[])

{
inti;
for (i=0; instring[i] != "\0"; i++)
returr11(i);

}
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slength traverses the array until a null character is encountered, counting the
number of characters on the way. The body of the for loop doing this consists of
just a semicolon, which is a null statement.

The counting of characters includes the null character \O'. Normally, the null
character is not included in a C-string’s length. However, we want to report the C-
string’s length as if we were counting from 1, not zero. Counting in the null
character compensates for the fact that we are counting from zero. Here’s the
displayed output when the program is run:

Enter input string abcdefghijkl
String length is 12

If the C-string is not terminated with a null character, slength will run on until it
reaches the end of the system’s memory or it is stopped by the operating system.
C++ does not check for this and all kinds of ghastly errors can result from omitting
C-string terminators. In fact, one of the main motivations for providing a fully-
functional string class as part of the C++ Standard Library is to make it unnecessary
for you to use C-strings and run the risks of omitting the null terminator.

Finding string length using pointers
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Given these definitions:

char stg[50] = "Double double toil and trouble";
char *cptr, *Iptr;

and initialising the pointers:
cptr = Iptr = stg;
the code following finds the length of the C-string as it has been initialised:

while (*Iptr)
Iptr++;
return(lptr - cptr);

This is part of the pointer version of the slength function, which is given in full
below. Note that:

[_&ptr and Iptr point at the address of the first element of the character array stg.
[ Tliptr is the contents of that element.

[ Fiptr is the same as stg[0].

[_ptr is the same as &stg[0].

When Iptr is incremented by one, *Iptr is equivalent to stg[1]; when further
incremented by one, *Iptr is the same as stg[2], and so on.

Iptr is incremented until its contents (*Iptr) equal the null character. If *Iptr is null,
it is inherently false, so you don’t have to make an explicit comparison between it



and "\0'. The displacement of the pointer Iptr from the array address stg (same as
cptr) is calculated by subtraction, giving the length of the C-string stg.

Here is the pointer version of the C-string-length program, slengthp.cpp:

/***********************************************************************

*

*  'slengthp.cpp' — Find the length of a C-string stored in

* a character array, using pointers

*
**********************************************************************/

#include <iostream>
using namespace std;

int slength(char *);

int main()

{
char instring[50];
char *cptr = instring;

cout << "Enter input string ";
cin >> cptr;
cout << "String length is " << slength(cptr) << end];

}
int slength(char *cptr)
{
char *Iptr = cptr;
while (*Iptr)
Iptr++;
return(lptr - cptr);
}

The integer number returned by slength to main is the displacement between the
two pointers Iptr and cptr and is the length of the C-string instring. Executing this
program produces the same output for given input as does slengths.cpp.
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C library string functions
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Common operations on strings include copying, length-checking and comparison.
Using the standard header file, cstring, you can use the traditional C++ Library
functions for string-handling. (As part of the ISO C++ standardisation, the then
Standard C++ header file string.h was renamed cstring to make clear the purpose
of'the file. The header file string is what you now include when you want to use the
facilities of the Standard C++ string class. All other traditional C++ header files
have been similarly renamed: stdio.h to cstdio; stdlib.h to cstdlib and so on). To use
cstring, you should include it in your program using the preprocessor:

#include <cstring>

Some of the most often-used C-string functions are:

strlen Finds the length of a string
strcat Joins two strings

strcpy Copies one string to another
strcmp Compares two strings
strncmp Compares parts of two strings

strlen operates like slengths and slengthp from the previous section:
int len;
char s[50] = "A text string";
len = strlen(s);

After this code, len contains the number of characters in the C-string (13), not
counting the terminating null character.

strcat concatenates two C-strings:

char s1[50]
char s2[50]

"A text string ";
"with another appended"”;

strcat(s1, s2);

This appends the C-string s2 to the end of the C-string s1, yielding "A text string
with another appended" as the contents of s1. It’s your responsibility to ensure that
s1 is long enough to accommodate the joined C-strings. In real application
programs, the first argument to strcat is usually a pointer pointing to enough
dynamically-allocated memory to ensure that both C-strings can be accommo-
dated. Dynamic memory allocation is explained in Chapter 7.

strcpy copies the second C-string operand to the first, stopping after the null
character has been copied. The example given below illustrates its use. strcmp and
strncmp both compare two C-strings and return a negative, zero or positive value,
depending on whether the first string is lexicographically less than, equal to or
greater than the second.

char s1[50], s2[50];



strcpy(s1, "hello");
strcpy(s2, "hallo");

result = strcmp(s1, s2);

/I s1 greater than s2, so result is positive

strncmp does the same thing as strcmp, but only compares a specified number of
characters in the two C-strings:

strncmp(s1, s2, 1);

In the example above, this would compare only the first letters of the two strings
and would return a zero value, denoting equality. You’re not allowed in C++ to
compare two strings using the == equality operator, unless you use operator
overloading to give the == operator a new definition allowing it to do that
comparison. For more on operator overloading, see Chapter 9. Assuming the non-
overloaded ==, each character in the two C-strings must be compared to its
counterpart in the other C-string. The library functions strcmp and strncmp are
provided for this purpose.

Program example: pattern matching

The program strpos.cpp that follows accepts as input two strings s1 and s2 and
finds the start position in s1 of s2. If s2 is not found in s1, a negative value is
returned. The strpos function, which finds the position of s2 in s1 if there is a
match, is an extremely useful function for pattern matching in text. Its C-library
equivalent is strstr.

*

*
*
*
*

/**********************************************************

**********************************************************/

#include <iostream>
using namespace std;

#include <cstring>
#define MAX 50

int strpos(char *, char *);
int main()

char str1[MAX], str2[MAX];

'strpos.cpp' — Find the position of C-string s2
in s1. Return the position if found,
or a negative value otherwise.
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char *s1 =str1, *s2 = str2;
int  pos;

cout << "Enter string to be searched: ";
cin.get(s1, MAX);

cin.get(); /I Read trailing "\n'
cout << "Enter search string: ";
cin.get(s2, MAX);

cin.get(); /I Read trailing \n'
pos = strpos(s1, s2);
if (pos < 0)
cout << s2 << " not found in " << s1 << endl;
else

cout << s2 << " at position "
<< pos << "in " << s1 << end|;

}
int strpos(char *s1, char *s2)
{
int len;
char *lptr = s1;
len = strlen(s2);
while (*Iptr)
if ((strncmp(lptr, s2, len)) == 0)
return(lptr - s1 + 1);
Iptr++;

return(-1);

%4

The main function accepts user input of two C-strings and then passes them to
strpos for matching. The statements:

cin.get(s1, MAX);
cin.get();

are used as an alternative to:
cin >> s1;

which is what we have used for input up to now. The difference between the two
is that the function cin.get will accept input text containing blanks, while the simple
use of cin stops input to s1 when it encounters the first blank.



Let’s use an example to explain how the function strpos works. Suppose s1 points
to the C-string "Great Dunsinane he strongly fortifies" (more Shakespeare!), while
s2 points to another C-string "Dunsinane”. The first thing the function does is to
set a temporary pointer, Iptr, equal to s1 and thus pointing at the longer C-string.
A call to strlen finds the length of the C-string at s2 which, in the case of
"Dunsinane”, is 9. Inside the loop, while Iptr is still pointing at a non-null character,
strncmp is used to compare "Dunsinane” with successive nine-character substrings
of the longer C-string. If there’s a match, strncmp returns zero and our strpos
function returns the position of "Dunsinane”, that is, 7. If no match is ever found,
strpos returns the position as -1.

Here’s the display produced by strpos.cpp:

Enter string to be searched: Great Dunsinane he strongly fortifies
Enter search string: Dunsinane
Dunsinane at position 7 in Great Dunsinane he strongly fortifies
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Structures

The elements of an array are all the same size and type. [f you need to group together
in one entity data objects of different sizes and types, you can use structures to do
s0. A structure is an aggregate data type: a collection of variables referenced under
one name. A structure declaration is a programmer-defined data type. The C++
class construct (introduced in Chapter 1, covered more fully in Chapter 8) is simply
a special kind of structure. The only difference is that, with structures, the default
access level for members is public; access to class members is by default private.
Structure members can be either data or functions.

Structure declaration and instantiation
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Here is how to declare a structure:

struct stock_type

{
char item_name[30];
char part_number[10];
double cost_price;
double sell _price;
int stock_on_hand;
int reorder_level;
int stock_take();
void reorder(int);
void take_from_stock(char *);
void show_values();
%

Notice that there are six data members and four function members. Data and
function members could be interspersed in any order; it does not have to be all data
followed by all functions. Access to all ten members is set by default to public; any
outside function can call the member functions or directly use the data members.
From the standpoint of object-oriented design good practice, it is best not to have
everything public, which is why C++ classes are used much more than structures.
There remains a place in C++ for structures for cases in which a collection of data
of different types needs to be stored in a single entity and where data-hiding is not
amajor consideration. This is usually found in a class library where the classes need
free access to a collection of data; the collection is represented as a structure and
used internally only by the classes.

The structure declaration above is not a definition — no memory space is allocated
for the data objects specified, and it does not create an instance of (instantiate) the
structure. All that exists after the declaration is the new, programmer-defined, data
type stock_type. This is a grouping of data and function declarations that may be
used to instantiate, or define, structure variables. To define a structure variable with
a variable list, you can use this form:



struct stock_type

{
char item_name[30];
char part_number[10];
double cost_price;
double sell_price;
int stock_on_hand;
int reorder_level;
int stock_take();
void reorder(int);
void take_from_stock(char *);
void show_values();
}stock _item;

Now, we have defined an instance of the data type stock_type, for which memory
is allocated and which is called stock_item. You can put multiple names in the
variable list to define multiple instances of the structure.

There is a better way of defining instances of a structure, e.g.
stock_type stock_item1;

creates an instance of the stock type structure in memory and separates the
declaration of the structure from its definition. This method allows the programmer
to put the structure declaration in a #include file and later to define instances of that
declaration in the program.

Structure members

The component data and functions of a structure are called members. In the
stock_type example, there are ten members of the structure and every instance of
the structure has the same ten members. To refer to an individual structure member,
you use this syntax:

stock_item1.reorder(100); // order 100 more

The ‘dot” or ‘member of” operator references reorder as a member function of
stock_item1, which is defined as an instance of the structure type stock_type.

There’s nothing wrong with defining an array as a member of a structure. You
access the fifth element of the array item_name like this:

stock_item1.item_name[4]

A structure may have one or more members which are also structures. A structure
must not contain an instance of itself.

It’s legal to assign to a structure another structure of identical type. However, you
can’t compare two structures using the default (non-overloaded) equality operator
==. Each of the structure members must be individually compared.
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stock_item2 = stock_item1; /I assignment, OK

if (stock_item1 == stock_item2) // comparison, wrong

Nested structures

You can define a structure member that is itself a structure. Here’s an example of
nested structure declarations and definitions:

struct stock_type

char item_name[30];
char part_number[10];
struct detail
{
int height;
int  width;
int  depth;
struct bin
{
char building[50];
int floor;
int bay;
int  shelf;
int  quantity;
}bin_loc;
char special_reqs[50];
char part_number[10];
}item_detail;
double cost_price;
double sell_price;

int stock_on_hand;

int reorder_level,

int stock_take();

void reorder(int);

void take_from_stock(char *);
void show_values();

%
/I define an instance of the outermost structure
stock_type stock item;

The structure item_detail is nested within stock_item and contains further informa-
tion about the stock item. The structure bin_loc is in turn nested within item_detail
and holds information about a bin location. In C++, it is unusual to nest structures
fully in this way. The more typical, and equivalent, syntax is this:
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struct bin

{
char building[50];
int floor;
int bay;
int shelf;
int quantity;
|3
struct detail
{
int height;
int width;
int depth;
bin bin_loc;
char special_reqs[50];
char part_number[10];
|3
struct stock_type
{
char item_name[30];
char part_number[10];
detail item_detail;

double cost_price;
double sell _price;

int stock_on_hand;

int reorder_level;

int stock_take();

void reorder(int);

void take_from_stock(char *);
void show_values();

¥
stock_type stock_item;

In either case, you find the height of a particular item with this code:
stock_item.item_detail.height

and the shelf on which that item is stored is:
stock_item.item_detail.bin_loc.shelf

In the second form of declaration, the three structures are declared and defined in
reverse order. You have to do this to conform with C++’s scope rules for
declarations of variables. The declaration of detail is in scope for the definition of
item_detail because it appears first. If the declaration of detail were instead to
follow that of stock_type, a compiler error would result, flagging detail as an
unknown type.
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You can use the name of a structure member either in other structures or as the
identifier for an elementary data object, without any clash. In the example above,
uniqueness of the identifier part_number is ensured by the fact that it must be
suffixed to a structure name by the dot operator:

stock_item.part_number

Using structure instances

Let’s look at a simple program, initstr1.cpp, which assigns values to the members
of a structure of type stock_type and displays the contents:

/***********************************************************************

*

* 'initstr.cpp’ — Creates a structure instance and assigns data
* to its data members. Then calls member function
* show_values to display those values

**********************************************************************/

#include <iostream>
using hamespace std;

struct stock_type

{
char item_name[30];
char part_number[30];
double cost_price;
double sell_price;
int stock_on_hand;
int reorder_level;
int stock_take();
void reorder(int);
void take_from_stock(char *);
void show_values();
3
int stock_type::stock_take()
{
/I do stock-taking
return O;
}

void stock_type::reorder(int reorder_qty)

// reorder the quantity

}
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void stock type::take from_stock(char *part_no)

/I take the part from stock
}

int main()

{

stock_type stock item;
const int MAX = 50;

cout << "Enter item name ";
cin.get(stock_item.item_name, MAX);
cin.get();

cout << "Enter part number ";

cin >> stock_item.part_number;
cout << "Enter cost price ";

cin >> stock_item.cost_price;
cout << "Enter sell price ";

cin >> stock_item.sell_price;

cout << "Enter stock on hand ";
cin >> stock_item.stock_on_hand;
cout << "Enter reorder level ";

cin >> stock_item.reorder_level;

stock_item.show_values();

}

void stock_type::show_values()

{
cout << endl| << item_name << endl;
cout << part_number << endl;
cout << cost_price << endl;
cout << sell_price << endl;
cout << stock_on_hand << endl;
cout << reorder_level << endl;

The declaration of the stock_type class specifies six data and four function
members, all with public access. Three of the four member functions are defined
as dummies, for example:

int stock_type::stock_take()

/I do stock-taking
return 0O;

}
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This is the header and body of the function stock_take, which is in the scope of the
structure stock_type and returns a value of type int.

The main function first defines an instance of the structure type stock_type. For all
the members of the structure, cout statements prompt the user to enter data.
Depending on whether or not expected data input will contain blanks, either cin.get
or cin is used to read input directly into the data members of stock_item. Finally,
the member function show_values is called to display the contents of the structure
members.

Defining an array of structures

You can define arrays of structures in the same way as arrays of any other data
object. Look at the structure struct bin:

struct bin

{

char building[50];
int floor;

int bay;

int shelf;

int quantity;
3

There are probably many bin locations where a given item is stored, perhaps
dispersed among different buildings. Each bin location might be numbered up to
amaximum. You can hold all the bin location detail in an array of structures of type
bin:

bin bin_arr[20];
Now you can search for a bin which has one of the items in stock:

for (int i=0; i < 20; i++)

if (bin_arr[i].quantity != 0)

/I Item found
cout << "bay " << bin_arr[i].bay
<< " shelf " << bin_arrl].shelf
<< " in building " << bin_arr.building << end|;

/I Take one out of stock
bin_arr[i].quantity -= 1;
break;
}
}
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Initialising a structure instance

You will remember that initialisation of a variable happens at the point of its
definition, while assignment takes place sometime after the definition. The
program initstr.cpp makes assignments to a structure instance. Now we’re going to see
how to initialise one. In fact, initialising a structure is like initialising an array.

Using the familiar declaration and definition of stock_type and stock_item, here
is how stock_item is initialised:

struct stock type

{
char item_name[30];
char part_number[10];
double cost_price;
double sell_price;
int stock_on_hand;
int reorder_level;
int stock_take();
void reorder(int);
void take_from_stock(char *);
void show_values();

2

stock_type stock_item =

"Turbocharged sewing machine",

"8705145B",

275.65,

340.00,

50,

20

¥

All the initialising expressions should be of the same types as the corresponding
structure members, otherwise these will end up containing corrupted data. Simi-

larly, the initialising string constants should be shorter than the sizes of the array
members of the structure to allow inclusion of the null character as terminator.

Using the mutable keyword

The storage class type qualifiers const, volatile and mutable were introduced in
Chapter 2. Now that we’ve seen the C++ struct, I can explain the use of mutable.
When creating an instance of a structure or a class, you can qualify the definition
with const so that the instance members cannot subsequently be changed. But you
might want a situation where not all the members of the structure or class are to be
const and unchangeable after the definition. For example, in the initialised
structure instance we have just seen, it might be necessary to change the selling
price, even though everything else remains immutable. Hence mutable:
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#include <iostream>
using namespace std;

int main()

struct stock_type

{
char item_name[30];
char part_number[30];
double cost_price;
mutable double sell_price;
int stock_on_hand;
int reorder_level;
int stock_take();
void reorder(int);
void take_from_stock(char *);
void show_values();
I
const stock_type fixed_item =
{
"Turbocharged sewing machine",
"8705145B",
275.65,
340.00,
50,
20
It

fixed_item.sell_price = 400.00; // OK
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Pointers 1o structures

Pointers to structure members

You can define a structure and a structure pointer like this:

struct stock_type

{
char item_name[30];
char part_number[10];
double cost_price;
double sell price;

int stock_on_hand;

int reorder_level;

int stock_take();

void reorder(int);

void take_from_stock(char *);
void show_values();

2
stock_type stock _item;
stock_type *sptr = &stock_item;

Notice that sptr, the structure pointer, is initialised to the address of the structure
instance, stock_item. You can use the pointer sptr rather than the instance name
stock_item to access the structure’s members with the arrow operator:

sptr->part_number
sptr->part_number[5]
sptr->stock_on_hand

sptr->reorder(100)

Recall that sptr is pointing at the structure instance and that the ‘object at’ sptr
(*sptr) is the structure data itself. Therefore, the syntax sptr-><member> is
equivalent to (*sptr).<member>.

Structures as arguments

You can pass structure instances as arguments between functions. It is more
efficient to pass pointers to instances than the instances themselves:

void some_func(stock type *); // function prototype

stoék_type stock_item;
stock_type *sptr = &stock_item;
some_func(sptr); /I function call
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void some_func(stock_type *ptrln)  // function definition

ptrin->reorder(100); /I reorder stock

In modern C++, the reference type is preferred to pointers for use in passing
structure and class arguments between functions:

void some_func(stock type &); // function prototype

stoék_type stock_item;

some_func(sptr); /I function call

void some_func(stock_type& refln) // function definition

refln.reorder(100); /I reorder stock

}

Using references removes the need for use of a pointer/address as the argument in
the function call, and of the pointer-to operator -> in the called function. Some
people like the symmetry and consistency of the pointer and dereferencing; newer
C++ programmers tend to go with references. In any case, the compiler may
internally implement the reference notation with the pointer equivalent. You
should feel free to choose either option, although references are probably more
fashionable.

It is almost always more efficient to pass large data objects, such as arrays,
structures and class instances, as arguments between functions, using their ad-
dresses, or references, rather than copying the whole structure. Copying structures
between functions can result in significant overhead as member data of the
structure is repeatedly pushed and popped in the system’s stack space, which is
used for transfer of arguments.



Unions

The C++ union is a special case of the class construct. A union is syntactically
similar to a class (and a structure) but the compiler only allocates space in memory
sufficient to accommodate the largest member of the union, along with any
additional space at the end needed by the alignment requirements of the host
computer system. At any given time, an instance of only one union member
actually exists. You will only want to use umions in very specific cases, typically
where memory space is at a premium.

Like classes, unions can have data and function members. They can also include
constructor and destructor functions. (These are dealt with in Chapter 9). A union
must not contain base classes or be itself a base class. Unions must not contain
members that are virtual functions. Base and derived classes, along with virtual
functions, are covered in Chapter 10.

It’s OK for unions to have members specified private, protected or public. If none
of these is specified, access defaults to public, in the same way as for a structure.
Unions may be nested and may occur in arrays. Pointers to unions may be defined
and the pointers or the unions themselves may be used as function arguments or
return values.

Union example: a spreadsheet cell

Here’s a complete example program that illustrates use of a union. The program
accepts input to a character array and parses the contents as might an elementary
spreadsheet program. The array is analysed to determine if its contents represent
an integer, a double floating-point number or a character string.

Depending on the type of the data, it is copied to the appropriate member of the
union, displayed and then ‘stored’.

using n

#include <iostream>

#include <cstdlib>  // declares 'atoi' and 'atof' functions
#include <cstring>  // declares C-string functions

/I Declare a union: it could be a simple spreadsheet cell

union sp_cell
{
private:
int ival;
double dval;
char sval[20];
char instring[20]; // array for input

amespace std;
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public:

char get_token();
char analyse();
void put_token(char);

I
char sp_cell::get_token()

cout << "Enter a number, fraction or string: ";
cin >> instring;
return(analyse());

}

char sp_cell::analyse()

{
inti=0;

while ((instring[i] != \0') && (i < 20))
{

if (instring[i] ==".") /I decimal point
return ('d");
if ((instring[i] <'0") ||
(instring[i] > '9")
return ('s');
i++:

}

return ('i');
}

void sp_cell::put_token(char token_type)

{
if (token_type == ")

ival = atoi(instring);
cout << "Integer " << ival << endl;
}
else
if (token_type == 'd'")
{

dval = atof(instring);

cout << "Double " << dval << endl;
}
else
if (token_type =='s')
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}

int main()

{ sp_cell cell;

: cell.put_token(cell.get_token());

{

strcpy(sval, instring);

cout << "String " << sval << endl;
}
else

cout << "Invalid data" << endl;
cout << "Data has been stored\n";

This program is an example of the remarkable brevity that can be achieved in the
calling function by use of classes with encapsulated data and function members.

The union sp_cell is declared with three data members representing a spreadsheet
cell: an integer, a double and a character array. A further character array, instring,
is defined to take input data. The reason that we’re using a union, as opposed to a
struct or a class is that the data input can be only one of the three possible types:
whole-number, fraction (with a decimal point) or text string. There is therefore no
need ever to allocate memory for a given spreadsheet cell for more than one of the
three types. This makes the union ideal for this case.

The main function defines an instance, cell, of the union sp_cell. This is used to call
the member function put_token. The call to put_token uses as its argument the
return value of get_token, which prompts the user for input and accepts it into
instring.

get_token in turn calls the function analyse, which does the string parsing and
returns to get_token a character representing the type of data input. get_token
returns the same character, which is used as a parameter by put_token to determine
the nature of conversion and storage required by the input data.
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Exercises
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Write a program, scopy.cpp (without use of the library functions), that copies the
contents of one C-string to another and displays the result.

Now write a cleverer program, mincopy.c (without use of the library functions),
that uses the minimum amount of code necessary to do the work of scopy.cpp. (I
give prizes for the shortest version of this program, so let me know if you think
you’ve got a winner. The current champion has one (only) line of code in main).

Write a program that accepts an input C-string. The contents of the C-string should
be a sequence of characters in the range 0-9. There should be no more than six such
characters. Validate the contents of the C-string as being an integer in the range 0—
999999. Convert it to integer and display it. Use the library functions here if you
need them.

Write a program that accepts an input C-string and then displays it with the
characters in reverse order.
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Boolean value of expressions

Every C++ expression has an inherent value, which is either zero or non-zero. In
the philosophically-simple world of C++, everything is either true or false. Zero is
‘false’; non-zero is ‘true’. As you’ve seen, C++ has a specific boolean data type
bool; a variable of this type can have only two values — either true or false. But you
can also use, for example, an int or short type if you want a boolean variable:

#define TRUE 1
#define FALSE O
short date valid = 0; /I set FALSE

1 Aésign return-value of date-validation function to the flag.
/I The return value is either 0 (FALSE) or 1 (TRUE).
date_valid = validate();

Recall that every expression has a zero or non-zero value:

if (date_valid) cout << "Valid date entered" << end];
if (!date_valid) cout << "Invalid date entered" << endl;

If date_valid is not zero, it is ‘true’ and the first test succeeds. If date_valid is zero,
it is ‘false’. The unary negation operator, !, causes the second test to go true and
an invalid date is flagged.

In this example, the function call validate() is itself an expression with an inherent
return value. It’s OK to write:

if ((validate()) == TRUE) /I return value true, date valid
cout << "Valid date entered" << endl;

or simply:
if (validate())cout << "Valid date entered" << end|;

For expressions, value zero represents ‘false’; non-zero is ‘true’. For relational
expressions, ‘false’ equals zero and ‘true’ equals 1. To illustrate:

int a=0;

int b =-5;

int c=5;

float e =2.71828;

a /I FALSE
b /I TRUE

a+b Il TRUE
b+c /I FALSE

e /I TRUE
a== /I TRUE (1)
b< 0 /I TRUE (1)

e>3.0 /I FALSE (0)
Finally, the explicit values 1 and 0 may be used to represent ‘true’ and ‘false’:

while (1)  // infinite loop
while (10) // same
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Assignment

The simple assignment operator, =, has the effect of changing the value of the
operand to its left. This operand is sometimes called the /value. The Ivalue operand
to the left of the assignment must be an expression referring to a region of memory
which the program may change. Therefore it must not be a constant or an
expression like x + 5.

int no_leaps;
no_leaps = 0; // assignment changes the value stored at the
/I location associated with the name no_leaps to zero
To add 1 to the value of no_leaps, you can use the traditional form of assignment:
no_leaps = no_leaps + 1;

This means that the memory location named no_leaps is updated with the current
value stored in that memory location plus one. In C++, it’s more common (and
better practice) to use for the assignment that most characteristic of all aspects of
C++ syntax:

no_leaps++;

This also increments no_leaps by one. Depending on the compiler, use of the post-
increment may lessen compile time and reduce resultant code output, because there
is only one reference to the variable being incremented.

Similarly, you can also write the decrement-by-one operation as:
no_leaps--;

To increment no_leaps by 2, you write:
no_leaps = no_leaps + 2;

or:
no_leaps += 2;

This form of compound assignment can be generally applied:

X+=y is equivalentto x=x+y
x*=y+z isequivalentto x=x*(y+2z)
X-=Yy is equivalentto x=x-y
X/=y is equivalentto x=x/y

The most common of all compound assignments is the increment-by-one:
no_leaps++;

You can also use:
++no_leaps;

If no_leaps is the only operand in the expression and this expression is not itself
on the right-hand side of an assignment, the two statements above are equivalent.
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In the following case, the uses of the ++ compound operator before and after the
variable are not equivalent:

int days_total;
no_.I.éaps = 5;
days_total = no_leaps++;

Here, the value of no_leaps is assigned to days_total and only then is no_leaps
incremented by one. The value of days_total after the assignment is 5. If you
instead wrote the assignment:

days_total = ++no_leaps;

the value of no_leaps would be incremented first and then assigned to days_total,
giving a final value of 6.
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Comparing data

Relational operators

To compare the values of variables in your C++ programs, you need relational
operators. The relational operators provided by C++ are:

< less than

>  greater than

<= less than or equal to

>= greater than or equal to
The equality operators are:

== equality

= non-equality

All arithmetic operations are done before(have higher precedence than) relational
tests, which in turn are carried out before tests for equality. For example:

if (dd > MAXDD - 1)
means the same as
if (dd > (MAXDD - 1))
although you may often use the second form for clarity. For all operators, liberal

use of parentheses can eliminate surprises caused by unexpected effects of the
precedence rules.

Logical operators

C++’s logical operators are:

&& AND

| OR

I NOT
The precedence of the unary negation operator, !, is the same as that of unary minus,
-, and is higher than any of the arithmetic, relational, or logical operators.

&& and || operations are of lower precedence than relational and equality opera-
tions. && is evaluated before ||. For example, evaluation of this compound
condition will be unexpected:

if (mm==4 || mm==6 || mm==9 || mm==11 && dd>30)

The first test that’s done is for mm being equal to 11 AND dd being more than 30.
If the month is one of 4, 6 or 9, the test returns TRUE (1) regardless of the value
of dd.

115



To achieve what was probably required — if it’s April, June, September or
November AND the day is greater than 30 — you should use parentheses that make
clear the precedence you want:

if (mm==4 || mm==6 || mm==9 || mm==11) && (dd > 30))

In general, if you are in doubt about default precedence, you should explicitly use
parentheses to indicate what you intend. Even if they are unnecessary, they will be
‘stripped out’ at compilation time and cost nothing in terms of the execution
efficiency of your program.

Conditional expressions
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The conditional operator, ?:, is the only so-called ternary operator implemented by
the C++ language. The others are all either unary, in that the operator takes only
one operand, or binary, taking two.

Using three operands, the ?: allows a shorthand to be used for if....else constructs
such as

if (x>y)
max = X;
else
max =y;

Using ?: you can write this as:
max =(x>y)?x:y;

The parentheses around the condition are not necessary; the ?: is of lower
precedence than any of the arithmetic or logical operators.

Whether or not the condition expression is enclosed in parentheses, it is evaluated
first; one, and only one, of the second and third operands is evaluated, depending
on the boolean result of the condition expression.

The parentheses, even in this simple case, are nevertheless useful for readability.

One of the major uses of the ?: operator is for defining preprocessor macros. The
?: allows macros to be defined on one line and may cause the compiler to generate
more efficient code than the if....else equivalent:

#define MAX(A, B) (A>B)?A: B

After you make this preprocessor definition, all subsequent uses of MAX (for
example MAX(5, 6)) are substituted in your program’s code with the expression:

(A>B)?A:B
which, in the example, evaluates to:
(5>6)?5:6

and eventually, 6.



Precedence and associativity

C’s rules of precedence and associativity determine the order in which the
operations making up the evaluation of an expression will take place. From the
conventions of simple arithmetic, you would expect a * b + ¢ to be evaluated as (a
*b) + c and not a * (b + ¢). Some conventions hold that division is of higher
precedence than multiplication, but in C++ they are the same, along with the
modulus operator %.

Addition and subtraction are of the same precedence relative to each other, but
lower than the other arithmetic operators.

Associativity is subordinate to precedence: when two operators are of the same
precedence, the order of evaluation of the expression is controlled by their
associativity. The expression following the definitions below uses all of the
multiplicative operators, which are of equal precedence and associate left-to-right:

inta=10;
intb =5;
intc=09;
intd =4;

al/b*c%d [/ 10/5*9%4: result is 2

You can now examine an almost-complete table of operator precedence and
associativity. A few operators are included that haven’t been encountered up to
now. These are mainly concerned with advanced use of pointers, where precedence
of pointer operators becomes important.

Unary -, + and * are of higher precedence than the same operators used with binary
operands. The () operator means the parentheses in a function call. The [] operator
means array-bound square brackets. Operators -> and . are the pointer-to and
member-of operators for classes, structures and unions. The last operator in the
table is the comma operator. This is infrequently used. When it is used, it separates
two expressions, guaranteeing that the second expression is evaluated after the
first.

A nod to the purists: there is some simplification of the comprehensive operator-
precedence table. For example, distinctions are not drawn between the two uses of
the scope resolution operator: that of specifying scope on the one hand and
indicating ‘one level of scope higher’ on the other. Equally, no distinction is made
between delete (release previously-allocated memory) and delete[] (release an
array of such memory). This is, after all, a Made Simple book, and the precedence
table above is quite complete enough for any practical purpose you are likely to
have.

If you can remember the order of precedence and associativity for all operators in
C++, fine. Otherwise, use parentheses, even if they are not strictly necessary. It
costs nothing to use the parentheses. It also saves errors and improves code
readability.
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Operators

Associativity

:: (scope resolution) none

-> . (member selection) left to right
++ (post increment) none

— (post decrement) none

[l (array subscript) left to right
() (function call) left to right
typeid() (find type of object) none
const_cast (cast operator) none
dynamic_cast (cast operator) none
reinterpret_cast (cast operator) none
static_cast (cast operator) none
sizeof none

++ (pre increment) none

-- (pre decrement) none
(type) (old-style cast operator) right to left
new none
delete none

* (pointer dereference) none

& (address-of) none

+ (unary plus) none

- (unary minus) none

I (logical NOT) none

.* (pointer to class member) right to left
->* (pointer to class member) Right to left
1 % left to right
+ - left to right
<< >> (left- and right-bit-shift) left to right
<><=>= left to right
== I= left to right
& (bitwise AND) left to right
A (bitwise exclusive OR) left to right
| (bitwise OR) left to right
&& left to right
[| left to right
?: right to left
= += == [= Y%= &= "= |= <<= >>= right to left
throw (throw an exception) none

, (comma operator) left to right




Program example: validating a date

This section introduces the first program presented in this book that is actually
useful. The program is called validate.cpp and does a job that every programmer
in every language seems to have to do about 62 times in her life: checking that a
given date is valid. The allowable date range is from the year 1901 to 2099. First,
there is a header file, dates.h, that defines necessary preprocessor symbolic
constants and holds function prototypes:

/***********************************************************************
*
* L} 1
dates.h
*

*'k*****************************************'k**************************/

#define MINYY 1901
#define MAXYY 2099
#define MINMM 1
#define MAXMM 12
#define MINDD 1
#define MAXDD 31
#define MINFEB 28
#define MAXFEB 29
#define TRUE 1
#define FALSE 0

/I Function prototype declarations follow

void get data(int *, int *, int *);
int validate(int, int, int);

Next, we have the program file validate.cpp, which contains the validation logic:

/***********************************************************************

*

*  'dates.cpp' — Program accepts as input a date of form
* dd/mm/yyyy, validates the date, and returns
* the result of the validation.

*******************************************'k**************************/

#include <iostream>
using namespace std;

#include "dates.h"
int main()

{
int c, yy, mm, dd;
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get data(&yy, &mm, &dd);

/I Check date for correctness. 1901-2099 date assumed.
if (validate(yy, mm, dd))

cout << "Date entered is valid" << endl;
else

cout << "Invalid date entered" << endl;

}

void get_data(int *pyy, int *pmm, int *pdd)
{
cout << "Enter day number ";
cin >> *pdd;
cout << "Enter month number ";
cin >> *pmm;
cout << "Enter (four-digit) year number ";
cin >> *pyy;

}

int validate(int yy, int mm, int dd)

{
/[ Validate the date entered according to the
Il well-known rules

if ((yy < MINYY) || (yy > MAXYY))
return (FALSE);
if (mm < MINMM)
return (FALSE);
if ((dd < MINDD) || (dd > MAXDD))
return (FALSE);
if ((mm==4) || (mm==6) || (mMm==9) || (mm==11))
if (dd > (MAXDD - 1))
return (FALSE);

Il (mm > MAXMM))

/I If the month is February and the year is divisible
/I evenly by 4, we have a leap year.

if (mm == 2)

if (dd > MAXFEB)
return(FALSE);

if (((yy % 4) 1= 0) || (yy == MINYY))
if (dd > MINFEB)

return(FALSE);
}
/I valid date
return(TRUE);
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Two functions are called from main: get_data and validate. get_data does what its
name suggests; it prompts the user for input of three numbers, which are then
treated as day, month and year respectively. get_data must set its parameters to the
user-input data and the changed parameter values must be available in main after
the call to get_data. To achieve this, get_data is called by reference: addresses of
the arguments are used, not their values. Within get_data, the input-stream object
cin accepts data from the user into the memory at those addresses.

After the input date has been read by get_data, the three numbers are passed (by
value) to validate for checking. There should be no need here to go in detail through
the logic of validate; it’s pretty clear and you should be able to understand it without
further explanation. There is one small exception: why is the allowable year-range
given as 1901-2099? Reason is that 1900 and 2100 aren’t leap years, while 2000
is. Excluding 1900 and 2100 simplifies the logic of dates.cpp.

Depending on the TRUE/FALSE status returned by validate, a message confirm-
ing the validity, or not, of the date is output from main. Here’s the screen output
(user input in boldface) of two runs of the program:

Enter day number 29

Enter month number 02

Enter (four-digit) year number 2003
Invalid date entered

Enter day number 29

Enter month number 02

Enter (four-digit) year number 2004
Date entered is valid

validate.cpp pulls together in one program many of the important aspects of C++
syntax that you have seen so far in this book.

I’ve deliberately done this program without classes. Its purpose is to illustrate some
of the other constructs and mechanisms of the C++ language — including functions,
arguments, branching, comparisons and precedence — that you’ve seen up to this
point. In Chapter 8, I use a class version of the same program to illustrate some of
the simpler characteristics of C++ classes.
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sizeof operator
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You can use the sizeof operator when you need to know the size in bytes or
characters in memory occupied by a data object.

In nearly all C++ environments, a char occupies the same amount of memory as
an 8-bit byte, but the equivalence is machine-dependent and there are cases where
this is not so. The sizes of other data objects — float, int and so on — are machine-
dependent and no assumptions should be made about them when writing portable
code.

In most cases, you don’t want to know the actual number of bytes occupied by a
particular data object. The object occupies a certain amount of space. You need to
be able to access that value (without necessarily knowing what it is) so that you can
use it later in your program.

The sizeof operator returns the size in bytes of its operand. If the operand is a type-
specifier, it must be enclosed in parentheses; if it is a variable, the parentheses are
optional. sizeof is used like this:

sizeof <variable name>;
sizeof (<type specifier>);

Here are some examples of sizeof in use with typical data declarations and
definitions:

char c;

int i;

double d;
float f;

char carr[10];
int iarr[5];
char *cptr;
int iptr = iarr;

sizeof(c) /I 1 by definition

sizeof(i) /I 4 if 32-bit system
sizeof(d) /I 8 if 32-bit system
sizeof(f) Il 4 if 32-bit system

sizeof(carr) /I 10: note the exception!
sizeof(iarr) /1 20 if 32-bit system
sizeof(cptr) /2 or4

sizeof(iptr) Il 4 if 32-bit system

/I type sizes

sizeof(int) Il 4 if 32-bit system
sizeof(char)  // 1 by definition
sizeof(float)  // 4 if 32-bit system
sizeof(double) // 8 if 32-bit system



Suppose that we declare a simple structure:

struct sp_cell_s

{
int ival;
double dval;
char sval[20];
|3

The value of sizeof(struct sp_cell_s) is at least 32 (the exact number depends on
the compiler and the way it allocates memory, assuming a 4-byte integer, an 8-byte
double and adding the 20-byte array, plus the total of bytes, if any, needed for
member alignment.

sizeof is special in that it is a compile-time operator that yields a constant value.
sizeof therefore can only yield information that is available to the compiler. It
cannot know, for example, what the contents of a pointer will be at some point
during program execution; it can only report the size of the pointer itself, not what
it may in the future point to.

If the operand of sizeof is an array name, the extent of the memory occupied by the
array is available at compile time thanks to specification of a constant-expression
subscript limit. In this case, as an exception (see carr above), the array name is
treated not as the address of the array but as representing the actual memory
occupied by the array.
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Exercises

1  Write a program that implements a preprocessor macro to display the minimum of two
integer numbers.

2 The following variation of the function validate fails. Why?
int validate(int yy, int mm, int dd)

/I Validate the date entered according to the
/I well-known rules

if ((yy < MINYY) || (yy > MAXYY))
return (FALSE);

if (mm < MINMM) || (mm > MAXMM))
return (FALSE);

if ((dd < MINDD) || (dd > MAXDD))
return (FALSE);

if (mm==4 || mm==6 || mm==9 || mm==11
&& (dd > (MAXDD - 1)))
return (FALSE);

1 If the month is February and the year is divisible
/I evenly by 4, we have a leap year.

if (mm == 2)

if (dd > MAXFEB)
return(FALSE);
if ((yy % 4) !=0)
if (dd > MINFEB)

return(FALSE);
}
/I valid date
return(TRUE);

}
3 What happens when this statement:

while (c = getchar() !='q")
1s executed?

4  Modify validate.cpp so that it checks for correctness all dates in the range 00 (year
zero) to 9999. Be aware that 3—13 September 1752 (inclusive of both days) were
lost in the switch from the Julian to the Gregorian calendar. Also, years divisible
with zero remainder by 4 AND by 400 are leap years; years divisible evenly by
100 but NOT by 400 are not leap years. 1900 was therefore NOT a leap year.
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Program structure
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As noted in Chapter 3, the body of a function following the function header is a
compound statement or statement block.

C++ is an object-oriented (OO) language, derived from the earlier C language.
C++’s fundamental structure reflects that object-orientation: the central constructs
in any program are classes (or templates); these contain function members whose
code specifies the logic of operations to be performed both on other class members
and on outside entities. At the start of Chapter 1, there is a brief summary of the OO
facilities of C++ and of the OO development approach.

Considered in a more limited way, C++ is also block-structured. Its OO emphasis
accepted, C++ also reflects the characteristics of C. This chapter concentrates on
those aspects of block structure and the flow of execution control between the
different code blocks.

In addition to promoting OO design, C++ encourages programs to be written
according to the rather loosely-defined principles of structured programming. In
the original definitions of languages such as COBOL and FORTRAN, there was
no inherent structured approach. Change in the order of execution of statements in
the program (control flow) was accomplished using an unconditional branch
statement (GOTO) or a subroutine call (such as CALL, PERFORM).

Unstructured control flow makes for unreadable code. This is inefficient, prone to
errors on the part of the programmer and, as an unstructured program grows,
increasingly difficult to maintain.

The following are some simple principles of the structured programming ap-
proach:

[_Brograms are designed in a top-down manner; the major functions required for
the solution are called from the highest-level function. Each of the called
functions further refines the solution and calls further functions as necessary.

[_Hach function is short and carries out one logical task.

[_Hvery function is as independent as possible of all other functions. Information
is exchanged between functions via arguments and return values. Use of global
variables and shared code is minimised.

[_Unconditional branching is avoided.

C++ provides the facilities necessary to meet these objectives. All statements are
either simple statements — expressions terminated by semicolons — or compound
statements, which are statement groups enclosed by curly braces {}. A compound
statement is syntactically equivalent to a simple statement.

Every C++ program must have a main function in which, ideally, instances of
important classes are created. Both from the main function and from the member
functions of these classes, further functions, representing lower levels of the
solution, are typically called.



It is sometimes held that no function should be longer than 50 lines of code; if it
is, it should be broken down into a calling and one or more called functions.

Using classes, functions, return values and arguments, C++ allows you to exchange
data between functions to an extent which minimises use of global variables. C++
does provide a goto statement for unconditional branching, but its use and power
are severely restricted.

C++ provides a range of statements for control of program execution flow. These
are all based on switching control between the program’s constituent compound
statements and, collectively, they allow you to write concise, logically-structured
programs.
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Conditional branching

if
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The general form of the if statement is this:

if (<expression>)
<statement1>

[else
<statement2>]

The square brackets indicate that the else clause is optional.

The expression may be any legal expression, including an assignment, function call
or arithmetic expression. The inherent boolean value of the expression determines
change, if any, made to the program’s flow of control by the if statement.

The statements subject to the if and the else may be any legal single or compound
statement. If a single statement is subject to an if or else, use of the compound-
statement delimiters {} is optional; for two or more statements they are necessary.
For example, when getchar reads the letter 'q' from the keyboard, we can stop
program execution:

if ((c = getchar()) =='q’)
/* Finish program execution */

cout << "Program terminating\n" << endl;
return(0);

You can nest if statements and the optional else clauses to any depth:

if (mm == 2)
it ((yy %4) 1= 0)
if (dd > MINFEB)
return(FALSE);

What does this triple-nested if mean? If the month is February AND if the year is
not a leap year AND if the day is greater than 28, there is an error.

Each if statement, including its subject compound statement(s), is syntactically a
single statement. This is why the last example, although it contains three nested if
statements, is a single statement; no compound statement delimiters, {}, are
necessary.

You can use the delimiters if you like:
if (mm == 2)
if ((yy %4) = 0)
if (dd > MINFEB)



return(FALSE);

}
}

This makes no difference at all to the logic but gives an improvement in code
readability. Use of compound-statement braces becomes important when the else
option is used.

if (mm == 2)
if ((yy %4) !=0)
if (dd > MINFEB)
return(FALSE);
else
return(TRUE); // valid date

Each else corresponds to the last if statement for which there is no other else, unless
forced to correspond otherwise by means of {} braces. In this example, the else
refers to the third if, although it is presumably intended to correspond with the first.
To get the result you probably want, write this:

if (mm == 2)

if ((yy %4) !=0)
if (dd > MINFEB)
return(FALSE);
}
else
return(TRUE); // valid date

Lastly, you can nest to any depth the whole if...else construct itself:

if (dd == 1)

cout << "Monday" << endl;
else
if (dd == 2)

cout << "Tuesday" << endl;
else
if (dd == 3)

cout << "Wednesday" << end|;
else
if (dd == 4)

cout << "Thursday" << endl;
else
if (dd == 5)

cout << "Friday" << endl;
else
if (dd == 6)

cout << "Saturday" << end];
else
if (dd == 0)
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cout << "Sunday" << endl;
else

cout << "Error" << endl;
This is a multi-way decision. The construct is more efficient than it would be if all
the if statements were used without else clauses. As it stands, as soon as an
individual test is successful, execution of the whole sequence stops. If dd is not in
the 0—6 range, the last else does processing for the ‘none of the above’ case and
flags an error. There is a special facility in C++ for more efficiently handling cases
like this: I explain the switch statement in Multi-case selection, page 139.



Loops

Chapter 1 describes the basic rules governing the three loop constructs available
in C++. Here, I present a single example, implemented in turn with each of the loop

types.

The first code sample uses the while loop:
cout << "Press RETURN to start, 'q'-RETURN to quit ";
while ((c = getchar()) '="'q")

/I call all the top-level functions of
/I the program
cout << "Press RETURN to start, 'q'-RETURN to quit ";

}

Next, here’s the equivalent functionality in a for loop:

for ( cout << "Press RETURN to start, 'q'-RETURN to quit ",
¢ = getchar();

cl='q"

cout << "Press RETURN to start, 'q'-RETURN to quit ",
¢ = getchar();

{
}

Note that, in the for loop, there are three governing expressions:

/I call all the top-level functions of the program

for (<expr1>;<expr2>;<expr3>)

where the three expressions are (and must be) separated by two semicolons. It’s
possible, as in the example above, to have a single expression made up of a
number of comma-separated subexpressions. You can see this in the two cases
where a cout is followed by a getchar within a single expression. If, nonethe-
less, you suspect this is a bit clumsy and not the best use for a for loop, you’re
right.

Lastly, here is similar code written with a do-while construct:

do

cout << "Press RETURN to start, 'q'-RETURN to quit ";
¢ = getchar();
} while ((c = getchar()) ! ='q");

The requirements of this logic naturally suit use of the while loop type. The for loop
works also, but is cumbersome because all the loop-controlling code and some
unrelated prompt code must be grouped at the increment step at the top of the loop.
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It is best to restrict the increment step to loop-control code and put other statements
into the body of the loop.

The do-while variant does not produce quite the same result as the other two: there
is an initial prompt and an initial character is read, whether or not it is 'q'. Only on
subsequent entry of the keystroke 'q' does the loop terminate.

In general, if an operation can be implemented with one loop construct, it can also
be done with the other two. Usually, however, one of the three types will be most
suitable. The for loop suits cases where the number of iterations is known in
advance, as in the cases of traversing an array with fixed subscript limits and
reading a data stream until end-of-file. The while loop is best for doing something
until an external condition (e.g. keystroke 'q' for quit) arises. The do...while
construct is appropriate where a loop must be executed at least once, for example
when a menu must be displayed.

It is always possible to use while and for interchangeably, but while is usually
suitable in those cases where for is not. The general form of the for statement is:

for (<expr1>;<expr2>;<expr3>)
<statement>

where <expr1> is the list of initialising expressions; <expr2> is an expression list
controlling loop termination; and <expr3> is the so-called increment step. This is
equivalent to:

<expri1>;
while (<expr2>)

<statement>
<expr3>;

}

The exception is when the continue statement is used to change the flow of control
of execution in the loop; continue is described in the next section.

do-while is useful where it is required always to do one iteration before the
controlling condition is tested. In the case above, this is not so and, although the
code works, use of the do-while is inappropriate. Note that the do-while loop must
be terminated with a semicolon.

The two while loop types must update the variable whose value is controlling exit
from the loop. The variable is updated either in the loop’s compound statement or
in the controlling expression. Care needs to taken because the controlling expres-
sion is evaluated in a different place in the two loop types.

Finally, all three loop statements are syntactically single statements. They may,
therefore, be nested to an arbitrary level without using compound statement
delimiters:



for (int i=0;i<100 && arr1[i;i++)
for (int j=0;j<100 && arr2[jJ;i++)
if (arr1[i] == arr2[j])
return(i);

The whole construct is a single statement that compares every element of arr1 with
every element of arr2, stopping if a match is found. This is potentially up to 10,000
loops, so you should, from a standpoint of efficiency, take care when nesting loops
and consider whether there isn’t a less ‘brute-force’ solution.

Note also that you can declare the variables i and j as part of the initialising (first)
expression in the for loop. This is common practice in C++.
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Unconditional branch statements

break

continue
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There are four unconditional branch statements available in C++. In ascending
order of power, they are:

[_Hreak
[_dontinue
[_rbturn

[_doto

You will sometimes want to exit a loop before the controlling condition causes the
loop to end normally. The break and continue statements, in different ways, allow
this to happen.

You can use the break statement to exit a loop early. To illustrate, let’s define an
character array of ten elements and an array subscript (in the for loop initialising
expression):

char arr[10];

Assume the array has been initialised with a string. First, we traverse the array,
display each character and exit the loop early on encountering a "\O' character:

for (int sub = 0; sub < 10; sub++)

if (arr[sub] == "\0")
break;

cout << arr[sub] << endl;

}

When break is encountered, it causes unconditional exit from the loop. Control is
transferred to the first statement following the loop’s compound statement. break
only causes exit from one level of loop; if the loops are nested, control is returned
from the loop containing the break to the outer loop. You can use break within any
of the loop types as well as with the switch statement, seen in the next section.

You can use continue to skip iterations within a normal loop sequence, but not to
exit the loop altogether. We can illustrate continue using the same array and
subscript counter defined above. Again, we want to traverse the array. If a newline
character \n' is encountered, it is ignored and the characters, stripped of newlines,
are displayed.

sub = -1;
while (sub < 10)



goto

{

sub++;

if (arr[sub] == "\n")
continue;

cout << arr[sub] << endl;

}

When continue is encountered, it causes control to be passed to the loop’s
controlling expression or, in the case of a for loop, the increment step. If the loop
does not terminate naturally, the next iteration is performed. continue can only be
used within loop statements.

You should be able to see from the example one of the dangers of using continue.
Because continue causes part of an iteration to be skipped, problems arise if the
loop-control variable is updated during the skipped part. In the case above, if sub
were incremented after the cout — as in ordinary code it probably would be — it
would fail to be incremented for the first \n' encountered. An infinite loop is what
you get.

The unconditional branch instruction goto may occasionally be useful but is never
necessary. Anything that you can accomplish with goto you can also do with
combinations of the flow-control statements shown earlier in this chapter.

Control is transferred unconditionally from the goto statement to the point in the
code where a named label followed by a colon is encountered. Use of goto is not
recommended; it tends to lead to undisciplined and unreadable code. However,
there are a few cases where it serves a purpose.

The break statement causes exit from one loop to the first statement in the code
surrounding the loop. return causes control to be returned from a function to the
statement after the function call in the calling function. Where loops are nested two
or more levels deep, there is no ready way to transfer control from the innermost
loop to a point outside all the nested loops but without leaving the function.

Here is an example of a reasonable use of goto. We define two character arrays:

char arr1[100];
char arr2[100];

Assume the two arrays have been initialised with C-strings. We want to find a
character in arr2 that also exists in arr1 and then to exit.

for (int i=0;i<100 && arr1[i];i++)
for (int j=0;j<100 && arr2[jJ;j++)

if (arr1[i] == arr2[j])
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goto match;

}

cout << "No match found" << end];

goto end;

match: cout << "Match found " << arr1[i]) << endl;
end: ; /I null statement

The goto label is only visible within the function containing the goto statement.
You can therefore only use goto within one function. This is the definition of
‘function scope’, the only one of the five kinds of C++ scope not explained in
Storage class and scope in Chapter 3.

goto should not be used to transfer control to a statement within a loop. If the loop-
control variables have already been initialised, use of goto to a point in the middle
of the loop may bypass that initialisation and the loop will go out of control,
probably with unpleasant results.



Multi-case selection

As I've already pointed out, C++ provides a statement to handle the special case
of a multi-way decision. Here is the switch implementation of the if...else...if multi-
way decision given earlier in this chapter.

switch(dd)
{
case 1: cout << "Monday" << endl;
break;
case 2: cout << "Tuesday" << end|;
break;
case 3. cout << "Wednesday" << endl;
break;
case 4: cout << "Thursday" << end];
break;
case 5: cout << "Friday" << end];
break;
case 6: cout << "Saturday" << endl;
break;
case 0: cout << "Sunday" << end|;
break;
default: cout << "Error" << endl;
break;
}

Execution control is switched, depending on the value of the variable dd. The
variable must be of one of the integer types or of type char. Each of the expected
values of dd is enumerated. If dd is one of those values, the code adjacent to the case
label is executed. The case values must be constants. All case expressions in a
given switch statement must be unique.

switch in C++ provides entry points to a block of statements. When control is
transferred to a given entry point, execution starts at the first statement after that
entry point. Unless directed otherwise, execution will simply fall through all code
following, even though that code is apparently associated with other case labels.

For this reason, you need to insert a break at the end of the statements subject to
a case label unless you want all the code within the switch block, starting from a
given case label, to be executed.

In the example above, if all the break statements were left out and dd had the value
3, control would fall through the switch statement to the end and messages for all
the days from Wednesday through to Sunday would be displayed. Omit break
statements from switch at your peril!

If you use break in a switch statement, it causes control to be transferred completely
out of the switch statement. continue does not apply to switch; it only has any effect
if the switch statement is embedded in a loop.

The default case prefixes code which is executed if none of the previous case
conditions is true. You should end the statements subject to default with a break.
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Inclusion of the default case is optional. There must be only one default in a switch
statement (or none). default may occur anywhere in a switch statement, but is
usually placed at the end.

If the statements labelled by a case immediately preceding the default label are
executed, control will fall through to the default label unless a break statement is
encountered. You can nest switch statements any depth. A case or default label is
part of the smallest switch that encloses it.

There follows a somewhat contrived program, jumpstmt.cpp, notable mainly for
the fact that it succeeds in using all the unconditional branch statements together:

/***********************************************************************

*

'jumpstmt.cpp' — Program repeatedly accepts as input a
character and tests it for being a number
in the range 1-7 for a day of the week.

* ¥ * ok

**********************************************************************/

#include <iostream>
using namespace std;

#include <cstdio>

int main()

{

int c;

cout << "Enter a single-digit number: ";
while ((c = getchar()) !'= EOF)
{

if ((c=="n") || (c =="\r"))
continue;

if (c<'0" | (c>"9")

{

cout <<
"You must enter a single-digit number" << endl;
cout << "Enter a number: ";

continue;
switch(c)
{
case '8"
case '9": cout << "Number not in range 1-7 " << end|;
break;
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}

goto returnnow;
finish:

cout << "Zero invalid, program terminating... " << endl;
returnnow:

return O;
}

default: goto finish;
case '1": cout << "Monday " << endl;

break;

case '2": cout << "Tuesday " << end];
break;

case '3": cout << "Wednesday " << endl;
break;

case '4". cout << "Thursday " << endl;
break;

case '5": cout << "Friday " << endl;
break;

case '6": cout << "Saturday " << endl;
break;

case '7": cout << "Sunday " << endl;
break;

cout << "Enter a number: ";

At the start of the main function, the user is prompted to enter a number intended
to represent a day of the week. When the user presses RETURN, newline (\n") and
carriage return (\r') characters are also generated at the keyboard, so the program
discards those by using continue to go back to the top of the loop and get another
character. If the character is not in the range zero to 9, the code similarly transfers
control to the top of the loop.

Finally, there is a switch statement. Cases 8 and 9 are discarded as invalid. The
default case (which need not be at the end of the switch) uses a goto to transfer
control to the label finish and a message proclaiming input of zero to be invalid.
After the switch construct, another goto is used to jump over the finish label; this
gives an insight to the kind of spaghetti code you can generate using gotos, if you’re
not careful. When you run the program and enter data as prompted, you get a screen
display something like this (user input in boldface):

Enter a single-digit number: 5
Friday

Enter a number: 4

Thursday

Enter a number: 9

Number not in range 1-7

Enter a number: 0

Zero invalid, program terminating...
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Exercises

1 Using each of the three loop forms, write infinite loops.

2 Write a program that presents a simple menu of five numbered items and then waits
for the user to enter a number selecting one of them. Display acknowledgement of
the selection or report an error if the selection is not in the range 1-5.

3 Write a program that, for the 20th and 21st centuries finds the day of the date for
a date input as the three separate numbers dd, mm and yy. (This is not a trivial
problem: allow yourself several hours.)
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Linked structures
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One of the major uses of pointers is in allowing construction of advanced data
structures such as linked lists. Linked lists are built from structure instances,
connected by pointers. A structure must not contain a nested instance of itself, but
it may contain a pointer to one of its own kind. This allows us to build chains of
structure instances that are, in fact, lists. (Note that the C++ Standard Library (see
Chapter 12) provides templates and classes that uniformly implement not only
linked lists but also other data structures including queues and sets. These
effectively hide from the programmer the pointer-level manipulation and memory-
allocation operations that you’re going to see in this chapter. Don’t think that
availability of the STL removes the need for you to know the fundamentals of
pointers, lists and memory management.)

The following paragraphs gently introduce the mechanisms used in manipulation
of linked lists. I use a pair of structure instances, defined in the conventional (non-
dynamic) manner. The structure instances contain pointers of their own type,
allowing one to be linked to the other by containing the address of the other. The
address link is used to traverse the simple two-element list. Coverage of dynamic
memory allocation is deferred until the section Dynamic storage allocation below.

Here is an example of a structure declaration containing a pointer to another
structure of the same type:

struct node

{
int x;
double v;
node *next;
3

next is a pointer to a data object of type node. Let’s define two instances of this
structure:

node first, second;

We assign values to the structure members like this:

first.x =b5;
first.y = 34.78;
second.x = 6;

second.y = 45.89;

and now link the structures by assigning the address of the second to the pointer
member of the first:

first.next = &second;

After the address assignment, next is the address of the second structure and the
structures” members can be accessed like this:



first.x

firsty
second.x
second.y
first.next->x
first.next->y
second.next

/I'5

/] 34.78

/6

/I 45.89

/6

/I 45.89

/I indeterminate value,

/I should be set to NULL.

Suppose that we define and initialise a pointer to a structure of type node:

node *tptr = &first;

Now the members of the two structures can be accessed using the pointer notation:

tptr->x
tptr->y

115
11 34.78

tptr->next->x  // 6
tptr->next->y  // 45.89

The list’s organisation can be depicted graphically:

first 1

X 5
y 34.78
Tnext T T
second l
ox 6
y 45.89
~next
NULL
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Programmer-defined data types

typedef specifier

As you’ve seen, you can use structures to define a data type that is a combination
of C++’s basic data types. So far, you have seen four storage class specifiers:

auto extern
static register

There is a fifth, typedef, which allows you to define original data types of arbitrary
complexity. typedef fits uneasily as a member of C++’s storage class specifiers. It
is really a method by which you can define new type specifiers in terms of existing

types.

typedef, as well as being a way of defining new types, is a useful shorthand. Type
definitions made using typedef are usually grouped in header files and used
throughout the program as a type specifier like any other.

Assume that all prices are stored as double floating-point numbers. We can then
make the following type definition:

typedef double price;
and define instances of the new type:

price cost_price;
price sell_price;

More-complex type definitions

The trivial example above serves no real purpose other than, perhaps, to improve
program readability. We are interested in more complex definitions. Let’s look a
simple (no function members) structure declaration stock_type:

struct stock_type

{
char item_name[30];
char part_number[10];
double cost_price;
double sell _price;
int stock_on_hand;
int reorder_level;

5
The whole structure can be given a type-name of its own using typedef:
typedef struct stock_type
char item_name[30];

char part_number[10];
double cost_price;
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double sell_price;

int stock_on_hand;
int reorder_level,
HTEM;

In this case, ITEM is not a definition of an instance of the structure type stock_type
but instead becomes a synonym for the data type stock_type. Now we can define
instances of the structure using the shorthand:

ITEM item1, item2;

Using the self-referencing structure declaration given in the first section of this

chapter:
typedef struct node
{
int X;
double v;
node *next;
INODE;

NODE is now a data type specifying the structure type node. To define two of these
structures and a structure pointer, we make the definitions and initialisation:

NODE first, second, *tptr = &first;

tptr may now be used as at the start of this chapter to reference the members of the
two structures.

Specification of new types based on structures is very common. It is typical to
provide a type definition for both a structure instance and a pointer of the structure’s

type:
typedef struct node
int X;
double v;

node *next;
INODE, *PNODE;

Once these types have been defined and incorporated in a header file, you can use
pointers of the structure’s type without having to be concerned with the asterisk
pointer notation:

NODE inst;
PNODE nptr = &inst;

The array type

A complex use of typedef that is often not understood is this:

typedef char array_type[256];
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Here, array_type is not the name of a character array of 256 elements; it is rather
a type representing character-arrays-of-256-elements. It can be used to define
actual arrays of 256 elements:

array_type a1_256 = "Three thousand ducats, a good round sum";
such that the following statement:

cout << a1_256[7] << endl;
yields the character 'h'.

Preprocessor and typedef compared

Portability

146

Another use of typedef that some programmers favour, is this:
typedef char *charptr;

Now charptr is a synonym for char * and you can use it to define character pointers:
charptr cptr1, cptr2;

It is important to understand the meaning of the different shorthand mechanisms
provided by C++. For example, use of typedef and the preprocessor may provide
superficially similar results. In the following case, both char1 and char2 are
character pointers:

#define PCHAR char *
typedef char * charptr;

PCHAR charft;
charptr char2;

but the next definitions expose the difference between pattern substitution as
implemented by the preprocessor and the true type synonym provided by typedef:

/I substitutes to: char *char1, char2;
PCHAR char1, char2;

/I correctly defined as char *char1, *char2;
charptr char1, char2;

typedef can be useful in producing portable programs:

typedef long INT;
INT portable_int;

portable_int is a long integer on both 32- and 64-bit systems. Notation like this is
widely used to ensure that code written for a 64-bit operating system will be
portable without change to older environments such as today’s Windows systems
and many of today’s UNIX variants.



Dynamic storage allocation

Operators and functions

Up to now, the only way we have seen of allocating memory space to a variable is
by definition of that variable and allocation of space by the compiler. All variables
defined up to this point have been of fixed length and the allocation of space has
been outside the control of the programmer.

To store repeated instances of aggregate data, or ‘records’, we could use an array
of structures. However, arrays themselves are of fixed length, determined at
compile time. Ifthe records were being generated from data entered at a device such
as a terminal, then no matter how large the array defined to store the data, it might
not be large enough.

What is needed is a way of allocating memory, under the control of the program-
mer, at program run time. This is accomplished using the new and delete operators
of C++ or, alternatively the older equivalent functions of the Standard C Library,
the prototypes of which are available in the standard header file cstdlib.

The new and delete operators have superseded the C library functions, which are
now regarded as at least obsolescent. However, there’s a lot of code out there that
uses the C functions, so I’ll mention them here before moving on to concentrate on
new and delete. The four functions are these (declared in header file cstdlib):

malloc returns a pointer to a specified amount of memory, which is allocated from
the program heap by the C++ dynamic allocation system.

calloc  does the same as malloc, but returns a pointer to an array of allocated
memory and initialises that memory with zeros.

realloc changes the extent of memory allocated by malloc or calloc and associated
with a pointer to a specified size, while preserving the original contents.

free frees allocated memory and makes it available to the system heap.
For the prototypes and details of operation of these functions, see Chapter 14.

Dynamic storage allocation must be used in any situation in which you don’t know
in advance how much data will be entered to a program. Such an eventuality usually
takes either of two forms:

[_data records are entered by an operator or another program; the receiving
program uses dynamic allocation of a structure for each unit of record data
entered to create a list or file of effectively unlimited length.

[al text string entered by an operator is stored in a large input buffer of the
maximum possible line length (say 512 characters). To record each line in a
page of text as 512 characters is wasteful of memory, so dynamic allocation is
used to set each line’s pointer pointing only to enough memory to record the
actual text and a null-terminating character.
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[_Tlater in this section, I explain how to use dynamic allocation to implement the
linked structures shown earlier. For a full-blown linked list done with dynamic
allocation, see my own C++ Users Handbook or any of many other titles that
deal with data structures. Before we can look at even the limited list application,
however, we have to explore the operation of new and delete.

Using new and delete

new and delete are the C++ replacement operators for the C library functions
malloc and free. You can still use malloc and free, but new and delete are easier
and safer to use.

The new operator is almost always used in one of the following general forms:
<ptr> = new <type>(<initial value>);
<ptr> = new <type>[<size>];

The angle brackets here indicate that the value within is replaced by an actual literal
value. The first example allocates space for one instance of a given type and sets
it to an initial value. The second allocates space for an array of objects of a given
type. new returns to the pointer on the left-hand side of the assignment a pointer
to the memory allocated. The pointer is of the type specified on the right-hand side
of the assignment. If for any reason the memory cannot be allocated, new returns
a NULL pointer, which may be used in application code to check for a memory
allocation error.

The general forms of the delete operator are these:
delete <ptr>;
delete [] <ptr>;

These deallocate the space pointed to by the pointer <ptr> which was previously
allocated by new. Use of a pair of square brackets in the second case indicates that
the memory to be deallocated was allocated in the first place as an array using new([].

Here is a program that summarises these uses of new and delete:

#include <iostream>
using namespace std;

int main()
int *iptr1, *iptr2, *iptr3;
/I allocate memory for two individual integers

/l and an array of 20 integers
iptr1 = new int (5);
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iptr2 = new (int) (6);
if ((iptr3 = new int[20]) == NULL)

cout << "Couldn't allocate array" << endl;
else

*iptr3 = 25;

/I Display first two integer values

cout << "Integer 1: " << *iptr1 << end|;
cout << "Integer 2: " << *iptr2 << endl;
cout << "Integer 3: " << *iptr3 << end|;

/[ deallocate memory at all 3 pointers
delete (iptr1);

delete iptr2;

delete [] iptr3;

The displayed results are:

5
6
25

These are the values of the dynamically-allocated integer variables pointed to by
iptr1, iptr2 and iptr3.

Allocating a list element
Let’s look again at the structure declaration:

typedef struct node

{
int X;
double v;
node *next;
INODE;

Recall that NODE is not a structure instance but a typedef giving a new, program-
mer defined type specifier representing a structure of type node.

Let’s now allocate enough space for such a structure:

NODE *ptr1;
ptr1 = new NODE;

After this, ptr1 points to an instance in memory of structure type NODE. If there
isn’t enough memory available for the allocation, or if there is some other error,
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new returns NULL to ptr1. This leads us to the complete construct for allocation
of memory:

if ((ptr1 = new NODE) == NULL)
{

cout << "Memory allocation error" << endl;
exit(0); // Exit program

/I Memory successfully allocated

You’ll find the prototype for the exit library function in the header file cstdlib. It
causes graceful program termination and returns a status code to the local operating
system environment. Zero indicates a successful termination.

Freeing allocated memory

The most common and serious error made in C++ programs is that of using a
pointer before it has been set pointing to an allocated memory object.

A good candidate for second place in the league of C++ programming errors is
failure to release allocated memory when it is no longer required. Failure to free
allocated memory is actually more insidious than use of an uninitialised pointer.
Using such a pointer causes the program to crash immediately; the error is therefore
not difficult to find, especially with a good program debugging tool.

If you don’t subsequently deallocate dynamically-allocated memory with the
operator delete, the memory is not returned to the available memory pool, even
when the program stops execution. This leads to a situation where the system
gradually runs out of available memory, often resulting in a program crash far from
the scene of the point where memory should have been freed. It can be extremely
difficult to track down the source of such a memory leak.

For every dynamic memory allocation in a program, there should be a correspond-
ing use of delete to make available the memory associated with the pointer. If the
pointer ptr1 is associated with memory dynamically allocated by new, that memory
is deallocated by the simple function call:

delete ptr1;

Memory deallocation is usually done when that memory is no longer needed, for
example when a list element or line of text is deleted. There are two ways in C++
of ensuring that every allocation with new has a corresponding delete: use of class
destructor functions, seen in Chapter 9, and the auto_ptr template, new to ISO C++.

Freeing memory with auto_ptr

ISO C++ provides a variant on the use of new that ensures that the allocated
memory is released when the pointer to that memory goes out of scope. The use of
auto_ptr is illustrated by the program autoptr.cpp:
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#include <iostream>
using namespace std;
#include <memory>

typedef struct node

{

int X;
double v;
node *next;
INODE;
int main()

/I allocate node pointer, memory freed when
/I pointer goes out of scope
auto_ptr<NODE> ptr1(new NODE);

ptr1->x = 5; /I OK
ptr1->y = 3.14; /I OK

auto_ptr<NODE> ptr2(new NODE[20]);  // ERROR
ptr2+=10; / ERROR
/I ptr1 memory deallocated here

The operation of this program is the same as if the simple new were used, with the
important addition that the allocated memory is released on exit from the main
function. Note that auto_ptr can’t be used as with ptr2 for dynamically-allocated
arrays. Also, you can’t do arithmetic with ptr2, as you can with ordinary pointers.

Dynamic allocation of list nodes

Now we know enough to do a second version of the linked structures shown at the
start of this chapter. There, the two instances of the structure type node (later
typedefed to NODE) are allocated with a conventional definition:

node first, second;

With dynamic allocation, the space is reserved using this code:
NODE *tptr1, *tptr2;

if ((tptr1 = new NODE) == NULL)

cout << "Memory error allocating first node" << endl;
exit(0); // Exit program
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if ((tptr2 = new NODE) == NULL)
{

cout << "Memory error allocating second node" << endl;
exit(0); // Exit program
}

Now we can make the assignments of values to the structure instances’ members:

tptr1->next = tptr2;// Link the two structures

/I Now make assignments to the structure members

tptr1->x =5
tptr1->y = 34.78
tptr2->x =6

tptr2->y = 45.89
tptr2->next = NULL.

In a real implementation of a list program, the dynamic allocation code and the
assignments would be in a loop controlled by the user’s input. In addition, you
would have to manage the links between the list’s members as well as strategies for
insertion in and deletion from the list.

Given the simple use of new in this case, as opposed to auto_ptr, you have to
remember to deallocate the memory explicitly:

delete tptr1;
delete tptr2;



Address arithmetic

You can do address arithmetic on pointers, usually with pointers to arrays. You’ve
already seen a few typical cases of address arithmetic: where the displacement of
a character pointer from its start point needs to be calculated in order to return a
relative position in a C-string. Also, you should have become accustomed to the
practice of repeatedly incrementing pointer values by one when traversing an array.

Let ptr be a pointer to an array of elements of some type. ptr++ increments the
pointer to the next element in the array. *ptr is the contents of the element currently
pointed to. ptr += n increments the pointer by the value of n array elements.

Each element of a character array is, by definition, one char or byte long. It’s
reasonable to expect a pointer to such an array to be incremented by one to point
to the next element. In fact, for all arrays of any type of element, the ‘increment by
one’ rule holds. The size of each element is automatically taken into account and
it is a mistake, when incrementing the array pointer, to try to calculate the size of
the array elements and increment by that amount.

To summarise: incrementing a pointer by one makes it point to the next element for
all arrays, regardless of the type of the elements.

Address arithmetic example

Look again at the structure declaration struct stock_type:

struct stock_type

{
char item_name[30];
char part_number[10];
double cost_price;
double sell price;
int stock_on_hand;
int reorder_level;

I3
Now we define an array of these structures and initialise a pointer to the array:

stock_type stockarr[100];
stock_type *stockptr = stockarr;

Even though each array element occupies at least 50 bytes on any system, the
pointer need only be repeatedly incremented by one to traverse the array:

for (int count = 0; count < 100; count++,stockptr++)

{

/I Set the array elements zero
/I or empty

stockptr->item_name[0] = "\0';

stockptr->part_number[0] = "\0';
stockptr->cost_price = 0.0;
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stockptr->sell_price =0.0
stockptr->stock_on_hand = 0;
stockptr->reorder_level = 0;

}

When two pointers to an array are subtracted, the result is not the number of bytes
that separate the array elements but the number of array elements.

You absolutely shouldn’t do arithmetic of this kind on pointers of different types;
the results will be unpredictable and probably catastrophic. Two pointers of the
same type may be subtracted but not added, divided or multiplied. Addition to a
pointer is only legal where the pointer is incremented by an integral (small whole-
number) value.

Precedence and associativity

You need to be careful with the syntax of pointer increment and decrement
operations. The ++, -- and * (dereferencing) operators are all of the same precedence
and associate right-to-left. As a result, some unexpected things can happen when
these operators are mixed in the same expression. For example, *ptr++ is a very
common expression. It means that the object at ptr is fetched (first) and then
(second) the pointer value is incremented by one. If we want to add one to the object
at the pointer, we need (*ptr)++.

Liberal use of parentheses in the case of mixed-operator expressions like that above
and care about not mixing pointer types will save a lot of trouble. The program
ptrinc.cpp illustrates the point.

/************************************************************************
*
*

'ptrinc.cpp’ — Program to illustrate compound pointer arithmetic

*************************************************************************/

#include <iostream>
using hamespace std;

int main()

{
char stg[] = "nmlkjihgfedcba";
char *ptr = stg;

cout << "Initial string is " << ptr << endl|;

cout << "Display and post-increment the pointer" << endl;
cout << "*ptr++ " << *ptr++ << end|;

cout << "*ptr " << *ptr << end];

cout << "Re-initialise pointer" << endl;
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ptr = stg;

cout <<

"Display and post-increment the OBJECT AT the pointer" << end];
cout << "(*ptr)++ " << (*ptr)++ << endl;

cout << "*ptr " << *ptr << endl;

/* Results to be expected:

*ptr++ n
*ptr m

("ptr)++ n
*ptr o ¥/

The essence of this program is the fact that *ptr++ retrieves data and then
increments the pointer ptr, while (*ptr)++ adds 1 to the data ('n"), giving 'o’. When
you run the program, you get this screen display:

Initial string is nmlkjihgfedcba

Display and post-increment the pointer
*ptr++ n
*ptr m

Re-initialise pointer

Display and post-increment the OBJECT AT the pointer
(‘ptr)++ n

*ptr o

*ptr++ is probably one of the most common forms of expression used in all C++
programming so, again, don’t get the idea that this pointer-arithmetic stuff is for
nerds. It’s part of everyday C++ programming, can become very complex, and you
need to be adept at it.
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Arrays of pointers

It’s possible in C++ to define a pointer to a pointer (or a pointer to a pointer to a
pointer if you feel the inclination). Pointers to pointers are sometimes called
multiply-indirected pointers. An important application of multiply-indirected
pointers is in accessing and traversing multidimensional arrays. Implementing an
N-dimensional array in C++ using pointers requires definition of a pointer array of
N-1 dimensions. In the case of a two-dimensional character array, which can store
a page of text, we must define a one-dimensional array of pointers of type char *.

To do this, we define an array of character pointers:

char *cptr[10];
Each of the pointers in the array must be initialised to the address of an array of
characters before being used:

char *cptr[10] = {"Signor Antonio, many a time and oft\n",
"on the Rialto, you have rated me\n",
"for my moneys and my usances.\n",
"Still have | borne it with a patient shrug,",
"for sufferance is the badge of all our tribe.", ""};

In this case, pointers zero to 4 of the ten-element pointer array are initialised to the
addresses of the five literal C-strings shown within curly braces.

cptr[2] points to the string "on the Rialto, you have rated me\n". Instead of using
subscripts to access array elements, we can use a pointer to the array of pointers:
char **cpp = cptr;
After the pointer initialisation:
*cpp points to the C-string "Signor Antonio, many a time and oft\n".
**cpp is the first character in that string, 'S'.
(*cpp)++ increments the pointer to the first C-string;
**cpp is now the second character, 'i'.

Program example: array2d.cpp.
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Here is an example program that exercises many of the possible operations using
a pointer to pointers on a two-dimensional character array. The array of pointers
is defined and initialised to its six component C-strings.

The program performs two principal operations. The first displays each of the text
lines in turn with subscripts; the second does the same with pointers. The iteration
is terminated when the first character of a C-string pointed at by one of the array
of pointers is "\0'.

You should inspect this program carefully and understand it because the methods
of single and double indirection that it shows are generally applicable for all cases
in C++ where arrays of pointers are used.



/***********************************************************************

*

* ‘array2d.cpp' — Program to initialise a two-dimensional
* character array and display its contents

**********************************************************************/

#include <iostream>
using namespace std;

int main()

char *cptr[] = {"Signor Antonio, many a time and oft\n",
"on the Rialto, you have rated me\n",
"for my moneys and my usances.\n",
"Still have | borne it with a patient shrug,\n",
"for sufferance is the badge of all our tribe.",""}

char **cpp; // Pointer to array of pointers
char reply[5];

/I Display all the strings using subscripts

cout << endl << "Press RETURN to continue ";
gets(reply);
for (int i = 0; *cptr[i]; i++)

cout << cptrli];
/I Now do the same, with pointers
cout << endl << "Press RETURN to continue ";
gets(reply);

for (cpp = cptr; **cpp; cpp++)
cout << *cpp;

’

The output of array2d.cpp is this:

Press RETURN to continue

Signor Antonio, many a time and oft

on the Rialto, you have rated me

for my moneys and my usances.

Still have | borne it with a patient shrug,
for sufferance is the badge of all our tribe.
Press RETURN to continue

Signor Antonio, many a time and oft

on the Rialto, you have rated me

for my moneys and my usances.

Still have | borne it with a patient shrug,
for sufferance is the badge of all our tribe.
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Command line arguments
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In all examples presented in earlier chapters, you have entered data via the input
stream operator cin or one of the functions (e.g. cin.get) of the istream class. The
main function has never been supplied with arguments.

You can make the main function take arguments so that the user can enter a
command at the shell level of the operating system. The DOS copy command:

C:\> copy file1 file2

shows a C++ program in operation. You are not, however, prompted for the file
names. As you would expect, you enter them on the command line instead.

To set up command-line arguments in your C++ program, you use the special
arguments argc and argv in the main function header. The main function header
with command-line arguments looks like this:

int main(int argc, char *argvf[])

argc is an integer value that holds the number of arguments on the command line.
Its minimum value is 1, because the name of the program qualifies as an argument.
In the copy example above, the value of argc is 3.

argyv is a pointer to an array of character pointers. Each of the character pointers in
the array points to a C-string. Each of the C-strings is a single command line
argument. Again considering the copy example:

argv[0] points to "copy"
argv[1] points to "file1"
argv[2] points to "file2"

argv[argc] is always a null pointer. In the copy example, argc has the value 3, which
is one more than the number of arguments, counting from zero.

The empty brackets [] of argv indicate that it is an array of undetermined length. Its
actual length is established at runtime, when it is initialised with the command-line
arguments entered by the user.

You could also write the main header as:

int main (int argc, char **argv)
In the program code, *argv could be used in place of argv[0], *++argv in place of
argv[1], *++argv instead of argv[2], and so on.

In this case, keeping track of pointers is less convenient than using subscripts. Any
performance overhead caused by subscripting a three-element array is negligible,
which is why double indirection on command-line arguments is often not used.

There follows a minimal example of a complete program, cmdarg.cpp, that uses
command-line arguments. It doesn’t do anything other than accept the command
line and, using various techniques, display the individual arguments. Here it is:



/***********************************************************************
*
*  'cmdarg.cpp' — Demonstrate use of command-line arguments.

*

**********************************************************************/

#include <iostream>
using namespace std;

#include <cstdlib>

int main(int argc, char *argv([])

{
FILE *inp, *outp;
char **argvp = argv + 1;
if (argc != 3)
cout << "Program " << argv[0] << " usage: "
<< argv[0] << "<f1> <f2> " << end];
exit(0);
}
cout << "Command line entered: " << argv[0]
<<"" << *fargvp << " " << argv[2] << endl;
}

cmdarg.cpp expects a command-line something like this:
cmdarg argtext1 argtext2

There must be three arguments in total, including the program’s name. Otherwise,
the ‘Usage’ message is displayed and program execution stops with the exit library
function call. Assuming that three arguments are specified, then all three are
displayed by the cout that follows. The program name and the third argument
(argtext2) are displayed using subscripted references to argv. The program
displays the first argument (argtext1) using a doubly-indirected pointer. argvp is
a pointer to pointer initialised to be the same as the argument pointer argv. If argvp
is the same as argv and therefore points to the string "cmdarg”, then argvp + 1 points
to the string "argtext1".

If you run the program without arguments, the screen display will be similar to this:
Program C:\CMDARG.EXE: Usage: C:\CMDARG.EXE <f1> <f2>

With the proper number of arguments, you get the following:
Command line entered: C:\CMDARG.EXE argtext1 argtext2
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Pointers to functions

Use of pointers to functions is one of the aspects of C++ syntax that most
intimidates novice (and not-so-novice!) C++ programmers. In fact, function
pointers are no more than a logical completion of the general pointer syntax.

Functions are not variables, but you can define pointers to them, store such pointers
in arrays and pass them as arguments between functions.

Function pointers are typically used in specific classes of application:

[ Where a function’s identity is to be supplied as an argument to another function

[ Where outside events determine which of many functions is to be called next.
In such cases an array of pointers to functions is often used to control function
calls.

A pointer to a function contains the internal memory address of the entry point of
that function. The address of the function is obtained using only the function’s
name.

Here is how to define a pointer to a function:
int (*fptr)();

fptr is a pointer to a function returning an int. Note that all the parentheses here are
necessary. For example:

int *fptr();

is not a pointer to a function, but the definition of a function returning a pointer to
an int.

Simple example of a function pointer

The program drawline.cpp, is a simple example using pointers to functions:

#include <iostream>
using namespace std;

void drawline(int);

int main()

{

void (*fptr)(int len);

Define a pointer to a function with
an 'int' as a parameter
Assign a function address to the pointer

All the following assignments are
good but some compilers reject the first two
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}

void drawline(int len)

fptr = drawline;

/[ (*fptr)(50); is OK for
/I the function call also
fptr(50);

while (len > 0)

cout << "-";
len—;
cout << endl;

(*fptr) = drawline;
(*fptr) = &drawline;
fptr = drawline;
fptr = &drawline

The program draws a horizontal line at the bottom of the screen display:

Use of the function pointer is not necessary; you could as easily call the function
drawline explicitly. fptr is defined as a function pointer. The name of the function,
drawline, is the address of that function. It is assigned to fptr, which is then called
as a function name exactly as drawline could be.

The function call using the pointer may alternatively be made with dereferencing
syntax:

(*fptr)(50);

Use in real C++ programs of function pointers is usually much more complex than
this. However, the function pointer syntax of drawline.cpp is the basis of all usages
of pointers to functions. In this Made Simple text, I’m not going to present further
examples of programs using function pointers. If you want to find out more, I would
again advise you to refer to the C++ Users Handbook.
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Exercises

1 Write a program, Instruct.cpp, that implements the linked-nodes program de-
scribed in the first section of this chapter.

2 Write a program, dynstruc.cpp, that implements the linked-nodes, using dynamic
memory allocation.

3 Write a program, list.cpp, that implements a full linked-list program, using a loop
to take repeated user input, and dynamic memory allocation to create each
successive list element.
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8 Classes

The class construct
Class members
Class scope

Classes and pointers

Exercises




The class construct

164

The C++ class construct is a generalisation of the structure, found in its original and
simplest form in the C language. In C, the struct is an aggregation of (necessarily)
data members; in C++ the struct may additionally have function members. The
C++ class and struct are the same except that the members of the class are by
default of private (restricted) access while those of the structure are public.

Let’s look at an example of a class, date:

class date

{

private:
int dd;
int mm;
int yy;
public:
void get_data();
int validate();
int find_day();
void disp_day(int);
2
You can see that some of the members of date are private and some are public. In
hierarchies of derived classes (more on this in Chapter 10), you can also use the
protected keyword. The access-control keywords private, public and protected
may appear anywhere, in any order, between the curly braces. A public member of
aclass (very often amember function) can be accessed by external (client) code that
is in no way part of the class. A private class member, on the other hand, can only
be used by code defined in a member function of the same class.

If none of the access-control keywords is used in a class declaration, then all its
members are by default private. In a struct declaration, omission of all these
keywords means that all members of the structure are by defaultpublic. This is the
only difference between the class and struct constructs in C++.

To be useful, a class must have some accessible (usually public) functions that may
be called from client code to access indirectly the private data and function
members of the class. The data members of the date class are private; the member
functions are callable by any client code for which they are in scope.

If you don’t insert the keyword private before the data members, they become
private anyway, as that’s the default access level for class members. If you left out
all access specifiers, then all the members of the class would be by default private
and the class would effectively be inaccessible and useless. Although class
members are private by default, the preferred form is to use private explicitly.

You should note that my placement of all the private class members before the
public ones is only my preference: the public members could precede the private
ones, and private and public declarations can be intermixed.



You define an instance of the date class with:
date day;

and an array of class instances like this:
date day_arr[20];

You can use the terms class object and class variable synonymously with class
instance.

Here’s how to define and initialise a pointer to the class instance day:
date *clptr = &day;
Use of pointers with classes and class members is covered later in this chapter.

You can’t initialise a class or structure with an initialiser list in the way structures
are initialised in C:

date day = {22,08,02};

Classes and structures should be initialised with constructor functions, which you
can see in Chapter 9.

Members of a class are in scope for the whole outer block of the class declaration
— between the curly braces. This means that member functions can directly access
the other function members. If you want to get at a member function of the class
variable day from client code, you have to do it by qualifying it with the class object
day and the member-of (dot) operator:

day.get_data();

Within the definition of get data, you can access the other members without
qualification:

void date::get_data()
{

char c;

cout << "Enter the day number: ";

cin >> dd;

cout << "Enter the month number: ";

cin >> mm;

cout << "Enter the year number: ";

cin >>yy;

/I Flush the last RETURN from the input stream

¢ = cin.get();
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Example: The date class

Here’s a somewhat cut-down version of the date class. It’s organised in three files:
the header file dates.h; the function program file datefunc.cpp; and the main
program file dates.cpp, which calls the functions declared as part of the class date.
First, we have the dates.h header file:

/I dates.h

extern const int MINYY;
extern const int MAXYY;
extern const int MINMM;
extern const int MAXMM;
extern const int MINDD;
extern const int MAXDD;
extern const int MINFEB;
extern const int MAXFEB;
extern const int TRUE;
extern const int FALSE;

class date
{
private:
int dd;
int mm;
int yy;
public:
void get_data(); // read input date
int validate(); /I check date for correctness

dates.h declares a number of symbolic constants used in date validation. It also
declares a shortened version of the date class already introduced. The (now only
two) member functions of date are defined in datefunc.cpp:

/I datefunc.cpp

#include <iostream>

using namespace std;

#include "dates.h"

void date::get_data()

{
char c;
cout << "Enter the day number: ";
cin >> dd;
cout << "Enter the month number: ";
cin >> mm;
cout << "Enter the (4-digit) year number: ";
cin >>yy;
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/I Flush last RETURN from the input stream

int date::validate()

{

¢ = cin.get();

/[ Validate the date entered according to
/I the well-known rules
if ((yy < MINYY) || (yy > MAXYY))

return(FALSE);

if ((mm < MINMM) || (mm > MAXMM))
return(FALSE);

if ((dd < MINDD) || (dd > MAXDD))
return(FALSE);

if ((mm==4)||(mm==6)||(mm==9)||(mm==11))
if (dd > (MAXDD - 1))
return(FALSE);
/I If the month is February and the year is divisible evenly by 4,
/I we have a leap year.

if (mm == 2)

if (dd > MAXFEB)
return(FALSE);
if ((yy % 4) 1= 0)
if (dd > MINFEB)
return(FALSE);

/I If this point is reached, we return a valid date indicator
return(TRUE);

The date::get_data function does what its name suggests: it prompts the user for
input of three numbers constituting a date. The form date::get_data uses the binary
scope resolution operator to specify that I’'m referring to the get_data member
function of the class date, and not some other get_data function. The function
date::validate checks the three numbers for correctness as a date and returns TRUE
or FALSE accordingly. The function only operates on the years 1901 to 2099.

Finally, here’s the dates.cpp program file. It contains definitions of the symbolic
constants declared in dates.h (use of symbolic constants in this way is generally
considered superior to and more ‘C++-ish’ than preprocessor definitions), fol-
lowed by a main function which calls the date member functions:
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/I dates.cpp
#include <iostream>
using namespace std;

#include "dates.h"

/I define global symbolic constants
const int MINYY = 1901;

const int MAXYY
const int MINMM
const int MAXMM
const int MINDD
const int MAXDD
const int MINFEB
const int MAXFEB
const int TRUE
const int FALSE

T TR T TR TR TR TR TR
ONNW= N

int main()

{
int c;
date datein;

/I Stop user data-input when 'q'-RETURN
/l'is entered

cout << "Press RETURN to continue, 'q'-RETURN to quit: ";
while (c = cin.get(), ¢ !="'q' && ¢ != EOF)
{

datein.get_data();
if ((datein.validate()) == FALSE)

cout << "Invalid date entered\n";
else

cout << "Date entered is OK\n";
cout << "Press RETURN to continue, ";
cout << "g'-RETURN to quit: ";
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The header file iostream is included in both datefunc.cpp and dates.cpp. It
contains, among other things, all declarations necessary to allow use of the input
and output streams cin and cout, as well as the stream I/O function get. dates.h is
also included in both files, making the symbolic constants and the date declaration

visible throughout the program.




Within main, we define an instance datein of the class date. The two member
functions of date are called from main, each prefixed by the class instance datein.
Calls to the functions from main unqualified by the prefix would result in
compilation errors. The data members of date can only be used within those
functions.

The while loop expression is in fact two sub-expressions, related by a comma
operator. We first call the input stream function get to extract the next user-input
character from the input stream cin. The character assigned to c is compared for
equality with q and EOF; if equal to either, the program stops.

The date::get_data function uses the extraction operator >> to read input from cin.
This mechanism ignores white space and returns EOF if the data input does not
match the type of the corresponding variable. This EOF is trapped by the next
execution of the while expression.

Because white space is ignored by cin >>, we call the get function once at the end
of date::get_data to dispose of the final RETURN input by the user.
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Closs members

Data members

You declare data members of a class within the class in the same way as ordinary
(non-class-member) data objects. The class cust_acc:

class cust_acc

{

private:
float bal;
int acc_num;
public:
/I member functions

3
can equally well be written:

class cust_acc

{
private:

float bal; int acc_num;
public:

/I member functions
¥

Static data members

You can’t qualify declaration of class data members with any of auto, register or
extern. If you declare a data member static, only one copy of that data object is
allocated by the compiler in memory, regardless of how many instances of the class
are defined. A static member therefore acts as a global variable within the scope of
a class and might reasonably be used as a global flag or counter variable. Here’s
a simple example:

#include <iostream>
using namespace std;

class run_total
{
private:
static int accum;
public:
void increment() { accum++; }
void pr_total()
{

cout << "Accum: " << accum << "\n";

}
¥

/I definition of static member
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int run_total::accum = 0;

int main()
run_total total1, total2;

total1.increment();
total1.pr_total();
total2.increment();
total2.pr_total();

}

In this program, we define two instances of the class run_total, total1 and total2.
After the first call to increment, the value of accum is 1. After the second call to
increment — albeit with a different class instance — the value of accum becomes 2.

Static data members should be defined outside the class declaration. This is the
reason for inclusion of the line:

int run_total::accum = 0;

in global scope (outside all functions and classes). Static data members must not
be initialised in this way more than once in the program.

Static data members of a class exist independently of the existence of any instances
of'that class: space for them is allocated at compile-time. Nevertheless, a static data
member declared in this way is not a runtime definition. Additionally, although
compilers often implicitly initialise such members to zero and allow their use
without an explicit definition, the language specification doesn’t guarantee that
they will.

Nested class declarations

You can declare classes (including structures) as data members of a class. The
declaration of the member class must already have been encountered by the
compiler:

class cust_details
{
private:
char accountName;
int age;
public:
Il 'cust_details' member functions
|3
class cust_acc
{
private:
float bal;
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int acc_num;

public:
cust_details resume;
/I 'cust_acc' member functions

I3
Here, the class cust_details is declared before an object of its type is defined in the
cust_acc class.

Function members
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You can specify all the code of a member function, or just its prototype, within a
class declaration. In addition, you have the option of using either of two function
specifiers: inline and virtual.

If you specify a function inline as part of its declaration, the compiler is requested
to expand the body of the function into the program code at the point of its call. In
this way, it is treated in much the same way as a preprocessor macro: the function
is expanded inline and the overhead of the function call is eliminated. If a class
member function is defined as part of its declaration, it is implicitly inline:

class cust_acc

{

private:
float bal;
int acc_num;
public:
void zero_bal() { bal = 0.0; }
/I Other member functions here
2
Prefixing the inline specifier to the function definition within cust_acc is unnec-
essary and makes no difference to the definition of zero_bal: You can regard the
function zero_bal as shown as implicitly inline.

You don’t have to include a function’s entire definition in a class declaration for
the function to be inline. You can declare a member function inline and define it
later:

class cust_acc

{

private:

float bal;

int cust_acc;
public:

inline void balance();



¥

1 i‘.u.nction definition
void cust_acc::balance()

{

A particular type of implicitly inline function, called the access function, is very
useful for hiding of private member data objects. For example:

class cust_acc

{

private:
float bal;
int acc_num;
public:
int isOverdrawn() { return(bal < 0.0); }
/I Other member functions here
2
Here, the boolean value of the equality test bal < 0.0 is returned by isOverdrawn.
With this mechanism, you don’t have to access the variable bal to check the
customer’s creditworthiness; you can instead do it with the function call:

cust_acc af;

if (a1.i§0verdrawn())
/I don't give her the money

A short function like this is particularly suitable for inline specification. Access
functions are very common. They make it unnecessary for client code directly to
access data members. The data hiding that results allows you to change the class
definition while having no effect on the operation of the client code.

I deal with virtual functions, declared with the function specifier virtual, as seen in
Chapter 10.

Ordinary member functions are those not specified inline or virtual and which are
defined outside the class declaration. Their function headers must contain the
scope resolution operator, as in the case of balance from the cust_acc class:

void cust_acc::balance()

You can’t declare a class data member twice in the same class. You can declare a
member function twice in the same class but only if the two declarations have
different argument lists. You can see the rules for declaration of overloaded
functions in Chapter 9. Lastly, you’re not allowed to declare a member data object
and a member function with the same names.
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Static member functions

A static member function is allowed access only to the static members of its class,
unless it uses a class object with one of the operators °.” or *->’ to gain access. To
illustrate, here’s a modified version of run_total from earlier in this section:

#include <iostream>
using namespace std;

class run_total

{
private:
static int accum;
public:
static void increment() { accum++; }
void pr_total()
{
cout << "Accum: " << accum << end|l;
}
2

int run_total::accum = 0;

int main()
run_total total1, total2;

total1.increment();
total1.pr_total();
total2.increment();
total2.pr_total();

Now, as well as accum, the function increment has been declared static and can still
access accum. If, however, the static keyword is removed from the declaration of
accum, a compilation error results. The function increment can access a non-static
data member of the same class by using, in this case, a class object to qualify accum:

#include <iostream>
using namespace std;

class run_total
{
private:
int accum; // non-static
public:
static void increment(run_total& inst)

{
}

inst.accum++; // this usage OK
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void pr_total()
{

cout << "Accum: " << accum << endl;

}
|

int main()

run_total total1, total2;

total1.increment(total1);
total1.pr_total();
total2.increment(total2);
total2.pr_total();

}

In the examples above, you should note that the static member function increment
can be used without reference to instances of the class run_total:

int main()

{

run_total total1, total2;

run_total::increment();
total1.pr_total();
run_total::increment();
total2.pr_total();

}

Here, only access to the non-static function pr_total must be controlled by the class
instances total1 and total2.

Example: Using sfatic class members

As amore practical example of a case in which static class members might be used,
here’s the bank-account example from Chapter 1 reworked so that the account
number is no longer prompted for in the setup function. Instead, each time you
create an account instance, the next available number is ‘peeled off”. In summary,
you need a variable global to all cust_acc class instances to hold information
logically common to them all.

/I accounts.h
class cust_acc
{
private:
float bal;
static int acc_num;
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int my_acc_num;
public:

void setup();

void lodge(float);

void withdraw(float);

void balance();

k

/I Program file accfunc.cpp -- defines
/I cust_acc member functions.
#include <iostream>
using namespace std;
#include "accounts.h"
1
/I Only setup function has changed
1
void cust_acc::setup()
{
my_acc_num = acc_num++;
cout << "Enter opening balance for account "
<< my_acc_num << ":";
cin >> bal;
cout << "Customer account " << my_acc_num
<< " created with balance " << bal << end|;

/I account.cpp

#include <iostream>

using namespace std;
#include "accounts.h"

int cust_acc::acc_num = 1000;

int main()

{
cust_acc af;
al.setup();

al.lodge(250.00);
al.balance();
al.withdraw(500.00);
al.balance();
cust_acc az;
a2.setup();
a2.lodge(1000.00);
a2.balance();
a2.withdraw(300.00);
a2.balance();
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Friends

In a strict OOP world, only public member functions of a class are allowed direct
access to the private member variables. Things are not that simple, however, and
C++ provides the friend mechanism, which allows the rules to be bent.

A function may be specified within a class declaration and prefixed with the
keyword friend. In such a case, the function is not a member of the class, but the
function is allowed access to the private members of the class. Here’s the cust_acc
class containing a friend declaration:

class cust_acc
{
private:
float bal;
static int acc_num;
int my_acc_num;
public:
void setup();
void lodge(float);
void withdraw(float);
void balance();
friend void enquiry();
2
The function enquiry is not a member of the class, but you can call it from anywhere
else in the program and it nevertheless has full access to all members of cust_acc,
even the private ones.

You’re encouraged to be sparing in your use of friend declarations. Too many
friends can be a bad thing. A case where friends are useful, even necessary, is that
of operator overloading, of which more in the next chapter.
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Class scope

178

As stated in Chapter 3, every C++ data object has local, function, global (or file),
namespace or class scope. Scope defines the visibility of a data object. If it has global/
file scope, it’s visible throughout the program file in which it is defined and is said to
be global. If a data object has function scope, it is visible only within the function
in which it is defined. Only goto labels have function scope. If a data object has
local scope, its visibility is confined to the local enclosing compound statement.

A C++ class has its own scope. This means that a class member is directly visible
only to member functions of the same class. Access to the class member is
otherwise limited to cases where the member-of (.), pointer (->) and scope-
resolution (::) operators are used with either the base class or a derived class. A data
object declared as a friend of a class belongs to that class’s scope.

Here’s a modified example of the date class, which illustrates the different aspects
of class scope:

class date

{

private:
int dd;
int mm;
int yy;
public:
void get data();
{cin >>dd >>mm >>yy; } //inline
int validate();
int find_day();
void disp_day(int);
3
In client code, such as the main function, we define an instance of the class and a
pointer to it:

date day;
date *dptr = &day;

For all of the four member functions, all other class members are in scope. Thus,
the code of the validate function might, if necessary, call the function disp_day,
even though disp_day is declared later in the class than validate. Member function
code may access other class members — data and function — directly, without using
any prefixes to resolve scope.

To access function members from client code, you must use the member-of and
pointer operators:

day.dd
dptr->dd

(although you could only do this if dd were not of private access). Likewise:
day.validate()



is equivalent to:
dptr->validate()

If you don’t use these prefixes, the members are out of scope for the client code and
compilation errors result. The private class members are always out of scope for
client code; you can only access them indirectly using member functions, for which
they are in scope.

To see the effect of the scope resolution operator, let’s look at a modified version

of the run_total example from page 164.

#include <iostream>
using namespace std;
class run_total

{

private:
static int accum;

public:
static void increment() { accum++; }
void pr_total()

cout << "Accum: " << accum << endl;

}

iz

int run_total::accum = 0;

int main()
run_total total1, total2;
int run_total = 11;
run_total::increment();
total1.pr_total();
run_total::increment();
total2.pr_total();
cout << run_total << "\n";

}

Here, although the class name, run_total, is redefined as an integer in main, class
scope is resolved in the calls to the static member function increment, by means of
the binary scope resolution operator. The result of the program is:

Accum: 1

Accum: 2

11
With derived and nested classes, use of the scope resolution operator is at times
necessary to avoid ambiguity when accessing class members. Otherwise, avoid
masking declarations in this way: it doesn’t help program reliability or readability.
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Nested class declarations

180

Where a class is declared in class scope, the declaration is said to be nested — one
class is declared within another. Declarations made in the nested class are not in
scope for functions in the enclosing class and must be accessed according to the
normal procedures. Equally, declarations in the enclosing class are not in scope for
functions declared in the nested class.

Here are the relevant parts of an example program, again based on the date class,
that shows use of nested classes:

/I file 'dates.h’, contains
/I nested classes 'date' and 'curr_time'

class date

{

private:
int dd;
int mm;
int yy;
public:
class curr_time

{

private:
int hr;
int min;
int sec;
public:
void correct_time();
1t
void get_data();
int validate();
int find_day();
void disp_day(int);
¥
The nested class curr_time is added to the date class. curr_time is declared and an
instance of it defined within date. In this case, the function correct_time is used to
reset the data members of class curr_time, probably by calling library functions
declared in the standard header file ctime.

The calling sequence for this function is:

date day;

day..t.correct_time(); /I set correct time

To conform with the C++ scope rules, you must write the header of the correct_time
function like this:

void date::curr_time::correct_time()



The definition of an instance of the class date also defines an instance of curr_time
because of the definition of t embedded in date. The members of a nested class are
not in scope for those of the enclosing class; to qualify the function header of
correct_time only with the scope resolution date would cause the function
correct_time to be out of scope even though it is a member of a class nested within
date.

ISO C++ has introduced an extension allowing forward declaration of nested
classes. In the example above showing the curr_time class nested within date, a
forward declaration of curr_time can instead be used:

class date

{

private:
int dd;
int mm;
int yy;
public:
class curr_time;
curr_time t;
void get_data();
int validate();
int find_day();
void disp_day(int);
¥

class curr_time
{
private:
int hr;
int min;
int sec;
public:
void correct_time();

j»
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Classes and pointers

You can use pointers to classes in C++ in much the same way as you use structure
pointers. C++ adds the reference notation and a special set of operators for use with
pointers to class members. Let’s look at this simple class declaration:

#include <iostream.h>

class fraction

{

public:
double f;
double g;

|3

The main function following defines two instances of the class, x and y, and a
pointer to a double floating-point type. The pointer is used in the conventional way
to access and display the members of both instances of the class.

int main()

{

fraction X, vy;
double *dptr;

xf=1.1;

y.f=22;

x.g = 3.3;

y.g = 4.4;

dptr = &x.f;

cout << *dptr << endl;
dptr = &y.f;

cout << *dptr << endl;
dptr = &x.g;

cout << *dptr << endl;
dptr = &y.g;

cout << *dptr << endl;

}
The displayed results of the program are:

1.1
2.2
3.3
4.4

Class member pointers

It’s OK to use pointers to class members in the way shown above. But C++ provides
an alternative type of pointer, the pointer-to-class-member, specially for accessing
class members. Here’s the same example reworked to illustrate it:
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#include <iostream>
using namespace std;

class fraction

{

public:
double f;
double g;

¥

int main()

{
fraction x, ;
double fraction::*dptr;
xf=1.1;
y.f=22;
x.g = 3.3;
y.g =4.4,

dptr = &fraction::f;
cout << x.*dptr << " " << y.*dptr << end];
dptr = &fraction::g;
cout << x.*dptr << " " << y.*dptr << end|;
}
The line:
double fraction::*dptr;

defines dptr not just as a pointer to an object of type double, but specifically as a
pointer to double members of fraction objects. You can’t later use the member
pointer dptr to point to a simple double data object. The pointer is then assigned the
address of the member variable f in class fraction. The notation:

x.*dptr
is used to access x.f. You can read the operator .* as x-dot-pointer-to-f; it returns the
same value as x.f. Unlike the use of conventional pointers, the pointer dptr is used
without change to access the member f of the y instance of the class; the notation
used is y.*dptr.
This time, the displayed results are:

1122

3344
You can use the ->* operator instead of the .* operator. Suppose that pointers to the
class instance, rather than the class instance itself, are used:

fraction *xptr = &x;

fraction *yptr = &y;
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The first display command reads:
cout << xptr->*dptr << " " << yptr->*dptr << "\n";

Member function pointers

Use of'the specialised pointer-to-class-member syntax may be desirable in all cases
where class members are to be accessed using pointers but you have to use it where
a member function is to be called with a pointer. You can’t access member
functions of a class using conventional function pointers. For example, a conven-
tional pointer to function returning integer:

int (*fptr)();
can’t be used to point to a member function of a class, even if that function exactly
matches the pointer definition in signature.
Consider the coord class with a function member:

class coord

{
private:
int x_coord;
int y_coord;
public:
int locate_coords();
¥

Youcan’tuseaconventional function pointer to point to the function locate_coords.
Instead, we define a pointer to member function:

int (coord::*mem_fn_ptr)();
assign a function address to it like this:
mem_fn_ptr = coord::locate_coords;
and call it:
mem_fn_ptr();

Use of the member-pointer operators provides better control than using ordinary
pointers to point to members and less likelihood of pointers being used for
unintended purposes. Unfortunately, the syntax is somewhat complicated. This
may encourage programmers to stick where they can with traditional pointers and
(as even C++ programmers are inclined to do) avoid function pointers altogether.

Classes as function arguments

Pointers to classes are sometimes used where class instances are being passed as
arguments to functions. In C++, you usually use reference declarations instead to
achieve the same purpose:
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#include <iostream>
using namespace std;
class fraction

{

public:
double f;
double g;

5

/I Function prototype
void change_class(fraction&);

int main()
{
fraction x, y;
double fraction::*dptr;
xf=1.1;
y.f=22;
x.g = 3.3;
y.g = 4.4;
change_class(x);

dptr = &fraction::f;
cout << x.*dptr << " " << y.*dptr << end|;
dptr = &fraction::g;
cout << x.*dptr << " " << y.*dptr << end|;

}
void change_class(fraction& xptr)
xptr.f = 5.5;
xptr.g = 6.6;
}
When you run the program, you get this result:
5522
6.6 4.4

Depending on how it implements the C++ language, the compiler may replace the
reference code with pointer referencing and dereferencing syntax. In any event,
you’re saved from having to do it. The reference (a trailing &) is only referred to
in the change_class prototype and function header; in change_class, the class
members are accessed as if the function had been called by value, with the
argument X.

Reference declarations qualified by const are strongly recommended if you don’t
want a called function to change the value of its parameter:
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void dont_change_class(const fraction& xptr)

/I compile error if x members changed

}

You can suffix a function itself with const:
class fraction

I
public:
dont_change_members() const

{

}
2
A const function generates compilation errors if it attempts to change the value of
members of the class object with which the function has been called. The const
suffix only has meaning for class member functions.

I

The this pointer

Every member function of a class has an implicitly defined constant pointer called
this. The type of this is the type of the class of which the function is member. It’s
initialised, when a member function is called, to the address of the class instance
for which the function was called.

Here’s a representative example of the use of this:

#include <iostream>
using namespace std;
class coord
{
private:
int x_coord, y_coord;
public:
void set_coords(int x_init, int y_init)
{
Xx_coord = X_init;
y_coord = y_init;
}
void change_coords(int, int);
void display_coords()

{
}

cout << "Coordinates: " << x_coord << " " <<y coord << end|;

J
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int main()

{

}

void coord::change _coords(int x_chg, int y_chg)

{

coord c1;
c1.set_coords(5, 10);

cout << "Original C1" << "\n";
c1.display_coords();
c1.change_coords(15, 20);

cout << "Changed C1" << "\n";
c1.display_coords();

coord c2;
c2.set_coords(x_chg, y_chg);

cout << "Display C2" << endl;
c2.display_coords();

*this = ¢2;

The program produces these results:

Original C1
Coordinates: 5 10
Display C2
Coordinates: 15 20
Changed C1
Coordinates: 15 20

The this pointer is useful when you want during execution of a class member
function to get a ‘handle’ on the class object used to call the function. Because, in
a member function, the class variable with which the function was called is out of
scope, the this pointer is provided as that ‘handle’.

Whether in class member functions the this pointer is explicitly used or not, the
C++ compiler accesses all class members using an implicit this pointer.

Static member functions do not have this pointers. There is only one instance of a
static member function for a class, so use of this does not make much sense. Any
attempt to use this in a static member function causes a compilation error. Static
member functions may otherwise be accessed by means of pointers using the same
syntax as non-static member functions.
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1 Given the abstract object clock, identify attributes of the class clock. Declare clock

as a C++ class. Ensuring that the class contains at least one member function, write
down the definitions (as they would be written in a separate .cpp file) of each of
the functions and show how they would be called from an external function such
as main.

Given the class declaration:
class policy

{
private:
char name[30];
char address[50];
char polno[8];
double ins_value;
double premium;
public:
void pol_open();
void pol_close();
void renew();
bool claim(double);
b
What is wrong with this definition of an instance:
policy jsmith = {"J. Smith","Valley Road","12345678",1000.00,100.00};

Why? How should it be done?

Change the policy class as it appears in 2 above so that each instance of the class
takes its policy number from a static member glob_polno. Initialise glob_polno
appropriately to a value of 10000. Create at least two instances of policy and
demonstrate that they have been set up with different policy numbers.
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This chapter describes the facilities provided by C++ to allow you to work with
class instances without having to know what’s inside. For example, suppose we
had an instance, A1, of the bank-account class cust_acc. We might want to transfer
the account to A2. The instance-level assignment:

A2 = A1;

is much nicer and more intuitive than ‘reaching inside’ the instances and copying
the members one-by-one. We might want to create a new account A3 and set it up
initially with the contents of A2:

cust_acc A3(A2);

and for this we need a copy constructor. We might want, at the instance level, to
add money (pounds, dollars, euros, whatever) to the account. It would be attractive
to be able to write:

A3++;
to add one pound or
A3+=5;
to add five euros. You’re looking here at two cases of overloaded operators.

This chapter, in essence, concerns itself with constructors and overloaded opera-
tors. It describes how you can use these two C++ language facilities to work with
classes at the instance level, without having to be aware of the internals. Step into
the shoes of the C++ programmer who uses classes defined and implemented by
others, and these high-level facilities make life a whole lot simpler. Put on your
class designer’s hat, on the other hand, and you find that you have to know how to
use these facilities in order to hide the details from the programmers who will be
using your classes.

Constructors, destructors, overloaded operators and, especially, their side-effects,
are not simple. But, this book is a Made Simple so what follows is the ‘short path’:
a straightforward presentation of the essentials. If you want to get into the ‘dark
corners’ — and, believe me, there are plenty of them in this area — look beyond this
book to my other publication, the C++ Users Handbook, or the C++ Programming
Language (3rd edn) by Stroustrup.



Constructors and destructors

When you define a variable in C++, you have no automatic mechanism for ensuring
that the variable is set to some reasonable value when it is created or that the
variable is ‘tidied up’ (for example, its memory deallocated) immediately before
it is destroyed.

Constructor and destructor functions are introduced in C++ for this purpose.
Constructors and destructors are (and must be) class member functions that have
the same name as the class of which they are a part. In the case of the destructor,
the name is prefixed with a tilde ‘~’.

Here’s an abstract example that has the single virtue of being short:

class newclass

{
private:
}/ private data members defined here
puBIic:
newclass() /I constructor function
/I initialising statements here
cout << "Constructing...." << endl;
}
}/ other public members defined here
;newclass() /ldestructor function
/I un-initialising statements here
cout << "Destructing...." << endl;
}
¥

Here, the constructor function newclass is defined as a public member function of
the class of the same name. You don’t have to make a constructor public; it can be
private or protected and it can be anywhere in the list of member functions.
Similarly, the destructor function ~newclass need not be declared public and may
be declared anywhere among other declarations.

All the same, you should note that constructors and destructors are usually declared
with public access. If private, they are more difficult to use because access to them
is restricted to member functions of the same class.

When you define an instance of newclass:
newclass nc;

an instance nc of the class newclass is defined and the initialising statements in the
body of the newclass constructor function are executed. When nc goes out of scope,
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the destructor function ~newclass is implicitly called and its uninitialising state-
ments do suitable tidying-up operations, which usually include returning storage
to the system’s free list.

A destructor is almost always called implicitly in this way. You will very rarely,
if ever, explicitly call a destructor function.

You should note that constructor functions do not create class objects, nor do
destructor functions destroy them. A class object is created when you define it;
creation is immediately followed by execution of the body of the constructor
function. Conversely, when a class object goes out of scope, its destructor function
is executed and only then is the object destroyed.

Let’s look at how constructor and destructor functions are called. First, here is the
declaration of newclass:

class newclass

{

private:
inta, b, ¢;
public:
newclass()

{

a=b=c=0;

cout << "Constructing...." << endl;
~newclass()

cout << "Destructing...." << endl;

}
%

Next, here are the functions that use newclass:

int main()

newfunc();

}
void newfunc()
newclass nct;
cout << "Defining nc2...." << end];

newclass nc2;

cout << "Out of scope of nc2...." << end|;



newclass has three data members, all integers, and two member functions, its
constructor and destructor. The constructor sets the three integers to zero and
displays a message. The destructor simply displays a message. In the function
newfunc, two instances, nc1 and nc2, of newclass are defined. The definitions call
the constructor; when the definitions go out of scope, the destructor is implicitly
called.

The displayed output of the program is this:

Constructing....
Defining nc2....
Constructing....
Destructing....

Out of scope of nc2....
Destructing....

Constructor and destructor functions must not have return types, not even void.
They may contain return statements but when return is used in this way it must have
no operands. Only return; is valid. Constructors may take parameters; destructors
must not, although void may be specified as a destructor argument list.

Simple constructor example

Here, once again using the bank-account class example, is a simple use of
constructors. In previous declarations of cust_acc (see Chapters 1 and 8), we’ve
used the member function setup to initialise the data members. This means that,
after defining an instance of cust_acc, you must remember to call setup to do the
initialisation. In the next example, we replace this two-step procedure with a
constructor. A destructor is also included, in this case mainly for illustration. The
reworked cust_acc class is declared in the accounts.h header file:

class cust_acc
{
private:
float bal;
int acc_num;
public:
cust_acc();
void lodge(float);
void withdraw(float);
void balance();
~cust_acc()
{
cout << "Account " << acc_num
<< " closed" << endl;
}
5

193



The program file accfunc.cpp contains the definitions of the class member
functions other than the destructor. These definitions are unchanged from the
examples shown in Chapter 1, except that setup is replaced by a constructor and
a destructor function is added.

/[ 'accfunc.cpp'
#include <iostream>
using namespace std;
#include "accounts.h"

1
/I customer_account member functions
I
cust_acc::cust_acc()
{
cout << "Enter number of account to be opened: ";
cin >> acc_num;
cout << "Enter initial balance: ";
cin >> bal,
cout << "Customer account " << acc_num
<< " created with balance " << bal << end|;
}

void cust_acc::lodge(float lodgement)

bal += lodgement;
cout << "Lodgement of " << lodgement << " accepted" << endl;

}

void cust_acc::withdraw(float with)
if (bal > with)
{

bal -= with;
cout << "Withdrawal of " << with << " granted" << end];
return;

cout << "Insufficient balance for withdrawal of "
<< with << end|;
cout << "Withdrawal of " << bal << " granted" << endl;

bal = (float)0;
}
void cust_acc::balance()
{
cout << "Balance of account is " << bal << endl;
}
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Immediately after you define in memory the cust_acc instance, a1, the constructor
function cust_acc::cust_acc() is automatically called to perform initialising opera-
tions on a1. The creation of the a1 object:

cust_acc af;

is therefore also an implicit function call that replaces the previous explicit call to
setup. At the end of main, when the object a1 goes out of scope, the destructor
function cust_acc::~cust_acc is quietly called and ‘closes’ the account a1.

/I 'accounts.cpp'
#include <iostream>
using namespace std;

#include "accounts.h"

int main()

{

cust_acc af;

al.lodge(250.00);
a1l.balance();
a1.withdraw(500.00);
al.balance();

}

The constructor is declared in the class definition and defined later in the
accfunc.cpp program file with this header:

cust_acc::cust_acc()

In other functions that are not constructors, you must specify a return type at the
start of the function header. With constructors and destructors, you must not. When
you run the program, its output looks like this (user-entered stuff is in boldface):

Enter number of account to be opened: 12345
Enter initial balance: 1000

Customer account 12345 created with balance 1000
Lodgement of 250 accepted

Balance of account is 1250

Withdrawal of 500 granted

Balance of account is 750

Account 12345 closed
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Constructors taking parameters

Constructors are functions and can take parameters like any other function. Here’s
a simple example, in the program cstarg1.cpp, of a class that uses a constructor

function taking parameters:

#include <iostream>
using namespace std;
class coord
{
private:
int x_coord, y_coord;
public:
coord(int x, int y)
{
x_coord = x;
y_coord =y;

}
void print()

cout << x_coord << endl;
cout <<y coord << end];

}
I
int main()
{

coord point1 = coord(5,10);
point1.print();

/I coord point2; /I illegal
coord point3(15,20); /[ abbreviation

point3.print();
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This program illustrates several aspects of constructor parameter syntax. The
constructor function coord — defined in full in the class and therefore implicitly
inline — takes two integer parameters. From the code in main, you can see two ways
of calling coord. The first:

coord point1 = coord(5,10);

is the full version; the function coord is called with the arguments 5 and 10 and the
result of this function — the variables x_coord and y coord set to 5 and 10
respectively — are assigned to point1, which is an instance of coord. The second
constructor calling sequence:

coord point3(15,20);

is an abbreviation equivalent to the definition and initialisation of point1 above.
You will usually use this abbreviated form of definition and constructor call in
preference to the full version.



The simple definition in the last section:
cust_acc af;

invokes the default constructor cust_acc::cust_acc(), which take no parameters.
Even if you declare a class without any constructors explicitly included, the
compiler includes such a default constructor. This is why the definition:

cust_acc af;

works even where the class does not contain any explicit constructors. If you
specify a default constructor yourself, that overrides the compiler-supplied default
constructor. If you do not specify a default constructor but include a constructor
that takes parameters, then the class has no default constructor at all. This is why,
in cstarg1.cpp, the (commented out) definition of point2 is illegal: it tries to invoke
the default constructor which, because of the presence of the two-parameter
constructor, is absent. In this case, the correct constructor forms are the definitions
of point1 and point3. The result of the program is simple:

5

10
15
20

There is no destructor function in the class coord. You’ll use destructors most often
when a member function — usually the constructor — performs dynamic allocation
of memory that should be freed at or before the end of program execution. In this
case, no memory is dynamically allocated. You’ll see constructors with dynamic
allocation later in this chapter.

Example: Constructors taking parameters

Here’s a more substantial example of use of constructors — with and without
parameters — in the familiar cust_acc class.First the header.

/Il 'accounts.h'

class cust_acc

{

private:
float bal;
int acc_num;

public:
cust_acc();
cust_acc(int, float); /I overloaded constructor
void lodge(float);
void withdraw(float);
void balance();

2
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/I 'accfunc.cpp'
#include <iostream>
using namespace std;
#include "accounts.h"

cust_acc::cust_acc()

{
cout << "Enter number of account to be opened: ";
cin >> acc_num;
cout << "Enter initial balance: ";
cin >> bal;
cout << "Customer account " << acc_num
<< " created with balance " << bal << endl;
}
cust_acc::cust_acc(int num_init, float bal_init)
{
acc_num = num_init;
bal = bal_init;
cout << "Customer account " << acc_num
<< " created with balance " << bal << endl;
}

void cust_acc::lodge(float lodgement)

bal += lodgement;
cout << "Lodgement of " << lodgement << " accepted" << end];

}
void cust_acc::withdraw(float with)
if (bal > with)
bal -= with;
cout << "Withdrawal of " << with << " granted" << end|;
return;

cout << "Insufficient balance for withdrawal of " << with << endl;
cout << "Withdrawal of " << bal << " granted" << end|;
bal = (float)0;
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void cust_acc::balance()

{
cout << "Balance of account is " << bal << endl;
}
And now the program:
/I 'accounts.cpp'

#include <iostream>
using namespace std;

#include "accounts.h"

int main()

{

cust_acc af;

al.lodge(250.00);
al.balance();
a1.withdraw(500.00);
al.balance();

cust_acc a2(12345, 1000.00);
a2.balance();
a2.withdraw(750.00);
a2.balance();

The cust_acc class declaration now contains two constructor functions. The
default constructor sets up objects of the cust_acc class using prompts, as you’ve
already seen. The second constructor is an overloaded constructor. This is a special
case of an overloaded function. The overloaded constructor:

cust_acc::cust_acc(int num_init, float bal_init)

causes a new instance of the class cust_acc to be assigned the values specified by
the two variables in the argument list.

In main, two instances, a1 and a2 of type cust_acc, are created. a1 is initialised
by the constructor function cust_acc::cust_acc(), the default constructor. This
prompts the user for input of the account number and opening balance, confirming
that the account has been successfully opened. Definition of a2 causes the
constructor with the argument list to be called. The variable members of a2 are
assigned the argument values within that constructor. Here’s the output of the
program as I tested it:
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Enter number of account to be opened: 12344
Enter initial balance: 2000.00

Customer account 12344 created with balance 2000
Lodgement of 250 accepted

Balance of account is 2250

Withdrawal of 500 granted

Balance of account is 1750

Customer account 12345 created with balance 1000
Balance of account is 1000

Withdrawal of 750 granted

Balance of account is 250

Constructors and dynamic memory allocation

You can use constructors to initialise class objects for which memory has been
dynamically allocated by the new operator:

#include <iostream>
using namespace std;

class coord
{
private:
int x_coord, y_coord;
public:
coord(int x, int y)
{
x_coord = x;
y_coord = y;

}
void print()
{

cout << x_coord << endl;
cout <<y coord << end|;

}
12
int main()
{ coord *p_coord;
p_coord = new coord(5,10);
: p_coord->print();

200



Here, a new instance of the class type coord is allocated and its memory address
assigned to the pointer p_coord. Additionally, the class’s constructor function is
called, initialising the data members of the class to the values 5 and 10.

A class object represented by an automatic variable is destroyed when that variable
goes out of scope. On the other hand, a class object for which memory is
dynamically allocated:

class coord

{
I

|3
ptr = new coord;

is persistent. When ptr goes out of scope, its destructor isn’t called and the memory
associated with ptr remains allocated. For the destructor to be invoked, you must
explicitly deallocate the memory:

delete ptr;

which in turn causes the destructor to be implicitly called.

201



Function overloading in classes

You can use overloaded functions in defining classes, as well as in a procedural
way, as seen in Chapter 3. Here’s a class implementation of the squares program
introduced in that chapter:

#include <iostream>
using namespace std;

class number
{
private:
int num;
public:
number() { num =5;} // constructor
int Num() { return(num); }// access function

/I Function 'sgr_func' overloaded
int sqr_func(int);

float sqr_func(float);
double sqgr_func(double);

1
int main()
{
number n;
inti = n.Num();
cout << n.sqr_func(i) << endl;
cout << n.sqr_func( float(i) ) << endl;
cout << n.sqr_func( (double)i ) << end];
}
int number::sqr_func(int i)
{

cout << "Returning int square: ";
return(i * i);

float number::sqr_func(float f)

{

cout << "Returning float square: ";
return(f * f);

}
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double number::sqr_func(double d)

cout << "Returning double square: ";
return(d * d);

The program uses a simple class, number, which defines one private integer
member. This variable, num, is initialised by a simple constructor and its value
retrieved in the function code using an access function. The value of num is
assigned to the local variable i. The different instances of the overloaded function
sqr_func are called depending on the type of i in the function calls.

The old-style typecast notation is used in the double call; the newer C++ equivalent
is used for the float call. The results output by the program are:

Returning int square: 25
Returning float square: 25
Returning double square: 25
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Operator overloading
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Operator overloading is a special case of function overloading. You are allowed to
assign additional meanings to most of the C++ basic operators, like < (less than)
and * (multiply). This means that you can define operators to do special processing
not defined as part of C++.

The C++ basic operators that you may overload are:

! ~ + - * & / %

<< >> < <= > >= == 1=

A I && > += = *= |=

%= &= A= |= <<= >>= , S>*

-> () [ = ++ - new delete

The operators on the last row in this table have some special characteristics when
overloaded. For example, if you’re a masochist, you can dispense with the
memory-management provided by your operating system and do it yourself, by
overloading the new operator. In one way or another, overloading the operators
given on the last row can be regarded as advanced overloading. If you want all the
ins and outs of this, have a look at the C++ Users Handbook or Stroustrup’s The
C++ Programming Language. This book, being a Made Simple, confines itself to
non-advanced overloading and overloading the assignment, which is needed to
provide a full range of class services.

You aren’t allowed to overload these operators:
X b ?:

C++ doesn’t allow new operators to be introduced by means of operator overload-
ing. If you want to overload an operator, you must take it from the set of
overloadable operators given above. For example, you might want to introduce an
operator := to denote explicit assignment, as in Pascal, and to overload the equality
operator == with the C++ assignment operator =. The introduction of := is illegal;
the overloading of == with = is legal but confusing and undesirable.

To overload an operator, you must create a function named by the keyword
operator immediately followed by the actual text of the operator to be overloaded.
In the next example, we overload the addition operator, +. Here’s the + operator-
overloading function:

char add_char::operator+(add_char& c2)

/I operator function code

}

This definition means that the overloaded-operator function named by operator+,
which has a single class-object parameter c2, carries out on ¢2 and the class of
which operator+ is a member (add_char) a set of operations specified by the code
in the body of the function.

The function name operator+ need not be a contiguous string. Any number of
spaces may surround the operator symbol +.



Example: Overloading addition

Here’s a simple example program, called add_char.cpp, that uses the class
add_char and a member function which is the addition operator overloaded.

#include <iostream>
using namespace std;
class add_char

{
private:
char c;
public:
/I constructor
add_char(char c_in) { c = c_in; }
/[ overloaded '+'
char operator+(add_char& c2);
char c_pr() /[ access function
return(c);
}
5
int main()

add_char c1('g');
add_char c2('h');
char sum;

sum = c1 + c2;
cout << "'Sum' of " << c1.c_pr() <<"and "
<< c2.c_pr() <<"is " << sum << endl;

char add_char::operator+(add_char& c2)
/I add to the c1 character the alphabetic displacement of the c2 character.

/I This gives the 'sum' of the two characters.
return(c + (c2.c - ('a' - 1)));

The purpose of the program is to perform alphabetic addition of characters using
a + operator overloaded to do that special kind of addition. In the convention used
by the program, ¢ added to a is d; and h added to g is o. There is a mixed-type
expression in the operator function that does the actual alphabetic addition.

The declaration of class add_char contains one private data member, c, of type
char. It has three member functions: a constructor to initialise ¢ to an alphabetic
value; an access function to retrieve the value of c¢; and an overloaded-operator
function giving a new meaning to the operator +.
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In the main function, we define two instances of add_char, c1 and c2 and their data
members initialised by the constructor to g and h respectively. We assign a local
variable, sum, the result of the overloaded-operator function call:

cl+c2

The last statement in main displays that result:
'Sum'of gand his o

Now we look at the overloaded-operator function operator+. Here is its header:
char add_char::operator+(add_char& c2)

This specifies one parameter, which is a reference to the class object c2 correspond-
ing to the operand on the right-hand side of the overloaded addition c1 + c2. In this
addition, the operand c2 is the argument to the overloaded-operator function
operator+. The operand being used as an argument in the operator+ function call
doesn’t have to have the same name as the function parameter. If the following class
instances are defined and initialised:

add_char x1('c");

add_char x2('d");
it’s OK to make x1 and x2 operands of the overloaded operator:

sum = x1 + x2;
The operand x2 is then copied through the reference to the operator+ parameter c2.
Use of the reference declaration add_char& c2 in the case of a simple class like

add_char is not necessary, although it improves efficiency because copying a
reference parameter imposes less overhead than copying a full class instance.

The overloaded-operator function operator+ is also passed an implicit this pointer
to c1. The function can therefore directly access the data member c of c1.

In the return statement:

return(c + (c2.c - ('a' - 1)));
c is the private data member of c1, accessed using the implicit this pointer. Its
contents are added arithmetically to those of c2.c, offset from the start of the
alphabet. This last is an ordinary, not an overloaded, addition. You could write the
return statement with the this pointer explicitly included:

return(this->c + (c2.c - ('a' - 1)));
Also, you can write the assignment to sum:

sum = c1.operator+(c2);

which may help you understand how the operator+ function receives an implicit
this pointer referring to class object c1.

If you overload the assignment operator, =, the overloading function must be a
member of a class. Functions overloading most other operators do not have to be
class members but must take at least one argument that is a class object. This



stipulation is designed to prevent a C++ basic operator being redefined unreason-
ably to operate on two non-class data objects. An example of unreasonable use
would be to redefine the multiplication operator * to mean division when used with
two integers.

Even with operator overloading, normal precedence and associativity of operators
is unchanged. Thus, no matter how you might overload + and *, the expression:

atb*c
will always be evaluated as:
a+(b*c)
You can’t overload a basic operator that is strictly unary or binary to mean the
opposite:
Ix /[ ""is always unary
17 % 6 /I '%'is always binary
In overloading operators you should try to mimic the purpose of the equivalent

basic operator. The overloading of + in the program add_char.cpp is intuitive; +
being overloaded to cause subtraction of characters would not be.

Overloading the assignment: Deep and shallow copy

Overloading the assignment operator presents a number of difficult underlying
issues and yet you need to know about it. In this section, I try to give a not-too-
detailed description of the mechanism and the side-effects of assignment that it is
intended to overcome. The string class example later in this chapter gives every
detail of the code required to implement the overloaded assignment.

A class instance may be assigned to another of the same type. By default,
memberwise assignment —ablind bitwise copy —is used. If the class objects contain
pointer members, memory will become corrupted when those pointers are
deallocated. Here’s why: suppose we assign class instance inst1 to inst2 and that
inst1 has a pointer member p that points to some dynamically-allocated memory.
Before the copy, the objects can be shown with the diagram:

[ ]

A

inst2 inst1

where the member, p, of inst1 points to an area of memory.
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This is the situation after the assignment

inst2 = inst1;

inst2 inst1

What we’ve done is a shallow copy: we’ve copied the pointers but not the memory
they point to. Both pointers now point to the same area of memory. When inst1 and
inst2 are about to go out of scope, calls to the destructor for both inst1 and inst2 will
attempt (twice) to deallocate the same memory and a runtime error will result. We
avoid this double-deallocation by overloading the assignment operator to copy the
memory pointed to, not the pointers themselves. This is known as a deep copy.

Suppose we have a class called ptrclass, containing a pointer member, p. We have
two instances of the class, inst1 and inst2. Here’s how you’d overload the
assignment operator so that memory doesn’t get corrupted on assignment of one
instance to the other:

class ptrclass

{

private:
char *p;
public:
/I public members here

/I overloaded assignment operator,
/I copies memory within instances
ptrclass& operator=(ptrclass&);

~ptrclass() { delete p; }
3
The operator= function takes as its parameter a reference to the class instance on
the right side of the overloaded assignment. When called, it is also implicitly passes
a this pointer to the class instance on the left side of the assignment. It modifies that
instance and returns a reference to it as the result of the assignment. Here’s the
skeleton of the operator= function:



/I 'operator="

ptrclass& ptrclass::operator=(ptrclass& inst1)

{
/I Here, deep-copy the MEMORY AT inst1.ptr

/I to the MEMORY AT inst2.ptr, NOT
/I simply the pointer inst1.ptr to inst2.ptr.

return(*this);

}

You do the overloaded assignment of the two instances like this:
inst2 = inst1;

which can also be written as:
inst2.operator=(inst1);

The operator= function is called with a reference to inst1 as an argument. We now
copy the memory pointed to by inst1.p to the memory pointed to by inst2.p. You
can see exactly how in the copy constructor function of the string class example at
the end of this chapter. By copying the memory at the pointers rather than just the
pointers, we perform a deep copy and ensure that the pointers don’t get corrupted.
Memory after the assignment looks like this:

inst2 inst1

The statement return(*this) returns a reference to the changed contents of inst2 to
the assignment. In this way the contents of inst1 are copied to inst2 without the
unwanted side-effects referred to above.

Note that, to prevent further pointer corruption, both the parameter and return value
of operator= must be references to the operands of the overloaded assignment.
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Assignment and inifialisation

You saw in the last section that shallow copy, or memberwise assignment, causes
memory corruption. So does initialisation when it’s done in either of the two ways:

ptrclass inst2(inst1);
ptrclass inst2 = inst1;

In each case of initialisation such as this, the compiler generates a default copy
mechanism (a default copy constructor) that does a blind member-by-member
initialisation, known as memberwise initialisation. This is similar to the memberwise
assignment seen in the last section, and it messes up memory in the same ways. You
can resolve these problems by providing tailored copy constructors that perform
smart assignment of pointers which are class members.

I’ve shown two cases of class-instance initialisation. There are two others:

¢ When a function receives a class instance as an argument.

¢ When a function returns a class instance.

For all four cases, you need a copy constructor to prevent corruption of memory.

Initialising objects with copy constructors
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A copy constructor is one that is called to initialise the class instance of which it
is a member to the value of another class instance.

In the case of the class X, the prototype of the copy constructor looks like this:
X::X(const X&);

If no copy constructor is defined for a class, then initialising operations cause the
default copy constructor to be called quietly. The default copy constructor isn’t
very refined, performing as it does simple memberwise initialisation.

To see a case where we need a copy constructor, let’s look at the class coord:

class coord
{
private:
int *x_coord, *y_coord;
public:
coord(int x, int'y)
{

cout << "Constructing...." << endl;;
x_coord = new int;

*x_coord = x;

y_coord = new int;

*y_coord = y;
}
void print()
{

cout << *x_coord << " " << *y coord << endl;



}

~coord()

cout << "Destructing...." << end|;
delete x_coord;
delete y_coord,;

}
h

Defining an instance of coord:
coord point1(5,10);

works fine, with memory to accommodate the arguments 5 and 10 being allocated
to the pointers x_coord and y_coord by the constructor function. It’s when we try
to do either of the (equivalent) initialising operations:

coord point2(point1);
coord point2 = point1;

that we run into the shallow-copy memory-corruption problem which I described
in the last section.

In both cases, the default copy constructor initialises the pointer values in point2
with those stored in point1. The destructor, which is called twice, then attempts to
deallocate the same memory twice. The results of doing this are undefined but are
always an error and may cause the program to crash.

The problem is resolved using a specially-written copy constructor, which is added
to coord as a function member:

coord(const coord& copypoint)

{

cout << "Copy constructing...." << endl;
x_coord = new int;

*x_coord = *(copypoint.x_coord);
y_coord = new int;

*y_coord = *(copypoint.y coord);

}

The class point2 is initialised by an explicit call to the copy constructor. In the
earlier example, the default copy constructor shallow-copied the pointer values
x_coord and y_coord, leading to an attempted double memory deallocation. This
time the integer objects pointed to by x_coord and y_coord are copied to newly-
allocated memory in point2. When the destructor is eventually called twice, it each
time deallocates different memory.

With the copy constructor included in the coord class, initialisation of class
instances in any of the four ways described at the start of this section will use the
copy constructor and not the default copy constructor. The resulting initialisation
is error-free.
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Example: a C-string class

The C-style character string — strictly, the null-terminated character array, or C-
string — is one of the data objects most commonly used in C++ programming. A
large number of string operations are also defined, including those provided in the
Standard C Library. As shown in Chapter 2, the ISO C++ Standard Library
additionally defines a general purpose string class.

Because it illustrates well so many aspects of class implementation and class
services in C++, this section presents a cstr class example, in no way intended as
an alternative to the standard string class.

First, the cstr class is declared as part of the header file cstr.h:

/I cstr.h — defines C-string class
class cstr
{
private:
char *sptr;
int slen;
int ssize;
public:
cstr();
cstr(int);
cstr(const char *);
cstr(const cstr &);
void set_str(const char *);
char *access() { return(sptr); }
/I binary operator-overload function for
/I C-string concatenation
void operator+=(cstr&);
/I overloaded assignment operator, copies C-strings
cstr& operator=(cstr&);
~cstr() { delete sptr; }
I
extern const int MAX;
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The class cstr defines a character pointer sptr as a private data member, along with
length and array-size information. The four constructor functions in different ways
allocate space for this pointer and initialise the resulting character array as a C-
string. The fourth constructor in the list is the copy constructor for the cstr class.
The destructor deallocates memory reserved for cstr instances. The two overloaded
operator functions implement C-string concatenation and assignment.

The class defines an access function — called access — to retrieve the value of sptr.
and the function set str to set the text value of a cstr instance. The code
implementing the four constructors and the other member functions is in the
program file cstrfunc.cpp:



/I cstrfunc.cpp — defines cstr class functions
#include <iostream>

using namespace std;

#include <cstring> // Standard C Library string class
#include "cstr.h" // Our C-string class

/I cstr constructors

cstr::cstr()

sptr = new char[MAX];

ssize = MAX;
*sptr = "\0;
slen = 0;
}
cstr::cstr(int size)
{
sptr = new char[size];
ssize = size;
*sptr = "\0;
slen = 0;
}
cstr::cstr(const char *s_in)
{

slen = ssize = strlen(s_in) + 1;
sptr = new char[slen];
strcpy(sptr, s_in);

/I copy constructor

cstr::cstr(const cstr& ob_in)

{
slen = ssize = strlen(ob_in.sptr) + 1;
sptr = new char[slen];
strcpy(sptr, ob_in.sptr);

void cstr::set_str(const char *s_in)

{
delete sptr;
slen = ssize = strlen(s_in) + 1;
sptr = new char[slen];
strcpy(sptr, s_in);

}
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void cstr::operator+=(cstr& s2)

{

}
/i

char *ap;

slen += (s2.slen + 1);
ap = new charslen];
strcpy(ap, sptr);
strcat(ap, s2.sptr);
delete sptr;

ssize = slen;

sptr = new char]slen];
strcpy(sptr, ap);

'operator=" — assigns cstrs

cstr& cstr::operator=(cstr& s2)

{

/I watch for the case of assignment of the same class!
/I (e.g: s1 =s1 would mean losing the cstr)
if (this == &s2)
return(*this);
/I deallocate cstr space in class object (this) being copied to,
/I then reallocate enough space for the object being copied
delete sptr;
sptr = new char[s2.slen];

/I copy the cstr and its length

slen = ssize = s2.slen;

strcpy(sptr, s2.sptr);

/I return this class object to the assignment
return(*this);
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The first constructor allocates to the pointer sptr a character array of fixed length
MAX. The second allocates an array of length specified by its parameter. The third
allocates an array long enough to accommodate the text of its parameter. All three
constructors null-terminate the array and set its length counter.

The fourth constructor is the copy constructor. This first finds the length of the text
in the incoming cstr instance. It then allocates enough memory to the pointer in the
instance being initialised to accommodate that text. Finally, the text (not the
pointers!) is copied.

The overloaded functions operator+= and operator= similarly copy text contents
of C-string instances when such instances are assigned (not initialised!) in the main
function. The main function calls all the functions, as well as (quietly) the
destructor, to deallocate memory assigned by the constructors to sptr.



The code that calls the member functions of cstr is in the main function in the
program file cstr.cpp:

/I program file 'cstr.cpp'
#include <iostream>
using namespace std;

#include "cstr.h"
const int MAX = 256;

int main()
{
cstr s1;
cstr s2(MAX);
cstr s3("and into Mary's bread and jam ");
cstr s4("his sooty foot he put");

s1.set_str("Mary had a little lamb ");
s2.set_str("whose feet were black as soot ");

s1 +=s2; /I overloaded '+='

s1 +=83;

s1 +=s4;

cstr s5;

s5 =s1; /I overloaded assignment

cout << "sb5: " << sb.access() << endl;

cstr s6(s5); /I copy constructor
cout << "sB: " << sB.access() << endl;

cstr s7 = s6; /I copy constructor
cout << "s7: " << s7.access() << endl;

In essence, the program initialises the cstr instances s1, s2, s3 and s4 and, with
these, sets up s5, s6 and s7 using the various constructor and overloaded-operator
facilities implemented by the class. When the program is run, the nursery rhyme
is each time displayed in full by sending to the output stream the contents of the cstr
objects s5, s6 and s7.
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Exercises
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Enumerate, with very short examples, the four cases of initialisation which require
a copy constructor.

Explain how the chained assignment operation
s3 =s2 =s1;
is implemented, where s1, s2 and s3 are objects of the cstr class.

Write a program that overloads the stream insertion operator << such that the
operand to its right can be a class instance.
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Class inheritance, with virtual functions, is what C++ is all about. Everything
you’ve learnt up to now in this book is essentially groundwork that you have to
cover to be able to take advantage of the programming power offered by classes,
containing virtual functions, organised in hierarchies. In this chapter, you’ll learn
how to:

[ IDerive classes from existing base classes.
[IControl access to the data members of derived and base classes.

[_1Use constructors and destructors to initialise and destroy instances of derived
and base classes.

[ IDerive classes from multiple base classes.

[ 1Use the C++ implementation of polymorphism: the hierarchy of base and
derived classes combined with virtual functions.

Classes often have much in common with other classes. Where classes are similar,
it’s better to define them in terms of characteristics they have in common, instead
of duplicating them. With class derivation, C++ allows classes to reuse declara-
tions made in other classes. Derived classes inherit the declarations made in
existing base classes.

Let’s look at an intuitive example of this process, with the employee class example.
All employees share certain characteristics: they have a name, date of birth,
employee number and grade; all employees are also hired, paid and (maybe) fired.

For specific employee types, we need other data and behaviour. A Manager
probably has a salary and bonus, rather than the hourly pay of an ordinary
employee. A Supervisor may have a union number. A Line Manager may share
some of the characteristics of both the Manager and Supervisor. For example, they
may both be entitled to use secretarial services. A Director, on the other hand, may
have exclusive access to a Personal Assistant. If our company is well off (maybe
more likely if it’s not!), the Vice-President’s perks could include a company-paid
yacht in the Caribbean or Mediterranean.

In the employee example, it makes sense to define a generic class called employee,
holding basic information on the characteristics and behaviour of all employees.
Class definitions for supervisor, manager and the others may then be derived from
the employee class. The model is shown as a diagram on the next page.

If you use this sort of model with C++, you can get impressive code reuse and
serious savings in software development cost compared with more traditional
languages such as C. In the diagram, the Technician, Supervisor and Manager
classes are derived with single inheritance from Employee. LineManager multiply
inherits the characteristics of Supervisor and Manager. You can design and build
these class hierarchies as deep as you like.



Employee

Name, DOB, EmpNo Data
Grade

Hire, Pay, Fire, Promote
Display status

\. J

Operations

Technician Supervisor Manager

Union No, PayRate Union No, Bonus Salary, Bonus

Payrate

Operate machine Start Assembly Interview
Pay, Display status Pay, Display status Pay, Display status

LineManager

Pay, Display status

You derive the Supervisor and Manager classes from Employee because they have
a lot in common. There are, however, differences of detail in the ways in which
similar operations are carried out. For example, all the employees are paid but on
different terms and schedules. Displaying the status and qualifications of a director
will differ in detail from the equivalent operation for a janitor.

To deal elegantly with implementing these differences, C++ implements
polymorphism — the ability to define many different operations that use the same
name and present the same interface to the programmer.

C++ implements polymorphism using virtual functions declared in a base class and
inherited by one or more derived classes. You can use the same function call to
carry out a similar (but different) operation for any of the classes in the hierarchy.
You have to define different instances of the function for each operation. When the
program runs, the runtime system selects the appropriate instance depending on the
class instance used in the function call.

With virtual functions, you get a further level of abstraction: the detailed imple-
mentations of the different virtual-function instances are hidden and you don 't have
to know what sort of instance (Employee, Manager and so on) you’re dealing with
in order to, say, pay that employee. With virtual functions, type-checking is reduced and
with it the incidence of programmer error.
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Here’s a first look at the employee class hierarchy. We have declarations of the
employee base class and of three derived classes, technician, supervisor and
manager. Don’t worry about their full contents yet.

class employee

/I no private members, but could be

protected:
/I members hidden from rest of world
public:
int grade;
/I public class members
3
class technician : public employee
{
private:
/I class members specific to 'technician’
public:
int unionNo;
/I public member functions can access
/I private members of this class as well
/I as protected members of 'employee’
|3
class supervisor : public employee
{
private:
1
public:
1
|3
class manager : public employee
{
private:
1
public:
1
3

After the base employee class is declared, the declaration:
class supervisor : public employee

{
I

X
announces a new type, supervisor, which inherits all non-private characteristics of
employee and, between the curly braces, adds zero or more declarations of its own.
You must specify the class keyword, as well as the names of the two class types,
separated by a colon.



The access specifier public is optional but usually necessary. When a class is
derived from one or more other classes, and when the access specifier public is used
in the derived class declaration, public members of the base class become public
members of the derived class. If public is not specified in this way, the members
of the derived class are by default private.

Each of technician, supervisor and manager is declared as a derived class of the
base class employee. Using an instance of any of the derived class types, you can
access all non-private members of the inherited employee object as if those
members were also members of the derived classes. Here’s the code:

/I define 'technician' and 'employee' class objects
employee ef;
technician t1;

/I illustrate basic access rules, assuming
/I 'public' access specifier in derived-class declarations

el.grade = 1; /I OK, grade is 'employee'
/I member
t1.grade = 1; /I OK, grade is 'technician'

/I member derived from 'employee’

t1.unionNo = 53; /I OK, unionNo is 'technician'
/I member not derived from 'employee’

e1.unionNo = 7; /I Error, unionNo is notin
/I scope for 'employee’ object

This shows that a derived class inherits all non-private members of a base class and
that those members are in scope for the derived class. The converse is not true: new
members declared in a derived class are not in scope for the base class.

Example: A simple employee class hierarchy

Here’s a full-program example, based on the employee model, that illustrates
single class inheritance and the C++ syntax used to access the members of the
classes in a hierarchy.

The program is organised in three program files. employee.h contains the class
declarations. The program file empfunc.cpp defines the member functions of the
class hierarchy and emp.cpp the small amount of code needed to define class
objects and use their members.
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/I employee.h

enum qualification {NONE, CERT, DIPLOMA, DEGREE,

class employee

protected:
char *name;
char *dateOfBirth;
int individualEmployeeNo;
static int employeeNo;
int grade;
qualification employeeQual;
float accumPay;
public:
/I constructor
employee();

/I destructor
~employee();

void pay();
void promote(int); /[ scale increment
void displayStatus();
|3
class technician : public employee
{
private:
float hourlyRate;
int unionNo;
public:
/I constructor
technician();
/I destructor
~technician();

void pay();
void displayStatus();
i
class supervisor : public employee
{
private:
float monthlyPay;
public:
/I constructor
supervisor();

POSTGRADY};
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/I destructor
~supervisor();

void pay();

void displayStatus();

i
class manager : public employee
{
private:
float monthlyPay;
float bonus;
public:
/I constructor
manager();
/I destructor
~manager();
void pay();
void displayStatus();
7

The classes technician, supervisor and manager are derived from the base class
employee. All non-private members of employee are inherited by and are common
to the derived classes.

All the classes have a constructor and a destructor. The constructors do not yet take
parameters. Each class defines its own pay and displayStatus functions. The
existence of multiple definitions of these functions among the classes does not
cause ambiguity. Any call to, say, the pay function for a given class must, in client
code, be qualified with a class instance:

/I illustrate 'pay' function call

supervisor s1;

s1.bay(); /I not ambiguous

You can call the function pay without the ‘s1.” prefix from within a member
function of technician. In that case, the pay function that is a member of technician
is called.

The base class employee, uniquely, contains a declaration for the function
promote. The employee instance of this function is called no matter which object
type — employee, technician, supervisor or manager — is used to qualify the
promote call.

The program file empfunc.cpp contains the code that implements the member
functions of the four classes.
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/[ empfunc.cpp
#include <iostream>
using namespace std;
#include <cstring>
#include "employee.h"

/I define and initialise static member
int employee::employeeNo = 1000;
/I define 'employee' member functions first
employee::employee()
{
char nameln[50];
cout << "Enter new employee name ";
cin >> nameln;
name = new char[strlen(nameln) + 1];
strcpy(name, nameln);
dateOfBirth = NULL;
individualEmployeeNo = employeeNo++;
grade = 1;
employeeQual = NONE;
accumPay = 0.0;

}

employee::~employee()

delete name;
delete dateOfBirth;

}

void employee::pay()
{
}

void employee::promote(int increment)

grade += increment;

}

void employee::displayStatus()
{
}

Il define 'technician' member functions
technician::technician()

hourlyRate = 10.4;
unionNo =0;
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cout << "Hourly employee " << name << " is hired" << endl|;

}
technician::~technician()
{
cout << "Hourly employee " << name << " is fired!" << end|;
}
void technician::pay()
{
float paycheck;
paycheck = hourlyRate * 40;
accumPay += paycheck;
cout << "Hourly employee " << individualEmployeeNo
<< " paid " << paycheck << endl;
}

void technician::displayStatus()

cout << "Hourly employee " << individualEmployeeNo
<<"is of grade " << grade << " and has been paid "
<< accumPay << " so far this year" << end|;

}

Il define 'supervisor' member functions
supervisor::supervisor()

monthlyPay = 1700.00;
cout << "Supervisor " << name << " is hired" << endl;

}
supervisor::~supervisor()
{
cout << "Supervisor " << name << " is fired!" << endl;
}
void supervisor::pay()
{
accumPay += monthlyPay;
cout << "Supervisor " << individualEmployeeNo
<< " paid " << monthlyPay << endl;
}

void supervisor::displayStatus()

cout << "Supervisor " << individualEmployeeNo
<<"is of grade " << grade << " and has been paid "
<< accumPay << " so far this year" << endl;
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/[ define 'manager' member functions
manager::manager()

monthlyPay = 2100.00;
bonus =210.0;
cout << "Manager " << name << " is hired" << endl;

}
manager::~manager()
{
cout << "Manager " << name << " is fired!" << endl;
}
void manager::pay()
{
accumPay += monthlyPay;
cout << "Manager " << individualEmployeeNo
<< " paid " << monthlyPay << end|;
}
void manager::displayStatus()
{
cout << "Manager " << individualEmployeeNo
<< "is of grade " << grade << " and has been paid "
<< accumPay << " so far this year" << endl;
}
None of the constructor functions takes any parameters, so the employee construc-
tor must prompt the user for input of employee names. In the typical case, no
instances of the base class, employee, will be created. Two of its member functions,
pay and displayStatus, therefore have no purpose and are empty.
Here’s the main function:
/[ emp.cpp

#include <iostream>
using namespace std;
#include "employee.h"

int main()

{
technician t1;
supervisor s1;
manager mf1;

t1.pay();
t1.displayStatus();
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s1.pay();
s1.displayStatus();
m1.pay();
m1.displayStatus();

Three class objects are defined, one each for technician, supervisor and manager.
In each case, an underlying employee object is implicitly defined also. The
program produces the following output. Text in bold type is what you enter.

Enter new employee name john
Hourly employee john is hired
Enter new employee name chris
Supervisor chris is hired
Enter new employee name marilyn
Manager marilyn is hired
Hourly employee 1000 paid 216
Hourly employee 1000 is of grade 1

and has been paid 216 so far this year
Supervisor 1001 paid 1700
Supervisor 1001 is of grade 1

and has been paid 1700 so far this year
Manager 1002 paid 2100
Manager 1002 is of grade 1

and has been paid 2100 so far this year
Manager marilyn is fired!
Supervisor chris is fired!
Hourly employee john is fired!
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Access control

Base class

228

I’ve already explained the effect of the access-specifier keywords private and
public. Now we also look at the protected keyword, as well as the levels of access
to members of derived classes that are allowed by various combinations of private,
protected and public.

access

Base class access for a derived class is defined by use of any of the access-specifiers
private, protected or public.

In public derivation:
class manager : public employee

manager inherits protected and public members of employee and retains those
access levels.

In protected derivation:
class manager : protected employee

manager inherits protected and public members of employee, but forces all the
inherited public members to be protected: you can’t access them from client code
using an employee object.

In private derivation:
class manager : private employee

all non-private members of employee are inherited by manager but are now private
members of manager, regardless of whether they are specified with protected or
public access in employee.

Public derivation is the default for structures and unions; class derivation defaults
to private. Here’s an example that illustrates many of the possibilities of base class
access:

class a

protected:
int x;
public:
inty;
int z;
3
class b : private a // members of a
/ private in b

protected:
a:x; /I x converted to protected



public:
a.y; /l'y converted to public

void myfunc()

x = 5; /] OK, protected

}
2
int main()
{
b b_inst;

b_insty =6;// OK, public
b_inst.z=7;// Error, still private
return(0);

}

Class a has three data members. Class b inherits class a, but with private base class
access. Unless their access levels are specifically converted, b::x, b::y and b::z are
private members of class b only accessible by member functions of b.

Two explicit conversions are done: a::x is converted to a protected member and a::y
to a public member of b. a::z remains a private member of b. Conversions such as
these can only reinstate the access level of a derived member to exactly that
specified in the base class in which it was defined. In the example, a::x can only be
converted in class b to protected, not to private or public.

After the conversions, a::x can be accessed by the function b::myfunc(). Because
a::x is protected, it cannot be directly accessed in main. On the other hand, a::y has
been reinstated to public and is the subject of an assignment in main. Any access
to a::z using the class variable b_inst causes a compilation error.

Class member access

A class member declared with public access is visible to all code wherever that class
is in scope. A class member declared with private access is visible wherever that
class is in scope, but only to member functions of the class. A class member
declared with protected access is visible wherever that class is in scope, but only
to member functions of the class and to member functions of classes derived from
it.

Structure members are by default public; those of classes are by default private.
Either may have members that are protected. Declaring members protected is only
useful if the structure or class in which the declaration is made is to serve a base
class from which others will be derived.
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Constructors and destructors
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This section considers the order in which constructor and destructor members of
a class hierarchy are called and the means by which arguments are passed to
constructors in the hierarchy. In a class hierarchy formed of a base class and zero
or more derived classes, constructor functions are executed starting with the base
class in order of class derivation. Destructor functions are called in reverse order
of derivation.

Constructor and destructor functions are never inherited. Therefore, in a class
hierarchy, the constructor of a derived class does not take on any of the character-
istics of the constructor (if any) declared in its base class.

If a base class constructor takes parameters, you can do the initialisation using the
syntax shown in Chapter 9. Here’s the employee base class reworked to declare
constructor and destructor functions taking parameters:

class employee

protected:
char *name;
char *dateOfBirth;
int individualEmployeeNo;
static int employeeNo;
int grade;
qualification employeeQual;
float accumPay;

public:
/I constructor: name and grade
employee(char *, int);

/I constructor: name, birthdate, grade, qualification
employee(char *, char *, int, qualification);

/I destructor
~employee();

void pay();
void promote(int); /I scale increment
void displayStatus();
¥
You initialise class instances of type employee with definitions like this:

employee e1("Karen", 4);
employee e2("John", "580525", 4, DEGREE);

The first definition creates a class object e1 of type employee and calls the
matching constructor function (the one declaring two parameters in its argument
list) to initialise the object with the arguments "Karen" and 4.



In a class hierarchy, what you usually want is to initialise a derived class instance
using a constructor of that derived class. When you create a derived class instance,
you also (quietly) make a base class instance. We need a mechanism to call the
derived constructor with arguments and then to transmit some, all or none of those
arguments to the base class constructor so that the base member variables may be
initialised.

Let’s look at creation of a derived-class instance of type technician. The construc-
tors of both the employee and technician classes take parameters. The technician
class declaration is this:

class technician : public employee
{
private:
float hourlyRate;
int unionNo;
public:
/l name, grade, rate, union ID
technician(char *, int, float, int);

/I name, birthdate, grade, qualification, rate, union ID
technician(char *, char *, int, qualification, float, int);

/I destructor
~technician();

void pay();
void displayStatus();
¥
You write the header of the second constructor function of the technician class like
this:

technician::technician(char *nameln,
char *birthin,
int gradeln,
qualification qualin,
float rateln,
int unionNoln)
: employee(nameln, birthin, gradeln, qualin)

Four of the six parameters received by the technician constructor arguments are
passed on to the matching employee constructor. The technician constructor takes
its own parameters, rateln and unionNoln, and assigns them to the member
variables hourlyRate and unionNo of its class.
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Example: Class hierarchy with constructors taking parameters

The full employee class hierarchy, shown with constructors and destructors taking
parameters, follows.

/[ employee.h
enum qualification {NONE, CERT, DIPLOMA, DEGREE, POSTGRAD};

class employee

protected:
char *name;
char *dateOfBirth;
int individualEmployeeNo;
static int employeeNo;
int grade;
qualification employeeQual;
float accumPay;
public:
/I constructor: name and grade
employee(char *, int);
/I constructor: name, birthdate, grade, qualification
employee(char *, char *, int, qualification);
/I destructor
~employee();
void pay();
void promote(int); // scale increment
void displayStatus();

k

class technician : public employee
{
private:
float hourlyRate;
int unionNo;
public:
/I name, grade, rate, union ID
technician(char *, int, float, int);
/I name, birthdate, grade, qualification, rate, union ID
technician(char *, char *, int, qualification, float, int);
/I destructor
~technician();
void pay();
void displayStatus();
|3

class supervisor : public employee
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{

private:
float monthlyPay;
public:
/l name, grade, rate
supervisor(char *, int, float);
/I name, birthdate, grade, qualification, rate
supervisor(char *, char *, int, qualification, float);
/I destructor
~supervisor();
void pay();
void displayStatus();

5
class manager : public employee
{
private:
float monthlyPay;
float bonus;
public:
/[ name, grade, rate, bonus
manager(char *, int, float, float);
/I name, birthdate, grade, qualification, rate, bonus
manager(char *, char *, int, qualification, float, float);
/| destructor
~manager();
void pay();
void displayStatus();
|5

We implement the member functions of all four classes in the program file
empfunc.cpp:

/I empfunc.cpp
#include <iostream>
using namespace std;
#include <cstring>
#include "employee.h"

/I define and initialise static member
int employee::employeeNo = 1000;

/I define 'employee’ member functions first
employee::employee(char *nameln, int gradeln)

name = new char[strlen(nameln) + 1];
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strcpy(name, nameln);

dateOfBirth = NULL;
individualEmployeeNo = employeeNo++;
grade = gradeln;

employeeQual = NONE;

accumPay = 0.0;

}

employee::employee(char *nameln,
char *birthin,
int gradeln,
qualification quallin)

name = new char[strlen(nameln) + 1];
strcpy(name, nameln);

dateOfBirth = new char[strlen(birthin) + 1];
strcpy(dateOfBirth, birthin);

grade = gradeln;

employeeQual = qualln;
individualEmployeeNo = employeeNo++;
accumPay = 0.0;

}

employee::~employee()

delete name;
delete dateOfBirth;

}

void employee::pay()
{
}

void employee::promote(int increment)

grade += increment;

}
void employee::displayStatus()

}

/I define 'technician' member functions
technician::technician(char *nameln,

int gradeln,

float rateln,

int unionNoln)
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}

: employee(nameln, gradeln)

hourlyRate = rateln;
unionNo = unionNoln;
cout << "Hourly employee " << name << " is hired" << end|;

technician::technician(char *namelin,

}

char *birthin,
int gradeln,
qualification quallin,
float rateln,
int unionNoln)
: employee(nameln, birthin, gradeln, qualin)

hourlyRate = rateln;
unionNo = unionNoln;
cout << "Hourly employee " << name << " is hired" << endl|;

technician::~technician()

{
}

cout << "Hourly employee " << name << " is fired!" << end|;

void technician::pay()

{

}

float paycheck;

paycheck = hourlyRate * 40;

accumPay += paycheck;

cout << "Hourly employee " << individualEmployeeNo
<< " paid " << paycheck << endl;

void technician::displayStatus()

}

cout << "Hourly employee " << individualEmployeeNo
<<"is of grade " << grade << " and has been paid "
<< accumPay << " so far this year" << end|;

/I define 'supervisor' member functions
supervisor::supervisor(char *nameln,

int gradeln,
float rateln)
: employee(nameln, gradeln)
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monthlyPay = rateln;
cout << "Supervisor " << name << " is hired" << endl;

}

supervisor::supervisor(char *nameln,
char *birthin,
int gradeln,

qualification qualln,
float rateln)
: employee(nameln, birthin, gradeln, qualln)

monthlyPay = rateln;
cout << "Supervisor " << name << " is hired" << endl;

}

supervisor::~supervisor()

cout << "Supervisor " << name << " is fired!" << endl;

}
void supervisor::pay()
{
accumPay += monthlyPay;
cout << "Supervisor " << individualEmployeeNo
<< " paid " << monthlyPay << endl;
}
void supervisor::displayStatus()
{
cout << "Supervisor " << individualEmployeeNo
<<"is of grade " << grade << " and has been paid "
<< accumPay << " so far this year" << endl;
}

/I define 'manager' member functions
manager::manager(char *nameln,
int gradeln,
float rateln,
float bonusin)
: employee(nameln, gradeln)

monthlyPay = rateln;
bonus = bonusln;
cout << "Manager " << name << " is hired" << endl;

}
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manager::manager(char *nameln,

char *birthlin,
int gradeln,
qualification qualln,
float rateln,
float bonusin)
: employee(nameln, birthin, gradeln, qualin)

{
monthlyPay = rateln;
bonus = bonusin;
cout << "Manager " << name << " is hired" << endl;
}
manager::~manager()
{
cout << "Manager " << name << " is fired!" << endl;
}
void manager::pay()
{
accumPay += monthlyPay;
cout << "Manager " << individualEmployeeNo
<< " paid " << monthlyPay << end];
}
void manager::displayStatus()
{
cout << "Manager " << individualEmployeeNo
<<"is of grade " << grade << " and has been paid "
<< accumPay << " so far this year" << endl;
}
The main function drives the classes and their member functions:
/I emp.cpp

#include <iostream>
using namespace std;
#include "employee.h"

int main()

{

technician t1("Mary", 1, 10.40, 1234);

technician t2("Jane", "651029", 2, CERT, 10.40, 1235);
supervisor s1("Karen", 4, 1350.00);

supervisor s2("John", "580525", 4, DEGREE, 1700.00);
manager m1("Susan”, 6, 1350.00, 150.00);
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manager m2
("Martin", "580925", 5, POSTGRAD, 1700.00, 200.00);
t1.pay();
t1.displayStatus();
t2.pay();
t2.displayStatus();
s1.pay();
s1.displayStatus();
s2.pay();
s2.displayStatus();
m1.pay();
m1.displayStatus();
m2.pay();
m2.displayStatus();

When you run the program, the output is this:

Hourly employee Mary is hired
Hourly employee Jane is hired
Supervisor Karen is hired
Supervisor John is hired
Manager Susan is hired
Manager Martin is hired
Hourly employee 1000 paid 216
Hourly employee 1000 is of grade 1
and has been paid 216 so far this year
Hourly employee 1001 paid 216
Hourly employee 1001 is of grade 2
and has been paid 216 so far this year
Supervisor 1002 paid 1350
Supervisor 1002 is of grade 4
and has been paid 1350 so far this year
Supervisor 1003 paid 1700
Supervisor 1003 is of grade 4
and has been paid 1700 so far this year
Manager 1004 paid 1350
Manager 1004 is of grade 6
and has been paid 1350 so far this year
Manager 1005 paid 1700
Manager 1005 is of grade 5
and has been paid 1700 so far this year
Manager Martin is fired!
Manager Susan is fired!
Supervisor John is fired!
Supervisor Karen is fired!
Hourly employee Jane is fired!
Hourly employee Mary is fired!
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Multiple inheritance

Up to now, we have considered inheritance by derived classes only of single base
classes. A derived class can inherit the characteristics of more than one base class.
This facility of C++ reflects and accommodates real-world objects that you may
want to simulate.

This book (being, recall, a Made Simple), confines itself to a simple general
presentation of multiple inheritance. We could apply the technique to the employee
class by, for example, actually implementing the lineManager class. This is derived
from both supervisor and manager, which in turn have the single base class
employee. However, multiple inheritance raises a number of complexities and
difficult issues which are really beyond the scope of this book. So, if you want to
know how to propagate constructor parameters within a multiply-inherited hierar-
chy, or how to resolve the ambiguity (two instantiations of employee for one
definition of lineManager) in this hierarchy:

[ Employee ]

[ Technician ] [ Supervisor ] [ Manager ]

[ LineManager ]

then have a look at the C++ Users Handbook, or the C++ Programming Language
(3rd edn) by Stroustrup. If you don’t want to know this stuff, feel happy about it.
Most C++ programs are written with little or no multiple inheritance. There’s even
a strong body of opinion which holds that multiple inheritance is a Bad Thing and
is never necessary. And, in fact, it’s very difficult to contrive a class hierarchy
where multiple inheritance is unavoidable. So, with all that rationalisation done,
let’s look at the essence of the thing.

Suppose a class d is to be declared that inherits the classes a, b and c. Classes a and
c are to be inherited by d with public access, and b with private access. Here is the
syntax for declaration, with multiple inheritance, of class d:

class d : public a, private b, public ¢

/I 'class d' declarations

¥
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The constructor functions of a singly-inherited hierarchy of classes are executed
in order of class derivation. The same is true for hierarchies containing classes
derived from multiple bases.

If the base classes have constructor functions, the constructors are executed, left to
right, in the same order as that in which the base classes are specified. Destructors
are invoked in the reverse order. This is a generalisation of the execution-order
rules given in the last section, as a simple example shows:

#include <iostream>
using namespace std;

class base

{

public:
base() { cout << "Constructing 'base™ << endl; }
~base() { cout << "Destructing 'base™ << endl; }

e
class a : public base
{
public:
a() { cout << "Constructing 'a™ << endl; }
~a() { cout << "Destructing 'a™ << endl; }
I
class b
public:
b() { cout << "Constructing 'b"™ << endl; }
~b() { cout << "Destructing 'b™ << endl; }
I
class c
public:

c() { cout << "Constructing 'c" << endl; }
~c() { cout << "Destructing 'c" << endl; }

class d : public a, public b, public c

{

public:
d() { cout << "Constructing 'd" << endl; }
~d() { cout << "Destructing 'd" << endl; }

k
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int main()

d d1; /I define instance of 'd’

Here we have a base class base, from which a is derived. Classes b and ¢ are
separately declared and a, b and c in turn are base classes of d. When an instance,
d1, of class d is defined in the main function, the constructors are invoked in the
order of derivation and the destructors are executed in reverse order. The order can
be traced from the program’s output:

Constructing 'base’
Constructing 'a'
Constructing 'b'
Constructing 'c'
Constructing 'd'
Destructing 'd'
Destructing 'c'
Destructing 'b'
Destructing 'a'
Destructing 'base’

Any or all of the constructor functions in a class hierarchy containing classes
derived from multiple bases may require arguments. The order of execution of the
constructors and destructors can be described as left-to-right, top-to-bottom. If you
define an instance of lineManager, the order of constructor calls will be this:

employee

supervisor

employee

manager

lineManager

Constructor parameters are transmitted ‘up the hierarchy’ in a manner which is a
logical extension to that you’ve already seen in Section 10.4.
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Virtual functions
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You can use a pointer to a base class object to point to any class derived from that
object. This fact is critically important in the use of virtual functions and for the
C++ implementation of polymorphism.

If youuse a pointer of base class type to call a member function of a class hierarchy,
the base class instance of the function is always called. Otherwise, to call a function
for a particular class object, the type of that object must be known to the
programmer.

Consider the pay member functions of the class employee and the derived class
manager. Let’s define instances of both and a pointer of base class (employee) type:

employee ef;
manager m1;
employee *ep

If the pointer is set pointing to e1:
ep = &ef1;
then the function call:
ep->pay();
results in a call to employee::pay(). If the pointer is set to m1:
ep = &m1;
(which is quite legal), the function call:
ep->pay();

still results in the function employee::pay(), and not the manager instance of pay,
being called. In short, to call manager::pay(), you’d need a pointer of type
manager. Maintaining pointers of many different but related types is a nuisance.

It would be useful if this restriction were removed and a base-class pointer such as
ep could be used to access instances of any derived class in the same hierarchy.
Then you could use one pointer to point to objects of different types and allow
generic processing to be done on objects of those types.

This is the essence of polymorphism as implemented by C++. Only one small
addition to your knowledge of C++ syntax is needed to achieve polymorphism: the
function employee::pay() must be specified virtual in the declaration of the class
employee. Then you can use the pointer ep to access the redefinition of the function
that is found in the derived class, rather than always accessing the base class
instance of the function.

You can call a function declared virtual in the same way as any other class member
function:

el.pay();



However, if you call the virtual function with a pointer or reference to a class object,
the instance of the function called is the instance defined by that class object.

ep = &m1;
ep->pay(); // call 'manager' copy of virtual 'pay’'

All redefinitions in derived classes of a virtual function must have argument lists
identical to those of the base declaration of the virtual function.
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Hierarchy with virtual functions

Here’s a virtual version of a simplified employee hierarchy, with a full program
implementing it. In the base class employee, the pay function is prefixed with the
keyword virtual:

/[ employee.h
enum qualification

{NONE, CERT, DIPLOMA, DEGREE, POSTGRAD};
class employee

protected:
char *name;
char *dateOfBirth;
int individualEmployeeNo;
static int employeeNo;
int grade;
qualification employeeQual;
float accumPay;
public:
/I constructor
employee();
virtual void pay(); // virtual function!

k

class technician : public employee
{
private:
float hourlyRate;
int unionNo;
public:
/I constructor
technician();

void promote(int); // scale increment
void pay();
I

class supervisor : public employee
{
private:
float monthlyPay;
public:
/I constructor
supervisor();
void pay();
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class manager : public employee
{
private:
float monthlyPay;
float bonus;
public:
/I constructor
manager();
void pay();

The member functions of the classes are implemented in the program file
empfunc.cpp:

/I empfunc.cpp
#include <iostream>
using namespace std;
#include <cstring>
#include "employee.h"

/I define and initialise static member
int employee::employeeNo = 1000;
/[ define 'employee' member functions first
employee::employee()
{
char nameln[50];
strcpy(nameln, "Base Employee");
name = new char[strlen(nameln) + 1];
strcpy(name, nameln);
dateOfBirth = NULL;
individualEmployeeNo = employeeNo++;
grade = 1;
employeeQual = NONE;
accumPay = 0.0;

}

void employee::pay()

cout << "Base-class employee paid!" << endl;

}

1l define 'technician' member functions
technician::technician()

{

strcpy(name, "Technician");
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hourlyRate = 10.4;
unionNo = 0;

}
void technician::;promote(int increment)
{
grade += increment;
}
void technician::pay()
{
float paycheck;
paycheck = hourlyRate * 40;
accumPay += paycheck;
cout << "Technician paid!" << endl;
}

/[ define 'supervisor' member functions
supervisor::supervisor()

{
strcpy(name, "Supervisor");
monthlyPay = 1700.00;
}
void supervisor::pay()
{
accumPay += monthlyPay;
cout << "Supervisor paid!" << endl;
}

/[ define 'manager' member functions
manager::manager()

{
strcpy(name, "Manager");
monthlyPay = 2100.00;
bonus =210.0;
}
void manager::pay()
{
accumPay += monthlyPay;
cout << "Manager paid!" << endl;
}
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Code in the main function is used to exercise the classes:

/I emp.cpp

#include <iostream>
using namespace std;
#include "employee.h"

int main()
{
employee ef;
technician t1;
supervisor s1;
employee *ep = &ef;
technician *tp = &t1;
supervisor *sp = &s1;
ep->pay(); // call base-class 'pay"

ep = &t1;
ep->pay(); // call 'technician' 'pay’'
ep = &s1;

ep->pay(); // call 'supervisor' 'pay'

When you run the program, the results are these:

Base-class employee paid!
Technician paid!
Supervisor paid!

After the first line is output, the base class object pointer ep is assigned the address
of the technician class object t1:

ep = &t1;

Because ep has been assigned a pointer of type technician *, then, when the function
call is made:

ep->pay();

the redefinition of the pay function contained in the derived class technician is
selected at runtime and executed. When ep is assigned the address of the supervisor
class object s1, the function call ep->pay(); causes supervisor::pay() to be selected
at runtime and executed.

A redefinition of a virtual function in a derived class is said to override, rather than
overload, the base class instance of the function. The difference is important
because, unlike in the case of ordinary function overloading, the resolution of
virtual function calls is done at runtime. The process is referred to as late, or
dynamic, binding.
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It’s OK for a derived class not to override a virtual function defined in its base class.
In such a case, the base class instance of the function is called even if a pointer to
the derived class is used in the function call.

Virtual functions are inherited through multiple levels in a derived class hierarchy.
If a virtual function is defined only in a base class, that definition is inherited by
all the derived classes.

Another difference between virtual functions and overloaded functions is that
virtual functions must be class members, while overloaded functions do not have
to be.

Abstract classes
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As part of the process of designing a class hierarchy, you often have to declare a
base class that itself serves no useful purpose. Such a base class is usually the
common denominator of more concrete classes derived from it.

The employee class is quite a good example of such a class. If you think about it,
you’ve never seen an employee. You’ve seen a manager, a secretary, a Supervisor
and so on, but never an abstract employee. Even the operation of paying the
employee by calling the function employee::pay() does not mean very much — it
being more common to pay real rather than generic employees. This is why
employee::pay() is left empty in the first examples of this chapter.

The function employee::pay() currently displays the message:
Base-class employee paid!

Most likely, in a real program, it would do nothing and be defined only to serve as
a base virtual function for the pay functions in the derived classes, which actually
do some processing. Where there is a dummy virtual function like this, a different
declaration can be used and the dummy definition discarded:

virtual void pay() = 0;

Now there is no instance of employee::pay() and the declaration is called a pure
virtual function. The pure virtual function must be overridden by one or more
functions in a derived class. Formally, a class that contains at least one pure virtual
function is called an abstract class.



Exercises

1 In this derived class hierarchy:

class a

{

public:
int i;
1l

c;Iass b : public a
{
public:
char a;
1
|3

class c : public b

public:
double d;
/!

¥
fill in the constructor functions necessary to initialise i, a and d following the
creation of an object of type c:

c c_inst(1.732, 'X', 5);
2 Given the class hierarchy

class employee

protected:
int grade;
int employeeNo;
char name[30];
public:
void pay();
void promote();

¥

class manager : public employee

{

private:
double bonus;
double payRate;
public:
void payBonus();
add to each class a constructor function. In the case of employee, the constructor
should take three parameters; the manager constructor should take five parameters.
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Each constructor should assign values to the data members of its class. Show how
the arguments used in the definition of an instance of the class manager are
distributed between the manager and employee constructors.
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More on function tfemplates

Function templates are introduced in Chapter 3 as part of the general treatment of
C++ (and C) functions. The template introduction at that point is simple (it is at the
start of a Made Simple book after all), concentrating in essence on the min template
example. In this section, I present material on function templates that you will need
to exploit the capabilities of class templates, dealt with from the next section
onward.

Function template parameter list
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In the function template declaration:

template<class num>
num min(num n1, num n2);

<class num> is the template’s formal parameter list. The keyword class in this
context means type parameter following. It’s customary to use class here: it was
introduced by the pre-ISO C++ language as a way of avoiding addition of another
reserved keyword to the language. But the dual-use tends to be confusing, and ISO
C++introduced the keyword typename to replace class in this context (class is still
valid).

The type parameter may be any basic or user-defined type. You must always use
either the class or typename keyword in a template parameter list. If there is more
than one type parameter, class/typename must be used for each parameter. Each
parameter in the list must be unique and must appear at least once in the argument
list of the function. These points are illustrated by modifying the min template:

/I legal template
template<typename num1, typename num2>
num min(num1 n1, num2 n2)

{
}

/I illegal, missing typename
template<typename num1, num2>
num min(hum1 n1, num2 n2)

1

/I illegal, duplication
template<typename num1, typename num1, typename num2>
num min(num1 n1, num2 n2)

/I illegal, num3 not used
template<typename num1, typename num2, typename num3>
num min(num1 n1, num2 n2)

The names of the template type parameters don't have to match in the template
declaration and definition:



/I declaration
template<typename x, typename vy, typename z>
num min(x n1, y n2, z n3);

/I definition
template<typename num1, typename num2, typename num3>
num min(num1 n1, num2 n2, num3 n3)

{
}

I

Declaration and definition

Youmustdeclare, if not also define, a function template at a point in the code before
a template function is instantiated. If you do this, you can define the template later;
the min example in Chapter 3 uses this approach. As with any ordinary function,
a function template’s definition is its declaration if the definition precedes the first
function call. The first call to the function following the definition instantiates a
template function.

Both the declaration and definition of a function template must be in global scope.
A function template cannot be declared as a member of a class.

User-defined argument types

You can use class types, as well as other user-defined types, in the parameter list
of a function template and in a call to a template function. If you do this, you must
overload basic operators used within the template function on class arguments.
Here’s an example program, ftmpovl1.cpp:

#include <iostream>
using namespace std;
class coord
{
private:
int x_coord;
int y_coord;
public:
coord(int x, int y)
{
x_coord = x;
y_coord =y;
}
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I
I

{

}
/i
{

int GetX() { return(x_coord); }
int GetY() { return(y_coord); }
int operator<(coord& c2);

function template declaration. Use 'lesser’; the obvious 'min'
is used by the C++ system for another purpose

template<typename obj>
obj& lesser(obj& 01, obj& 02);

int main()

coord c1(5,10);
coord c2(6,11);

/I compare coord objects in min,

/I using overloaded < operator

coord c3 = lesser(c1, c2);

cout << "minimum coord is: " << ¢3.GetX() << " " << ¢3.GetY() << end|;

double d1 = 3.14159;
double d2 = 2.71828;

/I compare double objects in lesser,
/I using basic < operator
cout << "minimum double is: " << lesser(d1, d2) << endl;

template<typename obj>
obj& lesser(obj& 01, obj& 02)
{

/I < operator overloaded if function instantiated for typename type,
/I otherwise built-in < used
if (01 < 02)
return (01);
return (02);

define overloaded < operator

int coord::operator<(coord& c2)

if (x_coord < c2.x_coord)
if (y_coord < c2.y coord)
return (1);
return (0);
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We declare a class coord. The lesser — not min, notice, because min clashed with
another definition internal to the C++ system — function, if instantiated for the
coord type, must find the minimum of two objects of type coord. To do this, the
basic < operator must be overloaded in the coord class. We define and initialise two
coord objects, ¢1 and ¢2. The function call:

coord c3 = lesser(c1, c2);

instantiates a lesser template function for the coord type and assigns the lesser of
the two coordinates to the coord object ¢3. The comparison of ¢c1 and c2 is done
with the overloaded <. When we call lesser with arguments of the basic type
double, the basic < operator, rather than the overloaded version, is used to compare
the double floating-point numbers. The results displayed by the program are these:

minimum coord is: 5 10
minimum double is: 2.71828
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Class templates
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The class template is actually a generalisation of the function template. With them,
you can build collections of objects of any type using the same class template.
Where, in conventional C++, you could have a class of floating-point numbers or
a class of integers, with class templates, you can define a single number class that
caters for both types.

You declare a class template by prefixing a class declaration with a template
specification. This is the template keyword followed by a pair of angle-brackets
containing one or more identifiers that represent parameterised types or constant
initialising values.

Using class templates, you can declare and define a class in terms of any type. Such
aclass is said to be parameterised. If classes generalise objects, then class templates
can be said to generalise classes. Let’s look at the code implementing our generic
number class:

/I class template declaration
template <typename numtype>
class number;

1! aefinition of a class instance
number<int> ni;

/I typename template definition
template <typename numtype>
class number

{

private:
numtype n;

public:
number()

{
n=0;

void get_number() { cin >> n; }
void print_number() { cout << n << endl; }
X

In this situation, with conventional C++, you’d usually have to take the ‘brute
force’ approach and declare a class type for every type of number that you need.
With the class template shown, you can instantiate that class for a number of any
type. Instantiation occurs when the template name is used with its list of param-
eters. You define an instance of the class for integer numbers like this:

number<int> ni;



Now the identifier ni is a class object of type number<int> that specifies the
characteristics of an integer number. The definition causes the built-in type
specifier int to be substituted for the class template parameter numtype and to be
used thereafter in the class declaration in place of numtype. This is exactly as if you
explicitly made the class declaration:

class number

{
private:
int n;
public:
number()
n=0;

void get_number() { cin >> n; }
void print_number() { cout << n << endl; }
¥
and defined the instance ni in the ordinary way:

number ni;

Number class tfemplate

Here’s the full number class program:

#include <iostream>
using namespace std;
template <typename numtype>
class number
{
private:
numtype n;
public:
number()

{
n=0;

void get_number() { cin >> n; }
void print_number() { cout << n << endl; }
2
int main()
{
number<char> nc;
cout << "Enter a character: ";
nc.get_number();
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cout << "Character is: ";
nc.print_number();
number<int> ni;

cout << "Enter an integer: ";
ni.get_number();

cout << "Integer is: ";
ni.print_number();
number<double> nd;

cout << "Enter a double: ";
nd.get_number();

cout << "Double is: ";
nd.print_number();

We make three template class instantiations, one each for char, int and double
types. For each instance, we define the private member n in turn as char, int and
double. The member function get_number extracts a value from the standard input
stream and stores it in n. The first time it’s called, cin uses the extractor that has a
standard overloading for type char and expects a character to be input. On the
second call to get_number, cin expects input of an int and on the third call a double.
If you don’t input the numbers in this order, the input operation fails. When you run
the program, you get this input/output sequence (user input in boldface):

Enter a character: r
Character is: r

Enter an integer: 7
Integer is: 7

Enter a double: 2.64575
Double is: 2.64575

Class template syntax
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The syntax of class templates appears daunting. While it sure ain’t easy, all
template syntax has an equivalent usage for simple classes. The basic equivalence is:

number<int> ni; / instance of template class
number ni; /I instance of non-template class number

For the template declaration template<typename numtype> class number; the
class name number is a parameterised type and numtype (when replaced by a type
specifier) is its parameter. Therefore:

number<double>
is a type specifier that you can use to define a double instance of the template class

number in any part of the program for which the template is in scope. Within the
template definition, you can use the type specifier number as a shorthand for



number<numtype>. Outside the template definition, the type specifier must be
used in its full form. If you define the function get_number outside rather than
within the template, you must use this function declaration and definition:

/I function declaration in template
void get_number();

/I function definition externally
template <typename numtype>
void number<numtype>::get_number()

{

cin >>n;

}

and the definition is, of course, that of a function template, which we saw in the last
section. The header syntax is complex but may make sense when we see that the
equivalent non-template header is:

void number::get_number()

You must prefix the definition of the template function get_number with the
template specification template<typename numtype> and specify it as being in the
scope of the type number<numtype>.

Class templates obey the normal scope and access rules that apply to all other C++
class and data objects. You must define them in file scope (never within a function)
and make them unique in a program. Class template definitions must not be nested.

Class tfemplate parameter list

In the class template declaration:

template<typename numtype>
class number;

<typename numtype> is the template’s formal parameter list. The type parameter
may be any C++ basic or user-defined type. Y ou must use the typename (or class)
keyword for each type specified in a parameter list. If there is more than one type
parameter, typename must be used for each parameter. A class template parameter
list can also contain expression parameters, usually numeric values. The argu-
ments supplied to these parameters on instantiation of a template class must be
constant expressions. The class template parameter list must not be empty and, if
there is more than one parameter, they must be individually separated by commas:

template <typename T1, int exp1, typename T2>
class sometypename

{
i

¥
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The sometypename template specifies an expression as its second parameter and
type placeholders as its first and third parameters. Instantiation of sometypename
might look like this:

sometypename<double, 500, coord> sc;

You can use built-in types, user-defined types and constant expressions as class
template parameters. You can intermix them in any order. The parameters
specified in an instantiation must, however, be in the same order and be of the same
types as those specified in the template definition. For example, the following
instantiation causes a compilation error:

sometypename<double, 500U, coord> sc;

The error occurs because the expression parameter int exp1 in the template
definition does not match the type (unsigned int) of 500U.

The container class

Class templates are often used to make very general and flexible definitions of a
special kind of class called the container class. A container class is one that defines
a collection of data objects of a particular type and also defines operations that may
be carried out on that collection. Typical examples of container classes are arrays
and linked lists. This section builds a simple container class, defined using class
templates, for an array.

Here’s the class template implementation of the array container class:

#include <iostream>
using namespace std;

template <typename slottype>

class array
{
private:
int size;
slottype  *aptr;
public:
array(int slots = 1)
{
size = slots;

aptr = new slottype[slots];

void fill_array();
void disp_array();
~array() { delete [] aptr; }
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int main()

{

/I This would be the function header if it were not a template member:

array<char> ac(10);

cout << "Fill a character array" << endl;
ac.fill_array();

cout << "Array contents are: ";
ac.disp_array();

array<double> ad(5);

cout << "Fill a double array" << endl;
ad.fill_array();

cout << "Array contents are: ";
ad.disp_array();

/I void array::fill_array()
template <typename slottype>
void array<slottype>::fill_array()

{

for (inti=0; i< size; i++)
{
cout << "Enter data: ";
cin >> aptrli];

}

template <typename slottype>
void array<slottype>::disp_array()

for (inti=0; i< size; i++)
cout << aptr[i] <<"";
cout << endl;

We define a class template for the array class. The private data members of the class
are an integer used to represent the size of the array and a pointer to an array of

objects of a type that you specify when instantiating the template class.

We also use the type parameter slottype in the constructor to allocate an array of

the objects, which is of a size specified in the template class definition:

array<char> ac(10);

This defines and allocates memory space for an array, called ac, of ten objects of
type char. Two class member functions, fill_array and disp_array, are then called.
We declare both functions as part of the class template and define them externally.

The header of the fill_array function:

template <typename slottype>
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void array<slottype>::fill_array()

specifies that the function is part of a class template with a single type parameter;
that the function is in the scope of an instance of the class array defined with a type
represented by slottype; and that the function returns no value.

When we use the char type to instantiate a template class, slottype is substituted
with char and the fill_array member function operates on characters. In the second
instantiation shown in the example, we use a double type and fill_array for that
instance of the class operates on double floating-point numbers. Here’s the
program’s output:

Fill a character array
Enter data:
Enter data:
Enter data:
Enter data:
Enter data:
Enter data:
Enter data:
Enter data:
Enter data: i

Enter data: j

Array contents are:abcdefghij
Fill a double array

Enter data: 1.1

Enter data: 2.2

Enter data: 3.3

Enter data: 4.4

Enter data: 5.5

Array contents are: 1.1 2.23.34.45.5

oQ ""TD®D Q0T

Template hierarchies
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We can derive template classes from both template and non-template classes.
Here’s a simple example, of a hierarchy of class templates that we use to generate
base and derived template classes. The example used is the array container class
with the addition of a class template that uses the array class template as its base.
First, we define the base and derived class templates:

#include <iostream>
using namespace std;

template <typename slottype>
class array

protected:
int size;
slottype *aptr;



public:
array(int slots = 1)

size = slots;
aptr = new slottype[slots];

void fill_array();
void disp_array();
~array() { delete [] aptr; }

3

template <typename slottype>
class term_array : public array<slottype>

public:
term_array(int slots) : array<slottype>(slots)

{

void terminate();
void disp_term_array();

¥
We define the derived term_array class template with the same parameter list as
array and with the class type array<slottype> publicly derived.

Within the term_array class template, the constructor header takes a single
argument, slots, from the instantiation of term_array, and passes that argument
along to the constructor of the base class template array. You must give the type
of the base class outside the scope of that class as array<slottype>.

Finally, the term_array template declares two member functions that operate on
instances of the derived class template term_array. We define the member
functions of the array class template as before:

template <typename slottype>
void array<slottype>::fill_array()

{

for (inti=0; i< size; i++)

cout << "Enter data: ";
cin >> aptr]i];

}

template <typename slottype>
void array<slottype>::disp_array()

for (inti=0; i < size; i++)
cout << aptr[i] << " ";
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cout << endl;

}

We define the term_array member functions similarly, specifying that they are in
the scope term_array<slottype>:

template <typename slottype>
void term_array<slottype>::disp_term_array()

{
cout << "Contents of terminated array are: ";
for (inti = 0; aptr[i] != (slottype)0 ; i++)
cout << aptr[i] << endl;
}

template <typename slottype>
void term_array<slottype>::terminate()

{

cout << "Null terminating the array"
<< endl;
aptr[size] = (slottype)0;

The main function defines an instance of the derived class template term_array. It
then calls the fill_array member function of the base class array to accept input
values and to store those values in the array. This is an operation common to all
arrays.

The characteristics of terminated arrays which are additional to those of general
arrays are dealt with by the term_array member functions terminate and
disp_term_array. The terminate function null-terminates the array and
disp_term_array displays it using the insertion operator for the basic type in use.

int main()
term_array<char> ac(10);

cout << "Fill a character array" << endl;
ac.fill_array();

ac.terminate();

ac.disp_term_array();

array<double> ad(5);

cout << "Fill a double array" << end|;
ad.fill_array();

cout << "Array contents are: ";
ad.disp_array();



Exception handling

In this section, you’ll learn how to use the exception-handling mechanism provided
by C++. You can use it to recover from errors that may occur while your program
is running.

Exception handling basics

The program below, exceptl.cpp, implements exception handling of the most
straightforward kind.

#include <iostream>
using namespace std;

void throw_test(int);

class ob
{
public:
int member;
|5
int main()
{
int flag = 2;
try

throw_test(flag);

catch(const char * p)

{
cout << "Into character catch-handler" << endl;
cout << p << endl;

}
catch(ob& ob_inst)
{

cout << "Into object catch-handler" << endl;
cout << "Member value is " << ob_inst.member << end];

}

void throw_test(int flag)

if (flag == 1)

throw "Panic!!!";
else
if (flag == 2)
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ob ob_inst;
ob_inst.member = 5;

throw ob_inst;

We call a function, throw_test, from within a try block in main. The function call
is the only code enclosed in the try block. If an error condition of some kind arises
within throw_test or code called from it, an exception may be thrown, to be caught
by the catch handlers that immediately follow the try block.

In this case, the generation of ‘exceptions’ is contrived: if the value of the parameter
flag received by throw_test is 1, an exception of type const char * is thrown; if the
value is 2, the exception is of the class type ob. The two catch handlers following
the try block in main respectively match these types. If the value of flag is 1,
throw_test exits by throwing the character-string exception "Panic!!!". The result-
ing program output is:

Into character catch-handler

Panic!l!
If the value of flag is 2, throw_test exits by throwing the ob exception ob_inst. Its
only data member has the value 5 and the resulting program output is:

Into object catch-handler
Member value is 5

Nested functions in the try block

The catch handlers invoked by the exceptions thrown from the function throw_test
in the last example are also invoked by exceptions thrown from a function
indirectly called from throw_test.

/I except2.cpp
#include <iostream>
using namespace std;

void nest1(int);
void nest2(int);
void throw_test(int);

class ob

{
public:

int member;
|3
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int main()
int flag = 1;
try
{
throw_test(flag);

catch(const char * p)

{

cout << "Into character catch-handler" << endl;
cout << p << endl;

}
catch(ob& ob_inst)

{
cout << "Into object catch-handler" << endl;
cout << "Member value is " << ob_inst.member << endl;
}
}
void throw_test(int flag)
nest1(flag);
}
void nest1(int flag)
nest2(flag);
}
void nest2(int flag)
{
if (flag == 1)
throw "Panic!!!";
else
if (flag == 2)
ob ob_inst;
ob_inst.member = 5;
throw ob_inst;
}
}

In this case, throw_test calls nest1, which in turn calls nest2. All three functions
are subject to the try block and the exceptions thrown from nest2 are caught by the
catch handlers following that block. The output results of the program are the same
as those for the previous example.
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Catch-handler selection

The matching catch handlers closest to the thrown exceptions are those invoked,
as we can see from the following example:

/I except3.cpp
#include <iostream>
using namespace std;
void nest1(int);

void nest2(int);

void throw_test(int);

class ob
public:
int member;
|3
int main()
{
int flag = 1;
try

throw_test(flag);

catch(const char * p)

{

cout << "Into 'main’ character catch-handler" << endl;
cout << p << end|;

}
catch(ob& ob_inst)

{
cout << "Into object catch-handler" << endl;
cout << "Member value is " << ob_inst.member << endl;
}
}
void throw_test(int flag)
{
try
nest1(flag);
catch(const char * p)
{
cout << "Into 'throw_test' character catch-handler" << endl;
cout << p << endl;
}
}
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void nest1(int flag)

nest2(flag);
}

void nest2(int flag)

if (flag == 1)
throw "Panic!!!";
else
if (flag == 2)
{

ob ob_inst;
ob_inst.member = 5;

throw ob_inst;

Here both main and throw_test contain try blocks, while the nested function nest2
generates the exceptions. If nest2 throws a character-string exception, the match-
ing catch handler in throw_test is invoked. If it throws an exception of type ob, the
effect is to call the second catch handler in main. Here are the output results of the
program:

Into 'throw_test' character catch-handler
Panic!!!

Finally, throw used without an exception specification:
throw;

causes the most recently thrown exception to be re-thrown to the catch handlers
following the nearest try block.

269



Run time type identification

|dentifying

One of the most recent major extensions to the C++ language as it was originally
conceived is run time type identification, usually referred to as RT7/. In essence,
you apply the facilities of RTTI to a given class instance to determine its type. The
typical usages are:

[_Qhecking that a given pointer is of a type derived from a specified base type.
[_THentifying the actual type of a pointer.

RTTI should be used sparingly and with care. The whole point of the inheritance
and virtual function mechanisms described in Chapter 10 is that you need not know
the type of a derived-class pointer in order to use it to call a virtual member function
of that derived class. RTTI runs contrary to polymorphism and it’s easy to use it badly,
allowing degeneration into an alternative form of multi-way switch construct:

if (typeid(d1) == typeid(supervisor))
cout << "It's a supervisor" << endl;
else
if (typeid(d1) == typeid(manager))
cout << "lt's a manager" << end|;
else
if (typeid(d1) == typeid(lineManager))
cout << "It's a line manager" << endl;

Using RTTI is OK where, for a particular type of derived class, an exception needs
to be made. The problem inherent in this can be stated: ‘Given a base class pointer
previously assigned an unknown value, how can we ascertain that it points to an
instance of the base class or one of its derived classes and, further, how can we
determine its actual type?’ The answer in both cases, with traditional C++, is that
we can’t. Enter RTTI.

derived class objects

To illustrate RTTI, we use a modified form of the employee class hierarchy
introduced in Chapter 10. From the main function, we pass a base class pointer as
an argument to a global function. That function must determine whether or not the
pointer holds a pointer value of derived-class type. If it does, then in the case of
managers, the employee is paid. Striking supervisors, on the other hand, are not
paid.

I

enum qualification {NONE, CERT, DIPLOMA, DEGREE, POSTGRAD};
class employee

protected:
char *name;
char *dateOfBirth;

employee.h
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int individualEmployeeNo;
static int employeeNo;
int grade;
qualification employeeQual;
float accumPay;
public:
/I constructor
employee();

/I destructor
~employee();

virtual void pay();
void promote(int);  // scale increment
void displayStatus();

b
class supervisor : public employee
{
private:
float monthlyPay;
public:
/I constructor
supervisor();
/I destructor
~supervisor();
void pay();
void displayStatus();
e
class manager : public employee
{
private:
float monthlyPay;
float bonus;
public:
/I constructor
manager();
/I destructor
~manager();
void pay();

void displayStatus();

/; Global function to demonstrate RTTI
void pay_managers_only(employee *);
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We show the definitions of the member functions for completeness in the program
file empfunc.cpp.

I empfunc.cpp

#include <iostream>

using namespace std;

#include <cstring>

#include "employee.h"

/I define and initialise static member

int employee::employeeNo = 1000;

/l define 'employee’ member functions first
employee::employee()

char nameln[50];

cout << "Enter new employee name ";
cin >> nameln;

name = new char[strlen(nameln) + 1];
strcpy(name, nameln);

dateOfBirth = NULL;
individualEmployeeNo = employeeNo++;
grade = 1;

employeeQual = NONE;

accumPay = 0.0;

}

employee::~employee()

delete name;
delete dateOfBirth;

}

void employee::pay()

}

void employee::promote(int increment)

grade += increment;

}
void employee::displayStatus()

}

/[ define 'supervisor' member functions
supervisor::supervisor()
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monthlyPay = 1700.00;
cout << "Supervisor " << name << " is hired" << endl;

}

supervisor::~supervisor()

cout << "Supervisor " << name << " is fired!" << endl;

}
void supervisor::pay()
{
accumPay += monthlyPay;
cout << "Supervisor " << individualEmployeeNo
<< " paid " << monthlyPay << end];
}

void supervisor::displayStatus()

cout << "Supervisor " << individualEmployeeNo
<<"is of grade " << grade << " and has been paid "
<< accumPay << " so far this year" << endl;

}

/[ define 'manager' member functions
manager::manager()

monthlyPay = 2100.00;
bonus =210.0;
cout << "Manager " << name << " is hired" << endl;

}
manager::~manager()
{
cout << "Manager " << name << " is fired!" << endl;
}
void manager::pay()
{
accumPay += monthlyPay;
cout << "Manager " << individualEmployeeNo
<< " paid " << monthlyPay << end];
}
void manager::displayStatus()
{
cout << "Manager " << individualEmployeeNo
<<"is of grade " << grade << " and has been paid "
<< accumPay << " so far this year" << endl;
}
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The interesting part of the program is in the client code, the main function and the
function it calls. This is in the program file emp.cpp:

Il emp.cpp

#include <iostream>

using namespace std;

#include "employee.h"

int main()

{
supervisor s1;
manager mf1;
employee “*ep = &sf;
pay_managers_only(ep);
ep = &m1;
pay_managers_only(ep);

}
void pay_managers_only(employee *base)
{
manager *mp;
supervisor *sp;
if ((mp = dynamic_cast<manager *>(base)) != 0)
base->pay();
else
if ((sp = dynamic_cast<supervisor *>(base)) != 0)
cout << "Don't pay striking supervisors" << endl;
else
cout << "Unknown employee type" << endl;
}

From main, pay_managers_only is twice called with a base class pointer (of type
employee) as argument. On entering pay_managers_only, no way exists in
traditional C++ of determining the type of base. Using RTTI, we do this using the
dynamic cast mechanism:

if ((sp = dynamic_cast<supervisor *>(base)) != 0)

If the contents of the pointer base refer to a base or derived object, that pointer is
dynamically typecast and assigned to sp. Otherwise, sp is assigned zero. In the
example, on the first call (for supervisors) to pay_managers_only, the virtual pay
function is not called, while on the second call it is. The program’s displayed output
is this:

Enter new employee name susan

Supervisor susan is hired

Enter new employee name peter

Manager peter is hired

Don't pay striking supervisors
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Manager 1001 paid 2100
Manager peter is fired!
Supervisor susan is fired!

As well as comparing with the base class type, you can determine the precise type
of an object. The typeid() operator yields the actual type, not just the information
that a given object is or is not of a type included in a class hierarchy. A simple
example of typeid() in use follows in the modified file emp.cpp.

Il emp.cpp
#include <iostream>
uaing namespace std;

#include <typeinfo>
#include "employee.h"

int main()

{

supervisor s1;

manager m1;
employee *ep = &s1;
pay_managers_only(ep);
ep = &m1;

pay_managers_only(ep);

}
void pay_managers_only(employee *base)

if (typeid(*base) == typeid(manager))
base->pay();

The main function is unchanged. The function pay_managers_only now does an
explicit comparison of types in deciding whether or not to pay the employee.
typeid() returns a reference to library class type_info. This class is declared in the
standard header file typeinfo, which must be included for the type_info data to be
accessible in client code.

The internal specification of typeinfo is implementation-dependent but it mini-
mally provides overloaded assignment and == operators, as well as a function to
return a character pointer to the name of the type found in the call to typeid().
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Exercises

1 Write down the declaration of a class template array<arraytype>. Make instantia-
tions of template classes for the int, char and double types.

Show how a member function is declared within the class template and defined
externally.

2 Declare and define a function template called max that you can use to find the
maximum of two objects of any type. For non-numeric objects, what might max
mean? Show how overloading can be used to define this.
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12 The Standard Library

The ISO C++ Standard Library
STL containers
The string class

Exercise




The ISO C++ Standard Library
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The C++ Standard Library is a comprehensive set of tools for use by C++
programmers, itself implemented with the C++ language and, in particular, with
templates. The Library was approved for inclusion in the (then) ANSI C++ Draft
Standard in July 1994 and subsequently became part of the ISO C++ Standard.

Generations of C programmers became familiar with the internals of implementing
such data structures as linked lists, queues, stacks and trees. The C Standard Library
(see summary in Chapter 14) provides a large number of C functions that hide some
of the smallest details of C programming from the programmer — you can use the
strlen function to find the length of a C-string, not count the characters one-by-one
yourself — but the level of abstraction provided is not very high. The C++ Library
goes to a much higher level. The programmer can create, manipulate and destroy
strings without having to know how such strings are internally implemented or
(crucially) how their memory is allocated or deallocated. The programmer can also
create instances of standard data structures, such as lists and stacks, without having
to know about how this is internally done.

An analogy may be useful. Think of the notion of a collection, in a general sense.
A bus queue is a collection (of people, maybe guide-dogs). A shopping-basket full
of grocery items is a collection. A stack of newspapers is a collection. But the ways
in which these collections are created and operate differ. An insert operation, in the
case of the bus queue, must add a person to the end of the line or there may be ariot.
Insert in the shopping basket means throw in another grocery item at random;
position has no importance (unless the washing powder is on top of the eggs). Insert
in the stack of newspapers means put a fresh one on top (the one on the bottom may
never be removed from the stack). Traditionally, programmers of C and other
languages (including early C++) had to worry about these ordering details. The
facilities of the C++ Standard Library relieve them of this burden. They now ‘only’
have to learn the myriad facilities of a large and complex library.

Although included as part of the ISO C++ Standard, the Library is not part of the
language; it is a set of facilities implemented with the language. The Library is
large: the standard reference, The C++ Standard Library (0-201-37926-0, Josuttis,
Addison Wesley, 1999) — which I highly recommend — exceeds 800 pages in length
and appears to me not to be exhaustive. Our Made Simple book, therefore, has no
chance of making more than a brief introduction to the Library, presenting some
of'its more common characteristics in the hope that you will be able to extrapolate
and move on to more complex facilities, perhaps using Josuttis or other references.



Standard template library

The STL is a subset of the Standard C++ Library. The Standard Library provides
the following facilities:

[_Tbata structures and algorithms (containers, iterators, algorithms, function
objects, allocators, adapters)

[_Stream input and output (the facilities referred to in Chapter 13 as the IOStream
Library)

[ Strings
[_Thternationalisation
[ Ibate and time

[ Numeric analysis
[_Hxception hierarchy
[ Qomplex numbers

Of these, the STL comprises containers, iterators, algorithms, adapters, function
objects and allocators. In English, containers are like the collections I refer to
above: lists, queues, shopping baskets full of groceries, and so on. Iterators are the
means of selection from a container: from the front please when the bus stops;
grocery items at random by the checkout assistant. Algorithms are ready-made
operations that you can carry out on the containers: things like find, search, count
and sort. Remember that the great benefit of the whole library arrangement is that
you can do these operations without regard for the underlying details of how the
stack, queue, or whatever, operates.

Non-STL members of the Standard Library include IOStreams and Strings. And
that’s the limit of the scope attempted by this book in its consideration of the
Library as a whole. Chapter 2 looks briefly at the essential characteristics of the
String class. There’s a bit more later in this chapter. Chapter 13 sets out the
essentials of [OStreams. The next section looks at the STL and its constituent data
structures.

Before we do that, you may remember that, to use a given library function (say,
from Chapter 1, getline), you’re supposed to #include the corresponding header
file, iostream in the case of getline. To use all the facilities provided by the Standard
Library and the STL, there are many Standard header files that you should be aware
of. All told, there are 50: 32 Standard C++ header files; and 18 for the Standard C
Library. The C header files have the same names as their C-language predecessors,
except that they are prefixed with the letter ‘c’ and the trailing ‘.h’ is dropped. Thus,
the old string.h for C-strings becomes cstring.

Here is the full set of C++ header files:

<algorithm>  <bitset> <complex> <deque> <exception>
<fstream> <functional> <iomanip> <ios> <iosfwd>
<iostream>  <istream> <iterator> <limits> <list>
<locale> <map> <memory> <new> <numeric>
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<ostream> <queue> <set> <sstream> <stack>
<stdexcept> <streambuf> <string> <typeinfo> <utility>
<valarray> <vector>

followed by the renamed C headers:

<cassert> <cctype> <cerrno> <cfloat> <Cis0646>
<climits> <clocale> <cmath> <csetjmp> <csignal>
<cstdarg> <cstddef> <cstdio> <cstdlib> <cstring>
<ctime> <cwchar> <cwctype>

I’ve given the full list here for completeness, but it is beyond the scope of this book
—possibly any book — to give examples of all of them in use. The most commonly-
used — and the ones that this book concentrates on — are iostream and string, with
fstream, iomanip and some of the C headers also appearing occasionally.

For further reading, I recommend The C++ Standard Library (Josuttis); (for
details of the C headers) C: 4 Reference Manual (0-13-326224, Harbison & Steele,
Prentice-Hall 1995) and my own Newnes C Pocket Book (0-7506-2538-4).



STL containers

The Standard Template Library provides a range of template-based containers.
There are two main classifications: sequence containers and associative contain-
ers. Sequence containers are ordered collections, in which every element has a
position. Our bus-queue is a good example. Associative containers are sorted
collections in which the position of a given element depends on its value. Think of
a telephone directory, where the elements are name/phone-number pairs.

There are three kinds of sequence container: the vector (similar to a C-style array);
the deque (double-ended queue, like the bus queue); and the /ist (doubly-linked, the
classical alternative to the array). An array is a contiguous set of memory ‘slots’,
where each ‘slot’ contains an element. Access is very fast —add one to an index to
go to the next ‘slot’. However, adding and deleting elements is inefficient: to add
or delete in the middle of an array, you have to ‘shuffle’ other elements right or left.
A list, by contrast, is a series of elements linked by pointers. Access may be a bit
slower than in the case of array because of having to follow chains of pointers, but
addition and deletion are done by manipulating pointers and are very fast.

There are two kinds of associative container: the set and the map. A simple sorted
list of names is a set; our telephone directory is a map, where the name is the key
and the phone number is the value. Variations on the set and map are the multiset
and multimap; the only difference is that the multiset and multimap allow duplicate
entries. The telephone directory is therefore a map but not a multimap: no name/
number key/value pair can appear more than once.

The STL also provides three special sequence containers, known formally as
container adapters. These are for particularly commonly-occurring data structures
and are the stack, the queue and the priority queue.

The STL implements all these containers with templates. As far as possible, you,
the programmer, are spared having to know how the containers are implemented
in detail. You are given a standard set of access mechanisms — iterators and
algorithms —and you can to a great extent treat the different containers in a uniform
manner. The obvious benefit is that you don’t have to ‘reinvent the wheel by figuring
out how to implement a linked list or a binary tree. The details are done for you. The
price is that you have to be aware of the facilities of the STL and how to use them.

Vector container

To cover all the features and operations of any of the containers would take several
hundred pages. What I do here is simply to introduce use of the vector container,
show a number of simple example programs and then present a parallel coverage
of the list container, noting differences where they exist. This isn’t in any way a
comprehensive approach, but it will get you over the “hump’ of basic use of STL
facilities, and thereby allow you to experiment further yourself.
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Here’s the most basic use of vector, shown in the program vectint.cpp:

#include <iostream>
#include <vector>
using namespace std;

int main()
{
vector<int> vectint;
for (int i=0; i<10; i++)
vectint.push_back(i);
for (unsigned i=0; i<vectint.size(); ++i)
cout << vectint[i] << endl;

This uses the member function push_back of the vector template to ‘push’ ten
integers into a vector (array) of integers. Then the member function size is used to
control a loop that traverses the array one element at a time, displaying the contents.
Note that the header file <vector> must be #included. The displayed output is this:

O©CO~NOUOPWN-~0

Use of the simple increment mechanism:
for (unsigned i=0; i<vectint.size(); ++i)
is intuitive but, as we’ll see later with the list collection, not portable between

collections. A better approach is to use the facility designed for exactly this
purpose, the iterator. It’s shown in action in the program vectit1.cpp:

/*
*/
#include <iostream>
#include <vector>
using namespace std;
int main()

'vectit1.cpp': vector with simple iterator and reverse iterator

vector<int> vectint;
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for (int i=0; i<10; i++)
vectint.push_back(i);

for (unsigned i=0; i<vectint.size(); ++i)
cout << vectint[i] <<'";

cout << endl;

/l basic use of iterators over a vector

vector<int>::iterator beg;

vector<int>:iterator end;

vector<int>::iterator pos;

for (pos=beg=vectint.begin(), end=vectint.end(); pos!=end; ++pos)
cout << *pos <<'";

cout << endl;

/I basic use of reverse iterators over a vector

vector<int>::reverse_iterator rbeg;

vector<int>::reverse_iterator rend;

vector<int>::reverse_iterator rpos;

for (rpos=rbeg=vectint.rbegin(), rend=vectint.rend(); rpos!=rend; ++rpos)
cout << *rpos <<'";

cout << endl;

The essence of this is the definition of three iterator variables, beg, end and pos:
vector<int>:iterator beg;

vector<int>::iterator end;
vector<int>::iterator pos;

These are then used to iterate over the vector after being initialised by means of
calls to the vector functions begin and end. There is a corresponding reverse
iterator for going backwards through the array (vector) of integers. The displayed
output of the program is this:

0123456789

0123456789
9876543210

A range of operations is provided for use on vectors; the program vectop1.cpp
illustrates many of them:

/*

*

*/

#include <iostream>
#include <vector>
using namespace std;
int main()

{

'vectop1.cpp': non-modifying and access operations

vector<int> vectint;
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for (int i=0; i<10; i++)
vectint.push_back(i);
for (unsigned i=0; i<vectint.size(); ++i)
cout << vectint[i] <<'";
cout << endl;
cout << "Vector max size is " << vectint.max_size() << endl;
cout << "Vector capacity is " << vectint.capacity() << endl;
vectint.reserve(512);
cout << "Vector capacity is " << vectint.capacity() << endl;
cout << "Element at pos 5: " << vectint.at(5) << end];
cout << "Element at pos 7: " << vectint[7] << end|;
cout << "First element: " << vectint.front() << end|;
cout << "Last element: " << vectint.back() << endl;
if (vectint.size() == 0 || vectint.empty())
cout << "Vector is empty" << endl;

Most of these functions are self-explanatory. The function reserve allocates (in
this case) 512 bytes of memory for the vector, thereby changing the capacity of the
vector, as found by the function capacity. Here’s the output:

0123456789

Vector max size is 1073741823
Vector capacity is 256

Vector capacity is 512

Element at pos 5: 5

Element at pos 7: 7

First element: 0

Last element: 9

The last of the program examples, vectcst1.cpp, shows several different ways in
which vectors can be created and initialised:

/*
*/
#include <iostream>
#include <vector>
using namespace std;
int main()

'vectcst1.cpp': vector constructors & destructor

vector<int> v1;

for (int i=0; i<10; i++)
v1.push_back(i);

vector<int>::iterator beg=v1.begin();

vector<int>:iterator end=v1.end();

vector<int>::const_iterator pos=beg;
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while(pos!=end)
cout << *pos++ <<'"

cout << endl;

vector<int> v2(v1);

for (pos=beg=v2.begin(), end=v2.end(); pos!=end; pos++)
cout << *pos <<'";

cout << endl;

beg=v1.begin();

end=v1.end();

vector<int> v3(beg,end);

for (pos=beg=v3.begin(), end=v3.end(); pos!=end; pos++)
cout << *pos << '";

cout << end|;

vector<int> v4(10,7);

v4.push_back(11);

for (pos=beg=v4.begin(), end=v4.end(); pos!=end; pos++)
cout << *pos <<'";

cout << endl;

Four vectors are created, using different constructors:

vector<int> v1;
vector<int> v2(v1);
vector<int> v3(beg,end);
vector<int> v4(10,7);

The first creates an instance, v1, of a vector of ints. This is uninitialised; the function
push_back is used in the loop following to put some values into the array elements.
The second definition creates the instance v2, initialised to the contents of v1. The
instance v3 is initialised with all the values between beg and end, inclusive of both.
Finally, the vector v4 has all ten elements set to the number 7. This is the displayed
output:

0123456789
0123456789
0123456789
TT7T7T7T7777711

List container

The interface provided by the STL for the programmer to each of the container
types includes a range of functions and iterators. These are similar across all the
containers but not identical. This is because certain aspects of behaviour of the
various containers are fundamentally different. For example, with an array (vec-
tor), you can go directly to item number 7 using a subscript: it is possible to perform

285



direct access on a vector. It is in the nature of linked lists that you can’t do this. You
must start from the top of the list — or some other place in the list to which a pointer
is available — and move along the links from there to the element required. Direct
access is not possible with a linked list. In this case, as in others, the interface
presented by the STL to the vector container differs from that of the list.

The first place we see the difference is in the simplest of the four programs:

listint.cpp:

#include <iostream>
#include <list>

using namespace std;
int main()

list<int> listint;

for (int i=0; i<10; i++)
listint.push_back(i);

for (unsigned i=0; i<listint.size(); ++i)
cout << listint[i] << endl;

}
This actually gives a compilation error: you’re told that the addition operator is not
supported for the list vector. This is where we need the uniform interface provided
by the iterator mechanism. The program listit1.cpp is analogous to vectit1.cpp
above:

/*

* listit1.cpp'”: list with simple iterator and reverse iterator

*/

#include <iostream>
#include <list>

using namespace std;
int main()

list<int> listint;
for (int i=0; i<10; i++)
listint.push_back(i);
/[ No random access to list, overloaded + not supported
/[ for (unsigned i=0; i<listint.size(); ++i)
I cout << listint[i] <<"'";
Il cout << endl;
[/l basic use of iterators over a list
list<int>::iterator beg;
list<int>::iterator end;
list<int>::iterator pos;
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for (pos=beg=listint.begin(), end=listint.end(); pos!=end; ++pos)
cout << *pos <<'";

cout << endl;

/I basic use of reverse iterators over a list

list<int>::reverse_iterator rbeg;

list<int>::reverse_iterator rend;

list<int>::reverse_iterator rpos;

for (rpos=rbeg=listint.rbegin(), rend=listint.rend(); rpos!=rend; ++rpos)
cout << *rpos <<'';

cout << endl;

The direct-access loop is commented out, while the form of the iterators used in the
rest of the program exactly parallels that used for vectors. The displayed output is:

0123456789
9876543210

The range of functions available for lists is smaller than that for vectors, as the

equivalent program to vectop1.cpp, listop1.cpp, shows:

/*
*/
#include <iostream>
#include <list>

using namespace std;
int main()

'listop1.cpp': non-modifying and access operations

list<int> listint;
for (int i=0; i<10; i++)
listint.push_back(i);
/I for (unsigned i=0; i<listint.size(); ++i)
Il cout << listint[i] << "";
/I cout << endl;
cout << "list max size is " << listint.max_size() << endl;
/I cout << "list capacity is " << listint.capacity() << endl;
/I listint.reserve(512);
/I cout << "list capacity is " << listint.capacity() << endl;
/I cout << "Element at pos 5: " << listint.at(5) << end];
/I cout << "Element at pos 7: " << listint[7] << end|;
cout << "First element: " << listint.front() << endl;
cout << "Last element: " << listint.back() << endl;
if (listint.size() == 0 || listint.empty())
cout << "list is empty" << endl;
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The functions commented out are not supported by the list container. Lastly, we can
see from the program listcst1.cpp that the constructors available for creating list
instances are similar to their vector counterparts:

/*

* 'listcst1.cpp': list constructors & destructor
*/

#include <iostream>

#include <list>

using namespace std;

int main()

list<int> list1;

for (int i=0; i<10; i++)
list1.push_back(i);

list<int>::iterator beg=list1.begin();

list<int>::iterator end=list1.end();

list<int>::const_iterator pos=beg;

while(pos!=end)
cout << *pos++ <<'"

cout << endl;

list<int> list2(list1);

for (pos=beg=list2.begin(), end=list2.end(); pos!=end; pos++)
cout << *pos <<'";

cout << endl;

beg=list1.begin();

end=list1.end();

list<int> list3(beg,end);

for (pos=beg=list3.begin(), end=list3.end(); pos!=end; pos++)
cout << *pos <<'";

cout << endl;

list<int> list4(10,7);

list4.push_back(11);

for (pos=beg=list4.begin(), end=list4.end(); pos!=end; pos++)
cout << *pos <<'";

cout << endl;
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0123456789
0123456789
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The

string class

Constructors

Chapter 2 introduces basic use of the C++ Standard Library string class. This
section looks at the different string class constructors and ways of creating and
initialising string variables. It also gives a summary of available string member
functions.

To start, here’s a program, constrs.cpp, that shows by example all the string
constructors except the ones involving STL iterators:

/*

*

*/

{

#include <iostream>
#include <string>

using namespace std;

int main()

constrs.cpp: exercise all 'string' class constructor
overloadings except the one taking iterator arguments

string s1; /I default constructor
s1 = "schadenfreude";
cout << "String 1: " << s1 << end|;

string s2(s1); /I copy constructor
cout << "String 2: " << s2 << end];
string s3(s1, 7); /I construct from pos 7

cout << "String 3: " << s3 << end|;

/I construct from pos 2 through 4
string s4(s1,2,3);
cout << "String 4: " << s4 << end];

/I define C string & character array
char nulltermstr[30] = "Null-terminated string";
char chararray[30] = {'c','h",'a’,'r','a’,'r",'r','a",'y"};

/I construct from C string
string s5(nulltermstr);
cout << "String 5: " << s5 << end|;

/I construct from a number of characters in the array
string s6(chararray,7);
cout << "String 6: " << s6 << end];

/I construct with 10 copies of 'q'
string s7(10, 'q');
cout << "String 7: " << s7 << end|;
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/I call destructor for all string instances
s1. ~string()

The variable s1 is assigned the German word schadenfreude — suitable in the
context, I think — using the overloaded assignment operator of string. The variable
s2 is initialised with the string copy constructor; creation of the other five variables
causes calls to be made on the remaining string constructors. The program is best
explained by its output, which shows the results of the creation of string instances
s1to s7:

String 1: schadenfreude
String 2: schadenfreude
String 3: freude

String 4: had

String 5: Null-terminated string
String 6: chararr

String 7: qqqqdqqqqq

There’s one more way of creating an instance of string, with STL iterators. This is
inadequately explained in other references. I hope the two programs that follow
make the mechanism clear. First, iterator.cpp:

#include <iostream>
#include <string>
#include <vector>

using namespace std;

int main()

vector<char> str1;
str1.push_back('n
str1.push_back('o’
str1.push_back('p'
str1.push_back(
str1.push_back(
str1.push_back('t");
(
(‘v
(‘w

)
)
P);
)
)
)
WA

str1.push_back('u'
str1.push_back('v'
str1.push_back
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str1.push_back('x");
vector<char>::iterator beg;
vector<char>:iterator end;
beg = str1.begin();

end = str1.end();

string s1(beg,end);

cout << s1 << end|;

The idea is to create a string instance, s1, and to use the string constructor that takes
a pair of iterators — in this case beg and end — as arguments. We first of all create
a vector of type char and then assign some characters to the vector by repeated use
of push_back. Two iterators are created and then assigned the start and end of the
vector. The instance s1 of string is then defined using these iterators and the
contents of s1 set to those of the vector str1.

Now, to be more exotic, we look at the program iteratr2.cpp:

#include <iostream>
#include <string>
#include <vector>

using namespace std;

int main()

vector<char> str1; // vector of type 'char’
str1.push_back('n /I add elements to end of vector
str1.push_back('
str1.push_back(
str1.push_back(
str1.push_back(
str1.push_back('
(
(
(‘w

)
0');
'P');
'q');
ISI)
t');

);

);

str1.push_back('u'

str1.push_back

str1.push_back('w");

str1.push_back('x");

vector<char>::iterator beg; /I define three iterators

vector<char>::iterator tmp; /I like generalised pointers

vector<char>:iterator end;

beg = str1.begin();

end = str1.end();

string s1(beg,end); /I make instance s1 of 'string' with
/I iterator overloading of constructor

cout << "string 1: " << s1 << endl;

u
\'
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/I set vector position half-way, insert before 's
for(tmp=beg; tmp!=end && *tmp!='s"; tmp++)

if(tmp!=end)
str1.insert(tmp,3,'y");

/v, 'w', X" fall off the right end
string s2(beg,end);
cout << "string 2: " << s2 << end|;

/I now re-take begin and end, V', 'w' and 'x' reappear
beg = str1.begin();

end = str1.end();

string s3(beg,end);

cout << "string 3: " << s3 << end|;

This builds on iterator.cpp. Three iterators, beg, tmp and end, are used to insert the
character ‘y’ three times halfway along the char vector str1. This is then used to
create and initialise the string instance s2. Three characters ‘fall off the end’;
enough space for all the characters of the expanded string is allocated by creation
of the string instance s3. Here’s the output:

string 1: nopgstuvwx
string 2: nopqyyystu
string 3: nopqyyystuvwx

Member functions

Following is a table listing the member functions of the Standard C++ string class,
along with a short description of how to use each:

Function Prototype Usage
length, size size_type length() const string str = "abcdef";
(size_type is an unsigned integer) str.length() // ==
str.size() /[ ==
insert string& insert string str1 = "abcdef";
(size_type pos, const string& str); string str2 = "xxx";
stri.insert(4, str2);
/I str1 now "abcdxxxef"
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erase string& erase // Delete a substring,
(size_type pos=0, size_type len); // starting after position
/I pos for the length len
str1.erase(4,3);
/I str1 now "abcdef"
find, rfind size_type find /I Search for the first
(const string& str, size_type pos=0) const; | // occurrence of the
size_type find // substring str (or
(char ch, size_type pos=0) const; // character ch) in the
size_type rfind // current string, starting at
(const string& str, size type pos) const; // pos. rfind returns last
size_type rfind // occurrence
(char ch, size_type pos) const; str1.find("cde", 0);
// returns 2
replace string& replace // Delete a substring from
(size_type pos, size_type n, const // the current string and
string &s); // replace with another
string str1 = "abcdef";
string str2 = "xxx";
str1.replace(3,2, str2);
/I str1 now "abcxxxf"
substr string substr // Return a substring of the
(size_type pos, size_type n) const; // current string, starting at
I pos for length n
str2 = str1.substr(3,3);
/I str2 now "xxx"
find_first_of size_type find_first_of /I Search for the first/last
find_last_of (const string& str, size_type pos=0) const; | // occurrence of a

find_first_not_of
find_last_not_of

size_type find_last_of

(const string& str, size_type pos) const;
size_type find_first_not_of

(const string& str, size_type pos=0) const;
size_type find_last_not_of

(const string& str, size_type pos) const;

// character that does/does

// not appear in str

string str1 = "abcdef";

string str2 = "xxbbzz"

str1.find_first_of(str2,0);
// returns 2

c_str

const char* ¢c_str() const;

/I Convert an instance of
// string to a C-string
string str1 = "abcdef"
char charray[20];

const char* cstr = charray;
cstr = str1.c_str();

/I cstr now "abcdef"
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Exercise

1 Write a program that accepts a line of text from user input and then accepts from
user input two strings, s1 and s2. The program should search in the line of text for
s1 and, if found, replace with s2. The program should replace all occurrences of
s1 with s2.
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Chapter 12 introduces the Standard C++ Library, an enormously-expanded set of
facilities that provides services including standard templates, container classes,
vector-handling classes, string-handling classes and others.

This chapter concentrates on the Stream I/O (input/output, including to and from
files) subset of the Standard Library, which is implemented as a hierarchy of classes
and templates. The Stream I/O library is formally known as the /OStream library.
The best way to illustrate the class/template hierarchy is with a diagram, followed
by explanation of the purpose of each class and template. Here’s the picture:

|

( . ) ( basic_streambuf<> )
ios_base —
- streambuf/wstreambuf
( basic_ios<> ) ( basic_filebuf<>
jos/wios filebuf/wfilebuf
basic_istream<> basic_ostream<>
istream/wistream ostream/wostream
basic_iostream<>
iostream/wiostream
basic_ifstream<> basic_ofstream<>
ifstream/wifstream ofstream/wofstream

basic_fstream<>
fstream/wfstream

The entire [OStream library is based on class templates. In the diagram, names
followed by a pair of angle-brackets, <>, are templates. Those not followed by
angle-brackets are classes. Where, in a given box, the first line is a template and the
second line contains classes, those classes are instantiations of the template for the
normal (char) and wide (wchar) character types respectively.

The 10Stream library is the only part of the Standard C++ Library (it was then
called the Stream I/O Library) that was widely in use before the ISO standardisa-
tion. The major change is the accommodation of facilities for handling wide



characters (of two or more bytes) as well as the ‘normal’ one-byte characters used
in the English-speaking world. The ISO standards committee had two options:
build a library for ‘normal’ characters and then duplicate that library for wide
characters; or use C++ templates in the manner intended, parameterising the
particular type of character being handled and instantiating classes accordingly.
The committee chose the template approach.

The base class ios_base is just a class, not a template. It defines properties such as
format and state flags for all I/O stream classes — standard input, standard output,
files and others. The ios and wios classes instantiated from the derived template
basic_ios<> define properties of all stream classes that depend on the distinction
between ‘normal’ and wide characters. Actual input to and output from any stream
is done by low-level operations defined by the template basic_streambuf<> and
instantiated by either of the classes streambuf or wstreambuf. The templates
basic_istream<> and basic_ostream<> and their instantiations istream, ostream,
wistream and wostream are those most commonly used by C++ programmers.
They are typically used to direct text output to the standard output device or to
receive text input from standard input. They rely on all the low-level services
provided by the classes and templates from which they are derived. The classes
ifstream, ofstream and fstream are respectively for input, output and input-output
operations on disk files.

Throughout this book, you’ve seen instances of the istream and ostream classes.
Along with their wide-character counterparts, these global stream objects are
summarised in this table:

Type Name Purpose

istream cin Standard input

ostream cout Standard output

ostream cerr Standard error

ostream clog Buffered cerr for log output
wistream wcin Standard input for wide characters
wostream wcout Standard output for wide characters
wostream wcerr Standard error for wide characters
wostream wclog Buffered cerr for wide-character logs

The I0Stream library class hierarchy is declared in header files including istream,
ostream, iostream, streambuf, fstream and iomanip. Inside these files, exactly
where and how things are declared is implementation-dependent: the internals of
the header files will differ between, say, Microsoft C++ and Borland C++, but the
available facilities should be the same from the programmer’s standpoint.
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The operators << for output and >> for input are overloaded. The << operator
overloaded for stream output is called the insertion operator or inserter. When used,
it is said to insert bytes into the output stream. The >> operator overloaded for
stream input is called the extraction operator or extractor. When used, it is said to
extract bytes from the input stream.

The extractor and inserter operators are basic C++ bit-shift operators overloaded
to have multiple definitions as operator functions. The multiple overloadings allow
you to use the operators for input and output of objects of many different data types;
they, not you, take care of type-safety.

Type-safety is one of the benefits of the [OStream library and of C++ in general:
the interface presented to the programmer does not change with data type. Suppose
we have a data object X of one of the types char, int, float and double, but we don’t
know which it is, then the statement:

cout << X;

using the [OStream operator <<, correctly sends to the output stream the value of
X. On the other hand, the C statement:

printf("%d", X);

fails if X is, for instance, of type double. There’s no easy way in C of implementing
functions that operate correctly on arbitrary types. [OStream library functions and
operators do this in a type-safe manner by taking advantage of the C++ function-
and operator-overloading capabilities.



The IOStream library classes

In keeping with the Made Simple nature of this book, the wide-character variant of
the IOStream library is not dealt with further here. The remainder of this chapter
is confined to consideration of C++ Stream I/O using only the one-byte characters
‘normal’ in the English-speaking world. This allows me to present a simplification
of the IOStream library hierarchy diagram as the basis of what follows.

ios_base streambuf

[ istream ] [ ostream ]

[ jostream ]

[ ifstream ] [ ofstream ]
[ fstream ]

Everything is this diagram is a class. The streambuf class is not part of the main
hierarchys; it is referenced by a pointer defined in the class ios whenever its low-
level input/output capabilities are required. streambuf allocates memory for and
maintains the stream buffer objects. Usually, you don’t have to be concerned with
the definitions contained in the streambuf class or the details of the low-level I/O
performed by it.

The ios_base contains more information about the state of the stream. This
includes the stream open mode, seek direction and format flags. Along with format
flags, the following functions are also members of the ios_base class:

flags setf unsetf  width fill precision
tie rdstate eof fail bad good clear

The functions in the first row are for data formatting and are explained in the next
section.
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The ios class, derived from ios_base, defines a pointer to an instance of streambuf.
From ios are derived the input stream istream and output stream ostream classes.
These declare 1/O functions and operators that are used by the C++ programmer.
Both istream and ostream are #included in programs with the header file iostream.
This header file in turn #includes the header files istream and ostream, where the
classes of the same name are declared. istream contains function declarations
including the following:

get peek
read putback
getline seekg
gcount tellg

The class ostream includes these function declarations:

put seekp
write tellp

istream also contains the definitions of the overloaded extractor >>, while ostream
contains the definitions for the inserter <<.

The class iostream inherits both istream and ostream. It is declared in the iostream
header file. The file I/O classes ifstream and ofstream are declared in the header
file fstream. ifstream inherits all the standard input stream operations defined by
istream and adds a few more, such as constructors and functions for opening files.
ofstream similarly augments the inherited definitions of ostream.

Finally, fstream, declared in the header file fstream, inherits iostream and contains
functions and constructors that allow files to be opened in input-output mode.



Formatted 1/O

All Stream /O done in earlier chapters is unformatted: the formats of output and
input data are default settings used by the insertion and extraction operators. You
can, in three ways, specify these formats explicitly:

[_The setf, unsetf and flags functions use format flags to alter input and output
data. The ios_base class enumerates the flag values and also declares the
functions.

[_The ios_base class member functions width, precision and fill, are used to set
the format of input and output data.

[_Wsing manipulators, special functions that combine the above two techniques
and add some more.

Format flags

Every C++ input and output stream has defined for it (in the ios_base class) a
number of format flags that determine the appearance of input and output data.
These flags represent different patterns of bits stored within a long integer like this:

/I skip white space on input
skipws = 0x0001,
/I left-adjust output

left = 0x0002,
/I right-adjust output
right = 0x0004,

This is just a likely sample but should not be taken as literally true for every C++
environment. The exact setting of each of the format flags is implementation-
dependent. This is the full set of format flags:

dec /I decimal conversion, mask ios_base::basefield

oct /I octal conversion, mask ios_base::basefield

hex /I hexadecimal conversion, mask ios_base::basefield
left /I left-adjust output, mask ios_base::adjustfield

right /I right-adjust output, mask ios_base::adjustfield
internal /I left-adjust sign, right-adjust value

/I mask ios_base::adjustfield
scientific  // scientific notation, mask ios_base::floatfield
fixed /I decimal notation, mask ios_base::floatfield
skipws /I skip white space on input
showbase // show integer base on output
showpoint // show decimal point
uppercase // uppercase hex output
showpos  // explicit + with positive integers
unitbuf /I flush output after each output operation
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You can see that some of the flags are associated with masks. These are for use with
the second overloaded version of the setf function, one of several ios_base
member functions used to manipulate output and input formats. In general, the
effect of the masks is to clear all current format settings for the mask’s group before
applying new settings. The mask ios_base::basefield is for the flag group that
contains the flags dec, oct and hex. You can see the other two masks and their flag
groups in the list above.

Here’s a simple example program, formatez.cpp, of how to use format flags. We
define an integer and initialise it to a decimal value. We then write it to the standard
output in its hexadecimal form, showing the base (0X) in uppercase:

#include <iostream>
using namespace std;

int main()

int number =45;

/I set hexadecimal and show the base
cout.setf(ios_base::hex, ios_base::basefield);

cout.setf(ios_base::showbase | ios_base::uppercase);
cout << number << endl;

}
The output of the code is this:

0X2D

Both overloaded versions of the setf function are used here. The first use of setf is
the version taking two parameters. The mask ios_base::basefield clears any
decimal, octal or hexadecimal flags that may already be set and then sets the
hexadecimal flag. The second setf takes a single parameter, a bitwise-OR combi-
nation of the showbase and uppercase flags. The combined effect of the two setfs
is to format the decimal number 45 to uppercase hexadecimal with the base (‘X”)
explicitly shown.

The format flags set in this way cause all subsequent integers written to the standard
output to be displayed in hexadecimal, until the flags are changed or unset. You
switch the flags off using the unsetf function:

cout.unsetf(ios_base::hex | ios_base::showbase | ios_base::uppercase);

After this operation, the output format reverts to what it was before the call to setf
— the decimal number 45. Here are the prototypes of the setf, unsetf and flags
functions:

ios_base::fmtflags setf(ios_base::fmtflags);
ios_base::fmtflags setf(ios_base::fmtflags, long);
ios_base::fmtflags unsetf(ios_base::fmtflags);



ios_base::fmtflags flags();
ios_base::fmtflags flags(ios_base::fmtflags);

The function setf called with a single argument of type ios_base::fmtflags (similar
to a long integer) turns on the format flags specified in that argument. setf returns
the format flag values as they were before the call to setf. An overloaded definition
of setf takes two arguments. A call to this function turns off the flags specified by
the second argument (the mask) and then turns on the flags specified by the first.
The function returns the format flag values as they were before it was called.

The function unsetf turns off the flags specified by its argument and returns the
format flag values as they were before unsetf was called.

A call to the flags function without arguments returns the current state of the format
flags. The flags function called with one long argument sets the format flags to the
values specified by that argument and returns the values of the flags as they were
before the call to flags. This function is important in being the only one of the five
shown that actually clears all previous format flag settings.

Manipulating format flags

Here’s an example program, format1.cpp, that exercises all five flag-setting
functions as well as a number of the format flags.

#include <iostream>
using namespace std;

int main()

ios_base::fmtflags old_flags; // old flag values
ios_base:fmtflags tmp_flags; // temporary flag values
ios_base::fmtflags new_flags; // new flag values

int number = 45;

/I store original format flag values
old_flags = cout.flags();

/I show + sign if positive
cout.setf(ios_base::showpos);
cout << number << endl;

/I set uppercase hexadecimal and show the base
tmp_flags = cout.setf(ios_base::hex, ios_base::basefield);

/I following 3 statements have the same aggregate effect as previous setf
[Itmp_flags = cout.flags();

/[cout.unsetf(ios_base::dec);

/Icout.setf(ios_base::hex);
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cout.setf(ios_base::showbase | ios_base::uppercase);
cout << number << endl;

/I display twice to show that setf is persistent
cout << number << endl;

/I unset the uppercase flag
cout.unsetf(ios::uppercase);

cout << number << endl;

/I revert to showpos only
cout.setf(tmp_flags);
cout << number << endl;

/I return to original format flag values
new_flags = cout.flags(old_flags);
cout << number << endl;
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This is the output when the program is run:

+45
0X2D
0X2D
0x2d
+45
45

This program is worth careful reading, testing and experimentation, as it weeds out
and clarifies many of the subtleties of the formatting flags and functions. In

particular, examine these lines:

tmp_flags = cout.setf(ios_base::hex, ios_base::basefield);

/I following 3 statements have the same aggregate effect as previous setf

/lItmp_flags = cout.flags();
/lcout.unsetf(ios_base::dec);
/lcout.setf(ios_base::hex);

Because the individual flag values are members of the ios_base class, they must
be scope-resolved when they are used: ios_base::hex is correct, while hex alone
is not. In older, pre-Standard, C++ versions, the flags used be members of the class
ios, not ios_base. Most Standard-conforming C++ environments still allow you to

use, for example, ios::hex.

These are the characteristics of the other format flags:

[_dec is used to control the number base, converting output integers to decimal
and causing input integers to be treated as decimals; it is the default base value.

[_skipws, if set (which is the default), causes white space to be skipped on input

using the extraction operator.




[_1&ft and right cause field-justification with padding by a fill character; right is
the default.

[_ihternal causes the fill character to be inserted between any leading sign or base
and the value.

[_showpoint causes a decimal point and trailing zeros to be output for floating-
point numbers, whether they are needed or not.

[_dcientific causes floating-point display to be of the form:
m.ppppppex

where mis a digit, followed by a decimal point and a number of digits to a precision
specified by the current precision value (see precision() below). The default
precision is 6. The decimals are followed either by e or E (the latter if ios::fixed is
set) and an exponent. The value:

3141.592654
displayed in scientific form is:

3.141593e03

[fixed causes floating-point values to be displayed in normal (non-scientific)
notation.

[_dnitbuf, when set, cause the output buffers to be flushed after each output
operation.

Field width and precision

You can use the ios_base class member functions width, precision and fill to do
further formatting on input or output data. Here’s an example program, format2.cpp,
which exercises all three functions:

#include <iostream>
using namespace std;
int main()

double pi = 3.141592654;

/I set fixed-decimal formatting
cout.setf(ios_base::fixed, ios_base::floatfield);

/I default display is left-justified with precision 6
cout << pi << endl;

/I set precision 4, field width 12 and fill character +
cout.precision(4);

cout.width(12);

cout.fill('+'");

cout << pi << endl;
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/I width setting is not persistent
/[ fill setting is

cout.width(12);
cout << pi << endl;

/I precision without argument keeps

/I previous value

cout << "Current precision: " << cout.precision() << endl;
cout.precision(8);

/I width does not truncate
cout.width(2);

cout.fill("-'");

cout << pi << endl;

/I where precision exceeds decimal places, zeros appended
cout.precision(12);
cout << pi << endl;
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These are the output results of the program:

3.141593
++++++3.1416
++++++3.1416
Current precision: 4
3.14159265
3.141592654000




Stream output and input

Stream output

Functions

Stream /O provides the insertion (stream output) operator overloaded to handle a
number of data types. These types are referred to as built-in insertion types.
Overloading of the insertion operator is done according to the rules of operator
overloading, explained in Chapter 9. This short program illustrates how the
insertion operator is overloaded:

#include <iostream>
using namespace std;

int main()

float f = 2.71828;
cout << f;

cout.operator<<(f);

}

The insertion operations on cout are equivalent and identical in their effect. In the
second, full form, the operator function operator<< is explicitly called for the
output stream cout. operator<< returns a reference to a class (stream) object of the
type with which it is called, in this case ostream. This allows you to chain insertion
operations:

cout << "Value of e is: " << f << end];
Here are the built-in Stream I/O inserter types:

char (signed and unsigned)
short (signed and unsigned)

int (signed and unsigned)

long (signed and unsigned)
const char * (string)

float

double

long double

void * (void pointer, hex address)

You can, if you're sufficiently motivated, define further overloaded operator
functions for insertion. These are of the same form and behaviour as the built-in
inserters. For details on customised inserters, I refer you to the C++ Users
Handbook, or the C++ Programming Language (3rd edn).

There are two functions, in addition to the inserters already described, for simple
output to a stream. The put member function of the ostream class writes a single
character to an output stream. Its lone prototype is:

ostreamé& put(char);
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The class ostream contains a member function flush, with this prototype:
ostream& flush();

Using flush has the effect of flushing and writing the contents of the buffered stream
for which it is called:

cout.flush(); // function call

Stream input

Functions

308

The facilities provided by Stream I/O for input are symmetrical to those for output.
The overloaded extraction operator >> is used for stream input. Extractors share
many characteristics with inserters:

e Extractors, like inserters, are overloaded operator functions.
* You can chain extraction operations in the same way as insertion operations.

* You can use an extractor on any input stream; there is no concept of separate
operations for different streams, along the lines of scanf and fscanf in the C
Standard Library.

e As with inserters, you can customise your own extractors. And again, see the
C++ Users Handbook, or the C++ Programming Language (3rd edn).

The following are the built-in Stream I/O inserter types:

char (signed and unsigned)
short (signed and unsigned)
int (signed and unsigned)
long (signed and unsigned)
char * (string)

float

double

long double

Extraction operations that accept input from the standard I/O stream cin by default
skip leading white spaces and white-space-separated input. This can be changed
with the skipws format flag or the ws manipulator (see the example manip2.cpp in
the section on Input manipulators, page 314). Extraction fails if data of a type not
matching the receiving variables is received.

Stream /O provides a number of functions, in addition to the inserters already
described, for simple input from a stream. The get function has a number of
overloadings allowing different definitions of the function to perform different
tasks on an input stream. These are the get prototypes:

int  get();
istream& get(char&);



istream& get(char *, int I, char d ="\n');
Given these definitions:
char c;
int i
char carr[20];
and extracting from the input stream, cin, the following calls to get are valid:

i = cin.get(); /I read one character, white space or not
cin.get(c); /I read one character, white space or not

cin.get(carr,20); // get at most 20 characters into the array carr
/I until default newline seen but not read from
/l the stream

The peek function has only one definition. Its prototype is:

int peek();
peek looks ahead at, without reading, the next character on the input stream.
This is the prototype of putback:

istream& putback(char);

putback pushes an already-read character back onto the input stream; it will be read
by the next input operation.

The getline function is equivalent to the third definition of get above, except that
it also reads the delimiter which is, by default, a newline character. get leaves the
delimiter on the input stream. This is the prototype of getline:

istream& getline(char® b, int len, char d = "\n");

getline reads at most len characters, delimited by the character d or by default a
newline, into the array pointed to by b.

The gcount function returns the number of characters read by the last read operation
on an input stream. Its prototype is this:

int gcount();

The ignore function is similar to a flush function for an input stream. (No input-
stream flush function is defined in Stream 1/O.) This is its prototype:

istream& ignore(int len = 1, int d = EOF);

When you call ignore, it discards up to len characters (default value 1) or until a
delimiter character is found on the input stream. The delimiter is also discarded.

Finally, a couple of program examples bred out of irritating experience. One of the
most common programming operations is the loop on input: get a line of user input,
do something with it, get another line and so on. Using cin and the extraction
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operator >> is OK where text input is continuous, but input stops as soon as the first
white space character is seen. If you want multi-word text, you’ve got to use either
get or getline. Depending on the type of data you are using, one or the other may
be suitable. Here’s the first illustrative program, get.cpp:

#include <iostream>
using namespace std;
const int MAX = 50;

int main()

{

char stri[MAX];

char *s1 =str1;

cout << "Enter string: ";
while (cin.get(s1, MAX))
{

cin.get();
cout << s1 << endl;
cout << "Enter string: ";

The while loop terminates when the call to cin.get returns end-of-file (EOF). This
is generated from the keyboard by pressing Ctr/-Z. This code, when run, accepts
lines of non-continuous text, each up to 50 characters long, until you press EOF.
If, however, you use getline in place of get, you may find that the RETURN key
must be pressed multiple times after each entered line to get a new prompt. Text
input to an ordinary C-string seems to be best done with cin.get.

Where the ISO C++ string class is used, getline works well, as shown by the
program getline.cpp:

#include <iostream>
#include <string>
using namespace std;

int main()

{

}

string line;
cout << "Enter String: ";
while (getline(cin, line))

cout << line << endl;
cout << "Enter String: ";
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Mmanipulators

Output manipulators

When data is directed to an input or output stream, it can be formatted using a
notation, known as the manipulator, which is more compact and easier to use than
the format flags and setf functions explained earlier in this chapter.

Manipulators are formatting functions that may be used between insertion or
extraction operators instead of beforehand, as is the case with functions of the setf
family. Here are simple equivalent examples:

cout.setf(ios_base::oct); // set flags octal
cout << number << endl; // octal output

/I equivalent manipulator operation
cout << oct << number << endl;

A manipulator function returns a reference to a stream object of the type with which
it is called. Overloaded inserter and extractor operators also return a reference to
a stream object. This makes it possible for a manipulator to be part of a bigger /O
operation and to be embedded between insertion and extraction operators.

Stream I/O provides a set of built-in manipulator functions. The operations allowed
by these manipulators closely parallel those explained in the Formatted I/O section.
Here’s a list of built-in manipulators for output to any stream:

Manipulator Purpose

dec decimal conversion (default)
end| insert newline and flush stream
ends insert null character

flush flush the output stream

hex hexadecimal conversion

oct octal conversion
resetiosflags(f) reset format bits specified by f
setbase(b) set number to base b

setfill(c) set fill character to c
setiosflags(f) set format bits specified by f
setprecision(p) set precision to p

setw(w) set field width to w

The following example program, manip1.cpp, shows all of these manipulators in

use.
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#include <iostream>
#include <iomanip>
using namespace std;

int main()

{

char string[20] = {'a','b",'c','d",'e",'f"};

double pi = 3.141592654;

int n_dec = 35;

int n_oct = 035;

cout.setf(ios_base::fixed, ios_base::floatfield);

/I Demonstrate simple output manipulators
cout << "Octal: " << oct << n_dec << end];
cout << "Decimal: " << dec << n_oct << end|;
cout << "Hex: " << hex << n_oct << end];

/I Rightmost manipulator overrides others
cout << "Hex: " << hex << dec << n_oct << endl;

/I Convert octal number to decimal, pad output field of width 6 with blanks
cout << "Padded: " << setw(6) << dec << n_oct << endl;

/I Equivalent operation: convert using setbase and pad field with zeros
cout << "Padded: " << setw(6)

<< setfill('0")

<< setbase(10)

<< n_oct

<< end|;

/I Pl output in field-width 8, precision 4
cout << "Rounded PI: " << setw(8)

<< setprecision(4)

<< pi

<< endl;

/I Precision 8, field width 4: output is expanded
cout << "Rounded PI: " << setw(4)

<< setprecision(8)

<< pi

<< endl;

/I Output null-terminated character array
cout << "String: " << string << ends << end|;

/I Display Pl in scientific notation
/I Explicitly unset fixed first
cout.unsetf(ios_base::fixed);
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cout << "Exponent PI: "
<< setiosflags(ios_base::scientific)
<< pi << endl;

/I Display an integer left-justified in hex

/I Unset decimal first

cout.unsetf(ios_base::dec);

cout << "Hex: " << setw(10)
<< setiosflags(ios_base::left | ios_base::hex)
<< n_dec << endl;

/I Display an integer right-justified in hex
cout << "Hex: " << setw(10)
<< resetiosflags(ios_base::left)
<< n_dec << endl;

/I Flush output and stop
cout << "Finished...." << flush << endl;

The output displayed by the program is this:

Octal: 43
Decimal: 29
Hex: 1d

Hex: 29
Padded: 29

Padded: 000029

Rounded PI: 003.1416
Rounded PI: 3.14159265
String: abcdef

Exponent Pl: 3.14159265e+00
Hex: 2300000000

Hex: 0000000023

Finished....

The manipulators setiosflags and resetiosflags, combined in use with the format
flags defined in the class ios_base, are equivalent to setf and unsetf, while
promoting shorter and more concise coding. The include file iomanip must be
included if manipulators taking arguments are used.

Surprises in programs such as manip1.cpp are caused mainly by failure to turn off
flags using masks. To do fixed-point-formatted output, explicitly set fixed, turning
off all floating-point flag bits:

cout.setf(ios_base::fixed, ios_base::floatfield);

Similarly, before setting scientific, fixed is explicitly unset; while before setting
hex, dec is unset.
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Input manipulators

The 10Streams Library provides a set of built-in manipulators for input. Input
manipulators are defined and used in a way that is essentially the reverse of output
manipulators. All the rules surrounding use of input manipulators are the same:

e Input manipulators are embedded between extractor operators.

e The setiosflags and resetiosflags manipulators combine format flags and
manipulators.

e setiosflags is equivalent in effect to setf.
* resetiosflags is equivalent in effect to unsetf.

e jomanip must be #included if input manipulators are used which take argu-
ments.

Here is a list of built-in manipulators for input from any stream:

Manipulator Purpose

dec decimal conversion (default)
hex hexadecimal conversion

oct octal conversion

ws skip white space characters
resetiosflags(f) reset format bits specified by f
seffill(c) set fill character to €
setiosflags(f) set format bits specified by f
setw(w) set field width to w

The following example program, manip2.cpp, shows a number of these manipu-
lators in use.

#include <iostream>
using namespace std;

#include <iomanip>

int main()

{
/[ do a numeric conversion
int n_dec;

cout << "Enter a hexadecimal number: ";
/I dont skip leading white spaces!!

cin >> resetiosflags(ios_base::skipws) >> hex
>> n_dec;
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cin.get();
cout << "Decimal conversion of hex input: "
<< n_dec << endl;

/I break an input string
char buf1[20];
char buf2[20];

cout << "Enter a string" << end|;
cin >> setw(10) >> buf1;

cin >> buf2;

cout << "String 1" << buf1 << endl;
cout << "String 2 " << buf2 << endl;

The first interesting aspect of this program is the unsetting of the default flag
ios_base::skipws. Ordinarily, white space before input of the hexadecimal number
is ignored. The new flag setting causes leading white spaces to be treated as part
of the number, with predictably unpleasant results.

The second part of the program accepts an array of characters of arbitrary length
from the input stream. If the input contains more than 10 characters, it is broken into
two parts. If the input is “abcdefghijklmnopq” then the contents of buf1 are
displayed at the end of the program as a null-terminated string of nine characters:

abcdefghi
The remainder of the characters are stored, null-terminated, in buf2.

The setw manipulator is useful for ensuring that the length of data input to an array
with an extractor does not exceed the array bounds; the data that cannot be
accommodated in the array is discarded or used by the next input operation.

Here’s the displayed output of manip2.cpp, with user input in boldface:

Enter a hexadecimal number: 45
Decimal conversion of hex input: 69
Enter a string

abcdefghijkimnopq

String 1 abcdefghi

String 2 jkimnopq
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File I/0O
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Using the IOStream library, you open a file by linking it with an input, output or
input/output stream. You do this either by explicitly calling the stream member
function open or allowing the stream constructor to open the file implicitly. A file
is closed by disassociating it from its stream. This is done either explicitly by the
stream member function close or implicitly by the stream destructor.

To use files under Stream I/O, you must include the fstream header file. fstream
includes the three classes ifstream, ofstream and fstream, for input, output and
input-output files respectively. These classes declare all the functions needed to
access files in input, output and input/output modes.

Before a file can be opened, you must define an object of the required stream type:
ifstream ins;

Then you can open the file:
ins.open("infile");

You can alternatively open the file automatically using the ifstream constructor:
ifstream ins("infile");

Ifthe file infile does not exist, it is created. When the file has been opened, the stream
object ins keeps track of the current state of the file: its size; open mode; access
characteristics; current position of the read pointer; and error conditions, if any.
You can close the file explicitly using the stream member function close:

ins.close();

or else rely on the ifstream destructor to close the file when the stream object ins
goes out of scope.

It’s OK to open a file using its name only, but there are many other options. The
full prototype of the input stream open function, declared in the class ifstream, is
this:

void open(char *n, int m = ios_base::in, int p = filebuf::openprot);
The output stream open function, declared in ofstream, has this prototype:
void open(char *n, int m = ios_base::out, int p = filebuf::openprot);
The input/output open function is declared in fstream as follows:
void open(char *n, int m, int p = filebuf::openprot);

The first argument in all cases is a string representing the file name; the second is
the open mode; and the third, the file access permissions. The open mode for input
files is by default ios_base::open. For output files, it is by default ios_base::out.

Let’s look at a number of examples of simple file I/O. All the examples are based
around the same program, which simply copies one text file to another. To do so,
we call a filecopy function.



Basic file copy

Here’s the basic program, filecopy.cpp:

}

#include <iostream>
using namespace std;

#include <fstream>
void filecopy(ifstream &, ofstream &);

int main(int argc, char *argv[])

if (argc != 3)
{

cout << "Invalid arguments specified" << endl;
return(0);

ifstream fin(argv[1]);
if (Ifin)
{

cout << "Cant open input file" << endl;
return(0);

ofstream fout(argv[2]);
if ('fout)
cout << "Cant open output file" << endl;

return(0);

filecopy(fin, fout);
fin.close();
fout.close();

/I Function filecopy copies character-by-character from the input to
/I the output stream.
void filecopy(ifstream &in, ofstream &out)

char c;
while (in.get(c), lin.eof())
out.put(c);

You can execute the program by entering at the command line:

filecopy infile outfile
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The file infile is linked to the input stream ifstream and opened. If for some reason
it can’t be opened, the stream object fin is set to null, an error is reported and the
program stops. If the file outfile can’t be opened, the program similarly stops. If
both files are successfully opened, their associated stream objects fin and fout are
supplied as reference arguments to the function filecopy. This function then reads
characters from the input file and writes them to the output file, stopping when end-
of-file is encountered on the input file. The error-state function, eof, declared in the
class ios_base, returns TRUE on end-of-file.

In the next example, we see the files being opened using explicit open function
calls. The output file is opened in input-output mode and, after the copy, is opened
in input mode and displayed. Only the main function is shown:

#include <iostream>
using namespace std;

#include <fstream>
void filecopy(ifstream &, fstream &);
int main(int argc, char *argv][])
{
if (argc = 3)
{
cout << "Invalid arguments specified" << endl;
return(0);

ifstream fin;
fin.open(argv[1], ios::in);

if (Ifin)

cout << "Cant open input file" << endl;
return(0);

fstream fout;
fout.open(argv[2], ios::out);

if ('fout)

{
cout << "Cant open output file" << endl;
return(0);

filecopy(fin, fout);

/I now close, open and read the output file
char c;

fout.close();
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fout.open(argv[2], ios::in);

while (fout.get(c), !fout.eof())
cout << ¢;

fin.close();

fout.close();

If we had opened the output file in append mode with:
fin.open(argv[2], ios::app);

or:
fstream fin(argv([2], ios::app);

the contents of the input file would be added to the end of any existing output file
instead of overwriting it. In the case of append mode, if the file does not already
exist, it is created.

We can implement the filecopy function using the multi-character overloading of
the get function. Here, I haven’t changed the main function from the original
filecopy.cpp. Only the filecopy function is shown:

const int MAX = 100;
void filecopy(ifstream &in, ofstream &out)

char instring[MAX];
while (in.get(instring, MAX, "\n'), lin.eof())
{

out << instring;
/I get and copy the newline

char c;
¢ = in.peek();
if (c =="\n")

in.get(c);
out.put(c);

}
}

We define a local character array, instring, to act as an input buffer. Then we read
a line from the input file up to, but not including, the trailing newline. If we don’t
find a newline character, we read a maximum of 100 characters. Either way, the
characters are stored in instring, the contents of which are then written to the output
file using the built-in inserter.
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At the end of each line, the newline must be processed. We do this here a little over-
elaborately, the peek function being used to check that the next character is indeed
a newline before the copy. We could do the same job in a more crude (and error-
prone) way:

while (in.get(instring, MAX), lin.eof())
out << instring;
/I get and copy the newline

in.get();
out.put(\n");

}

In this case, the get call uses the fact that its third argument, the delimiter, has the
default value "\n'. We then use the version of the get function that takes no
arguments to discard the next character after the line is read. The put function then
writes a hard-coded newline character to the output file.

In the final variant of the filecopy function, we use getline to read the input file and
gcount to count the characters actually read:

const int MAX = 100;
void filecopy(ifstream &in, ofstream &out)

long total_chars = 0;
char instring[MAX];

while (in.getline(instring, MAX, "\n'), lin.eof())

total_chars += in.gcount();
out << instring;

cout << "File copied: " << total_chars
<< " bytes" << end|;
}

getline reads from the input file a newline-terminated line, including the newline
character. The built-in inserter then writes the line to the output stream. On each
iteration, we increment the total number of characters actually read. At the end of
the function, we report the number of characters copied.

Random file access

Some basic facilities are provided by the [OStream library for random access, that
is, starting file access at any point in the file. For portability, you should perform
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random access operations only on files opened in binary mode. The six functions
you’re given in Stream I/O to do random access on binary files are these:

read Read a string of characters from an input stream.

write  Write a specified number of characters to an output stream.
seekg Move the position of the file read pointer to a specified offset.
tellg  Return the current position of the file read pointer.

seekp Move the position of the file write pointer to a specified offset.
tellp  Return the current position of the file write pointer.

Once again noting that this is a Made Simple book, and having covered Made
Simple file access, | must here again refer you to the C++ Users Handbook for
explanation and examples of use of these functions.
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Exercises

1 Write a program that uses any combination of the width, precision and fill
functions to display the number 1.732050808 (square root of 3!) to four
decimal places of accuracy, to a total width of not more than 10 characters, right
justified and with the leading ‘1’ left-padded with zeros.

2 Write a program that implements a file class. Assume that the file is to be
character based (i.e. non-record based). Define the file’s data and function
members. Include a simple encrypt function that uses exclusive-or scrambling
performed by the single line of code:

c "= key;

where c is a char variable and key is either a literal character or a character
variable used to scramble c.
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14 Standard C library functions

The following is a list, in alphabetic order by function name, of Standard C library functions
included in the ISO C++ Standard and declared in the standard header files: cstdio, cstring, ctype,

cmath, cstdlib.

Although part of the earlier C library, these headers and the library functions they declare remain
a vital part of the C++ programmer’s toolkit for low-level text-handling, file-access and math-

ematical operations.

#include <cstdlib>
void abort();
abort causes abnormal program termination.

#include <cstdlib>

int abs(int num);

abs returns the absolute value of the integer
num.

#include <cmath>

double acos(double x);

acos returns the arccosine of x in the range zero
to PL.

#include <cmath>

double asin(double x);

asin returns the arcsine of x in the range —P1/2
to PI/2.

#include <cmath>

double atan(double x);

atan returns the arctangent of x in the range —P1/
2 to PI/2.

#include <cmath>

double atan2(double y, double x);

atan2 returns the arctangent of y/x in the range
—PI to PI, using the signs of both arguments to
determine the quadrant of the return value.

#include <cstdlib>

int atexit(void(*f)());

atexit causes the function f to be called if the
program terminates normally and returns non-
zero if the function cannot be called.

#include <cstdlib>

double atof(const char *s);

atof converts and returns as a double floating
point number the string at s, returning zero on
error.

#include <cstdlib>

int atoi(const char *s);

atoi converts and returns as an integer the string
at s, returning zero on error.

#include <cstdlib>

int atol(const char *s);

atol converts and returns as a long integer the
string at s, returning zero on error.

#include <cstdlib>

void *bsearch(const void *key, const void
*base, size_t n, size_t size, int(*comp)
(const void *key, const void *element));
bsearch does a binary search on the sorted
array pointed to by base and returns a pointer
to the first member of the array which matches
key. The number of array elements is specified
by n and the size in bytes of each element by
size. The type size_t is defined as unsigned int
in stddef.h. The function comp compares array
elements in turn with key. If key is not matched
in the search, NULL is returned.

#include <cstdlib>

void *calloc(size_t n, size_t size);

calloc allocates space in memory for n objects,
each of size (in bytes) of size. The function
returns a pointer to the allocated memory (which,
unlike with malloc, is zero-initialised), or NULL
if the memory could not be allocated.

#include <cmath>

double ceil(double x);

ceil returns the smallest integer, represented as
a double, which is not less than x.
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#include <cstdio>

void clearerr(FILE *fp);

clearerr clears end-of-file and error status indi-
cators for the file pointed to by fp.

#include <cmath>
double cos(double x);
cos returns the cosine of x in radians.

#include <cmath>
double cosh(double x);
cosh returns the hyperbolic cosine of x.

#include <cstdlib>

div_t div(int n, int d);

div calculates the quotient and remainder of n/
d. The results are stored in the int members quot
and rem of a structure of type div_t. The type
div_t is defined in cstdlib.

#include <cstdlib>

void exit(int status);

exit causes immediate normal program termi-
nation. The value of status is returned to the
operating system environment. Zero status is
treated as indicating normal termination.

#include <cmath>

double exp(double x);.

exp returns the value of e raised to the power of
X.

#include <cmath>
double fabs(double x);
fabs returns the absolute value of x.

#include <cstdio>

int fclose(FILE *fp);

fclose discards any buffered input or output for
the file pointed to by fp and then closes the file.
The function returns zero for successful file
closure or EOF on error.

#include <cstdio>

int feof(FILE *fp);

feof returns non-zero if the end of the file
pointed to by fp has been reached; otherwise
zero is returned.
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#include <cstdio>

int ferror(FILE *fp);

ferror checks if a file operation has produced an
error. It returns non-zero if an error occurred
during the last operation on the file pointed to
by fp, zero otherwise.

#include <cstdio>

int fflush(FILE *fp);

fflush causes the contents of any buffered but
unwritten data to be written to the file pointed
to by fp. The function returns zero if successful,
EOF on failure.

#include <cstdio>

int fgetc(FILE *fp);

fgetc returns the next character from the file
pointed to by fp. It returns EOF on error or end-
of-file.

#include <cstdio>

int fgetpos(FILE *fp, fpos_t *ptr);

fgetpos stores in the pointer ptr the current
position in the file pointed to by fp. The type
fpos_t is defined in cstdio. The function returns
Nnon-zero on error.

#include <cstdio>

char *fgets(char *s, int n, FILE *fp);

fgets reads a string from the file pointed to by
fp until a newline character is encountered or n
- 1 characters have been read. If a newline is
encountered it is included in the string s which
is null-terminated in any event. The function
returns s, or NULL on end-of-file or error.

#include <cmath>

double floor(double x);

floor returns the largest integer, represented as a
double, which is not greater than x.

#include <cmath>

double fmod(double x, double y);

fmod returns the remainder of the division of x
by y. If'y is zero, the result is undefined.



#include <cstdio>

FILE *fopen(const char *s, const char
*mode);

fopen opens the file named in the string s in
accordance with the open mode specified in the
string mode. Legal modes are "r", "w" and "a" for
reading, writing and appending; any of these
suffixed with a + additionally opens the file for
reading and writing. If a b is suffixed to the
mode string a binary file is indicated. fopen
returns a pointer to the file opened or NULL on
error.

#include <cstdio>

int fprintf(FILE *fp, const char *<format>,
);

fprintf is the same as printf, given below, except
that its output is written to the file pointed to by

fp.

#include <cstdio>

int fputc(int ¢, FILE *fp);

fputc writes the character c to the file pointed to
by fp. It returns c, or EOF on error.

Although c is defined as an integer, it is treated
as an unsigned char in that only the low-order
byte is used.

#include <cstdio>

int fputs(const char *s, FILE *fp);

fputs writes the string s to the file pointed to by
fp. The function returns a non-negative number,
or EOF on error.

#include <cstdio>

size_t fread(void *buf, size_t n, size_t
count, FILE *fp);

fread reads, from the file pointed to by fp into
the array at buf, up to count objects of size n.
The function returns the number of objects
read.

#include <cstdlib>

void free(void *p);

free deallocates the memory pointed to by p and
makes it available for other use. Before free is
called, memory must have been allocated and p

initialised by one of'the library functions malloc,
calloc or realloc. Equivalent to free, and some-
times more robust, is realloc(p, 0); According
to the ISO specifications, free should work but
do nothing when p is NULL.

#include <cstdio>

FILE *freopen(const char *s, const char
*mode, FILE *fp);

freopen opens the file named in the string s and
associates with it the file pointer fp. The func-
tion returns that file pointer or NULL on error.

#include <cmath>

double frexp(double x, int *exp);

frexp splits a floating-point number x in two
parts: a fraction f and an exponent n such that f
is either zero or in the range 0.5 and 1.0 and x
equals f*(2**n). The fraction is returned and the
exponent n stored at exp. If x is initially zero,
the returned parameters are also both zero.

#include <cstdio>

int fscanf(FILE *fp, const char *<format>,
)3

fscanf is the same as scanf, given below, except
that the input is read from the file pointed to by
fp.

#include <cstdio>

int fseek(FILE *fp, long n, int origin);

fseek is usually used with binary streams. When
so used, it causes the file position for the file
pointed to by fp to be set to a displacement of n
characters from origin. origin may be any of
three macro values defined in cstdio:
SEEK_SET(start of file), SEEK_CUR(current
position in file) or SEEK_END(end-of-file). Used
with text streams, n must be zero, or a return
value from ftell with origin set to SEEK_SET.
The function returns non-zero on error.

#include <cstdio>

int fsetpos(FILE *fp, const fpos_t *ptr);
fsetpos returns the position of fp to the position
stored by fgetpos in ptr. The function returns
NON-zero on error.
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#include <cstdio>

long ftell(FILE *fp);

ftell returns the current file position for the file
pointed to by fp, or returns -1L on error.

#include <cstdio>

size_t fwrite(void *buf, size_t n, size_t
count, FILE *fp);

fwrite causes count objects of size n bytes to be
written from buf to the file pointed to by fp and
returns the number of such objects written. A
number less than count is returned on error.

#include <cstdio>

int getc(FILE *fp);

getc reads the next character from the file
pointed to by fp and returns it, or EOF on end-
of-file or error. getc is a macro and is equivalent
to fgetc.

#include <cstdio>

int getchar();

getchar reads the next character from standard
input and returns that character, or EOF on end-
of-file or error. getchar() is functionally equiva-
lent to getc(stdin).

#include <cstdlib>

char *getenv(const char *s);

getenv returns the operating system environ-
ment string associated with the identifier named
in the string at s. If no value is associated with
the name in s, getenv returns a null pointer.
Further details are system-dependent.

#include <cstdio>

char *gets(char *s);

gets reads from standard input an input line into
the array at s, replacing the terminating newline
with a null terminator. The string s is also
returned by gets, or a null pointer on end-of-file
or error.

#include <cctype>

int isalnum(int c);

isalnum returns non-zero if ¢ is alphanumeric,
zero otherwise.
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#include <cctype>

int isalpha(int c);

isalpha returns non-zero if ¢ is alphabetic, zero
otherwise.

#include <cctype>

int iscntri(int c);

iscntrl returns non-zero if ¢ is a control charac-
ter (0to 037, or DEL (0177), in the ASCII set),
zero otherwise.

#include <cctype>

int isdigit(int c);

isdigit returns non-zero if c is a digit, zero
otherwise.

#include <cctype>

int isgraph(int c);

isgraph returns non-zero if ¢ is a printable
character other than a space, zero otherwise.

#include <cctype>

int islower(int c);

islower returns non-zero if ¢ is a lowercase
letter in the range a to z, zero otherwise.

#include <cctype>

int isprint(int c);

isprint returns non-zero if ¢ is a printable charac-
ter including space, zero otherwise.

#include <cctype>

int ispunct(int c);

ispunct returns non-zero if ¢ is a printable
character other than space, letter and digit, zero
otherwise.

#include <cctype>

int isspace(int c);

isspace returns non-zero if ¢ is any of space,
tab, vertical tab, carriage return, newline or
formfeed, zero otherwise.

#include <cctype>

int isupper(int c);

isupper returns non-zero if ¢ is an upper-case
letter in the range A to Z, zero otherwise.



#include <cctype>

int isxdigit(int c);

isxdigit returns non-zero if ¢ is a hexadecimal
digit in the range a to f, A to F, or 0 to 9, zero
otherwise.

#include <cstdlib>

long labs(long n);

labs returns as a long integer the absolute value
of the long integer n.

#include <cmath>

double Idexp(double x, int n);

Idexp returns as a double floating-point number
the result of x *(2**n).

#include <cstdlib>

Idiv_t Idiv(int n, int d);

Idiv calculates the quotient and remainder of n/
d. The results are stored in the long members
quot and rem of a structure of type Idiv_t. The
type Idiv_t is defined in cstdlib.

#include <cmath>

double log(double x);

log returns as a double floating-point number
the natural logarithm of x.

#include <cmath>

double log10(double x);

log10 returns as a double floating-point number
the logarithm to base 10 of x.

#include <cstdlib>

void *malloc(size_t size);

malloc allocates space in memory for an object
with size (in bytes) of size. The function returns
a pointer to the allocated memory, or NULL if the
memory could not be allocated. Memory allo-
cated by malloc is not initialised to any particu-
lar value.

#include <cstring>

void *memchr(const void *s, unsigned
char c, size_t n);

memchr returns a pointer to the first occurrence
of'the character ¢ within the first n characters of
the array s. The function returns NULL if there

is no match. The type size_t is defined in
stddef.h as an unsigned integer.

#include <cstring>

int memcmp(const void *s1, const void
*s2, size_t n);

memcmp compares the first n characters of s1
with those of s2 and returns an integer less than,
equal to or greater than zero depending on
whether s1 is lexicographically less than, equal
to or greater than s2.

#include <cstring>

void *memcpy(void *outs, const void *ins,
size_t n);

memcpy causes n characters to be copied from
the array ins to the array outs. The function
returns a pointer to outs.

#include <cstring>

void *memmove(void *outs, const void
*ins, size_t n);

memmove causes n characters to be copied
from the array ins to the array outs, additionally
allowing the copy to take place even if the
objects being copied overlap in memory. The
function returns a pointer to outs.

#include <cstring>

void *memset(void *s, unsigned char c,
size_t n);

memset causes the first n characters of the
array s to be filled with the character c. The
function returns a pointer to s.

#include <cmath>

double modf(double x, double *iptr);

modf returns the fractional part of x and the
integral part of x at the double pointer iptr.

#include <cstdio>

void perror(const char *s);

perror displays on the standard error device the
string s, followed by a colon and an error
message generated according to the contents of
the value of the external variable errno which a
corresponding declaration in errno.h.
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#include <cmath>

double pow(double x, double y);

pow returns the value of x raised to the power of
y as a double floating-point number.

#include <cstdio>

int printf(const char *<format>, ...);

printf writes to standard output the contents of
the format string, other than special control
sequences contained in the format string, fol-
lowed by the contents of a list of variables
converted according to the control sequences in
the format string.

These are the printf format codes and their
meanings:

d, i, 0, ux, X The variable corresponding to the
format code is converted to decimal (d,i), octal
(0), unsigned decimal (u) or unsigned hexa-
decimal (x and X). The x conversion uses the
letters abcdef; X uses ABCDEF.

f The variable is converted to a decimal notation
of form [-]ddd.ddd, where the minimum width
(w) of the field and the precision (p) are speci-
fied by %w.pf. The default precision is 6 char-
acters; a precision of zero causes the decimal
point to be suppressed.

e, E The float or double variable is converted to
scientific notation of form [-]d.ddde+dd. Width
and precision may also be specified. The de-
fault precision is 6 characters; a precision of
zero causes the decimal point to be suppressed.

g, G The float or double variable is printed in
style f or e. Style e is used only if the exponent
resulting from the conversion is less than -4 or
greater than or equal to the precision. Trailing
zeroes are removed. A decimal point appears
only if' it is followed by a digit.

c The variable is displayed as a character.

s The variable is taken to be a string (character
pointer) and characters from the string are dis-
played until a null character is encountered or
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the number of characters indicated by the pre-
cision specification is reached.

p Display variable as a pointer of type void *.

n The associated variable is a pointer to an
integer which is assigned the number of charac-
ters displayed so far by printf on this call.

% Display a literal %.

A range of modifiers may be used with the
format codes to specify the field width, signing
and justification, precision and length of the
converted output.

An integer between the percent sign and the
format code specifies the minimum width of
the output field. The output is padded, if neces-
sary, with spaces, or with zeros if the integer is
prefixed with a 0.

All output is, by default, right-justified; it can
be left-justified by insertion of a - before the
format code (and minimum width specifier, if
any). Similar insertion of a + ensures the number
is printed with a sign; a space character causes
a space to prefix the output if there is no sign.

Precision is specified if the minimum width
specifier is followed by a full-stop and an
integer. The value of the integer specifies the
maximum number of characters to be displayed
from a string, or the minimum number of digits
to be displayed for an integer, or the number of
decimal places to be displayed, or the number
of significant digits for output of floating-point
data.

Length modifiers h, | and L are available. h
causes the corresponding variable to be printed
as a short; | as a long and L as a long double.

#include <cstdio>

int putc(int c, FILE *fp);

putc writes the character ¢ to the file pointed to
by fp and returns it; it returns EOF on error. putc
is a macro and is equivalent to fputc.



#include <cstdio>

int putchar(int c);

putchar writes the next character to standard
output and returns that character, or EOF on
error. putchar(c) is functionally equivalent to
putc(c, stdout).

#include <cstdio>

int puts(const char *s);

puts writes the string s to the standard output,
followed by a newline. The function returns
EOF on error, otherwise a zero or positive
number.

#include <cstdlib>

void gsort(void *base, size_t n, size_t size,
int(*comp)(const void *key, const void
*element));

gsort sorts the array pointed to by base, which
contains n elements of size size, using the
recursive Quicksort algorithm. The function
comp compares array elements in turn with key
and returns a negative, zero or positive integer
depending on whether key is less than, equal to
or greater than element.

#include <cstdlib>

int rand();

rand returns a (pseudo) random number in the
range zero to at least 32,767.

#include <cstdlib>

void *realloc(void *ptr, size_t size);

realloc changes the size in memory for the
object pointed to by ptr to size. The function
returns a pointer to the reallocated memory, or
NULL if the memory could not be reallocated.
If NULL is returned, the value of ptr is un-
changed. realloc(ptr, 0); deallocates all memory
at ptr, replacing it with nothing. This form is
equivalent to free(ptr);.

#include <cstdio>

int remove(const char *s);

remove erases the file named in the string s,
returning zero on success, NON-Zero on error.

#include <cstdio>

int rename(const char *s1, const char
*s2);

rename changes the name of the file named in
string s1 to the name in s2, returning zero on
success, non-zero on error.

#include <cstdio>

void rewind(FILE *fp);

rewind resets the file position indicator to the
beginning of the file pointed to by fp.

#include <cstdio>

int scanf(const char *<format>, ...);

scanf reads from the standard input data which
is converted and stored in memory at the ad-
dresses specified by a number of pointer vari-
ables in the variable list. Conversions are per-
formed according to the format string specifi-
cations corresponding to the individual vari-
ables. Ordinary (non-format specifier) charac-
ters in the format string must correspond to the
next non-whitespace character of input.

These are the scanf format codes:

d, i, o,u, x Read a decimal, integer, octal,
unsigned or hexadecimal number from stand-
ard input and place at an integer pointer speci-
fied in the argument list.

e, f, g Read a floating-point number and place
at a float pointer specified in the argument list.

¢, s Read: (c) a number of characters (default
1); (s) a string. In both cases place the input at
a character pointer specified in the argument
list.

p Read a pointer(of type void *, as output by
printf) and place at a pointer specified in the
argument list.

n Assign to the associated argument (int *) the
number of characters so far read by this call.

[l Read the longest string of input characters
from the scan set between brackets and place at
a character pointer specified in the argument
list. A null terminator is added.
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[*] Read the longest set of input characters not
from the scan set between brackets and place at
a character pointer specified in the argument
list. A null terminator is added.

% Literal %; no assignment.

A range of modifiers may be used with the
format codes to suppress assignment of input
and to specify maximum field length.

An asterisk between the percent sign and the
format code causes the input field correspond-
ing to the format code to be discarded.

Maximum field width is specified by an integer
after the % sign in the format string. Input
characters effectively truncated by the maxi-
mum value will be stored at the next variable, if
any, in the variable list.

Length modifiers h, | and L are available. h
causes the input to be stored at a pointer to a
variable of type short. | causes input to be stored
at a pointer to a variable of type long, or to
modify the effect ofthe %f, %g and %e specifiers
so that the input is assigned to a pointer to a
variable of type double. L causes input to be
stored as a long double.

#include <cstdio>

void setbuf(FILE *fp, char *s);

setbuf sets the buffer for the file pointed to by
fp to s; full buffering is specified. If's is NULL,
buffering is turned off for the file.

#include <cstdio>

int setvbuf(FILE *fp, char *s, int m, size_t
size);

setvbuf allows different types of buffering to be
specified for the file pointed to by fp. Symbolic-
constant buffering modes, which are supplied
asargumentstom, are defined in cstdio. _|IOFBF,
_IOLBF and _IONBF cause full, line and no
buffering respectively. If s is not null, it is used
as the file buffer, with buffer size determined
by size. The function returns non-zero on error.
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#include <cmath>
double sin(double x);
sin returns the sine of x in radians.

#include <cmath>
double sinh(double x);
sinh returns the hyperbolic sine of x.

#include <cstdio>

int sprintf(char *s, const char *<format>,
)

sprintf is the same as printf except that its output
is written to the string pointed to by s, which is
null-terminated.

#include <cmath>

double sqrt(double x);

sqrt returns the non-negative square root of x;
the value of x must not be negative.

#include <cstdlib>

void srand(unsigned int seed);

srand generates a new set of (pseudo) random
numbers using seed, which has an initial value
of 1, as the seed.

#include <cstdio>

int sscanf(char *s, const char *<format>,
)

sscanf is the same as scanf except that the input
is read from the string pointed to by s.

#include <cstring>

char *strcat(char *s1, const char *s2);
strcat appends a copy of string s2 to the end of
s1 and returns a pointer to the null-
terminated result.

#include <cstring>

char *strchr(const char *s, int c);

strchr returns a pointer to the first occurrence of
character c in string s or a null pointer if ¢ does
not occur in s.

#include <cstring>

int strcmp(const char *s1, const char
*s2);

strcmp compares its arguments and returns an



integer less than, equal to or greater than zero
depending on whether s1 is lexicographically
less than, equal to or greater than s2.

#include <cstring>

char *strcpy(char *s1, const char *s2);
strcpy copies string s2 to s1, stopping after the
null character has been copied and returning a
pointer to s1.

#include <cstring>

size_t strcspn(const char *s1, const char
*s2);

strcspn returns the length of the initial segment
of the string s1 which consists entirely of char-
acters not in s2.

#include <cstring>

char *strerror(size_t n);

strerror returns a pointer to a string correspond-
ing to a system-dependent error number n.

#include <cstring>

size_t strlen(const char *s);

strlen returns the number of characters in s, not
counting the null-terminator.

#include <cstring>

char *strncat(char *s1, const char *s2, int
n);

strncat appends at most n characters from s2 to
s1 and returns a pointer to the null-
terminated result.

#include <cstring>

int strncmp(const char *s1, const char
*s2, int n);

strncmp is the same as strcmp, but compares at
most n characters.

#include <cstring>

char *strncpy(char *s1, const char *s2, int
n);

strncpy copies exactly n characters, truncating
s2 or adding null characters to s1 if necessary.
The result is not null-terminated if the length of
s2 is n or more. A pointer to s1 is returned.

#include <cstring>

char *strpbrk(const char * s1, const char
*s2);

strpbrk returns a pointer to the first occurrence
in string s1 of any character from string s2, or
a NULL character if there is no match.

#include <cstring>

char *strrchr(const char *s, int c);

strrchr is the same as strchr except that a pointer
to the last occurrence of the character in the
string is returned.

#include <cstring>

size_t strspn(const char *s1, const char
*s2);

strspn returns the length of the initial segment
of's1 which consists entirely of characters from
s2.

#include <cstring>

char *strstr(const char *s1, const char
*s2);

strstr returns a pointer to the first occurrence of
s2 in s1, or NULL if there is no match.

#include <cstdlib>

double strtod(const char *s, char **ptr);
strtod returns as a double floating-point number
the value represented by the character string
pointed to by s. An optional string of white
space characters, an optional sign, a string of
digits optionally containing a decimal point,
and an optional e or E followed by an optional
sign are recognised by strtod. strtod scans the
input string up to the first unrecognised charac-
ter; if the contents of ptr are not NULL, a
pointer to the character terminating the scan is
stored in *ptr. atof(s) is equivalent to
strtod(s,(char **)0).

#include <cstring>

char *strtok(char *s1, const char *s2);
strtok considers the string s1 to consist of a
sequence of zero or more text tokens separated
by spans of one or more characters from the
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separator string s2. The function is called itera-
tively, returning pointers to tokens extracted
from s1 and delimited by a character from s2.
strtok returns NULL when it finds no further
tokens.

#include <cstdlib>

long strtol(const char *s, char **ptr, int
base);

strtol returns as a long integer the value repre-
sented by the character string pointed to by s.
Leading white space is ignored. The string is
scanned up to the first character inconsistent
with the base. If the contents of ptr are not
NULL, a pointer to the character terminating the
scan is stored in *ptr. If no integer can be
formed, that location is set to s and zero is
returned. If base is zero, the base to be used is
calculated automatically. Otherwise,
the base must not be negative or greater than 36.
Any overflow or underflow conditions cause a
return value of LONG_MAX or LONG_MIN,
defined in limits.h.

#include <cstdlib>

unsigned long strtoul(const char *s, char
**ptr, int base);

strtoul is the same as strtol except for its return
type and its error return values of ULONG_MAX
and ULONG_MIN.

#include <cmath>
double tan(double x);
tan returns the tangent of x in radians.

#include <cmath>
double tanh(double x);
tanh returns the hyperbolic tangent of x.

#include <cstdio>

FILE *tmpfile();

tmpfile returns a pointer to a temporary file of
access mode "wb+" which is removed on clo-
sure. The function returns NULL on error.
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#include <cstdio>

char *tmpnam(char *s);

If's is NULL, tmpnam generates a string which
is not the name of an existing file and returns a
pointer to an internal static array. If s is not
NULL, the name string is additionally stored in
S.

#include <cctype>
int tolower(int c);
tolower converts ¢ to lower-case and returns c.

#include <cctype>
int toupper(int c);
toupper converts ¢ to upper-case and returns c.

#include <cstdio>

int ungetc(int c, FILE *fp);

ungetc returns the character c to the file pointed
to by fp; ¢ will be returned on the next read. The
function returns the character returned or EOF
on error.

#include <cstdio>

int vfprintf(FILE *fp, const char *<format>,
va_list arg);

vfprintf is the same as fprintf except that arg is
initialised with the argument list by the va_start
macro defined in stdarg.h.

#include <cstdio>

int vprintf(const char *<format>, va_list
arg);

vprintf is the same as printf except that arg is
initialised with the argument list by the va_start
macro defined in stdarg.h.

#include <cstdio>

int vsprintf(char *s, const char *<format>,
va_list arg);

vsprintf is the same as sprintf except that arg is
initialised with the argument list by the va_start
macro defined in stdarg.h.
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