

Essential Java for Scientists and Engineers

This Page Intentionally Left Blank

Essential Java
for
Scientists and Engineers

Brian D. Hahn
Department of Mathematics & Applied Mathematics
University of Cape Town
Rondebosch
South Africa

Katherine M. Malan
Department of Computer Science
University of Cape Town
Rondebosch
South Africa

~ U T T E R W O R T H
.

I ~ E 1 N E M A N N

OXFORD AMSTERDAM BOSTON LONDON NEW YORK PARIS
SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO

B utterworth-Heinemann
An imprint of Elsevier Science
Linacre House, Jordan Hill, Oxford OX2 8DP
225 Wildwood Avenue, Woburn, MA 01801-2041

First published 2002

Copyright © 2002 Brian D. Hahn and Katherine M. Malan. All rights reserved

The right of Brian D. Hahn and Katherine M. Malan to be identified
as the authors of this work has been asserted in accordance with
the Copyright, Designs and Patents Act 1988

All fights reserved. No part of this publication
may be reproduced in any material form (including
photocopying or storing in any medium by electronic
means and whether or not transiently or incidentally
to some other use of this publication) without the
written permission of the copyright holder except
in accordance with the provisions of the Copyright,
Designs and Patents Act 1988 or under the terms of a
licence issued by the Copyright Licensing Agency Ltd,
90 Tottenham Court Road, London, England WIT 4LP.
Applications for the copyright holder's written permission
to reproduce any part of this publication should be addressed
to the publishers

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication Data
A catalogue record for this book is available from the Library of Congress

ISBN 0 7506 5422 8

I For information on all Butterworth-Heinemann publications visit our website at www.bh.com]

Typeset by Laserwords Private Limited, Chennai, India.
Printed and bound in Martins the Printers of Berwick Upon Tweed

P TLANT A

FOR EVERY TITLE THAT WE PUBLISH, BUTTERWORTH.HEINEMANN
WILL PAY FOR BTCV TO PLANT AND CARE FOR A TREE.

Contents

Preface

Acknowledgements

Part I Essentials

1 Getting going
1.1

1.2

1.3

1.4

1.5
1.6

1.7

Introduction to programming
Java as a programming language
Setting up your computer for programming in Java
Installing Java 2
Jikes as an alternative compiler
Installing the essential package
Writing your first Java program
What happens when a program is compiled?
Understanding Firstprogram
Commands for printing to the screen
Input and output
How input from the keyboard works
Reading in numbers from the keyboard
Input without the Keyboard class (optional)
Example: calculating compound interest
Comments
Using objects
Using the Turtle class
Help on the essential package
Using the Graph class
Java on the WWW (optional)

2 Java programming basics
2.1 Compound interest again
2.2 Primitive data types

Bits and bytes

xiii

xvi

1

3
3
3
4
4
5
6
6
7
7
8
9

10
10
10
11
11
12
12
13
14
15

20
20
23
23

V

vi Contents

Numeric constants
double is default

Identifiers
Case sensitivity
Variables

2.3 Names

2.4 Vertical motion under gravity
2.5 Operators, expressions and assignments

Arithmetic operators
Precedence
Increment and decrement operators
Assignments and assignment operators
Cast operators

2.6 Repeating with for
Turtle spirals
Growing an investment
The f o r statement
Alternative ways of counting with for
Square rooting with Newton
Factorials !
Limit of a sequence
Reading data from a text file

The if -else statement
The if -else-if statement
The i f -else-if ladder
for and if: counting passes
Rolling dice
Logical operators
Boolean variables
Nested if s
The switch statement

Escape sequences

2.7 Deciding with if

2.8 Characters

2.9 Math methods
2.10 Programming style

3 Solving a problem in Java
3.1 Introduction
3.2 The class provider, class user and end user
3.3 What are objects and classes?

Loolung at the Turtle class in more depth
3.4 Writing and using a simple class
3.5 How memory works

What is memory?
How objects and primitives are stored in memory
The nu1 1 keyword

3.6 The String class
Equality testing of strings

3.7 Understanding methods
Method arguments
Return types
Signature of a method

24
24
25
25
25
25
26
27
27
27
28
29
30
30
30
33
34
35
35
36
37
37
38
40
40
40
41
41
42
43
44
44
45
45
46
46

55
55
56
56
57
58
59
59
60
60
62
63
63
63
64
64

Contents vii

Constructors
More on the import statement
Example: simulating a rabbit colony
Data members of Rabbitcolony
Methods of Rabbitcolony
Using the Rabbitcolony class
Defining the grow () method
Defining the grow (int n) method
Defining the getNumRabbits () method
Tracing U s eRabbi t Colony

The public and private keywords
Other access modifiers

3.10 Example: simulating the growth of trees
Data members for the Tree class
Methods of the Tree class
A main method to test the class
Writing the methods
When to define a default constructor
The this keyword

3.11 Scope
3.12 More on object handles

3.8

3.9 Access modifiers

Passing objects to methods
Object handles and assignment

Understanding stat i c
Constants
Static methods
The main method revisited

3.14 Naming conventions
3.15 Using the Java API
3.16 Making your own package (optional)

3.13 The static keyword

4 More on loops
4.1 Determinate repetition with for

Binomial coefficient
for loops with non-unit increments
Plotting a projectile trajectory with Essential Grapher
Update processes
The nested for loop

Rolling a dice for a six
The while statement
A guessing game
Prime numbers
Projectile trajectory
Reading an unknown amount of data
The do-while statement
while versus do-while

4.2 Indeterminate repetition with while

64
65
66
66
66
67
68
68
68
69
70
70
70
71
71
71
72
72
73
74
74
75
75
78
80
80
81
81
83
83
84
84

89
89
89
90
91
93
96
98
98
99

100
101
102
103
104
105

5 Debugging
5.1 Compilation errors
5.2 Run-time errors

114
114
117

viii Contents

5.3 Errors in logic

5.4 Rounding errors
Debugging logical errors

6 Arrays and matrices
6.1 Introduction

6.2 The basics of arrays
Why bother with arrays?

Declaring and initializing an array
Indexing elements of an array
Looping through an array

6.3 Passing arrays to methods
6.4 Frequency distributions: a simple bar chart
6.5 Multi-dimensional arrays

A concrete example
Matrix multiplication

6.6 Arrays of objects
6.7 Sorting an array

Part II More advanced topics

7 Inheritance
7.1 Introduction

What is inheritance?
Generalization and specialization

7.2 Inheritance in Java
Reusing code through specialization
Overriding methods
The pro tec ted keyword

7.3 Constructors and inheritance
Default constructors
The super keyword
Parameterized constructors

7.4 The Object class
The tostring method

7.5 Abstract classes and interfaces
Why bother with abstract classes?
Interfaces

8 Graphical user interfaces (GUIs)
8.1 Introduction

GUIs in Java
Understanding events

A first version
Shutting down the application properly
Components and containers
Adding a button to the application
Organizing the code in a better way
Adding a label
Getting the button to do something
Listeners as nested classes

8.2 Building a Swing application

119
119
119

123
123
123
125
125
125
126
128
128
129
130
131
133
134

141

143
143
143
144
145
146
148
150
150
151
151
152
152
153
154
155
155

160
160
160
161
161
161
161
162
162
163
164
165
165

Contents ix

8.3 Arranging components
The FlowLayout manager
The Border La you t manager
Adding borders to components

Planning the GUI
Defining the colour
Adding the components
Adding the sliders and labels
Programming the behaviour

8.5 Painting
PacMan and the Blocks

8.6 Drawing mathematical graphs
8.7 Fractals

8.4 A colour chooser application

The Julia set
The Mandelbrot set

9 Input/outDut
9.1
9.2
9.3
9.4

9.5

9.6

9.7

Introduction
Input through command line parameters
Input from the keyboard without the essential package
Streams
Output redirection
The System class
The Inputstream and InputStreamReader classes
The Buff eredReader class
Reading in numbers
File inputloutput
Types of files
File handling
Reading in from a text file
Writing to files
Manipulating data
Tokenizing strings
Streams and the Internet

10 Exceptions
10.1 Introduction
10.2 Exceptions in Java

10.3 Throwing exceptions

10.4 Handling exceptions

Exception classes

When to specify the throws clause in a method header

Example: finding averages
Catching an exception
What happens when an exception is thrown

10.5 Exceptions and file input
Groups of exceptions
Forcing the exceptions
Catching FileNotFoundExcept ion and

EOFException
Looping while file not found
The finally statement

167
167
168
169
i70
170
170
170
172
173
174
176
185
189
189
192

197
197
198
198
199
199
200
200
20 1
20 1
20 1
202
202
203
203
204
204
205

209
209
209
210
21 1
213
214
214
215
217
217
218
218

219
220
22 1

x Contents

Part III Some applications

11 Simulation

11.1 Random number generation
The l a t h . r andom method
Seeding the random number generator
The Random class
Normal (Gaussian) random numbers

11.2 Spinning coins
11.3 Rolling dice
11.4 Bacteria division
11.5 Radioactive decay

Estimation of half-life
11.6 A random walk
11.7 Traffic flow

12 Modelling with matrices

12.1 Using the Matrix class
The identity matrix

12.2 Networks
A spy ring
The reachability matrix

12.3 Leslie matrices: population growth
12.4 Markov processes

A random walk
12.5 Linear equations

Limitations of the i n v e r t method of M a t r i x
The residual
Ill-conditioned systems

13 Introduction to numerical methods

13.1 Equations
Newton's method
A Function class
Defining a new exception
Complex roots
The Bisection method

13.2 Numerical differentiation
13.3 Integration

The Trapezoidal rule
Simpson's rule

13.4 First-order differential equations
Euler' s method
Example: bacteria growth
A predictor-corrector method

13.5 Runge-Kutta methods
Runge-Kutta fourth-order formulae
Systems of differential equations: a predator-prey model
Implementation of the numerical solution

13.6 Driver: a GUI to solve ODEs
Setting up a model to run with Driver
Using Driver
Chaos

225

227

227
227
228
228
229
229
230
230
230
232
233
236

242

242
244
244
244
246
248
252
253
256
258
258
258

262
262
262
263
266
267
269
270
272
272
274
274
275
275
277
279
279
280
280
284
284
287
287

Contents xi

13.7 A partial differential equation
Heat conduction

Appendix A Keywords

Appendix B Operators

Appendix C Syntax quick reference
C.1 Primitive type declarations
C.2 Methods
C.3 Classes
C.4 Decisions
C.5 Loops

Appendix D Solutions to selected exercises

290
290

298

299

300
3oo
300
301
301
3o2

304

Index 333

This Page Intentionally Left Blank

Preface

This book serves as an introduction to the programming language Java. In addition it focuses on how
Java, and object-oriented programming, can be used to solve science and engineering problems. As such,
some of the examples necessarily involve aspects of first-year university mathematics, particularly in
the final chapter. However, these examples are self-contained, and omitting them will not hinder your
programming development.

Features

• The book is accessible to beginners, with no programming experience.

• We use a hands-on or 'dive-in' approach which gets you writing and running programs immediately.

• The fundamentals of Java programming are motivated throughout with many examples from a
number of different scientific and engineering areas, as well as from business and everyday life.
Beginners, as well as experienced programmers wishing to learn Java as an additional language,
should therefore find plenty of interest in the book.

• It provides a good introduction to object-oriented programming. Solutions to problems throughout
the book show how data and operations on that data can be modelled together in classes. In this
way code is easy to maintain, extend and reuse.

• We have provided a pre-written package of code to help in such areas as

- simple keyboard input and file input/output;
- matrix manipulation;
- scientific graphing.

Approach

• Our style is informal. New concepts are often motivated with a coded example before being
generalized.

• Readers are frequently invited to try appropriate exercises at the end of each chapter as they advance
through the chapter.

• Throughout the book, we use Java applications, rather than applets (although we do provide an
example of an applet in Chapter 1).

xiii

xiv Preface

• All the examples in this book have been compiled and interpreted using Sun Microsystems' Java 2
compiler (in particular version 1.3.1 of the Java Software Development Kit).

Resources

• Each chapter begins with a set of objectives and concludes with a summary and numerous exercises.
These exercises have been gleaned from many years' experience of running hands-on programming
courses and writing books for beginners and professionals alike, on problem solving in Basic,
Fortran, Pascal, C, C++ and MATLAB.

• The appendices include a quick reference to Java syntax and solutions to selected exercises.

• The book's website, www.bh.com/companions/essentialjava, provides links to material such as:

- code for the e s s e n t i a l package, containing our pre-written classes;

- Java source code of all completed code that appears in the text;

- solutions to selected exercises in individual file format.

Solutions to the remaining exercises are password-restricted, and are available only to lecturers who
adopt the book for use in their courses. To obtain a password please e-mail jo.coleman@repp.co.uk
with the following details: course title, number of students, your job title and work postal address.

Organization of the book

The book is organized into three parts:

1. Essentials (Chapters 1-6)
This part covers what we believe to be the essentials of programming in Java: using pre-defined
objects and methods, basic programming concepts and constructs (primitive data types, variables,
expressions, loops and decisions), writing your own classes, debugging code, arrays.

2. More advanced topics (Chapters 7-10)
Inheritance, building your own graphical user interfaces, exceptions, input and output.

3. Some applications (Chapters 11-13)
Simulation, matrices (use of our e s s e n t i a l .Mat r ix class in fields such as reachability, popula-
tion dynamics, Markov processes, linear equations), numerical methods.

Chapter 1

i
Chapter 2

i
Chapter 3

i
Chapter 4 • Chapter 6 • Chapter 7 • Chapter 8

Chapter 5 Chapter 11 Chapter 12 Chapter 9 Chapter 13

i
Chapter 10

Figure 1 Dependency diagram showing relationships between the chapters

Preface xv

Dependencies between the chapters are shown in Figure 1. We strongly recommend that a course should
cover at least the first seven chapters (including inheritance), even though all seven chapters are not
strictly needed to proceed to some of the more advanced topics.

Acknowledgements

Our warm thanks to the following, who all contributed in some way to this book: Natalie Jones, Andy
Shearman, Travis Milewski, Robb Anderson, Donald Cook, Mike Linck, Mike Rolfe and Kevin Colville.

We also wish to thank the University of Cape Town for study and research leave, and the University
of Cape Town and the National Research Foundation for funding aspects of the project.

Finally, our thanks to our families for their love, understanding and encouragement during all the ups
and downs of writing this book.

Brian D. Hahn
bdh@maths.uct.ac.za

Katherine M. Malan
kath@cs.uct.ac.za

January 2002

XVI

Par t I

Essentials

This Page Intentionally Left Blank

1

Getting going

Objectives

By the end of this chapter, you should be able to do the following:

• set up your computer to be ready for programming in Java;
• compile and run a simple program which reads in from the keyboard and prints out to the screen;
• use the T u r t l e class and Graph class to draw graphics on the screen;
• write a simple Java program that can be run in a World Wide Web (WWW) browser (optional).

1.1 Introduction to programming

Computers have become an essential part of our everyday lives. Even if you don't use a computer for
writing letters, browsing the Internet, or playing games, you are using computers every time you draw
money from an ATM, use your cell phone, or phone automatic directory enquiries. A computer on its
own has no intelligence. All that a computer can do is follow a detailed set of instructions, so it has to be
programmed with these instructions for it to be useful. That's where the task of the programmer lies: in
writing programs to make computers useful to people. Every bit of software, from your wordprocessor,
to your web browser, was written by a programmer (or more likely, a team of programmers).

The set of instructions that a computer can understand is called machine language. In machine language,
everything is encoded as binary numbers (l ' s and O's). Not so long ago, programmers had to write
programs in this machine language. Thankfully, we have now advanced to a stage where we can write
programs in high-level languages, such as Java. It is the job of the compiler (just another program)
to translate programs written in a programming language into machine code, so that it can be run on
a computer. Some games programmers still choose to use low-level assembly language (very close to
machine code), because the programs run faster.

Java as a programming language

Java has an interesting history. It was developed in 1991 by James Gosling of Sun Microsystems. Gosling
was part of a secret team of 13 staff, called the 'Green Team'. The aim was not to develop a new language,
but rather to develop digitally controlled consumer devices and computers. While developing a home-
entertainment device controller (called *7), the team saw the need for a new processor-independent
language. The first version was called 'Oak' (after the tree outside Gosling's window). Although *7

3

4 Essential Java for Scientists and Engineers

never took off, the language did and in 1995, Netscape announced that Java would be incorporated
into Netscape Navigator. Since then, Java has gained enormous popularity as an Internet programming
language. Although Java has become famous for its ability to do Internet programming, it is also a good
general programming language. We chose to write a book on Java, because it is popular and a well-
designed object-oriented language. One of the main features of Java (and part of the reason why it works
so well on the Internet), is that it is platform independent. It achieves this by using something called
the 'Java Virtual Machine' (JVM). As explained before, computers can only follow machine language
instructions, so programs written in high-level languages have to be compiled into machine code for them
to work. The problem is that each type of machine has its own machine language, so a program compiled
for a MS Windows NT machine won't work on a Macintosh machine. What Java does is compile down
to an intermediate code called bytecode. This bytecode is machine independent, but has to be interpreted
by the JVM. This process of interpreting will be explained in Section 1.3.

1.2 Setting up your computer for programming in Java

There are two pieces of software which you will need before you can start programming:

• An editor or an IDE (Integrated Development Environment). An editor is a program which
allows you to type in text and save it to a file. A text editor differs from a word processor in
that it does not normally do formatting (such as different font sizes). Some text editors (such as
Microsoft's Notepad) have no special features for programmers, while other editors have special
features to support programmers. There are many shareware and freeware editors available from
online software libraries (such as TUCOWS, which you can find at http://www.tucows.com). Look
for an editor which has Java syntax colouring (also called syntax highlighting).

IDE's, on the other hand, provide facilities for editing and compiling programs, as well as other
support for programmers. The downside to using an IDE, is that you normally have to pay for
it. A further factor to consider is that some Java IDE's provide features which complicate Java
programming (such as the need to create projects), so in some cases it may even be easier to use a
simple text editor, rather than an IDE. Sun has a list of recommended IDE's on their website (they
are listed on the download page of Java 2). We have assumed in this book that you will be using a
text editor rather than an IDE.

• A Java compiler. This is the software that will compile your program. We recommend that you use
Sun Microsystems, Inc. Java Software Development Kit (SDK). This is the popular choice, mainly
because it is freely available. In this book we have used version 1.3.1, but you are free to use a later
version (instructions on how to download and install this are given below). Other Java 2 compatible
compilers will also be fine.

Installing Java 2
The name 'Java 2' refers to all the releases of Sun's Java SDK starting with release 1.2 (and including
releases 1.3.x). Versions before this were known as 'Java 1'. To set up Java 2 on your computer, do the
following:

1. Using your favourite web browser, go to Sun's Java web site: http://www.java.sun.com
2. Follow the links from 'Products and APIs' to 'Java 2 Platform, Standard Edition' (the SDK). Select

the relevant platform and follow the instructions. At the end of the installation, your directory
structure should look something like the listing shown in Figure 1.1.

3. We recommend that you download the Java 2 Platform Standard Edition Documentation as well. As
you learn to program, you will need to reference this documentation frequently and it will help to
have it easily accessible.

4. You will need to change your PATH variable to include the folder which contains the j avac . exe
and j ava . exe files. You will find the details on how to do this in the readme. html file inside
the jdk folder.

Getting going 5

$% Exploring jdk1.3

j^jdk1.3.1
»M,,»a, , ,"^

^^^

E S Desktop
B ^ My Computer

S l » 0 3# Floppy (A:)
i > ^ (C:J

! £3 AxiomSys V6 Demo
i f t O Cppjile
| £ 3 Desktop

S"£3 Esri
j - Q essential

frQl ExecSoft
$"C3 F»secuie
$ G3 GIS Project
$"C3 gstools
&-C3 Java

pises

EJH23 jswdk-1.0
fr03 tones

C^er^sofP<1,3.1'

uJjbin j
Qdemo
CJ include
Q include-old
LMMMJI l i e ?

Qlib
@ COPYRIGHT
@ License
pf| readme.html
[fi| README.txt
@ src.jar
Q Uninstisu

umSBSilnnlJRiii!!) n.nntii.iimJ^RTifSiBwMMi

19,

4KB
12KB
13K8
4KB

.156KB
111KB

File Folder
File Folder
File Folder
File Folder
FJe Folder
File Folder
File
File
Netscape,
TXT File
JAR File
ISU File

Figure 1.1 Directory listing showing how Java 2 will be installed

J/7res as an alternative compiler

7/19/0112:
7/19/0112:1
7/19/0112:
7/19/0112:1
7/19/0112:
7/19/0112:
5/S/01 4:18
5/6/01 4:18
5/6/01 4:18]
5/6/014:181
5/6/01 4:18
7/19/0112:1

You may find that the Java 2 compiler is slow on your computer at home. If you do find that it is very
slow, you can try Jikes as an alternative faster compiler. Jikes is developed by IBM and is Open Source
Software. It works with Sun's SDK, so you still need to install Java 2 as described above (you actually
only need to install the runtime environment or JRE). Like Java 2, Jikes is free. You can download it
from the following website:

http://oss.software.ibm.com/developerworks/opensource/j ikes/

The zip file that you download contains a file called j i k e s . exe. The easiest way to set up Jikes is to
do the following:

6 Essential Java for Scientists and Engineers

1. Change your PATH variable to include the folder which contains the file j i k e s . exe.
2. Provide a definition for JIKESPATH as follows (Note: this assumes that Java has been installed on

your C: drive. If this is not the case, then change the folder accordingly):

set JIKESPATH=c:\jdkl.3.l\jre\lib\rt.jar;
c:\jdkl.3.1\jre\lib\ext\essential.jar

3. You can now use the command j i k e s in the place of j avac to do your compiling.

Installing the e s s e n t i a l package

The website that accompanies this textbook contains a package of Java code, which we will use from
time to time in the text. This package is called e s s e n t i a l , and contains functionality for drawing
graphs, working with matrices and much more. It is very simple to install the e s s e n t i a l package.
On the website you will find a file called e s s e n t i a l . j ar . AH you have to do is copy this file into a
particular place in the jdk folder. In this way we are installing e s s e n t i a l as an extension to Java.
Copy the file e s s e n t i a l . j a r into the following directory:

c:\jdkl.3.l\jre\lib\ext

If your version of the SDK is stored somewhere else, then copy it to the equivalent \ j r e \ l i b \ e x t
folder.

1.3 Writing your first Java program

We will now write our first program in Java. We want you to start programming as soon as possible, so
don't worry if there are things that you don't understand. The details will be explained later.

1. Write the program
Open your editor and type in the following Java program:

public class FirstProgram
{

public static void main (String [] args)
{

System.out.print("Hello, 2 + 3 = ") ;
System.out.println(2 + 3) ;
System.out.printIn("Good Bye");

Make sure you type it in exactly as it appears above. Java is case-sensitive, which means that it
makes a difference if a letter is in uppercase or lowercase. In Java, System is not the same as
SYSTEM, or even system.

2. Save the program
Save the program in a file called F i r s t P r o g r a m . Java. Once again, the case is significant, so
make sure that the F and P are in uppercase and the rest are in lowercase.

3. Compile the program
Open an MS-DOS Prompt window, change the directory to the directory where you saved your file
and type in the following command:

javac FirstProgram.Java

Getting going 7

Figure 1.2 Results from running and compiling FirstProgram.java

After you push Enter, it should simply return to the prompt. If there are errors, you will have to go
back to the editor and make sure you have copied down the code correctly. Remember that case is
significant! Continue with steps 2 and 3 until you have no errors.

4. Run the program
Once your program has successfully compiled (with no errors), you can run the program by typing
in the following command:

java FirstProgram

You should see the output shown in Figure 1.2.

What happens when a program is compiled?

When you compile F i r s t P r o g r a m . j ava, using the j avac command, a file is created called F i r s t -
Program, c l a s s . This . c l a s s file is in Java bytecode format (close to machine code). If you try to
open this file with your text editor, you will either get an error, or it will display a few strange characters.
When you run the program, using the j ava command, the . c l a s s file is interpreted by the Java Virtual
Machine. If you want somebody else to run one of your programs, all you need to do is send them the
. c l a s s file. As long as they have the Java Runtime Environment installed on their computer, they will
be able to run your program, without needing to re-compile it for their machine.

Understanding F i rs tProgram

We will now explain how the program works. Figure 1.3 illustrates the parts of a simple Java program.
The parts written in the grey area are what you will need every time you write a program. We call this
the 'application template', because it is the basic structure within which we write simple programs. The
only part of the grey area which will be different for different programs is the name of the program (also
the name of the class). Each time you write a program, you must decide what to call your program. For
example, here is the outline of a program called AnotherProgram:

public class AnotherProgram

public static void main(String[] args)

8 Essential Java for Scientists and Engineers

The statements in the
grey part are what we
call the "application
template". It contains
the framework within
which you need to
type your statements.
Later we will explain
what each part of the
application template
means.

The white part of the program is where you
type your statements to be executed.

Figure 1.3 The parts of F i r s t Program. Java

This program will do nothing if it is run, because there are no statements between the middle curly
braces. We call the curly braces block markers, because they mark the beginnings and endings of blocks
of code. In the application template, the first curly brace and the last curly brace are block markers for
the whole program, i.e. they denote the beginning and end of the program. The middle two braces are
block markers for the portion of code called the main method. The purpose of the main method will be
explained later.

Now try the following:

1. Make a copy of F i r s t P r o g r a m and save it as SecondProgram. Java.
2. In SecondProgram. Java, change the name of the program after the class statement to

SecondProgram.
3. Save, compile and run SecondProgram.

You now have a copy of the program, which you can modify later.

Commands for printing to the screen

Now that you understand how to structure a simple program (even if you don't understand the detail),
we will look at the statements inside the main method. Here are the statements inside our first program:

System.out.print("Hello, 2 + 3 = ") ;
System.out.println(2 + 3);
System.out.printIn("Good Bye");

First notice that each line terminates with a semi-colon. This indicates the end of a statement and is
analogous to the full stop at the end of a sentence in the English language.

All three lines start with System.out , which refers to the screen of the computer. The command
System, out . p r i n t is an instruction to the screen to print something out. The details of what should
be printed are given inside the parentheses (round brackets).

In the case of the first statement, we are asking the screen to display a string . A string is simply a
sequence of characters enclosed in double quotation marks. In the first line of our program, the string to

Fi rs tProgram is the name of the program.
This name must be exactly the same as the
name of the file that program is saved in.
The file must have a . java extension.

Getting going 9

Table 1.1 Output illustrating the difference between p r i n t
and print ln

Code

System.out.println("hello");
System.out.println("there") ;

System.out.print("one ") ;
System.out.print("two ") ;
System.out.println("three ") ;
System.out.print("four ") ;
System.out.println("five ") ;

Output

hello
there

one two three
four five

be printed is the sequence of characters, starting with the character 'H' and ending with an equals sign
and a space. The result of the print statement is that the string is simply printed out exactly as it looks
in between the quotes.

The second line is a little different. Firstly, it has a sum inside the parentheses, rather than a string, as
in the first statement. What Java does in this case is to work out the answer to the sum (i.e. 5), before
displaying it. If it had been inside quotes ("2 + 3"), then the answer would not have been worked out
and would have been displayed simply as the character '2' followed by a space, the plus sign another
space and the character ' 3 ' .

Secondly, it uses a command called p r i n t l n rather than p r i n t . The difference between p r i n t l n
and p r i n t , is that p r i n t l n will display the details inside the parentheses and then output a new line
(equivalent to pressing the enter key on the keyboard). The p r i n t command, on the other hand, stays on
the same output line until more information is displayed. A few examples will illustrate this difference.

In Table 1.1 the left column gives examples of Java statements, while the right-hand column show
what would be printed onto the screen when the statements are compiled and run as part of a Java
program. Do you understand why the output will look like that?

Finally, the last statement simply displays the string "Good bye" before the program stops.
Now try to do Exercises 1.1 and 1.2 at the end of the chapter.

1.4 Input and output

We have looked at how to do output (printing things to the screen) using the p r i n t and p r i n t l n
statements. In this section we will explain the difference between input and output and show how to get
input from the keyboard using Java statements.

The important thing to realise when we talk about input and output in computing, is that it is in
reference to the computer, not to ourselves. Output flows out of the computer and input flows into the
computer. Examples of devices which display computer output are screens and printers. Input devices,
on the other hand, include keyboards, mouse pointers and joysticks.

In Java, it is quite complicated to read in from the keyboard. To simplify things, we have created a
class called Keyboard , which is part of the e s s e n t i a l package (mentioned in Section 1.2). We will
start by looking at a simple example which inputs the name of the person using the program:

import essential.*;

public class NameEcho
{

public static void main (String [] args)
{

System.out.print("Enter your name: ") ;
String name = Keyboard.readLine();
System.out.println("Hello " + name + " ! ") ;

}
}

10 Essential Java for Scientists and Engineers

Notice that the program starts with:

import e s s e n t i a l . * ;

This line is necessary when you are using any of the classes that are provided with this textbook. The
name of the program (or class) is NameEcho, so to test it, you will need to save it in a file called
Name Echo. j ava. Compile and run the program and see what happens.

Notice how the program pauses in order to get input from you, the user, via the keyboard. Type in
your name at the prompt and see what happens.

How input from the keyboard works

In the second line of the program, the statement:

Keyboard.readLine();

reads in a line of text from the keyboard. When you push Enter, it will store the string in a variable
called name (variables will be discussed in the next chapter). The last line of the program prints out the
string "Hello", followed by the contents of the variable name (the string entered on the keyboard) and
an exclamation mark. Notice that the '+' signs are not printed. When used between strings, a '+' sign
concatenates the strings.

Now try Exercise 1.3.

Reading in numbers from the keyboard

In the example above, the Keyboard class was used with readLine to read in a string. If we want to
read in a whole number, we need to use r e a d l n t , instead of readLine , as in the following example:

import essential.*;

public class Square
{

public static void main (String[] args)
{

System.out.print("Enter a number: ") ;
int num = Keyboard.readlnt();
System.out.println("The square is:" + (num*num));

}
}

Notice in this program, the use of the * operator for performing multiplication . The statement:

int num = Keyboard.readlnt();

suspends the program until a number is entered on the keyboard, followed by Enter. The number is then
stored in the variable called num (which is of type i n t e g e r) . Try running this program to see how it
responds to different input. What will happen if you type in a string instead of a number? What will
happen if you type in a real number (such as 2.5)?

Now try to do Exercise 1.4.

Input without the Keyboard class (optional)

As mentioned before, the Keyboard class is there to simplify the process of reading input. For those
who are interested, we have written an equivalent program to Square. Although it behaves the same as

Getting going 11

the previous program, this program is written without using the Keyboard class. We will not explain
the details, since it is shown here purely for interest.

import java.io.*;
public class Square2
{

public static void main (String args []) throws IOException
{

BufferedReader in = new BufferedReader (
new InputStreamReader(System.in));

System.out.print("Enter a number: ") ;
String s = in.readLine();
int num = Integer.parselnt(s);
System.out.println("The square is:" + (num*num));

Notice that a package called j ava . i o is imported (this is Java's standard package for performing input
and output). The e s s e n t i a l package is not needed, so is not imported.

Example: calculating compound interest

Let's look at a more complicated example using numbers to calculate compound interest:

import essential.*;
public class Compoundlnterest
{

public static void main (String [] args)
{

System.out.print("Enter a balance: ") ;
double balance = Keyboard.readDouble();
System.out.print("Enter a rate: ") ;
double rate = Keyboard.readDouble();
balance = balance + (rate * balance);
System.out.println("New balance = " + balance);

This example uses real numbers rather than whole numbers. A real number in Java is called a double
(or a float). These will be explained properly in Chapter 2. The user is asked to type in a balance and an
interest rate (as a decimal fraction, e.g 15% should by typed as 0.15). The balance is then incremented
by the interest rate and the new balance is printed out. Note the statement:

balance = balance + (rate * balance);

The = sign performs assignment and has the effect of changing the variable on the left. This will be
explained in more detail in Chapter 2. Compile and run the program to see how it works.

Now try Exercises 1.5 and 1.6.

1.5 Comments

A comment is a remark in a program which is meant to clarify something for the reader. It is ignored
by the compiler. There are two ways to indicate comments in Java:

12 Essential Java for Scientists and Engineers

• Anything after a double slash (/ /) up to the next new line is interpreted as comment. This way of
making a comment is suitable when the comment consists of a single line, or explains a single line
of code. For example:

amt = amt+int*amt; // increment the amount by the interest rate

• Comments may also be enclosed between the symbol pairs / * and * / . This form is suitable
when we want to write a more extended comment, for example:

/* This program models the growth of a rabbit colony over time.
* Assumptions:
* - start with male/female pair of baby rabbits.
* - it takes 2 months for a baby to become an adult.
* - adults produce a male/female pair of rabbits
* every month.
*/

Everything between / * and * / is ignored, so the extra stars are optional, but are a common way of
emphasising that the text is a comment.
These forms of comments may not be 'nested', although they may be used to 'comment out' sections
of code containing the / / comment, e.g.

/*
// This is a comment

*/

1.6 Using objects

Throughout this book, you will be using Java code which has been written by other programmers. This
code is organized into units called classes (this will be explained in more detail in Chapter 3). There are
many classes which are provided as part of the core Java. You have already used one of these classes,
namely the System class for printing out messages to the screen. As you progress through this book,
you will use many more of these classes. In addition, we have provided a number of classes with this
textbook. You have already come across the Keyboard class, and in this section we will show you how
to use another two of these classes.

Using the T u r t l e class

The T u r t l e class can be used to draw shapes inside a window on the screen. The shapes that are drawn
are based on commands given by you, the programmer, in Java. A turtle is represented as a triangle in
the window. A turtle has a pen which can be either up or down.

• If the pen is up and the turtle walks, no line is drawn.
• If the pen is down and the turtle walks, a line is drawn (a turtle always starts with its pen down).

Here are some examples of commands that a turtle object understands:

• forward: walk forward a given number of steps;
• r i g h t : turn right by a given number of degrees;

Getting going 13

• l e f t : turn left by a given number of degrees;
• home: go back to the starting position;
• warp: move directly to a given point;

There can be many turtles drawing in the window at the same time. Compile and run the following
program and see what happens (remember to call your file Tur t l eDrawing . Java):

import e s s e n t i a l . * ;

public class TurtleDrawing
{
public static void main (String[] args)
{
Turtle fred = new Turtle(); // create a Turtle called fred
fred.forward(50); // tell fred to move forward 50 paces
fred.right(90); // tell fred to turn right 90 degrees
fred.forward(50); // tell fred to move forward 50 paces
fred.home(); // tell fred to go back to the origin

}
}

Figure 1.4 shows what you should see on your screen. The turtle drawing area is a square of 200 by
200 units, with the origin in the middle. The top left of the window is the point (—100, 100), whereas
the bottom right corner is point (100, —100). When you create a T u r t l e object, it always starts at the
origin facing North. If you tell a turtle to go forward, it will walk in the direction in which it is facing.

We will now explain the program:

• First notice that the program starts off with the statement: import e s s e n t i a l . * ;. You have to
put this statement in your program if you want to use any of the classes which are provided with
the textbook (such as Keyboard or Tur t l e) .

• The first statement inside main creates a T u r t l e object called fred. Before using the T u r t l e
class, you have to construct (create) a T u r t l e object using the new keyword in this way. We will
tell you more about constructors in Chapter 3.

• The second statement tells the object f r ed to move forward by 50 paces. Since T u r t l e objects
start in the middle of the window and the distance to the edge is 100, this will mean that f r ed will
move upwards, half way to the edge of the window, drawing a line as it moves forward.

• In the next 2 statements, f r ed turns right by 90° and goes forward another 50 paces. This results
in a horizontal line of 50 units. After going forward, f r ed is facing East and is in the middle of
the top right quadrant of the window.

• The last statement tells f r ed to go back home to the starting position, which is in the centre of
the window and facing North. Since by default a turtle's pen is down, 3 lines are drawn for each
movement of fred: two for the forward statements and one for the home statement.

Instructions that we give to T u r t l e objects (such as forward, r i g h t or home) are called methods.
There are many more methods which you can use with the T u r t l e class. For a list of these methods,
you need to know how to get help on the e s s e n t i a l package.

Help on the e s s e n t i a l package

All the classes inside the e s s e n t i a l package are documented in help files which you can browse. On
our website you will find a link to essential API. Click on this link and you will see a list of All Classes
in the left-hand frame. Click on the Tlirtle link. This will bring up a description of the T u r t l e class in
the right-hand frame. In the table called Method Summary, you will see a list of methods which you
can use with a T u r t l e object. Notice that the methods forward, home and r i g h t are listed. Some

14 Essential Java for Scientists and Engineers

Figure 1.4 Output from running Tur t l eDraw ing . Java

of the methods which you can easily try out are: l e f t , penUp, penDown, se tAngle and warp. You
will learn more about methods in Chapter 3.

Now try to do Exercises 1.7 to 1.10

Using the Graph class

We will now introduce a further class of the e s s e n t i a l package, namely the Graph class. This class
can be used for drawing graphs based on a number of points. Run the following program and see what
happens:

import essential.*;

public class TestGraph
{
public static void main (String[] args)
{
Graph g = new Graph(); // create a Graph object called g
g.addPoint(-2,-4);

Getting going 15

liraiifr«^.: • "'u lL'"' l"lu'' ' 1L'' ' "! : . at «• 4ito»: f § | |

Figure 1.5 Output from running TestGraph. Java

g.addPoint(0,0);
g.addPoint(1,2);

The output that you should get is shown in Figure 1.5
When you create a Graph object, using the keyword new, a window is created for displaying the

graph. We call this window Essential Grapher. By default, the axes are set to the ranges —5 to 5 for
both the X and the Y axes. You can change these ranges by using the s e t Axes method. Try adding
this statement to the T e s t G r a p h program, compile and run it and see what happens:

g . s e t A x e s (0 , 1 0 , 0 , 6) ;

You can also set some of the properties of the Essential Grapher window using the menu, under Pro-
perties. Try changing some of the properties using the menu and see what happens. Notice also that as
you move the mouse pointer over the Essential Grapher window, the X and Y values are displayed at
the bottom right.

Now try to do Exercises 1.11 and 1.12.

1.7 Java on the WWW (optional)

Every Java program is either an application or an applet. The programs we have been writing until now
have been applications. Applets are very similar to applications, except that they run in a web browser.
Applets are therefore Java programs that run on the WWW. In this book, we will be working with
applications, rather than applets. However, since we know that many of you will be curious to see how
Java works on the web, in this section we will show you a simple example of an applet. The program
below is an applet equivalent to the application F i r s t P r o g r a m that we wrote in Section 1.3.

16 Essential Java for Scientists and Engineers

import j ava.applet.*;
import j ava.awt.*;

public class FirstApplet extends Applet
{

public void paint (Graphics g)
{

String s = "Hello, 2 + 3 = " + (2 + 3) ;
g.drawstring(s, 25, 50);
g.drawString(MGood Bye", 25, 100);

You compile applets in the same way that you compile applications, but you cannot run them using the
j ava command. An applet has to be embedded inside HTML, in order to be run. The following is a
very simple HTML page.

<html>
<title> This is my first applet </title>
<body>

<applet code = FirstApplet.class width=200 height=200>
</applet>

</body>
</html>

Notice the chunk in the middle, which is a reference to F i r s t A p p l e t (the . c l a s s file). To run this
applet, you have to save this as a file with an . html extension and then open it with your browser.
There is a Java application called Applet Viewer that enables you to run applets without using a web
browser. You can run the Applet Viewer from the command line using the a p p l e t v iewer command
followed by the html file that you wish to view. For example, to run the HTML file above (assuming
it is saved as F i r s t A p p l e t .html), type the following command:

appletviewer FirstApplet.html

This command will create and display a small window with the applet running inside.

Summary

m The set of instructions that a computer can understand is called machine language.
• A compiler is a program that translates programs written in a high-level language (such as Java)

to machine code*
• Java achieves platform independence by compiling down to bytecode, which is interpreted by the

Java Virtual Machine.
• You can compile a Java program using the j avac command and run a program using the j ava

command.
• A Java program must be saved in a file with a , j ava extension. The name of the file must be

the same name as the class.
• Block markers (curly braces) mark the beginning and end of a block of code.
• Commands for printing to the screen include S y s t e m , o u t . p r i n t and Sys tem.out*

p r i n t In*
• Every statement in Java is terminated by a semi-colon*

Getting going 17

» A string is a sequence of characters enclosed in double quotation marks,
• Input from the keyboard can be made using the Keyboard class, which comes with the essen-

t i a l package,
• When you use classes from the e s s e n t i a l package, you have to import it using the command

import e s s e n t i a l . * ;
• Comments in a program are meant to assist the human reader and are ignored by the compiler.
• In Java, comments either follow a double slash(//), or are enclosed in the pair of symbols *

and *V
• The Tur t le class is part of the e s s e n t i a l package and can be used to draw shapes inside a

window*
• The Graph class is also part of the e s s e n t i a l package and can be used for drawing graphs

of points,
• Applets are Java programs that run on the web.

Exercises

1.1 Write a Java program which will print out the following:

S t a r s :
<k*k "kick

The End

1.2 What would be printed onto the screen if the following Java statements were run?

System.out•printIn("Here is some output:n);
System, out .println(H4 + 51');
System*out.print(4 + 5} ;
System • out.print{n = "} ;
System.out.println(9} ;

13 Write a program that asks the user to enter their surname. After that it should ask the user for
their first name, It should then print out the person's first name followed by a space and their
surname.

1.4 Write a program that asks the user to enter a whole number and then prints out the number
doubled.

1.5 Write a program that asks the user to enter two whole numbers. Your program should then print
out fee value of the two numbers multiplied For example, if the user enters 40 and 10* your
program should print out 400.

1.6 Change your program from the previous exercise to work with real numbers.
1.7 What will be the result from running the following program? Draw fee resulting diagram with

a pencil and paper before running the code.

import essential**;

public class Turtlelxl
{
public static void main (String[3 args)

18 Essential Java for Scientists and Engineers

Turtle sid,;« new Turtle{}; * // create a Turtle called aid
s id* backward (50)'; \
Bid*right (90);
aid.forward{SO); ; .
aid*pe&0p{};
aid,home();

1.8 What will be the insult from irantog the fottowing program?

itrqjjort e ssen t ia !** ;

. public class TurtleEx2

public static void main (String[] arge)

Turtle aam » new Turtle{); // create a Turtle called aam
sam.ieft{45);
earn * forward(50);
earn*left(90);
aam * forward (5'0} ;
aam.left(90);
sam.forward(XG0);
earn.left(90) ;
earn*forward(100);
aam.left(90);
earn * forward(SO);
Sam*left(90);
earn*forward(50);

L9 WhatwiU be the result from mnnmg the following program?

import e s s e n t i a l ; * ;

publ ic c l a s s TurtleBx-3

i
public atatic void main {String[] args)

* ' Turtle t • new Turtle(); // create a *Turtle called t
t, penUp. {);
t,forward(100);
t.right(135) ;
t^penDownC);
t*warp(100,0) /
t*warp(0,-100) ;
t.warp(-100,0);
t.warp(0,100)/

Getting going 19

1.10 Write a program, using the Tur t le class, to draw a square with sides of length 106, with the
centre of the square positioned at the origin of the window.

1.11 Write a program that uses Essential Grapher to dmw a g i ^ < r f ^ ^ o w i ^ f d t o ^ :

(0 , 0)
(0 .5 , 3 }
{ 1 , 4 }
(2 , 4.5}
(5 , 4.8}

In your program, change the axes to suitable values,
1.12 Write a program that uses Essential Grapher to draw a graph of the following equation:

y = 2x ~ 3 ;

Hint: calculate two points which are fairly far away from each other and add these as points to
the graph.

2

Java programming basics

Objectives

By

•
•
•

the end of this chapter you should be able to write short Java

evaluate a variety of formulae;
make repetitive calculations;
make simple decisions.

programs which:

You presumably bought this book because you want to learn how to write your own programs in Java.
In this chapter we will look in detail at how to write short Java programs to solve simple problems
involving basic arithmetic operations, repetition and decisions. There are two essential requirements for
successfully mastering the art of programming:

1. The exact rules for coding instructions must be learnt;
2. A logical plan for solving the problem must be designed.

This chapter is devoted mainly to the first requirement: learning some basic coding rules. Once you are
comfortable with these, we can gradually go on to more substantial problems, and how to solve them
using Java's object-oriented machinery.

All Java constructs introduced in the text are summarized in Appendix C.

2.1 Compound interest again

In Chapter 1 you ran a program to compute compound interest. The following variation on that program
(which you should also run) highlights some basic concepts which we will discuss below.

public class Complnt
{

public static void main(String[] args)
{

double balance, interest, rate;
balance = 1000;

20

Java programming basics 21

rate = 0.09;
interest = rate * balance;
balance = balance + interest;
System.out.println("New balance: " + balance);

We saw in Chapter 1 that when you compile a Java program with the j a vac command the result is a
bytecode file with the extension . c l a s s . You subsequently run (execute) the bytecode with the Java
command. During compilation, space in the computer's random access memory (RAM) is allocated for
any numbers (data) which will be generated by the program. This part of the memory may be thought
of as a bank of boxes, or memory locations, each of which can hold only one number at a time (at the
moment). These memory locations are referred to by symbolic names in the program. So, for example,
the statement

balance = 1000

allocates (when it is executed) the number 1000 to the memory location named ba l ance . Since the
contents of b a l a n c e may be changed during the program it is called a variable.

The statements between the inner block markers { . . . } in our program Complnt are interpreted
as follows during the compilation process:

1. Create memory locations for storing three variables of type double
2. Put the number 1000 into memory location b a l a n c e
3. Put the number 0.09 into memory location r a t e
4. Multiply the contents of r a t e by the contents of b a l a n c e and put the answer in i n t e r e s t
5. Add the contents of b a l a n c e to the contents of i n t e r e s t and put the answer in b a l a n c e
6. Print (display) a message followed by the contents of b a l a n c e

Note that these instructions are not carried out during compilation. All that happens is that they are
translated into bytecode.

When you run (execute) the program, these translated statements are carried out in order from the top
down. Figure 2.1 shows how the memory locations change as each statement is executed. Understanding
the order in which program statements are carried out is very important, particularly if you are used
to spreadsheeting, which is entirely different. Spreadsheet formulae can be calculated in any particular
order; or rather, you don't usually need to be concerned about the order in which cell formulae are
calculated. However, this is most emphatically not the case when you program in a language like Java.
You have to get the statements into the correct order so that when they are executed in that sequence
they will carry out the required tasks correctly.

After execution of our translated statements, in the order shown, the memory locations used will have
the following values (see Figure 2.1):

balance : 1090
interest : 90
rate : 0.09

Note that the original content of b a l a n c e is lost.
It is worth lingering over the statement

balance = balance + interest;

since it is an example of a very common programming device to update (increment) a variable
(balance). Java evaluates the expression on the right-hand side of the equals sign, and places the
answer in the variable on the left-hand side (even if the variable appears on both sides). In this way the
old value of ba l ance is replaced by its new value.

22 Essential Java for Scientists and Engineers

Statement

double balance, i n t e r e s t , r a t e ;

balance = 1000;

rate = 0.09;

i n te res t = rate * balance;

balance = balance + i n t e r e s t ;

Memory after statement is
executed

balance

interest

rate

balance

interest

rate

balance

interest

rate

balance

interest

rate

balance

interest

rate

1000

1000

0.09

1000

90

0.09

1090

90

0.09

Figure 2.1 How the memory locations (variables) in Compint change as each statement is executed

The remaining statements in the program are also very important:

public class Compint
is a class declaration. Everything inside the block markers that follow is part of the class
declaration—remember to close all opening block markers! We will discuss classes in detail in
Chapter 3.
The name of the file in which the program is saved must be the same as the name of its p u b l i c
class, i.e. the class Compint must be saved in Compint . Java.

p u b l i c s t a t i c vo id m a i n (S t r i n g [] a rgs)
is technically a method of the Compint class.
Methods do things. For the moment just think of main as doing whatever needs to be done, i.e.
whatever follows in the block markers { . . . }.
A s t a t i c method is associated with its class, rather than with an instance of the class— this
distinction will be explained in Chapter 3.

All the variables in a program must be declared with a data type. This is done here by double , which
means they are all double-precision floating point numbers with or without fractional parts.

Java programming basics 23

Incidentally, if you are fussy about how many decimal places appear in the output, using the
Math, round method is probably the easiest way of specifying two decimal places, for example:

System.out.printIn(Math.round(balance*100)/100.0) ;

It works as follows. First, b a l a n c e is multiplied by 100, then the product is rounded to the nearest
integer, and finally the result is divided by 100—leaving two decimal places.

Now try Exercise 2.1 at the end of the chapter.
Before we can write any more complete programs there are some further basic concepts which need

to be introduced.

2.2 Primitive data types

Java has a number of primitive data types, of which i n t and double are two examples. The different
data types and their properties are summarized in Table 2.1. We will come across most of them in due
course.

Bits and bytes
Before we go any further we need to look briefly at how information is represented in a computer. A
bit is the basic unit of information in a computer. It is something which has only two possible states,
usually described as "on" and "off. The binary digits 0 and 1 can be used to represent these two states
mathematically (hence the term digital computer). The word "bit" in a contraction of "Wnary digk".

Numbers in a computer's memory must therefore be represented in binary code, where each bit in a
sequence stands for a successively higher power of 2. The binary codes for the decimal numbers 0 to
15, for example, are shown in Table 2.2.

A byte is eight bits long. Since each bit in a byte can be in two possible states, this gives 28, i.e. 256,
different combinations.

Table 2.1 Primitive data types in Java

Type Size (bits) Range

t rue or f a l se
Unicode 0 (\u0000) to Unicode 21 6 - 1 (\uFFFF)
-127 to+127
-32 768 to +32 767
- 2 147 483 648 to +2 147 483 647
- 9 223 372 036 854 775 808 to +9 223 372 036 854 775 807
+3.40282347E+38 to ±1.40239846E-45
±1.79769313486231570e+308 to ±4.94065645841246544e-324

boolean

char
byte
short
int
long
float
double
void

1
16
8
16
32
64
32
64
-

Table 2.2 Binary and hexadecimal codes

Decimal

0
1
2
3
4
5
6
7

Binary

0000
0001
0010
0011
0100
0101
0110
0111

Hexadecimal

0
l
2
3
4
5
6
7

Decimal

8
9
10
11
12
13
14
15

Binary

1000
1001
1010
1011
1100
1101
1110
1111

Hexadecimal

8
9
A
B
C
D
E
F

24 Essential Java for Scientists and Engineers

Hexadecimal code (see Table 2.2) is often used because it is more economical than binary. Each
hexadecimal digit stands for an integer power of 16. E.g.

2A = 2 x 161 + 10 x 16° = 32 + 10 = 42

One byte can be represented by two hex digits.
Octal code is less common than hexadecimal: each digit represents a power of 8.
Computer memory size (and disk capacity) is measured in bytes, so 64K for example means slightly

more than 64000bytes (since IK actually means 1024). Computers are sometimes referred to as 16- or
32-bit machines. This describes the length of the units of information handled by their microprocessors
(chips). The longer these units, the faster the computer.

Numeric constants

A numeric constant is just a number used in a program. For example, in the statement

i n t num = 4 00;

num is a variable and 4 0 0 is a numeric constant.
An integer numeric constant has no decimal places and may be written with or without a plus or minus

sign.
A floating point numeric constant may be written in two ways. It may be written as a signed or

unsigned string of digits with a decimal point, e.g.

0.09 37. 37.0 .0 0. - .123456

It may also be written in scientific notation with an integer exponent. In this form a decimal point is not
necessary. For example:

2.0e2
2e2
4.12e+2
-7.321e-4

(200.0)
(200.0)
(412.0)
(-0.0007321)

double is default

A floating point constant is of type double by default. It can be coerced into type f l o a t if necessary
with the suffix f (or F). The following statement, for example, generates a compiler error which usually
confounds beginners:

f l o a t r a t e = 0 .09 ;

The error occurs because 0.09 is double type by default and Java won't let you assign a double
type to a f l o a t type, because it won't fit (although it allows the reverse, which is called upcasting).
The remedy is to write

f l o a t r a t e = 0.09f;

Now try Exercises 2.2 and 2.3.

Java programming basics 25

2.3 Names

Identifiers

An identifier is the symbolic name used to represent items in a Java program, e.g. r a t e , p r i n t In. An
identifier must

• start with a letter, underscore character (_) or dollar symbol;
• consist of only the above characters and digits.

An identifier may be of any length.
Examples:

r2d2
pay_day
pay-day
pay day
2a
2a

name$

/ /
/ /
/ /
/ /
/ /
/ /
/ /

valid
valid
invalid
invalid
invalid
valid
valid

Java has special keywords, which are reserved and may not be used as identifiers. They are the obvious
ones, like double, c l a s s , i n t , void, and also some less obvious ones like super and f i n a l l y .
See Appendix A for a complete list of Java keywords.

Case sensitivity

It may come as a surprise to you, if you are not familiar with Java, that identifiers are case sensitive,
e.g. r a t e and Rate are different variables.

You need to bear in mind that case sensitivity extends to class and file names. For example, the program
in Section 2.1 must be saved in the file Complnt. j ava, because the class name is Complnt (and not
Compint or compint).

Many programmers write identifiers representing variables in lowercase except for the first letter of
the second and subsequent words. This style is known as camel caps, the uppercase letters representing
(with a little imagination) a camel's humps, e.g. camel Caps, milleniumBug, endOf TheMonth.

Variables

A variable is the name given by a program to a storage location. It is helpful to distinguish between two
types of variables in Java:

• a primitive data variable, i.e. the name given to a storage location which will hold a primitive data
type, such as ba lance , i n t e r e s t and r a t e in Complnt;

• an object handle, i.e. the name of an object, such as f r ed (the T u r t l e object in Chapter 1).
Objects are discussed in detail in Chapter 3.

If you use a variable in a program without initializing it, the compiler generates an error.
Every variable declared should be described in a comment. This makes for good programming style.
Beware: if an integer type (i.e. by te , s h o r t , i n t , long) is increased above its maximum value in

a calculation its value "wraps around" to the minimum and starts again. For example, the code

i n t n, m;
n = Integer.MAX_VALUE; // largest integer
m = n+1;
System.out.printIn(m);

26 Essential Java for Scientists and Engineers

results in the output

- 2 1 4 7 4 8 3 6 4 8

Try Exercise 2.4.

2.4 Vertical motion under gravity

We will now show you a Java program that uses a well-known physics formula.
If a stone is thrown vertically upward with an initial speed M, its vertical displacement s after a time

t has elapsed is given by the formula s — ut — gt2/2, where g is the acceleration due to gravity. Air
resistance has been ignored. We would like to compute the value of s, given u and t. Note that we are
not concerned here with how to derive the formula, but how to compute its value. The logical preparation
of this program is as follows:

1. Assign values of g, u and t
2. Compute the value of s according to the formula
3. Output the value of s

Drawing up a plan like this may seem trivial and a waste of time. Yet you would be surprised how
many beginners, preferring to dive straight into Java, try to program step 2 before step 1. It is well worth
developing the mental discipline of planning your program first. Type your plan into your text editor in
the form of comments in the main body of the program. Then add the Java statements corresponding to
each comment below the comment.

The program is as follows:

public class Vertical
{

public static void main(String[] args)
{

//l. Assign values of g, u and t
double g = 9.8; // acceleration due to gravity
double s; // vertical displacement
double t; // time
double u; // launch velocity

t = 6;
u = 60;

//2. Compute the value of s according to the formula
s = u*t - g/2*t*t;

}

//3. Output the value of s
System.out.printIn("s: " + s + " metres");

New concepts raised in this program are discussed in the following sections.

Java programming basics 27

2.5 Operators, expressions and assignments

Many of the programs that you will be writing will include mathematical expressions, such as

u* t - g / 2 * t * t

These expressions are evaluated by means of operators when a program runs. Java has a number of
different kinds of operators for evaluating expressions, e.g. arithmetic, increment, decrement, relational,
logical, etc. We are going to look at the first three kinds in this section.

Arithmetic operators
• There are five arithmetic operators: + (addition), - (subtraction), * (multiplication), / (division), and

\% (modulus). An operator with two operands is called a binary operator. When it has only one
operand it is called unary. Addition and subtraction can be unary or binary. Here are some examples
of expressions involving these operators:

a + b / c
-a // unary minus
b / (2 * a)

• When both operands in a division are of an integer type, the fractional part is truncated (chopped
off).

• The modulus operation returns the integer remainder after division of its integer operands. The sign
of the remainder is the product of the signs of the operands. For example:

1 0 / 3 // evaluates to 3 (fractional part is truncated)
10 % 3 // evaluates to 1 (remainder when 10 is divided by 3)
-10 % 3 // evaluates to -1

• Java performs real arithmetic in double precision, so coercion to f l o a t may be necessary, as
described in Section 2.2. For example,

f l o a t x = 1 .68 /2 ;

generates a compiler error, which can be corrected as follows:

f l o a t x = 1 .68 f /2 ;

• There is no exponentiation (raise to the power) operator.
However, ab, for example, may be computed with a method in the Math class: Math. pow (a, b) .
To compute ^/n use Math. s q r t (n).

Precedence

The usual precedence rules of arithmetic are followed: * and / have a higher precedence than + and -.
If you are in doubt you can always use parentheses, which have an even higher precedence. Thus
a + b * c is evaluated by default as a + (b * c) .

Where arithmetic operators in an expression have the same precedence the operations are carried out
from left to right. So a / b * c is evaluated as (a / b) * c, and not as a / (b * c) .

Try Exercises 2.5 to 2.8.
The precedence levels of all Java operators discussed in this book are shown in Appendix B.

28 Essential Java for Scientists and Engineers

Increment and decrement operators

If you are not familiar with Java (or C, to which Java is related) you will find the increment (++) and
decrement (--) operators intriguing. They provide a shorthand way of increasing or decreasing their
operands by 1. E.g.

C + +
++c
x - -
- - X

// increase c by 1
// increase c by 1
// decrease x by 1
// decrease x by 1

So, for example, C++ is the same as the slightly more long-winded c = c + 1. (Did you realise that
this is where C++ gets its name: one more than C?)

When these operators appear in assignments (i.e. variable = expression) their position is crucial, since
the expression on the right may be incremented or decremented before or after its value is assigned to
the variable on the left. And so we have /^^incrementing/decrementing, e.g.

a = x++; // set a to x, then increment x
b = x--; // set b to x, then decrement x

and /?re-incrementing/decrementing, e.g.

a = ++x; // increment x, then set a to new value of x
b = --x; // decrement x, then set b to new value of x

The pre means the increment or decrement occurs before the assignment is made.
Note that it does not make sense to have x++ on the left-hand side of an assignment, so it is not

allowed.
The pre-increment and pre-decrement operators both have higher precedence than the arithmetic oper-

ators. So the code

i n t x = 1;
i n t y ;
y = x + ++x;

sets x to 2 and y to 4. x is first incremented to 2, and then added to its new value to give 4.
Old-time C programmers delighted in writing concise yet obscure code like this. The practice stems

from the days when computer memory was limited, and when execution time was critical; sometimes
the obscure code runs a little faster.

However, with the multi-megabytes of RAM and Pentium power available today you simply can't use
those excuses any more. Why not say what you mean, and replace the last statement above with:

++x;

y = x + x; //no ambiguity now!

Post-incrementing or decrementing is a little more subtle. The code

i n t x = 1;
i n t y ;
y = x + x++;

sets y to 2. You can think of the post-incrementing being done in a temporary register, and only being
applied to its operand after the expression is evaluated. Once again, it is better to write clearly what you
mean, i.e.

y = x + x ;
x = x + 1;

Java programming basics 29

Assignments and assignment operators

Simple assignments

The simple assignment operator is the equal sign (=). We have already seen a few examples of its use.
The most common form of a simple assignment is

var = expr;

The expression expr on the right is evaluated and its value assigned to the variable v a r on the left, e.g.

x = a + Math.sqrt(b) + Math.cos(c);
n = n + 1; // increase the value of n by 1 (or n++)

Note the direction of the assignment: from the right-hand side of the equals sign to the left. It is a
common programming error to get the assignment the wrong way around, as in

n + 1 = n; / / wrong way! wrong way! wrong way!

Java expects a single variable on the left-hand side and will object if it finds anything else.

More examples
The formulae

GME
F = r2

J a2 4- b2

c — ,
2a

A=p(' + mY
may be translated into the following simple assignments:

f = G * m * e / (r * r) ;
c = Math.sqrt(a * a + b * b) / (2 * a) ;
a = p * Math.pow(1 + r/100, n);

Try Exercises 2.9 to 2.10

Assignment operators
A statement like

sum = sum + x ;

occurs so frequently in Java that it may be written more concisely as

sum += x ;

The double symbol += is called an assignment operator. (The plus operator must be on the left of the
equals operator, otherwise it would be the unary addition operator.)

There are more assignment operators, such as -=, *=, /= and %=. Each assignment operator reduces
the expression

var = var op expr;

30 Essential Java for Scientists and Engineers

to the shorter form

var op= expr;

Their precedence level in the general scheme of things is shown in Appendix B.

Cast operators

When an integer, for example, is divided by another integer, the decimal part of the result is lost
(truncated) even if it is assigned to a f l o a t or double variable. However, the use of a cast operator
can fix this. For example,

x = (f l o a t) 10 / 3 ;

assigns the value of 3.333333 (instead of 3) to x by using the (f l o a t) cast operator. Note that the
integer 10 is cast to a f l o a t before the division takes place.

Cast operators are available for any data type, and are formed by placing parentheses around the data
type name.

Try Exercises 2.11 to 2.20.

2.6 Repeating with f o r

So far we have seen how to get data into a Java program, how to temporarily store it in variables, how to
evaluate simple expressions, and how to output the results. In this section we look at a new and powerful
feature: repetition. We start by showing you some examples, which you should run. We will then explain
in detail how the fo r loop works.

As a very simple introductory example run the following code:

fo r (i n t i = 1; i <= 10; i + +)
{

System.out .pr in t (i + " ") ;
}

You should get this output:

1 2 3 4 5 6 7 8 9 10

Can you see what's going on? Change the p r i n t statement to p r i n t l n and see what happens.

Turtle spirals

In Chapter 1 we introduced you briefly to our T u r t l e class. We would like to use the turtle to draw
more interesting figures, for example, a spiral. To draw a spiral, the turtle has to move forward a certain
amount, change direction slightly, move forward slightly more, change direction again, move forward
slightly more, and so on. If we create a turtle called t e r r y , and variable s t e p ,

Turtle terry = new Turtle();
double step = 10;

then the group of three statements

terry.forward(step);
terry.right(3 0);
step += 5;

Java programming basics 31

carry out the basic movement of taking a step, changing direction, and increasing the step. We simply
have to repeat these three statements to draw our spiral. Here's the obvious way to do it:

import essential.*;

public class MyTurt
{

public static void main(String[] args)
{

Turtle terry = new Turtle();
double step = 10;

terry.forward(step);
terry.right(30);
step + = 5;

terry.forward(step);
terry.right(30);
step += 5;

terry.forward(step) ;
terry.right(30);
step + = 5;

terry.forward(step);
terry.right(30);
step + = 5;

}

This program produces the rather crude attempt at a spiral in Figure 2.2. Clearly we could use cut-and-
paste to paste in as many copies of the three statements as we need. But that would be very tedious; our
program would become very long. What we want is a construction which repeats the three statements
for us. Java has such a device, called a fo r loop. The following program produces exactly the same
result as MyTurt, by repeating the group of three statements four times:

Figure 2.2 A crude spiral

32 Essential Java for Scientists and Engineers

import essential.*;

public class SmartTurtle
{

public static void main(String [] args)
{

Turtle terry = new Turtle ();
double step = 10;

for (int i = 1; i <= 4; i++)
{

terry.forward(step);
terry.right(30);
step += 5;

}

In fact, the fo r loop is so powerful, we might as well use it to draw the much better looking Spiral of
Archimedes in Figure 2.3 (the steps and angles have been made smaller to get a neater spiral):

import e s s e n t i a l . * ;

public class ArchSpiral
{

public static void main(String [] args)
{

Turtle terry = new Turtle();
double step = 0.5;
double increment = 0.03;
double degree = 5;

Figure 2.3 The Spiral of Archimedes

Java programming basics 33

int numSpirals = 3;
int numLoops = (int)(360/degree) * numSpirals;

for (int i = 1; i <= numLoops; i++)
{

terry.forward(step);
step += increment;
terry.right(degree);

}

}
}

The variable numLoops is used here as a counter. It evaluates to 216, which is the number of times the
basic group of three statements is repeated!

Growing an investment

The following program computes the value of an initial investment of $1000 over a period of 10 years
where interest of 12 per cent is compounded annually. Run it and see if you can follow how it works.

public class Invest
{

public static void main(String args [])
{

double bal = 1000; // initial balance
double rate =0.12; // interest rate

for (int year = 1; year <= 10; year++)
{

bal = bal + rate*bal;
System.out.printIn(year + " " +

Math.round(100*bal)/100.);
}

}
}

Output:

1 1 1 2 0 . 0
2 1 2 5 4 . 4
3 1 4 0 4 . 9 3
4 1 5 7 3 . 5 2
5 1 7 6 2 . 3 4
6 1 9 7 3 . 8 2
7 2 2 1 0 . 6 8
8 2 4 7 5 . 9 6
9 2 7 7 3 . 0 8
10 3 1 0 5 . 8 5

In this example, the fo r construct is used to repeat the two statements

b a l = b a l + r a t e * b a l ;
System.out.println(year + " " + . . .) ;

10 times. Such a structure where the number of repetitions is determined by the user in advance (i.e.
10), is sometimes called determinate repetition.

34 Essential Java for Scientists and Engineers

The f o r statement

The f o r loop is one of the most powerful constructs in programming. Its most common form is

f o r (i n t / = j ; i <= k; / + +)
{

statements
}

Note:

• In this case / (the loop counter, or index) is any integer variable, and j and k may be constants,
variables or expressions.
It is recommended that the counter / be declared i n t in the f o r header as above. The effect of this
is that / is defined only in the scope of the block markers following the f o r header. This device
prevents / from conflicting with a variable of the same name outside the f o r loop.

• statements are executed repeatedly.
• The values of j and k determine how many repeats are made.
• / starts with the value j , and is incremented at the end of each loop.
• Looping stops once / exceeds the value of k, and execution proceeds in the normal way with the

next statement after the f o r .
• / will have the value k+l after completion of the loop.

More generally, f o r has the syntax

f o r {initialization-, condition; increment)
{

statements
}

where initialization creates and initializes the loop counter, looping continues while condition is true,
and increment defines how the loop counter is incremented. All three are expressions.

The important thing to note here is that if a group of statements is to be repeated by a f o r loop the
statements must be enclosed in block markers { . . . } . Statements thus enclosed are treated syntactically
as a single statement.

It is also important to understand at what stage during the execution of the loop the three phases
initialization, condition and increment occur. Consider the following example,

for (int i = 1; i <= 3; i++)
{

System.out.println(i*2);
}

which has the output

2
4
6

Here is a blow-by-blow account of how the f o r executes:

1. The counter i is created and initialized to the value 1. This phase {initialization) occurs once only.
2. condition is tested: 1 <= 3 is true.
3. Since condition is true, statements are executed: the value of i *2 (2) is printed.
4. increment occurs: the value of i increases to 2.

Java programming basics 35

5. condition is tested: 2 <= 3 is true.
6. Since condition is true, statements are executed: the value of i*2 (4) is printed.
7. increment occurs: the value of i increases to 3.
8. condition is tested: 3 <= 3 is true.
9. Since condition is true, statements are executed: the value of i*2 (6) is printed.
10. increment occurs: the value of i increases to 4.
11. condition is tested: 4 <= 3 is false.
12. The loop terminates and control passes to the statement following the fo r block markers.

A very common error is to end the fo r clause with a semi-colon:

fo r (year = 1; y e a r <= 10; y e a r + +) ; { . . . }

Can you explain what happens if you do this in the I n v e s t program? The semi-colon terminates
the statement to be executed: in this case nothing—except incrementing year . So basically nothing is
repeated 10 times, after which the two statements in the block markers are executed exactly once.

Try Exercises 2.21 to 2.22.

Alternative ways of counting with f o r

In our examples of fo r thus far we have started counting at 1, which is a fairly natural thing to do, e.g.

fo r (i n t i = 1; i <= 10; i + +)

Many programmers prefer to start counting at 0 (it depends on how you were brought up), in which case
condition has to be changed subtly in order to secure the correct number of repeats:

fo r (i n t i = 0; i < 10; i++)

Either way is acceptable; it just depends on whether you prefer counting from 0 or 1. For example, you
could rewrite the fo r in I n v e s t as

f o r (i n t y e a r = 0; y e a r < 10; year++)

However, y e a r must then be replaced by (year+1) in the p r i n t In statement to reflect the correct
year in the output. (Why would year++ be wrong here?)

In this book we will generally start counting at 1 in fo r loops, except in the case of array subscripts,
which invariably start at 0 (see Chapter 6).

Square rooting with Newton

The square root x of any positive number a may be found using only the arithmetic operations of
addition, subtraction and division, with Newton's method. This is a neat iterative (repetitive) procedure
that refines an initial guess.

The structure plan of the algorithm to find the square root, and the program with sample output for
a = 2 is as follows:

1. Input a
2. Initialize x to 1 (the initial guess
3. Repeat 6 times (say)

Replace x by (x + a/x)/2
Print x

import e s s e n t i a l . * ;

36 Essential Java for Scientists and Engineers

public class MySqrt
{
// square-rooting with Newton

public static void main(String args[])
{

double a; // number to be square-rooted
double x = 1; // guess at sqrt(a)

System.out.print("Enter number to be square-rooted: ");
a = Keyboard.readDouble();

for (int i = 1; i <= 6; i++)
{

X = (x + a/x)/2;
System.out.println(x);

}

Sys tem.out .pr in t ln("Java ' s s q r t : " + Math.sqrt(a)) ;

}
Output:

Enter number to be square-rooted: 2
1.5
1.4166666666666665
1.4142156862745097
1.4142135623746899
1.414213562373095
1.414213562373095
Java's sqrt: 1.4142135623730951

The value of x converges to a limit, which is y/a. Note that it is virtually identical to the value returned
by Java's Math. s q r t . Most computers and calculators use a similar method internally to compute
square roots and other standard mathematical functions.

Factorials!
Run the following program to generate a list of n and n\ (spoken as 'n factorial', or 'n shriek') where

n! = lx2x3x...x(n-l)x«.

int n;
long fact = 1;
System.out.print("Enter n: ");
n = Keyboard.readlnt();
System.out.println(n);

for (int k = 1; k <= n; k+ +)
• {

fact = k * fact;
System.out.println(k + "!= " + fact);

}

• Change the above program so that only the final answer is printed out, and not all the intermediate
values. For example, if 20 is entered for the value of n, the only output should be

Java programming basics 37

20!= 2432902008176640000

• Can you figure out what's happening when you try to compute n\ for n > 20?

Limit of a sequence
f o r loops are ideal for computing successive members of a sequence (as in Newton's method above).
The following example also highlights a problem that sometimes occurs when computing a limit. Consider
the sequence

an

*n = —, n — 1,2, 3 , . . .
n\

where a is any constant, and n\ is the factorial function defined above. The question is: what is the limit
of this sequence as n gets indefinitely large? Let's take the case a = 10. If we try to compute xn directly
we could get into trouble, because n! gets large very rapidly as n increases, and numerical overflow could
occur. However, the situation is neatly transformed if we spot that xn is related to xn-\ as follows:

axn-\
xn = .

There are no numerical problems now. The following program computes xn for a = 10, and increasing
values of n. Run it.

int k = 30; // number of terms
double a = 10;
double x = 1;

for (int n = 1; n <= k; n++)
{

x = a * x / n;
System.out.println(n + " " + x);

}
Try Exercises 2.23 to 2.25.

Reading data from a text file

Another common use of the f o r statement is in reading data from files. Suppose you want to compute
the average of some data you have been collecting. As an example, use your text editor to create the
following text (ASCII) file, and save it under the name nums . t x t :

10 3 . 1 7 . 2 4 . 5 9 . 9 6 . 0 7 . 9 3 . 7 9 . 2 6 . 5 3 . 9

The first value (10) is the number of data values to be read; it is followed by your 10 data values. The
following program reads them and prints their average:

import essential.*;

public class ReadNums
{

public static void main(String args [])

double n, x, sum, avg;

38 Essential Java for Scientists and Engineers

sum = 0;
FilelO fl = new FileIO("nums.txt", FilelO.READING);
n = fl.readDouble();

for (for i = 1; i <= n; i++)
{

x = fl.readDouble();
sum += x;

}

avg = sum / n;
System.out.println("Mean: " + avg);

}
}

Note:

• File I/O (input/output) is a bit cumbersome in Java, so once again we have provided you with an
easy-to-use class in the e s s e n t i a l package called F i l e lO . The statement

FilelO fl = new FilelO ("nums.txt", FilelO.READING);

creates a F i l e l O object f 1 which you can think of as a pipe (input stream) connecting your program
to the file nums. t x t . The READING field specifies that the file is opened for reading only, so that
the data can't be accidentally overwritten.

• The readDouble method reads the next data value from the file.
• For the data in this example, the mean is 6.19.
• A more realistic situation is where you don't know the exact number of data values (or couldn't be

bothered to count them!). We will see in Chapter 4 how to read an unknown amount of data from
a file.

Try Exercise 2.26.

2.7 Deciding with i f

The fo r loop enables us to write some fairly impressive programs, but when we extend our programming
repertoire to include the ability to make decisions the sky's the limit. Run the following short program
(you can change the output it makes if you like). Note that there is no output if you enter an age of 20
or more.

import essential.*;

public class Age

{
public static void main(String[] args)
{

int age;
System.out.print("How old are you? ");
age = Keyboard.readlnt();
System.out.printIn(age);

Java programming basics 39

if (age < 20)
System.out.printIn("Enjoy your teens while you can!");

}
}

Now extend the i f statement to look as follows

if (age < 20)
System.out.println("Enjoy your teens while you can!");

else
System.out.println("Getting on a bit aren't we?");

and check that the output is different depending on whether the age entered is less than 20, or 20
and above.

Here's another one to try—run it a few times:

public class SpinCoin
{

public static void main(String[] args)
{

double x;
x = Math.random();
if (x < 0.5)

System.out.println("Heads");
else

System.out.println("Tails");

Sometimes you get Heads, sometimes T a i l s . The program doesn't change, but the output does!
The random method of the Java Math class generates a random number x such that 0 < x < 1.

Roughly half the time x will be less than 0.5. We can therefore simulate spinning a coin by printing
Heads or T a i l s depending on whether the random number is less than 0.5 or not. Try Exercise 2.27.

Here's another example. If you open a savings account at the Random Bank you get an initial (random)
free gift of up to $10000. After a year interest is compounded at 12 per cent if your balance is $5000 or
more, or at 9 per cent if it is less than $5000:

public class RandBank
{

public static void main(String[] args)
{

double bal, finBal, rate;
bal = 10000*Math.random();

if (bal < 5000)
rate = 0.09;

else
rate = 0.12;

finBal = bal + rate * bal;
bal = Math.round(100*bal)/100.0;
finBal = Math.round(100*finBal)/100.0;

System.out.println("Initial balance: " + bal);
System.out.println("Rate: " + rate);

40 Essential Java for Scientists and Engineers

System.out.println("Final balance: " + finBal);

The if-else statement
The simplest form of the i f statement is

i f (condition)
statementl ;

e l se
statement! ;

• The e l s e clause is optional.
• If condition is true, statementl is executed; otherwise, if the e l s e clause is present, statement! is

executed.
• Both statementl and statement! may be groups of statements enclosed in block markers.
• The condition is a boolean or logical expression. The six relational operators == , ! = , < ,

<= , > and >= (see Table 2.3) are used to construct logical expressions.

The i f - e l s e - i f statement
The Random Bank now decides to go one better. It offers a random opening balance of up to $15000.
Interest of 9 per cent still applies to balances of less than $5000, but balances of over $10000 earn 15
per cent. Interest of 12 per cent applies to balances of $5000 or more but less than $10000.

Replace the b a l assignment statement and the i f - e l s e structure in the RandBank program with
the following:

bal = 15000*Math.random();

if (bal < 5000)
rate = 0.09;

else if (bal < 10000)
rate = 0.12;

else
rate = 0.15;

Run the new program a few times to verify that the correct interest rates are selected.
Try Exercise 2.28.

The i f - e l s e - i f ladder
The following layout is recommended for the general i f - e l s e - i f statement:

Table 2.3 Relational operators

Operator Meaning

< less than
<= less than or equal

equal
!= not equal
> greater than
>= greater than or equal

Java programming basics 41

i f (conditionl)
statement!;

e l s e i f (condition!)
statement!;

e l s e i f (condition3)
statement3;

e l se
statement;

This is called the i f - e l s e - i f ladder. Java evaluates the conditions from the top down. When it finds
a true condition, it executes the associated statement, and bypasses the rest of the ladder. If none of the
conditions are true, it executes the last statement (if there is an e l s e clause).

You need to arrange the logic carefully so that not more than one of the conditions is true.

f o r and i f ; counting passes

You can put an i f statement inside a fo r loop. A lecturer has got tired of marking scripts. Use the
following code to write a program for her which generates 1000 random marks in the range 0-99.99 and
calculates the pass rate (percentage of students who obtain 50 or more):

double mark; // random mark 0-99.99
double pass = 0 ; // number passing
double fail = 0 ; // number failing

for (int i = 1; i <= 1000; i++)
{

mark = 100*Math.random();

if (mark < 50)
fail = fail + 1;

else
pas s = pa s s + 1;

}

Rolling dice

When a fair dice is rolled, the number uppermost is equally likely to be any integer from 1 to 6. So if
Math. random () is a random number in the range [0, 1), 6*Math. random () will be in the range
[0, 6), and 6 *Math. random () +1 will be in the range [1, 7), i.e. between 1 and 6.9999. Discarding
the decimal part of this expression with Math, f l o o r () gives an integer in the required range. The
next program does the following:

• Generates (and prints) numberOf Throws random integers in the range 1 to 6.
• Counts the number of 'sixes' thrown.
• Estimates (and prints) the probability of throwing a six by dividing the number of sixes thrown by

numberOf Throws. Using random numbers like this to mimic a real situation based on chance is
called simulation (see Chapter 12).

import essential.*;
public class Prob6
{

42 Essential Java for Scientists and Engineers

public static void main(String[] args)
{

int numberOnDice;
int numberOfThrows;
int numberOfSixes = 0;
double probOfSix;

System.out.print("How many rolls: ");
numberOfThrows = Keyboard.readlnt();

for (int i = 1; i <= numberOfThrows; i++)

{
numberOnDice = (int) Math.floor(6*Math.random())+1;
if (numberOnDice == 6)

numberOfSixes++;
System.out.print(numberOnDice + " ");

}

System.out.println("\n");
probOfSix = numberOfSixes/ ((double) numberOfThrows);
System.out.println(probOfSix);

Sample output for 100 throws:

1 1 5 5 6 2 5 1 5 1 2 3 1 4 1 2 4 3 4 5 4 6 3 4 4 5 5 5 3 5 2 4 6 1 5 1 4
6 5 3 6 2 3 2 4 3 6 1 2 4 2 3 2 1 6 3 2 2 2 3 4 5 2 3 5 1 2 6 6 3 2 5 3 2
4 1 2 5 2 4 5 1 6 1 3 6 4 2 6 4 3 3 3 6 1 4 2 5 3 6

0.14

(you can check that there are 14 sixes if you like!)
Note:

• Although Math , f l o o r returns a 'mathematical integer', it is technically of d o u b l e type. A type-
cast is therefore necessary to coerce it to i n t type.

• Conversely, when p r o b O f S i x is calculated one of the integers on the right must be coerced to
d o u b l e to avoid truncation of the decimal part of the result.

• Each time you run the program you will get slightly different results, which is what you would
expect if you rolled a real dice.

• Repeat with some larger values of numberOf Throws. The larger it is, the closer the proportion of
sixes gets to the theoretical expected value of 0.1667, i.e. 1/6.

• Can you see why it would be incorrect to use Ma th . r o u n d instead of Ma th . f l o o r ?
The problem is that Ma th . r o u n d rounds in both directions, whereas Ma th . f l o o r always rounds
down.

Try Exercises 2.29 to 2.33.

Logical operators

Logical expressions can be combined with each other using logical operators.
As an example, consider the quadratic equation,

ax + bx + c = 0,

Java programming basics 43

which has equal real roots, given by -b/(2a), provided that b2 - 4ac = 0 and a ^ 0. This translates to
the following Java statements:

i f ((b*b - 4*a*c) == 0 && (a != 0))
x = - b / (2 * a) ;

Note the double equal sign in the test for equality, and also that the compound logical expression must
be enclosed in parentheses. The && operator is called the logical AND.

More logical operators are shown in Table 2.4, in order of precedence. As usual, parentheses may be
used to change the order of precedence. Table 2.5 shows the effects of these operators on the logical
expressions exprl and expr2.

Here is another example:

(f inalMark >= 60) && (f inalMark < 70) / / 2- g rade

It is a good idea to use parentheses to make the logic clearer, even if they are syntactically unnecessary.

Boolean variables

Java has a primitive data type called boolean. Variables of this type can take on the values t r u e or
f a l s e . You can assign a constant or a logical expression to a boolean variable, e.g.

boolean d = true;

d = b*b < 4*a*c;

You can print the value of a boolean variable (or indeed a boolean expression). For example,

S y s t e m . o u t . p r i n t l n (2*2 = = 4) ;

results in the output

t r u e

Try Exercises 2.34 and 2.35.

Table 2.4 Logical operators

Operator Precedence Meaning

! 1 NOT (logical negation)

2 exclusive OR
&& 3 AND
I I 4 inclusive OR

Table 2.5 Truth table for logical operators (T = true; F = false)

exprl expr2 \ exprl {exprl && expr2) {exprl \\ expr2) {exprl A expr2)

F F T F F F

F T T F T T
T F F F T T
T T F T T F

44 Essential Java for Scientists and Engineers

Nested i f s

In general, e l s e belongs to the most recent i f that does not already have an e l s e associated with it.
This is sometimes called the dangling else problem. You can always use block markers to avoid this, but
be careful. The next example illustrates the importance of correctly placed block markers.

Consider once again programming the solution of the familiar quadratic equation,
ax2 + bx + c = 0. It is necessary to check whether a = 0, to prevent a division by zero:

d i s c = b * b - 4 * a * c ;
i f (a != 0)

i f (d i s c < 0)
System.out.printIn("Complex roots");

else
{

xl = (-b + sqrt(disc)) / (2 * a) ;
x2 = (-b - sqrt(disc)) / (2 * a);

}

Inserting an extra pair of block markers as shown below (/ / i n s e r t e d) , however, makes a division
by zero certain if a = 0. This error, which we obviously want to avoid, occurs because the e l s e is
now forced to belong to the first if, instead of the second one by default (in spite of the suggestive
tabulation):

disc = b * b - 4 * a * c ;
if (a != 0)
{ // inserted

if (disc < 0)
System.out.println("Complex roots");

} // inserted
else
{

xl = (-b + sqrt(disc)) / (2 * a) ;
x2 = (-b - sqrt(disc)) / (2 * a) ;

}

The switch statement

A n i f - e l s e - i f ladder can become rather unwieldy if you want to test for a number of specific values.
An example would be a simple menu selection program. In such cases the s w i t c h - c a s e statement is
more appropriate. Here's an example:

int choice;
System.out.println("Enter your choice (any integer)");
choice = Keyboard.readlnt();
switch (choice)
{

case 1:
System.out.println("Do this");
break;

case 2:
case 3:

System.out.println("Do that");
break;

Java programming basics 45

default:
System.out.printIn("Do the other");

}

Note:

• If the user enters 1, the string "Do t h i s " is printed.
If the user enters 2 or 3, "Do t h a t " is printed.
If any other integer is entered, "Do t h e o t h e r " is printed.

• The selection must be based on an integer or character (see below) value (choice in this example).
• A break statement is needed in each case to pass control out of the entire swi t ch statement if

that case is selected. If b reak is omitted the subsequent cases are executed.
• There may be more than one case value for a given action.
• The case values do not have to be in any particular order.

2.8 Characters

A variable of the primitive data type char holds a single character. Literal character values (character
constants) are written between single quote marks:

cha r c = ' a ' ;

Characters are represented in Java by the Unicode character set, which is a set of integer values. For
example, the (small) letters of the alphabet are represented by the actual integer values 97, 98, . . . , 122.
A Java character constant is in fact the integer value in the Unicode set representing that character. For
example, ' a ' represents the integer value of the character a (97).

Try Exercises 2.36 and 2.37.

Escape sequences

A backslash (\) followed by a special character is called an escape sequence. Escape sequences can be
used to format output to a certain extent.

Common escape sequences are listed in Table 2.6. Escape sequences can be used as individual char-
acters in single quotes, or as characters in a string. For example, the code

System.out.println("\tlst\t2nd\n" + '\t' + 1 + '\t' + 2);

produces the output

1 s t 2nd
1 2

Table 2.6 Common escape sequences

Escape sequence Meaning

\ n move the cursor to the beginning of the next line

\ t move the cursor to the next tab stop
\ r move the cursor to the beginning of the current line

without advancing to the next line
\ \ print a backslash character
\ ' print a single-quote character
\ " print a double-quote character

46 Essential Java for Scientists and Engineers

2.9 Math methods

The standard Java Math class contains a number of methods which are useful in scientific and engineering
calculations, such as abs, cos, exp, f l oo r , log, s q r t , etc. These are all used with the class name,
e.g. Math, s q r t (2).

Consult the Java documentation for the complete list (see Chapter 3: Using the Java API).
Try Exercises 2.38 to 2.40.

2.10 Programming style

Programs that are written any old how, while they may do what is required, can be difficult to follow
when read a few months later, in order to correct or update them (and programs that are worth writing
will need to be maintained in this way).

Some programmers delight in writing terse and obscure code; there is at least one annual competition
for the most incomprehensible C program. A large body of responsible programmers, however, believe
it is extremely important to develop the art of writing programs which are well laid out, with all the
logic clearly described. Serious programmers therefore pay a fair amount of attention to what is called
programming style, in order to make their programs clearer and more readable both to themselves, and
to other potential users. You may find this irritating, if you are starting to program for the first time,
because you will naturally be impatient to get on with the job. But a little extra attention to your program
layout will pay enormous dividends in the long run, especially when it comes to debugging (finding and
fixing errors).

Some hints on how to improve your programming style are given below.

• You should make liberal use of comments, both at the beginning of a program, to describe briefly
what it does and any special methods that may have been used, and also throughout the coding to
introduce different logical sections.

• The meaning of each variable should be described briefly in a comment when it is initialized.
• Blank lines should be freely used to separate sections of coding (e.g. before and after loop structures).
• Coding inside structures (e.g. f ors and i f s) should be indented (tabulated) a few columns to make

them stand out.
• Blanks should be used in expressions to make them more readable, e.g. on either side of operators

and equal signs.
However, blanks may be omitted in places in complicated expressions, where this may make the
logic clearer.

Summary

• Identifiers are the symbolic names given to items in a Java program. They are case sensitive.
They must start with a letter, an underscore or a dollar,

• A variable is a chunk of memory which has a symbolic name and whose value may be changed.
• All variables must be declared with a type.

Java has a number of primitive data types, including i n t and double .
• An expression is a means of evaluating a formula using constants, operators, variables and meth-

ods.
• There are a number of different kinds of operators for evaluating expressions, which operate

according to rules of precedence,
• The arithmetic operators are +, -, *, / and % (modulus). When an integer is divided by another

integer the fractional part of the quotient is truncated, The relational operators <, <=, >, >*» =«

Java programming basics 47

(equals)* and ! = (not equal) compare two operands. The logical operators && (AND), | | (OR),
and l (negation) operate on true/false operands,

• TTie increment ** and decrement - - operators increase and decrease their operands by 1. The
operators may come before (pre) or after (post) their operands.

• there are ten assignment operators; *=, ~=, *=, /= , %=, >>=, «=> &=> | =, and *=•
• Parentheses may always be used to override the precedence rules.
• Variables may be coerced into a different type by typecasting,
• A f o r loop repeats a block of statements.
• A group of statements may be enclosed in {block markers}. The group is then treated as a single

statement
• Data may be input from a disk file with the P i l e I G class of the e s s e n t i a l package.
• i f ~&lse-enables a program to decide between alternatives.
• A boolean variable is t r ue or fa lse ,
• The s w i t c h statement enables you to make selections based on the value of an integer or

character variable*
• Single character constants are enclosed in single quotes.
• Simple principles of programming style should be used to make programs clear and readable.

Exercises

2.1 (a) Run the program Complnt in Section 2.1 as it stands.

(b) Change the second statement to

b a l a n c e ** 2000;

and make sure that you understand what happens when you mn the program again.
(c) Leave out the line

balance = balance * interest;

and re-run the program. Can you explain what happens?
(d) Try to rewrite the projp-am so that the original content of b a l a n c e is not lost Change

the p r i n t I n statement to output the original balance followed by the new balance,
2.2 Convert the following numbers to scientific notation:

1.234 x 105, - 8.765 x 1(T4, lCTi5> - 1012.

23 Decide which of the following constants are not acceptable in Java, and state why not:

(a) 9 ,87 (b) .0 (c) 25.82 (d)-356231
(e)3*57*E2 (f)3*57E2*l (g) 3.571*2 (h) 3 ,571-2

2.4 State, giving reasons, which of the following are invalid Java identifiers:

(a) a2 (b) a,2 (c) 2a (d) 'a'one
(e) aone (f) _x_l (g) miXedtrp (h) pay day
(i) U * S * B • R • (j) Pay Day (k) min*2 0) nat ive

48 Essential Java for Scientists and Engineers

2.5 Evaluate the following expressions yourself before checking the answers in a Java program:

1 + 2 * 3
2 / 2 * 3
4 / 2 * 2
1+4 / 4
1 + 4 % 2
Math.pow(2*2 , 3}
5 % 3 % 2
2 * (1 +. 2) / 3
l / 2 e - l

2.6 Write some Java statements to evaluate the following expressions and print the answers.

W 273
(b) 2 2 x 3

(c) 1.5xlO-4 + 2.5xlO"2 *

(d) 4l
.. 3 + 4
(6) 5T6
<f) the sum of 5 and 3 divided by their product
(g) 232

(h) the square of 2n
(i) In2

a) !

<k)

2^
1

2V5r
(1) the cube root of the product of 23 and 4,5

(m) 3*2

1 + ^ 1=2
60

(n) 1000 6 + 2^)
(o) (0.000)123 + 5.678 x 10~3) x 0.4567 x 10~4 (use scientific notation, e.g.

1,23e-S , • •; do not use Math, pow)

2.7 Evaluate the following expressions, given that f l o a t a = 2, f l o a t b = 3, f l o a t c *
5, and i n t i ~ 2, i n t j = 3.

a * b + c
a * (b + c)
b / c * a
b / (c * a)
a / i / j •

Java programming basics 49

i / J / a
1 7 / 5
4 / 3 / 4
4 / (3 / 4)
17 % (4 % 3)

3 *5

2.8 Translate the following expressions into Java:

(e) j ^ (f) ^ z (g)(xyy (h)x-% +

2.9 Water freezes at 32° and boils at 212° on the Fahrenheit scale. If C and F are Celsius and
Fahrenheit temperatures, the formula

converts from Celsius to Fahrenheit.
Write a program to convert a temperature of 37° C (normal human temperature) to Fahrenheit
(98.6°),

2.10 Engineers often have to convert from one unit of measurement to another; this can be tricky
sometimes. You need to think through the process carefully.
For example, convert 5 acres to hectares, given that an acre is 4840 square yards, a yard is
36 inches, an inch is 2.54 cm, and a hectare is 10000 m2. The best approach is to develop a
formula to convert x acres to hectares. You can do this as follows.

one square yard = (36 x 2.54)2 cm2

so one acre = 4840 x (36 x 2.54)2 cm2

a 0.4047 x 108 cm2

= 0.4047 hectares
so x acres = 0.4047x hectares

Once you've got the formula (but not until you've got the formula!), Java can do the rest:

x = 5; // acres
h = 0,4047 * x; // hectares
System.out.printIn(h);

Develop formulae for the following conversions, and use some Java statements to find the
answers.

(a) Convert 22 yards (an imperial cricket pitch) to metres.
(b) One pound (weight) = 454 grams. Convert 75 kilograms to pounds.
(c) One day in 2001 rates of exchange were: one pound sterling = 12.87 SA rand, and one

SA rand ==0.107 US dollars. Convert 100 US dollars to pounds sterling.
(d) Convert 49 metres/second (terminal velocity for a falling person-shaped object) to

km/hour.
(e) One atmosphere pressure = 14.7 pounds per square inch (psi) = 101.325 kilo Pascals

(kPa). Convert 40 psi to kPa.
(f) One calorie = 4.184 joules. Convert 6.25 kilojoules to calories.

50 Essential Java for Scientists and Engineers

2.11 Translate the following into Java statements:

(a) Add 1 to the value of i and store the result in i .
(b) Cube i , add j to this, and store the result in i .
(c) Divide the sum of a and b by the product of c and d, and store the result in x.

2.12 What's wrong with the following Java statements?

(a) n + 1 = n ;
(b) F a h r e n h e i t temp = 9*C/5 + 32;
(c) 2 = x ;

213 Write a program to calculate x, where

—b + V&2 — Aac

and a - 2, b - -10, c = 12 (Answer 3.0)
2.14 The steady-state current / flowing in a circuit that contains a resistance R = 5, capacitance

C = 10, and inductance L = 4 in series is given by

where E = 2 and m = 2 are the input voltage and angular frequency respectively. Compute
the value of / . (Answer: 0.0396)

2.15 There are eight pints in a gallon, and 1,76 pints in a litre. The volume of a tank is given as 2
gallons and 4 pints. Write a program which inputs this volume in gallons and pints and converts
it to litres. (Answer: 1136 litres)

2.16 Write a program to calculate petrol consumption. It should assign the distance travelled (in
kilometres) and the amount of petrol used (in litres) and compute the consumption in km/litre
as well as in the more usual form of litres per 100 km, Write some helpful headings, so that
your output looks something like this:

Distance Litres used km/L L/lOOkm

528 46.23 11.42 8.76

2.17 Write some statements in Java which will exchange the contents of two variables a and b,
using only one additional variable t .

2.18 Try Exercise 2.17 without using any additional variables!
2.19 A mortgage bond (loan) of amount L is obtained to buy a house. The interest rate r is 15 per

cent (0.15) p.a. The fixed monthly payment P which will pay off the bond exactly over N
years is given by the formula

r rL(i + j1f"

-«[(i+ f i r - i]-
(a) Write a program to compute and print P if N = 20 years, and the bond is for $50000.

You should get $658,39.

Java programming basics 51

(b) It's interesting to see how the payment P changes with the period N over which you
pay the loan. Run the program for different values of N (use Keyboard • r e a d l n t) .
See if you can find a value of N for which the payment is less than $625.

(c) Now go back to having N fixed at 20 years, and examine the effect of different interest
rates. You should see that raising the interest rate by 1 per cent (0.01) increases the
monthly payment by about $37.

2.20 It's useful to be able to work out how the period of a bond repayment changes if you increase
or decrease your monthly payment F. The formula for the number of years N to repay the loan
is given by

N =
121n (1 + ft)'

(a) Write a new program to compute this formula. Use Math. l og for the natural logarithm
In. How long will it take to pay off the loan of $50000 at $800 a month if the interest
remains at 15 per cent? (Answer: 10.2 years—nearly twice as fast as when paying $658
a month!)

(b) Use your program to find out by trial-and-error the smallest monthly payment that can
be made to pay the loan off—this side of eternity. Hint: recall that it is not possible to
find the logarithm of a negative number, so P must not be less than r£/12.

2.21 What are the values of x and a after the following statements have been executed?

a = 0;
i - 1;
X = 0;
a » a + i ;
x = x + i / a;
a = a * i ;
x = x + i / a;
a = a + i ;
x = x + i / a;
a = a + i ;
x = x + i / a;

2.22 Rewrite the statements in Exercise 2.21 more economically by using a f o r loop,
2.23 Work out by hand the output of the following program for n = 4:

int n;
double s = 0;
System.out.print{ "Number of terms? u };
n = Keyboard.readlnt();

for (int k = 1; k <= n; k++)
{

s = s + 1.0 / (k*k);
}

System.out.printIn(Math.sqrt($*s));

If you run this program for larger and larger values of n you will find that the output approaches
a well-known limit. Can you figure out what it is?

52 Essential Java for Scientists and Engineers

2.24 Suppose you deposit $50 per month in a bank account every month for a year. Every month,
after the deposit has been made, interest at the rate of 1 per cent is added to the balance, e.g.
after one month, the balance is $50.50, and after two months it is $101.51.
Write a program to compute and print the balance each month for a year. Arrange the output
to look something like this:

MONTH MONTH-END BALANCE

1 50.50
2 101.51
3 153.02

12 640.47

2.25 If you invest $1000 for one year at an interest rate of 12 per cent, the return is $1120 at the
end of the year. But if interest is compounded at the rate of 1 per cent monthly (i.e. 1/12 of
the annual rate), you get slightly more interest because it is compounded. Write a program
which uses a f o r loop to compute the balance after a year of compounding interest in this
way. The answer should be $1126.83. Evaluate the formula for this result separately as a check:
1000 x 1.0112.

2.26 Ten students in a class write a test. The marks are out of 10. All the marks are entered in a
text file m a r k s . t x t . Write a program to compute and display the average mark. Try it on the
following marks:

5 B 0 1 0 3 8 5 7 9 4 (Answer: 5.9)

2.27 Change the program SpinCoin in Section 2.7 so that Heads is twice as likely as T a i l s in
the long run.

2.28 Change the program RandBarik in Section 2.7 to generate random balances of up to $20000
and introduce a fourth interest of 20 percent for balances between $15000 and $20000.

2.29 Work through the following program by hand. Draw up a table of the values of i , j and m to
show how their values change while the program executes. Check your answers by running the
program.

i n t m;
i n t i = 1/

fo r (i n t j « 3 ; j <» 5; j++)
{

i++;
if (i =
{

i +
m =

2.30 The electricity accounts of residents in a very small town are calculated as follows:

• if 500 units or less are used the cost is 2 cents per unit;
• if more than 500, but not more than 1000 units are used, the cost is $10 for the first 500

units, and then 5 cents for every unit in excess of 500;

3)

2;
i + j ;

Java programming basics 53

• if more than 1000 units are used, the cost is $35 for the first 1000units plus lOcents for
every unit in excess of 1000;

• in addition, a basic service fee of $5 is charged, no matter how much electricity is used.
Write a program which reads any five consumptions from a text file, and uses a f o r loop to
calculate and display the total charge for each one. For example, if the data in the file is 200
500 700 1000 1500, the answers will be $9, $15, $25, $40, $90.

231 Income tax is usually calculated on the basis of the following sort of table:

Taxable income Tax payable

$10000 or less 10 per cent of taxable income
between $10000 and $20000 $1000 + 20 per cent of amount by which

taxable income exceeds $10000
between $20000 and $40000 $3000 + 30 per cent of amount by which

taxable income exceeds $20000
more than $40000 $9000 4- 50 per cent of amount by which

taxable income exceeds $40000

For example, the tax payable on a taxable income (i.e. after deductions) of $30000 is
$3000 + 30% of ($30000 - $20000), i.e. $6000.

Write a program which reads the following list of taxable incomes (dollars) from a text file and
displays them with the tax payable in each case: 5000, 10000, 15000, 22000, 30000, 38000
and 50000.

2.32 A plumber opens a savings account with $100000 at the beginning of January. He then makes
a deposit of $1000 at the end of each month for the next 12 months (starting at the end of
January). Interest is calculated and added to his account at the end of each month (before the
$1000 deposit is made). The monthly interest rate depends on the amount A in his account at
the time when interest is calculated, in the following way:

A < 110000: 1 percent
110000 < A < 125000 : 1.5 per cent

A > 125000: 2 per cent

Write a program which displays, for each of the 12 months, under suitable headings, the situation
at the end of the month as follows: the number of the month, the interest rate, the amount of
interest and the new balance. (Answer: values in the last row of output should be 12, 0,02,
2534.58, 130263.78).

2.33 Section 2.6 has a program for computing the members of the sequence

_an

xn — -.
nl

The program displays every member xn computed. Adjust it to display only every 10th value
of xn.
Hint: the expression n%10 (where n is i n t) will be zero only when n is an exact multiple of
10. Use this in an i f statement to display every tenth value of xn.

2.34 Determine whether the following logical expressions are true or false and check your answers
by printing them:

3 > 2
2 > 3
-4 <= -3

54 Essential Java for Scientists and Engineers

1 < 1
2 ! * 2 | | 3 — 3

235 Write a program to input values for a, b and c and to print the values of the two logical
expressions

(a 1 = 0) |I (b != 0} | | (c != 0)

and

! ({a == 0) && (b == 0) && (c == 0))

These two expressions are logically equivalent, and are false only when a = b = c = 0. Verify
this assertion by running your program with different values of a, b and c.

236 (a) See if you can use a f o r loop to print all the letters of the alphabet.
Hint: use the skeleton

f o r (char c = ' a ' ; . . .)

(b) Now print the alphabet backwards.
237 It's quite fun to generate random (small) letters to see what is the longest real word in any

language that occurs in a sample of such letters. See if you can write some code to generate,
say, 20 lines each of 60 random letters.
Hints:

• You will need to transform Math. random with something like

n + {Math.random() * m)

where n and m are integers chosen cunningly to make the result fall in the range 91 ...
122.

• You will also have to use the cast operator (char) to cast the result as a c h a r for
printing.

238 Translate the following formulae into Java expressions:

(a) ln(x + x2 + a2)
(b) [e3t +12 sin(4;)] eos2(3?)
(c) 4tanTl(l) (inverse tangent)
(d) sec2(x) + cot(y)
(e) c o r ^ x / a)

239 There are 3937 inches in a metre, 12 inches in a foot, and three feet in a yard. Write a program
to input a length in metres (which may have a decimal part) and convert it to yards, feet and
inches. (Check: 3.51 metres converts to 3 yds 2 ft 6.19 in.)

2.40 To convert the variable mins minutes into hours and minutes you would use
Math, f l o o r (mine/60) to find the whole number of hours, and mins%60 to find the
number of minutes left over. Write a program which inputs a number of minutes and converts
it to hours and minutes.
Now write a program to convert seconds into hours, minutes and seconds. Try out your program
on 10000 seconds, which should convert to 2 hours 46 minutes and 40 seconds.

3

Solving a problem in Java

Objectives

By the end of this chapter, you should be able to do the following:

• understand the role of the class provider, class user and end user;
• use classes, by creating objects and calling methods;
• understand how primitives and objects are stored in memory and be able to trace a program;
• write a simple class to be used by others;
• decide when it is appropriate to use s t a t i c methods in classes;
• find help in the Java API.

3.1 Introduction

Up till now you have been writing all your code in a main method. As programs become more compli-
cated, this will become unwieldy. We need a better way of structuring our code, and a good way is to
use an object-oriented approach. There are a number of reasons for structuring our code better:

• When problems become more complicated, it is easier to tackle the problem by breaking it up into
bite-sized chunks and solving it in parts, rather than trying to solve the whole problem all at once.

• Code that is structured logically is easier to read and understand, not only for ourselves, but for other
programmers as well.

In particular, when we structure our code in an object-oriented way, there are further benefits:

• Thinking in objects (rather than processes) is often a more natural way of thinking of a problem. We
recognize that if you have learnt to program in a procedural language, thinking in objects may seem
unnatural at first. We hope that, as you work through this book, you will come to see the benefits of
solving a problem using an object-oriented approach.

• The data and the processes (methods) that operate on that data are grouped together into a logical
unit called an object (we say that an object encapsulates both the data and the methods of an object).
Such an object is a well-contained unit, which can very easily be re-used as a component, by other
programmers, without them needing to know the details of how it was implemented.

• We can use inheritance. This is a powerful concept which will be explained in Section 2.

55

56 Essential Java for Scientists and Engineers

3.2 The class provider, class user and end user

While you write programs, you will be acting in different roles (see Table 3.1). Up till now, you have
acted in the role of the class user and end user. This chapter will show you how to also play the role of
the class provider.

For example, a programmer called Andy wrote the Graph class. While Andy was writing the Graph
class, he was acting in the role of the class provider. In Section 1.6, we wrote a program which used
the Graph class. At that point, we were acting in the role of the class user. When we ran the program
and viewed the output (the graph window), we were acting in the role of the end user. In this way,
as a programmer we will be switching roles (imagine it as putting on different hats) as we are writing
programs.

3.3 What are objects and classes?

When we declare a variable, we must specify the type. For example:

int x;
Turtle fred;

// the variable x is of type integer
// the variable fred is of type Turtle

A type is either a primitive data type (such as i n t , char , or f l o a t) , or a class (such as T u r t l e ,
or Graph). Notice that primitive data types start with a lowercase letter, whereas classes start with an
uppercase letter. When we declare a variable of a class, we call it an object. In the examples above, f r ed
is an object, whereas x is a primitive data variable (x is not an object). Objects differ from primitive
variables in two main ways:

1. Whereas a primitive data variable only contains data, an object contains both data and methods (i.e.
it can do things). In the examples above, f r ed can do things: go forward or turn right, etc, unlike
the primitive variable x which does not have methods.

2. Objects are stored in memory in a different way to primitive variables.

These concepts will be explained further in the next few sections.

Table 3.1 Different roles played by programmers when writing programs

Class Provider

Ik
mmmmL
Class User

End User

The class provider is the programmer who writes classes to be
used by other programmers. Sometimes you will need to put
on your class provider hat, and write generic code which can be
used by other programmers (including yourself).

The class user is also a programmer. When you are performing
the role of a class user, you will be using classes written by class
providers. Sometimes you will first play the role of the class
provider, then play the role of the class user in order to test that
your class works, as it should.

The end user is not a programmer, but rather somebody who is
using the final program. The role of the end user is to interact
with the program through the user interface. The end user
therefore does not see the source code of the program, but
only the final product. We draw the end user hat as a crown
to emphasise the importance of the end user. All programmers
should concentrate on writing programs which meet the end
user's needs. Sometimes you will need to put on an end user
hat to test your program from an end user's perspective.

Solving a problem in Java 57

Looking at the T u r t l e class in more depth

In the previous two chapters, we used classes which were written by other programmers. We did not need
to see the Java source code of these classes to know how to use them. All we needed to know was which
methods we could use. This list of methods is called the interface to the class. Take the T u r t l e class
for example: we were able to use this class without seeing the Java source code. The inner workings of
the class are hidden—we only need to know what methods are available to use the class (see Figure 3.1).

We will now look at the inner workings of the T u r t l e class. A single T u r t l e object is made up of
the following variables (see Figure 3.2):

• The x C o o r d i n a t e and y C o o r d i n a t e store the current position of the T u r t l e object in the
display window. Both values start off as 0 (the origin of the window). These values change as the
turtle moves.

• The a n g l e stores the current direction in which the turtle is facing. This value also starts off as
0, and changes in response to the r i g h t and l e f t methods. (The angle variable also changes in
response to the home method.)

Turtle class

The inner
workings of the
class are hidden.
We do not need to
know how it was
programmed in
order to use the
class. This is
called information
hiding

forward(int numSteps)

left(int numDegrees)

penUp()

warp(int x, int y)

The interface to
the class (i.e. a
description of
the methods) is
all we need in
order to use the
class.

Figure 3.1 The T u r t l e class as a black box, showing some of the methods. As a class user, we only need to know the
interface to use the class

Turtle

xCoordinate

yCoordinate

angle |

draw

colour

•

forward(int numSteps)

left(int numDegrees)

penUp

warp(inC x, int y)

I
home()

Figure 3.2 The data members of the T u r t l e class

58 Essential Java for Scientists and Engineers

• The draw variable is a boolean and stores whether the T u r t l e object should draw as it moves or
not. This value starts off as t r u e , and changes to f a l s e in response to the penUp method.

• The last variable is the co lou r variable which stores the colour in which the T u r t l e object draws.

In this way, the T u r t l e class contains both variables (called data members) and actions which affect
these variables (called methods). The variables stored inside a class are called by many different names.
We will usually refer to them as data members, but they are also known as data attributes ox fields.

3.4 Writing and using a simple class

We will now show you a simple example of a class and step you through the process of compiling and
using a class. Note: we are not talking about a class which contains the main method (as we have been
writing until now). Here we are writing a class which can be used by a main method in a different class.

1. Type the following Java code into a file called Square . j ava:

class Square
{
int size = 2;
char pattern = '*';

void draw()
{
for(int row = 1; row <= size; row++)
{
for(int col = 1; col <= size; col++)
System.out.print(pattern);

System.out.println();
}
System.out.println();

} // draw method
} // Square class

2. Compile this file, but do not run it. (If you try to run it, it will generate an error, since there is no
main method).

3. Type the following code into a file called UseSquare . j ava:

public class UseSquare
{
public static void main (String[] args)
{
Square si = new Square();
si.draw();
si.size = 5;
si.draw();
si.pattern = '&';
s1.draw();

} // main method
} // UseSquare class

4. Compile and run the UseSquare class. You should see output as shown in Figure 3.3.

Solving a problem in Java 59

Figure 3.3 Output from running UseSquare . j ava

We will now explain the details of what we have done. The S q u a r e class defines a template for S q u a r e
objects. What this means is that it is a description of what objects will look like and how they will behave.
The first two lines of code are:

i n t s i z e = 2 ;
c h a r p a t t e r n = ' * ' ;

This is how we define the data members of a class. By declaring these attributes, we are defining a
new type called S q u a r e , which is a structure containing two primitive data variables: an integer and a
character.

The class is more than a just a structure, however, since it also contains a method, which draws a
square. The appearance of the square will depend on the current values of the s i z e and p a t t e r n data
members.

In the main method of U s e S q u a r e , the first statement creates a S q u a r e object called s i . At this
point s i is made up of both s ize(which has a value of 2) and p a t t e r n (which has a value of ' * ') .
The second statement calls the d raw method (in object-oriented terminology, we say it invokes the
method). This effectively results in a jump to the first line of the d raw method, which is a f o r loop
(methods will be discussed in more detail in Section 3.7). Once all the statements in the d raw method
have been executed, the program jumps back to the ma in method and executes the next statement,
which is:

s i . s i z e = 5 ;

This statement changes the value of the s i z e variable of the object. When the d raw method is called for
a second time, the s i z e variable is 5, so it draws a bigger square shape. In the same way, the p a t t e r n
attribute is changed and the d raw method is called for a third time to draw a square of ampersands.

Now do Exercises 3.1 to 3.4 at the end of the chapter.

3.5 How memory works

It is important to understand how memory works, because primitive data variables and objects behave
differently, depending on the way they are stored.

What is memory?

Memory is part of the hardware of your computer and is used for storing data. There are two main stores
of data inside your computer: memory and disk storage.

60 Essential Java for Scientists and Engineers

Disk storage is the hard drive of your computer: a circular disk which spins around when you switch
on your computer. The important thing about disk storage, is that it is persistent, which means that
anything that you save onto your disk is still there when you turn off your computer. Files are stored on
your hard drive. The size of hard drives is currently measured in gigabytes (approximately 109 bytes)
for most PC's.

Memory, on the other hand, is usually measured in megabytes. When somebody asks you "How many
megs does your computer have?", they are referring to the capacity of the memory (more correctly known
as RAM—Random Access Memory). Memory is temporary storage. It disappears when your computer
is switched off. Have you ever had the experience of working on your computer when the electricity
failed? When the power came back on, did you find that you had lost some of the work you were doing?
When you are using a program, like a word processor, your document is being stored in memory. When
you push the save button, it is written to disk and so is safe from a power cut. Luckily, many programs
now have regular automatic backup facilities. You can think of memory as a large table of boxes which
can store data (a bit like a spreadsheet) where each box has an address for referencing its position.

How objects and primitives are stored in memory

When we declare a primitive data variable, a small amount of memory is set aside for that variable.
The amount of memory which is set aside is dependent on the type of the variable. Only a single bit
is needed to store a boolean variable (1 represents t r u e and 0 represents f a l s e) , whereas 32 bits
are needed to store an i n t . When an object is created, memory is allocated for all data members in the
class. For example, when a Square object is created, memory is allocated for both an integer (for the
s i z e attribute) and a character (for the p a t t e r n attribute). Consider the following program:

public class Memory
{
public static void main(String[] args)
{

int x = 25;
Square si = new Square();
si.size = 5;
Square s2;
s2 = new Square();
s2.pattern = '$';

A graphical representation of how the memory is allocated and the values change is shown in Figure 3.4.
In the first statement, a primitive data variable is declared and initialized. In the second statement, a

Square object is created. The variable s i is a reference to the whole object (not just a single value).
We call such a reference a handle. To access the s i z e attribute of the object, we have to precede it
with the handle name and a dot.

In the fourth statement, s2 is declared, but not created. This means that the handle has been created,
but there is no object in memory yet. If at this point, we try to access the s i z e or p a t t e r n attribute
of s2, an error will be generated, because the data members do not exist yet. In the next statement,
the object is created with the new keyword and the s i z e and p a t t e r n data members take on the
default values specified in the class. After the object has been created properly, the data members can
be accessed (as in the last statement), and the value of the p a t t e r n attribute is changed.

The mill keyword

When we declare a handle to an object and we have not yet created the object, the handle does not
reference or point to any object. Such a reference is known as a null reference. You can use the keyword
n u l l to refer to the value inside a null reference. For example:

Solving a problem in Java 61

Statement Memory after statement is executed

x = 25; 25

Square si =
new Square();

25
si o^

pattern

si.size = 5;
25

si o^
pattern

Square s2;
25

si o^ s2

pattern

o

s2 = new
Square(), 25

si o^ s2

pattern

o^
pattern B

s2.pattern

V; 25
si O^ s2

pattern

o^
pattern

Figure 3.4 A trace of the program Memory. j ava, showing how the values of variables change in memory

Turtle t;

if (t == null)
System.out.printIn("t is null");

else
t.forward(50);

You can also explicitly assign a handle to n u l l , for example:

S t r i n g s = " h e l l o " ;

s = n u l l ;

Now do Exercise 3.5.

62 Essential Java for Scientists and Engineers

3.6 The String class

Java has a special S t r i n g class, which is the basis of text-processing applications, for example. A string
is a series of characters treated as a single unit—an object to be precise. The S t r i n g data type is not a
primitive data type, like i n t , char, etc. S t r i n g is in fact a class. However, strings are fundamental
to Java; the S t r i n g class therefore has a number of features that we don't find in other classes.

One such feature is the way a S t r i n g object may be initialized:

String leader = "Mandela";

Here the object l e a d e r is created without calling a constructor method with new, as we did for
T u r t l e and Graph objects. This form of initializing strings is equivalent to the form which uses the
new keyword, as in:

String leader = new String("Mandela");

As mentioned in Chapter 1, we use the '+' operator for concatenating strings. In addition to this operator,
there are many methods that you can use with the S t r i n g class. Here are two of them:

• The method l e n g t h returns the number of characters in the string.
• The method charAt (i) returns the character at position i in a string (the first character is at

position zero).

The following statements illustrate some of these points (remember that the character ' \ n ' represents
the newline character):

String si = "hello";
String s2 = "there";
System.out.println(sl + ' ' + s2);
String s3 = "Line l\nLine 2";
System.out.printIn(s3);
char c = s2.charAt(3);
System.out.println(c);
int n = si.length();
System.out.println(n);

A representation of the state of the variables in memory at the end of these statements is shown in
Figure 3.5, and the output from these statements is:

hello there
Line 1
Line 2
r
5

Do you understand why?

s2o-*<
v hel lo"

s3 CM vLinel\nLine2//

' t h e r e

Figure 3.5 The state of the variables in memory

Solving a problem in Java 63

Equality testing of strings

In Section 2.7 you learnt about the == operator, for testing whether two primitives have the same value.
What do you expect the output to be of the following statements?

i n t x l = 5;
i n t x2 = 5;
String si = new String("cat");
String s2 = new String("cat");
System.out.println(xl == x2);
System.out.println(si == s2);

Although the output of the first p r i n t l n is t r u e , the result of the second p r i n t l n is f a l s e . The
reason for this is that when you say: s i == s2, you are comparing the values of the handles, not the
insides of the objects. Handles are almost like primitives, except that they contain references to objects
rather than the usual primitive values. Although we draw handles as arrows pointing to objects, they
are really just integers, which are the addresses of objects. So, when we compare the handle s i to the
handle s2, we are comparing the values of the addresses stored inside them, not the actual strings. Even
though the two strings are the same, they are two different objects with different addresses. The handles
are therefore not equal.

If you want to test for equality of strings, you have to use the e q u a l s method found in the S t r i n g
class. To get the correct answer (t rue) above, we would have to change the statement to:

System.out.println(si.equals(s2));

Note that e q u a l s is case-sensitive, so the statement:

" h e l l o " . e q u a l s (" H e l l o ") ;

would evaluate to f a l s e . To compare two strings ignoring case, use the equa l s l gno reCase method.
Now do Exercises 3.6 to 3.8.

3.7 Understanding methods

In this section we will explain the terminology of methods as you have been using them until now. In
the next section we will show you how to write methods.

A method is a block of Java statements inside a class, which has a name and performs an action (or
actions). We can identify methods by the parentheses (round brackets) which appear after the method
name, for example:

b.setTitle("Amazon"); // setTitle is a method

From the class user's perspective, a method of a class can be described in terms of:

1. The name of the method.
2. The data in: this is the external data (if any) required by the method to do its job.
3. The data out: this is the answer (if any) produced by the method.
4. The side effect: this is anything that the method does which results in some kind of change. Examples

of side effects are: any screen output, or changes in the state of the object caused by the method.

The examples in Table 3.2 illustrate these four properties (there are other properties, such as s t a t i c ,
which will be described later).

Method arguments

When we refer to the individual elements of the 'data in', we call them arguments. In Table 3.2, some
methods have no arguments. This means that the method can do its job without needing any data from

64 Essential Java for Scientists and Engineers

Table 3.2 Examples of method calls and their properties (t and g refer to existing Tur t le and Graph objects
respectively).

Example statements

d o u b l e x =
M a t h . s q r t (7)

t . f o r w a r d (5 0)

t . p e n U p ()

i n t y =
K e y b o a r d . r e a d l n t ()

S y s t e m . o u t . p r i n t (5)

d o u b l e r =
M a t h . r a n d o m ()

t . w a r p (5 0 , 5 0)

g . a d d P o i n t (5 , - 4)

Method name

s q r t

f o r w a r d

penUp

r e a d l n t

p r i n t

random

warp

a d d P o i n t

Data in

7 (the number
to be squared)

50

None

None

The number 5

None

50 and 50 (indi-
cating new loca-
tion for t)

5 and -4 (coordi-
nates of point to
be added to g)

Data out

2.6457 ... (a d o u b l e ,
the square root of the
data in)

None

None

An i n t (whatever the
user types in)

None

A random number
between 0 and 1

None

None

Side effect

None

The state of t changes
and consequently the
output on the screen
changes

The state of t changes

Keystrokes are read in
from the keyboard

5 is printed on the
screen

None

The state of t changes
and the output on the
screen changes

The state of g changes
to include an additional
point

the class user. One example is the T u r t l e penUp () method: the T u r t l e object itself can change its
d raw attribute to f a l s e . The f o r w a r d method, on the other hand, takes one argument and the warp
method takes two arguments. Both these latter methods are not able to do the job, unless you supply
them with the required arguments.

Return types
The 'data out' of a method is called the return value. This value has a type associated with it. For example,
the Math . s q r t method has a return type of d o u b l e . In contrast, the K e y b o a r d . r e a d l n t () method
has an i n t return type. When a method has no return type, we say its type is v o i d , meaning 'nothing'.

Signature of a method

Every method has what is called a signature. The signature is a way of identifying a method. Since
it is common to have multiple methods with the same name in a single class, the name alone is not
sufficient for identifying a method. The signature of a method is therefore a combination of the name and
the number and type of arguments. A class may not declare two methods with the same signature, or a
compile-time error occurs. When two methods (with different signatures) in a class have the same name,
we call it overloading (we will see examples of this in Section 3.8). In Chapter 7, we use a different
concept called overriding, where two methods in related classes have the same signatures.

Constructors
Constructors are special methods that have the purpose of creating objects and initializing the data
members. Constructors always have the same name as the class. Calls to constructors are preceded by

Solving a problem in Java 65

the new keyword. The following statements are examples of calls to constructors:

Turtle t = new Turtle();
Graph g = new Graph();
String s = new String("hello");

Classes can have multiple constructors. When there are no arguments in a constructor, we call it the
default constructor. When there are arguments in a constructor, we call it a parameterized constructor.

The T u r t l e class has a parameterized constructor which you can use instead of the default constructor.
This constructor takes one argument: the colour that the T u r t l e object should use when drawing. The
Java colours are defined in the package j ava . awt, so to use this constructor, you have to import the
package. Here is a sample program that uses both the default and parameterized constructors of the
T u r t l e class (note the American spelling of colour).

/* This program draws 4 spirals in different colours */
import essential.*;
import java.awt.*; // for using Java colours

public class Spirals
{
public static void main(String[] args)
{
Turtle black = new Turtle();
Turtle blue = new Turtle(Color.blue);
Turtle red = new Turtle(Color.red);
Turtle green = new Turtle(Color.green);

black.right(45); //turn away from centre by 45 degrees
blue.right(135);
red.right(225);
green.right(315);

// draw spirals
for(int i = 1; i <= 48; i++)
{
black.forward(6-i/8);
blue.forward(6-i/8);
red.forward(6-i/8);
green.forward(6-i/8);
black.left (10) ;
blue.left (10) ;
red.left(10);
green.left(10);

}

Now do Exercise 3.9.

More on the import statement

A package is a group of classes in the same directory. For example, say your friend Jack gave you a
package, called j a ck of classes that he wrote. Figure 3.6 shows the directory structure of his classes.

66 Essential Java for Scientists and Engineers

jack — | util — | Stack

Graph ' List

Math

Figure 3.6 Directory structure of Jack's classes

There are four classes:

• Graph and Math are stored in directory jack .
• S tack and L i s t are stored in directory j a c k \ u t i l .

In your program, you could import individual classes or whole directories of classes, as the following
examples show:

• import jack.*; // imports only Graph and Math
• import jack.Graph; // imports only Graph
• import jack.util.*; // imports only Stack and List
• import jack.util.List; // imports only List

Note the use of the dot operator to refer to subdirectories. Also note the wildcard ' * ' , which matches
all classes in a given directory, but not any classes in subdirectories.

Packages are usually zipped into . j a r files (see Section 3.16), so the original directory structure is
hidden inside the file.

3.8 Example: simulating a rabbit colony

We would like to write a program which models how a rabbit colony grows over time. We start with
a single male-female pair of baby rabbits. It takes two months for a baby to become an adult. At the
beginning of the month in which the pair reaches adulthood, they produce a pair of male-female baby
rabbits. They continue producing a single male-female pair of babies every month after that.

Data members of Rabbit Colony

Putting on the class provider hat, we start by deciding what data members are needed to describe a rabbit
colony. We will need three variables: one variable for storing the number of pairs of baby rabbits, one for
storing the number of pairs of rabbits that are 1 month old, and a third variable for storing the number
of pairs of adult rabbits. The beginning of our class would therefore look something like this:

class RabbitColony
{
int babies = 1; /* number of pairs of baby rabbits

(starting with 1) */
int young = 0 ; /* number of pairs of 1-month old rabbits */
int adults = 0; /* number of pairs of adult rabbits */

}

Methods of RabbitColony

We next decide what methods we need in our class, i.e. what would the class user want to do with a
rabbit colony? We decided on the following methods:

Solving a problem in Java 67

• a method which grows the colony for 1 month,
• a method which grows the colony for any number of months, and
• a method which returns the total number of rabbits in the colony.

This is the outline of the class with empty methods:

class RabbitColony
{
int babies 1; /* number of pairs of baby rabbits

(starting with 1) */
int young = 0 ; /* number of pairs of 1-month old rabbits */
int adults = 0; /* number of pairs of adult rabbits */

// grow the rabbit colony by one month:
void grow()
{
}

// grow the rabbit colony by n months:
void grow(int n)
{
}

}

// calculate the total
int getNumRabbits()
{
}

number of rabbits and return the value

The first grow method takes no arguments and returns nothing. It will simply change the state of the
object (i.e. increase the variables in the class). The second grow method takes an integer as an argument
(the number of months to grow the colony). It also returns nothing, since it just updates the variables.
The getNumRabbits takes no arguments, but returns an integer.

Using the Rabbit Colony class
Before we write the code inside the methods, we will take off the class provider hat and put on the class
user hat to see how this class could be used. This is an approach often used by programmers: to imagine
how your class will be used before you have finished writing it. It helps to ensure that the methods you
have chosen make sense. Here is a sample program that uses the Rabbi tColony class:

public class UseRabbitColony
{

argsj

}

public static void main(String[]
{
RabbitColony re = new RabbitColony();
rc.grow(6); // grow rabbit colony for 6 months
int num = re.getNumRabbits();
System.out.printIn("Number of rabbits after 6 months = " + num)

}

We will run this later, when we have finished writing the class. Note that we have used the default
constructor for creating the Rabbi tColony object. Although we have to provide code for all methods
in the class, the default constructor is an exception, since it is automatically defined if we do not write
our own constructor. In Section 3.10, we will write our own constructor.

Now that we have a better idea of how the class can be used, we can go ahead and write the methods.

68 Essential Java for Scientists and Engineers

Defining the grow () method

In the grow method, we have to simulate how the number of babies, young and adults increase in one
month. We have to convert the following facts into Java code:

• all the current young rabbits become adults;
• all the current babies become young;
• all the adult pairs (including the new ones) each produce a single baby pair.

Here is the Java code corresponding to the statements above:

// grow the rabbit colony by one month:
void grow()
{
adults += young; // all the young become adults
young = babies; // all the current babies become young
babies = adults; // all adult pairs produce a baby pair

}

Note that the order of these statements is significant. Can you see why? Do Exercise 3.10.

Defining the grow (i n t n) method

The parameterized grow method must grow the colony for any number of months. The first thing to
notice is the variable n. In the argument list of the method definition we have to indicate the type of the
argument (in this case an i n t) . We also have to specify a name for the argument, so that we can refer
to it inside the method. We have chosen to call it n, but could have chosen any other suitable name.
In the main method, where we used the Rabbi t Colony class, we grew the colony for 6 months
(r e . grow (6)), but we could have used any number as an argument. We call the number 6 an actual
parameter. In the method definition, we call the variable n a formal parameter.

Inside the method, all we do is call the grow () method n times. Here is the code:

// grow the rabbit colony for n months
void grow(int n)
{
for(int i=l; i<=n; i++)
grow();

}

Notice that we don't need to precede the method call with the object name in this case, because we are
inside the class.

Defining the getNumRabbits () method

The getNumRabbits method must calculate the total number of rabbits and return the answer. Here
is the code:

// calculate the total number of rabbits and return the value
int getNumRabbits()
{
int num = 2*(babies + young + adults);
return num;

}

Solving a problem in Java 69

The first statement calculates the total number of rabbits, by adding the pairs and then multiplying by
two. This is stored in a variable called num. The Java keyword for producing an answer from a method
is r e t u r n . In this way the method returns the value stored inside num.

Tracing UseRabb i tCo lony

We will now explain how UseRabbitColony works, by tracing through the program. The first state-
ment is:

RabbitColony re = new RabbitColony();

It creates the object in memory with the default values, as illustrated in Figure 3.7.
The second statement is:

r e .g row(6) ;

It results in a jump to the second grow method. Note: Java knows to use the second grow method
and not the first one, because we have given it an argument. In the method, n will take on the value
of 6 (only for the duration of this method call). The body of the loop will therefore execute 6 times.
Each time, the program jumps to the other grow method to execute the three statements there. Table 3.3
shows how the variables change on each loop iteration. See if you can work them out for yourself.

The third statement of the program is:

int numR = re.getNumRabbits();

Java will first evaluate the right hand side. To do so, it has to jump to the getNumRabbits method.
At this stage, b a b i e s contains 5, young contains 3 and a d u l t s contains 5. These values are totalled
and multiplied by 2 to produce an answer of 26, which is returned to the calling statement and stored in
numR. Finally, this value is printed out.

Now do Exercises 3.11 to 3.13.

babies 1

young 0

adu l t s 0

V '—' J
Figure 3.7 A RabbitColony object with default values

Table 3.3 Variable trace of

rc.grow(6)

i babies young adults

1 0 1 0

2 1 0 1
3 1 1 1
4 2 1 2
5 3 2 3
6 5 3 5

e^

70 Essential Java for Scientists and Engineers

3.9 Access modifiers

One of the features of object-oriented programming is that the data inside an object can be hidden from
the class user. The only way the class user can then access or change the attributes of an object is
through the methods. For example, in the T u r t l e class, you cannot change the xCoord ina t e and
yCoord ina te directly, but only through the methods: forward, backward, warp and home. One
of the reasons for this is that it can prevent you, the class user, from setting the variables to senseless
values. For example, in the following statements, the T u r t l e object would go out of the drawing area:

Turtle t = new Turtle ();
t.right(45);
t.forward(500) ;

If you executed these statements, you would notice that the turtle would not move (although it would
turn right). In this way, the methods of the T u r t l e object can control the way the class user changes
the variables. If you were able to change the xCoord ina te and yCoord ina t e directly, then this
could not have been prevented.

The publ ic andprivate keywords

When we are defining classes, we need some way of indicating which elements of the class should be
hidden from direct access by the class user, and which elements can be accessed freely by the class
user. The keyword p r i v a t e , when written in front of either a data member declaration or a method
definition, indicates that the element should be hidden from the class user. The keyword p u b l i c , on
the other hand, indicates that the element can be accessed directly by the class user.

In the T u r t l e class for example, the xCoord ina te is declared as p r i v a t e , whereas the forward
method is declared as p u b l i c . The class looks something like this:

public class Turtle
{

private double xCoordinate;

public void forward(double distance)

{

} ' " '

} '""
It is possible, therefore, with a T u r t l e object t , to call the forward method, but not to change the
xCoord ina te value directly:

t . f o r w a r d (1 0 0) ; / / OK
t . x C o o r d i n a t e = 5 0 ; / / WRONG!

In our RabbitColony class, the data members should be declared as p r i v a t e and the methods as
p u b l i c . This is because we would not want the class user to change the number of rabbits directly,
since we are simulating the growth in a particular way.

Other access modifiers

There are two other access modifiers, namely, and p r o t e c t e d and, if left unspecified, package.
Table 3.4 lists the four access modifiers in decreasing levels of strictness. Table 3.4 refers to a package,
which is basically a group of classes which have been declared as being in the same package (see
Section 3.16, where we show you how to write your own package). If your class is not specified as

Solving a problem in Java 71

Table 3.4 Access modifier keywords with associated visibility

p r i v a t e only visible within the class itself
package visible within the class itself and other classes in the same package
p r o t e c t e d visible within the class itself, other classes in the same package and subclasses

outside the package
p u b l i c visible from anywhere

being in a particular package (as is the case with all classes that we have written until now), it ends up
in the default package, which is a package that has no name. The keyword package is never actually
typed as an access modifier, it is merely a level of access defined when no access modifier is specified.
Subclasses have to do with inheritance and will be discussed in Chapter 7.

3.10 Example: simulating the growth of trees

We want to write a program which simulates the growth of trees. The aim is to model the growth of
different trees over time. We would like to see how tall a tree grows, given a particular growth rate. As
before, our approach to solving this problem will be the following:

1. Decide on data members.
2. Decide on methods.
3. Write a main method to test how the class can be used.
4. Write the methods.
5. Test the class by running the main method.

Data members for the Tree class

For each Tree object, we will need to store the height of the tree, as well as the growth rate. We will
conform to standard measurement units and store the height in metres and the growth rate in cm/year.
Here is the beginning of our class:

public class Tree
{
/* This class simulates the growth of a tree,
* given an initial height and a growth rate.
*/

private float height; // height of tree in metres
private float rate; // growth rate in cm/year

Notice that we have specified our data members as p r i v a t e , because we do not want the class user to
change these values directly.

Methods of the Tree class

Our Tree class should be able to simulate growing, so we should have a method for doing this. As with
the Rabbi tColony class, we will define two grow methods, one for growing a tree for one year and
the other for growing the tree for any number of years. The class user will need to find out how tall a
tree is after growing for a number of years, so we need to provide a method for returning the height. We
will call this method ge tHe igh t . It is standard practice in Java for methods that return values of data
members, to be named starting with the word ge t . In contrast, methods that change the values of data
members directly, are named starting with the word s e t . These g e t and s e t methods are known as
mutator methods.

The class user needs some way of setting the initial height and growth rate of a tree. This could be
done with s e t methods, but since the values will only be set once (when a Tree object is created), we

72 Essential Java for Scientists and Engineers

will rather let the class user set the values through a constructor. Constructors differ from other methods
in various ways. Since constructors have the same name as the class, they start with a capital letter
(assuming that you have conformed to the Java convention of naming your class starting with a capital
letter). Another difference is that return types are not specified for constructors.

We will therefore be writing four methods:

• publ ic Tree (f loat h, f loa t r) // parameterized constructor / / for s e t t i n g the
height and growth r a t e

• publ ic void grow()
• public void grow(int n)
• public float getHeightO

After writing a main method, we will provide the code inside these methods.

A main method to test the class

To test our class, we want to write a program that creates three different trees. All three trees start at the
same height (0.1 m), but have different growth rates. We grow all trees for 30 years and then print out
their heights. Here is a sample program:

public class UseTree
{
public static void main(String args[])
{
Tree normalTree = new Tree(0.1f, 15f);
Tree desertTree = new Tree(0.If, 6f);
Tree jungleTree = new Tree(0.1f, 25f) ;
normalTree.grow(30);
desertTree.grow(30);
j ungleTree.grow(30) ;

System.out.printIn("Normal Tree after 30 years: "
+ normalTree.getHeight() + "m");

System.out.println("Desert Tree after 30 years: "
+ desertTree.getHeight() + "m");

System.out.println("Jungle Tree after 30 years: "
+ jungleTree.getHeight() + "m");

Writing the methods

We start by writing the code for the constructor. All that this constructor needs to do is set the h e i g h t
and r a t e data members to the values supplied by the class user. Here is the code:

/* Parameterized constructor for setting height
* and growth rate
*/

public Tree(float h, float r)
{

height = h;
r a t e = r ;

}
Try to write the code for the remaining methods on your own, before looking at the rest of the class
below:

Solving a problem in Java 73

/* grow() method simulates the tree growing
* by one year
*/

public void grow()
{
float add = rate/100; // convert rate to metres per year
height += add; // then increment height

}

/* grow(int n) method simulates the tree
* growing for n years
*/

public void grow(int n)

{
for(int i=l; i<=n; i++) grow();

}

/* getHeightO method returns the current
* height of the tree
*/

public float getHeightO {
return height;

}

After writing the methods, you should always return to the main method, and run it to ensure that
the class works as it should.

Now do Exercise 3.14.

When to define a default constructor

Java programmers are sometimes unsure of when it is necessary or not to define a default constructor
in a class. In the R a b b i t Co lony class we defined no constructors and yet we were able to create
R a b b i t Co lony objects using calls to the default constructor. When no constructors are defined in a
class, Java defines its own default constructor for that class. However, when a parameterized constructor
is defined in a class, the default constructor is no longer automatically defined by Java. In our T r e e
example, we consciously did not define a default constructor, because we need the class user to specify the
height and growth rate when a T r e e object is created. Because we defined a parameterized constructor
and not a default constructor, the following statement will generate an error:

T r e e t = new T r e e () ;

We could, however decide to allow the class user to create objects in this way. We will then have to
define a default constructor, so that the above statement no longer generates an error.

You might find that there are situations where you will have to define an empty default constructor,
to prevent compiler errors. In the R a b b i t Co lony class, for example, you might decide to provide a
parameterized constructor to initialize the data members (b a b i e s , young and a d u l t s) to any values.
Calls to the default constructor will then no longer work, so you will have to define a default constructor.
This default constructor, however, will have nothing to do, because all the data members are initialized
where they are declared, so it will be empty:

public RabbitColony()

{
}

Now do Exercises 3.15 to 3.16.

74 Essential Java for Scientists and Engineers

The t h i s keyword

There may be times when you need some way of referring to the current object from inside the class.
The keyword for doing this is t h i s . One of the places where t h i s is useful is when you are setting
data members in a parameterised constructor, such as in the T r e e example:

/* Parameterized constructor for setting height
and growth rate */

public Tree(float height, float rate)

{
this.height = height;
this.rate = rate;

}

Notice that instead of using h and r as formal parameters, we have used the full variable names h e i g h t
and r a t e . Inside the method, t h i s . h e i g h t refers to the data member h e i g h t , whereas h e i g h t
refers to the actual parameter sent to the method. In the same way, t h i s , r a t e refers to the data
member and r a t e refers to the actual parameter.

3.11 Scope

The scope of a variable is the region of code within which the variable can be referred to by its name.
Scope is distinct from visibility. Visibility (set with an access modifier) refers to whether a data member
can be used from outside the class by other classes. Scope, on the other hand, refers to any variable (not
just data members) and where it can be used within a class. Figure 3.8 shows a sample class T e s t S c o p e
containing variables with different scope:

• Data member num has the entire class as its scope.

public class TestScope {

int locall = 2;

num = locall + p;

if (num > locall)

^locall * nuia * local2}

4&t^XocaX3 *= XO;

SyiteMi out*|>r intIn {local 1) $
, System»out * print ln> (local 3) ;

•4 •. -.;'.
^g&aMici yoid nsathod2 () {

| Y Scope of \

int another = 3;
num = another;

Scope of data
member num

; method
parameter p and
local variable
l o c a l l

Scope of local
variable l o ca l2

Scope of local
variable l oca l3

h \ ^ Scope of local
variable
another

Figure 3.8 Sample program indicating the scope of different variables

Solving a problem in Java 75

• Local variables are variables that are declared within a block of code, such as a method or a f o r
loop. The scope of a local variable extends from its declaration to the end of the code block in which
it was declared. Examples in T e s t S c o p e are l o c a l l , l o c a l 2 , l o c a l 3 and a n o t h e r .

• The scope of a method parameter is the entire method for which it is a parameter, as in the case of
parameter p.

If a variable is referenced outside its scope, an error will be generated. For example, the following
code will generate an error:

int num = Keyboard.readlnt();
i f(num > 10)

{
int value = num;

}
System.out.println(value); // error: value not defined

You can have more than one variable with the same name in the same class, as the following example
illustrates:

public class Hidden

{
private int num = 5;
public void methodlO
{
int num = 10;
System.out.println(num);

}
public void method2()
{
System.out.println(num);

}
}
If m e t h o d l is called, the output will be 10, whereas if method2 is called, the output will be 5. When
you use a variable, Java looks for the declaration in the smallest enclosing block (e.g. when using num
in m e t h o d l , Java first looks inside m e t h o d l for a declaration of num). If no declaration is found, Java
looks in the next enclosing block (in the case of me thod2 , the next enclosing block will be the class).

Now try Exercise 3.17.

3.12 More on object handles

In this section, we look at two aspects of object handles that you should be aware of. The first is that if
you pass an object to a method, the method can change the values inside the object (this is not the case
with primitive variables). The second aspect is that equality testing for the values inside objects cannot
be achieved using the equals operator (' = = ') .

Passing objects to methods

We first look at the detail of what happens when we pass primitive values to methods. Look at the
following two classes (stored in separate files):

public class Dog

{
private int age, dogAge;

76 Essential Java for Scientists and Engineers

public void setAge(int a)
{
age = a;
a = a * 7; // convert to dog years
dogAge = a;

}
}

public class TestDog {
public static void main(String [] args)

{
D°9 spot = new Dog();
int yrs = 2;
System.out.println("Value of yrs before calling setAge: " + yrs);
spot.setAge(yrs);
System.out.println("Value of yrs after calling setAqe: " + yrs);

}
}

The output of this program is:

Value of yrs before calling setAge: 2
Value of yrs after calling setAge: 2

Figure 3.9 shows how the values in memory change as the program progresses. The first two statements
allocate space for a Dog object, called s p o t , and an i n t variable, called y r s . When the s e t A g e method
is called, the value inside y r s is copied to a separate temporary store called a (the method parameter). The
value inside a is then copied into s p o t . age . The value inside a is then changed to 14 and this is copied
into s p o t . dogAge. At the end of method s e t A g e , the temporary variable a is discarded.

The important thing to notice here is the following: although the value of a has changed, this has
had no impact on the value of yrs. In other words: the method s e t A g e has not changed the value of
the actual parameter y r s , even though the formal parameter a changed. We call this way of passing
variables to methods, call-by-value, since the value is sent to the method, rather than the actual variable.
In Java, primitives are always passed call-by-value to methods.

In contrast, objects in Java are passed call-by-reference. This means that a method can change the
values inside an object passed to it as a parameter. The following example will illustrate this (to run the
program, save all three classes in separate files):

public class Person

{
private String firstname;
private String surname;
public Person(String f, String s)
{
firstname = f;
surname = s;

}
public void setSurname(String s) { surname = s;}
public String getSurnameO { return surname;}
public String toStringO
{
return firstname + " " + surname;

}

Solving a problem in Java 77

Statements

Dog spot = new Dog() ;
i n t y r s = 2;
S y s t e m . o u t . . .

s p o t . s e t A g e (y r s) ;

i r

s e t A g e (i n t a) { j
age = a;

a = a * 7;
dogAge = a; i

} !

S y s t e m . o u t . . .

Memory after statements are executed

r\
w x *

r
age

dogAge

V

bpUL

Ck age

dogAge

V

spot

O N age

dogAge

V

spot

G-J age

dogAge

V

~A

y r s

2

J

2

^

k .(T)

y r s

2

^J *

J

2

14

^

0
•

\ 2

y r s

2

J

2

14

^\

J

14

y r s

2

Figure 3.9 Call-by-value parameter passing

public class Marriage

{
private Person wife, husband;
public Marriage(Person w, Person h)

{
// husband takes on the wifes surname (just to be different)
h.setSurname(w.getSurname());
husband = h;
wife = w;

}
// end of class Marriage

public class TestMarriage

{
public static void main(String args[])

{
Person girl = new Person("Jill","Hope");
Person boy = new Person("Jack","Hill");

78 Essential Java for Scientists and Engineers

System.out.println("Value of boy before calling Marriage: " + boy);
Marriage couple = new Marriage(girl, boy);
System.out.println("Value of boy after calling Marriage: " + boy);

}
}

The program creates two P e r s o n objects and then creates a M a r r i a g e object consisting of the two
P e r s o n objects. Note that in the M a r r i a g e constructor, we change the husband's surname to be the
same as the wife's surname (we have purposefully done this to be unconventional!).

The output of the program is:

Value of boy before calling Marriage: Jack Hill
Value of boy after calling Marriage: Jack Hope

This shows that the method has changed the object boy. Figure 3.10 shows how the values in memory
change as the program progresses. First two P e r s o n objects are created (g i r l and boy) and these are
passed as parameters to the M a r r i a g e constructor. Inside the M a r r i a g e constructor, the parameters
w and h act as aliases to g i r l and boy, respectively. In other words, w points to the same object that
g i r l is pointing to and h points to the same object that boy is pointing to. When the s u r n a m e data
member of h is changed, this also affects the su rname of boy, because they refer to the same object.
In this way, a method can change the value of a parameter passed to it.

Object handles and assignment

Many Java programmers have problems when using the assignment operator ('=') with object handles.
In this section we explain why and show you how to get around the problem. The following program
defines a class called P e r s o n , which includes data members name and a g e . In the second part of
the ma in method, we are attempting to create two P e r s o n objects, both called " j a c k " , but aged 25
and 50.

Although it is recommended that you save each Java class in a separate file, there are cases (say, when
classes are very small) where you may want to save more than one class in a single file. You can do this
as long as only one class in the file is declared as p u b l i c and the name of the file is the same as the
name of the p u b l i c class. In the example below, you can save both P e r s o n and T e s t A s s i g n m e n t
in a file called T e s t A s s i g n m e n t . J a v a .

class Person

{
public String name;
public int age;

public Person(String s, int a)

{
name = s;
age = a;

}
}

public class TestAssignment

{
public static void main(String[] args)
{

int xl = 5;
int x2;
x2 = xl;
x2 = 6;

Solving a problem in Java 79

Statements Memory after statements are executed

Person girl = new
Person (xv Jill", "Hope")

Person boy = new
Person("Jack","Hill")

System.out...

girl

firstname Jill

Hope

boy

firstname Jack

Hill

Marriage couple = new
Marriage(girl, boy);

girl

public Marriage(
Person w, Person h) •

h. setSurname(
w.getSurname()) ;

husband = h;
wife = w;

boy

couple

Figure 3.10 Call-by-reference parameter passing

S y s t e m . o u t . p r i n t l n (x l) ;

Person pi = new Person("jack", 25);
Person p2;
p2 = pi;
p2.age = 50;
System.out.println(pi.age);

}
}

The output of this program is:

5
50

80 Essential Java for Scientists and Engineers

x l | 5 |

P lOx,
p 2 o ^

r
name

age
V

x2 1 6 I

"jack"

1 50 1
Figure 3.11 The variables x l and x2 have two distinct memory locations, but handles p i and p2 point at the same object

Is that what you expected? Although the two chunks of code look similar, they behave differently. When
we assign one primitive variable to another, as in:

x2 = x l ;

the value of x l is copied into the x2 'box'. When x2 changes in the next statement, this has no effect
on x2. In the case of objects, this works differently. In the statement:

p2 = p i ;

the value of the handle p i is copied into p2. This means that the memory address stored inside p i is
copied into p2. In other words, p i and p2 both point to the same object. Figure 3.11 illustrates what
the variables will look like in memory at the end of the program. When the age of p2 is changed, p i ' s
age also changes, because they share the same data members. To prevent this, we can do the following:

P e r s o n p2 = new P e r s o n (p i . n a m e , 5 0) ;

In this way, we have created a second object using a copy of p i ' s name.

3.13 The s t a t i c keyword

The s t a t i c keyword can be placed in front of a data member or a method. It indicates that the particular
element belongs to the class, rather than to individual object instances. In fact, the attribute or method
exists even if an object is not created. The s t a t i c keyword is often over-used by programmers who
are used to programming in a procedural paradigm. There are, however, situations where it is appropriate
to use s t a t i c , as we shall now see.

Understanding s t a t i c

We will use a simple example to explain the difference between s t a t i c and n o n - s t a t i c data members.
What would you expect to be the output of the following program? Draw the objects in memory and
trace the statements to work it out. If you want to run the program, you can save both classes in the
same file, but remember that you must call it S t a t i c T e s t . j a v a and not Num. j ava .

class Num
{
int num = 47;

}

public class StaticTest
{
public static void main(String args [])
{
Num nl = new Num();
Num n2 = new Num();

Solving a problem in Java 81

System.out.println("nl.num:
System.out.println("n2.num:
nl.num++;
System.out.println("nl.num:
System.out.println(Mn2.num:

The output would be:

n l . n u m : 4 7
n 2 . n u m : 4 7
n l . n u m : 4 8
n 2 . n u m : 4 7

If you now insert the keyword s t a t i c before i n t num = 47 in Num. J a v a , would you expect the
output to change? The output does in fact change to the following:

n l . n u m : 4 7
n 2 . n u m : 4 7
n l . n u m : 4 8
n 2 . n u m : 4 8

By inserting s t a t i c , the variable num now belongs to the class Num and is no longer an element of
the objects n l and n2. When n l .num is updated, it means that n2 .num is also updated, since they
refer to the same variable. We call such s t a t i c variables, class variables.

Constants

Constants are data members which are not variables, since they do not change or vary between objects.
Constants are both s t a t i c and f i n a l . The keyword f i n a l indicates that the element cannot change
its value, once it has been assigned. If you try to re-assign a f i n a l data member, the compiler will
generate an error. Constants are useful when you have a value which you use repeatedly, but which will
not change in the program. By declaring a constant, you give the value a name, which is often a more
convenient way of referring to the value.

An example of a constant in Java, is Ma th . PI . Notice that the data member PI is referenced by the
class name Math and not through an object handle. This indicates that PI is s t a t i c . It is also f i n a l ,
which means that you will not be able to re-assign PI to some other value. The following are examples
of constant definitions:

static final double RATE = 11.34;
static final int NUM_MONTHS = 12;
static final String COUNTRY = "South Africa";

Static methods

Sometimes it is appropriate to write a class, which does not contain any variable data members, but only
methods and constants. In this case it does not make sense to create objects of the class, because all
objects will be the same. Such methods, which do not use any attribute variables, are called s t a t i c
methods. If a s t a t i c method needs any data to do its job, the class user must send the data to the
method (via the argument list).

Examples of s t a t i c methods can be found in the Math class. This class is a 'home' for many
mathematical functions. All methods inside the Math class are s t a t i c and the only data defined in
the class are constants (such as PI). To use these methods, the class user does not have to create a
Math object, but can simply call the methods using the class name. Here are some examples of calls to
methods of the Math class (you can assume that x and y already have values):

" + n l . n u m) ;
" + n 2 . n u m) ;

" + n l . n u m) ;
" + n 2 . n u m) ;

82 Essential Java for Scientists and Engineers

double num = Math.sin(45);
float maximum = Math.max(x,y);

Further examples of s t a t i c methods can be found in the Keyboa rd class, for example:

Keyboard.readlnt()

Since it does not make sense to have multiple objects of type Keyboard , these methods were defined
as s t a t i c .

It is not incorrect to create an object of either the K e y b o a r d or Math classes before using the
methods. It would simply be unnecessary, since all objects would be the same. For example:

Keyboard kb = new Keyboard();
String s = kb.readLine();
Math mathObj = new Math();
double num = mathObj.sin(45);

In contrast to this, in the case of n o n - s t a t i c methods, an object has to be created before the method
can be used. Take the T u r t l e class for example: say we wanted to call the f o r w a r d method. We could
only do this after creating a T u r t l e object (which has an associated position, direction, colour and pen
status). The f o r w a r d method works with three pieces of data: the d i s t a n c e to go forward (which
is sent to the method via the argument list), the x C o o r d i n a t e and y C o o r d i n a t e (which are both
object data attributes). Calling the f o r w a r d method will change the x C o o r d i n a t e or y C o o r d i n a t e
of the given T u r t l e object, given the distance to be moved. It does not make sense (and so Java does
not allow it) to call the f o r w a r d method directly with the T u r t l e class, because it is not clear which
object this should affect:

Turtle.forward(50); // WRONG!

We will now create a useful class called C o n v e r t , which contains s t a t i c methods for doing con-
versions between different measuring units. We will start by adding two methods for converting from
Celsius to Fahrenheit and vice versa. Here is the class:

public class Convert

{

// convert a value c from Celsius to Fahrenheit
public static double celsToFahr(double c)

{
return 9*c/5 + 32;

}
// convert a value f from Fahrenheit to Celsius
public static double fahrToCels(double f)

{
return ((f - 32)*5)/9;

}
}

Here is a sample main method which uses the methods in this class:

public static void main(String [] args) {
System.out.println("100 Fahrenheit = " + Convert.fahrToCels (100)

+ " Celsius");
System.out.println("37 Celsius = " + Convert.celsToFahr(37)

+ " Fahrenheit");

}
Now do Exercises 3.18 to 3.20.

Solving a problem in Java 83

The main method revisited

We are now ready to look at the ma in method in a bit more detail. The ma in method always starts
with the following keywords:

p u b l i c s t a t i c v o i d

Given what we have learnt, we should understand that:

• p u b l i c means that the method can be called from outside the class. It is actually called by the Java
interpreter.

• s t a t i c means that it belongs to the class, so can be executed whether or not an object exists of
that class.

• v o i d means that the method does not return an answer.

Because ma in is a static method, it does not really matter where we put it. Suppose we have written a
class called P e r s o n , which we want to test. We can create a separate class called T e s t P e r s o n which
contains a ma in method and uses the class, but there is a second option. We could also write the ma in
method inside the P e r s o n class, for example:

class Person

{
private String name;
private int age;

public Person(String s, int a)

{
name = s;
age = a;

}

public void print()

{
System.out.println(name + " is " + age + " years old");

}

public static void main(String[] args)

{
Person p = new Person("Sue", 18);
p.print();

A s t a t i c method is placed inside a class, purely as a 'home', s t a t i c methods do not have access
to any n o n - s t a t i c data members or methods, even in the same class (unless it is through an object
handle). This is because a s t a t i c method is part of the class, not of the individual objects.

There are advantages to placing a ma in method inside the class you are testing. Firstly, the tester
code is stored in the same file as the class being tested and so can easily be reused as a test if the class
changes. Secondly, this approach results in fewer files.

3.14 Naming conventions

There are certain conventions for the naming of classes, methods, variables and constants in Java.
We recommend that you conform to these conventions, otherwise your code will look odd to other
programmers.

84 Essential Java for Scientists and Engineers

1. Names of classes should start with an uppercase letter, and continue with lowercase characters. Each
logical word inside the name should start with an uppercase as well. Underscores are not used.
Examples: T r e e , R a b b i t C o l o n y , T u r t l e D r a w i n g .

2. Method names and variables should start with a lowercase letter and continue in the same way as
class names. Examples: x, d e s e r t T r e e , grow, g e t N u m R a b b i t s .

3. Constants should be written entirely in uppercase, with underscores between logical words. Examples:
MAX_SIZE, PI .

3.15 Using the Java API

The Java API (Application Programmer's Interface) contains descriptions of all the classes which are
part of standard Java. If you have installed the Java 2 documentation, you will see a d o c s folder in
the j d k l . 3 . 1 folder. To browse the API, click on i n d e x . h t m l in the d o c s folder. If you have not
installed the documentation, you can find it online at:

http://Java.sun.com/j2se/l.3/docs/api/

When you open the documentation, you should see a window with three frames. The top left frame shows
a list of packages, the bottom left frame shows a list of all classes and the right-hand frame describes
each package. We will look at the S t r i n g class as an example.

In the list of classes, scroll down until you see 'String' and click on it. Look through the description
(don't worry if you don't understand all of it) and scroll down to 'Constructor Summary'. Notice how
many constructors there are for creating S t r i n g objects. Scroll down to the 'Method Summary' table.
You should recognize some of these methods. The return type for each method is shown on the left and
the parameters are specified in parentheses. If you click on any of the methods, you will jump down to a
more detailed description of the method. In this way, you can browse the API to find out what methods
are in a given class and how each method can be used.

Now do Exercises 3.21 to 3.23.

3.16 Making your own package (optional)

A package is a group of classes in the same folder. If you want to make a package of a group of classes,
called say my CI a s s e s , do the following:

1. Create a folder called m y C l a s s e s and place the . J a v a files into the folder.
2. Edit each Java file so that the first line reads:

package myClasses;

3. Compile all the files.
4. Create a jar file of your package. A j a r file is an archive of class files. Using j a r files is a

convenient way for others to use your package. To create a j a r file, open a DOS box and change
to the folder above m y C l a s s e s . Type in the following command (note: j a r is part of the Java
SDK):

jar cf myClasses.jar myClasses

This will create a file called m y C l a s s e s . j a r
5. Copy m y C l a s s e s . j a r into the following directory:

c:\jdkl.3.l\jre\lib\ext

If your version of Java is stored somewhere else, then copy it to the equivalent \ j r e \ l i b \ e x t
folder.

Solving a problem in Java 85

You can now use the classes from anywhere on your computer by importing the package:

import myClas se s .* ;

c • ~~ ~ ~ ~ • - ~ ~ ~ ~ ~ ~ — — — • — — — ~ - \

I Summary

! • Structuring code logically into classes leads to programs that are easier to understand and re-use.
• As a programmer, you will be continually switching roles from class provider to class user to

end user.
• Objects encapsulate both data and methods.
• Handles are references to objects stored in memory. When a handle is empty it is called a null

reference.
• S t r i n g s in Java are proper objects.
• A method is a block of statements inside a class, which has a name.

| • Methods have arguments (data sent to the method) and return values (data sent out of the method).
• A value sent to a method is known as an actual parameter, whereas the declaration of an argument

inside a method is known as a formal parameter.
• Constructors are special methods that are used for creating objects in memory and initializing the

data members,
• The scope of a variable is the region of code within which the variable can be referred to by its

name.
• The approach we recommend to solving a problem through a class is:

1. Decide on data members.
% Decide on methods needed.

| 3* Write a main method to test how the class can be used.
4. Write the methods.
5. Test the class by running the main method.

• A p r i v a t e element of a class can only be accessed from within the class, whereas a p u b l i c
| element can be accessed from anywhere.

• When a primitive variable is passed to a method, it cannot be changed by the method. On the
other hand, when an object is passed to a method, the values inside the object can be changed by
the method.

• When one object handle is assigned to another object handle, they will both point to the same
object in memory.

• The keyword s t a t i c indicates that an element belongs to the class, rather than to individual
objects of that class.

• Constants are s t a t i c f i n a l data members and are used to store values that do not change or
I vary between objects.

• The Java API is a useful source of information on the standard Java classes.

Exercises

3.1 Write a program which uses the Square class from Section 3.4 to draw a square of size' 10,
using the character ' x ' .

3.2 Modify your program above, so that it prompts the user to enter the size and pattern character to
use, before drawing the square. (Hint: Use the readChar method of Keyboard for reading
in a single character. Also, ask the user to enter the size and pattern on the same line.)

86 Essential Java for Scientists and Engineers

33 Modify the Square class to include a data member called f i l l , which is of type boolean .
The default value of f i l l should be set to t r u e , If the value of f i l l is t r u e , the square
shape should be drawn with characters filling up the square (as it has been until now). If the
value of f i l l is f a l s e , then the square should be drawn as an outline of characters. For
example, if s i z e is 6, p a t t e r n is ' * ' , and f i l l is set to f a l s e , the following shape
should be drawn:

it it it in it it

it it

it *

* *
* *
ieititic "kit

3.4 Write a main method to test your modified Square class,
3.5 Study the following program:

import essential.*;
public class TurtleExercise

public static void main (String[] args}

Turtle tl;
Turtle t 2 ;
tl*forward(100);
t2.backward(100);

What will happen when you compile this program? If there are any errors, modify the program
until you can run it and see the output.

3.6 What is the output of the following statements?

String si = "polo";
String s2 s H c a l l H ;
System,out.print(s2*charAt(0));
System.out.print(si,charAt(3));
System * out•print(si•charAt{1)) ;
System.out-print(s2.charAt(2)5;
System.out.printIn{n I n) ;

3 J Write a program that prompts the user for two strings. If the two strings entered are equal, then
print the message: "The s t r i n g s a r e t h e same' , otherwise print the message: xThe
s t r i n g s a r e d i f f e r e n t ' .

3.8 Write a program that asks the user to enter a string and then prints out that string backwards.
(Hint: remember that the l e n g t h method will tell you how many characters there are in the
string.)

3.9 For the following statements, give the name of the method, the data in (arguments), data out
(return value) and side effect (assume that t and g refer to existing T u r t l e and Graph
objects respectively):
(a) String s * Keyboard • readLine 0 ;
(b) t*home{);

Solving a problem in Java 87

(c) g . se tAxes (0 , 1 0 , 0 , 6) ;
(d) T u r t l e t = new T u r t l e (C o l o r . g r e e n) ;

3.10 In the growO method of the Rabbi t Colony class (Section 3.8), the a d u l t s variable is
updated first, followed by young and b a b i e s .
(a) Explain what would happen if the statements were reordered as followed:

young = babies; // all the current babies become young
adults += young; // all the young become adults
babies ~ adults; // all adult pairs produce a baby pair

(b) Explain what would happen if the statements were reordered as follows:
babies = adults; // all adult pairs produce a baby pair
young = babies; // all the current babies become young
adults +« young; // all the young become adults

3.11 Using the Rabbi tColony class defined in Section 3,8, write a program which prints out the
total number of rabbits every year for 15 years*

3.12 Change the Rabbi t Colony class to reflect that 1 in 4 of the baby rabbit pairs die at birth.
Round this value down to the nearest pair of rabbits. For example, if there are 10 pairs of
babies born, only 8 will survive.

3.13 Using your modified Rabbi t Colony class from Exercise 3.12, write a program which prints
out the total number of rabbits every year for 15 years. How does this program differ from the
one in Exercise 3.11?

3.14 Modify the Tree class from Section 3.10 so that the growth rate is reduced by 10% every year
once the tree is taller than 1 m. Run the main method again to see what impact it has on the
heights of the three trees.

3.15 Add a default constructor to the Tree class, which sets the height to 0.1 m and the growth
rate to 10 cm per year. Write a main method which creates a Tree object using the default
constructor and prints out the height of the tree, to test that it works correctly.

3.16 Add a parameterized constructor to your modified Square class from Exercise 3.3, which
takes three arguments for setting the s i z e , p a t t e r n and f i l l data members. Modify your
class so that the class user can still use the default constructor as an alternative. Write a main
method to test both constructors.

3.17 Does the following code compile? If not, explain why not.

public class TryThis
{

private int memberX = 150;

public void methodl()
{
int local1 ~ memberX;
local2 s 5;
System.out.println(locall);

}
public void method2(}

int memberX = 20;
int local2 = 6;
methodl();

88 Essential Java for Scientists and Engineers

System, out .printIn (memberX) ;

} // end of class TryThis

What would be the output if method2 was invoked? (Assume that any lilies that cause errors
are commented out,)

3.18 Add methods to the Convert class defined in Section 3.13 to convert acres to hectares and
vice versa (see Exercise 2.10 for conversion factors).

3.19 Add methods to the Convert class defined in Section 3.13 to convert pounds to kilograms
and vice versa (see Exercise 2.10 for conversion factors).

3.20 Write a main method to test the new methods you wrote in the above two exercises.
3.21 Using the Java API, find out how to use the endsWith and s u b s t r i n g methods of the

S t r i n g class. Now write a program which reads in from the user a weight in kilograms. Store
the weight as a string, rather than a number. You should check if the user typed in the value
followed by 'kg' or not. If they did type in 'kg', you should create a new string which has the
'kg' part removed. Print the final string (which should just be a number) to check that your
program works correctly.

3.22 In the F l o a t class, there is a s t a t i c method called p a r s e F l o a t , which takes a S t r i n g
as an argument and returns a f l o a t . Use this method to change the S t r i n g you created in
Exercise 3.21 to a f l o a t .

3.23 Modify your program from Exercise 3.22 to print out the value of the weight in pounds. In
other words, the final program should read in a weight in kilograms and print it out in pounds.
Your program should not generate an error if the user types in 'kg' after the weight, but should
simply ignore it. Use the Convert class from Exercise 3.19 to do the conversion.

4

More on loops

Objectives

By the end of this chapter you should be able to

• identify two distinct types of repetition in program design: determinate and indeterminate;
• write more general programs involving the f o r loop;
• write short programs involving indeterminate repetition with the w h i l e construct.

This chapter will also give you more experience in developing object-oriented solutions to science
and engineering problems.

In Chapter 2 we introduced the powerful f o r statement, which is used to repeat a block of statements
a fixed number of times. This type of structure, where the number of repetitions must be determined in
advance, is sometimes called determinate repetition. However, it often happens that the condition to end
a loop is only satisfied during the execution of the loop itself. Such a structure is called indeterminate.
This chapter is mainly about indeterminate loops; first, however, we will look at some more general
examples of f o r loops.

4.1 Determinate repetition with for

Binomial coefficient
The binomial coefficient is widely used in mathematics and statistics. It is defined as the number of ways
of choosing r objects out of n without regard to order, and is given by

n\ n\
r) r\(n — r)\

(4.1)

If this form is used, the factorials can get very big, causing an overflow. But a little thought reveals we
can simplify Equation (4.1) as follows:

n\ n(n-l)(n-2)---(n-r + l)
, (4.2) r] r\

89

90 Essential Java for Scientists and Engineers

/ l 0 \ _ 10! _ 1 0 x 9 x 8
e'g* \ 3 / ~ 3! x7 ! " 1 x 2 x 3 '

Equation (4.2) is computationally much more efficient. We would like to implement it as a method, so
that we can easily use it from any program. Since the method will be the kind that has data passed to
it (rather than using data member variables), it makes sense for it to be static. A logical 'home' for this
method could be a class which contains common mathematical and statistical methods. We will call the
class E s s e n t i a l M a t h (so that it does not conflict with Java's Math class).

import essential.*; //needed in due course

public class EssentialMath
{

public static double ncr(int n, int r)
{

double ncr = 1;

for (int k = 1; k <= r; k++)
{

ncr = ncr*(n - k + l)/k;
}

}
}

return ncr;

The binomial coefficient is sometimes pronounced 'n-see-r'. Work through the method by hand with
some sample values. Here's how to use n c r in a main method:

public static void main(String[] args)
{

System.out.println(ncr(10, 3));
}

f o r loops with non-unit increments

Up to now, we have used a fo r loop where the counter always increases in steps of 1. Here's an example
where the increment is 2:

for (int i = 1; i <= 20; i += 2)
System.out.print(i + " ") ;

The output is

1 3 5 7 9 11 13 15 17 19

The increment can in fact be any expression, even a decrement. The following code prints the numbers
1-10 in reverse order:

for (int i = 10; i >= 1; i--)
System.out.print(i + " ") ;

Now try Exercises 4.1 to 4.6 at the end of the chapter.

More on loops 91

Y
po.o

75.0 _.

37.5 _

0.0 _

3.0

{ ^ • • • • • • • • l

BBSSSBBBW

100.0

fcagSi^SWs&^i^ia^

200.0

^̂ ^̂ Ĥ

300.0

PPrTd|le|j

X I

Wo

^W^^w^HWMB;

Figure 4.1 Projectile trajectory with Essential Grapher (launch velocity = 60 m/s, launch angle = 60°)

Plotting a projectile trajectory with Essential Grapher

Drawing graphs is easy with our handy graphics tool, Essential Grapher, which is part of the e s s e n t i a l
package. The following program shows how to use it to plot the trajectory of a projectile launched from
the ground with a velocity u metres per second at an angle of a degrees to the horizontal. If there is no
air resistance, the horizontal and vertical displacements of the projectile t seconds after launch are given
by the formulae

x = ut cos(a),

y = ut sin(tf) — gt/2,

where g is the acceleration due to gravity. Figure 4.1 shows a typical trajectory plotted with Essential
Grapher. Here is a class to plot the trajectory, together with a main method that uses the class, followed
by an explanation:

import essential.*;
import j ava.awt.Color;
public class Projectile
{

public static double g = 9.8; //acceleration due to gravity
private double a; //launch angle in radians
private double u; //launch velocity

public Projectile(double a, double u)
{

this.a = a*Math.PI/180; //convert to radians
this.u = u;

public double getTimeOfFlight()

92 Essential Java for Scientists and Engineers

{
return 2*u*Math.sin(a)/g; // from applied maths!

}

public void displayTrajectory()
{

Graph traj = new GraphO;
traj.setAxes(0, 400, 0, 150);
traj.setColour(Color.black);
double tof = getTimeOfFlight();
double x, y;

for (double t = 0; t <= tof; t = t + 0.1)
{

x = u*t*Math.cos(a);
y = u*t*Math.sin(a) - 0.5*g*t*t;
traj.addPoint(x, y);

}

import essential.*;

public class UseProjectile
{

public static void main(String[] args)
{

System.out.print("Enter launch angle (in degrees): ");
double a = Keyboard.readDouble();
System.out.print("Enter launch velocity: ");
double u = Keyboard.readDouble();
Projectile p = new Projectile(a, u);
p.displayTrajectory();

The parameters of the Pro j e c t i l e constructor (a and u) have the same name as the data members
being initialized. This simplification is made possible by the use of t h i s .
The constructor converts the launch angle from degrees to radians.
If you have done some applied mathematics you will recognize the formula in the
getTimeOf F l i g h t method as the time of flight of the projectile.
The Graph class in our e s s e n t i a l package implements Essential Grapher in a class user-friendly
fashion. The statement

Graph t r a j = new G r a p h O ;

(in the d i s p l a y T r a j e c t o r y method of P r o j e c t i l e) creates an object t r a j of this class
which will draw itself.
The method setAxes sets the limits of the axes of the graph display. Its four parameters stand for
xmin, xmax, ymin and ymax respectively.
The s e t C o l o u r method (note the British spelling!) sets the drawing colour of our t r a j object.
This method in turns selects a colour from the Java API class Color (US spelling!).
The fo r statement repeats the calculation of the x and y coordinates of the trajectory as time
increases and uses the addPoin t method of the Graph class to plot the point.

More on loops 93

Grapher joins each point plotted with a straight line, so if the points are close enough the resultant
graph will look smooth.
Note that the index t in the fo r loop,

fo r (double t = 0; t <= t o f ; t = t + 0.01)

is no longer a simple counter as it has been in our previous examples of fo r loops, but represents
the times at which the trajectory points are calculated. The increments in t are kept small, so that
the graph looks smooth. The fo r loop stops when t reaches t o f (the time of flight).

• The user can change the axis limits of the graph with Grapher's Properties menu.
• The trajectory looks remarkably like a parabola. This is not surprising since it is a parabola. You

can prove this quite easily by eliminating t from the equations for x and y.

Use Grapher to find by trial-and-error the launch angle that gives the maximum range (applied math-
ematicians should know the answer).

Now try Exercise 4.7.

Update processes

Many problems in science and engineering involve modelling a process where the main variable is
repeatedly updated over a period of time. Here is an example of such an update process. We are going
to program the solution in an object-oriented way, to provide you with a useful template for similar
problems in the future.

A can of beer at temperature 25 °C is placed in a fridge, where the ambient temperature F is 10 °C.
We want to find out how the temperature of the beer changes over a period of time. A standard way
of approaching this type of problem is to break the time period up into a number of small steps, each
of length dt. If T(is the temperature at the end of step /, we can use the following model to get 7}+i
from Ti\

Ti+l = Ti-Kdt(Ti-F), (4.3)

where K is a constant parameter depending on the insulating properties of the can, and the thermal
properties of beer. Assume that units are chosen so that time is in minutes.

To make the solution more general, we will introduce some more notation before developing the Java
solution. Call the initial time a, and the final time b. Since our time steps are of length dt, the number
m of such steps will be

m — (b — a)/dt

(where m must obviously be an integer). We will want the results to be displayed in some form. If dt is
very small, it will be inconvenient to have output printed after every step, so the program below (Fridge)
allows you to set the output interval op I n t . This is the interval (in minutes) between successive rows
of (printed) output. It checks that this interval is an integer multiple of dt and prints a warning if it is
not. This device also enables you to compare results for different values of dt (simply use the same
value of op ln t) .

The following program as it stands calculates and draws the cooling curves of two different types of
beverage placed in the fridge: a can of beer and a can of OJ (orange juice). Explanation of the main
points follows the program.

import essential.*;
import Java.text.*; // for DecimalFormat

public class Fridge

{
private double F; // ambient temp in fridge

94 Essential Java for Scientists and Engineers

private double K; // cooling constant
private double TO; // initial temp of beverage

// constructor: put the beverage in the fridge
public Fridge(double Fi, double Ki, double Ti)

{
F = Fi; K = Ki; TO = Ti ;

}

public void cool (double a, double b, double dt, int oplnt)
// cool the beverage for b minutes, in steps of dt,
// starting at time a,
II with results displayed every oplnt minutes

{
int m; // number of update steps
double t = 0; // time elapsed
double T; // current temperature of beverage
DecimalFormat df = new DecimalFormat("00.00");

//format to 2 decimal places

Graph coolDraw = new Graph();
coolDraw.setTitle("K = " + K) ;
coolDraw.setDrawTitle(true);
coolDraw.setAxes(0, 100, 10, 30);

m = (int) Math.floor((b-a)/dt);
t = a;
T = TO;

if (Math.abs(Math.IEEEremainder(oplnt,dt)) > le-6)
System.out.printIn

("Warning: oplnt not an integer multiple of dt1");

System.out.printIn("time Model");
System.out.printIn(df.format(t) + " " + df.format(TO));

//initial values

for (int i = 0; i < m; i++)

{
t = t + dt;
T = T - K*dt*(T-F); // update model equation
if (Math.abs(Math.IEEEremainder(t, oplnt)) < le-6)

System.out.printIn(df.format(t) + " " +
df.format(T) + » ") ;

coolDraw.addPoint(t, T);
}

public static void main(String[] args)

More on loops 95

{
Fridge beer = new Fridge(10, 0.05, 25);
Fridge OJ = new Fridge(10, 0.15, 25);

beer.cool(0, 100, 0.1, 5);
OJ.cool(0, 50, 0.1, 5);

}
}

• We use the object-oriented programming concepts introduced in Chapter 3. So a class F r idge is
defined; beverages with different cooling properties will be placed in the fridge to cool.

• The data members of F r idge are the ambient temperature inside (F), K as defined in Equation (4.3),
and the initial temperature of a beverage in the fridge, TO.

• The constructor for F r idge sets the properties that will affect a beverage placed in the fridge: the
ambient temperature in the fridge, the beverage's constant K (which will be different for beer and
OJ) and its initial (room) temperature.

• F r idge has one method, cool . Its parameters are the initial and final times, dt and the output
interval op I n t .

• For every time step d t , cool updates the temperature according to Equation (4.3), plots the current
temperature against time with Essential Grapher.
If time t is a multiple of o p l n t , cool prints the time and the temperature.

• Note that by creating a Graph object inside cool a cooling curve may be drawn with Essential
Grapher for each F r idge object created in main. Figure 4.2 shows what to expect.

Q\ i i — h - i 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (minutes)

Figure 4.2 Cooling curves

96 Essential Java for Scientists and Engineers

• Graph has a method s e t T i t l e which labels the particular graph being plotted.
Note how the string concatenation operator (+) is used in the argument of s e t T i t l e .
The Graph method s e t D r a w T i t l e (t r u e) must be used to make the title visible.

• The Java API class D e c i m a l F o r m a t (in j a v a . t e x t) is used to format the output neatly with two
decimal places. The D e c i m a l F o r m a t constructor has a string argument which provides a pattern
for the required format. You create a D e c i m a l F o r m a t object for each type of format you want,
and use its f o r m a t method to output a correctly formatted string.
The pattern " 0 0 . 0 0 " produces two decimal places over five columns altogether (one for the decimal
point), filled with zeros from the left if necessary.

With values of K = 0.05, F = 10, initial temperature TO = 25, b = 100, d t = 1 minute and
o p l n t = 5 minutes, we get the following output:

time Model
00.00 25.00
05.00 21.61
10.00 18.98
15.00 16.95

1 0 0 . 0 0 1 0 . 0 9

Try Exercises 4.8 and 4.9.

The nested f o r loop

A f o r loop may be 'nested' inside another f o r . The main point to note is that the counter of the inner
f o r changes faster. See if you can figure out what the following code does before looking at the output
below it (work it out with pencil and paper):

for (int i = 1; i <= 3; i++)

{
System.out.print(i + " ");
for (int j = 1; j <= 9; j++)

System.out.print(j + " ");
System.out.printIn();

}
Output:

1 1 2 3 4 5 6 7 8 9
2 1 2 3 4 5 6 7 8 9
3 1 2 3 4 5 6 7 8 9

The rows of output are numbered according to the outer loop on i . For each value of i , the inner
loop on j runs from 1 to 9.

Here's a different example, from the world of home finances. A regular fixed payment P is made n
times a year to repay a loan (mortgage bond) of amount A over a period of k years, where the nominal
annual interest rate is r. The value of P is given by

rA(l+r/n)nk

w[(l +r/n)nk - 1]'
P = ——-— ' / . (4.4)

The next program uses nested f o r loops to print a table of the repayments on a loan of $1000 over a range
of repayment periods and at a range of interest rates. P is directly proportional to A in Equation (4.4).
Therefore the repayments on a loan of any amount may be found from the table generated by the program,
by simple proportion.

More on loops 97

Output:

import j ava.text.*;

public class Loan

{
private double a = 1000; //amount borrowed

public double getPayment(int n, int k, double r)

{
//returns the regular fixed payment given the
//payments per year (n), period (k years) and annual
//interest rate (r)

double N = r*a*Math.pow(1+r/n, n*k);
double D = n*(Math.pow(1+r/n, n*k) - 1);
return N/D;

}
public void printTable(int n# int yl, int y2,

double rl, double r2)
{

DecimalFormat dP = new DecimalFormat("00.00");
DecimalFormat dr = new DecimalFormat("00%");

//heading #

System.out.print("rate");
for (int k = yl; k <= y2; k += 5)

System.out.print("\t" + k + " yrs");
System.out.printIn();

for (double r = rl; r <= r2*(l+le-6); r += 0.01)
// watch out for rounding

}

{

}
}

System.out.print(dr.format(r) + "\t\t");

for (int k = yl; k <= y2; k += 5)

{
double P = getPayment(n, k, r);
System.out.print(dP.format(P) + "\t");

}
System.out.printIn();

public static void main(String[] args)

{
Loan 1 = new Loan();
1.printTable(12, 15, 30, 0.1, 0.2);

}

rate 15 yrs 20 yrs 25 yrs 30 yrs
10% 10.75 09.65 09.09 08.78

98 Essential Java for Scientists and Engineers

11%
12%
13%
14%
15%
16%
17%
18%
19%
20%

11.
12,
12,
13,
14,
14
15,
16
16
17

.37

.00

.65

.32

.00

.69

.39

.10

.83

.56

10,
11,
11,
12,
13,
13,
14,
15,
16,
16

.32

.01

.72

.44

.17

.91

.67

.43

.21

.99

09,
10.
11,
12.
12,
13,
14,
15,
15,
16,

.80

.53

.28

.04

.81

.59

.38

.17

.98

.78

09.
10.
11.
11.
12,
13.
14,
15,
15,
16,

.52

.29

.06

.85

.64

.45

.26

.07

.89

.71

Note:

• The DecimalFormat pattern "00%" multiplies by 100 and inserts the % symbol.
• Did you spot the odd condition r <= r2* (l + l e - 6) in the outer fo r loop of p r i n t T a b l e ?

If you use the more obvious r <= r2 the loop may not execute for r = r2 . This is because of
rounding error: r is never exactly equal to r2 for non-integer types. Rounding error, which can
occur with non-integer types, is discussed in Chapter 5.

It is probably better to avoid using double type altogether when counting in a fo r loop. We, after
all, learnt to count on our fingers, of which we have a whole number!

We want r to go from values f i r s t to l a s t in steps of increment . The iteration count or trip
count for the loop is then computed as

Math.floor((last-first)/increment)+1

The fo r loop for r must then be replaced by something like

fo r (i = 1; i <= M a t h . f l o o r (. . .) + 1 ; i + +)

You will also need to increment r explicitly. As an exercise, see if you can rewrite the program
using this counting device.

Now try Exercise 4.10, which uses nested fo r loops.
Exercises 4.11 to 4.22 provide some further practice with fo r loops generally.

4.2 Indeterminate repetition with w h i l e

Determinate loops all have in common the fact that you can work out in principle exactly how many
repetitions are required before the loop starts. But in all the problems in this section there is no way in
principle of working out the number of repeats, so a different structure is more appropriate.

Rolling a dice for a six
How many times do you have to roll a dice before you get a six (or any other number, for that matter)?
Well, it depends, doesn't it? If we want to write a program to simulate rolling a dice until a six is thrown,
we don't know in advance when the six will come up (if we did, we could win a fortune many times
over at casinos which would be foolish enough to accept us!). We could use a f o r loop for this situation,
but we will rather introduce a more appropriate loop structure for this problem—a whi le loop.

The structure plan for this problem is as follows:

1. Generate and display a random integer in range 1-6
2. While integer is not a six repeat:

Generate and display a random integer in range 1-6
3. Display the total number of throws.

More on loops 99

Step 1 is necessary before the loop in Step 2 begins; you must roll the die once before you can see
whether any repeats are necessary. This plan translates into the following Java class (six is generalized
to n), which is implemented in the program following it (it also counts how many throws are need to
get the number n):

public class Dice
{

public int thro()
{

int numberOnDice = (int) Math.floor(6*Math.random ())+1;
return numberOnDice;

}

public void throwUntil(int n)
{

int numberOfThrows = 1;
int numberOnDice = thro();
System.out.print(numberOnDice + " ");

while (numberOnDice != n)
{

numberOnDice = thro();
numberOfThrows++;
System.out.print(numberOnDice + " ");

}

}
}

System.out.printIn("(" + numberOfThrows + " throws)");

public class UseDice
{

public static void main(String[] args)
{

Dice d = new Dice();
d.throwUntil(6) ;

}
}

Output from two sample runs:

5 3 4 5 2 2 3 5 3 3 4 1 5 4 1 3 1 3 5 4 1 1 3 6 (24 throws)
3 6 (2 throws)

Try Exercise 4.23.

The wh i l e statement

In general the whi l e statement looks like this:

wh i 1 e (condition) {
statements

}

The whi l e construct repeats statements as long as its condition remains t r u e . The condition is tested
each time before statements are repeated. Since the condition is evaluated before statements are executed,

100 Essential Java for Scientists and Engineers

it is possible to arrange for statements not to be executed at all under certain circumstances. Clearly,
condition must depend on statements in some way, otherwise the loop will never end.

A guessing game

In this problem the program 'thinks' of an integer between 1 and 10 (i.e. generates one at random). You,
the user, have to guess it. If your guess is too high or too low, the program must say so. If your guess
is correct, a message of congratulations must be displayed.

Once again a structure plan is helpful here:

1. Generate random integer
2. Ask user for guess
3. While guess is wrong:

If guess is too low
Tell her it is too low

Otherwise
Tell her it is too high

Ask user for new guess
4. Polite congratulations.

Here is the object-oriented implementation:

import essential.*;
public class GuessingGame
{

//generate random integer between 1 and 10:
private int javaNum = (int) Math.floor(10*Math.random())+1;

public void playO
{

System.out.print("Your guess please: ");
int userGuess = Keyboard.readlnt();

while (userGuess != javaNum)
{

if (userGuess > javaNum)
System.out.println("Too high");

else
System.out.println("Too low");

System.out.print("Your next guess please: ");
userGuess = Keyboard.readlnt();

}

System.out.println("At last!");
}

public static void main(String[] args)

GuessingGame g = new GuessingGame();
g.playO ;

More on loops 101

Try it out a few times. Note that the whi l e loop repeats as long as j avaNum is not equal to userGuess .
There is no way in principle of knowing how many loops will be needed before the user guesses correctly.
The problem is truly indeterminate.

Note that userGuess has to be input in two places: firstly to get the whi l e loop going, and secondly
during the execution of the whi le .

Try Exercises 4.24 and 4.25.

Prime numbers

Many people are obsessed with prime numbers, and most books on programming have to include an
algorithm to test if a given number is prime. So here's ours.

A number is prime if it is not an exact multiple of any other number except itself and 1, i.e. if it has
no factors except itself and 1. The easiest plan of attack then is as follows. Suppose P is the number to
be tested. See if any numbers N can be found that divide into P without remainder. If there are none,
P is prime.

Which numbers N should we try? Well, we can speed things up by restricting P to odd numbers, so
we only have to try odd divisors N.

When do we stop testing? When N = PI No, we can stop a lot sooner. In fact, we can stop once N
reaches v^P, since if there is a factor greater than \fP there must be a corresponding one less than \ /P ,
which we would have found.

And where do we start? Well, since N = 1 will be a factor of any P, we should start at AT = 3.
The structure plan is as follows:

1. Input P
2. Initialize N to 3
3. Find remainder R when P is divided by N
4. While R ^ 0 and N < «/¥ repeat:

Increase N by 2
Find R when P is divided by N

5. If R f 0 then
P is prime

Else
P is not prime.

Note that there may be no repeats—R might be zero the first time. Note also that there are two conditions
under which the loop may stop. Consequently, an i f is required after completion of the loop to determine
which condition stopped it.

We implement the algorithm as a s t a t i c boo lean method of the E s s e n t i a l M a t h class proposed
at the beginning of the chapter. The method screens out the special cases P = 1 and P = 2, as well as
even values of P.

public class EssentialMath
{

public static boolean isPrime(int p)
{

//first screen out some tricky and obvious ones:
if (p == 1 || p == 2) //prime by definition

return true;
else if (p%2 == 0) //even

return false;
else {

long n = 3;
long r = p % n;

102 Essential Java for Scientists and Engineers

while (r != 0 && n < Math.sqrt(p))
{

n += 2;
r = p % n;

}

if (r != 0)
return true;

else
return false;

}
}

public static void main(String[] args)
{

System.out.printIn(isPrime(17));
}

}

Try it out on the following numbers: 4058879 (not prime), 193707721 (prime) and 2147483647 (prime).
If such things interest you, the largest known prime number at the time of writing was 26972593 — 1
(discovered in June 1999). It has 2098960 digits and would occupy about 70 pages if it was printed in a
newspaper. Obviously our algorithm cannot test such a large number, since it's unimaginably greater than
the largest number which can be represented by Java. Ways of testing such huge numbers for primality
are described in D.E. Knuth, The Art of Computer Programming. Volume 2: Seminumerical Algorithms
(Addison-Wesley, 1981). This particular whopper was found by the GIMPS (Great Internet Mersenne
Prime Search). See http://www.utm.edu/research/primes/largest.html for more information on the largest
known primes.

Try Exercise 4.26.

Projectile trajectory

In Section 4.1 we considered a program (P r o j e c t i l e) to plot the trajectory of a projectile, given the
usual equations of motion (assuming no air resistance). Although this problem can be solved with a
determinate loop, as it was there—if you know enough applied mathematics—it is of interest also to
see how to solve it with an indeterminate whi le loop. The idea is to calculate the trajectory repeat-
edly with increasing time, while the vertical displacement (y in the program below) remains posi-
tive. The only changes that need to be made to P r o j e c t i l e are in the d i s p l a y T r a j e c t o r y
method:

public void displayTrajectory()
{

Graph traj = new Graph();
traj.setAxes(0, 400, 0, 150);
traj.setColour(Color.black);
double t = 0;
double dt = 0.5; //time step
double x = 0;
double y = 0;

while (y >= 0)

More on loops 103

90 h yS* "*N. A

80 r / \ 1

70 Y / \ A

60 h / \ A

50 h / \ A

401 / \ I

30 h / \ A

201 / \ I

10 \ \ I

0 L I I I I I I I I
0 50 100 150 200 250 300 350 400

Figure 4.3 Projectile trajectory using a wh i l e loop

{
traj.addPoint(x, y) ;
t + = dt; //update time
x = u*t*Math.cos(a);
y = u*t*Math.sin(a) - 0.5*g*t*t;

Figure 4.3 shows the trajectory for a launch angle of 45° and a launch velocity of 60 m/s. Note in
particular how the trajectory stops above the x axis.

Note also that when the loop finally ends, the value of y will be negative. However, the position of
the p ro j . addPoin t statement ensures that only points with positive y components are plotted. If for
some reason you need to record the last value of t , say, before y becomes negative, you will need an
i f statement inside the whi le , e.g.

i f (y >= 0)
tmax = t ;

Reading an unknown amount of data

In Section 2.6 we saw how to read a known amount of data from a text file (Reading data from a
text file). In reality we are unlikely to know exactly how much data we have. The next example uses a
whi l e loop to read an unknown amount of data from the file nums . t x t and to compute their average.
You can test it, if you like, on the following data, which has an average of 6.19:

3 .1 7.2 4 .5 9.9 6.0 7.9 3.7 9.2 6.5 3.9

The code is written as another s t a t i c method of Essen t i a lMath :

104 Essential Java for Scientists and Engineers

public class EssentialMath

{
public static double average(String fileName)
{

double x;
int n = 0; //number of data items
double sum = 0;
FilelO fl = new FileIO(fileName, FilelO.READING

}

}

while (!fl.

{
x = fl.

}

n++;
sum + =

return sum

. isEof ())

.readDouble(

x;

/ n; // //assumes file is not empty!

• The crucial device here is the F i l e l O . isEof method in the e s s e n t i a l package. This
method is true for a F i l e l O object as long as there is more input in the file waiting to be
read.

Try Exercises 4.27 to 4.31 for some general practice using whi le loops.

The do -wh i le statement

Java has an alternative to the whi l e s t a t emen t : do-whi le . Here's how to use it to code the
throwUnt i l method of the Dice class at the beginning of this section—rolling a dice until a particular
number comes up:

public void throwUntil(int n)
{

int numberOfThrows = 0;
int numberOnDice;

do

{
numberOnDice = throO;
numberOfThrows++;
System.out.print(numberOnDice + " ");

}
while (numberOnDice != n) ;

System.out.println("(" + numberOfThrows + " throws)");
}

Note the subtle difference here: the dice does not have to be rolled before the loop starts.

More on loops 105

The do-whi le loop has the form

do {
statements

} whi le {condition) ;

The block markers are not strictly necessary when there is only one statement; however, they improve
readability.

The do-whi le repeats statements while the expression condition remains true (i.e. until it becomes
false). The condition is tested after each repeat before making another repeat. Since the condition is at
the end of the loop, statements will always be executed at least once.

w h i l e versus do - w h i l e

A problem coded with whi le can logically always be rewritten with do-whi le , and vice versa (try it
if you are skeptical—see Exercise 4.32). The question then arises: when should we use do -whi l e and
when should we use whi le?

This is a matter of taste. There is, however, a large body of opinion among programmers which
maintains that it is good programming style for conditions under which loops are repeated to be stated
at the beginning of the loop. This favours the whi l e construct, since its condition is stated at the
beginning. However, in situations where at least one repeat must be made, it often seems more natural
to use the do-whi le construct.

Summary

• A f o r statement should be used to program a determinate loop, where the number of repeats is
known to the program (Le. in principle to the programmer) before the loop is encountered. This
situation is characterized by the structure plan;

Repeat N times:
Block of statements to be repeated

where N is known or computed before the loop is encountered for the first time, and is not
changed by the block.

• A whi l e or a do -wh i l e statement should be used to program an indeterminate repeat structure,
where the exact number of repeats is not known in advance. Another way of saying this is that
these statements should be used whenever the truth value of the condition for repeating is changed
in the body of the loop. This situation is characterized by the following structure plan:

While condition is true repeat:

statements to be repeated (reset truth value of condition).

or

Repeat;
statements to be repeated (reset truth value of condition)

while condition is true.
• The statements in a wh i l e construct may sometimes never be executed,
• The statements in a do-whi le construct are always executed at least once.
• Loops may be nested to any depth,

106 Essential Java for Scientists and Engineers

Exercises

4.1 Write some statements which print the odd integers 99,97,95,. . . , 3, L
4.2 Write some statements to find and print the sum of the successive even integers 2 ,4 , . , . , 200.

(Answer: 10100)
43 Generate a table of conversions from degrees (first column) to radians (second column). Degrees

should go from 0° to 360° in steps of 10°. Recall that n radians = 180°.
Code your solution as a s t a t i c method degrees2Radians which you can add to the
Convert class suggested in Section 313.

4.4 Set up a table with degrees in the first column from 0 to 360 in steps of 30, sines in the second
column, and cosines in the third column.
Now try to add tangents in the fourth column. Can you figure out what's going on?

4.5 Write some statements that display a list of integers from 10 to 20 inclusive, each with its
square root next to it.

4.6 If C and F are Celsius and Fahrenheit temperatures respectively, the formula for conversion
from Celsius to Fahrenheit is F = 9C/5 + 32.
(a) Write a program which will ask you for the Celsius temperature and display the equiv-

alent Fahrenheit one with some sort of comment, e.g.

The Fahrenheit temperature is; ...

Try it out on the following Celsius temperatures (answers in brackets): 0 (32), 100 (212),
-4Q (-40!), 37 (normal human temperature: 98.6).

(b) Change the program to use a fo r loop to compute and display the Fahrenheit equivalent
of Celsius temperatures ranging from 20° to 30° in steps of 1°, in two columns with a
heading, e.g.

Celsius Fahrenheit
20,00 68.00
21.00 69.80

30.00 86.00
4.7 It has been suggested that the population of the United States may be modelled by the formula

197273000
"(*' ~~ l +r~0.03134(f~~ 1913.25)

where t is the date in years. Write a program to compute and display the population every ten
years from 1790 to 2000. Hint: Use Math.exp (x) for the exponential function e*.
Use Essential Grapher to plot a graph of the population against time (Figure 6.5, accompanying
Exercise 6.6 in Chapter 6, shows this graph compared with actual data).
Use your program to find out if the population ever reaches a 'steady state', Le. whether it
stops changing.

4.8 (a) The cooling problem in Section 4.1 has an exact mathematical solution. The temperature
T(t) at time t is given by the formula

T(0 = F + (l b - * > - * ' , (4.5)

where To is the initial temperature.
Insert this formula into the cool method of F r i d g e and display it alongside the
numerical solution. Your enlarged table of output should look something like this;

More on loops 107

time Model Exact
00.00 25.00 25.00
05.00 21.61 21.68
10.00 18.98 19.10
15.00 16.95 17.09

(b) The numerical solution generated by Equation (43) gets more accurate as dt gets
smaller. That is because Equation (4.5) (the exact solution) is derived from Equa-
tion (4.3) in the limit as dt -> 0.

Table 4.1 Model of cooling: effect on
temperature of changing the step-length dt

time dt = 1 dt = 0.1

00.00 25.00 25.00
05.00 21.61 21,67
10.00 18.98 19.09
15.00 16.95 17.07

Table 4.1 compares results for dt = 1 and dt = 0.1, with o p l n t = 5.
On the other hand, as dt gets larger, the numerical solution becomes less and less accurate
and eventually becomes meaningless. Experiment with a few larger values of dt.

4.9 In a model of bacteria growth, time is broken up into a number of small steps each of length
dt hours. If we define N(as the number of bacteria present at the end of step i, we can get
JV;+i from Nt as follows:

Nt+\ ^Ni+rdtNi,

where r is the growth rate per hour. At time t = 0 there are 1000 bacteria.
Using the example of Section 4 J (Update processes) as a guide, write a program to generate
the bacteria numbers from time t = 0 to 12 hours, given r = 0.1 and dt = 1 hour.
Hint: Set up a class B a c t e r i a with a constructor B a c t e r i a (NO, r) where NO is the
initial number of bacteria, and a method grow (t e n d , d t , o p l n t), where t e n d is the
final time, and o p l n t is the time interval at which results are displayed.
Paste your results in a text file r e s u l t s - t x t , with time in the first column and bacteria
numbers in the second.
Now run the program with dt = 0.5, and place the bacteria numbers, at hourly intervals, in the
third column of r e s u l t s . t x t .
The exact number of bacteria at time t hours is given by the formula

JV(0 = lGG0err.

Use this formula to put the exact number of bacteria, also at hourly intervals, into the fourth
column of r e s u l t s * t x t .
Your results should be something like this:

0 1000,00 1000,00 1000.00
1.00 1100.00 1102.50 1105.17
2.00 1210.00 1215.51 1221.40

12.00 3138.43 3225.10 3320.12

108 Essential Java for Scientists and Engineers

4.10 A person deposits $1000 in a bank. Interest is compounded monthly at the rate of 1 per cent per
month. Write a program which will compute the monthly balance, but write it only annually
for 10 years (use nested fo r loops, with the outer loop for 10 years, and the inner loop for
12 months). Note that after 10 years, the balance is $3300.39, whereas if interest had been
compounded annually at the rate of 12 per cent per year the balance would only have been
$3105.85.

4J1 There are many formulae for computing it (the ratio of a circle's circumference to its diameter).
The simplest is

« = 1 - 1/3 + 1/5 - 1/7 +1 /9 (4.6)

which comes from putting x = 1 in the series
^ « 7 n

X° X° X* Xy

arctanx ^ x - — + _ - — + — - — (4.7)

(a) Write a program to compute it using Equation (4.6). Use as many terms in the series
as your computer will reasonably allow (start modestly, with 100 terms, say, and re-run
your program with more and more each time). You should find that the series converges
very slowly, Le. it takes a lot of terms to get fairly close to it.

(b) Rearranging the series speeds up the convergence:

it 1 1 1
+ T r + 8 1 x 3 5 x 7 9 x 1 1

Write a program to compute it using this series instead. You should find that you need
fewer terms to reach the same level of accuracy that you got in (a),

(c) One of the fastest series for it is

j = 6arctan -~ + 2 arctan — + arctan — .

Use this formula to compute it. Don't use Math, a t an to compute the arctangents,
since that would be cheating. Rather use Equation (4.7).

4.12 The following method of computing TZ is due to Archimedes:

L Let A = 1 and TV = 6
2. Repeat 10 times, say:

Replace N by 2N
Replace A by [2 - V(4 - A2)]1/2

Let L = NA/2
Let U = L/yJl - A2/2
Let P = (U + L)/2 (estimate of it)
Let £ = (£/ — L)/2 (estimate of error)
Print N, P, £.

Write a program to implement the algorithm.
4.13 Write a program to compute a table of the function

„ _ . r^(l + 20x)]
f(x) = x sm I

over the (closed) interval [-1 , 1] using increments in x of (a) 0.2 (b) 0.1 and (c) 0.01.

More on loops 109

Use your tables to sketch graphs of f(x) for the three cases (by hand), and observe that the
tables for (a) and (b) give totally the wrong picture of f(x).
Get your program to draw the graph of f(x) for the three cases, superimposed.
Hint: to draw multiple graphs in the same window with Essential Grapher simply create a
different Graph object for each graph to be drawn.

4.14 The transcendental number e (2.71828182845904...) can be shown to be the limit of

(l+x)Vx

as x tends to zero (from above). Write a program which shows how this expression converges
to e as x gets closer and closer to zero.

4.15 The formula

™-iE 1

* ft 2k + l

k=Q

sin
(2k+l)nt

represents the Fourier series of square waves like the one shown in Figure 4.4.

0 h

-1 h

-3 h

^4
0 0.5 1 1.5 2

Figure 4,4 A square wave of period 2

2.5 3.5 4.5

It is of interest to know how many terms are needed for a good approximation to the infinite
sum in the formula. Taking T = 1, write a program to compute and plot F(t) summed to n
terms for t from - L I to 1.1 in steps of 0.01, say. Run the program for different values of w,
e.g. 1, 3, 6, etc.
Superimpose plots of F(t) against t for a few values of n.
On each side of a discontinuity a Fourier series exhibits peculiar oscillatory behaviour known
as the Gibbs phenomenon. Figure 4.5 shows this clearly for the above series with n = 20 (and

110 Essential Java for Scientists and Engineers

; 1
1"

i

i

1

It -
-1.5 -1 -0.5 0 0.5 1 1.5

Figure 4.5 Fourier series: Gibbs phenomenon

increments in t of 0.01). The phenomenon is much sharper for n = 200 and t increments of
0,001.
(A Fourier series reconstructs a given function as an infinite series of sinusoidal terms. This
exercise involves evaluating one such series; you do not need to know the theory involved in
order to write the program—a common experience for programmers!)

4.16 If an amount of money A is invested for k years at a nominal annual interest rate r (expressed
as a decimal fraction), the value V of the investment after k years is given by

V = A(l+r/n)nk

where n is the number of compounding periods per year. Write a class Inves tment to
compute V as n gets larger and larger, i.e. as the compounding periods become more and more
frequent, like monthly, daily, hourly, etc. Take A = 1000, r = 4 per cent and k = 10 years.
You should observe that your output gradually approaches a limit. Hint: use a fo r loop which
doubles n each time, starting with n = L
Also compute the value of the formula Aerk for the same values of A, r and k (use Math. exp),
and compare this value with the values of V computed above. What do you conclude?

4.17 The Spiral of Archimedes (Figure 4.6) may be represented in polar co-ordinates by the equation

r = a 0 ,

where a is some constant. (The shells of a class of animals called nummulites grow in this
way.) Write a program which uses Essential Grapher to draw the spiral for some values of a.

4.18 Another type of spiral is the logarithmic spiral (Figure 4.6), which describes the growth of
shells of animals like the periwinkle and the nautilus. Its equation in polar co-ordinates is

where a > 0, q > 1. Draw this spiral.

More on loops 111

Archimedes Logarithmic

(a) (b)

Figure 4,6 Spirals

»°0
f l ooW« O o V o ° o ° > n ° o o %%% °o °% oo ° oSvoOo0i)0o<?o"oouo0-ol?voooo§SooSooo

0 o 0 o 0 ? o o 0 ? S S 0 o O O o P o o 0 o f 0 o o o o ° 0 o o o p o o o o o o o o S s S S S S ° o o O O o ° o o 0 g 0 > o o 0
0 ^ o o o o o o

Figure 4.7 A perfect sunflower?

4.19 The arrangement of seeds in a sunflower head (and other flowers, like daisies) follows a fixed
mathematical pattern. The nth seed is at position

r = V*,

with angular co-ordinate 7zdn[\%0 radians, where d is the constant angle of divergence (in
degrees) between any two successive seeds, i.e. between the nth and (n + l)th seeds. A perfect
sunflower head (Figure 4.7) is generated by d = 137.51°. Write a program to draw the seeds
in a sunflower head; use a circle for each seed. A remarkable feature of this model is that the
angle d must be exact to get proper sunflowers. Experiment with some different values, e.g.
137.45° (spokes, from fairly far out), 137.65° (spokes all the way), 137.92° (Catherine wheels).
Hint: If your Essential Grapher Graph object is sunF, the statement

sunF.setPointShape(new CirclePoint(PointShape.UNFILLED));

112 Essential Java for Scientists and Engineers

will plot small open circles instead of points, and the statement

sunF.setDrawingStyle(Graphable.PLOTPOIMTS);

will plot the circles only, without joining them with lines (the default).
4.20 The equation of an ellipse in polar co-ordinates is given by

r =a(l-e2)/(l-eco$e),

where a is the semi-major axis and e is the eccentricity, if one focus is at the origin, and the
semi-major axis lies on the x~axis.
Halley's Comet, which visited us in 1985/6, moves in an elliptical orbit about the Sun (at one
focus) with a semi-major axis of 17.9 A.U. (A.U. stands for Astronomical Unit, which is the
mean distance of the Earth from the Sun: 149.6 million km,) The eccentricity of the orbit is
0.967276. Write a program which draws the orbit of Halley's Comet and the Earth (assume the
Earth is circular).

4.21 The following very interesting iterative relationship is often used to model population growth
in cases where the growth is not unlimited, but is restricted by shortage of food, living area,
etc.:

(this is a discrete form of the well-known logistic model). Given yo &&d r, successive y&'s may
be computed very easily, e,g. if yo = 0.2 and r = 1, then y\ = 0.16, yi = 0.1334, and so on.
Fascinating behaviour, known as mathematical chaos, is shown by yt for values of r between
3 and 4 (independent of yo). Write a class P o p u l a t i o n which plots y& against k as individual
points; use the e s s e n t i a l package Graph method

setDrawingStyle{Graphable.PLOTPOINTS).

Values of r that give particularly interesting graphs are 3.3, 3.5, 3.5668, 3.575, 3.5766, 3.738,
3.8287, and many more that can be found by patient exploration.

4.22 A rather beautiful fractal picture can be drawn by plotting the points (**, yk) generated by the
following difference equations

k+i = y(l + sin0.7x&) - 1.2vi**U

y * + i = 0 . 2 1 — JCjt,

starting with xo = yo = 0. Write a program to draw the picture (plot individual points; do not
join them).

4.23 Write a program to estimate the number of throws needed on average to get a six.
Hints: Use the principles introduced in Section 2.7 (Rolling dice). Repeat n times the basic
process of rolling a dice until a six comes up. Count the number of throws in total. Divide the
number of throws by n. (You can guess what the theoretical answer is: 6.)

4.24 Write a program to compute the sum of the series \2 + 22 + 32.. * such that the sum is as large
as possible without exceeding 1000. The program should display how many terms are used in
the sum.

4.25 Consider the following structure plan, where M and N represent Java variables:

1. Set M = 44 and AT = 28
2. While M not equal to N repeat:

While M > N repeat:
Replace value of M by M ~~ N

More on loops 113

While N > M repeat:
Replace value of N by N — M

3. Display M.

(a) Work through the structure plan by hand, sketching the contents of M and JV during
execution. Give the output

(b) Repeat (a) for M = 14 and N = 24.
(c) What general arithmetic procedure does the algorithm carry out (try more values of M

and N if necessary)?
(d) Write a program to implement the structure plan,

4.26 Adapt the program for the prime number algorithm in Section 4.2 to find all the prime factors
of a given positive integer (even or odd).
Write your solution as a method of E s s e n t i a l M a t h to print out prime factors.

4.27 Use the Taylor series
X2 X4 X6

cos* = 1 1 — H
2! 4! 6!

to write a program to compute cosx correct to four decimal places (x is in radians). See how
many terms are needed to get 4-figure agreement with Math. cos . Don't make x too large;
that could cause rounding error.

4.28 A student borrows $10000 to buy a used car. Interest on her loan is compounded at the rate
of 2 per cent per month while the outstanding balance of the loan is more than $5000, and at
1 per cent per month otherwise. She pays back $300 every month, except for the last month,
when the repayment must be less than $300. She pays at the end of the month, after the interest
on the balance has been compounded. The first repayment is made one month after the loan is
paid out Write a class LoanShark which displays a monthly statement of the balance (after
the monthly payment has been made), the final payment, and the month of the final payment

4.29 When a resistor (if), capacitor (C) and battery (V) are connected in series, a charge Q builds
up on the capacitor according to the formula

Q(t) = cV(l-e-t/RC)

if there is no charge on the capacitor at time t = 0. The problem is to monitor the charge on the
capacitor every 0.1 seconds in order to detect when it reaches a level of 8 units of charge, given
that V = 9, R = 4 and C = L Write a class Charge which displays the time and charge every
0.1 seconds until the charge first exceeds 8 units (i.e. the last charge displayed must exceed 8).
Once you have done this, rewrite the program to display the charge only while it is strictly less
than 8 units.

430 Using the Rabbi t Colony class defined in Section 3.8 and modified in Exercise 3.12, write
a program which will work out how many months it will take before the rabbit colony reaches
1000 rabbits in total.

4.31 Write a program which uses the Tree class from Section 3.10 to create a tree with a height
of 50 cm and a growth rate of 10 cm per year. You program should calculate how many years
it will take before the tree reaches a height of 4 m.

4.32 Rewrite the guessing program in Section 4.2 to use a do -wh i l e loop instead of whi le .

5

Debugging

Objectives

By the end of this chapter you should be able to

• distinguish between the following sorts of errors
time, logic, rounding;

• correct or avoid many of these errors.

encountered in programming: compilation, run-

Even experienced programmers seldom get programs to run correctly the first time. In computer jargon,
an error in a program is called a bug. The story is that a moth short-circuited two thermionic valves
in one of the earliest computers. This primeval (charcoaled) 'bug' took days to find. The process of
detecting and correcting such errors is called debugging. There are four main types of errors:

• compilation errors
• run-time errors
• errors of logic
• rounding errors.

In this chapter we deal with examples of these sort of errors that can arise with the programming we
have done so far.

5.1 Compilation errors

Compilation errors are errors in syntax and construction, like spelling mistakes, that are picked up by
the j a v a c compiler during compilation (the process whereby your . j a v a source code is translated to
. c l a s s byte-code files). The compiler displays a message, which may or may not be helpful, when it
encounters such an error.

There are a large number of compiler error messages. Since a compiler is nowhere near as intelligent
as you are, the error messages can sometimes be rather confusing. A few common examples which tend
to be generated by beginners (using the Java SDK compiler) are given below.

114

Debugging 115

You should bear in mind that compilation errors tend to 'cascade' (see below). If there is more than
one error, start by correcting the first one, and then recompile. With a bit of luck quite a few of the rest
will have gone away.

The line numbers in the examples below are references to the programs we ran to generate the errors.

Error: ' ; ' expected

• D:\EJSE\Junk.Java:6: ';' expected
double bal, finBal, rate

A.

What could be clearer than that! Semi-colon left out after statement?

• This one is also quite helpful—can you spot the error?
C:\EJSE\Junk.Java:7: ';' expected

for (int i = 1, i <= 10; i + +;)

(comma used instead of semi-colon in for:

• But these are not so clear:

D:\EJSE\Junk.java:10: ' ; ' expected
elseif (bal < 10000)

D:\EJSE\Junk.java:12: 'else' without 'if
else

D:\EJSE\Junk.java:10: cannot resolve symbol
symbol : method elseif (boolean)
location: class Junk

elseif (bal < 10000)

3 errors

These rather curious errors are all due to writing e l s e i f incorrectly as one word in the code

i f (bal < 5000)
rate = 0.09;

elseif (bal < 10000)
rate = 0.12;

else
rate = 0.15;

Error: ') ' expected

• D:\EJSE\Junk.java:9: ') ' expected
for (k = 1; k <= 10; k++;)

Semi-colon incorrectly inserted after increment clause of fo r loop.

Error: cannot resolve symbol

116 Essential Java for Scientists and Engineers

• D:\EJSE\Junk.Java:9: cannot resolve symbol
symbol : variable rate
location: class Junk

rate = 0.15;
A

Variable r a t e not declared.

• D:\EJSE\Junk.Java:9: cannot resolve symbol
symbol : variable random
location: class Java.lang.Math

bal = 15000*Math.random;
A

Left out () after Math. random. But look what happened to one of our students:

• D:\EJSE\Junk.Java:9: cannot resolve symbol
symbol : method random ()
location: class Math

bal = 15000*Math.random();
A

Nasty one this! The student had created her own class Math in the current directory, which
hid the Java API class Math!

This error also occurs if you forget to import a package.
Another source of the same error is if you call your class by the same name as a different
class you are using, for example, if you call your class T u r t l e and also expect to use the
e s s e n t i a l . T u r t l e class. To fix the error, rename your class to something different and delete
the old files (both T u r t l e . j ava and T u r t l e . c l a s s) .

Error: 'class' or 'interface' expected

• D:\EJSE\Junk.java:2: 'class' or 'interface' expected
public static void main(String[] args)

A

Left out p u b l i c c l a s s . . . declaration at start of program.

Error: class ... is public, should be declared in a file named ...

• D:\EJSE\junk.java:2: class Junk is public, should be declared
in a file named Junk.java
public class Junk

A

This one can take a while to sort out. Program was saved with filename j unk. j ava instead
of Junk, java!

Error: illegal start of expression

• D:\EJSE\junk.java:10: illegal start of expression
if (b*b >= 4*a*c) && (a != 0)

A

This one's also rather subtle. The entire logical expression in an i f statement must be enclosed
in parentheses:

i f ((b*b >= 4*a*c) ScSc (a != 0))

Debugging 117

Error: i l l e g a l s t a r t of type

• C : \ E J S E \ J u n k . J a v a : 8 : i l l e g a l s t a r t of type
i f (bal < 5000)

Left out p u b l i c s t a t i c vo id main. Compiler expected this statement to be a declaration
of a method or a data member. This single mistake can generate a vast number of different
compiler errors.

Error: not a statement

• D:\EJSE\Junk.Java:6: not a statement
double, bal, finBal, rate;

Incorrect comma after double.

Error: operator - cannot be applied to Java.lang.String ...

• D:\EJSE\Junk.Java:9: operator - cannot be applied to
Java.lang.String,double

System.out.println(x + " " + x-0.2);

If you want to concatenate the result of an expression to a string in p r i n t l n () you have to
enclose it in parentheses:

S y s t e m . o u t . p r i n t l n (x + " " + (x-0 .2)) ;

Error: possible loss of precision

• D:\EJSE\Junk.Java:9: possible loss of precision
found : double
required: int

numberOnDice = Math.floor(6*Math.random())+1;

Although Math, f l o o r () returns a 'mathematical integer', according to the JDK documen-
tation, it is nevertheless a double value, and must therefore be typecast with (i n t) in
this case.

Error: variable ... might not have been initialized

• C:\EJSE\Junk.java:9: variable rate might not have been
initialized

bal = bal + rate*bal;
>>

r a t e was declared but not initialized.

Now try Exercise 5.1.

5.2 Run-time errors

Errors occurring when you attempt to run a compiled program with the Java Virtual Machine j ava are
called run-time errors (or more correctly exceptions in Java), and are generally fatal, i.e. the program

118 Essential Java for Scientists and Engineers

terminates. Java has facilities for intercepting run-time errors. This process is referred to as exception
handling, and is discussed in Chapter 10.

Here are a few examples of run-time errors.

Error: Java.lang.ArithmeticException: / by zero

• Java.lang.ArithmeticException: / by zero
at Junk.main(Junk.Java:7)

Exception in thread "main"

The culprit in line 7 is

i n t n = 1 3 / (1 / 2) ;

(1/2) is evaluated first, using integer arithmetic, yielding 0.

Error: Java.lang.StringlndexOutOfBoundsException:

• j ava.lang.StringlndexOutOfBoundsException:
String index out of range: 3
at Java.lang.String.charAt(String.Java:507)
at Junk.main(Junk.Java:8)

Exception in thread "main"

A common problem with beginners. Here's the offending code extract: can you spot the error?

String s = "abc";
System.out.print(s.charAt(3));

Characters in strings are indexed from 0, so the index of the last character in the string " abc"
is 2.

Error: java.lang.NoClassDefFoundError: ...

• j ava.lang.NoClassDefFoundError: Junk
Exception in thread "main"

Also common with beginners. Probably attempted to run program before compiling it. Could
also arise because of an incorrect CLASSPATH setting—basically Java can't find the
. c l a s s file.

Error: J a v a . l a n g . N u l l P o i n t e r E x c e p t i o n :

• Java.lang.NullPointerException
at Junk.main(Junk.Java:8)

Exception in thread "main"

Occurs if a string, for example, is not properly initialized, as in

String s = null;
int 1 = s.length();

Error: Java.lang.NumberFormatException:

• Java.lang.NumberFormatException: 34,5
at j ava.lang.FloatingDecimal.readJavaFormatString

(FloatingDecimal.Java:1176)

Debugging 119

at Java.lang.Double.parseDouble(Double.Java:184)
at Junk.main(Junk.Java:8)

Exception in thread "main"

Occurs, for example, when parsing strings, as in

String s = "34,5";
double d = Double.parseDouble(s);

5.3 Errors in logic

These are errors in the actual algorithm you are using to solve a problem, and are the most difficult to
find; the program runs, but gives the wrong results! For example, the following code was meant to print
five asterisks, but instead prints only one (can you see why?):

for (int i = 1; i <= 5; i++);
System.out.print('*');

(semi-colon incorrectly inserted after the fo r header).
It's even worse if you don't realize the answers are wrong. The following tips might help you to check

out the logic.

• Try to run the program for some special cases where you know the answers.
• If you don't know any exact answers, try to use your insight into the problem to check whether the

answers seem to be of the right order of magnitude.
• Try working through the program by hand, or with the Java Debugger (see below), or by using lots

of p r i n t In statements, to see if you can spot where things start going wrong.

Debugging logical errors

Java has a simple command-line debugger called jdb which you can use to find and fix run-time
errors. See under / d o c s / t o o l d o c s / t o o l s . h tml#bas i c (Tool Documentation) in your Java SDK
documentation.

Try Exercise 5.2.

5.4 Rounding errors

At times, as we have seen, a program will give numerical answers which we know are wrong. This can
also be due to rounding error, which results from the finite precision available on the computer, i.e. eight
bytes per variable, instead of an infinite number.

As an example, run the following code:

double x = 0 . 1 ;

while (x != 0.2) {
x += 0.001;
System.out.println(x);

}

You will find that you need to crash the program to stop it, i.e. with Ctrl-break on a PC. The variable
x never has the value 0.2 exactly, because of rounding error. In fact, x misses 0.2 by about 8.3 x 10-17,

120 Essential Java for Scientists and Engineers

as can be seen from displaying the value of x - 0 .2. It would be better to replace the whi le clause
with

whi le (x <= 0.2)

or, even better, with

whi le (Math .abs (x-0 .2) > l e - 6)

In general, it is always better to test for 'equality' of two non-integer expressions as follows:

i f (M a t h . a b s ((a - b) / a) > l e - 6)
System.out.printIn("a practically equals b");

or

if (Math.abs((a-b)/b) > le-6)
System.out.println(Ma practically equals b");

Note that this equality test is based on the relative difference between a and b, rather than on the absolute
difference.

Rounding error may sometimes be reduced by a mathematical re-arrangement of a formula. Recall yet
again the common quadratic equation

ax + bx + c = 0,

with solutions

xx = (-b + Jb2-4ac)/(2a),

x2 = {-b - yjb2 -4ac)/(2a).

Taking a = 1, b = —107 and c = 0.001 gives x\ = 107 and x2 = 0. The second root is expressed
as the difference between two nearly equal numbers, and considerable significance is lost. However, as
you no doubt remember, the product of the two roots is given by c/a. The second root can therefore be
expressed as (c/a)/x\. Using this form gives x2 = 10"l0, which is more accurate.

Try Exercises 5.3 and 5.4.

Summary

• Compilation errors are mistakes in syntax (coding), and are reported by j avac*
• Run-time errors (exceptions) occur while the program is executing.
• The Java Debugger may be used to work through a program, statement by statement
• Logical errors are errors in the algorithm used to solve the problem,
• Rounding error occurs because a computer can store numbers only to a finite accuracy,

Exercises

51 Try to spot the errors in the following code before running it (and fixing the errors).

public class Debug
{

public static void main(String args)

Debugging 121

{
int x, z = 10;
System.out.print(x + z];
for (int i = Q, i < zf z++)

if (i%2 « 0)
System.out.printIn(i);

} \\end of for
System.out.printIn(The End };

}
} \ \ e n d of Debug

5.2 Consider the following program:

import e s s e n t i a l . * ;

public class NumberTriangle

{
public static void main(String[] args)
{

System.out.print("Enter size of number triangle: w);
int size « Keyboard.readlnt();
for (int row ~ size; row < 0; row--}

for (int num « row; num < 0; num—}
System.out.print(num);

Systern.out.printIn();
}

}

If the user enters 5, for example, it is meant to produce the output

S4321
4321
321
21
1

However, it prints out nothing at all Find out why, and correct it.
5.3 The Newton quotient

/(* + *)-/(*)
h

may be used to estimate the first derivative f(x) of a function f(x), if h is 'small*. Write a
program to compute the Newton quotient for the function

f(x)^x2

at the point x » 2 (the exact answer is 4) for values of h starting at 1, and decreasing by a factor
of 10 each time (use a f o r loop). The effect of rounding error becomes apparent when h gets
'too small', Le. less than about 10~12.

122 Essential Java for Scientists and Engineers

5.4 The solution of the two linear simultaneous equations

ax + by = c

dx + ey-f

is given by

x = (ce — bf)/(ae — bd),
y s= (af — cd)/(ae — bd).

If (ae - bd) is small, rounding error may cause quite large inaccuracies in the solution. Consider
the system

0+2Q38x + 0.1218y = 0,2014*

0-4071* + 0.2436? = 0.4038.

Write a program to compute the solutions x and y of this system* With double type
you should find that x » - 2 and y =* 5, which is indeed the exact solution,
With four-figure floating point arithmetic the solution obtained is quite different; x = — 1,
y = 3, This level of accuracy may be simulated in your solution to part (a) with some
statements like

ae = rfath.floor(a*e*le4) / l e 4

and appropriate changes in the coding. Rewrite your program to implement four-figure
accuracy in this way.
If the coefficients in the equations are themselves subject to experimental error, the Solu-
tion' of this system using limited accuracy is totally meaningless.
See Chapter 12 for our class to solve linear equations directly.

6

Arrays and matrices

Objectives

By the end of this chapter you should be able to

• decide when it is appropriate to use an array structure;
• create and manipulate one- and two-dimensional arrays
• sort an array using insertion sort.

for use in various applications;

6.1 Introduction

Situations often arise in real problem solving where we need to handle a large amount of data in the
same way, e.g. to find the mean of a set of numbers, to sort a list of numbers or names, to analyse a
set of students' test results, or to solve a system of linear equations. To avoid an enormously clumsy
program, where perhaps hundreds of identifiers are needed, we can use arrays. An array is used to hold
a collection of items of the same data type.

Why bother with arrays?

Say we want to write a program that reads in four numbers from the user, calculates the mean and then
prints out the number which is furthest in absolute value from the mean. To do this we have to store all
four numbers as variables so that we can compare each one later to the mean. Here is a first attempt:

import e s s e n t i a l . * ;

public class FurthestFromMeanl
{
public static void main(String[] args)
{
System.out.println("Enter four whole numbers:");
int xl, x2, x3, x4 ;
xl = Keyboard.readlnt();
x2 = Keyboard.readlnt();
x3 = Keyboard.readlnt();

123

124 Essential Java for Scientists and Engineers

}

x4 = Keyboard.readlnt();
double mean = (xl + x2 + x3 + x4)/4.0;
System.out.println("The mean is: " + mean);
double gapl = Math.abs(mean - xl) ;
double gap2 = Math.abs(mean - x2);
double gap3 = Math.abs(mean - x3);
double gap4 = Math.abs(mean - x4);
int furthest;
if ((gapl >= gap2) && (gapl >= gap3) && (gapl >= gap4))

furthest = xl;
else if ((gap2 >= gap3) && (gap2 >= gap4))

furthest = x2;
else if (gap3 >= gap4)

furthest = x3;
else furthest = x4;
System.out.println("Number furthest from the mean: " + furthest);

}

Rather clumsy, not so? What would the program look like if we wanted to do the same thing with 20
numbers? Clearly, this solution is unworkable for large amounts of data.

Arrays allow us to declare multiple data values (of the same type) as a single variable, which is a
much more elegant way of working with data. Here is a second attempt at calculating the mean, which
uses arrays:

import essential.*;

public class FurthestFromMean2
{
public static void main(String[] args)
{
System.out.println("Enter four whole numbers:");
int x[] = new int [4] ; // declares 4 ints as one variable
int sum = 0;
for(int i=0; i<4; i + +) // reads in 4 integers and adds them
{
x[i] = Keyboard.readlnt();
sum + = x[i];

}
double mean = sum/4.0; // calculates the mean
System.out.println("The mean is: " + mean);

double furthestGap = Math.abs(mean - x[0]);
int item = 0;
for(int i=l; i<4; i++)
{
double gap = Math.abs(mean - x[i]);
if (gap > furthestGap)
{
furthestGap = gap;
item = i;

}
}

Arrays and matrices 125

System.out.printIn("Number furthest from the mean: " + x[item]);
}

}

Although it may seem just as complicated as the first version of the program, the same program (with
very minor changes) can work with any number of integers. We will explain the details of the program
as the chapter progresses.

6.2 The basics of arrays

Declaring and initializing an array

An array is set up in two distinct stages.

1. Firstly, the array name (reference), and the fact that it is an array, is declared with

int[] r; // int r[] also works

In this case, we have declared an array of i n t s called r. We can declare an array of any type:
primitive or object. For example, the following are all valid array declarations:

double[] nums;
Graph[] g;
char[] c;

When we declare an array, the name of the array is a handle to the array object. In all the examples
above, the handles (nums, g, or c) are pointing nowhere. To create the array object, we have to
allocate memory for it.

2. Secondly, memory for each element of the array is allocated, by using the new keyword and speci-
fying a size:

r = new int[n]; // creates an array of n ints
nums = new double [100] ; // creates an array of 100 doubles

The two stages can be combined in one statement, for example:

i n t [] r = new i n t [n] ;

Once the array is set up, we need to initialize it with data. One of the ways of doing this is to provide
all the values when the array is declared, as shown in the following examples:

int[] n = {10,-5,6,12,9,54};
char[] whiteSpace = {' ','\n','\t'};

Note that if we initialize an array this way, we do not specify the size of the array—it is deduced from
the number of elements provided.

As always, it is useful to have a mental picture of how memory works to understand how variables
behave. Figure 6.1 shows some sample statements involving arrays with corresponding pictures of how
memory would look.

Indexing elements of an array

The individual components of an array are called elements, and are written in the normal way, except
that a subscript is enclosed in square brackets after the array name, e.g. x [3] , y [i + 2 * n] .

126 Essential Java for Scientists and Engineers

Statement

i n t [] num;

i n t n ;

n = 2 5 ;

num = new i n t [4] ;

i n t [] a n o t h e r = { 1 2 , 3 , - 5 } ;

Memory after statement is executed 1

num (

n

0

n 25

another C^\^^"^
12

3

- 5

Figure 6.1 Sample array statements showing how memory would be allocated

The first element of an array in Java always has the subscript 0.

The subscript of the last element will therefore be one less than the value used when the array is
created. For example, consider the following statements:

int [] n = {31,12,6,-2,8,19,7,0};
System.out.println(n[0]) ;
System.out.println(n[2]) ;
System.out.println(n[1] + n[3] + n[5]);
System.out.println(n[7]);

The output would be:

3 1
6
2 9
0

Unlike its predecessors C and C++, Java implements range checking of array subscripts. Any attempt
to subscript an element beyond the end of an array, or to use a negative subscript, generates the run-time
exception (we will cover exceptions in Chapter 10):

Java.lang.ArraylndexOutOfBoundsException

In the array n above, attempting to print out n [8] would generate such an exception.

Looping through an array

Loops (in particular f o r loops) are very useful for accessing and manipulating arrays. Consider the
following statements from the FurthestFromMean2 program in Section 6.1:

Arrays and matrices 127

int x[] = new int [4] ; // declares four integers as one variable
int sum = 0;
for(int i=0; i<4; i++) // read in four integers and add them

{
x[i] = Keyboard.readlnt() ;
sum += x[i] ;

}

The f o r loop starts at 0 (the index of the first element of the array) and ends before 4 (i.e. at 3, which
is the index of the last element of the array). Through each iteration of the loop, the particular array
element is initialized by the value read in from the keyboard and is added to sum. Here is a second
example of looping through an array, which generates an array of 10 random integers in the range 1
to 100:

public class Randomlnts

{
public static void main(String[] args)
{
int n = 10;
int[] r;
r = new int[n];

for (int i = 0; i < n; i++)

{
r[i] = (int)(100*Math.random())+1;

}

//now print the whole array:
for (int i = 0; i < n; i++)

{
S y s t e m . o u t . p r i n t (" " + r [i]) ;

}

Note:

• The code sets up the array r with 10 random elements, named r [0] to r [9] .
In a sample run the ten elements of the array looked like this:

r[0]

27

r[l]

65

r[2] .

31

• r[9]

41

• Note the standard way above of working through all the subscripts of an array with n elements,
starting at 0:

f o r (i n t i = 0; i < n ; i++) . . .

• Technically, an array is an object. It knows how long it is by means of its field l e n g t h , e.g.
r . l e n g t h in the above program has the value 10.

Now do Exercises 6.1 to 6.6.

128 Essential Java for Scientists and Engineers

6.3 Passing arrays to methods

Arrays, just like other objects, can be passed as arguments to methods. We pass the entire array by passing
the handle to the array. For example, one of the constructors of S t r i n g takes an array of characters as
an argument and creates a S t r i n g object from the array. The header of the method looks like this:

public String(char[] value)

Notice that the type of the argument is char [] , meaning a handle that references an array of chars.
Here are some sample statements that use this constructor:

char [] c = {' a' , ' b' , ' c' , ' d' } ;
String s = new String(c);

As a further example, suppose you want to write a method to return the mean of the data in its parameter
x (which is an array). The method header could look like this:

public static double mean(doublet] x)

To use this method, assuming the actual data is in the array da ta , you simply pass its name to mean,
e.g.

System.out .println ("Mean is " + mean(data)) ;

Now do Exercises 6.7 and 6.8.

6.4 Frequency distributions: a simple bar chart

In this section we present a program that simulates the random movement of an ant. Without the use of
arrays, this example would be very difficult to implement.

Imagine an ant walking along a straight line, e.g. the x-axis. She starts at x = 40. She moves in steps
of one unit along the line. Each step is to the left or the right with equal probability. We want to know
how much time she spends at each position.

Run the following program:

public class Ant

{
int [] f = new int [80] ; // frequencies

public Ant()

{
for (int i = 0; i < 80; i++)

f [i] = 0 ; // initialize all frequencies to zero
}

public int [] randomSteps(int numSteps)

{
int x = 40; // start at position 40

for (int i = 1; i <= numSteps; i++)
{

double r = Math.random();
if (r < 0.5)

x+ + ;
else

Arrays and matrices 129

x - - ;

i f (x < 0 | | x > 79) / / on t h e edge
x = 40;

f [x]++; / / a n o t h e r t ime a t x
}
r e t u r n re-

public void printFreq(int start, int end)

for (int i = start; i <= end; i + +)
System.out.print(" " + f[i]);

public static void main(String[] args)

Ant sue = new Ant();
sue.randomsteps(500);
sue.printFreq(35,45);

}

Note:

• In the r a n d o m S t e p s method, we use Math , random. This method returns a random number in
the range 0-1. If it's greater than 0.5, the ant moves right (x++), otherwise she moves left (x- -) .

• The array f has 80 elements, initially all zero. We define f [x] as the number of times the ant lands
at position x. Suppose her first step is to the right, so x increases to 41. The statement

f [x]+ +

then increases the value of f [41] to 1, meaning that she has been there once. When she next
wanders past this value of x, f [41] will be increased to 2, meaning she's been there twice.

• f [x] is called a frequency distribution. Sample output of p r i n t F r e q (3 5 , 4 5) was:

39 43 53 59 51 40 33 24 12 5 1

So, for example, the ant was at position 44 a total of 5 times, and at position 45 only once.
• This program simulates the random movement of the ant. If you re-run it, you will get a differ-

ent frequency distribution, because Math , random will generate a different sequence of random
numbers. Simulation is discussed more fully in Chapter 11.

Now do Exercise 6.9.

6.5 Multi-dimensional arrays

The arrays we have been declaring until now have been one-dimensional. In this section, we look at
two-dimensional arrays.

Consider the following array declaration:

i n t [] [] twoD = new i n t [3] [5] ;

130 Essential Java for Scientists and Engineers

This statement creates an array of arrays called twoD. The array contains three elements. Each element
is an array of five in t s . We therefore have 3 x 5 = 15 integers stored in total. To loop through the
15 elements, we need a nested fo r loop. For example, the following code initializes the elements to
consecutive numbers:

i n t n = 0;
f o r (i n t i = 0; i < 3 ; i++)

f o r (i n t j = 0; j < 5; j++)
twoD [i] [j] = n++;

Figure 6.2 shows two representations of the array twoD in memory. The first representation is the more
accurate way of visualizing memory, where each element of twoD is a hand le to an array. Using this
picture, it is clear that twoD [2], for example, is an array of five values.

The second representation is often the more practical one, where we visualize the array as a table of
values with three rows and five columns. Remember that subscripts start at zero! So, for example,
the element in row 3 and column 2 of the table (i.e. 11) must be referenced as twoD [2] [1] . The first
subscript represents the row, the second represents the column, both starting at zero.

The array twoD can also be printed using a nested fo r loop. The following code prints twoD one
row per line:

for(int i = 0; i < 3; i++)
{
for(int j = 0; j < 5; j++)
System.out.print(twoD[i][j] + "\t");

System.out.println();
}

A concrete example

Multi-dimensional arrays may be used to represent tables (and matrices—see below), as this example
illustrates.

A ready-mix concrete company has three factories (SI, S2 and S3) which must supply three building
sites (Dl, D2 and D3). The costs, in some suitable currency (hundreds of dollars, say), of transporting a
load of concrete from any factory to any site are given by the cost table in Table 6.1.

The factories can supply 4, 12 and 8 loads per day respectively, and the sites require 10, 9 and 5 loads
per day respectively. The real problem is to find the cheapest way to satisfy the demands at the sites,
but we are not considering that here.

Suppose the factory manager proposes the transportation scheme in Table 6.2 (each entry represents
the number of loads of concrete to be transported along that particular route).

Table 6.1

S1
S2
S3

Dl

3
17
7

Cost table
D2

12
18
10

D3

10
35
24

Table 6.2 Solution
table

SI
S2
S3

D1

4
6
0

D2 D3

0 0
6 0
3 5

Arrays and matrices 131

^ f~\ _*J
twoD (—) H twoD[0] fX-

tWOD L 2 J I)

~~1 ° 1 2 3 4

1̂ b 6 7 8 9

P\ 10 11 12 13 14

twoD o >
w >

0

5

10

1

6

11

2

7

12

3

8

13

4

9

14

Figure 6.2 Alternative visualisations of the same two-dimensional array in memory. The first representation is the more
accurate, while the second is the more practical

This sort of scheme is called a solution to the transportation problem. The cost table (and the solution)
can then be represented by tables C and X, say, where Q7 is the entry in row / and column j of the cost
table, with a similar convention for X.

To compute the cost of the above solution, each entry in the solution table must be multiplied by the
corresponding entry in the cost table. (This operation is not to be confused with matrix multiplication,
which is entirely different.) We therefore want to calculate

3 x 4 + 1 2 x 0 + --- + 2 4 x 5 .

The table in Table 6.2 can be set up in Java as follows:

i n t [] [] x = {{4, 0, 0 } ,
{6, 6, 0 } ,
{0, 3 , 5 } } ;

Exercise 6.10 implements this example further. Try it now.

Matrix multiplication

A (two-dimensional) matrix looks just like the tables introduced in the previous section. Certain math-
ematical properties are, however, defined for matrices, which makes them a cut above mere tables.
Matrix multiplication is probably the most important such property. It is used widely in such areas as
network theory, coordinate transformation in computer graphics, solution of linear systems of equations,
transformation of co-ordinate systems, and population modelling, to name but a very few. The rules for
multiplying matrices look a little weird if you've never seen them before, but will be justified by the
applications that follow (in Chapter 12).

When two matrices A and B are multiplied together their product is a third matrix C. The operation
is written as

C = AB,

and the element Q, in row i and column j of C is formed by taking the scalar product of the ith row
of A with the yth column of B. (The scalar product of two vectors x and y is x\y\ + X2yi H , where
xi and yt are the components of the vectors.)

It follows that A and B can only be successfully multiplied (in that order) if the number of columns
in A is the same as the number of rows in B.

The general definition of matrix multiplication is as follows: If A is a n x m matrix and B is a m x p
matrix, their product C will be a n x p matrix such that the general element c/y of C is given by

Cij = y^^ikbkj-
k=\

Note that in general AB is not equal to BA (matrix multiplication is not commutative).

132 Essential Java for Scientists and Engineers

For example,
f l 2] [5 6] _ f 5 4]
[3 4 J x [0 — 1J — |_ 15 14J

1 2 l f 23 34]
3 4j - [-3 -4J

5 6
0 - 1

Since a vector is simply a one-dimensional matrix, the definition of matrix multiplication given above
also applies when a vector is multiplied by an appropriate matrix, e.g.

|_3 4 J x |_3j - [l 8 J -

The following program uses a s t a t i c method m u l t i p l y M a t r i x to multiply two matrices
a and b, returning their product c. It is tested on the two matrices A and B above. (Note: we
provide a temporary solution here in the form of a class Mu l t i p lyTes t . A complete Mat r ix
class is defined in the e s s e n t i a l package and will be used in Chapter 12 on Modelling with
matrices).

public class MultiplyTest
{
public static doublet][] multiplyMatrix(

doublet] [] a, doublet] [] b)
{
int n = a.length; //rows in a
int m = a[0].length; //cols in a
int p = b[0].length; //cols in b
double [] [] cTemp = new double [n] [p] ;

for (int i = 0; i < n; i++)
{
for (int j = 0; j < p; j++)
{
cTemp[i] [j] = 0;
for (int k = 0; k < m; k++)

cTemp[i] [j] += a [i] [k]*b[k] [j] ;
}

' }
return cTemp;

}
public static void main(String args[])

double [] [] a = {{l, 2}, {3 , 4}} ;
double [][] b = {{5,6},{0,-l}};

double [] [] c = multiplyMatrix (a, b) ;

for (int i = 0; i < c.length; i++)
{
for (int j = 0; j < c[0].length; j++)
System.out.print(c[i][j] + "\t");

Arrays and matrices 133

S y s t e m . o u t . p r i n t I n () ;
}

}
}

Note:

• Inside m u l t i p l y M a t r i x the number of rows in a is returned by a. l eng th . This is consistent
with a being an array of arrays (a has l e n g t h elements—rows—each of which is an array).
The number of elements in a row is returned by a [0] . l eng th , for example—this will be the
number of columns.

• m u l t i p l y M a t r i x returns a two-dimensional array. The actual size of the product c is only deter-
mined when the method returns.

• It is assumed that a and b have the right number of rows and columns in order to be successfully
multiplied. (You could build in a test to check that the number of columns of a equals the number
of rows of b.)

• In the main method, matrices a and b are initialized and then passed to m u l t i p l y M a t r i x . Notice
that we use c . l e n g t h to determine the number of rows in c and c [0] . l e n g t h to determine the
number of columns.

Experiment with different matrices and see if you get the same answers as the program.

6.6 Arrays of objects

Just as we can have arrays of arrays, we can have arrays of any other objects.
Suppose we have defined a class S tudent , with two data members, age and name:

public class Student
{

private int age;
private String name;
public Student(int a, String n)
{
age = a; name = n;

}
public void print()
{
System.out.printIn(name + " " + age);

}
}

To set up an array of S tuden t objects we declare the array name and size in the same way as we have
been doing. But now there is a third stage: we have to call a constructor for each object in the array.
The following code creates an array group of S tuden t objects and instantiates all the objects in the
array:

Student[] group;
group = new Student [4] ; // 4 in the group
group[0] = new Student(21, "Jack"); // starting at 0
group [1] = new Student(18, "Ann");
group [2] = new Student(25, "Jim");
group[3] = new Student(23, "Mary"); // last one
group [3] .print(); // print Mary's details

134 Essential Java for Scientists and Engineers

Note:

• In the second line (group = new S tuden t [4]), the new statement is calling the constructor
for an array object not a S tudent object. Only in the line after that are we calling the S tuden t
constructor. As in Figure 6.2, the handle group is pointing to an array of handles. Before the objects
are created, these handles are pointing nowhere.

• To call one of the S tudent methods, you have to index a particular element in the array.

In the case of arrays of S t r ings , we can initialize the array without calling new for each string as
follows:

S t r i n g [] words = {"one", " two", " t h r e e " , " f o u r " } ;

This is an exceptional case and does not apply to other types of objects.
Now do Exercises 6.11 to 6.12.

6.7 Sorting an array

Sometimes you will need to sort the elements of an array before you can use them. There are many
different sorting algorithms, some more efficient than others (entire books have been written on sorting
and searching algorithms). We will present one that is fairly easy to understand, called insertion sort.

The basic idea of insertion sort is that we start with an empty array and add each element one-by-
one into the correct position. In this way we build up an ordered array. For example, say we have the
following unsorted elements:

56 -167 5 78 -10

The process is:

1. Starting with an empty array, we insert the first element (56):

56

2. Insert the second element (-16 7) in the correct position. We start at the end of the array (at 56)
and move each element that is larger than -16 7 to the right, in this way making a space for the
new element:

-167 56

3. Insert the third element (5) in the correct position. Start with the last element (56) and move it to
the right (because it is larger than 5). The next element -167 is smaller, so leave it in the first
position and insert 5 to the right of -167:

-167 5 56

4. This process continues until all elements are inserted.

Here is code that implements the insertion sort on an array of integers:

public class TestSort
{
public static int[] sort(int[] unsorted)
{
int[] sorted = new int[unsorted.length];
int numElts = 0 ; // number of elements currently sorted

Arrays and matrices 135

for(int i = 0; i < unsorted.length; i++)
{
int elt = unsorted[i]; // pick up next element to insert
int pos = numElts; // start at the end of sorted array
while ((pos > 0) ScSc (sorted [pos-1] >elt))
{

/ / move the element up:
sorted[pos] = sor ted [pos-1] ;
pos - - ;

}
sorted[pos] = elt; // insert element
numElts++;

} // next element to insert
return sorted;

}

public static void main(String[] args)

int[] test = {3,-5,12,18,5,-45,8,34};
int[] sorted = sort(test);
System.out.printIn("Unsorted:");
for(int i=0; i<test.length;i + +)
System.out.print(test [i] + "\t");

System.out.printIn();
System.out.printIn("Sorted:");
for(int i=0; i<sorted.length;i++)
System.out.print(sorted[i] + "\tM);

}
}

Do a trace of the variables on paper to see how the program works (use a small array as a sample).
Note that we have shown you the insertion sort because it is a relatively simple algorithm to program.

However, there are other sorting algorithms which are more efficient, both in terms of time and space.
This means that if you had to sort a large data set using the insertion sort, it would take a longer time to
run than in the case of some other algorithms. The s o r t method above also uses a second array to sort
the elements. This is not usually needed when sorting an array, so we say that it is inefficient in its use
of space. If you are sorting a large number of elements you should use one of the built-in Java sorting
methods, for example, Ar rays . s o r t in the j a v a . u t i l package.

Now do Exercise 6.13.

Summary

Arrays are useful for representing and processing large amounts of data of the same type.
An array is created in two stages; the array name must be declared, and then memory must be

allocated for each element in the array. The two stages can be combined in one statement, e.g.
the declaration

>#*
i n t [3 & m new i n t [10] ;

sets up an array of tm i n t elements x [0] , x [1 1 , • •.• x [91. The first element of an array in
Java always has the subscript &

136 Essential Java for Scientists and Engineers

• An array may be initialized at declaration, e.g.

doub l e t] x ~ {5 .2 , 6 . 8 , - 1 . 2 , 0, 1 3 } ;

• A Java array is an object.
The number of elements in an array is stored in the array's special data member l e n g t h , e.g.
x . l eng th .

• Java checks array subscripts during runtime and throws an exception if an array subscript goes
out of range.

• Arrays can be sent to methods by passing the array handles as arguments.
Two-dimensional arrays may be set up as arrays of arrays, e,g. •

•

double [] [] a ~ new double [3] [4] ;
Treef] [] f o r e s t « new Tree [100] [200] ;

The number of rows is given by a • l e n g t h , and the number of columns by a [0] . l e n g t h (or
a [i] . l e n g t h in general).
Matrices can be modelled as two-dimensional arrays of numbers.
When an array of objects is created, a constructor must be called for each element in the array.

• Arrays can be sorted using a sorting algorithm such as the insertion sort.

Exercises

6.1 If num is an i n t array with 100 elements write lines of code which will
(a) put the first 100 positive integers (1,2, ,„, 100) into the elements num [0] , . , . , num [99];
(b) put the first 50 positive even integers (2, ..., 100) into the elements num[0], .,.,

num [49];
(c) assign the integers in reverse order, i.e. assign 100 to num [0] , 99 to num [1] , etc.

6.2 When you were at school you probably solved hundreds of quadratic equations of the form

ax2 + bx + c =r 0.

A structure plan of the complete algorithm for finding the solution(s) x, given any values of a,
b and c, is shown in Figure 6.3. Note that the structure plan caters for all possible situations,
e.g. no solution, indeterminate solution, complex roots, etc. Figure 6,4 shows the graph of a
quadratic equation with real unequal roots.
Write a method (in your E s s e n t i a l M a t h class):

public static doublet] solveQuadratic(
double a, double b, double c}

to solve a quadratic equation, with the following specifications:
• if the roots are real and unequal, return an array with the roots as its two elements;
• if the roots are real and equal, return an array with the root as its single element;
• for all other situations, return n u l l .

Returning n u l l does not distinguish between the cases of complex roots, an indetermi-
nate solution or no solution. To handle these cases properly you should use exceptions (see
Chapter 10).

Arrays and matrices 137

1. Declare array called roots
2Jfa~Gthen

If 6 = 0 then
lfc~Gthen

return mi//(solution indeterminate)
else

return null (no solution)
else

Add xto root® (only one root; equation Is linear)
else if tP<4m then

return wtl (complex roots)
else if &a = 4ac then

x=~6/(2a)
Add xto roots (equal roots)

else

x t = H > * ^ ~ ~ 4 a c) / (2 a)

^ = (-«b^V02-4ac)/(2a)
Add Xi and x2 to room

3* return mol$.

Figure 8*3 Quadratic equation structure plan

Figure BA Graph of a quadratic equation with real unequal roots indicated by o

63 The numbers in the sequence
1,1, 2, 3, 5,8t 13,.«,

are known as Fibonacci numbers. Can you work out what the next term is, before looking at
the generating equation below?
Fibonacci numbers are defined by the relationship

17 ~~ J? - _L J? *

138 Essential Java for Scientists and Engineers

Starting with F<* = Fi = 1 gives the sequence above.
Write a program to put the first 30 Fibonacci numbers into an array £ [0] , f tU » ». •« Print
out the array to check that your program works correctly.

6,4 The sample mean of a set of N observations is defined as

1 N

1=1

where J* is the *th observation. The standard deviation s of the data is defined with the
formula

N
J> _ l \TVv. v\2

1=1

Write a program to compute the mean and standard deviation of the data in the following
array x;

d o u b l e t] x * { 5 . 1 , 6.2, 5 . 7 , 3 . 5 , 9 . 9 , 1 .2 ,
7 . 6 , 5 . 3 , 8 . 7 , 4 . 4) ;

(Answers: 1 = 5.76, s = 2 ,53)
6.5 Salary levels at an educational institution are (in thousands of dollars): 9, 10, 12, 15, 20, 35

and 50. The number of employees at each level are, respectively, 3000, 2500,1500, 1000,400,
100, 25. Write a program which finds and prints:
(a) the average salary level ($21571.4);
(b) the number of employees above and below the average level (125 above, 8400

below);
(c) the average salary earned by an individual in the institution ($114663).

6.6 Draw a graph of the population of the USA from 1790 to 2000, using the (logistic)
model

' * ' """ 1 -f e~~0mi34(t~~ 1913,25)

where t is the date in years.
Actual data (in 1000s) for every decade from 1790 to 1950 are ^ follows: 3929, 5308, 7240,
9638, 12866, 17069, 23 192, 31443, 38558, 50156, 62948, 75995, 91972, 105711, 122775,
131669, 150697. Create an array initialized with this data, and use the array to superimpose
the data on the graph of P(t). Plot the data as discrete circles (ie* do not join them with lines)
as shown in Figure 6*5.

Hints:

1. To superimpose the graphs on the same axes, create one Essential Grapher Graph object
to plot the model, and a separate Graph object to plot the data;

2, If your Graph object to plot the data is d a t a P l o t , the statement

dataPlot. setPointShape {new CirclePoint (
PointShape.UNFILLED)};

will use small open circles instead of points for plotting, and the statement

Arrays and matrices 139

1750 1800 1850 1900

Year

1960 2000

Figure 6.5 USA population: model and census data (o)

dataPlot. setDrawingStyle (Graphable, PkOTPOINTS) ;

will prevent the circles from being joined with lines.

6 J fa Chapter 3, we created an E e s e n t i a l M a t h class. Add two s t a t i c methods to this
class, called mean and std» which return the mean and standard deviation of the elements
in an array of any length passed to them as a parameter. Test your methods on the data
in Exercise 6.4. Hint: remember that the number of elements in an array x is given by
x . l eng th .

6.8 Write a s t a t i c method of E s s e n t i a l M a t h called furthestFromMean that takes
an array of doubles (of any length) as an argument and returns the element of the
army that is furthest in absolute value from the mean. Hint: Modify the code in
FurthestFrotnMean2 (Section 6J) to work with an array of any length. You should also
call the mean method written in Exercise 6 J , rather than duplicating the code for calculating
the mean.

6.9 Write a new method of Ant (from Section 6.4) called p r i n t E a r C h a r t that prints a
rough 'bar chart' depicting the frequencies f, The method should take two arguments
giving the range of frequencies to plot Given the frequencies (for the range 35 to
45):

39 43 53 59 51 40 33 24 12 5 1

your output should look something like this:

140 Essential Java for Scientists and Engineers

35: ***************************************
36: ***
3 7 : **********************^*«*^*^^#*^^**^#^^«^«**^^^w****
3 3 . **************************************^
39* ***
<!0 « *

43^. *

4 2 ; *

4 3 : * * * * * * * * * * * *

44. * * * * *

45: *

i.e. each asterisk represents landing once in that column. If you generate much more than 500
steps you may need to scale the frequencies down to avoid printing more than one row of
asterisks per frequency.

6.10 Write a program which:
• sets up two-dimensional arrays to represent the cost and solution tables in the concrete

transportation problem specified in Section 6*5;
• prints the cost and solution tables one row per line;
• computes the cost of this transportation scheme as described.

6.11 Create a Card class which stores the suit and value of a playing card. The methods should
include the following:

• a parameterized constructor for setting die suit and value;
• a t o s t r i n g method which returns a S t r i n g representation of the card.

In a separate class create a main method which declares an array of 52 cards and ini-
tializes them to be a sorted pack of cards* Loop through the array and print the card
details.

6.12 Successive points in the set (X/> F|) are joined by straight lines. The y co-ordinate of a point
on the line joining the two points (X,, Yf) and (X,-+i, FM-I) with x co-ordinate X is given
by

(Ti+i -Xi)

This process is called linear interpolation. Suppose 1GG sets of data pairs are stored, in
ascending order of X*, in a text file. Write a program which will read the data and compute an
interpolated value of F given an arbitrary value of X keyed in at the keyboard. It is assumed
that X is in the range covered by the data. Note that the data must be sorted into ascending
order with respect to the X* values. If this were not so, it would be necessary to sort them first.
(Hint: create a class called Po in t that stores a single (X,F) pair, and then create an array of
Points) .
Test your program on some sample data.

6.13 Modify your program from Exercise 6 J 2 to assume that the file of data is not sorted and sort it
first (Hint: modify the insertion sort code from Section 6.7 to compare the X values of P o i n t
objects.)

Par t II

More advanced topics

Part I has been concerned with those aspects of Java which you need in order to get to grips with the
essentials of the language and of scientific programming. Parts II and III contain more advanced topics
and applications which don't really fall under the heading of 'essentials'.

This Page Intentionally Left Blank

7

Inheritance

Objectives

By the end of this chapter, you should be able to do the following:

• reduce redundancy in code by applying generalization;
• apply the concept of specialization, by extending and overriding existing Java classes;
• implement solutions in Java using inheritance.

7.1 Introduction

Inheritance is a very powerful feature of object-oriented programming. It is integral to the way that Java
works, therefore it is important that you understand how to use inheritance to move beyond the basics
of programming in Java.

What is inheritance?

Inheritance is about describing one class in terms of another class. There are two ways that classes can
be used to describe other classes:

1. Inheritance. This form of a relationship occurs when once class is a specialized version of a different
class. For example, if we had a S t u d e n t class and a P e r s o n class, then S t u d e n t would be a
specialized form of P e r s o n , since a student is a person, with some extra features. To emphasise
the nature of this relationship, we sometimes refer to inheritance as an 'is a' relationship.

2. Aggregation (also known as composition). This is a relationship between classes when one class A
contains a reference to another class B, for example, if A contains a data member which is of type B.
In other words, class B is part of class A. For example, say we are defining classes to model a pack
of cards. If Ca rd is a class and PackOf C a r d s is a class, then Card is part of PackOf C a r d s ,
so Card is being used to describe PackOf C a r d s . To emphasise the nature of this relationship, we
sometimes refer to aggregation as a 'has a' relationship.

When we are describing the relationships between classes, it is sometimes helpful to draw a diagram to
illustrate these relationships. This can be either a parts hierarchy, showing the aggregation relationships
between classes, or a class hierarchy, showing the inheritance relationships between classes. For example,

143

144 Essential Java for Scientists and Engineers

Figure 7.1 A parts hierarchy of a car

Figure 7.2 A class hierarchy of a car

when describing a car, we can either describe it in terms of a hierarchy of parts or a hierarchy of classes.
A motor mechanic is somebody who would be interested in a parts hierarchy. Figure 7.1 shows such an
example. A car is made up of an engine, a body and wheels. A car therefore has a engine, body and
wheels. We call car a super-part and the lower classes sub-parts.

In contrast, Figure 7.2 shows an example of a class hierarchy. A car rental company would be interested
in such a classification. The types of car represent specializations of a car. A van is a car, but is more
specialized than a car. In object-oriented terminology, we say that class Car is a superclass of classes
TwoDoor, FourDoor , S t a t i o n W a g o n and Van. The 'lower' four classes are subclasses of Car . A
superclass is sometimes also referred to as a base class and the subclasses as derived classes.

The notation used in both Figures 7.1 and 7.2 is UML (Unified Modelling Language) notation. UML
is a popular modelling language used for designing and specifying software.

Now do Exercise 7.1.

Generalization and specialization

Inheritance can be seen in two directions: up or down the class hierarchy. Suppose we want to write a
computer game for young children, which simulates a farmyard scene. In the scene, animals are scattered
around. A child can click on any animal and it will make the particular sound of that animal. Animals
can also be moved around the scene. Figure 7.3 shows a class hierarchy with F a r m y a r d A n i m a l as
the superclass. For now, we only have cows, chickens and ducks in our farmyard.

Generalization is the process of identifying features which are common to different classes and com-
bining them into a new common superclass. For example, assuming we started with classes Cow, Duck
and C h i c k e n . In these separate classes we may have found features or behaviour that were duplicated
in all three classes, such as the fact that they have a position on the screen and can be moved. Gener-
alization involves taking out these common features from the individual classes and putting them into
a new superclass with an appropriate general name (FarmyardAnimal) . In the same way, C h i c k e n
and Duck have shared features (such as, they both have wings), so are generalized to a superclass Fowl.

Specialization, on the other hand, involves identifying additional features which make a class a more
specialized form of an existing class (which then becomes the superclass). For example, say we wanted
to add bantam chickens to our scene. Bantams are very similar to chickens, except that they have the

Inheritance 145

Farmyard animal

2
0
C
0
0

Cow Fowl

Chicken Duck

(7)
•o
0
g
N'
2*
o*

Figure 7.3 Class hierarchy of a farmyard scene

additional feature of having feathers on their feet. In our model, a Bantam therefore is a Chicken,
but is more specialized, so will be placed as a subclass of Chicken in Figure 7.3.

Now do Exercise 7.2

7.2 Inheritance in Java

Inheritance is implemented in Java using the keyword ex tends . When class B is a subclass of class
A, we say B extends A. The word 'extends' is descriptive, because inheritance means that class B 'adds
on' extra features over and above what class A provides. The following simple example will show how
ex tends works:

public class Person
{

}

private String name;
public void setName(String n)
{
name = n;

}
public void print()
{
System.out.printIn(name);

}

public class Student extends Person
{
private String studentNo;
public void setStudentNo(String s)

studentNo = s;
{

}
public void print()
{
super.print();
System.out.println(studentNo);

}

public class UseStudent

146 Essential Java for Scientists and Engineers

{
public static void main(String [] args)
{
Student s = new Student();
s.setNameC'Jill Hope");
s.setStudentNo("HPXJIL003");
s .print () ;

}
}

In the above program, notice the following:

• S tudent ex tends Person: this statement means that the class S tuden t implicitly incorpo-
rates the data members and methods of class Person. We say that S tuden t inherits the data
member name and the methods setName and p r i n t from class Person.

• Although S tudent inherits the method p r i n t from Person, it also defines its own p r i n t
method. To call the p r i n t method of the Person class from within S tudent , it is preceded
by the keyword super . The keyword super refers to the superclass Person. If we left out the
keyword super, we would be referring to the S tuden t p r i n t method, so the method would
continue to call itself indefinitely!

• In the main method, when a S tudent object is created, it contains both name (from Person)
and s tudentNo (from Student) inside memory. Methods of the Person class can be called
using the S tuden t object handle.

• When the p r i n t method is called using the S tuden t handle s, the method inside S tuden t is
called, which in turn calls the p r i n t method of the Person class.

Now do Exercise 7.3.

Reusing code through specialization

Inheritance allows us to take the form of an existing class and add code to it, through specialization,
without modifying the existing class. This is a very powerful and convenient way of reusing code written
by somebody else—if their code does not meet all your requirements, you can simply extend it. In this
section we will show you how to 'add' additional methods and attributes to an existing class without
needing to see the source code.

We start by implementing a class called C l e v e r T u r t l e that can do everything that a T u r t l e
object can do and more. We would like C l e v e r T u r t l e objects to draw entire shapes with a single
command. Here is our first version of C l e v e r T u r t l e , which ex tends T u r t l e and defines an
additional method for drawing a square of a given size:

import e s s e n t i a l . * ;

public class CleverTurtle extends Turtle
{
public void square(int size)
{
for(int i=l; i<=4; i + +)
{
forward(size);
right(90);

}

Inheritance 147

If we create a CI eve r T u r t l e object, we can call any of the existing T u r t l e methods, or the new
square method. Here is an example of a main method that uses the C l e v e r T u r t l e class to draw
a pattern of multiple squares.

public class UseCleverTurtle
{
public static void main(String[] args)
{
CleverTurtle zap = new CleverTurtle();
for(int i=l; i<=360/5; i++)
{
zap.square(60);
zap.right(5);

}
}

}

The output of the above program is shown in Figure 7.4. Notice in the program how we call both the
squa re method and the r i g h t method (inherited from the T u r t l e class) with the C l e v e r T u r t l e
object handle.

Now do Exercises 7.4 to 7.7.

Figure 7.4 Output from running UseCleverTurtle . j ava

148 Essential Java for Scientists and Engineers

Overriding methods

Sometimes we will want to replace existing methods (which we inherit from the superclass) by ones which
are more suited to the subclass. To illustrate this concept, we will write a class called Z igZagTur t l e ,
which always walks in a zigzag. Here is a Z igZagTur t l e class with a main method for testing the class:

import essential.*;

public class ZigZagTurtle extends CleverTurtle
{

private int size = 4 ; // the size of one line of the zigzag

public void setSize(int s)
{
size = s;

}
public void forward(double distance)
{
while(distance > size)
{
zigzag();
distance -= size;

}
if(distance > 0)
super.forward(distance);

}
private void zigzag()
{
// draw a single zigzag:
left (60);
super.forward(size/2);
right(12 0);
super.forward(size);
left (120) ;
super.forward(size/2);
right(60);

}

public static void main(String[] args)
{
ZigZagTurtle ziggy = new ZigZagTurtle();
z iggy.square(80);
ziggy.left(45);
ziggy.forward(100);
Turtle straight = new Turtle();
straight.right(13 5);
straight.forward(100);
ZigZagTurtle bigZig = new ZigZagTurtle();
bigZig.setSize(10);
bigZig.right(225);
bigZig.forward(100);

}
}

Inheritance 149

The output from this program is shown in Figure 7.5. Note the following about the program:

• Z igZagTur t l e inherits from C l e v e r T u r t l e . This means that objects of type Z igZagTur t l e
can use any methods of C l e v e r T u r t l e , which includes any methods of T u r t l e .

• An additional data member called s i z e is defined, with an associated s e t S i z e method.
• A forward method is defined. This essentially redefines the forward method of the superclass (or

in this case the supersuperclass!). We say that the forward method of Z igZagTur t l e overrides
the forward method of T u r t l e . Inside the method, it calls a p r i v a t e method called z igzag,
which draws a single zigzag. We declare z igzag as private, because it is just a helper method and
we do not expect the class user to call it directly.

• In the forward and z igzag methods, when we want to call the forward method of T u r t l e
(rather than the Z igZagTur t l e method), we use the keyword super .

• In the main method, we define three turtles. The turtles z iggy and b igZ ig are of type
ZigZagTurt le , whereas s t r a i g h t is of type T u r t l e . When we tell z iggy to draw a square,
the object draws a zigzag square. The square method inside C l e v e r T u r t l e calls the forward
method, and since this has been overridden, it will call the new 'zigzagged' forward method.

By overriding the forward method, we have defined a different way for a Z igZagTur t le to move
forward. A ZigZagTur t le can now only move forward in zigzags—it can no longer walk straight
using the T u r t l e ' s forward method. One important point to remember about overriding methods is
that the signature of the new method has to be identical to the signature of the method to be overridden
in the superclass. In addition, the return types must be the same. If the signatures or return types differ

Figure 7.5 Output from running Z igZagTur t le .Java

150 Essential Java for Scientists and Engineers

in any way, you will simply be adding a different method and not overriding (or replacing) the method
of the superclass. Data members can also be overridden (there is an example of this in Exercise 7.8).

Now do Exercises 7.8 to 7.10.

The p r o t e c t e d keyword

If you want a data member or method to be accessible to any subclasses, then you should use the
p r o t e c t e d access modifier. (Elements declared as p r o t e c t e d are also visible to other non-subclasses
in the same package. Remember that if no package is specified, your class is part of the package with
no name.) The following example will illustrate how p r o t e c t e d works. (All three classes are stored
in different files. Classes Chi ld and Orphan are stored in the same folder, while Pa ren t is stored in
a subfolder called t e s t e r)) :

package tester;
public class Parent
{
private int private_var;
protected int protected_var;
public int public_var;

}

import tester.*;
public class Child extends Parent
{

publ ic void tryAccessO
{
private_var = 5 ; // ERROR!
protected_var = 5 ; // OK
public_var = 5 ; // OK

import tester.*;
public class Orphan
{

public void tryAccessO
{
Parent p = new Parent();
p.private_var = 5 ; // ERROR!
p.protected_var = 5;// ERROR!
p.public_var = 5 ; //OK

}
}

Both classes (Child and Orphan can access the p u b l i c variable, p u b l i c _ v a r . Only Ch i ld can
access the p r o t e c t e d variable, since Chi ld is a subclass of Paren t . Notice that the Ch i ld class
can access the Pa ren t data members directly (without having to create a Pa ren t object), since Ch i ld
is simply an extension of Paren t .

7.3 Constructors and inheritance

This section will explain how to use both default and parameterized constructors with inheritance.

Inheritance 151

Default constructors

In our C l e v e r T u r t l e example from Section 7.2, C l e v e r T u r t l e is a subclass of T u r t l e . When
we create a C l e v e r T u r t l e object by calling the default constructor, Java will automatically call the
T u r t l e constructor first. The general rule is therefore: in the case of default constructors, the compiler
always calls the superclass constructor before calling the current constructor. The following example
illustrates this principle:

class Mammal
{
public Mammal()
{
System.out.printIn("Making a mammal");

class Rodent extends Mammal
{
public Rodent()
{
System.out.println("Making a rodent");

class Rat extends Rodent
{
public Rat()
{
System.out.println("Making a rat");

}
}

The statement:

Rat r = new R a t () ;

will print the following output:
Making a mammal
Making a rodent
Making a rat

What would be the output if you created a Rodent object, or a Mammal object?

The super keyword

In the Rat and Rodent example above, the superclass constructor is called implicitly by the compiler.
You can, however, put in the call to the superclass constructor explicitly, using the super keyword, as
in the example below:

class Rat extends Rodent
{
public Rat()
{
super(); // call to the superclass (Rodent) default constructor
System.out.println("Making a rat");

152 Essential Java for Scientists and Engineers

The call to the superclass constructor must be the first statement of the method. The compiler will
generate an error if it is not the first statement.

Parameterized constructors

In the case of a subclass constructor with arguments, you have to call the superclass constructor explicitly.
As in the case of the default constructor, the call to the superclass constructor must be the first statement
in the subclass constructor. Look at the following example:

class Publication
{

protected String authorName, title;

public Publication(String a, String t)
{
authorName = a;
title = t;

}
}
class Book extends Publication
{
private String publisher;
public Book(String a, String t, String p)
{

s u p e r (a , t) ; / / c a l l s t h e s u p e r c l a s s c o n s t r u c t o r
p u b l i s h e r = p ;

When a Book object is created, we would need the class user to specify the au tho rName , t i t l e and
p u b l i s h e r , for example:

Book b = new B o o k (" J . R . R . T o l k e i n " , "The H o b b i t " , " H a r p e r C o l l i n s ") ;

The constructor should therefore have three arguments. Since two of these attributes belong to the
superclass, they should be initialized in the superclass. It would be possible to initialize the data members
of P u b l i c a t i o n in the Book constructor, because they are declared as p r o t e c t e d . It is, however,
better programming practice to initialize data in the class in which they are declared. We therefore pass
the first two parameters to the superclass constructor so that the values can be initialized in that class.
Lastly, the p u b l i s h e r data member is initialized.

Now do Exercises 7.11 to 7.13.

7.4 The Obj ec t class

The standard Java classes are organized in a huge hierarchy of classes. In the Java API, you can view
this hierarchy as a sideways 'tree'. Open the Java API and do the following:

• Click on Tree at the top of the page.
• Scroll down to the section called Class Hierarchy. You will see a list of classes starting with

j a v a . l a n g . Ob j e c t . This class is the root of the tree and the 'branches' are the nested sub-lists
to the right.

• Click on the Ob j e c t class. Look at the methods that are provided by the class.

Inheritance 153

The class Object is the 'supreme' class from which all classes inherit. Any class in Java that does
not explicitly inherit from another class, is by default a subclass of Object . Therefore, every class
that you have defined in Java is either a direct subclass of Object (by default), or an indirect subclass
of Object . This means that you can call any of the methods of the Object class from any object
handle.

Now do Exercise 7.14.

The t o S t r i n g method

One of the methods of the Obj e c t class is the t o S t r i n g method. This method returns a string made
up of the name of the class, followed by some characters (more precisely, the unsigned hexadecimal
representation of the hash code of the object, but you need not worry about it). Although the t o S t r i n g
method is defined in Object , it is recommended that subclasses override it. Where it makes sense,
classes should have a t o S t r i n g method that returns a string that textually represents the object. We
return to the Person and S tudent classes to illustrate how t o S t r i n g works. We have modified the
classes slightly.

public class Person
{
protected String name;
public Person(String n)
{
name = n;

public class Student extends Person
{
private String studentNo;
public Student(String n, String s)
{
super(n);
studentNo = s;

public class UseStudent
{
public static void main(String[] args)
{
Student jill = new Student("Jill Hope","HPXJIL003");
String s = jill.toString();
System.out.println(s);
System.out.println(jill);

The output from this program is:

Student@lfcc69
Student@lfcc69

In the main method, we create a S tudent object, called j i l l . When we call the t o S t r i n g method,
Java first looks in the S tuden t class. It finds no t o S t r i n g method, so it looks in the superclass
Person. There is no t o S t r i n g method defined in Person, so it looks in the superclass, which

154 Essential Java for Scientists and Engineers

by default is the class O b j e c t . In the O b j e c t class Java finds a t o S t r i n g method and exe-
cutes it. The result is therefore the name of the class followed by some characters. Notice that the
output of the last statement is the same as the output of the second last statement. When we call
p r i n t or p r i n t l n and pass it an object handle, Java will automatically call the first t o S t r i n g
method that it finds in the class hierarchy. The last line is therefore equivalent to the two lines
above it.

To generate more meaningful output, we would have to override the O b j e c t t o S t r i n g method.
Here is a t o S t r i n g method for S t u d e n t :

public String toString()

{
return name + ", " + studentNo;

}

The statement: S y s t e m , o u t . p r i n t l n (j i l l) will now generate the following output:

Jill Hope, HPXJIL003

In the same way, you should add t o S t r i n g methods to your classes, where it is appropriate.
Now do Exercise 7.15.

7.5 Abstract classes and interfaces

We return to the farmyard example from Section 7.1 to illustrate the concepts of abstract methods,
abstract classes and interfaces.

Every farmyard animal must be able to make a noise. We should therefore have a method called, for
example makeNoise , inside the F a r m y a r d A n i m a l class. However, we cannot say what kind of noise
a farmyard animal should make before we know what type of animal it is. The details of the m a k e N o i s e
method would therefore have to be left blank in the F a r m y a r d A n i m a l class. The appropriate way to
handle such methods, is to declare them as a b s t r a c t . An abstract method has no body; it exists only
so that it can be overridden. In other words, the implementation is left to the subclass. A class containing
a b s t r a c t methods is called an abstract class and must be specified as such, using the a b s t r a c t
keyword. Here is the basic form of our farmyard classes so far:

abstract class FarmyardAnimal

{
protected int positionX, positionY;
public abstract void makeNoise(); // no method body
public void move(newX, newY)
{
positionX = newX;
positionY = newY;

}
}
class Duck extends FarmyardAnimal
{
public void makeNoise()
{

// code to go quack quack

}

i"
class Pig extends FarmyardAnimal
{
public void makeNoise()

Inheritance 155

{
// code to go oink oink

}

} ' "

Note the following about our program:

• FarmyardAnimal defines two data members and a concrete (i.e. non abstract) method move. It
also declares an a b s t r a c t method makeNoise, which has no body.

• Classes Duck and Pig ex tend FarmyardAnimal, so inherit the two data members and the
move method. In addition, they are each forced to define a makeNoise method. (An error will be
generated if they do not provide the method definition.)

Although it does make sense to create a Duck or Pig object, it does not make sense to create a
FarmyardAnimal object. Java, in fact, does not allow objects to be created from abstract classes. This
is because an abstract class is not yet completely defined.

Why bother with abstract classes?

Abstract classes establish a basic form, so that it is clear what is in common between all subclasses. If
you create a class which extends FarmyardAnimal, you would want it to be able to make a noise.
Abstract methods force the subclasses to provide these method definitions. Say we had an array of
FarmyardAnimals called animals:

FarmyardAnimal[] animals = new FarmyardAnimal[50];

The variable an imals could be initialized to contain a variety of different types of farmyard animals.
We might want all the animals in the farmyard to make a noise at the same time—the pig should oink,
the duck quack, the cow moo, etc. This could be done in a simple statement:

f o r (i n t i=0 ; i < a n i m a l s . l e n g t h ; i + +)
a n i m a l s [i] . m a k e N o i s e () ;

We can do this because we are assured that each subclass of FarmyardAnimal has a makeNoise
method.

Interfaces

An interface is a pure abstract class. Interfaces contain no data variables or method bodies, only constants
and method headers. The purpose of an interface is to specify the form of a class. An interface says: This
is what all classes that implement this particular interface will look like'. Classes do not inherit from
interfaces (because there is nothing to inherit), but they conform to the specification. To create an interface,
we use the i n t e r f a c e keyword instead of the c l a s s keyword. To make a class which conforms to
the interface, we use the implements keyword (instead of extends) . A class can implement many
interfaces, but only extend a single class.

To illustrate the use of interfaces, we return to the farmyard example. In the farmyard, we would
like to add some animals which do not make a noise (like tortoises and rabbits), and some other
farmyard objects which make a noise, but do not move (like windmills). To implement this change,
we create an i n t e r f a c e called CanMakeNoise which specifies the makeNoise () method. This
method declaration is then taken out of the FarmyardAnimal class. The animals which make a
noise then ex tend FarmyardAnimal and implement CanMakeNoise. Animals which do not
make a noise only ex tend FarmyardAnimal. Objects which can make a noise, but cannot move
implement CanMakeNoise. Here is our modified code (like classes interfaces are stored in files of
their own):

156 Essential Java for Scientists and Engineers

class FarmyardAnimal

public void move(newX, newY) { ...}
protected int positionX, positionY;

interface CanMakeNoise

public abstract void makeNoiseO;

class Duck extends FarmyardAnimal implements CanMakeNoise

public void makeNoiseO { /* code to go quack quack */ }

class Rabbit extends FarmyardAnimal

public void wriggleEars() { ...}

class Windmill implements CanMakeNoise

public void makeNoiseO { /* code to go squeak squeak */ }

In the Java API, in the list of All Classes (bottom left frame), you will notice some of the class names
are in italics. These are in fact not classes, but interfaces. Find the interface called Comparable and
click on it. The only method specified by Comparable is compareTo. At the top, there is a list
of All Known Implementing Classes. The class S t r i n g is among those classes. Because S t r i n g
implements Comparable, we know that S t r i n g has a method called compareTo. Check that
this is so, by looking inside the S t r i n g class. We will work more with interfaces in the next chapter
on graphical user interfaces.

Summary

• Inheritance is one of the most powerM features of object-oriented programming. Inheritance is
a relationship between classes where one class is a more specialized version of another class/

• Aggregation is a relationship between classes where one class is part of another class,
• Inheritance is implemented in Java using the e x t e n d s keyword
• A subclass inherits (can use) the attributes and behaviour of its superclass* can add its ow»

attributes and methods and can change the behaviour of the superclass by overriding the superclass
methods,

• A programmer can also use inheritance to factor out common elements of classes into superclasses
(generalization). This results in better code (less redundancy and more logical structure).

• A programmer can use an existing class by extending it* without even needing to see the sowse
code (specialization). In this way, reusability is maximized

• The p r o t e c t e d access modifier allows elements to be accessed directly by subclasses,
• In the case of default constructors, the compiler automatically calls the superclass constructor

before calling the current constructor*
• In the case of parameterized constructors, the superclass constructor has to be called explicitly*
• Every class in lava is a subclass of the class Ob j e c t . Where appropriate, classes should override

the t o S t r i n g method of Ob j e c t .

Inheritance 157

• Ail abstract class is a class which contains at least one abstract method (a method without a
body), Abstract classes establish a basic form to which all subclasses must conform,

* An interface is a pure abstract class, i.e. it contains no data variables or method bodies, only
constants and method headers.

ClXQrCiSGS

7.1 For each of toe following, give any example of a subpart, a superpart, a subclass and a super-
class.
(a) House
(b) CD

72 Apply the concept of generalization to the following classes, by describing a suitable super-
class:

• class Book with attributes: t i t l e , authorName, publisher ,
• class ConfierencePaper with attributes: authorName, t i t l e , locat ion,
• class Journal Paper with attributes: authorName, t i t l e , journal , volume.

7.3 Based cm your modified class descriptions in Exercise 7.2, show how these would be imple-
mented in Java code.

7.4 Modify the s q u a r e method of class C l e v e r T u r t l e (defined in Section 7.2) so that the
square is town with the starting position of the turtle as the centre of the square. After
drawing the square, die turtle should be moved back to the same position and direction as when
it stalled. For example, if the turtle is in the centre facing North and a square of ske 200 is
drawn, then the shape should match the outlines of the drawing area.

7 J Use your modified C l e v e r T u r t l e class from Exercise 7.4 to draw 15 nested squares, with
the inner circle of stee 5 and each consecutive square 10 units larger than the previous square.

7.6 Add a method to the C l e v e r T u r t l e class defined in Section 7.2 that draws a circle shape of
a given radius. The circle should be drawn with the current position of the turtle as the centre
of the circle. After the circle has been drawn, the turtle should be back in the same position
and direction as when it started. (Hint: Use the radius to calculate the circumference and divide
this distance by 360°). Write a main method to test your new method.

7.7 There is a class called Complex defined in the e s s e n t i a l package. Use the e s s e n t i a l
API to find out what the class contains. Using die Complex class, write a new class called
MyKeyboard that extends Keyboard to read in complex numbers. Show how you would
use MyKeyboard for reading in both complex numbers and real numbers.

7.8 Study the following classes before answering the questions below.
*

public class Base
{
public int num m 100;
public void printNumber ()

Systern.out,printIn(HHumber from Base; n * num);

p i p =laaS Sufcdass extend. Base

private int num * 20/

158 Essential Java for Scientists and Engineers

private int extra « 6; rio void p r i~
System*out.printIn("Number from Subclass: w + num);
Systern.out.printIn("Extra number: " + extra);

}
}
public class Driver

public static void main(String[] args)

Base b = new Base();
Subclass s = new Subclass();
b.printNumber();
3.printNumber(};

} }

(a) What is the output of the program?
(b) How would the output change if you changed the name of the variable num in

Subclass to Num?
(c) How would the output change if you changed the name of the method in Subclass

to printNumbers (the main method stays the same)?
(d) How would the output change if you added the following statements to the end of the

main method:
b = S;
b•printNumber();

7,9 Add a method to the 2ig2agTurtie class, defined in Section 7.2, which overrides the
backward method of Tur t le to also draw in zigzags. Write a main method to check
that your method works as it should.

710 In the ZigZagTurtle class, defined in Section 7,2, change the type of the argument in the
forward method from double to f loa t . The start of the method should look like this:

public void forward{float distance){

Re-compile and run the main method and notice that the output has changed. Explain how it
has changed and why.

7.11 Change the CleverTurt l e class to include a parameterized constructor for setting the draw-
ing colour,

7.12 Change the ZigZagTurtle class to include two parameterized constructors. The first con-
structor should initialize only the size of the zigzag. The second constructor should initialize
both the size and the drawing colour. Make sure both of the new constructors work by writing
an appropriate main method.

713 Write a new class called Fert i l i sedTree , which is a more specialized version of the Tree
class defined in Chapter 3, and modified in Exercise 3.14. A Fe r t i l i s edTree differs from
a Tree only in the way it grows. In the case of a Fer t i l i sedTree , when the height of
the tree is greater than 1 metre, the growth rate decreases by 5% (as opposed to 10% in the
case of a Tree). Only when a Fe r t i l i s edTree reaches a height of 3 metres or more,
does the growth rate decrease by 10%. Write a main method which creates one Tree and
one Fe r t i l i s edTree object, both with an initial height of 0.1 metres and growth rate of
20 cm/year. Allow both trees to grow for 30 years. Print out the height of both trees after the

Inheritance 159

30 years, (Hint: to access the h e i g h t and r a t e attributes of Tree, change them to have
p r o t e c t e d access in class Tree*)

7,14 Study the following program before answering the questions below:

class MyObject

public class TestObject
{
public static void main(String[] args)
{
MyObj ect m ~ new MyObj ect();
System,out.printIn(m.getClass());
Object o = new Object();
System*out.println{o.getClass{)};

> »

(a) Explain why it is possible to call the method g e t C l a s s with MyObject handle m if
the method is not defined inside class MyObject?

(b) What do you expect to be the output?
7*15 We would like to write a program for managing bank accounts in a bank. There are two types

of accounts; savings accounts and credit accounts (described below)* For this exercise you are
required to do the following:
(a) Design classes, using inheritance techniques, to model the data described below;
(b) Write a driver class, which will test these classes thoroughly;
(c) Implement the classes.
Description of a savings account:

All savings accounts have an account number, a branch and a current balance*
• All savings accounts have the same interest rate.
• There must be the ability to withdraw money (if there are sufficient funds) and deposit

money, set a new interest rate and add interest to the balance on a monthly basis*
* Hie details of the savings account (account number, branch and current balance) should

be returned using the standard t o S t r i n g method.
Description of a credit account:

* All credit accounts have an account number, a branch, a current balance and a credit
limit*

• All credit accounts have a set interest rate on debit balances and a set rate on credit
balances*

• There must be the ability to withdraw (as long as it does not exceed the credit limit)
and deposit money, set new interest rates and add interest to the balance on a monthly
basis*

The details of the credit account account (account number, branch, current balance and
credit limit) should be returned using the standard t o S t r i n g method.

8

Graphical user interfaces (GUIs)

Objectives

By the end of this chapter, you should be able to do the following:

• write a simple graphical user interface in Java using Swing;
• find out how to use components by browsing the Swing Tutorial and the Java API;
• program listeners to respond to user generated events;
• use layout managers to arrange components attractively in windows;
• do simple graphics painting.

8.1 Introduction

Up till now you have written programs that communicate with the user through a text-based interface,
using System, out for output and Keyboard for input. In this chapter you will learn how to com-
municate with the user through a graphical user interface (GUI) instead. In addition, we will show you
how to do simple graphics painting.

GUIs in Java
Java provides two sets of facilities for developing GUIs: the Abstract Window Toolkit (AWT) and Swing.
AWT is part of the core Java classes, whereas Swing is part of the Java Foundation Classes (JFC). The JFC
software extends the original AWT by adding a set of graphical user interface class libraries. Both AWT
and Swing are included in Java 2 (in packages j ava . awt and j avax. swing respectively). Notice the
j avax prefix to the Swing package. It indicates that this is a package that was initially developed as an
extension for JDK 1.1, and has migrated into the core for JDK 1.2. From a programmer's perspective,
Swing is an alternative to using the AWT, although technically Swing extends (but does not replace)
the AWT.

Graphical components of different operating systems look and operate differently. For example, a
window in Microsoft Windows has the exit button on the top right corner, whereas a window on a
Macintosh computer has the exit button on the top left corner. The advantage of using Java to program
GUIs is thai the same Java window component can look like a Microsoft window when running on a
Microsoft platform and a Macintosh window when running on a Macintosh. (With Swing, you can in fact

160

Graphical user interfaces (GUIs) 161

choose a 'look and feel' for your program.) In this way, the same Java GUI can run on many platforms.
In other programming languages, a GUI would normally have to be completely rewritten to run on a
different platform.

Understanding events

In the case of a text-based interface, there is a predetermined sequence of events. The program pauses
execution when it expects input from the user and continues on the same set path after it receives the
input. With graphical interfaces, on the other hand, there is no set sequence of events. The user can do
any number of things at any time, such as type in a text box, resize the window or press a button. These
responses from the user are called events. The central feature of a graphical program is an event loop,
where the program is ready for any event and responds accordingly. We say the program is event-driven.
You can imagine the event loop as a massive swi t ch statement enclosed in a whi le loop. Each case
of the swi t ch corresponds to a single event. The event loop is part of the code that implements the
AWT, so we (thankfully!) do not have to write it.

In Java, when an event happens, it is received by one or more listeners. A listener is an object that
responds to a particular event and contains code that is executed when that event occurs. To program a
GUI, we therefore decide which graphical components we want and write listeners to handle the events
of these components.

8.2 Building a Swing application

In this section we will show you some of the basics of using Swing, by building a simple application
from scratch.

A first version

Here is the first version of our program. Try compiling and running it and see what happens:

import javax.swing.*;
public class FirstGUI
{
public static void main(String[] args)
{
JFrame f = new JFrame();
f.setVisible(true);

Notice the tiny window in the top left corner of the screen. Play around with resizing and maximiz-
ing/minimizing it. There is a problem with our window—if we exit the program (by pressing the [x]
button), the window disappears, but notice that our Java program is still running. You have to press
Control-C in the DOS box to stop the application. We will soon see how to fix this.

To program GUIs using Swing, we import j avax. swing. *. JFrame is the Swing class that imple-
ments an independent window on the screen. The method s e t V i s i b l e displays the JFrame object f
and enters the event loop, waiting for events to occur. With a JFrame we get all the basic functionality
of a window, such as the ability to move the window and resize it in various ways. Behind these events
are listeners that have been provided as part of the class JFrame.

Shutting down the application properly

To program our application to shut down properly, we have to add a single statement. Here is our
modified code:

162 Essential Java for Scientists and Engineers

import j avax.swing.*;
public class FirstGUI
{
public static void main(String[] args)
{
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setVisible(true);

Compile and run the program and notice that the application is now shutting down properly. If you are
using an earlier version of Java (prior to version 1.3) you will have to insert the following code instead:

f.addWindowListener(new WindowAdapter()

{
public void windowClosing(WindowEvent e)
{

S y s t e m . e x i t (0) ;
}

}) ;
Now do Exercise 8.1.

Components and containers

A component is any GUI element, such as a window, button or label. A container is a type of compo-
nent that has the purpose of containing other components (which can be containers themselves). Every
Swing program contains at least one top-level container (JFrame, J D i a l o g , or J A p p l e t) . Top-level
containers cannot be added to other containers.

Other than top-level containers, there are two other types of components: intermediate containers and
atomic components (also called basic controls). Intermediate containers are used to group components
so that they can be handled as a single component for layout purposes. Examples are J P a n e l and
J T a b b e d P a n e . Atomic components, on the other hand, cannot contain other components. Examples
include J B u t t o n , J T e x t F i e l d , JComboBox and J L i s t .

Now do Exercise 8.2.

Adding a button to the application

We want to add a button and a label to our application. We start by adding the button. Here is our
modified code:

import j avax.swing.*;
public class FirstGUI

{
public static void main(String[] args)
{
JFrame f = new JFrame();
JButton button = new JButton("Press me!"); // create a button
f.getContentPane().add(button); // add the button to the frame
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setVisible(true);

}
}

The J B u t t o n class is used for creating standard buttons that can be pressed. The J B u t t o n constructor
takes a string as an argument, which is the label to be displayed on the button. Every J F r a m e contains

Graphical user interfaces (GUIs) 163

an intermediate container, known as a content pane. We use the ge tConten tPane method to access
this container, and use the add method to add the button to the content pane (thus adding it to the
frame).

If you compile and run this program, the button is hidden—you have to resize the window to see the
button. To avoid this, we can tell the frame to organize itself, so that the components will be visible
when the window is opened. This is done by calling the pack method just before setting the frame to
be visible:

f.pack();
f.setVisible(true);

In summary, to add a button to our frame, we did the following:

• created an instance of JBut ton;
• added it to the content pane of the frame;
• before we set the frame to visible, we called the pack method.

Organizing the code in a better way

As we start adding more components, the main method will become larger and larger and will end up
getting rather messy. A better way to organize our code is to put all components into a class, rather than
in the main method. Components are made into data members of the class and any initialization is done
in the constructor. The main method then only creates the object and sets it to be visible—the bulk of
the work is done in the class. Here is our reorganized program, which will result in better code in the
long run:

import javax.swing.*;
public class SimpleFrame extends JFrame
{

private JButton button = new JButton("Press me!");

public SimpleFrame()
{
getContentPane().add(button);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack()/

Here is a program which uses SimpleFrame:

p u b l i c c l a s s Fi rs tGUI
{
public static void main(String[] args)
{
SimpleFrame s = new SimpleFrame();
s.setVisible(true);

Note the following:

• SimpleFrame extends JFrame. Therefore, when we create a SimpleFrame object, we are also
creating a JFrame object.

• b u t t o n is a data member of the class SimpleFrame. SimpleFrame therefore defines a spe-
cialization of JFrame by adding an additional component.

164 Essential Java for Scientists and Engineers

• The default constructor of Simple Frame adds the button to the frame, programs the frame to shut
down properly and packs the components.

• To call methods of JFrame (such as ge tConten tPane or pack), we no longer need an object
handle, since these methods are now inherited from JFrame.

Adding a label

We now want to add a label to our application. We do this by creating a background, which has both
components on it. We then add this background to our frame. In Swing such a background is a component
called a panel (more specifically a JPanel) . The layout of the components is shown as a hierarchy in
Figure 8.1. The diagram shows which components contain other components.

Here is our modified code:

import j avax.swing.*;
public class SimpleFrame extends JFrame
{
private JButton button = new JButton("Press me!");
private JLabel label = new JLabel("Go on, press the button");
private JPanel background = new JPanel();

public SimpleFrame()
{
background.add(button); // add button to background
background.add(label); // add label to background

getContentPane().add(background); // add background to frame
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack();

}
}

The JLabel class can be used for placing plain text on a GUI. In our class, we declare a JLabe l
object as a data member. The constructor for JLabel takes a string, which is the text to be displayed.

The JPane l class is an intermediate container and is used for grouping the components into one
component. The b u t t o n and l a b e l components are added to the background panel, which in turn
is added to the content pane of the frame.

Now do Exercises 8.3 to 8.4.

SimpleFrame

(contentPane)

JPanel(background)

JButton(exit) JLabel(label)

Figure 8.1 Layout of components of SimpleFrame. The JPanel component (background) contains a JButton and a
JLabel component

Graphical user interfaces (GUIs) 165

Getting the button to do something

When we press the button, nothing happens. If we want something to happen, we have to write code
to respond to the event of the button being pressed. Here is a the modified Simple Frame class that
responds to the button being pressed:

import j avax.swing.*;
import j ava.awt.event.*;
public class SimpleFrame extends JFrame
{
private JButton button = new JButton("Press me!");
private JLabel label = new JLabel("This is a label: ") ;
private JPanel background = new JPanelO;

public SimpleFrame()
{
button.addActionListener(new ActionListener()
{
public void actionPerformed(ActionEvent e)
{
// code to be executed when button is pushed
label. setText(" Ouch ... that hurt! ") ;

}
});
background.add(button);
background.add(label);
getContentPane().add(background);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack();

}
}

Run the modified program and see what happens when you press the button. Notice that we have imported
j ava . awt. e v e n t . *. This package contains most of the code related to event handling (we will later
see that some of the event handling code is in j avax. swing. event) . When the user clicks the mouse
on our button, an event is generated. The code that responds to that event is called the listener for the
button. In this case, the code that is executed is:

label.setText(" Ouch ... that hurt! ") ;

This changes the text of the label component to the given string. We will now explain the new Java code
around the l a b e l . s e t T e x t statement.

Listeners as nested classes

To specify a listener for a button, we use the a d d A c t i o n L i s t e n e r method:

button. addActionListener (...);

Look in the Java API for the JBu t ton class. Find the a d d A c t i o n L i s t e n e r method. (Hint: it could
be inherited from a superclass, in which case you will have to look in the superclass to find the method).
What is the type of the argument in the a d d A c t i o n L i s t e n e r method?

To use the a d d A c t i o n L i s t e n e r method, we have to pass it an A c t i o n L i s t e n e r object. Click
on ActionListener and see what it says. A c t i o n L i s t e n e r is an interface. This is what it looks like:

166 Essential Java for Scientists and Engineers

public interface ActionListener extends EventListener
{
public void actionPerformed(ActionEvent e);

}

We have to send the a d d A c t i o n L i s t e n e r method an A c t i o n L i s t e n e r object. However, remem-
ber that we can't create an object from an interface, because it is not a real class—the implementation is
incomplete. We therefore first have to create a concrete class that implements A c t i o n L i s t e n e r , and
then we can create an A c t i o n L i s t e n e r object to send to the method. Here is a possible structure for
the concrete class:

class ButtonListener implements ActionListener
{
public void actionPerformed(ActionEvent e)
{
\\ code to be executed when button is pushed
label.setText(" Ouch ... that hurt! ") ;

Because listeners are often applicable to only one class and they frequently need to access other compo-
nents defined in the class (such as l abe l) , we normally define them inside the class as nested classes.
One of the ways to do this is to declare the listener class as a member, as we do with methods:

public class SimpleFrame extends JFrame
{
private JButton button = new JButton("Press me!");

public SimpleFrame()
{
button.addActionListener(new ButtonListener());

}

class ButtonListener implements ActionListener
{
public void actionPerformed(ActionEvent e)
{
\\ code to be executed when button is pushed:
label.setText(" Ouch ... that hurt! ") ;

}
}

}

In the code above, class B u t t o n L i s t e n e r is a member of class SimpleFrame. Notice how we use
the B u t t o n L i s t e n e r class by creating a B u t t o n L i s t e n e r object and passing it to the
a d d A c t i o n L i s t e n e r method of bu t ton . In this way, we are telling Java to call the
a c t i o n P e r f ormed method of B u t t o n L i s t e n e r when b u t t o n is pressed.

Listener methods are different from other methods that we have been writing until now. Although
we have defined a method called a c t i o n P e r f ormed, we will never call this method ourselves. We
are providing the body of the method, so that Java can call it from the event loop. Since Java will be
calling the method, you must be sure to define it in exactly the right way (correct name, arguments and
return type), otherwise your method will not be called when the event happens. Java ensures this through

Graphical user interfaces (GUIs) 167

interfaces. For example, if you left out the Act ionEvent argument by mistake, your code would not
compile.

An alternative way of defining a nested class, is to use an anonymous class. An anonymous class has
no name and is defined at the point at which the object is created. You can use anonymous classes when
you will only ever create one object of that class. This is what we did in the previous version of our
program. Here is the code again:

button.addActionListener(new ActionListener()
{
public void actionPerformed(ActionEvent e)
{
label.setText(" Ouch ... that hurt! ") ;

}
}) ;

Notice the parentheses (i.e. round brackets). Can you see where the method call to
a d d A c t i o n L i s t e n e r starts and when it ends? Inside the parentheses of addAc t ionLi s t ene r ,
we are defining an anonymous class and creating an object of that class at the same time. The class
is an implementation of the A c t i o n L i s t e n e r interface, with the body of the ac t ionPer fo rmed
method specified. If we choose to use this approach, then we will no longer need the definition of class
B u t t o n L i s t e n e r as a member of class SimpleFrame.

The Act ionEvent argument e is an object that is created by b u t t o n when it is pressed. The object
e is sent to the ac t ionPer fo rmed method and can be queried for information such as whether the
CTRL key was down at the same time as the button was pressed.

Now do Exercises 8.5 to 8.6.

8.3 Arranging components

If you have been doing all the exercises, you will notice that the layout of SimpleFrame is getting a
bit out of hand. We would like to organize our components in a better way. Layout managers are used
to control the size and position of components in containers. The Java platform provides a number of
layout managers, including BorderLayout, FlowLayout and GridLayout.

The FlowLayout manager

The following program uses a FlowLayout manager:

import j avax.swing.*;
import j ava.awt.*;

public class TestFlowLayout extends JFrame
{
private JButton buttonl = new JButton("One");
private JButton button2 = new JButton("Two");
private JButton button3 = new JButton("Three");
private JButton button4 = new JButton("Four");
private JPanel background = new JPanelO;

public TestFlowLayout()
{
background.setLayout(new FlowLayout());
background.add(buttonl);
background.add(button2);
background.add(button3);

168 Essential Java for Scientists and Engineers

One J I l^m Item

H B B
Fmir

Figure 8.2 Buttons positioned using a FlowLayout manager

background.add(button4);
getContentPane().add(background);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack() ;

}

public static void main(String[] args)
{
TestFlowLayout frame = new TestFlowLayout();
frame.setVisible(true);

}
}

The output of the above program is shown in Figure 8.2. Note the following:

• To use layout managers, you have to import j ava . awt. *.
• To use a particular layout manager, you use the s e t Lay out method.
• The FlowLayout manager positions buttons from left to right as they are added to the panel. If

you resize the window, the buttons are not resized, but they are repositioned to be in the centre at
the top. (Try this.)

• If you do not specify a layout manager for a panel, the default is FlowLayout. Therefore, in the
program above, if the se tLayout statement was left out, the window would still look the same.

The Borde rLayou t manager

The following program uses the BorderLayout manager instead:

import javax.swing.*;
import j ava.awt.*;

public class TestBorderLayout extends JFrame
{
private
private
private
private
private
private

JButton buttonN = new JButton("North") ,
JButton buttons = new JButton("South"),
JButton buttonE = new JButton("East");
JButton buttonW = new JButton("West");
JButton buttonC = new JButton("Center";
JPanel background = new JPanelO;

public TestBorderLayout()
{
background.setLayout(new BorderLayout());
background.add(buttonN, BorderLayout.NORTH)
background.add(buttons,
background.add(buttonE,
background.add(buttonW,
background.add(buttonC,

BorderLayout.SOUTH);
BorderLayout.EAST);
BorderLayout.WEST);
BorderLayout.CENTER);

Graphical user interfaces (GUIs) 169

i i l
North

South

Figure 8.3 Buttons positioned using a BorderLayout manager

getContentPane().add(background);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack();

public static void main(String[] args)

{
TestBorderLayout frame = new TestBorderLayout();
frame.setVisible(true);

}

The output of this program is shown in Figure 8.3. When we add components using a B o r d e r L a y o u t ,
we specify a particular position (NORTH, SOUTH, EAST, WEST or CENTER). If the position is left out, it
defaults to B o r d e r L a y o u t . CENTER (note the American spelling of centre!). Try resizing the window
and see how the buttons change. Notice that the size of the buttons change to fill up the entire area of
the window. The North and South buttons stay at the same height, but become wider to fill the window.
The West and East buttons stay at the same width, but become taller to fit the window and the Center
button becomes both wider and taller.

Although B o r d e r L a y o u t is not suitable for buttons (F lowLayout is more appropriate),
B o r d e r L a y o u t is very useful for positioning panels of components. You don't have to fill all the
positions in a B o r d e r L a y o u t . You could, for example, use the CENTER area for placing a background
of components and SOUTH for a panel of buttons (which in turn could use the F lowLayout) . Note that
the default layout manager for the content pane of a JF rame is the B o r d e r L a y o u t , so you could add
components directly to a frame, without having to create a background.

Now do Exercises 8.7 to 8.8.

Adding borders to components

A further way of influencing the positions of components is to use borders. Borders (empty borders in
particular) can be used to put spaces between components, so that they do not look all squashed together.
Some layout managers automatically put space between components; others do not. A border can be
defined for any component. The following statement illustrates how empty borders can be created:

background.setBorder(
BorderFactory.createEmptyBorder 30,

30,
10,
30)

//top
//left
//bottom
//right

Now do Exercise 8.9.

170 Essential Java for Scientists and Engineers

Figure 8.4 Screen shot of the ColourChooser application. The sliders can be moved by the user to change the colour of the
box in the middle

8.4 A colour chooser application

We will now build a more interesting Swing application. The purpose is to illustrate how components can
be organised using layout managers, as well as to introduce a new component (J S l i d e r) . Figure 8.4
shows what the final application will look like. The sliders can be moved by the user to change the
colour of the box in the middle.

Planning the GUI

Before you start coding, it is often useful to plan how the components will fit together. We do this by
dividing the screen up into areas. One way of dividing the area would be as three main panels: top
(with the sliders), middle (with the colour box) and bottom (with the exit button). The top panel could
be further divided into two panels (one for the labels and the other for the sliders). To show how the
components fit together, we can draw a component hierarchy (see Figure 8.5). This makes it easier to
program the interface. When GUIs become more complex and you are buried in the details of your code,
it is often tricky to remember which component must be added to which container. In these situations,
the component hierarchy serves as a useful reference.

Defining the colour

To define the colour, we use the same Color class we used before with T u r t l e objects. The class
Color defines set colours (such as red, b lue , etc), but can also create any colour using values for red,
green and blue (values 0-255). For example, a purplish colour can be created with the following values:

Color c u r r e n t C o l o u r = new Colo r (134 ,71 ,169) ;
/ / mos t ly r ed and b l u e , w i th a b i t of g reen

Color (255,255, 255) is black and Color (0 ,0 ,0) is white. To change the colour of a panel
(called thePanel) , we use the setBackgound method:

thePanel.setBackground(currentColour);

Adding the components

To add the components, we are going to use three types of layout managers. The main background
panel and topPane l (see Figure 8.5) will use a BorderLayout, bot tomPanel will use a

Graphical user interfaces (GUIs) 171

JFrame

(contentPane)

JPanel(topPanel)

JPanel(labelPanel)

JPanel(colourPanel) JPanel(bottomPanel)

JPanel(sliderPanel)

JLabel JLabel JLabel JSlider JSlider JSlider
(redLabel) (greenLabel) (blueLabel) (redSlider) (greenSlider) (blueSlider)

Figure 8.5 Component hierarchy of the colour chooser application

FlowLayout, and s l i d e r P a n e l and l a b e l P a n e l will use GridLayouts. Let's start by adding
the co lou rPane l and the exit button:

import j ava.awt.*;
import j avax.swing.*;
import j ava.awt.event.*;

public class ColourChooser extends JFrame
{
JPanel background = new JPanel(new BorderLayout());
JButton exit = new JButton("Exit");
JPanel colourPanel = new JPanel();
Color theColour = new Color(134/ 71, 169); // purple
// use FlowLayout for positioning the button
JPanel bottomPanel = new JPanel(new FlowLayout());

public ColourChooser()
{
colourPanel.setBackground(theColour);
bottomPanel.add(exit);
background.add(colourPanel,BorderLayout.CENTER);
background.add(bottomPanel,BorderLayout.SOUTH);
getContentPane().add(background);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack();

}

public static void main(String[] args)

ColourChooser app = new ColourChooser();
app.setVisible(true);

172 Essential Java for Scientists and Engineers

Notice the following:

• The colour panel is too small. To solve this problem, we specify a preferred size as follows:

colourPanel.setPreferredSize(new Dimension(150, 150)) ;

This will only affect the initial size of the panel. If you resize the window it will change accordingly.
• We can set layout managers in the constructors of JPane l objects, instead of calling the

s e t Layout method.
• The exit button does not work (fix this yourself).

Adding the sliders and labels

We create a J S l i d e r component as follows:

J S l i d e r mySl ider = new JSlider(JSlider .HORIZONTAL,0, 20, 0) ;

The first argument is a constant defined in the J S l i d e r class to specify whether the slider should be
horizontal or vertical. The second and third arguments give the minimum and maximum values of the
slider. (In the above example, if the slider is dragged all the way to the left, the value will be 0 and if it
is dragged all the way to the right, the value will be 20.) The last argument gives the initial value (where
the slider position should be when it is first displayed). Here is the code for adding the sliders and labels
as components to the class (as always, try to do this yourself, before looking at the code below):

public class ColourChooser extends JFrame
{
// 3 colour sliders with initial positions making up purple:
JSlider redSlider = new JSlider(

JSlider.HORIZONTAL,0# 255, 134);
JSlider greenSlider = new JSlider(

JSlider.HORIZONTALS, 255, 71);
JSlider blueSlider = new JSlider(

JSlider. HORIZONTALS, 255, 169);
// specify 3 rows (columns don't matter):
JPanel sliderPanel = new JPanel(new GridLayout(3,0));

JLabel redLabel = new JLabel("Red");
JLabel greenLabel = new JLabel("Green");
JLabel blueLabel = new JLabel("Blue");
JPanel labelPanel = new JPanel(new GridLayout(3,0));

JPanel topPanel = new JPanel(new BorderLayout());

public ColourChooser()
{
sliderPanel.add(redSlider);
sliderPanel.add(greenSlider);
sliderPanel.add(blueSlider);
topPanel.add(sliderPanel,BorderLayout.CENTER);

labelPanel.add(redLabel);
labelPanel.add(greenLabel);
labelPanel.add(blueLabel);
topPanel.add(labelPanel,BorderLayout.WEST);

Graphical user interfaces (GUIs) 173

background.add(topPanel,BorderLayout.NORTH);

} ' "

} " "

Remember to refer to the component hierarchy in Figure 8.5. This diagram indicates which containers
contain which components. Based on the diagram, we did the following:

• added the slider components to s l i d e r Panel;
• added the label components to the l a b e l Panel;
• added l a b e l P a n e l and s l i d e r P a n e l to topPane l ;
• and finally added the topPane l to background.

We used the GridLayout manager for positioning the labels and sliders, because we wanted them to
line up perfectly.

Programming the behaviour

How do we program the application so that when the sliders change, the colour in the box will change?
Find out (by browsing the API) what the relevant listener is for a J S l i d e r component (Hint: look for
a method stating with add).

The listener that we have to program for our sliders is ChangeLis tener . To implement
ChangeLis tener , we have to provide the code for the method called s ta teChanged. Here is the
code for the r e d S l i d e r :

import j avax.swing.event.*;

redSlider.addChangeListener(new ChangeListener()
{
public void stateChanged(ChangeEvent e)
{
Color newCol = new Color(redSlider.getValue(),

greenSlider.getValue(),blueSlider.getValue());
colourPanel.setBackground(newCol);

}
}) ;

Notice the following:

• The interface ChangeLis tener is defined in the package j a v a x . swing, event , so we have
to import this package.

• The s ta teChanged method is called when the user moves a slider. By implementing the method,
we are giving Java code to execute when the slider is moved.

• In the s t a teChanged method, we are creating a new colour based on the current values of the
sliders. Note that we use the ge tValue method to determine the current position of any slider. The
value returned will be in terms of the maximum and minimum values specified when the S l i d e r
object was created (i.e. a value between 0 and 255).

• Using the se tBackground method, we change the background colour of co lou rPane l to be
the new colour.

The same code must be implemented for the g r e e n S l i d e r and b l u e S l i d e r components (otherwise
nothing will happen when the user drags these sliders). If we simple copy this code, there will be
unnecessary duplication. If we decide to change the code later, we would have to change it in three

174 Essential Java for Scientists and Engineers

separate places. For this reason, it is better to have one copy of the code. Here is a better solution, which
implements ChangeLis tener as a member class:

public class ColourChooser extends JFrame
{

public ColourChooser()
{
redSlider.addChangeListener(new SliderListener());
greenSlider.addChangeListener(new SliderListener());
blueSlider.addChangeListener(new SliderListener());
... // the rest of the code

}

class SliderListener implements ChangeListener
{
public void stateChanged(ChangeEvent e)
{
Color newCol = new Color(redSlider.getValue(),

greenSlider.getValue(),blueSlider.getValue());
colourPanel.setBackground(newCol);

}

Now do Exercises 8.10 to 8.11.

8.5 Painting

The aim of this section is to develop a demonstration of interacting objects, and to show you how to
paint graphics. The concepts are similar to those involved in moving a mouse around a screen to click
on various items, e.g. how does an icon 'know' it has been clicked on?

We begin with a simple program to paint (draw) a filled circle. Painting is a fairly advanced topic,
which we will just touch on here. The following program draws a red disk in a window with a pleasantly
coloured background. Run it, and then look at the explanations below.

import j avax.swing.*;
import j ava.awt.*;
import j ava.awt.event.*;

public class Drawing extends JFrame
{

DrawPanel drawArea = new DrawPanelO;
int winWidth;
int winHeight;

public Drawing()
{

setTitle("My First Drawing");
getContentPane().add(drawArea);
drawArea.setBackground(new Color(200,200,255));

Graphical user interfaces (GUIs) 175

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack();

}

class DrawPanel extends JPanel
{

public DrawPanel()
{

winWidth = 4 00;
winHeight = 4 00;

setPreferredSize (new Dimension(winWidth,winHeight));
}

protected void paintComponent (Graphics g)
{

super.paintComponent (g);

int centreX = 200;
int centreY = 2 00;
int radius = 50;

g.setColor(Color.red);
g.fillOval(centreX-radius, centreY-radius,

radius*2, radius*2);

}
}

public static void main(String[] args)
{

Drawing d = new Drawing();
d.setVisible(true);

}

}
Note:

• Painting (drawing) in Java with Swing classes is done on an extended JPane l object. This object
must override a method called paintComponent to do the actual drawing with methods of the
Graphics class (which is passed as a parameter). We therefore have to extend JPane l by defining
a new (inner) class DrawPanel. DrawPanel overrides the paintComponent method, which
calls the Graphics method f i l l O v a l to draw a red circle.
In general,

fillOval(x, y, width, height)

draws a circle inscribed inside a rectangle with a width and height of width and h e i g h t respec-
tively, and with top left corner at the point (x, y), where x is the horizontal distance in pixels
from the left border of the panel, and y is the vertical distance from the top border. The coding
in paintComponent above shows how to draw a circle of radius r a d i u s centred at the point
(centreX, centreY).

176 Essential Java for Scientists and Engineers

• The DrawPanel object drawArea is a data member of the Draw class and is added to
the content pane. The setBackground method paints drawArea with a pleasant pastel
colour. The paintComponent method of drawArea is automatically called when the program
runs.

PacMan and the Blocks

We now begin an extended example which will culminate in a program where you can move an object
(PacMan) around the screen to gobble up randomly moving objects (Blocks). We encourage you to try
to write the code yourself before looking at the solutions provided.

A Point class

1. Start by designing a class Po in t for a 'point' object. We will need to distinguish between the point's
location on the screen, and displaying the point at its location. Include the following features:

• data members to represent the point's location: x (horizontal displacement in pixels) and y (down-
ward vertical displacement in pixels). These data members should be declared p r o t e c t e d
(accessible only to all subclasses, i.e. 'descendants').
Also define data members for the s i z e of the point (the diameter of the circle which will
represent the point) and its colour.

• a general constructor which initializes all the data members.
• a method p u b l i c vo id show(Graphics g) which draws a circle of diameter s i z e

centred at the point's location.

Try to write such a Po in t class before looking at our solution below.

import j ava.awt.*;
import j avax.swing.event.*;

public class Point
{
protected int x, y; // position to draw the point
protected Color col;
protected int size = 8;

public Point(int x, int y, int s, Color c)
{
this.x = x;
this.y = y;
size = s;
col = c;

}

public void show(Graphics g)
{
// draw the point
g.setColor(col);
g.fillOval (x-size/2, y-size/2, size, size);

}
}

Graphical user interfaces (GUIs) 177

2. Write a program, PacMan, based on Drawing at the beginning of this section, which draws at least
two Po in t objects.

import j avax.swing.*;
import j ava.awt.*;
import j ava.awt.event.*;

public class PacMan extends JFrame
{

DrawPanel drawArea = new DrawPanelO;
int winWidth;
int winHeight;
Point ptl, pt2;

public PacMan()
{
setTitle("PacMan");
getContentPane().add(drawArea);
drawArea.setBackground(new Color(2 00,2 00,2 55));
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack() ;

}

class DrawPanel extends JPanel
{

public DrawPanelO
{
winWidth = 4 00;
winHeight = 4 00;
ptl = new Point(winWidth/2, winHeight/2, 8, Color.blue);
pt2 = new Point(winWidth/4, winHeight/2, 8, Color.red);
setPreferredSize (new Dimension(winWidth,winHeight));

}

protected void paintComponent (Graphics g)
{
super.paintComponent (g);

//draw the points
ptl.show(g);
pt2.show(g);

}
}

public static void main(String[] args)
{
PacMan pm = new PacMan();
pm.setVisible(true);

}

}

178 Essential Java for Scientists and Engineers

A Pac class

1. Now we want to start designing an object (PacMan, after the cute electronic game which was popular
in the later part of the last century) which we will be able to move around the screen using the arrow
keys. Since it is also going to have a location on the screen, it might as well inherit our P o i n t
class. So start designing a class Pac (the subclass) which inherits P o i n t (the superclass).
It needs no new data members, does it? However, PacMan will look different, so a Pac object
needs a new show method to override P o i n t ' s show method. You can use the G r a p h i c s method
f i l l A r c to draw a PacMan-like shape:

g . f i l l A r c (x, y , s i z e , s i z e , 4 5 , 2 9 0) ;

Try to write the Pac class before looking at our solution.

import j ava.awt.*;
import j avax.swing.event.*;

public class Pac extends Point
{
public Pac(int x, int y, int s, Color c)
{
super(x, y, s, c);

}

public void show(Graphics g)
{
g.setColor(col);
g.fillArc (x, y, size, size, 45, 290); //draw PacMan

}
}

2. Update your PacMan program to create and show some P o i n t and Pac objects at different
locations.

A B l o c k c lass

Now we want to introduce another screen object with which PacMan will eventually be able to interact
(to demonstrate the principle of interactive screen objects, e.g. windows which interact with a mouse.)

Let's call the new object a Block. Since Blocks will have locations, they should inherit P o i n t in the
same way that Pac does.

Write such a class B l o c k which inherits P o i n t . Use the G r a p h i c s method

fillRect(x, y, size, size)

to represent a Block.
Test it by creating and showing objects of all three types—Point , Pac and B lock .

An array of Blocks

The next step is to create and show an array of Blocks. Can you remember how to instantiate an array
of objects? See Chapter 6 (Arrays of objects) if you can't.

Update your PacMan program to show PacMan and a few Blocks.

Graphical user interfaces (GUIs) 179

Random Blocks

The previous exercise was pretty easy. See if you can initialize your army of Blocks at random locations
on the screen . . .

You'll need some statements like this in your PacMan program:

for (int i = 0; i < numBlocks; i++)

{
int x = (int) (winWidth*Math.random());
int y = (int) (winHeight*Math.random());
blockArmy[i] = new Block(x,y,15,Color.black,winWidth,winHeight);

}

Moving PacMan

At last the moment we have been waiting for . . . moving PacMan around the screen.

1. Since it is the location of PacMan objects we wish to move, it makes sense to enable the superclass
Point objects to move. This ability will then automatically be inherited by subclass PacMan objects,
and also by Block objects, which will want to run around in a random way, so that PacMan struggles
to catch them.
Write four new P o i n t methods—up () , down () , l e f t () and r i g h t () —which will change
the data members x and y by an amount dx and dy respectively. (If we change x and y by only
one pixel at a time, movement will be too slow. Set the additional data members dx and dy to 10,
say—and make them p r o t e c e d .)
Remember that up will have to decrease y, and down will have to increase it.

2. If our user program has a Pacman object named pc , we now want it to call p c . up () , p c . down ()
etc. in response to the arrow keys on the keyboard.

• We therefore have to specify a listener for a key, in the same way that we specified a listener
for a button in Section 8.2. The a d d K e y L i s t e n e r method (listed as an inherited method of
JFrame) is used for this purpose.
We pass the a d d K e y L i s t e n e r method a K e y A d a p t e r object, which defines a k e y P r e s s e d
method. This method is called whenever a key is pressed. We override the k e y P r e s s e d method
to determine which key has been pressed, and to decide on appropriate action. This can all be
implemented as an anonymous class object passed to a d d K e y L i s t e n e r :

a d d K e y L i s t e n e r (n e w K e y A d a p t e r ()
{
public void keyPressed(KeyEvent e)
{
int key = e.getKeyCode();
if (key == KeyEvent .VK__UP) pc.upO;
if (key == KeyEvent.VK_D0WN) pc.down();
if (key == KeyEvent.VK_LEFT) pc.leftO;
i f (key == KeyEvent.VK_RIGHT) p c . r i g h t () ;
r e p a i n t () ;

}
}) ;

Note that k e y P r e s s e d calls the r e p a i n t method, which in turn automatically calls the
p a i n t C o m p o n e n t method to draw the objects.
The key codes for the keyboard keys are fields of the KeyEvent class, which you can look up
in the Java API.

• Insert the above code for the a d d K e y L i s t e n e r method into the constructor of the PacMan
user program and check that PacMan responds correctly to the keys.

180 Essential Java for Scientists and Engineers

Zapping the Blocks

You will have noticed, if you have been doing these exercises, that although PacMan can walk all over
the Blocks they remain on the screen. We therefore need to let a Block know when PacMan zaps it. In
other words, we want PacMan to be able to interact with Blocks, in much the same way that an icon
'knows' when you click the mouse on it.

The easiest way to do this is to run through the whole array of Blocks (with a f o r loop) each time
PacMan moves, and to ask each Block if it has been 'touched' by PacMan. If it has been touched, kill it!

We need to extend our B l o c k class.

• Introduce a new p r i v a t e b o o l e a n data member a l i v e which is initially set to t r u e .
In keeping with good OOP principles we are insisting that the a l i v e data member is p r i v a t e ,
to protect Blocks from being murdered at will by any old class user.
The a l i v e data member must be used in the show method of the Block class to make sure that
only living Blocks are shown when the panel is repainted after each move by PacMan.

• Write a new method

public void tryKill(Pac p)

which kills a Block if PacMan touches it. Let's say that PacMan is deemed to have touched a Block
if the distance between their respective locations is less than some critical value, zapRange . This
requires some elementary coordinate geometry. If two points have coordinates (x\, y\) and (x2, yi)
respectively, the distance d between them is

d = y/(x\ - x2)
2 + (y\ - yi)2.

Note again how we are using the principles of OOP. The Blocks decide if they have been touched by
PacMan, and then wipe themselves out. It is the objects which are in the limelight.

Update your B l o c k class, and test it with PacMan.

Moving the Blocks with a timer

At the moment the Blocks are sitting ducks for PacMan—they need to be able to get away. You may
have your own ideas about various evasion strategies they can use to escape, which you could have
fun implementing. One possible strategy is for the Blocks to move randomly at regular intervals. This
requires the use of a timer object, which can be made to 'fire' regularly. When it fires, it generates an
A c t i o n E v e n t object which is passed to the A c t i o n P e r f ormed method of an A c t i o n L i s t e n e r
object.

The following code implements a timer to move Blocks randomly every 100 milliseconds. Insert it in
the constructor of the PacMan class:

Timer t = new Timer(100, new ActionListener()
{
public void actionPerformed(ActionEvent e)
{
for(int i=0; i< numBlocks; i++)
if (blockArmy [i] . isAliveO)
{
double r = Math.random();
if (r < 0.25) blockArmy[i] .left () ;
else if (r < 0.5) blockArmy[i].right();
else if (r < 0.75) blockArmy[i].up();

Graphical user interfaces (GUIs) 181

else blockArmy[i].down();
blockArmyfil.tryKill(pc);

}
repaint();

}
});

t.start();

Note:

• The T imer class is in the j a v a x . s w i n g package.
• The first argument of the T imer constructor is the interval in milliseconds at which the timer fires.
• The response to the timer's firing is implemented as an anonymous class object in the second

argument of the T imer constructor.
• Start the timer with the T imer method s t a r t .
• Since only living Blocks should move when the timer fires, B l o c k needs a p u b l i c method

i s A l i v e to return the state of health of Blocks.

Final version

You might like to arrange for the Blocks to 'wrap around' when they move out of the frame, e.g. if
one disappears on the right of the frame it should reappear on the left with the same vertical coordinate
(B lock and Pacman).

The final version of PacMan, listed below with the P o i n t , Pac and B l o c k classes, shows you how
to display a message when all the Blocks have been killed.

import j ava.awt.*;
import javax.swing.event.*;

public class Point

{
protected int x, y; //location of the point
protected Color col;
protected int size = 8;
protected int dx = 10; //amount to move left and right
protected int dy = 10; //amount to move up and down

public Point (int x, int y, int s, Color c)
{
this.x = x;
this.y = y;
size = s;
col = c;

}

public void show(Graphics g)

//draw the point
g.setColor(col);
g.fillOval (x-size/2, y-size/2, size, size);

182 Essential Java for Scientists and Engineers

public void up() { y -= dy; }
public void down() { y += dy; }
public void left() { x -= dx; }
public void right() { x += dx;

import j ava.awt.*;
import j avax.swing.event.*;

public class Pac extends Point
{
public Pac(int x, int y, int s, Color c)
{
super(x, y, s, c);

}
public void show(Graphics g)
{
//draw PacMan
g.setColor(col) ;
g.fillArc (x, y, size, size, 45, 290);

}

}

import j ava.awt.*;
import j avax.swing.event.*;

public class Block extends Point
{
private boolean alive = true;
//zapped if pac closer than this
private double zapRange = size;
//limits on how far a block can move
protected int xLimit;
protected int yLimit;

public Block(int x, int y, int s, Color c, int xL, int yL)
{
super(x,y,s,c);
xLimit = xL;
yLimit = yL;

}

public void up() { super.up(); boundCheck();}
public void down() { super.down(); boundCheck(); }
public void leftO { super. left () ; boundCheck () ; }
public void right() { super.right(); boundCheck(); }

Graphical user interfaces (GUIs) 183

private void boundCheck()
{
if (x > xLimit) x = x - xLimit;
else if (x < size) x = xLimit - size;
if (y > yLimit) y = y - yLimit;
else if (y < size) y = yLimit - size;

}

public void tryKill(Pac p)
{
double d; // distance apart
d = Math.sqrt((y-p.y)*(y-p.y)+(x-p.x)*(x-p.x));
if (d < zapRange) alive = false;

}

public boolean isAliveO { return alive; }

public void show(Graphics g)
{
if (alive)
{
//draw the Block
g. setColor(col) ;
g.fillRect (x, y, size, size);

}

}

}

import j avax.swing.*;
import j ava.awt.*;
import j ava.awt.event.*;

public class PacMan extends JFrame
{

DrawPanel drawArea = new DrawPanelO;
int winWidth;
int winHeight;
int winBorder; //a buffer to ensure that objects

//don't go outside the window

Pac pc;
int numBlocks = 5;
Block [] blockArmy = new Block[numBlocks] ;

public PacMan()
{

setTitle("PacMan");

for(int i = 0; i < numBlocks; i++)

184 Essential Java for Scientists and Engineers

{
int x = (int) (winWidth*Math.random());
int y = (int) (winHeight*Math.random());
blockArmy[i] = new Block(x,y,15,Color.black,

winWidth,winHeight);
}

addKeyListener(new KeyAdapterO
{
public void keyPressed(KeyEvent e)
{
int key = e.getKeyCode();
if (key == KeyEvent .VK_UP) pc.upO;
if (key == KeyEvent.VK_DOWN) pc.down();
if (key == KeyEvent .VK_LEFT) pc.leftO;
if (key == KeyEvent.VK_RIGHT) pc.right();

for(int i=0; i<numBlocks; i++)
blockArmy[i].tryKill(pc);

if (finishedO) endGameO;

repaint();

Timer t = new Timer(100, new ActionListener()
{
public void actionPerformed(ActionEvent e)
{
for(int i=0; i< numBlocks; i++)
if (blockArmy[i].isAlive())
{
double r = Math.random();
if (r < 0.25) blockArmy[i] .left () ;
else if (r < 0.5) blockArmy[i].right();
else if (r < 0.75) blockArmy[i].up();
else blockArmy[i].down();
blockArmy[i].tryKill(pc);

}
repaint();

}
});
t. start () ;

getContentPane().add(drawArea);
drawArea.setBackground(new Color(200,200,255));
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack();

}

private void endGameO
{
JOptionPane.showMessageDialog(this, "Well done, you won!");

Graphical user interfaces (GUIs) 185

System.exit(0);
}

private boolean finished()
{
boolean won = true;
for(int i=0; i<numBlocks; i++)

if (blockArmy[i].isAlive() == true) return false;
return won;

}

class DrawPanel extends JPanel
{

public DrawPanel()
{
winWidth = 600;
winHeight = 6 00;
winBorder = 10;
setPreferredSize

(new Dimension(winWidth+winBorder,
winHeight+winBorder));

pc = new Pac(winWidth/2, winHeight/2, 18, Color.blue);
}

protected void paintComponent (Graphics g)
{
super.paintComponent (g);

pc.show(g); //draw PacMan

//draw the Blocks
for (int i = 0; i < numBlocks; i++)
blockArmy[i].show(g);

}
}

public static void main(String[] args)
{
PacMan pm = new PacMan();
pm.setVisible(true);

}

}

8.6 Drawing mathematical graphs

Although Essential Grapher draws 'mathematical' graphs quite adequately, you may (if you are at all
like us) be curious about how to write your own graphing programs. Our aim in this section, therefore,
is to draw a graph of a given mathematical function from first principles, without any assistance from
our e s s e n t i a l package (see Figure 8.6).

186 Essential Java for Scientists and Engineers

EgM attomarficai graphs; Unm

Figure 8.6 The graph of e u -usinx

You will no doubt readily appreciate that drawing even fairly simple mathematical graphs poses a
non-trivial challenge, because you have to think in terms of absolute pixel coordinates. How would you,
for example, go about drawing the graph of y = x2 from x — 0 to x = 10?

If we define world coordinates as the familiar x-y cartesian coordinate system that we all used at
school, then a point with world coordinates (x, y) has to be transformed into a pixel somewhere on the
panel on which we are drawing. An additional irritation is that vertical pixel coordinates increase as you
move down the screen, contrary to world y coordinates.

What we need is a class with a set of methods which will transform our more natural world coordinates
into absolute pixel coordinates. These methods are contained in the MyWorld class listed below:

public class MyWorld
//transforms world coordinates into pixel coordinates

{
private double xmin;
private double xmax;
private double ymin;
private double ymax;
private int xrange;
private int yrange;
private int topborder;
private int leftborder;
public MyWorld(double xleft, double xright, double ydown,

double yup, int width, int height)

{
xmin = xleft; xmax = xright; ymin = ydown; ymax = yup;

Graphical user interfaces (GUIs) 187

xrange = width; yrange = height;
topborder = 50; leftborder = 50;

public int xp(double xworld)

return (int) Math.round(leftborder + xrange * (xworld - xmin)

/ (xmax - xmin));

p u b l i c i n t yp(double yworld)

r e t u r n (i n t) Ma th . round(topborde r + yrange * (yworld - ymax)
/ (ymin - ymax)) ;

}

Note:

• The constructor for the MyWorld class creates a 'viewing object' or 'view' in world coordinates,
running from x l e f t to x r i g h t along the x-axis and from ydown to yup along the y-axis.
The last two parameters wid th and h e i g h t are the dimensions of the view in pixels.

• The two methods xp and yp respectively transform their x and y world coordinate arguments into
absolute horizontal and vertical pixels, which are returned. The yp method also inverts the vertical
axis.

The following program MyGraph uses MyWorld to draw the graph of the damped oscillations
y = e~

0Ax
 s i n x for x from 0 to Sir in steps of 7r/40. It also draws the x- and y-axes.

import j avax.swing.*;
import j ava.awt.*;
import j ava.awt.event.*;

public class MyGraph extends JFrame

{

DrawPanel drawArea = new DrawPanelO;
int winWidth;
int winHeight;

public MyGraph()

{
setTitle("Mathematical graphs");
getContentPane().add(drawArea);
drawArea.setBackground(new Color(0,255,0));
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack();

}

class DrawPanel extends JPanel

{

public DrawPanelO

188 Essential Java for Scientists and Engineers

{
winWidth = 400;
winHeight = 4 00;

setPreferredSize (new Dimension(winWidth,winHeight));

protected void paintComponent (Graphics g)

{
super.paintComponent (g);

double xmin = -2*Math.PI;
double xmax = 8*Math.PI;
double ymin = -2;
double ymax = 2;
double x, y, xold, yold;
MyWorld w2p = new MyWorld(xmin, xmax, ymin, ymax, 300, 300);

g.drawstring("Damped oscillations", w2p.xp(Math.PI/2),
w2p.yp(ymax/2));

g.drawLine(w2p.xp(xmin), w2p.yp(0),
w2p.xp(xmax), w2p.yp(0)); // x-axis

g.drawLinef w2p.xp(0), w2p.yp(ymin),
w2p.xp(0), w2p.yp(ymax)); // y-axis

xold = 0; yold = 0;
for (x = 0; x < 8*Math.PI; x = x+Math.PI/40)

{
y = Math.exp(-0.1*x) * Math.sin(x);
g.drawLine(w2p.xp(xold), w2p.yp(yold),

w2p.xp(x), w2p.yp(y));
xold = x;
yold = y;

}
}

}

public static void main(String[] args)

{
MyGraph d = new MyGraph();

d.setVisible(true);

}

Note:

• MyGraph creates a MyWorld viewing object w2p (for 'world to pixel') with appropriate ranges of
world coordinates.

Graphical user interfaces (GUIs) 189

• The actual graph is drawn in the pa in tComponent method using the drawLine method of the
G r a p h i c s class. The drawLine method has four arguments, x l , y l , x2 and y2, and draws a line
between the points (x l , y l) and (x2, y2). These arguments are updated repeatedly in the f o r loop
to draw the graph.

Try Exercise 8.12.

8.7 Fractals

The popularization of fractals in recent years has led to a wealth of coffee table books with the most
beautiful and fascinating pictures. Two such fractals are the Julia and Mandelbrot sets.

The Julia set
In this section we give a simple program for drawing the Julia set of the complex polynomial

z 2 - / x , (8.1)

where z is a complex variable, z = x + /y, and \x is a complex constant (parameter), /x = a + ib.
A working definition of the Julia set of this family of polynomials is as follows:

• Take a region of the complex plane.
• For every point zo in this region calculate the iterated function sequence (IFS) of the polynomial (8.1):

Z] = Z Q - 1 1 ,

2
Z2 = Z\ - /X,

_ 2
Zn — Zn-1 — \X

• If an n can be found such that zl > R, where R is the radius of a (large) disk in the complex plane,
zo is said to have escaped.

• The set of all points zo in the region of interest which do not escape is the Julia set of the polynomial.

One way to compute the IFS requires the real and imaginary parts of the polynomial z2 — /x, which
are x2 — y2 — a, and 2xy — b respectively.

The code below draws the Julia set of z2 - 1.25, so a = 1.25 and b = 0. Ideally R should be as large
as possible, but we will take it as 10, since this gives quite a reasonable picture. You can experiment
with larger values if you like! If zo has not escaped by the time n has reached the value of m a x l t s
(40), we will assume that it will never escape. The program checks each pixel in the world coordinate
range — 2 < x < 2, — 1 < y < 1, to see if it escapes (applying the reverse of the transformation used
in MyWorld to change world coordinates to absolute coordinates). If the pixel escapes it is lit up in a
different colour, depending on how quickly it escapes. The Julia set is then the set of pixels shaded in
the background colour. (Strictly speaking, the Julia set is the boundary of the region in the background
colour, and the region itself is the filled Julia set.) Note that the program does not use the MyWorld
class. It may take a few seconds before you see anything.

import j avax.swing.*;
import j ava.awt.*;
import j ava.awt.event.*;

190 Essential Java for Scientists and Engineers

public class JuliaSet extends JFrame

{

DrawPanel drawArea = new DrawPanelO;
int winWidth;
int winHeight;

public JuliaSet()

{
setTitle("Julia Set");
getContentPane().add(drawArea);
drawArea.setBackground(new Color(0,255,0));
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack();

}

class DrawPanel extends JPanel

{
public DrawPanelO

{
winWidth = 8 00;
winHeight = 600;

setPreferredSize (new Dimension(winWidth,winHeight));

}

protected void paintComponent (Graphics g)

{
super.paintComponent (g);

int maxlts =40; // max number of iterations
double r = 10; // infinity
double a, b; // real and imag parts of mu
double xmin, xmax, ymin, ymax; // range of world coords
double x, y, xO, yO, newX, newY; // world coords
int n; // iteration counter
int xp, yp; // pixel coords
int maxX, maxY; // pixel range
int R, G, B; // RGB parameters
int topBorder =50; // dont draw on the menubar!
xmin = -2;
xmax = 2;
ymin = -1;
ymax = 1;
maxX = 790;
maxY = 500;
a = 1.25;
b = 0;

for (xp = 0; xp <= maxX; xp+ +)

Graphical user interfaces (GUIs) 191

for (yp = 0; yp <= maxY; yp++)

{
xO = (xmax - xmin) * xp / maxX + xmin;
yO = (ymin - ymax) * yp / maxY + ymax;
x = xO ;
y = yO;
n = 0;

while (n < maxlts && x*x + y*y <= r)

{
n++ ;
newX = x*x - y*y - a;
newY = 2*x*y - b;
x = newX;
y = newY;

}

if (x*x + y*y > r)

{
n = n %7 + 1;
B = n % 2;
if (n <=3)
R = 0;

else
R = 1;

if (n == 2 | n == 3 | n == 6 | n == 7)
G = 1;

else
G = 0;

g.setColor(new Color(255*R, 255*G, 255*B));
g.drawLine(xp, yp+topBorder, xp, yp+topBorder);

}
else
{
// black inside the Set
g.setColor(Color.black);
g.drawLine(xp, yp+topBorder, xp, yp+topBorder);

}
}

}
}

public static void main(String[] args)

{
JuliaSet d = new JuliaSetO;
d.setVisible(true);

}

}

192 Essential Java for Scientists and Engineers

Note:

• The complicated relationship between the iteration counter n for an escaped pixel and the values of
R, G and B in the se tColor methods of the Graphics class transforms n into a selection of the
original 'bright VGA' colours.

• The boundary of the filled Julia set has the self-replicating property characteristic of fractals. Change
the program (by adjusting xmin, xmax, etc.) to 'zoom' in on one of the 'spires' sticking out of the
main body of the set. A little patience will be richly rewarded.

Try Exercise 8.13.

The Mandelbrot set

The Mandelbrot set was discovered by Benoit Mandelbrot, and has been described as the most complicated
object known to man. It is related to the Julia set, and is drawn in much the same way, although it is
more difficult to think about.

The Julia set above is for the polynomial z2 - /JL, with /x = 1.1. If you run the program for a different
value of the parameter /x, the set will look different. The Mandelbrot set is concerned with /x, and is
drawn in the parameter space of the polynomial. The Mandelbrot set is in fact the set of all values of /x
for which the origin does not escape.

Recall that /x = a + ib. For all possible values of a and b now (as opposed to x and y for the Julia
set) we compute the IFS of z2 - /x, starting at z = 0 each time. If zn (the nth iterate) for a particular
/x does not escape it belongs to the Mandelbrot set. The program is very similar to the one for the
Julia set:

import j avax.swing.*;
import j ava.awt.*;
import j ava.awt.event.*;

public class MandelbrotSet extends JFrame

{

DrawPanel drawArea = new DrawPanelO;
int winWidth;
int winHeight;

public MandelbrotSet()

{
setTitle("Mandelbrot Set");
getContentPane().add(drawArea);
drawArea.setBackground(new Color(0,255,0));
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack();

}

class DrawPanel extends JPanel

{

pub l i c DrawPanelO
{
winWidth = 700;

Graphical user interfaces (GUIs) 193

winHeigh t = 700;

setPreferredSize (new Dimension(winWidth,winHeight));

protected void paintComponent (Graphics g)

{
super.paintComponent (g);
int maxlts =40; // max number of iterations
double r = 10; // infinity
double a, b; // real and imag parts of mu
double xmin, xmax, ymin, ymax; // range of world coords
double x, y, newX, newY; // world coords
int n;
int xp, yp; // pixel coords
int maxX, maxY; // pixel range
int R, G, B; // RGB parameters
int topBorder =50; // dont draw on the menubar!
xmin = -0.5;
xmax = 1.5;
ymin = -1;
ymax = 1;
maxX = 50 0;
maxY = 500;

for (xp = 0; xp <= maxX; xp++)
for (yp = 0; yp <= maxY; yp++)

{
a = (xmax - xmin) * xp / maxX + xmin;
b = (ymin - ymax) * yp / maxY + ymax;
x = 0;
y = 0
n = 0

while (n < maxlts && x*x + y*y <= r)

{
n++ ;
newX = x*x - y*y - a;
newY = 2*x*y - b;
x = newX;
y = newY;

}

if (x*x + y*y > r)

{
n = n %7 + 1;
B = n % 2;
if (n <=3)

R = 0;

194 Essential Java for Scientists and Engineers

e l s e
R = 1;

i f (n == 2 | n == 3 | n == 6 | n == 7)
G = 1;

e l s e
G = 0;

g.setColor(new Color(255*R, 255*G, 255*B));
g.drawLine(xp, yp+topBorder, xp, yp+topBorder);

}
else {

// black inside the Set
g.setColor(Color.black);
g.drawLine(xp, yp+topBorder, xp, yp+topBorder);

}
}

}
}

public static void main(String[] args)

{
MandelbrotSet d = new MandelbrotSet () ;
d.setVisible(true);

}

}
The Mandelbrot set is a 'fuzzy' fractal. If you enlarge one of the little 'snowmen' on its boundary

(coastline) you will see a figure which is similar but not identical (zooming on the Julia set coastline
reveals identical replicas of the Julia set). In fact the structures on the boundaries of the Mandelbrot set
resemble Julia sets. It is as if the coastline of the Mandelbrot set is made by stitching together microscopic
copies of the Julia sets which it represents.

Zooming in on the 'sea' outside the Mandelbrot set may be rewarding too. You may find islands there
that no-one else has ever seen.

Try Exercise 8.14.

Summary

• GUIs can be implemented in Java using either the AWT or Swing,
• GUI programs are event-driven. An event is any user action on toe interface, such as pushing a

button.
• The Swing class that implements an independent window on the screen is called JFrarae.
There are three main types of components: top-level containers (e,g, JFrame), intermediate con-

tainers (e*g> JPanel) and atomic components (e.g. JButton),
• To program an interface to respond to user events, we have to write listeners for the relevant

components.
* Components can be arranged using layout managers. Commonly used layout managers include:

BorderLayout, FlowLayout and GridLayout.
• Painting (drawing) may be done on an extended JPanel object, which must override the

p a i n t Component method to do the actual painting.
• Various shapes may be drawn with methods of the Graphics class.
• Our MyWorld class may be used to draw mathematical graphs by transforming natural world

coordinates into absolute pixel coordinates,

Graphical user interfaces (GUIs) 195

Exercises

81 Change the FirstGUl application from Section 8.2 so that the window has a title (use the
s e t T i t l e method of the JFrame class). When you have this working, notice that if you
minimize your window, the title is also shown at the bottom of the screen,

8,2 The on-line Swing tutorial is a very useful resource. In this exercise you are required to look
in the Swing tutorial for certain information on components. In your browser go to Sun's Java
web page:

h t t p : / / J a v a , s u n . c o m

Click on Java TWorial and then on Creating a GUI with JFC/Swing, Somewhere in the tutorial,
you will find a section on 'A Visual Index to the Swing Components* (you will have to browse
around a bit and we encourage you to read along the way). Using this resource, find answers
to the following questions;
(a) List three types of Swing buttons (give the Swing class name of each).
(b) What is the main difference between a JComboBox and a J L i s t (from the end user's

perspective)?
(c) What is the purpose of a JTextField?

83 Add a JTextF ie ld component to SimpleFrame from Section 8,2, Use the Swing tutorial
or the Java API to find out how to do this.

8.4 Add a. JComboBox component to SimpleFrame from Section 8*2 (use any three strings as
options). Use the Swing tutorial or the Java API to find out how to do this,

8.5 Add a Quit button to class SimpleFrame, Program it so that it exits the program (note: the
command System, e x i t {0) will exit a program).

8*6 Write two classes called FirstWindow and SecondWindow, both extending JFrame.
Add a JButton component to FirstWindow called open and add any component to
SecondWindow. Write code so that if the user clicks on the open button of FirstWindow,
it will display SecondWindow.

8 J Write a program that uses the GridLayout manager to place six buttons on a panel, in three
rows of two buttons each. Give each button a label with a different length. (Read up how to
use the GridLayout in the Java Swing tutorial or Java API.)

8.8 Your friend has just starting programming graphical user interfaces in Java. He is struggling
and has come to you for help. His program looks like this:

import j avax.awing.*;
import java.awt.*;
public class MyFrame extends JFrame {
private JButton button = new JButton ("Quit");
private JLabel label = new JLabel("Welcomei"};
public MyFrame{) {
Container back = getContentPane(};
back*add(label);
back*add(button);
pack();

}
public static void main (String [] args) {
MyFrame frame = new MyFrameO;
frame.setVisible(true)?

} // main method
} // SimpleAWT class

196 Essential Java for Scientists and Engineers

The problem he is having is that when he runs the program, only the button displays and not
the label.
(a) Explain why this is happening,
(b) How will you change the program, so that both components display?

8,9 Add an empty border to the background panel of simpleFrame and see what impact it has
on the layout of the window,

8.10 Modify the Colour Chooser application, so that it includes a button called "Reset" which sets
all the sliders to position 0 (colour black).

811 Add three JTex tF ie ld components to the ColourChooser application. These text fields
should be positioned between die labels and sliders and should allow the user to type in a
numeric value (between 0 and 255). In response to the user typing a value and pressing enter,
the relevant slider should update its position and the colour should change. You must also
change the program so that die values in the text fields will be updated when the user changes
the position of the sliders* The reset button from Exercise 840 will also have to be changed to
update the values in the text fields,

8.12 Extend MyGraph of Section 8.6 to draw the graph of a more general damped oscillation,

y(x) = yoe™~kx $ma>x>

with suitably labelled JTex tF ie ld components in the panel to enable you to change the values
of yo, k and a>.

8.13 Modify the J u l i a S e t class of Section 8*7 to the Mia set of z2 ~~ M> for /* = -0.27334 +
0.0074211, You may need to use a slightly smaller region than the one in the J u l i a S e t program
for the best effect

814 Modify the MandelbrotSet class of Section 8 J to zoom in on some parts of the coastline
of the Mandelbrot set, e*g> the region 0.04 < a < 0,06> 0*98 < b < U where /* = a + ib.

9

Input/output

Objectives

By the end of this chapter, you should be able to do the following:

• read data into a program through command line parameters;
• read in data from the keyboard or a file and write data to a file without using the e s s e n t i a l

package;
• extract particular data from a common delimited text file by tokenizing the input;
• create a stream to an Internet web site and read HTML code.

9.1 Introduction

Usually a program needs some form of input to do the job and produces some form of output. There are
a number of ways of obtaining data as input to a running program. Some of these ways include:

• input on startup of the program through the command line parameters (this is explained in the next
section);

• input from the keyboard while the program is running using System, i n (or an intermediary class
such as the Keyboard class, which uses System, in);

• input via a graphical user interface (from a text field, for example);
• input from a file on disk.

Similarly, a running program can produce output in various ways, such as:

• displaying results onto the screen, at the command prompt, using Sys tem.out ;
• displaying data through a graphical user interface;
• writing data to a file on disk.

In this chapter we will look at some of the interesting detail of how input and output work.

197

198 Essential Java for Scientists and Engineers

9.2 Input through command line parameters

Input from command line parameters is sometimes a useful and easy way of obtaining a small amount
of input from the user. Have you ever wondered what the S t r i n g [] argument of the main method is
used for? The following program illustrates how it can be used:

public class CommandLine
{
public static void main(String[] args)
{

S y s t e m . o u t . p r i n t l n (" F i r s t argument : " + a r g s [0]) ;
S y s t e m . o u t . p r i n t I n (" S e c o n d argument: " + a r g s [1]) ;

Compile CommandLine . j ava and run it using the following command:

Java CommandLine doodle 4 9

The output of the program is:

First argument: doodle
Second argument: 4 9

Can you see what is happening? Java stores any data following the file name of the j ava command
in an array of S t r ings . This array is passed to the main method as the first and only argument
in the argument list. For this reason we usually use the name a r g s for the formal parameter of the
main method to indicate that the array stores arguments. The first command line argument (in this case
doodle), is stored as the first element of the array, at position 0; the second at position 1, and so on.
This is done automatically by the Java interpreter. Any number of arguments can be provided—the size
of the a r g s array will change accordingly.

Note that all command line arguments are stored as S t r ings , so if one of the arguments is a number,
it will have to be converted from a S t r i n g to an appropriate number type.

Now do Exercises 9.1 to 9.3.

9.3 Input from the keyboard without the essent ia l package

In Chapter 1, Section 1.4, we showed you a program that performed user input from the keyboard without
using the e s s e n t i a l . Keyboard class. In this chapter we will explain the details. Here is a similar
program that simply reads in a string from the keyboard and echos it back to the screen:

import java.io.*;
public class Testlnput
{
public static void main(String args[]) throws IOException
{
BufferedReader din = new BufferedReader(

new InputStreamReader(System.in));
System.out.print("Enter a String: ") ;
String s = din.readLine();
System.out.println("you entered: " + s);

}
}

Note that we import j ava . io , which is Java's standard package for performing input and output. The
e s s e n t i a l package is not needed, so is not imported. Also note the throws IOExcept ion clause

Input/output 199

in the header of the main method. This is an indication that an error could occur with the input/output
inside the main method. We say that an exception could be thrown. This clause is required for the
program to compile. Exceptions will be explained in detail in Chapter 10.

In the following sections, we will explain:

• the notion of streams;
• the System class, with the in, out and e r r data members;
• the InputStreamReader and Buf f eredReader classes;

9.4 Streams

A stream is the name given to a flow of data in or out of a program. If we want to obtain data from
somewhere outside our program (such as the keyboard, or a file), we need to have an input stream
corresponding to that input device. In the same way, if we want to write to external devices (such as
the screen or a file), our program must define output streams corresponding to those output devices. A
program can have multiple input and output streams to different devices, as illustrated in Figure 9.1.

For your convenience, some streams are defined as part of the standard Java, such as System, i n
(which is a stream linked to the keyboard), Sys tem.out (which is a stream linked to the screen) and
System, e r r (the standard error output stream, also linked to the screen). As we shall see, the output
stream, System.out , can be re-directed to a file. Figure 9.2 shows these three standard streams.

Output redirection

You can send the output from any program to a file using the output redirection symbol (>). Consider
the following program, for example:

public class TimesTables
{

public s t a t i c void main(String args []

Program

Figure 9.1 Streams passing data into and out of a program to external devices

Program

1 f l l System, out

I f] 1 System Jn ^>j

J \
iniSystem.err "> ^

Figure 9.2 Three standard Java streams

200 Essential Java for Scientists and Engineers

{
for(int i = 2; i <= 12; i++)
{
for(int j = 1; j <= 12; j++)
System.out.printIn(i + " X " + j + " = " + i*j);

System, out .printIn (" ") ;

The output is a long list of multiplication tables, which scrolls past in the output window. To retain the
output, you can redirect it to a file as follows:

Java TimesTables > times.txt

This sends all the System, out output to the file t imes . t x t , instead of to the output window. If the
file t i m e s . t x t does not exist, it is automatically created. If the file already exists, it is overwritten.
Any System, e r r statements will still be printed to the screen and not redirected to the file. We could
therefore print information or error messages or prompts to the user using e r r instead of out . For
example:

System.err.println("Enter number of times tables to print:");

System.err.println("Times tables complete");

Now do Exercise 9.4.

The System class

The System class is defined in the J ava . l ang package, which is automatically imported by Java. It
contains various useful members and methods (including the e x i t method). The streams in, out and
e r r are defined in System, as follows:

public static final InputStream in;
public static final PrintStream out;
public static final PrintStream err;

All three are declared as s t a t i c and f i n a l , making them constants. The constant i n is of type
InputStream, while out and e r r are of type P r in tS t r eam. The class P r i n t S t r e a m is a spe-
cialized class of OutputStream, which has the ability to print data in a convenient way. The various
p r i n t and p r i n t l n methods for different data types, which we are so accustomed to using, are housed
in the P r i n t S t r e a m class.

The I n p u t S t r e a m and I n p u t S t r e a m R e a d e r classes

We know that System, i n is linked to the keyboard, and the type of i n is InputSt ream. If you
look inside the Inpu tS t ream class in the API, you will see a method, r e a d () . You might therefore
expect that input from the keyboard could simply be captured by using the following statement:

S y s t e m . i n . r e a d () ;

The problem is that the r ead () method of the Inpu tS t ream class reads in only a single byte of data.
This is not very useful, as we would rather work with text. The InputSt reamReader class provides
a convenient bridge from byte streams to character streams, i.e. it reads in bytes and converts them into
characters. We can create an InputStreamReader object from System, in, as follows:

InputStreamReader input = new InputStreamReader(System.in);

We can now use the variable i npu t to read in characters.

Input/output 201

The Buf f e r e d R e a d e r class

Input and output operations are slow, because they involve access to external devices. When we use
an I n p u t S t r e a m R e a d e r object, text is read in character by character and therefore requires many
accesses to the keyboard. A more efficient way of reading data is to wait until sufficient characters
have been typed before reading them in as a chunk. Such a 'waiting area' is called a buffer. The
Buf f e r e d R e a d e r class buffers input in this way and provides useful methods for reading in text a
line at a time. We can create a Buf f e r e d R e a d e r object from S y s t e m , i n as follows:

InputStreamReader input = new InputStreamReader(System.in);
BufferedReader blnput = new BufferedReader(input);

Alternatively, we can put the two statements together, in the more compact form:

BufferedReader blnput = new BufferedReader(
new InputStreamReader(System.in)) ;

The variable b l n p u t now refers to the keyboard and is a Buf f e r e d R e a d e r object, so we can read
in whole lines of text as follows:

String line = blnput.readLine() ;

Note: the r e a d L i n e method of Buf f e r e d R e a d e r is distinct from K e y b o a r d . r e a d L i n e . (If you
look inside the Keyboa rd class you will see that K e y b o a r d . r e a d L i n e uses Buf f e r e d R e a d e r ' s
r e a d L i n e .)

The detail of the T e s t I n p u t program from Section 9.3 should now be clear to you.
Now do Exercises 9.5 to 9.6.

Reading in numbers

The Keyboa rd class provides useful methods for reading in numbers, such as r e a d l n t and
r e a d D o u b l e . If we are not using the Keyboa rd class, we are limited to the methods provided
in the Buf f e r e d R e a d e r class, namely r e a d and r e a d L i n e , which read in individual characters
and text respectively. To read in numeric values from the keyboard, we will have to translate the
S t r i n g input into numbers. A convenient way of converting a S t r i n g into an i n t , is to use the
I n t e g e r . p a r s e l n t method. To convert a S t r i n g to a d o u b l e , use the Doub le . p a r s e D o u b l e
method. Here are some examples:

String si = "-245" ;
String s2 = "-0.345"/
String s3 = "5E-8";
int nl = Integer.parselnt(si);
double n2 = Double.parseDouble(s2);
double n3 = Double.parseDouble(s3);

Now do Exercise 9.7.

9.5 File input/output

Information held in variables and objects vanish when the program ends. In contrast, data stored in files
is persistent, meaning that it is saved to disk for future reference. In this section we will not only look
at how to save data to a file, but also how to read data from files into our programs. Although we have
performed some of these operations before (using the e s s e n t i a l . F i l e 10 class), in this chapter we
will look at how it is done without the e s s e n t i a l package.

202 Essential Java for Scientists and Engineers

Types of files

Information can be stored in a file either in a character form (called a text file) or in a binary form
(binary file). Storing data in a binary form is faster and more compact than storing it in a text form. The
disadvantage of binary files is that the contents cannot be viewed easily with a text editor, as can be
done with text files.

Files can be accessed

• sequentially, where data must be accessed item by item from the beginning to the end, or
• randomly, where items are accessed by specifying their location in the file.

We will be concentrating on text files, accessed sequentially. For help on random access files and binary
files, see the Java Tutorial, in particular the Lesson on I/O: Reading and Writing. In Section 10.5 we
show an example program that reads in data from a binary file.

File handling

Java has a class called F i l e for handling file objects. The following program shows how some of the
methods of F i l e can be used:

import java.io.*;
public class FileHandling
{
public static void main(String[] args)

{
File fl = new File("test.txt");
if (fl.exists ())
System.out.println("test.txt exists");

else
System.out.println("test.txt does not exist");

File f2 = new File ("exercises\\temp\\Test.class") ;
if (f2.exists())
{
f2.delete();
System.out.println("Test.class deleted");

}
}

}
Assume that a file t e s t . t x t exists in the current directory and that a subfolder e x e r c i s e s \ t e m p
also exists which contains a file called T e s t , c l a s s . The output would then be:

test.txt exists
Test.class deleted

Note the following about the program above:

• To create a F i l e object, we specify the file name as a string.
• To test if a file exists in the current directory, we use the e x i s t s method, which returns a b o o l e a n .
• We can specify a file name including a path, as in the case of f 2. To specify a backslash (\) within a

string, we use a double backslash (\ \) , otherwise the single backslash is interpreted as the beginning
of a special character (x \ n ' , for example).

• To delete a file on disk, use the d e l e t e method (use with caution, it cannot be undone!).

A further useful method of the F i l e class is the method i s D i r e c t o r y , which is used to find out if
the given file is a directory or not. If a file is a directory, the l i s t method returns the names of files
that occur in that directory, as an array of S t r i n g s .

Now do Exercise 9.8.

Input/output 203

Reading in from a text file

The following program reads in text from any file specified by the user. The text is read in line by line
and printed to the screen.

import java.io.*;
public class Filelnput
{
public static void main(String [] args) throws IOException
{
BufferedReader kb_in = new BufferedReader(

new InputStreamReader(System.in));
System.out.print("Enter the name of the file to be read: ") ;
String filename = kb_in.readLine();
BufferedReader file_in = new BufferedReader(

new FileReader(filename));
System.out.println("Contents of file:");
String line = file_in.readLine();
while(line != null)
{
System.out.println(line);
line = file_in.readLine();

}
}

}

Run the program, enter the name of any text file (a . j a v a file, for example) and see what happens.
Note the following about the program:

• In the program we declare two Buf f e r e d R e a d e r objects. The first one (kb_in) is linked to the
keyboard. The second one (f i l e _ i n) is linked to the file specified by the user.

• Multiple lines are read in from the file in a while loop. When the end of the file is reached, r e a d L i n e
will return the value n u l l .

• Before the program ends, the file is closed, indicating to the operating system that it is no longer in
use by our program.

Now do Exercise 9.9.

Writing to files

The class P r i n t W r i t e r provides a convenient way of writing to text files. All the p r i n t and
p r i n t l n methods we are accustomed to using with S y s t e m . o u t can be used with a P r i n t W r i t e r
object. The following program writes three simple lines to a file called new. t x t :

import java.io.*;
public class FileOutput
{
public static void main(String[] args) throws IOException
{
PrintWriter pout = new PrintWriter(new FileWriter("new.txt"));
pout.println("Line 1");
pout.println("Line 2");
pout. println (" ") ;

204 Essential Java for Scientists and Engineers

p o u t . c l o s e () ;

If the file new. t x t does not exist, it will be created automatically by the program. If new. t x t does
exist before running the program, the contents will be overwritten. Note that we close the file before the
program terminates.

Now do Exercise 9.10.

9.6 Manipulating data

You may sometimes have data files which are not in the required format for your program or which
contain redundant data. In these cases you will need to manipulate the data to suit your needs.

Say, for example, you are doing research into the effects of wind and rain on levels of pollution. You
obtain weather data from a weather station. They send you separate files for each month of the year that
you requested. The format of one of the files is shown in Table 9.1.

We need some way of splitting up the data into individual values and ignoring the values we are not
interested in. We can do this through a process called tokenizing.

Token izing strings

Data from text files is often stored in a common delimited format. This means that the data values are
separated by some delimiter. The delimiter could be a space or spaces (as in the case of the weather data
file), or a comma or semi-colon—any character which is repeated between data values and which does
not occur inside the data values (such as a full stop). We call the data values tokens and the process of
extracting the individual tokens, tokenizing.

Java provides a useful class called S t r i n g T o k e n i z e r for extracting tokens from a string which is
common delimited. The following program reads in data from jan99 . t x t and creates a second file
called jan99_new.txt , which contains only the date, rainfall and wind values:

import java.io.*;
import j ava.ut i1.*;

public class WeatherData
{
public static void main(String[] args) throws IOException
{
BufferedReader file_in = new BufferedReader(

new FileReader("jan99.txtM));
PrintWriter file_out = new PrintWriter(

new FileWriter("jan99_new.txt"));

String line = file_in.readLine(); // ignore the first line
line = file__in. readLine () ;
while(line != null)

Table 9.1 Sample weather station data. File jan99 . t x t

date tempMax tempMin r a i n humid wind
1 2 5 . 3 12 .04 0 48 26
2 2 7 . 6 13 .2 0 63 35
3 1 8 . 5 10 .7 2 6 . 5 100 43

Input/output 205

{
StringTokenizer st = new StringTokenizer(line);
file_out.print(st.nextToken()); // write date field
st.nextToken(); // ignore tempMax
st.nextToken(); // ignore tempMin
file_out.print(" " + st.nextToken()); // write rain field
st.nextToken(); // ignore humid
file_out.println(" " + st.nextToken()); // write wind value
line = file_in.readLine(); // read next line from input file

}
file_in.close();
file_out.close();

}
}

In the program we do the following:

• create a Buf f e r e d R e a d e r object (f i l e _ i n) for reading in from j a n 9 9 . t x t .
• create a P r i n t W r i t e r object (f i l e _ o u t) for writing to j an99_new. t x t .
• read in the first line of text from j an9 9 . t x t , which contains the names of the columns. We ignore

this line by simply reading in a second line of text.
• Inside the loop we create a S t r i n g T o k e n i z e r object, called s t . With s t we can retrieve tokens

one by one using the n e x t T o k e n method. We only write the first token (the day), the fourth
token (the rain value) and the sixth token (the wind value). The other values are ignored by calling
n e x t T o k e n and not doing anything with the return value.

• Once all the lines have been processed, both files are closed.

In the program above we used the default form of the S t r i n g T o k e n i z e r , which assumes that the
delimiter is white space (i.e. spaces, tabs, etc). If a file is delimited by a different character, it must be
specified as the second argument to the S t r i n g T o k e n i z e r constructor, for example:

StringTokenizer st = new
StringTokenizer(line, " , ") ; // use comma as delimiter

Now do Exercise 9.11.

9.7 Streams and the Internet

Streams need not be limited to files. We can create streams which connect to web sites on the Internet,
using the URL class. The following program creates a stream to the web site of the Department of
Computer Science at the University of Cape Town. Through this stream, the HTML code of the web site
is read, line by line, and printed to the screen (Note: you will have to be linked to the Internet for this
program to work):

import java.io.*;
import j ava.net.*;
public class TestURL

{
public static void main(String [] args) throws Exception

URL s = new URL("http://www.cs.uct.ac.za");
BufferedReader si = new BufferedReader(

new InputStreamReader(s.openStream()));

206 Essential Java for Scientists and Engineers

String line = si.readLine();
while (line != null)
{
System.out.println(line);
line = si.readLine();

}
}

}

Run the program and see what happens. If you understand HTML code, the output should make sense
to you. If the program takes very long to run or you get an 'Operation timed out' error, then you may
want to change the URL in the program above to a site geographically close to you.

In this program we import j ava . ne t , which is the Java package for networking. We also say throws
Except ion, rather than throws IOException, since there are other types of exceptions that can
occur. This will be explained in the next chapter.

Now do Exercise 9.12.

Summary

• Input can be sent to a Java program through command line parameters, which are sent to the
main method as an array of S t r i ngs ,

• A stream is the name given to a flow of data in to or out of a program.
• System, i n is a predefined input stream that is linked to the keyboard,
• Sys tem.out and S y s t e m . e r r are predefined output steams that are linked to the screen.
• Output sent to Sys tem.out can be redirected to a file using the output redirection symbol (>).
• The InputSt reamReader class reads in bytes and converts them into characters. The

Buf f e redReader class buffers input and provides useful methods for reading in text a line at
a time.

• To convert a string to a numeric value we can use I n t e g e r . p a r s e I n t for integers and
Double .parseDouble for real numbers.

• The class P i l e can be used for handling file objects on disk.
• To read in data from a text file we use the F i l eReade r class and buffer the input using the

Buf f e redReader class.
• To write data to a text file we use the P i l e W r i t e r class. The P r i n t W r i t e r class provides

convenient p r i n t and p r i n t l n methods for writing output and can be used with F i l e W r i t e r .
• Data values can be extracted from common delimited files using the S t r i n g T o k e n i z e r class.
• We can create streams to Internet web sites and input HTML code into our program.

Exercises

9.1 Try running the CommandLine program from Section 9.2 without any arguments, i.e. with
the command:

java CommandLine

What error is generated? Can you explain why this particular error is generated?

Input/output 207

9.2 Look at the following program:

public class CommandLine
{
public static void main(String args[])
{
System*out,println<"The sum of the arguments is: " +

(args[0] + args[1] + args[2]));
}

}

What will be the output from the following run?

java CommandLine 1 2 3

Explain your answer above and change the program so that it correctly adds the numbers (Hint:
If you do not know how to convert a S t r i n g into an integer, look ahead at the section on
Reading in numbers in Section 9.4).

93 Write a program that takes any number of numeric command line arguments and prints out the
sum.

94 Write a program which prints out the integers from 35 to 125, each with their corresponding
Unicode character. Redirect the output to a file called Unicode. t x t . Check the output by
looking inside Unicode. t x t .

9.5 Do Exercise 1.3 from Chapter 1, this time without using the e s s e n t i a l package.
9.6 Write a program that asks the user to input any character. Your program should print out the

Unicode value of that character. Write it without using the e s s e n t i a l package. (Hint: use
the method read, which reads in a single character, instead of using readLine . Notice that
r ead conveniently returns an i n t , representing the integer value of the character.)

9.7 Change the TimesTables program from Section 9.4, so that the user is asked for the range
of times tables to be printed out. For example, if the user requests times tables from 5 to 11,
the program should print out seven times tables.

9.8 Write a program called Di r Java, which lists all . j ava files in a given folder. The user should
specify the folder on the command line. If no command line argument is given, the program
should list all . j a v a files in the current directory. Hints:

• The current directory is referred to by the dot operator, so to create a F i l e object
representing the current directory, use new F i l e (" . ").

• Use the endsWith method of the S t r i n g class to test the types of files.
9.9 Write a program that prints out the averages between numbers stored in corresponding lines in

two separate files. For example, if f i l e 1 contains the values:

10
5
20 .5
8

and f i l e 2 contains the values:

20
5
20.75
6

208 Essential Java for Scientists and Engineers

your program should print out:

15
5
20 .75
7

You can assume that both files have the same number of values. Create sample files to test your
program*

9.10 In Section 9.4 we wrote a program called TimesTables that printed out a list of multiplication
tables. Change the program so that it automatically writes the output to the file t i m e s . t x t
without the user having to redirect the output to a file.

941 Write a program called PrintDown that reads in a file of numbers all on the same line and
outputs a file with the numbers on separate lines. Write your program so that the input file is
the first command line argument and die output file the second argument. For example, if a file
num. t x t looks like this:

3 .3 17 86 ,5 -87

then the command

Java PrintDown num, tx t o u t * t x t

will create a file called out.txt, which looks like this:

3 .3
17
86 .5
-87

9.12 Write a program called DownloadWeb that asks the user for the URL of any web site. The
program should then write the HTML code of that site to a file called download. html. Run
your program on a sample site and check it by opening download. html in a web browser.
(Note: only the text will be downloaded, not any images.)

10

Exceptions

Objectives

By the end of this chapter, you should be able to do the following:

• know when and how to specify checked exceptions in the t h r o w s clause of a method;
• handle exceptions using the t r y - c a t c h statement;
• write programs that recover from exceptions and continue running.

10.1 Introduction

Programs that you write should be robust. This means that when something unexpected happens, your
program should do something sensible (i.e. not crash or produce senseless results).

An exception is an indication that something unexpected has happened (at run-time), and the program
cannot continue running merrily—there has to be code somewhere which explains what to do. Many
kinds of errors can cause exceptions, ranging from programming bugs or invalid user input to a hard
drive crash. It is the programmer's responsibility to expect the unexpected and write code to handle
unexpected events.

10.2 Exceptions in Java

Consider the following program:

import java.io.*;
public class Square

{
public static void main (String args []) throws Exception

BufferedReader in = new BufferedReader(
new InputStreamReader(System.in));

System.out.print("Enter a number: ") ;
String s = in.readLine();

209

210 Essential Java for Scientists and Engineers

y a v a Exercises'

D s\jaya\exereises>jaya Square
Enter a number* 56
F he s q u a r e i s : 31,3 8

c-\jaya\exe re ises >j<wa Squar e
En ter a n uwbe r: 2.5
Except ion in t bread "ma i o " j ay a » lang„NuPiberFornat Exce pt ion •

a t j a u a . lang . 1 n t e g e r » p a r s e I o t < I n t ege r . j ay a: 423 >
a t j a u a »lang «I r i t ege r . pa r se I nt < I r i t ege r . j a u a : 463 >
a t S q u a re «ma i n < S q ua t *e . j a u a : 8 >

D : \ j ay a \exe re i s e s >java S quare
Enter a nunbe r :
Exc e pt io B in t lire ad * 'ma in *' jay a«Ian g. Numbe rFo rnat Exc e pt io n :

at jaua. lang . I nteger. parse I nt < I nteger. jaua :43!i>
at Java.lang-Integer * parse Int<Integer„jaua:463>
at Square «main<Square.jaua-B>

Figure 10.1 Three sample runs of Square. j ava showing one valid input and two invalid inputs

int num = Integer.parselnt(s);
System.out.println("The square is: (num*num))

}

Figure 10.1 shows three sample runs of the program. In the first run the user entered a valid integer (56),
in the second run the user entered an invalid integer (2.5) and in the third run the user entered nothing.
In both the second and third runs an exception was generated and the program terminated without the
final p r i n t l n being executed.

In this way exceptions can cause abnormal termination of a program. Java's default operation when
an exception occurs is to write such a four line (or longer) error message and terminate the program. In
this chapter we will see how to handle exceptions by intercepting this default operation.

Exception classes

Consider the I n t e g e r . p a r s e l n t method again. In the Java API the p a r s e l n t method header looks
like this:

p u b l i c s t a t i c i n t p a r s e l n t (S t r i n g s) t h r o w s N u m b e r F o r m a t E x c e p t i o n

The t h r o w s N u m b e r F o r m a t E x c e p t i o n clause is an indication that something may go wrong in
that method, i.e. it is possible that an exception will occur. If you click on NumberFormatException,
you will see that it is a class (see Figure 10.2).

All exceptions are instances of classes derived from j a v a . l a n g . E x c e p t i o n . Notice that
N u m b e r F o r m a t E x c e p t i o n inherits from I l l e g a l A r g u m e n t E x c e p t i o n , which inherits from
Runt i m e E x c e p t i o n , which inherits from E x c e p t i o n . If you click on java.lang.Exception and look
under Direct Known Subclasses, you will get a feeling for how many different types of exceptions there
are in Java. The names of exception classes also serve as descriptions of the type of exception they
represent. Try to figure out what kind of errors some of the E x c e p t i o n subclasses represent, based on
their names.

Now do Exercise 10.1.

Exceptions 211

3 Java 2 Platform SE v1,3 1 - Mtciosoft Internet Explorer

I^HI^^^^I^H^^^^HIH

imiifii ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B ^ B M
l l i i i l i l j f i httpc/Zjavatun.com/j2se/1 .3/doc$/api/index.Nml 13^8HlHH

H

•

javaJaitg

Class NumberFormatException

j ava.lang,Ohj ect
I
-t-—,3 ava. lang» Throvab le

I
+ — j ava>lang.Except ion

I
•f- - j ava»1 ang, Runt irrte Excep t ion

I
+—j ava . 1 ang«111 e ga 1 Ar gtp*e n t Ex a e p 11 o n

4.—3 av a . Xang. Numb e rF o rma t l x c e# t i on

All Implemented Interfaces:
Serializable

public class NiimberFomatl&teption
extends BleaalArRunientEKC eption

Thrown to indicate that the application has attempted to convert a string to one
of the numeric types, but that the stnng does not have the appropriate format

ii . _ . 1
1# Internet

Figure 10.2 The NumberFormatException class

10.3 Throwing exceptions

Imagine that you are working for Sun Microsystems and have been asked to write the
I n t e g e r . p a r s e I n t method. You put on the class provider hat to remind yourself that this method
will be used by programmers writing many different kinds of applications. The method outline could
look something like this:

public static int parselnt(String s)
{
int num = 0 ; // the number to be returned

/* check if the first character is a minus sign
and store this as a boolean */

212 Essential Java for Scientists and Engineers

/* go through String s backwards char by char to check that
each one is a digit. Multiply each digit by power
(depending on position) and add to num */

/* change num to be negative if necessary */

r e t u r n num;
}

What if one of the characters in the string is not a digit? What should your method do? You could decide
to do a number of things:

• You could print out an error message. The problem with this approach is that many of the class users
might not want the nasty side effect of an error message being displayed to their users. Even if you
print an error message, what value will you return from the method?

• You could return a particular number indicating that there is an error, such as - 1 or 99 9. The
problem with this approach is that whichever number you choose, it could be the number inside s.
How would the class user tell the difference between a valid 999 and an invalid 999?

• You could exit the method before you reach the r e t u r n statement, using a S y s t e m , e x i t state-
ment. The problem with this approach is that the whole program will stop. What if some of the class
users want to continue and maybe try other values?

What you want is some way of ending the method early and indicating to the class user that something
has gone wrong. The class user can then decide what to do. Exceptions provide such a mechanism. At
the place that the error occurs, you throw an exception. This is what the code could look like:

public static int parselnt(String s) throws NumberFormatException
{

// if the character is not a digit:
throw new NumberFormatException();

r e t u r n num;
}

Note the following:

• The t h r o w statement creates a N u m b e r F o r m a t E x c e p t i o n object. This object contains infor-
mation about the exception, including its type and the state of the program when the error occurred.
The class user can query this exception object if necessary.

• When the t h r o w statement is executed, the method is terminated early. Exceptions therefore provide
a way of 'jumping' out of the method. The remaining statements (such as the r e t u r n statement)
are not reached if the exception is thrown.

• The t h r o w s N u m b e r F o r m a t E x c e p t i o n clause of the method header is a warning to class users
that this particular kind of error could occur.

In summary, when we write classes to be used by others (or ourselves), we should anticipate possible
errors and generate exceptions. In this way, the class user can decide what to do when an exception
occurs (exit the program, fix the error, or continue without doing anything). The appropriate way of
handling an exception will be different, depending on the nature of the program calling the method.
Therefore, the responsibility of deciding what to do in the event of an error rests with the programmer
using the method, not the programmer writing the method.

Now do Exercise 10.2.

Exceptions 213

When to specify the throws clause in a method header

Compile the following two classes as separate files and see what happens:

import java.io.*;
public class Testlnput

{
public static void main(String args [])
{
FileReader f = new FileReader("test.txt");

}
}

public class TestParselnt

{
public static void main(String args [])
{
int num = Integer.parselnt("35");

}
}

The result of the compilations is shown in Figure 10.3. The first class (T e s t l n p u t) generates an error,
while the second class compiles without any errors. Look at the detail of the error carefully. The compiler
is stating that the F i l e N o t F o u n d E x c e p t i o n must be 'caught or declared to be thrown'. This means
that we must either handle (i.e. catch) the exception, or specify that we are not handling the exception.
This is known as Java's catch or specify requirement.

Here is an analogy to explain the catch or specify requirement: Say something goes wrong at home,
such as the drain blocking. Household rules specify that if anybody finds the drain blocked, they must
either unblock the drain (i.e. handle the problem), or tell somebody else about it. Johnny finds out that
the drain has blocked. He decides to 'pass the buck', so he throws up his hands and tells Sue that the
drain is blocked and he is doing nothing about it. Sue, likewise, decides to 'pass the buck'. So she throws
up her hands and tells Greg that the drain is blocked and she is doing nothing about it. Greg needs to

Figure 10.3 The class Test lnput does not compile, whereas the class Tes tParse ln t does

214 Essential Java for Scientists and Engineers

wash his clothes, so he decides to handle the problem. He takes the problem in hand (catches it) and
unblocks the drain. Since he has fixed the problem, he does not have to tell anybody else about it.

For Tes t Input to compile correctly, we need to add a throws clause to the header as follows:

public class Testlnput
{
public static void main(String[] args)

throws FileNotFoundException
{

You may be wondering why the second program (T e s t P a r s e l n t) did not give a similar error. We
have used the p a r s e I n t method, which throws Number Format Except ion, so why do we not have
to specify the NumberFormatException in the throws clause of the main method? The reason
for this is that Java has different types of exceptions. There is a class of exceptions that do not have to
obey the catch or specify requirement. These are known as runtime exceptions. You may recall that
NumberFormatException inherits from I l l ega lArgumentExcep t ion , which inherits from
RuntimeException. All runtime exception classes are subclasses of this Runt imeExcept ion
class. These are exceptions that can occur anywhere in a program and so the cost of checking for them
by the compiler exceeds the benefit of forced checking. The rest of the exceptions (non-runtime excep-
tions) are called checked exceptions and these must all be caught or specified, i.e. they are 'checked' by
the Java compiler.

Now do Exercises 10.3 to 10.4.

10.4 Handling exceptions

Up till now we have been leaving it up to Java to handle all exceptions. Java's default way of handling
exceptions is to print out a rather technical message and abort the program. In this section we will look
at how to handle exceptions by catching them.

Example: finding averages

In Section 4.1, Reading an unknown amount of data, we read in any number of values from a text file
and computed the average. The method (called average) was defined inside E s s e n t i a l M a t h and it
took the name of the file as an argument. We will now define a similar method, also called average ,
but with no arguments, that reads in a single line of values from the keyboard instead.

Here is the E s s e n t i a l M a t h class containing the new average method and a class FindAverage
that uses it:

import java.io.*;
import java.util.*; // for StringTokenizer

public class EssentialMath
{

public static double average() throws IOException
{
System.out.println("Enter numbers on the same line:");
BufferedReader br = new BufferedReader(

new InputStreamReader(System.in));
String s = br.readLine();
StringTokenizer st = new StringTokenizer(s);
double sum = 0;
int numValues = 0;

Exceptions 215

while (st.hasMoreTokens())
{
String n = st.nextToken();
double num = Double.parseDouble(n);
sum + = num;
numValues++;

} // while
double avg = sum/numValues;
return avg;

public class FindAverage
{
public static void main(String args []) throws IOException

{
System.out.printIn("AVERAGE CALCULATOR");
double avg = EssentialMath.average();
System.out.println("The average is: " + avg);
System, out .println(" The End ") ;

The method a v e r a g e calls two methods that can throw exceptions.

• First the r e a d L i n e method of Buf f e r e d R e a d e r , which throws an I O E x c e p t i o n and
• second the Doub le . p a r s e D o u b l e method that throws a N u m b e r F o r m a t E x c e p t i o n .

Notice that we specify the I O E x c e p t i o n in the t h r o w s clause of the method, but not the
N u m b e r F o r m a t E x c e p t i o n . As explained earlier, this is because I O E x c e p t i o n is a checked excep-
tion, whereas N u m b e r F o r m a t E x c e p t i o n is a runtime exception. Also notice that we have to specify
the I O E x c e p t i o n in the t h r o w s clause of the ma in method as well. This is because the ma in
method uses E s s e n t i a l M a t h . a v e r a g e which may throw an I O E x c e p t i o n . In this way, a checked
exception must be specified all the way down the calling chain.

Catching an exception

When you run the program, it expects some numbers as input. If you type in an invalid number, an
exception will be generated by the p a r s e D o u b l e method. This will result in a printed error message
similar to those shown in Figure 10.1. We would like to catch this exception and, instead of aborting the
program, ignore any invalid numbers and simply continue. Here is our modified a v e r a g e method that
catches the N u m b e r F o r m a t E x c e p t i o n exception:

double sum = 0;
int numValues = 0;
int numErrors = 0 ; // number of invalid numbers entered
while (st.hasMoreTokens())
{
String n = st.nextToken();
try
{ // beginning of try block
double num = Double.parseDouble(n);
sum += num;
numValues++;

216 Essential Java for Scientists and Engineers

} catch(NumberFormatException e) {
numErrors++;
System.out.println("Invalid number at position " +

(numValues+numErrors) + " ignored.");

}
} // while
double avg = sum/numValues;
return avg;

With our modified program, the following input:

5 0 . 5 5 , 5 - 5 0 . 5 9 @@

would generate this output:

Invalid number at position 2 ignored.
Invalid number at position 5 ignored.
The average is: 3.0

The End

We now explain what we have done. To catch an exception, we wrap the code which can generate an
exception in a try block. A t r y block is just a t r y statement followed by block markers enclosing
the code which could generate an exception. We handle the exception using a c a t c h statement, which
follows the t r y block. Here is the basic structure of a t r y - c a t c h statement:

t r y
{
// statements that could generate an exception

} catch (ExceptionClass e) {
// code that handles the exception

}

The c a t c h statement looks like a method declaration with a single formal argument. The argument type
indicates which exception is being caught. The parameter e refers to the exception object created when
the exception was thrown. If you look at the E x c e p t i o n class in the Java API, you will see which
methods you can call using the e parameter.

The t r y and c a t c h statements belong together and there can be no code between the end of the
t r y and the beginning of the c a t c h . To emphasize this, we usually put the c a t c h statement on the
same line as the end of the t r y block.

In particular, in our modified a v e r a g e method, we do the following:

• We wrap three statements inside the t r y block. The first statement is where the exception could
be thrown. If an exception occurs, the program jumps to the c a t c h clause and the remaining
two statements inside the t r y block are not executed. The statements inside the c a t c h block are
executed and the program continues by looping back to the beginning of the w h i l e loop. If an
exception is not thrown, all the statements inside the t r y block are executed and the statements
inside the c a t c h block are ignored.

• We keep track of the number of invalid numbers, so that we can report back to the user which entries
were ignored.

• If Number Format E x c e p t i o n was a checked exception, we could remove it from the t h r o w s
clause of both the a v e r a g e method and the ma in method, since it is no longer thrown by the
method.

Now do Exercises 10.5 to 10.6.

Exceptions 217

main method methodA method B

call to methodA

Exception
handler 4

if match fails, pass
object to default
handler (prints error
message and aborts)

Check for
matching
handler. If
match fails,
look in calling
method.

Check for matching
handler. If match
fails, look in calling
method.

Figure 10.4 When an exception is thrown, Java searches for a matching handler all the way up the calling chain

What happens when an exception is thrown

The code inside a catch block is called an exception handler. The job of the exception handler is to
recover from the problem so that the program can either try another tack or simply continue. Since each
c a t c h statement has an associated exception type (as indicated by the formal parameter), each exception
handler only handles exceptions of that type.

You can have multiple catch clauses after a single try block, as follows:

t r y
{
// many statements which can cause different types of exceptions

} catch (ExceptionTypel e) {
// code to handle ExceptionTypel

} catch (ExceptionType2 e) {
// code to handle ExceptonType2

}

When an exception is thrown somewhere in a method, the exception object is matched against any
exception handlers in that method, i.e. it is checked against each of the c a t c h clauses below the t r y
block. If there is a match, the code inside that c a t c h block is executed and the program continues from
after the t r y - c a t c h code. If there is no match, the object is passed to the calling method and the
process is continued in this way up the calling chain. Figure 10.4 shows an unhandled exception being
passed back along the calling chain.

10.5 Exceptions and file input

Many things can go wrong when we read from files, so we dedicate a section to the use of exceptions
with files.

To illustrate the full complexity of reading from files, we will work with a binary file. The file we will
be working with is called t r c _ v l . d a t a and it contains the first volume of South Africa's TRC (Truth
and Reconciliation Commission) report. It is a long report, containing thousands of lines of text (if you
are interested in reading more about the TRC, go to the site www.truth.org.za).

218 Essential Java for Scientists and Engineers

To run the following program, you will have to download the file t r c _ v l . d a t a from our website.
Remember that binary files are different from text files and cannot be viewed using a text editor. The
following program reads in the first 11 lines from the file.

import java.io.*;

public class ReadBinary

{
public static void main(String[] args) throws

FileNotFoundException, EOFException, IOException

DatalnputStream in = new DatalnputStream(
new FileInputStream(ntrc_vl.data"));

for(int i=0; i<=10; i++)
{
String s = in.readUTF();
System.out.println(s);

}
i n . c l o s e () ;

}
}

Notice that the methods used for reading in data from binary files are different from those we use for
reading in from text files. The ma in method above uses two methods that could throw exceptions:

• The F i l e l n p u t S t r e a m constructor could throw a F i l e N o t F o u n d E x c e p t i o n .
• The readUTF method of D a t a l n p u t S t r e a m could throw an E O F E x c e p t i o n i f the input stream

reaches the end of the file, or it could throw an I O E x c e p t i o n if any other I/O error occurs.

All three of these exceptions are checked exceptions, so must be specified in the t h r o w s clause of the
method.

Groups of exceptions

You will recall that all exceptions in Java are subclasses of j a v a . l a n g . E x c e p t i o n . If you look in
the API, you will see that both F i l e N o t F o u n d E x c e p t i o n and E O F E x c e p t i o n are subclasses of
I O E x c e p t i o n . In the main method of R e a d B i n a r y we could therefore shorten the t h r o w s clause
to:

... throws IOException

This compiles because I O E x c e p t i o n is a more general form of exception and so 'covers' all the
specialized exception subclasses. In the same way, we could use:

... throws Exception

to specify all types of exceptions. Although this may seem simpler, we do not recommend this approach.
It is better programming practice to specify individual exceptions in the t h r o w s clause so that it is clear
which exceptions could be thrown by the method.

Forcing the exceptions

Before we change the code to handle the exceptions, we must make sure that we can create conditions
under which the exceptions will be generated. We will be generating the F i l e N o t F o u n d E x c e p t i o n
and the EOFExcep t ion . First try running the program with t r c _ v l . d a t a in the current directory.
You should see the first few lines of the report (starting with "Volume ONE C h a p t e r ONE"). To
generate the F i l e N o t F o u n d E x c e p t i o n , do the following:

Exceptions 219

• Move t r c _ v l . d a t a into a different directory. (Alternatively, you can temporarily rename the file
to some other name, such as t r c . data.)

• Run the program (it is not necessary to re-compile, because the program has not changed).
• The Fi leNotFoundExcept ion should be generated.

Move t r c _ v l . d a t a back to the current directory (or rename it back to trc__vl. d a t a if you renamed
the file) and run the program to see that it is working correctly again.

To generate the EOFException, do the following:

• First make sure that the program is working correctly and reading from t r c _ v l . da ta .
• Make a copy of t r c _ v l . da ta , called backup . da ta .
• Open t r c _ v l . d a t a in a text file editor. You will either see nothing, or some strange characters.

Simply push Enter and save the file. In this way you have corrupted the binary data in the file.
• Run the program again. The EOFException should be generated.

Copy backup . d a t a to t r c _ v l . d a t a to restore the file. Run the program to see that it is working
correctly again.

Catching FileNotFoundException and EOFException

Here is a first attempt at catching both exceptions. In each case we simply print a message and exit the
program.

import java.io.*;

public class ReadBinary
{
public static void main(String[] args) throws IOException
{
try
{
DatalnputStream in = new DatalnputStream(

new FileInputStream("trc_vl.data"));
for(int i=0; i<=10; i + +)
{
String s = in.readUTF();
System.out.printIn(s);

}
in.close();

}catch(FileNotFoundException e) {
System.out.println("Could not find file trc_vl.data");
System.exit(0);

}catch(EOFException e) {
System.out.println("Reached end of file trc_vl.data");
S y s t e m . e x i t (0) ;

}
}

}
Notice the following:

• Since we are catching both the Fi leNotFoundExcept ion and the EOFException, we take
them out of the throws clause.

• We have one t r y clause and two c a t c h clauses. When an exception is thrown somewhere in the
t r y block, Java will try to match the exception object with each c a t c h clause from top to bottom.

220 Essential Java for Scientists and Engineers

Only one of the c a t c h blocks will be executed. If it does not match either of the handlers, then the
exception will be thrown on to the Java interpreter.

Looping while file not found

When the file t r c _ v l . d a t a is not found in the current directory, we would like to give the user a
chance to move the file to the correct place before the program gives up and aborts. Here is our modified
program:

import java.io.*;
import essential.*;

public class ReadBinary
{
public static void main(String[] args) throws IOException
{
boolean fileFound = false;
do
{
try
{
DatalnputStream in = new DatalnputStream(

new FileInputStream("trc_vl.data"));
fileFound = true;
for(int i=0; i<=10; i++)
{
String s = in.readUTF();
System.out.printIn(s);

}
in.close();

}catch(FileNotFoundException e) {
System.out.printIn("Could not find file trc_vl.data");
System.out.println(

"Please make sure the file is in the current directory");
System.out.println(

"Press enter when ready, or X to quit . . .") ;
String s = Keyboard.readLine();
if ((s.equals("X") || s.equals("x"))) System.exit(0);

}catch(EOFException e) {
System.out.println("Reached end of file trc_vl.data");
System.exit(0) ;

} // try-catch
}while(!fileFound); // do loop

}
}

Note the following:

• We enclose the entire t r y block in a do loop.
• We define a boo lean variable (f i leFound) to use in the condition of the do loop.
• f i l eFound is set to t r u e just after the statement where the F i leNotFoundExcept ion could

be thrown. This statement will only be reached if the file is in fact found.

Exceptions 221

• If the file is not found, we print a suitable message and give the user time to move the file to the
current directory or to quit the program. If the user chooses to quit, the program terminates, otherwise
the loop will repeat.

Now do Exercise 10.7.

The f i n a l l y statement
There is an optional clause which ends off a t r y - c a t c h statement, called the finally block. Statements
inside the f i n a l l y block are executed regardless of what happens in the t r y block, i.e. if an exception
is thrown or not. In our ReadBinary program above, the i n . c l o s e () statement will only be reached
if an exception is not thrown. This is an example of a statement that should go in a f i n a l l y block,
because we would want the file to be closed if it has been opened. Here is the code:

DatalnputStream in = null;
try
{
in = new DatalnputStream(

new FileInputStream("trc_vl.data"));
fileFound = true;
for(int i=0; i<=10; i++)
{
String s = in.readUTF();
System.out.println(s);

}catch(FileNotFoundException e) {

}catch(EOFException e) {

}finally {
if (in != null)
in.close();

}

Notice that we have moved the declaration of the variable i n to outside the scope of the t r y statement.
This is so that the variable will be accessible from inside the f i n a l l y block, which is outside the scope
of the t r y statement.

Summary

Programs that you write should be robust. It is your responsibility, as a programmer, to expect
the unexpected and write code to handle unexpected events.

• An exception is an indication that something unexpected has happened at run-time,
• It is the class user's responsibility to decide what to do when an exception is generated.
• To catch an exception* we wrap the code that can generate an exception in a t r y block and

follow it with a c a t c h statement matching the exception we want to catch. The code inside a
c a t c h block is called an exception handler.

• Java's default operation when an exception occurs is to write an error message and terminate the
program* This can be intercepted by writing exception handlers for particular exceptions*

All exceptions in Java are instances of classes derived from j ava . l a n g . Except ion .
* Java's catch or specify requirement states that all checked exceptions that can be thrown within

a method must be caught or declared to be thrown.

222 Essential Java for Scientists and Engineers

When an exception is thrown in a method, the exception is matched against any existing exception
handlers in that method and, failing that, in methods further up the calling chain.
The f i n a l l y block is used for any cleanup code that would be repeated in both the t r y and
c a t c h clauses.

Exercises

10.1 For each of the following methods, find out what exceptions they throw:

(a) The F i l e R e a d e r (S t r i n g) constructor of j a v a . i o . F i l eReader ,
(b) The cha r At (i n t) method of j ava • l a n g * S t r i n g ,
(c) The compareTo (S t r i n g) method of j a v a . l a n g . S t r i n g .
(d) The URL (S t r ing) constructor of j a v a . n e t < URL.
(e) The openSt ream method of j ava . n e t . URL.

10.2 Download the source code of the e s s e n t i a l .Mat r ix class from our website. In the first
constructor, two exceptions are thrown. Look at the first exception and explain in English under
which conditions this exception will be thrown.

10.3 Run the following program and note down which exception is generated:

public class TestCompare
{
public static void main(String args [])
{
String si = "hello11;
String s2 = "HELLO";
s2 ~ null;
System.out.printIn(si.compareTo(s2));

}
}

Why did we not have to specify this particular exception in a throws clause in the header of
main?

10.4 Consider the following program before answering the questions below:

import j ava,net.*;
public class Google

public static void main(String!] args)

URL s = new URL{"http://www.google.com");
}

}
Does the program compile successfully? If not, what error message does it generate and how
will you need to change the program so that it does compile successfully?

10.5 Take the code from Exercise 10.4 and modify it to catch the HalformedURLException
instead of specifying it in the throws clause. You should print out a suitable error message if
the exception is thrown. Experiment with different URLs to find one that throws the exception.

Exceptions 223

10.6 The following program uses the e s s e n t i a l .Mat r ix class (see Chapter 12):

import essential.*;

public class UseMatrix
'{
public static void main(String[] args) throws MatrixException
{
Matrix ml = new Matrix(2,3);
ml.setElementAt(1,1,4);
ml •setElementAt(2,2,1);
ml.setElementAt(3,3,0.5) ;
System.out.println(ml);

> »

Run the program and see if you can figure out where the exception is being thrown. Change
the program to catch the exception and print out a sensible message.

10.7 Modify the ReadBinary class from Section 10.5, Looping while file not found, so that it
counts the number of words in t r c _ v l . d a t a rather than printing out the first few lines. The
only output from the program (except for messages in the event of an error) should be the
number of words in the report. Hints:

• Unlike the r eadLine method of Buf f eredReader , the readUTF method does not
return n u l l when the end of file is reached. Instead, an EOFException is thrown.

• To count the number of words in any string, you can use a S t r i n g T o k e n i z e r object.

This Page Intentionally Left Blank

Part III

Some applications

This Page Intentionally Left Blank

11

Simulation

Objectives

By

•
•

the end of this chapter you should be able to

create a random number generator using the Random class;
simulate a variety of real-life situations using random numbers,
division, radioactive decay and traffic flow.

such as the spin of a coin, bacteria

Simulation is an area of application where computers have come into their own. A simulation is a
computer experiment which mirrors some aspect of the real world that appears to be based on random
processes, or is too complicated to understand properly. (Whether events can be really random is actually
a philosophical or theological question.) Some examples are: radio-active decay, rolling dice, bacteria
division and traffic flow. The essence of a simulation program is that the programmer is unable to predict
beforehand exactly what the outcome of the program will be, which is true to the event being simulated.
For example, when you spin a coin, you do not know for sure what the result will be.

11.1 Random number generation

The Math. random method

Random events are easily simulated in a Java program with the method Math. random, which we have
briefly encountered already. Math, random returns a uniformly distributed pseudo-random number r in
the range 0 < r < 1. (A conventional computer cannot at the moment generate truly random numbers,
but they can be practically unpredictable.) Math. random can return 253 different values all with equal
probability.

The first call to Math, random in a program creates a 'random number generator'—essentially
a complicated algorithm for producing a sequence of pseudo-random numbers. The sequence has to
have a starting point, which is called the seed of the generator. The seed when Math, random is
called for the first time is the current system time in milliseconds, returned behind the scenes by
S y s t e m . c u r r e n t T i m e M i l l i s .

227

228 Essential Java for Scientists and Engineers

Seeding the random number generator

There are times when you want a program to generate the same sequence of random numbers every time
it runs, for example, in order to debug it properly (it's often difficult enough to debug a program without
the numbers changing every time you run it!).

Another example could be a complex simulation model of an ecosystem. You may want to recreate a
particular random rainfall pattern for example, to investigate its effect on the rest of the system.

Math. random cannot be 'seeded' to reproduce a particular sequence. However, it in fact makes use
of the more general Random class in the j ava . u t i l package, which can be seeded in a program.

The Random class

The following program gets the current system time, and demonstrates how to use the Random class to
generate two identical sequences of random numbers from the time:

import java.util.*;
public class RandomStuff

{
public static void main(String[] args)
{

long seed = System.currentTimeMillis();
Random myRand = new Random(seed);

System.out.printIn("seed: " + seed + "\n");

for (int i = 1; i <= 5; i++)
System.out.printIn(myRand.nextDouble());

Output:

System.out.printIn(" ") ;
myRand.setSeed(seed);

for (int i = 1; i <= 5; i++)
System.out.printIn(myRand.nextDouble());

}

seed: 1005653282150

0.9451874437521086
0.27869488750867966
0.6909704295658767
0.5730443218764234
0.9997579275602388

0.9451874437521086
0.27869488750867966
0.6909704295658767
0.5730443218764234
0.9997579275602388

Simulation 229

Note:

• The statement

Random myRand = new Random(seed);

creates a random number generator object myRand, seeded with the argument in the constructor
call. The seed must be long.
If the constructor is called without an argument the current system time is used to seed the generator.
The point about using the constructor with an argument is that you can use the same seed to generate
an identical sequence later on.

• The method next Double of the Random class generates the next random number in the sequence.
• The method s e t Seed sets the seed of the generator. If the seed has been used before, the same

sequence will be generated.

Normal (Gaussian) random numbers

The method nex tGauss ian of the Java API class Random generates Gaussian or normal random
numbers (as opposed to uniform) with a mean of 0 and a standard deviation of 1.

Try Exercises 11.1 and 11.2.

11.2 Spinning coins

When a fair (unbiased) coin is spun, the probability of getting heads or tails is 0.5 (50%). Since a value
returned by Math, random is equally likely to anywhere in the interval [0, 1) we can represent heads,
say, with a value less than 0.5, and tails otherwise.

Suppose an experiment calls for a coin to be spun 50 times, and the results recorded. In real life you
may need to repeat such an experiment a number of times; this is where computer simulation is handy.
The following code simulates spinning a coin 50 times:

double r; // random number

for (int i = 1; i <= 50; i++)
{

r = Math.random();
if (r < 0.5)

System.out.print("H");
else

System.out.print("T");
}

Here is the output from two sample runs:

HHHHTTTTHTTTHHHTTHHTTTHTHHTTHTHHTTHTTHHTHHHHHTHHTH
HTHTHHHHHHTHHHHHHHTTTHTHTTHHHTTHHTTHTTTHTTHHTTHHTT

Note that it should be impossible in principle to tell from the output alone whether the experiment was
simulated or real (if the random number generator is sufficiently random).

Can you see why it would be wrong to code the i f part of the coin simulation like this:

i f (Math.random() < 0.5)
System.out.print("H");

230 Essential Java for Scientists and Engineers

if (Math.random() >= 0.5)
System.out.print("T");

The basic principle is that Math. random should be called only once for each 'event' being simulated.
Here the single event is spinning a coin, but Math, random is called twice. Furthermore, since two
different random numbers are generated, it is quite possible that both logical expressions will be true, in
which case H and T will both be displayed for the same coin!

To avoid this error it is safer to assign the value returned by Math. random to a variable, (r above),
and to use this variable in the i f statement.

Try Exercises 11.3 and 11.4

11.3 Rolling dice

When a fair dice is rolled, the number uppermost is equally likely to be any integer from 1 to 6. We saw
in Rolling dice (Chapter 2) how to use Math, random to simulate this process. The following code
generates 10 random integ ers in the range 1—6:

for (i = 1; i <= 10; i++)
{

numberOnDice = (int) Math.floor(6*Math.random())+1;
System.out.print(numberOnDice + " ");

}

Here are the results of two such simulations:

4 5 1 6 5 3 2 3 3 3
2 3 3 1 4 4 1 2 1 5

We can do statistics on our simulated experiment, just as if it were a real one. For example, we could
estimate the mean and standard deviation of the number obtained when the dice is rolled 100 times.

Try Exercises 11.5 to 11.7.

11.4 Bacteria division

If a fair coin is spun, or a fair dice is rolled, the different events (e.g. getting 'heads', or a 6) happen
with equal likelihood. Suppose, however, that a certain type of bacteria divides (into two) in a given time
interval with a probability of 0.75 (75%), and that if it does not divide, it dies. Since a value generated
by Math, random is equally likely to be anywhere between 0 and 1, the chances of it being less than
0.75 are precisely 75%. We can therefore simulate this situation as follows:

r = Math.random();
if (r < 0.75)

System.out.println("I am now we");
else

System.out.println("I am no more");

Again, the basic principle is that one random number should be generated for each event being simulated.
The single event here is the bacterium's life history over the time interval.

Try Exercises 11.8 to 11.10.

11.5 Radioactive decay

Radioactive Carbon 11 has a decay-rate of k — 0.0338 per minute, i.e. a particular C1 x atom has a 3.38%
chance of decaying in any one minute. Suppose we have 100 such atoms. The following structure plan
indicates how we could simulate their decay:

Simulation 231

1. Start with n = 100 atoms
2. Repeat, say, for 100 minutes

- generate n random numbers to decide how many atoms decay in that minute
- reduce n by the number of atoms decaying in that minute
- print (and/or plot) n (the number of undecayed atoms remaining).

The following program defines a class Reactor , creates an object c a r b o n l l of that class, decays
c a r b o n l l for 100 minutes, and prints and plots the number of undecayed atoms each minute:

import essential.*;

public class Reactor

{
private int initialAtoms;
private double decayRate;
private int atoms [] ; // number of atoms at each minute

public Reactor(int iA, double dR)
{ initialAtoms = iA; decayRate = dR; }

public int decay(int numAtoms)

{
int numberDecaying = 0;
for (int atom = 1; atom <= numAtoms; atom++)

{
if (Math.random() < decayRate)

numberDecaying++;
}
return numberDecaying;

}

public void decayFor(int simulationTime)

{
atoms = new int[simulationTime+1];
int numberDecaying;
atoms[0] = initialAtoms;

for (int minutes = 1; minutes <= simulationTime; minutes++)

{
int prevAtoms = atoms[minutes-1];
numberDecaying = decay(prevAtoms);
atoms[minutes] = prevAtoms - numberDecaying;

}
}

public void plotValues(boolean plotTheoretical)

{
Graph reactorDraw = new Graph();
reactorDraw.setPointShape(new

232 Essential Java for Scientists and Engineers

CirclePoint(PointShape.UNFILLED));
reactorDraw.setDrawingStyle(Graphable.PLOTPOINTS);
reactorDraw.setAxes(0, atoms.length-1, 0, initialAtoms);
for(int i = 0; i < atoms.length; i + +)

reactorDraw.addPoint(i,atoms[i]);
if (plotTheoretical)

{
// put in code to create an ExponentialGraph:
ExponentialGraph theoryG =

new ExponentialGraph(initialAtoms, -decayRate);

}
}

public void printValues()

{
for(int i = 0; i < atoms.length; i++)

System.out.printIn(i + " " + atoms[i]);

}

public static void main(String[] args)

{
Reactor carbonll = new Reactor(100, 0.0338);
carbonll.decayFor(100);
carbonll.printValues();
carbonll.plotValues(true);

}

}
Figure 11.1 shows the graphical output of the simulation. Superimposed on the simulation results is

the theoretical formula, R(t) = Roe~kt (exponential decay), where R(t) is the number of undecayed
atoms remaining at time t, Ro is the initial value of R, and k is the decay rate.

Estimation of half-life

The half-life of a radioactive element is defined as the time taken for half of the atoms in a sample of
the element to decay. (Because the decay is exponential the half-life is the same whatever the size of the
sample.) It's a nice problem to estimate the half-life by simulation: let the atoms decay until only half
are left, record the time taken for this to happen, repeat the process a large number of times to find the
average half-life. See if you can write a method h a l f L i fe for the Reac to r class to do this before
looking at the answer below.

public double halfLife(int numberOfSimulations)

{
double sum = 0 ; // running total for half-life
int half; // half-life
int remainingAtoms;

for (int i = 1; i <= numberOfSimulations; i++)

{
remainingAtoms = initialAtoms;

Simulation 233

File F

100.0

75.0 „

50.0 „

25.0 __

jo.o _

sential Grapher
tofjertles

f

h V
^

^ ^

D.O W o

~__

'so o Wo

illlUI ~ I n J' x I

OTOT^ x I
Wo 1

prapSf&ttse j

Figure 11.1 Radioactive decay of Carbon 11 - simulated and theoretical

half = 0;
while (remainingAtoms > 0.5*initialAtoms)
{

int numberDecaying = decay(remainingAtoms);
remainingAtoms -= numberDecaying;
half++;

}
sum += half;

}
return sum/numberOfSimulations;

Here's the result of 1000 simulations:

2 0 . 4 6 8

The formula for the half-life is log(2)/Jfc, i.e. 20.507.
Try Exercise 11.11.

11.6 A random walk

A drunken sailor has to negotiate a jetty to get to his ship. The jetty is 50 paces long and 20 wide. A
colleague places him in the middle of the jetty at the quay-end, pointing toward the ship. Suppose at
every step he has a 40% chance of lurching toward the ship, but a 20% chance of lurching to the left
or right (he manages to be always facing the ship). If he reaches the ship-end of the jetty, he is hauled
aboard by waiting mates.

The problem is to simulate his progress along the jetty, and to estimate his chances of getting to the
ship without falling into the sea. To do this correctly, we must simulate one random walk along the
jetty, find out whether or not he reaches the ship, and then repeat this simulation 1000 times, say. The
proportion of simulations that end with the sailor safely in the ship will be an estimate of his chances

234 Essential Java for Scientists and Engineers

of making it to the ship. For a given walk we assume that if he has not either reached the ship or fallen
into the sea after, say, 10000 steps, he dies of thirst on the jetty.

To represent the jetty, we set up co-ordinates so that the x-axis runs along the middle of the jetty with
the origin at the quay-end. x and y are measured in steps. The sailor starts his walk at the origin each
time. Here is a structure plan for simulating n such walks:

1. Initialize variables, including number of walks n
2. Repeat n simulated walks down the jetty:

Start at the quay-end of the jetty
While still on the jetty and still alive repeat:

Get a random number R for the next step
If R < 0.4 then

Move forward (to the ship)
Else if R < 0.7 then

Move port (left)
Else

Move starboard (right)
If he got to the ship then

Count that walk as a success
3. Compute and print estimated probability of reaching the ship.

Note: if the random number R is less than 0.4 he moves forward, if it is between 0.4 and 0.7 he moves
left, and if it is greater than 0.7 he moves right.

The following program generalizes the problem by allowing you to specify the probability of walking
straight in the S a i l o r constructor. The width and length of the jetty, and the maximum number of steps
after which the sailor dies of thirst, are the same for all S a i l o r objects, so are declared as constants.

public class Sailor

{
public static int JETTY_WIDTH = 20;
public static int JETTY_LENGTH = 50;
public static int MAX_STEPS = 10000; //after which he dies of thirst
private double probOfWalkingStraight;

public Sailor(double prob)

{
probOfWalkingStraight = prob;

}

/* randomWalk(): returns true if the sailor reached the ship */

public boolean randomWalk()

{
int x = 0, y = 0 ;
int steps = 0;
while ((x <= JETTY_LENGTH) && (Math.abs(y) <= (JETTY__WIDTH/2))

ScSc (steps < MAX_STEPS))

{
steps++; //that's another step
double randomNum = Math.random(); //random number for that step
if (randomNum < probOfWalkingStraight) //which way did he go?

x = x + 1; //maybe forward ...

Simulation 235

else if (randomNum < 1 - (1 - probOfWalkingStraight)/2)
y = y + 1; //... or to port ...

else
y = y - 1; //... or to starboard

} // end of while
if (x > JETTY_LENGTH)

return true; //he actually made it this time!
else

return false;

}

/* randomWalk(int n): n = the number of times to walk
* returns the probability of reaching the ship (as a percentage)

*/
public double randomWalk(int n)

{
int numSuccesses = 0;
for(int i=0; i<n; i++)
{
if(randomWalk()) numSuccesses++;

}
return ((double)numSuccesses / n) * 100;

}

public static void main(String [] args)

{
Sailor drunkDan = new Sailor(0.4);
System.out.println

("Probability of drunk Dan reaching ship (1000 walks): "
+ drunkDan.randomWalk(10 00) + " % ") ;

Sailor soberSam = new Sailor(0.8);
System.out.println

("Probability of sober Sam reaching ship (1000 walks): "
+ soberSam.randomWalk(1000) + " % ") ;

System.out.println("*************** WIDER JETTY ****************»);
Sailor.JETTY_WIDTH =40;
System.out.println

("Probability of drunk Dan reaching ship (1000 walks): "
+ drunkDan.randomWalk(10 00) + " % ") ;

System.out.println
("Probability of sober Sam reaching ship (1000 walks): "
+ soberSam.randomWalk(1000) + " % ") ;

}
}

Note: if p is the probability of walking straight, then (1 - p)/2 is the probability of going left or right.
Therefore, if the random number R is less than p the sailor goes straight. If R is greater than p but less
than 1 — (1 — p)/2 he goes left, otherwise he goes right.

Some results:

Probability of drunk Dan reaching ship (1000 walks): 59.8%
Probability of sober Sam reaching ship (1000 walks): 99.7%

236 Essential Java for Scientists and Engineers

*************** WIDER JETTY ****************
Probability of drunk Dan reaching ship (1000 walks): 96.6%
Probability of sober Sam reaching ship (1000 walks): 100.0%

11.7 Traffic flow

A major application of simulation is in modelling the traffic flow in large cities, in order to test different
traffic light patterns before inflicting them on the real traffic. In this example we look at a very small
part of the problem: how to simulate the flow of a single line of traffic through one set of traffic lights.
We make the following assumptions (you can make additional or different ones if like):

1. Traffic travels straight, without turning.
2. The probability of a car arriving at the lights in a particular second is independent of what happened

during the previous second. This is called a Poisson process. This probability (call it p) may be
estimated by watching cars at the intersection and monitoring their arrival pattern. In this simulation
we take p = 0.3.

3. When the lights are green, assume the cars move through at a steady rate of, say, eight every ten
seconds.

4. In the simulation, we will take the basic time period to be ten seconds, so we want a display showing
the length of the queue of traffic (if any) at the lights every ten seconds.

5. We will set the lights red or green for variable multiples of ten seconds.

The situation is modelled with a class T r a f f i c . The method c a r s A r r i v e F o r runs the simulation
for a number of 10-second periods. During each 10 seconds it generates the random arrival of cars. At
the end of each such period, it calls method go or s t o p depending on whether the lights are green or
red (no orange is available at this stage!).

The method go uses a 'timer' (g r e e n T i m e r) which it increments and checks how long the lights
have been green for. When the time is up, it changes the colour of the lights (and resets g r e e n T i m e r) .
It also lets up to eight cars through.

The method s t o p is similar, except that it doesn't let any cars through (traffic is remarkably well-
behaved!).

Both methods call d i s p l a y Q u e u e to print a row of asterisks representing the cars waiting at the
lights at the end of each 10-second period.

import Java.text.*;
public class Traffic

{
private int cars = 0; //number of cars in queue
private int greenFor; //period lights are green
int greenTimer = 0; //timer for green lights
private String lights = "R"; //colour of lights
private double probOfCar; //probability of a car arriving
private int redFor; // period lights are red
int redTimer = 0; //timer for red lights

public Traffic(double p, int gF, int rF)

{
probOfCar = p;
greenFor = gF;
redFor = rF;

}

Simulation 237

public void displayQueue()

{

System.out.print(" " + lights + " ");
for (int i = 1; i <= cars; i++) // display * for each car

System.out.print("*");

System.out.printIn(); // new line

}

public void go()

{
greenTimer++;
cars -= 8;

if (cars < 0)
cars = 0;

displayQueue()

if (greenTimer == greenFor) // check if lights need to change

{
lights = "R";
greenTimer = 0;

}

}
public void stopO
{

redTimer++; //advance red timer
displayQueue();

if (redTimer == redFor) // check if lights need to change

{
lights = "G";
redTimer = 0;

}

}
public void carsArriveFor(int numberOfPeriods)
{

//for each 10-sec period:
for (int period = 1; period <= numberOfPeriods; period++)

{

for (int second = 1; second <= 10; second++)

//advance green timer
// let 8 cars through

// ... there may have been < 8

238 Essential Java for Scientists and Engineers

if (Math.random() < probOfCar)

cars++; //cars arriving in 10 seconds

DecimalFormat df = new DecimalFormat("00") ;

System.out.print(df.format(period));

if (lights.equals("G"))

go () ;

else

stop ();

}
}

public static void main(String [] args)

{
Traffic mainRd = new Traffic(0.3, 2, 4)

mainRd.carsArriveFor(24);

}

If the lights are red for 40 seconds (redFor = 4) and green for 20 seconds (greenFor = 2),
typical output for 240 seconds (numberOf Pe r io ds = 24) is as follows:

01 R ****
02 R **********
03 R ************
04 R ***************
05 G **********
06 G ******
07 R *********
08 R **************
09 R ****************
10 R ********************
11 G ****************
]_2 G ************
13 R ***************
14 R *****************
15 R ******************
16 R *********************
]_7 Q ****************
18 G **********

29 R **************
20 R *******************
21 R *********************
22 R **********************
23 G ******************
24 G *************

From this particular run it seems that a traffic jam is building up, although more and longer runs are
needed to see if this is really so. In that case, one can experiment with different periods for red and green
lights in order to get an acceptable traffic pattern before setting the real lights to that cycle. Of course,

Simulation 239

we can get closer to reality by considering two-way traffic, and allowing cars to turn in both directions,
and occasionally to break down, but this program gives the basic ideas.

Try Exercise 11.12.

Summary

• A simulation is a computer program written to mimic a real-life situation which is apparently
based on chance.

• The pseudo-random number generator Math. random returns uniformly distributed random num-
bers in the range [0, 1), and is the basis of most of the simulations discussed in this chapter,

• The Java API class Random has methods for generating uniformly and normally distributed
random numbers, and for setting the seed of the random sequence.

• Each independent event being simulated requires one and only one random number.

Exercises

11.1 (a) Write a program to generate 100 normal random numbers and compute their mean and
standard deviation. Hint: use the methods mean and s t d you wrote previously for
the E s s e n t i a l M a t h class,

(b) Repeat with 1000 random numbers. The mean and standard deviation should be closer
to 0 and 1 this time.

11.2 If r is a normal random number with mean 0 and standard deviation 1 (as generated by
Random, nex t Gaussian), it can be transformed into a random number X with mean ju,
and standard deviation a by the relation

X = ar + /i.

In an experiment a Geiger counter is used to count the radio-active emissions of cobalt 60
over a 10-second period. After a large number of such readings are taken, the count rate is
estimated to be normally distributed with a mean of 460 and a standard deviation of 20.
(a) Simulate such an experiment 200 times by generating 200 random numbers with a

mean of 460 and a standard deviation of 20. Estimate the mean and standard deviation
of the random numbers generated.

(b) Repeat a few times to note how the mean and standard deviation changes each time.
11.3 Write a program which simulates spinning a coin a large number of times and estimates the

probability of getting heads.
11.4 Generate some strings of 80 random alphabetic letters (lowercase only). For fun, see how

many real words, if any, you can find in the strings.
11.5 Write a program which uses simulation to estimate the mean and standard deviation of the

number obtained by rolling a dice.
11.6 In a game of Bingo the numbers 1 to 99 are drawn at random from a bag. Write a program to

simulate the draw of the numbers (each number can be drawn only once), printing them out
in the order in which they are drawn.

11.7 A random number generator can be used to estimate n as follows (such a method is called a
Monte Carlo method). Write a program which generates random points in a square with sides
of length 2, say, and which counts what proportion of these points falls inside the circle of
unit radius that fits exactly into the square. This proportion will be the ratio of the area of the

240 Essential Java for Scientists and Engineers

circle to that of the square. Hence estimate jr. (This is not a very efficient method, as you will
see from the number of points required to get even a rough approximation.)

11.8 One of us (BDH) is indebted to a colleague, Gordon Kass, for suggesting this problem.
Dribblefire Jets Inc. make two types of aeroplane, the two-engined DFII, and the four-engined
DFIV. The engines are terrible and fail with probability 0.5 on a standard flight (the engines
fail independently of each other). The manufacturers claim that the planes can fly if at least
half of their engines are working, i.e. the DFII will crash only if both its engines fail, while
the DFIV will crash if all four, or if any three engines fail
You have been commissioned by the Civil Aviation Board to ascertain which of the two
models is less likely to crash. Since parachutes are expensive, the cheapest (and safest!) way
to do this is to simulate a large number of flights of each model For example, two calls of
Math. random could represent one standard DFII flight: if both random numbers are less
than 0.5, that flight crashes, otherwise it doesn't. Write a program which simulates a large
number of flights of both models, and estimates the probability of a crash in each case. If you
can run enough simulations, you may get a surprising result (Incidentally, the probability of
n engines failing on a given flight is given by the binomial distribution, but you do not need
to use this fact in the simulation,)

11.9 The aim of this exercise is to simulate bacteria growth.
Suppose that a certain type of bacteria divides or dies according to the following assumptions:
(a) during a fixed time interval, called a generation, a single bacterium divides into two

identical replicas with probability p\
(b) if it does not divide during that interval, it dies;
(c) the offspring (called daughters) will divide or die during the next generation, indepen-

dently of the past history (there may well be no offspring, in which case the colony
becomes extinct).

Start with a single individual and write a program which simulates a number of generations.
Take p = 0.75. The number of generations which you can simulate will depend on your
computer system. Carry out a large number (e.g. 100) of such simulations. The probability
of ultimate extinction, p(E)9 may be estimated as the proportion of simulations that end in
extinction. You can also estimate the mean size of the nth generation from a large number of
simulations. Compare your estimate with the theoretical mean of (2p)n.
Statistical theory shows that the expected value of the extinction probability p(E) is the
smaller of 1, and (1 — p)/p. So for p — 0.75, p(E) is expected to be 1/3. But for p < 0.5,
p(E) is expected to be 1, which means that extinction is certain (a rather unexpected result).
You can use your program to test this theory by running it for different values of p, and
estimating p(E) in each case.

11.10 Two players, A and B, play a game called Eights. They take it in turns to choose a number
1, 2 or 3, which may not be the same as the last number chosen (so if A starts with 2, B may
only choose 1 or 3 at the next move). A starts, and may choose any of the three numbers for
the first move. After each move, the number chosen is added to a common running total. If
the total reaches 8 exactly, the player whose turn it was wins the game. If a player causes the
total to go over 8, the other player wins. For example, suppose A starts with 1 (total 1), B
chooses 2 (total 3), A chooses 1 (total 4) and B chooses 2 (total 6). A would like to play 2
now, to win, but he can't because B cunningly played it on the last move, so A chooses 1
(total 7). This is even smarter, because B is forced to play 2 or 3, making the total go over 8
and thereby losing.
Write a program to simulate each player's chances of winning, if they always play at random.

11.11 This exercise tackles the simulation of radioactive decay from a different point of view to the
one we used in Section 11.5. It is profoundly satisfying to simulate a problem in two such
different ways and come up with the same result!
Radioactive Carbon 11 has a decay-rate k of 0.0338 per minute.

Simulation 241

Suppose we start with 100 such atoms. We would like to simulate their fate over a period
of 100 minutes, say. We want to end up with a graph showing how many atoms remain
undecayed after 1, 2, . . . , 100 minutes.
We need to simulate when each of the 100 atoms decays. This can be done, for each atom,
by generating a random number r for each of the 100 minutes, until either r > k (that atom
decays), or the 100 minutes is up. If the atom decayed at time t < 100, increment the frequency
distribution f(t) by L f(t) will be the number of atoms decaying at time t minutes*
Now convert the number f(t) decaying each minute to the number R{t) remaining each
minute. If there are n atoms to start with, after one minute, the number R(\) remaining will
be n - / (l) , since f(l) is the number decaying during the first minute. The number i?(2)
remaining after two minutes will be n - f{\) ~~ /(2). In general, the number remaining after
t minutes will be

t

(/)= *-£/(*).
Write a program to compute R(t) and plot it against t. Superimpose on the graph the theoretical
result,

R(t) = 100 exp~*'.

Typical results are shown in Figure 11.1.
11.12 The aim of this exercise is to simulate the service of customers in a supermarket checkout

queue, in order to see how long the average customer spends at the till (Le. being checked
out, and paying).
Observations at a standard till have shown that:

• Customers have between 1 and 70 items in their trolleys or baskets,
• Cashiers take between 2 and 2.5 seconds to ring up each item.
• Payment takes between 15 and 20 seconds.
• There is a chance of 1 in 100 that any particular item is unmarked. If a customer has

one or more unmarked items then an extra 30 seconds must be added to the payment
time, i.e. an extra 30 seconds no matter how many are unmarked.

Write a program which simulates a large number of such customers, and which finds the
average time in service (i.e. the time for all a customer's items to be rung up, and for payment
to be made).
Assume that values are uniformly (evenly) distributed in the ranges given above.

12

Modelling with matrices

Objectives

By the end of this chapter you should be able to

• use the Mat r ix class in our e s s e n t i a l package;
• write programs using matrices to solve problems in a number of application areas, such as net-

works, population dynamics, Markov processes and linear equations.

12.1 Using the Matr ix class

You will have appreciated in Chapter 6 that matrix multiplication in Java is quite complicated. Since
many interesting scientific and engineering applications involve matrix multiplication we have included
a Mat r ix class in the e s s e n t i a l package which makes this operation (among other things) much
easier.

If we have two square matrices A and B, where

and

A =

B =

C =

h
[3

"5
0

5
15

2] 4J
6"

- 1

4]
14j

their product C = AB is given by

The following program shows you how to use the Mat r ix class to multiply these two matrices:

import essential.*;

public class MatrixMultiply
{

public static void main(String args []) throws MatrixException

242

Modelling with matrices 243

int rows = 2;
int cols = 2;

Matrix C = new Matrix(rows, cols);

// set up 2-D array as usual
double [] [] a = {{1, 2}, {3, 4}};

// construct Matrix object from the 2-D array-
Matrix A = new Matrix(a);

double [] [] b = {{5, 6}, {0, -1}};
Matrix B = new Matrix(b);

C = A.multiply(B);

S y s t e m . o u t . p r i n t l n ("A x B: \nM + C) ;

}

Output:

A x B:
[5 4]
[15 14]

Note:

The 2-D arrays a and b are set up as described in Chapter 6 to represent the two matrices A and
B. They are then used as arguments for the M a t r i x constructor to create two M a t r i x objects A
and B.
An alternative M a t r i x constructor takes the number of rows and columns as arguments and sets
up a M a t r i x object with all elements initially zero (e.g. C).
The elements of a and b could be read from the keyboard using the K e y b o a r d class, or from a
text file, using the F i l e l O class (see Section 12.2).
M a t r i x objects may be printed directly with S y s t e m , o u t . p r i n t I n , because the class M a t r i x
has a t o S t r i n g method.
The t h r o w s M a t r i x E x c e p t i o n clause is required, because the M a t r i x methods may throw
this exception.
Matrices of any size may be multiplied in this way, as long as their dimensions are correct: A can
be multiplied by B (in that order) if the number of columns of A is the same as the number of rows
of B.
In particular, one of the matrices may be a column vector (a M a t r i x object with two rows, each
with one column). The following program multiplies the matrix A above by the vector x, where

x =

import essential.*;

public class MatrixByVector

{
public static void main(String args[]) throws MatrixException

244 Essential Java for Scientists and Engineers

d o u b l e [] [] a = { { l , 2 } , { 3 , 4 } } ;
M a t r i x A = new M a t r i x (a) ;

d o u b l e [] [] x = { { 2 } , { 3 } } ;
x [0] [0] = 2 ;
x [l] [0] = 3 ;

Matrix X = new Matrix(x);
Matrix V = A.multiply(X);

System.out.println("A x X: \n" + V);
}

}

Output:

A x X:
[8]
[18]

The identity matrix

The identity matrix I is a square matrix with l 's on the 'main' diagonal and 0's everywhere else. For
example, the 3 x 3 identity matrix looks like this:

1 0 0"
0 1 0

^0 0 1

A property of I is that
AI = IA = A,

where A is any square matrix the same size as I. The M a t r i x class has a s t a t i c method
i d e n t i t y M a t r i x which creates an identity matrix of given size, e.g.

Matrix 13 = Matrix.identityMatrix(3);

Try Exercise 12.1.

12.2 Networks

In our first application of matrix multiplication we consider a problem which at first glance seems to
have nothing to do with this.

A spy ring

Suppose five spies in an espionage ring have the code names Alex, Boris, Cyril, Denisov and Eric (whom
we can label A, B, C, D and E respectively). The hallmark of a good spy network is that no agent is
able to contact all the others. The arrangement for this particular group is:

• Alex can contact only Cyril;
• Boris can contact only Alex or Eric;
• Denisov can contact only Cyril;
• Eric can contact only Cyril or Denisov.

Modelling with matrices 245

Figure 12.1 The network represented by the matrix A

(Cyril can't contact anyone in the ring: he takes information out of the ring to the spymaster. Similarly,
Boris brings information in from the spymaster: no-one in the ring can contact him.) The need for
good spies to know a bit of matrix theory becomes apparent when we spot that the possible paths of
communication between the spies can be represented by a 5 x 5 matrix, with the rows and columns
representing the transmitting and receiving agents respectively, thus:

A
B
C
D
E

A

0
1
0
0
0

B

0
0
0
0
0

c
1
0
0
1
1

D

0
0
0
0
1

E

0
1
0
0
0

We will call this matrix A. It represents a directed network with the spies at the nodes, and with arcs
all of length 1, where a network is a collection of points called nodes. The nodes are joined by lines
called arcs. In a directed network, movement (e.g. of information) is only possible along the arcs in one
direction (see Figure 12.1).

The matrix A is known as an adjacency matrix, with a 1 in row / and column j if there is an arc
from node / to node j , or a 0 in that position if there is no arc between those two nodes. The diagonal
elements of A (i.e. a\\, an, etc.) are all zero because good spies do not talk to themselves (since they
might then talk in their sleep and give themselves away). Each 1 in A therefore represents a single path
of length 1 arc in the network.

Now let's multiply the adjacency matrix A by itself, to get what is called A2:

rO 0 1 0 On
1 0 0 0 1
0 0 0 0 0
0 0 1 0 0

|_0 0 1 1 Oj

X

r0 0 1 0 On
1 0 0 0 1
0 0 0 0 0
0 0 1 0 0

Lo o i i oj

—

r0 0 0 0 0-|
0 0 2 1 0
0 0 0 0 0
0 0 0 0 0

Lo o i o oj
Row 2 and column 3 have been emboldened in the two versions of A above to help interpret A2. The
element 2 in A2 (row 2, column 3) results when row 2 of A is multiplied term by term with column 3,
and the products added. This gives us the scalar product

1x1+0x0 + 0x0 + 0x1 + 1x1=2.

The first non-zero term arises because there is a path from node 2 to node 1, which we will denote by
(2-1), followed by a path (1-3), giving a composite path (2-1-3) of length 2, i.e. from Boris to Cyril

246 Essential Java for Scientists and Engineers

via Alex. The second non-zero term arises because there is a path (2-5) followed by a path (5-3), giving
a second composite path (2-5-3) of length 2, i.e. from Boris to Cyril again, but via Eric this time. It is
clear that the entries in A2 represent the number of paths of length 2 between the various nodes in the
network (on the strict understanding that all arcs are of length 1). There are therefore only four paths of
length 2: two from Boris to Cyril, as we have seen, one from Boris to Denisov, and one from Eric to
Cyril.

If we now multiply the matrix A2 by A again, to form the third power of A, we get the rather dull
matrix

A3 =

rO
0
0
0

LO

0
0
0
0
0

0
1
0
0
0

0
0
0
0
0

o-i
0
0
0
oj

The single 1 in A3 tells us that there is only one path of length 3 in the network (i.e. with two intermedi-
aries) and that it is from Boris to Cyril. Drawing the network, or alternatively examining the appropriate
row and column in A2 and A that give rise to this single entry in A3, reveals that the actual route is
Boris-Eric-Denisov-Cyril.

If we now compute A4, we will find that every element is zero (such a matrix is called the null matrix),
signifying that there are no paths of length 4 in the network, which can be verified by inspection. All
higher powers of A will also obviously be null, since if there are no paths of length 4, there can hardly
be any that are longer!

In general, then, the element in row / and column j of the kth power of an adjacency matrix is equal
to the number of paths consisting of k arcs linking nodes / and j .

Coming back to our spy network, since the elements of A are the number of paths of length 1, and
the elements of A2 are the number of paths of length 2, etc., then clearly the sum of all these powers
of A will tell us how many paths of any length there are altogether between the various nodes. We can
therefore define a reachability matrix R for this 5 x 5 network:

R = A •A2 + A3

R is also a 5 x 5 matrix, and its elements give the total number of paths of communication between the
agents. Doing the calculation gives us

R =

rO
1
0
0

LO

0
0
0
0
0

1
3
0
1
2

0
1
0
0
1

0
1
0
0
0

So we can read off from the reachability matrix R the fact that there are, for example, three different
paths between Boris and Cyril, but only two between Eric and Cyril (the actual lengths of these paths will
have been calculated in finding the powers of A). The name 'reachability' is used because the non-zero
elements of R indicate who may contact whom, directly or indirectly, or for a general distance network,
which nodes can be reached from each node.

The reachability matrix

In general, the reachability matrix R of a n x n network may be defined as the sum of the first (n - 1)
powers of its associated adjacency matrix A. You may be wondering why we can stop at the (n - l)th
power of A. The elements of A (" - 1) will be the number of paths that have (n - 1) arcs, i.e. that connect
n nodes (since each arc connects two nodes). Since there are no further nodes that can be reached, it is
not necessary to raise A to the nth power.

Modelling with matrices 247

The following program sets up the adjacency matrix of our spy ring and computes the reachability
matrix R.

import essential.*;

public class Reachable
{

public static void main(String args []) throws MatrixException
{

Matrix A = Matrix.readMatrix("adjacent.txt"); // adjacency
// matrix

int numberOfNodes = A.getRowCount(); // A is square
Matrix R;
Matrix B;

R = A.copy();
B = A.copy(); // initialize B to A

for (int n = 1; n <= numberOfNodes-2; n++)

{
B = B.multiply(A);
R = R.add(B);

}

}
}

System.out.println("Reachability matrix:\n" + R);

Note:

• The ge tRowCount method of the M a t r i x class returns the number of rows in the adjacency
matrix (which must be a square matrix).

• The copy method creates a copy of the calling matrix, which is A in this example.
• The r e a d M a t r i x method without a parameter enables you to input a matrix from the keyboard—

you are prompted for the dimensions of the matrix, and then for each row.
• The program uses the matrix B to store the intermediate powers of A, adding them to R each time.

It uses a s t a t i c method r e a d M a t r i x of the e s s e n t i a l . M a t r i x class to create and read the
adjacency matrix from a text file. The first line of the text file must contain the dimensions of the
matrix. For example, the adjacency matrix for our spy ring is saved in the text file a d j a c e n t . t x t
as follows:

5x5
0 0 1 0 0
1 0 0 0 1
0 0 0 0 0
0 0 1 0 0
0 0 1 1 0

• The number of additions required in the f o r loop is n - 2. For example if n = 5,

R = A + A2 + A 3 + A 4 ,

giving three additions.

248 Essential Java for Scientists and Engineers

It may help to go through the f o r loop by hand to convince yourself that it works correctly. Keep
track of the contents of B and R in terms of the adjacency matrix A.

12.3 Leslie matrices: population growth

Another very interesting and useful application of matrices is in population dynamics.
Suppose we want to model the growth of a population of rabbits, in the sense that given their number at

some moment, we would like to estimate the size of the population in a few years' time. One approach
is to divide the rabbit population up into a number of age classes, where the members of each age
class are one time unit older than the members of the previous class, the time unit being whatever is
convenient for the population being studied (days, months, etc.). (The word 'class' is used here in the
usual English sense, not in the Java sense!) We used the idea of age classes in the R a b b i t C o l o n y
example of Chapter 3; in that example, however, unlike this one, rabbits did not die.

If Xt is the size of the /th age class, we define a survival factor P, as the proportion of the /th class
that survive to the (/ + l)th age class, i.e. the proportion that 'graduate'. F; is defined as the mean fertility
of the /th class. This is the mean number of newborn individuals expected to be produced during one
time interval by each member of the /th class at the beginning of the interval (only females count in
biological modelling, since there are always enough males to go round!).

Suppose for our modified rabbit model we have three age classes, with X\, X2 and X3 members
respectively. We will call them young, middle-aged and old-aged for convenience. We will take our time
unit as one month, so I j is the number that were born during the current month, and which will be
considered as youngsters at the end of the month. X2 is the number of middle-aged rabbits at the end
of the month, and X3 the number of oldsters. Suppose the youngsters cannot reproduce, so that F\ = 0.
Suppose the fertility rate for middle-aged rabbits is 9, so F2 = 9, while for oldsters F3 = 12. The
probability of survival from youth to middle-age is one third, so P\ = 1/3, while no less than half the
middle-aged rabbits live to become oldsters, so P2 = 0-5 (we are assuming for the sake of illustration
that all old-aged rabbits die at the end of the month—this can be corrected easily). With this information
we can quite easily compute the changing population structure month by month, as long as we have the
population breakdown to start with.

If we now denote the current month by t, and next month by (t + 1), we can refer to this month's
youngsters as X\ (r), and to next month's as X\ (t +1) , with similar notation for the other two age classes.
We can then write a scheme for updating the population from month t to month (t + 1) as follows:

X{(t + l) = F2X2(t) + F3X3(t),

X2(f + l) = JPiXl(r),
X3(t + l) = P2X2(t).

We now define a population vector X(f), with three components, X\(t), X2(t), and Xi(t), representing
the three age classes of the rabbit population in month t. The above three equations can then be rewritten
as

'Xi'
X2

. X 3 j (r + 1)

0
Pi
0

F2

0
P2

F3I
0
0

X
[xn

x2
U3-I,

where the subscript at the bottom of the vectors indicates the month. We can write this even more
concisely as the matrix equation

X(f + l) = LX(r) , (12.1)

where L is the matrix
0 9 12"

1/3 0 0
0 1/2 0

Modelling with matrices 249

in this particular case. L is called a Leslie matrix. A population model can always be written in the form
of Equation (12.1) if the concepts of age classes, fertility, and survival factors, as outlined above, are
used.

Now that we have established a matrix representation for our model, we can easily write a program
using matrix multiplication and repeated application of Equation (12.1):

X(f+ 2) = L X (f + 1) ,

X(r + 3) = LX(r + 2), etc.

However, we need only a single M a t r i x object X to represent the population vector X in the program
below, because repeated matrix multiplication by the Leslie matrix L will continually update it:

X = L . m u l t i p l y (X)

The class L e s l i e defined below sets up and handles a general Leslie matrix, so you can use it for
any application of Leslie matrices. It is followed by a brief description.

import essential.*;

public class Leslie
{

private int size
private Matrix L
private Matrix X

//Leslie matrix
//Population vector

public Leslie (double [] f, double [] p)
throws MatrixException

{
size = f.length;
L = new Matrix(size, size);
X = new Matrix(size, 1);

//construct Leslie matrix:
//first row for fertilities
//be careful of subscripts for f!
for (int i = 1; i <= size; i++)

L.setElementAt(1, i, f[i-l]);

//now the survivals below the main diagonal:
//be careful of subscripts for p!
for (int i = 2; i <= size; i++)

L.setElementAt(i, i-1, p[i-2]);
}

public double getAgeClass(int row) throws MatrixException

return X.getElementAt(row,1);
}

public double getTotalO throws MatrixException

double totalPopulation = 0;

for (int i = 1; i <= size; i++)

250 Essential Java for Scientists and Engineers

totalPopulation + = X.getElementAt(i, 1);

return totalPopulation;
}

public void setAgeClass(int row, double val)
throws MatrixException

{
X.setElementAt(row, 1, val);

}

public void update() throws MatrixException
// updates population vector by one time unit
{

X = L.multiply(X);
}
public static void main(String args [])

throws MatrixException
{

int numberOfClasses = 3;
double [] f = new double[numberOfClasses];
double [] p = new double[numberOfClasses];

//assign (or read) fertilities:
f [0] = 0 ;
f [l] = 9 ;
f [2] = 1 2 ;
//assign (or read) survivals:
p[0] = 1.0/3;
p[l] = 1./2;
p[2] = 0;

Leslie rabbits = new Leslie (f, p) ;
//start with one oldie only
rabbits.setAgeClass(numberOfClasses, 1) ;
System.out.printIn("Month Young Middle Old Total");

for (int month = 1; month <= 24; month++)
{

System.out.print(month + " ");
rabbits.update(); //update population by one month

//print each age class
for (int i = 1; i <= numberOfClasses; i++)

System.out.print(rabbits.getAgeClass(i) + " ");

System.out.printIn(rabbits.getTotal()) ;
}

}
}

Modelling with matrices 251

Note:

• The class L e s l i e has two data members which are objects of the M a t r i x class: L represents the
Leslie matrix, and X represents the population vector.

• The constructor of the L e s l i e class constructs the Leslie matrix L from data (fertility rates and
survival factors) supplied by the user in main, using the M a t r i x method s e t E l e m e n t A t . Care
needs to be taken over the subscripts: the arrays p and f start with subscripts of zero, whereas the
s e t E l e m e n t A t and g e t E l e m e n t A t methods use row and column values starting at 1.

• An instance r a b b i t s of L e s l i e is created in main.
• The L e s l i e method s e t A g e C l a s s uses the M a t r i x method s e t E l e m e n t A t to set the initial

value of the population vector X.
• The L e s l i e method u p d a t e implements Equation (12.1).
• The L e s l i e method g e t A g e C l a s s uses the M a t r i x method g e t E l e m e n t A t to return the size

of a particular age class (i.e. an element of X).
• The L e s l i e method g e t T o t a l returns the total population size at any time by summing the

elements of X.

The program above starts with a single old (female) rabbit in the population, so Xi = Xi = 0, and
X3 = 1. Here is the output:

Month Young Middle Old Total
1 1 2 . 0 0 . 0 0 . 0 1 2 . 0
2 0 . 0 4 . 0 0 . 0 4 . 0
3 3 6 . 0 0 . 0 2 . 0 3 8 . 0
4 2 4 . 0 1 2 . 0 0 . 0 3 6 . 0
5 1 0 8 . 0 8 .0 6 . 0 1 2 2 . 0
6 1 4 4 . 0 3 6 . 0 4 . 0 1 8 4 . 0
7 3 7 2 . 0 4 8 . 0 1 8 . 0 4 3 8 . 0
8 6 4 8 . 0 1 2 4 . 0 2 4 . 0 7 9 6 . 0
9 1404.0 216.0 62.0 1682.0
10 2688.0 468.0 108.0 3264.0
11 5508.0 896.0 234.0 6638.0
12 10872.0 1836.0 448.0 13156.0
13 21900.0 3624.0 918.0 26442.0
14 43632.0 7300.0 1812.0 52744.0
15 87444.0 14544.0 3650.0 105638.0
16 174696.0 29148.0 7272.0 211116.0
17 349596.0 58232.0 14574.0 422402.0
18 698976.0 116532.0 29116.0 844624.0
19 1398180.0 232992.0 58266.0 1689438.0
20 2796120.0 466060.0 116496.0 3378676.0
21 5592492.0 932040.0 233030.0 6757562.0
22 1.118472E7 1864164.0 466020.0 1.3514904E7
23 2.2369716E7 3728240.0 932082.0 2.7030038E7
24 4.4739144E7 7456572.0 1864120.0 5.4059836E7

It so happens that there are no 'fractional' rabbits in this example. If there are any, they should be
kept, and not rounded (and certainly not truncated). Fractions occur in general because the fertility rates
and survival probabilities are averages.

If you look carefully at the output you may spot that after some months the total population doubles
every month. This factor is called the growth factor, and is a property of the particular Leslie matrix
being used (if you know about such things, it's the dominant eigenvalue of the matrix). The growth
factor is 2 in this example, but if the values in the Leslie matrix are changed, the long-term growth factor
changes too (try it and see).

252 Essential Java for Scientists and Engineers

Months

Figure 12.2 Total rabbit population over 15 months

Figure 12.2 shows how the total rabbit population grows over the first 15 months. The graph demon-
strates exponential growth. If you plot the population over the full 24-month period, you will see that
the graph gets much steeper. This is a feature of exponential growth.

You probably didn't spot that the numbers in the three age classes tend to a limiting ratio of 24:4:1.
This can be demonstrated very clearly if you run the model with an initial population structure having
this limiting ratio. The limiting ratio is called the stable age distribution of the population, and again it
is a property of the Leslie matrix (in fact, it is the eigenvector belonging to the dominant eigenvalue of
the matrix). Different population matrices lead to different stable age distributions.

The interesting point about this is that a given Leslie matrix always eventually gets a population into
the same stable age distribution, which increases eventually by the same growth factor each month, no
matter what the initial population breakdown is. For example, if you run the above model with any other
initial population, it will always eventually get into a stable age distribution of 24:4:1 with a growth
factor of 2 (try it and see).

12.4 Markov processes

Often a process that we wish to model may be represented by a number of possible discrete (i.e.
discontinuous) states that describe the outcome of the process. For example, if we are spinning a coin,
then the outcome is adequately represented by the two states 'heads' and 'tails' (and nothing in between).
If the process is random, as it is with spinning coins, there is a certain probability of being in any of the
states at a given moment, and also a probability of changing from one state to another. If the probability
of moving from one state to another depends on the present state only, and not on any previous state,
the process is called a Markov chain. The progress of the drunken sailor in Chapter 11 is an example of
such a process. Markov chains are used widely in such diverse fields as biology and business decision
making, to name just two areas.

Modelling with matrices 253

A random walk

This example is a variation on the random walk simulation of Chapter 11. A street has six intersections.
A short-sighted student wanders down the street. His home is at intersection 1, and his favourite internet
cafe at intersection 6. At each intersection other than his home or the cafe he moves in the direction of
the cafe with probability 2/3, and in the direction of his home with probability 1/3. In other words, he
is twice as likely to move towards the cafe as towards his home. He never wanders down a side street.
If he reaches his home or the cafe, he disappears into them, never to re-appear (when he disappears we
say in Markov jargon that he has been absorbed).

We would like to know: what are the chances of him ending up at home or in the cafe, if he starts at a
given corner (other than home or the cafe, obviously)? He can clearly be in one of six states, with respect
to his random walk, which can be labelled by the intersection number, where state 1 means Home and
state 6 means Cafe. We can represent the probabilities of being in these states by a six-component state
vector X(t), where Xi(t) is the probability of him being at intersection / at moment t. The components
of X(t) must sum to 1, since he has to be in one of these states.

We can express this Markov process with the following transition probability matrix, P, where the
rows represent the next state (i.e. corner), and the columns represent the present state:

Home
2
3
4
5

Cafe

Home

1
0
0
0
0
0

2

1/3
0

2/3
0
0
0

3

0
1/3

0
2/3

0
0

4

0
0

1/3
0

2/3
0

5

0
0
0

1/3
0

2/3

Cafe

0
0
0
0
0
1

The entries for Home-Home and Cafe-Cafe are both 1 because he stays there with certainty.
Using the probability matrix P we can work out his chances of being, say, at intersection 3 at moment

(t + 1) as
X3(f+ 1) = 2/3X2(0 + 1/3X4(0.

To get to 3, he must have been at either 2 or 4, and his chances of moving from there are 2/3 and 1/3
respectively.

Mathematically, this is identical to the Leslie matrix problem. We can therefore form the new state
vector from the old one each time with a matrix equation:

X(f+ l) = PX(f).

If we suppose the student starts at intersection 2, the initial probabilities will be (0, 1, 0, 0, 0, 0). Our
Leslie matrix program may be easily adapted to generate future states of a Markov process:

import essential.*;
import Java.text.*;

public class Markov

{
private int size;
private Matrix P; //Transition probability matrix
private Matrix X; //State vector

public Markov(int s, double [] subdiag, double [] diag,
doublet] superdiag) throws MatrixException

{
size = s;

254 Essential Java for Scientists and Engineers

P = new Matrix(size, size); // all elements zero
X = new Matrix(size, 1);

//construct transition matrix:
//be careful of subscripts ...

for (int i = 1; i <= size; i++)
//diag's first subscript is zero!
P.setElementAt(i,i,diag[i-1]) ;

for (int i = 2; i <= size; i++)

{
P.setElementAt(1,1-1,subdiag[i-2]);
P.setElementAt(i-1,i,superdiag[i-2]);

}

public double getState(int row) throws MatrixException

return X.getElementAt(row,1);

public void setState(int row, double val) throws MatrixException

X.setElementAt(row, 1, val);

public void update() throws MatrixException
// updates state vector by one time unit

X = P.multiply(X);

public static void main(String args []) throws MatrixException

int numberOfStates = 6;
DecimalFormat dfTime = new DecimalFormat("00");
DecimalFormat dfState = new DecimalFormat("0.0000");

//initialize (or read) sub-diagonal
double [] subdiag = {0, 2./3, 2./3, 2./3, 2./3};
//initialize (or read) diagonal:
double [] diag = {l, 0, 0, 0, 0, l};
//initialize (or read) super-diagonal
double [] superdiag = {1./3, 1./3, 1./3, 1./3, 0};

Markov walker = new Markov(numberOfStates, subdiag, diag,
superdiag);

walker.setState(2, 1); //start at Intersection 2
System.out.println
("time Home 2 3 4 5 Cafe");

Modelling with matrices 255

for (int time = 1; time <= 50; time++)
{

System.out.print(dfTime.format(time) + " ");
walker.update(); //update population by one month

//print each age class
for (int i = 1; i <= numberOfStates; i++)

System.out.print(dfState.format(walker.getState(i))
+ " ") ;

System.out.println();
}

}
}

Note:

• Our student is not allowed to skip intersections. Therefore the transition matrix P can only have
non-zero elements on the main diagonal and on the two diagonals immediately above and below it:
the sub- and super-diagonals. Not so?
The user can therefore specify these three diagonals as Markov constructor arguments.

Output:

t i m e Home 2 3 4 5 Cafe
01 0.3333 0.0000 0.6667 0.0000 0.0000 0.0000
02 0.3333 0.2222 0.0000 0.4444 0.0000 0.0000
03 0.4074 0.0000 0.2963 0.0000 0.2963 0.0000
04 0.4074 0.0988 0.0000 0.2963 0.0000 0.1975
05 0.4403 0.0000 0.1646 0.0000 0.1975 0.1975
06 0.4403 0.0549 0.0000 0.1756 0.0000 0.3292
07 0.4586 0.0000 0.0951 0.0000 0.1171 0.3292
08 0.4586 0.0317 0.0000 0.1024 0.0000 0.4073
09 0.4692 0.0000 0.0553 0.0000 0.0683 0.4073
10 0.4692 0.0184 0.0000 0.0596 0.0000 0.4528

20 0.4829 0.0012 0.0000 0.0040 0.0000 0.5119

30 0.4838 0.0001 0.0000 0.0003 0.0000 0.5158

40 0.4839 0.0000 0.0000 0.0000 0.0000 0.5161

50 0.4839 0.0000 0.0000 0.0000 0.0000 0.5161

By running the program for long enough, we soon find the limiting probabilities: he ends up at home
about 48% of the time, and at the cafe about 52% of the time. Perhaps this is a little surprising; from the
transition probabilities, we might have expected him to get to the cafe rather more easily. It just goes to
show that you should never trust your intuition when it comes to statistics!

Note that the Markov chain approach is not a simulation: one gets the theoretical probabilities each
time (this can all be done mathematically, without a computer). But it is interesting to confirm the limiting
probabilities by simulating the student's progress, using a random number generator.

Try Exercises 12.2 to 12.4.

256 Essential Java for Scientists and Engineers

12.5 Linear equations

A problem that often arises in scientific applications is the solution of a system of linear equations, e.g.

2x + 2y + 2z = 0

3x + 2y + 2z = 1

3x + 2y + 3z = l.

If we define the matrix A as

and the vectors x and b as

A =

x =

'2 2 2"
3 2 2
3 2 3

b =

we can write the above system of three equations in matrix form as

2
3
3

2
2
2

21
2
3

' x~
y

z
=

r°i
i
i j

(12.2)

(12.3)

(12.4)

or even more concisely as the single matrix equation

Ax = b. (12.5)

The solution may then be written as
x = A _ 1 b , (12.6)

where A - 1 is the matrix inverse of A (i.e. the matrix which when multiplied by A gives the identity
matrix I).

The e s s e n t i a l . M a t r i x class has a method i n v e r t () which inverts a square matrix. It is demon-
strated in the following program which inverts a matrix A of random elements. The inverse (Ainv) is
then multiplied by the original matrix. The result, which should be the identity matrix, is printed:

i m p o r t e s s e n t i a l . * ;

public class InvertTester

{
public static void main(String args []) throws MatrixException

{
int n = 3;
d o u b l e [] [] a = new d o u b l e [n] [n] ;

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)

a[i] [j] = Math, random () ;

Matrix A = new Matrix(a);
Matrix Ainv = A.invert();

System.out.println(Ainv.multiply(A));

Modelling with matrices 257

Output:

[1.0000000000000004 3.3306690738754696E-16 4.440892098500626E-16]
[-4.440892098500626E-16 0.9999999999999998 -8.8 81784197001252E-16]
[0 0 1.0000000000000002]

Note how rounding error creeps into all the elements. If you did the calculations 'by hand' they would
all be l 's or 0's exactly.

The following program, L i n e a r S o l v e r , solves a general system of linear equations. It reads the
coefficients of A and b from the text files A . t x t and B . t x t and uses Equation (12.6) to find the
solution, which is printed.

import essential.*;

public class LinearSolver

{
public static void main(String args []) throws MatrixException
{

Matrix A = Matrix.readMatrix("A.dat"); //coefficient matrix
Matrix b = Matrix.readMatrix("B.dat"); //right-hand side
Matrix Ainv = A.invert();
Matrix X = A.invert().multiply(b);

System.out.println("Ainv:\n" + Ainv); //for interest
System.out.println("Solution:\n" + X);

Matrix R = A.multiply(X).subtract(b);
System.out.println("Residual:\n" + R);

}
}

The text file A. t x t for the matrix A of the system (12.2)-(12.4) is

3x3
2 2 2
3 2 2
3 2 3

while the text file B. t x t for the vector b is

3x1
0
1
1

The output from L i n e a r S o l v e r includes the following:

A i n v :
[- 1 1 0]
[1 .5 0 - 1]
[0 - 1 1]

S o l u t i o n :
[1]
[- 1]
[0]

In terms of our notation, this means that the solution is x = 1, y = — 1, z = 0.

258 Essential Java for Scientists and Engineers

Limitations of the i n v e r t method of M a t r i x

The i n v e r t method of M a t r i x uses the most basic Gauss reduction to invert a matrix. If you are
familiar with Gauss reduction, you will be aware that things can go wrong, as described below in the
terminology of Gauss reduction. The first problem mentioned can be dealt with by the current version of
i n v e r t . You are invited to develop i n v e r t further yourself, if you are interested, in order to handle
the remaining problems.

• The pivot element could be zero. This happens quite easily when the coefficients are all integers. This
is fairly straightforward to handle, since rows of the system can be interchanged without changing
the solution. The method i n v e r t looks down the column under the pivot element. If it cannot find
a non-zero pivot it throws an exception. If it does find a non-zero pivot in a particular row, it swops
that row with the pivot row and continues.
You can check how i n v e r t handles a zero pivot element by replacing the coefficient of JC in
Equation (12.2) by zero. This gives a zero pivot element immediately.

• A row of zeros could appear right across the augmented matrix, in which case a non-zero pivot
element cannot be found. In this case the system of equations is indeterminate (under-determined),
and an exception should be thrown to this effect.

• A row of the array could be filled with zeros, except for the extreme right-hand element. In this case
the equations are inconsistent and no solution can be found. An exception should also be thrown in
this case.

Try Exercise 12.5.

The residual

When solving a system of linear equations it is useful to check your solution by computing the residual
r, defined as

r = Ax — b.

Theoretically, the residual should be zero, since the expression Ax is supposed to equal b, according to
Equation(12.5). The residual is easily computed in L i n e a r S o l v e r , by simply adding the line

Matrix R = A.multiply(X).subtract(b);

Note that the M a t r i x methods m u l t i p l y and s u b t r a c t can be 'cascaded' in a single statement.
This is because the method m u l t i p l y returns a M a t r i x object which is then used as the object for
calling s u b t r a c t . The following is a typical residual for a 3 x 3 system with random elements:

[-1.6653345369377348E-16]
[-1.1102230246251565E-16]
[-2.220446049250313E-16]

Since all the elements of the residual are very small we can be confident that we do indeed have the
correct solution.

Unfortunately, even getting a very small residual does not necessarily guarantee that the solution is
meaningful, as we shall see in the next section.

Try Exercise 12.6.

Ill-conditioned systems

Sometimes the coefficients of a system of equations are the results of an experiment, and may be subject
to error. We need in that case to know how sensitive the solution is to the experimental errors. As an
example, consider the system

Modelling with matrices 259

l(k + 7;y + 8z + 7u; = 32

lx + 5y + 6z-\-5w = 23

7x+5y + 9z+10w; = 31

Use L i n e a r S o l v e r (you need only put the values of the matrices A and b in text files and change
the names in the program) to show that the solution is

[0.9999999999999432]
[0.9999999999999432]
[1.0000000000000284]
[1.0000000000000142]

The residual is very small, and all seems well:

[-6.394884621840902E-13]
[-4.405364961712621E-13]
[-3.836930773104541E-13]
[-2.8421709430404007E-13]

However, if we change the right-hand side constants to 32.1, 22.9, 32.9 and 31.1 respectively, the
'solution' is now

[6.000000000000199]
[-7.200000000000273]
[2.9000000000000625]
[-0.10000000000002274]

Once again, the residual is very small.
A system like this is called ill-conditioned, meaning that a small change in the coefficients leads to a

large change in the solution. It is possible to anticipate ill conditioning to some extent. Recall that the
solution of the system is

x = A_1b.

Errors in b are likely to be magnified in x when A - 1 has large entries. Ill conditioning should therefore
be suspected whenever A - 1 has entries that are much larger than 1. This is definitely the case here; the
largest entry in A - 1 is 68.

Some authors suggest the rule of thumb that a matrix is ill-conditioned if its determinant is small
compared to the entries in the matrix. In this case the determinant of A is 1 which is about an order
of magnitude smaller than most of its entries. If you know how to compute a determinant it would be
useful to add such a method to Matr ix.

Try Exercises 12.7 and 12.8.

Summary

• Matrix multiplication, which is easily implemented with the Ma t r ix class, has a large number
of applications.

• The reachability matrix of a network may be computed from powers of the adjacency matrix of
the network,

• Leslie matrices are used to model the dynamics of populations which may be grouped into age
classes.

• Markov processes are modelled with transition probability matrices.
• Systems of linear equations may be solved using the i n v e r t method of the Mat r ix class.

260 Essential Java for Scientists and Engineers

Exercises

12.1 Write a short program to verify that a square matrix A multiplied by the identity matrix I gives
A, by generating a 3 x 3 matrix A with random elements and multiplying it with the identity*

12.2 Compute the limiting probabilities for the student in Section 12,4 when he starts at each of
the remaining intersections in turn, and confirm that the closer he starts to the cafe", the more
likely he is to end up there.
Compute P50 separately in a f o r loop. Can you see the limiting probabilities in the first row?

12.3 Suppose that his home or the cafe are no longer absorbing states for our student in Section 12,4.
Instead, if he is at home, he remains there with probability 1/3 but moves towards the cafe with
probability 2/3. If he is in the cafe, he stays there with probability 2/3, but moves towards his
home with probability 1/3.
Change the entries of the transition matrk P in Markov to handle this situation. Run the
amended program for all possible initial states (home, intersection 1, . . . , cafe), and confirm
that in all cases the limiting probabilities of him being in any of the states are

0,0159 0.0318 0.0635 0.1270 0,2539 0.5079

12.4 Write a program to simulate the progress of the short-sighted student in Section 12.4. Start him
at a given intersection, and generate a random number to decide whether he moves toward the
internet cafe or home* according to the probabilities in die transition matrix. For each simulated
walk, record whether he ends up at home or in the cafe. Repeat a large number of times.
The proportion of walks that end up in either place should approach the limiting probabilities
computed using the Markov model described in Section 12.4. Jfflat: if the random number is
less than 2/3 he moves toward the cafe (unless he is already at home or in the cafe, in which
case that random walk ends), otiierwise he moves toward home,

12.5 The transpose of an n x m matrix is the m x n matrix that results when the rows and columns
of the original matrix are interchanged, ie, ay is replaced by ajt* If you have found your way
around the Mat r ix class why not try writing a method for it which returns the transpose of a
matrix passed as an argument?

12.6 Use L i n e a r S o l v e r (Section 12.5) to set up and solve a 3 x 3 system of linear equations
with random coefficients. Verify that you have a correct solution by computing the residual,

12 J Solve the equations

2 x - y + z = 4 .

3x - y - z = 1

using L inea rSo lve r , Check your solution by computing die residual. Do you suspect ill
conditioning (where small changes in the coefficients cause large changes in the solution), and
why, or why not?

12.8 This problem, suggested by R,V. Andree, demonstrates ill conditioning. Use L i n e a r S o l v e r
to show that the solution of the system

je+5J)00y = 17.Q

1.5*+ 7,501? =25.503

is x « 2, y s 3. Compute the residual.
Now change the term on the right-hand side of the second equation to 25.501, a change of
about one part in 12000, and find the new solution and the residual. The solution is completely

Modelling with matrices 261

different. Also try changing this term to 25.502, 25.504, etc. If the coefficients are subject
to experimental errors, the solution is clearly meaningless. Do the entries in A*"4 confirm ill
conditioning?
Another way to anticipate ill conditioning is to perform a sensitivity analysis on the coefficients:
change them all in turn by the same small percentage, and observe what effect this has on the
solution*

13

Introduction to numerical
methods

Objectives

After studying this chapter you should be able to write programs to

• solve equations in one unknown;
• evaluate definite integrals;
• solve systems of ordinary differential equations;
• solve parabolic partial differential equations.

A major use of computers in science and engineering is in finding numerical solutions to mathematical
problems which have no analytical solutions (i.e. solutions which may be written down in terms of
polynomials and standard mathematical functions). In this chapter we look briefly at some areas where
numerical methods have been highly developed, e.g. solving non-linear equations, evaluating integrals,
and solving differential equations.

13.1 Equations

In this section we consider how to solve equations in one unknown, numerically. The usual way of
expressing the problem is to say that we want to solve the equation f(x) = 0, i.e. we want to find its
root (or roots). This process is also described as finding the zeros of f(x). There is no general analytical
method for finding roots for an arbitrary f(x).

Newton's method
Newton's method (also called the Newton-Raphson method) is perhaps the easiest numerical method to
implement for solving equations. It was introduced as a special case for finding square roots in Chapter 2.
Newton's method is an iterative procedure, meaning that it repeatedly attempts to improve an estimate
of the root. If Xk is an approximation to the root, we can relate it to the next approximation Xk+\ using
the right-angle triangle in Figure 13.1:

f(xk)-0
f (xk) = ,

Xk - xk+\

262

Introduction to numerical methods 263

w

Figure 13.1 Newton's method

where f'(x) is df/dx. Solving for x^+i gives

Xk+\ = Xk
f(xk)
f'{xk)

A structure plan to implement Newton's method is:

1. Given a starting value XQ and required relative error e:
2. While relative error \{xk - Xk-\)/xk\ > e repeat up to, say, k

*k+\ = xk - f\xk)/f\xk)
Print **+i and f(xk+\).

20:

Note:

It is necessary to limit the number of repeats in step 2 since the process may not converge.
The relative error \(xk — xk-\)/xk\ is usually used when testing for convergence.
A condition on the absolute error \xk — xk-\ \ may be satisfied too soon if the root is much smaller
than expected.

A F u n c t i o n class

We could rush ahead and design a class to implement Newton's method to solve a particular equation.
Try it if you like. It would include methods to return f(x) and f\x). However, the limitations of our
particular solution become apparent as soon as we try to solve a different equation: the methods returning
f(x) and its derivative have to be redefined, and the whole class needs to be recompiled. This makes it
unsuitable to include our class in a package of numerical methods for general use. In fact, this problem
crops up again and again when coding numerical methods. We want a package of classes to handle
various numerical procedures where the user can specify a particular function or set of functions without
having to rewrite and recompile code which should really be hidden from the average class user.

264 Essential Java for Scientists and Engineers

We get around this difficulty in Java by making use of abstract classes, which were introduced in
Chapter 7.

Here is an abstract class Funct ion. It implements Newton's method to find the roots of an equation,
which has yet to be defined:

/* An abs t rac t c lass Function to implement various numerical methods:
Newton's method to find roots

*/

import j a v a . u t i l . * ;

public abstract class Function

{

public abstract double f (double x);
public abstract double df (double x);

public double getRootNewton(double est, double tol, int max)
throws EquationException{

double rootErrorTolerance = tol;
int maxlterations = max;
//the actual number of iterations it took to converge:
int numlterations = 0;
boolean converged = false; //whether Newton converged or not
double currentEstimate = est; //est is initial guess
double root = est; //final value of the root
double prevEstimate = est;
double relativeError;

System.out.println("**Finding a root using Newton-Raphson method**");
System.out.printIn();
System.out.println("Iteration\t\tRoot estimate\t\t\t\tFunction value");
System.out.println(numlterations + "\t\t\t\t" + currentEstimate +

"\t\t\t" + f(currentEstimate));

while ((numlterations < maxlterations) && !converged)

{
numIterations++;
prevEstimate = currentEstimate;

//Newton's algorithm:
currentEstimate = prevEstimate -

(f(prevEstimate)/df(prevEstimate));

root = currentEstimate;
System.out.println(numlterations + "\t\t\t\t" + currentEstimate +

"\t\t\t" + f(currentEstimate));
relativeError = Math.abs((currentEstimate -

prevEstimate)/currentEstimate);
converged = relativeError <= rootErrorTolerance;

}

introduction to numerical methods 265

if (converged)

{
System.out.printIn("Method converged");
return root;

}
else
{
throw new EquationException

("Could not find root: method did not converge");

}
}

}

Note:

• A general function f(x) and its derivative are implemented as abstract methods:

public abstract double f (double x) ;
public abstract double df (double x) ;

These can be regarded as placeholders, waiting for the details to be filled in later. We can then write
a perfectly general method getRootNewton to implement our structure plan for Newton's method.

• If convergence does not occur in getRootNewton an exception is thrown. This is described in
detail below.

• Our class Func t ion can now be compiled and hidden away in a package, if necessary (see Chap-
ter 3: Making your own package).

Let's use Func t ion now to solve the equation x3 + x — 3 = 0. Two further classes are required.

1. We need to extend Func t ion with a class which implements methods to return f(x) and its
derivative, 3x2 + 1:

class CubicEquation extends Function
{

public double f(double x)
{

return x*x*x + x - 3;
}

public double df(double x)

{
return 3*x*x + 1;

2. Finally, we need a class to instantiate a CubicEquat ion object and to call the object's relevant
methods:

import essential.*;

public class CubicTester

{
public static void main(String[] args)throws Exception

266 Essential Java for Scientists and Engineers

CubicEquation cubic = new CubicEquation();
System.out.print("Estimate of root: ");
double myGuess = Keyboard.readDouble();
System.out.printIn();
System.out.println("Root = "

+ cubic.getRootNewton(myGuess, le-8, 20)

Here is the output for an initial estimate of 1 and a relative error of 10 8:

Estimate of root: 1.0
Finding a root using Newton-Raphson method

Iteration Root estimate Function value
0 1.0 -1.0
1 1.25 0.203125
2 1.2142 857142 857142 0.00473 76 0932 9445558
3 1.213412175782 825 2.779086666571118E-6
4 1.2134116627624 065 9.583445148564351E-13
5 1.21341166276222 96 -4.44 0892 098500626E-16
Method converged
Root = 1.2134116627622296

Note that the Func t ion method getRootNewton returns the final root after printing all the inter-
mediate iterations Xk and function values f(xk).

Defining a new exception

Newton's method unfortunately does not always converge. In this case, we need to let the class user
know that we could not find a root given the initial estimate. This is clearly a good case for throwing an
exception—we cannot return an answer, so we throw an exception to indicate that something has gone
wrong.

But, what type of exception should we throw? Recall from Chapter 10 that there are many different
exception classes that are all subclasses of the class Except ion. The name of each exception class is
an indication of the type of exception (for example, Fi leNotFoundExcept ion) . We should do the
same in this case—define an exception class with a name that describes the kind of exception. We will
call it Equat ionExcept ion . Here is the class:

public class EquationException extends Exception

{
public EquationException()
{
super("No detailed information supplied");

public EquationException(String s) {
super(s);

}
}

Introduction to numerical methods 267

When we define a new exception class, we are required to do the following:

• The class must extend Excep t ion (or a subclass of Exception).
• We must provide two constructors:

1. a default constructor, which can either be blank, or call the superclass constructor as we have
done above;

2. a parameterized constructor which takes a single S t r i n g argument and passes this to the
superclass constructor.

Notice at the end of the getRootNewton method in Funct ion, if the iterations do not converge
we throw an Equa t ionExcep t ion by creating an exception object and supplying it with a string
describing the problem in more detail.

If Newton's method fails to find a root, the Bisection method, discussed below, can be used.
Try Exercises 13.1 to 13.4.

Complex roots

If you are not familiar with complex numbers you can safely skip this short section.
A nice spin-off of Newton's method is that it can be used to find complex roots, but only if the starting

guess is complex. Our e s s e n t i a l package has a Complex class for creating and manipulating complex
numbers. It is used here (with explanation below) to find a complex root of x1 + x + 1 = 0 .

import e s s e n t i a l . * ;

public class FunctionComplex

{

public Complex f (Complex x)

{
return x.multiply(x).add(x).add(1); // x^2 + x + 1

}

public Complex df (Complex x)
{
Complex a;
a = Complex.multiply(2, x); // 2x
return a.add(l); // 2x + 1

}

public void getRootNewton(double tol, int max)

{
double rootErrorTolerance = tol;
int maxlterations = max;
//the actual number of iterations it took to converge:
int numlterations = 0;
boolean converged = false; //whether Newton converged or not
double relativeError;

Complex rootEstimate = Complex.read();
System.out.println(rootEstimate);
Complex prevEstimate = new Complex(rootEstimate);

268 Essential Java for Scientists and Engineers

while((numlterations <= maxlterations) && !converged)
{
numIterations++;
prevEstimate = rootEstimate;
//x = x - f(x)/df(x):
rootEstimate = rootEstimate.subtract(f(rootEstimate)

.divide(df(rootEstimate)));
System.out.println(rootEstimate) ;
relativeError = Complex.abs(rootEstimate.subtract(prevEstimate))

/Complex.abs(rootEstimate);
converged = relativeError <= rootErrorTolerance;

}
}

public static void main(String[] args)

{
FunctionComplex fc = new FunctionComplex();
fc.getRootNewton(le-4, 20) ;

}
}

Using a complex starting value of 1 + / for x gives the following output:

Enter real part
1.0
Enter imaginary part
1.0

1.0 + l.Oi
0.07692307692307687 + 0.6153846153846154i
-0.5155925155925156 + 0.632016632016632i
-0.4931668689796128 + 0.9089862093763263i
-0.49968450674714165 + 0.8670173059345632i
-0.4999996392488419 + 0.8660259139020026i
-0.4999999999997875 + 0.8660254037845138i

Since complex roots occur in complex conjugate pairs, the other root is —0.5 — 0.866/.
Note:

• The Complex class has methods add to update a Complex value by a Complex value or a
double value. Both these forms are used in the method f of FunctionComplex above.
See the documentation of the e s s e n t i a l package for more details.

• Suppose we have two complex numbers z\ and zi,

z\ =x\ +iy\,

Z2 = Z2 + iy2,

where x\, X2 and y\, y2 are their real and imaginary parts respectively. The product z\Z2 is defined so
that the real part of the product is x\X2 — y\yi, while the imaginary part of the product is y\X2 +x\)>2-
The Complex class has a m u l t i p l y method which returns the product of two Complex objects.
This form is used in the method f of FunctionComplex to calculate x1.
There is also a s t a t i c version of m u l t i p l y which is used to calculate 2x in the method df of
FunctionComplex.

Introduction to numerical methods 269

• The quotient z\/zi of two complex numbers has a real part of (x\X2 + yxyi)/^ + y\) and an
imaginary part of {y\X2 - x\yi)l{x\ + yj).
The Complex method d i v i d e is used to calculate f(x)/f,(x) in the getRootNewton method
of FunctionComplex.

The Bisection method

The Bisection method is an alternative to Newton's method for solving equations.
Consider again the problem of solving the equation f(x) = 0, where

f(x) =x3 +x - 3 .

We attempt to find by inspection, or trial-and-error, two values of x, call them xi and XR, such that f{xi)
and /(XR) have different signs, i.e. f{xi)f{xR) < 0. If we can find two such values, the root must lie
somewhere in the interval between them, since f(x) changes sign on this interval (see Figure 13.2). In
this example, XL — 1 and XR = 2 will do, since f{\) = —1 and f(2) = 7. In the Bisection method, we
estimate the root by XM, where XM is the midpoint of the interval [XL,XR], i.e.

XM = (xL+xR)/2. (13.1)

Then if /(XM) has the same sign as /(JCL), as drawn in the figure, the root clearly lies between XM and
XR. We must then redefine the left-hand end of the interval as having the value of XM, i.e. we let the
new value of xi be XM- Otherwise, if f(x\f) and f{xi) have different signs, we let the new value of
XR be XM, since the root must lie between xi and XM in that case. Having redefined xi or XR, as the
case may be, we bisect the new interval again according to Equation (13.1) and repeat the process until
the distance between xi and XR is as small as we please.

The neat thing about this method is that, before starting, we can calculate how many bisections are
needed to obtain a certain accuracy, given initial values of xi and XR. Suppose we start with xi = a,
and XR = b. After the first bisection the worst possible error (E\) in XM is E\ = \a — b\/2, since we are
estimating the root as being at the midpoint of the interval [a,b]. The worst that can happen is that the
root is actually at xi or XR, in which case the error is E\. Carrying on like this, after n bisections the

Figure 13.2 The Bisection method

270 Essential Java for Scientists and Engineers

worst possible error En is given by En — \a - b\/2n. If we want to be sure that this is less than some
specified error E, we must see to it that n satisfies the inequality \a — b\/2n < E, i.e.

n > * " (13.2)
log(2)

Since n is the number of bisections, it must be an integer. The smallest integer n that exceeds the right-
hand side of Inequality (13.2) will do as the maximum number of bisections required to guarantee the
given accuracy E.

The following scheme may be used to program the Bisection method. It will work for any function
f(x) that changes sign (in either direction) between the two values a and b, which must be found
beforehand by the user.

1. Given a, b and E
2. Initialize xi and XR
3. Compute maximum bisections n from Inequality (13.2)
4. Repeat n times:

Compute XM according to Equation (13.1)
If f(xL)f(xM) > 0 then

Let XL = XM

otherwise
Let XR = XM

5. The root is XM-

We have assumed that the procedure will not find the root exactly; the chances of this happening with
real variables are infinitesimal.

The main advantage of the Bisection method is that it is guaranteed to find a root if you can find
two starting values for XL and XR between which the function changes sign. You can also compute in
advance the number of bisections needed to attain a given accuracy. Compared to Newton's method it
is inefficient. Successive bisections do not necessarily move closer to the root, as usually happens with
Newton's method. In fact, it is interesting to compare the two methods on the same function to see
how many more steps the Bisection method requires than Newton's method. For example, to solve the
equation x3 + x — 3 = 0, the Bisection method takes 21 steps to reach the same accuracy as Newton's
in five steps.

Try Exercises 13.5 to Exercises 13.6.

13.2 Numerical differentiation

The Newton quotient for a function f(x) is given by

f(x+ h)-f(x)
(13.3)

where h is 'small'. As h tends to zero, this quotient approaches the first derivative, df/dx, of f(x). The
Newton quotient may therefore be used to estimate a derivative numerically. It is a useful exercise to
do this with a few functions for which you know the derivatives. This way you can see how small you
can make h before rounding errors cause problems. Such errors arise because expression (13.3) involves
subtracting two terms that eventually become equal when the limit of the computer's accuracy is reached.
We will first experiment with this numerical technique in a ma in method before incorporating it into
the F u n c t i o n class.

Introduction to numerical methods 271

As an example, the following program uses the Newton quotient to estimate f(x) for f(x) = x2 at
x = 2, for smaller and smaller values of h (the exact answer is 4).

import j ava.text.*;

public class NumericalDerivative
{

public static void main(String[] args)
{

double h = 1;
double x = 2;
double newtonQuotient;
DecimalFormat df = new DecimalFormat("0.############E0");

for (int i = 1; i <= 20; i++)
{

newtonQuotient = (f(x+h)-f(x))/h;
System.out.printIn(df.format(h) + " " +

df.format(newtonQuotient));
h = h/10;

}

}

public static double f(double x)
{

return x*x;
}

}

Note the use of the symbol E in the DecimalFormat pattern to format output in scientific notation.
Output:

1E0 I
IE-
IE-
1E-
1E-
1E-
1E-
1E-
1E-
1E-
1E-
1E-
1E-
1E-
1E-
1E-
1E-
1E-
1E-
1E-

-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12
-13
-14
-15
-16
-17
-18
-19

5E0
4.1E0
4.01E0
4.001E0
4.000100000008E0
4.000010000027E0
4.000001000648E0
4.000000091153E0
3.99999997569E0
4.000000330961E0
4.000000330961E0
4.000000330961E0
4.000355602329E0
3.996802888651E0
4.085620730621E0
3.552713678801E0
0E0
0E0
0E0
0E0

272 Essential Java for Scientists and Engineers

The results show that the best h for this particular problem is about 10~8. But for h smaller than this
the estimate gradually becomes less accurate.

Generally, the best h for a given problem can only be found by trial and error. Finding it can be a
non-trivial exercise. This problem does not arise with numerical integration, because numbers are added
to find the area, not subtracted.

We now add numerical differentiation to the Func t ion class as follows:

• replace the abstract method df with a method df to return the Newton quotient as defined above;
• define a data member h for the step-length, with a method setH to specify the value of h.

Here is our modified Func t ion class:

public abstract class Function
{

private double h;

public abstract double f (double x);

public double df (double x)
{

double newtonQuotient = (f(x+h)-f(x))/h;
return newtonQuotient;

}
public void setH (double h) {

this.h = h;
}

Note that if you want to use the analytical derivative you can always override df in any subclass of
Funct ion.

13.3 Integration

Although most 'respectable' mathematical functions can be differentiated analytically, the same cannot
be said for integration. There are no general rules for integrating, as there are for differentiating. For
example, the indefinite integral of a function as simple as e x cannot be found analytically. We therefore
need numerical methods for evaluating integrals.

This is actually quite easy, and depends on the fact that the definite integral of a function f(x) between
the limits x = a and x = b is equal to the area under f(x) bounded by the x-axis and the two vertical
lines x = a and x = b. So all numerical methods for integrating simply involve more or less ingenious
ways of estimating the area under f(x).

The Trapezoidal rule

The Trapezoidal (or Trapezium) rule is fairly simple to program. The area under f(x) is divided into
vertical panels each of width h, called the step-length. If there are n such panels, then nh — b - a, i.e.
n = (b — a)/h. If we join the points where successive panels cut f(x), we can estimate the area under
f(x) as the sum of the area of the resulting trapezia (see Figure 13.3). If we call this approximation to
the integral S, then

S=-\ f(a) + f(b) + 2 £ > (* /) | , (13.4)
1 L ;=i

Introduction to numerical methods 273

Figure 13.3 The Trapezoidal rule

where xi = a + ih. Equation (13.4) is the Trapezoidal rule, and provides an estimate for the integral

f
J a

f(x)dx.

We implement the Trapezoidal rule as a method of the Func t ion class. The integrand is then the
abstract method f to be provided by a concrete subclass.

public double getlntegralTrapezoidal(double a, double b, double h)
{
double sum = 0;
int n = (int) Math.round((b-a)/h);

for (int i = 1; i <= n-1; i + +)
sum += f(a + i*h);

sum = h/2*(f(a) + f(b) + 2*sum);
return sum;

Note:

• The limits of integration a and b and the step-length h are passed to the g e t I n t e g r a l method.
• The user must choose h in such a way that the number of steps n will be an integer—a check for

this could be built in.

Suppose we want to integrate f(x) = x3 between the limits 0 and 4. Here's how to do it with the
method f implemented in an anonymous class object (see Section 8.2):

public class TrapTester
{

public static void main(String[] args)

274 Essential Java for Scientists and Engineers

Function cubic = new Function()

{
public double f(double x)

{
return x*x*x;

}
};
System.out.printIn("Integral = "

+ cubic.getIntegralTrapezoidal(0,4,0.01));

}
}

Note that since df is no longer abstract in the superclass Funct ion, we do not need to define it here.
Run T r a p T e s t e r as an exercise. Show that with h = 0.1, the estimated integral is 64.04, and with

h = 0.01 it is 64.0004 (the exact integral is 64). You will find that as h gets smaller, the estimate gets
more accurate.

This example assumes that f(x) is a continuous function which may be evaluated at any x. In practice,
the function could be defined at discrete points supplied as results of an experiment. For example, the
speed v(t) of an object might be measured every so many seconds, and one might want to estimate the
distance travelled as the area under the speed-time graph. In this case, g e t I n t e g r a l T r a p e z o i d a l
would have to be changed by replacing f with a vector of function values. This is left as an exercise for
the curious.

Try Exercise 13.7.

Simpson's rule

Simpson's rule is a method of numerical integration which is a good deal more accurate than the
Trapezoidal rule, and should always be used before you try anything fancier. It also divides the area
under the function to be integrated, f(x), into vertical strips, but instead of joining the points f(xt) with
straight lines, every set of three such successive points is fitted with a parabola. To ensure that there are
always an even number of panels, the step-length h is usually chosen so that there are In panels, i.e.
n = (b-a)/(2h).

Using the same notation as we did for the Trapezoidal rule, Simpson's rule estimates the integral as

h
S=3

n-l

f(a) + f(b) + 2J2 f(x2i) + 4]T f(x2i-i)
i=\ i=i

(13.5)

Coding Simpson's rule into a new method g e t I n t e g r a l S i m p s o n of Func t ion is left as an exercise
(Exercise 13.8).

If you try Simpson's rule on f(x) — x3 between any limits, you will find rather surprisingly, that it
gives the same result as the exact mathematical solution. This is a nice extra benefit of the rule (which
can be proved mathematically): it integrates cubic polynomials exactly.

13.4 First-order differential equations

The most interesting situations in real life that we may want to model, or represent quantitatively, are
usually those in which the variables change in time (e.g. biological, electrical or mechanical systems). If
the changes are continuous, the system can often be represented with equations involving the derivatives
of the dependent variables. Such equations are called differential equations. The main aim of a lot of
modelling is to be able to write down a set of differential equations (DEs) that describe the system being

Introduction to numerical methods 275

studied as accurately as possible. Very few DEs can be solved analytically, so once again, numerical
methods are required. We will consider the simplest method of numerical solution in this section: Euler's
method (Euler rhymes with 'boiler'). We also consider briefly how to improve it.

Euler's method

In general we want to solve a first-order DE (strictly an ordinary DE—ODE) of the form

dy/dx = f(x,y), y(0) given.

Euler's method for solving this DE numerically consists of replacing dy/dx with its Newton quotient,
so that the DE becomes

y(x+h)-y(x)
= f(x, y).

h

After a slight rearrangement of terms, we get

y(x + h) = y(x) + hf(x,y). (13.6)

Solving a DE numerically is such an important and common problem in science and engineering that it
is worth introducing some general notation at this point. Suppose we want to integrate the DE over the
interval x = a (a = 0 usually) to x = b. We break this interval up into m steps of length h, so

m = (b — a)/h

(this is the same as the notation used in the update process of Chapter 4, except that dt used there has
been replaced by the more general h here).

If we define yi as y(xi) (the Euler estimate at the end of step /), where x\ — ih, then yj+\ — y(x + h),
at the end of step (/ + 1). We can then replace Equation (13.6) by the iterative scheme

yt+\ = yt + hf(xif yt), (13.7)

where yo = y(0). Note the striking similarity between Equation (13.7) and Equation (4.3) in Chapter 4
(Update processes). This similarity is no coincidence. Update processes can be modelled by DEs, and
Euler's method provides an approximate solution for such DEs.

Example: bacteria growth

Suppose a colony of 1000 bacteria is multiplying at the rate of r = 0.8 per hour per individual (i.e.
an individual produces an average of 0.8 offspring every hour). How many bacteria are there after 10
hours? Assuming that the colony grows continuously and without restriction, we can model this growth
with the DE

dN/dt = rN, N(0) = 1000, (13.8)

where N(t) is the population size at time t. This process is called exponential growth. Equation (13.8)
may be solved analytically to give the well-known formula for exponential growth:

N(t) = N(0)ert.

To solve Equation (13.8) numerically, we apply Euler's algorithm to it to get

#,-+i =Ni+rhNi, (13.9)

where the initial value No — 1000.
It is very easy to implement Euler's method. We use the two-stage process which is hopefully familiar

by now:

276 Essential Java for Scientists and Engineers

• an abstract class (ODE) which implements Equation (13.7) in general;
• a class (Bac te r ia) which defines f(x, y) in an anonymous class and which instantiates an ODE

object to integrate itself in true OOP style.

Here is the class ODE:

pub l i c a b s t r a c t c l a s s ODE
{

public abstract double f(double t, double y);

public void solveEuler(double yO, double a, double b,
double h, double opint)

// integrate from a to b, in steps of h,
// initial value yO,
// with results displayed at intervals of opint

{
int i; // loop counter
int m; // number of update steps
double t; // current value of time

double y = yO;
m = (int) Math.floor((b-a)/h);
t = a;

if (Math.abs(Math.IEEEremainder(opint,h)) > le-6)
System.out.printIn

("Warning: opint not an integer multiple of hi");

System.out.printIn("time Euler");
System.out.println(t + " " + yO); //initial values

for (i = 0; i < m; i++)

{
y = y + h*f(t,y);
t = t + h;
if (Math.abs(Math.IEEEremainder(t, opint)) < le-6)

System.out.println(t + " " + y);
}

}

}

Note:

• We have used the general notation f(x,y) in Equation (13.7). However, since the independent
variable is more likely to be t than x, ODE uses f (t , x) to represent the right-hand side of the DE.
Although t does not appear explicitly on the RHS of the DE we are solving, we nevertheless define
a parameter t for the method f to make it as general as possible.

• The method s o l v e E u l e r implements Euler's method over the period a to b in steps of h, with
output printed every o p i n t time units. The initial value of the solution is yO.

Introduction to numerical methods 277

We now solve our problem with B a c t e r i a , which defines the method f to return the RHS of the
DE, and integrates the DE over a 10-hour period with a step-length of 0.5 hours:

p u b l i c c l a s s B a c t e r i a
{
public static void main(String args[])

ODE germ = new ODE(){
public double f(double t, double y)
{
return 0.8*y;

}
};
germ.solveEuler(1000.0, 0.0, 10.0, 0.5, 0.5);

}
}

Results are shown in Table 13.1, and also in Figure 13.4. The Euler solution is not too good. In fact,
the error gets worse at each step, and after 10 hours of bacteria time it is about 72%. The numerical
solution will improve if we make h smaller, but there will always be some value of t where the error
exceeds some acceptable limit.

In some cases, Euler's method performs better than it does here, but there are other numerical methods
which always do better than Euler. Two of them are discussed below. More sophisticated methods may
be found in most textbooks on numerical analysis. However, Euler's method may always be used as a
first approximation as long as you realize that errors may arise.

Try Exercises 13.9 to Exercises 13.11.

A predictor-corrector method

Our first improvement on the numerical solution of the first-order DE

dy/dx = f(x, y), y(0) given,

is as follows. The Euler approximation, which we are going to denote by an asterisk, is given by

yUi=yi+hf(xi,yi) (13.10)

But this formula favours the old value of y in computing / (*; , yt) on the right-hand side. Surely it would
be better to say

yU\ = yt + M/(*«+i, yUO + /(*«•> ?i)]A (i3.il)

Table 13.1 Bacteria growth

Time
(hours)

0.0
0.5
1.0
1.5
2.0

5.0

8.0

Euler

1000
1400
1960
2744
3842

28925

217 795

Predictor-
Corrector

1000
1480
2190
3242
4798

50422

529892

Exact

1000
1492
2226
3320
4953

54 598

601 845

10.0 836683 2 542 344 2 980 958

278 Essential Java for Scientists and Engineers

Figure 13.4 Bacteria growth: (a) Euler's method; (b) the exact solution

where JC/+I = xt; + h, since this also involves the new value y*+1 in computing / on the right-hand
side? The problem of course is that y*+1 is as yet unknown, so we can't use it on the right-hand side
of Equation (13.11). But we could use Euler to estimate (predict) y*+1 from Equation (13.10) and then
use Equation (13.11) to correct the prediction by computing a better version of J*+1, which we will call
yt+\. So the full procedure is:

Repeat as many times as required:
Use Euler to predict: yf+1 = yt + hf(xt, yi)
Then correct y*+l to: yt+i = yt + M/(*i+i , y*+i) + / (* i ,)>i)]/2.

This is called a predictor-corrector method. We implement it with the method
s o l v e P r e d i c t o r C o r r e c t o r , added to the ODE class:

p u b l i c v o i d s o l v e P r e d i c t o r C o r r e c t o r (d o u b l e yO, d o u b l e a, d o u b l e b ,
d o u b l e h , d o u b l e o p i n t)

/ / i n t e g r a t e from a t o b , i n s t e p s of h ,
/ / i n i t i a l v a l u e yO,
/ / w i t h r e s u l t s d i s p l a y e d a t i n t e r v a l s of o p i n t

{
double yEuler; // predictor
double yold;

double y = yO;
int m = (int) Math.floor((b-a)/h); // number of update steps

Introduction to numerical methods 279

double t = a; // current value of time

if (Math.abs(Math.IEEEremainder(opint,h)) > le-6)
System.out.println

("Warning: opint not an integer multiple of h!");

System.out.println("time Predictor-Corrector");
System.out.println(t + " " + yO); //initial values

for (int i = 0; i < m; i++)

{
yold = y;
yEuler = y + h*f(t,y);
t = t + h;
y = y + h*(f(t,yEuler) + f(t-h,yold))/2;

if (Math.abs(Math.IEEEremainder(t, opint)) < le-6)
System.out.println(t + " " + y);

}
}

Once again, the solution is obtained with B a c t e r i a :

p u b l i c c l a s s B a c t e r i a
{
public static void main(String args [])
{
ODE germ = new ODE(){

public double f(double t, double y)
{
return 0.8*y;

}
};
germ.solvePredictorCorrector(1000.0, 0.0, 10.0, 0.5, 0.5);

The worst error (Table 13.1) is now only 15%. This is much better than the uncorrected Euler solution,
although there is still room for improvement.

13.5 Runge-Kutta methods

There are a variety of algorithms, under the general name of Runge-Kutta, which can be used to integrate
initial-value ordinary differential equations. The fourth-order formulae are given below, for reference.
A derivation of these and other Runge-Kutta formulae can be found in most textbooks on numerical
analysis.

Runge-Kutta fourth-order formulae
The general first-order differential equation is

dv/dx = / (* , y), y(0) given. (13.12)

280 Essential Java for Scientists and Engineers

The fourth-order Runge-Kutta estimate y* at x + h is given by

j * = y + (kx + 2k2 + 2fc3 + fcO/6,

where

k\ = hf(x,y)

k2 = hf(x+0.5h,y + 0.5k\)

ki = hf(x + 0.5h,y + 0.5k2)

k4 = hf(x + h,y + k3).

Systems of differential equations: a predator-prey model

The Runge-Kutta formulae may be adapted to integrate systems of first-order differential equations. Here
we adapt the fourth-order formulae to integrate the well-known Lotka-Volterra predator-prey model:

dx/dt — px — qxy (13.13)

dy/dt = rxy -sy, (13.14)

where x{t) and y(t) are the prey and predator population sizes at time t, and /?, q, r and s are biologically
determined parameters. We define f(x,y) and g(x,y) as the right-hand sides of Equations (13.13) and
(13.14) respectively. In this case, the Runge-Kutta estimates x* and y* at time (t + h) may be found
from x and y at time t with the formulae

x* = x + (jfci + 2k2 + 2Jfc3 + Jk4)/6

j * = y + (mi + 2m2 + 2m3 + m^)/6,

where

*1 =

mi =

^ ^

m2 -

h--

m3--

k\ -

m\ -

= hf(x

= hg(x

= hf(x

= hg(x

= hf(x

= hg(x

= hf(x

= hg(x

j)

,y)
+ 0.5^i

+ 0.5£i

+ 0.5k2

+ 0.5fc2

+ k3,y

+ k3,y

, y + 0.5mi)

, y + 0.5mi)

, y + 0.5m2)

, y + 0.5m2)

+ m3)

+ m3)

It should be noted that in this example JC and y are the dependent variables, and t (which does not appear
explicitly in the equations) is the independent variable. In Equation (13.12) y is the dependent variable,
and x is the independent variable.

Implementation of the numerical solution

It is an interesting exercise to implement the numerical solution of the predator-prey system above, and
you should try it. However, it would be more useful to implement a solution which could handle systems
of any number of ODEs. In this section we look at such a solution. It is just about as simple as possible,

Introduction to numerical methods 281

with no 'bells and whistles' attached, in order to concentrate on the basic problem - solving a system of
DEs numerically.

In Section 13.6 we present a more versatile and sophisticated version driven by a GUI.
We use our tried and trusted approach of starting with an abstract class ODESystem to implement

the basic Runge-Kutta solution. The algorithm used here (Runge-Kutta-Merson) is slightly different to
the one quoted in the previous section since it has been adapted to solve a general system of DEs. Here
is ODESystem:

import j ava.text.*;

/* abstract class ODESystem which implements Runge-Kutta
* integration of a system of ODEs
* /

public abstract class ODESystem
{

private int numVars; //number of variables
protected int order; //number of DEs

private double dt; //step-length
protected double [] y; //variable list

/* Constructor gives variables their values at initial time.
* The number of variables is deduced from the size of the array
* passed to the constructor. The step length is also set
* /

public ODESystem(double[] vars, double h)
{
numVars = vars.length;
y = new double[numVars];
for(int i=0; i< numVars; i++) y[i] = vars[i];
dt = h; // set the step length

}

/* Abstract method. In the concrete subclass, this method
* will return an array of the values of RHS's of the
* differential equations given an array of variable values.
*/

public abstract doublet] diffEquns(double [] y) ;

/* Fourth-order Runge-Kutta-Merson for
^numerical integration of DEs
*/

private void integrate()
{

= new d o u b l e [o r d e r]
= new d o u b l e [o r d e r]
= new d o u b l e [o r d e r]
= new d o u b l e [o r d e r]
= new d o u b l e [o r d e r]

/ /RHS's of t h e DEs

for (i n t i = 0; i < o r d e r ; i++)
x [i] = y [i] ;

double
double
double
double
double
double

a
b
c
d
X

f

[]
[]
[]
[]
[]
[]

282 Essential Java for Scientists and Engineers

}

f = d i f f E q u n s (y) ;
fo r (i n t i = 0; i < o r d e r ; i++)
{

a [i] = d t * f [i] ;
y [i] = x [i] + a [i] / 2 ;

}
f = d i f f E q u n s (y) ;
fo r (i n t i = 0; i < o r d e r ; i++)
{

b [i] = d t * f [i] ;
y [i] = x t i] + b [i] / 2 ;

}
f = d i f f E q u n s (y) ;
fo r (i n t i = 0; i < o r d e r ; i++)
{

c [i] = d t * f [i] ;
y [i] = x [i] + c [i] ;

}
f = d i f f E q u n s (y) ;
fo r (i n t i = 0; i < o r d e r ; i++)
{

d [i] = d t * f [i] ;
y [i] = x [i] + (a [i] + 2*b[i] + 2*c [i] + d [i]) / 6;

}

/* I n t e g r a t e s DEs and d i s p l a y s r e s u l t s on s c r e e n
*/

public void solve(double a, double b, double oplnt)
{
order = numVars; //in general, order <= numVars

int m = (int) Math.floor((b-a)/dt); //number of integration steps
double t = a; //time

if (Math.abs(Math.IEEEremainder(oplnt,dt)) > le-6)
System.out.println("Warning: oplnt not a multiple of h!");

//display heading:
System.out.println("time");

//display initial values:
DecimalFormat df = new DecimalFormat("##.##");
System.out.print(df.format(t) + "\t");
for (int i = 0; i < numVars; i + +)

System.out.print(" " + y[i]);
System.out.println();

for (int i = 0; i < m; i++) //integrate over m steps
{

integrate(); //perform Runge-Kutta over one step
t += dt;
if (Math.abs(Math.IEEEremainder(t,oplnt)) < dt/le6)

// just to be sure!!

Introduction to numerical methods 283

System.out.print(df.format(t) + M\t");
for (int j = 0; j < numVars; j++)

System.out.print(" " + y[j]);
System.out.println();

}
}

}
}

Note:

• As before there is an abstract method, d i f f Equns, to define the DEs. However, the difference now
is that the method must return the right-hand sides of a system of DEs, rather than a single DE. This
is achieved by returning an array of values. We also have to pass an array y for the variables of the
system.

• The data member o r d e r is the number of DEs in the system. This is usually the same as numVars
(the number of dependent variables), but not always. It may, for example, be convenient to define
additional variables which do not appear on the left-hand side of the DEs.

• The constructor initializes the variables from values specified in the user class (deducing the number
of variables) and sets the step-length dt .

• The method i n t e g r a t e implements the Runge-Kutta-Merson solution over one time step d t . It
repeatedly calls d i f f Equns to evaluate and return the right-hand sides f for different values of
the variables y.

• The method so lve integrates the DEs from time a to b, and prints the solutions every o p l n t time
units.

The actual DEs to be solved (Equations 13.13 and 13.14) are defined in PredPrey:

p u b l i c c l a s s PredPrey
{
public static void main(String args [])
{

doublet] vars = {105,8}; //initial values

ODESystem model = new ODESystem(vars, 0.1)
{
public doublet] diffEquns(double[] y)
{
//RHS of each DE with parameter values hardcoded
doublet] f = { 0.4*y[0] - 0.04*y[0]*y[1], // Eqn 13.13

0.02*y[0]*y[l] - 2*y[l]}; // Eqn 13.14
return f;

}
};

model.solve(0, 10, 1]

}

Note:

• The array v a r s is initialized with the initial values of the variables.
• The array v a r s and the integration step-length are passed to the ODESystem constructor.

284 Essential Java for Scientists and Engineers

• Remember to start subscripts at 0! So, for example, y [0] represents the prey x. If your solution is
wrong, the error is almost bound to be here.

Here is the output for PredPrey as it stands above, with x(0) = 105, y(0) = 8, p = 0.4, g =
0.04, r = 0.02 and s = 2:

time
0 105.0 8.0
1 110.912 73 992 685059 9.475851798754 86
2 108.34 882117987631 11.678111115700142
3 98.702 766 94 0783 72 12.59418222 823258 8
4 90.88 96323 7027195 11.23 8513 73243 8 909
5 90.2 0163233 824 925 9.1867578125112 89
6 95.92 76 03 832 703 71 7.93 0 059573 7063 81
7 104.6164 7908659504 7.9651918 850 04757
8 110.797993 53193195 9.383 018234316 918
9 108.6702 734 8 059051 11.58832 8 00424 867
10 99.16 94184764 759 12.606341988586635

To solve any other system of DEs, there is no need to change ODESystem. All you need to do is:

• Write a class similar to PredPrey, which initializes the variables and defines the system of DEs
(take care with the subscripts!).

It would, of course, be nice to display solutions graphically: either a selection of variables plotted
against time, or any two variables plotted against each other (a phase plane, or trajectory plot). These,
and many other helpful features, are implemented in our general ODE solver, Driver, discussed in the
next section.

Try Exercises 13.12 and 13.13.

13.6 Driver: a GUI to solve ODEs

Driver is a GUI-driven ODE solver to facilitate the implementation of models based on systems of initial
value ODEs. The only coding a user needs to do is when defining the RHS of the system of ODES (see
below). The example that is used to demonstrate Driver is the Lotka-Volterra predator-prey model,

dx/dt = px — qxy

dy/dt = rxy — sy,

described in Section 13.5.
In Driver terminology, x and y are referred to as 'model variables', and p, q, r and s are called 'model

parameters'. Driver has one additional variable, t ime, and three additional parameters, d t (integration
step-length), runTime (the number of step-lengths over which to run the model) and o p l n t (for
'output interval'—the intervals of time at which results are displayed on the screen). Driver distinguishes
between 'model' variables and parameters and the other variable and parameters because of the way they
are represented in the program.

Setting up a model to run with Driver

Five files (all available on our website) are required to run a model with Driver:

1. Driver. Java
2. DriverGUI. j ava

Introduction to numerical methods 285

3. ModelDEs. J a v a
4. a reference file, e.g. l o t k a . t x t (see below)
5. D r i v e r R e a d m e . t x t .

The reference file

You need to set up a reference file for your model, using any text editor. The reference file contains
information about the variables and parameters, and must be set up in a particular way. The refer-
ence file for the predator-prey demonstration is called l o t k a . t x t , and looks as follows (explanation
below it):

2
prey
105
pred
8
0
4

P
0.4

q
0.04
r
0.02
s
2
10
1
1

The first line of l o t k a . t x t specifies the number of model variables (2). This is followed by the
name and initial value (on separate lines) of each of the model variables. The names should be mean-
ingful names, and should also be valid Java identifiers (i.e. start with a letter, underscore or dollar,
and contain only these characters and digits). You will be able to use these names when coding the
RHS of the system of DEs. The names and initial values here are p r e y (105) and p r e d (8) res-
pectively.

Following the model variable names and initial values you must enter the initial value of t i m e (0 in
our example) on a separate line.

On the next line enter the number of model parameters (4).
On the following lines enter the names and values of the model parameters. In our example, these are

p (0.4), q (0.04), r (0.02) and s (2) respectively.
Finally, on separate lines, enter the values of runTime (10), d t (1) and o p l n t (1).

Generating a customized ModelDEs . j ava file (the system of ODEs)

Compile D r i v e r . J a v a , ModelDEs. J a v a and D r i v e r G U I . J a v a (if you have not done so
already).

Run D r i v e r G U I . c l a s s (D r i v e r . c l a s s and the prototype ModelDEs. c l a s s need to be in
the same folder as D r i v e r G U I . c l a s s) . When the GUI appears, select the Reference file menu
and Load your reference file. You should see (Figure 13.5) the names and values of the vari-
ables and parameters in two drop-down lists, and the names of the variables in a third drop-down
list.

286 Essential Java for Scientists and Engineers

Select variable to change:

Itime
prey
pred

0.0
105.0
8.0

Select parameter to change:

new value:

Choose output type

Table

O Plot

new value

Select variables to plotfdisplay

Figure 13.5 Driver running with the l o t k a . t x t reference file

At this stage you can't run your model, because you haven't set up the DEs yet. Click the Generate
model DEs button. You will be asked to enter the number of DEs in the system you wish to model, and
then the right hand side of each DE. So, for our example, you would fill in 2 for the number of DEs,

p*prey - q*pred*prey

for the first DE, and

r*p red*prey - s*pred

for the second DE.
A file defining the model DEs is generated, and you are asked to save the file. The file which defines

the model DEs must always be called ModelDEs . j ava. Since you need one such file for each model,
it makes sense to save them all under some other names, and to copy them to ModelDEs . j ava when
you want to run them. It is therefore recommended that you save your model DE file with the name
ModelDEs but with an identifying extension, e.g. ModelDEs . l o t k a .

You now have to quit Driver. The ModelDEs . l o t k a file looks as follows:

/ / c o d e g e n e r a t e d from D : \ E J S E \ l o t k a . t x t
c l a s s ModelDEs ex t ends D r i v e r
{

public void diffEquns(doublet] f, doublet] yyy
{

double prey = yyy[0];
double pred = yyytl];
double p = parstO].val;
double q = pars [1] .val;
double r = pars [2] .val;
double s = pars [3] .val;

Introduction to numerical methods 287

f [0] = p * p r e y - q * p r e d * p r e y ;
f [1] = r * p r e d * p r e y - s * p r e d ;

As you can see, the right hand sides of the system of ODEs has been placed in the file.
Note that the subscripts for the array f start at 0. It follows also that you should not use the name f

for a model variable or parameter. If you simply have to use the name f you can change the name of
the array to something else (but remember to change its name in the d i f f Eqns argument list as well!).

Note also that this process of generating the template of the ModelDEs file for you enables you to
use meaningful variable and parameter names for your DEs. Otherwise you would have to code the DEs
as follows, for example:

f [0] = p a r s [0] . v a l * y y y [0] - p a r s [1] . v a l * y y y [1] * y y y [0] ;
f [l] = p a r s [2] . v a l * y y y [1] *yyy [0] - p a r s [3] . v a l * y y y [1] ;

(yyy *s u s e d here because y is a natural name for a model variable!)
Finally, copy your ModelDEs . xxx file to ModelDEs . j ava , and recompile the new

M o d e l D E s . J a v a .
You are now ready to use Driver.

Using Driver

Once you have recompiled ModelDEs . j a v a you can run D r i v e r G U I again. Select the reference file
as before. You can now run your model. This section serves as a brief user manual for Driver.

Results can either be displayed on the screen, or plotted with Essential Grapher. Use the radio buttons
to select either Plot or Table for the mode of output.

Go runs the model from the initial values of the model variables, for runT ime steps of d t , giving
the output as selected.

Carry on runs the model, but from the current rather than initial values of the model variables.
You can use the Select variables to plot/display list to select which variables you want to see in the

output. In Plot mode, if you select t i m e as one of the output variables, the other selected variables
are plotted against t i m e . If you do not select t i m e , the first two of the selected variables are plotted
against each other (i.e. a phase plane plot). In Table mode t i m e is always displayed, whether you select
it or not.

To change a parameter value or the initial value of a variable, select the item in the appropriate
drop-down box and enter its new value in the corresponding textfield.

By the end of a session you may have made several changes to the reference file information. You
therefore have the option of saving the changes (Reference file/Save).

During the session, if you have made any changes to the variables or parameters, or if any tables have
been displayed, the output is echoed to a text file called OP-xxxx, where xxxx is the time of day that
the file was created. When you exit the session, you will be asked whether you want to retain or delete
this file.

Help/Instructions for use displays the file D r i v e r R e a d m e . t x t (which must be in the same folder
as all the other Driver files) in a frame. The lines in this file have to be 70 or less columns in length
for them to be automatically displayed in the frame (i.e. without having to use the horizontal scrollbar).
D r i v e r R e a d m e . t x t contains the text in this section up to the end of the previous sentence.

If you run Driver with the predator-prey model as set up here Table output should give you output
similar to that of P r e d P r e y T e s t e r at the end of Section 13.5. Plot output is shown in Figure 13.6.

Chaos

The reason that weather prediction is so difficult and forecasts are so erratic is no longer thought to be the
complexity of the system but the nature of the DEs modelling it. These DEs belong to a class referred to

288 Essential Java for Scientists and Engineers

EBHHHMMNMHRI IIIillllM ^^^^HHI
ffl* Properties |

160.0

hn^

175.0 .

3?.§ _

p.o «

_ ^ - ~ - _ ^ ^

..——•——— —-

0.0 !2.5

pr^pSrame

5,0

^-—-"^

V«

" l ^ v - ~ ,

nme
f10 0 I

K^&480:y*#2J6

Figure 13.6 Plot output from Driver running with the l o t k a . t x t reference file

as chaotic. Such equations will produce wildly different results when their initial conditions are changed
infinitesimally. In other words, accurate weather prediction depends crucially on the accuracy of the
measurements of the initial conditions.

Edward Lorenz, a research meteorologist, discovered this phenomenon in 1961. Although his original
equations are far too complex to consider here, the following much simpler system has the same essential
chaotic features:

dx/dt = lO(y-x),

dy/dt = -xz + 28JC - y,

dz/dt=xy-8z/3.

(13.15)

(13.16)

(13.17)

This system of DEs may be solved very easily with Driver. The idea is to solve the DEs with certain
initial conditions, plot the solution, then change the initial conditions very slightly, and superimpose the
new solution over the old one to see how much it has changed. Proceed as follows.

1. Begin by solving the system with the initial conditions x(0) = —2, y(0) — —3.5 and z(0) = 21,
over a period of 10 time units, with d t = 0.01.
Set up a reference file, l o r e n z . t x t , which should look more-or-less like this:

3
x
- 2 . 0
y
- 3 . 5
z
2 1 . 0
0 . 0
0
1 0 0 0 . 0

Introduction to numerical methods 289

PS f̂'*" $ ^ * " * « & \ w - :

tm PropertMis

125.0 ^

112.5,

m

•12.5J

25.0.

time

\ 1D.0

l&apNFrama x«4u&i«:y«^a*8*

Figure 13.7 Chaos?

0 . 0 1
1.0

Generate the ModelDEs file in the usual way.
Plot y only against t i m e (set the vertical axis limits on the graph to about —25 and 25). You should
get one of the plots shown in Figure 13.7.

2. Now we can see the effect of changing the initial values. Let's just change the initial value of x(0),
from —2 to —2.04—that's a change of only 2%, and in only one of the three initial values. Plot y
against t i m e again for this new initial condition, superimposing the new plot over the old one.

You should see (Figure 13.7) that the two graphs are practically indistinguishable until t is about
1.5. The discrepancy grows quite gradually, until t reaches about 6, when the solutions suddenly
and shockingly flip over in opposite directions. As t increases further, the new solution bears no
resemblance to the old one.

3. Now clear the graphs and solve the system (13.15)—(13.17) with the original initial values but over
20 time steps (runTime = 2000). Plot y against t i m e as before.

Change d t to 0.005 (and runT ime to 4000) and superimpose the graph of y against t i m e again.

This time you will see the two plots deviating after about 15 time units. The initial conditions are
the same—the only difference is the size of d t .

The explanation is that the Runge-Kutta formulae have numerical inaccuracies (if one could compare
them with the exact solution—which incidentally can't be found). These numerical inaccuraces differ
with the size of d t . This difference has the same effect as starting the numerical solution with very
slightly different initial values.

How do we ever know when we have the 'right' numerical solution to a chaotic system? Well, we
don't—the best we can do is increase the accuracy of the numerical method until no further wild changes
occur over the interval of interest.

So beware: 'chaotic' DEs are very tricky to solve!
Incidentally, if you want to see the famous 'butterfly' picture of chaos, just plot x against z as time

increases (the resulting graph is called a phase plane plot). What you will see is a 2-D projection of the

290 Essentia! Java for Scientists and Engineers

trajectory, i.e. the solution developing in time. (You will need to change to change the axis limits so
that - 2 0 < x < 20 and 0 < z < 50.)

13.7 A partial differential equation

The numerical solution of partial differential equations (PDEs) is a vast subject, a comprehensive discus-
sion of which is beyond the scope of this book. We give only one example, but it serves two important
purposes. It demonstrates a powerful method of solving a class of PDEs called parabolic. It also illustrates
a method of solving tridiagonal systems of linear equations.

Heat conduction
The conduction of heat along a thin uniform rod may be modelled by the partial differential equation

du d u

37 = ^ ' < 1 3'1 8)

where u(x, t) is the temperature distribution a distance x from one end of the rod at time t, and assuming
that no heat is lost from the rod along its length.

Half the battle in solving PDEs is mastering the notation. We set up a rectangular grid, with step-
lengths of h and k in the x and t directions respectively. A general point on the grid has co-ordinates
xi = ih, yj = jk. A concise notation for u(x, t) at Xj, yj is then simply UJJ.

Truncated Taylor series may then be used to approximate the PDE by a finite difference scheme. The
left-hand side of Equation (13.18) is usually approximated by a forward difference'.

du _ M/,7 + 1 — Ui,j

~dt ~~ k

One way of approximating the right-hand side of Equation (13.18) is by the scheme

d2U Uj + \j — 2Uij + M | - l , J

dx2 h2 (13.19)

This leads to a scheme, which although easy to compute, is only conditionally stable.
If, however, we replace the right-hand side of the scheme in Equation (13.19) by the mean of the finite

difference approximation on the jth and (j + l)th time rows, we get (after a certain amount of algebra!)
the following scheme for Equation (13.18):

-rui-\j+] + (2 + 2r)uij+\ - rui+\j+\ = rut-\j + (2 - 2r)uij + ru(+\j, (13.20)

where r = k/h2. This is known as the Crank-Nicolson implicit method, since it involves the solution of
a system of simultaneous equations, as we shall see.

To illustrate the method numerically, let's suppose that the rod has a length of 1 unit, and that its ends
are in contact with blocks of ice, i.e. the boundary conditions are

M (0 ,0 = w (M) = 0 . (13.21)

Suppose also that the initial temperature (initial condition) is

i2x, 0<x < 1/2,
H (J C , 0) = - - ' (1 3 2 2)

[2(1 - J C) , 1/2 <x < 1.

(this situation could come about by heating the centre of the rod for a long time, with the ends kept in
contact with the ice, removing the heat source at time t = 0.) This particular problem has symmetry
about the line x = 1/2; we exploit this now in finding the solution.

Introduction to numerical methods 291

If we take h = 0.1 and k = 0.01, we will have r = 1, and Equation (13.20) becomes

— Mi- l J + l + 4WJJ + 1 - Mj + l j + l = W/-1J + Ui + \J. (13.23)

Putting j = 0 in Equation (13.23) generates the following set of equations for the unknowns u\,\ (i.e.
after one time step k) up to the midpoint of the rod, which is represented by i = 5, i.e. x = ih = 0.5.
The subscript j = 1 has been dropped for clarity:

0 + 4wi -

u\ -\-Au2 -

U2 +4^3 -

-K2 = 0 + 0.4

-w3=0.2 + 0.6

-w4 = 0.4 + 0.8

r 4
- i

0
0

_ 0

- 1
4

- 1
0
0

0
- 1

4
- 1

0

0
0

- 1
4

- 2

On
0
0

- 1
4

[~Ml~|

M2
M3
U\

W5

=

r0.4-|
0.8
1.2
1.6

1.6

— W3 + 4^4 — W5 = 0.6 + 1.0

-w 4 +4w5 - w6 = 0.8 + 0.8.

Symmetry then allows us to replace ue in the last equation by u\. These equations can be written in
matrix form as

(13.24)

The matrix (A) on the left of Equations (13.24) is known as a tridiagonal matrix. Such a matrix can be
represented by three one-dimensional arrays: one for each diagonal. The system can then be solved very
efficiently by Gauss elimination, which will not be explained here but simply presented in the working
program below. Having solved for the w/i we can then put j = 1 in Equation (13.23) and proceed to
solve for the U[^ and so on.

Care needs to be taken when constructing the matrix A. The following notation is often used:

'b\ c\
(12 &2 C2

03 t?3 C3 A =

tf/i-i K-\ cn-\
an bn

(13.25)

Take careful note of the subscripts!
The following program (H e a t C o n d u c t o r) implements the Crank-Nicolson method as a stand-alone

solution for this particular problem, over 10 time steps of k = 0.01. The step-length h is specified by
h = l/(2n), where A is n x n, because of the symmetry, r is therefore not restricted to the value 1,
although it takes this value here.

The one-dimensional arrays a, b and c represent the three diagonals of A. The program's subscripts
are consistent with the subscripts used in Equation (13.25). Consequently, most of the arrays have some
unused elements. For example, elements a [0] and a [1] are never used, since the first subscript of
a in Equation (13.25) is 2. As a result of this some unnecessary assignments are made in the first
f o r loop. The alternative to wasting a few bytes is to get hopelessly tangled up in a forest of sub-
scripts!

import Java.text.*;
public class HeatConductor

{

public void solveCrankNicolson()

292 Essential Java for Scientists and Engineers

{
int n =
double
double
double
double
double
double

= 5
[]
[]
[]
[]
[]
[]

;
a =
b =
c =
u =

g =
ux

//size of matrix A
new double[n+1]
new double[n+1]
new double[n+1]
new double[n+2]
new double[n+1]
= new double[n+li

//diagonal a
//diagonal b
//diagonal c
//initial conditions

• //RHS of Eqn 13.20
; //solution

//most elements subscripted 0 are unnecessary-
double k = 0.01;
double h = 1.0 / (2 * n); // symmetry assumed
double r = k / (h * h);

//some elements at either end of arrays are assigned unnecessarily
for (int i = 1; i <= n; i++)

{
a[i] = -r;
b[i] = 2 + 2 * r;

c[i] = -r;

}

a[n] = -2 * r; // from symmetry

//print initial conditions
for (int i = 0; i <= n; i++)

u[i] = 2 * i * h;

u[n+1] = u[n-1];
double t = 0;
DecimalFormat df = new DecimalFormat("0.0000");
System.out.print(" x ="); // headings

for (int i = 1; i <= n; i++)
System.out.print(" " + df.format(i * h));

System.out.print("\nt\n");
System.out.print(df.format(t));

for (int i = 1; i <= n; i++) // initial conditions
System.out.print(" " + df.format(u[i]));

System.out.print("\n");

// solution will be in ux
for (int j = 1; j <= 10; j++)

{
t += 0.01;

Introduction to numerical methods 293

for (in t i = 1; i <= n; i++)
g [i] = r * (u [i - l] + u [i + l]) + (2 - 2 * r) * u [i] ;

ux = solveTriDiag(a, b, c, g, n);
System.out.print(df.format(t));

for (int i = 1; i <= n; i++)
System.out.print(" " + df.format(ux[i]));

System.out.print("\n");

for (int i = 1; i <= n; i++) // get ready for next round
u[i] = ux[i] ;

u[n+1] = u[n-1];

}
}

public static doublet] solveTriDiag(double a[], double b[],
double c[], double g[], int n)

{
int j ;
double d;
double [] w = new double [n+1] ; / / working space
double [] x = new double[n+1]; / / s o l u t i o n

for (in t i = 1; i <= n; i++)
w[i] = b [i] ;

for (in t i = 2; i <= n; i++)
{

d = a [i] / w [i - l] ;
w[i] = w[i] - c [i -1] * d;
g [i] = g [i] - g [i - i] * d;

}

x[n] = g[n] / w [n] ; / / s t a r t b a c k - s u b s t i t u t i o n

for (in t i = 1; i <= n - 1 ; i++)
{

j = n - i ;
x [j] = (g[j] - c [j] * x [j + l]) / w[j] ;

}

//solution is in x
return x;

public static void main(String[] args)

294 Essential Java for Scientists and Engineers

{
HeatConductor he = new HeatConductor();
he.solveCrankNicolson();

}

}
In the following output the first column is time, and subsequent columns are the solutions at intervals

h along the rod:

t
0
0
0
0
0
0
0
0
0
0
0

X =

0000
0100
0200
0300
0400
0500
0600
0700
0800
0900
1000

0

0
0
0
0
0
0
0
0
0
0
0

1000

2000
1989
1936
1826
1683
1538
1399
1270
.1153
.1045
.0948

0

0
0
0
0
0
0
0
0
0
0
0

2000

4000
.3956
3789
.3515
.3218
.2932
.2664
.2418
.2193
.1989
.1803

0

0
0
0
0
0
0
0
0
0
0
0

3000

6000
5834
5397
4902
4461
.4047
3672
.3330
.3019
.2738
.2482

0

0
0
0
0
0
0
0
0
0
0
0

4000

8000
.7381
6461
.5843
.5267
.4770
.4321
.3916
.3550
.3219
.2918

0

1
0
0
0
0
0
0
0
0
0
0

5000

0000
7691
6921
6152
5555
5019
4546
4119
3733
.3385
.3069

Note that the method so lveTr iD iag () can be used to solve any tridiagonal system. It has been
made s t a t i c so that it can be moved to a more general home in a numerical methods package.

Summary

• A numerical method is an approximate computer method for solving a mathematical problem
which often has no analytical solution,

• A numerical method is subject to two distinct types of error; rounding error in the computer
solution, and truncation error, where an infinite mathematical process, like taking a limit, is
approximated by a finite process.

• A numerical method can often be implemented perfectly generally as an abstract class. The details
of the mathematical functions required to solve a particular problem can then be supplied by means
of inheritance, without tampering with the abstract superclass.

Exercises

13.1 Try using Newton's method to solve x3 + x - 3 » 0 for some different initial values of XQ to
see whether the algorithm always converges.

13.2 If you have a sense of history, use Newton's method to find a root of x3 ~~ 2x - 5 = 0. This
is the example used when the algorithm was first presented to the French Academy.

13.3 Try to find a non-zero root of 2x = tan(jt), using Newton's method. You might have some
trouble with this one* If you do, you will have discovered the one serious problem with New-
ton's method: it converges to a root only if the starting guess is 'close enough'. Since *close
enough' depends on the nature of f(x) and on the root, one can obviously get into difficul-
ties here. The only remedy is some intelligent trial-and-error work on the initial guess—this

Introduction to numerical methods 295

£

I

0.5

0

-0.5

-1

-1.5

-2

-OK

\ I I

i t i

I I I

\

^ ~

I I I *
0 0.2 0.4 0.6 0.8 1 1.2

X

1.4

Figure 13.8 f{x) = 2x~ tan(jc)

13.4

13.5

13,6

13.7
13.8

is made considerably easier by plotting f(x) (see Figure 13.8). (The derivative of tan(x) is
sec2(x). See Section 13.2 on how to estimate a derivative numerically.)
Write programs which use the class Func t ion to solve the following with Newton's method
(you may have to experiment a bit with the starting values).
Hint: It may help to use Essential Grapher to get an idea of where the roots are.
(a) x4 — x = 10 (two real roots and two complex roots)
(b) .e"~x i= sinx (infinitely many roots)
(c) x3 - &x2 + 11 x -~ 10 = 0 (three real roots)

log.* = cosx (d)
(e) ~~5x3 12x2 + 76x - 79 = 0 (four real roots)
Use the Bisection method to find the square root of 2, taking 1 and 2 as initial values of xi
and XR. Continue bisecting until the maximum error is less than 0.05 (use Inequality (13.2)
of Section 13.1 to determine how many bisections are needed).
Add a new method g e t Root B i s e c t ion to the Func t ion class of Section 13.1 to imple-
ment the Bisection method.
Test it on x3 + x - 3 = 0.
Use the Trapezoidal rule to evaluate j£ x2dx, using a step-length of h = 1.
The luminous efficiency (ratio of the energy in the visible spectrum to the total energy) of a
black body radiator may be expressed as a percentage by the formula

/*7xl0~5

E = 64J77- 4 / x~5(eXM2/Tx - l) " 1 ^
</4xl0-5

where T is the absolute temperature in degrees Kelvin, x is the wavelength in cm, and the
range of integration is over the visible spectrum.
Write a new method g e t l n t e g r a l S i m p s o n of the Func t ion class to implement Simp-
son's rule as given in Equation (13.5).

296 Essential Java for Scientists and Engineers

Taking T = 3500°K, use simp to compute E, firstly with 10 intervals (n = 5), and then with
20 intervals (n = 10), and compare your results.
(Answers: 14.512725% for n = 5; 14512667% for n = 10)

13.9 Use Euler's method to solve the bacteria growth DE (13.8), comparing the Euler solutions
for dt = 0.5 and 0,05 with the exact solution. You should get results like this (after a bit of
cut-and-paste);

t ime d t 0 . 5 d t => 0.05 e x a c t

0
1

5

tla

0 1 0 0 0 . 0 0
.50 1 4 0 0 . 0 0
.00 1 9 6 0 . 0 0

.00 2 8 9 2 5 . 4 7

1 0 0 0 . 0 0
1 4 8 0 , 2 4
2 1 9 1 . 1 2

5 0 5 0 4 . 9 5

tion of 1000 at time t = 0 grows at a rate given by

dN/dt = aN,

1000
1 4 9 1
2225

54598

,00
.82
.54

.15

where a = 0.025 per person per year. Use Euler's method to project the population over the
next 30 years, working in steps of (a) h = 2 years, (b) h = 1 year and (c) h = 0.5 years.
Compare your answers with the exact mathematical solution.

13.11 The springbok (a species of small buck, not rugby players!) population x(t) in the Kruger
National Park in South Africa may be modelled by the equation

dx/dt = (r — bx sin<z*)x,

-2.5 - 2 -1.5 - 1 -0.5 0 0.5

Figure 13.9 A trajectory of Van der Pof's equation

Introduction to numerical methods 297

where r» b> and a are constants. Write a program which reads values for r, b, and a, and
initial values for x and t, and which uses Euler's method to compute the impala population
at monthly intervals over a period of two years,

13.12 The basic equation for modelling radio-active decay is

dx/dt = ~~rx,

where x is the amount of the radio-active substance at time t, and r is the decay rate.
Some radio-active substances decay into other radio-active substances, which in turn also
decay. For example, Strontium 92 \r\ = 0.256 per hr) decays into Yttrium 92 {ri =0.127
per hr), which in turn decays into Zirconium, Write down a pair of differential equations for
Strontium and Yttrium to describe what is happening.
Starting at t = 0 with 5 x 1026 atoms of Strontium 92 and none of Yttrium* use the Runge-
Kutta formulae to solve the equations up to t = 8 hours in steps of 1/3 hr, Also use Euler's
method for the same problem, and compare your results.

13.13 Van der Pol's equation is a second-order non-linear differential equation which may be
expressed as two first-order equations as follows:

dx\/dt=X2

{bc2/dt = c(l - x\)xi - b2x\.

The solution of this system has a stable limit cycle, which means that if you plot the phase
trajectory of the solution (the plot of x\ against xz) starting at any point in the positive x\ - x%
plane, it always moves continuously into the same closed loop. Use the Runge-Kutta formulae
(or Driver) to solve this system numerically, for x\ (0) = 0, and X2(0) = 1. Draw some phase
trajectories for b = 1 and € ranging between 0.01 and 1.0, Figure 13.9 shows you what to
expect.

Appendix A

Keywords

The following keywords in Java are reserved and may not be used as names.

abstract
boolean
break
byte
case
catch
char
class
continue
default

do
double
else
extends
false
final
finally
float
for
if

implements
import
instanceof
int
interface
long
native
new
null
package

private
protected
public
return
short
static
super
switch
synchronized
this

throw
throws
transient
true
try
void
volatile
while

298

Appendix B

Operators

Operator precedence and evaluation order are set out in the following table.

>vel

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

Operators

() [] . (member selection)
+ + - - + - ! (NOT) (type)
* / % (modulus)
+
< < = > > =
= = (equals) ! = (not equals)
A (logical exclusive OR)
&& (logical AND)
| | (logical OR)
= += -= *= / = . . .

Evaluation order

left to right
right to left
left to right
left to right
left to right
left to right
left to right
left to right
left to right
right to left

Note:

• The operators + and - at level 2 are unary, while at level 4 they are binary.
• Parentheses always have the highest precedence.

299

Appendix C

Syntax quick reference

The following sections give examples of code segments to serve as a quick reference for Java syntax.
Angle brackets indicate something which is not to be coded literally but which represents a statement,

an expression, or a condition, e.g. <s ta tement 1>.

C.1 Primitive type declarations

char c; //character

final float g = 9.8; //can't be changed

double y; //+-4.9e-324 to +-1.8e308; 18 figures

double x = le-6; //initialize

float x; //+-1.4e-45 to +-3.4e38; 9 figures

float y = 23.45f; //initialize and cast from double

int i; //-2147483648 to 2147483647

long k; //-9223372036854775808 to 9223372036854775807

C.2 Methods

/* methodName : takes an int and a double as arguments and
* returns a double
*/

public double methodName(int i, double x) { ... }

public double [] methodName(...)
//returns an array of doubles

300

Appendix C Syntax quick reference 301

public static void main(String [] args)
//called when program runs

private boolean methodName(doublet] list)
//takes an array of doubles as argument and returns a boolean

public void methodName' //no arguments or return type

C.3 Classes

import essential.*;
public class MyClass {

private double x;
private int m;

//if necessary
//save file as MyClass.Java

//default constructor (note: no return type)
public MyClass()

x = 0; m = -23;

//parameterized constructor (note: no return type)
public MyClass(double x, int m)

this.x = x; this.m = re-

public double getXO

return x;

public void setX(double x)

this.x = x;

public static void main(String[] args)

MyClass myObj = new MyClass(-1.5, 13);
System.out.printIn(myObj.getX());

C.4 Decisions

i f (i == i)
<s t a t emen t> ;

/ / e q u a l s

302 Essential Java for Scientists and Engineers

if (i != 2)
<statement>;

if ((i < 2) && (j > 3))
{
<statementl>;
<statement2>;

}

if ((i < 1) || (x == 3))
<statement>;

if (x >= 0)
doThis();

else
doThat();

//not equals

//AND

//OR

//semi-colon

//finished is boolean

//if-else-if ladder

if (Ifinished)
<statement>;

if (<conditionl>) {
<statementl>;
<statement2>;

}
else if (<condition2>) {
<statement3>;
<statement4>;

}

else {
<statementi>;
<statementj >;

}

switch (<expression>) //expression must be int or char
{
case 'a':

doThis();
break;

case 'b':
case 'c':
doTheOther();
break;

default:
doNothing();

C.5 Loops

while (<condition>)
{
<statementl>;

Appendix C Syntax quick reference 303

<statement2>;

} • " •

do {
<statementl>;
<statement2>;

} while (<condition>)

for (int i = 1; i <= n; i++) //absolutely no semi-colon here!
{
<statementl>;
<statement2>;
. . . /

}

Appendix D

Solutions to selected exercises

Chapter 1

1.1 public class Stars

{
public static void main(String[] args)
{
System.out.println("Stars");
System.out.printIn("*****");
System.out.println("The End");

}
}

1.3 import essential.*;

public class RequestName

{
public static void main(String[] args)
{
System.out.print("Please enter your surname: ") ;
String surname = Keyboard.readLine();
System.out.print("Please enter your first name: ") ;
String firstName = Keyboard.readLine();
System.out.println(firstName + " " + surname);

}
}

1.5 import essential.*;

public class MultiplyWholeNumbers

{
public static void main(String[] args)
{
System.out.print("Please enter first whole number: ") ;
int firstNum = Keyboard.readlnt();
System.out.print("Please enter second whole number: ") ;
int secondNum = Keyboard.readlnt();
System.out.println(firstNum*secondNum);

}
}

304

Appendix D Solutions to selected exercises 305

•

Figure D.1 Output from running T u r t l e E x l . java

Figure D.2 Output from running Tur t leEx3 . java

1.7 The output is shown in Figure D.l.

1.9 The output is shown in Figure D.2.

1.11 impor t e s s e n t i a l . * ;

p u b l i c c l a s s Graph l
{
public static void main(String[] args)
{
Graph g = new Graph();
g.addPoint(0, 0) ;
g.addPoint(0.5, 3) ;
g.addPoint(1, 4) ;
g.addPoint(2, 4.5) ;
g.addPoint(5, 4.8) ;

g.setAxes(0, 6, 0, 5);

306 Essential Java for Scientists and Engineers

1.12 import essential.*;

public class Graph2

{
public static void main(String[] args)
{
/* calculated 2 points by substituting
* 5 and -5 as x values into the equation
*/

Graph g = new Graph();
g.addPoint(-5, -13) ;
g.addPoint(5, 7);

g.se tAxes(-10, 10, -15, 15);

Chapter 2

2.1 (a) Prints out

New balance: 1090.0

(b) Prints out

New balance: 2180.0

Interest has been calculated on the new balance of 2000.

(c) Prints out

New balance: 2000.0

The original balance has not had the interest added to it (i.e. it hasn't been updated).
(d) public class Complnt

{
public static void main(String[] args)
{

double original_balance, new__balance, interest, rate;
/* have 2 variables to hold the original balance

and the new balance, instead of 1 variable for balance*/
original_balance = 2 000;
rate = 0.09;
interest = rate * original_balance;
new_balance = original_balance + interest;
System.out.printIn("Original balance: " + original_balance +

" and New balance: " + new balance);

2.2 In scientific notation: 1 .234e5, - 8 . 7 6 5 e - 4 , l e - 1 5 , - l e l 2

2.3 Constants not acceptable in Java:
(a) 9 ,87 : a decimal point is represented by a dot and not a comma.
(e) 3 .57*E2: Java does not accept scientific notation with * before the E.
(f) 3 . 57E2 . l : the exponent must be a whole number,
(h) 3 , 57E-2: the same reasoning as for (a).

Appendix D Solutions to selected exercises 307

2.4 Identifiers not acceptable in Java:
(b) a . 2: dot is not acceptable as part of an identifier.
(c) 2a: an identifier cannot begin with a digit.
(d) ' a ' one: apostrophe is not acceptable as part of an identifier,
(h) pay day: identifiers must be single words.
(i) U. S . S . R: same reason as (b).
(k) min*2: * cannot be used in an identifier.
(1) n a t i v e : is a keyword in Java, and therefore cannot be an identifier.

2.5 7, 3, 4, 2, 1, 64.0, 0, 2, 5.0

2.6 float a = If/(2*3) ;
double b = Math.pow(2, 2*3);
double c = 1.5e-4 + 2.5e-2;
double d = Math.sqrt(2);
float e = (3f+4)/(5+6);
float f = (5+3)/(5f*3);
double g = Math.pow(2, Math.pow(3,2));
double h = Math.pow(2*Math.PI, 2) ;
double i = 2*Math.pow(Math.PI, 2) ;
double j = 1/(Math.sqrt(2*Math.PI));
double k = 1/(2*Math.sqrt(Math.PI));
double 1 = Math.pow(2.3*4.5, 1/3f);
double m = (1-(2f/ (3+2)))/ (1+(2f/ (3-2))) ;
double n = 1000*Math.pow(l+(0.15/12), 60);
double o = (1.23e-5 + 5.678e-3)*0.4567e-4;

(a) 0.16666667
(b) 64.0
(c) 0.025150000000000002
(d)1.4142135623730951
(e) 0.6363636
(f) 0.53333336
(g) 512.0
(h) 39.47841760435743
(i) 19.739208802178716
(j) 0.3989422804014327
(k)0.28209479177387814
(1) 2.179282141726763
(m)0.20000000298023224
(n)2107.1813469512354
(o) 2.59876001E-7

2.7 11 .0 , 16 .0 , 1.2, 0 . 3 , 0 .33333334, 0 . 0, 3 . 0, 0 . 0, division by zero, 0 .0

2.8 (a) p + (w/u)
(b) p + (w/ (u+v))
(c) (p+ (w/ (u+v))) / (p+ (w/ (u-v)))
(d) Math, sqrt (x)
(e) Math.pow(y, y+z)
(f) Math.pow(x, Math.pow(y, z))
(g) Math.pow(Math.pow(x, y), z)
(h) x - (Math.pow(x, 3)/(3*2*1)) + (Math.pow(x, 5)/ (5*4*3*2*1))

2.9 public class CelsiusToFahrenheit
{

public static void main(String[] args)
{

float C = 37; //normal human temperature in Celsius

308 Essential Java for Scientists and Engineers

float F = (9*C)/5 + 32;
System.out.printIn("Normal human temperature in Fahrenheit:

+ F + " degrees");

2.10 (a) 20.1168 metres, (b) 165.195 pounds, (c) 72.62 pounds, (d) 176.4 km/hr, (e) 275.716 kPa, (f) 1493.786 calories.
Code for (a):

public class YardsToMetres

{
public static void main(String[] args)
{

int x = 22; //yards
double m = 0.9144 * x; //metres
/*

one yard =36 inches = (36 x 2.54) cm
but one metre = 0.01cm
so 2.54cm = 0.0254 metres
so one yard = (36 x 0.0254) metres

= 0.9144 metres
*/

}
System.out.printIn(x + " yards = " + m + " metres");

2.11 (a) i += 1;
(b) i = i * i * i + j ;
(c) x = (a + b)/(c * d) ;

2.12 (a) The left hand side of an expression statement should have a single variable—this one has two operands and an
operator.
(b) The variable on the left hand side should be one word. Alternatively, the variable on the left hand side should
be of type doub le , not F a h r e n h e i t .
(c) Variable should be on left hand side.

2.13

2.14

2.15

int a = 2, b = -10, c = 12;
double x = (-b + Math.sqrt(b*b - 4*a*c))/(2*a);

double E = 2;
double R = 5;
double C = 10;
double L = 4;
double omega = 2;
double intermediate_expr = (2*Math.PI*omega*L -

(1/(2*Math.PI*omega*C)));
double I = E/(Math.sqrt(R*R +

intermediate_expr*intermediate_expr));

double gallons = 2.5; //2 gallons and 4 pints
double litres = (gallons * 8)/1.76;

//times 8 for pints, divide 1.76 for litres

Appendix D Solutions to selected exercises 309

2.16
System.out.println("Please enter distance in kilometres (e.g. 100)"),
double distance = Keyboard.readDouble();
System.out.println("Please enter petrol used in litres (e.g. 10.34)"]
double petrol = Keyboard.readDouble();

double km_per_litre = distance/petrol;
double litres_per_100km = petrol/(distance/100);

System.out.println("Distance \t\tLitres used \t\tkm/L \t\tL/100km");
System.out.print(distance + "\t\t\t" + petrol + "\t\t\t");
System.out.print((double)Math.round(100*km_per_litre)/100 + "\t\t");
System.out.println((double)Math.round(100*litres_per_100km)/100);

//use Math.round in this way to print out 2" decimal points

2.17 int a = 1;
int b = 2;

int t;

t = a
a = b
b = t

//temporary variable

//store a in temp
//make a equal to be
//make b equal to t (which contains a)

2.18 int a = 3;
int b = 4;

a = a - b;
b = b + a;
a = b - a;

2.19 double r = 0.15;
double L = 50000;
double N = 20;

double intermediate_expr = Math.pow(l + r/12, 12*N);

double P = (r*L*intermediate_expr)/(12*(intermediate_expr - 1)) ;

System.out.printIn("P: $" + (double)Math.round(100*P)/100);

2.20 double P = 800;
double r = 0.15;
double L = 50000;

double numerator = Math.log(P/(P - (r*L)/12));
double denominator = 12*Math.log(1 + r/12);

double N = numerator/denominator;

2.21 x = 2.08333...
a = 4.

2.22 int i = 1;
double a = 0, x = 0;

310 Essential Java for Scientists and Engineers

for (in t i t e r = 1; i t e r <= 4; i ter++)
{

a = a + i ;
x = x + i / a ;

}

2.23 Output is 2.9226. Limit is n.

2.26 d o u b l e sum = 0;

int num_students = 10;

FilelO fl = new FilelO("marks.txt", FilelO.READING);

for (int i = 1; i <= num_students; i++)

{
double mark = f1.readDouble();
sum += mark;

}

double average = sum/num_students;

2.27 double x;
x = Math.random();

if (x < 0.67) //this will occur 2 thirds of the time
System.out.printIn("Heads") ;

else //this will occur 1 third of the time
System.out.println("Tails") ;

2.32 DecimalFormat df = new DecimalFormat("#.00");

double balance = 100000;

double interest_rate = 0;

double deposit = 1000;

System.out.println("Month\t\tInterest Rate\tInterest\tBalance");
System.out.println();

for (int i = 1; i <= 12; i++)

{

if (balance <= 110000)

interest_rate = 0.01;

else if (balance <= 125000)

interest_rate = 0.015;

else if (balance > 125000)

interest rate = 0.02;

double interest = balance*interest_rate; //calculate interest
balance += interest; //add interest to balance
balance += deposit; //deposit made at end of month

Appendix D Solutions to selected exercises 311

System.out.print(i + "\t\t" + interest_rate);
System.out.println("\t\t$ " + df.format(interest) + "\t$ " +

df.format(balance));

}

2.33 int k = 30; // number of terms
double a = 10;
double x = 1;

for (int n = 1; n <= k; n++)

{
x = a * x / n;

if (n%10 == 0) //n%10 is n modulus 10 i.e. remainder of n/10
{ //if n/10 has no remainder, n is divisible by 10

System.out.println(n + " " + x);

}

}//end for

2.34 true, false, true, false, true (false | | true gives true)

2.36 (b) for (char c = ' z' ; c >= 'a'; c-~)

{
System.out.println(c);

}
2.37 for (int line = 1; line <= 20; line++)

{
for (int letter = 1; letter <= 60; letter++)

{
char c = (char)(97 + (Math.random() * 26));
System.out.print(c);

}//end inner for

System.out.println();
}//end outer for

2.38 (a) double first = Math.log(x + x*x + a*a) ;
(b) double second = (Math.exp(3*t) + t*t*Math.sin(4*t))

* (Math.pow(Math.cos(3*t), 2));
(c) double third = 4*(Math.atan(1));
(d) double fourth = 1/(Math.pow(Math.cos(x), 2)) + 1/(Math.tan(y));
(e) double fifth = Math.atan(Math.abs(a/x));

2.39 System.out.print("Please enter a length in metres: ") ;
double metres = Keyboard.readDouble();
double num_inches = metres*39.3 7;
int yards = (int)Math.floor(num_inches/36);

//12 inches in a foot and 3 feet in a yard, so 36 inches in a yard
double remaining_inches = num_inches%3 6; //gives remainder of division
int feet = (int)Math.floor(remaining_inches/12); //12 inches in a foot
double inches = remaining_inches%12; //gives remainder of division

System.out.print(metres + " metres converts to " + yards + " yds ") ;
System.out.println(feet + " ft " + Math.round(100*inches)/100f + " in.");

312 Essential Java for Scientists and Engineers

2.40 double minutes = Keyboard. readDouble () ;

int hours = (int)Math.floor(minutes/60);
double remaining_minutes = minutes%6 0;

System.out.print(minutes + " minutes = " + hours + " hrs ") ;
System.out.println("and " + remaining__minutes + " mins");

double total_seconds = Keyboard.readDouble () ;

int hours = (int)Math.floor(total_seconds/3600);
double remairiing_seconds = total_seconds%3600;

int minutes = (int)Math.floor(remaining_seconds/60);
double seconds = remaining_seconds%6 0;

System.out.print(total_seconds + " seconds = " + hours + " hrs ") ;
System.out.print(minutes + " mins ") ;
System.out.println("and " + seconds + " seconds.");

Chapter 3

3.1 public class UseSquare

{
public static void main (String[] args)
{
Square si = new Square();
si.size = 10;
si.pattern = 'x';
si.draw();

} // main method
}

3.3 class Square

{
int size = 2;
char pattern = '*';
boolean fill = true;

void draw()

{
// draw the first line of chars:
for(int i = 1; i <= size; i++)

System.out.print(pattern);
System.out.println();
// draw the inner rows
for(int row = 2; row <= size-1; row++)
{
System.out.print(pattern); // first char
for(int col = 2; col <= size-1; col++)

if (fill)
System.out.print(pattern);

else
System.out.print(' ') ; // draw space

System.out.println(pattern); // draw last char

// draw the last line of chars:
for(int i = 1; i <= size; i++)

Appendix D Solutions to selected exercises 313

System.out.print(pattern);

System.out.printIn();
} // draw method

} // Square class

3.5 The program does not compile. There are two errors indicating that variables t l and t 2 have not been initialized.
The program should be modified as follows:

public static void main (String[] args)

{
Turtle tl = new Turtle();
Turtle t2 = new Turtle();

3.7 import essential.*;

public class TestStrings

{
public static void main(String[] args)
{
System.out.println("Enter first string:");
String si = Keyboard.readLine();
System.out.println("Enter second string:");
String s2 = Keyboard.readLine();
if (si.equals(s2))
System.out.println("The strings are the same");

else
System.out.println("The strings are different");

}
}

Name: readLine
Arguments: none
Return value: a S t r i n g (whatever the user types in)
Side effect: keystrokes are read in from the keyboard.
Name: home
Arguments: none
Return value: none
Side effect: The state of t changes and consequently the output on the screen changes.
Name: s e t Axes
Arguments: four i n t s
Return value: none
Side effect: The minimum and maximum values of the graph axes change.
Name: T u r t l e
Arguments: a colour
Return value: a T u r t l e object handle
Side effect: space is allocated for a T u r t l e object in memory.

3.11 public class UseRabbitColony

{
public static void main(String[] args)
{
RabbitColony re = new RabbitColony();
for(int year = 1; year <= 15; year++)
{
rc.grow(); // grow rabbit colony for 1 month

314 Essential Java for Scientists and Engineers

int num = re.getNumRabbits();
System.out.printIn("Number of rabbits in year " + year + ": " + num);

}
}

}

3.12 Change the grow () method as follows:

v o i d grow()
{
adults += young; // all the young become adults
young = babies; // all the current babies become young
babies = adults; // all adult pairs produce a baby pair
int die = babies/4; // 1 out of 4 babies die
babies -= die;

}

3.15 Default constructor for T ree class:

/* Default constructor sets height to 0.1 and growth
* rate to lOcm/year
*/

public Tree()

{
height = O.lf;
rate = 10;

}

main method that uses the constructor defined above:

public class UseTree

{
public static void main(String args [])
{
Tree defaultTree = new Tree();
System.out.println("Default Tree height: "

+ defaultTree.getHeight() + "m");
}

}

3.17 It does not compile because variable l o c a l 2 is referenced outside its scope in me thod l . The output would be:

150
200

3.21 import essential.*;
public class Weight

{
public static void main(String[] args)
{
System.out.print("Enter weight in kg: ") ;
String s = Keyboard.readLine();
if (s.endsWith("kg"))
s = s.substring(0, s.length() - 2);

System.out.printIn(s);
}

}

Appendix D Solutions to selected exercises 315

Chapter 4

4.2 int sum = 0 ;

for (int i = 2; i <= 200; i+=2)

{
sum += i;

4.4 DecimalFormat df = new DecimalFormat("00.00");
System.out.println("Degree\tSine\tCosine\tTangent");
System.out.println();
double degree2Radian = Math.PI/180;

for (int degree = 0; degree <= 3 60; degree+=3 0)

{
System.out.print(degree + " \ t ") ;
System.out.print(df.format(Math.sin(degree2Radian*degree)) + " \ t ") ;
System.out.print(df.format(Math.cos(degree2Radian*degree)) + " \ t ") ;
System.out.print(df.format(Math.tan(degree2Radian*degree)));
System.out.println();

4.5 System.out.println("Integer\tSquare root");
System.out.println();

for (int i = 10; i <=20; i++)

{
System.out.println(i + "\t" +

Math.round(Math.sqrt(i)*1000)/1000f);

}

4.6 DecimalFormat df = new DecimalFormat("00.00");

for (int C = 20; C <= 30; C++)

{
double F = 9*C/5f + 32;

// put f in otherwise decimals lost in division
System.out.println(" " + df.format(C) + "\t " + df.format(F));

4.7 for (int t = 1790; t <= 2000; t + = 10)

{
double x = -0.03134* (t - 1913.25);
double P = 197273000/(1 + Math.exp(x));

System.out.println(t + "\t\t" + Math.round(100*P)/100f);

}

4.10 double balance = 1000;
DecimalFormat df = new DecimalFormat("0000.00");
System.out.println("\nYear\tBalance\n");

for (int y = 1; y <= 10; y++) //outer for loop for years

{
for (int m = 1; m <=12; m++)

{
balance = balance + balance*0.01;

}

316 Essential Java for Scientists and Engineers

System.out.println(y + "\t$" + df.format(balance));
}

4.11 (a) double p = 0;
int terms = 100;
double sign = 1;

for (int n = 1; n <= terms; n++)

{
p = p + sign / (2*n-l);
sign = -sign;

}

double approx_PI = p*4;

4.14 double E = 0;

DecimalFormat df = new DecimalFormat("0.0000000");

System.out.printIn("\n x\t\t E");

for (int i = 1; i <= 1000; i+=100)

{
double x = lf/(i*100); //as i grows, x gets closer to 0
E = Math.pow((1 + x), 1/x);
System.out.println(df.format(x) + "\t" + df.format(E));

}
4.16 DecimalFormat df = new DecimalFormat("000.00");

int A = 1000; //amount invested
double r = 0.04; //nominal annual interest rate
int k = 10; //number of years

int n = 1; //number of compounding periods per year

System.out.printIn(" n" + "\t V \n");

for (int i = 1; i < 15; i++)

{

double V = A*(Math.pow((1 + r/n), n*k));

System.out.println(n + "\t" + df.format(V));

n *= 2; //double n, after calculation and printing

}
double formula = A*Math.exp(r*k);
System.out.println("\nValue of formula: " + df.format(formula));

4.17 Graph one = new Graph ();

double a = 0.1;

for (int i = 1; i <= 360; i++)

{
double theta = i*0.1;
double r = a*theta;

Appendix D Solutions to selected exercises 317

double x = r*Math.cos(theta);
double y = r*Math.sin(theta);
one.addPoint(x, y);

}

4.23 /* This class has been adapted from the Dice class given in the chapter;
* the throwUntil method now returns the number of throws taken, and the

* print statements have been removed.
*/

public class Dice

{
public int thro()
{

int numberOnDice = (int) Math.floor(6*Math.random())+1;
return numberOnDice;

}

//this method now RETURNS the number of throws taken
public int throwUntil(int n)

{
int numberOfThrows = 1;
int numberOnDice = thro();

while (numberOnDice != n)

{
numberOnDice = thro();
numberOfThrows++;

}

}
return numberOfThrows;

import essential.*;

public class AveThrowsTillSix

{
public static void main(String[] args)
{

System.out.print
("Please enter the number of times to throw until a 6: ") ;

int n = Keyboard.readlnt();
System.out.println();

Dice d = new DiceO ;
int tot_num_throws = 0 ;

for (int i = 1; i <= n; i++)

{
int num_throws = d.throwUntil(6);
System, out .println ("Number of throws: " + num__throws) ;
tot_num_throws += num_throws;

}

double average_throws = (double)tot_num_throws/n;
System.out.println("Total number of throws: " + tot_num_throws);

318 Essential Java for Scientists and Engineers

System.out.println("Average number of throws: " + average_throws);

}
}

4.27 double x = 1;
int k = 1; //term counter
double error = le-4;
double term = 1; //first term in series
int maxTerms = 20;
double approx_cos = term; //sum of series

while (Math.abs(term) > error && k <= maxTerms)

{
term = -term *x*x/((2*k-l)*(2*k));

//form next term from previous one!
k++;
approx_cos += term;

} //end while

System, out .println ("My cos: " + approx__cos +
" Java cos: " + Math.cos(x));

4.32 import essential.*;
public class GuessingGame

{
//generate random integer between 1 and 10:
private int javaNum = (int) Math.floor(10*Math.random())+1;

public void playO

{
int userGuess = 0;

do

{
System.out.print("Your guess please: ");
userGuess = Keyboard.readlnt();

if (userGuess > javaNum)

{
System.out.println("Too high");

}
else if (userGuess < javaNum)
{

System.out.println("Too low");
}

} while (userGuess != javaNum);

System.out.println("At last!");

}
public static void main(String[] args)
{

GuessingGame g = new GuessingGame();
g.playO ;

}
}

Appendix D Solutions to selected exercises 319

Chapter 5

5.2 import essential.*;

public class NumberTriangle

{
public static void main(String[] args)

{
System.out.print("Enter size of number triangle:");
int size = Keyboard.readlnt(); for(int row=size;
row>0; row--) {

for(int num = row; num>0; num--)
System.out.print(num);

System.out.println();
}

}
}

5.3 public class NewtonQuotient

{
private double h;

public double f (double x)

{
return x*x;

}
public double df (double x)

{
double nQ = (f (x+h)-f (x))/h;
return nQ;

}

public void getNewtonQuotient()

{
h = 1;

for (int i = 1; i <= 20; i++)

{
System.out.printIn(h + " " + df(2)) ;

h = h/10;

}

}

public static void main(String[] args)

{
NewtonQuotient n = new NewtonQuotient();
n.getNewtonQuotient();

}

}

Chapter 6

6.1 (a) int [] num
for (int i

{
num[i]

}

new int[100];
= 0; i < 100; i++)

= i + 1; //so num[0] = 1 ... num[99] = 100

320 Essential Java for Scientists and Engineers

(b) int [] num = new int [50] ;

for (int i = 0; i < 50; i++)

{
num[i] = (i + 1) * 2 ; / / s o num[0] = (0+1)*2 = 2 . . .

/ / num[49] = (49+1)*2 = 100
}

(c) i n t [] num = new i n t [1 0 0] ;

f o r (i n t i = 0; i < 100; i++)
{

num[i] = 100 - i ; / / s o num[0] = 100-0 = 100 . . .
/ / num[99] = 100-99 = 1

}

6.3 i n t [] f = new i n t [3 0] ;

f [0] = f [1] = 1; / / t h e f i r s t two t e r m s i n t h e s e q u e n c e

/ / l o o p t o p u t t h e numbers i n t o an a r r a y
f o r (i n t i = 2 ; i < 30 ; i++) / / s t a r t a t 2 (i . e . t h e t h i r d te rm) b e c a u s e
{ / / t h e f i r s t 2 t e r m s have a l r e a d y b e e n a s s i g n e d

f [i] = f [i - 1] + f [i - 2] ;
}

//loop to print out the first 29 numbers in the array, each followed
//by a comma
for (int i = 0; i < 29; i++)

{
System.out.print(f [i] + ", ") ;

}
//print out the thirtieth number (i.e. in position 29 of the array)
System.out.println(f [29]) ;

6.7 //Note: this class adds only the two new methods - see chapter 3 for
//the other methods to be found in this class

public class EssentialMath

{
public static double mean(double[] data)
{

double sum = 0;
int num_items = data.length;

for (int i = 0; i < num_items; i++)

{
sum = sum + data[i];

}

double mean = sum/num_iterns;

return mean;

}

public static double std(double[] data)

{
double mean = mean(data);
double sum = 0;

Appendix D Solutions to selected exercises 321

int num_items = data.length;

for (int i = 0; i < num_items; i++)

{
sum = sum + Math.pow(data [i] - mean, 2)

double standard_variation = (If/(num_iterns - l))*sum;
double standard_deviation = Math.sqrt(standard_variation)

return standard deviation;

public class TestEssentialMath

{
public static void main(String[] args)
{

doublet] x = {5.1, 6.2, 5.7, 3.5, 9.9, 1.2, 7.6, 5.3, 8.7, 4.4};

System.out.printIn("Mean: " + EssentialMath.mean(x));
System.out.println("Std Dev: " + EssentialMath.std(x));

6.8 public class EssentialMath

public static double furthestFromMean(double[] data)

{
double mean = mean(data);

int num_items = data.length;
double greatest_gap = -1;
int index_of_greatest_gap = -1;

for (int i = 0; i < num_items; i++)
{
double gap = Math.abs(mean - data[i]);
if (gap > greatest_gap)
{
greatest_gap = gap;
index_of_greatest_gap = i;

return data [index__of_greatest_gap] ;

6.9 public class Ant

//The first and second parameters indicate range to
print; the third //parameter indicates the number of
steps that were generated public void
printBarChart(int start, int end, int num_steps) {

322 Essential Java for Scientists and Engineers

int scale = 1; //default increment; used
for scaling if (num_steps > 500) //set scale
value to 2 if number of steps scale = 2;

//is greater than 500; so bar chart height
//is half the length of the
original

System.out.printIn("\nBar chart with scale 1/" +
scale);

for (int i = start; i <= end; i++)

{
System.out.print(i + ": ") ;
int scaled_frequency =
(int)Math.floor(f[i]/(float)scale);

for (int j = 0 ; j < scaled_frequency; j++)
System.out.print("*");

System.out.println();
}

}

} " • "

Chapter 7
7.1 (a) House subpart: room

House superpart: neighbourhood
House subclass: semi-detached house
House superclass: building

(b) CD subpart: track
CD superpart: CD collection
CD subclass: CD-ROM
CD superclass: Storage medium

7.4 i m p o r t e s s e n t i a l . * ;

public class CleverTurtle extends Turtle

{
public void square(int size)
{
penUp();
forward(size/2);
right(90);
backward(size/2);
penDown();
for(int i=l; i<=4; i++)
{
forward(size);
right(90);

}
penUp();
forward(size/2);
left (90);
backward(size/2);
penDown();

}
}

Appendix D Solutions to selected exercises 323

7.5 public class UseCleverTurtle

{
public static void main(String[] args)
{
CleverTurtle t = new CleverTurtle();
int size = 5;
for(int i=l; i<15; i++)
{

t.square(size);
size+=10;

}
}

}

7.7 The two classes below must be stored in separate files:

import essential.*;
public class MyKeyboard extends Keyboard

{
public static Complex readComplex()
{
Complex c = Complex.read();
return c;

}
}

import essential.*;
public class TryMyKeyboard

{
public static void main(String[] args)
{
System.out.println("Enter a complex number: ") ;
Complex c = MyKeyboard.readComplex();
System.out.printIn(c);
System.out.println("Enter a real number: ") ;
double d = MyKeyboard.readDouble();
System.out.println(d);

}
}

7.11
public CleverTurtle()

{
}

public CleverTurtle(Color c)

{
super(c);

}

7.13 F e r t i l i s e d T r e e class including main method:

pub l ic c l a s s F e r t i l i s e d T r e e extends Tree
{

publ ic void grow()
{

i f ((height > 1) && (height<3))
r a t e *= 0.95;

324 Essential Java for Scientists and Engineers

else if (height > 3)
rate *= 0.9;

float add = rate/100; // convert rate to metres per year
height += add; // then increment height

}

public FertilisedTree(float h, float GR)

{
super(h, GR);

}

public static void main(String args[])

{
Tree tl = new Tree(0.If, 20f);
FertilisedTree t2 = new FertilisedTree(0.If, 20f) ;
for (int i =1; i <= 30; i++)
{
t1.grow();
t2.grow();

}
System.out.println("Normal Tree: " + tl.getHeight());
System.out.println("Fertilised Tree: " + t2.getHeight());

}
}

7.14 (a) Class MyObj e c t inherits from the class Obj e c t by default. The method g e t C l a s s is defined in the class
Ob jec t , so is inherited by all classes,

(b) The output is:

class MyObject
class Java.lang.Object

Chapter 8

8.1 import j avax.swing.*;
public class FirstGUI

{
public static void main(String[] args)
{
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setTitle("My first GUI application");
f.setVisible(true);

}
}

8.3 import j avax. swing. * ;
public class SimpleFrame extends JFrame

{
private JButton button = new JButton("Press me!");
private JLabel label = new JLabel("Go on, press the button");
private JTextField text = new JTextField("this is a text field");
private JPanel background = new JPanelO;

public SimpleFrame()

{
background.add(button); // add button to background
background.add(label); // add label to background
background.add(text); // add text field to background

Appendix D Solutions to selected exercises 325

getContentPane().add(background); // add background to frame
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack();

}
}

8.4 import j avax. swing. * ;
public class SimpleFrame extends JFrame

{

private String[] choices = {"red","green","blue"};
private JComboBox cb = new JComboBox(choices);

public SimpleFrame()

{

background.add(cb); // add combo box to background

} ' "
}

8.6 Here is code for FirstWindow:

import j avax.swing.*;
import j ava.awt.event.*;

public class FirstWindow extends JFrame

{

private JButton button = new JButton("Open");

public FirstWindow()

{
button.addActionListener(new ActionListener()
{
public void actionPerformed(ActionEvent e)
{
SecondWindow s = new SecondWindow();
s.setvisible(true);

}
});
getContentPane().add(button); // add button to frame
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack();

}
}

Here is code for SecondWindow, which contains a label simply to display something:

import j avax.swing.*;
public class SecondWindow extends JFrame

{

private JLabel test = new JLabel("This is the 2nd window");

public SecondWindow()

{
getContentPane().add(test); // add label to frame
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

326 Essential Java for Scientists and Engineers

p a c k () ;
}

}

Finally, here is a main method class for opening Firs tWindow:

p u b l i c c l a s s O p e n F i r s t

{
public static void main(String[] args)
{
FirstWindow f = new FirstWindow();
f.setVisible(true);

}
}

8.8 (a) The default layout manager for the content pane of a frame is the border layout. When the label is added to
the frame, the default position is assumed (i.e. the CENTER position). After that, when the button is added, it
is also placed in the CENTER position, thereby 'overwriting' the label,

(b) One of the ways of ensuring that both components display is to specify positions when they are added to the
content pane, e.g.:

back.add(label,BorderLayout.NORTH);
back.add(button,BorderLayout.SOUTH);

8.10
public class ColourChooser extends JFrame

{

JButton reset = new JButton("Reset");

public ColourChooser()

{

reset.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)
{
redSlider.setValue(0);
greenSlider.setValue(0);
blueSlider.setValue(0);

}
});

bottomPanel.add(reset);
bottomPanel.add(exit);

} '"

} ""•

Chapter 9

9.1 The error generated: array index out of bounds.
Reason: No arguments are given, so the array a r g s is empty. Accessing a r g s [0] inside the program therefore
generates an error.

9.2 The output is:

123

Appendix D Solutions to selected exercises 327

Reason: the arguments are stored as strings, so the + operator performs string concatenation, rather than addition.
Solution:

public class CommandLine

{
public static void main(String args[])
{
int numl = Integer.parselnt(args[0]);
int num2 = Integer.parselnt(args[1]);
int num3 = Integer.parselnt(args[2]);
System.out.printIn("The sum of the arguments is: " + (numl + num2 +
num3));

}
}

9.6 import java.io.*;
public class InputChar

{
public static void main(String args []) throws IOException
{
BufferedReader din = new BufferedReader(

new InputStreamReader(System.in));
System.out.print("Enter a character: ") ;
int c = din.readO;
System.out.println("Unicode value of " + (char)c + " = " + c);

}
}

9.8 import java.io.*;
public class DirJava

{
public static void main(String[] args)
{
File dir;
if(args.length != 0)
dir = new File(args[0]);

else
dir = new File (".") ;

if (dir.exists ())
{
if (dir.isDirectory())
{

St r ing [] l i s t = d i r . l i s t O ;
for(int i=0; i<list.length; i++)
{

if (list [i] .endsWith(".Java"))
System.out.println(list[i]);

}
}
else System.out.println("Folder not valid");

}
else System.out.println("Folder does not exist");

}
}

9.10 import java.io.*;
public class TimesTables

{
public static void main(String args[]) throws IOException

328 Essential Java for Scientists and Engineers

{
PrintWriter pout = new PrintWriter(new FileWriter("tables.txt"));
for(int i = 2; i <= 12; i++)
{
for(int j = 1; j <= 12; j++)
pout.println(i + " X " + j + " = " + i*j);

pout. println (" ") ;
}
pout.close ();

}
}

9.11 import java.io.*;
import java.util.*;

public class PrintDown

{
public static void main(String[] args) throws IOException
{
String filelnStr = args[0];
String fileOutStr = args [1] ;
BufferedReader fileln = new BufferedReader(

new FileReader(filelnStr));
PrintWriter fileOut = new PrintWriter(

new FileWriter(fileOutStr));

String line = fileln.readLine(); // read in numbers on same line
StringTokenizer st = new StringTokenizer(line);
while(st.hasMoreTokens())

fileOut.println(st.nextToken());
fileln.close();
fileOut.close();

}
}

Chapter 10

10.1 (a) FileNotFoundException
(b) IndexOutOfBoundsException
(c) NullPointerException
(d) MalformedURLException
(e) IOException

10.2 The exception is thrown if a matrix is constructed with an invalid number of rows or columns (i.e. a number less
than 1).

10.3 A Nul 1 P o i n t e r E x c e p t i o n is generated. Nul l P o i n t e r E x c e p t i o n is a subclass of Runt imeExcept ion ,
so it does not have to be caught or specified, unlike checked exceptions.

10.4 The program does not compile.
Error message: u n r e p o r t e d e x c e p t i o n j a v a . n e t .MalformedURLException . . .
Solution: change the main method header as follows:

p u b l i c s t a t i c v o i d m a i n (S t r i n g [] a r g s) t h r o w s MalformedURLException

10.7 impor t j a v a . i o . * ;

public class ReadBinary

Appendix D Solutions to selected exercises 329

{
public static void main(String[] args) throws IOException
{
boolean finished = false;
int numWords = 0;
DatalnputStream in;
try
{
in = new DatalnputStream(

new FileInputStream("trc_vl.data"));
while(!finished)
{
try {
String s = in.readUTF();
numWords++;

} catch(EOFException e) {
finished = true;
System.out.println("Total number of words: " + numWords);

}
} // while
in.close();

}catch(FileNotFoundException e) {
System.out.println("Could not find file trc_vl.data");
System.exit(0);

} // end of try

} // end of main

}

Chapter 11

11.3 double numberOfHeads = 0;
int numberOfSpins = 1000;
doub1e randomNumber;

for (int i = 1; i <= numberOfSpins; i++)

{
randomNumber = Math.random();
if (randomNumber < 0.5)

numberOfHeads++;
}

double probabilityOfHeads =
(double) numberOfHeads/numberOfSpins*100;
//express as a percentage

System.out.println("Probability of getting heads: "
+ probabilityOfHeads + "%") ;

11.6 /* This codes "shuffles" the numbers 1 to 99 by
* starting with a sorted array of the numbers 1 to 99

* and swopping them at random
*/

int [] bingo = new int[99];
int n, temp;

for (int i = 0; i <= 98; i++)
bingo[i] = i+1;

330 Essential Java for Scientists and Engineers

for (int i = 0; i <= 98; i++)
{

n = (int) (99*Math.random());
temp = bingo[n]; // swop elements n and i
bingo[n] = bingo [i];
bingo[i] = temp;

}

for (int i = 0; i <= 98; i++)

{
if (i%10 == 0)

System.out.printIn();
System.out.print(bingo[i] + " ");

}

11.7 int numberOfPoints = 10000;
int numberlnsideCircle = 0;
double x, y;

for (int i = 1; i <= numberOfPoints; i++)

{
x = Math.random();
y = Math.random() ;
if (x*x + y*y < 1)

numberInsideCircle++;
}

System.out.println("MonteCarloPi: "
+ 4.0*numberInsideCircle/numberOfPoints);
//numberlnsideCircle only counts points inside the
//first quadrant so we multiply by 4

11.8 Theoretically (from the binomial distribution), the probability of a DFII crashing is 1/4, while that of a DFIV
crashing is 5/16; more can go wrong with it since it has more engines!

11.10 On average, A wins 12 of the possible 32 plays of the game, while B wins 20, as can be seen from drawing the
game tree. Your simulation should come up with these proportions. (However, it can be shown from the tree that
B can always force a win, if she plays intelligently.)

Chapter 13

13.4 (a) Real roots at 1.856 and -1.697, complex roots at -0.0791 ± 1.780/.
(b) 0.589, 3.096, 6.285, . . . (roots get closer to multiples of n).
(c) 1, 2, 5.
(d) 1.303
(e) -3.997,4.988,2.241, 1.768.

13.5 Successive bisections are: 1.5, 1.25, 1.375, 1.4375 and 1.40625. The exact answer is 1.414214..., so the last bisection
is within the required error.

13.7 22 (exact answer is 21.3333...)

13.8 With 10 intervals (n = 5), the luminous efficiency is 14.512725%. With 20 intervals it is 14.512667%. These
results justify the use of 10 intervals in any further computations involving this problem. This is a standard way
of testing the accuracy of a numerical method: halve the step-length and see how much the solution changes.

13.10 The exact answer, after 30 years, is 2 117 (1000 eflr).

Appendix D Solutions to selected exercises 331

13.12 The differential equations to be solved are

dS/dt = -r{S,

dY/dt = riS-r2Y.

The exact solution after 8 hours is S = 6.450 x 1025 and Y = 2.312 x 1026.

This Page Intentionally Left Blank

Index

*, 10, 27
+, 10, 27
++,28
+=,29
- ,27
- - , 28
A 27
/* ... *A 12
/A 12
; , 8
=,11,29
>, 199
%, 27
7T, 108

estimation of, 239

abstract class, 154
a b s t r a c t keyword, 154
abstract method, 154
Abstract Window Toolkit, 160
access modifier, 70, 150

package (default), 70
p r i v a t e , 70
p r o t e c t e d , 70
p u b l i c , 70

Act ionEvent class, 167
A c t i o n L i s t e n e r interface, 165
ac t ionPer fo rmed method, 166
actual parameter, 68
add method, 163
a d d A c t i o n L i s t e n e r method, 165
adjacency matrix, 245
aggregation, 143
AND, 43
anonymous class, 167
Ant class, 128, 139
API, 84
applet, 15
Applet Viewer, 16

Application Programmer's Interface, 84
application template, 7
argument, 63
array, 123

declaration, 125
indexing, 125
initialization, 125
length, 127
length of multi-dimensional, 133
motivation, 123
multi-dimensional, 129
of objects, 133
of S t r ings , 134
passing to methods, 128

sorting, 134
two-dimensional, 129
assignment, 11, 29
assignment operator, 29
atomic components, 162
attribute, 58
AWT, 160

backslash, 202
bacteria division, 230
bacteria growth, 240, 275
bar chart, 139
base class, 144
basic controls, 162
binary, 3
binary digit, 23
binary file, 202, 217
binomial coefficient, 89
Bisection method, 269
bit, 23
block markers, 8, 21, 34
boolean expression, 40
boolean variable, 43
Borde rFac to ry class, 169
BorderLayout manager, 168, 170

333

334 Index

b r e a k , 45
buffer, 201
Buf f e r e d R e a d e r class, 201, 205
bug, 114
byte, 23
bytecode, 4, 7

call-by-reference, 76
call-by-value, 76
camel caps, 25
C a r d class, 140
case sensitivity, 6, 25
catch or specify requirement, 213
c a t c h statement, 216
C h a n g e L i s t e n e r interface, 173
chaos, 112, 287,288

butterfly, 289
trajectory, 290

c h a r , 45
character, 45
checked exception, 214
class, 12, 22, 56

abstract, 154
anonymous, 167
nested, 166

. c l a s s file, 7
class hierarchy, 143
class provider, 56
class user, 56
C l e v e r T u r t l e class, 146, 157, 158
code reuse, 146
coercion of type, 24
C o l o r class, 170
colour chooser application, 170
C o l o u r C h o o s e r class, 171, 196
command line parameters, 198
comment, 11
common delimited, 204
C o m p a r a b l e interface, 156
compareTo method, 156
compilation errors, 114
compiler, 3
compiling

explained, 7
Java, 6

Complex class, 157, 267
complex numbers, 267
complex roots of an equation, 267
component, 162

border around, 169
button, 162
combo box, 195
frame, 161
hierarchy, 170
label, 164
layout, 167
list, 195
panel, 164

slider, 170, 172
text field, 195

composition, 143
concrete example, 130
concrete method, 155
constant, 81
constructor, 13, 64, 72

default, 65, 73, 151
inheritance, 151
parameterised, 65

container, 162
content pane, 163
C o n v e r t class, 82
Crank-Nicolson method, 290
current directory, 207

data member, 58
data type, 23
Debugger, 119
debugging, 114
decimal places, restricting, 23
D e c i m a l F o r m a t , 96
decrement operator, 28
default constructor, 65, 73, 151
d e l e t e method, 202
delimiter, 204
derived class, 144
determinant, 259
determinate repetition, 33, 89
dice, rolling, 41
differential equation, 274

Driver, 284
systems, 280

directed network, 245
disk storage, 59
division operator, 27
d o - w h i l e , 104
d o u b l e , 11
D o u b l e . p a r s e D o u b l e , 201
d r a w L i n e , 189
Driver, 284

editor, 4
eigenvalue, 251
eigenvector, 252
ellipse, equation of, 112
encapsulation, 55
end user, 56
e n d s W i t h method, 207
EOFExcep t ion , 218
e q u a l s method, 63
error

compilation, 114
logical, 119
rounding, 119
runtime, 117
syntax, 114

escape sequence, 45
Essential Grapher, 15, 91

e s s e n t i a l package
Complex, 157
F i l e l O , 38
Graph, 14, 92
help on, 13
Keyboard , 9
importing, 10, 13
installing, 6
M a t r i x , 132, 222
T u r t l e , 12

E s s e n t i a l M a t h class, 139, 214
Euler's method, 275
event, 161
event loop, 161
event-driven, 161
exception, 209

c a t c h , 215
checked, 214
defining, 266
handle, 214
handler, 217
runtime, 214
t h r o w , 212

E x c e p t i o n class, 210
exclusive OR, 43
e x i s t s method, 202
exponential growth, 275
expression, logical, 40
e x t e n d s keyword, 145

factorial, 36
F e r t i l i s e d T r e e class, 158
Fibonacci numbers, 137
field, 58
file

binary, 217
common delimited, 204
handling, 202
random access, 202
reading, 203
sequential access, 202
writing, 203

F i l e class, 202
F i l e input/output, 201
F i l e l O , 38
F i l e N o t F o u n d E x c e p t i o n , 213, 218
f i n a l keyword, 81
f i n a l l y block, 221
f i n a l l y statement, 221
finite difference scheme, 290
f l o a t , 11
floating point numeric constant, 24
F l o w L a y o u t manager, 167, 171
f o r statement, 34

index, 34
iteration count, 98
nested, 96

formal parameter, 68
Fourier series, 109

fractal, 112, 189
frequency distribution, 128, 129

Gauss elimination, 291
Gauss reduction, 258
Gaussian random number, 229
generalization, 144
g e t methods, 71
g e t C o n t e n t P a n e method, 163
g e t V a l u e method, 173
Gibbs phenomenon, 109
Graph class, 14, 92, 138

s e t D r a w T i t l e method, 96
setting axes, 15
s e t T i t l e method, 96

Grapher, 91
graphical user interface, 160
G r i d L a y o u t manager, 171, 173, 195
guessing game, 100
GUI, 160

planning, 170

half-life, 232
Halley's comet, 112
handle, 60, 63, 75, 80
hexadecimal, 24
history of Java, 3

IDE, 4
identifier, 25
identity matrix, 244
i f , nesting, 44
i f - e l s e , 40
i f - e l s e - i f ladder, 40
ill-conditioning, 259, 260
I l l e g a l A r g u m e n t E x c e p t i o n , 210
i m p l e m e n t s keyword, 155
i m p o r t statement, 65
increment operator, 28
indeterminate repetition, 89, 98
inheritance, 143
input and output, 9
input from the keyboard, 9
input stream, 199
I n p u t S t r eam class, 200
I n p u t S t r e a m R e a d e r class, 200
insertion sort, 134
installing Java 2, 4
integer, 10

numeric constant, 24
wrap-around, 25

I n t e g e r . p a r s e l n t , 201, 210
Integrated Development Environment, 4
interface, 57, 155
i n t e r f a c e keyword, 155
intermediate container, 162
Internet stream, 205
interpolation, 140
interpreted, 4

336 Index

inverse of a matrix, 256
i n v e r t method M a t r i x , 256
invoke a method, 59
I O E x c e p t i o n , 215, 218
i s D i r e c t o r y method, 202
iterated function sequence, 189
iteration count of f o r loop, 98

j a r command, 84
j a r file, 66, 84
Java 2, 4

installing, 4
Java

API, 84
applet, 15
application, 15
bytecode, 4, 7
compiler, 4
debugger, 119
Foundation Classes, 160
history, 3
on the WWW, 15
platform independence, 4
the language, 4
Virtual Machine, 4, 7

j a v a . i o , 11, 198
J a v a , l a n g , 200
j a v a . n e t , 206
J B u t t o n component, 162, 165
JComboBox component, 195
JFC, 160
J F r a m e component, 161
Jikes compiler, 5
J L a b e l component, 164
J L i s t component, 195
J P a n e l component, 164
J S l i d e r component, 170, 172
J T e x t F i e l d component, 195
Julia set, 189
JVM, 4, 7

K e y b o a r d class, 9
K e y b o a r d . r e a d l n t , 10
K e y b o a r d . r e a d l i n e , 10
Knuth, 102

layout manager, 167
length of two-dimensional array, 133
Leslie matrix, 249
limit of sequence, 37
linear equations, solution, 256
linear interpolation, 140
l i s t method, 202
listener, 161, 165
loan repayment, 96
local variable, 75
logarithmic spiral, 110
logical error, 119
logical expression, 40

logical operator, 42
loop

determinate, 89
indeterminate, 98

Lorenz, 288

machine code, 3
machine language, 3
m a i n method, 8, 83
Mal fo rmedURLExcep t ion , 222
Mandelbrot set, 192
Markov chain, 252
Math methods, 46
Math .pow, 27
Ma th , random, 39, 129, 227
Math , r o u n d , 23
M a t h . s q r t , 27
matrix, 131

determinant, 259
identity, 244
inverse, 256
Leslie, 249
multiplication, 131, 242
transpose, 260

M a t r i x class, 132, 222, 242
i n v e r t method, 256

mean, 138
memory, 59
memory location, 21
method, 13, 22, 58, 63

abstract, 154
argument, 63
return value, 64
returning an array, 133
signature, 64, 149
static, 22

modulus operator, 27
Monte Carlo estimation of n, 239
multi-dimensional array, 129

length, 133
multiplication, 10
mutator methods, 71

name hiding, 116
naming convention, 83
nested class, 166
nested f o r s , 96
nested i f s, 44
new keyword, 13, 65
Newton quotient, 121, 270
Newton's method, 35

complex roots, 267
in general, 262

n e x t T o k e n method, 205
normally distributed random number, 229
NOT, 43
n u l l keyword, 60
n u l l reference, 60
N u m b e r F o r m a t E x c e p t i o n , 210, 215

numeric constant, 24
numerical differentiation, 270
numerical integration, 272
numerical method, 262

Bisection method, 269
differential equation, 274
differentiation, 270
Driver, 284
Euler's method, 275
integration, 272
Newton quotient, 270
Newton's method, 262
partial differential equation, 290
predictor-corrector method, 277
Runge-Kutta method, 279
Simpson's rule, 274
solution of equations, 262
systems of differential equations, 280
Trapezoidal rule, 272

numerical solution of differential equations, 274
numerical solution of equations, 262

O b j e c t class, 152
object handle, 75
object-oriented approach, 55
objects 55, 56

using, 12
octal, 24
operator, 27

arithmetic, 27
decrement, 28
division, 27
increment, 28
logical, 42
modulus, 27
relational, 40

OR, 43
exclusive, 43

order of statements, 68
output redirection, 199
output stream, 199
overloading, 64
overriding, 64

methods, 148

p a c k method, 163
package, 65, 70

making, 84
package-level access, 70
p a i n t C o m p o n e n t , 189
parameter

actual 68
formal, 68

parameterized constructor, 65
p a r s e D o u b l e method, 201
p a r s e l n t me thod , 201, 210
partial differential equation, 290
parts hierarchy, 143
passing objects to methods, 75

PATH variable, 4
p e r s i s t e n t , 201
Poisson process, 236
pow, 27
precedence

arithmetic operators, 27
increment and decrement operators, 28

predator-prey model, 280
predictor-corrector method, 277
prime number

largest known, 102
test, 101

primitive data type, 23, 56
variable, 25

printing to screen, 8
P r i n t W r i t e r class, 203, 205
p r i v a t e keyword, 70
programming, introduction, 3
programming style, 46
projectile trajectory, 91, 102
p r o t e c t e d keyword, 70, 150
p u b l i c keyword, 70, 83

quadratic equation, 136

R a b b i t C o l o n y class, 66
radio-active decay, 230, 240
random access memory, 21
Random class, 228

n e x t D o u b l e method, 229
n e x t G a u s s i a n method, 229
s e t S e e d method, 229

random number, 39
generation, 227
normal, 229
seeding generator, 228
uniform, 227

random walk, 129, 233, 253
reachability matrix, 246
reading from text file, 37
reading in numbers, 10
r e a d M a t r i x method, 247
real number, 11
relational operator, 40
residual, 258
r e t u r n keyword, 69
return value, 64
reusing code, 146
rolling dice, 41, 230
root of an equation , 262
rounding error, 119, 270
Runge-Kutta method, 279
running Java, 7
runtime error, 117
runtime exception, 214
R u n t i m e E x c e p t i o n , 210

scalar product, 131
scientific notation, 24

338 Index

scope, 74
seeding the random number generator, 228
semi-colon, 8
sensitivity analysis, 261
series for n, 108
s e t methods, 71
setBackground method, 170, 173
se tCo lo r , 192
se tDrawingSty le method, 138
s e t Layout method, 168
se tPo in tShape method, 138
s e t Pre f e r r e d S i z e method, 172
s e tTex t method, 165
s e t V i s i b l e method, 161
side effect, 63
signature of a method, 64, 149
Simpson's rule, 274
simulation, 41, 129

bacteria division, 230
bacteria growth, 240
drunk's walk, 255
estimation of n, 239
game of eights, 240
half-life, 232
radioactive decay, 230, 240
random walk, 233
rolling dice, 230
spinning coins, 229
traffic flow, 236

solving quadratic equation, 136
specialization, 144
spinning coins, 229
spiral

Archimedes, 110
logarithmic, 110

s q r t , 27
Square class, 58
square root by Newton's method, 35
stable age distribution, 252
standard deviation, 138
s ta teChanged method, 173
s t a t i c , 83

keyword, 80
method, 22, 81

stream, 199
string, 8

concatenation, 10
S t r i n g class, 62
S t r i n g T o k e n i z e r class, 204
style, 46
sub-part, 144
subclass, 144
sunflower head, 111
super keyword, 146, 151
super-part, 144
superclass, 144

Swing, 160
tutorial, 195

s w i t c h - c a s e , 44
syntax error, 114
System class, 12, 200
System, e r r , 199
System, in, 197, 199
System.out , 8, 199
System. o u t . p r i n t , 8
S y s t e m . o u t . p r i n t I n , 9
systems of differential equations, 280

text file, 202
t h i s keyword, 74
throw exception, 212
throw statement, 212
throws clause, 213
tokenizing, 204
top-level container, 162
t o S t r i n g method, 153
traffic flow, 236
transpose, 260
Trapezoidal rule, 272
Tree class, 71
tridiagonal matrix, 291
trip count of fo r loop, 98
truncation error, 294
t r y block, 216
t r y statement, 216
t r y - c a t c h statement, 216
turtle, 30
T u r t l e class, 12, 57, 65

Unicode, 207
uniformly distributed random number, 227
upcasting, 24
URL class, 205

Van der Pol's equation, 297
variable, 10, 21, 25

primitive data, 25
visibility, 74
vo id keyword, 64, 83

whi le , 99
versus do-whi le , 105

white space, 205
wildcard, 66
world coordinates, 186
wrap around, of integer types, 25

zero of a function, 262
ZigZagTur t le class, 148, 158

	Essential Java for Scientists and Engineers
	Copyright Page
	Contents
	Preface
	Acknowledgements
	Part l: Essentials
	Chapter 1. Getting going
	1.1 Introduction to programming
	1.2 Setting up your computer for programming in Java
	1.3 Writing your first Java program
	1.4 Input and output
	1.5 Comments
	1.6 Using objects
	1.7 Java on the WWW (optional)

	Chapter 2. Java programming basics
	2.1 Compound interest again
	2.2 Primitive data types
	2.3 Names
	2.4 Vertical motion under gravity
	2.5 Operators, expressions and assignments
	2.6 Repeating with for
	2.7 Deciding with if
	2.8 Characters
	2.9 Math methods
	2.10 Programming style

	Chapter 3. Solving a problem in Java
	3.1 Introduction
	3.2 The class provider, class user and end user
	3.3 What are objects and classes?
	3.4 Writing and using a simple class
	3.5 How memory works
	3.6 The String class
	3.7 Understanding methods
	3.8 Example: simulating a rabbit colony
	3.9 Access modifiers
	3.10 Example: simulating the growth of trees
	3.11 Scope
	3.12 More on object handles
	3.13 The static keyword
	3.14 Naming conventions
	3.15 Using the Java API
	3.16 Making your own package (optional)

	Chapter 4. More on loops
	4.1 Determinate repetition with for
	4.2 Indeterminate repetition with while

	Chapter 5. Debugging
	5.1 Compilation errors
	5.2 Run-time errors
	5.3 Errors in logic
	5.4 Rounding errors

	Chapter 6. Arrays and matrices
	6.1 Introduction
	6.2 The basics of arrays
	6.3 Passing arrays to methods
	6.4 Frequency distributions: a simple bar chart
	6.5 Multi-dimensional arrays
	6.6 Arrays of objects
	6.7 Sorting an array

	Part II: More advanced topics
	Chapter 7. Inheritance
	7.1 Introduction
	7.2 Inheritance in Java
	7.3 Constructors and inheritance
	7.4 The Object class
	7.5 Abstract classes and interfaces

	Chapter 8. Graphical user interfaces (GUIs)
	8.1 Introduction
	8.2 Building a Swing application
	8.3 Arranging components
	8.4 A colour chooser application
	8.5 Painting
	8.6 Drawing mathematical graphs
	8.7 Fractals

	Chapter 9. Input/output
	9.1 Introduction
	9.2 Input through command line parameters
	9.3 Input from the keyboard without the essential package
	9.4 Streams
	9.5 File input/output
	9.6 Manipulating data
	9.7 Streams and the Internet

	Chapter 10. Exceptions
	10.1 Introduction
	10.2 Exceptions in Java
	10.3 Throwing exceptions
	10.4 Handling exceptions
	10.5 Exceptions and file input

	Part III: Some applications
	Chapter 11. Simulation
	11.1 Random number generation
	11.2 Spinning coins
	11.3 Rolling dice
	11.4 Bacteria division
	11.5 Radioactive decay
	11.6 A random walk
	11.7 Traffic flow

	Chapter 12. Modelling with matrices
	12.1 Using the Matrix class
	12.2 Networks
	12.3 Leslie matrices: population growth
	12.4 Markov processes
	12.5 Linear equations

	Chapter 13. Introduction to numerical methods
	13.1 Equations
	13.2 Numerical differentiation
	13.3 Integration
	13.4 First-order differential equations
	13.5 Runge–Kutta methods
	13.6 Driver: a GUI to solve ODEs
	13.7 A partial differential equation

	Appendix A: Keywords
	Appendix B: Operators
	Appendix C: Syntax quick reference
	C.1 Primitive type declarations
	C.2 Methods
	C.3 Classes
	C.4 Decisions
	C.5 Loops

	Appendix D: Solutions to selected exercises
	Index

