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Preface

The main aim is to reveal a method of research in mathematics, called by
us quantitative study of the defect of property, which can be used in var-
ious fields of mathematics. OQur viewpoint over the mathematical entities
is that of an analyst, even if they belong to algebra, geometry, topology
or logic. We examine in this monograph in a systematic way, the quanti-
tative characterizations of the ”deviation from a (given) property”, by our
terminology called ”defect of property”, in: Set Theory, Topology, Measure
Theory, Real Function Theory, Complex Analysis, Functional Analysis, Al-
gebra, Geometry, Number Theory and Fuzzy Mathematics. We also present
a great variety of applications and open problems. To our knowledge, it
1s the first time in literature that a book has systematically studied this
direction of research. This book is interdisciplinary in mathematics and
contains the research of both authors over the past six years in these sub-
jects. It also references most of the works of other main researchers in these
areas. Each chapter can be read independently. The introduced concepts
are simple and the proving methods are rather elementary, that is, mak-
ing this material accessible to undergraduate and graduate students and
researchers. The large spectrum covered by the topic, makes impossible to
have a complete bibliography, which is only introductory and depends on
the authors’ preferences. The book is of wide audience and it is good for
researchers, undergraduate and graduate students, courses and seminars.

Oradea, August 1, 2001 The authors
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Chapter 1

Introduction

To convey some of the essence of this monograph to the reader, in this
chapter we briefly present some important motivation for writing it and its
main results. For the convenience of the reader, the results are numbered
as they are in their respective chapters.

1.1 General Description of the Topic

It is well-known that the definition of a mathematical concept consists in
the statement of one or several properties (axioms) that must be verified
by some mathematical objects. More exactly, we can describe this by the
followings.

Let U be a given abstract set of elements and let us denote by P a
specific property of some elements in /. Obviously, P divides U into two
disjoint sets:

Up = {z € U; z has the property P}
and
Uz = {& € U; ¢ does not satisfy the property P}.

A powerful tool of study of Up and Uz might be the introduction (not
necessarily in an unique way) of a quantity F (z), defined for all « € U with
values in a normed space (Y, ]||-]]) (which in general is R or C), having the

property
x € Up if and only if E (z) = 0y.

1



2 Introduction

In this case, for £ € Up we necessarily have E (z) # Oy and consequently
the quantity ||E (2)|| can be considered that it measures the ”deviation” of
z from the property P.

We will call ||E (z)|| as defect of property P for the element z € U.

As a consequence, the following kind of application holds: given a family
of operators Ay : U — Y,V € T, which satisfy Ay (z) = 0y,Vz € Up,A €
I, another family of operators By : Y — Y, A € I', can be constructed such
that By (Oy) = Oy,VA € T and Ay (z) + By (E(2)) = Oy,Ve € U, A €T
(or more general, ||Ax (z)|] < C||Br(E(z))l,Ve € U, A € T, with C a
positive constant). In other words, a formula valid for all z € Up, can be
transformed by a ”disturbance” factor (which depends on F (z)), into a
more general formula, valid for all z € U.

Many well-known concepts in various fields of mathematics can be de-
scribed by this scheme: the measures of noncompactness (defects of com-
pactness, in our terminology) that measure the deviation of a classical set
in a topology from the property of compactness, the measure of nonconvex-
ity (defect of convexity, in our terminology) that measures the deviation of
a set in normed linear spaces from the property of convexity, the moduli
of oscillation and of continuity (defects of continuity, in our terminology)
that measure the deviation of a function from the property of continuity,
the minimal displacement of points under mappings (defect of fixed point,
in our terminology) that measures the deviation of a mapping from the
property of fixed point, the areolar derivative (defect of holomorphy, in our
terminology) that measures the deviation of a complex function from the
property of holomorphy, and so on.

Beside these, in this monograph we introduce and study many other
defects of property, as follows: measures of noncompactness for fuzzy sets,
fuzzy and intuitionistic entropies, defect of additivity, subadditivity, su-
peradditivity, complementarity, monotonicity for set functions, defect of
monotonicity, convexity (concavity), differentiability, integrability for real
functions, defect of equality for inequalities, defect of balancing, absorption,
orthogonality for sets in normed linear spaces, defect of sublinearity for
functionals, defect of symmetry, permutability, derivation for linear opera-
tors, defect of commutativity, associativity, identity element, invertibility,
idempotency for binary operations, defect of orthogonality and parallel-
ness in Euclidean and non-Euclidean Geometries, defect of curvature and
of torsion in Geometry, defects of properties in Number Theory, defects of
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properties in Fuzzy Mathematics.

Many applications and open problems also are presented.

Because of the great variety, it would be impossible to make a very
deep study of all the above concepts by this book. This task is left in many
cases to the reader, the main goal of the book being only to put in evidence
a method of research called quantitative study of the defect of property,
which gives the opportunity to examine from the same viewpoint, basic
concepts 1n various fields of mathematics.

1.2 On Chapter 2: Defect of Property in Set Theory

In this chapter we consider the measures of fuzziness as measuring the ”de-
viation” of a fuzzy set from the concept of classical set, that is as measuring
the defect of crisp (classical) set and the intuitionistic entropies as measur-
ing the “deviation” of an intuitionistic fuzzy set from the concept of fuzzy
set, that is as measuring the defect of fuzzy set. Then, some applications
to the determination of degree of interference (mainly in the geography of
population), to description of systems performance and to digital image
processing are given.

We denote by FS(X) = {A|A: X —[0,1]} the class of all fuzzy sets
on X.

A general definition of the measure of fuzziness is the following (see
Rudas-Kaynak [181]): ‘

Definition 2.1 A measure of fuzziness is a positive real function d. defined
on F{X) C FS{X), that satisfies the following requirements:

(i) fAe F(X),A(z) € {0,1},Yz € X then d.(A) =0.

(iz) If A < B then d.(A) < d.(B), where A < B means that A is
sharper than B.

(#5¢) If A is maximally fuzzy then d. (A) assumes its maximum value.

Let us consider (X, A, p) a measure space and let us denote

Fa(X)={A€ FS(X); A is A-measurable} .

Definition 2.4 Let (X,.4) be a measurable space and t € (0,1). A -
measure of fuzziness is a function df : F4(X) — R that satisfies the
following conditions:
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(i) If A(z) € {0,1},Vz € X then df (A4) = 0;

(ii) If A <; B then di(A4) < di(B), where A <; B if and only if
A(z) < B(z) for B(z) <t and A(z) > B(z) for B(z) > t;

(i) If A(z) = ¢,V € X then di(A) is the maximum value of df.

Definition 2.5 Let (X, .A, ) be a measure space and t € (0,1). A function
st F4(X) — R that satisfies the following conditions:

(2) st(A) = 0if and only if A(z) € {0,1},p-a.ez € X;

(#1) If A <; B then st(A) < st(B);

(i) sL(A) is the maximum value of s% if and only if A(z) = ¢, p-a.e.
reX,

is called strict t-measure of fuzziness with respect to p.

Definition 2.6 Let N be a fuzzy complement. A t-measure of fuzziness
is called symmetrical with respect to N (or N-symmetrical) if d’(A4) =
dL(AN), VA € Fa4(X).

A family of t-measures of fuzziness is given by

Theorem 2.3 Let X be a finite set, t € (0,1) and h : Ry = R increasing,
such that h(0) = 0, (92),ex 9= : [0,1] = Ry increasing on [0,1] and
decreasing on [t, 1], such that g-(0) = g,(1) = 0,Vo € X and g.(t) is the
mazimum value of all functions g.,x € X. The function d', : FS(X) - R
defined by

d'(A) = h (Z 9o (A(@))

zeX

is a t-measure of fuzziness. If, in addition,
gz(a) = gz (N(a)),Va € [0,1},Ve € X,

where N is a fuzzy complement, then dt is a N-symmetrical t-measure of
fuzziness.

Under additional conditions, we obtain a family of strict {-measures of
fuzziness.

Theorem 2.4 If the functions h and (g:),cx satisfy the hypothesis in
Theorem 2.3 and, in addition, h is strictly increasing, (9z),cx are strictly

increasing on [0,t] and strictly decreasing on [t,1], then the function s :
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FS(X) — R defined by

se(A) = h (}: 2 (A(w))>

reX

15 a strict t-measure of fuzziness which is N-symmetrical if gy(a) =
9z (N(a)), Va € [0,1],Vz € X, where N is a fuzzy complement.

Other families of ¢-measures of fuzziness can be obtained by using the
concept of ¢-norm function in the sense of Vivona [217].

Definition 2.7 Let ¢ € (0,1) and (X, A4, 1) be a measure space. An A-
measurable function with respect to the first variable, ¢, : X x[0,1] — [0, 1]
that satisfies the properties

(3) ¢e(z,0) = pi(z,1) = 0,Vz € X;

(1) ¢¢(z,-) is increasing on [0,%] and decreasing on [t, 1];

(#52) pe(2,t) = 1, Vz € X,
is called t-norm function.
Theorem 2.5 Let t € (0,1),(X,.A, 1) be a measure space and ¢; : X %
[0,1] = [0, 1] @ ¢-rorm function. The function d?t : F4 (X) — [0, 1] defined
by

ag(A) = / o (2, A(z)) dp

X

is a t-measure of fuzziness. If N :[0,1] — [0,1] is a fuzzy complement and
the t-norm function p; verifies

ot (z,N(a)) = ¢: (z,a),Yz € X,Va € [0,1],
then the t-measure of fuzziness d?t(A), defined as above, is N-symmetrical.

An intuitionistic fuzzy set (see e.g. Atanassov [5]) A on X, is an object
having the form

A= {(z,pa(z),vale)) : 2 € X},

where the functions pa,va : X — [0,1] define the degree of membership
and the degree of non-membership of the element £ € X to the set 4 C X,
respectively, and for every z € X,

pa(z) +va(z) <L
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We denote by IFS(X) the family of intuitionistic fuzzy sets on X.
Let us consider (X,.A,m) a finite measure space and let us denote by
T4 (X) the family of all A-measurable intuitionistic fuzzy sets on X.

Definition 2.9 A real function dy : T4 (X) — Ry is called an intuitionistic
entropy (on Z4 (X)) if the following properties are satisfied:
(i) dy(A) = 0 if and only if pa(z) +va(z) =1, mae. z € X;
(i) dy(A) is maximum if and only if pa(z) = va(z) =0, m-ae. z € X;
(i) d;(A) = d;(A), VA € T (X);
(v) If A,B€Ta(X) and A < B then d;(A) > d¢(B).

Definition 2.10 Let (X, .4, m) be a measure space and let us denote
D = {(u,v) €0,1] x [0,1] : p +» < 1}. An intuitionistic norm function is
an A-measurable function with respect to the first variable, ® : X x D —
[0,1] with the following properties, for every element ¢ € X :

(¢) ®(z,pu,v)=0ifand only if p +v = 1;

(i7) @ (z,p,v)=1ifand only if p = v = 0;

(55d) @ (2, 4, v) = ® (2,0, 1)

(tv) f p < p' and v < V' then @ (z, p,v) > @ (z, 4/, V).

Theorem 2.6 Let (X, A,m) be a finite measure space and ® an intu-
itionistic norm function. Then, the function d}(’ : T4 (X) = [0,1] defined
by

1

B4 = 5 [ (@ paa).va(e)) dm

with A = {(z, pa(x),va(z)) : * € X}, is an intuitionistic entropy.
The intuitionistic entropies can be characterized by using f,-functions.

Definition 2.11 Let (X, .4, m) be a measure space and ¢ : [0,1] — [0, 1]
be a continuous function such that if &+ < 1 then ¢(«) + ¢(8) < 1. The
function I, : Z4 (X) — [0, 1] defined by

1

(4) = s /X (1= ¢ (5a(2)) — ¢ (va(2))) dm

with A = {(z, pa(z),va(z)) : ¢ € X}, is called I,-function.

Theorem 2.8 Let (X, A, m) be a finite measure space, ¢ : [0,1] = [0,1]
be a continuous function and dy, : T4 (X) — [0,1]. The function dy, is an
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intustionistic entropy and an I, -function if and only if

do(4) = ﬁ /X (1 ¢ (1a(2)) = o (va(2)) dm,

where ¢ satisfies the conditions:
(t) ¢ is increasing;
(¢1) p(a) = 0 if and only if o = 0;
(i17) p(a) +@(B) =1 if and only if a + B = 1.

Between intuitionistic fuzzy measures and intuitionistic entropies we can
establish the following connection.

Theorem 2.9 Let (X, A, m) be a measure space. If d, : Za(X) — [0,1]
is an intuitionistic entropy and an I, -function then d, is an intuitionistic
Juzzy Tyr-measure on La (X)), where Ty is the triangular norm given by
Tam (z,y) = min(z,y) . Moreover, if ¢ is additive then d, is an intuition-
istic fuzzy h-measure on T4 (X), for every continuous triangular norm h
which verifies h (z,y) + h°(z,y) = =z + y,Vz,y € [0,1].

At the end of this chapter we give some applications to the determina-
tion of degree of interference, applications to the geography of population
and to description of the systems performance. Also, a method that permits
to obtain a binary digital image from a fuzzy digital image is presented.

For example, let us consider V' a country and let us denote by X =
{51, ...,5,} a partition of V, that is S;,7 € {1,...,n} represent all the dis-
tricts of V. We can introduce a normal indicator I'y x (that is 0 < T'y x <
1) which estimates the degree of homogeneity of the territorial distribu-
tion of population on V', with respect to the organization corresponding to
X. We notice that, the density of population, the usual indicator used in
this situation, is a global indicator which does not take into account the
pointwise aspects. For example, if there exists a great concentration of
population in certain zones, this indicator is not significant.

Let us denote by I'y,eq, the density of population in V/, that is

total population in V

Iimeq =

)

area of V

by I'arax, the maximum possible density of population in a district of ¥/,
that is
total population in V'

r = —
MAX = Grea of the smaller district S;
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and by Ty, the density of population in S;, € {1, ..., n}, that is

I — population in S;
v area of S;

We define the fuzzy set P : X — [0,1] by

" Tumax’

P(S;)

and we denote t = %&L
MAX

We put I'v x = si(P), where s! is a strict ¢-measure of fuzziness in

c

normalized form. Following the axioms of strict ¢-measures of fuzziness
(see Definition 2.5), we get properties of the indicator I'v x which are in
concordance with our intuition:

(01) I'v x has the minimum value (equal to 0) if and only if the entire
population of V is completely situated in the district with the smallest area;

(02) IfT; <T; <tort<T; <T; then the contribution of the district
S; to I'v x is greater than the contribution of the district Sj;

(03) T'x,y has the maximum value (equal to 1) if and only if in all
districts of V the density of population is equal to I'yeq.

Choosing a suitable strict ¢-measure of fuzziness we can get interesting
results concerning the territorial distribution of population.

1.3 On Chapter 3: Defect of Property in Topology

This chapter mainly discusses the concept of measure of noncompactness
(defect of compactness, in our terminology) in classical setting, in random
setting and in fuzzy setting.

Let (X, p) be a metric space and let us denote

Po(X)={Y CX;Y #0,Y is bounded} .

Definition 3.1 (i) (Kuratowski [129], [130]). The Kuratowski’s measure
of noncompactness for Y € Py, (X) is given by

a(Y)=inf {e>0;In € N,4; € X,i=1,n with
Y C UL, 4i and diam (4;) < e},

where diam (A;) =sup {p(z,y);z,y€ 4;},i=1,n.
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(1) (see e.g. Istritescu [105]) The Hausdorff’s measure of noncompact-
ness of Y C X is given by

h(Y):inf{e>0;E|n€N,y,- €Y, i=1,nwithY C UB(yi,a)}.

i=1

Theorem 3.1 (i) (see e.g. Rus [182], p.85-87 or Banas-Goebel [32]) Let
X,Y € Py(X). We have:
0 < a(A) <diam(A);
A C B implies o (A) < a(B);
o (A) = a (A) and moreover o (A) = 0 if and only if A is compact;
a (Ve (A)) < a(A)+2¢, where V. (A) ={z € X;p(z,A) < e} and p(z,A) =
inf {p(z,y);y € A};
a(AUB) =max{a(A),a(B)};
a(ANB) < min{a(A),a(B)};
Let A; C X, A;j+1 C A; be with A; closed and nonempty, i = 1,2, ....
If limy, 00 & (An) = 0 then ()., A, is nonempty and compact.
If, in addition, X is a Banach space, then o {A+ B) < o (A) + a(B),
a(cA) = |e|a(A),c € R,a(convA) = a(A), where convA is the conver
hull of A € Py (X).

(i) (see e.g. Beer [86] Banas-Goebel [32])
h{A) =0 if and only if A is totally bounded (that is, Ve > 0,31, ...,z, € A
such that Vo € X,3z; with p(z,z;) < ¢);
A C B implies h (A) < 2h (B);
h(A) =h(4);
h(AUB) <max{h(4),h(B)};
h is continuous on CL(X) = {Y C X;Y is closed, Y # @} with respect to
Hausdorff topology, i.e. if Y,,Y € CL(X),n=1,2,..., satisfy
Dg (Ya,Y) "= 0 (where Dy is the Hausdorff-Pompeiu distance), then
lim,400h (Yn) = R(Y). Also, h is upper semicontinuous on CL(X) with
respect to the so-called Vietoris topology.

In addition,

h(A) < a(A) < 2h(A),VA € Py (X)

and if moreover X 1is Hilbert space, then

V2h (A) < a (A) < 2k (A) VA € Py (X).



10 Introduction

The properties in Theorem 3.1 suggest an axiomatic approach in Banach
spaces (X, ||]), as follows. Firstly we need the notations:

RC(X) = {Y CX;Y #0,Y is relatively compact},
CO(X) = {YCX;Y #0,Y is compact} .

Definition 3.2 (Banas-Goebel [32]). K C RC(X) is called kernel (of a
measure of noncompactness) if it satisfies:

(1) A € K implies 4 € K;

(i5) A€ K,BC A,B # ) implies B € K;

(¢4i) A, B € K implies \AA+ (1 - A)B € K,YA €[0,1];

(tv) A € K implies convA € K;

(v) The set K¢ = {A € K; A is compact} is closed in CO(X) with re-
spect to Hausdorff topology (i.e. the topology induced on CO(X) by the
Hausdorff-Pompeiu distance).

Definition 3.3 (Banas-Goebel [32]). The function u : Py(X) — [0, 400)
is called measure of noncompactness (or defect of compactness, in our ter-
minology) with the kernel X (denoting ker 4 = K) if satisfies:

(i) u(A) =0 if and only if 4 € K;

i) p(A) = p(4);

(

(

(iv) A C B implies p (A) < p(B);

(v) (M + (1= X) B) < A (A4) + (1= A s (B) ,¥A € [0, 1];

(vi) If A, € Po(X),Ap = Ap and A,yy C Ap,n=1,2,...and if
limy, oot (An) = 0, then (o, A, # 0.
If K= RC(X) then p will be called full (or complete) measure.

Many examples satisfying Definitions 3.2, 3.3 are given.
Let 7 be the set of all open coverings of a topological space X. Let us
consider the family C = 2™ of all subsets of = ordered by the relation

z<yifand onlyifz Dy, for z,y € C.

Then (C, <) is a complete lattice with the minimal element © = 7. Now
we can define the C-measure of noncompactness as follows:

Definition 3.4 (Kupka-Toma [128]). If AC X then the measure of non-
compactness of A is the element of C defined by

m(A):{’P€7r|3ﬁnite5C’P:ACU6}.
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Theorem 3.2 (Kupka-Toma [128]). The mapping m : 2X — C has the
following properties:

(¢) If A is a compact subset of X then m(A) =©. If A is closed then
the converse is true;

(¢1) If A C B then m(A) <m(B);

(#57) m(AUB) =m(A)Nm(B) =sup{m(A),m(B)};

(iv) m(ANB) < m(A)Um(B) =inf {m(A),m(B)}.

Theorem 3.3 (Kupka-Toma [128]). Let X be a complete uniform space.
Then we have the followings:
(¢) For every closed subset A C X, m(A) = © if and only if ® (A) = 0;
(#) For every decreasing net (A : 7 € T') of closed nonempty subsets of
X,

inf{®(A4,):vy€T}=0= liempm (4y) = 0.
0

(Here ® denotes Lechicki’s measure in Lechicki [132]).

Theorem 3.4 (Kupka-Toma [128]). Let (A, : v €T) be a decreasing net
of closed nonempty subsets of a topological space X. Then the following
implication is true:

linllm (A4)=0=A= ﬂA7 is nonempty and compact.
vE
~€T

Let us denote by A the set of all nondecreasing and left continuous
functions f : R — [0, 1], such that f(0) = 0 and lim,, 4o f (z) = 1.

Definition 3.5 (Menger [145]). A probabilistic metric space (P M -space,
shortly) is an ordered pair (S, F), where S is an arbitrary set and F :
S x S — A satisfies:

(i) F, 4 (2) = 1,Y2 > 0 if and only if p = ¢;

(1) Fpq(z) = Fyp (), VP, € S;

(¢32) If Fpq(z)=1and F,, (y) =0,Yp,q,7 € S then F, 4 (z +y) = 1.
(Here Fp, 4 (z) = F (p,q) (z)).

Definition 3.6 (Egbert [69]). Let A C S,A # 0. The function Dy (-)
defined by

Dy (z)=sup inf F,,(z),z€R
(2) sup inf, p.q (2)

is called the probabilistic diameter of A. If sup {D4 (z);z € R} = 1 then
A is called bounded.
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Definition 3.7 (Bocsan-Constantin [41], see also Istritescu [105], Constan-
tin- Istritescu [58]). Let A be a bounded subset of S. The mapping

aa(z)=sup {e>0;In€N,A;,i=1n with

A=J;,_, Ai and Dy, (z) > 6} ,

where z € R, 1s called the random Kuratowski’s measure of noncompact-
ness.

Theorem 3.6 (Bocsan-Constantin [41]). We have:

(1) @a € 4;

(%) aa(z) > Da () ,Vz € R;

(73t) If 0 # A C B then a4 (z) > ap (z) ,Ve €R;

(tv) aaup (2) = min{aa (2),ap (z)},Vz € R,

(v) aa (z) = g (x), where A is the closure of A in the (¢, A)-topology of
S (where by (e, A)-neighborhood of p € S, we understand the set V, (¢, \) =
{¢4€S;Fpq>1-A},e>0,2€(0,1]).

Theorem 3.8 (Bocsan-Constantin [{1]). Let (S, p) be an usual metric
space and (S, F') the corresponding P M -space generated by (S, p).

(1) A C (S,F) is probabilistic precompact if and only if «aa(z) =
H (z),VYz € R;

(i) A C (S, p) is precompact if and only if A is probabilistic precompact
subset of (S, F);

(#42) For any bounded A C (S, p) we have

aa(z) =H(zx—a(A),Vz €R,

where a (A) is the usual Kuratowski’s measure of noncompactness in (S, p)
and a4 () is the random Kuratowski’s measure of noncompactness in the
generated PM-space (S, F).

Definition 3.9 (Menger [145]). (S, F) is called P M-space of Menger-type
with the t-norm 7', if F satisfies the first two properties in Definition 3.5
and the third one is replaced by

Fog(@+y) >T(Fpr(z), Frg(2),Yp,q,7 €S

We denote it as the triplet (S, F,T).
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Definition 3.10 (see e.g. Istritescu [105]). If (S, F,T) is a PM-space
of Menger-type and A, B C S, then the probabilistic (random) Hausdorff-
Pompeiu distance between A and B is given by

DH ., (2) = su T(infsuF t), inf supF; t>,x€R‘
A,B( ) t<13 peAqeg Py (1) qupeg g ()

Definition 3.11 (see e.g. Istritescu [105]). Let (S, F,T) be a PM-space
of Menger-type and A C S, bounded. The random Hausdorff’s measure of
noncompactness of A is given by

ha (x) = sup {¢ > 0;3 finite F; C A such that DE,F, (x) > €} .

Further, we extend the above concepts and results to fuzzy subsets of usual
metric spaces.

Definition 3.12 The sets
Go (pa) ={(2,9);0<y=pa(z),z € X} =Graph(F)
and
HGo(pa) ={(z,y);0 <y < pa(z),z € X} = hypo(F)n(Ax(0,1])

are called the support graph and the support hypograph of (A, ¢4) respec-
tively, where F': A — (0,1], F (z) = ¢a (z),Vz € A.
The diameter and the hypo-diameter of the fuzzy set (A, p4) are given by

D(pa) =sup{d” (a,b);a,b € Go(pa)}

and
hD (p4) = sup {d" (a,8);a,b € HGo (pa)}

respectively. If D (pa) < 400 (hD(pa) < +00) we say that (A4,p4) is
bounded (hypo-bounded). Here d* : X x[0, 1] = R4, where (X, d) is metric
space, is given by d* ((z1,71), (22, r2)) = max{d (21, z2),|r1 — r2|}.

Definition 3.13 Let (A, ¢4) be bounded (or hypo-bounded, respectively).
The Kuratowski’s measure and the Kuratowski’s hypo-measure of noncom-
pactness of (A, p4) are given by
K (pa) = inf{e>0;3In€N,(Ai,¢a,) with D(pa,) <e,i=1,n,
such that w4 (z) < sup {pa, (2);i=T1,n} Ve € X}
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and by

hK (pa) = inf{e>0;3n €N, (4i,¢a,) with AD (pa,) <e,i=17,
such that 4 (z) <sup {p4, (z);i=1n},Vz € X},

respectively.

The Hausdorff’s measure and the Hausdorff’s hypo-measure of noncom-
pactness of (A, pa) are given by

H(pa) = inf{e>0;3Ine€ N,3P; = (zi,ri) € Go(pa),i=1,n,
such that VP = (z,r) € G (pa),3P; with d* (P, Px) < ¢}

and by
hH (pa) = inf{e>0;3In€ N,3P; = (z;,r) € HGy(pa),i=1,n,

such that VP = (z,7) € HGo (¢a) , 3Pk with d* (P, Py) < &}
respectively.

Theorem 3.9 (¢) K (p4) < hK (p4).

(i) K (pa) < K™ (Go(pa)), H (pa) = H (Go(pa))  hH (pa)
= H* (HGo(pa)), where K* and H* represent the usual Kuratowski’s and
Hausdorff’s measures of noncompactness (respectively) of the subsets in the
metric space (X x [0,1],d*). (Here (A,pa) is considered hypo-bounded).

Theorem 3.10 Let (A,pa) C (B, pp) be two 1-bounded fuzzy subsets of
(X,d). We have:

(1) K (pa) < D(pa).

(11) (A,p4) C (B,pp) implies K (pa) < K (pB), where (A, p4) C
(B,pB) means w4 () < pp (z),Vz € X.

(7ié) K (pa Vep) = max{K (pa), K (pB)}, where (p4V ¢B)(z)
= max{(pa) (), (pB) (z)} ,Vz € X.

Theorem 3.11 (i) hH (p4) = +oo tf and only if HGo (pa) is unbounded.
(#2) If (A,pa) C (B, ¢p) then hH (pa) < 2hH (¢5) .
(115) hH (pa) = 0 if and only if HGo (pa) is totally bounded.
(1v) hH (04 V ¢p) < max{hH (pa),hH (pB)}, where (paV ¢5) (z)
=max{pa (z),¢p (z)},Vz € X.

By using the level sets method, we can introduce
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Definition 3.14 The (a)-Kuratowski measure of noncompactness of (4, ¢4)
is given by

aK (pa) =sup {Ko (4r); A € (0,1]},

where Ay = {z € X; ¢4 (z) > A} and Kj is the usual Kuratowski’s measure
of noncompactness of usual subsets in (X, d).
The (o)-Hausdorff measure of noncompactness of (A4, ¢4) is given by

aH (pa) =sup {Ho (Ax); A € (0, 1]},

where Hy represents the usual Hausdorff’s measure of noncompactness of
usual subsets in (X, d) . Obviously, aH (¢4) can take the +oco value.

Definition 3.15 (see e.g. Weiss [220]) If (X, d) is a metric space, then the
induced fuzzy topology on (X, d) is the collection of all fuzzy sets of (X, d)
with ¢4 : X — [0,1] lower semicontinuous on X.

A fuzzy set (A,pa) is called (a)-bounded if for each A € (0,1], Ax is
bounded in the metric space (X, d).

A fuzzy set (A, pa4) is called (a)-compact if for each A € (0,1], Ay is com-
pact in the metric space (X, d).

Theorem 3.13 Let (A, p4), (B, pB) be (a)-bounded.

(3) @K (pa) =0 if and only if each Ay, ) € (0,1] is compact in (X, d),
where Ay denotes the closure of Ay in (X,d). Also, if (A,p4) is (@)-
compact then aK (p4) = 0.

(22) If (A, pa) C (B,¢B) (i-e. pa(z) <¢p(z),Vz € X) then
aK (pa) < oK (pB).

(#42) aK (pa) < Ko (A), where Ko represents the usual Kuratowski’s
measure for subsets in (X, d), and in general we have no equality.

(v) oK (pa V op) = max{aK (pa),aK (¢B)}, where (pa V ¢p)(z) =
max{pa (z),¢B (z)},Vz € X.

(v) @H (pa) =0 if and only if each Ax, A € (0,1], is totally bounded.

(vi) If (A,pa4) C (B,pB) then aH (pa) <2-aH (pB).

(vit) aH (pa V ¢B) < max{cH (pa),aH (¢B)}.

In what follows one consider measures of noncompactness of fuzzy sub-
sets in (fuzzy) topological spaces.

Definition 3.21 Let (X, T) be a classical topological space and A a fuzzy
subset of X (i.e. A: X — [0,1]). Then, the (a)-measure of noncompactness
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of the fuzzy set A will be

aM ()= (] m(4a),
ag(0,1]
where Ay = {z € X;A(z) > a} and aM : I*¥ — C,I* denoting the class
of all fuzzy subsets of X.

Definition 3.22 Let A; € Tr,i € I and A', ..., A" € Tr. The family
K= {(Ai)iel JAL L A”} of fuzzy sets is an open s-cover of a fuzzy set A
if

AC (ViEIAi) SA'S...54" ,

where (Vigrdi) (z) =sup{Ai(z);i €I}, z € X and A C B means A (z) <
B{x),Vz € X.

We say that {(Aj)jEJ , Ak ,..,A’“v} is a finite open 5-subcover in K of
the fuzzy set A, if A C (VjEJAj)fs'Aklfs'..EAkP, where J C [ is finite and
{k, ..., kp} C{1,...,n}.

Definition 3.23 A fuzzy set A € IX is (C,3)-compact if each open §-cover
of A has a finite $-subcover of A. A fuzzy set A is (L, 5)-compact if for all
open s-cover of A and for all ¢ > 0, there exists a finite s-subcover of B,
where B is the fuzzy set defined by B (z) = max (0, A (z) —¢),Ve € X.

Definition 3.24 Let A € I* (X, TF) be a quasi-fuzzy topological space
and s a triangular conorm. The (C, s)-measure of noncompactness of A is
the element of C¥ defined by

mZ (A) = {D € 75,36 C D, finite open 5-subcover of A} .

The (L, s)-measure of noncompactness of A is the element of C* defined by

m§ (4) = {D. € 7%:¥e > 0,36, C D, finite, 6. = { (), . A%, .., 47}

JjedJ >

with max {0, A (z) — e} < ((VjesA;)5A'5..547) (z) ,Vz € X} .

Theorem 3.15 Let (X,T) be a topological space. The mapping aM :
IX = C has the following properties:

(&) If A€ I* is compact in the sense of Weiss [220], Definition 3.5,
then aM (A) = 0c. If A is closed (in the sense of Proposition 3.3 in Wetss
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[220]) and aM (A) = Oc, then A is compact (in the sense of Definition 3.5
in Weiss [220]).
(1) If AC B then aM (A) < aM (
(i11) aM (AV B) = aM (A)NaM (B).
(tv) aM (AA B) < aM (A)UaM (B).
(Here (AV B) (z) = max{A(z),B(z)},(AA B) () =min{A(z), B(z)},
Vz e X).

Theorem 3.16 Let (X,Tr) be a quasi-fuzzy topological space. The map-
ping mg : IX = C5 has the following properties:

(¢) If A€ IX is (C,3)-compact then m% (A) = 05.

(¢8) If A C B then m% (A) < mZ (B).

(i55) mZ (AV B) = mg (A) nmZ (B).

(iv) mE (AA B) < m§ (A) Umé (B).

Theorem 3.17 Let (X,TF) be a quasi-fuzzy topological space. The map-
ping m3 : IX — C% has the following properties:

(i) If A€ IX is (L,3)-compact then m3 (A) = 03.

(i¢) If A C B then m3 (A) < mj (B).

(%77) mf (Av B) = mf (4)yn mf (B).

(iv) m$ (AAB) < m§ (4) Um? (B).

Applications to upper semicontinuity of fuzzy multifunctions also are
presented.
At the end of this chapter one present:

Definition 3.34 Let (X, p) be a metric space and D (A, B) be a certain
distance between the subsets A, B C X. For Y C X, we call:
(¢) defect of opening of Y, the quantity dop (D) (Y) = D (Y,intY);
(43) defect of closure of Y, the quantity der (D) (Y) =D (V,Y) .

Theorem 3.23 If (X, p) is a metric space and Y € Py (X), then:
(2) dop (D*) (Y) = 0 if and only if Y is open;
(72) der (D*)(Y) =0 if and only if Y is closed.

In addition,

dor (D*)(AY) = Ader (D*)(Y),¥A > 0;
dop (D*) ()\Y) = Adop (D*) (Y) VYA >0.

(Here D* is a special distance).
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1.4 On Chapter 4: Defect of Property in Measure Theory

This chapter introduces and studies some defects of property for set function
(especially, for fuzzy measures): defect of additivity, defect of complemen-
tarity, defect of monotonicity, defect of subadditivity and of superadditivity.
Also, in Section 4.5, the defect of measurability for sets is discussed.

Let A be a o-algebra of subsets of X.

Definition 4.1 (see e.g. Ralescu-Adams [168]) A set function y : A —
[0, 00) is said to be a fuzzy measure if the followings hold:

(1) u(0) =0;
(¢3) A,B € Aand AC B implies u (4) < u(B).

Definition 4.2 The defect of additivity of order n,n € N,n > 2, for the
measure p is given by

an (1) = sup (Ul ) — St ()] A € AVi €N,
A,’ﬂAj = 0,2#]}

The defect of countable additivity for the measure u is given by

Qoo (,U,) = sup {I” (UfilAl) - Zfilu (A’l)| : Ai € A5V2 € Na
Ai N A; =0,i# j}

Theorem 4.1 (¢) ay, (#) < any1 (p),¥n > 2;
(#1) If p is a continuous from below fuzzy measure then ac (1)
= lim, 4 e0tn (/1) ;
(131) an (p) < @n-1 (1) +az (1) ,Vn > 3;
(10) an (p) < (n—1)az(p),Vn > 3;
(v) an (1) < (n—1)p(X),Vn2>2;
(vi) If p is a superadditive fuzzy measure then a, (p) < p(X),¥n > 2.

An important class of fuzzy measures are the A-additive fuzzy measures.

Definition 4.3 (see e.g. Kruse [126]) Let A € (—1,00),A # 0 and A be a
o-algebra on the set X. A continuous fuzzy measure p with u(X) = 1 is
called A-additive if, whenever A,B€ A,ANB =0,

#(AU B) = p(A) + p(B) + Ap (A) u(B).

Theorem 4.2 (Wierzchon [222]) Let m be a classical finite measure,
m:A—[0,00). Then py=tom is a A-additive fuzzy measure if and only
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if the function t : [0,00) — [0,00) has the form t(x) = CI/\—l,c >0,¢c# 1,
A€ (=1,0)U (0, 00).

Concerning the defect an » (@) of the above measures, we can prove the
following.

Theorem 4.3 If p=tom (with t and m as above) then we have

Ad+n—n""V/A+1
Al

An, A (ﬂ) S )vn221VAE (—1,0)U(0,00)

and

In(A+1)

oo ) < 1 - 2

I,VAe(—l,O)U(O,oo).

An useful result is

Theorem 4.4 (sece Ghermdnescu [89], p.260, Th. 4.9) The measurable
solutions of the functional equation f(z+1vy) — f(z) — f(v) = ¢ (z,y) are
given by

f(z) = B(z)+az
p(z,y) = B(z+y)— B(z)— B(y)

where B is an arbitrary measurable function and a is an arbitrary real
constant.

Theorem 4.4 is used to generate classes of fuzzy measures as follows.

Theorem 4.5 Let B(z) be such that B(0) = 0 and f(z) = B(z) + az
is strictly increasing and f : [0,00) — [0,00). Then pu(A) = (f om) (A)
(where m is a classical finite measure) is a fuzzy measure which satisfies
the functional equation

p(AUB) = p(A) +pB)+¢ (FH(r(A), L (u(B)),

VA,B€ A, AN B =0, where ¢ and f are those in Theorem 4.4 and f~1
represents the inverse function of f (here we assume f(0) =0 and
limg 400 f (2) = +00).

We estimate the defects of additivity for fuzzy measures obtained by
Theorem 4.5 as follows.
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Theorem 4.6 If p: A — [0,00) is the fuzzy measure defined by p(A) =
Am?(A), where m is a classical finite measure, then a, (u) < 2=1p(X),
forall n>2 and XA > 0.

Theorem 4.7 If p : A — [0,00) is the fuzzy measure defined by the
relation
n (4 + DA 4 (4 1P - 1)

(AU B) = mO 1) !

for every A, Be A, AN B =10, then

In (n A+ 1)”(X) —n+ 1)
In(A+1) '

an,x (1) < np(X) -

for every n > 2, X € (0,00).

Next, one present three kinds of applications of the previous results: to
approximative calculation of the fuzzy integrals, to best approximation of
a fuzzy measure and to the definition of a metric on the family of fuzzy
measures. Thus, for example, an estimation of the quantity of best approx-
imation of a fuzzy measure p : A — [0,1] by elements from

M= {m: A-[0,1];m additive on the o-algebra A},

is given by

where
E () = inf {d (,m) ;m € M} <1
and d (p,v) =sup {|u(A) —v(4)|; A € A} is a metric on
F={p:A—[0,1]; 1 (0) = 0, u nondecreasing on the o-algebra .4} .
Another introduced concept is given by

Definition 4.6 The value

e(p) = sup {|p (X) —p(4) —p(A%)]: A€ A}
p#(X)




On Chapter 4: Defect of Property in Measure Theory 21

where A° = X'\ A, is called defect of complementarity of the fuzzy measure
W
Theorem 4.8 Let p,p’' : A — [0,00) be fuzzy measures. We have:

(1) 0<c(p) <1

(i) e (n) < 2

(i11) ¢ (p) = ¢ (p®), where p® is the dual of u, that is p°(A) = p(X) —
u(A¢), A° being the complementary of A;

() clam) =c(w) Ya> 0

(v) e (p+ 1) < Bz (1) + iieye (1)

We estimate the defects of complementarity for fuzzy measures obtained
by Theorem 4.5 as follows.

Theorem 4.11 If u is a A-additive fuzzy measure then

(1-VAF1)
o (p) < -

Theorem 4.12 If p: A — [0,00) is the fuzzy measure defined by p (A)
= Am?(A),YA € A, where m is a finite measure, then c(u) < 1 VA €
(0, 00).

Theorem 4.13 If p: A — [0,00) is the fuzzy measure defined by
u(A) = 11%’%%)1?'—11, VA € A, where m is a finite measure and A > 0, then

o (A2 4 1)
W) < GO T 1)

Also, we prove that a cardinality of a convenient fuzzy set is a good

-1

indicator of complementarity in pointwise sense.
At the end of Section 4.2, we give interpretations, applications and
numerical examples with respect to the proved results.

Concerning other properties of set functions, we consider

Definition 4.12 Let v : P(X) — R be a set function. The defect of
monotonicity of v is given by

dmon (v) = %SHP{IV(Al) —v(A)]+ v (A2) = v (A)] - v (A1) — v (42)];

A1, A A2 €P(X), A1 CAC A},
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Theorem 4.15 The set function v : P (X) = R is monotone if and only
Zf dMON (I/) =0.

Theorem 4.16 Let v : P (X) — R be a set function. We have:

(2) 0 < dyon (v) < 2sup{w(A)|;AeP (X)}. If v is non-negative
then 0 < dpron (v) <sup{v(4);4A € P(X)}.

(#7) dpmon (av) = laldmon (v),Ya € R, where (av) (A) = av (A4),
VA € P (X).

(737) dypon (vB) < dyon (v), where vp (A) = v (AN B) VA € P (X),
is the induced set function on B € P (X).

(2v) If v is an additive set function then dyon (v) < as (|v]), where
VI(A) = v (A)], A€ P(X).

(v) If v is a signed fuzzy measure then dyon (V) = dyon (v°), where
V¢ is the dual of v, that is v° (A) = v (X) — v (A®%) ,VAE P (X).

Theorem 4.19 Forany v € § = {v : P(X) - R;v is bounded}, we have

d v
Enon (v) > _MOéV_(_)
where
Emon (v) = inf {d (v,m);m € M},
M ={m:P(X)—> R;m is monotone and bounded }
and

d(vi,v2) =sup{jv1 (A) —va (A)]; A€ P(X)},VYv, 1 €S.

Definition 4.15 Let v : A — R, v (#) = 0, where A C P (X) is a o-algebra.
The defect of subadditivity of order n,n > 2, of v is given by

dsip (v) = SUP{V (UA,) =) v(A)Ai € A
i=1 =1
AiNA; =0,i# 54,5 =1,n}

and the defect of superadditivity of order n,n > 2, of v is given by

dgnt}P (v) = sup {EV(Ai) -V (UAi> ;A €A,
i=1 i=1
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A NA; :@,i#j,i,j:rﬁ}.

Similarly, the defect of countable subadditivity of v is given by

dgyp(v) = SUP{V (UAi) => v(Ai); A€ 4,
i=1 i=1
AiOA; =00 #j,i,j €N}

and the defect of countable superadditivity of v is given by

d5yp (v) = sup {ZV (Ai) —v <UA1') ;Ai € A,
=1 i=1
The main properties of the above defined defects are the followings.

Theorem 4.20 (i) 0 < dgngB (v)<ap(v),0< d(SngP (v)<a,(v),
Vn € N,n > 2, where a, (v} is the defect of additivity of order n of v;

(i6) 0 < a5y (V) < oo (v),0 < dFyp (V) < e (v), where ag, (v) is
the countable defect of additivity of v;

(731) If v is subadditive or countable subadditive then d(SnU)P (v) =an (v)
or d%y g (V) = ax (V), respectively;

(iv) If v is superadditive or countable superadditive then d(an)'B (v) =
an (v) or dSyp (V) = aco (V), respectively;

(v) d§pp (v) < dSy's’ (v), d5gp (v) < dSyfe’ (v) ,Vn € Nym > 2;

(vi) d(an)B (¥) = 0 if and only if v is subadditive; d(sn(}P (v) = 0 4f
and only if v is superadditive; d3y; g (v) = 0 if and only if v is countable
subadditive; d2y;p (v) = 0 if and only if v is countable superadditive;

(vii) diyp (v) < diyg) (v) + dSyp (v) and dp (v) < dp) () +
d.(Szl}P (), Vn e N,n > 3.

(viii) A (v) < (= 1)d$) p () and dfp (v) < (n— 1) dp (),
Yn € N,n > 3.

Let (X, p) be a bounded metric space, CL(X) ={AC X;X\A€7T,},
where 7, is the topology generated by the metric p and ¢ : 7, = Ry. We
define ¥ : CL(X) —+ R4 by

B (A) =diam (X)) — o (X \ A) ,VA € CL(X),
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and ¢*, ¢, : P(X) = Ry by

¢* (A) = sup {7 (F); F € CL(X), F C A},

pu (A) = inf {9 (G);G € T, AC G}.

Definition 4.17 Keeping the above notations and assumptions, we say
that A € P (X) is p-measurable if ©* (A) = ¢, (A). The quantity

dumas (A) = ¢" (A) — . (A)

is called defect of ¢-measurability of A.

Theorem 4.17 (i) 0 < dapras (A) < ¢ (X),VA € P(X) and dpras (A) =0
if and only if A is p-measurable;

(Z’L) dpas (A) = dumas (Ac) ,VAEP (X),

(i66) daras (AU B) < dyras (A)+dyas (B) VA, B € P (X), ANB = 0;

(iv) Let T be the one to one transformation of the entire real line into
itself, defined by T (¢) = az + (3, where o and B are real numbers and
a # 0. If for every bounded A C R we denote T (A) = {az + B;z € A},
then

dras (T (A)) = laldmas (4).

(Here p is the usual metric induced on A or T (A), respectively).

1.5 On Chapter 5: Defect of Property in Real Function
Theory

This chapter discusses various defects of properties of the real functions of
real variable.

Definition 5.1 (see e.g. Siretchi [199], p.151, p.165, (200], p.239). Let
f:E —> R. For zg € F, the quantity defined by

w (zo; f) =l {6 [f (V N E);V €V (=0)},

is called oscillation of f at zo, where V (o) denotes the class of all neighbor-
hoods of zp and & [A] = sup {|a1 — a2}; a1, as € A} represents the diameter



On Chapter §: Defect of Property in Real Function Theory 25

of the set A C R.
For z¢ limit point of E, the quantity defined by

@ (zo; /) = inf {6 [f (VN E\{zo})];V €V (o)}

is called pointed oscillation of f at zg.
For £ > 0, the quantity defined by

w(fie)gp =sup{|f (z1) = f(22)[; |21 — 22| <€, 21,22 € B}
is called modulus of continuity of f on E with step € > 0.

Theorem 5.1 (see e. g. Siretchi [199], p.166, p.154, [200], p.211, p.239).
(i) f is continuous at xq € E if and only if w (xo; f) = 0;
(#4) f has finite limit at zq € E' if and only if & (zg; f) = 0. Also
lim f (z) — lim f () <& (20; f)
r—To TTo
and 1f, in addition, f is bounded on E, then
G (zo; f) = lim f(2) — lim f(x),

T—+To T—=To

where

lim f(z) =sup{inf f(VNE\{zo});V €V (20)}

T—FTo

and

Tim f(z) = inf {sup f (VN E\ {x0});V € V(z0)}.

r—To

(¢1%) f s uniformly continuous on E if and only if inf {w (f;€) ;¢ > 0} =
0.

Definition 5.2 The quantities
de (f) (z0) = w (0; f)

diim (f) (z0) = @ (05 )
and
duc (f) () = inf{w (f;¢) ;¢ > 0},

can be called defect of continuity of f on zg, defect of limit of f on zg and
defect of uniform continuity of f on E| respectively.
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Definition 5.3 (see Burgin-Sostak [44], [45]). Let f : X — Y be with
X,Y C R and zg € X. The defect of continuity of f at zo can be defined
by

p(zo; f) = sup{|y — f (z0)|; y is limit point of f(z,) when z, — zo}.
The defect of continuity of f on X is defined by
1 (f)x =sup {u (zo; f) ;20 € X}.

Theorem 5.2 (see Burgin-Sostak [44], [45]).
(?) f is continuous on xg if and only if p(zo; f) = 0;
(#%) f is continuous on X if and only if p(f)yx =0;
(ii)

(203 f) — p (203 9)l < pl(zos f+g) < plzos ) + pn(zos9)
b (203 f) — (xo;9)| < p(zo; f—9),
plzo;—f) = pleof)
and similar inequalities for p (f) y hold.

(iv)
1 (2o; £ - 9) < p (2o f) -llgllg, + 1 (203 9) - IFll, »

where ||g]l,, =sup{lg (t)|;t € Voo }, IIfll;, = sup {If (t)|5¢ € Vio}, Vi ds a
netghborhood of xq and f,9: X =Y, with X, Y C R.

(v) If we define ug (zo; f) = ﬂ%—f}i&,uy Nx = ﬂ}{i)x., where
M = sup,exf(e) —infeex f(2),f: X =Y, then ug (f)x = pn(to fx,
where t (z) = kz, k > 0 fized.

Definition 5.4 Let f : [a,0] —» R and zq € [a,b]. The quantity

daif (f) (@) =& (2o; F),
where F' : [a,b]\ {20} — R is given by F (z) = ﬁfggﬂl, is called defect
of differentiability of f on .

Corollary 5.1 (i) f is differentiable on xg if and only if dgif (f) (o) = 0.
(¢) If f is locally Lipschitz on zo (i.e. Lipschitz in a neighborhood of
zo) then
dd,'f (f) (l‘o) = lim F (:E) — lim F(.’l)) .

T—To T T
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Theorem 5.3 Let f : [a,b] - R and zo € (a,b). If f is locally Lipschitz

on xg, then
@ (zo; f) < (b= a) daig (f) (w0) -
Definition 5.6 Let f : [a,b] -+ R be bounded. The real number

e (F) ([0, 6) = ff (2) dz - L f (o) da

is called defect of integrability of f on [a, d].
Let us denote
Bla,b) = {f:[a,b] = R; f bounded on [a,?b]},
Cla,b] = {g:[a,b] = R;g continuous on [a,b]}
and for f € B[a,b] the quantity of best approximation
E. (f) =inf{||f —gll;9 € Cla, 8]},
where ||f|l = sup {|f ()| ; € [a, 8]} .
Theorem 5.4 Let f € Bla,b] be with
Cr = {z € [a,b]; ¢ is point of discontinuity of f} .
Then

sup{w (z; f);z € C¢}
5 )

E.(f) 2

Let us denote

Il

Lla,b] {f :[a,8] = R; || fll, < +oo},
Cila,b] = {g:[a,b] = R;g is differentiable on [a,b]},

where ||f]|, = sup{,ﬂix%gﬂ, ;2 Y € Ja,b],z # y} is the so-called Lips-
chitz norm. If we denote Er (f) = inf {||f — gl ;9 € Ci(a,b]}, we can

present
Theorem 5.5 Let f € L][a,b] be with

D; = {z € {a,b]; z is point of non-differentiability of f}.
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Then

Ep (f) >sup{day (f) (z);z € Ds}.
Theorem 5.6 For each f € Bla,b] we have

Er (f) > dint (f) ([av b]) )

where Er (f) =inf {||f — gl|; g is Riemann integrable on [a,b]}.
Definition 5.7 Let f : F — R. The quantity

du (f) (E) = sup{lf(z1) — f (2)| +|f (z2) = f ()]
—|f(z1) = F(z2)]521, 2,22 € B, 2y <z < o}
is called defect of monotonicity of f on F.

For f € Ba,b], let us define

Eu (f) ([a,8]) = inf {|If —gll;9 € M[a,b]},
where M [a,b] = {g : [¢,8] = R; g is monotone on [a, b]}.
Theorem 5.8 For any f € B|a,b] we have

Eum (f) ([a,8]) > M%@ﬂ'

Definition 5.8 Let f : [a,b] — R be bounded on [a,b]. The quantities

dconc (f) ([a,b]) = sup {K (f) (z) — f(2);z € [a,b]}

and

deconv (f) ([a,8]) = sup{f (z) — k (f) () ;2 € [a, 8]}

are called defect of concavity and of convexity of f on [a, b], respectively,
where K (f) : [a,b] — R is the least concave majorant of f and k (f) :
[a,b] — R is the greatest convex minorant of f on [a, 8].

Theorem 5.9 Let f € Bla,b]. Then:
(1) dcone (f) ([a,b]) = 0 if and only if f is concave on [a, b];
(¢7) deonv (f) ([a,b]) = 0 of and only if f is convex on [a,b].

Definition 5.9 Let p € N and f : [a,5] — R be such that the derivative
of order p, f(P) (z), exists, Lebesgue measurable and bounded on [a, 5] and
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f215®) (z)|de # 0. The quantities

(p)
(P) f_—x—
K7 (f) ([a, b)) = fa |f(p) z |d1:
and

K® (f) ([a,b]) =
(f) ([a, b)) 170 ()] as

are called degree of convexn;y (or defect of concavity) of order p of f on
[a,b], respectively. Here f(p (z) = f®) () if f)(z) > O,f ( y=20
if f®)(z) < 0and f® () = —F®) (2) if @ (2) < 0,77 () = 0 if
7P (z) > 0.

Theorem 5.10 Let [ : [a,b8] = R be satisfying the conditions in Definition
5.9. We have:

(@) KL (£) (fa,8), KL () ((a,8]) 2 0 and
K (1) ([ b) + K () (a8 = 1.

(i) If £®) (2) >0, a.e. @ € [a,B] then K (f) ([a,8]) = 1, if £?) (z) <
0, a.e. z € [a,b] then K® (£) ([a,b]) = 1.

(iii) Let us suppose, in addition, that f() is continuous on [a,b]. Then
f is convex (concave) of order p on [a,b] if and only if K_(,_p) (f) (Ja,8)) =1
(K® (£) ([a,B]) = 1, respectively).

Further we study two concepts that measure the ” quality” of an inequal-
ity: the absolute defect of equality and the averaged defect of equality.

Definition 5.10 Let L, R be two functions, L : D1 - R, R: D, — R,
where D1, Dy C R”?,n € N such that

L(z)< R(z),Yee DC DiND,.
The absolute defect of equality for this inequality is defined by
% (L,R) =sup{R(z) — L(z);z € D}.

If, in addition, D is Lebesgue measurable and L (z) , R () are continuous on
D then the averaged defect of equality on [—r,r]" for the above inequality
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is defined by
(R (z) = L (2))dpn

Dn[—r,r]™

dp (L, R) (r) = pn (DO [=r,7]") ’

where [—r r]" = [-r,r] x ... x [-7,7] and py is the Lebesgue measure on

~
n

R".
Theorem 5.11 (i) If L(z) and R(z) are given by Definition 5.10 then
we have:
d (L+Q.R+Q) = d¥(L,R),
dy (L+Q,R+Q)(r) = dy (L,R)(r),¥r>0

I

forany QD — R and

d% (kL,kR)
dy (kL,kR) (r)

kd® (L, R),
kd% (L, R) (r),Vr >0

1

for any constant k > 0.
(@) If DC R0 < Li(z) < Ri(z),Ve € D and 0 < Ly(z) <
Ry (x) Yz € D then

d% (L1La, RiR2) < d¥ (L1, R1) sung (2) + d%¥ (La, Ry) sugRl (2)
Tr€ e

and

d¥ (L1La, RiRs) (r) < d¥ (L1, Ry) (r) sung (2)+d% (Lg, Ra) (r) sugRl (z)
kA e

for every r > 0.

(iti) dF (L, R) (r) < df_, qn (L, R).

(iv) A(z) < B(z) < C(z),Vz € D implies dyf (A,C) > d% (B,C) and
dy (A, C) (r) > d¥ (B,C) (r),Vr > 0.

Also, many concrete examples of inequalities are studied.

Open problem 5.2 A central problem in approximation theory is that
of shape preserving approximation by operators. One of the most known
result in this sense is that the Bernstein polynomials preserve the convexity
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of order p of f, for any p € N. If, for example, f : [0, 1] = R is monotone
nondecreasing or convex, etc., then the Bernstein polynomials

Ba (1) () = LChe* (1= 2™ (—’"—)

n

are monotone nondecreasing, or convex, etc., respectively.

But if f is not, for example, monotone on [0, 1], then it is natural to ask
how much of its degree of monotonicity is preserved by the Bernstein poly-
nomials B, (f) (z). More exactly, it is an open question if there exists a
constant » > 1 (independent of at least n, but possibly independent of f
too), such that

du (Bn (£)) ([0,1)) < rda (£) ([0, 1)), ¥n € N,

where dps is the defect of monotonicity in Definition 5.7.
Similarly, are open questions if there exist constants r,s,t,«,v > 1 (inde-
pendent of at least n, but possibly independent of f too), such that

dconv (Bn (£)) ([0,1]) < rdconv (f) ([0,1])),Yn €N,
K9 (Ba (£)(0,1) < sk (f)([0,1)),VreEN,
ED By (H)([0,1) < tKD () ([0,1]),¥n €N,

deonv (Ba (£))([0,1]) < wdgony (F)([0,1]),Vr €N,

and

drin (Bn () ([0,1]) < wderw (£) ([0,1]),Vn € N.

1.6 On Chapter 6: Defect of Property in Functional Analysis

This chapter introduces and studies some defects of property in functional
analysis: defect of orthogonality, defect of convexity, of linearity, of balanc-
ing for sets, defect of subadditivity (additivity), of convexity for functionals,
defect of symmetry, of normality, of idempotency, of permutability for linear
operators, defect of fixed point.

Let (E,||-]|) be a real normed space.

Definition 6.1 Let X,Y C E. We say that X is orthogonal to Y in the:
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(7) a-isosceles sense if
”13 - ay” = ”.’L‘ + ay” Ve € X,Vy €Y,

where a € R\ {0} is fixed. We write X 1;Y (see James [107]).
(#7) a-Pythagorean sense if

lle = ayll® = lle]l* + @ |ll* , Ve € X,y € Y,

where a € R\ {0} is fixed. We write X 1p Y (see James [107]).
(73i) Birkhoff sense if

llz]] < ||z + Ayl| , VA€ R,Vz € X,Vy €Y.
We write X LpY (see Birkhoff [39]).

(tv) Diminnie-Freese-Andalafte sense if

(1+a®) |l + ylI* = llaz + y|l* + ||z + ay|l* .Yz € X, ¥y € Y,

where a € R\ {1} is fixed. We write X Lppa Y (see Diminnie-Freese-
Andalafte [63]).
(v) Kapoor-Prasad sense if

llaz + byl + llz + 9l = llaz + yll”* + |z + byl* ,Vz € X, ¥y € Y,

where a,b € (0,1) are fixed. We write X Lgp Y (see Kapoor-Prasad
[113)).
(vi) Singer sense if ||z|| - ||y]| = 0 or

ﬁJrﬂz_H”: ”2—”—ﬁ”,vxeX,ver.

We write X LgY (see Singer [197]).
(vii) usual sense if

(z,y) =0,Ve € X,Vy €Y,

where, in addition, the norm ||-|| is generated by the inner product {-,-).
We write X LY.

Corresponding to the concepts of orthogonality in Definition 6.1, we
introduce the following

Definition 6.2 Let (E,||-||) be a real normed space and X,Y C E. We
call defect of orthogonality of X with respect to Y, of:
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(¢) a-isosceles kind, a € R\ {0} fixed, the quantity
dy (X,Y;a) = sup ’]]z‘ —ay|)® - ||z + ay]]2' :
reX,yeY
(i7) a-Pythagorean kind, a € R\ {0} fixed, the quantity
(X Via)= sw |llelf +a* oll” - llo - al’].
reX,yeY
(i43) Birkhoff kind, the quantity
a5 (X,¥)= sup sup {jiell” = lle + Ayli”} .
reX,yeY AeR
(¢v) Diminnie-Freese-Andalafte kind, the quantity
dhpa(X,Y;0)= sup |(1+a®) flo+ i’ — (lloz +olf + flz + ayl®) |,
zeX,yeY

where ¢ € R\ {1} is fixed.
(v) Kapoor-Prasad kind, the quantity

dip(X,Y;a,b)= sup
reX,yeY

= (llaz +9ll” + llz + baif*) |,

llaz + byl* + ||z + y||®

where a,b € (0, 1) are fixed.
(vi) Singer kind, the quantity d& (X,Y) defined by d% (X,Y) = 0 if
X ={0} or Y = {0} and

2 2

v
||ol]

z Y

zeX\{0},yeY\{0}

)

~
ll)

contrariwise.
(vi1) usual kind

d*(X,Y)= sup [(z,9)],
zeX,yeY

if, in addition, the norm ||-|| is generated by the inner product (-, ) on F.

Theorem 6.1 X L1, Y if and only if df (X,Y) = 0, where * represents
any kind of orthogonality in Definition 6.1.

Theorem 6.2 Let (E,{(-,-)) be a real inner product space endowed with the

norm ||z|| = /(x,z),z € E. We have:
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(i) df (X,Y;a) =4la|-d* (X,Y).

(i) d5 (X,Y;a) = 2|a| - d*+ (X,Y).

(i#i) d5 (X,Y) =0 if Y = {0} and df (X,Y) = sup,ex yev\{o) o
< supgex Jlell® < (diam (X)) if ¥ # {0}

(iv) d5ps (X,Y;0) =2(a—1)%-dL (X,Y).

(v) dip (X,Y;a,0)=2(1—a)(1-0)-dt (X,Y).

(vi) d$ (X,Y) =0if X = {0} or Y = {0} and d3 (X,Y) = d* (X', Y"),
where X' = P(X),Y' =P (Y),P(z) = g5 (i. e. X' and Y' are the pro-
jections of X and Y on the unit sphere {u € E;||u|| = 1}).

Theorem 6.3 Let (E,||||) be a real normed space. E is an inner product
space if and only if for all X, Y C E we have

dy (X,Y;1) = 2dp (X,Y;1)
and
Remark. From the proof of Theorem 6.3 it easily follows that (&, ||-]|) is
an inner product space if and only if, for all X, Y C E, we have

2dp (X,Y;1) < df (X,Y;1)
and

2dp (X,Y;-1) < df (X,Y;-1).
Concerning the defect of orthogonality of Cartesian product we present

Theorem 6.4 Let (Ey,||||,), (E2,|||ly) be two real normed linear spaces

and let us introduce on E1 X Ey the norm ||(u1, us)|| = \/||u1|[f + Hugllg,

V(ul,uQ) (S E1 X Eg. For all Xl,Yl g El,Xg,Yz g Ez, we have
df (X1 x X2, Y1 x Vo) < dif (X1, Y1) 4 dE (X2, Ys),

»”

for any kind ” *” of orthogonality in Definition 6.1, ezcepting Singer or-

thogonality.

Next we present some applications.
Definition 6.3 Let (E,(-,-)) be a real inner product space and X C E.
We call defect of orthogonality of X, the quantity

dt (X) =sup {|(z,y)|; 2,y € X,z # y} .
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Remark. Obviously X is orthogonal system in E if and only if d* (X) = 0.

Theorem 6.8 Let (E, (-,-)) be real inner product space and X = {z1, ..., zn}
C E with {zy,zx) = 1,Vk € {1,...,n}. Then for any = € E the following
estimate

lle ~ snll? ~ (Hxll —Zlc | )

holds, where s, =Y 5_ CkZr,ck = (T, zs) .

n

<db (X)) el gl

1,5=1,0#5

Corollary 6.1 In the hypothesis of Theorem 6.8, for any r € E we have

[l ~ sall* ~ (II$I12 - Z lcz'|2>

Corollary 6.2 If X = {x1,...,2,,...} is countable, such that (z;,z;) =
ii.,,i € N, then

H(X) fell® - n(n - 1).

o0

2
T — E CkTk -

k=1

(Hxlf -X lcz~l2> <t (X) - [fel” - 3

Remark. If X is orthonormal then d (X) = 0 and the inequality in The-
orem 6.8 becomes the well-known equality ||z — 5,||> = ||2||> = Y0y Jeil” -

Definition 6.4 Let (E,||||) be a real normed space, G C F and z € E
be fixed. We say that go € G is element of best approximation of z by
elements by G, with respect to the orthogonality 1, if ¢ — gy L. G, where
1. can be any orthogonality in Definition 6.1.

Theorem 6.9 Let us suppose that G C E is a linear subspace of E and
z € E\G. If there ezists go € G, such that for a given a € R\ {0}, we have
z—go Lp G (ie. if go is element of best approrimation of & with respect
to Lp), then g is element of best approximation in usual sense (that is,
e —yoll = inf{|lz—g|l;9 € G}), © — 90 Lr go (Lr is orthogonality in
Roberts sense (see e.g Singer [198], p.86)) and ||go|| < ||z|l, ||z — 2g0|| =
ll| -

Theorem 6.10 Let (E,||-||) be a real normed space, f € E*,

H = {y€ E;f(y) =0}. If there exists z € E satisfying |f (z)] = 1 and
z Lp H for a =1, (that is, if 0 is best approzimation of z by elements in
H, with respect to Lp for a = 1), then for all x € E\ G with |f (z)| < 1,
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there erists element of best approzimation in H, in classical sense (i.e.
dgo € H with ||z — go|| = inf {||z — g||;9 € H}).

Definition 6.5 The quantity 0 < Ey (z) = inf {d} (z — ¢,G); g € G} will
be called almost best approximation of ¢ with respect to L, and an element
go € G with Ef (z) = di (z — go, G) will be called element of almost best
approximation of z (by elements in G), with respect to L.. If, in addition,
El (z) = df (z —go,G) = 0, then go is element of best approximation
defined by Definition 6.4.

Theorem 6.11 Let (E, ||-||) be a real normed space, G C E be compact and
¢ € FE (z € E\G for Lg). Then for each L, in Definition 6.1 (excepting
Lp), there exists g* € G such that E} (z) = dt (z — ¢*., G).

Let (X,]|-|l) be a real normed space.
Definition 6.7 A subset Y C X is called:
() convex, if Ay1 + (L =N y2 €Y, Vy1, 42 € Y, A € [0,1].
(7%) linear, if
ay + By €Y, Vy, 12 €Y, 0, € R.
(77) balanced, if
ay €Y,Vy €Y, la| <1.
(#v) absorbent, if
Ve € X,3X > 0 such that z € AY.

Remark. The following characterizations also are well-known:
Y is convex if and only if Y = convY, where

n n
convY = {Zaiy,-;n eEN,y; €Y, a; > 0,i € {1, ...,n},Zai = 1}
i=1

i=1
represents the convex hull of Y;
Y is linear if and only if Y = spanY, where

n
spanY = {Zaiyi;n eN,y, €Y o, R iE{], ,n}} ;

i=1
Y is balanced if and only if Y = balY', where
balY = {ay;y €Y, |a| < 1}.
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Definition 6.8 Let (X, |||} be a real normed space and D (A, B) be a
certain distance between the subsets A, B C X (D will be specified later).
For Y C X, we call:

(¢) defect of convexity of ¥ (with respect to D), the quantity

dconv (D) (Y) = D (Y, convY);
(77) defect of linearity of Y, the quantity
drin (D) (Y) = D (Y, spanY);
(47) defect of balancing of Y, the quantity
dpar (D) (Y) = D (Y, balY);

(iv) defect of absorption of bounded Y, the quantity daps (D) (Y) =0,
if Y is absorbent and

daps (D)(Y)=D (Y,—B_(O, Ry))
if Y is not absorbent, where

Ry = sup{llyll;y€Y},
B(0, Ry) {z e X;|lz]l| < Ry},

A natural candidate for D might be the Hausdorff-Pompeiu distance
DH (Yl, YQ) = max{d (Yl y Yz) y d (Yg, Yl)} y

where d (Y1,Y2) =sup{d(y1,Y2) ;11 € Y1},
d (y1,Ys) = inf {]lyn — y2||;¥2 € Ya}. In this case we present

Theorem 6.13 Let (X, [|-||) be a real normed space and let us suppose that
Y C X,Y # 0 is closed. Then:

(2) Y is conver if and only if dconv (D) (Y) = 0.

(11) Y is linear if and only +f dpry (D) (Y) = 0.

(741) Y is balanced if and only if dpar (Dg) (Y) =0.

(iv) bounded Y is absorbent if and only if daps (Dg)(Y)=0.

Theorem 6.14 Let (X, |||]) be a real normed space. For all bounded sets
Y, Yy, Yy C X, with Y1,Ys # 0, we have
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driv (De) (Y) = doiv (Dw) (Y);
diin (D) (Y) = 0 ifand only of Y is linear;
drin (DH) (/\Y) = MrLin (DH) (Y),V/\ > 0;
dpinv (D) (Y1 +Y2) < doin (D) (Y1) +dein (Da) (Ye) .
(i)
dpar (Du)(Y) = dpar (Dm)(Y);
dpar (Dg)(Y) = 0ifand only if Y is balanced;
dBparL (DH)( Y) = MXdpar (DH) (Y),V/\> 0;
dpar (Dg)(Y1+Y2) < dpar (Du) (Y1) +dpar (Du) (Y2);
Dy (balYy,balYy) < Dy (Y1,Y);

|dBar (Dr) (Y1) — dpar (Dr) (Y2)] < 2Dy (Y1,Y2) .
(iid)
daps (Du) (Y);
/\dABS (DH) (Y) ,V/\ > 0;

dags (Du) (Y)
daps (Du) (AY)

[daps (Du) (Y1) —daps (Du) (Y2)| < 2Dm (Y1,Y3)
+ Dy (_B-(O’RYJ ’§(0>RY2)) :

ForY € P, (Y) = {Y C X;Y is bounded}, let us denote

Econv (Y) = inf{DH (Y, A) ;A €Py (X) ,A COHVeX} ,
EparL(Y) = inf{Dg (Y,A);A€ Py (X), A balanced},

the best approximation of a bounded set by convex bounded and by bal-
anced bounded sets, respectively.

Theorem 6.19 Let (X,||:||) be a real normed space. Then for any Y €
Py (X) we get

1

Econv (Y) gdconv (D) (Y),
1

Epar(Y) 2 5dpar(Du)(Y).

AV
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Definition 6.9 Let (X, +, ) be a real linear space.
(7) Let Y C X be convex. Then f:Y — R is called convex if

flowy + aoye) <anf(y)+aaf (y2), Vi €Y, > 0,i=1,2,01+a2 =1

(It is well-known that this is equivalent with f (3 ;i) < Sor i f (i),
VneN,Vy; €Y, >0,5€{1,...,n},> 0 ;i =1);
(#4) f: X — R is called subadditive if

fla+y) <f@)+F(y),Ve,y€X;
(757} f : X — R is called positive homogeneous if
f(z)=Af(z),YA>0,Ve € X;
(tv) f: X — R is called absolute homogeneous if
f(Az)=1A f(z) , VA e R, Ve € X;

(v) f : X — R is called sublinear if it is subadditive and positive
homogeneous;

(vi) f: X — R is called quasi-seminorm if it is sublinear and f (z) > 0,
Ye € X

(vii) f: X — R is seminorm if it is subadditive and absolute homoge-
neous;

(vitd) f: X — R is norm if it is seminorm and f (z) = 0 implies = 0.

Concerning these properties we can introduce the following defects.

Definition 6.10 Let (X, +,) be a real linear space.
(7)) fY C X is convex and f : Y — R, then the n-defect of convexity
of fonY, n>2 isdefined by

dgl())NV HEy) = sup{f (Zaiyi) -
i=1 i=1
i€ {1,...,n},zai - 1}.
i=1

(#) Let Y C X be a linear subspace of X and f : Y — R. The defect
of subadditivity of f on Y is defined by

dsapp (f) (Y) =sup{f (y1 +v2) = (F (1) + F (92)) ;91,92 €Y},

aif(yi),y: €Y, 03 >0,

n
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The defect of absolute homogeneity of f on Y is defined by

dam (f) (Y) =sup{|f (My) = M f(y); A eR,yeY}.

Theorem 6.20 Let (X,+,-) be a real linear space.
(2) Let Y C X be convex and f:Y — R. Then for all n > 2 we have

A%y () (V) < d820 (1) (V) < dSwy (A (Y) + dShny (F) (V)

Also, [ is conver on Y if and only if for any fized n > 2, we have

d(ct?)Nv (Nry)=o.
For f,g:Y - R,a>0 and n > 2 we have

A3y (f+9) (V) < d%hny (£) (V) + d&dwy (9) (V)

and

d&ny (@f) (V) = adSy () (V).

(i) Let Y C X be linear subspace of X and f:Y = R. If f(0) =
then f is subadditive (on Y ) if and only if dsapp (f) (Y) = 0. f is absolute
homogeneous (on Y} if and only if dag (f)(Y) = 0. Moreover, if f, g :
Y — R then

dsapp (f+9)(Y) < dsapp(f)(Y)+dsapp(9) (Y),
dang (f+9)(Y) < dan (f) (Y) +dan (9) (Y),
dsapp (af)(Y) = adsapp (f) (Y),Va >0,
dan (o) (¥) = laldan (f) (V) Ya € R.
For Y C X linear subspace or convex set, let us denote
By(Y) = {f:Y = R;fisbounded onY and f(0) =0},
Esapp (f)(Y) = wmf{||f-gl|l;9 € Bo(Y),g is subadditive on Y},

f€By(Y) and

B(Y) = {f:Y >R, fisbounded on Y},
Econv (f) (Y) inf{||f —gll;9 € B(Y),gisconvex on Y},

f € B(Y), respectively, where ||f|| = sup {|f (z)|;z € Y}.
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Theorem 6.21 (i) Let Y C X be linear subspace of X and f € By (Y).
Then

Esapp (f)(Y) > dSA—DDg(Dﬂ.

(¢7) Let Y C X be conver and f € B(Y). Then
(n)
Econv (f) (Y) > M’Vn > 2.
Remark. By Theorems 6.20, (¢) and 6.21, (¢¢), there exists the limit
limn_,ood(cf%NV (f) (Y) and moreover

1 . n
5.dim dGo vy () (V) < Econv (1) (Y) -
Let (X, (-,-)) be a Hilbert space over R or C and
LC(X)={A4:X — X; A is linear and continuous on X} .

For any A € LC (X), we define the norm |||-||| : LC (X) — Ry by |||All| =
sup {||A (z)||; ||lz|| < 1}, where ||z|| = /{z, z).

The following concepts are well-known in functional analysis (see e.g.
Muntean [155] and Ionescu-Tulcea [103]).

Definition 6.11 The operator A € LC (X) is called:
(7) symmetric (or Hermitean) if (A (z),y) = (z, A (y)),Vz,y € X;
(7%) normal, if AA* = A* A, where A* is the adjoint operator of A defined
by (A(z),y) = (x,A* (y)),Ve,y € X and AA* (z) = A(A* (2)),Vz € X;
(¢ii) idempotent, if A2 = A, where A% (z) = A(A(z)),Vz € X;
(7v) isometry, if (A (z), A (y)) = (z,y),Vz,y € X (or equivalently, if
1A (@I = |l=Il, V= € X);
Also, two operators A, B € LC (X) are called permutable if AB = BA.

Suggested by these properties, we can introduce the following

Definition 6.12 Let A, B € LC (X).
(7) The defect of symmetry of A is given by

dsim (A) = sup {{A (z) ,y) — (=, A ()] Izl iyl < 1};
(#7) The defect of normality of A is given by
dvor (4) = sup {||A (A" (z)) — A" (A (2))l|; [l=]| < 1} = [[[AA* — A" A|ll;
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(2¢1) The defect of idempotency of A is defined by
dippm (A) = sup {|| A (2) — A ()| |lell < 1} = |||A% = A|||;
(iv) The defect of isometry of A is given by
drso (A) = sup {||A (z) — z||;|l«]| < 1};
(v) The defect of permutability of A and B is given by
dperm (A, B) = sup {||A (B (z)) — B(A(2))ll; |lz|l <1} = [[|AB — BA|]|.

Also, if Y C LC (X), then we can introduce the corresponding defects for
Y, by

(Y) = sup{dsim(A);A€Y};

(Y) = sup{|[|[44” —A™A|||;A€Y};
Dipem (Y) = sup{|||A*-A4||;4€Y};

(Y) = sup{diso(A);A€Y};

and
dpery (Y) = sup {|||AB — BA|||; A, BEY}.

Theorem 6.22 Let A, B € LC (X).
(1) A is symmetric if and only if dsrm (A) = 0;
(43) A is normal if and only if dyor (A) = 0;
(73t) A is idempotent if and only if drppy (A) = 0;
(tv) A is isometric if and only if drso (A) = 0;
(v) A and B are permutable if and only if dperm (A, B) = 0.

Theorem 6.23 Let A,B € LC (X). We have
() dsra (AA) = |M| dsrar (4) ,VA € R;
dNOR (/\A) = I/\l2 dNOR (A) ,V/\ €R or C.
(¢7) dsrm (A+ B) < dsrm (A) +dsim (B);
dsim (AB) < 2|||AB — I}||, where I (z) ==z,Vz € X;
dyvor (A+ B) <dnor(A) + dnor (B) + dperm (A, BY)
+dperMm (4™, B).
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(i43) dsrm (A‘l) =dsram (A), if there exists A~ and A is isometry.
() dsim (A) — dsra (A4%)] < 21|14 = A*|Il;
dyor (A*) = dnor (4);
dyvor (A + A*) < dyor (A) + dnvor (A*);
(dipen (4) = drpsa (A)] < 1A = A%l + |14 - (a2 ]
dipem (I — A) =dipem (A);
dperm (A, A™) = dnor (4).
For given A € LC (X), let us introduce the following quantities of best
approximation:

Esrm (A) = inf {]||A — BJ||; B € LC (X) , B is symmetric},

Enor(4) = inf{|[]A— B|||+||A4" - B*|||; B € LC (X),
[||B]|| < 1, B is normal} ,

Eippm (A) = inf {|||A - BJ||+ ||4® - B?|||; B € LC (X),
B is idempotent},

Erso (A) = inf {|||A — B|||; B € LC (X), B is isometry} .
Theorem 6.24 Let A € LC(X). We have:
dsrm (4)

2 bl
d A)
Bvon(4) > WOR i jag <1,

Erpem (A) > dipem (4),
Erso(A) > drso(4).

Definition 6.13 Let (X, d) be a metric space and M C X. The defect of
fixed pointof f : M — X isdefined by eq (f; M) = inf {d (z, f (z)) ;0 € M}.
If there exists @g € M with eq (f; M) = d (xo, f (o)), then 2y will be called
best almost-fixed point for f on M.

Esim (A)

v

Theorem 6.25 Let (X,d) be a metric space and f : X — X be a non-
ezpansive mapping, i.e. d(f(z),f(y)) < d(z,y), for all x,y € X. Then
eq (f*; X) < meq (f; X) and inf {d (f* (z), "+ (z)) ;2 € X} = eq (f; X),
Vn € {1,2,...}, where f* denotes the n-th iterate of f.
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Let us denote
F ={g: X — X;g has fixed point in X},

where (X, d) is supposed to be compact. A natural question is to find the
best approximation of a function f : X — X, f ¢ F, by elements in F. In
this sense, we can define

Er (f) =inf{D(f,g);9 € F},

where D (f,g) = sup {d(f (2) ,9(2)) ;2 € X}
The following lower estimate for Ex (f) holds.

Theorem 6.26 We have eq (f; X) < Ex (f), forany f: X = X.

Theorem 6.30 Let (X, (,)) be a real Hilbert space, ||z|| = \/(z,z),z € X,
the metric generated by norm ||-|| denoted by d and M C X.

(7) Let f: M — X be Géateauz derivable on xo € M,z interior point
of M, with eq (f; M) > 0. If ||zo — f (z0)|| = eqa (f; M), 20 € M, then

(o~ f(z0), (1x — Vf(x0)) (R)) =0,

forall he X.
(@) If F(z) = |le— f(x)||,x € X is moreover Gdteaur derivable on
M C X open convez, then ||zo — f (zo)|| = eq (f; M) if and only if

(o — f(20),(1x — VS (=0)) (h)) =0,Yh € X.

Let us consider C [0, 1] endowed with the uniform metric
d(f,g) = sup{|f (z) — g ()| : z €[0,1]}. Denoting A : C[0,1] — C[0,1]
by

1
(Au)(z) =1+ /\/x u (s — z) u(s)ds,

where A > %,

Wwe can prove

it is known that A has no fixed points in C'[0,1]. However,

Theorem 6.32 Let A: M — C[0,1], where A > %,A is defined as above
and

M= {ueC[0,1]: uis derivable, v'(z) > 0,Yz € [0, 1],
0 <u(0) <u(l) <1}.
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Then eq (A; M) = “T;l and a best almost-fived point for A on M s
u:[0,1] - R,u(z) =5,V €[0,1].

Open problem 6.1 If Y C X is an absorbent subset of the linear space
(X, +,-) then the well-known Minkowski’s functional attached to Y is de-
fined by

py (z) =inf{a > 0;z€aY},z € X.

This functional characterizes the quasi-seminorms and the seminorms as
follows (see e.g. Muntean [154], p. 43-45):

(1) p : X — R is quasi-seminorm if and only if there exists Y C X,
absorbent and convex such that p = py;

(1) p+ X — R is seminorm if and only if there exists Y C X, absorbent
convex and balanced such that p = py;
In the proof of (¢), given an absorbent subset ¥ C X, the subadditivity
of py is essentially a consequence of the convexity of Y (because py is al-
ways positive homogeneous if Y is absorbent). Let us suppose, in addition,
that (X,||]]) is a real normed space. Then, would be natural to search
for a relationship between the defect of subadditivity dsapp (py) (X) and
the defect of convexity dconv (D) (Y) (where D = Dy or D = D*) in
such a way that for absorbent ¥ C X,dsapp (py) (X) = 0 if and only
if deonv (D) (Y) = 0. Similarly, in the proof of (éi), given an absorbent
and convex subset Y C X, the absolute homogeneity of py is essentially
a consequence of the fact that Y is balanced. Therefore, in this case
would be natural to search for a relationship between the defect of abso-
lute homogeneity dag (py) (X) and the defect of balancing dpayr (D) (Y),
{where D = Dy or D = D*) in such a way that for absorbent and convex
Y CX,dag (py)(X) =01if and only if dgar, (D) (Y) = 0.

1.7 On Chapter T: Defect of Property in Algebra

Let (X, d) be a metric space and F : X x X — X be a binary operation
on X. If F is not commutative, or is not associative, or is not distributive
(with respect to another binary operation G : X x X — X), or has no
identity element, or no every element has an inverse, so on, it is natural to
look for a concept of defect of F' with respect to these properties.

It is the main aim of this chapter to introduce and study the concept of
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defect of F' with respect to the above properties.

Definition 7.1 Let (X, d) be a metric space, Y C X and I/ : X x X — X
be a binary operation on X.
(7) The quantity

etom (F) (Y) =sup{d(F (z,9), F (y,2)) ;2,9 €Y}

is called defect of commutativity of /' on Y with respect to the metric d.
(#¢) The quantity

ehs (F)(Y) =sup{d(F (F (z,y),2),F (2, F (y,2))) ;2,92 € Y}

is called defect of associativity of F' on Y with respect to the metric d.
(¢7¢) The quantity sup {d (F (z,y),z);z € Y} is called defect of identity
element at right of y (with respect to F') and

¢fpr (F) (Y) = inf {sup {d (F (z,y) ,z);z € Y};y €Y}

is called defect of identity element at right of F on Y (with respect to d).
Similarly, we can define the defect of identity element at left,

efpr (F)(Y) =inf {sup {d (F (y,z),2);2 € Y};y €Y},
If there exists eg € Y such that
edpr (F)(Y)=sup{d(F (z,er),z);z €Y} >0,

then er will be called best almost-identity element at right of F on Y.
Analogously, if there exists e € Y such that

efpr (F) (Y) =sup{d(F (ez,2),2);z €Y} > 0,

then ez, will be called best almost-identity element at left of F on Y.
(tv) Let us suppose that there exists a € X such that F(z,a) =
F(a,z)=,Yz € X. Then

inf{d(F (z,y),a);y €Y}
and

inf {d (F (y,z),a);y €Y}
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are called defects of invertibility of z at right and at left, respectively. The
quantities

efnr (F)(Y) =sup {inf {d(F (z,y) ,a);y € Y};z €Y}
and
efnr (F)(Y) = sup {inf {d (F (y,2),a);y €Y};z €Y}

are called defects of invertibility of F on Y, at right and at left, respectively.
The quantity ey (F)(Y) = max{edy; (F)(Y),edng (F)(Y)} is called
defect of invertibility of F on Y (with respect to d).

If there exists £ € Y such that

0 <inf{d(F(2,y),a);y €Y} =d(F(z,2F),a),

then z} will be called best almost-inverse at right of & with respect to F.
Similarly, if there is 23 € Y with

0<inf{d(F(y2),a);y €Y} =d(F(a},2),a),

then z7 will be called best almost-inverse at left of z with respect to F.
(v) The quantity

edREL (F) (Y) =sup {d(.’l,‘,y) T, Y€ Y,F(Z,CL') = F(Z,y)}
1s called defect of regularity at left of z on Y. Analogously,
eqpr (F)(Y) =sup{d(z,y);2,y €Y, F(2,2) = F(y,2)}

is called defect of regularity at right of z on Y.
(vi) The quantity

eipem (F) (Y) =sup{d(F (z,z),z);z €Y}

is called defect of idempotency of F on Y (with respect to d).
(vii) If G : X x X — X is another binary operation on X then

eprsy (F;G)(Y) =sup {d(F(z,G(y,2)), G (F(2,9),F (2,2));
z,y,z€Y}

is called defect of left-distributivity of F with respect to G on Y. Similarly,

ebrsr (F;G) (Y)=sup {d(F(G(y,2),z,),G(F(y,2),F(z,2);
z,y,z €Y}
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is called defect of right-distributivity of F' with respect to G on Y. If
F = G, then e%,¢, (F; F)(Y) and €%;55 (F; F) (Y) are called defects of
autodistributivity (left and right) of ' on Y. Also,

eff,B (F;G)(Y) = max{sup {d(F (a,G (a,b)) ,a);a,be Y},

sup {d (G (a, F (a,b)) ,a);a,b€ Y}}
is called defect of absorption of (F,G) on Y.

Lemma 7.1 With the notations in Definition 7.1 we have:

(1) F is commutative on Y if and only if el s, (F)(Y) = 0.

(1) F is associative on Y if and only if e ¢ (F)(Y) = 0.

(i3¢) If F has identity element at right in Y, i.e. thereis a € Y such
that F (a,z) = z,Vz € Y, then e$pp (F)(Y) = 0. Conversely, if (Y,d) is
compact and F is continuous on Y x Y (with respect to the box metric on
Y x Y ) then e¢pg (F) (Y) = 0 implies that F has identity element at right
in Y. Similar results hold in the case of identity element at left.

(iv) If F has identity element in Y and each z € Y has inverse at
right, then e$ng (F)(Y) = 0. Conversely, if (Y,d) is compact and F is
continuous on Y x Y (with respect to the box metric on Y x Y ), then
e¢nvg (F)(Y) = 0 implies that each x € Y has inverse at right. Similar
results hold for invertibility at left.

(v) A set Y C X 1s called regular at left if each z € Y is regular at
left (i.e. F(z,2) = F(z,y) implies ¢ = y). Then Y 1is regular at left
with respect to F if and only if ekgr (F)(Y) = 0. Similar results hold for
reqularity at right.

(vi) A set Y C X is called idempotent if each © € Y is idempotent (with
respect to F'). Then Y is idempotent with respect to F if and only if
efppy (F)(Y) =0.

(vit) F s left-distributive (right-distributive) with respect to G on Y if
and only if epsp, (F;G)(Y) = 0 (eprsp (F3G)(Y) = 0). Also, the pair
(F,G) has the property of absorption on Y if and only if 4 5 (F, G) (Y) = 0.

Definition 7.2 Let f,g: X = X be with f o g = ¢, where ¢ is the identity
function on X. If G is a binary operation on X, then FF : X x X —» X
given by F' = go G(f, f) is called the (f,g)-dual of G (i.e. F(z,y) =

9(G(f (=), f(¥),V(z,y) € X x X).
Definition 7.3 Let (X, d) be a metric space and F,G: X x X — X. We
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say that F is less than G (we write F' < G) if F is the (f, g)-dual of G,
where d(g(x),9(y)) < kd(z,y),Vz,y € X and 0 < k < 1 is a constant.

Theorem 7.2 With the notations in Definitions 7.1 and 7.8, the condition
F < G implies:

(i) ebon (FY(Y) < kedop (G) (f(Y)), VY C X. In particular,
ong (F) (X) < keoy (G) (X)

(i) edg (F) (V) < kel s (G) (F(Y)),VY C X. In particular,
s (F) (X) < kel (@) (X)

(¢17) Let F; be' the (f, g)-duals of Gy,i€ {1,2}, such that F; < G;,i €
{1,2}. Then
ebrsr (F1; F2) (Y) < kebrsr (Gi;Ga) (F(Y)),VY C X, and in particular
e ror (Fi; F2) (X) < ke pop (G1; Ga) (X) . Simalar results hold for e sp.

Theorem 7.5 Let (X, d) be a metrizable non-commutative group, N a
closed normal divisor of X and d a metric that is left invariant. If d
denotes the induced metric on X/N and © the induced operation on X/N,
then

edom (©) (X/N) < edon () (X) .
For F,G: X x X — X, we define the distance between I and G by
D(F,G) =sup{d(F(z,y),G (v,y));z,y € X}.
Also, we define
Ecoy (F) = inf{D(F,G);G € COM (X)}
and
Eas (F)=inf{D(F,G);G € AS (X)},

the best approximation of a binary operation on X by commutative oper-
ations and by associative operations, respectively.

Theorem 7.6 Let (X,d) be a metric space with d bounded on X. We
have 3edop (F) < Ecom (F) and 1eb s (F) < Eus (F), for any binary
operation F : X x X —» X.

In Section 7.2 we consider examples of calculations for the defects stud-
ied in Section 7.1. Section 7.3 deals with triangular norms and conorms.
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Theorem 7.7 Let T be a triangular norm and S be a triangular conorm.
We have:

(9) erpem (T) =sup{z —T(z,z);z € [0, 1]};

(#) erpem (S) = sup{S (z,z) — z;z € [0,1]};

(¢2d) If S is the dual of T, thatis S (z,y) =1-T(1—-=z,1—y),Vz,y €
|, then erpem (T') = erpem (S) ;

() If Ty < T, that is Ty (z,y) < Ta (z,y),Vz,y € [0, 1], then
erpeMm (T2) < erpem (Th);

v) If S1 < Sy, that is S1(x,y) < Sa2(z,y),Ve,y €[0,1], then

erpeM (S1) < erpem (S2);

vi) If T* s the reverse of triangular norm T, that is
T* (z,y) = max(0,z4+y—1+T (1 —z,1—1y)) (see Kimberling [117] or
Sabo 186]), then erpem (T*) < eIDEM (T) .

(0,

—

Theorem 7.11 (i) 0 < epys (F;G) < 1 for every triangular norms or
conorms F and G;
(%) eprs (T; Sm) = 0, for every triangular norm T,
(i37) eprs (S;Tm) = 0, for every triangular conorm S
() eprs (F; F) = erpem (F) for every triangular norm or conorm F';
(v) If S is the dual of T then eprs (T;T) = eprs (S; 9) .

Chapter 7 ends with some applications.

1.8 On Chapter 8: Miscellaneous

In this chapter we study some defects of property in Complex Analysis,
Geometry, Number Theory and Fuzzy Logic.

Pompeiu [163] notes that if Jo F(2)dz # 0, then UC I (z) dz‘ can be
considered as a measure of non-holomorphy of f inside of the domain
bounded by the closed curve C.

Definition 8.1 Let D C C be a bounded domain and f : D — C, inte-
grable on D. The number

;C C D, closed rectifiable curve}

dror (f) (D) :sup{ zYdz

is called defect of holomorphy of f on D.
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The following properties are immediate:

dror (f+9) (D) < dyor(f) (D) +dror (9) (D),Vf,g € C(D)
daor (Af) (D) = |Mdmor (f)(D),YAEC,feC (D).

Continuing the ideas in Pompeiu [163], let us suppose that f € C' (D),
that is if f = u + iv then u, v are of C'1 class.

Definition 8.2 (Pompeiu [163]) Let f € C* (D), f (2) = u(z,y)+iv (z,y),
z=z+1y € D and zg = 2o + 1Yo € D. The areolar derivative of f at zg is
given by

da (f) (20) = Ch—ynzlo”z_lf_;%?ﬂ

3

where the limit is considered for all closed curves C' (in D) surrounding zo,
that converge to z by a continuous deformation (m (A) represents the area
of the domain A closed by C).

Remark. Because for f € C!(D) and 29 € D, it is obvious that (see
Pompeiu [164])

da (f) (z0) = 0 if and only if f is differentiable at zg,

we can call |da (f) (20)] as defect of differentiability of f € C* (D) on z.
In Szu-Hoa Min [209], |da (f) (20)] is called deviation from analiticity.
The defect of differentiability of f on D given by

da (f) (D) =sup{|da (f) (2)|;2 € D},

appears in the estimate of f (2) by the Cauchy’s integral:

I R e EATINS

if we choose C = {u € C;|lu—a|=r} C D,A =int(C) C D and z € D
such that |z — a| > 2r.
In the Euclidean and non-Euclidean geometries, the concept of curva-

ture and torsion of a curve C in a point M are introduced by (see e.g.
Mih#ileanu [148], p. 99-100)
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and

respectively, where Aa is the angle of tangents in M and M’, Af is the
angle of binormals in M and M’ and As is the length of the arc MM’
(M, M’ € C) when M’ tends to M.

Definition 8.3 Let C be a curve. The quantities
7(C) =sup{|y (M)|; M € C}
and
7(C) =sup{|r (M)|; M € C}

are called the defect of right line and the defect of plane curve of C, respec-
tively.

Definition 8.5 Let ABC be a triangle in a geometry. The quantity
Da (ABC)=|A+ B+ C — |
is called defect of Euclidean triangle.
Let us assume that the absolute of a non-Euclidean space is given by
q2w3+z%+z%+wgzo,
where ¢ € R and let us denote ¢ = 1.
The inner product of two points X and Y with coordinates z;,i €
{0,1,2,3} and y;,7 € {0, 1,2,3} is given by
zoyo + T1y1 + T2y + Tays
Vzg+ o+ 2f + 23008 + 47 + 13 + 13
and the inner product of two planes o : agrg + a121 + asrs + aszs = 0,
B Boxo + frz1 + Paza + Parz = 0 is given by
8= e2oofo + 181 + a2f2 + a3fs
Velat +al+ ol +ad /20 + B2 + B + B3
Definition 8.6 (i) The quantity

XY=

dorrr (X,Y)=|X Y|
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1s called defect of orthogonality of the points X and Y.
(7%) The quantity

dorrH (@, B) = |a - B
is called defect of orthogonality of the planes o and 3.

Theorem 8.2 (i) dogprw (X,Y) =0 if and only if X and Y are orthogo-
nal; dopri (o, B) = 0 if and only tf a and B are orthogonal.
(i2) 0 < dorrH (X,Y) <1 and 0<dorrH (a,,@) <1
(¢) dorru (X,Y) =dorrH (Y, X); dorra (o, B) = dorrH (8, a).
(fv) dorrEe (X, Y} = |cos g', where d is the distance between X and Y ;

dorrh (o, ) = |cos 8], where 6 is the angle of the planes o and S.

Let us consider two right lines u and v with the common point X and
let U,V be the orthogonals of the point X on u and v, respectively (that
isUEuand Vev,U -X =0,V X =0). The angle A of the right lines
u and v is given by (see Mihiileanu [148], p.33)

cosA=U-V.
Definition 8.7 The quantity
dortH (4, v) = |cos Al
is called defect of orthogonality of the right lines u and v.

Theorem 8.3 (i) dorry (¢,v) =0 if and only if v and v are orthogonal.
(7)) 0 < dorrH (u,v) < 1.
(%l) dORTH (u, ’U) = dORTH (U, u) .

(tv) doprH (u,v) = cos% , where § is the distance between u and v.

(v) If u:az+by+cz=0and v:dz+by+c'z =0 are two right lines

. I h d _ |aa’+bb'+cc'|
in plane, then dorry (u,v) = N T el

Now, we consider v : ax +by+cz=0and v:ad'z +b¥y+c'z =0 two
right lines in a non-Euclidean plane. By definition, u and v are parallel if
their angle is null (see Mihiileanu [148], p. 39).

Definition 8.8 The quantity
dPAR (u, ’U) = lsin Al

is called defect of parallelness of the right lines u and v.
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Theorem 8.4 (i) 0 < dpar (u,v) < 1.
(7) dpar (u,v) = dpar (v,u).
(7i2) dpagr (u,u) = 0.

: a8 — [ (ab’=a'b)24e2(ac’—a’c) 42 (be’— b’c)2
() dpar (u,v) = |Sln E' = \/ (a2 452 1e2e) (0 2 +b2 +e2¢'2)

In what follows we deal with Number Theory.

Definition 8.12 Let z € R. The quantity
drz () = min (z - [z],[z] —z + 1)
is called defect of integer number of , where [z] is the integer part of .

Theorem 8.7 (i) drz () = min({z},1~ {z}), where {z} denotes the
fractional part of x.

(i1) drz (z) = 0 if and only if © € Z and drz (z) =d(z,Z).

(i17) 0 < drz (z) < 3,Vz € R.

(iv) dmrz (z) = drz (—2) ,Vz € R.

Let us denote by X = {z1,...,z,} a finite set of real numbers and let
us consider the fuzzy set Ax : R — [0, 1] corresponding to X and defined
by Ax (z) =0if z € R\ X and Ax (z) = {2} if 2 € X, where {z} is the
fractional part of . If d. is a normalized measure of fuzziness (that is has
values in [0, 1]), then we give the following

Definition 8.13 The quantity

dr (X) = de (Ax)
is called defect of integer of the set X.

Theorem 8.8 (i) d; (X) = 0 (i.e has the minimum value) if and only if
e, € Z,Yek e {1,...,n}.

(4) d1 (X) =1 (i.e. has the mazimum value) if and only if drz (zx) is
mazimum, Yk € {1,...,n}.

(47 Let Y {¥1, .., Un} be a finite set of real numbers. If {zr} < {us}
for {ye} < 3 and {z} > {yk} for {y} > 5, Yk € {1,...,n}, then d; (X) <
dr (Y).

Definition 8.14 Let p, ¢ two natural numbers. The quantity

Daiy (p,¢) = min{r,g ~ 1 —r},
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where r is the remainder of division of p by ¢, is called defect of divisibility
of p with respect to q.

Theorem 8.9 Let p, p1, p2, g be natural numbers.

(2) Daiy (p,q) =0 if and only if q/p (i.e. q is divisor of p).

(i) 0 < Dyiv (p,q) < [#] + 1, where [z] is the integer part of .

(#43) If p1 = p2(modq) then Dy (p1,q) = Daiv (p2,q) and
Daiy (p1 — p2,9) = 0.

(1) Daiv (p1 + P2,9) = Daiv (r1 + 72, 9) and Daiy (p1p2,q)

= Dgiy (r172,q), where r1 and ry are the remainders of division of p; and
p2 by ¢

Definition 8.17 Let m and n be positive integers. The quantities

D perfect Z k

k/n,k#n

and

Damicable (M, n) = Z i = Z J

i/m,i#Em ilnj#n

are called defect of perfect number of n and defect of amicable numbers of
m, n, respectively.

A fuzzy logic (see e.g. Butnariu-Klement-Zafrany [51]) can be described
as a [0, 1]-valued logic, that is one real number ¢ (p) € [0,1] is assigned to
each proposition p.

Definition 8.18 (see Hajek-Godel [98]) The propositional form A is a 1-
tautology (or standard tautology) if ¢ (A) = 1, for each evaluation.

Definition 8.19 Let A be a propositional form which is represented with
propositional forms Ay, ..., A, and connectives. The quantity

d%”AUT (A): 1"1nf {t(Al,...,An,VS,/\T,'ﬂ);

Ay, ..., A, propositional forms}

is called defect of 1-tautology of propositional form A.

Among all fuzzy logics, min — max logic is the most used in practice.
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Theorem 8.12 (see Butnariu-Klement-Zafrany [51]) A propositional form
A in min —max fuzzy logic is a tautology if and only if t(A) > 0.5, for
every evaluation.

Let A be a propositional form which depends on propositional forms
Ai, ..., Ay and connectives V, A, —, .

Definition 8.20 The quantity
draur (A) = max{O, 0.5 —inf {t (Al, vy A, VA >, —|) ;

Ai, ..., Ay are propositional forms}}

is called defect of tautology in min — max fuzzy logic (or Tp-tautology) of
propositional form A.

In intuitionistic fuzzy logic, two real non-negative numbers, 1 (p) and
v (p), are assigned to each proposition p, with the following constraint:

p(p)+rvp) <1

Definition 8.21 (see e.g. Atanassov [12]) The propositional form A is an
intuitionistic fuzzy tautology if and only if

1 (A) > v (4).

Definition 8.22 Let A be a propositional form which can be represented

with arbitrary propositional forms Ay, ..., A, and connectives. The quantity
di—ravr (A) = max{0,sup{v(A1,...,A4,) — u(41,..., An);

Ai, ..., Ap propositional forms}}
is called defect of intuitionistic fuzzy tautology of propositional form A.

Theorem 8.13 (Z) 0 <dr_ravr (A) <1
(#) dr—ravr (A) = 0 if and only if A is an intuitionistic fuzzy tautol-
ogy.



Chapter 2

Defect of Property in Set Theory

In this chapter we consider the measures of fuzziness as measuring the
”deviation” of a fuzzy set from the concept of crisp (classical) set, that is
as measuring the defect of crisp(classical) set and the intuitionistic entropies
as measuring the ”deviation” of an intuitionistic fuzzy set from the concept
of fuzzy set, that is as measuring the defect of fuzzy set. In the last section,
some applications to the determination of the degree of interference (mainly
in the geography of population), to description of systems performance and
to digital image processing are given.

2.1 Measures of Fuzziness

Given a set X, a fuzzy subset A of X (or a fuzzy set A on X) is defined by
a function

pa X = [0,1]

such that pa () expresses the degree of membership of = to A4, i.e., the
degree of compatibility of z with the concept represented by the fuzzy set
A. Therefore, p4 () = 0 means that z is definitely not a member of A and
pa (z) = 1 means that z is definitely a member of A; if either pa () = 0
or pa (x) = 1 for every z € X, then A is a crisp set. We denote by F.5(X)
the class of all fuzzy sets on X and we identify the fuzzy sets with their
membership functions, that is

FS(X)={A|A: X = [0,1]}.

57
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The measures of fuzziness (see e.g. Ban-Fechete [20], Klir [120], Knopf-
macher [122], Roventa-Vivona [180], Vivona [217]) or, in other words, the
fuzzy entropies (see e.g. Rudas-Kaynak [181], Roman Flores-Bassanezi [34])
are real functions which attach to fuzzy sets values that characterize their
degree of fuzzification, that is measure the difference between fuzzy sets
and classical (or crisp) sets.

A general definition of the measures of fuzziness is the following (inspired
by Rudas-Kaynak [181]):

Definition 2.1 A measure of fuzziness is a positive real function d. de-
fined on F(X) C FS(X), that satisfies the following requirements:

(I AeF(X), A(z) € {0,1},Ve € X then d.(A4) = 0.

(7%) If A < B then d;(A4) < d.(B), where A < B means that A is
sharper than B{see e.g. relation (2.2) below).

(747) If A is maximally fuzzy (see e.g. relation (2.3) below) then d. (A)
assumes its maximum value.

Remarks. 1) If (X, A, p) is a measure space (all measure-theoretic terms
and results used in this chapter may be found in Halmos’ book [99]), we de-
note F4 (X) ={A € FS(X); A is A-measurable}. In many papers (see e.g
Romén Flores-Bassanezi [34], Knopfmacher [122], Roventa-Vivona [180])
it is considered F(X) = F4 (X) and the condition (¢) in Definition 2.1 is
replaced by

d. (A) = 0 if and only if A(z) € {0,1},p-a.c. 2 € X. (2.1)

If the set X is finite, A = P(X) and the measure y is defined by p(A4) =
cardA, then F4 (X) = FS(X) and we obtain the definition introduced by
Klir [120].

2) The best known acceptations for the sharpness relation < and for
fuzzy maximality introduced by De Luca and Termini [138] and further
investigated by many authors (see e.g Batle-Trillas [35], De Luca-Termini
[139], Knopfmacher [122], Romén Flores-Bassanezi [34], Ban-Fechete [20]),
are the followings:

A < Bif and only if A(z) < B(z) for B (z) < - and

D) b

A(z) > B(z) for B (z) > (2.2)

N —
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and

1
A is maximally fuzzy if and only if A(z) = 1 Ve e X (2.3)

1 .
(or A(z) = g pae T € X if (X, F(X),p) is a measure space).

In the case when X is finite, the best known example in this sense was
given by De Luca and Termini [138]:

Example 2.1 The function d, : FS(X) — R defined by
de(A) = =) (A(z)logy A() + (1 — A(x))log, (1 — A(x)))
zeX
( by convention Ologs0 = 0) is a measure of fuzziness.

Theorem 2.1  (Loo [135]) Let X be a finite set. If the function h : Ry —
R is increasing, the functions (¢),cx » 90 : [0,1] = Ry are increasing on
[0, %] , decreasing on [%, 1] such that g.(0) = g-(1) = 0,YVz € X and g. (})
is the unique mazimum value of g, Vo € X, then d. : FS(X) — R defined
by

de(A) = h (Zgz (A(w)))

zeX

1s a measure of fuzziness.

Remarks. 1) If
9z (A(z)) = —A(2) log, A(z) — (1 — A(z)) log; (1 — Afz)) ,

for every ¢ € X and h is the identical function on Ry, then we get the
measure of fuzziness in Example 2.1.
2) When for a given w € [1,00], we take i(b) = 6% and

_ [ @AE)”,  ifA@) e(0,1]
9= (A(z)) = { (1-A(2)", if A(z) € [, 1]

for every € X, the measures of fuzziness proposed by Kaufmann [114] are
obtained. In this way, a measure of fuzziness is introduced as the distance
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(Hamming if w = 1, Euclid if w = 2, Minkowski if w € [1, o0]) between the
fuzzy set A and its nearest crisp set C4, that is

0, if A(z)

<
1, if A(z) >

Calz) = {

(MM

Sometimes, additional conditions are required to the concept of measure
of fuzziness. Thus, an usual one is the equality between the measure of
fuzziness of a fuzzy set and the measure of fuzziness of its complement. In
this sense, we introduce the concept of fuzzy complement.

Definition 2.2 (see Klir (120], Rudas-Kaynak [181]) A function N :
[0,1}) — [0,1] is a fuzzy complement, if for all a,b € [0,1], the following
axiloms are satisfied:

(¢) N(0) = 1 and N(1) = 0, that is N gives the same results as the
classical complement for crisp conditions;

(#¢) If @ < b then N (a) > N (b), that is N is monotonically decreasing;

(43i) N is a continuous function;

(tv) N (N (a)) = a, that is N is involutive.

Example 2.2 If t € (0,1) then N, : [0,1] — [0, 1] defined by

1- L=ty ifz<t
— t 3 =
Nt(x)_{ l—f—t(l—x), ifz>t
is a fuzzy complement. Indeed, N;(0) = 1, N¢(1) = 0, the continuity and
the monotonicity are obvious. Because Ny(z) € [t, 1] if and only if € [0,1]
and Ni(z) € [0,¢] if and only if z € [t, 1], we get

N, (Ni(z)) = N, (l——l_tz'>

Il

—t
L(1—1+1t z):x,\?’xé[o,t],
and

Ni (Ne(z))

I
=
TN
|~

o
gy
|
B
~—
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Definition 2.3 Let N be a fuzzy complement and A € FS(X). The
fuzzy set A € FS(X) defined by Ayx(z) = N(A(z)), for every z € X, is
called the complement of A.

Remark. The conventional complement of a fuzzy set 4, A(z) = 1 — A(z),
for every ¢ € X, is obtained considering as fuzzy complement N : [0, 1] —
[0, 1] defined by N(a) =1 — a.

Another axiom considered as natural in the definition of measures of
fuzziness on F(X) C FS(X) is

de(A) = do(4n), (2.4)
for every A € F(X), if Ay € F(X) too.

Remark. In Knopfmacher [122] and Vivona [217] the conventional com-
plement is considered.

Also, in Knopfmacher [122] are added the following requirements for a
measure of fuzziness:

(6) de (AV B) + d.(ANB) =dc(A) +do(B),YA, B € F4 (X), where
(AV B) (z) = max (A(z), B(z)) and (A A B) (z) = min (A(z), B(z));

(%) d. is a continuous function on F4 (X) relative to uniform metric p
on Fa(X), p(A, B) =sup,cx |A(z) — B(z)|;

(742) The restriction of d. to the family of constant fuzzy sets (AQ)QE[O,%]
(that is Aq(2) = o,V € X), is strictly increasing function of «.

In the same paper [122], a family of measures of fuzziness (in normalized
form) which verify all these conditions is given, as follows.

Theorem 2.2 Let (X, A, p) be a measure space with 0 < p(A) < 400
and F 4 (X) the set of all fuzzy sets A on X that are measurable as real-
valued functions. If A denotes an arbitrary real-valued function of & € [0, 1],
such that A(0) = A(1) = 0,A(e) = A(1 — @),Va € [0,1] and A is strictly
increasing on [0, 5], then d. : Fa (X) = R defined by

1
e /X A (Alz)) du

is a measure of fuzziness which verifies the conditions in Definition 2.1 (in
the sense of (2.2) and (2.3)), (2.4) (with the conventional complement) and
the above conditions (i) — (ii1), where [ denotes the Lebesgue integral.

d.(4) =
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Replacing the conventional interpretations (where the remarkable value

is %) of the relation ”sharper than” and of property ”"maximally fuzzy” in
Remark after Definition 2.1, we obtain the following more general and useful
definition of t-measures of fuzziness, the fixed value t € (0,1) becoming

important.

Definition 2.4 Let (X,.A) be a measurable space and t € (0,1). A ¢-
measure of fuzziness is a function d® : F4(X) — R that satisfies the
following conditions:

(2) If A(z) € {0,1},Ve € X then d} (A) = 0;

(¢3) If A <; B then d'(A) < di(B), where A <; B if and only if
A(z) < B(z) for B(z) <t and A(z) > B(z) for B(z) > t.

(i57) If A(z) =t,Vz € X then d'(A) is the maximum value of dt.

Definition 2.5 Let (X, A, u) be a measure space and ¢t € (0,1). A func-
tion st : F4 (X) — R that satisfies the following conditions:

() st(A) = 01if and only if A(z) € {0,1},p-a.e x € X;

(i7) If A <: B then st (A) < st (B);

(¢i7) s(A) is the maximum value of s if and only if A(z) = ¢, p-a.e.
z € X,
1s called strict ¢-measure of fuzziness with respect to u.

Remarks. 1) In general, if X is finite then we consider A = P(X) and
p(A) = cardA,VA € P(X), in this case y-a.e meaning everywhere.

2) Tt is obvious that any strict ¢t-measure of fuzziness with respect to a
measure f, 1s a t-measure of fuzziness.

Definition 2.6 Let N be a fuzzy complement. A ¢-measure of fuzziness
is called symmetrical with respect to N (or N-symmetrical ) if

di(A) = dt(AN),YA € Fa (X). (2.5)

Remark. The most natural fuzzy complement for t-measures of fuzzi-
ness is that introduced in Example 2.2. If t = % we get the conventional
complement.

Based on the idea in above Theorem 2.1, we can give a family of ¢-
measures of fuzziness. The result is more general than Theorem 2.1 in

Ban-Fechete [20].

Theorem 2.3 Let X be a finite set, t € (0,1) and h : Ry — Ry increas-
ing, such that h(0) = 0, (95),ex > 9= : [0,1] = Ry increasing on [0,t] and
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decreasing on [t,1], such that g4(0) = gz(1) = 0,V& € X and g5(t) is the
mazimum value of all functions g, € X. The function &% : FS(X) - R
defined by

de(A) = h (Zym (A(x))>

zeX

s a t-measure of fuzziness. If, in addition,
g9:(a) = g- (N(a)),Va € [0,1],Vz € X,

where N is a fuzzy complement, then d° is a N-symmeltrical {-measure of
fuzziness.

Proof. We verify the conditions in Definition 2.4.
() If A(z) € {0,1},Vz € X then g, (4(z)) = 0,Vz € X and
Y eexds (A(z)) = 0, therefore di(A) = h(0) = 0.
(7%) If A <; B then the monotonicity of functions g,, z € X implies
9z (A(x)) < gz (B(x)) V& € X. This means y . x 9= (A(z))
<> zex9z (B(z)), that is di(A) < di(B) because h is increasing.
(#44) di(A) assumes the maximum value if ). x gz (A(z)) assumes the
maximum value, that is A(z) =t,Ve € X.
Relation (2.5) is also satisfied because

dt (An) —h<2gm(N )_h<2gw(A )_d*( ),
reX rzeX

therefore d% is a N-symmetrical {-measure of fuzziness. |

Example 2.3 Let X be a finite set and ¢t € (0,1). If A : Ry —

R4, h(x) =z and g, : [0,1] > Ry are defined by

[ a if a € [0,1)
gz(“)“{ N(a), ifaelt]],

where N is a fuzzy complement, then the conditions in Theorem 2.3 are

= 9. (A2))

z€X

verified, therefore

is a N-symmetrical {-measure of fuzziness. Indeed, g,(0) =0 and ¢,(1) =
9z (N(1)) = g2(0) = 0,Vz € X, g, are increasing on [0,t] and decreasing
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n [t,1], Vo € X, because N is decreasing. Also, t is the maximum value
of g, if ¢ € [0,t] and N(?) is the maximum value of g, if a € [t,1],
Vz € X, therefore g.(t) is the maximum value, Vo € X. In addition, N
being involutory implies

_ N(a), if N(a) € [0,1]
9z (N(a)) - { N(N(a)), if N(a) € [t,1]
N(a), ifaelt,]] _
= { a, ifae [O,t] = gx(a).

Under additional conditions, we obtain a family of strict ¢-measures of
fuzziness.

Theorem 2.4 If the functions h and (g;),cx satisfy the hypothesis in
Theorem 2.8 and, in addition, h is strictly increasing, (g:),.cx are strictly
increasing on [0,t] and strictly decreasing on [t,1], then the function st :

FS(X) — R defined by

st(A) =h (ng (A(a:)))

z€X

is a strict t-measure of fuzziness which is N -symmetrical if g,(a) =
gz (N(a)), Ya €[0,1},Vz € X, where N is a fuzzy complement.

Proof. We must prove only the necessity in conditions (i) and (i) of
Definition 2.5, the other requirements being proved by the proof of Theorem
2.3.

If s, (A) = 0 then 3= x g2 (A(2)) = 0, which implies A(x) € {0,1},Vz €
X, because the functions g, are strictly increasing on [0,¢] and strictly de-
creasing on [¢,1].

If s{(A) is the maximum value of s, then ) . x 9= (A(z)) assumes the
maximum value, that is g, (A(z)) is the maximum value of g,, Vz € X.
The strict monotonicity of g, on [0,¢] and on [¢, 1], for every z € X, implies
Alz) = t,Yz € X. O

In what follows, we give an example of strict t-measure of fuzziness of

entropy type. In the particular case t = —%,

fuzziness introduced by De Luca and Termini (see Example 2.1).

we obtain the t-measure of
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Example 2.4 Let X be finite, t € (0,1),u; : [0,1] — [0, 1] defined by
{ z, ifa €[0,1]

A 122 ifa et 1],

ut(a) =
-0 T 3@ty

and H : [0,1] —» Ry defined by H(y) = —ylog,y — (1 — y) log,(1 — y) (by
convention, Olog, 0 = 0). We denote g, = H o u;, V& € X. The function u,
is strictly increasing on [0,1]. If a € [0,1] then u(a) € [0,3] and H being
strictly increasing on [0, %], we obtain that the functions g, are strictly
increasing on [0,t],Vz € X. Analogously, if a € [t,1] then u;(a) € [3,1]
and because the function H is strictly decreasing on [%, 1], we obtain that
the functions g, are strictly increasing on [t, 1], Yz € X. The monotonicity
of H implies that the function g, assumes the maximum value if and only if
the function u; has the value equal to %, that is, if and only if the argument

of u; and implicitely of the function g,, z € X, is {. Because
9-(0) = H (u:(0)) = H(0) = 0,Vz € X,

and
9-(1) = H (u;(1)) = H(1) = 0,V € X,

we get that the functions (g;),.x verify the hypothesis in Theorem 2.4.
Because h : Ry — Ry, h(z) = z, also verifies these hypothesis, we obtain
that the function defined by

H{(A) = —F,ex (ur (A(z))logs ue (A(2))
+ (1 = u; (A(z))) logs (1 — w (A(2))))

is a strict t-measure of fuzziness. We prove that this t-measure of fuzzi-
ness is Ny-symmetrical, where N; is the fuzzy complement introduced in
Example 2.2. Indeed, if a € [0,t], then N¢(a) € [t, 1] and

Nt(a) 1-2t

us (Ne(a)) 2(1—1) " 2(1—1)
1—1—;3a+1—2t_ a
2(1—-t) _l—ﬂ_l—ut(a).

If a €[t, 1], then N(a) € [0,¢] and

B Nt(a)_—{—t(l——a)_ l1-a
ug (Ne(a)) = 5 = 9% T 2(1-1)
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a 1-2t
- (2(1—1:) + 2(1—t)> =1-ula).
Because H(y) = H(1 —y),Vy € [0,1], we obtain

HE(An) = Y H(u(Ne(A@®) = Y H(1-u(A(2))

v€X zeX
= > H(u(A(z)) = H{(A),VA € FS(X).
reX

Other families of ¢-measures of fuzziness can be obtained by using the
concept of t-norm function in the sense of Vivona [217].

Definition 2.7 Let ¢t € (0,1) and (X, A, #) be a measure space. An A-
measurable function with respect to the first variable, ¢; : X x [0, 1] = [0, 1]
that satisfies the properties

(t) @i(z,0) = @ (z,1) = 0,Vz € X

(%) @¢(=, ) is increasing on [0, ] and decreasing on [¢, 1];

(i4i) @ (2,t) = 1,¥z € X,
is called ¢-norm function.
Example 2.5 The function ¢; : X x [0,1] — [0,1] defined by ¢:(z,a) =
(H o ut) (a), where H and wu; are defined as in Example 2.4, is a ¢{-norm
function.

Corresponding to Theorem 2.3 we prove the following result.

Theorem 2.5 Lett € (0,1),(X, A, u) be a measure space and ¢y : X X
[0,1] = [0, 1] a t-norm function. The function d¥* : F4 (X) — [0, 1] defined
by

()= [ pele A do

is a t-measure of fuzziness. If N :[0,1] = [0,1] is a fuzzy complement and
the t-norm function ¢, verifies

ot (£, N(a)) = ¢t (z,a),Yz € X,Va € [0,1],
then the t-measure of fuzziness d¥*(A), defined as above, is N-symmetrical.

Proof. It is immediate by using the properties of ¢, and the properties
of Lebesgue integral. O
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Remark. If the t-norm function ¢; is strictly increasing on [0,%] and
strictly decreasing on [t, 1], then the t-measures of fuzziness in Theorem 2.5
are strict.

2,2 Intuitionistic Entropies

Let X be fixed. An intuitionistic fuzzy sets (see e.g. Atanassov [5]) A on
X is an object having the form

A= {<£L‘,,uA(:L'),1/A($)> rz € X},

where the functions g4, 4 : X — [0, 1] define the degree of membership
and the degree of non-membership of the element z € X to the set A C X,
respectively, and for every z € X, pia(z)+va(z) < 1.We denote by [ FS(X)
the family of intuitionistic fuzzy sets on X.

We recall the following useful relations and operations on IFS(X) (see
Atanassov [5]-[10], Atanassov-Ban [14]):

AC B ifand only if pa(z) < pp(z) and va(z) > vp(z),Ve € X;
A= B if and only if ps(z) = pp(z) and va(z) = vg(z), Ve € X;
A= Bifandonlyif pa(z) < pp(z) and va(z) < vg(z), Ve € X;

{(z,va(z), pa(z)) : 2 € X};

A=

where A, B € IFS(X), A= {{z,palz),va(z)): 2 € X} and

B = {{x,1up(z),vB(z)) : 2 € X}. Also, if h is a triangular norm (that is, an
associative and commutative binary operation A : [0, 1] x [0, 1] = [0, 1] such
that h (z,1) = 2,Vz € [0,1]and y < z impliesh (z,y) < h (z,2),Vz € [0, 1])
or a triangular conorm (that is, an associative and commutative binary
operation h : [0,1] x [0,1] — [0,1] such that h(2,0) = z,V2 € [0,1] and
y < zimplies h (z,y) < h(z,z),Vz € [0, 1]), we define (see Burillo-Bustince

[46])
ARB = {(z,h (na(z), pa(2)) , h° (va(z),vp(z))) : 2 € X},

where h®(z,y) =1 - h(l —2,1—y),Vz,y € [0,1], is the triangular norm
(conorm) corresponding to triangular conorm (norm) h. We also notice
that these operations can be extended to countable case (see Ban [17]).
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The intuitionistic entropy, introduced by Burillo-Bustince [47], can be
considered as a measure of the level of intuitionism of an intuitionistic
fuzzy set, i.e. it is a quantitative expression of the difference between an
intuitionistic fuzzy set and a fuzzy set, similar to the fuzzy entropy (or
measure of fuzziness) which measures the difference between a fuzzy set
and a crisp set.

In the above cited paper, the following formal conditions are required
for an intuitionistic entropy:

() to be null when the set is a fuzzy set;

(77) to be maximurm if the set is totally intuitionistic;

(73¢) as in the case of fuzzy sets, the entropy of an intuitionistic fuzzy
set has to be equal to the entropy of its complement;

(iv) If the degree of membership and the degree of non-membership of
each element increase, the sum will do as well, and therefore, this set will
become more fuzzy, and the entropy will decrease.

Taking into account the previous considerations, in the case when X is
finite, we give the following definition.

Definition 2.8 (Burillo-Bustince [47])A real function d; : IFS(X) —
R, is called an intuitionistic entropy on IFS(X), if d; has the following
properties:

(¢) df(A) = 0 if and only if p4(z) + va(z) = 1,Vz € X;

(i1) df(A) = cardX = N if and only if p4(z) = va(z) =0,z € X;

(ii) dy(A) = ds(A),VA € IFS(X);

() If A < B then I(A) > I(B).

We reformulate this definition in a more general frame, even if in Ban-
Gal [23], a result of approximation of intuitionistic fuzzy sets by discrete
intuitionistic fuzzy sets (that is functions whose degrees of membership
and degrees of non-membership take a finite number of values) reduces, in
a certain sense, the infinite case to the finite case.

Let us consider (X,.A,m) a finite measure space and let us denote by
Z4(X) the family of all A-measurable intuitionistic fuzzy sets on X, that
is A ={(z,pua(z),va(z)):2 € X} € Ta(X) if and only if pa and v4 are
A-measurable functions.

Definition 2.9 A real function dy : 74 (X) — Ry is called an intuition-
istic entropy (on Z4 (X)) if the following properties are satisfied:
(2) dy(A) = 0 if and only if pa(z) + va(z) = 1, m-ae. z € X;
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(t7) df(A) is maximum if and only if p4(z) = va(z) =0, m-ae. ¢ € X;
() dy(A) = dy(4), VA € T4 (X);
(iv) If A, B € T4 (X) and A < B then d;(4) > d;(B).

Remark. The particular situation in Definition 2.8 is obtained if X is
finite, A =P (X) and m (A) = cardA,YVA € A.

In what follows we consider only intuitionistic entropies in the normal-
ized form, that is their maximum values are equal to 1.

Definition 2.10 Let (X, A, m) be a measure space and let us denote
D ={(p,v)€{0,1] x[0,1] : p+ v < 1}. An intuitionistic norm function is
an A-measurable function with respect to the first variable, ® : X x D —
[0,1] , with the following properties, for every element z € X :

(7) ®(z,p,v)=0if and only if y+v = 1;

(i4) @ (x,pu,v)=1if and only if p = v = 0;

(i63) © (¢, 4, v) = (&, v, 1)

(tv) If p < g’ and v < v’ then & (z, p,v) > & (z, ', V') .

We obtain families of intuitionistic entropies by using intuitionistic norm
functions and Lebesgue integral, similar to Knopfmacher [122] for the case
of fuzzy entropy.

Theorem 2.6 Let (X,.A,m) be a finite measure space and & an intu-
itionistic norm function. Then, the function d}{’ : T4 (X) — [0,1] defined
by

1
m /X ® (z,pa(w),va(z)) dm

with A = {{z, pa(z),va(z)) : ¢ € X}, is an intuitionistic entropy.

Proof. Let A,B€ZT4(X),A={{x,pa(z),va(z)):z€ X} and
B = {(z,uB(z),ve(z)) : ¢ € X}. We notice that A = B m-a.e., that is
pa(z) = pp(e) and vy (z) = vp(z) m-a.e. © € X, implies ® (¢, pa(z), va(z))
= & (z, up(z), vB(2)) m-ae. z € X, therefore df(A) = d}(B).

We verify the conditions (¢) — (év) in Definition 2.9.

(DU E = {(z,pe(z),ve(z)) : ¢ € X} € L4 (X) verifies pr(z)+ve(z) =
1,¥z € X, then

df(A) =

d}(E) = ﬁ/xoam =0.
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If A €Z4(X) is an intuitionistic fuzzy set with df(A) =0, then
®(z,pa(z),va(z)) = 0 m-a.e. ¢ € X and Definition 2.10, (¢), implies
pa(z) +valz) =1 m-ae z € X.

(#3) If E verifies pp(z) = vg(r) = 0,Vz € X, then

d?(E) = ﬁ&ldm:l

If d?(A) =1 then fX ® (2, pa(z),valz))dm = fX 1dm, that is
® (z,pa(z),va(z)) = 1 m-ae. ¢ € X. By Definition 2.10, (i), we get
pa(z) =va(z) =0mae zeX.

(#4%) , (fv) Are immediate by the properties (¢¢¢) and (iv) in Definition
2.10. 0

Remark. Among all the possible intuitionistic entropies previously intro-
duced, the most natural and simple is obtained by setting ® (z,p,v) =
1 —p—v, that is

42 (4) = ﬁ /X (1= pa(e) — va(e)) dm, VA € T (X) .

Theorem 2.7 Let (X, A, m) be a finite measure space and ® be an intu-
tionistic norm function. If ® is a continuous function with respect to the
second and third variables, then the intuitionistic entropy d? " Za(X) >
[0,1] defined by

a3 (4) = ﬁ/X@(x,uA(m),l/A(x)) dm

is a continuous function with respect to the metric d: T4 (X) x T4 (X) —
[0,1], defined by

(A, B) = max (sup [na(s) = pin (o) sup Ia(o) — v(2)]).

where A = {(z,pa(x),va(z)) :z € X}, B = {(z, up(z),vp(z)) :z € X}.

Proof. Because D = {(y,v) € [0,1] x [0,1] : p + v < 1} is a compact set,
® (z,-,) is uniformly continuous function. Let & > 0. There is § > 0 such
that z € X with [us(z) — up(z)| < and |va(z) — vp(z)| < & implies

| (2, pa(@),va(2)) — @ (2, up(2), vB(2))| <e.
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But d(A, B) < d implies |p4(z) — pp(z)| < 6 and |va(z) — vp(z)| < d,Va €
X, therefore

1@ (2, pa(z), va(e)) — @ (2, pp(2), vB(2))| <e Vo € X.
We obtain the existence of a § > 0 such that d(A4, B) < ¢ implies

1 1
lm/}(Q(@ﬂA(w),m(r))dm—E@(—)/;(¢(x,u3($),y3(x))dm <e

therefore |Is(A) — Is(B)| < e. O

In Burillo-Bustince [47] for the finite case, a theorem of characterization
of intuitionistic entropies by using I,-functions is given. The idea can
be extended to general case, by considering particular intuitionistic norm
functions.

Definition 2.11  Let (X, .4, m) be a measure space and ¢ : [0,1] = [0, 1]
be a continuous function such that if @ + 3 < 1 then p(a) + ¢(8) < 1. The
function I, : Z4 (X) — [0, 1] defined by

L) = oz [ (1= (sa(e) = ¢ (va(a)) dm

with A = {(z, pa(z),va(z)) : £ € X}, is called I,-function.

Theorem 2.8 Let (X, A, m) be a finite measure space, ¢ : [0,1] = [0,1]
be a continuous function and d, : T4 (X) — [0,1]. The function d, is an
intuitionistic entropy and an I,-function if and only if

1p(4) = s [ (1= pla(e) = p (va(a) dm,

where ¢ satisfies the conditions:
(1) ¢ is increasing;
(i1) ¢(a) = 0 if and only if o = 0;
(ii) p(a) +¢(8) =1 if and only if a + B = 1.

Proof. (<) Let us consider ® : X x D — [0,1],® (z, pu,v) =1— o () —
¢ (v), where D = {(p,v) € [0,1] x [0,1] : g+ v < 1}. The function P is
constant with respect to &, therefore it is .A-measurable with respect to the
first variable.

We verify (i) — (év) in Definition 2.10.
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(1) @ (2, p,v) =1~ (p(u) + ¢ (v)) = 0 if and only if ¢(p) + ¢ (v) = 1 if
and only if p+v = 1.

(i) ® (z,p,v) = 1if and only if p(u) + ¢ (v) = 0 if and only if p(u) =
@(v)=0if and only if g = v = 0.

(i) @ (z,p,v)=1— () —p (V)= (z,v,p).

(iv) If p < p' and v < V' then p(p) + p(v) < @(p') + ¢(v'), that is
O (z,p,v)> @ (z,p4,V).

® being an intuitionistic norm function, Theorem 2.6 implies that d,, is
an intuitionistic entropy.

If o + 3 <1 then

do({(z,a,8) -z € X})

1
W/Xu—mm—wwndm
= 1-g(a)— () >0,

which implies ¢ (a) + ¢(8) < 1, therefore d, is an [ -function.
(=) We assume that d, is an intuitionistic entropy and an I,-function.
Being I,-function it has the form

dp(A) = E(l)T) /X (1= ¢ (4a()) = @ (va(z))) dm

if A= {{(z,pa(z),va(z)): 2z € X}, where ¢ : [0,1] — [0,1] is a continuous
function such that a + @ < 1 implies ¢ (o) + ¢ () < 1. We prove that ¢
satisfies the conditions (%) — (441) .

(i) If o < & and o, o’ € [0, 1], we construct the following intuitionistic
fuzzy sets: A = {(z,,0): z € X} and B = {{(z,a’,0) : 2 € X} . Because
A < B, it follows I(A) > I{B), that is

/X(l—wa)—so(O))dmz/Xu—so(a')—so(o»dm
and

l-p(a)—p(0)>1-p(a)—¢(0).

We obtain ¢ (a) < ¢ (o).
(22) dy, ({{2,0,0) : 2 € X}) = 1 by Definition 2.10, (¢¢). But

dy({{(x,0,0): z € X})

1

= 7 [ (=0 @ = p (@) dm=1-20(0),
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therefore 1 = 1 — 2¢(0) and ¢(0) = 0.
Conversely, if ¢ (a) = 0, then

do({(z,0,0): 2 € X)) = i )/;(1— (a) - ¢ (0)) dm
— 1-pla) =

and Definition 2.10, (4¢), implies o = 0.
(11) fa+ B =1, we take A = {(z,,8) : ¢ € X} . We know by Defini-
tion 2.10, (¢), that d,(A) = 0. But

o })/ (1- ¢ (a) — @(8)) dm = 1 - p(a) - p(B).

We obtain ¢ (a) + ¢(8) = 1.
Conversely, let ¢ (o) + ¢(8) = 1. If we assume that o+ 3 # 1, then two
cases may OcCcur:

(@) a+p<1
Then

dw({<$,a,ﬁ>1$6X}) = T3y (I_QD(Q)_SO(ﬁ))dm
= 1-¢p(a)—¢(B) =0,

therefore o+ 3 = 1 (see Definition 2.10, (7)), contradicting the hypothesis.
(b) a+p>1

Because a+ (1 —a)=1land B+ (1 —pB) =1, weget p(a)+ (1 —a)=1

and ¢ () + (1 — B) = 1. For all a, 3 we can write

pla)+e(B)+te(l-—a)te(l-0) =2,

therefore ¢ (1 —a)+ (1 —6) = 1.
Byl—a+4+1-08=2-(a+8) <1 we get

do({{z,1—a,1-0): 2z € X})

= L [ p—a)—pl-B)dm=
= i L me =) =g =g dm =0

Then Definition 2.10, (¢), implies 1 —a+1— 8 =1, therefore o+ 5 =1, in
contradiction with the hypothesis.
We obtain the unique possibility o + 8 = 1. |
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Further we need to introduce the concept of intuitionistic fuzzy measure
with respect to a triangular norm.

Definition 2.12 Let & be a triangular norm or a triangular conorm and
X #0. A family Z C IFS(X) that satisfies:

(i) Ox € Z, where Ox = {(2,0,1) : 2 € X};

(i3) A € T implies A € Z;

(i#1) (An)pen € Z implies hnenAn € Z,
is called intuitionistic fuzzy h-algebra and the pair (X,Z) is called intu-
itionistic fuzzy h-measurable space. (Here ZnENAn extends the operation
h to countable case.)

Example 2.6 If (X, A) is a measurable space then Z4 (X) is an intu-

itionistic fuzzy h-algebra, for every continuous triangular norm or conorm
h.

Definition 2.13 Let (X, Z) be an intuitionistic fuzzy h-measurable space.
A function m : T — Ry is called intuitionistic fuzzy h-measure if it satisfies
the following conditions:

(i) m (3x) = 0;

(i) A, B € T implies m(AhB) + m(Ah°B) = m(A) + m(B);

(742) (An)neN CZ,An C Apny1,Yn €N and lim, 4o An € T imply
lim, 4 00m(Ar) = M(limp 00 Ar).

Between intuitionistic fuzzy measures and intuitionistic entropies we can
establish the following connection.

Theorem 2.9 Let (X,.A,m) be a measure space. If d, : T4 (X) — [0, 1]
s an ntuitionistic entropy and an I,-function , then d, is an intuitionistic
fuzzy Tar-measure on L4 (X), where Tyr is the triangular norm given by
Ty (z,y) = min (z,y) . Moreover, if ¢ is additive then d,, is an intuitionistic
fuzzy h-measure on T4 (X), for every continuous triangular norm h which
verifies h (z,y) + h¢ (z,y) = ¢+ y,Vz,y € [0, 1].

Proof. By Theorem 2.8 we have

4p(4) = iz [ (1= (uale) = p wa(a)) dm,

with ¢ verifying the conditions () — (¢ii) in the same theorem. We obtain

d, (’o“X) =d, ({(z,0,1): z € X})
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= 0 | 1= O +p () dm =0,

Let (An),en € Za (X) be an increasing sequence of intuitionistic fuzzy

sets,

Ap ={(z,pa,(2),va,(z)): z € X}. Then

lim dy(An) = lim L) /X (1= (¢ (5, (2)) + @ (va, (2)))) dm

n—0co n—00 m(X

5 f (1= (e (et o (i ) o

dp ({2, lim pa, (o), lim va, () 2 € X) = d, ( lim 4n),

— 00

i

I

because ¢ is continuous (see Ban [17]).
If ¢ is additive and h(z,y) + h°(z,y) = = + y,Va,y € [0,1] then we

have

dy (A’~13> +d, (Af{cB)

—mlx')/X(1_(‘/’(h(HA(l'),HB(ﬁ)))+QO(hC (va(z),vp(z))))) dm

() /X (1= (9 (h° (na(z), nB(2))) + @ (h (va(z), vB(2))))) dm

% (2 — (¢ (ra(®)) + ¢ (1B () + ¢ (va(z)) + ¢ (vB(2)))) dm
X

7 [ 0= (0 ale) + o wa(e)) dm

TS /X (1~ (¢ (145 (2)) + ¢ (v5(2)))) dm
dy(4) + dy(B).

For f = Ty the proof is similar and the conclusion is true even if ¢ is not
additive. O

Another concept of entropy for intuitionistic fuzzy sets was introduced

and

studied in Szmidt-Kacprzyk [206), [207]. It is similar to other consid-

erations for ordinary fuzzy sets (see Definitions 2.1 and 2.4). In this sense,

if X

is a finite set, A, B € IFS(X), A = {(z, pa(z),va(z)) : z € X},

B = {(z,uB(z),vp(z)) : ¢ € X}, then the entropy for intuitionistic fuzzy

sets

is a function which satisfies
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(1) E(A) =0 if and only if A is crisp;

(#3) E(A) =11if and only if pa(z) = va(z), Yo € X;

(74i) E (A) < E(B) if A is less fuzzy than B, i.e. if pa(¢) < pp(z) and

va(z) > vp(2) for un(z) < vi(2) or pa(z) > up(z) and va(z) < ve(z)
fOf pB(z) > vp(z);

(iv) E(A) = E(4).
The condition (%) shows that an entropy in this sense, for an intuition-
istic fuzzy set can be considered as its defect of crisp set.

2.3 Applications

2.3.1 Application to determination of degree of interference

Let U be a finite non-empty set and P(U) be the family of all subsets of
U. Afamily X = {C,...,Cp} C P(U) is a partition of U if are satisfied

(1) Umi Ci = U;

(1) CiNC; =0,Vi,je{l,...,n},i# j.

We name atoms the elements of X and we denote by 7 (U} the class of all
partitions of U.

In what follows, we introduce a normal indicator Ipg(X) (that is
0 < Ip(X) < 1) of the degree of interference between the elements of U
which have a certain property ” P” and those with another property ”@Q”
(in this order), with respect to the partition X € 7 (U).

Let us denote by pg, the number of elements in € which have the
property ” P” and by ¢k, the number of elements in C), which have property
”@”. The value that presents the relation between the number of elements
with the property ” P” and the number of elements that have at least one
of the properties ” P” or ”Q” on U, is

— ZZ:lpk
Z::l (pk + qk)
In general, by degree of interference between the elements with prop-

erty 7 P” and those with property ”Q”, we will understand a function
Ipg : T(U) — [0, 1] which satisfies the following requirements:

t

(I1) Ipg(X) = Oifand only if px = 0 or gx = 0, for all k € {1,...n}, that
is, the indicator /pg assumes the minimum value if and only if each atom
of the partition has only elements with the property ” P” or only elements
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with the property 7@Q)”;
(I2)Letkje{1 anhk £ j. p+q1<p—kf’+—<torp_’jjq_>
pk+q > t then the contribution of C; to Ipg(X) is smaller than that of
Ch;
(I3) Ipq(X) =1 if and only if Bt~ +q =1, for every k € {1,...,n}, that
is the indicator Ipg assumes the maximum value if and only if in every
atom of the partition X is fulfilled the global situation on U, between the

elements which have the property ” P” and those with property ”Q”.

These three requirements seem to be reasonable and intuitively accept-
able for the characterization of degree of interference.

Now, for every X € T(U) we define the fuzzy set 4 : X — [0,1],
A(Cy) = pk+qk LB Yk € {1,...,n}, where Ck, px,qx are as above and we put
Ipg (X) = st(A), where s is a strict normalized t-measure of fuzziness.
Due to conditions (i) —(i7z) in Definition 2.5, we obtain the following result:

Theorem 2.10  The function Ipg : T(U) — [0, 1] defined as above, veri-
fies the requirements (I1) — (13).

Proof. It is obvious. a

It is often natural to admit that the degree of interference between the
elements of a set with respect to two properties ”P” and ”Q”, does not
depend on order, that is Ipg = Igp.

Theorem 2.11 If Ipg and Igp are evaluated with the strict t-measure
of fuzziness H. in Example 2.4, given in normalized form, then Ipg(X) =
Iop(X),¥X € T(U).

Proof. It is obvious that the value which presents the global situation
between the number of elements with the property ”()” and the number of
elements that have at least one of the properties ” P” or ”@Q” on U, is given

by

¢ = ————,,ZZ:lq" =1-t.
2 k=1 (Px + k)
We denote A(Cy) = p—k% = 1- ;8- Vk € {1,...,n}. If the strict ¢-

measure of fuzziness H! is used to calculate Igp, then

Iop(X) = H (A) = H" (A)
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= IX!Z“l t (1 — A(Ck)) logy ui—¢ (1 — A(Ck))
zeX
|X]Z — U1 ( A(Cr))) logs (1 —ui—¢ (1 = A(Ck))),
z€X

where | X| is the cardinal of the set X.
Because (see Example 2.4)

W= % ifaelo
ug(a) = . _ .
' sa t sy Ha€lt1],

1-g if a € [t,1]
(l—a)=1{ 2= ] !
Uy t( a) { 22t , 1fa€[0,t],

we get u:(a) + ul_t(l —a) = 1,Va € [0, 1], therefore

Igp(X Z Ck))) logy (1 — ur (A(Ck)))

:L'EX

~ 157 3 (A(CK)) Togg e (A(CW)) = HE(A) = Irq (X).
rzeX 0O
Remarks. 1) We can use the %—measures of fuzziness to determinate the
indicator Ipg(X) even if t # L. Nevertheless, for ¢ near to 0 or 1, we get

the value of the indicator near to 0, which is not eloquent.

Y Ipp (X
2) We can use the formula Ip, p (X) = Z"F"'é’g ket ), to calculate

the degree of interference of elements in U with resp?ect to the properties
Py, ...,” Py, where Ip,p, is the degree of interference of elements in U
with the properties ” F;” and ” P;”.

In what follows, we present a numerical example with applications to
the geography of population.

Let U be the set of habitants of a country having n districts and let us
denote by Cy, the set of habitants of the district k,k € {1,...,n}. Also, we
consider two nationalities of this country, denoted by ”P” and ”7Q”. We
desire to determinate the degree of interference of these, knowing the result

of census of population (see table below). We denote by px and by ¢,
the number of persons (expressed in tens of thousands, for example) from
C belonging to the nationality ” P” and ”(@Q”, respectively. Because it is
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natural to consider equality between the degree of interference of nationality
7 P” with ”Q)” and the degree of interference of nationality ” @Q” with ” P”,
the above Theorem 2.11 justifies the {-measure of fuzziness given in Example
2.4 to determinate the value of indicator Ipg (X), where X € T(U).

District | px | gx | County | pr; | gk
1 8 10
2 10 12
1 30 |50 | 3 6 8
4 2 7
5 4 13
1 8 5
2 3 8
2 30 | 20 3 7 4
4 12 3
1 6 14
3 20|40 | 2 10 7
3 4 19
1 20 6
2 5 28
4 40 | 70 5 6 99
4 9 14

If X = {C1,C>,C3,C4} with the values in above table, then we obtain
t = 0.4. For this value, by using the indicated t-measure of fuzziness, we
get

Ipg (X) = 0.9723.

Now, let us assume that each district has more counties and let us denote by
Cl;, the set of habitants of the county j from district k. Also, we denote
by pkxj and gkj;, the number of persons (expressed in tens of thousands)
from Cj; belonging to the nationality ” P” and ”Q”, respectively. For this
territorial structure, that is for the partition X’ = {Ci1,C12, ..., Caq} (see
table), we obtain the degree of interference of nationality ” P” with the
nationality 7 @Q”,

Ipg (X') = 0.8727.

The degree of interference corresponding to the districts, Ipg (X), is close to
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1 because the ratio of the number of habitants of nationality ” P” and the to-

e ke {1,2,3,4})

is relatively close to the same ratio calculated for the level of whole country,

that is ¢t = 0.4. Ipg (X') has a smaller value because in more counties the

ratio —?4_1— have remote values from ¢ = 0.4, for example —£22— = (.8

P24+924
and 11—4% =0.15 (see also (12)).

tal number of habitants, calculated for each district

Modifications of the indicator of degree of interference (regarding more
census of population or with respect to different territorial structures) leads
to interesting conclusions from the geography of population viewpoint.

Finally, we observe that other indicators in geography of population can
be introduced with the help of {-measures of fuzziness.

Let V be a country and let us denote by X = {51, ..., 5.}, a partition of
V, that is S;,¢ € {1, ..., n} represent all the districts of V. We can introduce
a normal indicator I'y x (that is 0 < 'y x < 1) which estimates the degree
of homogeneity of territorial distribution of population in V, with respect
to the organization corresponding to X. We notice that, the density of
population, the usual indicator used in this situation, is a global indicator
which does not take account the pointwise aspects. For example, if there
exists a great concentration of population in certain zones, this indicator is
not significant.

Let us denote by I'ypeq, the density of population in V, that is

total population in V

I‘med =

bl

area of V

by T'srax, the maximum possible density of population in a district of V,
that is

total population in V

r =
MAX = Area of the smaller district Si

and by T';, the density of population in S;,7 € {1, ..., n}, that is

population in S;
I; =

area of S;
We define the fuzzy set P : X — [0, 1] by
r;

P(Si) = Trprax’

and we denote t = FLU-‘&.
MAX
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We put Ty x = st(P), where st is a strict ¢-measure of fuzziness in

normalized form. Following the axioms of strict {-measures of fuzziness

(see Definition 2.5), we get properties of the indicator I'v,x which are in
concordance with our intuition:

(01) Tv x has the minimum value (equal to 0) if and only if the entire
population of V' is completely situated in the district with the smallest area;

(02) If T; <T; <tort<T; <T; then the contribution of the district
S; to T'v x is greater than the contribution of the district S;;

(03) T'x,y has the maximum value (equal to 1) if and only if in all
districts of V the density of population is equal to T'yeq.

Choosing a suitable strict t-measure of fuzziness (for example, that given
in Example 2.3) we can get interesting results concerning the territorial
distribution of population.

2.3.2 Application to description of the performance of systems

Fuzzy methods in the study of the performance of systems are described
in many papers (see, for example, Kaleva [111] and [112], Kaufmann [114],
Kaufmann-Grouchko-Cruon [115], Misra-Sharma [150], Soman-Krishna
[201]), taking into account that the performance level of a system is a value
included in [0, 1]: the value 0 corresponds to non-working and the value 1
corresponds to optimum working.

In Kaufmann [114] and Kaleva [111] a mapping indicating the perfor-
mance level of a system as function of level of performance of its components
is discussed. But, it is often important to know the degree of homogene-
ity of a system, that is how much the performance level of components is
different from the performance level of system. In this application, we in-
troduce the degree of homogeneity of a system with the help of -measures
of fuzziness, by using its performance function.

Let X = {@1,...,2,} be the set of components of a system. If to each
component z; we attach a value a; = A (z;) € [0, 1] indicating the perfor-
mance level of that component, then the working of system is described
by the fuzzy set A : X — [0,1]. For a coherent system (that is, a system
having a series-parallel network representation) we can consider a func-
tion indicating the performance level of the system, as a function of the
component performances. We denote this function by ¥ and we call it,
performance function (see Kaleva [112], Kaufmann (114]).
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We introduce a normal index Hg x (that is, 0 < Hg x (4) < 1, for
every fuzzy set A) of the degree of homogeneity for a system with the set
of its components, X = {z1, ..., z,} and the performance function ¥. We
assume that t = ¥ (ay, ...,a,) € [0, 1] is the performance level of the system
X, where a; is the performance level of component z;, for i € {1,...,n}.
The following four requirements appear to be reasonable and intuitively
acceptable to characterize the degree of homogeneity Hy x :

(H1) Hg x (A)=0ifand only ifa; =0 or a; = 1, for all ¢ € {1, ..., n},
that is the index Hy x assumes the minimum value if and only if all the
components of the system are in two states: operating or failed.

(H2) Let 4,5 € {1,...,n}. If a; < a;j < ¥(a1,...,a,) or a; > a; >
¥ (ai,...,a,) then the contribution of the component z; to Hg x (A4) is
smaller than that of the component z;, that is the contribution of a com-
ponent is greater if its working is near to the working of the system.

(H3) Hg x (A) =1ifand only if a; = ¥ (a4, ..., a,), foralli € {1, ..., n},
that is the index Hg x assumes the maximum value if and only if the
performance level of every component is equal to the performance level of
the entire system.

(H4) The degree of homogeneity of the system is the same if the perfor-
mance level of components is at equal distance from the performance level
of system in any sense (from 0 or from 1).

If we compare the conditions (¢) — (¢4¢) in Definition 2.5 and the addi-
tional condition (2.5) with the previous requirements, then we see that the
degree of homogeneity Hy x(A) of a system with components {z1, ..., z,},
can be considered as the symmetrical normalized strict ¥ (a4, ..., a,)-measu-
re of fuzziness of the fuzzy set A : X — [0,1], A(x;) = a; which indicates
the performance level of components, if the performance level of system is
t=W(a,...,an) € (0,1).

In concordance with the situation ¥ (a1,...,a,) € (0,1) and with the
requirements (H1) — (H4), the following statements are acceptable for the
situation t = ¥ (aq, ..., a,) € {0,1}.

(hl) If t = ¥ (ay,...,an) = 0, then the degree of homogeneity of the
system is equal to 1 if and only if a; = 0, for all i € {1, ..., n}, equal to 0 if
and only if a; = 1, for all ¢ € {1, ..., n} and decreases when the performance
level of components increases.

(h2) If t = ¥ {(ay,...,an) = 1, then the degree of homogeneity of the
system is equal to 1 if and only if a; = 1, for all i € {1, ...,n}, equal to 0 if
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and only if a; = 0,for all 1 € {1, ...,n} and decreases when the performance
level of components decreases.

Even if any strict and symmetrical ¢t-measure of fuzziness can be used
to determine the value of the index Hy x(A), a suitable choice is given
by Example 2.3, taking the fuzzy complement in Example 2.2. If X =
{&1,..., 25}, then we normalize and simplify and this t-measure of fuzziness
(t € (0,1)) becomes

stk (4) = > g (A1),
i=1
where g(a) = a if a €[0,t] and g(a) = {5 (1 —a) ifa € [t, 1].
In fact, these t-measures of fuzziness are introduced (for ¢ = 1) by

Kaufmann [114] (see also Klir [120]).
Taking into account (h1) and (h2), a formula of calculus for the degree
of homogeneity of a system is given by

st g (A), if0<t<1
H\Il,X(A): %Z?zl(l—ai), ift:()
e, =1,

where t = ¥ (ay, ..., an) .
In a concrete case, we consider a system with three components
X = {1, 22, 23}, having the performance function

¥ (a, b, ¢) = max (min(a, ) , min(a, c)),

where a, b, ¢ represent the level performance of components 1, zs and z3,
respectively. The table of values of this function, corresponding to different
ordering of variables is (see Kaleva [112]):

< < min (a,b) min(a,c) ¥
a b c a a a
a c b a a a
b a c b a a
b c a b c c
c a b a c a
c b a b c b
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We obtain the below table with the results of degrees of homogeneity
corresponding to different ordering of variables (n = 3,ay = a,ay = b,a3 =

¢):

< < v Hg x
i
a€(0,1) a b ¢ a ﬂs-(f—:a)-c_)
a=1 1 1
b
g o
a(3-a—b-c
€ (071) a c b a le__ar)
a = 1 1
@=0 0 85
a € (0, 1) b a c a b—abt 34‘1—:121) a—ac
°= 1 =5
=0 0 5 |
ac (0, ].) c a b a ¢—ac B?Ifa) a—a
=1 1 e+2
3
=0 0 35a
be(0,1) ¢ b a b ebetbot4bmab
= 1 ct2
3
c=0 0 35(1
cE (0, 1) b c a c C—Czisb;fccatc—ac
‘= L 2

2.3.3 Application to digital image processing

Digital image processing is a discipline with many applications in docu-
ment reading, automated assembly and inspection, radiology, hematology,
meteorology, geology, land-use management, etc. (see Rosenfeld [175]).
One of methods used in the study of digital images and, more general, of
discrete arrays in two or more dimensions of whose elements which have
values 0 or 1, is the digital topology (for details see Herman [101], Kong-
Rosenfeld [123], Kong-Roscoe-Rosenfeld [125] and Kong-Kopperman-Meyer
[124]). Although some parts of digital topology can be generalized to fuzzy
digital topology, which deals with gray-scale image arrays whose elements
lie in the range [0, 1] (for details, see Rosenfeld [176]-[179]), nevertheless the
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study of binary image is more simple.

In what follows, by using t-measures of fuzziness, we give an acceptable
method to obtain a binary digital image from a fuzzy digital image.

A digital image is typically obtained quantifying the brightness values
of a image in a discrete and bounded grid of points, named background and
denoted 1n what follows by X. If the brightness values are considered in
[0,1], then we obtain a fuzzy digital image or a gray-scale image array. If
the set of values is {0, 1} we obtain a binary digital image.

For every ¢ € X we denote by A(z) € [0, 1] the gray-level of the point
z. So we obtain the fuzzy set 4 : X — [0,1].

Let ¢ € (0,1). By tresholding a fuzzy digital picture with value ¢, that
18 by classifying the points € X according to the fact that their gray-level
exceed t or not exceed ¢, we obtain a binary digital picture (if A(z) > ¢
then the new value in € X is 1 and if A(z) < ¢ then the new value in
z € X is 0), but we lose a part of the information contained in the initial
picture. Our purpose is to choose the value (or values) ¢ such that the lost
information to be minimum. We denote by P!(A) the lost information if
the level of tresholding is ¢ € (0, 1).

Intuitively, we can accept the following natural conditions on the lost
information P*(A):

(P1) P*(A) = 0 if and only if A(z) € {0,1},Vz € X, that is the initial
digital image is binary.

(P2) a) If the gray-levels of two points are smaller than ¢ then the
contribution to lost information of the point with greater gray-level is more
important than that of the point with smaller gray-level;

b) If the gray-levels of two points are greater than ¢, then the contribution
to lost information of the point with smaller gray-level is more important
than that of the point with greater gray-level.

(P3) P*(A) is maximum if and only if, for any point z € X, the lost
information is maximum, that is A(z) =¢,Vz € X.

We notice that these conditions are verified for every strict ¢-measure
of fuzziness s. So, if A € FS(X) is the fuzzy set which represents the
gray-level of the points of background X (for a fuzzy digital image) and
{sg}te(m) 1s a family of strict ¢~-measures of fuzziness, then

¢ = inf P'(A) = inf &
Me(4) = inf P{A) = inf si(4)
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is the minimal lost information by transition from a gray-scale image array
to a binary image array, with respect to the family of {-measures of fuzziness

{Sf:}te(o,m'

Remarks. 1) Because A is a finite fuzzy set, we can assume that
0< A(IL‘()) < A(Il) <. <L A(J?k) < A(:I}k_H) <1
given up on the common values. In this case we obtain

M, (A) :pe{r%)nn {str(A); A(zp) < tp < A(mps1)} -

and the values of ¢ for which is obtained this minimum represent an interval.

2) In practice, the members of family {si}te(o ) are of the same kind,
for any t € (0,1).

2.4 Bibliographical Remarks

Definitions 2.4 and 2.7, Example 2.5, Theorem 2.5 are in Ban [16], Defini-
tion 2.6, Theorem 2.4, Examples 2.2 and 2.3 are in Ban [21], Definitions
2.9, 2.10 are in Ban [18] and Theorems 2.6-2.9 are proved in Ban [18]. Def-
initions 2.12, 2.13 are in Ban [17], Theorems 2.10, 2.11 and Example 2.4
are in Ban-Fechete [20]. The application to systems performance is in Ban
[21] and to the calculus of degree of interference is in Ban-Fechete [20].
Completely new are Definition 2.5 and Theorem 2.3.



Chapter 3

Defect of Property in Topology

A well-known concept in topology is that of measure of noncompactness,
which in our terminology can be called defect of compactness. The main
alm of this chapter is to present this concept in classical setting, in random
setting and in fuzzy setting.

Also, other defects of topological properties are considered.

3.1 Measures of Noncompactness for Classical Sets

Let (X, p) be a metric space and let us denote
Py (X)={Y C X;Y #0,Y is bounded} .

Mainly, two functionals that measure the degree in which subsets of X
fail to be compact are well-known.

Definition 3.1 (i) (Kuratowski [129], [130]). The Kuratowski’s measure
of noncompactness for Y € P, {X) is given by

a(Y)=inf {e>0;In€ N, A4 € X,i=T,n with
Y C Ui, 4i and diam (A4;) < €},

where diam (A;) = sup {p(z,y);2z,y € A;},i=1,n.
(41) (see e.g. Istritescu [105]) The Hausdorff’s measure of noncompact-
ness of Y C X is given by

h(Y):inf{6>0;3n€N,yiGY,i:l,_nwithYCUB(y,-,e)}.

i=1

87
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Concerning the quantities « (Y) and h(Y) the following results are
known.

Theorem 3.1 (i) (see e.g. Rus [182], p.85-87 or Banas-Goebel [32]) Let
XY € Py (X). We have:
0< a(A) <diam(A);
A C B implies o (A) < a(B);
a (A) = a (A) and moreover a (A) = 0 if and only if A is compact;
a (Ve (A)) < a(A)+2e, where Ve (A) ={z € X;p(x,A) < e} and p(z, A) =
inf {p (z,y);y € A};
o (AU B) =max{a(4),a(B)};
a(ANB) <min{a (4),a(B)};
Let A; C X, A;y1 C A; be with A; closed and nonempty, i = 1,2, ...
Iflim, o (An) = 0 then (), An is nonempty and compact.
If, in addition, X ts a Banach space, then a (A+ B) < a (A4) + « (B),
a(cA) = lcla(A4),c € R,a(convA) = a(A), where convA is the conves
hull of A € Py (X).

(i1) (see e.g. Beer [36], Banas-Goebel [32])
h (A) = 0 of and only if A is totally bounded (that is, Ve > 0,3xq,...,2, € A
such that Ve € X,3z; with p(z, ;) < €);
A C B implies h (A) < 2h (B);
h(A) = h(4);
h (AU B) <max{h(A),h(B)};
h is continuous on CL(X) = {Y C X;Y 1is closed, Y # 0} with respect to
Hausdorff topology, i.e. ifY,,Y € CL(X),n=1,2, ..., satisfy
Dy (Y,,Y) 20 (where Dy is the Hausdorff-Pompeiu distance), then
limp s eoh (Yn) = R(Y); Also, h is upper semicontinuous on CL(X) with
respect to the so-called Vietoris topology.

In addition,

h(A) <a(A) <2h(A),VAE P, (X)

and 1f moreover X is Hilbert space, then
V2h (A) < o (A) < 2h (A) VA € Py (X).

Remarks. 1) If (X, p) is a complete metric space, then for A € CL (X),
we have

a (A) = 0 if and only if A is compact
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and
h(A) =0 if and only if A is compact.

Because of these properties, we also can call o (A4) and h (A) as defects of
compactness.

2) The Kuratowski’s measure of noncompactness has many applications
to fixed point theory (see e.g. Darbo [60], Sadowski [188]).

The properties in Theorem 3.1 suggest an axiomatic approach in Banach
spaces (X, ||-]|), as follows. Firstly we need the notations:

RC(X) = {Y CX;Y #0,Y is relatively compact},
CO(X) = {YCX;Y #80,Y is compact}.

Definition 3.2 (Banas-Goebel [32]). K C RC(X) is called kernel (of a
measure of noncompactness) if it satisfies:

({) A € K implies A € K;

(i) A€ K,BC A, B # 0 implies B € K;

(#4i) A, B € K implies A\A+ (1 — A) B € K,VA € [0,1];

(v) A € K implies convA € K;

(v) The set K¢ = {A € K; A is compact} is closed in CO(X) with re-
spect to Hausdorff topology (7.e. the topology induced on CO(X) by the
Hausdorff-Pompeiu distance).

Definition 3.3 (Banas-Goebel [32]). The function g : Pp(X) — [0, +00)
is called measure of noncompactness (or defect of compactness, in our ter-
minology) with the kernel K (denoting ker pt = K) if satisfies:

(2) u(A) =0if and only if A € K;

(1) u (A) = pu(4);

(732) p (convA) = p(A);

(7v) A C B implies p (A) < p(B);

(v) pn(AA+ (1= X)B) < Au(A) + (1 =N p(B),YA€[0,1];

(vi) If A, € Pp(X),An = Ap and Apq1 C Any,n=1,2,... and if
lim, oot (Ar) = 0, then o2, An # 0.
If K = RC(X) then p will be called full (or complete) measure.

The following examples are in Banas-Goebel [32].

Example 3.1 « and h are full measures of noncompactness.



90 Defect of Property in Topology

Example 3.2 u(A) = diam (A4), A € Py(X), with kernel
K = {{r};2 € X}.

Example 3.3 Let F C X be closed and K = RC(X). Then p(4) =
h(A)+dg (A, F), A€ Py(X), where
di (A, F) = sup {inf {|la — yl|;a € A} ;y € F}.

Example 3.4 Let us suppose that (X, ||-]|) is a Banach space that have
a Schauder basis {e; };y, that is each € X has an unique representation
T = 3 2opi(x)ei, where ¢o; : X — R,i € N. Denoting R, : X — X
by R (2) = 3 72, ,10i (z) e, the function p(A) = lim,_c0 sup ||| Ral|| is
a regular measure of noncompactness on Py(X) (that is full, and satisfies
#(A+ B) < (A)+ 4 (B) 1 (AU B) < max {u (A), s (B)}), where ||| Rall|
denotes the norm of linear continuous operator R,,.

Example 3.5 Let (K, p) be a compact metric space and X = C (K;R) =
{f: K = R, f continuous on K}, endowed with the uniform norm

[| ]| = max {|f (2)|;x € K}. For any f € X we can define the modulus of
continuity of f by

w(f6) = sup{|f (&) = [ (5)]3t,5 € K, p(t,5) < e}, Ve > 0
and for any A C X, let us define
w(A;¢) =sup{w (f;¢); f € A}, Ve > 0.
Then
p(4) = limw (4;¢)
is a measure of noncompactness on Py (X ), which moreover satisfies
p(A) =2h(4),
where h (A) is the Hausdorff measure of noncompactness in Definition 3.1.
Example 3.6 Let X = L:’ [a,b],1 < p < 400, be endowed with the

norm |||, = (f:lf(t)|p dt); and let § : [0,+00) — [0, +00) be with the
property lim; 08 (t) = 8(0) = 0. For f € X, let us define the Kolmogorov
modulus of continuity of f with respect to 3 by

wp (£¢) =sup {|Ifs — fll, — B(Ibl); o] < e},
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(where fp (t) = f(t + h),Vt € [a,b]) and for A € Pp(X), let us define

wp (Ase) sup {wg (f;€); f € A},
ug (A) = li_%wg (4;¢).

Then pg : Py(X) — [0, +00) is a regular measure of noncompactness.

Remark. For many other details concerning the axiomatic approach of
measures of noncompactness, see the interesting book Banas-Goebel [32].

The end of this section is based on an idea used in Kupka [127] which
is the following: When we want to model "metric” or ”uniform” notions
in pure topological case, it suffices sometimes to replace "¢ > 0” by ”open
cover of X”. Then, we can obtain analogous results to the metric case. In
this sense, we will introduce a topological analogue of measure of noncom-
pactness and we will show some basic properties of this kind of measure.
Finally, as applications we prove the upper semicontinuity of the limit of a
decreasing net of upper semicontinuous multifunctions.

Let 7 be the set of all open coverings of a topological space X. Let us
consider the family C = 27 of all subsets of 7 ordered by the relation

z <yifand only if 2 Dy, for 2,y € C.

Then (C, <) is a complete lattice with the minimal element © = m. Now
we can define the C-measure of noncompactness as follows:

Definition 3.4 (Kupka-Toma [128]). If A C X then the measure of
noncompactness of A is the element of C defined by

m(A):{PEW‘EIﬁni&JCP:ACU(S}.

Remark. Lechicki in his article [132] has introduced a measure of non-
compactness for uniform spaces, whose values are in a smaller system of
sets than C. But in general topological spaces we have no notion of ”uni-
formness” as in the case of uniform spaces. The above notion of measure
of noncompactness applied in the class of uniform spaces is stronger than
Lechicki’s one.

Theorem 3.2 (Kupka-Toma [128]). The mapping m : 2X — C has the
following properties:
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(7)) If A is a compact subset of X then m(A) = ©. If A is closed then
the converse is true;

(#0) If AC B then m(A) < m(B);

(7i7) m (AU B) = m(A)Nm (B) =sup{m(A4),m(B)};

(iv) m(ANB) <m(A)Um(B) = inf {m (4) ,m (B)}.

The next two examples prove that if A is not closed, then the equality
m (A) = © does not imply the compactness of A and that the inequality in
(2v) can be strict.

Example 3.7 Let X be a compact topological space, which contains a
noncompact subset A. Then m (X) = © and consequently m (A) = O too,
but A is not compact.

Example 3.8 Let X = R with the usual topology, A = (—0,0],B =
[0,00). AN B = {0} is compact and therefore m (A N B) = © but
inf {m (A),m (B)} # O because the open covering

P={(n—-1,n+1);neZ}

of X does not contain a finite subcovering neither of the set A nor of the
set B.

In the class of complete uniform spaces, we can partially compare the
measure of noncompactness m, with Lechicki’s measure which is denoted
by @ (see Lechicki [132]).

Theorem 3.3  (Kupka-Toma [128]). Let X be a complete uniform space.
Then we have the following:
(1) For every closed subset A C X, m(A) = © if and only if ® (4) = 0;
(1) For every decreasing net (Ay : v € T') of closed nonempty subsets of
X’

inf {®(A,):7€T}=0= liEnI}m (44) = ©.
v

The next example shows that if A is not closed, then the equivalence (7)
of Theorem 3.3 may not be true, because in general we can have m (A) #
m (Z), where A is the closure of A. This also shows that topological mea-
sure of noncompactness can distinguish such subtle differences which are in-
distinguishable by the classical (metric) measure of noncompactness. More-
over, one can easily see that m (A) = © is in topological case stronger than
m (A) = 0 in the metric case.
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Example 3.9 Consider R with the a-topology (open sets are the sets of
the form O \ N where O is an usual open set and N is a nowhere-dense set
(see Njastad [160]). Let us take the following a-open set

A:(O,l)\{;ll-;nEN}.

The a-closure of A is A = [0, 1]. The open covering P of X defined by

P:{A}U{G— (n—:l)z’%+ (n—:l)z) ;”EN}U{R\{%;"GN}}

contains a finite subcovering of the set 4, namely {A}, and therefore P €
m(A). But, P ¢ m (A) because the points =~ € A cannot be covered by
finite number of sets from P.

Let (I', <) be a upward directed set. If (zy :v €T) is a net in C, then
we shall write limyerz, = @ if and only if

V{P}€C 3y €T, Vy >r 70 1 2y < {P}.

The next theorem is a topological analogue of the Theorem 2.2 in
Lechicki [132]. Tt works with a complete uniform space which in general, of
course, is not our case. Because of (77) in Theorem 3.3, we can state that
the theorem generalizes Theorem 2.2 of Lechicki, if the space X is supposed
to be uniformly complete.

Theorem 3.4 (Kupka-Toma [128]). Let (A, : v € T) be a decreasing net
of closed nonempty subsets of a topological space X. Then the following
implication 1s true:

linllm (Ay) =0 = 4= ﬂ A, is nonempty and compact.
yE
ver

The next theorem generalizes a theorem which is well-known in the
metric case. The notion of upper semicontinuity being a topological one
(see e.g. Michael [147]), it is natural to search an analogous result in
topological setting.

Theorem 3.5 (Kupka-Toma [128]). Let X,Y be topological spaces and

F,: XY be a decreasing net of w.s.c. multifunctions with closed
Y ~el
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nonempty values. If for each z € X, limyerm (F, (z)) = O, then the mult:-
function

F:X Y, F(z ﬂF
ver

1s upper semicontinuous with nonempty compact values.
Remark. The net (F, : v € I') is decreasing and it is easy to see that this

net converges to F in the sense of the Vietoris topology (see e.g. Michael
(147]).

The condition in Theorem 3.5 that the measure of noncompactness of
F, (¢) tends to zero, cannot be omitted as the next example shows.

Example 3.10 Let X =Y = [0,1) U(1,400) with the usual topology.
For each n € N and @ € X we define the multifunctions

F,(z) = [01+:L‘+ ]\{1}

F(z) = [0,1+z]\{1} if:c;éO,F(O):[O,l).

Then Vz € X, F, (2) D Foy1 (z) and F (2) = (), enFr (2). The multifunc-
tions F,, are upper semicontinuous but F is not upper semlcontlnuous at
the point 0. To see this, let us remark that ¥ (0) C [0,1) = U, U is open in
X and for each open neighborhood V of 0 we have F (V) € U.

The next example shows that in Theorem 3.5, the hypothesis that the
values of multifunctions are closed, cannot be omitted.

Example 3.11 Let us consider the complet metric spaces X = [0, +o0),
Y C R with the usual metric. For each ¢ € X, we define the multifunctions:

R = (oo,
Fz) = <—oo,—%]u{1} if2#£0,F(0) = {1}.

Then
Ve € X,n € N: F,(2) D Faya(2) and F () = [ Fu (2).
neN

The multifunctions F, are all u.s.c. but their limit F is not, because it is
not u.s.c. at the point 0.
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Finally, we give an example which shows why it is necessary to consider
the family = of all open coverings of X and not only a subfamily of cov-
erings of certain type, as for example ball coverings in metric space. We
will construct two nice families of coverings which generate very different
measures of noncompactness.

Example 3.12 Let X = (—%, %) with the usual topology. We can con-

sider two families of open coverings of X:

T = {Pe;e>0},Pe={(a—¢,a+e)NX;a€ X},
Ty = {Qe;e>0},0. = {(arctg(a —¢),arctg(a+¢));a € R}.

For ¢ tending to 0, the coverings P, (resp. Q.) are getting finer in obvious
way. The space X with the family 71 evokes (—%, 12'—) with usual metric, X
with 73 evokes R with the usual metric. The second space is complete, the

first one is not. Let us take the decreasing sequence of closed subsets of X

™ r 1
An = (_5,‘2‘4';) ,n € N.
Let C; = 27,03 = 2™, If we consider m; (resp. mg) -the measures of

noncompactness with values in C; (resp. Ca), then

limmy (A,) = i (minimum of C),
neN

limms (A,) = 0 (maximum of C;).
n€N

3.2 Random Measures of Noncompactness

In this section we present extensions of the Kuratowski’s and of the Haus-
dorff’s measures of noncompactness to probabilistic metric spaces in Menger
sense.

Let us denote by A the set of all nondecreasing and left continuous
functions f : R — [0, 1], such that f(0) = 0 and limz— o0 f (z) = 1.

Definition 3.5 (Menger [145]). A probabilistic metric space (P M-space,
shortly) is an ordered pair (S, F), where S is an arbitrary set and F :
S x § — A satisfies:

(1) Fpq(x) =1,Yz > 0 if and only if p = ¢;

(1) Fpq(z) = Fap (2),Yp,q € S;
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(ii5) If Fpq(z) =1 and F,, (y) =0,Vp,q,r € S then F, 4 (z +y) = 1.
(Here Fy 4 (z) = F (p, ) (2).)
Definition 3.6 (Egbert [69]). Let A C S,A # 0. The function D, ()
defined by

Dy (z) =sup inf F,,(z),z€R
t<oP9€A

is called the probabilistic diameter of A. If sup {D4 (z);z € R} = 1 then
A is called bounded.

Definition 3.7 (Bocgan-Constantin [41], see also Istritescu [105],
Constantin-Istritescu [58]). Let A be a bounded subset of S. The mapping

A(:c):sup{6>0 IneN,A;,i=1n with A= UA and Dy, (z) > s}
=1

where z € R, is called the random Kuratowski’s measure of noncompact-
ness.

Remark. In our terminology, a4 can be called random defect of compact-
ness of A (of Kuratowski type).

Theorem 3.6 (Bocsan-Constantin [[1]). We have:

(Z) aa €EA;

(17) aa(z) > Da(z),Vz € R;

(e12) If@ # AC B then as(z) > ap(z),Ve € R;

(tv) aaup (2) = mm{aA(_)_ B(2)}, Ve e R;

(v) aa (z) = ag(x), where A is the closure of A in the (g, A)-topology of
S (where by (g, A)-neighborhood of p € S, we understand the set V, (g, \) =
{a€S;Fq>1-2A},e>0,A€(0,1].

The function a4 (z) can be calculated by

Theorem 3.7 (Bocgan-Constantin [{1]). Let K be the set of functions
f € A such that there exists a finite cover of A, A = UJ-EJA]-, J-finite, with
Dy; (z) > f(z),Vi€ J,z € R. Then

aa(z)=inf{f(z);f € Ka}, V2 €R.

It is known that in usual metric spaces, the Kuratowski’s measure is
used to characterize the compactness. In this sense, for the probabilistic
case, we need the following
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Definition 3.8 (Bocgan-Constantin [41]). We say that the PM-space
(S, F) is probabilistic precompact (or probabilistic totally bounded) if for
every € > 0,A € (0, 1), there exists a finite cover of S, S = | J;¢;4i, Ifinite,
such that Dy, () > 1 — A.

Now, let us suppose that (.5, p} is an usual metric space. It is well-known
that it generates the probabilistic metric space (S, F), with F, ,(z) =
H (z — p(p,q)), where H is the function given by H () = 0ifz < 0, H (z) =
11if z > 0. We have

Theorem 3.8 (Bocsan-Constantin [{1]). Let (S,p) be an usual metric
space and (S, F') the corresponding PM -space generated by (S, p).

(7) A C (S, F) s probabilistic precompact if and only if a4 () = H (z),
Ve € R;

(i1) A C (S, p) is precompact if and only if A is probabilistic precompact
set of (S, F);

(ii¢) For any bounded A C (S, p) we have

aa () =H(z—a(A4),Vz € R,

where o (A) s the usual Kuratowski's measure of noncompactness in (S, p)
and a4 (z) is the random Kuratowski’s measure of noncompactness in the
generated PM -space (S, F) .

Remark. For other details see e.g. Constantin-Istritescu [58].

In what follows we consider the random Hausdorff’s measure of non-
compactness. In this sense, firstly we need the followings.

Definition 3.9 (Menger [145]). (S, F) is called PM-space of Menger-
type with the ¢-norm T, if F satisfies the first two properties in Definition
3.5 and the third one is replaced by

Fp,q (m + y) Z T(FP,T (x) )Fr,q (x)) ,Vp,q,?“ €5
We denote it as the triplet (S, F,T).
Definition 3.10 (see e.g. Istritescu [105]). If (S, F,T) is a PM-space

of Menger-type and A, B C S, then the probabilistic (random) Hausdorft-
Pompeiu distance between A and B is given by

D ¢ (z) = supT (infsupr,q (¢), infsupFj, 4 (t)) ,z € R.
' t<e \PE€AqgeB q€Bpea
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Definition 3.11  (see e.g. Istritescu [105]). Let (S, F,T) be a PM-space
of Menger-type and A C S, bounded. The random Hausdorff’s measure of
noncompactness of A is given by

ha(z) = sup {e > 0;3 finite F. C A such that D p_(z) > ¢} .

Remark. The function k4 () has similar properties with a4 (z). Other
details concerning random Hausdorff’s measures of noncompactness can be
found in e.g. Constantin-Istritescu {58).

3.3 Measures of Noncompactness for Fuzzy Subsets in
Metric Space

In this section we will extend in various ways the concepts and results in
Section 3.2 to fuzzy subsets of classical metric spaces.

Let (X, d) be a metric space and the box metric d* : X x R — Ry de-
fined by d* (P, Q) = max{d (z,y),|r —s|}, for all P = (z,7),Q = (y,s) €
X x R.

For the concept of fuzzy subset of X introduced by Section 2.1, we
obviously can give an equivalent definition, as a couple (A, p4), where
wa : X — [0,1] is the membership function and A = {z € X; ¢4 (z) > 0}
is the so-called support of (4, ¢4) -

Let us recall that in literature both forms (notations) for the concept of
fuzzy set are used. Because for the purpose of this section seems to be more
convenient and to accustom the reader with it too, everywhere in Section
3.3 this second form will be used.

Firstly, let us present some concepts.

Definition 3.12 The sets Go (p4) = {(z,9);0 < y=pa (z),z € X}

= Graph (F) and HGy (pa) = {(2,9);0<y < pa(z),z € X}

= hypo (F)N (A x (0,1]) are called the support graph and the support hy-
pograph of (A, ¢ 4) respectively, where F': A — (0,1], F (z) = pa (z),Vz €
A. ’

The diameter and the hypo-diameter of the fuzzy set (A, p4) are given by

D(pa) =sup{d” (a,b);0,b € Go(pa)}
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and
hD (p4) = sup{d” (a,b);a,b € HGq(pa)},

respectively. If D (p4) < 400 (RD(pa) < +00) we say that (A, p4) is
bounded (hypo-bounded).

Definition 3.13  Let (A, p4) be bounded (or hypo-bounded, respectively).
The Kuratowski’s measure and the Kuratowski’s hypo-measure of noncom-
pactness of (A, pa) are given by

K(pa) = inf{e>0;In €N, (4, p4,) with D(pa,)<e,i=1,n,
such that w4 (z) <sup {pa, (z);i=T,n},vz € X}

and by

hK (pa) = inf{e>0;3In€ N, (A;,pa,) with hD (pa,) <e,i=T1,n,
such that ¢4 () <sup {p4, (2);i=1,n},Vz € X},

respectively.

The Hausdorff’s measure and the Hausdorff’s hypo-measure of noncom-
pactness of (A, a) are given by
H (l,OA) = Inf {6 > 0;371 € N,ElPi = (a:,-,r,-) € Gy (SOA) ,i: T,Ti,
such that YP = (z,7) € Go (pa), 3Pk with &* (P, P,) < ¢}

and by
hH (pa) = inf{e>0;3n € N,3P = (v;,7;) € HGo(pa),i=T/n,
such that VP = (z,7) € HGq (¢a), 3P, ,d* (P, Px) <&}
respectively.

Concerning the above concepts can be proved the following relations.

Theorem 3.9 (¢) K (pa) < hK (p4).

(1) K (pa) < K" (Go(pa)), H(pa) = H* (Go(pa)), hH (#4)
= H*(HGy(pa)), where K* and H* represent the usual Kuratowski’s and
Hausdorff’s measures of noncompactness (respectively) of the subsets in the
metric space (X x [0,1],d*). (Here (A, pa) ts considered hypo-bounded).
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Also, we have:

Theorem 3.10 Let (A, pa) C (B, pB) be two bounded fuzzy subsets of
(X,d). We have:

(1) K (pa) < D(pa).

(17) (A,pa) C (B,pp) implies K (pa) < K (pp), where (A,pa) C
(B,pp) means o4 (z) < pp (z),Vr € X.

(171) K (pa Vpp) = max{K (pa), K (pB)}, where (paV ¢B) (z)
= max {(¢a) (z), (¢B) (2)},Vz € X.

Proof. (i) and (i) immediately follow from Definition 3.13.
(7it) Since (A, ¢a) C (C,pc) and (B,pp) C (C, ), where ¢ (z) =
wa (z) Vg (2),Vr € X, by (i1) we immediately get

max {K (pa),K (¢B)} < K (paVen).

Conversely, for any fixed § > 0, by the definitions of K (p4) and K (¢B) as
infimums, there exist £1,62 > 0,n,m € N and (4;, p4,),7 = In ( J,goB].)
J=1,mwith D (pa,) <e1,i=1,n,D (pp,) <&2,j _1 m,

pa(¢) <sup{pa, (2);i=T,n},¢p () <sup {ps; (z);j =T,m}, e € X,
such that
e1 < K (pa) + 6,62 < K (pp) + 6.
This implies »
max {1, €62} < max{K (p4),K (p5)} + 9.
On the other hand

(pa Vp) (2) <sup{ec, (2);k =T n+m},
where C; = A;,i = T,n, Cny; = B;,j = T, m and
D(pc,) <max{ey,es}, forall k=T, n+ m.
We get
K (paVop) <max{e, ez} < max{K (p4),K (pp)} + 4.
Passing with § — 04+ we obtain

K (paVyep) <max{K (pa),K (¢B)},
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which proves (iii) too. ]

Theorem 3.11 (i) hH (pa) = +oo if and only if HGy(pa) is un-
bounded.
(i) If (A, pa) C (B, ¢p) then hH (pa) < 2hH (p5).
(122) hH (¢a) = 0 if and only if HGo (pa) ts totally bounded.
(i) hH (pa V ) < max{hH (1), hH (p5)}, where (pa V 93) ()
=max{pa (¢),¢n(z)},Vz € X.
9)

Proof. (i) and (44) follow immediately by Lemma 1, (a) , (b) in Beer [36].
Now, let (A, p4) C (B,¢B), i.e. pa(z) < op(z ),V:c € X. It is easily
seen that HGy (p4) C HGo (¢B), which combined with Lemma 1, (¢) in
Beer [36] proves (ii) .
(iv) Firstly we have

HGo(pa V) = HGo(pa)UHGo(pB)-

Indeed, let (z,7) € HGo(pa V ¢B), i.e., 0 < r < max{pa (z),¢n (2)}.
This implies 0 < r < wa(z) or 0 < r < pp(x), wherefrom (z,r) €
HdGy (SDA) U HGy (LpB) .

Conversely, let (x,7) € HGo(pa) U HGo (pp), which implies 0 < r <
pal(z) or 0 < r < pp(z) and 0 < r < ¢a (z) Vg (z), t.e, (z,7) €
HGo (pa V ¢g). By Lemma 1, (f) in Beer [36] and by Theorem 3.9, we
get

hH (paVep) = h*(HGo(paV ¢p))
= h*(HGo(pa) UHGo(pB))
< max{h" (HGs (¢a)), h* (HGo (¢5)))
= max{hH (pa),hH (pa)},
which proves (iv) too. 0

Theorem 3.12 Let (A,p4) be a bounded fuzzy subset of (X,d). Then
the inequality K (va) > Ko (A) holds, where Ky represents the usual Ku-
ratowski’s measure of noncompactness of subsets in (X, d).

Proof. By Definition 3.12 we can write
K (pa) =inf {e > 0;3n € N, (Ai, pa,) with D* (Go(pa,)) <e

=T, 7, such that 0 < g4 (z) <sup {pa, (z);i=1,n} Vze X},
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where D* represents the usual diameter of subsets in (X x [0,1],d*).
Firstly we will prove that

K(pa) = M=inf{e>0;3Ine N, (A4, pa,;) with D" (Go (pa,)) <,
i =1,n, such that Go (pa) C Ul HGo (04,)} - (3.1)

Indeed, let € > 0 be such that In € N, (A;, 4,) with D* (Go (p4,)) < € and
0 < palz) < sup{goAl (1‘),1:1,_71} Ve € A. Then if (z,y) € Go(pa),
e, 0 < y = pa(z), we get that there exists 7 € {1,...,n} such that
0 <y=ea ((E) < PA; (CL‘), L€, (mvy) € HGo (SOAJ') C U?:lHGO (SoAi):
which immediately proves that K (p4) > M.

Conversely, let € > 0 be such that 3In € N, (4;, ¢4,) with D* (Go (¢4,)) <
g,i=1,n and Go(pa) C UL HGo (pa,). Suppose that z € A. We have
0 < ¢a(z) =yand by (z,y) € Gg (pa) there exists j € {1,...,n} such that
(z,y) € HGo (pa;), ie. 0 < pa(z) < pa, (2) < sup {pa, (z);i=T,n}.
This implies that M > K (¢4) and as a conclusion we get (3.1).

Further we will prove that

M >inf{e > 0;3In € N,34; C X with Dy (4;) <¢e,i=T1,n,

such that A C UL, A;} = Ko (4), (3.2)

where Dy represents the usual diameter of subsets in (X, d). Indeed, let
¢ > 0 be such that 3n € N, (4, p4,) with D* (Go(pa,)) < €,i=1,n
and Gg (pa) C U, HGo (pa,)- By D* (Go (pa,)) < € we immediately get
d*[(z1,y1), (22, y2)] <€ for all (zx,yx) € Go (pa,),k =1,2. This implies

d(z1,22) <€, [y1 —y2| <e, forall 2,20 € A,0 < gy = pa, (zx)  k =1,2.

Therefore, D* (Go(pa,;)) < ¢ implies Do (A;) < €. Then, let (z,y) €
Go(pa), te., 0 <y =4 (z). There exists j € {1,...,n} such that (z,y) €
HGo (pa,), 1.e.,0 <y < ¢4, (z), which implies € A;. As a conclusion,
A C UZ_ | A;, which immediately implies (3.2).

Now by (3.1) and (3.2) the theorem is proved. a

Remarks. 1) Because in general the converse inequality in (3.2) does not
hold, this means that in general we have K (¢4) > Ko (A4).

2) By Gal [84], Theorem 3.5, (33), hH (p4) = H* (HGq (¢4)) = 0, if and
only if HGo (¢4) is totally bounded. Now we want to prove that HGg (¢4)
cannot be closed in the metric space (X x [0,1],d*).
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Indeedlet © € A, i.e. p4(z) > 0. Obviously that (z,0) ¢ HGo (¢a) -
On the other hand, (z,0) ¢ HGg (pa), since for r, = Hﬁ’ n € N, where
0 < % < pal(z),Yn > ng, we have (z,7,) € HGy(pa),¥n € N and
d* [(x,7n) , (,0)] = max {d (z,2) 7} 2 0.

As a conclusion, HGo (pa) C HGy (p4), strictly. But because there exist
totally bounded sets which are not closed (even in a compact metric space),

this means that in general can exist fuzzy sets (A4, p4) with hH (p4) = 0.
By using the level sets method, we can introduce

Definition 3.14 The (a)-Kuratowski measure of noncompactness of
(A, p4) is given by

aK (pa) =sup {Ko (4x); A€ (0,1]},

where Ay = {z € X; ¢4 (¢) > A} and Ky is the usual Kuratowski’s measure
of noncompactness of usual subsets in (X, d).
The (o)-Hausdorff measure of noncompactness of (4, p4) is given by

aH (pa) =sup {Ho (Ar); A € (0,1]},

where Hg represents the usual Hausdorff’s measure of noncompactness of
usual subsets in (X, d). Obviously, aH (¢4) can take the +oo value.

We also need the following

Definition 3.15 (see e.g. Weiss [220]) If (X,d) is a metric space, then
the induced fuzzy topology on (X, d) is the collection of all fuzzy subsets
of (X,d) with ¢4 : X — [0, 1] lower semicontinuous on X.

A fuzzy set (A,¢4) is called (a)-bounded if for each A € (0,1], Ax is
bounded in the metric space (X, d).

A fuzzy set (A, pa) is called (ar)-compact if for each A € (0,1], Ay is com-
pact in the metric space (X, d).

Now we are in position to prove the

Theorem 3.13 Let (A, p4), (B, ¢p) be (a)-bounded.

(i) aK (pa) = 0 if and only if each Ax, X € (0, 1] is compact in (X,d),
where Ay denotes the closure of Ay in (X,d). Also, if (A,¢4) is (a)-
compact then aK (pa) = 0.

(i1) If (A, 0a) C (B,¢B) (i.e. pa(z) <pp(x),Ve € X) then
aK (pa) < oK (pB)-
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(751) aK (pa) < Ko (A), where Ko represents the usual Kuratowski’s
measure for subsets in (X, d), and in general we have not equality.

(iv) aK (pa V o) = max{aK (pa),aK (pB)}, where (pa V ¢B)(¢) =
max {4 (z),¢B (2)},Vz € X.

(v) aH (pa) =0 if and only if each Ax, X € (0,1], is totally bounded.

(vi) If (A, pa) C (B,pp) then aH (pa) <2 aH (¢B).

(vii) oH (pa V vp) < max{aH (p4),aH (¢B)}.
Proof. (i) We have aK (¢4) = 0 if and only if Ko (Ay) = 0,VX € (0,1),
which immediately implies the desired conclusion.

(¢7) Since (A, ¢4) C (B, ¢p) implies Ay = { € X;p4 (z) > A} C By =
{z € X;08 () > A},VA € (0,1], the proof is immediate.

(743) Firstly it is easy to check that

A={ze X;pa(e)>0}= |J Ax= [J {zeX;pa(x)>A}.
A€(0,1] A€(0,1]

Since Ay C A, we have Ky (Ax) < Ko (A4),YX € (0,1], and passing to
supremum we get oK (p4) < Ko (4).

Now if for example X = R, A = [0,+0), A = U, [0, n], then
sup {Ko ([0,n]) ;n € N} = 0 but Ky (A) # 0, which means that in general
aK (pa) < Ky (4).

(7v) By (ii) we easily get

max{aK (pa),aK (pp)} < aK (paVes).

Conversely, for all A € (0,1} we have

{z € X;max{pa (z), 95 (z)} > A}
= {z€X;pa(x) > A U{z € X;pp(x) > A}.

Applying the usual Kuratowski’s measure Ky, we get

Ko ({x € X;max{pa (z),¢p ()} > A}) = max{Kj (A,), Ko (Bx)}

<max{aK (pa),aK (¢g)}, YA € (0,1],

wherefrom passing to supremum with A € (0, 1], we obtain aK {(pa V ¢B) <
max {aK (p4) K (¢p)}

(v), (vi) and (vii) are immediate consequences of Definition 3.14 and of
Beer [36], Lemma 1, (@), (c), (f)- O
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Corollary 3.1 For all (A, p4) hypo-bounded, we have

aK (pa) < K (pa) < K™ (Go(pa)) < K™ (HGo(pa)) < hK (pa) -
Proof. Firstly we will prove that hK (p4) > K™ (Go (94)), t.e. that
hK (pa) = inf{e>0;3In € N, (A;,pa,) with D" (HGo (pa,)) <eg,i=

T'n,and 0 < pa (z) <sup {4, (z);i=T,n} Vo € A}
inf {&¢ > 0;3IM; C X x (0,1] with D* (M;) <¢,i=1,n,

v

such that HGy (¢4) C UM,} .
i=1

So, let ¢ > 0 be for which there exist n € N, (Ai, ¢4,) with D* (HGo (pa,))
<e€,i=1,n, such that 0 < 4 (z) <sup {4, (z);i=T,n}, forall z € A.
Let us denote M; = HGo (pa,),i = 1,n. We have D* (M;) < . On the
other hand, let (z,y) € HGo(pa), t.e.. ¢ € A,0 < y < @4 (z). Then
by ¢4 (z) < sup {¢a, (z);i=T,n}, there exists j € {1,...,n} such that
va(z) < pa;(z), te, 0 < y < @4, (), which means (z,y) € M; C
Ur_;M;. As a conclusion, hK (pa) > K* (Go(pa)), which together with
the obvious inequality K* (HGq (pa)) > K* (Go (p4)) and with the Theo-
rems 3.9, 3.12 and 3.13, prove the corollary. O

Remarks. 1) In the axiomatic definition of the measure of noncompactness
(denoted by e.g., u) for usual subsets of a Banach space, among others must
be checked that g (4) = p (A) and p (A) = p (conv (A)), where A is the clo-
sure of A and conv (A) is the convex hull of A (see e.g., Banas [31]). From
this viewpoint, similar questions can be considered for the above measures
of noncompactness oK (p4), K (¢a),hK (pa), o (ga), H(pa) , hH (pa).
The difficulty consists in proper definitions for the closure and for the con-
vex hull of a fuzzy set.

For example, for (A4, ¢4) we can consider the closure (A4, ¢4) in the induced

topology in Definition 3.15, i.e., (A, p4) = (B, ®4), where

Pa(e)=1nf {p(z);pa<ponX,p:X—[0,1],
upper semicontinuous on X},

for every z € X. Also, the convex hull of (A, ¢4) denoted by (B, convpy)
can be defined by

(convpa) (z) = inf {p (z) ;04 > ¢ on X, p-fuzzy convex on X}, Vo € X.
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2) By using the above measures of noncompactness, it would be inter-
esting to extend the known Darbo’s [60] and Sadovski’s [187] results of fixed
point to fuzzy-set-valued mappings.

3) By Corollary 3.1 it follows that if (A, p4) has the support A rela-
tively compact in (X, d) then aK (p4) = 0 and that if Go (¢4) is relatively
compact in (X x [0,1],d*) then oK (pa) = K (pa) = 0.

4) By Theorem 3.9, (i¢), the measures of noncompactness of Hausdorff’s

type for fuzzy sets are completely characterized by means of the usual Haus-
dorfl’s measure of noncompactness for some usual sets. Then, from the
inequalities in Corollary 3.1 arise the question:
If we denote any measure of noncompactness of Kuratowski-type of a fuzzy
set (A, pa) by K (pa), then find an usual set (in X or in X x [0, 1], respec-
tively) such that K (¢4) = K* (M), where K* (M) represents the usual
Kuratowski’s measure of noncompactness of M.

While the above question seems to be difficult, we will solve it by in-
troducing other measures of noncompactness of Kuratowski-type for fuzzy
sets.

These new measures are suggested by the following remark.

Let (X,d) be a metric space and A C X. As it is well-known, the
Kuratowski’s measure of noncompactness of A denoted by Ky (A) is given

by
Ko(A) = inf{e>0;3neN, 4 € X with Dy (4;) <¢,

i = 1,n such that A C UA’}'

i=1

But if we denote B; = A; N A, then obviously get Do (B;) < Dy (A;) < ¢
and A = J;_, B;. Therefore we immediately obtain

Ko(A) = inf{e>0;In€N,4; €X with Dy (4) <e,

n
i =1,n such that A = UA’} .

i=1
(Here Dg (A;) is the usual diameter of A; in (X, d)).
As a consequence we can introduce

Definition 3.16 Let (A, 4) be a bounded (or hypo-bounded, respec-
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tively) fuzzy subset of (X, d). Then we define

Ki(pa) = inf{e>0;3Ine N, (A;,pa,) with D(pa,)<e,i=1,n,
such that ¢4 (z) =sup {¢a, (z);i=T1,n} ,Vz € X},
and
hKi (pa) = inf{e > 0;3n € N, (4i, pa;) with hD (pa,) <e,i=1,n,
such that ¢4 (z) =sup {pa, (2);i=1n} ,Vz € X},
respectively.

Theorem 3.14 (i) hK (pa) < hKi(¢a),V (A, pa) hypo-bounded.
(41) K (pa) < K1 (pa) = K* (Go(pa)),V (4, pa) bounded.

Proof. (i) It is immediate by definitions.

(¢4) The first inequality is immediate by definitions. On the other hand,
the converse inequality K; (pa4) < K (pa) seems that does not hold in
general, because if we follow the idea in the usual case by defining
@4, (z) =min{pa (z),pa, (z)},z € X,i = 1, n, then although we have

pa(z)=sup{ph, (2);i=Tn},zeX (3.3)

and ¢} (z) < pa (z),Ve € X, however G (goj,i) Z Go(pa,;)and D (gojli) £
D (<PA;') S €.

In order to obtain K (pa) = K* (Go(pa)), firstly we will prove the
Inequalities

Ky ((,OA) > iIlf{E >0;3In €N, (A,',QOA') with D* (Go (QOA'.)) <eg =

1, 7n,such that Gq (p4) C UGO (<pAi)} > K* (Go (va)) -
i=1

Indeed, the second inequality is obvious. Now, let £ > 0 be for which there
exist n € N, (Ai’soA.‘) with D* (Go (pa,)) = D(pa,) < 6,i = 1,7, such
that o4 (z) = sup {pq, (z);i=T1,n},Vz € X and let (z,y) € Go (pa), i€,
0 < y=a4a(x). Then there exists j € {1,...,n}suchthat 0 < y = p4 (z) =
a4, (z), i.e, (z,y) € Go (cpAJ.). As a conclusion, G (pa) C U=, Go (p4,)
which proves the first inequality too.

Conversely, by the proof of Theorem 3.3 in Gal [84] we have

K* (GO (SOA)) = inf {6 > 0,377, €N, (A'ii ‘PA,') with D(QOA,) <eg = 1,_71,
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such that Go (a) UGo wa,) }

Therefore, let € > 0 be for which there exist n € N, (A;, p4,) with
D* (Go(pa,)) <ei=1,nand

Go(pa) = [ JGo(pa.). (3.4)
Let z € X. There exist two possibilities:
a) pa(z) >0
b) pa (2) = 0.

Case a). If we denote y = @4 (), we get (z,y) € Go (pa) and by relation
(3.4) there exists j € {1,...,n} such that y = pa (z) = ¢a, (z). Let us
denote J = {j € {1,...,n};pa (z) = } Obviously we have ¢4 (¢) =
sup {¢a, (z);5 € J}. If pa(z) < sup{goA ;5 =T1,n} then there exists
k€ {1,..,n}\ J such that 0 < @4 (z) < S"Ak( ) = ¥/, which implies
that (z,y) € Go(pa,). By (3.4) we get (2,y') € Go(pa), te, ¥ =
va (z), which implies the contradiction k € J. As a conclusion, ¢4 (z) =
sup {pa; (z);5 € {1,...,n}}.
Case b). Let 4 (x) = 0 and suppose that there exists j € {1,...,n} with 0 <
Yy = @4, (¢). Then by (3.4) we get (z,y) € Go (va) and the contradiction
@wa(z) > 0. Therefore, pu,(z) = 0, foralli = 1,n and 0 = ¢4 (z) =
sup { ¢4, (z);i=T,n}.

As a conclusion, K* (Go(p4)) > Ki(pa), which combined with the
inequality K1 (pa) > K* (Go (¢4)) proves (ii). a

Corollary 3.2 (i) Ky (va Ven) < max{K1(va), K1 (pB)}.
(ZZ) h[fl (SDA vV SOB) S max{hKl (‘PA) y hK1 (SOB)}

Proof. (i) For any fixed § > 0, by the definition of K; (p4) and K (¢B)
as infimums, there exist €1,62 > 0,n,m € N and (4;, pa4,),i=1,n,
(BJ,QOBJ-) ,j =1, m with D(pa,) < e1,i=1,n, D(goB ) <enj=T1m,

¢a (@) = sup{pa, (2);i=T,n},pp(x) = SUP{SL’BJ( );j=1m},z €
X, such that

g1 < Ky (SOA) + 4,62 < Ky (pB) + 4.
This implies

max{sl,sg} < l’Ila,X{Iﬁ’l (SOA) , K1 (SOB)} + 4.
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On the other hand, we easily have

(paVen)(z) =sup {pc, (z);k=T,n+m},
where C; = A;,i=1,n,Cpy; = Bj,j =1, m and

D(pc,) < max{ej, ez} forall k =1,n + m.
We have

K (paVep) < max{ey,e2} < max{K; (¢a),Ki (¢B)} +9d

and passing with 6 — 0+ we obtain

Ky (paVep) <max{Ki(pa), Ki(pB)}.

(7¢) The proof is entirely analogous. a

Remark. The converse inequalities in (¢) and (¢), in general are not valid
because it is easy to check that K; and hK; lose the property of monotony,
i.e., (A,pa) C (B, pp) does not imply that K (¢4) < K1 (¢B) and that
hKy (pa) < hKi(pp).

The fuzzy metric concepts for fuzzy sets can be obtained by replacing
the usual metric space with a fuzzy metric space. At the end of this section
we introduce some concepts concerning this idea.

First, we need some known concepts, i.e., those of fuzzy real number
and of fuzzy metric space (see e.g., Mashhour-Allam-El Saady [142]).

Definition 3.17 Let ¢, ¢ : R — [0, 1] be non-ascending functions.

We say that ¢ is equivalent with ¥ if p_ (t) = ¥_ (t),Vt € R and we write
@ ~ ¥, where p_ (t) = lim, ¢ (s) .

A fuzzy real number is an equivalence class @ under the above relation ~,
such that if £ € ¢ then €4 (—o0) = 1 and £_ (+o0) = 0, where &4 () =
limg~ € (s) and £_ (t) = lim, & (s).

The set of all fuzzy real numbers will be denoted by R.([0, 1]), while by
R* ([0, 1]) one denotes the class of all fuzzy real numbers satisfying ¢_ (0) =

1. If o, € R([0,1]) then (¢ + ) (s) =sup{p(a) + ¢ (b);a+b=s}.

Definition 3.18  (see e.g., Mashhour-Allam-El Saady [142], p.59). (X, dy)
is called fuzzy pseudo-metric space if d; : X x X — R* ([0, 1]) satisfies:

(i) ds (=, z) = 0,Vz € X, where 0 : R — [0,1] is given by 0 (s) = 1, if
s<0and 0(s)=0,if s > 0.
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(i) dy (z,y) = ds (y, %) ,Va,y € X.

(i43) dy (2,2) < dy (2,9) + d (3,2) Y, 4, 2 € X,
where ifj,@ € R ([0, 1]) then & < ¢ means ¢’ (t) < ' (t),Vt € R,V¢' €
AR

Now, let (X, dy) be a fuzzy pseudo-metric space and (A, ¢4) be a fuzzy
subset of X. We can introduce the following

Definition 3.19 The fuzzy diameter of the fuzzy set (A, p4) will be
Dy (pa) (5) = sup {d} (a,b) (s) ;0,6 € Go(pa)},s €R,

where d} (a,b) (s) = max{dy (a1,b1) (s),]az — b2[} ;@ = (a1, a2),
b= (bl,bg) € Go (QOA) .

If we replace G (¢a) by HGq (¢a), then we obtain the concept of fuzzy
hypo-diameter denoted by hDy (¢a) (s). If Dys (wa)(s) (hDys (pa)(s))<
400, Vs € R, we say that (A, p4) is of finite fuzzy diameter (hypo-diameter).

For simplicity, let us denote by Dj (pa) any between Dy (p4) and
hDy (pa) -

Definition 3.20 Let (A, pa) be with D} (pa) (s) < +00,Vs € R. The
fuzzy Kuratowski’s measure of noncompactness of (A4, ¢4) will be

ar(pa)(s) = inf{& >0;3In €N, (4Ai,p4,),t = 1,n with D} (pa) (s),
< g,such that ¢4 (z) <sup {4, (z);i=T1n},Vz € X}

Analogously, the fuzzy Hausdorfl’s measure of noncompactness of (A, ¢a)
will be

hz (pa)(s) =inf{e > 0;3In € N,3P; = (2i,7) € M (pa),i=1,n,

such that VP = (z,7) € M (pa),3P; with d* (P, P;) (s) <¢},s €R,

where for simplicity, M (¢4) denotes any between G (pa) and HGq (p4) -

Remarks. 1) In Definition 3.20, we therefore have defined four fuzzy
measures of noncompactness for fuzzy sets.

2) By analogy with the introduction of the so-called concept of abstract
fuzzy measure (for usual sets), it would be interesting to use the axiomatic
definition of the measure of noncompactness in Banach spaces in Banas
[31], p. 133-134, in order to introduce a concept of abstract fuzzy measure
of noncompactness for (usual) sets.
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3.4 Measures of Noncompactness for Fuzzy Subsets in
Topological Space

The main aim of this section is to generalize the results in Kupka-Toma
[128] to fuzzy subsets in (fuzzy) topological spaces.

Let m and C be as in Definition 3.4.

By using the weak a-cuts of a fuzzy set, we can introduce the following
crisp-fuzzy kind of definition.

Definition 3.21 Let (X, T') be a classical topological space and A a fuzzy
subset of X (i.e. A: X — [0,1]). Then, the (a)-measure of noncompactness
of the fuzzy set A is given by

aM (A) = (] m(4d),

a€(0,1]

where A, = {z € X;A(z) > a} and aM : IX — C,IX being the class of
all fuzzy subsets of X.

Remarks. 1) If o, 3 € (0, 1] satisfy o < 3, then obviously Ag C A, and
by Kupka-Toma [128], Proposition 1, (b), we get m(Ag) < m(4q) (i.e.
m(Aa) C m (Ag)).

2) If A is a classical set, then A, = A for all @ € (0,1] and aM (A) =
m (A). Therefore, in this case M one reduces to the classical m in Defi-
nition 3.4.

In what follows we introduce the concept of s-compactness for fuzzy
sets. We recall that a triangular norm is a function ¢ : [0,1] x [0,1] —
[0, 1] which is commutative, associative, monotone in each component and
satisfies the condition ¢ (z,1) = 2. Also, s : [0,1] x [0,1] — [0, 1] defined by
s(z,y) =1—1t(1—x,1—y) is called the corresponding conorm of t. We
extend ¢ to IX pointwise, i.e. (AiB) (z) = t(A(z),B(z)). Then ¢ can
be considered as ”intersection” of fuzzy subsets. Similarly, § correspond to
the ”union” of fuzzy subsets. Also, finite (or countable) ”intersections” and
"unions” are defined in the obvious way (see e.g. Mesiar [146)).

Let (X,Tr) be a quasi-fuzzy topological space (Lowen [136]), i.e. a
fuzzy topological space in Chang’s sense and let s be a triangular conorm.

We can introduce the following.

Definition 3.22 Let A; € Tr,i € I and Al,..., A" € Tp. The family
K= {(A,-)iel JAL L A”} of fuzzy sets is an open s-cover of a fuzzy set A
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if

AC (ViEIAi) ’gAlggAn,
where (VierAi) (z) =sup{A; (z);i € I},z € X and A C B means A (z) <
B(z),Vz e X.
We say that {(Aj)jEJ’
the fuzzy set A, if A C (VjEJAj)gAklg...gAkP, where J C I is finite and
{k‘l, ey kp} - {1, ey TL} .

Definition 3.23 A fuzzy set A € IX is called (C,3)-compact if each
open s-cover of A has a finite s-subcover of A. A fuzzy set A is called
(L, 3)-compact if for all open 5-cover of A and for all € > 0, there ex-
ists a finite 5-subcover of B, where B is the fuzzy set defined by B (z) =
max (0, A (z) —¢) ,Vz € X.

Ak ...,Akl’} is a finite open s-subcover in K of

Because B(z) < A(z),Vz € X, it follows that if A is (C,3)-compact,
then A also is (L, 5)-compact.

Remarks. 1) If the triangular conorm is s (z,y) = s (z,y) = max(z,y),
then (C,5p)-compactness becomes the compactness in Chang’s sense (see
Chang [54]) and (L,3p)-compactness becomes the compactness in Lowen’s
sense (see Lowen [136] and Lowen-Lowen [137]).

2) If s; and sy are triangular conorm and s; < s,, then any open
si-cover is an open Sp-cover. In particular, any classical open cover (i.e.
Sg-cover) is an open s-cover because max (z,y) < s (z,y),Vz,y € [0,1], for
every triangular conorm s.

3)Let s #£s0. K = {(Ai)z'el JAL L A"} is an open s-cover of a fuzzy
set, then in general (V;e1A;) 5A’S...5A™ is not an open fuzzy set in (X, TF).

Now, let m¥ be the set of all open 5-covers of (X,T),C% = P (7*) the
family of all subsets of 75, ordered by the relation A < Q if and only if
Q C A,VA,Q € C%, where C means the classical inclusion. Then, obviously
(C%,<) is a complete lattice with the minimal element 05 = =%.

We can introduce the following.

Definition 3.24 Let A € IX (X, Tr) be a quasi-fuzzy topological space
and s a triangular conorm. The (C, s)-measure of noncompactness of A is
the element of C¥ given by

mg (A) = {D € »%;36 C D, finite open 3-subcover of A} .
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The (L, s)-measure of noncompactness of A is the element of C¥ given by

m$ (4) = {D,., € 75,¥e > 0,36, C D., finite, &y = {(Aj)jEJ AL ...,AP}

with max {0, A (2) — e} < ((Vjes4;) SA'5..547) (2) Ve € X} .

Remarks. 1) Obviously, m?, and m3 are similarly defined if (X,7) is a
fuzzy topological space in the Lowen’s sense (see e.g. Lowen [136], Defini-
tion 1.1).

2) The (L, s)-measure mj is suggested by Lowen [136], Definition 4.1
and means in fact s-measure of noncompactness in Lowen’s sense.

3) By Definition 3.24 we obviously get

mj, (A) < m¢ (A) (i.e. m¢ (4) C mi (4)).
4) If 51 and s, are triangular conorms and s; < s, then
m2t (A) C mZ? (A) and m3* (A) C m3” (4) for all A € IX.
In what follows we study the measure a M. Thus, we present

Theorem 3.15 Let (X,T) be a topological space. The mapping oM :
IX 5 C has the following properties:

(3) If A € IX is compact in the sense of Weiss [220], Definition 3.5,
then aM (A) = O¢. Conversely, if A is closed (in the sense of Proposition
3.3 in Weiss [220]) and aM (A) = Oc, then A is compact (in the sense of
Definition 3.5 in Weiss [220]).

(i7) If AC B then aM (A) < aM (B).

(77 aM (AV B) = aM (A)NaM (B).

(iv) aM (AAB) < aM (A)UaM (B).

(where (AV B) (z) = max{A (x),B(z)},(AAB)(z) = min{A(z), B ()}
Ve e X).

Proof. (i) Let A € IX be compact as in Weiss [220], Definition 3.5. It
follows that all Ay, « € (0, 1] are compact in the topological space (X,T)
and then by Kupka-Toma [128], Proposition 1, (a), we get m (A4) = Oc, for
all a € (0,1]. This immediately implies

aM (A)= () m(4a)=0c.
o€e(0,1]
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Conversely, suppose that aM (A) = (N,¢(0,1)m (Aa) = 0c. If & € (0, 1] then
m(Aq) = Oc, since Oc = (Nye(0,ym(A4a) C m(Aa) C Oc. Because Aq
is closed, by Kupka-Toma [128], Proposition 1, (a), we obtain that A, is
compact. Hence A is compact (according to Definition 3.5 in Weiss [220]).

(21) If A(z) < B(z),Vz € X, then Ay C By, Va € (0,1], where A,, Bq
are the corresponding level sets of A and B, hence m (A,) O m(By),Ya €
(0, 1] (see Kupka-Toma [128], Proposition 1, (b)).

We get

aM (A)= () m(4s) D> () m(Ba) =aM(B).
a€(0,1] a€(0,1]

(i77) Because AqUB, = (A V B),,, by using Proposition 1, (¢), in Kupka-
Toma [128] we get

m(Aq) N m (By) =m(Aq UBy) =m((AV B),).

Therefore,

aM (A)NnaM (B) = ( ﬂ m(!%z))“( m m(BQ))

a€(0,1] a€(0,1]
= [} (m(A)nNm(Ba))= () m((AVB),)
a€(0,1] ag(0,1]
= aM(AVB).
(2v) The proof is immediate by (). O

The next example proves that the inequality in (zv) can be strict.

Example 3.13 Let X = R be endowed with the usual topology and

A(z) = if 2 €[0,400) and A(z) =0if z € (~00,0),

— BN | =

B(x) = 3 if £ € (—00,0] and B (z) = 0if z € (0, +00),

two fuzzy subsets of X. Then (A A B), = {0} for a € (0, 3] and (A A B),,
=fPforac [%,1], hence aM (A A B) = 0.
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On the other hand,

and

aMB)=| [] mBa)|n| [ m(Ba)| =m((~c0,0]),

a€(0,1] ae(d1]

but oM (A) UaM (B) #0¢, because the open cover
P={(n—1,n+4+1);n € Z} of X does not contain a finite subcover neither
of the set [0, +00), nor of the set (—oo,0].

Remark. Theorem 3.15 is an extension of Proposition 1 in Kupka-Toma
[128] (see also Theorem 3.2).

Now, for the (C, s)-measure of noncompactness we get

Theorem 3.16  Let (X,TF) be a quasi-fuzzy topological space. The map-
ping mg. : IX — C% has the properties:

(i) If A € I* is (C,3)-compact then m3, (A) = 0.

(it) If A C B then mg (A) < mZ (B).

(#55) mE (AV B) = mZ (A) nmZ (B).

(iv) mS (A A B) < m3 (4) UmE (B).

Proof. (i) Let us suppose that A € IX is (C,3)-compact and D is an
open s-cover of X. Then evidently D also is an open s-cover of A, so that
there exists 4, a finite 5-subcover of A such that § C D. Thus m2 (A) = 07.
(i) If D € 75 contains a finite 3-subcover of the fuzzy set B, then
the same 3-subcover also covers A and this proves the inclusion m$ (B) C
m¢ (A), which is equivalent to mg. (A) < mZ, (B) .
(ii7) Because of (i4) it is evident that mZ (A V B) > m2 (A) and
ms (AV B) > m (B), hence mZ (AV B) > mZ (A) N mg (B). In or-
der to prove the converse inequality, which is equivalent to the inclu-
sion mZ (A) N mZ (B) C mZ (AV B), let D € mZ (A) N mZ (B),D =
{(Ai)iGI JAL, ...,A"}. Then there exists K C I, K finite and {kq, ..., k,} C
{1,...,n} such that K = {(Ak)keK , Ak A¥r} is a finite S-subcover of
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A, that 1s
AC (VkeKAk)gAklg...gAk”.

Also, there exists a finite subset L C I and {ly,...,;} C {1,...,n} such
that £ = {(A’)IGL , Al .. Alr} is a finite S-subcover of B, that is B C
(VleLA[)gAllg...gAl’. Then

AV B C (VijexuLAj)5A%15.. 54F»5415. 54

which implies that KUL = { (47);¢ xup » A, -, A%, A1, ., A"} is a finite
s-subcover (in D) of AV B. This proves that D € m%. (AV B).
(7v) The proof is evident by (7). g

The next examples prove that for s = s¢ and s = s, the converse
statement in (¢) can be false even if A is C-closed (i.e. in the Chang’s
sense, see Chang [54]).

Example 3.14 Let X = R be endowed with the quasi-fuzzy topol-
ogy Tr = {D;D(z)=c€[0,1],Vz € R}. If s = 55, where so(z,y) =
max (z,y) is the triangular conorm corresponding to the usual union, then
the fuzzy set A(z) = %,Vz’ € X is a C-closed fuzzy set and obviously
m2? (A) = 03°. But A is not (C,3,)-compact (i.e. compact in Chang’s
sense) because the open Sp-cover of A, {P;;i=1,2,3,...} where P, (z) =

% - ll.,\'/x € X, does not contain a finite sy-subcover of A.

Example 3.15 For arbitrary X, let us consider

Tp = {fn:X—)[0,1];fn(m)=1—%,nEN*,n—even}U
11
u{gn:Xe[o,l];gn(w)=5—§;,neN,nz3}u{@,X},

where 0, X € I*,f(z) =0 and X (z) = 1,Vz € X.

It is easy to see that Tr is a quasi-fuzzy topology on X. We will prove that
the fuzzy set A (z) = £,V € X is a C-closed set with

mg"" = 05>, but A is not (C, 5o, )-compact.

Indeed, by % =1-(1- %) we get that A is C-closed. Also, A is not (C, 5 )-
compact, because by A (z) = V,>39, (z),Vz € X, we cannot choose a finite
number of g, (z) with A (z) = Vg, ().

On the other hand, if X = (Vxerhi) S0 Al3co..-500A™, we have the follow-
ing possibilities: (¢) [ is finite; (¢4) I is infinite and hy = fi for an infinite
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number of k; (#4) I is infinite and hy = gy, for any & > kq.

The case (¢) obviously implies that A is covered by a finite $.,-subcover.
In the case (i2), we can choose a ko € I with § < hg, (z) = fi, (z),Vz € X
and A C hryS00 AlS00...500A™.

Finally, in the case (iii) we get Vierhx (z) = 1,V € X, which implies

% = A () $eo. 500 A™ (2) V2 € X, ie. AC AT 5o A™

As a conclusion, taking into account the definition of mg“’, we get
Seo — 05

Note that any fuzzy set A satisfying A(z) < ¢ < 1,Ve € X is (C, 500 )-
compact.
However, a natural question arises: if A is C-closed and mZ® (A) = 05,
then in what conditions A still has some properties of compactness ?

The following remarks give answers to this question.

Remarks. 1) Firstly, we will prove that if (X,TF) is (C, Se)-compact
(which implies m&® (X) = 05% and therefore m>= (4) = 05>), then each
C-closed fuzzy set A C X also is (C, 5 )-compact.

Indeed, let A C (VierAi) 500 A 500...500A™ be given with I finite. Since A
is C-closed and A5y (1 — A) = X, we obtain that 1 — A is open and

X = (VierAi) 300 A 800 .. 500 A™ 500 (1 — A) .

Taking into account that X is (C,3)-compact, there is J C I, J-finite
with

1 = max{4; (£);i € J} 500 A" (Z) 500...500 A% (2) V2 € X
or
1 = max{4; () ;i € J} 560 A% () 500...500 A" (2) 500 (1 — A (2)), V2 € X,

where ki, ..., k, € {1,2,...,m} , ki # k;.

In the first case, we obviously can cover A with a finite §,-subcover. In the
second case, denoting B (z) = max{4; (2) ;i € J} oo A1 (T) 500...500 A*? (z)
we therefore can write

l=B(¢)se (1 - A(x)) , Ve € X,
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1.€.

B(z)-A(z)+2 |B(z) - A(z)]
2 2 '

l=min{B(z)=1-A(z),1} =
for every € X, which means
0= (B(z)—A(z)) —|B(z) — A(z)|,Yz € X.

This immediately implies A (z) < B(z),Vz € X, where B(z) is a finite
Seo-subcover.

2) Let (X,TF) be an arbitrary quasi-fuzzy topological space (not nec-
essarily (C,3«)-compact) and A C X, A being C-closed and satisfying
m2= (A) = 05>. If moreover A(z) > 1— o, Vz € X (where g9 € (0,1))
then for any ¢ € [g9, 1] and any $eo-cover of A, there is a finite §,-subcover
of A —~e.

Indeed, let A C (VierA;)5eoA'300...500A™ = B. Reasoning exactly as
the above remark, we get X = B5 (1 — A), and taking into account that
mi= (A) = 05°, we can write

A C (ViggAi) oo AR5, .. 5o, AP
or
A C (ViesAs) Soo A¥1 800 .. o0 AFPE, (1 — A),

where J C I is finite and ky, ..., k, € {1,2,...,m}, k; # k;.

In the first case it is obvious that A — & C (Vies4;i) 500 A*150 ...500 A*?, for
all £ € [g0,1].

In the second case, we easily obtain

24 — 1 C (VigsAD) S0 AF1 5 .. Fo A5
Taking now into account that
0<A(z) —e<A(z) —eo <24(z) — 1,Vx € X,Ve € [e0,1],
we get our conclusion.

Theorem 3.17 Let (X,TF) be a quasi-fuzzy topological space. The map-
ping mi : IX — C° has the properties:

(i) If AeIX is (L,E)-compact then m3 (A) = 03.

(14) IfA C B then mL (A) < m? (B).

(i11) mi (AV B) = mi (A)nm3 (B) .
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(iv) m$ (AA B) < m§ (A) Ums (B).

Proof. (i) If A€ I* is (L,5)-compact and D, is an open 3-cover of X,
then D, is an open s-cover of A and for all £ > 0 there exists § C D,, a
finite s-subcover of B, where B (z) = max(0,A(z) —¢),Ve € X. Thus
m3 (A) = 0F.

(i1) Let D. € 75 and ¢ > 0. If D, contains a finite 5-subcover of the
fuzzy set defined by max (0, B(x) —¢),Vz € X, then the same 3-subcover
also covers the fuzzy set defined by max (0, A(z) —¢),Ve € X. The in-
equality max (0, A (z) — €) < max (0, B (z) —¢),Vz € X implies the inclu-
sion mj (B) C mj (A), which is equivalent to m§ (4) < m§ (B).

(ii5) The inequality mj (AV B) > m3 (A) N m} (B) is evident because
of (i7). In order to prove the inclusion m$ (A) Nm3 (B) C mj (AV B), let
D. € m§ (A) Nmi (B),Du = {(Ai);er, A, ..., A"} and £ > 0. Then there
exist K C I, K finite and {k1,...,kp} C {1,...,n} such that

max (A (z) —¢€,0) < (Viex Ax) (2) sA** (z)5...5AF (2) Ve € X.
Also, there exist a finite subset L C I and {l4,...,I;} C {1,...,n} such that
max (B (z) ~ ¢,0) < (Vier A1) (2) sA” (2) 5...s4! (z) ,Vz € X.

The equality

max (max (A (z), B (z)) — ¢,0) = max(max (A (z) — ¢,0),

max(B(z)—£,0)),Ve e X
implies

max ((4 (z) V B (z)) — €,0)

< (VjexurAj) (z) sA* (z)s...sA4F» (2) sAh (z)s...sAM (z),
for every € X. This proves that D, € mj (AV B).
(?v) It is evident from (i3). a

In what follows we deal with the connections between upper semiconti-
nuity and measures of noncompactness.
Firstly we recall the following:
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Definition 3.25 (Kupka-Toma [128], p.458). Let (T', <r) be an upward
directed set. If (mm ,7 € T) is a net in C, we will write limyerz = 0c, if

¥ {B} € C, 3y, €T such that ) < {B} ,¥y >r 70.
Let us introduce some new concepts for fuzzy sets.

Definition 3.26 Let (X, T) be a topological space and (I, <r) an upward
directed set. Then (A(V) elX;yve F) is called decreasing net if v; <r 7,
implies A?) C A If (Y, Tp) is a quasi-fuzzy (or fuzzy) (see e.g. Lowen
[136], p.622) topological space, then a mapping F : X — IY will be called
fuzzy set-valued mapping (see e.g. Gal [85]).

Definition 3.27 We say that F' is u.s.c. (upper semicontinuous) at zg €
X, if for any U € Tp with F (zo) C U, there exists a neighborhood V (zy)
of zg (in the classical topology T') such that F (t) C U,Vt € V (xg) .

On R we consider the topology 7 = {(&,00); @ € R} U {0}. The topol-
ogy which one obtains by taking on I = [0, 1] the induced topology will be
denoted by 7. If (Y,TF) is a fuzzy (or quasi-fuzzy) topological space, then
we denote by T the initial topology on Y for the family of ” functions” T
and the topological space 7. T7 is the topology associated in a natural way
to the fuzzy topology Tr (see Lowen [136]).

Definition 3.28 Let (X,TFr) be a quasi-fuzzy topological space. The
fuzzy set-valued mapping F : X — IY is called (a)-us.c. at zg € X if
the usual set-valued mappings F, : X — P(Y) are us.c. at zy for all
a € (0,1], where F, (z) = AE) it F(z) = A® € IY and the topology
considered on Y is T/. We say that (F(W) X = IY)
net if (F(V) () eIY)

yer 18 2 decreasing

~er is a decreasing net for all z € X.

We can present the following two results which are extensions of the
Theorems 1 and 2 in Kupka-Toma [128].

Theorem 3.18 Let (X,T) be a topological space and (I', <r) an upward
directed set. If (A1M);y €T) is a decreasing net of closed subsets in IX (in
the sense of Proposition 3.8 in Weiss [220]) which satisfy the condition

Vv € I',3e¢ € X (depending on v) with A () =1, (3.5)
then the following implication is true:

liérl;aM (A("*)) =0c=>A= /\’yer‘A(A’) s nonempty and compact
¥
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(in the sense of Definition 3.5 in Weiss [220]).

Proof. By the definition of a-measure of noncompactness, we have

lima M (A(””) =0c & lier{;a Q’ﬂm (Agﬂ) = 0.

Using Definition 3.25 we obtain

v{B}eCIpel:Bc (| m (AQ)) Yy ST Y0
a€(0,1]

or equivalently
V{B}eC Ipel:BCm (Agﬂ) ¥ > 70, Va € (0,1],
that is

i M) =
llenllm (Aa ) =0c,Va € (0,1].
For v € T, A" is closed and satisfies condition (3.5), therefore Ag’) is
closed (and nonempty by (3.5)), for every a € (0,1].

Moreover, (A&W);fy € F) is a decreasing net of subsets in P (X), for

every a € (0,1]. By Kupka-Toma [128], Theorem 1, we get that ﬂvEFAg:/)
is nonempty and compact for every o € (0, 1], therefore A = /\verA(V) is
nonempty and compact, because ﬂveFAg?) = (/\%FA(V))&_ 0O

The next example proves that condition (3.5) in Theorem 3.18 is essen-
tial.

Example 3.16 Let X = R be endowed with the usual topology and
I =N\ {0,1}. Then, (A®) : k €T), where A®) : X —[0,1],A®) (z) = L
if z € [0,%] and A®) (z) = 0 contrariwise, is a decreasing net of closed
fuzzy subsets, because AY) = @ if o > 4+ and AP = [0,£] ifa < L.

Also

ot (1) = iy () m(42)
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= iigm ([O, %]) Nm(0) = 0c.

Moreover, A%) is a nonempty fuzzy set for all £ € I'. However
") =3 (k) =
(Akera™) (2) = infA® (z) = 0,z € X.

Theorem 3.19 Let (X, T) be a topological space, (T, <r) an upward di-
rected set and (Y, Tr) a quasi-fuzzy topological space. If (F(W) X oIV

v €T) is a decreasing net of (a)-u.s.c. fuzzy set-valued mappings on X
such that each FO) (z) = ALY is a closed fuzzy set (in the sense of Propo-
sition 3.9 in Weiss [220]) which satisfies condition (3.5) in Theorem 3.18
and if for each ¢ € X, limyeraM (Ag’)) = 0O¢, then the fuzzy set-valued
mapping F : X — IV given by F (z) = Ayer FO) (2) 2 € X, is (a)-u.s.c.
on X, with nonempty and compact values (in the sense of the Definition

3.5 in Weiss [220]).

Proof. limyeraM (Ag)) = 0Oc,Vz € X implies (see the proof of Theo-
rem 3.18),

limm ((Agﬂ)a) = limm ((F(‘*) (:c))a) = 0c, ¥z € X,Va € (0,1].

Let o € (0,1]. If (FO;v €T) is a decreasing net (see Definition 3.28),
then (F( (z);v €T) is a decreasing net for all 2 € X. Because F(7) is
(a)-usc. Vy € F,Fg) X = P(Y)isusc. Vy € T',Va € (0,1], if we
consider on Y the topology T (see Definition 3.28). Moreover, (F() (),
is closed for every v € I';a € (0,1] and # € X, and the condition (3.5)
implies that (Ai")) = (F(V) (:c))a is nonempty for every y € T', & € (0, 1]
and ¢ € X. By KTlpka—T(ox;na (128], Theorem 2, applied for the net of
¢

classical multifunctions (Fa iy E F) , we obtain that the multifunction
o

Fy @ X—oP(Y),
Fa(z) = () (FO @)
Yer

is u.s.c. with nonempty compact values of T1. But

N <F(v) (x)) =N (A;v))a = (AWEFAQ))Q = (/\verm) (x))
r ver

Y€

a o
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Hence F, 1su.s.c. and (ﬂvePFm (ar:)) is compact and nonempty for every
a3

a € (0,1], if we consider on Y the topology T?. Therefore, the fuzzy set
valued mapping F is (a)-u.s.c. on X with nonempty and compact values
(in the sense of Definition 3.5 in Weiss [220]). O

In what follows, we consider the measures of noncompactness mg and
mj introduced by Definition 3.24. Firstly, we need two concepts.

Definition 3.29 (Lowen [136]). Let (X, Tr) be a quasi-fuzzy topological
space (or a fuzzy topological space in the sense of Lowen in [136]) and
A € I*. We say that A is C-closed (L-closed, respectively) if B € T,
where B(z) =1- A(z),Ve € X.

Definition 3.30 Let (T, <r) be an upward directed set. If ({*) : y € T)
is a net in C5, we will write limyerz() = 03, if Y {B} € C%,3vo € I" such
that (") < {B},¥y >r 70.

We present

Theorem 3.20 Let (X,Trg) be a quasi-fuzzy (or fuzzy) topological space
and (T, <r) an upward directed set. If (A("*) = F) is a decreasing net
of nonempty and C-closed fuzzy subsets in I which satisfy the condition
(3.5) in Theorem 3.18, then the following hold:

. Sw — 00 — .
Jylgmc (A(V)) =05® = A = Ayer A is nonempty,

C-closed and mg"" (4) = Og“‘.

Proof. Suppose that A =0. Then X = X \ A = X \ (AerA))

= Vyer (X \ AW). The hypothesis implies YP € 75=,3y, € T' : Vy >p
Y,P € mg°° (Ah)). If we apply this condition to the open s..-cover

P = {X \ A~ e I‘}, we can state the existence of a finite So,-subcover
of the fuzzy set A() j.e. Alv) - N (X \A(V")). Let us choose v >r
v,1€{0,1,...,n}. Then A C AMY Vie {0,1,...,n}, therefore X \ A
D X\ AM) Vi€ {0,1,...,n} and

A € A00) (X \Am) cvh, (X \Am) =X\ AM,
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which is a contradiction with the condition (3.5). As a conclusion, we obtain
A #£ . Since (A(W) iy E I‘) is a decreasing net, we get

0 = limm (A0) = inf {mr (49);yer}

here inf is in (C5=,<)) = | Jmi= (4D
C
~verl

> m* (Aerd™) = mi (4) > 03=,

ie. mye (A) = 03.

Obviously then A is C-closed. |
Theorem 3.21 Let (X, Tr) be a fuzzy topological space and (T',<r) an
upward directed set. If (A0) 1y €T) is a decreasing net of nonempty and

L-closed fuzzy subsets in IX which satisfy the condition (3.5) in Theorem
3.18, then the following hold:

camSe [ AM ) = (S — ™
'lylenIl‘mL (A )—Oc = A= AyerA s

nonempty, L-closed and mj> (A) = 03“‘.

Proof. Similar to the proof of Theorem 3.20. O

Remarks. 1) The condition (3.5) in the hypothesis of Theorems 3.20 and
3.21 can be replaced by the following:

1
Vy € T,3zo € X (depending on v) with A" (zg) > 3 (3.6)

2) Because of the examples given after Theorem 3.16, in the conclusions
of Theorems 3.20 and 3.21 we cannot state that A is (C, 54 )-compact and
(L, 5% )-compact, respectively. In fact, the compactness cannot be dertved
neither for other triangular norms, as can be seen in the following example:
Let X =R, Tp = {a]a: X = [0,1],a(z) = a €[0,1]},s (z,y) = so (z, )
= max(z,y). Choose I' = {3,4,..} and A®) (z) = 5 + %,Vr € X. Then
(A1) : 4 €T) is a decreasing net of nonempty and C-closed (or L-closed)
fuzzy subsets which satisfies the condition (3.6). Also, limyermg (AM)) =
02, because mg (AM) = 0F for all y € T. Finally, A € I* A(z) =
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(AyerAM) (2) = 1,¥2 € X and A is not (C,5)-compact (see also the
example after Theorem 3.16).

At the end of this section, we briefly present another kind of measure
of noncompactness in fuzzy topological spaces.
Let (X,Tr) be an arbitrary fuzzy topological space.

Definition 3.31 (Lowen-Lowen [137]). We say that X is («, &)-compact
(where o € (0,1],¢ € (0,a)) if each open a-cover has a finite sub-(«, €)-
cover.

We say that X is a-compact (where a € (0,1]) if it is (o, €)-compact for
all e € (0, c).

We say that X is e~ -compact if it is (e, €)-compact for all o € (¢, 1).

Remark. (Lowen-Lowen [137]) X is compact in the sense in Lowen [136]
if and only if it is (e, £)-compact for all « € (0,1] and ¢ € (0, @), if and only
if it is at-compact for all @ € (0, 1], if and only if it is ¢ "-compact for all
e € (0,1).

Definition 3.32 (Lowen-Lowen [137]). The degree of compactness of X
is defined by

c(X)=sup{l-¢eXis £~ -compact} .

Theorem 3.22 (Lowen-Lowen [137]). (X,Tr) is compact (in Lowen
[136] sense) if and only if ¢ (X) = 1.

Remarks. 1) The quantity d. (X) = 1 — ¢(X) can be called defect of
compactness (or measure of noncompactuness) for X.
2) For other details see Lowen (136).

3.5 Defects of Opening and of Closure for Subsets in
Metric Space

Let (X,7) be a topological space, i.e. X # 0 and 7 a topology on X.
The following concepts are well-known.

Definition 3.33 A subset Y C X is called:

(7) open, f Y € T;
(#%) closed, f X\ Y € T,ie. f Y = X\AwithAeT.
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Remark. Let (X, p) be a metric space and 7, be the topology generated
by the metric p. The following characterizations are well-known:
Y C X 1s open if and only if Y = intY, where

intY = {y € Y;3r > 0 such that B (y;r) CY}
and
B(yr)={z€X;p(y,2) <r}.

Y C X is closed if and only if Y =Y, where

Y = {zeXEyneYneNsuchthatp (Yn, 2z e 0}

If Y C X is not open or closed, it is natural to introduce the following

Definition 3.34 Let (X, p) be a metric space and D (A, B) be a certain
distance between the subsets A, B C X. For Y C X, we call:
() defect of opening of Y, the quantity dop (D) ( ) D (Y,intY);
(#%) defect of closure of Y, the quantity d¢yr (D =D(v,Y).

Remark. A natural candidate for D might be the Hausdorff-Pompeiu
distance

Dy (Y1,Y3) = max{p" (Y1,Y2),p" (Y2, Y1)},
where p* (Y1,Y2) = sup{p (41, Y2) ;91 € Y1},p (31, Y2) = inf {p (y1,92);

y2 € Yo} . However, Dy seems to be not suitable for dey and dop intro-
duced by Definition 3.34. Indeed, we have

des (Dr) (Y) = Dy (v,Y) = Du (V.7 = D (V,7) =0,
for all Y C X and
dop (D) (Y) =0,

for all convex Y C X, when (X,||||) is a normed space and p(z,y) =
|lz — y|| (by using the relation Y = intY for convex Y, see e.g. Popa [165],
p. 13).
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That is why instead of Dy we have to use another distance, as for
example, D* : Py (X) x Py (X) — Ry given by
01 lf Yl = Yz
sup {p (y1,¥2) ;41 € Y1,42 € Y2}, if Y1 # Yo,

where Py (X) = {Y C (X,p);Y #0,Y is bounded} (we recall that by def-
inition Y is bounded if diam (V) = sup {p(z,¥y);2,y € Y} < +00).

D* ("1, Y2) = {

Remark. It is not difficult to prove that D* is a metric on P, (X).
As an immediate consequence, it follows

Theorem 3.23 If (X, p) is a metric space and Y € Py (X), then:
(2) dop (D*) (Y) =0 if and only if Y is open;
(43) der (D*)(Y) =0 of and only if Y is closed.

In addition,

der (D*) (AY) Ay (D*) (Y), YA > 0;
dop (D*) (AY) = Adop (D*) (Y),¥A > 0.

Proof. While the first two relations are obvious, the last two relations’
follows from XY = AY and int (AY) = Xint (Y),VA > 0. ]

3.6 Bibliographical Remarks and Open Problems

Definitions 3.12-3.14, 3.16, 3.19, 3.20, Theorems 3.9, 3.12-3.14 and Corol-
laries 3.1, 3.2 are in Gal [84], Theorems 3.10, 3.11 are in Gal [85], Definitions
3.21-3.24, 3.26-3.28, 3.30 and Theorems 3.15-3.21 are in Ban-Gal [22]. New
are Definition 3.34 and Theorem 3.23.

Open problem 3.1 An open problem is to introduce and study concepts
of measures of noncompactness for fuzzy subsets of a P M-space. In what
follows we point out some helpful details. Firstly we need to recall some
concepts in random analysis.

It is known (see e.g. Istritescu [105], p.25) that to any usual metric space
(S,p) can be attached the so-called simple probabilistic metric space of
Menger-type, for any t-norm T, denoted by (S, F?,T), with F# : S x
S — A defined by Ff, (z) = G(z/p(r,s)), if r # s, Ff (z) = H(z),
if r = s, where G € A is fixed and satisfies lim, oG () = 1 and
H(z)=0,ifz <0,H(z) =1,if 2 > 0. Also, if (S1, F,T) and (S2,G,T)
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are two P M-spaces, by the T-product of them we mean the ordered triplet
(S1 x S2, T(F,G),T), where T (F,G) : (S1 x S2) x (S1 x Sa) — A is de-
fined for all r,s € 51 x Sp,r = (r1,72),5 = (s1,52) by

T (F,G)(r,5)(z) =T (Fry .5, (2), Gras, (2)) -

(see e.g. Egbert [69], Xavier [226], Istritescu [105), p.81-82). Given (S, F,T)
a PM-space of Menger-type, by a fuzzy subset of it we mean a mapping
A: S — [0,1]. Let us attach to the metric space ([0,1],p),p" (z,y) =
| — yl, its PM-space ([0, 1], FP, T) and let us consider its T-product with
(S, F,T), that is (S x [0,1],T (F, F*"),T).

In Gal (83] were introduced the concept of probabilistic Hausdorff distance
between two fuzzy subsets A, B of (S, F,T), by

(F) : .
D A, B) () = supT inf sup T (F,F? )(r,s)(t),
i (4, B) (@) = sup (TGGO(A)NEGDI()B) (7.77) (n9) (1

inf  sup T (F, F”.) (r,s) (t)) ,z€R,

3€Go(B)reGo(A)
where
Go(4) = {(z,y) €S x[0,1];0<y=A(z),z € S},
Go(B) = {(z,y)€Sx[0,1];0<y=B(z),z€ S},

and the concept of probabilistic diameter of a fuzzy subset A of (S, F,T),
by

Dp (A) () = §1<15 (meigf(A)T (F, Fp.) (r,s) (t)) ,z€R.

If sup {Dp (A) (z);z € R} = 1 then we say that the fuzzy set A is proba-
bilistically bounded.

Then we can introduce the random probabilistic Kuratowski’s and Haus-
dorff’s measures of noncompactness of the fuzzy set A, by

ap(A) (z) =sup{e > 0;In e N, A;: S = [0,1),i=1,n,

with Dp (4;) (z) > ¢ and A (t) < sup {4; (t);i=1,n},¥t € S}
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and

hp (A) (z) = sup {e > 0; 3A, finite fuzzy subset of A

such that Dg) (A, A) (2) > 6} ,

respectively, where by a finite fuzzy subset of A, denoted here A, we mean
that there exist n € N and a4, ..., a, € A, such that A, : S — [0,1], A, (s) =
0if s#a;,¥i=1,nand A (a;) = A(a;),Vi=1,n.

The above concepts that combine fuzziness with randomness, obviously
extend the corresponding random (probabilistic) concepts in Section 3.2.
Therefore, would be interesting to extend/study the results mentioned in
Section 3.2 for the above ap (A) (z) and hp (A) ().



This page isintentionally left blank



Chapter 4

Defect of Property in Measure Theory

If a set function (particularly, a fuzzy measure or a non-monotonic fuzzy
measure) is non-additive or non-monotonic, it is natural to look for a con-
cept which measure the deviation of that set function from additivity or
from monotonicity. In Section 4.1 and Section 4.3 we introduce and study
these deviations, called by us defects. The non-additivity implies that the
sum between the measure of a set and the measure of its complement is
not equal to the measure of entire space. As a consequence, in Section 4.2
we introduce and discuss the defect of complementarity. Defects of other
properties (subadditivity, superadditivity, submodularity, supermodularity,
k-monotonicity, k-alternativity)are discussed in Section 4.4. Finally, in Sec-
tion 4.5 we discuss two kinds of defects of measurability for sets.

4.1 Defect of Additivity: Basic Definitions and Properties

The measure is one of the most important concepts in mathematics and
so is the integral with respect to measure. In applications, the property
of additivity is very convenient, but it is considered too rigid. For exam-
ple, the experience of artificial intelligence researches shows that the use of
probability functions for describing subjective judgements is unjustified and
that it leads to many erroneous results (see Szolovitz-Pauker [208), Wierz-
chon [221]). As a solution, the concept of fuzzy measure was proposed by
Sugeno [204], generalizing the usual definition of a measure by replacing
the additivity property by a weaker requirement.

The concepts of fuzzy measure and their corresponding fuzzy integrals
constitute an important topic in fuzzy mathematics (see e.g. Butnariu-

131
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Klement [52], Congxin-Minghu [57], Dennenberg [61], [62], Dubois-Prade
[64]-[67], Kruse [126], Kwon-Sugeno [131], Lee-Leekwang [134], De Luca-
Termini [138], Murofushi-Sugeno (156]-[159], Ralescu-Adams [168], Schmei-
dler [189), Suarez Diaz-Suarez Garcia [202], Sugeno [204], Sugeno-Murofushi
(205], Wang-Klir [219], Wierzchon [221], [222], Yoneda-Fukami-Grabisch
[228]). In this section we consider the following definition of fuzzy measure:

Definition 4.1 (see e.g. Ralescu-Adams [168]) Let X be a set and A be
a o-algebra of subsets of X. A set function p : .4 — [0, 0) is said to be a
fuzzy measure if the followings hold:

(1) u(B) =0;

(#) A,B € Aand AC B implies u(A) < u(B).
If moreover we have

(vii) {A,} C A, 4, 7/ A implies u(An) 7 p(A) (continuity from
below);

(iv) {An} C A, A, \¢ A implies p(A,) \y p(A) (continuity from
above),
then p is called continuous fuzzy measure.

Comparing it with a classical measure, the main difference is that the
fuzzy measure is not additive. Consequently, appears as natural the fol-
lowing question: how can be evaluated the degree of additivity of a fuzzy
measure ?

In the sequel we give an answer to this question, by introducing the
concept of defect of additivity for a fuzzy measure. Also, for A-additive
fuzzy measures we are able to calculate and estimate this defect. Then, we
estimate the defect of additivity for some fuzzy measures generated by a
solution of the general functional equation

fz+y) - 1(2) - F(y) = ol v).

Finally, we give applications to some questions like: the approximative

calculation of some fuzzy integrals, the introduction of a metric on the

family of fuzzy measures and the best approximation of a fuzzy measure.
Let u : A — [0, 00) be a fuzzy measure, where A C P(X) is a o-algebra.

Definition 4.2 The defect of additivity of order n,n € N,n > 2, for the
measure g s given by

an (1) = Sup{ p (UAi) - Zu (A:)
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A€ A ANA =0,i# ]}
The defect of countable additivity for the measure p is given by

oo (1) —sup{ (UA) = n(A)
i=1

A€ AVie NJAINA; =0,i#j}.
We have

Theorem 4.1 (i) a, (u) < any1 (p),Vn > 2;

(42) If p is a continuous from below fuzzy measure then as (1)
= limy 5 000n (1) ;

(#11) an (1) < an1(p) +az (1), Yn > 3;

(1) an (p) < (n~1)az (p),Yn > 3;
E) n(p) <(n=1)p(X),Vn>2;

vi) If p is a superadditive fuzzy measure then a,, (p) < p(X),Vn > 2.

Proof. (i) Tt is immediate by taking A,y; = @ in the definition of

Un+1 (N) .
(27) Using the continuity of u on increasing sequences of sets (see Defi-

nition 4.1, (i4¢)), we have
p (UAi) = u(4)| = lim ( p (UAi) e
=1 =1 i=1 i=1

for every sequence (4;);.y C A, AiNA; = 0 if i # j. Passing to supremum
we obtain ag () < limyyootn (1) -

For the proof of the converse inequality, let (A;),.y C A be a disjoint
sequence such that A, = 0,Vm > n + 1. We obtain

p (Ufh) =Y (A= |p (Ufh) = u(4)| <
i=1 i=1 i=1 i=1

therefore a,, (1) < ao (p),Vn > 2. Passing to limit with n — oo, we get
limp c0an (1) < @oo (1) -
As a conclusion,

n) < lim ax (4)

n— 00

oo (K1)

Geo (1) = lim an ().

n—00
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(7i1) We get

n n— n—1 n—1
= ﬂ(UAi)—N(UAi)—M(An)+H<UAi>—ZN(Ai)
< (D A,-) —riﬂ (Ai)| + |p (_UAi) —p (DA’> — 1 (An)

S An-1 /,L)+Cl2 (H )
for every disjoint family {A;,...,An} C A, which immediately implies
an () < an—1 (p) + a2 (u).

(tv) From (ii7), by recurrence we obtain agz () < as (1) + a2 (), after-

wards as () < as () + ax () < 3az () ,as (1) < a4 (1) +az (1) < das ()
and finally a,, () < (n— 1) a2 (1) .

(v) By

lu(AUB) — p(A) - pu(B)| < pu(X),VA B € A,

+

we get the inequality a; (p) < p(X), that is (using (iv)) a, (@)
<(n=1)p(X).
(vi) If p is superadditive, that is

p(AUB) > p(A)+p(B),YVA,BEAANB =0,

then we obtain

Iz (UAi) = p(A)|=p <UA,-) ~ Y n(A) < p(X)
i=1 1=1 =1 =1

for every sequence {A1,..., A} C A, A4 NA; = 0ifi # j. Passing to
supremum we get the desired inequality. O

Example 4.1 If p is additive then a, (u) = 0, for all n > 2.

Example 4.2  If pg is the fuzzy measure which models the total ignorance
(see Dubois-Prade [64], p.128), that is po : P (X) = [0,1], po(A4) = 0 if
A # X and po(A) = 1if A = X, then a, (po) = 1 for all n > 2. Indeed,
because po(X) — po(A4) — po (X \A4) = 1,VA € P(X),A # X, A # 0
we have ag (po) > 1, that is (see Theorem 4.1, (7)) an (po) > 1,Yn > 2.
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On the other hand, uq is superadditive, therefore (see Theorem 4.1, (vi))
an (o) < 1,Vn > 2.
(Here X is supposed to have at least two distinct elements).

Example 4.3 If 4 : P(X) — [0,1] is the fuzzy measure defined by
p(A) =0if A=0 and u(A) =11if A# 0, then taking (A4;)
Ai#0,AiNA; =0,V%,4,i# j we get

z IA Zﬂ _n—l,

that is (by using Theorem 4.1, (v)) a, () = n — 1.
(Here X is supposed to have at least n distinct elements).

ie{l,...,n}>

Example 4.4 Let A be a o-algebra of subsets of X and m : A — [0, 1] be
of exponential-type (see Choquet [55]), i. e. m (AU B) = m(A) m(B) for
all A,B€ A, AN B = 0. If we define p: A — [0,1] by u(A) =1—m(A),
we easily get p (@) = 0,A C B implies u(A) < p(B) and p(AUB) <
u(A) + p(B) for all A,B € A. Also, by using the previous theorem we
obtain a, () <n—1for alln > 2.

Example 4.5 We consider the Lebesgue measure induced on the inter-
val [e¢,b] C R, denoted by m, and the induced usual topology on [a,b],
denoted by 744). It is well-known that the outer measure m* (where, by
definition, m* (4) = inf {m (G) : A C G, G € a4 }) and the inner measure
ms (where, by definition, my (A) = sup {m (F): F C A, [a,b)\ F € Ma51})
induced by m are monotone, m* (#) = m, (8) = 0, m* is subadditive and
m, is superadditive. We can prove that a, (m*) = (n— 1) (b —a) and
an (m.) = b — a that is the defect of additivity for m* and m. is max-
imum possible. Indeed, for every n € N* there exists a disjoint family
Ai, ..., An C [a, b] such that m* (4;) = b~a and m, (4;) =0,Vi € {1, ..., n}
(see Halmos [99], p.70 and Gelbaum-Olmsted [88], p.147). Then

an (m*) > m* (A1) + ...+ m* (UA) (n—1)(b—a)

because m* (| J;—; Ai) = b—a. By using Theorem 4.1, (v) we obtain a,, (m*) =
= (n—1) (b —a). Also, there exists aset A C [a, b] such that m* (4) = b—a
and m, (A) = 0. Because m* (A) + m. ([a,b]\ A) = b— a (see Halmos [99],
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p.61) we obtain m. ([a,b] \ A) = 0. We have
az (m.) > mu ([a,b]) — mu (A) = m. ([a, 5]\ ) = b —a
and by using Theorem 4.1, (¢) and (vi) we get ap, (ms) = b — a.

Example 4.6 It is well-known (see Congxin-Minghu [57]) that for a null-
additive fuzzy measure, that is a fuzzy measure p : A — [0,00) with
p(AUB) = p(A),VA, B € A with p(B) = 0, we can repeat the clas-
sical construction of completion. We obtain the complete fuzzy measure
iAo [0, 00), where

A={AUN : A€ A, 3IBE Asuch that N C B, u(B) = 0}
and
E(AUN) =p(4).

By completion, the defect of additivity is not modified, that is a, (p) =
an (i), Vn > 2. Indeed, the inequality a, (1) < a, (@) is obvious and we
have to prove only the converse inequality. We obtain

wip= o | |

B A | - G A;
(4.)c4, disjoint g (z:LJl ) ;ﬂ ( )
) B (Ai UN;)

() (0v))-5
)

(0n) -

i=1

(U] -3

3

}

= sup {
(A;UN;)C A, disjoint

= sup {
(4,UN;)C A, disjoint

< o Al
(A;)CA, disjoint

= an(n).

In what follows, we deal with the class of A-additive measures. Firstly
we recall the following.

Definition 4.3  (see e.g. Kruse [126]) Let A € (=1,00), A # 0, and A be

a o-algebra on the set X. A continuous fuzzy measure p with p(X) =1 is
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called M-additive if, when A, B € A,AN B =0, then
p(AU B) = p(A) + p(B) + A (A) u(B).

Theorem 4.2 (Wierzchon [222]) Let m be a classical finite measure,
m: A —[0,00). Then p=1tom is a A-additive fuzzy measure if and only
if the function t : [0,00) — [0,00) has the form t(z) = CIA_I,C > 0,c# 1,
A€ (-1,0)U (0,00).

Concerning the defect a, » (¢) of the above measures, we present

Theorem 4.3 Ifp=tom (witht and m as above) then we have

A —n /A
o () € I *1 Vn>2,¥A€ (<1,0)U (0, o0)
and
In(A+1
oo ) < |1 = 2D vr € (41,00 0,0,

A

Proof. Let A€ (—1,0)U(0,00). The connection between ¢ and X is given
by ¢™X) = X4 1. If A € (—1,0) then u is subadditive and using the mean
inequality we obtain

p (Ufh-) =D _u(4)
=1 =1

= n(A) —p (UA,-)

_ Zcm(Ai) -1 _ cm(U,=1Ai) —1 _ l1—n + lzn:cm(Ai) _ lcm(UleA;)
2T X XA X

_; (Cm(u;;lA,) _pn Cm(u:‘=1A,) +n— 1) ’

for every disjoint family (A;);cq1, ;3 € A. In addition, ¢ € (0, 1) implies
¢ < ¢™Uis4) < 1. Because the function h : ["\/ cm(X) ,1] — R defined
by h(t) =t — nt +n — 1 is decreasing and

h (" cm(X)> =X _pr/emX) 4 —1=A4+n—-n"VA+1
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we have

Ad+n—n"VA+1
< -

p (UAi> = u(4)
i=1

=1

for every disjoint family (Ai)ie{l,u.,n} C A. This means that a, 5 () <
< ﬁ’%@forallnzl

Similarly, we can prove that an a (1) < A—J"L_—'f\nﬂz forallm > 2,A €
(0,00).

Passing to limit with n — oo and using Theorem 4.1, (¢¢), we obtain the
second inequality. 0

Remarks. 1) Passing to limit with A — 0 in the inequalities of Theorem
4.3, we obtain limx_,0a, x () = limx_,00800, {#£) = 0. The results are in
concordance with the fact that for A = 0, the defect (of any order) must be
0.

2) Inequalities given by Theorem 4.3 become equalities in some situa-
tions. For example, if m : A — [0,00) is the induced Lebesgue measure
on the interval X = [a,a+ a], where A C P(X),a,a0 € R,a > 0 and

A; = [a+ li=Da o %a) Vi {1,..,n)}then

m(Uiz 4i) moem(4d) _q
c e

A B z_; X
_A+n—a"/A+1
- Al ’

An, A (1)

o
c*—1—-nec» +n

A

because ¢* = A+1. Also by using Theorem 4.1, (i), aoo » (1) = |1 - 11(%1' .

It is known that if f : [0, 00) — [0, 00) is increasing and f(0) = 0, then
for any classical measure m : A — [0, c0), the function p (A) = (f o m) (A)
becomes a fuzzy measure (see e.g. Wierzchon [222]). In this case we obtain

#(AUB) = p(A) — p(B) = f (m(A) + m(B)) - f(m(A4)) — f (m(B)),

VA,B € A, AN B = . This relation suggests us to consider the general
functional equation

flz+y) = f(z) = fly) = p(z,y) (4.1)

Concerning this functional equation it is known the following
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Theorem 4.4 (see Ghermdnescu [89], p.260, Th. 4.9) The measurable
solutions of the functional equation (4.1) are given by

f(z) = B(z)+az
p(z,y) = Bl(z+y) — B(z)—B(y),

where B ts an arbitrary measurable function and a is an arbitrary real
constant.

By using Theorem 4.4 we can generate the following classes of fuzzy
measures.

Theorem 4.5 Let B(x) be such that B(0) = 0, f(z) = B(z) + az is
strictly increasing and f : [0,00) — [0,00). Then p(A) = (f om)(A)
(where m s a classical finite measure) is a fuzzy measure which satisfies
the functional equation

p(AUB)=p(A)+u(B)+o(f (1 (A), [ (1(B)), (4.2)

VA, B € A,AN B = {,where ¢ and f are those in Theorem 4.4 and f~!
represents the inverse function of f (here we assume f(0) =0 and

limg 4o f (#) = +00).

Proof. Takein (4.1),z = m(A),y = m(B) and we take into account that
m=f~lop. O

Example 4.7 Take in Theorem 4.5, f(z) = B(z) = S, 0 # 0,1 >
~1,e>0,c# 1. We get o(z, y) B(x +y) — B(z) — Bly )

= +(c%e¥ —c® =¥+ 1), f~i(z) = log, (Az + 1) and (4.2) becomes the
functional equation of A-additive fuzzy measures

p(AUB)=p(A)+p(B)+u(A)p(B),YA,BeE A, ANB =§.

Example 4.8 Take in Theorem 4.5, f(z) = B(x) = Ae?,A > 0,p €
N, p > 2. Then (4.2) becomes the functional equation

1 (AU B) (\/_+"\/—B) VA B€ A, ANB=0.

In this way we obtain the example of fuzzy measure proposed by Ralescu-
Adams [168].



140 Defect of Property in Measure Theory

Example 4.9 Take in Theorem 4.5, f(z) = B(z) = J—ll?n?ffll) ,A> 0. Then
v P vy v Y A1) -1
plz,y) = 2535, f (2) = = and (4.2) becomes

In ((,\ F 1A 1B 1)

n(AUB) = L+ 1) ’

for every A, B € A, AN B = 0. In fact, u(A) = %’;—11,%4 € A where

m is a classical measure and we can prove (by induction) the relation

In ($7 A+ DM = (- 1))
In(A+1) '

I (U?=1Ai) =

if (Ai)ieq1,..ny € A ls disjoint.

Of course that would be interesting to estimate and calculate the defect
of additivity for such of fuzzy measures too. For example, concerning the
fuzzy measure introduced by Example 4.8, we can prove the following.

Theorem 4.6 If u: A — [0,00) is the fuzzy measure defined by p (A) =
Am?(A), where m is a classical finite measure, then an (p) < 2=Lp(X),
foralln > 2 and A > 0.

Proof. By Definition 4.2 we have,
an (p)=2Xsup S > m(A)m(A;): Ai €A ANA; =0,i# ]
1<i<j<n ’

Because the function k : [0, m(X)]” — R defined by

h(ty, .. ta)= Y. ti;

1<i<j<n

with the condition } ;. ,¢; = a € [0, m(X)] has the maximum value ﬂ;”;ll
obtained for t; = ... = ¢, = 2 (see e.g. Udrigte-Tanasescu [212], p.95), we

get

A=l oy = u(X). (4.3)

<
an (1) £ —— " )



Defect of Additivity: Basic Definitions and Properties 141

Remark. If we consider X = {21, ...,2,} and m : P(X) - R defined by
m(A) = cardA, then the inequality (4.3) becomes equality. Indeed, taking
A; = {2;},¥i € {1,...,n}, we obtain the converse inequality of (4.3)

n—1

an ()2 220D 2 32 Ly = 2 Ly,

i.e. in this case a, (u) = 2=1p(X).

Theorem 4.7 Ifp : A — [0,00) is the fuzzy measure defined by the
relation

In (A + 1)@+ A+ )PP - 1)
In(A+1) ’

for every A,Be A, AN B =0, then

ln(n(/\+1)“(x)—n+l)

an,x (/1') < np(X) - In (/\ + 1) !

for every n > 2, X € (0,00).

Proof. Firstly, we observe that p is subadditive, YA € (0, 00). Indeed,
(4 D@ = 1) (A + 1P ~1) > 0,¥2 € (0, 00) implies

In ((A + 1) 4 (1A 1)
In(A+1)
In [(A+ 1)#@ (A4 14®)]
In(A+1)
= W)+ (B),
for every A, B € A, ANB = (. Then for every disjoint family (Ai)ie{l """ n} €

A, by using the inequality between the geometric mean and the arithmetic
mean, we have

U:" 1 Z/l Zﬂ Uz lA)

n In (Zizl (A +1)* iy (n—1))
In(A+1)
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n In n”\/()\+1)zv (#AD (n—l))
;”(A")_ ( (A +1)

Because the function h : [0, nu(X)] = R defined by

ln(n” A+1) ——(n——l))

h(t)=t- m(A+1)

has the derivative

(n—1) ((A+1)%— )

B (t) =
&) n(/\+1)7—(n—1)

positive on [0, npu(X)], we get that h is increasing and h (nu(X)) = nu(X)—

1n(n()\+1)“(x)—n+1) .
T . We obtain

z lA Z/‘L

for every disjoint family (A;)

In (n()\+ 1)”(X)—n+1)
In(A+1) ’

)| < np(X) -

ie{1,..n} © A, that is

In (n()\+1)”(x)—n+1)
In(A+1) ’
for alin >2,X € (0,00). O

an,x (B) < np(X) -

Remark. We obtain limy\ 0@, » () =0 for all n > 2.

In the final part of this section we present three kinds of applications
for the previous results.

4.1.1 Application to calculation of fuzzy integral

In general, the duality between fuzzy measure and its corresponding fuzzy
integral takes place. This means that if p : A — [0,00),4 C P(X),
is a fuzzy measure and f is a nonnegative .4-measurable function, then
v: A= [0,00) defined by v(A) = [, fdp, where [ denotes a fuzzy integral,
is a fuzzy measure. In general, these two fuzzy measures have not the same
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defect of additivity. For example, if y is a fuzzy measure with p(X) =1
and [ is the Choquet integral (see e.g. Murofushi-Sugeno [157]), that is

vid)= [ fu= [ ullee o) 2 ah o,
where f is a bounded nonnegative .A-measurable function, then
an (v) < Man (1), (4.4)
where M = sup {f(z) : z € X}. Indeed, if Ay, ..., A, are measurable,
AinA; =0 (: #7J), then

{a:EUAi:f(x)Za}:U{xeAi:f(x)Za}

i=1 i=1

with {z € A; : f(z) >a}n{z € A;: f(z) > a} =0 (i # j) and

/U?:lAlfdﬂ— g/A'fdﬂ < /OM p ({x e ianJlAi  f(@) > a})

—Zu ({z € 4i: f(z) > a})

i=1

da < Ma, (p) .

For M < 1 we obtain a, (v) < a, () .

The inequality (4.4) is useful for the approximative calculation of Cho-
quet integrals. We omit the details because the same ideas are presented
below.

Some fuzzy measures and fuzzy integrals have a property of the following

kind (see Suarez Diaz-Suarez Garcia [202], Sugeno-Murofushi (205]):
if p(AUB) =p(A)xpu(B),VA,BeE A AN B =0 then

v(AUB)=v(A)xv(B),YA,BE A ANB =0, (4.5)

where p and v are as above, that is ¥ comes from a fuzzy integral and * is
a binary operation with suitable properties.

Taking into account this last fact, we can apply the estimates for the
defect of additivity, to approximative calculation of the fuzzy integrals, in
the following way.
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Let (X,.A) be a measurable space, f be a nonnegative .4-measurable
function on X and g : A — [0,00) be a fuzzy measure with the defect of
additivity of order n equal to a, (z) and which verifies the condition

p(AUB)=u(A)*p(B),VA,BE A ANB =0.

We assume that the fuzzy measure v constructed with the help of fuzzy
integral [ by v(A) = [,fdu,VA € A satisfies the property (4.5). If A has
the representation A = A; U...U A, where A; € A,Vie {1,...,n},n>2
and A; N A; =D if i # j, then

L=l )= (On) - B

Therefore, if we know the values of the fuzzy integrals on each A;,

i € {1,...,n}, then we can approximate the value of the fuzzy integral on
A.

For example, if m is a classical measure, i : 4 — [0, 00) given by p (A) =
= 0=-1 ¥4 € A, where ¢™X) = A+ 1,¢> 0, € (0,00) and p(A) =
ﬂ%ﬁ’ﬂl VA € A, )€ (0,00), and the integral is that given by Sugeno-
Murofushi [205), then denoting v (4) = '—’%}% we see that v is a Av (X)-

additive fuzzy measure and applying Theorem 4.3, we get

‘7Afdu - ;7,4,.““

and (applying Theorem 4.7)

< an (V).

Av(X)+n—n" /v (X)+1
A 3

<v(X)an(y) <

In (n A+ 1)V(X) —n+ 1)
In(A+1) ’

< nv(X)—

VAfdu - iz:;/vmfdu

respectively (here v (X) = jxfdp).

Remark. The ideas in this subsection can be framed into the general
scheme described in Section 1.1. Indeed, let f : X — R be fixed, bounded
by M € Ry, t.e. M =sup{f(z);z € X}. If t is an additive fuzzy measure
then the Choquet fuzzy integral denoted by [, generates an additive fuzzy
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measure by v (G) = fod,u,VG € A, that is we have the formula

fdu + fdu-/ fdu| < Mas () ,\YG1, G € A, GiNG5 = 0,
Go GL1UG,

G,

valid for all fuzzy measures (additive or non-additive).
Obviously, for u additive, the last inequality becomes the additivity
property of [ and can be framed into the scheme in Section 1.1, by defining

Ace: = [ gap+ [ gan- [ janveiGiea
G G2 GLUG;
Bg,.q, = Mz Ve e R,VG1,Gy € A,
U = {the set of all fuzzy measures on A}

and

P ="the property of additivity on A”.

4.1.2 Application to best approzimation of a fuzzy measure

Let us define
F={p:A—-[0,1];u () =0, u nondecreasing on the o-algebra A}
and
M ={m: A - [0,1]; m additive on the o-algebra A} .

It is obvious that M C F. Given u € F, it is natural to consider the
problem of approximation of y by elements in M. In this sense, let us
introduce d : F x F — {0,1] by d (g, v) = sup{|u(4) —v(A)|; A€ A} <
1,Vu,v € F. Obviously d is a metric on F. Now, given p € F, let us
introduce the best approximation of p by elements in M, by

E(p) =inf{d(g,m);me M} <1.

We will use the defect to give a lower estimate for £ (u). Let A; € A,
i€{l,..,n},A;NA; =0,i# j. We have

() D] = (00 (0
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S A) - m(A)| € (D) d(wm),

i=1

for every pu € F,m € M. It follows

an (©)
) <E(w<1¥n>2 (4.6)
an (1)

As a consequence, if y is such that im0 17 =1 (for example if p is
the fuzzy measure given by Example 4.3), then we obtain E (u) = L.

Now, we give a non-trivial estimation of the best approximation for a
concrete fuzzy measure. If X is an infinite set, A = P (X) and m : A —

[0,1] is defined by
m(A) = a@rda if 4 i finite
10, if A is infinite,

where a € (0, 1), then m is an exponential-type measure. By using Example
4.4, the mapping p : A — [0, 1] defined by p (A) = 1—m (A) is a subadditive
fuzzy measure. Let A; = {;},z; € X,Vi € {1,...,n},2; # z; if i # j.
Because

p(A) 4 o+ p(An) —p (AU UA) =n—1—na+d",

for every n € N, n > 2, passing to limit in inequalities (4.6), with a,, (p) =
n—1—na+a” weobtainl —a < E(p) <1.

4.1.3 A metric on the family of fuzzy measures

Let us define
F={u:A-R;u®) =0}
and
M = {m : A — R;m additive on the o-algebra A} .

By using the concept of defect of additivity in Definition 4.2 (which ob-
viously can be considered for non-monotonic fuzzy measures too), we will
introduce a metric on F (and so implicitly on F-see the previous applica-
tion) in the following way. Firstly, it is easy to prove that the defect of
additivity of order n > 2,a, : F = R, satisfles the properties
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(1) an (4) = 0,if p € M

(#) an (Ap) = |Alap (u), for all p € F, A € R;

(741) an (p+v) < ap (p) +an (v), for all p,v € F,

i. e. (an), > is a nondecreasing sequence of seminorms on (F,+, -), where
+ and - are the usual sum and product with real scalars.

Let us introduce on F the relation ~ by p ~ v iff there exists m : A — R,
additive on A, such that g — v = m. It is easy to see that ~ is a relation of
equivalence on F, therefore let us denote F=F /~ . Define a, : F - R,
by an (B) = an (1), where p € K, therefore (an),», remains a decreasing
sequence of seminorms on F but moreover has the property: a, (i) = 0,
for alln > 2, implies g = M = Oﬁ (obviously F endowed with the usual
sum and product with real scalars induced from F, is a linear space). Then

. v)
d(@,v)=d Z2"1+an e

where p € i, v € 7, 1s an invariant to translations metric on F x F.

In connection with fuzzy measures, an abstract interpretation is given
(see Murofushi-Sugeno [156]): the non-additivity of the fuzzy measure ex-
presses interaction among subsets; so, if p is a fuzzy measure and Ay, ..., A,
are disjoint subsets, then the inequality

exhibits the synergy between Aj, ..., A, and the inequality
p(A1 UL UAL) <p(A)+ .+ 1 (4n)

exhibits the incompatibility between A, ..., Ay. In this sense, the defect of
additivity, concept introduced and studied by this section, gives a global
measure of synergy or incompatibility for a fuzzy measure. In other fields
of mathematics, a basic concept is that of real nonadditive set function.
For example, the theory of capacity (Choquet [55]), the evidence theory
(Shafer [196]), the surprise theory (Shackle [195]), the possibility theory
(Dubois-Prade [67], Zadeh [229]). These theories are susceptible to benefit
the concepts and properties in this section. Also, there exist some practical
fields where the nonadditivity is important and the defect introduced by the
present section could be useful, as for example, in decision problems (see e.g.
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Yoneda-Fukami-Grabisch [228]), subjective evaluations (see e.g. Onisawa-
Sugeno-Nishiwaki-Kawai-Harima [161], Tanaka-Sugeno [211]), information
processing (see e.g. Prade [166], Tahani-Keller [210]), or in classification
(see e.g. Grabisch-Nicolas [93]).

4.2 Defect of Complementarity

Because the fuzzy measures are non-additive, the sum between the measure
of a set and the measure of its complement is not equal to the measure
of space. As a consequence, in this section we introduce and study the
concept of defect of complementarity from global and pointwise viewpoint.
Also, for various classes of fuzzy measures, this defect of complementarity
is calculated or estimated. Finally, some applications and interpretations
are given.

We recall the definitions of fuzzy measure and of defect of additivity
given in the previous section.

Definition 4.4 (see e.g. Ralescu-Adams [168]) Let X be a set and A be
a o-algebra of subsets of X. A set function g : A — [0, 00) is said to be a
fuzzy measure if the followings hold:

() p(0) =0;
(11) A,B € Aand AC B implies  (A) < p(B).

Let p: A — [0, 00) be a fuzzy measure, where A C P(X) is a o-algebra.
Definition 4.5 The defect of additivity of order n,n € N, n > 2, of the

fuzzy measure p, is given by

2A,'E.A,

an (p) = sup{ " (UA,') - Zﬂ (A;)

Vie{l,..,n},AinA;=0,i#j}.

Now, we can introduce

Definition 4.6 The value
_ sup{|u(X) —pu(A) —p(A9)]: A€ A}
c(p) =
p(X)
where A° = X \ 4, is called defect of complementarity of the fuzzy measure
/,LA
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Similarly, the value

Csup{|p(X) —p(4) —p(A9)]: A€ A}
1 (X)

can be called order of complementarity. Obviously, ¢ (1) =1 — e (y) .

e(p) =1

Remark. A non-monotonic fuzzy measure is a set function which verifies
only the condition (7) in Definition 4.4 (see e.g. Murofushi-Sugeno-Machida
(158], Murofushi-Sugeno [159]). Definition 4.5 and Definition 4.6 can be
considered for non-monotonic fuzzy measures too.

The following properties hold.

Theorem 4.8 Let u,p' : A — [0,00) be fuzzy measures. We have:

(1) 0<e(p) <1

(1) e (p) < 2

(3¢1) c(p) = c(pu°), where pu°® is the dual of p, that is p°(A) = p(X) —
u(A°), A® being the complementary of A;

(iv) c(ap) = c(pn),VYa > 0;

(v) e (u+ 1) < B ore () + Gindeye (1)

Proof. (i) We have
(X)) —p(A) —p(A%)| < pu(X), VA€ A

which proves (7).
() It is immediate by

sup{|u(AUB) —p(A) —pu(B)|: A, Be A, AN B =10}
2 sup{|p(X) —p(4) —p(A%): A€ A}

(74i) We observe that p¢(X) = pu(X). This implies
1 (X) = p (A) = pf (A%)] = | (X) —pu(A) —p(A%)],VAE A

which proves the equality.
(fv) It is obvious that ap is a fuzzy measure for every o > 0, therefore

sup {|ap(X) — ap(A) —ap(A%)|: A€ A} _
ap (X)

c(nm).

¢ (ap) =
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(v) We have

c(p+u)
_osup{l(p+ ) (X) = (p+p)(A) = (p+p) (A°)|: A€ A}
B (B + 1) (X)
< sup {|#(X) — p(4) —p(4°)[: A€ A}
- (r+ ) (X)

L sup A (X) — w'(A) - p(A%)] - A € A}

(p+ ) (X)

_ pX) | £ o
= rmm W ) -

Remark. The inequality (ii) in the previous theorem can be strict. For
example, if X #0, A Be P(X),0 # AC B # X then

A=1{0,A,A°, B, B°, AU B, A°N B, X}
is a o-algebra and the function y : A — [0, 1] defined by
0, ifM=0;
p(M)={ o, it MeA\{D X);
1, if M =X,

is a fuzzy measure, Va € [0,1]. If o € (%, 1) then the defect of complemen-
tarity of p is

¢(u) = sup{|1 - p(4) — (4% : A€ A} = 2a— 1| =20 — 1
and the defect of additivity of order 2 is
az(p) = sup{|lp(AUB)~pu(4)-p(B)|:A,BeAANB =0}
> |u(AUB) - (A) - (B = a

We obtain ¢ () =2a-1<a < %Xﬁ)l.

Example 4.10 If  is an additive measure then ¢ (u) = 0.

Example 4.11  If y is the fuzzy measure which models the total ignorance
(see Dubois-Prade [64], p.128), that is uo : P (X) —= [0,1], o(4) = 0, if
A# X and po(A) =1,if A = X, then c¢(uo) = 1. (Here X is supposed to
have at least two distinct elements).
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Example 4.12 Let A be a o-algebra of subsets of X and m : A — [0, 1]
be of exponential type, i.e. m (AU B) = m(A)m(B) for all A,B€ A AN
B # 0. The mapping p : A — [0, 1] defined by p(4) = 1 —m(A) is a
subadditive fuzzy measure (see Example 4.4). Let us assume that there is
a set A € A such that m (A) > 0. Because

m(X)

pA) = 1= m (4 = 1= o

and

sup {1 (A) + 4 (A9) — u(X) : A € A}
m(X)

= sup{1—m(A)—W+m(X) :AEA}

< sup{l—t—m—i&-}-m(X):tE[O,l]}

2
= (1-vm(X),
we obtain ¢ (p) < —@

= 144/m(X)

Example 4.13 Two remarkable fuzzy measures are the outer measure m*
and the inner measure m, induced by the Lebesgue measure on the interval
la,b] C R (see Example 4.5). We will prove that c(m*) = c¢(m.) = 1.
Because m* is the dual of m, by using Theorem 4.8, (iii) we get the first
equality. We know that there exists A C [a,b] such that m*(A) = b —a
and m,(A) = 0 (see Gelbaum-Olmsted [88], p. 147). Because m*(A) +
m.([a, ] \A) = b — a (see Halmos [99], p. 55), we obtain m, ([a, b]\A) = 0.
Therefore

[m. ([a, 8]) — ma (A4) — mu ([a, B]\A)]
m. ((a, b])

c(ms) > =1,

that is ¢ (m.) = 1.

It is well-known (see Congxin-Minghu [57]) that for a null-additive fuzzy
measure, that is a fuzzy measure p : A4 — [0, +00) such that y (AU B) =
1 (A),YA, B € A with y(B) = 0, we can repeat the classical construction
of completion. We obtain the complete fuzzy measure i : A — [0, +0o0),
where

A={AUN :A€A3Be Asuch that N C B, u(B) =0}
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and
F(AUN) = ps(4).

By completion, the defect of complementarity is preserved. In this sense
we have

Theorem 4.9 If u: A — [0,400) is a null-additive fuzzy measure then
¢ (f) = c¢(p), where [i is the completion of u.

Proof. Let A=AUN € .Z, where A € A and there exists B € A such
that N C B, p(B) = 0. We get

A(A) =H (AN < (A = (49,

Because the completion of a null-additive fuzzy measure is also null-additive
(see Congxin-Minghu [57]), we obtain

i(A) = BN 2 E(ANBY) = (AN B) U (4°N B))
= p(A°N(B°UB)) =pu(4°%).

As a conclusion, i (ﬁ°> = p(A°) . Then

) sup{‘ﬁ(X)—ﬁ(Z)_ﬁ(Zc) Ae A}
o) = (%)
o) () -p(A)Aed)
#(X) 0

In what follows, we will prove that for an important class of fuzzy mea-
sures, the inequality (#¢) in Theorem 4.8 becomes equality.

Definition 4.7 (see e.g. Bertoluzza-Cariolaro [38] or Dubois-Prade [65])
A fuzzy measure p : A — [0, 00) with p(X) = 1is said to be S-decomposable
if there exists a composition law S : [0, 1] x [0,1] — [0, 1] such that

p(AUB)=p(A)Sp(B),VA,BE A, ANB =§.
Theorem 4.10 Let S be a triangular conorm fulfilling
T(z,y)+ S(z,y) =z +y,Vo,y €[0,1],

where T is the triangular norm associated with S. If the fuzzy measure
p: A= [0,00) is S-decomposable then ¢ (p) = ay (1) .
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Proof. We will prove only the inequality ¢ (¢) > a3 (1) because the con-
verse inequality is given by Theorem 4.8, ().

Let A,B € A, AN B = 0. By using the hypothesis and the inclusion
B C A°, we get

lu (AU B) — p(A) = p(B)| = |u(A) Sp (B) — u(A) — p(B)]

= p(A)Tu(B) < p(A)Tu(A%) = p(A) + p(A%) — p(A) Su (A°%)
lu(A) +pu(A°) - 1].

This implies

sup{|u(AUB) —u(A) —u(B)|: A, BEAANB =}
< sup{lu(A) + 4 (4) — 1]: A€ A)

therefore as (p) < c(p). a

Remark. We mention that in Frank [78] was proved that the family
{(Ts,Ss) : s € [0,00]}, where the triangular conorms S, are given by

max(z,y), if s =0;
r+y—zy, if s = 1;
Ss(z,y) = { min(z + y, 1), if s = oo;

1 - log, (1+§—‘1-¥1—‘11) its€(0,1)U(l,o0)

and their so-called ordinal sums are the unique pairs of triangular conorms
and associated triangular norms fulfilling T'(z,y) + S(z,y) = ¢+ y,Vz,y €
[0,1]. In fact, the above mentioned family contains the most important
triangular conorms (and implicitly the triangular norms), namely Sy and

Seo -

In what follows, we deal with the calculation or the estimation of defect
of complementarity for some classes of fuzzy measures. The first class is
that of A-additive fuzzy measures. We recall

Definition 4.8 (see e.g. Grabisch [94] or Kruse [126]) Let A € (=1, 00),
A # 0, be areal number and A be a g-algebra on the set X. A fuzzy measure
u with p(X) = 1 is called A-additive if, whenever A, B€ 4, ANB =10,

#(AU B) = p(A) + p(B) + Au(4) pu(B).
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We denote by ¢y (¢) the defect of complementarity of a A-additive fuzzy
measure p.

Theorem 4.11 If p is a A-additive fuzzy measure, then

2
1—-vVA+1
CA(M)SL—*-—)~
Al
Proof. The A-additivity of p implies p (A¢) = %(i}), VA € A.
Then

1—p(4)
X) = p (A) — 1 (A%)] = M| (A) e (A%) = |A| o (4) — P2
i (X) = 1 (A) = p (A%)| = [A 1 (A) p (A%) = |A] e ( )1+Ap(A)

for every A € A. Because the function A : [0, 4 (X)] — R defined by h(t) =

= t1=L is increasing on |0, 1= | decreasing on |1=Y1EX 1| and
[ESY Y g oy

2
() - L g

2
cup {1 () — () — (4] s A € 4 < ) LEVEEN
that is ¢y (u) < l_ﬁﬁ 2. a

Remarks. 1) If A — 0 then ¢y (¢) — 0, in concordance with the fact that
for A = 0, the A-measures are additive.
2) The inequality given by the previous theorem becomes equality in

some situations. Indeed, we know (see Theorem 4.2 or Wierzchon [222])
m(4)

that 4 : A — [0,1] defined by p(4) = w, where A € (=1,0) U
(0,00) is a A-additive fuzzy measure if m is a classical finite measure on
A. If we consider m the induced Lebesgue measure on the interval X =

[@,8],a < b and A = [a, 2£2] then

(X) = p(A) = p(A°)]
n(X)

N

[¥)

that is ¢y (1) = Q—L\#L
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3) The inequality proved by Theorem 4.11 gives only an estimation of
the defect of complementarity. The effective values of the A-additive fuzzy
measure affect the value of the indicator. So, if X = {z1,x5, 3} and the
A-additive fuzzy measures p, p' : P (X) — [0, 1] are given as in the below
table, then A =1 < 2 = ) and nevertheless ¢y (g) > ea (1) .

Al zy | 22 3 | x1,23 | To,x3 | T1, 23 || c(p)
2 (100 |12 13|12 |1 173 || 1/6
@120 [1/10]3/4]1/10 |1 3/4 || 3/20

In Theorem 4.5, starting from a functional equation classes of fuzzy mea-
sures are obtained. In what follows, for some of them we give estimations
of their defect of complementarity.

Theorem 4.12 If y: A —[0,00) is the fuzzy measure defined by u (A)
= Am?(A),YA € A, where m is a finite measure, then c(u) < 1, VX €
(0,00).

Proof. Let A€ A. Because u is superadditive, we have
|1 (A) + 1 (A°) = p (X)| = p(X) = p(A) — p (A9

= Am%(X) — Am®(4) — A (m(X) — m(A))?
= A (=2m?(4) + 2m(X)m(A4)) = 22m(4) (m(X) — m(A))

m?(X) _ p(X)
S Ry ="
Therefore
_supflu(X) —p(A) —p(A9)]: A€ A} ]
c(w) = #(X) =3 -

Remark. Reasoning as in Remark 2) after Theorem 4.11, if m is the
induced Lebesgue measure on X = [a,b],a < b then ¢ (u) = %, where p is
given by Theorem 4.12.

Theorem 4.13 Ifp: A— [0,00) is the fuzzy measure defined by
p(4) = M%%‘{—ll VA € A, where m is a finite measure and X > 0, then

n (A= + 1)

WS R
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Proof. Firstly, we observe that p is subadditive, VA € (0, 00). Indeed,
((A )M 1) ((A +1)H® 1) > 0,¥A € (0, 00) implies

In ((/\ + 1)#(A) + (A + 1)#(3) _ 1)

n(AUB) = In(A+1)
In [(A +1)H@ (A 4 1)“(’3)]
< mOF D =p(A)+up(B),
for every A,B € A, AN B = 0. We have
(X)) —p(A) =A%) = p(A)+p(4%)—p(X)=
I OmA)+1)Am(X) = am(4)+1)
_ Am(X)+1
- In(A+1) ’

for every A € A. Because the function A : [0, m(X)] — R defined by
h(t) = (M + 1) (Am(X) — At +1)

2

c(y) = sup {|1 (X) — u(A) — p(A°%)|: A€ A}
u(X)

In (A28 41)
T (%) 1)

2
has the maximum equal to ()\ﬂzﬁ- + 1) obtained for t = 2 we get

- 1,VA>0.

Remark. If A — 0 then ¢ (p) — 0, where y is given by Theorem 4.13.

The defect of complementarity (see Definition 4.6) and the order of
complementarity (after Definition 4.6) are global indicators. Because they
do not take into account the values of measure on every set, it is possible
to obtain the same value of indicators for two different fuzzy measures, in
contradiction with our intuition. In this sense let us consider the following
example.

Example 4.14 Let A C P(X) be a c-algebra of subsets of X, M €
AM#OM#X and p: A — [0,1] a (additive) measure with p (X) = 1.
The set function & : A — [0, 1] defined by

aay={ 0 if ACMor AC M
U= w(4), ifA¢ Mand A ¢ M
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is a fuzzy measure. Indeed, p (@) = 0, and if A, B € A, A C B, then the
following situations are possible:

(1) (AZ€ M and A€ M°) and (B € M and B ¢ M®) which implies
B(A) = p(A) <p(B)=g(B);

(2) (ACMor ACM®) and (BEZ M and B € M®) implies g (A) =
0<u(B)=7(B);

3) (ACMor AC M°) and (BC M or BC M°) implies g(A) =0 =
B(B);

The defect of complementarity of fuzzy measure @I is equal to 1 because
¢ (7) = sup {|1 — i (A) = F(4%)] : A € A} = |1 = 71 (M) — i (M) = 1

The fuzzy measure 1z above constructed has the same defect of complemen-
tarity with the fuzzy measure pg (on .A) which models the total ignorance
(see Example 4.11). But the set function T restricted to

B={AcA:A¢ M and AZ M}

is additive (that is A, A° € Bimplies @ (A)+E (A°) = # (X)) while the fuzzy
measure pp can be considered as a peak of non-complementarity because

0 (A) + o (A) # po (X) VA€ A, A# 0 and A # X.

Motivated by the previous discussion, in what follows we introduce an
indicator of complementarity that take into account every value p (X) —
p(A) — p(A°),A € A, where p: A — [0,+00) is a fuzzy measure. We
will prove that a cardinality of a convenient fuzzy set is a good indicator of
complementarity in this sense.

Firstly, let us introduce a natural relation between fuzzy measures with
respect to complementarity.

Definition 4.9 Let pi,p9 : A = [0,+00) be fuzzy measures. We say
that pa is more defective than p; (we write gy < p2) if the inequality

11 (X) = pa(A) = m(A°)] _ |p2(X) — pa(A) — pa(A%)]
p1(X) B pa2(X)
holds for every A € A.We say that po is strictly more defective than p;

(we write py < p2) if g9 < po and there is A € A such that the previous
inequality is strict.

Example 4.15 With the notations in Example 4.14, p < 7 and 7z < o
(f{AeA:AZ M and AZ M°} # {X}).
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Now, let X be a set and let us denote by FS(X) the family of all fuzzy
sets on X, that is FS(X) = {Z‘Z X = [0,1] }

Suggested by the relations < and <, for every fuzzy measure
p o A — [0,+00) we consider the fuzzy set C,, : A — [0, 1] defined as

5 oy _ B(X) — p(A4) — p(4°)]
Cu () u(X) |
Various definitions of the cardinalities of fuzzy sets have been proposed
by several authors (Dubois-Prade [66], De Luca-Termini [138], Ralescu
[169], Wygralak [225], [224], Zadeh [230], etc.) in the finite case, especially.
The sigma-count Ralescu [169] (or the power, De Luca-Termini [138])

o — countA = ZZ (x3),

i=1

the FGCount Blanchard [40], ‘Z | : N — [0, 1] defined as
\A" (n) = sup {a s cardAy > n} :

and the fuzzy cardinality (Zadeh [230]) NZ” : N — [0, 1] defined as
Hg“ (n) = sup {a s cardAy = n},

where ,:fa = {:c e X: g(a:) > a},Va € (0,1], are cardinalities of the

fuzzy set A€ FS(X),X = {x,...,z,} that take into account every value
A (x;),7 € {1,...,n}. Among these, the sigma-count is a scalar cardinality
which is convenient for our purpose.

In the sequel, X is considered finite, X = {z;,...,z,}.

Definition4.10 Let p : A — [0, 00) be a fuzzy measure, where A C P(X)
is a o-algebra. The value

Xp)=0c- counté’u
1s called the X-defect of complementarity of fuzzy measure p.
Remark. Between the defect of complementarity ¢ and the pointwise

defect of complementarity ¥ does not exist effective connections. So, if
X = {1, 29,23} and p1, po are given as in the below table, then ¢ (u1) <



Defect of Complementarity 159

¢ (p2) and X (p1) < Z (p2). On the other hand, ¢ (u3) < ¢ (p2) and  (p3) >
% (p2) for the A-additive fuzzy measures p13 and g2 defined as in the below
table (for A = 1, everywhere).

z1 Ty T3 1,29 | To,x3 | 1,23 || c(p) | T(p)

w1 || 0 /2 1 1/3 | 1/2 1 1/3 1/6 | 2/3

a2 || 2/5 | 2/5 | 1749 | 24/25 | 21/49 | 21/49 || 6/35 | 888/1225
ps || 1/511/411/3 | 1/2 2/3 3/5 1/6 | 9/10

According to the above definition we obtain the following properties.

Theorem 4.14  Let p,p' : A — [0,00) be fuzzy measures. Then
(1) 0< % (1) < (cardA — 2) ¢ (u)
(%) If p is additive then T (p) = 0,
(t71) X (1) = Z (p°), where u° is the dual of p;
(i) % (o) = % (4) Yo > 0 |
(v) (1 + ) < Sty S () + ity S (W) 5
(vi) If p 2 ' then T () <X ()5
(vit) If p < p' then T (p) < T (p').

Proof. (i) The obvious inequality C, (A) <c(p),vA € Aand
G (0) = Tl (X) = 0 irmplies % (1) = - pe 4o (4) < (card A — 2 (1)

(#¢) It is obvious.
(¢3i) Because u° (X) = p(X) and

I (X) = p(A) — p°(A%)) = |p(X) — p(A) — p(A9)],VA € A

we obtain Ce (4) = C,, (A) ,VA € A.

(2v) It is obvious that apu is a fuzzy measure for every a > 0.

Slan) = 3 Caua)= Y lE) Z o) — aplD)
AeA AcA ap ( )
= > Cu(A)=Z(p).
AcA
(v) We have
G () = LEHB) 0 = (54 1) (4) = (u ) (4%

(1 + p) (X)
< [u(X) = u(4) - p(49)] I1(X) = W (A) — p'(A%)]
- B+ p)(X) (p+u')(X)
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#(X)
(1 + 1) (X)
VA € A, which implies the inequality.
(vi) We obtain C, (4) < C,/ (4),YA € A. By using the monotonicity
of the cardinality (see Dubois-Prade [66]) we get ¥ (1) < X (i) .
(viz) It is immediate. O

(X) éu’ (A) )

~ MI
G+ T (@)

Example 4.16 The maximum value of the pointwise defect of comple-
mentarity X (see (¢) in the previous theorem) is attained for the fuzzy
measure which models the total ignorance (see Example 4.11), that is
¥ (o) = gcardx _ o

Now, in what follows, we present a theoretical application of the defect of
complementarity (see Definition 4.6) to the estimation of Choquet integral
on the entire space X, if we know its values on the sets A and A°.

Let g : A — [0, 1] be a A-additive fuzzy measure (see Definition 4.8). If

X — [0,400) is bounded and .4-measurable, then the Choquet integral

f:
} (see Choquet [55]) is given by
v(4) = /Afd,u=/ooou({m €A:f(z)>a})da

M
= [Tutrea:f@zapda
where M =sup {f () : € X}. We obtain
v (X) = v (4) = v (4%)]

M
N[ nleea:f@)2ahude e A £(2) 2 ad)da

MM p(A) p(A%) = M | (X) — p(A) = p (A%
M'C,\ (u))

IAIA A

for every A € A, that is ¢(v) < M -¢x(u). As a consequence, if we
know the values of the Choquet’s integrals fAfd,u and fAcfdu, then we

can approximate the value of the Choquet’s integral [ x fdu, by using the
obvious estimation

s

<M-ex(p).
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The same idea can be applied to other families of fuzzy measures too,
like the S-decomposable fuzzy measures p (see Definition 4.7), such that the
function F : [0,1] — R defined by F(z) = S(z,y) — « — y, is nondecreasing
as function of z,Vy € [0,1].

In Murofushi-Sugeno-Machida [158], Murofushi-Sugeno [156], a concrete
interpretation of fuzzy measures was proposed as follows.

Let X be the set of workers in a workshop and suppose that they produce
the same products. A group A may have various ways to work: various
combinations of joint work and divided work. But let us suppose that a
group A works in the most efficient way. Let p(A) be the number of the
products made by A in one hour. Then yu is a measure of the productivity
of group. By the definition of p, the following statements are natural:

p(0)=0

and
A C B implies pu (4) < u (B),

that is p is a fuzzy measure. It is obvious that y 1s not necessarily addi-
tive. Let A and B be disjoint subsets of X and let us consider the pro-
ductivity of the coupled group AU B. If A and B separately work, then
p(AUB) = p(A)+p (B) . But, since in general, they interact each to other,
equality may not necessarily hold. The inequality 4 (AU B) > p (A)+u (B)
shows the effective cooperation of the members of AU B and the converse
inequality ¢ (AU B) < u (A)+ u (B) shows the incompatibility between the
groups A and B.

Now, we will give an interpretation of the defect of complementarity in
the sense of the above interpretation.

If A C X is fixed, then the number |p (X) — p (A) — p (A°)| expresses
the difference between the number of products made in one hour by the
entire group X and the number of products made in one hour by the
workers in X if they work separately in two disjoint groups A and A€
(in the situation of the effective cooperation of members of X) and vicev-
ersa (in the situation of the incompatibility of common work). The value
sup {Ju (X) — p(A) — p(A°)|: A€ P(X)} is the maximum variation (in
number of products on one hour) if the work is organized in all possible
2-partitions of X (i.e. X divided into two disjoint parts) in comparison
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with the common work. This means that

[ (X)-(1—c(p), n(X) - (1 +c(p))]

is the interval of the possible values of number of products made in one
hour if the entire group of workers X is divided into two disjoint parts.

In connection with the above interpretation, a concrete example of Cho-
quet integral is given in Murofushi-Sugeno [159]:

Let X = {z1,...,z,}. On day, each worker z; works f (z;) hours from
the opening hour. Without loss of generality, we can assume that
f(z1) < ...< f(zpn). Then, we have for i € {2,...,n},

f(zi) — f(zi-1) 20
and

i) = f () + (f (x2) = f(21)) + oo 4+ (f (25) = f(@i-1))

Now, let us aggregate the working hours of all the workers in the following
way. First, the group X with n workers works f (z1) hours, next the group
X\ {z1} = {x2,...,zn} works f (x2) — f(z1) hours, then the group X \
{z1, 22} = {3, ..., s} works f (z3) — f (z2) hours,..., the last worker {z,}
works f(zn) — f(2n—1) hours. Because a group A C X produces the
amount x4 (A) in one hour (see the above interpretation of fuzzy measure),
the total number of products obtained by the workers is expressed by

f () p(X)
+(f (z2) — f(z1)) - p (X \ {z1})
+ (f (z3) = f (z2)) - (X \ {21, 22})

= /de;t,

where f (zo) = 0. Therefore, if p describes the number of the products
obtained in one hour by subgroups of X, and f describes the number of
work hours of every worker, then the Choquet integral [ x fdp represents
the total number of products obtained by workers in one day.
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Now, if A C X then TAfdu and fAcfd,u represent the total number
of products obtained by the workers in A and A° on one day, respectively.
Then, the value

7deu -/ du= [ gan

expresses the maximum growth or the maximum diminution (in number
of products) of the production in one day, if the work is organized in all
possible 2-partitions of X. If y is a A-additive fuzzy measure, then by using
the previous results of estimation for Choquet integral, we obtain

P(u,f)=sup{ :AEP(X)}

P(p,f) S M-ex(p) = f(zn) cx(p).

At the end of this section we propose a simple numerical example.

Let us consider a group of workers, X = {z1, 22,23, %4, 25}, and the
following table that indicates the number of products obtained in one hour
by the subgroups of X.

{z1} 17 | {=zs5} 6

{z2} 26 | {z1,z5} 23
{.’L‘l,:CQ} 44 {.’L'Q,IC5} 32
{z3} 22 | {z1, 23,25} 51
{r1, 23} 40 | {z3,z5} 28
{z2, 23} 49 | {zy, 23,25} 46
{Z'l,l‘z,fca} 68 {1‘2,.’153,1?5} 56
{z4} 21 | {z1,22,z3,25} 75
{:L‘l,fl?4} 39 {134,1‘5} 28
{z2, 24} 48 | {z1,%4,25} 46
{r1, 22,24} 67 | {z2, 24,25} 55
{I’3,124} 44 {$1,£2,$4,£L‘5} 74
{z1, 3,24} 63 | {zs3, 24,25} 51
{xa,z3, x4} 72 | {z1,®3, 24,25} 70
{$1,$2,$3,w4} 93 {$2,$3,$4,$5} 80

In fact, the above table defines a fuzzy measure p : P (X) — [0,00). If
£ (X) = 100 then g : P (X) — [0,1] defined as u’ (4) = 24 vA € P (X)
is a normalized fuzzy measure.

The A-additive fuzzy measures are probably the most important fuzzy
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measures. As a consequence, several methods have been developed for A-
additive fuzzy measures identification (see e.g. Lee-Leekwang [134], Sekita
[192], Wierzchon [222]). The value A corresponding to fuzzy measure u’
is equal with 0.2359 in Wierzchon [222], (and 0.2363 or 0.2351 in Lee-
Leekwang [134]). By using Theorem 4.11, we have cp 2350 (#') < 0.0529.
By the interpretation of the defect of complementarity, this means that
without other calculus we can say that for every division of the workers in
X into two separate parts, the number of products obtained in one hour
will belong to the interval [94.71,105.29). In fact, the effective value of the
defect of complementarity is

c(p) =1—p ({22, 24}) — o' ({z1,23,25}) = 0.06

and the real interval is [94,106] (see the same interpretation).
Finally, let us assume that the worker z; works f (2;) hours from the
opening hour, according to the following table

L1 Lo I3 T4 Is

4 6 7 8 8

By using the above interpretations and the estimation given for Choquet
integral (with M = 8 and cgp a3se (') = 0.06) we get that the maximum
growth or the maximum diminution of the number of products obtained in
one day, is smaller than 48 if we consider all 2-partitions of X, in comparison
with the common work.

4.3 Defect of Monotonicity

The main characteristics of a measure (in the classical sense) are the addi-
tivity and monotonicity. These characteristics are very effective and conve-
nient, but often too inflexible or too rigid in applications. As a solution, the
fuzzy measure introduced in Sugeno [204] (the additivity is omitted remain-
ing the monotonicity), non-monotonic fuzzy measure in Murofushi-Sugeno-
Machida [158], or equivalently, signed fuzzy measure in Murofushi-Sugeno
[159] (the set function which vanishes on the empty set) and T-measure
studied in Butnariu-Klement [50], [52] (the fuzzy set function is T-additive,
but not necessarily monotone, T being a triangular norm) were proposed.
Consequently, appears as natural the following question: how can be evalu-
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ated the absence of additivity of fuzzy measures and the absence of mono-
tonicity of signed fuzzy measures and T-measures? An answer to the first
part of this question was given by introducing and studying the concept of
defect of additivity for a fuzzy measure (see Section 4.1).

In this section we give an answer to the second part of question, by
introducing the concept of defect of monotonicity for set functions (partic-
ularly, for signed fuzzy measures) and for fuzzy set functions (particularly,
for T-measures). For various concrete fuzzy measures and T-measures, this
defect 1s calculated. We also use the defect of monotonicity to estimate the
quantity of best approximation of a non-monotonic set function by mono-
tonic set functions.

Definition 4.11  (see Murofushi-Sugeno [159]) Let X be a non-empty set
and v: P (X) > R.

(i) The set function v is said to be additive if for every pair of disjoint
subsets A and B of X, v(AUB) =v(A)+v(B).

(#t) The set function v is said to be monotone if for every pair of subsets
Aand Bof X, ACB

v(A) <v(B)

or for every pair of subsets A and B of X, AC B

v(A) > v (B)

(iiz’) A measure on X is a non-negative additive set function defined on
P(X).

(1v) A signed measure on X is an additive set function defined on P (X).

(v) A fuzzy measure on X is a monotone set function defined on P (X)
which vanishes on the empty set.

(vi) A signed fuzzy measure is a set function defined on P (X) which
vanishes on the empty set.

If v is a set function, then we can introduce a quantity which ”measures”
the deviation of v from monotonicity.

Definition 4.12 Let v : P(X) — R be a set function. The defect of

monotonicity of v is given by

daron () = 3 5up (1w (41) = v (A)] + o (42) ~ v (A)] — o (41) = » (A2)]
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AI)A)AZEP(X)aAl QAQAQ}

Remarks. 1) The quantity dpon (v) was suggested by the definition of
the so-called modulus of non-monotenicity of function f on [a, b] defined by

B8 = 5 5w 1S (21) = £ (&) 4 1f (22) = £ (2)] = 1 (1) = £ (@)1

Z1,T,Z2 € [a,b],a:l§x§w2,|x1—x2|§6},6>0,

introduced and used by Sendov in approximation theory (see e.g. Sendov
[193]).
2) If we denote

di (v) = sup{v(4)—v(Ai1);41,4, AP (X),v(d)<v(4)<v(4
dy(v) = sup{v(A)—v(A:2);A1, A, A eP(X),v(A1)<v(4d)<v(4
dz3(v) = sup{v(41)—v(A4);A41, 4,4, eP(X),v(4) <v(4) <v(4
da(v) = sup{v(4z)—v(4);A1, A, A eP(X),v(4) <v(4) <v(4

then the above definition can be rewritten as
dyon (v) = max{d; (v),ds (v),d3(v),ds(v)}

which is an useful expression for calculation or estimation of the defect of
monotonicity. Also, it justifies the constant % in the definition of defect of
monotonicity.

Theorem 4.15 The set function v : P (X) — R is monotone if and only
ZfdMON (l/) =0.

Proof. Suppose that v is for example increasing, that is A C B implies
v(A) <v(B). If Ay C A C A, then we get

v (A1) — v (A)] + [v (A2) — v (4)] - [v (A1) — v (42)] = 0,

which obviously implies dypron (v) = 0.
Conversely, let us suppose that dyron (v) = 0. It follows that for all
A A Ay €P(X),AL CAC Ay we have

v (A1) = v (A)[ + v (A2) — v (A)] = [v (A1) — v (A2)| = 0.
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Now, let us assume that v is non-monotone on P (X), that is there exist
A1 C AC Ay C X such that

v (A1) <v(A) and v (A) > v (A4z)
or
v (A1) > v (A) and v (4) < v (Asg).
In both cases, we get
v (A1) — v (A)| + v (A2) = v (A)] = v (A1) — v (A2)]| > 0
which contradicts dyron (v) = 0. The theorem is proved a
Example 4.17 If v is a measure or a fuzzy measure, then dyron (v) = 0.

Other important properties of the defect of monotonicity are given by
the following

Theorem 4.16 Let v : P (X) = R be a set function. We have:

(7) 0 < dyon (v) < 2sup{lv(4)|;A€ P (X)}. If v is non-negative
then 0 < dpon (v) <sup{v(A);A e P(X)}.

(#9) dymon (o) = ja|dmon (v),Va € R, where (av) (A) = av(A4),
VA€ P (X).

(m) dyon (I/B) < dmon (l/), where vg (A) =v (A N B) VA eP (X),
is the induced set function on B € P (X).

(v) If v is an additive set function then dpon (v) < a2 (|v|), where
WI(4) = v (A)], A € P(X).

(v) If v is a signed fuzzy measure then dyon (v) = dyon (V°), where
v¢ is the dual of v, that is v° (A) = v (X) — v (A°) VA € P (X).

Proof. (i) By Remark 2 before Theorem 4.15, the results are immediate.
(1)

dymon (av) = %sup {lav (A1) — av (A)| + |av (As) — av (4)]

—|av (A1) —av (Az)|; A1, A, A2 € P (X), A1 CAC A} = |a| dyron (V).

(747) Because A1 C AC Ay C X impliess AsNB C ANB C AsNB C X,
for every B € P (X), we get

dyson (va) = 5 5up {lva (A1) = v (4)| + s (Az) = v (4)]
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—IVB (Al) — VB (Az)l;Al,A,AQ (S p(X) , Ay - A - Az}

< —sup{|¥ (A1 NB) —v(ANB)|+|v(A2NB) —v (AN B)|

[

—lv(A1NnB)-v(A2NB)|;AANBCANBCANBCX}

N —

< 5sup {[v(B1) = v (B)| + v (B2) — v (B)| = |v(B1) — v (B2)l;

By1,B,B; €P(X),B1C BC By} =duon (v)-

(2v) Because A C B implies AN (B\ A) =) and AU (B\ A) = B, we
obtain v (B) —v(A) = v(B\A). Let Aj,A Az € P(X),41 C AC Aj.
Because (A\ A1)U(A2\ A) = A\ A1 and (A\ A1) N{Ay\ 4A) = 0, we get
v (A1) = v (A)| + v (A2) — v (A)] = [v (A1) — v (42)]

lv (AN A)| + v (A2 \ A)| — v (A2\ 41)]
< sup{[p (A + v (B)| - v (AUB)||;A,BEeP(X),ANB =0}
= az(v])

and passing to supremum with A1, 4, A2 € P (X),A; C A C A, we have
dymon (v) < az (|v]).

(v) We notice that A; C A C Az is equivalent to A C A° C AS. We
have

dyron (%) = g sub {Iv* (A1) = v* (4)] + ° (4a) = v* (4)]
— V% (A1) — V% (Az)]; A1, A, Ay € P (X), A1 C A C Ay)
= 5 sup v (45) = v (A%)| + I (45) — v (49) = I (45) - v (45)];
AT A% A5 € P (X)), A5 C A° C A5}

= 5 oup {lv (B2) ~ v (B)] + v (B1) — v (B)] = v (B2) — v (Bu)]
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Bl,B,BQE'P(X),Bl ngBz}:dMON(V).

The following result gives a method of calculation for the defect of mono-
tonicity of signed fuzzy measures. Also, it proves that the second inequality
in Theorem 4.16, (t), can become equality.

Theorem 4.17 Ifv:P(X) — Ry is a non-negative signed fuzzy mea-
sure such that v(X) =0, then

dyon (v) =sup{v(A); A€ P(X)}.
Proof. Taking @ = A; C A C As = X, we have
v (A1) = v (A)| + v (A2) — v (A)] = v (A1) — v (42)] = 2v (4),

which implies dyron (v) > sup{v (A); A € P(X)}. The converse inequal-
ity is also true (see Theorem 4.16, (7)), therefore

dymon (V) =sup{v(4); A€ P(X)}. -

If X is finite, then to any signed fuzzy measure v : P (X) — R, another
set function m : P(X) — R can be associated by (see e.g. Fujimoto-
Murofushi [79], [80])

m(4)= 3 (1)) (B) VA€ P (X),
BCA

where cardM denotes the number of elements of M. This correspondence
proves to be one-to-one, since conversely

v(A)= > m(B),VA€P(X),

BCA
and it is called Mobius inversion (see also Fujimoto-Murofushi [79], [80]).

Theorem 4.18 Let m and v (as above) be connected by a Mobius inver-
ston. If v is additive then

dyon (m) =max{|lv ({z})|;z € X}.

Proof. The set function corresponding to additive set function v is given
by (see Fujimoto-Murofushi [80]) m (A) = v (A), if cardA = 1 and m (A) =
0, otherwise. The expression

E (A1, 4, A3) = [m (A1) = m(A)] + [m (A2) — m (A)] — [m (A1) — m (42)],
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where 4) C A C Ay C X, is non-null if and only if A; = §§,cardA =1
and cardA, > 1. Indeed, if cardA; > 1 then m (A;) = m(A) = m(A43) =
0 which implies E (4;,A4, A2) = 0. If cardA; = 1 then cardA = 1 or
cardA > 1. The first variant implies A = A; therefore £ (A1, A, A2) = 0
and the second variant implies cardAs > 1, therefore m (A) = m(Az) =
0 and the same conclusion. The last case is Ay = 0. If A = @ then
E (A1, A, A2) = 0. If cardA > 1 then cardA; > 1, which implies m (A) =
m (Az) = 0 and therefore E (A;, A, Az) = 0. Finally, if cardA = 1 then
we have two possibilities: cardAs = 1 which implies m (A) = m (A4;2) and
E (A1, A, A3) = 0 or cardAs > 1 which implies £ (41, A4, As) = 2|v (A)].
As a conclusion, we get

dyon (m) == sup 2 v (A)] = max{|v ({z})];z € X}.
2<:a7'dA=1

O

The concept of k-order additivity is important in fuzzy measure the-

ory. A signed fuzzy measure v is said to be k-order additive if its Mobius

transform m (A) = 0, for any A such that cardA > k and there exists

at least one subset A of X of exactly k elements such that m(A4) # 0

(see e.g. Grabisch-Roubens [95]). Because m (X) = 0, the calculus of the

defect of monotonicity for positive Mobius transforms of k-order additive

fuzzy measures, it is a very easy task by using Theorem 4.17. In fact,
dyon (m) =max{m(A); A€ P(X),cardA <k}.

Example 4.18 If X = {a,b,c,d}and v : P (X) — R is defined by v (#) =
0;v({a}) =v({8}) =2, v({ch) = v({d}) = L, v ({b,d}) = 3; v ({a,b}) =
V({a,d}) = 4 v ({b,e}) = » ({e,d}) = 5 v ({a,c}) = 6 v ({o,b,d}) = T,
v({a,b,c}) = v({a,c,d}) = v({b,c,d}) = 10; v ({a,b,c,d}) = 15, then
we obtaln its Mobius transform m : P (X) —» R, m(0) = 0; m({a}) =
m({e}) = m({a,c}) = m({b,e}) = m({e,d}) = % m({8}) = m({d}) =
m({a,b)) = m({a,d}) = m({b,d}) = 1; m({a,b,c}) = m ({ab,d}) =
m({a,c,d}) = m({b,e,d}) = m({a,b,c,d}) = 0, and therefore v is a
2-order additive fuzzy measure. By using Theorem 4.17 and the above
remark, we have dyron (m) = max{1,2} = 2.

Now, we consider the problem of approximation of a non-monotonic set
function by monotonic set functions. In this sense, let us define

S ={v:P(X) > R;v is bounded}
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and
M ={m:P(X) — R;m is monotone and bounded} .
In addition, let us introduce d: § x & = R by
d(v1,v2) = sup {[vy (4) —v2 (4)[; A€ P (X)}

which is a metric on §.
A natural question is to estimate the quantity of best approximation

Eumon (v) = inf {d (v, m) ;m € M}
by using the defect of monotonicity.
Theorem 4.19 For any v € S we have

duon (v)
5

Proof. For Ay CAC Ay C X and m € M we obtain

lv (A1) — v (A)]| + v (A2) — v (A)| — v (A1) — v (42)]
= v (A1) - m(41) - (v(4) - m(A4)) + m (A1) —m(4)
+|v (A2) — m (A2) — (v (4) — m (4))
+m (Az2) — m(4)] - |v (A1) — v (A2)]
(v —m) (A1) — (v —m) (A)| + |(v — m) (A2) — (v — m) (A)]
+[m (A1) = m (A)| + |m (A2) — m (A)| = [m (A1) — m (42)]
+|m (A1) —m(A2)] = |v (A1) — v (A2)].

Epon (v) >

IA

But
Im (A1) — m (A)] + [m (A2) — m (A)| — |m (A1) —m (A2)| =0
and

Im (A1) — m(A2)| = v (A1) — v (42)[ < | [m (A1) — m (42)]

— v (A1) = v (A2)] | < |(m = v) (A1) = (m —v) (42)],
which immediately implies

v (A1) — v (A)] + v (A2) — v (A)] = v (A1) — v (A2)[ < 6d (v, m) .
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Passing to supremum with A; C A C Ay C X, we get
dyon (v) < 6d(v,m),Ym e M,

and passing to infimum with m € M, we get the theorem. ]

Let us denote by FS(X {A A X — [0,1] } the family of fuzzy set
on a nonempty set X. A fuzzy set function ¥ : FS(X) - R (or7: A — R,
where A is a family of fuzzy sets on X) is called increasing if A C B implies
v (A) <v (E) and decreasing if A C B implies 7 (ﬁ) >v (E), where C

denotes the usual inclusion between fuzzy sets:
A C Bif and only if A (z) < < B(z),Vz € X.

If ¥ is increasing or decreasing then U is called monotone.

For fuzzy set functions, the concept of defect of monotonicity can be
introduced as in Definition 4.12 with respect to the above defined inclu-
sion. Also, the basic properties given by Theorem 4.15, Theorem 4.16,

(3) , (i) , (idd) (with (AnB)( ) =min (4 (2), B (« )) ¥z € X), (v) (with
A° € FS(X) the usual complementation of A defined by . AC (z) = 1—

( ), ¥z € X, and the set X replaced by the fuzzy set X X( y=1,Vz e
X) remain true.

The most important fuzzy set functious are the so-called T-measures

(see e.g. Butnariu-Klement [50], [52]).

Definition 4.13 A mapping ¥ : FS(X) — R is called a T-measure if the
following properties are satisfied:

(i) 7 (6) =0, where fi(z) = 0,Vz € X,
(ii) For all A, B € FS(X) we have I (ﬁ Np 5) +v (ﬁ Us 5) =v (ﬁ) +

7(B).
(73t) For each non-decreasing sequence (Avn) N in FS(X) with
ne

(ﬁn) N Ve A we have limy, ooV (ﬁn) =v (Av),

ne

where T' is a triangular norm (that is a function 7" : [0, 1] x [0, 1} — [0, 1],
commutative, associative, increasing in each component and T (z,1) =

z,Ve €[0,1]), 5 :[0,1]x[0,1] = [0, 1] given by S (z,y) = 1-T (1 — z,1 - y),
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Vz,y € [0,1] is the triangular conorm associated with 7" and

(ZmT B’) () T (A’(x) ,E(x)) Ve eo,1],
(Aus B) () = s(ﬁ(x),é(z)) e e0,1].

Example 4.19 If T'= Ty, that is T (z,y) = max{z+y— 1,0),Yz,y €
[0, 1], then every non-negative T -measure v is increasing (see e.g. Butnariu

[49]), therefore dpron (7) = 0.

Example 4.20 If T is a measurable triangular norm, S its associated
conorm such that T (z,y) + S (z,y) = z + y,Ve,y € [0,1], P a finite mea-
sure on P (X) such that P(X) > 0, then ¥ : FS(X) — R defined by
v (;f) = fX AdP is a finite T -measure (see Klement [118]) which is obvi-

ous monotone, therefore dpron (V) = 0.

Example 4.21 Let m : P (X) — [0, 1] be a probability measure and let
us consider ¥ : FS(X) — Ry defined by ¥ (A) =[x (A A2>dm where

[ is the Lebesgue integral. Then 7 is a finite Th-measure (TM (z,y) =
min (z, y) Ve,y € [0 1]) with the defect of monoton1c1ty equal to . Indeed,

taking Ac FS(X), (0 = A1 CAcC Az X we obtain (as in Theorem 4.17)

daron (7) = sup {/X (A-2%)am e FS(X)} - %.

Let us note that there exist some practical fields where the monotonicity
of set functions is not necessary, cases when the defect introduced in the
present section could be useful, as for example, in decision problem (see
Fujimoto-Murofushi [79]) or subjective evaluations (see Kwon-Sugeno (131],
Onisawa-Sugeno-Nishiwaki-Kawai-Harima [161], Tanaka-Sugeno [211]).

4.4 Defect of Subadditivity and of Superadditivity

In general, the defect of a property characterized by an equality is easy to
be introduced. In the previous section the defect of a property given by an
inequality (the monotonicity) was introduced and studied, but in the theory
of set functions there exist other concepts too characterized by inequalities.
Let us recall some of them.
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Definition 4.14 (see e.g. Dennenberg [62], Grabisch [96]) Let X be a
nonempty set and A C P (X) a o-algebra. A set function v : A — R is
called
() subadditive, if
v(AUB)<v(A)+v(B),YA,BeE A, ANB =10
(¢7) superadditive, if
v(AUB)>v(A)+v(B),YA,Be A AN B =0;
(7¢¢) submodular, if
v(AUB)+v(ANB)<v(A)+v(B),YA, B € A;
(iv) supermodular, if
v(AUB)+v(ANB)>v(A)+v(B),VA Be€ A4;

(v) k-monotone (k > 2), if

k
V(UA,) + Y } 1) (ﬂA) > 0,VA1, ..., Ak € A;
=1 k

PAIC{L,..., i€l

(vi) k-alternating (k > 2), if

k

v (ﬂAi) + Y pHl (UA ) <0,VAL, ..., Ak € A.
i=1 0£IC{1,..., k} iel

Remark. In fact, 2-monotone set functions are supermodular, while 2-

alternating set functions are submodular. Also, submodularity implies sub-

additivity and supermodularity implies superadditivity.

In this section we consider set function » such that v (§) = 0, that is v
is a signed fuzzy measure (see Murofushi-Sugeno [159]) or a non-monotonic
fuzzy measure (see Murofushi-Sugeno-Machida [158]).

Definition 4.15 Let v : A — R,v(#) = 0, where A C P(X) is a o-
algebra. The defect of subadditivity of order n,n > 2, of v is given by

dg"gB(V) = sup{ (UA) Z Ai); A € A,

i=1
AiNA;j=0,i#j,i,j=T1n}
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and the defect of superadditivity of order n,n > 2, of v is given by

n n
dgnr}P( = sup {ZV (Ai) —v (UAi) ;A € A,
i=1 i=1

A,’ﬂAj :ﬂ,i;éj,i,j:l,_n}.

Similarly, the defect of countable subadditivity of v is given by

dsyp (v) = SUP{ (UA) Z )AEA

i=1
AiNnAj=0,1#j,1,j € N}

and the defect of countable superadditivity of v is given by

dsyp(v) = sup {ZV (Ai) —v (UAi> Ai € A,
i=1 i=1

The main properties of the above defined defects are the following.

Theorem 4.20 (i) 0 < dSUB( Y<ap{v),0< dg"(}P (v) < an(v),
Vn € N,n > 2, where a, (v) is the defect of additivity of order n of v;

(#) 0 < d§yp (¥) < 800 (v),0 < d§yp (¥) < a0 (v), where aco (v) s
the countable defect of additivity of v;

(¢12) If v is subadditive or countable subadditive then d‘(gngp (¥) = an (v)
or d%y g (V) = ae (), respectively;

(2v) If v is superadditive or countable superadditive then dg«n[}B (v} =
an (V) or d3yp (V) = aw (v), respectively;

(v) dspp (v) < d§yfy (v) d§p (v) < difp) (v) ¥n € N > 2,

(i) d(sn(}B (v) = 0 if and only if v is subadditive; d(an)P (v) =0 if and
only if v is superadditive; d3y; g (v) = 0 if and only if v is countable subad-
ditive; dZy; p (v) = 0 if and only if v is countable superadditive,

(vid) d§p (v) < diyp) (v) + d§p (v) and dYp (v) < dyp) (v) +
d3) s (v), VneN,n > 3.

(vitd) d§p (v) < (n = 1) dGy 5 (v) and dp (v) < (0= 1) 5 p (),
VneN,n > 3.
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Proof. (i), (i5) Taking A; = B,Vi = 1,n or Vi € N, respectively, we
obtain

v (OAZ) = iy (Az) =v (GAl) = Zl/ (A,) =

which implies the non-negativity of all defects in Definition 4.15. Because

v (191,4,.) - gv (Ai) (UA ) Z )l (4.7)

i=1

and

(4.8)

Zl/ (A,) bl 74 (UA,) S

n n
v (UA,-) = v(4)
i=1 i=1 i=1
for all A; € A,i = I n (the inequalities being also true in the countable
case) we obtain the upper estimations of defects.
(#7¢) If v is subadditive then the inequality (4.8) becomes equality for
all A; € A,i = 1,n and passing to supremum we have d( sop (W) = an (v).
The countable case is similar.
(iv) Analogously with (iéi) by using (4.7).
(v ) It is immediate by taking An41 = 0 in the definition of d{4/a (v)
and d; SU P)( ), respectively.
(vi) By (v), d%), (v) = 0 and d)p» (v) = 0 if and only if d2, (v) =
0 and ngL),P (v) = 0, respectively. But the first equality is true if and
only if v(AUB) < v(A) +v(B),YA,B € A, AN B = §, that is if v is
subadditive. Also, the second equality is true if and only if » (AU B) >
v(A)+v(B),VA,B € A, AN B = 0, that is if v is superadditive. The
countable case is immediate.

(vid) If {41, ..., An} C A is a disjoint family, then | .~ '4; and A, are

disjoint sets, such that
n n n—1
I/(UA,‘) = v (A) (UA) (UA) — v (An)
i=1 i=1 i=1

n—1 n-1
’ (Um) S ) < a0+ o)
1=1 i=1

Passing to supremum we obtain the desired inequality. For the defect of
superadditivity the proof is similar.
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(vzzz From (vii), by recurrence, we obtain dg[}B (v) < d(%B (v) +

)
4505 (v), afterwards i (v) < dsyp () + d5y.p (v) < 3dsirp (1),
d5hp (V) < d§lp (W) + d) 5 (v) < 4dS)p (v) and finally d§y)p (v) <
(n-1) dgzt)JB {(v) . For the defect of superadditivity the proof is similar. O
Example 4.22 Because the outer measure p* induced by a measure p is

countable subadditive and the inner measure ., induced by a measure pu is
countable superadditive (see Halmos [99], p.60), we have

d(an)B (n") = dgn(])P (1s) = d5yp (1) = d5yp (1) =0

and

an (1*) >dfqnt}3 (Bx) = an (ps),
oo (K7) , A5y B (Hx) = aco (1a) -

d5dp (1)
dgoUP (1*)

I

Remark. If the set function is subadditive or superadditive, then the
calculus of defects of subadditivity and superadditivity is not interesting:
they are 0 or equal to the value of the defect of additivity. Of course, when
we calculate the defect of subadditivity of a set function v (assumed non-
subadditive, non-superadditive) are important the situations v (| J_, A:) >
Yo v (4;). Also, the situations v (|J;_; Ai) < Y. ,v (A;) are important
when we calculate the defect of superadditivity.

We recall (see Theorem 4.5) that if B is a function such that B (0) =0
and f :[0,00) = [0,00), f (2) = B (x) + az is strictly increasing and ¢ is
given by ¢ (2,y) = B(z +y) — B(z) — B(y), then v, (4) = (f om) (A)
(where m is a classical finite measure) is a fuzzy measure which satisfies
the functional equation

Vo (AUB) = vy (A) + vy (A) + o (m(A),m(B)),  (4.9)

for every A, Be A, ANB = 0.
For set functions given by relation (4.9) we can prove the following
result.

Theorem 4.21 We have

4% 5 (ve) < (n—V)sup {p (z,9) ;2,9 € m (A)}

and

4 p (vp) < — (n—1)inf {p (z,) ;z,y € m (A)},
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where m (A) = {y € R;3A € A such that m (A) = y} .
Proof. We obtain

vy (AU B) — v, (A) — vy (A) = p (m(A) ,m (B))

<sup{p(z,9);z,y € m(A)},
for every A, B € A, AN B = ), therefore

A5 p (vy) <sup {p(2,9) 2,y € m(A)}.

By using property (viii), Theorem 4.20, we get the desired inequality.
Also,

Ve (A) —vp (A) — v (AU B) = —p(m (A) ,m (B))

<sup{—¢(z,y);2,y € m(A)} = —inf{p(z,y);2,y e m(A)},
for every A,B € 4, AN B = . As above, we get the second inequality. O

Example 4.23 If the function ¢ is non-negative (or non-positive), then
the calculus of the defect of subadditivity or superadditivity is not inter-
esting (see the above remark) for the set function given by relation (4.9).
Choosing, for example,

— _ [ Ve, ifz<4
f(x)_B(z)_{xz—m, if z > 4,
we get
p(¢,y) = B(z+y)—B(z)— By
VeEty—VE—y, ife+y<4
(x+y)2—\/5—\/37, fet+y>4,2<4y<4
= q 2’ +2y -z, ifet+y>dz<dy>4
¥> + 22y — /Y, fot+y>4,2>4y<4
2zy, ifz>4,y>4

which has positive and negative values. Considering the classical measure
m : P (X) — Ry defined by m (4) = |A|, where |-| denotes the cardinality
of Aand X = {z1,...,2,},n > 4, we obtain v, : P (X) = Ry by

VIAL if |A] <4

yy,(A):f(m(A))={ |47 — 14, if |A] > 4.
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Because

inf {o (m (4),m(B)); ¢ (m(4A),m(B))<0,ANB=0}=2-2V2

we have
d(SZgP (vp) = 2v2 -2,
Also,
dShp(ve) = sup{p(m(4),m(B));p(m(A),m(B))>0,ANB =0}

n2
= max{60,8n— 14, [7] } .

In what follows, we introduce defects for other properties given by Def-
inition 4.14.

Definition 4.16 Let v : A - R,v () = 0, where A C P (X) is a o-
algebra. The defect of k-monotonicity of v is given by

dk—MON (I/) = sup { Z (—1)”|+1 14 (ﬂA,)
}

OAIC{1,... k iel

k
—v <UA,-> S AL,y Ax € A}
i=1

and the defect of k-alternation of v is given by

dk-arLt (V) = SUP{ Z lIl (UA)
k}

P£IC{1,..., i€l

k
+y (ﬂA,-) j A1 ., Ar € A} :
i=1

Ifk =2,dys_mon (v) = dsupprmop (v) is called defect of supermodularity
and da_arr (v) = dsupmop (v) is called defect of submodularity.

Immediate properties of the above defects are the followings.

Theorem 4.22 (i) de—pon (v) > 0 and di—pron (v) = 0 if and only if
v is k-monotone;
(i3) de—art (¥) > 0 and dx— a1 (v) = 0 tf and only if v is k-alternating;
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(#3t) di—mon (V) = di—arr (v°), where v° is the dual of v, that is
ve(A) = v(X) - v(A°%),VA € 4;

Proof. (i), (ii) Taking A; = 0,Vi = 1,k we obtain v (();c;4i) = 0
and v (U;erAi) = 0,VI C {1,...,k} which implies di_pon (v) > 0 and

dk—ALT (l/) 2 0
We have di_pon (V) = 0 if and only if

5 erme(p) (U =

PAIC{1,..., iel

for every Ay, ..., Ax € A, if and only if

SRR

P£IC{1,..., iel

for every Ai,..., Ar € A, that is if and only if v is k-monotone. The proof
is similar for k-alternation.

Ve (ﬂAi) =v(X)—v (UAf)
i€l iel

Ve (UA,-) =v(X)-v (ﬂAf) ,
iel i€l

for every Ai,...,Ax € A and 1 C {1,...,k}, we get
k
BAIC{1,.. k } i€l i=1

> (=t (V (X)-v (ﬂAf)) +v(X)-v (UA;)
P£IC{1,...,k} i€l i=1

vix) > )+ )M+ (ﬂAc)
k}

O£IC{1,.. .k} P£IC{1,..., il

k
X)—v (UA:) :

(i77) Because

and

It
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for every Ay, ..., Ay € A. Because 3 g 1c(y }(_1)|I| =-1,Yk € N, we

-----

obtain
k
O#£IC{1,..., k} i€l i=1
k
= 3 i+ (ﬂA ) —v (UA;-’) :
O£IC{L,..., } iel i=1
for every Ay, ..., Ax € A which implies dx_pon (v) = dk—arr (V). O

4.5 Defect of Measurability

Let (X, p) be a bounded metric space and let us denote
CLX)={ACX;X\A€T,},

where 7, is the topology generated by the metric p. Let ¢ : 7, > Ry be a
measure on 7,, that is

(1) ¢ (B) = 0;

(#6) A,B €7T,, AC B implies ¢ (A) < ¢ (B);

(#17) p (AUB) = ¢ (A)+¢(B),VA,BE€ T,,ANB=0and ¢ (AUB) <
¢ (A) +¢(B),YA,BeT,.

Let us define : CL(X) — Ry by

P(A) =diam (X) —p (X \ A4),VA € CL(X),
where diam(X) =sup{p(z,y);z,y € X}, and ¢*, 0. : P(X) > Ry by
pu (A) =sup {§(F); F € CL(X),F C A},
which is called inner p-measure of A, and
¢" (4) = inf {¢ (G);G € T, AC G},
which is called exterior p-measure of A.

Definition 4.17 Keeping the above notations and assumptions, we say
that A € P (X) is ¢-measurable if ¢* (4) = ¢, (A). The quantity

duas (A) = ¢" (A) — ¢ (4)

is called defect of p-measurability of A.
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We present.

Theorem 4.23 (i) 0 < dpras (A) <@ (X),VAEP(X) anddpas (A) =
0 if and only if A 1s p-measurable;

(i?) damas (A) =dpas (Ac) ,VAEP (X),

(uz) daras (AU B) <dpmas (A) 4+ dpmas (B) + P (A U B),
VA, BeP(X);

(fv) Let T be the one to one transformation of the entire real line into
itself, defined by T (z) = az+ 3, where o and B are real numbers and o # 0.
If for every bounded A C R we denote T' (A) = {ax + 3;x € A}, then

dmas (T (A)) = |eldmas (A) .

(Here p s the usual metric on the real line, induced on A and T (A) and
©* (A), p« (A), denote the outer and inner Lebesgue measures, respectively

).
Proof. (i) Because ¢* (A) > ¢.(A) > 0,YA € P(X) and ¢* (X) =
¢ (X), the first part is immediate. The second part is obvious.
(i7) We have
e (X\A) = sup{p(F);F€CL(X),FC X\ A)
— sup{diam (X) = p (X \ F); X\ F € T, AC X \ F}
= diam(X) —inf{(X\F); X\ FeT,,ACX\F}
= diam(X) — " (4),VA € P (X),
for every A € P (X), which also implies
©* (X \ A) = diam (X) — p. (A) VA E P (X).
We obtain
dpas (A°) = " (X \ A) — g (X \ A) = 9" (A) — 9. (A) = dpras (4),

for every A € P (X).

(¢17) Because ¢* is subadditive and . satisfies 2p. (AU B) > o, (A) +
¢« (B) we obtain the inequality.

(iv) Tt follows by ¢* (T (4)) = |al¢* (A) and . (T (4)) = lal g, (A)
(see e.g. Halmos [99], p.64). O

Example 4.24 If X = [a,b], p is the usual metric on [a,b] and ¢ is the
Lebesgue measure induced on [a, b], then there exists A C R such that
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ox ([a,0]NA) = 0 and ¢* ([a,b]NA) = ¢(X) = b~ a (see Gelbaum-
Olmsted [88], p.147), which can be considered as a peak of non-additivity.

We recall that an outer measure is a mapping p° : P (X) = Ry which
verifies:

() po (0) =0;

(i1) A C B implies p° (A) < p° (B);

(i) 1 (U An) < T2 047 (An) ¥ (An) e € P (X)

In Measure Theory (see e.g Halmos [99]) an important concept, used in
the Charathéodory’s construction, is that of u°-measurable set, where p°
is an outer measure.

Definition 4.18 We say that a set A € P (X) is p’-measurable if, for
every set T in P (X),

pT)=p* (TNA)+p° (TNAY).

In fact, the subadditivity of u? implies p° (T') < p® (T'N A)+p° (T'N A°).
Also, if p° (T') = +oo then the converse inequality is also verified, such that
we can define the defect of p°-measurability in the following way.

Definition 4.19 Let u° : P(X) — Ry be an outer measure and A €
P (X). The quantity
duo—mas (A) = sup{p® (T'NA)+p° (T'NA) —pu®(T);
TeP(X),p(T) < oo}

is called defect of p°-measurability of A.

It is obvious that d,e_pras (A) = 0 if and only if A is y°-measurable.
Other basic properties of the defect of p°-measurability are given by the
below theorem.

Theorem 4.24 (§) 0 < dyo_pras (A) < dDp (u°) VA € P (X);

(#5) duo_pras (A°) = dyo_pras (A) YA € P (X);

(ZZZ) duO—MAS (A U B) < du"—MAS (A)+dp,°—MAS (B) , VA, BeP (X)
with AN B = 0.

Proof. (i) The first inequality is obvious. Because (TN A)U(T NA°) =T
and (TNA)N(TNA®) =0,VT € P(X), we obtain
p (T NA)+p® (T NA%) = p (T)
< sup {#° (4) + 4 (B) — u° (AUB); A, BE P (X), AN B = 0},
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for every T' € P (X), which implies the desired inequality.
(%) It is immediate.
(¢73) Let A, B,T € P (X). We have

u° (TN (AUB)) +p° (T'N (AU B)) — p° ()

<p’ (TN(AUB)NA)+p° (TN(AUB)NA°)

+u’ (TN(AUB)) = p° (T) < p° (TNA)+p° (TNBN A
+u° (T NA° OB — po (T) = (TnA) ° (T N A°)

—p° (T) + p° (TﬂAcﬂB)+u° (TN A°N B®) — p° (T N A°)
< duo_mas (A) +dyo_nas (B),

and passing to supremum with T € P (X}, p° (T) < 400, we obtain

dyO—MAS (A U B) S du"—MAS (A) + d/t°—MAS (B) .

Example 4.25 If u° (B) = 0 then dyo_mas (B) = 0.

4.6 Bibliographical Remarks

Definition 4.2, Theorems 4.1, 4.3, 4.5-4.7, Examples 4.1-4.9 and applications
in Section 4.1 are from Ban-Gal [24]. Definitions 4.6, 4.9, 4.10, Theorems
4.8-4.14, Examples 4.10-4.14 and applications in Section 4.2 are from Ban-
Gal [25). Definition 4.12, Theorems 4.15-4.19, Examples 4.17, 4.18, 4.20
and 4.21 are in Ban-Gal [26]. Completely new are Definitions 4.15, 4.16,
4.17, 4.19 and the results proved in Section 4.4 and Section 4.5.



Chapter 5

Defect of Property in Real Function
Theory

This chapter discusses various defects of properties in Real Function Theory.

5.1 Defect of Continuity, of Differentiability and of Integrability

In this section we deal with real functions of real variable, f : E — R, E C
R. In order to measure the continuity of f, several well-known quantities
were introduced, as follows.

Definition 5.1 (see e.g. Siretchi [199], p.151, p.165, [200], p.239). Let
f:E > R. For zy € E, the quantity defined by

w (zo; f) = nf {§[f (VN E);V €V (20)},

is called oscillation of f at zq, where V (z¢) denotes the class of all neighbor-
hoods of 2o and 8 {A] = sup {|a; — as|;@1,as € A} represents the diameter
of the set A C R.

For zg limit point of E, the quantity defined by

O(ze; ) =inf {S[f(VNE\{zo})];V €V (z0)}

is called pointed oscillation of f at xg.
For £ > 0, the quantity defined by

w(f;e) g =sup{|f (e1) = f (z2)|; |21 — 22| <, 21,22 € B}
is called modulus of continuity of f on E with step ¢ > 0.

The following results also are well-known.

185
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Theorem 5.1 (see e.qg. Sirefchi [199], p.166, p.15{, [200], p.211, p.239).
(?) f is continuous at zo € F if and only if w (zo; f) = 0;
(i1) f has finite limit at xo € E' if and only if & (zo; f}) = 0. Also

T f(2) ~ lim  (¢) < 3 (a0 f)

and if, in addition, f is bounded on E, then

8 (ao; £) = T f (=) — Jim f (&),
where
lel’;l f(z) =sup{inf f(VNE\{zo});V €V (20)}
and

Tim f(z) =inf{sup f (VN E\ {z0});V € V(20)}.

T—To

(12) f is uniformly continuous on E if and only if inf {w (f;¢) ;¢ > 0} =

Theorem 5.1 suggests us to introduce the following

Definition 5.2 The quantities

dc (f) (zo) = w (z0; f),

diim (f) (zo) = & (20; f)

and

duc (f) (E) = inf {w (f;¢) ;¢ > 0}

can be called defect of continuity of f on g, defect of limit of f on zg and
defect of uniform continuity of f on E| respectively.

Example 5.1 Let f: R — R be given by f(0) =1, f(z) = 0,Vz # 0.

Then de (£) (0) = w (0; F) = 1, dym () (0) = & (0; ) = 0 and due (f) (R) =
1.

Remark. The concepts in Definition 5.1 can be extended to more general
classes of functions. Thus, if (X, 7) is a topological space and (Y, p) is a
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metric space, then for f : X -+ Y,E C X and g € E (or zp € E’ in the
topology T), we can define

w (zo; f) = inf {5, [f (VN E);V € Vr (z0)},

@ (zo; f) = inf {8, [f (V N E\{zo})]; V € V7 (20)},

where &, [A] = sup {p(y1,¥2) ; ¥1,y2 € A}, A CY, and V7 (xo) denotes the
class of all the neighborhoods of £y € X in the topology 7.

Also, if (X, 3) is a metric space and f : X — Y, then we can define the
quantities

w(fie)x =sup{p(f(x1),f(x2));8(z1,22) <e,21,22€ X}

and

inf{w (f;€) x 56 > 0}

Of course that can be defined other quantities too that measure the de-
viation from a property. For example, in the case of property of continuity,
can be introduced the following

Definition 5.3 (see Burgin-Sostak {44], [45]). Let f : X — Y be with
X, Y C R and zg € X. The defect of continuity of f at xy can be defined
by

p(zo; f) = sup {ly — f (z0)|;y is limit point of f (z,) when z, — zo}.

The defect of continuity of f on X is defined by

1 (f)x =sup {p(zo; f) ;20 € X}.

The next theorem presents some properties of the quantities in Defini-
tion 5.3.

Theorem 5.2 (see Burgin-Sostak [44], [45]).
(?) f is continuous on zo if and only if u(zo; f) = 0;
(i7) f is continuous on X if and only if u(f)x =0;
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(i)
| (zo; f) — p(xo;9)l < w(zo; f+9) <plzo; f)+ p(zos9),
|t (zo; f) — p(20;9)] < p(xo; f—g),

pl(zo;—f) = p(zo;f)

and similar inequalities for p (f) 5 hold.

(iv)
i (xo; £+ 9) < p(zo; f) - llglly, + # (xo;9) - 1Fll, »

where ||g||,, = sup {lg (£)|; € Voo }, Ifll,, = sup {|f (})];t € Vio}, Vip is @
neighborhood of zg and f,9 : X —»Y, with X, Y C R..

(v) If we define uy (v0; f) = “E50 uy (£) 5 = 2400, where
M = sup,exf (2) — infoex f (), f : X — Y, then ur (f)x = p(to f)x,
where t (z) = kz, k > 0 fized.

Remarks. 1) It is obvious that p (zo; f) can be defined if f is a mapping
between two metric spaces, 1. e. f: (X, p1) — (Y, p2), 20 € X,

p(zo; f) = sup{p2(y, f(=o));y is limit point of f(z,)
with respect to pz when py (5, o) mye 0} )

For example, if A : R = R. is monotonous on R and satisfies h (z +y) <
h(z)+h(y),Yz,y € R, then h induces on R the metric ps (z,y) = h (|z — y)
and consequently for f: X - Y, X, Y C R, we can consider a different de-
fect of continuity according to the above definition (see Burgin-Sostak [44],
[45]).

2) A natural question is to find the relationships between w (zo; f) and
p(xo; f), and between dyc (f)x and p(f) 5.
In general, they are not equal as the following example shows.
Let f:[-1,1] > Rbedefined by f(z) = -1,z € [-1,0),f(0) =0, f(z) =
L,z € (0,1). We have

w (Oa f) = 27"‘) (f;g)[—l,l] = 2aduc (f) ([_1’ 1]) =2

and

H(O;f) = 1a/1(f)[_1,1] =1
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Now, concerning the differentiability we introduce the following
Definition 5.4 Let f :[a,8] = R and ¢ € {a,5]. The quantity
daiy (f) (z0) =& (z0; F),
where F : [a,b]\ {0} = R is given by F (x) = M is called defect
of differentiability of f on xg.
An immediate consequence of Theorem 5.1 is

Corollary 5.1 (i) f is differentiable on z if and only if daig (f) (x0) = 0.
(#8) If f is locally Lipschitz on zy (i.e. Lipschitz in a neighborhood of
zo) then

daiy (f) (xo) = hrn F(:c) — lim F ().

r—o
Example 5.2 For f (x) = |z|,z € [-1, 1], we have dg;y (f) (0) = 2.
Theorem 5.3 Let f :[a,b] & R and =g € (a,b). If f is locally Lipschitz
on g, then
@ (203 f) < (b— a) dais (f) (o) -

Proof. Let Vy € V(xo) be such that |f (z) — f{y)| < M|z —y|,Vz,y €
VQ. By

fe) = f(wo) = LEZLE) () vee fa,8]\ {20},

r — o

for any V € V (zo),V C W, denoting g (z) = z — z¢ and F as in Definition
5.4, we get

SIf (Vnrla, ]\ {ze)] =6 [(F - g) (V N [a, 8]\ {z0})]

= sup |F (z1) - g (21) — F (z2) - g (z2)|
z1,22€VN[a,b]\{zo}

< v }lF(l’l)| 8lg (VN a, 8]\ {z0})]
+  sup lg (z2)] -6 [F (V N [a, 8] \ {z0})]
z2€VN[a,b]\{zo}
<M-8[VNeb]|+8[V]-§[F(VNlab]\{zc})]
< M-dVQfabll+ (0 —a) d[F(VNeb]\{z})]

= L(V),
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where L : V(zo) — Ry. Obviously, if Vi,Vo € V(zo),V1 C V2 then
L (V1) < L(V2), therefore

Lduf L(V) = inf{nli_{r;oL(Vn) Vi €V (20), Vas1 C Vi,

Vn €N, m?zozl Vo= {:L'o}} »
which immediately implies

@(zos f) = mf{8[f(VNa, b\ {zoD];V €V (x0)}
(b—a) -inf {§[F (VN [a, 8]\ {zo})]; V € V (z0)}
(b — a) daig (f) (20) -

IA

O

In what follows we deal with integrability. Firstly, let us consider the
well-known

Definition 5.5 (see e.g. Siretchi [199], p.311). Let f : [a,b] & R be
bounded. The real number

SUP{SA(f) = Zmi ()@ —zi1);mi ()= inf  f(2),

TE€(xim1,%;5)

A={a=zy<..<z, =b},ne N}

is called the lower Darboux integral of f on [a,b] and it is denoted by
f:f (z)dz. Similarly, the real number

inf{SA (f)= _Zn:Mi (f)(@i—zi1); M (f)= sup  f(x),

TE(Ti-1,T;)

A={a=zy<..<z,=0b},ne N}
is called the upper Darboux integral of f on [a,b] and it is denoted by
Jof (@)dz.
By Definition 5.5 it is natural to introduce

Definition 5.6 Let f :[a,b] = R be bounded. The real number

Yy b
ne (1) (@) = [ F)de= [ ] (2)da

is called defect of integrability of f on [a, d].
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Remark. According to e.g. Siretchi [199], p.314, f is Riemann integrable
on [a,b] if and only if din: (f) ([a,b]) = 0.

Example 5.3 Let f : [0,1] — R be defined by f () = 1, if z is irrational,
f(z) = 0if z is rational. We have [, f (z)dz = 0, f, f (¢)dz = 1, therefore
dine () ([0,1]) = 1.

At the end of this section we present some applications.
Let us denote

Bla,b) = {f:[a,b] & R; f bounded on [a,b]},

Cla,b] = {g:[a,b] = R;g continuous on [a, b]}
and for f € Bla,b] the quantity of best approximation
E.(f) =inf{||f — gl ;9 € C[a, 8]},

where [|f]| = sup {| (t)[;¢ € [a, 8]} .
We present

Theorem 5.4 Let f € Bla,b] be with
Cy ={z € [a,b); 2 is point of discontinuity of f} .
Then

sup {w (z; f);z € Cr}
Ee(f) 2 ; £,

Proof. Let f € Bla,b],z € Cs and V € V(x) be fixed. For any z1, £, €
V Nla,bl and g € C [a, b] we have

If (1) = f=2)l < U (1) —g (@0)| + lg (z1) — g (w2)] + lg (2) — [ (22)]
201f = gll + g (21) — g (z2)],

IA

which implies
S[f(Vnla,b)] <2(f—gll+8lg(VNa0])].
Passing to infimum with V € V (z), it follows
w (@ £) <2 —gll +w (@ 9) = 2|[f —gll.-

Passing now to infimum with ¢ € C[a,b] and then to supremum with
z € C¢, we get the conclusion of theorem. O



192 Defect of Property in Real Function Theory

Let us denote
Lla,b] = {f:[a,b] > R;|Ifll, <+oo},
Cila,b] = {g:][a,b] > R;g is differentiable on [a,b]},

where ||f||, = sup{lﬂ%){-yﬂﬂ‘ 12,y € [a, b,z # y} is the so-called Lips-
chitz norm. If we denote Er (f) = inf {||f —g|l, ;9 € Cila,b]}, we can
present

Theorem 5.5 Let f € L[a,b] be with
Dy = {z € [a,b];  is point of non-differentiability of f}.
Then
EL (f) 2 sup {dai; (f) (z);z € Dy} .

Proof. Let f € L[a,b],z € Dy and V € V (x) be fixed. For any y €
V Nla,b]\ {z} and g € C} [a,b] we have

fW e _ U9 -(-9E) 36 s
y—= y—=z y—=z
< 1lf gl + L 28]

which implies (with the notations F (y) = J‘—’yl'_'—i(ﬂ, G (y) = du=glz))

y—z
S (V 0 [, )\ {=D] < IIf — gl + 66 (V 1 [a, 8]\ {£})].
Passing to infimum with V € V (z), it follows
daig (f) (2) < |If = gllp + dais (9) (2) = |If — gl -

Passing here to infimum with g € C, [e,b] and then to supremum after
x € Dy, we get the desired conclusion. a

Now, let us denote by
Rla,b] = {g : [a,b] = R;g is Riemann integrable on [a, b]}
and for f € B|a, b], we define the quantity of best approximation
Er () =inf {If - gll; 3 € Rla, 8]},

where ||fl|; = inf {Sa (f) — sa (f); A € D[a,b]},D]a,b] being the set of
divisions of [a, b]. We present
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Theorem 5.6 For each f € B|a,b] we have

By (f) 2 dint (£) ([a, b)) -

Proof. For any division A € D [a,b] and for any ¢ € R[a, b] we have

Sa(f)=5a(f—g+9)<Sa(f—9g)+Saly)

and

sa(f—g9)+sa(9) <salf),

which implies

Sa(f)—sa(H)<Sa(f—g9)—sa(f—9)+Sa(g) —salg).

Passing to infimum with A € D [a,b] and denoting by v (A,) the norm of
division A,, we get

ra b
/f(z)dm—/f(x)d:cSinf{SA(f)——SA(f);AE'D[a,b]}

< inf {Sa(f-9)—sa(f—g)+5Sal(y) —saly))}

A€DJa,b]

= inf lim (Sa, (f—g¢) —sa, (f—9)
AL €D[a,b],An4+1CAn,nENL(A,) D"

- — inf —q) — -
+San (9) = sa. (9)) =  nf {Sa(f—9)—sa(f-9)},
because ¢ € Rla,b] implies lim, o (Sa, (9) — sa, (9)) = 0. Passing to
infimum with g € R [a, b] we obtain the desired conclusion. O

5.2 Defect of Monotonicity, of Convexity and of Linearity

If f: E—= R, E CR, isnot, for example, monotone (decreasing or increas-
ing) on E, then a natural question is to introduce a quantity that measures
the ”deviation” of f from monotonicity. Similar questions can be consid-
ered with respect to the property of convexity (concavity) or linearity of f.
In this section we give some answers to these questions.
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Definition 5.7 Let f: EF — R. The quantity
du (F) (E) = sup{[f(z1) = f (2)| +|f (z2) — f (2}
—|f (z1) = f(z2)|; 21,2, 22 € B, 21 <2 < 22}
is called defect of monotonicity of f on E.

Remark. The quantity das (f) (E) was suggested by the definition of the
so-called modulus of non-monotonicity defined for 6 > 0 by

(0 bl = goup{lf (2:)— [ (@) +1] (#2) — ] (2)
—|f (1) = f (z2)]501 S & <@, |21 — @o| < 6},

introduced and used by Sendov in approximation theory (see e.g. Sendov
(194]). '

We have

Theorem 5.7 The function f: E — R is monotone on E if and only if
dy (f) (E) = 0.

Proof. 1If f is monotone (nondecreasing or nonincreasing) on E then it
is immediate dps (f) (E) = 0.

Conversely, let us suppose that das (f) (£) = 0 but f is not monotone
on E. In this case, there exists z; <z < z2 in E,

f(z1) < f(z) and f(z) > f(z2)
or
f(z1) > f(z) and f(z3) > f ().
In both cases it is to see that
If (z1) = f ()| + |f (22) = f(x)| = |f (21) — £ (x2)] > O,
which produces the contradiction d (f) (E) > 0. O

Example 5.4 Let f:[~1,1] 5 R be given by f (z) = |z|. We easy get
dy () ([-1,1]) = 2.
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A natural question is that, given f € B[a, b], where
Bla,b] = {g : [a,b] - R;g is bounded on [a,b]},
to estimate the quantity of best approximation

Epm (f) ([a,b]) = inf{||f —gll;9 € M[a,b]},

where M [a,b] = {g : [a,b] = R; g is monotone on [a,b]} and ||-|| is the uni-
form norm. The following result shows that Enr (f) ([a, b]) cannot be arbi-
trarily small.

Theorem 5.8 For any f € B|a,b] we have
B () (o)) > 2020,
Proof. Forz; <z < zsin [a,b] and g € M [a, b] we obtain
1f (1) = £ @)+ |f (w2) = £ (2)| = |f (21) — £ (22)]
= |fle) —g(z) - (f(2) —g(z)) +9(z1) — g (2)]
+1f (22) — 9 (22) — (f (2) — g (2)) + g (22) — g ()| = | (z1) — f (22)]

< NF=9) (@) = (f —9) @)+ |(f - 9) (z2) = (f — 9) (2}
+1g(x1) — g @)+ g (z2) — g (=)| — g (x1) — g (z2)]
+1g(z1) — g (z2)| = [f (w1) — £ (z2)|.

But
lg (z1) — g ()| + g (z2) — g ()| — |g (1) — g (z2)| =0
and

lg (21) — g (z2)| = If (21) — f (22)] llg (z1) — g (z2) = |f (z1) = F (2)ll

I(f —9) (21) = (f — 9) (z2)1,

IAIA

which immediately implies

|f (1) = F (@) +1f (z2) = F (@) = |f (1) — f (z2)| < B[ — gl

Passing to supremum with ; < z < z3 we get

dm (f) ([a,8]) < 61If —gll,Vg € Ma,b],

and passing to infimum with g € M [a, b] we get the theorem. O
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Passing to convexity, it is well-known that f : [a, 5] = R is called convex
(concave) on [a, b] if

flaz+(1-a)y) < (Z)af(2)+(1-a) f(y),Yae[0,1],z,y € [a,b].
We can introduce the following

Definition 5.8 Let f : [a,] — R be bounded on [a, 4], The quantities
dconc (f) ([a,8]) = sup {K (f) (z) — f(2); 2 € [a, ]}

and
dconv (f) ([a,b]) =sup{f (z) =k (f) (z); z € [a,b]}

are called defect of concavity and of convexity of f on [a,b], respectively,
where K (f) : [a,b] — R is the least concave majorant of f and & (f) :
[a,b] = R is the greatest convex minorant of f on [a, b].

Remark. We have the formulas

K (f) (z) = inf {g (z) ; g concave on [a,b] and f (t) < g(t),Vi € [a,b]},
k(f) () = sup {h (z);h convex on [a,b] and h(t) < f(t),Vt € [a,b]},

(c-2) W) +(y—2)f(2)
y— =z

K(f)(:z:):sup{ ;agzgxgygb,zgéy}

=sup{(l—a)f(y)+af(z);acf0,1],a<z<2<y<b 4y}
(see e.g. Mitjagin-Semenov [151]),
k(f)(z)=-K(=f)(z),2 €[a,b].

Remark. Obviously K (f) is concave on [a, b] and k (f) is convex on [a, b].

Theorem 5.9 Let f € Bla,b]. Then:
(¢) dcone (f) ([a,b]) =0 if and only if f is concave on [a, b];
(77) dconv (f) ([a,b]) = 0 if and only if f is convex on [a, b].
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Proof. (i) Ifdconc (f) ([a,b]) = 0 then it follows f (z) = K (f) (x),Vz €
[a,b], so f is concave on [a,b]. The converse of (7) is obvious.
(#%) The proof is similar. O

Example 5.5 Let f :[0,27] & R be given by f(2) = sinx,z € [0, 27].
Then simple geometrical considerations show that

K (f) (z) = { sinz, ¢ € [0, o)

sinzg + (¢ — zg) cos g, T € [zg, 2],

i

R 7r) of the equation & =tgz + 27 (actually
y = sinzg + (x — xo) cos xo is the equation of the tangent to the graphic of
f (z), that passes through the point (2r,0)).

Denoting now F (x) = K (f) (z)—f (z),z € [0,27], we have F (z) = 0,Vx €
[0, 2] and F’' (z) = 0,z € (xo,2n7) becomes cosz = coszg,z € (&g, 27),
that 1s 2* = 27 — #g is the point of maximum for F' and consequently
deone (f) ([0, 27]) = —27 cos zp.

Similarly we get deconv (f) ([0, 27)) = —27 cos zg.

where zg is the solution in (

Remarks. 1) Let f € B[a,b]. If we introduce the quantities

Econc (f) ([a,b]) = inf {||f — g]|; g is concave on [a, b]}

and

Econv (f) ([a,b]) = inf {||f — g]|; g is convex on [a,d]},

then obviously

Econc (f) ([a,8]) < dconc (f) ([a, b])

and

Econv (f) ([a,0]) < dconv (f) ([a,0]) .

(Here ||-|| denotes again the uniform norm).

2) .Because the property of concavity is dual to that of convexity, the
defect of concavity (convexity) of f on [a,b] can also be considered (in a
sense) as degree of convexity (concavity, respectively) of f.

Different concepts of defects of concavity and convexity in the spirit of
above Remark 2 might be the following.
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Definition 5.9 Let p € N and f : [a,b] — R be such that the derivative
of order p, f(P), exists, Lebesgue measurable and bounded on [a,b] and
[ £®) (2)|dz # 0. The quantities

" f (P) Z’
K () ({a,0) = W
and
b ¢(p)
~(p) a = M

are called degree of convex1ty (or defect of concav1ty) of order p of f on
[a,b], respectively. Here f (.1:) = o) () if f) (z) > 0, f(p (z) = 0
if f® (z) < 0and P (2) = —f®) (2) if F®) (z) < 0, f_”)( z) = 0 if
P (z) > 0.

Remark. It is well-known that a function f : [a,b] — R satisfying
f) (z) > 0 (or < 0) on [a,b], is called convex (concave) of order p.

Theorem 5.10 Let f : [a,b] = R be satisfying the conditions in Defini-
tion 5.9. We have:

(i) K& (£) ([a,8), K (£) ({a,8)) > 0 and K (f) ([a, )
+K@ (f) ([a,B]) = 1.

(i) If f®) () >0, a.e. = € [a,8] then K (£) ([a,8]) = 1, if F©) (z) <
0, a.e. ¢ € [a,b] then K7 (f) {[a,8]) = 1.

(333) Let us suppose, in addition, that f(P) is continuous on [a,b]. Then
f is convex (concave) of order p on [a,b] if and only z'fK_(I_p) (f) ([a,0)) =1
(K% () ([a,b]) = 1, respectively).

Proof. (i) It is immediate by definition.

(¢7) Tt is immediate.

(#4i) Let us suppose Kip) (f) (la, b)) = 1. It follows K& (f) ([a, b]) = 0,
29 (@)dz = 0, £ (z) = 0,Vz € [a,b], that is f?) (z) > 0,Vz € [a,4]. O

Remarks. 1) If p =1 then I&(l) (f) ([a, b)) represents the degree of nonde-
creasing monotonicity (or equlvalently, the defect of nonincreasing mono-
tonicity) and KW (f) ([a, b]) represents the degree of nonincreasing mono-
tonicity (or equivalently, the defect of nondecreasing monotonicity). There-
fore they are, in a way, more refined than those in Definition 5.7, because
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make difference between increasing and decreasing monotonicity. If p = 0
then Kio) (£ ([e, b]) and K (F) ([a, b]) measure the positive and negative
signature of f on [a, b], respectively.

2) Starting from the definition of convex functions, we can introduce
another concept of defect of convexity, by the quantity

conv () ([a,b]) = sup{fPz+(1-Ny) - Af(z)+(1-X)f(®);
Aef0,1],z,y € [a,b]}.

It is not difficult to show that f is convex on [a, b] if and only if

deonv (f) ([a, 8]) = 0.
If, for example, f is strongly concave on [a, b], that is there exists & > 0
such that for all z,y € [a,b] and all A € [0, 1] we have

Ai=-Nea(@z-—y)’ <fRe+(1-2y) - A (2)+(1=-X)F(@),
then

tonv (£) ([ab) > suwp{A(1-Na(e-y)’5e,yeab) e 1}

a(b— a)2
—

3) Somehow related but still different ideas concerning the measurement
of degree of convexity of a real function (of one or of several variables), can

be found in e.g. Roberts-Varberg [174], p. 264 and Crouzeix-Lindberg [59].

At the end of this section we introduce a concept of defect of linearity
for a function f € C?[a,b] = {f : [a,b] = R;3f" continuous on [a, b]}. For
fixed zo € [a, b], let us consider the Taylor’s formula

F@) = o)+ (@ —20) £ (o) + EZD L ooy,

where £ € (a,b). Then

£ @)= (F (20) + (2 = 20) £ (=) = Z 5 17 )

and if we denote || f”|| = sup {|f" (€)|; € € [a, b]}, then for the next quantity,
called defect of linearity of f on [a,b],

drin (f) ([a)b]) = sup{|f (x) - (f (130) + ('Z‘ - 230) f/ ((L‘o))l;x,z‘o € [a,b]},
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we have

2
duan (1) (o, 8) < C52 17711, v7 € € a8,

Obviously f € C?[a, b] is linear if and only if drry (f) ([a,8]) = 0.

5.3 Defect of Equality for Inequalities

In this section we introduce and study two concepts that measure the ”qual-
ity” of an inequality: the absolute defect of equality and the averaged de-
fect of equality. For some remarkable inequalities we calculate and estimate
these defects.

Firstly, we introduce the following.

Definition 5.10 Let L, R be two functions, L : D; -+ R, R: D, — R,
where Dy, Do C R™,n € N, such that

L(z)<R(x),Vee DC DiND,. (5.1)
The absolute defect of equality for (5.1) is defined by
d% (L, R) =sup{R(z) — L (z);z € D}.

If, in addition, D is Lebesgue measurable and L (), R(z) are continuous
on D, then the averaged defect of equality on [—r,7]" for (5.1) is defined
by

_ fDn[—r,r]n (R(z) — L (z))dpn

dp’ (L, R) (r) pn (DO[=r,7T") ’

where [—r,7]" = [-r,7] x ... x [-r, 7] and pu,, is the Lebesgue measure on

L —

n

R”.
Concerning these concepts, we present

Theorem 5.11 (i) If L (z) and R (z) are given by (5.1), then we have:

dy (L+Q,R+Q) = d¥(L,R),
d% (L+Q,R+Q)(r) d¥ (L, R) (r),Vr >0

i
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forany@:D—>R

and
d%® (kL,kR) = kd%®(L,R),
d (kL,kR)(r) = kd¥ (L,R)(r),¥r >0,

for any constant k > 0.
() If D C R*",0 < Li(z) < Ri(z),Vz € D and 0 < Lo (z)
R, (z),Yz € D then

IA

d% (L1La, R1Ro) < d% (L1, Ri) sup Ly (z) + d%¥ (Ls, Ry) sup Ry ()
z€D €D

and

dp (LiLa, RiRz) (r) < dp (L1, Ry) (7) Sung (z)+dy (L2, Ra) (r) SugRl (z)
€ TE

for every r > 0.

(i) d3 (L, ) (r) < d2y_, 1o (L, R).

(iv) A(z) < B(z) < C(z),Vz € D implies d¥ (A, C) > d¥ (B, C) and
dy (A,C) (r) > d¥ (B,C) (r) ,Vr > 0.

Proof. (¢) It is immediate.

(77) We get

dfy (L1 L2, RiRs) = sup {R1 (2) Rz (z) — L1 () L2 ()}

= sup {R (z) (B2 (2) — Ly (2)) + L2 (z) (R1 (2) — Ly (2))}

reD
< supRi(z)sup {Rs(z) — L2 (z)} + supLs (z) sup {Ry (z) — L; (=)}
z€D z€D z€D z€D
= d¥ (L1, Ri)supLy(2) + d¥ (La, Ra) sup R, ().
r€eD zeD

The proof in the case of averaged defect is similar.
(747) We have

R(z)—L(z)<sup{R(z)—L(z);z€ DN[-r,r]"} Yee DN [-r 7",

which implies the inequality.
(#v) It 1s immediate. a
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Remark. While the first two relations in Theorem 5.11, () are obvi-
ous, the last two relations also are natural because by multiplying two real
numbers with the same positive constant, the distance between them one
modifies.

As a possible application of the above introduced concepts, let us con-
sider the following inequalities:

L(z)< Ry (z),Vz € D, (5.2)

L(z) < Ry(x),Vz € D, (5.3)

where D C R™. A natural question is to see which inequality is better in
certain sense. An answer might be given by comparing their defects. For ex-
ample, we can say that (5.2) is better than (5.3) if d% (L, R;) < d% (L, R2).
More general, we can compare two inequalities I; (z) < Ry (z),z € D; and
Ls (2) < Rz (z) ,x € Dy, saying that the first one is better than the second
one if, for example, d‘l‘)”1 (L1, Ry1) < cl"D"2 (L9, R2). Another variant is to say
that (5.2) is better than (5.3) if lim,_,c FER < 1.

For another possible application, let us consider the system of nonlinear
inequalities

Ai(z)<0,ie{1,..,n},c€ DCR", (5.4)

and let us suppose that the system is difficult to be solved. We can drop
this shortcomings by replacing this system with a simpler one

B;(2)<0,ie{l,..,n},z€ D CR" (5.5)

where we have A; (z) < B; (z),Ve € D. Obviously, any solution of (5.5) is
also solution of (5.4). Let us denote by M the set of all solutions of (5.4)
and by M™ the set of all solutions of (5.5).

A natural question is to estimate the distance (of Hausdorff kind, for
example) between M and M*, with respect to the defects d‘l’)” (A;, B;),i €
{1,...,n} or with respect to the defects d§y (Ai, B;)(r),r > 0,i € {1,...,n}.

Example 5.6 We will use the above ideas for the inequalities between
the harmonic mean, geometric mean and arithmetic mean. That is, take

Ly (z,y) = j—_’l”_%,Rl (z,y) = Lz (z,y) = /7y and Ry (z,y) = ZH¥, where
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(z,y) € D = (0,400) x (0, +00). We have

dfy .2 (L2, Ra)

sup{#— Ty, z,y € (O,r]}
= SUP{L\/__Q—\/_y);Z',yE (O,r]} =3

and
1,3
av 7 _ i
d (Lz,Rz)( ) 7”2 18T
because

"z r? rs 1 5

The calculus of d2® (0] (L1, Ry) is not simple. Let us consider the function

fy (0, 7] > R deﬁned by f, (2) = VT - Sy — Z+y, where y is a parameter,
ye (0,7 The solutions of the equation f; (z) = 0 are obtained by solving

\/— = (x+y)2 But this equation is equivalent to (z + y)4 — 16zy® = 0,
that is

(¢ —y) (&® + 52y + 1lzy® —¢°) = 0.

Using the Cardan’s method we get the real solutions of the above equation,

= B ((rea/m) s (m-am)) - Fe ()

Because fy (z) > 0 on (0, 22] U [z1,7] and f; (z) < 0 on (z3,2;) we get

sup {fy (¢);z € (0,7]} = max{fy (r), fy (z2)} .
Let g1 : (0,7] = R be defined by g1 (y) = f, (r) = /r-/T— Z£. As above,
the real solutions of the equation ¢} (y) = 0 are
v =

- 23 ((17+3\/_) (17—3\/3_3)5

=
:
SN’
|
ol g
m
N
Sp
=)=
S
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and g} (y) > 0 on (0,y2), 97 (y) <0 on (ya,r), therefore

2a—5_2a—5
3 a—-11/1"

sup {91 (¥);y € (0, 7]} = g1 (y2) =7 (

where o = (17 + 3v/33) ¥ + (17— 3v33) .
Let g5 : (0,7] — R be defined by g2 (y) = fy (z2) = /T2 - /§ — 2L, We

! T2+y’
obtain

sup {g2 (v) ;¥ € (0, 7]}

_ 2y by 2($a-%)
_sup{ (?a-?)y—m,ye(&ﬂ

_ 2a—5_2a—5
=T 3 a—1 /1"

2a-5
a-1 -
With the above notation, we have

because 4/ % >

2z
d‘('g'r]z (L1, R1) = sup {,/a: - —y;w,y € (O,r]}

r+y

= sup {sup{fy (z);z € (0,7]};y € (0,r]}
= sup {max{fy (z2),fy (r)};y € (0,7]}
= max{sup{fy (¢2);y € (0,7]},{fy (r);¥ € (0,7]}}

_ f fra=5 _2a-5
N 3 a—11]"

where o = (17 + 3v/33)* + (17— 3v/33)° .

Now, we can calculate the averaged defect of equality for the inequality

between harmonic mean and geometric mean.
If p2 is the Lebesgue measure on R? then

/ /(o,r]2 (m - rziyy) A = /0 (/o (W_ Zfryy> dm) v
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2 5 r r T
:gri/ \/ydy—2r/ ydy+2/ y?In(y+r)dy
0 0 0
" 2
—2/0 v’ In(y)dy = (§In4~ -S—) rd

2
dy (L1, R1) (r) = (5 In4— %) r & 0.023r.

and

Because

20—H 2a—-5
det o (Ly, Ry) = ( @ @ )~0135 Z—-d"b]z(Lz,Rz)

3 a—1 2~ (O
av 2ln4-8
for every r > 0 and ZJ;-}EE:;S% — 3 “# 2 8:8?‘;’ < 1,¥r > 0, the

inequality between harmonic mean and geometric mean is better (in the
sense of above application) than the inequality between geometric mean
and arithmetic mean, for both defects of equality (absolute or averaged).

Example 5.7 Let us consider the following particular case of Cauchy-
Buniakowski-Schwarz inequality

(az + by)2 < (a2 + bz) (1:2 + yz) ,Va, bz, y€ R.
We have di‘fr)r](, (L, R) = 4r* and d, (L, R) (r) = 2r*, where L (a,b,2,y) =
(az + by)” and R(a,b,z,y) = (a? + b?) (2% + y?). Indeed,

d{‘_b”r (L, R) = sup {(a2 + b2) (932 + yz) — (az + by)2 ;

a,bz,y€[-r 7]} = 41'4,

obtained fora =b =2 = —y = r and

32r8
) 2 4

(27') 9

re (L, R) (r) =

because

/[_r g ((a2 + b2) (£2 + yz) — (az +by)2) dpa
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= / ]4 (a2y2 + b%2? Qab:cy) dpg
T

= 47"/ Zda/ 2dy+4r/ bzdb/
—2/ ada/ bdb/ xd:c/ ydy

273 14r
= 2.4 2.-—._—2 8 =
T T T
Example 5.8 It is well-known that f : [a,b] = R is called convex on

[a, b] if

(Za,xl> < Za, ),Yea; €[0,1] Zaz =1,Vz; € [a,b].

By a known result (see Cirtoaje [56)) if f is differentiable and strictly convex
on [a, b}, then we can write

d[a b} (L, max{Za, z;) (Za,x,) 2 € {a, b}} ,

for fixed ;. As a particular case, let us consider another special case of
Cauchy-Buniakowski-Schwarz inequality

(z1 + ...-1—:45,1)2 <n(2? + +:L',21) ,Vez; € [a,b],i€{l,...,n},n€N.

We have
2

# LR = || 00,

where L (21, ..., 2n) = (#1 + ... + 22)> and R (21, ..., 22) = n (22 + ... +22).
Indeed, taking f : [a,b] = R, f(z) = 2% and o; = %,Vi € {1,...,n}, from
the above formula we get

2
. "1 *1
d[ab,b]n (L,R) = n? .sup{ E.’L’? - ( ;x,) X € [a,b]}
i=1 i=1
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max{ Z (wi—xj)z;fﬂz’,fvje{aab}}

1<i<j<n

2] e-ar,

the last equality being proved by induction.

il

Example 5.9 The simple inequality

2 2
m;ys\/x ;y Vz,y € [0, +00)

has the absolute defect of equality on [0,7],r € Ry, equal to 3Qr and

the value of averaged defect of equality is gﬁbr, Vr > 0. The first
result is immediate because the maximum of the function f : [0, 7] x [0, 7] —

R, f(z,y) = ﬂ—;ﬁ— %ﬁ is attained for x = 0 and y = r (or y = 0 and
z = r). We prove the second result:

[2 T /2 + 12
// z +y x4y dedy = 1y +rdy
2 0 V2 2

r r y2 T 2
+ —ln r+vyt+r2)d —/~—-———ln dy— [ Zd
/ 9v2 ( y ) ) 0 23 ydy o 4 y

/0’ ydy—2:/_<2;/_ lnr(1+\/_)——ilnr)

(3 (= v8) -5 (-0 - (8-

(F (1-tmr(v2+1) +lnr)> - ﬁ (%—lnr~ ”9;)

L 3=(—1+%§ln<\/§+1)

W

w

7
7

r r
4 4 6
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Finally, we deal with inequalities in Hilbert spaces and in normed spaces.
For example, let us consider the space R? endowed with the usual inner

product (-,-) and norm |||, and let use take the following two inequalities
[z, )| < llzll - lyll , Y, v € R?, (5.6)
lle +yll <llell +lill , Ve, v € R?. (5.7)

If f,9: R? — R satisfy f(z) < g(z),Vz € R?, let us define the defect of
equality by

_ osup{g(z) — f(z);z € B(O;r)}
dr: (f,9) = rllglo areaB (0;7)
In the case of inequality (5.6) we get dr2 (f,g9) = % while for the inequality

(6.7) we get dr= (f,9) = 3}@ (that is, the first inequality is ”better” than
the second one). Indeed,

sup {JJz|| - lyl] — (2, 9)]; 2,y € R*} =

is obtained for z = (r, 0) and y = (0,7) (or @ = (0,r),y = (r,0)) and
sup {[lz]| + llyll ~ lle + yll; 2,y € R?} = 2v/2r?

is obtained for z = (~r,7) and y = (r,—7) (or z = (r,—7) ,y = (—r, 7).

b

5.4 Bibliographical Remarks and Open Problems

The concepts and results in Section 5.3 are in Ban-Gal [30]. Theorems
5.3-5.6, Theorem 5.8, Definitions 5.8, 5.9 and Theorem 5.10 are completely
new.

Open problem 5.1 Characterize the set Y = {f € B[a, b]} such that for
J €Y and Eu (f) ([a,b]) defined in Section 5.2, there exists (uniquely or
not) an element g* € M [a, ], such that Epr (f) ([a,b]) = ||f — ¢*|| -

Open problem 5.2 A central problem in approximation theory is that
of shape preserving approximation by operators. One of the most known
result in this sense is that the Bernstein polynomials preserve the convexity
of order p of f, for any p € N. If, for example, f : [0,1] = R is monotone
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nondecreasing or convex, efc., then the Bernstein polynomials

Nk n—k o[k
_’Z;)Cn:c l-2z)"""f <n>

are monotone nondecreasing, or convex, etc., respectively.

But if f is not, for example, monotone on [0, 1], then it is natural to ask
how much of its degree of monotonicity is preserved by the Bernstein poly-
nomials B, (f) (z). More exactly, it is an open question if there exists a
constant » > 1 (independent of at least n but possibly independent of f
too), such that

dm (Bn (1)) ([0,1]) < rdar () ([0,1]),Vn €N,

where djps is the defect of monotonicity in Definition 5.7.
Similarly, are open questions if there exist constants r,s,¢,u,v > 1 (inde-
pendent of at least n, but possibly independent of f too), such that

dconv (Ba (£)) ([0,1]) < rdcozvv (f)([0,1]),¥n €N,
KO B, () ([0,1) < sk () ([0,1),¥n €N,
K9 (B, (£))(0,1) < tKY(5)(0,1]),¥n €N,

deonv (Ba () ([0,1)) < udgony (F) ([0,1]),Vr €N,

and

drin (Bn (£)) ((0,1]) < vdpin (£)([0,1]),Vn € N.

Open problem 5.3 It is well-known that f : [a,b] & R is called quasi-
convex on [a, b] if

FOz+(1-XNy) <max{f(z),f(v)},Vz,y € [a,b],A €[0,1].
We can define the defect of quasi-convexity of f by the quantity

dacony (1) ([, H) = sup {7 (e + (1= N)y) = max{/ (2). f (1)}
A€ [0,1])3753/6 [aab]}

An open question is the study of this defect for various classes of bounded
functions on [a, b].
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Open problem 5.4 The concept of convexity can be generalized in an
interesting way, as follows.

Let K C R", K be nonempty andlet f : K - Randn: KxKx[0,1] = R.
According to Hanson [100], Yang-Chen [227], the set K is called semi-
invex with respect to 7, if for any u,v € K and any ¢ € [0, 1], we have
u+tn(v,u,t) € K, and f is called semipreinvex with respect to 5, if

Flu+ttn(v,u,t)) < (1 —t) flu)+tf(v),Yu,v e K,t€]0,1]

where lim;_,o t9 (v, u,t) = 0. Similarly, f : K — R is called quasisemiprein-
vex with respect to 5, if

fluttn(v,u,t)) <max{f(u),f(v)}, Yu,v e K,t €[0,1].

In these cases, for f : K = R, where K is a nonempty bounded semi-invex
set with respect to 7, it is natural to introduce the defects of semipreinvexity
and of quasisemipreinvexity by

divv (f) (K) = sup{f(u+tn(v,u,t)) = [(1=1) f (u)+1tf (v)];
te0,1],u,ve K}

and

doinv (f) (K) = sup{f(uv+1tn(v,u,t)) —max{f (u), f(v)};
te[0,1],u,v € K},

respectively.

If 5 (v, u,t) = v — u then we recapture the defects d%,y and dbcony 10
Remark 2 after Theorem 5.10 and in Open Problem 5.3, respectively.

It would be of interest to study the quantities dynvv (f) and dorav (f) for
various classes of bounded functions f and for various choices of 7 (v, u, t).



Chapter 6

Defect of Property in Functional
Analysis

In this chapter we introduce and study various defects of property in func-
tional analysis as, for example: defect of orthogonality, defect of convexity,
of linearity, of balancing of sets, defect of subadditivity (additivity) of func-
tionals and so on.

6.1 Defect of Orthogonality in Real Normed Spaces

In a real normed space (E, |||}, the concept of orthogonality can be stated
in different ways, as follows.

Definition 6.1 Let X, Y C FE. We say that X is orthogonal to Y in the:
(7) a-isosceles sense if

llz — ayll = llz + ayll ¥z € X, ¥y € ¥,

where a € R\ {0} is fixed. We write X 1;Y (see James [107]).
(i?) a-Pythagorean sense if

lle = ayll* = llel|* + o |ly]|* , V= € X, ¥y €Y,

where a € R\ {0} is fixed. We write X Lp Y (see James [107]).
(¢27) Birkhoff sense if

llz]| < |lz+ Ay||, YA€ R,Vz € X,Vy €Y.

We write X Lp Y (see Birkhoff [39]).

211
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(iv) Diminnie-Freese-Andalafte sense if
(1+a®) |lz+ 9> = llaz + o|I* + |z + ag]|* \Vz € X,Vy € Y,

where a € R\ {1} is fixed. We write X Lppa Y (see Diminnie-Freese-
Andalafte [63]).
(v) Kapoor-Prasad sense if

llaz + byl)* + le + 9| = llaz + y|I* + [lo + byl , Vo € X, Vy € Y,

where a,b € (0,1) are fixed. We write X Lgp Y (see Kapoor-Prasad
[113]).

(vi) Singer sense if ||z|| - ||y]| = 0 or

Ve e X,VyeY.

lﬂfll Iyl “ lwll Iyl ”

We write X Lg Y (see Singer [197)).
(vi) usual sense if

(z,y) =0,Vz e X,Vy €Y,

where, in addition, the norm ||-|| is generated by the inner product (-, ).
We write X LY.

Remark. There are other kinds of orthogonality too, see e.g. the papers
of Alonso-Benitez [1], [2], Alonso-Soriano [3], where relationships between
them also are proved.

If X and Y are not orthogonal (in a given sense), it is natural the
question to find out a quantity that ” measures” the deviation of X, Y
from orthogonality.

We answer this question for each concept in Definition 6.1, introducing
and studying the properties of such called defects of orthogonality. Also,
some applications to Fourier series with respect to non-orthogonal systems
and to approximation theory are given at the end of this section.

Corresponding to the concepts of orthogonality in Definition 6.1, we
introduce the following

Definition 6.2 Let (E,]|||) be a real normed space and X, Y C E. We
call defect of orthogonality of X with respect to Y, of:
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(¢) a-isosceles kind, a € R\ {0} fixed, the quantity
dif (Y30 = sup|lle — aul” = flo + ayl].
T
(17) a-Pythagorean kind, a € R\ {0} fixed, the quantity
2
B XYia)= sup ||l +a Joll* - o - aulf’].
Xy
(7i7) Birkhoff kind, the quantity
db(X,¥)=_sup_sup {Jle] ~ llz + ylI*} .
zeX,yEY AeR
(iv) Diminnie-Freese-Andalafte kind, the quantity
dbpa (X,Yia) = sup |(1+a®) fle+il* ~ (llow + oll* + Il +anlf*) |,
zeX,yeY

where a € R\ {1} is fixed.
(v) Kapoor-Prasad kind, the quantity

dip (X,Y;a,b)= sup |llaz+byl* + |z + y)|*

reX,yeY

= (llaz + vll* + llz + b9ll*) |,

where a,b € (0, 1) are fixed.

(vi) Singer kind, the quantity d§ (X,Y) defined by d$ (X,Y) = 0 if
X ={0} or Y = {0} and
2
ds (X,Y) =

el -l
el * Tll Iafll Il

sup
z€X\{0},yeY\{0}

contrariwise.
(vi%) usual kind

dt (X,Y)= sup |[(z,9)],
z€X,yeY

if, in addition, the norm ||-|| is generated by the inner product {-,-) on E.
By the Definitions 6.1 and 6.2, it is immediate the following

Theorem 6.1 X L,Y if and only if d} (X,Y) = 0, where * represents
any kind of orthogonality in Definition 6.1.
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Because it is well-known that in an inner product space, the orthogonal-
ities (1) — (vi) one reduce to (vit) in Definition 6.1, it is natural to see what
happens with the quantities in Definition 6.2 for the case of inner product
spaces. In this sense we present

Theorem 6.2 Let (E,{-,-)) be a real inner product space endowed with
the norm ||z|| = \/{z,z),z € E. We have:

(i) df (X,Y;a) =4|a|-d* (X,Y).

(35) dp (X,Y;a) =2]a] - d* (X,Y).

(i) db (X,Y) =0 if Y = {0} and d§ (X,Y) = sup, e x yer\jor Bl
< sup,ex ||zlf* < (diam (X))* if ¥ # {0}

(iv) d5p, (X,Y;a) =2(a —1)% - dt (X,Y).

(v) dgp (X,Y;a,0) =2(1 —a) (1 = b) -d+ (X,Y).

(vi) d (X,Y) =0 if X = {0} orY = {0} and d} (X,Y) = d* (X', Y"),
where X' = P(X),Y' = P(Y),P(z) = e (i. e. X' and Y’ are the
projections of X and'Y on the unit sphere {u € E;||u|| = 1}).

Proof. (i) We have (u,u) = ||u||*,Vu € E. We get
iz = ayll” = lle + aylf”| = |~4a - 2, 5)| = 4]al - |(z, 5},

which proves df (X,Y;a) =4]a|-d* (X,Y).
(i7) The equality

[zl + o 8ll* = lle = ayll?| = |20 (2,5} = 2ol - (2, v)

proves df (X,Y;a) = 2|a| - d* (X,Y).
(#73) We have

2
ll2ll* ~ llz + Agll” = =A% - (y,9) = 2 - (=, ),

for all A € R. For fixed x € X,y € Y, let us denote f (A) = =A? - (y,y) —
2X - (z,y),A €ER. If y = 0 then f(A) =0,YA € R. Let y € Y\ {0}. The
function f () is concave on R and consequently has its maximum value for

A= —%, that is f (- %) = ﬁé—'%—?, which proves the desired relations

(by using the Cauchy-Schwarz inequality too).
(1v) The equalities

|1+ @) llo+ ol — (llaz + ol + 11z + aal?),
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= (@, v) - (2+ 242 — 4a)| = 2(a — 1)* - (=, 1)|

imply dpp, (X,Y;a) =2(a—1) - d* (X,Y).
(v) Because

laz + byl1” + 1z + ol* = (Jlaz + il” + 1z + bull”)|
= 2 () (@b+1-a= b =2(1-a)(1- 1))

we obtain dgp (X,Y;a,b) =2 (1 —a) (1 - b) - d* (X,Y).

(vi) Simple calculations show
2
:4<L y >_ =,y <4
EIRTT Tlell- Tl

2
X

L Y
llzll Iyl

z Y

_ + .
lzll 1Myl

which implies

ds (X,Y) = 4sup { ”K“ lll|>||| z € X\{0},ye Y\ {0}} =445 (X' Y"),
where X’ and Y’ are the projections of X and Y on the unit sphere

{ue X;llu||=1} (. e« X' = P(X),Y" = P(Y), where P(z) = M)
respectively. The theorem is proved. O

Remark. Theorem 6.2 shows, among others, that in an inner product
space, df (X,Y;a) = 2dp (X,Y;a). But in the general case when (E, ||-||)
is real normed space, between dj and df there is not such of connection,
as the following examples show.

Let us consider E = C[0,1] = {f :[0,1] = R; f continuous on [0, 1]}
endowed with the uniform norm ||f|| = max {|f (z)|;z € [0,1]}. It is well-
known that this norm cannot derived from an inner product. Denoting
0,11 ={f € C[0,1]; f € C[0,1}} let us take m > 0 a constant and

X = {fecC'0,1;f(0)=0,f(1)=2,f (z) >m>0,Yz €[0,1]},
Y = {geC'[0,1;4(0)=1,4(1)=0,-m < g (z) <0,Vxe[0,1]},
U = {feC0,1];f(0)=0,f(1)=1, f(x) > 0, f increasing on [0, 1]},
V = {geCl[0,1];9(0)=1,9(1) =0,g(z) > 0, g decreasing on [0,1]}.

We have df (X,Y;1) =0,dp (X,Y;1) =1 and df (U,V;1) > 1,
dp (U,V;1) = 1. Indeed, let f € X,g € Y. By hypothesis it follows that
f—g and f + g are non-decreasing on [0, 1], which implies ||f+g||
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(FW+g W) =4llf —ali* = (F (1) ~g(1))* = 4 because (f — ) (0) =
—1 and (f — ¢) (1) = 2. Consequently,

1 = gl = 11f +l*| =0,
and df (X,Y;1)= 0. Also, it is immediate
A1+ gll” = 11f = glPP| =+ 1 -4 =1,

which implies df (X,Y;1) = 1. On the other hand, let f € U,g € V. We
have |[7||> = llgll* = 1,|If — gl|* = 1, which implies d (U, V;1) = 1. Then

because

17 = gll* = 117 + gll?| = |1 = 1f +a1P
by choosing f (z) = 2,Yz €[0,1] and g (z) = -3z +1ifz € [0,2] ,g(z) =
~3c+3ifee [%, 1], obviously

I +all =sup{lf () + @ie e 0 2 7 (§) 4 (3) = 3 =15

Therefore ||f + gl > (1.5)> = 2.25 and |1 - ||f+g||2| > 1.25, which im-
mediately implies df (U, V;1) > 1.25 > 1.

The properties of defects in Theorem 6.2 can be used to characterize
the prehilbertian spaces. Thus, we have

Theorem 6.3  Let (E,||-||) be a real normed space. E is an inner product
space if and only if for all X, Y C E we have

dr (X,Y;1) = 2dp (X,Y;1)
and
df (X,Y;-1)=2dp (X,Y;-1).

Proof. Firstly, let us suppose that F is an inner product space. Then,
by Theorem 6.2, (7}, (i), we get

df (X,Y;a) =2d$ (X,Y;a),VX,Y C E,a € R\ {0}.

Choosing a = %1, we obtain the desired condition.
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Conversely, let us suppose that for all X, Y C E, we have
di (X,Y;1)=2d5 (X,Y;1)
and
di (X,Y;-1)=2d5 (X,Y;-1).

Take X = {x},Y = {y} with arbitrary z,y € E. We have two possibilities:
Case 1. [lz + ]| > Iz — il
Case 2. |z 4+ y|| < ||z - y|| -

In the case 1, we get

2 (el + 1811%) = 2 (el + Il = llz = wll®) + 2 1z — ol

IA

2dp (X,Y;1) + 2|z — yl* = df (X,Y;1) +2]je — y]|°
lle =1 = e + 31|+ 2112 — ol = e + P

2 2
=z = gll* +2(le —olI” = ||z + ylf* + [z — yII*.

In the case 2, we get

2 (llall” + Ilyl”) =2 (el + 1Igll” = lle + 917 +2 1z + ]

IA

2dp (X,Y;-1) + 2|lz + 9|l = df (X, Y;=1) +2|je + y||°
e+ 31 = llz = yll*| + 2 1z + wl)” = e — o]®

—{le+yll” + 21z + 9ll” = |z = oll” + [z + oI1*.
As a conclusion
2 (lel? + 11912) < llz+ o> + llz — 9ll* Ve, € E.

According to Schoenberg [190], it follows that E is inner product space,
which proves the theorem. g

Remark. From the proof of Theorem 6.3 it easily follows that (E,||-|]) is
an inner product space if and only if, for all X, Y C E, we have

2dp (X,Y;1) < df (X,Y;1)
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and

2dF (X,Y;-1) < dr (X,Y;-1).

Concerning the defect of orthogonality of Cartesian product we present

Theorem 6.4  Let (Eq,]|.||,), (Ea,||||,) be two real normed linear spaces

and let us introduce on Ey x Ey the norm ||(u1, us)|| = \/||u1||f + ||u2||§,

V(u1,us) € Ey X Ey. Forall X1,Y1 C Ev,X5,Y> C Es, we have
dy (X1 x X2,Yy x Y3) < dif (X1, V1) +df (X2,Y3),

»

for any kind 7 x” of orthogonality in Definition 6.1, excepting Singer or-

thogonality.

Proof. By using the simple properties |z + y| < |#| + |y|, Ve, y € R and
sup {a; + b;;1 € I't <sup{a;;i € I'} +sup {b;;1 € I} we obtain the inequal-
ities. For example, if di is the defect of orthogonality of a-isosceles kind
then we have

df (Xo x Xo,Yix Yiga) = sup - llo = ay|]” = |}o + ay’|
z€X1XX2,y€EY1 XY

= sup “|(x1—ayl,xg—ay2)||2—||(a:1+ay1,x2+ay2)|l2‘
z€X;,y:€Y;,i€{1,2}

2
= swp ey —anll} + =z — g}
7 €Xi,y:€Y5,0€{1,2}

— e + ayill} = llo2 + ags 3]

< sup

T1€X1,y1€YL

|z — aya |} — ||z + ay1||f‘

+ sup
T26X2,y2€Y2

|22 — ayo|ls — ||lz2 + ay2||§l

= d}' (Xl,Yl;a) +d;‘ (XQ,YQ;CL).

The proofs for the other kinds of orthogonality are similar. a
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Remark. In the above theorem, the result for usual kind of orthogonal-
ity is obtained if we consider the inner product on E; x E3 defined by
((u1, u2), (vi,v2)) = (u1,v1); + (uz,vs),, where (-,-), and (-, -), represent
the inner products on E; and FEs, respectively.

In what follows, we present other properties of the defects of orthogo-
nalities.

Theorem 6.5 Let (E,||||) be a real normed space and XY C E. We
have:

(1) df (Y, X;a) = a®df (X,Y;1) ,Va € R\{0}. Also, if X = —X and
Y = —Y (i.e. X andY are symmetric with respect to 0) thendf (X,Y;a) =
Ldf (X17,Y+1;a) ,Va € R\ {0}, where X1' = {ue€ F;u Lz =0,

Ve e X}.

(i) db (Y, X;a) = a2d (X,Y; 1) Va € R\ {0} .

(ifi) d (aX, BY) = a?dk (X,Y),Va, B € R.

(iv) dppa (Y, X;0) = dppa (X,Y;a),Ya € R\ {1}

(v) dgp (Y, X;a,0) = dgp (X,Y;b,a),Va,b € (0,1).

(vi) d3 (X,Y) = d& (Y, X) and d} (oX,B8Y) = d% (X,Y),Vo,8 €
R\ {0}. Also, if X = —X # {0},Y = —Y # {0} and X*5,YLs £ {0}
then we have d§ (X,Y) = d% (X1s,vV1s).

(vii) d* (X,Y) =dt (Y, X) and d* (@ X,8Y) = |a| - |8] - d+ (X,Y).

Proof. (i) The equality

2 2
1
sup 1||y—ax||2—||y+ax||2‘ =a% sup z——y| —lz+ -y
yeY,reX reX,yeY a a
proves df (Y, X;a) = a%df (X,Y; 1
Let us denote
Vi = |le—ayll’ -~ lle +ayl?| 2 € X,y € Y,
Vo = |lla’ = ayl ~ lle +ay/|I*] o € X1y e Y.
By hypothesis we have ||z — az’|| = ||z + az’|| and ||y — a¥/|| = ||y + a¥/||.

Now let us denote z +az' = u,x —az’ =v,y+ay =s,y—ay =t. Weget

x:%(u+v),y:%(s—’rt),z’:%(u—v),y’:%(s—t),

z—ay = (u+v—as—at),

N | =
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1
z4+ay = §(u+v+a5+at),
2 —ay = i(u v) 1(3—t)———(u v — as + at)
V' 7 2 2 " 2a ’
1 1 1
/ / _— _ _ — _ —_— —_ J—
4+ay = 2a(u v)+2(3 t)_2a(u v+as—al),
1
Vi = gllutv—as—atl’ = Jlutv+as+atl,
1
Vo = 1o |lu=v—astat]® — fu—v+as - atlf|
and
di (X,Y;a) = sup {Vl;uEX—f-aX“,

(lall=(1w]1,]1sl1=11¢1]
vEX—aXt seY ta¥Ytitcy —aytr},

d}‘(XJ",YL’;a): sup {Vz;uEX—{-aXJ",
full=llwllsl1=11¢]l

vEX —aX',s€Y +a¥Yt teY —a¥tr}.

By hypothesis it follows that X+’ Y47 and X +aX1/ X —aXL’ YV +
aY 41 Y —aY*’ are symmetric with respect to 0, which immediately implies
the equality.

(31)
d (¥, X;a) = sup |lgl*+a®flall’ - fly - aall’|
yeY,xeX
1 1 2
2 2 2
= a sup — gl + lell” — ll—y—x
s Ll + el “
2
g 1 9 1
= a® sup |l + vl - |z - =y
z€X,y€ a a

= d’dp (X,Y;l> .
a
(1)

a5 (aX,pY) = sup_sup (|lo'l]* |la' + /II)
z'eaX,y'€aY AER
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= sup sup (Jjaaf’ - f[(aw) + X o))
zeX,yeY  eR

2
= o sup sup (|je] —||a:+)\y||2)
zeX,yeY AeR

= oy (X,Y).
(7v) It is a consequence of the symmetry of expression
2 2 2 2
(1+ %) [l +9lf* = (llaz + oll” + llo + asl*)

VYa € R\ {1}.

(v) Because

bz + agll* + 2 + ol = (b2 + ol + lz + oyl

= llay + ball” + lly + oll” ~ (llay + 2ll* + lly + bal*) ¥z € X,y € Y,

we obtain the equality.

2
= _ _y_“ -

2
N RN | B
el Mol “ (=il vl

(vi) The symmetry of the expression

plies the first equality.
If X = {0} or Y = {0} then X = {0} or Y = {0}, therefore

4% (aX,BY) = df (X,Y) = d§ (¥, X) = 0.

If X # {0} and Y # {0} then

' o2 ' ANTE
dJ" aX”BY fd sup _13__+y_ '__ _x__i.
S @XBY) = i v 1T T T T~ T
2 2
_ sup az By jxz By
sex\fo),yeviio) |l llzll ™ 18] [yl | llzll 18] Iyl
2 2
SUPze x\{0},y€Y \{0} “xT“ + ﬁyLH“ - ”1"7“ - WyLIIH , fag>0

2
z_ CA ]
BRI ” , ifaf <0

-l -

SUDgze x\{0},yeY\{0}

= d5(X,Y).
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Now, we prove the second assertion. Let us denote

2 2
T Yy T Yy
i = TERTRRERTINT] ITPRTEERTITE ,.’L'EX,yEY,‘
llz]] |yl llzll Iyl
2 2
z’ y' z’ ! ’ 1 / 1
Va + — EX 5,y eY—=s.
')l Iyl Nzl Nl
xl
By hypothesis we have || rzy + ||z'||H = \[Ter — 1= 2nd “nyn + ‘
”nyn ||y'|||| Denoting [Zy + o = % [y ~ =M 'n = v + ny l =
Yy z = T —
5 Mo — o = twe easily get pIr = 3 (utv), i = 5 (s +0), oy

5 (u— )’Ily:“_z( —1),

Wi

1

7|+ o+t =+ v—s =17,
1

Vo = gllu=vts—tf —llu—v s+,

with {[ul| = |jo||,|s|| = ||t]|. We define P (z) = 75,2 € X and we denote
P(X)={P(z);z € X}. By hypothesis we get that X+s P (X),U (X) =
PX)+P(X*s),V(X)=P(X)—P(X1ts),YLts P(Y),P(Y1s),
UY)=PX)+P(Y*s) and V (V) = P(Y) — P(Y15) are symmetric
with respect to 0, which implies

d% (X,Y) = sup  lutot s+t fluto—s— 4P
[l |=llw11.11s(1=[1¢]]
velU(X),veV(X),seU(Y),teV(Y)}

- sup  fhu—vts =t = Ju~v—s+4P|;
leti=liv L fsti=le

weU(X),veV(X),seU(Y),teV(Y)}
= dz (X', Y*19).

(vit) The property of the inner product (z,y) = (y,z) ,Ve € X,y € Y
implies the first equality. For the second one, we have

d* (aX,pY) = sup  [z',y)| = sup [(az, fy)]
c'eaX,y' epyY zeX,yeY

sup ol |B] - Kz, )| = lef |8] - d* (X, Y) .
r€EX,yeY D
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Remark. If @ = 1 then df (X,Y;1) = df (X*/,Y1;1), that is the
defect of isosceles orthogonality for a = 1 is invariant with respect to the
corresponding orthogonality.

Theorem 6.6 If two real normed spaces (E1,||-||,) and (E3,||||;) are
isomorphic (i.e. there exists a linear bijective mapping f : E; — Ea such
that || f (z)|l, = ||z||, , V& € E1) then

dE (£ (X),F(Y)) = d5 (X,Y),VX,Y C By,

for any kind "¥” of orthogonality in Definition 6.1, excepting usual or-
thogonality. If (Ey,(-,-);) and (Es,(-,),) are isomorphic real inner prod-
uct spaces (i.e. there ezists a linear mapping f : E; — FE» such that
(f(x), F(y))y = (x,9),,Yz,y € E1) then the above equality is also true for
the usual kind of orthogonality.

Proof. We present the proof for Kapoor-Prasad kind of defect of orthog-
onality:

dgp (f(X),f(Y);a,0)

= sup llae + by'|; +|Is” + ¥/I
z'€f(X) Yy ef(Y)

= (llas" + 9/115 + ll2' + By/115)|

= sup \naf ) +bf W3+ 11F (@) + £ W)l3

r€X,yeY
— (laf () + £ I + 1f (=) + b5 (W11

= _sup_|laz +byl} + Jlo + ull; = (llaz + oll? + llo + bl}) |
reX,y€

= dKP(X>Y;a'ab)'

For a-isosceles, a-Pythagorean, Birkhoff, Diminnie-Freese-Andalafte and
Singer kind defect of orthogonality the proof is similar.
For the usual kind of orthogonality we have

LX), F(Y) = sup{l(a’, )]s € F(X) .,y € F(Y)}
sup {|{z,y),|;z € X,ye Y} =d' (X,Y).
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In the final part of this section we present some applications to Fourier
series with respect to non-orthogonal systems and to approximation theory.
An useful concept is the following.

Definition 6.3 Let (E, (-, -)) be a real inner product space and X C E.
We call defect of orthogonality of X, the quantity

d* (X) =sup {|(z, )| ;2,9 € X,z # y} .
Remark. Obviously X is orthogonal system in E if and only if d*+ (X) = 0.
We present,

Theorem 6.7 Let (E (-, )) be a real inner space and X, Y C E with
dt (X)=d*(Y)=0,{(z,z)=1,Vz € X,{y,y) = 1,Yy € Y. We have

dH(X+Y)<142dt(X,Y).
Proof. Forz,z'e€ X,y y €eY,e+y#a' +y, weget

Hz+y.e' +¢) = Ke,2)+(z,¢)+ (=" 9) + (v, v)
< K@)+ Ko v) + K o)l + Ky, vl

We have three possibilities:

Case 1. ¢ # z’,y = y', which implies |(z + y, 2’ + /)| < 1 + 2dt (X, Y);
Case 2. z = 2’,y # v/, which implies {z + y,2' + ¢/)| < 1 + 2d* (X, Y);
Case 3. z # 2',y # ¥/, which implies [(z + y, 2’ + ¢'}| < 2d* (X,Y);

As a conclusion, in all the cases we get [(z + y, 2’ + /)| < 1+2d* (X,Y)
and passing to supremum we obtain the conclusion of theorem. O

Now, let us suppose that X is at most countable,i. e. X = {z1,...,z,, ...}
is finite or countable. For a given x € F\X, we can consider the Fourier
coefficients with respect to X, that is ¢, = (z,zx),k € {1,2,...} and the
Fourier sums with respect to X, s, = Y7 _ ckar,n € {1,2,...}.

If dt (X) = 0 then the theory of the above Fourier sums is well-known.
Then, it is natural to ask what happens if d1 (X) > 0. An answer is given
by

Theorem 6.8 Let (E,(-,-)) be real inner product space and
X ={z1,...,2,} C E with (zk,zr) = 1,Yk € {1,...,n}. Then for any
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z € E the following estimate

lle — sall” — (Iliﬂl\2 -3 Ic1'12> <d (X)) D il el
i=1 i,5=1,i%]

holds.

Proof. It is well-known (see e.g. Muntean [154], p.130) that there exists
exactly one y* €spanX = {a1z1 + ...+ op2n; 21, ..., 2, € X, 00, ..., an € R,
n € N} such that

||z — y*|| = inf {]|z — 2||; = € spanX},

and y* = c1%1 + ... + cp&n, where ¢ = (2, z) , k € {1,...,n}. We have

n n
llz = sall® = [lz -yl = < = _am o Zcm>
i=1 j=1
n n n
2 2 2
= l=l* =D lel*+ D eici (miz) =D leil*
i=1 i1,7=1,n i=1
By
n n n
Zcicj -(xi,:vj)—ZIc?' = Z cicj - (@i, z;)
ij=1 i=1 ii=1,i#;
n
< A0 Y el gl
6,j=1,i#£]
the theorem is proved. O

Corollary 6.1 In the hypothesis of Theorem 6.8, for any © € E we have

ll = snll” — (Hﬂﬂll2 -2 ICil2)

Proof. By lei| = [(z,2:)| < ||z - |lail| = |e]| (because (z;, ;) = ||:]|* =
1, by hypothesis), it follows

<dH(X) - lelf* n(n—1).

7 n n n n
2 2
Z |6i|'|0j|=2 Z les| - lei| < || Z Z 1=|lz]"n(n—-1),
ij=1,i) i=1j=1,j#i i=lj=1,j#i

which together with Theorem 6.8, proves the corollary. a
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Corollary 6.2 If X = {zy,...,2n,...} 1s countable, such that (x;, x;) =
L, i €N, then

(o]

x — E CrpTk

k=1

(nxu —Zlczl) <db (X) - Jjall* - 5

Proof. By hypothesis, ||z;]| = 7, which implies

il
les] < Yl - llzill < =57,

(im) S 1ol saaxw-(g%) g%

i=1 j=1ji

By Theorem 6.8 we get

||x—sn|!—(1|x||2—_21ci|2> )l (Z%) V€ N.

Passing to limit with n — 400, we obtain the corollary. g

Remark. If X is orthonormal then dt (X) = 0 and the inequality in The-
orem 6.8 becomes the well-known equality ||z — s,||* = ||z])* — S el
Also, Corollary 6.1 can easily be framed into the general scheme in Section
1.1. Indeed, for z € E, X = {21, 22, ..., 2, } with (z;,2;) = 1,Vi € {1, ..., n},
let us define

Ao (X) = |z —sall® - (||z“2—2|c,~|2> Ve € E,
i=1
By (u) = [Hx|[2 n(n— 1)} u,Ve € F,
U = Po(E)=AX={21,...,2,} C E;(z;,z;) = 1,Vie {1,...,n}}
and

P = "the property of orthogonality”.
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In what follows we present some applications to the best approximation
theory. Thus, using the idea of Singer in [198], p. 86, we can introduce the
following.

Definition 6.4 Let (E,||-||) be a real normed space, G C E and x € E
be fixed. We say that gg € G is element of best approximation of by
elements by G, with respect to the orthogonality 1., if z —go 1. G, where
L. can be any orthogonality in Definition 6.1.

Remark. If 1, is Lp then by Singer [198], Lemma 1.14, p.85 it follows
that if G is linear subspace of £,z € F\G, then z — gy Lp G if and only if
go 1s element of best approximation of z, in the classical sense.

Theorem 6.9 Let us suppose that G C E is a linear subspace of E and
r € E\G. If there ezists go € G, such that for a given a € R\ {0}, we have
z—go Lp G (ie. if go is element of best approzimation of x with respect
to Lp), then go is element of best approzimation in usual sense (that is,
lz —yoll = mf{l|lz —g]|;9 € G}), © — go Lr 9o (Lr is orthogonality in
Roberts sense (see e.g. Singer [198], p.86)) and ||go|| < ||2]|, ||z — 290]| =
lizll -
Proof. By z—gp Lp G, we get
2 2
llz = goll” = lle — 90 — agll” — a® llgll” <}z ~ g0 — agl®, Vg € G,
and passing to infimum with g € G, we get
llz — gol| = inf {||z — g||;9 € G},
because G is linear subspace. Moreover, by
e — g0 — agll® = iz — gol|* + a* llgl|* . ¥g € G,
choosing firstly ¢ = Zgo and secondly g = —< go, we obtain
2 2
llz = 90 = agoll” = Iz = goll” + & [lgoll
and
2
lle = g0 + agoll” = llz = goll* + o llgal”
which implies

llz — go — egoll* = ||z — go + agoll* , Vo € R,
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that is  — go LR go, where Lz means the orthogonality in Roberts’ sense
(see e.g. Singer [198], p. 86).
The last equalities imply

llgol) < llzll (take a =1 in ||z — go + agoll® = ||z — goll” + o lgoll®)
and

||z — 2g0|| = ||z|| (take & =1 in the last equality). -

It is natural to search for sufficient conditions involving 1 p orthogo-
nality, which imply the existence of best approximation elements (in usual
sense). Thus we present

Theorem 6.10 Let (E,||:||) be a real normed space, f € E*,

H ={y€E;f(y) =0}. If there exists = € E satisfying |f (z)] = 1 and
z Lp H fora =1, (that is, if 0 is best approzimation of z by elements in
H, with respect to Lp for a = 1), then for all x € E\ H with |f (z)] < 1,
there exists element of best approximation in H, in classical sense (i.e.
390 € H with ||z — go|| = inf {||z ~ g||;9 € H}).

Proof. Let us define g9 = = — %%z We obviously have f(g0) = 0,

therefore go € H. Also, %é))— (9—g0) € H,forallg € H (here by z € E\ H
obviously f (z) # 0). By z Lp H, it follows

llz = gll* = ll=I” + llgll* , Vg € H.

Replacing above g by ﬁ—% (9 — go), we get

e P @)
llz — goll” = FOR ll2l[* < Jl=)1* = ~ @ (9 — 90)
NED o e oz e =gl e
Hf(a:) (9=g0)) =lie—gll”= S5 <lle = gll" Vg € H,
which proves the theorem. a

Definition 6.4 suggests in a natural way the following

Definition 6.5 The quantity 0 < B (z) = inf {dy (z —g,G);g € G}
will be called almost best approximation of z with respect to L, and an
element g9 € G with E} (z) = d} (z — go,G) will be called element of
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almost best approximation of z (by elements in G), with respect to L,.
If, in addition, EL (z) = d (z — go,G) = 0, then go is element of best
approximation defined by Definition 6.4.

Of course that a natural question is to find out conditions on G such
that for each = € E to exist go € G with E} (z) = d (z — g0, G). For an
answer to this question, we will need the following

Lemma 6.1 If we denote F(g) = sup{|A(x—g,9')];9' € G} ,Vg € E,
then

|F(91) — F (92)] < sup{|A(z—g1,9") — Az — g92,9')|; 9 € G},
where A Ex E— R,
Proof. We have
|A(z—g1,9)| — |A(z — 92,9')]

< Az ~g1,9) - |A(z — 92,9')] |
< |A(z—g1,9') — Az — 92,9,

and passing to supremum after ¢’ € G we get

F(91) < F(g2) +sup{|A(z —g1,9") — Az — g2,9')|;9' € G}.
Similarly

F(g2) < F(g1) +sup {|A(z ~ g1,9') - A(x — g2.9')|59' € G},
which implies the lemma. O

Theorem 6.11 Let (E,||-||) be a real normed space, G C E be compact
and x € E (x € E\G for Ls). Then for each L, in Definition 6.1 (except-
ing Lp), there exists g* € G such that E} (z) = d} (z — g%, G).

Proof. (i) In the case of Ly, let us take
2 2
Ale—g,9)=lle—g—ad|" = lle—g+ad'|l",a € R\ {0}.
For gn,9,9' € G with ||gn — g|| "= 0, we get

\A(az—gn,g’) - A(x —g’g,)‘
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2
< le = g0 —agIl" = llz = g = ag'I|
2
+{llz = gn + ag'IF = llz — g + ag'IF"|
< 222l + 2lgall +2lal - lig'ID llgn — g1
< Klign —gll "7 0,

because GG is bounded too.

Consequently, with the notation in Lemma 6.1, F (g) is continuous on
G and there exists g* € G with F (¢*) = inf {F (g9) ;9 € G} = E} (2).
(7¢) For Lp we have

2 2 2
Az —g,9)=llz =gl +a®|lg'I" = llz — g — ag'||
and

|A<z—gnagl) —A($~g,g1)|
2 2 2
e = gall” = llz = gIF°| + [llz = g0 — ag'l]* = lle — g - ag'|

A A

Klgn — 9|,

where K > 0, because (7 is bounded. The rest of the proof is similar to the
above case ().
(79) For Lppa we have

2 2 2
A@=-g.¢0)=1+a")le—ga+dl"~lla(z - g) + 41" ~llz =g +adll",

the proof being similar.
(iv) For Lgp we take

Alx—g,9") = lla(e—g)+bg|" +llz -9+
2 2
—lla(z—g)+4'||" = ||z — g+ bg'||

and we reason similarly.
(v) For Lg we have

r 12 ;2

=9 9
llz—gll gl

defined for z € E\G and ¢’ # 0. We obtain (for ||g, — g|| "=" 0)

|A($—gn,gl) —A(Jf—g,g/)l

r—yg 9
_—_+ J—
llz =gl llg'll

A(‘IB _gvgl) -

3
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2
Z—gn g z—g g
lz —gnll ~ llg'll llz—gll ~ llg'll ’
s—gn g |II° | 2-9 ¢ |
llz —gnll  lg’ll lz—gll Illg'll
z— gn z—g
< . —
= llz = gnll Hm—gH”
8

o e e =gl =gl = & = 9)lle = gull

llg —gnl| = 0.

llz — gnll

(vi) In the case of orthogonality with respect to an inner product (-, )
on E x E, we have A(z —g,¢') = (¢ — g,¢') and consequently

[A(z —gn,d") — Az —9,9) = {9 — 9, 9") < lg = 9all'll9'|| < K llg = gal|

which proves the theorem. O
Now, let us introduce the following.

Definition 6.6 Let (E,||-||) be a real normed space and G C E. We de-
fine 7 (G) (z) =P or 7 (G) (z) = {9" € G; Ef (z) = dif (x — ¢*,G)} and
PL(G)(a) = 0 or P (G)(2) = {5 €G;0= B (x) = dt (¢ — ¢°,G)} .
We say that G is L,-Chebysev, if Yz € E, P} (G) (z) has exactly one ele-
ment.

Theorem 6.12 (i) If G C E s closed, then for allz € E, 7} (G) (z) and
Pt (G) (z) are closed, for any L. in Definition 6.1.

(#%) If G is L-Chebyshev, where L s the usual orthogonality in an inner
product space, then

PL(G)(Az+(1-NPL(G) (z) =P (G)(z),Vz € E, A€ [0,1].
If G is L,-Chebyshev, with L. different from L, then »

PX(AG) Dz + (1 - X)) P (G) (z) = PE(G) () ,Ve € E, X € (0,1].

(4ii) If G is such that 7 (G) (z) # 0,Vz € F and p € R\ {0} is fized,
then for all g* € w}+ (G) (z) and L. different from Lg, we have

B @) o+ (1 - we) < w2t (5= D).
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If L. is Lg then
L * L * G
E5 (G)(pz+(1-p)g") <ds (2—yg )

Proof. (i) The case my (G) (z) = P} (G) (z) = 0 is trivial. Therefore, let
us suppose 7y (G) (z) # @ and P} (G) (z) # 0. Let g5, € o (G) () ,n € N
with ||g5 — ¢*]] "= 0, i.e. ¢* € G. By the notations in Lemma 6.1, we
have Ef (z) = df (z —g;,,G) = F(g;;), which by the proof of Theorem
6.11 implies that F (¢7) "= F (¢%), i.e. F(g*) = E{ (). The proof for
Pl (G) (z) is similar.

(i7) Let G be L-Chebyshev and P* (G) (z) = g*, which implies
Et (z) = dt (z — g*,G) = 0 and therefore (z — g*,¢’) = 0,Y¢’ € G. For
any A €[0,1],9' € G, weget 0= (A(z—9¢*), gy =Pz + (1 =N g* ~g", 9",
that is P+ (G) (Az 4+ (1= A) P* (G) (z)) = P+ (G) (z).

Now, let us suppose that G is L.-Chebyshev, where L, is different from
1 and let us denote g* = Pj (G) (z), i.e. ||z — g* — ag'|| = ||z — g* + ad’|,
V¢’ € G. Multiplying by X € (0, 1], we get

Az +(1-X)g" —g" —arg'|| =||xe+ (1= X)g" — ¢* + ar¢|,

and taking into account that AG also is L.-Chebyshev, it follows
Pit (AG) (Az + (1 = X) P+ (G) (z)) = P{(G) (2).
If g* = P (G) (2), we have ||z — g*||* + a®|l¢'||* = [|o — " — ag'II",
V¢’ € G. Multiplying both members by A2, it follows
Ae+ (1= g =g" I +a® INI* = e+ (1= X g* = g = arg'|I”,

which means Pg (AG) (Az + (1 — ) P3 (G) (2)) = P} (G) (z) .

Similar reasonings apply for L g, Lpra, Lxp and Lg .

(443) Let us suppose that 7, (G) (z) # 0,V € E and let g* € 7} (G) ().
We have ’

By (G) (z) =inf{dy (¢ ~9,G);9 € G} =di (2 - ¢",C).
Also, denoting go € 7} (G) (px + (1 — 1) g*), we get

E; (G) (pe+ (1-u)g")

inf {dy (pz+(1—p)g* - 9,G);9 € G}
= df(pe+(1—p)g" —90,G) < dt (u(x —g*),G)
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. , G
= sup{lA(u(w—g),ug’)l;y E}I}’

where A {z,y) is given by the proof of Theorem 6.11. But it is easy to
see, that for all the cases of 1,, different from Lg, we have A (uz, py) =
pu2A(z,y), and for Lg we have A (pz,py) = A(z,y), which proves the
theorem. 0

Remark. If for example G C pG, then

Ef (G) (nz+ (1—p)g*) < p°EF (G) (z).

Finally, we notice that the defects of orthogonalities can have some
geometrical interpretations. For example, the defect of orthogonality of
Singer kind in plane, can be looked as the defect of perpendicularity of
two straight lines. Let us consider £ = R? and the norm on R? defined
by ||(z1,z2)|| = /&% + 4. If X and Y are straight lines in R? such that
{(0,0)} € X and {(0,0)} € Y then d$ (X,Y) = 4|cos (1 — 82)|, where
01,05 are the angles of X and Y with the positive axis Oz, respectively.
Indeed, let

X = {(z,y) eR}y=me,z € R}
Y = {(z,y) €eR%y=myz,z €R},

that is my = g6, my = tgf,0,,05 € (—%, %) . We have (see Theorem 6.2,

(vi))
dt (X,Y)

— 4sup{ l((ml;yl) ) (182,92))' '(xl,y1),(932,y2) c R2\{(0,0)}}

11, vl - (2, w2) I

|z12e + mizimans|
= 4sup > 55 > > 2;$1,€C2€R\{0}
\/‘rl +myzy- \/"32 + my;

|1+ mymg|

4
V1+mZ/1+mk
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=4|cos(f1 — 82)|.

The above result and Theorem 6.1 imply that X is orthogonal to Y in the
Singer sense if and only if 8; — ; = £7, that is if and only if the straight
lines X and Y are orthogonal in geometrical sense.

Remark. By using the Birkhoff’s orthogonality in a real normed space
(E, ]I}, can be introduced the so-called rectangle constant of £ by

i) =sup { B WLy ol 20,5 25 4.
which satisfies the properties v/2 < p (E) < 3 and if the dimension of E,
dim (E) > 3, then p (E) = +/2 if and only if the norm }|-|| is generated by an
inner product (see Joly [108]-[109]). According to Gastinel-Joly [87], u (E)
can be thought of as a measure of the failure of Pythagora’s theorem.

Denoting d (E) = u(E) — v/2, the constant d (E) can be thought as
defect of Hilbert space for a Banach space E (because if dim (E) > 3, then
d(E) =0 is equivalent to the fact that £ is Hilbert space).

Also, suggested by p (E), we can introduce, for example, another con-
stant, by

2 2

. zl|” +

" (E)zsup{—” A oy € X, ol + il # 0,2 Ls y}
e+l

which by the inequalities
2 2 .
e+ l® < (lell + 19D < 2 (Jell + 11?)

and

lzl” + lall® _ (el + liwlD)”
2 =
I + yli & + yI*

satisfies £ < p* (E) <9, if dim (E) > 3.

6.2 Defect of Property for Sets in Normed Spaces

Let (X, ||-||) be a real normed space. The following concepts are well-known.

Definition 6.7 A subset Y C X is called:
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(¢) convex, if
M+ (A=A e, Vy,peY,Ae[0,1].
(¢3) linear, if
ay1 + By €Y, Vy1, 12 €Y, 0, BER.
(¢77) balanced, if
ayeY,VyeY, la| < 1.
(#v) absorbent, if
Yz € X,3X > 0 such that z € \Y.

Remark. The following characterizations also are well-known:
Y is convex if and only if Y = convY, where

n n
convY = {Zam;n ENyeY,a>0,i€{l,..,n},> oy = 1}
i=1

i=1
represents the convex hull of Y;
Y is linear if and only if Y = spanY, where

n
spanY = {Zaiyz-;n eEN,y; €Y, ER,i€ {1, n}} ;

i=1
Y 1s balanced if and only if Y = balY, where
balY = {oy;y €Y, |a| < 1}.

Now, if Y C X is not convex, linear, balanced or absorbent, then it is
natural to define quantities that measure the deviation (defect) of Y with
respect to these properties. In this sense we introduce

Definition 6.8 Let (X,||-||) be a real normed space and D (A, B) be a
certain distance between the subsets A, B C X (D will be specified later).
For Y C X, we call:

() defect of convexity of Y (with respect to D), the quantity

dconv (D) (Y) = D (Y, convY);
(#¢) defect of linearity of Y, the quantity
drin (D) (Y) = D (Y, spanY);
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(731) defect of balancing of Y, the quantity
dpar (D) (Y)= D (Y,balY);

(iv) defect of absorption of bounded Y, the quantity daps (D) (Y) =0,
if Y is absorbent and

daps (D) (Y) =D (Y, B(0, Ry))

if Y is not absorbent, where

I

Ry
E(O,Ry)

sup {||ly]l;y € Y},
{z € X;||z]l < Ry }.

]

For symmetry, let us denote absY = B (0, Ry).
A natural candidate for D might be the Hausdorff-Pompeiu distance
DH (Yl,Yz) = max{d (Yl,Yz) s d (Yz, Yl)} y

where d (Y1,Y2) =sup {d (y1,Y2) ;51 € Y1} ,d (1, Y2) = inf {|lys — v2l|;
y2 € Yo }. In this case we present

Theorem 6.13 Let (X,||:|]|) be a real normed space and let us suppose
that Y C X, Y # 0 s closed. Then:
(1) Y is convez if and only if dconv (D) (Y) =
(i4) Y is linear if and only if dpynv (Dy) (Y) = 0.
(739) Y is balanced if and only if dpar (D) (Y) = 0.
(iv) bounded Y 1s absorbent if and only if daps (Dg)(Y) = 0.

0.

Proof. IfY isconvex then obviously deconv (D) (Y) = Dy (Y, convY) =
0. Conversely, let us suppose Dy (Y, convY) = 0. It follows Y = convY and
because Y =Y, we get Y = convY D convY, which gives Y = convY, i.e.
Y is convex.

For linearity, because the necessity is obvious, let us suppose
dpinv (D) (Y) = 0, t.e. Dy (Y,spanY) = 0. It follows Y = spanY and
therefore Y = spanY D spanY, which gives Y = spanY and therefore Y is
linear.

Now, by dpaz (Dg) (Y) = 0, it follows Y = balY D balY, which implies
Y = balY, that is Y is balanced.

Finally, if Y is absorbent then by definition, daps (Dg) (Y) = 0. Con-
versely, daps (Dg) (Y) = 0 implies Y = B (0, Ry), that is Y = F(o Ry)
and therefore Y is absorbent. O
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Remark. For D = Dy, the quantity dconv (Dg) (Y) is known, it is
called measure of nonconvexity (see e.g. Eisenfeld-Lakshmikantham [70])
and it is used in fixed point theory (see e.g. Rus [183]-[185], Cano [53],
Amoretti-Cano [4], Ewert [74]). The following properties also are known
(see e.g. Ewert [74]):

deconv (D) (Y1 + Ya) deconv (Dg) (Y1) +dconv (D) (Ya),
dconv (D) ()\Y) = Mdconv (DH) (Y),VA>0,

IA

ldconv (Dr) (Y1) — dconv (Dr) (Y2)| < 2Dy (Y1,Ys),

for all bounded nonempty subsets Y,Y;,Y, C X.

Note that, for example, the first property is a generalization of the
simple result which states that the sum of two convex sets is also a convex
set.

Similar properties hold for dprv (Dg),dpar (Dr) and daps (Dy), as
follows.

Theorem 6.14 Let (X, ||-l) be a real normed space. For all bounded sets
Y. Y:,Yo C X, withYq,Ys # 0, we have

(9)

drinv (Dr) (Y);
0 if and only if Y is linear;
Mpin (Dg) (Y), YA > 0;

drin (Dr) (Y)
dpin (Da) (Y)
drin (Du) (AY)
)

dein(Dr) (Y14 Y2) < doiwv (Da) (Ya) +doinv (Da) (Ya) -
(¢)
dpar (Dg)(Y) = dpar(Dn)(Y);
dpar (D) (Y) = 0 if and only if Y is balanced;
dBAL (DH)( Y) = MAdpar (DH) (Y),V/\>0;
dpar (D) (Y1+Y2) < dpar(Du) (Y1) +dpar (Dr)(Y2);
Dy (balYi,balYs) < Dy (Y1,Y2);

|dpar (Dr) (Y1) — dpar (DH) (Y2)| < 2Dg (Y1,Ys).
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(%)
daps (Du)(Y) = dass(Dr)(Y);
daps (DH) (/\Y) = Adaps (DH) (Y) ,V)\ > 0;
|dags (Dg) (Y1) — daps (Du) (Y2)| < 2Dy (Y1,Y2)

+Dnu (F (0’ RY1) ’B—(O’ Ryz)) :

Proof. We will use the following equivalent formula for the Hausdorff-
Pompeiu distance between the nonempty bounded sets Yy, Ys C X,

Dy (Yl,Yz) = inf{&' >0;Y C B(Yz,é) Yo C B (Yl,é‘)},
where B (4,€) = Upe 4B (2,6), B (2,6) = {y € Xslly — ol < e}
(?) Let driwv (Dr) (?) = r. For each ¢ > 0 we get
— - 1
spanY C spanY C B (Y,r+ 55) CB(Y,r+¢),

which implies dLIN (DH) (Y) S dLIN (DH) (7) . On the other hand, span?
C spanY. Indeeed, let y € spanY. It follows y = > 1* a;yi,m € N,y; €

V,ie{l,..,m}, thatis 3™ € Y, o™ — wl "= 0,vi € {1,...,m}. Let
us take z, = E;’;laiygn) € spanY. We have

m
lzn — 9l <D leil -
i=1
which means that y € spanY . Therefore,
driv (DH) (?) = Dy (span?,?) < Dy (ganY,V)

n—oc

-0,

T

= Dy (spanY,Y) =dpn (Du) (Y),

and as a conclusion, dprv (Dr) (Y) = dpiv (Dw) (V).

Now, let us suppose that Y is linear, it follows dy;n (Dgr) (7) =0
and by the previous equality we get drry (Dg) (Y) = 0. Conversely, the
condition dpry (Dg) (Y) = 0, implies spanY C B(Y,¢), for any ¢ > 0.
Then

Y C spanY C ﬂB(Y,g) =Y
£>0
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which implies spanY = Y. But spanY is linear subspace and by e.g. Popa
[165], p.13, it follows spanY is linear subspace, which implies Y is linear.
For the next property, we get

dLIN (DH) (/\Y) = DH ()\Y, span (/\Y)) = DH (/\Y, /\spanY)
= ADpg (Y,spanY) = Mrin (Du) (Y),

for all A > 0.

Finally, let us put drrnv (Dg) (Y1) = ry and derw (Dr) (Yz) = rqy. Then for
each € > 0 we have spanY; C B (Yl, 1+ %6) and spanYs C B (Yg, r9 + %—E)
Hence

span (Y1 +Y2) C  spanY; + spanYs
1 1
C B(YI’T1+§E)+B<}/257'2+§6>
C B(Y1+Yz,1'1+7'2+5)a

which gives dpry (Dg) (Y1 + Y2) < 71 + 73 and the proof is completed.
(4%) Let dpar (DH) (7) = r. For each ¢ > 0 we get

_ — 1
balYCbalYCB(Y,r+ 56) CB(Y,r+¢),

which impliesdparz, (Dr)(Y) < dpar (Dg) (?) . On the other hand, balY C
balY. Indeed, let y € balY . It follows y = Ayo, |A| < 1,y0 € Y, that is Ty, €

Y,n € N, with ||y, — vo|l "= 0. Let us take 2, = Ay, € balY,n € N. We

n—o0

have ||z, — Ayoll = |A|*llyn — %0l] = 0, that is y = Ayo € balY . Therefore,

dpat (Dm) (Y)

Dy (balY,Y) < Dy (balY,Y)
= Dpg (balY,Y) =dpar (Dg)(Y),

and as a conclusion, dpayr, (Dg) (?) =dgar (D) (Y).

Now, let us suppose that Y is balanced. It follows dgar (Dg) (Y) = 0
and by the previous equality, we get dpar (Dg) (Y) = 0. Conversely, the
condition dgar (Dg) (Y) = 0, implies balY C B (Y, ¢), for any € > 0. Then
Y C balY C (\,50B(Y,e) = Y, which implies balY = Y. But balY is
balanced and by e.g. Popa [165], p.15 it follows balY is balanced, which
implies that Y is balanced.

The property dpar (Du) (AY) = Adpar (Dg) (Y), A > 0, is immediate by
the properties of Dy and by bal\Y = AbalY,VA > 0.
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For the next property, let us put dgar, (Dg) (Y1) = r1 and dpar (Dg) (Y2) =
ry. Then for each ¢ > 0, we have balY; C B (Yl,rl + %5) and balYy C
B (Ys,m2+ %6) Hence

bal (Y1 +Y2) C  balY; + balYs
C B (Yl,rl + %E) + B (Yz,f’z + —;-6)
C B(Y1+Y,ri+r2+e),
which gives dpar (Dg) (Y1 + Y2) < 71 + ro and consequently
dpar (Du) (Y1 +Y2) < dpar (Dr) (Y1) + dpar (Du) (Ya) .

Now, we will prove that for each bounded nonempty set Y C X and each
rg > 0, we have balB (Y,70) C B (balY,rp). Indeed, let = € balB (Y, o),
it follows = Az, where |A\] < 1 and z € B (Y, rg), that is Jy € Y with
||z — Y|l < ro. We get Ay € balY and
llz = Ayll = [[Az = Ayl] = Al - |z — wl| < [A] - ro < o,
that is ¢ € B (balY, o) .
If we denote
p(2,Y) = inf{|lz—yll;yeY}
p(Yl,YQ) = Sup{p(y,YQ) VY € Yl} = inf{a >0, CB (YZ,E)} R
we obviously have

DH (Yl,Yz) = max{p (Yl,Yg) ,p(Yg,Yl)} .

Let us denote p (Y1,Y2) = 7. Then foreach e > 0, wehave Y; C B (Ya, 7 + ¢)
and balY; C balB (Y3, 7 + &) C B (balYs, r + ¢), which gives p (balY;, balYz)
< r+¢. Passing to limit with ¢ — 0, it follows p (balY), balYs) < r =
p(Y1,Ys). Completely analogous we obtain p(balYs, balY;) < p (Y2, Y1),
which implies Dy (balY1,balY2) < Dy (Y1,Ya) .

For the final relation, we have

dBalL (DH) (Yl) = Dy (balyl, Yl) < Dy (balYl,balYQ)
+Dy (balYg, Yg) + Dy (Yz, Yl) < Dy (balYl,balYg)

+Dpg (Y2, Y1) +dpar (Dr) (Y2),
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which implies
|dpar (Dr) (Y1) —dpar (Dg) (Ys2)| < Dg (balYy, balYs) + Dy (Y1,Ya),
which combined with the last inequality, proves
|dBar (D) (Y1) — dpar (Du) (Y2)| < 2Dy (Y1,Ys).
(#7¢) We have

daps (D) (Y) = Du (V,B(0,Ry)) =d(B (0, Ry ) Y)

because Ry = Ry and d (A,a =d(A,C),YA,C C X (here d appears in
definition of Dy ). Indeed, firstly it is obvious that Ry < Ry Also, by

n—)oo

Ry =sup{|lyll;y €Y}, if y €Y then Iy, € Y such that ||y, — y|| "= 0,
and consequently, for any € > 0, thereis ng € N with ||y, — y|| < &,Vn > ng
and ||| < lly — yn||+||ynll < Ry+e. Therefore Ry < Ry +¢,Ve > 0, which
implies Ry < Ry and consequently Ry = Ry. The equality d (A,U) =
d (A, C) immediately follows by the relation d (a,@) = d(a,C),Ya € A,
and by the definition of d (4, C). Then

daps (D) (AY) = Dy (XY, B(0,Ryy)) = Di (AY,AB (0, Ry))
= ADg (Y,B(0,Ry)) = Adags (Du) (Y),¥A >0,

taking into account that Ryy = sup {||Ay||;y €Y} = ARy.
Finally,

dABS (DH) (Yl) = Dy (F(O, Ryl) s Yl)

< Dg (B(0, Rv,), B(0, Ry,)) + Dn (B(0, Ry,) ,Y2) + D (Y2, Y1),
which implies

daBs (Dg) (Y1) —daBs (Du) (Y2) < Dy (Y1, Y2)

+ Dy (F (0, RYl) aF(O’ RYz)) )

which proves the theorem. O
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Remark. The Theorems 6.13 and 6.14 show that dconv (D) ,drin (Dy)
and dpar (D) characterize the corresponding properties only on the class
of closed bounded subsets of X.

To overcome this shortcoming (and those pointed out by Remark after
Theorem 6.13), in what follows we will replace Dy with another distance
(see Section 3.5).

Let us define D* : P (X) x P (X) - R4 U {+oc} by

0, fYi =Y,
sup {|lya — 2l ;0 € Y1, 02 € Yo}, if Y1 #VYo.

Denoting Py (X) = {Y C X;Y # 0,Y bounded}, we have

D* (Y1, 1)) :{

Theorem 6.15 (P, (X), D*) is a metric space.

Proof. Firstly, D* (Y1,Ys) = 0 if and only if ¥} = Y3, is obvious. Also,
D* (Y1,Ys) = D* (Ya, Y1) is immediate.
Let Y1,Y5, Y5 € P (X) IfY; =Y; or Y, = Y3 then

D* (Y1,Y;) = D* (Y1, Ys) + D* (Y3, Y2).
Let us suppose Y7 # Y3 and Y> # Y3. We have
llyr = w2ll <llys — wsll + [lys — wall, Vs € Vi i € {1,2,3},
and passing to supremum we easily obtain
D* (Y1,Y3) < D* (Y1, Ys) + D* (Y, Ya)
which proves the theorem. O
Other properties of D* are given by the following.

Theorem 6.16 D* : Py (X) x Py (X) — Ry also satisfies:

(¢) D* (Y1 +Y{,Y2+Y)) < D*(Yy,Ys) + D* (Y],Y5) VY1 # Yo, VY] #
Y;.

(’LZ) Yl g Z1,Y2 g ZQ, Zl ?é Zg implies D* (Yl,Yz) S D* (Zl,Zg) .

(1ir) D* (V1,Ys) = D* (Yl, Yz) WY1 #£Ys.

(iv) D* (AY7,AYs) = AD* (Y1,Y2),VA > 0.

Proof. (i) fY;+Y/=Y,4Y, then the inequality is obvious. Therefore
let us suppose Y1 4+Y{ # Y3+Y,. The inequality for D* follows immediately
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from

l(y1 +y1) — (y2 + 92)l
<y = wall + 11yt — w4l
< D*(V1,Y2)+D*(Y!,Y)) Yy € Vi, i €Y/ i€ {1,2}.
(#7) If Y1 = Yy then the inequality is obvious. If Y1 # Y2 and by Z; # Z,
we get
sup {||ly1 — vall;¥1 € Y1, 42 € Y2}

< sup{|lys — w2l sy € Z1, 42 € Y2}
< sup{|lys — w2l ;91 € 21,92 € Za} .

(¢it) Firstly, by (i) we get
D* (Y1,Ys) < D* (71,72) if Y, #Y,.
Conversely,

D" (Y1,Y2) =sup{llys —well; 1 € V1,02 €Yo} .

n—00

By y; € Y, there exist y}") €Y;,i€{1,2},n € N such that Hy,(n) -yl

0,7 € {1,2}. We get

S 25+D* (Yl,Yz),

lyn — 9l < Hy1 - y%")H + Hyﬁ’” — V|| + Hyén) - yz”
for any € > 0, which implies finally
D* (V1,73) < D* (Y1, Ya).
Combined with the converse inequality we obtain the equality
D* (Y1,Ys) = D" (Y1,Ys),
ifY, #£Yo.
(tv) It is immediate. O
Replacing D in Definition 6.8 by D*, we can state the following

Theorem 6.17  Let (X, ||-||) be a real normed space and let Y € Py (X).
We have:

(1) dconv (D*Y(Y) =0 if and only if Y 1is convex;
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(%) drinv (D*) (Y) = 0 if and only if Y is linear subspace and
dpin (D*) (Y) = 400 if Y is not linear;

(i13) dpar (D*) (Y) =0 if and only if Y is balanced;

(tv) daps (D*)(Y) = 0 if and only of Y is absorbent.

Proof. Are immediate by Theorem 6.15 and by the Remark after Defi-
nition 6.7. O

Concerning these new defects we present other properties too.

Theorem 6.18  Let (X, ||-||) be a real normed space and Y, Y1,Y5 € Py (X).
We have:

(8) dy (D*) (Y) = dy (D*) (Y), if Y #4Y and Y £ Y.

(i7) dy (D*) (AY) = Ady (D*) (Y),VA> 0.
Here § represents any element of the set {CONV,BAL, ABS} .
In addition, for § any element of {CONV, BAL} we have

(iti) dy (D*) (Y1 +Y2) < &y (D*) (Y1) + &4 (D7) (Ya), if V1 # §Y1, Yo #
Yy and Y1 + Yy # Y1 + Y5,
Proof. (i) First let us consider the case CONV. We have convY C
convY and

deconv (D*)(Y) = D* (convY,Y) < D* (convY,Y)
= (see Theorem 6.16, (%))
= D*(convY,Y) =dconv (D*)(Y).

Conversely, by convY C convY,Y C Y and taking into account Theorem
6.16, (77), we immediately get

dconv (D*) (Y) = D* (Y, convY) < D* (Y, convY) = dconv (D*) (V)

which implies dconv (D*) (Y) = dconv (D*) (7) .
Now take the case BAL. We get balY C balY and

dpar (D*) (?-) = D* (bal?,?) < D (W,V)
—  D* (balY,Y) = dpaz (D) (Y).

Conversely, reasoning as for the case CONV, we get finally
dpar (D7) (Y) = dpar (D7) (V).
For the case ABS, we have Ry = Ry and

daps (D*) (Y) = D* (B(0,Ry) ,Y)
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sup {|ly1 — w2l ;31 € B(0,Ry) ,32 € Y}
sup {|ly1 — w2l ;91 € B(0, Ry) 2 € Y}
daps (D) (Y).

v

n-—+00
0

Conversely, for any y, € Y, let ygn) €Y,n €N, be with “yg") —yol "

We get for y1 € B (0, Ry),

v = vl < o = 08V + 87 = ]| < dams (D) (1) + 6, ¥0 > mo ().

. From here we immediately get daps (D*) (—Y_) =daps (D*)(Y).
(i¢) It is immediate for all the cases CONV, BAL and ABS.
(172) By conv (Y; + Ys) C convY) + convYs, we get

dconv (D*) (Y1 +Y2) = D* (conv (Yl +Y2), Y1+ Y2)

D* (convYy + convYs, Y1 + Y3) < (see Theorem 6.16, (i) )
D* (convYy,Y1) + D (convYa, Ya)
dconv (D*) (Y1) +dconv (D*) (Y2) -

Also, by bal (Y1 +Y3) C balY; + balYsy we get

IA A

dBar (D*) (Y1 +Y2) = D* (bal (Y1 + Yg) Y1 + Yg)

D* (balY; + balY,,Y; + Ya) < (see Theorem 6.16, (7))
D* (balYl,Yl) + D" (bale,Yz)
= dpar (D) (Y1) + dpar (D*) (Ya).

IA A

O

Remarks. 1) The defects in Definition 6.8 can be combined in various
ways. For example, taking d, (D) (Y) = dconv (D) (Y) + dpar (D) (Y),
then we can call d; as defect of convexity-balancing of Y, because, for
example, if we take D = D*, then by Theorem 6.17 we get that Y € P, (X)
is convex and balanced if and only if d; (D) (Y) = 0. Similarly, we can
combine any defect in Definition 6.8 with the measure of noncompactness in
Section 3.1. Note that the defect of compactness-convexity (called measure
of noncompactness-nonconvexity) appears in e.g. Rus [184].

2) It is well-known (see e.g. Banas-Goebel [32], Rus [184]) that the
measures of noncompactness and of nonconvexity can be introduced by
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axioms in abstract spaces. Similarly, by using the properties in Theorems
6.13-6.18 we can introduce in abstract spaces by axioms other defects too,
like the defect of balancing, the defect of linearity and so on.

At the end of this section we present applications.
For Y € Py (X), let us denote

Econv (Y) = inf{Dg(Y,A);A€Py(X),A convex},
Epar (Y) = inf{Dyg(Y,A); A€ Ps{X), A balanced},

the best approximation of a bounded set by convex bounded and by bal-
anced bounded sets, respectively.

Theorem 6.19 Let (X,||-]|) be a real normed space. Then for any Y €
Py (X) we get
1

ECONV (Y) 2 EdCONV (DH) (Y) )

Bsar(Y) > gdpar (Dn)(Y).

Proof. We have, for any A € Py (X), A convex

dconv (DH) (Y) = Dy (Y, COTL’UY) S Dy (Y, A) + Dy (A, COTl’UA)
+Dpy (convA,convY) < 2Dy (Y,A).

(We have used the well-known property Dy (convA, convY) < Dy (A,Y)).
Passing to infimum we obtain the desired inequality.
Similarly, for any A € Py (X), A balanced, we have

dBalL (DH) (Y) < Dnu (Y, A)+ Dy (A, bal A)

+Dy (balA, balY) < 2Dy (Y, A) .

6.3 Defect of Property for Functionals

Let (X, +,) be a real linear space. In this section we deal with the defects
of various properties for functionals f : Y — R,Y C X. Firstly, let us
recall some well-known properties of functionals.

Definition 6.9 Let (X, +,-) be a real linear space.
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(7)) Let Y C X be convex. Then f:Y — R is called convex if
flonys + o2ya) <onf (y)+oaf (), Vyi €Y, 00 > 0,i=1,2, 014+ ar =1

(It is well-known that this is equivalent with f (3 i ayi) < i f (i)
VneN,Vy; €Y, 05 >0,i€{1,...,n},> 0 o =1);
(77) f: X — R is called subadditive if

Flty) < @)+ F(y), V2,9 €X;
(13¢) f : X — R is called positive homogeneous if
F(Az) = Af(x),YA>0,Ve € X;
(tv) f: X — R is called absolute homogeneous if
F(Az) =M\ f(x),YAER,Vz € X;

(v) f: X — R is called sublinear if f is subadditive and positive
homogeneous;

(vi) f: X — R is called quasi-seminorm if f is sublinear and f(z) >
0,Ve € X;

(vit) f : X — R is seminorm if f is subadditive and absolute homoge-
neous;

(viid) f: X — R is norm if f is seminorm and f (z) = 0 implies z = 0.

Concerning these properties we can introduce the following defects.

Definition 6.10 Let (X, +, ) be a real linear space.
() HY C X is convex and f : Y — R, then the n-defect of convexity
of fonY, n> 2 is defined by

A&y () (Y) = sup {f (Zaiyi) — Y aif ()% €Y, 20,
=1

=1
ie{l, .‘.,n},Zai = 1} .
1—=1

(#7) Let Y C X be a linear subspace of X and f:Y — R. The defect
of subadditivity of f on Y is defined by

dsapp (f) (Y) =sup{f (y1 +v2) — (F (1) + F (v2)) ;01,92 €Y}
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The defect of absolute homogeneity of f on Y is defined by

dar (f) (Y) =sup{lf(Ay) -\ F(y)[; A eR,y€Y}.

We present

Theorem 6.20 Let (X, +,-) be a real linear space.
(7) Let Y C X be conver and f:Y — R. Then for all n > 2 we have

ATy (F) (V) < a8y () (V) < dShwy (1) (V) + dShny () (Y).

Also, f 1is conver on'Y if and only if for any fired n > 2, we have

dbny (1) (V) =0.
For f,g:Y = R,a >0 and n > 2 we have

A& ny (F+9) (V) < dSh oy (F) (V) + dShpy (9) (V)

and diony (af) (V) = adfyy () (V).

(17) Let Y C X be linear subspace of X and f: Y — R. If f(0) =
then f is subadditive (on'Y ) if and only if dsapp (f) (Y) = 0. f is absolute
homogeneous (on Y) if and only if dag (f) (Y) = 0. Moreover, if f,g
Y — R then

dsapp (f+9)(Y) < dsapp(f)(Y)+dsapp (9)(Y),
dag (F+9)(Y) < dan (f)(Y)+dan(9)(Y),
dsapp (af) (Y) = adsapp (f) (Y),Va >0,

dag (af) (Y) = |a|dag (f)(Y),YVa€R.

Proof. (i) Foranyn >20; > 0,y;, €Y,i€{1l,....n+ 1}, Zn+110‘z =
we have the equality

n+1 n o
Zaiyi = (1 — Qng1) (Z—z—yz) + ang1yngr-
i=1

ol o

Then

n+1 n+1
f (Z%’Zh) = ouf (w)
i=1 i=1

= [f ((1 — an+1) (Zl_Lyi) + an+1yn+1)
i=1 On+1



Defect of Property for Functionals 249

- ((1 —any1) f (ZT:%;T%) + an+1f(yn+1))]

i=1

+ [(1 — Qnt1) (f (Zl—:gcjnjyi) - Zl—aTin_Hf (w))]

d%w () (Y)+ (1 — ans1) A3 py () (Y)
CONV (f) (Y) CONV (f) (Y) ’

and passing to supremum, we get

dZENy () (V) < d%h v () (V) + dE) v () (V).

Also, for apy1 = 0 and arbitrary a; > 0,7 € {1,...,n},y; € Y,i €
{1,..,n+1}, 3" @i = 1, we have

n n n+1 n+1

f (Eaiyi) =Y wf(w)=f (Zaiyi) ZO‘ F () < dZ3 () (V)
i=1 i=1 i=1

and passing to supremum, we obtain

A&y (F) (Y) <dE30, (F) (Y) .

IANIA

As a conclusion
dTony (F) (V) < dEGNy () (V) < d8ny (F) (V)+dEhny () (V) ,¥n > 2.

Let ng > 2 be fixed. If f is convex on Y then obviously d(élg)NV (HY)=
0. Conversely, let us suppose dglg)NV (/) Y) = 0. Then by the above
inequalities it easily follows that d\%) .\, (f) (Y) = 0, which immediately
implies that f is convex on Y.

Then, for any n > 2 we get

Aoy (F+9) (Y) = SUP{ (Zazyz) =D if(w)+yg (Zaiyi>
i=1 i=1

n n
—Zaig (yz) Y € Y) 27 Z 011 € {L -~'7n}azai == 1}
i=1

i=1

sup {f (Zaiyi) =Y eif ()9 €Y, 04 >0,
i=1

i=1

IA
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n
ie {1, ...,n},Za,- = 1}
i=1
7 n
+sup {g (Zaiyi) =) ig(wi)i%i €Y, > 0,
i=1

=1

n
i€ {1, ...,n},Zai = 1}
i=1

= d%ny () (Y) + dZny (9) (Y).

Similarly, for all & > 0 we get

sup {a (f (Zaiyi) - Za’if(yi)) ;
i=1 i=1
yi €Y, a; > 0,7 € {1,...,n},zai = 1}
i=1

= asup {f (Zauﬁ) - Zaif (¥i);
i=1 i=1

n
v €Y,y >0,i € {1,...,n},2a,~ = 1}
i=1

il

A5y (af) (Y)

= adllyy () (Y).

(1) Let Y C X be linear subspace of X and f: Y - R. If f(0) =0
then by choosing y1 = yo = 0 we get dsapp (f) (Y) > 0. Then, it is
immediate that f is subadditive if and only if dsapp (f) (Y) = 0.

Also, it is easily follows that dag (f) (Y) = 0 if and only if f is absolute
homogeneous on Y.

The other four inequalities can easily be proved reasoning exactly as for

dgg Nv» Which proves the theorem. O

Immediate applications of the defects in Definition 6.10 are to lower
estimates of best approximation for bounded functionals, by bounded sub-
additive or convex functionals.

Indeed, for Y C X linear subspace or convex set, let us denote

By(Y) = {f:Y > R;fisbounded onY and f(0) =0},
Esapp (f) (Y) inf {||f — gll;9 € Bo (Y) , g is subadditive on Y},
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f € Bo(Y), and

B(Y) = {f:Y = R;fisbounded on Y},
Econv (f) (Y) inf {||f — gl[;9 € B(Y),g is convex on Y},

f € B(Y), respectively, where ||f|| = sup {|f (z)];z € Y}.
We present

Theorem 6.21 (i) Let Y C X be linear subspace of X and f € By (V).
Then

Bsapp () (v) > 22220 ).

(4) Let Y C X be convex and f € B(Y). Then
&) Y
Econv (f) (Y) > &gw,vn > 2.
Proof. (i) We have, for all g € By (V') and g subadditive,

fle+ty)—fE@)-fW<flz+y) ~flz)-f(y

I

—(g@+y) —g(=)—9() fle+y)—g(z+y)
t9(@) = f@)+9(y) - Fly < 3lf—dl,
for all z,y € Y. Passing to supremum with z,y € Y, we get
0<dsapp (f) (Y) <3||f—4gl|,Vg € By (Y), g subadditive.
Now, passing to infimum with g, we obtain the desired inequality.

(i¢) For all g € B(Y),g convex, Vn > 2,y; € Y, a; > 0,1 € {1,...,n},

S qoi =1, we have

! (Zaiyi> - Zaif(yi)

(o (35m) - So000)
+Zai (g (w) = F ()

IA

f (Z%‘yi) - Zaif(yz‘)
f (Zaiyi) -9 (Zaiyi)
=1 i=1

If—all +> e llf - gll
=1
2\1f — gl

!

IA

Il
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Passing to supremum with «; and y;, we get
d&ony (N (Y) <201 —gll,¥n > 2,¥g € B(Y) g convex.

Now passing to infimum with g, we get the desired inequality, which proves
the theorem. a

Remark. By Theorems 6.20, (i) and 6.21, (i), there exists the limit
hmn_,ood((f%]\,v (£) (Y) and moreover,

5 Jim d3y (1) (V) < Foonv (£)(Y).

6.4 Defect of Property for Linear Operators on
Normed Spaces

Everywhere in this section (X, (-,-)) will be a Hilbert space over R or C
and

LC(X)={A:X — X; A is linear and continuous on X}.

For any A € LC (X), we define the norm ||}-||| : LC (X) — Ry by |[|4]]| =
sup {||A (z)|}; ||| < 1}, where ||z|| = \/(z, z).

The following concepts are well-known in functional analysis (see e.g.
Muntean [155] and Ionescu-Tulcea [103]).

Definition 6.11 The operator A € LC (X)) is called:
(?) symmetric (or Hermitean) if (A4 (z),y) = (z, A (v)),Vz,y € X;
(#7) normal, if AA* = A* A, where A* is the adjoint operator of A defined
by (A(z),y) = (z,A* (y)),Vz,y € X and AA* (z) = A(A* (2)),Vz € X
(¢4i) idempotent, if A2 = A, where A% (z) = A(A(z)),Vz € X;
(7v) isometry, if (A (z),A(y)) = (z,y),Ve,y € X (or equivalently, if
1A (@) = |l=]|, Yz € X);
Also, two operators A, B € LC (X) are called permutable if AB = BA.

Suggested by these properties, we can introduce the following
Definition 6.12 Let A, B € LC (X).
(7) The defect of symmetry of A is given by

dsim (A) =sup {[(A(z),y) — (&, A@)] =]l llyll < 1}
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(17) The defect of normality of A is given by
dvor (4) = sup {||A (47 (2)) — A" (A (2))]]; ||lz]} < 1} = ||| 4A™ — AZAl|l;
(t17) The defect of idempotency of A is defined by

dippw (A) = sup {47 (2) — A(@)]|5]l2l] < 1} = [||4° - 4]]

(#v) The defect of isometry of A is given by
drso (A) = sup {||A (z) — z||; |||l <1};
(v) The defect of permutability of A and B is given by
dppry (A, B) = sup {||A (B (z)) — B(A(z))ll; |zl < 1} = [[|[AB — BA|||.

Also, if Y € LC (X), then we can introduce the corresponding defects for
Y, by

) = sup{dsim(4);A€Y};

) = sup{lJAA" — ATAll|; A€V}
Dioew (V) = sup{[}47 -~ All ;A€ TY,

) = sup{diso(A);A€Y};

and

dpprm (Y) =sup {|||[AB — BA||[;A,BEY}.

Remark. Obviously dipem,drso and dpgrar have sense only if (X, ||-{])
is a normed space.

We have

Theorem 6.22 Let A, B € LC (X).
(7) A is symmetric if and only if dsrar (A) = 0;
(#) A is normal if and only if dvor (A) = 0;
(741) A 1s idempotent if and only if dipgm (A) = 0;
(iv) A is isometric if and only if dyso (A) = 0;
(v) A and B are permutable if and only if dpprym (A, B) = 0.
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Proof. Because (i) — (v) are immediate from the Definitions 6.11 and
6.12, let us prove ().

If A is symmetric then obviously dgrar (A) = 0. Conversely, let us
suppose dsrm (A) = 0. It follows

(A(20),y0) = (20, A (¥0)), ¥ l|zoll . llgol] < 1.

Let z,y € X be with }jz||,||y|]| > 1. Obviously there exist zo, 4o and «a, § #
0, such that ||zo]|,]|lyo]l € 1 and © = azg,y = Byo (actually o > ||z|], 8 >
[9l]). We get

(A(z),y) = (A(azo),Byo) = af (A(20),%0)
= af(z0,A(y)) = (azo, A(Byo)) = (2, A(y)),
which proves (i) and the theorem. O

In what follows, we present some properties and applications of the
above concepts of defects.

Theorem 6.23 Let A,B € LC(X). We have

(Z) dSIM (/\A) = |/\| dSIM (A) ,V/\ S R;

dvor (M) = [A]*dnor (4),YA€ R or C.
(11) dsim (A+ B) <dsim (A) +dsim (B);

dsim (AB) < 2|||AB - I|||, where I (z) = z,Vz € X;

dnor (A+ B) < dyor (A) +dnvor (B) + dperu (A, BY)

+dpgprm (A*, B) .
(263) dsim (A_l) = dsrm (A), if there exists A= and A is isometry.
(t) |dsry (A) — dsrm (A7) < 2([|A = A™|[;

dyor (A*) = dnor (4);

dvor (A+ A*) < dnogr (4) + dvor (A7) ;

[drpmar (4) — dipe (A)] < 1A = 47|+ || |42 = (47|

dipem (I — A) =dipem (A);

dperm (A, A*) = dnor (A) .

Proof. (i) We have

dsrar (AA) sup {[{(AA (2),9) — (2, AA ()] ||l |lyl| < 1}

= sup {|]A((A(z),y) — (=, AN; Izl llvll <1}
= |Adsrim (A) VA€ R,
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and
dvor (A4) = [[[(A4) (A7) — (AA") (M)l = IAI” dwor (4).
(#2) It follows

dsim (A+ B) =sup {({A(z) + B (2),y) — (z, A (v) + B )i ll=ll, llvll < 1}

< sup{[{A(z),y) — (=, A (W) + (B (2),y) — (z, By);ll=ll, Iyl < 1}
< dsim(A) +dsim (B).

Then, by
KAB (2),y) — (2, AB (9))| = {(AB - I) (z) ,y) — (2, (I = AB) ()]

< [(AB=1)(z), |+ [(z, (I - AB) (v))|

< WAB =1l - ll=|l - llgll + AB = 11| - ll=|] - iyl
and passing to supremum with ||z||,||y]| < 1, we get dsrm (AB)
<2|||AB - Ij|.
Also,

dyvor {A+ B) =||l(A+ B) (A" + B*) — (A" + B") (A + B)||

= I(AA® = A*A) + (BB" — B*B) + (BA* — A*B) + (AB" — B~ A)|
< dnor(A)+dnor(B) +dperm (A%, B) + dperm (A, B*).
(

iii) If A is isometry then we get |A~! (z)|| = ||z|| and

dsim (A7Y) = sup {|{(47' (z),y) — (=, A" )] ll=ll Il < 1}
= sup {[(A7" (2), A (A7 @)) ~ (A (47" (), A" (W)
4=, A~ ] < 1}
= dsrm (A).
(iv) We have

dsrm (A7) = sup {[{A" (), y) — (A(2),9) +(A(z),9) — (z, A())
+ (=, Ay)) — (=, A" (W) =l Myl < 13

sup {|{(4" — 4) (=), w)|; ||, Iyl < 1}

+sup {[(A(2),v) - (=, A @) llell, llvll < 1}

IA
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+sup {|(z, (A" — A) (¥))|; ll=|l, lwll <1}
< AT = Al + dsra (A) + 1A= A™]],
which implies
dsim (A%) — dsru (A) < 21|14 - All].-
By symmetry, we get
dsrm (A) —dsia (A™) < 2|47 = Alll,
which implies
|dsrar (A) — dsim (A7)] < 2|[|A™ — A]l].
Then,
dvor (A7) = [||A* (47)" = (47)" A*||| = |[|A*A — AA™||| = dnor (4),

and taking B = A* in the second inequality of above (i7), we immediately
obtain

dnvor (A4 A*) < dnor (A) +dnor (A") (= 2dvor (4)).
Also,

dipem (A")

H|(A*)2 _ A

- H|(A*)2—A2+A2_A+A_A*

IN

Jfeany? = 47| + 142 - All + w14 - a7y,

which implies

drpem (A") = dipem (A) < |14 - 4 + |42 - (47)’]
By symmetry,
dipem (A) — dippym (A7) < |[|[A - A™||| + ‘ ’AZ - (A*)Z‘ :

which concludes

|[dipem (A) ~ dipem (A*)| < |||A - A||| + HAZ —(A%)?

Then

il

| (1 — 24+ A%) (z) = (I — A) (z)|
4% () - A@)]],

(1= A4 (&) = (T = 4) (@)
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which immediately proves that
dippm (I — A) = dipem (4) .
Finally, it is obvious that
dpery (A, A7) = |[|[AA” — AAl|| = dnor (4),
which proves the theorem. O

For given A € LC (X), let us introduce the following quantities of best
approximation:

Esiv (A) =1nf {|||A — Bj||; B € LC (X), B is symmetric},

Exon(4) = inf{llA~ Bl +[[14* - B*|| B € LC (x),
IlIBll| <1, B is normal},

Eippwm (4) = inf{||A - BJ||+[||4> - B?|||; B € LC (X),

B is idempotent}
Erso (A) = inf {|||]A— B|||; B € LC (X), B is isometry} .
The following lower estimates for these quantities hold.

Theorem 6.24 Let A€ LC(X). We have:

d A
Esrm (A) > %(),
d A) .
Bxon (4) > R Ly <1,

Erpem (A) > dipem (4),
Erso (A) > drso (A).

Proof. Let A,B € LC(X). If B is symmetric then we obtain
(A (z),y) - (=, A()| =

(A(z),y) —(B(2),9) +(B(2),y) — (2, B(y)) + (2, B(y)) — (=, A ()|

< (A= B)(2), 9|+ (B(e),v) — (z, B)| + [z, (B - 4) ()]
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<A —= Bl el - gl + 1B — Alll -flll - Iyl -

Passing to supremum with ||z, ||y|| < 1 we get dsya (A) < 2|||A — B|||,VB
€ LC(X), B symmetric. Passing to infimum with B, we get the first lower
estimate.

If B is normal and ||| B||| < 1, then

I|AA* — A*A||| = |||AA® — BB* + BB* — A* A||
< ||JAA® — BA* + BA* — BB*|||+|||BB* — B*"A+ B*A — A*A||
< |[[AA™ — BA™||| + |[IBA* — BB*||| +|||B*B — B*A||| + |[|[B~A — A" A]||
< |14 = BIIl - 1A+ BN - 1A = B[l + 1Bl - 11 B — Alll

+I1B™ = A%|Il - {141l < 2([14 = Bl + IlA™ = B™])) -

Passing to infimum with B normal, |||B]|| < 1, we iramediately get the
desired conclusion.
If B € LC(X) is idempotent then

Il4? = A]]| = ||4* - B* + B* = B+ B - 4||| < [[|4* - B?[||+][|4 - BI|,
and passing to infimum with B, we get
dipem (A) < Erpewm (4) .
If B € LC(X) is isometry, then
A (@) = [l | A @) = 1B ()] + 1B ()il - Il |

HIA @ =B @I+ 1B (@) — =l |
14 (z) = B ()l + [ |B (@)l — |l |

Passing to supremum with [jz|| < 1, it follows d;so (4) < |||A - B|||,VB
1sometry, and passing to infimum with B, we obtain

IA A

drso (A) < Erso (4),

which proves the theorem. O
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Remarks. 1) Taking into account the classical development of spectral
theory for symmetric linear operators (see e.g. Muntean [155], p. 155-166)
we think that the quantity dssar (A) can play an important role to the
study of the spectrum of a linear operator A, not necessarily symmetric.
2) Let A, B € LC (X) be two symmetric operators. Then according to
e.g. Bohm [42], p. 206, relations (13) and (24)), the defect dpgprar (A, B)
can have applications to quantum theory, at the minimization of uncertain-

ties for A and B.

At the end of this section, starting from the remark that for a subset Y C
LC(X),dpprm (V) coincides in fact with the defect of commutativity of
Y with respect to the binary operation of composition on LC(X), denoted
by ek o () (Y) (where d(z,y) = ||z — y||), we will transfer here some
corresponding results in the next Chapter 7.

Let us consider two fixed f,g € LC(X) such that f o g = I and define
the (f, g)-dual of o by (see Definition 7.2)

(ACB)(z) =g[(foA)o(foB)](z),Vz e X
(or shortly A® B = gfAfB). According to Theorem 7.2, (), if moreover
llg () — g (W) <ellze—yll,Vz,y € X, where 0 < € < 1, then

elom (©) (V) < e-elop (o) (F(Y)).

Remark. Of course, the above relations are not trivial for Y ¢ LC (X),Y
bounded (that is M > 0 such that |||A]|| < M,VA€Y). Let Y C LC(X)
be bounded. Denoting by

COM (LC(X)) = {F; F is a commutative binary operation on LC(X)},
defining a distance (between F' and the composition law o )
D (o, F)(Y) = sup {|||4B - F (4, B)|[l; A, B € Y}
and the quantity of best approximation
Econ (0) (Y) =inf{D (o, F) (Y); F € COM (LC(X))},

by Theorem 7.6 we get

%dPERM (Y) < Ecom (o) (Y).
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6.5 Defect of Fixed Point

Given a set X in a Banach space and T : X — X that has no fixed points,
it is natural to see how near T has fixed points, that is estimation of the
quantity inf {||z — T'(z)l} : # € X} 1s required. The study of this problem
called minimal displacement of points under mappings, was started in the
papers of Franchetti [77], Furi-Martelli [81], Goebel [91], Reich [171] and
[172] and in the book Goebel-Kirk [92], p. 210-218. In this section, new
contributions to this topic are obtained. Many examples illustrating the
concepts are presented. Firstly, we give definitions and examples concern-
ing the concepts of defect of fixed point and of best almost-fixed point for
a mapping. Then, for various classes of mappings, we study the introduced
concepts. Finally, we deal with some applications to various kinds of equa-
tions that have no solutions. Also, we use the concept of fixed point to
mtroduce and study the concept of defect of property of fixed point for
topological spaces.
Let us introduce the following.

Definition 6.13 (see Goebel-Kirk [92], p.210). Let (X, d) be a metric
space and M C X. The defect of fixed point of f : M — X is defined by
eq (f; M) =inf{d(z, f(x));z € M}.

If there exists 2o € M with eq (f; M) = d (o, f (z0)), then zo will be called
best almost-fixed point for f on M.

Remarks. 1) If f : M — X has a fixed point, i.e. Jzg € M with
f(zq) = zo, then e(f; M) = 0. On the other hand, the defect can be 0
without f to have fixed point. For example, if M = X = [1,+00) and
f(z) =z + % then e4(f;[1,400)) = 0 (where the metric d is generated by
absolute value|-|) but f has no fixed point on M.

2) Let us suppose that eq(f; X) = 0. Then obviously there exists a
sequence (Zn),cn in X, such that d(zn, f (zn)) "2 0, sequence which is
called asymptotically f-regular. Although this condition is not sufficient for
the existence of fixed points for f, imposing some additional assumptions
on f can be derived fixed point theorems (see e.g. Engl [73], Guay-Singh
[97], Rhoades-Sessa-Khan-Swaleh [173)).
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3) f M C X is compact and f : M — X is continuous, then intro-
ducing F : M — Ry defined by F (z) = d(z, f (z)), it easily follows that
F is continuous on M and as a consequence, there exists zp € M with
eq (f; M) = d(zo, f (z0)). Also, in this case eq (f; M) = 0 iff f has a fixed
point.

4) If M is not, compact or f is not continuous on M, then in general does
not exist xo € M with eq4 (f; M) = d (0, f (z0)). The following two simple
counterexamples show us the above statement: M = X = (0,1),d (z,y) =
le—yl,f X=X, f(z)=2?and M = X =[0,1],d(z,y) = |z —y|, [ :
X=X, f(e)=1ifx=0,f(z)=0if z € (0, 1], respectively.

5) Let (X, ||||) be a normed space and M C X be nonempty compact set.
In Ky Fan [75)] it is proved that for any continuous map f : M — X, there
exists a point o € M such that ||zp — f (20)]] = inf {||f (z0) — || ;¥ € M }.
It follows that if moreover f : M — (X \ M), then 0 < e4(f; M) <
llzo — f (@o)]| (where the metric d is generated by norm ||-||). Indeed, let us
suppose that e4 (f; M) = 0. It follows that there exists z, € M, n € N, such
that ||z, — f (zn)]| "2 0. Because M is compact too there is yg € M such
that ||yo — f (yo)|| = 0, i.e. yo = f(yo), which is a contradiction because
Yo € M and f(y) € X \ M.

Example 6.1 Let B denote the unit ball in the space
Cl-1,1]={«z:[-1,1) = R |z is continuous on [~1,1]}

with the uniform metric d (z,y) = sup {|z (t) —y (¢)| : t € [-1,1]}, and for

fixed k£ > 1, set
-1, if -1
a(ty=< kt, if —%
<

1

3

If the mapping T : B — B is defined by
(Tz) (t) = a (max{—1,min{1, z () + 2¢}}),

then d(z,Tz) > 1 — ¢ for each z € C[-1,1] (see Goebel-Kirk [92], p.212).
This implies eq (T'; B) > 1 — £.

Example 6.2 Let X = c¢g be the Banach space of the sequences that con-

verge to 0, endowed with the norm ||z|| = sup {|zn|;n € N}, 2 = (2n),cn-
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If f: X — X is defined by

L 1 1 1
f(a:l,arg,...,xn,...):(1,|:c2|2,...,|xn|2,...)+ Lz )

then f is continuous and for every k € R, the equation f (z) = kz has no
solutions (see Radulescu-Radulescu [170], p.67).
Let My C X,

My = {:c =(&1,22,...,%n,...) €co: (|2n]),>; 18 decreasing}

and fo : My = X, fo () = f (¢)+x. Then d (fo(z),z) = max{?, |.7;2|% + —21-} ,
where d (fo(z),z) = ||fo () — z|| and

eq (fo; Mo) = inf {d (fo(z),2) 1z € My} = 2.
The set of the best almost-fixed points for f; on My is given by
{:L‘ =(z1,®2,...,&n,...) € My : |&2] < ?—1} .
Let M, C X,
M; = {w = (21,%2,...,&n,...) ECp : (xn)n21 is increasing},

and fi : My = X, fi(z) = f(x). Because z = (z1,%2,...,&n,...) € M1
1
implies z, < 0,¥n > 1, we obtain that {|z,|? — z, is a decreasing
n>2

and positive sequence, therefore
r 1
d(fi(z),z) = max{? -y, |z2|? + 5~ xQ} .
The defect of fixed point of f; on M is
eq (fi; Mr) =inf {d (fi(z),z) :x € M1} =2

and the unique best almost-fixed points for fi on M; is g = (0,0, ...,0, ...).

Example 6.3 Let F: C[0,1] — C[0,1] be defined by

(Fz) (t) = (max {t, |z () — z (0)[})% .
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The function F' is continuous and for every k € R, the equation Fz = kx
has no solutions (see Rddulescu-Radulescu [170], p.67).
Let A: C[0,1] = C0,1] be defined by

(Az) (t) = (Fz) () + (1 - k)= (2)

and let ¢ € C'[0,1]. We denote m = infye[ 1)z (1), M = supyc(g 3¢ (t) . We
get

|(Fz) (¢) — kz (1)] < |(Fz) (8)] + |k (¢)]
(max (2, |z (t) — z (0)]))* + [k| |= (1)]
for every t € [0,1]. Because the above inequalities become equalities if

x(t) > 0,Yt € [0,1],k < 0 and 1 is the maximum point of & or if z (t) <
0,vt €[0,1],k > 0 and 1 is the minimum point of z, denoting

|(Az) (t) — = (¢)]

Ci0,1] = {zeC[0,1]:2(t)>0,Vte[0,1]},
C_[0,1] = {zeC[0,1]:2()<0,Vte0,1]},

Ci[0,1] = {2e€Ci[0,1]:2(1)>=2(t),Vte[0,1]},
Cr0,1] = {zeC-[0,1):x(1)<z(t),vte0,1]},

and considering the uniform metric d, we obtain
ea (4;C7[0,1)) = inf{(max(l,M —z(0)F —kM :z € CL [0, 1]} =1,

for all k <0, and

=

eq (A;C* [0,1]):inf{(max(1,x(0) m))* —km: 2 e Cr [0, 1]}_1

for all & > 0. A best almost-fixed point for F on C3 [0, 1] and on C* [0, 1]
is the same, namely the constant zero function (if ¥ # 0 then it is unique).
Now, let us consider the metric d : C'[0,1] — R defined by

d(z,y) = (/01 (x(t)—y(t))zdtf

We observe that z (t) > 0,Vt € [0,1] and k¥ < 0 or z (t) < 0,V¢ € [0,1] and
k > 0 implies

1

(Fz) (t) - kz (1) = (max(t, |z (t) — 2 ()% — ka (t) > 15 — ka (2) > 13,
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for all ¢ € [0,1] with equalities when z (t) = 0,V¢ € [0,1]. By using the
above notations, we have

eq(4;C4[0,1])) = inf{ (/01 ((Fz) (t) — kz (1))? dt)% cz € Cy [0, 1]}
= </01tdt)§ =1,Yk <0

and

eq (4;C_[0,1]) = inf{ (/01 ((Fz) (t) — kz (2))? dt) ’ rz € C_ |0, 1]}

1 i
</ tdt) =1,Vk > 0.
0

A best almost-fixed point for A is the constant function zero.

Taking into account the Remarks 1)-3) after Definition 6.13, we consider
some results for mappings f that satisfy eq (f; M) > 0, i.e. for mappings
that have not neither fixed points nor asymptotically regular sequences.
The first result is the following.

Theorem 6.25 Let (X,d) be a metric space and f : X — X be a non-
erpansive mapping, t.e. d(f (z), f(y)) < d{(z,y), for all z,y € X. Then
eq (f*; X) < neq (f; X) and inf {d (f* (), f**! (z)) ;2 € X} = ea (f; X),
Vn € {1,2,...}, where f* denotes the n-th iterate of f.

Proof. Firstly, by
d(z, f* () < d(z, f(2)) +d(f (2), f* () + ...

+d (f"71 (2), f" (2)) < nd(z, f(2)),
we obtain the inequality. Secondly, by
ea (i X) <d(f" (@), /" (2)) <d ("7 (@), (2) < . < d (e, f (),
passing to infimum, we obtain the desired equality. ]
Remarks. 1) If (X, d) is compact and f: X — X is contractive, i.e.

d(f(z),f(y)) < d(z,y), for all z,y € X,z # y, then it is known that f
has a fixed point ¢ = f (z¢) and in this case obviously we have e4 (f; X) =
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eq (f*;X) = 0,Yn € {1,...,n}. But a nonexpansive mapping even on a com-
pact metric space (X, d), has no in general a fixed point, so the inequality
in Theorem 6.25 is not a trivial one.

2) If f: X — X is o-Lipschitz with o > 1, i.e. d(f(z),f(y)) <
ad(z,y), Ve,y € X, then reasoning as in the proof of Theorem 6.25 we
obtain the inequality

ea (f; X) <inf{d(f" (z), "t () ;2 € X} < a’eq(f; X),Vn> 1.

Let us denote
F ={g:X — X;g has fixed point in X},

where (X, d) is supposed to be compact. A natural question is to find the
best approximation of a function f : X — X, f ¢ F, by elements in F. In
this sense, we can define

Ex (f) =inf{D(f,9);9 € F},

where D (f,g) =sup {d(f(z),9(z));z € X}.
The following lower estimate for Ex (f) holds.

Theorem 6.26 We have ¢4 (f; X) < Ex (f), forany f : X — X.

Proof. Let g € F be with the fixed point y. We get

dy, f () <d@g W) +dg ) ,fW) <D(f9),
ea (f; X) < D(f,9)

for all ¢ € F. As a consequence, ¢4 (f; X) < Er(f), which proves the
theorem. O

Given a metric space (X,d) no necessarily compact and f : X — X,
an important problem is to establish the existence of points o € X with
ea (f; X) = d(xo, f (z0)) . Notice that Franchetti [77], Furi-Martelli [81],
Goebel [91], Goebel-Kirk [92], Reich [171] and [172], do not treat this prob-
lem.

In this sense might be useful the following results.
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Theorem 6.27 Let (X, d) be a complete metric space and f : X — X be
continuous on X witheq (f; X) > 0. Let € > 0 be arbitrary and x € X with

ea (f; X) < d(z, f(2)) <ea(f; X) +e.

Then there exists €, € X such that d(z.,2) < 1,0 < d(z., f(z:)) <
d(z,f(z)) and 0 < d(ze, f(x:)) < d(y, f(y)) + ed(zc,y), for all y €
X,y # ..

Proof. Let us define F : X — Ry, F(2) = d(z, f(z)). By hypothesis,
F' is continuous on X and bounded from below. Applying the well-known
Ekeland’s variational principle to F (see e.g. Ekeland [71] and [72] or Barbu
[33), p. 33, Th. 3.1) we obtain the statement in theorem. a

By replacing d with e~ 5d, in Theorem 6.27 we immediately obtain:

Theorem 6.28 Let (X, d) be a complete metric space and f : X — X be
continuous on X, with eq (f; X) > 0. Let € > 0 be arbitrary and z € X be
with

0<eq(f; X)<d(z, f(x)) <eq(f; X) +e.

Then there exists . € X such that d(z.,z) < /£,0 < d(z¢, f(ze)) <

d(z, f(x)) and 0 < d(z., f(2:)) < d(y, f(¥)) + Ved (ze,y), for all y €
X,y # x..

Deeper results can be obtained if we consider (X, ||-||) as a real Banach
space, because in this case we can use the differential calculus too in normed
spaces.

Firstly we need some well-known concepts.

Definition 6.14 Let (X, ||-|;), (Y,||-|l,) be normed spaces and f: X —
Y. We say that f is Gateaux differentiable at a point z € X, if there exists
the limit limy_,g ¢20 LEH=1E) for all h € X.

We say that f is Gateaux derivable on M C X if for each z € X there
exists a mappings denoted 7f(z) € L(X,Y) = {G: X — Y;G-linear},
such that

p L @Hth) = (@)

t—0,t#0 4

= (v (z)) (h),

for all A € X. The mapping 7 f (z) is called the gradient of f at the point
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We present

Theorem 6.29 Let (X,(,)) be a real Hilbert space and f : X — X be
Gateauz derivable on X with eq(f; X) > 0. Then for each € > 0 there
exists ¢. € X such that

0<eq(f; X) <|loe = f(ze)ll S ea(f; X) +e

and

Le — f (xe)
(i (- v ) (1) < VE,

where 1x (k) = h, for all h € X, ||z|| = /(®, &),z € X and the metric d is
generated by the norm ||-||.

Proof. Let us denote F (z) = ||z — f(z)|]] > 0,2z € X. Obviously F :
X — R is bounded from below. Then

F(z+th)— F(x)

lim
t—0,t7#0 i
- Lm F2(z +th) — F?(z) . 1
T t30,t#0 t F(zx+th)+ F (z)
1

= (VF? () ()

2F (z)

But because F?(z) = (z — f(z),z — f (z)), simple calculations show us
that
(VF?(z)) (h) = 2(z ~ f (2), (1x = V£ () (), Yh € X.

As a consequence, 3 (VF (z)) (h) = <ﬁ%ﬁ, (1x — v f(x)) (h)>, for
all z € X and all h € X. Then taking in the last inequality of Theorem

6.28, y = z. +th,h € X,t # 0, and passing with ¢ — 0 (see also e.g. Barbu
[33], Theorem 3.4, p-35), we obtain

0 <eq(f; X) <|lze — f(ze)ll < ea (f5X) +¢

and

[(VF () (B)] < VE,

which proves the theorem. O
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Because the main problem is to prove the existence of the minimum
points for the nonlinear functional F' (z) = ||z — f (z)||, obviously we can
use well-known variational methods.

In this sense, it is immediate the following.

Theorem 6.30  Let (X, (,)) be a real Hilbert space, ||z|| = \/(z,z),z € X,
the metric generated by norm ||-||, denoted by d and M C X.

(7)) Let f: M — X be Gateaux derivable on £y € M, xg interior point
of M, with eq (f; M) > 0. If ||zo — f (zo)|| = eqa (f; M), 20 € M, then

(o = f (®0) , (1x =V (20)) (h)) = 0,

forallhe X.
(#) If F(z) = ||z — f(2)||, 2 € X is moreover Gateauz derivable on
M C X open convez, then ||zg — f (x0)|| = eq (f; M) if and only if

(zo — f (x0), (1x — VS (z0)) (h)) =0,Yh € X.

Remark. As a consequence, the best almost-fixed points of f on M must
be among the solutions of the equation (z — f (), (1x — Vf(x)) (h)) =
0,Vh e X.

The concepts and results obtained in this section allow us to approach
the study of equations that have no solutions.

Indeed, because each equation E (x) = Ox in a normed space (X, ||-]|)
can be written as f(z) = «, where f(z) = E (z) + #, for the case when
E (2) = 0x has no solutions in X, a best almost-fixed point y of f will
also be called best almost-solution of the equation F (z) = 0x, satisfying
|E ()] = inf {|E (2)]; 2 € X}.

Firstly, we consider the case of algebraic equations.

Theorem 6.31 Let P, (x) be an algebraic polynomial of degree m € N,
with real coefficients such that the equation P, (z) = 0 has no real solutions.
Then m 1is even, there exists at least one and at most % best almost-real
solutions of the equation P, (z) = 0.

Proof. The fact that m must be even is obvious. Denote f (z) = Pp, (z)+
z. Let zg € R be such that e4(f) = |2o — f(20)] = |Pm (z0)] > 0 (the
metric d is generated by absolute value |-|). Because the scalar product
on R is the usual one, (1x — Vf (¢)) (h) = (1 — f' (x0)) - h, by Theorem
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6.30, (), 1t easily follows that f’ (z¢) =1, 1.e. P, (zo) = 0. But the degree
of P/ (&) is odd, so the equation P/, (x) = 0 has at least one solution. We
are interested in the maximum number of points 2 € R that satisfy

eqd (f;R) =inf {|Py, (z)|;2 € R} = | Py (zx)], k € {1, ..., p}.

Obviously that P! (zx) = 0,k € {1,...,p}, where zx,k € {1,...p} are con-
sidered in increasing order.

We show that if eq (f;R) = |Ppn (2x)|, then eq (f;R) # |Pm (zk41)];
which will prove the theorem. Indeed, because Py, (z) has no real solutions,
it follows that Py, () > 0, for all z € R or Py, (z) < 0, for all z € R. Let us
suppose, for example, that P, (z) > 0,Vz € R (the case Py, (2) < 0,Vz €
R is similar). If eq (f; R) = P, (zx) = P (2k+1), then we get that there
is £ € (zk, zr41) with P}, (§) = 0, i.e. zx and x4 are not consecutive, a
contradiction. The theorem is proved. O

Now, we will consider the following integral equation which appears in
statistical mechanics

_1—}—)\/ (s —z)u(s)ds,z €[0,1],

where ) is a real parameter, A > —1. In Rus [182], p. 236 —237 it is proved
that for A > %, the above equation has no solutions v € C'[0, 1].
Let us consider C'[0, 1] endowed with the uniform metric
d(f,g) =sup {|f (z) —g(z)|:z €[0,1]}. Denoting A : C'[0,1] — C[0,1]
by
1

(Au) (z) =1+ /\/ u (s — &) u(s)ds,

x

where X > %, it follows that A has no fixed points in C'[0, 1].

Theorem 6.32 Let A: M — C|[0,1], where A > %,A defined as abouve
and

M= {ueCl0,1]: uis derivable, u'(z) > 0,Vz € [0,1],
0<u(0) < u(l) < 1}

Then eq (A; M) = ﬂ——l and a best almost-fired point for A on M 1s
u:[0,1] = R,u(z) = 2/\,V.’c6[0 1].
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Proof. We have

ed (A; M) = inf {sup {|(Au) (z) —u(z)|:z €[0,1]} : v € M}

mf{sup{‘/ (s — @) u(s)ds — u () + 1

The function g : [0,1] — R defined by

::cG[O,l]}:uGM}.

1
g(z‘):)\/x u(s—z)u(s)ds —u(z)+1

is monotone decreasing. Indeed,

1
g (z)= —/\/ ' (s—z)u(s)ds —u(0)u(z) —u' (z) <0
for every u € M. Then

sup {[g (z)| : = € [0, 1]}

max
{:ve[Ol] }
= max{/\/ s)ds —u (0 +1’ 1-—wu(l )|}

and the conditions 0 < u (0) < u (1) < 1 imply

inf g (z)

sup g (z)|, Lt

sup {|¢ (z)| : xEOl]}—)\/ )ds —u (0) + 1.

This means that the defect of fixed point of A4 is

ea (A;M) = inf{)\/()luz(s)ds——u(0)+1:uEX}

= inf {Au®(0) —u(0)+ 1:u € X,u(z) =u(0),Vz € [0,1]}
4r -1
4

and a best almost-fixed point for A on M is the function u : [0,1] — R,

defined by u (z) = . a
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If we replace the uniform metric on C'[0, 1] with the metric

d: C[0,1] x C'[0,1] = R defined by d (u,v) :(fo (u( (z))? d:c) ,

we obtaln

Corollary 6.3 For the operator A defined above, A > %, we have eq (A; M)
=1 and a best almost-fized point for A on M is u(z) = 0,Vz € [0,1].

Proof. We get

d (u, Au) = (/01 (x\/xlu(s—:c)u(s)ds—u(x)+1)2daz)% > —u(l) +1

by us1ng the monotony of g (as above). The inequality becomes equality if
)\f (s — z)u(s)ds — u(z) = —u (1), almost everywhere z € [0, 1]. It fol-
lows )\fz s —z)u(s)ds = u(z) — u (1), almost everywhere z € [0,1],u €
M. But u(z) — u(l) < 0 and /\f;u(s—x)u(s)ds > 0, which implies
u(z) = u (1), almost everywhere z € [0,1]. Replacing in the above equa-
tion, it easily follows u (z) = 0, almost everywhere = € [0, 1], which by
u € C'[0, 1] implies u (z) = 0,Vz € [0, 1] . Therefore

eqd (A; M) = inf {d (u, Au) :u € X} =1,

and a best almost-fixed points for A on M is u (z) = 0,Vz € [0, 1], which
proves the corollary. |

Finally, we will use the defect of fixed point to introduce a similar con-
cept for topological spaces. Firstly, we recall the following definition, well-
known in the theory of fixed point (see for example Goebel-Kirk [92], Rus
[182]).

Definition 6.15 The topological space (X, 7) has the property of fixed
point if any continuous function f : X — X has fixed point.

The concept of defect of fixed point suggests the following

Definition 6.16 Let (X, d) be a metric space and 74 be the topology on
X generated by d. The defect of fixed point of topological space (X, 74) is
defined by

t(X,Tq) =sup{eq (f; X)|f : X - X is continuous } .
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Remark. We can reformulate the above definition in a more general frame,
considering (X, 7T ) a metrizable space and d the corresponding metric.

Remark. If (X, 74) has the property of fixed point then eq (f; X) = 0 for
every continuous function f: X — X, therefore t (X, 74) = 0.

Example 6.4 We consider the Euclidean metric § on R? and we denote
by 7s the Euclidean topology on R?. Because the defect of fixed point of
the continuous function f : R?2 — R? defined by f(z,y) = (x 4+ a,y+ b) is
es (f; R?) = VaZ + b?, we obtain t (R?, 75) = +o0.

Nevertheless, there is a subset X dense in the topological space (RZ,%)
such that ¢ (X, 75 |x ) = 0. Indeed, denoting C = {(z,y) € R? : 22 + y? = 1}
and {z1,..., 2, ...} a dense subset of C then the set X = UnEN‘X"7 where
Xn ={tnz, : 0 <t <1}, is dense in (R? 75) and any continuous function
f : X = X has at least one fixed point (see Ridulescu-Radulescu [170],
p.145).

Example 6.5 There exist topological spaces that have as defect of fixed
point any real positive numbers. Indeed, let us consider a,b,c,d € R,a <
b<c<d a+d=="b+cad—bc # 0 and the continuous function f; :
[a,6] U [e,d] — [a,b] U [c,d] defined by fo (z) = z + 24=b¢ if » € [a, b] and
fo(z) = o + %=4¢ if ¢ € [c,d]. We have eq(fo;[a,b]U[e,d]) = le__—f;C_I
(with respect to the metric d generated by absolute value ||), therefore
t([a,b]U(c,d],Tq) > %. On the other hand, eg (f;[a,b]U[c,d]) < d—a
for every function f defined on [a, b]U[c, d] with values in [a, b]U[e, d], which
implies ¢ ([a, b] U [¢,d], T4) < d — a.

By using the Remark after Definition 6.16 and Remark 3) after Defi-

nition 6.13, we obtain the following characterization of topological spaces
with the property of fixed point.

Theorem 6.33 Let (X, d) be a compact metric space and Ty the topology
on X generated by d. Then (X,7T;) has the property of fized point if and
only if t (X, T3) = 0.

The property of fixed point is invariant by homeomorphisms, in other
words, it is a topological property. An analogous result can be proved for
the defect of this property.

Theorem 6.34 (i) If (X,d) and (X', d') are isometric then t (X, Ty) =
(X', T);
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(i) t(X,Ta) <diam X,

Proof. Let f : X' - X' be a continuous function and 7 : X — X'
the isometry between (X, d) and (X’,d’), that is the function 7 is bijective
and d(z,y) = d'(i(z),i(y)), for every z,y € X. Because ¢ and ™! are
continuous (see Kelley [116], p. 123), the function i1 o foi: X — X is
continuous and

d((i_1 ofoi) (a:),a:) =d (f(i(z)),i(x)),Vz € X.
We have
eg (£;X') = inf{d (f(z'),2'):2' € X'}
= inf{d (f(i(z)),i(z)):z € X}
= inf{d((i"'ofoi)(z),z): =z e X}
= e(i"tofoi; X),
therefore ¢ (X', Ty) < t(X,T3). We analogously obtain the converse in-
equality and the property is proved.
(11) By
eq (f; X)=inf{d(f(x),z):z € X} <diam X

for any continuous function f : X — X, we obtain the inequality. O

6.6 Bibliographical Remarks and Open Problems

Definition 6.2, Theorems 6.1-6.12, Corollary 6.1, Lemma 6.1 are in Ban-Gal
[29]. Definitions 6.8, 6.12 and 6.10, Theorems 6.13-6.19, 6.20, 6.21, 6.22,
6.24 appear for the first time in this book. Examples 6.1-6.5, Theorems
6.25-6.34, Definition 6.16, Corollary 6.3 are in Ban-Gal [27]. Completely
new are Open problems 6.1 and 6.2.

Open problem 6.1 If Y C X is an absorbent subset of the linear space
(X, +, -) then the well-known Minkowski’s functional attached to Y is de-
fined by

py (¢) =inf{a >0,z €Y} z € X.

This functional characterizes the quasi-seminorms and the seminorms as
follows (see e.g. Muntean [154], p. 43-45):
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(f) p : X — R is quasi-seminorm if and only if there exists ¥ C X,
absorbent and convex such that p = py;

(#7) p : X — R is seminorm if and only if there exists Y C X, absorbent
convex and balanced such that p = py.
In the proof of (%), given an absorbent subset Y C X, the subadditivity
of py is essentially a consequence of the convexity of Y (because py is al-
ways positive homogeneous if Y is absorbent). Let us suppose, in addition,
that (X,]|-]|) is a real normed space. Then, would be natural to search
for a relationship between the defect of subadditivity dsapp (py) (X) and
the defect of convexity dconv (D) (Y) (where D = Dy or D = D*) in
such a way that for absorbent Y C X,dsapp (py)(X) = 0 if and only
if deconv (D) (Y) = 0. Similarly, in the proof of (¢), given an absorbent
and convex subset Y C X, the absolute homogeneity of py is essentially
a consequence of the fact that Y is balanced. Therefore, in this case
would be natural to search for a relationship between the defect of abso-
lute homogeneity dag (py) (X) and the defect of balancing dpar (D) (Y),
(where D = Dy or D = D*) in such a way that for absorbent and convex
Y C X,daw (py){(X) =01f and only if dgar (D) (Y) = 0.

Open problem 6.2 Firstly let us recall some known facts about algebras
of operators. Let £ denote a real or complex Jordan-Banach algebra, that
is a non associative algebra whose product satisfies a-b =b-a,(a-b)-a* =
a- (b . a2) ,Va,b € E and whose underlying vector space is endowed with a
complete norm ||-|| with the property ||a - b|| < ||a]| - ||b]|,Va,b € E. By a
derivation of E we mean a linear operator D : E — E, satisfying

D(a-b)=D{a)-b+a-D(b),Va,be E.

It is known that every derivation on a semisimple Jordan-Banach algebra
is continuous. We define the operator of right multiplication by an element
a € E, as the operator R, : F — F, given by

R,(z)=a-2,VZEFE.

We also define the operator U, = 2R2 — R,2. The multiplication algebra of
E, denoted by M (E) is defined as the subalgebra of L (E) (the algebra of all
linear operators on E) generated by all multiplication operators on E. Note
that M (E) C LC (E)-the algebra of all bounded linear operators on E. If
D is a derivation on F, then for every a € E we have DR, — R,D = Rp(a),
and so the subalgebra of those elements 7' in M (E) for which DT — T'D
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liesin M (E), equals to M (E) and consequently we can define a derivation
on M (E) by

D*(IY=DT-TDNT e M (E).

(For all the above concepts and results see e.g. Villena [215]). Now, given
A € LC(X), we can introduce the defect of derivation of A on unit ball
B(0;1), by

dper (A) (B (0;1)) =sup{||A(a-b) - (A(a) b+a - A(d))|;a,be B(0;1)}.
Also, it is obvious that
D" (D)l = dperM (D, T) .

It would be interesting to study the properties of dpgr (A4) and dpgra (D, T)
and their possible implications in operator theory.

Open problem 6.3 Let (E,||:||]) be real normed space and
Py (E) ={X C E; X is bounded } .

For any ¢ > 0 and X € Py (E), characterize/study the following problem
of best approximation with restrictions of X:

B (X) = inf { Dy (X,Y);Y € Py (E) ,d¥ (X,Y) < e},

where Dy (X,Y) denotes the Hausdorff-Pompeiu distance and df (X,Y)
is any from the defects of orthogonalities introduced by Definition 6.2.
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Chapter 7

Defect of Property in Algebra

Let (X, d) be a metric space and F' : X x X — X be a binary operation
on X. If F'is not commutative, or is not associative, or is not distributive
(with respect to another binary operation G : X x X — X), or has no
identity element, or not every element has an inverse, so on, it is natural
to look for a concept of defect of F' with respect to these properties.

It is the main aim of this chapter to introduce and study the concept of
defect of F' with respect to the above properties.

In Section 7.1 we study this problem in general context and a method
that decrease these defects is presented. Section 7.2 deals with the cal-
culation of these defects for various concrete examples and Section 7.3 is
devoted to a particular class of binary operations called triangular norms.
Finally, in Section 7.4 we give some applications of introduced defects.

7.1 Defects of Property for Binary Operations

We begin with the following basic definitions.

Definition 7.1  Let (X, d) be ametricspace, Y C X and FF: X x X —» X
be a binary operation on X.
(7) The quantity

elom (F) (V) =sup{d(F (z,y), F (y,2));2,y €Y}

is called defect of commutativity of F' on Y with respect to the metric d.
(27) The quantity

¢hs (F) (Y) =sup{d(F (F (2,9),2),F (2,F (y,2)));2,y,2 €Y}

277
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is called defect of associativity of F' on Y with respect to the metric d.
(171) The quantity sup {d (F (z,y),z);z € Y} is called defect of identity
element at right of y (with respect to d) and

efpr (F) (V) = inf {sup {d (F (z,y) ,z);2 €Y} ;y €Y}

is called defect of identity element at right of F on Y (with respect to d).
Similarly, we can define the defect of identity element at left,

efpy (F) (Y) = inf {sup {d (F (y,2),2);z €Y};y € Y}.
If there exists eg € Y such that
efpr (F) (Y) =sup {d(F (z,er),2);2 €Y} >0,

then er will be called best almost-identity element at right of ' on Y.
Analogously, if there exists e € Y such that

e?DL (F) (Y) :Sup{d(F(eL,l'),:L') T € Y} > 0)

then ez will be called best almost-identity element at left of F on Y.
(v) Let us suppose that there exists a € X such that F(z,a) =
F(a,z)=2z,Yz € X. Then

inf {d (F (z,y),a);y €Y}
and
inf {d(F (y,z),a);y €Y}

are called defects of invertibility of = at right and at left, respectively. The
quantities

etnr (F) (Y) = sup {inf {d (F (z,y) ,a);y €Y}z €Y}
and
efnr, (F)(Y) = sup {inf {d (F (y,2),0);y € Y};z €Y}

are called defect of invertibility of F on Y, at right and at left, respectively.
The quantity ey (F)(Y) = max{efy; (F)(Y), edng (F)(Y)} is called
defect of invertibility of F' on Y (with respect to d).

If there exists £} € Y such that

0<inf{d(F(z,y),a);y€Y}=d(F(z,z}),a),
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then z} will be called best almost-inverse at right of z on Y with respect
to d. Similarly, if there is 27 € Y with

0<inf{d(F(y,z),a);y€eY}=d(F(z},2),a),

then z7 will be called best almost-inverse at left of z on Y with respect to
d.
(v) The quantity

e%EL (F) (Y) = sup {d($ay) JE, Y € Y)F(Zax) = F(Z;y)}
is called defect of regularity at left of z on Y. Analogously,
edRER (F) (Y) = sup {d (CE, y) ;ian’E Ya F(:L')Z) =F (y)z)}

is called defect of regularity at right of z on Y.
(vi) The quantity

efpmy (F) (Y) = sup{d (F (z,2),2);2 € Y}

1s called defect of idempotency of F' on Y (with respect to d).
(vit) If G : X x X — X is another binary operation on X then

edDISL (F;G)(Y) =sup {d(F(x,G(y,2)),G(F(z,y),F(z,2)));
z,y,2 €Y}

is called defect of left-distributivity of F' with respect to G on Y. Similarly,

¢brsp (F;G)(Y)=sup {d(F(G(y,2),2,),G(F(y,2),F(z,2));
z,y,z€Y}

is called defect of right-distributivity of F' with respect to G on Y. If
F = G, then ebygp (F; F)(Y) and eb ;55 (F; F) (Y) are called defects of
autodistributivity (left and right) of 7 on Y. Also,

e (F;G)(Y) = max {sup {d (F (a,G (a,b)),a);a,b € Y},

sup {d (G (a, F (a,b)) ,a);a,6 € Y}}

is called defect of absorption of (F,G) on Y.
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Remark. If (X,d) is of finite diameter (i.e. d is bounded on X) obviously
all the quantities (defects) in Definition 7.1 are real nonnegative numbers.
If d is not bounded on X, then it is known, for example, that d; =
bounded on X and equivalent to d.

d -
1+d 18

It is immediate the following

Lemma 7.1  With the notations in Definition 7.1 we have:

(4) F is commutative on Y if and only if €%y, (F) (Y) = 0.

(i5) F is associative on Y if and only if ¢4 4 (F) (Y) = 0.

(¢é¢) If F has identity element at right in Y, i.e. there is a € Y such
that F (z,a) = z,Vz € Y, then e¢pp (F)(Y) = 0. Conversely, if (Y,d) is
compact and F is continuous on Y X Y (with respect to the bor metric on
Y xY) then ey (F) (Y) = 0 implies that F has identity element at right
in Y. Similar results hold in the case of identity element at left.

(tv) If F has identity element in Y and each © € Y has inverse at
right, then e$yg (F)(Y) = 0. Conversely, if (Y,d) is compact and F is
continuous on Y x Y (with respect to the bor metric on Y x Y ), then
e$nr (F)(Y) = 0 implies that each x € Y has inverse at right. Similar
results hold for invertibility at left.

(v) A set Y C X is called regular at left if each z € Y is regular at
left (ie. F(z,z) = F(z,y) implies x = y). Then Y 1is regular at left
with respect to F if and only if b, (F) (Y) = 0. Similar results hold for
regularity at right.

(vi) A setY C X is called idempotent if each x € Y is idempotent (with
respect to F'). Then'Y is idempotent with respect to F if and only if
efppm (F)(Y)=0.

(vit) F is left-distributive (right-distributive) with respect to G on'Y if
and only if eb51 (F;G)(Y) = 0 (ebi5r (F;G)(Y) = 0). Also, the pair
(F, G) has the property of absorption onY if and only if e 5 (F,G) (Y) = 0.

Proof. The proofs of (i), (ii), (v), (vi) , (vi{) are immediate. It remains
to prove (¢4%) and (iv).
(23t) The first part is obvious. Conversely, by the obvious inequalities,

d(F(:I:,yn),.’L‘) < d(F(a:,yn),F(w,yo))+d(F(x,y0);;c),
d(F(z,p),2) < d(F(z,), F(z,yn)) +d(F (z,yn),2),
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passing to supremum after z € Y (here y,,yo € Y, n € N), we immediately
get

|f (%) = f (%0)| = Isup {d (F (z,4n) , ) ;2 € Y}

—sup {d(F (z,40),z);z € Y} <sup{d(F(z,y0),F (z,yn)) ;2 €Y},

where we have denoted f:Y = R, f(y) =sup {d(F (z,y),2);x €Y}.

Let y, ne yo in the metric d. Because F : Y x Y — X is continuous
on the compact Y x Y (with respect to the metric D ((z1, 1), (22,92)) =
= max{d (z1,22),d (y1,y2)}) it follows that is uniformly continuous on
Y x Y, which implies

sup {d (F (z,y0), F (z,yn));z € Y} "0

that is f is continuous on Y. Therefore, by the equality
edpr (F)(Y) =inf {f (y);y € Y}, there exists a € Y such that f(a) =
efpr (F)(Y). Now, by e¢p g (F) (Y) = 0, it easily follows that
d(F(x,a),z)=0,Ve €Y, ie F(zr,a)=2c,Vz €Y.

(iv) The first part is obvious. Let us suppose now e¢yy (F)(Y) = 0.
It follows that inf {d (F (z,y),a);y €Y} =0,Vz €Y. Let z € Y be fixed.
By hypothesis, there exists y € Y such that d(F (z,y),a) = 0, that is
F (z,y) = a and y is the inverse of z at right. The lemma is proved. g

A very natural question is that starting from a binary operation G, to
construct another binary operation F' that improves G, that is decreases the
defects of properties in Definition 7.1. To give an answer to the question,
we introduce the following.

Definition 7.2 Let f,g : X — X be with fog = ¢, where ¢ is the identity
function on X. If G is a binary operation on X, then F : X x X — X
given by F' = g o G(f, f) is called the (f,g)-dual of G (i.e. F(z,y) =
9(G(f(x),f(¥),V(z,y) € X x X).

Remark. Actually, the above definition was introduced in Mayor-Calvo
[143] only for X =[0,1] C R.
Concerning this concept, firstly we present

Theorem 7.1 (i) F is associative on X if and only if G is associative
on X.

(#t) F is commutative on X if and only if G is commutative on X.
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(231) If F' has identity element at right (left} then G has identity element
at right (left). Conversely, if in addition f is injective, then the fact that
G has identity element at right (left) implies that F has identity element
at right (left). If a is identity for F, then f(a) is identity for G in all the
cases.

(iv) If F has identity element a and Y C X 1is invertible at left (right)
with respect to F (that is each element of Y is invertible at left (right)),
then f(a) is identity element for G and f(Y) is invertible at left (right)
with respect to G. Conversely, if in addition f is injective, then Y C X s
invertible with respect to G implies that f~! (Y) is invertible with respect
to F, at left and right, respectively.

(v) Let us suppose, in addition, that f is injective. If Y C X is regular
at left with respect to F (that is each element of Y is reqular at left), then
F(Y) is regular at left with respect to G. Conversely, if Y C X is regular
at left with respect to G implies that =1 (Y) is regular at left with respect
to F'. Stmalar results for regularity at right hold.

(vi) IfY C X 1s idempotent with respect to F, then f (Y) is idempotent
with respect to G. Conversely, if in addition f is injective, then Y C X is
idempotent with respect to G implies that f=1 (Y) is idempotent with respect
to F.

(vit) Let F; be the (f,g)-duals of Gi,i € {1,2}. Fy is left-distributive
(right-distributive) with respect to Fy if and only if G is left-distributive
(right-distributive) with respect to Gg. Also, if the pair (Fy, F3) salisfies the
axioms of absorption, then (G1,G2) satisfies the axioms of absorption. If,
in addition, f is injective, then the converse of the last property holds.

Proof. (i) See Mayor-Calvo [143], Proposition 1.1.
(#7) If G is commutative then we get

Fle,y) =g(G(f(2), f () =9(G{ (W), f(2)=F(y2).

Conversely, if F' is commutative, since f is surjective, denoting z = f ('),
y=f(y), we get

Glzy) = G, f)=FfFEY))
= f(FW,2) =G (). f(2)=G(y2).
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(¢i%) Let a € X be identity element at right of F, that is F (z,a) = z,
for all z € X. We get

f(2)=F(F(z,a)) =G(f(z),f(a),

for all z € X. Since f is surjective we get f (X) = X, which implies that
f (@) is identity element at right of G.

Conversely, let us suppose that f is injective, i.e. f is bijection on X
and let a’ € X be the identity element at right of G, that is G (z',d') = 2,
for all ¢’ € X. Since f is bijection, let &’ = f (z),a’ = f (a). We get

G(f(z),f(a))=f(F(z,a)) = (),

which implies F (z,a) = z, for all z € X.

The case of identity element at left is similar.

(iv) Let a € X be identity element of F' and let us suppose that Y C X
is invertible at left with respect to F', that is, forall y € Y, there is y* € Y
such that F (y*,y) = a. By the above point (i1}, f (a) is identity element
of G. Then

fl@=fFW.9) =G W), fW),

that is f (y) has left inverse, f (y*).

Conversely, let us suppose that f is injective and that ¥ C X is invert-
ible at left with respect to G. Let a’ € X be the identity element with
respect to G. That is, for all y € Y, there is y, such that G(y,,y') = d'.
Since f is bijection, let ¥ = f (¢), ¥, = f (z*),d = f(a). We get

G(f(e7),f () =F(F (", 2)) = f (a),

which implies F (z* ) = a, with € f~! (Y) and a identity element with
respect to F'.

The case of invertibility at right is similar.

(v) Let Y C X be regular at left with respect to F, that is for all
z €Y, from F(z,z) = F(z,y) it follows ¢ = y. Let 2/ € f(Y) be certain,
2 = f(2),2 € Y, and let us consider the equality G (#/,b') = G (#',¢).
Since f is surjective, let us denote &' = f (b),¢’ = f (c). The above equality
becomes

F(F(z,0) = f(F(2,0)),
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which by injectivity implies F (z,b) = F' (z, ¢), which by hypothesis implies
b=c, thatis b’ = f(b) = f(c) ="

Conversely, let 2 € f~!' (V) and let us consider the equality F (z,b) =
F(z,¢). It follows

G(f(2),f(0)=G(f(2),f(e)),
with f(z) €Y, which by hypothesis implies f (b) = f (c), i.e. b=c.

(vi) Let € Y be with F' (2, ) = z. Applying f weget G (f (¢), f(2)) =
f(z), i.e. f(Y) is idempotent with respect to G. Conversely, let z €
f~H(Y), i.e. f(z) € Y, which implies G (f (2), f (2)) = f(2). Tt follows
f(F(z,2)) = f(z), which by injectivity of f implies F (z,z) = 2, for all
z€ f1(Y).

(vii) Firstly, we consider the case of distributivity. Let us suppose
that Fy is left-distributive with respect to Fs. Since f is surjective we get

r=f(@),y=f(y),z2=7F(7) and
Gi(2,G2(y,2)) = G1 (f ('), G2 (f (V) , F (')

= Gi(f (@), f(R(y,7) = f(Fi (2, F2 (¢, 7))
= f(R(F (e y), P (2,7) = f(F2(9(G1(2,y),9(G1(z,7))))
= Ga(f(9(Gi(z,9)), f(9(G1(z,2)))) = G2(G1(2,y),G1(x,2)).
Conversely, let us suppose that G is left-distributive with respect to
GQ. We get
Fi(z,Fa(y,2)) = ¢g(Gi(f(2),G2(f (), [ ()
= 9(G2(G1(f(x),f(),C1(f (=), f(2))))
= Fy(Fi(z,y),F(z2).
Similar results hold for right-distributivity.
Secondly, let us suppose that the pair (Fi, Fy) satisfies the axioms of

absorption, i.e. Fi(a, Fy(a,b)) = a and F;(a, F1 (a,b)) = a. Because f is
surjective, we have

G1(a,Gz(a,b)) =G1(f(a'), G2 (f(a'), (b))

=G1(f(d),f(F2(d\V) = f (Fi(d', F2(d', 1)) = f () = a,
where ¢ = f (a') and b = f (V). Similarly, G5 (e, G (a,b)) = a.
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Conversely, let us suppose that the pair (G1, G2) satisfies the axioms of
absorption. We get

f(F1(a, Fa(a,b))) = Gi(f(a), f (F2(a,b)))

=G1(f(a),G2(f (a), £ (b)) = f(a),

which by the injectivity of f implies Fi (a, F3 (a, b)) = a. Similarly, we get
F5(a, F1 (a,b)) = a. The theorem is proved. a

The next theorem needs the following

Definition 7.3 Let (X, d) be a metric space and F,G : X x X — X. We
say that F' is less than G (we write F < G) if F is the (f, g)-dual of G,
where d (g (z),g(y)) < kd(z,y),Vz,y € X and 0 < k < 1 is a constant.

Remark. Definition 7.3 in the case X = [0,1] and d(z,y) = |z — y| was
considered in Mayor-Calvo [143].

Theorem 7.2  With the notations in Definitions 7.1 and 7.3, the condi-
tion F' < G implies:

(3) edopr (F)(Y) < kedoas (G) (F (Y)),VY C X. In particular,
ebou (F)(X) < kedoy (G) (X) .

(i1) e4g (F) (V) < keds (G) (F(Y)),VY C X. In particular,
eds (F) (X) < ke (G) (X).

(133) Let F; be the (f,g)-duals of Gi,i € {1,2}, such that F; < G;,i €
(1,2} Then ebysy, (Fii B2) (V) < kebysy (G1; Ga) (£(¥)) WY C X, and
in particular €brsp (Fi; Fa) (X) < kebrsp (G1;Ga) (X) . Similar results
hold for e%,SR.

Proof. (i) It is immediate by the relations

d(F(2,9),F(y,2)) = d(g(G(f(e),f ()9
< kd(G(f(z),f(y),G(

and by f(X) = X.
(#7) It is immediate by the relations

d(F(F(z,y),2),F(z,F(y,2))

d(g(G(f(F(2,9),f(2)),9(G(f(2),f(F(y,2)))
kd (G(G(f (=), F{y), [ (2),G(f(2),G(f(y). [ (2)))

I

IA
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and by f(X) =X.
(141) It follows by f(X) = X and by the relations

d(F1 (2, F3(y,2)), F2 (F1 (2, 9) , F1 (2, 2)))
=d(9(G1(f (=), f(F2(9,2)))),
9(G2(G1(f (<), f(¥),G1(f (=), [ (¥))))
<kd(Gi(f(2),G2(f(v), (),

G2 (G1(f(2), f(¥), G (f (), F (),

which proves the theorem. a

Remark. Because 0 < k < 1, Theorem 7.2 shows that the (f, g)-duals
improve the properties of commutativity, associativity and distributivity.

Reasoning similarly with the proof of Lemma 7.1, (¢47) and (iv), we get
the following

Theorem 7.3 Let us suppose that Y C X is compact in (X,d).

(§) If F: X x X = X 1is continuous on Y x Y with respect to the box
metric on X x X (t.e. D{((x1,y1),(z2,¥2)) = max{d(z1,22),d{(v1,92)}),
edpr (F)(Y) > 0,efp. (F)(Y) > 0, then there exist ep,er, € Y, best
almost-identity on Y, at right and at left, respectively.

(#%) If F is continuous on Y with respect to the second variable for
each fired x € Y, then each x € Y has best almost-inverse at right in 'Y .
Swmilarly, if F is continuous on Y with respect the first variable for each
fized © €Y, then each x € Y has best almost-inverse at left in'Y.

In what follows we present some connections between the defects of
properties in Definition 7.1 and some classical concepts in the theory of
algebraic structures. The first result is the following

Theorem 7.4 Let (X;,d;),: € {1,2}, be two metric spaces and F; :
Xix Xi = X;,1€{1,2}.

(¢) If there exists isometric homomorphism h : X1 — X, (i.e. di (z,y) =
=dy(h(x),h(y)) and h(F1(z,y)) = F2(h(z),h(y)),Vz,y € X1 ), then
edon (F1) (X1) = eZop (F2) (Xa) and el (F1) (X1) = efis (F2) (Xa).
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(77) Let us define F : (X1 x X2) x (X1 x X2) = X1 x X2 by

F((z1,22), (y1,92)) = (F1 (z1,11) , Fa (z2,¥2)) and d((z1,22), (y1,y2))
= max {di (21,¥1),d2 (z2,y2)} the bor metric on X = X; x X2. Then we
have

ebom (F)(X) = ma‘x{edClOM (F1) (X1) )edC2OM (F2) (X2)} )
ehs (F)(X) = max{els (F1) (X0), e (Fa) (X2)}
Proof. The proof is immediate. O

Concerning the factor group we present

Theorem 7.5 Let (X,-,d) be a metrizable non-commutative group, N
a closed normal divisor of X and d a metric that is left invariant. If d
denotes the induced metric on X/N and ® the induced operation on X/N,
then

eGom (©) (X/N) < elop () (X).
Proof. According to e.g. Meghea [144], p.621, d is defined by
g(a,ﬂ) = inf {d (uz,vy);u,v € N,z € o,y € B} ,VYa, B € X/N,

and it is left invariant. We have o = Nz, 8 = Ny and we get

etoy (©) (X/N)

= sup {J((le) © (Nas), (N23) © (Na1)) 21,22 € X |

= sup {J(N (z1z2), N (zaz1)) ;21,22 € X}
= sup {inf {d (u (z122) ,v (z221)) ;u,v € N} ;21,25 € X}
< (choosing u = v = 1x) < e&on () (X),
which proves the theorem. a
Remark. Let (X,-) be a non-commutative group and d a metric on X.

Let us denote the center of X by Z (X) = {z € X;Vy € X,zy = yz}. Then
it is obvious that el gur (1) (X) = edop () (X\Z (X)) .
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Now, for a metric space (X, d), let us denote
COM (X) ={F : X x X = X; F is commutative on X}
and
AS(X) ={F : X x X = X, F is associative on X} .
For F,G : X x X — X, we define the distance between F and G by
D (F,G) = sup{d (I (z,9),C (z,9)); 2,y € X}.
Also we define
Ecom (F)=mf{D(F,G);G € COM (X)}
and
Eas(F)=inf{D(F,G);G e AS(X)},

the best approximation of a binary operation on X by commutative oper-
ations and by associative operations, respectively.
We present

Theorem 7.6 Let (X,d) be a metric space with d bounded on X. We
have %e‘éOM (F) < Ecom (F) and %ef‘s (F) < Eas (F), for any binary
operation F : X x X =+ X.

Proof. We have
d(F(z,y),F(y,2)) < d(F(zy),G(z,y)+d(G(z,y),G(y )
+d(G (y,z), F(y,2)) < 2D(F,G),YGeCOM (X),z,ye X.

Passing to supremum after z,y € X and then to infimum after
G € COM (X), we get the first inequality.
To prove the second inequality, we start from

d(F(:L‘,F(y,z)),F(F(a:,y),z)) Sd(F(az,F(y,z)),G(w,G(y,z)))

+d(G(2,G(y,2)),CG (G (2,y),2) + (G (G (2,9),2), F (F(2,9),2)),

for all G € AS(X) and we follow the above reasonings, which proves the
theorem. 0
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7.2 Calculations of the Defect of Property

In this section we calculate and estimate the defects of property in Defini-
tion 7.1 for various concrete examples. A possible application would be that
if we know, for example, the defect of commutativity of a binary operation
F and if we know F (z,y), then we can obtain an estimate of F (y,z) in
terms of F (z,y) and ebop (F) (X) .

Example 7.1 Take X = [0,1] C R,d(¢,y) = |t —y| and F (z,y) =
(I1-Xz+ Ay, where A € (0,1) is fixed. F is non-associative, has no
identity element and if A # % then it is non-commutative. Because

|F(z,9) = F(y,2)[ = (1= A) (- y) + Ay — 2)|

SI=2X-|e—y| < (12l
for all 2,y € [0, 1], it follows

etoum (F)([0,1]) = 1 - 2]
Then,

|F (z, F (y,2)) — F(F(2,y),2)]|

(L= Az +A (L= Ny+Ars) = (1= A (L= Az + Ay) + A2)]
,:1: (@-xn-a-»?) —z(,\—)\z)lz(l—/\){/\z—/\z{

= (I1-XXlz—2z|,Vz,y,2z€[0,1],

which immediately implies e4 ¢ (F) ([0,1]) = A (1 = A).
Let y € [0,1] be fixed and let us consider

|F(z,y) —z|=|1-Nec+ry—z|=A|e—y|.
Passing to supremum, we get
sup {|F (2,y) — z|;2 € [0,1]} = Amax{y,1 -y},

which represents the defect of identity element at right of y. Passing now
to infimum, we get

efpr (F)([0,1])) = inf {Amax{y,1 - y};y €[0,1]} = %’
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and % is the best almost-identity element at right of F on [0, 1]. Similarly,
|F(y,z2) —z|=[(1=-ANy+rz—z|=(1-X)|z—y]
and reasoning as above, we get e, (F)([0,1]) = 152 and. y = 3 is the

best almost-identity element at left of F' on [0,1].

Remark. Given ¢ € (0,1), we can define f and g in Definition 7.2

and Definition 7.3, by g (¢) = (1—¢)z,Vz € [0,1] and f(z) = ;Z;,z €

[0,1—¢],f(z) =1,z €[l —¢,1]. Then the (f, g)-dual of I defined by
F*(z,y) = (1 =) (1= A) f(2) + Af (v))

_ satisfies Theorem 7.2, (i) and (é¢), with k =1 —¢.

Example 7.2 If X =Y = [0,1],d(z,y) = | —y|,Ve,y € [0,1], then

the binary operation F (z,y) = 2 Ay, where a Ab = min{a, b}, has the
defect of associativity equal to %. Indeed, denoting

E("L"yvz) = IF(F(a:,y),z)—F(a:,F(y,z))[

= y((xz/\y)Q/\z) —~ (xZ/\(yz/\Z))‘,

the following situations are possible:
Case 1: y < z2. Then y?> < y < z? and E (2,y,2) = 0;

Case 2: y > z2.

Ify > &? > y? then E (2,y,2) = |[(2* A 2) — (yz/\z)[g( ANz)—(z* Az)
In the case z < y* < we get E(z,y,2) = 0. If y* < y? < z then
E(z,y,2) = y* - z < y? then

th equality if z = y*> =

l\)|>—t

v w <

y* < %, with equality 1fy— 32£ If y* <
E(.z’,y,z):z—y‘lsi,w
Ify > y?> > 22 then E (z,y, 2 —|(z /\z)—( 2/\zl In the case z < z* <
1wegetE(a}y,)_O Ife? < z<z’then E(z,y,2) = z—z? < 2?—2* <
,w1thequahty1fa:—\/_ If 2 < 2?2 < 2 then E (2,y,2) = 22 —2* <

with equality if z = 32£ .

As a conclusion,

elAls( F)[0,1] = sup{‘((zz/\y)z/\z> - (:L'Z/\y2 /‘\z)

Example 7.3 Let H = {q¢ = a¢ + a1 + jas + kasz;a, € R,p € {0,1,2,3}}
be the quaternionic division ring, where 2 = j? = k% = —1,ij = —ji =
k,jk = —kj =1kt = —ik = j. It is known that the multiplication denoted

;1573/’26[071]}:_
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by - is non-commutative. If ¢1 = ag+ia; +jas+kas, g2 = bo+1iby +jby+kbs,
then simple calculations show that

q1 - 92 = (aobo — a1by — agbs — asbs) + i (agby + a1bg + az2bs — aszbs)
+j (apby + asbo + asby — a1bs) + k (aobs + asbo + ayby — asby),
q2 - q1 = (aobo — a1by — asby — asbs) + i (aghy + a1bg — (azbs — asbs))

+J (aob2 + azbo — (azby — a1bs)) + k (aobs + asby ~ (arbs — azby)) .

Let us choose on R* the norm ||z|| = max {|z,|;p € {0,1,2,3}}, for every
x = (21, T2, 23, 24) € R* and the metric on H generated by this norm, that
1s

d (q1,92) = ||(a0 — bo, a1 — b1, a3 — by, az — b3)]|.
We have
d(q1- 92,92 - 1) = 2max{|azbs — asbs|, |azby — a1bs], |a1bs — aszb1|}.

Let us choose Y = {z € R%|[z|| < r} and let us suppose ¢1,q2 € Y. Tt
follows |ap|, |by| < r,Vp € {0,1,2,3} and

max{|a2b3 - a3b2| s |a3b1 - albsl s |a1b2 - aZbll} = 27"2.
As a consequence, in this case we get
etom (-) (Y) = 4r°.

Example 7.4 Let us consider a particular case of Lie group called the
Heisenberg group (see e.g. Howe [102]), defined by

H={9g=({,2),teR,z€ C},

where the multiplication is given by
1
(tl, 21) * (tz, Z2) = <t1 + s+ §Im (ETZQ) , 21 + Zz) .

It is known that * is non-commutative. Denoting z, = 2, + iy, € C,p €
{1,2}, we have

1Yz — T2Y1

7 ,(a:1+a:2)+i(y1+y2)),

(t1, 21) * (t2,22) = <t1 +1s +
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TiYz — T2

2 (21 +$2)+i(!/1+y2)>-

(t2,22) * (t1,21) = (t1 +1 —
Let us consider on H the metric D : H x H — Ry defined by
D ((t1,21), (t2, 22)) = max {|t1 —ta], |21 — 22["},
for every (tp,2,) € R x C,p € {1,2}, where
|21 = za|" = max{|es — 22|, [y1 — w2},
21 = x1 + ty1, 22 = T2 + ty2. We get
D ((t1,21) * (t2, 22), (t2, 22) * (11, z1)) = |21y2 — z221 ] -

Let Y = R x U,, where U, = {z € C;|z|" < r}. We easily obtain

edCOM (*)(Y) = 2r2.

Example 7.5 Let ¢ > 0,U. = {z€C;lz|<c} and & : U x Us — U,
given by 2y @ 29 = 2EE2 V2, 25 € U, (see e.g. Ungar [213], p.1410). The

14222
binary operation & is Ezalled Einstein’s velocity addition. Obviously & is
non-commutative and non-associative. In fact (U, @) forms a grouplike
object called gyrogroup (see e.g. Ungar [213], p.1410). For simplicity, let
us take ¢ = 1 and let us consider on U, the Euclidean metric d (21, 22) =

|21 — 22| . We have

(2172 — Z122) (21 + 22)
(1 +7122) (1 + 2173)

d(z21 D 22,22D 21) =

2
(1+a)® + b2’

uU—1u

< (lz] + |22]) 0T 05D

‘ = (a1 + |22))

where u = 2123 = a + 1b.
Let us choose ¥ = {z € Cslz] < %}, for example. Then, for all 21,20 € Y
we get

d(z1 ® 29,290 21) < ———,
(21 ® 29, 2 1)_(1+a)2+b2
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where |u| < {5 and therefore |a|, b] < |u| < %. By [1+a| > |1 — |a|| > 13,
we obtain
1 256 16
d ¥ G
(21 @ 22,22D 71) < (1+a)2 <16 225 = 295

and el opr (@) (V) < 535 = 0,07(1).

7.3 Defect of Idempotency and Distributivity of
Triangular Norms

In 1960 Schweizer and Sklar [191] defined the triangular norm as a binary
operation on the unit interval [0,1],( i.e., a function T : [0,1] x [0, 1] —
[0,1]) which is commutative, associative, monotone in each variable and
T (z,1) = z,Vz € {0,1]. Similarly, a triangular conorm is a commutative,
associative and monotone (in each variable) function S : [0, 1]x[0, 1] — [0, 1]
which satisfies S (z,0) = z,Vz € [0,1] (see also Klement-Mesiar [119]).

The triangular norms and conorms are especially used in probabilistic
analysis and in fuzzy mathematics (fuzzy measure theory, fuzzy logic, ete.).
For example, the most important operations on fuzzy sets are extensions of
triangular norms and conorms. That is, if X is a nonempty set, denoting
by FS(X)={A]A: X —[0,1]} the family of all fuzzy sets on X, then for
every A, B € FS(X) we can define

(Anr B)(z) = T(A(z),B(z)),Vee X,
(AUs B)(z) = S(A(x),B(x)),Vee X.

Also, the fuzzy propositional logic is described as a [0, 1] -valued logic in
which the disjunction symbol V and the conjunction symbol A are inter-
preted with the help of triangular conorms and triangular norms, respec-
tively (see Butnariu-Klement-Zafrany [51]).

Concerning the defect of idempotency of triangular norms and triangu-
lar conorms, we present the following properties (the metric d on [0, 1] is
generated by the absolute value || and, for short, we denote e;pgpr (F) =

edpear (F) ([0,1]) for a triangular norm or conorm F):

Theorem 7.7 Let T be a triangular norm and S be a triangular conorm.
We have:
(1) erppm (T) =sup{z —~ T (z,z);z € [0,1]};
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(i) erppm (S) =sup {S (z,2) — z;2 € 0,1]};

(#i3) If S is the dual of T, that is S (z,y) =1-T (1l —2,1—y) ,Ve,y €
[0,1], then erpem (T) = erpEm (5) ;

(iv) If Ty < Ty, that is Ty (z,y) < T> (z,y),Vz,y € [0,1], then
erpem (12) < erpem (11);

(v) If Sy < S3, that is S1 (z,y) < Sy (z,y),Ve,y € [0,1], then
erpem (S1) < erpem (S2) 5

(vi) If T* is the reverse of triangular norm T, that s
T* (z,y) = max(0,e+y—1+T(1—=,1—y)) (see Kimberling [117] or
Sabo [185]}, then erpep (T*) < erpem (T);

Proof. The proofs of (i) and (i) are immediate because T (z,z) <
e.Vee[0,1] and z < S(z,z),Vz €[0,1].

(#4¢) By using (%), (4¢) and relation S (¢, ) =1-T(1—z,1—x) ,Vz €
[0, 1], we obtain

erpem (S) = sup{S(z,z) —z;z € [0,1]}

= sup{l—2—-T(1—-21—x);zc|0,1]}
= sup{y—T(y,);9 € [0, 1]} = esppm (T).

(7v) , (v) Are immediate by using () and (%) .

(vi) Denoting by S the dual conorm of 7', we have

e—=T"(z,2) = z-max(0,z+ec—-1+T(1-2,1-2))

= «¢-max(0,2z— S(z,2)) <z —-2z+S5(z,z)
= S(z,z)—z,Vz €0,1],

which implies erprar (T7) < erppm (S) = erpem (T) . |

Remark. Due to Theorem 7.7, (iii), we will study the defect of idempo-
tency only for triangular norms.

The basic triangular norms together with their duals triangular conorms
are the following (see Klement-Mesiar [119]):

(¢) Minimum Ty and Maximum Sy given by Ty (, y) = min(z, y) and
Sy (z,y) = max(z, y).

(1) Product Tp and Probabilistic Sum Sp given by Tp(z,y) = zy and
Sp(z,yy =z +y—xy.
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(#17) Lukasiewicz triangular norm 77, and Lukasiewicz triangular conorm
St given by Tr(z,y) = max(z + y — 1,0) and Sz(z,y) = min(z + y, 1).

(iv) The weakest triangular norm Ty and the strongest triangular
conorm Sw given by

_ { minz,y), if max(z,y) =1,
Tw(z.y) = {0, otherwise,

max(z,y), if min(z,y) =0,

Swie.y) = {1,

otherwise.
Also, other important families of triangular norms together with their cor-
responding families of triangular conorms are the following (see Klement-

Mesiar [119]):
(¢) The family of Frank triangular norms (7)) ¢ o] 81VeD by

T (z,y) = log, (1 + (A” _/\1)_()5 — 1))

ifAe (0,1)u(l,o),To = Ty, Tt = Tp,Teo = T and Frank triangular
conorms (Sx)¢[o,00] 8iVeN by

M-z 1) (A=Y — 1
S’,\(:c,y)zl—log,\ 1+( )( )
A—1
if A€ (0,1)U(1,00),5 = Sm,S1 =Sp, S0 = Sk
(#1) The family of Yager triangular norms (7*), €[0.00) BiVen by

T/\ (m,y) = max <O,1_ ((1 —:L'))‘ +(1 _ y)/\)%>

if A € (0,00),T° = Ty, T = T and Yager triangular conorms (S*)
given by

A€[0,00]

S* (z,y) = min (1, (a:)‘ + yA)%)

if A e (0,00),50 = Sw,Soo =Sum.
For these families of triangular norms (and implicitly for their dual
triangular conorms, see Theorem 7.7, (34¢)) we present
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0, tfA=0
. L Fa=1
Theorem 7.8 (i) erpem (Th) = g’ A = 0o
logy VAL 4f A€ (0,1) U (1, 0)
1, fA=0
(Zl) €IDEM (TA) = { 0, zf/\ =0
1—-2"%, ifAe(0,00).

Proof. (i) If A = 0 then 2 — T\ (z,z) = 0,Vz € [0,1]. If A = 1 then
erpeMm (1)) = sup{e — T\ (z,2): 2 € [0,1]} = sup{ac—— 2?2z €0, 1]} =
5. If A =00 then 2 —Th (z,z) =z —TL (=, z) is equal to ¢ if < 1 and to
1—zifz > %, therefore ezppp (Tn) = 5. If A € (0,1) U (1, 00) then

z—Th(z,z) =z — log, <1+ (O _/\1)_(/\; — 1)) .

Because the function f : {0,1] — R defined by

i) =2 - logy (14 B2 1T =)

has the derivative [’ (z) = % positive on [O, %] and negative

on[%, 1], we have

erpem (Th) = mm{x—b&<l+ux_nu$_w):xemj&

A-1

2 2

(73) If A =0 then

0, fz=1
- T/\ = - T = !
2-T(@2) =2 - Tw (z,2) {@ ifz o)
therefore erppap (TA) = 1. Because
z, ife<1-2"%

_T* = 1 3
x—T"(z,z) {(1_x)(2x—1), ifr>1-27%

1

for every A € (0,00), we obtain ejpenp (T*) =1—-2"x. |
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We also obtain a general result for the defect of idempotency of ordinal
sums of triangular norms. Firstly, we recall the following

Theorem 7.9 (see Klement-Mesiar [119]) Let (Ty) e be a family of
triangular norms and (Jag, ba[)ae 4 be @ family of pairwise disjoint open
subintervals of [0,1]. Then the function T : [0,1] x [0,1] — [0, 1] defined by

T(e,y) ={ %+ amaa)Ta (ii‘“fﬁ) if (z,) € [aa, ba]”
, min (z,y), otherwise,

is a triangular norm. It is called the ordinal sum of the summands {ay, by, Ta)

o € A, and we shall write T & ((aa, b0, Ta)) e 4 -

Theorem 7.10 IfT ~ ((aa,ba,Ta»aeA then

eIDEM (T) < sup {GIDEM (Ta) Ta € A} .

Proof. Let a € A. We obtain

z—T(x,2) = x—aa—(ba—aa)Ta(x_aa a:—a,a)

bo —ay’ by — agy

r—a r—a r—a
——a_Ta O(, = ba_ o
<ba_aa <ba_aa ba“aa>>( ¢ )

T—a r—a r—a
= —T, =, =) <empem(Ta),
ba_aoz ba_aoz

Il

by —ag
for every x € [ay, ba], therefore

erpeM (T) =sup{z - T (z,z) : 2 € X} <sup{erppm (Ta) : @ € A}.

Example 7.6 If we take into account that each triangular norm 7' can be

written as a trivial ordinal sum with one summand (0,1, T) (see Klement-

Mesiar [119]), then in the previous theorem we obtain equality.

The inequality in the same theorem can be strict. Indeed, if we consider

the triangular norm T as ordinal sum of the summands <%, %,Tp> and
2,3 T1), that is (see Klement-Mesiar [119])

(14 (42 -1)(4y—1)), if (z,y) €[1/4,1/2] x [1/4,1/2]
T(e,y)=q §+max(0,z+y—15), if (z,y) €[2/3,3/4]x [2/3,3/4]
min (z,y), otherwise,
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then
—42° +3z — 3, ifz€[l/4,1/2]
) .
— _ r— 3, 1f.’l,‘€[2/3,17/24]
e-T@a)=3 ;)8 if « € [17/24,3/4]
0, otherwise,

therefore the defect of idempotency of T is equal to %. The defect of

idempotency of summands are e;pea (Tp) = % and e;pepym (TL) = %

In the sequel, we study the defect of distributivity of a triangular norm
or conorm with respect to another triangular norm or conorm. Because
triangular norms and triangular conorms are commutative, we have
ebrsr (F3G)([0,1)) = ed ;5. (F; G) ([0,1)) for every F,G triangular norms
or conorms. We denote the common value by eprs (F; G), the metric d
on [0, 1] being generated by absolute value |-|. Concerning this defect, we
present

Theorem 7.11 (i) 0 < epys (F;G) < 1 for every triangular norms or
conorms F and G,
(#) eprs (T'; Sm) = 0, for every triangular norm T';
(1it) eprs (S;Tm) = 0, for every triangular conorm S;
(tv) eprs (F; F) = erpem (F), for every triangular norm or conorm F;
(v) If S is the dual of T then eprs (T;T) = epr1s (S;S) .

Proof. (i) It is obvious.
(1) By using the monotonicity of T in the second variable we get

T (z,max(y,z)) =T (z,y) = max(T (z,y),T (z,2)),

in the hypothesis y > 2. The proof is similar in the case y < z.

(¢27) It is similar to (4¢) because S is monotone too.

(2v) Let F be a triangular norm. Due to associativity and commutativity
of F, we get

F(F(z,y),F(z,2)) = F(F(z,F(y,2),z),Vz,y,z €[0,1].
Denoting F (z, F (y, z)) = u, the properties of F imply
u=F(2,F(y,2)) < F(z,F(1,1)) = F(z,1) = 2,VYz,y,2 € [0,1]

and the inequality becomes equality if y = z = 1.
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The above relations together with the monotonicity of F' imply

ep1s (F; F)
=sup{|F (2, F(y,2)) = F (F (z,9), F (z,2))];2,y,2 € [0,1]}
=sup {F (2, F (y,2)) - F(F(2,F (y,2))  2);2,y,2 € [0,1]}
— sup {u— F (u,2)5u,3 € [0,1],u < s}
= sup {u— F (u,u);u € [0,1]}

=erpem (F)

Analogously, if F' is a triangular conorm then we have

ep1s (F; F)
=sup{|F (2, F (y,2)) - F (F (2,9) , F (z,2))|;2,y,2 € [0, 1]}
=sup {F (F (z,F(y,2)),2) = F(z, F(y,2));2,y,2 € [0,1]}
= sup {F (u,2) — w;u,z € [0,1],2 < u}
= sup {F (u,u) — u;u € [0,1]}

=erpem (F)

(v) It is immediate by Theorem 7.7, (44%) . O

Remark. Due to property (iv), the calculus of defect of autodistributivity
becomes simple. Also, property (iv) implies other properties of the defect
of autodistributivity. For example, if 77 and T3 are triangular norms and
Ty < Ty then eprs (T3;73) < eprs (T1;T1) (see also Theorem 7.7, (iv)).
If S; and Sy are triangular conorms and Sy < Sy, then eprs (S1;51) <
eprs (S2;S2) (see also Theorem 7.7, (v)).

For some basic triangular norms and conorms we obtain the following

Theorem 7.12 We have:
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(¢2) eprs (Tar; Smr) = eprs (Tw; Sur) = eprs (Tr; Su)
=eprs (Tp; Su) = 0;

(i1) eprs (Sm;Tm) = ep1s (Sw;Tu) = ep1s (St Tur)
=eprs (Sp;Ty) = 0;

(17t) eprs (T1;Tm) = epr1s (S Sm) = 0;

(iv) ep1s (Sp;Tp) = eprs (Tp; Sp) = 5.
Proof. (i) and (4i) are consequences of Theorem 7.11, (i) , (¥77).

(#17) The distributivity of 7 with respect to Tas and the distributivity
of S;, with respect to Sy are given by Butnariu [49)].

(fv) Starting from definition we have

eprs (Sp; Tp)
sup {|z + yz —zyz — (¢ +y — zy) (2 + 2 — x2)|;¢,y,2 € [0, 1]}

= sup{x(l—:v)(l—y)(l—z);x,y,zé[0,1]}:%

and

eprs (Tp; Sp)
sup{|x(y+z—yz)—- (:cy+a:z—x2yz)|;z',y,z€ [0,1]}

= sup{z(l—2)yz;z,y,2€[0,1]} =

ST
O

7.4 Applications

The calculation of defects of idempotency and distributivity for triangular
norms and triangular conorms can be useful for some estimations in fuzzy
mathematics. For example, if S is a triangular conorm and the fuzzy set A €
FS8(X) is given (in fact the function 4 : X — {0, 1]}, then the membership
function of AUs A € FS(X) can be estimated by:

(AUs A) (z) <min(1, A (z) + erpenm (5)) ,Vz € X.
If, in addition, S’ is a triangular conorm and B,C € F'S(X) then we have

((AUs B) Us' (AUs C)) ()

< min(l,(AUs (BUs C))(z) + eprs (S; 5')) ,Vz € X.
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Also, if A is a o-ring of subsets of the set X, S is a triangular conorm
and m : A — [0,1] is a S-decomposable measure (that is m (6) = 0 and
m(AUB) = m(A) Sm(B),VA,B € A, AN B = {, see e.g. Pap [162]),
then we have

m(A) Sm (A) < m(A) +erpEM (S) .

In what follows, we give an application of the defect of associativity.

Firstly, let us recall the definition of the general fuzzy integral [ ® (which
includes Choquet and Sugeno integrals, for example) based on a pseudo-
addition @ and a pseudo-multiplication @, introduced in Benvenuti-Mesiar
(37].

Definition 7.4 A binary operation & : [0, M]° — [0, M], where M €
10, 00], is called a pseudo-addition on [0, M] if the following properties are
satisfied:

(f)adb=bDa;

(5) a<a’ and b < bV impliesa®b < a' & V;

(752) (aDb)Dec=ad (bPc);

(v) a®0=0Pa=a;

(v) an — a, b, — b implies a, ® b, — a P b.

Definition 7.5 Let @ be a given pseudo-addition on [0, M]. A binary
operation ® : [0, M ? — [0, M] is called a pseudo-multiplication if the
following properties are satisfied:

(1)) (e®b)Oc=(a0c)®(bOC);

(7d) a<a’" and b < b impliessa ®b < a’ O ¥;

(13) a©0=00b=0;

(v) Iuel0,M]:u®a=a;

(U) (SupneNan) © (supmerm) = SUPy meN (an O] bm) :

The integral of a basic simple function Uy, A € A, where Uy (z) = u if
€ Aand Uy (z) =0if z ¢ A, with respect to measure 4, is introduced by

57
/ UaGdp=u0opu(4)=p(A).
Then, the integral of a simple function s :@;n:l b(ci, Ci), is given by

@ m
/ 5 ®dp =@i=1 (¢ © p(Ci)),
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where b(c,C)(z) =cif z € C and b(c,C) (¢) = 0 if z ¢ C, and finally the

integral of a measurable function f, is given by

5] (5]
/ f©du =sup {/ s®du,s < f,s simple function} .

If the pseudo-multiplication ® is associative ((e ®b) ©ec=a® (b O c),
Va,b,c € [0, M]), then the integral above introduced has the property of
®-homogeneity, that is a ® f@ fodu = fGB (a® f) ®dp,Ya € [0, M],Vf
a A-measurable function (see Benvenuti-Mesiar [37], Theorem 4.5). In the
case of non-associativity of @, the difference between a ® f® f ®dy and
f@ (a® f) ® du (which can be looked as the defect of homogeneity of the
integral) can be estimated with the help of defect of associativity for the
operation ©.

For example, if @ = V on [0, 1] and the pseudo-multiplication is given
by a ® b= g(a) Ab,Va,b € [0,1], where g : [0,1] — [0,1] is an increasing
bijection, then

(&) o
a@/ f@du—/ (@o N ods< s @) (0,1,

for all @ € [0,1] and f .A-measurable. (Here z Vy = max(z,y),z Ay =
min (z,y) and || denotes the absolute value). Indeed,

@ m
a@/ 8O dp =a® Viz1 (¢i © p(Cy)) = ViZi (a © (¢; ® p (CY)))

< vz (@O ) © 1 (C)) + el () (10,1]))
VI (@@ ¢) @ 1 (Cy)) + elfs (0) ((0,1])
@
= [ vmb@on codutds @) 10,1)
b

(because b (a ® ¢;, C;) and a ® b(c;, C;) are equal)

@

]
. / VI, (@@ b(er, Ci) @ du + ey (@) ([0,1)
/ a0 ® (Vb (i, C1)) @ du + ehls (@) (10, 1)

&
_ / (@®s) ©du+ el (@) ([0,11),
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for every simple function s such that s < f. Passing to supremum to the
right side with f .A-measurable, f > s, we get (because s < f implies
a®s<a0fVael0,M])

[&5) &)
0o [Csodu< [T @0 oduitedls (@) (01 Y5 < 1,5 simple.

Now, passing to supremum with s < f to the left side, we have

b 5
sup{a@/ s@du}:sup{g(a)/\/ s@du}
s<f s<f

57 &
g(a)/\sup{/ s@d,u}:a@sup{/ s@du}
s<f s<f

® @
= a@/ f@dﬂf/ (a@f)@du+eL;'S(®)([0,1]).

For example, if g (a) = a?, that is a ®b = a? A b, then (see Example 7.2)
@ & 1
a@/ f@du—/ (Cl@f)@d,ugZ,VaE[0,1],Vf.A—measurable.

The right distributivity of the pseudo-multiplication is not, in gen-
eral, required. Nevertheless, it must be required if we want the integral
to be @-additive (z.e. féB (fdg) ©du = feaf Odu® f@g ® du,Vf, g
A-measurable functions), when the fuzzy measure p is @-additive (i.e.
w(AUB) = p(A) @ p(B),VA,Be AJ/ANB = 0). As an example, for
basic simple functions, '

D D
/b(a,A)@duEB/ b(a,B)Odpu=(a® pu(A)® (e pn(B))

and

@ (2
| e eb@B)odi= [ b aUuBodi=a0u4) e n(B),
such that if we request the @-additivity of the integral, one reduces to
(a0 p(A)®(a®p(B))=a0 (n(4)®pu(B)),

Ya € [0, M],VA, B € A, AN B = 0. In the case of right distributivity of the
pseudo-multiplication with respect to pseudo-addition, the above equality
is true.
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By using the definition of defect of distributivity at right (Definition
7.1), we can estimate the difference between f® b(a, A)@d,uEBfe) b(a,B)®
du and [® (b(a, A) @b (a, B)) ® du (which can be considered as defect of
additivity of the integral for simple basic functions) as follows:

/®b(a,A)®du®/®b(a,B)®dp

@
- [ b deb o) 0 dif < dljor (@) 10.M).

Remark. Similar reasoning with those in Subsection 4.1.1 easily show us

that the above inequality can be framed into the general scheme in Section
1.1.

7.5 Bibliographical Remarks

Definition 7.1, (7), (¢%) , (vi), (vét), Lemma 7.1, (¢), (¢¢), (vi), (vii), Defi-
nition 7.2, Theorem 7.1, (¢), (¢1), (v%) , (vii), Definition 7.3, Theorem 7.2,
Theorems 7.4, 7.5, 7.6, Examples 7.1, 7.3, 7.4, 7.5, Theorems 7.7, 7.8, 7.9,
7.10, 7.11, 7.12, Example 7.6, and Section 7.4 are from Ban-Gal [28]. All
the other results (excepting those where are mentioned the authors) appear
for the first time in this book.



Chapter 8

Miscellaneous

In this chapter we study defects of property in Complex Analysis, Geometry,
Number Theory and Fuzzy Logic.

8.1 Defect of Property in Complex Analysis

Let f : D — C, where D is a domain of the field of complex numbers,
f2)=u(z,y) +iv(z,y),z=2+idy,i=/—1.

A well-known result of Morera [153] states that the holomorphy of f on
D is equivalent to the following two conditions:

() f is continuous on D;

(¢¢) The integral [, f (2)dz = 0, for any closed rectifiable curve in D.

Starting from this definition, Pompeiu [163] notes that if Jo F(z)dz#0,
then |fC f(z) dz| can be considered as a measure of non-holomorphy of f
inside of the domain bounded by the closed curve C.

Suggested by this remark we can introduce the following.

Definition 8.1 Let D C C be a bounded domain and f : D — C
integrable on D. The number

/Cf(z) dz

will be called defect of holomorphy of f on D.

dror (f) (D) = sup {

:C C D, closed rectifiable curve}

Remark. If f is continuous on D (we write f € C (D)), then from Morera’s
theorem it follows that f is holomorphicon D if and only if dgor (f) (D) =

305
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The following properties are immediate:

dror (f+9) (D) < duor(f) (D) +duor(9) (D),Vf g€ C(D)

dpor (Af) (D) = [Mdror(f)(D),VAEC, feC(D).

Continuing the ideas in Pompeiu [163], let us suppose that f € C! (D),
that is if f = u+4v then u, v are of C? class. In this case, can be introduced
the following

Definition 8.2 (Pompeiu [163]) Let f € C* (D), f (2) = u (=, y)+iv (2, y)
,z=x+ 1y € D and 25 = g + iyg € D. The areolar derivative of f at zg
is given by

L z)dz
0 (1) (20 = i I FE

where the limit is considered for all closed curves C (in D) surrounding zg,
that converge to zo by a continuous deformation (m (A) represents the area
of the domain A closed by C).

In the same paper Pompeiu [163], it is proved the formula
1[/0u Ov dv  Ou
dA(szO)_i[((?‘x_@)—’_ (a—:c%-%)](zo)

Remarks. 1). Because for f € C!' (D) and 29 € D, it is obvious that (see
Pompeiu [164])

da (f) (z0) = 0 if and only if f is differentiable at zg,

we can call |da (f) (20)] as defect of differentiability of f € C! (D) on z.
In Szu-Hoa Min [209], |d4 (f) (20)] is called deviation from analiticity.

2). It is well-known the application of d4 (f) (z) to the classical so-called
Cauchy-Pompeiu formula, valid for all f of Cl-class

6= e [ [ e

where v = a + if,dw =dadf, z = ¢ + iy (see Pompeiu [164]). Obviously,
if f is holomorphic it follows d4 (f) = 0 and then the above formula one
reduces to the Cauchy’s formula. The Cauchy-Pompeiu formula can easily
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be framed into the general scheme in Section 1.1. Indeed, for a fixed closed
curve C' C D, we can define

A:c(f) = T )oi—z

Bic(v) = %//Avizdadﬁ(herev:a+iﬂ),zEA:int(C),
U = C'(D)

and

P ="the property of differentiability (holomorphy) on D”.
If we introduce the defect of differentiability of f on D by
da (f) (D) = sup {lda (f) (2)|;z € D},

obviously it is different from dyor (f) (D). With this notation, from the
above formula we get

£ = g [ Hae] < 2

and if we choose C = {u € C;lu—a|=r} C D,A = int (C) C D and
z € D such that |z — a| > 2r, then it follows

51

—dA //l dad,B< dA(f) (A) mr -
= rda(f)(4)

because |v — z| > r,Vv € A,Vz € D with |z —a| > 2r.
As a conclusion, the defect of differentiability d4 (f) (D) appears in the
estimate of deviation of f (z) from the Cauchy’s integral 51 57 fC 2 dE.

D04

A v—2z

IA

8.2 Defect of Property in Geometry

In geometric language, the curvature can be considered as the deviation (in
a point) of a curve, from the right line and the torsion can be considered as
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the deviation (in a point) of a curve from the plane curve. In what follows,
we introduce two global indicators which measure these deviations.

In the Euclidean and non-Euclidean geometries, the concept of curva-
ture and torsion of a curve C in a point M are introduced by (see e.g.
Mihiileanu [148], p. 99-100)

Ao
(M) = lim 2
and
. A
(M) = Alslgloﬂ’

respectively, where Aa is the angle of tangents in M and M’ Af is the
angle of binormals in M and M’ and As is the length of the arc MM’
(M, M’ € C) when M’ tends to M.

Because the curvature of a right line and the torsion of a plane are equal
to zero in each point, we can consider the following definition.

Definition 8.3 Let C be a curve. The quantities
7(C) = sup{ly (M)|; M € C}
and
7(C) =sup{|r (M)|; M € C}

are called the defect of right line and the defect of plane curve of C, respec-
tively.

An interpretation of the above introduced defects can be given, con-
sidering an Euclidean curve C. Are well-known the Frenet’s formulas (in
canonical form)

= () () +7(s) T ls),

where 7 (s) represents the curvature, 7 (s) is the torsion, 7 (s) is the tan-
gent versor, T (s) is the normal versor and & (s) is the binormal versor,
all taken in a variable point on the curve C.
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Passing to BEuclidean norm ||-||gs and taking into account that H T (s) “R3
=17 ()l = | 7 )], =1, we et

.

22 = o,

ZA0] .

ds o = |r(s)l,

(s

T < e+l
R3

Passing to supremum with s, it follows

w{|20)} = e

ds
sgp{ } = 7(C)
R3

47 (s)
p{H@ bsr@+rie.

ds
_)

Because %ﬂ is in fact the acceleration, it follows that the defect of
right line of a curve, v (C), is, from kinematical viewpoint, the maximum
value of the acceleration on the curve C. Similarly, the defect of plane curve,
7(C), is the maximum value of the speed on the binormal 7.

In other interpretation, when a solid moves around a fixed point, it is
well-known that the Frenet’s formulas can be written as

and

‘Rﬁ

a7
— = @Wx 7T,
ds
d—)
- @ xw,
ds
-
b _ 5.7
ds

where @ is the Darboux’s vector and represents the angular speed (around
a rotational axis). In other words, the defect of plane curve 7 (C) represents
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the maximum value of the norm (in R3) of vector @ x _b), i.e.

7(C) = sup ”U’ X _)”
Mec

Remark. For an Euclidean curve given by parametric equations =z =
r(t),y=y(t),z=2z(t),t € D, we have

((ylzll / II) + (Z/Q;'/I I N) + (‘,clyll yl 11)2)%

v (C) = sup 5 teD
(1.12 + y/2 + le)z
and
( 3
7 1,012 1ot 101 ’ 2
T(C):supﬁ(yz zy)+(z,x /a:zl)+(xy y$),t€D
x Yy z
m// ‘y// zl/
mll/ ylll Z/// J

In the case when C is a plane curve given in Cartesian coordinates by
the equation y = f (), z € [a, b], the curvature in a point M (z,y) is (see
e.g. Tonescu [104], p.87)

Jon = @l
\/ (1+ ¢ @)?)
and consequently,
7(6) = sup If’/ (l')l 3;:c€[a,b]

(1+ (7 @))

Example 8.1 If we consider the Euclidean curve C given by z () =
ty(t) =t z(t) = 2,4 €[0,1] then

2
7(C) =Sllp{m;t€ [0, 1]} =92
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and

2
7(C) :sup{w;te [0, 1]} = g

Example 8.2 The above introduced defects can be infinite. Indeed, if C
is the plane curve given by z =« (t),y = y(¢),t € D, then the formula of
curvature in M € C one reduces to

x/y// _ y'.’l?”

(M) =
(x12+y12)

3
2

and the remarkable curve ¢ : # = a(t —sint),y = a(l —cost),t € R
(called cycloid) has the defect of right line equal to

2 2 -2
a“cost(l —cost) —a“sin“t
7€) = sup (1~ cos) Liter

(a2 (1 — cost)® + a2 sin® t) :

1
= sup{|———~
p{)élasm%

Next, we give an example of calculus for defects in the non-Euclidean

;tER}=+oo.

case.

Example 8.3 Let us consider the curve C by

1
i) = :co(t)zi(t4+t2+2),
zy = =z (t)= %(t4 + 1),
ze = z2(t) =1,
r3 = X3 (t) = t2,

in the hyperbolic space with the absolute given by

zé—m%—m%—x%:l.
o 1 &2 o T3 T3 Zo Z1 23
Denoting A= | zy 2} =z |,B=|xzp xy a5 |,C=|zap =z} x4
g ) oY zy zy of zf 2 Y

L1 T2 T3

and D =| iy % 4 |, the curvature of C is (see e.g. Mih3ileanu [148],
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p.111-112)
1 1
" (A2 4+ B24- C2— D2)7 (6416 + 48t + 122 1 5)
')’ = 3 = 3
(—of? + 242 + 22 + 2i2) (1+412)7
1
4 2
= ]_+ _— s
( (1 +4t2)3)
therefore

1
2

4 _. p—
7(6):SUP{<1+'(T+4—t2)3-> ,tER}—\/g.

Then, the torsion of C is given (see also Mih&ileanu [148], p.111-112) by

p T3 T2 T3
xy, =z zhy xh
zg Ty Ty X§
(2@ + e+ 2P+ @) 42 () (14427 +4

therefore

24t 132
T(C) = Sup{m,t € R+} =25

Remark. The above introduced defects can be applied to various problems
or estimations, as follows.

Firstly, for example, given the plane curve y = f(z),z € [a,b],f €
C?la,b], a problem would be to find out (if there exists) a right line, of
equation y = mz + n, which minimizes the defect of right line of the dif-
ference curve, that is given by the equation y = f(z) — (mz +n). The
problem one reduces to find out the quantity

/" (=)

\/(1+(f' (a:)——m)z)a

In other order of ideas, if for example, C is a Titeica curve (in space), that
is, satisfies the formula d? (M) = ¢ - 7 (M), where 7 (M) is the torsion (in

min { max ;¢ €[a,b] p;meR
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the point M), d (M) represents the distance from the origin of coordinate
axis to the osculating plane at the curve C in the point M and ¢ is a
constant, then we obviously get

sup {d (M); M € C} = \/|eo| - |7 (C)].

Another defect of property in geometry can be introduced starting from
the following well-known:

Theorem 8.1 (see e.g. Mihdileanu-Neumann [149], p.42, Vasiu [21}],
p-46-47). The sum of angles of a triangle in the absolute geometry is less
or equal to m (that is the sum of two right angles). The sum of angles of a
triangle in the elliptic geometry is greater than m. The sum of angles of a
triangle in Euclidean geometry is exactly .

Definition 8.4 A triangle ABC (in a geometry) is called Euclidean if
A+ B+ C =, where A, B,C denotes the measures of angles.

Definition 8.5 Let ABC be a triangle in a geometry. The quantity
Da (ABCY=|A+ B+ C —n|

is called defect of Euclidean triangle.

Remark. There exist other concepts too which measure the deviation of
the sum of angles of a triangle from 7. For example, in Félix [76], p. 521
the difference # — (A + B + C) is called deficit of the triangle ABC in the
Euclidean geometry and in Lobacevski’s geometry. Also, in Mihaileanu-
Neumann [149], p.43 the quantity 7 — (A + B + C) is called defect of the
triangle ABC in the absolute geometry. In Félix [76], p.543 is introduced
the concept of excess of a triangle ABC as being the quantity A+ B+C —,
in the spherical model of geometry.

Example 8.4 If we consider the model of elliptic geometry on a sphere of
radius r, then in the Gauss’ formula (see Vrianceanu-Teleman [218], p.126)
we obtain

Da (ABC) = 2,

2

where S is the area of triangle ABC.
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In what follows, we deal with other two main concepts in geometry:
orthogonality and parallelness.

Intuitively, we can accept that two right lines or two planes are "more
parallel” or ”more orthogonal” than another pair of right lines or planes.
Therefore, it is natural to introduce indicators which measure the deviation
from parallelness and orthogonality.

Let us assume that the absolute of a non-Euclidean space is given by

q2x3+x%+x%+m§:0,
where ¢2 € R and let us denote ¢ = %.

Remark. We have ¢ > 0 in the case of elliptic geometry and ¢*> < 0 in
the case of hyperbolic geometry.

We introduce the inner product of two points X and Y with coordinates
zi,i € {0,1,2,3} and y;,i € {0, 1,2,3}, respectively, by

*zoyo + z1y1 + T2y2 + T3y3
V@Pxd + a2+ a3 + 23V + 1 + 3 + 03
and the inner product of two planes a : agxg + o121 + @y + azzz = 0,
B : Boxo + f1xy + Bax2 + P3x3 =0 by

_ eaofo + 1Py + 2Pz + @303
Veral v al+ af + ol + B+ B+ 67
Definition 8.6 (i) The quantity

X .Y =

a-f

dorre (X,Y)=|X Y|
is called defect of orthogonality of the points X and Y.
(#7) The quantity
dorrH (o, 8) = |a - §]
is called defect of orthogonality of the planes o and §.
We have

Theorem 8.2 (i) dorra (X,Y) =0 if and only if X and Y are orthog-
onal; dorrH (@, ) = 0 if and only if a and § are orthogonal.

(13) 0 < dopra (X,Y) <1 and 0 < dognrm (a,F) < 1.

(¢11) dorrH (X,Y) = dorrH (Y, X); dorrH (2, B) = dorTH (B, ).
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(2v) dorrH (X,Y) = |cos %}, where d is the distance between X and Y,

dorrH (@, B) = |cos 8|, where 8 is the angle of the planes a and (3.

Proof. (i) By definition (see Mihiileanu [148], p.16) two points (planes)
are orthogonal if and only if their inner product is null.

(it) , (i17) Are immediate.

(iv) By definition (see Mih#ileanu [148], p.16), the distance between two
points X and Y is the number d (d < ¢m) such that cos% =X Y. Also,
the angle of two planes a and £ is the positive number 6 (6 < ) such that
cosf = o - 3 (see also Mihiileanu [148], p.18). O

Remark. In the Euclidean case (that is ¢ — +00,& — 0) we have
dorrm (X,Y) =1

and

dorri (a, B) = |a1B1 + aaf2 + a3fBs|
’ Veol+al+al\/BE+ 55+ 5
As a conclusion, two points in Euclidean space cannot by orthogonal and

the condition of orthogonality of two planes in Euclidean space is a1 87 +
@382 + asfs = 0.

Let us consider two right lines v and v with the common point X and
let U,V be the orthogonals of the point X on u and v, respectively (that
isU€cuand VewyU-X=0V-X=0). The angle A of the right lines
u and v is given by (see Mihdileanu [148], p.33)

cosA=U V.
Definition 8.7 The quantity
dorrH (u,v) = |cos Al
is called defect of orthogonality of the right lines v and v.

Theorem 8.3 (i) dorrw (u,v) = 0 if and only if u and v are orthogonal.
(ll) 0 <dorrH (u,v) <1
(zu) dorrr (u,v) = dorrH (’U, u).
(tv) dorTH (u,v) = |cos %l, where § is the distance between u and v.
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(v) fu:az+by+cz=0andv:dz+by+c'z=0 are two right lines
. |aa'+bb'+cc’ ‘
in plane, then dorry (u,v) = N EET R e

Proof. (i), (#), (i¢i) Are immediate.

(tv) The relation § = gA between the angle of two right lines and the
distance implies the property.

(v) The formula of angle between two right lines in plane (see Mihaileanu
(148], p.37) implies the desired relation. a

Example 8.5 In the Euclidean plane case (¢ — 0), we have

laa’ + bb|
\/a2 +b2\/E/2+ b2’
ifu:az+by+c=0andv:az+by+c =0or

dorrH (¥,v) =

dorrH (u,v) = [mm’ + |

’ Vm? + 1v/m2 +1°
ifu:y=mz+nandv:y=mz+n'. Therefore dorry (u,v) = 0 if
and only if mm’ = —1, that is exactly the condition of orthogonality of
two right lines in Euclidean plane. Also, the maximum value of defect of
orthogonality is obtained if and only if m = m’, that is the parallelness is
a peak of non-orthogonality.

In what follows, we consider u : az+by+cz =0and v:d'z+by+c'z =
0 two right lines in a non-Euclidean plane. By definition, v and v are
parallel if their angle is null (see Mih#ileanu [148], p. 39). This suggests
the following

Definition 8.8 The quantity
dpAR (u, U) = {sin Ai
is called defect of parallelness of the right lines u and wv.

Theorem 8.4 (i) 0 <dpar(u,v) <L
(ll) dPAR (u,v) = dPAR (’U, u) .
(HZ) dpAR (u,u) =0.

. I T (ab'—a'b)?+e2(ac’—a’c)®+e2(bc'=b'c)?
(Z’U) dPAR (u, ’U) = |Sln E‘ = f (@247 Fe2c2)(a 2452 $e2¢72) ) .

Proof. (i), (), (éit) Are immediate.
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(tv) Because d = gA the first part is obvious. The expression of sinus
for the angle of two right lines (see Mih#ileanu [148], p. 38) implies the
second relation. O

Remark. If ¢ = 0 (the Euclidean case) then

d _ lab’ — a’b|
par (u,v) = NN

where u:az+by+c=0and v:dz+by+c =0. If uand v are given
by y = mz + n and y = m’z + n’, then

, _ m-m|
Par () = o v

Example 8.6 Ife?=—landu:22+y+2=0,v:2+2y+ 2z =0 then
dorrH (U,’U) = % and dpagr (u,v) = —\{1—7

Finally, we consider the defect of orthogonality and the defect of paral-
lelness in an abstract frame.

Firstly, we recall the concept of abstract angle in real Banach spaces
introduced by Singer [197], as a generalization of the concept of angle in
Hilbert spaces.

Let (£,]|-]|) be a real Banach space such that dimE > 1 and z,y € E.
One define the trigonometric functions in F by

sin %,y Ll @ Y “
E—w = sl\lvor— o
2 2 (llelt il
z,y 1| = y
COSE — = p= —+—”
2 2 (el Iyl
T,y sing &4
th'Q— = —/2\,
cosp ¥

where 7,y denotes the abstract angle between z and y, and % is another
abstract quantity, named ”the half” of z,y. Here p = +1 if in the bidimen-
sional plane determined by z and y, the Euclidean angle £ {z,y} € [0, 7]
and p = —1 if the same angle is contained in (7, 27]. One also defines the
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equality between abstract angles by

— o

3 P ] - 77 ) oy Ty oy
,2y = ,2y if and only if sing _??{ =sing 2 ,COSE —231 = COSg 5
and
. LTy _ Ty
z,y =,y if and only lfT: 5

Based on the definitions of trigonometric functions, to each abstract angle
in E we can associate a pair of real numbers, the first number being non-
negative. The definition of the equality of abstract angles guarantees the
unique characterization of these by a pair of real numbers.

Remark. If F is a Hilbertian space, then the definition of abstract an-
gles becomes the usual definition of angles in Hilbert spaces. In fact, the
converse statement is also true (see Singer [197]).

By using the result proved in Singer [197], Corollary 2: z,y € E are

parallel if and only if tgr %% = 0, we can introduce the following

Definition 8.9 The defect of parallelness of vectors 2,y € F \ {0g} is
given by

o = _L“
_ ,yt el Tl
dpar(z,y) = thT =Tz o
ERIE] “

The following properties hold:
Theorem 8.5 (i)

i 2@ 9 Ty
0< VG cosy =% \/ Co — cosg, 3

=~ <dpar(z,y) < —~—— < +00,
‘cosE %‘i‘ COSE %—9\

Jor every x,y € E, where Cy is the Neumann-Jordan constant (see Jordan-
Neumann [110]).

(¢2) dpar (z,y) =0 if and only if x and y are parallel and dpag (z,y) =
+oo if and only if ¢ and —y are parallel.

(ZZZ) dpar (:c,y) =dpar (y,x) Ve, y€ E.

(iv) dpar (az,by) = dpar (z,y),Ve,y € E\ {0g},Va,b € R\ {0}.



Defect of Property in Geometry 319

Proof. (i) The inequalities

Yz,y € E (see Singer [197]) implies the lower and upper estimations for
dpar (z,Y).

(#¢) The first part is implied/l\;y the above mentioned result. The second
part is immediate, because tgg %% = +oo if and only if # and —y are parallel
(see Singer [197]).

(iii) The formulas (see Singer [197])

e— e

sing 22 = sing 27
E—Q~ = E—
g2 _ z,y
COSE o~ = —cCosg —
imply the desired equality.
(iv) Because
| = el
IIGWII IIbyII il
z y
Tt )vxaye E\{OE},Va,bE R\{0}>
IIMIII byl H “ llzll Iyl H
we obtain the property. a

Starting from the definition of orthogonality in Banach spaces, we in-
troduce the defect of orthogonality.

Definition 8.10 (Singer [197]) The vectors z,y € E \ {0g} are called
orthogonal (we denote this by zLy) if
z,y

Definition 8.11 The defect of orthogonality of vectors z,y € F \ {0g}
1s given by

z,y
dorrH (2,y) = ‘1 - \tQETyH =|1-

=z oyl
lTell T+ Tl “

The following properties hold:
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Theorem 8.6 (i)

— —
2z 1 _ 2 2,y
\/ Co — cos?, B4 V= cosy & }

0 < dorra (z,y) <maxq |1— == g -
COSE %Q| COSE %Q}

for every z,y € E\ {0g}.

(i7) dortH (2,y) =0 if and only if z Ly.

(113) dorrw (2,y) = |1 —dpar (z,y)|,Vz,y € B\ {0g}.

(iv) dorrw (az,by) = dorrH (z,y) ,Ve,y € E\ {0r},Va,b € R\ {0}

(v) If 2,y € E\{0g} are linear independent vectors, then Ja € R such
that doprH (z,az +y) = 0.

(vi) df (:c,y; H%H) = 0 implies dorTH (x,y) = 0, where df (z,y;a) is
the defect of orthogonality of  with respect to y, of a-isosceles type (see
Definition 6.2, (7)).

Proof. (i) The positivity of defect is obvious. By using the same in-
equalities as in the proof of Theorem 8.5, we obtain the right-hand side
inequality.

(t7) , (#4) They are immediate.

(iv) See the proof of Theorem 8.5, (iv).

(v) It is immediate by Singer [197], Proposition 5.

(vi) d}‘ (a:,y; Hﬁﬂ) = 0 if and only if “:c - HnyH = “x + H%Hy“, which

is equivalent to |'|-:—|~| - ﬂyLH “ = l

ﬁ + WyLII“’ that is doprr (z,y) =0. 0O

8.3 Defect of Property in Number Theory

This section discusses various defects of properties in Number Theory: de-
fect of integer number, defect of divisibility, defect of prime number, and
SO on.

In Number Theory appears as natural the following question: how can
be evaluated the deviation of a real number z from rational numbers or
from the integers. An answer could be given by

d(z,Q) =inf{lz —r[;r € Q}
and

d(z,Z) =inf{lz — k|;k € Z}.
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Obviously, the first quantity is always 0. Nevertheless, this idea leads
to the following definition of defect.

Definition 8.12 Let £ € R. The quantity
drz (z) = min(z — [z],[2] —z + 1)
is called defect of integer number of &, where [z] is the integer part of z.

The main properties of this defect are the following:

Theorem 8.7 (i) drz (z) = min({z},1— {z}), where {x} denotes the
fractional part of .

(i) drz (z) = d(z,2Z) and drz (z) = 0 if and only if x € Z.

(#i7) 0 < drz (z) < i,Vz € R.

(iU) drz (x) = drz (——.’L‘) Ve € R.

Proof. (i) It is obvious.

(#7) The previous property implies drz (z) = 0 if and only if {z} = 0, if
and only if z € Z. Also, [z] and [z] + 1 are the closest integers to z, which
proves the second part.

(7t7) Because 0 < {z} < 1,Vz € R, we obtain the inequalities.

(tv) If £ € Z then —z € Z and drz (¢) = drz (—z) =0. If z € R\ Z,
then the equality [z] + [-#] = —1 is well-known. We get

dpz (—z) = min(—z —[-z],[-z]+z+1)
= min(—z+[z]+1,-1-[z]+z+ 1)
= min(z — [z],[z] — 2+ 1) = drz (z). -
We recall that (see e.g Klir [120], or Ban-Fechete [20]) a measure of
fuzziness is a function d. : F'S(2) = R which satisfies the requirements:
(1) d.(A) = 0 if and only if A is crisp, that is A (z) € {0,1},Vz € Q.
(#) If A(z) < B(z) for B(z) < % and A(z) > B(z) for B(z) >
$,Vz € Q (that is A < B), then d. (A) < d. (B).
(¢44) d. (A) assumes the maximum value if and only if A (z) = 1,Vz € Q.

On the other hand, we can consider that a real number is "more integer”
if its fractional part is near to 0 or 1 and is ”more fractional” if its fractional
part is near to % These suggest to use the measures of fuzziness to introduce
an indicator of integer for a set of real numbers. Let us denote by X =
{z1,...,x5}a finite set of real numbers and let us consider the fuzzy set
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Ax : R = [0, 1] corresponding to X and defined by Ax (z) = 0ifz € R\ X
and Ax (x) = {z} if £ € X, where {2} is the fractional part of z. If d, is a
normalized measure of fuzziness (that is has values in [0, 1]), then we give
the following

Definition 8.13 The quantity
dr (X) =d. (Ax)
is called defect of integer of the whole set X.

Remark. In general, the null values of a fuzzy set do not influence the
value of its measure of fuzziness, such that the above fuzzy set Ax can be
considered as defined on X.

The defect of integer has the following properties.

Theorem 8.8 (i) df (X) = 0 (has the minimum value) if and only if
zr € Z,Vk € {1,...,n}.

(¢3) dy (X) = 1 (has the mazimum value} if and only if drz (zx) is
mazimum, Vk € {1,...,n}.

(¢73) Let Y = {y1,...,yn} be a finite set of real numbers. If {zx} < {yx}
for {yx} < 5 and {®x} > {u} for {yx} > 3,Vk € {1,...,n} then d; (X) <
dr (Y).

Proof. (i) di(X) = 0 if and only if d. (Ax) = 0, that is Ax ({zx}) €
{0,1},Vk € {1, ...,n}, which is equivalent to {zx} = 0,Vk € {1,...,n}, that
sz € Z,Vk € {1,...,n}.

(é6) dy (X) = 1 if and only if Ax ({zx}) = 1,Vk € {1,...,n}, which is
equivalent to {zx} = $,Vk € {1,...,n}, that is {zx} = 1 — {z}} = 3,Vk €
{1, ...,n}, which means drz (zx) = %,Vk e{l,...,n}.

(7i7) The hypothesis imply Ax < Bx and by using the properties of
measures of fuzziness, we obtain d; (X) =d. (Ax) <d.(Ay)=d; (V). O

Example 8.7 A simple normalized measure of fuzziness is that proposed

by Kaufmann [114] (see also Klir [120]): d. (4) = £ Z:zl [A (zg) — C(xk)],
where C(zx) = 0, if A(zx) < 1 and C(zx) = 1, if A(.’L'k) > £ and
X:{a:l,.. rn}IfX_{lzgﬂiﬁ}andY: 34 6} then

234567 2 3»
dr (X) = 120 and dy (Y) = ﬁﬁ'

Concerning the property of divisibility of natural numbers, we can in-
troduce the following
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Definition 8.14 Let p, ¢ be two natural numbers. The quantity

Daiv (p,¢) = min{r,qg — 1 —r},

where r is the remainder of division of p by ¢, is called defect of divisibility
of p with respect to q.

Below we give some properties.

Theorem 8.9 Let p, p1, p2, q be natural numbers.
(2) Daiv (p,q) = 0 if and only if q/p (i.e. q is divisor of p).
(#) 0 < Daio (p,q) < [2] + 1, where [2] is the integer part of .
(#1¢) If p1 = p2 (modq) then Dgiy (p1,9) = Daiv (p2, q) and
Daiv (p1 — p2,9) = 0.
(iv) Daiv (p1 + p2,9) = Daiy (r1 +72,9) and Dy, (p1p2, )
= Dyiy (r172,q), where vy and ry are the remainders of divisions of p1 and
p2 by ¢.

Proof. (i) Because r < ¢ —1, Dy (p,q) =0 if and only if r = 0, that is

q/p-
(#) We assume Dy (p,q) > [%] + 1, which means r > [%] + 1 and
g—1—7>[%] +1. We get

q—l:q—l—r+r>2[%]+2>2(%—1)+2:‘1’

which is a contradiction.

(#43) If p1 = p2 (modgq) then p; = ¢1¢ + 7 and py = ¢aq + 7, therefore
Daiv (p1,9) = Dadiv (p2,9) = min{r,¢—1—r} and p; — p» = (c1 — c2) ¢,
which implies the second relation.

(¢v) Let us assume p; = c1q+ 71 and py = caq + 2. If 7} + 72 < g, then

Dyiv (p1 +p2,¢9) =min{ry + 72, ~1—r1 —r2} = Dagip (r1 +72,9) .

Ifri+ry>q thenpr+p2=(c1+c2+1)g+r+ra—gand 1y + 72 =
g+ ri+ry—q with ry + 719 — ¢ < ¢, therefore

Dagiv (p1 +p2,¢) =min{ri1 +r2 — ¢, =1 — 11 — 1o — q} = Daip, (11 +72,9) .
The proof of the second relation is similar. (|

It is obvious that for a given property, we can introduce more defects.
For example, starting from well-known results, in what follows we introduce
more variants for the defect of prime number.
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Theorem 8.10 (see e.g. Radovici-Mdrculescu [167], p.91) Let n be a
natural number. If ¢ (n),o(n),d(n) denote the number of numbers from
{1,...,n— 1} which are prime with n (that is the Euler’s totient function),
the sum of divisors of n and the number of distinct divisors of n, respec-
tively, then we have:

(i) n ts a prime number if and only if o (n) =n+ 1.

(11) n is a prime number if and only if d (n) = 2.

(742) n is a prime number if and only if p(n) =n — 1.

(iv) n is a prime number if and only if p (n) /n— 1. and n + 1/ (n).

Definition 8.15 Let n be a natural number. The quantities

Dp.(n) = o(n)-n-1,
Di (n) = d(n)-2,
D;pr(n) = n_l_so(n)v

and

Df7 (n) = Daiv (n — 1,9 (n)) + Daiv (0 (n) ,n + 1)
are called o-defect, d-defect, p-defect and po-defect of prime number of n,
respectively.
Remark. Of course that the equality to 0 of the above defects is verified
if and only if the number n is prime.

Other properties of the functions ¢, d, ¢ imply various properties of these

defects. For example, if n = p{*..p.*

(see e.g. Vinogradov [216], p.28)

¢(n)=n(1—pi1> (1_;)1;)

and (see e.g. Vinogradov [216], p.26)

is the prime factorization of n, then

d(n)=(a1+1)...(ax+ 1)

i =n-1-n(i- 1) (1-1)

therefore
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and
DI (n)=(a1+1)..(ox+1)—2.
Also, the elementary inequalities (see e.g. Mitrinovié-Sandor-Crstici (152],
p.9) ¢ (n) > V/nifn #2,n# 6 and ¢ (n) < n—+/nif n is composite, imply
[Vr-1]<vn-1<D{ (n)<n-1-vn<[n—-1-vn]+1

if n is composite and n # 2,n # 6. Because d (n) < 2y/n,Vn € N* (see e.g.
Mitrinovié-Sandor-Crstici [152], p.39), we get

Dy, (n) <2(v/n—1),Vn e N*.

Also, n + v/n < o(n) < ny/n for any n > 2 (see e.g. Mitrinovi¢-Sandor-
Crstici [152], p. 77), imply
Vrn—1< D} (n)<nyn—n—1Yn>2

Other important properties in Number Theory are those of perfect num-
ber and of amicable number.

Definition 8.16 (see e.g. Mitrinovic-Sandor-Crstici [152], p. 112) Let
m and n be positive integers.

(7) n is called perfect if the sum of its divisors is equal to n.

(71) m and n are called amicable, if the sum of divisors of m is equal to
n and the sum of divisors of n is equal to m.

For these concepts, the defects could be introduced as follows.

Definition 8.17 Let m and n be positive integers. The quantities

Dperfect () = |n — Z k
k/n k#n

and

Damicable (M, 1) = Z i - Z J

i/mi#m  j/n,j#n

are called defect of perfect number of n and defect of amicable numbers of
m, n, respectively.
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Obviously, the natural properties

Dperfect (n) =0 if and only if n is perfect

and

D m,n) = 0 if and only if m and n are amicable

amicable (

are verified.

Remark. We note that for other properties too can be introduced the
concept of defect. For example, the defect of multiply perfect, triper-
fect, quasiperfect, almost perfect, superperfect number (a positive integer is
called a multiply perfect, triperfect, quasiperfect, almost perfect, superper-
fect number if n/o (n) , o (n) = 3n,0(n) = 2n+1,0(n) =2n—1,0 (0 (n)) =
2n, respectively (see e.g. Mitrinovié-Sandor-Crstici [152], p.105-110)) could
be defined as

Dmultiply perfect (n) = Daiv(c(n),n),
Dtriperfect (n) = lo(n)—3n],
unasiperfect (n) = lo(n)=2n-1],
Dalmost perfect (n) = lo(n)—2n+1],
Dsuperperfect (n) = lo(o(n))—2n],

where o is the sum of divisors function.

Estimations for the above introduced defects can be given by using the
functions ¢, o and d.

Theorem 8.11 (i) D, (n) < inf {|o (n) — o (p)| + |n — pl;
p prime number} ;
(i) Dg, (n) =inf {|d (n) — d (p)|; p prime number};
(#ii) Dg, (n) <inf{|p(n) — ¢ (p)|+ In — p|; p prime number} ;

() Dperfact (M) < inf {10 = b+ [T jp itpi = Tympgnd |
p perfect number} ;
(v). Dtriperfect (n) <inf{jo(n) — o (p)| + 3|n — pl|; p triperfect number}
(v9) Dgyasiperfect (n) < inf {|o (n) — o (p)| +2|n ~ pl;
p quasiperfect number} ;
(vit) Dolmost perfect (n) <inf{lo (n) — o (p)| + 2|n - pl;
p almost perfect number};
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(m“’) Dsuperperfect (n) < inf{|a (U (n)) - (0' (P))' +2 |77' - pl )
p superperfect number} .

Proof. (i)~ (ii7) They are consequences of the Definition 8.15 and of the
relations
o(n)=(n+1) = |o(n)=(n+1)|
o (n) = (p) + (p+1) ~ (n+1)]
lo(n) = o (p)l +1p - nl,

IA

d(n) —2=1d(n) —2[=d(n) —d(p) + 2 - 2| = |d(n) — d(p)|

and

I

(n~1)~¢p(n) [(n—1) =@ (n)
(n=1)=p(n)+ () —(p-1)]

< le(n) =@ (@) +Ip—nl,

1

respectively, for every prime number p.
(iv) — (viid) As above, by using the previous remark. O

8.4 Defect of Property in Fuzzy Logic

A fuzzy logic (see e.g. Butnariu-Klement-Zafrany [51]) can be described
as a [0, 1]-valued logic, that is one real number ¢ (p) € [0, 1] is assigned to
each proposition p. It is called "truth degree” of the proposition p. If T'
1s a triangular norm and S is the triangular conorm associated to T (see
Definition 4.13) then the connectives Vg (disjunction), Az (conjunction)
and — (negation) can be interpreted by extending the evaluation function
(or truth assignment function) ¢, as follows (see e.g. Butnariu-Klement-
Zafrany [51]):

tipArg) = T(t(p),t(9),
tpVvsg) = S(t(p),t(q),
t(-p) = 1-1(p).

Similarly with the classical logic, each proposition is a propositional
form and if A, B are propositional forms then A Vg B, A Ar B,—A are
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propositional forms for every triangular norm 7" and triangular conorm S.
Let us abbreviate the propositional form A Vg B by A —7 B.

Three outstanding examples of propositional fuzzy logics are obtained
by considering the triangular norms 7' (z,y) = 11 (z,y) = max(z + y — 1,0)
(Lukasiewicz logic, see Lukasiewicz [140], Héjek-Godel [98]), T'(z,y) =
Twm (z,y) = min (z,y) (Godel logic or min-max logic, see Godel [90], Hajek-
Godel [98]) and T (z,y) = Tp (z,y) = zy (Product logic, see e.g. Héjek-
Godel [98]).

Definition 8.18 (see Hajek-Godel [98]) The propositional form A is a
1-tautology (or standard tautology) if ¢ (4) = 1, for each evaluation.

Definition 8.19 Let A be a propositional form which is represented with
propositional forms A4, ..., A, and connectives above introduced. The quan-
tity

drapr (A) =1 —inf {t (A4, ..., An, Vs, Ar, ) ;

Ay, ..., Ap propositional forms}

is called defect of 1-tautology of the propositional form A.

Remark. It is obvious that df. ,;;+ (A) = 0 if and only if the propositional
form A is a 1-tautology.

Example 8.8 If T < Ty (that is T'(x,y) < TL (¢,y),Vz,y € [0,1]) then
the propositional form (A; Ay Az) =1 A; has the defect of 1-tautology
equal to 0. Indeed,

t((Al AT A2) =7 A1) = S(l — T(t (Al) , 1 (Az)) ,t (Al))

> S(1—t(A1),8(A1)) > Sp(1-1t(A1),E(Ar) =1,

which implies inf {¢ ((4; Ar A2) =7 A1) ; A1, As propositional forms} = 1,

Example 8.9 Let us consider the propositional form

(AVs A) = A,
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where T is a triangular norm and S is the triangular conorm associated to
T. We have

t((AVs A) »r A) =t (= (A Vs A) =7 A)

=S{E(~(AVs A)),t(A)=S1-S(t(4),t(A),t(4).
If T'= Ty then

t((AVs A) =7 A) = max (1 —t (4) 1 (4))

therefore
1 1 1
dpaur ((AVsy A) =1y A)=1- 3=3
If T =T}, then
t((Avs Ay »7r A) = min(l —min (2t (A),1)+t(4),1)
_ t(4), ift(A)Z%
Tl 1-t(4), ift(4) <L
therefore
1 1 1
dpaur ((AVs, A) 51, A)=1— 5= 3

Another important case is T' = Tp. We obtain
t((AVs A) 57 A) = —t° (A) + 3t* (A) — 2t (A) + 1.
Because the derivative of the function f : [0,1] — R defined by f(z) =

—23 + 32%2 — 22 4+ 1 is positive on [z, 1] and negative on [0, zy], where
Top = 3~_—3ﬁ, we get

inf{f(a:);xe[o’l]}:f(3—3\/?:) _ 27-—6\/3.

27

As a conclusion,

63
dravr (AVsp A) =7, A) = e
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Example 8.10 If we consider the same propositional form as in the pre-
vious example, but § and T are not associate, then the minimum value
0 and the maximum value 1 of the defect of 1-tautology can be attained.
Indeed, taking S = Sy and T = Ty, we get

t((AVsy A) =1, A) = Sw (1 — Sy (1 (A),t(A4)),t(A4) =1,
for every t (A) € [0, 1], therefore
dpaur (A Vsy A) =1y, A) =0,
and taking S = Sy and T = Ty we obtain
E((A Vs A) 1y, A) = Sy (1= Sw (£(4) ,(A)) £(4))
[, ift(A)=0
Tl t(4), ift(A) >0,
which implies inf {t ((A Vs, A) —71,, A); A propositional form} = 0, that
18
d’}"AUT ((AVsy A) o1, A) = 1.

Among all the fuzzy logics, min — max logic is the most used in practice.
In the context of min— max fuzzy logic, Butnariu-Klement-Zafrany [51],
Theorem 5.1, proved the following characterization of tautology.

Theorem 8.12 A propositional form A in the min— max fuzzy logic is
a tautology, if and only if t (A) > 0.5, for every evaluation.

A natural definition of the deviation from tautology of a propositional
form A which depends on propositional forms A4, ..., A, and connectives
V$ars ATy s =37y, (denoted in the following by v, A, =) and —, is the follow-
ing.

Definition 8.20 The quantity

drauT (A) = max{O, 0.5 —1nf {t (Al, e Ap, VA, >, —I);

Ay, ..., A, are propositional forms}}

is called defect of tautology in the min — max fuzzy logic (or Ths-tautology)
of propositional form A.
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~ Remarks. 1) It is immediate that dpayr (A) = 0 if and only if A is a
tautology in the min — max fuzzy logic.

2) Let T be a triangular norm which has no zero divisors, that is
T (z,y) = 0 implies & = 0 or y = 0. Because a propositional form A is a tau-
tology in a fuzzy logic based on T if and only if, for some a > 0,t(A) > a
(see Butnariu-Klement-Zafrany [51], Theorem 4.4), we can introduce the
concept of defect of T-tautology as above.

Example 8.11 The propositional forms
Al — (A2 — Al)

("Al g "1A2) — (Az - Al)

(Al - (Az — Aa)) — ((A1 — Az) - (Al - A3))

are tautologies in the min — max fuzzy logic (see Butnariu-Klement-Zafrany
[51], the proof of Theorem 5.1), therefore their defect of Tys-tautology is
equal to 0.

Example 8.12 The propositional form
Al — (Al A Ag)
has the defect of Thr-tautology equal to 0.5. Indeed,

inf {t (A1 — (A1 A A2)); A1, A, propositional forms}
= inf {max (1 — ¢t (A;) ,min (¢ (Ay),t (Az))); A1, A2 propositional forms}

<inf {max(1 —t(A;),t(Az2)); A1, A2 propositional forms} = 0,
obtained for ¢ (A1) = 1,1 (A3) = 0.

The intuitionistic fuzzy logic is introduced by Atanassov 6] and then
developed by Atanassov [11], [12], {13] and Atanassov-Ban [15]. In the
intuitionistic fuzzy logic, two real non-negative numbers, u (p) and v (p),
are assigned to each proposition p, with the following constraint:

pp)+vip) <1

They are called ”truth degree” and ”falsity degree” of the proposition p.
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Let this assignment be provided by an evaluation function V' defined by

Vp)=(u(p),v(p)-

The evaluation of the negation —p of proposition p, is defined (see Atanassov

[6]—[12]) as

V(=p)= (¥ (p),ulp).

Starting with a triangular norm 7" and its associated triangular conorm
S (see Definition 4.13), when the values V (p) and V (¢) of the propositions
p and ¢ are known, the evaluation function V can also be extended for the
operations Ar and Vr by

Vip)ArV(g) = VipArg) =T (p(p),p(q),Sw(p) vig)
Vip)vr V(g = VpVre) =(S(e),nr(q),T k) v(g)).

A possibility of modelling the implication in intuitionistic fuzzy logic
based on the triangular norm T, is to define

p—oT¢="pVry,

therefore

Vip—=rq) =(Swp),r(0),T(kp),v (),

and to introduce

Vp)=r V(g =Vp->r9).

Similarly with the classical logic, each proposition is a propositional
form and if A, B are propositional forms then AVy B, AAr B, A =1 B are
propositional forms for every triangular norm T

Definition 8.21 (see e.g. Atanassov [12]) The propositional form A is
an intuitionistic fuzzy tautology if and only if

p(A) 2 v(4).

In order to measure the deviation from tautology of a propositional form
in intuitionistic fuzzy logic, we introduce the following concept.

Definition 8.22 Let A be a propositional form which can be represented
with arbitrary propositional forms A, ..., A, and connectives introduced as



Defect of Property tn Fuzzy Logic 333

above. The quantity

di—ravr (A) = max{0,sup{v(A1,....,4An) — 1 (A1, ..., An);
Ay, ..., A, propositional forms}}

is called defect of intuitionistic fuzzy tautology of the propositional form
A.

It is immediate the following.

Theorem 8.13 (i) 0 < dj_ravr (4) <1
(11) dr—ravr (A) = 0 if and only if A is an intuitionistic fuzzy tautology.

Example 8.13 The propositional form
(A1 =7 A2) =7 A1) 51 Ay

is an intuitionistic fuzzy tautology for T (z,y) = Ty (v, y) = min(z,y) ,
Ve,y € [0,1] (see [12]), that is

di—ravt (A1 =71y A2) 210, A1) 21y, A1) = 0.
If T'="Tw, that is

_ [ min(z,y), if max(z,y) =1
Tw (z,y) = { 0, otherwise,

then the above propositional form is not an intuitionistic fuzzy tautology
(see Atanassov-Ban [15]) and its defect of intuitionistic fuzzy tautology is

di—ravr (A1 =1y A2) o1y A1) =51 A1) = 1.

Indeed, taking V (A1) = {a,b),a,b € (0,1),a < b,a+b < 1,V (A3) = (0, 1),
then

v (((A1 21y A2) 571 A1) 21w A1) =0
and

L (((A1 =7y A2) =1y A1) =1y A1) = a,
therefore

dr-ravr ((A1 =1y A2) 510 A1) =710 Al
= sup{b—a;a,be(0,1),a<ba+b<1}=1.
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Example 8.14 If T, T}, T are triangular norms and T3 (z,y) < 71 (z,¥),
Vz,y € [0,1] then

di-ravt (A1 V1, A2) =71 (A1 V1, 42)) =0,

because {A; Vr, A2) =7 (A1 Vr, A2) is an intuitionistic fuzzy tautology
(see Atanassov-Ban [15]). If T} (z,y) = Ty (¢,y) = max(z +y — 1,0),
T»(z,y) =Tp (z,y) = zy (that is T £ T1) and T (z,y) = min(z, y), then

(Al Vv, AZ) —T (A1 Vvr, Az)

is not intuitionistic fuzzy tautology, because taking V (A4;) = V (A.) =
<§, %>, we have

v (A1 Vr, A2) =1 (A1 V1, A2)) =T (51 <%, %) Ty (%, %)) = i

15 11 11
> =5 (Tl (5, 5) , Sa (g,g)) = p((A1 V1, A2) o7 (AL Vr, A2)) .
An upper estimation of the defect is

dr-tavr (A1 V1, A2) =7 (A1 VT, A2)) <

e

Indeed,

T(Sl ((1, C) ,Tz (b, d)) -5 (Tl (b, d) ,Sg (Cl, C))

= min (min (a + ¢, 1), bd) — max(max(b+d —1,0),a + ¢ — ac)

1

| =

<min(a+c,bd)~ (a+c—ac) <ac<
for every a,b,c,d € [0,1],a+b < 1,e+d < 1, where (a,b) = V (4;) and
(c,d) =V (A2). '
8.5 Bibliographical Remarks and Open Problems

All the results in this chapter, excepting those where the authors are men-
tioned, are completely new.
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Open problem 8.1 For a given propositional form depending on the
connectives S and T, it would be interesting to find out for which S and T'
the defect of tautology is the smallest possible.
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