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Chapter 1
Introduction

After reading this chapter, you should be ableto
=  Know what a matrix is
= |dentify special types of matrices

= When two matrices are equal

What isa matrix?

Matrices are everywhere. If you have used a spreadsheet such as Excel or Lotus or
written a table, you have used a matrix. Matrices make presentation of numbers clearer
and make calculations easier to program. Look at the matrix below about the sale of tires

in a Blowoutr’ us store — given by quarter and make of tires.

Quarter 1 Quarter 2 Quarter 3 Quarter 4

Tirestone ¢g25 20 3 20
Michigan 25 10 15 25,
Copper g6 16 7 27§

If one wants to know how many Copper tires were sold in Quarter 4, we go along the row
‘Copper’ and column ‘Quarter 4" and find that it is 27.

So what isa matrix?

A matrix is arectangular array of elements. The elements can be symbolic expressions or
numbers. Matrix [A] is denoted by
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Row i of [A] hasn elementsand is [a,.l a12....am] and
€a,; U
é u
. . éazju
Columnj of [A] hasm elementsand is &4
¢ U
i 0
Each matrix has rows and columns and this defines the size of the matrix. If amatrix [A]

has m rows and n columns, the size of the matrix is denoted by m x n. The matrix [A]
may also be denoted by [A]mxn to show that [A] isamatrix with m rows and n columns.

Each entry in the matrix is called the entry or element of the matrix and is denoted by &

wherei isthe row number and j is the column number of the element.

The matrix for the tire sales example could be denoted by the matrix [A] as

@5 20 3 20
[A]=85 10 15 25;
g6 16 7 27§

There are 3 rows and 4 columns, so the size of the matrix is 3 x 4. In the above [A]
matrix, a,, = 27.

What arethe special types of matrices?

Vector: A vector isamatrix that has only one row or one column. There are two types
of vectors—row vectors and column vectors.

Row vector: If amatrix has onerow, it iscalled arow vector

[B]=[b, b,......b_]

and ‘m’ isthe dimension of the row vector.
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Example
Give an example of arow vector.
Solution

[B] =[25 20 3 2 0] isanexample of arow vector of dimension 5.

Column vector: If amatrix has one column, it is called a column vector

€c, u

D

[cl=

('P%CD> D D
ent] ey ey ey e

n

and n is the dimension of the vector.

Example
Give an example of a column vector.

Solution
&250
[C] = 25 3 isan example of acolumn vector
-

of dimension 3.

Submatrix: If some row(s) or/and column(s) of a matrix [A] are deleted, the remaining
matrix is called a submatrix of [A].

Example

Find some of the submatrices of the matrix
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¢ 6 2
& -1 2
Solution

g _61 §§§ _61§[4 6 2],[4], ggare al submatrices of [A]. Can you find other

[Al=

submatrices of [A]?

Square matrix: If the number of rows (m) of amatrix isequal to the number of columns
(n) of the matrix, (m = n), it is called a square matrix. The entries a1, &, . . . &n ae
called the diagonal elements of a square matrix. Sometimes the diagonal of the matrix is
also called the principal or main of the matrix.

Example

Give an example of a square matrix.

Solution
€5 20 3u
_é a
[A]=85 10 15
g6 15 7§

isasquare matrix asit has same number of rows and columns, that is, three.

The diagonal elements of [A] are a;1 =25, &, =10, agz = 7.

Upper triangular matrix: A mxn matrix for which &; = 0, i>j is called an upper

triangular matrix. That is, all the elements below the diagonal entries are zero.
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Example
Give an example of an upper triangular matrix.

Solution
a0 -7 0 u
_é ¥
[A]=80 -0001 6 g
80 0 15005

isan upper triangular matrix.

Lower triangular matrix: A mxn matrix for which a; = 0, j > i is called a lower
triangular matrix. That is, all the elements above the diagonal entries are zero.

Example

Give an example of alower triangular matrix.

Solution
61 0 O
_é (
[A] = 203 1 0
06 25 1j

isalower triangular matrix.

Diagonal matrix: A square matrix with al non-diagonal elements equal to zero is called
adiagona matrix, that is, only the diagonal entries of the square matrix can be non-zero,
(& =0,it]).

Example
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Give examples of adiagonal matrix.

Solution
& 0 0
_é ¥
[A]-go 21 0y
€O 0 54

isadiagonal matrix.
Any or al the diagonal entries of a diagonal matrix can be zero.

For example
&g 0 O0u
_6 a
[Al=0 21 04
0 0 0y

isalso adiagonal matrix.

Identity matrix: A diagona matrix with all diagonal elements equal to one is called an
identity matrix, (& =0,i?* j; and &; = 1 for al i).

Example

Give an example of an identity matrix.

Solution
é. 0 0 Ou
© 1 0 oY
[A] =€ u
& 0 1 0
© 00 13

isan identity matrix.
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Zeromatrix: A matrix whose al entries are zero is called a zero matrix, (&; = O for all i

andj).

Example

Give examples of azero matrix.

Solution

€@ 0

[A]=20 0

@ 0

_& 0

- o

€ 0

[c]=% o

€ 0

[D]=[0 ©

are all examples of azero matrix.

0y
u
%
0g
0u
o}y
0 Oy
a
0 Og
0 Of

)

Tridiagonal matrices: A tridiagonal matrix is a square matrix in which all elements not
on the major diagonal, the diagonal above the major diagona and the diagonal below the

major diagonal are zero.

Example

Give an example of atridiagona matrix.

Solution
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& 4 0 0
u

=& 39 9
&@ 0 5 2u
0 0 3 6y

isatridiagonal matrix.

Do non-squar e matrices have diagonal entries?

Yes, for a mxn matrix [A], the diagonal entries are a,,,a,,...,8,_,,;,8, Where k=min

{m,n}.

Example

What are the diagonal entries of

82 50
e u
s 7U

[A]=€ u
@9 320
&6 7.84

Solution

The diagonal elements of [A] are a,, =3.2anda,, = 7.

Diagonally Dominant Matrix: A nxn square matrix [A] is adiagonally dominant matrix
if
la,[® &la, | forali=12, ..,n

J=1
ity

and |a,| > Q| 4, | for at least onei,

J=1
ity
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that is, for each row, the absolute value of the diagonal element is greater than or equal
to the sum of the absolute values of the rest of the elements of that row, and that the
inequality is strictly greater than for at least one row. Diagonally dominant matrices are
important in ensuring convergence in iterative schemes of solving simultaneous linear
equations.

Example

Give examples of diagonally dominant matrices and not diagonally dominant matrices.

Solution
a5 6 70
_é G
[A]—§2 -4 -2
B3 2 64§

isadiagonally dominant matrix

as

8| =15 =152 ay,| +[a[ =[6+[7 =13

[ap| = |- 4 =43 [ay| +ay| = |2 +[2 =4

8| =161 =62 Jasy| +[a| =[3+[2 =5

and for at least one row, that is Rows 1 and 3 in this case, the inequality isastrictly
greater than inequality.

é&15 6 9 u

_é G
[Al=2 -4 2

g3 -2 50014
isadiagonally dominant matrix

as
| = |- 19 =152 |ay,| +|a,[ =|6 +|9 =15
| = |- 4 =43 |a,| +|ay|=[2+[2 = 4
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|ags| =[5.001 =5.0013 |ay | +|ay,| =|3+|- 24 =5

the inequalities are satisfied for al rows and it is satisfied strictly greater than for at |east

onerow (inthiscaseitis Row 3)

€25 5 1
[Al=g64 8 13
844 12 1§

is not diagonally dominant as
|| = 8 =8 £ |a| +[a| =(64+ /1 =65

When aretwo matrices consider ed to be equal ?

Two matrices [A] and [B] are equa if the size of [A] and [B] is the same (number of

rows and columns are same for [A] and [B]) and a; = by;; for all i and j.

Example

What would make

€ 3u
Al=a 1to be equal to
=g 2

é 3u
Bl=eg , @

e 22U
Solution

The two matrices [A] and [B] would be equal if

b]_]_ = 2, b22 =7.

Introduction to Matrix Algebra— Copyright — Autar K Kaw
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Key Terms

Matrix Vector Sub-matrix Square matrix
Upper triangular matrix Lower triangular matrix
I dentity matrix Zero matrix

Diagonally dominant matrix Equal matrices.

Homework Assignment

1. Write an example of arow vector.

2. Write an example of a column vector.

3. Write an example of a square matrix.

4, Write an example of adiagonal matrix.

5. Write an example of atridiagona matrix.

6. Write an example of aidentity matrix.

7. Write an example of aupper triangular matrix.
8. Write an example of alower triangular matrix.

9. Arethese matrices strictly diagonally dominant?

d5 6 7
3 [Al=82 -4 24
g3 2 6
& 6 T
b [Al=2 -4 24
8 2 -5

Introduction to Matrix Algebra— Copyright — Autar K Kaw
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& 3 2u
oA=% -8 2y
& -5 12§

Answer: a) Yes b) No c)No

10. Give an example of adiagonally dominant matrix with no zero elements.
é -1

o 2
What are b]_]_ and b]_z in

é,, b,u
[B]:é 11 4.2l’:I
e u

11.1f [A]=

if [B] = 2[A.

Answers: 8, -2

12.Find all the submatrices of

a0 -7 oy
A=e) 0001 6
e - Y. u
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Chapter 2
Vectors

After reading this chapter, you should be ableto
= Know what a vector is

=  How to add and subtract vectors

= How to find linear combination of vectors and their relationship to a set of

equations

= Know what it means to have linearly independent set of vectors

=  How to find the rank of a set of vectors

What is a vector?

A vector is acollection of numbersin adefinite order. If itisacollection of ‘n’ numbers,

it is called an-dimensional vector. So the vector A given by

éa, u
2,

>

A=

oo\ C

(‘B:JCD) D

n

is a n-dimensional column vector with n components, aj, & . . .

column vector. A row vector [B] is of the form

B = [b]_, bz,. ey bn]

where B isan-dimensional row vector with n components by, by, . .

, &. The above is a

., bn.

Introduction to Matrix Algebra— Copyright — Autar K Kaw
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Example

Give an example of a 3-dimensional column vector.

Solution

Assume a point in space is given by its (x,y,z) coordinates. Then if the value of x=3,
exu  &su

y=2, z=5, the column vector corresponding to the location of the pointsis gyg = ?3
ezH &4

When aretwo vectors equal?

Two vectors A and B are equa if they are of the same dimension and if their

corresponding components are equal .

Given
éa, U
é. u
A=&20
e:u
e u
eanu

and

ool

1
(D> D > (D
B © QP @

(o] eny exy en Y eny end

then A=B ifa=b,i=1,2,....,n

Example

What are the values of the unknown componentsin B if
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é2U éo u
&, U é3u
A:éaand B:é l:l
&40 ¢4
é u U
elg 3340
and A=B.
Solution
b, =2b, =1.

How do you add two vector s?

Two vectors can be added only if they are of the same dimension and the addition is

given by
éa,u ébu
e, U u
[A]+[B] = €720+ €20
e:u e:u
é U é u
@0 &0
éa, +b u
é u
:éa2+bzl]
é
é u
&, 0,
Example
Add the two vectors
U ésu
u e LU
=€land B=€ "4
equ e3u
eu e_u
elg e’
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Solution

€20 é5u
u é .u
A+B=€04+€
éu é3u
ey e u
el 7
€2+ 50
& a
-8 2
é4+ 30
é 1]
el+7q
éru
&u
:el:|
éru
o
&30
Example

A store sells three brands of tires, Tirestone, Michigan and Cooper. In quarter 1, the sales
are given by the vector

50

g6
where the rows represent the three brands of tires sold — Tirestone, Michigan and Cooper.
In quarter 2, the sales are given by

&0

A = 0]

eéd

What is the total sale of each brand of tirein the first half year?

Solution

Thetotal saleswould be given by
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g25@ é200
_éu a
Teute
€6H e6y
é25+ 200
_é U
—§5+1og
§6+6 H
50
_écl
X
gl2y

So number of Tirestone tires sold is 25, Michigan is 15 and Cooper is 12 in the first half

year.
What isa null vector?

A null vector iswhere all the components are zero.

Example

Give an example of anull vector or zero vector is

Solution
€0u
U
The vector gogis an example of azero or null vector.
&,
&

What is a unit vector ?

A unit vectorU is defined if

Introduction to Matrix Algebra— Copyright — Autar K Kaw
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iy

c
1
R D QD> D

=}

e ey ex Y ex Y ex Y end

where \Ju? +uZ +uZ +...+u? =1

Example
Give examples of 3-dimensional unit column vectors.
Solution

Examplesinclude

How do you multiply a vector by a scalar?

If kisascalar and A isan-dimensional vector, then

Example

What is 2A if

Introduction to Matrix Algebra— Copyright — Autar K Kaw
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250
rea u
A= %?Og
€5H
Solution
50
reas u
2A= 25?0(J
g
&2)(25)u
_ € u
= d2(20)
HAIOK:
é500
_eAu
= §40,

€L0g

Example

A store sells three brands of tires, Tirestone, Michigan and Cooper. In quarter 1, the sales
are given by the vector
250
A= g5,
eéd
If the godl is to increase the sales of al tires by at least 25% in the next quarter, how
many of each brand should be the goal of the store?

Solution
Since the goal isto increase the sales by 25%, one would multiply the A vector by 1.25,
250
B =1.25257
eéd
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é31.25()

_6 a

= 231.25(J

75§

Since the number of tiresis an integer we can say that the goal of sales would be

20
5 — €550
B= é%z@
esH

What do you mean by alinear combination of vectors?

Given A, A, oo , A, asm vectors of same dimension n, then if ky, ko, ...

are scalars, then
ki A + koA + .. +kn A,

isalinear combination of the m vectors.

Example
Find the linear combinations
a) [A]-[B],and

b) [A] +[B] —3[C], where

Qi an  doy
re ug._ ux_¢e,,u
A=g3B=clgC=gl

€4 (] g24

Solution

Introduction to Matrix Algebra— Copyright — Autar K Kaw
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e
Qu ¢l doy
r O = = _ u u e, u
b) A+B-3(:_23,@+(§@-3@1(J
H €H g2y
& +1- 300
_é U
_§3+1-3L,‘
gé+2- 6
& 270
_é.u
“e b
€24

What do you mean by vectors being linearly independent?

A set of vectors A, A,,..., A are considered to be linearly independent if

ki A +ke A+ tkn A, =0
has only one solution of ky =k, = .... = k= 0.
Example

Arethe three vectors

6250  ¢5u &
A _€r Uz _éqUx _éu
A=g64A = g8 A = gy

eddg e e
linearly independent.

Solution

Writing the linear combination of the three vectors
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e25u ébu élu eOu
é é

k264 +k 8u+kgju
€l44H g2y &y @H
gives

é 25k, +5k, +k, 0 &0l

e U_ &\
S 64k, +8K, +k; gou

gl44k +12k, +k,  €0¢

The only solutionisk; = ky=kz=0.

Example
Arethe three vectors
dy @ e6u
=S, =S n =2,
e e 84
linearly independent?
Solution
By inspection,
A, = 2A +2A,
or
-2A - 2A,+A, =0
So the linear combination
kA +k,A, +k,A =0
has a non-zero solution

k,=-2k, =-2,k, =1

Hence the set of vectorsis linearly dependent.

Introduction to Matrix Algebra— Copyright — Autar K Kaw
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Example

Arethe three vectors
&50  é50 &l
A=y A =8 A =gl
Bo% 3 e
linearly independent.

Solution

Writing the linear combination of the three vectors

é25() é50 élu éOu
a é U_ &\
klged'u’LKZequr k321u gou

6% &3 &8 &4
gives

é 25k, +5k, +k, u €0u

e U u
S 64k, +8k, +k; gou

§9k +13k, + 2k, €0g

In addition to ki1 = ko = ks = 0, one can find other solutions for which ki, ko, ks are not
equal to zero. For examplek; =1, ko =-13, k3 =40isaso asolution. Thisimplies

625u é50 élu éu

U é u_ u
1‘564 1358 ¢ +4o§1u gou

@99 @139 ed &d

So the linear combination that gives us a zero vector consists of non-zero constants.

Hence A, A,, A, arelinearly dependent.
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What do you mean by therank of a set of vectors?

From a set of n-dimensional vectors, the maximum number of linearly independent
vectorsin the set is called the rank of the set of vectors. Note that the rank of the vectors

can never be greater than its dimension.

Example

What isthe rank of

650 65U &y
A € Ux _EqU R €U
A=gb4gA = g8y A= dy
gl44y gL2H elf
Solution:

Since we found in a previous example that A, A,,and A, are linearly independent, the
rank of the set of vectors A, A,, A, is3.

Example

What isthe rank of

@50 ¢5u o
N — Ux _EqgUxr —_€U
A=A =eluh T ey
89 eL3g &2y

Solution
Since we found that A, A, and A, are not linearly independent, the rank of A, A, A, is

not 3, and henceislessthan 3. Isit 2? Let us choose

€50 - e5u
N o— Ux _€eqU
A=tk =58y
8% e

Linear combination of A and A, equal to zero has only one solution. So therank is 2.
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Provethat if a set of vectors containsthe null vector, the set of vectorsislinearly
dependent.
Let A,A,,...,A, beaset of n-dimensional vectors, then
KA +kA +...+k A =0
isalinear combination of the ‘m’ vectors. Then assuming if A isthe zero or null vector,
any value of k; coupled with k, =k, =... =k, = 0will satisfy the above equation.
Hence the set of vectorsislinearly dependent as more than one solution exists.
Provethat if a set of vectorsarelinearly independent, then a subset of the m vectors
also hasto belinearly independent.
Let this subset be
ALA,,.. A,
wherep <m.
Then if this subset islinearly dependent, the linear combination
kA, + kA, +...+k A =0
has a non-trivial solution.
So
kA, +k A, +...+k A+0A, ., ...0A, =0,
has anon-trivial solution too, where A, ,.),..., A,, aretherest of the (m-p) vectors. But
thisisacontradiction. So a subset of linearly independent vectors cannot be linearly
dependent.
Provethat if a set of vectorsislinearly dependent, then at least one vector can be

written asalinear combination of others.

Let A,A,,..., A, belinearly dependent, then there exists a set of numbers
K,,...,k,, not all of which are zero for the linear combination

KA +IA +...+k A =0

that one of non-zero valuesof k;,i =1,...,m, isfor leti = p, then
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kK k
- p*lAp-...-k—mAn.

K, =
p = k_AZ
and that proves the theorem.

Prove that if the dimension of a set of vectorsis less than the number of vectorsin
the set, then the set of vectorsislinearly dependent.

Can you proveit??

How can vector s be used to write ssmultaneous linear equations?
A set of m linear equations with n unknowns is written as

anX t...ta X, =¢

A, % *...+a, X, =C,

2n“*n

a X t. X, =C,
where

X, X, ,..., X, are the unknowns, then in the vector notation they can be written as

XA+ XA+ +x,A =C

where
€2, U
~x —_€e-.-Uu
ATe'y
&l
éa,, u
A —€e - Uu
Tl
&2t
€a,, U
X _€.U
hTel g
@‘mng
The problem now becomes whether you can find the scalars xq, ......... , Xn such that the

linear combination
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Example

Write
25X, +5X, +X; =106.8
64x, +8X, + X, =177.2

144%, +12X, + X, = 279.2

as alinear combination of vectors.

Solution
€25x, +5x, +x,u €l06.8u
é a_é a
gb4  +BX, X gm.z(J
gladx, +12x, +x £279.24
6250 650 61068y
s U, EqU a_ a
x1§64 l;l+ x2§8 l}+ X3“§Ll§l_ gL77.2l:J
e44y  Ed el €792y
What isthe definition of the dot product of two vectors?
Let A:[al,az,...,an] and I::s:[bl,b ,...,bn] be two n-dimensional vectors. Then the dot

product of the two vectors A and B is defined as

AxB=ab +ab, +...+ab =3 ab

i=1

A dot product is aso called an inner product or scalar.

Example

Find the dot product of the two vectors A =(4,1,2,3)and B = (3,1, 7, 2).
Solution

AxB =(41,2,3)4317,2)
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= @E)+M)OW)+(N+Q3)(2)
=33

Example

A product line needs three types of rubber as given in the table below.

Rubber Weight Cost
Type
Ibs $
A 200 20.23
B 250 30.56
C 310 20.12

How much isthe total price of the rubber needed?
Solution

The weight vector is given by

W = (200,250,310)

and the cost vector is given by

C =(20.23,30.56,29.12).

The total cost of the rubber would be the dot product of W and C .
W >C = (200,250,310)420.23,30.56,29.12)

= (200)(20.23) + (250)(30.56) + (310)(29.12)

= 4046 + 7640 + 9027.2

=$20713.2
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Key Terms

Vector

Addition of vectors

Unit vectors Null vector

Linear combination of vectors

Subtraction of vectors
Scalar multiplication of vectors

Linearly independent vectors

Rank Dot products.
Homewor k
1. For
é2u &u  du
A=8olg=%0c-4Y
e &8 &y
find
a A+B
b) 2A-3B+C
2. Are
éu o - elu
A=§9B=80c=84!
€0 &8 &5
linearly independent. What isthe rank of the above set of vectors?
3. Are
éu élu - &
A-gus-lc-5!
€0 &8 e
linearly independent. What is the rank of the above set of vectors?
4.  If aset of vectors contains the null vector, the set of vectorsis

Introduction to Matrix Algebra— Copyright — Autar K Kaw
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A. linearly independent.
B. linearly dependent.
5. If aset of vectorsislinearly independent, a subset of the vectorsis
A. linearly independent.
B. linearly dependent.
6. If aset of vectorsislinearly dependent, then
A. at least one vector can be written as alinear combination of others.
B. At least one vector isanull vector.

7. If thedimension of a set of vectorsis less than the number of vectorsin the set,
then the set of vectorsis

A. linearly dependent.
B. linearly independent.
8.  Find the dot product of
A=(21253)and B =(-32125)

9. If 4,vV,w arethree nonzero vector of 2-dimensions, then

A. 1,V,w arelinearly independent

B. G,V,w arelinearly dependent

C. U,V,w areunit vectors

D. k,ii+k,V+k,V =0 hasaunique solution.
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Chapter 3
Binary Matrix Operations

After reading this chapter, you will be ableto
= Add, subtract and multiply matrices

= Learnrulesof binary operations on matrices

How do you add two matrices?

Two matrices [A] and [B] can be added only if they are the same size, then the addition is
shown as

[C]=[A] +[B]

where
Cij = & + by
Example
Add two matrices
é 2 3
[A] =& Q
& 2 7
é 7 -2
[B]=4& Q
&8 5 194
Solution

[c]=[A]+[e]
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& 2 30,6 7 -20

"8 2 '8 5 10
_&+6 2+7 3-24
C&+3 2+5 7+194
_d1 9 14

& 7 264

Example

Blowout r’'us store has two locations ‘A’ and ‘B’, and their sales of tires are given by
make (in rows) and quarters (in columns) as shown below.
&5 20 3 20
_é a
[A]=85 10 15 25;
g6 16 7 27y
€0 5 4 0u
_é a
[B] = g3 6 15 21y
g4 1 7 20

where the rows represent sale of Tirestone, Michigan and Copper tires and the columns
represent the quarter number - 1, 2, 3, 4. What are the total sales of the two locations by

make and quarter?
Solution
[c]=[A]+[8]

&5 20 3 20 &0 5 4 0y
_é G,é (
=g5 10 15 25;+g3 6 15 21
g6 16 7 274 g4 1 7 20§

g25+20) (20+5) (3+4) (2+0)

=g (6+3) (10+6) (15+15) (25+21)4

§(6+4) (16+1) (7+7) (27+20)
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&5 25 7 240
_6é a
=58 16 30 46;

g0 17 14 47§

So if one wants to know the total number of Copper tires sold in quarter 4 in the two
locations, we would ook at Row 3 — Column 4 to give

C,, =47.

How do you subtract two matrices?

Two matrices [A] and [B] can be subtracted only if they are the same size and the
subtraction is given by

[D] =[A] - [B]
where

dij = &; - by;

Example

Subtract matrix [B] from matrix [A].

Solution

[c]=[Al- [8]

G 2 30 6 7 -20
2 74 8 5 19§

$-6 2-7 3- (-2
-3 2-5 7-19Y

B PO
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&1 -5 504
_é -
&2 -3 -12

Example

Blowout r’us store has two locations A and B and their sales of tires are given by make

(inrows) and quarters (in columns) as shown below.

&5 20 3 2y
_é U
[A]=85 10 15 25;
g6 16 7 27§
&0 5 4 0y
_é G
[B]—(?B 6 15 21y
g4 1 7 20§

where the rows represent sale of Tirestone, Michigan and Copper tires and the columns
represent the quarter number- 1, 2, 3, 4. How many more tires did store A sell than store

B of each brand in each quarter?
Solution
[D]

= [Al- [B]

&5 20 3 20 &0 5 4 00
_é - (
=g5 10 15 25;- g3 6 15 2l
g6 16 7 274 g4 1 7 20§

€5-20 20-5 3-4 2-04Q
:g 5-3 10-6 15-15 25- 213
86-4 16-1 7-7 27- 20§

15 -1 24

(
4 0 4y
15 0 7§

1
B RP B
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So if you want to know how many more Copper Tires were sold in quarter 4 in Store A
than Store B, d34 = 7. Notethat d,; =-1 implying that store A sold 1 less Michigan tire

than Store B in quarter 3.

How do | multiply two matrices?

Two matrices [A] and [B] can be multiplied only if the number of columns of [A] is
equal to the number of rows of [B] to give

[Clrn = [Alp Bl
If [A] isa mxp matrix and [B] isa pxn matrix, the resulting matrix [C] isa mxn matrix.

So how does one calcul ate the el ements of [C] matrix?

To put it in simpler terms, the i™ row and j™ column of the [C] matrix in [C] = [A][B] is
calculated by multiplying the i row of [A] by the™ column of [B], that is,

éby; U
a
21
G :[ail Qg eeneen aip]g -4
é.u
é-u
g).u
pu
=a, by + a, by +....... +a,b,.
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Example

Given
[ ]_95 2 3u
"4 2 7
8 - 20
Bl=% -8y
e -10g
find
[c]=[AlB]
Solution

C12 can be found by multiplying the first row of [A] by the second column of [B],

é- 24
c=l5 2 -8
¢ 10§

=(9)(-2) + (2(-8) + (3)(-10)

=-56

Similarly, one can find the other elements of [C] to give
éb2 - 56U

lcl= &6 - sy

Example

Blowout r’'us store location A and the sales of tires are given by make (in rows) and
guarters (in columns) as shown below

€5 20 3 2u
[A]=85 10 15 25;

g6 16 7 274
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where the rows represent sale of Tirestone, Michigan and Copper tires and the columns
represent the quarter number - 1, 2, 3, 4. Find the per quarter sales of store A if following
are the prices of each tire.

Tirestone = $33.25
Michigan = $40.19
Copper = $25.03
Solution

The answer is given by multiplying the price matrix by the quantity sales of store A. The
price matrix is [33.25 40.19 25.03], then the per quarter sales of store A would be

given by
&5 20 3 20

[C]=[3325 4019 250335 10 15 25;
g6 16 7 27§

Qoc,

c. =

ij aik bkj

=
I
-

_ g
C11 - a alkbkl
k=1

=a,b, +a,b, +a;b,
=(33.25)(25) + (40.19)(5) + (25.03)(6)
= $1182.38

Similarly

¢, = $1467.38,

c,, =$877.81
c,, = $1747.06.

So each quarter sales of store A in dollars are given by the four columns of the row vector

[c]=[1182.38 1467.38 877.81 1747.06]
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Remember since we are multiplying a1 x 3 matrix by a 3 x 4 matrix, the resulting matrix
isalx 4 matrix.

What isa scalar product of a constant and a matrix?

If [A] isanx n matrix and k is a real number, then the scalar product of k and [A] is
another matrix [B], where b, =ka; .

Example
21 3 20
Let (=5 4. Find2[A]

Solution

Then
A
,&1 3 2
85 1 6
_422Y) B @
E26) @0 @6Y

&2 6 40
_é ’
&0 2 12}

What isalinear combination of matrices?

If [Ad], [A2], -..... , [Ap] are matrices of the same size and ky, ko, ....... , kp are scalars,
then
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k[A]+K[A]+ ...tk [A]
is called alinear combination of [Al] [Az] ------ ,[Ap].

Example

If

A= 5 lal=g T aalal=g o0
then find

[A]+2A,]- 05A]

Solution

_6é 6 20 &1 3 2 € 22 2y
= a*t2e g~ 05e (
& 2 1075 1 6178 35 6l

_6 6 20 &2 6 4u ¢0 11 1
& 2 14 &0 2 1l &5 175 3

_é92 109 50
815 225 10

What are some of therules of binary matrix operations?
Commutative law of addition

If [A] and [B] are mxn matrices, then

[A]+[B]=[B]+[A

Associate law of addition

If [A], [B] and [C] all are mxn matrices, then

[Al+((B]+[c])= (A]+[B])+[c]
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Associate law of multiplication

If [A], [B] and [C] are mxn, nxp and pxr size matrices, respectively, then
[Al(B]c) = (AllB])c]

and the resulting matrix size on both sidesis mxr.

Distributive law:

If [A] and [B] are mxn size matrices, and [C] and [D] are nxp size matrices
[Al(c]+[p]) = [A]lc]+[A]D]

(Al +[B])[c]=[Alc]+[B]c]

and the resulting matrix size on both sidesis mxp.

Example

[llustrate the associative law of multiplication of matrices using
él 20

&, .0 € 50 € 1
(A= 55 [Bl=g, oo [Cl=g; g
0 24
Solution

& 518 1u_é9 270
BIICI =gy glgs si™&g 2ol

el 2 e19 27¢ é91 105y
[AI[BI[C] = &3 53336 u ?37 276,
@0 2 g72 789
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& 20 &0 170
5“ez 5“ e51 459
u@ u

@18 12§

ZASD)

[AI[B] =

é20 17ue2 10 é91 1050
[Al[B][C] =51 45! 0% s =237 276!
g18 12§ g72 789

The aboveillustrates the associate law of multiplication of matrices.

Is[A][B]=[B][A]?

First both operations [A] [B] and [B] [A] are only possible if [A] and [B] are square
matrices of same size. Why? If [A] [B] exists, number of columns of [A] hasto be same

as the number of rows of [B] and if [B] [A] exists, number of columns of [B] has to be

same as the number of rows of [A] :

Even then in genera [A] [B] 1 [B] [A]

Example

Illustrate if [A] [B] = [B] [A] for the following matrices
€6 3u _&e3 2

(A= & 5“’ “€1 s

Solution

[Al[B]

§63u93 20
© sH&q1 U

& 15 270
S 1 20
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[BI[A] =

&3 2ué 3u
81 s s
_é14 14
~&16 28

[Al[B] * [B][A]

Key Terms
Addition of matrices Subtraction of matrices Multiplication of matrices
Scalar product of matrices  Linear combination of matrices

Rules of binary matrix operation.

Homewor k

1. For the following matrices

8 0 & -1 & 20
A:e_ l-;l’ B:A 1, C: l-,'l
[]élzu []8)23 [](;%su

el 1 @ 7

find where possible
a) 4[A] +5[C]
b) [A][B]

0 [A]-2[C]

&7 100 €12 -3 &7 -4q

A a é 0, & o

Answers a) —gll 330b) 8 4 5(10) & 7 8@
&34 39 g4 1y g11 -13¢g
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2. Food orders are taken from two engineering departments for a takeout. The order
is tabulated below.

Chicken
Sandwich

Mechanical €5 35 250
civi &1 20 21

Fries Drink

Food order:

However they have a choice of buying this food from three different restaurants.
Their prices for the three food items are tabul ated bel ow

McFat Burcholestrol Kentucky

Sodium
Chicken Sandwich §2.42 2.38 2.46@
Price Matrix: Fries 20.93 0.90 0.893

Drink 095 103 113§

Show how much each department will pay for their order at each restaurant. Which
restaurant would be more economical to order from for each department?

Answer: The cost in dollars is 116.80, 116.75, 120.90 for the Mechanical
Department at three fast food joints. So BurCholestrol is the cheapest for the
M echanical Department.

The cost in dollars is 89.37, 89.61, 93.19 for the Civil Department at three fast
food joints. McFat isthe cheapest for the Civil Department.

3. Given
€ 35 &5 & 2
[Al=g 7 93[Bl=2 9ylcl=8 9
213 &6 & e
[llustrate the distributive law of binary matrix operations

[Al(]+[c]) =[AlB]+[A]c].

4. Let [1] bean x nidentity matrix. Show that [A][l] = [I][A] = [A] for every n x n
matrix [A].
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Chapter 4
Unary Matrix Operations

After reading this chapter, you should be ableto
= Know what unary operations mean
» Find the transpose of a square matrix and it relationship to symmetric matrices
= How tofind the trace of a matrix

= How to find the determinant of a matrix by the cofactor method

Transpose of a matrix: Let [A] beam x nmatrix. Then [B] isthe transpose of the [A]
if by = & forall i andj. Thatis, thei™ row and thej™ column element of [A] isthe ™ row
and i™ column element of [B]. Note, [B] would be an x m matrix. The transpose of [A]
is denoted by [A]".

Example

Find the transpose of

&5 20 3 20
_é (
[Al=g5 10 15 25,
g6 16 7 27§

Solution

Thetranspose of [A] is
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&5 5 60
u

[A]ngo 10 16@
€3 15 7u

e u

&2 25 274

Note, the transpose of a row vector is a column vector and the transpose of a column

vector isarow vector.

Also, note that the transpose of a transpose of a matrix is the matrix itself, that is,
([A]T)T =[A]. Also, (A+B)" = AT +BT;(cA)’ =cA" .

Symmetric matrix: A square matrix [A] with real elements where a; = a; for i=1,....n
and j=1,...,n is called a symmetric matrix. Thisis same as, if [A] = [A]", then [A] isa

symmetric matrix.

Example
Give an example of a symmetric matrix.

Solution

@12 32 60
[A]=832 215 8
66 8 93

isasymmetric matrix as a,, =a,, =3.2; a,, =a,, =6 and a,, =a,, =8.

What isa skew-symmetric matrix?

A nxn matrix is skew symmetric for which a; =-g; for al i and j. Thisissameas
[A]=-[AT"
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Example

Give an example of a skew-symmetric matrix.

Solution

é0 1 2y
é u
é' 1 O = 5@
g2 5 0¢

is skew-symmetric as

d1p = -8p1 = 1; au3 = -8e1 = 2, &3 = - 82 = -5. Sincea; = -a; only if &; = 0, all the diagonal

elements of a skew symmetric matrix have to be zero.

Trace of a matrix: The trace of a nxn matrix [A] is the sum of the diagonal entries of

[A], that i,

w[Al=4 &,
i=1

Example

Find the trace of

g5 6 70

_é u

[Al=82 -4 24

g3 2 6f
Solution

ﬂﬂ=§m
=159+ (-4 +(6)

=17
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Example

The sale of tires are given by make (rows) and quarters (columns) for Blowout r’ us store
location A.

&5 20 3 2u
[Al=85 10 15 254

g6 16 7 27y

where the rows represent sale of Tirestone, Michigan and Cooper tires, and the columns
represent the quarter number 1,2,3,4.

Find the total yearly revenue of Store A if the prices of tires vary by quarters as follows.

é33.25 3001 3502 30.05(
[B]=g4019 3802 4103 3823
£503 2202 27.03 22.95§

where the rows represent the cost of each tire made by Tirestone, Michigan and Cooper,
the columns represent the quarter numbers.

Solution

To find the total sales of store A for the whole year, we need to find the sales of each
brand of tire for the whole year and then add the total sales. To do so, we need to rewrite

the price matrix so that the quarters are in rows and the brand names are in the columns,
that is find transpose of [B] :

é33.25 30.01 3502 30.05("
[c]=[B]" =g40.19 38.02 41.03 38.23;
§2503 2202 27.03 22.95§

§3325 4019 25030
$30.01 38.02 22.02V
[c]=¢€ ‘,‘
&3502 41.03 27.030
§0.05 3823 2295,

Recognize now that if we find [A] [C], we get
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] 3325 4019 25034
&5 20 3 2is o
l%‘30.01 38.02 22.02Y

2508 ¥

a6
[Dl=[Alcl=¢5 10 15 258 4103 27.03(

86 16 7 27f
8 3005 3823 22050

é597 1965 1193(
= gL743 2152 13253
81736 2169 1311§

The diagonal elements give the sales of each brand of tire for the whole year, that is
di = $1597 (Tirestone sales)
dy, = $2152 (Michigan sales)

ds3 = $1311 (Cooper sales)

3
The total yearly sales of all three brands of tiresare = é d,

i=1
= 1597 + 2152 + 1311
= $5060

and thisisthe trace of the matrix [D].

Definethe deter minant of a matrix.

A determinant of a square matrix is a single unique real number corresponding to a
matrix. For amatrix [A], determinant is denoted by |A| or det(A). So do not use [A] and
|A| interchangeably.

For a2 x 2 matrix,

: a,u
Al=g™" 7
=g o

det (A) = aq1 @0 - ap a1

How does one calculate the determinant of any square matrix?
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Let [A] be n x n matrix. The minor of entry &; is denoted by M;; and is defined as the
determinant of the (n - 1) x (n — 1) submatrix of [A], where the submatrix is obtained by
deleting the i™ row and j™ column of the matrix [A]. The determinant is then given by

det (A)= 4 (- 1) a,M, foranyi=12,n
j=1

]:
or

det (A):én_ (-1)"a,Mm, forany j=12,---,n

i=1
coupled with that

det (A)=a,, for al” 1 matrix [A] as we can always reduce the determinant of a matrix to

determinants of 1 x 1 matrices. The number (-1)* M; is called the cofactor of a; and is
denoted by Cjj. The above equation for the determinant can then be written as

det (A)=én g,C; foranyi=12,--,n

j=1
or
det (A)=§ a,C, forany j=1,2,---,n
i=1
The only reason why determinants are not generally calculated using this method is that it

becomes computationally intensive. For an X n matrix, it requires arithmetic operations

proportional to n!.

Example

Find the determinant of

§25 5 1u

_é u
[Al=g64 8 13

gl44 12 1§
Solution
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Method 1

det (A) = 3 (- 1) a;M, foranyi=1,23

j=1
Leti = 1intheformula

det (A) = és (' 1)l+j ;M

j=1
= (' 1)l+l a:l.lMll + (' 1)1+2 a:I.ZMlZ + (' 1)1+3 a13M 13
= allMll - a12M12 + a13M13
25 5

M, =|64 8
144 12

_ |64
144
=-80

25 5
M, =[64 8
144 12

_|e4 8
144 12

=-384
det(A) = auMll - a12M12 + a13M13 = 25(' 4) - 5(' 8O)+1(' 384)

=-100+400- 384
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=-84
Also for i=1,

3
det(A) = ]a:laij Clj

O
I

(' 1)l+l M 1

=-384
det(A) = a,,C,, +a,,C,, +a,C,,
= (25)(- 4)+(5)(80)+ (1)(- 384)
=-100+400- 384

=-84

Method 2

det (A)= 4 (- 1) a,M, foranyj=123.

i=1
Let j=2 in the formula

3 i+
det (A): é- (' 1) za'iZMiZ

= (' 1)l+2 a:I.ZM ot (' 1)2+2 azzM 2t (' 1)3+2 aezM 3R

=-a oMy, tanpMy, - apMy,
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25 5
M,=|64 8
144 12

_ |64
144
=-80
25 5

M, =|64 8
144 12

|25
144
=-119

25 5
M, =(64 8
144 12

_ |25
64
=-39
det(A)=-a;,M, +a,M,, - a;rM4, = -5(-80) + 8(-119) — 12(-39)
=400 -952 + 468

=-84.

In terms of cofactorsfor j=1,

ce(A)= 4 a.c.

C12 = (' 1)l+2 M 12
=- M12

=80
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=-M 32

=39
det(A) = a12012 + aZZCZZ + a’32032
= (5)(80) + (8)(- 119) + (12)(39)

= 400952 + 468 = -84

Istherearelationship between det (AB), and det (A) and det (B)?

Yes, if [A] and [B] are square matrices of same size, then

det (AB) = det (A) det (B).

Arethere some other theoremsthat areimportant in finding the deter minant?
Theorem 1: If arow or a column in a nxn matrix [A] is zero, then det (A) =0

Theorem 2: Let [A] be a nxn matrix. If a row is proportional to another row, then
det(A) = 0.

Theorem 3: Let [A] be a nxn matrix. If a column is proportional to another column,
then det (A) = 0

Theorem 4: Let [A] be a nxn matrix. If a column or row is multiplied by k to result in
matrix [B]. Then det(B)=k det(A).

Example
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What is the determinant of

€O 2 6 30
& a
[A]:%0374l;|
@ 4 9 50
0 5 2 1§

Solution

Since one of the columns (first column in the above example) of [A] isazero, det(A) = 0.

Example

What is the determinant of

@ 16 4y
: ¥
[A]:g?»276@
& 4 2 100
9 5 3 18§

Solution

det(A) is zero because the fourth column
640
é-u
&%
&0(
do!
is 2 timesthefirst column

é2u
u

(’&:)('D 8; @,
et eny enly e

Example
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If the determinant of
{925 5 1u
[Al=g64 8 14
g44 12 14
is—84, then what is the determinant of
é25 105 1y

[B]=264 168 1!
8144 242 1§
Solution
Since the second column of [B] is 2.1 times the second column of [A],
det(B) = 2.1 det(A)
=(21)(-84)

=-176.4

Example

Given the determinant of
{925 5 1u
[Al=g64 8 14
g44 12 14
iS-84, what is the determinant of
€25 S 1 u

_é U
[B]l=g0 -48 -156;

g44 12 1 §

Solution

Since [B] is simply obtained by subtracting the second row of [A] by 2.56 times the first

row of [A],
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det(B) = det(A) = -84.

Example

What is the determinant of
&5 5 1 U
_é U
[Al=g0 -48 - 156
g0 O 07 ¢

Solution

Since [A] isan upper triangular matrix
3
det(A)=O 3,
i=1

= (2. )@ )(ax)

= (25)(- 4.8)(0.7)

Key Terms

Transpose Symmetric  Skew symmetric Trace

Determinant

Homewor k
25 3 60
L Let[A]:Z2 4. Find[A]"
&7 9 2y
&5 Tu
.é u
Answer.éB 9lj

g6 2
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2. If[A] and [B] aretwo nxn symmetric matrices, show that [A]+[B] isalso

symmetric.

Hint: Let [C]=[A]+[B]

G, =a; +h; for ali,j.
and c; =a;+b; for ali,j.
C; =@, +h; as [A] and [B] aresymmetric

Hence

C; =G

3. Give an example of a4x4 symmetric matrix.

4. What isthe trace of

2 3 4y

u
5 -5 -5 -5
7 94
3 10y

D
~

>
T

6
2

: (D> (D> (D, D> D~
ol »

Answer: 19

5. For
(;310 -7 Og
[A]=% 3 2099 6y
g5 -1 54
Find the determinant of [A] using the cofactor method.
Answer: -150.05
6. det (3[A]) of anxn matrix is
a 3det(A)

b. det (A)
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c. 3"det (A)
d. 9det (A)

7. For a5x5 matrix [A], the first row is interchanged with the fifth row, the determinant
of the resulting matrix [B] is

A. —det (A)
B. det (A)
C. 5det (A)
D

. 2det (A)
0 oy

o O O B+

1
0 1u
0

o w >
[ —

-1
D. ¥

9. If [A] isanxn matrix and isinvertible, then det(A") is equal to

A.  det (A
B. det(A)
C. —det(A)
D. —det(A?Y

10. Without using the cofactor method of finding determinants, find the determinant of
€0 0 Ou
_6 a
[A=% 3 s
6 9 24
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11. Without using the cofactor method of finding determinants, find the determinant of
eo 0 2 3u

0 2 3 55

6 7 2 30

12. Without using the cofactor method of finding determinants, find the determinant of

0 0
a

0 O@
6 Ou
a
3 9

N 01 w O

13. Given the matrix

¢125 25 5 1
e u
<512 64 8 p
(A]=8 L
&157 89 13 1l

e u
68 4 2 1

and
det(A) =-32400

find the determinant of

€125 25 5 1y

e u

°512 64 8 1\

a) [A]=¢ v
@141 81 9 -1
€8 4 2 14

125 25 5 1i

157 89 13 1Y

) [8] =& L
e512 8 10

e u

68 4 2 I

125 25 5 1i

gL157 89 13 1uu

c) [c]=¢ v
é 8 10

u

2
a ;
85912 64 8 1y
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125 25 5 1y

€ u
o [p]-e2 & 8 1
€157 89 13 10

e u
816 8 4 2

Answer :a) —32400 b) 32400 c) —32400 d) —64800
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Chapter 5
System of Equations

After reading this chapter, you will be ableto
= Setup simultaneous linear equations in matrix form and vice-versa
= Understand the concept of inverse of a matrix

= Know the difference between consistent and inconsistent system of linear

equations

= Learn that system of linear equations can have a unique solution, no solution or

infinite solutions

Matrix algebraisused for solving system of equations. Can you illustratethis

concept?

Matrix algebra is used to solve a system of simultaneous linear equations. In fact, for
many mathematical procedures such as solution of set of nonlinear equations,
interpolation, integration, and differential equations, the solutions reduce to a set of

simultaneous linear equations. Let usillustrate with an example.

Example

The upward velocity of arocket is given at three different times on the following table

Time, t Velocity, v

S m/s

5 106.8
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8 177.2

12 279.2

The velocity datais approximated by a polynomial as
v(t)=at?+bt+c, 5EtE£12.

Set up the equations in matrix form to find the coefficients a,b,c of the velocity profile.
Solution
The polynomial is going through three data points (t,,v,), (t,,v,),and (t,,v,) where from
the above table
t, =5,v, =106.8
t, =8, =177.2
t, =12,v, = 279.2
Requiring that v(t) = at? + bt + ¢ passes through the three data points gives
v(t,)=v, =at? +hbt, +c
v(t,)=v, =at? +bt, +c
v(t,)=v, =at? +bt, +c
Substituting the data (t,, v, ), (t,, v, ), (t;, v;) gives
a(52)+b(5) +c =106.8
a(8?)+b(8)+c =177.2
a(12?)+b(12) +c = 279.2
or
25a+5b+ ¢ =106.8

64a+8b+c=177.2
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144a+12b+c =279.2

This set of equations can be rewritten in the matrix form as
é25a+ 5Sb+ cu é106.8u
é a_é a
gbda+ B+ cy= gm.z(J
gldada+ 12b+ cf E279.24

The above equation can be written as a linear combination as follows
6250 650 & €068y

€, U, L€qU a_ a

a§64g+b§8g+cgg—gl77.2@

elddd €2y ey e792y

and further using matrix multiplications gives

€25 5 luéau €106.8u

é ug u_é a

264 8 1@2"@‘?77-29

g44 12 1ggcy £79.24

The above is an illustration of why matrix algebra is needed. The complete solution to
the set of equationsis given later in this chapter.

For ageneral set of “m” linear equations and “n” unknowns,
Ay X+ ApX, Heeeee ta,X, =C

a21X1+a22X2+ ...... +a, X :C2

2n’*n

A X A%, s +a,,X, =C

mn-n m

can be rewritten in the matrix form as
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éay @, . . a,UéU €
é ué, u é.
& Gngq &4
é: : Géxu=¢éxu
é. . ué ua é u
e aerta e
Bm 8w - - amHEGH &nH
Denoting the matrices by [A] : [X] , and [C] , the system of equation is

[A] [X]=[C], where [A] is called the coefficient matrix, [C] is called the right hand side
vector and [X] is called the solution vector.

Sometimes [A] [X]=[C] systems of equations iswritten in the augmented form. That is

" Qe QA :Clg
€8y 8yp a,, 20
[aic)=¢ U
e . U
e @
@i Ao o amic

A system of equations can be consistent or inconsistent. What doesthat mean?

A system of equations [A] [X]=[C] is consistent if there is a solution, and it is
inconsistent if there is no solution. However, consistent system of equations does not
mean a unique solution, that is, a consistent system of equation may have a unique

solution or infinite solutions.

[A] [X] =[B]
|
| |

Consistent System Inconsistent System

Unique Solution Infinite Solutions
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Example

Give examples of consistent and inconsistent system of equations.
Solution

a) The system of equations

& 4uéxu_ ebu

& 3tevli &

isaconsistent system of equations as it has a unique solution, that is,
&xu_ el

&vii dli

b) The system of equations

& 4uexu_ ebu

& 208yt &

is also aconsistent system of equations but it has infinite solutions as given as follows.

Expanding the above set of equations,
2X+4y =6
X+2y=3

you can see that they are the same equation. Hence any combination of (x, y) that
satisfies
2x+4y =6

is a solution. For example (x,y)=(11) is a solution and other solutions include
(x, y)=(051.25), (x,y)=(0, 1.5) and soon.

¢) The system of equations
€2 Alexu_ ebu
- é
& 20 &l

isinconsistent as no solution exists.
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How can one distinguish between a consistent and inconsistent system of equations?
A system of equations[A] [X] =[C] is
- consistent if the rank of A isequal to the rank of the augmented matrix [AEC] :

- inconsistent if therank of A isless then the rank of the augmented matrix [AEC] :

But, what do you mean by rank of a matrix?

The rank of amatrix is defined as the order of the largest square submatrix whose

determinant is not zero.

Example

What isthe rank of

8 12
[A=% o s

g 2 3
Solution

The largest square submatrix possibleis of order 3 and that is[A] itself. Since det(A) = -
251 O, therank of [A] = 3.

Example:

What is the rank of
8 12
_ U
[A=% o s

A

& 17

Solution:
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The largest square submatrix of [A] isof order 3, and is[A] itself. Since det(A) =0, the
rank of [A] islessthan 3. The next largest submatrix would be a 2x2 matrix. One of the

submatrices of [A] is

A

2 of

and det [B] =-21 0. Hencetherank of [A] is2.

Example

How do | now use the concept of rank to find if
(ij25 5 1ugx1u §\106.8g
564 8 153X, 0=gl77.24
g44 12 1gex.fH £279.24
isaconsistent or inconsistent system of equations?

Solution

The coefficient matrix is
é25 5 1y
_é a
[A]—§64 8 1
gla4 12 1y
and the right hand side vector
é106.80
_6 a
[C]—%L??.Zg.
£279.24

The augmented matrix is

€25 5 1 i 10680
[B]l=g64 8 1 : 177.24
Q44 12 1} 279.2§

Introduction to Matrix Algebra— Copyright — Autar K Kaw

- 70-



Since there are no square submatrices of order 4 as[B] isa4x3 matrix, therank of [B] is
at most 3. So let uslook at the square submatrices of [B] of order 3 and if any of these
sguare submatrices have determinant not equal to zero, then therank is 3. For example, a
submatrix of the augmented matrix [B] is
é25 5 1y
_é a
[D] = §64 8 1u
g4 12 1y
has det (D) =-841 O.

Hence the rank of the augmented matrix [B] is3. Since[A]=[D] , therank of [A] =3.
Since the rank of augmented matrix [B] = rank of coefficient matrix [A], the system of
equationsis consistent.

Example

Use the concept of rank of matrix to find if
€5 5 luex;u €l06.80
e64 g 108 U= §L772u

ué2u

@9 13 24gx.H €284.04

is consistent or inconsistent?
Solution

The coefficient matrix is given by
&5 5 1o
_é a
[Al=3%4 8 1
89 13 2§
and theright hand side
¢106.8(
_6 a
[c]=g77.2;
£284.0¢
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The augmented matrix is
&5 5 1 106.8u
_¢© a
[B]-gs4 8 1 1772
g9 13 2 284.0§

Since there are no square submatrices of order 4 as[B] is a4x3 matrix, the rank of the
augmented [B] isat most 3. So let uslook at square submatrices of the augmented matrix
[B] of order 3 and seeif any of these submatrices have determinant not equal to zero,
then therank is 3. For example a submatrix of the augmented matrix [B] is
&5 5 1lu
[D] = 264 8 13
89 13 29

has det(D) = 0. This means, we need to explore other square submatrices of order 3 of
the augmented matrix [B].
That is,
é5 1 106.8u
_é a
[E]= §8 1 1772
g3 2 284.0¢
det(E) =0,
€5 5 106.8(
_6 a
[F]=564 8 177.24
€89 13 284.09
det(F) =0,
and

&5 1 10680
[c]=%4 1 1772
9 2 284.0f

det(G) = 0.
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All the square submatrices of order 3 of the augmented matrix [B] have a zero
determinant. So the rank of the augmented matrix [B] islessthan 3. Istherank of [B] =
2? A 2x2 submatrix of the augmented matrix [B] is

€5 50
1= @4 sl
and
det(H) = -12070
So the rank of the augmented matrix [B] is 2.

Now we need to find the rank of the coefficient matrix [A].
&5 5 1u
_6 a
[A]-gs4 8 1
89 13 2y

and
det(A) = 0.
So the rank of the coefficient matrix [A] islessthan 3. A submatrix of the coefficient
matrix [A] is
-4 4
det (J))=-31 0
So the rank of the coefficient matrix [A] is 2.

Hence, rank of the coefficient matrix [A] = rank of the augmented matrix [B]. So the
system of equations[A] [X] = [B] is consistent.

Example

Use the concept of rank to find if
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€5 5 1luéx,u €él06.8u

z ué,6 u_eé U

64 8 1(12)(2@_%[77'2@

89 13 2yéx,g §£280.0¢
is consistent or inconsistent.

Solution

The augmented matrix is
&5 5 1 106.8u
_¢© a
[B]-gs4 8 4 1772
g9 13 2 280.0

Since there are no square submatrices of order 4 as the augmented matrix [B] isa4x3
matrix, the rank of the augmented matrix [B] isat most 3. So let uslook at square
submatrices of the augmented matrix (B) of order 3 and see if any of the 3x3 submatrices
have a determinant not equal to zero. For example a submatrix of order 3 of [B]
&5 5 1u
[D] = 264 8 13
89 13 29

det(D) =0

So it means, we need to explore other square submatrices of the augmented matrix [B],

é5 1 106.8u
_é a
[E]=88 1 1772
g3 2 280.0g
det(E) t 12.0t O.
So rank of the augmented matrix [B] = 3.

The rank of the coefficient matrix [A] = 2 from the previous example.

Since rank of the coefficient matrix [A] < rank of the augmented matrix [B], the system
of equationsisinconsistent. Hence no solution existsfor [A] [X] =[C].
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If a solution exists, how do we know whether it isunique?

In asystem of equations[A] [X] = [C] that is consistent, the rank of the coefficient matrix
[A] is same as the augmented matrix [A|C]. If in addition, the rank of the coefficient
matrix [A] is same as the number of unknowns, then the solution is unique; if the rank of
the coefficient matrix [A] isless than the number of unknowns, then infinite solutions

exist.
[A] [X] =[B]
I
I |
Consistent System if Inconsistent System if
rank (A) = rank (A.B) rank (A) < rank (A.B)
I
I |
Unique solution if Infinite solutions if

rank (A) = number of unknowns rank (A) < number of unknowns

Example:
We found that the following system of equations
€25 5 luéxu €él06.8u
é ué, a_ a
e B g™ elT72y
g44 12 1gexg €279.2¢
IS aconsistent system of equations. Does the system of equations have a unique solution
or does it have infinite solutions.

Solution

The coefficient matrix is
é25 5 1
_é U
[Al=g64 8 13
€L44 12 1@]

and the right hand side
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¢106.8u
_6 a
[c]= gm.zg
£279.24
While finding the whether the above equations were consistent in an earlier example, we

found that

rank of the coefficient matrix (A) = rank of augmented matrix [AEC] =3

The solution is unique as the number of unknowns = 3 = rank of (A).

Example:

We found that the following system of equations

€5 5 1uéx,u é106.8u

: ué, u_é a

364 8 1@gxz@- gm.z(J

89 13 2gexH €284.0

isaconsistent system of equations. s the solution unique or doesit haveinfinite
solutions.

Solution

While finding the whether the above equations were consistent, we found that

rank of coefficient matrix [A] = rank of augmented matrix (A:C) = 2

Since rank of [A] = 2 < number of unknowns =3, infinite solutions exist.

If we have more equations than unknowns in [A] [X] = [C], does it mean the system is

inconsistent?

No, it depends on the rank of the augmented matrix [AEC] and therank of [A].

a) For example
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€25 5 1lu g €106.8U

é ueX1 G
564 8 1j gmzu
é44 12 1u62U e2792u

é uéx:H U
889 13 24 £84.04

is consistent, since
rank of augmented matrix = 3
rank of coefficient matrix = 3.

Now since rank of (A) = 3 = number of unknowns, the solution is not only consistent but
also unique.

b) For example

é25 5 1o, . é106.8u
& e u

564 8 “X1 gmzu
é44 12 1u629 e2792u

e é
&89 13 U§X3H £80.04

isinconsistent, since
rank of augmented matrix =4
rank of coefficient matrix = 3.

c) For example

&5 5 1u. . ¢l06.80

g S y
e64 8 136)(1u S177.2
eso 10 2uezl,J e2136u

o 13 20898 Sgp 0l

is consistent, since
rank of augmented matrix =2
rank of coefficient matrix = 2.

But since the rank of [A] = 2 < the number of unknowns = 3, infinite solutions exist.
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Consistent system of equations can only have a unique solution or infinite solutions.
Can a system of equations have a finite (mor e than one but not infinite) number of

solutions?

No, you can only have a unique solution or infinite solutions. Let us suppose [A]
[X]=[C] hastwo solutions[Y] and [Z] so that

[A] [Y]=IC]

[A] [Z]=[C]

If r isaconstant, then from the two equations
r[AllY]=rlc]

(1- r)Al[z]= (- r)c]

Adding the above two equations gives
r[Ally]+ (- r)Al[z]=r[c]+ (- r)c]
[Allr[Y]+ - r)fz]) =[c]

Hence

rlv]+ (- r)z]

isasolution to

[Allx]=[c].

Since r is any scaar, there are infinite solutions for [A] [X] =[C] of the form r[Y]+(1-
N[Z].

Can you divide two matrices?

If [A] [B]=[C] is defined, it might seem intuitive that [A]—[C] but matrix division is not

_E'
defined. However an inverse of a matrix can be defined for certain types of square
matrices. The inverse of a square matrix [A], if existing, is denoted by [A]™ such that

[AI[A] =11 = [A] *[Al.
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In other words, let [A] be a square matrix. If [B] is another square matrix of same size
such that [B][A] =[], then [B] istheinverse of [A]. [A] isthen called to be invertible or
nonsingular. If [A]™ does not exist, [A] is called to be noninvertible or singular.

If [A] and [B] aretwo nxn matrices such that [B] [A] = [1], then these statements are also
true

a) [B]istheinverseof [A]

b) [A] istheinverse of [B]

c) [A] and [B] are both invertible

d) [A] [B]=[1].

e) [A] and [B] are both nonsingular

f) al columnsof [A] or [B]are linearly independent

g) alrowsof [A] or [B] arelinearly independent.

Example
Show if
3 2 53 20
[B]:93 Eistheinverszeof[A]=ée E
& 3l &> -3
Solution
[BI[A]
8 we3 21
& 3h&5 -3
_él Ou
D 1f
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Since[B] [A] =[1], [B] istheinverse of [A] and [A] istheinverse of [B]. But we can also
show that
[AI[B]
_63 208 2
€5 -34S 3y
él Ou
=a - =]
& 10 [1]

to show that [A] isthe inverse of [B].

Can | usethe concept of theinverse of amatrix to find the solution of a set of
equations[A] [X] =[C]?

Yes, if the number of equations is same as the number of unknowns, the coefficient
matrix [A] is asquare matrix.

Given

[AIIX] =[C]

Then, if [A]™ exists, multiplying both sides by [A] ™.
[AT [AlIX] =[A] " [C]

[11[X] = [A][C]

[X]=[A]"[C]

Thisimpliesthat if we are able to find [A] ™%, the solution vector of [A][X] = [C] issimply
amultiplication of [A]™ and the right hand side vector, [C].

How do | find theinverse of a matrix?

If [A] is an x n matrix, then [A]™ isan x n matrix and according to the definition of
inverse of amatrix

[AIAT " =1].
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Denoting

éau a, X X ain@
€ u
éaZl a22 x X a2nl_]
[A]l=éx x x x xU
€ X X X X ><l'J
e u
@nl an2 x X annH
€a, a, x x a,u
& Y
gy 8y X X A
[A]"=€x x x x xU
e u
g% X XX Xy
e : "
%nl an2 x X annU
él 0 x x x 0Oy
s U
P 1 0%
i & X U
=é U
a 1 X
ex x ol
e u
63 X X X X 1!;]

Using the definition of matrix multiplication, the first column of the [A]™* matrix can then
be found by solving

éall a, XX am@%llf éll)
e ue. u u
a8 X g &y
é x X X X xL'J(:Exl;I=é><l]
é>< X X X ><L,Jg ><l'J e
é ué *a e\
g, a, xxa,H&a, EH

Similarly, one can find the other columns of the [A]™ matrix by changing the right hand
side accordingly.

Example
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The upward velocity of the rocket is given by

Time, t Veocity
S m/s
5 106.8
8 177.2
12 279.2

In an ealier example, we wanted to approximate the velocity profile by

v(t)=at> +bt+c, SE8£12

We found that the coefficients a,b,c are given by

€25 5 1uéau €é106.8u
é ug.u_é ua
264 8 1@2"@‘?77-29
gl44 12 1ggcy €279.24
First find the inverse of

é25 5 1

_é a
[A]= g6 8 I

gl44 12 1§

and then use the definition of inverse to find the coefficients a, b, c.

Solution
@, Al
-1 ' . .
If [A] :§a21 3y azsg
8331 Az a33H
istheinverse of [A],

Then
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625 5 1uea11 a, a,U0 é 0 Ou
é u_eé a
564 8 luea21 a, a2u 90 1 0j
8144 12 148, a, a,f & 0 1§

gives three sets of equations
€25 5 1uea11u elu

264 8 1366121u
g44 12 1H&.,4

€25 5 1uéa,l €00
é ~uU_¢&u
e 8 lieui” el
gl44 12 lgga,t €
€25 5 1iéa,U &
é ~U_é&\u
e 8 Tueai= &
gl44 12 lggas.y el
Solving the above three sets of equations separately gives

ea11 U ¢0.047620 u
& 0= 0.9524!

&l 8 § 4571 §

éa,,U ¢ 0.08333y

e "u_e G
B0 1= é1417 ;

&1 &- 5000 f

€a,,U ¢0.035710)

é.

eazsﬂ g 0.4643

8333 4 & 1429 H

Hence

€0.04762 - 008333 0.03571
[Al'=§ 09524 1417 - 0.4643;
g 4571  -5000 1429 §

Now
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[Allx]=[c]
where
ey
-8
EcH
6106.81)
[c]=&177.2
£79.24
Using the definition of [A]*,
[A]*[A]x]=[A]*[c]
x]=[Al"[c]
60.04762 -0.08333 0.0357106106.8(

_é Gé 0
=5-09524 1417  -0.4643; gm.z(J
g 4571  -5000 1429 {&279.2§

éu  €.2900y
& 0_@é a
go@_ £19.70 5
gcy £€1.0504

v(t) = 0.2900t? +19.70t +1.050,5 £ t £12

Isthere another way to find theinver se of a matrix?

For finding inverse of small matrices, inverse of an invertible matrix can be found by

(Al = detl( ()

where
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écll Cp Clnl‘jl
a
adJ (A) - gCZl C22 C2n L’J
é : G
é d
éCnl an - Cnnl’.]

écn Co - Clnl‘jl

L Cp - C2nl:|- ;
where Cj; are the cofactors of gj. The matrix € : Hltself is called the
e -
éCnl Cnnl’:l

matrix of cofactorsfrom [A]. Cofactors are defined in Chapter 4.
Example

Find the inverse of

€25 5 1
[Al=g64 8 13
844 12 1§

Solution
From the example in Chapter 4, we found
det(A) = - 84.
Next we need to find the adjoint of [A]. The cofactors of A are found as follows.

The minor of entry &1 is

25 5
M,=64 8
144 12

The cofactors of entry a3 is

Cn :(' 1)1+1M11 = M11 =-4
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The minor of entry ay» is

25 5

M,=|64 8
144 12

|64

144

=-80
The cofactor of entry &y is
Cp =(- "M,
=-M,
=80
Similarly
C, =384
C, =7
C,, =-129
C,, =420

Hence the matrix of cofactors of [A] is
&4 80 -3840
_é a
[c]= g7 -120 40
g3 39 -120g

The adjoint of matrix [A] is[C]”,
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é-4 7  -340
adj(A)=[C]" =g 80 -129 39
& 384 420 - 120§

Hence
1 .
At = di(A
Al det(A)aJ()
1 §-4 7 3u
_ é a
_-84@‘80 - 129 39(J
g 384 420 - 120§

€0.4762 -0.08333 0.035/1u
= g— 0.9524 1417 - 0.46433
g 4571 - 5.000 1429 §

If theinverse of asquare matrix [A] exists, isit unique?

Yes, the inverse of a square matrix is unique, if it exists. The proof is as follows.
Assume that the inverse of [A] is [B] and if this inverse is not unique, then let another
inverse of [A] exist called [C].

[B] isinverse of [A], then

[BI[A] =11]

Multiply both sides by [C],

[BI[A]LC] = [1][C]

[BI[A][C] =[C]

Since[C] isinverse of [A], [A][C] =]
[BI[IT =[C]

[B] =[C]

This shows that [B] and [C] are the same. Soinverse of [A] is unique.
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Key Terms

Consistent system Inconsistent system
Infinite solutions Unique solution
Rank Inverse

Homewor k

& -1 2wexu ée2u
é ue, u_¢€ ,u
1. Express & 3 Tgtely

2 -1 Sl g4t

as asystem of linear equations.

3X - X, +2X%, =2
Answer: 4x +3X, + 7% =-1
2% - X, + 5%, = 4.

2. Express the system of linear equations
a) inmatrix form [A][X] =[C] and
b) inthe augmented form.

AX1—3X3+Xa=1

SX1+X2—8Xa=3

2X1—5X2+ X3 —X4=0

Xo—Xz+ TX4=2
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¢ 0 -3 1lmxu e

ue, u u
S 10 -8 &y
& o0

é
&

@ 0 -3 1 10
S 1

G

b) € 0 % %
& -5 9 -1 00
0 3 -1 7 23

3. For aset of equations[A] [X] =[B], aunique solution exists if
A. rank (A) = rank (A:B)
B. rank (A) = rank (A:B) and rank (A) = number of unknowns

C. rank (A) =rank (AE B) and rank (A) = number of rows of (A).

4. Rank of

4 4 4 4y

A:g4 4 4 44

& 4 4 40

@ 4 4 4y

is

A. 1
B. 2
C. 3
D. 4

5. A 3x4 matrix can have arank of at most
A. 3
B. 4

C. 12
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D. 5

6. If [A][X] = [C] has a unique solution, where the order of [A] is 3x3, [X] is 3x1, then
therank of [A] is

A. 2
B. 3
C 4
D. 5
7. Show if the following system of equationsis consistent or inconsistent. If they are

consistent, determine if the solution would be unique or infinite ones exist.

€l 2 50éxu e8u
é ué a
& 3 958%;= ng
@ 5 144gx.H €74

Answer: consistent; infinite solutions

8. Show if the following system of equationsis consistent or inconsistent. If they are
consistent, determine if the solution would be unique or infinite ones exist.

€l 2 Suexu é8u
e7 3 oUé U 219“

€ ué™2u

@ 5 l4ggH €284

Answer: inconsistent
9. Show if the following system of equations is consistent or inconsistent. If they are
consistent, determine if the solution would be unique or infinite ones exist.

€l 2 Suéxu é3u

e7 3 9U& U 39“

€ ué™2u-

@ 5 13gesH &8y

Answer: consistent; unique

10. For what (which) value(s) of ‘a does the following system have zero, one, infinitely
many solutions.

Introduction to Matrix Algebra— Copyright — Autar K Kaw - 90-



X1+X2+X3:4

=2

el

(a2- ax +x,=a- 2

Answer: if al +2or - 2, then therewill be a unique solution

if a=+2o0r-2, then therewill be no solution.

Possibility of infinite solutions does not exist.

11. Find if

€5 -250 €0.3 0.250

A= €2 3H and [B] = &2 o5

are inverse of each other.
Answer: Yes

12. Find if

& 2.5u €0.3 - 0.25u
[A]:;& 3” d[]_g)Z 05“

are inverse of each other.

Answer: No
Find the
a cofactor matrix
b. adjoint matrix
of
a8 4 1u
[A] = ‘;2 -7 -1
B8 1 59

14. Find [A]™* using any method
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8 4 10
A= -7 -1j
8 1 5§

€2931x10"  1.638x10°" - 2.586x10°°U
Answer: [A]*=£1552x10" - 6.034x10°° - 4.310x10 2]
€ 5.000x10" - 2.500x10"  2.500x10°*

15. Prove that if [A] and [B] are both invertible and are square matrices of same order,
then
([A][B]) *=[B] "[A] "

Hint:

(AlB])y* =[B]"[A]"

Let [c]=[A]B]
[c]8]" = [A]B]]*
=[All1]

=[A

Again [C]=[A]B]
[A![c] =[A]"[A]B]
=[1]e]
=[8]

[clBl=[A]- - - - - )
[A’[c]=[8]- - - - - @)
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From (1) and (2)
[clB]"[A]"[c] =[AlB]
[AlB]ls]*[A]"[A]l8] = [A]B]
(Al *[AlB]B] “{A] “{AlB] = [~ [ Allg]
[B]8]*|A"] AllB] = [e]
|5 [ele] *|a[Alle] =[] [e]
[B] |~ [Ale] = [1]

16. What isthe inverse of a square diagonal matrix? Does it always exist?

Hint: Inverse of a square nxn diagonal matrix [A] is

D
[EEN

|

s

-

. o o

N@’||—\ o
POPae o

oo ooaoaoc

1y

s

an

Soinverseexistsonly if a; * O for all i.

@®D> D D> D> D> D> D (D

17.[A] and [B] are square matrices. If [A][B] =[0] and [A] isinvertible, show[B] = 0.

Hint: [A[B] =]0]

[~ AlB] =[] o]

18. If [A] [B] [C]=[I], where[A], [B] and [C] are of the same size, show that [B] is
invertible.
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19. Proveif [B] isinvertible,
[AI[B]™ = [B]*[A] if and only if [A][B] =[B][A]
Hint: Multiply by [B]* on both sides,

[Ale]ls]* = [B] "[A]lB]"

20. For
610 -7 Oy
_é (
[A] = § 3 209 6
85 -1 5§

¢ 0.1099 - 0.2333 0.2799 1

[A]*=% 02999 - 03332 03999 !

£0.04995 0.1666 6.664" 10°°H
1

Show det (A) = E(F)
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Chapter 6
Gaussian Elimination

After reading this chapter, you will be ableto
=  Solve a set of ssimultaneous linear equations using Naive Gauss Elimination
= Learn the pitfalls of Naive Gauss Elimination method

= Understand the effect of round off error on a solving set of linear equation by
Naive Gauss Elimination Method

= Learn how to modify Naive Gauss Elimination method to Gaussian Elimination
with Partial Pivoting Method to avoid pitfalls of the former method.

» Find the determinant of a square matrix using Guassian Elimination

= Understand the relationship between determinant of coefficient matrix and the
solution of simultaneous linear equations.

How are a set of equations solved numerically?

One of the most popular techniques for solving simultaneous linear equations is the
Gaussian elimination method. The approach is designed to solve a general set of n
equations and n unknowns

Ay X T aX, A%t ta X, =h
Ay X+ ApX, T AyuXs +.. 3y X, = b,
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BuX + 8%y T AXs t. + A, X, =D,
Gaussian elimination consists of two steps

1. Forward Elimination of Unknowns: In this step, the unknown is eliminated in

each equation starting with the first equation. This way, the equations are “reduced’
to one equation and one unknown in each equation.

2. Back Substitution: In this step, starting from the last equation, each of the

unknowns is found.

Forward Elimination of Unknowns: In the first step of forward elimination, the first
unknown, x; is eliminated from al rows below the first row. The first equation is
selected as the pivot equation to eliminate x;. So, to eliminate x; in the second equation,
one divides the first equation by a;1 (hence called the pivot element) and then multiply it
by a;;. That is, same as multiplying the first equation by ay,/ a;1 to give

Saa,x+..+ 28 x =Sap

X + 2
o ay a, a,

Now, this equation can be subtracted from the second equation to give

e Ay &  a, Ay
ay- —a ><2+ +a2-—a1n—><n b,- —=b
§ ay § ay

or

8%, F et BypX, = b,

where
- Ay
Ay = Apn- —
a,
R 3,
a, = ay, - T
ay

This procedure of eliminating X, is now repeated for the third equation to the n"
equation to reduce the set of equations as

Ay X T aX, A%t ta X, =h
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B, X, 8y, .t A, X, = b,
Bp,X, +8gXy +. 8 X, = by

a,% tagX t..ta,X =h

This is the end of the first step of forward elimination. Now for the second step of
forward elimination, we start with the second equation as the pivot equation and a',, as

the pivot element. So, to eliminate x, in the third equation, one divides the second
equation by a',, (the pivot element) and then multiply it by a',,. That is, same as

multiplying the second equation by a',,/a’,, and subtracting from the third equation.

This makes the coefficient of x, zero in the third equation. The same procedure is now
repeated for the fourth equation till the nth equation to give

A%t aX, T X to.ta X =h
X, T ByeXg ..t A, X, = b,
ayX, * ...+ 8y X, = by

BuaXs + ot X, =D

The next steps of forward elimination are conducted by using the third equation as a pivot
equation and so on. That is, there will be atotal of (n-1) steps of forward elimination. At
the end of (n-1) steps of forward elimination, we get a set of equations that ook like

X T aX, Xt tax =h
B, X, 8y, .t A, X, = b,
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X, ...t aX, = b,

n-1)

alryx, = b

Back Substitution: Now the equations are solved starting from the last equation as it has

only one unknown.

b(n-l)
— n
nT ()
ann

X

Then the second last equation, that is the (n-1)" equation, has two unknowns - X, and X1,
but x, is already known. This reduces the (n-1)" equation also to one unknown. Back
substitution hence can be represented for al equations by the formula

b - g alx,
X = ki fori=n—-1,n-2,....1

al™
and

(n-1)
_b

X, =
(n-D)
ann

Example

The upward velocity of arocket is given at three different timesin the following table

Time, t Velocity, v

S m/s
5 106.8
8 177.2
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12 279.2

The velocity datais approximated by a polynomia as

vit)=at?+a,t+a,, 5£t£12.

The coefficients a,, a,, a, for the above expression were found in Chapter 5 to be given
by

§:25 5 1uga1u §\106.8g

So 5 105,077

g44 12 g, £279.24

Find the values of a;, ap, az using Naive Guass Elimination. Find the velocity at
t =6,7.5,9,11seconds.

Solution

Forward Elimination of Unknowns. Since there are three equations, there will be two

steps of forward elimination of unknowns.,

First step: Divide Row 1 by 25 and then multiply it by 64, and then subtract the result
from Row 2 gives

€25 5 1 uéa,u €106.81u

go - 48 - 1.5632%3: g 96.217

g44 12 1 géa.g €279.2§

Divide Row 1 by 25 and then multiply it by 144, and then subtract the result from Row 3

gives

&5 5 1 uéau €106.8 u
é ué u_é a
a0 -48 -156;,,=5 %621,

B0 -168 - 476{@a,H & 336.04

Second step: We now divide Row 2 by —4.8 and then multiply by —16.8, and then
subtract the result from Row 3, giving
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&5 5 1 uea,u e1068u
é ue u_é

éO - 48 -156ue 0T & 9621u
g0 O 0.7 géa,§ €0.735§

Back substitution: From the third equation

0.7a, =0.735

_0.735
07

3

=1.050

Substituting the value of ag in the second equation,
- 4.8a, - 1.56a, =-96.21
_ - 96.21+1.56a,

2 - 4.8

_ - 96.21+1.56(1.050)
-4.8

=19.70
Substituting the value of a, and a, in the first equation,

25a, +5a, +a, =106.8
_106.8- 5a, - a,
25

_106.8- 5(19.70)- 1.050
25

=0.2900

Hence the solution vector is

éa, U €0. 2900u

eue u
a2.3= a19.70 ¢

. 81.050 ¢
The polynomial that passes through the three data pointsis then

v(t)=at2 +at+a,
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=0.2900t* +19.70t +1.050,5£t £12

Since we want to find the velocity at t =6,7.59and11 seconds, we could simply
substitute each value of t in v(t)=0.2900t> +19.70t +1.050 and find the corresponding

velocity. For example, at t =6

v(6) = 0.2900(6) +19.70(6) +1.050
=129.69m/s.

However we could aso find all the needed values of velocity at t = 6, 7.5, 9 and 11

seconds using matrix multiplication.
a’u
v(t)=[029 197 108 &t
é10
e-u

So if wewant to find v(6), v(7.5), v(9), v(11), it is given by

[v(6) v(7.5) v(9) v(ll)]

é6° 752 97 1120
=[0.29 197 105 g6 75 9 11§
€1 1 1 14

6 5625 81 121

=[02900 1970 1050] g6 75 9 11y

g1 1 1 14§
=[1207 1651 2018 252§
v(6) =129.7m/s

v(7.5)=165.1m/s

(
v(9) = 201.8m/s

v(11) = 252.8m/s

Example
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Use Naive Gauss Elimination to solve

10x, - 7X, =7

- 3x, +2.099x, +6x, = 3.901

S5X - X, +5%, =6

Use six significant digits with chopping in your calculations.
Solution

Working in the matrix form

€10 -7 0uéxu é 7 u
e u u _ u

3 2.099 sngZU = é%golu
@5 -1 5¢exH € 6 H

Forward Elimination of Unknowns

Dividing Row 1 by 10 and multiplying by —3, that is, multiplying Row 1 by -0.3, and
subtract it from Row 2 would eliminate ay;,

eo -7 Ouexu & 7 u

0 - 0001 6 X, =6.001;

€5 -1 5d@.d € 6

Again dividing Row 1 by 10 and multiplying by 5, that is, multiplying Row 1 by 0.5, and
subtract it from Row 3 would eliminate ag;

e;ﬂ.O -7 Ou eXlu e 7 u

0 - 0001 eu& (&%= 001u

g0 25 5[; &.H €25(

Thisisthe end of thefirst step of forward elimination.

Now for the second step of forward elimination, we would use Row 2 as the pivot
equation and eliminate Row 3 — Column 2. Dividing Row 2 by —0.001 and multiplying
by 2.5, that is multiplying Row 2 by —2500, and subtracting from Row 3 gives
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¢ -7 Oouén e 7 U
€ ue,u _ € u
éO -0001 6 G éng = é6'001@
go 0 150054 éx;fH £150054

Thisisthe end of the forward elimination steps.

Back substitution

We can now solve the above equations by back substitution. From the third equation,
15005x, =15005

_ 15005
Xy =
15005

=1

Substituting the value of X3 in the second equation
- 0.001x, +6x, = 6.001

. = 8:001- 6x,
2 -0001
_ 6.001-6(1)
- 0.001
_6.001- 6
- 0.001
_ 0,001
- 0.001

=-1
Substituting the value of x3 and x; in the first equation,
10x, - 7x, +0x, =7
_1+7x%,-0x
10

_7+7(- 1)- ofy)
10
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Hencethe solution is

6y €0
_é u_é& .0
[X]=g0g=g 1

et 8lH

Arethereany pitfalls of Naive Gauss Elimination Method?
Y es, there are two pitfalls of Naive Gauss Elimination method.

Division by zero: Itispossible that division by zero may occur during forward

elimination steps. For example for the set of equations

10x, - 7X, =7

6x, +2.099x, - 3x, =3.901

95X - X, +5%X, =6

during the first forward elimination step, the coefficient of x; is zero and hence
normalization would require division by zero.

Round-off error: Naive Gauss Elimination Method is prone to round-off errors. Thisis

true when there are large numbers of equations as errors propagate. Also, if there is
subtraction of numbers from each other, it may create large errors. See the example
below.

Example

Remember the previous example where we used Naive Gauss Elimination to solve
10x, - 7X, =7

- 3x, +2.099x%, +6x, =3.901

95X - X, +5%X, =6
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using six significant digits with chopping in your calculations. Repeat the problem, but
now use five significant digits with chopping in your calculations.

Solution

Writing in the matrix form

elo -7 Ouequ e 7 u

é a a_ a

& 3 209 6 gng_é%.golg

€S -1 SHexH &6 4

Forward Elimination of Unknowns

Dividing Row 1 by 10 and multiplying by —3, that is, multiplying Row 1 by -0.3, and
subtract it from Row 2 would eliminate ag,

o -7 Ouexu €7 u

0 - 0001 6 gx, = 6.001;

85 -1 5B €6

Again dividing Row 1 by 10 and multiplying by 5, that is, multiplying the Row 1 by 0.5,
and subtract it from Row 3 would eliminate ag;,

o -7 Ouéxu é 7 u

S0 - 0001 67 g, = &6.0017

g0 25 5gfH €25¢

Thisisthe end of thefirst step of forward elimination.

Now for the second step of forward elimination, we would use Row 2 as the pivoting
equation and eliminate Row 3 — Column 2. Dividing Row 2 by —0.001 and multiplying
by 2.5, that is, multiplying Row 2 by —2500, and subtract from Row 3 gives

go -7 0 uexu e 7 0
e u u_e u
g0 -000L 6 ggng = 6.0y
B0 0 150054 fx,f @50044

Thisisthe end of the forward elimination steps.

Back substitution
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We can now solve the above equations by back substitution. From the third equation,

15005x, =15004

_ 15004
Xy =
15005

= 0.99993

Substituting the value of X3 in the second equation
- 0.001x, + 6x, = 6.001

. = 8:001- 6x,

2 -0.001
_ 6.001- 6(0.99993)
B -0.001
_ 6.001-5.9995

~ -0.001

_0.0015
- 0.001

=-15

Substituting the value of x3 and x; in the first equation,
10x, - 7x, +0x, =7
_T+T7X, - 0xg
10
_7+7(- 1.5)- o)
10
_7-105-0
10
_-35

10

X

= - 0.3500

Hence the solution is
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Compare this with the exact solution of
exu
_é, u
[X] =&

exH

o
c

1
@D D, D D
=
[aex) d\_\C\ s

What ar e the techniques for improving Naive Gauss Elimination M ethod?

As seen in the example, round off errors were large when five significant digits were used
as opposed to six significant digits. So one way of decreasing round off error would be to
use more significant digits, that is, use double or quad precision. However, this would
not avoid division by zero errors in Naive Gauss Elimination. To avoid division by zero
as well as reduce (not eliminate) round off error, Gaussian Elimination with partial
pivoting is the method of choice.

How does Gaussian elimination with partial pivoting differ from Naive Gauss
elimination?

The two methods are the same, except in the beginning of each step of forward

elimination, a row switching is done based on the following criterion. If there are n
equations, then there are(n- 1) forward elimination steps. At the beginning of the k™

step of forward elimination, one finds the maximum of

901 - OO PR - W
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Then if the maximum of these values is ‘apk‘ in the p™ row, k=p= n, then switch rows p

and k.

The other steps of forward elimination are the same as Naive Gauss elimination method.

The back substitution steps stay exactly the same as Naive Gauss Elimination method.

Example

In the previous two examples, we used Naive Gauss Elimination to solve
10x, - 7X, =7
- 3x, +2.099x%, +6x, = 3.901

5%, - X, +5%; =6

using five and six significant digits with chopping in the calculations.

significant digits with chopping, the solution found was
éX1 U

[X] - "XZ u
exH

é-0350
& a
: = 1.5 l.:]
£0.999934

Thisis different from the exact solution
éX1 U

[X] "XZ u
exf

eOu

I
®D> (D5, (D
=
(e C'\_‘C
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Find the solution using Gaussian elimination with partial pivoting using five significant
digits with chopping in your calculations.
Solution

él0 -7 Ou eX1u é 7 U
3 200 6 SY= %00 1uu
%5 -1 5EI el €6 d

Forward Elimination of Unknowns

Now for the first step of forward elimination, the absolute value of first column elements
are

19, |- 3./

or
10, 3,5

So the largest absolute value isin the Row 1. So as per Gaussian Elimination with partial
pivoting, the switch is between Row 1 and Row 1 to give

é10 7 0u eX1u é 7 u

e 3 2.099 6“ 0 = gagoll‘j

@ 5 -1 5EI el &6 4§

Dividing Row 1 by 10 and multiplying by —3, that is, multiplying the Row 1 by -0.3, and
subtract it from Row 2 would eliminate ag,

e;:lO -7 0Oy exlu é 7 u

0 - 0001 6“ o0 = ‘36 001u

g5 -1 5H 8§ @ 6 ¢

Again dividing Row 1 by 10 and multiplying by 5, that is, multiplying the Row 1 by 0.5,
and subtract it from Row 3 would eliminate ag;,

o -7 Ouequ €7 u

S0 - 0001 63X, = &6.001;

g0 25 5gxH €259
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Thisisthe end of the first step of forward elimination.
Now for the second step of forward elimination, the absolute value of the second column

elements below the Row 2 is
- 0.001, |25

or
0.001, 2.5
S0 the largest absolute value isin Row 3. So the Row 2 is switched with the Row 3 to
give
g0 -7 Oy éxu ¢
é a ua _ é
eo 25 5@: :—é2.5'
g0 -0.001 6y exHg  £6.001y
Dividing row 2 by 2.5 and multiplying by —0.001, that is multiplying by 0.001/2.5=-
0.0004, and then subtracting from Row 3 gives
g0 -7 0 0éxa €7 u

é G§&é G_ @&,
0 25 5 4 gng = 625
B0 0 6002 g.f £6.0024

Back substitution

6.002x, = 6.002

_ 6.002
Xy = ———
6.002

=1
Substituting the value of X, in Row 2
2.5X, +5X; =2.5

_25-5%,
Sy

_25- 5(1)
2.5
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25-5

2.5

- 25
2.5

=-1
Substituting the value of x, and x, in Row 1
10x, - 7x, +0x, =7

_T+7X, - 0x4

- 10
_7+7(-1)- 0(1)
- 10
_7-7-0
10

&0 €0y
- u_e ,u
X=ge4=& T
esHd €eld

This, in fact, is the exact solution. By coincidence only, in this case, the round off error
isfully removed.

Can we use Naive Gauss Elimination methods to find the determinant of a square

matrix?

One of the more efficient ways to find the determinant of a square matrix is by taking
advantage of the following two theorems on a determinant of matrices coupled with
Naive Gauss elimination.
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Theorem 1: Let [A] be a nxn matrix. Then, if [B] isa matrix that results from adding or
subtracting a multiple of one row to another row, then det (B) = det (A). (The sameis
true for column operations also).

Theorem 2: Let [A] be a nxn matrix that is upper triangular, lower triangular or

Py
diagonal, then det(A) = a;1* ax*........ *an=0 a,

i=1
This implies that if we apply the forward elimination steps of Naive Gauss Elimination
method, the determinant of the matrix stays the same according the Theorem 1. Then
since at the end of the forward elimination steps, the resulting matrix is upper triangular,
the determinant will be given by Theorem 2.

Example

Find the determinant of

€25 5 1

[Al=g64 8 1;
844 12 14

Solution

Remember earlier in this chapter, we conducted the steps of forward elimination of
unknowns using Naive Gauss Elimination method on [A] to give

€5 5 10
[B]=g0 - 48 - 156

go 0 0.7 ¢

According to Theorem 2

det (A) = det (B)
= (25)(- 4.8)(0.7)
=-84.00
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What if | cannot find the determinant of the matrix using Naive Gauss Elimination
method, for example, if | get division by zero problems during Naive Gauss Elimination
method?

WEell, you can apply Gaussian Elimination with partial pivoting. However, the
determinant of the resulting upper triangular matrix may differ by asign. The following
theorem applies in addition to the previous two to find determinant of a square matrix.

Theorem 3: Let [A] be a nxn matrix. Then, if [B] isa matrix that results from switching
onerow with another row, then det (B) = - det (A).

Example

Find the determinant of

o -7 0y
[Al=§ 3 2099 6
85 -1 5§

Remember from that at the end of the forward elimination steps of Gaussian elimination
with partial pivoting, we obtained

do -7 0 q
[B]=g0 25 5 |

80 0 6.002§
det (B) = (10)(2.5)(6.002) = 150.05

Since rows were switched once during the forward elimination steps of Gaussian
elimination with partial pivoting,

det (A) = - det (B)

=-150.05.

Provedet (A) = !
det(at)’

Pr oof
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[ATIAT" =]

det(AA 1) =det(l)

det (A)det(A ) =1
1

det (A) = (aT)

If [A] isanxn matrix and det (A) * O, what other statements are equivalent to it?
1 [A] isinvertible.

2. [A]™ exists.

3. [A] [X] =[C] has a unique solution.

4, [A] [X] = [0] solutionis[X] =0.

5 [AI[AI* =[] =[A]"[A]

Key Terms

Naive Gauss Elimination Partial Pivoting Determinant

Homewor k

1. The goa of forward elimination steps in Naive Gauss elimination method is to

reduce the coefficient matrix
A. to adiagonal matrix
B. toan upper triangular matrix
C. toalower triangular matrix
D. to anidentity matrix

2. Using a computer with four significant digits with chopping, use Naive Gauss
elimination to solve

AX + X, - Xy =-2

SX, + X, +2X; =4

6X, + X, +X, =6

Answer: (3,-13,1)
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3. Using a computer with four significant digits with chopping, use Gaussian Elimination
with partia pivoting to solve

AX + X, - Xy =-2

SX, + X, +2X; =4

6X, + X, +X, =6

Answer: (2.995, -12.98, 1.001)

4. For
60 -7 0Oy
_é (
[A] = § 3 209 6
85 -1 5§

Find the determinant of [A] using forward elimination step of Naive Gauss Elimination
method.

Answer: -150.05
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Chapter 7
LU Decomposition

After reading this chapter, you will be ableto

® | earnwhen LU Decomposition is numerically more efficient than Gaussian

Elimination
Decompose a nonsingular matrix into LU

Show how LU decomposition is used to find matrix inverse.

| hear about LU Decomposition used as a method to solve a set of simultaneous
linear equations? What is it and why do we need to learn different methods of

solving a set of simultaneouslinear equations?

We dready studied two numerical methods of finding the solution to
simultaneous linear equations — Naive Gauss Elimination and Gaussian Elimination with
Partial Pivoting. Then, why do we need to learn another method? To appreciate why LU
Decomposition could be a better choice than the Gauss Elimination techniques in some
cases, let us discuss first what LU Decomposition is about.

For any nonsingular matrix [A] on which one can conduct Naive Gauss Elimination

forward elimination steps, one can always writeit as
[Al=[L]V]

where

[L] = lower triangular matrix

[U] = upper triangular matrix
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Thenif oneis solving a set of equations

[A] [X] =[C],

then

[Lju]ix]=[c] (A =[L]v])

Multiplying both side by [L]*,

(LU ]ix]=[u]* [c]

[ lx]=[L] el (LI =m)

L]x]=[L]"[c] (1u]=w))

Let

[L]*[c]=[z]

then

[L][z]=[c] ()

and

ullx]=[z] ®)

So we can solve equation (1) first for [Z] and then use equation (2) to calculate [X]
This is all exciting but this looks more complicated than the Gaussian elimination

techniques!! | know but | cannot tease you any longer. So here we go!

Without proof, the computational time required to decompose the [A] matrix to [L] [U]
3
form is proportiona to % where n is the number of equations (size of [A] matrix).

2

Then to solve the [L] [Z] = [C] the computational time is proportional to % Then to
2

solve the [U][X]:[C], the computational time is proportiona to % So the total

computational time to solve a set of equations by LU decomposition is proportional to
3
N in,
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In comparison, Gaussian elimination is computationally more efficient. It takes a
3 2

. . . n° n : :
computational time proportional to 3 +7, where the computational time for forward

3
elimination is proportional to— and for the back substitution the time is proportional

2
to .
2

This has confused me further! Gaussian elimination takes less time than LU
Decomposition method and you are trying to convince me then LU Decomposition hasits
placein solving linear equations! Yes, it does.

Remember in trying to find the inverse of the matrix [A] in Chapter 5, the problem
reduces to solving ‘n’ sets of equations with the ‘n’ columns of the identity matrix as the
RHS vector. For calculations of each column of the inverse of the [A] matrix, the
coefficient matrix [A] matrix in the set of equation [A] [X] = [C] does not change. So if
we use LU Decomposition method, the [A] :[L][U] decomposition needs to be done

only once and the use of equations (1) and (2) still needsto be done‘n’ times.

So the total computationa time required to find the inverse of a matrix using LU

L . n® . 4n®
decomposition is proportional to 3 +n(n®) = e

In comparison, if Gaussian elimination method were applied to find the inverse of a

matrix, the time would be proportional to

an® n?’6 n* nd
nG—+—+=— +—.
€3 25 3 2

For large values of n

n* n®_4n®
m_

3 2 3

Are you now convinced now that LU decomposition has its place in solving systems of
eguations? We are now ready to answer other questions - how do | find LU matrices for
anonsingular matrix [A] and how do | solve equations (1) and (2).

How do | decompose a non-singular matrix [A], that is, how do | find [A]=[L][U]?
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If forward elimination steps of Naive Gauss elimination methods can be applied on a
nonsingular matrix, then [A] can be decomposed into L U as

€, a, ... &,U

e u

’\a a ese a S

(g=&= P2 g

: u

e u

Ay ap Ay
61 0 Ol‘lgjll Uy, ulng
A .u=x0 T >
%21 1 :l,Je u
e Ué a
=& ([0 2
~ 31 ;e ou
< Ua a
e 1us '
&y b u,u
" go o0 A

1. The elements of the [U] matrix are exactly the same as the coefficient matrix one
obtains at the end of the forward elimination steps in Naive Gauss Elimination.

2. The lower triangular matrix [L] has 1 in its diagona entries. The non zero
elements on the non-diagonal elements in [L] are multipliers that made the
corresponding entries zero in the upper triangular matrix [U] during forward

elimination.

Let uslook at this using the same example as used in Naive Gaussian elimination.

Example

Find the LU decomposition of the matrix

§25 5 1u

_é u
[Al=g64 8 13

gl44 12 1§
Solution
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él 0 Ol}'@*‘n Uy, Ulsl)
(Al=[tlu]=ga 1 00 u, uyg

&, !, 1880 0 uyf
The [U] matrix is the same as found at the end of the forward elimination of Naive Gauss
elimination method, that is
&5 5 10
U]=§0 -48 -156;
g0 O 07 ¢

Tofind 7,, and 7 ,,, what multiplier was used to make the a,, and a,, elements zeroin

the first step of forward elimination of Naive Gauss Elimination Method It was

_64

0. =—
225

=2.56
144

0y =—r
31 25

=5.76

To find 7,,, what multiplier was used to make a,, element zero. Remember a,,
element was made zero in the second step of forward elimination. The [A] matrix at the
beginning of the second step of forward elimination was

&5 5 10

S0 - 48 -156

g0 -16.8 - 4.76(

So
- 168
0y, ="
32 _ 48
=35
Hence
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¢1 0 Oy
[L]=58256 1 o0
&.76 35 1§

Confirm

[Lu]=[A].
¢l 0 05 5 1 0
[Lu]=§56 1 080 -48 - 156
676 35 10 0 07 §

€25 5 i

64813
44 12 1§

D D

@)

Example

Use LU decomposition method to solve the following simultaneous linear equations.
é25 5 1luéa,u é106.8u

S 8 10%,0= Gl

g44 12 g, £279.24

Solution

Recall that

[Allx]=[c]
and if
[Al=[t]lu]
then first solving
[L][z]=[c]

and then
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u[x]=[z]

gives the solution vector [X] :

Now in the previous example, we showed

€1 0 05 5 10
[Al=[L]u]=5856 1 00 -48 - 156
676 35 10 0 07 §

First solve
[L]z] =[c]
é 1 0 Ougzlu §\106.8g
256 1 032,1=al77.24
.76 35 1géz.f £279.24
to give
z; =106.8
2.56z; +z, = 177.2
5.762,+352,+23=279.2
Forward substitution starting from the first equation gives
7, =106.8
2,=177.2-256z;
=177.2 - 2.56 (106.8)
=-96.21
Z23=279.2-5.762; — 3.5z,
= 279.2 — 5.76(106.8) — 3.5(-96.21)
=0.735

Hence
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é21 U

[Z] "ZZ u

24
€106.8 u

_é a
=& 96.21(J

80.735

This matrix is same as the right hand side obtained at the end of the forward elimination
steps of Naive Gauss elimination method. |sthisa coincidence?

Now solve

ulix]=(z]

@5 5 1 uéau €106.80
é ué, u_é

a0 -48 -156,z, ;= e9621u
g0 O 0.7 g, £0.735§
253, +5a, +a, =106.8

- 4.8a, - 1.56a, =-96.21

0.7a, =0.735

From the third equation
0.7a, =0.735

_0.735
07

3

=1.050

Substituting the value of ag in the second equation,
- 4.8a, - 1.56a, =-96.21

- 96.21+1.56a,
- 48

_ -96.21+1.56(1.050)
-4.8

&,
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=19.70
Substituting the value of a, and a,in the first equation,

25a, +5a, +a, =106.8
_106.8- 5a, - a,
A= 25

_106.8- 5(19.70)- 1.050
25

=0.2900

The solution vector is

How do | find the inver se of a square matrix using L U Decomposition?
A matrix [B]is the inverse of [A]if [A][B]:[I]=[B][A]. How can we use LU
decomposition to find inverse of the matrix? Assume the first column of [B] (theinverse

of [A] is

a8 U é.\U
(] 20 0
¢iu &

u e.u

ggnllj é:)lj

Similarly the second column of [B] isgiven by
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N

O\ C ey e

[A] €

(;E:FCD)_CD)CDOQ)'%

TP 2000
oo\

2

Similarly, al columns of [B] can be found by solving n different sets of equations with

the column of the right hand sides being the n columns of the identity matrix.

Example

Use LU decomposition to find the inverse of
§25 5 1u

[Al=g64 8 13
g44 12 14

Solution

Knowing that
€1 0 O0ug 5 14
[Al=[L]u]=856 1 0550 -48 -156
676 35 140 0 07§

We can solve for the first column of [B]=[A]'1 by solving for

§25 5 1gélanu élu
é u U_é\u
é64 8 102321u gou

g44 12 lggb.f &0
First solve

Lz]=[c], that is

€l 0 Owzu él
?56 1 omzzu o

u eu

.76 35 lgez.f €4

to give
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z =1
256z +z,=0
5.76z, +3.52,+z, =0

Forward substitution starting from the first equation gives

z,=1
z,=0-2.56z,
=0- 2.56(1)
=-2.56
z, =0- 5.76z - 3.5z,
=0- 5.76(1) - 3.5(- 2.56)

=32

Hence

N,
]
D> D> D~
o N
[eox Y ey ey ang

= ;ﬁ>

1
@D> (D>, (D> (D~

w N
»

N
o Ny a?

Now solve

ulx]=[z]

that is

€ 5 1 ad,o &1 0
50 - 48 -156;d, ;=& 256,

)

g0 0 07 A@.f 8324

Introduction to Matrix Algebra— Copyright — Autar K Kaw

- 126-



25b11 + 5b21 + b31 =
- 4.8b,, - 1.56b,, =- 2.56

0.7b,, =

Backward substitution starting from the third equation gives

3.2

b, =——
07

= 4571

- 2.56+1.560b,,
- 48

_ - 2.56+1.560(4.571)
- 48

b, =

=-0.9524
— 1- 5b21 B b31
by, e
_1- 5(-0.9524) - 4571
25

=0.04762

Hence the first column of the inverse of [A] is

é, 0 €0.04762

20213 g 0. 9524u

a8 4571 u
Similarly by solving
é25 5 lb,u é&u
264 8 lgb. =gy
€L44 12 19,8 €0

é,u ¢ 0.08333y

2022“ € 1417 3

e
§332 8 - 5.000 H
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and solving

€25 5 laéo,u €U
ot 8 D=0
€44 12 lgeb.H €lf
gives

é,, 0 €0.035710

A

u_ée U
&, = & 04643

B,f € 1429 g
Hence

04762 008333 0.0357 (
[A]* = g 09524 1.417 - 0.46433
g 4571 -5050 1429 §

Can you confirm the following for the above example? [A[Al™* =[1]=[A]*[A]

Key Terms

LU decomposition  Inverse

Homewor k

1. Show that LU decomposition is computationally more efficient way of finding the
inverse of a square matrix than using Gaussian elimination.

2. LU decomposition method is computationally more efficient than Naive Gauss

elimination for
A. Solving asingle set of simultaneous linear equations

B. Solving multiple sets of simultaneous linear equations with different

coefficient matrices.
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C. Solving multiple sets of simultaneous linear equations with same
coefficient matrix but different right hand sides.

D. Solving less than ten simultaneous linear equations.
3. It one decomposes a symmetric matrix [A] toaLU form, then

A [L]=[u]"

B. [UI'=[L]"

A. [L]=[U]

D. [L]=I]

4. Use LU decomposition to solve
AX, + X, - Xy =-2
oX, +X, +2X; =4
6x *+ X, +X; =6

Answer: (3,-13,1)

5. Find the inverse of

e 4 1u
(A= -7 -1
8 1 53

using LU decomposition

€2931x10"  1.638x10°" - 2.586x10°°U
Answer: [A]*=£1552x10" - 6.034x10°° - 4.310x10 2]
€ 5.000x10" - 2.500x10"  2.500x10°*

0 o
6. Show that the nonsingular matrix [A] = g OE cannot be decomposed into LU form.
© o

Hint: Try tofind the unknownsin
él Ooeu, ulzu € 20

e€21 1ue0 uzzu g Ou
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. . . 0 20. .
Do you see any inconsistencies? Under stand that ;& OQ isnonsingular.
C u
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Chapter 8
Gauss-Siedel Method

After reading this chapter, you will be ableto
=  Solve a set of equations using Gauss-Sedel method
= Learn the advantages and pitfalls of Gauss-Sedel method

= Understand under what conditions Gauss-Sedel method always converges

Why do we need another method to solve a set of smultaneous linear equations?

In certain cases, such aswhen a system of equationsislarge, iterative methods of
solving equations such as Gauss-Siedel method are mor e advantageous. Elimination
methods such as Gaussan elimination, are proneto round off errorsfor alarge set
of equations. Iterative methods, such as Guass-Siedel method, allow the user the
control of the round-off error. Also if the physics of the problem arewell known for
faster convergence, initial guesses needed in iter ative methods can be made more
judicioudly.

Y ou convinced me, so what is the algorithm for Gauss-Siedel method? Given a general

set of n equations and n unknowns, we have
% +apX, + 8% ..t aX, =0
By, + 8X, + BXs T+ B X, =D,

X A% F A% T taX, =h,
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If the diagona elements are non-zero, each equation is rewritten for the corresponding
unknown, that is, the first equation is rewritten with x; on the left hand side, second
equation is rewritten with x, on the left hand side and so on as follows

- X, - AgXy .. -, X,
y = G BXe ~ Ak, 2,

ay
X = C, - Ay X - AyuX;...... - Ay X,
2
a,,
X . = Ch1 an-1,1X1 - an-1,2X2 ------ A 1n-2%0-2 an-1,nxn
n-1
Ay 11
_CimagX - apnX, - a1 %01
Xn = a

These equations can be rewritten in the summation form as

C - é ; X;
i=1

j_l

Ay
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Hence for any row ‘i’

n

[o]
G- a X
=
x =—11 =12 .,n

&
Now to find x’s, one assumes an initia guess for the x’s and then use the rewritten
equations to calculate the new guesses. Remember, one always uses the most recent
guesses to calculate x;. At the end of each iteration, one calculates the absolute relative
approximate error for each x; as
Xrew - ol
T

alj

‘ x100

where xr is the recently obtained value of x;, and x°¢is the previous value of x;.

When the absolute relative approximate error for each x; is less than the prespecified

tolerance, the iterations are stopped.

Example

The upward velocity of arocket is given at three different times in the following table

Time, t Velocity, v
S m/s
5 106.8
8 177.2
12 279.2
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The velocity datais approximated by a polynomial as
v(t)=at®+ast+a,, 5£t£12.

The coefficients a;, a, ag for the above expression were found in Chapter 5 to be given
by
€25 5 luéau €106.8u

€44 12 lgea.fl €79.24

Find the values of a;, a, ag using Guass-Siedal Method. Assume an initial guess of the
solution as

la, a, a]=f 2 5.
Solution

Rewriting the equations gives
106.8- 5a, -
a = Q, - &

25
_177.2- 644, - a,
a, = 3
_279.2- 1444, - 12a,
1

Iteration #1

Given theinitial guess of the solution vector as
e elu
=2
el &4

we get

~106.8- 5(2) - (5)
%= 25

=3.6720
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o = 177:2- 64(3.6720)- (5)

2

8
=-7.8510
_ 279.2- 144(3.6720)- 12(- 7.8510)
% 1
= -155.36

The absolute relative approximate error for each x; thenis

3.6720 - 1.oooo| 400

1| 36720

a

=72.76%

7.8510- 2.0000| .
- 7.8510 |

N

=125.47%

_ |- 155.36- 5.0000/ ,
= 00
7| -15536 |

a

=103.22%

At the end of thefirst iteration, the guess of the solution vector is
éa,u é36720 U
é u_é a
&= & 7.8510;

g f & 155.36(

and the maximum absol ute rel ative approximate error is 125.47%.

[teration #2

The estimate of the solution vector at the end of iteration #1 is
éau é3.6720
& u_é u
2@_ e— 7.8510@
g & 155.36Q

ig? ('Dé,('D

Now we get
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o = 1068- 5(- 7.8510)- 155.36

25
= 12.056
_177.2- 64(12.056) - 155.36
’ 8
= -54.882
_ 279.2- 144(12.056) - 12(- 54.882)
% 1
=-798.34

The absolute relative approximate error for each x; then is

i _[12.056- 3.6720|
AT 12056 |

=69.542%

i _|- 54.882- (- 7.8510) 100
alz | - 54.882 |

= 85.695%

i _|- 798.34- (- 155.36) 100
als 7| - 798.34 |

= 80.54%.

At the end of second iteration the estimate of the solution is

g.fi & 798.34§
and the maximum absol ute rel ative approximate error is 85.695%.

Conducting more iterations gives the following values for the solution vector and the
corresponding absolute relative approximate errors.

1% oY) Faz%

0,
%

2 E

Iteration | & ﬂ a
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1 3.672 72.767 -7.8510 | 125.47 -155.36 | 103.22
2 12.056 67.542 -54.882 | 85.695 -798.34 | 80.540
3 47.182 74.448 -255.51 | 78.521 -3448.9 | 76.852
4 193.33 75.595 -1093.4 | 76.632 -14440 76.116
5 800.53 75.850 -4577.2 | 76.112 -60072 75.962
6 3322.6 75.907 -19049 75.971 -249580 | 75.931

As seen in the above table, the solution is not converging to the true solution of

& 0.29048

19.690

1.0858

The above system of equations does not seem to converge? Why?

Well, a pitfall of most iterative methods is that they may or may not converge. However,
certain class of systems of simultaneous equations do always converge to a solution using
Gauss-Siedal method. This class of system of equations is where the coefficient matrix
[A] in[A][X] =[C] isdiagonally dominant, that is

la,|® & la,| forali

&

and |a, |iQ |a,| for at least onei’.
i

If a system of equations has a coefficient matrix that is not diagonally dominant, it may
or may not converge. Fortunately, many physical systems that result in simultaneous
linear equations have diagonally dominant coefficient matrices, which then assures
convergence for iterative methods such as Gauss-Siedal method of solving simultaneous
linear equations.
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Example

Given the system of equations.
12x, +3x, -5X,; =1
X, +5X, +3X; =28
3X, +7x, +13x, =76

find the solution. Given

e u élu

5=

el
astheinitial guess.
Solution

The coefficient matrix

d2 3 - 50
[Al=81 5 3y
83 7 13§

isdiagonally dominant as

@] =12 =12° [a| +[as| =[3 +|- §=8

[az| =[5 =52 [ay| +[ax| = +[3 =4

2| =[13 =13° [a| +[a| =[3 +[7 =10
and the inequality is strictly greater than for at least one row. Hence the solution should
converge using Gauss-Siedal method.

Rewriting the equations, we get
_1- 3%, +5X%,
12

1
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_28- X, - 3%,
5

_76- 3%, - X,

ol 13

X,

Assuming an initial guess of

éxu el
u_ e u
0= &
0 €l
Iteration 1:
1- 3(0) +5(1)
T
= 0.50000
. =28 (0.5)- 31)
’ 5
= 4.9000
_ 76- 3(0.50000) - 7(4.9000)
X; =
13
= 3.0923

The absolute relative approximate error at the end of first iteration is

i _ |0.50000- 1.0000|
s1| 050000 |

= 67.662%
i :‘4.9000- O‘xlOO

2 4.9000

= 100.000%

i _ [3.0923- 1.0000|
als ™| 30023 |
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= 67.662%

The maximum absolute relative approximate error is 100.000%

|teration 2.
_ 1- 3(4.9000) + 5(3.0923)
' 12
= 0.14679
o = 28-(0.14679)- 3(3.0923)
i 5
= 37153
. = 76-3(0.14679)- 7(4.900)
i 13
= 38118

At the end of second iteration, the absol ute relative approximate error is

i _[0.14679- 0.50000| -
s 014679 |

= 240.62%

_[3.7153- 49000/, )
2| 37153 |

I

= 31.887%

i _[38118- 3.0923
als ™| 38118 |

= 18.876%.

The maximum absolute relative approximate error is 240.62%. This is greater than the
value of 67.612% we obtained in the first iteration. |sthe solution diverging? No, asyou
conduct more iterations, the solution converges as follows.

lteration | & €.l & CHR & €4l

1 0.50000 | 67.662 4.900 100.00 3.0923 67.662
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2 0.14679 | 240.62 3.7153 31.887
3 0.74275 | 80.23 3.1644 17.409
4 0.94675 | 21.547 3.0281 4.5012
5 0.99177 | 4.539%4 3.0034 0.82240
6 0.99919 | 0.74260 | 3.0001 0.11000

3.8118
3.9708
3.9971
4.0001

4.0001

18.876
4.0042
0.65798
0.07499

0.00000

Thisis close to the exact solution vector of
ex,.u  €eld
é u_éu
807 &3

et &4

Example

Given the system of equations
3X, +7X, +13x, =76
X, +5x, +3x, =28

12x, +3x,-5x, =1

find the solution using Gauss-Siedal method. Use [xl,xz,x3]=[1 0 1] as the initial

guess.
Solution

Rewriting the equations, we get

_76- 7X, - 13x,
' 3
X, = 28- X, - 3%,
5
X, = 1- 12x15- 3X,

Assuming an initial guess of
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éx.u élu

4= &

el €
the next six iterative values are given in the table below
Iteration | a; [ 1 & I, 2 & I, 3
1 21.000 110.71 | 0.80000 100.00 | 5.0680 98.027
2 -196.15 109.83 | 14.421 94.453 | -462.30 110.96
3 -1995.0 109.90 | -116.02 112.43 | 47181 109.80
4 -20149 109.89 | 1204.6 109.63 | -47636 109.90
5 2.0364x10°> | 109.90 | -12140 109.92 | 4.8144x10° | 109.89
6 -2.0579x10° | 1.0990 | 1.2272x10° | 109.89 | -4.8653x10° | 109.89

You can see that this solution is not converging and the coefficient matrix is not
diagonally dominant. The coefficient matrix

€3 7 13u
[Al=81 5 3
g2 3 - 5§
is not diagonally dominant as
2| =[3 =3 £ Jay| +[a| =[7]+[13 =20
Hence Gauss-Siedal method may or may not converge.

However, it is the same set of equations as the previous example and that converged. The
only difference is that we exchanged first and the third equation with each other and that
made the coefficient matrix not diagonally dominant.

So it is possible that a system of equations can be made diagonally dominant if one
exchanges the equations with each other. But it is not possible for all cases. For

example, the following set of equations.

Xl-l-XZ-l-XS:3
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2%, +3X, +4x; =9
X 71X, +% =9

can not be rewritten to make the coefficient matrix diagonally dominant.

Homewor k

1. Inasystem of equation [A] [X] =[C], if [A] is diagonally dominant, then Gauss-
Siedal method

A. aways converges
B. may or may not converge

C. adwaysdiverges

2. In a system of equations [A] [X] = [C], if [A] is not diagonally dominant, then
Gauss-Siedal method

A. Always converges

B. May or may not converge

C. Alwaysdiverges.

3. In a system of equations [A] [X] = [C], if [A] is not diagonally dominant, the
system of equations can aways be rewritten to make it diagonally dominant.

A. True

B. False

4. Solve the following system of equations using Gauss-Siedal method
12x, + 77X, + 3%, = 2

X+ 5%, + X =-5

2x, +7x,-11x, =6
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Conduct 3 iterations, calculate the maximum absolute relative approximate error at the
end of each iteration and choose [x1 X, x3] = [1 3 5] asyour initial guess.

Answer: [x, X, x]=[0.90666 -1.0115 - 1.0243]

., T, T.,]=[65001% 10.564% 17.099%]

5. Solvethe following system of equations using Gauss-Siedal Method
X, 95X, + X, =5

12x, +7X, + 3%, =2

2%, +7X, - 11X, =6
Conduct 3 iterations, calculate the maximum absolute relative approximate error at the
end of each iteration and choose [xl X, x3] = [1 3 5] asyour initial guess.
Answer: [x, X, x]=[ 11637 1947.6 1027.2]

., Tal, T..]=[89.156% 89.139% 89.183%]
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Chapter 9
Adequacy of Solutions

After reading this chapter, you will be ableto

= Know the difference between ill conditioned and well conditioned system of
eguations

= Define the norm of a matrix

= Relate the norm of the matrix and of itsinverse to theill or well conditioning of
the matrix, that is, how much trust can you have in the solution of the matrix.

What doesit mean by ill conditioned and well-conditioned system of equations?

A system of equations is considered to be well conditioned if a small change in the
coefficient matrix or a small change in the right hand side results in a small change in the
solution vector.

A system of equations is considered to be ill conditioned if a small change in the
coefficient matrix or a small change in the right hand side results in a large change in the
solution vector.

Example

Is this system of equations well conditioned?
el 2 dexu_e 4 u
& 3.999H&yH " &7.909H

Solution
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The solution to the above set of equationsis

exu &2
eYU glu

Make a small change in the right hand side vector of the equations
€l 2 uéxu_eé4.001y
& 3.9009 &1~ & 908l
gives
éxu_ & 3.999u

&yH™ & 4.000 §
Make a small change in the coefficient matrix of the equations
é1.001 2.001uéxu_¢é 4 U
& 001 3.9984 &yd ™~ & og0l
gives

eXu é 3994 u
&y~ & 001388Y

This system of equation “looks” ill conditioned as a small change in the coefficient
matrix or the right hand side resulted in alarge change in the solution vector.

Example

Is this system of equations well conditioned?

él 2uexu é4u
& 3ueYH e7u

Solution

The solution to the above equations is

eXu é2U

S &l
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Make asmall change in the right hand side vector of the equations.
€l 2uéxu_ .00l
2 A8 Gooy
gives
éxi1_ 69990
&1 oo
Make a small change in the coefficient matrix of the equations.
€1.001 2.00luéxu_édu
2001 3.0018&Y &7
gives
éxi1_ €2.0030
B~ Boort
This system of equation “looks” well conditioned as small changes in the coefficient
matrix or the right hand side resulted in small changes in the solution vector.

So what if the system of equationsisill conditioning or well conditioning?

WEell, if a system of equations is ill conditioned, we cannot trust the solution as much.
Remember the velocity problem in Chapter 5. The values in the coefficient matrix are
squares of time, etc. For example if instead of
a,, = 25, youused a,, = 24.99, would youwantit to make a huge difference in the

solution vector. If it did, would you trust the solution?
Later we will see how much (quantifiable terms) we can trust the solution to a system of
equations. Every invertible square matrix has a condition number and coupled with the

machine epsilon, we can quantify how many significant digits one can trust in the
solution.

To calculate condition number of an invertible square matrix, | need to know what
norm of amatrix means. How isthe norm of a matrix defined?
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Just like the determinant, the norm of a matrix is a simple unique scalar number.
However, norm is always positive and is defined for all matrices — square or rectangular;
invertible or noninvertible square matrices.

One of the popular definitions of a norm is the row sum norm (also called uniform-matrix
norm). For amxn matrix [A], the row sum norm of [A] is defined as

IAl =

I<d<m ma‘a“

that is, find the sum of the absolute of the elements of each row of the matrix [A]. The

maximum out of the ‘m’ such values is the row sum norm of the matrix [A].

Example

Find the row sum norm of the following matrix [A].
elO -7 Ou

&3 2099 6“

5 -1 5@]

(q11)3}) ('D)

Solution

A, = g2l

max{(10 +|- 7+[0]) (- 3 +[2.099|+[6]) (5 +|- 1+ 5]
= max[(10+ 7 +0),(3+2.099+ 6),(5+1+ 5)|

= max(17,11.099,11]

=17.

How isnorm related to the conditioning of the matrix?

Let us start answering this question using an example. Go back to the “ill conditioned’
system of equations,
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2 ué&u é 4 u

VAN I_I\

& 3.9998 §/H ™ &7 990K

that gives the solution as

é&u_ &u

& &l

Denoting the above set of equations as
[Al[x]=[c]

X[, =2

], =7.999

Making asmall change in the right hand side,
el 2 uexu_ é4.001u
€ 3.999 1€y~ &7 gog i
gives
éxu_ & 3.999u
ey~ € 4.000 !

Denoting the above set of equations by
[Allx]=[c]

and the change in right hand side vector
[oc]=[c]- [c]

and the change in the solution vector as
[ox] =[x [x]

then

[oc]= &0l ¢ 4 u
&7.9084  &7.990H

_€0.001 0
€ 0.00f
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and
x| = & 39990 &
—_ e - A
§4.000 {f &Ly

then
Ioc], =0.001

DX, =5.999

Relative change in the norm of the solution vector is

|PX]l, _ 5.999
Ix, 2
= 2.9995

Relative change in the norm of the right hand side vector is

|oCl, _ 0001
[c], ~ 7.999
=1.250" 10"*

See the small relative change in the right hand side vector of 1.250 x 10™ results in a
large relative change in the solution vector as 2.995.

In fact, the ratio between the relative change in the norm of the solution vector to the
relative change in the norm of the right hand side vector is
DX, 11X,
[oc, /el
2.9995

" 1.250" 10°*
= 23957

Let us now go back to the “well-conditioned” system of equations.
6 2060 _ et
2 3ol &l
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gives

&u_ &

80 &f

Denoting the system of equations as
[a[x]=(c]

X[, =2
I, =7

Making a small change in the right hand side vector
el 2uéxu_ e4.001u

& 3y &.001

gives

éxit_ 61,9990

&4 &oof

Denoting the above set of equations as

[Alx]=[c]

and the change in the right hand side vector
[oc]=[c]- [c]

and the change in the solution vector as

[ox]=[x1]- [X]

then

e < -0l & _ 0001y

Groo &4 ~ oo

and

x| = &9%0_&u _ & ooow
&.001y &g E0.001
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then
|oc, =0.001

|IDX], =0.001

Relative change in the norm of solution vector is
x|,

X,
_ 0001
2

=5"10"
Relative change in the norm of the right hand side vector is

e,
<l

0,001
7

=1.429" 10°**

See a small relative change in the right hand side vector norm of 1.429 x 10 resultsin a
small relative change in the solution vector norm of 5 x 104,

In fact, the ratio between the relative change in the norm of the solution vector to the
relative change in the norm of the right hand side vector is

S

ol /e,

_ 5107 4
1429 10" 4
=35

What are some of the properties of norms?

1. For amatrix [A], |A|3 0

2. For amatrix [A] and ascalar k, [kA| = k]| A
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3. For two matrices[A] and [B] of same order,

|A+Bl£]A +[8|

4. For two matrices[A] and [B] that can be multiplied as[A] [B],

|ABJ £ AllB]

Isthere a general relationship that exists between |DX||/|X| and |DC]/|C| or between
IDX|/|X| and |DA|/|A|? If so, it could help us identify well-conditioned and ill

conditioned system of equations.

If thereis such arelationship, will it help us quantify the conditioning of the matrix,
that is, tell us how many significant digits we could trust in the solution of a system

of simultaneouslinear equations?

There is arelationship that exists between
I Ie<l

, and between
> || c
DX P8
IXJ A

These relationships are

x| I
o EIAIA T g
DX DA

Looking at the above two inequalities, it shows that the relative change in the norm of the
right hand side vector or the coefficient matrix can be amplified by as much as ||A|| HAlu :

This number |A|| HAlH is called the condition number of the matrix and coupled with

the machine epsilon, we can quantify the accuracy of the solution of [A][X] =[C].
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Prove for [A] [X] = [C]

IOX_ g -y 12
i ox AT

Pr oof

Let

[A][x]=[c] ()
Then if [A] is changed to [A'], then[X] will changeto [X'], such

that

[A][x]=[c] 2
From equations (1) and (2),

[Al[x]=[A][x]

Denoting changein [A] and [X] matrices as

[DA]=[A]- [A]

[ox] =[x [x]

then

[Al[x]= (Al +[PA)[x]+[x])

Expanding the above expression

[Al[x]=[A][x]+[A][Dx] +[DA][x]+[DA][DX]

0 =[A][x]+[A](x]+[Dx])

- [A]lox] = [DA](x]+[ox])

[ox]=-[A]*[DA](x]+[Dx])

Applying the theorem of norms that norm of multiplied matrices is less than the
multiplication of the individual norms of the matrices,

[ox] <[A | [pAx + x|
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Multiplying both sides by ||A|
Al <[Af|A]IDA]Jx +DX]

X -y A
i ox < PAIA

How do | use the above theoremsto find how many significant digitsare correct in
my solution vector?

Relative error in solution vector is <= Cond (A)* relative error in right hand side.

Possible relative error in the solution vector is<= Cond (A) * T __.

Hence Cond (A)*1 should give us the number of significant digits at least correct in

mach

our solution by comparing it with 0.5x10™.

Example

How many significant digits can | trust in the solution of the following system of
eguations?

él 2 uéxu_é
& 3909081 &l

Solution
_e 20
[A]_& 3.999¢

[A]* = _ & 399931 20001y
€ 20001 - 1000.1¥

IA], =5.999

a-1], =5990.4
Cond(A) =|A], A",

=5.999" 5999.4
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= 35990

Assuming single precision with 24 bits used in the mantissa for real numbers, the
machine epsilon
1 = oL 24
=0.119209" 10°
Cond(A*T .
=35990" 0.119209" 10°°
= 0.4290x10°?

Comparing it with 0.5 10™™
0.5 10" <0.4290" 10°?
m<2

So two significant digits are at least correct in the solution vector.

Example

How many significant digits can | trust in the solution of the following system of
eguations?
el 2uéu_ edu
- é
2 i &l
Solution

For
éL 2u

2 3f

it can be shown

[A]=

L_63 240
A P

Then
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|Al, =5,

A7, =5.

Cond (A) = [A], |A~Y,
=55

=25

Assuming single precision with 24 bits of mantissafor real numbers, the machine epsilon

~

— nl-24
I mach — 2

=0.119209" 10°°
Cond(A)*T .

=25 0.119209" 10°°
=0.2980x10°°

Comparing it with 0.5 x 10™
0.5 10 ™ <0.2980" 10°°
m<5

So five significant digits are at least correct in the solution vector.

Key Terms
[l conditioned Well conditioned
Norm Condition number

Machine epsilon Significant digits

Homework

1. The adequacy of the solution of simultaneous linear equations depends on
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A. Condition number
B. Machine epsilon
C. Product of condition number and machine epsilon
D. Norm of the matrix.
2. If asystem of equations[A] [X] =[C] isill conditioned, then
A. det(A)=0
B. Cond(A) =1
C. Cond(A) islarge.
D. |A| islarge.
3. If Cond(A) = 10*and T , = 0.119 x 10°°, then in [A] [X] = [C], at |east these many
significant digits are correct in your solution,
A. 3
B. 2
C. 1
D. 0O

4. Make asmall change in the coefficient matrix to
g 2 udw_eé 4 i
& 3.999H&H  &7.9904

and find
[oX, /X,
[DA], /1A,

Isit alarge or small number? How is this number related to the condition number of the

matrix?

5. Make a small change in the coefficient matrix to
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él 2u exu _ édu
2 MY &l
and find

[Bx], X1,
DA, /Al

Isit alarge or a small number? Compare your results with the previous problem. How is
this number related to the condition number of the matrix?

6. Prove
K] gy
X0 Il
7. For
¢l0 -7 Oy
_é U
[A]=% 3 2099 6y
85 -1 5§
gives

¢ 0.1099 - 0.2333 0.2799 1

[A]*=% 02999 - 03332 03999 !

£0.04995 0.1666 6.664" 10°°H

a) What is the condition number of [A]?
b) How many significant digits can we at least trust in the solution of [A][X] = [C] if

| on=0.1192" 10°°

c)Without calculating the inverse of the matrix [A], can you estimate the condition
number of [A] using the theorem in Problem#6?
Answer: a) |A| =17

HA‘ 1” =1.033

Cond (A) = 17.56
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b) 5

c) Try different values of right hand sideof C=[+1 +1 +1]" with
signs chosen randomly. Then ||A™| = ||X|| obtained from solving
equation set [A] [X] =[C] as||C|| =1.

8. Prove that the Cond(A) >=1.

Hint:

We know that
lA Bl = [IAll lIBII
then if [B] = [A],
A A= (IATTIA™
1= AL TIA™)
L=[A A
AL A2 1

Cond (A) 3 1.
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Chapter 10
Eigenvalues and Eigenvectors

After reading this chapter, you will be ableto

1. Know the definition of eigenvalues and eigenvectors of a square matrix
2. Find eigenvalues and eigenvectors of a square matrix

3. Relate eigenvalues to the singularity of a square matrix

4. Usethe power method to numerically find in magnitude the largest eigenvalue of a
sgquare matrix and the corresponding eigenvector.

What does eigenvalue mean?

The word eigenvalue comes from the German word “Eigenwert” where Eigen means
“characteristic” and Wert means “value’. But what the word means is not on your mind!
You want to know why do | need to learn about eigenvalues and eigenvectors. Once |
give you an example of the application of eigenvalues and eigenvectors, you will want to
know how to find these eigenvalues and eigenvectors. That is the motive of this chapter
of the linear algebra primer.

Give me a physical example application of eigenvalues and eigenvector s?

Look at the spring-mass system as shown in the picture below.

k k
m YNNNN my

—» x1 —» x
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Assume each of the two mass-displacements to be denoted by x; and x», and let us
assume each spring has the same spring constant ‘k’. Then by applying Newton’s 2™ and
3 |aw of motion to develop aforce-balance for each mass we have

d2
m =gt = -k +k(x, - %)

Rewriting the equations, we have

2
mldd’z‘l- K(- 2%, +X,) =0
t
d?x
m, k(%) =0

Let m;=10,m, =20,k =15

2
1odd X 15(- 2% +%,) =0

t2

d?x,
dt®

20 - 15(%, - X,) =0

From vibration theory, the solutions can be of the form
x =ASn Wt- 0)

where

A = amplitude of the vibration of mass ‘i’

w = frequency of vibration

0 = phase shift

then

X AweSinut - 0)
it

2

Substituting x and ddt)z(i in equations,

Introduction to Matrix Algebra— Copyright — Autar K Kaw - 162-



-10A1w 2 —15(-2A1 + A) =0

-20A,w 2 =15(A1- A)) =0

gives

(-10w? +30) A;—15A,=0

-15A1 + (-20w 2 + 15) A, =0

or

(-w? +3) A1 -15A,=0

-0.75A1+ (-Ww? +0.75) A, =0

In matrix form, these equations can be rewritten as

eéw?+3  -15 UEAU_E
€. 075 -w?+07508A, 07 &l

¢ 3 -150AU  ,éAU_&u
& 075 075fRAH T EAl 3)”
Letw?=|

[]_? 3 '150
& 075 075u

[X] eAiu

[A][X] -1 [X]=
[A] [X] =1 [X]

In the above equation, ‘I’ is the eigenvalue and [X] is the eigenvector corresponding to
| . Asyou can see that if we know ‘I’ for the above example, we can calculate the
natural frequency of the vibration

w =l
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Why are they important? Because you do not want to have aforcing force on the spring-
mass system close to this frequency as it would make the amplitude A; very large and
make the system unstable.

What isthe general definition of eigenvalues and eigenvector s of a square matrix?
If [A] isanxn matrix, then [X] * O isan eigenvector of [A] if
[AIIX] =1 [X]

where | isascalar and [X]O 0. The scaar | is caled the eigenvalue of [A] and [X] is
called the eigenvector corresponding to the eigenvalue | .

How do | find eigenvalues of a square matrix?

To find the eigenvalues of anxn matrix [A], we have

[AIIX] =1 [X]

[AI[X] -1 [X] =0

[AIX] - T TI][X] =0

([AT-1TIDIX] =0

Now for the above set of equations to have a nonzero solution,
det ([A]-111])=0

This left hand side can be expanded to give apolynomia in| solving the above equation
would give us values of the eigenvalues. The above equation is called the characteristic
equation of [A].

For anxn [A] matrix, the characteristic polynomial of A isof degree n asfollows
det ([A]-1[I])=0

gives

P+l "™ +--+c, =0

Hence this polynomial can have n roots.
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Example

Find the eigenvalues of the physical problem discussed in the beginning of this chapter,
that is, find the eigenvalues of the matrix

_é 3 -150
(A= & 075 0.75(
Solution

€075 075-1Y
det(Al- 1 [I]) =(3- 1)(0.75- 1 )- (-0.75)(- 1.5) = 0
225- 075 -3 +12-1.125=0

[2-3.75 +1.125=0

- (-3.75)% /(- 3.75)% - 4(1)(1.125)
- 2(1)

_3.75+£3.092
2

=3.421,0.3288

So the eigenvalues are 3.421 and 0.3288.

Example

Find the eigenvectors of
_é 3 -15)

A=g
& 0.75 0.754

Solution

The eigenvalues have aready been found in the previous example
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|, =3.4211,=0.3288

Let
éx, U
[X]= SX
be the eigenvector corresponding to

l,=3421
Hence

([A]-1:0m[Xx] =

6 3 -150 &l 0ul
ia i 342, eal_o
& 075 0.75 %szu

& 0421 -15 ueX1u eOu

075 - 2671, 47

('D('D

-0.421s-1.5x,=0

X2 =-0.2807 s

The eigenvector corresponding to | ; = 3.421 thenis

[X] _§r 02580753 SZ o;so?§'

The eigenvector corresponding to | , =3.421 is e ! ﬂ
0.2807(;

Similarly, the eigenvector correspondingto | , =0.3288 is

élu

8781
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Example

Find the eigenvalues and eigenvectors of
e15 0 1 u

[Al=§ 05 05 - 05u
g— 05 O 0 g

Solution

The characteristic equation is given by

det ([A]-1[1])=0

a5-1 0 10

é G_
detg- 05 05-1 -05;=0

g-05 0 -I§

@.5- 1)[(05- 1 )(-1)- (-05)(0)] + (1) (- 0.5)(0) - (-0.5)(0.5- I )] =
-13+212-1.25 +0.25=0
The roots of the above equation are

| =05,051.0

Note that there are eigenvalues that are repeated. Since there are only two distinct
eigenvalues, there are only two eigenspaces. But corresponding to | = 0.5 there should
be two eigenvectors that form a basis for the eigenspace.
To find the eigenspaces, let

éX1 U
[X] - "X2u

=
Given [(A- 11)][x]=0
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e15-l 0 1 uexlu €0u
-05 05-1 -053%.= ‘?o“

0 - %Xsﬂ @H

('UDM'D

Forl =0.5,
él 0 1 iéxu €0

é Uu_éyu
& 05 0 05uex2u gou

g 05 0 - O5MxH §0f
Solving this system gives

X1=a Xo=h,x3=-a

¢10
So the vectors go 3 and %

o

form abasisfor the eigenspace for the eigenvalue | =

BROE

[« oxy enly ey el

Forl =1,

605 0 1 téxu €&u

e u_ e;u
05 -05 -05“ex2u gou

é‘ 05 0 -1pgexsH &
Solving this system gives
X1 =& X2 =-0.53, x3=-0.5a

The eigenvector correspondingtol =11is
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é au élu
é u_ _é u
& O.5aa—aé 0.5(J

g 05ay & 0.5¢
¢ 10

Hence the vector g- 0.53 isabasis for the eigenspace for the eigenvalue of | = 1.
& 05

What ar e some of the theorems of eigenvalues and eigenvector s?

Theorem 1: If [A] is a nxn triangular matrix — upper triangular, lower triangular or
diagonal, the eigenvalues of [ A] are the diagonal entries of [A].

Theorem2: | = Oisaneigenvalueof [A] if [A] isa singular (noninvertible) matrix.
Theorem3: [A] and [A] " have the same eigenvalues.
Theorem 4. Eigenvalues of a symmetric matrix arereal.

Theorem 5: Eigenvectors of a symmetric matrix are orthogonal, but only for distinct
eigenvalues.

Theorem 6: |det(A)| isthe product of the absolute values of the eigenvalues of [A].

Example

What are the eigenvalues of

6 0 0 0y
5 G
=& 3 0 0y
@ 5 75 04
©2 6 0 -72§

Solution

Since the matrix [A] isalower triangular matrix, the eigenvalues of [A] are the diagonal

elements of [A]. The eigenvalues are
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Example

One of the eigenvalues of
é 6 20U

_6 a

[A=% 5 o

e 1 -74
iszero. Is[A] invertible?

Solution

| =0 isaneigenvalue of [A], that implies[A] issingular and is not invertible.

Example

Given the eigenval ues of
é2 -35 6u0
_6 a
[Al=835 5 2§
g8 1 85§

are

|, =-1546,1,=12.331, =4.711

What are the eigenvaluesiif

€2 35 8y
[Bl=§35 5 1y
86 2 85j
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Solution

Since[B] = [A]", the eigenvalues of [A] and [B] are the same. Hence eigenvalues of [B]

also are

-1,=1546,1,=12331,=4.711

Example

Given the eigenvalues of
é2 -35 6u
_6 a
[Al=85 5 2 ;
g8 1 80¢g

are

|, =-1546,1 , =12.33| , = 4.711
Calculate the magnitude of the determinant of the matrix.
Solution
Since
et A] =141 [ 14
=|- 1.546|[12.33 |4.711

=89.80

How does one find eigenvalues and eigenvector s numerically?

One of the most common methods used for finding eigenvalues and eigenvectors is the
power method. It isused to find the largest eigenvalue in absolute sense. Note that if this
largest eigenvalues is repeated, this method will not work. Also this eigenvalue needs to
be distinct. The method is asfollows:

1. Assume a guess [X (O)] for the eigenvector in

Introduction to Matrix Algebra— Copyright — Autar K Kaw -171-



[AIIX] =1 [X]
equation. One of the entries of [X (O)] needs to be unity.

2. Find

(Y19 = [A] X

3. Scale [Y™] so that the chosen unity component remains unity.

[Y(l)] =1 ® [x(l)]

4. Repeat steps (2) and (3) with [X] = [X®] to get [X @],

5. Repeat the setups 2 and 3 until the value of the eigenvalue converges. If T _isthe

pre-specified percentage relative error tolerance to which you would like the answer
to converge to, keep iterating until
| G+1) ()

where the left hand side of the above inequality is the definition of absolute
percentage relative approximate error, denoted generally by |eﬂ|. A prespecified
percentage relative tolerance of 0.5 10> ™ implies at least 'm' significant digits are
current in your answer. When the system converges, the value of | is the largest (in

absolute value) eigenvalue of [A].

Example

Using the power method, find the largest eigenvalue and the corresponding e genvector
of
é15 0 10

_é (
[Al=§ 05 05 -05;

§05 0 0§

Solution

Assume
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.
-5
:

¢L5 0 1 0d
[Allx©]=% 05 05 - 058
§05 0 O (@

6251
_é 1
- e‘ 0.5l;|
& 05§
¢ 10
v — e u
Y —2.5é 0.2(J
g 0.29
| D=25

We will choose the first element of [X (O)J to be unity.

¢ 10
o =€ u
[x®]=¢ 02
g 0.29

15 0 1 uwlu

Ué U

5 05 - 0.5@- 0'2@

5 0 0 g 024

> (D> (D~
o o

[Al[x]

> D

e 1 o
[Y®]=13% 0.3846;
& 0.3846

| @=13
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¢ 1
[x@]=¢& 0.3846!
& 0.3846f

The absolute relative approximate error in the eigenvaluesis
| 2 _ | @

&, I=

_ ‘1.3- 1.5‘ 100
1.3
=92.307%

Conducting further iterations, the values of | “and the corresponding eigenvectors is

given in the table below

i | O XY le, |

(%)

P> D>, (D> D
© o m
N N

eoN NN’

1 4 92.307
: 0.38463
0.3846

(qD) D> (D> (D~

1 a 16.552

a
0.44827(J

0.44827§

3 11154

P> (D>, D> D~

1 4 6.0529
0.475413

0475414

4 1.0517

P> (D>, (D> D~

1 wu 1.2441
0.488003

& 0.48800f

5 1.02459

('D)I D> (D~
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The exact value of the eigenvalueis
| =1
and the corresponding eigenvector is
¢ 10
[X]=§ o0s!
g 0.5§

Key Terms

Eigenvalue Eigenvectors

Power method

Homewor k

1. Theeigenvalues ‘| ’ of matrix [A] are found by solving the equation(s)?

a |A-11|=0
b) [Alx]=[]
o [Alx]-1[1]=0
d) |A=0
2. Find the eigenvalues and eigenvectors of
_do o
[A]_S-z ety
using the determinant method

50.97620 €0.8381y)
Answer: (12,1),§O ﬂ &0 13
&0.21691" §.8381Y
3. Find the eigenvalues and eigenvectors of
¢4 0 L
[Al=g2 0 1y
€2 0 1

using the determinant method
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é0u ¢ 0.87193 § & 0.278160)
Answer: (0,4,5615,0.43845), gL, & 0.2749%;, 8 35284
EDf §0.48963 | & 0.99068

4. Find the eigenvalues of these matrices by inspection

0 0y

(
5 0
1 6j

BRPR BRPE BRPR
N
HC

Answer: a)2,-36 b)3,-20 c) 2,56

5. Proveif | isaneigenvaueof [A], thenl1 isan eigenvalue of [A]™.

6. Prove that square matrices[A] and [A]" have the same eigenvalues.

7. Show that |det(A)| is the product of the absolute values of the eigenvalues of [A].

8. Find the largest eigenvalue in magnitude and its corresponding vector by using the
power method

élu
Start with an initial guess of the eigenvector as g- 0.53
g05§
¢ 1 0
Answer :4.5615, g- O.315343after4iterations
£0.56154 ¢
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