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Preface

This monograph consists of a series of lectures given partly at the Morningside
Center of Mathematics of Chinese Academy of Sciences and the Department of
Mathematics of Rutgers University, and entirely at the Department of Mathematics
of the University of Franche-Comté in a course of nonlinear analysis in March and
April of 2006. The material was mainly taken from some joint work with Thomas
Bartsch done while the author as an Alexander von Humboldt fellow visited Giessen
University. It presents some results concerning methods in critical point theory
oriented towards differential equations which are variational in nature with strongly
indefinite Lagrangian functionals. The author thanks greatly T. Bartsch for his
kindnesses to him. He would like also to thank H. Brézis for his encouragements
and F. H. Lin, Y. Y. Li for the discussions on mathematics of common interest.
He also thanks L. Jeanjean for his invitation to come to Besancon and for his
suggestions on the content. Finally he thanks the University of Franche-Comté for
its optional support.

Yanheng Ding
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Chapter 1

Introduction

The classical Calculus of Variations deals with finding minima of functionals
® : X — R that are bounded below. The basic idea of the direct method is to
consider a minimizing sequence ®(uy,) — inf ®, to find a convergent subsequence
Up, — U, and to show that ®(u) = inf ®. In order to make this work the space
X should have a topology which is rather weak for the existence of a convergent
subsequence, and rather strong so that ® is lower semicontinuous. In many ap-
plications the functional is not bounded below and instead of a minimizer one is
interested in critical points. This is the concern of the Calculus of Variations in
the Large or Critical Point Theory, which has undergone an enormous develop-
ment in the last century due to the work of mathematicians like Morse, Lusternik,
Schnirelman, Palais, Smale, Rabinowitz, Ambrosetti, Lions, Struwe, Witten, Floer
and many others, with applications to problems from analysis, geometry and math-
ematical physics. Here one usually requires X to be a Banach manifold and ® to
be differentiable. An essential ingredient is the construction of a flow ¢ on X so
that ®(p(t,u)) is decreasing in ¢. This flow is used in the spirit of Morse theory,
to construct deformations of sublevel sets ®¢ = {u € X : ®(u) < ¢}, and to find
Palais-Smale sequences (uy)n, that is: ®(u,) is bounded and ®'(u,,) — 0, replacing
the minimizing sequences. Typical results are the mountain pass theorem of Am-
brosetti and Rabinowitz or various linking theorems. The proofs use in an essential
way topological concepts based on the Brouwer or Leray-Schauder degree. The
theory has also been extended to deal with (semi-)continuous functions on metric
spaces, forced by problems from nonlinear elasticity (see [Degiovanni and Schuricht
(1998)]). Another generalization concerns variational methods for functionals on
closed convex subsets of Banach spaces developed by Struwe [Struwe (1989)] for
Plateau’s problem. Such functionals appear also in variational inequalities.
Motivated by several applications, for instance to finite- and infinite-dimensional
Hamiltonian systems, nonlinear Schrodinger equations and nonlinear Dirac equa-
tions, we were led to consider C'-functionals ® : E = E~ @ Et — R defined on
the product E = E~ @ E* of Banach spaces E* with dim E* = co but where one
needs to work with the weak topology on E~ in order to gain compactness. The
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functionals typically have the form
1
D(u) = §(||u+||2 —u|?) = ¥(u) foru=u" +u"€E@ET. (1.1)

Since dim E* = oo the functional is strongly indefinite. Thus all of its critical points
have infinite Morse index. Moreover, ¥/ : E — E* is not completely continuous
and the Palais-Smale condition does not hold in our applications. This makes
applications of Leray-Schauder degree type arguments rather subtle. On the other
hand the functional ¥ : £ — R is weakly sequentially lower semicontinuous and
U’ . E — E* is weakly sequentially continuous. It turns out that the product
topology

T = (weak topology on E~) x (norm topology on E™T)

is well suited for certain arguments because ® : (E,7) — R is sequentially upper
semicontinuous, and ® : (E,7) — (E*, weak* topology) is continuous. Given a
finite-dimensional subspace ' C EY the unit ball of £~ @ F is 7-compact, and
given a bounded sequence (uy,), the negative part (u;; ), 7-converges (up to a sub-
sequence). When one wants to develop critical point theory with this topology
on FE one needs to construct deformations on £ which are 7-continuous. Defor-
mations are usually obtained by integrating vector fields which in turn are con-
structed with the help of partitions of unity. So one needs to construct these in a
T -Lipschitz continuous way. A more difficult situation occurs when one is interested
in “normalized solutions”, that is critical points of ® constrained to the unit sphere
SE ={u € E: |Ju|| = 1} or to other finite-codimensional submanifolds X of E.

The 7-topology on X is not metrizable, therefore the by now well developed
critical point theory for (semi-)continuous functions on metric spaces cannot be
applied. Instead the 7-topology is generated by a family D of semi-metrics. A
pair (X, D) consisting of a set X and a family of semi-metrics is called a gage
space; see [Kelley (1995)]. The paper [Bartsch and Ding (20061)] is a first step
to develop critical point theory on gage spaces. We begin by settling some basic
topological questions. We introduce the concept of a Lipschitz map (X,D) — R
and of a Lipschitz normal gage space (disjoint closed sets can be separated by
Lipschitz maps). We find conditions on (X, D) so that X is Lipschitz normal and
so that Lipschitz partitions of unity (subordinated to a given open cover) exist. In
particular, we show that given a Banach space B, an arbitrary subset By C B, and
letting D be the family of semi-metrics on X = B* given by dy(z,y) := [(b,z —
y)B,B*|, b € By, the gage space (B*,D) is Lipschitz normal. More generally, if
(Y, dy) is a metric space then the product gage space (B*,D) x (Y, dy) is Lipschitz
normal and has Lipschitz partitions of unity. In addition, if B is separable and
By C B is dense then also every locally closed subset (that is, an intersection of an
open and a closed subset) of this product gage space is Lipschitz normal and has
Lipschitz partitions of unity subordinated to an arbitrary open cover.

We then present some nonlinear problems where the abstract theory developed
here can be applied. These problems arise in mechanics, physics, control theory and
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other topics, which are variational in nature with the feature that their solutions
correspond to critical points of certain strongly indefinite functionals of the form
(1.1). We are interested in the existence and multiplicity of solutions to these
problems. The details are arranged in the last four chapters. In Chapter 5 we
study the homoclinic orbits in the classical Hamiltonian systems
d
j%z—FL(t)z:Rz(t,z) fort e R
z(t) — 0 as |t| — oo

with periodic or non-periodic (with respect to the time ¢) Hamiltonians. Chapter 6
is devoted to the standing waves of the nonlinear Schrédinger equations

~Au+V(x)u = g(z,u) forz € RY
u(z) — 0 as |z| — o0

with V' and g being periodic in . We also treat here semiclassical states of a
Hamiltonian system of perturbed Schrédinger equations:

—*Ap + alz)p = Bx)y + Fy(z, 0, 9)
—*A¢ + alz)y = B(z)p + Fy(z, ¢, ¢)
(p,) € H(RY,R?)
without any periodicity assumption. Chapter 7 deals with localized solutions of the
nonlinear Dirac equations with external fields

3
—ihz arOku + fmu + M(x)u = Gy (z,u) for x € RY
k=1
u(z) — 0 as |z| — oo

with either scale potentials (i.e., M(x) = BV (z)), or vector potentials (say, the
Coulomb-type potentials). We also study semiclassical solutions (as i — 0). Finally,
in Chapter 8 we handle solutions of homoclinic type to the systems of diffusion
equations

Ou — Agu+b(t,z)-Veu+ Viz)u = Hy(t, z, u, v)

—0w — Agv —b(t, z)- Vv + V(z)v = Hy(t, z,u,v)
for (t,z) € R x RY with u(t,z), v(t,z) — 0 as |[t| + |2| — co. In all these problems
the nonlinear terms are assumed to be either asymptotically linear or super linear.
In the arguments certain analytical estimates which are needed to check the as-

sumptions of the abstract results require different techniques. We prove new results
extending the previous relative works in the literature.
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Chapter 2

Lipschitz partitions of unity

Let X be a set and D a family of semi-metrics on X. The pair (X, D) is called
a gage space. We write 7y for the topology on X associated to the semi-metric
d: X x X — R. Let 7p be the topology on X generated by all 7y, d € D, that is,
the coarsest topology containing all 74, d € D. If D = {d,, : n € N} is countable
then 7p is semi-metrizable. Namely, setting dy = 1i§n and d =) 2%d~n one
easily checks that 7p = 73. We call D saturated if d, d’ € D implies max{d,d'} € D.

Clearly, the family
D= {max{dl,...,dk}:kGN, di,...,dg ED}

is the smallest saturated family of semi-metrics on X which contains D, the satu-
ration of D. It generates the same topology as D. In this section, all topological
notions refer to Tp = 5.

A basis of this topology is given by the sets

Ucz;d) ={ye€ X :d(x,y) <e}, z€X,deD, e>0.
In fact, for € X the sets U.(x,d), d € D, ¢ > 0, form a neighborhood basis because

given semi-metrics dy, ..., dy, and given £1,...,e, > 0 we set € = min{ey,...,ex},
d = max{ds,...,d;} and obtain

Ue (z;dh) N.o.NUg, (x;dy) D Us(z;d).
Definition 2.1 ([Bartsch and Ding (20061)]). A map f : X — (M,dy) into

a semi-metric space M with semi-metric dpy is said to be Lipschitz (continuous) if
there exist d € D and \ > 0 such that

du(f(@), f(y)) < Ad(z,y) for all z,y € X.

f s called locally Lipschitz (continuous) if every x € X has a neighborhood U, such
that the restriction f|y, is Lipschitz continuous.

Clearly, a (locally) Lipschitz map is continuous. Lipschitz continuity depends of
course on D and not just on the topology 7p. We call two gage spaces (X, D)
and (Y, &) equivalent if there exists a homeomorphism h : X — Y such that for
every map f : (Y, &) — (M, dy) into a semi-metric space there holds: f is (locally)
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Lipschitz if and only if f o h is (locally) Lipschitz. In this sense, (X, D) and (X, D)
are equivalent.
For Y C X and d € D we set
d(.,Y): X - R, d(z,Y):=inf{d(z,y) :y €Y}
Then
|d($1,Y) - d(l‘g, Y)| < d(l‘l, xg),

so d(.,Y) is Lipschitz. Clearly, the zero set of d(.,Y) is the closure of Y with
respect to the topology 7.

If A C X isclosed and x ¢ A then there exists a neighbourhood U, (z;d) C X\ A.
The map

[ X = [0,1], f(y) = min{1,d(z,y)/e}

is Lipschitz and satisfies f(z) = 0, f|4 = 1. Thus one can separate a point and a
disjoint closed set by a Lipschitz map. In particular, X is completely regular. It is
easy to see that one can also separate a compact set and a disjoint closed set by a
Lipschitz map.

In general, X need not be normal. If X is normal we do not know whether two
disjoint closed sets can be separated by a locally Lipschitz map. Similarly, if X is
paracompact we do not know whether one can construct locally finite partitions of
unity subordinated to an open cover of X and such that the maps in the partition
of unity are locally Lipschitz. In this section we shall prove results in this direction.

Lemma 2.1. f: X — M is locally Lipschitz if, and only if, for every x € X there
exists d € D, € > 0, A > 0 such that

dy(f(y), f(2)) < Ad(y,z)  for all y, z € Ue(x; d).

Proof. Suppose f is locally Lipschitz. Thus there exist d; € D, ¢ > 0 such that
flu.(z;a,) is Lipschitz, that is, for some da € D, A > 0 we have

dyv(f(y), f(2)) < AMda(y,z) forall y,z € U (x;dy).

Setting d := max{d, dz} the conclusion follows. The other implication is trivial. O

Lemma 2.2. Let f: X — M be locally Lipschitz. Then for K C X compact there
exists a neighbourhood U of K in X such that f|y is Lipschitz.

Proof. For x € K we choose d, € D, £, > 0, A\, > 0 such that

dyv(f(y), f(2) < Apdy(y,2) fory,z € Us, (x;dy).
There exist z1,...,2, € K with K C U?:1 Uszj/g(ffj;dwj). For j =1,...,n we set
g5 1= 5%‘? dj = dwj, )\j = >\$j, Uj = Ej/z(xj;dj), and U := U?:l Uj.
We first show that f(U) is bounded, that is

S = sup{dum (f(z), f(y)) : x,y € U} < oo
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For z,y € U there exist ¢,j with x € U;, y € U;. Then we have

dur (f(2), f(y)) < dur(f(2), f(xi) + dar(f (23), £ (25)) + dar (f(25), £ (1))
< Xidi (@, i) + dar (f (22), f(25)) + Aid (25, )

< ME L (), f o)) +

= 2 2
< (22 4 g (1), S o) + 25
< o0.
Now we prove that f|y is Lipschitz. Set ¢ := fmin{ey,...,en}, A =

max{Ai,..., A\, S/e} and d := max{di,...,d,}. For z,y € U we choose j with
yeU;. Ifdj(z,y) <ej/2 then z € U, (x;;d;) and therefore

du (£(2), F(y)) < Ajdj(w,y) < Md(w,y),
as required. If on the other hand d;(x,y) > €;/2 > € then

0

Lemma 2.3. Let K C X be compact and A C X be closed such that AN K =
Then there exists d € D with

d(K,A) =inf{d(z,y) 1z € K,y € A} > 0.
Proof There exist xl,.. Ty € K, €1,...,6n > 0 and dy,...,d, € D with
K C U Ue,(xj;d;) and U Use,; (xj;dj) € X \ A. Then d := max{dy,...,d,} does
the JOb d(K,A) > mm{fsl, ey €k ) O
In the situation of Lemma 2.3 the map
d(z, K)
(2, K)+d(z,A)’

is well defined and Lipschitz, because the maps d(., K), d(., A) are Lipschitz and
d(z, K)+d(x,A) > d(K,A) >0 for all z € X. Clearly, f|x =0 and f|4 = 1. Thus
a compact set K and a disjoint closed set A can be separated by a Lipschitz map.

f: X =101, f(z):= 7

Definition 2.2 ([Bartsch and Ding (20061)]). A gage space (X, D) is said to
be Lipschitz normal if X is Hausdorff, (equivalently, D separates points), and if for

any two closed disjoint sets A, B C X there exists a locally Lipschitz map f: X —
[0,1] with fla =0 and f|g = 1.

If D = {d} and d is a metric then (X, D) is Lipschitz normal.

Lemma 2.4. Suppose (X, D) is Lipschitz normal and paracompact. Then for every
open covering % of X there exists a subordinated locally finite partition of unity
consisting of locally Lipschitz maps.
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Proof. Let {Uy: X € A} be alocally finite refinement of % and let {V) : A € A}
be an open cover of X with Vy C Uy for all A € A. Let py : X — [0,1] be a locally
Lipschitz map with pxli;, =1 and px[x\v, =0. Then

p: X — [l,oo), p(r) = pr(x),
AEA

is well defined and locally Lipschitz because V5 C supp px C Uy, hence each 2 € X
has a neighbourhood which intersects only finitely many supp px. The maps m :=
pr/p: X —[0,1], A € A, are also locally Lipschitz and form the required partition
of unity. 0

We shall now find conditions on the topology of X such that (X, D) is Lipschitz
normal. Recall that X is said to be o-compact if there exists an increasing sequence
X1 C X5 C ... of compact subsets of X whose union is X. If X is o-compact then
it is also paracompact (hence normal) because X is regular.

Theorem 2.1 ([Bartsch and Ding (20061)]). If X is o-compact then (X, D) is
Lipschitz normal.

Proof. Let ) = X, C X1 C X5 C ... be compact subsets of X with X = |J,, X,..
Let A,B C X be disjoint closed subsets. We construct inductively sequences
(Vi)nen, and (Wy,)nen, of open subsets of X such that V,, C Vj,41, W,, C Wi,
(X\AU(AnX,) cV, BUX, CW,,and W,, N A CV,, for all n € Ng. For
n =0 we set Vo := X \ A and choose a neighbourhood Wy of B with W, C Vp. If
V,, and W,, have been defined for some n > 0, observe that

A, =ANX,11\V, C X\ W, iscompact. (2.1)
According to Lemma 2.3 there exists d,, € D with
8y 1= %dn(An,Wn) > 0. (2.2)
Now we define
Vg1 := Vo UUs, (An; dy). (2.3)

Since (X \A)U(ANX,) CV, wehave X411 C (X \A)U(ANX,41) C Vo31. By
normality there exists an open neighbourhood W/, 41 of Xy y1 with WHH C Vot
Setting Wy,11 = W, UW/,, we obtain BU X,,y; C Wy,q1 and WpiiNAC
(W,NA)UW’, 11 C Vyuq. This finishes the construction of (V,)nen, and (Wy, )nen, -
For n € Ny we now consider the map
dn(z,Us, (An;dy))
dn(2,Us, (An;dn)) + dn(z, X \ Uss, (Ap;dy))

This map is well defined and locally Lipschitz. Clearly we have
falx) =0 < dy(z,Ay) <0,

fn: X = 1[0,1], folz):=
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and
ful@)=1 & dy(z,Ay) > 26,.

Since W,, C X\ Uss, (An; dy) by (2.2) we see that f,,|w, = 1 and therefore f,,|w, =
1 for all m > n. This implies that the map f := inf,en, fn satisfies flw, =
ming<x<n fklw,. Thus f is locally Lipschitz because {W,, : n € Ny} is an open
cover of X. From B C Wy C W,, we deduce f,|g =1 for all n, so f|p = 1. Finally,
observe that

n—1

Vo.=(X\A)uU U Us, (Ag;di) for n >0,

k=0

hence fly,na = 0. This yields f|anx, =0 for all n and thus f|4 = 0. O

It is clear that a closed subspace Y C X with the induced family Dy of semi-metrics
dly : Y xY — R is Lipschitz normal when (X, D) is Lipschitz normal. In [Smirnov
(1951)] Smirnov proved that an open F,-subspace Y C X of a normal space X
is normal. Recall that Y is an F,-subspace of X if Y = (J, .y Y5 is the union of
countably many closed subsets Y,, of X. A corresponding result holds for Lipschitz
normality.

Theorem 2.2 ([Bartsch and Ding (20061)]). Let (X,D) be Lipschitz normal
andY C X be an open F,-subspace. Then (Y, Dy) is Lipschitz normal.

Proof. LetY = UneN Y, with Y,, C X closed and Y,, C Y,, 1 for n € N. Consider
two closed disjoint subsets A, B of Y. We write A, B for the closures of A and B in
X. Thus ANY = A, BNY = Band ANBNY = (). As in the proof of Theorem 2.1
we construct inductively open subsets V,,, W, of Y with V,, C V41, W), C Wy41,
(Y\AU(ANY,)CV,, BUY, CW,and W,,NANY CV,, for all n € Ny; here
Yy := 0. We set Vp := Y \ A and choose an open neighbourhood Wy C Yof B such
that WoNY C Vp. This is possible since Y is normal. Suppose V;,, W,, are defined
for some n > 0. Then A, := ANY,41 \V, is closed in X and disjoint from the
closed subset W,, of X. Since X is Lipschitz normal there exists a locally Lipschitz
continuous map f,, : X — [0,1] with f,|a, =0 and fylz =1. We set

Vo1 =V U{z eY: f,(x) <1/2}
so that
Yn+1 C (Y \ A) U (A N }/77.—9—1) C V;L—Q—l-

As a consequence of the normality of X there exists an open neighbourhood W),
of Y, 41 with WnJrl C Viyg1. Weset Wy =W, U W’I/L+1'

In order to define a Lipschitz map f : Y — [0, 1] which separates A and B let
X : [0,1] — [0,1] be defined by x(t) = 0 for 0 < ¢ < 1/2, and x(¢t) = 2¢ — 1 for
1/2 <t < 1. Now we define

f:Y =101, f(z):= irégxofn(x).
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From f, |37 = 1wededuce fn|, =1forallm > n, hence flgp = Og}clg xo frlsw, -

This implies that f |Wn is locally Lipschitz for n € Ny, and consequently f is locally
Lipschitz because {W,, : n € N} is an open cover of Y. Moreover, f|p = 1 because
B c Wy ¢ W, for all n € Ng. Finally, observe that

V,=(Y\A)U U{yEY frly) < 1/2},

and that
n—1 n—1
AnY, cAnV,c | J{weY: fily) <1/2} c [J{yeY : xo fuly) =0}
k=0 k=0
This implies f|any, =0 for all n € N and therefore f|4 = 0. O

Remark 2.1. From the above proof one sees that each of the locally Lipschitz maps
from Y to [0,1] of Theorem 2.2 can be required to be also a locally Lipschitz map
from X to [0,1].

Next we investigate the behavior of Lipschitz normality with respect to finite
products. Recall that the product X x Y of normal spaces X,Y need not be
normal whereas the product of a o-compact space X and a paracompact space Y
is paracompact, hence normal by a result of Michael (see Proposition 4 of [Michael
(1953)]). We extend this result to Lipschitz normality. In addition to (X, D) we
consider a set Y and a family £ of semi-metrics on Y. Let 7¢ be the associated
topology on Y. For d € D and e € £ we have an induced semi-metric d X e on
Z = X x Y defined by

d x 6(($17y1)a (2, 212)) = max{d(ml, r2),e(y1,y2)}-
The topology on X x Y generated by D x € = {dx e :d € D,e € £} is the product
topology (X, Tp) x (V. Te).

Theorem 2.3 ([Bartsch and Ding (20061)]). Let (X,D) be o-compact and
(Y, &) paracompact and Lipschitz normal. Then (X XY, D x &) is Lipschitz normal.

Proof. Let (X,)nen be an increasing sequence of compact subsets of X with X =
UneNXn and Xg=0. Weset Z: =X xY and Z, .= X,, xY,n€N. Let A, B be
closed subsets of Z and set A, := ANX x {y} for y € Y. We proceed as in the proof
of Theorem 2.2 and construct inductively increasing sequences (V,,)nen, (Whn)nen
of open subsets of Z with (Z\ A)U(ANZ,) C V,, BUZ, CW,, W, NACV,.
The inductive step also leads to a locally Lipschitz map f, : X — [0, 1] which will
be used later to finish the proof.

We begin with V; := Z\ A and an open set W, satisfying B C Wy and Wy C Vj.
Here we used that Z is normal. Suppose V,,, W,, are given for some n > 0. Then
Ay N Zyy1\'Vy is compact and disjoint from W, for any y € Y. Thus there exist
open sets Wy, V,, C X, and e, € £, £, > 0 such that V,, C W,,, and

AyN Znai \ Vo CVy x U, pa(ysey) C Wy x Ue, (y;ey) C Z\ W,
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Let Py : X XY — Y be the projection. Since X, is compact the restriction Py |z, is
closed. Thus Py (AN Z,11\Vy) is a closed subset of Y and therefore paracompact.
Consequently there exists a locally finite open refinement {Ny : A € A,} of the
covering {Uc, /2(y;ey) : y € Py (AN Zyy1 \ Vi) } of Py(AN Zpy1\ Vi), There also
exists an open covering {Py : A € A, } of Py (AN Z,11 \ V,,) satisfying Py C Ny.
For A € A, we choose y) = y with N, C Uey/g(y;ey). Then {V,, x Py : A € A}
and {W,, x Ny : XA € A, } are locally finite open (in X x Y) covers of ANZ,41\V,
such that
Vy/\ Xﬁ)\CWy/\ ><.N)\CWyA XN)\CZ\WH.
We set
Vo1 :=VoU | (Vi x P)
AEA,
so that
Zn+1 C (Z \ A) U (A N Zn+1) C Vo1
Since X x Y is normal there exists an open neighbourhood W, +1 of Zp41in X XY
with W7 nt1 C Vpa1. Setting Wi,y := W, UW! i1 We clearly have BUZ, 11 C Wy
and
Wn+1 NAC (Wn n A) UWTH.l C Vn+1.
Now we construct the map f, : X — [0,1]. For A € A, let g5 : X — [0,1] be a
locally Lipschitz map with 9>\|V =0and g>\|X\W = 1. It exists because (X, D) is
Lipschitz normal by Theorem 2 1. Similarly, let hA Y — [0, 1] be locally Lipschitz
satisfying ha|p, =0 and hily\ 7, = 1. Now we define

fn+1 X XY — [Oa l]a f77«+1(x7y) = Aien/f max{g;(x),hA(y)}.
Setting
g X h)\ X XY — [Oa ]-]a ((E,y) = max{gx(x),hA(y)},

we see that gy x h)\|vyA «P, = 0 and gy x h>\|Z\(WyAxNA) = 1. Clearly gy X hj is

locally Lipschitz because gx and hy have this property. Since {W,, x Ny : A€ A}

is locally finite it follows that for each (z,y) € X x Y there exists a neighbourhood

U of (z,y) and a finite set A C A, with fr41|v = I)\Ill}\l gx X halu. This implies that
€

fn+1 is locally Lipschitz. Finally we define the map

Jiminf fu: X XY = [0,1], f@,y) = inf fa(z.y).

By construction we have fulyp =1 because Wy, x Ny C X x Y \ W, for every
A. This implies the local Lipschitz continuity of f as in the proof of Theorem 2.2.
Clearly f|p = 1 because B ¢ Wy, C W, for every n € Ng. And f|4 = 0 follows
inductively from
ANZnp\Va C | (Vi x Py)
AEA,
and fulv, «xp, =0 for every n. O
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Example 2.1. Let B be a Banach space, X = B* its dual, and By C B be arbitrary
which separates points. Define Dy = {dy : b € By} by dp(z,y) = |(b,z — y) B B~| for
xz,y € X. The topology 7y generated by Dy is contained in the weak* topology on
B*, and it coincides with the weak* topology if By = B. By the Banach-Alaoglu
theorem (B*,7y) is o-compact, and (B*,Dy) is Lipschitz normal as a consequence
of Theorem 2.1.

If in addition By is countable then (B*, 7)) is perfectly normal, that is, it is
normal and every closed subset of (B*,7y) is a Gs-subset. In fact, it is easy to
check that

A= ﬂ ﬂ {re X 1 dy(z,A) < 1/m}.
be Bp meN
We proved that every 7g-closed subset is a Gs-subset, hence every 7g-open subset
of (B*,7y) is an Fy-subset. Thus (B*,Dy) is paracompact and Lipschitz normal
by Theorem 2.1. Moreover, if (Y,€) is Lipschitz normal and paracompact then
(B* x Y, Dy x &) is Lipschitz normal and paracompact. If (Y, €) is a metric space
then B* x Y is perfectly normal; see Proposition 5 of [Michael (1953)].

We remark that if C' C By is a countable subset then any 7¢-closed subset
A of X is a Gs-subset of (B*,7y), where 7¢ denotes the topology generated by
Co:={d.:ceC}.

In conclusion: If B is a separable Banach space, By C B a countable dense
subset, and (Y, d) a metric space then (B* x Y, Dy x {d}) and every open subset of
this product gage space is paracompact and Lipschitz normal. Consequently also
every locally closed subset (being a closed subset of an open subset) is paracompact
and Lipschitz normal.

Appendix

We collect for the reader’s convenience some topological concepts which we used
previously (see [Kelley (1995)]).

Definition A.1. Let X be a set. A nonnegative real function d(-,-) defined on
X x X is called a semi-metric if it satisfies:

(1) d(x,x) = 0;

(2) d(z,y) = d(y, z);

(3) d(z,y) < d(z,z) + d(z,z).

In the following let X denote a topological space.

Definition A.2. X is said to be Hausdorff if for any © # y € X there exist two
disjoint open subsets U and V of X such that z € U and y € V. It is said to be
reqular if for any closed subset A and any element x ¢ A there exist two disjoint
open subsets U and V such that A C U and = € V. It is said to be normal if for
any two disjoint closed subsets A and B there exist two disjoint open subsets U and
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V such that ACU and BC V.

Theorem A.3. (1) Assume X is reqular. If U is an open subset of X and x € U,
then there is an open subset V of X such thatx € V CV C U.

(2) Assume X is normal. If A is a closed subset and U is an open subset with
A C U then there exists an open subset V such that ACV cV CU.

Theorem A.4.(Urysohn) X is normal if and only if for any two disjoint closed
subsets A and B there is a continuous map f : X — [0,1] such that fla = 0 and

fle=1.

Definition A.5. X is said to be completely reqular if for any closed subset A and
any element x ¢ A there is a continuous map f : X — [0, 1] satisfying f(z) = 0 and
fly) =1for all y € A.

Definition A.6. X is said to be paracompact if any open covering of X possesses
an open locally finite refinement.
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Chapter 3

Deformations on locally convex
topological vector spaces

Let E be a real vector space and P a family of semi-norms on E which separates
points. To each p € P we associate a semi-metric dp, defined by d,(x,y) = p(z —y).
We write P for the saturation of P which consists of all finite maxima, of elements
of P. Then D = {d, : p € P}. The topology 7p = Tp induced by P or D on E
turns F into a locally convex, Hausdorff topological vector space. All topological
notions for F refer to this topology, all Lipschitz notions to D, except if explicitly
stated otherwise. In our applications, F is a Banach space with respect to a norm
|- 1| € P, and 7p is contained in the weak topology.

Consider an open subset W C E, a locally finite partition {n; : j € J} on W,
and a family {w; : j € J} in E. We assume that the maps 7; : E — [0, 1] are locally
Lipschitz continuous (cf. Remark 2.1). Setting

[iW =B, fu) =) mww;,

jeJ
it is clear that for uw € W the Cauchy problem
d
— (T = t
w(0,u) =u

has a unique solution
o(u) Iy = (T (u), T"(w) = W

defined on a maximal interval I,, C R. In fact, there exists a neighbourhood U C W
of u so that J, :={j € J: U Nsuppm; # 0} is finite. Let F, be the span of u and
wj, j € Jy. Then the Cauchy problem

0(t) = F(n(®) = Y mi(n(t)w;
J€Ju
n(0) =u
has a unique solution 7 : [0, ] — F,, for § > 0 small enough because f|y is locally
Lipschitz continuous. One can now argue as in the case of ordinary differential
equations in order to obtain the maximal solution. Observe that for I C I,, compact

15
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the set (I, u) = {@(t,u) : t € I} is contained in a finite-dimensional subspace. This
is not the case for the whole trajectory ¢(I,,,u), in general. Setting
O={tuw:ueWtel,}] CRxW

we have a map ¢ : O — W which is a flow on W.

Theorem 3.1. The following conclusions are true:
a) O is an open subset of R x W
b) ¢ is locally Lipschitz.

Proof. a) Let (to,up) € O and suppose without loss of generality that to = 0. We
choose t1,ts € I,, with ¢; < 0 and ¢t2 > 0. The set K := p([t1, 2], uo) is compact,
so there exists an open neighbourhood U of K with Jy := {j € J : UNsuppm; # 0}
being finite, and such that m;|y is Lipschitz for j € Jy. Hence there exists p € P
and A > 0 with
|75 (u) —mj(v)| < Ap(u—v) for all w,v € U

and d(K,E \ U) > 0 where d = d, € D. We choose § > 0 with § < d(K,E \ U),
set M = 3 Ap(w;) and choose ¢ > 0 with ¢ < §/2eM*2=*)  We claim that

i€do
for u € Ugj(uo;d) the orbit (¢, u) is defined on [t1,ts] and lies in Us(K;d) C U.
Suppose to the contrary that there exists t3 € (0,t2] with ¢(t,u) € Us(K;d) for
t €10,t3) and d(p(ts,u), K) =¢. Then

pp(t,u) — o(t, uo))

< plu—uo) +p ( [ (et - f(@(s,uO)))dS)
< plu—uo)+ 3 pl(wy) / 75 (p(5,)) — 73 (25, o)) |ds

J€Jo

< plu— )+ 3 n(uy) [ ple(sv) = plo,u0))ds

Jj€Jo

t
= plu—up) + M/o p(e(s,u) — (s, ug))ds.
Now Gronwall’s inequality yields
ple(t,u) — o(t, uo)) < p(u —ug)e™* < eeM’ < §/2 (3:2)
for ¢ € [0, to] contradicting d(p(ts,u), K) = 6.

Thus we have shown that [0,¢2] C I, for u € U (ug,d). Similarly one sees that
[t1,0] C I, for u € Ue(ug,d). It follows that [t1,t2] X Us(ug,d) C O.

b) Since ¢ is differentiable with respect to ¢ it suffices to show that ¢ is locally
Lipschitz with respect to u. The argument proceeds as in a) and is essentially
standard. In fact, given (to, ug) € O one can produce a neighbourhood N of (to, uo)
in O, p P and M > 0 so that

p(p(t,u) —o(t,v) < plu—v)eMt for (t,u), (t,v) € N;
compare the proof of (3.2) above. O
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For the critical point theory which we want to develop now, we suppose there
exists a norm || - || : £ — R on E so that (E, || - ||) is a Banach space, and so that
all p € P are of the form p(u) = |uy(u)| for some u;; € E*. Thus the topology Tp
induced by P is contained in the weak topology of E. We distinguish the topologies
by using notions like P-open, P-closed to refer to 7p, versus norm open, norm
closed to refer to the norm topology. Observe that if a map f : (E,P) — (M,d)
into a metric space is (locally) Lipschitz then also f : (E, || -||) — (M, d) is (locally)
Lipschitz. We assume in the remainder of the chapter that every P-open subset of
FE is paracompact and Lipschitz normal with respect to P.

We consider a functional ® : £ — R which we assume to be C'' with respect
to the norm || - ||. For a,b € R we write ®* := {u € E : ®(u) < a}, &, :={u €
E : ®(u) > a}, and ®? := &, N ®°. In our applications the functional ® is P-upper
semicontinuous but not P-continuous. The sets &, have empty P-interior and the
sets ®* are not P-closed, any a € R. Moreover, the map @' : (E,Tp) — (E*, Ty»)
is not continuous, only its restriction to ®,. Here and after 7,,« denotes the weak*
topology on E*. The map

T(u) :=sup{t > 0: p(t,u) € ¢}

is not P-continuous, and there may be no continuous map r : (®%, 7p) — (®%,7p)
which is the identity on ®¢.

The following theorem is a P-continuous version of the non-critical interval the-
orem in critical point theory.

Theorem 3.2 ([Bartsch and Ding (20061)]). Consider a,b € R with a < b so
that ® is P-closed and &' : (%, Tp) — (E*, Ty ) is continuous. Suppose moreover
that

o = inf{||®(u)|| : u € ®°} > 0. (3.3)
Then there exists a deformation 1 : [0,1] x ®® — ®° with the properties:

(i) n is continuous with either the P-topology or the norm topology on ®°;
(ii) for each t the map u v n(t,u) is a homeomorphism of ®° onto n(t, ®®) with
the P-topology or with the norm topology;
(iii) 1(0,u) = u for all u € ®°;
(iv) n(t, @) C ®° for all ¢ € [a,b] and all t € [0,1];
(v) n(1,®°) C D7
(vi) each point u € ®° has a P-neighbourhood U in ®° so that the set {v —n(t,v) :
veU,0<t<1} is contained in a finite-dimensional subspace of E;
(vit) if a finite group G acts isometrically on E and if ® is G-invariant, then n is
equivariant in u.

Here G acts isometrically on E if each g € G induces a bounded linear map
R, € Z(E) which preserves the norm, and such that the unit e € G induces the
identity operator R, = Idg and R, o R, = Rgy for any g,h € G. Observe that
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R, : (E,Tp) — (E,Tp) is also continuous. We simply write gu := R,(u) as usual.
The most important example is the antipodal action of G = {1, -1} 2 Z/2 on E.

Proof. Tor each u € ® we choose w(u) € E with ||w(u)|| < 2 and such that
@' (u)w(u) > ||®'(u)||. There exists a P-open neighbourhood N (u) of u in E so that

' (v)w(u) > ||® (u)| for all v € N(u) N ®E.

For u € B\ ®, we set N(u) := E\ ®,. Then W := |J,cq» N(u) is a P-open subset
of E containing ®°. Let {U; : j € J} be a P-locally finite P-open refinement of the
covering {N(u) : u € ®*}, and let {r; : j € J} be a P-locally P-Lipschitz partition
of unity subordinated to {U; : j € J}. For j € J with U; N ®, # 0 we choose
u; € ® so that U; C N(u; ), and we set w; := w(u;). For j € J with U; N ®, =0
we set w; := 0. Now we define the vector field

a—1b
FeW =B, fu) ==Y ()
jeJ
which is locally Lipschitz with respect to the norm. Let ¢(¢,u) be the associated
flow on W which is both norm continuous as well as P-continuous. Since || f(u)|] <
2(b—a)/« for every u € W and since

' (u)f(u) <a—b<0 forued®

we see that o(t,u) is defined for all (£,u) € [0, 00) x ®° and that 7 := @[ 1xe» satis-
fies (1)—(v). Property (vi) follows from the fact that f is P-locally finite-dimensional.
Finally, if ® is G-invariant we replace f(u) by f(u) := ‘—é‘ > ogec gf(gu). 'Jihe
corresponding flow @ has all properties of ¢ and is equivariant in u because f is
equivariant. O

Recall that (uy,), is a (PS)c-sequence if ®(u,) — c and | P’ (u,)|| — 0 asn — oo.
We say that (un), is a (C).-sequence if ®(u,) — ¢ and (1 + ||un||)®’'(u,) — 0 as
n — oo. A set & C E is said to be a (PS).-attractor if for any £,6 > 0 and
any (PS).-sequence there exist ng € N with w,, € U(&/ N @if‘g) for n > ng. This
concept is due to [Bartsch and Ding (1999)]. Similarly we define a (C').-attractor if
this property holds for (C).-sequences. A (PS).-attractor is a (C).-attractor but
not vice versa. Given I C R we say <7 is a (P.S)-attractor, or (C)-attractor, if </
is a (PS).-attractor, or (C).-attractor, respectively, for every ¢ € I.

Theorem 3.2 results immediately the following consequence.

Corollary 3.1. Suppose ¢ € R is a regular value of ®. Suppose moreover that
there exists €9 > 0 so that ®._. is P-closed for 0 < & < eg, and such that
P : (closp(PF), Tp) — (E*, Tw+) is continuous. Then, if ® satisfies the (PS)c-
condition there exists 6 > 0 and a deformation 1 : [0,1] x 19 — ®H9 satisfying

the properties (i) - (vii) from Theorem 3.2 with a :=c— 9, b:=c+ 0.
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Motivated by our applications we now consider the following situation. Suppose
E =X ®Y where X and Y are Banach spaces and X is separable and reflexive.
Let S € X™* be a dense subset, let Q be the corresponding set of semi-norms
gs(z) == |(z, s)x,x+|, s €S, on X, and D = {d, : s € S} be the associated family
of semi-metrics on X = X** as defined in Example 2.1. Let P be the family of
semi-norms on F consisting of all semi-norms

ps : E=X0Y =R, ps(z+y)=qsz)+ |yl s€S.

‘P induces the product topology on E given by the Q-topology on X and the norm
topology on Y. It is contained in the product topology (X, 7,) x (Y,] -||) on E.
The product (X x Y, D x {|| - |}) is a product gage space as described in Example
2.1. Recall that we have assumed that every P-open subset is paracompact and
Lipschitz normal in this chapter (this is the case for example if S is additionally
countable). By Px : E = X ®Y — X we denote the continuous projection onto X
along Y, and by Py :=1 — Px : E — Y the complementary projection.

Theorem 3.3 ([Bartsch and Ding (20061)]). Consider a,b € R with a < b so
that ® is P-closed and &' : (2, Tp) — (E*, Ty ) is continuous. Suppose moreover
that

a:=inf{(1+ [ul)|®"(w)] : u € 24} >0 (34)
and
there exists v > 0 with |ul| < v||Pyul| for all u € ®2. (3.5)
Then there exists a deformation 1 : [0,1] x ®® — ®° with the properties (i)—(vii)
from Theorem 3.2.
Proof. Observe that, by (3.5), given u € ®°, the set
b= (v e B APyl > ull

is a P-open neighborhood of w.

As before, for each u € ®% we choose w(u) € E with [|w(u)|| < 2 such that
@' (u)w(u) > ||®'(u)||. There is a P-open neighborhood N(u) C &, of u such that
@' (v)w(u) > ||D'(w)], hence jointly with (3.4),

(L + [[ulD® ()w(w) > (1 + [lul)][®'(w)]| = o for ve N(u)n ;. (3.6)

For uw € B\ ®, we set N(u) := E\ ®,. Set W := (J,cqo N(u). Let {U; : j € J}
be a P-locally finite P-open refinement of {N(u) : u € ®*}, and let {m; : j € J}
be a P-locally P-Lipschitz partition of unity subordinated to {U; : j € J}. For
j € J with U; N ®, # 0 we choose u; € ®% so that U; C N(u;), and we set
wj = (14 ||Juj]|)w(u;). For j € J with U; N ®, = () we set w; := 0. Define the
vector field

FiW =B f) = S ey

a
jed
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which is locally Lipschitz with respect to the norm. Let ¢(¢,u) be the associated
flow on W which is both norm continuous as well as PP-continuous. Since supp 7; C
Uj C &, ifuj € ®% and w; =0 if U; N ®, = 0, one has

7y < 202

Moreover, by definition and (3.6),

(1 +v|lul]) for every u € W.

' (u)f(u) <a—b<0 forue db.

Thus o(t,u) is defined for all (¢,u) € [0,00) x ® and that 7 := ®lj0,1]xav satisfies
(i)~(vi). Finally, if ® is G-invariant we replace f(u) by f(u) := ﬁ 2 _gec gf(gtu).
The corresponding flow ¢ has all properties of ¢ and is equivariant in u because f
is equivariant. O

As a consequence we have

Corollary 3.2. Suppose ¢ € R is a regular value of ®. Suppose moreover that
there exists €9 > 0 so that ®._. is P-closed for 0 < € < eg, and such that @' :
(closp(eFE0), Tp) — (E*, Tu+) is continuous. Then, if ® satisfies (3.5) and the

(C)c-condition there exists § > 0 and a deformation n : [0,1] x &0 — oFo
satisfying the properties (i)— (vii) from Theorem 3.2 with a :==c— 6, b:=c+ 4.

Now we treat the case where (3.3) (or (3.4)) does not hold, that is, there exist
(PS)c-sequences (or (C).-sequences) for some ¢ € [a,b]. One can prove various
versions of deformation lemmas in the presence of (PS)-sequences or (C)-sequences
with P-continuous deformations. The next result is a noncritical interval theorem
when @’ is not bounded away from 0.

Theorem 3.4 ([Bartsch and Ding (20061)]). Consider a,b € R with a < b,
I := [a,b], so that ®, is P-closed. Suppose ® : (closp(®2),Tp) — (E*,Tpy-) is
continuous and

@' (u) # 0 for all u € closp(®Y). (3.7)

Then the following holds.
a) If ® has a (PS)-attractor < so that Px.o/ C X is bounded and

B = inf{||Pyu — Pyv| : u,v € &, Pyu # Pyv} >0 (3.8)

then there exists a deformation 1 : [0,1] x ®° — ®° with the properties (i), (iii)-(vii)
from Theorem 3.2.

b) If ® has a (C)r-attractor &/ so that (3.8) holds, Py</ C Y is bounded, and
if (3.5) holds, then there exists 1 as in a).

Proof. We only prove b) which is a bit more difficult and mention the changes
for the proof of a) at the end.
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We set B := Py« and denote U, := X x U,(B) for o > 0; here U,(B) = {y €
Y : disty.(y, B) < o}. Clearly U, is P-open. We fix 0 < 3/2 and observe that

= inf{(1 + [ull) - [@'(w)] : w € 24\ Uy/a} >0
because </ is a (C)-attractor. By (3.7) we may choose for every u € ®% a pseudo-
gradient vector w(u) € E with ||w(u)| < 2 and ®'(u)w(u) > [|®'(u)]]. For u €

P\ U,/ there exists a P-open neighbourhood N(u) C X x U, 4(Pyu) in E such
that

(1 + [|lul)® (v)wu) > (1 + |Jul)]|® (u)| > a forallve N(u)N L.

For u € ®% N U, 5 there exists a P-open neighbourhood N(u) C Us, /s with
' (v)w(u) > [|®'(u)|| >0 for all v € N(u) N L.
Finally, for u € E\ ®, we set N(u) := E \ ®, which is also P-open by assumption.
Then W := U,cq» N(u) is a P-open subset of E. Let {U; : j € J} be a P-
locally finite P-open refinement of the covering {N(u) : u € ®*} of W, and let
{m; : j € J} be a P-locally P-Lipschitz continuous partition of unity subordinated
to {U; : j € J}. For j € J with U; N ®, # 0 we choose u; € ® with U; C N(u;),
and we set w; := (1 + |lu;|)w(u;). If U; N @, = O we set w; := 0. We consider the
vector field
f-W—=E f(u Z i (u)wj,
jeJ

and the associated flow (¢, u) on W. As before ¢ is continuous both with the norm
topology on W and with the P-topology on W. We have that ®'(u)f(u) < —a« for
u ¢ Usyys. If mj(u)w; # 0 then u € N(u;) for u; € ®4. In the case u; € ®5\ U, /o
we have N(u;) C X x U,/o(Pyuy), hence ||[Pyu; — Pyul| < o/2. In the case
u; € ®) N U, 5 we have N(u;) C Uy, hence ||Pyu;|| < o + ¢ where ¢ is a bound
for B = Py« which exists by assumption. In any case it follows from (3.5) that
lui]] < C(1+ ||lul]) for some C > 0, provided 7;(uw)w; # 0. From this we obtain

£ @)l <D 7w ()1 + ug ) w(uy)]| < 2001 + [[ul) (3.9)
jeJ
for all w € ®°. This implies that o(t,u) is defined for all ¢ > 0, u € ®°. By
construction we have
' (u)f(u) <0 forallue @
and
' (u)f(u) < —a <0 forallue @)\ U, ;.

We claim that for u € ®° there exists T'(u) > 0 with ®(p(T(u),u)) < a. Arguing
indirectly we assume o(t,u) € ®° for all ¢ > 0, some u € ®°. A standard argument
using ®'(u) f(u) < —a for u ¢ Us, /4 yields that there exists T' > 0 with ¢(t,u) € U,
for all t > T. It follows from (3.8) that ¢(t,u) € X x Uy(w) for some w € B, all
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t > T. By construction of the neighbourhoods N (u;) we obtain u; € X x Usg /s (w)
if w;(¢(t,u)) > 0. Therefore we obtain for ¢t > T

Lot u)) < —E{(1+ s )19y < 75000, ) # 0)
< —inf {1+ [Juy )@ ()] € B0 (X X Usg o (w)}.

This cannot be bounded away from 0 because lim; . ®(p(t,u)) > a. Consequently
there exists a sequence (uj, )x, in ®2N (X x Usy /o (w)) with (1+[|uj, [|)]|®’ (u;, )] — 0.
Since & is a (C)r-attractor it follows that u;, converges to &/ in norm, that is,
dist. (u,,27) — 0 as k — oo. This implies Pyuj — w because o < 3/2 with
B from (3.8). Moreover, (Pxu;, ), is bounded by (3.5), hence a subsequence Q-
converges to some v € X. Therefore v + w € closp(®%) and &' (v + w) = 0,
contradicting (3.7).

Since o(T'(u),u) € E \ ®, there exists a P-open neighbourhood V (u) of u with
o(T(u),v) € E\ @, for v € V(u). Set V := [J,cqs V(u) and choose a P-locally
finite P-open refinement {W) : A € A} of the covering {V(u) : u € ®*} of V and
a P-locally P-Lipschitz continuous partition of unity {my : A € A} subordinated to
{Wy : XA € A}. Setting

Td [0,00), T(u):= Z 7 (u) T (uy),
AEA

the map
7:[0,1] x @ — @ n(t, u) := @(t7(u), u),

has the required properties. In the equivariant case we replace f by fv as in the
proof of Theorem 3.2 so that ¢ is equivariant in u. We also replace 7(u) by 7(u) :=
ﬁ > gec 7(g~'u) which is G-invariant. This implies that 7 is equivariant in u and
proves part b).

The proof of a) proceeds as above with (14| u;||)w(u;) replaced by w; = w(u;).
The vector field f is then automatically bounded. The bound for (Pxu;, ) needed
above follows from the boundedness of Px <. O

Now we prove a deformation theorem in the presence of critical points. Results
of this type are needed for the existence of multiple critical points.

Theorem 3.5 ([Bartsch and Ding (20061)]). Consider a,b € R with a < b,
I := [a,b], such that ® : (®°,Tp) — R is upper semi-continuous, and ®' :
(®,Tp) — (E*,T,~) is continuous.

a) If ® has a (PS)-attractor o then for every c € (a,b) and every o > 0 there
ezists a deformation 1 : [0,1] x ®® — ®° with the properties (i) - (iv), (vi), (vii)
from Theorem 3.2, and

(viii) n(1,®°t0) C ® U U, and n(1, T\ U,) C & for § > 0 small enough;
here Uy = X x U, (Py &) is as in the proof of Theorem 3.4.
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b) If ® has a (C)-attractor o/ so that Pyo/ C Y is bounded, and such that
(3.5) is satisfied, then the conclusion as in a) holds.

Proof. Again we shall only prove b) because the proof of a) is similar and some-
what simpler. Fix ¢ € (a,b) and o > 0. Since & is a (C)-attractor there exists
a > 0 with

(1 + llull) - 19 ()| > 20 if u € DG\ Uy ys.

For u € .\ U, 3 there exists w(u) € E with ||w(u)|| < 2 and ¢’ (u)w(u) > [|[®'(u)]|.
By the continuity condition on @’ there exists a P-open neighbourhood N(u) of u
such that

(14 [Ju]) - @' (v)w(u) > a for ve N(u)N .

We may also assume that ||u < v||Pyv|| holds for v € N(u) N ®%. If u € ®LNU, /3
we define w(u) := 0 and N(u) := U, /3. Finally, if ®(u) < a we set w(u) := 0 and
N(u) := E\ ®,. All sets N(u) are P-open, so there exists a P-locally finite P-open
refinement {U; : j € J} of {N(u) : u € ®*} together with a subordinated P-locally
P-Lipschitz partition of unity {r; : j € J}. For j € J we choose u; € ®* with
U; C N(uj), and we define w; := (1 + ||u;||)w(u;). The vector field

fowe=Uui=J Nw —E,  flu):==> mumw,

JjeJ ue P JjeJ

induces a flow ¢(t,u) on W which is norm continuous and P-continuous. In the
equivariant case we replace the vector field f by its symmetrized version as in the
proof of Theorem 3.4. Clearly, ®'(u)f(u) < 0 for all u € ®°. If u € U; C N(uj;)
and w; 7 0 then [[u; | <[ Pyul|, hence [[w;]| < 2(1+ [Juyl]) < 2(1+~|[Pyul]). This
implies

[f ()] <201+ 7|[Pyul]) < 2(1 + [ul]) (3.10)

for all w € W and therefore || f(u)]|| is bounded on U, because Py .« is bounded. It
also follows that ¢(¢,u) is defined for all t > 0, all u € ®*. We may therefore define
n = ¢ljp,1)xae- It is easy to check that 7 satisfies the properties (i)-(iv), (vi) and
(vii).

In order to prove (viii) suppose to the contrary that n(1, ®t9) ¢ =9 U U, for
every 6 > 0. Then there exists a sequence u,, € ®“T/" and a sequence t,, € (0,1)
with £ ®(n(t, uy,))|t=s, — 0. From (3.10) it follows that n(t,,, u,) is a (C').-sequence,
hence, since & is a (C)r-attractor, n(tn,u,) € Uy /3 for n large. Consequently,
there are 0 < r, < s, < 1 such that 9(r,,u,) € OU,/3, N(sn,un) € OU,, and
n(t,un) € Uy \ Uy 3 for t € (1, 5,). This implies ||[1(rp, un) —n(t, un)|| > 20/3. Let
M > 0 be a bound for || f(w)|| in Uy. Then ||n(rn,un) — n(sn,un)|| < M(sp —1y)
and therefore s, — r,, > 20/3M. This however leads to the contradiction:
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2 > D)) — Bl n)) = — [ SRt )t

n

=— /sn & (n(t,u) f(n(t,u))dt > a(sp —rn) > ac/3M

n

for all n € N. In a similar way one proves that n(1,®°t% \ U,) C ®*~° for § > 0
small enough. O



Chapter 4

Critical point theorems

Let X, Y be Banach spaces with X being separable and reflexive, and set £ = X@Y.
We write || - || for the norms on X, Y, and E. Let S C X* be a dense subset and
D = {ds : s € S} be the associated family of semi-metrics on X = X** as defined in
Example 2.1. Let P be the family of semi-norms on E consisting of all semi-norms
ps: E=XaY =R, piz+y)=|s@)|+]yl, se8.

Thus P induces the product topology on E given by the D-topology on X and the
norm topology on Y. It is contained in the product topology (X, 7,) x (Y, | - ||)
on E. The product (X x Y,D x {|| - ||}) is a product gage space as described in
Example 2.1. The associated topology is just 7p. Remark that if S is additionally
countable then every open subset is paracompact and Lipschitz normal. Clearly &
is countable if and only if P is countable. Our basic hypothesis is:

(®9) ® € CHE,R); ®: (E,Tp) — R is upper semicontinuous, that is, ®, is P-
closed for every a € R; and ®' : (®,,7p) — (E*,7T,,~) is continuous for every
a <R

In fact, for our critical point theorems we can weaken the condition on ®’. It is
required only for @ in a certain interval, and ®, can be replaced by subsets like ®%,
depending on the situation. Similarly, ®, needs to be P-closed for certain values of
a only. In our applications (®¢) holds because the following result applies.

Theorem 4.1 ([Bartsch and Ding (20061)]). Consider a functional ® €
CY(E,R) of the form
1
@) = S (lyll* = l*) = ¥(w)  foru=z+yeE=XaY
such that
(i) ¥ € CY(E,R) is bounded from below;
(i) U : (E,T,) — R is sequentially lower semicontinuous, that is, u, — u in E
implies ¥(u) < liminf ¥(u,);
(iii) V' : (E,Ty) — (E*, Ty+) is sequentially continuous.
(v) v:E — R, v(u) = ||ul? is Ct and v' : (E,T,) — (E*,Ty~) is sequentially
continuous.

25
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Then ® satisfies (Pg). Moreover, for any countable dense subset So C S, ® satisfies
(Do) with P replaced by Py := {ps € P :s € So} and Tp by Tp, associated to Py.

Proof. Let Sy C S be a countable dense subset of X* with associated family
Po C P of semi-norms on E. The topology Tp, is then metrizable. Clearly the
identity map (F,7,) — (E,7p) — (E,7p,) are continuous. Moreover, if (uy )y is
a bounded sequence in E which Py-converges towards v € E then it also converges
weakly to u. Here we use the fact that Tp, is Hausdorff. Now we show that @,
is Py-closed, hence P-closed for every a € R. Since 7p, is metrizable it suffices
to show that @, is sequentially Py-closed. Consider a sequence (uy,), in ®, which
Po-converges to u € E, and write u, = x,, + yn,u = +y € X &Y. Observe that
Yn, converges to y in norm. Since ¥ is bounded below it follows from

1 1
§Hxn|‘2 = 5”3/11”2 - (I)(un) - \I/(un) <C

that (x, ), is bounded, hence it converges weakly towards x and therefore u,, — u.
From condition (i¢) and the form of ® it follows that ®(u) > liminf ®(u,) > a, so
u € ®,. Next we show that &' : (D,,Tp) — (E*,Ty+) is continuous. It suffices to
prove that @' : (®,,7p,) — (E*, Ty~ ) is sequentially continuous because Tp, C Tp
and 7p, is metrizable. Suppose (uy)n Po-converges towards u in ®,. As above it
follows that (uy), is bounded and converges weakly towards u. Then ®'(u,,) N
®’(u) by (iii) and (iv). O

Next we introduce a new version of linking in the infinite-dimensional setting.
Of course, linking is essentially a finite-dimensional concept depending on degree
theory or methods from algebraic topology. Here we extend it in a rather general
and simple way. We need some notations. Given a subset A C Z of a locally convex
topological vector space we write L(A) := span(A) for the smallest closed linear
subspace containing A, and we write JA for the boundary of A in L(A). For a
linear subspace F' C Z we set Ap := AN F. Finally let I = [0, 1].

Definition 4.1 ([Bartsch and Ding (20061)]). Given two subsets Q,S C Z
with SN OQ = 0, we say that Q finitely links with S if for any finite-dimensional
linear subspace F C Z with F NS # 0, and any continuous deformation h :
I xQp — F+ L(S) with h(0,u) = u for all u, and h(I x QF) NS = O there
holds h(t,Qr) NS # O for allt € I.

Example 4.1. We present three examples of finite linking. In all cases the proof of
the finite linking property is not difficult and based on a Brouwer degree argument.

a) Given an open subset O C Z, up € O, and u; € Z\ O, then Q = {tu; + (1 —
t)ug : t € I} finitely links with S := 90.

b) Suppose Z is the topological sum Z = Z;® Z5 of two linear subspaces, O C Z;
is open and ug € O. Then Q = O finitely links with S = {ug} x Zs.

¢) Given Z = Z1®Z5 as in b), two open subsets O1 C Z1, Oy C Z3, and u; € Oy,
ug € Zz \ Oz. Then Q = Oy x {tuy : t € I} finitely links with S = {u1} x 90s.
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Now we come back to our functional ® : E — R. If @ C FE finitely links with
S C E we set

Igs:={heC(IxQ,FE): h satisfies (h1) — (hs)}

(h1) h:Ix(Q,Tp) — (E,Tp) is continuous;
(h2) h(0,u) =u for all u € Q;

(h3) ®(h(t,u)) < ®(u) for allt € I, u € Q;

(hg) R(Ix0Q)NS =10

(hs) each (t,u) € I xQ has a P-open neighborhood W such that the set {v—h(s,v) :
(s,v) e WN(I xQ)} is contained in a finite-dimensional subspace of E.

Theorem 4.2 ([Bartsch and Ding (2006I)]). Suppose ® satisfies (Do) with P
countable, and let Q,S C E be such that Q is P-compact and Q finitely links with
S. If sup ®(0Q) < inf ®(S) then there exists a (PS)c-sequence for
c:= inf sup ®(h(1,u)) € [inf ®(S),sup D(Q)].
hel'g,s ueQR
If ¢ = inf ®(S) and if for all § > 0 the set S° := {u € E : dist | (u,S) < 6} is
P-closed then there exists a (PS).-sequence (up)n with u, — S in norm.

Proof. The inequality ¢ < sup ®(Q) is obvious. In order to see ¢ > inf ®(S) we
first observe that h(Ix9Q)NS = 0 for every h € I'g g by (hs). Since @ is P-compact
there exists a finite-dimensional subspace F' containing {u— h(t,u) : (t,u) € I x Q}.
Consequently h(I x Q) C F. Since @ finitely links with S there exists u € @ with
h(1,u) € S which implies sup,cq ®(h(1,u)) > inf ®(S) as claimed.

Assume that ||®(u)| > « for all u € <7<, some a,e > 0. Notice that since
P is assumed to be countable, every P-open subset is paracompact and Lipschitz
normal (see Example 2.1). We can take n to be the deformation from Theorem 3.2
for a == c—¢€, b:=c+e. Now we choose h € I'g g with sup®(h(1,Q)) < c+¢
and define g : I x @ — E by g(t,u) := n(t,h(t,u)). Then g(0,u) = u for all u
and g satisfies (h1) — (h4). Moreover, (hs) follows from the equality u — g(t,u) =
(u—h(t,u))+(h(t,u)—n(t, h(t,u))). Thus g € I'g g which leads to the contradiction
c < sup,eq ®(9(1,u)) <c—e.

We have seen that there exists a (PS).-sequence. Now suppose ¢ = inf ®&(5). If
there does not exist a (P.S).-sequence converging to S in norm then there exist ¢ > 0,
§ >0, and a > 0 so that ||®(u)| > « for all u € S° N ®T<. For such u we choose
w(u) € E with ||lw(uw)] < 2 and &' (u)w(u) > ||’ (u)||. We then choose a P-open
neighborhood N (u) of u so that ®'(v)w(u) > ||P'(u)|| > « for all v € N(u) N P
For u € ®5*¢\ $° we put N(u) := E\ S° and w(u) := 0. Lastly, for u € E\ ®._.
we set N(u) := E\ ®._. and w(u) := 0. Then W :=J,cge+- N(u) is P-open. Let
{U; : j € J} be a P-locally finite P-open refinement of {N(u) : u € ®°*¢} and
{m; : j € J} aP-locally P-Lipschitz partition of unity subordinated to the covering
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{U; : j € J}. For j € J with U; N S° # () we choose u; with U; C N(u;) and
define w; := w(u;). For j € J with U; N S® = () we set w; := 0. Then the vector
field f(u) == — 3 c;m;(u)w; satisfies [|f(u)[| < 2 for all u € W, and it satisfies
' (u) f(u) > a for all u € S%. Let o' (u) be the associated flow as in Chapter 3.

By construction we have that, if u € ®¢T*9/4\ §9/2 then t(u) ¢ S for all t > 0.
Moreover, if u € S%? we have '(u) € S for 0 < t < §/4, hence ®(p%/?(u)) <
®(u) —ad/4 < c¢. Now take any h € T'g g with sup ®(h(1,u)) < ¢+ ad/4. Our
considerations yield ¢%/2(h(1,u)) ¢ S for all u € Q. This contradicts the linking
condition on @ and S because /2 o h(t,.) € Tg 5. O

Similarly, the finitely linking yields also a (C').-sequence. We need the additional
assumption:

(®4) there exists ¢ > 0 such that |Ju|| < ¢||Pyull for all u € ®y.

Remark 4.1. Let Sg C S be any countable dense subset with associated family Py
of semi-norms.

(1) The assumptions (®p) and (®4) imply that &, is Py-closed and &' :
(Po, Tp,) — (E*,Tys) is continuous for each a > 0, see the proof of Theo-
rem 4.1. Indeed, let (uy), in ®, which Py-converges to v € E, and write
Up = Tpn +Yn,u =x+y € X ®Y. Then |y, — y|| — 0, hence y, is bounded.
It follows from (®.) that x,, hence u,, is bounded. This implies that w,, weakly
hence P-converges to u. Now (@) implies that u € ®,, and ®’(u,)v — &' (u)v for
allv e F.

(2) (®4) implies clearly (3.5) with 0 < a <b.

(3) Since every Py-open subset is paracompact and Lipschitz normal, Theorems
3.2, 3.3, 3.4 and 3.5 are applicable with gage topology 7Tp, for 0 < a < b. Letting n
stand for the deformations given by these theorems, we note that 7 : [0, 1] x ® — ®°
are P-continuous because of their locally finite-dimensional property (vi).

Theorem 4.3. Suppose ® satisfies (Do) and (Py). Let Q,S C E be such that Q
is P-compact and Q finitely links with S. If k := inf ®(S) > 0 and sup ®(9Q) < k
then ® has a (C).-sequence with k < ¢ < sup ®(Q).

Proof. Repeating the arguments of the first two paragraphs of the proof of The-
orem 4.2 with the application of Theorem 3.2 replaced by Theorem 3.3 (see Remark
4.1) yields the desired conclusion. (]

As a corollary of Theorems 4.2 we obtain an improvement of a very useful critical
point theorem of Kryszewski and Szulkin [Kryszewski and Szulkin (1998)].

Theorem 4.4 ([Bartsch and Ding (20061)]). Consider a functional ® : E —
R satisfying (®o) with P countable, e. g. ® is as in Theorem 4.1. Suppose there
exist R>r >0 ande €Y, |le| =1 such that we have for S:={ueY : ||u| =r},
Q={v+tec E:veX, || <RO0<t< R} inf®(S) > ®(0) > sup 2(9Q).
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Then there exists a (PS).-sequence for

c:= inf sup ®(h(1,u)) € [inf D(S5),sup ®(Q)].
hel'g,s ueQR

If ¢ = inf ®(S) then there exists a (PS).-sequence (up)n with u, — S in norm.

Proof. By Example 4.1c) @ finitely links with S. Observe that @ is P-compact
and that S° := {u € E : dist | (u,S) < &} is P-closed. Therefore the corollary
follows from Theorem 4.2. O

The original theorem in [Kryszewski and Szulkin (1998)] deals with the case
where E is a Hilbert space, ® is as in Proposition 4.1, and inf ®(S) > ®(0) >
sup ®(9Q). The additional information on the Palais-Smale sequence in the case
¢ = inf ®(S) has not been obtained in [Kryszewski and Szulkin (1998)]. It is however
important in applications when ¢ = ®(0) in order to construct a nontrivial critical
point. If the stronger hypothesis inf ®(S) > ®(0) holds then ¢ > ®(0). This is
sufficient to deduce the existence of a nontrivial critical point.

We have also the following consequence of Theorem 4.3.

Theorem 4.5. Let ® satisfy (Pg) and (P), and suppose there exist R > r > 0
and e €Y, |le|| =1 such that for S :={ueY :|ul|=r}, Q={v+tec E:v e
X, |lvll < R,0 <t < R} we have r :=inf ®(S) > 0 and sup (9Q) < k then ® has
a (C)c-sequence with k < ¢ < sup ¢(Q).

Next we investigate symmetric functionals. We restrict our attention to the
symmetry group G = {ezk”/” :0 <k < p} 2 7Z/p, paprime number. Using
the more elaborate methods from [Bartsch (1993)] we could deal with more general
symmetry groups; see Remark 4.2 below. We suppose that G acts linearly and
isometrically on X and Y, hence on £ = X x Y. We also assume that the action
is fixed point free on E \ {0}, that is, the fixed point set E¢ := {u € E : gu =
ufor all g € G} = {0} is trivial. If A is a topological space on which G acts
continuously (e.g. A C E is invariant) then the genus of A, gen(A) € Ny U {oo},
is by definition the infimum over all k& € Ny such that there exist open invariant
subsets Ui,...,Ur C A covering A, and there exist equivariant maps U; — G,
j =1,..., k. Here we use the convention inf ) = co. In particular, gen(A) = oo if
A% £ (). The genus possesses the following standard properties:

1° Normalization: If u ¢ B¢, gen(Gu) = 1;

2° Mapping property: If f € C(A, B) and f is equivariant, i.e. fg = gf for all
g € G, then gen(A) < gen(B);

3° Monotonicity: If A C B, gen(A) < gen(B);

4° Subadditivity: gen(A U B) < gen(A) + gen(B);

5° Continuity: If A is compact and AN E¢ = (), then gen(A) < oo and there is
an invariant neighborhood U of A such that gen(A4) = gen(U).
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These properties can be found in [Bartsch (1993)] or [Chang (1993); Rabinowitz
(1986)].
In addition to (®g) we require the following conditions:

(®1) @ is G-invariant;

(®3) there exists r > 0 with x := inf &(S,Y) > ®(0) = 0 where S, Y :={y e YV :
Iyl = r};

(®3) there exist a finite-dimensional G-invariant subspace Yo C Y and R > r such
that we have for Ey := X x Yy and By := {u € Ep : |jul| < R}: b :=
sup ®(Ep) < oo and sup ®(Ey \ By) < inf &(B,Y).

Now we define a kind of pseudo-index for the topology of the sublevel sets ®¢
for ¢ € R. For this purpose we consider the set M(®¢) of maps g : ¢ — F with
the properties

(Py) g is P-continuous and equivariant;

(Py) g(®%) C ®° for all a € [k, b];

(P3) each u € ®¢ has a P-open neighourhood W C F such that the set (id—g)(WN
®°) is contained in a finite-dimensional linear subspace of E.

Observe that, if g € M(®%), h € M(®°) with a < ¢ and h(P°) C & then go h €
M(®°). The properties (P;) and (P,) are trivially satisfied by g o h. Property (Ps)
follows from the equality id — g o h = id — h + (id — g) o h. The pseudo-index of ®¢
is then defined by

¥(c) := min{gen(g(®) NS, Y) : g € M(P°)} € No U {o0o}.

Observe that it does not play a role whether we use the norm topology or the P-
topology on ®¢ since both induce the same topology on S,.Y C Y. As a consequence
of the monotonicity of the genus the function ¢ : R — Ny U {oo} is nondecreasing.
Clearly we have 9(c) = 0 for ¢ < & since then ®°N S,.Y = 0.

Lemma 4.1. If ® satisfies (Pg) — (P3) then (c) > n = dimYy for ¢ > b =
sup ®(Ey).

Proof. See Lemma 4.3 of [Bartsch and Ding (1999)]. Fix ¢ > sup®(Ep) =
sup ®(Bp). We shall show that gen(g(Bo) NS,Y) > n for any g € M(®°). Then
¥(c) > n because By C ®° and because the genus is monotone. Fix g € M(®°).
Since By is P-compact it follows from (Ps;) that (id — g)(Bo) is contained in a
finite-dimensional subspace F' of E. We may assume that Fy := Py F D Yp and
F = Fx ® Fy with Fx := PxF C X. Consider the set

O:={ueByNF:|gu)|<rtcF
and the map
h:00 — Fx, h(u):= Px og(u).
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We observe that g(Bo N F') C F because (id — ¢g)(By) C F. Thus h is well defined.
Moreover, g: By N F — F is continuous by (P;) since F' is finite-dimensional. In
addition, (P;) implies that 0 € O and O C int(Bo N F). Therefore O is a bounded
open neighborhood of 0 in F,, := F N (X & Yp), hence, gen(00) = dim F,,. From
the monotonicity of the genus we obtain

gen (00 \ h™1(0)) < gen(Px F,, \ {0}) = dim Px F, .
The continuity and the subadditivity yield
gen(90) < gen ((h~(0)) + gen(dO\h~(0)).
It follows that
gen(h~*(0)) > dim F,, — dim Px F,, = dim Yj.
Finally, h(u) = 0 implies g(u) € Y and u € O implies ||g(u)|| = r, thus g(h=1(0)) C

9(Bo) N S, Y. Therefore, using the monotonicity of the genus once more we obtain
the desired inequality

gen(g(Bo) N S,Y) = gen(g(h™'(0))) > gen(h™'(0)). O
For later arguments we introduce a comparison function ¢4 : [0,d] — No. For
d > 0 fixed set
Mo(®%) := {g € M(®?): g is a homeomorphism from ®¢ to g(®4)}.
Then we define for ¢ € [0, d]
¥a(c) == min {gen(g(®°) N S,Y): g€ M0(<I>d)} .
Note that since Mqo(®?) C M(®?) — M (®°) via restriction g +— g|ec we have
P(c) < a(c) for all ¢ € [0,d].

Theorem 4.6 ([Bartsch and Ding (20061)]). Let (P;) — (P3) be satisfied. As-
sume that @ satisfies also either (o) with P countable and the (PS).-condition or
(o), (P4) and the (C)c-condition for ¢ € [k,b], then it has at least n := dim Yy
G-orbits of critical points.

Proof. We only treat the situation where (PS).-condition is satisfied because the
other situation can be handled similarly.
Fori=1,...,n we set

¢ :=inf{c>0:9(c) > i} € [k, b].
If ¢; is not a critical value then there exists € > 0 so that inf{||®'(u)|| : u € ®FT} >

c—E&
0. Now Theorem 3.2 yields a deformation 7 such that h :=n(1,-) € M(®*¢) and
h(®cite) C ®“~¢. This implies the contradiction

¥(c; — ) = min{gen(g(® )N S,Y) : g € M(D%5)}
> min{gen(g(h(®“7¢)) NS, Y): g € M(®%)}
> min{gen(g(®“ )N S, Y) : g € M(D%T)}
= Y(ci + €).
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Here we used the monotonicity of the genus and the fact that for g € M(®%~¢) the
composition g o h € M(®<+€). Thus ¢; is a critical value for i = 1,...,n.

Suppose ® has only finitely many critical points in ®2. Then & := {u € ®% :
®'(u) = 0} is a finite (PS) -attractor, so (3.8) holds trivially true. For o > 0 small
we then have that U,(Py«/) C Y is the disjoint union of the o-balls around the
elements of Py «/. This implies that gen(Uy) = gen(U,(Py o)) = gen(Py &) = 1
where U, = X x U,(Py</). Let n : [0,1] x ®* — ®° be a deformation as in
Theorem 3.5a). For § > 0 small enough the map h := n(1,) satisfies h(®°+%) C
Q40U U, Let d= b+ 1 and choose g € Mo(®?) such that ¥g(c; — §) =
gen(go(®%79) N S,Y). Consequently,

a(e; + 8) = min{gen(g(P“°) N 5,Y) : g € M(P“F)}
< gen(go o h(®4 )N S, Y)
< gen(go(®“°UU,)NS,Y)
< gen(go(®“°) N S,Y) + gen(go(Us,))
< e —0) + 1.

This implies that kK < ¢ < 3 < -+ < ¢, < b so we have even n distinct critical
values. O

Remark 4.2. Theorem 4.6 holds true for more general classes of symmetries, for
instance for the abelian p-group (Z/p)* acting without fixed points on E \ {0}, or
for any finite group G which acts freely on E\ {0}. If G = (S')* is a torus, or more
generally G = (S")* x (Z/p)' is a p-torus then ® has at least 3 dim Y, G-orbits
of critical points. For G = SU(2) we obtain at least I dim Y, G-orbits of critical
points. In all these cases there exists an index theory i : {A C E': A is invariant} —
Np U {00} satisfying the monotonicity, continuity, and subadditivity properties as
well as a dimension property: i(F\{0}) = ¢-dim F for a finite-dimensional invariant
linear subspace F' C E. We refer the reader to [Bartsch and Ding (1999); Bartsch
(1996); Benci (1982); Clapp and Puppe (1991)] for a discussion of group actions,
index theories, examples, and applications.

Our last critical point theorem is concerned with the existence of an unbounded
sequence of critical values in the presence of symmetries. We stick to the case where
G = Z/p acts linearly, isometrically on E and has no fixed points in E \ {0}. The
hypothesis (®3) is replaced by

(®4) there exists an increasing sequence of finite-dimensional G-invariant subspaces
Y, C Y and there exist R, > r such that we have for B,, :== {u € X x Y, :
lul| < Rn}: sup®(X xY,) < oo and sup®(X x ¥, \ B,) < 8 :=inf ®({u €
Vo flulf <7}).

Here r > 0 is from (®2). We also need the following compactness condition:



Critical point theorems 33

(®7) One of the following holds:
— P is countable and ® satisfies the (PS).-condition for every c € I;
— P is countable and ® has a (P.S)-attractor o/ with Px.«/ C X\ {0} bounded
and satisfying (3.8);
— (®4) holds and ® has a (C)-attractor & with Pyo/ C Y \ {0} bounded
and satisfying (3.8).

Theorem 4.7 ([Bartsch and Ding (20061)]). If ® satisfies (Po) — (P2), (P4),
and (®r) for any compact interval I C (0,00) then ® has an unbounded sequence of
critical values.

Proof. Similarly to the proof of Theorem 4.6 we consider the set M (®¢) of maps
g : ®¢ — F with the properties (P;) — (P3) and the pseudoindex ¥(c). Given a
finite-dimensional invariant subspace Y,, C Y we claim that ¢ (c) > dimY,, for any
¢ > supP(X xY,) as in Lemma 4.1. In fact, given g € M(®°) we show that
gen(g(By) N S,Y) > dimY,. The claim follows then using the monotonicity of the
genus. Since B, is P-compact there exists a finite-dimensional subspace ' C E
containing (id — g)(By,). Making F larger if necessary we may assume that Y,, C F
and F' = Px I + Py F'. We define

O:={ueB,NF:|glu)<r}
and
h:00 — PxF, h(u):= Px(g(u)).
Now one continues as in the proof of Lemma 4.1 in order to prove:
gen(g(®) N S,Y) > gen(g(Bn) N S,Y)
> gen(h™'(0))
> gen(90) — gen(90 \ h™1(0))
>dim(FN (X +Y,)) —gen(PxF\ {0})
=dim(FN(X+Y,)) —dimPxF
=dimY,.

If the set of critical values of ® is bounded above by some m > 0 then v is
constant on (m,o0). This follows immediately from Theorem 3.4. Therefore the
theorem is proved if we can show that 1 achieves only finite values. In order to see
this we consider the comparison function 14, d > 0, defined as before. Recall that
() < a(c) for ¢ € [0,d]. Therefore it suffices to prove that 14 achieves only finite
values. Clearly 14(c) = 0 for ¢ < k because id € Mo(®?). Thus it suffices to show
that for any ¢ € (0, d] there exists § > 0 with ¥q(c+ ) < 1pg(c —9) + 1.

Set I := [k/2,d + 1] and let & be a (PS)-attractor (or (C)-attractor) as in
(®r). This exists in particular if ® satisfies the (PS).-condition for ¢ € I. We shall

show that for any ¢ € [k, d] there exists 6 > 0 with ¢4(c + ¢) < q(c —J) + 1. Fix
o < [3/2 where 3 is as in (3.8), and let n be a deformation as in Theorem 3.5. Then
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h:=n(1,-) € Mo(®?) and h(®+°) C d2 U U, for § > 0 small. We fix such a §
and choose g € M (®4) with ¢4(c—8) = gen(g(®°~2)NS,Y). Then goh € My(d?)
and g o h(®°T9) C g(®°~9)U g(U,). Consequently, using the standard properties of
the genus we obtain:

Ya(c+6) < gen(g

gen(g(2°~°) U g(U )) ns.Y)

gen((9(2°°) NS, Y) U g(Us))

gen(9(®“°) N 5, Y) + gen(g(Us))

Yalc—0) + 1.

The equality gen(g(U,)) = gen(U,) < 1 follows from the discreteness of Py (U,).O

IANCIA A IAIA

Remark 4.3. Earlier versions of Theorem 4.7 have been proved in [Bartsch and
Ding (1999, 2002)] (see also [Kryszewski and Szulkin (1998)]). As in Remark 4.2
the theorem holds true for more general classes of symmetries; cf. [Bartsch (1993)].



Chapter 5

Homoclinics in Hamiltonian systems

Consider the following Hamiltonian system
2=JH,(t, z), (HS)

where z = (p,q) € R?V, J denotes the standard symplectic structure in R?V:
0 -1
e (0
and H € C*(R x R?" R) has the form
1

with L(t) being a continuous symmetric 2N X 2N-matrix valued function, R, (¢, z) =
o(]z]) as z — 0 and being either super linear or asymptotically linear as |z| — oo.
A solution z of (HS) is a homoclinic orbit if z(¢) #Z 0 and 2(¢) — 0 as [t| — co. We
study the existence and multiplicity of homoclinic orbits. In the first six sections
we deal with the case where the Hamiltonian depends periodically on ¢ and in the
last section we handle the Hamiltonian without periodicity assumptions.

5.1 Existence and multiplicity results for periodic Hamiltonians

In the last years, existence and multiplicity of homoclinic orbits of (HS) were studied
extensively by means of critical point theory, and many results were obtained based
on various hypotheses on the functions L and R which we recall firstly below.

On L, it was assumed that either L is constant such that each eigenvalue of the
matrix JL has nonzero real part (see [Arioli and Szulkin (1999); Coti-Zelati, Eke-
land and Séré (1990); Hofer and Wysocki (1990); Séré (1992, 1993); Szulkin and Zou
(2001); Tanaka (1991)]), or L depends on ¢ such that, more or less abstractly, 0 lies
in a gap (at least the boundary) of o(A), the spectrum of the Hamiltonian operator
A:=—(JL + L) (see [Ding and Girardi (1999); Ding and Willem (1999)]).

For the super linear case, it was always assumed that R satisfies a condition of
the type of Ambrosetti-Rabinowitz, that is, there is p > 2 such that

0 < pR(t,2) < R.(t,z)z whenever z # 0, (5.1)

35
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together with a technique assumption that there is k € (1,2) such that
|R.(t,2)|" < c(l+ R.(t,2)z) forall (¢,2) (5.2)

(here and below ¢ or ¢; stands for a generic positive constant). In order to establish
the multiplicity, a regularity condition was also required: there are § > 0 and ¢ > 1
such that

|R:(t,2 +h) — R.(t,2)| < co(L+[2]°)[h] if [h] < 0. (5.3)

See [Coti-Zelati, Ekeland and Séré (1990); Ding and Willem (1999); Hofer and
Wysocki (1990); Tanaka (1991)] for the existence of at least one homoclinic orbit.
Infinitely homoclinic orbits were obtained firstly in the striking work [Séré (1992,
1993)] provided moreover that R(t, z) is strictly convex in z, and later in [Ding and
Girardi (1999)] and [Arioli and Szulkin (1999)] respectively provided additionally
that R(t, z) is even in z and that R(t, z) possesses certain more general symmetries.

In the asymptotically linear case, the existence of one homoclinic orbits was
obtained in the paper [Szulkin and Zou (2001)]. As far as we know there were no
results of existence of infinitely homoclinic orbits in this case.

The goal of this chapter is to establish the existence and multiplicity of ho-
moclinic orbits of (HS) under different hypotheses via new information in critical
point theory for strongly indefinite functionals stated in the previous chapter. In
contrast to the works mentioned above, the main contributions here are in three
aspects: firstly we deal with the super linearities more general than the Ambrosetti-
Rabinowitz type condition (5.1); secondly we prove that the asymptotically linear
system possesses infinitely many homoclinic orbits; and thirdly we establish without
the assumption (5.3) the existence of infinitely homoclinic orbits.

For describing our results, we will use the 2V x 2N matrix

0 I
Jo = <I o)

Rt 2) = %Rz(t, D)z — R(t, 2).

and the notation

In the following, for any symmetric matrix value function M € C(R, R2N*2N) et
p(M(t)) be the set of all eigenvalues of M (t) and set

Ay o= inf min p(M(t)), Aps :=supmax p(M(t)).
teR teR

In particular, we denote Ag := Az, and Ag := Ay, for M (t) = JoL(¢).
We make the following hypotheses:

(Lo) L(t) is 1-period in ¢, and JoL(t) is positive definite;
(Ro) R(t,z) is l-period in t, R(t,z) > 0 and R.(t,2) = o(|z|) as z — 0 uniformly
in ¢.
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It is apparent that, under the periodicity condition, if z is a homoclinic orbit then
k % z is also a homoclinic orbit for any k € Z, where (k x z)(t) = z(t + k) for all
t € R. Two homoclinic orbits z; and z9 will be said being geometrically distinct if
k* 21 # 2o for all k € Z.

Firstly we treat the super linear case. Assume

(S1) R(t,2)|z|~? — oo uniformly in ¢ as |z| — oo;

(S2) R(t,z) > 0if z # 0, and there exist r; > 0 and v > 1 such that |R.(¢,2)|” <
R, z)|z| if |z| > r1.

Theorem 5.1 ([Ding (2006)]). Let (Lo), (Ro) and (S1)-(S2) be satisfied. Then
(HS) has at least one homoclinic orbit. If in addition R(t, z) is even in z then (HS)
has infinitely many geometrically distinct homoclinic orbits.

Remark 5.1. a) The following functions satisfy (Rg) and (S7)-(S2) but do not
verify (5.1):
Exl. R(t,z) = a(t)(|z|21n(1 +|2]) = 312>+ |2| — In(1 + \z\)),
Ex2. R(t,z) = a(t)(|z|“ + (1 — 2)]2]€ sin? (%)), P>2,0<e<py—2,
where a(t) > 0 and is 1-periodic in ¢.

b) If R(t, z) satisfies (5.1) and (5.2), then (S7)-(S2) hold. Indeed it is clear that
R(t,2) > c1]z|* for z away from 0, R(t,z) > “2—;2Rz(t, z)z > 0if z # 0, and

|R.(t,2)|" < ol Ro(t, 2)|" "R (t, 2)z < 32|V~ =D R(t, 2)
< caR(t, 2)|z)"

forall [z| >1and 1 <v <k/(2-— k).

¢) If |R.(t 2)||z| < c1R.(t,2)z for |z| large, say |z| > 71, then (S3) is satisfied
provided

(S3) There exist p > 2 and w € (0,2) such that, for all |z| > rq, |R.(t, 2)| < ca|zP?
and

1 1
R(t,z2) < | = —
(t2) < <2 c3lz|@

) R.(t,2)z.

Indeed, it is easy to check that (Sy) implies that |R.(,2)]" < c4R(t, z)|z|" for all
[zl Zzr, 1<v<(p—w)/(lp—2)

We now turn to the asymptotically linear case. Let
-1 0
Jii= ( 0 I) '

(Ly) L(t) and Jy are anti-commutative: J; L(t) = —L(t)Jy for all t € R.

We assume besides (Lg) that
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For example, if B(t) is a N x N symmetric matrix valued function, then the function

0 B(t)
B() 0
satisfies (L1). For the nonlinearity we assume

(A1) R.(t,2) — Loo(t)z = o(|z|) uniformly in ¢t as |z|] — oo, where Lo (t) is a
symmetric matrix function with Ar__ > Ag;

(A2) R(t,z) >0, and there is dg € (0, Ag) such that if |R,(¢, z)| > (Ao — do)|z| then

R(t, z) > b;
We point out that a condition similar to (As) was firstly used in Jeanjean [Jean-
jean (1999)] for dealing with existence of solutions to certain asymptotically linear
problems on RY. We will prove the following result.

Theorem 5.2 ([Ding (2006)]). Let (Lo)-(L1), (Ro) and (A1)-(A2) be satisfied.
Then (HS) has at least one homoclinic orbit. If moreover R(t, z) is even in z and
satisfies also

(As3) there is 81 > 0 such that R(t,z) #0 if 0 < |z| <6y,
then (HS) has infinitely many geometrically distinct homoclinic orbits.

As mentioned before, if L is constant such that 0 lies in a gap (A, A), A’ <0 < A,
of the spectrum o(A) and (Rp), (A1)-(Az) are satisfied, then one homoclinic orbit
was obtained in [Szulkin and Zou (2001)]. The most interesting result here, in
Theorem 5.2, refers to the multiplicity.

Remark 5.2. The following function satisfies (Rp) and (A1)-(As) provided a(t) >
Ag and is 1-periodic in ¢:

Ex3. R(t,2) == a(t)|z|? (1 - m)
A more example is the following

Ez4. R,(t,z) = h(t,|z|)z, where h(t,s) is 1-periodic in ¢ and increasing for s €
[0,00), and h(t,s) — 0 as s — 0, h(t,s) — a(t) as s — oo with a(t) > Ao,
uniformly in ¢.

The following five sections are organized as follows. In next section we study the
spectrum of the operator A. We show by (L) that o(A4) C R\ (—Xo, Ag). If (L1)
holds, then o(A) is symmetric with respect to 0 € R. Thus (Lg) and (L) imply
that A9 < inf (0(A) N (0,00)) < Ag which is needed in the asymptotically linear case
for getting a linking structure. In Section 5.3, based on the description on o(A), we
obtain a proper variational setting for (HS) and represent the associated variational
functional in the form ®(z) = L (||2*||? — ||z7[|?) — Jg R(t, ) defined on a Hilbert
space E = 9(|A|'/?) = HY?(R,R?N) with decomposition E = E~ @ Et,z =
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27 4 2T, dim E* = co. In Section 5.4 we show the linking structure of ®, that is,
inf ®(ETNIB,) > 0 for some r > 0 and there is an increasing sequence (Y,,) C ET of
finite dimensional subspaces such that ®(u) — —oo as ||ul]| — co in E,, :== E~ ®Y,,.
Unlike the so called “Fountain” structure (see [Bartsch (1993); Willem (1996)])
where sup ®(E,,) — oo as n — 0o, we have sup,, sup ®(FE,,) < co. In Section 5.5 we
show the boundedness of Cerami sequences for ®, and then, by establishing without
the regularity condition (5.3) a splitting result, prove that for any bounded interval
I C R, there is a discrete (C)-attractors consisting of finite sums of critical points
of @ so that any Cerami sequence at level ¢ € I converges to «/. In Section 5.6 we
firstly prove Theorem 5.1 by constructing a Cerami sequence at positive level via
Theorem 4.5 and applying the concentration principle to get a nontrivial critical
point of ®, and we then apply Theorem 4.7 to prove the existence of infinitely many
homoclinic orbits, that is, Theorem 5.2.

5.2 Spectrum of the Hamiltonian operator

In order to establish a variational setting for the system (HS) we study in this
section the spectrum of the Hamiltonian operator.

Note that A = — (J % + L) is selfadjoint on L*(R,R*") with domain Z(A4) =
HY(R,R?M). Let 0(A) and o.(A) denote, respectively, the spectrum and the con-
tinuous spectrum. Set

te :=1nf{A: A€ o(A)N[0,00)}. (5.4)

Throughout the book by |- |, we denote the usual Li-norm, and (-,-)z2 the usual
L?-inner product.

Proposition 5.1. Assume (Lg) is satisfied. Then

1° A has only absolute continuous spectrum : o(A) = o.(A);

2° (A) CR\ (=0, Ao);

3° if (L1) also holds, o(A) is symmetric : 0(A)N(—00,0) = —a(A)N(0,00); and
e < AQ.

Proof. For the proof of 1° we see [Ding and Willem (1999)] where it was proved
that, for any periodic symmetric matrix function M (¢), the spectrum of the operator
—(J 4 + M) is absolute continuous.

In order to show 2°, we consider the operator A2 with domain 2(A42%) =
H?(R,R2?Y). Observe that J2 = I and JoJ = —J Jo. We have, for z € P(A?),



40 Variational Methods for Strongly Indefinite Problems

2

d
(A%2,2) 12 =|Az|3 = ‘ <‘75 + Jo(JoL — )\0)) z+ Ao Joz

2
2

+ A5 J023
2

+ (\72; )\OJOZ)LQ + (>\O\7027 JZ)LQ

+ (Jo(JoL — o)z, MoJoz) 2 + (MoJoz, To(JoL — Xo)z) 2
2

+ Aozl
2

- ' (J% + To(FoL — /\0)) .

d
= ‘ (JE + Jo(JoL — /\0)) z

+2X0((JoL — Xo)z, 2)r2
>Agl23 -

Thus o(A?) C [A3,00). Let (Fi)xer and (F))a>o denote the spectral families of A
and A?, respectively. Recall that

FA ZF)\1/2 —F7A1/270:F[,)\1/2,>\1/2] for aH/\ZO, (55)
see (3.96) in Chapter VIII of [Dautray and Lions (1990)]. We obtain
dim (F[7A1/27)\1/2]L2) = dim (FALQ) =0 for0 S A< )\g, (56)

hence o(A4) C R\ (—Ag, \g) which is 2°.

We now turn to 3°. Let A € o(A4) N (0,00). Take a sequence (z,) C Z(A)
such that |z,|2 = 1 and |[(A — N)zp|a — 0. Set 2, = J12,. Then |Z,]o = 1. Since
JNh =—-N"J and JoJr = —J1Jo, we obtain Az, = —J1 Az, and

(A= (=A)Znlz = | = J1(A = Nznf2 — 0.
This implies that —\ € o(A). Similarly, if A € o(A) N (—00,0) then —\ € o(4) N
(0,00). Thus o(A) is symmetric with respect to 0. For showing p. < Ay we
consider again the operator A2. Let fi. := inf o(A?). Clearly ji. > A3. We claim

that fie < A3. Arguing indirectly, assume fi, > A2. Observe that J % is selfadjoint

in L? with 0 € o(J %) = R, and thus we can take a sequence z,, € Cg°(R,R?Y)

with |22 = 1 and | % zn|2 — 0. Then

Ag < fle = ﬂ8|zn|g < (Agznvzn)L2 = (AzmAzn)L2
2

< (
2

a contradiction. Now using (5.5), for any € > 0,

Jizn

2
+ LZn
t | |2>

2
< o(1) + A,

dim (F[—([Lc+€)1/2, (ﬂc+6)1/2]L2) = dim (FﬂeJrELg) = o0

which, together with (5.6), implies that at least one of j:ﬂé/ % belongs to o(A), hence
by the symmetry iﬁé/z € o(A). We get p. < [Lé/2 < Ay, finishing the proof. O
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5.3 Variational setting

In virtue of Proposition 5.1, L? = L?(R, R?") possesses the orthogonal decomposi-
tion

I’=L"®L", z=z +2z"
corresponding to the spectrum decomposition of A such that (Az,z)2 < —Xol2|3
for . € L= N 2(A) and (Az,2)2 > Ao|z|3 for z € LT N Z(A). Denoting by |A|
the absolute value, let E := 2(|A|'/?) be the Hilbert space equipped with the inner
product

(21, 22) = (JA 22, |A1222)

and the norm ||z|| = (z, 2)'/?

E=E ®Et where E*=FEnNL*

. E has the orthogonal decomposition

Observe that, letting Ag = J %+jo, Proposition 5.1 implies that there are ¢1, ¢ > 0
such that
c1lAoz|2 < |Az|2 < c2]Aoz|2

for all z € HY(R,R?Y). A Fourier analysis shows that |Agz|a = ||z||z1, hence
allzllm < |Azla < co||z||fgr. Thus by interpolation one has ¢ ||z|| g2 < ||z|| <

chl|z|| grrs2 for all z € E (cf. [Ding and Willem (1999)]). Using the Sobolev embed-
ding theorem (on H'/?) we get directly the following lemma.

Lemma 5.1. Under (Lg), the space E embeds continuously into LP(R,R?*N) for
any p > 2, and compactly into L}, (R,R?N) for any p € [1, co).
Note that, using A, the system (HS) can be rewritten as
Az = R,(t,2). (5.7)
On E we define the functional

D(2) := %Hz*”z - %H27”2 — U(z) where ¥(z) = /RR(t, z). (5.8)

Our hypotheses on H(t,z) imply that ® € C!'(E,R) and a standard argument
invoking (5.7) shows that critical points of ® are homoclinic orbits of (HS) (cf.
[Ding and Willem (1999)]). We will write ®' for the derivative of .

Observe that if (S3) holds, then |R. (¢, 2)|” < ¢1|R.(t, 2)||z|*"!, hence

|R.(t,2)| <di|zP7t if |2] >y (5.9)
for p > 2v/(v — 1). Clearly (5.9) remains true for all p > 2 if (4;) holds.

Lemma 5.2. Let (Lg) and (Ro) be satisfied, and assume moreover either (S1)-
(S2) or (A1)-(As) hold. Then U is non-negative, weakly sequentially lower semi-
continuous, and V' is weakly sequentially continuous.
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Proof. By (Ry), R(t, z) is non-negative, so is ¥. Let z; € E with z; — z in E.
By Lemma 5.1, z;(t) — z(t), hence R(t, z;(t)) — R(t,2(t)) for a.e. t € R. Thus the

Lebesgue theorem implies
Z/R(t,z):/ lim R(t, z;)

< lim inf/ R(t, z;) = liminf ¥(z;),
R

j—oo j—o0

proving that ¥ is weakly sequentially lower semi-continuous.

To show that ¥’ is weakly sequentially continuous, let z; — z in E. By Lemma
5.1, z; — zin L} for any p > 1. By (Rp) and (5.9) we can take p > 2 so that
|R.(t,2)| < ci(|z| + |2[P71). Tt is clear that, for any ¢ € C§°(R),

o= [ Retzye— [ Rt2)o =¥ (5.10)

Since C§° is dense in F |, for any w € E we take ¢, € C§° such that ||¢, —w| — 0
as n — 0o. Note that

W' (z5)w — ' (z)w] < |(¥'

< (¥’

C2

<[(V¥ /(Z]

For any € > 0, fix n so that ||lw — ¢,|| < €/2¢3. By (5.10) there is jo so that
(W' (z5) — U'(2))en| < €/2 for all j > jo. Then |¥'(z;)w — ¥'(2)w| < € for all
7 > jo, proving the weakly sequentially continuity. O

V' (2))en] + 1(¥(2)) = ¥'(2))(w — on)|
U'(2))n]

ZJ)
) —
(Iz] + lz;] + 1277 + 25 P71) [w — ol
) —

(
(

Zj

%\

W' (2))pnl + callw — @l

5.4 Linking structure

We now study the linking structure of ®. Remark that (Ry) and (5.9) implies that,
given arbitriarily p > 2v/(v—1) in the super linear case, p > 2 in the asymptotically
linear case, for any € > 0, there is C. > 0 such that

|R.(t,2)| < elz| + Cc|zPt (5.11)
and
R(t,2) < e|z|* + Cclz|P (5.12)
for all (¢, z). Firstly we have the following lemma.

Lemma 5.3. Under the assumptions of Lemma 5.2, there is v > 0 such that k :=
inf ®(S;") > ®(0) = 0 where S, = 0B, NE*.
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Proof. Choose p > 2 such that (5.12) holds for any ¢ > 0. This, jointly with
Lemma 5.1, yields

U(2) < elel3 + Celelh < Clellzl® + Cel12]17)
for all z € E. Now the lemma follows from the form (5.8) of ®. O

In the following, we fix arbitrarily an w > 2u, for the super linear case (where
He is the number defined by (5.4)), and set w := A for the asymptotically linear
case. Remark that Proposition 5.1 and (A1) imply that A\g < pe < Ag < Ar_ (this
is the only place we use (L1)). Thus, in both super and asymptotically cases, we
can take a number [ satisfying

fe < [ < w. (5.13)

Since o(A) = o.(A), the subspace Yy := (Fj — Fy)L? is infinite dimensional (recall
that (F))xer denotes the spectrum family of A). Note that

Yo CEY and  pelw|3 < |Jw||? < plw|z  for all w € Yy, (5.14)
For any finite dimensional subspace Y of Y set By = E~ @Y.

Lemma 5.4. Let the assumptions of Lemma 5.2 be satisfied, and assume (L1) also
holds for the asymptotically linear case. Then for any finite dimensional subspace
Y of Yo, sup®(Ey) < oo, and there is Ry > 0 such that ®(z) < inf ®(B,) for all
z € Ey with ||z|| > Ry .

Proof. 1t is sufficient to show that ®(z) — —o0 as z € Ey, ||z| — co. Arguing

indirectly, assume that for some sequence z; € Ey with | z;| — oo, there is M > 0

such that ®(z;) > —M for all j. Then, setting w; = z;/||z;||, we have |w;| = 1,
w; — w, w; 4w‘,w;f—wu"’ €Y and

M e Rit.2)

13112 = 11212 r 117l

Remark that w' # 0. Indeed, if not then it follows from (5.15) that

1 1. _
= sl 2 = Sy | - (5.15)

1, _ R(t,z;) 1
0 gley P+ [ S < P+ s o
277 r lIzl2 277 [
in particular, [[w; || — 0, hence 1 = [Jw;|| — 0, a contradiction.

First, consider the super linear case and suppose (S1) — (S2) hold. Then by (S7)
there is g > 0 such that R(t,z) > w|z|? if |z| > 7g. Using (5.13)-(5.14),

nwﬂP—HwWF—wAQM2snMﬁ@—nwWP—wm+@—wm*@

< = (W=l +lw]?) <0,

hence, there is a > 0 large such that

w1~ e P -w [ P <o, (5.16)
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Note that
(I)(Z ) _ ¢ R(t72)
< ([l P =y I2) — —
(B —a Izl

a
< (1t P =y 1= [
—a

6) imply that

1 * R(t, z;
0< tim (Gl 2 = 3y - | GL)
1, Ll R BT
1 a
<3 (W=t =o [ k) <o
—a
a contradiction.

Next consider the asymptotically linear case and assume (A;) holds. By (5.13)-
(5.14) again,

!

2

1 ¢ © R(t, z) — %]zl
=5 (o2 = 2= [ ) - [ 2L
:( L)L T e

1

: )

a1

Thus (5.15) an

w12 = w2 - / Lo (tyww < w2 = [l |? — wle

< = (W=l +[lw]?) <0,

hence, for some a > 0,

It 2 = [l |2 —/_a Lo (tyww < 0. (5.17)
Set
F(t,z):=R(t,z) — %Loo(t)zz. (5.18)

By (A1), |F(t, 2)] < C|z]? and F(t,2)/|2|*> — 0 as |z| — oo uniformly in ¢. It follows
from Lebesgue’s dominated convergence theorem and the fact |w; —w[z2(—q,q) — 0

that
o Bt s a Bt 2 w2
i=oo J_q Izl im0 o |3l
Thus (5.15) and (5.17) imply that

, 1 “ R(t,z)
0< hm( o 12 = w2 )
fm, ol ™= | T

1 _ a
< 3 <||U1+||2 — |l || —/ Loo(t)ww) < 0,

—a

a contradiction. O

As a special case we have

Lemma 5.5. Under the assumptions of Lemma 5.4, letting e € Yo with |e]| = 1,
there is ro > 0 such that sup ®(0Q) = 0 where Q :={u=u"+se: u~ € E7,s>
0, [l < 7o}
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5.5 The (C) sequences

We now study the Cerami sequences.
Lemma 5.6. Under the assumptions of Lemma 5.2, any (C).-sequence is bounded.
Proof. Let (z;) C E be such that

B(zj) = c and (1+ [z])®'(z;) — 0. (5.19)
Then

Co > ®(z;) — %cb’(zj)zj = /R R(t, 2;). (5.20)

Arguing indirectly, assume up to a subsequence ||z;|| — oco. Set v; = z;/| %]
Then ||v;]| =1 and |vj|s < 7s|lvj]| =75 for all s € [2,00). Noting that

eV (aF — 27 = |12 12 _ Rz(tvzj)(v;r_vf)
P ()2 j>—njn<1 A >,

[E21]

it follows from (5.19) that

. U-i__'U‘_
/Rz(t,zj)( j J) 1. (5.21)
R

12l
First we consider the super linear case and suppose (S1) — (S2) hold. Set for
r>0
g(r) :=inf {R(t,z) :t € R and z € R?Y with |z| > T}

(S2) implies g(r) > 0 for all » > 0. Moreover,

qgaﬂ)><ukﬁfﬂ>”:<ﬁg@gmﬁ)"

|| |22

= (5) = ()

which, jointly with (S7), implies R(t, z) — oo uniformly in ¢, consequently g(r) — oo
as r — oo. Furthermore, set for 0 <a < b

Qj(a,b) ={t e R: a <|z(t)] <b}

and

b .= inf {Rs";) cteRand z € R?N with a < |2| < b} .

Since R(t,z) depends periodically on t and R(t,z) > 0 if z # 0, one has % > 0 and
R(t,zj(z)) > cb|z;(t)|*> for all t € Q;(a,b).
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It follows from (5.20) that

Co z/ R(t7zj)+/ R(t, zj)+/ R(t, z;)
Q;(0,a) Q;(a,b) Q;(b,00)

> [ Rt [ 5P g0
Q;(0,a) Q2 (a,b)

Thus
Co
Qi(b,0)|<—= — 0
as b — oo uniformly in j, which implies by Holder inequality that for any s € [2, 00),
/ 01 < 73, 1925 (b, 00)[V/2 — 0 (5.22)

@ (b,00)

as b — oo uniformly in j. In addition, for any fixed 0 < a < b,
1 Co
|v-|2:—/ 2 < S0y (5.23)
/Qj(a,b) ! 112511 Q; (a,b) ! chllz; 12

as j — o0.

Let 0 <& < 1/3. By (Ro) there is ac > 0 such that |R.(t,2)| < = |z| for all
|z| < ae, consequently,

R-(t, %) :
R
2, (0,ae) |ZJ|

(5.24)

e g
< — v — o7 |vj| < —vsl3 < e
»/Qj((),as) v T TR

for all j. By (S2) and (5.22), setting p =2v/(v —1) and v/ = /2 =v/(v — 1), we
can take b. > r1 large so that

[R-(t, )| -
[ Bl o)
2 (be,00) |21
1/v 1/v
|R-(t, z)|" - v/
( / ot (1o = 251l
§2; (be,00) Zj 2 (be,00) (5.25)
B 1/v 1/ p
(/ c1R(t, zj)) </ |v;r — vj|“> / v |*
R R Qj(bsaoo)

<e

for all j. Note that there is v = v(¢) > 0 independent of j such that |R(¢, z;)| <
v|z;| for t € Q;(ae,bs). By (5.23) there is jo such that

IR.(t, 2] B
/ B2 ot — o7
Q;(ae,be) |21

IN

IN

m/ o — o7 o]
, (a.be) J J (5.26)
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for all j > jo. Now the combmatlon of (5.24)-(5.26) implies that for j > jo

R(t,2) (v |R. (¢, z;)] _
/R / / |vj||v;-r—vj|<3€<1

125 H EA
which contradicts (5.21).

Next we consider the asymptotically linear case, hence assume (A;)-(A4z) are
satisfied. Following the terminology introduced by Lions on the concentration com-
pactness principle [Lions (1984)], observe that either (v;) is vanishing (in this case
|vj|s — 0 for all s > 2), or 1t is nonvanishing, that is, there are r,n > 0 and (a;) C Z
such that limsup,_, ., f T lvj|* > n. We show as in [Jeanjean (1999); Szulkin
and Zou (2001)] that (v]) is neither vanishing nor nonvanishing.

Assume (v;) is vanishing. Set, in virtue of (As),

Ij = {tER: MS)\Q—(S()}.
|25 (®)]
By Proposition 5.1, A\o|v;|3 < |lv;]|? = 1 and we get
/ R(t, 2) (v —v;) / Ra(t, 2))(vf —v;)lv
I I

: ll25l ! |21

Ao — 6
< (o= do)lusls < == <1

for all j. This, jointly with (5.21), implies that for If := R\ I;
+ —_
I / Rz(t,zj)(vj _Uj) <1 Ao —00 o

gm0 Iz YR
Recalling that by (Rp) and (A1)
|R.(t,2)| < C|z| forall (¢,2), (5.27)

there holds for an arbitrarily fixed s > 2

R.(t,z))(vi — v
J e Ry
< 121l Is

< Clvjla II?I(S*Q)/zslvjls < Ol 16722 oy .

Since |vj|s — 0, one gets |[5| — oo. By (Az), R(t,zj) > 8y on I, hence

/th] /R(tz])>50|l|—>oo

contrary to (5.20).
Assume (v;) is nonvanishing. Setting Z;(t) = z;(t + a;), 9;(t) = v;(t + a;) and
©;(t) = ¢(t —a;) for any ¢ € C§° we have by (A1) (see (5.18) for F(t, z))

' (2)p; = (2F — 272 05) — (Loozn 05)12 — / E.(t, 2;);

i o)
Sy (w; — oy 01) = (tssoi)ie — [ Bz

Tzl

- o - |7
50 (5 = 379) = (Lot = [ Pt )ol2)).
J



48 Variational Methods for Strongly Indefinite Problems

This results

- o _ |74
(U]—'i_ - Uj ;‘P) - (LOOU]‘, (p)L2 - / Fz(tvzj)(p~_J — 0.
R %1

Since ||7;]] = |lvj|| = 1, we can assume that o, — @ in E, 9; — 0 in L7 and
;(t) — 0(t) a.e. in R. Since lim; .o [* |0;|> > n, 0 # 0. By (5.27)

- oF
Eu(t,2)0 2

1| < Clellosl,
1%

it follows from (A7) and the dominated convergence theorem that

/Fz(t,éj)soM o,
R

1%
hence
(@t =07, 9) = (Loo®, )12 = 0.
Thus ¥ is an eigenfunction of the operator A := J 4 | (L+ Loo) contradicting with
the fact that A has only continuous spectrum (since L(t) + Lo (¢) is 1-periodic, see
[Ding and Willem (1999))). O

In the following lemma we discuss further the (C).-sequence (z;) C E. By
Lemma 5.6 it is bounded, hence, we may assume without loss of generality that
zj = zin E, zj —» zin L} for ¢ > 1 and z;(t) — z(t) a.e. in ¢t. Plainly z is a
critical point of ®. Set zjl =z — 2.

Lemma 5.7. Under the assumptions of Lemma 5.2, along a subsequence:

1) ®(zj) — c— ®(2);

2) ¥(z}) — 0.

Proof. The verification of 1) is somewhat standard (cf. [Ding and Girardi
(1999)]), so we only check 2).
Observe that, for any ¢ € E,

q)/(zjl-)sp =& (2)p + /R (R.(t,zj) — R.(t, 2]1) —R.(t,2)) ¢.
Since ®(z;) — 0, it suffices to show that

sup
llell<1

/R (Ro(t, 25) — Ra(t,2}) — Ro(t,2)) | — 0. (5.28)

Recall that if R satisfies (5.3), then (5.28) follows easily from a standard argument,
see e.g. [Arioli and Szulkin (1999); Ding and Girardi (1999)]. However, in our case
such a regularity condition is not available and we hence provide another argument.
By (5.11) we choose p > 2 such that |R. (¢, 2)| < |z| + C1|z[P~! for all (¢,2), and let
g stands for either 2 or p. Set I, := [—a,a] for a > 0.
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We claim that there is a subsequence (z;, ) such that, for any € > 0 there exists
re > 0 satisfying

limsup/ |z, ]9 < e (5.29)
I\,

n—oo

for all r > r.. For verifying (5.29) note that, for each n € N, [, |z;]9 — [, |2|? as
7 — oo. There exists i,, € N such that

1
/ (%17 —12]") < — forall j =i, +m, m=1,2,3,....
n

I,

Without loss of generality we can assume i,41 > i,. In particular, for j, =i, +n

we have
1
Cle — q < —.
J Gz =en < o

n

Observe that there is r. satisfying

/ 12)7 < ¢ (5.30)
R\I,
for all r > r.. Since

/ 211 = / (125,17 — |2]9) + / 2] + / (1217 = [25.1)
I\I, I I\I I

n n\ir r

1
<= +/ IZI"+/ (2" = 125.17) ,
n R\ I I

r r

(5.29) now follows.

As in [Ackermann (2004)] let 7 : [0,00) — [0, 1] be a smooth function satisfying
n(t) =1ift <1, n(t) =0if ¢ > 2. Define z,(t) = n(2|t|/n)z(t) and set h,, := z— Z,.
Since z is a homoclinic orbit, we have by definition that h,, € H' and

[hn] — 0 and |hylee — 0 asn — oo. (5.31)

Observe that for any ¢ € £
[ (Bt = Rtz = Re(e2)
= [(Beltiz) = Bulti, =2~ Relt.2) ¢
+ /R (Ro(t, 2], + hn) — Ro(t,2])) ¢

4 / (Ro(t. %) — Ra(t,2) .
R
Plainly, by (5.31),

lim
n—oo

/(Rz(t,zn)—Rz(t,z)W -0
R
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uniformly in ||| < 1. It remains for checking (5.28) to show that

lim / (R:(t,25,) — R.(t, 25, — Zn) — R.(t,Zn)) | =0 (5.32)
n—oo R
and
lim / (R.(t, zjln + hyn) — R(t, zjln)) @‘ =0 (5.33)
n—oo R

uniformly in ||| < 1.
To check (5.32), note that (5.31) and the compactness of Sobolev embeddings
imply that, for any r > 0,

/IT (R.(t, 2;,) — R.(t, 25, — Zn) — R:(t, 2n)) cp‘ -0

lim
n—oo

uniformly in [|¢|| < 1. For any € > 0 let r. > 0 so large that (5.29) and (5.30) hold.

Then
limsup/ 5.0 < / )7 < ¢
n—oo JI\I, R\I

.

for all > r.. Using (5.29) for ¢ = 2, p we have

lim sup / (R.(t,25,) — R:(t, 25, — Zn) — R.(t, Zn)) go‘
n—00 R
— Jim sup / (Rolt, 23.) — Rt 25, — 5) — Ra(t, 50)) 0
n—o0 ]n\]r

< ¢y limsup / (RENER

n—oo n .

n—oo

+ ¢y 1imsup/ (|Zjn|p_1 + |5n|p_1) [
I\,
<cilimsup (|2, |22(r00,) + Znlz20g,)) el
n—oo

. —1 s p—1
+ ¢o lim sup (|zjn|[£p(1n\h) + |Zn|ip([n\[7,)) |‘P|p

< eyel/? 1 ;@—1)/1)7
which implies (5.32).
For verifying (5.33), define ¢g(¢,0) = 0 and
R.(t,2)
||

g(t,z) = if z#£0.

By (Rp), g is continuous at z = 0, hence in R x R?Y. g is 1-periodic in ¢ since R, is.
This, jointly with the uniformly continuity in [0, 1] X B,, implies that g is uniformly
continuous in R x B, for any a > 0 where B, := {z € R*" : |2| < a}. Moreover, it
follows from (5.11) that |g(¢, 2)| < e5(1 + |2|P~2) for all (¢,2). Set

Ci:={teR:|z (t)] <a} and Dy :=R\Cy.
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Since the Lebesgue measure
1 C
|Dp| < — |21 P< — —0 asa— oo,
aP pa " aP

one has, for any € > 0, there is a@ > 0 such that

/(&@%+M%RN%M¢§5 (5.34)
D

uniformly in ||¢|| < 1 for all @ > G and all n. By the uniformly continuity of g on
R x By, there is § > 0 satisfying

lg(t,z+h) —g(t,z)] <e forall (¢,2) € R x B; and |h| <4,
and by (5.31), there exists ng such that |hy|e < d for all n > ng, hence

lg(t, 2}, +hn) —g(t, 2] )| <e forallm >mng and t € CZ.

Note that
(R.(t, zjln + hy) — R.(2, zjln)) © = g(t, zjln + hy) (|zjln + hy| — |zj1n ) e
+(g(t, 25, +ha) = g(t.25)) |25, 1@

and, by (5.31), |hnl2 < €, |hnlp < € for all n > nq, some ny > ng. Thus, for all
Il <1 and n > ny,

/(m@¢+myﬂﬁ@m¢
cs

[ st bz, bl ) Iallol 4 [ 1L 11
ca ca

n n

< cslhnl2lele + cslzj, + halb | halplely + l2], [2lol2
< CeE
which, together with (5.34), implies (5.33) ending the proof. O

Let K :={z € E: ®'(z) = 0} denote the critical set of ®.

Lemma 5.8. Under the assumptions of Lemma 5.2, there hold

a) 0 :=inf{]|z]|: z€ L\ {0}}>0;
b) ¢ :=inf{P®(z) : z € K\ {0}} > 0 provided additionally in the asymptotically
linear case (As) also holds.

Proof. a) Assume there is a sequence (z;) C I\ {0} with z; — 0. Then

0=llz* = [ Relt.z)lf = 5.
Choose p > 2 such that (5.11) holds. Thus for any € > 0 small,

12j11* < elzil5 + Ce |2k
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which implies ||z, < ¢1C¢||2;]|P or equivalently ||z;]|*~? < ¢;C:, a contradiction.
b) Assume there is a sequence (z;) C K\ {0} such that ®(z;) — 0. Then

. zj = [ Rtz
o(1) = ®(z;) = ®(z;) — §CI) (25)7 /RR(t7 j) (5.35)
and
2i||2 = 2 (t, 25 2F —27). .
12 /RR (t,z5)(2 —25) (5.36)

Clearly (z;) is a (C')c=0 sequence, hence is bounded by Lemma 5.6.

First consider the super linear case. Using (5.35) and the notations defined in
the proof of Lemma 5.6, we see that, for any 0 < a < b and s > 2, fQ~(a b |z;]> — 0
and fQ~(b 00) |zj|* — 0 as j — oo. Therefore, as in the proof of Lemma 5.6, it follows

30y
from (5.36) that for any € > 0
limsup ||z;]|? < e,
Jj—00
contradicting to a).

Next consider the asymptotically linear case. Since ||z;| > 6 by a), (5.36) and
(5.11) imply that (z;) is nonvanishing. By the Z-invariance of ®, up to a translation,
we can assume z; — z € K\ {0}. Since z is a homoclinic orbit of (HS), z(t) — 0
as [t| — oo. Thus there is a bounded interval I C R with the measure |I| > 0 such
that 0 < |z(t)| < d for t € I by (A3). Now (5.35) implies

0> lim R t,2;) / R t,z)
j—o0

a contradiction. O

Let [r] denote the integer part of r € R, and F := (K \ {0})/Z, a set consisting
of arbitrarily chosen representatives of the Z-orbits. As a consequence of the above
lemmas, we have the following result (see [Coti-Zelati and Rabinowitz (1992); Ding
and Girardi (1999); Kryszewski and Szulkin (1998); Séré (1992)]).

Lemma 5.9. Assume that (Lo) and (Ro) are satisfied, and either (S1)-(S2) or
(A1)-(As) hold. Let (z;) be a (C)q-sequence. Then either

(i) zj — 0 (and hence ¢ =0), or

(ii) ¢ > ¢ and there exist a positive integer £ < [ﬂ, points Z1,--+ ,Z¢ € F, a
subsequence denoted again by (z;), and sequences (a?) C Z such that

¢

zZj — Z(aé *Ei)

i=1

— 0asj— o0

|a§»—af|—>oo fori#kasj— oo

and

4
Z d(Z) =
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Proof. See [Ding and Girardi (1999)]. It can be outlined as follows. Lemma 5.6
shows that (z;) is bounded: ||z;|| < M. In addition,

¢ = lim (cb(zj) . %cp/(zj)zj) = lim RR(t, zj) >0, (5.37)
and, as the proof of b) of Lemma 5.8, ¢ = 0 if and only if z; — 0 in E.

Assume ¢ > 0. The concentration principle implies that (z;) is either vanishing
or nonvanishing. By (5.11) and (5.12), choose p > 2 such that, for any € > 0 there
is C. > 0 satisfying R(t,2) < e\gM~2|z|? + C.|z|P. If (z;) is vanishing, then it
follows from (5.37) that, for € < ¢,

2
c= lim [ R(t,z) < lim <M + C’5|zj|p> <eg,
J—7X JR J—7X JR ]\42
a contradiction. Thus (z;) is nonvanishing and by the Z-invariance of ® we can
find a sequence (kj) C Z such that kf x z; — 2! € K\ {0}. Let z1 € F be the
representative in which z! lies, and let k' € Z be such that k' x z! = Z;. Set
I%]l =kl + kjl and zjl = I%]l % z; — Z1. By Z-invariance and Lemma 5.7, (zjl) is a
Cerami sequence at level c—®(Z1). By (i), c—®(Z1) > 0 which, jointly with Lemma
5.8-b), implies ¢ < ®(Z;) < c¢. There are two possibilities: ¢ = ®(Z1) or ¢ > ®(Z1).
If ¢ = ®(Z1), repeating the argument for (i) shows that zjl — 0 in F, conse-
quently, the lemma holds with £ = 1 and a} = —l%}.
If ¢ > ®(71), then we argue again as above with (z;) and ¢ replaced by (z}) and
¢ — ®(Z1) respectively, and obtain Zo € F with ¢ < ®(Z2) < ¢ — ®(Z1). After at
most [%] steps we arrive the desired conclusion. O

5.6 Proofs of the main results

We are now in a position to give the proofs of Theorems 5.1 and 5.2. In order to
prove the theorems we choose X = E~ and Y = E* with E* given in Section 5.3.
Then £ = X @Y and @ defined by (5.8) fit the general framework of Chapter 4,
which suggests the applications of Theorems 4.5 and 4.7.

Proof. [Proofs of Theorems 5.1 and 5.2] (Existence). In virtue of Lemma 5.2
and the form of ®, an application of Theorem 4.1 shows that ® satisfies ().
The expression (5.8) of ®, together with the nonnegativity of R(t, z), implies the
condition (®4). Lemma 5.3 is nothing but (®3), which jointly with Lemma 5.5
gives the linking condition of Theorem 4.5. Therefore, ® possesses a (C').-sequence
(zn)nen with &k < ¢ < sup @(Q) where k > 0 is from Lemma 5.2 and @ is the subset
given by Lemma 5.5. By Lemma 5.6, (2,) is bounded. Consequently, ®'(z,) — 0.
A standard argument shows that (z;,) is non-vanishing, that is, there exist 7, > 0
and (a,) C Z such that limsup,, f;n"j:
from the invariance of the norm and of the functional under the s-action that
lon]l = llzn]] < C and ®(v,) — ¢ > K, ®'(v,) — 0. Therefore v,, — v in E with

|2a|2 > 1. Set vy, = ap * 2z,. It follows
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v # 0 and ®’(v) = 0, that is, v is a nontrivial solution of (HS), and the existence is
proved.

(Multiplicity). We now establish the multiplicity. The proof will be completed
in an indirect way, namely, we show that if

K/Z is a finite set, (1)

then ® possesses an unbounded sequence of critical values, a contradiction. We do
this by checking that, if (1) is true then (@) verifies all the assumptions of Theorem
4.7.

The assumptions (®g) and (P2) have already been verified as above. By as-
sumption R(t, z) is even in z, hence ® satisfies (®1). Recall that dim(Yp) = oo. Let
(fx) be a base of Yy and set Y, := span{f1,..., fn}, Fn := E~ & Y,. With such a
choice of sequence of subspaces it follows from Lemma 5.4 that (®4) is satisfied. In
order to check (®5) assume () holds. Given £ € N and a finite set B C E, let

j
B, (] = {Z(ai*zi): 1<j<t,a,€Z, % EB}.
i=1
Following an argument of [Coti-Zelati, Ekeland and Séré (1990); Coti-Zelati and
Rabinowitz (1991)] one sees that
inf{||z —2'|| : 2,2 €[B, 4], 2# 2"} > 0. (5.38)
Recalling that F = (K \ {0})/Z, (1) implies that F is a finite set and, since &’ is
odd, we may assume F is symmetric. For any compact interval I C (0,00) with
b:=max/, set £ = [b/¢] and take o/ = [F,{]. Then Pto/ = [PTF, (] where Pt
stands for the projector onto E*. By (}), PTF is a finite set and
Izl < € max{||Z|| : z€ F} forze o
which implies that < is bounded. In addition, by Lemma 5.9, < is a (C') j-attractor,
and by (5.38),
inf{||z7 — 2z || : 21,20 €, 2] # 25}
=inf{||z — 2| : 2,2 € PT&, 2 # 7'} > 0.
This argument shows that ® verifies (®;), and the proof hereby is complete. O

5.7 Non periodic Hamiltonians

In this section we are interested in the system (HS) without assuming periodicity
conditions. The materials are taken from the paper [Ding and Jeanjean (2007)].

Below, For two given symmetric real matrix functions M (t) and Ms(t), we say
that Ml(t) S Mg(t) if

e (M(0) — Ma(t) €€ <0.

For convenience, any real number b will be regarded as the matrix bly when
matrices are concerned. We make the following assumptions:
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(Hp) There is b > 0 such that the set A := {t € R: JyL(t) < b} is nonempty and
has finite measure;

(H1) R(t,z) >0 and R.(t,2) = o(|z]) as z — 0 uniformly in ¢;

(H2) R.(t,z) = M(t)z+7,(t, z), with M a bounded, continuous symmetric 2N x 2N-
matrix valued function and r, (¢, z) = o(]z|) uniformly in ¢ as |z| — oc;

(Hs) mq = infiep [infgepen gj=1) M (¢ )& €] > inf o (A) N (0, 00);

(Hy4) Either (i) 0 & o(A — M) or (ii) R(t,z) > 0 for all (t,2) and R(t,z) > & for
some g > 0 and all (¢,z) with |z| large enough;

(H5) v < bmax, where v 1= Supy>y, .20 [R:(t, 2)|/|2| for some to > 0, and bpax =
sup{b: |A®] < oc}.

We will show that the set o(A) N (0, bymax) consists only of eigenvalues of finite
multiplicity. From the definition of my and v we have mg < v < bjae. Let £ denote
the number of eigenfunctions with corresponding eigenvalues lying in (0, m).

Theorem 5.3 ([Ding and Jeanjean (2007)]). Let (Hy) — (Hs) be satisfied.
Then (HS) has at least one homoclinic orbit. If in addition R(t,z) is even in z,
then (HS) has at least £ pairs of homoclinic orbits.

Remark 5.3. Let ¢ € C'(R, R) satisfy
(qo) There is b > 0 such that 0 < |Q®| < oo where Q” :={t € R: ¢(t) < b}.
Then L(t) = q(t)Jo satisfies (Hp).

In the works where H (¢, z) is periodic the periodicity is used to control the lack
of compactness due to the fact that (HS) is set on all R. In our situation we manage
to recover sufficient compactness by imposing a control on the size of R(t,z) with
respect to the behavior of L(t) at infinity in ¢, see condition (Hj).

The proof of Theorem 5.3 can be outlined as follows. We first study the
spectrum of the operator A showing, thanks to (Hy), that the essential spec-
trum oe(A) C R\ (—bmax;bmax). Based on the description on o(A), we derive
a variational setting for (HS) and represent the associated functional in the form
®(z) = 5 (272 = [|z7)1?) — Jg R(t, z) with ® being defined on the Hilbert space
E = 9(|A]Y?) — H'Y?(R,R?*M) with decomposition E = E~ @ E° @ Et,z =

~ 4+ 2% + 2t dim E* = co. We then show the linking structure of ®, that is,
inf ®(ET NdB,) > 0 for some p > 0 and there are finite dimensional subspaces
Y C E7 such that ®(u) — —oo as ||u|| — oo in By := E~ @ E° @Y. Subsequently
we show that the Cerami condition for ® holds. Since E° maybe nontrivial this
require some care. Finally, we arrive at the proof of Theorem 5.3.
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5.7.1 Variational setting

In order to establish a variational setting for the system (HS) we first study the
spectrum of the associated Hamiltonian operator.

Recall that A = — (74 + L) is selfadjoint on L*(R, R?*") with domain Z(A) =
HY(R,R?N) if L(t) is bounded and 2(A) C H'(R,R?Y) if L(t) is unbounded.
Observe that Z(A) is a Hilbert space with the graph inner product

(z,w)a = (Az, Aw)p2 + (z,w) 2
and the induced norm |z]4 := (z, z)}f.

Set Ag := J4 + Jy which is a selfadjoint operator acting on L?(R,R*") with

PD(Ag) = HY(R,R*Y) and satisfies A2 = —% + 1. Plainly,

||[Ao|z]2 = |Aoz|2 = ||2||gr  for all z € H! (5.39)
where |Ag| denotes the absolute value of Ay as usual.

Lemma 5.10. The condition 2(A) C HY(RY,R*N) implies that there is v1 > 0
such that

Izl g = [|Aolz]2 < y1lz|la  for all z € 2(A). (5.40)

Proof. Let A, be the restriction of Ag to Z(A). A, is a linear operator from
9(A) to L?. We claim that A, is closed. Indeed, let z, (HEY z and A,z, LIz w.
Then z € 2(A), and since Ag is closed, Az, = Aoz, — Aoz = A,z, hence the
claim. Now the closed graph theorem implies that A, € Z(2(A),L?) (the Banach
space of bounded linear operators), so |Apz|a = |A,z]|2 < 71]2|a for all z € P(A).
This, together with (5.39), implies (5.40). O

Let o(A), 04(A) and o.(A) denote, respectively, the spectrum, the eigenvalues
of finite multiplicity, and the essential spectrum of A. Set

py =sup (0c(A) N (—00,0]), pb :=inf (0c(4)N[0,00)).

Proposition 5.2. Assume (Hy) is satisfied. Then .(A) C R\ (—bmax, bmax), that
is, fi; < —bmax and pF > bmax.

Proof. Let b > 0 be such that |A®| < co. Set

{ JoL(t) —b if JoL(t) —b>0

(BL(t) = )" :=q if JoL(t) — b <0

and (JoL(t) — b))~ = (JoL(t) — b) — (JoL(t) — b)*. We have, since j02 =1,
A=A, — jo(JQL(t) — b)i where

d
A =— (j% + Jo(JoL — b)+) = bJo-
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Observe that JoJ = —J Jo. Thus, for z € 2(A),
d
<JE + Jo(JoL — b)Jr) z+bJoz

2
(Alz, Alz)Lz :|Alz|§ =

2
2

+ 02|23
2

=+ (\7‘27 bjOz)LQ + (bjOZ, jZ)Lg
+ (Jo(JoL = b)* 2, boz) 2 + (002, To(ToL —b)"2) 1

2
+b?|2[3
2

d
= ‘ (J% + Jo(JoL — b)+) z

(5.41)

d
_ ‘ <JE + DTk~ b)*) :

+26((JoL — b) Tz, 2)p2
>b°|2[3 .
Here we have used the fact that (72, bJ0z)2 + (bJoz, J2);2 = 0. Indeed for
z = (u,v) € C§° one has
(T2, bJ02) 2 + (bToz, T2) 2
= 2b/(au —ov) = b/ i(u2(t) —2(t)))
R r dt
— b Jim (Ju(®)? ~ [u(~0)]? ~ (O + [o(~D)[) =0.
Thus, since C§° is dense in E we get the result. Now (5.41) implies that o(A41) C
R\ (=b,b).
We claim that oe(A) N (—=b,b) = 0. Assume by contradiction that there is
A € oo(A) with |A| < b. Let () C 2(A) with |z,]2 = 1, 2, — 0 in L? and
[(A— N)zn|2 — 0. It follows from (5.40) that
znllern < e1lzn]a = er (4203 + |Zn|§)1/2 <e([(A=Nzals + 2% + 1)1/2 < ¢s,
hence |Jo(JoL — b) " zp]2 — 0. We get
o(1) = (A= Nznla = |A12n — Az — To(JoL — b) " 2|2
> |A1zp|2 — |A| — o(1)
>b— A —o(1)
which implies that 0 < b — |A| < 0, a contradiction.

Since the claim is true for any b > 0 with |[A®| < oo, one sees that o.(A) C
]R\ (_bmax; bmax)- D

Remark 5.4. a) If L(t) satisfies: |[A®| < oo for any b > 0, then, as a consequence
of Proposition 5.2, u; = —oo and pt = oo, that is, 0(A) = g4(A).

b) Let L(t) = q(t)Jo with ¢(t) satisfying (go). Then o.(A4) C R\ (—bmax, Dmax)-
Moreover, o(A) is symmetric : 6(A) N (—o0,0) = —o(A) N (0,00) (see the proof of
Proposition 5.1). In particular, letting 0 < A1 < Ay < ... < \i be all the eigenvalues
below inf o, (A2%) of A2 {:I:/\jll/2 : j=1,...,k} are all the eigenvalues in (u_, put) of
A. Therefore, one obtains the eigenvalues of A from those of A2 = — ;—; +¢*+qT T
which can be calculated via the minimax principle.
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Note that since 0 now may belong to o(A), we need more arguments for getting
the suitable variational framwork.

Let {F) : A € R} denote the spectral family of A. A has the polar decomposition
A=U|A| with U =1— Fy — F_¢ (see [Kato (1966)]). Proposition 5.2 implies that
0 is at most an isolated eigenvalue of finite multiplicity of A. L? has the orthogonal
decomposition:

I’>=L L’ Lt, z2=2"4+2"+2"

so that A is negative definite (resp. positive definite) in L~ (resp. L*) and L° =
ker A. In fact, L* = {2 € L? : Uz = 4z} and L® = {z € L? : Uz = 0}. It follows
from

(zt, 27 = Uzt 27 )2 = (21, Uz )2

+ —

=t =2 )= (21,27 )

that LT and L~ are orthogonal with respect to the L2-inner product. Similarly one
sees that L* and L° are orthogonal with respect to the L2-inner product.

Let P° : L2 — L° denote the associated projector. P° commutes with A and
|A]l. On Z(A) we introduce the inner product

(z,w) 2 :=(Az, Aw) 2 + (P°z, P'w) -
=(|A|z, |A|w) 2 + (P2, w) 2

whose deduced norm will be denoted by ||z|| 4. It is clear that |- |4 and || - |4 are
equivalent norms on Z(A):

Yolzla < ||z]la < v3lz|la for all z € Z(A).
Define
A:=|A| + P°.
Then 2(A) = 2(A). Noting that P°|A| = |A|P° = 0 we have for z,w € 2(A),

(AZ7AU))L2 = (|A|Z7 |‘4|UJ)L2 + (|A|Z7P0w)L2 + (Pozv |"4|’w)L2 + (POZ,PO’LU)L2
= (|Alz, |Ajw) 2 + (P°z, PPw) 2 = (z,w) 4,

hence,
Yaolzla < ||z]|a = |Az|2 < y3|z|a  for all z € 2(A). (5.42)

Let E := 2(|A|'/?) be the domain of the self-adjoint operator |A|'/2? which is a
Hilbert space equipped with the inner product

— 1/2 1/2 0, po
) - ) L )
(z,w) = (|A]"/“z,|Al"/“w) L2 + (P2, PPw) 2
and the induced norm ||z|| = (z, 2)'/2. E possesses the following decomposition

E=E @®E°®E" with Ef=ENL* and E° = L°,
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orthogonal with respect to both the inner products (-,-)r2 and (+,-). Observe that
for all z € 2(A) and w € 2(]A|'/?)

(3122, A2w) 12 = (A, w) s = ((JA] + POz, w) g2 = (Al w) g2 + (P2, w) o
= (|A]'22,|A[V2w) 2 + (P02, P'w) 2 = (2, w).
Consequently, since Z(A) = 2(A) is a core of A'/? we have
(z,w) = (AY22, AY?w) > for all z,w € Z(|A|'/?)
which induces in particular that
|z|| = |AY2z|, forall z € E. (5.43)

Lemma 5.11. E embeds continuously into Hl/z(}R7 R2N), hence, E embeds contin-
uwously into LP for all p > 2 and compactly into LY  for all p > 1.

loc

Proof. Firstly, by interpolation theory we have that H'/? = [H', L%, (see
Theorem 2.4.1 of [Triebel (1978)]). Noting that 2(|A40|°) = L? and by (5.39) one
has

HY2 = [2(|40)), 2(140|°)]1 2

with equivalent norms. It then follows from Theorem 1.18.10 of [Triebel (1978)]
that

H'Y? = [2(1Aol), 2(1A|")1j2 = 2(]Ao|'?),
hence ||z||g1/2 and ||Ag|'/?z|; are equivalent norms in H'/2:
vallzllze < |[AoY?2l2 < ysll2ll 12 for all z € HY/2. (5.44)
By (5.40),
140/l < 71| Azl = [(11A)z]2

for all z € 2(A). Thus (|Ag|z, 2) 2 < (11 Az, 2) 12 for all z € P(A) (see Proposition
IIT 8.11 of [Edmunds and Evans (1987)]). This implies

1401 %2[5 = (| Aol 2) 12 < (A2, 2) 2 = 1 |AY22]3

for all z € P(A) (see, Proposition III 8.12 of [Edmunds and Evans (1987)]). Since
P(A) is a core of A'/? we obtain that ||Ag|'/22|3 < ~v1|AY/?2|3 for all z € E. This,
jointly with (5.43), shows that

[ A|Y%2|2 < y1||z||* forall z e E
which, together with (5.44), implies that
Izl g1/2 < 6ll2|| forall z € E

ending the proof. O
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From now on we fix a number b with
v < b < bmax (5.45)

where v appears in (Hs). Let k be the number of the eigenfunctions with corre-
sponding eigenvalues lying in [—b, b]. We write f; (1 < i < k) for the eigenfunctions.
Setting

LY :=span{fi, -, fr},
we have another orthogonal decomposition
=L@ L uw=u+u’.
Correspondingly, E has the decomposition:
E=E'¢ E°® with E4=L%and E° = ENL®, (5.46)

orthogonal with respect to both the inner products (-,-)z2 and (-,-). Remark that
by Proposition 5.2

blz|3 < ||z||? for all z € E*. (5.47)
On E we define the functional
1 1
D(z) := §||z+|\2 - §Hz_||2 — U(z) where ¥(z) = / R(t, z). (5.48)
R

Our hypotheses on H(t, z) imply that ® € C1(E,R) and a standard argument shows
that critical points of ® are homoclinic orbits of (HS).

Lemma 5.12. Let (Hy) — (H2) be satisfied. Then U is non-negative, weakly se-
quentially lower semi-continuous, and V' is weakly sequentially continuous.

Proof. It is similar to that of Lemma 5.2, hence the details are omitted. g

5.7.2 Linking structure

We now study the linking structure of ®. Remark that under (H;) — (Hz), given
p > 2, for any € > 0, there is Cc > 0 such that

|R.(t,2)| < elz] + CelzP~!
and
R(t,z) <e|z|* + C.|z|P (5.49)

for all (¢,2). First we have the following lemma.

Lemma 5.13. Let (Ho) — (Hz) be satisfied. Then there is p > 0 such that k =
inf ®(S}) > 0 where S} = 0B, N E™.
Proof. Choose p > 2 such that (5.49) holds for any € > 0. This yields
U(z) < elzf + Cel2lh < Clellz]|* + Cell=|1”)
for all z € E. Now the lemma follows from the form of ® (see (5.48)). O
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In the following, we arrange all the eigenvalues (counted with multiplicity) of A
in (0,mg) by 0 < 1 < po < ... < pg < mgp and let e; denote the corresponding
eigenfunctions: Ae; = pje; for j =1,...,¢. Set Yy := span{es, ...,e,}. Note that

p|w]3 < JJw|]? < pelw]?  for all w € Yy. (5.50)
For any finite dimensional subspace W of Yy set Eyy = E- @ E°C @ W.

Lemma 5.14. Let (Hy) — (Hs) be satisfied and p > 0 be given by Lemma 5.13.
Then for any subspace W of Yy, sup ®(Ew ) < oo, and there is Ry > 0 such that
O(z) < inf ®(B, NET) for all z € Ew with ||z|| > Rw.

Proof. 1t is sufficient to show that ®(z) — —o0 as z € Ew, ||z|| — co. Arguing
indirectly we assume that for some sequence (z;) C Ew with ||z;|| — oo, there is
¢ > 0 such that ®(z;) > —c for all j. Then, setting w; = z;/||z;||, we have ||w;|| =1,

wj = w, w; 4w,w9—>w®,wj—>w €Y and
c O(z;) 1 9o 1. g R(t,z;)
- < = Sllw I = Sllwy [1? — - (5.51)
lzil* = llz0* 2 2 LAk

We claim that w* # 0. Indeed, if not it follows from (5.51) and (Hy) that [w; || — 0

and thus w; — w = w’. Also [, & T ¢, zlj) — 0.

Recall that R(t,z) = $M(t)z - z + r(t,z) and r(t,z)/|z|*> — 0 uniformly in ¢ as
|z| — co. Thus, since |z;(t)| — oo if w(t) # 0,

/T(tvzj) _/r(t,zj)|w‘|2
2 2 J
r 1%l |21

(¢, Ir(t, z5)| )| 2, |r (t, zJ

< [ it ot + [ 125 (5.52)
— (1) +/ Irt,24)| |w|2 — o(1).
w(t)#£0 |2
Also, by (Hs),
M M ZJ 2 mo 2

= |5 5.53
/ ||Zj||2 / | J| 2 |’LU]|2 ( )

From (5.52)-(5.53) and since fR B &, ﬁg) — 0 it follows that |w;|s — 0. Then 1 =
lw;|| — 0 and this contradiction 1mphes that wt # 0. Now since

lw*]* = Jlw]* - /RM(t)w cw < Jlw | = [lw[* = molw]3

< = ((mo = po)|w™ |3 + [[w™ | + molw’[3) <0

(see (5.50)), there is a > 0 such that

w2 = [lw™|? = [ M@Ew-w < 0. (5.54)

—a
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As in (5.52) it follows from the fact |w; —w|p2(—q,q) — 0 that

a ) a . 12
imo ) a llzll? = e 12l
Thus (5.51) and (5.54) imply that

1 * R(t, z;
0< im (Lt - gy 2 - [ HE2)
Jj—o0 2 J —a

a

1 _
<5wa%4wﬁ— Migww) <o

—a

a contradiction. O

As a special case we have

Lemma 5.15. Let (Hp) — (Hs) be satisfied and k > 0 be given by Lemma 5.13.
Then, letting e € Yo with ||e|| = 1, there is ro > 0 such that sup ®(0Q) < k where
Q={u=u"+ul+se: u+u e E-®E%s>0,|ul <r}.

5.7.3 The (C)-condition
Here we discuss the Cerami condition.

Lemma 5.16. Let (Hy) — (H2) and (Hy) — (Hs) be satisfied. Then any (C)e-
sequence is bounded.

Proof. Let (z;) C E be such that
B(z;) = c and (1+ [|z])®'(z;) — 0. (5.55)
Then, for a Cy > 0,

Co > ®(z5) — —<I> (2j)% /R t,z2;) (5.56)

To prove that (z;) is bounded we develop a contradiction argument related to
the one introduced in [Jeanjean (1999)]. We assume that, up to a subsequence,
lzj]| — oo and set v; = z;/||z;||. Then ||v;|| = 1, |vjls < 7sl|vj]| = 75 for all

€ [2,00), and passing to a subsequence if necessary, v; — v in E, v; — v in Lj

for all s > 1, v;(t) — v(t) for a.e. t € R. Since, by (H2), |r:(t,2)| = o(2) as |z] — o0
uniformly in ¢ and |2;(t)| — oo if v(t ) 75 0, it is easy to see that

R.( tzj /M
||Zy||

for all p € C§°(R, RgN). From this we deduce, using (5.55), that

J%v + (L(t) + M(t))v = 0. (5.57)
Multiplying (5.57) by J =1 = —J we also get
iv =J(L(t) + M(t))v. (5.58)

dt
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We claim that v # 0. Arguing by contradiction we assume that v = 0. Then
’UJ — 0in E and v; — 0in Lj .. Set Iy := (—to,to) and I§ := R\ Iy where t; >0
is the number given in (Hs). It follows from

(b/(zj)(szr — z; R, t ZJ FT?)|U‘|
12512 |zJ| !
that
R.(t, z;) _
[o§[I> = [ == (05t — o5 )|
J I |zJ| J J J
R.(t,z; _
+ M(v;* — v )|v;| +o(1)
I¢ |23]
< C/ |vj|Jo5* — v | +7/ o [[v5™ — w57 | + o(1)
Io Ig
< A[w§[3 + o(1).

By (5.47) one gets
v el2
— D) g2 <
(1= ) 512 < o),

which implies, by (5.45), that [[v¢]|* — 0. Hence 1 = [|v;||* = [[of[|* + [|[v$]|* — 0, a
contradiction.

Therefore, v # 0 which is impossible if (i) of (H4) is satisfied. Thus we assume
(1) of (Ha). Let Q;(0,7) :=={t e R: |z;(t)] <7}, Q(r,00) :={t € R: |z;(t)] > r},
and set for » > 0

g(r) :=inf {R(t, z): t€Rand z € R* with |z| > r} )

By assumption there is 79 > 0 such that g(r9) > 0, hence one has by (5.56) that
12 (ro, 00)| < Co/g(ro). Set Q := {t: wv(t) # 0}. Since v satisfies (5.58) it follows
from Cauchy Uniqueness Principle that 2 = R. Indeed otherwise v = 0 on R
contradicting the fact that v # 0. Now since |Q2| = oo there exists € > 0 and w C Q2
such that |v(t)| > 2¢ for ¢ € w and 2Cy/g(r¢) < |w| < co. By an Egoroff’s theorem
we can find a set w’ C w with |w'| > Cy/g(ro) such that v; — v uniformly on w’.
So for almost all j, |v;(t)| > e and |z;(¢)| > r in w’. Then

OO ’ OO
< |W'| <192(r,00)| < ——,
ooy < 1= 1B = g

a contradiction. O

In the following lemma we discuss further the (C).-sequence (z;) C E. By
Lemma 5.16 it is bounded, hence, we may assume without loss of generality that
zj = zin E, zj — z in L} for ¢ > 1 and z;(t) — z(t) a.e. in ¢t. Plainly z is a
critical point of .
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Choose p > 2 such that |R,(t,2)| < |z| + C1]z|P~? for all (¢,2), and let g stands
for either 2 or p. Set I, := [—a,a] for a > 0. As (5.29) we see easily that along a
subsequence, for any € > 0, there exists r. > 0 such that

limsup/ |2;,]9 < e (5.59)
I\,

for all » > re. Let 1 : [0,00) — [0,1] be a smooth function satisfying n(s) = 1 if
s <1,n(s) =0if s > 2. Define z,(t) = n(2|t|/n)z(t) and set h,, := z — Z,. Since z
is a homoclinic orbit, we have by definition that h, € H* and

|hn] — 0 and |hyleo — 0 asn — oo. (5.60)
Repeating the argument of (5.32) we see that, under (Hp) — (Hz) and (Hy) — (Hs),
lim / (Ro(t, 25,) — Rot, 25, — ) — Rolt.2) 0| =0 (5.61)

n—oo R

uniformly in ¢ € F with ||¢|| < 1. Then we have
Lemma 5.17. Let (Hy) — (H2) and (Hy) — (Hs) be satisfied. Then

1) ®(zj, —2n) — c— O(2);
2) ®'(zj, —2Zn) — 0.

Proof. One has
D(zj, — Zn) = 0(25,) — ©(Zn)
+ / (R(t, 2;,) — R(t, 25, — Zn) — R(t, 2n)) .
R

Using (5.60) it is not difficult to check that

/R (R(t25.) — R(t, 25, — 3n) — R(t, 2n)) — 0.

This, together with ®(z;,) — ¢ and ®(2,) — ®(z), gives 1).
To verify 2), observe that, for any ¢ € E,

(25, — Zn)p = O'(z5,)p — ¥ (Zn)g
+/ (Ra(t 23,) = Balt, 2, = 20) = Ra(t20) ).
R
By (5.61) we get

lim [ (Ra(t25,) = Re(t: 2, — 50) = Ralt0) )9 = 0

n—oo R

uniformly in ||| < 1, proving 2). O

Lemma 5.18. Let (Hy) — (H2) and (Hy) — (Hg) be satisfied. Then ® satisfies the
(C)c-condition.
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Proof. In the following we use the decomposition £ = E? @ E¢ (see (5.46)).
Recall that dim(E9) < co. Write

Yn = Zj, — Zn = yg"’yfr

Then yd = (24 — 2% + (2 — Z) — 0 and, by Lemma 5.17, ®(y,) — ¢ —
®(2), ®'(y,) — 0. Set §¢ = y<+ — y¢~. Observe that

o1) = & (ya)g% = WS — / Rty
R
Thus it follows that

Rt yn)l, o IR (t,yn)
Hy7i||2 SO / | |n | 7’L|| n|+ | |n | n|| n|
Yn Yn

o) e | lyallg] + / |yn||yn

Io

o(1) +7lynl3 < o(1) + ||Z/n||2
Hence (1 — 2)[lyg||> — 0, and so ||y,|| — 0. Remark that z;, — 2z = y, + (Z, — 2),
hence ||z;, — z|| — 0. This ends the proof. O

5.7.4 Proof of Theorem 5.3

First we have
Lemma 5.19. ® satisfies (Dp).

Proof. We first show that ®, is 7s-closed for every a € R. Consider a sequence
(2n) in @, which Zs-converges to z € E, and write 2z, = z,, + 20+ 25,2 =27 +20+

z*. Observe that (z,7) converges to z* in norm. Since ¥ is bounded from below it
follows from

1, _ 1
Szl = S0P = @) — W) < C

that (2, ) is bounded, hence it converges weakly towards z~. Since dim E® < oo,
the 7s-convergence coincides with the weak convergence. Therefore z,, — z. From
Lemma 5.12 and the form of @ it follows that ®(z) > liminf ®(z,) > a, so z € ®,.
Next we show that @' : (®,,7s) — (E*, T,+) is continuous. Suppose (z,) Ts-
converges towards z in ®,. As above it follows that (z,) is bounded and converges

weakly towards z. Then ®'(z,,) w ®’(z) by Lemma 5.12. O
Also we have
Lemma 5.20. Under (Hy) — (Hs), for any ¢ > 0, there is ¢ > 0 such that :
Izl < CllzT||  for all z € ..
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Proof. We assume by contradiction that for some ¢ > 0 there is a sequence (z,)

with ®(2,,) > ¢ and ||z,||* > n||z,7||2. The form of ® implies

lom 4222 2 (= Dl = (n - 1) (2c+ el +2 [ R zn>) |
R

or

Izl > (n = 1)2e + (n = 2)l|2; [I* + 2(n — 1) / R(t, zn).
R

Since ¢ > 0 and R(t,z) > 0, it follows that [[20| — oo, hence ||z, — oo. Set

Wy, = 2n/||2n]|- We have ||w||? <1/n — 0. By

(n—1)2c _ R(t, zp)

we also have |lw, ||> < 1/(n—2) — 0. Therefore, w, — w = w® in F and [|w°|| = 1.

Recall that R(t, z)
Therefore, since |z, (t)| — oo for w(t) # 0,

/T(tazn) :/ T(tazn)|w |2+/ T(tazn)|w _w|2
R lznl®  Juwzo |2nl? wity=0 |znl®

t,zn
§2/ Ir(t; zn)] 722)||w|2+c|wn—w|§—>0.
w(t)#£0 |2n|

This implies

| /R(t,m L /r(t,m
> =— [ M{t)w, -w, +
D) = e 2 MW PE

m
> lwal3 +o(1),

consequently, w® = 0, a contradiction.

TM(t)z - z + r(t, 2) with |r(t,2)|/|z|> — 0 as |z| — ooc.

O

Proof. [Proof of Theorem 5.3] (Existence). With X = E_ & E® and Y = E, the
condition (®g) holds by Lemma 5.19 and (®4) holds by Lemma 5.20. Lemma 5.13
implies (®2). Lemma 5.15 shows that ® possesses the linking structure of Theorem
4.5. Finally, ® satisfies the (C).-condition by virtue of Lemma 5.18. Therefore,

has at least one critical point z with ®(z) > k > 0.

(Multiplicity). Assume moreover that R(¢, z) is even in z. Then @ is even hence
satisfies (®1). Lemma 5.14 says that & satisfies (®3) with dim Yy = ¢. Therefore,

® has at least ¢ pairs of nontrivial critical points by Theorem 4.6.

O



Chapter 6

Standing waves of nonlinear
Schrodinger equations

This chapter is devoted to the study on existence and multiplicity of solutions to
the nonlinear Schrodinger equations. In the first five sections we treat standing
waves of a single equation with periodic potential and nonlinearity and 0 lying in
a gap of spectrum of the Schrédinger operator, and in the last section we handle
semiclassical states of a (Hamiltonian) system of perturbed Schrodinger equations.
The nonlinear couplings are assumed to be either asymptotically linear or super
linear.

6.1 Introduction and results

We consider the following nonlinear Schrédinger equation
{ ~Au+V(x)u = g(z,u) forz € RY

u(x) — 0 as |z| — oo

(NS)

where V : RN — R is a potential and ¢ : R x R — R a nonlinear coupling which
is either asymptotically linear or super linear as |u| — oo.

The equation (NS) arises when one seeks for the standing wave solutions of the
following nonlinear Schrédinger equation

dp h?
ihor = —5 B¢+ W(z)p — f(z,|¢])e. (6.1)
A standing wave solution of (6.1) is a solution of the form ¢(x,t) = u(x)e™

It is clear that ¢(z,t) solves (6.1) if and only if u(z) solves (NS) with V(z )
22 (W(z) — E) and g(z,u) = 22 f(z, |[u])u.

The Schrodinger equation with periodic potentials and nonlinearities has found
a great deal of interest in last years because not only it is important in applications
but it provides a good model for developing mathematical methods, see, e.g., [Alama
and Li (19921); Ackermann (2004); Alama and Li (19921II); Bartsch and Ding (1999);
Buffoni, Jeanjean and Stuart (1993); Chabrowski and Szulkin (2002); Costa and
Tehrani (2001); Coti-Zelati and Rabinowitz (1992); Ding and Li (1995); Ding and
Luan (2004); Heinz, Kiipper and Stuart (1992); Jeanjean (1994); Kryszewski and

67
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Szulkin (1998); Li and Szulkin (2002); Troestler and Willem (1996); Van Heerden
(2004); Willem and Zou (2003)] and the references therein. It is known that for
periodic potentials the spectrum o(A) of the operator A := —A + V selfadjoint on
L?*(RY) is a union of closed intervals (cf. [Reed and Simon (1978)]). There have
been many results on existence and multiplicity of solutions of such an equation
depending on the location of 0 relative to o(A), among which we recall the following
ones.

Case 1. 0 < info(A). In [Coti-Zelati and Rabinowitz (1992)] Coti-Zelati and
Rabinowitz proved via a mountain-pass argument that (NS) has infinitely many
solutions provided g € C?(RY x R,R) and satisfies the superlinear condition: there
is |t > 2 such that

0 < pG(z,u) < g(z,u)u for allz € RN and u € R\ {0} (6.2)

and the subcritical condition: there is s € (2,2*%) such that
|gu(z,u)] < e+ 62|u|572 for all (z,u) € RN x R. (6.3)
Here (and in the following) G = [y gz t)dt, 2* = 00 if N = 1,2, 2% =
2N/(N —2) if N > 3, and ¢ denote positive constants. This result was shown

recently in [Ding and Luan (2004); Van Heerden (2004)] to remain true for more
general nonlinearities, particularly, for asymptotically linear ones.
Case 2. 0 lies in a gap of o(A), that is,

A = sup (0(A) N (—00,0)) < 0 < A :=inf (0(A4) N (0, 00)) (6.4)

Assume again (6.2) and (6.3) are satisfied. If G(x,u) is strictly convex, existence
and multiplicity of solutions of (NS) were established in Alama and Li [Alama and Li
(19921)], Alama and Li [Alama and Li (1992II)] and Buffoni et al. [Buffoni, Jeanjean
and Stuart (1993)] by virtue of a mountain-pass reduction. Without the convexity,
by using a generalized linking argument together with a weaker topology setting,
Troestler and Willem [Troestler and Willem (1996)] and Kryszewski and Szulkin
[Kryszewski and Szulkin (1998)] obtained the existence, and multiplicity provided
g(z,u) is odd in u, of solutions of (NS). See also [Ackermann (2004); Chabrowski
and Szulkin (2002); Ding and Li (1995)].

Case 3. 0 is a boundary point of a gap of o(A), precisely, 0 € o(A) and (0, A) N
o(A) = (. Under (6.2), together with some other conditions, Bartsch and Ding
[Bartsch and Ding (1999)] found at least one nontrivial solution, and infinitely
many solutions provided moreover g(x, u) is odd in u. The existence result was later
extended to a slightly more general superlinear case in Willem and Zou [Willem and
Zou (2003)].

Observe that the conditions (6.2)-(6.3) play an important role for showing that
any Palais-Smale sequence is bounded in the works.

A case different from the above is that 0 lies in a gap and neither G(x,u) is
convex nor (6.2) holds. This case is difficult because the mountain-pass reduction
of [Alama and Li (1992I)] is not available on one hand, and it is not known if the
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Palais-Smale sequences are bounded on the other hand. We choose this case as the
object of the present chapter.

Firstly we handle the asymptotically linear problem. In what follows, G (z, u) :=
19(z,u)u — G(z,u) and Ao := min{—A, A} where A and A are the numbers given
by (6.4). Assume

(Vo) V(z) is 1-periodic in x; for j =1, ..., N such that 0 € o(—A + V);

(No) g(z,u) is 1-periodic in z; for j = 1,..., N, G(z,u) > 0 and g(x,u) = o(Ju|) as
u — 0 uniformly in z.

(N1) g(z,u) — Voo (2)u = o(|u|) as |u| — oo uniformly in z with inf Vo > A;

(N2) G(xz,u) > 0, and there is §y € (0, \g) such that C:'(gmu) > 09 whenever
g(z,u)/u> o —dp.

In [Li and Szulkin (2002)] it was proved that if (V5) and (Ng) — (N2) hold then
(NS) has at least one solution. Observe that, due to the periodicity of V and g,
if u is a solution of (NS), then so is k * u for each k = (ki,...,kx) € Z" where
(k*xu)(x) = u(x+ k). Two solutions uq and usy are said to be geometrically distinct
if k*up # ug for all k € ZV. We will prove the following multiplicity result.

Theorem 6.1 ([Ding and Lee (2006)]). Let (Vy) and (No) — (N2) be satisfied.
Then (NS) has at least one solution. If moreover g(x,u) is odd in u and, for some
§ > 0, G(z,u) > 0 whenever 0 < |u| < &, then (NS) possesses infinitely many
geometrically distinct solutions.

Next we deal with the superlinear case. Assume

(N3) G(z,u)/u® — oo as |u| — couniformly in ;
(Ng) G(z,u) > 0 if u # 0, and there exist rg > 0 and ¢ > max {1, N/2} such that
lg(z,u)|7 < oGz, u)|ul? if |u| > ro.

Theorem 6.2 ([Ding and Lee (2006)]). Under the conditions (Vp),(No) and
(N3) — (Na), (NS) has at least one nontrivial solution. If in addition g(z,u) is
odd in u then (NS) possesses infinitely many geometrically distinct solutions.

Before going on some nonlinear examples and comments on the assumptions are
in order.

The following function is odd and satisfies all the asymptotically linear condi-
tions (Ng) — (N2) :
Ezxl. g(z,u) = Voo(x)u (1 — m
1,...,N with inf Vo > A.

) where V() is 1-periodic in z; for j =

Another asymptotically linear example is the following

Ez2. g(z,u) = h(z,|u|)u, where h(z,s) is 1-periodic in z; and increasing for s €
[0,00), and h(z,s) — 0 as s — 0 and h(z,s) — Vo(x) as s — oo with
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Voo () > A uniformly in .

Clearly, Ex2 satisfies (Ng) — (N2).
Examples satisfying the superlinear conditions (Ny) and (N3) — (N4) are the
following functions with Vo (z) > 0 and being 1-periodic in «; :

Ez3. g(z,u) = Voo (z)uln(l + |u]),
Ez4. G(z,u) = Voo(x)(|u|” + (p = 2)Ju|r< sin? (1 )) where 1 > 2,0 <e<p—2
if N=1,2and 0<e< i+ N —Np/2if N > 3.

€

Remark that these functions do not satisfy (6.2). For getting more examples satis-
fying the superlinear conditions we show the following

Lemma 6.1. The assumption (N4) holds provided g(z,u) satisfies :

(1°) there exist r1 >0 and p € (2,2%) such that |g(z,u)| < c1|ulP~t if |lu| > r;
(2°) 2G(z,u) < g(z,u)u if u # 0, and there exist 1 > 0,v > 0 withv <2 if N =1,
v<N+p—pN/2if N> 2, such that
1 1
G(z,u) < (5 - W) gz, w)u if |u] > ry.
Proof. By (2°), G(x,u) > 0 if u # 0 which implies G(z,u) > cu?, hence
g(z,u)u > 2cu?, for |u| > 1. It follows from also (2°) that
g(@, u)u < G(x,u)
Colul”
for |u| large. Consequently
2cful™" _ g(x,u)

u ~
o S ol < G(z,u)

which implies G(x,u) — o0 as |u| — oo uniformly in 2 because v < 2. Observe
that, for |u| large,

9@ 0)I° < eGlauul” = LW ¢ G )

clul2e
1 (g(z,u)u)”!
< (Z_ MY\
— G(z,u) < (2 Tu g(z,u)u
(g(z,w)u)” 1 G(z,u)
M 2
D clul?e ~ 2 g(z,u)u
Set o = (p—v)/(p—2). Then ¢ > N/2, and by (1°)
(9(z, w)u)”! 1 _ 1
C|u|20 = a1|u|20—p(0—1) - a1|u|l/’
by (2°)
1 < 1 G(z,u)
colul” =2 g@,u)u

Hence (INVy4) holds. O
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It is apparent that if g(z, u) satisfies (6.2)-(6.3) than it satisfies (1°)—(2°), hence
(N3) — (N4). This fact, together with the examples Ex3 and Ex4, shows that the
superlinear assumptions of Theorem 6.2 are indeed more general than (6.2)-(6.3).

6.2 Preliminaries

Assume that (V) holds and let as before A = —A + V, the selfadjoint operator
acting on L*(RY,R) with domain 2(A) = H*(RY,R). Then (NS) can be rewritten
as an equation in L?(RY R)
Au = g(z,u). (6.5)
In virtue of (V) we have the orthogonal decomposition
=RV R =L a&L", u=u +u"
such that A is negative (resp., positive) in L™ (resp., in L™).
Let E = 2(|A]'/?) be equipped with the inner product
(u,0) = (|A]/2u, |A]Y20) 1
and norm ||u|| = ||A|'/?uly where (-,-)z> denotes the inner product of L2. By (Vp),
E = H'(RY,R) with equivalent norms. Therefore £ embeds continuously in L? for
all p > 2 with p < 2* if N > 3, and compactly in L} for all p € [1,2*). In addition
we have the decomposition
E=E- ®Et where Ex=ENL™*,
orthogonal with respect to both (-,-)r2 and (-, ).
On E we define the functional

1 1
O(u) := §||u+||2 - §||1f|\2 — U(u) where Y(u)= G(z,u).
RN
Note that
—Alul2 < ||u|?* forue E- and Alul2 < ||u||® forue ET (6.6)

(see (6.4)). The hypotheses on g imply that ® € C1(E,R) and a standard argument
invoking the representation (6.5) shows that critical points of ® are solutions of
(NS). We are seeking for critical points of ®.
Observe that, assuming (Np) holds and (N1) or (Ny) is satisfied, given € > 0,

there is C. > 0 such that

l9(z,u)| < elu| + CeluP~! (6.7)
and

|G (z,u)| < elul®+ Cclul? (6.8)
for all (z,u), where p > 2 in case (N1), and p > 20/(0 — 1) in case (N4). Remark
that in case (Ny), 20/(c — 1) < 2*. Using this fact and the Sobolev embedding
theorem one checks easily the following

Lemma 6.2. Let (V) and (Ny) be satisfied, and assume moreover (N1) — (N3)
or (N3) — (Ny) hold. Then U is non-negative, weakly sequentially lower semi-
continuous, and V' is weakly sequentially continuous.
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6.3 The linking structure

In this section we discuss the linking structure of the functional ®. Firstly we have
the following lemma.

Lemma 6.3. Under the assumptions of Lemma 6.2, there is v > 0 such that k :=
inf ®(S}) > 0 where S;f = B, NE*.

Proof. 1t follows from (6.8) and the Sobolev embedding theorem that, for any
€ > 0, there is Cc > 0 such that

U(u) < elufy + Celulp < Cleflul]® + Ceflull?)
for all v € E. This, jointly with the form of ®, implies the lemma. |

In the following, for the asymptotically quadratic case we set w = inf V,, and
for the superquadratic case we choose w = 2A. Take a number fi satisfying

A<ji<w. (6.9)

Since o(A) is absolutely continuous (cf. [Reed and Simon (1978)]), the subspace

Yy := (Pz — Po)L? is infinite dimensional, where (Py)xer denotes the spectrum
family of A. Note that by definition and (6.6)

Yo C BT and Aw|3 < ||w||* < flw|3  for all w € Y. (6.10)

For any finite dimensional subspace Y of Y set By = E~ @Y.

Lemma 6.4. Let the assumptions of Lemma 6.2 be satisfied. Then for any finite
dimensional subspace Y of Yy, sup ®(Ey) < oo, and there is Ry > r such that
®(u) < inf ®(B,) for all u € Ey with ||ul]| > Ry.

Proof. 1t is sufficient to show that ®(u) — —oo as u € Ey, ||lu|| — oo. Arguing
indirectly, assume that for some sequence u; € Ey with |u;|| — oo, there is M > 0
such that ®(u;) > —M for all j. Then, setting w; = u;/||lu ||, we have ||w;| =1,
wj — w, w; Aw*,w;’—wfr €Y and

T S T = gl P - gy - [ S

[l = Mgl

Remark that w' # 0. Indeed, if not then it follows from (6.11) that

(6.11)

1, _ G(z,uj) 1 M
0< Sllwy P+ | =5 < sllw/ I+ 75 =0,
27 [lugl> -~ 2 [ 1?
in particular, [[w; || — 0, hence 1 = [Jw;|| — 0, a contradiction.

First, consider the asymptotically linear case and assume (N7) holds. By (6.9)-
(6.10) again,

[ e [ /RN Voo (@)w? < JJw|? = ™ |* — w]wl3

< = ((w—=mwt3+[lw|?) <0,
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hence, there is a bounded domain Q@ R such that
w1 = o = [ Veelo)u? < 0. (612)
Let .
flz,u) = g(x,u) — Vo(z)u and F(z,u) = /Ou Sz, s)ds. (6.13)

By (N1), |F(x,u)| < Cu? and F(z,u)/u? — 0 as |u| — oo uniformly in z. It follows
from Lebesgue’s dominated convergence theorem and the fact |w; — w|p2(q) — 0
that
Jim F(x, ugj — lim F(z,u; 2|wj|
i—oo Jo o [luyl] j—oo |uj]
Thus (6.11) and (6.12) imply that

1 G j
0< lim ( w12 ~ —Hw]HQ—/ 7(337”2]))

1
<5 (= o= [ v <o
Q
a contradiction.

Next consider the superlinear case and so suppose (N3) — (Ny) hold. Then there
is 7 > 0 such that G(z,u) > wlu|? if |u| > r. Using (6.9)-(6.10),
ot = 2 = [ < gt = o = ol — wl
< = ((w =@t +[lw™|?) <0,

hence, there is a bounded domain Q@ C R such that
w1 = o P - w [ w? <o, (6.14)
Q
Note that

i

G(x,uj)

I I = ey 1) -
=3 e R T
i G, uy) — 2y
= (o2 = g 12— [ ) — [ Sl
Q Q ||“J||

1 < _ wr?|
<—|wﬂf—m%ﬂ—w/WwP)+

2 i)+ 3

(|| denotes the Lebesgue measure of ). Thus (6.11) and (6.14) imply that

(u)) _
[l 12

[\D|’—‘

G(
o< tim (GhofI? - o1 - [ S22
j—o0 [lus]l
1
<5Qmﬂ2—M;W—w/wﬂ<<m
Q
a contradiction. O

As a special case we have

Lemma 6.5. Under the assumptions of Lemma 6.2, letting e € Yo with |e]| = 1,
there is ro > 0 such that sup ®(0Q) = 0 where Q :={u=u"+se: u~ € E7,s>
0, [l < 7o}
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6.4 The (C) sequences

In this section we consider the boundedness of (C').-sequences. Firstly, we have
Lemma 6.6. Under the assumptions of Lemma 6.2, any (C).-sequence is bounded.

Proof. Let (u;) C E be such that

P(uj) —c and (14 |ju;]|)®’(u;) — 0. (6.15)
Observe that for j large
1 .
CO > (I)(’U,J) - 5‘51)/(11,]‘)11,]‘ = ‘/RN G(;v,uj) . (616)

Arguing indirectly, assume by contradiction that ||u;|| — oco. Set v; = u;/| u;l.
Then |lvj]] = 1 and |v;|s < vs]|vj]] = s for s € [2, 2%). Observe that, from (6.15)
and

Hu) ut —u) = llusl2 _ g(xvuj)(vj_vj_)
@' ()] = ;) = s (1 /. ,

[l

it follows that
+

/ g(a:,uj)(vj _Uj_) 1. (6.17)
RN

[l

First we consider the asymptotically linear case, hence assume (N7) — (N2) are
satisfied. By Lions’ concentration compactness principle [Lions (1984)], either (v;)
is vanishing (in this case |vj|s — 0 for all s € (2,2%)), or it is nonvanishing, that is,
there are 7,7 > 0 and (a;) C Z" such that limsup,_ fB(aj’T) lv;|? > n. We show
that (vj) is neither vanishing nor nonvanishing.

Assume (v;) is vanishing. Set, in virtue of (N2),

0, ;:{NRN; MSAO_%}.
()
Then Aolv;]3 < [|vj]|* = 1 and we have

/ g(x,u) (v —v;)
Q;

[l

for all j. This, jointly with (6.17), implies that for Qf := RN\ Q;
z,ui) (v — o7 Ao — 0 ]
hm g( J)( 7 J ) > 1— 0 0 — _0 )
i—o0 Jae [Jusll Ao Ao
Recalling that by (No) and (N7)
lg(xz,u)| < Clu| for all (z,u), (6.18)
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there holds for an arbitrarily fixed s € (2,2%)

gl )} —v7 /
<C’ CHEE [
/; sl Al

< OJos 219517272 g5 < Oyl Q512720 .

Since |v;]s — 0, one gets [Q5] — oo. By (N2), G(z,uj) > & on Q¢, hence

é’((p,uj) 2/ é((E,’LLj) Z50|Q§| — 00,
2

RN

contrary to (6.16).
Assume (v;) is nonvanishing. Setting 4;(z) = uj(zx + q;), 0j(z) = vj(z + a;)
and @;(x) = ¢(z — a;) for any ¢ € C§° we have by (Ny) (see (6.13) for f(z,u))

¥ (uy); = (uF — w5 p5) — (Vaotsj, 0) 12 /fwg

gl (0] = 0705) = Vo = [ Flousdes2])

]

sl (6F = 579 - Viphaa = [ ool 2

- — ~ v
(oF ~ 570~ Vtpho = [ flatihe B,

This results

Since ||7;]| = |lvj|| = 1, we can assume that 9; — ¢ in E, 9; — 0 in L} _ and

loc
0j(z) — 9(z) a.e. in RY. Since lim;_. fB(O " |0;]> > n, © # 0. By (6.18)

e,

it follows from (N7) and the dominated convergence theorem that
/ flx, ) |—]|| — 0,

(5T — 57, ¢) — (Voo @) 12 = 0.

Thus @ is an eigenfunction of the operator A := —A + (V = V&) contradicting with
the fact that A has only continuous spectrum.

< Clel|;,

hence

Next we consider the superlinear case and suppose (N3) — (Ny) hold. Set for
r>0

h(r) := inf {é(x,u) cz € RY and u € R with |u| > r}
By (N4), h(r) > 0 for all » > 0, and h(r) — oo as r — oo. For 0 < a < b let

Q;(a,b) = {z € RY : a <uj(z)] < b}
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and

® ::inf{i:xERNandueRwitha<u|<b}.

Since G(z,u) depends periodically on z and G(z,u) > 0 if u # 0, one has ¢? > 0
and

G(z,uj(x)) > lu;(x)|? for all x € Q;(a,b).
It follows from (6.16) that
Co > é@mp+/‘ G@mﬁ+/‘ G(z,u;)
Qj (a7b) Qj (b7oo)

2(0.) (6.19)

vV

/ G, uy) + / s [2 -+ B(B)) 925 (b, o) .
Qj(O,a) ja7b

Invoking (Ny), set 7 := 20/(c — 1) and o’ = 7/2. Since ¢ > max{1, N/2} one sees
T € (2,2*). Fix arbitrarily 7 € (r,2*). Using (6.19),
Co
Qi (b < — 0

as b — oo uniformly in j, which implies by Hélder inequality that
/ o177 19 (b, 00) 77/ 0 (6.20)
Qj (b,oo)

as b — oo uniformly in j. Using (6.19) again, for any fixed 0 < a < b,
1 Co
P = [ s ~0 (6.21)
/Qj(a,b) Tl Jay@ny T T g2
as j — o0.

Let 0 < e < 1/3. By (No) there is ac > 0 such that |g(z,u)| < =|uf for all
|u| < a., consequently,

9(x,u;) _
et
Qj(ovas) U'J

e g
Q00 Y2 0 TS

for all j. By (IV4) and (6.20) we can take b. > 7o large so that

J e I
QA

J(bsaoo) |U’J|

o 1/o 1/0’
/ 7|g($’ui)| / (I =5 [1vy])”
Q(bec) U1 Q; (be,00) (6.23)
N 1/o 17 T
</ C()G(JI,UJ')) (/ |Uj+ — Uj|T) / |11j|7-
RN RN Qj(bsaoo)

<e

(6.22)

IN

IN
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for all j. Note that there isy = y(¢) > 0 independent of j such that |g(z,u;)| < y|u,|
for x € Q;(ae,be). By (6.21) there is jo such that

9(z, u;) _
/ oy o = o7
Q;(ac,be) |u;]

<y [ -l
Qacby 0 (6.24)

1/2
<7[vjl2 </ |vj|2> <e
Qj(“f:bs)

for all j > jo. Now the combination of (6.22)-(6.24) implies that for j > jo
+

/ 9(z, uj) (uf —uy)
RN

<3e<1
[[uslI?

which contradicts (6.17). O

In the following lemma we discuss further the (C).-sequence (u;) C E. By
Lemma 6.6 it is bounded, hence, without loss of generality, we may assume that
uj — u. Plainly u is a critical point of ®. Set u} = u; — u.

Lemma 6.7. Under the assumptions of Lemma 6.2, one has, as j — oo,

1) <I>(ujl) —c—d(u);

2) o (ujl) — 0.
Proof. 1If g € C! with |gy(x,u)| < c1(1 + |u[P=2) for all (z,u) € RY x R, some
c1 > 0 and p € (2,2*), then this lemma follows easily from a standard argument,
see e.g. [Coti-Zelati and Rabinowitz (1992)]. However, in our case such a regularity
condition is not available and we hence need to provide another argument. The
verification of 1) is similar to and simpler than that of 2), so we only check the
latter.
Observe that, for any ¢ € F,

¥ (o = Fwo+ | (olany) = glo.u)) — glow) ¢
Since ®'(u;) — 0, it suffices to show that

sup
llell<1

/RN (g(a:, uj) — g(z, ujl) — g(x,u)) p| — 0. (6.25)

We argue as in the proof of Lemma 5.8. By (6.7) we choose p > 2 such that
lg(z,w)| < |u| + Ci|u|P~! for all (z,u), and let ¢ stand for either 2 or p. Set
By :={x € RN : |z| < a} for a > 0. We have similarly to (5.29) that there is a
subsequence (uj, ) such that, for any € > 0 there exists r. > 0 satisfying

n—oo

limsup/ lu;, |9 <e (6.26)
B \B,
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for all r > r.. Let  : [0,00) — [0,1] be a smooth function satisfying n(t) = 1 if
t <1,n(t) =0if t > 2. Define @,(x) = n(2|z|/n)u(z) and set h, := v — U,. Then
hn € H? and

Observe that for any ¢ € E

/R (o) gl u),) — gla.w) ¢
_ /RN (9@, uj,) — g(@,uj, — iin) — g(@,i1n)) @
+/RN (9(z,uj, + hn) —g(x,uj,)) @
4 / (gl ) — gl ) ¢
and, by (6.27),

lim
n—oo

[ ot )~ o) e =0

uniformly in ||¢] < 1. In order to check (6.25) it remains to show that

Jn [ aleus) - gtous, )~ o) =0 629
and
nlin;o /]RN (g(a:,uj1 + hy) — (sr:,ujl ) @‘ =0 (6.29)

uniformly in ||¢|| < 1. This can be done along the same lines of (5.32) and (5.33).
Here, for the reader’s convenience we repeat the arguments for (6.29). Define
f(x,0) =0 and

g(z,u)
]
f is continuous and 1-periodic in x;. This implies that f is uniformly continuous
in RY x I, for any a > 0 where I, := {u € R : |u| < a}. Moreover, |f(z,u)| <
c1(1 + |ulP~=2) for all (x,u). Set

flz,u) = if u #£0.

Coi={r eRY : |ul (¢)] <a} and DZ:=RN\CL.

Since (uj) is bounded, |uj[3 < C, the Lebesgue measure

1 C
|Dﬁ|§—p/ |uj JP<— =0 asa— oo
a Dg a
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By Hoélder inequality

[ (ot 5ot

IN

& /D ([ |+ [ub [P+ [l + [ P7) [l

er (1051272 fu]

In
+ e (105272 |,
< o3 (IDaIE =D/ 4 Dy @/ g

it follows that, for any € > 0, there is @ > 0 such that

/D (g, + ) = gl ul,) ¢

uniformly in |¢|| < 1 and n € N. By the uniformly continuity of f on RY x I,
there is 6 > 0 satisfying

|f(z,u+h) — f(z,u)| < e forall (z,u) € RN x I; and |h| < 6,

1
s,

2 + DY P |,

IN

g + | D22/

—1
2+ [ be |90|2*)

2-)

—1
5 e

2% P

<e (6.30)

Set
VOi={z eRY : |ho(z)] <6} and WP :=RN\ V2.

Clearly, the Lebesgue measure

1 1
W3] < 5 /Wé |hn|? < 5—2|hn|§ — 0 asn — oo.

Since |C& N W| < |W2| — 0, as before, it follows from the Hélder inequality that
there is ng such that

<e foralln>ng

Lo ot + ) = gle )
nOWy

uniformly in ||| <1 (see the proof of (6.30)). Moreover,
|f(x,ujln + hy) — f(sr:,ujln)| <e forallz € CONVY.
Note that
(9(@,uj, +hn) = g(z,u5,)) ¢ = f(@,uj, + hn) (luj, + hal = a5, [) ¢
 (flaud, +ha) — flaud) b |
and, by (6.27), |hnl2 < €, |hnlp < € for all n > nq, some ny > ng. Thus, for all
lell <1 and n > ny,

L o, o) =gl )
sﬂ n

< [ el P bl e [ ]l
canvg AOVe

< colhnlal@la + coluf, + ha B2 |halplelp + €luj, |2lol2

< cge.
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Since C4 = (C2NV?2) U (CENWY), the above estimates imply that

/ (g(x,u}n + hp) — g(sc,u]ln)) o < (es+1)e foralln >nyg
c

a
n

uniformly in [|¢|| < 1, which, together with (6.30), implies that

sup
llell<1

and the proof of (6.29) is complete. O
Let K :={u € E: ®'(u) = 0}, the critical set of .

/RN (g(a:,ujl-n + hy) — g(z,ujl-n)) cp‘ < c¢qe for all n > nyq,

Lemma 6.8. Under the assumptions of Lemma 6.2, there hold

a) v:=inf{|lu| : v e L\ {0}} > 0;
b) 0 :=inf{®(u) : u e K\ {0}} > 0 provided, in the asymptotically linear case,
for some 6 >0, G(x,u) > 0 whenever 0 < |u| < 4.

Proof. a) Assume there is a sequence (u;) C K\ {0} with u; — 0. Then

0=yl = | gtwus)af — ;).
]RN
Using (6.7), for p > 2 and € > 0 small,
gl < elusls + Ccluyl?

which implies |Ju;]|? < ¢1Cc||lu;||P or equivalently |lu;|*>7? < ¢;C:, a contradiction.
b) Assume there is a sequence (u;) C K\ {0} such that ®(u;) — 0. Then

fugl? = [ gtau)uf — ). (6:31)
RN
and
1 .
o(1) = ®(u;) = D(u;) — 5 (u5)u; = o Gz, u;) (6.32)
Clearly (u;) is a (C')¢=o sequence, hence is bounded by Lemma 6.6. By a), ||u;|| > v.
First consider the asymptotically linear case. It follows from (6.31) and (6.7)
that (u;) is nonvanishing. Since ® is Z"-invariant, up to a translation, we can
assume u; — u € K\ {0}. Since, by assumptions on g, G(x,u) > 0 and G(z,u) > 0,
one has g(z,u) = 0. This implies that u is an eigenfunction of the operator A
contrary to that o(A) is absolutely continuous.
Next consider the superlinear case. Using (6.32) and the notations introduced
in the proof of Lemma 6.6, we see that, for any 0 < a < b and s € (2,2%),
fQj(a)b) |uj|* — 0 and fQj(b,m) |uj|®* — 0 as j — oo. Therefore, it follows from
(6.7) and (6.31) that for any € > 0
limsup |Ju;|* < e,
Jj—o0

contradicting to a). O
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Let [r] denote the integer part of » € R. As a consequence of Lemmas 6.6-6.8,
we have the following result (see [Coti-Zelati and Rabinowitz (1992); Kryszewski
and Szulkin (1998)]).

Lemma 6.9. Under the assumptions of Lemma 6.2, let (u;) be a (C).-sequence.
Then either

(i) uj — 0 (and hence ¢ =0), or
(ii) ¢ > 0 and there exist a positive integer { < [$], points Wy, -+ Uy € K\ {0}, a
subsequence denoted again by (uj), and sequences (a}) C ZN such that

Uj — Z(aé *ﬂz)

— 0asj—

and

6.5 Proofs of the existence and multiplicity

We are now in a position to establish the main results. In order to apply the abstract
Theorems 4.5 and 4.7 to ®, we choose in the following X = E~ and Y = E*. Since
X is separable and reflexive, we choose S to be a countable dense subset of X *.

Proof. [Proof of Theorems 6.1 and 6.2] (Existence). With X = E~ and Y = E*
the condition (®g) (see Chapter 4) holds by Lemma 6.2 together with an application
of Theorem 4.1. The condition () follows obviously from the form of ®. The
combination of Lemmas 6.3 and 6.5 shows that the linking condition of Theorem 4.5
is satisfied. Therefore, ® has a (C).-sequence (uy), with £ < ¢ < sup ®(Q) < oo
where @ is defined by Lemma 6.5. By virtue of Lemma 6.6 the sequence (u, ), is
bounded. Consequently, ®'(u,) — 0. A standard argument shows that (z,) is a
non-vanishing sequence [Lions (1984)], that is, for some r,1 > 0, there is (a,) C Z
such that limsup,,_, . fD(amT) |zn|? > n where D(a,,r) denotes the ball in RV
with center a,, and radius r. Set w, := a, * u,. It follows from the invariance
of the norm and of the functional under the x-action that ||w,| = ||us| < C and
®(wy) — ¢ > K, ®'(wy,) — 0. Therefore w, — w in E with w # 0 and ®'(w) = 0,
that is, w is a nontrivial solution of (NS), and the existence part of Theorems 6.1
and 6.2 is proved.

(Multiplicity). We now establish the multiplicity. The proof will be completed
in an indirect way. Namely, assuming

K/Z" is a finite set, (1)
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we prove that ® possesses an unbounded sequence of critical values, which is a
contradiction.

Assume that g(x, —u) = —g(z,u) for all (z,u) € RY x R. Then ®(0) = 0 and
® is even, that is, (@) is satisfied (see Chapter 4). (®3) is clear by Lemma 6.3.
Recall that dim(Yp) = co. Let (fi) be a base of Y; and set Y, := span{fi,..., fn}
and E, := E~ @Y,,. The condition (®4) follows from Lemma 6.4.

Given £ € N and a finite set B C E, let

J
[B,é] = {Z(az*uz) 1§]§€, aiEZN, UZEB}

i=1
Following an argument of [Coti-Zelati and Rabinowitz (1992)] one sees that

inf{|lu—'|| : u,u’ €[B,f], u#u'} > 0. (6.33)
Let F be a set consisting of arbitrarily chosen representatives of the orbits of K\ {0}.
Then (f) implies that F is a finite set and, since ®’ is odd, we may assume F is
symmetric. Observe that the points u;’s in Lemma 6.9 can be chosen to lie in F. For
any compact interval I C (0, 00) with b := max I, set £ = [b/60] and take & = [F,{].
Then PTo/ = [PTF, (. Clearly, P*F is a finite set and

lu|| < € max{||a| : @€ F}
forallu € &, i.e., & is bounded. In addition, by Lemma 6.9, o is a (C)-attractor,
and using (6.33),
inf{|juf —ug||: ur,u2 € &, uf #ug}
= inf{||u — /| : u,u’ € PTo/, u#u'} > 0.

This argument shows that ® possesses the following property: If (f) is true, then
for any compact interval I C (0, 00), there is a (C)r-attractor &/ with P (&)
bounded and inf{||u] —u|| : ui,us € o, uj # ui} > 0. Therefore, the condition
(®r) is verified. Now Theorem 4.7 applies. O

6.6 Semiclassical states of a system of Schodinger equations

The results of this section are chosen from [Ding and Lin (2006)]. We investigate
the existence and multiplicity of semiclassical solutions of the following Hamiltonian
system of perturbed Schriodinger equations

—?Ap + alz)p = Blz) + Fylx, ¢,)
— 2 A + afx) = Bx)p + Fy(x,0,v)
w = (p, ) € H'(RY,R?)

where o and 3 are continuous real functions on RY, and F : RY x R? — R is of
class C!. Setting

7= (1 g) md Flew) = 3ol + P
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the system presents the form
—2Aw + a(z)w = _FF,(r,w), we H (RN, R?)

which can be regarded as the stationary system of the nonlinear vector Schrédinger
equation
0¢ h?

ihoe = =500 +9(@)o— 7 f(x, 919

with ¢(z, 1) = w(z)e™ %, a(z) = v(z) — E,e? = £ and F,(z,w) = f(z, |w|)w.

az
We assume that o(z) and [(z) satisfy the following condition

(Ag) |B(z)] < a(z) for all z € RN, a(xg) = B(zxg) for some x¢, and there is b > 0
such that the set {z € RY : a(x) — |B(x)| < b} has finite Lebesgue measure.

Concerning the nonlinearities we will consider two cases: subcritical and critical
superlinearities.

First we consider the subcritical problem. For notational unification we write
G(z,w) instead of F'(z,w), and read the system as:

— 2 Ap + afz)p — Blx) = Gy(z, w)
— 2 A+ o) — Blx)p = Gy (z,w) (Pe)
w = (p,9) € H (RY ,R?).

We assume

(Go) ¢1) G € CHRY xR?) and G, (7, w) = o(|w|) uniformly in z as w — 0;
g2) there are ¢¢ > 0 and v > 2N/(N + 2) such that |Gy (z,w)]” <
co (1 4+ Gy (z,w)w)) for all (z,w);
g3) there are ag > 0,p > 2 and p > 2 such that G(z,w) > ao|w|? and
UG (z,w) < Gy(z, w)w for all (z,w).

Remark that, setting ¢ := —%5, one has by (g2) that ¢ < 2* and |Gy (z,w)| <
c1(1+4 |w]?71), hence G(z,w) is subcritical. For a solution w. = (¢, 1¢) of (P.) we
denote its energy by

E(w,) :z/ (52V<p5v¢5 + oz(a:)<p5¢5) —/ (%ﬁ(m)|w5|2 + G(a:,ws)).
RN RN
Theorem 6.3 ([Ding and Lin (2006)]). Let (Ag) and (Go) be satisfied.

(1) For any o > 0 there is £, > 0 such that if ¢ < &5, (Pe) has at least one
nontrivial solution we satisfying (i) [pn G(z,we) < % eV and (ii) 0 < BE(w.) <
oel.

(2) Assuming additionally that G(x,w) is even in w, for any m € N and o > 0
there is Eme > 0 such that if e < Epy, (Pe) has at least m pairs solutions w. which

satisfy the estimates (i) and (it).
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Next we consider the critical problem:
— 2 Ap + a(z)p — Bla)y = Gy(a,w) + K(z)[w]* )
— Y + @)y — Bx)p = Gy(a,w) + K(z)[w]* 3¢ (Q)
w=(p,0) € H'(RY,R?)
(where N > 3). Assume K (z) is bounded, that is,
(Ko) K€ C(RY),0<inf K <supK < oo.

Denote the energy of a solution we = (¢, ¥e) of (Q): by
E(w.) = / (€2V%V¢a + a(fv)@a@[]e)
RN

- /RN (%5($)|w6|2 + Gz, we) + %K(x)lwa

),

Theorem 6.4 ([Ding and Lin (2006)]). Let (Ag), (Ko) and (Go) be satisfied.
Then both the conclusions (1) and (2) of Theorem 6.3 are true with (P:) replaced
by (Q:) and (i) by

_9 1 .
£z G(x7w5)+—/ K(2)|we]* <oeV.
2 RN N RN

We have

6.6.1 An equivalent variational problem
Let

UZM’ U:u7 2= (u,0),

2
V(z) = a(z) = B(z), W(z) = a(z) + 4(z)

and

H(z,z)=H(z,u,v) = %G (x, utvy U_U) .
Then (P.) reads as
—e?Au+V(x)u = Hy(x,2)
—2Av+ W (z)v = —Hy(z, 2) (Pe)
z = (u,v) € HY(RY,R?)
and (Q.) as
— 2 Au+V(z)u = Hy(z, 2) + K(2)|2]* "2u
A0+ Wz = — (Hv(a:, 2) + K(x)|z\2*—2v) (9.)
z = (u,v) € H'(RN ,R?).
The assumption (Ap) implies that V' and W satisfy



Standing waves of nonlinear Schrédinger equations 85

(Vo) V(zo) = minV = 0; and the set {x € RY : V(x) < b} has finite Lebesgue
measure.
(Wo) W > 0; and the set {x € RY : W(z) < b} has finite Lebesgue measure.

And (Gy) implies that H(z, z) satisfies

(Ho) h1) H.(z,z) = o(]z]) uniformly in x as z — 0;
hs) there are ¢¢ > 0 and v > 2N/(N + 2) such that |H,.(z,z2)|" <
co (1+ Hy(z,2)z)) for all (z, 2);
g3) there are a9 > 0,p > 2 and p > 2 such that H(z,z) > ao|z|P and
wH(z,2z) < H.(z,2)z for all (z, 2).

Setting A = £~2, (P.) is equivalent to
—Au+ NV (z)u = AHy(z, 2)
—Av+ AW (z)v = —=AHy(z, 2) (Py)
z = (u,v) € H'(RY R?)
and (Q.) equivalent to

— Au—+ AV (2)u = NHy(z, 2) + K(2)|2]* ~20)

— Av+ AW (2)v = —A(Hy (2, 2)v + K (2)|2]> ~2v) (Qx)

z = (u,v) € H'(RN R?).

B(z) = _/ (ITusP + AV @)fur?) = (IVor + AW () o)
]RN
- A H(z,zy)
]RN
denote the energy of the solution z) = (uy,vy) of (Py), and similarly

B = 5 [ (90l 0V @haR) = (190 + AW (@) )

2
2*)

for the solution z) = (uy,vy) of (Qy), we are led to prove

A (Ha.20) + %K(m)

Theorem 6.5. Let (Vp), (Wy) and (Ho) be satisfied.

(1) For any o > 0 there is A, > 0 such that if A > Ay, (Px) has at least one
nontrivial solution zx satisfying (i) [on H(z,2x) < 2‘7 /\_% and (ii) 0 < E(zy) <
oA

(2) Assuming additionally that H(x,z) is even in z, for any m € N and o > 0
there is Ay > 0 such that if A > Ao, (Px) has at least m pairs solutions zy
which satisfy the estimates (i) and (ii).
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Theorem 6.6. Let (Vp), (W), (Ho) and (Ko) be satisfied. Then both the conclu-
sions (1) and (2) of Theorem 6.5 hold with (Py) replaced (Qx) and (i) by

_9 1 .
p—= H(x,zx)—i——/ K(z)|za]? <oA T
2 RN N RN

In order to prove the above theorems we introduce the space

E, = {u e HY(RY): V(z)u? < oo}

RN

which is a Hilbert space equipped with the inner product
(w1, u2)+ ::/ (Vu1Vug + V(x)uiuz)
]RN

and the associated norm |jul|2 = (u,u),. It follows from (V;) that E, embeds
continuously in H!(R¥). Note that the norm || - |4 is equivalent to the one || - ||+
deduced by the inner product

(u1,ug)yy = /N(VmVuQ + AV (2)uiusg)
R

for each A > 0. It thus is clear that, for each s € [2,2*], there is 75 > 0 (independent
of A) such that if A > 1

luls < Ysllull+ < vsllull+x forall u € Ey.

For convenience we will use certain direct sum decompositions of E described
below.

Let Ay := —A + AV denote the selfadjoint operator in L%(RY). By o(A,),
oe(Ay) and 04(Ay) we denote the spectrum, the essential spectrum and the eigen-
values of Ay below A. := info.(A)), respectively. Note that it is possible that
Ae = o0 (hence o(Ax) = 04(Ay)), for example, this is the case if V(z) — oo as
|z| — 0.

Lemma 6.10. Suppose (V) holds. Then Ao > Ab.

Proof. Set Vi(z) = A(V(z) — b), V& = max{£Vy, 0} and Dy = —A + \b+ V.
By (Vo), the multiplicity operator V,~ is compact relative to Dy, hence

Ue(A)\) C O’e(D)\) C [/\ILOO)
as required.

Let ky be the number of the eigenvalues below \b. We write 7, and fy; (1 <
1 < ky) for the eigenvalues and eigenfunctions. Setting

Lli = Span{fAh Tty f)\kx}a
we have the orthogonal decomposition

LPRYY=L{® L, u=u’+uc.
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Correspondingly, F has the decomposition:
E;=E}, @ ES, with BE?, =L{and ES, = B, NL§,

orthogonal with respect to both the inner products (-,:)r2 and (-, -)+x.
Letting S denote the best Sobolev constant: S|ul3. < [on [Vul?, it is clear that

S|u
It follows from Lemma 6.10 that

5« < |lullZ, forallue E.

1
lu|2 < aHuHiA for all u € B,
which, together with interpolation, shows that for each s € [2,2%],
uli < asx\_(Q*_s)/(Q*_z)||u||i>\ for all u € B (6.34)

where a, is a constant independent of A.

Similarly, with replacing V' (z) by W (x), we define the Hilbert space E_, the
inner products (-,-)— and (-,-)_y, and the decomposition E_ = E¢, @ E°,.

Let

FE = E+ x E_
and write for z = (u,v) € E, z* = (u,0) or simply denote (u,0) by u, and similarly,
2z~ = (0,v) or simply (0,v) by v. We denote the inner product on E by
(21, 22) = (ur,u2)4 + (v1,v2) -
and the induced norm by
120 = Tl + ol
On F there are the equivalent norms
113 = llullfx + l[olIZ5-
E has the orthogonal decomposition
E=E{® E{ where E{ = F{, x B, and E§ = E%, x E°,.
Accordingly, we write z = 2% + 2¢ for 2 = (u,v) € E with 2¢ = (u?,v?) and
2¢ = (u®,v°®). Note that dim E{ < co. It follows from (6.34) that for each s € [2, 2],
1 . .
213 < 551213 and |2fS < a A~ 25 (6.35)

for all z € E where a, is a constant independent of A.

Define the functional for z = (u,v) € E

1

() = 5 /RN (9P + AV (@)u?) — (Vo + AW (20?))

- A H(x,z)
RN

1 1
= sl - Il = A [ H2)
RN
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Under the assumptions (Ag) and (Hp), ®» € C1(E,R) and its critical points are
solutions of (Py).
Similarly, consider the functional

Uy (2) = 1/]RN (19 + AV (@)u?) — (17 + AW (20?))

2
K(x) 2*)

2 2

RN
il = gloiPa = [ (s + 520 ).
RN

Then ¥, € C*(E,R) and critical points of ¥ correspond to solutions of (Q,).
First of all we have plainly the following

[ (ma+

Lemma 6.11. Let f) stand for either ®y or V.

(1°) fx is weakly sequentially upper semicontinuous, and f} is weakly sequentially
continuous. Moreover, there is ¢ > 0 such that for any ¢ > 0, ||z||x < |lul|x for all
2 € (f)e-

(2°) For each A > 1, there exists px > 0 such that kx := inf ¥»(S,, EL) > 0
where S,, ={z € Ey: ||z||x = pa}.

(3°) For any e € E4 there is R > py such that (Uy)|ag < 0 where Q := {z =
(se1,v): vE E_,5>0,]z||x < R}.

(4°) For any finite dimensional subspace F' C E, there is Rp > px such that
Ui(u) <inf¥y(B,, NE4) for allu € F x E_\ Bg,.

(5°) Any (C).-sequence for fy is bounded and ¢ > 0.

6.6.2 Proofs of Theorem 6.5

In this sub-section we treat the subcritical problem (P,), thus consider the func-
tional ®.

Observe that, by (Hp), c1|z|P < H(z,z) < cofz|? for all |z| large where ¢ =
v/(v —1). Hence v < p/(p—1) < 2 since p > 2. Set 7 = v/(2 — v). Then for any
0 > 0 there are ps > 0 and ¢s > 0 such that

|H(x, 2)| |H- (2, 2)|
2| El
Indeed, for |z| > ps there holds |H, (z, 2)|¥ < asH.(z, 2)z and
|H.(2,2)|" = |Ha (2, 2)|" " |Ha(x, 2)|" < ajlz| T/ VH, (2, 2)2

= as|z|"H,(z,2)z.

< §if |z] < ps, < csH,(x,2)z if |z| > ps. (6.36)

In addition, setting

H(z,z):= %Hz(x, z)z — H(z, z).

we have

. -9 -9 —2
A2 P2 i )22 B2 () > Dy

2 S 5 (6.37)
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In the following, let (z;) denote a (C).-sequence. By the above Lemma
6.11—(5°), it is bounded, hence, without loss of generality, we may assume z; — z
in B, z; —» zin L3, for 1 <s < 2* and z;(z) — z(z) a.e. for x € RN. Plainly, z
is a critical point of ®j.

Similarly to (6.26), along a subsequence, for any € > 0, there exists r. > 0 with

limsup/ |z;,]° < e (6.38)
B

n—o JB,;,\B,

for all 7 > r. and s € [2,2*). Let 5 : [0,00) — [0, 1] be a smooth function satisfying
n(t)=1if t <1, n(t) =0if t > 2. Define 2, (z) = n(2|z|/n)z(z). Clearly,

lz—Z2,]] = 0 asn — . (6.39)
Additionally, we have similarly to (6.28)

lim
n—oo

/RN (Hao(2, 25, ) — Ho(2, 25, — ) — Ha (2, 50)) 0| = 0

uniformly in ¢ € E with ||¢|| < 1. Then repeating the relative argument of the
proof of Lemma 6.7 (see also Lemma 5.17) yields the following

Lemma 6.12. One has:

1) @x(zj, — Zn) — c— @a(2);
2) ®)\(zj, — Zn) — 0.

We now utilize the decomposition E = E¢ @ ES. Recall that dim(E¢) < oc.
Write

Yn =25, — Fn = Yo Y5

Then y¢ = (2¢ — 2% + (24 — 2¢) — 0 and, by Lemma 6.12, ®)\(y,) —

Jn
c—P®r(z), P, (yn) — 0. It follows from
1 .
(I)A(yn) - _q)/)\(yn)yn =A H({E, yn)
2 -

that

A H(z,y,) — ¢ — ®y(2).
RN

Noting that y, = (uj, — Un,vj, — Un) We set Jp = (uj, — Un, —vj, + Un). We have
[Yn| = [gn| and

o1) = )i = [l = [ | Hela)i

= o(1) + [lyC]13 — A / H. (2, y2)in.
RN
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By (6.35), (6.36) and (6.37), we have for any § > 0,
lynlI3 +o(1)
=A H.(z,Yn)¥n
RN
H(z,yn)l -
LACRTI
RN |Yn|

- 1/7
H.(z,yn
o(1) + Nolynl3 + Acs / <7| ( )|> lynlg (6.40)
|yn|2pa |yn|

c—®y(2) +0(1) 1
R

<A

IN

IN

o(1) + MIYEI2 + Ack ( e ?

1

0, o _1_20@"-a) e
< o(1) + gllyalk + oA 77T (e — @ ()7 N1yt

(N—=2)(g—2)

g e ag T e
=o() + Pl 3+ CsA ™2 (= @) [lwil3-
Remark that z;, — 2z =y, + (2, — 2), hence by (6.39)
zj, —z— 0 if and only if y;, — 0.

Lemma 6.13. There is a constant ag > 0 independent of A\ such that, for any
(C)c-sequence (z;) for ®x with z; — z, either z; — z along a subsequence or

c—®Py(z) > QoA T2

Proof. Assume z; has no convergence. Then using the above notations
liminf, o [|¥Slla > 0 and ¢ — ®5(z) > 0. Choosing § = b/4, it follows from
(6.40) that

3 e (N=2)(=2) Ur e
TlunlX < o(1) + e A3 (e = @a(2) 7 il
This implies that
1< A (e — B, (2))
which proves the lemma. O

In particular, we obtain the following
Lemma 6.14. @) satisfies the (C). condition for all ¢ < ao)\l_%.

Observe that (Hp) implies
<1>()<1|| [i —l|| 125 —aox [ 2P
AMZ) > Ul 3\ V|2 — ao Z
2 2 .

1 1
< gllullds = 5lel25 = a0 [ Jup.
2 2 BN
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We define the functional Jy € C1(E,R) by setting

Ia(u) = %~/]RN (IVul® + AV (z)u?) — ao)\/]RN |u|P.

Then
Dy (2) < Ja(u) — %||v||2_)\ for all z € E. (6.41)

Recall that the assumption (V{) implies that there is 2o € R such that V(xq) =
mingcrn V(z) = 0. Without loss of generality we assume from now on that 2o = 0.
It is known that

wt { [ 962+ o € CR®N), Joly =1} =0
RN
For any & > 0 one can choose ¢; € C§°(RY) with |¢s|, = 1 and supp s C By, (0)
so that |[Vs|3 < 8. Set

ex(x) = ps(A\/?2). (6.42)
Then

suppex C By-1/2,,(0).

Remark that for ¢ > 0,

2
Ja(tey) = t_/ |VeA|2+/\V(3:)|eA|2—ao)\tp/
2 RN R

_x (¥ _
—a% (G [ e v (20 s - o [ el
RN RN

= A5 L (tys)
where I, € C1(E;,R) defined by

1
I(u) := 3 /RN |Vul? + V ()\*1/2:5) lu|? — ag /RN |ulP.

lel?
N

Plainly,
max I (tp5) = —2 2 / Vs |* + V(A™22) s e
20 o 2p(pag)?/(P=2) \ Jg~ s ©s ’
Since V(0) = 0 and note that supp @5 C By, (0), there is A5 > 0 such that
V(A‘l/Qm) < PRE for all |z| <rs and A > As.
512

This implies that

p—2 p/(p—2)
c_ P2 :
D) < i ()

Since Iy (u) is even, we obtain that, for all A > Ag,

p—2 p/(p—2) y1-X
I%leafé( J)\(te)\) < Zp(pao)Q/(p_Q) (25) AT (6.43)
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Therefore, we have

Lemma 6.15. For any o > 0 there exists A, > 0, such that, for each X > A,
there is ex € Ex \ {0} such that

max P, (z2) < o’)\l_%,
z€F,

where Fy) :=Rey x E_.

Proof. Choose 6 > 0 so small that

P2 osp/-2)
2p(pag)?/(P—2) (20) <o

and let ey € E, be the function defined by (6.42). Take A, = As. Then by (6.43),
for any z € Fyy,
1

A(2) < Jalrea) = 5llvf25 < oNTF

which ends the proof. O
In general, for any m € N, one can choose m functions <p§ € C5°(RY) such that

supp @§ Nsupp o = 0 if i # k, |¢], = 1 and [V}[3 < 8. Let r§* > 0 be such that
supp w5 C Bpm (0) for j =1,...,m. Set

eg\(a:) = wg(x\l/zx) forj=1,..m
and

H: = span{el, ..., e%'}.

Observe that for each u = 377", c;eh € HY,

Ta(u) =Y Ja(e;ed)
j=1

_N " 1
= A7) " I(legled).
j=1

Set
A By = max{|@}[3: j=1,..,m},
and choose A,,s so that
VIANTY22) < % for all |z| < 7§ and A > Aps.
As before, one obtains easily the following

m(p - 2) p/(p—2) y1- %
sup h(u) < ———————(20 AT 2 6.44
uer;'g A < 2p(pag)?/(P=2) (20) (644
for all A > A,pns.
Using this estimate we can prove easily the following

Lemma 6.16. For any m € N and o > 0 there exist A, > 0, such that, for each
A > Ao, there exists an m-dimensional subspace Fy,, C F satisfying

N
sup  Pr(z) <o AT,
zEF\m XE_
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Proof. Choose § > 0 small so that

m(p—2) p/(p—2)
2p(pag)?/ (P=2) (2) <o,

and take F),, = HY%. Then (6.44) yields the conclusion as required. O

Proof. [Proof of Theorem 6.5] First we prove the existence. With ¥ = E, and
X = E_ the conditions (®y) and (®4) hold and &, possesses the linking structure
of Theorem 4.5 by Lemma 6.11. This, together with Lemma 6.15, shows that for
any o € (0,ap) there is A, > 0 so that, if A > A,, ®, has a (C)., sequence with
Ky <y < oA T Hence, by Lemma 6.14, there exists a critical point z) satisfying

Ka < Py(zn) < U/\l_%. (6.45)

Since E(zy) = ®a(zy), (6.45) implies the estimate (i7). Moreover, by (Ho)

oAE > D) (2) = D (22) — 2B (22)2n > A(E 1) [ Hz)
2 2 .
and we obtain ().

We now turn to the multiplicity. Assume H(x, z) is even in z. Then @ is even
hence (®1) holds. (®3) follows from Lemma 6.11. By virtue of Lemma 6.16, for
any m € N and o € (0, aq) there is A, such that for each A > A,,,, we can choose
a m-dimensional subspace Fy,, C Ey with b := max®\(Fy, X E_) < oA T
Hence, @) verifies (®3) with b < oAl=% for all A > Ao Tt follows from Lemma
6.14 that @, checks the (C). condition for all ¢ € [0,b]. Now Theorem 4.6 applies.

O

6.6.3 Proof of Theorem 6.6

We now turn to the critical case, that is, to prove Theorem 2.2 hence Theorem 1.2.
We will consider the functional ¥y along the way as before.
In the following set
1 .
Q(z,2) = H(x,2) + 2—*K(x)|z|2
and

Qz,z) = %Qz(x, z)z — Q(z, 2).

It follows from (Hp) and (Kj) that, for any 6 > 0 there are p; > 0 and ¢s > 0 such
that

|Q=(z, 2)|

— o SO [z <ps,

E

Lemma 6.17. There is ag > 0 independent of X such that any (C). sequence with
¢ < apA" % contains a convergent subsequence.

|Qx(x, )N/

ERE < csQ(w, 2) if |z = ps. (6.46)
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Proof. Let z; = (uj,v;j) bea (C). sequence: ¥y(z;) — cand (14]z;]|x)¥)(z;) —
0. Plainly

WA(5) -~ 5HA )z = [ Q). (6.47)

and, by Lemma 6.11, ¢ > 0 and (z;) is bounded. We can assume without loss of
generality that z; — 2z with z solving (Q,). In addition, there is a subsequence
(zj,) such that (6.38) holds. Define Z,(z) = n(2|z|/n)z(x) where 5 : [0, 00) — [0, 1]
be a smooth function satisfying n(t) = 1 if ¢t < 1, n(¢t) = 0 if t > 2. As before it is
not difficult to check that
Uy (2j, — Zn) — ¢ — ¥x(z) and W)\(zj, — Z,) — 0. (6.48)

CrLAM: There is a constant cg > 0 independent of A such that either z; — z or
c—Uy(2) > a2

Write y, == 2j, — Zn = Y2 + y% € E{ @ ES. Then ¥, (y,) — ¢ — V,(2) and
U (yn) — 0 by (6.48). Similarly to (6.47), it follows from (6.48) that

/\/RN Q(x,yn) — ¢ — U, (2). (6.49)

Noting that y, = (u;, — Un,vj, — Un) We set Jp = (uj, — Un, —vj, + Un). We have
|Yn| = |Un| and, using one after the other the fact y¢ — 0, (6.46), Holder inequality,
(6.49) and (6.35), we get for any 6 > 0,

|Qz X yn)|
IWEI2 + o1 —A/’sz%yn<A/ b b

( ) + /\6|yn|2

N2\ 2/N
lynl>ps |yn]

c—mx@2m|e
A

(6.50)

2
2%

o(1) + AS|y |3 + Ay <

1) e —2 e
< o(1) + 3lIwal} + CaA ™ (e = a(2))* M Iy 3.

Remark that z;, —z = yn+(Z, —2), hence z;, —z — 0 if and only if y5, — 0. Assume
z;j has no convergent subsequence. Then liminf, . ||y5||x > 0 and ¢ — ®x(z) > 0.
Choosing § = b/4, it follows from (6.50) that

23 < o1) + el (o= TrE)PY IR
This implies that
1< 2! (c—Tr(2)). 0
Lemma 6.18. For any o > 0 there exists A, > 0, such that, for each X > A,
there is ex € E4 \ {0} such that
max Uy(z) < oA

z€F,

where Fyy :=Rey x E_.
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Proof. This follows from (6.43) and that
1
Ua(2) < Iaw) = 5lIIIX (6.51)
for all z = (u,v). O

Lemma 6.19. For any m € N and o > 0 there exist A, > 0, such that, for each
A > Ao, there exists an m-dimensional subspace Fy,, C Fy satisfying

N
sup  Wy(z)<oATT,
z2EF\m XE_

Proof. It follows from (6.44) and (6.51). O

Proof. [Proof of Theorem 6.6] Repeating the arguments of the proof of Theorem
6.5 with Lemmas 6.14, 6.15 and 6.16 replaced respectively by Lemmas 6.17, 6.18
and 6.19 yields the desired results. O
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Chapter 7

Solutions of nonlinear Dirac equations

In this chapter we study nonlinear Dirac equations in external fields and obtain
existence and multiplicity results of stationary solutions for several classes of non-
linearities modelling various types of interaction. A typical result states that if the
nonlinearity is even and depends periodically on the spacial variable, the problem
has infinitely many geometrically different localized solutions.

The chapter is organized as follows. In the first five sections we deal with the
equations with scale potentials which are either periodic or of harmonic oscillator
type. In Section 7.2 we first state the hypotheses and our main results, then for-
mulate the variational setting and provide basic estimates on the spectrum of the
linearization, and lastly prove the theorems for asymptotically quadratic nonlin-
earity and for superquadratic nonlinearity respectively. Section 7.6 is devoted to
handle more general vector potentials. In the last section we consider existence and
multiplicity of semiclassical solutions.

7.1 Relative studies

Nonlinear Dirac equations occur in the attempt to model extended relativistic par-
ticles with external fields, see [Bjorken and Drell (1965)], [Ranada (1982)], [Esteban
and Séré (2002)]. In a general form, such equations are given by

3
—ihdyp = ich Y oaxOktp — me®Bib — M(z)p + Gy (, ) ; (7.1)

k=1
here © = (21, 72,73) € R3, Oy = %, ¢ denotes the speed of light, m > 0 the mass
of the electron, and i denotes Planck’s constant. Furthermore, a1, a2, az and § are
4 x 4 complex matrices whose standard form (in 2 x 2 blocks) is

o I 0 o Oak o
ﬁ_(0_1>7 ak_(ak0>7 k_172u3

(01 _(0—i (10
T=\10) 27 \io ) 7 \o=1)

with
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One verifies that 3 = 3%, ar = af, aroq + oqay, = 20y and o5 + By, = 0; due to
these relations, the linear operator ¢ = —ich Zi:l a0 +mc? By is a symmetric
operator, such that
HE = —HA + m2ct

A solution ¢ : RxR? — C* of (7.1), with ¥(¢,-) € L?(R3,C*), is a wave function
which represents the state of a relativistic electron.

The external fields are given by the matrix potential M (x), and the nonlinearity
G : R? x C* — R represents a nonlinear self-coupling. We assume throughout the
chapter that G satisfies G(z,e) = G(z,v), for all § € [0,27]. We are looking
for stationary solutions of (7.1) which may be regarded as “particle-like solutions”
(see [Ranada (1982)]): they propagate without changing their shape and thus have
a soliton-like behavior.

The stationary solutions of equation (7.1) are found by the Ansatz
t

6

U(t,2) = e u(z) ;

then u : R® — C* satisfies the equation

3
—ichz arOpu +mc?B u+ M(x)u = Gy(x,u) — Ou . (7.2)
k=1
Dividing equation (7.2) by hc, we are led to study equations of the form
3
—iZakﬁku—Faﬂu—qu—&—M(x)u=Gu(a:,u), (7.3)
k=1
where a > 0 and w € R. We look for weak solutions which are localized in space;
more precisely, the solution we find satisfy u € (< .o, WH4(R?,C*).
First we consider (7.3) in the form
3
—1 Z arOpu + afu + wu = Fy(z,u) (7.4)
k=1
where ¢ > 0 and w € R. In [Ranada (1982)] one can find a discussion of functions
F which have been used to model various types of self-coupling. In recent years a
number of papers appeared dealing with the existence and multiplicity of stationary
solutions. In [Balabane, Cazenave, Douady and Merle (1988); Balabane, Cazenave
and Vazquez (1990); Cazenave and Vazquez (1986); Merle (1988)] the model
1
F(u) = 5H(au), H e C*(R,R), H(0)=0 where u := (Bu,u)cs (7.5)
was investigated. In these papers the authors obtained for w € (—a,0) solutions of

(7.4) of the type
o(r) <(1)>

u(z) = " < g ) (7.6)

sin fet®
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This ansatz leads to a system of ODEs for v(r), w(r), » = |z|, which can be solved
using the shooting method. Of course, suitable hypotheses on H were required,
and the approach depends heavily on the special form of F' and the ansatz (7.6).
Another model nonlinearity studied in [Finkelstein, Lelevier and Ruderman (1951);
Ranada (1982)] is

1
F(u) = §|ﬁu|2 + blaou|? where dou := (Bu, au)ct, @ := ajasas

with b > 0. In [Esteban and Séré (1995)] variational methods are used for the model
(7.5) provided the main additional assumption

H'(s)-s>0H(s) forall s€R, somef >1

holds. The authors obtain infinitely many solutions for the model (7.5) exploiting
the inherent symmetry F(u) = F(—u). They work on the space E* C H'/2(R3,C*)
of functions of the form (7.6) and perturb the function F' appropriately so that
the perturbed variational integral satisfies the Palais-Smale condition. Then they
apply well known variational methods to the perturbed functional on E*. Solutions
of (7.4) are obtained by carefully controlling the passage to the limit from the
perturbed functionals to the unperturbed one.

The paper [Esteban and Séré (1995)] also deals with more general nonlinearities
F(u) where (7.5) does not hold and the ansatz (7.6) does not apply. The authors
show the existence of one (nontrivial) solution provided F € C?(C* R) satisfies
various growth and sign conditions. An example of such a general nonlinearity is
the function

F(u) = p (Jua|™ + blaau|™), 71,7 € (1, 3/2), p,b>0.

Here one cannot work on the space E° and the Palais-Smale condition does not
hold even for the perturbations, due to the invariance of (7.4) under translations.
The idea of [Esteban and Séré (1995)] is to produce a Palais-Smale sequence by a
linking argument and then to use concentration compactness arguments in order to
obtain a solution. [Esteban and Séré (1995)] does not contain a multiplicity result
in the general case. The problem here is that the solutions are not obtained as
strong limits from the Palais-Smale sequence but only as weak limits (after suitable
translations). Thus even when one has different linkings producing different Palais-
Smale sequences it is not clear how to distinguish the weak limits.

Motivated by [Esteban and Séré (1995)] we investigate the Dirac equation by
using some of the critical point theorems from Chapter 4. The class of nonlinear-
ities which we treat differs in two ways from those in the other paper mentioned
above. First, F' = F(z,u) may depend on z and is periodic in each of the variables
Z1,%9,x3. Second, F(x,u) is asymptotically quadratic or superquadratic in u as
|u] — oo. Consequently, F(x,u) — oo as |u| — oo which excludes the Lorentz
invariant nonlinearities mentioned above. There F'(u) may vanish even for large
values of |u.
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We obtain infinitely many solutions if F' is even, not only for superquadratic
F but also in the asymptotically quadratic case. We only require |w| < a, not
—a < w < 0 as in the other papers. The multiplicity result has to be interpreted
carefully. As a consequence of the periodicity of F'(z,u) in x1, 2, 3, given a solution
u any translation k * v = u(- + k), k € Z3, is also a solution. Thus there exists a
Z3-orbit of solutions. The infinitely many solutions which we obtain correspond to
different Z3-orbits. Observe that, when F is independent of = then one solution u
generates a 3-dimensional manifold of solutions y * u = u(- + y),y € R?, consisting
of infinitely many Z3-orbits. In this case we do not obtain any additional solutions.

The Z3-periodicity has another effect: the functional associated to the prob-
lem does not satisfy the Palais-Smale condition. In [Coti-Zelati, Ekeland and Séré
(1990)] a weaker version of the Palais-Smale condition was introduced for a Z-period
problem; see also [Séré (1992)]. It was shown that this condition suffices to yield a
deformation lemma. However, in these paper the functionals are of mountain pass
type which is not the case here. In fact, our functionals are of strongly indefinite.

The above mentioned results also apply to the more general equation

3
—1 Z arOpu+ (V(x) + a)fu +wu = Fy(x,u) (7.7)
k=1

with a potential V' periodic in the xy-variable. We also have results if neither V' nor
F are periodic provided there is some control on V(z) as |z| — oo which excludes
the case that V' is constant. Here we obtain infinitely many solutions even if F' is
independent of x.

7.2 Existence results for scalar potentials

We rewrite the equation (7.4) as

3
—iZakaku+aﬂu+wu = F,(z,u) (D)
k=1
with @ > 0 and shall always assume

(W) w € (—a,a).
(FO) Fe Cl(Rg x C47 [0700))
(F1) F(x,u) is 1-periodic in xg, k = 1,2, 3.

This includes the case where F' € C'*(C%,[0,00)) does not depend on x. For our
first results we also require

(F2) Fu(x,u) = o(|u|) as u — 0 uniformly in z € R3.

Concerning the behavior of F as |u| — oo we begin with the asymptotically
quadratic case. Setting

~ 1
wo :=min{a +w, a —w} and F(z,u):= §Fu(a:,u) cu — F(xz,u).
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we require:

(F3) There exists b > a + w such that |F,(z,u) — bu| - [u|™* — 0 as |u| — oo
uniformly in .

(Fy) F(x,u) > 0, and there exists d; € (0,wp) such that F(z,u) > §; whenever
[Fu(z,u)| = (wo — 61)[ul-

Theorem 7.1 ([Bartsch and Ding (200611)]). Let (w) and (Fy) — (Fy) be sat-
isfied. Then (D) has at least one nontrivial solution u € () <, WHT(R3,C*). (D)
has infinitely many geometrically distinct solutions u € ﬂT;Q WLT(R3, C*) if in
addition to the above assumptions F' is even in u. -

Here two solutions u; and ue are said to be geometrically distinct if &k * uq # uq
for all k € Z3 where (k *u)(z) = u(x + k).
Next we consider the super-quadratic case where we assume:

(F5) F(z,u)|lu|~2 — oo as |u| — oo uniformly in x.
(Fs) F(z,u) > 0if u # 0, F(z,u) — 00 as |u| — oo uniformly in z, and there are
o >3 and r,¢; > 0 such that, |F,(z,u)|” < c1 F(z,uw)|ul|” if |u] > r.

Theorem 7.2 ([Bartsch and Ding (200611)]). Let (w), (Fy) — (Fy) and (F5),
(Fs) be satisfied. Then (D) has at least one nontrivial solution u €
N,5o WET(R3,CY).  If moreover F is even in u, then (D) has infinitely many
geometrically distinct solutions u € (), <, WHT(R3,C4).

Now we re-denote the equation (7.7) by:
3
—iZakaku—i— (V(x) + a)fu + wu = Fy(z,u). (Dy)
k=1

We are interested in the influence of the potential V : R?® — R on the existence of
solutions. First we consider periodic potentials.

(V1) V € CY(R3,]0,00)), and V(z) is 1-periodic in zy for k = 1,2, 3.
The hypotheses (F3) and (Fy) will be replaced by

(F}) There exists b € C1(R? R) with |F,(z,u) — b(z)u||u|~t — 0 as |u| — oo
uniformly in z, and inf b(R?) > sup V(R?) + a + w.
(F}) F(z,u) >0if u#0, and F(x,u) — o0 as |u| — oo uniformly in z.

Theorem 7.3 ([Bartsch and Ding (20061I)]). Let (w), (V1) and (Fy) — (Fa),
(F}), (Fy) be satisfied. Then (Dy) has at least one nontrivial solution u €
N,so WET(R3,CY). If in addition F is even with respect to u then (Dy) has in-
finitely many geometrically distinct solutions u € N, WET(R?, CY).
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Here are some examples where the assumptions apply.

Example 7.1. a) F(z,u) = $b(z)|ul? (1 - m)

b) F(z,u) = b(z)e(5|ul?) where ¢ : [0,00) — [0, 00) is of class C? with ¢(0) =
¢©'(0) =0, and ¢'(s) — 1 as s — o0, ¢’(s) > 0.

c) Fu(z,u) = f(x,|u|)u, where f(zx,s) is even in s; f(z,s) — 0 as s — 0
uniformly in z; f(z,s) is non-decreasing for s € [0,00); and f(x,s) — b(z) as
5 — 00.

Theorem 7.4 ([Bartsch and Ding (20061I)]). Let (w), (V1) and (Fy) — (Fa),
(F5), (Fg) be satisfied. Then (Dy) has at least one montrivial solution u €
N, 5o WET(R3,C*). If F is even in u then (Dy) has infinitely many geometrically
distinct solutions u € ), s, WHT(R3,C*).

Theorem 7.2 is a special case of Theorem 7.4. Comparing Theorem 7.1 and
Theorem 7.3 one sees that assumption (F}) is somewhat stronger than (Fy). We
also have some explicit examples of possible nonlinearities.

Example 7.2. a) F(z,u) = a(gc)(|u|2 In(1+ |u]) — 3|ul*+ |u| —In(1 + |u\))

b) F(x,u) = a(x) (|u|” + (p — 2)|u|#~€ sin? (‘"Tl)) where p € (2,3) and 0 < € <
w—2.

c) (F5) and (Fg) hold if there are ¢ > 2 and x > 3/2 such that 0 < ¢F(z,u) <
Fo(z,u) -uifu#£0, and |F,(z,u)]" <c1 (1 4+ Fu(z,u) - u).

Next we consider potentials of the harmonic oscillator type:

(Vo) V € CY(R3,R); for each b > 0 the set V? := {z € R3: V(z) < b} has finite
Lebesgue measure.

This hypothesis is satisfied if V() — oo as |z| — oo, for instance.

Theorem 7.5 ([Bartsch and Ding (20061I)]). Let (V2), (Fy) and (Fs), (Fg) be
satisfied. Then (Dv) has at least one nontrivial solution u € [, 5, WLT(R3, C*).

If moreover F is also even in w then (Dy) has infinitely many solutions u €
m722 Wl’T(RB,C4).

Remark 7.1. In Theorem 7.5 we only considered superquadratic nonlinearities.
With the methods developed in this chapter it is easily possible to consider asymp-
totically quadratic nonlinearities, and to obtain multiple solutions if the asymptotic
term b(z) is large enough. Observe that in Theorem 7.5 we do not make any re-
striction on the number w, and we do not need assumptions like (Fy) except for
F being even. Moreover, the proof will show that in the even case there exists a
sequence of solutions having the energy unbounded.
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7.3 Variational setting

For V € L? (R3,R) the operator A := —i 22:1 a0+ (V(x) + a) B is a selfadjoint

loc

operator in L? = L*(R3,C*) (cf. [Dautray and Lions (1990)]). It is unbounded from
above and from below. In order to investigate the spectrum of A we consider

3
A=A+ (V+a)+i)  BardiV.
k=1

Let o(5), 04(S), 0.(S) and o.(S) denote, respectively, the spectrum, the discrete
spectrum (i. e. the set of eigenvalues of finite multiplicity), the essential spectrum
and the continuous spectrum of a self-adjoint operator S on L2.

Lemma 7.1. a) If V =0, then 0(A?) = [a?, 00).
b) If (V1) holds then o(A?) C [a?, 00).
c) If (Vo) holds then o(A?) = 04(A?) = {pn :n € N} with 0 < pg < o < pz <
- and py, — 0.

Proof. a)is obvious. b) follows from the inequality

(A%u,u) 2 = (( - zi o +VB)u, (i i ok + Vﬁ)u)
k=1 k=1

+a?(u,u)p> + 2a(Vu,u) 2
> a®(u,u) 2 + 2a(Vu,u) e,
c¢) Suppose (V2) holds and define

L2

3
W(x) = (V(z) +a)® +i Y _ BardpV(x).
k=1

Then we have for any b > 0
Cy = {m € R3: sup (W(x)E,&)es < b} c vh
lgl=1
Setting Wy, := W — b, W, = max{0, W,,}, W,” = min{0, W} and S, = —A+ (a® +
b) + WbJr we have A% = S, + W, . Using C, C V? it is easy to check that Wy~
is compact relative to Sy (cf. [Bartsch, Pankov and Wang (2001)]). Hence, by a
theorem of Weyl
0.(A?) = 0.(Sy) C a(Sp) C [a® + b, 0).

Since b > 0 is arbitrary it follows that o(A4%) = 04(A%). Finally, since A? is
unbounded from above, p, — oco. O

The domain Z = Z(A) of A is a Hilbert space with inner product
(u,v)9 = (Au, Av) 2 + (u,v) 2.
Lemma 7.2. a) If (V1) is satisfied, then 2 = H*(R3,C*) with equivalent norms.

b) If (V) is satisfied, then 2 embeds continuously into H'(R? C*) and com-
pactly into L™ (R3,C*) for all T € [2,6).
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Proof. a) is clear. For b) it suffices to prove 2 — L?(R3 C*) compactly. Let
(en)nen be an orthornormal basis of eigenfunctions of A? associated to the eigen-
values pi,, n € N, and set Ly = span{ey,--- ,ex}. Let P, : 2 — L denote the
orthogonal projection. Consider a weakly converging sequence u,, — u in %, and
define w, = u, —u and C := sup,, |[w,[|%. Given € > 0 we choose k € N so that
C/u, < €/2. Since Pyw,, — 0 as n — oo there exists ng € N so that || Pywy, ||, < /2
for n > ng. Therefore we have

9 9
[wal3 = |Piwal3 + (I = Powaly < 5 + 5 =¢

for n > ng. This proves that u, — v in L2 O

Now we consider the operator A. Let (E,)yecr and (F,),>0 denote the spectral
families of A and A2, respectively. Recall that

E, = E’Yl/2 — E*VIM*O = E[,71/27,Y1/2] for all v > 0; (7.8)
see (3.96) in Chapter VIII of [Dautray and Lions (1990)].

Lemma 7.3. a) If V =0 then o(A) = (—o0, —a] U [a, 00).
b) If (Vi) holds, then o(A) = o.(A) C

a+sup V(R?).
c) If (Va) holds then o(A) = 04(A) = {:I:,u}/2 tne N},

Proof. a) can be obtained directly by Fourier analysis (cf. [Esteban and Séré
(1995))).
b) Assume (V;) holds. Using (7.8) and Lemma 7.1b) we obtain

dim (E[771/2’,Y1/2]L2) = dim (F,YLQ) =0 for0< v < CLQ,

hence 0(A) C R\ (—a,a). If A has an eigenvalue n with eigenfunction u # 0
then A%u = n%u, so n? is an eigenvalue of A? contradicting the well-known fact
that o(A%) = 0.(A%) (cf. [Reed and Simon (1978)]). It follows that A has only
continuous spectrum. Finally, since a( —1 Zi:l akak) = R there exists a sequence

U, € H! with |u,|s = 1 and ‘—i Ei:l oLy,

— 0. This implies
2

3

—1 Z aké)kun

k=1

+|(V 4+ a)un|a < o(1) + a + sup V(R3)
2

|Aun|2 S

and b) follows.
¢) By Lemma 7.1c), for all v > 0 we have

dim(E[,71/2w1/2]L2) = dim(F,YLZ) < 00,
hence o(A) = 04(A) C {iu}lm i ne N}. For v = p,, we have

0#£#F, —F,_ o= (E,Y1/2 - Ey1/270) + (E*VI/Z — E,,Y1/2,0).
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Assume v'/2 is an eigenvalue of 4, so E. i2—E.1/2_y # 0. Let u be a corresponding
eigenfunction and set
0 I
S = (—12 0 )

where I is the unit matrix in C2. Then
ar g =—Foa, fork=1,23and 7 =—-_70.
Setting v = _Zu one has
Av=AfJu=— _FAu=— gy %u= "2,

so —y'/2 is also an eigenvalue of A. Similarly, if —y'/? is an eigenvalue of A then
~1/2 is an eigenvalue of A. O

Observe that we have an orthogonal decomposition
L? :L*EBLO@LJF, u=u7+u0+u+,

such that A is negative definite on L~, positive definite on L*, and vanishes on L°.
Clearly, L° = {0} if V() = 0 or if (V1) holds.
Let E = 2(|A|"/?) be the Hilbert space equipped with the inner product
(u,v) = (|A|1/2u7 |"4|1/2’U)L2 =+ (uO, UO)LQ

and norm ||ul| = (u,u)/?

. There is an induced decomposition
E=E ®E°®E" where E*=EnL*, E°=FENL",
which is orthogonal with respect to both (-,-)z2 and (-, -).

Lemma 7.4. a) If (Vi) holds then E = HY?(R?,C*) with equivalent norms, and
alulg < [lul}%

b) If (Vo) holds then E — HY?(R3 C*), and E embeds compactly into
L™(R3,C*) for all T € [2,3).

Proof. The lemma follows easily from Lemma 7.2 and an analysis of interpola-
tion spaces. In fact, using the (complex) interpolation [-,-]g (see [Reed and Simon
(1978)]) we have E = [2, L?]; /5. By Lemma 7.2, if (V1) holds then

(2,L%)1)2 2 [H', L], )9 = HY/?,
and if (V3) holds then the embedding
[-@7[’2]1/2 — [H17L2]1/2 = H1/2

is continuous. Moreover in the case of (V3), using Lemma 7.3¢) and the proof of
Lemma 7.2b) one sees that E embeds compactly into L™ for 7 € [2,3). O
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The solutions of the equations (D) and (Dy ) will be obtained as critical points
of the functional
1

®(u) = 5 (lu"I* = [l 1* + wlul3) - /Rg F(x, u), (7.9)
defined on E. Indeed, let A = U|A| denote the polar decomposition of A where
U=(1-Ey) —FE_o.If u€ FE is a critical point of ® then for all ¢ € C§°

0=(u"—u",0)+w(u, @) — /3 F,(z,u)p
R

— (A} + wlu)ir — [ Fulowp
R.

~ (@A +wp) - [ Py

hence u is a weak solution of (D) or (Dy ). Now a bootstrap argument (see [Esteban
and Séré (1995)]) yields u € WLT(R3,C*) for all 7 > 2.

7.4 The asymptotically quadratic case

In this section we prove Theorem 7.1 and Theorem 7.3. We begin with the proof of
Theorem 7.3. Recall that the functional ® defined on the space E = HY/?(R3,C*) =
E~ @ E*, given by (7.9):

®(u) = % (la* 1% — u™[? + wlul?) — U(u)  where ¥(u) = /R Pz, ).

In order to apply the critical point theorems from Chapter 4 we set X = E—,
Y =Et,and S = X*.
First we observe that by (w) and Lemma 7.4
2

)
< (It & wlut ) < 41

a2 < Juct|? (7.10)
a
and
a—|wl, _ o —n2 —2 a+|wl _ o
T B2 < (o £ ) < S e (7.11)

Lemma 7.5. U is weakly sequentially lower semicontinuous and ®' is weakly se-
quentially continuous. Moreover, there is ¢ > 0 such that for any ¢ > 0:

lull < ¢l for all ue .

Proof. The first conclusion follows easily because E = H'/? (R3, C*) with equiv-
alent norms, so E embeds continuously into L?(R3, C*) for ¢ € [2, 3] and compactly
into LY (R3,C*) for g € [1, 3). Since F >0, (7.10) and (7.11) imply
a+ |w a—|wl, _9
20; Hu || )

c<
2a

< lu*]* ~
if ®(u) > c¢. This yields

a— || a+|w|
THUII2 < —— "7,
and we obtain the second conclusion. O
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Lemma 7.6. There is p > 0 such that k := inf (0B, N E*) > 0.

Proof. Choosing q € (2, 3), it follows from the assumptions that for any ¢ > 0
there is C. > 0 such that F(z,u) < elu|? + C.|ul? for all (x,u). Therefore,

U(u) < elufs + Celul] < Cellul® + Ccllul|)
for all u € E. The desired conclusion now follows easily from (7.10) and (7.11). O
As a consequence of Lemma 7.3 we have
a <info(A)N[0,00) < a+ sup V(R?).
We choose a number 7 such that
a+sup V(R?) < v < inf b(R?) — w. (7.12)

Since A is invariant under the action of Z? by (V1), the subspace Yy := (E., — E)L?
is infinite-dimensional, and

(a+ w)|ulz < Jul® + wluld < (v +w)|ulz for all u € Yj. (7.13)

Let (Yn)nen C o(A) satisfy 79 :=a < v1 <2 < --- <+. For each n € N, take an
element e, € (E,, — E,, ,)L? with |le,|| = 1 and define Y,, := span{ey,...,e,},
E, =FE ®Y,.

Lemma 7.7. sup ®(E,,) < co for each n € N, and there is a sequence R, > 0 such
that sup ®(E,, \ By) < inf ®(B,) where B,, = {u € E,, : ||u|]| < R,}.

Proof. By (7.13) and the form of ® it is obvious that sup ®(E,) < oco. For
n € N fixed we now show that ®(u) — —oo as ||ul]| — oo, u € E,. Suppose to
the contrary that there exists M > 0 and a sequence u; € E, with ||u;| — oo and
®(u;) > —M for all j. Then the normalized sequence v; := u;/||u;|| satisfies (up to
a subsequence) v; — v, v — U, v;f — vt €Y, and

D(u;)

1 F(z,u;) -M
= L = oy P + w2 —/ i)
TERA i i) = L Tl 2 TP

=o(1). (7.14)
Using (7.11) we obtain as j — oo:

1 -
o) = = 75 < 5 (Ilo] 117 = vy I* + wlvs3)

1 w
||U;r||2 - §||Uj||2 + §|Uj|§
l|lwl—a
2

Thus v;r is bounded away from 0 and therefore v # 0. We define

< llofII* + Jlv; 112

R(z,u) := F(x,u) — %b(x)u ~u and  bg := inf b(R?)
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where b: R? — R is from (F}). Then we have F(z,u) < clu|?, R(z,u)|u|~2 — 0 as

|u| — oo, and

o) = 5 (112 = J Pt = [ s@ll?) = [ R

R o ) R (7.15)
a — |W _ 0
< 5 (1P + ol ) = 52 P = P~ [ R
for u € E. By (7.13), (7.12) and v # 0 there holds
a—|wl, _
(Il 12 + ol B) = S o2 = ool
a—|wl, _
< — (o~ —w)lt} — oy
<0,
hence, there is a bounded domain Q C R? such that
a—lwl,
(12 + ol ) = o2 o [ of? <. (7.16)
It follows from Lebesgue’s dominated convergence theorem that
lim R(x, ugj _ R(z,u; 2|v]| _o.
J=o0 [Jusll J_’OO |uj]
Thus, using (7.14)—(7.16) we obtain
— F(CE,U)
0< 11m1nf < (HU+H2 [[v; % +w|vj|§) — TVJ)
J
1 a—lw|, _ by
< 5 (FP +wlo™ ) = 52 P = 3 [ ol
<0,
a contradiction. (]

As a consequence, we have
Lemma 7.8. ®|sg <0 where Q :={u=u"+se1: u~ € E7,s>0,|lul| < Ri}.

Proof. By our assumptions we have ¥U(u) > 0. Thus

D) = 5 (Ju? ~ whu ) — () < —gla @)l W(w) <0

which, together with Lemma 7.7, implies the lemma. (I

Lemma 7.9. If (w), (Fy) — (Fy), (F}), and (Fy) hold then any (C).-sequence is
bounded.
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Proof. Let (uj) C E be a (C).-sequence:
O(u;) — ¢ and (14 [|u;[)®'(u;) — 0.
It follows from (F%), (F}) that for j large

1 .

Co = ¥(w) — 3 (w)u; = [ Flauy) (7.17)
R3

Assume by contradiction that ||u;|| — co and set v; = wu;/||u;||. Then |v;|s < s
for all s € [2,3]. It follows from (7.10) — (7.11) that

B Fu(x,u»)(v*—vf)
@mmwj—%>=mmﬁ@wﬁ—ww@—43 DL

Tl
> e (el [ o)t )
L i P |

Fy(z,u;)(vF — o7
lim inf (,4)( J J ) > (=
o Jao T a

Thus

= el (7.18)

As before we set

h(r) := inf {F(x,u) :x € R®and u € C* with |u| > r} ,

Qj(p,r) ={z e R®: p < |u;j(z)| < r}

and

a
c,, = inf { |(;v|,2u) cx € R® and u € C* with p < |u| < r} )
U

By (F}), h(r) — oo as r — oo and by definition
F(z,uj(z)) > c;|uj(;zc)|2 for all x € Q;(p,r).
It follows from (7.17) that
Coz [ B [l hI2000),
©;(0,p) Q2 (p,m)

Observe that [©2;(b, 00)| < Co/h(r) — 0 as r — oo uniformly in j, and, for any fixed

O<p<mr,
1 C
[l =i [ kst o
Q;(p,r) ||uJ|| Q;(p,r) Cp”uj”
as j — oo.

Let 0 < e < (/3. By (F3) there is p. > 0 such that [Fy(z,u)| < =|u for all
|u| < pe, consequently,

|Fu(, uj)] _ €
| et - o < Sl <
Q,;(0,pc) |u; 2
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for all j. Recall that, by (F%) — (Fy), |Fu(z,u)| < ci|u| for all (z,w). Using Holder
inequality we can take r. large so that

Jo it b e [l =
< 01|Qj(7“5700)|1/6|U;r —v; |2[vjls
< 1| (re, 00) V09273
<e€

for all 7. Moreover, there is jy such that

Jai .
/ ijlwf—vj_lﬁcl/ |U;F—uj‘||vj|
Q;(pe,re) |U]| Q;(pe,re)

1/2
< erlujls ( / W)
QJ(PE:TE)

<e
for all j > jg. Therefore, for j > jo,

/ |Ful,uy) (v —v7)
RN [l
which contradicts (7.18). O

Proof. [Proof of Theorem 7.3 (Existence)] With X = E~ and Y = E* the condi-
tions (®g), (®4) hold by Lemma 7.5. Together with Lemma 7.6 and Lemma 7.8 we
have all the assumptions of Theorem 4.5 verified. Therefore, there exists a sequence
() satisfying @ (um,) — ¢ > k and (14 ||um||) P’ (um) — 0. By Lemma 7.9, (u,,) is
bounded, hence ®'(u,,) — 0. Now by the concentration compactness principle (cf.
[Lions (1984)]) and the Z3-invariance of ®, a standard argument shows that there
is w # 0 such that ®'(u) = 0. O

<3e</l

Now we turn to the multiplicity. We start with to discuss further the (C).-
sequence (u;) C E. By Lemma 7.9 it is bounded, hence, without loss of generality,
we may assume that u; — u. Plainly u is a critical point of ®. Set uj = u; — u.
We have similarly to Lemma 6.7 the following

Lemma 7.10. Under the assumptions of Lemma 7.9, one has, along a subsequence
as j — oo,

1) @(ujl) —c—®(u);

2) (ul) — 0.

Proof. The verification of 1) is similar to and simpler than that of 2), so we only
check the latter.
Observe that, for any ¢ € F,

‘I”(U}W’ =& (u;)p + /R3 (Fu(a:,uj) — Fu(a:,u]l) — Fu(x,u)) ©.
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Since ®'(u;) — 0, it suffices to show that along a subsequence

sup /RS (Fu(a:,uj) - Fu(m,u}) - Fu(a:,u)) ol — 0. (7.19)

llell<1
We argue as in the proof of Lemma 6.7. Set B, := {x € RN : |z]| < d} for d > 0.
We have similarly to (6.26) that there is a subsequence (u;,) such that, for any
€ > 0 there exists r. > 0 satisfying
Jimm sup / iy, |7 < e (7.20)
Bu\B.

n—oo

for all r > r.. Let  : [0,00) — [0,1] be a smooth function satisfying n(t) = 1 if
t <1,n(t) =0if t > 2. Define @,(x) = n(2|z|/n)u(z) and set h, := v — U,. Then
[lhnll — 0 as n — co. Observe that for any ¢ € E

| (Fulvns,) = Fulanid) = Futo) ¢
= /]1&3 (Fulz,uj,) — Fulz,uj, — ) — Fu(z,0n)) ¢
+ /RS (Fu(x,ujn + hp) — Fu(x,ujn)) ©

¢ [ Eloi) o)

Since ||hy|| — 0 it is easy to see that

/RS (Fu(a, i) — Fu(m,u))w} —0

uniformly in ||| < 1. Recalling that the Sobolev embedding is locally compact and
using (7.20) one gets, for any € > 0 and r > r.,

/R3 (Fu(z,uj,) — Fu(z,uj, — tn) — Fu(z, 1)) 90}

lim
n—oo

lim sup

n—oo

= limsup
n—oo

/ (o 5,) — Fult, 5, — in) — Fu(z, @)
B, \B,

< ¢y limsup / (| + n]) 0]
B,\B,

n—oo

S 0281/25

consequently,

lim =0

n—oo

/R3 (Fulz,uj,) — Fu(z,uj, —Un) — Fu(z,0y)) ¢

uniformly in [|¢|| < 1. Finally, along the same lines of (6.29) it is not difficult to
show that

lim / (Fu(x,u}n +hy) — Fu(x,u]ln)) cp‘ =0
n—oo R3

uniformly in ||| < 1. (7.19) is hereby verified. O




112 Variational Methods for Strongly Indefinite Problems

Let K :={u € E: ®'(u) = 0}, the critical set of .
Lemma 7.11. Under the assumptions of Lemma 7.9, there hold

a) v:=inf{|lul : v € L\ {0}} > 0;
b) 0 :=inf{®(u): uwe KL\ {0}} > 0.

Proof. See the proof of Lemma 6.8. (]

Let F be a set consisting of arbitrarily chosen representatives of the Z3-orbits
of K. When @’ is odd we may assume F = —F. Let [r] denote the integer part of
reR.

Lemma 7.12. Let the assumptions of Lemma 7.9 be satisfied and let (u,,) be a
(C)c-sequence. Then either

(i) Um — 0 andc=0, or

(ii) ¢ > 6 and there exist a positive integer £ < [c/0], points Ty, -+, Uy € F, a
subsequence denoted again by (un,), and sequences (a%) C Z3, i = 1,...,4,
such that

14

Um — Z(a’:n *Ei)

=1

— 0

and
¢

> o(m) =c.

i=1
Proof. The argument proceeds as in the proof of Lemma 5.9, so we only give a
sketch of it. First of all, (u,) is bounded by Lemma 7.9. It follows that ®’(u,,) — 0
and

0< / F2,tm) = () — l<I>’(um)um — ¢,
" 2

thus ¢ > 0. Assume now that (u,,) does not converge to 0. As before, the concen-
tration compactness principle implies that either (u,,) is vanishing in which case
|t |p — 0 for all p € (2,3), or it is nonvanishing. Fixing a p € (2,3), by (F2) and
(Fy), for any £ > 0 there is C; > 0 such that

|Fu(z,u)| < elu| + ColuP™t for all (z,u). (7.21)
If (upy,) is vanishing one checks easily with the help of (7.21) that

bl = @i+ [ Bty 0

and similarly |lu..|| — 0, so ||um|| — 0. Therefore (uy,) must be nonvanishing. Now
since @ is invariant under the Z3-action, a standard argument enables us to choose
a sequence (a,,) C Z3 such that the sequence v, := a,, * u,, converges to v € K
weakly in F and strongly in L7  for all p € [1,3). Note that ®(v,,) = ®(um),

loc
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|9 (vl = 1|19 (um)|| and ||vm|] = ||um||- Setting w,, = v, — v it follows from
Lemma 7.10 that

O (wy,) — c—P(v) and &' (wp,) — 0. (7.22)

Lemma 7.11 and (7.22) imply 6 < ®(v) < ¢. There are two possibilities: ¢ = ®(v)
or ¢ > ®(v). If ¢ = ®(v) then w,, — 0. If ¢ > ®(v), then arguing as above with
(um) and ¢ replaced by (w,,) and ¢ = ¢ — ®(v), respectively, we obtain v’ € K with
0 < ®(v') < c— 0. After at most [§] steps we obtain the conclusion. O

The proof of Theorem 7.3 will be completed in an indirect way. Namely, we
show that if

K/Z? is a finite set (7.23)

then condition (®;) is satisfied. Then we apply Theorem 4.7 and obtain an un-

bounded sequence of critical values which contradicts (7.23). So we now assume

(7.23). Then F is a finite set by (7.23), and since ®’ is odd we may assume F = —F.
For ¢ € N and a finite set B C E we define

J
[B,é] = {Z(ai *ui) 1<y S& a; € ZB, u; € B}
i=1

An argument similar to one from [Coti-Zelati, Ekeland and Séré (1990)] or [Coti-
Zelati and Rabinowitz (1992)] shows

inf{||u —u'|| s u,u’ € [B,f], u#u'} >0. (7.24)
As a consequence of Lemma 7.12 we have the following
Lemma 7.13. Assume (7.23). Then ® satisfies (Py).

Proof. Given a compact interval I C (0, oo) with d := max I we set £ := [d/0]
and &/ = [F,l]. Clearly E* are Z3-invariant because A is Z3-invariant. We have
Py [F,{] = [Py F,{]. Thus it follows from (7.24) that

inf{||uf —ug||: ui,u2 € &, uf #ug} > 0.

In addition, &7 is a (C)r-attractor by Lemma 7.12, and & is bounded because
[lu]| <€ max{||a| : @ € F} for all u € & O

Proof. [Proof of Theorem 7.3 (Multiplicity)] Assume by contradiction that (Dy)
has only finitely many geometrically distinct solutions, that is, (7.23) holds. Then
O satisfies (®g)—(Py) by Lemmas 7.5-7.7 and 7.13. Therefore Theorem 4.7 yields an
unbounded sequence of critical values for ® which contradicts (7.23). This proves
that (Dy ) has infinitely many geometrically distinct solutions. O
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Now we turn to the

Proof. [Proof of Theorem 7.1] The main difference to the proof of Theorem 7.3
lies in the boundedness of the (C').-sequences. We choose 7y such that a < v < b—w
where b is from (F3), and define the finite dimensional subspace Y;, C E* as before.
We assume that (w) and (Fp) — (Fy) are satisfied.

CLAIM 1. The conclusions of Lemmas 7.5-7.8 are true.

This can be proved as before. Next we obtain

CLAIM 2. Any (C).-sequence is bounded.

In order to see this we introduce the following norm on FE:

—ia 1/2
lullo = (ull® +w(u®3 - Ju™[3) -

With wy = min{a — w, a + w} and using (7.10), (7.11) we have

a— vl a+ le
—— lull* < Jlulf <

woluly < flully  and - (7.25)

Consider a (C)¢-sequence (uy,) C E:
®(u,) —c  and (1 + ||un|)®' (un) — 0. (7.26)

It suffices to show that (||uy|w) is bounded. Arguing indirectly we assume that
|unll, — oo and set v, = wun/||un|lw- Then by the concentration compactness
principle [Lions (1984)], (v,) is either vanishing which implies |v,|, — 0 for all
p € (2, 3), or it is nonvanishing. Recall that a sequence (wy) C E is vanishing if,

for each r > 0, lim sup fB (@) |w,|? = 0. It is nonvanishing if there are r,n > 0
n—00 gegs "

and (a,) C R3 such that limsup [, (an) |wy,|? > n. Clearly, in the nonvanishing case
n—oo

we may assume (a,,) C Z> by enlarging r if necessary. Therefore the proof of Claim
2 will be completed if we show that (v,,) is neither vanishing nor nonvanishing.
Assume (vy,) is vanishing. By definition

<I’/(un)(u: - un) - ||u77-||2 +w(|u+|2 |un / F .13 uﬂ n - u;)

F,(z,uy)
=l (1 _ [ Ao ))

”un”w

hence by (7.26):

— 1.

/ Fu(z,un) (v —vy)
R3 [[wnllw
We set
O, = {x€R3: M <wo—51}
|un(2)]
where 91 is the constant from (Fy). By (F4) and (7.25)

/ Fu (@, un) (vy —vn)‘ _ / Fu(@, un) vy — vy)|vn]
Qn o

01
<(UJ0—51)|’UTL|2 1——<1
wo
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for all n. Thus, setting Q¢ := R3 \Q we obtain
+ _
lim Fu(z, tn) (Vg — vy — lim >
n=oo Jae [[wnllw n—eo ||un||w wo
By (Fz) we have |F,(x,u)| < C|u| for all (as,u), so for p € (2, 3):
+ _ —
/ Fu(xaun)(vn vn) S C/ |'Un|2 S C|Q%|(P*2)/P|vn|g/10
c Q’(,ZZ

llnllw

Fu(@,up)(vf —v) _ 01

Since |v,|, — 0, one gets |Q¢| — co. Recall that F(z,u,) > 6 on QF by (Fy),
hence

/ F(x,un) > F(x,un) > 0105 | — oo.
R-?) Qc

However, it follows from (7.26) that ng (2, up) = ®(uy)— 2@’ (un)u, — c, yielding
a contradiction.
Assume (v,,) is nonvanishing and set @, (x) = un(z + an), On(x) = vo(z + apn),

on(z) = p(z —ay,) for any ¢ € C§°. We then have with R(z,u) := F(z,u) — 5b|ul*:
(I)/(un)%@n

= (’LL: - ’U/;, (Pn) + (w - b)(una 907’L)L2 - 0 Ru(xa un)SDn

This yields

. L . 5 v
(@ —0,,0) + (W —b)(Tp, )12 — / Ry (x, un)apg — 0.
R3 |in |
Since ||tp]lw = ||vnllo = 1, we can assume that @, — ¢ in E, 9, — o in L} _ and
On(z) — 9(z) a.e. in R3. Observe that © # 0 because lim,, o fB(O " |Tn]? > .

Next [Ry(z,u)| < Clu| implies

< Clel[onl,

Inl

so it follows from (F3) and the dominated convergence theorem that
(07 =07, ) + (w=b)(0,9)r2 = 0.
This implies that A9 = (b — w)v, hence
—AD +a?v = A% = (b — w)?D,
that is, ¥ is an eigenfunction of the operator A2 = —A + a? contradicting the fact
that A2 has only continuous spectrum.

Finally, repeating the arguments of the proof of Theorem 7.3, we obtain the
desired results. O
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7.5 Super-quadratic case

In this section we prove Theorems 7.2, 7.4, and 7.5. Obviously Theorem 7.2 is a
special case of Theorem 7.4 corresponding to V' (z) = 0. For the proof of Theorem 7.4
we consider as before the functionals

V)= [ Flaw) and @) = g (ot = ol +wlul) - 9@
on E = HY2(R3,C*) from (7.9). We choose ¥ > g := a + |w| + sup V(R?), and
set Yy := (E, — Eop)L?. We also choose a strictly increasing sequence (v, )nen
in o(A) N (70,7) and elements e, € (E,, — E,, ,)L? with |le,|| = 1, and define
Y, :=span{ei,...,en} and E, = E~ @Y,,. Then (Y, )nen is an increasing sequence
of finite dimensional subspaces of ET and

Yolul2 < ||ull® < v|ul? for all u € Yp. (7.27)

Lemma 7.14. Under (w), (Fo) — (F2) and (Fs) — (Fg), the following conclusions
hold:

a) U is weakly sequentially lower-semicontinuous and @' is weakly sequentially
continuous. For ¢ > 0 there exists ¢ > 0 such that ||u]| < (||u™| for all u € ®..

b) There exists p > 0 such that k := inf (0B, N E*) > 0.

¢) sup ®(E,) < oo, and there is a sequence R, > 0 such that sup ®(E, \ By,) <
inf ®(B,), where B,, = {u € E, : ||u]| < R,}.

Proof. a) is clear because | - || is equivalent to || - || z1/2, and HY/?(R?,C*) embeds
continuously into LP(R3, C*) for p € [2, 3], compactly into L (R3,C*) forp € [1,3).
Hypothesis (Fg) yields

|Fu(z,u)] < 6L1|Uu|p_1 for all |u| >,

where p :=20/(0 — 1) € (2,3). This together with (F3) implies that, for any € > 0
there is C, > 0 satisfying

F(x,u) < elul* + Cc|ul? for all (z,u).

Therefore ¥(u) < elul3 + Cclulf < C(e||ul®* 4 Cc|u|?) for all u € E. b) follows now
easily from
a— |wl
®(u) > — —ull* = Cellul* = CC|Jull”
for all w € ET and ¢ small.

It remains to check ¢). Note that, as a consequence of (F3) there is R > 0
such that F(z,u) > ~v|u|? if [u] > R. It is clear that sup ®(E,) < co. We show
that ®(u) — —oo as |lul| — oo, u € E,. Assume by contradiction that there is a
sequence (u;) in E, and M > 0 satisfying ||u,;|| — oo and ®(u;) > —M. Setting
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vj = u;/||u;|| we have (along a subsequence) v
because otherwise, ||vJ+|| — 0 and by (7.10)

D(uy) -

of1) < Tty < 5 (I 12 = o5 I+ ol )

a+wl, 0 a—lwl _ o5
< _ K _—_— .
< By - Ay

;-'—>v+ and v; — v~. Then v* # 0

which implies
il ] lim sup ||v]7||2 <0,
Jj—o0
hence 1 = |lvj|| — 0, a contradiction. Observe that by (7.27)

1 _
5 (W12 = o712 + (@ = 29)ol3)

1
<! (||v+||2—||v—||2— (2 "‘") v +||2)
2 ¥
1 |w] 1, _
—_ 1 +12 _ = 2
-5 (1 B s = 1
1
< L

hence, there is a bounded domain © C R? such that
1 _ 1
3 (172 = W7l wlolf =20 [ 1o?) <~
Q

It follows that

Puj) _ 10 4o -2 F(z uJ
< 5 (st = 7 I+ ey
fogl? <3¢ e TS
1 F(a,u;) —y|uy|?
= 3 (1712 = o P+ wlusl -2 / o) - [ Hed ol
2 Q [l
1
<5 (I P -y ||2+w|vj|2—27/|vj|2)
/ F(z,u) = ylu;[®
Qn{|u;| <R} w2
<

_ Cr|Q|
3 (I 12 = Do+ wluslg =20 [ o) + S

llus|*”
where Cr = max{F(x,u) : z € Q, |u| < R}. Consequently,

CR|Q| 1 2
||Uj||2 = _ZH’UH )

1
0 < —=|jv[|* - liminf
4 j—o0
a contradiction. (]
As a consequence of Lemma 7.14 c¢) we have

Lemma 7.15. Under the assumptions of Lemma 7.14, ®|lag < 0 where @ := {u =
u” +seq: |lull < Rp,s > 0}.
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Lemma 7.16. Under the assumptions of Lemma 7.14, (C).-sequences are bounded.

Proof. See the proof of Lemma 7.9. Let (u;) C E be such that ®(u;) — ¢ and
(1 + [Ju;]|)®"(u;) — 0. We then have

CO Z (I)(’U,J) — %(I)I(Uj)Uj = /ng F({E,Uj). (728)

Assume by contradiction that ||u;|| — oo and set v; = u;/|lu;||. Then |v;|s < s
for all s € [2,3]. By definition

et —umy > g2 (a1l [ Fu@u)ef —op)
@' ;)] j>znj||< el ,

[l

hence,

Fu s Wy T—v;
lim inf (@ uj)(vj Y )

a— |w|
1= Jpa [l a

> f:=

(7.29)

Let h(r), ©;(p,r) and ¢}, be as before. Then h(r) — co as r — oo and
F(z,ui(z)) > c;|uj(a:)|2 for all z € Q;(p,r).

It follows from (7.28) that |2;(b, 00)| < Co/h(r) — 0 as r — oo uniformly in j, and,
for any fixed 0 < p <7,

1 Co
/ Wz:ﬁ/ fu* < s = 0
Q;(p,r) HuJH Q;(p,r) Cp”uj”
as j — o0.
Let 0 < e < £/3. Firstly by (F3) take p. > 0 small such that
Fu s g —
/ M|“j||vj_vj|§57
Qj(O,pE)

then by (Fs) and Holder inequality take r. large so that

Fuu)l o
P el

i (re,00) |U]|

P, up)” ) e
ull, Uj 7 — 3/2 o— o
<(f BB ([ (e e)) e
Q;(re,00) |u]| Q;(re,00)
7 e + - 3/2 20 (0—3)/3c
= a F(z,uj;) (|Uj —v; ||UJ|) |€2; (re, 00)|
R3 R3

<e

uniformly in j. Finally choose jo so that
Fu s Wy —
[ Bl <
Q_7' (Ps:"‘s) |u.7|
for all j > jg. Thus
Fy(z,u;) (v —v7
lim inf (@, u;)( J J )
i—oo Jps [[ws]l
which however, contradicts (7.29). O

<3e <,
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Repeating the arguments of Lemmas 7.10, 7.11, 7.12 and 7.13 gives the following

Lemma 7.17. Let (w), (Fo)— (F2) and (F5)— (Fs) be satisfied. Assume ® has only
finitely many geometrically distinct critical points. Then for any interval I = [¢,d] C
(0,00), ® has a (C)r-attractor & with PTo/ C E* bounded and inf {|ju™ — vT|| :
u,v€ A, ut Aot} >0.

Proof. [Proof of Theorem 7.4] With X = E~ and Y = E7 all conditions of
Theorem 4.3 are satisfied as a consequence of Lemmas 7.14-7.16. Therefore ®
possesses a (C)q-sequence (u,,) with £ < ¢ < sup ®(Q). Using the concentration
compactness principle the invariance of ® with respect to the Z3-action yields a
critical point u # 0.

Furthermore, assume F(z,u) is also even in u. If (Dy) has only finitely many
geometrically distinct solutions, then with Lemma 7.17 we see that ® satisfies all
hypotheses of Theorem 4.7, hence it has an unbounded sequence of positive critical
values. g

Next we turn to the

Proof. [Proof of Theorem 7.5] As before we look for critical points of the func-
tional ® on E. According to Lemma 7.3c) the spectrum of A is purely discrete:
o(A) =04(A) = {i/hl«/2 :n € N}. We arrange the eigenvalues of A less than —w as

—00 < - <y < < —w with eigenfunctions e; Aej_ =n; e,
and those larger than —w as
—w<n <n < with eigenfunctions ejf : Ae;-|r = n;rej.

Setting
E* = clos Span{eji : jEN} and E° = ker(A +w)
we then have the decomposition
E=E;0E eEl, u=u +u’+u’.
We define a new inner product on E by
(4, v)0 = (|A+w|?u, [A+w[V?0) 2 + (u°,0°) 12

with associated norm ||ul|,. Note that || - || is equivalent to || - ||. It is obvious that

wolul < |jul|? foru € E; @ EF, wo:=min{n] +w, —(n; +w)} (7.30)

and that the functional ® can be written as
1 _ .
Ba) = 3 (12 = a7 2) = %) with ¥(w) = [ Flow).
Foru =73 n(c;je; + c;rej_) +u® € E we have:

lull =" ((nf +w)les P = (nj +w)le; 1) + )3
JEN
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In order to apply Theorems 4.3 and 4.7 we set X = E; @ E? and Y = E.
CLAIM 1. O satisfies ($g), (P) and (P2).
(®g) follows easily from the continuity of embedding E «— HY/?(R3,C*), (®,)
from the form of @, and (®3) from Lemma 7.6.
CLAIM 2. O verifies (P4).
For n € N, we define Y,, := span{e], ..., e} }. Then (7.30) implies

woluld < llully < nflulf  for u € Ya.

Repeating the argument of the proof of Lemma 7.14c) yields (®4).

Cram 3. @ satisfies the (C). condition for all ¢ > 0.

Let (u;) C E be a (C).-sequence. Then (7.28) remains true in the present
case. We first verify the boundedness of (||u;l|.). Assume by contradiction that
lujllw — oo and set v; = u;/||u;||?, as before. After passing to a subsequence we
have: v; — v, v? — 00 p = limj_ v; + vf||w exists. We distinguish the two
cases: p = 0 or p > 0, and we write u; = u; + u;', U; =v; + U;_. If o = 0 then
[v]lw = [v9]2 = 1 = [v°]2. For § > 0 we consider the sets Q5 = {z € R® : [v0(z)] >
20} and Qj5 = {x € R3 : |9;(x)| > &}. Since v° € C(R?) and [v°]2 = 1, [Qs] > 0
for all 6 small. By (7.30)

1 ~ 12 1 ~ 112
sl < 55 /Rz |9;]° < 52wO||Uj||w — 0,

hence, |25\ Q5] — |Q25] as j — oo. Now for x € Q5 \ Q5 there holds |v;(z)| > /2,
hence |u;(z)| > %||uj||w for j > js. From this and the definition of h(r) we obtain

/ F(x,uj)Z/ F(x,uj)
R3 Qs5\Qjs
1)
> (Gl ) 192\ s

— 0

contradicting (7.28). Next assume p > 0 and observe that

] i Pula,uy)(vf = o)l
@m»mf—w>=wmﬁ<wmi—43 s ),

|uj|?
hence
/ Fu(x,uj)(v;r — vy )|vyl 2
R3 |uj]
Set
|Fu(z,u (x))] _ wop? 3
Q-;:{gye]R?’: < and QS =R\ Q.
! ()] 2 ! !
Then we have
/ Fu(xauj)(v;r - ’U;)|’Uj| < @2w0| |2 < @_2
. [ = 9 2= 9>
Qj J
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and therefore

Fu s Wy T j 2
hm (x U’J)(Uj U] )|U]| % ] (731)

i=oe J@s |

Now repeating the arguments of the last part of the proof of Lemma 7.16 it is not
difficult to see that

Fu(z,u) (v —v)|v;
hm U( ])( 7 J)l ]| :O,
=5 Ja: fuj]

contradicting (7.31). Therefore, (u;) must be bounded in E, and a standard argu-
ment (using the fact that £ < L7(R3,C*) embeds compactly for 7 € [2,3)) shows
that (u;) has a convergent subsequence in E.

In conclusion, ® satisfies the conditions of Theorem 4.3. If F' is even in u €
C* then it satisfies the conditions of Theorem 4.7. This completes the proof of
Theorem 7.5. g

7.6 More general external fields

The contents of this and the next section are chosen from the work of [Ding and Ruf
(2006)]. In the present section we consider the equation (7.3) with more general
vector potentials. We rewrite for convenience (7.3) in the form

3
_izakaku+aﬁu+M(m)u: Ru(irau)a (P)
k=1
where a = mc > 0 and M (z) = (m;x(z)) is a 4 X 4 symmetric real matrix function
defined almost everywhere on R3, that is, m g (x) = my;(x) € R for j,k = 1,2,3,4
and a.e. £ € R3, such that

3
A:=Hy+ M with Ho:=—iy a0y +af
k=1

is a selfadjoint operator in L?(R3, C*).

To treat the nonlinear problem, it is crucial to have information about the
spectrum of the linearized operator A in the origin. Our assumptions will guarantee
that A has a spectral gap around the origin, and that there exist a finite number
(or infinitely many) eigenvalues in the spectral gap. We are mainly interested in the
potentials M (z) which either are of Coulomb-type, i.e. tend to 0 as |z| — oo and
are singular at the origin (e.g. the Coulomb potential x/|z|), or have the property
that for some b > 0 the measure of the sublevel set Q, of SM(z) is finite (i.e
|| = {z € R®: BM (x) < b}| < 0).

We will consider nonlinearities R, (z,u) which are asymptotically linear, i.e.
Ry (z,u) = Q(z)u + o(|u|) for |u| — oo, where Q(z) is a continuous and symmetric
4 x 4-matrix-function. We assume that ¢o := inf; Qmin(x) > 0 where Quin(z)
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denotes the minimal eigenvalue of Q(x). Furthermore, we assume that R, (z,u) =
o(|u|) for u near 0, that goo := limsup|,|_, o @max () lies in the spectral gap where
Qmax () denotes the maximal eigenvalue of Q(x), and that between 0 and gq lie some
eigenvalues of A. We recall that such type of nonlinearities have been introduced
by [Amann and Zehnder (1980)] in other contexts.

7.6.1 Main results
Precisely we suppose that R(x,u) satisfies

(R1) R(z,u) >0 and Ry(z,u) = o(Ju]) as u — 0 uniformly in z;
(R2) Ru(z,u)—Q(x)u = o(Ju]) uniformly in x as |u| — oo, where @ is a continuous
symmetric 4 x 4 real matrix function;

(R3) Either (i) 0 € o(A — Q), or (it) R(z,u) > 0 and there exist dg, g > 0 such
that R(x,u) > do if |u| > vp;
(R4) qo = inf Quin(x) > inf o (A) N (0, 00).

Here (and below) we denote by o(B) the spectrum of an operator B, and we write

R(z,u) == %Ru(x,u) cu— R(z,u)

(u - v or uv denotes the scalar product of C*). For convenience any real function
U(z) will be regarded as the symmetric matrix U(z)I; where Iy denotes the 4 x 4
identity matrix. For two given symmetric 4 x 4 real matrix functions L;(x) and
Lo(x), we write that Ly (z) < La(z) if and only if

i (La(a) — La(a)) €€ <0.

Set
Ry(z,
(oo := lim sup (sup M)

First we consider the Coulomb type potential

(M;) M is a continuous symmetric real 4 x 4-matrix function on R?\ {0}, and 0 >
M(z) > — 147 Where £ < @

It is known that the corresponding operator A is selfadjoint with domain Z2(A) =
HY(R3,C*) and 0.(A) = R\ (—a,a), cda(A) N (0,a) # 0 where o.(A) denotes the
essential spectrum and o4(A) the eigenvalues of finite multiplicity (cf. [Griesemer
and Siedentop (1999)], [Thaller (1992)]). We assume in addition to (R1)— (R4) that

(R5) Joo < Q.

Involving (R4) let £ be the number of elements of (0,qp) N o(A). We are going to
prove the following result.
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Theorem 7.6 ([Ding and Ruf (2006)]). Assume that (M1) and (Ry)-(Rs) hold.
Then (P) has at least one solution. If additionally R, (x,u) is odd in u € C* then
(P) has € pairs of solutions.

Next we consider the problem (P) with the matrix potential M (x) satisfying

(M) M € L*(R3,R**%), and there is b > 0 such that |Q| < co where Q, := {z €
R%: BM(z) < b}.

Here we write |S| for the Lebesgue measure of S C R®. We define the number
bmax 1= sup{b: [Qy| < co}. Assume instead of (R5) that

(R5) Goo < @+ Diax.

Theorem 7.7 ([Ding and Ruf (2006)]). Assume that (Mz), (R1)-(R4) and

(Rs) hold. Then (P) has at least one solution. If additionally R,(x,u) is odd
in u € C* then (P) has £ pairs of solutions.

7.6.2 Variational arguments

We begin with a slight general situation. Throughout the subsection we always
assume that the matrix M (z) is such that A = Ho+ M is a self-adjoint operator on
L?(R3,C*) with domain 2(A4) ¢ H*(R?,C*), and consider the equation (P) with
R(x,u) satisfying (R1)-(Ry).

Let

pre = sup (0e(A) N (=00,0)), p = inf (oc(4) N (0,00)),
and e := min{—p_, pt}. We assume
(Ao) pe <0< pd;
(Ro) oo < fle-
We are going to prove the following result.
Theorem 7.8. Assume that (R1)-(Ra4), (Ao) and (Ro) hold. Then (P) has at least

one solution. If additionally R,(z,u) is odd in u € C* then (P) has { pairs of
solutions.

The assumption (4p) induces an orthogonal decomposition of L?(R?, C*):
LQ:L_EBLO@L’L, v=u +u’+u"
so that A is negative definite (resp. positive definite) in L~ (resp. L*) and L° =
ker A. Let P* : L? — L* and P° : L? — L° denote the associated projectors.

Let E := 2(|A|"/?) be the domain of the self-adjoint operator |A|'/2 which is a
Hilbert space equipped with the inner product

(,v) = (| A2, [A]Y/20) 2 + (POu, PO)
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and the induced norm |lu = (u,u)'/2. E possesses the following decomposition
E=E " 9E°®E"* with E*=ENL?* and E° = L°,

orthogonal with respect to both (-,-)z2 and (-,-) inner products.

Lemma 7.18. E embeds continuously in H'/?(R3 C*), hence it embeds continu-

ously in LP(R3,C*) for all p € [2,3] and compactly in L} (R3,C*) for all p € [1,3).

loc

Proof. See the proof of Lemma 5.11. Observe that the norm ||u||z: of H?! is
equivalent to the one given by ||Ho|u|o where as usual |Hp| denotes the absolute
value of Hy. Hence by interpolation theory the norm ||u|| ;1,2 of H/? is equivalent
to the one given by ||Ho|'/?uls.

Remark that the assumption (Ag) implies that 0 is at most an isolate eigenvalue
of finite multiplicity of A. Define the (strictly) positive selfadjoint operator acting
in L?:

A=A|+P° with 2(A) = 2(A).
Z(A) is a Hilbert space with the norm
e 1/2
[ulla = [Aulz = (|| Aful3 + [P ul3)
and, as in the proof of Lemma 5.10 it is easy to check that, since 2(A) C H',
lullgr < eillul|la  for all u € P(A).
Therefore, by interpolation theory (cf. [Triebel (1978)]),
lull1 /2 < ol [Ho|uls < e5] AY?uly = e3Jul|
for all w € F. 0
For further requirements we fix arbitrarily a positive number v with
Goo <Y < lhe- (7.32)

Let n be the number of the eigenvalues in the interval [—v,~]. We write 7; and
fj (1 < i < n) for the eigenvalues and eigenfunctions. Setting

LY :=span{fi, -, fu},
we have another orthogonal decomposition
L?=L'a L% w=u?+u’.
Correspondingly, E has the decomposition:
E=E'® E® with EY=L% and E°* = ENL®,

orthogonal with respect to both the inner products (-,-)rz and (-, ).
We define on E the following functional

D(u) = % (Jut)? = Ju™||?) — ©(u) with U(u):= . R(z,u).
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Remark that by assumptions (R;)-(R2) and (Ryp), given p € (2,3], for any € > 0,
there is C. > 0 such that

|Ru(z,u)| < elu| + CclulP™? (7.33)
and

R(z,u) < elul* + C.|ul? (7.34)

for all (x,u). Thus ® € C'(E,R) and a standard argument shows that critical
points of ® are weak solutions of (P). Moreover, by [Esteban and Séré (1995)], such
solutions are in W1#(R3,C*) for all s > 2 (see also [Bartsch and Ding (20061I)]).

Lemma 7.19. Let (R1)-(R2), (Ao) and (Ro) be satisfied. Then ¥ is weakly sequen-
tially lower semicontinuous and ®' is weakly sequentially continuous. Moreover,
there is ¢ > 0 such that for any ¢ > 0:

|ul| < ¢lluT||  for all u € ®.. (7.35)

Proof. The first conclusion follows easily because E < HY?(R3,C*), so E em-
beds continuously into L4(R?, C*) for ¢ € [2,3] and compactly into L, (R?, C*) for
q € [1, 3). For showing (7.35) we adopt an argument of [Ding and Jeanjean (2007)].
Arguing indirectly assume by contradiction that for some ¢ > 0 there is a sequence

Uy € ®. and |lu,||? > n|lut]|?. This, jointly with the form of @, yields that
luzy +upl® > (0 = Dfu™|* > (n - 1) <2C+ g |1 + 2/ R(xaun)> :
R3
or
lunll > (n = 1)2c+ (n = 2)lu, |* +2(n — 1)/ R(x,un).
R3

Since ¢ > 0 and R(z,u) > 0, it follows that ||[ul|| — oo, hence |lu,| — oco. Set
Wy, = Uy /||uy]]. We have ||w||? <1/n — 0. By
(TL— 1)26 —2 R(x7un)
- T =2lw, " +2(n-1) | ——=,

[[un 2 e un?
|2 <1/(n—2) — 0. Therefore, w,, — w =w" in E and |Ju°|| = 1.

1> [lwp* >

we also have ||Jw
By (R2) we set

7L|

r(z,u) == R(z,u) — %Q(x)u - u. (7.36)

Then |r(z,u)|/|u|?> — 0 as |u| — oo uniformly in z. Particularly |r(z,u)| < c1]ul?.
Observe that |u,(x)| — oo for w(x) # 0. Therefore,

r(z,u r(z,u r(z,u
R3 ”uTLH w(z)#£0 |un| w(z)=0 |un|

§2/ MWPJ&CH%—UJI% — 0.
w(x)#0 |u7’b|

This implies
]. n 1 y '
s M L[ 0w, _wn+/ r(z u2)
2(n—1) = Jrs [lunl 2 Jgs s [luall

> L lwal3 +o(1),

consequently, w® = 0, a contradiction. O
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Lemma 7.20. Under the assumptions of Lemma 7.19, there is p > 0 such that
=inf®(OB, N ET) > 0.
Proof. Choosing p € (2, 3), it follows from (7.34),
U(u) < eluli + Celulpy < Clelfull® + Ccflu]?)
for all u € E. The desired conclusion now follows easily. O
In the following, we arrange all the eigenvalues (counted in multiplicity) of A

in (0,g0) by 0 < p1 < p2 < ... < e < qo and let e; denote the corresponding
eigenfunctions: Ae; = pje; for j =1,...,0. Set Yy := span{ey, ..., e¢}. Note that

prlwla < JJw|]? < pelwl3  for all w € Yy, (7.37)
For any subspace F of Yy set Erp = E- ® E° @ F.
Lemma 7.21. Let (Ry), (R2), (R4), (Ao) and (Ry) be satisfied. Then for any

subspace F' of Yy, sup ®(Erp) < oo, and there is Rp > 0 such that ®(u) < inf ®(B))
for all u € Ep with ||u|]| > Rp.

Proof. Clearly, it is sufficient to check that ®(u) — —oco as u € Ep, ||u|| — oo.
Arguing indirectly, assume that for some sequence u; € Ep with |Ju;| — oo, there
is ¢ > 0 such that ®(u;) > —c for all j. Then, setting w; = u;/||u ||, we have

w;l =1, wj = w, w; = w™, w) —w’, wj —w" €Yy and

¢ D(u;) 1 1, _ R(x,uy)

—3 < g = e 1P = Sl P = ) = (7.38)
[l = [l [l
Remark that wt # 0. Indeed, if not then it follows from (7.38) that
R (x,u; c

0< —IIw I”+ o) —Hw+|\2 -0,

gl = 2 [l

in particular, [w;[| — 0, hence w; — w = w’. Since r(z,u)/|u[?* — 0 uniformly in
x as |u| — oo and |u;(x)| — oo if w(z) # 0, we have

T(Jj,u]‘) _ T(xvuj) 12
2 12 |wJ|
e [l e |ugl
<2/ |r($7uj)||wj_w|2+2/ |7’($,Uj)||w|2
R3 R3

B |uj|?

= o(1) +2/( » @ i)l e o1y

|uj[?
and
Q( )uj uj _ Q( )UJ u]| ,|2>@|w‘|
2 re llusl? 2 e g2 D=

It then follows from [ps ﬁl(j]fﬁg) — 0 that |w;|2 — 0, consequently 1 = ||w;|| — 0, a
contradiction. Now since

= o7l = | Qe < a2 = = aofol

— ((q0 = po)lw™ 3 + lw™||* + qolw®[3) <0,
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there is d > 0 such that
wt I~ e P - [ Q- <o (7.39)
By
Since |r(z,u)| < e1]ul? it follows from the fact |w; — w|2(p,) — 0 that

.lim/ T(wﬂg): .lim/ 7“(967Uj)|2wj|2:0.
i—oo Jp, Nl 17 JBy |

Thus (7.38) and (7.39) imply that

. 1 1, _ R(z,uj)
o< tim (Ghofl? - o1~ [ HE))
12 2 . o]
1 _
<5QmﬂF—MzW—/ mwwm)<o7
By
a contradiction. O

As a special case we have

Lemma 7.22. Under the conditions of Lemma 7.21, letting e € Yy with |le]| = 1,
there is To > 0 such that sup ®(0Q) = 0 where Q == {u=u"+u’+se: u~ +u’ €
E-®E%s>0,|ull <rol}.

We now discuss the Cerami condition. We adapt an argument of [Ding and
Jeanjean (2007)] (see also [Ding and Szulkin (2007)]). Remark that by (Ro) and

(7.36), given 7o € (¢oo, ), there exists to > 0 large so that
Ry (z, .
sup % <7 if|z| > to. (7.40)

u

Set
Ip:={x € R3: |z| <ty} and I§ = R3\ Io.

Lemma 7.23. Let (R1)-(R4), (Ro) and (Ao) be satisfied. Then any (C).-sequence
is bounded.

Proof. Let (u;) C E be such that
®(uj) — ¢ and (1 + [u;l))®"(u;) — 0.
Then
1 .
CQ > (I)(’U,J) - 5‘51)/(11]')11,]‘ = R((E,’LLJ'). (741)
R3
Arguing indirectly we assume that, up to a subsequence, |lu;|| — oo and set
vj = uj/||ujl]. Then |lv;]| =1, |vj|s < Csllvj|| = Cs for all s € [2,3], and passing
to a subsequence if necessary, v; — v in E, v; — v in Lj  for all s € [1,3),
vj(z) — v(z) for a.e. z € R3. Since, by (R2), |Ru(z,u)| < c1u| and |u;(z)| — oo if
v(x) # 0, it is easy to see that
/ Ru(z,u;(x))v;(x)
R3

juj(@)]

— [ Qz)vy
]R3
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for all p € C§°(R?,C*), hence
Av = Q(x)v. (7.42)

We claim that v # 0. Arguing by contradiction assume v = 0. Then U;—j — 01in
E and v; — 0 in Lj .. Observe that

‘I’/(“j)(u?r —uj / R, (x uJ
— 057 )|vjl. (7.43)
;12 [ ’
It follows from (7.43) and (7.40) that
Ry (x,u;) _
loslI? = [ =22 (0T =05y
! ooyl ! ! ’
Ru(xﬂu) e e—
+ |U, | : (UjJr - )|UJ| +0(1)
j
: “1/ el ™ =571+ | Il =05+ o)
IC
<o(1) +’YO|Uj|2
Y0 e
< o(1) + —|lv|1?
Y
hence (1 - %) [v§]> — 0, which implies that 1 = ||lv;[|* = [[vf]|* + [[v§]|* — 0, a

contradiction.

Therefore, v # 0, This is a contradiction if (7) of (Ry4) is satisfied.

Assume (ii) of (Ry) is satisfied. Set Q;(r,00) := {z € R® : |u;(z)| > r} for
r > 0. By assumption R(x,u) > &g if |u| > vp, hence, [Q;(ro,00)| < Co/dy by
(7.41). Note that v is a solution of (7.42). Set  := {z : wv(x) # 0}. By the
weak unique continuation property for Dirac operator one has |Q| = co (cf. [Booss-
Bavnbej (2000)]). There exist € > 0 and w C Q such that |v(x)| > 2¢ for z € w
and 2C/dp < |w| < co. By an Egoroff’s theorem we can find a set w’ C w with
|| > Coy/d¢ such that v; — v uniformly on w’. So for almost all j, |v;(z)| > € and
|uj(x)| > v in w’. Then

C() CO
— < W[ <[9(v0, 00) < —,
0 Vo

a contradiction. The proof hereby is completed. O

In the following lemma we discuss further the (C).-sequence (u;) C E. By
Lemma 7.22 it is bounded, hence, we may assume without loss of generality that
u; ~uin E, u; — win L  for ¢ € [1,3) and u;(z) — u(z) a.e. in 2. Plainly u is
a critical point of .

Choose p € (2,3) such that |R,(z,u)| < |u| + C1|u[P~! for all (x,u), and let q
stands for either 2 or p. Set By := {x € R®: |z| < d} for d > 0. As (7.20) we have:
along a subsequence, for any € > 0, there exists r. > 0 such that

limsup/ lu;, |9 <e (7.44)
Bn\B-

n—oo
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for all » > r.. Let 5 : [0,00) — [0,1] be a smooth function satisfying n(s) = 1 if
s <1,n(s) =0if s > 2. Define 4, (z) = n(2|z|/n)u(z) and set h, :=u — 4,. Since
u solves (P), we have by definition that h, € H* and

[Anll — 0 and |hyl, — 0 asn — oo (7.45)
for p € [2,3]. In addition we have

Lemma 7.24. Under the conditions of Lemma 7.23 we have

lim

n—oo

[ (Ruvti) = Ry, = 0) = Ruto ) | =0
R3
uniformly in ¢ € E with ||¢|| < 1.

Proof. Note that (7.44), (7.45) and the compactness of Sobolev embeddings imply
that, for any r > 0,

lim

n—oo

/BT (Ru(,u5,) — Ru(2,u;, — in) — Ru(%@n))w‘ 0

uniformly in ||¢|| < 1. For any ¢ > 0 let 7. > 0 so large that (7.44) holds. Then

nmsup/ |an|qs/ ult <
n—oo JB,\B, R3\B,.

for all > r.. Using (7.44) for ¢ = 2, p we have

n—oo ]RS
= lim sup / (Ru(z,uj,) — Ru(z,uj, —tn) — Ru(z,Tn)) ¢
n—oo Bn\Br

<ec limsup/ (Juj, | + |Tn]) |l

n—oo n r

n—oo

+ ca 1imsup/ (|an|p_1 + |11n|p_1) o]
Bn\B,
<eylimsup (ug, [L2(8,\B,) + lin|L2(B,\B,)) |¢]2

. -1 - p—1
+ ¢o lim sup (|ujn|’£p(3n\Br) + |un|iP(Bn\Br)) lelp
n—oo
<c3el/? 4 e 1/p,
which implies the conclusion as required. U

Lemma 7.25. Under the conditions of Lemma 7.23, one has along a subsequence:

1) ®(uj, —n) — c— D(u);
2) ®'(uj, — Un) — 0.
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Proof. One has
D(uj, —tn) = ®(uj,) — D(un)
+/ (R(z,uj,) — R(x,uj, — tn) — R(z,Un))
R3

Using (7.44) it is not difficult to check that

/}R3 (R(x,uj,) — Rz, u;, —n) — R(z,Up)) — 0.

This, together with the facts ®(u;,) — c and ®(@,) — ®(u), gives 1).
To verify 2), observe that, for any ¢ € E,

' (uz, — tn)p = ' (uj, )0 — ¥ (lin)p
[ (Rulws,) = Ry, = 2) = Rule i) o
R3
By Lemma 7.24 we get

lim [ (Ru(w,u,) = Rule,us, — i) = Ru(, @) ) = 0

n—oo [p3
uniformly in ||| < 1, proving 2). O
Lemma 7.26. Under the conditions of Lemma 7.23, ® satisfies the (C). condition.

Proof. In the following we will utilize the decomposition E = E? @ E€. Recall
that dim(E?) < co. Write

Yn 1=, — Un = Yo + Y5

Then y¢ = (u¢ —u?) + (u? — @¢) — 0 and, by Lemma 7.25, ®(y,) — c —

In n

D(u), ®'(yn) — 0. Set y& =yt — y°~. Observe that
o1) = (a)g, = il = [ Rulev)v. (7.46)
R
It follows from (7.46) that

e [Ru(, yn)| IR (@, yn)|
1 <0(1)+ |yl n|+ lynll7n

vl vl

+C1/ Iynllyn|+70/ Iynllyn

Yo
<o(1) +lysl3 < o(1) + —[lysll?,

hence (1 — vo/9)||yx|| < 0(1), i-e., yn — 0, finishing the proof. g
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7.6.3 Proof of Theorem 7.8

In order to prove Theorem 7.8 we apply Theorems 4.5 and 4.6. Set X = E— @ E°
and Y = Bt withu = 2 +y, 2 = v~ +u’, y = ut for u € E. Then X is
separable and reflexive and so is X*. We may assume S is countable and dense
in X*. Therefore, 75 is metrizable so its convergence is equivalent to sequentially
convergence.

Proof. [Proof of Theorem 7.8] (Existence). Observe that if ¢ > 0 and u,, € @,
with u, = &, + Yy — u =z + y in T then y, — y in norm. (7.35) then implies
||un|| is bounded, consequently, u,, — u. Thus by Lemma 7.19
e < Tim B(un) < 3yl |~ W) = Bw)

which proves that @, is 75 closed. Lemma 7.19 implies also that ®'(u,)v — &' (u)v
for all v € E, that is, ' : (®.,7s) — (E*,w*) is continuous. Thus ® verifies (D).
Lemma 7.19 implies also (®4). Lemmas 7.20 and 7.21 show that ® possesses the
linking structure of Theorem 4.5. Final, ® satisfies the (C').-condition by virtue of
Lemma 7.26. Therefore, ® has at least one critical point u with ®(u) > x > 0.

(Multiplicity). Assume moreover R(z,u) is even in u. Then ® is even, hence
satisfies (®1). Lemma 7.20 is nothing but (®2). Lemma 7.21 says that ® satisfies

(®3) with dim Y, = ¢. Therefore, ® has at least ¢ pairs of nontrivial critical points
by Theorem 4.6. (]

7.6.4 Proofs of Theorems 7.6 and 7.7

We now turn to the proofs of Theorems 7.6 and 7.7.

Proof. [Proof of Theorem 7.6] Assume (M;) holds. Then one has p; = —a and
uF = a. Now Theorem 7.8 applies. (]

Remark 7.2. Similarly, one can get existence and multiplicity results of solutions
to (P) if the Coulomb potential is replaced by the electrostatic potential M (x) =
Yper s where v is a positive constant and ¢; is a real function satisfying, e.g.,

(Ml) (bel S Lg(Rg) N LB/Q(RB)a d)el(x) < 0,

see [Thaller (1992)]. Another typical example is

v
H=Hy+—1
O T
which has finitely many eigenvalues in (—mc?, mc?) if vy < 1/8m and infinitely many

eigenvalues for v > 1/8m.
For proving Theorem 7.7 we first establish the following result.

Lemma 7.27. Assume that (Ms) is satisfied. Then
UG(A) CR \ <_(a + bmax)7 (a + bmax))a
that is, po < —(a + bmax) and pF > (a + bmax)-
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Proof. Let b > 0 be such that || < co. Set

BM(z)—b if BM(z)—b>0

0 if BM(z) —b <0

and (BM (z)—b)~ := (BM(x)—b)—(BM (z)—b)". We have A = A;+B(BM (x)—b)~

where

(BM () —b)" = {

:_zzakam a+b)8 + B(BM (z) - b)*.

Since 32 = I and Ba; = —a;3, we have, for u € Z2(A),

(Aju, Aqu) g2
| (=i Y and + BBM = 1) + (a + W) o,

/(- Za;ﬁk—i—ﬂﬁM—b*) } a+ b)2|ul2
( Zakﬁku a-+ u)L2 (a—|—b Bu, —zZakaku) ,
+ (B(BM = b)Tu, (a+b)Bu) . + ((a+0)Bu, B(BM —b)Tu),,
=|(- ZakakwwM—b)*)) (a4 07l

+2(a+b) (BM = 0)*u, ),
> (a+b)2Jul3.
Thus o(A1) CR\ (—(a+b), (a+b)).

We claim that o.(A) N (—(a + b), (a + b)) = . Assume by contradiction that
there is p € 0. (A) with |u| < a +b. Let u, € 2(A) with |up|z = 1, up, — 0 in L?
and |(A — p)uyn|2 — 0. Then ||uy||f: is bounded and hence |3(BM — b) " u,|2 — 0.
We get

o(1) = [(A — punl2 = [Arun — pun + B(BM — b) " un|2
> |Avun|2 — |p| = o(1)
> (a+0b) —[u| —o(1)
which implies that 0 < (a +b) — |u| < 0, a contradiction.

Since the claim keeps true for any b > 0 with 2% < oo, one sees that o.(A) C
R\ (—(a + bmax); (@ + bmax))- O

Remark 7.3. Form the proof of Lemma 7.27 one sees that if (M2) is replaced by
the stronger one

(My) || < oo for any b > 0,

then o(A) = 04(A), that is, the Dirac operator A has only eigenvalues of finite
multiplicity.
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It follows from Lemma 7.27 that 0 is at most an isolated eigenvalue of finite
multiplicity of A. Letting A = |A| + P° as before one sees that |ulz < c1|Auls,
consequently, jointly with the assumption that M € L* by (M),

|Houls < |Auls + |Mula < |Aulz + | M]oo|ul2 < |Aula.
This implies that 2(A) C H'. On the other hand, it follows from
|/~lu|2 < |H()U,|2 + |Mu|2 + |POU,|2 < CQ|HOU|2

that H! C 2(A). Therefore, 2(A) = H*.
We now can give the following

Proof. [Proof of Theorem 7.7] Lemma 7.27 implies (Ag), hence Theorem 7.8
applies and yields the desired conclusions. ([l

7.7 Semiclassical solutions

Finally we consider the Dirac equation (7.2). A family uy, i — 0, of solutions
of (7.2) will be called semiclassical solutions. The semiclassical point of view is
important for studying Dirac operators and the semiclassical methods are employed
in treating Dirac equation problems, see p. 308 in [Thaller (1992)] and the references
therein. We are interested in the potential of the type M (z) = V(z)5 (i.e., the scalar
potential, cf. [Thaller (1992)]). For convenience we rewrite the equation in the form

3
. Z iagOpu + (a + V(x))fu = Ry (x, u) (Pe)

k=1

(62 := h) where V is a real function satisfying

(V) V e L (R3 R), and there are zop € R® and b > 0 such that V(x¢) < 0 and

loc
|| < 0o where Q== {z € R3: V(z) < b}.
Assume the nonlinearity R(z,u) satisfies (R;)-(R3) and (Rs). We are going to
establish the following result:

Theorem 7.9 ([Ding and Ruf (2006)]). Let (V), (R1)-(Rs) and (Rs) be satis-
fied. Assume qo > a. Then there is & > 0 such that (P:) has at least one solution
for each e € (0,&). If additionally R, (x,u) is odd in u € C* then for each m € N
there is Ey, > 0 such that (Ps) has m solutions for each e € (0,&y,).

We note that in this theorem we assume only that gy > a which is weaker than
(Ra).
Obverse that, by dividing 2 and setting A = 1/£? in the equation (P.), we have
the following equivalent problem:
3
—i Y oOpu+ Ma + V(2))Bu = ARy (z, u). (Pr)
k=1
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We are led to study the existence and multiplicity of solutions of (Py) for A — co.
Therefore, we will prove the following theorem.

Theorem 7.10. Let (V), (Ry)-(Rs) and (Rs) be satisfied. Assume qo > a. Then
there is Ao > 0 such that (Py) has at least one solution for each A > Ag. If
additionally Ry, (x,u) is odd in u € C* then for each m € N there is A, > 0 such
that (Py) has m solutions for each X > A,,.

For getting this result we will apply Theorem 7.8. For distinguishability we
write Ay = —i 22:1 a0k + A(a+ V)0 instead of A. Note that the assumption (V)
implies that the matrix AGV satisfies (Mz). Therefore by Lemma 7.27 we have the
following result.

Lemma 7.28. Assume that (V') holds. Then
Ge(AA) - R\ (_A(a + bmax)a )\(a + bmax)) .

By virtue of this lemma the space L? has the orthogonal decomposition: L? =
Ly ® LY & LY such that A, is negative (resp. positive) definite on L} (resp. on
L}), and LY = ker Ay. We can define E\ = 2(|A,|'/?) equipped with the inner
product

(u,0)x == (JA]Y *u, |A[Y?0) 12 + (PYu, PYv) 12
and the induced norm |[|ul|y = (u, u)i/ ? where PV : L2 — LY denotes the orthogonal
projector. E) embeds continuously into H'/2(R3,C*). Hence E)\ embeds continu-
ously into L? for all p € [2,3] and compactly into L _for all p € [1,3). Moreover,
E)\ possesses the following decomposition
E\,=E; e EY® E},

orthogonal with respect to both (-,-)z2 and (-, ) inner products. On E) we define
the functional

1 1, _
Ba(w) = 51t~ 5l 13- A [ R,

Then ®, € C*(Ey,R) and its critical points are solutions of (Py).
We now prove

Lemma 7.29. Assume that (V) holds. Then for any m € N there is Ay, > 0 such
that Ay has at least m eigenvalues (counted in multiplicity) lying in (0, Aqo) for each
A€ [Ap, 00).

We will establish this lemma constructively. Observe that since o.(Ax) C R\
(—A(a + bmax), A(a + bmax)), it is sufficient to show that there exist m linearly
independent elements ¢ € EY with |p|s = 1 and [¢||» < Ago. By assumption,
qo > a. Given

. Jao—a 1
0<f< —_— =,
mln{ 2q0 2}
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set
— 5. Y00 s
Dy = {33 e R°: 7 < V(JI) < 0(]0} and g :=int Dy.
For each m € N, we choose m real functions w’/ € C§°(Q,R), 7 = 1,...,m,
satisfying
lwi]o =1 and supp w’ N supp w* =0 if j # k.
Set
p; = (w?,0,0,0) € C§°(2,C*) forj=1,....,m.
Clearly ¢1, ..., pn are linearly independent,
Axp; = (0,0, —i03w’, —i01w! + Gow?) + (Ma + V)w?,0,0,0)
= (Ma + V)w?,0, =030, —idyw! + dow?),
3
(— i ardepy, SOj)L2 =0,
k=1
and
0 .
A <a+ %) < (Axgj, pj)L2 = /\/ (a4 V)|w?)? < X(a+ 0q), (7.47)
R3
|Axpsl3 = (A3ws, 95) L2 = Vw5 + /\2/3(“+ V)? |2,
R.
SO
_ Gan \ 2 ,
V4 4% (0t %) < LAl < 19+ ¥ (ot )
For each A > 0 we have the representation ¢; = ¢y + apgj + ap;\rj (j=1,...,m).
Set
Zm i =span{pi, ..., om}t, Zam = span{ga;\rl, ce <p;\rm}.
Lemma 7.30. For each A > 0 and m € N, dim(Zy,,) = m.
Proof. 1t suffices to show that ¢},,..., ¢} are linearly independent. Suppose
that Z;nzl ajcp;\rj =0witha; €R, j=1,...,m. Then
Dy =D ey, + D ael; = ) ey, € By
j=1 j=1 j=1 j=1
SO
2
D aen| = A Do | Z“J%J
j=1 N J=1 L2
=4 Z%% Zag%
j=1 L2
Z|a3| (Axgj, @52
j=1
This implies a; = 0 for j = 1,...,m because (Axg;, ¢;)r2 > 0 by (7.47). O
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In the following we set

a:=max{|Vw/[}:j=1,....,m}

which depends on m and the choice of w’, but is independent of X. Denote

m m
U= chgpj € Zy for u= chgo;\rj € Zym.
=1 j=1

It is clear that
m
o =u and |43 = Zc?
j=1

Lemma 7.31. We have:

1) for each A > 1, C|ala < |ula < |@]2 for allu € Zy,, where ¢ > 0 is independent

of A;
1) for each A\ > 1 and all uw € Zyp,

0 . «a /2
Ao 20 10 <l < A (5 + (0 000) il
(1i1) there is Ay, > 0 such that for each A > A, and all w € Zyy,,
[ullX — Agolul3 < —Aqo&olalz|ulz

where

€ = 2a (qo — a — 20q0) + (1 — 20)0¢3
0 4go(a + 0qo) '

Proof. Let u € Zy,,. Observe that

m
lullX = 12113 = (Axi @) e = Y e P (Args, 95)p2
j=1

0
> A (a n %) a2,

[Axil3 = lesPlAnes B < D lesl? (19673 + A (a+ 8a0)?)
j=1 j=1

< (X (a+0a0)° ) 3,

1/2
July = (Ax, ) < |Axioluls < (@ + X (a+0q0)*) " filofulz
Hence
0 A a /2
(o 20 ) 10 < Bl <A (5 + (o 000)) " ol

which is the 7).

(7.48)
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Obviously, |uls < |@l2. In order to check the first inequality of i), we note that
by (7.48)

R A(2a + 0qp)
lul2 2 Jalwhere J ) = e a4 o)

It is clear that f(\) is strictly increasing and

(7.49)

. 2a + qq
1 =
el F 2(a + 6qo)
Hence
2a + 9(]0 73 S f()\) < M for all \ Z 1
2(a+ (a+0q0)?) 2(a + 6qo)

and 1) follows.
Using (7.48) and (7.49) one sees

[ullX = Adolul3 = (Axd, u) 12 — Agolul3 < (|Axalz — Adgolulz) [ul

1/2 A2a + 6 .
< | (a+ X (a+6g)?) - Aqo ( %) 73 | T2 ul2 (7.50)
2(X2(a+0q0)? + )
= — Agoh(N)li|2|ul2
where
B\ = 2a + fqo B (%+(a+0q0)2)1/2
2(& + (a+0g0)2) " a0
Note that
2a + 0 0
lim h(\) = —o 0 _ @+ %
A—00 2(a+ 6qp) qo
_ 2a(qo —a—20qo) + (1 — 26)0q3 (7.51)
2q0(a + 0qo)
=2&p.
Now 4i4i) follows from (7.50) and (7.51). O
Proof. [Proof of Lemma 7.29] From (7i¢) of Lemma 5.4 we obtain for A > A,
i (AA|L+) r= inf sup  (Axp, ¢)r2
A FCEL  ycEfoF
dim(F)=m lo|a=1
< sup (Akuvu’)LQ
UEL \m
|u\2:1
< sup Ago (1 — &plil2)
UE L \m
|u\2:1
< )\(]0

as required. O
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Proof. [Proof of Theorem 7.10] By Lemma 7.28, we see that (Ay) is satisfied, and
we have additionally e > A(@ + bmax) which, jointly with (Rs), implies Agoe < fle,

e., (Rp) holds. By Lemma 7.29, for any m € N, there is A,, > 0 such that the
number #[(0, Ago) No(Ay)] > m for all A > A,,. This implies particularly that (R4)
holds, therefore, Theorem 7.8 applies. O

Remark 7.4. Let v > 0 be a parameter and consider the supersymmetric Dirac
operator H, := Hy + vV 3 where Hj is the free Dirac operator and the scalar field
vV (x)( satisfies the condition (V). Checking the proof of Lemma 7.29, we have,
as a by-product, the following asymptotic estimate on the number of eigenvalues of
H,.

Lemma 7.32. Let (V) be satisfied. Then
UE(H’Y) CR \ ( - (0, + ’meax), a—+ rybrnax)
and the number A (7y) := #[(0, a + Ybmax) Noa(H)] — 00 as v — oo.



Chapter 8

Solutions of a system of
diffusion equations

In this chapter we consider the system
Ou — Agu+b(t,x)-Veu+ V(z)u = Hy(t, x,u,v)
—0w — Ayv —b(t,x) Vv + V(z)v = Hy(t, x,u,v)
for (t,z) € R x €, where Q = RY or Q C RY is a bounded domain with smooth
boundary 99, z = (u,v) : R x Q@ — RM x RM b e CY(R x Q,RY), V € C(Q,R)
and H € C'(R x Q x R?M R) depending periodically on ¢ and x. We assume that

H(t,z,0) = 0 and look for solutions homoclinic to z = 0. We deal with the case of
b = 0 in the first five sections and the general case in the last section.

8.1 Reviews

We consider firstly the following system:

Opu — Ay 14 = Hy(t,z,u,
& ut Vi (t,2,u,v) for (t,z) € R x Q. (FS)
—0w — Ayv + V(z)v = Hy(t, x,u,v)

Setting

0—-1 0r1
J = (I O)’ Jo = (IO) and  A=T(-A,+V),

(FS) reads as
JOz=—Az+ H,(t,z,2).

Thus (FS) can be regarded as an unbounded infinite-dimensional Hamiltonian sys-
tem in L2(Q, R?M). Our hypotheses on V : Q@ — R and H : R x Q x R?® — R
will be stated below. It follows from these assumptions that H,(¢,2,0,0) = 0 =
H,(t,x,0,0) for all (t,2) € R x . So the constant function (ug,v) = (0,0) is a
stationary solution of (FS). We seek solutions z = (u,v) : R x @ — R2M of (FS)
satisfying the boundary conditions

z2(t,x) = 0 as |t|+ |z] — o0

139
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if Q =RY or
z(t,z) =0 for (t,z) € R x 9Q and z(t,z) = 0 as|t| — o0

when (Q is a bounded smooth domain. So these solutions are homoclinic to the
stationary solution (0, 0).

For finite-dimensional Hamiltonian systems there are many papers concerning
the existence of homoclinic solutions and the dynamics around them. The clas-
sical Poincaré-Melnikov method (see [Melnikov (1963)]) is of a perturbative na-
ture. It consists of investigating the intersection of the stable and unstable mani-
folds of the equilibrium. A bifurcation approach can be found in [Stuart (1989)],
for instance. Dynamical systems methods have been extended to deal with vari-
ous infinite-dimensional Hamiltonian systems, e. g. the KdV-equation (cf. [Kuksin
(1993)]). These methods are however not applicable to (FS) simply because the
initial value problem for (FS) is not well posed. In the 1990s a variational approach
to the existence of homoclinics in finite-dimensional Hamiltonian systems was de-
veloped and successfully applied; see [Ambrosetti and Badiale (1998)], [Ambrosetti
and Badiale (1998)], [Coti-Zelati, Ekeland and Séré (1990)], [Coti-Zelati and Ra-
binowitz (1991)], [Ding and Girardi (1999)], [Ding and Willem (1999)], [Hofer and
Wysocki (1990)], [Rabinowitz (1990)], [Séré (1992)], [Séré (1993)], [Tanaka (1991)].
With the variational methods it became possible to obtain homoclinics under quite
general assumptions on the Hamiltonian. The main technical difficulty is the lack of
compactness due to the fact that one has to work on H!(R,R?M) and there are no
compact embeddings into LP-spaces. This problem is of course also present when
dealing with (F'S).

If Q is a smoothly bounded domain and H is independent of ¢ with H (z,e%7 z) =
H(xz,z) for all § € R, there is a lot of recent work on standing wave solutions to
(FS), i. e. solutions of the form z(¢,7) = e "**7w(x) with w solving the associated
stationary Hamiltonian type system of elliptic equations:

Aw + Aw = Hy(x,w) in €,
w=0 on 09;

see [Bartsch and de Figueiredo (1999)], [de Figueiredo (1998)] and the references
there. In [Bartsch and de Figueiredo (1999)] the case Q = RY was also treated
although only in a setting where —A, 4+ V has pure point spectrum if restricted to
a certain space of symmetric functions.

There is not much work on nonstationary solutions of systems like (F'S). Brézis
and Nirenberg [Brézis and Nirenberg (1978)] considered the system

O — Agu = —v° +
TSy ! in (0,7) x
v —Azv=u’+g

on a bounded domain where f,g € L*(Q)), subject to the boundary conditions
u=v=0on (0,7) x 9N and u(0,2) = v(T,x) = 0 on Q. Using Schauder’s fixed
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point theorem they obtained a (generalized) solution (u,v) with u € L* and v € LS
(Theorem V.4 of [Brézis and Nirenberg (1978)]).

In their paper [Clément, Felmer and Mitidieri (1997)] Clément, Felmer and
Mitidieri considered the problem

{ O — Agu = |v|q72v

in (=T, T) x Q 8.1
—0pv — Agv = |u|P?u ( ) (8.1)

where © is a smoothly bounded domain in RY, and

N 1 1
<-4+ -<1 (8.2)
P q

They proved that there exists Ty > 0 such that for each T' > Tp, (8.1) has at least
one positive solution satisfying the boundary condition

u(t, Voo =0=0(t, ) eq forallte (-T,T) (8.3)
and the periodicity condition
U(—T, ) = U(T, ) and U(_Ta ) = U(Tv )

Using the special structure of (8.1) Clément et al. were able to obtain this solution
via the mountain pass theorem. Moreover, by passing to the limit as T' — oo, they
showed that (8.1) has at least one positive solution defined on R x Q) satisfying (8.3)
for all t € R, and
lim u(t,z) =0= lim o(t,z) uniformly in z € Q.
[t]—o0 [t]—o0

Our study of (FS) is motivated by [Clément, Felmer and Mitidieri (1997)]. One
of our goals is to develop a variational setting in order to obtain a homoclinic
solution of (FS) directly. In addition we can treat nonlinearities depending on
both time and space variables. Finally, we are also able to treat the case where
—A, + V has essential spectrum below and above 0. The associated functional will
be strongly indefinite and a reduction to the mountain pass theorem is not possible.
Moreover, the Palais-Smale condition does not hold. The proof is based on critical
point theorems of linking type for strongly indefinite functionals stated previously.
The difficulty in applying these theorems to (FS) is to find the proper functional
analytic setting. We use the concentration-compactness method in order to control
weak limits of Palais-Smale sequences. Applied to the explicit system (8.1) our
result is weaker than the one in [Clément, Felmer and Mitidieri (1997)] in the sense
that we require 2 < p,q < 2(N + 2)/N instead of (8.2). On the other hand, we
obtain even infinitely many geometrically distinct homoclinic solutions in this case.

The remainder of the chapter is organized as follows. The main results are formu-
lated in the next section. In Section 8.3 we discuss the operators A = Jo(—A,+V),
JA and J0; + A. This will be done in an abstract setting which can also be ap-
plied to prove the existence of periodic or heteroclinic solutions of (FS). Moreover,
it seems to be applicable to other infinite-dimensional Hamiltonian systems. In
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Section 8.4 we establish the functional setting for the variational approach to (FS),
including, in particular, embedding properties between certain function spaces and
the regularity theory which we need. These results are also useful when one wants
to treat other types of functions H. Then, in Section 8.5, we prove the main results.
Finally, in the last section we discuss some extensions of the results.

8.2 Main results

We treat the two cases where Q = RY, or O C R¥ is a bounded smooth domain
simultaneously. First we formulate the hypotheses on the potential V.

(V1) V € C(Q,R); if Q@ = RY then V is Tj-periodic in z; for j =1,--- , N.
As a consequence of (V1) the operator S = —A, 4+ V is a selfadjoint operator on

L2(Q). The domain of S is 2(S) = W2 N W, (2, R*M). By o(S) we denote the
spectrum of S. Our second assumption on V' is

(V2) 0 ¢ o(S)

Observe that o(S) C R is bounded below. If Q2 = RY then o(S) is purely continuous.
It is allowed that S has essential spectrum below 0.
The general assumptions on the Hamiltonian H are:

(H1) H € C*R x Q x R?M R) is Ty-periodic in ¢; if Q = RY then H is Tj-periodic
inz; forj=1,---,N;
(H3) there is § > 2 such that
0<BH(t,z,z) < H.(t,z,2)z forallteR, z €, z+#0;
(H3) there are o € (2,2(N 4+ 2)/N) and a; > 0 such that
|H.(t,2,2)|* <a H.(t,x,2)z forallt eR, z €, |2 > 1;
where o/ := a/(a — 1) is the dual exponent;
(Hy) H,(t,z,z) = o(]z]) as z — 0 uniformly in ¢ and z.
The model nonlinearity is
H(t,z,u,v) = a(t,z)|ul’” + b(t, z)|v|? (8.4)
with 2 < p,qg <2(N+2)/N; a,b: R xQ — (0,00) are required to be Ty-periodic in
the t-variable, and T}-periodic in z; if @ = RV.
In order to state our results we introduce for » > 1 the Banach space
B, = B.(R x Q,R*M)
= W (R, L"(Q,R*M)) 0 L7 (R, W™ n W, " (Q,R*M))
equipped with the norm
)>l/r

N
leln, = [ (|z|’° o+
RxQ ;

B,. is sometimes called anisotropic space. Clearly Bs is a Hilbert space.

2
03,7
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Theorem 8.1 ([Bartsch and Ding (2002)]). Suppose (V1), (V2) and (Hy) —
(Hy) hold. Then (FS) has at least one montrivial solution z which lies in
B, (R x Q,R*M) for 2 <r < oo.

In order to state a multiplicity result we require moreover the following assump-
tions:

(Hs) there are p € (2,2(N + 2)/N) and 4, a2 > 0 such that
|H.(t, 2,2 +w) — Ha(t,2,2)| < az(1+ |27 )|uwl

for all (t,z,2) € R x Q x R?M and |w| < 6;
(Hg) H is evenin z: H(t,x,—z) = H(t,z,2) for all (t,z,2) € R x Q x R*M,

The model nonlinearity (8.4) satisfies (Hy) — (Hpg).
In the case = RY two solutions z; and zo of (FS) are said to be geometrically
distinet if 21 # k * 2o for all 0 # k = (ko, k1, -+ , kn) € Z'; here

k * Z(t71') = Z(t + koTo, 21 + k1Th,--+ Ny + kNTN).

For € bounded, two solutions z; and z; of (FS) are said to be geometrically distinct
if 21 # k% zg for all 0 # k € Z where

kxz(t,z) = z(t + kTy, ).

Theorem 8.2 ([Bartsch and Ding (2002)]). Suppose (V1), (V) and (Hy) —
(Hg) hold. Then (FS) has infinitely many geometrically distinct solutions z which
lie in B, (R x Q,R*M) for 2 <r < oco.

We shall only give the details of the proofs in the case Q = RN, If Q ¢ RV is
bounded the theorems can be proved similarly and are somewhat easier.

8.3 Linear preliminaries

In this section we discuss the operators A = Jo(—A, + V), JA and J0 + A in
a more general abstract setting. Let Hy be e (strong) symplectic Hilbert space
with the inner product (-,)s,, the norm || - ||z, and the symplectic form w(-,-).
This induces the symplectic structure J € L(Hp) in the usual way defined by:
w(w, z) = (Jw, 2)x, for all w, z € Hy. It follows that J* = —7 but not necessarily
J? = —I. In order to achieve this we replace the inner product (w, z) on Hq by the
(equivalent) one (|J|Y?w,|J|"/?z) where |J| = VT*T = vV—J2. Thus we may
assume that J satisfies J* = —J and J? = —J*J = —I. Now we consider an
operator A defined on Z(A) C Ho and such that

(A7) A is selfadjoint and 0 € o(A);
(A2) JA+ AT =0.
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By (A1) — (A2), the operator JA with 2(JA) = P(A) is also selfadjoint such that
0 ¢ o(JA), and thus there are o < 0 < 8 with (a, ) No(JA) = 0. Therefore we
have an orthogonal decomposition

Ho=Hy ®HS, =2 +2*

corresponding to the negative and the positive spectrum of J A. Let P* : Hy — HgE
denote the orthogonal projections, and {E(\) : A € R} the spectral family of J A.
We have

jA:/Z/\dE(A):/iO)\dE(/\)—#/;O AE(N)

and
P*:/a dE()) and P+=/: dE(\).
Setting
Ult) = 74 = / T B
we obtain

U)P U(s)™ ! <e 8 if > g
{H OP7U(s) Ino < > (5.5)

(U@ PTU(s) |3, < e 70 if t < s;

here @ = min{—a, 3} > 0. Set H := L*(R,Ho) with the inner product and norm
denoted by (-,-)x and || - ||» respectively. Let L := (J0; + A) be the selfadjoint
operator acting in H with domain

2(L) = {z € WH(R, Hy): 2(t) € 2(A) a. e., /]R||Az(t)||§_(0 dt < oo}.

Proposition 8.1. If (A1) — (A2) hold then 0 € o(L).

Proof. Arguing indirectly we assume 0 € o(L). Then there exists a sequence
(zn) in 2(L) with ||z,,|[% = 1 and || Lzy |3 — 0. Setting w, := Lz, € L*(R, Ho) we
observe that 0z, = J Az, — Jw, and

zn(t) = —/ Ut)P~U(s) ' Tw,(s)ds + /too Ut)PTU(s) "  Tw,(s)ds.

— 00

Let x* : R — R be the characteristic function of R where Ry := (—o0,0] and
R{ := [0,00). Then we have

Zn(t) = — /R Ut)P~U(s) 'xT(t — s)Twn(s)ds

+ / U)PU () x—(t — $)Twn(s)ds
R

=z (t)+ 21 (t)
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Now (8.5) implies

I Ol < [ €0t = 3)u(s) s
and

Iz ®)ll#, < /Re_a(s_t)x_(t— $)lwn (s) [, ds.
Setting g7 (1) = e %" xT (1) and g~ (7) = e*"x~ (1) we obtain

2 @)l < (97 * lwnll2,) ()

and

2 (O)ll7e < (97 * lwnll2)(t)

where * denotes the convolution. Observe that

_ 1
[r-for-t
R R a

1
Iz [l < EHwnHH—>0 as n — oo,

By the convolution inequality

a contradiction. O
By Proposition 8.1 there is an orthogonal decomposition
H=L*R,Ho)=H O&H", z=2" +2z2T,

such that L is negative in H~ and positive in HT. Let E = 2(|L|*/?) be the Hilbert
space with the inner product

(w,2)p = (|L|Y?w, [L[V/22)3
and the norm
l2lle = (=, 2)™
Then we have

E=E @ET with E*=FEnH%

Remark 8.1. We point out that the conclusion of Proposition 8.1 remains true if
the conditions (A;) and (As) are replaced by

(A3) A is a bounded and selfadjoint operator with o(JA) NiR = 0.
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If A is a bounded selfadjoint operator then the selfadjoint operator L acting on
L?(R,Hp) has purely continuous spectrum. Indeed, if there is A € R and 0 #
z € L*(R,Ho) satisfying Lz = Az, then z(t) = e*7(A=Y2(0) for all t € R. Since
z € L?(R,Hp) this yields z(0) = 0 and therefore z = 0, a contradiction. If in
addition o(JA) NiR = () then it is not difficult to verify that 0 € o(L) via an
analysis of dichotomy.

More generally, consider a continuous and T-periodic map A : R — £ (Ho, Ho)
with A(t) selfadjoint for ¢ € R. The monodromy operator U(T') associated to the
differential equation 2(t) = JA(t)z(t) is by definition the value at ¢t = T of the
solution of the Cauchy problem

Ut)=JAHU(t), U(0)=1.
If U(T) has a logarithm (this is the case, in particular, if o(U(T")) does not contain
a closed curve surrounding the origin), then o(L) consists of continuous spectrum.
If, in addition, the mean value A := T~! fOT A(t)dt satisfies o(JA) NiR = (), then
0 € o(L). For details we refer to [Ding and Willem (1999)].

8.4 Functional setting

We return to the system (FS) and observe that both operators A = 755 = Jo(—A+
V) and JA acting on Hy = L*(Q,R*M) are selfadjoint with domains Z(A) =
D(TA) = W22 N Wy2(Q,R2M),

Lemma 8.1. If0 & 0(S) then 0 € 0(A) Uo(JA).

Proof. We only show that 0 € o(JA) since 0 € o(A) can be proved similarly.

Arguing indirectly assume 0 € o(JA). Then there exist elements 2z, = (up,v,) €

D(TA) with [2,]3 = |un|3+|vnl3 =1 and | T Az, |3 = [Sun|3+|Sva]3 — 0. Without

loss of generality we may assume that |u,|o > 0 (where § > 0 is a constant). Then,

setting Uy, := uy,/|un|2 we have @, € 2(S), |uyle = 1 and |SU,|2 = [Sunle/|un|2 <

[Stn|2/d — 0 as n — oco. This implies 0 € ¢(S5), a contradiction. O
As a consequence of Lemma 8.1, we have

dy|2|[fy2 < Azl =/ |[Az|* < da |23y (8.6)
Q

for all z € W22 N WhH2(Q,R?M), where dy, dy denote generic positive constants.
As in Section 8.3 let H := L%(R,H,) with its inner product denoted again by
(-,-)r2- Then
H = LA(R x Q,R*M) = [L2(R x Q)] =~ [L3(R) @ L*(Q)]
with equivalent norms, where ® is the tensor product. Recall that the set
C5°(R) ® C5o(Q, R?M)

2M

= {Zfigi:nENa fl € CSO(R)7 gi € Cgo(QszM)}

i=1
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is dense in both H and B,.(R x Q,R*M) for all » > 1. Let L := J0; + A be the
selfadjoint operator acting in H with Z(L) = Ba(R x Q,R?M). That the norms in
P(L) and By are equivalent is a consequence of Lemma 8.3 below. It is clear that
the assumption (As) of the previous section holds. In addition, Lemma 8.1 implies
that (A1) is also satisfied provided 0 ¢ ¢(S). Therefore Proposition 8.1 yields the
following lemma.

Lemma 8.2. If0 & o(S) then 0 & o(L).
Now we consider the operator Lo := J0:+Jo(—A+1). This is a selfadjoint operator

in H with domain Z(Lo) = Z(L). Since —A+1 > 1 Lemma 8.2 implies 0 & o(Ly).
Note that L = Lo + Jo(V — 1).

Lemma 8.3. For every v > 1 there exist constants dy,ds > 0 such that

wwasmm:/

|Loz|" < dol|z|s, for all z € B,.
Rx$2

Consequently, Lo : B, — L" is an isomorphism, r > 1.

Proof. We consider first the case 2 = RY. Let F, and F, be the Fourier trans-
forms in ¢t and x respectively, and F := F;oF, the Fourier transform in (¢, z). Recall
that z € B,.(Rx RN, R?M) if and only if (1+72+ |y[*)V/?|(Fz)(1,y)| € L" (R x RYN).
This in turn is equivalent to the statement that both (1 4+ 72)1/2|(F;2)(7,z)| and
I(1 + |y|)Y2|(Fez)(t,y)| are in L"(R x RY). Next we observe that the following
norms are equivalent:

1/2
lellz, ~ | (72 + ) (F2) )|
~ |2 P F) )| 4] Y P Ee )
By a direct calculation we get

(F(Lo2)(ry) = (72 + (1+ [y*)?) /> 1(F2)(7, )]

and the desired result for @ = RY follows. The case that Q is bounded can be
dealt with similarly by noting that z € B,.(R x Q,R?M) if and only if ¢z € B, (R x
RN, R2M) for all ¢ € C5°(R x Q,R). O

Now we turn to the selfadjoint operator L. By Lemma 8.2 there exists b > 0
such that [=b,b])No(L) = 0. Let {F(A) : X € R} be the spectral family of L and
U =1-2F(0). Then U is a unitary isomorphism of H and L = U|L| = |L|U.
There is an associated orthogonal decomposition

H=H &H", z=2z +2z2T,
where H* = {z € H: Uz = £z}. From

—b 0
|Lz|3 :/ Nd(F(N\)z, 2) 2 +/ Nd(F(\)z, 2) 2 > b*|2]3
) b
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it follows that
|L2]3 < [2[3 + [ L2[3 < (1+b7%)|Lzl3. (8.7)
Therefore 2(L) equipped with the the inner product
(21,22)r = (Lz1, Lza) 12

is a Hilbert space.

Lemma 8.4. If 0 & o(S) then for all z € P(L)
dilzllB, < llzllz < d2|/] B,

Proof. Given fi,fo € C(R) and g1,92 € C°(Q,R?M) integration by parts
yields

[ (M0 o Age) + (fr- Agr, (Buf2) )
Rx$

</R(5tf1)f2> : </Q<J917Agz>) + (/R flatf2> : </Q<Agl,=792>)
- (/Rflatfz) : (/Q<J91,A92>> + (/Rflatfz) : (/ngl,f@ﬁ)
—0.

Here we also used that JZA = AT J. It follows that we have for z = > i' | f;g; €
C5°(R) ® C5°(Q, R2M):

22 = / IL2)?
RxQ

n
/]RXQ

> (Jou(figi) + Alfigi))
:/ (1022 + | A=)
RxQ

i=1

= 023 + |Az[3.
Since C§°(R) ® C§° (2, R?M) is dense in Z(L) = Ba(R x Q,R*M) the equality
12112 = |0:2|3 + |Az|3 holds for all z € Z(L). The lemma follows. O

2

Remark 8.2. For 2 = RY Lemma 8.4 implies that 2(L) is continuously embedded
in L"(Rx RN R?M) for r satisfying2 < r < 0o if N =1,and 0 < (3—-1)(1+5) <1
if N > 2. 9(L) embeds compactly in L} (R x Q,R?M) for all » > 2 if N =1, and

loc

if N > 2 for all r > 2 satisfying (3 — 1) (1+ %) < 1 (see [Besov, II'in and Nikol'skii

T

(1975)]). In the case where € is smoothly bounded recall that

||u||WSvT(Q,R2M) = HQHW’“T(RN,R?M) (8.8)

inf
gewk,r(RN’RQZ\l)
glo=u

(see [Triebel (1978)], for instance). It follows that the above embedding results also
hold when € is bounded. Here “compactly in L] ” means that the embedding

loc

P(L) — L"((a,b) x Q,R?*M) is compact for all —0o < a < b < 0o (see also the proof
of Lemma A.1 in [Clément, Felmer and Mitidieri (1997)]).
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In the following let E = 2(|L|*/?) be equipped with the inner product
(21,22) = (|L"?21, | L[V 29) 2
and the norm ||z|| = (2, 2)'/? as in Section 8.3. We have the decomposition
E=E @FE', where E¥ =EnH*

which is orthogonal with respect to both (-,-)2 and (-,-). We write z = 27 + 27
for z € E according to this decomposition.

Lemma 8.5. E is continuously embedded in L™ (RxQ, R?*M) for anyr > 2 if N = 1,
and forr € [2,2(N+2)/N] if N > 2. E is compactly embedded in L7, (R x Q,R?M)
for anyr>2if N =1, and for r € 2,2(N +2)/N) if N > 2.

Proof. We only consider the case N > 2 and Q = R since the other cases can
be handled similarly. Going to the complexification H x H = H + iH and using the
(complex) interpolation [, -]o (see [Triebel (1978)]) one sees that

E=2(IL|"?*) = [2(L), L2

(see also example 3 in Appendix IX.4 of [Reed and Simon (1978)]). By Remark 8.2,
the embeddings

E=[9P(L),L% )y — [L", L% /2 — L*
are continuous for r = oo if N = 2, and r = 2(N + 2)/(N —2) if N > 3, and if
g satisfies £ = (5 + 1), that is, if ¢ = 2(N +2)/N. For r € (2,¢), the Holder
inequality implies
q(r —2)
r(g —2)
Therefore E is continuously embedded in L for r € [2,2(N 4 2)/N]. Similarly,

using again Remark 8.2 we see that E is compactly embedded in L], for r €

[1,2(N +2)/N). O

|z|» < |z|%_9|z|g with 6 =

Lemma 8.6. Under the assumptions of Theorem 8.1 the functional ® : E — R
defined by

d(z) =

N =

z+2— 272— T,z
(=1 = 1717 = [ Heeo

lies in C1(E,R). Critical points of ® are weak solutions of (FS) and are elements
of B+(R x Q,R*M) for 2 <r < co.

Proof. From (Hs) and (H,) it follows that
|H.(t,2,2)| < |z| +c|z|*? (8.9)

with 2 < a < 2(N + 2)/N. Using Lemma 8.5 this implies ® € C!'(E,R) in a
standard way.
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In order to prove the regularity result we need the following embedding theorem
from [Besov, II'in and Nikol’skii (1975)]:

1

2
By — L" is continuous for ¢ > 1, 0 < — —

< .
T N+2

(8.10)

)
S|

Set

(N4 2)g/(N+2—-2q)if0< g < (N+2)/2;
#(4) ‘_{oo / itq> (N +2)/2.

So By «— L" is continuous for 1 < ¢ < r < ¢(q) and also for r = ¢(q) if v(q) < cc.
Now let z € E be a weak solution of (FS). We set w = Jo(1-V)z+H,(., .,%)
so that z is a weak solution of Lyz = w, hence

z=Ly'w=Ly" (Jo(1—-V)z+ H.(., .,2)).
Now we define x. : R x Q — R by

(t.2) 1 if |z(t,2)] < 1,
z\l, ) =
X 0 if |2(t,x)] > 1,
and set
wy(t,x) = Jo (1 — V(a:))z(t, x) + H,(t,z, x.(t,x)z(t,x))
and

wa(t,x) = H (¢t z, (1 — x:(t, z))z(t, z)).

Then we have w(t, z) = wi (¢, x) + wa(t,z). From our assumptions on V and H it
follows that

lw(t, )| < d|z(t, )] (8.11)
and
if 1;
jwn(t, )] < {° i et )] <1 (5.12)
dlz(t,z)|* ! if |z(t, )] > 1.

Thus wy € L" for r € [2,71] where r1 := 2(N + 2)/N, and wy € L" for r € [1, ¢1]
where ¢; = r1/(a — 1). Here we used that

meas({(t,z) e R x Q: |z(t,x)| > 1}) < /R . |2]* < 0.

Now we obtain

21 = Aytw, € B, for r € [2,71] (8.13)
and

29 = Lo_lwz € B, forrell,q] (8.14)

We distinguish two cases.
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Case 1: ¢1 > (N +2)/2.
Then z, € L” for all r € [g1,00) as a consequence of (8.13). By interpolation we get
29 € L for r > 2. Since 1 > ¢1 > (N 4 2)/2 we similarly obtain z; € L" for r > 2.

Case 2: ¢1 < (N +2)/2.

In this case we define inductively 71 := ©(gx) and qry1 := 71/ ( — 1) < gy
Suppose z; € B, for r € [2,14], and z2 € B, for r € [2,qx]. Then z; € L" for
r € [2,0(ry)], and z2 € L for r € [2,¢(qx)], so z € L" for r € [2,rg4+1] because
©(rg) > ri41. This implies wy € L” for r € [2,7441], and we € L” for r € [2, qiy1].
We claim that there exists ko > 1 with gg, > (N + 2)/2. Then we are back in case
1 and therefore done.

By induction one proves that

2(N +2) 2(N+2)(a—2)
Tk = - = .
N(a—1)k1 -4 2 1)  (a—1)FN(a—-2)—4)+4
Since 2 < o < 2(N 4+ 2)/N =2+ 4/N we see that ¢(gr—1) < 0 for k large enough.
This implies gx—1 > (N + 2)/2 as required. O

8.5 Solutions to (FS)

As a consequence of Lemma 8.6 it suffices to show the existence of critical points of
® defined on E = X ®Y with X = F~ and Y = ET. Theorem 8.1 will be proved
with the help of the critical point Theorem 4.4.

Proof. [Proof of Theorem 8.1] First we verify that the conditions of Theorem 4.4
are satisfied for our functional ® from Section 8.4 on F.

Since H(t,z,z) > 0 the functional W(z) = [, . H(t,z,2) is bounded from
below. Let z, — z. Then Lemma 8.5 implies z, — z in ngoc, hence z, — z for a.e.
(t,x) € R x Q. By Fatou’s lemma we obtain

lim inf H(t,z,2,) > / lim H(t,x,z,) = H(t,z,2)

N7 JRXQ RxQ 7 RxQ
which proves the lower semicontinuity of W. For any w € C§° the dominated
convergence theorem yields

U (zp)w = H.(t,z,z)w — V' (2)w asn — oco.
RxQ

This, together with (8.10) implies that ¥’ is weakly sequentially continuous. An
application of Theorem 4.1 shows that ® verifies (®g).

Observe that (Hs) and (Hy) imply that for any € > 0 there is ¢, > 0 with

H(t,z,2) <elz]* + ce|z|* for all (¢, 2, 2). (8.15)
Thus we have

1
O(z) > §Hz||2 —¢elz]3 — ce|z|% for every z € ET.



152 Variational Methods for Strongly Indefinite Problems

Now because o > 2 it is easy to see that ® checks (®2): there exists r > 0 with
k:=1inf ®(S,Y) > ®(0) = 0.

Consider e € ET with ||e]| = 1. (H3) and (H3) yield that for any € > 0 there is
c. > 0 such that

H(t,x,2) > c.|z|® —¢|z)? forall (t,x,2). (8.16)

Therefore, for z = z7 4 (e we have
1 _
®(z) < 5 (¢ = lIz711%) +elzlz - celzl

hence there is R > r such that sup ®(0Q) = 0 where Q :=={z+{e: 2z € E~,|z| <
R,0< (< R}.

Now Theorem 4.4 yields a sequence (zx)i such that ®'(z;) — 0 and ®(z) — ¢
with k < ¢ < sup®(Q). A standard computation using (Hs) — (H,) shows that
(2k )k is bounded. We claim that there exist @ > 0 and a sequence (yi)r in R x Q

such that (possibly after passing to a subsequence)
lim |ze? > a. (8.17)
k—oco B(yk,1)

Indeed, if not, then by a variation of Lions’ concentration compactness lemma [Lions
(1984)] we have z; — 0 in L*® for any s € (2, (2N +4)/N). Now from (Hs) and
(Hy) it follows that for any € > 0 there is ¢. > 0 such that

|H.(t,z,2)| < elz| +cc|z|*™ for all (¢, 2, 2).

Therefore, using the Holder inequality we obtain
lim H,(t,x, zk)z,:f =0
k—oo RI+N
which yields
25112 = @' (21) 2 + H,(t,z,25)z — 0.
RxQ
This implies limg_,o, ®(2;) < 0, a contradiction. Now by (8.17) we may assume

that there exist p > 0 independent of k and y) € ToZ if Q is bounded, y;, €
ToZ x - - x TnZ if Q = RV satisfying

/ |2k |* > a/2. (8.18)
B(yy,.p)

We shift z; by y}, and obtain Z(t, z) := yj, * 2. Clearly ||Zx|| = ||zx|| and we may
suppose that z;, — z weakly in E and strongly in L? (R x Q,R?M). By (8.18) and
the periodicity of H we obtain z # 0 and ®'(z) = 0. O

We now turn to the multiplicity result Theorem 8.2.

Proof. [Proof of Theorem 8.2] We will apply Theorem 4.7. (®g) and (P3) have
already been verified above. Clearly (®1) is satisfied since H is even in z and
H(t,z,0) = 0. (®4) can be shown as the verification of linking structure in the
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proof of Theorem 8.1. The proof will be completed in an indirect way. Namely, we
show that if

(FS) has only finitely many geometrically distinct solutions (8.19)

then condition (@) is satisfied. Then we apply Theorem 4.7 and obtain an un-
bounded sequence of critical values which contradicts (8.19). Consequently, (8.19)
is wrong and (F'S) has infinitely many geometrically distinct solutions. It does not
follow that these solutions have unbounded energy. A similar argument has been
used in [Bartsch and Ding (1999)], [Séré (1992)]. So we assume (8.19). There is
a > 0 satisfying
inf® (L\ {0}) >«

where K := {# € E : ®'(z) = 0}. Let F C K consist of arbitrarily chosen
representatives of the orbits of K under the action of Z'*V. By the evenness of H
with respect to z we may assume that F = —F. Let [r] denote the integer part of r
for any r» € R. A standard concentration-compactness argument as, for example, in
[Coti-Zelati and Rabinowitz (1992)] or [Kryszewski and Szulkin (1998)] yields the
following claim:

(%) Let (2n)n be a (PS)c-sequence for ®. Then ¢ > 0, (z,) is bounded, and either
zn, — 0 (corresponding to ¢ = 0); or ¢ > « and there are £ < [¢/a], w; € F\{0},
i =1,...,¢, a subsequence denoted again by (z,), and ¢ sequences (ain)n C Z
if Q is bounded, (ain), C Z**N if Q =RN i =1,--. ¢ such that

J4
Zn — E Qin * W;
=1

|ain — ajn| — o0 as n — oo, if i # j,

— 0as n — oo,

and
)

Z O (w;) = c.

i=1
It is only in the proof of (x) that the hypothesis (Hj) is being used.
Given a compact interval J C (0, 00) with d := max J we set £ := [d/a] and

J
[F. 0] = {Zki*wi: 1§j§€,ki€Z,wi€f}
i=1

if €2 is bounded,

i=1
if & = RY. As a consequence of (x) we see that [F, ] is a (PS)j-attractor. It is
not difficult to check that

inf {|Jut — v || : wve [F 0 ut #vt} >0
(see e.g. [Coti-Zelati and Rabinowitz (1992)]). Therefore (®;) is satisfied and The-
orem 8.2 is proved. O

J
[F, 0] = {Zki*wi: 1<j<lk; €2 w; e]—'}
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8.6 Some extensions

In this section we present some extensions which are motivated by earlier work on
Schrodinger equations or on homoclinic solutions of finite-dimensional Hamiltonian
systems.

8.6.1 0 is a boundary point of o(S)

Recall that since the potential V' depends periodically on = the spectrum of S is
purely continuous and a union of disjoint closed intervals. Thus we are interested in
the case where 0 is a boundary point of ges(S). For notational convenience assume
the Hamiltonian H (¢, z, 2), z := (u,v) is of the form

(ho) H(t,z,2) = h(t,z)|z|P where p € (2, 2(N+2)/N), h € C(RxQ,R), h(t,z) >0
and is Tp-periodic in ¢, T}-periodic in z;, j = 1,..., N.
Theorem 8.3. Assume (V1) and 0 € o(S) with (0,a) N o(S) =0 for some a > 0.

Let H(t,x,z) satisfy (ho). Then (FS) has infinitely many geometrically distinct
solutions which lie in B,(R x Q,R*M) for any r € [p, o).

The proof of this theorem proceeds along the way of the argument of Theorem
1.2 of [Bartsch and Ding (1999)] where we considered the equation

~Au+V(2)u= f(z,u) xRN,
{ u(x) -0  as|z| — oco.
Let E be the space of By under the norm
lzlly == (L1223 + 121272
The space L? has the orthogonal decomposition
I’?=L @L"t, z=z +2z*

such that L is negative (resp. positive) definite on L~ (resp. on L™*). This deduces
the direct sum

E=E 9oE*

with E* = LT N By and E~ being the completion of L™ N By under the norm || - ||,
Define on E the functional
1 1 _
B(:) = 1LV - S B [ i)l
RxQ

Then ® € C'(E,R) and critical points of ® are weak solutions of (FS). The regu-
larity of the solutions may be established similarly to the proof of Lemma 8.6. Now
one checks that @ verifies the assumptions of Theorem 4.7 and completes the proof.

It would be interesting to investigate whether the solutions from Theorem 8.3
are limits of solutions uy of (FS) with V replaced by V 4+ A, A — 0.
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8.6.2 More general symmetries

The multiplicity result of Theorem 8.2 remains true if the evenness (Hj) is replaced
by more general symmetries. Let p : G — GL(2M,R) be a symplectic represen-
tation of the compact Lie group G on V = R?M. Thus p(g)*Tp(g) = J and
p(9)* Top(g) = Jo for all ¢ € G. For example, letting po : G — O(M) be an
orthogonal representation of G on RM the representation

ola) = <poég) PO?Q))

is a symplectic representation of G on R?M |

The representation p is said to be admissible if every continuous equivariant
map 00 — VF 1 where O is an open bounded invariant neighbourhood of 0
in V¥ k > 2, has a zero; see [Bartsch (1993)] for an investigation of admissible

representations.

Theorem 8.4. Suppose (V1), (Va) and (H1)—(Hs) are satisfied. Suppose moreover
that p is an admissible symplectic representation of a compact Lie group G on R?M
such that H(t,z,p(g)z) = H(t,x,z) for all (t,x,z) and g € G. Then (FS) has
infinitely many geometrically distinct solutions z which lie in B,.(R'TN R2M) for
any r € [2,00).

For the proof one proceeds as in the proof of Theorem 8.2. Instead of considering
an even functional ® one has to deal with a functional which is invariant with respect
to the induced action of G on 2(L) C L? (R, L? (R,R?M)). Checking the proof of
Theorem 5.2 in [Bartsch and Ding (1999)] one sees that the admissibility condition
is precisely the version of the Borsuk-Ulam theorem which is needed; cf. also [Arioli
and Szulkin (1999)].

The extension also holds in the case where (2 is a smoothly bounded domain in
RY.

8.6.3 More general nonlinearities

The results of Theorems 8.1 and 8.2 remain true if the Hamiltonian satisfies more
general nonlinear assumptions. For simplicity we only consider the situation where
Q) = RY. Setting

1
H(t,z,z):= §Hz(t,x, z)z — H(t,z, z),

the conditions (Hs2) and (Hs) can be replaced by the following asymptotically lin-
earities

(A1) H,(t,z,z) — Voo (t,x)z = 0(]z]) uniformly in (¢,z) as |z| — oo with inf V, >
sup V;
(A2) H(t,x,2z) > 01if 2 # 0, and H(¢t,x,z) — oo uniformly in (¢, x) as |z| — oo;
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or by the more general super linearities

(S1) H(t,x,2)/|z|* — oo uniformly in (¢, ) as |z| — oc;
(S2) H(t,x,2)>0if z#0, and there exist r >0 and 0 > 1if N=1,0 > 1+ I if
N > 2 such that |H,(t,z,2)|” < c1H(t,x,z)|z]° for |z]| > r.

Theorem 8.5. Let (V1), (Va), (H1) and (H4) be satisfied. Assume either (A1) —
(A2) or (S1) — (S2) hold. Then (FS) has at least one nontrivial solution z € B,
for all v > 2. If moreover H(t,x,z) is even in z, then (FS) has infinitely many
geometrically distinct solutions z € B, for all v > 2.

The main difference to the proof of Theorems 8.1 and 8.2 lies in the study on
(PS).-sequences replaced by (C').-sequences. However, this can be carried out along
the lines of Chapter 6 for the Schrédinger equations.

8.6.4 More general systems

We consider existence and multiplicity of homoclinic type solutions of the following
system of diffusion equations on R x RY

0w — Agu+b(t,x)-Veu+ V(z)u = Hy(t, x, u,v) (F/@)
—0w — Agv —b(t, z)- Vv + V(z)v = Hy(t, z,u,v)

where b € C*(R x RV RY), V € C(RY,R) and H € C*(R x RY x R?M R). We
make the following assumptions on V' and b:

(Vo) a:=minV >0, and V is Tj-periodic in z; for j=1,--- | N;
(Bo) b € CHR x RN, RY) divb(¢,z) = 0 and b is Ty-periodic in ¢ and T}j-periodic
inz; forj=1,---,N.

The assumption (By) is a gauge condition which according to [Nagasawa (1993)] is
harmless but technically necessary. The following result is from [Ding, Luan and
Willem (2007)].

Theorem 8.6 ([Ding, Luan and Willem (2007)]). Let (Vo), (Bo), (H1) and
(Hy) be satisfied. Assume either (A1) — (A2) or (S1) — (S2) hold. Then (F/‘g)
has at least one nontrivial solution z € B, for all v > 2. If moreover H(t,z,z) is
even in z, then (F/‘g) has infinitely many geometrically distinct solutions z € B, for
all r > 2.

The main difference between the proofs of Theorem 8.5 and Theorem 8.6 lies in
the establishment of variational frameworks. We outline this as follows.

Let L := J(0;+b-V,)+ A. With the condition (By), L is a selfadjoint operator
acting in L%(R x RY R2M) with domain Z(L) = Ba(R x RN R2M). Let o(L)
and o.(L) denote respectively the spectrum and essential spectrum of L.  Let
A:=inf (o(L) N (0,00)).
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Recall that the operator S = —A, + V is self-adjoint on L2(RY,R). It follows
from (Vp) that o(S) C [a, 00).
Lemma 8.7. Let (V) and (By) be satisfied. Then
1° (L) = 0.(L), i.e., L has only essential spectrum;
2° (L) C R\ (—a,a);
3° o(L) is symmetric with respect to 0, that is, o(L)N(—00,0) = —a(L)N(0,00);
4° a <A <maxV.

Proof. Since, by (Vp) and (By), L commutes with the Z-action *, it is evident
that o(L) = o.(L), hence 1° is true.

In order to show 2°, assume by contradiction that there is p € (—a,a) No(L).
Let 2z, = (un,v,) € Z(L) with |z,|2 = 1 such that |(L — p)z,|2 — 0. Denoting

Zn = Jozn = (vnaun)
we get
((L - ,U,)Zn, én)LQ = (J(at + bvw)zna én)LQ + (Szna Zn)L2 - M(Zna En)L2
= (S2n, 2n)r2 — (20, Zn) 2 > a — |l

that is, a — |u| — 0 which is a contradiction. 2° is proved.

In order to check 3° let A € o(L) N (0,00) and z, € Z(L) with |z,|2 = 1 and
zp — 0 in L? such that [(L — A)z,|2 — 0. We will show that —\ € o(L). Define

Zn = P12y Where
—-I0
7=(31)

Then |2,]2 = 1 and 2, — 0 in L?. Observe that #1J = —J _#1, /100 = —JoT
and
L?:“n = —leZn.
We get,
(L = (=A)znl2 = [A1(L = MNznlz = [(L = M)zn|2 — 0.
This implies that —\ € o(L). Similarly, it is easy to show that if A € o(L)N(—00,0)
then —\ € g(L). This proves 3°.

By 2°, A > a. For further discussion, we regard J0; as a self-adjoint operator
on L?(R,R?™), and similarly —A, as a self-adjoint operator on L?(R™ R). By
the Fourier transform, one sees o(J9;) = R. Take f, € 2(J0;) with |f,]3 =
Jo |fal?dt = 1 and |JO;fulz — 0. Since o(—A;) = [0,00) we can choose g, €
PD(—A;) with |gn|3 = f]RN lgn|?dz = 1 and |Azgnl2 — 0. Set 2, = fngn. Then
|zn|2 = 1 and

|Lzn|o < |T0ful2 + bloo|Vagnl2 + |Azgnle + maxV — maxV.

This implies that there is A € o(L) with a < [A| < max V. By 3° one has +\ € o(L).
Hence A < max V', ending the proof of 4°. O
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Recall that Lo := J0; + Jo(—A; + 1) and

di||2lB, < |Lozl; < daf 25, (8.20)
for all z € B, (see Lemma 8.3).
Lemma 8.8. Assume that (Vy) and (By) are satisfied. Then

c1|Loz|3 < |L2]3 < e2|Loz[3
for all z € Bs. Consequently,

cillzlB, < |Lzl3 < |25,
for all z € Bs.
Proof. The right inequality follows from (8.20) and the relationship

Lz=Loz+ Jo(V—-1)z4+ Tb-V,z
which implies
|L2]3 < |Loz[3 + ds(|2[3 + [Va2[3) < 2| Lo2[3.

We now prove the left inequality. Assume by contradiction that there is a sequence
(zn)n C Bg with |Lozp|a = 1 and |Lz,|2 — 0. Then as before, setting z,, = Joz,
one has

(L Z) 1o = (S, 20) 1o :/ (Vaznl? + V]zal?),
RxRYN

hence [o. pn (IVazn|*+V|2n|?) < [Lzn|2|Zn|2 = |Lzn|2 — 0. In particular, |z,]2 — 0
and |Jb-Vz,|2 — 0. Observe that

(JoSzn, TOrzn)r2 = (T 0t JoS2n, 2n) 12 = —(JoST Oz, 2n) L2
= —(T0zn, JoSzn)r2-
Consequently,
|Lzn5 = (T (0 +b-Vi)zn + ToSznl3
= (0 +b-V)2n|3 + |Sznl3
+ (T (0t +b-Vi)zn, JoSzn)rz + (JoSzn, T(0: +b-Vi)zn)r2

= 10¢2nl3 + |S2z0l3 + (T0t2n, JoSzn)r2 + (JoSzn, T0izn)r2 + o(1)

= |L02n|% +o(1),
that is, 1 = |Lozn|3 = |L2zn|3 + 0o(1) — 0, a contradiction. Therefore, ci|Loz|3 <
|Lz|3 for all 2 € Bo. O

It follows from Lemma 8.7, that L? = L?(Rx R, R?M) possesses the orthogonal
decomposition

LP=L"®L", z=z2 +2zT

such that L is negative (resp. positive) definite in L™ (resp. L™).
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Let E := 2(|L|'/?), the Hilbert space with the inner product

(21, 22) = (1L 220, L]/ 22, )

1/2

L2
and the norm ||z|| = (2, 2)*/%. FE has the orthogonal decomposition
E=E @®E" where E*=EnL*

It is clear that ||z[|? > a|z|3 for all z € E.
Let below N* := co if N = 1and N* := 2(N+2)/N if N > 2. As a consequence
of Lemma 8.8 we have

Lemma 8.9. F is continuously embedded in L™ for any r > 2 if N = 1, and for
r €2, N*] if N > 2. E is compactly embedded in L], . for all v € [1, N*).

Proof. See Lemma 8.5. U

On E we define the functional

1 1
B(2) = =|lz" |1 = =z~ ||* = ¥(2) where / H(t,z,z).
2 2 RxRN

By assumptions ® € C'(E,R) and its critical points give rise to solutions of (P/‘g)
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geometrically distinct, 37, 69, 101, 143
Gronwall’s inequality, 16

harmonic oscillator type, 102
homoclinic orbit, 3, 35

infinite-dimensional Hamiltonian, 139
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electrostatic potential, 131
equivariant, 17
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external field, 3, 97
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finite product, 10
finitely link, 26
fixed point free, 29
flow, 1, 18

G-invariant, 17
Gs-subset, 12

gage space, 2, b
gauge condition, 156
genus, 29

continuous, 5
map, 5
normal, 7, 8, 9, 10
partitions of unity, 5, 7
locally convex topological vector space, 15

N (the positive integer numbers), 5

No (the nonnegative integer numbers), 29
non-critical interval theorem, 17
nonvanishing, 47

(PS)r-attractor, 18
pseudo-index, 30

R (the real numbers), 1

saturated, 5
scale potential, 97
Schrédinger equation, 3
semiclassical

solution, 3, 97, 133

state, 3
sequentially continuous, 25
sequentially upper semicontinuous, 25
sequentially lower semicontinuous, 25
o-compact, 8
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standing wave, 3, 67 vanishing, 47
stationary solution, 3, 97, 98 vector potential, 121
strongly indefinite functional, 3

subcritical and critical nonlinearities, 83 weak topology, 2
super linear, 3, 67 weak™* topology, 2

super quadratic, 101
Z (the integer numbers), 37
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