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Preface

The object of this book, Hilbert Transform Applications in Mechanical Vibration,
is to present a modern methodology and examples of nonstationary vibration signal
analysis and nonlinear mechanical system identification. Nowadays the Hilbert trans-
form (HT) and the related concept of an analytic signal, in combination with other
time—frequency methods, has been widely adopted for diverse applications of signal
and system processing.

What makes the HT so unique and so attractive?

e [tsolves a typical demodulation problem, giving the amplitude (envelope) and
instantaneous frequency of a measured signal. The instantaneous amplitude
and frequency functions are complementary characteristics that can be used to
measure and detect local and global features of the signal — in the same way
as for classical spectral and statistical signatures.

e The HT allows us to decompose a nonstationary complicated vibration, sep-
arating it into elementary time-varying components — preserving their shape,
amplitude, and phase relations.

¢ [tidentifies and has an ability to capture —in a much faster and more precise way
— the dynamic characteristics of system stiffness and damping, including their
nonlinearities and the temporal evolution of modal parameters. This allows
the development of more adequate mathematical models of tested vibration
structures.

The information obtained can be further used in design and manufacturing to im-
prove the dynamic behavior of the construction, to plan control actions, to instill
situational awareness, and to enable health monitoring and preventive surplus main-
tenance procedures. Therefore, the HT is very useful for mechanical engineering
applications where many types of nonlinear modeling and nonstationary parametric
problems exist.

This book covers modern advances in the application of the Hilbert transform
in vibration engineering, where researchers can now produce laboratory dynamic
tests more quickly and accurately. It integrates important pioneering developments
of signal processing and mathematical models with typical properties of mechanical
construction, such as resonance, dynamic stiffness, and damping. The unique merger
of technical properties and digital signal processing provides an instant solution
to a variety of engineering problems, and an in-depth exploration of the physics
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of vibration by analysis, identification, and simulation. These modern methods of
diagnostics and health monitoring permit a much faster development, improvement,
and economical maintenance of mechanical and electromechanical equipment.

The Hilbert Vibration Decomposition (HVD), FREEVIB, FORCEVIB, and con-
gruent envelope methods presented allow faster and simpler solutions for problems —
of ahigh-order and at earlier engineering levels — than traditional textbook approaches.
This book can inspire further development in the field of nonlinear vibration analysis
with the use of the HT.

Naturally, it is focused only on applying the HT and the analytic signal methods
to mechanical vibration analysis, where they have greatest use. This is a particular
one-dimensional version of the application of HT, which provides a set of tools for
understanding and working with a complex notation. HT methods are also widely
used in other disciplines of applied mechanics, such as the HT spectroscopy that
measures high-frequency emission spectra. However, the HT is also widely used
in the bidimensional (2D) case that occurs in image analysis. For example, the HT
wideband radar provides the bandwidth and dynamic range needed for high-resolution
images. The 2D HT allows the calculation of analytic images with a better edge and
envelope detection because it has a longer impulse response that helps to reduce the
effects of noise.

HT theory and realizations are continually evolving, bringing new challenges and
attractive options. The author has been working on applications of the HT to vibration
analysis for more than 25 years, and this book represents the results and achievements
of many years of research. During the last decade, interest in the topic of the HT
has been progressively rising, as evidenced by the growing number of papers on this
topic published in journals and conference proceedings. For that reason the author is
convinced that the interest of potential readers will reach its peak in 2011, and that
this is the right time to publish the book.

The author believes that this book will be of interest to professionals and stu-
dents dealing not only with mechanical, aerospace, and civil engineering, but also
with naval architecture, biomechanics, robotics, and mechatronics. For students of
engineering at both undergraduate and graduate levels, it can serve as a useful study
guide and a powerful learning aid in many courses such as signal processing, me-
chanical vibration, structural dynamics, and structural health monitoring. For in-
structors, it offers an easy and efficient approach to a curriculum development and
teaching innovations.

The author would like to express his utmost gratitude to Prof. Yakov Ben-Haim
(Technion), Prof. Simon Braun (Technion), and Prof. Keith Worden (University of
Sheffield) for their long-standing interest and permanent support of the research
developments included in this book.

The author has also greatly benefited from many stimulating discussions with
his colleagues from the Mechanical Engineering Faculty (Technion): Prof. Izhak
Bucher, Prof. David Elata, Prof. Oleg Gendelman, and Prof. Oded Gottlieb. These
discussions provided the thrust for the author’s work and induced him to continue
research activities on the subject of Hilbert transforms.

The book summarizes and supplements the author’s investigations that have been
published in various scientific journals. It also reviews and extends the author’s recent
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publications: Feldman, M. (2009) “Hilbert transform, envelope, instantaneous phase,
and frequency”, in Encyclopedia of Structural Health Monitoring (chapter 25). John
Wiley & Sons Ltd; and Feldman, M. (2011) “Hilbert transform in vibration analysis”
(tutorial), Mechanical Systems and Signal Processing, 25 (3).

The author is very grateful to Donna Bossin and Irina Vatman who had such a
difficult time reading, editing, and revising the text. Of course, any errors that remain
are solely the responsibility of the author.

Michael Feldman



Introduction

In contrast with other integral transforms, such as Fourier or Laplace, the Hilbert
transform (HT) is not a transform between domains. It rather assigns a complementary
imaginary part to a given real part, or vice versa, by shifting each component of the
signal by a quarter of a period. Thus, the HT pair provides a method for determining
the instantaneous amplitude and the instantaneous frequency of a signal. Creating and
applying such complementary component seems to be a simple task. Nevertheless
providing explanations and justifying the HT application in vibration analysis is
a rather uneasy mission. There are a number of objective reasons complicating
the matter.

First, the HT mathematical definition itself was originated just 60 years ago — not
as long ago as the Fourier transform (Therrien, 2002), for example. Even 30 years ago
the HT was a pure theory, and then it was employed in applied researches, including
vibration. Thus the most significant and interesting results have been received within
the last 15 years. Presenting this material, together with the corresponding statements
and judgments, requires considerable efforts.

Secondly, from the very beginning the HT approach faced numerous objections,
doubts, counterexamples, paradoxes, and alternatives generating some uncertainty
about the reliability and feasibility of the obtained results. Naturally, the book should
contain only proved, tested, and significant results of HT applications.

Thirdly, at the same time, and in parallel with the HT, another method — the
Wavelets transform — was developed in signal processing allowing us to solve sim-
ilar applied problems. As numerous scientific works devoted to the evaluation of
these methods are based exclusively on a comparison of empirical data, theoretical
conclusions and statements have not yet been available for detailed presentation.

Fourthly, the HT itself, and the corresponding methods of signal processing, in-
volve rather difficult theoretical and empirical constructions, while the text should
be written simply enough to introduce the HT area to “just plain folks” (non-
specialist readers). We will try to make it readable for a person of first-degree level in

Hilbert Transform Applications in Mechanical Vibration, First Edition. Michael Feldman.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd. ISBN: 978-0-470-97827-6
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Engineering Science who can understand the concept of the HT sufficiently to utilize
it, or at least to determine if he or she needs to dig more deeply into the subject.

The book is divided into three main parts. The first describes the HT, the analytic
signal, and the main notations, such as the envelope, the instantaneous phase, and the
instantaneous frequency, as well as the analytic signal representation in the complex
plane. This part also discusses the existing techniques for the HT realization in digital
signal processing.

The second part describes the measured signal as a function of time, mostly
vibration, which carries some important information. The HT is able to extract this
time-varying information for narrow- and wideband signals. It is also capable of
decomposing a multicomponent nonstationary signal into simple components or, for
example, separate standing and traveling waves.

The third part is concerned with a mechanical system as a physical structure
that usually takes an impulse or another input force signal and produces a vibration
output signal. Use of the HT permits us to estimate the linear and nonlinear elastic
and damping characteristics as instantaneous modal parameters under free and forced
vibration regimes.

The book is a guide to enable you to do something with the HT, even if you
are not an expert specializing in the field of modern vibration analysis or advanced
signal processing. It should help you significantly (a) to reduce your literature re-
search time, (b) to analyze vibration signals and dynamic systems more accurately,
and (c) to build an effective test for monitoring, diagnosing, and identifying real
constructions.

1.1 Brief history of the Hilbert transform

To place the HT subject in a historical context of mechanical vibration we will start
with a very short chronology of the history of the HT. A traditional classical approach
to the investigation of signals can include a spectral analysis based on the Fourier
transform and also a statistical analysis based on a distribution of probabilities and
other representations typical for random data. In addition to these typical spectral,
correlation, and distribution characteristics, another method of representing and in-
vestigation a signal originated in the forties of the previous century (Gabor, 1946). —.
This new method suggested the use of a random signal x as a product of two other
independent functions: x = A cos ¢, where A is the amplitude, or envelope, and ¢
is the instantaneous phase. Thus, the variable x can be presented in the form of a
harmonic fluctuation modulated in the amplitude and in the phase. This means of
representing a function has appeared to be more descriptive and convenient for the
solution of a number of theoretical and practical problems.

At that time researchers and engineers were not familiar with the HT (Therrien,
2002). However, they started to investigate the envelope and instantaneous phase by
describing the signal in a x — y Cartesian coordinate system (Bunimovich, 1951). In
this xy— plane the original signal was a first (x-axis) projection of the vector with
length A and phase angle ¢. The second projection in the xy— plane along a vertical
axis took the form y = A sin ¢. Due to the orthogonality of the bases, one obtains
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the following relations: A> = x* + y?, ¢ = arctan (y/x). The same relations were
extended to the case of a representation of a variable in the form of a Fourier series:
x =Y (ag cos ¢ + by sin ¢), where each component of the sum means a simple har-
monic. The mathematical literature (Titchmarsh, 1948) defined the second projection
of the vector sum as the conjugate Fourier series y = Y (ay sin ¢y — by cos ¢y). This
started a study of the modulated signal, its envelope, instantaneous phase, and fre-
quency based on the well-known Euler’s formula for harmonic functions, according
to which e’ = cos ¢ + i sin ¢.

Nevertheless, a question of how an arbitrary (but not harmonic) signal should be
represented to define the envelope and other instantaneous characteristics was still
open. This problem was solved by Denis Gabor in 1946 when he was the first to
introduce the HT to a signal theory (Gabor, 1946). Gabor defined a generalization of
the Euler formula e'¥ = cos(p) + i sin(p) in a form of the complex function Y (¢) =
u(t) + iv(t), where v(z) is the HT of u(z). In signal processing, when the independent
variable is time, this associated complex function is known as an analytic signal and
the projection v(f) is called a quadrature (or a conjugate) of the original function
u(t). The HT application to the initial signal provides some additional important
information on an amplitude, instantaneous phase, and frequency of vibrations.

The analytic signal theory was then progressively developed by experts in various
fields, mainly in electronics, radio, and physics. Here we must mention an important
result called a Bedrosian condition (identity, equality), derived in 1963 (Bedrosian,
1963). This simplifies the HT calculation of a product of functions, helps us to
understand the instantaneous amplitude and frequency of signals, and provides a
method of constructing basic signals in the time—frequency analysis.

The theory and the HT application progressed greatly during the following years
owing to Vakman, who further developed the analytic signal theory by solving prob-
lems of nonlinear oscillation and wave separation (Vakman and Vainshtein, 1977;
Vainshtein and Vakman, 1983).

Investigators of digital algorithms of the HT realization (Thrane et al., 1984)
made a major contribution when a “digital” revolution started, and digital computers
and digital signal procedures appeared everywhere. In 1985 Bendat suggested the
inclusion of the HT as a typical signal procedure to the Briiel and Kjer two-channel
digital analyzer. He also wrote a B&K monograph with a cover picture of David
Hilbert’s face gradually rotated through 90° (Bendat, 1985). As the speed and volume
of digital processors keep increasing, software and digital hardware are replacing
traditional analog tools, making today’s devices smarter, more reliable, less expensive,
and more power efficient than ever before.

The HT and its properties have been studied extensively in fluid mechanics and
geophysics for ocean and other wave analysis (Hutchinson and Wu, 1996). A detailed
analysis of the HT and complex signals was made by Hahn in 1996 (Hahn, 1996a).
His book covers the basic theory and practical applications of HT signal analysis and
simulation in communication systems and other fields. Two volumes of the Hilbert
Transforms recently published by King (2009) are a very definitive reference on the
HTs, covering mathematical techniques for evaluating them, and their application.

In 1998 an outstanding work by Huang gave a new push to the modern research in
the field of HTs (Huang et al., 1998). His original technique, known as the Empirical
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Mode Decomposition (EMD), adaptively decomposes a signal into its simplest
intrinsic oscillatory modes (components) at the first stage. Then, at the second
stage, each decomposed component forms a corresponding instantaneous ampli-
tude and frequency. Signal decomposition is a powerful approach; it has become
extremely popular in various areas, including nonlinear and nonstationary mechanics
and acoustics.

1.2 Hilbert transform in vibration analysis

In the field of radio physics and signal processing, the HT has been used for a long
time as a standard procedure. The HT and its properties — as applied to the analysis
of linear and nonlinear vibrations — are theoretically discussed in Vakman (1998).
The HT application to the initial signal provides some additional information about
the amplitude, instantaneous phase, and frequency of vibrations. The information
was valid when applied to the analysis of vibration motions (Davies and Hammond,
1987). Furthermore, it became clear that the HT also could be employed for solving
an inverse problem — the problem of vibration system identification (Hammond and
Braun, 1986).

The first attempts to use the HT for vibration system identification were made in
the frequency domain (Simon and Tomlinson, 1984; Tomlinson, 1987). The HT of
the Frequency Response Function (FRF) of a linear structure reproduces the original
FRF, and any departure from this (e.g., a distortion) can be attributed to nonlinear
effects. It is possible to distinguish common types of nonlinearity in mechanical
structures from an FRF distortion.

Other approaches (Feldman, 1985) were devoted to the HT application in the
time domain, where the simplest natural vibration system, having a mass and a linear
stiffness element, initiates a pure harmonic motion. A real vibration always gradually
decreases in amplitude owing to energy losses from the system. If the system has
nonlinear elastic forces, the natural frequency will depend decisively on the vibration
amplitude. Energy dissipation lowers the instantaneous amplitude according to a
nonlinear dissipative function. As nonlinear dissipative and elastic forces have totally
different effects on free vibrations, the HT identification methodology enables us
to determine some aspects of the behavior of these forces. For this identification
in the time domain, it was suggested that relationships should be formed between
the damping coefficient (or decrement) as a function of amplitude and between the
instantaneous frequency and the amplitude. Lately, it was suggested that the linear
damping coefficient could be formed by extracting the slope of the vibration envelope
(Hammond and Braun, 1986; Agneni and Balis-Crema, 1989).

Some studies (Feldman, 1994a, 1994b), provide the reader with a comprehensive
concept for dealing with a free and forced response data involving the HT identifi-
cation of SDOF nonlinear systems under free or forced vibration conditions. These
methods, being strictly nonparametric, were recommended for the identification of
an instantaneous modal parameter, and for the determination of a system backbone
and damping curve.
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A recent development of the HT-based methods for analyzing and identifying
single- and multi-DOF systems, with linear and nonlinear characteristics, is at-
tributable to J.K Hammond, G.R. Tomlinson, K. Worden, A.F. Vakakis, G. Kerschen,
F. Paia, A. R. Messina, and others who explored this subject much further. Since
the HT application in the vibration analysis was reported only 25 years ago, it has
not been well perceived in spite of its advantages in some practical applications. At
present, there is still a lot to be done for both a theoretical development and practical
computations to provide many of various practical requirements.

1.3 Organization of the book

This book proceeds with three parts and twelve chapters.

Part I “Hilbert Transform and Analytic Signal,” contains three chapters. Chapter
1 gives a general introduction and key definition, and mentions concisely some of the
HT history together with its key properties. Chapter 2, which includes a review of
some relevant background mathematics, focuses on a rigorous derivation of the HT
envelope and the instantaneous frequency, including the problem of their possible
negative values. Chapter 3 deals with two demodulation techniques: the envelope
and instantaneous frequency extraction, and the synchronous signal detection. It
describes a realization of the Hilbert transformers in the frequency and time domains.
The sources and characteristics of possible distortions, errors, and end-effects are
discussed.

Part II, “Hilbert Transform and Vibration Signals,” contains four chapters. Chap-
ter 4 introduces typical examples of vibration signals such as random, sweeping,
modulated, and composed vibration. It explains the derivatives, the integral, and the
frequency content of the signal. Chapter 5 covers some new ideas related to the
mono- and multicomponent vibration signal. Material that has important practical
applications in signal analysis is treated, and some topics — especially the congruent
envelope of the envelope — that have the potential for important practical applications
are covered. Chapter 6 is devoted to examining the behavior of local extrema and the
envelope function. Material in this chapter has an application to the explanation of
the well-known Empirical Mode Decomposition (EMD). It also describes a relatively
new technique called the Hilbert Vibration Decomposition (HVD) for the separation
of nonstationary vibration into simple components. The chapter illustrates some lim-
itations of the technique including the poor frequency resolution of the EMD. Most
of key properties of these two decomposition methods are covered, and the most
important application for typical signals is treated. Chapter 7 provides examples of
HT applications to structural health monitoring, the real-time kinematic separation
of nonstationary traveling and standing waves, the estimation of echo signals, a
description of phase synchronization, and the analysis of motion trajectory.

Part I, ““Hilbert Transform and Vibration Systems,” contains five chapters. Chap-
ter 8 gives some introductory material on quadrature methods, when the real and
imaginary parts of a complex frequency function are integrally linked together by
the HT. The chapter explains the important Kramers—Kronig formulas, used widely
in applications. It covers some solutions of the frequency response function that can



6 HILBERT TRANSFORM APPLICATIONS IN MECHANICAL VIBRATION

be used for the detection of nonlinearity. This chapter links both the initial nonlinear
spring and the initial nonlinear friction elements and analytic vibration behavior.
Both simple and mathematically rigorous derivations are presented. The chapter also
covers some typical nonlinear stiffness and damping examples. Chapter 9 describes
the foundation for the identification methods that are treated in the next chapter. The
important sum rules that come directly from the HT relations — such as skeleton and
damping curves, static force characteristics, and nonlinear output frequency response
functions — are discussed in detail. Chapter 10 presents FREEVIB and FORCEVIB
methods as a summary of all the key properties of the HT for practical implemen-
tation in dynamic testing. The skeleton and damping curves are treated together
with the reconstructed initial nonlinear static forces. Chapter 11 treats the case of
precise nonlinear vibration identification. The special difficulties that arise for the
significant role of the large number of high-order superharmonics are analyzed in
detail. Applications of some results developed in Chapter 9 for the identification
of multi-degree-of-freedom (MDOF) systems are illustrated. Chapter 12, the final
chapter, considers industrial applications in a number of different areas. To conclude
the book, this chapter provides references to HT examples of a successful real-
ization of the parametric and nonparametric identification of nonlinear mechanical
vibration systems.
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Analytic signal representation

2.1 Local versus global estimations

A measured varying signal can be described by different signal attributes that change
over time. Estimating these attributes of a signal is a standard signal processing
procedure. The HT provides the signal analysis with some additional information
about amplitude, instantaneous phase, and frequency. To estimate the attributes —
such as amplitude or frequency, — any procedure will need some measurements
during a definite time. Two approaches exist for such an estimation: a local approach
that measures attributes at each instant without knowing the entire function of the
process; and a global approach that depends on the whole signal waveform during
a long (theoretically infinite) measuring time (Vakman and Vainshtein, 1977). An
example of the local (or differential, microscopic) approach is a function extreme
value estimation. A further example of the local approach is frequency estimation by
measuring the interval (spacing) between two successive zero crossings.

The global (or integral, macroscopic) approach is something different. The fol-
lowing are examples of the global approach: estimating an average frequency by
taking the first moment of the spectral density, or estimating the mean value or a
standard deviation of a function. In other words, local estimations consider the signal
locally, that is, in a very small interval around the instant of the analysis. Quite to the
contrary, global estimations have to use the whole measured signal. The HT as the
subject of our examination is a typical example of the global approach. The global
versus local estimations provide different precisions and resolutions depending on
many conditions — primarily, noise distortions and a random flicker phase modulation
in a signal (Girolami and Vakman, 2002; Vakman, 2000).

2.2 The Hilbert transform notation

The HT is one of the integral transforms (like Laplace and Fourier); it is named after
David Hilbert, who first introduced it to solve a special case of integral equations

Hilbert Transform Applications in Mechanical Vibration, First Edition. Michael Feldman.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd. ISBN: 978-0-470-97827-6
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in the area of mathematical physics (Korpel, 1982). The HT of the function x(¢) is
defined by an integral transform (Hahn, 1996a):

Hx®)] =) =n"" /Oo tx(—T)dr 2.1

oot —T

Because of a possible singularity at + = 7, the integral has to be considered as a
Cauchy principal value. The HT of a real-valued function x(#) extending from —oo
to +o0 is a real-valued function %(¢) defined by (2.1).

The mathematical integral definition there really does not give much insight into
the understanding and application of the HT. However, the physical meaning of the
HT helps us to gain a much deeper access to the transformation. Physically, the HT
is equivalent to a special kind of linear filter, where all the amplitudes of the spectral
components are left unchanged, but their phases are shifted by /2 (Figure 2.1c)
(Hahn, 1996a; King, 2009; Thomas and Sekhar, 2005). Thus, the HT representation
#(1) of the original function is the convolution integral of x(r) with (7r#)~', written
as X(t) = x(¢) * (rt)~". The impulse response function of the ideal HT is shown in
Figure 2.1a; the module and the phase characteristics of the HT transfer function are
shown in Figure 2.1b and c.

It is clear that the HT of a time-domain signal x(¢) is another time-domain signal
X(t), and if x(¢) is real valued, then X(¢) is also real valued.

2.3 Main properties of the Hilbert transform

The HT is a linear operator, so if a; and a, are arbitrary (complex) scalars, and
x1(¢) and x,(¢) are varying signals, then H [a;x1(t) + axx»(¢)] = a1 X1(¢) + aX(¢).

a b

h) 4 [H(@)] 4
1

vy

\J

o) A

-n/2

Figure 2.1 The ideal HT: the impulse response function (a), the module (b), and the
phase (c) of the HT transfer function (Feldman, (C)2011 by Elsevier)
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Figure 2.2 The quasiharmonic (a) and the square wave (b): the initial signal x(t),
the HT pair projection X(t), the envelope A(t) (Feldman, (©)2009 by John Wiley &
Sons, Ltd.)

In particular, the HT of a constant is zero. The double HT (the HT of a HT) yields the
original function with the opposite sign, hence it carries out a shifting of the initial
signal by —mr. The HT used four times on the same real function returns the original
function. The power (or energy) of a signal and its HT are equal. A function and its
HT are orthogonal over an infinite interval f _oooo x(H)X(t)dt = 0. The HT of a function
derivative is equivalent to the derivative of the HT of the function. The HT of a sine
function is a cosine function; the HT of a cosine function is a negative sine function,
but for some dissimilar waveform it can have a more complicated form (Figure 2.2).

A signal x(¢) and its HT projection X(¢) have the same amplitude spectrum and
the same autocorrelation function. The reader with applications of signal processing
in mind can find further, more detailed, information on the properties of the HT —
with a thorough explanation and a stringent presentation of their physical meaning in
Johansson (1999) and King (2009).

2.4 The Hilbert transform of multiplication

In practice, a need for the HT of a functions product arises quite often. The equation

H[nslow(t)xfast(t)] = nxlow(t)xfast(t)v (22)
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called a Bedrosian identity (product theorem), simplifies calculations of the HT of a
function product (Bedrosian, 1963). This states that the HT of the product of lowpass
and highpass signals with nonoverlapping spectra is defined by a product of the
lowpass signal and the HT of the highpass signal.

For a more complicated case of a product of real functions with overlapping
spectra we can use another formula (Hahn, 1996b). This formula for the HT of the
product of overlapping spectra is derived by decomposing the signal into a sum of
two parts with lowpass and highpass terms, thus enabling an application of Bedrosian
theorem to each of the parts separately.

Let n(¢) and x(¢) be fast-varying functions whose frequency bands overlap. If
one of the functions can be represented in the form of a sum of two parts n(t) =
s1ow(t) + / fasi(t), then the HT of the product of these functions with overlapping
spectra can also be written in the form of a sum of two parts (Hahn, 1996b):

H [n(0)x(D)] = H {[fist0w (@) + st (D)] X(0)} = flgon(DF() + s (Ox(1),  (2.3)

where 7l (t) is the slow (lowpass) part of the real function, 7 rast(t) is the fast
(highpass) part, and 7i 7, () is the HT pair component of the fast component n Fast (D).
This means that the HT of the signal multiplication with overlapping spectra results
in a composition of two multiplications.

For example, the HT of the square of the harmonic x? = (cos (,0)2 is equal to
H[x*] = H[xx] =H [(0 + x)x] =04 %x = singpcos ¢ = %sinng. Another exam-
ple for the cube of the harmonic x* = (cos ¢)® gives H [x*] = Hi% + H [x*]x =
% sin ¢ + % sin2¢ cos ¢ == %(3 sin ¢ + sin 3¢). These simple examples can be veri-
fied using complex numbers. It is known that for real numbers x e'* = cosx + i sin x,
$0 e = cos (—x) + i sin(—x) = cosx — i sinx cos x — i sinx. Adding these two
equations yields cosx = % For the cube example we will have cos®x =

(e”-&-e”"‘ )3 _ _ESix+e—3ix+3(eix+e—ix) 3

, OF COS” X = % (3cos x + cos 3x). Therefore the

2i 8i
HT of the cube will be H [cos®x] = {H [3cosx + cos3x] = § (3sinx + sin3x)
that is, equal to the result obtained with the generalized HT of the product of the
overlapping functions (2.3).

2.5 Analytic signal representation

The complex signal whose imaginary part is the HT (2.1) of the real part is called an
analytic or quadrature signal (Lyons, 2000; Vakman, 1998). It is a two-dimensional
signal whose value at some instant in time is specified by two parts, a real part and
an imaginary part (Schreier and Scharf, 2010):

X(@) = x(r) +ix(1), 2.4)
where ¥(t) is related to x(z) by the HT. An example of a complex trace of the analytic

signal uniquely defined by Equation (2.1) is shown in Figure 2.3 as a helix that spirals
around the time axis (Lyons, 2000).
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Imaginary axis
o
L

1

Time axis Real axis

Figure 2.3 The HT projection (1), the real signal (2), the analytic signal (3), and
the phasor in complex plain (4) (Feldman, (C)2011 by Elsevier)

For each integral transform, there will be another relation which converts the trans-
formed function back into the original function. At the same time this relation is usu-
ally an integral transform, although sometimes it may be written in terms of algebraic
operations only. In order to return from a complex form of the analytic signal X (¢)
back to the real function x(¢), one has to use a substitution x(¢) = 0.5 [X(¢) + X*(¢)],
where X*(¢) is the complex conjugate signal of X (#) (Vainshtein and Vakman, 1983).
The analytic signal has a one-sided spectrum of positive frequencies. The conjugate
analytic signal has a one-sided spectrum of negative frequencies.

2.6 Polar notation

According to analytic signal theory, a real vibration process x(#), measured by, say, a
transducer, is only one of many possible projections (the real part) of some analytic
signal X(¢). The second, or quadrature, projection of the same signal (the imaginary
part) X(¢) will then be conjugated according to the HT (2.1). An analytic signal has a
geometrical representation in the form of a phasor rotating in the complex plane, as
shown in Figure 2.4.

A phasor can be viewed as a vector at the origin of the complex plane having a
length A(?) and an angle, or an angular position (displacement), 1 (¢). The projection
on the real axis is the initial real signal and is described by x(#) = A(¢) cos ¥ (¢). Using
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Im A

A
DY

Figure 2.4 The analytic signal in the complex plain (Feldman, (C)2009 by John
Wiley & Sons, Ltd.)

a traditional representation of the analytic signal in its trigonometric or exponential
form (Vainshtein and Vakman, 1983; Hartmann, 1998)

X(t) = |X(0)| [cos Y (1) + j sinyr(1)] = A(1)e/ V™ 2.5)
one can determine its instantaneous amplitude (envelope, magnitude, modulus)

A(t) = £ |X(1)] = £/x2(t) + 72(1) = £l X0 (2.6)
and its instantaneous phase

Y(t) = arctan ;% = Im[ln X(#)]. 2.7

The change of coordinates from rectangular (x, ¥) to polar (A, V) produces
x(t) = A(t)cos Y(t), X(t) = A(t)siny(r).
2.7 Angular position and speed

An angular position of the phasor  is its angle relative to a fixed direction, which
we take as the zero angular position. A pure rotation produces no change in the
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vector length relative to the origin. The velocity of the rotating phasor has a cross-
radial component perpendicular to the radius-vector that is called angular speed. The
angular speed w (also referred to as rotational speed, angular frequency, circular
frequency, orbital frequency, transverse velocity, or radian frequency) is a rotational
velocity and its magnitude is a scalar measure of the rotation rate. During a time
interval At =, — t; an average angular speed @ is defined as a ratio of an angular
displacement to the time in which it occurs: @ = Ay /At = (Yy — Y1) /(12 — 1)).
In the same way that linear velocity is the first derivative of linear displacement,
angular velocity is the first derivative of angular position @ = V. The modulus of the
first derivative |w| measures how fast an object is rotating. The sign of the angular
frequency (the sign of w) indicates the rotation direction; for example, when @ > 0,
the vector rotates counterclockwise, and when w < 0, the vector rotates clockwise
with time.

Due to the envelope variation in time, the phasor velocity has also a radial
component along the radius defined as the component of velocity away from or
toward the origin. Geometrically, ¥ is given by ¢ = s/ A, where s is the length of the
circular arc that extends from the x-axis (the zero angular position) to the reference
vector, and A is the vector length. The angular velocity of a phasor can be related
to its full translational velocity ds/dt, which is a vector quantity and depends on
both the length of the phasor A (the distance from the center of rotation) and the
angular velocity w. For the arc length s = A and the radius vector A we can write:

§ = (AY) = Aw(1) + Y (HA®).

2.8 Signal waveform and envelope

Geometrically, the envelope means an integral curve which determines a singular
position of the initial function (Kultyshev, 1990). The envelope may be constant (in
which case the wave is a continuous harmonic) or may vary with time. The form or
the shape of the variation of the instantaneous amplitude is called a wave envelope. If
the waveform is a pure harmonic with varying positive and negative signal values, the
relationships between peak-to-peak amplitude and the root mean square (the standard
deviation) values are fixed and known, as they are for any continuous periodic wave:
Peak-to-peak = 24/2RMS, where RMS = [Ar~! OAt xz(t)dt]%. However, this is not
true for an arbitrary waveform which may or may not be periodic or continuous.

In a general case an amplitude of the oscillation A(#) — as a magnitude of the
complex analytical signal — varies with time (2.6). An initial signal and its enve-
lope have common tangents at points of contact, but the signal never crosses the
envelope.

Usually the envelope is considered positive, but that is not the issue. In the same
way that the square root of a number can be negative, the real-valued envelope can have
negative values. The plus sign of the root square corresponds to the upper positive
envelope +A(t), and the minus sign corresponds to the lower negative envelope
—A(?), so they are always in an antiphase relation.

An envelope function contains important information about the energy of the
signal. It is known that power is a time average of energy (energy per unit time):
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Figure 2.5 The instantaneous phase: unwrapped (- -) and wrapped (—) (Feldman,
(©)2009 by John Wiley & Sons, Ltd.)

Power = 7! fOT x2(r) = RMS?. Because the power in the HT pair projection is
equal to the power in the original signal, the envelope power is precisely twice the
signal power.

By using the HT, the rapid oscillations can be removed from the amplitude
modulated signal to produce a direct representation of the slow envelope alone.
In some cases of over-amplitude modulation the signal modulated amplitude can
be presented as an oscillated complex envelope function having negative values
(see Section 4.5.3).

2.9 Instantaneous phase

For any signal there is a unique single value of its instantaneous phase at any given
time that defines where vector is pointing. The instantaneous orientation phasor angle
defined by Equation (2.7) is measured in radians (rad) rather than revolutions (rev),
or degrees. This instantaneous phase notation, based on the arctangent, indicates a
multibranch character of the function, as shown in Figure 2.5 (solid line), when the
phase angle jumps between 7 and —m. We do not reset ¥ to zero with each complete
rotation of the reference line about the rotation axis. If the reference line completes
two revolutions from the zero angular position, then the angular position i of the
line is v = 4 rad. These phase jumps can be unwrapped into a monotone function
by changing the phase values artificially (see Figure 2.5, dashed line).

An instantaneous relative phase shift in the case of two different but narrowband
signals x;(7) and x,() can be estimated as an instantaneous relative phase between
them, according to the formula (Feldman, 2001):

x1(1)x(1) — X1(t)x2(2)
x1(t)x2(t) + %1 ()% (1)

AY = ¥a(t) — Y1 (f) = arctan 2.8)
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The relative phase shift Ay = v, — ¥ is a function of the signal frequency Ay (w);
the relative phase shift for the specified frequency is associated with the time delay
between two signals At = Ay (w)/w. There exists a group delay defined as a negative
derivative of the phase angle Aty = —d [AY(w)]/dw for any narrowband signal
with a group of harmonics around the frequency w (Shin and Hammond, 2008; Perry
and Brazil, 1997). In the case of two arbitrary signals the time delay between them
can be estimated by the HT algorithms (Hertz, 1986).

2.10 Instantaneous frequency

More than several decades ago, Gabor (1946) and Ville (see Boashash, 1992) defined
the notions of the phase and instantaneous frequency (IF) of a signal via an analytic
signal. The first derivative of the instantaneous phase as a function of time

w(t) = Y1) (2.9

— called the instantaneous angular frequency — plays an important role in signal
analysis. For any signal there is a unique single value of the instantaneous phase at
any given time. The dimension of the angular frequency w(¢) = 27 f(¢) is in radians
per second, and the cycle frequency f(¢) is in Hertz. There is a simple way to avoid
the whole phase-unwrapping problem if you find the IF by differentiation of the
signal itself

w(t)

_ x0F0) — 5030 _ [X 01 (2.10)

A2(1) X(t)

The IF w(t) measures the rate and direction of a phasor rotation in the complex plane.
Naturally, for a simple monoharmonic signal, the envelope and the IF are constant,
and the phase angle increases linearly with time. In a general case, the IF of the
signal is a varying function of time. Moreover, the IF in some cases may change
sign in some time intervals, which corresponds to a change in the phasor rotation
from counterclockwise to clockwise. The IF always has a simple and clear physical
meaning — it is no more than just a varying speed (rate) of the phasor rotation in
polar axes. In the time domain the negative IF corresponds to the appearance of a
complicated riding cycle of an alternating signal.

At each moment a signal has only one single value of the IF (Loughlin and Tacer,
1997). For nonstationary signals (that is, signals whose spectral contents vary with
time) the IF plays an important role and can be estimated by different algorithms
(Vakman, 2000). These algorithms of the IF direct nonparametric estimation are
based on definitions (2.9) and (2.10), and do not require any other time—frequency
analysis or any a priori mathematical model of the signal.

Algorithm 1, based on formula (2.9), means differentiation of the phase angle.
However, an initial arctangent function always produces sharp jumps between 7
and —m values and cannot be used for a direct differentiation. Therefore, prior to
the differentiation, the algorithm performs a phase unwrapping procedure to attain a
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continuous phase. The unwrapping procedure produces a smooth, increasing phase
function by adding 27 every time a full cycle is completed. Immediately after the
phase unwrapping, the algorithm performs its differentiation according to (2.9).

Algorithm 2, presented by formula (2.10), is obtained by an analytical differentiation
of the arctangent of the fraction w(t) = d [arctan %] /dt. Thus, it does not operate
with the phase function but, instead uses the initial signal x(¢), its HT projection ¥(¢),

and their first derivatives x(r), x().

Algorithm 3, the simplest procedure, takes into account the discrete form of a real
signal x(n) obtained by sampling the analog signal at discrete instants of time #,.
The corresponding analytic signal will have a form X,, = x,, + iX,. The algorithm
also uses a conjugate complex signal at the next discrete instants of time #,4:
X}, = Xng1 — iX,41. As the first difference of the phase, the IF can be calculated
as a symbolic difference of two arctangents ¢ = A, /At between two adjacent
samples of the phase angle (At = 1):

Awn = 1ﬂn-‘,—l - wn = arctan (ilH—l/xn-H) — arctan (in/xn)

Xnt1Xne1 — Xn/Xn XnXpp1 — XnXpp1
= arctan —— = arctan ——
1 + Xn+1Xn /xn+lxn XnXn+1 + XnXn41

The multiplication of the initial analytic signal and the conjugate complex signal
produces a new complex function X, X | = (x, — iX,) (Xp11 — i%,11) = X X041 +
XnXny1 +1 (Xpxne1 — X, %,41) whose angle is equal to the IF of the signal. For At = 1
we can therefore write:

Y = Ay, = arctan (X, X}, ) (2.11)
The above equation allows us to compute the IF directly by computing the arctangent
of the conjugate multiplication of adjacent complex samples. Unwrapping is not
required with this algorithm. Direct estimation of the IF by using the simple formula
(2.11) is a nice alternative to differentiation of the signal instantaneous phase.
Other, more complicated, algorithms for the IF estimation in the case of frequency
modulated signals are discussed in, for example, Goswami and Hoefel (2004). These
algorithms are based on the HT, Haar wavelet, and generalized pencil of function
methods. While Algorithm 3 appears to be least sensitive to noise, the method de-
scribed in Algorithm 1 is the easiest to implement. The wavelet-based method is also
computationally more efficient and can be implemented in real-time.

2.11 Envelope versus instantaneous frequency plot

Each of the instantaneous functions A(f), w(t) is a parametric function of time
(with the parameter ¢) which is regularly plotted on a separate graph. This way we
achieve the best possible time and frequency resolution of analysis. The instantaneous
amplitude and the IF as functions of time can also be represented in a 3D plot.
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Combining the envelope and the IF time functions, and excluding the parameter, we
will get a 2D plot determined by a set of pairs of A, . Instantaneous functions plotted
in conjunction can be shown with linear or logarithm axes. The envelope versus the IF
plot shows the instantaneous characteristics relationship and is especially useful for
identifying a vibration system (Feldman, 1985). For example, constant terms such as
® = constant contribute a straight vertical line of the unvarying resonance frequency
of the linear vibration system. Some other examples of typical envelope—frequency
plots are discussed in Chapter 4.

2.12 Distribution functions of the instantaneous
characteristics

The envelope and the IF of real vibration signals are nonconstant; they can vary
randomly in time. Unlike deterministic signals, the behavior of random signals can
be analyzed with probability and statistical functions. Taking into account the analytic
signal representation enables one to consider a vibration process, at any moment in
time, as a quasiharmonic oscillation, that is amplitude and frequency modulated by
time-varying functions A(#) and w(¢):

x(t) = A(t) cos / w(t)dt. 2.12)
0

The instantaneous parameters are functions of time and can be estimated at any point
of the vibration signal. The total number of points that map the vibration is much
larger than the number of peak points of the signal. It opens the way for averaging and
for other statistical processing procedures, making a vibration analysis more precise.

2.12.1 Envelope distribution and average values

The distribution of an envelope appears as a distribution of random complex num-
bers whose real and imaginary Gaussian components are independent and identically
distributed. In that case, the envelope as a modulus (an absolute value) of a complex
number is Rayleigh-distributed (Whitaker, 2005). As an example of this relation, a
typical classical Gaussian (normal) form of the probability density of the random vi-
bration, which conforms to the Rayleigh probability density of the vibration envelope,
is presented in Section 4.1 (Figure 4.1b).

A mean value (average) of the envelope takes the form A = 7! fOT A(t)dt =
RMS, /7/2 ~ RMS, x 1.253, where RMS is the root mean square (the standard
deviation) of the random signal. The variance (the mean value of the square) of the
envelope is

T
[AD)P? =T7! f A%X(t)dt = (2 — w/2) RMS? ~ 0.429 x RMS?, (2.13)
0
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which determines the level of the envelope variation. Generally the envelope prob-
ability density p(A) is related to the signal probability density function p(x):
px)=mn"" f\?cT %. Estimation examples of the envelope average for deter-
ministic vibration are given in Section 5.4. Some more interesting composition pos-
sibilities — arising when summations are considered for harmonic, modulated, and

random signals — are considered in Cain, Lever, and Yardim (1998).

2.12.2 Instantaneous frequency average values

The first moments of the IF are closely related to the first moments of the spectral
density of a random signal (Boashash, 1992; Davidson and Loughlin, 2000). Let
m; be the j central spectral moment given by the complex spectrum S(w): m; =
@m)" [ @' |S (®)]* dw. Thus the mean value of the IF, called a central frequency
wp, will be equal to the first normalized moment (j = 1) of the signal spectrum
(Vainshtein and Vakman, 1983):

wo =@ = /oo o) AX(dr = 1L (2.14)
_ my

o0

The mean value of the IF squared ? = [ @ ()AX Dt = " A2(t) determines

the level of the IF variation. Some typical examples of the central frequency estimation
based on the IF are given in Section 4.1 (Table 4.1) and Section 5.4.

2.13 Signal bandwidth

There are several techniques for estimating the frequency bandwidth of a narrowband
signal. Probably the most familiar, and simplest, is a half-peak level width of the
signal spectrum. Also, a spectrum bandwidth could be estimated as the width of a
hypothetical square with the same energy and peak value Aw; = fooo w S*(w)dw/ m.
In the case of IF analysis, it is useful to introduce a further width parameter that is
equal to the mean absolute value of the IF deviation from its central value plus the
envelope variations. By summing up the IF variations around the mean value and the
envelope variations, we will obtain an average spectrum bandwidth of the signal Aw,
(Fink, 1966; Cohen and Lee, 1989; Vainshtein and Vakman, 1983):

2 Y 2 2 5 G2 -2 my
Aw; = (21) / (0 — wp)* |S(w)|* dw = ? + A2 —p° = — — | —
0 mo mo

(2.15)

where, again, m is the j th moment of the spectrum S(w). Equation (2.15) is derived
from Parseval’s energy identity relation for time and frequency domains. It indicates
that the signal spectrum bandwidth Aw is equal to the sum of the IF @? and the
envelope A2 variations. For signals that are only amplitude modulated, the spectral
bandwidth is equal to the mean square value of the rate of amplitude variation. For
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signals that are only frequency modulated, the spectral bandwidth is equal to the mean
square value of the IF. Some typical examples of the spectral bandwidth estimation
are presented in Table 4.1 and Sections 4.11 and 4.12.

2.14 Instantaneous frequency distribution and
negative values

Since the IF may be considered to be a signal frequency at a given time instant by
estimation of the length of the whole signal waveform, it seems reasonable to inquire
about the IF probability density function, or spread, at that observation length. For
the random normal narrowband signal, the probability density function of the IF was
derived by Bunimovich (Bunimovich, 1951; Broman, 1981) p(w) =

Aw
2(w2+Aw2)3/2 ’

probabilistic prerequisite to the formation of the negative value of the IF is then:

plo(t) < 0] =0.5 (1 - &) . (2.16)

o]

For example, the probability of a negative value of the IF of a random signal after
an ideal rectangular narrowband filter is directly proportional to the relative filter
width p [w(t) < 0] = ; 4 4 7, where wy is the central filter frequency, and Aw is the

filter width. This indicates that after any narrowband filtering the random signal will
still have a negative value of IF. However, for very small widths like w“’ < 0.01, the
probability will be less than one in a million, and the IF can be almost always be
considered positive.

2.15 Conclusions

The application of the HT to signal analysis provides some additional information
about the amplitude, instantaneous phase, and frequency of vibration. This chapter
discussed some basic mathematical properties of the HT and of the analytic signal,
which allow one to determine the amplitude, phase, and frequency of any oscillation
at any instant of time. For narrowband vibration and for slow frequency modulation,
these instantaneous characteristics agree with the intuitive meaning of the signal
amplitude, phase, and frequency. Considerable attention has been devoted to the
meaning and conditions of existing negative frequency components in the IF. The
negative IF is not “unphysical,” it can be easily understood through a variation in
phase angle. The IF always has a simple and clear physical meaning — it is no more
than just a varying speed (rate) of the phasor rotation in polar axes. A negative IF
corresponds to a change of phasor rotation from counterclockwise to clockwise. In
the time domain the negative IF corresponds to the appearance of a complicated
riding cycle of an alternating signal.






3

Signal demodulation

Traditional Fourier analysis simply assumes that the signal is a sum of a number of
sine waves. The HT allows us to obtain a complex demodulation analysis, adapted
to signals of the form of a single, but modulated (perturbed), sine wave (Claerbout,
1976). Since a vibration signal is exactly of that model, it is no wonder that in some
cases the HT performs better than Fourier analysis. A demodulation removes the
modulation from a signal and returns the original baseband signal. Thus demodulation
is a process of extracting the original information incorporated in a modulated signal.
For example, an envelope detector based on the HT takes a high-frequency signal as
an input and provides an output that is an envelope of the original signal.

3.1 Envelope and instantaneous frequency extraction

An amplitude modulated wave x(¢) = A(¢) cos ¥ (¢) should be processed in some way
to preserve only the modulating envelope function A(¢) and discard the oscillations
cos ¥ (). The polar coordinates allow us to separate easily the effects of amplitude
and phase (or frequency) modulation, and effectively demodulate certain kinds of
signals. If we can generate a quadrature signal X(#) = A(t)sin ¥ (¢) of the same
modulated signal, then we can easily generate the envelope from (2.6): AXt) =
A%(t) cos? (1) + A%(¢) sin® ¥ (¢). In this way, just by computing the square root of
the sum of the squares of the real and imaginary parts, we obtain the envelope function
at any time. The HT, as a 90° phase shift on every frequency component, is the best
signal-processing procedure for obtaining the Hilbert component and estimating the
instantaneous amplitude (Lyons, 2000, 2004). Such a HT envelope detector block
diagram is shown in Figure 3.1. In fact, the envelope detectors can be as simple as
only a diode and a lowpass filter, but the performance of the HT envelope detector
is quite precise and it is not sensitive to the carrier. Moreover, the HT — in addition
to the envelope — allows us to extract a carrier wave in the form of an instantaneous

Hilbert Transform Applications in Mechanical Vibration, First Edition. Michael Feldman.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd. ISBN: 978-0-470-97827-6
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Figure 3.1 The block diagram of the envelope and the IF extraction (Feldman,
(©)2011 by Elsevier)

phase ¥ (¢) or an IF w(t) = ¥(t). A block diagram of a signal demodulation and an
extraction of the IF on the base of formula (2.10) is also shown in Figure 3.1.

This demodulation block diagram converts an arbitrary unknown oscillation input
x(t) into two new functions: the envelope A(¢) and the IF w(¢). The diagram, which
also includes the Hilbert transformer (HT), the differentiators (Diff), and the time
delay blocks along with algebraic transformations, — can be used for a real-time
signal demodulation.

The HT demodulation and extraction of the original instantaneous ampli-
tude/frequency information from a modulated carrier wave operates with any os-
cillation signal. Mathematically, it is correct for any vibration, but in practice it
is essential mostly for narrowband signals where it generates slow-varying instan-
taneous characteristics. Other types of input vibration, such as a wideband signal
or a composition of several harmonics, will result in complicated fast-varying in-
stantaneous characteristics. Such an output of the demodulation can become more
complicated than the input signal itself, which does not make sense. In the case of
a signal composition it is desirable to have an opportunity to demodulate each sin-
gle specific oscillating component even if it is a nonstationary oscillating function
(see Sections 6.1 and 6.3).

3.2 Hilbert transform and synchronous detection

The signal synchronous demodulation technique is well known and has many names,
including synchronous detection, in-phase/quadrature demodulation, coherent or het-
erodyne demodulation, auto-correlation, signal mixing and frequency shifting, lock-in
amplifier detection, and phase sensitive detection (Whitaker, 2005). A synchronous
demodulation considers the initial signal as a sum of components with a slow-varying
instantaneous amplitude and frequency, so that x (1) = > A;(r) cos ( f w(t)d t) , Where
A,(¢) is an instantaneous amplitude and w; () is the /-component IF. A synchronous
demodulation — in addition to the initial composition x(#) — considers that the fre-
quency of the demodulated component is given a priori as a reference carrier fre-
quency w,(t). In essence, a synchronous demodulation extracts the amplitude details
about an oscillation component with a known frequency by multiplying the initial
composition by two reference signals exactly 90° out of phase with one another. For
the output we will get two projections, the in-phase and the HT (quadrature) phase
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output. The component amplitude can be obtained by taking the square root of sums
of the squares of these projections.

In this case, a single oscillating component x;—,(t) = A;—.(f) cos (f a),:,(t)dt)
on exactly the same frequency as the reference signal cos ( [ o (t)d t) is mixed with
other / components. The in-phase signal part x;—,(¢) is given, as

Z [Al(t)cos ( / wi(t)dt + <p;(t)>i| % COS ( / w,(t)dt)

1
SA0) [cos ( / (@i() — w0, (1)) dit + wz(f))

Xi=r (t)

+ cos ( / (o1(t) + w, (1)) dt + (pl(t))]

1
zAz(l) |:COS (@i(1)) + cos (/ (i (1) + @ (1))dt + <P1(l))} , 3.1

where A;(t), w(t), and ¢;(¢) are the amplitude, the IF, and the phase angle of the
I-component respectively, and w,(¢) is the IF of the r-reference largest component.

The second phase-shifted quadrature part X;—,(¢) is given by the analogous
formula

1
Yr(t) = ZAI(0) [— sin (¢ (1)) — sin (/ (w1(1) + wr(D))dt + <P1(l)>i| :

Each of the obtained parts consists of two different functions. One is a slow-varying
function, which includes an amplitude and a phase, and the other is a fast-oscillating)
part, which includes a double frequency harmonic. In such a case, it is again possible
to remove the oscillating part by the use of lowpass filtering. Oscillating components
that are not of the exact same frequency as the reference (w; # w,) will not yield this
slow-varying function. Thus, only the slow part will be retained, and the amplitude
and phase components can both be calculated:

>

1 . 1 . .
(X (1)) = EAI(I) cos ¢y (1), ifo, = w,. (Fiep (1)) = _zAl(t) sin (1), if o =ow,
0, ifw#w, 0, ifw#w,

Arcr(0) = 20 O + G100 @iy (1) = — arctan %

No matter what the instantaneous phase is, the resultant envelope A;—,(t) always
represents the detected component envelope. A synchronous detection technique is
capable of measuring even small varying signals that are obscured by large numbers
of other components. A block diagram of the synchronous demodulation is shown in
Figure 3.2. The demodulation block diagram extracts an unknown varying envelope
A(t) of the oscillation input x (¢) for the known reference IF w(¢). The diagram includes
a Hilbert transformer (HT), time delay blocks, lowpass frequency filters (LPF), along
with algebraic transformations and can be used to demodulate a real-time signal.
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Figure 3.2 The block diagram of the synchronous demodulation (Feldman, (C)2011
by Elsevier)

Synchronous detectors are not considerably more complex than simple HT detec-
tors. A demodulation is performed by multiplying the modulated carrier by a wave,
thus synchronous detectors are a subset of “product” detectors. The advantage of a
synchronous detection is that it causes less distortion than an envelope detection and
works well with single sideband signals. It is a preferred detection method for most
tests. But synchronous detectors are phase sensitive.

To illustrate these two demodulation techniques let us take an example of an
initial signal in the form of two components (Figure 3.3a). Their composition is
shown in Figure 3.3b. The HT envelope of the composition is a fast-varying function,
but the synchronous demodulated amplitude precisely extracts a correspondingly fast
component (Figure 3.3c). For a synchronous demodulation we should know a priori
the frequency of the desired fast component.
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Figure 3.3 The HT and the synchronous demodulations: two components of the
composition (a), the composition (b, —), the HT envelope (b, —), the synchronous
amplitude (b, ---), the demodulated component (c, —), and the synchronous amplitude
(¢, =-=) (Feldman, (C)2011 by Elsevier)



HILBERT TRANSFORM APPLICATIONS IN MECHANICAL VIBRATION 27

A coherent detection is well recognized as a method of obtaining a quantum-
limited reception in spectral ranges where a direct detection cannot be made quantum-
limited. However, even in an ideal case, the signal-to-noise ratio of a coherent receiver
is limited by more than just the quantum efficiency of the detector (Fink, 1966).

3.3 Digital Hilbert transformers

Modern signal processing is almost digital signal processing, involving the use of
digital procedures and signals digitized with the sampling frequency F;. The HT
is a procedure used to generate a quadrature component of a detrended real-valued
“analytic-like” signal in order to analyze variations of the instantaneous phase and
amplitude. We cannot design a digital HT procedure with a response function cor-
responding to either the ideal impulse response (¢)~! or the frequency response
H(w) = —isgn(w) (Figure 2.1). This frequency response describes an ideal wide-

band 90° phase shifter whose positive frequencies are shifted by —90° (—5) and
whose negative frequencies are shifted by +90° (%) For example, for a signal

with the form x(¢) = Y a; cos (lwt + ¢;) the Hilbert transformer should produce
=1

o0

H [x(t)] = Y_ a; cos (lwt + ¢ — 90°). The ideal Hilbert transformer, or phase shifter,
which affecés ; 90° phase shift at all frequencies, cannot be realized perfectly. A prac-
tical filter differs from an ideal filter because it has loss characteristics. There are
mainly two methods for obtaining a good approximate Hilbert transformer: frequency
domain and time domain. They both synthesize an imaginary component of a com-
plex analytic waveform from the real signal projection. The real component should
be unchanged. Any algorithm for the HT realization is only an approximation. It may
work well over a certain limited (mostly central) part of the frequency band, but it
will not work well near the band ends.

3.3.1 Frequency domain

The Hilbert transformer may be implemented efficiently using the fast Fourier trans-
form. Following Fourier transformation, the negative frequencies are zeroed. An
inverse Fourier transform will then yield a 90° phase-shifted version of the origi-
nal waveform. A frequency domain technique is based on computing the Fourier
transform of a signal and is an efficient structure for implementing the HT (Claer-
bout, 1976). If x(¢) is a real input data record of a length N, then the analytic sig-
nal X(¢) = x(¢) + iX(¢) can be obtained by: X(¢#) = IFFT {B(n)-FFT [x(¢)]} where:
B(n)=2forn ={0,N/2 — 1}; B(n) = 0forn = {N/2, N — 1}; FFT is the Fourier
transform; and IFFT is the inverse Fourier transform. The imaginary portion of X (¢)
contains the HT projection %(¢); the real portion contains the real input signal x(¢).
Windowing and/or zero padding may have to be used to avoid ringing. For example,
the MATLAB® procedure “hilbert.m” uses an FFT approach and the IFFT then pro-
duces a complex analytic waveform. The problems with this approach are the same
as with any FFT technique that operates in a given frequency band and can suffer the
effects of truncation.
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Figure 3.4 The digital Hilbert transformer as a filter: the impulse characteristics
(a); the magnitude (b) (Feldman, @201] by Elsevier)

3.3.2 Time domain

An alternative approach is to synthesize the imaginary component directly from
the real component using a time-domain filter (Lyons, 2000). A standard linear
estimation (or prediction) technique may be employed to obtain a Finite Impulse
Response (FIR) digital filter of a specified length that best approximates the Hilbert
(Figure 3.4a) (Mitra and Kaiser, 1993). FIR digital Hilbert transformers based on the
Remez exchange algorithm have an advantage of providing an exact linear phase.
However, to achieve a given negative frequency attenuation level, they also require a
higher filter order compared to the infinite impulse response (IIR) designs. A phase
shift can be implemented by a filter, obtainable by the convolution theorem relating
convolution to multiplication in the frequency domain. A limitation of the FIR digital
Hilbert transformers applies to the length of filters because the design algorithm
encounters numerical problems with large filter lengths (more than 200).

Recently C. Turner suggested a new Hilbert transformer by constructing a pair
of quasilinear phase bandpass filters that have identical magnitude responses, differ
in phase by 90°, and can be used for analytic signal generation (Turner, 2009). The
filter has useful symmetry properties that significantly reduce their computational
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complexity and coefficient storage requirements, and there is no inherent length
limitation to the size of the filter. Turner’s prescription for the shifter includes taking
an input signal and splitting it into two copies. Feeding one through the Hilbert
transformer and the other through a delay (the delay equals the average delay of the
HT) produces two components that now represent the analytic signal.

Any digital Hilbert transformer operates inside its frequency band limits (Figure
3.4b). It does not perform the HT at low frequencies (close to 0 Hz), nor at high
frequencies close to the Nyquist frequency (Fs/2). Inside its passbands the filter has a
rather flat magnitude response (Figure 3.4b). For example, the MATLAB procedure
“firpm ([], ‘Hilbert’)” uses the FIR filter approach with a quasilinear phase to produce
the HT. By choosing a large value of order (length) for the filter, we can minimize
the gain errors of the magnitude and phase responses.

The inherent limitations of the HT in the frequency domain determine the min-
imum and maximum number of samples during one period of signal oscillation.
A low cutoff frequency finin & 0.02F's indicates the lowest frequency suitable for
the HT. Thus, the corresponding largest number of samples per period will be
Nmax = % < 100. A high cutoff frequency fimax ~ 0.48F's indicates the maximum
frequency suitable for the HT. Thus, the corresponding minimum number of samples
per period will be np, = s > 4,

Different methods for améxomputation of the HT in the time domain are presented
and discussed in Veltcheva, Cavaco, and Soares (2003). These methods depend on a
concrete realization of the moving average procedure and show dissimilar precision
in the envelope calculation.

3.4 Instantaneous characteristics distortions

A gain error is not the main source of digital inaccuracy with the HT. A degree
of distortion injected by filtering within the frequency band limits may be quite
considerable (Caciotta et al., 2009). Distortions and errors of the Hilbert-transformed
waveform depend on the shape of the initial signal. The maximum output distortion
of the HT projection will be induced by step-and-impulse type variations in the initial
signal. An example of step change of the signal amplitude is shown in Figure 3.5a.

The HT filter is transforming the instant amplitude step for the envelope function
with some inertia. The resultant transient envelope has characteristics of the second-
order step response, like decaying oscillations (Figure 3.5a). It can be seen that the
estimated envelope returns to the steady condition only after several complete cycles
of vibration. The instant frequency step is converted in the IF, also with some inertia.
But due to the inherent differentiation procedure, the IF will have a more complicated
transient form (Figure 3.5b). The estimated envelope returns to the steady condition
after several complete cycles of vibration.

The HT filter is sensitive to short pulse errors. Even a single false spike propagates
through the calculation of the instantaneous parameters and performs a serious tran-
sient distortion in the envelope and the IF (Figure 3.5¢). It is clear that random noise,
as an addition to the pure signal, also produces a serious distortion in instantaneous
functions (Vakman, 2000) (Figure 3.5d).
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Figure 3.5 The distortion of the envelope and the IF: the amplitude step (a), the
frequency step (b), the single spike (c), the random noise (d); the signal (—), the
envelope (—=), the IF (—), and the noise (.. .) (Feldman, (C)2011 by Elsevier)

3.4.1 Total harmonic distortion and noise

A signal analysis often deals with many different types of distortion, but the most
common are harmonic distortions and random noise. A total harmonic distortion
(a coefficient of harmonics, a coefficient of nonlinear distortions, a distortion fac-
tor) is a ratio of the sum of the powers of all harmonic frequencies, different
from the fundamental frequency, plus a noise to the power of the fundamental
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linear harmonics or noise are present, then the total harmonic distortion (THD)
is zero. In the case of an additive noise, the THD is a ratio of an undesired
noise to a desired signal in the average power level and provides a noise to sig-
nal ratio. Of course, the THD also characterizes the nonlinearity of the systems —
such as a transient intermodulation distortion, an intermodulation distortion, and oth-
ers. The HT is very sensitive to additive noises in the signal. It operates well only for
small values of noise to signal ratio (Figure 3.5d)

frequency: TH

3.4.2 End effect of the Hilbert transform

The end effect, or the Gibbs phenomenon, appears in a digital filtering or discrete
Fourier transform due to an incomplete data periodicity, when the waveform has not
completed a full cycle within its period of the analysis. The end effect problem exists
for any digital analysis method. Traditionally, signal windows with tapered ends were
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used to alleviate these effects during the spectral analysis. In practice, however, the
end effect of the HT is relatively easy to fix (Wu and Huang, 2009). We can also pad
a signal using a segment of the signal itself in order to make the signal quasiperiodic
(Huang et al., 1998). After the construction of an artificial padded data, we will
compute the digital HT with a minimized end effect. We can use a data-flipping
(mirror) technique to furnish a complete periodic cycle of the waveform to suppress
the end effect (Huang, 2003). At least we can simply increase the initial data length
to make the end effect negligibly small.

3.5 Conclusions

This chapter describes some modern digital-processing procedures for estimating
the IF and instantaneous amplitude of real signals. There are two methods for ob-
taining the Hilbert transformer: the frequency domain and the time domain. In the
frequency domain the Fast Fourier transform is used, and in the time domain the
phase shift can be implemented by a convolution filter, obtainable by the convolution
theorem relating convolution to multiplication in the frequency domain. The per-
formance of the HT-based estimation method is illustrated for noise and harmonic
pollution sensitivity. The HT demodulation methods can also be employed to extract
simple components using the varying instantaneous frequency and amplitude from
multicomponent nonstationary signals.
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4

Typical examples and
description of vibration data

The central problem in vibration analysis is a time series analysis. Spectral methods
have been used as the standard tool for many years, but recently a serious interest
has been shown in extending the analysis for the examination of a nonstationary
time series. Both the spectral and the time domain methods have their strengths and
weaknesses. It seems, however, that there is a compromise between resolution in
time and frequency, and a corresponding magnitude of cross terms. For a general
nonstationary vibration signal, the time—frequency and the analytic signal method do
a better job of simultaneously localizing main signal components.

The search for methods to analyze signals, aimed at obtaining the attributes re-
lated to the physical properties that generate these signals, has always been a topic of
interest. The analytic signal method is equally applicable to deterministic and random
processes, although, generally speaking, it does not separate them at all, which is why
it enables us to investigate any oscillating time function from a general point of view.
The method is also good for solving problems concerning the analysis of stationary
and nonstationary vibrations, as well as narrowband and/or wideband signals. It also
allows a precise analysis of the transformation and dissipation of vibration energy
and vibration effects on machine durability. This chapter lists and demonstrates
some typical examples of mechanical vibration that can occur in practice, together
with their instantaneous characteristics obtained through the application of the HT.

4.1 Random signal

As mentioned, the behavior of random signals can be analyzed using probability and
statistical functions. For such signals both the envelope and the IF are also random
functions (Figure 4.1). The wideband random vibration has a broad “white noise”
type equal power spectrum (Figure 4.2a, dash line) whereas the narrowband random

Hilbert Transform Applications in Mechanical Vibration, First Edition. Michael Feldman.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd. ISBN: 978-0-470-97827-6
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Figure 4.1 The random signal and the envelope (a), the signal distribution (b, —),
the envelope distribution (b, ——), the IF (c), and its distribution (d) (Feldman, @20] 1
by Elsevier)
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Figure 4.2 The random signal spectrum (a): the wideband (-—) and narrowband
(—), the narrowband signal envelope vs. IF plot (b)
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Table 4.1 Typical examples of the central frequency and the spectral bandwidth of
random vibration (Feldman, 2009b)

Random vibration signal

System
Narrowband in the range  displacement
a)o—%Aa)<a)< i+ 2hx +
The IF spectral characteristics wo + %Aa) a)(z)x = F(1)
Central Mean value @ wo wy — 2h/m
frequency
Mean modulus || wo(1 + Aw?24w?) o
Spectral Energy equivalent Aw;  Aw wh
bandwidth
IF deviation Aw, Aw/3/6 2 (heoo /)"

(Feldman, (©)2009 by John Wiley & Sons, Ltd.)

vibration has a thin type power spectrum (Figure 4.2a, dotted line) concentrated
around the central frequency (2.14).

The central frequency (2.14) and the frequency bandwidth (2.15), based on the
IF distribution, are the fundamental characteristics of random vibration. Two typical
examples of the central frequency and the spectral bandwidth estimations are shown
in Table 4.1 for a narrowband random signal and for the random displacement
on the output of the single-degree-of-freedom (SDOF) system under white noise
force excitation (Bunimovich, 1951). The model of the vibration system has an
undamped angular frequency wy, and damping factor (coefficient) 7 = ¢{wy, where
¢ is a constant called the damping ratio (see Section 8.8). The damping ratio also
can be approximated from the loss factor n by the following formula (Inman, 1994),
which is more accurate at lower damping: n = 2¢.

The energy of a narrowband signal is concentrated around a central frequency
inside the signal’s bandwidth. It is notable that, in the case of random vibration of the
SDOF system, the central frequency @ is less than the undamped angular frequency

wp. It is even less than the damped free vibration natural frequency, which is equal to

Wdamped = (a)(z) — hz) V2 ~ wo — h? /2wy, where h is the damping factor. In particular,

the spectral bandwidth of random vibration of an SDOF system is proportional to the
system’s damping factor (see Table 4.1).

4.2 Decay vibration waveform

Such an exponentially damped sinusoid could be, for example, the impulse response
of a linear SDOF system. The envelope of the signal is determined by a monotonic
exponent decay rate. A free decay x(¢) is a well-known oscillation function with an
amplitude gradually decreasing to zero (Figure 4.3) x (1) = Aoe™" sin wyt, where Ay
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Figure 4.3 The damped oscillation (—) and the envelope (——). The envelope and
the extrema points (Feldman, (C)2011 by Elsevier)

is an initial amplitude, wy is a frequency of the sinusoid, and 4 is the damping coef-
ficient (a measure of the amount of energy damping). Its time-dependent amplitude
(the envelope) is the exponential function of time A(r) = Age . The decreasing
envelope touches the oscillation function at the points of contacts ty = (kw + h)/w.
It is significant that these envelope contact points A(7) do not correspond to the local
extrema (peak points) xpm,x of the free decay function positioned at fyeax = k7t /o
where x = 0 (Figure 4.3).

The ratio between two envelope values, taken at the initial and the ter-
minal time points, has the form A(ty)/A(ty + At) = e~ "0+AD_ Taking the nat-
ural logarithms of both sides of the equation above gives a simple formula:
In[A(ty)] — In[A(ty + At)] = —h (to + At). This means that the natural logarithm
of the amplitude ratio for any two envelope points separated in time is directly pro-
portional to the time interval. This permits an estimation of the damping coefficient
(the rate of decay) n = Aln(A)/At. The damping coefficient / is equal to the time
needed for the free oscillation to decay to 1/e of its initial energy.

The spectrum of the free decay waveform (Figure 4.4a) and the envelope vs. IF
frequency plot (Figure 4.4b) demonstrate a high concentration of vibrational energy
around the central frequency wy. The narrower the vibration signal spectrum, the
slower the decay of the oscillation signal and the smaller the damping coefficient.

4.3 Slow linear sweeping frequency signal

A quasi-monoharmonic signal (chirp) with a slow linear increasing or decreas-
ing sweeping frequency is a typical example of the slow frequency modulation
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Figure 4.4 The damped oscillation: the spectrum (a), the envelope vs. IF plot (b)

(Figure 4.5) that is widely used for testing dynamics systems. For the case of linear
frequency modulation, the IF of the carrier varies linearly with the modulating signal
w(t) = @min + kot, Where k,, is a constant. The signal function in view of the integral
instantaneous phase can be written as x(¢) = Ao cos [(wmin + 1/2k,t) t], where A is
a constant amplitude.
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Figure 4.5 The frequency sweeping oscillation (—) and the envelope (a,—-), the
IF (b)
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Figure 4.6 The frequency sweeping oscillation: the spectrum (a), the envelope vs.
IF plot (b)

The power of a signal with constant amplitude does not vary in time and lies
within a bandwidth of the carrier frequency Aw = ®Wmax — @min- During every short
time interval it looks and acts like a harmonic. However, the total bandwidth Aw of
the signal that is swept through a large frequency range could be much more than its
central frequency wy = (@min + @Wmax)/2, although the signal still behaves as a pure
harmonic every time. A linear frequency sweeping has a white excitation spectrum
(Figure 4.6a), while the exponential frequency sweeping has a pink excitation spec-
trum. The international organization for standardization published guidelines with
ISO 7626 Part 2, “Measurements using single-point translation excitation with an
attached vibration exciter,” for the application of slowly swept sinusoids related to
modal testing (Gloth and Sinapius, 2004).

4.4 Harmonic frequency modulation
When we modulate the frequency of a signal with a cosine wave modulating function

woy + Bwy, cos w,,t (Figure 4.7b), we will get a harmonic frequency modulated signal
that varies in accordance with the modulating function (Figure 4.7a):

x(t) = Agcos f (wo + Bwy, cos w,t)dt = Agcos (wot + B sinwp,t), “4.1)
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Figure 4.7 Harmonic frequency modulation: the signal (a), the signal IF (b)

where wq is the carrier frequency, w,, is the modulation frequency, and B is the
frequency modulation index. The value Sw,, is the peak frequency deviation, which
indicates the largest swing or deviation in the IF.

Rewriting Equation (4.1) by using Bessel series expansion (Cantrell, 2000) gives
x(t) = Ziooo Ji(B) cos [(wo + lw,,) t], where J;(B) is the Bessel function (first kind,
integer order /) for the B value. In essence, the last expansion is defined as a spectrum
of the fast frequency modulated signal. The spectrum consists of an infinite number of
sidebands about the carrier frequency wy. A signal whose frequency is fast modulated
with a harmonic has an infinitive set of sidebands at frequencies wy =% |/| w,, that
occur at multiples of the modulating frequency away from the carrier frequency
(Figure 4.8a). With a larger frequency modulation index 8 we get more sidebands
with larger amplitudes and a greater wideband spectrum.

The higher-order Bessel function values fall quickly with / when the modulation
index is small. In practice when |8| < 1, Jo(B) =~ 1, Ji(B) =~ 0.5, and J,>2(B) = 0
the narrowband frequency-modulated spectrum can be approximated by only three
members: x(¢) ~ Jo(B) cos wot + J1(B){cos[(wg — w,,)t] 4 cos[(wy + w,,)t]}. Thus
the time modulation parameter gives rise to additional spectral components.

It is interesting that the case of the fast-doubled modulation frequency w,, = 2wy

x(t) = Agcos (wot 4 B sin2wpt) ~ [Jo(B) + J1(B)] cos wot + J1(B) cos 3wot
4.2)
produces the carrier frequency and, at least, a sideband component as the tripled
carrier frequency value. Generally, the fast frequency modulated signal combines a
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Figure 4.8 Fast harmonic frequency modulation: the spectrum (a), the envelope vs.
IF plot (b)

number of harmonic components (Figure 4.8a). The IF of the related analytic signal
is not equal to the initial frequency modulating function. The envelope of the fast
frequency modulated signal does vary in time and the envelope vs. the IF has a form
of a nonlinear curve (Figure 4.8b).

4.5 Harmonic amplitude modulation

Let us consider a harmonic amplitude modulation (AM) signal performed by modu-
lating a cosine function on a carrier wave:

x(t) = (Ag + A, cOS wyt) cos wyt, 4.3)

where Ag and wo are the unmodulated carrier amplitude and the carrier fre-
quency of the carrier; A,, and w,, are, respectively, the modulation amplitude
and the modulation frequency. The same AM signal can be rewritten in the form
x(t) = Ao (1 + m cos w,,t) cos wypt, where the steady signal A cos(wpt) is called the
carrier, the slow-varying multiplier 1 + m cos w,,t is called the amplitude modu-
lation function (the waveform that should be transmitted), and m = A,,/A¢ is the
modulation index or modulation depth.

From the spectral structure the AM signal is composed of three mono-harmonics,
each with different frequency. To find the frequency spectrum, formula (4.3) can
be rewritten in the form of a sum of constant amplitude signals by using a simple
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trigonometry manipulation
An A
x(t) = Agcoswpt + > cos (w,, — wp)t + - cos (w,;, + wp)t. 4.4)

The sum indeed displays three separated spectral components (the carrier frequency
wp and two adjacent sidebands wy — w,,;, Wy + wy,). The power of an AM signal is
concentrated at the carrier frequency and in two adjacent sidebands. Each sideband
is equal in bandwidth and amplitude to that of the modulating signal. The AM that
results in two sidebands and a carrier is often called a double sideband amplitude
modulation. We always assume that the AM function multiplying a high-frequency
carrier is a low-frequency function: w,, < wy. Because of this, two adjacent sidebands
are always positioned on the spectrum very close to the carrier frequency at an equal
distance from the left and right sides. But despite the presence of a number of
frequency components in the signal, the IF does not vary in time (see (4.5)) because
both sidebands are equally spaced and each is a mirror image of the other. AM
signals can differ by the modulation function or the value of the modulation indexes;
however, as their IF does not depend on modulation, it will always be equal to the
carrier frequency wo.

4.5.1 Envelope and instantaneous frequency of AM signal

The envelope of the modulation signal can be simply derived from either the direct
form (4.3) or the composition form of three harmonic components (4.4) with the
same trivial result: A(r) = £/x2(¢) + ¥2(t) = +A,, coswy,t, where %(t) = (Ag +
A, cos wy,t) sinwpt is the HT projection according to the Bedrosian identity (2.2).
The obtained envelope thus repeats the initial slow-varying amplitude modulation
function of the signal.

The IF of the modulation signal also can be derived either from the direct form
(4.3) or from the composition form of three harmonic components (4.4):

w(t) = d {arctan [X(t)/x(1)]} dt = wy. 4.5)

The obtained IF thus repeats the initial unmodulated carrier frequency, which is to
say that AM has no influence on the IF of the signal. The carrier frequency is always
positioned between the equally distanced sidebands, therefore the IF equal to the
carrier frequency will be always located in the middle of the sidebands of the AM
signal.

The initial vibration signal X(¢) = x(t) + i%(t) = A(t)e'#OFT! can also be
represented in another form of the analytic signal X(¢) = [A(t)eiW(’)e’i“’o’ ] elot =
Acompl(1)€'", where A ompi(1)=A(t)e'¥De =1 is the signal’s complex envelope (see
Section 4.5.3). The complex envelope is not unique because it is determined by an
arbitrary w( assignment. The spectrum of the complex envelope can be obtained by
shifting an initial signal spectrum to the left toward the origin of axes. For narrowband
signals the complex envelope varies slowly in time, and the complex envelope spec-
trum is centered around zero, and not the carrier frequency. The complex envelope
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has meaning mostly for overmodulated signals with a high modulation index when
the oscillating envelope becomes negative.

4.5.2 Low modulation index

It is often assumed that the modulation index is less than 1 (m = A,,/Ag < 1),
resulting in a pure harmonic variation of the upper positive envelope -+ A(#). For such
a small depth of modulation, both the upper positive and the lower negative envelopes
—A(r) are anti-phased functions of time (Figure 4.9).

As we already know, the spectrum of the AM signal has three spectral peaks — the
carrier frequency wy and two adjacent sidebands w,, — wg, ®,;, + wo. The amplitude
(power) of the central carrier frequency peak is higher than the equal amplitude of
small sideband peaks. In the case of the constant carrier frequency, the IF takes the
form of a vertical straight line (Figure 4.10).

4.5.3 High modulation index

Let us again take the AM signal modulated by a cosine wave, but with a modulation
index greater than unity m = A,, /Ao > 1. The carrier wave becomes overmodulated
and the AM function 1 + m cos w,t will have negative values. As a result, some
amplitude distortions will occur and the envelope itself will be changing much faster
(Figure 4.11). This will result in the appearance of complicated riding cycles with
local negative maxima or local positive minima in the signal waveform.
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Figure 4.9 An AM with low modulation index: the signal (a), the upper positive
envelope (b), the lower negative envelope (c)
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Figure 4.10 An AM with low modulation index: the spectrum (a), the envelope vs.
IF plot (b)
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Figure 4.11 An AM with high modulation index: the signal (a), the upper positive
envelope (b), the alternate envelope (c)
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Figure 4.12  An AM with high modulation index: the spectrum (a), the envelope vs.
IF plot (b)

The case of over-modulation generates duality relations for the envelope. Actually,
on the one hand, the AM function 1 + m cos w,,t, having both positive and negative
values (Figure 4.11(c)), can be described as the complex or alternate envelope AL (t)
with positive and negative square root values (2.6). On the other hand, the envelope
can be taken only with the positive sign (Figure 4.11b). If there are only non-negative
values of the envelope in an overmodulated signal, significant phase discontinuities
will be introduced. The choice of envelope representation between two possible
forms depends on the operability and simplicity of further operations with the signal
(Cohen, Loughlin, and Vakman, 1999; Cohen and Loughlin, 2003).

Figure 4.12a shows the spectrum in which we can see at once that the over-
modulated signal has the same three components — a carrier wave and two sinusoidal
sidebands — whose frequencies are slightly above and below. But the amplitude of the
central peak of the carrier wave can be even less than the amplitude of the sideband
waves. Over-modulation has no influence on the IF of the signal (Figure 4.12b).

4.6 Product of two harmonics

The product of two harmonics is a particular case of an overmodulated signal
when the carrier amplitude is Ag = 0: x(¢) = A,, cos w,,t coswot (Figure 4.13a).
The alternate envelope will be a pure harmonic function A(z) = A,, cosw,,t and
the spectrum will have only two sideband components without a central peak:
x(t) = 0.5[cos (wyg — wy,) t + cos (wy + wy,) t] (Figure 4.14a). This figure shows the
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Figure 4.13 The product of two harmonics: the signal (a), the upper positive enve-
lope (b), the alternate envelope (c)

waveform variation of two pure tones with slightly different frequencies but the same
amplitudes.

It is interesting to note that, despite the absence of the carrier frequency in the
spectrum, the IF still is equal to the central frequency of the carrier, as the mean
value of the sideband frequencies (Figure 4.14b). Also, it is interesting that the case
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Figure 4.14 The product of two harmonics: the spectrum (a), the envelope vs. IF
plot (b)
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of a sum of two harmonics with different arbitrary frequencies, but equal amplitudes,
can be considered as the product of two harmonics. In other words, a composition of
two harmonics with the same amplitude can always be expressed as a multiplication
of the slow alternate envelope, with the frequency as half of the difference, and
the carrier as half of the sum, of the frequencies of harmonics cos wt 4+ cos wyt =
2 cos [(wr — wy)t/2] cos [(wr + wy) t/2]. The IF of a composition of two harmonics
with the same amplitude is equal to the mean value of their frequencies (Loughlin
and Tacer, 1997; Suzuki et al., 2006).

4.7 Single harmonic with DC offset

Let us consider the composition of a harmonic and a constant or slow-varying ape-
riodic trend: x(t) = Ao cos wot + a, where Ay is the amplitude, wy is the frequency
of the harmonic, and a is a constant or the slow-varying trend (Figure 4.15). The DC
offset (distortion) a is the time average value of the signal a = (, — ! ft? x(t)dt.
The HT projection of the signal looks even simpler than the initial signal because
the HT of the constant is equal to zero: X¥(#) = Ag sin wyt. These two functions will
produce an analytic signal with the oscillating envelope,

1
A(t) = [A% + a® + 2aAg cos(wot)] * | (4.6)

and with the IF varying in time

Apwo (Ag + a cos wyt)
w(t) =

= . 4.7
A%+ 2Apa cos wot + a> @7

x(1)

A(t)

‘ r

Figure 4.15 A harmonic with DC offset: the signal (a) with the envelopes, the
constant DC; the upper positive envelope (b)
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Figure 4.16 A harmonic with DC offset: the spectrum (a), the envelope vs. IF plot
(b)

At first glance the obtained IF significantly complicates the HT representation of
the harmonic signal with the DC distortion (Figure 4.15). Really, a form of the IF
now depends on the value of constant a. Note that in spectral analysis the same DC
distortion will also initiate a large power spectrum peak on zero frequency, dependent
on the constant a (Figure 4.16a).

Quite recently this example of the IF was used to illustrate an ostensibly serious
problem of the HT to compute a physically valid value (Huang et al., 2009). But in
reality there are no problems with such a dependency, or with such possible negative
values of the IF.

Signal phasor can be considered as a planar vector rotating around its center.
Making a constant addition to the phasor projection means shifting (translating) the
center of the vector rotation (the beginning of the rotated vector) from the origin to
a new constant position along the horizontal axis. Relative to the new position, the
vector describes the same circular orbit with the same angular velocity. But relative
to the origin the vector will demonstrate a completely different and more complicated
motion whose velocity depends on the constant of translation.

The same is true for the case of the sum of two rotating vectors. Two vectors
added together produce a third resultant vector by placing the beginning of vector x,
at the end of vector x;. The vector sum x; + x, can be drawn as the vector from the
origin to the end point (Figure 4.17). The angle of the resultant vector x; + x, can
be found using the known trigonometric relations, while again the phase and the IF
will depend not only on the phases, but also on the amplitudes of the components.
Relative to the new point, the vector x; describes the same circular orbit and angular



50 HILBERT TRANSFORM APPLICATIONS IN MECHANICAL VIBRATION

Figure 4.17 The relative and absolute motion of the sum of two vectors

velocity w, will stay invariant with respect to the new choice of reference point. But
relative to the origin, we can have a completely different motion where the IF will
depend also on the vector amplitudes.

In kinematics, as a part of mechanics, it is a trivial situation of the planar motion.
An object may appear to have one motion to one observer and a different motion to
a second observer. There are no difficulties encountered here. To know the partial
pure rotation we must subtract the new origin from the motion, and then perform an
estimation of the angular frequency. Removal of the DC offset from the composition
can easily be provided by different techniques, including the HT decomposition
methods (Huang et al., 1998; Feldman, 2006). Commonly in HT analysis, as well as
in spectral analysis, we will consider the signal in which the aperiodic distortion has
already been removed. This will return the envelope and the IF of a pure harmonic to
the initial simplest constant values.

4.8 Composition of two harmonics

The superposition of two pure tones of different frequencies (w; # w;) and am-
plitudes (A # A,) is shown in Figure 4.18, where two waves during some time
interval are “in phase” and during some other interval are “out of phase”. During
the first time interval there is a constructive interference, in which the amplitudes
of the two waves add to make a wave with twice the amplitude of the individ-
ual pure tones. During the other time interval two waves produce a destructive
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Figure 4.18 Two tones: the signal (a) with the envelopes, the IF (b)

interference, which gives a very small amplitude for the resulting wave formed by
the superposition. For the signal composition as a sum of two harmonics: x(¢) =
Ajcoswit + Ay coswpt, A| # Ay, the envelope A(t) of the double-component sig-
nal composition, according to Equation (2.6), could be written as:

1
A(t) = [AT + A + 24, Ay cos (@ — o) 1] (4.8)

The signal envelope A(#) consists of two different parts —a slow-varying part including
the sum of the component amplitudes squared, and a rapidly varying part, oscillating
with a new frequency equal to the difference between the component frequencies.

The IF w(¢) of the double-component composition according to (2.9) (A # A»)
is:

(0 — 1) [A3 + A1 A; cos (wr — )]
A%(1)

w(t) = o + (4.9)

The IF of the two tones considered in Equation (4.9) is generally time-varying and
exhibits asymmetrical deviations about the frequency w; of the largest harmonic. The
IF for two tones does not only have time-varying deviations, but these deviations
always force the IF beyond the frequency range of the signal components. For large
amplitude values of the second harmonic when

Ay o
> J—

22 , 4.10
Yo (4.10)

the IF of the composition becomes negative. The appearance of the negative IF
corresponds to the arrival of the local negative maximum or local positive minimum
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of the signal. The upper tangent to the negative maximum touches the signal negative
envelope and, vice versa, the lower tangent to the positive minimum touches the
signal positive envelope.The IF consists of two different parts: the frequency of
the first largest component w; and a rapidly varying asymmetrical oscillating part.
By eliminating the oscillating part A; A, cos (wy — w;)t from Equations (4.8) and
(4.9), we will receive an expression between the signal instantaneous characteristics
(envelope vs. IF) as a function of the initial four parameters of the signal components:

(A? — A (wr — )

200\ —
AT = w1 + wy — 2w(t)

, Al # Ay, o) # o). (4.11)

Equation (4.11) determines the signal envelope as a function of the IF in the form
of a hyperbola (see Figure 4.19b), whose length, direction, and curvature depend on
four initial parameters of the initial bi-harmonic signal.

In the particular case of equality of the harmonic amplitudes (A; = A;), when
the IF of the signal is equal to the half of sum of component frequencies (w(t) =
(w1 + @7)/2) (Suzuki et al., 2006; Loughlin and Tacer, 1997), this plot takes the form
of a straight vertical line. The superposition of two pure tones of equal amplitudes
and slightly different frequencies can be presented as a product of two harmonics
(see an example above) with a fast carrier and modulated amplitude. If the frequency
difference between the two pure tones is small enough, we can hear the loudness of
the superposed wave varying with time. This loudness variation is known as beats. We
hear a pure tone with a pitch given by half of the sum of the component frequencies.
The amplitude variation occurs at the beat frequency, given by the difference between
the two pure tone frequencies: Wpeas = Wr — W1.
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Figure 4.19 Two tones: the spectrum (a), the envelope vs. IF plot (b)
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4.9 Derivative and integral of the analytic signal

In physics, the first derivative of the displacement is equal to the velocity, and the
second derivative, with respect to time, is the acceleration. It is also well known that
the first derivative (differentiating the function once with respect to time) yields the
slope of the tangent to that function. Differentiating the analytic signal in the form
X(1) = A@t)e'"® results in a relationship between an initial complex signal and its
first-order derivative as

o A A
X = A)e"? +io®A@)V = X [Z + ia):| ; 4.12)

where the IF w = v is the first derivative of the instantaneous phase. The analytic
signal notion expresses the first derivative in terms of the envelope, its derivative,
and the IF (4.12). The obtained expression for the first derivative is carried by two
components — the IF function as the angular velocity and the variation of the envelope
as the radial velocity of the phasor (see Section 2.7).

The second derivative of the signal can be also expressed in analytic signal form:

X=X A 2+2'A + i (4.13)
= ——w i—w+io), .
A A

where the first derivative of the IF @ = 1/ is the second derivative of the instanta-
neous phase. In the simplest case of a pure harmonic with a constant amplitude and
frequency when A = A = @ = 0, we will have X = i Xw and X = —Xw?.

Integration of vibration signals —as the opposite to differentiation — may also be of
importance for signal processing. A complex function of a real variable 7 is an integral
of the analytic signal if the real and the imaginary parts of the function are correspond-
ing integrals forming a pairin the HT : X(¢) = fl? X(dt = flllz x(@dt +i ftflz x(1)dt.
The integrated analytic signal as a definite integral includes the integration constant.
This means, for example, that the displacement resulting from the integration of
the velocity will have an arbitrary DC offset. Theoretically, if the initial and final
conditions are known, it can minimize the overall integration error by increasing the
accuracy at the boundaries, but in practice we mostly operate with an alternating
current (AC) vibration signal without the offset. So the result of integration always
will be the AC vibration without an offset value. To achieve a zero offset, it is a
common practice to use highpass filtering after digital integration.

4.10 Signal level

The vibration level characterizes an intensity of alternating fluctuations of the oscillat-
ing parameters — displacement, velocity, or acceleration. Vibration is often described
as a random variable requiring an integral estimation approach. Thus the overall
vibration level shows the spread (variability) of the signal around its average value
which, for the most part, is zero.
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4.10.1 Amplitude overall level

By using the envelope demodulation technique for a vibration signal in the time
domain, we can find the overall vibration level through the extracted envelope func-
tion. After the envelope of the signal is known, we can then make the classic direct
estimations of the signal level by the envelope mean value A = T~ fOT A(t)dt and

the envelope variation [ADP =T fOT A%(t)dt (see also Section 2.3).

Although the envelope is not always known, we can nevertheless — even with-
out the envelope demodulation — still approximately estimate the amplitude average
value purely on the basis of the signal’s energy. The analytic signal representation
enables us to consider a vibration signal at any moment of time as a quasiharmonic
wave, amplitude and phase modulated by time-varying functions A(¢) and (¢):
x(t) = A(t) cos Y (). For random signals, the envelope and the phase are statisti-
cally independent random functions. Thus, the signal is described as the product
of two statistically independent functions: the envelope and the fast-oscillating co-
sine function. The variance of the product of these two functions can be written as:

RMS? = [(A)z + RMSi] /2, where A is the envelope mean value , RMS is the en-

velope standard deviation , and RMS; is the signal standard deviation. From the last
expression we can rewrite the mean value of the envelope in the form of a function of
the signal and envelope standard deviations: A = (2 X RMS)ZC — RMS%) : . In practice
the signal standard deviation RMS%, as the signal energy can be easily estimated. That
cannot be said about the envelope standard deviations RMSE,, which are equal to zero
for a pure harmonic or to half of the signal energy for a random signal. Considering
these two opposite extreme cases of the harmonic and random signals, we will get a
rather close values for an average envelope: Aandom = RMS,/7/2 ~ RMS, x 1.25;
Aharmonic = RMSX\/E ~ RMS, x 1.41;where the difference is only 10%. This means
that the average envelope value in an arbitrary case between a pure harmonic and
a random signal lies between these two close estimations of the signal standard
deviation A &~ (1.25 +~ 1.41) RMS,.

The initial signal and its envelope have common tangents at points of contact,
but the signal never crosses the envelope. The common points of contact between
the signal and its envelope do not always correspond to the local extrema of a
multicomponent signal (see the example in Figure 4.3). The local extrema al-
ways have a zero tangent slope, but the common points of the contact can have
a nonzero value of the tangent slope. Every maximum (top extremum) and mini-
mum (bottom extremum) point of a function, known collectively as the set of local
extrema points X, is uniquely defined by the first derivative when the slope of
the tangent is equal to zero. The distance between the common envelope points
and the signal extrema points plays a dominant role in the theoretical explanation
of the Empirical Mode Decomposition (EMD ) mechanism (Huang et al., 1998).
In effect, without such a difference between the envelope and the local extrema,
the sum of maxima and minima curves required by the EMD would always be
equal to zero, just like the zero sum of the upper and the lower envelopes (see
Section 6.2).
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4.10.2 Amplitude local level

Traditionally, the analysis of deterministic vibrations uses the concept of the peak
value as the absolute value of the maximum or minimum of the oscillating parameter
during the time segment. For arandom vibration, the peak value characterizes only the
quasimaximum level, above which the signal is possible within a certain probability.
For a random normal vibration, the most common maximum amplitude holds the
value between plus and minus three times the RMS value of the signal Xmax /min =
£3RMS, known by its statistical name of three sigma peaks. Thus, 99.73% of values
of the vibration signal fall within these defined limits, and only 0.27% fall out of them.
A very large data sample size can yield signal random peaks outside the £3RMS
limits.

For deterministic vibration and, in particular, for a mono-harmonic signal, the
peak value is equal to its amplitude, and the peak to peak magnitude is a double
amplitude. Note that the peak amplitude found for digital data is approximate, since
the true peak of the output sinusoid generally occurs between samples. We will find
the local level estimation more accurately in the next sections.

4.10.3 Points of contact between envelope and signal

Both the envelope A(z) and the initial function x(¢) can be functions that vary over
time. Their relation has a known and simple form: x(¢) = A(#) cos [¢(?)]. Varying,
the initial function and its envelope will have common contact points where these
functions touch each other. The function and the envelope have common tangents at
these points of contact. The condition of their contact takes the form:

x(t) = £A(@), coslp()] = £1, @) = {:i:on , (4.14)

indicating that the common contact points are always located on the envelope. In
other words, the envelope of nonstationary signal does not always pass through its
peak values.

4.10.4 Local extrema points

Unlike the common contact points, the local extrema depend on the zero slope of the
first derivative. The signal derivative can be expressed as

X(t) = \/Az(t) + A2(t)w(1)? exp {i [(p(t) + arctan %] } (4.15)

It introduces a new varying velocity envelope and a new varying velocity phase
function. Let us find points at which the slope of the tangent is zero and at which the
function reaches its extrema. These points correspond to the zero value of the cosine
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function of the new varying velocity phase angle (4.15):

ADo(t) T
@(t) + arctan W =+,

A(t)ow(t)

A0 (4.16)

b4
o) = :I:E — arctan

Notice that in the case of a mono-harmonic signal, the envelope is constant (A(r) =0)
and the conditions in (4.14) and (4.16) become identical: ¢(t) = 0, or ¢(t) = +m.
For a mono-harmonic, the local extrema always lie on the envelope.

4.10.5 Deviation of local extrema from envelope

In a general case, the vertical position of the local extrema x,,.(#) = A(t) cos [¢(?)]
is determined by the cosine projection of the new velocity phase (4.15):

A%(Dw(t)
A1+ 20

The obtained continuous vertical position of the local extrema differs from the en-
velope function. The distance between the envelope and the extrema depends on the
cosine projection from (4.17). Generally, the cosine projection assumes values from
1 through O up to —1. Therefore the corresponding local maxima can be equal to
the envelope value, be as small as zero, or even take negative values. The cosine
projection is controlled by the variable 28020 whose shape, level, and rate depend

A1)
on the initial signal x(¢). In turn, the variable Ae®)

between the nominator and the denominator.

For small envelope variations, when A, < (A®),,x, the value of the cosine
projection cos [¢(#)] does not differ from unity. This condition always forces the
local maxima to be on the envelope. So, connected local maxima and connected local
minima curves just repeat the corresponding — with opposite signs — upper and lower
envelopes. For larger envelope variations, the cosine projection during oscillation can
decrease to zero, or even to negative values. It will produce zero and negative local
maxima below zero up to the opposite signed lower envelope. An example of the
distance between the envelope and the extrema for two harmonics is given in Section
6.2.3.

xexrr(t) = A(t) Ccos [(p(l‘)] =4

(4.17)

is determined by the relation

4.10.6 Local extrema sampling

Connected together, the local maxima give shape to the maxima curve and, corre-
spondingly, connected local minima give shape to the minima curve. As shown in
(4.17), the vertical values of both the top and bottom extrema curves are generated
by the continuous function of multiplying the envelope by the cosine projection.
However, the actual discrete extrema points themselves are formed by digitizing the
continuous cosine projection at distinct moments of time. These sampling moments
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completely depend on the IF w(#) of the initial signal. Thus, from the continuous
function of the cosine projection x,,(t) (4.17) we have a set of extrema sampled
with the IF w(z). The series of sampled extrema interpolated by the spline generate
the two continuous profiles (extrema curves) required by the EMD method (Huang
etal., 1998).

The discrete set of samples obtained does not repeat the original continuous func-
tion X, (¢). If the frequency of the continuous function (4.17) exceeds (overlaps) the
Nyquist frequency 0.5»(t), the sampled extrema line undergoes aliasing with a new
folding frequency of half of the sampling frequency: woq(1) = |w(t) — @y, (1)].
But if the frequency of the continuous function lies below the Nyquist frequency
0.5w(t), no aliasing occurs, and the sampled extrema curves will follow the sig-
nal envelope. A case of the frequency limit distinguishing the closest harmonics is
presented in Section 6.2.7.

4.11 Frequency contents

The traditional way to find out the frequency composition of signals is to examine
them in the frequency domain. This is how the Fourier spectrum shows the spread
of signal energy over spectrum frequencies. The IF, taken as the derivative of the
instantaneous phase (2.9), is something different because it describes the angular
velocity rate of the analytic signal at every particular time. It allows us to know the
frequency that exists at any moment and how it changes with time. The IF by itself is
a useful analytic signal feature; in combination with the envelope it forms a valuable
2D envelope vs. IF plot (see Section 2.1) which reveals the relations between these
instantaneous characteristics. Some simple examples of a typical envelope—frequency
plot were discussed in Sections 4.1-4.8.

As we can see, the IF presents a clear frequency contents in simple cases of
a narrow range of frequencies that slowly vary in time. These cases are restricted
to the mono-component and narrow-band signal when the IF can be interpreted
as the mean, or the median, frequency existing during a short time interval at the
center of the narrow-band frequency distribution. In a more general case, when
the IF becomes negative or exceeds the limits of the spectral frequencies, we need
to find a way to interpret the IF of such a multicomponent signal. The IF for a
multicomponent signal is defined as a global characteristic collectively described by
the instantaneous frequencies associated with all the individual components in the
signal. For the multicomponent signal it could be solved by considering a proper
method of decomposition a complicated vibration into simpler components first
(Braun and Feldman, 2011).

4.12 Narrowband and wideband signals

Classically, the relations between the spectral bandwidth Aw and the central fre-
quency wg allow vibration signals to be divided into two groups: narrow band
(Aw/wy < 1) and wide band (Aw/wy > 1). This distinction of the signals is rather
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conventional, but it does not completely or correctly describe the real nature and the
frequency band type of the signal. The relations between the spectral bandwidth Aw
and the central frequency wy can be expressed in an analytic signal form. To realize
it, the mean value of the IF & is considered as the central frequency of the signal
@ = wy (2.14), and the instantaneous bandwidth of the signal Aw as the sum of

the IF and the envelope variations (2.15): Aw? = ? + A2 — @* = o2 + A2, where
aj = w? — @ is the IF variance. The conventional condition Aw/® of breaking
vibration down to narrow band or wide band is here rearranged to the following
form: Aw?/@* = 02 /@* + A%/@*. The condition obtained is expressed by the sum
of two variance-to-mean ratios: the IF and the envelope relative variation ratios. It
is assumed that the variance-to-mean ratio, like the coefficient of variation, is a nor-
malized measure of the dispersion of a probability distribution. Smaller values of
variance-to-mean ratios (< 1.0) correspond to a more concentrated distribution in the
narrow frequency band. Larger values of variance-to-mean ratios (>1.0) correspond
to the existence of a wideband frequency vibration.

Summarizing, we can determine a signal frequency band as the sum of its IF and
the relative envelope variations. A detrended (centered) vibration data taken during
several cycles is considered to be a narrowband signal if its IF and/or the envelope
variance-to-mean ratios are less than 1. A vibration signal with a larger IF and/or
tenvelope variance-to-mean ratio is considered to be a wideband signal. Therefore
a slow frequency modulated signal is a typical example of a narrowband signal.
With this definition in mind, the narrowband signal in each cycle, defined by the
central frequency, involves only one mode of oscillation; no complex riding waves
are allowed (Huang, Shen, and Long, 1999). In effect, in this case the IF will not
have the fast fluctuations that other waveforms induce. The explicit expression for the
spread of the IF and the envelope derivative at a particular time clarifies the meaning
of the narrow- and wideband signals.

4.13 Conclusions

Several typical waveforms are considered in this chapter. They are common in me-
chanical vibration measurements and excitation of the required structural motion.
The most common types are harmonic modulated signals, including the swept sine,
decay vibration waveform, and random signal. They all differ in their amplitude and
the IF contents. For the monoharmonic signal, the peak value is equal to its amplitude,
and the peak to peak magnitude is a double amplitude. However, in a general case
the envelope of a nonstationary signal does not pass through its peak values.

The signal frequency band is determined as the sum of the signal IF and the
relative envelope variations. Vibration taken during several cycles is considered to
be a narrowband signal if its IF and/or the envelope variance-to-mean ratios are less
than 1. A vibration signal with a larger IF and/or envelope variance-to-mean ratios is
considered to be a wideband signal.



5

Actual signal contents

In addition to the signal bandwidth parameter, there is another very significant cat-
egory of vibration. It characterizes a complexity of the signal — the existence of a
number of simpler parts (components) of the signal that form a multipart signal con-
tent. Such a multipart signal composition has been called a multicomponent signal.
The multicomponent signal, similar to any other arbitrary signal, has its envelope and
the IF at any moment of time, but now these instantaneous functions become rather
complicated functions of time. A simplest example of the multicomponent signal is a
mixture of two or several harmonics (Section 4.8). Even this simplest example shows
that the IF is widely spread without a local concentration and could not be associated
with any of the signal parts (Loughlin and Tacer, 1997). So neither signal part is
compact about its IF.

According to Putland and Boashash (2000), a monocomponent signal is one
whose time—frequency distributions is a single “ridge” — that is, a single delineated
region of energy concentration. It is also required that the ridge does not “fold
back” in time; that is, interpreting the crest of the “ridge” as a graph of frequency
vs. time, we require the frequency of a monocomponent signal to be single-valued.
A multicomponent signal is one whose time—frequency distribution comprises two
or more ridges, representing the sum of two or more monocomponent signals; a
stationary signal is one whose time—frequency distribution is independent of time.

5.1 Monocomponent signal

A nonstationary signal can have a slow-varying amplitude and a slow-varying always
positive IF. This kind of signal is often referred to as a single- (mono-) compo-
nent, or monochromatic signal x(¢) = A(t) cos fw(t)dt, A(t) > 0, w(t) > 0. Here
a “monocomponent function” is used as a technical term and indicates an oscillating
function close to the most common and basic elementary harmonic function. The
term “‘monocomponent signal” is almost the same as the “intrinsic mode function”
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term suggested in (Huang et al., 1998). While the IF is always positive, the signal
itself has the same numbers of zero crossings and extrema. When the IF takes a
negative value, the signal has multiple extrema between successive zero crossings. It
corresponds to the appearance of a complex riding wave (a complicated cycle of an
alternating signal). A vibration signal with a positive IF and envelope is considered to
be a monocomponent signal: in each cycle, defined by the zero crossing, it involves
only one mode of oscillation, and no complex riding waves are allowed (Huang et al.,
1998). A deterministic slow frequency modulated quasiharmonic, and a narrowband
random vibration signal, are two typical examples of monocomponent signal. In this
case the IF will not have the fast fluctuations induced by asymmetric waveforms.

Monocomponent signals belong to the group of narrowband signals with an
IF always greater than zero. However, not every narrowband signal is a simple
monocomponent signal. For example, a slow AM signal is a narrowband signal,
but is not a monocomponent, because it can be decomposed into three simpler
components (Section 4.5). All the examples of signals considered in Sections 4.5—4.8
can be decomposed into simpler components, each of which has no envelope or IF
deviation, and a zero spectrum bandwidth.

5.2 Multicomponent signal

For more complicated vibration signals, the envelope and the IF vary rapidly in
time and are not always positive. Often, these signals can be represented by the
composition (sum, mixture, combination) of a small number of monocomponent
signals (Boashash, 1992). Let us now consider the original signal x (), expressed as a
sum of different monocomponents, each of which has a slow-varying instantaneous
amplitude and frequency, so that

x(t) = ZT A1) cos (f a),(t)dt), (5.1)

where A;(t) is the envelope (instantaneous amplitude) and w;(?) is the angular IF of
the / component. In other words, the signal consists of kK monocomponents, where
each one has a constant or slowly varying amplitude A;(¢) and an IF wy(¢); and [
indicates the number of components that have a different oscillatory frequency.

By construction, each monocomponent A;(f) cos ( f a),(t)dt) is an intrinsic mode
of x(t) with a simple oscillatory waveform described by the envelope A;(f) and
the IF wy(¢). If [ = 1, the vibration is said to be a monocomponent signal; if, how-
ever, [ > 2, then the vibration with a wideband spectrum has been referred to as a
multicomponent signal.

For a multicomponent signal we propose the following definition: an asymptotic
signal is referred to as a multicomponent composition if there exists even a single
narrowband component such that its extraction from the composition decreases the
average spectrum bandwidth of the remainder of the signal. This definition means that,
after breaking a signal into its simplest components and taking out any component,
the envelope and the IF of the residue part will have smaller deviations in time.
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Having an initial multicomponent signal as a mesh of separate parts, the aim is to
find a way to break it into the same parts with their individual envelopes and an IF.
Obviously, any signal can be broken into an infinite number of constituents; however,
it is desirable to express such a decomposition as the sum of proper simpler mono-
components. Much time and effort was spent to design algorithms that decomposed
the signal into elementary components (Hogan and Lakey, 2005). However, even
obedience to almost all of the global conditions discussed earlier did not provide a
scheme that showed how to obtain the decomposition given in (5.1). In the late 1990s,
Huang (Huang et al., 1998; Huang, Shen, and Long, 1999) introduced the Empirical
Mode Decomposition (EMD) method for generating intrinsic modes that are almost
monocomponents. The core of the EMD method is to identify the innate undulations
belonging to different time scales and sift them out to obtain one intrinsic mode at a
time. This can be achieved by using artificial extrema functions defined by a spline
fitting of the local maxima and minima to discern waves that are riding on top of
others (Huang, Shen and Long, 1999; Lai and Ye, 2003).

The problem of decomposing a nonstationary wideband vibration can be achieved
by another technique, called the Hilbert Vibration Decomposition (HVD) method
(Feldman, 2006). It is significant that the HVD method is based on a Hilbert transfor-
mation and does not involve any additional complicated signal-processing procedure.
One of the most important results of the decomposition is an ability to preserve the
signal phase content by constructing every initial component in the time domain and
preserving all of its actual phase relations. The obtained combination of the simplest
components with time and phase relations can provide us with some insight into a
nonstationary vibration signal. Moreover, the method achieves an improvement in
the analysis of a nonlinear dynamic system that cannot be accomplished by other
methods. The individuality of the simplest components inside the vibration mixture
helps us to choose the most effective decomposition method.

5.3 Types of multicomponent signal

The class of so-called almost periodic motions is a particular subclass of recurrent
trajectories, and is of interest in nonlinear dynamics. A remarkable feature — which
reveals the origin of these trajectories — is that each component of an almost peri-
odic motion is an almost periodic function with well-studied analytical properties.
An almost periodic function is uniquely defined “on average” by a trigonometric
Fourier series f(t) ~ Y - a,e'', where 1, are real numbers. If all A, are linear
combinations (with integer coefficients) of a finite number of rationally indepen-
dent elements from a basis of frequencies, then we have a particular case of almost
periodic functions, namely quasiperiodic functions. A quasiperiodic signal, in this
context, is a signal that consists of the sum of a given number of sinusoidal signals
with known frequencies and unknown, time-varying, amplitudes and phases. This
kind of quasiperiodicity emerges in vibration signals. In many practical situations,
it is desirable that parameters of a quasiperiodic signal be estimated in real time. A
continuous estimation of these parameters can be used, for example, for measuring,
monitoring, or diagnostics purposes.
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An arbitrary multicomponent signal as the sum of monocomponent signals can
be conventionally divided into several types, depending on the behavior of the com-
ponent’s instantaneous characteristics:

Type I. Well-separated (non-crossing) and smoothed envelopes and IF trajectories.
In this case the energy and frequency of every component are well concentrated
(localized), and the components are not overlapping. These simple components
resemble Fourier modes in the Fourier series, where every component can have
a varying but non-crossing envelope and IF.

Type II. Well-separated, but rapidly changing envelopes and IF trajectories. In this
case the instantaneous characteristics of components can jump in time or can
be fast-varying functions. This type corresponds to a multicomponent signal
composed of sequential segments with a step-varying envelope and IF.

Type III. Crossing envelopes and IF trajectories. In this case the envelope and/or
the IF trajectories have single or multiple crossings between each other. From
the standpoint of decomposition, this is the most complicated type of multi-
component signal. The decomposition result is not unique and is application
dependent (Boashash, 1992).

5.4 Averaging envelope and instantaneous frequency

Along with the instantaneous characteristics, it is desirable to know the average value
of the envelope and the IF over the analysis time. The most common average is an
arithmetic mean value as a central tendency (middle, expected) measure of the data
change over some interval f = (b — a)”! fa b f(t)dt. Let us consider a mean value
of the instantaneous characteristics of a multicomponent signal in the form of two
harmonic compositions. In this case, the signal can be modeled as a weighted sum
of the monocomponent signals, each with its own frequency and amplitude: that is,
X(t) = A1/ + Aye'®?! with Ay, A, @; and s being constant values. The enve-
lope A(¢) and the IF w(¢) of the double-component vibration signal are (4.8), (4.9):

1
A(t) = [A? + A2 + 24, A cos(r — wp)t] "
(w2 — 1) [A3 + A1 A; cos(wr — o)t ]

o) = w; + 20

, (A > Aysp > o)
5.2)

As mentioned, the composition envelope consists of two different parts — a constant
part including the sum of the component amplitudes squared, and a fast-varying
(oscillating) part. Integration of the envelope function (5.2) removes the fast-varying

part and keeps the constant amplitudes A(f) = (A% + A%) ’ ?. So the average envelope
is the square root of the arithmetic mean (average) of the component amplitudes
squared of the signal components A(r) = () A7) ”,

The IF of the two tones also consists of two different parts: that is, the first
component constant frequency w; and a fast-varying asymmetrical oscillating part.
However, the fast-varying asymmetrical oscillating part of the IF has an important
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feature. If we integrate the oscillating part with the integration limits corresponding
to the full period of the cycle frequency [0 T=_2 ], assuming that A; > Aj,

wr—w]

we will obtain a definite integral equal to zero (Feldman, 2006)

T 2
/ (wr — wy) [A2 + AjA;cos (wy — a)l)t]

A(1)

dt = 0. (5.3)
0

The integral zero value means that the second rapid part disappears after averaging
and has no influence on the average IF value (5.2). Because of this the remaining
average value of the IF is only equal to the frequency of the first part, namely,
the frequency of the largest harmonic w;: w(f) = fOT w(t)dt = w; + 0. Only in the
particular hypothetical case of two identical components amplitudes will the average
composition IF be equal to the average value of both component frequencies w(f) =
0.5 [w1 () + w1 (¢)] (Loughlin and Tacer, 1997). Wei and Bovik (1998) proposed an
interesting study and interpretation of the average IF of a signal having no more than
three dominant components well separated in the time domain. It was shown that the
way the components are related and interact is crucial for the interpretation of the IF
of a multicomponent signal.

In the case of the time-varying parameters of two quasiharmonics, the signal again
can be modeled as the weighted sum of two monocomponent signals, each with its
own slow-varying amplitude and frequency: Al(t)e"for @0dr 4 Ag(t)e"for @0dl - Bor
averaging the fast-varying asymmetrical oscillating part of the IF (5.3) we replace
the integration over the full cycle period by a convolution with a lowpass filter. The
lowpass filtering — instead of the integration — will cut down the fast asymmetrical
oscillations and leave only a slow-varying frequency of the main signal component
i (t). Small fast output oscillations after the filter can always be neglected in compar-
ison with the main slow member of the IF. Thus, the averaging of the IF by a lowpass
filtering makes it possible to detect the frequency of the largest energy component.
The same is also true for three and more components in a composition. In the general
case, the IF will have a more complicated form (Nho and Loughlin, 1999; Suzuki
et al., 2006), but, again, the averaging or the lowpass filtering will extract only the IF
of the single largest energy component.

This interesting property of the IF offers the simplest way to estimate the fre-
quency of the largest vibration component. An averaging, or smoothing, or lowpass
filtering of the IF of the vibration composition will cut down asymmetrical oscilla-
tions and leave only the slow-varying frequency of the main vibration component.
This result is a central condition allowing the development of a new effective Hilbert
Vibration Decomposition method (Feldman, 2006).

5.5 Smoothing and approximation of the
instantaneous frequency

The IF of the multicomponent signal is a complicated function of time; many attempts
were made to smooth the IF by creating approximations that would capture important
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patterns in the data, while leaving out incidental peaks and noise. The simplest of the
different algorithms for the IF smoothing and approximation is the Teager—Kaiser
energy operator W(x) = x> — x¥ (Teager, 1980). The energy operator W(x) de-
rives the signal temporary frequency according to a simple three-point algorithm

w=[¥)/ V)] 2 The Teager—Kaiser energy operator was developed by Teager
during his work on speech AM—FM modeling and was first introduced systematically
by Kaiser (1990). The three-point algorithm is able to recover the energy of a sampled
signal and — in certain conditions — the IF. Girolami and Vakman (2002) proposed
another three-point method, which gives excellent results for the estimation of both
the IF and the envelope of a signal that can be considered as semi-local, because
filtering defines its integrality. However, filtering affects only short intervals around a
given instant, giving the method its local character. In theory, the method is equivalent
to the analytic signal and, in practice, gives a very good approximation of the results
one can obtain with the analytic signal. Being quasilocal, the method eliminates the
doubts associated with the global nature of the analytic signal.

When the energy operator is applied to signals produced by a simple harmonic
mass-spring oscillator, it can track the oscillator’s energy (per half unit mass), which
is equal to the squared product of the oscillation amplitude and frequency. At each
instant the energy operator estimates the central frequency and amplitude of the signal
by using the output values of the energy operator applied to the signal x(¢) and the
signal derivative x(¢). The energy operator was compared to the HT tracking modula-
tions in speech signals as an alternate approach to the demodulation signal amplitude
and frequency (Potamianos and Maragos, 1994). The AM-FM modulation model,
and the energy separation algorithm, have been used successfully to determine the
center values of the formant frequencies in a speech segment. It was shown that it
had many attractive features such as simplicity, efficiency, and adaptability to instan-
taneous signal variations; the energy operator approach has a smaller computational
complexity and a faster adaptation due to its instantaneous nature.

The energy operator can approximately estimate the squared product of the am-
plitude and frequency signals, but only if the signal’s instantaneous parameters do
not vary too fast or too greatly with time compared to the carrier frequency. This
means that the energy operator is not suitable for the case of a multicomponent vi-
bration signal with a high rate of IF variation when all existed components will affect
the central frequency. Before applying the energy operator to the demodulation of
the multicomponent resonance signal, one needs first to isolate the signal through a
narrow bandpass filter (Potamianos and Maragos, 1994). For a single harmonic, or
narrowband signal, while the IF is a positive function and the signal has the same
numbers of zero crossings and extrema, the energy operator works well and its esti-
mations coincide with the IF. But it has some drawbacks; it cannot work correctly on
a multicomponent signal (Vakman, 1996).

Another modern algorithm is the Normalized HT developed recently by Huang
et al.(2009). The algorithm incorporates the EMD decomposition and normalization
method to reduce the signal to the Intrinsic Mode Functions. Each decomposed In-
trinsic Mode Function x; () has its own envelope ¢; (t). The normalization procedure
includes receiving normalized fast-oscillating quasiharmonic data cos v, (¢) through
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the following repeated steps:

x(1) Ccosyn(t) x|
o = T aven
x(1)

er(t)ex(t). .. e,(t)

cos Y1 (1) =

cos Y (1) =

The last step results in a normalized instantaneous phase cos v,(t) = cos(¢) as
the empirical frequency modulated part of the initial signal x(¢) = A(¢) cos ¥ (¢) =
A(t) ei(t)ex(t) . .. e,(t). The normalized IF v/ (¢) computed from the normalized data
will be the empirical frequency of the modulated signal. The empirical IF is smoother
and does not include fast fluctuations and other overshoots. Similar smoothing effect
can be achieved with signal filtering procedures such as the Savitzky—Golay algorithm
(Savitzky and Golay, 1964).

In many engineering cases the experimentally obtained vibration data inevitably
contains random noise and other instrumental errors. Owing to the signal derivative,
even a minor noise can easily amplify the inaccuracy of the envelope — especially the
IF estimation — and deteriorate the quality of data. To extract smooth and meaningful
information, a curve-fitting technique can be used in such engineering applications.
An example of the envelope curve-fitting and de-noising technique, based on local-
maxima interpolation, is given in Luo, Fang, and Ertas (2009). The instantaneous
characteristics curve fitting, after the direct HT calculation, can greatly improve the
envelope estimation by removing severe distortions and errors.

Signal smoothing and filtering techniques are especially attractive in a vibration
analysis. In addition to the empiric, or artificial, algorithms we can suggest
another simple and natural way to estimate smooth bounds of the instantaneous
characteristics.

5.6 Congruent envelope

The aim of this section is to provide a new approach to the estimation of the act-
ing smooth upper and lower bounds of a vibration composition. A vibrating signal
regularly changes its direction, and the specific is not only the signal parameter al-
ternation, but also the incessant alternation of each instantaneous function. In reality,
both the envelope and the IF of the composed signal also oscillate and periodi-
cally touch their extremum value — even more frequently than the signal. The idea
is to consider each instantaneous function as a new oscillation variable having its
own new envelope of the envelope (EOE) and a new envelope of the IF (Feldman,
2007a). These new smooth congruent envelope functions are of interest for multi-
component vibration-compounding ultraharmonics (superharmonics) — that is, the
high-frequency components of frequencies that are integer multiples of the largest
energy frequency component.

To explain the meaning of the EOE we will use the concept of the phase con-
gruency (Kovesi, 1999). The concept is similar to coherence, except that it applies
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to functions of different frequencies. The phase congruency describes points of local
symmetry and asymmetry in the multicomponent signal — according to the special
arrangements of the phase that manifest at these points. Multiple frequencies included
in a signal composition can be uncovered by a direct spectral analysis, for instance.
It was noted that waveform features had many of their frequency components in or
out of the same phase. For example, all high-frequency superharmonics decomposed
from the square wave are phase congruent and have the same 0° or 180° phase shift.
Shifting any of the cosine components of the waveform by an angle that is neither
zero nor a multiple of 360° will result in a severe waveform distortion. It is clear that
the EOE requires an estimation of the phase relations between different frequencies,
but in the same local points. These local points are extrema points of the largest
energy component. Different frequencies can be compared by determining each of
the integer multiple superharmonics of the largest energy component. Therefore, ge-
ometrically, the EOF means the tangent or the upper bound of the composition at the
local points where the largest energy component has an extrema. Therefore, the EOE
function can also be called a congruent envelope (Feldman, 2011).

For an estimation of the EOE level of a multicomponent signal we will also use the
triangle inequality theorem (Dragomir, 2005). Let us consider the sum of two arbitrary
phasors. The triangle inequality determines the best upper estimation of the sum of
two functions in terms of individual functions: | X () + X»(¢)| < | X1(t)| + | X2(2)].
The right-hand part of the triangle inequality states that the sum of the moduli (the
envelopes) of any two phasors is greater than the modulus (the envelope) of their
sum. This means that the upper amplitude bound of the composition is equal to the
sum of the amplitude components. There is also a lower envelope estimation that
can be determined using the inverse triangle inequality, which states that for any two
functions |X(#) — Xo2(t)| = |X1(#)] — | X2(¢)|. Consequently, the lower amplitude
bound of the composition is equal to the difference of the amplitude components.
The new EOE function as a tangent to the envelope forms the upper bound of the
largest energy component.

For two pure harmonics the envelope of the composition is a slowly time-varying
periodic function (5.2) A(t) = [A + A3 + 24, A; cos (w; — wy) t]1/2. The envelope
maxima values are equal to the algebraic sum of amplitudes, so the EOE will be the
horizontal straight line that touches the points of a maximum. For two quasiharmonics,
the EOE of the composition will vary slowly in time according to the slow variations
of the amplitudes of two components Agog(t) = A(t) £ Ax(1).

As an example, we will estimate the EOE in the case of a composition of two
rotating phasors with different frequencies and phase shifts. Let a vibration signal
be composed of two harmonics, each with a slow variable amplitude and a constant
frequency (Figure 5.1a): x(r) = A(¢) sinwit — A»(¢) sin3w;t. According to (5.2)
the acting extrema points of the envelope corresponding to w t = / 2 produce
a straight line, and the resultant EOE also will take the form of a straight line,
Apog(t) = A (t) + Ax(t). The results were achieved by a signal decomposition and
an estimation of the EOE through the direct summation of all the envelopes. If a
vibration signal is composed of two other harmonics: A;(¢) sinw;t + A, (¢) sin 3w, ¢,
the resultant EOE will also take the form of a straight line (Figure 5.1b). But now
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Figure 5.1 The sum of two in-phase (a) and out-of-phase (b) harmonics: the enve-
lope (- -), the congruent envelope (—), the largest (. . .), the secondary (---) harmonic
(Feldman, (©)2011 by Elsevier)

the acting extrema points of the envelope produce a lower straight line Agog(f) =
Aj(t) — Ay(t) corresponding to w t = 71/2.

Let x(¢) be a general I-component real signal with real amplitudes and instan-
taneous frequencies (5.1). Naturally, this multicomponent phasor as a composition
X(1) = YN, Al(r)el?®el [ will have a more complicated and faster varying
envelope function. Here we have a signal in analytic form and a complex ampli-
tude (envelope) for every component A;(t)e/?®. For a signal formed from the
summation of many components, we can invoke the generalized triangle inequal-
ity property for complex functions. The triangle inequality states that the sum of
the moduli of complex numbers is greater than the modulus of the sum of these

complex numbers: ‘ZIN: I Cl) < Zfi . |C1l. In our case, the modulus on the left-hand

side is the signal envelope A(t) of the composition X (#); the sum of the moduli on
the right-hand side is the algebraic sum of the component envelopes, thus yielding:
Alt) < Z,N:I A;(t) cos ¢;(t). The EOE aggregates two or more component envelopes
taken with regard to their phase functions cos ¢;(#):

N
Aor(t) =Y Ai(t) cos ¢ (1), (5.4)

=1

where A;(¢) and ¢,(¢) are the envelope and the phase of the / component, respectively.
The envelope of the sum of signals is equal to the sum of the envelopes if all the
components are congruently in phase with the largest component.

The new EOE defined as a tangent curve to the local extrema touches only the
maximum points of the largest component during every period. Such a double enve-
lope represents the acting maximum height (intensity) of the largest signal component
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and forms a shape of the time variation of the acting extreme points. In other words,
the EOE curve indicates the extrema (maximum) points of the /-factor composi-
tion, obtained by the algebraic summation of all the intrinsic components. The EOE
varies with time much more slowly than the signal envelope itself. To estimate the
EOE, we need first to produce a decomposition of the signal and then to construct
an algebraic summation of the envelopes of all the decomposed components. Such
a successive signal decomposition (disassembling), and the subsequent summation
(re-assembling) of the component envelopes, generates the desirable EOE as a slow
function of time. Some examples of the congruent approach are given in Section 6.8.5
and Chapter 11.

5.7 Congruent instantaneous frequency

The IF of the multicomponent signal is a fast-varying and complicated function of
time. For simplicity let us consider the IF of the composition of two pure harmonics as
(02 —w1)[ A3+A Ay cos(wr—w)t |

0 . The
corresponding IF extrema values are equal to w; + (w2 — 1) (A3 £ A1 A2) /Al =
w1 Ay / AgoE £ wr Ay / Agog. It is clear that the IF extrema values are a combination
of all existing frequency components. The IF of the composition basically depends
on the largest energy component, and therefore the extrema of the IF coincide with
the extrema points of the largest energy component. Let us build a new function in
the form of an envelope as a tangent to the varying IF in the local extrema points
of the largest energy component. We will call this new function the envelope of
the IF, or congruent IF, because it shapes the upper or lower bounds of the IF in
the local extrema points of the largest energy component (Figure 5.2). Thus, this
new congruent IF can be expressed as a mixture of signal components of different

a time-varying periodic function (5.2): w(t) = w; +

i
i
!
\,
!
!
|

Figure 5.2 The sum of two in-phase (a) and out-of-phase (b) harmonics: the IF
(--), the congruent frequency (—), the largest (...), the secondary (---) harmonic
(Feldman, (C)2011 by Elsevier)
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frequency. For only two components the congruent IF is the algebraic sum of two
weighted component frequencies wgorr = w1 A1/ Agoe £ w2 A2/ Agog, Where wgorr
is the envelope of the IF , Agog is the EOE , A}, A| are the harmonic amplitudes, and
w1, w; are the harmonic frequencies.

A relative weight of each frequency component to the concluding congruent IF
depends on its amplitude ratio, frequency, and phase relation. Thus, in a general case
of many vibration components, the congruent IF aggregates them all with regard to
their phase functions cos ¢;():

N

wporr(t) = Y _ [wi(t)Ai(t) cos (1) / Apoe(t)], (5.5)

1

where wgopr is the congruent IF, A;(¢) and wy(¢) are the / component envelope and
frequency, respectively. The phase angle ¢;(7) is the angle between the first largest
and the / component. Again, to consider the cosine components at multiply-spaced
frequencies and their phase shifts in relation to each other, we will use the concept of
phase congruency (Kovesi, 1999). In the previous example of two components, the
congruent IF was the horizontal straight line that touched the extrema points of the
IF (Figure 5.2). For a nonstationary composition of quasiharmonics the congruent
IF will vary slowly in time according to the slow variations of the amplitudes and
frequencies of the components.

The proposed congruent functions can be simply straight or slow-varying bound
lines even for very rich vibration contents. In the cases of a triangle (Figure 5.3) or
square (Figure 5.4), the waves show a series of harmonics (depicted with filled tints)
which, when summed together, form a triangle or square wave. For the triangle and
square waveforms, we noted a dissimilar relationship between the phase congruency

Figure 5.3 The triangle signal and its high harmonics: the envelope (a, —) and the
congruent envelope (a, --); the IF (b, —) and the congruent IF (b, --) (Feldman,
(©2011 by Elsevier)
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Figure 5.4 The square signal and its high harmonics: the envelope (a, —); the
congruent envelope (a, --); the IF (b, —) and the congruent IF (b, --) (Feldman,
(©)2011 by Elsevier)

of the localized frequencies. Thus, the entire integer multiple ultraharmonics are
in-phase congruent for a triangle wave (Figure 5.3); whereas the square wave ultra-
harmonics phase values alternate from in phase to out of phase (Figure 5.4). The
phase congruent frequency components — when aggregated — give a smooth EOE
function. It is interesting that the EOF curve of the square wave is mapped only by a
single point bounding at the bottom on the envelope vs. IF plot (Figure 6.3).

In this section we described the geometrical meaning of both smooth functions
of the vibration signal: the congruent envelope and the congruent IF. This result
represents the congruent envelope and the IF functions of the multicomponent signal
in terms of its components. The next section is devoted to a vibration system analysis
and will show the physical meaning of these congruent envelopes; it is significant
for nonlinear vibration systems. The congruent functions play an important role in
the asymmetric signal analysis (Section 11.7) and in the identification of nonlinear
vibrations when considering their high-frequency nonlinear components (Chapter
11). The HT decomposition procedures splits the signal into a number of components
with multiple signatures. Development of the congruent characteristics, as the op-
posite tendency, aggregates these multiple signatures and expresses them as smooth
combined EOE functions having a clear geometrical and physical meaning. It seems
that with these results some of the problems related to the presentation of the instan-
taneous characteristics are resolved, and a simple and natural congruent notation is
thus taking another step toward its maturity.

5.8 Conclusions

Often, vibration signals can be represented by a composition (sum) of a small num-
ber of its monocomponent signals. Therefore, in engineering and research work
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it is necessary to analyze multipart vibration concurrently composed from large
pieces of elementary vibration signals. These elementary components — as a num-
ber of varying harmonics — might appear, for example, as modulated sidebands
around individual carrying frequencies in the frequency domain. The more har-
monics, the more intensive is the modulating effect and distortion of the observed
compound signal.

For a multicomponent signal we propose the following definition: an asymptotic
signal is referred to as a multicomponent composition if there exists even a single
narrowband component, such that its extraction from the composition decreases the
average spectrum bandwidth of the remainder of the signal.

When an initial multicomponent signal is a mesh of separate parts, the aim is to
find a way to break it into the same parts with their individual envelopes and IF. It
is desirable to know the average value of the envelope and the IF over the analysis
time, as well as the instantaneous characteristics. A HT method for simultaneously
examining the signal components of vibration is described in the following chapter.






6

Local and global vibration
decompositions

6.1 Empirical mode decomposition

Before analyzing a multicomponent vibration, the first common step is to decompose,
or separate, the original signal into its elementary and fundamental constituents
for performing further signal-processing operations separately on each component.
Classic examples of a decomposition are a signal filtering with a high/lowpass or a
narrowband filter, a spectral analysis that breaks signals into harmonic components,
and a wavelet (time-scale) decomposition that projects the signal on the set of wavelet
basis vectors. Many real-world oscillating signals are nonstationary, which makes
common basic decomposition techniques, such as the Fourier decomposition or the
wavelet decomposition, unsatisfactory since the basic functions of the decompositions
are fixed and do not necessarily match the varying nature of the signals. In the case of
a complicated time-varying waveform, the main purpose of a signal decomposition
is not to represent a true frequency distribution, but rather to represent complicated
waveform contents in the time domain.

Recently, Huang et al. (1998) proposed the EMD method to extract monocompo-
nents and symmetric components, known as IMF (Intrinsic Mode Functions), from
nonlinear and nonstationary signals. The term “empirical,” chosen by the authors,
emphasizes the empirical essence of the proposed identification of the IMF by their
characteristic time scales in the complicated data. Application of the EMD method
is now referred to as a Huang—Hilbert Transform (HHT) in the technical literature
(Daetig and Schlurmann, 2004; Attoh-Okine et al., 2008).

The EMD is a new adaptive technique representing nonlinear and nonstationary
signals as sums of simpler components with amplitude and frequency modulated
parameters. This technique is also capable of displaying the overlap in both time and
frequency components that cannot be separated by other standard filtering techniques

Hilbert Transform Applications in Mechanical Vibration, First Edition. Michael Feldman.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd. ISBN: 978-0-470-97827-6
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Figure 6.1 Block diagram of the EMD method

or traditional Fourier methods. The method is able to visualize a signal energy spread
between available frequencies locally in time, thus resembling the wavelet transform.
Hence, it was immediately applied in diverse areas of signal processing. In the field of
sound and vibration of mechanical systems, the EMD method has been also applied
widely for diagnostics and structural health monitoring, as well as in analysis and
identification of nonlinear vibration, mainly for rotating systems with typical elements
such as bearings and gears.

The EMD method (Huang et al., 1998) automatically generates a collection of
intrinsic mode functions that satisfy two conditions: (a) in a complete data set, the
number of extrema and the number of zero crossings must be equal or not differ by
more than one; and (b) at any point, the mean value of the envelope defined by the local
maxima, and the envelope defined by the local minima, is zero. The EMD algorithm
requires the following procedures at every iteration step (Figure 6.1): (1) estimation
of all local extrema; (2) spline fitting of all local minima and maxima, ending up with
two (top and bottom) extrema functions; (3) computation of the average function be-
tween maxima and minima; (4) extraction of the average from the initial signal; and
(5) iteration on the residual (the sifting procedure). When applied to a nonstationary
signal mixture, the EMD algorithm yields efficient estimates for individual compo-
nents with slow varying instantaneous amplitude and frequency of each component.

For illustration purposes, let the signal be a composition of two harmonics, each
one with its own amplitude and frequency (Figure 6.2a). The first subplot shows the
signal composition, both the upper and the lower envelopes which are out of phase,
and local top and bottom extrema points. It is easy to see that the local top and
bottom extrema points specified by the triangle up and down signs, respectively, are
not located on the envelope functions.

The spline-fitted local minima and maxima, connecting the top and bottom ex-
trema functions, are shown in Figure 6.2b. Their averaging extracts the low-frequency
component; the residual part of the composition will be the second fast-frequency
harmonic (Figure 6.2c). The EMD method successfully decomposes the ampli-
tude and frequency of each intrinsic function from the initial composition of far
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Figure 6.2 The sum of two harmonics: the initial signal (a, —), the upper (---) and
lower (---) envelope, the top (A) and bottom extrema points (V) the top (b, —) and
bottom (b, ---) extrema, the mean value between the top and bottom extrema (- -); the
EMD decomposed first harmonic (c, - -), the second harmonic (—) (Feldman, (©)2011
by Elsevier)

frequency components, but it cannot decompose close frequency components (Rilling
and Flandrin, 2008).

Each envelope and IF of every decomposed IMF can be considered as a pair
of time functions. The obtained envelopes and IF of all decomposed components
joined together form the frequency—time distribution of the amplitude known as the
Hilbert spectrum H(w, t) (Huang et al., 1998). The Hilbert spectrum can be plotted
as two separated graphs of amplitude and frequency ensembles varying in time. This
way we achieve the best possible time and frequency resolution of analysis. Both
time-varying amplitudes and frequencies can be plotted in combination as a single
3D plot presenting the contribution of each component to the signal composition.

We can also exclude the time, and present the Hilbert spectrum as a continuous
amplitude—frequency plot. Sometimes it is suggested that each decomposed IF should
be divided into discrete bins and then plot the bins all together versus their envelope
values. Such a frequency—amplitude distribution will look very similar to the classic
Fourier spectrum. However, such a spectrum-like presentation will lose the frequency
resolution, not to mention the time dependency of every component. The amplitude-
integrated distribution of all pairs | H(w, 1)dt is known as the Hilbert marginal spec-
trum (Huang et al., 1998). The Hilbert spectrum offers a measure of amplitude contri-
bution from each frequency and time, while the marginal spectrum offers a measure
of the total amplitude contribution from each frequency (Yu, Cheng, and Yang, 2005).

In many cases of vibration analysis, the Hilbert spectra is much simpler and
clearer than the Envelope vs. IF plot. For example, consider the square wave signal in
Figure 5.4. Its Envelope vs. IF graph (shown in Figure 6.3) has a rather complicated
and indistinct shape. The Hilbert spectrum of the same square wave (Figure 6.4)
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Figure 6.3 The square wave envelope vs. the IF (—); the congruent envelope vs. the
congruent IF (o) (Feldman, (C)2011 by Elsevier)
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Figure 6.4 The square wave Hilbert spectrum (Feldman, (C)2011 by Elsevier)
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enables us to represent the amplitudes and instantaneous frequencies as functions of
time in a three-dimensional plot, where every envelope and the IF are simply straight
lines. The time—frequency distribution of instantaneous amplitudes and frequencies,
designated as the Hilbert spectrum, requires a preliminary decomposition of the initial
signal.

In addition to successful applications of the EMD methods, a lot of attempts have
been made to improve, or at least to modify, the original method. Some of these
attempts suggested replacing the original cubic spline fitting by other kinds of inter-
polation or by a parabolic partial differential equation. Other researchers proposed
applying correlation functions, FFT spectrum, Teager’s energy operators, or other
regularizations for detecting amplitude and frequency peaks. Still others suggested
using the iterated Hilbert transform method that deals only with AM—FM modulated
multicomponent signals, or the Local Mean Decomposition iterative approach that
uses a standard moving averaging to successively extract smoothed components. All
these efforts to modify the EMD were made, and the results were published even
before the method was explained theoretically or substantiated analytically.

In parallel, sophisticated studies devoted to analyzing the essential shortcomings
of the EMD and its restrictions — in comparison with other decomposition methods —
began to appear. One of the first limitations of the method was a rather low-frequency
resolution (Wu and Huang, 2004) — the EMD can resolve only distant spectral com-
ponents differing by more than an octave. Another weak point of the method was
that its application produced false artificial components not presented in the initial
composition. However, the newest Ensemble Empirical Mode Decomposition
(EEMD) method (Wu and Huang, 2009) largely overcomes the false mode mixing
problem of the original EMD and provides physically unique decompositions.Recent
progress in the development of EMD may make it an important tool in the decomposi-
tion of nonstationary vibration — to be considered before applying the HT or any other
signal-processing technique.! In the last few years, there are several major achieve-
ments in the EMD method development summarized in (Huang and Wu, 2008), the
most important ones among them being the characteristics of EMD and the statisti-
cal significance test of IMFs (Wu and Huang, 2004), the ensemble EMD (EEMD)
(Wu and Huang, 2009), and the EMD-based normalized instantaneous frequency
calculation (Huang et al., 2009).

6.2 Analytical basics of the EMD

All earlier publications agree that the EMD is defined empirically only — by its
algorithm. At present, it does not propose an analytical formulation that would
allow theoretical analysis and analytical performance evaluation. A typical case of a
composition of a harmonic and a slow-varying aperiodic trend (like DC) — which does
allow a simple analytical foundation — is an exception. The HT projection of such a
composition looks even simpler than the initial signal because the HT of the constant
is equal to zero. Therefore, it is easy to show analytically how the EMD removed the

! The EMD/EEMD programs are published on the Internet as the MATLAB® code files (Wu, 2010)
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slow trend from the composition. A recent study by Kizhner et al. (2006) offers a
theoretical explanation of the EMDs behavior. The authors attempt to build the basic
theory of decomposition of artificially created fast and slow-varying components.
Despite its considerable number of hypotheses and proofs, this work does not quite
convincingly explain why the fastest component is sifted out first in the EMD. During
the last decade, serious mathematic works, (Wu and Huang, 2004, 2009; Sharpley
and Vatchev, 2006; Kizhner et al., 2006; Flandrin, Rilling, and Goncalves, 2004;
Rilling and Flandrin, 2008), have been dedicated to detailed analysis of the local
EMD method. However, a simple but important theoretical question remains: why is
spline fitting of local extrema able to generate the simplest components?

6.2.1 Decomposition of a harmonic plus DC offset

To understand why the spline fitting of local extrema is able to extract the simplest
components, we will consider two main cases of the signal composition: a harmonic
plus the DC offset and the sum of two different harmonics. In the case of the DC offset
x(t) = a(t) + Ai(t) cos wt, the spline fitting of maxima wt = 0 £ 27 n produces a
straight line Apax = A1(¢) + a(t) and interpolation between minima wt = w £ 27n
produces another straight line Ay, = —A;(f) 4+ a(t). The mean value of these two
lines will generate the initial offset function 0.5 (Apax + Amin) = a(t). Extracting the
obtained offset from the initial composition yields the initial harmonic x(¢) — a(t) =
Aj(t)cos wt. In a similar way, the EMD method used on each iteration successfully
separates the harmonic and the slow aperiodic component.

6.2.2 Decomposition of two harmonics

The next example will explain theoretically and in a simple way why the EMD oper-
ates for harmonic functions and why it selects out the highest frequency oscillation,
leaving the lower frequency oscillation in the signal. It is already known that the
EMD has a poor frequency resolution and does not allow separation of the closest
harmonics due to the existence of a critical frequency limit. These questions are
considered in depth in the work of Rilling and Flandrin (2008); they examine the
case of decomposing two harmonics. The work provides theoretical and experimental
proof that there exist three domains of amplitude—frequency harmonics relations: (1)
the components are well separated and correctly identified; (2) the harmonics are
considered as a single waveform; and (3) the EMD does something else. However,
this work is theoretically based on rather complicated Fourier transform models.

The notion of two fast and slow harmonics appears to be rather fruitful. A most
realistic vibration or sound signal can be seen as consisting of a linear combination
of two or more sinusoids. In the present study we will approach the theoretical
foundation of the EMD decomposition in the simplest way — through direct analysis
of the harmonics separation. For the sum of two harmonics, we will show why the
low-frequency harmonic remains while the high-frequency harmonic is sifted out first
in the EMD procedure. We will also find a theoretical limiting frequency resolution
using the method.
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Every maximum (top extremum) and minimum (bottom extremum) point of the
function, known collectively as the set of local extrema points x,,, is uniquely defined
by the first derivative when the slope of the tangent is equal to zero. The initial signal
and its envelope have common tangents at points of contact, but the signal never
crosses the envelope. The common points of the contact between the signal and its
envelope do not always correspond to the local extrema of a multicomponent signal.
The local extrema always have a zero tangent slope, but the common points of the
contact can have a nonzero value for the tangent slope. The distance between the
common points of contact and the extrema points of the signal plays a dominant
role in explaining the EMD mechanism. In effect, without such a difference between
the envelope and the local extrema, the sum of maxima and minima curves required
by the EMD would be equal to zero, just like the zero sum of the upper and the lower
envelopes. A combination of two harmonics is a rather representative case of a signal
composition. This case provides us with means to discover and prove some important
features of the EMD.

6.2.3 Distance between envelope and extrema

Let consider the case of a signal composition as a sum of two harmonics: x(¢) =
Ajcoswit + Ay coswyt, where A, A, are amplitudes and w;, w, are frequencies
of the harmonics. The vertical position of the local extrema according to (4.17)
depends on the variable M, which in the case of two harmonics has the same

A(r)
: : ot _ CADot) . o1A /At Ay /Ay
period as in a variation of the envelope 27 /(w, — w1): = O = o) (et

wrtw
— s cot(wyt — wyt). Multiplying the envelope and the cosine projection generates

the position as a periodic function with the same period 27 /(wy — )):

A1)
A1+ 2o

This vertical position of the local maxima varies from its highest to its lowest position
during a single period, thus specifying a band with all possible local extrema.
When the instantaneous frequency of the composition becomes negative ﬁ—f > 2
the continuous vertical position is a monotonic function with a top maximum always
equal to the sum of amplitudes of both harmonics: Xmax(op)(0) = A; + A2 and with
a bottom maximum position that is equal to the difference of amplitudes but has a

Xextr(t) = A(t) (61)

E}

negative value (Figure 6.5a): Xmax(bottom) = —A1 + Az.
For an IF that is always positive when ﬁ—: < %‘, the top vertical position of

maxima is again equal to the sum of the amplitudes: Xmaxop) = A1 + Az. But now
the vertical position decreases monotonically only until the intermediate bottom po-
SItion Xmax(bottom)i = (A% + A% — A%w%/a)g 2wz/cul) (Figure 6.5b). During the
remainder of the period, the resultant vertical position jumps down to a negative
symmetric value —Xmaxotomyi> Specifying a second isolated band with a negative
local maxima. A vertical position for the second band at the end of the period mono-
tonically continues to the negative extreme bottom position Xmax(botom) = —A1 + A2
(Figure 6.5b). Theoretically, the values of the extrema deviation from the envelope
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Figure 6.5 The vertical position of the local maxima (—), the initial signal (—-),
the upper envelope (---) and the top maxima (A): the negative IF (a) (A1 = 1, w; =
1, Ay = 0.6, wy = 1.8), the positive I[F (b) (A; = 1, w1 =1, Ay =0.25, w, =3.9)

depend on two ratios: the envelope, and the frequency of the harmonics. For a very
small amplitude of the second harmonic A, < 0.3Aw,/w,, this intermediate bottom
position does not differ much from the smallest envelope value A; — A,. This means
that the positive maxima points of the first band will always lie on the envelope.
For other ratio range of the harmonics parameters 0.3A 0w /@, < Ay < Ajw;/w; the
local maxima will wander vertically more and more from the envelope.

6.2.4 Mean value between the local maxima and
minima curves

In general, the initial signal composition, as the sum of two harmonics, can be
written as

x(t) = Ajcoswit + Ay cos (wat + @) (6.2)
where ¢ is the initial phase shift angle. The first derivative of the signal is

X(t) = —Ajw; sinwit — Arw; sin (wat + @) (6.3)

Every zero-crossing of the first derivative corresponds to the existence of a local
extremum of the initial function. At a certain moment ¢;, when the first derivative is
equal to zero, a single local extremum maximum X« (#;) occurs. The closest single
local minimum x,;y(#;) occurs at another certain moment #;, so each closest maxi-
mum or minimum exists at different moments (#; # ¢;). However, the EMD method
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requires that both the top and bottom extremum curves be constructed of synchronous
moments. For every top maximum we need to construct its virtual synchronous bot-
tom pair, and, correspondingly, for every bottom minimum, its virtual synchronous
top pair. As we know, the original EMD method builds such a synchronous top and
bottom line by using cubic spline interpolation.

Let us analyze two closest neighbor extrema. For simplicity, let us find the
closest minimum point from the left and right of each maximum. Then we estimate
the mean (median) value of these two neighboring minimum points before and
after the maximum, thus yielding the desired virtual synchronous bottom pair for
each maximum. By connecting all virtual synchronous pairs, we obtain the bottom
extremum line required by the EMD. The proposed simplest short straight line length
fitting makes it possible to analyze and understand the main properties of the EMD.

By analogy, the mean value of two neighboring maximum points before and after
the minimum will produce the desired virtual synchronous top pair of the minimum.
As a result, for the initial signal composition with two sets of maxima and minima
we will get two corresponding synchronous top and bottom lines constructed from
short straight line lengths (Feldman, 2009a).

Originally, the EMD required the arithmetic mean value of the top and bottom
lines to be computed. As shown, the extrema wander throughout the signal values,
so the mean value will depend on the current position of the local extrema (6.1).
Let us describe two different extreme cases: (a) the highest current position of the
local maximum when #; = 0, ¢ = 0, and (b) the lowest current position of the local
maximum when t; = w, ¢ = m. All other positions of the local maximum between
these two extreme cases will exhibit only intermediate behavior.

The caseof r;, =0, ¢ =0

In this case the initial maximum value is x;.x(0) = A; + A, and the initial
value of the first derivative is x(0) = 0. The closest minimum value corre-
sponds to the next zero value of the first derivative X(Af) = Ajw; sinw; At +
Arwy sin(wyAt) = 0. The last nonlinear equation can be solved analyt-
ically by Afr = —a)l’l arcsin[ﬁfif sin(wr At)], ifAjwy > Arwy, At = —w;l arcsin
[% sin(wy At)], if Ajw; < Ayw;. The obtained solution of the time moment for
the closest minimum value At = S;(A,/A;, wy/w;) depends only on the relations
between the amplitudes and frequencies of the harmonics.

This solution makes it possible to generate the closest minimum values from
left and right and, since the cosine is the even function (Xpmin(A?) = Xmin(—At)),
the virtual synchronous minimum value will be: xyi(0) = Ajcosw| At +
Aj cos (wp At). The arithmetic average of the initial maximum and the obtained
synchronous minimum can be written in the form F; = 0.5 [Xpmax(0) + xmin(0)] =
05[A| + Ay + A cosw| At + A; cos (wr At)].

It is convenient to divide the obtained solution into two parts and analyze them
separately, initially showing only the first harmonic modification (Figure 6.6a)

Fi.1 = 0.5A; [1 + cos w; At] (6.4)
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Figure 6.6 The theoretical mean value between the local maxima and minima at the
highest maximum position: the envelope of the first harmonic (a), the envelope of the
second harmonic (b)
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and then the second part with the second harmonic modification (Figure 6.6b)
Fi2 = 0.5A5 [1 + cos (wAr)]. (6.5)

Each of these parts describes an arithmetic mean value between the top and bottom
extrema in the highest current position of the local maximum when #; = 0, ¢ = 0.

The caseof t;, =7, p =7

This is a case in which the initial maximum value is equal to x,x(7) = —A; + A, and
the initial value of the first derivative is equal to X (77) = 0. The closest minimum value
corresponds to the next zero value of the first derivative X(Ar) = —A w; sinw; At +
Asw» sin (wr At) = 0. The solution of this last nonlinear equation determines the mo-
ment in time for the closest minimum value At = S, (Ay/ A1, wy/w;), which depends
only on the relations between the amplitudes and frequencies of the harmonics.

The solution allows us to generate the closest minimum values from both
left and right, and, since the cosine is an even function (Xpin(A?) = Xpin(—At)),
the virtual synchronous minimum value will be: xnin(7) = —A; cosw At + A,
cos (wrAt). The arithmetic average of the initial maximum and the ob-
tained synchronous minimum take the form F, = 0.5 [Xpax(7) + Xmin(7)] =
05[—A1 + Ay — A coswi At + A, cos (wy At)].

Again, it is convenient to divide the obtained solution and analyze the two parts
separately, with the first part showing only a modification of the amplitude of the first
harmonic (Figure 6.7a)

F2.1 = |—0.5A; (1 4+ cos w; At)| (6.6)

and the second part showing only a modification of the amplitude of the second
harmonic (Figure 6.7b)

F2o = 0.5A;[1 + cos (wy A1)]. (6.7)

Each part describes the arithmetic mean value between the top and bottom extrema
in the lowest current position of the local maximum when #; = 7, ¢ = 7.

6.2.5 EMD as a nonstationary and nonlinear filter

The final step of the EMD algorithm subtracts the obtained arithmetic mean function
of time from the initial signal. Such subtraction generates the simplest components
known as the IMF. Therefore, the subtraction procedure specifies a digital filtering
operation where the input is the initial signal composition; the output is the IMF; and
the filter characteristics (6.4)—(6.6) are represented in Figures 6.6 and 6.7.

In order to understand how the IMF is extracted from the initial signal, let us
analyze the obtained filter characteristics. This analytical three-dimensional filter is
defined as a 3D function with two arguments: the relative harmonics amplitude ratio
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Figure 6.7 The theoretical mean value between the local maxima and minima at the
lowest maximum position: the envelope of the first harmonic (a), the envelope of the
second harmonic (b)
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A, (A} = 1) and the relative harmonics frequency ratio w, (w; = 1). The vertical
value of the surface presents a portion of the magnitude passing through the filter.
Vertical values that are close to 1 indicate that the output signal passes through
the filter, while those that are close to O indicate a rejection of the output signal.
The obtained analytical solutions demonstrate that the EMD is nonstationary and
nonlinear at the final step of estimating the IMF. As the EMD is nonstationary, this
means that the filter characteristics are varied, with the extremum roaming from the
top to the bottom position. The nonlinearity is embedded in the filter magnitude
dependency on the harmonics amplitude and frequency ratio.

The main common property of the obtained analytical filters for both the top and
bottom extrema positions is their high magnitude values for the first harmonic when
wy — oo and A, — 1. This is a tendency of the highpass frequency to get through
the unmodified first harmonic with a larger frequency and amplitude ratio.

Another common property of the analytical filters is their highpass magnitude
values for the first harmonic and small (almost rejection) magnitude values for the
second harmonic. As a result, the low-frequency first harmonic A cos w;t can fully
pass through the filter, while the high-frequency second harmonic will be stopped.
Then, after being subtracted from the initial composition, the low-frequency harmonic
will disappeared, and the final IMF will consist only of the second high-frequency
harmonic A; cos w,f. One more important common property of the analytical filters is
the existence of a separating boundary surface B (A,, wn, A} = 1, w; = 1) dividing
the space of parameters into two ranges, thus allowing (or not allowing) the low-
frequency harmonic to pass.

6.2.6 Frequency resolution of the EMD

The displayed separation boundaries are directly related to the frequency resolution
characteristics of the EMD. For more precise analysis, let us plot the 2D projection
of the same nonlinear filters with the axes A,, @y, (A} = 1, w; = 1) as pseudo-color
graphs (Figure 6.8). The intensities of all function variations and nuances are usually
much better defined in such a 2D graph. Depending on the amplitude and frequency
ratio, the limiting boundary determines the region to the right where the EMD is able
to separate harmonics, and the region to the left where the EMD cannot separate two
tones. The top extrema position filter (Figure 6.8a) has a gentle slope and a cutoff
boundary that runs in the direction of higher frequency from the right side. A good
power approximation of the boundary (Figure 6.8a, dashed line) shows that the filter
blocks the first harmonic when (A2/ A1 )boundarytiop) < 1.44(w2 /1), and passes the
first harmonic without modification for higher relations A>/A; > (A2/ A )boundary(op)-
In the same figure (Figure 6.8a, thick line) we plotted the curve corresponding to the
inversely related amplitude and frequency ratio A,/A| = w;/w, for the case of a
negative IF (4.10). This inversely related amplitude and frequency ratio is fairly close
to the theoretical boundary curve.

The bottom extrema position filter (Figure 6.8b) has a more aggressive slope. Its
cutoff boundary is shifted to the left, and the filter blocks the first harmonic exactly
when (A3 /A1 )boundary(bottom) < (w2/w; )~2. For the harmonics ratios located on the left
of the aggressive bottom filter boundary, the filter does not allow the EMD to extract
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Figure 6.8 The theoretical boundary of the first harmonic filtering: the highest max-
imum position (a), the approximation A,/ A, < 1.44 (wy/w)~"* (--), the approxi-
mation Ay/A| = wy/w;y (=), the lowest maximum position (b), the approximation
A2/ A1 = (@2/01) 7 (--)

the harmonics at all, no matter how many sifting iterations are involved. It is evident
that the harmonics ratios located on the right of the gentle top filter boundary allow
the EMD to extract the harmonics completely and at once during the first iteration.

In the case where the harmonics frequency intervenes between these boundaries,
the first harmonic will pass the filter partially at every sifting iteration, with the
attenuation coefficient depending on the filter slope. To approach the full value of
the envelope, the first harmonic should be passed through the filter several times. In
other words, harmonics whose frequency ratio is located between these theoretical
boundaries might be separated with several sifting iterations.

Logically, the presented analytical nonstationary and nonlinear filters describe the
EMD filtering capacity only in extreme positions. In reality, the current positions of
the extrema change constantly and the filters are continuously being transformed from
one to another, producing a kind of mid-position filtering. The concrete spline-fitting
algorithm used in the real EMD program can also have some impact on the filter’s
slope, but both obtained extreme analytical boundaries will remain unchanged.
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Figure 6.9 The EMD ranges of two harmonics separation: (1) the impossible de-
composition for very close frequency harmonics and small amplitude ratio; (2)
the decomposition requires several sifting iterations for close frequency harmon-
ics; (3) the single iteration separation for distant frequency harmonics and large
amplitude ratio

That is, the more the frequencies are spaced apart, the less is the amplitude ratio
of two harmonics suitable for EMD separation. For example, a second harmonic with
a tripled or lower frequency w, < 3w; and a small amplitude less than A, < 0.3A4;
can be extracted with some iterations. Nevertheless, any amplitude that is less than
A < 0.11A; absolutely cannot be separated by the EMD. For example, if frequencies
lie within an octave of each other f, < 2f; and their amplitudes differ by less than
A; < 0.25A,, the EMD method is unable to separate two such components. This
means that the EMD does not perform well for smaller amplitudes of the second
harmonic and cannot distinguish frequencies that are close to each other

The logical result of the provided theoretical analysis is that the frequency ratio
of the harmonics can be assembled into three different groups (Figure 6.9): (1) very
close frequency harmonics A,/A| < (a>1/w2)2 unsuitable for EMD decomposition
(Figure 6.10), (2) close frequency harmonics (w;/@2)> < A2/A; < 1.44 (w) /wr)"*
requiring several sifting iterations (Figure 6.11), and (3) distant frequency harmonics
Asr/A; > 1.44 (w;/w,)"* that are well separated by a single iteration (Figure 6.12).
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Figure 6.10 The EMD of two very close harmonics (A =1, w;=1,A; =
0.6, wy = 1.1): the initial signal (a, —), the upper (---) and lower (---) envelope,
the top (A) and bottom maxima points (V); the initial signal (b, —), the top (b, ---)
and bottom (b, ---) extrema curves, the mean value between them (b, --); the first

harmonic (c, =), the second harmonic (c,--), the mean value between the top and
bottom extrema (c, - -)

Figure 6.11 The EMD of two close harmonics (A1 =1, w; =1,A, =09, w, =
1.8): the initial signal (a, —), the upper (---) and lower (---) envelope, the top (A) and
bottom maxima points (V); the initial signal (b, =), the top (b, ---) and bottom (b, ---)
extrema curves, the mean value between them (b, --); the first harmonic (c, —), the
second harmonic (c,- -), the mean value between the top and bottom extrema (c, - -)
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Figure 6.12 The EMD of two distant harmonics (A1 =1, w; =1, A, = 0.4, w, =
2.9): the initial signal (a, =), the upper (---) and lower (---) envelope, the top (A) and
bottom maxima points (V); the top (b, —) and bottom (b, —) maxima curves, the
mean value between them (b, - -); the decomposed first harmonic (c, =), the second
harmonic (c,- -), the mean value between the top and bottom maxima curves (c, - -)

The first group corresponds to the always positive IF of the composed signal. The
case is a well-known type — beating oscillation. An example of beating oscillation
induced by two close harmonics is shown in Figure 6.10 as well as a varying envelope
and an opposite sign envelope. Both envelopes alternate slowly with the average fre-
quency w, — w;. Notice, that the initial signal alternates much faster with the average
frequency ;. Every discrete local extreme point of the initial signal “samples” the
corresponding essentially continuous envelope. Connecting all consecutive discrete
local maxima yields a set of another function — the upper extreme line; connecting
all consecutive local minima yields the lower extreme line (Figure 6.10a). These
slow-varying extreme lines akmoxt coincide with their corresponding envelopes. It
is clear that computing a mean value between such close upper and lower extreme
lines will produce zero, because the envelope and the opposite sign envelope are
always out of phase. This indicates that the EMD method cannot decompose close
frequencies. The same negative result is true regarding any AM signal (Section 4.5)
that cannot be decomposed by the EMD method.

6.2.7 Frequency limit of distinguishing closest harmonics

According to (6.1), the continuous function of the cosine projection x.,,,(¢) oscillates
with the frequency w, — w; posed by the envelope oscillation. This function is sam-
pled with a frequency equal to the IF w(#) to form extrema points. If the frequency of
the oscillation is larger than the Nyquist frequency w, — @ > 0.5w(?), the sampled
extrema curves undergo a nonlinear filtering, as described in the previous sections. If



90 HILBERT TRANSFORM APPLICATIONS IN MECHANICAL VIBRATION

the frequency of the oscillation is less than the Nyquist frequency

wr — o1 < 0.50(t), (6.8)

then no aliasing (folding) occurs, and the resultant sampled extrema curve will
oscillate with the same frequency w, — w,; as the initial envelope. Such retention
of frequency means that the top extrema curve will repeat the upper envelope and,
correspondingly, the bottom extrema curve will repeat the lower envelope. As a result,
the average of these extrema curves will always produce zero, and the EMD will not
be able to decompose harmonics.

The simple formula (6.8) provides a strong limit on the possibility of the EMD
method being able to operate. According to (5.3), the average value of the IF of the
composition is equal to the frequency of the largest harmonics. In our notations the
average frequency of two harmonics is always @(¢) = w;. Substituting this value in
(6.8) yields wy — w; < 0.5w; and, finally,

wy) < —wq (6.9)

| W

Equation (6.9) yields the smallest value of the second harmonic frequency that the
EMD is able to distinguish. If the value of w, is any lower, the EMD is unable to
separate the components. This smallest value of w» is an absolute strong limit that does
not depend on the amplitude relations between harmonics. This theoretical limit value
completely coincides with the experimental critical frequency ratio w;/w, =~ 0.67
found in the work of Rilling and Flandrin (2008). Above this value, it is impossible
to separate the two components, no matter what the amplitude ratio. This is the case
when the local extrema do not differ from the corresponding envelope curves.

Using the first derivative of the signal in the signal analytic form, we devised
an expression for the local extremum points, including their vertical locations and
distribution in time. As shown above, the obtained vertical position of the local
extrema can deviate from the envelope, thus explaining, for instance, why and when
the maximum points can become negative.

The displayed extrema deviation from the envelope forms the basis for a theo-
retical explanation of the EMD sifting procedure. A vertical distance between the
envelope and the local extrema depends on the relation between the first derivative
of the envelope from one side and the multiplication of the envelope by the IF from
the other. To build the simplest synchronous extrema, we suggest connecting the op-
posite closest neighboring left and right extrema, thus yielding a theoretical median
function between the top and bottom extrema of two harmonics. This theoretical
median function represents a sort of signal nonlinear filter whose input is an initial
two-tone composition and whose output can be a harmonic with the lowest frequency.
Depending on the amplitude and frequency ratios of the harmonics, the filter passes
through some portion of the magnitude of the lowest frequency. The filter is nonsta-
tionary because its characteristics vary, while the extrema roam from the highest to
the lowest position. At these extreme positions, the filter characteristics differ: at the
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highest position, the filter has a gentle slope, but at the lowest position it has a more
aggressive slope.

The obtained boundaries between the filter pass and the stop characteristics deter-
mine the resolution of the EMD theoretical frequency. When the smaller harmonic am-
plitude is less than the boundary of the aggressive slope, the EMD does not separate the
harmonics. When the smaller harmonic amplitude is larger than the boundary of the
gentle slope, the EMD separates the harmonics according to its first single sifting iter-
ation. Middle amplitudes between the boundaries require several iterations, depend-
ing on the filter attenuation pass characteristics. This way the initial composition —
after extracting the median function — will contain a high-frequency harmonics, such
as the intrinsic mode function. This explains how the EMD uses sifting to decompose
the first high-frequency components. For two-tone models, the critical frequency
limit of distinguishing the closest harmonics was found theoretically. The harmonics
with a frequency below critical cannot be extracted from the decomposition by the
EMD, no matter how large its amplitude.

Like any other signal-processing procedure, the EMD operates with an input
signal only. The EMD decomposes the signal exclusively by means of its inherent
organic transformation function. For a composition of harmonics it extracts the high-
est frequency of the composition first. Like any other signal analysis instrument, it
merely reflects and represents real physical and natural processes and phenomena. It
is incorrect to try to understand or explain the EMD tool through nonlinear structural
dynamics or through any other physics-based foundation.

6.3 Global Hilbert Vibration Decomposition

The same problem of decomposition of nonstationary and multicomponent vibration
can be solved by a different technique, called the Hilbert Vibration Decomposition
(HVD) method (Feldman, 2006). The HVD method is based theoretically on the HT
presentation of the IF and does not involve spline fitting and empirical algorithms. A
principle of the proposed HVD method is to decompose the initial vibration x(#) into
a sum of components with slow-varying instantaneous amplitudes and frequencies.
Such an identification of every inherent synchronous component belonging to differ-
ent time scales can be made on the basis of the global time domain analysis of the IF
of the initial signal. It is natural that each of the inherent synchronous components
must have physical and mathematical significance. For better understanding of the
meaning of the global HVD method for the separation of vibration components by
the HT, we examine some mathematical issues.

6.4 Instantaneous frequency of the largest
energy component
A simple case of a combination of two harmonics x(z) = Aj coswt + A, cos wyt

(Section 4.8) enables us to discover and prove an important feature of the IF. Equation
(4.9) shows that the IF consists of two different parts — that is, a slow-varying
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frequency of the first component w; and a rapidly varying asymmetrical oscillating
part. We already proved that integration of the oscillating part of the IF results
in zero

/1: (wy — wy) [A% + A A, cos (/ (wr — w])dt)]

dt=0; A Aj. 6.10
220) 1> Az (6.10)

0

This means that the average value or the first moment of the IF is just equal to the
frequency of the largest harmonic (w(t)) = w;(t) + fOT w(t) = w(t) + 0. If there are
three or more quasiharmonics in the composition, the IF will take a more complicated
form, but again, the averaging or the lowpass filtering will extract only the IF of the
largest energy component.

This important property of the IF offers the simplest and most direct way of
estimating the frequency of an a priori unknown largest synchronous signal compo-
nent. Instead of integration, we will use averaging by a convolution of the IF with a
lowpass filter which will cut down the fast asymmetrical oscillations and leave only
a slow-varying frequency of the main signal component w,(¢). A cutoff frequency
of the lowpass filter that divides the passband and the stopband will control the fre-
quency resolution of the HVD method. In other words, the signal components can be
separated only when the difference between their frequencies is more than the value
of the cutoff frequency. A simple lowpass filtering of the IF leads to the estimation
of the frequency of the largest energy signal component. The next step is to estimate
the envelope of the largest energy signal component.

6.5 Envelope of the largest energy component

To estimate the envelope for the recognized frequency we choose a well-known tech-
nique (Fink, 1975) known variously as: synchronous detection, in-phase/quadrature
demodulation, coherent demodulation, autocorrelation, signal mixing and frequency
shifting, lock-in amplifier detection, and phase sensitive detection. In essence, the
technique extracts the amplitude details of a varying synchronous vibration com-
ponent with a known frequency by multiplying the initial vibration composition by
two reference signals exactly 90° out of phase with one another (see Section 3.2).
For the output we will get two projections: the in-phase and the HT (quadrature)
phase output. The vibration amplitude can be obtained by lowpass filtering of these
projections and taking the square root of the sum of their squares. It is desirable to
choose the cutoff frequency value as small as possible, but not less than the frequency
value of the lowest vibration component.

In this case, a single synchronous vibration component x;_.(f)=
Aj—,(t) cos ( f W)=y (t)dt) with exactly the same frequency as the reference vibration
cos ( I a),(t)dt) is mixed with the other /-vibration components. The synchronous
detection technique is capable of measuring even small varying vibrations that are
obscured by large numbers of other components.
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6.6 Subtraction of the synchronous largest component

As a result of two suggested procedures, we estimated the IF as well as the envelope
of the first synchronous largest vibration component x;(t) = A(¢) cos ( f a)l(t)dt).
The first largest demodulated signal component is estimated during the first step of the
iteration of the HVD method. Using the idea of signal sifting (Huang et al., 1998),
we can subtract the synchronous largest component from the initial composition
x;—1(t) = x(¢) — x1(¢), thus obtaining a new signal composition x;_(¢) that could be
decomposed again during the next iteration. At every iteration step the residual signal
will contain the information on lower energy components. This way we divide the
initial composition into several slowly varying oscillating components. A criterion
for stopping the sifting process can be the required number of components or the limit
value of the standard deviation difference computed from two consecutive iteration
results.

Contrary to the well-known EMD method, which starts with the first intrinsic
mode with the highest frequency component, the proposed HVD method starts de-
composition with the synchronous largest energy component while the residual signal
contains information of lower energy components. As a result, the first synchronous
component separated from the initial signal according to the HVD method contains
the highest varying amplitude. The residual signal contains information on other
lower amplitude components. Naturally, each of the components must have physical
and mathematical significance.

During the first step of the iteration for the proposed HVD method, we found the
synchronous largest vibration component. According to the basic principles of de-
modulation, we use a well-known synchronous detection technique, multiplying the
carrier signal component by the modulating signal. In this case, a single oscillating
component x;—,(t) = A;—,(t) cos ( f a)lzr(t)dt) of exactly the same varying frequency
as the reference signal cos ( f a),(t)dt) is mixed with other l-components. In essence,
the technique extracts the amplitude details about a synchronous oscillation compo-
nent with a known frequency by multiplying the initial composition by two reference
signals exactly 90° out of phase with one another. We defined each decomposed term
as a vibration in unison of the composition (i.e., a synchronous component). This
way every particular component of a nonstationary signal is characterized by the
synchronous evolution of the total composition.

Oscillating components that are not of the exact same frequency as the refer-
ence (w; # w,) will not yield this slow-varying function. No matter what the in-
stantaneous phase, the resultant envelope A;—,(f) always represents the detected
synchronous component envelope. The synchronous detection technique is capable
of measuring even small varying signals that are obscured by large numbers of other
components.

Using the idea of signal sifting (Huang et al., 1998), we subtract the largest
component from the initial composition x;_(t) = x(¢) — x(¢), thus obtaining the
new vibration composition x;_(¢) that should be decomposed again during the next
iteration x,(z) = A,(t) cos ( f a)g(t)dt). As a result, we split the initial composition
into several slow-varying vibration components. The number of iterations necessary



94 HILBERT TRANSFORM APPLICATIONS IN MECHANICAL VIBRATION

Initial (1)

nitia lx](t)=Al(t)cost,(t) dt
signal

At

- IF - IF low-pass, - Synchronous| Largest

() estimation filtering detection component

l (=)

>

x,(t) = x,_, (1) » . Residual signal | x(#) - x,(t)
i-1teration

Figure 6.13 Block diagram of the HVD method

to provide a good approximation to a vibration composition depends on how rapidly
the initial vibration changes.

6.7 Hilbert Vibration Decomposition scheme

The idea of the HVD method is to decompose an initial wideband oscillation x () into
a sum of components with slow-varying instantaneous amplitudes and frequencies, so
that x(r) = >, A;(t) cos ( f wl(t)dt), where A;(¢) is the instantaneous amplitude and
wj(t) is the IF of the [-component. The decomposition is based on the assumptions
that (1) the underlying signal is formed by a superposition involving at least one
quasiharmonic function with several full period lengths; and (2) the envelope and
frequency of each oscillating component differ.

The proposed decomposition is an iterative method, and every iteration step
includes the following three procedures (Figure 6.13): (a) an estimation of the IF of
the largest component; (b) a detection of the corresponding envelope of the largest
component; and (c) a subtraction of the largest component from the composition. The
key factor of a precise decomposition is to use appropriate methods to extract the IF
and envelope of the initial vibration composition.

On each iteration step, the corresponding slow-varying synchronous vibration
component is extracted by the lowpass filtering of the IF. A lowpass filter will
eliminate all high-frequency components outside of cutoff frequency and allow all
the low-frequency components to pass without modification.

A spectral content of a vibration signal can be represented by modulation of
its instantaneous frequency. Passing the signal through a narrowband frequency
filter gets rid of the distant side frequencies and makes the instantaneous fre-
quency less and more slowly modulated. So the narrowband signal filtering is
equivalent to the lowpass filtering of the instantaneous frequency. In this case the
width of the narrowband filter corresponds to the cutoff frequency of the lowpass
filter.
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6.7.1 Frequency resolution of the HVD

A cutoff frequency that divides the passband and the stopband of the lowpass filter
will control the frequency resolution of the HVD method. It is desirable to choose
a cutoff frequency value that is as small as possible considering the filter shape
factor accuracy and stability. On each iteration step, after subtracting the previous
frequency, the current frequency becomes the next in term of the lowest frequency,
and again its value should be larger than the cutoff frequency value. This means that
the difference between close frequencies should be larger than the value of the cutoff
frequency. In other words, the vibration components can be separated only when
the difference between their frequencies is more than the value of the filter cutoff
frequency.

For a more precise frequency resolution the cutoff frequency of the lowpass filter
should be as small as possible. Typically, the smallest cutoff frequency value of a
stable and precise lowpass filteris fi,in > 0.02Fs, where F's is the sampling frequency.
For a harmonic with a frequency f; that is sampled, say, with twenty points per period
(fi = 0.05F)), the filter can produce the next higher distinguishing frequency equal to
fi+1 = (0.05 4+ 0.02) F's = 0.07Fs. As aresult, the frequency components will differ
by 0.07/0.05 = 1.4, and several frequency components (0.05, 0.07, 0.09) lying in
the same octave can be separated. The frequency resolution can be improved even
further by decreasing the sampling frequency.

The frequency resolution for the HVD method does not depend on a dissim-
ilar harmonics amplitude ratio. Therefore the graphic representation of the fre-
quency resolution shows the frequency value relative to the sampling frequency
(Figure 6.14).

6.7.2 Suggested types of signals for decomposition

The proposed method is dedicated primarily to quasi and almost periodic oscillating-
like signal decomposition. Such a vibration type could be, for example, an ampli-
tude and frequency modulated vibration, a nonstationary vibration similar to that
at rotor startup or shutdown; or a nonlinear dynamic system vibration. It basically
applies the amplitude and frequency modulated harmonics instead of the constant
ones used by the Fourier transform. The HVD method cannot separate other types
of motion, such as random, impulse, short or nonoscillating (aperiodic) signals. Nor
is it intended for the case of very closely spaced frequencies. The HVD method
is illustrated further using the data from numerical simulation results published
on the Internet as the MATLAB pre-parsed pseudo-code files (P-file) (Feldman,
2008a).

The HVD method, as opposed to other known decomposition methods, is ex-
tremely simple and fast in calculation. An additional — and very useful — feature
is its ability to detect synchronous vibration components with desirable or
specified frequencies — for example, those with only odd high harmonics of the
main vibration component.
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Figure 6.14 The HVD ranges of two harmonics separation: (1) impossible decom-
position for very close frequency harmonics; (2) good separation for distant frequency
harmonics

6.8 Examples of Hilbert Vibration Decomposition

To get an idea of the HVD method, it is instructive to find elementary compo-
nents for some examples of nonstationary vibration signals with varying amplitude
and frequency.

6.8.1 Nonstationary single-sine amplitude modulated signals

An AM signal is generated by modulating an amplitude of a carrier signal; it is
composed of two terms: an oscillating carrier wave plus a wave that is a product
of two sinusoidal terms. Actually, the AM signal is composed of three sinusoidal
waveforms: a carrier wave, a lower sideband signal, and an upper sideband sig-
nal. In the general case, the AM signal can be modulated with a nonstationary
modulating function.

For illustration purposes, let the carrier signal be a harmonic function cos #, and
let the modulation also be a single, but nonstationary, tone with a decreasing modu-

lation index and an increasing modulated frequency: x(z) = [1 + t'“,fft cos( 42; )] x

cost; t=1[0...1024]. The signal waveform is shown in Figure 6.15a, and the
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Figure 6.15 The nonstationary single-tone amplitude modulated signal (a) and its
decomposed superimposed components (b) (Feldman, (©)2009 by John Wiley & Sons,
Ltd.)

synchronous components decomposed according to the HVD method are shown
in Figure 6.15b. The same three decomposed components are shown separately in
Figure 6.16, where the first carrier component has a unit amplitude and a constant
frequency, while the nonstationary sideband components vary in time. The increasing
modulated frequencies that are symmetrically located around the carrier frequency
and the decreasing modulation amplitudes are depicted separately in Figures 6.17
and 6.18, respectively, in more detail. Thus, the proposed method illustrates some
known important properties of a single-tone AM signal.

6.8.2 Nonstationary overmodulated signals

In practice, existing demodulation techniques always recommend that the AM sig-
nal x(t) = [Ao(t) + A, (1) cos w,, ] cosfa)o(t)dt should have a modulation index
smaller than unity m = A,,/Ay < 1 (see Section 4.5), because it is difficult to de-
modulate such an overmodulated nonstationary signal with a complex envelope, not
to mention the duality relations for the alternate envelope 1 + m cos w,,¢ which can
have both positive and negative values (Cohen and Loughlin, 2003; Wetula, 2008).
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Figure 6.16  First three components of a nonstationary single-tone amplitude mod-
ulated signal
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Figure 6.17 The IF (a) and envelope (b) of a single-tone amplitude modulated
signal: the carrier signal component (=), the low (---) and high (---) modulation
component
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Figure 6.18 The Hilbert spectrum of the single-tone amplitude modulated signal

Therefore, for the existing techniques, overmodulation is almost always considered
to be a fault condition.

The distinctive property of the HVD method is its ability to decompose the
overmodulated signal even when a carrier component has a very low value. By
applying the HVD method we will decompose three synchronous components
of the AM signal x(r) = [Ao(t) + A, (1) cos wy,t] cos fa)o(t)dt =x1(t) + x(t) +
x3(t), where one component x;(f) = Ay(t)cos f wo(t)dt is the low amplitude
carrier wave, and two others x,(¢) = A”‘(’) cos [ [wn(1) — wo()]dt and x3(1) =
A (’) cos f [, (t) + wo(t)]dt are the large and equal amplitude sidebands. The half-
sum of two extracted instantaneous frequencies produces the frequency of the al-
ternate envelope 05 [w,, () — wo(t) + @ (1) + wo(t)] = w,(t). The double envelope
of the extracted equal sidebands produces the magnitude of the alternate envelope.
Thus, the alternate envelope can be estimated according to the following expression:

As(t) = Ao(t) + An cos/wm(t)dt. 6.11)

As an illustration, let us take a nonstationary overmodulated amplitude signal
x(t) whose modulation function Ay(¢) + A,,(¢) cos w,,t has negative values: x(t) =
{1 4+ [6 + 25in(0.02¢)] cos(0.1 4 0. 12'"“*_’)t} x cost; t=1[0...1000]. The sig-
nal is shown in Figure 6.19a, along ‘with the positive envelope function. The
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Figure 6.19 The overmodulated AM signal (a, —), its envelope (— -UJ-); the alter-
nate envelope (b, - -) (Feldman, (C)2011 by Elsevier)
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Figure 6.20 The first three components of a nonstationary overmodulated AM signal
(Feldman, (C)2011 by Elsevier)
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Figure 6.21 The IF (a) and envelope (b) of an amplitude overmodulated signal;
the carrier signal component (---), the low (=) and high frequency (- -) modulation
component (Feldman, (C)2011 by Elsevier)

decomposed components are shown separately in Figure 6.20. The envelope and
the IF of each component — presented in Figure 6.21 and in Figure 6.22 as the Hilbert
spectrum — demonstrate the nonstationary variation of the modulation function, while
the varying envelopes of both sidebands are the same. These figures also show that
the varying sideband amplitude is higher than the carrying amplitude. The obtained
alternate envelope is shown in Figure 6.19b with the positive envelope. It is clear that
the alternate envelope of the overmodulated signal is much simpler than the positive
envelope. The choice between the two possible forms of envelope representation
depends on the operability and simplicity of further operations with the signal.

6.8.3 Nonstationary waveform presentation

A good approximation of the sum of decomposed synchronous components to the
initial signal depends on how rapidly the initial waveform is changing and on the total
number of obtained components that is equal to the number of HVD iterations. As
an example, Figure 6.23a (dashed line) depicts the signal of the nonstationary square
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Figure 6.22 The Hilbert spectrum of an amplitude overmodulated signal (Feldman,
(©)2011 by Elsevier)
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Figure 6.23 The nonstationary square wave: the initial signal (a, - -), the sum of the
first five components (a, —), and the decomposed superimposed components (b)
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Figure 6.24  The first five components of a nonstationary square wave

wave function with varying amplitude and period x(k) = (1 4+ 0.9sin(0.006k)) x
sgn [sin(0.05 4- 0.04 sin(0.005k)k)], &k = [0..2048].

The first five decomposed synchronous component terms are plotted as a sum
together with the initial square wave in Figure 6.23a (solid line). As can be seen, just
the first five components describe the nonstationary square wave in the time domain
with a high degree of accuracy. Further details about each synchronous oscillation
component can be found in Figure 6.23b, and also in Figure 6.24 where they are
shown separately. Figures 6.25 and 6.26 present the IF and the envelope of each
component of the nonstationary square as time-varying functions.

This example illustrates the fact that the proposed HVD method makes it possi-
ble to construct a perfect match between a complicated nonstationary signal and a
composition of the small number of time-varying elementary oscillating components.
The results of the HVD describe a nonstationary square wave in the time domain
with a high degree of accuracy.

6.8.4 Forced and free vibration separation

To illustrate the potentials of the proposed decomposition method, consider the case
of a nonstationary vibration (involving a steady-state and a transient component)
generated by a chirp force. The following numerical example includes the linear
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Figure 6.26 The Hilbert spectrum of a nonstationary square wave
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Figure 6.27 The nonstationary vibration solution (a) and the separated vibration
components: the steady state (b), the transient (c)

dynamic system excited by a sine wave whose frequency increases over time at a
linear rate ¥ + 0.07x% + x = cos(6.5 x 1075¢2).

Figure 6.27a shows the initially forced vibration resulting from the application
of an external periodic force to a linear vibration system. It is known that the total
general response of a system with an external force is the sum (superposition) of
the steady state and particular (homogeneous) solutions. Because of this, the general
response has a typical beating form (Figure 6.27a). The system natural frequency
is equal to 1 radian per second, and the frequency of excitation is only increasing
over time, so, again, we can choose the cutoff frequency of the lowpass filtering
equal to 0.2.

Applying the proposed decomposition method, we will receive two main terms
of motion. The first steady-state term (Figure 6.27b), separated from the solution by
means of the HVD method, does not decay over time, while the second term, the
transient component (free vibration), does decay (Figure 6.27¢). After the free vibra-
tion part of the solution is damped, the system will oscillate according to excitation
as long as the driving force is applied. The IF of the transient component (Figure
6.28a, dashed line) remains constant — close to the resonance frequency 1/27 = 0.16
Hz, while the IF of the transient solution frequency increases at a linear rate (Figure
6.28a, bold line). Figure 6.28b also shows a pure exponential type of decay typical
of a free vibration in linear systems, whereas the steady-state component has a more
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Figure 6.28 The IF (a) and envelope (b) of a nonstationary vibration solution: the
steady state component (—), the transient component (- -)
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Figure 6.29 The Hilbert spectrum of a nonstationary vibration solution



HILBERT TRANSFORM APPLICATIONS IN MECHANICAL VIBRATION 107

Figure 6.30 The asymmetric transformation of the signal amplitude

complicated envelope, depending on the frequency response function. Figure 6.29
includes the corresponding 3D plot of the IF and the envelope of every component.
As can be seen in the Hilbert spectrum, where all decomposed waveform components
are plotted in the time-—frequency—amplitude domain, the composition in this case
consists of two functions.

6.8.5 Asymmetric signal analysis

Sometimes a vibration signal consists of two independent separate parts: an upward
motion associated with one function of the positive signal values and a downward
motion associated with another function of the negative values:

xi(t),if x >0

x(1),if x <0 (6.12)

x(t) = {

The different positive and negative branches combined together produce an asym-
metric signal. Each signal sign changing from positive to negative, or the reverse,
switches the vibration structure, which will include the first or the second asymmet-
rical branch characteristics correspondingly. For example, a pure harmonic after its
non-inertial and nonlinear transformation will form an asymmetric kind of a signal
with different corresponding amplitude and frequency features. An illustration of
an asymmetrical bi-linear amplitude transformation of the harmonics is shown in
Figure 6.30.

The resultant signal combines independent positive and negative branches, so
each part of the signal is determined only by its own instantaneous characteristics:
x12(t) = Ay o(t) cos [ [ ;1 2(1)dt ]| where x; 5(t) is the branch of the vibration signal,
A\ 2(t) is the partial envelope (the partial instantaneous amplitude), w; » is the partial
[frequency (the partial IF) of the branch. One of the questions arising immediately due
to the asymmetric representation is: How will the combined signal x(¢) be separated
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back into its constituent parts x;(¢) and x,(¢)? Evidently, any standard approach fails
in the case of the vibration signal asymmetry. The HT signal representation plays an
important role in the asymmetric signal decomposition and leads directly to some
practical results. Each signal branch is defined on its half-plane only, so practically it
is enough to identify matching instantaneous characteristics of each signal branch.

For separating the signal positive and negative parts and for estimating the partial
instantaneous characteristics we will use the already mentioned HVD method along
with the congruent EOE approach (Sections 6.7 and 5.6) (Feldman, 2011). As a con-
sequence an arbitrary aggregated signal will be built up from a slow-varying offset
function and several alternate quasiharmonics with varying characteristics. In accor-
dance with the HVD method all decomposed congruent quasiharmonic components
will form the EOE function — according to their phase relations. The EOE aggregates
all these component envelopes the following way:

N
Apor(t) = Y Al(t) cos (1), (6.13)

=1

where A(¢) is the I component envelope, and ¢;(¢) is the phase angle between the
largest and the / components. Now we will form two EOE functions separately for
Ap,if x >0
Ay, ifx <0
a half of the period, when the largest harmonic of the signal is positive, the EOE
appears as Ap(?) = ZZA; | Ai(t) cos ¢(1); during the next half, when it is negative, the
vibration continues as another EOE with the associated amplitude phase relations
An(D) = =317, Ar(r) cos gy(0).

The IF of the asymmetric signal will match the frequency of the sequentially al-
wp(t),if x >0
wy(1),if x <0
approximation, assume that the partial IF is a lowpass filtered IF of the corresponding
part of the signal.

the positive and negative asymmetric signal parts Agog(f) = { . During

ternating positive and negative parts of the signal: w(t) = . As afirst

6.8.5.1 Estimation of asymmetric amplitudes

Consider an example of an asymmetric signal whose positive and negative parts have
the same frequency but different amplitudes, while the positive partial amplitude
increases linearly.

In Figure 6.31 we can observe the signal and that the asymmetry affects the
instantaneous amplitude and frequency. In this case, the signal decomposed by the
HVD method aggregates the first four elementary components shown in Figure
6.32. The first three components, including the increasing offset, are congruently
in phase relative to maxima, but the fourth smallest component is out of phase.
Therefore the partial positive envelope is equal to A,(f) = A () + Ax(t) + Az(t) —
A4(?) and the partial negative envelope is equal to A,(f) = A;(t) — Ax(t) — As(t) +
A4(1). Both calculated partial envelopes are shown in Figure 6.33 along with the initial
asymmetric signal.
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Figure 6.31 An asymmetric signal with a linearly increasing envelope: the signal
(=), the envelope (---), the IF (.. .) (Feldman, (C)2011 by Elsevier)
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Figure 6.32 The decomposed components of an asymmetric signal with a linearly
increasing envelope (Feldman, (C)2011 by Elsevier)
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Figure 6.33 An asymmetric signal with a partial linearly increasing envelope: the
signal (=), the positive partial envelope (—), the negative partial envelope (---)

(Feldman, (©)2011 by Elsevier)
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Figure 6.34 The envelope vs. the IF plot of an asymmetric signal with an lin-
early increasing envelope: the positive partial envelope (A), the negative partial
envelope (O) (Feldman, (©)2011 by Elsevier)

The partial frequencies for the positive and negative parts are the same, and the
plot of partial envelopes vs. partial frequencies confirms an almost constant value for
the partial frequency (Figure 6.34).

6.8.5.2 Estimation of asymmetric frequencies

Now consider another case of an asymmetric signal as a combination of two quasi-
harmonics with the same amplitude but different partial frequencies w,, w,, while

A
x(t) Lo

Figure 6.35 An asymmetric signal with a linear increasing frequency: the signal
(), the envelope (---), the IF (. ..)
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Figure 6.36 The decomposed components of an asymmetric signal with a linear
increasing frequency

the frequency of the positive part linearly increases (Figure 6.35). Again, we use the
HVD method to extract the signal components; the first four of which are presented
in Figure 6.36. All the extracted components are congruently in phase, so each of the
partial envelopes is equal just to the sum of the decomposed envelopes. The positive
and negative partial envelopes both are shown with the initial signal in Figure 6.37.

The difference between the frequencies of the asymmetric parts of the signal
leads to dissimilarity of the partial frequencies estimated after lowpass filtering of
the instantaneous frequency segments (Figure 6.38).

6.8.5.3 Combined asymmetric amplitude and frequency signal

The identification method also operates well in the case of an asymmetrical amplitude
and frequency combination. Consider the case of an initial asymmetric signal that
consists of a linearly decreasing positive amplitude and a linearly increasing positive
frequency (Figure 6.39).

As can be seen, the calculated signal envelope and the IF have a rather complicated
form; nevertheless, they do not explain the asymmetry of the signal thus hiding the
important information that is conveyed in this signal.

x(t)

Figure 6.37 An asymmetric signal with a linear increasing frequency: the signal
(=), the positive envelope (-), the negative envelope (- - -)
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Figure 6.38 The envelope vs. the IF plot of a asymmetric signal with a lin-

ear increasing frequency: the positive partial envelope (A), the negative partial
envelope (L)

Again, the main idea of the method is to take an asymmetrical signal and divide
it into quasiharmonic components. The results of the signal decomposition obtained
according to the HVD method are illustrated in Figure 6.40, where the first four
estimated components are congruently in phase only for the positive part of the
largest harmonic. For the negative part the even harmonics are in phase, but the
odd harmonics are out of phase, so the positive partial envelope is A, (1) = A (¢) +

!
x| |
\

Figure 6.39 An asymmetric signal with a linear decreasing envelope and increasing
frequency: the signal (=), the envelope (---), the IF (...)
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Figure 6.40 The decomposed components of an asymmetric signal with a linear
decreasing envelope and increasing frequency

Ay(t) + As(t) + A4(¢) and the negative envelope is A, (t) = Aj(t) — Ax(t) + As(t) —
Ay(t) (Figure 6.41). The identified instantaneous characteristics are shown in Figure
6.42 and include the positive and the negative partial envelopes vs. their instantaneous
frequencies.

As can be seen in Figure 6.42, the asymmetric signal separation behaves ade-
quately. The proposed method seeks to overcome the limitations related to decom-
posing the asymmetric signal in a physically meaningful way. Having applied the
method we obtained two groups of frequencies and envelopes associated with the
positive and negative portions of the asymmetric signal. In other words, the initial
signal is split into two portions separated for the positive and negative values. Use of

Xx(1) ﬂ

- -

Figure 6.41 An asymmetric signal with a linear decreasing partial envelope and
increasing frequency: the signal (), the positive envelope (-), the negative envelope

(--).
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Figure 6.42 The envelope vs. the IF plot of an asymmetric signal with a linear
decreasing envelope and increasing frequency: the positive partial envelope (A), the
negative partial envelope (L)

the developed congruent technique could result in a more precise estimation of both
the amplitude and the frequency of asymmetric vibration signals.

6.9 Comparison of the Hilbert transform
decomposition methods

The EMD technique, an original technique first introduced by Huang ef al. (1998),
adaptively decomposes a signal into its simplest intrinsic oscillatory modes (com-
ponents). The EMD method is based on a sifting iteration approach and on a spline
algorithm, which constructs upper and lower envelopes that are fitted to the local
maxima of the initial wideband signal.

Attempts to improve the EMD method were described in a large number of
subsequent publications. For example, it was recommended that the original sift-
ing approach should be replaced by a specialized nonlinear diffusion process for
estimating the mean envelope, or replaced by an optimization-based approximation
technique. Other attempts were devoted to developing alternate decomposition meth-
ods, like the iteration HT for modulated signals, which is based on the averaging
or lowpass filtering of the modulated signal envelope (Gianfelici et al., 2007). It is
clear that averaging the envelope of a composition, even of two simple sinusoids,
produces only an amplitude summation, but not the pure amplitude of any of the
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sinusoids. This means that the iteration HT cannot be applied to the general case of
a multicomponent composition of non-modulated harmonics.

A different original method — the Hilbert Vibration Decomposition (HVD), which
was developed by Feldman (2006) — is dedicated to the same problem of adaptive de-
composition of nonstationary wideband vibration into certain basic monocomponents
(atoms). As the HVD method is based on a lowpass filtering of the IF and does not
involve spline algorithms, the filtered IF of each component will therefore be posi-
tive. Analytically, this lowpass filtered IF corresponds to the first term in the Blaschke
polynomial approximation of the IF (Qian, 2006).

These two successful decomposition methods — namely, the local EMD and the
global HVD, — have been theoretically analyzed and compared, and their common
properties and differences are described in Feldman (2008b). Still, a detailed analysis
of possible potentials and inherent shortages of these HT decompositions requires
a further investigation of the EMD and HVD methods. Mapping the strength and
recognizing the available resources of the HT decompositions will help us to compile
and arrange a successful utilization of the methods. In addition to the Wavelets trans-
form analysis, the HT decomposition method is a powerful approach that can solve
rather complicated problems in various areas, including nonlinear and nonstationary
mechanics and acoustics.

6.10 Common properties of the Hilbert transform
decompositions

Two mentioned HT methods are dedicated to the same problem of decomposing
nonstationary wideband vibration. The EMD is based on the spline fitting of the
local extrema and the HVD method is based on averaging the global IF. We will
try to analyze and compare the above-mentioned methods by investigating and un-
derstanding their general principles and limitations, but will not discuss concrete
signal-processing procedures and algorithms. Both the local EMD and the global
HVD signal decomposition methods are based on the assumptions that the underly-
ing signal is formed by a superposition of quasiharmonic functions with or without an
aperiodic slow-varying DC offset, and that the envelopes and the IF of each vibration
component differ. These methods allow us to replace (provided that the replacement is
possible at all) a nonstationary complicated waveform function with the composition
of a small number of other functions that are simpler and more suitable for further
computations or analytical transformations.

Both decomposition methods are nonparametric and adaptive because they deal
with an a priori unknown nonstationary signal and do not require a model for the
component representation. The EMD and HVD methods apply an iterative algorithm
for a sequential extraction of components according to the sifting approach (Huang
et al., 1998). For the multicomponent signal with well-separated component frequen-
cies, both the local and global methods produce good similar results by extracting the
simplest component at each iteration step. With the HT decomposition approaches
we can analyze amplitudes and frequencies of a large class of non-sinusoids but
wavelike functions.
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6.11 The differences between the Hilbert transform
decompositions

The EMD method estimates both the local IF (via zero crossing) and the local
envelope independently. By contrast, the HVD method primarily estimates the IF of
the multicomponent signal. Then, the corresponding envelope is calculated on the
basis of a lowpass filtered IF via synchronous detection. As a result, the EMD method
is able to decompose most wideband signals with far separated frequencies. The HVD
method, in addition to the wideband, makes a decomposition of the narrowband
multicomponent signals also possible.

The local EMD method can detect a sharp envelope and/or frequency variations
more accurately, whereas the global HVD method smears out the sharp envelope and
frequency jumps and crossings. For the decomposition of multicomponent signals of
type II or IIT (Section 5.3) with fast-crossing instantaneous parameters, a combined
application of the known HT methods could also be recommended.

The local EMD method successfully operates with any data length, including a
very short data, while the global HVD requires rather long data records. The HVD
method has an additional feature: it detects signal components with desirable or
specified frequencies — for example, those with only odd high harmonics of the main
vibration component. The HVD method is extremely appealing in its simplicity, and
can be recommended for many areas of signal processing, real-time digital signal
processing included.

6.12 Amplitude—frequency resolution of HT
decompositions

The decomposition methods that have been considered are both dedicated to dis-
criminating a compound signal into a composition of simpler signals that can then
be more easily modeled and investigated. A key element of a vibration decomposi-
tion is its ability to distinguish amplitudes and frequencies of the signal in time. It
is clear that, according to the Heisenberg uncertainty principle, localization in both
time and frequency is limited. A signal decomposition method for vibration analysis
must be precise enough to primarily resolve adjacent frequencies and identify close
oscillating components. The frequency resolution is the minimum difference in fre-
quency between two harmonics that allows them to be resolved in a composition. The
frequency resolution is one of the important indicators of the potentials of vibration
decompositions.

6.12.1 The EMD method

As shown on Figure 6.9, the EMD is able to distinguish two harmonics in a com-
position only when their frequencies differ essentially. The limiting boundary of the
EMD separation of two closely spaced harmonics is defined by the hyperbola-like
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form (Rilling and Flandrin, 2008; Feldman, 2009b):

(AZ/Al)boundary(botlom) = (602/0)1)_2 (6.14)

where A,/ A is the amplitude ratio and w; /w, is the frequency ratio of the harmonics.

Depending on the amplitude and frequency ratio, the limiting boundary deter-
mines the region (3) where the EMD is able to separate the harmonics and the region
(1) where the EMD cannot separate two tones (Figure 6.9). That is, the more the
frequencies are spaced apart, the less is the amplitude ratio of two harmonics suitable
for EMD separation. For example, a second harmonic with a tripled or lower fre-
quency f, <3 f; and a small amplitude less than A, < 0.11A cannot be separated
by the EMD. This means that the EMD does not perform well for smaller amplitudes
of the second harmonic and cannot distinguish frequencies that are close together.
For example, if frequencies lie within an octave of each other f, < 2f; and their
amplitudes differ by less than one-quarter A, < 0.25A, application of the EMD
method is unable to separate these two components.

6.12.2 The HVD method

The HVD method controls the frequency resolution by applying a lowpass filter
(see Section 6.7.1). Therefore, the IF of decomposed signal components will have
its energy concentrated over a relatively small region in the frequency domain. The
decomposed components can be separated only when their frequencies differ by more
than the cutoff frequency of the filter and their amplitudes are not equal. Therefore,
for high-frequency resolution the cutoff frequency of the lowpass filter should be
as small as possible. Typically, the smallest cutoff frequency value of a stable and
precise lowpass filter is fii, > 0.02Fs, where F's is the sampling frequency. For a
harmonic with a frequency f; that, for example, is sampled with 20 points per period
(fi = 0.05Fy), the filter can produce the next higher distinguishing frequency equal
to fir1 = (0.0540.02) Fs = 0.07Fs. This means that the frequency components
will differ by 0.07/0.05 = 1.4, and several frequency components (0.05, 0.07, 0.09)
lying in the same octave can be separated. Therefore the HVD method has a better
frequency resolution capacity and can resolve much closer frequencies than the EMD.
In fact, the data should be sufficiently long to detect not only low frequencies, but also
small differences between frequencies that form a slow-beating effect in the signal.

6.13 Limiting number of valued oscillating
components

6.13.1 The EMD method

The existing limit value of the EMD amplitude—frequency resolution (6.14) deter-
mines the maximum possible number of valued oscillating components that can be
extracted from a wideband signal composition. To extract valued components we
must sample for at least one complete cycle of every frequency. The lower observed
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Figure 6.43 The largest number of valued oscillating components of the EMD: the
[frequency ratio is equal to 3 (—), the frequency ratio is equal to 5 (- -)

frequency that is sampled for a sufficient time to be detected, contains the total
number of data N. Every next valued oscillating component with a higher frequency
(6.14) will have fewer points, up to the highest frequency which, according to Nyquist
theorem, will have not less than two samples. These neighbor components will be
spaced far apart, with their frequency value (w;,1/w;) dictated by the EMD rough
frequency resolution. As a result, the largest possible number of valued oscillating
components 7 can be written in the following form

n <10g,, /0, 0.5N, (6.15)

where n is a maximum number of valued oscillating components, N is the total
number of samples, and w; | /w; is the frequency ratio of the harmonics. An example
of the limiting number of valued oscillating components is shown in Figure 6.43.
As can be seen in the figure, the case of a frequency ratio equal to w;+1/w; = 3
corresponds to the estimated largest number of valued components for N < 1000
samples not exceeding five harmonics. In the case of a frequency ratio equal to
wi+1/w; =5, the estimated largest number of valued components will not exceed
three harmonics. In other words, the EMD is able to extract a rather small number of
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valued oscillating components with respect to the corresponding amplitude ratio and
the data length.

The frequency resolution ability of the EMD can also be described in terms
of the spectrum slope of a signal composition. Thus, doubling the frequency ratio
corresponds to an octave, and the permitted minimum amplitude ratio corresponds to
the slope of the spectrum. The limiting value of the changing amplitude with respect
to the frequency takes the form, standard for engineers:

A,
Sqp < 201og, v 20log,, 3 ~ £10dB per octave. (6.16)
0

The obtained spectrum slope £10 dB per octave defines a maximum gain change of
10 dB for each twofold increase or decrease in frequency. It is a low slope spectrum
peculiar to a set of high harmonics with large amplitudes that differ not more than 10
dB for each doubling or halving of the frequency.

6.13.2 The HVD method

The HVD produces only a limited number of harmonics. But here the number of
obtainable decomposed components depends on their frequency relation and the
frequency resolution value. A sequence of separated frequencies represents an arith-
metic progression such that the difference of any two successive frequencies is the
value of the HVD frequency resolution. For example, in the case of the maximum fre-
quency fmax < 0.16Fs, the minimum frequency fni, > 0.02F’s, and the best available
frequency resolution Af > 0.02Fs, where Fs is the sampling frequency, a limiting
number of valued oscillating components will be not more than seven components:

— 1+ fmax_fmin < 1+O'16FS_0'02FS <7 (6 17)
n= NS 0.02F, = '

Therefore, the HVD is able to extract relatively more components than the EMD, but
it is still a rather small finite number of valued oscillating components.

6.14 Decompositions of typical nonstationary
vibration signals

Generally, a measured signal can be represented by a composition (sum) of a finite
number of monocomponent signals: x(¢) = Y A;(f) cos (f wl(t)dt), where A;(¢) is
an instantaneous amplitude and wj(¢) is the IF of the /-component. In other words,
the signal consists of a finite number monocomponents, where each has a constant
or a slowly varying amplitude A,(?), a frequency w;(f), and an instantaneous phase
[ @i (t)dt. One of the most important results of the decomposition is an ability to
preserve the phase content of the signal by constructing every initial component
in the time domain and preserving all of its actual phase relations. The obtained
combination of simplest components with the time and phase relations can provide
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us with some insight into a nonstationary vibration signal. Moreover, an improvement
can be achieved in the analysis of the nonlinear dynamic system; but that cannot be
said about other methods. The individuality of the simplest components inside the
vibration composition allows the most effective decomposition method to be chosen.

6.14.1 Examples of nonstationarity vibration signals
6.14.1.1 Aperiodic DC offset plus oscillation

The DC offset can be easily removed from the vibration composition by different
methods, including the well-known HT decomposition methods (Huang et al., 1998;
Feldman, 2006) (see Section 6.2.1). In the case of a short length data, the EMD
method is more suitable for such a nonstationary offset extraction. The HVD method,
which requires long length data, is also suitable for the offset extraction. It should be
mentioned here, however, that only one single valuable aperiodic component can be
decomposed by any method. The HT decompositions are unable to receive several
slow-varying DC offset components, which means, for example, that the aperiodic
DC offset cannot be further divided into increasing or decreasing components.

6.14.1.2 Sharp stepping-like variations in DC or in oscillating components

This case corresponds to well-separated but rapidly changing envelopes and IF tra-
jectories, when the instantaneous characteristics as fast-varying functions can jump
in time. In other words, such a multicomponent signal is composed of sequential
segments with a step-varying DC, an envelope, and an IF. The EMD as the local
method is more suitable for extracting sharp variations — for example, for detecting
and synchronizing instant segments. The HVD in this case will extract only smoothed
variations of instantaneous parameters.

6.14.1.3 Sum of quasi (almost) periodic oscillating-like harmonics

In the case of well-separated (non-crossing) and smoothed envelopes and IF trajecto-
ries, the energy and frequency of every component are well concentrated (localized),
and the components do not overlap. These simple components resemble nonstation-
ary modes like Fourier modes in the Fourier series, where every component can have
a varying but non-crossing envelope and an IF. The EMD method allows separation
of up to 3—4 harmonics with large amplitudes. The HVD allows separation of up to
5-6 harmonics with both large and small amplitudes.

6.14.1.4 Close-spaced and crossing-frequency amplitude components

In this case, the envelope and/or the IF trajectories have single or mutual crossings
between each other. From a decomposition point of view, this is the most com-
plicated type of multicomponent signal. The EMD method does not separate these
close-spaced and crossing frequency components. However, the HVD method, which
has relatively much better frequency resolution capacity, does decompose these non-
stationary harmonics. An example of HVD separation of two crossing-frequency
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Figure 6.44 The HVD decomposition of two frequency- crossing components:
the initial composition (a), the first decomposed component with its envelope
(b), the second decomposed component with its envelope (c), the IF of the both
components (d)

sweeping components is shown in Figure 6.44. In general, a decomposition result is
not unique and is application-dependent.

6.14.1.5 Slow frequency modulated signal

A quasi-monoharmonic signal with a slow modulated frequency looks and acts like a
harmonic during every short time interval, since at every moment the signal behaves
as a single simplest harmonic when no further HT separation or decomposition
is available. The EMD method results in a number of IMFs. Unfortunately, the
decomposition of frequency modulated quasiharmonic signal does not always occur
in the same single IMF. It is observed that the modulated signal arrives in different
IMFs as broken time segments. Therefore, to get a physically meaningful decomposed
frequency modulated signal we need to merge several IMFs together. The HVD
method, on the contrary, results in a single frequency-varying component.

6.14.1.6 Amplitude modulated signal

An AM signal is generated by modulating the amplitude of a carrier signal, and it
is composed of two terms: an oscillating carrier wave plus a wave that is a product
of two harmonic-like terms. Actually, an AM signal is composed of three sinusoidal
waveforms: a carrier wave, and lower and upper close-spaced sideband components.
The EMD method does not separate these close-spaced components. However, in
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Figure 6.45 Extraction of the sweeping oscillations and exhibition of remaining
impulses: the initial composition (a), the extracted sweeping oscillation (b), the de-
noising impulses with a slow triangle component (c¢)

the case of amplitude modulation, the HVD method does allow separation of AM
harmonics (see Sections 6.8.1-6.8.2).

6.14.1.7 Sum of impulses (sharp stepping-like varying components) and
quasi (almost) periodic oscillations

The HT decomposition methods are not effective for the direct extraction of impulses
in the signal. Nevertheless, the existing dominant interferences in the form of quasi
(almost) periodic oscillations can be easily extracted from the composition. The
remaining result, in the form of pure impulses, will be exhibited more informatively.
In this case, instead of extracting impulses embedded in the noise, we will extract
and remove the quasiharmonic noise and enhance the hidden impulse components.
Such a HT-based filtering technique for structural noise removing (de-noising, noise
cancelation, suppressing noise) offers excellent performance even when the impulse
signal-to-noise ratio is very low (Figure 6.45).

6.14.1.8 Sharp (stepping-like) varying components

In the case of a complicated, sharp time-varying waveform (triangle, square, etc.),
sometimes the purpose of a signal decomposition is not to receive a true frequency
distribution, but rather to represent the complicated waveform in the form of the
initial reduced time domain. The HVD method can further decompose the compli-
cated waveform by spreading it out into the main quasiharmonic and high-frequency
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wave-like components. The HVD method can also perceive it only as a single sharp
varying offset component without decomposition. The ability to decompose or not
depends on the relation between the main component frequency and the cutoff fre-
quency of the lowpass filter. If the main component frequency is less than the filter
cutoff frequency, then the HVD perceives such a slow waveform as a single varying
offset component. Otherwise, the method spreads it out into the main quasiharmonic
and the high-frequency wave-like components.

The total number of obtained components — equal to the number of required
iterations necessary to provide a good approximation of a signal composition —
depends on how rapidly the initial waveform changes. As an example, Figure 6.23
(dashed line) depicts the signal of a nonstationary square wave function with a varying
amplitude and period.

The first five decomposed component terms are plotted as a sum with the initial
square wave in Figure 6.23 (solid line). As can be seen, it only requires the first
five components to describe the nonstationary square wave in the time domain with
a high degree of accuracy. This example illustrates the fact that the HVD method
enables the construction of a perfect match between a complicated nonstationary
signal and a composition of small number of time-varying elementary oscillating
components. Contrary to that, the EMD method does not decompose the described
sharp time-varying waveform.

6.14.1.9 Random signal

The EMD is able to filter a random signal as a bandpass filter bank, decomposing white
noise into the IMFs whose frequency spectrum comprises an octave (Flandrin, Rilling
and Goncalves, 2004). Every obtained IMF is the simplest fundamental component
of a signal composition. As the simplest component, it cannot be further decomposed
by the same EMD. An arbitrary data set can be reduced into IMF components only
once. Applying the EMD to any IMF for a second time will produce nothing more
than the same unchanged single IMF. Unlike the EMD, the HVD method does not
decompose random signals.

All the considered types of nonstationary signal and the obtainable results of the
HT decompositions have been summarized in Table 6.1.

6.15 Main results and recommendations

An arbitrary multicomponent nonstationary signal as a sum of quasiharmonic com-
ponents with an aperiodic offset can be conventionally separated into elementary
monocomponents by both the EMD and the HVD methods. Both methods suc-
cessfully separate different frequency quasiharmonics and a single slow aperiodic
component at each iteration.

There are at least two important limitations that should be kept in mind when
applying the EMD and the HVD methods. The first limitation is the low-frequency
resolution of the EMD method when the frequency range of the next IMF differs by
more than one octave from the previous IMF. This is why the EMD method cannot
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Table 6.1 Application of the HT decompositions for typical vibration signals

Obtainable results and recommendations

Type of nonstationary

signal composition EMD HVD
Aperiodic DC offset plus  Extraction of DC offset ~ Extraction of DC offset
oscillation for small and large for large length data
length data
Sharp stepping-like Extraction of sharp Extraction of smoothed
variations in DC or variation variation
oscillating components
Sum of quasi (almost) Separation up to 3—4 Separation of up to 5-6
periodic oscillating-like harmonics with large harmonics with large
harmonics amplitudes and small amplitudes
Close-spaced and crossing No separation of Successful separation of
frequency components harmonics with small harmonics
amplitudes
Slow frequency modulated No separation of No separation of
signal harmonics harmonics
Amplitude modulated No separation of Successful separation of
signal harmonics harmonics
Impulses (sharp Extraction and removal of Extraction and removal of
stepping-like varying quasiperiodic quasiperiodic
components) with quasi oscillations and oscillations and
(almost) periodic exhibition of remaining exhibition of remained
oscillations impulses impulses
Sharp stepping-like No decomposition Decomposition into
varying signal quasiperiodic
oscillations
Random signal Bandpass filter bank No filtration
filtration (decomposition)
(decomposition)

separate closely spaced or frequency-crossing harmonics. The HVD method has a
better frequency resolution of even less than half of an octave, resulting in its capacity
to decompose frequency-crossing nonstationary harmonics.

The second limitation is the finite small number of separated valued components,
which does not exceed 3—4 components for the EMD and 5-6 components for the
HVD. These limitations of the decompositions are often ignored in many vibration
applications. Each decomposition method allows extraction of only a single slow-
varying aperiodic offset, which displaces the initial composition by the aperiodic
DC component.
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Sometimes the extracted large quasiharmonic components are of no interest, but
the remaining components, such as small impulses or sudden signal changes, are of
interest for investigation. Thus, by removing large parts of the signal we are able to
detect the very small remaining impulse components, even when the impulse signal-
to-noise ratio is very low.

The decomposition methods are recommended for extracting a small number of
nonstationary components with varying and a priori unknown instant parameters.
The decomposition methods are dedicated primarily to decompose quasi and almost
periodic oscillating-like signals. Typical examples of such signals are a time-varying
waveform from a rotor startup or shutdown vibration (Antonino-Daviu et al., 2007),
a composition of steady-state and transient motions (Feldman, 2006), a vibration of
nonlinear systems with superharmonics for precise identification (Feldman, 2007a),
and so on. The decomposition methods are not very effective for the separation
of other motion types, such as random (wideband noise), impulse, non-oscillating
(aperiodic) vibration signals.

6.16 Conclusions

In this chapter, we considered some general properties of a multicomponent signal
as a composition of narrowband nonstationary components with time-varying am-
plitude and frequency. The narrowband component is defined as a signal that always
has a positive IF and envelope. The multicomponent signal allows us to extract a
narrowband component from the composition, resulting in decreasing the spectrum
bandwidth of the remainder of the signal.

A new and extremely simple Hilbert Vibration Decomposition method has been
developed for vibration separation using the HT. Estimation of the varying frequency
of the largest energy vibration component is effected by the lowpass filtration of the
instantaneous frequency of the vibration. Synchronous envelope demodulation is per-
formed by multiplying the composition by a sine and Hilbert projection wave, which
are phase locked to the current component. This allows us to treat the nonstationary
vibration composition as an aggregation of the synchronous components. The key
factor of a precise decomposition is to use appropriate methods to extract the IF and
envelope of the initial vibration composition.

A nonstationary example of the separation of a transient and a forced vibra-
tion regime was described; and an example of the decomposition of a time-varying
vibration generated by a dynamical system obeying a nonlinear equation was shown.

Two signal decomposition methods (the EMD and the HVD) were analyzed and
compared. It was analytically explained why the EMD generates the largest energy
component by spline fitting and averaging of the local extrema. It was also explained
why frequency resolution capabilities of the EMD method could be problematic. The
decomposition methods were analyzed and compared in general, without a detailed
inspection of signal-processing procedures such as spline approximation or filtering.
The local and global HT decomposition methods can be used in combination to
identify the intrinsic components more sharply and effectively.
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The decomposition methods are dedicated primarily to decomposition of quasi
and almost periodic oscillating-like signals. Such oscillating types could be, for ex-
ample, multicomponent nonstationary modulated vibrations similar to a rotor startup
or shutdown vibration, or the motion of a nonlinear dynamic system. The HT de-
composition methods are not effective for separating other types of motion, such
as random, impulse, non-oscillating (aperiodic) signals or signals from linear and
time-invariant systems.



7

Experience in the practice of
signal analysis and industrial
application

Signal processing covers a number of applications for extracting information from
measured data. Among other methods, the Hilbert transform (HT) provides some
unique information on the nature and level of the measured vibration signal (Randall,
1986). The information describing a signal is carried out mainly by the instantaneous
amplitude, phase, and frequency (Figure 7.1). These functions instantly monitor
any change in a physical phenomenon, source, and medium through which a signal
is transmitted. The key to an accurate vibration characterization is to decompose
complex time signals into functions of different characteristic time scales and extract
their time-varying frequencies and amplitudes (Pai, 2007; Gendelman, Starosvetsky,
and Feldman, 2008; Starosvetsky and Gendelman, 2008, 2010).

In addition to a direct extraction of the instantaneous amplitude, phase, and
frequency from the vibration signal, the HT gets information about disturbances and
distortions of the instantaneous signal attributes by utilizing a signal demodulation.
Furthermore, it provides a decomposition of the complicated signal and constructs
a frequency—time distribution of the energy of the motion as a Hilbert amplitude
spectrum and smooth congruent envelopes. The HT is an effective tool for analyzing
unsteady transient vibration signals. It can clearly indicate frequency—amplitude
differences with time and extract some time—frequency characteristics that cannot be
obtained by any other method (Guo and Peng, 2007; Huang and Shen, 2005).

Hilbert Transform Applications in Mechanical Vibration, First Edition. Michael Feldman.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd. ISBN: 978-0-470-97827-6



128 HILBERT TRANSFORM APPLICATIONS IN MECHANICAL VIBRATION

x(f) = A(f) cos g (1) = ZA,(t) cost,(t)dt

x(1) HT (1)
Real signal = HT projection
A() /0] Ag(1)
Envel Instantaneous Instantaneous
VA phase phase shift

%t D o(t)

Instantaneous

D frequency ﬂ

(1), o(t 2.x,(1
Demodulation Decomposition
o, Apop (1) Do (7
Hilbert Congruent Congruent
spectrum envelope frequency

Figure 7.1 The HT procedures in signal processing (Feldman, (C)2011 by Elsevier)

7.1 Structural health monitoring

7.1.1 The envelope and IF as a structure condition indicator

Vibro-acoustic modulation is by far the most widely exploited approach for moni-
toring various nonlinear symptoms from acoustical responses. The intensity of mod-
ulation is directly related to the severity of damage. Various parameters, based on
the amplitude of the carrier frequency and modulation sidebands, have been used to
describe this severity. A recent paper (Hu et al., 2010) devoted to the demodulation
of the envelope and the IF, explored the time-domain analysis of modulated acousti-
cal responses. This investigation focused on the instantaneous characteristics of the
response using the HT. The study showed that both modulations — that is, amplitude
and frequency — are present in the acoustical responses when the aluminum plate is
cracked. However, the intensity of amplitude modulations correlates far better with
crack lengths than the intensity of frequency modulations. A nonlinear acoustic test
was performed for an undamaged and cracked aluminum plate instrumented with
surface-bonded, low-profile piezoceramic transducers.

The concept of the IF as a potential candidate for a damage detection indicator
was examined in Bernal and Gunes (2000). The first step in the use of the EMD
method was to decompose the signal into several monocomponent signals. This
improves the likelihood of the IF concept being negative. In the case of a sudden
severe damage, when the structure remains linear after the damage, the technique
was capable of identifying the time and the extent of the damage. It was shown that,
although the computations were made for noiseless conditions, the approach can
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give useful information in realistic conditions with noisy measurements. In the case
of a hysteretic response, the IF was found to be inadequate as a robust indicator of
modest nonlinearity; but in the case of severe nonlinear behavior, the IF showed some
clear trends consistent with inelastic behavior. The IF was also recommended for the
interpretation of a crack-induced rotor nonlinear response (Yang and Suh, 2004a).

In Salvino et al. (2005) the EMD was applied in structural health monitoring.
Time—frequency features and instantaneous phase relationships were extracted and
examined for changes that may occur due to damage. It was shown that the EMD
and instantaneous phase detection approach, based on time—frequency analysis along
with simple physics-based models, can be used to determine the presence and location
of a structural damage.

The HT and AM-FM signal-modeling technique has been applied to a loud-
speaker identification (Grimaldi and Cummins, 2008). In order to characterize the
speaker, a single IF for a real-valued signal was constructed first. An importance
of the IF stems from the fact that speech is a nonstationary signal with spectral
characteristics that vary with time.

The HT method was also effective for resolving the true physical features char-
acteristic of a dynamic motion experiencing nonlinearity and undergoing bifurcation
in a rotor-journal bearing model (Yang and Suh, 2004b). A model that was subjected
to the breathing and slow growth of a transverse surface crack was developed. It
was employed to demonstrate the effectiveness of the method in characterizing the
inception and progression of various states of bifurcation. The fundamental notion
of an IF defines frequency as a phase temporal gradient, and thus provides a power-
ful mechanism to dissociate amplitude modulation and frequency modulation. The
results of applying the IF to the characterization of bifurcation, and the evolution
of instability, for a cracked rotor also indicate that the IF interprets nonlinear rotary
responses with sound physical bases (Salvino et al., 2005).

7.1.2 Bearing diagnostics

Based upon the EMD and the Hilbert spectrum, a method for the fault diagnosis of
roller bearings is proposed in Yu, Cheng, and Yang (2005). The envelope and the local
Hilbert marginal spectrum are used to detect fault patterns and to monitor a roller
bearing with outer-race faults or inner-race faults. The results show that the proposed
method is superior to the traditional envelope spectrum method in extracting the fault
characteristics of roller bearings.

An application of the EMD method to the vibration analysis of ball bearings is
introduced in Du and Yang (2007), where the local mean of the extrema is computed
by averaging successive extrema. Based on the improved EMD method, the vibration
signals of ball bearings are analyzed in detail, and it is shown that the proposed
method is superior to the discrete wavelet decomposition for the vibration analysis of
ball bearings. For more about the HT and the structural health monitoring relations
see, for example, Boller, Chang, and Fujino (2009).

An EMD method, improved to restrain the end effect in EMD, was applied to the
fault diagnosis of large rotating machinery (Wu and Qu, 2008). The EMD provided
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an easier and clearer approach to the fault diagnosis by an investigation of the IMFs
in the time domain. A radial rub between the rotor and stator of the machine is a
serious malfunction that may lead to catastrophic failure. It normally involves several
physical effects, such as friction, impacting, and nonlinear behaviors in the rotor-
bearing system. For instance, it was shown that — due to a radial rub between the
rotor and the stator — the shaft orbit suddenly changed its elliptical trajectory. Thus,
an acute change of shaft orbit curvature can be noticed and considered as a feature of
the radial rub. The observed amplitude modulation component from the compressor
was caused by an abnormal excitation in a pipe.

7.1.3 Gears diagnosis

Data acquisition for the testing or analysis of rotating machinery usually involves
measurements of the speeds of the rotating elements. It is sometimes the case, how-
ever, that space limitations make it difficult to introduce speed measuring devices into
the system. Measuring the speed of gears that are already in the system requires a
minimum of space and system disturbance. However, the resolution of the measure-
ment is limited by the number of teeth on the gear. A method presented in Wallace
and Darlow (1988) uses HT techniques to recover the shaft oscillations of a frequency
approaching that of the passing teeth. The HT can be a common and easily instru-
mented approach to monitoring shaft speed with magnetic transducers mounted near
the teeth of a shaft-mounted gear. This work demonstrates that transient or higher
frequency shaft vibrations can be recovered from this type of data. An example of
the use of HT for signal demodulation is presented and compared to a time-domain
approach for measuring transient speed variations. The HT technique has been shown
to be an accurate method of recovering transient gear speeds when high-resolution
devices cannot be attached to the shaft.

Two envelope analysis methods performing bearing diagnostics are suggested
in Ho and Randall (2000). It has been found that analyzing the squared envelope
can improve the signal to noise ratio in certain situations. If the ratio is greater
than unity, there is an advantage in analyzing the squared envelope rather than the
envelope itself, because the ratio increases as a result of the squaring operation. The
modulation frequencies representing the bearing fault are always present additively
in the envelope spectra, but they can be masked by discrete or random noise.

The EMD and Hilbert spectrum were applied to the vibration signal analysis for
the fault diagnosis of a localized gearbox (Liu, Riemenschneider, and Xu, 2006).
Vibration signals collected from an automobile gearbox with an incipient tooth crack
were used in the investigation. The results show that the EMD algorithms and the
Hilbert spectrum perform excellently. They are found to be more effective than
the frequently used continuous wavelet transform in the detection of the vibration
signatures. The effects of modulation and nonstationarity in vibration signals
collected from the faulty gearbox present challenges for the extraction of fault features
(Fan and Zuo, 2007). By applying demodulation and time—frequency analysis, the
HT generates a feature indicator representing the real gearbox condition through an
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analysis of the vibration signal. Comparison studies show that the proposed method
is more effective and does not require operators to have much diagnostic experience.

7.1.4 Motion trajectory analysis

Vibration motion measured by two sensors in two different directions forms a vibra-
tion trajectory, or an orbit, as a path of the body on a plain. The simplest form of
motion trajectory is a shaft whirling that often accompanies rotation as some forces,
like unbalance and surrounding fluids exert a force on the rotating elements. Typically,
two orthogonal sensors are positioned at a right angle to measure the shaft motion.
The HT can be employed to decompose and separate the forward and backward whirl
direction (Bucher et al., 2004). Examining the whirling motion of a shaft, it is clear
that in a forward whirl orbit the first direction precedes the second by 90°, while in
a backward whirl the first lags the second direction response by 90°. This fact is true
for every time moment of every frequency; therefore a nonstationary signal can be
separated by using the HT to create two signals representing forward and backward
whirl orbits, respectively. The HT approach illustrates the main advantage of using
the forward/backward decomposition over the frequency and time domains (Bucher
and Ewins, 1997; Bucher, 2011; Lee and Han, 1998). An instantaneous estimate of
the forward and backward components containing all the frequencies of the original
signals is obtained. A possible application of this real-time decomposition is an online
diagnostics.

7.2 Standing and traveling wave separation

The HT may be of practical use for the real-time kinematic separation of nonstationary
traveling and standing waves. Whenever these two wave components are traveling
through the same medium at the same time, they pass through each other without
being disturbed. According to the principle of superposition, the transverse vibration
of the medium at any point in space or time is simply the sum of the individual wave
components, namely, the traveling and standing components. A traveling wave moves
from one place to another, whereas a standing wave appears to stand still, vibrating
in situ. Consider a pure traveling wave of the form (Feeny, 2008):

Wi(x, 1) = Ay cos(kx) cos(wt) £ Ay sin(kx) sin(wt). (7.1)

where Ay cos(kx) cos(wt) is a component of the cosine wave, and A7, sin(kx) sin(wt)
is a component of the quadrature wave. The sign of a quadrature wave component
defines the right, or left, direction of the propagation of a traveling wave.

Another pure type of solution of the wave equation is a standing wave that
oscillates in place, but does not travel (translate in space). Such a wave, also called
a mode shape, has the form: Wy(x, 1) = Ay cos(kx + ) cos(wt). Standing wave
characteristics are locations with maximum displacement (antinodes) and locations
with zero displacement (nodes). The locations where cos(kx + §p) = 0 are called
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nodes, whereas the places where cos(kx + §y) = =1 are called antinodes. The initial
phase angle §, describes the relative disposition of the mode shape along the vibration
body. Let us choose an original (an initial, or a starting) point for the standing wave
(x = 0) at the antinode point where the standing wave has a maximum kx + 8y = 0.
In this case, the initial phase angle § is also equal to zero and the standing wave
takes the simplest form:

Wy = A cos(kx) cos(wt) (7.2)

In a general case, the two wave components described above form a signal compo-
sition: Wy = Wy + Wy =(Ay + Ag) cos(kx) cos(wt) + Ay, sin(kx) sin(wt), that can
be normalized to have a maximum lateral displacement of unity:

Ws = cos(kx) cos(wt) £ y sin(kx) sin(wt), (7.3)

where y = Ay / (A + Ag) is the traveling wave ratio, meaning a portion (scalar mea-
sure) of the amplitude of the traveling wave in the total amplitude of the composition.
A traveling wave ratio always falls in the range [0, 1].

The separation of vibration waves into their traveling and standing components
requires simultaneous spatial information, typically obtained from an array of two
or more sensors, while one of the sensors is a reference (original, starting) point.
Theoretically, the reference point can be taken at an arbitrary point on the oscil-
lating body. By choosing the reference signal at the point nearest to the antinode,
where the standing wave has its maximum (7.2), the standing wave takes the form
Wy = Arer cos(e) cos(kx) cos(wt) ~ Ag cos(kx) cos(wt), where Ay = ApercOSe 18
the reference signal amplitude value and ¢ is the phase shift in the space between
the real antinode and the reference point. The value of ¢ depends on the posi-
tion of the sensor and on the total number of measurement points along the wave.
The largest possible value of ¢ in the case of equally spaced points is equal to
Emax = 0.5 / (I1+n / 4), where n is the total number of points for a period of the
standing wave. For example, for more than 16 points, the measured amplitude of
the reference point will be only 5% less than the real amplitude at the antinode. In
practice, this error in amplitude values is small and can be neglected.

The HT, being a linear operator, acts upon the sum of the individual wave com-
ponents — namely, the traveling and standing components — independently. Thus, the
composed vibration signal Wy, (7.3) along the wave will have the following envelope
and phase shift functions:

A(x)* = y?sin(kx)* + cos(kx)*; ¢ = arctan [y sin(kx)/cos(kx)] , (7.4)
where A(x) is the measured amplitude and ¢ is the measured phase angle relative

to the phase in the initial antinode point, where x = 0. The instantaneous relative
phase shift in the case of two different nonstationary real signals, xo(¢) and x;(¢),
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can be estimated as the instantaneous relative phase between them, according to the

HT (2.8): ¢ = arctan Xo(Di(t) — )SO(I))?(I), where %(¢) is the HT projection of the
xo(£)x; (1) 4 Xo(1)X; (1)

measured real signal x(¢).

To separate a composed vibration wave into two components we need
to find an unknown traveling wave ratio y. The estimated envelope and the
phase shift of the measured vibration signals in two points allow this unknown
parameter to be calculated directly Rewriting expressions (7.4) in the form
cos(kx)? = Az/ 1+tan(¢)2]z y 2sin(kx)? = A2/ [ +cot(¢)2] and utilizing the
trigonometric identity cos(¢)” + sin(¢)? = 1 we will obtain the unknown traveling
wave ratio

,  sin@)?
V=32 cos(¢)?’ (7.5)

Having identified y, the wave decomposition can be formed. It is composed of a nor-
malized traveling component y [cos(kx) cos(wt) + sin(kx) sin(wt)] and a normalized
standing component, in the initial antimode point: (1 — y) cos(kx) cos(wt). In a nor-
malized form, y can attain a maximum value of 1; in which case the standing-wave
component vanishes.

The traveling wave has a wavelength L = 2x / kX pear as the distance between
two neighbor peaks, oscillating with the frequency w. Thus, the propagation speed
Vi of the traveling wave — as a rate at which a given peak of the wave travels — has a
known form: V7, = wL/27r = w/kxmax.

As an illustration to the proposed technique, we use a simulated example of
a composed vibrating string with 32 vibration points. A traveling wave ratio is
calculated directly and is equal to y = 0.35. Figure 7.2 shows the traveling part
moving horizontally with the propagation speed V,,. Figure 7.3 shows the standing
part of the wave which simply oscillates and does not travel to the right or to the left.

The suggested use of the HT for a direct kinematics separation of the traveling
and standing components may be a practical method for the real-time identification
and tuning of the traveling waves (Minikes et al., 2005) and a damage visualization
(Ruzzene, 2007).

The application of the HT to the study of internal gravity waves can pro-
vide interesting results and answer questions still unsolved (Mercier, Garnier, and
Dauxois, 2008). Thanks to the analytical representation of the internal waves using
the HT, it is easy to obtain the envelope of a monochromatic internal wave and thus
quantify how it decreases through viscous dissipation. The HT is an excellent tool
for measuring the dissipation effects. The HT complex demodulation presented in
Mercier, Garnier, and Dauxois (2008) not only offers an analytical representation of
the wavefield with extraction of the envelope and the phase of the waves, but allows
a discrimination of different possible internal waves of one given frequency. The
experimental investigation of the attenuation, reflection, and diffraction of internal
plane waves generated using a new type of generator has provided answers to several
theoretical assumptions that had never been confirmed.
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Figure 7.2 The traveling part of a wave (Feldman, (C)2011 by Elsevier)

Points in space
Time

Figure 7.3 The standing part of a wave (Feldman, (C)2011 by Elsevier)
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7.3 Echo signal estimation

The HT is used to analyze an echo signal that appears at a time that overlaps with
the initial signal itself. Such a HT approach is proposed to identify the arrival time
of overlapping ultrasonic echoes in a time-of-flight diffraction flaw detection (Chen
et al., 2005), for example. A nonlinear and nonstationary ultrasonic signal was de-
composed using the EMD method to obtain intrinsic mode functions, which were
used for a signal reconstruction. By applying the HT to the reconstructed signal, the
arrival time of each echo can be clearly identified. The efficiency and feasibility of
this approach in enhancing the time resolution of an ultrasonic signal are validated
by a simulation and an experiment, where 98% of flaws in 12-, 10-, and 8-mm thick
pipelines could be identified with an average accuracy of 0.2 mm. The blind area
of the diffraction has been reduced to 2.5 mm under the surface. The frequency and
angle of the probe pair have little influence on the identification (Chen et al., 2005).

7.4 Synchronization description

The first key effort in the use of the HT to characterize the effect of a phase synchro-
nization of weakly coupled self-sustained chaotic oscillators was made by Rosenblum
(1993) and Rosenblum, Pikovsky, and Kurths (1996). These authors observed a syn-
chronization phenomenon for coupled Rossler attractors, where phases were locked
in a synchronous regime, while amplitudes varied chaotically and were almost uncor-
related. Coupling a chaotic oscillator with a hyperchaotic one, produced a new type
of synchronization, where the frequencies were entrained, while the phase difference
was unbounded. A relation between the phase synchronization and the properties of
the Lyapunov spectrum was also studied.

The HT and the analytic signal representation are widely used in the investigation
of the modern nonlinear dynamics of chaotic and stochastic systems (Anishchenko
et al., 2007).

7.5 Fatigue estimation

The HT approach can be used to count fatigue cycles in an arbitrary loading waveform.
It processes a time history representing the random wideband loading condition
to generate the number of cycle-counts with their corresponding amplitudes. The
approach is general, accurate within any desirable degree, and amenable to modern
signal processing (Kendig, 1997; Gravier et al., 2001).

7.6 Multichannel vibration generation

The HT can be used not only for analysis, but also to construct the required signal
(Manske, 1968; Yang, 1972). For a more detailed and general discussion see Liang,
Chaudhuri, and Shinozuka (2007), which presents a simulation of one-dimensional,
univariate, nonstationary stochastic processes by integrating Priestley’s evolutionary



136 HILBERT TRANSFORM APPLICATIONS IN MECHANICAL VIBRATION

spectral representation theory. Applying this simulation, sample functions can be
generated with great computational efficiency, while the HT gives more concentrated
energy at certain frequencies. The simulated stochastic process is asymptotically
Gaussian as the number of terms tends to infinity. A mean acceleration spectrum,
obtained by averaging the spectra of generated time histories, are then presented
and compared with the target spectrum to demonstrate the usefulness of this method
(Liang, Chaudhuri, and Shinozuka, 2007).

7.7 Conclusions

In conclusion, it may be said that some general properties of a multicomponent
signal were described. The signal was presented as a composition of narrowband
nonstationary components with time-varying amplitudes and frequencies. A nar-
rowband component is defined as a signal with an always positive IF and enve-
lope. The multicomponent signal permits a narrowband component to be extracted
from the composition, which decreases the spectrum bandwidth of the remainder of
the signal.

Two signal decomposition methods (the EMD and the HVD) were analyzed and
compared. It was analytically explained why the EMD generates the largest energy
component by spline fitting and averaging of the local extrema. It was also explained
why frequency resolution capabilities of the EMD method could be problematic. The
decomposition methods were analyzed and compared in general, without detailed
inspection of signal-processing procedures such as a spline approximation or filtering.

The decomposition methods are dedicated primarily to decompose quasi and
almost periodic oscillating-like signals. Such oscillating types could be, for exam-
ple, multicomponent nonstationary modulated vibrations similar to rotor startup or
shutdown vibrations, or have a motion like a nonlinear dynamic system. The HT
decomposition methods are not effective for the separation of other types of motion,
such as random, impulse, nonoscillating (aperiodic) signals, or signals from linear
and time-invariant systems.

The text in Part II has described the main results and some limitations of two HT
decompositions — the local EMD and the global HVD methods. The clarified issues
regarding amplitude—frequency resolution will often give a better signal representa-
tion. The typical nonstationary signals that were considered — with applications and
practical recommendations — constitute an attempt to adjust and more completely
realize the potentials of HT signal processing, and, subsequently, to improve the
nonstationary and nonlinear data analysis.

According to the knowledge of a large body of research, HT signal processing
yields excellent results concerning the detection of different kinds of damage and is
applicable for online structural health monitoring. Generally, the success of a signal-
based approach depends very much on the initial physical knowledge of the user. It
may yield valuable information about the type of damage, but the extent can only
rarely be calculated and the results are of a qualitative nature. However, knowledge
of the type of damage detected by the signal-based approach is a very valuable basis
for an improved model-based diagnosis that will yield a quantitative estimate of the
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size and location of the damage. A purely model-based approach, on the other hand,
can fail if no initial knowledge of the damage is available. In such a case a multitude
of different types of damage would have to be considered, and it would be a difficult
(and time-consuming) task to distinguish damages that had similar effects on the
measurements. True progress in the area of diagnostics can be made if signal- and
model-based diagnoses are combined.
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The physical phenomena in vibration systems can be studied either in the time or
frequency domains involving different mathematical descriptions (Hammond, 1968).
These descriptions are equivalent and are related by the Volterra series and the HT
(Worden and Tomlinson, 2001). The choice of a domain is merely for mathematical
convenience. The time (temporal) description of the process can be regarded as a
“natural” description for non-stationary processes, while the spectral description is a
measure of the power distribution over the frequency.

The HT and analytical signal can also be successfully applied directly to differ-
ential nonlinear equations of motion. Thus the analytic signal becomes a core of the
method of separating the frequencies in nonlinear systems (Vainshtein and Vakman,
1983). The method separating the frequencies uses a nonlinear vibration equation,
analytically considers its higher approximations, and derives a solution that contains
different high-order superharmonics.

8.1 Kramers—-Kronig relations

There is a number of quantities that may be used to characterize a linear vi-
bration system. Among the most popular is a complex function of frequency
which contains complete information describing the behavior of a linear sys-
tem after its excitation with an arbitrary stimulus. A frequency response func-
tion (FRF) is often expressed using a complex notation that makes it possible
to combine the modulus |[FRF(w)| and the phase ¢(w) into one complex function
FRF (w) = Re () + iIm (w) = |[FRF(w)| ¢'*“). The real part Re (w) and the imag-
inary part Im (@) of a complex frequency function are related by the HT, gener-
ally known among physicists as the Kronig—Kramers relation (King, 2009). For

Hilbert Transform Applications in Mechanical Vibration, First Edition. Michael Feldman.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd. ISBN: 978-0-470-97827-6
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Figure 8.1 The real (a) and imaginary (b) parts of the FRF of a linear vibration
system (Feldman, (C)2011 by Elsevier)

a linear causal system the HT presents interesting mathematical properties of the
Kramers—Kronig relation (MacDonald and Brachman, 1956; Pandey, 1996). The
properties connect the real and imaginary parts of any complex analytic function in
the upper half plane. We can associate the imaginary part of a complex frequency
response function as the HT function of the real part. In other words, the real and
imaginary parts of the transfer function form a Hilbert pair (Figure 8.1):

Re(w) = H[Im(w)]; Im(w)= —H [Re(w)] 8.1

A relation between the modulus |[FRF(w)| = +/Re (cu)2 + Im(w)? and the phase
¢(w) = arctan [Im(w)/Re (w)] of the FRF is also provided formally by the HT (2.1)
(Figure 8.2): ¢(w) = —H [In A(w)]. A group delay (Figure 8.2b) is the phase first
derivate of the FRF Atg1oyp = —d [¢(w)]/dw and shows the time needed for signal
components around the specific frequency to pass through the system.

The imaginary part of a response function describes how a system dissipates en-
ergy since the response is out of phase with the driving force. These relations imply
that observing the dissipative response of a system is sufficient to determine its in-
phase (reactive) response, and vice versa. The energy dissipation in a vibration system
is a known effect of the change in the phase frequency function. The relationship
between dissipation and attenuation is a direct consequence of causality and linear-
ity. The occurrence of nonlinearity can manifest itself as a disability of many linear
time-series analysis techniques to describe the dynamics accurately. Any departure
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Figure 8.2 The modulus (a), and phase (b) of the FRF of a linear vibration system
and group delay (--) (Feldman, (C)2011 by Elsevier)

from an initial linear frequency response function (that is, a distortion) can be at-
tributed to nonlinear effects (Simon and Tomlinson, 1984; Tomlinson and Ahmed,
1987; Worden and Tomlinson, 2001). Any deviation from a linearity could be con-
ceivably taken as a measure reflecting the degree of the nonlinearity; however, it will
require some a priori knowledge of the system under study, that is, we will need to
know how the distortion manifested itself. Thus, the HT in the frequency domain can
be a diagnostic tool that discovers a nonlinearity on the basis of the measured FRF
data. It merely exploits the fact that the FRF of a linear system is invariant under the
Hilbert transformation.

Many of the standard signal-processing tools intended for the FRF assume that the
underlying vibration system is linear, and are therefore unable to capture nonlinear
relationships from the measured time-series data directly. The HT applied to the FRF
function analysis allows us to detect the presence of nonlinearities. Note that dynamic
systems with bifurcations or a chaotic behavior are not part of the considered class
of nonlinear systems.

8.2 Detection of nonlinearities in frequency domain

Historically, most of the first developments of HT applications in vibration systems
(e.g., a nonlinearity detection) have been using a frequency domain HT analysis
(Kerschen et al., 2006). Possibly, it happened because nonlinear systems produce vi-
bration response components as a group of frequencies other than a single frequency
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of the pure harmonic excitation. This spectral distortion in the frequency domain
indicates the existence of a nonlinear effect and can be detected by many methods.
For example, a nonlinear response can be expressed in terms of Volterra series expan-
sion, higher-order FRFs, and higher-order spectra (Worden and Tomlinson, 2001).
There exists a practice — in frequency domain methods — to inspect FRFs through a
visualization of Nyquist plots which combine the gain and phase characteristics in a
single complex plain. Since a Nyquist plot of each well-separated resonance mode of
a linear vibration system shows a circle, a linear FRF is very easily recognized and
the existence of a nonlinearity can be discovered by examining its abnormal behavior
when a departure from the circle line indicates the presence of a nonlinearity or noisy
measurement conditions (Goge et al., 2005).

One more diagnostic tool for distortions indicative of a nonlinearity, introduced in
Simon and Tomlinson (1984), is provided by a HT applied to the measured FRF data.
It merely exploits the fact that the FRF of a linear system is invariant under a Hilbert
transformation. Really, the HT is a linear operator, so for constants «, 8 and functions
f and g it follows that H [af (w) + Bg(w)] = o H [ f(w)] + BH [g(w)] (King, 2009).
The HT of a real function results in a real function, and similarly that of a complex
function results in a complex function: H [ f(w) + ig(w)] = H [ f(w)] + i H [g(w)].
For the response function in the frequency domain FRF = Re(w) + iIm(w) a unique
HT relationship exists between its real and imaginary parts (8.1). This allows us to
write the following expression for the Hilbert transformed frequency response func-
tion: H [FRF(w)] = H [Re(w)] + i H [Im(w)] = —Im(w) + iRe(w). As can be seen,
the new Hilbert transformed real and imaginary parts of the linear FRF will return
the same circle line FRF(w) = Re(w) + iIm(w). Thus, the FRF of a linear system is
invariant under the HT. But in the case of a nonlinearity the Hilbert transformed real
and imaginary parts can have another form: H [FRF,;(w)] = —Imy (@) + iRey(w).
So if the original FRF and its HT do not match, then the vibration system is most
likely nonlinear. The level of distortion suffered in passing from the FRF to the
HT can be given by the following complex function (Worden and Tomlinson, 2001)
AFRF =H [FRF,; ()] — FRF,; () = Rey (@) — Imy (@) + i [Rey (@) — Imy(w)].

This way the HT allows nonlinearity to be detected on the basis of two measured
vectors — the real and imaginary parts of the FRF. In practice the measured FRF is
presented by a sampled data with digital frequency values, so numeric methods of
the HT should be applied. Let us consider a forced vibration of a linear vibration
system under a constant force amplitude excitation with a sweeping frequency. The
measured synchronous input excitation and the output vibration allow us to estimate
the transfer function — for example, by the MATLAB® function TFESTIMATE based
on Welch’s averaged periodogram method. The real part of the FRF plotted against
its imaginary part, with a frequency as an implicit variable, is shown in Figure 8.3a.
It is clear that the benefit of using a Nyquist plot comes from the circularity of
the FRF in the complex plane. Once an accurate FRF is estimated, finding the HT
becomes straight forward. For example, the HT can be applied to the digital data by
the MATLAB function HILBERT, which produces almost the same circled FRF for
the linear system (Figure 8.3a).

Now consider another case of a forced vibration of a nonlinear hardening cubic
stiffness vibration system under the same force excitation with a sweeping frequency.
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Figure 8.3 A Nyquist plot of the FRF: the linear vibration system (a), the nonlin-
ear Duffing system (b); the measured data (——), the Hilbert transformed data (—)
(Feldman, (©)2011 by Elsevier)

The resultant FRF is now distorted and the correspondence between Re(w) and Im(w)
is no longer as good (Figure 8.3b). When the HT is applied to the digital FRF of
a nonlinear system, the obtained Nyquist plot is distorted even more — by rotating
clockwise and elongating into a more elliptical form (Figure 8.3b). Distortions due
to other types of nonlinearities (e.g., softening cubic stiffness and Coulomb friction)
are discussed in Worden and Tomlinson (2001). This example shows that the HT is a
sensitive indicator of nonlinearity in the Nyquist plot resulting in a distorted version
of the original FRF. A major problem in using the digital HT on FRF data occurs when
anon-baseband (i.e., data that does not start at zero frequency) or a band-limited data
is employed. The problem is usually overcome by adding correction terms to the HT
evaluated from the measured data (Worden and Tomlinson, 2001).

The HT analysis in the frequency domain is a nonlinearity diagnostic tool that is
more sophisticated than other well-known techniques, such as the test for homogene-
ity when severe distortions are appearing in the FRFs as excitation level increases, or
the test for isochrones when the frequency of motion becomes amplitude dependent.
However, experience shows that the HT in the frequency domain allows us to detect,
and sometimes to qualify, the type of nonlinearity (Bruns, Lindner, and Popp, 2003).
For a quantitative identification of the system’s nonlinear characteristics, we need
to find more advanced and more practical methods (Worden and Manson, 1998).
Further developments of the advanced HT methods were focused on the time domain
signal and system analysis. In this new approach, time becomes a central variable
characterizing the input—output behavior of the vibration system. In later chapters the
emphasis is not on the frequency domain; the discussion concentrates mainly on the
methods in the HT time domain.

8.3 Typical nonlinear elasticity characteristics

A vibration motion occurs when a system has some sort of restoring (elastic, spring,
stiffness) force which tends to move the mass to an initial equilibrium position.
The mass moving back to the equilibrium position acquires a momentum that keeps
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it moving beyond that position, establishing a new restoring force in the opposite
direction. This back and forth transfer of kinetic energy in the spring mass and
potential energy causes the mass to oscillate. When an external force is removed — in
a conservative (undamped) autonomous nonlinear system — the system will oscillate
with the frequency of free vibration. This free vibration is the system’s natural
response; consequently, the free vibration frequency is referred to as the system’s
natural frequency. In nonlinear vibration systems the natural frequency can depend
on an initial state, or a displacement level.

As a first approximation we can assume that the system is linear and that the
undamped natural frequency is approximately equal to the damped natural frequency
since the damping is light. Because the IF of free vibration is the first derivative of
the phase angle, it was immediately suggested that an estimate should be made of the
slope (the tangent) of the unwrapped phase line as an approximate natural frequency
value. The slopes of an envelope and phase straight lines can be estimated using a
linear least-squares fit procedure, for example Braun (1986). Such a use of slopes of
the envelope and phase function is a simple and an effective procedure (Yang, Kagoo,
and Lei, 2000; Yang et al., 2003a; Salvino, 2000; Giorgetta, Gobbi, and Mastinu,
2007). However, it is acceptable for a linear vibration system only.

In reality, nonlinear stiffness is an important factor in causing the nonlinearity
of vibration systems. This important type of nonlinearity arises when a restoring
force is not proportional to the deformation in the system. There are several types
of static load—displacement characteristics corresponding to some well-known non-
linear elasticity — such as backlash, precompressed, impact, and polynomial types.
A vibrating system could also have a piecewise-linear restoring force that may be
considered as approximations to continuous typical curves (Worden and Tomlinson,
2001). If the system to be tested has nonlinear symmetric elastic forces, the natural
frequency will, in most cases, decisively depend on the amplitude of the vibrations.
Most of the typical nonlinearities in a spring have a specific form of skeleton curve
(backbone) (Feldman and Braun, 1993). The following analysis of the topography
of a skeleton curve is essential for the evaluation of the given properties in a vibrat-
ing system, for example, in reconstructing the characteristics of the elastic forces.
Let us consider some typical cases of a nonlinear elastic force in a SDOF vibration
system.

8.3.1 Large amplitude nonlinear behavior. Polynomial model

We know, best of all, the cases where nonlinearity occurs in large amplitude oscil-
lations of elastic systems, for instance, a nonlinear spring element with a hard or
soft restoring force (Figure 8.4a), or a nonlinear friction quadratic or cubic force.
Whereas the amplitudes of vibration are large, the occurrence of these spring or
damping nonlinearities cannot be ignored.

These typical nonlinear spring elements of a mechanical vibration system could
be expressed as a power series k(x) = (a; + a3x? + asx* 4+ .. .)x. As will be shown
in Section 8.6, an average natural frequency will form a corresponding backbone
function w?(A) ~ a; + %a3A2 + §a5A4 + ... almost repeating the same expression
for the initial nonlinear restoring force k(x) (Feldman, 1997). The nonlinear backbone
skews toward a higher frequency in the case of a hardening spring (positive nonlinear
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Figure 8.4 A polynomial nonlinear restoring force (a) and the vibration system
backbones (b): a hardening spring (—), a softening spring (——)

elastics members) and toward a lower frequency in the case of a softening spring
(negative nonlinear elastics members) (Figure 8.4b).

8.3.2 Vibro-impact model

In the case when a nonlinear vibration system has absolute hard stoppers, the motion
is possible only until the mass contacts the restriction (Figure 8.5) (Babitsky and
2
. ) | wpx, 1x] < Xmax
Krupenin, 2001): k(x) = Ho0, x = & Xy
motion over the rigid boundary will increase the elastic force and the natural frequency
2
2 o5, A < Xmax
wy(A) = {oo, A = Xy
backbone of the vibro-impact (rigid boundary) system are shown in Figure 8.5.

Any further attempts to continue the

. The corresponding ideal static force characteristics and the

8.3.3 Restoring force saturation (limiter)

For this idealization the static force is linear — up to the elastic force limit of the type

a)%x, |xX| < Xmax
:I:w(%xma)(v |)C| 2 Xmax
it leads to a linear behavior of the system when the natural frequency resides in the
linear stiffness regime. After a certain point the saturation regime is reached, and the
resonance frequency of the system decreases for rising displacements (Figure 8.6b)

2
wy(A) = {

of saturation (Figure 8.6a) k(x) = { . For low excitation forces

wy, A < Xpax
2 .
xmaxw()/As A > Xmax
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Figure 8.5 A vibro-impact nonlinear restoring force (a) and the vibration system
backbone (b)
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Figure 8.6 An elasticity saturation restoring force (a) and the vibration system
backbone (b)
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8.3.4 Small amplitude nonlinear behavior. Backlash spring

There are other cases when vibration systems show their specific nonlinear behavior
in only a small amplitude range of vibrations. Such a system is, for example, a spring
backlash (clearance) (Worden and Tomlinson, 2001). The backlash vibration system
has a mass located in a gap A (clearance or dead zone) between two linearly elastic
springs. The static force characteristics have a typical form with a zero horizontal
0, x| < A
a)g (x — A)sign(x), [x] > A
the system with backlash depends on a gap magnitude, as well as on other parameters

(Weaver, Timoshenko, and Young, 1990): wy(A) = Lz, A > A.The back-

7(A/AT)
lash system backbone is a monotonically increasing curve that has a trivial vertical

line as an asymptote on the right (because of a constant natural frequency of the
corresponding linear system without a backlash), and cuts off a clearance value on
the amplitude axis on the left (Figure 8.7). The backlash system will mainly display
its nonlinear properties for small vibration amplitudes where a natural frequency
decreases extensively with each decrease of amplitude.

zone k(x) = (Figure 8.7). The natural frequency of

8.3.5 Preloaded (precompressed) spring

Another typical example of nonlinearity in a small amplitude range is a mechan-
ical vibration with a preloaded (precompressed, pretensioned) restoring force. In
this model the spring in the equilibrium position is already precompressed by the

a b

>
>,

Restoring static force / \ Amplitude

-,
>

Displacement

>,
>

Natural frequency

Figure 8.7 Restoring force with backlash (a) and the vibration system backbone (b)
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Figure 8.8 A precompressed restoring force (a) and the vibration system back-

bone (b)

amount of a force F, as indicated by the static load—displacement diagram in Figure
2

$.8a: k(x) = wyx + Fosgn(x), [x| > 0

) x| =0

precompresssed force decreases extremely for small vibration amplitudes:

. The natural frequency in the presence of a

TT o
wp(A) = Tmrceos 1 (8.2)
arccos o AT

The system backbone is arranged to the right of the asymptote a)(z)(A) = a)(z), which
corresponds to the linear system excluding the precompressed force. Actually, the
natural frequency for large amplitudes is not dependent on a vibration amplitude. The
precompressed deformation will extremely decrease the natural frequency only for
small amplitudes.

8.3.6 Piecewise linear spring bilinear model

In some cases mechanical vibration systems have nonlinear or multivalued springs
that results in piecewise linear restoring force characteristics. The simplest type of
piecewise linear restoring force is a bilinear model in which the first linear part at
the origin has a slope k; = 3, and the following linear part has a different slope

2

wix, 0 < |x| <x . . . .
ky = by k(x) =19 = Ixl ! When a vibration amplitude A is less than
WX, lx[ > x;

X1, the motion is simply harmonical and the corresponding segment of a skeleton
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Figure 8.9 A bilinear restoring force (a) and the vibration system backbone (b)

curve is a trivial vertical line (Figure 8.9). But if the vibration amplitude is larger than
x1, the backbone will look like a typical curve for the backlash or saturation system.

The HT substitution of the primary solution establishes direct relationships be-
tween the parameters of the initial differential equations and the average instantaneous
amplitude and natural frequency of the vibration response. The HT reduction allows a
direct construction of an approximate solution to be defined as a single quasiharmonic
with a slow-varying amplitude and frequency (see Sections 9.2, 9.4).

8.3.7 Combination of different elastic elements

A real vibrating system could have several nonlinear, parallel-acting springs, whose
equivalent spring force is the sum of the forces of the individual models, when all the
springs have the same deformation. In general, the task to decompose the obtained
backbone as a sum of typical curves has no unique solution. Nonetheless, when each
spring model acts within its own amplitude zone, it is possible to represent the total
backbone in the form of summed-up typical backbones.

8.4 Phase plane representation of elastic nonlinearities
in vibration systems

The vibration motion of a SDOF nonlinear conservative system is described by the
differential equation

mi + K (x) =0 (8.3)
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where m,X, and K (x) are, respectively, the mass, acceleration, and restoring force as
a function of the displacement x. The restoring force can contain a linear stiffness and
also any additional nonlinear restoring force component. The corresponding second-
order differential equation of a conservative system for a unit mass will then take the
general form

X+kx)=0 (8.4)

where the term k (x) = K (x)/m represents the restoring force per unit mass as a
function of the displacement x.

Traditionally, we introduce a new variable x, so that we can exclude time from
the equation of motion although x and x are still time dependent, so ¥ = % = di;
Using the new variable X is a traditional way of studying the motion of an oscillator by
representing this motion in the x, x plane (Figure 8.11), where x and X are orthogonal
Cartesian coordinates (Andronov, Vitt, and Khaikin, 1966). In the new coordinates,
the last equation takes the form: % = %. After variable separation and integration,
the phase plane takes the form %xz — [k(x)dx = C, where C is a constant. After
the first integration the last equation yields an expression for the velocity x of the
unit vibrating mass in any position; after the second integration it yields the time of
a full oscillation cycle (Weaver, Timoshenko, and Young, 1990). Hence, the time of

the full cycle becomes

Kmax

dx
T=4| —MmM— (8.5)

0/ 2 [ k(x)dx ’

where x,.x is the maximum value of displacement, therefore the velocity correspond-
ing to xmax in an extreme position is zero. The time of the full cycle taken for an
oscillation to occur completely is referred to as the oscillatory period. So for a linear
restoring force that will result in a constant period value equal to 27, the integral
curve of the linear harmonic oscillator will be replaced by a circle in the phase plane,
representing a rotating point with a constant angular velocity.

In the classic theory of vibration, the full period of oscillation is determined
between the two instant local values of displacement (for example, at zero or extreme
position). This precise full period value for a nonlinear restoring force can depend on
the maximum amplitude (the total stored energy) and is called the nonisochronism of
a nonlinear oscillation. To compute the value of the period, we need to know where
the object was at the beginning (x() of the motion, and where it is at the end (xpax)
of it. Obviously, we do not need to know what was happening in the middle of the
vibration motion.

However, we can consider an actual period of oscillation as a continuous function
of time that can vary in time during a small part of the oscillation (Braun and
Feldman, 1997). It will represent the expression for the period 7" not only as the full
cycle value, but also as a continuous function of motion x (8.5). In consequence, we
will get a function of the instantaneous period with possible fast intramodulations
during any short part of the period 7' (¢). By dividing the phase plane into small sectors
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and estimating the integral (8.5) separately for each small interval, we will get the
instantaneous period of oscillation 7'(¢) as a function of the instant position. So, for
a nonlinear system, the instantaneous period will become a varying intrafunction of
the phase angle. As a result of the full cycle integration of the instantaneous period,
we will get back the classic precise full period value.

In the classic x, X plane (Figure 8.11), where x and X are orthogonal Cartesian
coordinates, the inverse function of an instantaneous period can be called the instan-
taneous natural angular frequency w(t) = 2r [(T()]"" (Braun and Feldman, 1997).
The instantaneous natural frequency for a nonlinear system can be a fast-varying
function of time and, respectively, the instantaneous radius vector in the phase plane
r(t) = /x2(t) + x2(¢) will also vary during a single cycle from its minimum up to
its maximum value. This means that the instantaneous natural frequency of nonlinear
systems is not just a number of cycles, but is a continuously varying function of
time. In a similar way, fast intrawave modulations during any short part of the natural
period have been discussed in Huang et al. (1998).

To illustrate these intrawave variations of the instantaneous natural frequency, let
us consider an example of the Duffing equation with an initial nonzero displacement
and without damping ¥ + (1 + ex?)x = 0, where &€ = 5, Xpax = 1.0. The obtained
free vibration solution of the Duffing equation, and the calculated instantaneous
period, are shown in Figure 8.10. As can be seen in Figure 8.10b, the instantaneous
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Figure 8.10 The solution (a) and instantaneous oscillation period (b, —) of the
Duffing equation: the average period (—-) (Feldman, (C)2011 by Elsevier)
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Figure 8.11 The Duffing equation (¢ = 5) phase plane (-—) and the analytic
signal (—) (Feldman, (©)2011 by Elsevier)

period is a varying function of time and oscillates two times faster than the nonlinear
solutions. It oscillates with a deviation from the average value of more than 10%
(Braun and Feldman, 1997).

The instantaneous radius vector in this case also becomes a varying function
r(1) = (—0.5ex* + x2, + O.Sex;‘m)l/ * and the portrait mapped in the phase plane
differs from the ideal circle (Figure 8.11). It is clear that the traditional direct integra-
tion for the total period (8.5) produces only a period value 7, which corresponds to
the total cycle of the motion. In a general case of nonlinear systems, all instantaneous
parameters oscillate with fast frequencies during each cycle of vibration. The ap-
pearance of these fast oscillations, from the point of view of time, is the effect of the
existence of an infinite number of high ultra-harmonics in addition to the fundamental
(primary) quasiharmonic solution.

8.5 Complex plane representation
Let us consider another important technique for a presentation of a vibration solution

on the basis of the rotating vectors. According to the analytic signal theory, a real
vibration process x (¢), measured by, say, a transducer, is only one of many possible
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projections (the real part) of some analytic signal X (¢). The second projection of the
same signal (the imaginary part) X (¢) will then be conjugated according to the HT
(Hahn, 1996a). The notion of the analytic signal, introduced by D. Gabor, is viewed
as a complex-valued time function provided by a joint analysis of the initial signal and
that conjugated according to the HT. Each point in the complex plane is characterized
by a radius vector A (¢) and a polar angle ¢(¢) (Figure 8.11). As a matter of fact,
the analytic signal presentation is nothing other than a development of the complex
amplitude method, when the signal magnitude (envelope) and phase parameters vary
in time and can be determined by the HT as single-valued instantaneous functions
(Adamopoulos, Fong, and Hammond, 1988; Vakman, 1998). Therefore, the analytic
signal method is an expedient that is effective enough to solve the general problems
of vibration theory, such as the analysis of free and forced nonstationary vibrations
(transient processes) and nonlinear vibrations (Vainshtein and Vakman, 1983). The
analytic signal representation allows us to consider any vibration at any instant of
time ¢ — as a quasiharmonic oscillation — both the amplitude and the angle modulated
functions:

x(t) = A(t)cos p(t) = A(t) cos / w(t)dt, (8.6)

where w(t) = ¢(t) is the IF of the vibration.

To illustrate the analytic signal representation, once again consider an example
of the same Duffing equation with a constant initial amplitude and without damping
4+ (14 ex?)x =0, where ¢ = 5, Xpax = 1.0 (Figure 8.12).

As can be seen, the envelope and the IF are fast varying functions and they os-
cillate two times faster than the nonlinear solution w (1) = wot + 2wpey cos 2wot.
The doubled modulation frequency according to (4.2) produces at least two spec-
tral components with a main frequency and tripled frequency values x(f) =
Acos (wgt + &g sin 2wpt) &~ A coswyt + € cos 3wpt. The time modulation fre-
quency then gives rise to additional multiple spectral components of the solution.
The intrawave frequency modulation that indicates a nonlinear vibration behavior
can be observed in the time domain as modulation. The same phenomenon in the
frequency domain can be denoted as energy contributions in the additional spectrum
peaks. The intrawave frequency modulation is therefore depicted in the HT analysis
as well as in the Fourier or Wavelet analysis.

The modulation of the instantaneous parameters takes place for both mathematical
interpretations: for the classic phase plane and for the analytic signal representation.
Thus, the appearance of fast oscillations in the solution simply reflects the nonlinear
nature of vibration systems; they are not associated with the interpretation of the HT
signal. This permits the nonlinear solution to be represented in an asymptotic expan-
sion form (Section 5.2) x(¢) ~ Z/f A(t) cos ¢ (t) with a set of multiple frequency
components, where every component of the solution has slow-varying parameters. In
this way the solution of nonlinear systems will include high-frequency superharmonic
components in addition to the primary harmonic.

The obtained instantaneous amplitude and the instantaneous natural frequency —
as well as their relationship dependency (the envelope vs. IF function) — can have
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Figure 8.12 The solution of the Duffing equation (a, —), the envelope (a, ---), the
IF (b, —), and the average IF (b, ——) (Feldman, (C)2011 by Elsevier)

an unusually fast oscillation (intrawave modulation) regardless of the traditional
phase plane (x, X) or complex plane (x, X) representation of a nonlinear system. This
naturally occurring fast modulation requires a more sophisticated analysis, and will
be further investigated in detail in Chapter 11.

8.6 Approximate primary solution of a conservative
nonlinear system

In general, the fast-varying solution of the second-order conservative system (8.4)
with a nonlinear restoring force has the form x(#) = A(#) cos f w(t)dt. The nonlinear
restoring force k(x) as a function of time can be transformed into a multiplication
form of a new varying nonlinear natural frequency ®*(t) and system solution k(x) =
@*()x(1).

To apply the multiplication property of the HT (2.3), let us assume that the new
varying nonlinear natural frequency squared could be grouped into two different
parts: w*(t) = w3(t) + wi(t). As the first part w3(¢) is much slower and the second
component w%(t) is faster than the system solution, the equation of motion will get a
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new form: ¥ + [aT%(t) + a)%(t)] x(t) = 0. Now, according to the multiplication prop-
erty of the HT for overlapping functions (2.3), we apply the HT for both sides of
the last equation ¥ + a)_g(t)i(t) + 5f(t)x(t) = 0, where the tilde sign indicates the
conjugate variable of the HT. Multiplying each side of the obtained HT equation by i
and adding it to the corresponding sides of the initial equation, we obtain a new differ-
ential equation of motion in an analytic signal form X + a)_(z)X + (w% +i af;?) x =0,
where X is a complex solution in an analytic signal form: X = x + iX. This complex

equation can be transformed into a more traditional and accepted form (Feldman,
1997):

X+i8X+0’X =0, (8.7)
s 3 w%x2 + w%xi w%)c2 — w%xi 5. L
where o° = wj + ——5——; § = —————. Here w~ is a varying instan-

2 ’ - 2
taneous natural frequenc{z4 and § is a fast-var)l?ing instantaneous fictitious friction
parameter. It should be pointed out that this equation is not a real equation of nonlin-
ear motion; however, it produces the same varying solution of the system. Equation
(8.7), based on the HT, defines the instantaneous natural frequency as a constantly
time-varying function, but not as the number of occurrences during one period of
time. It is just an artificial fictitious equation that produces the same nonlinear primary
vibration solution. The varying natural frequency w? (8.7) obtained consists of a slow

w? and a fast intrawave component. The fictitious friction parameter 8, on the other
hand, consists only of a fast-varying component. This means that the slow part of the
natural frequency forms an average period of vibration, but the fast-varying fictitious
friction force (induced by the zero average value) has no effect on the real average
friction force. The results explain the experimental fact that — according to the HT
analysis of nonlinear systems — all the instantaneous characteristics, such as the IF
and the amplitude of the solution, take an unusually fast oscillation (modulation)
form (Davies and Hammond, 1987).

Expression (8.7) allows us to find a general relation between the initial nonlinear
static force characteristics k (x) (8.4) and the varying instantaneous natural frequency
w?. The nonlinear restoring force can be represented by an expansion with a power
series form (Nayfeh, 1979)

N
k(x) = (a; + a3x2 + a5x4 +..)x = (Z az,,_lxz”’2> X. (8.8)

n=1

After substituting the expanded restoring force characteristics with the primary
solution x(t) = A(t)cos¢(t) into the varying natural frequency (8.7), one can
derive the particular type of nonlinear natural frequency as a function of time
a)g(t) = F[A(¢), ¢(1)]. By integrating the varying instantaneous natural frequency
function of time w? from (8.7) on the interval [0 T], where T is the full period of the
primary solution, we will get an average natural frequency function:

T

3 5
(w*)=T1"" f W ()dt = oy + Za3A2 + §a5A4 +... (8.9)
0
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The obtained average nonlinear natural frequency is strictly dependent on the primary
solution amplitude. If the amplitude is a slow-varying function of time, then the
average natural frequency will also become a slow-varying function of time.
Comparing two formulas (8.9) and (8.8) we will reach the important general
conclusion that an average natural frequency simply repeats the structure of an initial
nonlinear elastic characteristic, correct to the corresponding polynomial numeric
coefficients: (wZ(A)) < k(x). In essence, the HT approach is just an alternative to
the well-known linearization methods (like a harmonic balance linearization). The
estimated average natural frequency function includes all the information about the
initial system and could be used to identify a nonlinear system. A variation of an
average natural frequency with an amplitude can be represented in the manner of
a nonlinear backbone (skeleton) curve. This curve depicts the natural frequency as
a function of the free vibration envelope, so it constitutes an inherent feature of
nonlinear systems, showing that the frequency of motion is amplitude dependent.
For example, a nonlinear system described by the Duffing equation with a linear
and positive hard cubic spring k(x) = «; (1 + a3x2) x will produce a primary so-
lution with an average natural frequency equal to w”(A) = «; (1 + 3a3A? /4). This
approximation of the average natural frequency (Figure 8.13, dotted line) maps an
approximate backbone very close to the precise backbone (Figure 8.13, bold line).

0.6
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o ; ; . .
1 1.2 1.4 1.6 1.8 2 2.2
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Figure 8.13 The backbone of the Duffing system (az = & =5): a precise period
solution (—), the average natural frequency (.. .) (Feldman, (©)2011 by Elsevier)
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In this case, the IF mean value obtained through the HT is very close to the
theoretical value of the free vibration frequency. This fact indicates that the HT
realizes a good representation of nonlinear vibrations.

At first glance, a stable conservative nonlinear vibration system with a nonzero
initial displacement (velocity) traditionally should have a constant amplitude and
a natural frequency. This means that oscillation of such a vibration system with-
out damping should map on the frequency—amplitude (backbone) plot just a single
point corresponding to the amplitude and frequency as though they were constants.
However, due to the HT representation, which is able to show real variations of the
instantaneous vibration characteristics — the amplitude (envelope) and the natural
frequency — the vibration motion will map a closed drawn off figure compressed to a
short tilted line. An example of such short lengths for three different initial amplitudes
of the Duffing equation without damping is shown in Figure 8.13 by the dashed lines.
During every full vibration period a mapping point moves around the average values
along the short length line from one end to the other, and back again.

8.7 Hilbert transform and hysteretic damping

A majority of real materials show an energy loss per cycle with a less pronounced de-
pendency on frequency. In fact, many materials indicate force — deformation relations
that are independent of the deformation rate amplitude — so-called hysteretic rela-
tions. Those known mechanical element models show frequency-independent storage
and loss moduli, which implies that the Fourier transforms of both the element force
F(w) and the element deformation A(w) satisfy F(iw) = K[1 + in sgn(w)] A(iw),
where K is stiffness and 7 is a loss factor (a damping ratio of the loss and stor-
age moduli of an element). In such a case, the differential equation that describes a
free movement of a SDOF system becomes mi + k (1 4+ in)x = 0, where 5 is the
hysteretic damping ratio.

In this model, the dissipated energy in a harmonic deformation cycle of a constant
amplitude is independent of the frequency of deformation. Only the HT gives a
correct time domain expression for the concept of a linear hysteretic (Inaudi and
Kelly, 1995). This transform can be used to replace complex-valued coefficients in
differential equations modeling mechanical elements.

The HT also forms relations between the real and imaginary parts of the dynamic
stiffness matrix of a causal hysteretic damping (Makris, 1999). Based on the analyt-
icity of the transfer function, it was shown that a causal hysteretic damping model is
a limited case of a linear viscoelastic model with an almost frequency-independent
dissipation.

8.8 Nonlinear damping characteristics in a SDOF
vibration system

Damping is a dissipation of energy from a vibration system. A damped vibra-
tion system without a permanent excitation responds by vibrating freely until it
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dissipates all of the potential and kinetic energy it received and stored. This dissi-
pation, or damping, describes the physical phenomenon of converting the energy of
motion into another form, mainly into heat and sound. In mechanical vibration this
is accomplished mainly through a frictional resistance (Fidlin, 2005).

The damping force is assumed to be relative to the instantaneous velocity, but it is
always directed against the velocity. Nonlinear frictional force could be described us-
ing different expressions; for example, an equation of motion for a SDOF model with
a nonlinear viscous damping is mi¥ + C(x) + K(x) = 0, where m,C(x), and K (x)
are respectively the mass, the nonlinear frictional force as a function of velocity x,
and the nonlinear restoring force as a function of displacement x. The corresponding
second-order differential equation of the damped system for unit mass will then take
the following form

¥ +2h(0) % +wix =0 (8.10)

where the term & (x) X = C (X)/2m represents the damping force per unit mass as
a function of velocity and the term w} = k/m represents the undamped natural
frequency squared in the case of the linear restoring force K (x) = kx. In control
theory it is sometimes desirable to use a dimensionless quantity term ¢ called the
damping ratio, { = h/wy = ¢/2+/km, where h is a damping coefficient (factor) for
a linear viscous damping showing the rate of decay h (x) = hx; and k is the linear
stiffness from K (x) = kx.

Equation (8.10) can be solved by assuming a transient (unforced) quasiharmonic
underdamped solution x such that x(z) = Age "™’ cos wt, where h(z) is an instanta-
neous damping coefficient and w = 2 /T is an angular damped natural frequency,
corresponding to the time spacing 7" between two close damped natural periods (In-
man, 1994). The damped natural frequency of the solution is less than the undamped
natural frequency (o < ).

Several consecutive peaks of a free response xpm.(#) during the time
t = T'n characterize an average relative damping in the system

Xmax(Tn) = Age” W77 8.11)

Classically, this average relative damping is measured by a logarithmic decrement as
a natural logarithm of the peaks ratio

5= LiXitn _ gy = 220 (8.12)

n X; w

where § is the logarithmic decrement, (k) is the average damping coefficient, T is
a period, and w is the angular frequency of the damped solution. The logarithmic
decrement is a dimensionless term that is in close relation with the dimensionless
damping ratio: { = Sw/2nwy ~ §/2mw; 8 ~2m(.

The plot of dependency between the amplitude and the damping coefficient A(h)
forms a damping curve. The particular shape of the damping curve differs for various
damping mechanisms. For instance, in the case of a linear viscous friction  (X) = h,
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when the damping coefficient / is a constant and does not vary during free decay, the
damping curve will be a vertical straight line. The envelope of free decay vibration
is determined by the monotonic exponent decay rate. So the envelope is an expo-
nential function of time A(t) = Age™"". The envelope can be shown in a logarithmic
amplitude scale where the exponential envelope curve A(7)/Ao, determined by the
decay rate h, can be seen as a linear decay In[A(t)/Ag] = —ht (Herlufsen, 1984;
Hammond and Braun, 1986; Agneni and Balis-Crema, 1989).

The slope of an envelope straight line can be estimated using a linear least-
squares fit procedure, suggested for example in Braun (1986). We should assume
that the system is linear and that the undamped natural frequency is approximately
equal to the damped natural frequency since the damping is light. The IF is the first
derivative of the phase angle, so it was also suggested to estimate a slope (the tangent)
of the unwrapped phase line as an approximate natural frequency value. Such a use
of slopes of the envelope and phase function is a simple and but effective procedure
(Yang, Kagoo, and Lei, 2000; Yang et al.,, 2003a; Salvino, 2000; Giorgetta, Gobbi,
and Mastinu, 2007). However, it is only acceptable for a linear vibration system; the
procedure of the logarithmic-decrement slope deals only with the integrated damping
estimation, and not with the instantaneous damping parameters, as will be shown in
Section 9.2. In Section 8.9 and Section 9.2, which is devoted to the identification of a
nonlinear system, we will show how a nonlinear damping force shapes the envelope
function of the free vibration solution.

8.9 Typical nonlinear damping in a vibration system

When dimensionless damping parameters, such as a logarithmic decrement or a
damping ratio, depend on the driving frequency, the damping mechanism is frequency
(velocity, rate) dependent. When they are not sensitive to the forced frequency varia-
tions, the damping mechanism is frequency independent. Thus, we have two different
types of energy loss in a vibration motion: one frequency dependent and the other
frequency independent. In the majority of real mechanical constructions, damping
typically does not depend on frequency. This can be observed in MDOF vibration sys-
tems, when the damping ratio is almost the same for all natural modes with different
frequencies.

Typically, vibration systems show the evidence of damping nonlinearities in
either a small or a large range of amplitudes, depending on the type of nonlinear
damping force characteristics. An example of a small amplitude nonlinear behavior
is a system with Coulomb (dry) friction, whose plot of logarithmic decrement vs.
vibration amplitude is a monotonic hyperbola (Feldman and Braun, 1993). In some
other cases, such as nonlinear turbulent friction, nonlinear damping behavior appears
over a large range of amplitudes. But, in practice, in all cases the real damping force
level is much less than the elastic force. Therefore a nonlinear damping has almost
no effect on natural frequencies and corresponding system backbones.

The instantaneous damping characteristics of a vibration system are determined
by the form of a symmetric frictional force (dissipative function). When a vibration
system has well-known typical nonlinear damping characteristics, the corresponding
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instantaneous damping parameters are also typical functions of the amplitude and/or
the forced frequency. These dependencies allow us to estimate the type and value
of different kinds of damping: dry friction, structural, viscous, and so on. Utilizing
the analytic signal representations we can estimate the characteristics of not only
the elastic force but also of the damping force. Any mathematical representation of
physical damping mechanisms in the equations of motion of a vibration system is
only an idealization and approximation of the true physical situation.

8.10 Velocity-dependent nonlinear damping

In specific cases when a damping force depends on a frequency variation, as in a
viscous nonlinear damping force model, the energy dissipation becomes a function
of velocity. Since the vibration velocity is a multiplication of the amplitude and
frequency, the damping force will directly depend on the vibration frequency. His-
torically, a nonlinear friction force was represented by an expansion having a power
series form of the velocity X and signum function sgn (X) = x/|x|. The damping force
in this case is

Faamping = 2h () % = 2h [|" % /|| = 2hx |x"~" (8.13)

where h is a damping proportionality constant, and n is a nonlinear index. For
example, a velocity squared or turbulent damping (n = 2) is present when a mass
vibrates in a fluid or in the air with a rapid motion. A turbulent damping force has
a form: Fyamping = 2hx |X|. A viscous linear damping (n = 1) is the simplest type of
damping force Fyamping = 2h%. Coulomb damping (n = 0), for example, is used to
represent a dry friction in sliding surfaces Fyamping = 2/ sgn ().

A nonlinear damping force & (%), as a function of velocity in the equation of mo-
tion (8.10), can be transformed into a function of time in the form of the multiplication
of the instantaneous damping coefficient /(¢) and the velocity: h(X) = h(t)x(¢).

Assume that the primary solution in a quasiharmonic form x(¢) = A(#) cos ().
This allows us to separate the friction force function in time into two different parts:
h(t) = ho(t) + hy(t). The first part i(t) is much slower, and the second component
h (1) is faster than the system solution. The separation will allow the use of the HT of
the force function and a complex form of the equation of motion. As a result we can
precisely identify the existing damping mechanism by estimating the damping curve
and damping force characteristics. Analytically the dynamics of a model mechanical
system with fast oscillations of the damping coefficient has been analyzed by Fidlin
(2005). He performed an asymptotic analysis of the equation of motion of this system
and concluded that these oscillations also produce variations in its effective stiffness.

It is well known that the particular damping curve shape differs for various
damping mechanisms. For instance, in the case of a linear viscous friction (n = 1),
the damping coefficient is a constant (h) = h( and does not vary during a free decay.

Let us analyze the damping force separately for typical classical nonlinear damp-
ing models.
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Figure 8.14 The turbulent quadratic damping model: the frictional force character-
istics (a), the envelope of a free decay (b), and the damping curve (c)

8.10.1 Velocity squared (quadratic, turbulent) damping

In the case of a quadratic turbulent damping, the index n =2 and the damping
force has a parabolic shape for each velocity sign (Figure 8.14a). We can then
write the force function Fuamping(t) = —2h|Awsin@(t)|Awsing(t) = =2h[2/m +
Awsing(t) — 2/m]Aw sin ¢(t), shown in Figure 8.15 by a dash-dot line. The same
figure shows the HT projection of the damping force (dashed line) and the damping

Figure 8.15 The turbulent damping force in time: the quasiharmonic solution (—),
the damping force (. . .), the HT of the damping force (---), the damping force envelope
(—), and the force envelope mean value (——)



164 HILBERT TRANSFORM APPLICATIONS IN MECHANICAL VIBRATION

force envelope function (bold line). We will point out that the damping force envelope
is a fast oscillation function. Such a fast oscillation of the damping force initiates fast
intra-modulations of the solution during every period of oscillation.

By integrating the envelope of the varying damping force function over an interval
[0 T], where T = 2n /w is the full period of the primary solution, we will get an
energy average value of the damping force <Fdamping(t)> =h(BAw/3m)x (Chopra,
2007). The last expression indicates that, in the case of the turbulent damping, the
average damping coefficient is directly proportional to the envelope of the solution
(Figure 8.14c¢):

(2h) = hoAw, where hy = h(8/3m). (8.14)

In essence, the HT approach is one more alternative to well-known equivalent damp-
ing energy methods.

It is interesting that the time-domain representation of motion equation solutions
allows us to exploit relations between the damping coefficient, the envelope, and the
first derivative of the envelope as a function of time 2i2(A) = —A /A —as will be shown
in Section 9.2. A separation of the variables A and A — for the turbulent damping —
gives a simple differential equation that has the form dTA = —hyAwd(t). The obtained

equation can be integrated f/:} ‘;—2 = —how fol d(t) with the following solution A(t) =
Ao/(1 + Aphowt), so the free decay envelope of the turbulent damping decreases like
a hyperbola. The free decay amplitude decreases even faster than the trivial exponent
of linear damping (Figure 8.14b). The average damping coefficient is proportional to
the vibration amplitude (8.14); its value increases with increasing amplitude (k) ~
Aw. The turbulent damping shows its nonlinear behavior mostly for large amplitude

values.

8.10.2 Dry friction

Coulomb (dry) friction is a kind of nonlinear damping when the force resisting the
motion is assumed to be proportional to the normal force between the sliding surfaces
and is independent of velocity, except for the sign (Figure 8.16a). Thus, the damping
force is Fyamping = 2hsgn (X). Assuming a primary solution in quasiharmonic form
x(t) = A(t) cos ¢(t) we can show the damping force as a square wave (Figure 8.17,
dash-dot line).

Notice that the HT of the signum function is of the form: 2h H[sgn(sin¢)] =
2h2/m In |tan (¢/2)| (King, 2009). Figure 8.17 also demonstrates the HT projection
of the damping force (dashed line) and the damping force envelope function (bold
line). Again, we will point out that the damping force envelope is a fast-oscillation
function. Such a fast oscillation of the damping force initiates fast intra-modulations
of the solution during every period of oscillation (see Figure 8.17).

By integrating a varying envelope of the damping force over an interval [0 T,
where T = 27 /w is a full period of the primary solution, we will get an energy
average value of the damping force (Fdamping(t)) = h (4/m Aw) x. The last expression
indicates that the average damping coefficient in the case of a dry friction is inversely
proportional to the envelope of the solution: (2h) = hy/Aw, where hy = h (4/m). So
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Figure 8.16 A dry friction model: the friction force (a), the envelope of a free decay
(b), and the damping curve (c)

Coulomb, or dry friction in particular, has a plot of the damping curve as a monotonic
decreasing hyperbola (Figure 8.16c¢).

In Section 9.2 we will show that during a free vibration regime both the envelope
and the first derivative of the envelope, as functions of time, are related to the in-

stantaneous damping coefficient: 24(A) = —A/A. Separating the variables, a simple
differential equation can be written in a rearranged form: % = —(ho/Aw)d(t). The
X

Figure 8.17 The dry friction force function in time: the quasiharmonic solution (—),
the square damping force (.. .), the HT of the damping force (---), the damping force
envelope (—), and the force envelope mean value (——)
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obtained equation can be integrated | fo dA = — % f Ot d(t) with the following solution

At) = Ay — %t. The result shows that the free decay envelope of the dry friction
decreases linearly in the form of a straight line (Figure 8.16b).

A vibration system with a dry friction force (Figure 8.16a) corresponds to the
index n = 0 (8.13) when the amplitude of a free decay decreases linearly (Figure
8.16b), and the damping curve has a typical monotonic hyperbolic form (Figure
8.16¢). The presence of dry friction becomes visible mostly for small vibration am-
plitudes when both the damping coefficient and the logarithmic decrement extremly
increase.

8.11 Velocity-independent damping

Most materials show an energy loss per cycle with a very small dependency on
frequency. In fact, many materials indicate force—deformation relations that are in-
dependent of the deformation rate amplitude — so-called hysteretic, structural, or
internal damping relations. The known mechanical element models show frequency-
independent storage and loss modulus. This implies that the damping force per unit
mass in (8.10) is a function of the HT conjugate projection of the displacement
mi + in(x)x + kx = 0. In this case, the dissipated energy in a harmonic deforma-
tion cycle of a constant amplitude is independent of the frequency of deformation.
As already mentioned, only the HT gives a correct time-domain expression for the
concept of a linear hysteretic (Inaudi and Kelly, 1995). This transform can be used to
replace complex-valued coefficients in differential equations modeling mechanical
elements.

The damping parameters would depend differently on the amplitude according
to the action of the nonlinear structural damping. For example, the case of n(x) = ng
corresponds to the linear structural friction when the damping coefficient is a constant,
and does not vary during free decay. Such linear structural friction produces a trivial
exponential free decay plot. In nonlinear cases the amplitude of a free decay will be a
more complicated function of time. The case of a dry friction n = 0 (8.13), when the
damping curve has a hyperbolic form (Figure 8.16¢), also corresponds to a typical
case of structural damping.

Usually the frequency of the main solution of nonlinear systems under a free
vibration regime varies only moderately. Such a small variation in frequency does not
allow us to analyze the dependency between damping and frequency. Traditionally, to
discover whether the damping is of a frequency-dependent or frequency-independent
nature, it must be tested under a forced vibration regime.

8.12 Combination of different damping elements

Naturally, damping is a complex phenomenon and more than one damping type
may exist in the same real structure. Considering the total frictional force as a sum
of typical frictional elements, one can write an expression for the total damping
coefficient as a sum of the typical dependencies. However, the decomposition of
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this total damping coefficient has no simple solution. It is only when each sim-
ple damping mechanism operates in an appropriate different range of amplitude
and/or forced frequency that we can obtain a unique interpretation of the general
damping dependence.

The instantaneous damping coefficient can be determined in the form of a sym-
metric dissipative function. In the particular case of a linear system, the instantaneous
natural frequency and instantaneous damping coefficient, or decrement, do not vary in
time. In the general case of nonlinear systems, the instantaneous damping coefficient
and the natural frequency become amplitude and frequency functions.

If nonlinear dissipative forces are operating in a vibration system, the instanta-
neous damping coefficient may depend on the instantaneous amplitude. Experimental
studies of the vibration of engineering structures indicate that the nature of dissipative
forces is such that the frequency has almost no influence on the value of a logarith-
mic decrement, and that a model of frequency-independent friction should be used
to describe the vibrations. Any mathematical damping model obtained from an ex-
periment will be only an idealization; it does not give a detailed explanation of the
underlying physics.

The real damping in a mechanical construction is a summation of several com-
ponents. Various nonlinear damping mechanisms of structural components can be
realized artificially in real physical models (Mai et al., 2008). This realization is
caused by the various types of nonlinearities that can be generated by varying the
connection details of timber joints.

8.13 Conclusions

In many practical cases, measured mechanical vibration is not small and nor is the
system linear. In these cases a nonlinear analysis becomes essential to understand
the physics of the system or of the signal. The chapter is focused on the effects
connected with the nonlinearities encountered in mechanical engineering. A Hilbert
transform analysis clearly displays the main feature of different phenomena of non-
linear stiffness and damping taking place in mechanical systems. The intrawave
frequency modulation that indicates nonlinear vibration behavior can be observed
in the time domain as modulation. The same phenomenon in the frequency domain
can be denoted as energy contributions in the additional spectral peaks. Therefore,
intrawave frequency modulation is depicted in a HT analysis as well as in a Fourier
analysis. Stiffening, softening stiffness, dry and turbulent friction are the main typical
nonlinear effects illustrated by simple examples. Naturally, stiffness and damping are
complex phenomena and more than one of these may exist in the same real structure.
Considering the total static force as a sum of typical stiffness and fictional elements,
one can write an expression for the total force characteristics as the sum of typical
dependencies. However, the decomposition of such total characteristics has no simple
solution. It is only when each simple nonlinear mechanism operates at a different
range of amplitude and/or forced frequency that we can obtain a unique interpretation
of its nonlinear behavior.






9

Identification of the primary
solution

By observation (experiment), we acquire knowledge of the position and/or velocity
of the object as well as the excitation at several known instants of time. The dynamic
properties of the object — including the nonlinearities — can be identified by apply-
ing varying load levels to the structure and searching for amplitude and frequency
dependencies in the system’s response. In the case of a free vibration we have only
an output signal — the vibration of the oscillators — whereas in the case of a forced
vibration we also deal with the input excitation.

Several methods have been developed for the analysis and identification of nonlin-
ear dynamic systems and vibration signals (Kerschen et al., 2006). The HT approach
to characterize the response of nonlinear vibration systems in the time domain was
one such method (Feldman, 1997). The objective was to propose a methodology
to identify and classify various types of nonlinearity from measured response data.
The proposed methodology concentrates on the HT signal-processing techniques,
essentially on extracting a signal envelope and IF, to directly estimate both modal
parameters together with the elastic (restoring) and friction (damping) force charac-
teristics. The HT approach presents the system’s response as an instant function of
time. It is a highly sophisticated method of discovering the existing linear and non-
linear amplitude and frequency dependencies. The HT approach is suitable for any
SDOF vibration system and does not require knowledge of the signal or the system
parameters. Such nonparametric identification will determine not only the amplitude
and frequency dependencies, but also the initial nonlinear restoring and damping
forces. In modern signal processing, the HT method is more and more widely applied
to the analysis and identification of nonlinear dynamic structures (Luo, Fang, and
Ertas, 2009).

Hilbert Transform Applications in Mechanical Vibration, First Edition. Michael Feldman.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd. ISBN: 978-0-470-97827-6
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9.1 Theoretical bases of the Hilbert transform
system identification

The HT identification in a time domain is based on the analytic signal represen-
tation X(#) = x(¢) + j%(t), where X(¢) is the HT projection of the solution x(¢).
The method uses envelope and phase signal representation X (¢) = A(t)e/V®", where
A(t) is an envelope (or magnitude) and ¥ (¢) is an instantaneous phase; as both
are real functions, x(1) = A(t) cos V¥ (¢), X(t) = A(t) sin (1), A(t) = /x2(t) + X2(¢),
¥ (t) = arctan [%(¢)/x(t)]. The system solution x(¢) is known by direct measure-
ments, and the HT projection %(¢) can be computed with the use of a Hilbert trans-
former (Section 3.3). The envelope, the phase, and their derivatives can be computed
directly as functions of time or by the use of the analytic signal relations (Sec-
tion 4.9): X = X(§ + il'ﬂ),. X =X(4 =y 425y + i), where y/(1) = (1) =
X(DX(W) — XOXO) = Im[X(t)] is the IF of the solution x(z).
A%(1) X(1)

Now, consider the equation of the system motion (8.10), which includes both the
restoring and damping forces ¥ + h(X)x + wé(x)x = 0. We already know that a non-
linear restoring force, as a function of time, can be transformed into a multiplication
form a)(z) (xX)x = a)g(t)x (r) with a new fast-varying natural frequency a)(z) (t) and a sys-
tem solution x(¢) with an overlapping spectra. Similarly, the nonlinear damping force
can also be transformed into a function of time as a multiplication hy(X)X = ho(?)X(t)
between the fast-varying instantaneous damping coefficient s((¢) and the velocity,
with an overlapping spectra. As a result, we will have an instantaneous natural fre-
quency w?(#) and instantaneous damping coefficient ho(¢) with highpass overlapping
characteristics, with the solution x(¢) in the equation of motion:

¥+ 2ho()% + wi(t)x =0 9.1)

To find the HT of the product of the functions with an overlapping spectra we will
use a generalized form of the HT multiplication (Section 2.4). It allows us to produce
the HT of the differential equation of the motion without the assumption of nonlinear
functions. When the HT of (9.1) is derived, it will pass through the multiplication
functions a)(z)(t)x(t) and ho(2)x(¢). Further, the Hilbert transformation commutes with
differentiation, so we will get

£+ 2h0(00F + 201 (1% + @ADF + @2(D)x(t) = 0 9.2)

Multiplying by i and adding (9.2) to (9.1) yields a differential equation of motion in
signal analytic form, that is,

X 4+ 20X + 0*()X =0, 9.3)

where w,(t) is a fast-varying instantaneous modal frequency, h(t) is a fast-varying
instantaneous modal damping coefficient, and X = x(t) + iX(¢).
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These two instantaneous parameters of Equation (9.3) are unknown; however this
complex equation also consists of two separate equations for real and imaginary parts.
We have the same number of linear equations as the number of unknown variables,
so the system is exactly solvable with only one possible solution for instantaneous
modal parameters w, (¢) and h(z).

9.2 Free vibration modal characteristics

Consider a SDOF nonlinear vibration system (9.3) under a free vibration regime.
A second-order conservative system with a nonlinear restoring force and a non-
linear damping force has a solution in an analytic signal form X = x + iX, where
x(t) = A(t) cos [ f a)(t)dt] is a measured vibration solution. At the first stage of the
identification technique, the envelope A(#) and the IF w(¢) are extracted from the
vibration signal on the basis of HT signal processing.

Now, the derivatives X and X are known functions of A(¢) and ()

(see Section 4.9). Substituting the derivatives in (9.3) yields X [% — o’ + it
24 +i (240 + o+ 2h0) ] =0

Separating the real and imaginary parts and equating them to zero, in order to
find the instantaneous (natural) modal parameters, gives:

h(t)=—A/A — @/2w
@ (t) = 0? — AJA +2A%/A? + Ao/ Aw, ©H
where A is an envelope, and w is an IF of the solution.

Both of the obtained instantaneous modal parameters — the natural frequency
a)f((t) and the damping coefficient i(z) — are functions of the first and second deriva-
tives of the signal envelope and the IF. The instantaneous modal parameters can be
calculated directly at every point of the measured free vibration solution x(¢). Al-
gebraically, Equations (9.4) mean that the HT identification method uses measured
displacement, velocity, and acceleration signals together. Equations (9.4) are rather
simple and do not depend on the type of nonlinearity that exists in the structure. When
applying this direct method for a transient free vibration, the instantaneous modal
parameters are estimated directly. Linking the modal frequency and the envelope, we
will obtain a skeleton curve from the HT analysis. In the same way — by linking the
modal damping and the envelope — we will get the damping curve. Backbones and
damping curves are very helpful and are used as a traditional instrument in nonlinear
vibration analysis.

Note, that the instantaneous natural frequency a)%(t) differs from the IF w(¢) of
the signal, because it depends on variations of the signal envelope and also of the IF.
For small and slow nonlinear variations — when the second-order members can be
neglected (A> = A = @ = Aw = 0) — Equations (9.4) show that the instantaneous
modal frequency of the system will be close to the IF of the solution, while the
instantaneous damping coefficient will be equal to the ratio between the envelope
and its derivative. It is clear that in the case of nonlinearities causing variations of the
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envelope and the IF, an instantaneous natural frequency becomes a fast-oscillating
varying function. The natural frequency will be equal to the IF constant value only
for a linear conservative system when A = & = 0: , = .

According to (9.4), the instantaneous modal damping coefficient /(¢) is a function
of two first derivatives — the envelope A and the IF w — therefore, considering that
only a single envelope variation affects a part of damping function, it is incomplete.

Note that, in the case of a linear restoring force and a constant frequency of the
solution, the instantaneous damping coefficient 4 () depends only on variations in the
envelope (9.4). Let us now determine now an average damping coefficient (4) during
some time, counting a single full period of the solution or a number of periods.
Functions of the form F (x)/F (x) allow a simple integration, which produces a
natural logarithm In | F'(x)|. The derivative of a natural logarithm with a generalized

d ,
functional argument F(x) is Tr [In F(x)] = F (x)/F (x).
X

In this way the average damping coefficient gets the form (k) = (t;y, — )~
I A7)
lin A(f)

i

dt = (tign — ;)" In

. The averaging time can include n number of
i+n

full periods of the solution #;,, —t; = Tn = n/f, where T is a period and f is a
cycle frequency of the solution. As a result we can write (h) = In(A;/A;+n) f/n.
A natural logarithm of the envelope ratio classically determines the logarithmic
decrement (8.12) In(A;/A;1,) = én. So, finally, an average damping coefficient is
found to be equal to the logarithmic decrement multiplied by the solution frequency:

(h) = 8f = dw/2m (9.5)

where (h) is the average damping coefficient, § is the logarithmic decrement, T is the
period, and w is the angular frequency of the damped solution. So a parameter that is
well known as the logarithmic decrement measured from the decay envelope is just
an average estimation of the damping properties of the vibration system!

Methods of identifying damping in the time domain, that are based on the slopes
of the envelope and the logarithmic-decrement method, deal only with an estimate of
the integrated damping (Agneni and Balis-Crema, 1989; Yang, Kagoo, and Lei, 2000;
Giorgetta, Gobbi and Mastinu, 2007). To produce an oscillating decay motion a tested
vibration system is certain to be a lightly damped system with an underdamped term.

This HT approach was used in practice to identify skeleton curves under the free
vibration of the following typical nonlinear vibration models: backlash, saturation,
precompressed, bilinear, rigid boundary, and Coulomb friction (Wang et al., 2003).

9.3 Forced vibration modal characteristics

A forced vibration regime — unlike free vibration with only nonzero initial conditions —
signifies the presence of a continuously acting excitation that generates a forced
vibration. We will refer to the same equation of a SDOF vibration system in the
analytic signal form (9.3), but with the acting force Z(¢) in the right-hand side:

X + 20X + 0> ()X = Z/m 9.6
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where X = x(¢) + i%(t) = A(t)e'*"” is a complex forced solution of the system, w, (¢)
is the instantaneous natural frequency, /(¢) is the instantaneous damping coefficient,
Z(t)1is aforced excitation in the analytical signal form, and m is the modal mass of the
system. Assume that a forced excitation is a monocomponent quasiharmonic signal
with a slow-varying (modulated) frequency. Such a harmonic signal, whose frequency
sweeps slowly in time, is extremely useful as a stimulus signal for measuring and
estimating a system’s frequency response function.

Using the system solution X and its derivatives X, X in an analytlc 51gna1 form
we obtain a complex expression for the forced vibration X 4 A _ 2+ w? + M +

t(zA“’ 4+ w+ 2hw) = Xim’ where A, w are an envelope and an IF of the solutlon.
Rewriting the last expression as two separate equations for the real and imaginary
parts, we receive instantaneous modal parameters as functions of the first and second
derivatives of the signal envelope and the IF:

0} (t) = w* +alt)/m + B(t)A/Awom — AJA + 2A% /A% + Aw/Aw ©7)
h(t) = B(t)/20om — AJA — w/2w ’
where w,(¢) is the instantaneous modal frequency, A(¢) is the instantaneous modal
damping coefficient, w, A are the IF and envelope of the vibration with their first
and second derivatives (A, A, @), and a(t) = Re(Z/X), B(t) =Im(Z/X) are the
real and imaginary parts of the input—output signal ratio. These real and imaginary
parts of the input—output 51gna1 ratio Z/X = «(t) + if(t) are calculated according
X +ZX X

2+~2 an dﬂ(t)—?

Making a comparison between Equations (9.7) and (9.4), we can see that Equation
(9.7) for the instantaneous modal parameters in the case of forced vibration is more
general, because — in addition to members with an envelope, IF, and their derivatives —
it includes members with input—output signal ratios. When there is no excitation
of the system (Z = 0), Equation (9.7) becomes equal to Equation (9.4) for the
instantaneous modal parameters of a free vibration. The input—output signal ratio
in (9.7) incorporates both the steady state and the transient part of the solution.
The presence of the first and second derivatives of the signal envelope and the
IF in (9.7) reflects the transient effect of the solution and determines the modal
parameters in more complicated testing conditions, for instance, when the excitation
is a nonstationary quasiharmonic signal with a high sweep frequency.

In the case of a forced vibration, we have three unknown modal parameters: the
frequency, damping, and mass, while the obtained set consists only of two separate
equations for the real and imaginary parts (9.7). Thus, because of the a priori unknown
mass we cannot calculate all the instantaneous modal parameters directly. To estimate
the modal parameters we will use the following minimization approach. Let us as-
sume that the modal parameters of the system under a forced vibration regime do not
deviate widely in most practical cases. The best available value of the reduced mass
is a value that minimizes the deviation of the instantaneous modal frequency and
the modal damping coefficient in (9.7) during specific time segments. The optimal
reduced mass value will be the modal effective inertia mass of the SDOF vibra-
tion system. As we have the reduced the modal mass value, we can calculate the

to a(t) =
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instantaneous modal frequency and the instantaneous modal damping coefficient at
every time point of the solution — directly, according to (9.7).

In terms of engineering, an input generally is some measured signal z(¢), and
an output is another measured signal x(¢). Thus, using the vibration output and
excitation input signals, their Hilbert projections, and the first and second derivatives
of the vibration, we can determine the instantaneous modal parameters of the system
at every point of the solution. The resulting nonlinear algebraic equations (9.7) are
fairly simple and do not depend on the type of nonlinearity that exists in the structure.
It is essential that the frequency of the input excitation has to vary slowly in time,
exciting a forced vibration with different frequencies.

It is well known that, during a fast swept frequency excitation, all resonances
excited in the structure have a lower and frequency-shifted maximum response than
the maximum response expected for a steady-state harmonic excitation with a similar
resonance frequency. Nevertheless, the modal parameters estimated according to the
HT force identification method do not depend on the rate of the sweeping frequency
and are the same as for the steady-state resonance harmonic excitation.

The obtained instantaneous modal parameters are varying functions of time and
have a fast oscillation around their smooth average values (Davies and Hammond,
1987; Gottlieb and Feldman, 1997). The fast oscillation occurs because the instanta-
neous modal parameters represent not only the average system values, but also fast
intramodulations during any short part of the solution period.

9.4 Backbone (skeleton curve)

In most cases, if a conservative system to be analyzed has nonlinear elastic forces, the
frequency of a free vibration will decisively depend on the amplitude of vibrations.
The traditional theoretical backbone of a nonlinear system is a dependency between
(a) the natural frequency of free vibration corresponding to a single full vibrational
cycle and (b) the displacement amplitude. The representation of a traditional vibration
system indicates that a conservative nonlinear system has a constant amplitude and
a constant natural frequency during every full period of oscillation. This means, for
example, that the backbone of a conservative Duffing system should be mapped just as
a single point with a constant amplitude and frequency. If damping that is responsible
for decreasing the amplitude is present in a nonlinear system, the traditional backbone
transforms from a point to a smooth curve. Some typical nonlinear examples of a
backbone representation (Figure 9.1) were considered in Section 8.3. In a linear
system the stiffness characteristics do not change, so the skeleton curve will be a
trivial straight line.

A backbone is a very helpful and traditional instrument in vibration analysis;
therefore it is conventional to use the HT approach to construct backbones. The
HT analysis can directly present a skeleton curve (backbone) as a function between
the envelope and the modal frequency. However, the obtained instantaneous modal
frequency w, (¢) and envelope A(#) include both slow-varying (constant for a linear
system) and fast, intracycle varying components. As a result, the HT backbone
with the presence of a nonlinearity, will not be a smooth curve, but a smeared-out
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Figure 9.1 Typical nonlinear stiffness force characteristics (a) and backbones (b):
hardening (1), softening (2), backlash (3), preloaded (4) (Feldman, (C)2009 by John
Wiley & Sons, Ltd.)

(oscillated) one; the HT backbone of a conservative Duffing system will be not a
point, but a short-length tilted line (Figure 8.13). To utilize the HT analysis in a
traditional smooth backbone presentation we should try to smooth or to decompose
the instantaneous fast intracycle varying modal parameters.

However, the HT identification based on a direct time domain estimation of the
modal parameters allows us to extract and plot the backbone curve as a dependency
between the envelope and the instantaneous modal frequency of the system. Note,
that there are no assumptions on the forms of A(w, ), so the HT identification method
is truly nonparametric.

9.5 Damping curve

In the same way that a backbone depicts a modal frequency as an amplitude function,
a damping curve draws a modal damping coefficient as an amplitude function. A
damping curve is an inherent feature of nonlinear systems showing that the damping
system property is amplitude dependent. In linear systems the damping characteristics
do not change, so the damping curve will be a trivial straight line. In a nonlinear case,
when the modal damping depends on the vibration frequency, the damping curve
depicts the modal damping coefficient as a function of the frequency. Some typical
nonlinear examples of a damping curve representation (Figure 9.2) were considered
in Section 8.1. Note, that there are no assumptions on the forms of the damping curve
A(h), so the method is truly nonparametric.

9.6 Frequency response

As aresult of the HT identification, a set of duplet modal parameters (the instantaneous
modal frequency w, and the instantaneous modal damping % of each natural mode
of vibration) is defined. In practice it is convenient to present the identified modal
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Figure 9.2  Typical nonlinear damping force characteristics (a) and damping curves
(b): turbulent (1), dry (2), viscous friction (3)

parameters in the traditional form of the FRF in a specified frequency range using a
harmonic excitation as an input to the vibration system at every frequency (Feldman,
1997). Thus the tested system harmonic response amplitude expressed as a linear
SDOF can be written as:

2Amaxh(A)
A= 9.8)
N 0 T 4 (A)e?
A [ _w,%m)] Iy

Here A is the steady-state vibration amplitude (proportional to the FRF magnitude),
Ajnax 18 the maximum (resonance) value of the vibration amplitude, w = 27 f is the
angular frequency of the vibration, w,(A) = 27 f,(A) is the angular modal frequency
as a function of the amplitude, and #(A) is a damping coefficient as a function of the
amplitude. For the sake of plotting the estimated response of the tested system using
the identified modal parameters, Equation (9.8) should be further inverted:

2 = W (A) — 2h%(A) £ 2w, (A)h(A) Ao -1 h2(A)
T > e WA

2 -3
h (A)i| 9.9)

0<A<Apu|l-———
- [ w3 (A)
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Using (9.9) we can plot the tested system harmonic response amplitude in a common
form as a separate resonance curve and the system backbone curve. If the identified
modal parameters are amplitude dependent functions, the FRF obtained will reflect
these nonlinearities in the left and right branches and the bandwidth between them.

A similar concept, known as the Nonlinear Output Frequency Response Function,
was proposed in Lang and Billings (2005). The concept can be considered to be an
alternative extension of the classical FRF for linear systems of the nonlinear case.
This extension is a one-dimensional function of frequency, which allows the analysis
of nonlinear systems to be implemented in a manner similar to the analysis of
linear systems, and provides great insight into the mechanisms that dominate in
nonlinear behavior.

9.7 Force static characteristics

The time-domain identification based on the HT allows for the direct extraction of the
system’s linear and nonlinear instantaneous modal parameters. Thus we can consider
the concluding stage of an inverse problem, namely, the identification of the initial
average nonlinear elastic and damping static force characteristics from the equation
of a vibration motion. According to formulas (9.4) and (9.7), we are able to get a
duplet of instantaneous modal parameters, such as an instantaneous modal frequency
o, and an instantaneous modal damping 4. In the next stage, the symmetric nonlinear
elastic and damping force characteristics can be estimated trivially according to the
following expression:

W2(DA{1), x>0
—* (A1), x <0

h(t)A:(t), % >0

—h()A:(t), x <0 (9.10)

k(x) ~ { h(X)x ~ {

where A(t) and A;(¢) are envelopes of the displacement and the velocity of the
vibration motion, respectively, k(x) is the restoring force per unit mass as a function
of the displacement x, and A (x)x is the damping force per unit mass as a function of
the velocity x. Each obtained force characteristic is a relative characteristic, dealing
only with a unit mass of the vibration system, and each obtained force characteristic
is considered to be a static symmetric characteristic. The final estimation of the force
characteristics is based only on modal parameters and does not require intermediate
backbones or FRFs.

As mentioned, each instantaneous modal parameter as a function of time varies
fast around its average value. These fast oscillations were shown, for example, in a
the parameter estimation of mooring systems using the HT in Gottlieb, Feldman, and
Yim (1996). The fast fluctuations are the result of two main factors. First, a measured
nonlinear vibration is a composition of a primary solution and an infinitive number of
high ultraharmonics. Second, the estimated instantaneous modal parameters reflect
the presence of fictitious nonlinear members of the stiffness in a damping and of
the damping in a stiffness. This fast oscillating appearance of elastic and damping
forces contradicts the classic smooth form of static force characteristics used in the
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initial differential equation of motion. To get back the smooth initial static force
characteristics we can use several techniques.

9.7.1 Averaging of the instantaneous modal parameters

The simplest way of removing fast oscillations is by a lowpass filtering of the
instantaneous modal parameters: A(f), w,(t), h(t). As a result, we will have only
slow-varying modal parameters (A(?)) , (w,(?)) , (h(¢)) smoothing the restoring and
damping forces — according to (9.10). A subsequent lowpass frequency filtering of
the instantaneous modal parameters makes it possible to construct smooth nonlinear
backbone curves for both restoring and damping functions (Feldman, 1991). How-
ever, as will be explained in Chapter 11, these averaged modal parameters and static
force characteristics are biased against the true initial nonlinear characteristics.

9.7.2 Polynomial scaling technique

It was shown in Section 8.6 that the average natural frequency simply repeats the
structure of the initial nonlinear elastic characteristics correct to the corresponding
polynomial numeric coefficients. By constructing a polynomial curve fitting of the
dependency between the average natural frequency and the envelope, we can estimate
these polynomial coefficients. The reconstructed smooth initial nonlinear force char-
acteristics will have the same form of curve fitting but with recalculated coefficients
according to (8.9). Such a scaling technique is better than a simple averaging, but is
not universal because it can only be applied to polynomial-type nonlinearities.

9.7.3 Selecting extrema and scaling technique

It is known that the total energy of a conservative vibration system is constant, and
during the free vibration in each moment the energy is partly kinetic and partly
potential. To estimate each force function more precisely we can utilize the fact
that the envelope value is equal to the peak value of the displacement around every
maximum displacement point. Moreover, at each maximum displacement point the
corresponding value of velocity is close to zero, so its contribution to the varying
natural frequency is negligibly small. In the same way, around every peak point of the
velocity, the corresponding displacement value is close to zero, so its contribution in
the varying damping coefficient is negligibly small. This means that multiplying the
instantaneous modal frequency squared and the envelope at the point of maximum
displacement 7, ax gives the exact value of the stiffness static force value k(xmax) =
a))%(tx max)A(fy max)- Respectively, multiplying the instantaneous modal damping and
the velocity envelope at the point of maximum velocity #;  gives the exact value of
the friction static force h(¥max)Xmax = 7 (x max) A+ (fx max)- The number of these peak
points is far less than the total number of points in a vibration signal. Therefore
we could recommend, first, averaging the envelope and the modal frequency as
biased functions (w)%(t)), (h(t)), where the angle bracket sign indicates the averaging
procedure; and, second, the calculating the scale factor functions s, s,. That will
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adjust the full length average functions to their unbiased values estimated around only
the extrema points s, = @2 (fx max)/(@(1)), sn = h(timax)/(h(1)) (Feldman, 1997).
Finally, we will calculate the unbiased elastic force as a function of the displacement
and a damping force as a function of the velocity:

sn (h(@)) (Ae(), & >0

| sule?o)a@), x>0
e { —sp (h()) (A (1)), ¥ <0

;0 h(h)x =~

—50 (@) (A1), x <0 i
The computational procedure is rather simple. First, we extract fast-varying instanta-
neous parameters via the HT. Then we eliminate fast oscillations by lowpass filtering
and shift smooth parameters by scaling. Finally, we estimate the smooth nonlinear

elastic and friction force characteristics. The described technique is realized in the
FREEVIB and FORCEVIB identification methods (Sections 10.5.2-10.5.3).

9.7.4 Decomposition technique

All the previously described techniques to identify the force just eliminate the fast
oscillation and operate only with the slow parts of the instantaneous modal parameters.
As a result we have a rather good but only approximate estimation of the force
characteristics. Instead of removing fast oscillations from the instantaneous modal
parameters, we can just exploit them completely. The idea of using fast-varying
modal parameters is based on the HT decomposition of a varying nonstationary
signal (Feldman, 2006). Using all existing high-frequency signal components allows
us to identify the smooth force characteristics directly and precisely. The details of
the precise HT identification will be discussed further in Chapter 11.

9.8 Conclusions

We can draw the following conclusions from the representation of an analytical
signal. Both the IF and the amplitude of free vibration are complicated modulated
signals. Nonlinear solutions can be represented by an expansion of members with
different frequencies, or by a time-varying signal with ab oscillated instantaneous
frequency and envelope. The instantaneous frequency and envelope of a nonlinear vi-
bration obtained via the HT are time-varying fast-oscillating functions. For example,
in the presence of a cubic nonlinearity and threefold high harmonics, the frequency
of the instantaneous parameter oscillation is twice that of the main frequency of
vibration. The dependency between the average envelope and the average instanta-
neous frequency plots a backbone that is close to the smooth theoretical backbone
of nonlinear vibration. Using the proposed HT analysis in the time domain, we can
extract both the instantaneous undamped frequency and the average nonlinear elastic
force characteristics.

As nonlinear dissipative and elastic forces have totally different effects on free
vibration (energy dissipation lowers the instantaneous amplitude, while nonlinear
elasticity links the instantaneous frequency and amplitude in a certain relationship),
it is possible to determine some aspects of the behavior of these forces. For this
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identification we propose that relationships be constructed between the instantaneous
frequency and amplitude plus curves of the instantaneous decrement as a function of
amplitude. The identification technique developed here should be of value in many
areas of mechanical oscillatory systems that have various features of a nonlinear
behavior.



10

The FREEVIB and
FORCEVIB methods

The nonparametric identification of nonlinear vibrating oscillators, being a typical
dynamics inverse problem, deals with the construction of initially unknown functions
of nonlinear restoring and damping forces. Typically, every nonlinear equation de-
scribing a vibration motion has a fixed structure. This structure classically includes
three independent members: a restoring elastic force (stiffness, spring) as a nonlinear
function of a displacement (position), a damping force (friction) as a nonlinear func-
tion of velocity (the first derivative of a position with respect to time), and an inertial
force proportional to acceleration (the second derivative of a position with respect
to time). Every independent restoring and damping force member is an a priori un-
known nonlinear function of motion. For example, a hardening or softening spring,
dry or turbulent friction, must be characterized by a function of the state rather than
by a single scalar parameter. By observation (experiment), one acquires knowledge
of the position and/or velocity of the vibrating object as well as the excitation at
several known instants of time.

The described nonparametric identification determines the initial nonlinear restor-
ing and damping forces. In the case of a free vibration, one can acquire only a response
signal — the vibration of the oscillators — whereas in the case of a forced vibration
one can utilize both the measured excitation and the response. The HT time-domain
identification is an effective instrument for the evaluation of the particular properties
of a nonlinear vibration system — for example, for the reconstruction of the charac-
teristics of elastic and dissipative nonlinear forces. For this identification we propose
that relationships be reconstructed between the instantaneous modal frequency and
displacement, together with curves of the instantaneous damping coefficient as a
function of velocity. The described method of analyzing the vibration of a machine
offers a way to the direct plotting of a skeleton and damping curve for the sys-
tem; this contains the values of instantaneous modal parameters, and the spring and

Hilbert Transform Applications in Mechanical Vibration, First Edition. Michael Feldman.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd. ISBN: 978-0-470-97827-6
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friction force characteristics. The identification technique presented here should be of
value in the investigation of many areas of mechanical oscillatory systems, including
aspects of their nonlinear behavior.

The time-domain HT approach had some success as a direct method of non-
parametric identification. There are essentially two approaches, one based on a free
vibration FREEVIB (Feldman, 1994a) and the other on a forced vibration FORCE-
VIB (Feldman, 1994b). Both approaches provide a method of obtaining the stiffness
and damping characteristics of SDOF systems. Both approaches separately identify
the system modal parameters; and even stiffness and damping nonlinearities appear
in combination. They both take into account only the solution of the primary system,
ignoring all other high-frequency ultraharmonics. The FORCEVIB also identifies the
inertia modal parameter, while FREEVIB allows us to identify only the elastic and
damping modal parameters. In general these HT identification methods include the
following sequence of operations:

e Taking the HT of the measured vibration (and excitation) signals and calculat-
ing their envelope and the IF.

¢ (alculating the instantaneous modal parameters — such as the modal frequency,
modal damping, modal mass value.

® Lowpass filtering of the modal parameters; calculating the scale factor func-
tions around the selected extrema points of displacement and velocity; scaling
the smooth modal parameters.

® Presenting the results in the form of the backbones, the damping curves, the
FREF, and the force static characteristics.

The resultant backbones — because of their strong association with nonlinearities —
not only detect the presence, but also show up most vividly the specific type and level
of existing nonlinearities in the vibration system. The final force static characteristics
reveal the initial nonlinear vibration model. Such a final construction of the identified
model does not even require knowledge of a certain association between nonlinearities
and backbones. The final force static characteristics are estimated automatically and
directly by the FREEVIB and FORCEVIB methods.

A vibration signal, suitable for this identification, should be a monocomponent
signal derived directly from a SDOF system or obtained from a MDOF system after
a signal decomposition or after a bandpass filtering. The simplest practical way to get
a monocomponent free vibration signal even from a MDOF system is to first excite a
forced vibration around the desirable resonance frequency, and suddenly turn off the
excitation. The remaining free decay will be a free solution of the desirable natural
mode of the nonlinear vibration system. This output signal x (1) = A (¢) cos f w (1) dt,
where x (¢) is the vibration signal (a real-valued function), A (¢) is the envelope (an
instantaneous amplitude), and w (¢) is the IF as a monocomponent signal, is suitable
for a FREEVIB analysis. The analytic signal representations permit us to estimate
the instantaneous modal frequency, the instantaneous damping coefficient, and the
static force characteristics, and to consider the equivalent equation of motion as
X+ 2h(0)x + k(x) = 0.

Algebraically, FREEVIB and FORCEVIB equations mean that the HT identifi-
cation methods use the initial displacement, velocity, and acceleration all together
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and synchronously. Note however that, in practice, the necessity of the first- and
second-order derivatives will increase the noise level in the estimations because of
precision errors inherent in the digital signal processing. Thus, the HT identification
methods, being sensitive to noise, require high-quality experimental measurements
with a minimum of instrumental noise and random errors.

Some other existing techniques for the identification of the nonlinear stiffness
and damping in a mechanical structure assume an a priori known particular type of
stiffness and damping model. After taking measurements they try to fit the model
parameters with regard to some specific structure. Such a selection of the chosen
model hides the physics of the system.

The HT identification methods, as nonparametric systems, form the acting non-
linear elastic and damping force characteristics k (x) , h(X) by directly extracting the
vibration system modal parameters. A nonlinear spring force function, identified from
the SDOF system’s motion of vibration, will totally correspond to the system’s initial
static elastic force characteristics per unit mass. In general, a SDOF system could
include several elastic and damping individual elements, combined integrally through
parallel and/or series connections. If each individual element of a SDOF system is
known, it is usually possible to determine the resultant, or equivalent, system force
characteristics. But the inverse problem has no unique solution.

For example, consider a system with two spring elements connected in parallel,
where the first is a backlash with a clearance and the second is just a linear spring.
The corresponding equivalent force characteristics will have a bilinear form with a
linear section for the displacement, less than the clearance, and with another linear
section for a higher amplitude. If the data on equivalent force characteristics is the
only information available, it is not possible to reconstruct the initial system. In
our example it could be either a real bilinear element, or just two different initial
elements like a backlash or a linear spring. In complicated cases of the system
identification, there are no unique solutions for the decomposition of the resultant
force characteristics, and one should use some additional information of the structure
of the model and a combination of its elements.

The HT methods, namely FREEVIB and FORCEVIB, of free and forced vibration
analysis determine instantaneous modal parameters, even if the input signal is a high-
sweep frequency signal. Such a direct determination of the relationship between
an amplitude and a natural frequency, which characterizes the elastic properties,
and a relationship between an amplitude and the damping characteristics, makes an
efficient nonlinear system testing possible without a long forced response analysis.
The reduction of time required for dynamic testing is the one of important advantages
of the FREEVIB and FORCEVIB methods. The methods consider the steady state
as well as the transient relations between the input and output signals of a vibration
system. Therefore, for the forced vibration testing with sweeping frequency there is
no need to wait until the end of the transient regime.

Note that the nonlinear backbones obtained according to FORCEVIB have two
close branches forming a narrow loop instead of a single-valued curve. The branches
usually correspond to the input frequency before and after passing through the system
resonance. For a smaller nonlinearity and slower sweeping frequency, the loop will
tighten to a single-valued backbone curve. In a nonlinear system like the Duffing
oscillator, there can be two types of stationary responses with jumps as transitions
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from one response to another. The transition over resonance corresponds to the
switching from different jump-up to jump-down resonance frequencies that occur
under forced vibration (Brennan et al., 2008).

In the case of linear systems the FORCEVIB method is able to estimate precisely
the modal parameters for very fast sweeping, including only a few full cycles of the
sweeping excitation around the resonance frequency. A forced vibration testing of
nonlinear systems requires more time and a slower sweeping frequency because of
the appearance of ultrahigh nonlinear harmonics. Nevertheless the HT identification
methods are less time consuming than traditional spectral analysis techniques.

10.1 FREEVIB identification examples

The FREEVIB method is illustrated here using the data from numerical simulation
results published on the internet as the MATLAB® pre-parsed pseudo-code files
(P-file) (Feldman, 2010). The first example is a free vibration of the Duffing equation
¥ 42 x2.5% 4+ (15 x 27)%x +2000x> = 0; xo = 8. The subsequent response of
the system will take the form of a monotonically decreasing free decay (Figure 10.1).
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Figure 10.1 The free vibration of the Duffing equation: the displacement (a,—) and
the envelope (a, --) of the solution, the IF of the solution (b) (Feldman, (C)2011 by
Elsevier)
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Figure 10.2 The identified Duffing equation: the backbone (a, —), the FRF (a, - -);
the damping curve (b) (Feldman, (C)2011 by Elsevier)

For large amplitudes the estimated backbone and the FRF are deviated to the
right, showing a hardening type of nonlinear stiffness (Figure 10.2a). Small ampli-
tude values have almost no influence on the modal frequency of the system’s linear
part, which is equal to 15 Hz. The obtained damping curve, being a trivial vertical
line, just illustrates a linear value of the constant damping coefficient equal to 2.5 s~ 1
(Figure 10.2b). The identified restoring force static characteristic has a typical cubic
form (Figure 10.3a). The estimated function almost agrees with the initial restor-
ing force function k(x) = (15 x 27)*x + 2000x3 plotted as a dash-dot line on the
same figure. The estimated damping force characteristic (Figure 10.3b) is a straight
line following the linear damping part of the equation 2A(x)x = 2 x 2.5%.

For the next example we examined a free vibration of the system with combined
nonlinearities both in the restoring and in the damping forces: ¥ 4 1100 sign(x) +
k(x) =0, xo = 10, where k(x) = {0’ if el < 1.5

’ ’ (27 x 30)* (|x| — 1.5)sign(x), if [x| > 1.5°
is a nonlinear backlash force, and 1100 sign(x) is a dry friction force. The free
vibration signal and the envelope function are shown in Figure 10.4a. The system
oscillates with a slightly varying frequency and an amplitude that gradually decreases
to zero.
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Figure 10.3 The identified Duffing equation spring force (a, —), the initial spring
force (a, --); the damping force (b) (Feldman, (C)2011 by Elsevier)
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Figure 10.4 Free vibration of the system with a backlash and a dry friction: the
displacement (a, —), the envelope (a, - -), the IF of the solution (b)
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Figure 10.5 The identified system with the backlash and dry friction: the backbone
(a, —) and the FRF (a, --); the damping curve (b)

The backlash system will display its nonlinear properties mainly for small vibra-
tions in amplitude where the natural frequency decreases extensively with decreasing
amplitude (Figure 10.4b). The backbone of the backlash system is a monotonically
increasing curve (Figure 10.5a) with an asymptote on the right where the natural fre-
quency of the corresponding linear system without the backlash is constant and equal
to 30 Hz. The estimated backbone also cuts off a clearance value equal to 1.5 on the
amplitude axis on the left side. Due to the dry friction, the damping curve takes the
form of a monotonic hyperbola (Figure 10.5b). The calculated force characteristics
(Figure 10.6) show good enough agreement with the original restoring and friction
forces of the vibration system plotted as a dash-dot line in the same figure.

Note that each force function is obtained automatically without any assumption
of the forms of nonlinearity, so the identification method is truly nonparametric.

10.2 FORCEVIB identification examples

To illustrate the identification results of nonlinear systems under a forced vibration
we will take the same two dynamics models. The first model is the Duffing equation
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Figure 10.6 The backlash and dry friction system identified spring force (a, —), the
initial spring force (a, --), the identified damping force (b, —), the initial damping
force (b, ---)

¥ 42 x 2.5% 4+ (30 x 2m)%x + 2000x* = z with a unit mass and an external quasi-
harmonic force excitation having a constant amplitude of 1 to 3 and an increasing
swept frequency from 20 to 70 Hz over a 2 second period. The measured forced
vibration solution is shown in Figure 10.7a with the envelope function. The IF of
the swept excitation, the instantaneous modal frequency, and the phase shift between
input and output signals are also shown in Figure 10.7b.

The modal parameters obtained by the FORCEVIB method in the form of the
backbone curve, the FRF, and the damping curve are presented in Figure 10.8; the
estimated mass value of 0.994 is almost equal to the initial value of 1. The identified
static force characteristics (with the initial elastic and damping force characteristics
as dash-dot lines) are shown in Figure 10.9. The forced vibration regime and mea-
surements lasted only 2 seconds. The natural frequency of the linear member being
30 Hz means that only 60 full vibration cycles were used for the identification proce-
dure. Such a rapid sweep generates high-order ultraharmonics that are ignored by the
FORCEVIB method, so the estimated nonlinear static elastics force characteristics
slightly differ from the initial characteristics (Figure 10.9a). To increase the accuracy
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Figure 10.7 The forced vibration of the Duffing equation: the displacement (a,—)
and the envelope (a, --); the IF of the swept excitation (b, —), the instantaneous
modal frequency (b, - -), the phase shift between an input and an output (b,. . .)
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Figure 10.8 The identified Duffing equation: the backbone (a, —), the FRF (a, --);
the damping curve (b)
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Figure 10.9 The Duffing equation identified spring force (a, —), the initial spring
force (a, --); the damping force (b)

of the nonlinear modal parameters estimation, we need to slow down the sweeping
velocity and use longer forced vibration regimes for the dynamic testing.

In the next example we will discuss a system with combined backlash and
dry friction nonlinearities (Figure 10.10) % + 1500 sign(x) + k(x) = z, where
k(x) = {O, if |x] <1.5

27 x 30)% (Jx| — 1.5) sign(x), if |x| > 1.5
force, 1500 sign(x) is the dry friction force, and z is an external quasiharmonic
force excitation of the constant amplitude 13,000 and of the swept frequency increas-
ing from 10 to 70 Hz during a 2-second period. The obtained modal parameters are
shown in Figure 10.11 where the backbone skews left and the damping curve skews
right towards the lower amplitude. The estimated mass value of 1.05 differs from the
initial value by only 5%. Figure 10.12 presents the identified static force character-
istics for both the elastic and damping members of the equation, together with the
initial force characteristics plotted with dash-dot lines. As can be seen, the nonlinear
forces identified from the measured vibrations of the SDOF system correspond well
to the system’s initial static elastic force characteristics.

It is important that not only is the presence of a nonlinearity detected, but also that
an adequate and readily interpretable dynamic system model is identified. The HT

is the nonlinear backlash
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Figure 10.11 The identified system with the backlash and dry friction: the backbone
(a, —) and the FRF (a, - -); the damping curve (b)
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reconstruction of the characteristics of the nonlinear forces is a direct and automatic
identification that does not require supplementary analysis of the topography of the
skeleton or damping curves. This topography is not essential for an experimental
evaluation of the properties of an a priori unknown vibration system. Using the
FREEVIB and FORCEVIB approaches to identify the SDOF vibration system we
can obtain both the modal parameters and nonlinear force characteristics during free
or forced vibration analysis.

10.3 System identification with biharmonic excitation

The proper choice of an efficient input excitation is always of benefit for a system
identification. Types of different excitation forces like periodic, impulse, and random
have been widely studied for the community of modal testing (Ewins, 1984). Other
types of designed periodic deterministic excitation formats, and corresponding eval-
uation tools for the identification of a qualitative system, are presented in Pei and
Piyawat (2008) and Gloth and Sinapius (2004). It was demonstrated that the proposed
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frequency and amplitude modulated periodic excitation can effectively unfold the un-
derlying dynamics of a complex nonlinear hysteretic system, especially in detecting
the existence of nonlinearities.

All our previous examples of system identification assumed that the force excita-
tion was a monocomponent quasiharmonic signal with a slow-varying (modulated)
frequency. However, theoretically the main analytical signal relations between the in-
put and output signals are true for any kind of input excitation. In particular, the input
can also be just the composition of two simple harmonics with constant amplitudes
and frequencies. From the classic spectral point of view, two harmonics at the input
of a linear vibration system will produce two similar frequency output harmonics
with scaled amplitudes and shifted phases. The spectral estimation of the dynamic
properties of tested systems brings out only two separated constant amplitude and
frequency points on the FRF. There is no detailed information about the response
function itself or the system modal parameters. The FORCEVIB method, based on
the HT, is one method that allows an estimation of the detailed FRF — even in the
case of two input harmonics.

To explain the possibility of such a system identification, let us consider a trans-
formation of the analytical signal transmitted through an arbitrary linear dynamic
system with a complex FRF H(w). For a linear dynamic system the output is re-
lated to the input signal by the well-known spectral equation X(w) = H(w) Z (w),
where X (w) is a complex spectrum of the output, H(w) is a complex FRF of
the system, and Z(w) is a complex spectrum of the input. The output signal can
also be written in analytic signal form by the use of an inverse Fourier transform
X(t) = x(t)+ix(t) = 2m)~" ;7 X (w) e’ do. Substituting the spectral equation
for the input/output relation we will have the same output signal as a function of time
(Vainshtein and Vakman, 1983):

X@t)=Q2n)"! /oo H(w)Z (0) e do.
0

Expanding the FRF H(w) in a Taylor series about the IF w(f) we will obtain the
following asymptotic series (Vainshtein and Vakman, 1983)

; dH[w(®)] . _;
X(1) = H[w()] A(t)e'?? — i;—w()]A(I)e””(’) +..., (10.1)
1)
where % is the first derivative of the FRF system (the first derivative of the phase

is a group delay) and A()e’*® is an input signal in the form of an analytic signal.
The restricted finite number of terms in the series (10.1) determines the error of this
IF method; it depends on the rate of the variation of the envelope and the IF. With
a sufficiently slow modulation of the input signal X(#) and slow-varying instanta-
neous characteristics A(), ¢(¢), we can restrict only the first term of the asymptotic
expansion (10.1). The resultant formula will yield a quasistationary relation between
the input and output signals of the dynamic system, where the spectral frequency w
is replaced by the IF w(t) X (¢) = H[w(t)]Z(¢). For the quasistationary mode, when
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Table 10.1 Extreme and mean values of the envelope and the IF of the biharmonic
signal

Signal value The envelope The IF
.. Wy —wi
Minimal Amin = A] — Az Wmin = a)]—m
. Wy — W
Maximum Apax = A A max = _—
a 1+ Az ®ma w]+A1/A2+1

Average A=A} +Ad ® = w

the frequency modulation can be considered negligibly small, the output change
occurs almost simultaneously with the change in frequency of the input signal. In
a general case of fast variations in the IF and the amplitude of the input signal,
we can take into account the dynamic corrections to the quasistationary solution
by using a larger number of terms in the expansion (10.1) describing the transient
processes in a dynamic system. In any case, the IF variation of the input signal pro-
duces a frequency variation in the output, so the FORCEVIB identification allows
us to extract the system modal parameters, including the FRF in the broad range of
frequency variation.

Consider an input excitation that consists of two pure harmonics, each with a
different amplitude and frequency z(t) = A; cos w;t + A, cos w»t. The envelope and
the IF of such a double-component signal are varying functions of time. Simple known
formulas for the extreme and mean values of the envelope and the IF of biharmonics
are shown in Table 10.1.

To achieve the largest range of envelope variation, when 0 < A < A, the
amplitudes of two harmonics should be close to each other (A} &~ A;). A large range
variation of the IF can be achieved when 0 < @ < wp,, so the frequency of the
second harmonic should be w, > Ajw;/As.

10.3.1 Linear system model

Inthe firstmodel ¥ + 2 x 0.01x 4+ x = cos 2z f1t + cos 27 f>t we use two harmonics
to generate a “beating” vibration regime. The frequency of the first harmonic f; =
0.16 Hz is close to the linear system resonance frequency 1/2m ~ 0.159 Hz; the
frequency of the second harmonic, f, = 0.155 Hz, is chosen to have three full period
beatings during the total time of the recorded vibration T > (f; — f>)~'. Naturally,
a linear system does not change a typical “two harmonics” wave nor the spectrum
form of the output (displacement) signal relative to the input (excitation) signal
(Figure 10.13).

Intermediate results of the HT identification — such as the time segment of the
displacement with its envelope and the instantaneous frequencies — are given in
(Figure 10.14. The IF of the displacement (Figure 10.14b, dashed line) varies in time
around a constant value of the estimated instantaneous undamped natural frequency
(bold line).
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Figure 10.15 The linear system identification: skeleton curve (a, —), FRF (a,...);
elastic static force (b); damping curve (c); friction force characteristics (d)

This frequency modulation performance allows us to reconstruct the tested dy-
namic structure in a wide frequency range. The final results of the HT identification,
including the skeleton curve, the FRF, the elastic static force characteristics, the
damping curve, and the friction force, are shown in Figure 10.15 by a bold line. In
the same figure, the initial characteristics, namely, the linear skeleton line 0.159 Hz,
the linear elastic static force kx = x, and the linear damping curve 7 = 0.01, are
shown by a dashed line. The difference between the initial and estimated lin-
ear characteristics is so small (less than 0.1%) that it cannot be distinguished in
Figure 10.15.

10.3.2 Nonlinear hardening system

Let us now examine the identification results of a nonlinear system that contains
two different types of nonlinearity: nonlinear “quadratic” damping and a nonlinear
cubic elastic component inherent to the Duffing equation ¥ 4+ 2 x 0.01x% + 0.2x|x| +
X + 0.4x3 = cos 2 fit + cos 27 fot. Again, a forced vibration regime is produced by
the same quasiperiodic force input signal. The existence of the nonlinearity can be
noticed immediately from the time data ( (Figure 10.16a,b), whose input and output
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Figure 10.16 Nonlinear hardening system: the excitation (a), the displacement (b),
excitation spectrum (c), displacement spectrum (d)

wave shapes differ, and also from the output spectrum (Figure 10.16d), which has
high-frequency multiple harmonics. The HT identification results are given in Fig-
ures 10.17 and 10.18. A comparison between the estimated (bold line) skeleton
curve and the initial average (dashed line) skeleton curve, taken as the first term of

(8.9), fo(A) = \Jwi(A)2m = Ja; + %a3A2/2n = «/1 4+ 3A2/27, shows that these

skeleton curves are in a good close agreement.

The identified (bold line) and initial precise (dashed line) static force characteris-
tics kx + ax® = 1 4 0.4x3 (Figure 10.18b) are very close. The identified (bold line)
and initial precise (dashed line) friction force characteristics 0.02x% + 0.2x|x| are also
close to each other (Figure 10.18d).

This model illustrates that the HT identification makes it possible to restore
nonlinear characteristics even in the case of a combined nonlinearity in both the
elastic and friction parts of the equation of motion under biharmonic excitation. Note
that the identified static force characteristics have a small deviation from the ini-
tial characteristics to the “linear” direction. In other words, they are slightly less
nonlinear than the initial force characteristics, which means that the FREEVIB
and FORCEVIB identification procedures restore only the first main term of the
nonlinear motion.
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10.3.3 Nonlinear softening system

As an example we refer to the simulation of a vibration system with a nonlinear
softening spring and linear friction characteristics ¥ + 2 x 8.5% + (30 x 27)*x —
1800x3 = z. The excitation is a weighted sum of two harmonics, each with its own
constant frequency and amplitude value: z = cos 27307 + 0.99 cos 2731.5¢ (Figure
10.19a). The simulated forced vibration carried out by the beating excitation is
shown in Figure 10.19b together with the envelope function. The alternating IF of
the solution, the instantaneous modal frequency of the system, and the phase shift
between the input and output are shown in Figure 10.19c.

The obtained backbone has a typical nonlinear form of softening stiffness, and
the damping curve is a trivial vertical line (Figure 10.20). The spring and damping
force characteristics, estimated after a FORCEVIB identification, practically coin-
cide with the initial ones (Figure 10.21). It was demonstrated that the described
identification method based on the HT is able to estimate the modal parameters
and the detailed FRF in the range of frequencies — even in the case of two input
pure harmonics.

In a simple case, such as the sum of two sinusoidal signals with constant frequen-
cies, only two separate frequency points of the FRF can be estimated by the traditional
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Figure 10.19 The softening system with biharmonics force excitation (a); the dis-
placement solution and the envelope (b); the IF of the swept excitation (—), the
instantaneous modal frequency (- -), the phase shift between input and output (. . .)
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Figure 10.20 The identified Duffing equation under biharmonics force excitation:
the backbone (a, —), the FRF (a, --); the damping curve (b)

Fourier transform method. However, the HT of the same signal contrastingly allows
us to estimate the FRF for a wide continuous frequency range.

10.4 Identification of nonlinear time-varying system

The FREEVIB and FORCEVIB methods proposed for identifying instantaneous
modal parameters prove to be very simple and effective. They allow the identifica-
tion of linear time-varying natural frequencies and damping characteristics (Shi and
Law, 2007) as well as nonlinear parameters, including their dependencies on the vi-
bration amplitude and frequency. This section concentrates on the dynamic analysis
and identification of two groups of dynamic systems: (1) combined forced vibra-
tions of quasiperiodic time-varying linear and nonlinear SDOF systems excited by
a harmonic signal; and (2) combined self-excited and forced vibrations of nonlinear
SDOF systems excited by a harmonic signal (Feldman, 2005).
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For the chosen linear and nonlinear models of vibration motion, we use the
following analytical expression with the combined different equations:

¥+ hx 4 8% x| + px(x? — 1) +kx +ax® = z(1); k= wj(1 + B cos wst);
7(t) = Ay cos2m fit + As cos2m frt + Az cos 27rf3t2 (10.2)

Consequently, we will get the vibration motion by forming a combination of the
following parameters: &, the linear viscous damping coefficient; §, the nonlinear
“quadratic” friction coefficient; u, the friction coefficient of the van-der-Pol equa-
tion; k, the static elastic force coefficient; wg, the linear undamped natural fre-
quency square; «, the cubic coefficient of the Duffing equation; g, the amplitude
modulation coefficient of the elastic force coefficient; wg, the frequency modu-
lation coefficient of the elastic force coefficient; A;, the amplitude of the excita-
tion; and f;, the frequency of the excitation. Their corresponding numeric values
are given in Table 10.2. The simulations of all differential equations of motion
are performed with SIMULINK (MATLAB) with the permanent step value ODE4
(Runge—Kautta) solver.
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10.4.1 Model 1. Modulated elasticity

Let us consider a structure with a known unit mass value that describes a slow mod-
ulated elastic force k = wj(1 + Bcoswgt) = 1 + 0.5cos 0.03¢ of a trivial dynamics
system under an external harmonic excitation (Table 10.2).

The generated vibration has a rather complicated form over time and also in
the frequency domain (Figure 10.22). But the HT identification restores this mod-
ulation in detail. Thus, Figure 10.23b shows that the identified instantaneous un-
damped natural frequency of the vibration (bold line) completely coincides with
the varying initial elastic force modulation function f = +/1+ 0.5c0s0.03¢/2x
(dashed line).

The obtained damping characteristics (Figure 10.24, bold line) demonstrate a
linear type of friction force, which is a good match for the initial linear type of Model
1 (dashed line) with /2 = 0.01 and yx = 0.02x. This example shows that the HT
method makes the identification of a slow modulation of the system parameters
possible even in a case of the simplest monoharmonic excitation.
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Figure 10.22 Model 1: the excitation (a), the displacement (b), excitation spectrum
(c), displacement spectrum (d)
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10.4.2 Model 2. Modulated elasticity + Quadratic damping +
Swept excitation

The next system, as well as the previous one, has a slow modulated elastic force, but in
addition to the linear viscosity, it also has a nonlinear quadratic friction member. Also,
the tested model has a different external force excitation with a sweeping increasing
frequency instead of a single harmonic (Table 10.2). The generated vibration in time,
and also in the frequency domain (Figure 10.25), takes a rather complicated form.
The results of the HT identification are shown in Figures 10.26 and 10.27.

The identified instantaneous undamped natural frequency (bold line) com-
pletely coincides with the initial elastic force modulation f = /1 + 0.5 cos 0.03¢/2x
(Figure 10.26b, dashed line). The obtained nonlinear friction force characteristics
(bold line) are in close agreement with the initial nonlinear type of friction force
(dashed line) Ax + éx|x| = 0.02x + 0.2x|x| (Figure 10.27b).

10.4.3 Model 3. Parametric excitation

The static elastic force for this case is modulated by a high modulation frequency
equal to the constant natural frequency of the system wy = wg =1 (Table 10.2).
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(c), displacement spectrum (d)



206 HILBERT TRANSFORM APPLICATIONS IN MECHANICAL VIBRATION

a Displacement and Envelope

T T T T T T T T T T T
3k AT T

.

= T

50 100 150 200 250 300 350 400 450 500 550

Amplitude
o

b Instantaneous Frequencies

T T T T T T T T T T T

02f .

0.18

0.16

0.14

Frequency, Hz

0.12

0.1k i i i i R IEEREEEY IEEESEEE IREEREEE EEEREREE REREEREE | i
50 100 150 200 25 300 35 400 450 500 550
Time, s

Figure 10.26  Model 2: the displacement and the envelope of the solution (a), the IF
(b)

a Damping curve b Friction Force
DAL ]
1k i
221 b
2 - -
0.5 b
1.8f i
(0]
°
=
=y
€ 16 b 3
< S ot ~
2 g
8
2 141 E
121 B —05F i
1 - -
08f - : -1 iy
-0.1 0 0.1 0.2 0.3 0.4 -2 -1 0 1 2
Damping coefficient Velocity

Figure 10.27 Model 2: the identified damping curve (a), the friction force charac-
teristics (b)



HILBERT TRANSFORM APPLICATIONS IN MECHANICAL VIBRATION 207

a
c 1 I T
.9
£ 0
[&]
x
w -1 1 | | |
0 100 200 300 400 500
b
_ x10
% 2 T T T T T
£
§ 0
Q.
(7]
A -2 L i i i i
0 100 200 300 400 500
Time, s
c Excitation d  x10° Solution (Displacement)
4»
[] ()
kel ©
2 02f 2
c € 3|
(=) o
IS 5]
= 0.15} =
€ IS
2 22
3 0.1t 3
Q. o
%) %)
2 0.05} gr
o [e]
o ( o
0 J oh
0 0.1 0.2 0.3 0 0.1 0.2 0.3
Frequency, Hz Frequency, Hz

Figure 10.28 Model 3: the excitation (a), the displacement (b), excitation spectrum
(c), displacement spectrum (d)

The amplitude of the solution of the system under an external harmonic excitation
increases infinitely (Figure 10.28b). This behavior illustrates the parametric instability
of the tested system.

In this case, the input harmonic excitation has almost no influence on the observed
unstable oscillation. Therefore, we will use FREEVIB method of identification which
analyzes only the structure vibration output. The HT identification method restores
only the correct skeleton curve and the elastic force characteristics (Figure 10.29a, b).
It is clear that, in this case, the HT — instead of the initial linear damping — restores
a negative increment and corresponding negative (in the opposite direction) friction
characteristics (Figure 10.29c, d). In some special cases, the obtained increment
can be used for a quality analysis of the instability growth rate of those unstable
vibration solutions.

10.4.4 Model 4. Van-der-Pol + Duffing

The next test combines a nonlinear friction part common to the van-der-Pol oscillator
and a nonlinear cubic elastic force part typical to the Duffing equation. Model 4 has
a very low level harmonic input excitation (Table 10.2). As expected, it displays a
known self-excited regime of nonlinear vibration in time (Figure 10.30b).
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The corresponding spectrum of the self-excited vibration shows high-frequency
multiple harmonics, which confirms the existence of the nonlinear elastic part (Figure
10.30d). Again, the observed self-excited oscillation regime does not depend on the
input excitation signal.

The HT identification of the FREEVIB method used here (Figure 10.31), restores
both the nonlinear friction and nonlinear elastics parts in full detail. Thus, the identi-
fied (bold line) skeleton curve and the initial (dashed line) skeleton curve, as the first
term of (8.9), almost coincide (Figure 10.32a). Similarly, the identified (bold line)
and initial (dashed line) static force characteristics kx + ax> = 1 4+ 0.4x> also almost
coincide (Figure 10.32b). The identified nonlinear friction force characteristics (bold
line) are in close agreement with the initial nonlinear type of friction force (dashed
line) px (k> — 1) = 0.1k (x> — 1) (Figure 10.32d).

10.4.5 Model 5. Van-der-Pol + Biharmonic excitation

The next system combines a nonlinear friction part that is common to the van-der-
Pol oscillator with a high-level quasiperiodic excitation (Table 10.2). The chosen
forced vibration regime becomes dominant, and the vibration shape shown in (Figure
10.33a, b is similar in appearance to the forced vibration of the nonlinear system in
Figure 10.16a, b. The HT, however, detects the actual properties of the tested system
(Figure 10.34). The identified skeleton curve and the elastic static force characteristics
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(bold line) take a trivial linear form corresponding to the initial linear elastics part
(dashed line) of the tested system (Figure 10.35a, b). The identified nonlinear friction
force characteristics (bold line) are in close agreement with the initial nonlinear type
of friction force (dashed line) pux (x> — 1) = 0.1x(x% — 1) (Figure 10.35d).

10.4.6 Model 6. Van-der-Pol + Swept excitation

The system under consideration repeats the previous system with a nonlinear fric-
tion part that is common to the van-der-Pol oscillator, but now it involves a forced
excitation with a sweeping frequency (Table 10.2). The obtained waveform in time,
and also the shape of the corresponding spectrum, demonstrate the typical resonance
performance of the structure (Figure 10.36). Application of the FORCEVIB iden-
tification method is shown in (Figure 10.37). Again the identified skeleton curve
and the elastic static force characteristics (bold line) take a trivial linear form that
corresponds to the initial linear elastics part (dashed line) of the tested system (Fig-
ure 10.38a, b). The identified nonlinear friction force characteristics (bold line) are
in close agreement with the initial nonlinear type of friction force (dashed line)
wx(x? — 1) = 0.1x (x> — 1) (Figure 10.38d).
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We can conclude that the used HT identification methods make it possible to
reconstruct, in detail and separately, the actual combined nonlinear elastic and fric-
tion force of the equation of motion of SDOF systems. The proposed HT technique
allows us to identify the time-varying (modulated) parameters of linear and nonlin-
ear systems under different kinds of excitation — including the quasiperiodic input
signal — with only two harmonic components. The HT identification allows us to re-
construct the tested dynamic structure in a wide continuous frequency range around
the resonance, whereas the traditional Fourier transform only permits us to estimate
two discrete frequency points on the FRFE. A further continuous real-time estimation
of the initial parameters of nonlinear dynamical systems can be used, for example,
for measurement, monitoring, and diagnostics purposes. Recent work in the area of
the time-domain representations of vibration, such as an HT analysis, shows great
promise for the identification of dynamic systems.

10.5 Experimental Identification of nonlinear
vibration system

The provided measurements of a free and forced vibration motion and unique signal
processing, based on the HT analysis, yield an accurate estimation of nonlinear spring
and friction parameters of the vibration model. The obtained natural frequencies and
friction parameters are functions (rather than scalars) that describe the system’s be-
havior under different operating conditions. The important type of nonlinearity arises
when the restoring force of the spring is not proportional to its deformation. There
are several known types of static force characteristics (load—displacement curve)
representing different types of nonlinearity in elastic springs: backlash, preloaded
(precompressed), impact, and polynomial. A vibrating system, normally described
by fixed parameters, can be presented by a piecewise-linear restoring force that may
also be considered as an approximation of continuous typical curves (Worden and
Tomlinson, 2001). In most nonlinear vibration systems the natural frequency will be
decisively dependent upon the vibration amplitude. Therefore typical nonlinearities
in springs have the unique form of a skeleton (backbone) curve. The topography of
the skeleton curve is essential to assess the properties of the tested vibrating sys-
tem. The resultant characteristics of nonlinear elastic forces can be reconstructed
on the final stage of the HT identification on the basis of the estimated modal
parameters.

The nonlinear spring force function, identified from measured vibrations of a
SDOF system, corresponds well to the system’s initial static elastic force charac-
teristics. In general, even a SDOF nonlinear system could include several elastic
and damping elements that can be combined integrally through parallel and/or series
connections. In these complicated cases of system identification, there is no unique
solution for the decomposition of the resultant force characteristics, and one should
use some additional information about the model structure and the combination of
its elements.
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10.5.1 The structure under test

An experimental vibrating structure was made with the following features: the struc-
ture consisted of a mass attached to a heavy base by means of two springs, as shown
in Figure 10.39. The mass between the springs could move horizontally about its
equilibrium position, while the springs vibrated as fixed-end beams. A test rig in-
cluded a special pretensioning mechanism, coupled to a base plate. The experimental
vibrating system included an external actuator allowing us to apply a variable force
excitation and a LVDT sensor to measure the mass motion.

In this work the identification was carried out on the basis of experimen-
tally determined instantaneous characteristics of free and forced vibration response

Figure 10.39 The experimental stand: mass (1), ruler springs (2), actuator (3),
tension mechanism (4), LVDT sensor (5)



216 HILBERT TRANSFORM APPLICATIONS IN MECHANICAL VIBRATION

signals measured from the test stand. By applying a nonparametric HT identifica-
tion technique and an instantaneous signal frequency estimation, one can compute
the signal envelope and produce the structural parameters. These steps do not pose
serious computational or procedural difficulties and can be performed in a short time
for an arbitrary type of nonlinearity inherent in the system.

10.5.2 Free vibration identification

The free vibration displacement signal was produced by abruptly stopping a forced
excitation that was exciting the system at resonance (here, 13 Hz). The actuator —
under free vibration — repeatedly generated an excitation sequence burst consisting of
periodic excitation (at 13 Hz) that stopped for a short period, then started again. Figure
10.40 shows an example of four repeated patterns of the measured displacement
and Figure 10.41 shows the forced excitation regime. Naturally, the free vibration
decay corresponds only to the decaying part of each pattern that takes place when
the actuator is switched off. The experimental investigation shows that the tested
structure is represented only by a SDOF system.
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Figure 10.40 The measured time histories: the repeated interrupted force excitation
(a), the output free vibration displacement (b)



HILBERT TRANSFORM APPLICATIONS IN MECHANICAL VIBRATION 217

x 107 a
4,
5 \
b4
3 0
S
w
_oH
4t | | | | | | | | [
0 1 2 3 4 5 6 7 8 9
x 107 b

o
2
T
1

]
o
2
T
1

Displacement, m
o

|
—_
T

5 6 7 8 9
Time, s

o
-
n
w
IS

Figure 10.41 The measured time histories: the input sweeping force excitation (a),
the output displacement (b)

The backbones of four repeated impulses obtained according to (9.4) are shown
concurrently in Figure 10.42 (dash-dot line) along with the corresponding amplitude
response according to (9.9). All these backbones almost coincide, which indicates that
the natural frequency is an amplitude-dependent function. The skeleton curve tips out
of vertical to the right for both small (less than 3 - 10~ m) and large amplitudes (more
than 5. 1073 m). That means that the tested structure includes two different types
of nonlinear stiffness elements — the preloaded amplitudes and the hardening spring.
For the large amplitudes and hardening spring, a polynomial curve fit (8.9) of the es-
timated nonlinear skeleton curve gives the following form w?(A) = 47212.67* +
3/, 0.46A% [rad/s]*>. For the small amplitudes from the same skeleton curve a
very small preloading force value equal to Fp/k = 1.2- 107> [m] was estimated
according to (8.2).

The obtained damping curves for four excitation patterns almost coincide, show-
ing little variation in their estimated average damping coefficient 7 = 2.5 [1/s] (Figure
10.44a). Estimation of the damping allows us to construct a curve showing both the
amplitude of the damped response for a free vibration regime, and the damping static
force characteristics (Figure 10.44b). As can be seen, the damping force characteris-
tics indicate that there exists a combination of linear viscous friction and dry friction.
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The dry friction force per unit mass is obtained by performing a polynomial curve
fitting: it is equal to 0.015 [m/s?].

The resultant identified model per unit mass takes the form of a SDOF vibration
system

¥ 4 5% 4+ 0.015 sgn(x) + (27 12.67)* x + 0.46x°
+1.2- 107 27 12.67)* sgn(x) = 0, (10.3)
for the range 0 < A, < 1.5- 1073 [m], it is clear that the nonlinear spring and
nonlinear damping cannot be ignored in both the large and small amplitude range.
The results of the HT identification of a free vibration (10.3) describe, for the
main system, the linear and nonlinear properties including the skeleton and damping
curves, as well as the relative static stiffness and damping force characteristics per
unit mass. These results constitute a basis for model identification, but a free vibration
analysis does not restore the absolute system mass and stiffness values. To estimate

the absolute values of the system parameters we provide a forced vibration regime of
the system.
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10.5.3 Forced vibration identification

During this test, the forced vibrations were produced by the actuator (exciter) with a
continuous frequency sweep in the range of 5 to 20 Hz. The force generated by the
actuator is shown in Figure 10.41a, and the corresponding forced vibration is shown
in Figure 10.41b. The HT identification method FORCEVIB uses these input and
output time histories, where the displacement and the force are presented in the time
domain.

The obtained results, as well as the results from the free vibration identification,
evidently include the same skeleton and damping curves, and also the same static
stiffness and damping force characteristics. For example, Figure 10.42 (dotted line)
shows the skeleton curve, which almost coincides with the same curve from the free
vibration regime. However, the forced vibration identification was able to restore the
reduced mass absolute value and the stiffness absolute value. The obtained absolute
mass value of all the moving parts of the experimental stand is equal to 0.27 kg.
The obtained mass and the natural frequency give the value of the structure reduced
average static stiffness value: k = ma)(z) =0.272r - 12.7)2 ~ 1.7 -10°[N/m]. The
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obtained mass value also determines both absolute (static) force characteristics (stiff-
ness and damping, Figures 10.43b and 10.44b) and the final model of forced vibration
of the system:

0.27 [x +5% +0.015 sgn(i) + (27 12.67)% x + 0.46x7 + 002/ sgn(x)]
= F(t), (10.4)

0< A, <1.5-1073 [m], where 0.27 is an estimated mass value, and F(¢) is an
external force. The last formula almost repeats (10.3), but now the forced vibration
model incorporates an identified mass value. The identified model, having nonlinear
elastic and damping forces, describes the motion of the system under different types of
input excitation.

In this section we presented the results obtained by the HT nonparametric iden-
tification of a real mechanical system consisting of a mass, spring, and damping.
The input force and the system displacement response were measured under free
vibrations (transient) and also under a harmonic forced excitation. The identification
was carried out by means of the HT technique of a signal processing for nonlinear
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systems. This technique is based on the analysis of the input and output signals of a
system: its envelope and its IF in the time domain.

The HT-based technique makes it possible to estimate directly the system’s in-
stantaneous dynamic parameters (i.e., natural frequencies, damping characteristics)
and their dependence on the vibration amplitude and frequency from the measured
time signals of the input and output. The model of the tested structure was created by
curve fitting the experimentally obtained force characteristics. The obtained results
may be used to verify and validate the model under different conditions, to simulate
possible solutions generated by any other input force, and to find a control scheme
that provides the desired vibration response. The introduced identification method of
a free and force vibration analysis, which determines instantaneous modal param-
eters, contributes to an efficient and more accurate testing of nonlinear oscillatory
systems, avoiding time-consuming measurement and analysis.

10.6 Conclusions

In conclusion, it can be stated that an interesting and promising experimental method
for the identification of nonlinearities in the stiffness and damping characteristics of
a vibration system has been developed. The method is based on input and output
time-domain measurements and on their Hilbert transforms. The method defines the
instantaneous modal parameters (backbones, damping dependencies) of a system
under a slow or a very fast swept frequency test

These HT identification methods, named FREEVIB and FORCEVIB, enable us
to perform a detailed reconstruction and separation of the actual combined nonlinear
elastic and friction force of the equation of motion of a SDOF system. The proposed
HT technique permits the identification of linear, nonlinear, and modulated param-
eters under different kinds of excitation, including a quasiperiodic input signal with
only two harmonic components. The HT identification allows for a reconstruction
of the tested dynamic structure in a wide continuous range around the resonance
frequency, whereas the traditional Fourier transform enables the estimation of only
two corresponding discrete frequency points on the FRE.

The HT approach is suitable for any vibration system and does not require
knowledge of the signal or the parameters of the system. Such a nonparametric
identification will determine not only the amplitude and frequency dependencies, but
also the initial nonlinear restoring and damping forces.

The HT methods allow the testing time of prototypes to be reduced without
diminishing the accuracy of the data. A further continuous real-time estimation of
the initial parameters of nonlinear dynamical systems can be used, for example, for
measurement, monitoring, and diagnostic purposes.
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Considering high-order
superharmonics. Identification
of asymmetric and MDOF
systems

During the previous two decades the HT has been applied more and more widely for
the study and identification of nonlinear vibration systems in the time domain. The first
results showed that the estimated envelope and the IF, as well as the identified modal
parameters, are combinations of slow-varying and fast-oscillated functions (Feldman,
1985; Davies and Hammond, 1987). The fast oscillations and modulations observed
are not the results of the influence of the HT signal-processing procedure, because the
results of the HT identification of linear systems are smooth and have no oscillations.
The HT just reflects the nonlinear nature of an observed vibration solution. The fast-
oscillating nonlinear distortions of vibrations are caused by deviations in the linear
relationship between the input and output of a dynamical system.

To achieve traditional smooth skeleton curves and static force characteristics, a
lowpass filtering was proposed for the approximation of nonlinear system identifica-
tion results (Feldman, 1994a, 1994b). This lowpass filtering or averaging approach
simply eliminates (or ignores) the obtained fast oscillations. This had already been
observed in the FREEVIB and FORCEVIB identification methods that operate only
with the primary vibration solution of a SDOF system. However, because of the non-
linearity in addition to the primary vibration solution, there could be a wide variety of
secondary nonlinear high-order superharmonics (ultraharmonics) with frequencies
that differ from the primary resonance response. In reality a vibration solution is gen-
erally rich in harmonic content with the major component having a primary natural
frequency and a number of minor components having higher multiple frequencies.

Hilbert Transform Applications in Mechanical Vibration, First Edition. Michael Feldman.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd. ISBN: 978-0-470-97827-6
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Considering the time domain, the rich harmonic content means the intrawave am-
plitude and phase modulation of the instantaneous parameters, such as the solution
amplitude and frequency.

‘We can provide a new analysis and a precise identification of nonlinear vibration
structures, based on the HT signal decomposition, by joint consideration of the
primary and high harmonics solution. The analysis focuses on nonlinearities and
on an identification of precise modal parameters (natural frequencies, damping, and
static force characteristics) for the free and forced vibration of a SDOF system. Recent
achievements in nonstationary signal decomposition (Huang, Shen, and Long, 1999;
Feldman, 2006) open the way to extract the fast oscillations and examine them for
a more precise nonlinear system identification. Therefore the new analysis will be
based on two other HT methods:

¢ the FREEVIB and FORCEVIB methods for extracting the instantaneous modal
parameters;

e the HVD method that splits a nonstationary wideband oscillating signal into
separate components.

11.1 Description of the precise method scheme

The HT identification of vibration systems in the time domain is a typical dynamics
inverse problem. Suppose the mass of the investigated SDOF dynamics system with
unknown restoring and damping forces moves under (or without) an excitation force.
By observation (experiment), we acquire knowledge of the position, velocity and
acceleration of the object, as well as the excitation at several known instants of
time. The inverse problem can be formulated as a question: Can initial restoring and
damping forces be precisely determined? In the case of a free vibration we have only
an output signal — the vibration of the body; in the case of a forced vibration we deal
also with an input excitation.

For linear class systems, such an identification problem has classically known
solutions. However, for nonlinear systems, the inverse problem is more complicated,
first, because of the intricate nonlinear relationship between the input and the out-
put. In addition, nonlinear systems produce nonlinear harmonic and intermodulation
distortions in their output. For example, a harmonic distortion occurs when a sys-
tem, whose input is fed with a pure sine-wave signal of frequency f, produces as its
output a vibration of frequency f, as well as a set of higher harmonics whose fre-
quencies (2f, 3f, ..., nf) are harmonically related to the input frequency (Lang and
Billings, 2005).

Actually, the real solution of nonlinear systems contains a main (fundamental,
primary, principal) sine-wave solution of frequency f along with an infinite number
of multiple high-frequency superharmonics nf. Thus a response of the weakly non-
linear system x(¢) can be expressed as the sum of the first x;(¢), second x,(¢), and

o0
other high-order oscillation functions: x(z) = Y x;(¢). The FREEVIB and FORCE-

I=1
VIB identification methods were based only on the extraction of a single principal
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component of the solution. The performance of other high-frequency superharmonics
was ignored or just expressed as a total harmonic distortion coefficient at a specified
output level. Considering only the principal component and its corresponding aver-
aged natural frequency, we will get an approximate result correct to the polynomial
constant of the stiffness force coefficients (Section 8.3.1). For example, in the case
of a pure backlash stiffness such bias difference between the real and the estimated
backlash force value will be equal to 25%.

In other cases the initial static force characteristics and those identified by FREE-
VIB and FORCEVIB are closer to each other; nevertheless, the identified static force
characteristics have a small “natural linearization” deviation from the initial char-
acteristics to the “linear” direction (Figures 10.18 and 10.27). In other words, they
are slightly less nonlinear than the initial force characteristics. This means that the
HT identification based on the averaging (filtering) procedure restores only the first
main term of the motion. This approximation can be recommended mostly to identify
nonlinear systems in the case of noisy experimental conditions.

By using modern signal decomposition methods (Huang et al., 1998; Feldman,
2006) we can divide the real multicomponent motion into a number of several sep-
arated superharmonics and identify the initial system partially for every component.
However, this approach (Feldman, 2006) is suitable only for a free vibration motion
that can be decomposed into a principal (fundamental) and other high-order har-
monics. Actually, a decomposed multicomponent forced vibration motion cannot be
correlated to a single pure sine-wave excitation. Therefore the identification of non-
linear systems requires the development of a more universal method that is suitable
for both free and forced vibrations.

11.2 Identification of the instantaneous modal
parameters

Typically, a nonlinear equation describing a vibration motion in a SDOF system
has a fixed structure. This structure classically includes three independent members:
a restoring force (stiffness, spring) k(x) as a nonlinear function of displacement
(position), a damping force (friction) 4(x)x as a nonlinear function of velocity (the
first derivative of the position with respect to time), and an inertial force proportional
to acceleration i (the second derivative of the position with respect to time). The
second-order vibration system X + 2A(x)x + k(x) = 0, having nonlinear elastic and
damping force characteristics, can be transformed into the complex equation (9.3):

X 4 20()X + 0*(1)X =0, (11.1)

where w,(?) is a fast-varying instantaneous modal frequency, A(t) is a fast-varying
instantaneous modal damping coefficient, and X = x(¢) + iX(¢) is the solution. Here
the instantaneous modal parameters are fast-varying functions of time. Their direct
extraction and plotting demonstrates an unusually fast oscillation (modulation) form.

To identify a nonlinear SDOF system under free vibration, we can measure all
the output kinematic parameters — displacement, velocity, and acceleration — as real
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functions at several time instants. Therefore, at every point in time, the real equation
of motion has two unknown parameters: instant stiffness and instant damping.

By applying the HT and introducing an analytic signal with a magnitude and phase
representation, we obtain the second equation of motion written for an imaginary HT
projection. Thus, instead of only one equation of motion we now have two with the
same unknown modal parameters. So we can solve the system directly and estimate
the unknown instant stiffness and instant damping for every point of time. Once the
stiffness and damping coefficients are known, the spring and damper static force
characteristics can be obtained trivially as a multiplication of the corresponding
coefficient and motion envelope.

At the first stage of the precise identification technique, the signal envelope,
along with the instantaneous natural frequency and the instantaneous damping co-
efficient, are extracted from the vibration and excitation signals — according to HT
signal-processing FREEVIB or FORCEVIB methods but without lowpass filtering.
At the next stage, the fast-varying modal parameters are decomposed into separate
synchronous components that are combined congruently to produce smooth modal
parameters related to the initial static force characteristics. At the final stage, the
precise nonlinear static elastic and damping force characteristics are constructed as a
multiplication of two corresponding congruent envelopes (for example, the displace-
ment and the elastic force) according to the technique to be described in Section 11.4.
It is convenient to represent the final result of the HT identification in a standard
form that includes skeleton curves and the initial static force characteristics of the
nonlinear vibration system.

11.3 Congruent modal parameters

The measured and estimated instantaneous functions — namely displacement, veloc-
ity, natural frequency, and damping — generally turn into fast-varying nonstationary
functions due to existing high-order superharmonics. To reconstruct the initial non-
linear force characteristics precisely, we deduce the form of each oscillating function
using a suggested term called a congruent envelope (Section 5.6).

11.3.1 Congruent envelope of the displacement

Itis clear that precise values of the elastic force function match maximum points of the
primary displacement solution X (#). Moreover, the corresponding value of velocity
at the maximum displacement point is close to zero, so its contribution to the varying
natural frequency is negligibly small. The maximum displacement points correspond
to the congruent envelope that is the EOE function of the solution. Such a smooth EOE
is a phase congruent function of the primary solution Agog(f) = Z;\;l A;(t) cos ¢y (1),
where A;(t) is the envelope of the solution / order harmonic, and ¢;(¢) is the phase
angle between the primary and the / order harmonic. For example, if all high-order
harmonics are congruently in phase with the primary solution, the EOE of the fast-
varying solution is equal to the sum of the harmonic envelopes. It is clear that
an estimation of the congruent envelope Agog(f) requires decomposing the system
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solution into a sum of high order harmonics. The following algebraic sum of all high
harmonic envelopes will produce a congruent envelope.

11.3.2 Congruent modal frequency

In nonlinear vibration systems the obtained instantaneous modal frequency w, (¢)
also varies fast in time. So the instantaneous natural frequency in its turn can also be
decomposed into a sum of high-order synchronous components w, (f) = vaz | x(1).
The main result of such a decomposition is the congruent modal frequency

N
OepOE(t) = ) aui(1) Cos (1) (11.2)

=1

estimated as an algebraic sum of the envelopes of all considered high harmonics
a.(t). Here a,y; is an envelope of the /-order harmonic, and ¢,,(¢) is a phase angle
between the primary and the /-order harmonic of the instantaneous modal frequency.
The congruent modal frequency as a smooth envelope of an instantaneous modal
frequency theoretically defines the exact natural frequency of a nonlinear system for
every specified level of the solution. In practice, the accuracy of the last expression
depends on the total number N of considered synchronous vibration components.
The precise elastic force function is defined at the point of maximum displacement as
the multiplication of the congruent displacement envelope and the congruent modal
frequency squared.

11.3.3 Congruent modal damping

The instantaneous modal damping /(¢) can be decomposed into the sum of high-order
synchronous components A(t) = leil h;(t). Thereafter the congruent modal damp-
ing is estimated as the algebraic sum of the envelopes of all considered synchronous
high harmonics ay,;(?):

N

hio(t) = ) an(r) cos u(1) (11.3)

=1

Here ay; is the envelope of the /-order harmonic, and ¢,,;(¢) is the phase angle
between the primary and the /-order harmonic of the instantaneous modal damping.
The congruent modal damping as a smooth function theoretically defines the exact
damping coefficient of the nonlinear system for every specified level of the solution.
Respectively, the multiplication of the congruent modal damping and the congruent
velocity envelope at the point of maximum velocity gives the exact value of the
friction static force.
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11.3.4 Congruent envelope of the velocity

Around every velocity peak point the corresponding value of displacement is
close to zero, so its contribution to the varying damping coefficient is negligibly
small. The congruent envelope of the velocity is a smooth EOE of the solution
velocity: A ;gop(t) = Z,N:I Aj(t) cos ¢y(t), where Ay(t) is the envelope of the /-
order velocity harmonic, and ¢;,(¢) is the phase angle between the primary and the
[-order velocity harmonic.

The EOE has a traditional mathematical meaning as a function (curve) that is
tangent to the oscillating envelope. As mentioned, the EOE is a rather smooth function
in time; nevertheless, it contains intensities of the primary harmonic and all intrinsic
high harmonics existing in the corresponding fast-varying nonstationary function.
Calculation of the EOE is based on two cascading operations: a nonstationary signal
decomposition and a congruent summation of envelopes and instantaneous functions
of the decomposed synchronous components.

11.4 Congruent nonlinear elastic and damping forces

According to (9.10) spring force characteristics k(x) for the identification are defined
as the multiplication of two phasors: K = ? X, where ? is the varying nonlinear
natural frequency, X is the displacement of the vibration in a signal analytic form.
The precise elastic force function is defined at the point of maximum displacement as
the multiplication of the congruent displacement envelope and the congruent modal
frequency squared. For a complex product the magnitudes are multiplied and the
angles are added together, so the following expression returns the initial smooth
static force characteristics:

2
a)xEOEAEOE’ x>0

) 114
_w)zcEOEAEOE’ x <0 ( )

k(x) = {

where a)zEOE is the congruent modal frequency squared, and Agog is the congruent
envelope of the displacement. The accuracy of the last expression depends on the
total number of synchronous high harmonics (signal components) considered, and —
what is significant — it defines theoretically the exact solution for the identified
nonlinear static force characteristics.

By analogy, one can get corresponding expressions for an identified nonlinear
damping force in the case of a nonconservative system. Respectively, a multiplication
of the congruent modal damping and the congruent velocity envelope at the point
of maximum velocity gives the exact value of the friction static force. When the
instantaneous damping &(¢) is decomposed into the sum of synchronous high-order
components, and the congruent modal damping hgog(?) is also estimated as an al-
gebraic sum of envelopes of all synchronous high harmonics ay;(¢), we can get the
initial smooth damping force precisely:

heoeAsgoe, X > 0

. R 11.5
—hgoeAigoE, X < 0 (11.5)

h(i)x = {
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where hgog is the congruent modal damping, and Axgog is the congruent envelope
of the velocity.

In a general case, a vibration system can have both types of nonlinearities — spring
and damping — acting simultaneously. In the case of a combined nonlinear spring and
nonlinear damping, the instantaneous natural frequency and the instantaneous damp-
ing are combinations of fast-varying cross-components. The energy of the vibration
system at each moment is partly kinetic and partly potential, there are moments in
time when all the energy is stored mainly as strain energy of the elastic deformation
and the fictitious damping is equal to zero. These points correspond to the elastic
force and displacement maxima. In other words, phase angles between the main and
high-order harmonics naturally split the combination of the high harmonics into two
different fast-varying members depending on elasticity or damping. The first member
forms a cosine phase projection of the displacement by considering only the elastic
force harmonics; the second member independently forms a cosine phase projection
of the velocity by considering only the damping harmonics. Therefore, expressions
(11.4) and (11.5) are also applicable in the case of a combination of nonlinearities and
are common for both types of free and forced vibration. It allows a precise identifica-
tion of the nonlinear vibration system with a high-order harmonic consideration. In
the distinctive view of Hammond and Braun (1986), the congruent modal parameters
and the congruent nonlinear elastic and damping forces collectively show not only the
geometrical correct wave profile, but also the physically meaningful representation
of the full nonlinear system.

11.5 Examples of precise free vibration identification

At the first stage of the proposed identification technique, the envelope A(¢) and
the IF w(t) are extracted from the free vibration using the HT signal processing.
Then, the instantaneous undamped natural frequency and the instantaneous damping
coefficient of the tested system are estimated according to the formulas (see Section
9.2): (1) = w? — A 4+ 20 4 Aoy = A & where A(r) and w(7) are the
envelope and the IF of the vibration.

According to the FREEVIB identification method, a lowpass filtering is applied,
thus we obtain only the first (the principal) term of a vibration motion. In this way the
averaging restores the approximately correct initial nonlinear forces by using only the
first time-varying term of motion. Abandoning the lowpass filtering and considering
the secondary and other high-synchronous components of the motion according to
(11.2) and (11.3), we will identify the initial nonlinear spring and damping force
characteristics precisely.

11.5.1 Nonlinear spring identification

As an example of a nonlinear elastic force, we refer to the classic Duffing equa-
tion with a hardening spring and a linear damping characteristic ¥ 4+ 0.05x + x +
0.01x3 = 0; xo = 10, Xy = 0. A simulation of a free vibration signal was performed
by using an initial displacement, as shown in Figure 11.1. In the same figure, a part
of the displacement envelope is shown separately with a zoom to emphasize its os-
cillating behavior. For example, in the presence of a cubic nonlinearity, the speed
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Figure 11.1 The nonlinear spring free vibration: the displacement (—), the envelope
(—), the congruent envelope of the displacement (—) (Feldman, (C)2009 by John
Wiley & Sons, Ltd.)

of oscillations of the envelope and the IF is twice that of the main vibration fre-
quency. It is clear that, because of the nonlinearity, all instantaneous characteristics,
including the displacement envelope, the velocity envelope, the instantaneous natural
frequency, and the instantaneous damping are fast time oscillating functions.

By applying the HVD method separately to each of the mentioned oscillating
functions in time, we will obtain four different decompositions. Each decomposi-
tion includes a number of separated high superharmonics of the multicomponent
motion. As an illustration, Figure 11.2 shows the first two high superharmonics of
the instantaneous natural frequency of a free vibration of the Duffing equation. Each
decomposed synchronous component is shown separately in Figure 11.2a as a time
history function. A cubic spring nonlinearity occurs essentially in the large amplitude
range; therefore, decomposed synchronous components have large envelopes in the
range of large vibration levels. Figure 11.2b presents the same IF and envelope of
each component in a corresponding 3D plot, where their nonstationary timevarying
behavior can be distinctly observed.

Application of the HT identification formulas (11.4) and (11.5) to every syn-
chronous component yields a corresponding part of the nonlinear restoring and
damping static force characteristics associated with the sum of the components.
The results of the HT identification are shown in Figure 11.3. The fast-varying
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Figure 11.2 The high harmonics of the instantaneous natural frequency of the non-
linear spring free vibration. The time history of two first harmonics (a); the Hilbert
spectrum (b) (Feldman, @20] 1 by Elsevier)
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Figure 11.3 The identified parameters of the nonlinear spring free vibration; the
skeleton curve (a): instantaneous (—), averaged (- -), identified with high harmonics
(—), the spring static force characteristics (b): initial (---), identified with high
harmonics (—); the damping curve (c): initial (---), averaged (--), identified with
high harmonics (—); the friction static force characteristics (d): initial (---), identified
with high harmonics (—) (Feldman, (C)2009 by John Wiley & Sons, Ltd.)

instantaneous natural frequency (before decomposition) is plotted against the enve-
lope as a fast-changing spiral (Figure 11.3a, thin line). The same figure also includes
a lowpass filtered skeleton curve (dashed line) that only approximately restores the
nonlinear forces correct to the first term of motion. The final precise congruent skele-
ton curve, which also considers two high superharmonics, is shown in Figure 11.3a
(bold line). The resultant identified data (bold line) completely coincides with the ini-
tial (dashed line) spring static force characteristics k(x) = 1 + 0.01x3 (Figure 11.3b).
Fitting the least-squares data of the static force characteristics to a cubic polynomial
model returns a nonlinear coefficient equal to 0.009, which differs by less than 1%
from the initial nonlinear coefficient. The resultant identified damping force charac-
teristics (Figure 11.3d, bold line) completely coincide with the initial trivial straight
(dashed line) friction force characteristics.

11.5.2 Nonlinear damping identification

The next simulation example, devoted to nonlinear damping, considers the dry friction
equation ¥ 4 0.07sgn(x) + x = 0; xo = 10, %o = 0. A corresponding free vibration
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Figure 11.4 Nonlinear friction free vibration: the displacement (—), the envelope
(—), the congruent envelope of the displacement (—) (Feldman, (C)2011 by Elsevier)

signal with its oscillating envelope is shown in Figure 11.4. The real solution of
the nonlinear dry friction system contains principal harmonic and multiple high-
frequency superharmonics, so all the associated instantaneous functions are oscillat-
ing functions.

Applying the HVD method separately to each of the instantaneous oscillating
functions, we obtain the four following decompositions: a displacement envelope, a
velocity envelope, a natural frequency, and a damping decomposition. Again, each de-
composition includes a number of separated high superharmonics of the multicompo-
nent motion. As an illustration, Figure 11.5 shows the first four high superharmonics
of instantaneous damping of the free vibration of the dry friction equation.

These four decomposed components are shown separately in Figure 11.5a, as time
history functions. Dry friction nonlinearity occurs essentially in the low-amplitude
range; therefore, the decomposed components have large envelopes in the range of
small vibration levels. Figure 11.5b presents the IF and the envelope of each of the
components in the corresponding 3D plot.

The results of the HT identification, according to formulas (11.4) and (11.5), are
shown in Figure 11.6. The instantaneous natural frequency (before decomposition)
is plotted against the envelope as a fast-changing spiral (Figure 11.6a, thin line). The
same figure includes the final precise congruent skeleton curve, which aggregates the
four high superharmonics, shown in Figure 11.6a (bold line). Since the dry friction
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ear friction free vibration: The time history of four first harmonics (a); the Hilbert
spectrum (b) (Feldman, @201 1 by Elsevier)
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Figure 11.6 The identified parameters of the nonlinear friction free vibration: the
skeleton curve (a): instantaneous (—), averaged (- -), identified with high harmonics
(—); the spring static force characteristics (b): initial (---), identified with high
harmonics (—); the damping curve (c): initial (---), averaged (- - -), identified with
high harmonics (—); the friction static force characteristics (d): initial (---), identified
with high harmonics (—) (Feldman, (C)2011 by Elsevier)

model includes a pure linear spring force, the congruent skeleton curve is a trivial
vertical line.

The resultant identified data (bold line) is very close to the initial friction force
characteristics 2(x)x = 0.07sgn(x) (Figure 11.6b, dashed line). A least squares fitting
data of the identified friction force characteristics to a horizontal polynomial model
returns a nonlinear coefficient of 0.078; this differs by about 1% from the initial
coefficient of nonlinear friction.

11.5.3 Combined nonlinear spring and damping identification
As an illustration, consider a nonlinear system with a backlash and a nonlinear

turbulent square friction operating in combination:

x — 0.1sgn(x —0.1), [x| > 0.1

X 4+0.07 x| X + k(x) = 0; k(X)={ 0 lx] <0.1 ’

X():?), fC():O.
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Figure 11.7 Combined nonlinear spring and damping free vibration: the displace-
ment (—), the envelope (—), the congruent envelope of the displacement (—)

A corresponding free vibration signal with an oscillating envelope is shown in Figure
11.7. 1t is well known that the solution of weak nonlinear systems, in addition to
having a principal dominant component, has other small multiple components. All
the obtained instantaneous modal parameters are also oscillating functions.

Applying the HVD method and considering only the first two high superharmon-
ics, we are able to estimate the resultant precise nonlinear restoring and damping force
characteristics of the tested system (Figure 11.8) — according to (11.4) and (11.5).
The fast-varying instantaneous natural frequency (before decomposition), plotted as a
fast-changing spiral with a thin line, forms a kind of solid background in Figure 11.8a.
The lowpass filtered skeleton curve (Figure 11.8a, dashed line) only approximately
restores the nonlinear forces correct to the first term of motion. The final precise
congruent skeleton curve, which takes two high superharmonics into consideration,
is shown in Figure 11.8a by a bold line.

The resultant identified backlash force characteristic (Figure 11.8b, bold line) is
in close agreement with the initial spring static force characteristic k(x) and with a
gap value equal to 0.1 (Figure 11.8b, dashed line). The resultant identified friction
force characteristic (Figure 11.8d, bold line) is very close to the initial quadratic
parabola h(x)x = 0.07 |%| x (Figure 11.8d, dashed line).
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Figure 11.8 The identified parameters of combined nonlinear spring and damping
vibrations: the skeleton curve (a): instantaneous (—), averaged (- -), identified with
high harmonics (—), the spring static force characteristics (b): initial (---), identified
with high harmonics (—); the damping curve (c): initial (---), averaged (- -), identified
with high harmonics (—); the friction force characteristics (d): initial (---), identified
with high harmonics (—)

11.6 Forced vibration identification considering
high-order superharmonics

The differential equation of a weakly nonlinear system under forced excitation P(¢)
(see Section 9.3) is defined in an analytic signal form: X + ho(t)X + w3(1)X =
P(t)/m, where ho(t) is the instantaneous damping, wy(¢) is the instantaneous natural
frequency, P(1) is the forced excitation, and m is the mass of the system. At the
first stage of the proposed identification technique, the envelope of the displacement
A(t) and the IF of the displacement w(t) are extracted from the vibration using
HT signal processing. Then, the instantaneous undamped natural frequency and the
instantaneous damping of the tested system are estimated according to formulas (9.7):
A 242 A

A Ab . i
W)=+ & — Lo 42 g Ao iy =P 4 9 where o and B
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Pw _
Y()
at+jp="= iiff +j ‘; i;{(’f , where x is the displacement, ¥ is its Hilbert projection,
p is the force, and p is its Hilbert projection.

These expressions for the instantaneous natural frequency and the instantaneous
damping consist of two different parts: the forced, or steady-state, part depending
on «, B and the free vibration, or transient part. The sum of both parts forms the
solution of the general system. By decreasing the rate of external excitation and
increasing the data acquisition time, we can reduce the transient part of the motion.
The considered forced vibration solution — due to the system’s nonlinear behavior —
also contains the principal harmonic and multiple high-frequency superharmonics.
This means that all the estimated instantaneous functions, such as natural frequency,
damping, etc., are oscillating functions. By considering the primary, secondary and
other high superharmonics of motion we can identify precisely the initial nonlinear
spring and damping force characteristics. To obtain the high superharmonics of the
motion, we can use the HVD, which decomposes instantaneous functions into the sum
of their separate components. Calculation of the algebraic sum of the corresponding
envelopes (11.4) and (11.5) of high harmonics gives the precise initial spring and
damping force characteristics.

As an example of the forced vibration regime, let us consider a dynamic
system with a combined nonlinear cubic hardening spring and nonlinear dry
friction X + 0.7sgn(x) + x + 0.01x> = sin(foT wrdt); wp =2m[0.15..0.25], T =
10%, where wp is the cycle frequency of excitation (radians per second), which is
slowly increasing at a constant rate. A simulated forced vibration is shown in Figure
11.9, where a piece of the displacement envelope is shown separately with a zoom to
emphasize its oscillating behavior.

Applying the HVD method and considering the first two super harmonics, we
are more precisely able to estimate the resultant nonlinear restoring and damping
force characteristics of the tested system (11.4) and (11.5) (see Figure 11.10). The
fast-varying instantaneous natural frequency (before decomposition), plotted as a fast-
changing spiral with a thin line, forms a kind of solid background in Figure 11.10a.
The lowpass filtered skeleton curve (Figure 11.10a, dashed line) only approximately
restores the nonlinear forces correct to the first term of the motion. The final precise
congruent skeleton curve, which also considers two high superharmonics, is shown
in Figure 11.10a by a bold line.

It is notable that in the presence of a cubic spring the congruent skeleton curve
looks like a tangent to the varying instantaneous natural frequency — mostly for
large amplitudes. Contrary to this, in a small amplitude range, the precise congruent
skeleton curve crosses the instantaneous natural frequency, mainly due to the influence
of the dry friction.

The resultant identified cubic force characteristic (Figure 11.10b, bold line) com-
pletely coincides with the characteristic of the initial spring static force k(x) =
1 +0.01x* (Figure 11.10b, dashed line). The identified friction force characteristic
(Figure 11.10d, bold line) is very close to the initial straight line 2 (X)X = 0.07sgn(x)
(Figure 11.10d, dashed line). A least-squares fitting of the identified friction force
characteristics to the horizontal polynomial model returns a nonlinear coefficient

are the following relations between the force input and the displacement output:
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equal to 0.076, which differs by less than 1% from the initial nonlinear friction
coefficient.

The HT identification method in a time domain, as a nonparametric method, is
recommended for the identification of instantaneous modal parameters, including the
determination of the system skeleton curve (backbone), damping curves, and static
force characteristics. The instantaneous modal parameters of nonlinear systems are
oscillating functions due to deviations from the linear relationship between specified
input and output of the system. These nonlinear distortions are characterized by the
appearance of frequencies that are linear combinations of the fundamental frequencies
and all the high harmonics presented in the system output signal.

Modern nonstationary vibration decomposition approaches divide the real mul-
ticomponent motion into a number of separate principal and other high-frequency
superharmonics. By considering high superharmonics, these approaches yield a more
precise identification of nonlinear systems, including nonlinear elastic and damping
static force characteristics. Theoretically summarizing an infinite number of partial
static force characteristics will provide the exact initial static force characteristics of
a nonlinear system.

The use of HT methods, based on the nonstationary signal decomposition, are
suggested not only to identify nonlinear SDOF systems under free or forced vibration
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Figure 11.10 The identified parameters of combined nonlinear spring and damping
forced vibrations: the skeleton curve (a): instantaneous (—), averaged (- -), identified
with high harmonics (—); the spring static force characteristics (b): initial (---),
identified with high harmonics (—); the damping curve (c): initial (---), averaged
(- -), identified with high harmonics (—); the friction force characteristics (d): initial
(---), identified with high harmonics (—)

conditions, but mainly to identify a computer simulation and a precise experiment
data that contains detailed information on nonlinear superharmonics. It is important
that not only the presence of a nonlinearity is detected, but also that an adequate and
readily interpretable dynamic system model is identified.

11.7 Identification of asymmetric nonlinear system

Vibrating systems can have symmetric static force—displacement characteristics (sym-
metric with respect to the origin) as well as asymmetric characteristics of the nonlinear
restoring force as Helmholtz oscillator. The HT identification technique can be simply
extended for vibration systems with asymmetric nonlinearities. The main idea of the
method is to take the solution of the asymmetric vibration system in the time domain
and split it into two different “subsolutions” — separated for positive and negative
displacement. Then, the separated solutions of the asymmetric system are determined
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by adopting the HT method developed for the identification of the nonlinear vibration
system (Section 9.2).

11.7.1 Asymmetric nonlinear system representation

The equation of the free vibration of a nonlinear asymmetric structure can be written
as follows:

ki(x),if x >0

ky(x),if x <0 (11.6)

X4+ 2hx +k(x)=0; k(x):{

where x is the system solution, / is the damping coefficient, k(x) is the nonlinear
asymmetric spring force, k(x) is the nonlinear stiffness characteristic for a positive
displacement, and k,(x) is the nonlinear stiffness characteristic for a negative dis-
placement. The solution of the equation depends mainly on the asymmetric elastic
force, which can be expressed in different terms for positive and negative displace-
ments. Thus, in the case of a positive displacement x > 0 the solution is produced
by the first line of the asymmetric elastic force characteristic (11.6). Each displace-
ment sign changing from positive to negative, or the reverse, switches the vibration
structure which will, respectively, include the first or second asymmetric elastic force
characteristics. The switching oscillating elastic force will be transformed into an
asymmetric oscillatory motion with corresponding amplitude and frequency features.

Let us assume that the solution of a vibration system consists of two independent
separate parts: a positive motion, associated only with the positive force characteristic,
and a negative motion associated only with the negative force characteristic:

x1(t),if x >0

x(t),ifx <0 (11.7)

x(t) = {

The positive part is influenced only by a positive force and, conversely, the negative
part of the motion is dependent upon a negative force. In other words, according to
this assumption, each part of the solution of the system is determined only by its
corresponding force characteristic. Each part of the vibration signal could be repre-
sented in the analytic signal form of x| »(¢) = A} »(t) cos [f wlyz(t)] where x; (1) is the
vibration signal (the real-valued function), A;(¢) is the envelope (the instantaneous
amplitude), and w;(¢) is the IF.

11.7.2 The Hilbert transform identification technique

To separate the positive and negative parts of the signal, and to estimate partial instan-
taneous characteristics, we will use the previously presented HVD method along with
the congruent EOE approach. According to the Hilbert decomposition, the signal can
be built up from a slow-varying offset function and several alternate quasiharmonics
with varying characteristics. The decomposed congruent quasiharmonic components
all together form the EOE function — according to their phase relations. In this way
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the congruent envelope aggregates all the simplest component envelopes:

N
Apo() = ) Ai(t) cos ¢(1), (11.8)

=1

where A;(¢) is the envelope of the / component, and ¢;(?) is the phase angle between
the largest and the / component. For the asymmetric signal: instead of a single con-
gruent envelope, we will construct two envelope functions separately for the signal’s
Ap,ifx >0
Ay, ifx <0
will match the frequency of the sequentially alternating positive and negative parts
wp(t), ifx > 0
wy(t),ifx <0°

As a result of the decomposition of the asymmetric signal, we will have two
sets of envelopes and instantaneous frequencies, each one for its part of the mo-
tion. Each set is suitable for the further HT identification in the time domain.
For instance, for a free vibration regime we can use the following formulas (9.4):
h(ty=—A/A—&/2w
a)f(t) =w’—A/A+ 2/\2/A2 + Ad)/Aa)
IF of the solution with the first and second derivatives. Here a)fc(t) is the instanta-
neous modal frequency of the system, and A(z) is the instantaneous modal damping
coefficient of the system.

positive and negative parts Agogp(t) = . The IF of the asymmetric signal

of the signal: w(t) = {
, where A is the envelope, and w is the

11.7.3 Asymmetric nonlinear system examples

All simulation examples demonstrate the performance that can be achieved using the
proposed technique. In order to focus our asymmetric signal processing on the effects
of the identification of nonlinear vibration systems, we also use the HT FREEVIB
identification method.

11.7.3.1 Asymmetric bilinear system

First, consider the case of a vibration conservative system with an asymmet-
ric bilinear force elastic characteristic k;, = wfyzx: X4+2x+k(x)=0, kx)=
{ (27 10)%x, ifx > 0

(2720)%x, ifx <0
built up from two alternate harmonics. During a half of the period, when the dis-
placement is positive, the vibration appears as a harmonic A; cos w;t; during the next
half, when the displacement is negative, the vibration continues as another harmonic
with a different amplitude and frequency A, cos w,t. The solution of the asymmetric
system is shown in Figure 11.11 along with separated envelopes. By applying the
HT identification technique to the signal, the backbones and damping curves shown
in Figure 11.12 are obtained. It is obvious that the natural frequencies are constant
(respectively, 10 and 20 Hz), and that the damping coefficient is also a constant
(h=1,s".

. According to assumption (11.6), the solution of the system is
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Figure 11.13  The free vibration of the asymmetric system with two cubic stiffnesses
(Feldman, (C)2011 by Elsevier)

11.7.3.2 Two different asymmetric cubic stiffnesses

The next example is the case of an asymmetric free vibration with two cubic stiff-
nesses:

(207)*(1 + 5y?)y, ify > 0

. (11.9)
(40m)*(1 — 3y?)y,ify <0

y+2y+F(y) =0, F(y)=!

A computer simulation, performed for 1024 points with a sample frequency of 300
Hz, is shown in Figure 11.13. The two obtained backbones shown in Figure 11.14
indicate the varying value of the system frequency. The hardening backbone for a
positive displacement and the softening backbone for a negative displacement agree
with the initial asymmetric Duffing equation (11.9).

11.8 Experimental identification of a crack
A simple rotor test rig was built in order to apply the proposed procedure to real

measurements (Feldman and Seibold, 1999). The test rig consists of a shaft with a
radius R = 9 mm on hinged supports. A disk is mounted in the middle. Initiated
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Figure 11.14 The estimated characteristic of a system with two cubic stiffnesses:
backbone (a), spring force characteristic (b), damping curve (c), damping force
characteristic (d) (Feldman, (C)2011 by Elsevier)

by a notch of about 2 mm depth, a transverse crack is introduced in the shaft at a
location close to the disk. Two kinds of vibrations are measured: free vibrations of the
disk initiated by an impulse, and stationary vibrations at constant speed. Then, static
overloads are applied using a special apparatus. This results in dark lines (beach
marks) on the crack face. After the experiment, the measurements taken can be
related to the beach marks and to the actual crack depths. In this way, the results of
the identification can be checked. An experimental identification of the rotor structure
with a notch and a crack was made on the basis of four separate measurements (512
time steps) of free vibrations of the disk (a crack at the lowest position).

In this experiment, the depth of the crack was 5 mm. Free vibrations were picked
up from the nonrotating rotor after exciting the system with an impulse hammer. The
proposed HT method made it possible to separate the measured asymmetric vibration
into two different parts. The first part (Figure 11.15, bold line) describes the system
behavior for only a positive displacement, and the second part (Figure 11.15, dashed
line) describes the behavior for only a negative displacement. The obtained results
of the HT identification, shown in Figure 11.15, indicate the closely-spaced positive
and corresponding negative backbones of the four separate measurements. The tested
system has a strong asymmetric elastic force characteristic: the positive movement
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exhibits smaller values of a natural frequency (25.5-26 Hz). The difference between
the natural frequencies for positive and negative movements is about 2 Hz.

The system also has a small nonlinear elastic force characteristic, which is dissim-
ilar for positive and negative movements. The positive movement backbone looks like
a hardening nonlinear spring. On the other hand, the negative movement backbone
shows the characteristics of a small softening nonlinear spring. The tested system
has a symmetric friction characteristic. The estimated friction force characteristics
possess a strong dry friction nature.

These results clearly indicate a presence of a crack. Now, the location and depth of
this crack can be determined by employing the multi-hypothesis approach described
in Feldman and Seibold (1999), and the measured vibrations of the disk at a constant
speed. It was shown that the crack depth can be identified on the basis of a nonlinear
model and, furthermore, even smaller cracks can be diagnosed very well.

11.9 Identification of MDOF vibration system

There are a variety of methods for identifying and analysing multi-degree-of-freedom
(MDOQOF) nonlinear oscillators (Kerschen et al., 2006). Most researchers recognize
that a proper signal characterization of nonlinearities is sufficient for the identification
of a system. Thus, Ta and Lardies (2006) propose a continuous wavelet transform
for identifying and quantifying the nonlinearities of each vibration mode; while the
approach in Elizalde and Imregun (2006) is based on frequency response functions
and first-order describing functions, which represent the nonlinearities as amplitude-
dependent coefficients.

Yang et al. (2003a, 2003b) and Poon and Chang (2007) proposed that the EMD
method be used to identify normal and complex modes of linear and nonlinear MDOF
systems using free vibration responses. Really, the EMD method can decompose a
signal into a superposition of intrinsic mode functions that contain one major mode at
any time instant. It was first shown that the IMF components of the displacement and
velocity responses of a nonlinear elastic structure are numerically close to the nonlin-
ear normal mode responses (Poon and Chang, 2007). The research works of Kerschen
et al.(2008) and Pai and Hu (2006) also used the popular EMD of a vibration signal
for a nonlinear identification. In the majority of cases an a priori spatial nonlinear
model with a preliminary solution analysis is required for the proper identification of
a system. For example, Raman, Yim, and Palo (2005) use an approximate analytical
reverse multi-input/single-output technique for studying how nonlinear equations of
motion are governed.

In principle, when a nonlinear detailed model structure and a solution are known,
the identification can be turned into a parametric identification problem, where un-
known parameters can be derived just by fitting the algebraic expression to the data.
Those parametric identification techniques, based on an a priori nonlinear model,
are suitable for chosen models only. Nonparametric identification methods — such
as that by Bellizzi, Guillemain, and Kronland-Martinet (2001) do not require an
a priori model — are preferable. Can such a nonparametric identification approach
make it possible to restore different nonlinear multiple-coupled oscillators? Such an
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approach should be able to detect and characterize the type and degree of nonlineari-
ties, and the unknown vibration model structure and parameters, by considering only
the measured vibration and excitation data.

The HT nonparametric methods, FREEVIB and FORCEVIB, which were devel-
oped for the nonlinear identification of SDOF systems, are not dedicated directly to
MDOF systems, because the MDOF systems produce solutions with multiple com-
ponents. If, during the first stage, we could separate this vibration composition and
get a set of monocomponent signals, would the identified modal parameters show
the same nonlinearities as they do in the initial coupled MDOF spatial system? It is
not so obvious. Naturally, the MDOF systems are unique due to the coupling, which
forms relations and ties together the vibration motions of the linked spatial subsys-
tems. Indeed, if a MDOF system is just formed by uncoupled subsystems, described
for example by a modal model with independent coordinates, the nonlinear normal
modes can be identified separately as the simple summation of SDOF systems.

It is well known that coupling moves the modal resonance frequencies away
from the initial spatial natural frequencies. So the question is: Does the coupling also
change nonlinear skeleton curves of the initial spatial subsystems?

The goal of this section is to clarify some specific features of the couplings,
examine their influence on the free vibration of nonlinear multiple-coupled oscillators,
and explore the available engineering options for an identification of the initial
nonlinear spatial mathematical model of MDOF systems (Feldman, 2007b). The
research focuses on the common phenomena of coupled nonlinear oscillators with
typical linear and nonlinear coupling structures.

11.9.1 Identification of linear coupled oscillators

An analytical vibration analysis in mechanical engineering deals mainly with second-
order equations of motion. If these equations are combined into a system they con-
stitute an initial mathematical spatial model with proper physical parameters (mass,
stiffness, and damping properties) describing the dynamic behavior of the test struc-
ture. Some typical engineering structures also contain localized nonlinearities (joints,
geometric discontinuities, shock absorbers, etc.). The primary objective of an identi-
fication process is to derive the initial spatial mathematical vibration model, including
coupling characteristics and significant nonlinear elements. For reasons of simplicity
we consider a system with only two coupled vibration equations, which completely
describe the main properties of MDOF systems. The system is assumed to exhibit
normal modes, so the viscous damping matrix can be formed by the inverse modal
transformation method.

11.9.2 Spring coupling

For example, the 2DOF linear system includes two linked equations of a free motion:

¢+2h¢¢+wi¢>—%€=0

.. . (11.10)
E+2hg€+a)§%— —n5<p=0
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where ¢ and & are coordinates of a coupled vibration motion; a); and a)g are spatial
(partial) frequency squares, equal to a natural frequency square of the uncoupled
(separated, single) equation; h, and hg are damping coefficients; and 7, and ng
are coupling spring coefficients. Damping is assumed to be small, and thus linear
proportional damping can be employed, represented here by linear modal damp-
ing coefficients. Relations between every spatial frequency and its corresponding
vibration amplitude specify the spatial skeleton curve, which in the case of linear
oscillators are trivial straight lines.

For further analysis we use substitutions in the form of the analytical signal:
X=x+j5x=X(A/A+ jo); X=X (A/A - *+2jAv/A + j®), where X
is the HT of x; A, A, A are the signal envelope and its derivatives; and @, @ are
the signal IF and its derivative. In reality, damping coefficients and derivatives of the
envelope are much less than natural frequencies, so their influence can be ignored
(A/JA = A/A =0). As a result, the real part of (11.10) will get a set of coupled
equations

0] (—a)2 + wf)) —n,§ =0

5 5 (11.11)

S(—a) —I—ws) —ngp =0

whose determinant is equal to zero, ot — &? (wi + a)g) + a)éa)g — nyne = 0, which

produces a known biquadratic equation for the calculation of the modal normal
frequencies:

1
b 2
o, =1 {a)é + a)g + [(a)é - wé) +4r]wn§] } (11.12)

The relations between the modal frequencies versus the initial spatial frequencies
(11.12), known as Wien’s graph, illustrate the fact that the initial spatial frequencies
always lie between the modal frequencies (Migulin et al., 1983). So each natural fre-
quency differs from the initial spatial (partial) subsystem natural frequency. In other
words, the modal frequencies obtained are not those of the individual component
systems. The difference between the spatial and modal frequencies, controlled by
coupling coefficients, is governed by the following decoupling coordinate transfor-
mation.

Each equation of the system (11.11) characterizes the coefficient of the amplitude
ratio (distribution) ¥ between the oscillations of different coordinates at every modal
frequency:

E/0), = (@] — i) /ny = V15 (9/5),= (@] — @) /np = V2. (1113)

These relative amplitudes, which correspond to every modal frequency — known as
the mode shapes — are also the fundamental inherent properties of a freely vibrating,
undamped MDOF system. The process of calculating modal parameters from the
initial spatial system refers to an analytical modal analysis, which transforms, or
decouples, the spatial system into a system of several equations, one for each single
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mode of vibration. This means that the calculated modes of a vibration effectively
uncouple the dynamic equations of motion according to the following relationships
between the initial coordinates ¢, & and the normal coordinates x, y (Migulin et al.,
1983):

p=x+y, E=Y1x + Vay; x=( — @y) /(Y1 — V), y=(19 — &) /(Y1 — V).
(11.14)
The initial coordinate of every DOF is often a real physical coordinate (direction) of
vibration measurement, whereas the normal coordinate is a virtual (abstract) coordi-
nate. The real oscillations of the masses can be written as linear combinations of the
normal modes.

Expressions (11.14) show that a coupling, as an important common property, com-
pletely defines the relations between modal and spatial parameters. The coupling also
defines the energy exchange and the time of energy transfer between the participating
subsystems. As the coupling strength in coupled subsystems is increased from zero,
the oscillations affect each other more and more. Thus the motion generated from
one coordinate will appear stronger in the vibration of other coupled coordinates.
Thus a coupling gives rise to a multiplicity of natural oscillations in an observed
vibration motion. The coupling strength coefficient o characterizes the degree of
coupling between two subsystems (Migulin et al., 1983): 0 = 2\/17,/,_775/|w?0 — w§|
Notice that a damping coupling, no more than a small partial damping, has almost no
influence on the coupled vibration, natural frequencies, or modal shapes.

11.9.3 Reconstruction of coupling coefficients

Traditionally the model in question is only a modal model because modal properties
of the system most closely describe the dynamic behavior observed in the tests. For
purposes of the identification of MDOF systems, this is not sufficient. A modal test
based entirely on a measured vibration data should lead to further inverse recon-
struction of a spatial coupled mathematical model based on mass, stiffness, damping
properties, and coupling stiffness forces, which have a physical meaning. During the
vibration test, modal modes are excited, enabling modal frequencies w; and mode
shapes 1; to be observed and estimated. It is enough to reconstruct the initial par-
tial natural frequencies and the spring couplings of the spatial model. In effect, two
equations from (11.12) and two from (11.13) together involve only four unknowns;
the general case of n DOF yields 2n linear equations with 2n unknowns. Therefore,
the direct solution of the linear system returns the initial spatial model parameters:

w; = (V103 — vr0}) /(Y1 — ¥); 0f = (Vio] — ¥aw3) /(Y1 — ) (11.15)
e = (03 — ) /(1 —¥2): 1 = V1V (0] — @3) /(Y1 — ¥) '

2 2 :
where w, and w; are resultant spatial frequency squares, ¥, and ¥ are measured

mode shapes (amplitude ratios), and w7 and w3 are measured modal frequency

squares. The above formulas allow us to derive an initial mathematical spatial model
to describe the dynamic behavior of the test system without an a priori model de-
scription.
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11.10 Identification of weakly nonlinear coupled
oscillators

Typically, every nonlinear equation expressing a vibration motion has a fixed struc-
ture. The structure classically includes three independent elements: a restoring elas-
tics force (stiffness, spring) as a nonlinear function of the displacement (position), a
damping force (friction) as a nonlinear function of velocity (the first derivative of the
position with respect to time), and an inertial force proportional to the acceleration
(the second derivative of the position with respect to time). Every independent restor-
ing and damping force element is an a priori unknown nonlinear function of motion,
as, for example, a hardening or softening spring or a dry or turbulent friction.

The nonparametric identification of nonlinear vibration oscillators — as a typical
dynamics inverse problem — deals with a priori unknown nonlinear restoring and
damping functions. The investigated vibration system with unknown restoring and
damping forces moves under (or without) an excitation force. By observation (exper-
iment), we acquire knowledge of the position and/or velocity of the object, as well
as the excitation at several known instants of time. The nonparametric identification
will determine the initial nonlinear restoring and damping forces. In the case of a free
vibration we have only an output signal — the vibration of oscillators; in the case of a
forced vibration we deal also with the input excitation.

Nonlinear vibration MDOF systems can consist of essential nonlinear oscillators
joined with linear couplings, or of linear oscillators coupled with essential nonlinear
attachments. They could also represent a united case of both nonlinear oscillators and
nonlinear couplings acting in combination.

11.10.1 Coupled nonlinear oscillators with linear coupling

In general, nonlinear systems composed of several masses, nonlinear springs, and
dampers require a more complicated representation. First, let us consider the equations
of motion for a coupled 2DOF system, wherein the stiffness nonlinearity depends
only on the displacement:

G+ wip+ap’ —nE=0
L Y (11.16)
§+w;E—nep=0

Here the first equation includes a simple, relatively weak nonlinear cubic stiffness
a¢? corresponding to the initial linearized spatial skeleton curve (8.9) a)%(A) = a)‘i +
3/40 A%, This model combines weakly nonlinear oscillators (without bifurcations,
jumps, and chaotic behavior) that have a slow-varying solution in the time domain.
Again, for further analysis, we will use substitutions in the form of an analytical
signal considering the overlapping spectra property of the HT of nonlinear functions.
The HT substitution establishes direct relationships between the initial parameters
of the differential equations and the instantaneous amplitude and frequency of the
vibration response. The HT reduction permits the direct construction of an approxi-
mate solution defined as a single quasiharmonic with a slow-varying amplitude and
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frequency. In essence, the HT approach is just an alternative to some well-known
linearization methods, such as the harmonic balance linearization. The HT of the
harmonic cube will contain the first and third components. Hence, neglecting high-
tripled frequency yields: H[Acos’0] = A3(3sin@ + sin36)/4 ~ 3/,A*3 sin6— (see
Section 2.4).

10 (—a)2 +w? + 3/40(A§)) —ny6 =0
é(—wz—i-a)g)—r]g(p:O '
We will not solve the obtained nonlinear system, but only analyze the corresponding
biquadratic equation for the fixed amplitude &* — @* (0] + ©} + Y4 A7) + wjw} +
3 AL} — nyne = 0. This gives the modal frequencies ; 2(A) of the normalized
oscillations as functions of the amplitude:

The real part of (11.16) takes the form of:

W} 5(4) = l/z:w; + F + YAl &

1
2 2
[(w; — })” + dngne + oo’ AL + 3o A2 (] — wg)] } (11.17)

These varying modal natural frequencies of the coupled subsystems are also funda-
mental properties, known as modal skeleton curves; they are independent of the choice
of coordinates or any external excitation. But, again, the modal and the corresponding
spatial skeleton curves differ from each other.

The modal skeleton curves obtained from (11.17) are shown in Figure 11.16.
They capture the effect of a nonlinear behavior; when a coupling again pushes apart
the spatial skeleton frequencies, the low frequency becomes lower and the high
frequency becomes higher. But now the obtained normal frequencies, besides being
dependent on the coupling, are also functions of the vibration amplitude, so every
normal frequency will form a corresponding nonlinear normal skeleton curve. An
analysis of (11.17) shows that a coupling transfers a single spatial nonlinearity over
all coupled modal skeleton curves, controlling the strength of their nonlinear behavior.
As the coupling coefficient increases from zero, all other coupled skeleton curves
will be rearranged from trivial vertical lines to a more and more nonlinear form. This
new result from (11.17) means that the coupling smears out (spreads) a single spatial
nonlinear effect over all nonlinear modal coordinates.

A further analysis of (11.17) shows that the initial nonlinearity influences, concur-
rently, the entire normal skeleton curves with the same tendency. For example, an ini-
tial hardening stiffness will also appear as a hardening in every normal skeleton curve,
and a softening will exhibit a softening. But each normal skeleton will only be qualita-
tively similar in appearance to the initial spatial skeleton curve. However, the normal
and initial spatial skeleton curves will differ quantitatively from each other. To iden-
tify an initial spatial skeleton curve we need to consider the initial spatial frequencies
for a nonlinear case. Coefficients of the amplitude distribution in a nonlinear system
will also vary as functions of the amplitude: (§ /@), = (a)2 — w% + 3/sx Aé)/n(p =Yy,

4
(/9)y = (w0, — w3 + Y AT) /0y = V2.
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Such a variation in the amplitude of mode shapes indicates the presence of a
nonlinear element, in the initial spatial equation. From coefficients of the amplitude
distribution above, and the modal skeleton curves (11.17), we can restore both the
coupling coefficients 1, ¢ and the initial spatial skeleton curves a)é! £(A):

Wy (A) = (Vio3—v207) /(Y1 =) + 3 A% wf(A) = (Y10} — wza)ﬁ)/(%—%).

ne = (03 — @1) /(Y1 — ¥2); ne = Y1y (0] — 3) /(Y1 — ¥2)

The spatial skeleton curve from the first equation wé(A) indeed involves an initial
localized nonlinearity with the exact physical characteristics of the nonlinear element
3/, A%, As this takes place, the spatial skeleton curve of the second linear equation
a)g(A) remains linear. This means that the restored spatial skeleton curves will retain
their same nonlinear behavior as the initial local model with a nonlinear element; the
restored spatial skeleton curves will remain linear as long as the initial local model

does not include nonlinearities.
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11.10.2 Coupled linear oscillators with nonlinear coupling

Consider another MDOF nonlinear system, now governed by two linear oscillators
coupled with a nonlinear element:

¢+ wpp —nyE —BEI =0

i 11.18
E+wif—np=0 (aL1e

Here the coefficient 7, represents the linear spring coupling, while the coefficient 8
characterizes the nonlinear cubic stiffness coupling due to the spatial coordinate &.
The first harmonic of the HT of cube function takes the form: H [Acos39] ~

3/4A3 sin @, so the real part of (11.18) can be written as a set of equations:

® (—a)2 + a)é) —& (n(p + 3/4/3A2) = 0.

11.19
é(—a)z—i-a)g)—r]g(p:O ( )

The determinant of the above equation is equal to zero and gives the following modal
normal frequencies as functions of amplitude:

1
2 2
o 5(A) =) {w; +ol+ [(w; — @)’ + b + 3 ,BAZ] } (11.20)

The obtained modal skeleton curves depend on the amplitude and are nonlinear
functions in spite of the linear nature of the oscillators under consideration. The
mode shapes derived from (11.19) are also nonlinear functions:

&/ = (o
&/9), = (w

— ?)/(ny +3BA2) = Yi;
—3)/ (1, +34BA) = V. (11.21)

| |

Combining four equations from (11.20) and (11.21) we get back the spatial natural
frequencies and coupling coefficients:

W (A) = (V105 — v207) /(Y1 — ¥2); 03(A) = (Y107 — ¥w3) /(Y1 — V)
Ne(A) = (03 — 1) /(Y1 — ¥2) — 3aBA%; ne = Yy (0] — w3) /(Y1 — Y).

Notice that the restored coupling 1,(A) correctly represents the initial nonlinear
coupling function.

In the general case, MDOF vibration systems can have both types of
nonlinearities — the oscillator nonlinear stiffness and the nonlinear stiffness
coupling — acting simultaneously. In the case of a combined nonlinear spring and
nonlinear coupling, the nonlinear modal skeleton curves will have a rather compli-
cated form. Nevertheless, as shown, the restored spatial skeleton curves and coupling
coefficients will return the correct initial spatial characteristics of the system.
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11.10.3 HT decomposition and analysis

The estimation of spatial model characteristics requires two groups of amplitude/
frequency-varying data: nonlinear modal frequencies and nonlinear modal shapes.
New nonstationary signal decomposition methods based on the HT (Huang et al.,
1998; Feldman, 2006) work as pseudo-adaptive filters in the time—frequency domain
and make it possible to obtain the required amplitude/frequency-varying data required
for making a further identification.

Generally, the simultaneously decomposed vibration of a coordinate of nonlin-
ear multiple-coupled oscillators will demonstrate two different physical natures of
vibration. The first group in a multicomponent oscillation shows just the presence of
a partial motion from the coupled subsystems. These coupled components will also
exist in linear MDOF systems. The second group in a multicomponent oscillation
is associated with intricate nonlinear relationships in restoring and damping func-
tions, which cause high-frequency superharmonics and intermodulation distortions.
Actually, a real motion of nonlinear systems contains several main, or principal,
quasiharmonic solutions along with an infinite number of multiple high-frequency
superharmonics. In the next sections we will consider only the first group of a motion
that includes the sum of the primary system solutions of several nonlinear modes.

In the case of multiple-coupled vibration oscillators, the HT signal decomposition
takes apart every nonlinear normal mode. It gets rid of the mode mixing phenomenon
and attempts to purify and clean every vibration mode signal. The HT decompositions
do not require a preliminary bandpass filtering of the signal in order to pick out each
mode of interest and reject all the others. After using the decoupling technique, we
will have several corresponding decoupled vibration motions.

The idea is to decompose an initial wideband oscillation x(¢) into a sum of
elementary components with a slow-varying instantaneous amplitude and frequency,
so that x(r) = >_ a;(t) cos ( f wl(t)dt), where a;(t) are instantaneous amplitudes and
w (1) are instantaneous frequencies of the I-component. Thus, the obtained IF of each
synchronous component will correspond to a decoupled modal natural frequency,
and the instantaneous amplitude ratio will match the nonlinear normal mode shapes
— all as functions of time z.

11.10.4 Modal skeleton curve estimation

Every decomposed modal vibration is a solution of a corresponding modal SDOF
second-order system having nonlinear elastic (restoring) force characteristics k(x):
X4+ ho(X) 4+ k(x) =% + ho(x) + wé(x)x = 0. The nonlinear restoring force can be
represented as the multiplication of a varying nonlinear natural frequency a)(z)(x)
and a nonlinear oscillator solution x. The instantaneous undamped modal natural
frequency and the instantaneous damping coefficient of the tested oscillator are
estimated according to the FREEVIB or FORCEVIB methods (Chapter 10).

In general, FORCEVIB operates with a SDOF system using single input and
output signals. Applying it to a MDOF system requires us to consider an existing
mode shape and the polarity of the vibration signal. According to a specific mode
shape, an output sensor can be located at the point with an in-phase or out-of-phase
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vibration motion relative to the excitation of the shaker. Such a system can have nodes
—the points are not suitable for the analysis, because around the nodes a specific mode
has a small amplitude and no stable phase. Also, as MDOF systems can have points
related to another resonance mode that is not excited by the chosen frequency, their
phase function cannot be used to estimate damping.

11.10.5 Mode shape estimation

In nonlinear oscillators, the envelope of every decomposed nonstationary modal
component varies in time, so the varying modal shape of the i mode takes the
form v¥;(A) = Ag; / Ayicos0;. Here Ag; is an envelope of the i decomposed modal
component of the spatial coordinate &, A,; is an envelope of the same frequency
modal component of the next spatial coordinate ¢, and 6; is a phase between the
modal vibration components &; and ¢;.

The HT decomposition allows us to detect and isolate modal frequencies and
modal shapes even in the case of a time-varying amplitude (mode), changing fre-
quency, envelope decay, and phase variation in time for each isolated mode. Thus,
the recent achievements in nonstationary signal decomposition (Huang et al., 1998;
Feldman, 2006) open a way for a new combined analysis and an identification of
both linear and nonlinear MDOF vibration systems. Next we will describe a common
identification scheme and consider some examples of an identification of weakly
nonlinear multiple vibration oscillators.

11.10.6 Description of the identification scheme

The main idea of the identification is to apply a linear inverse transformation from
the modal to the spatial coordinates — for obtaining correct initial spatial nonlinear
characteristics. The free vibration of an undamped structure which is assumed to
be linear and proximately discretized for n DOF can be described by the spatial
equations of motion: [M] {y}+ [K]{y}= 0, where [M], [K] and{y} are the ma-
trices of the spatial mass, stiffness, and vector of the displacement. If the number of
measured modes is equal to the number of measured coordinates n, the transforma-
tion can be written as (Ewins, 1984): [M]=[®]"", [K]=[®] " [A2][®]"", where

[@]=[¥] [mr]’lfZ are the mass-normalized eigenvectors, ¥ is the mode shape, m,
is the modal mass, and Xf is the eigenvalues corresponding to the natural frequency
squared.

These features of normal modes allow us to define normal modes in terms of
eigenvectors (or eigenfunctions) and to express them in the system response as
a superposition of modal responses. The modal parameters of nonlinear normal
modes can vary with the total energy due to their frequency—energy dependency. For
example, the nonlinear normal modes of a nonlinear system may have varying modal
frequencies dependent on the vibration amplitude. From the decomposed nonlinear
modal oscillations, one can obtain information about the amplitude-dependent modal
frequencies and damping parameters.

In addition to a reconstruction of the MDOF spatial model, the coordinate trans-
formation makes a reconstruction of the initial nonlinear elements possible. The actual
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number of nonlinear elements can be small, but their overall nonlinear behavior may
be significant. A provided modal analysis based on the HT signal decomposition will
allow an estimation of the modal skeleton curves and mode shapes of every nonlinear
mode of the coupled vibration oscillator. But these nonlinear modal characteristics
are shifted because of the coupling, and, moreover, they differ quantitatively from the
initially identified characteristics. Only the use of coordinate transformations, such
as algebraic formulas (11.22), allows a reconstruction of the initial spatial nonlinear
characteristics. For different nonlinear vibration systems, the mentioned coupling
reconstruction is a nonparametric identification technique that does not require an a
priori model description.

The spring force characteristics k(x) intended for an identification are defined
as the multiplication of two phasors: K = a)(z)X , where a)(z) is the varying nonlinear
natural frequency, and X is the displacement of the vibration in signal analytic form.
For a complex product, the magnitudes are multiplied and the angles are added, so the
following “envelope” expression returns the initial spatial static force characteristics:
k(x) = {a)é(?)A,x >0 LRk = {ho(ax)ax,)'c > 0 ’

—wy(A)A, x(0 —ho(a;)a;, x{0
of the velocity. The estimated average natural frequency and the average damping
function include the main information about the initial nonlinear elastic and damping
characteristics.

The proposed identification is a three-stage method. It includes the following
procedures: (a) the multipoint vibration measurements of every mass belonging to
a MDOF system; (b) the HT signal decomposition of the measured vibrations into
nonlinear normal modes (synchronous vibration components) and an estimation of
the corresponding modal skeleton curves and mode shapes; and (c) an estimation
of the initial spatial skeleton curves and couplings and a reconstruction of spatial
nonlinear differential equations of the initial model. The proposed nonparametric
identification method is dedicated primarily to stable weakly nonlinear oscillators
with quasi and almost periodic oscillating-like solutions.

where a; is the envelope

11.10.7 Simulation examples
11.10.7.1 Model 1. Nonlinear oscillators with linear coupling

As the first example, consider a system of two coupled nonlinear equations, where
the first (driving) oscillator includes a hardening nonlinear spring element and the
second (driven) oscillator includes a softening one:

¢ +0.050+¢ +¢>—08 =0, o =4.0
£ +0.05 +5.45 —0.56% —0.60 =0
numerically solved using the fourth-order Runge—Kutta method with the time step
of At = 0.25 s. The signal modulated waveforms from every spatial coordinate are
shown in Figure 11.17a; the decomposed normal smooth components — according to
the HVD method — are shown in Figure 11.17b. The estimated ratios between the
corresponding decomposed normal envelopes as the mode shapes of every nonlinear
mode (Figure 11.17b) are plotted in Figure 11.17c. The estimated mode shapes
depend on the amplitude, which immediately exhibits the nonlinear behavior of a

. The above system of equations was
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Figure 11.17 The free vibration of two coupled Duffing oscillators: the first ¢(t) and
second &(t) spatial coordinate vibration (a), the HT decomposed normal coordinates
(b), the mode shapes of two modes (c) (Feldman, (C)2011 by Elsevier)

vibration oscillator. In effect, the estimated modal skeleton curves (Figure 11.18a, b,
dashed line) are nonlinear, but both the first hardening and the second softening are far
away from the initial spatial skeleton curves (Figure 11.18a, b, dotted line). Only the
restored spatial skeleton curves (Figure 11.18a, b, bold line) are very close to the initial
skeleton curves. In fact, least squares fitting data of the resultant identified spatial
skeleton curves (Figure 11.18a, b, bold line) returns nonlinear stiffness coefficient
a equal to 0.844 (the initial « for the first mode was equal to 0.75) and to —0.39
(the initial « for the second mode was equal to —0.375), that respectively differs by
less than 12% and 4% from the initial nonlinear stiffness coefficient. Both restored
coupling static characteristics (Figure 11.18c, bold lines) are close to the initial
straight vertical lines (Figure 11.18c, dot-dash lines).

11.10.7.2 Model 2. Oscillators with a nonlinear coupling

The example of a vibration oscillator considered here is a 2DOF system with lin-
ear equations of motion and two opposite cubic nonlinear couplings respectively:
$+00lp+¢ —045 —£3=0,00=0.5

€ +0.01& +2.886 — 0.3p — 0.5¢> = 0,& = 0.7" A simulated free vibration is
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Figure 11.18 The skeleton curves of the first hardening stiffness mode (a): the
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spatial (---); the coupling of nonlinear modes (c): the first equation identified spatial

(--), the second equation identified spatial (—), the initials (---) (Feldman, @20]1
by Elsevier)

shown in Figure 11.19a. A decoupled modal component after the HVD signal de-
composition is illustrated in Figure 11.19b. The corresponding mode shapes (Figure
11.19c¢) indicate a nonlinear type of motion. Both of the obtained spatial skeleton
curves of linear oscillators (Figure 11.20a, b, bold lines) almost coincide with ini-
tial vertical straight lines. Every restored coupling static characteristic repeats the
corresponding initial cubic spring coupling subsystem (Figure 11.20c). Thus, fitting
the least squares data of the characteristics of the nonlinear first mode coupling to a
polynomial model returns an nonlinear coefficient 8 equal to 0.79 while the initial
B was equal to 0.75. The estimated nonlinear second mode coupling coefficient S is
equal to —0.42 while the initial B for the second mode was equal to —0.375, which
differs about 5—10% from the initial nonlinear coefficient values. The comparison
between the identified characteristics and the initial ones shows that the proposed

approach makes it possible to have a precise estimation of the actual oscillator
nonlinearities.
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Figure 11.19 The free vibration of two oscillators with nonlinear couplings: the first
() and second &(t) spatial coordinate vibration (a), the HT decomposed normal
coordinates (b), the mode shapes of two modes (c) (Feldman, (C)2011 by Elsevier)

11.10.7.3 Model 3. Self-excited coupled oscillators

The next example combines two van der Pol equations with linear coupling:
¢ +02¢(p> —1)+¢ —0.86 =0, ¢p=0.01
E+036(E>—1)+ 1888 —0.80p =0, & = 0.02
tains a bilinear cross-term with the multiplication of two variables: the displacement
squared and the velocity. Due to the nonzero initial conditions and to the presence of
unstable damping terms, both coordinates of the tested model immediately display an
increasing self-excited periodic motion (Figure 11.21a). After a transient increasing
motion, the observed steady-state solutions include a combination of the self-excited
vibrations generated by every coordinate.

Application of the HVD signal decomposition shows these two separated compo-
nents with different frequencies (Figure 11.21b). The first component x(¢) is generated
by the first van der Pol equation, and the second component y(¢) by the second equa-
tion. The amplitude level of both components depends mainly on the initial bounding
friction coefficient of the coordinate squared, and not on the coupling coefficients.
This means that the estimated ratios between the decomposed normal envelopes
(Figure 11.21c) do not describe the regular mode shapes; nevertheless, the existing

. Every van der Pol equation con-
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Figure 11.20 The skeleton curves of the first mode with nonlinear couplings (a): the
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coupling has an impact on the modal skeleton curves, shifting them from their initial
spatial frequencies (Figure 11.22ab).

Appling FREEVIB (the HT identification method) to the transient increasing mo-
tion of every coordinate will return the initial nonlinear friction force characteristics
in the form x (x> — 1) typical for the van der Pol equation (Figure 11.22c, d).

To summarize our analysis of the representation of the analytic and modeling sig-
nal we would like to repeat some conclusions. A single nonlinear element presented
only in a single specific equation of a MDOF vibration system will be noticed in
the vibration of all coupled coordinates. The resulting behavior is expected, due to
the dynamic interaction between coupled vibration subsystems. The observed modal
nonlinearity does not correspond to the initial nonlinearity of the spatial model.
The observed modal skeleton curve will be similar to the initial spatial skeleton
curve in appearance only. However, modal spatial skeleton curves and initial spatial
skeleton curves differ quantitatively from each other. To identify the initial spatial
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Figure 11.21 Self-excited vibration of two coupled van der Pol oscillators: the first
o(t) and second &(t) spatial coordinate vibration (a), the HT decomposed normal
coordinates (b), mode shapes of two modes (c)

skeleton curve we suggest the application of a modal-spatial coordinate transforma-
tion, together with a HT vibration decomposition. The estimated nonlinearities can be
actually quantified and included in the dynamics model. The proposed identification
method is nonparametric; it does not require a priori consideration of a nonlinear
nature of the vibration oscillator. The method is recommended for nonlinear parame-
ter identification, including a determination of the system skeleton curve (backbone)
and the static coupling force characteristics.

11.11 Conclusions

Modern HT signal decomposition approaches divide the real multicomponent solu-
tion into a number of separate principal and high-frequency superharmonics. These
approaches, considering the high superharmonics, yield a more precise identifica-
tion of nonlinear systems, including the nonlinear elastic and damping static force
characteristics. Theoretically, the sum of an infinite number of partial static force
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Figure 11.22  Skeleton curves of the first mode (a): the modal (- -), the initial spatial
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characteristics will provide the exact initial static force characteristics of the nonlin-
ear system.

For nonlinear systems the instantaneous modal parameters obtained after direct
HT identification are oscillating functions due to deviations from a linear relationship
between the specified input and output signals of the system. In the system output
signal these nonlinear distortions are characterized by the appearance of frequencies
that are linear combinations of the fundamental frequencies and all the high harmon-
ics. A consideration of these high harmonics can be used for the identification of
the congruent modal parameters, including the determination of the precise system
skeleton curve (backbone), damping curves, and static force characteristics.

The proposed HT methods, based on nonstationary signal decomposition, are
suggested for the identification of nonlinear SDOF systems under free or forced
vibration conditions. The proposed HT methods are suggested mainly for an iden-
tification of a computer simulation and precise experiment data that contains detail
information about nonlinear superharmonics.
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When a single nonlinear element is presented in a MDOF vibration system, the
resultant nonlinear behavior can be noticed in the vibration of all coupled coordinates.
The resulting behavior is expected, owing to the dynamic interaction between coupled
vibration subsystems. The observed modal nonlinearity does not correspond to the
initial nonlinearity of the spatial model. The observed modal skeleton curve will only
be similar in appearance to the initial spatial skeleton curve. However, the modal and
the initial spatial skeleton curves differ quantitatively from each other. To identify
the initial spatial skeleton curve we suggest the application of a the modal-spatial
coordinate transformation together with a HT vibration decomposition. The estimated
nonlinearities can actually be quantified and included in the dynamics model. The
proposed identification method is a nonparametric method, which does not require a
priori consideration of the nonlinear nature of the vibration oscillator. The method is
recommended for nonlinear parameter identification, including the determination of
the system skeleton curve (backbone) and the static coupling force characteristics.
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Experience in the practice of
system analysis and industrial
application

We have already considered some examples of the HT application in structural health
monitoring and damage detection (see Section 7.1). These applications are mostly
based on the extracted features of the level and frequency content of a varying
diagnostic signal in the form of the envelope, the IF, and the Hilbert spectrum.
In some cases a more sophisticated analysis, based on a physical equation of the
dynamic system behavior, may be required (Messina, 2009). The proper recognition
of a technical state of a considered object is possible by taking into account additional
information about the dynamic system and its vibration model. A dynamic system
model is commonly created on the basis of knowledge of a mechanical construction
and the functional operation of a technical object. For example, it is only possible to
recognize the technical state of a structure if we have information about its modal
parameters, such as frequencies, damping, and mode shapes as functions of the
physical inertia, stiffness, damping properties. Consequently, changes in physical
properties, such as a reduction in stiffness as a result of the onset of cracks or a
loosening connection, will cause changes in the modal properties of the system.

In this final chapter some industrial applications of the HT and EMD are consid-
ered. Several of these applications are of considerable significance and could easily
be extended by including further examples of applied research in mechanical engi-
neering. We have restricted our consideration only to the main specific types of a
successful implementation of the HT in practice.

Hilbert Transform Applications in Mechanical Vibration, First Edition. Michael Feldman.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd. ISBN: 978-0-470-97827-6
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12.1 Non-parametric identification of nonlinear
mechanical vibration systems

At each instant of time, an equation of the system vibration [M]{¥}+ C{x} +
[K] {x} = {z(#)} links three vector and matrix quantities: a displacement solution{x},
system matrices of the mass, damping, and stiffness [M], [C], [K], and an external
excitation {z(¢)}. It is obvious that one matrix can be determined if the other two are
given. Determining the solution from given system parameters and type of excitation
is known as a direct problem in differential solution theory (Plakhtienko, 2000).
The inverse problem is an identification of unknown system parameters when the
excitation input and the output solution are known (Figure 12.1).

Nonlinear behaviors of a dynamic system response in modern industrial designs
were considered. For example, a nonlinear friction has been used to enhance en-
gine blade damping, and wire-mesh-bearing dampers have been designed to improve
the dynamic stability of rotors. Using the HT achievements for a nonlinear system

[M]{X}+[Cl{X |+ [K]{ X} = {z0)}
X420 (%) %+ k(x,) = =2(1)
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Figure 12.1 HT procedures for the identification of vibration systems (Feldman,
(©)2011 by Elsevier).
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characterization became a very actual and challenging topic for industrial systems
(Luo, Fang, and Ertas, 2009; Fang, Luo and Tang, 2008). In addition to the identifi-
cation of the system’s modal parameters, the HT approach allows the non-parametric
identification of specific nonlinear elements, such as backlash (Tjahjowidodo, Al-
Bender, and Van Brussel 2007), or a nonlinear damping in fluid elastic (Eret and
Meskell, 2008), power systems (Laila et al., 2009), and frame structures (Curadelli
et al., 2008). In Liu, Messina and Vittal (2004) the EMD method was used in a
complementary manner to efficiently and accurately represent the nonlinear modal
interaction and distribution of a nonlinear and nonstationary behavior. The EMD and
the Hilbert spectra were applied to measure the time series from aero-elastic systems
(Lee et al., 2010). The measured nonstationary and nonlinear time series were de-
composed into a set of intrinsic oscillatory functions and — from ground and flight
tests — used for the identification of aerospace systems by an estimation of modal
parameters and a model improvement of aerospace structures.

In some practical situations, it is desirable to estimate the modal parameters in
real time. A continuous estimation of these parameters can be used, for example, for
classification and diagnostics purposes (Jones, 2009).

12.2 Parametric identification of nonlinear
mechanical vibrating systems

When a nonlinear detailed model structure and its solution are known, the iden-
tification can be turned into a parametric identification problem, where unknown
parameters can be derived just from the measured data. In a parametric identification,
mathematical models of the system are assumed to be known with some number of
parameters. Sets of ordinary differential second-order equations are taken as math-
ematical models of identified systems. Those parametric identification techniques,
based on an a priori nonlinear model, are suitable for the chosen models only.

For example, equations of motion for a slow-flow model — as a 2DOF system
with a cubic nonlinearity — were obtained by using a complexification-averaging
technique (Kerschen et al., 2008). A proper investigation of the solution decomposed
into dominant components by the application of the EMD approach allows us to
identify nonlinear system equations governing the amplitude and phase variations
in time. Another example of a nonlinear vibration characterization by a signal de-
composition considers a number of oscillator models such as the damped Duffing
with cubic, quadratic, higher-order stiffness nonlinearities, or a multimode modal
coupling subjected to a harmonic excitation (Pai, 2007; Pai and Palazotto 2008; Pai
et al., 2008). Performing the EMD of a time-varying solution of the known structure
allows us to identify the initial nonlinear model. In a similar manner, Coulomb and
quadratic damping can be estimated from the envelope of the response — according
to the damping identification techniques based on a simple curve fitting (Smith and
Wereley, 1999).

The experimental dynamic response data was processed using the HT technique in
Franchetti and Modena (2009). The study focused on a structural linear and nonlinear
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damping and its relation to crack damage. The HT method used data history in a
narrow frequency bandwidth after applying a bandpass filter for each of the SDOF
subsystems. After uncoupling, the free response damping coefficient was calculated
by an exponential fit with the analytical signal presentation. The proposed method
is suited for quality control, and can be further extended for the in situ detection of
damage in concrete structures under an ambient vibration.

For the assessment of modal parameters, the Hilbert analysis offers an alternative
approach to the more standard parametric techniques (Browne et al., 2009). Practical
considerations, such as window selection and zero padding, have been shown to have a
significant influence on the accuracy of results. The Hilbert analysis has demonstrated
its ability to identify modal parameters in many of the test signals examined, especially
where noise conditions are not excessive and modal frequencies are well separated.

The HT has proved to be useful for a long time series; low-dimensional chaotic
systems that exhibit transient chaos, consequently give only a short time series (Lai
and Ye, 2003). A Hilbert analysis also has the advantage of being suitable for a
non-stationary time series to assess the IF spectrum of the system.

12.3 Structural health monitoring and damage
detection

When measured data contains damage events or information on a damage in the
structure, it is important to extract as much of this information as possible. The
HT is not only able to detect the presence of a defect in the structure, but can
also quantify the extent of the damage (Feldman, 2009a). Thus, the modal-based
methods can quantitatively identify structural system properties before and after
damage events, including the modal mass, stiffness, and damping matrices. Several
recent applications of the HT methods to structural dynamics are devoted to damage
detection by using experimentally measured mode shapes and natural frequencies.

12.3.1 Damage detection in structures and buildings

The EMD and Hilbert spectra are capable of identifying natural frequencies, damping
ratios, mode shapes, the stiffness matrix, and the damping matrix of a structure on
the base of the measured acceleration responses (Li, Deng, and Dai, 2007). Damage
of the benchmark structure has been identified by a comparison of the stiffness in
each story prior to and after the damage event (Lin, Yang, and Zhou, 2005).

For some applications dealing with damped vibration, the modal parameters were
estimated from the instantaneous phase and the envelope (see Yang, Kagoo, and Lei,
2000). These modal parameters were calculated from the slope of the linear least-
squares straight line of instantaneous time functions. The presented method identifies
the natural frequencies and damping ratios in situ of tall buildings using ambient
wind vibration data. The EMD method is used to obtain general modal responses;
the random decrement technique is used to extract the decay free vibration of each
modal response. The HT is then used to identify complex eigenvalues, including the
natural frequency and damping ratio of each mode.
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In Yang et al. (2004) the EMD is intended to extract damage spikes due to
a sudden change of structural stiffness from the measured data, thereby detecting
the instants of time and locations of the damage. A combination of the EMD and
the HT is capable of detecting the time instants of damage and can determine the
natural frequencies and damping ratios of the structure before and after damage. The
methods are applied to a benchmark problem established by the American Society
of Civil Engineers Task Group on structural health monitoring. Simulation results
demonstrate that the proposed methods provide new and useful tools for detecting
and evaluating the damage in structures.

To improve the EMD, Chen and Feng (2003) propose a technique —based on waves
beating phenomena — for decomposing components in narrowband signals, where the
time-scale structure of the signal is unveiled by the HT as a result of wave beating. The
order of component extraction is reversed — from that in the EMD — and the end effect
is confined. This technique is verified by performing a component decomposition of
a simulated signal and a free decay signal actually measured in an instrumented
bridge structure.

12.3.2 Detecting anomalies in beams and plates

A discussion on locating an anomaly — in the form of a crack, delamination, stiffness
loss or boundary in beams and plates — can be found in Quek, Tua, and Wang
(2003). The results indicate that the EMD is able to give a good representation of
a localized event and is sensitive to a slight distortion in the signal. A crack and
a delamination in homogeneous beams can be located accurately, and damage in a
reinforced concrete slab can be identified if it has been previously loaded beyond
the first crack. Sometimes the sensitivity of the EMD is such that an analysis with a
distorted signal needs a careful interpretation, as illustrated by an example with an
aluminum plate.

In their paper, Pines and Salvino (2006) present an experimental validation of the
EMD approach using a civil building model. Empirically derived basis functions are
processed through the EMD to obtain magnitude, phase, and damping information.
This information is later processed to extract the underlying incident energy propa-
gating through the structure. The damping or loss factor values can be calculated from
the response data directly using the Hilbert Damping Spectrum (Li, Deng, and Dai,
2007). The main step is to define a time-dependent decay factor for each empirical
mode by the envelope function.

In Douka and Hadjileontiadis (2005) the dynamic behavior of a cantilever beam
with a breathing crack is investigated both theoretically and experimentally. The
response data is analyzed by applying the EMD and the HT for the IF estimation. It
is shown that the IF oscillates between the frequencies corresponding to open and
closed states, revealing the physical process of crack breathing. The variation of the
IF follows definite trends and therefore can be used as an indicator of the crack size.
It provides an efficient and accurate description of the nonlinearities caused by the
presence of a breathing crack.

In parallel with the HT, another method — the Wavelets transform — is developed
in the signal processing allowing similar applied problems to be proved (Cohen,
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1989). Numerous scientific works evaluating these methods are based exclusively
on an empirical data comparison. For example, in Kijewski-Correa and Kareem
(2006) these two approaches provided comparable evidence of the nonstationary and
nonlinear behavior of vibration systems. Given that both transforms can represent
nonlinear characteristics, albeit differently, the selection of one approach over the
other depends entirely on the perspective desired.

12.3.3 Health monitoring in power systems and rotors

The results of a study of subsynchronous torsional oscillations in power systems with
flexible AC transmission system controllers are presented in Andrade et al. (2004).
An application of an HT-based signal and system analysis techniques indicates that
nonlinear oscillations may involve an interaction between fundamental frequencies.
These interactions result in a significant modulation of primary frequencies and lead
to nonlinear and non-stationary behavior. In the paper a harmonic generation and a
nonlinear mode interaction in power systems are detected. The efficacy of the EMD
method for the separation of closely spaced modal components is demonstrated in
both synthetic and transient stability data (Laila, Messina, and Pal, 2009). It is shown
that the method produces a physically motivated basis suitable for the analysis of
general nonlinear and nonstationary signals, particularly for the inter-area oscillation
monitoring and analysis. It is also shown that the estimated damping ratio obtained
using the EMD is more accurate than a Prony analysis. The method permits an
automated extraction and the characterization of a temporal modal behavior with no
prior assumptions on the governing processes driving oscillations; it can be applied
to a wide variety of signals found in power system oscillatory processes.

In Guo and Peng (2007) the start-up transient response of a rotor with a prop-
agating transverse crack was investigated using the EMD method. The influence of
a crack propagating ratio on an instantaneous response of the rotor — as it passes
through the critical speed and subharmonic resonances — is analyzed. The one, two,
and three times rotating frequency vibration components are studied when they just
appear, follow the peak, and decrease during the start-up process. It is demonstrated
that the EMD detects a transverse crack on the shaft, and therefore is an effective tool
for the analysis of a nonlinear, unsteady transient vibration response. Some additional
information on crack detection can be found in Feldman and Seibold (1999).

12.4 Conclusions

The HT-based technique enables us to estimate directly the system’s instantaneous
dynamic parameters (i.e., natural frequencies and damping characteristics) and also
their dependence on the vibration amplitude and frequency. This direct time-domain
techniques allows for a direct extraction of the linear and nonlinear system parameters
from the measured time signals of input and output. The nonlinear model of the tested
structures opens the way to improve the effective dynamics and monitor the health
of a structure. Furthermore, with model-based procedures, it might be possible to
distinguish between specific damages, such as a crack and an increasing imbalance.
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The results obtained may be used to verify and validate the model under different
conditions, to simulate possible solutions generated by any other input force, and to
find a control scheme that provides the desired vibration response. The identification
method of free and forced vibration analysis, which determines the instantaneous
modal parameters, contributes to the efficient and more accurate testing of nonlinear
oscillatory systems, avoiding time-consuming measurement and analysis. Sometimes
a combination of different methodologies will yield an improved ability to detect
damages at early stages — compared to using each approach separately.
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Actuator, 215-6, 219 DC, 120, 124
Additive noise, 31 trend, 48
Aliasing, 57, 90 Approximation,
Almost periodic, see Quasiperiodic instantaneous frequency of, 63, 115, 158
Alternate envelope, see Envelope boundary of, 85
Ambient vibration, 270 composition of, 94, 101, 123
Amplitude, 34 maximum position of, 86
distribution, 19, 36, 75, 250, 253 restoring force of, 1567
instantaneous, 1415, 18, 23-4, 60, 74, 108, 119, Asymmetric, 70
182 nonlinear system, 223, 240-5
level, 20, 53-5 signals, 60, 70, 107-14
modulation (AM), 16, 42-6, 60, 64, 77, 89, 96, Average envelope, see Envelope
122,128, 130 Average IF, see Instantaneous frequency
range, 149, 161, 167, 218, 238 Averaging, 19, 62-3,74,77,92, 114, 172, 178
variation, 20, 52
-dependent, 145, 158, 175, 177, 217, 257 Backbone, 146-51, 158-9, 174-5, 177-9, 185,
Analytic signal, 3, 12 187-8, 190-1, 199, 243-7
complex function, 18, 53, 141, 144 Backlash, 149, 151, 175, 183, 185-8, 190-2, 225,
complex envelope, 16, 43, 97 235-6
conjugate multiplication, 18 Bearing, 129-30
DC offset, 48-50, 53, 78 Bedrosian, 3, 12, 43
derivatives, 11, 53, 55, 1704 Beats, 52, 89, 105, 117, 194, 199
digital form, 27, 144-5 Bessel function, 41
distribution, 19, 36, 58, 75 Bias, 178-9, 225
estimation, 9, 23-4 Biharmonic, 192, 194, 197, 199, 200-2, 209
forms, 3, 11, 13-15, 43, 67, 90, 105, 107, Bilinear, 150-1, 172, 183, 242-3, 261
157 Block diagram, 23-6, 94
frequency separation, 78, 87, 284 Bound, 65-6, 68-9
generation, 28, 135, 272 Boundary surface, 53, 85-6, 91, 117
geometrical representation, 13, 15 Bottom extremum, 54, 56, 70, 74, 79, 81
differential equation in, 157, 159, 170
nonlinear system in, 153-8 Carrier, 3, 24, 26, 39, 47-8, 93, 96, 98
integration, 53, 62 amplitude, 42, 46
method, 35, 155 frequency, 24, 40-4, 64
spectrum, 13 Cauchy, 10
synchronization, 135 Chaotic, 135
theory, 3, 13, 154 system, 135, 270
Anomalies, 271 behavior, 143, 252
Angular, 14 Characteristics, 27-9, 37
position, 13-16 alternation, 65
speed, 15 force static, 177, 182, 185
Antiphase, 15 instantaneous, 3, 19, 24, 29, 52, 57, 62, 65, 107-8,
Aperiodic, 48, 77 193
component, 78, 120, 123 signal, 127, 248
distortion, 50 system, 272
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Chirp, see Sweeping
Clearance, see Backlash
Complex envelope, see Envelope
Composition, 24, 51, 117, 123, 132
signal, 59, 66, 74-5, 78-83
two harmonics of, 48, 50-2, 66, 74, 79-80, 193
Congruency, 65-9
Congruent, 65
damping, 227-8
displacement, 227-8
envelope, 65-70, 127-8, 226-9
estimation, 6670
frequency, 68, 70, 128
geometrical meaning, 70
instantaneous frequency, 68
modal parameters, 226, 229, 264
physical meaning, 70
static force characteristics, 228
theory, 65-6
velocity, 228
Conjugate, 18
Fourier series, 3
multiplication, 18
signal, 13
variable, 157
Conservative system, 151-2, 156, 171-2, 174, 242
Contact points, 38, 55
Control frequency, see Frequency
Convolution, 10, 28, 32, 63, 92
Correlation, 24, 77
Crack identification, 129-30, 245-8, 271-2
Cubic, 179
nonlinear, 201, 229, 269
spline, 77, 81
stiffness, 145-6, 185, 196, 238, 244, 252
polynomial, 232
Cycle, 17,31, 58, 172
deformation of, 159
full, 18, 63, 117, 152-3, 174
integration, 63
value, 152

2D, 19
plot, 57, 85, 249
projection, 18
3D, 18
function, 83
plot, 75, 107, 230, 233
filter, 83
Damage, 128-9, 133, 136-7, 266, 270-3
Damping, 4, 6
average, 160, 164, 172,217, 258
coefficient, 38, 160-7, 170-8, 181-2, 185, 229
curve, 160-6, 171, 175-6, 182, 185
force, 160-6, 170, 176-9, 183-8
frequency dependent, 161
hysteretic, 159, 166
linear, 162, 164, 185
modal, 170-8, 182, 225, 250
nonlinear, 159, 161, 229, 232
ratio, 37, 159-61, 270-2
spectrum, 271
turbulent, 1624
DC, 48-9, 53, 77-8, 115, 120, 124

Decay waveform, 37-8, 161-6
Decomposition, 50, 57, 61-2
EMD, 54, 61, 73-91, 93, 114-30, 248, 267-72
HVD, 61, 91-107, 116-125, 224, 230, 236, 241
methods, 50, 61, 77, 95, 103, 114-6
precise, 94
Decrement, 4, 160-2, 172, 270
Delay, 142-3, 193
time of, 17, 24, 26, 29
Demodulation, 24
coherent, 24
envelope of, 54, 64
signal of, 23, 64, 130
synchronous, 24-6
De-noising, see Noise cancelation
Derivative, 11, 15, 54-8, 64, 79-83, 193
analytic signal, 53, 90
phase, 17, 146, 161
Detecting anomalies, 271
Digital Hilbert transformers, 27-9
Direct, 16, 27, 43, 65-6, 78, 92, 133, 151
differentiation, 17-18, 53
estimation, 17-18, 54, 175
extraction, 122, 127, 177, 225
Dissipation, see Energy
Distribution, 2, 19, 58, 73, 77, 90
envelope, 19, 36, 75, 250
function, 36, 57, 50, 141
instantaneous frequency, 21, 37
normal, 19
Rayleigh, 19
Double, 41, 55, 67, 99, 155
HT, 11
frequency harmonic, 25, 51, 62, 194
sided, 43
Doubled modulation, 41, 155
Dry friction, 161-6, 186-8, 190-2, 218, 232-3, 238
Duality, 46, 97
Duffing, 145, 153-9, 174-5, 184-90, 196, 201-2,
207, 229, 244, 259
Dynamic system, 61, 103, 1904, 238, 240, 267-8
curve fitting, 178, 218, 269

Echo signal, 135
Effective,
mass, 173
stiffness, 162
Eigenvalue, 257, 270
Eigenvector, 257
EMD: empirical mode decomposition, 4, 54, 57, 61,
64, 73-7
analytical basics, 77-91
frequency resolution, 85-91, 114
End effect, 31-2, 130, 271
Energy, 11, 15, 20, 37-8, 54, 59, 63, 91, 161, 251
average, 15, 164
dependency, 257
dissipation, 4, 35, 133, 142, 159-62
kinetic, 146, 160
motion of, 160
operator, 64, 77
potential, 146, 160
propagation, 271
total, 152



Envelope,
alternate, 45-8, 97, 99-101
average, 54, 62
complex, 16, 43, 97
lower negative, 15, 44
instantaneous frequency of, 65
partial, 107-14
upper positive, 15, 44-8
envelope of the envelope (EOE), 65-8
Excitation, 40, 105, 130, 141, 147, 174
force, 37, 145, 147, 188, 192, 215, 224, 252
harmonic, 144, 174, 176, 203, 207, 269
parametric, 202, 205
sweeping, 184
Extrema, 38, 54, 74
bottom, 56, 74-5, 83-5, 88, 90
points, 54, 57, 66-70
top, 85, 90

Fast Fourier transform (FFT), 27, 32, 77
Fatigue, 135
Fictitious, 157, 177, 229
Filter, 10, 27, 29
design, 28-9
digital, 28-9, 31
highpass, 53
lowpass, 23, 25, 63, 92,94, 117, 223
narrow bandpass, 21, 73, 95
Remez, 28
stable, 95, 117
Filtering, 21, 25, 31, 53, 63-5, 83
FIR, 28-9
First order, 53
derivative, 53
describing functions, 248
Force static characteristics, 177, 182
FORCEVIB, 179, 1814, 187-8, 192, 194, 199, 211,
219, 256
Fourier, 1-3, 23, 27, 31, 57, 61-2, 74, 78, 155, 159,
193,214
Fourth order, 258
Frame structure, 269
FREEVIB, 181-4, 193, 197, 209, 224-6, 229, 242,
262
Frequency, 3—4, 141
bandwidth, 20, 37, 270
contents, 57, 92, 95, 267
control, 92, 95, 117, 250
dependent, 161, 166, 257
domain, 4, 27-9, 57, 71, 117, 143-5, 155, 203
modal, 170-8, 181-2, 185, 188, 199, 225, 242,
250-3, 257, 270
modulation, 21, 23, 38-42, 128-9, 155, 194, 196,
201
natural, 4, 37, 105, 146-161, 1704, 178, 187,
194-214, 257
partial, 107, 110, 250
range, 40, 51, 123, 176, 196, 214
resolution, 18, 75-8, 85-89, 92, 95, 116-120
response, 4-5, 27, 105, 141-4, 175-7, 218
Friction, 145, 159
average, 157
coefficient, 201-2, 239, 261
dry, 161-6, 185-92, 217, 232-3, 238
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fictitious, 157, 229

frequency independent, 166

quadratic, 146, 163, 196, 201, 205

static force, 178, 220, 227-8, 232, 235

turbulent, 161, 181, 252

viscous, 160-2, 176, 217
Fundamental, see Primary

Gear, 130-1
Global, 9, 57, 73,91, 116
approach, 9

Hard, 158
force, 146
stopper, 147
Hardening, 145-7, 175, 185, 196-8, 217, 229, 238,
253
Harmonic,
first, 75, 81-9, 194, 255
function, 46, 59, 96
largest, 51, 63, 90-2, 108, 112
level, 53-55, 207
limited number, 119
modulation, 40-3
quasi, 11, 19, 54, 69, 924, 108, 123, 151, 173,
193,252
order, 141, 188
second, 51, 75, 80-90, 117, 194
total distortion, 30-31
Heterodyne detection, 24
HHT, Hilbert-Huang transform, 73
High frequency, 23, 43, 65, 117, 256
harmonic, 78, 85, 91
High order, 228
stiffness nonlinearities, 269
superharmonics, 141, 188, 223-244
Higher order, 41, 144, 269
Highpass, see Filter
Hilbert spectrum, 75-6, 99-106, 231
HT, Hilbert transform, 1-12
application, 1-5
signal in, 127
system in, 257
history, 2—4
multiplication, 11-12, 18, 156-7
vibration decomposition, 116, 239
Hilbert transformer, 24-9, 170
HVD: Hilbert Vibration Decomposition, 61, 91-5
frequency resolution, 95-6
Hysteretic damping, see Damping

Ideal,
circle, 144, 152, 154,
filter, 27
HT, 27
Identification,
nonparametric, 169, 181-2, 220, 248, 252
parametric, 248, 269
precise, 125, 224-6, 229, 239
Instantaneous frequency (IF), 1-2, 17-22
approximation, 63, 115
average, 20, 62-3, 156
estimation, 17-8,
smoothing, 63-5
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Intrinsic mode function (IMF), 59, 64, 73-5, 83-5,
91, 121-3, 248
Impulse, 2, 95, 122, 125, 192, 245
hidden, 122
repeated, 2167
response, 10, 27-30, 37
Indicator, 128-9, 131, 145, 271
Inertia, 29, 107, 173, 181-2, 225, 252, 267
Instability, 129, 207
Instantaneous, 1-5
characteristics, 19, 24, 29, 34, 52, 62, 65, 107-8,
230
fictitious friction, 157
modal damping, 170
modal frequency, 170-8, 181-2, 188-91, 225,
242
modal parameters, 171-83, 200, 225, 236,
265
natural frequency, 153-4, 157-8, 170-3, 227
period, 152-3
phase, 14-17, 23-7, 39, 53, 57, 65, 93, 119, 129,
170
Intra-cycle, 174-5
Intrawave, 153
modulations, 153, 155, 224
Iteration, 74, 78, 86-7, 91-5, 101, 114-15, 123

Jump, 16-17, 62, 79, 116, 120, 183—4
Kramers—Kronig relations, 141-3

Largest energy component, 63, 66, 68, 91-3
Limit,
force, 147
frequency, 57, 78, 89, 91
Linear, 4
combination, 61, 78, 239, 251, 264
coupled, 249, 252, 255, 258
damping, 1624, 185, 196, 207, 229
force, 242
stiffness, 4, 147, 152, 160
system, 19, 103, 105, 141-4, 149
sweeping, 38-40
-phase, 28
Linearization, 158, 225, 253
Loss factor, 37, 159, 271
Local, 9
approach, 9-
extrema, 38, 54, 56, 67-8, 78-81
mean, 77, 129
model, 254
symmetry, 66
Lower negative envelope, 15, 44
Lowpass, see Filter
Lyapunov, 135

Marginal spectrum, 75, 129
Mass, 4, 146-7, 149, 152, 173
effective, 173
modal, 173, 182, 257, 270
reduced, 173, 219
spatial, 257
Matlab, 27, 29, 77, 95, 144, 184, 201
Matrix, 159, 249, 268, 270

Maximum position,

bottom, 79

highest, 82, 86

lowest, 84

top, 79, 80
MDOF system, 161, 182, 223, 248-65
Mean value, 9, 19-20, 37, 54. 58, 62, 74, 80-9, 194
Meaning, 44, 58, 66, 91, 132, 228

geometrical, 70

physical, 10, 11, 17, 70, 251
Modal, 40, 170-3

mass, 173, 182, 257, 270

parameters, 169-84, 200, 214, 224-9
Mode, 54, 59, 132, 144, 182, 248, 254
Mode shape, 132, 256-7,
Modulation, 16, 23, 38

depth, 43

double sideband, 43

frequency, 41-2, 130, 155-6, 205

index, 41-6, 96-7
Monocomponent signal, 59-63, 119, 128, 182
Motion, 61, 95

absolute, 50

decay, 173

downward, 107

increasing, 261-2

multicomponent, 225, 230-3, 239

nonlinear, 157, 197

partial, 256

periodic, 61, 261

planar, 50

rapid, 162

shaft of, 131

trajectory, 131

transient, 125

upward, 107

vibration, 145, 151, 177, 256
Multichannel signal, 135
Multi-hypothesis approach, 248
Multicomponent, 55

composition, 61, 71, 115

motion, 225

signal, 58, 60, 65, 124
Multiplication, see Product

Narrow, 57, 64, 183
Narrow-band, 57-8
Nonlinear, 61, 143, 156
damping, 159-67, 170-6, 218, 233
dynamic, 61, 95, 120, 169
elasticity (stiffness), 145-6, 175, 185, 241
modal characteristics, 258
Nonlinearity, 31, 85, 129, 142, 146, 240
Nonparametric identification, see Identification
Nonstationary vibration, 95-6, 103-6, 119-20, 239
Noise,
additive, 31
cancelation, 65, 122
distortion, 9
instrumental, 65, 183
quasiharmonic, 122
random, 29-30, 65, 130
white, 35-7, 123
Nyquist, 29, 57, 89-90, 118, 144-5



Observer, 50
Offset, 48-50, 53, 78, 108, 120, 124
Online diagnostics, 131
Orbit, see Trajectory,
Orthogonal Cartesian coordinates, 1523
Oscillation, 15, 19, 29, 65, 122
period, 152-3, 164
unstable, 207, 261
Overmodulated, 44-6, 97-102
Overlapping spectra, 12, 62, 135, 157, 170, 252

Parametric identification, see Identification
Partial, 50, 77, 241, 251, 256
envelope, 107-14,
frequency, 107-10, 250
motion, 256
Phase, 2-5,9
angle, 16-18, 25, 56, 69, 108, 132, 153, 227-8
congruency, 65-9
difference, 135
plane, 151-6
relation, 15, 61, 66, 69, 108, 119, 241
shift, 16-17, 23-8, 66-9, 80, 132
Phasor, 1315, 49, 66-7, 228, 258
angle, 16
projection, 49
rotation, 17, 66
velocity, 15, 53
Plate, 128, 215, 271
Polynomial, 1467, 158, 214, 225
approximation, 115
curve, 217-18
model, 146, 232, 235, 260
scaling, 178-9
Power, 15-16, 30-1, 49
series, 146, 157, 162
signal of, 11, 16, 40
spectrum, 35-7, 195
systems, 269, 272
Precise identification, see Identification
Preloaded (precompressed), 149, 175, 214, 217
Primary, 31, 123, 154, 264
frequency, 223, 272
resonance, 223
solution, 151-8, 162-9, 177, 182, 223-8,
256
Principal solution, see Solution
Probability density, 19-21, 58
Product, 2-3, 26
function, 11-12, 54, 64, 170, 228, 258
generalized, 12, 170
two harmonics of, 46-8, 52, 96, 121
Progression, 119, 129
Prony, 272

Quadrature, 12-13, 23-7, 92, 131

Quantum-limited, 27

Quasiperiodic function, 61, 95, 120, 122, 1246,
136, 258

Random, 9, 19, 29-30, 35, 65, 130, 135, 270
signal, 19-21, 36-7, 53-5, 60, 123-6
Rate, 17, 56, 64, 105, 174, 207, 238
rotation of, 15, 21
amplitude of, 20, 159, 166
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decay of, 37-8, 160-1
velocity of, 57, 133
Ratio, 15, 37-8, 58, 69, 83-7, 117-19, 132-3
meaning, 132
signal to noise, 27, 30-2
Rayleigh, see Distribution
Regime, 165, 171-3, 216
dominant, 209
saturation, 147
synchronous, 135
transient, 183
Real-time, 24-5, 116, 131-3, 214
Relative, 50, 218
angle, 14
damping, 160
motion, 50
phase, 16-17, 108, 132
Residual, 74, 93
Resonance, 64
curve, 177
frequency, 19, 105, 147, 174, 184, 249
mode, 144
response, 223
transition over, 184
Root mean square, see Standard deviation
Rotor, 95, 125-6, 129-30, 244-5, 272
Runge—Kutta, 201, 258

SDOF system, 4, 37, 151, 159-60, 171-6, 200,
216-18, 224-5, 249, 256
Second order, 156, 225, 256, 259
derivative, 183
equation, 152, 160, 269
members, 171
Self excited, 200, 207, 209, 261-3
Semi-local, 64
Separation, 103, 113
energy, 64
harmonics of, 78, 85-7, 96, 122-5
kinematic, 131
waves of, 3, 131
Shaker, 257
Shifting, 1, 11, 24, 43, 49, 66, 92, 262
Shutdown, 95, 125
Sidebands, 26, 41-7, 96-7, 99-101, 128
Sifting, 74, 86-7, 90-3, 114-5
Signal, 33
asymmetric, 70, 107-14, 242
bandwidth, 20, 59
demodulation, 23-4, 127, 130
level, 534
overmodulated, 44-6, 97-102
Skeleton curve, see Backbone
Slope, 53-5, 79, 85-6, 150
amplitude of, 4, 146, 161, 172, 270
phase of, 161, 270
Smoothing, 63
instantaneous frequency, 63—65
Softening, 145-7, 175, 199, 244, 253, 258-62
Solution, 153-6, 157, 170, 223, 240-2
approximate, 156-9, 161
exact, 228

fundamental (principal, primary), 151, 157, 159,

1624, 169, 226
transient, 105, 160
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Spatial, 132
coordinate, 255, 257
frequency, 249-55
model, 248-51, 256
skeleton curve, 250-5, 262
system, 249
Spectral density, 9, 20, 35-52
Spectrum, 13, 20, 35-52
bandwidth, 20, 60, 71, 125, 136
complex, 20, 193
envelope of, 43, 129
overlapped, 12, 62, 135, 157, 170, 252
slope, 119
Spiral, 12, 232-3, 236, 238
Spline fitting, 61, 74, 77-8, 86, 91, 115
Spring coupling, 249-51, 255, 260
Stability, 95, 268, 272
Standard deviation, 9, 15, 19, 54, 93
Startup, 95, 125-6
Static force, 167, 224, 228
exact, 178, 228, 239, 264
biased, 178
characteristics, 125, 147-51, 157, 177, 182, 188,
190, 196-8, 217-20, 224-6, 236-40
elastic, 178, 208-13
friction, 178
partial, 263
spatial, 258
symmetric, 146, 161, 167, 177, 240
Stationary, 35, 59, 183, 245
Statistical analysis, 2
Stator, 130
Steady state, 125, 173-4, 183, 261
amplitude, 176
condition, 29
component, 103-6, 238
Stiftness, 146
characteristics, 174-5, 241
effective, 162
nonlinear, 175, 185, 217, 241, 255, 259
preloaded (precompressed), 149-50, 175, 214, 217
saturation (limiter), 147-51, 172
Stochastic,
process, 135-6
system, 135
Structural health monitoring, 74, 128-30, 267, 2701
Subsystem, 249-53, 256, 260-65
Superharmonics, 65, 70, 177, 182, 188, 223
Sweeping signal, 38—40, 103, 121-2, 144, 1834,
206, 211
Synchronization, 135
Synchronous, 81, 83, 116,
detection, 24-8
component, 91-103, 227-30, 256

Teager—Kaiser, see Energy operator
Time, 2

average, 15-48

delay, 17, 24-5

domain, 10, 17, 21, 27-9, 54, 61, 63, 73, 91, 103,
119, 131, 145, 164, 169-79, 224, 240-42
history, 135, 230-4
interval, 15, 17, 38, 40, 50, 57, 121
resolution, 135
scale, 61, 73,91, 127
-dependent, 38, 271
-frequency, 3, 17, 59, 77, 129, 131, 256
-varying, 2, 19, 51, 54, 61, 64, 66, 68, 75, 103,
122-5, 157, 200, 229, 257
Top extremum, 54, 79
Total harmonic distortion, see Harmonic
Trajectory, 130-1
Transfer function, 10, 142, 144, 159
Transient, 29, 127, 130, 238
distortion, 29, 31
component, 101, 105
motion, 125
solution, 105, 173
Translational velocity, see Velocity
Transmission, 272
Trend aperiodic, 48, 77
Triangle inequality, 66—7
Turbulent, see Damping turbulent
Two harmonics, 46-8, 50-2, 56, 74-5, 78-80, 90-1,
1934

Ultraharmonic, see Superharmonic
Unbalance, 131, 272

Unwrapped phase, 16, 146, 151
Upper positive envelope, 15, 44-8

Vakman, 3-4, 9, 12-14, 17, 20, 29, 46, 64, 141, 155,
193

Valued components, 117-8, 124

Van der Pol, 201-2, 207-11, 2614

Velocity, 15, 49-57, 160-166, 228
angular, 15, 49, 53, 57, 152
translational, 15
-dependent, 162

Vibration signal, 23, 43, 54-8, 60-6, 94

Vibro-impact model, 147-8

Volterra series, 141, 144

Wave, 11, 15, 23-6, 50-4, 70
separation, 3, 131
standing, 1314
traveling, 131-4
Waveform, 9, 11, 15, 27, 29-32, 37-47, 60, 66, 69,
73,101, 122-5
Wavelet, 1, 18, 734, 115, 130, 248, 271
Welch’s periodogram, 144
White noise, 35-7, 123
Wideband, 2, 24, 94, 256
signal, 27, 35-6, 41, 57-61, 114-7
Window, 27, 31, 270

Zero padding, 27, 270
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