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Preface to the First Edition

The purpose of this book is to simplify and organize the solution of heat conduction
and diffusion problems and to make them more accessible. This is accomplished
using the method of Green’s functions, together with extensive tables of Green’s
functions and related integrals. The tables of Green’s functions were first compiled
as a supplement to a first-year graduate course in heat conduction taught at Michigan
State University. The book was originally envisioned as a reference volume, but it
has grown into a heat conduction treatise from a Green’s function perspective.

There is enough material for a one-semester course in analytical heat conduction
and diffusion. There are worked examples and student problems to aid in teaching.
Because of the emphasis on Green’s functions, some traditional topics such as Fourier
seriesand Laplace transform methods are treated somewhat briefly; this material could
be supplemented according to the interest of the instructor. The book can also be used
as a supplementary text in courses on heat conduction, boundary value problems, or
partial differential equations of the diffusion type.

We hope the book will be used as a reference for practicing engineers, applied
mathematicians, physicists, geologists, and others. In many cases, a heat conduction
or diffusion solution may be assembled from tabulated Green’s functions rather than
derived. The book contains the most extensive set of Green’s functions and related
integrals that is currently available for heat conduction and diffusion.

The book is organized on a geometric basis because each Green’s function is asso-
ciated with a unique geometry. For each of the three coordinate systems—Cartesian,
cylindrical, and spherical—there is a separate appendix of Green’s functions named
Appendix X, Appendix R, and Appendix RS, respectively. Each of the Green’s func-
tions listed is identified by a unique alphanumeric character that begins with either
X, R, or RS to denote the x, r, or the spherical » coordinate, respectively. It is impor-
tant for the reader to know something about this numbering system to use the tables
of Green’s functions. A more detailed numbering system, which covers both Green’s
functions and temperature solutions, is discussed in Chapter 2. We find the numbering
system very helpful in identifying exactly which solution is under discussion, and all
of the solutions discussed in the text are listed in Appendix N indexed according to
the numbering system.

The level of treatment is intended for senior and first-year graduate students in
engineering and mathematics. We have emphasized solution of problems rather than
theorems and proofs, which are generally omitted. A prerequisite is an undergraduate
course in ordinary differential equations. A previous introduction to the method of
separation of variables for partial differential equations is also important.

The first nine chapters of the book are written with senior engineering students in
mind. The Introduction contains background information on heat conduction and brief
derivations of the heat conduction equations. Chapters 1 through 5 introduce Green’s
functions for transient heat conduction in one-dimensional bodies. The Cartesian

xiii



Xiv Preface to the First Edition

coordinate system is emphasized in this section as an aid to learning. Steady-state
problems are treated as a special case of the transient solution in Section 3.5 and
3.6. Chapters 6 through 9 are devoted to the solution of problems in the rectangular,
cylindrical, and spherical coordinate systems. Transient problems are emphasized
and steady problems are treated briefly in separate sections for each coordinate sys-
tem (Sections 6.9, 8.7, and 9.8). Chapters 10 and 11 introduce the Galerkin-based
Green’s function method, which combines the efficient analysis of the Green’s func-
tion method with the flexibility of geometry afforded by numerical methods. Chap-
ter 12 introduces the unsteady surface element method, a numerical method that
involves the matching of analytical solutions at the boundaries of bodies in contact.

No other book on Green’s functions combines introductory material, worked ex-
amples, and extensive tables of Green’s functions. Important books that contain some
of this material include Heat Conduction by M. N. Ozisik (Wiley, New York, 1980),
Conduction of Heat in Solids by H. S. Carslaw and J. C. Jaeger (Oxford, London,
1959), Methods of Theoretical Physics by P. M. Morse and H. Feshbach (McGraw-
Hill, New York, 1953), Elements of Green’s Function and Propagation by G. Barton
(Oxford, London, 1989), Green’s Functions and Transfer Function Handbook by
A. G. Butkovskiy (Halsted Press, New York, 1982), Application of Green’s Functions
in Science and Engineering by M. D. Greenberg (Prentice-Hall, Englewood Cliffs,
New Jersey, 1971), and Green’s Functions: Introductory Theory with Applications by
G. F. Roach (Van Nostrand Reinhold, NewYork, 1970).

James Beck would like to express his appreciation to the National Science Founda-
tion for support over the years that has aided in the development of this work. Particu-
larly important is the support related to the unsteady surface element method in which
Dr. Ned Keltner of Sandia National Laboratories has also had a very influential part.

Kevin Cole would like to acknowledge support from the Engineering Foundation
that has contributed to this project. Thanks also go to many students in heat conduction
classes who have read the manuscript and have made many suggestions over the years.

A. Haji-Shiekh would like to acknowledge support from the National Science
Foundation, under the directorship of Win Aung and Richard O. Buckius, who were
instrumental in the development of the Galerkin-based integral method. Special thanks
also to Win Aung who recognized the potential of the Galerkin-based integral method
even before the work began. Thanks also to my wife who spent many hours typing and
proofreading the manuscript, and to David Lou, former chairman of the Mechanical
Engineering Department at UTA, for his encouragement.

Special thanks to the staff at Hemisphere for their competent handling of an
equation-filled book. The authors take full responsibility for any errors that may
remain in the book, but because this contains many new solutions we invite readers to
send us any errors that they may find. Concerning errors please contact Kevin Cole,
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Preface to the Second Edition

Since the first edition was published, there is considerable evidence of continued in-
terest in Green’s functions (GFs). There have been several new books on GFs for heat
conduction and diffusion, including Green’s Functions in Applied Mechanics by Y. A.
Melnikov (WIT Press, Southhampton, 1995), Green’s Functions with Applications by
D. G. Duffy (Chapman and Hall/CRC Press, 2001), Diffusion-Wave Fields: Mathe-
matical Methods and Green Functions, by A. Mandelis (Springer, New York, 2001),
Handbook of Green’s Functions and Matrices by V. D. Seremet and V. D. Sheremet
(WIT Press, Southhampton, 2002), as well as several books on GFs applied to quantum
physics. The number of research papers on GFs published in 2009 has more than dou-
bled compared to the year the first edition was published. The four of us have continued
to find new GFs and to apply them in our research. The second edition reflects our con-
viction that although Green discovered them in the nineteenth century, the functions
bearing his name remain relevant to twenty-first century engineers and scientists.

For the second edition all chapters have been reviewed and updated. Based on our
research and our classroom experience with this material, several chapters have been
extensively revised. Chapter 1 has been expanded to provide a better introduction to
Green’s functions, both steady and unsteady, and a section on the Dirac delta function
has been added. Chapter 4 now includes a discussion of the eigenfunction expansion
method. Chapter 5 has been rewritten to include sections on the convergence speed of
series solutions, the importance of alternate GF, and intrinsic verification, which is an
important new tool for obtaining correct numerical values from analytical solutions.
The chapters on cylindrical geometries from the first edition have been combined
into one (Chapter 7), and the chapter on spherical geometries has been renumbered
(Chapter 8). Several new examples and new figures have been added to Chapters
6, 7, and 8 on rectangular, cylindrical, and spherical geometries, respectively. A new
chapter has been added on the subject of steady-periodic heat conduction (Chapter 9).
The extensive appendices of GF and related functions, a central feature of the first edi-
tion, have been expanded to include three new appendices: the Dirac Delta Function
(Appendix D); the Laplace Transform (Appendix L); and Properties of Common Ma-
terials (Appendix P). Two appendices have been renamed: Appendix F for Functions
and Series; and Appendix | for Integrals.

One of the goals of the first edition was to make GF more accessible, and towards
this end one of us (Cole) created an Internet site called the Green’s Function Library
(www.greensfunction.unl.edu) . The GF Library is the online companion site for the
second edition. This web-searchable collection of GFs, based on the appendices in this
book, is organized by differential equation, by geometry, and by boundary condition.
Each GF is also identified and cataloged according to our GF numbering system. The
GF Library also contains explanatory material, references, and links to related sites.
Since it was created in 1999, the GF Library has received many thousands of visitors
from all over the world.
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errors and we take full responsibility for any that remain. If you find an error, please
check if it appears in the error list posted at the GF Library. If it is not listed there,
please contact us through the GF Library or contact Kevin Cole (402-472-5857 or
kcolel@unl.edu).

Kevin D. Cole
JamesV. Beck
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’l Introduction to Green’s
Functions

1.1 INTRODUCTION

Green’s functions (GFs), named after English physicist George Green (1793-1841),
are powerful tools for obtaining solutions of linear heat conduction problems. They
also apply to the solution of many other phenomena described by linear differential
equations. A GF is a basic solution of a specific differential equation with homoge-
neous boundary conditions; it is a building block from which many useful solutions
may be constructed. For transient heat conduction, a GF describes the temperature
distribution caused by an instantaneous, local heat pulse.

This book contains an extensive set of exact GFs for the heat conduction equation
in Cartesian, cylindrical, and spherical coordinates. By utilizing these tabulated GFs,
solutions of many heat conduction problems can be obtained in a straightforward
and efficient manner. In many cases, the formal solutions can be written directly
in terms of integrals which can be evaluated either exactly using integrals provided
herein or approximately using numerical integration. Compared to the usual analytical
methods, the GF method with tabulated GFs requires a lower level of mathematical
ability for the solution of partial differential equations.

The GF method is related to other methods for solving heat conduction prob-
lems. The classic methods of heat conduction, such as the method of separation
of variables and the Laplace transform method, may be used to derive GFs (as in
Chapter 4). Approximate methods of finding GFs developed by Haji-Sheikh and
Lakshminarayanan (1987) and Haji-Sheikh (1988) are also discussed (see Chap-
ter 10). In addition to solution procedures, the GF method also provides greater un-
derstanding of the nature of diffusion processes, including heat conduction in porous
media.

GFs have been used in the solution of heat conduction for many decades, for ex-
ample in the classic books by Morse and Feshbach (1953) and Carslaw and Jaeger
(1959). The purpose of this book is to provide a single text containing the follow-
ing components: a careful derivation of the GF solution equation; a systematic and
practical approach to the solution of diffusive-type problems; and, an extensive com-
pilation of GFs. Other books contain some of these components: Ozisik (1993) has
a fine derivation of the GF solution equation; Butkovskiy (1982) provides a catalog
of many GFs; and Carslaw and Jaeger (1959) also list some GFs. Other important
books on GFs are Roach (1970), Greenberg (1971), Stakgold (1979), Barton (1989),
and Duffy (2001).
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1.1.1  ADVANTAGE OF THE GREEN’S FUNCTION METHOD

There is ample motivation for the use of GFs in linear heat conduction. One advantage
of GFs is that they are flexible and powerful. The same GF for a given geometry and
a given set of homogeneous boundary conditions is a building block for the temper-
ature distribution resulting from (a) space-variable initial temperature distribution,
(b) time- and space-variable boundary conditions, and (c) time- and space-variable
volume energy generation.

A second advantage of the GF method is the systematic solution procedure. Many
GFs have been derived and are tabulated in this book, so the derivation of the GF may
be omitted in many cases. Eigenfunctions and eigenconditions need not be developed.
In these cases the solution can be written immediately in terms of the GFs. The
saving of effort and reduced possibility of errors are particularly important for two-
and three-dimensional geometries. The systematic solution procedure also allows for
construction of families of closely related solutions for checking purposes. This can
greatly improve one’s confidence in computed numerical values.

Athird advantage is that two- and three-dimensional GFs can be found, for transient
cases, by simple multiplication of one-dimensional GFs for the rectangular coordinate
system for most of the boundary conditions considered in this book. The limitations of
the multiplicative property are that the differential equation must be linear, the body
must be spatially uniform (homogeneous), and the geometry must be “orthogonal.”
An orthogonal geometry is one for which any boundary is located where only one
coordinate is a constant, such as x = 0 or y = W, and no boundary is defined by
a relationship such as x + y = C. A further discussion of nonorthogonal bodies is
given in Chapter 11. The multiplicative construction of two- and three-dimensional
GF can result in great simplification in solving temperature problems, and provides a
very compact means for cataloging GFs for these cases. For certain two-dimensional
cases involving cylindrical coordinates, multiplication of the GFs can also be used.

A fourth advantage is that the GF solution equation has an alternative form which
can improve the convergence of series solutions which arise from heating at a bound-
ary (nonhomogeneous boundary conditions). Slow convergence of series solutions,
which require that a very large number of terms be evaluated, can cause lengthy
computer-evaluation times, and can reduce numerical accuracy by excessive round-
off error. When it applies, the alternative formulation of the GF solution equation
can greatly reduce the number of series terms needed for an accurate numerical
evaluation.

A fifth advantage of the GF method is intrinsic verification. That is, solutions con-
structed from GF contain within them the means to check that computed numerical
values are correct. As an example of intrinsic verification, when a time-varying so-
lution contains a steady term and a transient term, at early time there is a region in
which these terms must sum to zero. In this region these terms may be checked, one
against the other. Several types of intrinsic verification are given in Chapter 5.

Asixth advantage of the GF method is time partitioning, which can reduce the num-
ber of series terms needed to obtain an accurate solution. Time partitioning is a general
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method that arises naturally from the GF method, and can provide accurate values
for temperature using only a few terms of the infinite series. Time partitioning is
introduced in Chapter 5.

1.1.2  Score oF THiIs CHAPTER

The purposes of this chapter are to introduce GFs in one-dimensional heat conduction
and to provide insight and motivation. Some basic information on heat conduction is
also provided. More rigorous aspects, such as derivation of the GF solution equation,
are deferred to later chapters. In Sections 1.1 through 1.5 some basic information on
heat conduction is given, including the heat conduction equation applied to a point
(differential equation) and to a control volume (integral equation). In Section 1.6
the Dirac delta function, the foundation of every GF, is introduced. In Section 1.7 a
steady GF is derived for the one-dimensional wall. Sections 1.8 through 1.12 give
an introduction to the transient one-dimensional GF, first in the infinite body, then
the semi-infinite body and the flat plate. In Section 1.13 the properties common to
transient GFs are given. Sections 1.14 through 1.17 provide additional topics that
briefly indicate how the GF method can be applied to a broader scope of engineering
problems, including heterogeneous bodies, anisotropic bodies, moving bodies, bodies
with fins, and non-Fourier heat conduction.

1.2 HEAT FLUX AND TEMPERATURE

In a solid body that contains variations of temperature, heat flow proceeds from a
region of high temperature to a region of low temperature. The term heat flow is the
rate of energy transfer (in Joules per second, or J/s) associated with the vibrational
energy of atoms and molecules in the body. Heat flux is the heat flow per unit area
at any point in the body. Heat conduction theory is the relationship between heat flux
and temperature in a solid body; it also applies to liquids and gases when there is no
bulk motion of the fluid.

Heat flux cannot be measured directly, but its effects can be indirectly observed.
At the surface of a solid body the heat flux can sometimes be observed as an effect
on the surroundings, such as the melting of ice, the warming of a well stirred water
bath, or the vaporization of water at a certain rate. Inside a solid body, the heat flux
can be deduced from the temperature distribution, and then only if the relationship
between temperature and heat flux is thoroughly understood.

In a solid body with a steady temperature gradient, heat flux has a magnitude and
a direction and it is denoted by vector g. The component of heat flux, in a direction
of coordinate x, for example, is

g = k2L (L1)

ox
where parameter k is the thermal conductivity with units W/(m K). In general the
thermal conductivity may be a function of temperature. The negative sign implies
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that heat always flows in the direction of reducing temperature. Similarly in the in y-
and z-directions,

aT oT
e —o-

9z = —K—— (1.2)

qy = — 3y’ oz

This is Fourier’s law of heat conduction. Fourier’s law applies to any body that is
homogeneous (the same substance all the way through), isotropic (heat flows equally
well in any direction), and of macroscale size (not too small). Non-Fourier heat con-
duction, appropriate for very small bodies and for very short-duration heat conduction
events, is discussed in Section 1.17.

1.3 DIFFERENTIAL ENERGY EQUATION

The differential energy equation is derived in this section for homogeneous isotropic
bodies. The rectangular (x, y, z) coordinate system is used for simplicity.

The energy equation, also called the heat conduction equation, is based on the
conservation of energy. Consider a small parallelepiped shaped control volume in a
stationary, homogeneous, and isotropic body. The control volume is located at point
(x,y,z) in the body and has volume dV = dx dy dz. See Figure 1.1. A form of the
first law of thermodynamics gives the energy balance on the control volume:

Net rate of n rate of _ rate of (1.3)
heat flow in energy generation / — \ energy storage '

Each term in this rate equation has units of energy/time (J/s or watts). The three terms
in this equation will be examined one at a time.

Net rate of heat flow in. There are six faces on the control volume through which
heat can enter or leave. Heat flux is positive in the positive coordinate directions,
and each heat flux multiplied by the area of the face gives the correct units of watts.
Figure 1.2 shows the flow of heat in the x-direction, where ¢, A, has the units of

Homogeneous
isotropic
body

Control volume
z dV=dx-dy-dz

FIGURE 1.1 Control volume.
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Y qx Ax dy Dx + dx Ax

Control volume

X

FIGURE 1.2 Flow of heat in the x direction.

watts. The net flow of heat is the difference between the inflow and the outflow
(gxAx — gx+axAx). For all three directions and all six faces of the control volume,

(h'iéel: ;:ﬁs\ﬁt}) - (qx - qx+dx)Ax + (q}' - ‘Iy+dy)Ay + (QZ - QZerz)Az (1.4)

Rate of energy generation. Energy generation is energy that affects the tempera-
ture throughout the volume of the body. It is distinguished from energy that enters the
body through the boundaries. Energy generation can come from electrical resistance
heating inside the body, from chemical reaction (for example, concrete generates heat
when curing), or from absorption of radiation (nuclear, microwave, or other electro-
magnetic energy). The energy generation may vary from place to place in the body
and it may vary with time. The energy generation may also be simply equal to zero.
It is given the symbol g(x, y, z, ) with units W/m? (rate of energy generation per unit
volume). For the control volume, then,

(Rate of energy generation) = g(x, y,z,t)dxdydz (1.5)

Rate of energy storage. A change in the storage of energy is defined by a change
in the specific internal energy (a thermodynamic quantity) which is given by ¢8T for
solid bodies. Here c is the specific heat [J/(kg K)] and 8T is the change in temperature.
The rate of specific energy storage (per unit mass) is given by the time derivative
¢dT [ dt. The partial derivative on time is used because T also depends on position
(x, y,z). Multiply the time rate of change of specific internal energy by the density
and the volume to obtain watts:

oT
(Rate of energy storage) = ch dxdydz (1.6)

To place the energy equation in differential form, the control volume will be made
arbitrarily small. Then, the heat flux at the faces located at x + dx, y + dy, and
z +dz can be related to the heat flux at x, y, and z by the first term of a Taylor series,
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TABLE 1.1
One Term of Taylor Series for q

Direction Flux Area
0q.

X qx+dx = qx + ax dx Ay =dydz
0x

_ dqy _

y dy+dy = 4y + Tydy Ay =dxdz
dq.

z Gz+dz =4z + %z dz A; =dxdy

according to Table 1.1. When the table values are substituted into Equation 1.4, the
energy equation can be assembled from Equations 1.4 through 1.6 in the form
dqx  dqy  9q

2 aT
E: L A V2, 1) = pe— 1.7
o +g(x, y,2,1) pe— (1.7)

Now, applying Fourier’s law yields

o [ OT\ 9 [, T\ o ( 0T oT
T )+ 2 () + 2k ) =pe— (L8
8x<8x>+3y<8y>+8z(Bz)+g(xyz) e 18

This is the energy equation for a homogeneous isotropic body. Properties ¢ and k may
depend upon the temperature and therefore may vary with position in the body.

In the special case when the thermal conductivity does not depend on position (for
example, when the temperature gradients are not too large), the energy equation can
be written as

¥T PT  PT

—+—+1( 1) L9
-8\, ¥, 3, = -
27T gz TS s a

— — 1.9
ox2 + dy ot (1.9)

where o = k /(pc) is the thermal diffusivity (m?2/s). This form of the energy equation
is extensively studied in this book.

The energy equation, developed here in the rectangular coordinate system, can
be cast in other orthogonal coordinate systems, as follows. A general vector form of
Fourier’s law is given by

q=—kVT (1.10)

where VT is the gradient of the temperature and q is the heat flux vector. A vector
form of the energy equation that is independent of coordinate system is given by (see
Ozisik, 1993, pp. 3-6 for a derivation)

oT
—V-q+grn)=pc - (1.12)

where V - q is the divergence of the heat flux. The energy equation in any coordinate
system can be found by substituting the correct form of the divergence and gradient



Introduction to Green’s Functions 7

(a) z (b) z
P(r, ¢, 2)

N
<

<Y
=V

r

FIGURE 1.3 (a) Cylindrical coordinate system. (b) Spherical coordinate system.

operators for that particular coordinate system; the cylindrical and spherical forms
are given next.

Energy equationin cylindrical coordinates. In the cylindrical coordinate system
shown in Figure 1.3a the energy equation is

19 oT 19 oT Gl oT oT
—— | kr— —— | k— — | k— = pc— 1.12
r8r<r8r>+r28¢<a¢>+8z<3z>+g pcat (1.12)

or for k = constant

PT 19T 1&#T &#T g 19T

— t-—t+t S+t +I="= 113

2 ror r2ap?  9z2  k a ot (113)
Energy equation in spherical coordinates. In the spherical coordinate system

shown in Figure 1.3b, the energy equation is

Lo ( 20T\, 1 o ( T\ 1 o (T T
—— | kr-— — — — — |(k— = pc—
2 or ar ) " r2sing 9 ) 2sineao \ap) 8T Py

(1.14)

or for k = constant,

18(rT) 1 9 (. T 1 T g 19T
-— St 5= (sinb— =S5 Tt ="
rooor? r2sin @ 90 90 r2sin?0 992 ko ot

1.4 BOUNDARY AND INITIAL CONDITIONS

This book is concerned with solutions to the energy equation as they apply to problems
in engineering and physics. The mathematical form of the solutions (such as GFs)
are determined by the boundary conditions, that is, the value of the temperature (or
its derivative) at the boundaries of the heat conducting body. The combination of
the energy equation, the specific boundary conditions, and the initial condition is
called a boundary value problem. Most of this book is concerned with orthogonal
bodies, whose boundaries are located where one coordinate is a constant, such as
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x = 0orx = L. Where possible, the coordinate system is chosen so that the body of
interest may be treated as an orthogonal body. (Nonorthogonal bodies are discussed
in Chapter 10.)

The number of boundary conditions for a boundary value problem depends on the
form of the energy equation and the geometry of the system under consideration. For
example, the two-dimensional energy equation in the rectangular coordinate system,

PT T 1 19T

Y PNy - Vi t) = ——
8x2+3y2+kg(xyz ) o ot

(1.15)
requires five conditions: two each for the boundaries on x and y and one initial

condition. Boundary conditions typically have the form

oT
ki—+hiT:fi(ri,l) (116)
on;

where all quantities are evaluated at the ith boundary. Here r; is the location of the
ith boundary in a specific coordinate system and »; is the outward unit-normal vector
at the boundary. Initial conditions have the form

T(ri,t =0) = F(r;) (1.17)

Boundary conditions and initial conditions are discussed in detail in Chapter 2.

1.5 INTEGRAL ENERGY EQUATION

In this section, the integral energy equation is derived for heat transfer in a solid. The
solid may be moving but it may not change shape. There are no changes in the shape
of the body during heating due to thermal expansion; the subject of thermal stresses
is beyond our scope.

The derivation starts with a system, which is a body or portion of a body that is
identified for study. The system may move and exchange energy with its surroundings.
The first law of thermodynamics for a system can be written as

50 W  dE

— 11
dt dt + dt (1.18)

where 3W and 8 Q denote path dependent quantities. Each term in Equation 1.18 can
be described in words by

d . .
d—? = Rate of heat addition to the system at the boundaries
dW . .
v Rate of work done by the system on its surroundings
dE

Fri Rate of energy accumulation inside the system
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T Control volume (c.v.)

System at time ¢

FIGURE 1.4 Relation between moving system and fixed control volume.

The thermal energy of the system E is given by the internal energy of the system,
E = mu (1.19)

where m is mass of the system in kilograms (kg), and « is the internal energy per unit
mass, J/kg. Kinetic and potential energy are neglected compared to thermal energy.
The next step is to relate the system to a control volume with the Reynolds transport
theorem (see Currie, 2002 or White, 2006). The control volume is fixed in space and
has fixed shape and fixed boundaries. At the moment of interest, time ¢, the system
and the control volume occupy the same region. At a later time, r + Az, the system
has moved away from the fixed control volume. Refer to Figure 1.4. A statement of
the Reynolds transport theorem for the change of energy in the system is
dE ad N
a "l updv + /Ls pu(V -h)dA (1.20)
where c.v. denotes the control volume, c.s. denotes the surface of the control volume
(control surface), dv is an element of volume, p is density, V is the velocity vector,
and f is an outward drawn unit normal vector. Equation 1.20 relates the energy in the
system at time ¢ to that in the control volume.
Next, replace d E | dt with the first law of thermodynamics, Equation 1.18,
50 SW 9

- — = — d V -A)dA 1.21
i dr o ), ”+/c_s_ puV ) (1.2

sys sys

The terms of Equation 1.21 will next be examined separately. The first term of Equa-
tion 1.21 relates to energy traveling across the control surface and can be given by

2 / (- (1.22)
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where q is the heat flux crossing the control surface in W/m?. It can include conduction
and radiation,

0 = Ucond + Yradiation (123)

but not any term caused by fluid flow for any element inside the body. When a body
is “lumped” in some way so that a solid-fluid boundary is included in the control
volume, then a convection-related term may enter. Otherwise, for any element in a
solid body or porous body, the only two modes of heat transfer are conduction and
radiation.

The 3W [ dt term in Equation 1.21 relates to the rate of work done by the system
on the surroundings and could be composed of a number of parts:

Shaft work + flow work 4+ viscous work
= { + electrical work + nuclear work 4 chemical work,
all acting on the surroundings.

W
dt

For a solid body that does not change shape, there is no shaft work, flow work or
viscous work. The electrical, nuclear, and chemical work are all combined together
as volume energy generation, denoted with symbol g:

W
_= = d 1.24
- / RE (1.24)

The volume energy generation term has units of W/m? ; g is positive for heat produced
in the body; ¢ may vary with position in the body, and it may vary with time.
Next consider the third term of Equation 1.21 for a fixed control volume in a solid

[o # o(1)]
3

u
— dv = —d 1.25
o Jo, 00 fw.par Y (1.25)

That is, the time derivative bypasses the volume integral because the density and the
volume are constant with respect to time.

Next the internal energy will be related to the temperature. Let v = p~ where v
is the specific volume. From thermodynamics, internal energy can be a function of
two independent thermodynamic quantities. Let u be a function of temperature 7" and
specific volume v, both of which are functions of position vector r and time ¢ or

u=u(T(r,1),v(r, 1)) (1.26)
Then using the chain rule for differentiation gives

u u

o oT

av

oT ou
T ot

— 1.27
, ot + ov (1.27)

In a solid, density is not a function of time, so that dv/ 9z is equal to zero. Also, from
the definition of the specific heat at constant volume,
ou

Cy = —
VTaT

(1.28)

v
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In an incompressible solid, the specific heat at constant volume is the same as at
constant pressure or

chy=cp=c (1.29)

Substitute Equations 1.28 and 1.29 into Equation 1.27

a oT
P (1.30)
ot ot
so the third term of Equation 1.21 is given by
oT
—d 131
/c.v. o (L.31)

Notice that the specific heat can be a function of position and temperature, ¢ = ¢(r, T).
In particular, note that c is not inside the derivative with respect to time.

Then Equations 1.22, 1.24, and 1.31 can be substituted into Equation 1.21 to give
the general form of the integral energy equation for an incompressible solid,

aoT
/ (—q~ﬁ)dA+/ gdv=+/ pc—dv+f pu(V -A)dA (1.32)
C.S. C.V. C.V. at C.S.

This equation is valid for p = p(r) and ¢ = ¢(r, 7).

Many forms of the heat conduction equation can be derived from this equation,
including general partial differential equations and also lumped capacitance equa-
tions. If the control volume is taken to represent a thin region at a boundary, then
Equation 1.32 can be used to obtain boundary conditions.

1.6 DIRAC DELTA FUNCTION

The Dirac delta function (sometimes called the unit impulse function) plays a central
role in the method of GFs. In this section we define the Dirac delta function in terms
of those properties important to the GF method. Strictly speaking, the Dirac delta
function is a generalized function; see Duffy (2001, pp. 5-14) for a discussion of this
viewpoint.

The Dirac delta function 3(x) is defined to be zero when x # 0, and infinite at
x = 0 in such a way that the area under the function is unity. A concise definition is
the following: given nonzero numbers 3 > 0 and n2 > 0,

8(x) = 0if x # 0; and, / " 8(x)dx = 1. (1.33)
-1

Some of the properties of the Dirac delta function are given next.
Sifting property. Given function f (x) continuous at x = x’,

/b £ 3(x — x)dx' = {f(x) ifa<x<b (1.34)

0 if (a, b) does not contain x
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When integrated, the product of any (well-behaved) function and the Dirac delta
yields the function evaluated where the Dirac delta is singular. The sifting property
also applies if the arguments x and x’ are exchanged.

Relation to unit step function. The integral of the Dirac delta function may be
related to the unit step function, as follows:

/ta@mrzHa) (1.35)

—0o0
where H (t) is the Heaviside unit step function defined as

0 ifr<O
Hoﬁzh if 1 >0

The derivative of the unit-step function, then, gives the Dirac delta function:

dH(r — 1)

T =3(t — 1)

Note that this derivative is singularat — t = 0.

Units. Since the definition of the Dirac delta requires that the product 3(x)dx is
dimensionless, the units of the Dirac delta are the inverse of those of its argument.
That is, 8(x) has units meters—1, and 8(¢) has units sec™. Later, when two- and three-
dimensional cases are discussed, the Dirac delta function will be used in the form
3(r — r')dv’ where dv’ is differential volume; therefore the units of 3(r) are inverse
volume. This is particularly important in cylindrical and spherical coordinates.

These properties are also listed in Table 1.2. More information on the Dirac delta
function, including a proof of the sifting property, is given in Appendix D.

TABLE 1.2
Basic Properties of the Dirac Delta Function

n_ | oo atx=x
L B(X_x)_{ 0, otherwise

oo
2. / 3(x —x)dx' =1

—00

oo
3. / F(x)3(x — x')dx’ = F(x), the sifting property
o0

dH(r — v)
dt

5. 3(t — 1) has units of s~1

8(x — x’) has units of m~1

3(r — r’) has units such that 3(r — r’) dv’ has no units

= 3(r — 1), where H is the unit step
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1.7 STEADY HEAT CONDUCTION IN ONE DIMENSION

In this section one-dimensional steady heat conduction will be discussed to introduce
the concept of GFs. Steady heat conduction is described by an ordinary differential
equation, and the GF has a simple form.

Steady heat conduction in the one-dimensional slab body is described by the fol-
lowing energy equation:

d’T  g(x) _
dx? ko
In the slab body (0 < x < L) there are two boundaries, therefore two boundary
conditions are also needed. For the present discussion a specific geometry will be

studied; other combinations of boundary conditions will be given later. Suppose the
boundary conditions are given by

0; O<x<L (1.36)

Thy=o=T (1.37)
dT
— =0 (1.38)
dx |,

The temperature at x = 0 is a specified value (first kind), and the slope of the
temperature is specified at x = L (second kind). The solution of this steady heat
conduction problem will be sought in two different ways.

1.7.1  SOLUTION BY INTEGRATION

For this steady case, the temperature may be found by integrating the energy equation
two times. This is best demonstrated by a specific example.

Suppose the energy generation is spatially uniform, that is, g(x) = go. (By the
numbering system discussed in Chapter 2, this is case X12B10G1.) Integrate the
energy equation once

dT

80
—_— = C
dx kx+ 1

and again to find the general solution:

2
T(x) = —gk—o% Cix+Co (1.39)
Constants of integration C1 and C, are found by applying the boundary conditions,

firstatx =0,
Ti=0=04+04+Co=Co=T1

and thenatx = L

dT 80 goL
P o 8 o =
ax|,_, - k- Ta=a=T

X
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I arL = 0.6
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FIGURE 1.5 Steady temperature in the slab caused by different distributions of internal heat
generation. The left side of the slab has a specified temperature and the right side is insulated.

Using these constants, the solution for this specific example is

or in normalized form,

gol?/k L 2

Tx)-T1 x 1 (x )2 (1.40)

Thissolution is plotted in Figure 1.5 (uniform generation case). Note that the boundary
conditions are clearly satisfied: at x = O where T — 71 = 0; and, at x = L where the
slope of temperature is zero (insulated condition).

This solution was found by direct integration, which is appropriate for finding a
single solution. Suppose, however, that another solution is needed for a nonuniform
generation term, such as g(x) = goe~**. Then the entire solution procedure would
have to be repeated. The method of GFs, introduced in the next section, can be used
to find the temperature caused by various g(x) functions without re-solving the entire
problem.

1.7.2 SovrutioN BY GREEN’s FUNCTION

In this section the steady one-dimensional problem discussed above will be solved
by the method of GF. The first step is to find the GF appropriate for the temperature
problem. The GF, G, associated with this specific temperature problem satisfies the
following auxiliary problem:

d*G

W+8(x—x’):0; O<x<L (1.41)
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Glyo =0 (1.42)
dG
acl (1.43)
dx x=L

The differential equation for G is similar to the temperature equation except that the
generation term has been replaced by a unit impulse function (the Dirac delta func-
tion). That is, the GF is the unit-impulse response. Note that the boundary conditions
are of the same kind as the temperature problem, that is, the first kind at x = 0 and
the second kind at x = L. (This is case X12 in the numbering system discussed
in Chapter 2.) However, the boundary conditions for G are homogeneous (equal to
zero); this is important so that any number of GF may be superposed, but the bound-
ary conditions remain unchanged. The GF depends on two variables, the observation
location x and the heat-source location x'.

The GF G for this case will be derived presently. However, it is instructive at this
point to postulate the temperature solution. If the GF is known, the temperature T (x)
is given by

L
T(x)—T = %/ g(x"NG(x,x")dx' (1.44)
x'=0
(Afull discussion of this temperature expression is given in Chapter 3.) This integral is
a summing up of a large number of unit-impulse responses, each of a size determined
by g(x’), in order to produce the desired temperature response. The temperature
caused by several different functions g(x’) can be studied merely by repeating the

integration, without repeating the entire solution.
Now the GF will be derived. Break the domain (0 < x < L) into two regions at
x = x', then the differential equation for G takes on the following form:

d’G
a 0 =2 =0
(@) <x<x 72
d’G
(b) X' <x<L; _dxzb =0 (1.45)

Because the Dirac delta function is zero everywhere except at x = x’, this approach
has removed the singularity from the differential equation. Then the solutions for G,
and G, may be found by integrating the above equations twice:

@) G,=Cix+ (2

(b) Gp =C3x + Cy (1.46)

The four constants introduced by integration can be found from four conditions. The
first two are the boundary conditions from the original domain:

(i) Galy=0=0 (1.47)
(ii) Gy

-2 =0 1.48
ol (1.48)
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The third condition comes from requiring that solutions G, and G, match at x = x’;
(iii) Galyey = Gplyey (1.49)

The fourth condition comes from integrating Equation 1.41, the original differential
equation for G, from (x’ — €) to (x” + ¢€) for some small ¢ > 0. That is,

x'te J203 x'+e
/ —zdx=—/ d3(x — x')dx
x—e dx x!

—e
x'+e
=1

x'—e

dG
dx

Note that the singularity in the Dirac delta function has been removed by integration.
Now in the limit as ¢ — 0 we have the jump condition

dGyp dG,

iv —
() dx | dx

=1 (1.50)

’

X

The jump condition describes the slope of the GFat x = x’. With these four conditions,
it is now possible to seek the four constants. Applying conditions (i) through (iv) to
Equation 1.46 gives

Q) C1-0+C>=0

(i) C3=0
(iii) CiL- X' +Cr=C3-x'+C4
(iV) C3—-C;=-1 (1.51)

An algebraic solution gives C1 = 1, C; = 0, C3 = 0, and C4 = x’. Substitute these
values back into the general solution, Equation 1.46, to give

x <x
X <x

G(x,x) = {i, (1.52)
This is the steady one-dimensional GF for this case. A plot of this GF is given in
Figure 1.6 which displays the four conditions discussed above, specifically: the value
of G is zero at x = 0; the slope of G is zero at x = L; function G is piecewise
continuous; and, the slope of G contains a jump at x = x'.

The GF is specific to the shape of the body (slab) and the kind of boundary con-
ditions present (the first kind at x = 0 and the second kind at x = L). Although this
GF was derived for instructional purposes, in many cases the GF is given elsewhere
in this book so that the derivation is not needed. (This GF is given as case X12 in
Table X.3, Appendix X.)

Next the steady GF given above is used in the integral equation to find the tem-
perature.

Uniform generation. For spatially uniform energy generation, the temperature is
given by the integral expression, Equation 1.44, with g(x) = go, and with the GF
given by Equation 1.52:
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FIGURE 1.6 Steady Green’s function for G = Oatx = 0and dG/dx = Oatx = L
(case X12).

T(x) - T]_ =

Eanl o

L
/ g0 G(x,x")dx’
x'=0

l /x /d 4 + 1 /L d i
=— gox'dx"+ — goxdx

k x'=0 k x'=x
= g0 (x/)Z ' + 8o /|L

k 2 X/=0 k x,:x

2 2

8 [x gL x 1 /x\2
=% [? +all x)] =T [z 3 (7) ] (1.53)

Because the GF is piecewise continuous the integral has been split at x” = x, and the
correct form of the GF must be used in each interval. This result is identical to the
direct-integration solution presented earlier in Equation 1.40.

Exponentially varying gener ation. For heating that decays exponentially, g(x) =
goe %, and using the same GF as before, the temperature is given by

1 [t /
T(x)—T) = E/ goe ™ G(x,x")dx'
x'=0
1/ / 1 (L /
= %/ goe ¥ x'dx' + E/ goe ™ x dx’
x'=0 x'=x
/ X
—ax L
z(g;(_0|:e i (_1—ax’)] +% X ax
a a x'=x
x’'=0
=50 [1—e ™ —axe ] (1.54)
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This heating condition is a reasonable description of microwave absorption in a solid.
Inthe limitas a — 0, the temperature curve approaches the uniform-generation case
(see Figure 1.5).
Piecewise constant generation. For piecewise constant energy generation
given by
go; O<x<b
g(x):{ 0; b<x<L

the temperature integral is given by

1P 1 [t
Tx)—T = —/ g0 G(x,x’)dx’+—/ 0-dx'
k x'=0 k x'=b

Using the same GF as before, the temperature expression must be evaluated in two
pieces.
(i) For 0 < x < b the temperature is given by

b

1 [ 1
T(x)—Til,p = z/ Ogox’dx’+E/ goxdx'
x'=

x'=x
2 2
gox“ | gox gob” [x 1 /x\2
80 L0y =28 |2 _ (2
% T e k[b 2(17)}

(i) and for x > b, only the x > x’ part of the GF is needed:

1 b gObz
T(x)— T == Tdx' = & —
(x) = T1l oy k./x/: gox dx %

The full temperature expression is given by

gob2 x 1 /x\2
k [b 2(b> } O<x<b
gob?
2k’

A plot of this temperature is given in Figure 1.5forb/L =0.4and b/ L = 0.2.

In this section the GF method was introduced in a discussion of steady, one-
dimensional heat conduction. The GF method involves three components: the bound-
ary value problem for the temperature; the auxiliary problem for G; and, the integral
expression for the temperature. For elementary problems such as this, the GF method
offers some flexibility over direct integration. Greater advantages arise for more chal-
lenging problems, such as transient heat conduction, discussed in the next section,
and for two- and three-dimensional heat conduction, discussed in later chapters.

T(x)—T1 = (1.55)

b<x<L

1.8 GF IN THE INFINITE ONE-DIMENSIONAL BODY

In their 1959 book on heat conduction, Carslaw and Jaeger simply state the GF for
the one-dimensional infinite body, without derivation, and then show that is satisfies
the heat equation. We choose to derive this GF which is also called the fundamental
heat conduction solution.
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1.8.1 AUXILIARY PROBLEM FOR G

The transient GF for the one-dimensional infinite body satisfies the following set of
equations:

#G 193G 1

T o Ty — )8 — 1.

o 2 ” 3x —x)8( — 1) (1.56)

G(x,t|x',t)y=0fort —1 <0 (1.57)
G(x — £oo,t|x',1) isbounded (1.58)

The above equations, Equations 1.56 through 1.58, define the auxiliary problem for the
one-dimensional infinite body. The Green’s function G is the response to an impulsive,
planar heat source of infinitesimal thickness, described by the product of two Dirac
delta functions, one for space and one for time. Factor 1/a which premultiplies the
8-functions is used to set the units of G to m~! for the one-dimension case. Initially
the GF is zero until + > <, and far away from the heat source the value of G is
bounded.

The GF for the infinite body will be derived with the Laplace transform method, and
a brief discussion of the Laplace transform method is given here. Later in Chapter 4
additional GF are also found with this method.

1.8.2  LapLACE TRANSFORM, BRIEF FACTS

The Laplace transform of function f(z) is defined by

LLED)] = fo Tt f(e)dt (1.59)

The properties of the Laplace transform needed for this discussion are given next; see
Appendix L for further information on Laplace transforms.
Notation. The overbar is used to denote the transformed function,

LIfO] = f(5)
and the inverse Laplace transform is denoted
f@) =27 ()]
Linear. The Laplace transform is a linear operator. If a and b are constants then
ZLlaf (1) +bg(1)] = af(s) +bg(s) (1.60)

Transform of derivative. Using the definition of the Laplace transform and inte-
gration by parts, the transform of a derivative is

d © 414
.,?[Ef(t)]:/o e I:Ef(t)]dt

= ft)e™|; +s/0 e f(t)dt
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Therefore

2| 5:10] =576~ 10 (161

1.8.3 DerivatioN oF THE GF

Now the auxiliary equation for G will be solved. Applying the Laplace transform to
the auxiliary problem (Section 1.8.1), with t = 0, gives the following relations:

d’G  [s— 1 " 0
W—[&G—O]:—&E‘)(x—x)e (1.62)
G(x — +oo,1|x') isbounded (1.63)

Note that the sifting property of the Dirac delta function has been applied to the
impulsive heating term. Since the GF is zero until after the impulsive heating occurs,
there is no loss of generality in setting T = 0 so that the impulsive heating occurs at
t = 0. The resulting ordinary differential equation for G will be solved by splitting
the infinite body into two regions at x = x’ in order to remove 8(x — x’) from the
differential equation. That is, seek solutions G, and G, that satisfy:

d’G —
(@) —00<x <x'; dza—ozGa=0
x
d%G, —
(0) x' < x < +o0; th —6’G, =0 (1.64)

where 62 = s/ a. Then the general solution in each region may be stated in the form
of exponentials:

(b) y = C3¢% + Cae (1.65)

There are four constants, requiring four conditions. The first two conditions are the
boundary conditions from the auxiliary problem:

(i) Gl ,__, isbounded (1.66)
(i) [ is bounded (1.67)

x=400

The third condition is the requirement that the two solutions match at x = x':
(i)  Gal,_.=Gs| _. (1.68)

The fourth condition comes from integrating the original differential equation for G,
from (x” — €) to (x’ + €) for some small € > 0. That is,

Xte g2 5 x'4e x'+e S(x — x
/ —zdx—ff de:—/ M =x)
X dx & Jx—e x'—e a
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Evaluate integrals to obtain

dG,
dx

dG,
dx

x'4e 1
—E/ Gdx =—-—
X

o Jy_e o

x'+e x'—e

Finally, take the limit as e — 0 to eliminate the remaining integral.

_ 1 (1.69)

(03

. dGy,
v _—
(iv) .

dG,
dx

’ ’

X X

This is the jump condition which provides information on the slope of the GF at
x = x'. Apply the above four conditions to the general solution for G:
(i) Cie™® + Cre™ isbounded = C, =0
(i) C3e™ + Cqe~ ™ isbounded =— C3 =0
(i)  Cre™ = Cse
(iv)  —Cyoe " — Cr0e” = —1/a (1.70)

An algebraic solution of the last two equations gives C1 = e |(200) and C4 =
€% /(20a) so that the specific solution for G may be written

—o(x'—x). x < x’ . ,
o s —o|x—x'|
G = )20 - (1.71)
ie_"()‘_)‘/); x> x 200
200

This is the GF in Laplace transform space. The next step is to invert this expression
into the time domain, with the use of appropriate tables of Laplace transform pairs.
To put G in a form listed in tables, let k = |x — x'|/ /a. Then with o = /s/a, G
takes on the form

1 e ks
NI

whose inverse Laplace transform is given by (see Appendix L, Table L.1, number 43):

1 1 (x — x')?
1 e ks ——e —; t>0
g_l(zﬁeJE): Ja Xp( Zar ) -
0; t<0

6:

For this development, the impulsive heating occurs at + = 0. The impulsive heating
time may be shifted to occur at time t, without loss of generality, by replacing ¢
by ¢+ — 1. That is, the GF for the one-dimensional infinite body is given by:

1 ox (_(x—x’)2>
G(x,t]x', 1) =1 /Ama(t — 1) P da(t — 1)

0; r<t

R )
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There are alternate ways to derive this GF, including the spatial Fourier transform
(Barton, 1989, p. 181) and combined Laplace and Fourier transforms (Duffy, 2001,
p. 181). In the next section this GF will be used to find temperature.

1.9 TEMPERATURE IN AN INFINITE ONE-DIMENSIONAL BODY

The GF for an infinite body will now be used to find the temperature. We seek
the temperature in an infinite, one-dimensional, constant-property body with initial
temperature F(x) and volumetric energy generation g(x, r) (with units W/m?3). This
temperature satisfies the following equations:

*T 1 19T

W-ﬁ-zg(x,t): &E (173&)
T(x,0) = F(x) (1.73b)

T(x — +o00,t) isbounded (1.73c)

Here T is temperature (K), x is position (m), ¢ is time (s), k is thermal conductivity
(W/m/K), and o is the thermal diffusivity (m?/s).

1.9.1 GRreeN’s FUNCTION SoLuTioN EQUATION

The temperature T'(x, ¢) that is a solution to the above equations may be formally
stated with the GF Solution Equation (a full discussion is given in Chapter 3).

T(x,t) = /00 G(x,t|x’,0) F(x")dx’

x'=—00

o t o0
+ —/ f G(x,t|x', 1) g(x', 1) dx' d= (1.74)
k =0 Jx'=—00

There are two integral terms in this temperature expression, one containing the initial
condition F(x) and the other containing the volumetric energy source g(x, ¢). Each
integral term can be considered to be the solution of a separate problem, one caused
by F(x) and one by g(x, r), which are superimposed (i.e., added together) to form
the complete solution. It is important to note that when F and g are substituted into
the above integrals, the coordinate dependence takes the form F(x) and g(x’', ),
associated with the variables of integration.

1.9.2 FuNnDAMENTAL HEAT CONDUCTION SOLUTION

Depending on the geometry and boundary conditions, there are many expressions for
the GF G(x, t|x’, T). The particular form of GF for an infinite one-dimensional bodly,
derived in the previous section, is the fundamental heat conduction solution (Cannon,
1984, p. 33), which we give the special symbol K (x — x',1 — 1):
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I S B Gt il T
K(x—x',i—1) = meXp[ 4a(;_r)}’ r=1=20 ;75

0; tr—t<0

(In the numbering system introduced in Chapter 2, this is case X00.) The fundamental
heat conduction solution, K (x — x’,# — 1), has several important properties:

First, K (x — x’, t — 7) satisfies the heat conduction equation given by Equation 1.73a
for g(x,t) = O for 7 greater than zero. See Problem 1.16 at the end of the chapter.

Second, K(x — x’,t — 1) is always equal to or greater than zero for (¢ — t) greater
than zero,

K(x—-x',t—1)>0, for(t—1)>0 (1.76a)

Third, the integral of K(x — x’,t — 1) over —oco < x’ < oo is unity for all x values
and for all times (r — 1) > 0,

[e¢]
/ K(x—x',t—1)dx' =1, for(t—1)>0 (1.76b)
x'=—00
and is equal to zero for times (r — 1) < O,

/ K(x—x',t—1)dx' =0, for(t—1) <0 (1.76¢)

'=—00

Fourth, the value of K(x — x’, ¢t — 1) is unchanged if x — x’ is replaced by x" — x,
Kx—x,t—1)=K&' —x,t —1) (1.76d)

Fifth, the limit of the integral as x approaches x” from below is 1/2

. TOK(x —x',t — 1
lim / K —xt—9) 1 (1.76¢)
xtx’ Jo ax 2

and approaching x’ from above is —1/2

TOK(x —x',t — 1
Iim/ K —xvt=v) , 1 (1.76f)
xyx” Jo 0x 2

Depending on the geometry and the boundary conditions, there are many expressions
for the GF, G(x, r|x’, T), but there is only one GF for the case of an infinite body, and
a convenient form of it is given by Equation 1.75.

Itisinstructive to examineaplotof K (x —x’, t—). Figure 1.7 shows K (x —x’, 1 —1)
as a function of x — x’ for various values of a(r — t). As (¢ — ) goes to zero, the K(-)
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K(x—x’, t—1)

0.0 T T T T T T

(x—x")

FIGURE 1.7 Fundamental heat conduction solution, K (x — x’,7 — 7).

function approaches the Dirac delta function. Each curve in Figure 1.7 has the bell
shape of the Gaussian distribution. At all times # > T, the area underneath a curve
in Figure 1.7 is unity as given by Equation 1.76b. As time r — < increases, the K ()
function spreads out and the maximum decreases.

The temperature distribution in an infinite body (—oco < x < o0) for the initial
temperature distribution F(x) and the volumetric energy generation of g(x, ) is found
using Equation 1.75 in Equation 1.74. The result is

oo WAV
T(,1) = / l4mar] M2 exp [—%} F(x')dx'

00
o t o0

+ - / / [Ara(r — 1) 7?
k =0 Jx'=—00

x —x')2
X eXp [—ﬁ] g, v)dx"d (1.77)

Some examples of the use of Equation 1.77 are given next.

Example 1.1:

Find the temperature distribution for the case of

T, forc<x<d
0, otherwise

F(X):{
gx,t)=0 forall x



Introduction to Green’s Functions

T T T T T
14 =001 .
0.8 1 0.1 B
L 0.6 i

~ 0.5

0.4 : :
0.2 1.0 .

0 I I T I I
-3 ) -1 0 1 2 3

X+

25

FIGURE 1.8 Temperature distribution for nonuniform initial temperature in an infinite body.

Solution

The solution for T is obtained by using Equation 1.77 with F(x') = Ty, forc < x’' <
d and F(x") = 0 otherwise. The result is

d
Tix, t) = / Kix —x',t) T1 dx’
C

d VAV
T1/ [4noct]_”2exp |:—(XX):| dx’ (1.78)
C

Using the substitution u = (x — XY /(4at)!/ 2, this integral can be written as

T (x—c)/(4at)'/? )
T(x, t)= 17/2/ e " du (1.79a)
n (x—d) /(4at)1/2
T X —C x—d
T x—d X—c
T(X, t) = 7 {erfc [W} erfC [W]} (1 79C)

where the error function, erf(-), and the complementary error function, erfc(-) =
1 —erf(-), are defined by

V4
erf(z) = #/0 e~ Y du (1.80a)
o0
erfc(z) = % / e~ du (1.80b)
T z

These functions commonly occur in transient heat conduction. Some relations
involving these functions are given in Appendix E.
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Equation 1.79 is plotted in Figure 1.8 for t+ = at/(d — ¢)? = 0.01, 0.1, 0.5,
and 1 as a function of x* = (x — x,y) /(d — ¢) where x,, is the mean x value which
is (c 4+ d)/2. In this case, the temperature distribution can be written as

T 1 xt —-0.5 xt+0.5
?] = E {erfc [W] — erfc [W]} (181)

The temperature distribution is affected first near the edges of the step change of
the initial temperature distribution and, as the dimensionless time increases, the
effect penetrates further.

Example 1.2:
Find the temperature distribution for the case of a < b < ¢ < d and

To fora<x<b
Fx)y=1T7 forc<x<d
0  otherwise

glx, ) =0 forall x

Solution

The solution can be found as in Example 1.1 by integrating over the two nonzero
regions of F(x) or by using Equation 1.79c as a building block (i.e., let T; — Ty,
d — b, and ¢ — a). Using either procedure results in

_To x=b i
Tt =7 {f [W] - [W“

T x—d X —C
+7 {erfc [W] — erfc [W}} (1.82)

Two interesting special cases can be obtained from Equation 1.82. One of these is
forb - —c, a— —d, and Top — T;. The resulting solution is

T X+ c x+d
T(X/ t) = ? {erfc |:(40L[‘)1 /2:| — erfC [W]
x—d X—C
+ erfc [W] — erfc [W:H (1.83)

This solution is symmetric about x = 0. See Figure 1.9a for the initial temperature
distribution.

Substitution of —x for x in Equation 1.82 and use of the Appendix E identity
of erfc(—z) = 2— erfc(z) reveals the symmetry, which can also be noted in Fig-
ure 1.9a. This condition of symmetry can also be expressed mathematically by
0T /dx = 0 at x = 0; T /9x = 0 is sometimes called the insulation condition.
In other words, the solution for a semi-infinite body (x > 0) which is insulated at
x = 0 can be found from the infinite solution if the temperature distribution is
made symmetric about x = 0.
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T T
T, — T,
-1y =T, —
[ | | [ | [ | | [ |
-d —c 0 cd x -d —c 0 c d x

FIGURE 1.9 Initial temperature distribution for Example 1.2.

The other special case is for b - —c, a - —d, and To — —Ty, which has the

solution
T X+cC x+d
Tix, t)= -5 {erfc [W] — erfc [W]

erfc x—d + erfc X—¢ (1.84)

(4at)!/2 (4at)1/2 ’
This expression has the value of zero at x = 0 and is antisymmetric about the
x = 0 axis. The zero temperature boundary condition is called the homogeneous

isothermal condition. See Figure 1.9b for the initial temperature distribution for
this case.

Example 1.3:

Find the temperature distribution in the infinite body for the case of
F(x)=0 forall x
8(x, t) = gxod(x — xo)
where gxo has units of W/m?, the same as those for heat flux. Refer to Table 1.2

for properties of the Dirac delta function.

Solution
The solution for the temperature is obtained by using Equation 1.74 with F(x’) = 0,

a t [e%s)
T(x, t) = f/ f [4ra(t — 1]~ "/2
k =0 Jx'=—00

(x = X/)z ’ ’
X exp |:_40L(t—t):| gx0d(x" — xp) dx’ dt (1.85)
t VRY
Tix, t) = “‘17:0 ot - 9172 exp {—;Xa(tf‘))r)} dv  (1.86)
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because the only contribution to the integral is at x' = xg. Using integral 9 in
Table 1.6, Appendix | gives,

_ @ 172 [x — Xxol
Tx, t)= 3 (at)'/ “ierfc [(4(“)1 /2} (1.87)
where ierfc(z) is given by (see Appendix E)
ierfc(z) = / erfc(u)du = ™! /2exp(—zz) — zerfc(z) (1.88)
z

The identity ierfc(co) = 0 is needed to evaluate the above integral. Notice that
Equation 1.87 is symmetric about x = xp. The maximum temperature is finite,
occurs at x = xp, and can be evaluated using ierfc(0) = n'/? to find

t 1/2
Tmax(x0, 1) = gxo (J‘[TpC) (1.89)

1.10 TWO INTERPRETATIONS OF GREEN’S FUNCTIONS

Two different physical interpretations of G(-) can be found from the GF solution
equation, Equation 1.74, and are described below. The first physical interpretation of
G (') is the temperature distribution caused by a particular initial condition and the
second interpretation is the temperature distribution for an instantaneous heat source.

The first physical interpretation is associated with the first term in Equation 1.74
and is the solution 7'(x, t) for the problem

T 10T
5 =) —00 <X < 00; t>0 (1.90a)
0x o ot

T(x,0) = F(x) (1.90b)

If the initial temperature distribution is zero everywhere except at xo where it is equal
to F; times the Dirac delta function (see Table 1.2),

F(x) = Fy3(x — xo) (1.91)
then the solution of Equations 1.90a and 1.91 is
T(x,t) = Fy G(x,|xo,0) (1.92)

Hence, the GF G(x, t|x’, 0) can be interpreted as being the temperature distribution
in the body that is the result of the initial temperature being zero everywhere except
at point xo where there is a Dirac delta in the temperature distribution of magnitude
Fy = 1 K-m (kelvin-meter). The units of G(-) and K(-) are both reciprocal length
m~L; the unit for §(x — xg) is also m~.

The second physical interpretation of a GF is the temperature caused by an instan-
taneous heat source at time 7y and position xg and of strength H pc. For this case, the
volumetric energy generation term in the heat equation, Equation 1.73a, becomes

g(x, 1) = Hpe d(x — x0) 8(t — 1) (1.93)

where H has the units of K-m; 8(x — x) has the unit m=1; 8( — #) has the units
s~1: and pc has the units of J/m3/K. These units are consistent with those of the
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volume energy generation g, which are W/m2. The symbol g given by Equation 1.93
represents the amount of energy that is released at x = xp and at # = rp. It can be
visualized as the energy associated with an instantaneous plane source in the direction
normal to the x-axis. It is also like an instantaneous (pulsed) laser sheet being released
at x = xg and at time 7. For this case, the describing differential equation is

PT 1 197
— + —Hpcd(x — x0)d(t — 1) = —

7T OLE; —c0o<x<oo; t>t1y (1.94)

and the initial temperature distribution is zero,
T(x,50)=0; —c0o<x <00 (1.95)

The solution for the temperature is zero until time r = #y. After time 7, the solution
for T'(x, t) given by Equation 1.74 is

o t [ee]
T(x,t) = E/ 0/ G(x,t|x', 1) Hpc
= '=—00

x 3(x" — x0)d(t — 19) dx’ dt (1.96a)
that yields
T(x,t) = H G(x,t|xo, t) (1.96h)

Notice that in using Equation 1.74 for g(x, ), it is necessary to replace x by x’" and ¢
by t. The major point, however, is that the GF is equal to the temperature rise for the
instantaneous plane heat source given by Equation 1.93 with H = 1 K-m.

These two alternate ways of thinking about transient GFs are important. In the first
interpretation, the GF is equal to the temperature resulting from an initial temperature
distribution that is zero everywhere except at the location of the Dirac delta function
with strength of 1 K-m. In the second interpretation, the GF is equal to the temperature
rise due to an instantaneous plane source with a strength of one K-m times pc.

1.11 TEMPERATURE IN SEMI-INFINITE BODIES

A semi-infinite body is described by a body occupying the region x > 0. Although
it represents an idealized body extending to positive infinity, it is a good model for
many problems. A finite body of thickness L can be represented by a semi-infinite
body, 0 < x < oo, when the boundary condition at x = L does not influence the
temperature distributions near x = 0. This happens for the small dimensionless times
of ar/ L? < 0.05. Isothermal and insulation boundary conditions at x = 0 can be
constructed from the infinite region solutions. The examples of Section 1.9 illustrate
these points; also see Figure 1.9.

Temperature solutions for a semi-infinite body with an isothermal surface and an
insulated surface can be obtained using the fundamental heat conduction solution,
given by Equation 1.75. The homogeneous isothermal case is for the surface tem-
perature (at x = 0) held at O degrees. A prescribed temperature at a boundary is
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called a boundary condition of the first kind. If the prescribed temperature is zero,
the boundary condition is termed homogeneous. A prescribed heat flux at a surface is
called a boundary condition of the second kind; if this heat flux is zero, the surface is
said to be insulated and the boundary condition is also homogeneous. Both boundary
conditions, the first and second kinds, are now considered by utilizing the concept of
superposition which is valid because the defining equations are linear.

1.11.1  BouNbpARY CoNDITION OF THE FIRsT KIND

Consider a homogeneous boundary condition of the first kind (specified temperature)
for a semi-infinite body,

2T 19T
8_2:_8—; O<x<oo; t>0 (1.97)

0x o ot
T(x,0) = F(x) (1.98)
T(0,1) =0 (1.99)

See Figure 1.10a for the geometry. The solution to this problem is the same as for an
infinite body with the initial temperature 7'(x, 0) equal to F(x) for x > 0 and equal
to —F(—x) for x < 0; see Figure 1.9b. Then the first term of Equation 1.74 with
G(x,t|x",0) = K(x — x’, 1) gives

T(x,t) = //0_00 K(x —x',t) F(x)dx’

0
- / K(x —x',t) F(—x")dx' (1.100a)
x'=—00
In the second integral, replace —x’ by x” to get
o0 o0
T(x,1) =/ K(x —x',1) F(x/)dx/—/ K(x+x"1) F(x")dx"
x'=0 x""=0

_ /OO [K(x — x',1) — K(x + 2, )] F(') d’ (1.100b)
x'=0

Plane

<>
Iq—/ source

T=0

FIGURE 1.10 (a) Semi-infinite body with an isothermal boundary. (b) Semi-infinite body
with 7 = 0 at x = 0 simulated by an infinite body with source at x” and sink at —x’.



Introduction to Green’s Functions 31

since x” and x” are dummy variables. Notice that the domain of 0 < x’ < oo is
included in the integral of Equation 1.100b. This equation can be written in terms of
a new Green’s function,

T(x,t)= //Ojo G(x,t|x',0) F(x")dx’ (1.101a)

where the new GF is equal to

G, tlx, 1) =K(x —x',t —1)—K@x+x',t — 1) (1.101b)
x —x')2
= [4na(t —1)]7Y2 {exp [_—ia(t - )t)}
(x +x')? )
—exp [—m}} ;=1 > 0 (11010)

This GF represents the physical problem of an instantaneous plane source of strength
H = 1 K-m times pc and at location x" and at time < in a semi-infinite body with
zero boundary conditions and zero initial conditions. The GF satisfies the following
equations:

92 1 19
—g+—8(x—xo)8(t—to)=——G; O<x<oo; t>0 (1.102)
ox o o ot
G(,t]x,1)=0; G(oo,t|x',1)=0 (1.103)
G(x,0/]x', 1) = 0; (1.104)

Equation 1.102 is obtained from Equation 1.94 by replacing H by 1 and T by G. The
presence of a sink at x = —x’, shown in Figure 1.10b, ensures that G is equal to zero
at x = 0. The GF given by Equation 1.101c is plotted in Figure 1.11. The curves are
given for constant values of a(r — t) / x equal to 0.025, 0.05, 0.25, 1.0, and 4.0 versus

T T T T T
1.8 1 a (t-1)/42 = 0.025

1.6 -
14 -
] 0.05 ]
1.2 4 -
1 - -
0.8 -
0.6 0.25 ]

xGx, t]x’, 1)

0.4 1 ]
0.2 - 10 -

4.0
O+ 71 V0T T T 1

0 1 2 3 4

FIGURE 1.11 GF for semi-infinite body with isothermal condition of G = 0 at x = 0.
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——x
@

X

, Plane
|<_/ source

dT/dx =0

dTldx =0 _

FIGURE 1.12 (a) Semi-infinite body with an insulated boundary. (b) Semi-infinite body with
oT | 0x = 0 at x = 0 simulated by an infinite body with source at x” and at —x’.

x’ [ x; the same curves are obtained for fixed values of a(r — t) / x'? versus x / x’. The
GF is little affected by the isothermal boundary condition for a(r — t)/x? < 0.05.
For larger dimensionless times, the maximum G moves to larger x’ / x values and its
magnitude decreases.

1.11.2 BounpArYy CONDITION OF THE SECOND KIND

Next consider the case of the insulated surface (the boundary condition of the second
kind). See Figure 1.12a. This case can be treated in a similar manner as the homo-
geneous isothermal case. The differential equation, Equation 1.97, and the initial
condition, Equation 1.98, are the same, but the boundary condition is

oT

il -0
dx x=0

which is a condition associated with symmetry about x = 0. (Other coordinate sys-
tems, such as radial, may not have symmetry for a7 / or = 0.)

The solution for the temperature can be obtained by using Equation 1.74 (which
is for —oo < x < oo) by making the initial temperature distribution symmetric, that
is, equal to F(x) for x > 0 and equal to F(—x) for x < 0. Then using Equation 1.74
with G(x,#|x’,0) = K(x — x’, 1) gives

T(x,t) = /OO K(x —x',t) F(x")dx'

+ f/o K(x —x',t) F(—=x")dx’ (1.105)

Replacing —x’ in the second integral by x” and then combining into a single integral
gives

T(x,t) = /,ojo K(x —x',t) F(x")dx’

0
+ / K(x +x",t) F(x") (—dx") (1.106a)

' =00
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T(x,t)= /OO [K(x —x',t) + K(x +x',0)] F(x") dx’ (1.106b)

/

or, T()c,t):/OO G(x,t|x’,0) F(x")dx’ (1.106¢)
x'=0

where G(-) is given by

G, tlx', 1) =K(x —x',t —1)+ K@x+x',t —1) (1.107a)
= [4na(t —1)]72 {exp [—gj;(;—f/):)}
+ex [—M“ t—t>0 (1.107b)
P da(t — 1) ||’ - '

This expression is the GF for a semi-infinite body insulated at x = 0. This solution
can be also visualized as the result of superimposing two sources, one at x = x’
and the other at x = —x’. See Figure 1.12b. The GF given by Equation 1.107b is
shown in Figure 1.13 which shows xG(-) versus x’ [ x for x # 0; if x = 0, the G(-)
function given by Equation 1.107b is twice as large as the infinite-body GF shown in
Figure 1.7. As for the boundary condition of the first kind, the GF in Figure 1.13 is
unaffected by the 37 / x = 0 boundary condition at x” = 0 for a(t — 1)/ x* < 0.05.
Unlike that case, however, the maximum G moves to x” / x = 0 as the dimensionless
time increases. Moreover, this case has G values (for the same x and ¢’s) that are
always as large or larger than the G = 0 at x’ = 0 case, Figure 1.11; the effect is
most noticeable for a(r — 1)/ x% = 0.25 to 4.0.

The method of deriving the GF given by Equation 1.107b is related to the method
of images for deriving the GFs, which is discussed in greater depth in Chapter 4.

—
a (t-1)/x% = 0.025

G, t|x’, 1)

X

FIGURE 1.13 GF for semi-infinite body with insulation condition of G /9x = 0 at x = 0.
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Example 1.4:

Find the temperature distribution in a semi-infinite body with initial temperature
To that has T = 0 suddenly applied at the boundary. The temperature satisfies

BZT_H)T_ x>0; t>0 (1.108a)

ax2  aot’ ’ ’
TO,t)=0; T(oo,t) — Ty = constant (1.108b)
T(x,00=Tp; x>0 (1.108c)

Solution

This problem has the boundary condition of the first kind and the solution is given
by Equation 1.101a with G(-) given by Equation 1.101c.

T(x,t):/ [K(x —x',t) = K(x + x/, )] To dX’
x'=0

lefc<7x X )—1—7 rfc<7X+X, )}00

2 (4at)1/2 2 (4an)t/2 ) | g

=Ty (1 —erfc——— ) + (0 — 1 erfc#)]
(4ot t)”2 27 (4at)!/?

=To|1—erfc

=T0

(1.109)

= Tperf X
(40¢t)1 727 0 Gan 2
This solution is plotted in Figure 1.14 versus z = x /(4at)!/2; also shown is erfc(z).
The variation of temperature is most pronounced for x /(4at)'/? less than 1.0.

Example 1.5:

Find the temperature distribution in the semi-infinite body initially at zero temper-
ature, and temperature T is suddenly applied at boundary x = 0. The temperature
satisfies

1 i T T
erf (z)
0.8 _
c
<
3 0.6 B
o
=
[
I 04 .
=
3
0.2 _
erfc (z)
0 T T
0 1 2 3

FIGURE 1.14 Error function (erf) and complementary error function (erfc).
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FPT 19T

T(0,t) = To; T(oo, t) > 0 (1.110b)
T(x,0)=0; x>0 (1.110¢)

Solution

This problem does not have a homogeneous isothermal boundary condition but a
related problem does. Define the new variable,

0=Tog—T
so that
829—186' x>0; t>0 (1.111a)
ax2  adt’ ’ ’
0(0, t) = 0; 000, t) — To (1.111b)
0(x,0) = Top; x>0 (1.111¢)

the solution for 6 is given by Equation 1.109 so that the solution for T is

X

T(x,t) =Ty erfc ———
x, ) =To G2

(1.112)

which also is shown in Figure 1.14 as the erfc(z) curve.

1.12 FLAT PLATES

The construction of the GF by superposition of the plane sources and sinks in an
infinite body, as discussed in the previous section for the geometry of semi-infinite
body, can also be extended to the finite geometry of the flat plate. This approach is
an application of the method of images (Carslaw and Jaeger, 1959, p. 273) which
is discussed in more detail in Chapter 4. Even though the method of images can be
employed to construct the GFs (from the fundamental heat conduction solution) for
the geometry of the flat plate, there are many cases for which the GFs cannot be
readily obtained by this method; in particular, cases that involve boundary conditions
other than the first and second kinds. A more general approach for construction of the
GFs is through the use of an auxiliary problem.

1.12.1 TEMPERATURE FOR FLAT PLATES

The temperature problem that motivates the study of the one-dimensional GF for the
geometry of the flat plate is

PT 1 19T
o+ el f) = = — 1.113
ax2 + kg(x ) o ot ( )
with boundary conditions
oT
ki—| + Tl = fi(t) (1.114)

on

lxi
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where n; is a unit normal coordinate directed outward from the body at the boundary.
The subscript i is either 1 or 2 to represent the two boundaries. Thus, x; and x; are
the locations of the left and right boundaries, respectively. The initial condition is

T(x,0) = F(x) (1.115)

The boundary condition, Equation 1.114, represents three different kinds of bound-
ary conditions by the choice of k;, h;, and f;. These three boundary conditions are
commonly studied and are called the first, second, and third kinds.

The firstkind of boundary condition (also called the Dirichlet condition) is obtained
from Equation 1.114 by setting k; = 0 and h; = 1 to get the prescribed surface
temperature

T(x;,1) = fi(1) (1.116)

where f; can also be simply zero. The second kind of boundary condition (also called
the Neumann condition) is prescribed surface heat flux

T
ki —

= fi(®) (1.127)
on;

Xi

which becomes an insulated boundary if f;(¢) = 0.

The third kind of boundary condition is a convective boundary condition (also
called the Robin condition) given by Equation 1.114, where f;(¢) is usually h; To.
The most familiar form of this boundary condition is then

T
—k;—
9

i

= hi(Tl,, — T) (1.118)

Xi

where T is the constant or time-varying ambient temperature.

1.12.2  AUXILIARY PROBLEM FOR FLAT PLATES

The GF associated with the temperature given by Equations 1.113 through 1.115 is
the solution to the auxiliary equation,

#G 1 193G
— + =XV —1) = —— 1.119a
oz T xR - = ( )
subject to the homogeneous boundary conditions
G
kia— + hiGl,, =0; i=12 (1.119Db)
n

ilx;
and zero initial condition

G(x,tlx',1)=0; whent <1 (1.119¢c)



Introduction to Green’s Functions 37

(Equation 1.119a is similar to Equation 1.94 with T — G and H — 1.) The auxiliary
equation for any GF is identical to the original heat conduction equation except for the
energy generation term, which is a Dirac delta function at location x” and at time <. The
one-dimensional GF G, defined by Equation 1.119a, has units of m~*. This is apparent
from the units of the energy generation term in Equation 1.119a [8(x — x")8(¢ — 1)/ a,
which has units of m—3]. The homogeneous boundary conditions for the auxiliary
equation are the same kinds as for the original problem.

1.13 PROPERTIES COMMON TO TRANSIENT
GREEN’S FUNCTIONS

The properties common to GF for transient heat conduction are summarized below.

1. The GF obeys the auxiliary equation.

2. The GF is a solution of the heat conduction problem having the same geom-
etry but having homogeneous boundary conditions of the same kind as the
original heat conduction problem.

3. The GF obeys the causality relation: G > 0 in the domain R for t — t > 0;
and, G = 0 in the domain R forr — t < 0.

4. The GF obeys the reciprocity relation: G(x, ¢|x’, ) = G(x/, —t|x, —1).

5. The time dependence of G is always ¢ — t, o a one-dimensional GF could
be written G(x,x’,t — 1).

6. In rectangular coordinates, the transient GF has units of: m~! for one-
dimensional problems; m—2 for two-dimensional problems; and m—2 for
three-dimensional problems.

Every GF is a solution to an auxiliary equation with homogeneous boundary con-
ditions. The GF is always positive or zero, because it is the temperature caused by a
positive heat pulse. The causality relation relates to the idea that the GF is the response
at time ¢ and location x to a pulse of heat occurring at time t and at location x’. In a
real (or causal) system, there can be no response before the pulse of heat occurs.

The reciprocity relation can be understood from the auxiliary equation, Equation
1.119a. Exchanging x and x’ in the auxiliary equation leaves the sign of the solution
unchanged because of the second derivative with respect to x. However, exchanging
¢t and t changes the sign of the solution, because of the first derivative with respect
to ¢. Spatial orientation has no preferred direction in heat conduction, but time does
have a preferred direction.

1.14 HETEROGENEOUS BODIES

Abody composed of two or more parts with different thermal conductivities is called a
heterogeneous body (also called anonhomogeneous body). Fourier’s law may apply to
each homogeneous subregion of such a body, but the interface where the conductivity
changes must be treated with special techniques, two of which are discussed in this
book. In Chapter 11 the Galerkin-based GF method is applied to a body with an
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inclusion. In Chapter 12 the surface element method is applied to two homogeneous
bodies in thermal contact.

1.15 ANISOTROPIC BODIES

Many bodies of engineering interest do not conduct heat equally well in all directions
and are called anisotropic bodies. Laminates, crystals, fiber/matrix composites, and
wood are among the materials that have preferred directions of heat flow. For example,
wood conducts heat along the grain more readily than across the grain.

Conductivity matrix. For anisotropic bodies, a generalized form of Fourier’s
law is used that includes a thermal conductivity matrix. For example, in rectangular
coordinates, the conductivity matrix is given by

kin ki ki3
ko1 ka2 ko3 (1.120)
ka1 kzp ka3

and the components of heat flux vector are given by
ST
g = ;k% (1121)
J:

The energy equation for anisotropic bodies contains cross derivatives and its solution
is not covered here; refer to Carslaw and Jaeger (1959, p. 38) and Ozisik (1993,
Chapter 15).

Orthotropic bodies. The conductivity matrix depends on the orientation of the
coordinate system in the body. If the coordinate system is parallel to three mutually
perpendicular preferred directions of heat conduction, then the geometry is said to be
orthotropic and the coordinate system lies along the principal axes of heat conduction.
In an orthotropic body the conductivity matrix has a diagonal form,

kn O O
0 ko O (1.122)
0 0 ks

Wood is an example of an orthotropic body in the particular cylindrical coordinate
system (r, ¢, z) corresponding to the direction of the rays, rings, and axis of the tree
(Carslaw and Jaeger, 1959, p. 41).

The energy equation for orthotropic bodies does not contain any cross derivatives
and it can be transformed into the standard isotropic energy equation by a suitable
choice of new spatial coordinates. This transformation is given in the next section.

1.16  TRANSFORMATIONS

There are several heat transfer equations that may be converted, through a transfor-
mation, into the familiar heat conduction equation. These transformations extend the
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heat conduction solutions discussed in this book to a broader range of heat transfer
problems.

Three transformations are presented for heat transfer in orthotropic bodies, in
moving solids, and in fins.

1.16.1 ORrTHOTROPIC BODIES

An orthotropic body, introduced in the previous section, has direction-dependent
thermal properties whose principal values are aligned with the coordinate axes. In this
section a transformation is given to convert the orthotropic heat conduction equation
to the usual heat conduction equation.

The heat conduction equation in Cartesian coordinates for an orthotropic body is
given by

¥T *T *T aT
kii— +koo— + ksz— VY 2, 1) = pc— 1.123
nyz Hhegg theys +8(x,y.z.1) = pe— (1.123)

Define stretched coordinate axes of the form

©\1/2 © \12 © \12
=y <k11) n=y <k22> ass <k33> ( )

where k is a reference conductivity. Replace these scaled coordinates into Equa-
tion 1.123 to show that the orthotropic heat conduction equation can be written

RT  #T T oT
k| —4+ —+ — ,V,2,1) = pc— 1.125
<axz+ayz+azz>+g(”z L (1.125)

That is, the heat conduction equation in an orthogonal body has been transformed
into the isotropic heat conduction equation. The boundary conditions must also be
adjusted (see Problem 3.17 at the end of Chapter 3).

The reference conductivity is not arbitrary, it must be chosen so that the original
differential volume is equal to the scaled differential volume. For the 3D Cartesian
case, the differential volume scales according to

_ (kakookss)'/?

dxdydz = del dy1dzy

and the requirement that dv = dvy causes
k = (kikaokss)''

This requirement may be extended to other orthogonal coordinate systems.

1.16.2 MoVING SoLibs

Heat conduction in moving solids can arise because the solid is moving, as during an
extrusion process, or when a fixed solid contains a moving heat source. If the problem
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is formulated with the coordinate system attached to the moving heat source, then a
velocity term appears in the partial differential equation for heat transfer. In this section
a transformation is given for converting the moving-solid heat transfer equation into
the (usual) heat conduction equation.

Consider a solid moving with bulk velocity Ui, Uz, and Us in the x-, y-, and
z-directions, respectively. Velocities U1, Uz, and Us are assumed to be constant,
known quantities. The temperature in the moving body is described, for constant
thermal properties, by

2T N T N 2T o )
- 5 - 5 - 5 'x! 1 1
2 3y? 972 SRR

oT  oT  oT  oT
—pc( =+ UL + Uy + Us— 1.126
pc<8t+ or TV T 38z> (1.126)

The transformation

Uwx Ut
T(x,y,z,t) = W(x,y,z,t)exp i
20 4o
Uy Uzt Usz U2t
exp|l — - = |exp| — - — 1.127
x p( 20 4o P 20 4o ( )
allows the moving-body heat transfer equation to be written
PW W PW 1, )4
- Y Zt) = —— 1.128
8x2+8y2+8Z2+kg(xyZ) o ot ( )
where g* is given by
* U]_)C Uff
g,y z1) =glx, y,z,0)exp | ——— + —=—
20 4q
Upy Ut Usz Ut
xexp|———+—"——)exp|———+—— (1.129)
20 4o 20 4o

This transformation relocates the effect of the convective heat transfer terms to the
internal-heating term. This transformation only applies to transient heat transfer, as the
time-derivative term has an active part in the transformation. The boundary conditions
must also be transformed for a complete solution to the problem.

1.16.3 FINTErM

The fin term appears in the heat conduction equation to describe heat loss (or gain)
that is proportional to temperature. This term, named for the convective heat loss
from a fin, can also be used to represent heat loss by radiation (linearized), or heat
generation by chemical reaction.
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The heat conduction equation with the fin term is given by

19T
V2T — m?(T — Tx) + g(r 1) = —ar (1.130)
where m? is a constant and 7., may be an external fluid temperature. Let 6 = 7' — T,
and define the transformation by

o(r,t) = W(r, 1) exp (—m?ar) (1.131)
Upon replacing the transform into the heat equation, the result is

19w
v2W+ 28 *(r,1) = s (1.132)

where
g5 (r,1) = g(r, 1) exp (+m?ar) (1.133)

With this transformation the effect of the fin term is shifted into the energy gener-
ation term. The boundary conditions are similarly affected. The fin transformation
can be used simultaneously with the moving-solid transformation (see homework
problem 3.28). As with the moving-solid transformation, the fin transformation only
works with transient heat transfer.

1.17 NON-FOURIER HEAT CONDUCTION

Fourier’s law of heat conduction describes heat transfer very accurately in most ap-
plications. However, it predicts that heat introduced at one point in a body is in-
stantaneously transmitted throughout the body. Of course, the size of the predicted
temperature response is vanishingly small far from the heat pulse, but with Fourier’s
law the speed of propagation is infinite. In our post-Einstein world, an infinite speed
of propagation is not physically reasonable. This means that Fourier’s law may not be
accurate in a brief time period after the heat pulse. For very short times, for very short
distances, or for temperatures very near zero kelvin, a relation other than Fourier’s
law is needed to describe energy transport. The application to microscale or nanoscale
heat transfer is presently an active area of research. Two relations for non-Fourier heat
transfer are briefly introduced here.

One relation between temperature and heat flux that allows for a finite speed of
heat propagation is given by Ozisik and Vick (1984)

ocaq

= —kVT 1.134
2 T4= ( )

where o is the propagation speed for heat transfer and o2 / « is the relaxation time for
the heat flux to begin after a temperature gradient is imposed on the body. Conversely,
the heat flow does not cease immediately after the temperature gradient is removed
but dies away over a short period of time.
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An energy equation that embodies the above finite propagation of heat may be
found by taking the divergence of Equation 1.134,

a
S [V-qI+V-q=—V-(kVT) (1.135)
o< ot
Now solve the vector energy equation, Equation 1.11, for V - q,

T
V.q=g(rt) - pcaa—t (1.136)

and substitute V - q into Equation 1.135. After some rearranging, the result is
o dg or  k 8T
V. (kVT) + |:g(r,t) + 2 8t] = pc o T 522 (1.137)
This heat conduction equation includes a finite speed of heat propagation. There are
two additional terms that do not appear when Fourier’s law is used. One is a time
derivative of the energy generation g(r, t). The other term is a second derivative of
temperature with respect to time. This is a wave term and the wave speed is o. This
wave term is said to be hyperbolic in time, and equations of this type are sometimes
described as a hyperbolic heat conduction equation. In the limiting case of infinite
propagation speed, Equation 1.137 reduces to the classic diffusive energy equation.
Strictly speaking, the above energy transport equation applies to materials that are
crystalline and nonelectrically conducting, in which heat is transferred as vibrational
lattice energy. In the language of quantum mechanics, lattice energy is transferred in
discrete quanta called phonons. In metals, heat conduction is carried both by phonons
and by free electrons. For transport of energy in metals, Qui and Tien (1992) proposed
that the electron temperature 7, and the lattice temperature 7; be different and are
related by the following relation

C; 9Ti(1)

T.0) = T + 1 =

(1.138)

where C; is the capacitance of the lattice and I' is the electron—phonon coupling
factor. Experimental and theoretical values of I are collected from different sources
and given by Qui and Tien (1992, Table 1). For this application, the non-Fourier
energy equation is

aTy(r, 1) L GG PT(r,1)

-Vv.q(r,r)=C
a(r. 1) ot r a2

(1.139)

where C = C, + C; and C, is the electron capacitance. The combined effect of
electron and phonon energy transport is discussed by Tzou (1997). A GF solution for
the energy transport through the combined effects of electron transport and phonon
transport is given by Hays-Stang and Haji-Sheikh (1999).
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PROBLEMS

11

1.2

13

14

1.5

1.6

Calculate the gradient, VT, in the coordinate system given:
(@) T =3x +4y% + e~%, rectangular (x, y, z).

(b) T =3r?+4cosd + 2z, cylindrical (r, ¢, z).

() T =2rd+ 2¢cosb, spherical (r, d, 6).

(d)

o0
cos(mm
T =2x+ Z %e*’"z“zﬁ rectangular (x, y, z).

m=1

Show by direct computation that (1/r) is a solution of Laplace’s
equation in two ways. That is, show that

1
()
r
(@) in Cartesian coordinates where r = v/x2 + y2 + z2, and,
(b) directly in spherical coordinates.

Write out the energy equation
2 19T
VT = ——
o ot
for the following special cases. Be sure to drop terms that are zero.
@ T =T(r,1)foralong cylinder.
(b) T = T(r,z,t) for a thin film on a large surface with axisym-
metry.
(¢) T =T(x,y,r)forarectangular body.

(d) T = T(r,06) for arocket nose cone with axisymmetry, where 6
is the polar angle with 6 = 0 along the axis of the rocket.
Show that each of the following functions satisfies the heat equation,

aVeT = o
(@) T = e 1™ sin(nx) cos(3my)sin(2nz).
(b) T =exp(29an?t + m(3x + 2y + 42)).
() T=x?+y2—-272—-3x —5y+67+1.
Repeat the derivation of the differential energy equation in Section
1.3 but for the cylindrical coordinate system. The control volume
has the form dV = rd¢ dr dz, and your result should agree with
Equation 1.12.
Show that under the assumption of a very small control volume
dv = dxdydz, the integral energy equation, Equation 1.32, can be
used to derive the differential energy equation, Equation 1.8. Use the
divergence theorem:
Given vector field C in a control volume,

/ﬁf‘dA:/ V.Cdv
C.S. C.V.

where V - C is the divergence of C and 7 is the outward normal on
the control surface.
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1.7

18

1.9

1.10

11

1.12

1.13

Heat Conduction Using Green’s Functions

Apply the integral energy equation to find the equation for a lumped
body, by applying the following assumptions: uniform thermal prop-
erties; spatially uniform temperature (T = T(¢) only); insulated
body surface; and, spatially uniform internal energy generation
(g = g(r) only).

Convection at a solid surface is described by Newton’s law of cool-
ing, ¢ = "W(Tsurface — Triuia). Using this expression for surface
convection in the integral energy equation, Equation 1.32, derive the
convection boundary condition at surface x = 0 in a semi-infinite
body. Use a very thin control volume (take the limit as thickness
— 0) that encloses the body surface. The result should agree with
Equation 1.16. What is f; in this case?

Show that the steady GF solution equation, Equation 1.44, satisfies
the steady heat equation, Equation 1.36, by direct substitution.
Derive the steady GF for the slab with the following boundary con-
ditions:

Gx=0)=0
Gx=L)=0

Check your answer with case X11 in Table X.3 in Appendix X.
Derive the steady GF for the slab with the following boundary con-
ditions:

atx =0, 0G/ox=0
atx =L, koG/ox+hG =0

Check your answer with case X23 in Table X.3 in Appendix X.
Using the GF from Problem 1.11, find the steady temperature in the
slab caused by uniform energy generation. That is, find the temper-
ature that satisfies the following equations:

T /ox =0 atx =0
koT |ox +hT =0 atx =L

Show that the Dirac delta function has the following properties,
where a is a nonzero constant and function f(¢) is continuous at
the origin. Note: The delta function is defined by its integral behav-
ior, so that by an equation such as 8(—¢) = 3(¢) we mean that

/ ¥ Feys(—rydi = i " F0)s0) di

and you have to verify that both sides of the equation reduce to f(0).
@ 3(—1) =2d(r)

(b) 3(at) =3(r)/lal

© JIo8(x)dr=H()
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1.14

1.15

1.16

1.17

1.18
1.19

1.20

121

The Dirac delta function can be used to define derivatives of dis-
continuous functions. Find the derivative of |x|, sin |x|, and cos |x|.
(Hint: let |x| = x sign(x).)

Find the Laplace transform of the following functions by direct inte-
gration of the definition of the Laplace transform. Here a and b are
constants. If you use an integral table, give a detailed reference.

@ a

(b) a+ bt

(C) eal

(d) sin(ar)

() d(t—a)

By substituting K (x —x’, t —) into Equation 1.90a for T (x, ¢), verify
that K (x — x’, ¢t — t) is a solution. What is the initial condition?
Given the following heat conduction problem,

2T 19T

—- =-—"=0,0 L
w2 a o =r=
T(x=0,1)=Tp
T(x=L1t)=Tp
T(x,t=0)=T1

use normalized variables given by

T(x,t) — Tt
xt =x/L; tt :at/Lz; 0= M
Ty — Ty
to restate the problem with x*, r*, and 6 in place of x, ¢, and 7.
Verify the identity for ierfc, Equation 1.88, using integration by parts.
Investigate the behavior of the approximation of erfc(x) given by

1 1 1.3 1.3.5
-1/2 2
* eXp(_x)[;_gTs"'zzxs_ 23,7 ]
for a given x > 1 as the number of terms is increased. Verify that
the error is less in absolute value than the last term retained.
Find the temperature distribution in a semi-infinite body with the
initial temperature given by

T=x forO<x<land7 =0forx > 1

The surface temperature at x = 0 is maintained at zero temperature.
(Appendix | may be helpful.)

Find the temperature in a semi-infinite body with the initial temper-
ature given by

2
X
T=T1ﬁ+Tofor0<x§LandT=Toforx>L

The surface at x = 0 is insulated. (Appendix | may be helpful.)
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1.22 The temperature due to a specified heat flux boundary condition
(nonhomogeneous boundary condition of the second kind) in a semi-
infinite body may be found by using a planar heat source located at
the surface. Find the temperature resulting from a volumetric heat
source given by

g(x,1) = god(x —0)
Also, find the heat flux through the point x = a inside the body.

1.23  Derive the below expression for the heat flux at x starting with T'(x, 1)
given by Equation 1.87,

q(x,t) = %sign(x — xp)erfc [%]
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) Numbering System
in Heat Conduction

2.1 INTRODUCTION

The number of exact solutions in transient heat conduction and diffusion is extremely
large and is growing. These solutions are needed for thermal modeling of various
devices, as test cases for finite difference/element programs, and as influence functions
for the unsteady surface element method (see Chapter 12). Solutions are given in
many different papers, government reports, and industry reports. Because of the lack
of organization of the solutions, it was frequently easier to rederive a solution than
to search for it. With the advent of the internet and inexpensive computer storage,
the development of specialized data bases has become practical, and they exist in
medicine, law, and many other fields.

There is considerable variation among existing numbering systems. Most iden-
tification numbers have meaning only when a look-up table, or key, is consulted.
For example, the Chemical Abstracts Service (CAS) assigns numbers to chemical
compounds in the order they are discovered, so the CAS number itself contains no
technical information on the compound. Many numbering systems contain some use-
ful information in the numbers themselves. For example in a postal zip code, the first
one or two digits can indicate a general location. A few numbering systems embody
a great deal of information in the number itself. The number system of Butkovskiy
(1982) and Butkovskiy and Pustylnikov (1993) identifies differential equations in the
form (p, g, r). Integer p denotes the number of spatial dimensions in the domain,
integer ¢ denotes the highest derivative with respect to time, and integer » denotes
the highest derivative with respect to space.

The purpose of this chapter is to present a number system for heat conduction
and diffusion for which the number itself contains a great deal of information. Such
a system not only simplifies the construction of a computer data base such as the
Green’s Function Library (Cole, 2009) but it makes locating existing solutions less
tedious and lowers the effort needed to derive new solutions. The humber system was
first proposed by Beck and Litkouhi (1985) and other discussions are given in Beck
(1984, 1986).

The numbering system covers basic geometries such as plates, cylinders, and
spheres. Irregular geometries such as plates with several randomly spaced holes are
not covered in the numbering system. This book deals mainly with solutions for
temperature-independent thermal properties, but the numbering system can be em-
ployed for nonlinearities caused by temperature-variable properties.

The numbering system is specifically developed for transient diffusion and heat
conduction. The same concepts, however, are applicable to other fields, such as

47
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convective heat transfer, fluid mechanics, and wave phenomena. Steady state is cov-
ered because it is included by the more general transient notation.

The plan of this chapter is first to give the numbering system for geometry and
boundary conditions in Section 2.2. Section 2.3 provides boundary condition mod-
ifiers to describe the time and/or space variations of the nonhomogeneous term at
a boundary. Section 2.4 gives an initial temperature distribution numbering system,
and Section 2.5 provides a numbering system to treat interfaces between bodies. Sec-
tion 2.6 gives a numbering system for the volumetric energy generation term g(x, 1),
and then Section 2.7 gives some examples of the numbering system. The chapter
concludes with Section 2.8, further discussion of advantages of the numbering system.

We recognize that not all readers will share our enthusiasm for the heat conduction
numbering system. However, it is important that readers have some knowledge of
the numbering system in order to use the extensive appendices of Green’s functions
(GFs) in this book. Most of the book will be accessible to the reader with a working
knowledge of Section 2.2 on the humbering system for geometry and boundary con-
ditions. Some readers may prefer to read Section 2.2 and then jump ahead to Chapter 3
on the Green’s function solution equation (GFSE). Later these readers can return to
Chapter 2 to learn more about the numbering system as the need arises.

2.2 GEOMETRY AND BOUNDARY CONDITION
NUMBERING SYSTEM

For the rectangular coordinate system, the symbol X is used to denote the
x-coordinate; Y is used to denote the y-direction; and Z is used to denote the
z-direction. For a two-dimensional problem involving x and y-coordinates, X and
Y are used; for a three-dimensional problem, X, Y, and Z are used. The three-
dimensional equation for transient conduction with constant, isotropic thermal con-
ductivity & is

P e Rl 1)

2T  #T T oT
ot

For the cylindrical coordinates, r, ¢, x, the symbol R is for r, ® is for the angle ¢,
and X is for the axial coordinate. For constant k, the three-dimensional equation is

. 19 (0T N 1 8T N 2T aT 22)
-——\\r— —— +—5 | =pc— .
ror \ or r2 a2 ax? "

For spherical coordinates, r, ¢, 6, the symbols are RS, ®, ®, respectively. The symbol
RS is used to denote the radial-spherical coordinate direction. The angle ¢ for both
the cylindrical and spherical coordinates goes from 0 to 2.

Six different boundary conditions are given and are numbered 0, 1, 2, 3, 4, and 5.
See Table 2.1.

The first kind of boundary condition is the prescribed temperature at boundary i,

T(ri t) = fi(ri, 1) (2.3)
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TABLE 2.1
Types of Boundary Conditions

Notation Name of Boundary Condition Description of Boundary Condition
0 Zeroth kind (natural) No physical boundary

1 Dirichlet Prescribed temperature, Equation 2.3
2 Neumann Prescribed heat flux, Equation 2.4

3 Robin Convective condition, Equation 2.6

4 Fourth kind (Carslaw) Thin film, no convection, Equation 2.7
5 Fifth kind (Jaeger) Thin film, convection, Equation 2.8

where f;(r;, ) is the space- and time-dependent surface temperature. For a one-

dimensional caseatx = 0, f;(-)canbeafunctionoftimeonly,suchas7(0,¢) = fi(¢).

For a two-dimensional case with coordinates x, y, at x = x1, T (x1, y,1) = fi(y,1).
The second kind of boundary condition is prescribed heat flux,

aT
k —

| = it 2.4

I

where n; is an outward pointing normal. For a one-dimensional case of boundaries
atx; = 0and x, = L, n1 = —x and ny = x; the boundary conditions are

T
—k —

p = fa(r) (2.53,b)
X

— A0 K
0 ox

x= x=L

and f1(¢) and f>(¢) are heat fluxes directed toward the surfaces.
The third kind is a convective boundary condition,

oT
k —
a

i

—I—hiT]ri = fi(r;, 1) (2.6)
T
where h; is the heat transfer coefficient and f;(r;, ) is usually equal to &; Too With T,
being the ambient temperature, but f;(r;, ¢) can also include a prescribed heat flux.
The fourth kind is for a thin film at a surface with a prescribed heat flux f;(-),

T
k —

oL = )~ (peb) @)

ri ri

The product (pcb); is for the film at the ith surface, and b; is its thickness. A physical
example of this type of boundary condition is heat transfer into a large ceramic
object with a thin metal coating on the surface. The temperature distribution in the
metal coating may be neglected across the small thickness b; because the thermal
conductivity of the metal is large compared to the ceramic, but storage of thermal
energy in the metal coating may not be neglected. This boundary condition can also
describe a surface film composed of a well-stirred fluid with heat capacity of (pc,b); .
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The fifth kind of boundary condition is for a thin film permitting heat losses from
the film by convection,

oT oT
k—| +mT| = fi(ri,t) = (pcb)i — (2.8)
E)n,' ri ! ot r

The boundary condition of the fifth kind is physically identical to the fourth kind
except that instead of a specified heat flux on the thin film at the surface there is a
specified heat transfer coefficient 4.

Another important case is the zeroth kind. It is for conditions for which there is no
physical boundary; it is sometimes called a natural boundary condition. It includes
several cases, one of which is in the rectangular coordinates when a boundary extends
to infinity. For example, a semi-infinite body that is convectively heated at x = 0 is
denoted X 30. Another case is for the center of radial cylindrical and spherical bodies
that are solid. A solid cylinder with a prescribed surface heat flux is denoted R02.
The case associated with a convective boundary condition at » = a and a spherical
domain outside r = a is denoted RS30. Another case is for a thin annular ring which
is denoted ®00.

Cases included by this numbering system are organized in Figures 2.1 through 2.3;
notice that the structural arrangement of each of these cases is different, with the radial
coordinate having the largest number of distinct cases and the angular, the least.
Figure 2.1 is for the Cartesian coordinate x and includes 21 distinct cases; others such
as X12 can be listed but these can be found by a simple change of coordinates (i.e.,
x — L — x, where L is the plate thickness). Notice that the cylindrical radial chart
shown in Figure 2.2 includes 26 cases because the R10 (1 =1, ...,5) geometries are
quite different from the ROI geometries, the former being the infinite region bounded

Infinite geometry

X00
X10
No steady state (zero eigenvalue)
X20 X21
21 cases

X30 X31
X40 || xa1 X43
X50 X51 X52 X53

Semi-infinite L Finite geometry

geometry

FIGURE 2.1 Distinct cases for one-dimensional Cartesian geometries.
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Infinite geometry Solid cylinder

[Roo | [ Ro1 | Ro2| R03 | Ro4| RO5 |

R10 R1 No steady state (zero eigenvalues)

R20 R21 26 cases

R30 R31 R33
R40 R41 R43
R50 R51 R52 R53 R54 R55
Region outside AN Annulus geometry
cylinder

FIGURE 2.2 Distinct cases for one-dimensional cylindrical radial geometries.

J Complete ring

©00

No steady state (zero eigenvalue)

16 cases
o011

21

031

041

051

\

FIGURE 2.3 Distinct cases for ring geometries.

Partial ring

internally by the radius » = a and the latter for solid cylinders of radius a. For annular
geometries with boundary radii of a and b, neither 7 nor J in RI1J are equal to zero.
The spherical radial cases RSIJ is similar to Figure 2.2 with R replaced by RS. For the
cylindrical coordinate ¢ and small changes in r, aring is obtained; cases are displayed
in Figure 2.3. The special case in Figure 2.3 is for a complete ring. There are neither
@07 nor ®70 cases with I # 0. Except for the ®00 case, the ®1J cases in Figure 2.3
have similar mathematical solutions as the corresponding XIJ cases of Figure 2.1.
There are three special finite-body cases in Figure 2.1 which (usually) have no
steady state, namely X22, X42, and X44. There are five such special cases in
Figure 2.2 and four in Figure 2.3. Mathematically, these cases are associated with
zero eigenvalues. From a physical perspective, these cases do not have a steady state
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for time-independent values of f;(-) in Equation 2.4 or 2.7 (unless there is the special
case of zero net heat added). The ®00 case is unique since there are no physical
boundaries; however, in this case (and the special finite bodies cases) there is no
steady state for a constant volume source in the respective bodies.

For the infinite and semi-infinite geometries of Figures 2.1 and 2.2, i.e., the first
column in both figures, steady state is not usually attained in finite times.

2.3 BOUNDARY CONDITION MODIFIERS

The boundary conditions of the first through fifth kinds are denoted as indicated
in Section 2.2 but the time and/or space variation must also be specified. This
means that the function f;(r;, ) in Equations 2.3, 2.4, 2.6 through 2.8 must be de-
scribed. For one-dimensional cases, f; can be only a function of time. The one-
dimensional case is first considered and then the two- and three-dimensional cases
are discussed.

For one-dimensional cases, the function f;(¢) includes zero (denoted B0), constant
with time (B1) (actually a step increase at + = 0), linear with time (B2), some
power other than 1 of ¢ (B3), exponentials (B4), two or more step changes (B5),
and sinusoids (B6). See Table 2.2. Only the basic cases are given specific notation.
Solutions permitting an arbitrary time variation are indicated by a dash (-).

For one-, two-, or three-dimensional bodies, the geometry and boundary condi-
tion descriptors are followed by the boundary condition modifier B1J. An example is
X12B14 where the B14 indicates that the boundary condition of the first kind (pre-
scribed T) at x = 0 is nonzero constant and the boundary condition of the second
kind (prescribed q) at x = L has an exponential dependence on time. In general, two
indices follow B but there are exceptions. Only one index is needed when there is
a boundary condition of the zeroth kind such as X20B1 or R03B1, where the B1’s

TABLE 2.2
Types of Time- and Space-Variable Function at Boundary Conditions

Space-Variable

Time-Variable Boundary Function
Notation Boundary Function Notation (Two-Dimensional)
B- Arbitrary f(r) Bx- Arbitrary f(x)
BO f@®)=0
B1 f@)=cC
B2 f@)=Ct Bx2 f(x)=Cx
B3 f@=cCct?, p>1 Bx3 fx)=CxP,p>1
B4 f(t) = exp(—at) Bx4 f(x) = exp(—ax)
B5 Step changes in f(z) Bx5 Step changes in f(x)

B6 sin(wt + E), cos(wt + E) Bx6 sin(wx + E), cos(wx + E)
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describe the nonzero boundary conditions. If both boundaries are of the zeroth kind
(e.g., X00, ROO, and ®00), then the B modifier is not used.

For two-dimensional cases the variation of f(-) at a boundary can be a function of
space as well as time. For a two-dimensional problem involving x- and y-coordinates
andata y surface, f(-) could beafunction of x alone, a function of ¢ alone, or a function
of x and z. If f = f(x), then the boundary condition is denoted BxI, I =2, ...,6
(since I = 0 and 1 are not needed here). If f = f(x,t), then the notation B(xItJ)
(where I is for x and J for ¢) can be used. Generalization to three-dimensional cases
is direct; for example, f = f(x, z,t) has the modifier B(xzJtK) with appropriate
valuesof 7, J,and K corresponding to x, z, and ¢. The parentheses are used to enclose
notation for a single boundary.

2.4 INITIAL TEMPERATURE DISTRIBUTION

The initial temperature distribution is given in general coordinates by

T(r,0)= F(r) (2.9
and for a one-dimensional case with x being the coordinate,

T(x,0) = F(x) (2.10)

A numbering system for F(-) is given that is analogous to that for the boundary
conditions. The letter T is followed by digits 0, 1, ..., 7, as shown in Table 2.3. The
coordinate » in Table 2.3 represents any single space coordinate such as r, x, or ¢.
Figure 2.4 displays some one-dimensional cases and gives the numbers including
the notation for the initial temperature distribution. For two- and three-dimensional
cases, see Figures 2.5 and 2.6 which are discussed in Section 2.6. For steady state
problems, the initial condition index 7' and the associated digit are not used.

TABLE 2.3
Types of Space-Variable Initial Conditions

Single Space-Variable

Notation Initial Condition
T- Arbitrary F(r)

T0 F(r)=0

T1 F(r)=C

T2 F(ry=Cr

T3 F(r)=Cr?,pnotOorl
T4 F(r) = exp(—ar)

T5 Step changes in F(r)

T6 sin(wr + E), cos(wr + E)

T7 Dirac delta function, 3(- — ro)
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FIGURE 2.4 Some one-dimensional examples of numbering system.

2.5 INTERFACE DESCRIPTORS

The numbering system also applies to composite bodies. The interface conditions
are denoted in a manner similar to the boundary conditions. For perfect contact, a
capital C is used for the interface. For example, a plate perfectly bonded to another
one, with prescribed temperatures on either side is denoted, X1B-CX1B-T-, for
arbitrary time-variation of the surface temperatures and arbitrary initial temperature
distribution.

For other conditions the letter C is followed by a single digit; see Table 2.4. The
notation C2 is used to denote a perfect contact with a heat source at the interface;
since heat flux is involved, it is analogous to the boundary condition of the second
kind, hence the use of 2. The notation C3 is used to denote an imperfect contact
at location r; with a contact conductance of 4. at the interface (analogous to the
boundary condition of the third kind)

oT
k=

871,'

aT
= hC(Trl_ - Trl_+) = _k a.

211
o (2.11)

- +
Ti Ti

The C4 case isforathinfilm (or well-stirred fluid) in perfect contact at the interface,

oT

aT
(pcb) o

—k =
Pt ong

T
—k —

2.12
P (2.12)

- +
Ti Ti

where (pcb); is for the thin film or well-stirred fluid.
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FIGURE 2.5 Two-dimensional examples of numbering system.

2.6  NUMBERING SYSTEM FOR g(x, t)

A notation for the geometry and for the boundary conditions is given in previous
sections. In this section, extensions to the numbering system are given to classify the
volumetric source term g(x, t).

The notation for the volumetric source term g(x, ) is indicated by a capital G
followed by up to four modifiers to denote the x and ¢ dependence. The notation is
GxItJ, where x| represents the x dependence, and tJ represents the time dependence
of the volume source term. The values I and J can assume the values 0,1,2, ..., 7,
or the dash (-) to represent different functions. See Table 2.5 for a listing of notation
for the source term.

Several examples of the notation for the source term are presented below. For a
source term of the form

g(x, 1) = 10xt
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£ F(x,y,2)=0

For all vertical
surfaces, g = 0
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FIGURE 2.6 Three-dimensional examples of numbering system.
TABLE 2.4
Types of Interface Conditions
Notation Description of Interface Condition
Cc Perfect contact
Cc2 Perfect contact with source at interface
C3 Finite contact conductance
Cc4 Thin film at interface, perfect contact

the notation is Gx2r2. A source term of the form
g(x, 1) = 10x

is denoted Gx2¢1, or simply Gx2, since the modifier #1 is not needed to state that
g(x, t) does not depend on time. An even simpler case is

glx, 1) =2
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TABLE 2.5
Notation for Time-Variable Source Terms

Notation Time Variation

Gt- Arbitrary, g(r)

Gt0 g®)=0

Gtl gty=C

Gt2 g(t)=Ct

Gt3 gt)=Cr?, p#0o0rl

Gt4 g(t) = exp(—ar)

Gt5 Step changes in g(z)

Gt6 sin(wt + E), cos(wt + E)
Gt7 Dirac delta function, (¢ — 1p)

which is denoted Gx1¢1 or more simply, G1. For the case where g(x, ¢) is composed
of a sum of several terms, such as

g(t) = ap + a1t + a2t2

the notation is Gx1#(1, 2,3) or Gt(1,2,3). Due to linearity of the heat conduction
problem, the solution to the problem with source term Gt(1, 2, 3) can be found as the
sum of three problems,

Gt(1,2,3) = Gt1 + Gt2 4+ Gt3

2.7 EXAMPLES OF NUMBERING SYSTEM

The proposed numbering system can be used to describe a very large number of
cases. Some one-dimensional cases are shown in Figure 2.4. The first four cases of
Figure 2.4 are for the same basic case of X21. Figure 2.4a depicts a plate with a
constant heat flux at x = 0 (boundary condition of the second kind) and 7 = 0 at
x = L (condition of the first kind). The initial temperature is zero. The number for
this case is X21B107T0 where the 1 following B is for ¢ = C at x = 0 and the
0 following B1 is for the T = 0 condition at x = L. See Table 2.2. The problem
of Figure 2.4b has an insulated surface at x = 0, a linear time variation of temper-
ature at x = L and a zero initial temperature; its number is X21B0270. The two
in BO2 is for the linear time variation at x = L. Figure 2.4c has f = 0 at both
boundaries but the initial temperature is a linear function of x and thus is denoted
X21B00T 2. The case shown by Figure 2.4d includes all the nonzero f; and F values
of Figure 2.4a, b, and c.

A cylindrical radial case is shown in Figure 2.4e. Depicted is a solid cylinder with
a heat flux of exponential form at » = a and the initial temperature is a constant.
Figure 2.4f is for a segment of a thin ring.

Some two-dimensional cases are illustrated in Figure 2.5. A rectangular plate is
shown in Figure 2.5a. The number description in the x-direction is similar to that for
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a one-dimensional case and it is then followed by the one in the y-direction. Since
the initial temperature is known to be zero, it is redundant to repeat this information
with the y-direction notation. Another two-dimensional case is shown in Figure 2.5b;
it is for a plate that is finite in the x-direction and semi-infinite in the y-direction.
For the x-direction, the boundary conditions are of the second and first kinds and are
homogeneous, but the initial temperature distribution is linear with x; thus this part of
the notation is X21B00T 2. For the y-direction, there is a step increase ing atx =0
and a step decrease at x = b, and there is no physical boundary for large y. Hence,
the notation in the y-direction is Y20Bx5 where the Bx5 notation is for the steps in
g inthe x-direction at the y = 0 boundary. There is no y-direction dependence of the
initial temperature so it is omitted in the notation.

A case of a body outside the cylindrical radius of r = a is shown by Figure 2.5c.
There isasinusoidal variation with ¢ of the surface heat flux and the initial temperature
distribution is constant. The notation is R20B¢$p671900. The B¢6 describes the
boundary condition at r = a and no index is needed for r — oo where there is no
physical boundary.

Figure 2.5d displays a semi-infinite cylinder that is insulated at all surfaces except
at the center at the top where a circular heat flux is applied. The initial temperature
is zero. The number for this case is RO2BOT0X20Br5 where the Br5 notation is
used because the heat flux is not constant with r but can be considered to have a step
increase at r = 0 and a step decrease r = a. If the heat flux were over the circular
region shown and also varied as ct in time, Br5 would be replaced by B(r5¢2) where
the parentheses are used to denote that both conditions apply at the same boundary.

The numbering system readily extends to three-dimensional cases such as given
in Figure 2.6. The first case is for a semi-infinite rod that is insulated on all surfaces
except there is a constant heat flux over a rectangular region at z = 0. The case of a
rectangular block is shown in Figure 2.6b, where front and side views are shown.

2.8 ADVANTAGES OF NUMBERING SYSTEM

There are several types of advantages of the numbering system. The first relates to
a data base of conduction solutions. The second relates to an algebra that can be
given for linear problems. The last major advantage relates to use of the method
in conjunction with GFs to obtain solutions for linear problems; full explanation is
deferred until after Chapter 3.

2.8.1 DATA Base IN TRANSIENT HEAT CONDUCTION

One of the obvious advantages of a numbering system is that it facilitates the or-
ganizing of a data base. A structure is provided that makes the storage of solutions
easier. Also important is that it greatly reduces the effort in locating solutions. Instead
of relying on imprecise verbal titles of papers (or abstracts) to describe a particular
problem, a search based on the notation given herein can be much more direct and
less prone to miss related solutions.
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TABLE 2.6
Some One-Dimensional Cases in Carslaw and Jaeger (1959)

Number Page Equation Comments

X00T5 54 3 T(x,00=Tp,—a<x<a;T(x,00=0,|x| >a
X10B1TO0 60 10

X10B3T0 305 6 TO,1)=To"'2,n=1,2, ...

X11B00T1 96 6

RO1B0OT1 199 5

RO1B1TO 331 3 Small time solution

The numbering system has been utilized to catalog most of the solutions of Carslaw
and Jaeger. An example of a portion of data base for some solutions is given in
Table 2.6. A more complete tabulation is available on the Green’s Function Library
internet site (Cole, 2009). Table 2.6 gives numbers of some one-dimensional cases
from Carslaw and Jaeger (1959). The first column contains the humber; the second
and third columns give the page and equation numbers of the reference; and the last
column contains some comments.

2.8.2 ALGEBRA FOR LINEAR CASES

For linear cases, several kinds of algebraic manipulations are possible. This brief
discussion can include only a few possibilities.

One case involves boundary conditions of the zeroth, first, and third kinds and the
uniform initial temperature distribution. An example is

[X10B1T0|7(0,)=1,] = Tol1 — (X10BOT 1|7(x.0=1)] (2.13)

where Tp is a constant.

In addition to relating boundary conditions and the initial temperature, the nota-
tion suggests a method of superimposing solutions. The number of nonzero values of
the indices following B and T give the number of superposition problems that can
be formed; this is the number of “forcing” terms. An example is provided by the first
four cases of Figure 2.4. The Figure 2.4d case is the sum of the first three cases,

X21B12T2 = X21B10T0 4+ X21B02T0 + X21B00T2 (2.14)

Notice that B12 contains two nonzero digits and 72 contains one; hence, the case
of Figure 2.4d can be given as the sum of three problems. The same superposition
principles can be used for the two-dimensional problem of Figure 2.5a.

Another type of superposition is possible for more than one forcing term at a
boundary. An example is for the Figure 2.4a case with

g =10+5¢ (2.15)
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The temperature solution can be written as
T|g=1045 = 10[X21B107T0|;=1] + 5[X21B207T0|,—] (2.16)

Another aspect of the algebra for the numbering system is that it can aid in identi-
fying the number of explicit dimensions of a problem. A plate is a three-dimensional
object but the temperature distribution can be an explicit function of only one or two
coordinates. Boundary conditions of the zeroth, second, and fourth kinds have the
potential of reduction in the number of dimensions while the first, third, and fifth kinds
do not. However, for reduction in the number of the dimensions, both boundaries in
a given direction must be homogeneous and there cannot be any explicit dependence
of the initial temperature or g in that direction.

As an example, consider the case of a cube which is at zero initial temperature
and there is no volumetric energy source. At time zero, each surface is heated with a
constant heat flux (which may or may not be the same for each face). The number for
this case is X22B11Y22B11722B11T0 and the solution is equal to the sum of six
one-dimensional problems,

X22B11Y22B11Z22B11T0 = X22B10T0 + X22B01T0 + Y22B10T0
+ Y22BO1T0 + Z22B10T0 + Z22B01T0
(2.17)

This reduction of dimensions on the right side of Equation 2.17 is because the typical
three-dimensional problem of X22B10Y22B00Z22B007 0 reduces to

X22B10Y22B00Z22B00T0 = X22B10Y22B0070 = X22B107T0 (2.18)

Note that the Y22B00 and the Z22B00 conditions have boundary conditions of the
second kind and are homogeneous.

An example that does not reduce in the same manner is for a cube initially at
T = 0and subjected to a step increase in temperature on each surface (i.e., a constant
temperature with time and over the surface). The number and algebra for this case are

X11B11Y11B11Z11B11T0
= X11B10Y11B00Z11B0070 + X11B01Y11B00Z11B00T0
+ X11B00Y11B10Z11B0070 + X11B00Y 11801211 B00T0
+ X11B00Y11B00Z11B10T0 + X11B00Y11B00Z11B017T0 (2.19)

Each of these problems is three-dimensional although simplifications in the solutions
result because the problems are similar. If each surface of the cube is subjected to the
same temperature condition (or even convective boundary condition), the GF solution
leads to further simplifications. For example, if the cube is initially at temperature Tp,
and suddenly immersed in a fluid at 7o, = 0 with the same & on each surface, the
temperature distribution is given by

X33B00Y 3380023380071
= To[X33B00T1|f_1][Y33BO0T1|p_1][Z33B00T1|p_1] (2.20)
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This is related to the multiplication of solutions associated with one-dimensional
solutions which are discussed in undergraduate heat transfer textbooks.

The possible uses of this numbering system for transient heat conduction and
diffusion are numerous and these can be considerably expanded beyond what is
outlined in this book.

PROBLEMS
2.1 Give the numbering system designation for Example 1.1 of
Chapter 1.

2.2 Give two numbers for Equation 1.83 that are valid for x > 0.
(Answer: X0075 and X20B0T5)

2.3 Give two numbers for Equation 1.84 that are valid for x > 0.

2.4 Give the numbering system designation for Example 1.3 of
Chapter 1.

2.5 Give the number for the temperature given by Equation 1.92 and by
Equation 1.96b; these are two interpretations of the relation between
temperature and the Green’s function.

2.6 Give the numbering system designation for Example 1.4 of
Chapter 1.

2.7 Give the numbering system designation for Problem 1.22 of
Chapter 1.

2.8  Give the number for the problem with the same geometry and bound-
ary condition shown in Figure 1.12a with the initial temperature
being a constant and with a constant volumetric energy source.

2.9 Give the number for Figure 2.4d with F = 6, ¢ = 2. At x = L,
T =5+2sin4r.

2.10  Using the numbering system for conduction, give the numbers for the
following one-dimensional cases, each of which satisfies the partial
differential equation,

aC 2C
=D

% = Paz O<x<L t>0
X

with conditions:

@ C(0,7)=Co, C(L,t)=0,C(x,0)=6sin2nx/L.
(b) +0C/ox =0atx =0,C(L,t) = Cop, C(x,0) = C1.
(€) C(0,1) =3+4r2, C(L,t) =cos2t, C(x,0) = cos 2x.

2.11  Write the describing differential equation, boundary conditions, and
initial condition for the problem denoted X24B21G1T0.

2.12  For the partial differential equation for cylindrical heat flow with
volume energy generation, give the numbers for the following
cases.

(@ Asolid cylinder is initially at a uniform temperature and is sud-
denly plunged into a fluid at a temperature of 7; where g = 0.

(b) Anhollow cylinder is initially at a uniform temperature is insulated
at the inner surface and is heated by a constant heat flux at the
outer surface; g = 5.
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(c) The region is that outside the radius of » = a and a constant heat
flux exists at » = a. The initial temperature is 7o and g = 0.

(d) The geometry is the same as shown in Figure 2.5d but ¢ at x = 0
is sin tr [ a for r < a and zero for larger values of r. The initial
temperature is a function of r and ¢.
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3 Derivation of
the Green’s Function
Solution Equation

3.1 INTRODUCTION

The Green’s function solution equation (GFSE) for transient heat conduction is de-
rived in this chapter in several forms. First, the one-dimensional form for rectangular
coordinates is derived for boundary conditions of the first, second, and third kinds.
This form is easy to understand and examples are included to demonstrate how the
equation is applied. Second, the GFSE is derived in a general three-dimensional form
that applies to rectangular, cylindrical, and spherical coordinates. An even more gen-
eral form of the GFSE is derived in Chapter 10; it covers the case of nonhomogeneous
materials. Third, an alternative form particularly appropriate for nonhomogeneous
boundary conditions is given. Fourth, a steady-state form is given and, finally, the
GFSE is given for moving solids.

This chapter contains background material that, although important, is not essential
to the application of the Green’s functions (GF) method. One can begin with the GFSE,
choose the correct GF, evaluate the integrals, and find the solution for temperature.
However, an understanding of the GFSE will lead to a greater understanding of the
GFs themselves.

This chapter covers the derivation of the one-dimensional GFSE in Section 3.2
and a general vector-based form in Section 3.3. Section 3.4 contains an alternative
form of the GFSE (AGFSE) which may be helpful for nonhomogeneous boundary
conditions when slow convergence is a concern. Section 3.5 covers the m?T term
which is associated with fins. Section 3.6 covers the steady-state GSFE as a limit of
the transient case. Finally, Section 3.7 contains a derivation of the GFSE for moving
solids.

3.2 DERIVATION OF THE ONE-DIMENSIONAL
GREEN’S FUNCTION SOLUTION EQUATION

The one-dimensional GFSE for rectangular coordinates is derived in this section.
The one-dimensional form of the GFSE is free of vector calculus, so one can gain
intuition about the GF method with a minimum of notation. The derivation makes
use of the properties of GFs, and the result is an expression for the temperature that
fully exploits the linear property of the heat conduction equation.

The boundary value problem for the temperature in a one-dimensional rectangular
geometry is given in Section 1.12, by Equations 1.113 through 1.115 as

63
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PT 10T
L -z 0 3.1
o7+ g( n=_- 1> (1)
aT .
kio—| +hiTly=£i() 1>0 andi=1,.2 (3.2)
T(x,0) = F(x) (3:3)

This is the problem that we are trying to solve with the GF method. In general,
Equation 3.2 describes convection boundary conditions (boundary conditions of the
third kind), but temperature or heat flux boundary conditions may be obtained by
taking k; = 0 or h; = 0, respectively, on surfacesi = 1ori = 2.

The derivation of the GFSE begins with the auxiliary boundary value problem for
the GF that corresponds to the above temperature problem. The auxiliary boundary
value problem is very similar to the boundary value problem for the temperature
with two important differences: first, the energy generation term in the differential
equation for the GF is a Dirac delta function; and second, the boundary conditions
and the initial conditions for the GF are homogeneous. The auxiliary boundary value
problem was previously discussed in Section 1.12 and is given by

#G 1 194G
—+—6(x—x)8(t—t) t>t (3.4a)
ax2 ot
oG
kio=| +hGly=0 i=12 (3.4b)
G(x,t|x',1) =0 r<t (3.4c)

Next, the reciprocity relation (Section 1.13)
G(x,tlx', 1) = G(x', —1|x, —1)
is applied to the auxiliary equation (3.4a) to give

#G 1 193G

— A+ =3 =Xt —1)=——— 3.5

2 TG m 0= (3.5)
Notice the minus sign on the time derivative. The next step is to write the original
heat conduction equation for 7 in terms of x” and <. That is, write Equation 3.1 with

a simple change of variables: replace x by x” and replace r by <t to give

PT 19T

,2+ g( \T) = e (3.6)

Multiply Equation 3.6 by G(x, 7|x’, t), multiply Equation 3.5 by T'(x’, t), and then
subtract Equation 3.5 from Equation 3.6 to get
*T T82G G 1y(TG)

+ —g(x’ t)——&(x —x)d(t — )—

—_— = 3.7
ax’2 x2  k ot 37
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Integrate Equation 3.7) with respect to x” over the domain 0 <x’ < L, and integrate
with respect to t from 0 to ¢ + €, where € is a small positive number. The result is

82G ,
/ dt.// o( ax2 3 ’2>d

t+e 1
+ —/ dt/ g, V) G(x,t|x', 1) dx — =T (x,1)
k =0 x'=0 [0}

1 L

== / [TGIIZ, dx’ (3.8)
o Jx'=0

Note that the properties of the Dirac delta function give the term T (x’ = x, T =t) on
the left-hand side of this equation. This equation can be solved for T'(x, ¢) to give

L
T(x,t)= —// 0[TG]§{,+‘dx’

o t+e L
—i——/ d't/ g(x’, 1) G(x,t|x', 1) dx’
=0 '=0

*G
~|—0L/t . dr/_0< 2 8x’2)dx (3.9)

This is the GFSE for one-dimensional rectangular coordinates. The three terms on the
right-hand side of Equation 3.9 will next be examined and simplified one at a time.

The first term of Equation 3.9 can be simplified because G(x,z|x’,r +¢) = 0
from the causality relation. That is, G is zero because r —t =t — (t +€) = —€ < 0;
there is zero response before the impulse occurs. Also, T'(x’,0) can be replaced by
the initial condition, given by Equation 3.3. Thus, the first term of the GF equation
represents the effect of the initial condition, and it is written

/L F(x')G(x,t|x’,0)dx’ (3.10)
x'=0

The second term in Equation 3.9 is the effect of the volume energy generation.
This term will not be simplified any further at this point.

The third term of Equation 3.9 can be simplified with integration by parts. (The
analogous step in the three-dimensional derivation involves Green’s theorem.) Con-
sider just the integral on x’ from this third term, and integrate by parts to get

L 2 2 x'=L L
T 8 G BT oG oT
/ <G—/2 /2> dx' = — —/ P — dx’
/=0 ox ox Bx /=0 r—g 0x’ ax’

aG|"=L L 8T aG
—T—/ + / dx

x| —g =0 0x” ax’

oT =L aG M=t

X X 0x x'=0

Note that the two integrals in Equation 3.11 cancel.
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If the boundary conditions are of the second or third kinds, then the boundary
conditions for 7 and G can be used to evaluate T / ox’ and dG / dx’ at the boundaries.
Equations 3.2 and 3.4b can be written as

G h;

1
— = ——Gly=y 3.12
| =% Ol (3.12)
oT i h;
S0 Ry (3.13)
3I’ll X'=x; kl' k,’

The notation n; is for the outward normal from the body. Substitute these boundary
conditions into Equation 3.11 to get

x'=L x'=L
G i hi
= :[f(T)G——TG} —[ f0g N TG]
x'=0 0x /=0 k k[ x'=L kl kl x'=0

( >, (i)

2

-> &

i=1

oT
G—
ox’

- (3.14)

Note that the terms that involve T cancel. The summation over i = 1,2 is meant to
cover all the possibilities for the boundary conditions of one-dimensional bodies. The
total number of boundary terms is two for a finite body (0 < x < L). (The derivation
also applies for semi-infinite and finite bodies. The semi-infinite one-dimensional
body requires only one boundary term, and the infinite body does not require any
boundary terms.)

If the boundary conditions are of the first kind, Equation 3.11 takes a different
form. At the boundaries, G = 0and T = f;(z), so that

x'=L 2

Z (3.15)

x'=0 =1 /x—xj

Y=L 56
T_

Again, the summation over j = 1,2 is used to represent the contribution from both
boundaries.

The last step in the derivation of the GF equation is to take the limit of Equation 3.9
as e — 0. Then, r + € can be replaced by ¢ in the equation, without altering the
conclusions that are drawn from € > 0. Finally, Equation 3.9 is combined with the
simplified terms given by Equations 3.10, 3.11, 3.14, and 3.15 to give the desired
result

L
T(x,1) =/ G(x,t|x',0) F(x")dx' (for the initial condition)
x'=0

t L
+ % / d't/ g, 1) G(x,t|x', v)dx’ (for energy generation)
=0 Jx'=0
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+ oc/ dt Z [f’( )G(x t|x,,‘t)i| (for boundary conditions of
=0 i the second and third kinds)

' 2
~af ;[ﬁ(r) e

This is the desired GFSE which applies to one-dimensional transient heat conduc-
tion in the rectangular coordinate system. The one-dimensional body is assumed to
be homogeneous and to have constant properties (independent of temperature and
position).

Each term in the GFSE must have the units of temperature. In the first term, F(x’)
has units of temperature, so the product Gdx’ must be dimensionless for the units to
be correct, therefore the one-dimensional GF has units of m~2. In the second term,
g(x’, ©) has units of W/m3, so the product (a/ k)g(x’, ©) dt has units of temperature,
as it should. In the third term, f;(t) has units of W/m? (heat flux), so the product
(a/ ki) fi(t) Gdt has the units of temperature. Finally, in the fourth term, f;(t) has
units of temperature, so the product «(dG / dn;) d< is dimensionless.

In the usual cases discussed in this book, the boundary terms f;(¢) are known.
There are special cases when T'(x, ) is known from measurements, and f;(z) is the
unknown. This is called the inverse heat conduction problem (Beck et al., 1985). In
this case, Equation 3.16 is considered to be an integral equation because the unknown,
fi(t), is inside the integral.

Each G(-) term in Equation 3.16 represents the same GF, which is mathematically
unique for each set of boundary conditions. For example, in a geometry with X12
boundary conditions, the correct GF to use in Equation 3.16 is the X12 GF, as in the
following example.

} (for boundary conditions
x'=x; of the first kind only)  (3.16)

i

Example 3.1:

For the geometry shown in Figure 3.1, the boundary conditions for T(x, t) are

T, t) = To (3.17)
aT
+k§x qu(t) (3.18)

This is an example of the X12 geometry. The initial condition is
T(x,0) = F(x) (3.19)

and there is no energy generation in this case. If the X12 GF is assumed to be a
known function named Gx12(x, t|x’, t), what is the appropriate form of the GFSE?

Solution

The GFSE is a sum of the various effects that contribute to the temperature
T(x, t). The contribution of the initial condition is given by the first term from
Equation 3.16,
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T] =T, 9T _
o0 OW " k e q(t)
x=1L
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s

FIGURE 3.1 Slab body geometry for Example 3.1: X12 case.

L
/ Gx12(x, t|x’, 0) F(x') dx’ (3.20)
x'=0

The boundary condition at x = 0 is of the first kind. This boundary condition
contributes to the temperature according to the last term of Equation 3.16 where

fi(r) = Tp. This term is
t 0Gx12
— T —A1s
a/x:o( O ox’

Notice the minus sign that appears because 9/ dn; = —d/ dx” at x = 0; the outward
pointing normal n; is in the minus x-direction for the x = 0 surface.

The boundary condition at x = L is of the second kind. This boundary condition
contributes to the temperature according to the third term of Equation 3.16, where
fi(t) = q(v),

) dt (3.21)
x'=0

t
OL/ @GXQ(X,HL,‘[)C/‘[ (3.22)
=0 k

The temperature T(x, t) is the sum of these three effects, or

L
T(x, t) :/ Gx12(x, t|x, 0) F(x) dx’
x'=0

t G
+u[ To X12
T

L o dx

x'=0

t

+OL/ @G)HQ(X,“L,T)C!T (3.23)
=0 k

which is the GFSE for this example.

Notice that Gx12(x, t|x/, T) in each term is evaluated at the time or location
appropriate to that term in the GF equation. For example, in the initial condition
term, Gx12 is evaluated at t = 0. In the term for the left-side boundary condition,
dGx12 / 0x’ is evaluated at x’ = 0.
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FIGURE 3.2 Semi-infinite body with convection at the boundary and internal energy gener-

ation. Geometry for Example 3.2.

Example 3.2:

The one-dimensional semi-infinite body shown in Figure 3.2 has a convection

boundary condition given by
T
—K— = h(Teo — Tlx=0) (3.24)
ax x=0

where T is the ambient temperature. This is the X30 geometry. The volume heat
generation is given by g(x, t) = g, where g¢ is a constant. The heat conduction
equation is thus given by

®r 1 1ot 525)
ax2 K6~ q ot ’
The initial condition is
T(x,0) = F(x) (3.26)

If the X30 GF is assumed to be a known function denoted Gx3o(x, t|x/, T), what is
the appropriate form of the GFSE?

Solution

There are three terms that contribute to the temperature T(x, t): the initial con-
dition, the volume heat generation, and the convection boundary condition. The
effect of the boundary at infinity does not require an explicit term, because it is
already included in the correct GF, denoted Gx30(-). The temperature for this case
is given by the GFSE

o0

T(x, 0) = Gx3o(x, t|x’, 0) F(x") dx’

x'=0

o t e}

+ 7 8cGx3o(x, tIx', 1) dx'd
k Je=0 Jx=0

U hTs
+0t/ TGxgo(x,tIO, 1) dt (3.27)
=0
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Note that the integrals on x’ in the first two terms are evaluated over the entire
body, 0 < x” < o0. This is an extension of Equation 3.16 to the semi-infinite case.
(A similar extension to the X00, or infinite body case, is to evaluate the x” integral
over —oo < x’ <00.)

3.3 GENERAL FORM OF THE GREEN’S FUNCTION
SOLUTION EQUATION

In this section the GFSE will be derived in a general form for an additional term in the
heat conduction equation (the m27 term) and for two additional boundary conditions.
This general form of the GFSE can be applied to three-dimensional geometries in any
orthogonal coordinate system. The rectangular, cylindrical, or spherical coordinate
systems are treated in this book.

3.3.1 TEMPERATURE PROBLEM

The partial differential equation that describes transient, multidimensional, linear heat
conduction in a homogeneous isotropic body is,

1 10T . .
V2T + Eg(r't) —m?T = —ar inregionRand ¢ > 0 (3.28)
o

The thermal conductivity k and thermal diffusivity a are both constant with position,
time, and temperature. Any orthogonal coordinate r can be used in Equation 3.28.
The g(r, ¢) term represents space- and time-variable volume energy generation.

The m2T term could represent side heat losses for a fin; m? can be a function of r
but not ¢. (The m?T term is not needed for the three-dimensional treatment of a fin.)
If there is a component of volume energy generation g that is linearly proportional to
temperature, it should be included in the m2T term which could then encompass the
effects of electric heating and dilute chemical reactions; in such cases m? could be
either positive or negative. An example of transient conduction involving the m2T
term is given in Section 3.5.

The initial temperature distribution is expressed by

7(r,0) = F(r) (3.29)

The boundary conditions for Equation 3.28 have the general form
aT aT
kia_ +hiT:ﬁ(ri,t)—(pcb)i§ t>0 (3.30)

where the temperature 7 and its derivatives are evaluated at the boundary surface S;,
and r;, denotes the boundary. The spatial derivative 9/ dn; denotes differentiation
along an outward drawn normal to the boundary surface S;,i = 1,2, ...,s. The heat
transfer coefficient, 4;, and (pcb); can vary with position on S; but are independent of
temperature and time. The boundary condition given by Equation 3.30 includes the
possibility of a high conductivity surface film of thickness b;. There is a negligible
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FIGURE 3.3 Examples of boundary conditions of the first and second kinds: (a) first kind of
boundary condition at x = 0; (b) first kind of boundary condition at » = a; (c) second kind
of boundary condition at x = 0 and L, rectangular coordinates; (d) second kind of boundary
condition at » = a, cylindrical coordinates.
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FIGURE 3.4 Examples of convection boundary conditions (third kind) on rectangular body.

temperature gradient through the film and there is no heat flux parallel to the surface
inside the film. Five different boundary conditions can be obtained from Equation
3.30 by setting k; = 0 or k, h; = 0 or k, and also b = 0 or nonzero.

Figure 3.3 shows some examples of boundary conditions of the first and second
kinds. Figures 3.4 and 3.5 show some examples of boundary conditions of the third
kind and fifth kind, respectively. The five different boundary conditions are discussed
in Chapter 2.
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Thin film
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FIGURE 3.5 Examples of the film boundary condition (fifth kind).

3.3.2 DerivaTioN OF THE GREEN’S FUNCTION SOLUTION EQUATION

The GFSE is derived using Equations 3.28 through 3.30 and also an auxiliary problem
for an instantaneous heat source inside the body. The solution to the auxiliary problem
is G(r,t|r’, T), where the instantaneous source is located at positionr’ and at time t; r
is the location at which the temperature is observed at time ¢. There can be a nonzero
response at r only if # — t > 0. The auxiliary problem has homogeneous boundary
conditions and a zero initial temperature.

The derivation of the general GFSE begins with the reciprocity relation of GF,

G(r,tir', 1) = G(r', —|r, —1) (3.31)

substituted into the auxiliary equation, resulting in

1 140G
VEG + &8(r —1)3(t — 1) —m?G = —o— 1> (3.32)
G(r',—1r,—t)=0 t<=1 (3.33)
G G
ki— o o+ hiG = (pcb), t>1 (3.34)

where Vg is the Laplacian operator for the r’ coordinates and the minus sign on the
right side in Equation 3.32 is a result of Equation 3.31, with ¢ being replaced by —t.
Next, the temperature equation 3.28, can be written in terms of r” and t as

1 l oT

Multiply Equation 3.35 by G, multiply Equation 3.32 by 7', and subtract Equa-
tion 3.32 from Equation 3.35 to get

(r 0,1 zéa(GT) (3:36)

(GVET — TV3G) 4+ =~ =3 —r)d( — T
o 0t
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Integrate this equation with respect to r’ over the total region R, and integrate with
respect to © from 0 to 7 +¢, where e is an arbitrarily small positive number. This yields

t+e t+e a
f / a(GVET — TV3G)dv'dt +f / —G g(r', ) dv'dt—T(r,1)
=0 JR =0 JR k

= /R [GT1 Zodv' (3.37)

where dv’ is a volume element in the region R. By rearranging the above equation,
the temperature distribution in the body is

t+e
T(r,t) = _/;e[GT];:de/+./;—o /I;%Gg(r’,r)dv’dt

1+e€
+ / / W(GVET — TVEG)dv' dt (3.38)
=0 JR

The left side of this equation is the temperature distribution in the body at location r
and at time ¢. The right side of this equation is now examined term by term.

The first term on the right side of Equation 3.38 can be simplified because
G(r,t|r',t + €) = 0by the causality relation; the effect cannot begin before the instan-
taneous source. Also, at T = 0, the temperature distribution 7'(r’, 0) is the initial tem-
perature distribution F(r). Hence, the first right side term of Equation 3.38 becomes

/ G(r,t)r’,0) F(r')dv' (3.39)
R

For transient heat conduction in a body, this is the effect of the initial temperature
distribution on the transient temperature distribution.

The second term on the right side of Equation 3.38 arises from the volume energy
generation g(r, z). This term will not be simplified further.

The third term on the right side of Equation 3.38 represents the contribution of
all the boundary conditions. This term can be simplified with Green’s theorem to
change the volume integral to a surface integral (see homework problem 3.1). The
result is

t+e
/ / W(GVET — TVEG) dv' dt
=0 JR

t+e S oT

N

=0 ‘s on;

where 9/ dn; denotes differentiation along an outward drawn normal to the boundary
surface S; and ds; is an area element of S;.

The integrand from Equation 3.40 can be expressed in terms of the boundary

conditions of the heat conduction equation and the auxiliary GF equation. If the

boundary conditions are of the second, third, fourth, or fifth kind, then the boundary

conditions for 7 and G can be used to evaluate 97 / dn; and 8G / dn; at the boundaries.
Equations 3.30 and 3.34 can be written as

G
on',

i

) ds! dt (3.40)
r'=r;

-
r_r;
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oG /’l,’ (pcb),- oG

= ——Gly_y — 3.41
n | _y Ol T (3.41)
oT (i, h; b); oT
| = LU lr=r = (peb) 2T (3.42)
on! k k Pk ot

-~
r_rl.

Multiplying the boundary condition Equation 3.42 by the GF, multiplying Equa-
tion 3.41 by the temperature and subtracting yields,

oT G (17, b); G T
F57 ;96 ]:ﬁhﬂG_wcLO, o )
n; r'=r}

/
on;

k k Bt ot

——
r —I'i

. ﬁ(rﬁ,r)G _ (pcb)i (GT)
Tk k ot

Replace Equation 3.43 into Equation 3.40 to obtain for boundary conditions of the
second through fifth kinds:
) ds! dt
r'=r;

the & oT G
2 ) o \Coul T
=0 ;-1 VS ilr=r! i
i+e S (rl,t
=oc/ Z/ %G(I’,t”;,t)ds{dt
=0 i=1 Sl'

K (pc-b)i , , S{
+a;/&—k G(r,1|r},0) F(r') ds] (3.44)

(3.43)

Note that the integral over t has been evaluated for the term 3(GT)/ dt.

For a boundary condition of the first kind the right side of Equation 3.40 takes a
different form. At the boundary, G is zero and T is f;(r;, t) for boundary conditions
of the first kind. Then, the right-hand side of Equation 3.40 becomes

t+e S G
—oc/ Z/ 0 D—|  ds)de (3.45)
=0 =1 S; 3}’11

r'=r’.
j

for boundary conditions of the first kind.

The final step in the derivation of the GFSE is to take the limit of Equation 3.38
ase — 0. Then, t + € can be replaced by ¢ in the equation without altering the con-
clusions drawn from ¢ > 0. The derivation is completed by combining Equation 3.38
with the simplified terms given by Equations 3.39, 3.44, and 3.45 to give the important
general GFSE for heat conduction for homogeneous bodies:

T(r,t) =Tin(r 1) + Tg(r, 1) + Toc(r, 1) (3.46a)

which contains three terms, one for the initial conditions, one for the volumetric
energy source, and one for the nonhomogeneous boundary conditions. The initial
temperature contribution term is
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Tin(r, 1) = f G(r,t|r',0)F(r') dv’ (for all boundary conditions)

+a Z MG(r tlri, 0)F(r)ds; (for boundary conditions
of the fourth and fifth kinds)
(3.46D)

The term for the volumetric energy generation inside the body is

Tg(r,;)=[_0/R%G(r,nr/,r)g(r’,r)du’dt (3.46¢)

The term for the boundary conditions contains two types of expressions, one for
boundary conditions of the second through fifth kinds and the other is for boundary
conditions of the first kind. The term for the boundary conditions is

— i(re,
Tb.c.(r,t)=oc/ Zf filt; I)G(r,z|r;,r)ds;dt
=0 i=1 Si k
(for boundary conditions of the second through fifth kinds)
t s 3G
_a/r:OZ/s- fj(r},t)w ds}dt
j=1 ! / r'=r’,
J

(for boundary conditions of the first kind only) (3.46d)

This equation has two parts because the boundary condition of the first kind must be
treated in a different manner than the others.

Equation 3.46 applies to any orthogonal coordinate system if the correct form
for ds and dv are used. See Table 3.1 for the differential elements ds;, and dv for
rectangular, cylindrical, and spherical coordinates systems.

The total number of terms considered between the i and j summations is exactly s,
that is, the heat flux boundary conditions (second, third, fourth, and fifth kinds) and
temperature boundary conditions (first kind) are mutually exclusive on a given bound-
ary. For a one-dimensional boundary, 0 < s < 2; for a two-dimensional geometry,
0 < s < 4;and, for a three-dimensional geometry, 0 < s < 6. The number of bound-
ary conditions s includes only conditions at “real” boundaries; it does not include a
boundary condition at x — oo for a semi-infinite body, for example.

Equation 3.46 is the main result of this chapter and is a general form of the GFSE.
See Chapter 10 for a general form that applies to nonhomogeneous bodies.

Example 3.3:

Consider a two-dimensional rectangular region starting at x = a; and extending
to x = ap in the x-direction and starting at y = by and going to y = b, in the
y-direction. See Figure 3.6.

a. Formulate and discuss the problem for boundary conditions of zeroth,
first, second, and third kinds.
b. Give the appropriate form of the GFSE for this problem.
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TABLE 3.1

Quantities ds; and dv’ for the Transient GFSE for Three Coordinate Systems

Coordinate Example of Units
System Geometry Coordinates ds; dv' of G*
Rectangular
Slab X 1° dx’ m-1
Rectangle X,y dx' or dy' dx'dy’' m—2
Parallelepiped X,z dx'dy', dx'dz dx'dy'dz m—3
ordy'dz
Cylindrical
Infinite cylinder r b2mr; 2nr'dr’ m—2
Thin shell ¢ b3 (thin-shell Sadd’ m—2
thickness) (a = shell radius)
Finite cylinder rz 2mrid7 2nr'dr'dz m—3
or 2wtr'dr’
Wedge ) dr' orridd’ r'dr'dd’ m—2
Spherical
Sphere r b4mr? An(r')2dr' m—3
Conical section r0 2n(r')2dr' sin®;  2n(r')2dr’ sin@’dd’ m~3
of sphere or 2nr? sin@'de/
4Units of G are such that G dv’ is dimensionless for heat conduction.
bNo integral on ;.
4 y ..
Boundary conditions of
X0, X1, X2, or X3 the zeroth, first, second,
b S or third kinds.
2N
byl
I N 10,71, 12, 0r 13
00 a; a, x
FIGURE 3.6 Two-dimensional rectangular body, geometry for Example 3.3.
Solution
(a) Formulation of the problem. The describing partial differential equation is
PT L OT) gy, 0= petl (3.47)
— + — X = pC— .
oxz gy | TEN D= R,
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and the boundary conditions are either of the zeroth, first, second, or third kinds.
For the boundary condition of the zeroth kind, there is actually no boundary. For
the X20Y10 case, for example, it is convenient to set a1 = 0 and by = 0 and to
note that ay — oo and by — oo, and hence no boundary source term, f(:), enters
forx =ay > coand y = by — 0.

The boundary condition at x = a; can be written as

daT(ar, y, t)

—ka1 i +haT(ar,y, t)=1fuly,t) (3.48)

for boundary conditions of the first, second, and third kinds. For boundary condi-
tions of the first kind, the k41, hs1, and f;1(-) terms are

ko =0 har =1 Ly, ) =Taly, t) (3.49)

where T,1(y, t) is the prescribed temperature history at x = ay. For the boundary
condition of the second kind, the values are

ka1 =k ha1 =0 fa1(y/ t) = q;ﬂ(y, t) (3.50)

where k is the thermal conductivity of the solid, and ga1(-), is the prescribed
heat flux at x = ay. For the boundary condition of the third kind, these terms in
Equation 3.48 are

ka =k ha1 = ha1(y) L1y, ) = ha (V) Tat(y, t) (3.51)

where h,1(y) is the heat transfer coefficient at x = aj and Tooa1(y, t) is the ambient
temperature at x = ay . In general, the usual GF approach permits hto be a function
of position but not time.

In Equation 3.49, the f(:) function represents prescribed temperatures at a
boundary. Functions f(-) can depend on time and position. For boundary con-
ditions of the second kind, f(-) in Equations 3.50 is a prescribed heat flux g. For
a boundary condition of the third kind, f(-) in Equations 3.51 is a prescribed vari-
ation of hTw where h can be a function of position (not time) and T can be a
function of time and position. The boundary conditions at the x = a; surface are
similar to the one at x = a4

aT(az, y, t)

kay ax

+hpT(a, y, t)=fply,t) (3.52)
This equation also applies for the first, second, and third kind of boundary condi-
tions by suitable choice of ka2, ha2, and f3 in a manner similar to that in Equa-
tions 3.49 through 3.51.

The boundary condition at y = by is

aT(x, by, )

+hp1 T(x, b1, t) = f(x, 1) (3.53)
dy

—kp

and the boundary condition at y = by is

aT(x, by, O)

3y + hpa T(x, by, ) = fpo(x, 1) (3.54)

kpy

77
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In order to complete the statement of the problem, the initial temperature dis-
tribution is needed,

T(x,y,0)=Fx,y) (3.55)
where F(x, y) is the temperature distribution at t = 0.

(b) Two-dimensional GFSE. The two-dimensional GFSE can be written as

a b2
Tix, y, ) = [ f Gxylx, £, 0) Gyaly, ty, 0) F(x', /') 'y’
xX'=ay Jy'=b;

o t ap by , ,
+ ?_/ / / Gxy(x, t]x", ©) Gymnly, tly', )
=0 Jx'=a; Jy'=b;

x gx', v, vdy'dx'dt + ly—a + ly=a, + Ly—p, + ly—p, (3.56)

The notation Gyy refers to the GF specific to the rectangular coordinate type
of boundary condition on the boundaries x = a; and x = ay. Similarly, YMN
refers to the GF for the type of boundary conditions at y = by and b,. The last
four terms denoted / in Equation 3.56 depend on the type of boundary condition,
of the zeroth, first, second, or third kinds. There are four [ terms, one for each
boundary. For a boundary condition of the zeroth kind, the associated / term is
equal to zero. For boundary condition of type 1, specified temperature, at x’ = ay,
the ly—a, term for the boundary at x’ = ay is

torh aGyy(x, tlar, T)
himay = - R AA O
=0 )/’=b1 an

x Gymnty, tly', o) fa(y’, o dy' dx (3.57a)
and for boundary conditions of second or third kinds term ly—g, is
a [t by
Iy=a, = T / Gxy(x, tlar, ©)
=0 Jy'=b;
x Gymn(y, tly', v fa(y’, o dy'de (3.57b)

For the Iy—,, term, the same expressions as given in Equation 3.57a are used with
ar in Gyy(-) replaced by ay, f21() by fa2(:). For x' = a; in Equation 3.57b, an’ is
—ax’, while for x’ = a, an’ is 9x’.

The terms /,,_p,, and /,,—p, may be found in a manner similar to Equation 3.57.

Example 3.4:

Give the appropriate form of the GFSE for a three-dimensional rectangular par-
allelepiped region of a1 < x < a3, by <y < by, 1 < z < ¢, with the initial
temperature of F(x, y, z).

Solution
The three-dimensional GFSE can be written as

ap bz C
rooyzo=[" 7 [ Guwx,0 Gty 0
X'=a1 Jy'=by Jz'=¢

x GzmN(z, t|1Z/,0) F(X', ', 2') dx'dy'dz’'
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ST A
k =0 Jx'=a; Jy'=by Jz'=¢

x Gyy(x, t|x', v) Gykely, tly', )
x Gzun(z, t1Z, v gX, ¥/, 2, 1) dx'dy’ dZ'd+
+ vy + by + ey + Ly, + b, + b=, (3.58)

where the I’s can be found as in Example 3.3.

3.4 ALTERNATIVE GREEN’S FUNCTION SOLUTION EQUATION

In some cases, the use of GFs for nonhomogeneous boundary conditions can yield
slowly converging solutions. Some of these cases can be modified to produce better-
behaved solutions by using an alternative GFSE (AGFSE). A brief derivation is given
in this section and a more complete derivation is given in Section 10.3.

The derivation begins with a known solution, 7*(r, ¢), to the problem

*(r,t . .
V2T* 1 = 8 (k ) i region R (3.59)
with the general boundary condition of
oT* oT*
ki 3 + i T*| = fi(ri, 1) — (pcb); (3.60)
ni |y, r; ot r;

Notice that the boundary conditions are nonhomogeneous and contain the same pre-
scribed source term f;(r, ¢) that is in the T'(r, ¢) problem. In addition, Equation 3.59
contains the arbitrary source term of g*(r, ¢), which in some cases is set equal to zero
and in others a particular choice, such as g* = g, simplifies the problem; it does not
have to correspond to g(r, 7).

Let the solution to the usual transient heat conduction problem be made equal to

T(r,t) =T*(r,t)+T'(r,1) (3.61)

Then a solution is desired for T'(r, t),

T'(r,t) =T(r,t) — T*(r,1) (3.62)
which must satisfy
1 10T 107’
V2T + Z[g(r,1) — g*(r, )] —m?T' — =— == in R (3.63)
k o ot o ot
with the initial condition
T'(r,0) = F(r) — T*(r,0) (3.64)
and the general boundary condition (at r = r;)
T’ oT’
ki— + h;T' = —(pch); — 3.65
T (pcb)i— (3.65)
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which is now homogeneous. From the above, it can be seen that the solution to the
T'(r,t) problem can be obtained by using the GFSE given by Equation 3.46 but
using a madified initial condition, a modified volume energy generation term, and
homogeneous boundary conditions. Using Equation 3.46 for T'(r, r) and then using
Equation 3.61 yields the AGFSE for T(r, ¢):

T(r,t)=T*(,1) +/ G(r, t|r',0)[F(r') — T*(r',0)]ldv’
R
s b ;
+ aZ/ ﬁG(r, (|t Q) [F(r}) — T*(r},0)lds]
pr R
(for boundary conditions of the fourth and fifth kinds only)

! aT*(r’,
+ gf / G(r,t|r/,t)|:g(r’,t) — () — pcg d
k Ji=o0 Jr ot

v'dt
(3.66)
Example 3.5:

Consider the problem of a plate with the boundary and initial conditions

T(0,0)=To
T(Lt)=To+ (T; — To)sinwt
T(x,00=To

where Tg and T} are constants and w is the frequency of oscillation of the temper-
ature at x = L. Solve this problem using the standard GFSE and AGFSE.

Solution

The standard form of the GFSE is used first. In this solution (and the alternative
form) it is convenient to solve for 8 = [T(x, t) — To] with conditions

6(0,t)=0
6(L, t) = (T, — To)sin wt
6(x,00=0

By solving this problem rather than the T(x, t) problem, the nonhomogeneous
boundary condition and nonzero initial conditions are replaced by the easier zero
conditions. For this problem, the solution using Equation 3.46 for 68(x, t) has a
nonzero term only for the boundary condition at x = L,

t
0(x, ) = —a / Wm) dt

0
f2n & —m?’rla(t—)/ L2 m+1 X . d
=a A 1z Z e m(—1) sin <mnz) (T; — Ty)sinwtdt

m=1
270 = m(=1)™ sin(mmx/ L)
= (T} — To)=——
T =Tl mZ_T D2, +1

e~/ L D sinwt — cos wt) (3.67a)
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where
2.2
m-ma
D = 3.67b
m o2 ( )
Here the derivative of the GF, 3Gx11/dn’, has been taken from Appendix X, Equa-
tion X11.12. The integral on v is given by
t 2 2 2 1 2 2 2
e~ M AU/ gin pr dt = 7(8”” Tt/ 4 D sinwt — cos mt)
/o w(D2, +1) "
(3.68)

The expression given by Equation 3.67a contains two parts, a steady-periodic
part and a transient part. The steady-periodic part persists in time and is periodic.
The expression is not a rapidly convergent one, however. Notice that there is a term
in the numerator proportional to m* and in the denominator to m*; this results in
terms that are proportional to m~". Series with terms that are proportional to m™!
typically converge very slowly, if at all. An indication of difficulty is observed for
the location of x = L, because sin mm = 0 but this value gives 6(L, t) = 0 which is
not equal to the given boundary condition. This seeming contradiction is related
to the convergence problem.

Consider now the use of AGFSE. The T*(x, t) solution is obtained by solving
Equation 3.59 in the form

3;72* —0 (3.69)
and the boundary conditions
T%0,0=To T*(L, t) = Tp + (T; — Tp)sin wt (3.70)
The solution for T*(x, t) is
T*(x, 8) = To + (T, — To) > sin ot (3.71)

L
Now Equation 3.66 is used. The first integral has no contribution because
FixX)—T*(x,0) =Ty — (To+0)=0

The second integral is not present because the boundary conditions are not the
fourth or fifth kinds. Then, Equation 3.66 gives

X .
T(x, 1) = [To (T, — To)zsmu)t]

a (0t AT (x', v

Gx11(x, t|x', pc dtdx’
ot

_E 0 Jx'=0
X .
=To+ (T — TO)I sin wt

2 [t L= X

- = E =M T A=/ i (e T

L _O /—O L
= X =V m=1

x' x'
x sin (mnT> (T — To)Tco coswtdx dt

81
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2 . sin(myx / L(—=1)M
+ (T =Ty e A N
ot OmX_:] m(DZ, + 1)

n727[20t
X (Dm coswt + sinwt — Dpe 2 1) (3.72)

where D,,, = m?7?a/(wl?). In contrast with Equation 3.67, which has terms pro-
portional to m~!, Equation 3.72 has terms proportional to m~ for large m. Equa-
tion 3.72 converges rapidly and has no convergence problems; it also gives the
correct result at x = L. The issue of convergence speed is discussed further in
Chapter 5.

In general, the alternative GFSE is preferred over the standard form for non-
homogeneous boundary conditions when the large time form of the GF is used. This
is particularly true for boundary conditions of the first kind and when results near
the boundaries are needed. Notice, for this example, however, that two integrations
were required for the alternative form but only one for the standard form. The large-
time GFs have the time- and space-dependent components in separate terms,

such as
2
ot —
exp ( BLZT> and sin B%
while the short-time GFs have the t and x together, such as

o _@mL+x— x')2
P 4a(t — T)

When the short-time GFs for nonhomogeneous boundary conditions are used, the
standard form may be better than the alternative form of the GFSE because fewer
integrations are needed.

Another way to approach this solution would be to treat the steady-periodic por-
tion directly with the steady-periodic techniques discussed in Chapter 9. For many
steady-periodic problems in one spatial dimension, the solution has a nonseries
form, completely avoiding the issue of series convergence.

3.5 FIN TERM m?2T

The fin approximation may be applied in geometries with one dimension that is thin
and if the temperature distribution in the thin-axis direction is approximately uniform
(lumped). Inthis case, the energy equation may be simplified by replacing the diffusion
term corresponding to the thin-axis direction by the term m?T, called the fin term. In
general, the fin parameter m can be a function of position r, but not a function of time.
The fin term can also be used to represent volume heat generation that is proportional
to temperature, such as electric heating or dilute chemical reactions.

The GF method applies to fin problems even though the GFSE for the transient
temperature, Equation 3.46, does not explicitly involve the m? term. In the GFSE
there are terms for the boundary conditions, the energy generation, and the initial
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condition, but there is no term for fins. The dependence of the solution on m? is
hidden in the GF so that a different GF must be found when the fin term is present in
the differential equation. The dependence of the GF on the fin term m? may be seen
explicitly in the auxiliary equation, Equation 3.32.

In this section, transient and steady GFs are discussed for the special case of a
spatially constant fin term. In the case when m? is not spatially constant, the GF may
be quite complicated if it can be found at all; in this event, the Galerkin-based GF
method discussed in Chapter 10 is recommended.

3.5.1 TRANSIENT FIN PROBLEMS

All the transient GFs listed in this book are for the m? = 0 case. However, these
same transient GFs can also be used for the case of a spatially constant m? when the
following transformation is applied to the temperature.

Let W(r,t) be a new dependent variable, related to 7(r, ) by

T(r 1) = W(r,1)exp(—m?ar) (3.73)

where m? is constant. Substitute this relation into the heat conduction equation, Equa-
tion 3.28, and multiply the equation by et The result is
10w

3.74
o ot ( )

V2W + %g(l’, r)em =
The m? term has canceled out so the transformed variable W (r, r) may be found using
GFs that do not involve the m?T term. Then the transformation can be inverted to find
the original temperature 7'(r, r). The transformation does not work on steady-state
problems at all because the time derivative is involved in canceling the m2T term.
For steady-state problems with the fin term, a separate set of GFs must be used; see
Section 3.5.2.

Transient problems that involve the fin term can be quite complex, and although the
transformation allows a familiar set of transient GFs to be applied to those problems,
the complexity of the solution has not been removed but has been shifted to the
energy generation term and the boundary conditions. The boundary conditions for
the transformed variable W involve the term e+,

The initial condition and boundary conditions for W(r, t) can be found by carefully
applying the transformation. The initial condition for W is given by

W(r,0) = F(r)e® = F(r) (3.75)

which is unchanged. The boundary conditions will be examined according to kind.
The boundary condition of the first kind is

T(ri,t) = fi(ri 1) (3.76)

Using the relationship that defines the new variable W, the boundary condition of the
first kind becomes

W(ri, 1) = fi(ri, 1) exp(m?ar) (3.77)
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The boundary condition of the second kind becomes

Bn,»

P W fi(ri, 1) exp(m?ar) (3.78)

ri

The boundary condition of the third kind becomes

k wi_ hil fi(ri, 1) exp(m?at) — W(r;, 1)] (3.79)

371,' ri

The boundary conditions of the fourth and fifth kinds are more affected. Using Equa-
tion 3.73 in Equation 3.30 gives

= fi(ri, t)exp (mzoct) — (pcb); %

ri ri

(3.80)

oW
ki

+ [hi — (pcb)im*W(r, 1)
on;

ri

Notice the extra coefficient (pcb);m?a that appears with #; in this equation.

In summary, for the case of the transient heat conduction equation with the m?T
term for m? constant, the GFs for the transformed variable W (r, ¢) are exactly the same
as for the m? = 0 case, but the energy generation term is now multiplied by e*mz"",
and the boundary conditions are different. For boundary conditions of the fourth and
fifth kinds, &; is replaced by #; — (pcb);m?a at the ith boundary. In addition, for each
of the five types of boundary conditions, f;(r;,t) in Equation 3.46d is replaced by
fi(ri, 1) exp(m?at). After the GF solution for W(r, ) is obtained, 7'(r, ) is simply
obtained by multiplying W(r, ) by exp(—m?2ar) as given in Equation 3.73.

Example 3.6: X11 Case with Fin Term

A thin fin of uniform cross-section is initially at temperature T and the x = 0
end of the fin is suddenly set to temperature Ty. Derive the one-dimensional fin
equation and find the GF solution for the temperature in the fin if the heat transfer
coefficient for side heat losses is constant and the x = L end of the fin is main-
tained at To.

Solution

(@) Differential equation. The fin geometry is shown in Figure 3.7. The fin has
thickness 8 « L so that the temperature varies only in the x-direction. The dif-
ferential equation for the fin may be found by considering the control volume of
length dx at location x. The energy balance for the control volume given by the
integral energy equation (Equation 1.32) could be used.

wi[g(x) — g(x + dx)] — Qw hdx)(T — Ts) = pc(wd dx)aa—f (3.81)

where w is the width of the fin, g(-) is heat flux (W/m?), and h is the constant
heat transfer coefficient. Divide the energy balance by the volume of the control
volume (w3 dx) to get
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WT-T.)

FIGURE 3.7 One-dimensional fin with constant cross section for Examples 3.6 and 3.7.

_gx+dx)—qlx)  2h _ T
I (T = Too) = pC m (3.82)
The heat flux terms may be replaced by a derivative in the limitas dx — 0. Replace

the heat flux terms by Fourier’s law q(x) = —k 8T / dx to give

2T 2h T
— — (T = Ts) = pC— (3.83)

k
ox?2 3 ot

Finally, divide by k and introduce a new variable ©(x, t) = (T — Ty) to make the
equation homogeneous:

¥’e 100
me=—-—
ax? o ot

(3.84)

where now m? = 2h/(5k) with units (meters)~2. This is the differential equation
for a fin of uniform cross-section. The initial and boundary conditions are

O(x,0)=0
00, =Ty - Tx
O, t)=0

(b) Green’s function solution. The boundary value problem for ©(x, t) may
be transformed according to Equation 3.73 for the GF solution. The transformed
boundary value problem for W(x, t) is given by

rPw 1w

dx2 o ot
W(x,0) =0
WO, t) = (To — Tao)e™ (3.85)
WL t) =0

The transient temperature is driven by the boundary condition at x = 0 and the
solution is given by the GF method as

! 2er 0G
an=a/ (To — Too)e™or 241 ge (3.86)
=0 8X x'=0
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Note that the boundary condition is introduced into the integral as a function of
dummy variable t. The function Gx11 and its derivative is given in Appendix X so
the solution is

t
2
Wi(x, t) =OL/ (To — Too)(i’mz(“—]-c
_ 12
=0
ad 2 nmx
—n’rn Otl’ 1)/ L . d 3.87
X E e nsm—L T ( )

Be careful to distinguish fin parameter m from the summation index n, and to
distinguish integration variable t from time t. The integral on T may be carried out
to give the transformed solution:

[e9]
Wix, ) = (To — Too)2m Y (€™ — e~ T et/

n=1
n
x sin (%X) (M 12 + P n?)~!

Finally the temperature in the fin may be found by the inverse transform ® =
w exp(—mzont), or,

O, ) =T, t) — Too =(Tp — Too)27

00
_ _ 2
XZ( moct nrrou‘/L)n

n=1
. NTX 2 2 _2\—1
% sin <T )(m 12 + ?n2)~ (3.88)

In the limit as t — oo, the series converges to the steady-state solution, but the
series converges slowly (like 1/n). A better form of the steady solution can be
found by using a steady GF directly as shown in Section 3.6.

3.5.2 SteAaDpy FIN PROBLEMS IN ONE DIMENSION

The W transformation discussed in Section 3.5.1 does not apply to steady fin problems
because the W transformation relies on the time derivative a7 / ¢ to cancel the fin
term from the differential equation. Many steady fin solutions exist in the literature
and methods other than GFs may be appropriate.

Steady fin problems may be solved with the steady GF method if the steady-fin
GF can be found. An example of a steady fin problem is given in the next section.
Alist of steady-fin GFs in rectangular coordinates is given in Appendix X, Tables X.2
and X.4, for the special case m? = constant. Steady-fin GF for radial-cylindrical
coordinates are given in Chapter 9, Equation 9.21; these were developed for steady-
periodic conditions, but apply to annular fins of uniform thickness.

3.6 STEADY HEAT CONDUCTION

In this section, steady GFs are presented through their relationship with the tran-
sient GFs. The steady-state GFSE is stated in a general form.
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TABLE 3.2
Units of Steady and Transient GFs in Cartesian Coordinates

Geometry Units of Transient GF Units of Steady GF
One dimension m-1 m

Two dimensions m—2 1 (dimensionless)
Three dimensions m-3 m-!

3.6.1 RELATIONSHIP BETWEEN STEADY AND TRANSIENT GREEN’S FUNCTIONS

The steady GF is the limit as + — oo of the time integral of the transient GF:
t
G(r|r') = Iim/ a G(r,tjr', 1) dx (3.89)
t—00 =0

This relationship may be regarded as the definition of the steady GF and it is one way
to find the steady GF if the transient GF is known. For two- and three-dimensional
geometries, this relationship is useful; refer to Section 4.7.3 on the limit method.
For one-dimensional geometries, it is better to find the steady GF directly from the
auxiliary equation for G as discussed earlier in Section 1.7.2.

The limit in Equation 3.89 does not exist for all geometries. Specifically, for ge-
ometries with all boundaries insulated the usual GF does not exist. However, in these
cases a pseudo-GF can be used instead, as discussed later in Section 4.7.2.

In Equation 3.89, the transient GF is multiplied by the term adt with units (m?),
so the steady GF has different units than the transient GFs which depend on the
dimensionality of the geometry under discussion. The relationship between units of
steady and transient GF in Cartesian coordinates are given in Table 3.2.

3.6.2 Steapy GReeN's FUNCTION SoLuTioN EQUATION

In this section, the steady GFSE is stated in a general form. The steady GFSE may be
derived as the limit of the transient GFSE as t — oo because the steady temperature
is simply the transient temperature in the limitas ¢+ — oo. The steady GFSE may also
be derived directly from the boundary value problem for the temperature and from the
auxiliary equation for the GF in a manner parallel to that for the transient GFSE pre-
sented in Section 3.3; this derivation is given as Problem 3.18 at the end of the chapter.

The partial differential equation that describes steady, multidimensional, linear
heat conduction is

1
V2T + zg(r) —m?T =0  inregion R (3.90)

where V2 is the Laplacian operator in the appropriate coordinate system. The ther-
mal conductivity k is constant with position and temperature. The m?T term could
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represent side heat losses for a fin; in general m? can be a function of r. (The m?T
term is not needed for the three-dimensional treatment of fins.)
The steady boundary conditions for Equation 3.90 have the general form

oT
ki— +h;T = fi(ri) (391)
811,'

where the temperature 7 and its derivatives are evaluated at the boundary surface
S;, and r; denotes the location of the boundary. The spatial derivative 3/ dn; de-
notes differentiation along an outward drawn normal to the boundary surface S;,
i =1,2,...,S5. The heat transfer coefficient #; can vary with position on S; but
is independent of temperature. Three different boundary conditions can be obtained
from Equation 3.91 by setting k; = 0 or k, and by setting #; = 0 or k. Boundary
conditions of type 4 or 5 involve energy storage a7 / d¢ and therefore do not appear
in steady problems.
The steady GF satisfies the auxiliary equation

V2G +38(0r —r')—m?G =0 (3.92)
d

1

If the GF is known for a geometry, the steady temperature may be found from the
steady-state GFSE:

1
T(r) = /R zG(r|r’)g(r’)du’ (for internal energy generation)
i)
+ Z 2 G(rir)) ds) (for boundary conditions of
l=l Si k, 1 l

the second and third kind)
N G
=175 nj

ds’;  (for boundary condition
r=r of the first kind only) (3.94)

Next, a steady example is given that includes the fin term. Other examples of
steady heat transfer are given in Sections 6.9, 7.13, and 8.8.

Example 3.7:

Steady fin of constant cross-section with specified temperatures on the ends. Find
the steady temperature in a fin with equation and boundary conditions given by

2
%—mz(T— T)=0 O<x<lL
X
T0)=To (3.95)
T() = Tx

where Tp and T are constant temperatures, and m? = 2h/(ks), as shown in
Figure 3.7.This is a fin of constant cross-section and the number of this case is X11.
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Solution

Define variable ®(x) = T(x) — T to simplify the temperature relations:
d*e
dx?
The GF for the X11 case is given in Appendix X, Table X.3 as

—m*O=0 BO0)=Tp—Tee ©OWL =0 (3.96)

e—m(Z L—|x—x") _ e—m(2 L—x—Xx") + e—m\x—x’\ _ e—m(x+x’)

Gx|x) = 3.97
(x1x7) 2m(1 = e-2) 3.97)
The boundary-condition term of the steady GFSE, Equation 3.94, gives
dG dG
T(x) = Too = —(To — Too) T =(To—Too) = (3.98)
n' | v—o dx’|v—o

Because the boundary term is evaluated at x’ = 0, the x > x’ form of the above
GF must be used to give

T(x) — Teo e~ mx _ efm(2L7X)
To—Te  (1—e2m) (3-99

The usual fin solutions, as given in heat transfer texts, are found by direct solution
of Equation 3.96 with independent solutions cosh and sinh (for example Nellis
and Klein, 2009). To show that the above temperature expression may be restated
with hyperbolic trig functions, rearrange as follows:

T(x)— Too €M — @ M2L=X) @mL /9 _ sinh m(L — x)

To—Teo  (1—e=2mk)y  eml/> ™ sinh mL

However it is expressed, the shape of the temperature distribution is a decreasing
exponential.

3.7 MOVING SOLIDS
3.7.1 INTRODUCTION

Moving solid problems occur in many cases in heat conduction. These problems can
be the result of a solid moving past a heating condition, such an extruded wire moving
out of a die and being cooled by convection and radiation. Another case is a physically
fixed solid with a moving heat source, such as a moving laser source on the surface of
a plate. A third case can result from a moving surface, such as the ablating surface of
a reentry heat shield. In each of these cases, it frequently is convenient to formulate
the problem so that the coordinate system is attached to the heat source which causes
a velocity term to appear in the partial differential equation of heat conduction. The
equations usually must be derived using a control volume approach as discussed in
Chapter 1.

These problems can be one-, two-, or three-dimensional. An example of a one-
dimensional problem is a moving circular die that is convectively cooled and lumped
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inthe radial direction. That is, the temperature is only a function of the axial coordinate
(not radial also) and possibly time. The describing equation can be given as

o U g) (3.100)
ot 0x

where the thermal conductivity is assumed to be independent of temperature, the
coordinate system is fixed at the die with the wire moving at a velocity of U in
the positive x-direction, and « is the wire radius. It is possible to have a steady state
(actually, called a quasisteady state) in this problem with respect to the die. In that
case, the time derivative disappears in Equation 3.100. The expression “quasisteady
state” is used because the temperature at any location fixed in the body varies with
time, even though the temperature at a location fixed with respect to the die does not
depend on time.

Another problem is for a small laser beam heating the surface of a plate. One way
to visualize the problem is for the beam to be stationary and the plate to be moving in
the x-, y-, and z-directions with velocities of Uj, U,, and Us, respectively. Another
way is to visualize that the beam is moving in the —Uj, —U,, and — U3 directions, in
other words, just opposite to the previous way. In both cases, the coordinate system
is fixed on the beam. The describing equation can be given as

82T+32T+82T 3T+U8T+U8T+U8T (3.101)
— +—+—5 ] =pc|— — — — .
ax2  9y2  9z2 b ' 2oy %oz

The velocities Ui, U, and Us are assumed to be known. Again, a quasisteady state
exists for the coordinates fixed on the beam and the velocities being steady, although
the temperature varies with time for a fixed point in the plate. To simplify the problem,
assume that the beam is moving in the negative x-direction while the plate is fixed
(or equivalently, the beam is fixed and the plate is moving in the positive direction),
then the equation becomes

PT  PT  &PT oT oT
kl—+—+—)= — 4+ U — 3.102
(8x2+8y2+8z2) pc<8t+ 13x> ( )

A further simplification occurs when the velocity U, is sufficiently large that the U
term in Equation 3.102 is much larger than the second derivative with respect to the
x term, resulting in the second derivative in the x term being negligible. If, further,
there is a quasisteady state, then Equation 3.102 simplifies to

2T 9T aT
k(— + — ) = pcU;1— 3.103
<8y2 * dz2 ) P o ( )

This equation is interesting because it is the same parabolic type as the heat conduction
equation, but now the time is replaced by x / U;. This is an important point, but it is
not the main thrust of this section.
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3.7.2 THREE-DIMENSIONAL FORMULATION

The emphasis in this section is to develop a method to treat moving solid problems
in a manner that the same GF and GFSE can be used, with appropriate modifications.
We consider the describing equation

2T T 3T aT aT
l——+—+—)= — 4+ V— 3.104
<8x2+8y2+812) pc<8t+ 8x) (3.104)

where V is the velocity in the positive direction of the solid through a fixed control
volume. (A more general equation is considered in the problems at the end of this
chapter.) The boundary conditions can be of the first kind such as

T(0,y,z,1) = Tea(y, 2, 1) (3.105)
T(L,y z,t) = Taa(y, 2, 1) (3.106)

and the second and third kinds,

oT
—k—| = halTea(n 2 0) = TOy, 2,01+ ¢u(,2.1) (3.107a)
x=0
oT
—k—| = hyolT(L,y, z,1) = Troc2(y, 2, )] — qx2(y, 2,1) (3.107b)
x=L

or equivalently,

oT
kol Tt haT(0,y,2,1) = hx1Troot (v, 2, 1) + qe1(y, 2, 1)
x=0
= ful,z1) (3.108a)
oT
ka +hoT(L,y,z,t) = hyaTeoo2(, 2, 1) + gra(y, 2, 1)

Notice the definition of fy1 and f,, implied by these equations.
The initial condition is

T(x,y,z,0)=F(x,y,2) (3.109)

These equations and boundary conditions are transformed using

Vx V?
T(x,y,z,t) = W(x,y,2,1) exp(z—;c — Et) (3.110)

where W(x, v, z, t) is the velocity transformation and is described by

<32W 2w 82W> oW
at

= pc— 3.111
ax2 + ay? + dz2 be ( )
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with boundary conditions of the first kind

W(O,y,2,1) = Tua(y, z, 1) €" 1104 (3.112)
W(L,y,2,t) = Tya(y, z, 1) e~V IOV () (3.113)

or boundary conditions of the second or third kinds,

ow
k| heaW| = fualy,zn)e? 16 (3.114)
ox |,
kV
hyer = hy1 — 2_ (3115)
o
ow
K| oW, = fualy,z,i)e VEI@ITVEED (3.116)
ox |1
kV
Nyepg = hyo + — (3117)
20

Notice the effective heat transfer coefficient definitions in Equations 3.115 and 3.117.
Also notice that the boundary condition of the second kind turns into one of the third
kind; this means that the G x>_ and G x_ GFs are transformed to the G x3_ and G x_3
GFs with the effective i values being —kV / 2o and kV [ 2a., respectively.

The initial condition for W is obtained from Equations 3.109 and 3.110, given by

W(x,y,z,0) = F(x,y,2) exp(—%) (3.118)

This concludes the formulation of the W problem. It now remains to obtain the solution
to the W problem and then to use Equation 3.110 to get the T solution.
The GFSE can be written as

Vx V%
T(x,y,z,t) =eXp\ 5— —— [Win(xyylzvt)
2a 4o
+ Whei(x, y, 2, 1) + Whe23(x, y, 2, 1)] (3.119)

where Win(-) is for the initial condition, Wy1(-) is for boundary conditions only of the
first kind, and Wp2 3(-) is for boundary conditions of the second and third kinds. It is
important to note that there can only be one boundary condition at a given boundary,
but it can be of the first or second or third kinds. The second and third kinds are
treated in a similar manner. The boundary condition of the zeroth kind (no physical
boundary) does not have an explicit term in Equation 3.119.

Each of the W terms in Equation 3.119 is now considered separately. The expres-
sion for Win(-) is

L
Win(x:y,zlt): / / GX“(XIt|x/|O)GY“(yvt|y/10)
v Jz

x'=0

x Gz--(z,t12,0) e VX I F(x' v/ Z)dx'dy' d7  (3.120)
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The dashes in X-- can be 1, 2, or 3; the second dash could also be 0, but then the
upper limit L must be changed to infinity. The first dash in Y-- and Z-- can be 1, 2,
or 3, while the second dash can be 0, 1, 2, or 3. If the problem is two-dimensional
with x- and y-coordinates, then the dependence on z and z’ disappears. If the problem
is one-dimensional with x being the only coordinate, Equation 3.120 becomes

L
Win(x,1) = / Gx--(x,1]x’,0) e V¥ 1@ F(x') dx’ (3.121)
x'=0

Consider next the boundary conditions of the first kind. There could be all boundary
conditions of this kind in a given problem or none might be present. Also the problem
might be only one- or two-dimensional. For reasons of brevity and clarity, only the
x = 0and x = L boundaries are explicitly considered to be of the first kind for the
three-dimensional case, resulting in the Wy (x, y, z, t) expression of

oG t10,t ,
Whei(x,y,2,1) = oc/ / f x1- (x 0.9 Gy 11y, 7) G(z 112 1)
x Ta(y, 7, v)e"” ”(40‘)dt dy' dz/

' dGx_1(x,1|L,
_OL/ / / MGY(}}IZW);/IT)GZ(Z’I|Z/,‘E)
=0Jy J7 ox

X Teo(y, 2/, 1)e" T/ = VLICD go gy/ g7 (3.122)

where the Y and Z notation subscripts have omitted the -- symbols. Recall that
boundary conditions of the second kind have been transformed to those of the third
kind. If there are boundary conditions of the first kind at the y boundaries as well as
at the x boundaries, then in addition to the two terms in Equation 3.122, two more
terms are added with the integration now on x’, 7’ and =, the x’ derivative replaced
with one with respect to y’, and the appropriate boundary temperature used. For a
one-dimensional problem in the x-direction, Equation 3.122 reduces to

" 3G x1_(x,1]0,
Whei(x, 1) = OL/ w Txl(T)eVZI/(Aa) dt
=0 X

t
o OL/ aGX_lz()x;”L’ T) sz(.c) e—VL/(ZOL)+V2‘E/(40L) dt (3123)
=0 X

Consider next boundary conditions of the second and/or third kinds. Again for brevity,
only the x-direction boundary conditions are treated. The result for W2 3(x, v, z, 7) is

o t
Wbcz,S(X,yyZ,f)Z;/ //st-(X,IIO,T)GY()’JD’/,T)
=0Jy Jz
x Gz(z,117,7) fur(y, 2, 1)V T4 dedy az’

o t
+—/ //Gx_s(x,tlL,t)Gy(y,tly/,t)
kJimoJy )2

X G7(z2,112,7) fea(y', 2/, t)e” VEI@TVETI) 4o gy g
(3.124)
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The GFs used above, [G x--(x, t|x', ©), Gy--(y, 1Y, ©), Gz--(z, 1|7/, T)], are tabu-
lated in the appendices and can be used, along with the eigenconditions. There are
some changes, however. The boundary condition of the second kind is transformed
to the third kind, while the first and third kinds remain the same. For both the second
and third kinds, however, the /1 and i values are replaced by other values. At x = 0,
for boundary conditions of the second kind (having G x»-), G becomes G x3-, and
the i values become

kV kV
hi = h — —=—— (3.125)
20 20
where 1 on the right is zero for boundary conditions of the second kind. For x = L

with Gx_», G goesto Gx_3 and Ay goes to

kV  kV
hy > hy + — = — (3.126)
20 20
Hence, atx = 0for V > 0, the effective & is decreased while it is increased at x = L.
If the velocity is in the negative direction, these relations are changed.

Example 3.8:

A large body is initially at the temperature T;, and then its surface at x = 0 is
suddenly decreased to zero. The body is porous and a fluid is flowing through so
that the describing partial differential equation is

2T T T
koo —pc( v 3.127
ox2 pc<8t + Bx) (3.127)

The body can be considered to be semi-infinite (0 < x < co) since it is said to be
large. The boundary and initial conditions are

T0,t)=0 (3.128)
T(x > o00,t)—> T; (3.129)
T(x,0)=T; (3.130)

Solution

Only the initial condition gives a contribution so that Equations 3.119 and 3.120
are needed. The number of this case is XV10B0T1. The equations become

Vx V2t
T(x, t) =exp (2;( — 4@)

o0
x Gxiolx, tIx', 0)e= ¥ /2O Ty’ (3.131)

x'=0

The Gx1o(x, t|x’, 0) GF can be found in Appendix X and is equal to

_W\2
Gxio(x, t|x, 0) = (4mat)~/2 {exp |:_(X 401);) }

n2
—exp |:—(XIO;) i|} (3.132)
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Integrals of the type
I = / * oo | = o (=)
= X'=0 P 4ot P 2a

Ve Vv
= (nat)'/? exp <4(x - 2;)

x erfc |:(oc )Zu - (40‘;1/2i| (3.133)

and another integral of the same type is needed with x replaced by —x. This
integral can be evaluated by completing the square or by using Table 1.6, integral 1,
Appendix I. Then using Equation 3.133 in Equation 3.131 gives

Tj (@n'/2v X Vi (@)'/?Vv X
T(x, t)= > {erfc|: e Gan? | eVX/%arfe T + TR

(3.134)

For the case of positive V and t — oo, the steady-state temperature T(x, co) goes
to zero, while for a negative V(=—U) and t — oo, T(x, 00) goes to

T(x,00) = T,'|:1 —exp (—%)] (3.135)

where erfc (—oo0) = 2 is used. Equation 3.135 is also valid for steady-state ablation
in which a solid is being decomposed at its heated surface by intense heating and
is moving at a constant velocity; x would be measured from the ablating surface
and T and T; would be interpreted as the temperature differences from the ablation
temperature.

PROBLEMS

Note: Unless otherwise requested, the explicit forms of the GFs are not needed;
simply using the notation G x12(-), for example, is sufficient.

3.1 Foravector A, Green’s theorem is usually stated

J[[v-naw=[[Anda

where n is the outward normal. Use this form of Green’s theorem to

establish the following identities:

@ [[[{dVZD +|VD2)dv = [[ d(VD) -nds

(b) [[[{¥VZD — @V2Wldv = [[[¥(VD)-n — O(VY) - nlds
3.2 Demonstrate for X1J(Z7,J = 1,2, 3, and 4) that

L
T(x,1) :/ Gy (x,t|x", 0)F(x") dx’
x'=0
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3.3

3.4

35

3.6
3.7

3.8

3.9

3.10

3.11

Heat Conduction Using Green’s Functions

is the solution to the equation

PT 9T
* ax2 o
with the initial condition of T'(x, ) = F(x) and appropriate homo-
geneous boundary conditions. Use Equation 3.4a in your solution.
A plate has the boundary conditions given by

T(0,1) = To(r) and T(L,t)=T;

and the initial condition 7'(x,0) = T7;. Give the solution for the
temperature in terms of the appropriate GF. Only one integral should
be in the solution.

A semi-infinite region, 0 < x < oo, is initially at temperature F(x).
For times ¢ > 0, boundary surface at x = 0 is kept at zero tempera-
ture and heat is generated within the solid at the rate of g(x, ). Give
the expression for the temperature distribution in terms of GFs.

A semi-infinite region, 0 < x < oo, is initially at zero temperature.
For times ¢ > 0, boundary surface at x = 0 is heated by a constant
heat flux go. Heat is generated within the solid at the rate of gg =
constant from x = a to b. Give the GF solution equation for the
temperature distribution.

Give the GF solution to the problems in Problem 2.10.

Give the Green’s function solution for determining the temperature
in a concrete driveway (modeled as a one-dimensional semi-infinite
solid) that is exposed to a convective surface heating condition with
heat transfer coefficient i, plus a net radiative heat input of ¢ (7). The
ambient temperature is assumed to be varying with time and is given
by Teo(r). At time zero, there is a nonuniform initial temperature-
distribution given by F(x).

Give the GF solution to the problem denoted X23B10Y13B00T -
G- and also give the describing differential equation, boundary, and
initial conditions.

Aplane wall is suddenly subjected to a step change in temperature at
x = 0 to temperature of 100°C and the initial temperature is 50°C.
The x = L boundary is exposed to a convection condition with an &
of 10 W /m? °C and a fluid temperature of 50+50 sin(5¢) °C. Obtain
three different expressions for the temperature distribution in terms
of the appropriate Gy (which should not be given explicitly). The
three different expressions are found by different treatments of the
initial condition and the boundary conditions.

A cube is initially at the temperature F(x, y, z) and the surfaces are
exposed to a fluid at temperature T, which is a constant, and a heat
transfer coefficient /2. Give an expression using GF for T'(x, y, z, ).
Asolid cylinder of radius a in a nuclear reactor is initially at the tem-
perature F(r). Itis cooled by a fluid at T~ (r) and has a heat transfer
coefficient of 4. Give a mathematical statement of the problem and
also the number using the number system of Chapter 2. Find the
solution in terms of GFs.
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3.12

3.13

3.14

3.15

3.16

3.17

Solve Problem 3.11 also with a volumetric heat source due the nu-
clear reactions of g(r) = go exp[—(a —r)/ R] where R is a constant.
The alternative GF solution equation involves the quantity 7*, de-
fined by

1
V2T — m?T* = zg*(r,t)

Give a physical interpretation of 7*, then in one-dimensional rect-
angular coordinates find a general solution for 7* for the following
cases for m? = 0:

(@) g*(r,r) = g1, aconstant

(b) g*=x

(C) g* — e—ax

Using the notation G(r, 0, ¢, |7, 6, ¢’, T) for the GF, write the GF
solution equation for the temperature in an infinite body in spherical
polar coordinates. The initial condition is F(r, 8, ¢) and the volume
energy generation is g(r, 6, ¢, 1).

Using this name G(r, ¢, z,¢|r', ¢, z/, t) for the GF, write the GF so-
lution equation for the temperature in a half cylinder,0 < r < a,0 <
¢ < 7,0 < z < L. The boundary conditions are homogeneous, the
initial condition is F(r, ¢, z) and the volume energy generation is
glr,¢,z,1).

Repeat the derivation of Section 3.3 for the same problem but the
right-hand side replaced by

1 oT

uu(r) ot

The function «(r) could represent a velocity term for a flow problem
if the second derivative in the flow direction were dropped and ¢
were replaced by the coordinate in the flow direction. Show that the
GF solution equation is the same as Equation 3.46 except u(r’) is
also inside the first integral of Equation 3.46b.

An orthotropic plate is a model for aligned-fiber composite materials.
For a two-dimensional orthotropic body, the thermal conductivity
has two components (and only two), such as &, and k,, for the x- and
y-directions, respectively. Consider the problem of

T N PT 9T
a2 a2 TP
T

ko
¥ ox

ke

=qx0(y,t) T(a,y,t)=Tu(y,t) T(x,0,t)=0

x=0

or
ey —
Y ay

= hyp[T (x,b,1) — Too(x,1)]
y=b

The objective is to obtain a GF solution equation for this case by
using the transformation given below.
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3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25
3.26

Heat Conduction Using Green’s Functions

(a) By using the transformation y" = y(ky |ky)!/2, show that the
problem can be transformed to

2T 2T T

kxﬁ + XW = ch
oT _ N / — ! =
kol =an(hn) T@y ) =Ty, T(x,01)=0
X 1x=0
aT
T = W [T, b, 1) = Too (x,1)]
8)} }'/ /

where b’ = b(ky [ k)2 and B, = hyp (ke [ y)Y 2.

(b) By comparing the above problem with those previously given,
obtain a GF solution equation. (It is not necessary to completely
rederive the GF solution equation.) Leave in a form that does
not contain the GFs in explicit form.

(¢) Give the GF(s) for this problem.

Derive the steady-state GF solution equation, Equation 3.94, from

first principles.

Derive Equation 3.100 using the control volume equation from

Chapter 1.

Using the relationship between steady and unsteady GF, (Equation

3.89), show how the unsteady GF solution equation reduces to the

steady GF solution equation in the limitas r — oo.

Repeat Example 3.7 with added constant energy generation in the

body: g(x,t) — go.

Repeat Example 3.7 with the boundary condition x — L given by

T (x = L)
ki
ox
Show that if m = ax in the equation

+A[T(x =L)— Tx] =0

PT 5, 19T

w2 " o ot

that the W transformation (Equation 3.73) does not eliminate the
m?T term.

Give the solution in terms of GFs for the moving long circular die
described by Equation 3.100 for T, equal to a constant and the
boundary condition at x = 0 of T = Tp. The initial temperature is
F(x).

Give the solution using GFs for the problem denoted X V23B11T —.
Use the alternative GF solution equation to obtain 7'(x, ¢) for

2T 9T Ly T
o— = — —
Ox2 ot ox

T
—ka— =h(T(0,1) — Teo) atx =0
ox

T=0 atx =1L T(x,0)=0
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3.27 The GF for the hyperbolic energy equation is defined by
196G 138G 3 —r)d(—q)
o o o2 a2 a

Derive the GF solution equation for the hyperbolic energy equation
in the infinite body.
3.28  Show that the equation

RT  PT  9°T glvyzt) 5

T T A A T
ox2 + 0y? + 972 * k "
L[or  or  or or
=—|—+u—+v—+w—
ala T Ty TV

by using the transformation

2
X
T(x,y,2,t) = W(x,y,z,t)exp |:Za — <Z0¢ + m2a> ti|
oxo | W V2t exo | 1 w2t
« _It Ze_ X7
P 20 4o P 20 da

2w N PW | PW | H(x,y,z,f) 10w
ox?2 dy? 972 k T a o

can be written as

where H is defined to be

ux u? 2
H = g(x,y,z,t)exp —5—}— E—I—ma t

vy Vet wz  w?t
X exp —54-@ exp —54—@
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4 Methods for Obtaining
Green’s Functions

4.1 INTRODUCTION

Although the Green’s function (GF) approach represents a powerful and flexible
method for solving heat conduction and diffusion problems, it is necessary to have
mathematical expressions for the GFs. Many GFs are known; Appendixes X, R,
and RS provide listings of GFs in a systematic form for rectangular, cylindrical, and
spherical coordinates, respectively. The purpose of this chapter is to demonstrate sev-
eral methods of obtaining exact expressions for the GFs. Galerkin-based GFs for com-
posite bodies and other difficult cases are discussed in Chapters 10 and 11. Once the GF
is known for a given problem, the general solution of the problem can be written down
immediately using the GF solution equations given in Chapter 3; integrations may
still be needed, but the integrations can be performed numerically, if not analytically.

For many problems involving finite bodies, the GF expressions have two different
forms: the small-cotime GF and the large-cotime GF. Various solution techniques are
used to determine the different forms. The small-cotime and large-cotime forms of
the GF are mathematically equivalent and both apply forz > 0; however, depending
on the practical applications, one may be preferred to the other. Applications of the
small-cotime and large-cotime GF are discussed in more detail in Chapter 5.

In Chapter 1, we saw that the appropriate GF for a given problem is the solution
to the corresponding homogeneous auxiliary problem. Consequently, the GFs them-
selves can be found by classic mathematical methods. In this chapter, several different
approaches for obtaining the GFs are discussed and illustrated through various exam-
ples. The first method uses sources and sinks in an infinite body for construction of
the GF in a finite planar body. This method, which is known as the method of images,
is illustrated in Section 4.2. The next method utilizes the Laplace transform. Many
small-cotime GFs are derived from the Laplace transform solutions of the heat con-
duction equation. This approach is discussed in Section 4.3. The third method uses the
separation of variables technique. Many large-cotime GFs are obtained through this
procedure. The method of separation of variables (and its relation to the GF) is dis-
cussed in Section 4.4. Section 4.5 shows that certain two- and three-dimensional GFs
can be found by simple multiplication of the corresponding one-dimensional GFs.
The method of eigenvalue expansion is discussed in Section 4.6. Finally, Section 4.7
covers steady-state GFs and their relationship with transient GFs.

4.2 METHOD OF IMAGES

The method of images for rectangular coordinates is based on the construction
of a transient GF for a finite body from the transient GF for an infinite body
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(the fundamental heat conduction solution). This method readily applies to transient
problems with boundary conditions of the zeroth, first, and second kinds. A few steady
GF may be found with the method of images for boundaries of the first kind only (see
Barton, 1989, pp. 127).

Earlier in Section 1.11 the method of images was used to find transient GFs for a
semi-infinite body. Here the method of images is used to find transient GFs for four
different flat plate cases. They are denoted X11, X12, X21, and X22 in the heat con-
duction numbering system. Transient planar sources and sinks are used for these
one-dimensional cases, but transient line and point sources can also be used in two-
or three-dimensional geometries.

The temperature solutions for each of the cases mentioned above with an initial
temperature of F(x) and homogeneous boundary conditions is given by

L
T(x,t) = / G (x, tx',0) F(x) dx’ (4.2)
x'=0

The integration is over the domain 0 to L. Four G(-) functions can be constructed by
superimposing the plane source solution for an infinite body (the fundamental heat
conduction solution). See Figure 4.1 for the location of these plane sources (which
are denoted by the plus signs) or sinks (which are denoted by the minus signs). The
physical locations of the sources or sinks are at positions included by the equations

77 =2nL +x —x n=...,—-2,-1,0,1,2, ... (4.2a)
T =2nL+x+x n=...,—-2,-101,2, ... (4.2b)

One of the simplest cases to visualize is the X22 case which has two insulated
boundary conditions; these boundary conditions can be modeled by symmetric images
or reflections. The result is a series of sources (not sinks) at the z~ and z™ locations
given by Equation 4.2a and b. As a consequence, the X22 GF has only positive
components as given in Table 4.1.

Another case is denoted X 11 and is shown at the top of Figure 4.1. Notice that
each image (at x = 0,+L,+2L, ...) must have the opposite sign to the adjacent
one in order to have a zero contribution at the common boundary. This leads to the
distribution of signs shown in the X11 case in Figure 4.1 and the X11 GF given
in Table 4.1. A similar procedure is followed in the X12 and X21 cases shown in
Figure 4.1. The boundaries at x = 0, +2L, +4L, ... are repeated as are those at x =
+L,4+3L, ...; as a consequence, the symmetric condition (boundary condition of
the second kind) has the same sign on both sides of a boundary and the antisymmetric
condition (boundary condition of the first kind) is modeled by a source on one side
and a sink on the other.

The cases shown in Figure 4.1 have the GFs that are tabulated in Table 4.1 as the
last five cases, with the last case being a general form containing all of the previous
four cases. There are summations that extend from n = —oo to n = +o0, but only a
few terms are needed for small dimensionless times; this is discussed further in the
next paragraph. A more extensive table of GFs for Cartesian coordinates is given in
Appendix X.
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FIGURE 4.1 Location of sources (+) and sinks (—) for finite-body GFs created from infinite-
body GFs by the method of images.

It is instructive to see how many terms in the X11, X12, X21, and X22 cases
are needed for small dimensionless times, a(t — t)/ L?. Consider the typical term,
K(2nL 4+ x £ x’,t — t) - L, which is plotted in Figures 4.2 and 4.3. Results for the
dimensionless time of 0.025 are plotted in the first figure and for the dimensionless
time of 0.1 in the second figure. The function K - L is plotted versus (x — x")/ L or
(x +x")/ L, where (x — x’)/ L can vary from —1 to +1, and (x + x")/ L can vary
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TABLE 4.1
Green’s Functions Formed from Fundamental Heat Conduction Solution

Case Green’s Function
X00 K(x —x',t — 1) = [4na(t — 1)] Y2 exp[—(x — x)?/ 4a(t — 1)]
X10 Kx—xt—1)—K(x+x',t—1)
X20 Kix—xt—9)+K@x+x',t—r1)
o0
X11 S [K@nL+x—x"t —t)—K@nL+x+x',1 —1)]
n=—oo
o0
X12 > (-1)'[K@nL+x —x",t —1) = K@2nL +x +x',t — 1)]
n=—o00
o0
X21 > (D)"[K@nL +x —x';t — 1)+ K(2nL + x +x',t — 1)]
n=—o0
o0
X22 > [K@nL+x—x',t —1)+ K@nL+x+x',t —1)]
n=—0o0
o0
X1J S ()UK @nL +x —x',t — 1)+ (1) K@uL +x +x',t = 7)), I,J =1,2
n=—o0
10—
Dim. time = 0.025
1.0000 5 =
3 0.1000 - E
© n=-1
40,0100 - .
8
+ 0.0010 b
8
Z0.0001 - i
=
a
X 1075 4 4
n=1
10-6 4 .
A S S —
-1.0 -0.8 -04 0.0 0.4 0.8 1.2 16 1.8

(x—x")/L or (x+x")/L

FIGURE 4.2 Function K(2nL + x +x’,t — 1) - L, a component of the small-cotime GF, at
dimensionless time a(r — 1)/ L2 = 0.025.

from 0 to 2. For a(r — 1)/ L? = 0.025, the maximum K - L value is almost 2. See
Figure 4.2. For terms with values at least 0.0001 (0.005% of the maximum), then = 0
term is needed for (x — x’) / L between —1 and 1, and for the (x 4+ x’)/ L term for O
to 1. The n = —1 term is needed only for (x + x’) / L between 1 and 2. For the larger
time of a(r — 1)/ L? = 0.1, Figure 4.3 shows that for terms being less than 0.005%
of the maximum, the K - L terms for (x — x’)/ L are needed for n = 0 (region of
—1to 1), n = 1 (region of —1to 0), and n = —1 (region of 0 to 1). The K - L
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1.0000
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v

FIGURE 4.3 Function K(2nL + x £+ x’, ¢ — 1) - L, a component of the small-cotime GF, at
dimensionless time a(z — 1)/ L2 = 0.10.

terms for (x + x’)/ L are needed for n = 0 (region of 0 to 2) and n = —1 (region
of 0 to 2). For other criteria regarding the magnitude of terms that are neglected, the
number of required terms could be greater or smaller. The major point is that for
small dimensionless times such as a(r — 1)/ L? < 0.025, only two terms are needed
for K(-), one for n = 0 and the other forn = —1.

4.3 LAPLACE TRANSFORM METHOD

The Laplace transformation is a powerful tool in the solution of linear ordinary and
partial differential equations, and has accordingly been applied to many heat con-
duction problems (Carslaw and Jaeger, 1959; Arpaci, 1966; Luikov, 1968; Ozisik,
1993). The method is particularly well suited for the solution of one-dimensional
time-dependent problems. The process of solution consists of three main steps. First,
the time variable is removed from the problem by means of Laplace transformation,
resulting in a simpler equation than the original equation. Next, the new equation
is solved in the transformed space; and finally, the solution of the new equation is
transformed back to obtain the solution to the original problem. Since a brief intro-
duction to the Laplace transform method was given earlier in Section 1.8, the present
discussion is intended mainly to illustrate various approaches for obtaining the GFs.
For a more comprehensive presentation of the Laplace transform method applied to
heat conduction problems, see Carslaw and Jaeger (1959, Chapters 12, 13, and 15).
In this section, we first present a brief definition of the Laplace transformation.
An example problem is given next, to demonstrate the application of the method to a
typical heat conduction problem by employing a table of transform pairs. Then, the
method is utilized for the determination of the GFs through the use of three examples.
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4.3.1 DEFINITION

Consider a function f(z) for + > 0. This function can be multiplied by ¢~ and
integrated with respect to # from zero to infinity. Then, if the resulting integral exists,
it is a function of the parameter s; that is,

7(s) = fo Ty di (4.3)

The function £(s) is called the Laplace transform of the function £ (¢), and is denoted
by .Z[ f(1)]. The original function f(z) is called the inverse transform of f(s) and is
denoted by

f@©) =2 fs) (4.4)

Both functions f(r) and f(s) are called a Laplace transform pair, and knowledge
of either one enables the other to be recovered. A list of properties of the Laplace
transform is given in Appendix L.

An important step in the process of solving a problem by Laplace transforms is
that of inverting the transform to obtain the solution to the original problem. Fortu-
nately, extensive tables of transform pairs are available which can directly be utilized
for the solution of many problems (Appendix L, Table L.1)

4.3.2 TeMPERATURE EXAMPLE

As a demonstration of the Laplace transform method, an example of finding the
transient temperature is given next.

Example 4.1: Heat Conduction in a Semi-Infinite Body with Specified
Surface Temperature—X10B1T0-Case

Consider a semi-infinite body initially at zero temperature subjected to a constant
surface temperature Tp, for times ¢t > 0. There is no volume energy generation
in the body. Using the Laplace transform method, find the transient temperature
distribution in the body.

Solution

The differential equation and the boundary and initial conditions for this problem
are given as

PTix,t) 13T(x, 0

2 a ot 4-5)
T(0,t)=Ty (4.6a)
limT(x,t) = 0 as x — 00 (4.6b)

T(x,00=0 (4.60)
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The first step in the solution is to find the Laplace transform of the differential
equation (4.5) with respect to ¢; that is,

PTx, 0| 1 aT(x, t)
‘g[ ox2 i|_oc'$|: at } w7
The use of the properties of Laplace transform yields
PTx, 0| d’T(x,s)
<z |: 92 i| =32 (4.8a)
2z [BT(X’ t)} = sT(x,5) — T(x,0)
ot (4.8b)
=sT(x,s) since T(x,0) =0
where
. oo
T(x,5)=Z[T(x, 0] = [ e T(x, 0 dt (4.80)
0
Thus, Equation 4.7 can be written as
d?T(x,s) s—=
—z T, T(x,s)=0 (4.9)

Similarly, the Laplace transform of the boundary conditions, Equation 4.6a and b,
yields

T,s) =2 [Tyl = % (4.10a)
T(x,s) — 0 as x — oo (4.10b)

Equation 4.9 is an ordinary differential equation for T(x, s) with the only indepen-
dent variable being x. The solution of this equation with the boundary conditions
given by Equation 4.10a and b may be written as

_ T
T(x,s) = ?Oe‘xvs/“ @.11)

The final step is now to transform T(x, s) back to obtain the solution for T(x, t);
that is,

Tix, t) = .2 [%e_"m} (4.12)

Equation 4.12 can be inverted simply by utilizing a table of transform pairs (Ap-
pendix L, Table L.1, number 42) to obtain

T(x, 1) = Ty erfc [W} (4.13)

This is the same solution as given by Equation 1.112 which was obtained by the
GF method.
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4.3.3 DerivaTIiON OF GREEN’S FUNCTIONS

The short-cotime GF for many heat conduction problems are derived from the Laplace
transform solution of the corresponding auxiliary equation with homogeneous bound-
ary conditions. As discussed in Chapter 1, the auxiliary equation for a given problem is
identical to the original heat conduction equation for that problem except for the heat
generation term, which is replaced by a unit instantaneous heat source (a Dirac delta
function). The homogeneous boundary conditions for the auxiliary problem must be
of the same kind as the original problem. Determination of the GFs by the method of
Laplace transform is best illustrated through the use of examples.

Example 4.2: Semi-Infinite Body with Convection—X30 Case

Find the GF for the problem of a semi-infinite body with the convective boundary
condition at the surface.

Solution

This is the X30 case. The GF associated with this problem is the solution to the
following auxiliary equation:

PG 1 193G
—— + dx =Xt —0) = —— t>0 x>0 (4.14)
ox2 o« a ot

subject to the homogeneous boundary conditions of

G0, t|x’, 0)

—k
ax

+ hG(O, t|x',0)=0 t>0 (4.15a)
G(oo, t|x’, 0) is bounded t>0 (4.15b)

and initial condition
Gx, t|x’,00=0 t<O0 (4.15¢)

Notice that the second term in Equation 4.14 represents a unit instantaneous plane
source at location x’ released at time t = 0. Consequently, G(x, t|x’, 0) is the X30
GF for T = 0. Once the appropriate expression for G(x, t|x’, 0) is determined,
then GF for T # 0 can be found by replacing t by t — t in that expression.

In the Laplace transform approach, the auxiliary problem given by Equa-
tion 4.14 is subdivided into two problems. One gives the solution due to the instan-
taneous plane source at location x” and at time < for an infinite one-dimensional
body (the fundamental heat conduction solution), and the other satisfies the given
initial and boundary conditions. Hence G(x, t|x’, 0) is written as

Gx, t|x,0) = K(x = x', t —=0) + V(x, t) (4.16)

where K is the fundamental heat conduction solution for T = 0, given by

W2
K(x —x',t —0) = (4mat)""/ % exp |:—(X40;)i| (4.17)
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and V(x, t) satisfies the one-dimensional heat conduction equation in the semi-
infinite region; that is,

FVix, ) 19VIx, 1)

2 5 ot fort>0 and 0<x<oo (4.18a)

with the initial condition of
Vix,00=0 (4.18b)

and V should be such that the boundary conditions, Equation 4.15a and b, is
satisfied.

Next Laplace transform will be used to replace time ¢ by transform parameter s.
Taking the Laplace transform of K (use Appendix L, Table L.1, number 43) gives

— 1 s\1/2 ,
K= Wexp |:— (&) [x — x |] (4.19)

Taking the Laplace transform of Equation 4.18a, using the same techniques dis-
cussed in Example 4.1, results in

d*vV  s_
2 2y=
w2 0 (4.20)

The general solution of Equation 4.20 may be written as

V(x,s) = Aexp [(5)1/2X}+Bexp [— (5)”2 x] (4.21)

o
Now, taking the Laplace transform of Equation 4.16 and substituting the values for
K and V from Equations 4.19 and 4.21 into the transformed equation yields

— , _ 1 s\1/2 ,
G(X,5|X,0)—Wexp[—<&) |X—X|]
s\1/2 sy\1/2
+ Aexp [<&) x] + Bexp [— <&> X] (4.22)

The constants 4 and B in Equation 4.22 are determined from the boundary con-
ditions 4.15a, b. The Laplace transform of these equations are

—kw +HG(0,5x,0) =0 (4.23a)
X
G (00, s|x’, 0) is bounded (4.23b)

Then, by introducing the transformed conditions Equation 4.23a and b into Equa-
tion 4.22, the constants A and B are

A=0 (4.24a)

172 _ 1/2
B = ! (s/a) H exp [— (£> ! X/:| (4.24b)

2(as)'2 (s/a)'/2 + H o
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where H = h/ k. Substituting Equation 4.24a and b back into Equation 4.22 yields
— , 1 s\1/2 ,
G(X,SlX,O)—W{eXp[—<&) IX—XI]
s\1/2 , 2H
e [_ () (X”)] /@2 4 H]
1/2
X exp [— (5) (x + x’)]} (4.25)

From the Laplace transform table (Appendix L, numbers 43 and 47), the inverse
transform of Equation 4.25 gives the solution G(x, t|x’, 0); that is,

s 1 (x — x')? (x + x')?
Glx, t|x’, 0) = W {eXp |:— Joi i| + exp |:_4(xt:|}

h h . Rt x+x) h 4/
— Eexp |:k(X+X)+0Lk2:| erfC [W + E(Ott) i| (426)

which is the X30 GF for t = 0. The X30 GF for t # 0 can now be determined by
replacing t by t — t in Equation 4.26; that is,

Gx30 (x, t|x', ©)

B 1 =X N X
~ nat— o172 | TP T aae—o | TP T dae— v

h h , R (t—1) x+x h 12
— EeXp |:k(X+X)—|—OLk2i| erfc {W + E[(}L(t— 'L')] }

(4.27)
This equation is tabulated in Appendix X. Note that for h — 0 the error function
term drops out, demonstrating that the convection boundary (third kind) reduces

to the insulated boundary (second kind) when convection goes to zero. That is,
Gx3o(h — 0) = Gxa0.

Example 4.3: Region outside a Spherical Cavity with Convection—RS30
Case

Find the GF for the infinite region outside a spherical cavity of radius a with a
convective boundary condition. This is the RS30 case.

Solution
The GF is the solution to the auxiliary equation,

1920rG) 1 , 193G
Far T =0 =0

Here 8(r — r’) has units m=3. The homogeneous boundary conditions are

aG(a, t|r',0)
or
G(oo, t|r',0) is bounded, t>0 (4.29b)

a<r<oo t=>0 (4.28)

—k + hG(a, t|r',0) =0 t>0 (4.29a)
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and the initial condition is
G(r, t|r',00=0 t<0 (4.29¢)

Equations 4.28 and 4.29 represent the problem of an infinite region outside the
spherical cavity of r=a (initially at zero temperature) subject to a unit instanta-
neous spherical surface source at r = r’ released at time t= 0 with a homogeneous
convective boundary condition at r=a.

Again, in a manner similar to that used in the previous example, the solution
for G(r, t|r, 0) is subdivided into two parts in the following form:

G(r, t|r',0) = Ks(r—=r', t = 0)+ V(r, t) (4.30)

where K is the fundamental heat conduction solution for radial flow in the spher-
ical region; it is the GF for the RSO0 case (see Appendix RS) and is given by

, B 1 (r—r')? (r+r)?
Ks(r—r,t—O)_W{exp[— o i|—exp|:— o :|} (4.31)

and its Laplace transform is given by (Appendix L, number 43)

— 1 sy\1/2 , s\1/2 ,
KS:W{eXp[—(&) |r—r|}—exp[—(&) (r+r)“ (4.32)

The temperature V in this case satisfies the heat conduction equation for one-
dimensional heat flow in the region outside the spherical cavity r = a; that is,

2[r Vi 1%
¢ [ra (2r, ol = 19lr a(tr/ 0l fort>0 and a<r<oo (4.33a)
r a

with the initial condition of
V(r,0) = 0 (4.33b)
The Laplace transform of Equation 4.33a yields

-
V) S50 foracr<oo (4.34)
dr? a

which has the general solution of the form

W(r, s) = ?exp [(5)”2 r] -I—gexp [— (5)”2 r] (4.35)

Taking the Laplace transform of Equation 4.30 and substituting the values for K
and V from Equations 4.32 and 4.35 into the result gives

— , _ 1 s\1/2 , s\1/2 ,
G(r/slr/o)—W{eXp[—(&) |r—r|:|—exp|:—(&) (r+r)]}

+?exp [(2)1/2 r:| +$exp [— (5)”2 r:| (4.36)

111
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Equation 4.36 must satisfy the boundary conditions Equation 4.29a and b. The
Laplace transforms of these equations are

B 3G (a, s|r’, 0)
ar

G (oo, sr',00=0 (4.37b)

+HG(a,s|r',0)=0 (4.37a)

where h/ k is denoted H. It follows from Equation 4.37b that
A=0 (4.38a)

Then, from Equation 4.37a, one can show that

5= g (o0 [ (2) ] e [ () -2

2(5/(!)1/2 S 1/2 /
Garrmee () e -2l 38

Substituting the values for 4 and B from Equation 4.38a and b into Equation 4.36
yields,

_ ;o 1 s\1/2 ,
G(r,s|r',0) = B @S] 72 {exp [— <&> |r—r|

1/2 P 1/2
—exp [— <£> (r+r — 2a)] + %
* (s/00"/2 4+ ~+ H

X exp [— (5)”2(%}—/—23)]} (4.39)

which is the Laplace transform of G(r, t|r’, 0). Taking the inverse transform of Equa-
tion 4.39 (see Appendix L, number 43 and 47) and by replacing t by t — t gives

Ggs3o (r, tr', 1)

_ 1 r=m? 1 r+r'—2a°
T 8nrrlan(t — 1)]1/2 PN T aa—0 | TP T dac— )

k+ah 172 k+ah\? k4 ah ,
- [4ma(t — )] ' “exp |alt — r)( v ) + v (r+r —2a)
L )

which is the RS30 Green’s function; it is included in Appendix RS.
Example 4.4: Transient Slab Body, Case X12

Use the Laplace transform method to find the transient GF in the slab with G =0
atx=0and 0G/dx =0atx = L.
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Solution
The GF satisfies
#¥G 109G 1
— — —— 4+ ¥x = X3 =0 (4.47)
x2  adu o«
Gx=0x,u=0 (4.42)
d—G =0 (4.43)
dX x=L
Gix,x',u=0=0 (4.44)

where u = t — t is the cotime. As before, the solution will be sought in the form
Gx, x', u)y= K(x, x', u) + v(x, u) (4.45)

where K is the fundamental heat conduction solution. Replace this form of G into
the auxiliary problem for G, Equation 4.41, to find the boundary value problem
for v:

2
37‘2’ - &% -0 (4.46)
vix =0) = —K(x =0) (4.47)
avl (4.48)
dx x=L dx x=L
vix, X, u=01=0 (4.49)

With this procedure the nonhomogeneous term has moved from the differential
equation for G to the boundary conditions for v. Now apply the Laplace transform,
to find the s-space relations for v:

113

PV _se_y (4.50)
x2 o '
Vix=0)=—-K(x =0) (4.51)
@l __dk (4.52)
dx |, dx —l

The general solution for V was discussed in the previous example, and it is given by

Vix, x', 5) = Aexpl(s/a)'/2x] + Bexp[—(s/ o)/ ?x]

(4.53)

Constants A and B may be found by replacing v in the boundary conditions for V.

The result, after some algebra, is

A
Vas (1 + exp[—2L(s/a)'/2])
B = _exp[_(S/Ol)1 /2(2L — X,)] + exp[_(s/a)T /ZX/]

_expl=(s/®)'?2L = x)] — exp[—(s/ )2 (2L + x)]

Vas (14 exp[—2L(s/@)1/2])

(4.54)

(4.55)
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Substitute A and B into v, and then use G = K + V to find the GF in Laplace
transform space:

G(x,x',s) =

\/L;exp[—(s/a)”ﬂx—x/n (4.56)
N expl—(s/m)'/22L — x — x")] — exp[—(s/ W)/ 2 2L — x + x')]
Vaas (1 +exp[—2L(s/w)/2])
exp[—(s/a)'/2(2L + x — x')] + exp[—(s/ &)/ %(x + X')]
- VAas (1 + exp[—2L(s/w)1/2])

The next step is to inverse transform this expression. This inverse transform of the
first term gives the fundamental solution K. The inverse transform of the second
and third terms is more difficult, because none of the transform pairs in Table L.1
(Appendix L) contain exponentials in the denominator. Consider the binomial
theorem

,] o0
— =1- 2P+ .= —1"z" <1 4.57
s z+2 -3 ng(;( )"z" for |z (4.57)

The binomial theorem with z = exp[—2L(5/0L)”2] can be used to replace the
exponential term in the denominator (Carslaw and Jaeger, 1959, p. 309), as follows:

1 o
7] = ZO(—U expl—2nL(s/a)'/?] (4.58)
n=

1+ exp[—2L(s/a)
Substitute this series into the equation for G, and then the inverse Laplace transform

may be carried out (refer to Appendix L, Table L.T, number 43). Retaining only the
n = 0 term from the series, the GF in the time domain is given approximately by

G(x, X', u) ~ ! ex —x =X —ex M
T JAnou P 4ou p 4ou
N —QL—x=x?\ —Q2L—x+x)?
xp 4au xp 4au

—(21 W2
— exp <(—Z(>LXUX)> } (4.59)

This approximate expression is accurate for au/L> < 0.1. Many of the short-
cotime GF given in the Appendices have been derived in this fashion. The above
expression for Gx1, also agrees with the first few terms of the series found by the
image method, which is listed in Table 4.1.

Intwo of the example problems considered above, the inversion of the transformed
solutions were obtained directly from a table of Laplace transforms. However, there
are cases for which the transformed solution G does not appear in the Laplace trans-
form tables (such as in finite bodies including plates, cylinders, and spheres). In such
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cases the Laplace-transform inverse is carried out with the use of a series expansion
(as in Example 4.4, above) or with the inversion theorem (see Appendix L). The
series expansion approach is often less complicated and more useful than the use
of the inversion theorem, particularly for small times. For further discussion of the
series-expansion approach see Chapter 12 of Carslaw and Jaeger (1959).

4.4 METHOD OF SEPARATION OF VARIABLES

The method of separation of variables can be used to find the GFs through the re-
lationship between the GF and the Dirac delta function. Chapter 1 showed that GFs
are proportional to the temperature rise in a body driven by a Dirac delta function
initial temperature distribution. The method of separation of variables provides a
straight-forward method for solving finite-body problems with arbitrary initial tem-
perature distributions. Once the temperature T'(x, ¢) is known for an arbitrary space-
variable initial temperature F(x), then the GF can be found from T'(x, ¢) because an
arbitrary initial temperature includes the Dirac delta function as a special case.

In this section, several one-dimensional flat plate GFs are found using the method
of separation of variables. The flat plate with the temperature fixed at both sides
(X11) is used in a full discussion of the method and the flat plate with two insulated
boundaries (X22) is discussed in an example. A more general derivation of GFs using
the separation of variables method is given by Beck (1984) for the flat plate with
boundary conditions of the first, second, third, fourth, or fifth kinds.

4.4.1 PLATE WiTH TEMPERATURE Fixep AT BoTH SiDES (X11)

One of the simplest cases to consider using the method of separation of variables
is for prescribed temperatures of zero at both boundaries of a plate. The describing
partial differential equation, boundary conditions, and initial conditions are given by

*T 19T

P e O<x<L (4.60)

7T(0,1)=0 T(L,t)=0 (4.61a, b)
T(x,0) = F(x) (4.62)

Note that the boundary conditions and the partial differential equation are both ho-
mogeneous. This case has the notation X11BOOT-.

Since the thermal diffusivity a is a constant, the differential equation can be solved
by adding many solutions, each of which satisfies the differential equation. This is
also called superimposing solutions. Let

T(x,1) = i To(x,1) (4.63)

n=1

where the solutions T}, (x, r) satisfy Equation 4.60. That is, when T,,(x, ¢) is substituted
into Equation 4.60, an identity results. In addition, each T,,(x, t) solution satisfies the
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homogeneous boundary conditions given by Equation 4.61aand b. A T,,(x, ¢) solution
for a given n does not usually satisfy the initial condition given by Equation 4.62.
The procedure continues by assuming that

T, (x,1) = X(x) ©(z) (4.64)

where X (x) is a function of only x, and where ®(¢) is a function of only ¢. In other
words, T,(x,t) is chosen to be a product of two functions, one that depends only
on x and the other that depends only on ¢. The variables have been separated in
Equation 4.64, hence the name separation of variables technique. Replacing T in
Equation 4.60 by T, gives

¥T, 10T,
_n_ 4.65
x2 o o (4.65)
and substituting Equation 4.64 into Equation 4.65 gives
d*X X d®
=2Z= 4.66
dx? o dt (4.66)
Dividing Equation 4.66 by X (x)©(z) yields
1d’°X 1 d®
= (4.67)

X dx2 — a® di
This equation states that a function of x is equal to a function of 7. This equality can

only be true if the functions are both simply the same constant. For that reason, let
both sides be equal to the negative (real) quantity of —x2,

1d?X 1 d® 2

——s =—— =\ 4.68

X dx2  a® dt (4.68)
Another choice is a positive constant 32, but as is shown below, a positive constant
gives meaningless results. (This assumes that A is restricted to real and not imaginary

values.) In some cases, the constant may be equal to zero.
Two ordinary differential equations now must be solved.

d%X

T X =0 (4.69a)
de
o+ ar2® =0 (4.69b)

The general solutions of these equations are
X = Cysinhx + Cp COS Ax (4.70a)
O = Cze ¥ (4.70b)

Notice that X is a sum of two periodic functions. Also © is a decaying exponential
function. Note that if —x? were replaced by A2, the solution for ® would result in
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explosive growth over time—clearly not physically reasonable. (Again, if \ isallowed
to be imaginary, different conclusions are possible.) For large times, the solution of the
problem given by Equations 4.60 through 4.62 must tend toward zero. Consequently,
the constant in Equation 4.68 must be —)?, where the negative sign is both necessary
and important.

At this point, it has been assured that 7;, (x, ¢) satisfies the partial differential equa-
tion. Next, T, (x, r) must satisfy the two (homogeneous) boundary conditions. From
the boundary condition at x = 0, we have

7,(0,7) = X(0) ©(r) = 0 (4.71)

Since ©(r) is an arbitrary function of time, it cannot be set equal to zero without
causing T,(x,t) to be zero for all values of ¢; such a trivial solution clearly can-
not satisfy the nonzero initial conditions which will be examined shortly. Hence,
X(0) = 0, and from Equation 4.70a it is necessary that

X0)=0=C1-0+C2-1 (4.72)
which yields
Cy=0 (4.73)
Next consider the boundary condition at x = L which gives
T.(L,t) = X(L)O@F) =0 (4.74)
and again since ©(¢) cannot be always zero, the result is
X(L)=0=Cysin\L (4.75)
Consequently the eigencondition is
sinh,L =0 (4.76)
which can occur at only certain values, namely,
ML =nm n=...,—2,-1012, ...

All of these n values are not needed, however. The negative values do not give
independent eigenfunctions (sin \,,x is called an eigenfunction), since

sin(—\, L) = —sin(—\,L) 4.77)

Also the n = 0 value makes no contribution in this case since sin (0) = 0. Hence, the
eigenvalues %, are given by

M= n=12,3, ... (4.78)
L
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Usually the eigenvalues in this book are made dimensionless. Let the dimensionless
eigenvalues be denoted B,, where for this case
B, =nw n=123, ... (4.79)

and the eigenfunction is

Bnx
7 (4.80)

At this point the differential equation and the two homogeneous boundary condi-
tions for 7,,(x, ¢) have been satisfied. The next step is to bring the two parts of 7, (x, t)
together to find

T,(x,t) = Cysin B'%Cg,e‘ﬁrzl""“ A, sin BL —Bhar/ L2 (4.81)

where A, is a constant that depends on n. Introduce this form of 7,, into Equation
4.63 to get

T(x,t)=)Y A, sm B/ L2 4.82
(x.1) = Z 3 (4.82)
The remaining condition to satlsfy is the initial condition, Equation 4.62. This con-

dition is nonzero, unlike the boundary conditions. Using the value of = 0 in Equa-
tion 4.82 and the value of T'(x,0) = F(x) gives

F(x) = (4.83)

The objective is now to determine values of the constants A,,, forn = 1, 2, etc. Aresult
from the theory of Fourier series is that the sine functions are orthogonal, which can
be stated as

L
L — = 0
/ in 1% i P ; mE=n# (4.84)
x=0 L L 0 m#n
for the B, values of nmt, n = 1,2, ... . This orthogonality condition provides a very

powerful tool for determining one value of A, at a time. Multiplying both sides of
Equation 4.83 by sin(B,,x / L) dx and integrating from x = 0 to L yields

L L ©°
/ F(x)sin Bmedx - / Bm
x=0 x=0 o

Now, according to the orthogonality condition, Equation 4.84, there is a nonzero
term on the right-hand side of Equation 4.85 only when m = n. In other words, the
orthogonality condition just picks out one term in the summation to give

(4.85)

L
/ F(x)sin BLd AnL (4.86)
x=0 2
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Another way to think of this procedure is to imagine that m is a particular value such
as 2. If m = 2, then the right side of Equation 4.85 is

/ Aqsin BLsm Bz_xd
=0 L L

L
+ / Ay sin? B o dx + / Assin Pax sin Bidx + -
x=0 x=0 L L

Only the second term (when B,, = B,, = B2) yields a nonzero value, namely, A>L / 2.
See Equation 4.84. Solving Equation 4.86 for A,, yields

Ap = —/ F(x)sin —d (4.87)

where m = 1,2, ..., and the m subscript in Equation 4.87 could be replaced by
another index symbol, such as .

Normally, the separation of variables procedure terminates at this point with the
observation that A,, (with m — =) in Equation 4.87 can be used to obtain the A,
values for Equation 4.82. This gives the complete solution, since the partial differential
equation, the two homogeneous boundary conditions, and the initial condition are all
satisfied. Since our objective is to obtain a GF, further steps are added. Introducing
A,, from Equation 4.87 (with m — n and x — x’) in Equation 4.82 results in

T(x, t)—z / Fx')sin P22 B" Pt gx =Bt/ L? (4.88)

Taking the integral outside and rearranging gives

T(x,f) = / ' Eie—ﬁ?ﬂ'/“ sin 27 in B | py an (4.89a)
*'=0 Ln*l L L

T(x,t) = //L_O Gxu(x,t|x’,0) F(x') dx’ (4.89h)

Notice that the expression inside the brackets in Equation 4.89a is the X11 GF,
evaluated at t = 0. The X11 GF for t # 0 can be found by replacing (r — 0) by (t — t)
inside the brackets to obtain

o l

2 a2 2 . X . X
Gxu(x, 1]x', 1) = - X;e Brelt=0/L7 gjp B"Tsm BT (4.90)
n=
where the B,, values are
B, =nm, n=12,... (4.91)

Afew more comments are appropriate regarding this result. It is stated in Chapter 1
that GF can be interpreted as the temperature rise in the body caused by a Dirac delta
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function of unit value at position x¢ and time g = 0. Since F(x) is arbitrary, let F(x)
be the impulse of ToL 3(x” — xg). Then, integrating Equation 4.89b gives

T(x,t) = ToL Gx1(x,7|xo,0) (4.92)

That is, the temperature rise is equal to the GF for the source located at xo and 7o = 0
with strength Tp L (the units of Ty L are K-m). The symbol xq in Equation 4.92 could
be replaced by x’ to denote that the source is at x’.

The Gx11(x,t|x’, ) function is found by replacing # in Equation 4.90 by r — =
and limiting the time domainto 0 < t < r. The Gx11(-) function satisfies the
boundary conditions of Gx11(0, #|x’, T) = 0 and Gx11(L, t|x’, t) = 0. Also note that
the G x11(-) function given by Equation 4.90 is unchanged by interchanging x and x’.
In other words, if the value of a GF at x is known for a source at x’, then the same
value applies to the GF at x’ for a source at x; G(-) is symmetric in x and x’.

It is instructive to examine a plot of G x11(-) for several values of a(r — 1)/ L?
and several values of x’/ L. See Figure X11.1 in Appendix X. For small time values
such as a(r — 1)/ L? < 0.025 and x’ not near the boundary, G x11(-) is approximated
by G x10(-). See Section 4.2 and the short cotime expression given in Table 4.1. As the
time a(r — t) / L2 becomes larger, the effects of the boundaries increase. The G x11(-)
function approaches zero for a(r — t)/ L% > 0.5.

The G x11(-) expression given by Equation 4.90 and that in Table 4.1 are both exact
and give the same numerical values, but the former only needs a few terms for large
a(r — 1)/ L? values, while the latter needs only a few terms for small a(r — t)/ L?
values. In general, the large cotime expression, Equation 4.90, is easier to manipulate
mathematically.

Example 4.5: Plate Insulated on Both Sides—X22 Case

Find the GF for a plate insulated at both x = 0 and at x = L with the separation
of variables method.

Solution
The boundary value problem for an arbitrary initial condition is given by

82—7-—13—7- O<x<lL t>0 (4.93)
x2  a ot '
T T
8— =0 a— =0 (4.94)
dx x=0 dax x=L
T(x,0) = F(x) (4.95)

The solution procedure is similar to that for the X11 case, and Equations 4.63
through 4.70 also apply to this case. The boundary condition at x =0 is different,
however, and yields

aTh(x, t)
ax

X

x=0 dx

o) =0 (4.96)

x=0
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and thus dX/dx = 0 at x = 0 to give, from Equation 4.70a,

dX

—_— =0 = C;hcos(0) — Cyhsin(0)
dx

x=0
=B-1-C-0 (4.97)

and thus C; = 0. Repeating this procedure at x = L gives

dX
—_— =0=—-CGisinkL (4.98)
dx | =y
and thus the eigencondition is
sinkpL=0 (4.99)

with eigenvalues 8, = AyL = nwt for n =0, 1, 2, and so on. Notice that n = 0 is
included because the eigenfunction for this case, cos(B,x/ L), reduces to unity for
n = 0. The X(x) function (the eigenfunction) now becomes

Cncosﬁnx n=1,2,...
X(x) = L (4.100)

Co - 1 n=20

where Equation 4.70 is used with Equation 4.99 and with C; = 0. At this point
the partial differential equation for T,(x, t) and the two homogeneous boundary
conditions are satisfied.

Using the relation that T(x, t) is the sum of the Ty(x, t) values gives

o0
T(x, t) = Z An e Brat/ 2 oo BnTX (4.101)
n=0
Using the initial condition, Equation 4.95, yields
00 Bx
F(x)= > Apcos % (4.102)
n=0

which is a Fourier cosine series. The A,’s can be found by multiplying Equa-
tion 4.102 by cos(Bmx/ L) dx and integrating over the domain, whichis0 < x < L,

L Bmx L& Bnx Bmx
F(x)cos ——dx = E Ap cos —— cos —— dx (4.103)
x=0 L x=0 L L

n=0

For the B, values of nm, the orthogonality relation involving the cosine function is

. 0 m#n
/ cos Pnx cos Bm—xdx ={L m=n=0 (4.104)
x=0 L L L
5 m=n#0
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Utilizing this relation in Equation 4.103 gives

1 L
Ay = f/ F(x) dx (4.105a)
L x=0
L
Ay = %/ F(x) cos B'"Txdx m=1,2, ... (4.105b)
x=0

As noted in connection with Equation 4.87, the subscript m in Equation 4.105b
can be replaced by another index such as n.

The complete solution to this X22 problem posed by Equations 4.93 through
4.95 is given by Equation 4.101 with A, (m — n) given by Equation 4.105b. How-
ever, the purpose here is to demonstrate that a GF can be derived with separation
of variables theory. Hence, introduce Equation 4.105b with m— n and x — x’
into Equation 4.101 to get

1 [t x’ ,
T(X,t):z/ ") dx’ +Z / cos dx

x e Brat/ L o ﬁ"TX (4.106)
L o /
1 2
T(x, t) = / -+ Z e Pt/ cog Bnx cos Box F(x') dx’ (4.107)
x=0|1 L =1 L L

in which the term in brackets is the Gx»> (x, t|x’, 1) GF evaluated at t = 0. That is,
Equation 4.107 can be written as

L
T(x, t)= / Gx22 (x, t|x, 0) F(x") dx’ (4.108)
x=0

where Gy (x, t|x’, 1) is found from the bracketed term in Equation 4.107 by
replacing (t —0) by (t —t)fort < ¢,

Gx22 (x, tIx', 1) = ! + 2 i —Bhalt=0/L ¢ sB"—Xcos BuX’ (4.109a)
[T & L L
Bp=nt n=1,2,... (4.109b)

Notice that the X22 GF in Equation 4.109a has one more explicit term than the
X11 GF in Equation 4.90. Then n = 0 term is not zero in the X22 case because
cos(B,x / L) is not zero for n = 0. The summation terms of the X11 and X22 GFs are
quite similar. Both summations contain two trigonometric functions with arguments
B.x /L and B,x’/ L. The eigenvalues are equal to n for the two summations. Both
summations contain the factor exp[—B2a(t —t) / L2]. For “large” values of dimension-
less time, such as a(r — 1)/ L? > 1, this exponential factor causes the summations in
Equations 4.90 and 4.109 to approach zero in value. That is, G x11(-) goes to zero and
G x22(-) goesto 1/ L for large values of a(r — t) / L2. See Figure X22.1 (Appendix X)
for several plots of G x2».
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TABLE 4.2
Eigenfunctions for the Long-Cotime Green’s Functions Given by

XoX)  — Xm(X) Xm(X")

G, t|X', 1) = + Z exp [-BEa(t — v /L3
No Nm
m=1

Number Eigenfunctions, X,,(x) A1 Az
X1J,J =1,2,3,4,5 sinB,x /L 1 0
X2J,J =1,2,3,4,5 cosPux/L 0 1
X31 sinB,, (L —x)/L 1 0
X32 cosB,(L —x)/L 0 1
X33, X34, X35 By sin(Bx / L) + B coS(Bx / L) By Bim
X4J,J =1,2,3,4,5 —C1Bm sin(Bux /L) + cos(Bpx /L) —C1Bm 1
X5J,J =1,2,3,4,5 (B1 — C1B2)Sin(Bux / L) 4 By cOSBmx / L) By — C1B2, B
Special cases:

For X22, X24, X42,and X44: Xo(x) =1
For all other cases Xop(x) =0
B; = h;L|k,C; = (pcb);i | pcL,i =1,2

A compact list of one-dimensional GFs based on the separation of variables ap-
proach is contained in Tables 4.2 and 4.3. These are best for “large” cotimes; a com-
plete compilation for both large and small cotimes are given in Appendix X. A brief
list of eigenvalues for some flat plate geometries involving convection boundary
conditions (3rd kind) are given in Table 4.4.

4.5 PRODUCT SOLUTION FOR TRANSIENT GF

The solution of certain two- and three-dimensional transient heat conduction problems
can be obtained very simply as the product of one-dimensional transient solutions.
In this section, certain two- and three-dimensional GFs are shown to be products of
one-dimensional GFs in the rectangular and cylindrical coordinate systems. Product
solutions are not permitted in the spherical coordinate system. Product solutions are
not generally possible for steady heat conduction.

4.5.1 REecTANGULAR COORDINATES

In rectangular coordinates, one-dimensional transient GFs can be multiplied together
to form two- and three-dimensional GFs under the following restrictions: (1) the
boundary conditions are of the type 0, 1, 2, or 3 (types 4 and 5 are not permitted);
(2) if boundary conditions of the third type are present, the heat transfer coefficient
h; must be a constant for a given surface s;.
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TABLE 4.3

Eigenvalues and Norms for Green’s Functions Obtained Using the Method of

Separation of Variables

Eigenvalues are positive roots of:

BulK1(B2 — C2B2) + K2(B1 — C1p2)]

tan B, =

(K, B, and C are defined below.)

Simple Cases:
for X11and X22,B,, = mwn,m =1,2, ...

for X12and X21,B,, = 2m — D) /2,m =1,2, ...
Norms form =1,2, ...

1
M = (5 (4 + 43) + 43 + €

tan B, { 1

1+tan?B, | 2Bm
(A1 and A; are given in Table 4.2.)

Simple cases: N,, = L /2 for X11, X12, X21, and X22.

Special cases: No = (1 + C1 + C2)L for X22, X24, X42, and X44 for o = 0.

Use XIJ; 1,J =1,2,3,4,5:

1 K1 B1 C1 J
1 0 1 0 1
2 1 0 2
3 1 B1 0 3
4 1 0 C1 4
5 1 B1 Cq1 5

and where K,‘ = k,‘/k,B,’ = h,'L/k, C,‘ = (pcb),-/ch.i = 1, 2.

K1K2p2 — (By — C1B2)(B2 — C2BZ)

(A3 — A2) + 202414, +tanB,, [cz (A2 — A2)

e =)

B>

B>

B

)

Bm

C;

C;
(6]

The following discussion of product solutions begins with product solutions for
temperature due to arbitrary initial conditions. Then, a particular initial condition,
the Dirac delta function, is used to show that GFs also form product solutions. A
two-dimensional case is demonstrated, but the procedure can be repeated to treat

three-dimensional cases.

Arbitrary initial conditions. Consider first the temperature due to an arbitrary
initial condition in a two-dimensional body described by rectangular coordinates. The
boundary conditions are homogeneous and volume energy generation is zero. That

is, consider the following heat conduction problem:

PT T 19T

w2 9y aar

T(x,y,t =0)
To

=F*(x,y)

(4.110a)

(4.110b)
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TABLE 4.4

Some Eigenvalues for X13, X31, X23, X32, and X33 (Haji-Sheikh and Beck,
2000)

Eigenvalues B B1 B2 B3
OftanB,, = —Bu /B 0 1.5708 47124 7.8540 (also X12 and X21)
for X13 and X31 0.1 1.6320 47335 7.8667
2.0288 4.9132 7.9787
10 2.8628 5.7606 8.7083
100 3.1105 6.2211 9.3317
o 3.1416 6.2832 9.4248 (also X11)
Of tan B, = B/Pm 0 0 3.1416 6.2832 (also X22)
for X23 and X32 0.1 0.3111 3.1731 6.2991
0.8603 3.4256 6.4373
10 1.4289 4.3058 7.2281
100 1.5552 4.6658 7.7764
o 1.5708 47124 7.8540 (also X12 and X21)
Of tan B, = 2B, B /(B2, — B?) 0 0 3.1416 6.2832 (also X22)
for X33 with By = B, 0.1 0.4435 3.2040 6.3149
1.3065 3.6918 6.5854
10 2.6277 5.3073 8.0671
100 3.0800 6.1601 9.2405
o 3.1416 6.2832 9.4248 (also X11)

Source: Haji-Sheikh, A. and Beck, J.V., Numerical Heat Transfer Part B Fundamentals, 38, 133-156,
2000.

aT
ki— +h;T=0 j=12..,s (4.110c)
3l’lj

where Tp is a characteristic temperature, and s represents the number of boundary
conditions (0 < s < 4 for the two-dimensional case). The convection heat transfer
coefficient z2; must be a constant. Only boundary conditions of types 0, 1, 2, or 3 are
treated.

Suppose that the dimensionless initial condition, F™(x, y), can be written as a
product of two functions, one a function of x and the other a function of y:

F(x,y) = F{ (x) F5 () (4.111)

Then, the following statement is true: the solution of the two-dimensional heat con-
duction problem defined by Equation 4.110a, b and c, can be written as the product
of two functions

T(x,y,1)

=Ti(x,t) To(y,1) (4.112)
Tp
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where T1 and T3 are dimensionless, and are defined by the following one-dimensional
heat conduction problems:

®Ty 19T
1290y

x direction: — (4.113a)
x o ot
Ti(x,t = 0) = F;'(x) (4.113Db)
aT:
ki L + hiTilyy, =0 i=1,2 (4.113c)
ani X=X;
.. T, 19T
y direction: —22 =22 _9 (4.114a)
ay o or
Tp(y, 1 = 0) = F,'(y) (4.114b)
aT;
ki =2 + hiTlyy, =0 =12 (4.114c)
Mi |y—y, [

Note that i = 1,2 defines the two boundaries for each finite geometry. However,
semi-infinite and infinite geometries are also allowed.

The above statement is proved by direct substitution of the product solution, Equa-
tion 4.112, into Equations 4.110a, b, and c. First, consider Equation 4.110a, the dif-
ferential equation,

T P 1 T oT»
Hh—s 4+ T—e - (THh—+T1—=)=0 4.115
2 o2 a? a\2a Ty (4.115)
which can be written as
®Ty 1T PT, 1h
T _oEN (2222 2o 4.116
2<8x2 a8t> 1(ay2 o o (4.116)

This equation is satisfied because it is the sum of the one-dimensional heat conduction
Equations 4.113a and 4.114a.
Next, consider the initial condition, Equation 4.110b. Direct substitution of the
product solution gives
T1(x,0) To(y,0) = F*(x, y) (4.117)

and the initial condition has a product form given by Equation 4.111 to give
T1(x,0) To(y,0) = F; (x) F () (4.118)

This equation is satisfied because it is the product of Equation 4.113b and Equa-
tion 4.114b. There are no unusual restrictions on the functions FlJr and F2+ (they may
be zero, piecewise continuous functions, etc.).

Finally, consider the boundary conditions Equation 4.110c. Direct substitution of
the product solution gives

T T:
kj(12)

+ /’lj(T]_Tz) =0 (4119)

J
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There are two possibilities for the normal vector 7 ; in a two-dimensional rectangular
coordinate system. The first possibility is for n; parallel to the x-direction, in which
case Equation 4.119 becomes

aT:
T (kj#-i—thl) =0 (4.120)
J

This equation is satisfied because it is Equation 4.113a multiplied by 7. The
second possibility is for n; parallel to the y-direction, in which case
Equation 4.119 is identical to Equation 4.114c multiplied by 77. This concludes the
proof of product solutions for temperature due to arbitrary initial conditions given by
Equation 4.111.

Diracdeltafunctioninitial condition. Next, consider a specific initial condition,
the Dirac delta function, given by

Fr(x,y) = L2%(x — x) 3(y — ) (4.121)

where the length L may have any desired significance; it is used to make F*(x,y)
dimensionless. The dimensionless initial condition, Equation 4.121, can be written
as a product,

Ft(x,y)=L3(x —x') - L3(y — ') (4.122)

Then, the temperature T'(x, y) in a two-dimensional body that obeys Equation 4.110a
and boundary conditions given by Equation 4.110c can also be written in product
form (Equation 4.112):

T(x,y,1)

= Ta(x,1) T2(y,1) (4.123)
To

Chapter 1 showed that the temperature, 7' (r, t) caused by a Dirac delta function initial
condition is equivalent to a GF multiplied by a constant:

T(r 1) = ToL"G(r, 1", 0) (4.124)

where m = 1,2, or 3 for one-, two-, or three-dimensional bodies; G(-) is the GF;
Ty is a characteristic temperature; and L is a characteristic length (for dimensional
consistency).

Now, each of the functions Ti(x, ) and T>(y,t) in Equation 4.123 can also be
written in the form of GFs given in Equation 4.124,

Ti(x,t) =L Gi(x,t|x’,0) (4.125a)
To(y,t)=L Ga(y,1]y,0) (4.125b)

Replace Equations 4.124 and 4.125 into Equation 4.123 to obtain

G(x,y,t|x’,y,0) = G(x,t|x",0) - G(y,t]y’,0) (4.126)
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Finally, the time dependence of all GFs is (+ — 1), so that in general, (t — 0) can be
replaced by (¢ — t) to give

G(x,y, tlx', ¥y, 1) = G(x,t]x', 1) - G(y,t]y’,7) (4.127)

That is, the GF for the two-dimensional boundary value problem given in Equa-
tion 4.110 is the product of the one-dimensional GFs associated with the boundary
value problems given in Equations 4.113 and 4.114.

In general, one-dimensional GFs multiply in rectangular coordinates to give two-
dimensional GFs. Recall that product solutions are limited to boundary conditions of
types 0, 1, 2, and 3. A repeated application of this analysis can be carried out to show
the three-dimensional GF in rectangular coordinates can be found from a product of
three one-dimensional GFs; thatis, Gxyz = Gx - Gy - Gz.

4.5.2 CyLINDRICAL COORDINATES

In cylindrical coordinates (r, ¢, z), product solutions of transient GFs are allowed
under the following restrictions: (1) the boundary conditions are of the type 0, 1, 2,
or 3 (types 4 and 5 are not permitted); (2) if boundary conditions of the third type
are present, the heat transfer coefficient #; must be a constant for a given surface s;;
(3) a GF that depends only on the z-coordinate is multiplied by another GF that does
not depend on the z-coordinate.

For example, let Gg, G ¢, and Gz represent one-dimensional GFs, let Grz, G ro,
and Ggz represent all possible two-dimensional GFs, and let G gqz represent the
three-dimensional GF in cylindrical coordinates. Then, if the boundary conditions
meet restrictions (1) and (2), the following product solutions are allowed in cylindrical
coordinates:

Grz=Gpr - Gz (4.128a)
Goz=Go - Gz (4.128b)
GRroz = Gpro - Gz (4.128c)

Note that the GF G g4 cannot be found by a product solution.

4.6 METHOD OF EIGENFUNCTION EXPANSIONS

We have seen that the separation of variables method, when applied to transient
conduction, produces series solutions that involve eigenfunctions. In this section,
eigenfunction expansions will be used directly to find the steady Green’s function
on finite domains. Earlier in this chapter, the eigenfunctions for the slab were found
by separation of variables. In later chapters the appropriate eigenfunctions are given
for the cylinder (Chapter 7) and for the sphere (Chapter 8) that can be used with this
method. Eigenfunction expansions are also discussed elsewhere, for example Barton
(1989, Chapter 5) and Duffy (2001, Chapter 5).
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In the present discussion, we begin with the series form of the Dirac delta function.
The series form of the Dirac delta function on finite domain R involves eigenfunctions
¢» and norm N, as follows (see Appendix D):

oy d(r —r'); Cartesian
Z—d’m(rN)"’”’(’): 8- — ) /(2nr);  cylindrical (4.129)

8(r — r')I(4nr?); spherical-radial

Forms for three coordinate systems are given here; note that the cylindrical and spheri-
cal coordinates include weighting factors (27r) and (47-2), respectively*. Eigenfunc-
tions ¢,, satisfy the specified homogeneous boundary conditions at the boundaries
of domain R, the same conditions also satisfied by the GF on R. For each combina-
tion of boundary conditions, there is a distinct GF and a distinct series form of the
3-function. For most geometries the summation begins at m = 1, but for bodies with
all boundaries insulated, the summation begins at m = 0; see Section 4.7.2 for further
discussion of this point.

We seek a series form of the GF identical to the §-function series, but with an
undetermined parameter (this method is also called “variation of parameters™). That
is, we seek G in the form

’ o (") om(r)
G(r,r) = ; Cp N (4.130)
To find unknown parameter C,,, simply replace this series into the differential equation
for G. Rather than continue with a general discussion, specific examples are next
given to demonstrate the procedure. The first example is a one-dimensional steady
case, given only as a demonstration of the method. The second example is steady
heat conduction in a two-dimensional rectangle, since the method of eigenfunction
expansion is most important for two-and three-dimensional cases. The third example,
a one-dimensional transient case, combines the eigenfunction expansion method and
the Laplace transform method.

Example 4.6: Steady Case X12

Consider a 1D plate (0 < x < L) with boundary conditions of the first kind at
x = 0 and of the second kind at x = L. Find the steady GF with eigenfunction
expansions.

Solution
The Green’s function satisfies the following equations:

d’G ,
v = —8(x — x) (4.131)
G0O,x)=0
dG(L, x')
dx 0

*Qther authors use weighting factors (r) and (r2) for cylindrical and spherical coordinates, respectively.
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For these boundary conditions, the eigenfunctions are ¢, = sinBmx/L) (see
Table 4.2), the norm is Ny, = L/2, and the eigenvalues are B, = (m—1/2)n
(see Table 4.3). Next, assemble the series forms for both 3 and G using Equa-
tions 4.129 and 4.130 and substitute them into Equation 4.131, the differential
equation for G. The result is

d? [ sinBm2)sinBmy) &, sin(Bm ) sin(m¥)
C/XZ{mX:] Cm—L/2 __Z—L/Z (4.132)

m=1

Differentiate two times, and rearrange to restate the differential equation as one

series:
25 Nain () o (B2) 41020 @133
sz::]sm (BmT) sin (ﬁmz) m( T ) + = (4. )

The above equation will be satisfied for all m if the expression in braces is zero.

That is,
—Cn <BL“7> +1=0 (4.134)

which is satisfied by Cp, = (L/Bm). Replace this value for Cp, into the series
expansion for G to find, for steady case X12,

X, x ii( ) sm( X/>sin([3m%> (4.135)

m=1

In this example a series form of a steady 1D GF was found by eigenfunction
expansion. Such series for 1D GF, although mathematically correct, are not
recommended for numerical computation because nonseries forms for G may
be found by direct integration (see Section 1.7.1). For two- or three-dimensional
problems, however, the eigenfunction expansion method produces a very useful
series form for the GF, as in the next example.

Example 4.7: Steady Case X12Y12

Consider a rectangle described by coordinates (0 < x < L) and (0 < y < W).
Suppose the boundary conditions are G = 0atx =0andaty =0, and, dG/dn =
0 atx = Land y = W. Find the steady GF.

Solution
The steady GF satisfies the following equations:

372G 982G
Gx=0)=Gy=0=0
0 0
WG|, G|
X |x=t 3y ly—w
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This is case X12Y12. The eigenfunction expansion for G is patterned on the series
form of the Dirac delta function. The delta function appropriate for the x-direction
is for case X12, which was also used in the previous example, is given by

S(x — x) = % 3 sin (sm%) sin <ﬁ’”XT> (4.137)
m=1

We seek the GF of a similar form,
Gix, yIX, y) = 2 i sin (B ) sin (B Ve, ) (4.138)
’ y /y I_ — m L m I_ y/ y .

where P(y, y') is an unknown kernel function. Replace the above series for G and
8(x — x”) in Equation 4.136 to find, after some rearranging:

28 (e Xy (o X B\’
T ,;21 sin <Bmf) sin (BmT> {—P <T> +P +8y—y)t=0 (4139
This equation will be satisfied if the term in braces is zero, that is,

P' 62 P+dy—y)=0, (0<y<W) (4.140)

where o2, = p2,/1%. We could solve for P by once again using eigenfunction
expansion which would produce a double summation for G. However, a better-
behaved solution can be found by directly integrating Equation 4.140 for P. As
in Section 1.7.2, divide the domain at y = y’ to remove the 3-function from the
differential equation. Then seek P; on (0 < y < y’) and seek P> on (y' <y < W),
that satisfy

P! —o2,P;i=0, fori=1,2 (4.147)
Integrate directly to find a general solution for P in the form

Pr=GCe™ + Ge™™, y<y
Py = Ge® + Cue™ Y, y>y/ (4.142)

Four conditions are needed to find the four coefficients. Two conditions on P;
come from the boundary conditions for G aty =0and y = W:

i Ply=0=0
P

EAE

y=w

(ii)

Two more conditions at y = y” are the matching condition and the jump condition
(see Section 1.7.2):

iy P,y =Py, y)
i) P, il
ay’ ay’

y=y'

y=y'
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Using these four conditions, coefficients C; may be found algebraically and re-
placed into Equation 4.142. The result is, for (y < y/),

— e~ omRW+y—y) + e~ W—y—y')

Pi(y,y) = 4.143
1y 20m(1 + e~20nW) B
e=m(y'=y) _ a=omly+y))
20m(1 + e—20mW)
and for (y > y/),
— e~ om2W—y+y') 4 e~ omR2W—y—y')
Py, y) = (4.144)

20m(1 + e~20mW)
e~ mly—y") _ @=om(y+y’)
20m(1 + e=2omW)

Then replace P into the series for G to obtain

X' [_e—cnﬂ WHY' =y 4 @=0m@W=y—y")

ro 2 = . X\
Gl yIX' Y =7 mg Sin(Bm ) sin(Bm ) PP

e—mly=Y'l _ g=omly+y")
(4.145)

20m(1 + e=20mW)

Here an absolute value has been used to give P with a single expression. The above
series was created by examining the 3-function along the x-direction. An alternate
single-sum form for G may be found by starting with the y-direction § function,
placing eigenfunctions along the y-direction, and seeking kernel function Q(x, x’).
Alternate forms for G are very important for checking purposes and for verification,
as discussed in Chapter 5.

The above example is one of several GF that may be constructed for the rectangle.
For other combinations of boundary conditions in the rectangle, see Table 4.2 for the
appropriate eigenfunctions and Table X.4 (Appendix X) for the appropriate kernel
functions. There is a special case for the rectangle when the series for Y22 is involved.
In this case the summation begins at m = 0 and Bg = 0 is an eigenvalue, and an
additional kernel function Py is required. See Tables X.2 and X.4 in Appendix X for
these kernel functions. For case X22Y22, the rectangle with all boundaries insulated,
a pseudo-GF is required (see Section 4.7.2).

The eigenfunction expansion method may be used to find steady GF in any or-
thogonal coordinate system and for other combinations of boundary conditions. Ad-
ditional examples are given elsewhere for the rectangle (Cole and Yen, 2001a), the
two-dimensional slab (Cole and Yen, 2001b), the parallelepiped (Crittenden and Cole,
2002) and the cylinder (Cole, 2004).

Transient problems may be treated with the eigenfunction expansion method if
the time-derivative term can first be removed. Later in Chapter 9, steady-periodic
heat conduction is treated by the eigenfunction expansion method. In the following
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example, the Laplace transform method is combined with the eigenfunction expansion
method.

Example 4.8: Transient Case X12

Consider the transient temperature in a one-dimensional slab (0 < x < L) with
boundary conditions of the first kind at x = 0 and of the second kind at x = L. Find
the transient GF by combining the Laplace transform method and the eigenfunction
expansion method.

Solution
The GF for transient case X12 satisfies following equations:

*G 193G 1

- — 4+ -3x—=x"duw =0 (4.146a)
x2 adu o
GO, x,u) = (4.146b)
a6l X, u) (4.1460)
dx
Gx,x’,00=0 (4.146d)

where u = t—rtis the cotime. The GF will be sought by using the Laplace transform
on the above equations, with respect to cotime, to give

e 1
7_,(;4_ 3(X_X) 1=0 (4.147a)
X2  a
G0,x)=0 (4.147b)
daiLx) _ (4.147¢)
dx

Note that the Laplace transform of 8 (u) is unity. Next we seek the Laplace-domain
solution for G using eigenfunction expansions in the form

SinBm %) sin(@m)
Gx, x, s) Z DmL/—2 (4.148)

where Dy, is an undetermined parameter and where the eigenfunctions, eigenval-
ues, and norm for the X12 case are taken from the from the previous example.
Eigenfunctions, eigenvalues, and norms for other kinds of boundaries are given in
Tables 4.2 and 4.3. Note that the above series automatically satisfies the boundary
conditions at x = 0 and x = L through the eigenfunctions and eigenvalues. We
also need the series form of 8(x — x’), which from the previous example is given by

N Sin(Bm ) sinBm
Sx12(x = x)= > W (4.149)
m=1

To determine parameter Dy,, substitute the series expressions for G and 8(x — x’)
into Equation 4.147a to find:

2 & X'\ . X Bm\? s 1
zm; sin (BmT)sm (Bmf) |:—Dm (T) ~ D+ a} —0 (4.150)
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Here the common elements in each series have been grouped together. The above
equation will be true if the expression in brackets is zero for all m. That is,

2
1
D (Bﬂ) Dy 4+~ =0 (4.151)
L a o
Solving for Dp,, we find
Dm = ! (4.152)
T s ap2,/ L2 '

Replace this value for Dy, back into the series for G, Equation 4.148, to find the
solution in transform space:

00 : X'\ ei X
— 1 SINPBm ) sinBm T
Glx, X', 5)=Y" B ) sinBm p) (4.153)

ap?, /12 +s L/2
m=1

To complete the solution, this series can be inverse-Laplace-transformed term by
term (using the linear property) along with the following transform pair (Appendix
L, Table L.1, number 12):

¥ (5 l a) =e @ (4.154)

Then the time-domain solution is given by

2 & . x"\ . X
Gx, X', u) sz —Bhau/ L G, (BmT>5|n (ﬁmz) (4.155)

where u is the cotime. This is the large-cotime form of the GF for case X12, and
this GF is also listed in Appendix X. In this example the eigenfunction expansion
method has been applied to a transient problem in combination with the Laplace
transform method; the result is identical to that found by the separation of variables
method.

4.7 STEADY GREEN’S FUNCTIONS

Under steady-state conditions the heat conduction equation reduces to the Poisson
equation. Much has been written about the Poisson equation in the fields of elec-
trostatics, elasticity, diffusion, and heat transfer. Many books on theoretical physics
contain an overview of solution methods to the Poisson equation and its special case,
the Laplace equation, including Morse and Feshbach (1953), Melnikov (1999) and
Duffy (2001). The method of GFs is only one of many solution methods, and we
have chosen a unified treatment of GFs at the expense of completeness. Although we
do not present other methods, we do not mean to imply that other methods are not
important. For example, the use of complex variables and conformal transformations
is a powerful method for two-dimensional problems.
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In some ways the steady GFs are more difficult to apply than the transient GFs. The
steady GFs behave very differently in one, two, and three dimensions. Unlike the tran-
sient GFs, the one-dimensional steady GF may not be multiplied to find two- or three-
dimensional solutions; the steady GF for each geometry must be found separately.

There are sometimes two forms of the steady GF, depending on the method used
to derive it. For example, in a two-dimensional rectangle, eigenfunction expansions
may be carried out along x or along y to produce distinct series. These are different
expansions of the same unique solution, with different convergence properties that
can be used to advantage.

In this section, three topics on steady GFs are discussed. The source solutions,
basic functions found by direct integration, are presented to indicate when a steady
GF exists. The pseudo-GF is presented for those cases for which the (usual) steady
GF does not exist. Finally, the limit method is presented to show the relationship
between steady and transient GF.

4.7.1 INTEGRATION OF THE AUXILIARY EQUATION: THE SOURCE SOLUTIONS

For one-dimensional cases the auxiliary equation for the steady GF can be solved
directly by integration. The solution for the point source, the line source, and the
plane source in the infinite body will be examined to demonstrate the method. The
source solutions are important in certain numerical methods, such as the bound-
ary element method. For the present discussion, the source solutions are useful in
understanding the functional form of the steady GF before considering the added
complexity of boundary conditions. The distinction between the source solutions and
the GF is important: the source solution satisfies the auxiliary equation alone and may
or may not satisfy homogeneous boundary conditions, but the GF satisfies a bound-
ary value problem which includes the auxiliary equation and homogeneous boundary
conditions.

Point source (three dimensions). The point source solution is the steady tem-
perature induced at location r by a point heat source at location r’. The point
source solution depends only on the distance (r —r’), so the appropriate coordi-
nate system is spherical polar coordinates. The point-source solution satisfies the
equation

1d(,dG 8(r—r")
- = — )= 4.156
r2dr <r dr ) 4mr? ( )
The solution to Equation 4.156 is:
, 1
G(rir'y=— (4.157)
dntjr — r'|

The point-source solution is given by symbol G(r|r’) because it is also a GF: it
satisfies the homogeneous boundary condition G(r — oo) = 0. The point source
solutionissingularat|r — r’| = 0. Inrectangular coordinates the point source solution
may be written
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“H2 o (4.158)

Gl 2y, 2) = o [(e =P+ (5 =¥+ = 2]
Derivation of the point source solution. The point source may be found by inte-
grating the differential Equation 4.156. For the moment, let the source be located at
r’ = 0 to simplify the analysis. We can translate the source back to r’ # 0 later. The
Dirac delta function 3(r) is zero everywhere except at r = 0, so except at this point,
G should satisfy the Laplace equation in spherical polar coordinates

1d (,dG
- - — =0 4.159
r2 dr (r dr ) ( )

Integrating once:

dG dG C
2 1
—=C = = 4.160
’ dr ! dr r2 ( )

integrating again gives,

c
G=—140C (4.161)
r

The constant C; may have any value to satisfy the Laplace equation and, if we take
Cy = 0, it will also satisfy the GF boundary condition G — 0 at r — oo. The
constant C; may be found to have the value —1/(4x) by replacing G back into the
differential equation 4.156 and integrating both sides of the equation over all space.
The nature of the Dirac delta function allows us to equivalently integrate over a small
sphere P centered at r = O with arbitrary small radius o, because the integrand is
zero for any integral that does not include the location of the Dirac delta function:

f V2Gdv = — / S =19 4y (4.162)
P P

Here dv = 4n(r')2dr’ is the differential volume. The right-hand side yields, with the
sifting property of the Dirac delta function,

f V2Gdv = -1 (4.163)
P

The left-hand side may be simplified with the divergence theorem to give the integral
over the surface of sphere P:

/ dS - VG = —1 (4.164)

The value of VG in spherical coordinates evaluated at » = o may be substituted to
give

C
ds—% = -1 (4.165)
r=0 02
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Finally, the integral may be evaluated to give the surface area of the sphere,

4y2Cy
2

-1 (4.166)

or, C; = —1/(4x), which completes the derivation for r' =0: G(r|0)=1/(4xr).
Finally, the point source may be translated to arbitrary location r’ # 0 by noting that
G(r]0) > 0, and since a change of coordinate system should not change the sign of G,
the vector magnitude is required: G(r|r’) = 1/(4x=|r —r'|).

Line source (two dimensions). The cylindrical coordinate system is appropriate
for the line source. The two-dimension differential equation for the line source in
cylindrical coordinates is

1d ( dG 3(r —r’
1d (4G _ 3 =r) (4.167)
rdr dr 2mr’
The solution to Equation 4.167 is
/ -1 /
G@rir'y==—1In|r —r’| (4.168)
21

where |r —r’| is a vector magnitude in cylindrical coordinates. Strictly speaking,
Equation 4.168 has an error in the units because the argument of the log function
should be dimensionless; however, in physical use the line source always has the
form In(a/|r — r’|) where a has the units of meters. In rectangular coordinates, the
line source may be written

1
G(x,ylx',y) = —on |n{[(x x4 (y— y/)g]lIZ}
= —% In [()C — x/)z + (y _ y/)Z] (4169)

Unlike the point source solution, the line source does not satisfy the homogeneous
boundary condition G — 0 at r — o0; the log function increases without bound as
r — oo. However the heat flux approaches zero far from the line source (k9G / or — 0
asr — oo). This far-field boundary condition (second kind) is adequate for the line-
source solution to be used to construct temperature solutions in the infinite body.

The line source is important in numerical methods such as the boundary element
method. The boundary element method in two dimensions involves a distribution
of line sources on a closed curve in the infinite body. The closed curve is broken
into line segments called boundary elements, and the distribution of the line sources
on the boundary elements is chosen to satisfy boundary conditions on the closed
curve. The temperature in the body is evaluated by numerical summation over all the
boundary elements, in effect superimposing the temperature induced by each source
distribution. This is equivalent to the GF procedure of integrating over the volume to
account for volume energy generation. For an introduction to the method see Brebbia
and Dominquez (1992).
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Plane sour ce (one dimension). The steady plane source solution is described by
the one-dimension steady-state heat equation

d’Gy ,
—2 = —8(x — x") (4.170)

where 8(x — x’) has units of (meters) L. The solution for Gy is
Go(x|x) = —§|x — x| (4.171)

The notation Gy is used for the plane source solution because it is not a proper GF,
because it does not satisfy homogeneous boundary conditions of the first or second
kind as x — oo. The plane source solution blows up at x — oo, and in fact it blows
up proportional to |x — x’|, which is faster than the line source solution which blows
up like In|r — r’|. The heat flux, although not zero, is at least bounded as x — oo; this
condition is sufficient for G to be used for constructing temperature solutions.

The plane source solution may be derived by integrating the differential Equation
4.170 directly, but a little care is required. Since the heated plane divides the infinite
body into two regions, the differential equation is integrated in two different regions
and then the two solutions are linked by a jump condition at (x — x’) = 0.

The plane source is not a GF because of a problem with the boundary conditions.
The auxiliary equation always has a general solution, but the homogeneous boundary
conditions cannot always be satisfied. There are several other geometries for which
this problem occurs and such geometries do not have a steady GF. For example, the
X22 geometry has no steady GF and neither do finite geometries with specified heat
flux on all of the boundaries (boundary conditions of the second kind, also called
Neumann boundary conditions).

A physical reason that some geometries do not have a steady GF function comes
from the perspective of a GF as the response to a heat source. In steady heat transfer,
any heat introduced inside the body must either flow out of the boundaries or flow
off to infinity if the body is of infinite extent. If all the boundaries are insulated, there
is nowhere for the heat to go and, consequently, there is no steady GF.

Steady temperature distributions can exist in bodies with no steady GF, but the
usual GF method cannot be used to find the temperature. For example, the X22
geometry has a linear temperature distribution if the same amount of heat that flows
into the body at x = 0 also flows out at x = L. In this simple case, the temperature
distribution can be found by applying the nonhomogeneous boundary conditions to
the general solution of the differential equation. The steady temperature can always
be found with the transient GF solution equation (GFSE) in the limit as time becomes
large (r — o). Any questions on the existence of the steady-state temperature can
be answered this way.

In the next section a pseudo-GF is discussed to deal with those geometries that do
not have a steady GF because of insulated boundaries. The pseudo-GF differs from the
ordinary GF by an additive constant. In physical terms, the additive constant cancels
out the heat flow introduced by the heat source. A modified GFSE is then needed to
calculate temperatures from the pseudo-GF.
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4.7.2 Pseupo-GREeN’s FUNCTION FOR INSULATED BOUNDARIES

For the special case in which all boundaries of the body are insulated, the usual
steady GF does not exist and the usual steady GF solution cannot be used to find the
temperature. In this section a pseudo-GF is discussed that can be used instead.

In this case the input data to the temperature problem must satisfy a constraint—
the sum of the heat passing through the boundaries of the body must be equal to
the (negative of the) integral of the heat introduced by volume energy generation.
This is equivalent to an energy balance over the volume of the body. If there is no
volume energy generation then the boundary heat fluxes must sum to zero. In addition,
the solution for the temperature contains an arbitrary additive constant that must be
supplied as input data.

The pseudo-GF, given the name G pg, satisfies the following differential equation
(Barton, 1989)

1
V2Gps = —8(r —1') + v (4.172)
Here constant V represents the integration volume associated with 8(r — r’). The
boundary conditions (second kind) are given by

G ps
8n,»

=0 atboundaryi. (4.173)

To use the pseudo-GF for finding temperature, a special form of the GF solution
equation must be used:

T(r)= Z/%Gps(f,r/)dS; (4.174)

+ f £ Gp(rr)av’ + (T) (4.175)

where (T,,) is the spatial-average temperature in the body. For this solution to make
sense, the boundary heating f; and the internal heating g must satisfy an energy
balance.

Two Cartesian cases are discussed below to demonstrate the pseudo-GF. For the
one-dimensional slab, the pseudo-GF satisfies

¥G 1
: ) z_zs(x—x’)+z; O<x<L (4.176)
X
IG 3G
LUER ) - (4.177)
ox x=0 ox x=L

Note that additive constant is 1/ L because the appropriate domain for the delta
function is (0 < x < L). The solution for this pseudo-GF may be found by direct
integration (see Section 1.7.2):

((x/)z + x2) /L) —x"+L/3, x<x

(x2 + (x/)z) /L) —x+L/3, x>x (4.178)

Gps(x,x') = {
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Note that this pseudo-GF contains an additive constant, L / 3, that is needed to satisfy
the differential equation but does not contribute to satisfying boundary conditions.
For the two-dimensional rectangle, case X22Y?22, the pseudo-GF satisfies

32GPS aZGPS
ox2 NG

=-3x —x)8(y — )+ ﬁ (4.179)

Here the additive constant is 1 /(L W) because the integration domain for the 2D delta
functionis (0 < x < L) and (0 < y < W). The pseudo-GF in the rectangle has two
alternate forms; using eigenfunction expansions along the x-axis,

Po(y,y")

R Zcos(ﬁmx/L)COS(Bmx IL) Pu(y,y)

m=1

Gps(x,ylx',y) =
(4.180)

where B,, = m7 form = 0, 1, 2, and so on. Here P,, is the usual kernel function that
satisfies
B2,

Py = 5P 3y —y) =0 (4.181)

Note that in this insulated-boundary case the eigenfunction expansion for §(x — x’)
has the form

S(x —x) = % + % Z coS (Byx /L) cos (Bux'/ L) (4.182)

m=1

where additive term 1/ L is associated with the zero eigenvalue (Bo = 0). Then,
an additional kernel function, Py, is also associated with the zero eigenvalue, which
satisfies
Py +3(y —y) = 1 4.183
o T80 —y) =1, (4.183)
Kernel function Py(y,y’) may be found from the 1D Cartesian pseudo-GF given
above in Equation 4.178, by replacing x by y and replacing L by W.
An alternate pseudo-GF may be constructed, with eigenfunction expansions along
the y-axis, in the form

Po(x, x)
w

2 & / /
+ W;COS (Yny I W) oS (vay' | W) Palx,x")

Gai(x, ylx',y') =
(4.184)

where y,, = nt. Kernel functions Py(x, x") and P,(x, x") may be derived in a manner
similar to that given above.

In this section the pseudo-GF has been explored for finite-domain Cartesian cases
in 1D and 2D. The same principles apply for the 3D parallelepiped (case X22Y22Z22),
and to insulated boundary geometries in cylindrical coordinates (cases R02, R02Z22,
R02Z22$22, etc.) and spherical coordinates (cases RS02, RS02¢$22, etc.).
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4.7.3 Limit METHOD

The steady GF can be calculated from the large-cotime transient GF by integrating
over time and taking the limit as r — oo. That is,

t
G(r,r) =lingooc/ . G(r,tlr', T)dt (4.185)

Thisisthe limit method. Many steady GFs can be written down immediately in integral
form with the limit method. Three examples of the limit method are discussed below.

Example 4.9: Point Source in the Infinite Body

Find the steady point-source solution from the transient point source solution
Gx00v00200-

Solution

The point source will be located at the origin (x' = 0, y/ = 0, zZ/ = 0) for

convenience. Later the source can be translated to any position. The limit method
is given by the integral

G(x,y,z]0,0,0) = Ilm rx[ Gxooyoozoo(x, ¥, z,t|0,0,0, 1) dt (4.186)

The product solution may be used for the transient X00Y00Z00 GF to give

Gxoovoozoo(x, y, z,t0,0,0, 1) = Gxoo(x, t[0, 1) Gyooly, |0, ©) Gzoo(z, t|0, T)

where
1/2 =
Gxoo(x, t]0, 1) = [47a(t — )]~ / exp Ao — 0
- _y2 2
Grooly, 110, v = [4alt = 0]~ Z exp | o
- 2 -
Gzoo0(z, t]0, 1) = [4Ta(t — ‘[)]_] /2 exp YT
Then Equation 4.186 may be written
t
Glx,y,210,0,0) = lim oc/ [4na(t — 1] 732
— 00 =0
—(x2 +y2 4 22)
_ 4.187
X exp yPT— dt (4.187)

Note that the product of the three one-dimensional GFs is also the same as the
RS00 GF given in Appendix RS for the case r' = 0. The above integral may be
evaluated to give

1 r 1
G( 0,0,00= lim — erfc | —— | = —— 4.188
. 2l S0 gy € [(4(“)1/2} 47| 4.188)
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FIGURE 4.4 Parallelepiped geometry for Example 4.10.

where 12 = (x? + y? + 7?). This is the steady point-source solution located at

r' =0, as discussed in Section 4.7.1.

Example 4.10: Parallelepiped with Specified Surface Temperature—
X11Y11Z11 Case

Find the steady GF in the parallelepiped with temperature boundary conditions
(type 1) on all six surfaces.

Solution

The parallelepiped body is shown in Figure 4.4. The limit method integral for this
case is given by

G, y, zIX,y, 2) = Ilm (x/ Gxiiviizin x, y, z, tIx, ¥y, Z,vdt  (4.189)

The transient GF for the X11Y11Z11 geometry is given by the product of one-
dimensional transient solutions: Gx11Gy11Gz11. The function Gxq1 is given in
Appendix X:

2 & mmx mrx’
Gxnx, tix', v == Z —m -1/ a g sin (4.190)
a a a

m=1

where a is the length of the body in the x-direction. The functions Gy11 and Gz11
are similar; for example, Gy11 is given by Equation 4.190 with x and a replaced
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by y and b, respectively. Replace the transient GF into the integral to give

Gix,y,zIX,y, Z)
ZI_LTO%ZZZ/ exp | —an? )——i—E—F— dt
m=1 n=1p=1
/

X sin(mn’ g) sin (mn X;) sin (pn g) sin(pn Z%) sin (nn %) sin (mr %)
(4.1971)

When the time integral is carried out and the limit taken, the steady GF becomes

Gx,y, zIx,y, 2

0o 00 00 ,

=38 ZZsm(mn :)sm(mn X;) sm(pn 7> sm(pn i/)

m=1 n=1 p=1

/ 2 2 2\ 77!
X sin(nn %) sin(nn %) |:abcn2 <r;12 + % + I;)i| (4.192)

Generally triple-sum series such as this converge slowly, and alternate series
should be used for numerical evaluation, if possible. In the parallelepiped the
eigenfunction expansion method can be used to construct three alternate double-
sum series. For example, the double-sum form with kernel function along the
z-direction is given by

Gix,y, zIx,y, z)= i isin(mn f) sin(mn X—/>
a a

m=1 n=1

xsin(m—r %)sin(nn %) Pom(z, 7)) (4.193)

where the kernel function Py, is given by (Table X.4, case X11)

—o(2c+|z—Z'|) _ e—o(Zc—z—z’) e—u\z—z’\ _ e—c(z-&-z/)
Pom(z, Z') = + 4.194
iz, 2] 20(1 — e=20€) 20(1 — e=20€) (4199
where o2 = w%(n? + m?). Further discussion of the convergence speed of series

solutions is given in Chapter 5.

Example 4.11: Two-Dimensional Slab with One Side Semi-Infinite—
X11Y20 Case

Find the steady-state GF for the region 0 < x < a, ¥y > 0 with G =0 at x = 0 and
atx =aand d0G/dy =0aty = 0.

Solution
The limit method integral for this case is given (with u =t — 1)

o0
Gx, yIx,y) = af Gx11(x, ulx’) Gyaoly, uly) du (4.195)
0
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where Gx11(x, u|x’) is given by Equation 4.190 with u =t — t and Gy2o(y, uly’)
is (see Equation X20.1, Appendix X)

Gyaoly, uly) = (4mau)~"/2 (e—W—Y')Z /o) 4 o=(y+y'V? /‘4°“’>) (4.196)

Integrals of the form (see integral 12 in Table 1.6, Appendix I)

o ) 172
/ uV2e-du=brut g, = T -2ab (4.197)
0 a

are needed. Then, using Equations 4.190, 4.196, and 4.197 in Equation 4.195
gives

1
Z 7(e—mn\y—y’\/a T e—mﬂ(y+y’>/a>
m

Gix, yIx',y) = !
T
m=1

mnx . mux

sin (4.198)

X sin

Observe for the point y=y’, x=x" (with x not at 0 or a) that the value of G
is unbounded, which is unlike the behavior of the one-dimensional GFs in the
x-coordinate. Green’s functions in the cylindrical coordinate system also have
this unbounded behavior for r and r’ going to zero.

PROBLEMS

Note: In many of the problems in this chapter the partial answers can be obtained
by using the GFs tabulated in the appendixes. Unless otherwise requested, the
reader should use Appendix | to evaluate integrals.

4.1 Using the method of images, find the transient GF for the region
0 <x < 00,0 <y < oo, with the boundary conditions of 9G / 9x = 0
atx = 0and oG / dy = Oaty = 0. Also find the GF using the product
of the appropriate GFs and relate the corresponding terms.

4.2 Using the method of images, find the transient GF for the region
0<x<L0<y<oo withdG/ox =0atx =0and L, and
dG /dy = 0 at y = 0. Also find the GF using the product of the
appropriate GFs and relate the corresponding terms.

4.3  Usethe Laplace transform method to find the GF for the semi-infinite
body with an insulated boundary (case X20).

4.4 Use the Laplace transform method to find the small-cotime form of
the GF with boundaries of first kind at x = 0 and x = L (case X11).
Check your answer against Table 4.1.

4.5 Usingacomputer, evaluate LG x11(x, t|x’,t)atx /L = x' /L = 0.5
for times a(r — r)/L2 = 0.025, 0.1, 0.5, and 1.0. Use two differ-
ent expressions, one from Table 4.1 and the other from Tables 4.2
and 4.3. Determine the number of terms required for each expres-
sion for the different dimensionless times for the errors to be less
than 0.0001 in value. Compare the values with those obtained from
LG xoo(").
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4.6

4.7

4.8

49

4.10

411

Evaluate LG x2o (x,7|x’, t)atx /L = x'/ L = 0.5fora(r—1)/ L% =
0.025, 0.1, 0.5, and 1.0. Use two different expressions, one from
Table 4.1 and the other from Tables 4.2 and 4.3. Determine the num-
ber of terms required for each expression for the different dimen-
sionless times for the errors to be less than 0.0001. Compare the
values with those obtained from LG xoo(-) and LG x11(-).

Using expressions in Table 4.3, consider boundary conditions of the
first and second kinds and also of the third kind for small values of
B1 and B, compared to 1 and both K3 and K> not equal to zero (one
K can be zero). Find an approximation of the first eigenvalue, f1,
using the approximate relation.

3

= |

cotx =

in the eigencondition in Table 4.3. The use of this approximation
yields a more accurate equation than a two-term approximation for
tan x. Why?

Show that eigenvalues calculated using the eigencondition in Ta-
ble 4.3 gives B,,+1 = B + w for large B,, values.

For cases RS30 and X30, in the limitas 7 — oo the following limit
must be evaluated:

. 2
lim ™ erfcm
m—o0

Evaluate this limit (a) by using a series expression for the comple-
mentary error function, and (b) by using L’Hospital’s rule. What kind
of boundary condition results from this limit?

An instantaneous volume source from —a to « in an infinite body is
to be approximated by a finite number of line sources. Show that the
exact solution is

! [erfc (x _a) erfc <x+a)] where t—1
< _ w—1—
2 VAou VAou

(The detailed derivation of this equation is not required if an ap-

propriate integral in the book can be used.) This solution is to be

approximated by a series of plane sources. Derive and evaluate the

expressions for (a) asingle source at x = 0, (b) three equally spaced,

and (c) five equally spaced plane sources. Show that these approxi-

mations can be used to obtain

(8) erf (z) ~2z/nt/?

(b) erf (z) ~ (2z/7H2) (L +2 e %°19)/3

©) erf (z) ~ (2z/nH2) (1 + 2 47125 1 2 0~16%125) |5
Evaluate and compare these expressions with the exact values
atz =0.05,0.25, 1, and 2.

Show all the steps to obtain the transient GF for case X12 us-

ing the separation of variables method. Check your answer with

Appendix X.
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4.12  Show all the steps to obtain the transient GF for case X23 us-
ing the separation of variables method. Check your answer with
Appendix X.

4.13 Determine the transient GF for a line source at x = x’,y = y’ for
the boundary condition of the third kind at y = 0 and for the region
of —oo < x <00,y > 0.

4.14  Obtain the transient GF function for the case denoted X13Z00 using
the product method.

415 Obtain the transient GF for the cases denoted R02Z20 and
R01®00Z10 using the product method.

4.16 Give the expressions for the GFs for the cases represented by X00,
X00YO00, and X00Y00Z00. What is the physical significance for each
case?

4.17 Evaluate the following integrals

b b
/ Gxo0 (x,t]x', ©) dx’, / G xoovoo (x, y, 11x, Y, 1) dx’,

a a
a
and/ G xoovoozoo (x, v, z, t|x", ¥, 2/, 1) dx’
b

(Perform the integration either explicitly or by using a table.) What
physical situation does each integral represent? (Hint: compare to
the GF solution equation.)

4.18 Compute numerical values from the series form of the steady case
X12 (Example 4.6, Equation 4.135) for x’ = 0.2 and for 50, 500,
and 5000 terms of the series. Plot your numerical values over (0 < x
<L) and discuss how well your plot agrees with the algebraic form
of the this steady GF (Section 1.7.2).

4.19 Derive the steady-state GF for the X'11 case by direct integration of
the auxiliary problem

d*G
dx?
Compare your answer to Table X.1, Appendix X.
4.20 Derive the steady-state GF for the X11 case using the limit method

and starting with Equation 4.190 for G x11(-).
The answer is

=-3x—-x); GO,x)=G(L,x)=0

. mmx’
sSin

2a 1
, .
GXll(xrx)_ 2 Zm a
421 (a) Program ona computer the expression for G x11(-) /@ given in
Problem 4.20 as a function of x / a, x’ / a and M here M is the
maximum number of terms used.

(b) Calculate using the computer program G x11(-) / a as a function
of the number of terms for x/a = x'/a = 1/2. Also tabu-
late the errors by using the nonseries solution of Problem 4.19.
How many terms are needed to obtain accuracy within 1%? By
observing the dependence the error as a function of number of

terms, how many terms would be needed to obtain 0.1%?
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4.22

4.23

4.24

4.25

4.26

4.27

4.28

Verify that in two-dimensional cylindrical coordinates the function
/ 1 /
G@riry=—=—1In|r—r|
27
satisfies the differential equation V2G = —8(r — 1) /(21tr').

Show by direct integration of the energy equation that the steady GF
for the X23 geometry is given by

1+B
L(L_f) 0
B L

IA
=
IA
=

G(x|x') =

h
P
=
‘+
o]
I
| =
~—
IA
k\
IA
~

where B = hL [k is the Biot number.

Use the method of eigenvalue expansions to find the steady GF in the
rectangle for case X12Y11 with eigenfunctions in the x-direction.
Compare your expression with Example 4.7 and comment on the
similarities and/or differences.

Use the method of eigenvalue expansions to find the steady GF in
the semi-infinite slab for case X11Y00. Compare your expression to
Example 4.11 and comment on the similarities and/or differences.
Use the limit method to find the steady GF for case X12. Com-
pare your answer to the result given by the eigenfunction expansion
method in Example 4.6.

Use the limit method to solve for the steady-state GF for the problem
denoted X11Y10.

(@) Use the X11 GF best for small cotimes.

(b) Use the X11 GF best for large cotimes.

Use the limit method to solve for the steady-state GF for the problem
denoted X11Y10Z12. Use the X11 and Z12 GFs best for large cotimes.
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5 Improvement of
Convergence and
Intrinsic Verification

5.1 INTRODUCTION

For heat conduction in finite bodies, expressions for temperature often involve in-
finite series. This chapter is devoted to numerical issues associated with evaluation
of infinite-series solutions. Slow convergence of these infinite-series expressions can
make it difficult to obtain accurate numerical values because many terms must be
evaluated. Slow series convergence can also contribute to lengthy computer evalua-
tion time.

Lengthy evaluation time will always be an issue, no matter how fast computers may
become, because scientists and engineers will always be able to imagine calculations
that outstrip their computer resources. Lengthy evaluation times can occur in heat
conduction when many temperature values are needed (at many locations in time or
space), or, when very high numerical accuracy is needed.

The concept of intrinsic verification, introduced in this chapter, is the process
of determining correct numerical values from an exact analytical solution, to many
significant figures, in two or more independent ways. Arising as it does from the
solutions themselves (“intrinsic™), this type of checking is easy to implement and
provides assurance that numerical results are correct. We strongly recommend this
approach.

The remainder of this section introduces the Cartesian geometries considered in
this chapter, the two basic functions that arise in heat conduction for these geome-
tries (short cotime and long cotime), and the convergence issues associated with long
cotime functions. In Section 5.2 strategies are given for identifying when slow con-
vergence is a problem. Three methods for improving convergence are discussed in
Section 5.3: replacement of steady-state; the alternate Green’s function (GF) solution;
and, time partitioning. In Section 5.4 the concept of intrinsic verification is introduced
asameansto improve one’s confidence that the numerical values computed from exact
solutions are correct.

5.1.1 ProBLEmMS CONSIDERED IN THis CHAPTER

In this chapter some problems associated with series convergence are introduced for
Cartesian bodies for purposes of illustration. The same concepts apply for other co-
ordinate systems and multiple dimensions. Three types of problems are considered:
those containing a nonzero initial temperature distribution F(¥); those containing an
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energy generation term g(7, ¢); and, those containing one nonzero boundary-heating
term f at boundary location x = 0. Simultaneous heating at additional boundaries
can be included by superposition of additional boundary terms, evaluated at the ap-
propriate boundary.

The describing partial differential equation for the temperature in Cartesian bodies
with uniform thermal properties is

2 2 2

gx—z + % + % + %g(?, t)= %% in finite domain R, >0 (5.1)
The finite domain R can include slabs, rectangles, and parallelepipeds. Notice that
this equation contains an energy generation term, and hence is nonhomogeneous. At
boundary x = 0 there may be a nonzero boundary-heating term of the first, second,
or third kinds described by

aT aT
T=f or ng or k% +hT = f (5.2)

The other boundary conditions are homogeneous (f; = 0). For the nonzero initial
temperature distribution one writes

T(#,0) = F(7) in finite domain R (5.3)

Analogous to Equation 1.74, the solution of the above problem using GFs for a finite
body is

T(F 1) :/RG(?,H;’,O)F(;’) dv'

t
+ E/ / G, t)r',T) g(r', ) dv'dt
k 1=0JR

t / - .
f(',©)aGax’; firstkind only )
- afr:o /s-{ 1 f(r'1)G; 2nd or 3rd kind | ,_, ds'dt (5.4)

For one-dimensional slab bodies the GF is given in Chapter 4 for many cases, and
more extensive tables of GFs for rectangular coordinates are given in Appendix X.
For 2D and 3D Cartesian bodies, the transient GF may be found by products of
one-dimensional GF.

5.1.2 Two Basic FuncTioNs

The GF for one-dimensional slab bodies have the form of infinite series of basic
functions. (For semi-infinite or infinite bodies, the GF is usually given as a finite sum
of such functions.) There are two types of basic functions that occur in the expression
for Gx;(-)forI =1,2and J = 0,1, and 2. One is the fundamental heat conduction
function, K (z + x’,1 — 1),

e+ } (5.5)

K(z+x',t —1) = [Ana(t — 1)] % exp [ da(t — 1)
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The variable z is2nL +x or 2nL — x. See Section 4.2. In this function the variables x’
and cotime (r — t) occur in the same group as in the argument of exp(:). This is a
compact form, but integrations involving K (-) can be quite complicated and can be
difficult to do analytically.

The other type of basic function involves the product of an exponential that is a
function of only cotime (¢ — t) and two identical eigenfunctions, one a function of x
and the other of x’, and a norm N,,,,

exp |:_ BanOL(t - T)j| XBrr )X (B, x")
L? N

(5.6)

The norm canbe L, L /2, or amore complicated function. The eigenfunctions for the
X11 and X12 geometries are

X (B, x) = sin Bme

and X (B, x) = cos Bme

The basic function given by Equation 5.6 is more convenient for mathematical ma-
nipulation than K (-) given by Equation 5.5, because the dependent variables x, x’,
and (¢ — t) all occur in different terms of Equation 5.6. Thus, an integral on one
variable (x, x’, or r — <) acts only on one term and does not affect integration on the
other two variables. Whenever practical, the product form given by Equation 5.6 is
preferred for this reason.

5.1.3 CoNverGeNCE OF THE GF

There is an important case when the large-cotime GF has convergence difficulties
for large values of ar/ L2. It occurs when G(-) is integrated over the dummy time
variable t. For example, let g(x’, T) in Equation 5.4 be simply god(xo — x’). This
is a continuous (that is, constant over time) source of heat of strength go located at
position xg. Then, the second integral of Equation 5.4, restated for a one-dimensional
body, contains typical terms of

%go Z /-t exp |:_ Bia(lz— T):| th(Bm,X)X(Bm,xO) (57)
m=1771=0

L Np

[The integral over x” has been evaluated with the sifting property of the Dirac delta
function, 8(xg — x’).] Next, only the integral over t is considered, but the upper
limit is replaced by  — At, where Ar is discussed below. Then the t integral can be
expressed as

t—At 2 2
Bma(t - t) L 762 A 2 _p2 2
exp| —2—~—“|dt= — mOAL LS —Byar /L 58
,/;:0 p|: L? k apZ, (e ¢ ) (5.8)
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If Az = 0 in Equation 5.8, then the term exp(—p2 aAr / L%) becomes unity, and the
first term of the time integral becomes L2 /(af2,). When this term is replaced back into
the infinite sum in Equation 5.7, for the X21 and X 22 cases at x = 0, the resulting
term is proportional to

> Biz (5.9)
m=1""Mm

which is part of the expression for the temperature. In many cases B,, is approximately
equal to m times

Bm ~mm (510)

for large values of m. For large m, the “tail” of the summation of Equation 5.9 for
m=M,M+ 1, M + 2, etc., is given by the Euler-Maclaurin summation formula
(Abramowitz and Stegun, 1964, p. 16)

i 1 1 foo 1 J 1 (5.11)
N — —_—adm = —— .
= mw2m?2  w? [ m? M

Hence, the tail of the summation is proportional to 1/ M. This means that a very large
number of terms in the series is needed if accurate temperature values are desired.
For example, if M is equal to 100, the error in neglecting the tail is approximately
1/(1007?) ~ 0.0010; for M = 1000, the error is one-tenth as large, but there is
10 times as much computation. Note that

=1 1
mZ:l w2m2 6
and so using M = 100 would result in an error of about 0.001/(1/6) or a 0.6% error.
One reason that analytical solutions are used is to obtain the “exact” solution which,
in practice, usually means an error of 0.01% or less. In this example, accuracy of
0.01% would require the large number of over 6000 terms in the single-sum infinite
series. For double or triple series the number of terms could be much larger. However,
using the methods in this book the number of terms in a given summation may be
reduced to 40 or less depending upon the desired accuracy.

Suppose that the integrand for the integral is replaced by the appropriate small-
cotime expression, which has terms similar to the one in Equation 5.5. Then the
integral over t in the range (r — At < t < r) can be accurately found using only a
small number of terms involving fundamental solution K. Now consider the error in
the tail of the large-cotime expression with a finite number of terms. Then instead of
evaluating the slowly convergent series given by Equation 5.9, it is only necessary to
evaluate the sum

2
o |- | (5.12)
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which requires many fewer terms for nonzero values of a Az / L2, If the tail of Equa-
tion 5.12 is calculated, and B,, ~ mm, the result is

o 2.2 1/2
1 maAt 1 . aAt
E mznz exp |:— LZ ] ~ M]-[3/2 ierfc [MT[ (?> :| (513)

m=M

which reduces to the Equation 5.11 result for A+ = 0. For nonzero values of a Az / L?,
the right side of Equation 5.13 decreases very rapidly as M increases. As an example,
let a At/ L? be the small value of 0.025. Then, m(aAz/ L?)!/? = 0.497 ~ 0.5, and
then ierfc (0.5M) takes on the values 400E—7, 30E—7, and 0.9E—7, for M = 4,5,
and 6, respectively. Hence for aAr/L? = 0.025 and small values of M such as
4, the error by dropping the tail of the summation is negligible. (Larger aAr/ L2
values cause the right-hand side of Equation 5.13 to decrease even more rapidly as
M increases.) The contribution for the integral over t in the range (r — Ar < t < 1)
in Equation 5.8 is obtained using just a few terms of the small-cotime GFs.

Consequently, partitioning the time integral in Equation 5.4 has great potential to
improve the computational efficiency of solutions obtained with the GF method, for
two- and three-dimensional problems. It is not usually needed for one-dimensional
problems. Time partitioning, discussed in Section 5.3.3, is one of several methods
that can improve the convergence of a series solution.

The discussion in this section has established that large-cotime GF may produce
slow-converging series for temperature, and that it may be necessary to improve the
series convergence. Further discussion of improvement is premature, because first we
need to determine whether or not slow convergence is actually present in the problem
at hand.

5.2 IDENTIFYING CONVERGENCE PROBLEMS

Evaluating an infinite series is like using a chain saw—you can avoid serious injury if
you follow the safety rules. The safely rules for evaluating an infinite series, discussed
in this section, are the following: use a convergence criterion; monitor the number of
terms; and, be aware that the derivative of a series converges more slowly.

5.2.1 CONVERGENCE CRITERION

Every infinite series must be truncated to a finite number of terms when evaluated
numerically on a computer. The number of terms sets the accuracy of the numerical
result. Unfortunately, the number of terms needed for accurate evaluation can vary
from place to place within the body and can vary with time. This nonuniform con-
vergence makes it difficult to estimate beforehand how many terms of the series are
needed in every circumstance. The use of a fixed number of terms, say for evaluat-
ing temperature at several locations, risks poor accuracy in some locations and risks
wasting computer time in other locations. A convergence criterion is needed to choose
the number of terms, at any location or time, to provide a predetermined accuracy
without wasting computer cycles. Two convergence criteria are discussed here.
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TABLE 5.1

Number of Terms and Truncated Sums as a Function of Convergence Criterion
Kmax*

Mmax o~ (m)20.01 Mmax \—(mm)?0.1
Kmax e~ Kmax Mmax W Mmax W
m=1 m=1
4.6 1.0E-02 7 0.1152443685 3 0.03825354276
6.9 1.0E-03 9 0.1152476499 3 0.03825354276
115 1.0E-05 11 0.1152477078 4 0.03825354364
23.0 1.0E-10 15 0.1152477083 5 0.03825354364

*Inaccurate digits are underlined.

Maximum exponential argument. When the series contains an exponential fac-
tor, the best convergence criterion is to specify the maximum allowable absolute value
of the exponential argument. For transient heat conduction, the time-exponential is
monatonically decreasing and generally dominates the convergence behavior. Track-
ing the value of the exponential argument is a conservative way to control the con-
vergence. Most importantly, this convergence criterion can be applied ahead of time
to choose the number of series terms needed.

Consider the series given by Equation 5.12 from the large-cotime GF:

o0

1
> 7 e, where A =pZaAr/L? (5.14)
m=1"Mm

The convergence criterion is to continue to add terms to the series until A > K4
where K., is the maximum allowable absolute value of the exponential argument.
The value of K, determines the size of the exponential factor as indicated in the
first two columns of Table 5.1. For the above series, for an error of one part in 1010
requires that A < 23 which means that at aAr/L? = 1 the eigenvalue must be
B2 = 23 or B, ~ 4.8. This convergence test is used later in Section 5.4.

To be more specific, consider the common case of ,, = mm and the dimension-
less times of 0.01 and 0.1. Table 5.1 shows results for the number of series terms
and the truncated sum with the inaccurate digits underlined. The convergence crite-
rion based on the exponential factor is shown to be conservative in each case. For
example, when exp(—K..x) &~ 1072, the truncated sum is accurate to at least seven
digits.

Ratio convergencetest. Unfortunately, some series do not contain an exponential
factor. In this case we suggest a convergence test based on a ratio of the average of
the last few terms of the series and the entire series so far. Specifically, let f; be the
ith term of the series and let S, be the truncated series, given by

Sy = Z fi (5.15)
i=1
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TABLE 5.2

Number of Terms and Truncated Sums as a Function of Convergence Criterion
¢ (Equation 5.16)*

Mmax 1 Mmax (_1)m
€ Mmax mz=1 22 Mmax - mgl 22
1.0E-03 27 0.1629826658 24 0.0832490393
1.0E-04 81 0.1654234776 66 0.0833218794
1.0E-05 249 0.1662605703 204 0.0833321220
1.0E-06 783 0.1665373480 639 0.0833334572
1.0E-07 2469 0.1666256376 2016 0.0833333209
1.0E-08 7800 0.1666536776 6369 0.0833333346

*Inaccurate digits are underlined.

Then using the average of the last three terms, the summation is truncated when

m— m— m 1
f ZJ”; 1t/ 5| < (5.16)

Using an average of several terms, rather than just the last term, is important because
the last term of the series may not shrink in size monotonically, but may oscillate in
size or repeatedly change sign because of a sine or cosine component. The absolute
value is used to guard against negative values of f, which could prematurely signal
truncation. An average of more than three terms could be used to test convergence,
but this would require additional computer resources to little advantage.

Table 5.2 shows the results of the ratio convergence test applied to two series
that contain factor 1/m?. The table values show that convergence criterion ¢ =
1078 provides about four accurate digits for the first series and about seven accurate
digits for the series with alternating signs (note that the alternating sign speeds the
convergence). Clearly, the number of accurate digits given by this test varies with
the convergence speed of the series. The ratio convergence test can be performed
after each term is added, because the computer time needed to compute the test is
generally small. However, testing every third term can be coded very simply (a simple
sum rather than a moving sum) and it allows the series to establish a trend before the
first test. The convergence test for the values shown in Table 5.2 was applied every
third term; note that all the m,,,, values listed in the table are divisible by three.

5.2.2 MonNITorR THE NUMBER OF TERMS

Even though modern computers can rapidly saw through millions of series terms, it
is important to be aware of the number of terms needed to evaluate your series. For
example, more series terms are often needed near nonhomogeneous boundaries, and
monitoring the number of terms can identify these problem areas. As another example,
if the series is evaluated in a code that specifies the maximum number of terms, there
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should be a warning flag encoded if the maximum number is exceeded. In this way
the code user will know that the computed value may not be accurate because the
series was truncated without satisfying the convergence test.

If the number of terms needed becomes very large (> 10°), then round-off errors
can accumulate. Round-off error is the error introduced by the floating-point repre-
sentation of each term, summed over all terms. To address round-off error, the obvious
step is to increase the precision of the floating point representation, for example by
changing from single-precision to double-precision. Unfortunately, this can more than
double the computer evaluation time, depending on how the computer hardware pro-
cesses floating-point numbers. A better approach, discussed in Section 5.3, is to find
a way to improve the convergence speed of the series.

5.2.3 SLower CONVERGENCE OF THE DERIVATIVE

Generally the heat flux is found by differentiating the temperature according to
Fourier’s law. However, be careful when evaluating the heat flux from a temperature
series, because differentiation degrades the convergence speed of a series. Worse,
given a convergent series, there is no mathematical guarantee that its derivative will
converge at all (Lanczos, 1966, p. 63).

This problem often occurs near boundaries and corners, and can be severe near
boundaries of the first kind and in 2D and 3D cases. For simplicity in presentation a
1D example is given here.

Consider a nonhomogeneous boundary of the first kind, say at x = 0 for case
X11B10TO0. The GF solution has the form:

r G
T(x,1) = oc/ T, X1
=0 ox’

The long-cotime form of the GF is given by

dt (5.17)
x'=0

2 o0
Gxul(x, t]x', 1) = 7 Z sin(mmx / L) sin(mmx’ | L) exp[—m?7%a(t — )/ L?]
m=1

(5.18)

After evaluating the derivative on x’ and the integral on t, the long-cotime temperature
series is given by:

o0
T(x,1)=2Tp Y 1 sin(mmx / L) (1 — exp[—m?n?at / L?]) (5.19)
m=1 mm

This equation has a steady-state part (the sum of sin(mmx /L) /(mr)) and an expo-
nentially converging complementary-transient part. The steady state series converges
slowly because the only factor uniformly decreasing to zero is 1 /(m ). A series com-
posed only of factor 1/(mm) will not converge; however this series contains a sine
function whose positive and negative values do allow the series to converge, though
very slowly. Convergence becomes slower and slower as you approach the heated
boundary at x = 0. The slow convergence arises from the Fourier series, not from
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FIGURE 5.1 Series 2 ) sin(mmx/L)/(m=) truncated to N = 10, 20 and 80 terms, demon-
strating the Gibbs phenomenon for a type 1 nonhomogeneous boundary (Case X11B10).

the physics of heat conduction. In this case the series attempts to describe 7 # 0
near x = 0 using eigenfunctions that approach zero as x — 0, requiring increasingly
more series terms. This phenomenon was first explained by J. Willard Gibbs, one
of America’s foremost scientists*. The Gibbs phenomenon occurs whenever a trun-
cated Fourier series is used to approximate a discontinuous function (Sommerfeld,
1949, p. 12). A demonstration of the Gibbs phenomenon is given in Figure 5.1, in
a plot of the steady portion of the X11B10 temperature (Equation 5.19) where the
series is truncated to N = 10, 20 and 80 terms. As the number of terms increases,
the curve more closely approaches the exact values (straight line) except near the
x = 0 boundary. The curve for each truncated series begins at zero at x = 0 and rises
sharply to overshoot the exact values. Although the width of the rise-and-overshoot
region shrinks as N increases, the overshoot height never vanishes. In addition, as N
increases the slope at x = 0 becomes steeper and steeper.

Consider next the heat flux series found by term-by-term differentiation of the
temperature series:

oT 2kT
q=—k = =0 Zcos(mnx/L)( — exp[—m?n?ar [ L?]) (5.20)
X

Because the decreasing factor 1 /(m ) has been removed by differentiation, this series
for heat flux diverges for every value of x. That is, as you add terms to the series the

*Although renowned as a scientist, Gibbs earned the first American Ph.D. in Engineering in 1863.
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numerical value increases without limit. It is important to remember that this lack of
convergence is a mathematical artifact associated with the series form of the solution;
the physical system is well behaved for all > 0. Fortunately, for cases like this, there
are alternate forms of the solution, discussed in the next section, that can be used to
evaluate the heat flux (see also Beck and Cole, 2007).

5.3 STRATEGIES TO IMPROVE SERIES CONVERGENCE

When slow convergence becomes a problem, there are specific strategies that can be
used to improve the convergence of series solutions. These strategies are: replacement
of steady-state series; use of the alternate GF solution; and, partitioning the time inte-
gral. The first two methods are easier to implement and should be explored first. Time
partitioning, important for 2D and 3D applications, may require more analytical effort.

5.3.1 REPLACEMENT OF STEADY-STATE SERIES

If a transient solution contains a steady-state portion, often this portion of the solution
converges slowly. One strategy for improving convergence of the entire series is to
replace the steady portion by a better-converging form. How to find this better form
can depend on the body shape and on the number of spatial dimensions involved.

In one-dimensional transient cases, the steady-state portion of the solution can
usually be found in algebraic form by direct integration. When this algebraic form
is substituted for the series form, the accuracy is significantly improved and the
computation time is reduced. Consider a specific one-dimensional example.

Example 5.1: Slab with Elevated Temperature on One Side—X11B10T0

Molten metal is suddenly poured over a plate of thickness L and an initial tem-
perature of zero. The temperature at the back side of the plate can be considered
to be fixed at zero also. A reasonable approximation for this problem is a step
change in the x = 0 surface temperature to Ty. Assuming temperature-invariable
thermal properties, model the problem and solve using GFs; replace the steady
state component of the solution with a nonseries form and evaluate the heat flux.

Solution
The transient temperature satisfies the following equations:

PT_NT oy (5.21)
x2 o dt’ ’
T(x,00=0
T0,t)=Ty
T(Lt)=0

A jump in temperature of size T is suddenly imposed at the x = 0 boundary. This
geometry was discussed earlier in Section 5.2.3, and the temperature is given by
(see Equation 5.19)
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ad sinfimmx /L) ad sinimmx /L) 2 2 2
T, t)=2Tp )  ———— =2Tg ) —————e mret/t (5.22)

mT mT
m=1 m=1

Note that this equation has the form
T(x, t) = TolSss(X) + Sc.t.(x, D] (5.23)

where S is the steady term and Sc ;. is the complementary transient term. It is the
steady term that converges slowly. The temperature would converge better if the
slowly converging steady portion could be improved.

Next the steady-state portion is found in nonseries form. Introducing Equa-
tion 5.23 into the boundary value problem for temperature, Equation 5.21, gives

825)5:2()() " aZSCaigx t) _ };85,;,5;)(, t) (5.24)
Sss(X) 4+ Sc.t.(x,0) =0
5(0 + Sct ) =1
Sss(D) + Sc.e.(L, t) =0

For t > 0 we know that the two solutions Sss and S¢ ;. are independent. Then we
can obtain
d? Ss(x) PScalx, t)  10Sc(x,0)

= =0, e =0 (5.25)

So function S satisfies the steady heat conduction equation. Let us choose bound-
ary conditions for S to be

Sss(0) =1; Sss(L) =0

Then function S¢s may be found by direct integration: the steady heat conduction
equation admits a linear distribution in the form S¢s(x) = ax+b, and then constants
a and b may be found from the boundary conditions. Function S is then given by

Z sin(mmx /L) (5.26)

&mzm—%zz

m=1

Replace this algebraic form for the steady solution into the series solution above
to find

o0 .
_ sinimnx /L) o042
T(x, t) = To (1 - Z> 2T Y e (5.27)

m=1
This equation has much better series convergence than the previous series. At large
time (at/L? > 0.025) only a few terms are needed for high accuracy.

An important aspect of the temperature expression given by Equation 5.27 is the
possibility of “intrinsic verification” which is discussed in detail in Section 5.4. As
shown in Figure 5.2, the temperature is nearly zero at x / L > 0.4 and at early time
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FIGURE 5.2 Case X11B1070. Temperature in the plane wall initially at zero temperature,

with T = Ty applied at x = 0 for r > 0, and with zero temperature at x = L.

such that ar / x2 < 0.01. In this region the steady and complementary transient parts
of the temperature expression must sum to zero. This is useful for checking that the
series is computed accurately.

This better-converging form for the temperature, Equation 5.27, can also be dif-
ferentiated term-by-term to find the heat flux, as follows:

oT kT > _m?n2ar ) L2
q(x,1) = —ka =7 1+2 Z cos(mmx /[ L)e (5.28)

m=1

This series for the heat flux, unlike Equation 5.20, converges everywhere for r > 0
thanks to the exponential term. At the instant + = 0, however, the exponential term
is unity and the series diverges. The heat flux is infinite at # = 0 not because of some
mathematical flaw, but because of the physically unrealistic boundary condition. The
instantaneous jump in boundary temperature imposed at + = 0 results in a momen-
tarily infinite heat flux. For small dimensionless times such as as/ L2 = 0 to 0.06,
the finite body problem X11B10TO is better modeled as the X10B1TO problem. For
any ¢ > 0 the heat flux has a noninfinite value and continues to decay until the steady
state value is reached.

In two- and three-dimensional cases, the steady portion can also be replaced by a
better-converging form, but more effort may be required. For example, in rectangles,
the poorly converging steady portion is a double-infinite series, which can be replaced
by a single-summation series. An example is given below for a rectangle heated at a
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FIGURE 5.3 Geometry for the rectangle, case X12B10Y12B00T0.

boundary. Similar improvement in series convergence can also be obtained for steady
solutions caused by internal energy generation. A large number of steady solutions,
along with a discussion of the speed of series convergence, are given in the literature
for the following geometries: the rectangle (Melnikov, 1999; Duffy, 2001; Cole and
Yen, 2001a), the two-dimensional semi-slab and the slab (Cole and Yen, 2001b), the
parallelepiped (Crittenden and Cole, 2002); and, the three-dimensional finite cylinder
(Cole, 2004).

Example 5.2: Rectangle with Boundary Heating—X12B10 Y12B00T0

Find the temperature in a rectangle with a suddenly applied change in temperature
at x = 0. Replace the steady portion of the solution with a single-sum form.

Solution

The rectangle (0 < x < L; 0 < y < W) with number designation X12Y12 is initially
at a uniform temperature, and a sudden change in temperature is applied at the
x = 0 boundary. The other boundaries are homogeneous as shown in Figure 5.3.
The temperature satisfies the following equations:

FT RT_1or

= —— 5.29
a2 T dy?2 o ot 529
oT oT
TO,y, ) =To; —— =0; T(x,01)=0;, — =0
X |y=1 Wy ly—w
T(X/ Y, O) =0

The GF solution is given by Equation 5.4 in the form

t w 9
oy =af [° 0o
Y 1=0Jy'=0 ox’

The transient GF is found from a product solution Gx12 - Gy12, so the solution may
be written in the form

Gxizvi2(x, y, tIx', ¥/, 1 dy’ dt (5.30)
x'=0

t w

G
T(x,y,00=To (x/ X2 (x, 110, 1) Gyialy, tly, v dy’ dt (5.31)
=0 Ox y'=0
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and the large cotime form of this GF is given by

Gx12Gy1o = Z si n —_— sm exp (—ﬁfnau/ Lz)

X — Z sin —=- vny y exp( yiau/ Wz) (5.32)
where  Bp=(m —1/2) T, yn=(0N-1/2)n

and where u = t — 1 is the cotime. The large-cotime form of the GF is easier
to use because the derivatives and integrals in the GF solution can be carried out
separately and in any order. The derivative falls on one of the sine terms, as follows:

a / /
—sin Bmx = B—m cos Bmx = B—m (5.33)
ax’ L v L [ oo L
The integral on y’ falls on another sine term:
w ’ i
. Yny / w Yny W w
sin dy’ = —— cos 1—cosyp) = — (5.34)
/)‘/’:O w Y ¥Yn W o  ¥n ( Yn) Yn
Finally the integral on < falls on the exponential term
t t 1
/ e Clt=0 gr = / e CUdy = — (1 — e_a) (5.35)
=0 u=0 C
where C=ua (6%7/ 12+ y%/ W2> (5.36)
Now assemble these portions into the temperature expression to find
4 e Bmx . vay 1
T(X,y’t):TOLizZZSInTSIn W ﬁ
m=1n=1 (W) + (T)
Bm 2 2 4 g2 /g2
X (1-exp [— (varw? + g1 )at]) (5.37)

The steady-state part of the above solution, the slowly converging part, is given by

o BmX YnY
sin = sin W

4 o0 o0
)= To— Em
Xy 0 sz:X;y Yn/WZ"‘B%n/LZ)

(5.38)

Because there is no exponential present to speed the convergence, the steady part
converges slowly.

Next a better-converging form of the steady temperature will be sought with a
single-sum GF found with the eigenfunction expansion method. As discussed in
Section 4.6.3, the general form for the GF in the rectangle is given by

ZXmXXm x') P

Gx, yIx', y) v, V) (5.39)

m=1
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where Xp, is an eigenfunction, B, is the eigenvalue, and Ny, is the norm along
the x-axis in the rectangle. Function Pp, is the kernel function. For the specific
case under discussion, case X12Y12, the GF has previously been derived in Ex-
ample 4.6, and it is given by

% sin (5"L’X> sin (Ban’)
Gxi2v12 = Pm(y, y)) (5.40)
L/2
m=1
where
e—omW=y—y) _ a=om@W+|y—=y') 4 a=omly—y'| _ g=om(y+y)
Puly,y') = (5.41)

20m(1 + e=20mW)

and where o, = B/ L. Note that the y-direction kernel function depends on the
x-direction eigenvalue through parameter op; this is how the two coordinate di-
rections communicate with each other in the single-sum solution. The above GF
is also given in the GF Library web site (Cole, 2000). The steady temperature so-
lution needed here is case X12B10 Y12B00, and the steady GF solution equation
for heating at x = 0 is given by (see Equation 5.4 or 3.46):

W aG x, v, x,y)
Ts(x, y) = Tof mma ,y 4 dy’ (5.42)
y'=0 X x'=0

The derivative required was given earlier, and the integral on y’ is given by

(5.43)

Pmly, y)dy' =

w —om2W— —om
A
V=0 oF  oh(1+ e 2oml)

This integral is also given in Cole and Yen (2001a). Then the single-sum steady
temperature may be assembled in the form

50, y) —ZTOZ SIanX/L|: B

e—om(ZW—y) 4 e omy
1 + e—ZcmW

i| (5.44)

The convergence of the above series may be further improved by recognizing that
a portion of the series depends only on coordinate x. This portion of the series
may be replaced by a fully summed form with the identity

(This identity is further explored in homework problem 5.6 at the end of the chap-
ter.) Then the steady temperature is given by

o0
Tsx,y)=To—2To )

sinBmx/L |:e_0'"(2 W=y 4 e=omy
m=1

(5.46)
Bm ’l + efzo'mW i|

This single-sum series for the steady temperature, converges much faster than the
double-sum solution, especially near x = 0. A detailed discussion of the number of
terms needed for convergence of this steady-temperature expression is given later
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in Example 5.4. The point of the present discussion is that Equation 5.46 can be
used to replace the steady portion of Equation 5.37 to construct a faster-converging
transient temperature in the rectangle, in this case given by

o sinBmx/ L |:e"'"(2Wy) + e"my:|

T(X/y/f)=TO—2TOZ

—20,W
m=1 B T+e™
4 e Bmx . vay
—TOL—2 Z sstm W

m=1n=1

L Bm [eXp[— (va/ wW? +B%n/L2)ott]i|

(5.47)
Yn Y%/W2+5%7/L2

5.3.2 AwTerNATE GF SoLuTtioN EQuATION

The alternate GF solution equation (AGFSE), introduced in Section 3.4, is an impor-
tant strategy for improving convergence of series solutions that involve a boundary-
heating effect. The thrust of the AGFSE method is to replace the integral representing
the boundary heating effect in the GF solution by one or more nonboundary integrals.
The resulting alternate temperature series generally has better convergence behavior.

This approach works whether the causative boundary heating is steady or
transient, and it works whether or not the temperature solution tends to a steady-state
condition. However, if a steady-state temperature is present, applying the AGFSE
method is equivalent to replacing the steady-state solution by a better-converging
form (as discussed in the previous section). Next an example will be given to demon-
strate the AGFSE method.

Example 5.3: Transient Boundary Heating—X21B21T1

The heat shield on a space vehicle entering the atmosphere experiences a heat flux
which is increasing with time for a short period. Assume that this heat flux increases
linearly with time at location x = 0 and the thermal properties are constant. There
is a fixed temperature at surface x = L. Find the temperature with the standard GF
solution and with the alternate GF solution.

Solution
The temperature satisfies the following equations:

2T 19T
S o=-"".0 L 5.48
ox2 o ot X< ( )
T(x,0)=To
oT t
k2 — an—
0X |y—0 Clot
T(Lt=To

Here qo and t are known constants which produce a time-increasing heat flux
at the boundary. The temperature solution with the GF method is given by the
boundary-heating integral:
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a ! T
T(x,0)—To= */ qo— Gx21ly=o dt (5.49)
k =0 fo
The long-cotime GF for this case is

2 & X x'
Gx21 = T Z e Pmalt=0/L (g Bmz cos BmT (5.50)
m=1

where Bp=7n(m—1/2)

Introduce this GF into Equation 5.49 and carry out the time integral to obtain the
standard temperature series:

T(x, t)— T X (1 e But’ X
[ — — — + —— ] cos(Bm— (5.51)
Bl L1 m§ Bh  Bh  Bh (bn7)

where T = at/ L2

The convergence of the standard series is controlled by the coefficient in paren-
theses, which contains three parts. The part containing the exponential converges
most rapidly as m increases; it has exponential convergence. The part 1/8% con-
verges less rapidly, and finally the part containing t* /82, converges slowly.

The alternate GF solution will now be applied to this problem. We seek to
split the temperature solution as T = T* + T/, where T* satisfies the original
nonhomogeneous boundary conditions and T’ will therefore be freed from this
responsibility. First we will find T* that satisfies the following equations:

82 T*
) =0; O0<x<lL (5.52)
aT* t
—k =qo—
X | —o {
T* (L t)=To

The quantity T* in this case is a quasisteady temperature. Integrate the above
differential equation twice to find T* = ax + b where a and b are independent
of x. Quantities a and b may be found by application of the nonhomogeneous
boundary conditions at x = 0 and x = L, to give T* in the form

Lt X
T, =P (1= ) 4 5.53
=" (1-7)+ T (5.53)
Note that if the boundary heating were constant with time, quantity T* would be
a steady-state solution. With T* in hand we can now find the equations that define
T’ by replacing T = T* + T’ into the original boundary value problem for T. The
result is:

T 19T 1qolL 1 X
— =—— 4+ -"T——(1-= 5.54
ax? a ot o k to( L) ( )
To+T'(x,00=To
t aT’ t
ok — an—
do to ax X=0 o to

To+T(Lt=T
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In the differential equation, an extra term comes from the time derivative of T*.
However, we can treat this extra term as a known source term. Rewrite the bound-
ary value problem for T’ in the form:

aZT/ g*(x) B lLT/

dx2 kK~ oot (5.55)
T'(x,0)=0
T’
Tl
T(L =0
where g*(x)/ k is given by
g _ Tqll o x
e e Uty 5:56)

Because T* satisfies the original boundary conditions, note that the boundary
conditions for T" are completely homogeneous. Now the usual GF solution can
be applied to find T’ in the form

t L * (!
T'(x,t) Zu/ / g /(<X) Gx21ly—o dX'dt (5.57)
=0 Jx'=0

Compared to the standard approach, there is an additional spatial integral needed,

given by
L X' x' , L
/x/:o (1 — T) cos (Bmf> dx' = @ (5.58)

(Note that cosB, = O in this case.) Combine the spatial integral with the time
integral, and assemble the solution for 7" in the form

T/ (x, t) 2 1 a2 g2 X
L — (1 = e Pt/ ") cos By = 5.59
(qoL/ k) alo mg B4, ( ) i 559

Finally, the alternate temperature series is the sum T = T* + T/, which in normal-
ized form is given by
2 4+
T(x,t) — To X o 1 — e Pml X
et =t (1 _I>_2 3 i osmy (5.60)
&k ab m=1 m

where  tt =at/ 12

Compare the above alternate series above to the standard series (Equation 5.51) to
see that the slowest-converging term from the standard series has been replaced
by a fully summed form, and the remainder of the series is unaffected.

The computational advantage of the alternate solution is apparent in Table 5.3
which shows the number of terms required for evaluating temperature at several loca-
tions and times and for two values of the convergence criterion, € (see Equation 5.16).
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TABLE 5.3

Number of Series Terms Required for Convergence of Standard Series (Equa-
tion 5.51) and Alternate Series (Equation 5.60) for Case X21B21T1 with Con-
vergence Criterion €*

Number of Terms, Number of Terms,
Standard Series Alternate Series

x/L at | L? Tt €=10" e=10"° €=10" e=10"°
0.01 0.01 0.659233E-03 51 351 15 36
0.2 0.01 0.289374E-04 534 5229 15 39
0.4 0.01 0.341467E-06 6219 62139 15 39
0.01 0.1 0.228144E-01 45 252 9 24
0.2 0.1 0.971327E-02 99 909 9 24
0.4 0.1 0.352408E-02 189 1764 9 24
0.01 1 0.684581E+00 39 150 9 18
0.2 1 0.511833E+00 48 399 9 15
0.4 1 0.358541E+00 66 564 9 18
0.01 10 0.956672E+01 36 150 9 18
0.2 10 0.768534E+01 39 324 9 15
0.4 10 0.573600E+01 51 444 9 18

*Convergence was tested every third term. Normalized temperature values shown were found from the
alternate series with ¢ = 1076,

The standard series requires many more terms than the alternate series. At small di-
mensionless time and far from the boundary, the standard series requires thousands
of terms. Most importantly, for the alternate solution an increase in precision from
e = 10~* to € = 10~° can be purchased inexpensively with about two times more
series terms. The same increase in precision with the standard series requires about
ten times more series terms. For more cases see Beck et al. (2008).

5.3.3 TiME PARTITIONING

Time partitioning, first introduced by Beck and Keltner (1987), is a powerful method
for improvement of series convergence. It is intended for the solution of multidimen-
sional problems. It is not needed for one-dimensional problems. The chief motivation
for time partitioning is that the convenient form of the GF given by Equation 5.6, also
called the large-cotime form, cannot efficiently be used for small times. For small
times, a finite body (such as a plate) behaves as if it were a semi-infinite body, since
at small times each boundary condition affects only a small region near its bound-
ary. Small times are defined by dimensionless time ar / L2 <0.06, or t <0.06 L2/«
seconds.* Under this circumstance, the large-cotime form of the solution requires

*The number given here as 0.06 may vary between 0.025 and 0.25 depending on the circumstances. The
important point is that Fourier number oz / L? defines the small-time regime.
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many terms of the infinite series for the GF. This is inefficient and possibly inaccurate
if too few terms are used. The other form of the GF, given by Equation 5.5, also
called the small-cotime form, can be evaluated accurately at small cotimes with only
a few terms of its infinite series; it tends to be more difficult to evaluate analytically,
however.

In the GF equation given by Equation 5.4, the G(-) functions for finite bodies can
be of the small-cotime form (see the X11, X12, X21, and X22 GFs listed in Table 4.1
and Appendix X), or they can be of the large-cotime form (see Section 4.4 and
Appendix X). The small-cotime and large-cotime forms of the GF are each solutions
to the heat conduction boundary value problem, given by Equations 5.1 through 5.3.
These two solutions are mathematically equivalent, as required by the uniqueness
property of solutions of linear boundary value problems (Carslaw and Jaeger, 1959,
pp. 35-38). The numerical values are identical for the two solutions for the same
conditions. The solution of a boundary value problem is unique, but the expansion of
that solution in infinite series form may not be unique. That is, the small-cotime and
large-cotime solutions are different infinite-series expansions of the same solution.

Many small-cotime GFs can be derived from Laplace transform solutions of the
heat conduction equation (refer to Section 4.3 for an example). For plates, small-
cotime GFs take the form of an infinite series of fundamental heat conduction functions
given by Equation 5.5. See also Equation 4.1 and the X1J case of Table 4.1. For
sufficiently small times, the value of a GF at any x is unaffected by the boundaries
or at most by a single boundary. Hence, the GFs at sufficiently small cotimes can
be described by the same GFs as for infinite or semi-infinite bodies. Consequently,
the small-cotime GFs can be represented by only the few terms which emphasize the
effects of a single boundary.

In contrast, many large-cotime GF expressions are derived from the separation of
variables method of solution of the heat conduction equation. For slab bodies, large-
cotime GFs are composed of infinite series of basic functions given by Equation 5.6.
The large-cotime GFs incorporate the effect of the finite nature of the body and
require only a few terms for sufficiently large times. The large-cotime GFs contain
eigenvalues that are based on the finite thickness of the plate. As a consequence, the
small and large cotime GFs emphasize different aspects of the physical problem in a
manner so that only a few terms, in their respective infinite series, are usually needed.

Time partitioning can speed evaluation of the infinite series expressions com-
pared to using a single form of the series. To take advantage of the different conver-
gence properties of the small-cotime and large-cotime solutions, Equation 5.4 can be
written as

TG 1) = / GL(, 117, 0)F () dv’
R
o t—tp L/~ - -
48 / f G, 117, Dg(, 7) dv'd
k J; R

=0

t
+E/‘ /GS(F,t|r’,I)g(r’,t) dv'dt
k =t—tp JR
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= ([ faGLjax’; firstkind only ,
+a/1=0 f{ (f/K)GE; 2nd or 3rd kind L,_O"S dv

l‘ S /. - -
f0G? [ax’; firstkind only ,
* a/t:,_t /S { (f1k)GS;  2ndor3rdkind | ,_, ds’dx
P x'=

(5.61)

where G5(-) and GZ(-) correspond to small-cotime and large-cotime GFs, respec-
tively. The dimensionless time at, / L2 is small compared with unity.

The value of ar,, / L? for time partitioning is usually chosen to be between 0.025
and 0.25. The benefit of choosing a small value of az,, / L? is that only a few terms of
the series for G5(-) will be needed in the last integral of Equation 5.61. An example
of time partitioning for the rectangle is given later in Section 5.4.4.

5.4 INTRINSIC VERIFICATION

Intrinsic verification is the process of determining correct numerical values from an
exact analytical solution, to many significant figures, in two or more independent
ways. This provides assurance that the solution is correct and that the process for
obtaining accurate numerical values is sound. We use the word “intrinsic” because for
many exact solutions, the means of verification are contained within the solution itself.

Intrinsic verification is distinct from “code verification” or “solution verification”
which the finite-element and finite-difference community use to assure that their
fully numeric computer codes are sufficiently accurate (Roach, 1998). One type of
code verification is to compare the fully numeric solution with an exact solution. In
contrast, intrinsic verification is a comparison between two exact analytical solutions,
for the purpose of assuring that values are correct, far beyond the precision generally
practicable from fully numeric solutions.

Exact solutions must satisfy the governing partial differential equation and also
the boundary conditions. However, analytical checks of these conditions might not
reveal certain errors. For example, the eigenvalues might not be accurate or an eigen-
value might be missing. It is also possible that convergence of series may be so poor
that accurate values are not obtainable, or perhaps an insufficient number of terms
of the infinite series have been used. By using intrinsic verification we can quanti-
tatively and confidently check the accuracy of numerical values generated by exact
solutions. These concepts have been used in developing computer codes and have
verified literally thousands of exact transient heat conduction solutions involving the
parallelepiped (Beck et al., 2004).

Four different types of intrinsic verification are discussed in this section. The first
type, discussed in Section 5.4.1, uses only long-cotime GF related to the method of
separation of variables, and it has a parameter which can be continuously varied to
demonstrate verification. This type of verification is particularly appropriate for loca-
tions removed from the heated surface where the temperature is known to be zero (or
as close as desired) for sufficiently small times. The second type of verification uses
limiting-case one-dimensional solutions appropriate for short times. The third type
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of intrinsic verification uses different eigenfunction expansions for steady-state prob-
lems; it does not have a parameter that can be continuously varied. Instead different
solutions of the same problem are found and compared. Finally, the fourth type of
intrinsic verification is related to time partitioning and is appropriate for 2D and 3D
geometries. In this method varying a partition time changes numerical values in a min-
imal fashion, and these small changes indicate the accuracy of the numerical values.

5.4.1 INTRINSIC VERIFICATION BY COMPLEMENTARY TRANSIENTS

Intrinsic verification by complementary transients applies to transient cases with
heating (or cooling) at a surface. If the solution contains a steady component and
a time-decaying component that we call the complementary transient, then intrinsic
verification can be carried out at locations removed from the heated surface where
negligible temperature rise occurs for sufficiently small times.

Consider a body of finite extent heated at surface x = 0. Using Equation 5.4 the
temperature may be stated as

t L / : H
5 N foG* [ox"; firstkind only /
re.n = O‘fu_ofs{ (f15)GY: 2ndor3rdking | _ 4597 (62

where u is the cotime; note that the large-cotime form G is used here. Now the time-
dependence of every large-cotime GF in the finite body has the form e~<* where u is
the cotime. Evaluate the time integral of this exponential factor as follows:

t i 1 —cpt
/ eontgy = = _ ¢ (5.63)

=0 Cn Cn

Note that as ¢ — oo this integral gives a constant value, specifically, factor 1/c,.
This suggests that the temperature solution can be written as the sum of a steady term
and a time-decaying term, for example in the rectangle:

T(x,y,1) = Tygany (X, ¥) + TS (x,3,1) (5.64)

At locations removed from the heated surface, for sufficiently small times, tempera-
ture T will be essentially zero:

0 = Taey (¥, ¥) + T, (x, 3, ) forar/x? < Co (5.65)

where the value of the dimensionless cutoff time, Cy is to be determined.
Replacing the inequality in the previous equation by an equality and solving for
the steady state component gives

Tsteady(X, y) = _Tcl,},(xi yv tO = COXZ / OL) (566)

This equation suggests that intrinsic verification can be carried out with the comple-
mentary transient. We have the steady state expression on the left which is a function
of only position while on the right side the (negative of the) complementary transient
is a function of position and time. This expression can only be correct if the right side
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TABLE 5.4

Intrinsic Verification for Case X21B10 Y11B007T0 Using the Complementary
Transient for Interior Locations at Early Time*

Number

x/L y/L at/I? Kmax of Terms —Tet

0.25 05 0.0005 46 450 0.1788017425
0.25 05 0.0010 4.6 210 0.1788031719
0.25 05 0.0020 46 105 0.1787935827
0.25 05 0.0040 4.6 50 0.1786858298
0.25 05 0.0100 46 18 0.1743892020
0.25 05 0.0005 23 2312 0.1788046222
0.25 05 0.0010 23 1152 0.1788046220
0.25 05 0.0020 23 578 0.1788035094
0.25 05 0.0040 23 288 0.1786662112
0.25 05 0.0100 23 105 0.1744284821
0.50 0.5 0.0020 115 288 0.0800610324
0.50 0.5 0.0040 11.5 136 0.0800610361
0.50 0.5 0.0080 11.5 72 0.0800588045
0.50 0.5 0.0160 11.5 32 0.0797857482
0.50 0.5 0.0020 23 578 0.0800610334
0.50 05 0.0040 23 288 0.0800610330
0.50 0.5 0.0080 23 136 0.0800588080
0.50 05 0.0160 23 72 0.0797857689
0.75 05 0.0045 11.5 128 0.0303331137
0.75 0.5 0.0090 115 55 0.0303331192
0.75 05 0.0180 11.5 32 0.0303298132
0.75 0.5 0.0360 115 10 0.0299547020
0.75 05 0.0045 23 242 0.0303331147
0.75 0.5 0.0090 23 128 0.0303331142
0.75 05 0.0180 23 55 0.0303298158
0.75 05 0.0360 23 32 0.0299548261

*Quantity Kmay is the largest allowed absolute value of the exponential argument. Inaccurate digits are
underlined.

gives the same numerical value for all acceptable times. Hence we can verify the so-
lution by examining numerical values with times less than indicated in Equation 5.65.

Consider determination of the temperature in the rectangle with specified heat flux
at the x = 0 boundary, cases X21B10 Y11B00T0. Table 5.4 shows results for the
complementary transient component of the temperature, Equation 5.64, evaluated
at y = L/2 and with x = L/4, L/2 and 3L /4. The third column contains the
dimensionless cotime and the fourth column contains the number of series terms
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needed. Note that the same numerical values are repeated in Table 5.4 for sufficiently
small cotimes. This is the essence of intrinsic verification with the complementary
transient, because as the cotime goes to zero the negative of the complementary
transient is equal to the steady-state value.

In the upper part of Table 5.4, for K,,,, = 4.6, about five digits are accurate
for dimensionless times ar / L2 < 0.001. For ar / L? = 0.004 only three digits are
accurate but fewer series terms are required. Further down the table, for K,,,,, = 23,
there are nine accurate digits present at ar / L2 < 0.001, and 1152 series terms are
required. Similar observations can be made regarding the table entries for x / L = 0.5
and x / L = 0.75. See de Monte et al. (2008).

5.4.2 COMPLEMENTARY TRANSIENTAND 1D SoLuTiON

The use of a one-dimensional semi-infinite solution at an appropriate early time
provides another way to use the complementary transient for intrinsic verification.
Consider the rectangle again, case X21B10Y11B00. The one-dimensional semi-
infinite solution denoted X20B1TO is a close approximation up to about ar / L? = 0.3
for x small and for y away from the boundaries. In this case x can also be zero. Using
Equation 5.65

T(x,y,t) = Tx20p1r0(X, t1D)
= Tsteady(x, y) + Ter(x,y,1) for t <tp (5.67)

Now solve for the steady-state result:

Tsteady(x, ¥) = Tx20B170(%, 11D) — Ter. (X, ¥y, t1D) (5.68)

This is another expression that demonstrates intrinsic verification, with a continuously
variable parameter, because there is no time dependence on the left side but time
dependence on the right. Varying parameter ¢;p over an acceptable range should
give the same numerical values for the steady temperature constructed from two
independent pieces. This expression has an advantage over Equation 5.66 which has
only one part on the right-hand side. As a result, the above expression can be used
to find an error in a multiplicative constant in the series for T, ,, which could not be
accomplished using Equation 5.66.

Although use of a one-dimensional semi-infinite solution was discussed in this
section for verification in a rectangle, the same sort of verification is possible in a
three-dimensional body (the parallelepiped). It is also possible to carry out intrin-
sic verification on the rectangle with a two-dimensional short-cotime solution (case
X20B1Y10BO0 to approximate the rectangle discussed above). This would be partic-
ularly efficient near the corner y = 0and x = 0.

5.4.3 INTRINSIC VERIFICATION BY ALTERNATE SERIES EXPANSION

In this section a method of verifying steady-state solutions in two- or three-
dimensional finite bodies is described. The method requires that solutions can be found
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with the eigenfunction expansions in more than one direction (hence the requirement
of finite bodies). Next an example is given in a rectangle.

Example 5.4: Steady Rectangle—X12B10 Y12B00

Find the steady temperature in the rectangle by two different eigenfunction expan-
sions for verification. The x = 0 surface of the rectangle has an elevated tempera-
ture and the other surfaces are homogeneous.

Solution

The steady solution in this rectangle was studied earlier in Example 5.2, in a dis-
cussion of improving series convergence by replacing the double-sum series with
a single-sum series. The temperature satisfies the following equations:

PT PT
— +— =0 5.69
5z T 3y (5.69)
oT
TO,y)=To; —— =0; Tx0=0 — =0
X |x=t ay ly—w
The steady GF solution has the form
e
s =To [ 22 dy (5.70
Y 0 y'=0 ax’ x'=0 Y

The single-sum steady solution, found with eigenfunctions along the x-direction,
is given by (Equation 5.46):

o0
Ts(x,y)=To—2To )

m=1

sinBmx /L | e om@W=y) 4 g=0omy
o e (5.71)

where 6,y = Bm/ L. It should be noted that this is the preferred single-sum solution
for a rectangle heated on the x = 0 boundary, because the eigenfunction expan-
sions (sines in this case) are in the nonhomogeneous direction (the direction that
locates the heated boundary). This arrangement provides the fastest convergence
for both temperature and for heat flux series near the heated boundary (Cole and
Yen, 2001a).

Next an alternate single-sum solution will be sought, for the purpose of verifica-
tion, using an alternate GF with eigenfunctions along the y-direction, in the form

2 & '
Gxizyiz = 7 D sin v\:vy sin y% Po(x, X') (5.72)

n=1

where kernel function P, may be found by eigenfunction expansion (see Sec-
tion 4.6)

efo'n(ZL+|X7X/|) + efcyn(ZLfox’) _ efc,,|xfx/| — e~ Onlx+x)

/
Pn(x, x') = 0.0 = e=ZonD) (5.73)
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where o, = v,/ W. Now replace this GF into the GF solution, Equation 5.70, to
see that one integral is needed that falls on a sine term (see Equation 5.43) and a
derivative is needed that falls on the kernel function (see also Crittenden and Cole,
2002):

oP ecn(Zfo) e~ 9nX
n — e e ™ (5.74)
X' |y o (14 e—20nL)
Then the alternate temperature expression may be assembled in the form
Ts(x, S W —0p(2L—x) —opX
s(x, y) _> Z sin(ypy/W) | e +e (5.75)
To = Yn 1+ e—20,L

This is the result commonly given in the literature. It has eigenfunctions in the
homogeneous direction, in this case the y-direction. Examination of Equation 5.75
reveals that it converges slowly at x = 0.

Numerical results are given in Table 5.5 for intrinsic verification based on the
two series expressions for the steady temperature in the rectangle with aspect ratio
L/ W = 0.5. Convergence testing was carried out every four terms (note that the
number of terms shown are multiples of four) for € = 10710, Ten digits of the
normalized temperature are shown in Table 5.5, and the digits that do not agree
between the two series expressions are underlined. The preferred series converges

TABLE 5.5

Normalized Temperature T/ To and Number of Series Terms for Steady Rect-
angle Case X12B10Y12B00 for the Preferred Series (Equation 5.71) and the
Alternate Series (Equation 5.75)*

Alternate Series Number Preferred Series Number
x/L y/w Equation 5.75 of Terms Equation 5.71 of Terms
0.01 0.01 0.7048827901 900 0.7048827774 284
0.20 0.01 0.0644642046 72 0.0644642047 268
0.40 0.01 0.0339116049 40 0.0339116048 268
0.80 0.01 0.0208832146 24 0.0208832145 264
0.01 0.20 0.9850387526 972 0.9850387527 24
0.20 0.20 0.7240794778 64 0.7240794778 20
0.40 0.20 0.5399106059 36 0.5399106059 20
0.80 0.20 0.3878999614 20 0.3878999614 20
0.01 0.40 0.9936861618 968 0.9936861617 16
0.20 0.40 0.8772373586 64 0.8772373586 12
0.40 0.40 0.7732177380 36 0.7732177380 12
0.80 0.40 0.6538082660 20 0.6538082660 12
0.01 0.80 0.9979118895 964 0.9979118894 12
0.20 0.80 0.9589473349 60 0.9589473349 8
0.40 0.80 0.9220505381 36 0.9220505381 8
0.80 0.80 0.8743658796 20 0.8743658796 8

*The rectangle aspect ratio is L/W = 0.5. Convergence was tested every fourth term and with e = 10719,
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better near x = 0, which is the heated surface, and of the most importance in this
case. The alternate series, although requiring more terms over most of the body,
does better near y = 0. From this perspective these two series are complementary.
Neither series converges quickly close to the corner x = y = 0 because of the
jump in temperature there.

In the above example, two different eigenfunction expansions were found in the
rectangle for the steady temperature. In the parallelepiped, three different eigenfunc-
tion expansions are possible in the x-, y-, and z-directions (see Beck et al., 2006).
This method has also been applied to finite cylinders with eigenfunction expansions
along the r- and z-directions (Cole, 2004).

5.4.4 TIME-PARTITIONING INTRINSIC VERIFICATION

The use of time partitioning for intrinsic verification involves varying the partition
time, a parameter in the solution, to construct two or more different series solutions
for the same heat conduction problem. If the formulation is correct, the numerical
values from the different series solutions will agree to high accuracy. This method is
appropriate for 2D and 3D geometries and is best illustrated by a specific example.

Example 5.5: Time Partitioning in the Rectangle
Consider the transient heat conduction in the rectangle (0 < x < L; 0 < y < W)
that is heated by constant heat flux at x = 0 and all the other faces are held at zero

temperature. The initial temperature is zero. The describing differential equation
and related conditions are given by:

#T BT 1o

=——: t>0 5.76
Xz + 2 aat’ g 5.76)
aT
—k—| =qo; Ty, H=0; T(x,08=0; T(x,W,t)=0 (5.77)
0X | =0
T(x,y,00=0 (5.78)

Solution

This problem is described by case X21B10Y11B0O0TO. This problem can be solved
in several ways, including the separation of variables method which is particularly
effective for large dimensionless times when fewer terms of the series are needed.
The Laplace transform method is most effective (fewer terms needed and better
accuracy) for small dimensionless times.

The time-partitioning method uses components of both separation of variables
and Laplace transform methods, as follows. The GF solution for this problem is
given by

w

t
Tx,y, t)= LZO/ Gx21(x, X' =0, u) Gynly,y', uwdy' du (5.79)
u=0 y'=0
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Here u = t — t is the cotime. For time partitioning the solution is written in two
parts, one for short cotimes and one for long cotimes, as

o t w /
T(x,y,t) = %/ Giy1(x,0, U)/ Gyqily, v, u)dy’ du
u=0 y'=0

oG

%

t w

/ Gky(x,0, u)/ Gyly,y, uydy' du (¢> 1)  (5.80)
u=t, y'=0

Superscript S on the GF denotes the small-cotime form, and superscript L de-
notes the long-cotime form. Quantity t, is the partition time, chosen in the range
0 < atp/ L% < 0.05. In the present example the length scale L is used, however, in
general the characteristic dimension for choosing the partition time should be the
smallest dimension in the body. Note also that in the above equation the second
integral is needed only when t > t,.

The next step is to find the different GF that are needed. The small-cotime GF
are given as approximations for small values of u:

1 2
G3yq(x,0, u) & ———e X /W) 5.81
21 ( ) —0 ( )

(Appendix X, Equation X21.1, n =0 only)

w W — W+y
Gy, v, u)dy ~ erf( 4 ) — erfc<7y) + erfc( )
/;':0 ey ey Vaau ~Aau Va4ou

+erfc(2\‘//vﬁy> — erfc(zy%y> (5.82)
[0} o

(Appendix X, Equation X11.17b, n =1 only)

The large-cotime GF are given exactly by

2 [e.¢]
Gky1(x,0,u) = = Z e Bt/ cos(Bx/ L) (5.83)
L
m=1
where By =(m—1/2)w
w [
w
/ Ghyly,y, wdy' =4 SINYnY /W 2o w2 (5.84)
y'=0 1 Yn

where y, =Q2n—T)w
(Appendix X, Equation X11.18)

The solution given by Equation 5.80 can be written as

t
Tix,y, t)= Ts(x/ Y, tp) + TL(X, y, u) .
u=lp
=Ty ) = TL (Y, o)+ TE (X y, 0 (5.85)
where subscript “c.t.” denotes complementary transient. The short-cotime com-
ponent is given by

S _ago [P S Vo s /
T2, y, tp) = 3 Gyy1(x,0,0) Gynly,y,udy' | du  (5.86)
y'=0
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Obtaining a general closed-form expression for the integration over u for the short-
cotime components in Equation 5.80 can be difficult, while the long-cotime inte-
gration is straight forward. Generally, the simplest way to perform the short-cotime
integration is numerically (McMasters et al., 2002). However, for x = 0 and y not
too close to the boundaries, the short-cotime solution becomes semi-infinite case
X20B1TO, given by

1/2
s qol ([ atp
0y, )~ 2=~ (w) (5.87)

The long-cotime component is found by substituting Equation 5.83 and Equa-
tion 5.84 into the second half of Equation 5.80 and integrating. The result for the
two long-cotime components in the second half of Equation 5.85 is given by

o0 [o¢] . —h2 L2
qol sin(m2n—T)y/ W) <Bmx> e~ Pmnou/
(X, y,u)=8-"— cos (=) ————— (5.88)
Tealxy,u k 2; 2n— )¢, L O
where ¢2,, = (2n— 1727?12/ W? +(m—1/2)*x?

If the above expression is evaluated at u = O the series converges very slowly. The
goal is to make t, as large as possible while still obtaining the desired accuracy.
The limits are that at small t,, many term of the series for T are needed. At large
values of t,, the approximations in G° are not as accurate.

As t — oo in Equation 5.85, the last term on the right disappears and the steady
solution is obtained:

T(x,y,000=Tx,y)=T(X,y, o) = TL (X, ¥, t) (5.89)

This equation provides for intrinsic verification, since the left side is independent of
time while the right side is a function of partition time . It is important to note that
the two right-hand side components in Equation 5.89 are independent, since one
comes from the Laplace transform solution and the other from the separation of
variables method. Varying the partition cotime over the acceptable range should
give precisely the same value (for a given number of significant figures), thus
exhibiting intrinsic verification. Generally the steady-state component is the most
difficult part of a solution to evaluate numerically, however using Equation 5.89 is
very efficient. The use of time partitioning to find a rapidly converging form of the
steady solution has also been discussed by Linton (1999) under the name Ewald
summation.

Numerical values for intrinsic verification based on time partitioning are shown
in Table 5.6. In Table 5.6 steady temperature values are computed at one loca-
tion (x/L = 0; y/L = 0.25), but for several values of the partition time and for
two values of convergence parameter Kpax. In this example the simple 1D tran-
sient solution given by Equation 5.87 is used. Verification to 10 digit accuracy is
demonstrated at Kmax = 23 because as the partition time ¢, becomes smaller, the
steady temperature is unchanged to 10 digits, even though the components of the
steady temperature (complementary transient T, and small-cotime T%) do vary
with partition time and the number of series terms required increases. Table 5.6
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TABLE 5.6
Steady-State Temperature for Case X21B10 Y11B00T0*

Number

y/L aty/ 12 Kmax of Terms —Té[.(x, Y, tbp) TS(x, Y, ) Tsteady

0.25 0.00050 115 1152 0.2788314014 0.0252313252 0.3040627266
0.25 0.00060 115 968 0.2764231950 0.0276395320 0.3040627270
0.25 0.00075 115 741 0.2731607902 0.0309019362 0.3040627263
0.25 0.00100 115 578 0.2683802437 0.0356824823 0.3040627260
0.25 0.00200 115 288 0.2536002774 0.0504626504 0.3040629278
0.25 0.00400 115 136 0.2327310450 0.0713649646 0.3040960096
0.25 0.00600 115 78 0.2168942410 0.0874038744 0.3042981154
0.25 0.01000 115 50 0.1926680623 0.1128379167 0.3055059790
0.25 0.00050 23 2312 0.2788314035 0.0252313252 0.3040627287
0.25 0.00060 23 1922 0.2764231967 0.0276395320 0.3040627287
0.25 0.00075 23 1485 0.2731607925 0.0309019362 0.3040627287
0.25 0.00100 23 1152 0.2683802464 0.0356824823 0.3040627287
0.25 0.00200 23 578 0.2536002814 0.0504626504 0.3040629318
0.25 0.00400 23 288 0.2327310515 0.0713649646 0.3040960161
0.25 0.00600 23 171 0.2168942541 0.0874038744 0.3042981286
0.25 0.01000 23 105 0.1926680993 0.1128379167 0.3055060161

*x = 0 and y/L = 0.25 with varying partition time for intrinsic verification. Quantity Kmay is the largest
allowed absolute value of the exponential argument. The steady temperature in the last column is the sum
of the two preceding columns. Inaccurate digits are underlined.

also indicates that an adequate partition time for this case is 0.00075 because
it provides a balance between high accuracy and a reasonable number of series
terms. If numerical integration were used to obtain the short-cotime component
for larger partition times up to at / L> = 0.05, many fewer terms of the series would
be needed for the same numerical accuracy.

PROBLEMS

5.1 Evaluate the sum

>, sin(nmx /L)
§=2)" — (5.90)

m=1

at x / L = 0.1 by truncating the series when the average of the last
three terms divided by the sum is less than 10~* (see Equation 5.16).
Compare your result to the exact value of § = (1 — x/ L) to find
the number of accurate digits produced by this convergence crite-
rion. Now repeat your calculation at x / L = 0.01. Does this series
converge more rapidly or more slowly as x — 0? Explain.
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5.2

5.3

5.4

55

5.6

5.7

5.8

5.9

Evaluate the series

5 Z [1- ( l)m 7111212()(!/1‘2 (5.91)

m=1

for ar / L? = 0.1 using two convergence tests: (a) truncate the se-
ries using Equation 5.16 for ¢ = 10~°; and (b) truncate the series
when the (absolute value of the) argument of the exponential ex-
ceeds K,,qr = 11.5. How many accurate digits of the series does
each convergence test provide?
Evaluate the temperature for case X11B10TO0 using the long-cotime
GF (see Equation 5.19) at x/L = 0.5 and at dimensionless time
ar/L? = 0.01, 0.1, and 1.0. How many terms of the series are
needed for four-digit accuracy?
Determine the accuracy of evaluating the series for heat flux given
by Equation 5.28 at x = 0 and at x = L by requiring that the
magnitude of the exponential argument be no greater than 11.5 for
dimensionless times 0.1 and 1.0. How many terms of the series are
required at each time and place?
Repeat Problem 5.4 for Equation 5.27, to find the number of terms
needed for the series for temperature. Compare the number of terms
needed with that from the heat flux series. Note that the temperature
series contains factor mt in the denominator and the heat flux series,
Equation 5.28, does not. What effect does factor mx have in the
convergence speed of the two series?
Starting with the relation inferred from Equation 5.44 which has the
form

TS(X, y) =To [SX(X) + Sxy(xr y)] ) (592)

derive the identity given by Equation 5.45 by replacing the above
relation into the boundary value problem for Ts, and then solve for
Sy (x). What are the describing differential equation and boundary
conditions for Sy, (x, y)?

Use the X11B10TO0 solution given by Equation 5.27 to investigate
intrinsic verification (by the method of complementary transients)
at location x / L = 0.5. Make a table of your results at five different
dimensionless times.

Compute numerical values from case X11B10TO given by Equa-
tion 5.27 near the surface at locations x /L = 0.01, 0.05 and at
dimensionless times az / L2 = 0.01, 0.05. Verify that your numer-
ical values are correct by comparing them with semi-infinite case
X10B10TO (see Example 1.4, Equation 1.109). Make a table of your
results including values from both geometries and the percentage
difference between them.

Write a computer program to evaluate temperatures from case
X21B21TO given by Equation 5.60. Use intrinsic verification (by
complementary transients) at x /L = 0.5 to check that your cal-
culations are correct. Make a table of your results at five different
dimensionless times.

179
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6 Rectangular Coordinates

6.1 INTRODUCTION

This chapter is concerned with heat conduction in bodies described by rectangular co-
ordinates. Complete examples are included that demonstrate strategies for evaluating
the integrals in the Green’s function solution equation (GFSE).

An important feature of the Green’s function (GF) solution method is the ability
to simply write down the temperature in integral form. Once the problem is properly
defined, one can jump to the solution and gain insight into the problem. For example,
one can also immediately write down the alternative Green’s function solution, and
then the better form of the solution can be selected for evaluation. The student can
concentrate on translating a physical heat transfer situation into a boundary value
problem without getting lost in the details of the solution. There is a sense of ac-
complishment associated with jumping to the solution that can be a valuable part of
the learning process. After the integral form is written down, the integrals can be
examined. If they are familiar, the solution can be completed easily. If the integrals
are unfamiliar they may be available in integral tables, approximate forms may be
substituted, or finally numerical integration will always yield an answer.

The examples in this chapter are concerned with only one nonhomogeneous term
at a time. The nonhomogeneous term may be the initial condition, the volume energy
generation, or the boundary condition. Practical situations often involve two or more
nonhomogeneous terms, but because the GF solution equation is the sum of the con-
tributions from the various nonhomogeneous terms, the temperature resulting from
initial conditions, boundary conditions, and volume energy generation can simply be
added together for the complete solution.

One-dimensional geometries are emphasized in this chapter and the one-
dimensional GFSE is given in Section 6.2. Semi-infinite bodies are discussed in Sec-
tion 6.3. Flat plates are discussed in Section 6.4 through 6.6. Some two-dimensional
cases are discussed in Sections 6.7 and 6.8, and some steady-state cases are discussed
in Section 6.9.

6.2 ONE-DIMENSIONAL GREEN’S FUNCTIONS
SOLUTION EQUATION

The heat conduction equation for homogeneous one-dimensional bodies in the rect-
angular coordinate system is

82T+1( -
ax2 kgx, -

1oT

T (6.1)
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with initial condition
T(x,0) = F(x) (6.2)

and with boundary conditions

ki S Tl = i) — (pck) o (63)
on; x ot x
where n; is an outward normal from the body at the boundary, and x; represents the
two boundaries (i = 1, 2). Equation 6.3 represents five different kinds of boundary
conditions by the choice of k;, i;, f;, and b;. These boundary conditions are discussed
in detail in Chapter 2.

The solution of the temperature problem given in Equations 6.1 through 6.3 is
given by the GFSE for one-dimensional rectangular coordinates (refer to Section 3.2
for a derivation)

L
T(x,t) = / G(x,t|x',0)F(x")dx"  (for the initial condition)
x'=0

(pc ), (for boundary conditions
ta Z[ X1l OF () | of the fourth and fifth
T=4 Kinds only)

L
a , , , (for volume
+ /z:o /x’:O EG(X’HX T g, T) dx'd energy generation)

1 .-
fi(®) (for boundary conditions

+ 0‘/ dr Z [ & Glx,tlxi, 1) of the second through

' ’ fifth kinds)

=0 i

— a/t dt Z fz(T) il (for boundary conditions
=0 il =x; of the first kind only) (6.4)

where G(x, t|x’, T) is the GF. For each different set of boundary conditions there is a
different GF that must be used in the GFSE.

6.3 SEMI-INFINITE ONE-DIMENSIONAL BODIES

In this section, the cases under consideration are semi-infinite bodies denoted by
X10,1 =1,2,3,4.The GFsforinfinite and semi-infinite bodies are listed in Table 6.1.
A complete listing of rectangular-coordinate GFs, including certain derivatives, inte-
grals, and approximations is given in Appendix X.

For the semi-infinite cases, the GFs have only one form, do not involve infinite
series, and are mathematically well behaved everywhere except at the point x —x’ = 0
and r — t = 0, where every GF approaches a Dirac delta function. The temperatures
calculated by integrating these GFs are mathematically well behaved for any location
x and for¢ > 0.
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TABLE 6.1
GF for Infinite and Semi-Infinite Bodies
—(x—x)? —(x+ X)?
G X, ) =14 t— 1) 12 eX(X— Mexp—————
xio(x, t|x', t) = [4ma(t— 1)] p dali= ) + p do(i=)
—MDER(x+ X', t — t, Dy)
Number M D1 L
X00 0 0
X10 -1 0
X20 1 0
X30 1 B1
X40 -1 (et
X
where ER(x, ¢, D) = exp(Dx + D2ar) erfc [W + D(ut)1/2i|
Bl = hL _pcb
YE MY T el

and L is a reference length that cancels out.

6.3.1 INITIAL CONDITIONS

For the case of spatially uniform initial conditions in semi-infinite bodies, the appro-
priate integrals in the GFSE, Equation 6.4, are known in closed form. The resulting
temperature expressions for homogeneous boundary conditions are listed in Table 6.2
in compact form. The integrals that were used to create Table 6.2 are listed in the in-
tegral tables in Appendix I.

In Table 6.2, one case involves a surface film of high conductivity, numbered X 40.
The notation for the initial condition 701 in Table 6.2 refers to a zero initial tem-
perature in the film and a uniform initial temperature in the body. Conversely the
notation 7'10 refers to a uniform initial temperature in the film and a zero initial
temperature in the body. If both the film and the body have the same uniform initial
temperature, the problem can always be formulated with no contribution from the
initial condition by defining a new temperature variable, T — Ty, where Ty is the
initial temperature.

Semi-infinite bodies with spatially varying initial conditions are now considered.
Consider the initial temperature distribution of

, {To a<x' <b
F(x") = (6.5)

0 otherwise

The GF for boundary conditions of type 1 or 2 can be written in terms of the funda-
mental heat conduction solution K (),

Gxro(x,11x',0) = K(x —x', 1) + (1) K (x + x, 1) (6.6)
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TABLE 6.2

Temperatures in a Semi-Infinite Body for Uniform Initial Temperature
of T; for Cases XI0BOT1, I = 1,2,3, and Cases X40B0T10, and X40B0T01

X
T(x, t) = 1- —(1 M) erfc | ———7 | = M(Do — Fo)ER(x, t, D)
(4oct)1/2
Number M Do DL Fo
X10B0T1 -1 0 0 0
X20B0T1 1 0 0 0
X30B0T1 -1 1 B 0
X40BOT10 1 1 ¢t 1
X40B0T01 1 1 ct 0

Note: ER(-) is given in Table 6.1.

where I = 1 or 2. The solution for the temperature is obtained by substituting Equa-
tion 6.6 in Equation 6.4, the GFSE, to give (case X/0B0T5; I = 1 or 2):

T(x,t)=— To (erf [(4 ;/2} erfc[ﬁ}
+ (=1 {erfc[(4 Jr)llz} erfc [ﬁ”) (6.7)

Next consider the initial temperature distribution of a linear function of x’ over
part of the body,

/
To— fora<x' <b
F(x) = L (6.8)

0 elsewhere
The length L can have any desired significance; it is only present to make Equation 6.8
dimensionally consistent. The integrals in the GF equation can then be evaluated using

Table 1.7 (Appendix I) with z replaced by x’, and r — t replaced by ¢. The solution is
(case XI0B0T2; I =1o0r2)

T(x,t)=To [i (erfc [ﬁ} —erfc [ﬁ}

+b +
o ey | - iy |}

+%{K(x—a t)— K(x —b,1)

+ (=)' [K(x +a,1)— K(x+b,1)] }} (6.9)
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For the boundary condition of the first kind (I = 1), consider the special case of a = 0
and b — oo, which is for a linear initial temperature F(x’) = Tox’/ L over the entire
body, 0 < x < oo. In this case the temperature given by Equation 6.9 reduces to

T(x,1) = TO% (6.10)

This is a time-independent solution for the case denoted X10B0T 2. For the boundary
condition of the second kind (I = 2) witha = 0 and b — oo, Equation 6.9 gives
(case X20B0T2)

T(e.1) = Ty { erfc [ n %IK(x _ b,t)} (6.11)

(4o r)l/Z]
This solution is always transient and never reaches a steady state. The transient devia-

tion from the initial straight-line temperature distribution begins at x = 0 and spreads
to larger x values as time increases.

6.3.2 BouNnpARY CONDITIONS

Temperature expressions resulting from time-invariant boundary conditions are listed
in Table 6.3 for four kinds of boundary conditions. These temperature expressions
were found by evaluating the integrals in the GFSE. Two mathematical functions that
appear in Table 6.3 are erfc and ierfc, which are the complementary error function and
the integral of the complementary error function, respectively. Refer to Appendix E
for more information on these functions.

TABLE 6.3

Temperatures for Semi-Infinite Bodies for Constant Source Term at x = 0; Case
XI0B1T0, I =1, 2, 3, and X40B1T00

t 1/2 . X
T(X, t) = H()(1 + M) (m) lerfc [W]

MDy X MDy
+ (KO - k_D]) erfc [(40{61/2] I(D ER(X t, D1)

Number M Hy Ko Do Dy
X10B1T0 -1 0 Ty 0 0
X20B1T0 1 9 0 0 0
X30B1T0 -1 0 0 qo + hTs hik
X40B1T00 1 9 0 q0 pc /(peb)1

ER(x,t, D) = exp[Dx + D?at] erfc [ + D(ar)Y 2]

x
(4ar)t/2
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The following examples demonstrate the use of Table 6.1 to find the GF and
demonstrate strategies for finding the integrals that occur for various nonhomoge-
neous boundary conditions.

Example 6.1: Semi-Infinite Body with Specified Surface Temperature—
X10B-T0 Case

Find the temperature distribution in the semi-infinite body with specified surface
temperature f(t) and with zero initial condition. The volume energy generation is
zero.

Solution
This is the X10B-T0 geometry. The GFSE gives the temperature as

t
T(x, 0) =a/ f(1) 9Gx10
=0 ox’

The GF Gyx1o is found from Table 6.1 by choosing M = —1,D; =0, and £; = 0:

oot ] —x = X2 x4 X7
X10(X, |X/T - [47T0L(t_'[)]1/2 exp 40L(t—T) —exp 40L(t_T)

(6.13)

dt (6.12)

x'=0

The derivative of the GF with respect to x” is required here in the form 3/ 9x" =
—a/dn; at x’ = 0. The derivative of Gx19 is given in Appendix X as

dGx10 _ X ox —x2
x|y T (@A) 2t — 1)]3/2 p 4a(t — 1)
X
= Ot(t—‘t)K(X,t_T) (6.14)

where K(-) is the fundamental heat conduction solution. The temperature solution
can then be written as

t
T(x, 1) = (x/ fl—K(x, t — 1)dt 6.15)
=0 a(t — 1)

(a) Case X10B1TO. For the case where the boundary temperature is constant,
f(t) = To, the integral in Equation 6.15 is given in Table 1.8, Appendix I, as
integral 3,

T(x,t) = Tgerfc |: (6.16)

)
(4at)1/2

or

X
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Compare this solution to case X10B0T1 listed in Table 6.2 which is the tem-
perature caused by a zero boundary temperature and uniform initial condition.
The two solutions differ by a constant and a change of sign. The heat conduction
equation is linear, so that multiplying a solution by (—1) gives another solution;
and, adding a constant to a solution gives another solution.

(b) Case X10B3TO. In the case where the boundary temperature is a polynomial
in t"2, such as

f)=a 1t "2 +ag+ait" 2+ apt+a3t3’% +--. (6.18)

then the integral in Equation 6.15 can be written as the sum of the effects of each
term in the polynomial. For the general term of such a polynomial, let f(1) =
To(t/ to)" 2, where Ty has units of temperature and ty is some reference time (fp
could be 15). Then the integral in Equation 6.15 may be written

t t\"?  x
T(x, t):a/ T()( ) Kix,t—1) dt (6.19)
=0 to a(t — )

This integral is listed in Table 1.8 (Appendix I) and the temperature resulting from
the applied surface temperature To(t/ tp)"/? may be written

n £\"? X
Tx,t)y=ToT'(1+ =) (4— i"erfc | ——— 6.20
x0=Tor ( +2)( to> 'erc[matﬂ”] (620
where n = —1,0,1, ..., and so on. The gamma function I'(1 4+ n/2) takes the
values w'/2,1,7'/2/2, and 1 for n = —1,0, 1, and 2, respectively. The function

i"erfc(-) is the repeated integral of the error function plotted in Figure 6.1. The

1.0
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X

FIGURE 6.1 Repeated integrals of error function, Y = 2"I"(n /2 + 1)i" erfc(X).
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i"erfc(z) function is related to erfc(z) by

Perfc(z) = erfc(z) (6.21a)
i'erfe(z) = %e’zz — zerfc(z) (6.21b)

T
2nierfc(z) = i"2erfc(z) — 22" Verfc(2) (6.21¢)

Some numerical values of i'erfc(z) are listed in Table E.1, in Appendix E, along
with other properties of the error function.

In the case where the surface temperature f(t) is periodic in time, the Laplace
transform technique can be used on the integral in Equation 6.15 to good advan-
tage. Refer to Carslaw and Jaeger (1959, pp. 399-402) for a general discussion.
See Chapter 9 for a discussion of the steady periodic portion of the temperature
caused by a periodic surface temperature.

Example 6.2: Semi-Infinite Body with Specified Surface Heat Flux—
X20B-T0 Case

Find the temperature in the semi-infinite body that has a heat flux boundary con-
dition and zero initial condition.

Solution
This is the X20B-T0 geometry. The GFSE for the temperature takes the form

b f(v)

Tx,t) =a ——Gx0(x, t|0, 1) d= (6.22)
=0 k

The heat flux at the boundary is £(t) with units of W/m?. Note that the X20 GF is

evaluated at the surface x’ = 0. The X20 GF given in Table 6.1 is the sum of two

fundamental heat conduction solutions, so the temperature can be written as

U f(v)
T(x,t):a/ T[K(X—O,t—'[)+K(X+O,l‘—‘l’,)]d‘l’,
=0

t
=20L/ @K(X,t—‘t) dt (6.23)
=0 k

(a) Case X20B1TO. In the case where f(t) = qo, a constant heat flux, the integral
in Equation 6.23 is given in Table .8 (Appendix I), and the temperature is given by

T(x, t) = %(4(;(@1 12 jerfc [ (6.24)

X
(40Lt)1 /2 ]
This expression is also listed in Table 6.3. The temperature is plotted in Figure 6.2
in terms of (T — To)/(qoa/ k), where a is the reference length. Sometimes the
quantity (4at)'/? is used as a reference length. The quantity qo(4at/m)'/?/k is
the surface temperature on the semi-infinite body resulting from the heat flux
qo (ierfc(0) = 1/ /7). Equation 6.24 can also be obtained from Equation 6.20 for
n = 1; thatis, a surface temperature proportional to t'/? produces a steady surface
heat flux.
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FIGURE 6.2 Temperature in semi-infinite body with constant heat flux at surface.

(b) Case X20B3T0. For the case where the surface heat flux is f(t) = qo(t/ t)"/2,
forn=—1,0,1, and so on, the integral in Equation 6.23 is also given in Table 1.8
(Appendix I). After some simplification, the temperature is given by

£\"/? n
r(1 +7)2"
to 2

Tix, ) = Laan'/2 (
k
n4-1 X
|n+ erfc [W] n:_1,0,1, e (6.25)

Note that for n = 0, this solution reduces to the constant heat flux case.
Example 6.3: Semi-Infinite Body with Convection—X30B170 Case

Find the temperature in a semi-infinite body due the sudden application of the
convection boundary condition where both h and Ty, are constant. The convection
boundary condition is

il

+ hT|x=0 = hT (6.26)
ox

x=0

Solution
This is the X30B1T0 case. The temperature solution is given by the GF equation as

U ATy
T(x, t) = OL/ TG)@()(X, t|0, 1) dt (6.27)
=0



190 Heat Conduction Using Green’s Functions

Note that x” is evaluated at the surface, x’ = 0. The function Gy3g is listed in
Table 6.1, and Equation 6.27 becomes

T(x, ) = / gL 2 exp| %
= w0 k \[4mat—1)]1/2 P 4a(t — 1)
2 X

h hx h h 12
—keXp|:k+k20((t—'[)i| erfC{W-i-Z[a(t—‘t)] }) dt

This contains a difficult integral if Too = Too (t). Note that if the temperature were
evaluated at x = 0, the integral would be less difficult. Usually, the surface tem-
perature resulting from a boundary condition is much easier to find than the tem-
perature everywhere inside the body.

For the case where Tw, is time invariant, the integral for any value of x given in
Table 1.8 (Appendix 1) is used to obtain

X hx h?
T(x, t)= Tm{erfc[m} —exp <T + octp>
X ﬁ 1/2
X erl‘c|:2((“)1/2 + k(ou‘) }} (6.29)

This temperature is plotted versus position in Figure 6.3 for several values of the
(normalized) heat transfer coefficient. Note that as h increases the surface temper-
ature approaches the fluid temperature Too.

1
h(oit) 2k = oo
0.8 —
2
0.6
58 4
&~
0.4 — 0.5
0.2 —
0.1
0 T T T T | T T T T I T T T T l T T T T
0 0.5 1 1.5 2

x/(4oit) 12

FIGURE 6.3 Temperature in semi-infinite geometry with surface convection defined by
h(at)t'2 1k =0.1,0.5, 2.0, co.
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6.3.3 VOLUME ENERGY GENERATION

Next consider the temperature in a semi-infinite body caused by volume energy gen-
eration. The boundary conditions and the initial condition are homogeneous. The
temperature is given by the GFSE,

t o0
T(x,t)= %/ 0/ . G(x,tlx',T) g(x', T) dx" d (6.30)
=0 Jx'=

This expression is more complicated than the temperature resulting from a boundary
condition because there are two integrals to evaluate.

Consider the case when the volume energy generation g(x’, t) is either independent
of T or a product of a function of x” and a function of t,

g(x' 1) = gx(x') g:(1) (6.31)

Then the integrations over x’ previously discussed can be used. For example, suppose
the volume energy generation is given by one term of a polynomial in time:

nl2
2(x',7) = g0 (tl) n=-1012 ... (6.32)
0

where g is a constant with units of W/mS. That is, g(x’, T) is independent of x” and
is proportional to v"/2. The time 7o is any convenient value and could be one unit,
such as 1s.

The solution for the temperature when g(-) is given by Equation 6.32 can be
found for boundary conditions of the first and second kinds using the GF given by
Equation 6.6. The integration over the body (x’ in this case) is usually considered
first, and the integrals required are listed in Table 1.7 (Appendix I). Integration of
Equation 6.30 over x’ yields

a [! T\"/? X
=g [ (5) (2 - { [ r)]l/z}
)i X

where I = 1 or 2 to represent the kind of boundary condition at x = 0.
The remaining integral on t in Equation 6.33 is listed in Appendix | (Table 1.8,
number 9) to give for I =1 (boundary condition of the first kind)

‘n+2 X

1 ni2 i"eerfc | —2

T(x, 1) = S0 L 1— — Il (6.34a)
k \n/2+1) \1 int2 erfc(0)

forn = —1,0,1,2, etc. Values for i"*2erfc(0) are given in Appendix E (Equation
E.11). This is case X10B0T0G+3 and the temperature is plotted versus position in



192 Heat Conduction Using Green’s Functions
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FIGURE 6.4 Temperature in the semi-infinite body with energy generation g ~ gor"/2.

Figure 6.4. In the figure the temperature is normalized by the temperature far from
the surface, which is proportional to (goz”/%*1).

In the case I = 2 for the boundary condition of the second kind, Equation 6.33
gives,

goor 1 t\"?
T(x,t) = ——r-— | — 6.34b
ety == n/2+l<t0> (6.:34D)

This is case X20B0T0G13, the temperature in a semi-infinite body with spatially
uniform heat generation and an insulated boundary. The temperature does not depend
on position because there is no heat flow in the body; the temperature increases
everywhere at the same rate. The same result could have been obtained by a simple
lumped capacitance description that is appropriate when the temperature is spatially
uniform: pc 8T [ ot = g(¢).

6.4 FLAT PLATES: SMALL-COTIME GREEN’S FUNCTIONS

The cases discussed in this section are one-dimensional flat plates, denoted X1J, I, J =
1,2,3,4,5. The small-cotime GF for these cases are infinite-series expressions or
approximate truncated infinite series. The small-cotime GFs are listed in Appendix
X. In general, for a(r — t)/ L?> < 0.05, only three terms of the expressions for the
small-cotime GF are needed for accuracy to four decimal places. Many of these
expressions were derived from a Laplace transform solution of the auxiliary equation
for the GF.
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6.4.1 INITIAL CONDITIONS

Consider the small-cotime solutions of the following equation:

PT 19T
— = O<x<L (6.35)
ox o ot
The boundary conditions are homogeneous and the initial temperature distribution is
T(x,0) = F(x) (6.36)
The solution using GFs is
L
T(x,t)= / G(x,t|x',0)F(x) dx’ (6.37)
x'=0

Consider one term in a quadratic initial temperature distribution,

/

F(x) =T <xz> O<x' <L =012 (6.38)

For boundary of the first and second kinds, the expressions for Gx;; may be written
in the form

Gxia(x, t1x',0) = Y (=) [K@nL +x —x', 1)+ (1) K(@2nL +x +x',1)]
n=—oo

(6.39)

where I and J describe the boundary conditions types at x = 0 and x = L, respec-
tively. Then the temperature is given by combining Equations 6.37, 6.38 and 6.39 in
the form

L o0
T(x,t)=To / > DI K@L 4 x — X', 1)
¥=0 ="
I\ @
+ (1) K@nL 4 x + x',1)] (%) dx’ (6.40)
This is the X1J BOOT (i + 1) case, wherei = 0,1,2; 1 = 1or2;and, J = 1lor 2.
Refer to Table 1.7 (Appendix 1) for closed form expressions of these integrals.

The solution given by Equation 6.40 is valid for all # > 0, but for small time only
a few terms of the series are needed. As oz / L? increases, the number of significant

terms in the infinite series increases.

Example 6.4: Slab with Zero-Temperature Boundaries—X11B00T1 Case

Find the temperature in a slab body with zero temperature boundary conditions
and with a spatially uniform initial condition F(x) = To.

Solution

This is the X11B00T1 case and the solution is given by Equation 6.40 where
i = 0and / =) = 1. This case involves the following integral (see Table 1.7,
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Appendix I):
L
D(n):/ [KenL+x—x',t) = KQnL+ x+ X', )] dx’
x'=0
1 2n—1L+x 2nl + x 2n+ 1)L+ x
=3 {erfc [7(40“)”2 :| — 2erfc |:(4at)]/2] + erfc [7(40”)”2 }}
(6.41)

The major contributions to the temperature given by Equation 6.40 for small times
come from the smaller values of |n| such as 0 and 1. For n = 0 the above integral
gives

1 L—x X L+ x
D(O) = 5 {2 — erfC [W] -2 erfC [W} + erfC [W]} (642a)

For n = —1 the integral D(n) gives

1 3L—x 2L —x L—x
D(-1) = 5 {—erfc [W] + 2 erfc [W] — erfc [W:H (6.42b)

Note 1. The identity erfc(—u) = 2—erfc(u) has been used in Equation 6.42 to
put positive arguments in each of the terms erfc(:). The quantity (x —
L)is zero or negative since0 < x < L.Recall thaterfc(u — +o00) =
0 but that erfc(u — —o0) = 2, so that positive arguments ensures
that each of the erfc(-) terms will converge to zero as |n| — oo.

Note 2. The identity erfc(—u) = 2 — erfc(u) applied to the D(n) term in
Equation 6.42b for n = —1 produced three constant terms that
canceled to zero. This cancelation occurs for every n < 0 and it has
an important numerical consequence. As you add more terms to
the infinite series for the temperature to improve the accuracy, it is
important to find a value for each D(n) as a unit and then add that
value to the temperature. This will avoid excessive loss of significant
digits resulting from subtracting numbers that are very close in value.

For small values of at/ L2, the dominant terms in Equation 6.39 for the temperature
in the X11B00T1 case are given by the largest terms from Equation 6.42a and b
and the n = 1 term multiplied by the initial temperature To:

T(x,0) ~ T {1— rf [L]_ o [L_ix]
AN T Gant 2 | T dan 2

L+ x 2L — x
— erfc [W} — erfc [W“ (6.43)

Near the boundary x = 0 and for at/ L2 < 0.025, the quantity erfc[L /(4at)!/?] is
less than 0.0001 and the temperature is given approximately by the first two terms
of Equation 6.43:

X
T(x,t)~ To {1 — erfc [7(40”)1 3 :|}

XKL
=Ty erf|:

X
(4at)! /2:| at/ L% small (6.44a)
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This result is identical to the semi-infinite case X 10807 1. That is, near the boundary
at small time, the temperature in a flat plate is given by the semi-infinite case with
the same boundary condition. For at/[? <0.025 and for x ~ [, the dominant
terms are

N , L—x
T(X/t)’\/TO 1 — erfc W

_T : [ —x L — X<<L b
= foer [(40“)1/2] at/ L% small (6.44b)
6.4.2 VoOLUME ENERGY GENERATION
Early time solutions of
Pr 1 10T
— 4 Zo(x, )= = — O<x<L 6.45
2 T =0 * (649

are discussed in this section for homogeneous boundary conditions and zero initial
condition. Actually the solutions are valid for all times but they are computationally
efficient for early times.

The solution for the temperature using GFs is

t L
T(x,1) = %/ 0/ 0G(x,t|x’,'c)g(x’,'c)dx’dt (6.46)
=0 Jx/'=l

The discussion will be limited to cases for which the volume energy generation g(x’, t)
is the product of a function of x” and a function of 1,

(', 1) = gx(x")gi (1) (6.47)

The integration over x’ in Equation 6.46 is similar to that for the nonzero initial
temperature distribution, Equation 6.37. Integrals over time t are given in Appendix |
(Table 1.8).

As an example, the case where g(x’, t) = goL 8(x’ — xp)g; () is examined. This is
a plane heat source located at xg with a time-variable source strength given by g,(z).
Using Equation 6.46 and the small-cotime GF for geometry X1J given by Table 4.1
gives

t L
T(x,t)= % f 0/ . G(x,t|x', 1)goL 8(x" — x0)g: (1) dx’ dt
=0 Jx'=

o t
= —goL/ G(x,t|x0, ) gr(t) dt
k =0

S t
= %goL Z / (—1)('+1)"[K(2nL +x —x0,t — 1)
=0

n=—oo

+ (-1)!'K@nL + x + x0,1 — 1)] g: (1) d (6.48)

where I = 1 or2and J = 1 or 2 determines the type of boundary conditions.
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Suppose the time variation of the plane source strength g, (<) is given by
T m/2
g(x) = <t—> m=-1,0,1, ... (6.49)
0

where 1o is some convenient positive time value. Then the time integral in Equation
6.48 is given in Appendix | (Table 1.8):

1 0([0 1/2 g0L2 m 4[ (m+l)/2
=3 <ﬁ> Ty (g)
o0
_n\—{+)n ) om+1 |2nL 4+ x — Xof
x Y (-1 {1 erfc [—(4w)1/2

|2nL + x + x|
(ar)t/2

n=—0oo

+(=1)! "+ erfc [ (6.50)

This solution applies to geometries described by the number X1J BOOT0Gx7¢3 for
I,J = 1,2. The plane source at xq can vary with time as given by Equation 6.49 with
m = —1,0,1,2,and so on. A particularly important value of m is m = 0, which gives
the temperature resulting from a continuous constant plane source; for m = 0, the #g
values cancel in Equation 6.50.

One possible location for the plane source is at xo = 0. For this location and case
XI1J with I = 1 (that is, geometries X11 and X12), T(x, ) is equal to zero,

T(x,1)=0 forall xand t (6.51)

while for cases XIJ with I = 2 (that is, geometries X21 and X22), Equation 6.50

gives
1/2 2 (m+1)/2
ot gL m 4¢
T(x,t)=|— —TI(=+1)—
(1) (LZ) k (2 * ><fo>

x 3 (-1’ { i+ erfc [%—;’;']} (6.52a)

n=—0o0

By isolating the n = 0 term, the temperature can be written as a sum over n = 1
10 oo:

1/2 2 (m+1)/2
(o goL m 4t — X
T(x,1) = <L2) (5 +1) (t()) <l erfC | o

- _n\Jn ) .m+1 |2nL + xl .m41 |27’lL — x|
+ ;( 1) {z erfc [—(4m)1/2 + " erfc TGaiT
(6.52b)

For small values of ar / L2 (such as ar / L% < 0.1), only a few terms of the summation
are needed.
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Equation 6.52 was derived as the temperature resulting from the space- and time-
varying volume energy source

¢ m/2
g(x,1) = goL 3(x =0) (5> (6.53a)

which is a plane heat source located at x = 0, but this plane source produces an effect
identical to a prescribed heat flux at x = 0 given by

¢ m/2
— 40 (—) (6.53h)
=0

fo

Therefore, go and go in Equations 6.53a, b are related by
g0 = goL (6.53¢)

where go has units of W/m? and go has units of W/m®. Equation 6.52 has been
described as the temperature for the case X2JB00T0Gx7t3 (plane heat source at
x = 0), but because the plane heat source at x = 0 is equivalent to a prescribed heat
flux at x = 0, the description X2J B30T 0 also applies to Equation 6.52.

6.5 FLAT PLATES: LARGE-COTIME GREEN’S FUNCTIONS

Large-time GFs are usually derived from a separation of variables solution of the
energy equation. The separation of variables technique is discussed in Chapter 4. The
large-time GFs for slab bodies have the general form

BZ OL(I—‘E) X (X)Xm(x/)
R

G(x,t|x',

(6.54)

where the eigenfunctions, Xo(x) and X,,,(x), and the norms Ny and N,, are given in
Tables 4.2 and 4.3. Each GF also has associated eigenvalues B,,. For cases involving
only boundary conditions of kinds 1 or 2, the eigenvalues are given in Table 4.3. For
cases with boundary conditions of types 3, 4, or 5, the eigenvalues must be found
numerically as roots of the characteristic equation listed in Table 4.3. Acomplete list of
large-cotime GFs with derivatives and useful approximations is given in Appendix X.

6.5.1 INITIAL CONDITIONS

The temperature in a body resulting from a nonzero initial temperature distribution is
discussed in this section. As an example, consider the initial temperature distribution
given by

To a<x' <b
F(x') = _ (6.55)
0 otherwise
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For the specific case of a body with zero temperature at boundary x = 0 and with
one of two possible boundary conditions at x = L described by number X1J where
J = 1or 2, the temperature distribution is found from the initial-temperature term of
the GFSE with the GF given by Equation 6.54:

T(x,1)=2Tp Y e $he/%sin (Bme> COS(B’”ML)B; cos(pmb/ L) (6.56)

The eigenvalues B,, depend on whether J = 1 or 2. The number for this case is
X1JBOOTS5 for J = 1 or 2. The presence of the term exp(—p2 oz / L%) multiplying
by all the other terms in Equation 6.56 causes rapid numerical convergence of the
series for large dimensionless time ar / L? > 0.025.

Next the convergence criterion introduced in Section 5.2 will be used to determine
the number of series terms needed for accurate evaluation of the above temperature
expression. The exponential term controls the convergence speed, and the exponential
term will be smaller than 0.001 when (the absolute value of) the argument of the
exponential term is greater than K,,,,, = 6.9. That is,

m=1

Ba ot
L2

> 6.9 (6.57)

For ar/L? = 0.01, and for case X11 where 8,, = mm, the above relation gives
mmax = 8 (refer to Table 5.1). That is, only eight terms of the infinite series are
sufficient to make the exponential factor smaller than 0.001. For ar/L? = 0.025,
only five terms of the series are sufficient. For “large” values of as / L2, such as 0.17
or larger, only one term of the series (the m = 1 term) is sufficient for the X12 case.
For the X 11 case, if ar / L? is larger than 0.31, then one term of the series is sufficient
to make the exponential factor less than 0.001.
Next, consider the uniform initial temperature

F(x') =Ty O<x<L (6.58)

applied to a body with homogeneous boundary conditions of the first kind at both
x = 0and L. This is case X11B007 1 and the temperature is given by Equation 6.56
witha =0and b = L:

4 ad 2 2 2 xy\ 1
T(x,t)=To— —mentat/ L% gjp =)= 6.59a

The first two terms of this infinite series can be used to approximate the temperature
for ar / L? not too small:
4 . 1 .
T(x, 1)~ Ty— |e ™/ L sin (ni) 4 Zem9mu L gy <3n£> (6.59b)
o L 3 L
Equation 6.59b gives satisfactory accuracy for ar / L? > 0.025. The related small-
time expression, Equation 6.43, is accurate for ar/ L% <0.025. The least accu-
rate range for Equation 6.59b is in its lower limit (ar/ L? ~ 0.025) and the least
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accurate range for Equation 6.43 (the small-time form of the same problem) is near
its upper limit (ar / L2 &~ 0.025). Hence it is instructive to evaluate both expressions
for the temperature when they are least accurate at the middle of the body: atx = L /2
and at ar / L? = 0.025. Equation 6.43 evaluated at x = L /2 is

L 1 3
T (E’t> ~ Ty {1 — 2erfc [W} + 2erfc [W“ (6.60a)

which has the numerical components of
T (% 0.025) ~ To[1 — 2(0.0253473) + 2(0.197 E-10)] = 0.949305 Ty  (6.60b)
The components of Equation 6.59b at x = L /2 and ar / L? = 0.025 are
T (% 0.025) = TO%[O.7813437 + %(0.108537)(—1)] =0.94877Tp (6.60c)
The expression given by Equation 6.60b is slightly more accurate, but both expres-

sionsare less than 0.1% in error. Again only two terms are needed for each temperature
expression near ar / L? = 0.025.

6.5.2 PLANE HEAT SOURCE
Consider a plane heat source located at x described by

g(x', 1) = goL 8(xo — x') g () (6.61)
Then, using this expression for g(x’, T) in the GFSE gives

t
T(x,1) = %/ G(x, t|x0, 7) goL g:(7) dt (6.62)
=0
Here the integral on x’ has been evaluated using the sifting property of the Dirac

delta function. When G(-) is given by the large-time GF from Equation 6.54, then
Equation 6.62 becomes

T(x,1) = —goL/ Z —B2aft— t)/LZX(Bmx/LEVX(BmXO/L) @ (0 dt

o ! Xo
—goL — d 6.63
+ 260 /ﬁo () dr (669)

The temperature caused by a number of time-varying plane sources can be in-
vestigated with different functions g,(t) in Equation 6.63. One of the simplest is for
g:(t) = 1, aconstant for which the time integral in Equation 6.63 may be evaluated as

488
Nub2 Y2

(6.64a)

L3 & XBmx !/ L) XBmxo/ L L2
T(x,t):—gok > (21— et Brx / L) X(Bnxo/ L) 8oL~ ot
=1
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This solution is denoted X1J BOOT0Gx7t1 where I and J can be 1 or 2. The symbol
3, is called the Kronecker delta and is defined to be

5 1 fori =J (6.64b)
1= .
0 forl £J

Do not confuse 8;; with the Dirac delta function §(-) defined in Chapter 1. In Equa-
tion 6.63 there is a contribution for the 3,;3,, term only for I = J = 2. The
term associated with 3,82, comes from the m = 0 term of the summation for G(-)
which must be treated in a special manner when I = J = 2 because in this case
B.n—0 = 0 is an eigenvalue. There are two parts in this solution: a steady-state part,
and a transient part. The steady-state part of Equation 6.64a can be written as

L3 & X(Bmx | L) X(Bmxo /! L
T(x) = 0Ly X0 X/N) ﬁf‘ x/L) (6.65)
m=1 mbm

for the X11, X12, and X21 cases. The X22 case does not in general have a steady-
state part. The series given by Equation 6.65 for the steady-state part converges very
slowly. This slow convergence can be avoided because a simple linear function for the
steady-state solution for the X 11, X12, and X 21 cases may be found with steady-state
GFs (refer to Section 1.7). The steady-state solution for the X11 case is

M 0 < x < xg
T(x) = (L —) (6.66)
w xo<x <L

Equation 6.66 is the steady-state GF multiplied by the source strength. The solution
for the X'12 case is

L
go;c 0 <x < xp
T(x) = (6.67)
goxoL
X xg <x <L

Algebraic expressions such as Equations 6.66 and 6.67 are clearly much easier to
evaluate than the infinite-series expression Equation 6.65. Furthermore, the simple
linear dependence on x can be seen in these equations, while it is not apparent in
Equation 6.65. When it is convenient to do so, the nonseries form of the steady state
should be obtained.

Next, two specific temperature expressions are given that are drawn from the
general expressions discussed above. The solution of the X11B0070Gx7¢1 problem
is obtained from Equation 6.64, Tables 4.2 and 4.3, and Equation 6.66,

L2
T(x,1) = 8o~ X (1 _ @)

k L L
2g0L? & —m2x2ar 12 SiN(mx [ L) sin(mzxg / L)
D DU o (6.68)

m=1
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FIGURE 6.5 Temperature in a slab body, heated by a continuous plane source at x’ / L = 0.4,
and with boundary conditions 7 = 0 at x = 0 and o7 /dx = 0 at x = L (case
X22B00T0Gx7t1).

for0 < x < xp.Forxp < x < L, the same expression applies where the x and xg
symbols are interchanged.

Forthecaseof T = Oatx = 0and a7 /dx = Oatx = L (i.e.,, X12B00T0Gx7t1),
the solution is

2

T(x,t)= % min (% XL—O)
280L% <~ g2 oy 12 SINBmx 1 LYsin(Buxo/ L)
- = > ePnetit % (6.69)
m=1 m

where min(x / L, xo / L) means the minimum values of the choice between x / L and
xo/ L,andwheref,, = (m— %)n. Thistemperature distribution is plotted in Figure 6.5
for the continuous plane source located at x’/ L = 0.4. Not that some time passes
before heat reaches surface x = L.

The two specific temperature expressions given above as Equations 6.68 and 6.69
are relatively efficient expressions for computation for oz / L? > 0.025. These equa-
tions are valid for values of ar / L? that are even smaller, but more computationally
efficient solutions for small times can be obtained by using the small time GFs for
flat plates.

Approximate solutions at small times can also be obtained from the GFs for semi-
infinite bodies. For example, for x / L and xg / L both less than 0.5, the temperature
solution of the problems X11B00T0Gx7t1 and X12B007T0Gx7¢1 can be approxi-
mated at small times by the X10B070Gx7¢1 problem. In other words, for sufficiently
small times, the temperature distribution is affected most by the nearest boundary.
This is the nature of diffusion—the influence of any transient driving term is localized
in space at early time.
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6.5.3 VoOLUME ENERGY GENERATION

Next, heating caused by volume energy generation will be addressed for finite one-
dimensional cases having boundary conditions of the first and second kinds. The
volume energy generation is uniform over a portion of the body. That is,

gx’, 1) = {gOLgt(I) O0<ii<a (6.70)

0 a<x' <L

The source strength is spatially uniform from x” = 0 to a and is zero otherwise. For
the initial temperature F(x) being zero, the energy-generation term of Equation 6.4
gives

t a
T(x,t)= %/ , f/ ) GE(x,t1x', 1) goL g:(v) dx' dt (6.72)
=0 Jx'=

Now, as usual, consider the integrals over x’ first. The integral of G%(-) over x’
can be written as

a 0 2 _
/x’:O Gl (x,t)x', 1) dx’ = Z exp [—W]

m=0

» XBmx I LIXBralL)
Ny,

(6.72)

where 1 X(-) is defined to be

IX (B’Z“> - /Oax (Bme) dx’ (6.73)

The X(B,.x / L) functions are eigenfunctions for G (.) listed in Table 4.2 and they
are either sin(-) or cos(-) depending on the boundary conditions.

The time integration of Equation 6.71 is now considered. This, in turn, requires a
choice of the form of g;(t). Two cases are considered here:

(=1 and gt(T):tl (6.74a, b)
0

For the first of these, g;(t) = 1, integration over t in Equation 6.71 yields,

L2 ad X(Bmx | LI X(Bmal L t
e, = & (Lz(l_eﬁ,znatu?) B/ L)X (Bl )Hm&z]%)
m=1

Nm
(6.75)

The cases covered by Equation 6.75 are denoted XIJ BOOT0Gx5¢1 for I,J = 1, 2.
Equation 6.75 can also be broken into steady state and transient parts and the speed
of convergence could be improved by replacing the steady series by a nonseries
form.
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Now consider the linear time variation of the volume energy generation,
g:(t) = t/1o. The solution is

2l &
T(x,1) = gOT |:a—t0L {[5,2"# 1]+ e_B‘27”+}
m=1

=318 —— (6.76)

XBmx ! LIXPBral/Ll) 1 t oot

x NuB4 2 fo L2:|
where 1T = ar/L2. Equation 6.76 has the notation of XIJ BOOT0Gx5¢2, with
I,J = 1,2. Notice that for the case I = J = 2,(X22), the Kronecker delta terms
gives 32782, = 1 and the temperature increases like t2: hence, there is no steady-
state portion in Equation 6.76. The standard separation of variables procedure does
not work for this problem because the source term is not a constant. Note that the
above series expression contains a slowly converging part, proportional to (82,:+ —1),
because this portion does not include an exponential term. To improve the series con-
vergence, the slowly converging part could be replaced by a nonseries expression
through use of the alternate GF solution method (see Section 3.4).

6.6 FLAT PLATES: THE NONHOMOGENEOUS BOUNDARY

In this section, temperature caused by heating effects at a boundary is explored for
flat plates. Recall that the general boundary condition for temperature has the form

oT
ki —
a

n;

+hT

Xi

oT
b)i =
)iy,

Xi

= fi(®) (6.77)

Xi

When f; # 0 we say that the boundary condition is nonhomogeneous. Recall that the
associated GF must satisfy homogeneous boundary conditions (f; = 0) of the same
type at this location. This difference between the boundary conditions for the GF and
the temperature, although required by the GF method, sometimes produces a poorly
converging temperature solution, compared to a solution caused by initial conditions
or internal-heating solutions.

As discussed earlier in Section 5.3, there are several ways to improve the conver-
gence of a solution caused by a nonhomogeneous boundary. Sometimes it is possible
to transform a nonhomogeneous boundary, through a suitable variable normaliza-
tion, into a homogeneous boundary. Such a transformation will concurrently shift
the causative heating effect into a nonzero initial condition. Another approach is the
Alternative GF Solution method, discussed in Section 3.4, which is a formal, step-
by-step method to remove the causative heating effect from the boundary; both the
initial condition and the internal-generation term may be affected. Finally, the method
of time partitioning can be used to improve the convergence properties of a solu-
tion. Next some examples are given for heat conduction caused by nonhomogeneous
boundaries.
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Example 6.5: Slab with One Side Heated, One Side at Fixed
Temperature—X21B1070 Case

Find the temperature in a flat plate suddenly heated by a constant heat flux qo
at x = 0 and with a fixed zero temperature at x = L. The initial temperature is
zero and there is no volume heat generation. Find expressions that are numerically
efficient for all values of time.

Solution
The GF solution is given by

t qo
T(x, t)= oc/ = Gx21(x, t]0,7) d= (6.78)
=0 k

(a) Small-time solution. The temperature for small values of time (at/[?> <
0.025) is most efficiently found from the GF equation involving the small-
cotime GF. The small-cotime GF is given in Appendix X as an infinite series.
Substituting Gy, (-) into Equation 6.78 gives

_om [ 2NN (g, | 20t ?
Tl 0=~ /t=o el o7 n;( 1) exp|: =0 :|dr (6.79)

This integral can be stated in terms of the fundamental heat conduction solution,
K(wp, t — 1), as

o t
T(x, t):Z% Z (=" /1:0 K(wp, t — 1) dt (6.80)

n=—oo

where w;, = 2nL+x.The integral in Equation 6.80 is given in Appendix | (Table 1.8,
number 1) as

gl at\'’? 2n+ x/L|
T(X, t)—ZT Z (—1)” <L7> |erfC W (6.81)

n=—oo

This expression applies for any t > 0, however it is numerically efficient for small
times. For at/[? < 0.025 only three terms of the series (n = 0,1, —1) are suffi-
cient to give a temperature that is exact to over 13 digits. (This can be shown by
evaluating the “tail” of the series, n = £2, £3, etc.)

(b)Large-time solution. The temperature expression that is best for large time
(at/ L2 > 0.025) involves the large-cotime GF. The large time GF for the X21 case
is given in Appendix X (see also Tables 4.2 and 4.3). Using the large-time GF,
evaluated at x’ = 0, Equation 6.78 may be written

oo

t
_ G 2 —p2a(t—)/ L2 x
T(x, t)= a/z:O 1 Z e cos (Bm L> dt (6.82)

m=1
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FIGURE 6.6 Temperature in a slab body with a constant heat fluxat x = 0O and 7 = 0 at
x = L (case X21B10T0).

where B, = n(m — 1/2). The integral on time may be evaluated to give

L & cos(Bm% v
Tix, 0 =282 % cos (bm) (1 - ePet—/ L) (6.83)
k B
m=1
As noted in earlier examples, the steady-state portion of the series for the temper-
ature converges very slowly. The convergence speed of the transient temperature
can be greatly improved by replaced the steady series with a nonseries form. For
this one-dimensional case, the steady temperature may be found by direct inte-
gration (see Section 1.7). The steady temperature is given by
q0 X

Tsteady(x) = * ( - z) (6.84)

Using this form of the steady temperature, the large-time form of the transient
temperature, Equation 6.83, may be written

_ Qb X\ 0L S e COSBmX/ L)
Tix, 0= 27 (1 L) 2% n;e 7 (6.85)

This expression can be evaluated for any t > 0 and it converges rapidly at large
times (at/ L2 > 0.025). The temperature for this example is plotted in Figure 6.6.
In this figure, at time at/L? = 0.5 the temperature is approaching steady state (a
straight line).

Example 6.6: Slab with One Side Heated, One Side Insulated—
X22B1070 Case

Consider the flat plate insulated on one side and heated by a steady heat flux on
the other side. Find the temperature using the standard and alternative GFSEs. The
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boundary value problem is given by

2T 19T
— = —— 6.86
ox2 o ot ( 3)
oT oT
—k — =q0 — =0 (6.86b)
ax x=0 ax x=L
T(x,00=0 (6.86C)

(a) Standard solution. The standard GF solution is given by Equation 6.4 where
the only nonhomogeneous term (the only driving term) is the heat flux at x = 0. This
is the X22B10TO0 case. Then using Equation 6.4 and the X22 GF from Appendix X
gives

T(x,t) / goGx22(x, t]0, 1)

_ aqo 1 -~ (t—v)/ 12 X
== /TOL<1+ZZe’"“°‘ T cos(mnz) dt

m=1
QLL [ T[2 Z c05< X) (1 - e‘mz"z“”“)} (6.87)
ot

This expression has three main parts. The first part is proportional to time and thus
increases without limit over time. The last part contains an exponential factor that
decays with time. The middle part that does not depend on time is given by

qol 2 ad cos(mmx/ L)

k m? m?
m=1

(6.88)

This part of the temperature expression converges very slowly, that is, many terms
of the infinite series must be evaluated for accurate numerical values, particularly
for small values of x/ L.

Next, another temperature expression with better convergence properties will
be found with the alternative GFSE equation.

(b) Alternative solution. The alternative GFSE (AGFSE) involves a known solution
T* that satisfies the boundary conditions but does not need to satisfy the initial
condition. Since Equation 6.87 contains a term proportional to time that dominates
the temperature for large times, the T* solution should display that behavior. The T*
solution for this problem is

_ qol at
T 0 =100+ =73 (6.89)
where f(x) must be chosen to satisfy the boundary conditions. Substitute T* into

the energy equation:
FTr 19T d’f  qo
= —_— = 6.90
2 aa T W ( )

Solve Equation 6.90 for f(x) (by integrating twice) and then substitute f(x) back
into Equation 6.89 to give
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Lat
Tt = D5 +C1X+Cz+q2 =

Using the boundary conditions at x = 0 and L given by Equations 6.86b, c allows
C7 to be found as

(6.91)

90
G =——F 6.92
1 2 (6.92)
Since C; cannot be found using these boundary conditions, it is set equal to
zero. The choice of G, is arbitrary because both boundary conditions for T* are
gradient conditions and a constant can be subtracted from T* without changing
the properties of the solution. Then T* is given by

“(x, = LT xy2_x o
T*(x, t) = k[2<L> T+ (6.93)

Now T* will be used in the alternative GFSE. The only nonzero integral in the
alternative GFSE, Equation 3.66, is the one corresponding to the initial condition.
(Why does the last integral drop out in the case?) The alternative GFSE gives

L
Tx, 0) = T*(x, ) + / Gz (x, tIx', 0) [= T*(x', 0)] dx’
x'=0

L S o .
=T - 2 142 ) e/t
k x'=0

m=1

7 1 7N 2 /
X COS <mnXT) cos (mn%)] |:2 (XT) — XT +Oi| dx’
Qol|at 1T,/x\2 x 1 2 1
Tx, )= 0 X 2 (X X, 2 2y
. 1) k|:L2+2<L) (T3 @l
X COS (mn%) e_mzﬂz‘”“zi| (6.94)

This temperature is plotted in Figure 6.7 at several dimensionless times. Only after
at/[? > 0.1 does the temperature at x = L begin to rise above the initial value; only
then is the insulated boundary evident. Equation 6.94 is valid for any time value
but it has good convergence properties for at/L> > 0.025. For at/ L[> < 0.025
the temperature may be found approximately from the semi-infinite body solution
with the same boundary heat flux (the X20B1TO0 case) for five-digit numerical
accuracy near x = 0 and with lesser accuracy near x = L.

It is interesting to equate the two expressions for the temperature found from

the standard and alternate GFSE, Equations 6.87 and 6.94. Setting them equal and
canceling identical terms leaves the equality

= Z cos( ) = % (%)2 - % + % (6.95)

In effect, we have found the exact value of the infinite sum.
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FIGURE 6.7 Temperature in a slab body with a constant heat flux at x = 0and 97 /dx =0

at x = L (case X22B10T0).

Example 6.7: Slab with Convection on Both Sides

A large flat plate of thickness 2L, initially at temperature Ty, is quenched in a large
tank of fluid at temperature T. The heat transfer coefficient for the quenching
process is h, a constant. Find the temperature distribution T(x, t).

Solution

The geometry of the quenching problem is shown in Figure 6.8a. This problem is
modeled as the X32 geometry shown in Figure 6.8b. The centerline of the plate
is a plane of symmetry, which is modeled as an insulated boundary. The initial
condition can be made homogeneous by defining a new variable T = T — Ty, and
the fluid temperature becomes (To, — Tp). This is the X32B10T0 case.

The GF solution using time partitioning is given by the boundary-heating inte-
gral of the GF solution equation,

t _
T(X,l’)—To:OL/ M
=0 k

The large-cotime GF for case X32 is listed in Tables 4.2 and 4.3 (also Appendix X),
and upon substitution into Equation 6.96, the result is

G, (x, 0, 1) dt (6.96)

! h(Too = T0) 2~ _g .
T(X, t) — TO = Q d-[(ooio)z Z e—ﬁfnu([—I)/Lz

=0 k m=1
_Bnt+ B 1-% (6.97)
B%n L~ B 1B cos [ﬁm ( z)] cosPBm .

where eigenvalues B, are roots of the equation B, tanB,, = hL/k. The time-
integral in Equation 6.97 operates only on the exponential term, and the result is
given by
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(a) (b) 0T/dx =0
—> —2L \/\ /
T(x,0) = T,

l Quench

T(x,0) - Ty =0

/

—kOT/dx = h [T_~T)

FIGURE 6.8 (a) Quenching of large plate of thickness 2L. (b) One-dimensional model using
X32 geometryon0 <x < L.

_ 2h(To — To)L OOL o Bat
Tlx, ) = To = === n;ﬁ%<1 e ‘/L)
LA [3m (1 - %)] cosBm (6.98)

B2, +B>+B

This form of the series solution converges slowly because of the steady-state term.
Two ways to improve the convergence are given here.

(a) Replace steady-state term. The steady-state part of the solution can be found
in a nonseries form, as follows. The steady-state portion of the solutions satisfies:

d’T
at x =0, —kﬂ:h(Too— T) (6.100)
dx
atx =1, ﬂ:O (6.101)
dx

Note the sign of the convection boundary condition; heat flux will be in the +x-
direction for To > T. The general steady solution, found by integrating twice, is
given by

T(x)=ax+b (6.102)
and constants a and b may be found by applying the boundary conditions

atx=1L: a=0 (6.103)
atx=0: 0=h(Teo—(04+b) - b=Ty (6.104)

Then the steady solution is simply T(x) = T which makes sense because even-
tually the body takes on the temperature of the fluid.
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Now replace the (uniform) steady solution into the series solution to obtain the
improved-convergence solution:

AL 1 g2
Tx,t) = To=(Too — To) — 2 Tmzﬁi —p2,at/ L
2 + 2
Xﬁwcos[ﬁm( %)]cosﬁm (6.105)
m

(b) Convert to homogeneous boundary. In the original transient problem, there
are two nonzero temperatures given, Tg for the initial condition, and Ty, for the
fluid temperature. In the solution discussed above, the initial condition was set
to zero with normalization T — Ty. Here, the nonhomogeneous boundary will be
set to zero (made homogeneous) by normalization 6 = T — Tw,. Then the original
transient problem becomes

%0 190
—_— = - 6.106
ax2  aodt ( )
00
atx=0, —k—+h6=0 (6.107)
ox
do
atx=1L, —=0 (6.108)
dx
att=0, 0x,t)=Typ— T (6.109)

This is case X32B0OOT1. Now only the initial-condition integral is needed from the
GF solution, Equation 6.4, as follows:

L

T(x, 1) — Too = / (To = To) Gy (x, t1x', 0) i’ 6.110)
x'=0

Using the same GF as before, but evaluated at T = 0, the temperature is

o0

5 2
Z e—Bhat/L* L’%Bi% cos [Bm (1 a %)]

T(x, t) = Too = (To — Too)

1\\!\.)

L X
x/ cos [Bm (1 — —)] dx’ 6.111)
x'=0 L

After evaluating the integral on x’, the temperature is given by

o0
T, t) = Too = 2(To — Too) Y e Prat/Ef

m=1
m cos [ (1-7)] Sigi’” 6.112)

At first glance this solution appears to be different than that found earlier by re-
placing the steady-state part. However, by rearranging the eigencondition into

the form inp hi cos g
sinBm cosBm

= — 6.113

bn kB o1
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FIGURE 6.9 Normalized temperature in a slab body initially at 75 and cooled by convection,
fluid temperature 7o, at surface x = 0. The x = L boundary is insulated. Three levels of
convection are shown for AL / k = 0.4,1.0, and 5.0.

then Equation 6.112 takes the form

2 » B+ B2
T(x, ) — Too = 2 (T e Pmat/ L7 __Tm
* mz1 B2, +B2+B
X\7 CosPm
X Ccos [Bm (1 —— (6.114)
[t (- D] 75

which is equivalent to Equation 6.105. Note that this approach provides a rapidly
converging solution in a single step. The point of this example is that when
a nonhomogenous boundary is present, if it is possible to do so, convert the
nonhomogeneous boundary into a homogeneous boundary.

The temperature in the convectively cooled slab wall is plotted in Figure 6.9
for several dimensionless times and for several values of the Biot number hL/ k.
When the Biot number is small, the temperature is nearly uniform across the body.
For Biot < 0.1 (not shown) the temperature is uniform within a few percent and a
lumped-capacitance model may be used to describe the temperature as a function
of time alone (Ozisik, 1993, p. 27).

6.7 TWO-DIMENSIONAL RECTANGULAR BODIES

Transient temperatures in two-dimensional rectangular bodies are discussed in this
section. The transient GF for two-dimensional cases can be found by multiplying one-
dimensional GF together for boundary conditions of type 0, 1, 2, and 3. Thus for many
cases the temperature solution can be written down immediately in integral form.
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Multidimension cases are often more difficult than one-dimensional cases because
the integrals in the GFSE are more difficult. Often the spatial integrals can be evalu-
ated, but sometimes the time integral cannot be evaluated in closed form. In this event,
numerical methods may be required to get accurate numbers for the temperature.

Some two-dimension rectangle cases are solved in the literature. Ozisik (1993,
Chapter 2) gives two examples of separation of variables applied to transient
temperature in the rectangle. Carslaw and Jaeger (1959, Chapter 5) discuss several
examples of steady and unsteady temperature in rectangles. Solutions for the rectan-
gle also appear in recent papers on improving series convergence (Beck and Cole,
2007) and on intrinsic verification (Beck et al., 2004); see also Sections 5.3 and 5.4
of this book. In this section two examples are discussed for boundary conditions of
type 1 and 2.

Example 6.8: Rectangular Body with Several Different Boundary
Conditions—X21B10Y21B01 Case

Consider a rectangle with zero initial temperature, with one side uniformly heated,
one side at a fixed temperature, Tp, one side at a fixed temperature of zero, and
one side insulated. Find the temperature by using large cotime GFs.

Solution

This is the X21B10Y21B01 case and the geometry is shown in Figure 6.10. The
boundary value problem is given by

#PT T 19T

—t — = —— 6.115
T dy? o ot ( )
T(x,y,00=0 (6.116a)
aT
—k— = qo = constant (6.116b)
ax x=0
T(a,y,t)=0 (6.116¢C)
oT
el =0 (6.116d)
ay y=0
Tx,b,t) =Ty (6.116e)
y
/T: T,
b
—
T=0
H —>
eat flux T(x,,0) = 0 W
9o
—>
)
0 Insulated a

FIGURE 6.10 Geometry for rectangular body in Example 6.8.
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The integral expression for the temperature can be written down immediately from
the GFSE. There are two terms to account for the heating at x = 0 and the nonzero
temperature at y = b:

¢ b
Tx,y, t)= Ot/ dr/ @zewm(x, v, t0, ¥, ndy
1=0 =0 k

—a/ dr/ 3GX2W21

The GF is formed by multiplying two one-dimensional GFs together. That is,

dx’ (6.117)
y'=b

Gxa1y21(x, y, tIX', y', 1) = Gx21(x, t1x', ©) Gya1(y, tly, ) (6.118)

where Gxz1 and Gy can be readily obtained from Appendix X as

Gxa1(x, tIx', 1) =2 Z e Pralt=0/" cq S<Bm—x> cos Pm* (6.119a)
a a a
== —pRa(t—1)/ b? Bny By’
Gyaily, tly’, v 5 ; e cos( ) cos = (6.119b)
where
Bn=n(m—3) Ba=n(n—73) (6.120)

The spatial integrals in Equation 6.117 operate only on the cosine terms. The
time integral can be carried out independently on the product of the exponentials:

t
/ ~Bhalt—0/ @ g-Batt—0/b? g 1§ _ gt (6.121)
=0 aC

where C = (Bm/ a)> + (Bn/ b)*. Then the temperature is given by Equation 6.117
with Equations 6.118 and 6.119 (Beck, 1984),

Tix,y,t)=4 Z Z "”C cos (Bm%) cos <B2y>

=1 n=

{@ + TO Bn }
k BnlB% + 62 a/ by Bm[B2 + B2, (b/ a)*]
(6.122)

where C = B/ a)% + (Bn/ b)?. There are two difficulties with this solution. First,
this is the large-time solution that converges rapidly only for at/b* and at/a?
large (greater than 0.05, say). Second, the most difficult part of the solution to
evaluate directly is the steady-state part for Ty # 0 and qo = O:

Bmx Bniy Bn(—1)m+n
T 4TOZ ZCOS( ) S( b )Bm[ﬁ%+ﬁ,2n(b/a)2] (6.123)

m=1 n=1
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Heat flux g,

FIGURE 6.11 Geometry for rectangular body heated over part of one face.

This part of the solution converges slowly because for m > 1 and n > 1, the series
converges something like n(—1)"*7 /(mn? 4+ m?) which is painfully close to the
slowly converging series 1/ n”. This double-summation form of the steady tem-
perature can be replaced by a better-converging single-sum form with a GF based
on eigenfunction expansions; see Section 4.6. See Beck et al. (2004) for further
discussion of improving the convergence of series expressions for temperature in
the rectangle.

Example 6.9: Rectangular Body Heated over Part of One Face

Consider a rectangle heated over part of one face. The other faces are held at a
fixed temperature of zero and the initial temperature is also zero. The geometry is
shown in Figure 6.11. The boundary value problem is given by

¥r, ¥T_1971

8x2+8y2_&8t O<x<a O<y<b t>0 (6.124a)
TO,y, =Ty t) =T, b t)=T(x,y,00=0 (6.124b)
T
4ot e O<x<a (6.124c)
ay ly—o 0 ap<x<a

(@) Solve the problem using the large-cotime GFs.
(b) Solve the problem using small-cotime GFs and retain only the terms needed
for small times near x = aj, and near y = 0.

Solution
The number for this case is X11B00Y21B(x5)0T0. The GFSE for this problem is

ago [ (! , ,
Ttx, y, t) = —/ Gxi1(x, tlx, 0Gya1(y, 110, D dx’ dt  (6.125)
X

k J=0Ji=0

(@) Large-time solution. The large-cotime forms of the GFs are

2 ad 2.2 2 X X/
G (x, t|x, 0 =2 e~mMmAt-0/a iy (mn7> sin | mn— 6.126a
0 =22, ; ) (61263

m=
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2 i . /
G)L/21 v, tly', 0 = 5 Z e—Bhalt=1/b? o (ﬁn%) cos (ﬁn%> (6.126b)
n=1

where B, = m(n — 1/2). Solving the problem using the GFSE and G!() requires
the integrals

a /
/ sin (mnx—> dx' = 2 [1 — cos (mnﬂ)] (6.127a)
=0 a mn a
t
1
/ e Pt e = (1 — 7D (6.127b)
=0 Do

where D is equal to

2.2 2
D= (”;;Jrig) (6.128)

Using these integrals in Equation 6.125 gives

T(x,y,t)= Aqoa” i 3 (1 — e~ Dot 1 — cos(mmay / a)
37 - T[kb m[m2n2+(a2/b2)8%]
m=1 n=1
. X y
xsin (mJTE) cos (B”5> (6.129)

There are two parts to this solution: steady-state and transient. The steady-state
part converges something like 1/ m3, which is faster than the steady state in the
previous example but which may still require many terms of the series for accurate
evaluation. The double-summation steady temperature can be replaced by a better-
converging single-summation form with GF based on eigenvalue expansions; this
particular case is discussed later in Example 6.10, Section 6.9.

(b) Small-time solution. At early times, any temperature changes occur near
the heated boundary y = 0, and elsewhere, the temperature remains zero. The
small-cotime GFs useful for the early time solution are given in Appendix X in
the form of infinite series. Near the point x = a; and y = 0, however, just the
dominant terms of the series may be used. An equivalent point of view at early
time is to replace the rectangle by the quarter-infinite body described by number
X10BOY20(x5)T0. The appropriate GFs are

G)Sm(x, tIx’, v) =~ Gxio(x, t|x', ©)
1

~ TAnalt — 0]1/2

Gyar(y, t10,7) = Gyaoly, t0, )
2

~ [Analt — 1]1/2

(e—(X—X/)2 /[4a(t—=1)] _ e—(X+X')2 /[40L(f—T)]) (6.130)

e~V H4alt=1)] (6.131)

Next, replace these GFs into the temperature expression given by Equation 6.125.
The integral over x” should be familiar; by focusing on the area of interest near
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x = a; the integral over x’ may be written as
a
/ G)?]O(X, tIx’, t) dx’
x'=0
1 X — aj X
=—-|erfc] ————=— —2erfc{ ———
2 (erc { [4alt — 011/ } e { [4alt — 01112 }

+ erfc {)(—{_7(31 })
[4a(t —1)]1/2

X — aj

for x near aj. Then the solution for small y values and for x near a; becomes

ago [ 1 x—a 1 V2 dalt—
Tx,y, t) = —= — erf yo/4at=v] g
oy == /Tzo 2 erc{[4a(t—r)]1/2} [ralt — 01172 © '

(6.133)

This is a difficult integral and it will be evaluated below with an approximate
integrand. This integral is evaluated exactly in Section 6.8 in the form of an infinite
series.

The integral in Equation 6.133 may be evaluated in closed form if an approx-
imation for the complementary error function is used. The erfc(z) function for
“small” values of z can be approximated by

1—Az, -A ' <z< A
erfc(z) = {0 z> A" (6.134)
2 z< A1

where A =2/7n'/2. Using this approximation then gives, for the temperature for
small y and near x = ay,

t
aqo 1 X — aj

T =To+ —— —1-A—

x,y,t)=To+ 3 /;:um2|: (4au)1/2]

1 2
x ———e VWuldy >y 6.135
rau) 72 m ( )
where u,, = A%(x—a1)? / a. Note that the region of u = 0to um (which corresponds
to T = t to t — up) has no contribution to the temperature using the above appro-
ximation for erfc(z). This equation also implies that the region under which the
approximation for erfc(z) is useful is given by coordinate x in the range

a— A dat)? < x<ay + A dap)'/2 (6.136)

This equation defines what the phrase “x near a; at early time” means in describing
the range of application of Equation 6.135.
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For smaller x values (but not near x = 0), the temperature distribution is given by

_ aqo 1 —y2/4au
Tix,y,t)= a /u:o e E e “du

¢ 1/2 ) y
=2qo <kT)c) ierfc [W} (6.137)

This result is exactly the same as for a semi-infinite body that is uniformly heated
over its entire surface.

For x values larger than ap, the surface at y = 0 is insulated. Sufficiently far
from a; indicated by

x>a + AV daw)'/? (6.138)

the temperature near the surface y = 0 is simply zero.

(c) Surface temperature. The temperature on the heated surface can be found
directly by substituting y = 0 into the temperature expression at any point in
the derivation. Often the surface temperature is easier to find than interior temper-
atures. The surface temperature is given by

ago i1 X — a 1
T ~ — = (1=
(x,0,0 3 /um 7 [ (40“1)”2} EE du

_aqf 1 a2y g Xx—an, (ot
Tk |:(TEOL)1/2(t Um ”) A2n1/2(x|n Um

3 t )1/2_A(x—a1) _Qx—a) A at
=D\ \ Tkoc ko kK 2yn Ax—a )

for —A 1 4at)'/?2 < x —a; < A" (4at)'/2 and x # ay.
For larger values of x in the range a; < x < a, such that

x> a + A dat)!/?

the surface temperature is simply zero, and for smaller values of x in the range
0 < x < a; such that

x<a — A " dapn'/? (6.140a)

the surface temperature is given by

¢ \1/2
T(x,0,6) =2qo (nkpc) (6.140b)

which is the same as the surface temperature for a uniformly heated semi-infinite

body.
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6.8 TWO-DIMENSIONAL SEMI-INFINITE BODIES

The temperature in a semi-infinite body heated over half of the surface and insulated
over the other half is treated in this section. This is a basic solution of two-dimensional
heat conduction because it serves as a building block for other solutions and it is a
kernel function for the unsteady surface element method discussed in Chapter 12.

The temperature is presented first in integral form, and then two series expressions
for the integral are presented to evaluate the temperature efficiently at any location in
the body and at any value of time.

6.8.1 INTEGRAL EXPRESSION FOR THE TEMPERATURE

The geometry for the semi-infinite body heated over the half-plane is shown in
Figure 6.12. The initial temperature is zero and the spatially uniform heat flux gg
begins at time zero. This is the X00Y20B5T0 case. The temperature is given by the
GF equation in the form

t 0
T(x,y,t) = %/ 0/ Gxoor20(x, v, t1x’,0, 1) dx’ dt (6.141)
=0 Jx'=—0

where gg is a constant. Note that the GF is evaluated at the surface y’ = 0, and that
the integral over surface extends over only the heated half plane —oco < x” < 0. The
GF is given by a product solution of two familiar one-dimensional GFs, G xooy20 =
G x00Gy20.

The integral on x’ in Equation 6.141 falls only on G xqo, and this integral should
be familiar, so Equation 6.141 can be written

lagg [* X
T(x,y,t) = E% o Gyzo(y,t|0,'c) erfc {W} dt (6142)

Uniform heat flux g,
/— over 1/2 space, x<0

Z LL LLLL X

y

FIGURE 6.12 Geometry for semi-infinite region with uniform heat flux go over half-space
co<x<0andy=0.
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The function Gy is listed in Appendix X (replace x by y wherever it appears in the
listing for G x20), and the general expression for the temperature can be written

_lago (1 HE 2
T(x’w)—zT(ﬁ /x:om

2 x
X exp [m] erfc {W} dt (6143)

This expression is valid for all locations in the body (—oco < x < 0o,y > 0) and for
any timers > 0.

6.8.2 SpeciAL CAsEs

The time integral in Equation 6.143 can be evaluated in closed form in two special
cases.

Surface temperature. For the special case of y = 0, the temperature on the
surface is given by (Carslaw and Jaeger, 1959, p. 264)

1/2 2
T(r,0,1) =% (“;t) {erfc[z(af)llz} - s (%ﬂ)} (6.144)

The function E1(-) is the exponential integral, defined by

Ei(z) = / ” e;u du (6.145)

It is tabulated in Abramowitz and Stegun (1964) and it is available in computer
libraries. See also Appendix I, Table 1.1, for some expressions involving function E1.

Centerline temperature. For the special case of x = 0, the temperature at the
centerline is given by

T(0,y,7) = %(at)“ 2jerfc [ (6.146)

Y
Z(OLt)l/Z
which is exactly one-half of the solution for a semi-infinite body heated over the entire
y = 0 surface.

6.8.3  SErIES EXPRESSION FOR THE TEMPERATURE

The time integral for the temperature, Equation 6.143 is evaluated in this section with
series expressions. To begin, the time integral is written with a change of variables
using
P
2[a(t — 11?2
and Equation 6.143 can be written as

T(x,y,1) = —°2 / AU i g (%) (6.148)
Y

2ktt12 [ jaqryriz u

(6.147)
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Further, a set of dimensionless variables will be used to present the temperature
results:
X y

T2 T 2y (6.149a, b)
y Y T

T X © = @i 2 6.149c, d
X (go/k)(ar [ )22 ( c, d)

Notice that the variable p is independent of time. With these new variables, Equa-
tion 6.148 can be written

oo
A(p,Y)=Y / d—’z‘ﬂz erfc (1) (6.150)
y Uu p
The number of independent variables has been reduced from three (x, y, ¢) in Equa-
tion 6.148 to two dimensionless variables (p, Y) in Equation 6.150. The time de-
pendence of the temperature has been absorbed into the coordinates and into the
dimensionless temperature by normalizing them by the “length” /(o).

This type of coordinate transformation is called a similarity transformation,
and the variables are called similarity variables. Heat conduction problems can be
solved this way where the solution depends on a penetration depth /(at), usually
because the geometry has no intrinsic length scale. Certain fluid flow problems may
also be solved with similarity transformations. Equation 6.150 can be integrated by
parts to give (Litkouhi, 1982)

X
O(X,Y) = n'/2ierfo(Y) — e 7" erf (X) — —r5 E1(X? + ¥?)
bl
o 22
+ 2pY/ e P erfc(u) du (6.151)
X

Here u is a dummy variable.
The integral in the last term of Equation 6.151 can be represented by a function H
defined as

2 o
H(X,Y) = nl_ffz /X e erf (u) du (6.152)

Recall that p = Y / X. Then the general temperature solution for a constant heat flux
over the half plane can be written
O(X,Y) = n'2ierfc (¥) — e ¥ erf (X)

X
- mEl(x2 + Y9+ 7%y H(X,Y) (6.153)

The general solution given by Equation 6.153 is valid for all times and any location
in the body. However, Equation 6.153 is recommended onlyfor X > 0. For X < 0, a
complementary expression is recommended:

O(X <0,Y)=vn?ierfc(Y) — O(X > 0,Y) (6.154)

where the first term on the right-hand side of Equation 6.154 is the solution to the
same problem if the entire surface was heated by a constant heat flux.
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FIGURE 6.13 Geometry showing various regions |p| < 1, |p| = 1,and |p| > 1.

The function H(X,Y) = H(X, p) can be represented in a series form for the three
different regions indicated in Figure 6.13.

Region |p| > 1. The region |p| > 1 represents the region closest to the surface of
the semi-infinite body. In this region, H(X, p) is given by

i (—1)"T'(n + 1, p?X?)

2

where the truncated exponential function is defined in Abramowitz and Stegun (1964)
oo
C(n,u) = / e~ tar (6.156)

Region |p| < 1. For the region |p| < 1, the expression 6.155 cannot be used for
H(X,Y) since the term p2'*1 appearing in the denominator causes the summation
to diverge. In this case the following expression is provided:

2 o —1y 2n+1 1, 2
H(X, p) = 1 — erf(X) erf( pX) — ;Z( ) p(Zn I(l’;nf XD (61s7)

n=0

Region |p| = 1. On the line | p| = 1, it can be shown that H(X, p) is given by

1 — [erf(X)]?

H(X,1) = —H(X,-1) = .

(6.158)
Next some numerical results are presented. Figure 6.14 is a plot of function
H(X, p) versus X as calculated from the series expressions. [Numerical results
for H(X, p) to six decimal places are tabulated in Litkouhi, 1982.] Dimensionless
temperature in the semi-infinite body is plotted versus X in Figure 6.15. Recall that
O(X,Y) is normalized by the time, so time does not explicitly appear in the figure.
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H(X, p)
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FIGURE 6.14 Function H(X, p) versus X for different values of p.
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0(X, Y)
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FIGURE 6.15 Dimensionless temperature ®(X, Y) versus X for different values of Y in
semi-infinite body with uniform heat flux over half-space x < 0and y = 0.

6.8.4 APPLICATION TO THE STRIP HEAT SOURCE

Other boundary conditions can be obtained by using the half-plane solution and
superposition, and Figure 6.16 shows several geometries that are possible. One case
of interest is the semi-infinite body heated by a constant heat flux over an infinite strip
of width 2a and insulated elsewhere as shown in Figure 6.16a. This solution can be
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FIGURE 6.16 Various possible cases that can be treated using solution given in Figure 6.15
as a building block.

found from the superposition of two half-plane solutions: one half-plane is located at
x — a = 0 with a positive heat flux, and the other half-plane is located at x + @ = 0
with a negative heat flux. The resulting temperature is given by (Litkouhi, 1982)

+ +
_(y¥2 a4+ xT -1 xT+1
@(X+,y+,l+) =e ( ) {—erf [W} + erf [W

xt -1 (xt —1)2 4+ (y1)?

() [ ]

|: x++1 ] I:(x++1)2+(y+)2:|
E;

(Amt+)L12 4+

nl/2y+ xt—1 xt+1
* Gyt |G| = G| @259
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where now the coordinates are normalized by «a, the characteristic length:
=Y (6.160a, b)
a
y
p====— (6.160c, d)
a x xt

and ® = T /[(qo/ k)(ar / )*/?] as before. Note that the definition of parameter p has
not changed from when it was introduced in Equation 6.149.

Surface temperature. For the special case of y* = 0, the surface of the semi-
infinite body, the temperature due to the heated strip is (Carslaw and Jaeger, 1959)

@(x+10,t+)=erf|:ﬂi|_ erf|:x+—1i|+|: xt 41 }El[w]

(4r+)L12 (4r+)L/2 (4mrt)L/2 4+
_ o — 1)2
B [(:;+)11,2] El[( +4t+1) } (6.161)

6.8.5 DiscussioN

Round-off error. The expressions for the temperature in the strip heater case are
recommended only for x* > 0 due to the possibility of computer round-off error.
The geometry is symmetric about the x-axis so that the temperature for x* < 0 can
easily be found from TH(x* < 0,y™,t7) =TT (x+ > 0,y ™, ¢ ™).

Round-off error comes from subtracting two numbers that are close in value. For
the strip heater problem, round-off error can come from the two superposed half-plane
solutions. The temperature due to the heated strip can be written as

®Strip(x+) = ®half-plane(x+ - 1) - ®half-plane(x+ + 1) (6162)

(For the moment, the dependence on y* and ¢ has been left out.) Now, the physics
of the heat transfer problem requires that sufficiently far from the heated strip, the
temperature must approach zero. As x* — oo, the two superposed solutions each
approach zero (within the computation limits of the computer) because the half-plane
solution is heated on the left half of the plane. There is no round-off error associated
with the temperature at x™ > 0. Asx* — —oo, however, the two half-plane solutions
are evaluated near their heated regions and the half-plane temperatures can be very
large (especially near the surface y+ = 0); the strip-heater temperature is near zero due
to cancellation of the nearly equal half-plane temperatures. This process of canceling
when x* < 0 can be demonstrated by a numerical example.

Suppose the temperature is evaluated directly at x* = —3, y* =0,and tr* = 0.5
for the heated strip located over (-1 < x* < 1). The numerical value will be
calculated with seven-digit accuracy using floating-point notation appropriate for a
computer. Using Equation 6.162 with x* = —3,

®slrip(x+ = _3) = ®ha1f-plane(_3 - 1) - ®half-plane(_3 + 1)
= 0.2000000E + 01 — 0.1999587E + 01
= 0.413E - 03
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Note that the two half-plane temperatures are nearly equal, so the subtraction problem
has reduced the accuracy from seven digits to three digits. Loss of accuracy is only
part of the error, however, because a computer working with seven-digit accuracy
will usually give the answer in seven digits, such as 0.4132662E-03 where the last
four digits of the mantissa are computer-generated gibberish (round-off error). Most
computers won’t tell you when this type of error occurs. Again, for the strip heater
problem, this type of error can be avoided by evaluating the temperature only at
xT > 0and using symmetry to find the temperature at x* < 0.

Lack of a steady state. The heated half-plane temperature, 7 (x, y, ), has no
steady state. As + — oo, the temperature increases without limit. In Equation 6.153,
this dependence on time is hidden by the normalized temperature ® which results
in a dimensionless temperature expression that does not explicitly depend on time;
however, the actual temperature in degrees kelvin represented by Equation 6.153 and
Figure 6.15 does depend on time and there is no steady state.

It is not always clear if a semi-infinite body with heat flux boundary conditions
has a steady-state temperature. In general, a semi-infinite body will have a steady-
state temperature if a finite amount of heat (joules) is added to the body. There are
at least three ways that a finite amount of heat can be added to a semi-infinite body:
through a heated region that is finite in spatial extent, through a short duration of
heating, or through a net zero heat flow into a body (sources and sinks of heat that
balance out). For example, the heated strip solution discussed in this section is infinite
in extent in the z-direction and an infinite amount of heat enters the body per unit
time; consequently, there is no steady state. As a counterexample, a semi-infinite
body heated over its surface for a short period and insulated thereafter always has a
steady-state temperature of zero if you wait long enough after the heating has ended;
in the limit of an infinitesimally short heating period, the temperature is similar to the
GF G x20, which goes to zero as ¢+ — t goes to infinity.

6.9 STEADY STATE

Steady-state solutions have already been touched on in connection with the alter-
native GF solution method in Examples 6.5 and 6.6. In this section, three exam-
ples of steady heat conduction in rectangular coordinates are presented for two-
and three-dimensional geometries. For one-dimensional steady cases in rectangular
coordinates the GFs are listed in Appendix X, Tables X.1 through X.4.

Example 6.10: Rectangle Heated over Part of the y = 0 Boundary

In the rectangle (0 < x < a; 0 < y < b), the y = 0 surface has a uniform heat
flux over O < x < a7 and zero heat flux (insulated condition) over a; < x < a. The
other three boundaries of the rectangle are at zero temperature. Find the steady
temperature.

Solution

This case X11B00Y21B(x5)0. The geometry is shown in Figure 6.11 and the tran-
sient temperature for this rectangle was discussed in Example 6.9. The steady
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temperature is given by

1 [
T(x,y)= E/ Go Gx11v21(x, ¥, Ix', ¥y = 0)dx’ (6.163)
x'=0

Here the steady GF will be constructed from eigenfunction expansions (see Sec-
tion 4.6). There are two alternate forms of the steady GF in the rectangle. Using
eigenfunctions along the x-direction (X11) gives eigenfunctions which are sines
(see Table 4.2), so the GF has the form

o]

2
Gxi1y21 = 3 Z sin (Bm%) sin (Bm ) Pmly, y") (6.164)

m=1
where the eigenvalues are B, = mn. Kernel function Ppy(y, y') is denoted case
Y21 and is given by (see Table X.4, Appendix X)
—0QRb=ly—y') _ g=o@b=y—y)  a=olly=y') 4 e—oly+y)

+ 6.165
26(1 4+ e—20b) 26(1 + e—20b) ( )

Pm(y/ y') =

where 6 = B,/ a. Replace the GF into the temperature expression, Equation 6.163,
and carry out the integral to find

1— mnay —oy _ a—0(2b—y)
Tix,y) = 202 sin(m:X)[ cos (%5 )]<e € ) (6.166)

k mm ca(l + e—29b)

m=1

An alternate temperature expression, useful for intrinsic verification, can be con-

structed with eigenfunctions in the y-direction (Y21) and a kernel function in the
x-direction (X11).

Example 6.11: Two-Dimensional Slab Heated over a Small Region

Find the steady temperature in a two-dimensional slab caused by a uniform heat
flux qo over a small region —a < x’ < a and insulated elsewhere on one side
of the slab, and fixed temperature Ty on the other side. The region is very large in
the x-direction and has thickness L in the y-direction. This geometry is related to
the study of surface-mounted heated films.

Solution

This is the X00Y21 geometry, and the temperature distribution in the body is driven
by heating on the surface y = 0. The geometry is shown in Figure 6.16h. The steady
temperature is given by the surface heating term of the GFSE:

a
Tix,y)—To= / %Gxomm X, yIx', ¥y =0)dx (6.167)
X'=—a

The steady GF may be found from the method of limits and by the product of two
one-dimensional transient GFs:

t
Gxooy21(x, yIx', y') = t|ingoot_/ Gxoolx, tIx',©) Gy21(y, tly,vdt  (6.168)
- =0
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The transient GFs are available in Appendix X, and Equation 6.168 may be written

t dt (x — x)?
Gxooy21(x, yIx', y)) = lim OL/ . 7)exp 77
=l

t—>00 4ot — T 4a(t — 1)

o0 2 _ 7
% % D exp [— 76"70‘(; t)} cos [—B”ly ] cos [ﬁmTy]
(6.169)

where B, = m(m — 1/2). Note that the large-time form of the function Gy, is
used. The time integral in the above equation involves the error function and is
given in Appendix | (Table 1.6, number 12). After the limit is taken, the result is

ro > 1 - x—x' /
Gxooy21(x, ylIx', y') = E B—exp [%] cos [B’"Ty] cos [B'"Ty]
m=1"m

(6.170)

The absolute value [x — x’| is introduced by the time integral, and it reflects the
symmetry of the GF about (x — x’) = 0. It also guarantees that the exponential
term dies away as |x — x’| increases. The same form of the GF may also be found
by the method of eigenfunction expansion (Section 4.6).

Now that the GF has been found, the temperature caused by heating the body
over a small region may be found from Equation 6.167:

T(x,y) — f Z [ Bml)z‘”}cos[ﬁf"%} (6.171)

The absolute value must be treated carefully by examining (x — x’) > 0 separately
from (x — x’) < 0. The result is two expressions for the temperature depending on
the region:

-t _ g []
= a2
C]OL/ k =1 Bm
—Bm(Ix|=a)/L _ a=Bm(x|+a)/L.
e e ;x| >a
X { 2 — e_ﬁm(‘xl_a)/L — e_ﬁm(IXH’a)/L; |X| <a } (61 72)

The convergence of this infinite series for |x| > a is controlled by the exponential
terms whose values rapidly go to zero with increasing m. On the heated region,
|x| < a, there is a portion of the series that does not contain an exponential, and
this term causes slow convergence. The slow-converging portion of the series may
be replaced with the following identity (Beck and Cole, 2007)

% cos [ﬁ’”y] y
— = 1—= (6.173)
Bz L

m=1
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FIGURE 6.17 Contour plot of (normalized) temperature for X00Y 21 geometry with heating
over a small region at y = 0. Region x < 0 may be inferred from symmetry.

This identity may alternately be deduced by recognizing that the temperature so-
lution in the range |x| < a has the form

Tx,y)—To _
W = Sy(y) + Sxy(x, y) (6.174)

Upon replacing the above expression into the original boundary value problem
for the two-dimensional temperature, the solution for S, may be found by direct
integration (see homework problem 5.6).

Figure 16.17 is a contour plot of the steady temperature for this case, from
Cole and Yen (2001). The thickness is L = a and the unheated surface of the slab
at y = L is held at temperature To. The heated region is located at y = 0 over
—a < x < a. The temperature is normalized as (T — To)/(qoL/ k) where qo is the
heat flux on the surface. The boundary heat flux is proportional to the slope of the
contour lines where they meet the y = 0 boundary. For example, the contours
are perpendicular to the y = 0 surface for x/a > 1 which indicates the zero-flux
conditions there.

Example 6.12: Parallelepiped with Specified Surface Temperature—
X11Z11Y11 Case

Find the steady temperature in the parallelepiped with five faces at zero tempera-
ture and one face (at x = 0) maintained at temperature Tp.

Solution

The GF for this geometry was treated in Example 4.10 and the parallelepiped body
is shown in Figure 4.4. The triple-sum GF for this case is given by

Gix,y, zIX,y, 2

o]

S35 5 e (e o o)

m=1n=1p=1

/ > -1
: Z\ Y Y 2 (M P
X sin (prr?> sin (nnb)sm< E) |:abcn <+bz+2):|

(6.175)
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The temperature for this case is given by the boundary term of the steady GFSE,

T(x,y,2)=— f dy/ d7 TOBG/
y'=0 an

where the surface integral is carried out over the x =0 face of the parallelepiped.
The required derivative and integrals are elementary, and the temperature is

T(x,y,2)=8To Z Z Z —DPIT = (=1)"]
. X\ . zZ\ . y 5 3 m? 2 P2 =1
X sin (mTEE> Sin (p]‘[z> Sin (nng) a npw ?—}—E—F?

(6.177)

(6.176)

This triple summation expression is not recommended for numerical evaluation
because it converges very slowly. A better-converging temperature expression can
be found using a double-summation GF; one such GF was discussed in Exam-
ple 4.10. The double-summation GF with the kernel function along the z-direction,
is given by

e X x
Gx,y, zIx,y, 2 Z Zsin(mn g> sin(mn ;)

m=1 n=1

/

X sin(nn %) sin(nn yg) Pom(z,Z))  (6.178)

where the kernel function Py, is given by (Table X.4, case X11)

—02c+|z—2)) _ e—o(2c—z—z’) e—o\z—z/l _ e—c(z+z’)

P )=
nm(Z,Z") 20(1 — e—20¢) + 20(1 — e729¢)

b 5, [nPn?  m’n
where o = 7-1—372

Using this GF in the GF solution, Equation 6.176, the double-summation temper-
ature is given by

(6.179)

T(x,y,z)=To Z Zsm (mrr )sin (nn%) (?) %[1 — cos(nm)]
m=1 n=1
1 efc(c+z) _ efc(cfz’)
% (02 _ S0 e 20 ) (6.180)

The double-summation form converges much faster than the triple summation
form. Further convergence improvements are possible if the solution is written in
the form

T(x,y,2) = TolSxy(X, ¥) + Sxyz(x, ¥, 2)] (6.181)
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The slower-converging term in the above equation is Sy, because it does not con-
tain any z-exponentials. The convergence speed of term Sy (x, y) can be improved
by recognizing that it is the solution to a certain two-dimensional heat conduction
problem in a rectangle. The double-sum form of Sy, (x, y) in the above expression
can be replaced by a better-converging single sum form using an appropriate GF
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based on eigenfunction expansions (see Crittenden and Cole, 2002).

PROBLEMS

6.1

6.2

6.3

6.4

6.5

Find the temperature in a semi-infinite body resulting from the fol-
lowing surface temperature.

Ty O<t<n
T> t>n

T(x:O,t):{

The initial temperature is zero. What is the number of this case?
Find the temperature in a semi-infinite body heated at the surface by
a square pulse of heat:

q0 O<t<n
q(l)={
0 t>n

Find the steady-state temperature as t — oo.
Suppose the surface temperature on a semi-infinite solid due to sur-
face heating is given by

() - Tp = a\/%—}-b (%)

where a, b, and rq are constants. Find the surface heat flux that caused
the temperature to rise.

Find the prescribed surface temperature, f(¢), such that when applied
to the semi-infinite solid with zero initial condition (X10B-70 case),
the surface heat flux is given by

t nl2
:q0<7) forn=0,1,2, ...
x=0

Consider a semi-infinite solid with a thin, high conductivity film
at =8 < x < 0. Letx > 0 be the semi-infinite body. Find the
temperature at x = 0 for the following heating condition:

oT
- ka—(O, 1) =qo
X
T(x,00=0
Thisiscase X40B1T0. Compare your answer to the X20B170 case.
What is a dimensionless parameter that describes the added effect of

the thin surface film on the heated semi-infinite body at early times
after heating begins?
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6.6  Consider the same geometry as in the previous problem, but now the
surface of the thin film is suddenly heated by a convection process.
The initial temperature is zero. Find the transient temperature and
compare it to the X30B170 case.

6.7 Find the small-time form of the temperature for a one-dimensional
slab geometry with one surface heated with a constant heat flux,
one surface insulated, and zero initial conditions (X22B107 0 case).
Compare your result to the (semi-infinite) X20B170 solution listed
in Table 6.3, and comment on the differences.

6.8  Derive the following expression:

oT’

w“g - %qo Gyx2s(x,001,0), forJ =0,1,2,3.

6.9 Based on Problem 6.8, show that for ar / L2 < 0.1 to an accuracy of
1 part in 10%, that

0Tx27B10T0

0, for/ =0,1,2,3.
o 0,r) or

o o
~ E 9o
ar/L2<0.1 s

Verify numerically by using the exact solution for case X22B10TO.

6.10 Exponential heating is sometimes used to model runaway heating of
nuclear fuel rods. Write down the integral form of the temperature
for the following problem with exponential heating and convection
cooling. Assume that the GF has the name G x33(x, t|x’, T). Do not
evaluate the GF. Do not evaluate the integrals.

2T 1 19T
ez Tes0 =05
T(x,00=0
oT

kS| = h(T|y —Tao ) i =1,2.
on

X;

g(t) = goe”

6.11 Use the standard Green’s function solution equation (GFSE) to ob-
tain the temperature distribution for the problem

T s T
ox2 ko dr
T(0,t) =Ty T(L,t)= Ty T(x,0)=Tp

O<x<L t>0

where g(x) = go =constantforO<x <Ly <L
= 0 otherwise

Use the large cotime GF.
6.12 Restate Problem 6.11 in dimensionless form with new variables & =
x/L,m=at/L%and 0 = (T — Tp) /(g0L?/ k). Do not solve for .
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6.13  Solve, using the GFSE, the problem

#PT 19T
oT
_k? =q0 T(L,t)=To T(x,0)=Tp
X
x=0

Use the large cotime GF.
6.14  Solve Problem 6.13 using the Alternate Green’s Function Solution
Equation (AGFSE).
6.15 Solve Problem 6.13 using the GFSE with the small cotime GF.
6.16  Consider the following one-dimensional problem.

PT _ 19T T

i P vl [
oT
—kao| = h(Tl—r — Txo)
X lx=L

and initial condition 7'(x,0) = 0.

(@ Using T(x,7) = T*(x) 4+ T1(x,t), write down an alternative
boundary value problem for Ty (x, t), where T*(x) is the solu-
tion to the following steady problem.

T
wZ
oT*

—k -
o |, =

oT*

—k x zh(T*|x:L_Too)

x=L

(b) Carry out the transient solution using the large-cotime form of
the GF and the AGFSE. Write your answer in terms of dimen-
sionless parameters hL [ k, x / L, and dimensionless tempera-
ture (T — Too ) I(qoL / k).

6.17 Write down the GF solution equation for the following two-
dimensional case. Do not derive the GF; do not solve the integrals.
However, use the correct form of dVand ds;. Use the name G x22y11
(x, y,t|x’, y', T) in your expression.

T  PT g9 10T .
W + W + I = &E go IS constant

T(x,y,0)=ax +by+c¢
oT
—@x=0,y,1)=0
ox
oT
—-(x=Lyy1)=0
ox

T(x,y=0,1)=Tp
T(x,y=Ly,t)=0
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6.18

6.19

6.20

6.21

6.22

Consider the surface temperature on a semi-infinite body heated over

two infinite strips of equal size, case X007 0Y20B(x5).

(a) Find the surface temperature resulting from the following anti-
symmetric heat flux distribution:

0 t=0
—q0 t>0 —-b<x<-—-a

x,1) =
a(x.1) +q0 t>0 a<x<b

0 t>0 otherwise

(b) Where does the maximum temperature occur?

(c) Plot the steady state surface temperature 7'(x, y = 0).

Find the surface temperature 7 (x, y, t) on asemi-infinite body heated
by a line source located at x =0, y=0. The surface heating is
given by:

t=0
q(x,1) =
q0d(x) t>0
Find the steady-state temperature at y = 0 forthe X0070Y 21 B(x5)0
case (strip heat source) as follows:
(@) First find the integral form of the transient temperature with
the large-time form of the GF. The boundary conditions are the
following:

T(x,y=D,1)=0

_kaT(x,O,t): q0 —a<x<a
dy 0 elsewhere
T(x > —00,y,t) =0
T(x - +o00,y,t) =0
T(x,y,00=0

(b) Evaluate the temperature at y = 0 and evaluate the integrals.
(c) Suggest one method to improve the convergence of the series
expression.
Arectangle 0 < x < L,0 < y < L isinitially at temperature
zero. Surfaces y = 0, y = L, and x = L are insulated. Surface
x = 0 is heated by constant heat flux go over 0 < y < L/2 and
is insulated over L /2 < y < L. Find the temperature at location
x =0, y = 0 as a function of time.
(@) Using large-cotime GFs.
(b) Using time-partitioning at a Az / L2 = 0.005.
Solve the following problem of two-dimensional heat flow.
FPTPT 19T
Ox2 + 9y2 o o
T(,y,t)=T(a,y,t)=T(x,b,t) =Ty, T(x,y,0)=Tp
Ty # Ty forO<x<ay <a

T(x,0,1) =
( ) To fora; <x <a

233
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(@) Use the GFSE with large-cotime GFs.

(b) Use the GFSE with small-cotime GFs.

6.23  Starting with the transient GF for case X31 for the body with con-
vection at x = 0 and a zero temperature at x = L, show that (a) in
the limitas = — oo the GF reduces to case X11, and (b) in the limit
as h — 0 the GF reduces to case X21.

6.24  Starting with the steady-fin GF for case X13 (Table X.4, Appendix
X), show that (a) in the limit as #p — oo the GF reduces to (steady
fin) case X11, and (b) in the limit as 2 — 0 the GF reduces to
(steady fin) case X12.

6.25 Consider the steady temperature in a rectangular fin which satisfies

2T
Z? — (T = Too) =0 (6.182)

where m2 = 2h /(dk), & is a heat transfer coefficient (W/m2/K), d
is the fin thickness, & is the fin conductivity (W/m/K), and T, is
the fluid temperature. The boundary at x = 0 has T = Tp and the
boundary at x = L has dT /dx = 0. Find the temperature in the fin
using the steady-fin GF given in Table X.4, Appendix X. Compare
your result for T'(x) to that given in a heat transfer text for the fin
with an insulated tip and comment on the differences. (Hint: you will
need cosh and sinh.)

6.26 Find the steady temperature in the rectangle with one side at ele-
vated temperature and the other three sides at zero temperature, case
X11B10Y11B00.

6.27 (a) Find an integral expression for a semi-infinite body heated at
the surface over a rectangular area (three-dimensional prob-
lem). This is the X00Y00Z20B(x5y5)T0 case. The surface
heating is given by

q0 —a<y<a
oT (x,y,z=0,t
ey 2 =00 b<x<b 150
dy
0 elsewhere on surface

Initially the temperature is zero.
(b) Find the average temperature on the rectangle in the form of an
integral on t (evaluate spatial integrals).
6.28 Solve, using the GFSE, the problem

92T N goe /¥ 19T N 1,
JEE— _— e — — —_— < < 0
ox? k o ot o Oax *

7(0,7) = Tp, T(x,0) = 0

The quantities, go, Up, and xo, are constants. What is the number of
this case?
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7 Cylindrical Coordinates

7.1 INTRODUCTION

Heat conduction in geometries described by the cylindrical coordinate system (r, ¢, z)
are discussed in this chapter. Transient radial heat flow is covered in Sections 7.2
through 7.7, for the infinite body, the long cylinder, and the infinite body with a
cylindrical hole. The thin shell is discussed in Section 7.8. The use of limiting cases
for two- and three-dimensional bodies is discussed in Section 7.9. Two-dimensional
transient heat transfer is discussed in Sections 7.10 through 7.12 for finite cylinders
and for a disk heat source on a semi-infinite body. Several steady-state cases are given
in Section 7.13.

7.2  RELATIONS FOR RADIAL HEAT FLOW

Temperature and Green’s functions (GFs) for radial flow of heat in the cylindrical
coordinate system (r, ¢, z) are discussed in this section. For radial flow of heat, the
temperature depends on position r and time t, and the heat conduction equation has
the form

19T

or

10 oT
ror

1
r—i| + zg(r,t) =
That is, the temperature does not depend on ¢ or z. The radial GF equation is given by

T(r,t) = / G(r,t|r',0) F(r') 2nr'dr’ + OLZ (pc%))i

=
x G(r,t|r;,0) F(r;) 27r; (for boundary conditions
of fourth and fifth kinds only)

t
—i—/ /gG(r,t|r’,t)g(r’,t)2nr’dr’ dt
=0 Jr k

+a/’ - fi(VEJ)

=05 Kk

(for boundary conditions of the
second through fifth kinds)

x G(r,t|ri, t) 2mr; dt

—OL/_O; f/-(r/-,t)

T

oG
X
on

2nrj dv  (for boundary condition of the
rer) first kind only) (7.2)

/
J

237
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Infinite body

FIGURE 7.1 Cylindrical surface heat source located at r’.

Note that dv/ = 2mr'dr’, and the integrals over boundary surface s; have been
replaced by 2mtr;, the area per unit length. Equation 7.2 may be applied to bodies with
boundary conditions of type 0 through 5. However, the radial heat flow GF actually
listed in this book (Appendix R) are denoted Ggy;(-), where I,/ =0, 1,2, and 3.

7.3 INFINITE BODY
7.3.1 THe ROO Green's FUNCTION

The GF for the radial flow of heat in the infinite body is denoted Groo(r, |/, ). This
GF can be interpreted as the response to a cylindrical surface heat source located at
radius r’ (refer to Figure 7.1), and it is given by

b N 1 —(r2 +r?) rr’
Groolr, 11, 7) = 4ot — 1) &P |: 4a(t — 1) i| fo |:2<x(t — ‘l:)i| (73

for0 <r <ocand0 < r’ < oo. The function Iy(-) is the modified Bessel function
of the first kind of order zero [1o(0) = 1 and Ip(z — 00) = oo]. Refer to Appendix B
for more information on the Bessel functions. The units of G gog are (meters) 2. Note
that the reciprocity relation holds for this GF because r and »’ can be reversed and
the function is unchanged.

In the special case where " = 0, the cylindrical source that generates the function
Groo(-) collapses into a line source located at ' = 0, given by

1 —r2
Groo(r, 110, 1) = Inall =) exp [4a(t — t)} (7.4a)

Recall that a line source can also be represented by the product of two plane sources,
and that ' = 0 corresponds to the point x’ = 0, y' = 0. Thus, the identity is

Groo(r, 10, T) = Gxoo(x,]0, T) Gyoo(y, /0, T) (7.4b)

This product solution also demonstrates that the units of Gggo(-) arem—tm—1 = m—2.

7.3.2 DerivaTiON OF THE ROO GREEN’S FUNCTION

There are several ways to derive the RO0 GF from first principles (Ozisik, 1993,
p. 107; Carslaw and Jaeger, 1959, p. 259). The following derivation involves an infinite
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body with heat generation in rectangular coordinates. The GFSE in two-dimensional
rectangular coordinates is given by

t
rwr =3 [ [ [ Gxmantenilsy 0 sty gayaras (@5)
= x/ _V,
The appropriate heat generation term is an instantaneous cylindrical surface heat
source shown in Figure 7.1 and given by

3(t — 10) 8(r" — ro)
27tr0

g,y 1) =go (7.6)
Parameter rg is the radius of the cylindrical surface heat source that introduces heat at
time tg and go (J/m) is the strength of the heat source per unit length of the cylindrical
surface. [The strength of the heat source per unit area is go /(27ro)].

The appropriate two-dimensional GF in rectangular coordinates is given by

n2 n2
(x=x)Y+-y) } @7
da(t — 1)
Recall that G xooyoo represents the response to an instantaneous line heat source
located at (x’, y’, t), and that G xooro0 = G x00 Groo-

To evaluate the temperature in Equation 7.5, the integral over the infinite body
must be changed to cylindrical coordinates. First, the distance between points (X, y)
and (x’, y’) that appears in the expression for G xooyoo must be converted to cylindrical
coordinates. If the cylindrical coordinates of points (x, y) and (x’, y’) are (r, ¢) and
(r', "), respectively, then the distance between these points is given by

R2=(x = x4+ (y =¥ =r?+(")? = 2rr' cos(¢p — ¢') (7.8)

Second, the spatial integrals in Equation 7.5 that extend over the entire (x’, y’) plane,
whered A = dx’dy’ must be converted to equivalent integrals inthe (+’, ¢’) coordinate
systemover0 < ' <ooand0 < ¢ < 2nwithdA =r'dr’ d¢’. Then Equation 7.5
can be combined with Equations 7.6 through 7.8 to give

I A 2n 1 r2 + (r")? — 2rr' cos(¢ — ¢’)
e en = %/tzo /,/:o / /:0{ dmali — ) exp[‘ 4ot — ) ]

5(t — 10) (" —
% g 208 T;zv(or rO)}dw/dr/dq)/ (7.9)

1
G oty ) = exp | —
xooyoo(x, y, tx", y', T) yPyr— p[

The integrals over r’ and t can be evaluated easily with the sifting property of the
Dirac delta functions:

T(r,¢,t):%/2nod¢/{r—o p[—r2+r§_2rr0003(¢—¢’)} 20 }

o= 4rta(t — to) ex 4a(t — o) 2mrg
o go/(2m) -2 +0) | [ rrocos(d — )7 |,
N E4mx(t — 10) e |:4oc(t — 10) /d;’—O eXp |: 2a(t — 7o) :| dé

(7.10)



240 Heat Conduction Using Green’s Functions

TABLE 7.1
Approximate Expressions for Gg00 (r, t| ¥, t) Listed in Appendix R

Equation Number

Range of Application Error (%) in Appendix R
% <0.25 0.016 R00.4
W= g3 —0.012 R00.5

rr’

t— r—
ot —) large and ot — ) large R00.6

r2 (r/)z

The final integral on ¢’ is given by Watson (1944). The GF is given by the temperature
divided by the source strength, or

T(r,¢,1)

Groo(r, tro, T0) = T

_ —(r2 + rg) rro
~ 4ra(t — 1) &P |:40L(l‘ — 1) :| fo |:20L(l‘ — to)] (7.11)

Note that the result does not depend on angle ¢. Finally, the GF is usually written
with the heat source located at (r/, t) instead of at (rg, To), to give the same result as
in Equation 7.3.

7.3.3  APPROXIMATIONS FORTHE ROO GREEN’S FUNCTION

The R0O GF usually must be integrated to find the temperature, but it is not an easy
function to integrate. Most integrals of function G goo must be evaluated numerically
unless a simple approximate expression can be found. A few approximate expressions
for G goo are listed in Appendix R, and Table 7.1 is a reference list of these approxima-
tions. These approximations are composed of exponentials and powers and they are
generally easier to manipulate than the exact expression for Gggo. Table 7.1 lists the
region of application, the maximum error, and the location in Appendix R of several
approximate expressions for G roo.

7.3.4 TEMPERATURES FROM INITIAL CONDITIONS

The temperature in an infinite body resulting from a nonuniform initial condition is
given by the Green’s function solution equation (GFSE) as

T(r,t):/GRoo(r,ﬂr’,O) F(r')2nr' dr’ (7.12)
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In this section, the above integral is discussed for the specific case of a uniform initial
temperature near the origin and zero temperature elsewhere:

To 0<r' <a

F(') = i (7.13)

0 7>a

This is the ROOT'5 case. The transient temperature is given by

a

T(r,t) = TO/ Groo(r,t|r',0) 2wy’ dr’
r’'=0

T a (2 2 /
_ To / exp| 2O o 2w (724
drtar J—g dat 2at

Note that the integral is written over 0 < r’ < a because F(r') is zero elsewhere.
In general, this integral must be evaluated numerically, and some numerical values
of this integral are listed in Table R00.1 in Appendix R.

Over the region 0 < r < a/2, the temperature given by Equation 7.14 remains
within 0.03% of Ty for small values of the time parameter (ar /a? < 0.01). That is,
T(r=al2, at/a? = 0.01) = 0.9997 Tp.

Several approximate closed form expressions are also available for the integral
given by Equation 7.14, and these expressions are listed in Appendix R. For example,
for ar/a® < 0.25and at r /a = 1.0, the temperature resulting from initial tempera-
ture To over 0 < r’ < a is given approximately by Equation R00.9, Appendix R:

—Zl1-(2 — = 8 h == 7.15
T 5 [ (n> 4ﬁu where u 2 (7.15)

Equation 7.15 and several other approximate expressions for the integral given by
Equation 7.14 are summarized in Table 7.2 with their region of application, maximum
error, and location in Appendix R. Some of the expressions referenced in Table 7.2
have been found by integration of the expressions for G zgo referenced in Table 7.1.

TABLE 7.2
Approximate Closed-Form Expressions for [;_, Groo(r, t|¥, ) 2nr’ dr

Equation Number

Range of Application Error (%) in Appendix R
u<0lrjfa=>1 R00.7
u<025r/ja=1 1.3 R00.9
u<001,05<r/a<1 0.03 R00.10

u > 0.25,(r /a)? [(4u) small ~0.016 R00.11

Note: (1) u = a(r — 1)/ a?. (2) As a — oo, the integral approaches the value 1.0.
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In the special case r = 0, the temperature in the infinite body in Equation 7.14
may be found in closed form. This temperature is given by Equation 7.14 evaluated
atr =0:

TO a _r/2
T(r=0,1)= ex 2nr’ dr’ 7.16a

4 ) 4ot /,/:0 P |: 4ot i| A ( )
Note that Io(0) = 1. This integral can be evaluated by a change of variables to
z = r' [(4ar)t/? to give

a /(4ar)t/?

.2
T(0,1) = ZTO/ e rdz =Ty (1 —exp 4_at> (7.16b)
03

z=0
This expression is exact for all ¢. Thus, the temperature at » = 0 decays with time as
(1 — e~ 1/4), where u = ar / a?, the time parameter.

7.4 SEPARATION OF VARIABLES FOR RADIAL HEAT FLOW

In this section the separation of variables method is used to show how the Bessel
functions arise for cylindrical geometries. For the geometries RIJ, I = 0,1,2,3,
and J = 1,2,3, the large-time GFs can be derived by this method. For further
discussion of the separation of variables method for cylinders, refer to Ozisik (1993,
Chapter 3). It is important to note that Ozisik’s notation for GFs in cylindrical and
spherical coordinates differs from this book by a factor of (2x); that is, G (Ozisik,
1993)/21t = G (this volume).

In this section the separation of variables technique will be demonstrated with the
R0O1 GF (solid cylinder with temperature boundary conditions), but the method also
applies to hollow cylinders. Consider the following initial-value problem for a solid
cylinder:

1o |:r£:| = 11 (7.17)
r or ar o ot
T(,t)=0 (7.18)
T(0,t) < M where M is a finite constant (7.19)
T(r,0) = F(r) (7.20)

The initial condition is an arbitrary function of position. There is no energy generation
and the boundary condition at » = b is homogeneous. An equivalent boundary con-
dition at » = 0O is that the temperature is symmetric, 37 / or = 0. The same solution
can be derived with either condition.

The separation of variables technique produces a series solution of the form

o0

T(rt) =) Tu(r.1) (7.21)

n=1

where T, (r, t) satisfies the differential equation and the boundary conditions. Individ-
ually the T, (r, r) solutions do not satisfy the initial condition given by Equation 7.20,
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and the series form is used precisely to satisfy the initial condition. The issue of
convergence raised by the infinite series in Equation 7.21 is an important one, but for
the purpose of this book, the solution converges for heat conduction problems and
the results are physically meaningful.
The separation of variables method assumes that the solutions 7;,(r,t) have the
form
T,(r,t) = R(r) 6(z) (7.22)

That is, the dependence on r and ¢ has been separated into a product of a function of
position and a function of time. The function 7,, must satisfy the differential equation

T, L L1om, _ 19T,

= 7.23
w2 - r oor a o (7.23)
Substitute Equation 7.22 in Equation 7.23 to give, after some rearrangement,
1[#R 18R 1 90 )
S [ S 7.24
R|:8r2+r8r] afb ot (7.24)

The negative constant —x2 is introduced because (a) a function of r set equal to a
function of r must both be equal to a constant function, and () the negative value is
required to give physically meaningful results for 6(¢). Equation 7.24 represents two
ordinary differential equations. The equation for R is

d’R N 14R
dr? r dr

This is the Bessel equation of order zero, and the elementary solutions are

+22R=0 (7.25a)

R(r) = A JoOur) + B Yo(0r) (7.25b)

where Jo(-) and Yp(-) are Bessel functions of order zero and A and B are constants.
A graph of these functions in shown in Figure 7.2.
The differential equation for 6(z) is

do 2

— +Na6=0 7.26a

5, T (7.26a)
and the elementary solution is

(1) = C e~ (7.26b)

where C is a constant. Thus, the solution T, (r,t) is given by Equation 7.23, with
Equations 7.25b and 7.26b:

T,(r,t) = e [ A, Jo(hnr) + BuYo(hur)] (7.27)

Here new names have been given to the constants »,, A,, and B,,, which must be
determined from the boundary conditions and the initial condition for each geometry.
Up to this point the analysis applies to both solid and hollow cylinders.
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FIGURE 7.2 Bessel functions Jp(x), Yo(x), J1(x), Y1(x).

Next, the boundary conditions are applied to the general solution given by Equa-
tion 7.27, so the following analysis applies only to the RO1 geometry. At » = 0, the
natural boundary condition given by Equation 7.19 yields

lim e MU A, JoOur) + By Yo(Ohur)] # 00 (7.28)

In the limit as r — 0, the function Jo(\,r) approaches one (1), but the function
Yo (1) becomesinfinite. The term containing Yy (., ) does not belong in the solution,
and Equation 7.28 can be satisfied only by

B, =0 (7.29)

Next the temperature boundary condition at » = b given by Equation 7.18 is applied
to the general solution to give

To(b,1) = 0= e ™% A Jo(hnb)  OF 0= ApJo(hnb) (7.30)

The exponential is never zero, so it may be canceled out. The constant A,, cannot be
zero or the entire solution will be identically zero, a trivial result. Equation 7.30 is
satisfied by choosing

Jo(Bn) =0 (7.31)

where B, = \,,b are the dimensionless eigenvalues for n = 1, 2, and so on. There are
an infinite number of eigenvalues that are distinct for each cylinder geometry. The
first few eigenvalues are listed in Appendix B for the cylinder cases R01, R02, R03,
R11, R12, and R22.
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Next, the initial condition must be satisfied. So far, the complete solution has the

form
o0

T =3 e Fourt® 4 g0 (Bor 7.32
=3¢ Jo (7 (7.32)
The initial condition requires that
oo Br
T =F(r)=) A, Jo| = 7.
r0=F0 =3 Jo( b) (7.33)

The initial condition can be satisfied if an arbitrary function F(r) can be expressed as
an infinite series of Bessel functions. In Chapter 4, expansions of arbitrary functions
in terms of Fourier sine and cosine series arose from one-dimensional plate cases.
Fourier series are a special case of the general theory of orthogonal functions (Wylie
and Barrett, 1995). Bessel functions are simply another class of functions for which
infinite-series expansions are possible, and the infinite series expansion is needed to
satisfy the initial condition.
The orthogonality condition for Jo(-) on 0 < r < b is (Appendix B)

Bm Bnr _ 0 m # n
/0 ( ? ) Jo ( b ) 2nrdr = {Ttbzflz(ﬁn) I (7.34a)

To apply the orthogonality condition to find A,,, multiply Equation 7.33 by Jo(B,,7 / b)
and integrate over the volume of the cylinder (0 < r < b):

/0 JO(BZ ) F(r) 2mdr=/ ZAHJ()(B” ) (BZ ) 27r dr (7.34b)

The orthogonality condition applied to the right-hand side of Equation 7.34b gives
exactly one nonzero term from the infinite series, at m = n. Solving for A,, gives

An = bzﬂ(ﬁn) / (

Note that the subscript » is really a dummy subscript, and any letter could be substi-
tuted. Also, the variable of integration has been written as r/, as it too is a dummy
variable.

Next, replace A,, into the solution given by Equation 7.32 to give the particular
solution to the initial-value problem (case R01B0T-),

) F(@r') 2nr' dv’ (7.35)

oo

b /
T(rr)=Y e P!’ JoBur' 1 5)Jo(Bur /b) FG')2nr'dr' (7.36)
n=1 r'=0 T[bZJ]_Z(BI’l)

After some rearrangement, this solution can be written

e e]

b
= // 0 ) [% Z hrenl?? folBnr” 3?2g0§5nr/b):| 2nr'dr’ (7.37)
= n=1 1\Mn
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This is the separation of variables result for the temperature resulting from an arbitrary
initial condition on the R01 geometry.

Finally, the GF can be deduced from the separation of variables solution by also
solving the initial value problem (Equations 7.17 through 7.20) with the GFSE to give

b
T(r,t)= //—0 F(r") [Grou(r.tlr',0)] 2mur’ dr’ (7.38)

Equations 7.37 and 7.38 are solutions to the same boundary value problem, and since

a boundary value problem has only one unique solution, the expression in brackets
in Equation 7.37 must be identically Ggoa(r, ¢|r’, 0), the GF evaluated at Tt = 0:

—B2ar | b? Jo(Bar" 1 b) Jo(Bur 1)
JE(BA)
The last step in finding the GF from the separation of variables solution is to replace

(r — 0) in Equation 7.39 by (¢ — t). Recall that the time dependence of all GFs is in
the form (+ — ). Then,

1 oo
Gro(r, t|r',0) = — D e (7.39)
n=1

—B2a(t—1)/ b? JO(Bflr//b) JO(ﬁnr/b)
JE(Bn)

1 o0
Groa(r, ', 1) = —5 D e (7.40)
n=1

This GF is also listed in Appendix R.

This method for finding the large-time GFs can be used on all of the solid cylinder
and hollow cylinder cases, denoted Ggy; for which 7 =0,1,2,3and J = 1,2,3. It
is not necessary to derive these GFs, however, since they are listed in Appendix R.

7.5 LONG SOLID CYLINDER

Some worked examples are next discussed for the temperature in long solid cylin-
ders. Time partitioning is introduced on a case-by-case basis because the choice of
an appropriate small-time GF depends on time, on geometry, and on location in
the cylinder.

7.5.1 INImIAL CONDITIONS

Example 7.1: Solid Cylinder with Zero Surface Temperature—R01B0T-
Case

Find the temperature in a solid cylinder, 0 < r < b, with initial temperature F(r)
and a boundary temperature fixed at T = 0.

Solution

This is the ROTBOT- case and it was examined in Section 7.4. The temperature is
given by Equation 7.37, where the expression in brackets is the GF Ggo1(r, t|r’, 0).
The eigenvalues B, are defined by the eigencondition Jo(B,) = 0, and the first 10
values of B, are listed in Appendix B. The integral on r’ acts on just a portion of
Equation 7.37:
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JBn)  Jr=o b

(@) Case RO1BOTI. If the initial temperature is uniform, F(r) = To, then the
above integral is given by

0 ) b /
T(r,t) = # 3 efrat/b M/ F(r') Jo (B”r) 2nr’ dr'(7.41)
n=1 r

b / 2
/ Jo (B”r ) 2nrde = 2T ) (7.42)
r'=0 b Bn
and the temperature resulting from initial temperature To becomes (case RO1B0T1)
oo

_p2at/ b2 JoBnr/ b)
T(r,t) =2T; e—Prat/b? JO\BnT/ ) (7.43)

’ 2 Bn 1 (Br)

For at/ b?% small, the temperature near the center of the cylinder (at r = 0) remains
at Tp, because the effect of the surface temperature has not yet penetrated to the
center of the cylinder.

(b) Case RO1BOT5. For the initial condition

_JTo O0=r=<a

F
" 0 a<r<b

the temperature is given by

—B2at/b? JiBna/b) JoBnr/b)
Bnf?(Bn)

This solution converges efficiently for large values of time. Small time expressions
for the temperature for the case when a/ b # 1 can be found by approximating the
cylinder as an infinite body. Initially, heat diffuses outward from the point r = a,
and it takes a little time before the diffusion is influenced by the zero-temperature
boundary at r = b. During this small time period, the temperature distribution
is identical to that in an infinite body with the same initial condition. Thus, the
appropriate early-time GF is Ggop, and the expressions referenced in Table 7.2
(integral of Groo) may be used to find the temperature at small times. The criterion
for small time is at /(b — a)> small (<0.01) because it is the distance between the
initial temperature region and the boundary, (b — a), that determines the time span
of infinite-body behavior.

(7.44)

o0
T(r t) =2 Togz e
n=1

Example 7.2: Solid Cylinder with Surface Convection—R03B0T1 Case

Find the transient temperature in a cylinder initially at temperature Ty that is sud-
denly quenched in a large tank of fluid at temperature T, with heat transfer coef-
ficient h.

Solution
The boundary and initial conditions are given by

T is finiteas r — 0
oT(b, t)
ar
T(r,0)=To (7.45)

—k

= h(T(b, 1) — Teo)
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This boundary value problem has two nonhomogeneous conditions resulting from
the two temperatures Tp and To. Two integrals from the GFSE are needed to directly
describe this problem; however, one nonhomogeneous condition can be removed
by defining a new variable (T — Tw). The new boundary and initial conditions are
given by

(T — Too) is finiteas r — 0O
AT — Tso)

—k
or r=b

- h(T|r:b —Tx)=0
T(r,0) — Too = (Tp — Tso) (7.46)

Note that the boundary condition at r = b is now homogeneous in terms of
variable (T — Ts). Variable T — Ty could have been chosen, but it would result
in a form of the solution less well suited to numerical evaluation at small values
of dimensionless time. The temperature in the cylinder is now given by the initial
condition term of the GFSE:

b
T(r,t)— T = / (To — Too) Gro3(r, t|b, 0) 27tr’ dr’ (7.47)
r'=0

Using the RO3 GF listed in Appendix R gives

b [o¢]
T - To=(To=To) [ Y efhettt
=0 p—1

B2 JoBnr/b) JoBar'/b)

2nr’ dr’ 7.48
AB2B 4+ PR B V48

where B = hb/ k (the Biot number) and eigenvalues B, are the roots of

_Bnh (Bn) + B ]O(Bn) =0 (7.49)

Values of B, for several values of B are given in Carslaw and Jaeger (1959).
The integral on r’ in Equation 7.48 was given earlier in Example 7.1, so the
temperature in the cylinder is given by

—ﬁﬁat/bz ﬁn/l (Bn) IO(Bnr/ b)

T(r, ) — Too = 2(To — Too)
' 0= Tw) ) e (B2 + 82) 2Bn)

n=1

(7.50)

This temperature is plotted in Figure 7.3 for specific case hb/ k = 5. Note that the
slope at r = b varies with time according to the temperature there.

7.5.2 BouNDARY CONDITIONS

Example 7.3: Solid Cylinder with Elevated Surface Temperature—
RO1B17T0 Case

Find the temperature in a solid cylinder, 0 < r < b, that has zero initial condition
and has temperature Ty suddenly applied at boundary r = b.
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FIGURE 7.3 Solid cylinder initially at Ty and cooled by surface convection with hb/k =5
and fluid temperature T,. This is case RO3B0T 1 discussed in Example 7.2.

Standard Solution

The temperature resulting from a boundary temperature is given by the last term
of Equation 7.2 with r; = b:

t G
T(r,t) = —a/ To ——
=0 on

The required RO1T GF and its derivative dGgo1 /9’ is given in Appendix R, so the
integral in Equation 7.51 is given by

2nbdt (7.51)
r'=b

t b)
T Z —p2a(t—1)/ b? BnJo(Bnr/b) 7.
* O/; 0 b2 ¢ J1(Bn) dr 7:52)

and the eigenvalues are given by Jo(Bm) = 0. The integral on t is easily evaluated

to give
oo

Tr,)=2To) (1—e

n=1

_5gm/b2)/o(5nr/ b)
ﬁnh (Bn)

This solution suffers from poor numerical convergence which can be made clear
by writing the solution as the sum of two series,

(7.53)

o Jo(Bnr/b) 2uts 12 JoBnr /D)
Tr,)=2T0 j%(fhgﬁ/n —2Tp Ze—ﬁ nat/b /thrﬁ/n (7.54)

The first series converges slowly and it does not depend on the dimensionless time.
Time partitioning could be used to find a temperature expression that converges
more efficiently, but in this case there is a simple alternative solution.



250 Heat Conduction Using Green’s Functions

Alternative Solution

The alternative solution method discussed in Chapter 3 is useful for improving the
numerical convergence of the temperature driven by nonhomogeneous boundary
conditions. In this case, the steady-state solution is simply T(r, t - o0) = To.
Let the known solution be T*(r, t) = Tp, and let the unknown temperature be
given by T(r, t) = T*(r, ) + T'(r, t). Temperature T* is of course also a solution to
the transient energy equation. A new solution is now sought for the temperature
T'(r,t) = T(r, t) — T*(r, t) subject to the following boundary value problem:

P21 19T 19T

o YT Ta
T'b,ty=Th,t)-T*b,t)=To—Top=0 (7.55)
T'(r,0)=T(r,0) = T*(r,00=0— Ty

Then the alternative solution is given by Equation 3.66:

b
reo=To+ [ (T
r'=0
> ,uﬁgt/bz /0(6nr//b)10(ﬁnr/b) Iy d / 7.56
x [; e 226 nur’ dr (7.56)

Effectively, the boundary heating problem has been transformed into an initial
heating problem, and this integral has been solved previously as in Example 7.1:

- —ag2t; 2 JoBnr/b)
Tr,)=To—Toy e ofal/b" 22— 7.57
(r ) 0 0 c Bn /1 (Bn) ( )

n=1

This expression converges better than Equation 7.54 for all values of at/ b.

Example 7.4: Solid Cylinder with Heating at the Surface—R02B170 Case

A cylinder whose initial temperature is zero is heated by a suddenly applied surface
heat flux qo. Find (a) the surface temperature on the cylinder at early time, and (b)
the spatial average temperature in the cylinder at any time.

Solution
The boundary conditions are given by

aT
00 _ 0  (symmetry condition)
ar?t; 0 (7.58)
—k ar, =qo T(r, 0) =0

(@) Surface temperature at early time. The surface temperature is given by the
GFSE evaluated at r = b:

t
T(b, t) =0c/ % Groo(b, t|b, 1) 27th dt (7.59)
=0

For small times, only the small-cotime form of the GF is needed to find the tem-
perature. For the Ggpz small-cotime form, Equation R02.5 from Appendix R is
appropriate:
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1 1 1 3 3
Gro2(b, t|b, 1) = — W W'+ 2 7.60
r2(b, 1D, 0~ 5 [ﬁ(u) +2+4ﬁ(u) +3g¢ (7.60)
where u = a(t—1)/ b? < 0.1.Then the surface temperature can be written in terms
of the integral given by Equation 7.59 with a change of variable to u = a(t—1)/ b*:

at/ b?
~ Qb [ 1 —1/2 l 3 1/2 E ]
T, t)= -/u:O 3 [ﬁ(u) +to+ 4ﬁ(“) + g Y du (7.61)

and the time integral can be evaluated to give
_qob| 2 [at\'? 1 fat
T =7 < (X (=
(b, 0 k |:ﬁ(b2> 3 b2

1 at 37?2 3 [at)?
tovE <§> +E<§> 702

for at/b? < 0.1. In the above expression, the first term inside the brackets

2 /at\1/2
v (?>
is the same as the temperature on a plane wall caused by a suddenly applied heat
flux. From this perspective, the next term (at/2b?) is the first correction term for
the curvature of the cylinder wall (Beck et al., 1985).

(b) Spatial average temperature. The spatial average temperature in the cylinder
may be found from an overall energy balance on the cylinder

aT,
Gin = (storage or qo = pCTCbZT;W (7.63)

This may be integrated from the initial temperature of zero to find

qot
pcmh?

Tav(t) = (7.64)

Note that the spatial average temperature increases linearly with time. The same
behavior occurs in a body with uniform energy generation if the boundary is
insulated (R02BOTOGT); in both cases there is heating specified and no heat loss.

7.5.3 VoLUME ENERGY GENERATION

In this section two examples are given of long solid cylinders with volume energy
generation.

Example 7.5: Solid Cylinder with Uniform Energy Generation—
RO1B0TOG1T Case

A cylinder is initially at zero temperature and the boundary at r = b is maintained
at T = 0. Find the temperature in the cylinder resulting from a uniform volume
energy generation gy (W/m?).
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Solution
The temperature is given by the GFSE:

t b
T(r, f)I/ / ggo GR()1(I’,1‘|I‘//‘E)2T[I‘/dI‘/d'[ (7.65)
=0 Jr'=0 k
Using the large-cotime form of Grp1 from Appendix R, the temperature is given by
gob? 00 —B2at/b? Jo(Bnr/b)
T(r, ) =2%— 1-e —_ (7.66)
k Z ( ) B3 J1(Bn)

n=1

where the eigenvalues are roots of the equation Jo(B,) =

At large time values the convergence of Equation 7.66 is controlled by a term
that does not depend on time. This is the steady solution, and it can be found
independently (by solving the steady boundary value problem) to give a better
expression for numerical evaluation. Equation 7.66 can be written

2 2 X
T = 82 [1 - (%) ]—2g—0b ot JoBnr /5) (7.67)

4k b k — B3 J1Bn)

The same result can also be found from the alternate GFSE.

The above series expression converges rapidly for large time (at/ b* > 0.025).
At early time, the interior of the cylinder will behave like an infinite body and the
zero-temperature boundary at r = b will have only a local influence. To find a form
of the temperature that is numerically efficient at small time, refer to Appendix R
for a suitable small-cotime form of Ggg.

Example 7.6: Solid Cylinder with Nonuniform Energy Generation—
R02BOTOGr5 Case

Consider the solid cylinder 0 < r < b initially at zero temperature with an
insulated boundary. The cylinder is heated by volume energy generation

0 O
o a

a

7.
b (7.68)

IN A

where go (W/m3) is the energy generation rate. The energy generation is zero deep
inside the cylinder and it has the value gy near the surface of the cylinder. This
geometry approximately describes microwave heating of food or nuclear radiation
heating of reactor control rods (approximately, because actual radiation heating is
attenuated inside the body). Find the temperature after a long period.

Solution

This is the R02 geometry with energy generation. The GF equation for this case is
given by the second term of Equation 7.2, and Ggo; is listed in Appendix R. The
temperature in the cylinder is

JoBnr/b) JoBnr'/b)
T(r, t) 1+ ) e Proalt=0/b? 2nr'dr’dt
k_/; 0_/;/aJTb2|: Z j()Bn

(7.69)




Cylindrical Coordinates 253

0.2 : : ; .
018 | - PR
R
ol6r 001 7 -
- - 005 %
014 - 0.1 7 1
< --025 <
T 012f - .
'QO ./"
S I S ' 1
=
do008F T .
0.06 | -
0.04 | PP
.......... P -
(X0 e -
oe===rC~" | : L
0 0.2 0.4 0.6 0.8 1
rlb

FIGURE 7.4 Solid cylinder with internal energy generation which is nonzero only in the
regiona < r < bandwith a/b = 0.6. This is case RO2B0T0G(r5) discussed in Example 7.6.

where the eigenvalues B, are defined by J;(8,) = 0. Note that the GF contains
an additive constant that may be interpreted as the n = 0 term of the series. The
integrals can be evaluated to give

_ gob? a2l at _goab o~ _goe 2 JoBnr/ b) J1(Bna/ b)
Tir, 0 =42 [ (%) ]bZ +25 ;e T
goab <= JoBnr/b) Ji(Bna/ b)
-2 (7.70)
k 2 B3J3(Bn)

This temperature is plotted in Figure 7.4 for the specific case a/ b = 0.6.

The above solution contains three pieces, one of which does not depend on
time. At t = 0, the temperature is zero as required because the second and third
pieces cancel out, not because each piece is zero. The first piece of the above so-
lution is the spatial average temperature in the cylinder, T, (t). This can be demon-
strated by integrating Equation 7.70 over the volume of the cylinder:

1 b gob? a\2] at
Tav() = s /r:O T(r,t) 2mr dr = T |: <E) ] 53 (7.71)

The average temperature increases with time because the heat that is added has
no place to go (the boundary is insulated). There is no steady-state temperature.

In the limitas a/ b — 0, the cylinder will be heated uniformly over its volume.
In this case the temperature given by Equation 7.70 reduces to the spatial average
temperature given by Equation 7.71. No heat can escape at the boundary, and
every point in the cylinder is heated equally.
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The second piece of the solution given by Equation 7.70 is

goab — _g2at/b? JoBnr/b) Ji(Bnasb)
29— n (7.72)
Cxe B2 B

This series decreases exponentially over time. For at/b* > 0.3 or so, this series
becomes negligible and the spatial distribution of the temperature stops changing.
The temperature is said to be quasisteady, because although the shape of the
temperature distribution is fixed, the magnitude of the temperature distribution
increases linearly with time according to the average temperature term.

The third piece of the solution given by Equation 7.70 is the quasisteady tem-
perature distribution which does not depend on time,

o]

gOab JoBnr/b) i(Bna/b)
-2
k 2 B3J2(Bn)

n=1

(7.73)

For large time (say at/b? > 0.3), this piece of the solution describes the shape of
the temperature distribution in the form of deviations from the average temperature
given by Equation 7.71. That is, the temperature is above average near r = b (the
heated region), and the temperature is below average near r = 0 (the unheated
region).

7.6 HOLLOW CYLINDER

Two examples are given for the temperature in hollow cylinders. Compared to solid
cylinders, hollow cylinders have one more physical boundary and consequently the
GF and the eigenconditions are more complex; however, all of the analytical tech-
niques for solid cylinders also apply to hollow cylinders. Another approach for cylin-
ders is the Galerkin-based GF developed in Chapters 10 and 11. For hollow cylinders,
it may be possible to obtain numerical results more easily from the Galerkin-based
GFs than from the analytical GFs discussed in this section.

Example 7.7: Hollow Cylinder with Zero Surface Temperature—
R11B00T1 Case

Consider the hollow cylinder a < r < b with uniform initial temperature To.
Find the temperature for t > O for the boundaries fixed at zero temperature.

Solution
The temperature due to an initial condition is given by the GFSE:

b
T(r, t)= Gri1(r, t|r',0) To 2mr’ dr (7.74)
r'=a
Note that the integral is evaluated over the hollow cylinder, a < r* < b. The
large-time GF is listed in Appendix R to give

T(r, t) = TO/b . i etratra__PmhBn) ey sne g 0.7
' r=a4a’ — S Bm) — 3 Bmb/ a)
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TABLE 7.3
Bessel Function Integral over r’ of [ j (Bm%) F(r') ¢ dr

F(rl) Integral <IEt X = Bm%)
2

1 (&) o
o b?
= 5 [x2J1(x) + x Jo(x) — [ Jo(x) dx]

N\ 2 b?
<Z> ot [(x® — 4x) J1(x) + 2x% Jo(x)]

’ 2 !

g () ]
TABLE 7.4

Bessel Function Integral over r’ of [Yp (Bm%) Fr') ¢ dr

Kr) Integral (let X= Bm%)
2

1 (2) s

r’ b?

" BT[xzyl(x) + xYo(x) — [ Yo(x) dx]
» 2 b? 3_4 252

(;> g [(x® = 4x) Y1(x) + 2x? Yo(x)]
r’ b r’

In = g |:Yo(x) +x1In (z) Yl(x):|

where

R() = Jo (%“) Yo <@) s <@) Yo (%“) 7.76)

and where the eigenvalues B, satisfy
mb mb
JoBm) Yo (763 ) —Jo (La ) YoBm) =0 (7.77)

The first five eigenvalues are listed in Appendix B for various values of b/ a (various
cylinder geometries). The integral on r’ operates only on Jo(Bm,r'/ a) and Yo(Bmr'/ a),
and the integral can be carried out with the first integrals from Tables 7.3 and 7.4
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to give (see also Appendix B)

BmJ3 Bm)
JoBm) — 2 Bmb/ a)

b b b
X [bh (Bmg) Yo (Bmg) —ah(Bm)Yo (Bmg)

—blo (6’”2) Yy <6m§) + alo <Bmg> Vi (Bm)] (7.78)

This is the large-time form of the temperature in the hollow cylinder where R(r) is
given by Equation 7.76. There are four Bessel functions involved: Jo, Yo, /1, and Y.
For large values of at/a? only a few terms of the series are needed for accurate
numerical values.

1172 ad 2 2
T(r,)=To—— Y e Pnet/2
(r, t) 053 P

Example 7.8: Hollow Cylinder Insulated Inside—R21B007- Case

Consider the hollow cylinder a < r < b has a steady temperature distribution T;
due to steady heating at the boundary r = a and a zero temperature r = b. That is,
daTi(a)
—k
or
Titb) =0 (7.80)

=qo (7.79)

Suppose that for t > 0, the heat flux at r = a suddenly becomes zero (the bound-
ary becomes insulated). Find (a) the initial temperature distribution, and (b) the
transient temperature due to the change in the heating at the boundary r = a.

Solution

(@) Initial temperature. The initial temperature may be found from the steady GFSE,
Equation 3.94, in radial cylindrical coordinates:

Tin = 2 Glrir' = a) 27a (7.81)
The steady GF is given by Table R.1 in Appendix R:
1 b ,
7 In o) or<r
Gra1(r|r) = (7.82)
1. b ,
—In— r>r
2 r
When Ggy is substituted into Equation 7.81, the steady temperature is given by
Ti(r):@ né:@oné—lni) (7.83)
k r k a a

This form of the steady temperature is convenient for part (b) discussed below. The
steady temperature may also be found by direct integration of the steady energy

equation
(4] <o 8
rldr\ dr)]| ‘

with boundary conditions given by Equations 7.79 and 7.80.
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(b) Transient temperature. The transient temperature is given by the initial
condition form of the GF equation, Equation 7.2, because the boundary conditions
are homogeneous:

b
T(r,t) = / Gro1(r, t|r',0) Ti(r") 2mr'dr’ (7.85)
r=a

The large-time form of the GF is given in Appendix R, and the initial temperature
is given by Equation 7.84 to give,

b T ad 2 2 62 /Z(ﬁ )
Tr, 0= — —Bnat/a o R(NR(
0 /rfza 4a° 2 ¢ JEBm) = J§Bmb/ a) (IR

X o2 (I — —1In Z) 2nr’ dr’ (7.86)

k b

R() = Jo (%) Yo (@) —Jo (@) Yo (%) (7.87)

and where the eigenvalues B, satisfy
b b
J1Bm) Yo (6”; ) —Jo (6”; ) Y1Bm) = (7.88)

The integral in Equation 7.86 contains two basic forms:

/Wo <Bn;f/> rdr’ and /Wo (Bn;f/) <ln g) r'dr

where Wy (:) is either Jo or Yp. These integrals are listed in Table 7.3 and Table 7.4
and can also be written as

/ 2 ! /
/ Wo (mi) - (Bmi> W, (ﬁmr—) (7.89)
Bz, a
2 / / /
Jwo (o) (m5) = - [wo () 40 ()
Bm a a a
e (3] 750

where Wj is either J; or Y. After some simplification involving the eigencondition
Equation 7.88, to cancel some terms, Equation 7.86 may be written

where

b g 2 Bm /Z(Bm)
T(r, t)= 2& prat/a 1
r Tk n1Z::1 ‘ /%(Bm) —/5(ﬁmb/a)

a2 [ (502 1 (302) 0 (302 1 (3a2)] o
a a a a

where R(r) is given by Equation 7.87. This expression involves four Bessel func-
tions, Jo, Yo, 1, and Y7. Only a few terms of the series are needed for at/ a’ large.
For at/ a® very small, the analysis can be repeated with an approximate small-time
GF, such as (1/2ma)Gxao for r ~ a (refer to Example 7.3).
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7.7 INFINITE BODY WITH A CIRCULAR HOLE

The radial heat flow in an infinite body containing a circular hole is discussed in this
section. Some of the applications for this heat transfer geometry are buried pipes, oil
wells, and a heated wire in a quiescent fluid at early time. The GFs for cases numbered
R10, R20, and R30 are available in Appendix R. Do not confuse these humbers with
the solid cylinder numbers R01, R02, and R03.

The GFs discussed below are derived from Laplace transformation methods
(Carslaw and Jaeger, 1959, p. 334). The GFs for the infinite body with a hole in-
volve integrals over a continuous range of eigenvalues instead of a series over dis-
crete eigenvalues. Although the GFs are more complex, they are used to find the
temperature as any other cylindrical GF.

Example 7.9: Infinite Body with a Circular Hole and Specified Surface
Temperature—R10B170 Case

An infinite body bounded internally by the circular hole r = a has an initial
temperature of zero. At t > 0 the surface r = a has a fixed temperature Ty. Find
the temperature in the body for t > 0.

Solution
The GF equation for radial flow of heat, Equation 7.2, applies to this case as

LG
T(r, t) = —0(/ To aR,‘O r,tla, ©) 2madt (7.92)
=0

The derivative dGg1o/ 9’ is given in Appendix R as

__ 1 ~ e~ Bralt-1/a
- 253
r'=a T=as Jp=0

B [o () Yo(®) — Yo (B ) ko8]
* 2E)+ Y20

Then, replace Equation 7.93 into Equation 7.92 to find the temperature:

rt_TOﬁ/;O/ﬁo ePralt-va’
B[l (BZ) YoiB) — Yo (B<) JolB)]

J2®) + Y2B)

_ 9Ggi0
on’

dp (7.93)

X

dpdt (7.94)

The time integral may be evaluated to give

2 oo
T(r,t) = To—/ [1 - ePava]
T Jp=0

Do) o ®) - Yo (b2) 0 0)]

d| 7.95
BUZ(B) + Y2 P 7:9%)
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The integral on p must be evaluated numerically, but the temperature is bounded
by To at r = a and the temperature decays to zero as r — oo (as at/r’> — 0). At
steady state defined by at/r?> — oo, the temperature approaches Ty everywhere.
A plot of the temperature given by Equation 7.95 is given by Carslaw and Jaeger
(1959, p. 337). An approximate small-time form of this solution is also listed by
Carslaw and Jaeger (1959) on p. 336; another approximate small-time solution is
Grio = 1/(21a) Gx1o (refer to Example 7.3).

Example 7.10: Infinite Body with a Circular Hole and Specified Surface
Heat Flux—R20B-T0 Case

An infinite body bounded internally by the circular hole r = a has a zero initial
temperature. At t > 0 the surface r = a sees an instantaneous pulse of heat given
by q'3(t), where §(t) is the Dirac delta function and g’ has units of ]/ m?. Find the
surface temperature T(a, t) due to this heat pulse.

Solution

The temperature is given by the GF equation (7.2), for a boundary condition of the
second kind:

t q/g('t)
=0 k
To evaluate the temperature at r = a apply the sifting property of the Dirac delta
function to the time integral to give

T(r,t) =a GCroolr, tla, 1) 2mad (7.96)

7
T(at) = 27[0(%

/

a
Graola, t]a, 0) = 2nq—CGRzo<a, t|a, 0) (7.97)
Y

Note that g’a/(pc) has units of Km? and that Ggyo has units of m~2, as expected.
The GF Ggyo is listed in Appendix R as

00 efﬁotl‘/a2
Groola, tla, 0) = /

' n2a? Jo—o B2 (B) + Y (B)]

In general, this integral must be evaluated numerically. However, several approxi-

mate expressions for Ggryo(a, t|a, 1) are listed in Appendix R, and some numerical

values of Ggyo(a, t|a, ©) are listed in Table R20. For small values of time at/ a2, the
surface temperature is approximately

dp (7.98)

/
T(a, )~ 3
apc

[(mﬂ—] /2 _0.5+40.413434 (t1)"/2 — 0.299877 t+
+0.154483 (t7)3/2 — 0.045263 (t7)? + 0.005484 (t+)5/2} (7.99)

where tT = at/a® < 6. The first term inside the square brackets in Equation 7.99
is the same as the temperature in a plane wall, and the second term is the first cor-
rection for the curvature of the cylindrical hole. For large values of time at/ a2 > 6,
the surface temperature is approximately

~ 3 oaoplow ¢ }
T(a,t)~apct+{1 2t+L[1+4t+ (1 L)] o+ 4 (7.100)
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where L =In (4tT) —y
y = 0.57722 (Euler’s constant)
C=05

7.8 THIN SHELLS, T = T(¢, )

Thin shells are bodies for which the coordinates (¢, #) completely describe the heat
transfer. These are closely related to the one-dimensional rectangular cases, although
there are some differences. A thin shell has radius a, thickness 3, and angle ¢g. The
shell is thin if the temperature at r = a and at r = a + § are approximately equal.
If not, then the variable » must be included in the analysis, and the body must be
analyzed with the variables (r, ¢, t).

Example 7.11: Thin Shell Heated at One Point and Cooled by Convection

A transient experiment was carried out in a nonrotating railroad roller bearing to
determine how heat moves from a single heated roller through the outer bearing
race. Treat the bearing race as a thin shell heated at one point and with heat
loss, both internal and external, described by gjoss = h(T (¢, t) — To) where h is the
heat transfer coefficient (W/m? K), and T is the temperature of the surroundings. A
schematic of the geometry is shown in Figure 7.5. Find (a) the transient temperature
in the thin shell and (b) the steady temperature.

Solution
The energy equation for the thin shell with heat losses from the sides is given by

1 82T 19T
—mA (T —To) = —— (7.101a)

a2 392 a it

Hot roller

FIGURE 7.5 Schematic of a thin-shell model of the outer race of a railroad roller bearing
heated by one hot roller and with side losses described by convective coefficient 7.
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Parameter m? = h/(k3) describes heat loss from the sides of the thin shell. As there
is symmetry in the heating geometry, we choose to treat the thin shell as geometry
@22 on (0 < ¢ < m). The boundary conditions are

k oT
- = 7.101b
a 9 |y P ( )
aT
— =0 by symmetry (7.101¢)
a(b ¢=n

If the heat flow from the roller to the whole shell is Qg (watts), then the heat flux
into half of the shell is go = Qo /(2w3) where w is the roller length out-of-plane.
The initial condition is:

T, t—=0=Tp (7.101d)

(a) Transient temperature. The GF solution for the transient temperature involves
a variable transformation to eliminate the fin term. Let a new temperature variable
be defined

Wi, 1) = [T, 1) — Tol €™ (7.102)

Refer to Section 3.5 for a complete discussion of this procedure. Then, Equa-
tions 7.101a through d can be written with the new temperature variable as

LW 1w -
a2 a2 o ot '
k oW e
ERARAAL I (7.104)
a 3o |40 a
w
37 =0 (7.105)
36 | r
W(p,t=0=0 (7.106)

Note that the fin term is gone and the initial condition is homogeneous, but the
boundary condition is more complicated.

The GF solution to this transformed equation is given by a single integral for
heating at the ¢ = 0 boundary boundary:

t
Wmnz%/ G0e™ % Gaan(d, t|d' = 0,7) 8 d (7.107)
=0

The GF, described in Appendix @, is given by
2 oo

1 ; ;
ﬂ + ﬁ e—n2n2a(t—T)/(az¢S) cos(nmd/ o) (7.108)
0d 0d n=1

Go22(9, 110, 1) =

where in this case ¢pg = 7. The time integral may be carried out to give

W<¢,t>—q°a{ s (e —1)

- kdo | m?a?

—n’n?at /(a*$3)

o0 at
e —e
+2 E cos(nmd/ (7.109
= m2a? + 2/ ¢f nd ¢o)} )
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at/a?=8.0

Temperature (T-T,)/(q, a/k)

0.25

0 0.2 0.4 0.6 0.8 1
Location ¢/n

FIGURE 7.6 Normalized temperature along the thin shell heated at ¢ = 0 for convective
losses described by ma = 0.2 at times at/a? = 0.25, 1.0, 4.0, and 8.0.

In evaluating the integral, do not confuse the fin parameter m?> with quantity n?
which comes from the eigenvalue and is part of the infinite series.

Finally, to find the temperature in the original problem, convert back according
to the transformation T — Top = W(¢, t) e—mat.

g Goa] 1 _ o—mat
T, 0= To= koo {mza2 (1 € )
o0

1 —exp[—(m?a% + n*n? / d3)at / @]
+23 22 4 22 2
ot m?*a* + n°m? / ¢

cos(nrrcl)/d)o)} (7.110)

A plot of the spatial distribution of the (normalized) temperature in the thin shell
heated at ¢ = Ois given in Figure 7.6 for convection condition ma = 0.2 at several
dimensionless times. For more information on this thermal model and its use in
determining h from transient experiments on railroad roller bearings, see (Cole
etal., 2009).

(b) Steady temperature. The steady-state temperature is given by the limit as
t — oo, or,

qa [ 1 5 cos(nmd/ ¢o) (7.111a)

T, ~To=——
5teady(¢) 0 k¢0 m2 32 m2 32 + n2 3-52 / ¢%

n=1
If slow series convergence is a problem, the steady-state series can be replaced

by a nonseries form, constructed from the steady-fin GF (adapted from Table X.4,
Appendix X). The result is
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Tsteady(¢) —To= % |:

(7.111b)

e—Zmacbo ema¢ + e—marb
ma(1 — e—2mado)

where for the half-shell the maximum angle is ¢ = =.

7.9 LIMITING CASES FOR 2D AND 3D GEOMETRIES

The ability to analyze two- and three-dimensional heat transfer geometries is an im-
portant feature of the GF method. Multidimensional geometries can be so challenging
that finding ways to verify the results, including analysis of limiting cases, is usually
an important step in the solution process. Limiting cases can improve one’s insight
and contribute to a better understanding of the whole problem.

One-dimensional limiting cases can be important for checking the analysis of
two- or three-dimensional temperature expressions and for checking the numerical
results. Under the limiting conditions, the multidimension expression for the temper-
ature should reduce to the limiting-case expression and the multidimension computer
program should give numerical values that agree with the limiting case. Numerical
values for simple one-dimensional cases are sometimes tabulated in books such as
this one, whereas numerical values for two-dimensional cases are rarely available.
Comparison with more than one limiting case should be used whenever possible.

7.9.1 Fourier NUMBER

All of the transient cases discussed in this chapter depend upon a Fourier num-
ber ar / L?, where ¢ is the characteristic time, o is the thermal diffusivity, and L is a
characteristic length. The trick to constructing a limiting case based on the Fourier
number is to use the significant characteristic length. The characteristic length can
depend on (1) time (early, middle, or late); (2) body shape (slab, cylinder, etc.);
(3) location of the driving force for the transient heat transfer (at the surface or inter-
nally); or (4) location of the temperature of interest.

For example, in a solid cylinder heated at the boundary (case R01B1T70), the
Fourier number is az /b2, where b is cylinder radius. For sufficiently small values
of this Fourier number, the temperature near r = b is given approximately by the
semi-infinite case X10. The X10 geometry is a limiting case for small time because
the surface heating penetrates the cylinder so slightly that the curvature of the cylinder
may be neglected.

For energy generation inside a body and for small dimensionless times, the char-
acteristic length depends on the heating location. For example, in a cylinder heated
by a cylindrical-shell heat source, RO1BOT0Gr7, the significant Fourier number is
ar /(b — ro)? where b is the cylinder radius, ro is the location of the cylindrical-
shell heat source, and rg / b < 0.5 (this last condition ensures that the boundary is far
enough from the heat source). Then, for ar /(b — ro)? sufficiently small, the temper-
ature is given by an infinite region (R00) heated by a cylindrical-shell heat source.
The characteristic length is b — rg, the distance from the heating location to the
boundary.
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7.9.2 Aspect RaTio

Limiting cases may be found by changing the aspect ratio of the body, the ratio of the
width to the length of the body. For solid cylinders, the aspect ratio is b/ L, where b
is the cylinder radius and L is the cylinder length. In a solid cylinder there are two
limiting cases based on variations of the aspect ratio. First, consider the cylinder with
aspect ratio b/ L > 5 shown in Figure 7.7a. This cylinder is more like a flat disk,
and depending how it is heated, the limiting case may be the one-dimensional slab of
thickness L. Second, for the solid cylinder with aspect ratio b/ L < 1/10 shown in
Figure 7.7b, the limiting case is the infinite cylinder of radius b forwhich T = T(r, t).

Three-dimensional bodies may have two aspect ratios. For hollow cylinders, an
additional aspect ratio is (b —a) / b, where (b — a) is the thickness of the cylinder wall.

7.9.3 NoONUNIFORM HEATING

When a body is heated nonuniformly over position or over time, the limiting case
of uniform heating is useful for checking purposes. The uniformly heated cases are
generally easier to analyze. For example, a cylinder heated over part of its surface is
shown in Figure 7.8, and it is described by the number RO1B(z5)Z11B11T0. The

(@ (b) ﬁl Ie 2

~—

FIGURE?Z.7 (a)Cylinderwithaspectratiob/ L > 5. (b) Cylinder with aspectratiob/ L <0.1.

T:OJ T:T0/

(unheated)

FIGURE 7.8 Cylinder with specified temperature over part of its surface.
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limiting case of a uniformly heated cylinder, number RO1B1Z11B1T0, is particularly
easy to find by multiplying two one-dimensional temperature solutions, as discussed
in the next section.

7.10 CYLINDERS WITH T = T(r, z, 0

In this section cylinders are discussed for which the temperature depends on co-
ordinates » and z. The GFs for these cases can be constructed by multiplying two
one-dimensional GFs. That is,

Grz = (Gr)(GZ) (7.112)

The boundary conditions of types 0, 1, 2, and 3, may be treated. Two examples are
given to illustrate the method.

Example 7.12: Finite Cylinder with Specified Surface Temperature—
RO1Z11 Geometry

A finite cylinder of length L and radius b has a uniform initial temperature Tq. For
t > 0, the entire surface of the cylinder is suddenly set to temperature T7. Find the
temperature in the cylinder for large times.

Solution

The cylinder is shown in Figure 7.9. A detailed statement of the boundary and
initial conditions of this example are

Tir=b,z,t)=T (7.113a)
T(r,z=0,t)=T (7.113b)
Tirrz=Lt=T (7.113¢)
T(r,z, t=0)= Ty (7.113d)

The heat conduction numbering system for this case is RO1B1T1Z11B11.

T:T1\

0 z=L

FIGURE 7.9 Solid cylinder with temperature boundary conditions, R0O1B17T1Z11B11.
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The best solution for this problem using GFs is to cast the problem as an initial-
temperature case, by defining a new temperature T = T — T;. Then, the boundary
temperature is zero, and the initial temperature is To — Ty. This is equivalent to the
alternative GF solution method with T* = T;. The solution is given by

b L
T(r,z,t) — T = / 2Trr/dr/f dz' (To — T1) Gro1z11(r, z, tIr', Z/,0)  (7.114)
0 0

The GF Ggo1z11 may be found from a product solution as shown in Equation 7.112,
and substituted into the spatial integral in Equation 7.114 to give

b
T(r,z,t) —T1 =(Tp — T7) |:f Gro1(r, t|r’, 0) 2wr’ dl‘/:|
0

L
X |:/ Gr11(z, t|Z,0) dz’i| (7.115)
0

The product of the two integrals in Equation 7.115 can be interpreted as the product
of two dimensionless temperatures, one for an infinite cylinder ROTBOT1, and
one for an infinite slab X11B0T1. A product solution for temperature is possible
only for certain initial conditions, but a product solution for the GF is always
possible for coordinates r and z. Refer to Section 4.6 for a discussion of this point.
Function Ggo1 comes from Appendix R and function Gz11 comes from Ap-
pendix X (with x and x’ replaced by z and Z’). The result for the temperature is

_g2 gt/ p2 JoBmr/ b)
T(r,z,) =Ty =(To = Ty) Brat/b" 22M L2
heimE T [ 2 € Bon /2 (B

, , )"
« {2 Z et/ 1 g (nn%) Un(n”]} (7.116)

n=1

where the eigenvalues B, are the roots of Jo(B,) = O0; some values for B, are given
in Appendix B. The expression [1 — (-1)"] comes from evaluating the integral of the
sine to give cos(0) — cos(nm). This expression gives zero for all the odd terms in the
second summation (n =1, 3,5, ...), and the summation on n could be rewritten
in a form to represent just the nonzero terms:

[e.¢] o0

Zf( [l — 1" Z Qk+1) (7.117)

n=1 =

Although the solution given by Equation 7.116 contains two summations, the
summations converge very rapidly for large times at/b? > 1.

Example 7.13: Cylinder Heated over Half of Its Surface—R02Z00 Case

An infinite cylinder initially at zero temperature is suddenly heated over half of its
surface (z < 0) with heat flux go. The other half of the cylinder is insulated (z > 0).
Refer to Figure 7.10. Find the temperature on the surface of the cylinder soon after
the heating begins.
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Heat flux g,

sy

11|
{ | |
7

TTTTTT

FIGURE 7.10 Infinite cylinder heated over half of the surface and insulated elsewhere, case
R02B5T0Z00.

Solution

This is the R02B(z5)T0Z00 geometry with heating at the surface and with no
initial temperature or internal heat generation. The maximum temperature occurs
on the surface of the cylinder and the surface temperature is given by the surface
heating term of the GFSE:

T(h, 2, 1) qoo‘/ / Graozoolb, , t1b, 7/, ¥) 2mbd7 dt  (7.118)

The GF is evaluated at r' =b where the heating occurs, and the temperature is
evaluated at r = b. Note that the spatial integral over the surface involves differ-
ential area ds = 2nbdz’ and the integral limits are —oo < z’ <0. The GF is given
by the product (Gr2)(Gzoo)- To find the temperature soon after heating begins
only the small-time forms of the GFs are needed. An approximate form of Ggoz
for small times evaluated at the surface r = b is given in Appendix R:

L1 b 1.3 [oc(t—r):|”2
GRoz(b/flb,t)~2nb2 ETEETE +2+74ﬁ — (7.119)

The GF Gzqo is given in Appendix X:

Gzoo(z, t1Z',7) =

1 —(z - 2)?
[Ama(t — 1)]1/2 exp |: Jalt — 1) i| (7.120)

It is generally better to evaluate spatial integrals first, and the integral on z’ in
Equation 7.118 may be written

T(b, 2, 0) = k 2b [ra(t — 1)]1/2 + 2

3 Tat—v]"? z
+F[T] }f{mu—n} M

q00(1 t d{ b 1
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The integral on T may be evaluated in three terms and the final result for the surface
temperature may be written (see integral Table 1.8, Appendix I)

T(b, z,t) = ®b <2<t+>”2

el
(41‘[0(1’)1/2] 4at

+:2 z 12 40
+ 2(tM)i erfc[(4at)”2]+ﬁ(t )

x i2 erfc|:(4atz)]/2] +i%erfc [W] }) (7.122)

where tt = at/ b?.
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Discussion. One part of the given temperature expression is multiplied by (++)1/2.
This part is identical to the temperature in a semi-infinite plane body heated over half
of its surface which was studied in Section 6.8. For early times, the surface of the
cylinder displays behavior similar to a plane body. From this perspective the other
terms in the temperature expression Equation 7.122 are corrections to account for the
curvature in the surface of the cylinder.

The temperature expression contains factors like v/z+, %, and (¢+)2, which indi-
cate that the temperature increases over time without limit; there is no steady-state
solution since all the heat that enters the cylinder remains in the cylinder. The surface
temperature is the largest temperature on the cylinder at any given time.

On the heated region of the cylinder (z < 0) and far away from the point z = 0,
the temperature is described by one-dimensional radial heat conduction, T = T (r, 1).
Here “far” is determined by z?/ar > 1, because the correct Fourier number along
the z-axis is ar / z2. On the nonheated end of the cylinder and for z?/ar > 1, the
temperature is identically zero.

7.11 DISK HEAT SOURCE ON A SEMI-INFINITE BODY

In this section, the cylindrical GFs are applied to a semi-infinite body heated at the
surface by a disk heat source. Over the disk heat source, the heat flux is constant
with position and with time, while outside the disk, the surface is insulated. This
case is a basic building block in transient heat conduction and in the surface element
method discussed in Chapter 12. Applications of the disk heat sourc