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Preface to the First Edition

The purpose of this book is to simplify and organize the solution of heat conduction
and diffusion problems and to make them more accessible. This is accomplished
using the method of Green’s functions, together with extensive tables of Green’s
functions and related integrals. The tables of Green’s functions were first compiled
as a supplement to a first-year graduate course in heat conduction taught at Michigan
State University. The book was originally envisioned as a reference volume, but it
has grown into a heat conduction treatise from a Green’s function perspective.

There is enough material for a one-semester course in analytical heat conduction
and diffusion. There are worked examples and student problems to aid in teaching.
Because of the emphasis on Green’s functions, some traditional topics such as Fourier
series and Laplace transform methods are treated somewhat briefly; this material could
be supplemented according to the interest of the instructor. The book can also be used
as a supplementary text in courses on heat conduction, boundary value problems, or
partial differential equations of the diffusion type.

We hope the book will be used as a reference for practicing engineers, applied
mathematicians, physicists, geologists, and others. In many cases, a heat conduction
or diffusion solution may be assembled from tabulated Green’s functions rather than
derived. The book contains the most extensive set of Green’s functions and related
integrals that is currently available for heat conduction and diffusion.

The book is organized on a geometric basis because each Green’s function is asso-
ciated with a unique geometry. For each of the three coordinate systems—Cartesian,
cylindrical, and spherical—there is a separate appendix of Green’s functions named
Appendix X, Appendix R, and Appendix RS, respectively. Each of the Green’s func-
tions listed is identified by a unique alphanumeric character that begins with either
X, R, or RS to denote the x, r , or the spherical r coordinate, respectively. It is impor-
tant for the reader to know something about this numbering system to use the tables
of Green’s functions. A more detailed numbering system, which covers both Green’s
functions and temperature solutions, is discussed in Chapter 2. We find the numbering
system very helpful in identifying exactly which solution is under discussion, and all
of the solutions discussed in the text are listed in Appendix N indexed according to
the numbering system.

The level of treatment is intended for senior and first-year graduate students in
engineering and mathematics. We have emphasized solution of problems rather than
theorems and proofs, which are generally omitted. A prerequisite is an undergraduate
course in ordinary differential equations. A previous introduction to the method of
separation of variables for partial differential equations is also important.

The first nine chapters of the book are written with senior engineering students in
mind. The Introduction contains background information on heat conduction and brief
derivations of the heat conduction equations. Chapters 1 through 5 introduce Green’s
functions for transient heat conduction in one-dimensional bodies. The Cartesian

xiii
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xiv Preface to the First Edition

coordinate system is emphasized in this section as an aid to learning. Steady-state
problems are treated as a special case of the transient solution in Section 3.5 and
3.6. Chapters 6 through 9 are devoted to the solution of problems in the rectangular,
cylindrical, and spherical coordinate systems. Transient problems are emphasized
and steady problems are treated briefly in separate sections for each coordinate sys-
tem (Sections 6.9, 8.7, and 9.8). Chapters 10 and 11 introduce the Galerkin-based
Green’s function method, which combines the efficient analysis of the Green’s func-
tion method with the flexibility of geometry afforded by numerical methods. Chap-
ter 12 introduces the unsteady surface element method, a numerical method that
involves the matching of analytical solutions at the boundaries of bodies in contact.

No other book on Green’s functions combines introductory material, worked ex-
amples, and extensive tables of Green’s functions. Important books that contain some
of this material include Heat Conduction by M. N. Ozisik (Wiley, New York, 1980),
Conduction of Heat in Solids by H. S. Carslaw and J. C. Jaeger (Oxford, London,
1959), Methods of Theoretical Physics by P. M. Morse and H. Feshbach (McGraw-
Hill, New York, 1953), Elements of Green’s Function and Propagation by G. Barton
(Oxford, London, 1989), Green’s Functions and Transfer Function Handbook by
A. G. Butkovskiy (Halsted Press, New York, 1982), Application of Green’s Functions
in Science and Engineering by M. D. Greenberg (Prentice-Hall, Englewood Cliffs,
New Jersey, 1971), and Green’s Functions: Introductory Theory with Applications by
G. F. Roach (Van Nostrand Reinhold, NewYork, 1970).

James Beck would like to express his appreciation to the National Science Founda-
tion for support over the years that has aided in the development of this work. Particu-
larly important is the support related to the unsteady surface element method in which
Dr. Ned Keltner of Sandia National Laboratories has also had a very influential part.

Kevin Cole would like to acknowledge support from the Engineering Foundation
that has contributed to this project. Thanks also go to many students in heat conduction
classes who have read the manuscript and have made many suggestions over the years.

A. Haji-Shiekh would like to acknowledge support from the National Science
Foundation, under the directorship of Win Aung and Richard O. Buckius, who were
instrumental in the development of the Galerkin-based integral method. Special thanks
also to Win Aung who recognized the potential of the Galerkin-based integral method
even before the work began. Thanks also to my wife who spent many hours typing and
proofreading the manuscript, and to David Lou, former chairman of the Mechanical
Engineering Department at UTA, for his encouragement.

Special thanks to the staff at Hemisphere for their competent handling of an
equation-filled book. The authors take full responsibility for any errors that may
remain in the book, but because this contains many new solutions we invite readers to
send us any errors that they may find. Concerning errors please contact Kevin Cole,
Department of Mechanical Engineering, P. O. Box 880656, University of Nebraska—
Lincoln, Lincoln, NE 68588-0656 (402-472-5857). We will compile a list of errata
and make it available to interested readers.

J. V. Beck, K. D. Cole, A. Haji-Shiekh, B. Litkouhi
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Preface to the Second Edition

Since the first edition was published, there is considerable evidence of continued in-
terest in Green’s functions (GFs). There have been several new books on GFs for heat
conduction and diffusion, including Green’s Functions in Applied Mechanics by Y. A.
Melnikov (WIT Press, Southhampton, 1995), Green’s Functions with Applications by
D. G. Duffy (Chapman and Hall/CRC Press, 2001), Diffusion-Wave Fields: Mathe-
matical Methods and Green Functions, by A. Mandelis (Springer, New York, 2001),
Handbook of Green’s Functions and Matrices by V. D. Seremet and V. D. Sheremet
(WIT Press, Southhampton, 2002), as well as several books on GFs applied to quantum
physics. The number of research papers on GFs published in 2009 has more than dou-
bled compared to the year the first edition was published. The four of us have continued
to find new GFs and to apply them in our research. The second edition reflects our con-
viction that although Green discovered them in the nineteenth century, the functions
bearing his name remain relevant to twenty-first century engineers and scientists.

For the second edition all chapters have been reviewed and updated. Based on our
research and our classroom experience with this material, several chapters have been
extensively revised. Chapter 1 has been expanded to provide a better introduction to
Green’s functions, both steady and unsteady, and a section on the Dirac delta function
has been added. Chapter 4 now includes a discussion of the eigenfunction expansion
method. Chapter 5 has been rewritten to include sections on the convergence speed of
series solutions, the importance of alternate GF, and intrinsic verification, which is an
important new tool for obtaining correct numerical values from analytical solutions.
The chapters on cylindrical geometries from the first edition have been combined
into one (Chapter 7), and the chapter on spherical geometries has been renumbered
(Chapter 8). Several new examples and new figures have been added to Chapters
6, 7, and 8 on rectangular, cylindrical, and spherical geometries, respectively. A new
chapter has been added on the subject of steady-periodic heat conduction (Chapter 9).
The extensive appendices of GF and related functions, a central feature of the first edi-
tion, have been expanded to include three new appendices: the Dirac Delta Function
(Appendix D); the Laplace Transform (Appendix L); and Properties of Common Ma-
terials (Appendix P). Two appendices have been renamed: Appendix F for Functions
and Series; and Appendix I for Integrals.

One of the goals of the first edition was to make GF more accessible, and towards
this end one of us (Cole) created an Internet site called the Green’s Function Library
(www.greensfunction.unl.edu) . The GF Library is the online companion site for the
second edition. This web-searchable collection of GFs, based on the appendices in this
book, is organized by differential equation, by geometry, and by boundary condition.
Each GF is also identified and cataloged according to our GF numbering system. The
GF Library also contains explanatory material, references, and links to related sites.
Since it was created in 1999, the GF Library has received many thousands of visitors
from all over the world.

xv
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xvi Preface to the Second Edition

Many students have made suggestions for this book, as have several readers who
contacted us through the GF Library, and we thank all of them for this assistance.
A special thanks to the students who prepared improved figures for the second edition,
including Andrei Vaipan, Stuart Douglas, and Monchai Duangpanya.

This book contains an unusually large number of functions and solutions, each of
which carries a risk of typographical error. We have diligently worked to remove such
errors and we take full responsibility for any that remain. If you find an error, please
check if it appears in the error list posted at the GF Library. If it is not listed there,
please contact us through the GF Library or contact Kevin Cole (402-472-5857 or
kcole1@unl.edu).

Kevin D. Cole
James V. Beck

A. Haji-Sheikh
Bahman Litkouhi
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Nomenclature

a geometrical dimension (m)
A area (m2)
b geometrical dimension (m)
B Biot number, usually hL / k
c specific heat (J/kg/K)
ds′

j differential element of body surface Sj

dv′ differential element of volume
f boundary term
fi basis function (Chapter 10)
F (r) initial temperature distribution
g energy generation per unit time per unit volume
G Green’s function
h heat transfer coefficient (W·m−2·K−1)
H Heaviside unit step function
i, j indices
J joules, unit of energy
k thermal conductivity (W/m/K)
K fundamental heat conduction solution
K kelvin, unit of temperature
L slab thickness (m)
m fin effect parameter; also meter, unit of length
nj outward normal unit vector
Nm norm (Chapter 4)
q heat flux (W/m2)
Q heat energy (J)
r radial coordinate (m)
r position vector
r′ position vector; also dummy variable
s Laplace transform parameter (Chapter 4)
Sj surface
t time (s)
T temperature (K)
T0 initial temperature distribution
u cotime (s)
U velocity (m/s)
V, w velocity (m/s)
W watt, one joule per second
x, y, z Cartesian coordinates
X m eigenfunction

xix
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xx Nomenclature

Greek symbols
α thermal diffusivity (m2/s)
βm eigenvalue
γn eigenvalue
δ Dirac delta function
ρ density (kg/m3)
σ propagation speed for heat transfer (m/s)
τ time; also dummy variable (s)
φ, Φ angular coordinate (azimuth) for cylindrical and spherical coordinates
θ polar angle coordinate, spherical coordinates
ψn eigenvalue (Chapter 10)
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1 Introduction to Green’s
Functions

1.1 INTRODUCTION

Green’s functions (GFs), named after English physicist George Green (1793–1841),
are powerful tools for obtaining solutions of linear heat conduction problems. They
also apply to the solution of many other phenomena described by linear differential
equations. A GF is a basic solution of a specific differential equation with homoge-
neous boundary conditions; it is a building block from which many useful solutions
may be constructed. For transient heat conduction, a GF describes the temperature
distribution caused by an instantaneous, local heat pulse.

This book contains an extensive set of exact GFs for the heat conduction equation
in Cartesian, cylindrical, and spherical coordinates. By utilizing these tabulated GFs,
solutions of many heat conduction problems can be obtained in a straightforward
and efficient manner. In many cases, the formal solutions can be written directly
in terms of integrals which can be evaluated either exactly using integrals provided
herein or approximately using numerical integration. Compared to the usual analytical
methods, the GF method with tabulated GFs requires a lower level of mathematical
ability for the solution of partial differential equations.

The GF method is related to other methods for solving heat conduction prob-
lems. The classic methods of heat conduction, such as the method of separation
of variables and the Laplace transform method, may be used to derive GFs (as in
Chapter 4). Approximate methods of finding GFs developed by Haji-Sheikh and
Lakshminarayanan (1987) and Haji-Sheikh (1988) are also discussed (see Chap-
ter 10). In addition to solution procedures, the GF method also provides greater un-
derstanding of the nature of diffusion processes, including heat conduction in porous
media.

GFs have been used in the solution of heat conduction for many decades, for ex-
ample in the classic books by Morse and Feshbach (1953) and Carslaw and Jaeger
(1959). The purpose of this book is to provide a single text containing the follow-
ing components: a careful derivation of the GF solution equation; a systematic and
practical approach to the solution of diffusive-type problems; and, an extensive com-
pilation of GFs. Other books contain some of these components: Ozisik (1993) has
a fine derivation of the GF solution equation; Butkovskiy (1982) provides a catalog
of many GFs; and Carslaw and Jaeger (1959) also list some GFs. Other important
books on GFs are Roach (1970), Greenberg (1971), Stakgold (1979), Barton (1989),
and Duffy (2001).

1



T&F Cat # K10695, Chapter 1, Page 2, 12-6-2010

2 Heat Conduction Using Green’s Functions

1.1.1 ADVANTAGE OF THE GREEN’S FUNCTION METHOD

There is ample motivation for the use of GFs in linear heat conduction. One advantage
of GFs is that they are flexible and powerful. The same GF for a given geometry and
a given set of homogeneous boundary conditions is a building block for the temper-
ature distribution resulting from (a) space-variable initial temperature distribution,
(b) time- and space-variable boundary conditions, and (c) time- and space-variable
volume energy generation.

A second advantage of the GF method is the systematic solution procedure. Many
GFs have been derived and are tabulated in this book, so the derivation of the GF may
be omitted in many cases. Eigenfunctions and eigenconditions need not be developed.
In these cases the solution can be written immediately in terms of the GFs. The
saving of effort and reduced possibility of errors are particularly important for two-
and three-dimensional geometries. The systematic solution procedure also allows for
construction of families of closely related solutions for checking purposes. This can
greatly improve one’s confidence in computed numerical values.

Athird advantage is that two- and three-dimensional GFs can be found, for transient
cases, by simple multiplication of one-dimensional GFs for the rectangular coordinate
system for most of the boundary conditions considered in this book. The limitations of
the multiplicative property are that the differential equation must be linear, the body
must be spatially uniform (homogeneous), and the geometry must be “orthogonal.”
An orthogonal geometry is one for which any boundary is located where only one
coordinate is a constant, such as x = 0 or y = W , and no boundary is defined by
a relationship such as x + y = C. A further discussion of nonorthogonal bodies is
given in Chapter 11. The multiplicative construction of two- and three-dimensional
GF can result in great simplification in solving temperature problems, and provides a
very compact means for cataloging GFs for these cases. For certain two-dimensional
cases involving cylindrical coordinates, multiplication of the GFs can also be used.

A fourth advantage is that the GF solution equation has an alternative form which
can improve the convergence of series solutions which arise from heating at a bound-
ary (nonhomogeneous boundary conditions). Slow convergence of series solutions,
which require that a very large number of terms be evaluated, can cause lengthy
computer-evaluation times, and can reduce numerical accuracy by excessive round-
off error. When it applies, the alternative formulation of the GF solution equation
can greatly reduce the number of series terms needed for an accurate numerical
evaluation.

A fifth advantage of the GF method is intrinsic verification. That is, solutions con-
structed from GF contain within them the means to check that computed numerical
values are correct. As an example of intrinsic verification, when a time-varying so-
lution contains a steady term and a transient term, at early time there is a region in
which these terms must sum to zero. In this region these terms may be checked, one
against the other. Several types of intrinsic verification are given in Chapter 5.

Asixth advantage of the GF method is time partitioning, which can reduce the num-
ber of series terms needed to obtain an accurate solution. Time partitioning is a general
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method that arises naturally from the GF method, and can provide accurate values
for temperature using only a few terms of the infinite series. Time partitioning is
introduced in Chapter 5.

1.1.2 SCOPE OF THIS CHAPTER

The purposes of this chapter are to introduce GFs in one-dimensional heat conduction
and to provide insight and motivation. Some basic information on heat conduction is
also provided. More rigorous aspects, such as derivation of the GF solution equation,
are deferred to later chapters. In Sections 1.1 through 1.5 some basic information on
heat conduction is given, including the heat conduction equation applied to a point
(differential equation) and to a control volume (integral equation). In Section 1.6
the Dirac delta function, the foundation of every GF, is introduced. In Section 1.7 a
steady GF is derived for the one-dimensional wall. Sections 1.8 through 1.12 give
an introduction to the transient one-dimensional GF, first in the infinite body, then
the semi-infinite body and the flat plate. In Section 1.13 the properties common to
transient GFs are given. Sections 1.14 through 1.17 provide additional topics that
briefly indicate how the GF method can be applied to a broader scope of engineering
problems, including heterogeneous bodies, anisotropic bodies, moving bodies, bodies
with fins, and non-Fourier heat conduction.

1.2 HEAT FLUX AND TEMPERATURE

In a solid body that contains variations of temperature, heat flow proceeds from a
region of high temperature to a region of low temperature. The term heat flow is the
rate of energy transfer (in Joules per second, or J/s) associated with the vibrational
energy of atoms and molecules in the body. Heat flux is the heat flow per unit area
at any point in the body. Heat conduction theory is the relationship between heat flux
and temperature in a solid body; it also applies to liquids and gases when there is no
bulk motion of the fluid.

Heat flux cannot be measured directly, but its effects can be indirectly observed.
At the surface of a solid body the heat flux can sometimes be observed as an effect
on the surroundings, such as the melting of ice, the warming of a well stirred water
bath, or the vaporization of water at a certain rate. Inside a solid body, the heat flux
can be deduced from the temperature distribution, and then only if the relationship
between temperature and heat flux is thoroughly understood.

In a solid body with a steady temperature gradient, heat flux has a magnitude and
a direction and it is denoted by vector �q. The component of heat flux, in a direction
of coordinate x, for example, is

qx = −k
∂T

∂x
(1.1)

where parameter k is the thermal conductivity with units W/(m K). In general the
thermal conductivity may be a function of temperature. The negative sign implies
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that heat always flows in the direction of reducing temperature. Similarly in the in y-
and z-directions,

qy = −k
∂T

∂y
; qz = −k

∂T

∂z
(1.2)

This is Fourier’s law of heat conduction. Fourier’s law applies to any body that is
homogeneous (the same substance all the way through), isotropic (heat flows equally
well in any direction), and of macroscale size (not too small). Non-Fourier heat con-
duction, appropriate for very small bodies and for very short-duration heat conduction
events, is discussed in Section 1.17.

1.3 DIFFERENTIAL ENERGY EQUATION

The differential energy equation is derived in this section for homogeneous isotropic
bodies. The rectangular (x, y, z) coordinate system is used for simplicity.

The energy equation, also called the heat conduction equation, is based on the
conservation of energy. Consider a small parallelepiped shaped control volume in a
stationary, homogeneous, and isotropic body. The control volume is located at point
(x, y, z) in the body and has volume dV = dx dy dz. See Figure 1.1. A form of the
first law of thermodynamics gives the energy balance on the control volume:

(
Net rate of
heat flow in

)
+

(
rate of

energy generation

)
=

(
rate of

energy storage

)
(1.3)

Each term in this rate equation has units of energy/time (J/s or watts). The three terms
in this equation will be examined one at a time.

Net rate of heat flow in. There are six faces on the control volume through which
heat can enter or leave. Heat flux is positive in the positive coordinate directions,
and each heat flux multiplied by the area of the face gives the correct units of watts.
Figure 1.2 shows the flow of heat in the x-direction, where qxAx has the units of

dx

dz

dy

z

x

y

Control volume
dV = dx · dy · dz

Homogeneous
isotropic

body

FIGURE 1.1 Control volume.
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x
Control volume

y qx Ax qx + dx Ax

dx

dy

FIGURE 1.2 Flow of heat in the x direction.

watts. The net flow of heat is the difference between the inflow and the outflow
(qxAx − qx+dxAx). For all three directions and all six faces of the control volume,

(
Net rate of
heat flow in

)
= (qx − qx+dx)Ax + (qy − qy+dy)Ay + (qz − qz+dz)Az (1.4)

Rate of energy generation. Energy generation is energy that affects the tempera-
ture throughout the volume of the body. It is distinguished from energy that enters the
body through the boundaries. Energy generation can come from electrical resistance
heating inside the body, from chemical reaction (for example, concrete generates heat
when curing), or from absorption of radiation (nuclear, microwave, or other electro-
magnetic energy). The energy generation may vary from place to place in the body
and it may vary with time. The energy generation may also be simply equal to zero.
It is given the symbol g(x, y, z, t) with units W/m3 (rate of energy generation per unit
volume). For the control volume, then,

(Rate of energy generation) = g(x, y, z, t) dx dy dz (1.5)

Rate of energy storage. A change in the storage of energy is defined by a change
in the specific internal energy (a thermodynamic quantity) which is given by cδT for
solid bodies. Here c is the specific heat [J/(kg K)] and δT is the change in temperature.
The rate of specific energy storage (per unit mass) is given by the time derivative
c∂T / ∂t . The partial derivative on time is used because T also depends on position
(x, y, z). Multiply the time rate of change of specific internal energy by the density
and the volume to obtain watts:

(Rate of energy storage) = ρc
∂T

∂t
dx dy dz (1.6)

To place the energy equation in differential form, the control volume will be made
arbitrarily small. Then, the heat flux at the faces located at x + dx, y + dy, and
z + dz can be related to the heat flux at x, y, and z by the first term of a Taylor series,
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TABLE 1.1
One Term of Taylor Series for q

Direction Flux Area

x qx+dx = qx + ∂qx

∂x
dx Ax = dy dz

y qy+dy = qy + ∂qy

∂y
dy Ay = dx dz

z qz+dz = qz + ∂qz

∂z
dz Az = dx dy

according to Table 1.1. When the table values are substituted into Equation 1.4, the
energy equation can be assembled from Equations 1.4 through 1.6 in the form

−∂qx

∂x
− ∂qy

∂y
− ∂qz

∂z
+ g(x, y, z, t) = ρc

∂T

∂t
(1.7)

Now, applying Fourier’s law yields

∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
+ ∂

∂z

(
k
∂T

∂z

)
+ g(x, y, z, t) = ρc

∂T

∂t
(1.8)

This is the energy equation for a homogeneous isotropic body. Properties c and k may
depend upon the temperature and therefore may vary with position in the body.

In the special case when the thermal conductivity does not depend on position (for
example, when the temperature gradients are not too large), the energy equation can
be written as

∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
+ 1

k
g(x, y, z, t) = 1

α

∂T

∂t
(1.9)

where α = k /(ρc) is the thermal diffusivity (m2/s). This form of the energy equation
is extensively studied in this book.

The energy equation, developed here in the rectangular coordinate system, can
be cast in other orthogonal coordinate systems, as follows. A general vector form of
Fourier’s law is given by

q = −k∇T (1.10)

where ∇T is the gradient of the temperature and q is the heat flux vector. A vector
form of the energy equation that is independent of coordinate system is given by (see
Ozisik, 1993, pp. 3–6 for a derivation)

−∇ · q + g(r, t) = ρc
∂T

∂t
(1.11)

where ∇ · q is the divergence of the heat flux. The energy equation in any coordinate
system can be found by substituting the correct form of the divergence and gradient
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φ
r

y

x

z
P(r, φ, z)

z(a) (b)

φ

y

x

z

P(r, θ, φ)rθ

FIGURE 1.3 (a) Cylindrical coordinate system. (b) Spherical coordinate system.

operators for that particular coordinate system; the cylindrical and spherical forms
are given next.

Energy equation in cylindrical coordinates. In the cylindrical coordinate system
shown in Figure 1.3a the energy equation is

1

r

∂

∂r

(
kr

∂T

∂r

)
+ 1

r2

∂

∂φ

(
k
∂T

∂φ

)
+ ∂

∂z

(
k
∂T

∂z

)
+ g = ρc

∂T

∂t
(1.12)

or for k = constant

∂2T

∂r2
+ 1

r

∂T

∂r
+ 1

r2

∂2T

∂φ2
+ ∂2T

∂z2
+ g

k
= 1

α

∂T

∂t
(1.13)

Energy equation in spherical coordinates. In the spherical coordinate system
shown in Figure 1.3b, the energy equation is

1

r2

∂

∂r

(
kr2 ∂T

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
k sin θ

∂T

∂θ

)
+ 1

r2 sin2 θ

∂

∂φ

(
k
∂T

∂φ

)
+ g = ρc

∂T

∂t

(1.14)

or for k = constant,

1

r

∂2(rT )

∂r2
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
+ 1

r2 sin2 θ

∂2T

∂φ2
+ g

k
= 1

α

∂T

∂t

1.4 BOUNDARY AND INITIAL CONDITIONS

This book is concerned with solutions to the energy equation as they apply to problems
in engineering and physics. The mathematical form of the solutions (such as GFs)
are determined by the boundary conditions, that is, the value of the temperature (or
its derivative) at the boundaries of the heat conducting body. The combination of
the energy equation, the specific boundary conditions, and the initial condition is
called a boundary value problem. Most of this book is concerned with orthogonal
bodies, whose boundaries are located where one coordinate is a constant, such as
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x = 0 or x = L. Where possible, the coordinate system is chosen so that the body of
interest may be treated as an orthogonal body. (Nonorthogonal bodies are discussed
in Chapter 10.)

The number of boundary conditions for a boundary value problem depends on the
form of the energy equation and the geometry of the system under consideration. For
example, the two-dimensional energy equation in the rectangular coordinate system,

∂2T

∂x2
+ ∂2T

∂y2
+ 1

k
g(x, y, z, t) = 1

α

∂T

∂t
(1.15)

requires five conditions: two each for the boundaries on x and y and one initial
condition. Boundary conditions typically have the form

ki

∂T

∂ni

+ hiT = fi(ri , t) (1.16)

where all quantities are evaluated at the ith boundary. Here ri is the location of the
ith boundary in a specific coordinate system and ni is the outward unit-normal vector
at the boundary. Initial conditions have the form

T (ri , t = 0) = F (ri) (1.17)

Boundary conditions and initial conditions are discussed in detail in Chapter 2.

1.5 INTEGRAL ENERGY EQUATION

In this section, the integral energy equation is derived for heat transfer in a solid. The
solid may be moving but it may not change shape. There are no changes in the shape
of the body during heating due to thermal expansion; the subject of thermal stresses
is beyond our scope.

The derivation starts with a system, which is a body or portion of a body that is
identified for study. The system may move and exchange energy with its surroundings.
The first law of thermodynamics for a system can be written as

δQ

dt
= +δW

dt
+ dE

dt
(1.18)

where δW and δQ denote path dependent quantities. Each term in Equation 1.18 can
be described in words by

δQ

dt
= Rate of heat addition to the system at the boundaries

δW

dt
= Rate of work done by the system on its surroundings

dE

dt
= Rate of energy accumulation inside the system
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Control volume (c.v.)

System at time t

System at time t + ∆t

FIGURE 1.4 Relation between moving system and fixed control volume.

The thermal energy of the system E is given by the internal energy of the system,

E = mu (1.19)

where m is mass of the system in kilograms (kg), and u is the internal energy per unit
mass, J/kg. Kinetic and potential energy are neglected compared to thermal energy.

The next step is to relate the system to a control volume with the Reynolds transport
theorem (see Currie, 2002 or White, 2006). The control volume is fixed in space and
has fixed shape and fixed boundaries. At the moment of interest, time t , the system
and the control volume occupy the same region. At a later time, t + ∆t , the system
has moved away from the fixed control volume. Refer to Figure 1.4. A statement of
the Reynolds transport theorem for the change of energy in the system is

dE

dt
= ∂

∂t

∫
c.v.

uρ dv +
∫

c.s.
ρu(V · n̂) dA (1.20)

where c.v. denotes the control volume, c.s. denotes the surface of the control volume
(control surface), dv is an element of volume, ρ is density, V is the velocity vector,
and n̂ is an outward drawn unit normal vector. Equation 1.20 relates the energy in the
system at time t to that in the control volume.

Next, replace dE / dt with the first law of thermodynamics, Equation 1.18,

δQ

dt

∣∣∣∣
sys

− δW

dt

∣∣∣∣
sys

= ∂

∂t

∫
c.v.

uρ dv +
∫

c.s.
ρu(V · n̂) dA (1.21)

The terms of Equation 1.21 will next be examined separately. The first term of Equa-
tion 1.21 relates to energy traveling across the control surface and can be given by

δQ

dt
=

∫
c.s.

(−q · n̂) dA (1.22)
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where q is the heat flux crossing the control surface in W/m2. It can include conduction
and radiation,

q = qcond + qradiation (1.23)

but not any term caused by fluid flow for any element inside the body. When a body
is “lumped” in some way so that a solid-fluid boundary is included in the control
volume, then a convection-related term may enter. Otherwise, for any element in a
solid body or porous body, the only two modes of heat transfer are conduction and
radiation.

The δW / dt term in Equation 1.21 relates to the rate of work done by the system
on the surroundings and could be composed of a number of parts:

δW

dt
=




Shaft work + flow work + viscous work
+ electrical work + nuclear work + chemical work,
all acting on the surroundings.

For a solid body that does not change shape, there is no shaft work, flow work or
viscous work. The electrical, nuclear, and chemical work are all combined together
as volume energy generation, denoted with symbol g:

δW

dt
= −

∫
c.v.

g dv (1.24)

The volume energy generation term has units of W/m3 ; g is positive for heat produced
in the body; g may vary with position in the body, and it may vary with time.

Next consider the third term of Equation 1.21 for a fixed control volume in a solid
[ρ �= ρ(t)]

∂

∂t

∫
c.s.

uρ dv =
∫

c.s.
ρ
∂u

∂t
dv (1.25)

That is, the time derivative bypasses the volume integral because the density and the
volume are constant with respect to time.

Next the internal energy will be related to the temperature. Let ν = ρ−1 where ν

is the specific volume. From thermodynamics, internal energy can be a function of
two independent thermodynamic quantities. Let u be a function of temperature T and
specific volume ν, both of which are functions of position vector r and time t or

u = u(T (r, t), ν(r, t)) (1.26)

Then using the chain rule for differentiation gives

∂u

∂t
= ∂u

∂T

∣∣∣∣
ν

∂T

∂t
+ ∂u

∂ν

∣∣∣∣
T

∂ν

∂t
(1.27)

In a solid, density is not a function of time, so that ∂ν / ∂t is equal to zero. Also, from
the definition of the specific heat at constant volume,

cν = ∂u

∂T

∣∣∣∣
ν

(1.28)
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In an incompressible solid, the specific heat at constant volume is the same as at
constant pressure or

cν = cp = c (1.29)

Substitute Equations 1.28 and 1.29 into Equation 1.27

∂u

∂t
= c

∂T

∂t
(1.30)

so the third term of Equation 1.21 is given by∫
c.v.

ρc
∂T

∂t
dv (1.31)

Notice that the specific heat can be a function of position and temperature, c = c(r, T ).
In particular, note that c is not inside the derivative with respect to time.

Then Equations 1.22, 1.24, and 1.31 can be substituted into Equation 1.21 to give
the general form of the integral energy equation for an incompressible solid,∫

c.s.
(−q · n̂) dA +

∫
c.v.

g dv = +
∫

c.v.
ρc

∂T

∂t
dv +

∫
c.s.

ρu(V · n̂) dA (1.32)

This equation is valid for ρ = ρ(r) and c = c(r, t).
Many forms of the heat conduction equation can be derived from this equation,

including general partial differential equations and also lumped capacitance equa-
tions. If the control volume is taken to represent a thin region at a boundary, then
Equation 1.32 can be used to obtain boundary conditions.

1.6 DIRAC DELTA FUNCTION

The Dirac delta function (sometimes called the unit impulse function) plays a central
role in the method of GFs. In this section we define the Dirac delta function in terms
of those properties important to the GF method. Strictly speaking, the Dirac delta
function is a generalized function; see Duffy (2001, pp. 5–14) for a discussion of this
viewpoint.

The Dirac delta function δ(x) is defined to be zero when x �= 0, and infinite at
x = 0 in such a way that the area under the function is unity. A concise definition is
the following: given nonzero numbers η1 > 0 and η2 > 0,

δ(x) = 0 if x �= 0; and,
∫ η2

−η1

δ(x) dx = 1. (1.33)

Some of the properties of the Dirac delta function are given next.
Sifting property. Given function f (x) continuous at x = x′,∫ b

a

f (x′) δ(x − x ′) dx′ =
{
f (x) if a < x < b

0 if (a, b) does not contain x
(1.34)
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When integrated, the product of any (well-behaved) function and the Dirac delta
yields the function evaluated where the Dirac delta is singular. The sifting property
also applies if the arguments x and x ′ are exchanged.

Relation to unit step function. The integral of the Dirac delta function may be
related to the unit step function, as follows:

∫ t

−∞
δ(τ) dτ = H (t) (1.35)

where H (t) is the Heaviside unit step function defined as

H (t) =
{

0 if t < 0
1 if t > 0

The derivative of the unit-step function, then, gives the Dirac delta function:

dH (t − τ)

dt
= δ(t − τ)

Note that this derivative is singular at t − τ = 0.
Units. Since the definition of the Dirac delta requires that the product δ(x)dx is

dimensionless, the units of the Dirac delta are the inverse of those of its argument.
That is, δ(x) has units meters−1, and δ(t) has units sec−1. Later, when two- and three-
dimensional cases are discussed, the Dirac delta function will be used in the form
δ(r − r′)dv′ where dv′ is differential volume; therefore the units of δ(r) are inverse
volume. This is particularly important in cylindrical and spherical coordinates.

These properties are also listed in Table 1.2. More information on the Dirac delta
function, including a proof of the sifting property, is given in Appendix D.

TABLE 1.2
Basic Properties of the Dirac Delta Function

1. δ(x − x′) =
{ ∞, at x = x′

0, otherwise

2.
∫ ∞

−∞
δ(x − x′) dx′ = 1

3.
∫ ∞

−∞
F (x′)δ(x − x′) dx′ = F (x), the sifting property

4.
dH (t − τ)

dt
= δ(t − τ), where H is the unit step

5. δ(t − τ) has units of s−1

δ(x − x′) has units of m−1

δ(r − r′) has units such that δ(r − r′) dv′ has no units
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1.7 STEADY HEAT CONDUCTION IN ONE DIMENSION

In this section one-dimensional steady heat conduction will be discussed to introduce
the concept of GFs. Steady heat conduction is described by an ordinary differential
equation, and the GF has a simple form.

Steady heat conduction in the one-dimensional slab body is described by the fol-
lowing energy equation:

d2T

dx2
+ g(x)

k
= 0; 0 < x < L (1.36)

In the slab body (0 < x < L) there are two boundaries, therefore two boundary
conditions are also needed. For the present discussion a specific geometry will be
studied; other combinations of boundary conditions will be given later. Suppose the
boundary conditions are given by

T |x=0 = T1 (1.37)

dT

dx

∣∣∣∣
x=L

= 0 (1.38)

The temperature at x = 0 is a specified value (first kind), and the slope of the
temperature is specified at x = L (second kind). The solution of this steady heat
conduction problem will be sought in two different ways.

1.7.1 SOLUTION BY INTEGRATION

For this steady case, the temperature may be found by integrating the energy equation
two times. This is best demonstrated by a specific example.

Suppose the energy generation is spatially uniform, that is, g(x) = g0. (By the
numbering system discussed in Chapter 2, this is case X12B10G1.) Integrate the
energy equation once

dT

dx
= −g0

k
x + C1

and again to find the general solution:

T (x) = −g0

k

x2

2
+ C1 x + C2. (1.39)

Constants of integration C1 and C2 are found by applying the boundary conditions,
first at x = 0,

T |x=0 = 0 + 0 + C2 =⇒ C2 = T1

and then at x = L

dT

dx

∣∣∣∣
x=L

= −g0

k
L + C1 =⇒ C1 = g0L

k



T&F Cat # K10695, Chapter 1, Page 14, 12-6-2010

14 Heat Conduction Using Green’s Functions

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1

x/L

Piecewise, b/L = 0.4

Piecewise, b/L = 0.2

Exponential,
a*L = 1.5

Exponential,
a*L = 0.6

Uniform

[T
(x

)–
T 1

]/(
g 0L

2 /
k)

FIGURE 1.5 Steady temperature in the slab caused by different distributions of internal heat
generation. The left side of the slab has a specified temperature and the right side is insulated.

Using these constants, the solution for this specific example is

T (x) = −g0x
2

2k
+ g0L

k
x + T1

or in normalized form,

T (x) − T1

g0L2 / k
= x

L
− 1

2

( x

L

)2
(1.40)

This solution is plotted in Figure 1.5 (uniform generation case). Note that the boundary
conditions are clearly satisfied: at x = 0 where T − T1 = 0; and, at x = L where the
slope of temperature is zero (insulated condition).

This solution was found by direct integration, which is appropriate for finding a
single solution. Suppose, however, that another solution is needed for a nonuniform
generation term, such as g(x) = g0e

−ax . Then the entire solution procedure would
have to be repeated. The method of GFs, introduced in the next section, can be used
to find the temperature caused by various g(x) functions without re-solving the entire
problem.

1.7.2 SOLUTION BY GREEN’S FUNCTION

In this section the steady one-dimensional problem discussed above will be solved
by the method of GF. The first step is to find the GF appropriate for the temperature
problem. The GF, G, associated with this specific temperature problem satisfies the
following auxiliary problem:

d2G

dx2
+ δ(x − x ′) = 0; 0 < x < L (1.41)
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G|x=0 = 0 (1.42)

dG

dx

∣∣∣∣
x=L

= 0 (1.43)

The differential equation for G is similar to the temperature equation except that the
generation term has been replaced by a unit impulse function (the Dirac delta func-
tion). That is, the GF is the unit-impulse response. Note that the boundary conditions
are of the same kind as the temperature problem, that is, the first kind at x = 0 and
the second kind at x = L. (This is case X12 in the numbering system discussed
in Chapter 2.) However, the boundary conditions for G are homogeneous (equal to
zero); this is important so that any number of GF may be superposed, but the bound-
ary conditions remain unchanged. The GF depends on two variables, the observation
location x and the heat-source location x ′.

The GF G for this case will be derived presently. However, it is instructive at this
point to postulate the temperature solution. If the GF is known, the temperature T (x)
is given by

T (x) − T1 = 1

k

∫ L

x′=0
g(x ′)G(x, x′) dx′ (1.44)

(Afull discussion of this temperature expression is given in Chapter 3.) This integral is
a summing up of a large number of unit-impulse responses, each of a size determined
by g(x ′), in order to produce the desired temperature response. The temperature
caused by several different functions g(x′) can be studied merely by repeating the
integration, without repeating the entire solution.

Now the GF will be derived. Break the domain (0 < x < L) into two regions at
x = x′, then the differential equation for G takes on the following form:

(a) 0 < x < x ′; d2Ga

dx2
= 0

(b) x′ < x < L; d2Gb

dx2
= 0 (1.45)

Because the Dirac delta function is zero everywhere except at x = x′, this approach
has removed the singularity from the differential equation. Then the solutions for Ga

and Gb may be found by integrating the above equations twice:

(a) Ga = C1x + C2

(b) Gb = C3x + C4 (1.46)

The four constants introduced by integration can be found from four conditions. The
first two are the boundary conditions from the original domain:

(i) Ga|x=0 = 0 (1.47)

(ii)
dGb

dx

∣∣∣∣
x=L

= 0 (1.48)
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The third condition comes from requiring that solutions Ga and Gb match at x = x′:

(iii) Ga|x=x′ = Gb|x=x′ (1.49)

The fourth condition comes from integrating Equation 1.41, the original differential
equation for G, from (x ′ − ε) to (x ′ + ε) for some small ε > 0. That is,∫ x′+ε

x′−ε

d2G

dx2
dx = −

∫ x′+ε

x′−ε

δ(x − x ′) dx

dG

dx

∣∣∣∣
x′+ε

x′−ε

= −1

Note that the singularity in the Dirac delta function has been removed by integration.
Now in the limit as ε → 0 we have the jump condition

(iv)
dGb

dx

∣∣∣∣
x′

− dGa

dx

∣∣∣∣
x′

= −1 (1.50)

The jump condition describes the slope of the GF at x = x′. With these four conditions,
it is now possible to seek the four constants. Applying conditions (i) through (iv) to
Equation 1.46 gives

(i) C1 · 0 + C2 = 0

(ii) C3 = 0

(iii) C1 · x ′ + C2 = C3 · x ′ + C4

(iv) C3 − C1 = −1 (1.51)

An algebraic solution gives C1 = 1, C2 = 0, C3 = 0, and C4 = x′. Substitute these
values back into the general solution, Equation 1.46, to give

G(x, x ′) =
{
x; x < x′
x ′; x ′ < x

(1.52)

This is the steady one-dimensional GF for this case. A plot of this GF is given in
Figure 1.6 which displays the four conditions discussed above, specifically: the value
of G is zero at x = 0; the slope of G is zero at x = L; function G is piecewise
continuous; and, the slope of G contains a jump at x = x′.

The GF is specific to the shape of the body (slab) and the kind of boundary con-
ditions present (the first kind at x = 0 and the second kind at x = L). Although this
GF was derived for instructional purposes, in many cases the GF is given elsewhere
in this book so that the derivation is not needed. (This GF is given as case X12 in
Table X.3, Appendix X.)

Next the steady GF given above is used in the integral equation to find the tem-
perature.

Uniform generation. For spatially uniform energy generation, the temperature is
given by the integral expression, Equation 1.44, with g(x) = g0, and with the GF
given by Equation 1.52:
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FIGURE 1.6 Steady Green’s function for G = 0 at x = 0 and dG / dx = 0 at x = L

(case X12).

T (x) − T1 = 1

k

∫ L

x′=0
g0 G(x, x′) dx′

= 1

k

∫ x

x′=0
g0 x ′ dx ′ + 1

k

∫ L

x′=x

g0 x dx ′

= g0

k

(x′)2

2

∣∣∣∣
x

x′=0
+ g0

k
x x′∣∣L

x′=x

= g0

k

[
x2

2
+ x(L − x)

]
= g0L

2

k

[
x

L
− 1

2

( x

L

)2
]

(1.53)

Because the GF is piecewise continuous the integral has been split at x′ = x, and the
correct form of the GF must be used in each interval. This result is identical to the
direct-integration solution presented earlier in Equation 1.40.

Exponentially varying generation. For heating that decays exponentially, g(x) =
g0e

−ax , and using the same GF as before, the temperature is given by

T (x) − T1 = 1

k

∫ L

x′=0
g0e

−ax′
G(x, x′) dx′

= 1

k

∫ x

x′=0
g0e

−ax′
x ′ dx ′ + 1

k

∫ L

x′=x

g0e
−ax′

x dx ′

= g0

k

[
e−ax′

a2
(−1 − ax′)

]∣∣∣∣∣
x

x′=0

+ g0

k

x

a
e−ax′ ∣∣∣L

x′=x

= g0

ka2

[
1 − e−ax − axe−aL] (1.54)
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This heating condition is a reasonable description of microwave absorption in a solid.
In the limit as a → 0, the temperature curve approaches the uniform-generation case
(see Figure 1.5).

Piecewise constant generation. For piecewise constant energy generation
given by

g(x) =
{

g0; 0 < x < b

0; b < x < L

the temperature integral is given by

T (x) − T1 = 1

k

∫ b

x′=0
g0 G(x, x′) dx′ + 1

k

∫ L

x′=b

0 · dx ′

Using the same GF as before, the temperature expression must be evaluated in two
pieces.
(i) For 0 < x < b the temperature is given by

T (x) − T1|x<b = 1

k

∫ x

x′=0
g0 x ′ dx ′ + 1

k

∫ b

x′=x

g0 x dx ′

= g0x
2

2k
+ g0x

k
(b − x) = g0b

2

k

[
x

b
− 1

2

(x

b

)2
]

(ii) and for x > b, only the x > x′ part of the GF is needed:

T (x) − T1|x>b = 1

k

∫ b

x′=0
g0 x ′ dx ′ = g0b

2

2k

The full temperature expression is given by

T (x) − T1 =




g0b
2

k

[
x

b
− 1

2

(x

b

)2
]
; 0 < x < b

g0b
2

2k
; b < x < L

(1.55)

A plot of this temperature is given in Figure 1.5 for b / L = 0.4 and b / L = 0.2.
In this section the GF method was introduced in a discussion of steady, one-

dimensional heat conduction. The GF method involves three components: the bound-
ary value problem for the temperature; the auxiliary problem for G; and, the integral
expression for the temperature. For elementary problems such as this, the GF method
offers some flexibility over direct integration. Greater advantages arise for more chal-
lenging problems, such as transient heat conduction, discussed in the next section,
and for two- and three-dimensional heat conduction, discussed in later chapters.

1.8 GF IN THE INFINITE ONE-DIMENSIONAL BODY

In their 1959 book on heat conduction, Carslaw and Jaeger simply state the GF for
the one-dimensional infinite body, without derivation, and then show that is satisfies
the heat equation. We choose to derive this GF which is also called the fundamental
heat conduction solution.
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1.8.1 AUXILIARY PROBLEM FOR G

The transient GF for the one-dimensional infinite body satisfies the following set of
equations:

∂2G

∂x2
− 1

α

∂G

∂t
= −1

α
δ(x − x ′) δ(t − τ) (1.56)

G(x, t | x′, τ) = 0 for t − τ < 0 (1.57)

G(x → ±∞, t | x′, τ) is bounded (1.58)

The above equations, Equations 1.56 through 1.58, define the auxiliary problem for the
one-dimensional infinite body. The Green’s function G is the response to an impulsive,
planar heat source of infinitesimal thickness, described by the product of two Dirac
delta functions, one for space and one for time. Factor 1 / α which premultiplies the
δ-functions is used to set the units of G to m−1 for the one-dimension case. Initially
the GF is zero until t > τ, and far away from the heat source the value of G is
bounded.

The GF for the infinite body will be derived with the Laplace transform method, and
a brief discussion of the Laplace transform method is given here. Later in Chapter 4
additional GF are also found with this method.

1.8.2 LAPLACE TRANSFORM, BRIEF FACTS

The Laplace transform of function f (t) is defined by

L [f (t)] =
∫ ∞

0
e−st f (t) dt (1.59)

The properties of the Laplace transform needed for this discussion are given next; see
Appendix L for further information on Laplace transforms.

Notation. The overbar is used to denote the transformed function,

L [f (t)] = f (s)

and the inverse Laplace transform is denoted

f (t) = L −1[f (s)]
Linear. The Laplace transform is a linear operator. If a and b are constants then

L [af (t) + bg(t)] = af (s) + b g(s) (1.60)

Transform of derivative. Using the definition of the Laplace transform and inte-
gration by parts, the transform of a derivative is

L

[
d

dt
f (t)

]
=

∫ ∞

0
e−st

[
d

dt
f (t)

]
dt

= f (t) e−st
∣∣∞
0 + s

∫ ∞

0
e−st f (t) dt
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Therefore

L

[
d

dt
f (t)

]
= sf (s) − f (0) (1.61)

1.8.3 DERIVATION OF THE GF

Now the auxiliary equation for G will be solved. Applying the Laplace transform to
the auxiliary problem (Section 1.8.1), with τ = 0, gives the following relations:

d2G

dx2
−

[ s

α
G − 0

]
= −1

α
δ(x − x ′) e0 (1.62)

G(x → ±∞, t | x′) is bounded (1.63)

Note that the sifting property of the Dirac delta function has been applied to the
impulsive heating term. Since the GF is zero until after the impulsive heating occurs,
there is no loss of generality in setting τ = 0 so that the impulsive heating occurs at
t = 0. The resulting ordinary differential equation for G will be solved by splitting
the infinite body into two regions at x = x′ in order to remove δ(x − x ′) from the
differential equation. That is, seek solutions Ga and Gb that satisfy:

(a) − ∞ < x < x ′; d2Ga

dx2
− σ2Ga = 0

(b) x′ < x < +∞; d2Gb

dx2
− σ2Gb = 0 (1.64)

where σ2 = s / α. Then the general solution in each region may be stated in the form
of exponentials:

(a) Ga = C1e
σx + C2e

−σx

(b) Gb = C3e
σx + C4e

−σx (1.65)

There are four constants, requiring four conditions. The first two conditions are the
boundary conditions from the auxiliary problem:

(i) Ga

∣∣
x=−∞ is bounded (1.66)

(ii) Gb

∣∣
x=+∞ is bounded (1.67)

The third condition is the requirement that the two solutions match at x = x ′:

(iii) Ga

∣∣
x=x′ = Gb

∣∣
x=x′ (1.68)

The fourth condition comes from integrating the original differential equation for G,
from (x′ − ε) to (x ′ + ε) for some small ε > 0. That is,∫ x′+ε

x′−ε

d2G

dx2
dx − s

α

∫ x′+ε

x′−ε

G dx = −
∫ x′+ε

x′−ε

δ(x − x ′)
α

dx
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Evaluate integrals to obtain

dGb

dx

∣∣∣∣∣
x′+ε

− dGa

dx

∣∣∣∣∣
x′−ε

− s

α

∫ x′+ε

x′−ε

G dx = −1

α

Finally, take the limit as ε → 0 to eliminate the remaining integral.

(iv)
dGb

dx

∣∣∣∣∣
x′

− dGa

dx

∣∣∣∣∣
x′

= −1

α
(1.69)

This is the jump condition which provides information on the slope of the GF at
x = x′. Apply the above four conditions to the general solution for G:

(i) C1e
−∞ + C2e

+∞ is bounded =⇒ C2 = 0

(ii) C3e
∞ + C4e

−∞ is bounded =⇒ C3 = 0

(iii) C1e
σx′ = C4e

−σx′

(iv) −C4σe−σx′ − C1σeσx′ = −1 / α (1.70)

An algebraic solution of the last two equations gives C1 = e−σx′
/(2σα) and C4 =

eσx′
/(2σα) so that the specific solution for G may be written

G =




1

2σα
e−σ(x′−x); x < x ′

1

2σα
e−σ(x−x′); x > x ′


 = e−σ|x−x′|

2σα
(1.71)

This is the GF in Laplace transform space. The next step is to invert this expression
into the time domain, with the use of appropriate tables of Laplace transform pairs.
To put G in a form listed in tables, let k = |x − x′| /

√
α. Then with σ = √

s / α, G

takes on the form

G = 1

2
√

α

e−k
√

s

√
s

whose inverse Laplace transform is given by (see Appendix L, Table L.1, number 43):

L −1

(
1

2
√

α

e−k
√

s

√
s

)
=




1

2
√

α

1√
πt

exp

(
− (x − x′)2

4αt

)
; t > 0

0; t < 0

For this development, the impulsive heating occurs at t = 0. The impulsive heating
time may be shifted to occur at time τ, without loss of generality, by replacing t

by t − τ. That is, the GF for the one-dimensional infinite body is given by:

G(x, t | x′, τ) =




1√
4πα(t − τ)

exp

(
− (x − x′)2

4α(t − τ)

)
; t > τ

0; t < τ

(1.72)
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There are alternate ways to derive this GF, including the spatial Fourier transform
(Barton, 1989, p. 181) and combined Laplace and Fourier transforms (Duffy, 2001,
p. 181). In the next section this GF will be used to find temperature.

1.9 TEMPERATURE IN AN INFINITE ONE-DIMENSIONAL BODY

The GF for an infinite body will now be used to find the temperature. We seek
the temperature in an infinite, one-dimensional, constant-property body with initial
temperature F (x) and volumetric energy generation g(x, t) (with units W/m3). This
temperature satisfies the following equations:

∂2T

∂x2
+ 1

k
g(x, t) = 1

α

∂T

∂t
(1.73a)

T (x, 0) = F (x) (1.73b)

T (x → ±∞, t) is bounded (1.73c)

Here T is temperature (K), x is position (m), t is time (s), k is thermal conductivity
(W/m/K), and α is the thermal diffusivity (m2/s).

1.9.1 GREEN’S FUNCTION SOLUTION EQUATION

The temperature T (x, t) that is a solution to the above equations may be formally
stated with the GF Solution Equation (a full discussion is given in Chapter 3).

T (x, t) =
∫ ∞

x′=−∞
G(x, t |x′, 0) F (x ′) dx′

+ α

k

∫ t

τ=0

∫ ∞

x′=−∞
G(x, t |x′, τ) g(x′, τ) dx′ dτ (1.74)

There are two integral terms in this temperature expression, one containing the initial
condition F (x) and the other containing the volumetric energy source g(x, t). Each
integral term can be considered to be the solution of a separate problem, one caused
by F (x) and one by g(x, t), which are superimposed (i.e., added together) to form
the complete solution. It is important to note that when F and g are substituted into
the above integrals, the coordinate dependence takes the form F (x′) and g(x ′, τ),
associated with the variables of integration.

1.9.2 FUNDAMENTAL HEAT CONDUCTION SOLUTION

Depending on the geometry and boundary conditions, there are many expressions for
the GF G(x, t |x′, τ). The particular form of GF for an infinite one-dimensional body,
derived in the previous section, is the fundamental heat conduction solution (Cannon,
1984, p. 33), which we give the special symbol K(x − x ′, t − τ):
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K(x − x ′, t − τ) =




1√
4πα(t − τ)

exp

[
− (x − x′)2

4α(t − τ)

]
; t − τ ≥ 0

0; t − τ < 0

(1.75)

(In the numbering system introduced in Chapter 2, this is case X00.) The fundamental
heat conduction solution, K(x − x ′, t − τ), has several important properties:

First, K(x − x′, t − τ) satisfies the heat conduction equation given by Equation 1.73a
for g(x, t) = 0 for t greater than zero. See Problem 1.16 at the end of the chapter.

Second, K(x − x′, t − τ) is always equal to or greater than zero for (t − τ) greater
than zero,

K(x − x ′, t − τ) ≥ 0, for (t − τ) > 0 (1.76a)

Third, the integral of K(x − x′, t − τ) over −∞ < x′ < ∞ is unity for all x values
and for all times (t − τ) > 0,

∫ ∞

x′=−∞
K(x − x ′, t − τ) dx′ = 1, for (t − τ) > 0 (1.76b)

and is equal to zero for times (t − τ) < 0,

∫ ∞

x′=−∞
K(x − x ′, t − τ) dx′ = 0, for (t − τ) < 0 (1.76c)

Fourth, the value of K(x − x ′, t − τ) is unchanged if x − x ′ is replaced by x ′ − x,

K(x − x ′, t − τ) = K(x′ − x, t − τ) (1.76d)

Fifth, the limit of the integral as x approaches x ′ from below is 1/2

lim
x↑x′

∫ t

0

∂K(x − x ′, t − τ)

∂x
dτ = 1

2
(1.76e)

and approaching x ′ from above is −1 / 2

lim
x↓x′

∫ t

0

∂K(x − x ′, t − τ)

∂x
dτ = −1

2
(1.76f )

Depending on the geometry and the boundary conditions, there are many expressions
for the GF, G(x, t |x ′, τ), but there is only one GF for the case of an infinite body, and
a convenient form of it is given by Equation 1.75.

It is instructive to examine a plot of K(x−x′, t−τ). Figure 1.7 showsK(x−x ′, t−τ)
as a function of x − x ′ for various values of α(t − τ). As (t − τ) goes to zero, the K(·)
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FIGURE 1.7 Fundamental heat conduction solution, K(x − x′, t − τ).

function approaches the Dirac delta function. Each curve in Figure 1.7 has the bell
shape of the Gaussian distribution. At all times t > τ, the area underneath a curve
in Figure 1.7 is unity as given by Equation 1.76b. As time t − τ increases, the K(·)
function spreads out and the maximum decreases.

The temperature distribution in an infinite body (−∞ < x < ∞) for the initial
temperature distribution F (x) and the volumetric energy generation of g(x, t) is found
using Equation 1.75 in Equation 1.74. The result is

T (x, t) =
∫ ∞

−∞
[4παt]−1 / 2 exp

[
− (x − x ′)2

4αt

]
F (x ′) dx′

+ α

k

∫ t

τ=0

∫ ∞

x′=−∞
[4πα(t − τ)]−1 / 2

× exp

[
− (x − x′)2

4α(t − τ)

]
g(x ′, τ) dx′ dτ (1.77)

Some examples of the use of Equation 1.77 are given next.

Example 1.1:

Find the temperature distribution for the case of

F (x ) =
{

T1, for c < x < d
0, otherwise

g (x , t ) = 0 for all x
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FIGURE 1.8 Temperature distribution for nonuniform initial temperature in an infinite body.

Solution

The solution for T is obtained by using Equation 1.77 with F (x ′) = T1, for c < x ′ <
d and F (x ′) = 0 otherwise. The result is

T (x , t ) =
∫ d

c
K (x − x ′, t ) T1 dx ′

= T1

∫ d

c
[4παt ]−1 / 2 exp

[
− (x − x ′)2

4αt

]
dx ′ (1.78)

Using the substitution u = (x − x ′) /(4αt )1 / 2, this integral can be written as

T (x , t ) = T1

π1 / 2

∫ (x−c) /(4αt )1 / 2

(x−d ) /(4αt )1 / 2
e−u2

du (1.79a)

T (x , t ) = T1

2

{
erf

[
x − c

(4αt )1 / 2

]
− erf

[
x − d

(4αt )1 / 2

]}
(1.79b)

T (x , t ) = T1

2

{
erfc

[
x − d

(4αt )1 / 2

]
− erfc

[
x − c

(4αt )1 / 2

]}
(1.79c)

where the error function, erf(·), and the complementary error function, erfc(·) =
1 − erf(·), are defined by

erf(z ) = 2
π1 / 2

∫ z

0
e−u2

du (1.80a)

erfc(z ) = 2
π1 / 2

∫ ∞

z
e−u2

du (1.80b)

These functions commonly occur in transient heat conduction. Some relations
involving these functions are given in Appendix E.
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Equation 1.79 is plotted in Figure 1.8 for t+ = αt /(d − c)2 = 0.01, 0.1, 0.5,
and 1 as a function of x+ = (x − xm) /(d − c) where xm is the mean x value which
is (c + d ) / 2. In this case, the temperature distribution can be written as

T
T1

= 1
2

{
erfc

[
x+ − 0.5
(4t+)1 / 2

]
− erfc

[
x+ + 0.5
(4t+)1 / 2

]}
(1.81)

The temperature distribution is affected first near the edges of the step change of
the initial temperature distribution and, as the dimensionless time increases, the
effect penetrates further.

Example 1.2:

Find the temperature distribution for the case of a < b < c < d and

F (x ) =



T0 for a < x < b
T1 for c < x < d
0 otherwise

g (x , t ) = 0 for all x

Solution

The solution can be found as in Example 1.1 by integrating over the two nonzero
regions of F (x ) or by using Equation 1.79c as a building block (i.e., let T1 → T0,
d → b, and c → a). Using either procedure results in

T (x , t ) = T0

2

{
erfc

[
x − b

(4αt )1 / 2

]
− erfc

[
x − a

(4αt )1 / 2

]}

+ T1

2

{
erfc

[
x − d

(4αt )1 / 2

]
− erfc

[
x − c

(4αt )1 / 2

]}
(1.82)

Two interesting special cases can be obtained from Equation 1.82. One of these is
for b → −c, a → −d , and T0 → T1. The resulting solution is

T (x , t ) = T1

2

{
erfc

[
x + c

(4αt )1 / 2

]
− erfc

[
x + d

(4αt )1 / 2

]

+ erfc
[

x − d
(4αt )1 / 2

]
− erfc

[
x − c

(4αt )1 / 2

]}
(1.83)

This solution is symmetric about x = 0. See Figure 1.9a for the initial temperature
distribution.

Substitution of −x for x in Equation 1.82 and use of the Appendix E identity
of erfc(−z ) = 2− erfc(z ) reveals the symmetry, which can also be noted in Fig-
ure 1.9a. This condition of symmetry can also be expressed mathematically by
∂T / ∂x = 0 at x = 0; ∂T / ∂x = 0 is sometimes called the insulation condition.
In other words, the solution for a semi-infinite body (x > 0) which is insulated at
x = 0 can be found from the infinite solution if the temperature distribution is
made symmetric about x = 0.
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FIGURE 1.9 Initial temperature distribution for Example 1.2.

The other special case is for b → −c, a → −d , and T0 → −T1, which has the
solution

T (x , t ) = −T1

2

{
erfc

[
x + c

(4αt )1 / 2

]
− erfc

[
x + d

(4αt )1 / 2

]

− erfc
[

x − d
(4αt )1 / 2

]
+ erfc

[
x − c

(4αt )1 / 2

]}
(1.84)

This expression has the value of zero at x = 0 and is antisymmetric about the
x = 0 axis. The zero temperature boundary condition is called the homogeneous
isothermal condition. See Figure 1.9b for the initial temperature distribution for
this case.

Example 1.3:

Find the temperature distribution in the infinite body for the case of

F (x ) = 0 for all x

g (x , t ) = qx0δ(x − x0)

where qx0 has units of W/m2, the same as those for heat flux. Refer to Table 1.2
for properties of the Dirac delta function.

Solution

The solution for the temperature is obtained by using Equation 1.74 with F (x ′) = 0,

T (x , t ) = α

k

∫ t

τ=0

∫ ∞

x ′=−∞
[4πα(t − τ)]−1 / 2

× exp

[
− (x − x ′)2

4α(t − τ)

]
qx0δ(x ′ − x0) dx ′ dτ (1.85)

T (x , t ) = αqx0

k

∫ t

τ=0
[4πα(t − τ)]−1 / 2 exp

[
− (x − x0)2

4α(t − τ)

]
dτ (1.86)
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because the only contribution to the integral is at x ′ = x0. Using integral 9 in
Table I.6, Appendix I gives,

T (x , t ) = qx0

k
(αt )1 / 2ierfc

[ |x − x0|
(4αt )1 / 2

]
(1.87)

where ierfc(z ) is given by (see Appendix E)

ierfc(z ) =
∫ ∞

z
erfc(u) du = π−1 / 2exp(−z2) − z erfc(z ) (1.88)

The identity ierfc(∞) = 0 is needed to evaluate the above integral. Notice that
Equation 1.87 is symmetric about x = x0. The maximum temperature is finite,
occurs at x = x0, and can be evaluated using ierfc(0) = π1 / 2 to find

Tmax (x0, t ) = qx0

(
t

πkρc

)1 / 2
(1.89)

1.10 TWO INTERPRETATIONS OF GREEN’S FUNCTIONS

Two different physical interpretations of G(·) can be found from the GF solution
equation, Equation 1.74, and are described below. The first physical interpretation of
G(·) is the temperature distribution caused by a particular initial condition and the
second interpretation is the temperature distribution for an instantaneous heat source.

The first physical interpretation is associated with the first term in Equation 1.74
and is the solution T (x, t) for the problem

∂2T

∂x2
= 1

α

∂T

∂t
; −∞ < x < ∞; t > 0 (1.90a)

T (x, 0) = F (x) (1.90b)

If the initial temperature distribution is zero everywhere except at x0 where it is equal
to F ′

0 times the Dirac delta function (see Table 1.2),

F (x) = F ′
0 δ(x − x0) (1.91)

then the solution of Equations 1.90a and 1.91 is

T (x, t) = F ′
0 G(x, t |x0, 0) (1.92)

Hence, the GF G(x, t |x′, 0) can be interpreted as being the temperature distribution
in the body that is the result of the initial temperature being zero everywhere except
at point x0 where there is a Dirac delta in the temperature distribution of magnitude
F ′

0 = 1 K-m (kelvin-meter). The units of G(·) and K(·) are both reciprocal length
m−1; the unit for δ(x − x0) is also m−1.

The second physical interpretation of a GF is the temperature caused by an instan-
taneous heat source at time t0 and position x0 and of strength Hρc. For this case, the
volumetric energy generation term in the heat equation, Equation 1.73a, becomes

g(x, t) = Hρc δ(x − x0) δ(t − t0) (1.93)

where H has the units of K-m; δ(x − x0) has the unit m−1; δ(t − t0) has the units
s−1; and ρc has the units of J/m3/K. These units are consistent with those of the
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volume energy generation g, which are W/m3. The symbol g given by Equation 1.93
represents the amount of energy that is released at x = x0 and at t = t0. It can be
visualized as the energy associated with an instantaneous plane source in the direction
normal to the x-axis. It is also like an instantaneous (pulsed) laser sheet being released
at x = x0 and at time t0. For this case, the describing differential equation is

∂2T

∂x2
+ 1

k
Hρc δ(x − x0) δ(t − t0) = 1

α

∂T

∂t
; −∞ < x < ∞; t > t0 (1.94)

and the initial temperature distribution is zero,

T (x, t0) = 0; −∞ < x < ∞ (1.95)

The solution for the temperature is zero until time t = t0. After time t0, the solution
for T (x, t) given by Equation 1.74 is

T (x, t) = α

k

∫ t

τ=0

∫ ∞

x′=−∞
G(x, t |x′, τ)Hρc

× δ(x′ − x0)δ(τ − t0) dx′ dτ (1.96a)

that yields

T (x, t) = H G(x, t |x0, t0) (1.96b)

Notice that in using Equation 1.74 for g(x, t), it is necessary to replace x by x′ and t

by τ. The major point, however, is that the GF is equal to the temperature rise for the
instantaneous plane heat source given by Equation 1.93 with H = 1 K-m.

These two alternate ways of thinking about transient GFs are important. In the first
interpretation, the GF is equal to the temperature resulting from an initial temperature
distribution that is zero everywhere except at the location of the Dirac delta function
with strength of 1 K-m. In the second interpretation, the GF is equal to the temperature
rise due to an instantaneous plane source with a strength of one K-m times ρc.

1.11 TEMPERATURE IN SEMI-INFINITE BODIES

A semi-infinite body is described by a body occupying the region x ≥ 0. Although
it represents an idealized body extending to positive infinity, it is a good model for
many problems. A finite body of thickness L can be represented by a semi-infinite
body, 0 < x < ∞, when the boundary condition at x = L does not influence the
temperature distributions near x = 0. This happens for the small dimensionless times
of αt / L2 < 0.05. Isothermal and insulation boundary conditions at x = 0 can be
constructed from the infinite region solutions. The examples of Section 1.9 illustrate
these points; also see Figure 1.9.

Temperature solutions for a semi-infinite body with an isothermal surface and an
insulated surface can be obtained using the fundamental heat conduction solution,
given by Equation 1.75. The homogeneous isothermal case is for the surface tem-
perature (at x = 0) held at 0 degrees. A prescribed temperature at a boundary is
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called a boundary condition of the first kind. If the prescribed temperature is zero,
the boundary condition is termed homogeneous. A prescribed heat flux at a surface is
called a boundary condition of the second kind; if this heat flux is zero, the surface is
said to be insulated and the boundary condition is also homogeneous. Both boundary
conditions, the first and second kinds, are now considered by utilizing the concept of
superposition which is valid because the defining equations are linear.

1.11.1 BOUNDARY CONDITION OF THE FIRST KIND

Consider a homogeneous boundary condition of the first kind (specified temperature)
for a semi-infinite body,

∂2T

∂x2
= 1

α

∂T

∂t
; 0 < x < ∞; t > 0 (1.97)

T (x, 0) = F (x) (1.98)

T (0, t) = 0 (1.99)

See Figure 1.10a for the geometry. The solution to this problem is the same as for an
infinite body with the initial temperature T (x, 0) equal to F (x) for x > 0 and equal
to −F (−x) for x < 0; see Figure 1.9b. Then the first term of Equation 1.74 with
G(x, t |x ′, 0) = K(x − x ′, t) gives

T (x, t) =
∫ ∞

x′=0
K(x − x ′, t) F (x′) dx′

−
∫ 0

x′=−∞
K(x − x ′, t) F (−x′) dx′ (1.100a)

In the second integral, replace −x ′ by x ′′ to get

T (x, t) =
∫ ∞

x′=0
K(x − x ′, t) F (x′) dx′ −

∫ ∞

x′′=0
K(x + x ′′, t) F (x′′) dx′′

=
∫ ∞

x′=0
[K(x − x ′, t) − K(x + x ′, t)] F (x′) dx′ (1.100b)

Plane
sink

– +

Plane
source

x

x´

x́

(a)

x

T = 0

T = 0 

(b)

FIGURE 1.10 (a) Semi-infinite body with an isothermal boundary. (b) Semi-infinite body
with T = 0 at x = 0 simulated by an infinite body with source at x′ and sink at −x′.
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since x ′ and x ′′ are dummy variables. Notice that the domain of 0 ≤ x ′ ≤ ∞ is
included in the integral of Equation 1.100b. This equation can be written in terms of
a new Green’s function,

T (x, t) =
∫ ∞

x′=0
G(x, t |x′, 0) F (x ′) dx′ (1.101a)

where the new GF is equal to

G(x, t |x′, τ) = K(x − x′, t − τ) − K(x + x ′, t − τ) (1.101b)

= [4πα(t − τ)]−1 / 2
{

exp

[
− (x − x′)2

4α(t − τ)

]

− exp

[
− (x + x ′)2

4α(t − τ)

]}
; t − τ ≥ 0 (1.101c)

This GF represents the physical problem of an instantaneous plane source of strength
H = 1 K-m times ρc and at location x ′ and at time τ in a semi-infinite body with
zero boundary conditions and zero initial conditions. The GF satisfies the following
equations:

∂2G

∂x2
+ 1

α
δ(x − x0)δ(t − t0) = 1

α

∂G

∂t
; 0 < x < ∞; t > 0 (1.102)

G(0, t |x′, τ) = 0; G(∞, t |x′, τ) = 0 (1.103)

G(x, 0|x′, τ) = 0; (1.104)

Equation 1.102 is obtained from Equation 1.94 by replacing H by 1 and T by G. The
presence of a sink at x = −x′, shown in Figure 1.10b, ensures that G is equal to zero
at x = 0. The GF given by Equation 1.101c is plotted in Figure 1.11. The curves are
given for constant values of α(t −τ) / x2 equal to 0.025, 0.05, 0.25, 1.0, and 4.0 versus
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FIGURE 1.11 GF for semi-infinite body with isothermal condition of G = 0 at x = 0.
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Plane
source

x
++

x́

x́

x Plane
source
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dT/dx = 0

dT/dx = 0

FIGURE 1.12 (a) Semi-infinite body with an insulated boundary. (b) Semi-infinite body with
∂T / ∂x = 0 at x = 0 simulated by an infinite body with source at x′ and at −x′.

x ′ / x; the same curves are obtained for fixed values of α(t − τ) / x′2 versus x / x′. The
GF is little affected by the isothermal boundary condition for α(t − τ) / x2 < 0.05.
For larger dimensionless times, the maximum G moves to larger x ′ / x values and its
magnitude decreases.

1.11.2 BOUNDARY CONDITION OF THE SECOND KIND

Next consider the case of the insulated surface (the boundary condition of the second
kind). See Figure 1.12a. This case can be treated in a similar manner as the homo-
geneous isothermal case. The differential equation, Equation 1.97, and the initial
condition, Equation 1.98, are the same, but the boundary condition is

∂T

dx

∣∣∣∣
x=0

= 0

which is a condition associated with symmetry about x = 0. (Other coordinate sys-
tems, such as radial, may not have symmetry for ∂T / ∂r = 0.)

The solution for the temperature can be obtained by using Equation 1.74 (which
is for −∞ < x < ∞ ) by making the initial temperature distribution symmetric, that
is, equal to F (x) for x > 0 and equal to F (−x) for x < 0. Then using Equation 1.74
with G(x, t |x′, 0) = K(x − x ′, t) gives

T (x, t) =
∫ ∞

x′=0
K(x − x ′, t) F (x′) dx′

+
∫ 0

x′=−∞
K(x − x ′, t) F (−x′) dx′ (1.105)

Replacing −x ′ in the second integral by x ′′ and then combining into a single integral
gives

T (x, t) =
∫ ∞

x′=0
K(x − x ′, t) F (x′) dx′

+
∫ 0

x′′=∞
K(x + x ′′, t) F (x′′) (−dx′′) (1.106a)
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T (x, t) =
∫ ∞

x′=0
[K(x − x ′, t) + K(x + x ′, t)] F (x′) dx′ (1.106b)

or, T (x, t) =
∫ ∞

x′=0
G(x, t |x′, 0) F (x ′) dx′ (1.106c)

where G(·) is given by

G(x, t |x′, τ) = K(x − x′, t − τ) + K(x + x ′, t − τ) (1.107a)

= [4πα(t − τ)]−1 / 2
{

exp

[
− (x − x′)2

4α(t − τ)

]

+ exp

[
− (x + x ′)2

4α(t − τ)

]}
; t − τ ≥ 0 (1.107b)

This expression is the GF for a semi-infinite body insulated at x = 0. This solution
can be also visualized as the result of superimposing two sources, one at x = x ′
and the other at x = −x ′. See Figure 1.12b. The GF given by Equation 1.107b is
shown in Figure 1.13 which shows xG(·) versus x ′ / x for x �= 0; if x = 0, the G(·)
function given by Equation 1.107b is twice as large as the infinite-body GF shown in
Figure 1.7. As for the boundary condition of the first kind, the GF in Figure 1.13 is
unaffected by the ∂T / ∂x = 0 boundary condition at x′ = 0 for α(t − τ) / x2 < 0.05.
Unlike that case, however, the maximum G moves to x′ / x = 0 as the dimensionless
time increases. Moreover, this case has G values (for the same x and t’s) that are
always as large or larger than the G = 0 at x′ = 0 case, Figure 1.11; the effect is
most noticeable for α(t − τ) / x2 = 0.25 to 4.0.

The method of deriving the GF given by Equation 1.107b is related to the method
of images for deriving the GFs, which is discussed in greater depth in Chapter 4.
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FIGURE 1.13 GF for semi-infinite body with insulation condition of ∂G / ∂x = 0 at x = 0.
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Example 1.4:

Find the temperature distribution in a semi-infinite body with initial temperature
T0 that has T = 0 suddenly applied at the boundary. The temperature satisfies

∂2T
∂x2 = 1

α

∂T
∂t

; x > 0; t > 0 (1.108a)

T (0, t ) = 0; T (∞, t ) → T0 = constant (1.108b)

T (x , 0) = T0; x > 0 (1.108c)

Solution

This problem has the boundary condition of the first kind and the solution is given
by Equation 1.101a with G (·) given by Equation 1.101c.

T (x , t ) =
∫ ∞

x ′=0
[K (x − x ′, t ) − K (x + x ′, t )] T0 dx ′

= T0

[
1
2

erfc
(

x − x ′
(4αt )1 / 2

)
+ 1

2
erfc

(
x + x ′

(4αt )1 / 2

)]∞

x ′=0

= T0

[(
1 − 1

2
erfc

x
(4αt )1 / 2

)
+

(
0 − 1

2
erfc

x
(4αt )1 / 2

)]

= T0

[
1 − erfc

x
(4αt )1 / 2

]
= T0 erf

x
(4αt )1 / 2 (1.109)

This solution is plotted in Figure 1.14 versus z = x /(4αt )1 / 2; also shown is erfc(z ).
The variation of temperature is most pronounced for x /(4αt )1 / 2 less than 1.0.

Example 1.5:

Find the temperature distribution in the semi-infinite body initially at zero temper-
ature, and temperature T0 is suddenly applied at boundary x = 0.The temperature
satisfies
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FIGURE 1.14 Error function (erf) and complementary error function (erfc).
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∂2T
∂x2 = 1

α

∂T
∂t

; x > 0; t > 0 (1.110a)

T (0, t ) = T0; T (∞, t ) → 0 (1.110b)

T (x , 0) = 0; x > 0 (1.110c)

Solution

This problem does not have a homogeneous isothermal boundary condition but a
related problem does. Define the new variable,

θ = T0 − T

so that

∂2θ

∂x2 = 1
α

∂θ

∂t
; x > 0; t > 0 (1.111a)

θ(0, t ) = 0; θ(∞, t ) → T0 (1.111b)

θ(x , 0) = T0; x > 0 (1.111c)

the solution for θ is given by Equation 1.109 so that the solution for T is

T (x , t ) = T0 erfc
x

(4αt )1 / 2 (1.112)

which also is shown in Figure 1.14 as the erfc(z ) curve.

1.12 FLAT PLATES

The construction of the GF by superposition of the plane sources and sinks in an
infinite body, as discussed in the previous section for the geometry of semi-infinite
body, can also be extended to the finite geometry of the flat plate. This approach is
an application of the method of images (Carslaw and Jaeger, 1959, p. 273) which
is discussed in more detail in Chapter 4. Even though the method of images can be
employed to construct the GFs (from the fundamental heat conduction solution) for
the geometry of the flat plate, there are many cases for which the GFs cannot be
readily obtained by this method; in particular, cases that involve boundary conditions
other than the first and second kinds. A more general approach for construction of the
GFs is through the use of an auxiliary problem.

1.12.1 TEMPERATURE FOR FLAT PLATES

The temperature problem that motivates the study of the one-dimensional GF for the
geometry of the flat plate is

∂2T

∂x2
+ 1

k
g(x, t) = 1

α

∂T

∂t
(1.113)

with boundary conditions

ki

∂T

∂ni

∣∣∣∣
xi

+ hiT |xi
= fi(t) (1.114)
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where ni is a unit normal coordinate directed outward from the body at the boundary.
The subscript i is either 1 or 2 to represent the two boundaries. Thus, x1 and x2 are
the locations of the left and right boundaries, respectively. The initial condition is

T (x, 0) = F (x) (1.115)

The boundary condition, Equation 1.114, represents three different kinds of bound-
ary conditions by the choice of ki , hi , and fi . These three boundary conditions are
commonly studied and are called the first, second, and third kinds.

The first kind of boundary condition (also called the Dirichlet condition) is obtained
from Equation 1.114 by setting ki = 0 and hi = 1 to get the prescribed surface
temperature

T (xi , t) = fi(t) (1.116)

where fi can also be simply zero. The second kind of boundary condition (also called
the Neumann condition) is prescribed surface heat flux

ki

∂T

∂ni

∣∣∣∣
xi

= fi(t) (1.117)

which becomes an insulated boundary if fi(t) = 0.
The third kind of boundary condition is a convective boundary condition (also

called the Robin condition) given by Equation 1.114, where fi(t) is usually hiT∞.
The most familiar form of this boundary condition is then

−ki

∂T

∂ni

∣∣∣∣
xi

= hi(T |xi
− T∞) (1.118)

where T∞ is the constant or time-varying ambient temperature.

1.12.2 AUXILIARY PROBLEM FOR FLAT PLATES

The GF associated with the temperature given by Equations 1.113 through 1.115 is
the solution to the auxiliary equation,

∂2G

∂x2
+ 1

α
δ(x − x ′)δ(t − τ) = 1

α

∂G

∂t
(1.119a)

subject to the homogeneous boundary conditions

ki

∂G

∂ni

∣∣∣∣
xi

+ hiG|xi
= 0; i = 1, 2 (1.119b)

and zero initial condition

G(x, t |x′, τ) = 0; when t < τ (1.119c)
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(Equation 1.119a is similar to Equation 1.94 with T → G and H → 1.) The auxiliary
equation for any GF is identical to the original heat conduction equation except for the
energy generation term, which is a Dirac delta function at location x′ and at time τ. The
one-dimensional GF G, defined by Equation 1.119a, has units of m−1. This is apparent
from the units of the energy generation term in Equation 1.119a [δ(x −x ′)δ(t −τ) / α,
which has units of m−3]. The homogeneous boundary conditions for the auxiliary
equation are the same kinds as for the original problem.

1.13 PROPERTIES COMMON TO TRANSIENT
GREEN’S FUNCTIONS

The properties common to GF for transient heat conduction are summarized below.

1. The GF obeys the auxiliary equation.
2. The GF is a solution of the heat conduction problem having the same geom-

etry but having homogeneous boundary conditions of the same kind as the
original heat conduction problem.

3. The GF obeys the causality relation: G ≥ 0 in the domain R for t − τ ≥ 0;
and, G = 0 in the domain R for t − τ < 0.

4. The GF obeys the reciprocity relation: G(x, t |x ′, τ) = G(x′, −τ|x, −t).
5. The time dependence of G is always t − τ, so a one-dimensional GF could

be written G(x, x′, t − τ).
6. In rectangular coordinates, the transient GF has units of: m−1 for one-

dimensional problems; m−2 for two-dimensional problems; and m−3 for
three-dimensional problems.

Every GF is a solution to an auxiliary equation with homogeneous boundary con-
ditions. The GF is always positive or zero, because it is the temperature caused by a
positive heat pulse. The causality relation relates to the idea that the GF is the response
at time t and location x to a pulse of heat occurring at time τ and at location x′. In a
real (or causal) system, there can be no response before the pulse of heat occurs.

The reciprocity relation can be understood from the auxiliary equation, Equation
1.119a. Exchanging x and x ′ in the auxiliary equation leaves the sign of the solution
unchanged because of the second derivative with respect to x. However, exchanging
t and τ changes the sign of the solution, because of the first derivative with respect
to t . Spatial orientation has no preferred direction in heat conduction, but time does
have a preferred direction.

1.14 HETEROGENEOUS BODIES

Abody composed of two or more parts with different thermal conductivities is called a
heterogeneous body (also called a nonhomogeneous body). Fourier’s law may apply to
each homogeneous subregion of such a body, but the interface where the conductivity
changes must be treated with special techniques, two of which are discussed in this
book. In Chapter 11 the Galerkin-based GF method is applied to a body with an
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inclusion. In Chapter 12 the surface element method is applied to two homogeneous
bodies in thermal contact.

1.15 ANISOTROPIC BODIES

Many bodies of engineering interest do not conduct heat equally well in all directions
and are called anisotropic bodies. Laminates, crystals, fiber/matrix composites, and
wood are among the materials that have preferred directions of heat flow. For example,
wood conducts heat along the grain more readily than across the grain.

Conductivity matrix. For anisotropic bodies, a generalized form of Fourier’s
law is used that includes a thermal conductivity matrix. For example, in rectangular
coordinates, the conductivity matrix is given by

 k11 k12 k13

k21 k22 k23

k31 k32 k33


 (1.120)

and the components of heat flux vector are given by

qi =
3∑

j=1

kij

∂T

∂xj

(1.121)

The energy equation for anisotropic bodies contains cross derivatives and its solution
is not covered here; refer to Carslaw and Jaeger (1959, p. 38) and Ozisik (1993,
Chapter 15).

Orthotropic bodies. The conductivity matrix depends on the orientation of the
coordinate system in the body. If the coordinate system is parallel to three mutually
perpendicular preferred directions of heat conduction, then the geometry is said to be
orthotropic and the coordinate system lies along the principal axes of heat conduction.
In an orthotropic body the conductivity matrix has a diagonal form,

 k11 0 0
0 k22 0
0 0 k33


 (1.122)

Wood is an example of an orthotropic body in the particular cylindrical coordinate
system (r , φ, z) corresponding to the direction of the rays, rings, and axis of the tree
(Carslaw and Jaeger, 1959, p. 41).

The energy equation for orthotropic bodies does not contain any cross derivatives
and it can be transformed into the standard isotropic energy equation by a suitable
choice of new spatial coordinates. This transformation is given in the next section.

1.16 TRANSFORMATIONS

There are several heat transfer equations that may be converted, through a transfor-
mation, into the familiar heat conduction equation. These transformations extend the
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heat conduction solutions discussed in this book to a broader range of heat transfer
problems.

Three transformations are presented for heat transfer in orthotropic bodies, in
moving solids, and in fins.

1.16.1 ORTHOTROPIC BODIES

An orthotropic body, introduced in the previous section, has direction-dependent
thermal properties whose principal values are aligned with the coordinate axes. In this
section a transformation is given to convert the orthotropic heat conduction equation
to the usual heat conduction equation.

The heat conduction equation in Cartesian coordinates for an orthotropic body is
given by

k11
∂2T

∂x2
+ k22

∂2T

∂y2
+ k33

∂2T

∂z2
+ g(x, y, z, t) = ρc

∂T

∂t
(1.123)

Define stretched coordinate axes of the form

x1 = x

(
k

k11

)1 / 2

; y1 = y

(
k

k22

)1 / 2

; z1 = z

(
k

k33

)1 / 2

(1.124)

where k is a reference conductivity. Replace these scaled coordinates into Equa-
tion 1.123 to show that the orthotropic heat conduction equation can be written

k

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
+ g(x, y, z, t) = ρc

∂T

∂t
(1.125)

That is, the heat conduction equation in an orthogonal body has been transformed
into the isotropic heat conduction equation. The boundary conditions must also be
adjusted (see Problem 3.17 at the end of Chapter 3).

The reference conductivity is not arbitrary, it must be chosen so that the original
differential volume is equal to the scaled differential volume. For the 3D Cartesian
case, the differential volume scales according to

dx dy dz = (k11k22k33)1 / 2

k3 / 2
dx1 dy1 dz1

and the requirement that dv = dv1 causes

k = (k11k22k33)
1 / 3

This requirement may be extended to other orthogonal coordinate systems.

1.16.2 MOVING SOLIDS

Heat conduction in moving solids can arise because the solid is moving, as during an
extrusion process, or when a fixed solid contains a moving heat source. If the problem
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is formulated with the coordinate system attached to the moving heat source, then a
velocity term appears in the partial differential equation for heat transfer. In this section
a transformation is given for converting the moving-solid heat transfer equation into
the (usual) heat conduction equation.

Consider a solid moving with bulk velocity U1, U2, and U3 in the x-, y-, and
z-directions, respectively. Velocities U1, U2, and U3 are assumed to be constant,
known quantities. The temperature in the moving body is described, for constant
thermal properties, by

k

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
+ g(x, y, z, t)

= ρc

(
∂T

∂t
+ U1

∂T

∂x
+ U2

∂T

∂y
+ U3

∂T

∂z

)
(1.126)

The transformation

T (x, y, z, t) = W (x, y, z, t) exp

(
U1x

2α
− U2

1 t

4α

)

× exp

(
U2y

2α
− U2

2 t

4α

)
exp

(
U3z

2α
− U2

3 t

4α

)
(1.127)

allows the moving-body heat transfer equation to be written

∂2W

∂x2
+ ∂2W

∂y2
+ ∂2W

∂z2
+ 1

k
g∗(x, y, z, t) = 1

α

∂W

∂t
(1.128)

where g∗ is given by

g∗(x, y, z, t) = g(x, y, z, t) exp

(
−U1x

2α
+ U2

1 t

4α

)

× exp

(
−U2y

2α
+ U2

2 t

4α

)
exp

(
−U3z

2α
+ U2

3 t

4α

)
(1.129)

This transformation relocates the effect of the convective heat transfer terms to the
internal-heating term. This transformation only applies to transient heat transfer, as the
time-derivative term has an active part in the transformation. The boundary conditions
must also be transformed for a complete solution to the problem.

1.16.3 FIN TERM

The fin term appears in the heat conduction equation to describe heat loss (or gain)
that is proportional to temperature. This term, named for the convective heat loss
from a fin, can also be used to represent heat loss by radiation (linearized), or heat
generation by chemical reaction.
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The heat conduction equation with the fin term is given by

∇2T − m2(T − T∞) + 1

k
g(r, t) = 1

α

∂T

∂t
(1.130)

where m2 is a constant and T∞ may be an external fluid temperature. Let θ = T −T∞
and define the transformation by

θ(r, t) = W (r, t) exp
(−m2αt

)
(1.131)

Upon replacing the transform into the heat equation, the result is

∇2W + 1

k
g∗(r, t) = 1

α

∂W

∂t
(1.132)

where

g∗(r, t) = g(r, t) exp
(+m2αt

)
(1.133)

With this transformation the effect of the fin term is shifted into the energy gener-
ation term. The boundary conditions are similarly affected. The fin transformation
can be used simultaneously with the moving-solid transformation (see homework
problem 3.28). As with the moving-solid transformation, the fin transformation only
works with transient heat transfer.

1.17 NON-FOURIER HEAT CONDUCTION

Fourier’s law of heat conduction describes heat transfer very accurately in most ap-
plications. However, it predicts that heat introduced at one point in a body is in-
stantaneously transmitted throughout the body. Of course, the size of the predicted
temperature response is vanishingly small far from the heat pulse, but with Fourier’s
law the speed of propagation is infinite. In our post-Einstein world, an infinite speed
of propagation is not physically reasonable. This means that Fourier’s law may not be
accurate in a brief time period after the heat pulse. For very short times, for very short
distances, or for temperatures very near zero kelvin, a relation other than Fourier’s
law is needed to describe energy transport. The application to microscale or nanoscale
heat transfer is presently an active area of research. Two relations for non-Fourier heat
transfer are briefly introduced here.

One relation between temperature and heat flux that allows for a finite speed of
heat propagation is given by Ozisik and Vick (1984)

α

σ2

∂q
∂t

+ q = −k∇T (1.134)

where σ is the propagation speed for heat transfer and σ2 / α is the relaxation time for
the heat flux to begin after a temperature gradient is imposed on the body. Conversely,
the heat flow does not cease immediately after the temperature gradient is removed
but dies away over a short period of time.



T&F Cat # K10695, Chapter 1, Page 42, 12-6-2010

42 Heat Conduction Using Green’s Functions

An energy equation that embodies the above finite propagation of heat may be
found by taking the divergence of Equation 1.134,

α

σ2

∂

∂t
[∇ · q] + ∇ · q = −∇ · (k∇T ) (1.135)

Now solve the vector energy equation, Equation 1.11, for ∇ · q,

∇ · q = g(r, t) − ρc
∂T

∂t
(1.136)

and substitute ∇ · q into Equation 1.135. After some rearranging, the result is

∇ · (k∇T ) +
[
g(r, t) + α

σ2

∂g

∂t

]
= ρc

∂T

∂t
+ k

σ2

∂2T

∂t2
(1.137)

This heat conduction equation includes a finite speed of heat propagation. There are
two additional terms that do not appear when Fourier’s law is used. One is a time
derivative of the energy generation g(r, t). The other term is a second derivative of
temperature with respect to time. This is a wave term and the wave speed is σ. This
wave term is said to be hyperbolic in time, and equations of this type are sometimes
described as a hyperbolic heat conduction equation. In the limiting case of infinite
propagation speed, Equation 1.137 reduces to the classic diffusive energy equation.

Strictly speaking, the above energy transport equation applies to materials that are
crystalline and nonelectrically conducting, in which heat is transferred as vibrational
lattice energy. In the language of quantum mechanics, lattice energy is transferred in
discrete quanta called phonons. In metals, heat conduction is carried both by phonons
and by free electrons. For transport of energy in metals, Qui and Tien (1992) proposed
that the electron temperature Te and the lattice temperature Tl be different and are
related by the following relation

Te(t) = Tl(t) + Cl

Γ

∂Tl(t)

∂t
(1.138)

where Cl is the capacitance of the lattice and Γ is the electron–phonon coupling
factor. Experimental and theoretical values of Γ are collected from different sources
and given by Qui and Tien (1992, Table 1). For this application, the non-Fourier
energy equation is

−∇ · q(r, t) = C
∂Tl(r, t)

∂t
+ CeCl

Γ

∂2Tl(r, t)

∂t2
(1.139)

where C = Ce + Cl and Ce is the electron capacitance. The combined effect of
electron and phonon energy transport is discussed by Tzou (1997). A GF solution for
the energy transport through the combined effects of electron transport and phonon
transport is given by Hays-Stang and Haji-Sheikh (1999).
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PROBLEMS
1.1 Calculate the gradient, ∇T , in the coordinate system given:

(a) T = 3x + 4y3 + e−2z, rectangular (x, y, z).
(b) T = 3r2 + 4 cos φ + 2z, cylindrical (r , φ, z).
(c) T = 2rφ + 2φ cos θ, spherical (r , φ, θ).
(d)

T = 2x +
∞∑

m=1

cos(mπy)

m3
e−m2π2t , rectangular (x, y, z).

1.2 Show by direct computation that (1 / r) is a solution of Laplace’s
equation in two ways. That is, show that

∇2
(

1

r

)
= 0

(a) in Cartesian coordinates where r = √
x2 + y2 + z2, and,

(b) directly in spherical coordinates.
1.3 Write out the energy equation

∇2T = 1

α

∂T

∂t

for the following special cases. Be sure to drop terms that are zero.
(a) T = T (r , t) for a long cylinder.
(b) T = T (r , z, t) for a thin film on a large surface with axisym-

metry.
(c) T = T (x, y, t) for a rectangular body.
(d) T = T (r , θ) for a rocket nose cone with axisymmetry, where θ

is the polar angle with θ = 0 along the axis of the rocket.
1.4 Show that each of the following functions satisfies the heat equation,

α∇2T = ∂T

∂t

(a) T = e−14απ2t sin(πx) cos(3πy) sin(2πz).
(b) T = exp

(
29απ2t + π(3x + 2y + 4z)

)
.

(c) T = x2 + y2 − 2z2 − 3x − 5y + 6z + 1.
1.5 Repeat the derivation of the differential energy equation in Section

1.3 but for the cylindrical coordinate system. The control volume
has the form dV = rdφ dr dz, and your result should agree with
Equation 1.12.

1.6 Show that under the assumption of a very small control volume
dv = dxdydz, the integral energy equation, Equation 1.32, can be
used to derive the differential energy equation, Equation 1.8. Use the
divergence theorem:
Given vector field �C in a control volume,∫

c.s.
n̂ · �C dA =

∫
c.v.

∇ · �C dv

where ∇ · �C is the divergence of �C and n̂ is the outward normal on
the control surface.
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1.7 Apply the integral energy equation to find the equation for a lumped
body, by applying the following assumptions: uniform thermal prop-
erties; spatially uniform temperature (T = T (t) only); insulated
body surface; and, spatially uniform internal energy generation
(g = g(t) only).

1.8 Convection at a solid surface is described by Newton’s law of cool-
ing, q = h(Tsurf ace − Tf luid ). Using this expression for surface
convection in the integral energy equation, Equation 1.32, derive the
convection boundary condition at surface x = 0 in a semi-infinite
body. Use a very thin control volume (take the limit as thickness
→ 0) that encloses the body surface. The result should agree with
Equation 1.16. What is fi in this case?

1.9 Show that the steady GF solution equation, Equation 1.44, satisfies
the steady heat equation, Equation 1.36, by direct substitution.

1.10 Derive the steady GF for the slab with the following boundary con-
ditions:

G(x = 0) = 0

G(x = L) = 0

Check your answer with case X11 in Table X.3 in Appendix X.
1.11 Derive the steady GF for the slab with the following boundary con-

ditions:

at x = 0, ∂G / ∂x = 0

at x = L, k∂G / ∂x + hG = 0

Check your answer with case X23 in Table X.3 in Appendix X.
1.12 Using the GF from Problem 1.11, find the steady temperature in the

slab caused by uniform energy generation. That is, find the temper-
ature that satisfies the following equations:

∂2T

∂x2
+ g0

k
= 0

∂T / ∂x = 0 at x = 0

k∂T / ∂x + hT = 0 at x = L

1.13 Show that the Dirac delta function has the following properties,
where a is a nonzero constant and function f (t) is continuous at
the origin. Note: The delta function is defined by its integral behav-
ior, so that by an equation such as δ(−t) = δ(t) we mean that∫ ∞

−∞
f (t) δ(−t) dt =

∫ ∞

−∞
f (t) δ(t) dt

and you have to verify that both sides of the equation reduce to f (0).

(a) δ(−t) = δ(t)
(b) δ(at) = δ(t) / |a|
(c)

∫ t
−∞ δ(τ) dτ = H (t)
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1.14 The Dirac delta function can be used to define derivatives of dis-
continuous functions. Find the derivative of |x|, sin |x|, and cos |x|.
(Hint: let |x| = x sign(x).)

1.15 Find the Laplace transform of the following functions by direct inte-
gration of the definition of the Laplace transform. Here a and b are
constants. If you use an integral table, give a detailed reference.

(a) a

(b) a + bt

(c) eat

(d) sin(at)
(e) δ(t − a)

1.16 By substituting K(x−x′, t−τ) into Equation 1.90a for T (x, t), verify
that K(x − x′, t − τ) is a solution. What is the initial condition?

1.17 Given the following heat conduction problem,

∂2T

∂x2
= 1

α

∂T

∂t
= 0, 0 < x < L

T (x = 0, t) = T0

T (x = L, t) = T0

T (x, t = 0) = T1

use normalized variables given by

x+ = x / L; t+ = αt / L2; θ = T (x, t) − T0

T1 − T0

to restate the problem with x+, t+, and θ in place of x, t , and T .
1.18 Verify the identity for ierfc, Equation 1.88, using integration by parts.
1.19 Investigate the behavior of the approximation of erfc(x) given by

π−1 / 2 exp(−x2)

[
1

x
− 1

2x3
+ 1 · 3

22x5
− 1 · 3 · 5

23x7
. . .

]

for a given x > 1 as the number of terms is increased. Verify that
the error is less in absolute value than the last term retained.

1.20 Find the temperature distribution in a semi-infinite body with the
initial temperature given by

T = x for 0 < x ≤ 1 and T = 0 for x > 1

The surface temperature at x = 0 is maintained at zero temperature.
(Appendix I may be helpful.)

1.21 Find the temperature in a semi-infinite body with the initial temper-
ature given by

T = T1
x2

L2
+ T0 for 0 < x ≤ L and T = T0 for x > L

The surface at x = 0 is insulated. (Appendix I may be helpful.)



T&F Cat # K10695, Chapter 1, Page 46, 12-6-2010

46 Heat Conduction Using Green’s Functions

1.22 The temperature due to a specified heat flux boundary condition
(nonhomogeneous boundary condition of the second kind) in a semi-
infinite body may be found by using a planar heat source located at
the surface. Find the temperature resulting from a volumetric heat
source given by

g(x, t) = q0δ(x − 0)

Also, find the heat flux through the point x = a inside the body.
1.23 Derive the below expression for the heat flux at x starting with T (x, t)

given by Equation 1.87,

q(x, t) = qx0

2
sign(x − x0)erfc

[ |x − x0|
(4αt)1 / 2

]
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2 Numbering System
in Heat Conduction

2.1 INTRODUCTION

The number of exact solutions in transient heat conduction and diffusion is extremely
large and is growing. These solutions are needed for thermal modeling of various
devices, as test cases for finite difference/element programs, and as influence functions
for the unsteady surface element method (see Chapter 12). Solutions are given in
many different papers, government reports, and industry reports. Because of the lack
of organization of the solutions, it was frequently easier to rederive a solution than
to search for it. With the advent of the internet and inexpensive computer storage,
the development of specialized data bases has become practical, and they exist in
medicine, law, and many other fields.

There is considerable variation among existing numbering systems. Most iden-
tification numbers have meaning only when a look-up table, or key, is consulted.
For example, the Chemical Abstracts Service (CAS) assigns numbers to chemical
compounds in the order they are discovered, so the CAS number itself contains no
technical information on the compound. Many numbering systems contain some use-
ful information in the numbers themselves. For example in a postal zip code, the first
one or two digits can indicate a general location. A few numbering systems embody
a great deal of information in the number itself. The number system of Butkovskiy
(1982) and Butkovskiy and Pustylnikov (1993) identifies differential equations in the
form (p, q, r). Integer p denotes the number of spatial dimensions in the domain,
integer q denotes the highest derivative with respect to time, and integer r denotes
the highest derivative with respect to space.

The purpose of this chapter is to present a number system for heat conduction
and diffusion for which the number itself contains a great deal of information. Such
a system not only simplifies the construction of a computer data base such as the
Green’s Function Library (Cole, 2009) but it makes locating existing solutions less
tedious and lowers the effort needed to derive new solutions. The number system was
first proposed by Beck and Litkouhi (1985) and other discussions are given in Beck
(1984, 1986).

The numbering system covers basic geometries such as plates, cylinders, and
spheres. Irregular geometries such as plates with several randomly spaced holes are
not covered in the numbering system. This book deals mainly with solutions for
temperature-independent thermal properties, but the numbering system can be em-
ployed for nonlinearities caused by temperature-variable properties.

The numbering system is specifically developed for transient diffusion and heat
conduction. The same concepts, however, are applicable to other fields, such as

47
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convective heat transfer, fluid mechanics, and wave phenomena. Steady state is cov-
ered because it is included by the more general transient notation.

The plan of this chapter is first to give the numbering system for geometry and
boundary conditions in Section 2.2. Section 2.3 provides boundary condition mod-
ifiers to describe the time and/or space variations of the nonhomogeneous term at
a boundary. Section 2.4 gives an initial temperature distribution numbering system,
and Section 2.5 provides a numbering system to treat interfaces between bodies. Sec-
tion 2.6 gives a numbering system for the volumetric energy generation term g(x, t),
and then Section 2.7 gives some examples of the numbering system. The chapter
concludes with Section 2.8, further discussion of advantages of the numbering system.

We recognize that not all readers will share our enthusiasm for the heat conduction
numbering system. However, it is important that readers have some knowledge of
the numbering system in order to use the extensive appendices of Green’s functions
(GFs) in this book. Most of the book will be accessible to the reader with a working
knowledge of Section 2.2 on the numbering system for geometry and boundary con-
ditions. Some readers may prefer to read Section 2.2 and then jump ahead to Chapter 3
on the Green’s function solution equation (GFSE). Later these readers can return to
Chapter 2 to learn more about the numbering system as the need arises.

2.2 GEOMETRY AND BOUNDARY CONDITION
NUMBERING SYSTEM

For the rectangular coordinate system, the symbol X is used to denote the
x-coordinate; Y is used to denote the y-direction; and Z is used to denote the
z-direction. For a two-dimensional problem involving x and y-coordinates, X and
Y are used; for a three-dimensional problem, X, Y , and Z are used. The three-
dimensional equation for transient conduction with constant, isotropic thermal con-
ductivity k is

k

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
= ρc

∂T

∂t
(2.1)

For the cylindrical coordinates, r , φ, x, the symbol R is for r , Φ is for the angle φ,
and X is for the axial coordinate. For constant k, the three-dimensional equation is

k

[
1

r

∂

∂r

(
r
∂T

∂r

)
+ 1

r2

∂2T

∂φ2
+ ∂2T

∂x2

]
= ρc

∂T

∂t
(2.2)

For spherical coordinates, r , φ, θ, the symbols are RS, Φ, Θ, respectively. The symbol
RS is used to denote the radial-spherical coordinate direction. The angle φ for both
the cylindrical and spherical coordinates goes from 0 to 2π.

Six different boundary conditions are given and are numbered 0, 1, 2, 3, 4, and 5.
See Table 2.1.

The first kind of boundary condition is the prescribed temperature at boundary i,

T (ri , t) = fi(ri , t) (2.3)
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TABLE 2.1
Types of Boundary Conditions

Notation Name of Boundary Condition Description of Boundary Condition

0 Zeroth kind (natural) No physical boundary
1 Dirichlet Prescribed temperature, Equation 2.3
2 Neumann Prescribed heat flux, Equation 2.4
3 Robin Convective condition, Equation 2.6
4 Fourth kind (Carslaw) Thin film, no convection, Equation 2.7
5 Fifth kind (Jaeger) Thin film, convection, Equation 2.8

where fi(ri , t) is the space- and time-dependent surface temperature. For a one-
dimensional case atx = 0, fi(·) can be a function of time only, such asT (0, t) = f1(t).
For a two-dimensional case with coordinates x, y, at x = x1, T (x1, y, t) = f1(y, t).

The second kind of boundary condition is prescribed heat flux,

k
∂T

∂ni

∣∣∣∣
ri

= fi(ri , t) (2.4)

where ni is an outward pointing normal. For a one-dimensional case of boundaries
at x1 = 0 and x2 = L, n1 = −x and n2 = x; the boundary conditions are

−k
∂T

∂x

∣∣∣∣
x=0

= f1(t) k
∂T

∂x

∣∣∣∣
x=L

= f2(t) (2.5a, b)

and f1(t) and f2(t) are heat fluxes directed toward the surfaces.
The third kind is a convective boundary condition,

k
∂T

∂ni

∣∣∣∣
ri

+ hiT
∣∣
ri

= fi(ri , t) (2.6)

where hi is the heat transfer coefficient and fi(ri , t) is usually equal to hiT∞ with T∞
being the ambient temperature, but fi(ri , t) can also include a prescribed heat flux.

The fourth kind is for a thin film at a surface with a prescribed heat flux fi(·),

k
∂T

∂ni

∣∣∣∣
ri

= fi(ri , t) − (ρcb)i
∂T

∂t

∣∣∣∣
ri

(2.7)

The product (ρcb)i is for the film at the ith surface, and bi is its thickness. A physical
example of this type of boundary condition is heat transfer into a large ceramic
object with a thin metal coating on the surface. The temperature distribution in the
metal coating may be neglected across the small thickness bi because the thermal
conductivity of the metal is large compared to the ceramic, but storage of thermal
energy in the metal coating may not be neglected. This boundary condition can also
describe a surface film composed of a well-stirred fluid with heat capacity of (ρcpb)i .
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The fifth kind of boundary condition is for a thin film permitting heat losses from
the film by convection,

k
∂T

∂ni

∣∣∣∣
ri

+ hiT
∣∣
ri

= fi(ri , t) − (ρcb)i
∂T

∂t

∣∣∣∣
ri

(2.8)

The boundary condition of the fifth kind is physically identical to the fourth kind
except that instead of a specified heat flux on the thin film at the surface there is a
specified heat transfer coefficient h.

Another important case is the zeroth kind. It is for conditions for which there is no
physical boundary; it is sometimes called a natural boundary condition. It includes
several cases, one of which is in the rectangular coordinates when a boundary extends
to infinity. For example, a semi-infinite body that is convectively heated at x = 0 is
denoted X30. Another case is for the center of radial cylindrical and spherical bodies
that are solid. A solid cylinder with a prescribed surface heat flux is denoted R02.
The case associated with a convective boundary condition at r = a and a spherical
domain outside r = a is denoted RS30. Another case is for a thin annular ring which
is denoted Φ00.

Cases included by this numbering system are organized in Figures 2.1 through 2.3;
notice that the structural arrangement of each of these cases is different, with the radial
coordinate having the largest number of distinct cases and the angular, the least.
Figure 2.1 is for the Cartesian coordinate x and includes 21 distinct cases; others such
as X12 can be listed but these can be found by a simple change of coordinates (i.e.,
x → L − x, where L is the plate thickness). Notice that the cylindrical radial chart
shown in Figure 2.2 includes 26 cases because the RI0 (I = 1, . . . , 5) geometries are
quite different from the R0I geometries, the former being the infinite region bounded

Infinite geometry

X00

X10

X20

X30

X40

X50

Semi-infinite
geometry

X11

X21 X22

X31

X41

X51 X52 X53 X54 X55

Finite geometry

No steady state (zero eigenvalue)

21 cases

X44X43X42

X32 X33

FIGURE 2.1 Distinct cases for one-dimensional Cartesian geometries.
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Infinite geometry

R00

R10

R20

R30

R40

R50 R51 R52 R53 R54 R55

R44R43R42R41

R31 R32 R33

R22R21

R11

R01 R02 R03 R04 R05
Solid cylinder

26 cases

No steady state (zero eigenvalues)

Annulus geometryRegion outside
cylinder

FIGURE 2.2 Distinct cases for one-dimensional cylindrical radial geometries.

Complete ring

Φ00

Φ11

Φ21

Φ31

Φ41

Φ51 Φ52 Φ53 Φ54 Φ55

Φ44Φ43Φ42

Φ32

Φ22

No steady state (zero eigenvalue)

Partial ring

16 cases

Φ33

FIGURE 2.3 Distinct cases for ring geometries.

internally by the radius r = a and the latter for solid cylinders of radius a. For annular
geometries with boundary radii of a and b, neither I nor J in RIJ are equal to zero.
The spherical radial cases RSIJ is similar to Figure 2.2 with R replaced by RS. For the
cylindrical coordinate φ and small changes in r , a ring is obtained; cases are displayed
in Figure 2.3. The special case in Figure 2.3 is for a complete ring. There are neither
Φ0I nor ΦI0 cases with I �= 0. Except for the Φ00 case, the ΦIJ cases in Figure 2.3
have similar mathematical solutions as the corresponding XIJ cases of Figure 2.1.

There are three special finite-body cases in Figure 2.1 which (usually) have no
steady state, namely X22, X42, and X44. There are five such special cases in
Figure 2.2 and four in Figure 2.3. Mathematically, these cases are associated with
zero eigenvalues. From a physical perspective, these cases do not have a steady state
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for time-independent values of fi(·) in Equation 2.4 or 2.7 (unless there is the special
case of zero net heat added). The Φ00 case is unique since there are no physical
boundaries; however, in this case (and the special finite bodies cases) there is no
steady state for a constant volume source in the respective bodies.

For the infinite and semi-infinite geometries of Figures 2.1 and 2.2, i.e., the first
column in both figures, steady state is not usually attained in finite times.

2.3 BOUNDARY CONDITION MODIFIERS

The boundary conditions of the first through fifth kinds are denoted as indicated
in Section 2.2 but the time and/or space variation must also be specified. This
means that the function fi(ri , t) in Equations 2.3, 2.4, 2.6 through 2.8 must be de-
scribed. For one-dimensional cases, fi can be only a function of time. The one-
dimensional case is first considered and then the two- and three-dimensional cases
are discussed.

For one-dimensional cases, the function fi(t) includes zero (denoted B0), constant
with time (B1) (actually a step increase at t = 0), linear with time (B2), some
power other than 1 of t (B3), exponentials (B4), two or more step changes (B5),
and sinusoids (B6). See Table 2.2. Only the basic cases are given specific notation.
Solutions permitting an arbitrary time variation are indicated by a dash (–).

For one-, two-, or three-dimensional bodies, the geometry and boundary condi-
tion descriptors are followed by the boundary condition modifier BIJ. An example is
X12B14 where the B14 indicates that the boundary condition of the first kind (pre-
scribed T) at x = 0 is nonzero constant and the boundary condition of the second
kind (prescribed q) at x = L has an exponential dependence on time. In general, two
indices follow B but there are exceptions. Only one index is needed when there is
a boundary condition of the zeroth kind such as X20B1 or R03B1, where the B1’s

TABLE 2.2
Types of Time- and Space-Variable Function at Boundary Conditions

Space-Variable
Time-Variable Boundary Function

Notation Boundary Function Notation (Two-Dimensional)

B- Arbitrary f (t) Bx- Arbitrary f (x)
B0 f (t) = 0
B1 f (t) = C

B2 f (t) = Ct Bx2 f (x) = Cx

B3 f (t) = Ctp , p > 1 Bx3 f (x) = Cxp , p > 1
B4 f (t) = exp(−at) Bx4 f (x) = exp(−ax)
B5 Step changes in f (t) Bx5 Step changes in f (x)
B6 sin(ωt + E), cos(ωt + E) Bx6 sin(ωx + E), cos(ωx + E)
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describe the nonzero boundary conditions. If both boundaries are of the zeroth kind
(e.g., X00, R00, and Φ00), then the B modifier is not used.

For two-dimensional cases the variation of f (·) at a boundary can be a function of
space as well as time. For a two-dimensional problem involving x- and y-coordinates
and at ay surface,f (·) could be a function ofx alone, a function of t alone, or a function
of x and t . If f = f (x), then the boundary condition is denoted BxI , I = 2, . . . , 6
(since I = 0 and 1 are not needed here). If f = f (x, t), then the notation B(xI tJ )
(where I is for x and J for t) can be used. Generalization to three-dimensional cases
is direct; for example, f = f (x, z, t) has the modifier B(xIzJ tK) with appropriate
values of I , J , and K corresponding to x, z, and t . The parentheses are used to enclose
notation for a single boundary.

2.4 INITIAL TEMPERATURE DISTRIBUTION

The initial temperature distribution is given in general coordinates by

T (r, 0) = F (r) (2.9)

and for a one-dimensional case with x being the coordinate,

T (x, 0) = F (x) (2.10)

A numbering system for F (·) is given that is analogous to that for the boundary
conditions. The letter T is followed by digits 0, 1, . . . , 7, as shown in Table 2.3. The
coordinate r in Table 2.3 represents any single space coordinate such as r , x, or φ.
Figure 2.4 displays some one-dimensional cases and gives the numbers including
the notation for the initial temperature distribution. For two- and three-dimensional
cases, see Figures 2.5 and 2.6 which are discussed in Section 2.6. For steady state
problems, the initial condition index T and the associated digit are not used.

TABLE 2.3
Types of Space-Variable Initial Conditions

Single Space-Variable
Notation Initial Condition

T - Arbitrary F (r)
T 0 F (r) = 0
T 1 F (r) = C

T 2 F (r) = Cr

T 3 F (r) = Crp , p not 0 or 1
T 4 F (r) = exp(−ar)
T 5 Step changes in F (r)
T 6 sin(ωr + E), cos(ωr + E)
T 7 Dirac delta function, δ(r − r0)
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(f )(e)

q = 5e–2t

q = 5t2

T = 6

Thin ring segment

φ

R02B4T1

Φ12B13T0

a

F = 2
F = 0

L(a) (b) (c) (d)

F = 0

x

T = 0
F = 0

x

T = t F = 2x

x

T = 0 F = 2x

x

T = t

q = 10 q = 10
X21B10T0 X21B02T0 X21B00T2 X21B12T2

L L L

FIGURE 2.4 Some one-dimensional examples of numbering system.

2.5 INTERFACE DESCRIPTORS

The numbering system also applies to composite bodies. The interface conditions
are denoted in a manner similar to the boundary conditions. For perfect contact, a
capital C is used for the interface. For example, a plate perfectly bonded to another
one, with prescribed temperatures on either side is denoted, X1B-CX1B-T -, for
arbitrary time-variation of the surface temperatures and arbitrary initial temperature
distribution.

For other conditions the letter C is followed by a single digit; see Table 2.4. The
notation C2 is used to denote a perfect contact with a heat source at the interface;
since heat flux is involved, it is analogous to the boundary condition of the second
kind, hence the use of 2. The notation C3 is used to denote an imperfect contact
at location ri with a contact conductance of hc at the interface (analogous to the
boundary condition of the third kind)

−k
∂T

∂ni

∣∣∣∣
r−
i

= hc(Tr−
i

− Tr+
i

) = −k
∂T

∂ni

∣∣∣∣
r+
i

(2.11)

The C4 case is for a thin film (or well-stirred fluid) in perfect contact at the interface,

−k
∂T

∂ni

∣∣∣∣
r−
i

= (ρcb)i
∂T

∂t

∣∣∣∣
r+
i

−k
∂T

∂ni

∣∣∣∣
r+
i

(2.12)

where (ρcb)i is for the thin film or well-stirred fluid.
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y
T = C

h = 5

y

x

T = 0
F(x,y) = 2x

b

q = 1
X21B00T2Y20Bx5

q0 = 1

x

a

F(r, x) = 0

R02B0T0X20Br5
R20Bφ6T1Φ00

r

r

a

q = sinπφ

F(r, φ) = 100

φ

xaq = 5t

X13B01T0Y21B21

(a) (b)

(c) (d)

F(x, y) = 0

b

T = 0 T∞ = 200

FIGURE 2.5 Two-dimensional examples of numbering system.

2.6 NUMBERING SYSTEM FOR g(x, t)

A notation for the geometry and for the boundary conditions is given in previous
sections. In this section, extensions to the numbering system are given to classify the
volumetric source term g(x, t).

The notation for the volumetric source term g(x, t) is indicated by a capital G

followed by up to four modifiers to denote the x and t dependence. The notation is
GxItJ , where xI represents the x dependence, and tJ represents the time dependence
of the volume source term. The values I and J can assume the values 0, 1, 2, . . . , 7,
or the dash (–) to represent different functions. See Table 2.5 for a listing of notation
for the source term.

Several examples of the notation for the source term are presented below. For a
source term of the form

g(x, t) = 10xt
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x

q = 0
(a)

q = c

y

z F(x, y, z) = 0

For all vertical
surfaces, q = 0

X22B00T0Y22B00Z20B(x5y5)
∞

F(x, y, z) = 300

q = 10t

x

T = 6x

h = 100

y

b b

0
0 c z

q = 500

Side view
X33B11T1Y21Bt2x2Z22B0x5

(b)

y

h = 5

T∞ = 500

T∞ = 1000

0
0 aFront view

FIGURE 2.6 Three-dimensional examples of numbering system.

TABLE 2.4
Types of Interface Conditions

Notation Description of Interface Condition

C Perfect contact
C2 Perfect contact with source at interface
C3 Finite contact conductance
C4 Thin film at interface, perfect contact

the notation is Gx2t2. A source term of the form

g(x, t) = 10x

is denoted Gx2t1, or simply Gx2, since the modifier t1 is not needed to state that
g(x, t) does not depend on time. An even simpler case is

g(x, t) = 2
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TABLE 2.5
Notation forTime-Variable SourceTerms

Notation Time Variation

Gt- Arbitrary, g(t)
Gt0 g(t) = 0
Gt1 g(t) = C

Gt2 g(t) = Ct

Gt3 g(t) = Ctp , p �= 0 or 1
Gt4 g(t) = exp(−at)
Gt5 Step changes in g(t)
Gt6 sin(ωt + E), cos(ωt + E)
Gt7 Dirac delta function, δ(t − t0)

which is denoted Gx1t1 or more simply, G1. For the case where g(x, t) is composed
of a sum of several terms, such as

g(t) = a0 + a1t + a2t
2

the notation is Gx1t(1, 2, 3) or Gt(1, 2, 3). Due to linearity of the heat conduction
problem, the solution to the problem with source term Gt(1, 2, 3) can be found as the
sum of three problems,

Gt(1, 2, 3) = Gt1 + Gt2 + Gt3

2.7 EXAMPLES OF NUMBERING SYSTEM

The proposed numbering system can be used to describe a very large number of
cases. Some one-dimensional cases are shown in Figure 2.4. The first four cases of
Figure 2.4 are for the same basic case of X21. Figure 2.4a depicts a plate with a
constant heat flux at x = 0 (boundary condition of the second kind) and T = 0 at
x = L (condition of the first kind). The initial temperature is zero. The number for
this case is X21B10T 0 where the 1 following B is for q = C at x = 0 and the
0 following B1 is for the T = 0 condition at x = L. See Table 2.2. The problem
of Figure 2.4b has an insulated surface at x = 0, a linear time variation of temper-
ature at x = L and a zero initial temperature; its number is X21B02T 0. The two
in B02 is for the linear time variation at x = L. Figure 2.4c has f = 0 at both
boundaries but the initial temperature is a linear function of x and thus is denoted
X21B00T 2. The case shown by Figure 2.4d includes all the nonzero fi and F values
of Figure 2.4a, b, and c.

A cylindrical radial case is shown in Figure 2.4e. Depicted is a solid cylinder with
a heat flux of exponential form at r = a and the initial temperature is a constant.
Figure 2.4f is for a segment of a thin ring.

Some two-dimensional cases are illustrated in Figure 2.5. A rectangular plate is
shown in Figure 2.5a. The number description in the x-direction is similar to that for
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a one-dimensional case and it is then followed by the one in the y-direction. Since
the initial temperature is known to be zero, it is redundant to repeat this information
with the y-direction notation. Another two-dimensional case is shown in Figure 2.5b;
it is for a plate that is finite in the x-direction and semi-infinite in the y-direction.
For the x-direction, the boundary conditions are of the second and first kinds and are
homogeneous, but the initial temperature distribution is linear with x; thus this part of
the notation is X21B00T 2. For the y-direction, there is a step increase in q at x = 0
and a step decrease at x = b, and there is no physical boundary for large y. Hence,
the notation in the y-direction is Y20Bx5 where the Bx5 notation is for the steps in
q in the x-direction at the y = 0 boundary. There is no y-direction dependence of the
initial temperature so it is omitted in the notation.

A case of a body outside the cylindrical radius of r = a is shown by Figure 2.5c.
There is a sinusoidal variation with φ of the surface heat flux and the initial temperature
distribution is constant. The notation is R20Bφ6T 1Φ00. The Bφ6 describes the
boundary condition at r = a and no index is needed for r → ∞ where there is no
physical boundary.

Figure 2.5d displays a semi-infinite cylinder that is insulated at all surfaces except
at the center at the top where a circular heat flux is applied. The initial temperature
is zero. The number for this case is R02B0T 0X20Br5 where the Br5 notation is
used because the heat flux is not constant with r but can be considered to have a step
increase at r = 0 and a step decrease r = a. If the heat flux were over the circular
region shown and also varied as ct in time, Br5 would be replaced by B(r5t2) where
the parentheses are used to denote that both conditions apply at the same boundary.

The numbering system readily extends to three-dimensional cases such as given
in Figure 2.6. The first case is for a semi-infinite rod that is insulated on all surfaces
except there is a constant heat flux over a rectangular region at z = 0. The case of a
rectangular block is shown in Figure 2.6b, where front and side views are shown.

2.8 ADVANTAGES OF NUMBERING SYSTEM

There are several types of advantages of the numbering system. The first relates to
a data base of conduction solutions. The second relates to an algebra that can be
given for linear problems. The last major advantage relates to use of the method
in conjunction with GFs to obtain solutions for linear problems; full explanation is
deferred until after Chapter 3.

2.8.1 DATA BASE IN TRANSIENT HEAT CONDUCTION

One of the obvious advantages of a numbering system is that it facilitates the or-
ganizing of a data base. A structure is provided that makes the storage of solutions
easier. Also important is that it greatly reduces the effort in locating solutions. Instead
of relying on imprecise verbal titles of papers (or abstracts) to describe a particular
problem, a search based on the notation given herein can be much more direct and
less prone to miss related solutions.
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TABLE 2.6
Some One-Dimensional Cases in Carslaw and Jaeger (1959)

Number Page Equation Comments

X00T 5 54 3 T (x, 0) = T0, −a < x < a; T (x, 0) = 0, |x| > a

X10B1T 0 60 10
X10B3T 0 305 6 T (0, t) = T0t

n / 2, n = 1, 2, . . .
X11B00T 1 96 6
R01B0T 1 199 5
R01B1T 0 331 3 Small time solution

The numbering system has been utilized to catalog most of the solutions of Carslaw
and Jaeger. An example of a portion of data base for some solutions is given in
Table 2.6. A more complete tabulation is available on the Green’s Function Library
internet site (Cole, 2009). Table 2.6 gives numbers of some one-dimensional cases
from Carslaw and Jaeger (1959). The first column contains the number; the second
and third columns give the page and equation numbers of the reference; and the last
column contains some comments.

2.8.2 ALGEBRA FOR LINEAR CASES

For linear cases, several kinds of algebraic manipulations are possible. This brief
discussion can include only a few possibilities.

One case involves boundary conditions of the zeroth, first, and third kinds and the
uniform initial temperature distribution. An example is

[X10B1T 0|T (0,t)=T0 ] = T0[1 − (X10B0T 1|T (x,0)=1)] (2.13)

where T0 is a constant.
In addition to relating boundary conditions and the initial temperature, the nota-

tion suggests a method of superimposing solutions. The number of nonzero values of
the indices following B and T give the number of superposition problems that can
be formed; this is the number of “forcing” terms. An example is provided by the first
four cases of Figure 2.4. The Figure 2.4d case is the sum of the first three cases,

X21B12T 2 = X21B10T 0 + X21B02T 0 + X21B00T 2 (2.14)

Notice that B12 contains two nonzero digits and T 2 contains one; hence, the case
of Figure 2.4d can be given as the sum of three problems. The same superposition
principles can be used for the two-dimensional problem of Figure 2.5a.

Another type of superposition is possible for more than one forcing term at a
boundary. An example is for the Figure 2.4a case with

q = 10 + 5t (2.15)
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The temperature solution can be written as

T |q=10 + 5t = 10 [X21B10T 0|q=1] + 5 [X21B20T 0|q=t ] (2.16)

Another aspect of the algebra for the numbering system is that it can aid in identi-
fying the number of explicit dimensions of a problem. A plate is a three-dimensional
object but the temperature distribution can be an explicit function of only one or two
coordinates. Boundary conditions of the zeroth, second, and fourth kinds have the
potential of reduction in the number of dimensions while the first, third, and fifth kinds
do not. However, for reduction in the number of the dimensions, both boundaries in
a given direction must be homogeneous and there cannot be any explicit dependence
of the initial temperature or g in that direction.

As an example, consider the case of a cube which is at zero initial temperature
and there is no volumetric energy source. At time zero, each surface is heated with a
constant heat flux (which may or may not be the same for each face). The number for
this case is X22B11Y22B11Z22B11T 0 and the solution is equal to the sum of six
one-dimensional problems,

X22B11Y22B11Z22B11T 0 = X22B10T 0 + X22B01T 0 + Y22B10T 0

+ Y22B01T 0 + Z22B10T 0 + Z22B01T 0
(2.17)

This reduction of dimensions on the right side of Equation 2.17 is because the typical
three-dimensional problem of X22B10Y22B00Z22B00T 0 reduces to

X22B10Y22B00Z22B00T 0 = X22B10Y22B00T 0 = X22B10T 0 (2.18)

Note that the Y22B00 and the Z22B00 conditions have boundary conditions of the
second kind and are homogeneous.

An example that does not reduce in the same manner is for a cube initially at
T = 0 and subjected to a step increase in temperature on each surface (i.e., a constant
temperature with time and over the surface). The number and algebra for this case are

X11B11Y11B11Z11B11T 0

= X11B10Y11B00Z11B00T 0 + X11B01Y11B00Z11B00T 0

+ X11B00Y11B10Z11B00T 0 + X11B00Y11B01Z11B00T 0

+ X11B00Y11B00Z11B10T 0 + X11B00Y11B00Z11B01T 0 (2.19)

Each of these problems is three-dimensional although simplifications in the solutions
result because the problems are similar. If each surface of the cube is subjected to the
same temperature condition (or even convective boundary condition), the GF solution
leads to further simplifications. For example, if the cube is initially at temperature T0,
and suddenly immersed in a fluid at T∞ = 0 with the same h on each surface, the
temperature distribution is given by

X33B00Y33B00Z33B00T 1

= T0[X33B00T 1|F=1][Y33B00T 1|F=1][Z33B00T 1|F=1] (2.20)
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This is related to the multiplication of solutions associated with one-dimensional
solutions which are discussed in undergraduate heat transfer textbooks.

The possible uses of this numbering system for transient heat conduction and
diffusion are numerous and these can be considerably expanded beyond what is
outlined in this book.

PROBLEMS
2.1 Give the numbering system designation for Example 1.1 of

Chapter 1.
2.2 Give two numbers for Equation 1.83 that are valid for x > 0.

(Answer: X00T 5 and X20B0T 5)
2.3 Give two numbers for Equation 1.84 that are valid for x > 0.
2.4 Give the numbering system designation for Example 1.3 of

Chapter 1.
2.5 Give the number for the temperature given by Equation 1.92 and by

Equation 1.96b; these are two interpretations of the relation between
temperature and the Green’s function.

2.6 Give the numbering system designation for Example 1.4 of
Chapter 1.

2.7 Give the numbering system designation for Problem 1.22 of
Chapter 1.

2.8 Give the number for the problem with the same geometry and bound-
ary condition shown in Figure 1.12a with the initial temperature
being a constant and with a constant volumetric energy source.

2.9 Give the number for Figure 2.4d with F = 6, q = 2. At x = L,
T = 5 + 2 sin 4t .

2.10 Using the numbering system for conduction, give the numbers for the
following one-dimensional cases, each of which satisfies the partial
differential equation,

∂C

∂t
= D

∂2C

∂x2
0 < x < L t > 0

with conditions:

(a) C(0, t) = C0, C(L, t) = 0, C(x, 0) = 6 sin 2πx / L.
(b) + ∂C / ∂x = 0 at x = 0, C(L, t) = C0, C(x, 0) = C1.
(c) C(0, t) = 3 + 4t2, C(L, t) = cos 2t , C(x, 0) = cos 2x.

2.11 Write the describing differential equation, boundary conditions, and
initial condition for the problem denoted X24B21G1T 0.

2.12 For the partial differential equation for cylindrical heat flow with
volume energy generation, give the numbers for the following
cases.

(a) A solid cylinder is initially at a uniform temperature and is sud-
denly plunged into a fluid at a temperature of T∞; where g = 0.

(b) A hollow cylinder is initially at a uniform temperature is insulated
at the inner surface and is heated by a constant heat flux at the
outer surface; g = 5.
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(c) The region is that outside the radius of r = a and a constant heat
flux exists at r = a. The initial temperature is T0 and g = 0.

(d) The geometry is the same as shown in Figure 2.5d but q at x = 0
is sin πr / a for r < a and zero for larger values of r . The initial
temperature is a function of r and φ.
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3 Derivation of
the Green’s Function
Solution Equation

3.1 INTRODUCTION

The Green’s function solution equation (GFSE) for transient heat conduction is de-
rived in this chapter in several forms. First, the one-dimensional form for rectangular
coordinates is derived for boundary conditions of the first, second, and third kinds.
This form is easy to understand and examples are included to demonstrate how the
equation is applied. Second, the GFSE is derived in a general three-dimensional form
that applies to rectangular, cylindrical, and spherical coordinates. An even more gen-
eral form of the GFSE is derived in Chapter 10; it covers the case of nonhomogeneous
materials. Third, an alternative form particularly appropriate for nonhomogeneous
boundary conditions is given. Fourth, a steady-state form is given and, finally, the
GFSE is given for moving solids.

This chapter contains background material that, although important, is not essential
to the application of the Green’s functions (GF) method. One can begin with the GFSE,
choose the correct GF, evaluate the integrals, and find the solution for temperature.
However, an understanding of the GFSE will lead to a greater understanding of the
GFs themselves.

This chapter covers the derivation of the one-dimensional GFSE in Section 3.2
and a general vector-based form in Section 3.3. Section 3.4 contains an alternative
form of the GFSE (AGFSE) which may be helpful for nonhomogeneous boundary
conditions when slow convergence is a concern. Section 3.5 covers the m2T term
which is associated with fins. Section 3.6 covers the steady-state GSFE as a limit of
the transient case. Finally, Section 3.7 contains a derivation of the GFSE for moving
solids.

3.2 DERIVATION OF THE ONE-DIMENSIONAL
GREEN’S FUNCTION SOLUTION EQUATION

The one-dimensional GFSE for rectangular coordinates is derived in this section.
The one-dimensional form of the GFSE is free of vector calculus, so one can gain
intuition about the GF method with a minimum of notation. The derivation makes
use of the properties of GFs, and the result is an expression for the temperature that
fully exploits the linear property of the heat conduction equation.

The boundary value problem for the temperature in a one-dimensional rectangular
geometry is given in Section 1.12, by Equations 1.113 through 1.115 as

63
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∂2T

∂x2
+ 1

k
g(x, t) = 1

α

∂T

∂t
t > 0 (3.1)

ki

∂T

∂ni

∣∣∣∣
xi

+ hiT |xi
= fi(t) t > 0 and i = 1, 2 (3.2)

T (x, 0) = F (x) (3.3)

This is the problem that we are trying to solve with the GF method. In general,
Equation 3.2 describes convection boundary conditions (boundary conditions of the
third kind), but temperature or heat flux boundary conditions may be obtained by
taking ki = 0 or hi = 0, respectively, on surfaces i = 1 or i = 2.

The derivation of the GFSE begins with the auxiliary boundary value problem for
the GF that corresponds to the above temperature problem. The auxiliary boundary
value problem is very similar to the boundary value problem for the temperature
with two important differences: first, the energy generation term in the differential
equation for the GF is a Dirac delta function; and second, the boundary conditions
and the initial conditions for the GF are homogeneous. The auxiliary boundary value
problem was previously discussed in Section 1.12 and is given by

∂2G

∂x2
+ 1

α
δ (x − x′) δ (t − τ) = 1

α

∂G

∂t
t > τ (3.4a)

ki

∂G

∂ni

∣∣∣∣
xi

+ hiG|xi
= 0 i = 1, 2 (3.4b)

G(x, t |x′, τ) = 0 t < τ (3.4c)

Next, the reciprocity relation (Section 1.13)

G(x, t |x′, τ) = G(x′, −τ|x, −t)

is applied to the auxiliary equation (3.4a) to give

∂2G

∂x ′2 + 1

α
δ (x′ − x) δ (t − τ) = −1

α

∂G

∂τ
(3.5)

Notice the minus sign on the time derivative. The next step is to write the original
heat conduction equation for T in terms of x′ and τ. That is, write Equation 3.1 with
a simple change of variables: replace x by x ′ and replace t by τ to give

∂2T

∂x ′2 + 1

k
g(x ′, τ) = 1

α

∂T

∂τ
(3.6)

Multiply Equation 3.6 by G(x, t |x ′, τ), multiply Equation 3.5 by T (x′, τ), and then
subtract Equation 3.5 from Equation 3.6 to get

G
∂2T

∂x ′2 − T
∂2G

∂x ′2 + G

k
g(x ′, τ) − T

α
δ(x ′ − x) δ(t − τ) = 1

α

∂(T G)

∂τ
(3.7)
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Integrate Equation 3.7) with respect to x ′ over the domain 0 ≤ x′ ≤ L, and integrate
with respect to τ from 0 to t + ε, where ε is a small positive number. The result is∫ t+ε

τ=0
dτ

∫ L

x′=0

(
G

∂2T

∂x ′2 − T
∂2G

∂x ′2

)
dx′

+ 1

k

∫ t+ε

τ=0
dτ

∫ L

x′=0
g(x ′, τ) G(x, t |x′, τ) dx′ − 1

α
T (x, t)

= 1

α

∫ L

x′=0
[T G]τ=t+ε

τ=0 dx ′ (3.8)

Note that the properties of the Dirac delta function give the term T (x ′ = x, τ = t) on
the left-hand side of this equation. This equation can be solved for T (x, t) to give

T (x, t) = −
∫ L

x′=0
[TG]τ=t+ε

τ=0 dx ′

+ α

k

∫ t+ε

τ=0
dτ

∫ L

x′=0
g(x ′, τ) G(x, t |x′, τ) dx′

+ α

∫ t+ε

τ=0
dτ

∫ L

x′=0

(
G

∂2T

∂x ′2 − T
∂2G

∂x ′2

)
dx′ (3.9)

This is the GFSE for one-dimensional rectangular coordinates. The three terms on the
right-hand side of Equation 3.9 will next be examined and simplified one at a time.

The first term of Equation 3.9 can be simplified because G(x, t |x′, t + ε) = 0
from the causality relation. That is, G is zero because t − τ = t − (t + ε) = −ε < 0;
there is zero response before the impulse occurs. Also, T (x′, 0) can be replaced by
the initial condition, given by Equation 3.3. Thus, the first term of the GF equation
represents the effect of the initial condition, and it is written∫ L

x′=0
F (x ′) G(x, t |x′, 0) dx ′ (3.10)

The second term in Equation 3.9 is the effect of the volume energy generation.
This term will not be simplified any further at this point.

The third term of Equation 3.9 can be simplified with integration by parts. (The
analogous step in the three-dimensional derivation involves Green’s theorem.) Con-
sider just the integral on x ′ from this third term, and integrate by parts to get∫ L

x′=0

(
G

∂2T

∂x ′2 − T
∂2G

∂x ′2

)
dx′ = G

∂T

∂x ′

∣∣∣∣
x′=L

x′=0
−

∫ L

x′=0

∂G

∂x ′
∂T

∂x ′ dx ′

−T
∂G

∂x ′

∣∣∣∣
x′=L

x′=0
+

∫ L

x′=0

∂T

∂x ′
∂G

∂x ′ dx ′

= G
∂T

∂x ′

∣∣∣∣
x′=L

x′=0
− T

∂G

∂x ′

∣∣∣∣
x′=L

x′=0
(3.11)

Note that the two integrals in Equation 3.11 cancel.
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If the boundary conditions are of the second or third kinds, then the boundary
conditions for T and G can be used to evaluate ∂T / ∂x ′ and ∂G / ∂x ′ at the boundaries.
Equations 3.2 and 3.4b can be written as

∂G

∂n′
i

∣∣∣∣
x′=xi

= −hi

ki

G|x′=xi
(3.12)

∂T

∂n′
i

∣∣∣∣
x′=xi

= fi(τ)

ki

− hi

ki

T |x′=xi
(3.13)

The notation ni is for the outward normal from the body. Substitute these boundary
conditions into Equation 3.11 to get

G
∂T

∂x ′

∣∣∣∣
x′=L

x′=0
− T

∂G

∂x ′

∣∣∣∣
x′=L

x′=0
=

[
fi(τ)

ki

G − hi

ki

T G

]
x′=L

−
[
−fi(τ)

ki

G + hi

ki

T G

]
x′=0

−
(

−hi

ki

T G

)
x′=L

+
(

hi

ki

T G

)
x′=0

=
2∑

i=1

fi(τ)

ki

G|x′=xi
(3.14)

Note that the terms that involve T cancel. The summation over i = 1, 2 is meant to
cover all the possibilities for the boundary conditions of one-dimensional bodies. The
total number of boundary terms is two for a finite body (0 ≤ x ≤ L). (The derivation
also applies for semi-infinite and finite bodies. The semi-infinite one-dimensional
body requires only one boundary term, and the infinite body does not require any
boundary terms.)

If the boundary conditions are of the first kind, Equation 3.11 takes a different
form. At the boundaries, G = 0 and T = fi(τ), so that

G
∂T

∂x ′

∣∣∣∣
x′=L

x′=0
− T

∂G

∂x ′

∣∣∣∣
x′=L

x′=0
= −

2∑
j=1

fj (τ)
∂G

∂n′
j

∣∣∣∣∣
x′=xj

(3.15)

Again, the summation over j = 1, 2 is used to represent the contribution from both
boundaries.

The last step in the derivation of the GF equation is to take the limit of Equation 3.9
as ε → 0. Then, t + ε can be replaced by t in the equation, without altering the
conclusions that are drawn from ε > 0. Finally, Equation 3.9 is combined with the
simplified terms given by Equations 3.10, 3.11, 3.14, and 3.15 to give the desired
result

T (x, t) =
∫ L

x′=0
G(x, t |x′, 0) F (x ′) dx′ (for the initial condition)

+ α

k

∫ t

τ=0
dτ

∫ L

x′=0
g(x ′, τ) G(x, t |x′, τ) dx′ (for energy generation)
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+ α

∫ t

τ=0
dτ

2∑
i=1

[
fi(τ)

ki

G(x, t |x′
i , τ)

]
(for boundary conditions of

the second and third kinds)

− α

∫ t

τ=0
dτ

2∑
i=1

[
fi(τ)

∂G

∂n′
i

∣∣∣∣
x′=xi

]
(for boundary conditions

of the first kind only) (3.16)

This is the desired GFSE which applies to one-dimensional transient heat conduc-
tion in the rectangular coordinate system. The one-dimensional body is assumed to
be homogeneous and to have constant properties (independent of temperature and
position).

Each term in the GFSE must have the units of temperature. In the first term, F (x′)
has units of temperature, so the product Gdx′ must be dimensionless for the units to
be correct, therefore the one-dimensional GF has units of m−1. In the second term,
g(x ′, τ) has units of W/m3, so the product (α / k)g(x′, τ) dτ has units of temperature,
as it should. In the third term, fi(τ) has units of W/m2 (heat flux), so the product
(α / ki) fi(τ) Gdτ has the units of temperature. Finally, in the fourth term, fi(τ) has
units of temperature, so the product α(∂G / ∂ni) dτ is dimensionless.

In the usual cases discussed in this book, the boundary terms fi(t) are known.
There are special cases when T (x, t) is known from measurements, and fi(t) is the
unknown. This is called the inverse heat conduction problem (Beck et al., 1985). In
this case, Equation 3.16 is considered to be an integral equation because the unknown,
fi(t), is inside the integral.

Each G(·) term in Equation 3.16 represents the same GF, which is mathematically
unique for each set of boundary conditions. For example, in a geometry with X12
boundary conditions, the correct GF to use in Equation 3.16 is the X12 GF, as in the
following example.

Example 3.1:

For the geometry shown in Figure 3.1, the boundary conditions for T (x , t ) are

T (0, t ) = T0 (3.17)

+ k
∂T
∂x

∣∣∣∣
x=L

= q(t ) (3.18)

This is an example of the X12 geometry. The initial condition is

T (x , 0) = F (x ) (3.19)

and there is no energy generation in this case. If the X12 GF is assumed to be a
known function named GX12(x , t |x ′, τ), what is the appropriate form of the GFSE?

Solution

The GFSE is a sum of the various effects that contribute to the temperature
T (x , t ). The contribution of the initial condition is given by the first term from
Equation 3.16,
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= T0T
x = 0

x

L

–k = q(t)∂T
∂X

x = L

FIGURE 3.1 Slab body geometry for Example 3.1: X12 case.

∫ L

x ′=0
GX12(x , t |x ′, 0) F (x ′) dx ′ (3.20)

The boundary condition at x = 0 is of the first kind. This boundary condition
contributes to the temperature according to the last term of Equation 3.16 where
fi (τ) = T0. This term is

−α

∫ t

τ=0

(
−T0

∂GX12

∂x ′

∣∣∣∣
x ′=0

)
dτ (3.21)

Notice the minus sign that appears because ∂ / ∂n′
i = −∂ / ∂x ′ at x = 0; the outward

pointing normal ni is in the minus x-direction for the x = 0 surface.
The boundary condition at x = L is of the second kind.This boundary condition

contributes to the temperature according to the third term of Equation 3.16, where
fi (τ) = q(τ),

α

∫ t

τ=0

q(τ)
k

GX12(x , t |L, τ) dτ (3.22)

The temperature T (x , t ) is the sum of these three effects, or

T (x , t ) =
∫ L

x ′=0
GX12(x , t |x ′, 0) F (x ′) dx ′

+ α

∫ t

τ=0
T0

∂GX12

∂x ′

∣∣∣∣
x ′=0

dτ

+ α

∫ t

τ=0

q(τ)
k

GX12(x , t |L, τ) dτ (3.23)

which is the GFSE for this example.
Notice that GX12(x , t |x ′, τ) in each term is evaluated at the time or location

appropriate to that term in the GF equation. For example, in the initial condition
term, GX12 is evaluated at τ = 0. In the term for the left-side boundary condition,
∂GX12 / ∂x ′ is evaluated at x ′ = 0.
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∂T
∂x

k = h(T
x = 0

x g(x, t) = gc

x = 0
– T∞)

FIGURE 3.2 Semi-infinite body with convection at the boundary and internal energy gener-
ation. Geometry for Example 3.2.

Example 3.2:

The one-dimensional semi-infinite body shown in Figure 3.2 has a convection
boundary condition given by

−k
∂T
∂x

∣∣∣∣
x=0

= h (T∞ − T |x=0) (3.24)

where T∞ is the ambient temperature. This is the X30 geometry. The volume heat
generation is given by g (x , t ) = gc , where gc is a constant. The heat conduction
equation is thus given by

∂2T
∂x2 + 1

k
gc = 1

α

∂T
∂t

(3.25)

The initial condition is

T (x , 0) = F (x ) (3.26)

If the X30 GF is assumed to be a known function denoted GX30(x , t |x ′, τ), what is
the appropriate form of the GFSE?

Solution

There are three terms that contribute to the temperature T (x , t ): the initial con-
dition, the volume heat generation, and the convection boundary condition. The
effect of the boundary at infinity does not require an explicit term, because it is
already included in the correct GF, denoted GX30(·). The temperature for this case
is given by the GFSE

T (x , t ) =
∫ ∞

x ′=0
GX30(x , t |x ′, 0) F (x ′) dx ′

+ α

k

∫ t

τ=0

∫ ∞

x ′=0
gcGX30(x , t |x ′, τ) dx ′dτ

+ α

∫ t

τ=0

hT∞
k

GX30(x , t |0, τ) dτ (3.27)
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Note that the integrals on x ′ in the first two terms are evaluated over the entire
body, 0 ≤ x ′ ≤ ∞. This is an extension of Equation 3.16 to the semi-infinite case.
(A similar extension to the X00, or infinite body case, is to evaluate the x ′ integral
over −∞ ≤ x ′ ≤ ∞.)

3.3 GENERAL FORM OF THE GREEN’S FUNCTION
SOLUTION EQUATION

In this section the GFSE will be derived in a general form for an additional term in the
heat conduction equation (the m2T term) and for two additional boundary conditions.
This general form of the GFSE can be applied to three-dimensional geometries in any
orthogonal coordinate system. The rectangular, cylindrical, or spherical coordinate
systems are treated in this book.

3.3.1 TEMPERATURE PROBLEM

The partial differential equation that describes transient, multidimensional, linear heat
conduction in a homogeneous isotropic body is,

∇2T + 1

k
g(r, t) − m2T = 1

α

∂T

∂t
in region R and t > 0 (3.28)

The thermal conductivity k and thermal diffusivity α are both constant with position,
time, and temperature. Any orthogonal coordinate r can be used in Equation 3.28.
The g(r, t) term represents space- and time-variable volume energy generation.

The m2T term could represent side heat losses for a fin; m2 can be a function of r
but not t . (The m2T term is not needed for the three-dimensional treatment of a fin.)
If there is a component of volume energy generation g that is linearly proportional to
temperature, it should be included in the m2T term which could then encompass the
effects of electric heating and dilute chemical reactions; in such cases m2 could be
either positive or negative. An example of transient conduction involving the m2T

term is given in Section 3.5.
The initial temperature distribution is expressed by

T (r, 0) = F (r) (3.29)

The boundary conditions for Equation 3.28 have the general form

ki

∂T

∂ni

+ hiT = fi(ri , t) − (ρcb)i
∂T

∂t
t > 0 (3.30)

where the temperature T and its derivatives are evaluated at the boundary surface Si ,
and ri , denotes the boundary. The spatial derivative ∂ / ∂ni denotes differentiation
along an outward drawn normal to the boundary surface Si , i = 1, 2, . . . , s. The heat
transfer coefficient, hi , and (ρcb)i can vary with position on Si but are independent of
temperature and time. The boundary condition given by Equation 3.30 includes the
possibility of a high conductivity surface film of thickness bi . There is a negligible
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T(x, y, t) x = 0

y

x

= f1 (y, t)

(a)

Surface 1
Surface 2

n2

(c) (d)

–k

(b)
n1

r

a

T(r, φ, t)=
f1 (φ, t)φ

n1

∂T

k = kr = a
∂T
∂r

∂T
∂n1

n1 = 0

= f1(φ, t)

k =∂T
∂n1 n1

f1 (y, t)

=0

∂x
k =

a

r φ

∂T
∂x

k = f2 (y, t)∂T
∂n2 n2 = 0

x = L
x = 0

=
n1

y
x

FIGURE 3.3 Examples of boundary conditions of the first and second kinds: (a) first kind of
boundary condition at x = 0; (b) first kind of boundary condition at r = a; (c) second kind
of boundary condition at x = 0 and L, rectangular coordinates; (d) second kind of boundary
condition at r = a, cylindrical coordinates.

n2

n1

(–k
x = 0

n1 = 0

f1 (y, t)
y = 0

x = Lx

y

Lx Ly n3

x
n4

+h1T) =

=

∂T
∂x

(k +h1T)∂T
∂n1

∂T
∂n4

∂T
∂n3

(–k + h4T) = (k

= (k∂T
∂x

(k

∂T
∂y

∂T
∂n2 n2 = 0y = Ly

(k = (k = f2 (x, t)+ h2T)

+ h4T)

+ h3T)+ h3T)

+ h2T)

= f4 (x, t)

= f3 (y, t)

n4 = 0

n3 = 0

∂T
∂y

FIGURE 3.4 Examples of convection boundary conditions (third kind) on rectangular body.

temperature gradient through the film and there is no heat flux parallel to the surface
inside the film. Five different boundary conditions can be obtained from Equation
3.30 by setting ki = 0 or k, hi = 0 or h, and also b = 0 or nonzero.

Figure 3.3 shows some examples of boundary conditions of the first and second
kinds. Figures 3.4 and 3.5 show some examples of boundary conditions of the third
kind and fifth kind, respectively. The five different boundary conditions are discussed
in Chapter 2.
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∂T–k

Thin film

x or

[k
L

+h2T+(ρcb)2 ] = f2 (y, t)

n1

0
–k

+h1(T∞–T|0)

= –(ρcb)1
=(ρcb)2 +h2(TL –T∞)

∂x

∂T
∂n2

∂T
∂t

∂T
∂x

[k

+h1T] = f1(y, t)
b1 L b2

n2

n1 = 0

+ (ρcb)1
∂T
∂n1

∂T
1∂t

∂T

or

∂t0 ∂T
∂t LL

FIGURE 3.5 Examples of the film boundary condition (fifth kind).

3.3.2 DERIVATION OF THE GREEN’S FUNCTION SOLUTION EQUATION

The GFSE is derived using Equations 3.28 through 3.30 and also an auxiliary problem
for an instantaneous heat source inside the body. The solution to the auxiliary problem
is G(r, t |r′, τ), where the instantaneous source is located at position r′ and at time τ; r
is the location at which the temperature is observed at time t . There can be a nonzero
response at r only if t − τ > 0. The auxiliary problem has homogeneous boundary
conditions and a zero initial temperature.

The derivation of the general GFSE begins with the reciprocity relation of GF,

G(r, t |r′, τ) = G(r′, −τ|r, −t) (3.31)

substituted into the auxiliary equation, resulting in

∇2
0G + 1

α
δ(r − r′) δ(t − τ) − m2G = −1

α

∂G

∂τ
t > τ (3.32)

G(r′, −τ|r, −t) = 0 t < τ (3.33)

ki

∂G

∂n′
i

+ hiG = (ρcb)i
∂G

∂τ
t > τ (3.34)

where ∇2
0 is the Laplacian operator for the r′ coordinates and the minus sign on the

right side in Equation 3.32 is a result of Equation 3.31, with t being replaced by −τ.
Next, the temperature equation 3.28, can be written in terms of r′ and τ as

∇2
0T + 1

k
g(r′, τ) − m2T = 1

α

∂T

∂τ
(3.35)

Multiply Equation 3.35 by G, multiply Equation 3.32 by T , and subtract Equa-
tion 3.32 from Equation 3.35 to get

(G∇2
0T − T ∇2

0G) + g(r′, τ)

k
G − 1

α
δ(r − r′) δ (t − τ)T = 1

α

∂(GT )

∂τ
(3.36)
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Integrate this equation with respect to r′ over the total region R, and integrate with
respect to τ from 0 to t +ε, where ε is an arbitrarily small positive number. This yields∫ t+ε

τ=0

∫
R

α (G∇2
0T − T ∇2

0G) dv′dτ +
∫ t+ε

τ=0

∫
R

α

k
G g(r′, τ) dv′dτ − T (r, t)

=
∫

R

[GT ]t+ε
τ=0dv′ (3.37)

where dv′ is a volume element in the region R. By rearranging the above equation,
the temperature distribution in the body is

T (r, t) = −
∫

R

[GT ]t+ε
τ=0dv′ +

∫ t+ε

τ=0

∫
R

α

k
G g(r′, τ) dv′dτ

+
∫ t+ε

τ=0

∫
R

α(G∇2
0T − T ∇2

0G) dv′ dτ (3.38)

The left side of this equation is the temperature distribution in the body at location r
and at time t . The right side of this equation is now examined term by term.

The first term on the right side of Equation 3.38 can be simplified because
G(r, t |r′, t + ε) = 0 by the causality relation; the effect cannot begin before the instan-
taneous source. Also, at τ = 0, the temperature distribution T (r′, 0) is the initial tem-
perature distribution F (r). Hence, the first right side term of Equation 3.38 becomes∫

R

G(r, t |r′, 0) F (r′) dv′ (3.39)

For transient heat conduction in a body, this is the effect of the initial temperature
distribution on the transient temperature distribution.

The second term on the right side of Equation 3.38 arises from the volume energy
generation g(r, t). This term will not be simplified further.

The third term on the right side of Equation 3.38 represents the contribution of
all the boundary conditions. This term can be simplified with Green’s theorem to
change the volume integral to a surface integral (see homework problem 3.1). The
result is ∫ t+ε

τ=0

∫
R

α(G∇2
0T − T ∇2

0G) dv′ dτ

=
∫ t+ε

τ=0

s∑
i=1

∫
Si

α

(
G

∂T

∂n′
i

∣∣∣∣
r′=r′

i

− T
∂G

∂n′
i

∣∣∣∣
r′=r′

i

)
ds′

i dτ (3.40)

where ∂ / ∂n′
i denotes differentiation along an outward drawn normal to the boundary

surface Si and dsi is an area element of Si .
The integrand from Equation 3.40 can be expressed in terms of the boundary

conditions of the heat conduction equation and the auxiliary GF equation. If the
boundary conditions are of the second, third, fourth, or fifth kind, then the boundary
conditions for T and G can be used to evaluate ∂T / ∂n′

i and ∂G / ∂n′
i at the boundaries.

Equations 3.30 and 3.34 can be written as
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∂G

∂n′
i

∣∣∣∣
r′=r′

i

= −hi

k
G|r′=r′

i
+ (ρcb)i

k

∂G

∂τ
(3.41)

∂T

∂n′
i

∣∣∣∣
r′=r′

i

= fi(r′
i , τ)

k
− hi

k
T |r′=r′

i
− (ρcb)i

k

∂T

∂τ
(3.42)

Multiplying the boundary condition Equation 3.42 by the GF, multiplying Equa-
tion 3.41 by the temperature and subtracting yields,[

G
∂T

∂n′
i

∣∣∣∣
r′=r′

i

− T
∂G

∂n′
i

∣∣∣∣
r′=r′

i

]
= fi(r′

i , τ)

k
G − (ρcb)i

k

(
T

∂G

∂τ
+ G

∂T

∂τ

)

= fi(r′
i , τ)

k
G − (ρcb)i

k

∂(GT )

∂τ
(3.43)

Replace Equation 3.43 into Equation 3.40 to obtain for boundary conditions of the
second through fifth kinds:∫ t+ε

τ=0

s∑
i=1

∫
Si

α

(
G

∂T

∂n′
i

∣∣∣∣
r′=r′

i

− T
∂G

∂n′
i

∣∣∣∣
r′=r′

i

)
ds′

i dτ

= α

∫ t+ε

τ=0

s∑
i=1

∫
Si

fi(r′
i , τ)

k
G(r, t |r′

i , τ) ds′
i dτ

+ α

s∑
i=1

∫
Si

(ρcb)i
k

G(r, t |r′
i , 0) F (r′) ds′

i (3.44)

Note that the integral over τ has been evaluated for the term ∂(GT ) / ∂τ.
For a boundary condition of the first kind the right side of Equation 3.40 takes a

different form. At the boundary, G is zero and T is fi(ri , t) for boundary conditions
of the first kind. Then, the right-hand side of Equation 3.40 becomes

−α

∫ t+ε

τ=0

S∑
j=1

∫
Sj

fj (r′
j , τ)

∂G

∂n′
j

∣∣∣∣∣∣
r′=r′

j

ds ′
j dτ (3.45)

for boundary conditions of the first kind.
The final step in the derivation of the GFSE is to take the limit of Equation 3.38

as ε → 0. Then, t + ε can be replaced by t in the equation without altering the con-
clusions drawn from ε > 0. The derivation is completed by combining Equation 3.38
with the simplified terms given by Equations 3.39, 3.44, and 3.45 to give the important
general GFSE for heat conduction for homogeneous bodies:

T (r, t) = Tin(r, t) + Tg(r, t) + Tb.c.(r, t) (3.46a)

which contains three terms, one for the initial conditions, one for the volumetric
energy source, and one for the nonhomogeneous boundary conditions. The initial
temperature contribution term is
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Tin(r, t) =
∫

R

G(r, t |r′, 0)F (r′) dv′ (for all boundary conditions)

+ α

s∑
i=1

∫
Si

(ρcb)i
k

G(r, t |r′
i , 0)F (r′

i)ds ′
i (for boundary conditions

of the fourth and fifth kinds)
(3.46b)

The term for the volumetric energy generation inside the body is

Tg(r, t) =
∫ t

τ=0

∫
R

α

k
G(r, t |r′, τ) g(r′, τ) dv′dτ (3.46c)

The term for the boundary conditions contains two types of expressions, one for
boundary conditions of the second through fifth kinds and the other is for boundary
conditions of the first kind. The term for the boundary conditions is

Tb.c.(r, t) = α

∫ t

τ=0

s∑
i=1

∫
Si

fi(r′
i , τ)

k
G(r, t |r′

i , τ) ds′
i dτ

(for boundary conditions of the second through fifth kinds)

−α

∫ t

τ=0

s∑
j=1

∫
Sj

fj (r′
j , τ)

∂G

∂n′
j

∣∣∣∣∣∣
r′=r′

j

ds ′
j dτ

(for boundary conditions of the first kind only) (3.46d)

This equation has two parts because the boundary condition of the first kind must be
treated in a different manner than the others.

Equation 3.46 applies to any orthogonal coordinate system if the correct form
for ds and dv are used. See Table 3.1 for the differential elements dsi , and dv for
rectangular, cylindrical, and spherical coordinates systems.

The total number of terms considered between the i and j summations is exactly s,
that is, the heat flux boundary conditions (second, third, fourth, and fifth kinds) and
temperature boundary conditions (first kind) are mutually exclusive on a given bound-
ary. For a one-dimensional boundary, 0 ≤ s ≤ 2; for a two-dimensional geometry,
0 ≤ s ≤ 4; and, for a three-dimensional geometry, 0 ≤ s ≤ 6. The number of bound-
ary conditions s includes only conditions at “real” boundaries; it does not include a
boundary condition at x → ∞ for a semi-infinite body, for example.

Equation 3.46 is the main result of this chapter and is a general form of the GFSE.
See Chapter 10 for a general form that applies to nonhomogeneous bodies.

Example 3.3:

Consider a two-dimensional rectangular region starting at x = a1 and extending
to x = a2 in the x-direction and starting at y = b1 and going to y = b2 in the
y -direction. See Figure 3.6.

a. Formulate and discuss the problem for boundary conditions of zeroth,
first, second, and third kinds.

b. Give the appropriate form of the GFSE for this problem.
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TABLE 3.1
Quantities ds ′

i and dv ′ for the Transient GFSE for Three Coordinate Systems

Coordinate Example of Units
System Geometry Coordinates ds ′

i dv ′ of Ga

Rectangular
Slab x 1b dx′ m−1

Rectangle x, y dx′ or dy′ dx′ dy′ m−2

Parallelepiped x, y, z dx′ dy′, dx′dz′ dx′dy′dz′ m−3

or dy′dz′

Cylindrical
Infinite cylinder r b2πri 2πr ′dr ′ m−2

Thin shell φ bδ (thin-shell δa dφ′ m−2

thickness) (a = shell radius)
Finite cylinder r , z 2πridz′ 2πr ′dr ′dz′ m−3

or 2πr ′dr ′
Wedge r , φ dr ′ or ridφ′ r ′dr ′dφ′ m−2

Spherical
Sphere r b4πr2

i 4π(r ′)2dr ′ m−3

Conical section r , θ 2π(r ′)2dr ′ sin θi 2π(r ′)2dr ′ sin θ′dθ′ m−3

of sphere or 2πr2
i sin θ′dθ′

aUnits of G are such that G dv′ is dimensionless for heat conduction.
bNo integral on Si .

y

b2

b1

0 0

X0, X1, X2, or X3
Boundary conditions of
the zeroth, first, second,
or third kinds.

Y0, Y1, Y2, or Y3
xa2a1

FIGURE 3.6 Two-dimensional rectangular body, geometry for Example 3.3.

Solution

(a) Formulation of the problem. The describing partial differential equation is

k

(
∂2T
∂x2 + ∂2T

∂y2

)
+ g (x , y , t ) = ρc

∂T
∂t

(3.47)
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and the boundary conditions are either of the zeroth, first, second, or third kinds.
For the boundary condition of the zeroth kind, there is actually no boundary. For
the X20Y 10 case, for example, it is convenient to set a1 = 0 and b1 = 0 and to
note that a2 → ∞ and b2 → ∞, and hence no boundary source term, f (·), enters
for x = a2 → ∞ and y = b2 → ∞.

The boundary condition at x = a1 can be written as

−ka1
∂T (a1, y , t )

∂x
+ ha1T (a1, y , t ) = fa1( y , t ) (3.48)

for boundary conditions of the first, second, and third kinds. For boundary condi-
tions of the first kind, the ka1, ha1, and fa1(·) terms are

ka1 = 0 ha1 = 1 fa1( y , t ) = Ta1( y , t ) (3.49)

where Ta1( y , t ) is the prescribed temperature history at x = a1. For the boundary
condition of the second kind, the values are

ka1 = k ha1 = 0 fa1( y , t ) = qa1(y , t ) (3.50)

where k is the thermal conductivity of the solid, and qa1(·), is the prescribed
heat flux at x = a1. For the boundary condition of the third kind, these terms in
Equation 3.48 are

ka1 = k ha1 = ha1( y ) fa1( y , t ) = ha1( y )T∞a1( y , t ) (3.51)

where ha1( y ) is the heat transfer coefficient at x = a1 and T∞a1( y , t ) is the ambient
temperature at x = a1. In general, the usual GF approach permits h to be a function
of position but not time.

In Equation 3.49, the f (·) function represents prescribed temperatures at a
boundary. Functions f (·) can depend on time and position. For boundary con-
ditions of the second kind, f (·) in Equations 3.50 is a prescribed heat flux q. For
a boundary condition of the third kind, f (·) in Equations 3.51 is a prescribed vari-
ation of hT∞ where h can be a function of position (not time) and T∞ can be a
function of time and position. The boundary conditions at the x = a2 surface are
similar to the one at x = a1

ka2
∂T (a2, y , t )

∂x
+ ha2T (a2, y , t ) = fa2( y , t ) (3.52)

This equation also applies for the first, second, and third kind of boundary condi-
tions by suitable choice of ka2, ha2, and fa2 in a manner similar to that in Equa-
tions 3.49 through 3.51.

The boundary condition at y = b1 is

−kb1
∂T (x , b1, t )

∂y
+ hb1T (x , b1, t ) = fb1(x , t ) (3.53)

and the boundary condition at y = b2 is

kb2
∂T (x , b2, t )

∂y
+ hb2T (x , b2, t ) = fb2(x , t ) (3.54)
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In order to complete the statement of the problem, the initial temperature dis-
tribution is needed,

T (x , y , 0) = F (x , y ) (3.55)

where F (x , y ) is the temperature distribution at t = 0.

(b) Two-dimensional GFSE. The two-dimensional GFSE can be written as

T (x , y , t ) =
∫ a2

x ′=a1

∫ b2

y ′=b1

GXIJ(x , t |x ′, 0) GYMN(y , t |y ′, 0) F (x ′, y ′) dx ′dy ′

+ α

k

∫ t

τ=0

∫ a2

x ′=a1

∫ b2

y ′=b1

GXIJ(x , t |x ′, τ) GYMN(y , t |y ′, τ)

× g (x ′, y ′, τ) dy ′dx ′dτ + Ix ′=a1 + Ix ′=a2 + Iy ′=b1 + Iy ′=b2 (3.56)

The notation GXIJ refers to the GF specific to the rectangular coordinate type
of boundary condition on the boundaries x = a1 and x = a2. Similarly, YMN
refers to the GF for the type of boundary conditions at y = b1 and b2. The last
four terms denoted I in Equation 3.56 depend on the type of boundary condition,
of the zeroth, first, second, or third kinds. There are four I terms, one for each
boundary. For a boundary condition of the zeroth kind, the associated I term is
equal to zero. For boundary condition of type 1, specified temperature, at x ′ = a1,
the Ix ′=a1 term for the boundary at x ′ = a1 is

Ix ′=a1 = α

∫ t

τ=0

∫ b2

y ′=b1

(
−∂GXIJ(x , t |a1, τ)

∂n′

)

× GYMN(y , t |y ′, τ) fx1(y ′, τ) dy ′ dτ (3.57a)

and for boundary conditions of second or third kinds term Ix ′=a1 is

Ix ′=a1 = α

k

∫ t

τ=0

∫ b2

y ′=b1

GXIJ(x , t |a1, τ)

× GYMN(y , t |y ′, τ) fx1(y ′, τ) dy ′dτ (3.57b)

For the Ix ′=a2 term, the same expressions as given in Equation 3.57a are used with
a1 in GXIJ(·) replaced by a2, fa1(·) by fa2(·). For x ′ = a1 in Equation 3.57b, ∂n′ is
−∂x ′, while for x ′ = a2, ∂n′ is ∂x ′.

The terms Iy ′=b1 and Iy ′=b2 may be found in a manner similar to Equation 3.57.

Example 3.4:

Give the appropriate form of the GFSE for a three-dimensional rectangular par-
allelepiped region of a1 ≤ x ≤ a2, b1 ≤ y ≤ b2, c1 ≤ z ≤ c2, with the initial
temperature of F (x , y , z ).

Solution

The three-dimensional GFSE can be written as

T (x , y , z , t ) =
∫ a2

x ′=a1

∫ b2

y ′=b1

∫ c2

z ′=c1

GXIJ(x , t |x ′, 0) GYKL(y , t |y ′, 0)

× GZMN(z , t |z ′, 0) F (x ′, y ′, z ′) dx ′dy ′dz ′
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+ α

k

∫ t

τ=0

∫ a2

x ′=a1

∫ b2

y ′=b1

∫ c2

z ′=c1

× GXIJ(x , t |x ′, τ) GYKL(y , t |y ′, τ)

× GZMN(z , t |z ′, τ) g (x ′, y ′, z ′, τ) dx ′dy ′dz ′dτ

+ Ix ′=a1 + Ix ′=a2 + Iy ′=b1 + Iy ′=b2 + Iz ′=c1 + Iz ′=c2 (3.58)

where the I ’s can be found as in Example 3.3.

3.4 ALTERNATIVE GREEN’S FUNCTION SOLUTION EQUATION

In some cases, the use of GFs for nonhomogeneous boundary conditions can yield
slowly converging solutions. Some of these cases can be modified to produce better-
behaved solutions by using an alternative GFSE (AGFSE). A brief derivation is given
in this section and a more complete derivation is given in Section 10.3.

The derivation begins with a known solution, T ∗(r, t), to the problem

∇2T ∗ − m2T ∗ = −g∗(r, t)

k
in region R (3.59)

with the general boundary condition of

ki

∂T ∗

∂ni

∣∣∣∣
ri

+ hiT
∗
∣∣∣∣
ri

= fi(ri , t) − (ρcb)i
∂T ∗

∂t

∣∣∣∣
ri

(3.60)

Notice that the boundary conditions are nonhomogeneous and contain the same pre-
scribed source term fi(r, t) that is in the T (r, t) problem. In addition, Equation 3.59
contains the arbitrary source term of g∗(r, t), which in some cases is set equal to zero
and in others a particular choice, such as g∗ = g, simplifies the problem; it does not
have to correspond to g(r, t).

Let the solution to the usual transient heat conduction problem be made equal to

T (r, t) = T ∗(r, t) + T ′(r, t) (3.61)

Then a solution is desired for T ′(r, t),

T ′(r, t) = T (r, t) − T ∗(r, t) (3.62)

which must satisfy

∇2T ′ + 1

k
[g(r, t) − g∗(r, t)] − m2T ′ − 1

α

∂T ∗

∂t
= 1

α

∂T ′

∂t
in R (3.63)

with the initial condition

T ′(r, 0) = F (r) − T ∗(r, 0) (3.64)

and the general boundary condition (at r = ri)

ki

∂T ′

∂ni

+ hiT
′ = −(ρcb)i

∂T ′

∂t
(3.65)
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which is now homogeneous. From the above, it can be seen that the solution to the
T ′(r, t) problem can be obtained by using the GFSE given by Equation 3.46 but
using a modified initial condition, a modified volume energy generation term, and
homogeneous boundary conditions. Using Equation 3.46 for T ′(r, t) and then using
Equation 3.61 yields the AGFSE for T (r, t):

T (r, t) = T ∗(r, t) +
∫

R

G(r, t |r′, 0) [F (r′) − T ∗(r′, 0)]dv ′

+ α

s∑
i=1

∫
Si

(ρcb)i
ki

G(r, t |r′, 0) [F (r′
i) − T ∗(r′

i , 0)]ds′
i

(for boundary conditions of the fourth and fifth kinds only)

+ α

k

∫ t

τ=0

∫
R

G(r, t |r′, τ)

[
g(r′, τ) − g∗(r′, τ) − ρc

∂T ∗(r′, τ)

∂τ

]
dv ′dτ

(3.66)

Example 3.5:

Consider the problem of a plate with the boundary and initial conditions

T (0, t ) = T0

T (L, t ) = T0 + (TL − T0) sin ωt

T (x , 0) = T0

where T0 and TL are constants and ω is the frequency of oscillation of the temper-
ature at x = L. Solve this problem using the standard GFSE and AGFSE.

Solution

The standard form of the GFSE is used first. In this solution (and the alternative
form) it is convenient to solve for θ = [T (x , t ) − T0] with conditions

θ(0, t ) = 0

θ(L, t ) = (TL − T0) sin ωt

θ(x , 0) = 0

By solving this problem rather than the T (x , t ) problem, the nonhomogeneous
boundary condition and nonzero initial conditions are replaced by the easier zero
conditions. For this problem, the solution using Equation 3.46 for θ(x , t ) has a
nonzero term only for the boundary condition at x = L,

θ(x , t ) = −α

∫ t

0

∂GX11(x , t |L, τ)
∂n′ f (τ) dτ

= α

∫ t

0

2π

L2

∞∑
m=1

e−m2π2α(t−τ) / L2
m(−1)m+1 sin

(
mπ

x
L

)
(TL − T0) sin ωτ dτ

= (TL − T0)
2πα

ωL2

∞∑
m=1

m(−1)m+1 sin(mπx / L)
D2

m + 1

× (e−m2π2αt / L2 + Dm sin ωt − cos ωt ) (3.67a)
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where

Dm = m2π2α

ωL2 (3.67b)

Here the derivative of the GF, ∂GX11 / ∂n′, has been taken from Appendix X, Equa-
tion X11.12. The integral on τ is given by∫ t

0
e−m2π2α(t−τ) / L2

sin ωτ dτ = 1
ω(D2

m + 1)

(
e−m2π2αt / L2 + Dm sin ωt − cos ωt

)
(3.68)

The expression given by Equation 3.67a contains two parts, a steady-periodic
part and a transient part. The steady-periodic part persists in time and is periodic.
The expression is not a rapidly convergent one, however. Notice that there is a term
in the numerator proportional to m3 and in the denominator to m4; this results in
terms that are proportional to m−1. Series with terms that are proportional to m−1

typically converge very slowly, if at all. An indication of difficulty is observed for
the location of x = L, because sin mπ = 0 but this value gives θ(L, t ) = 0 which is
not equal to the given boundary condition. This seeming contradiction is related
to the convergence problem.

Consider now the use of AGFSE. The T ∗(x , t ) solution is obtained by solving
Equation 3.59 in the form

∂2T ∗
∂x2 = 0 (3.69)

and the boundary conditions

T ∗(0, t ) = T0 T ∗(L, t ) = T0 + (TL − T0) sin ωt (3.70)

The solution for T ∗(x , t ) is

T ∗(x , t ) = T0 + (TL − T0)
x
L

sin ωt (3.71)

Now Equation 3.66 is used. The first integral has no contribution because

F (x ′) − T ∗(x ′, 0) = T0 − (T0 + 0) = 0

The second integral is not present because the boundary conditions are not the
fourth or fifth kinds. Then, Equation 3.66 gives

T (x , t ) =
[
T0 + (TL − T0)

x
L

sin ωt
]

− α

k

∫ t

0

∫ L

x ′=0
GX11(x , t |x ′, τ)ρc

∂T ∗(x ′, τ)
∂τ

dτ dx ′

= T0 + (TL − T0)
x
L

sin ωt

− 2
L

∫ t

τ=0

∫ L

x ′=0

∞∑
m=1

e−m2π2α(t−τ) / L2
sin

(
mπ

x
L

)

× sin
(

mπ
x ′
L

)
(TL − T0)

x ′
L

ω cos ωτ dx ′ dτ
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= T0 + (TL − T0)
x
L

sin ωt

+ 2
π

(TL − T0)
∞∑

m=1

sin(mπx / L)(−1)m

m(D2
m + 1)

×
(

Dm cos ωt + sin ωt − Dme− m2π2αt
L2

)
(3.72)

where Dm = m2π2α /(ωL2). In contrast with Equation 3.67, which has terms pro-
portional to m−1, Equation 3.72 has terms proportional to m−3 for large m. Equa-
tion 3.72 converges rapidly and has no convergence problems; it also gives the
correct result at x = L. The issue of convergence speed is discussed further in
Chapter 5.

In general, the alternative GFSE is preferred over the standard form for non-
homogeneous boundary conditions when the large time form of the GF is used.This
is particularly true for boundary conditions of the first kind and when results near
the boundaries are needed. Notice, for this example, however, that two integrations
were required for the alternative form but only one for the standard form.The large-
time GFs have the time- and space-dependent components in separate terms,
such as

exp

(
−β2

mα(t − τ)
L2

)
and sin

βmx
L

while the short-time GFs have the t and x together, such as

exp

[
− (2mL + x − x ′)2

4α(t − τ)

]

When the short-time GFs for nonhomogeneous boundary conditions are used, the
standard form may be better than the alternative form of the GFSE because fewer
integrations are needed.

Another way to approach this solution would be to treat the steady-periodic por-
tion directly with the steady-periodic techniques discussed in Chapter 9. For many
steady-periodic problems in one spatial dimension, the solution has a nonseries
form, completely avoiding the issue of series convergence.

3.5 FIN TERM m2T

The fin approximation may be applied in geometries with one dimension that is thin
and if the temperature distribution in the thin-axis direction is approximately uniform
(lumped). In this case, the energy equation may be simplified by replacing the diffusion
term corresponding to the thin-axis direction by the term m2T , called the fin term. In
general, the fin parameter m can be a function of position r, but not a function of time.
The fin term can also be used to represent volume heat generation that is proportional
to temperature, such as electric heating or dilute chemical reactions.

The GF method applies to fin problems even though the GFSE for the transient
temperature, Equation 3.46, does not explicitly involve the m2 term. In the GFSE
there are terms for the boundary conditions, the energy generation, and the initial



T&F Cat # K10695, Chapter 3, Page 83, 12-6-2010

Derivation of the Green’s Function Solution Equation 83

condition, but there is no term for fins. The dependence of the solution on m2 is
hidden in the GF so that a different GF must be found when the fin term is present in
the differential equation. The dependence of the GF on the fin term m2 may be seen
explicitly in the auxiliary equation, Equation 3.32.

In this section, transient and steady GFs are discussed for the special case of a
spatially constant fin term. In the case when m2 is not spatially constant, the GF may
be quite complicated if it can be found at all; in this event, the Galerkin-based GF
method discussed in Chapter 10 is recommended.

3.5.1 TRANSIENT FIN PROBLEMS

All the transient GFs listed in this book are for the m2 = 0 case. However, these
same transient GFs can also be used for the case of a spatially constant m2 when the
following transformation is applied to the temperature.

Let W (r, t) be a new dependent variable, related to T (r, t) by

T (r, t) = W (r, t) exp(−m2αt) (3.73)

where m2 is constant. Substitute this relation into the heat conduction equation, Equa-
tion 3.28, and multiply the equation by e+m2αt . The result is

∇2W + 1

k
g(r, t)em2αt = 1

α

∂W

∂t
(3.74)

The m2 term has canceled out so the transformed variable W (r, t) may be found using
GFs that do not involve the m2T term. Then the transformation can be inverted to find
the original temperature T (r, t). The transformation does not work on steady-state
problems at all because the time derivative is involved in canceling the m2T term.
For steady-state problems with the fin term, a separate set of GFs must be used; see
Section 3.5.2.

Transient problems that involve the fin term can be quite complex, and although the
transformation allows a familiar set of transient GFs to be applied to those problems,
the complexity of the solution has not been removed but has been shifted to the
energy generation term and the boundary conditions. The boundary conditions for
the transformed variable W involve the term e+m2αt .

The initial condition and boundary conditions for W (r, t) can be found by carefully
applying the transformation. The initial condition for W is given by

W (r, 0) = F (r)e0 = F (r) (3.75)

which is unchanged. The boundary conditions will be examined according to kind.
The boundary condition of the first kind is

T (ri , t) = fi(ri , t) (3.76)

Using the relationship that defines the new variable W , the boundary condition of the
first kind becomes

W (ri , t) = fi(ri , t) exp(m2αt) (3.77)
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The boundary condition of the second kind becomes

k
∂W

∂ni

∣∣∣∣
ri

= fi(ri , t) exp(m2αt) (3.78)

The boundary condition of the third kind becomes

k
∂W

∂ni

∣∣∣∣
ri

= hi[fi(ri , t) exp(m2αt) − W (ri , t)] (3.79)

The boundary conditions of the fourth and fifth kinds are more affected. Using Equa-
tion 3.73 in Equation 3.30 gives

ki

∂W

∂ni

∣∣∣∣
ri

+ [hi − (ρcb)im
2α]W (r, t)

∣∣∣∣
ri

= fi(ri , t) exp (m2αt) − (ρcb)i
∂W

∂t

∣∣∣∣
ri

(3.80)

Notice the extra coefficient (ρcb)im2α that appears with hi in this equation.
In summary, for the case of the transient heat conduction equation with the m2T

term for m2 constant, the GFs for the transformed variable W (r, t) are exactly the same
as for the m2 = 0 case, but the energy generation term is now multiplied by e+m2αt ,
and the boundary conditions are different. For boundary conditions of the fourth and
fifth kinds, hi is replaced by hi − (ρcb)im2α at the ith boundary. In addition, for each
of the five types of boundary conditions, fi(ri , t) in Equation 3.46d is replaced by
fi(ri , t) exp(m2αt). After the GF solution for W (r, t) is obtained, T (r, t) is simply
obtained by multiplying W (r, t) by exp(−m2αt) as given in Equation 3.73.

Example 3.6: X11 Case with Fin Term

A thin fin of uniform cross-section is initially at temperature T∞ and the x = 0
end of the fin is suddenly set to temperature T0. Derive the one-dimensional fin
equation and find the GF solution for the temperature in the fin if the heat transfer
coefficient for side heat losses is constant and the x = L end of the fin is main-
tained at T∞.

Solution

(a) Differential equation. The fin geometry is shown in Figure 3.7. The fin has
thickness δ � L so that the temperature varies only in the x-direction. The dif-
ferential equation for the fin may be found by considering the control volume of
length dx at location x . The energy balance for the control volume given by the
integral energy equation (Equation 1.32) could be used.

wδ[q(x ) − q(x + dx )] − (2w hdx )(T − T∞) = ρc(wδ dx )
∂T
∂t

(3.81)

where w is the width of the fin, q(·) is heat flux (W/m2), and h is the constant
heat transfer coefficient. Divide the energy balance by the volume of the control
volume (wδ dx ) to get
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q(x) q(x+dx)

x dx

L

δ

T = T∞T = To

h(T−T∞)

FIGURE 3.7 One-dimensional fin with constant cross section for Examples 3.6 and 3.7.

−q(x + dx ) − q(x )
dx

− 2h
δ

(T − T∞) = ρc
∂T
∂t

(3.82)

The heat flux terms may be replaced by a derivative in the limit as dx → 0. Replace
the heat flux terms by Fourier’s law q(x ) = −k ∂T / dx to give

k
∂2T
∂x2 − 2h

δ
(T − T∞) = ρc

∂T
∂t

(3.83)

Finally, divide by k and introduce a new variable Θ(x , t ) = (T − T∞) to make the
equation homogeneous:

∂2Θ

∂x2 − m2Θ = 1
α

∂Θ

∂t
(3.84)

where now m2 = 2h /(δk ) with units (meters)−2. This is the differential equation
for a fin of uniform cross-section. The initial and boundary conditions are

Θ(x , 0) = 0

Θ(0, t ) = T0 − T∞
Θ(L, t ) = 0

(b) Green’s function solution. The boundary value problem for Θ(x , t ) may
be transformed according to Equation 3.73 for the GF solution. The transformed
boundary value problem for W (x , t ) is given by

∂2W
dx2 = 1

α

∂W
∂t

W (x , 0) = 0

W (0, t ) = (T0 − T∞)em2αt

W (L, t ) = 0

(3.85)

The transient temperature is driven by the boundary condition at x = 0 and the
solution is given by the GF method as

W (x , t ) = α

∫ t

τ=0
(T0 − T∞)em2ατ ∂GX11

∂x ′

∣∣∣∣
x ′=0

dτ (3.86)
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Note that the boundary condition is introduced into the integral as a function of
dummy variable τ. The function GX11 and its derivative is given in Appendix X so
the solution is

W (x , t ) = α

∫ t

τ=0
(T0 − T∞)em2ατ 2π

L2

×
∞∑

n=1

e−n2π2α(t−τ) / L2
n sin

nπx
L

dτ (3.87)

Be careful to distinguish fin parameter m from the summation index n, and to
distinguish integration variable τ from time t . The integral on τ may be carried out
to give the transformed solution:

W (x , t ) = (T0 − T∞)2π

∞∑
n=1

(em2αt − e−n2π2αt / L2
)n

× sin
(nπx

L

)
(m2L2 + n2π2)−1

Finally the temperature in the fin may be found by the inverse transform Θ =
W exp(−m2αt ), or,

Θ(x , t ) = T (x , t ) − T∞ = (T0 − T∞)2π

×
∞∑

n=1

(
1 − e−m2αt e−n2π2αt / L2

)
n

× sin
(nπx

L

)
(m2L2 + n2π2)−1 (3.88)

In the limit as t → ∞, the series converges to the steady-state solution, but the
series converges slowly (like 1 / n). A better form of the steady solution can be
found by using a steady GF directly as shown in Section 3.6.

3.5.2 STEADY FIN PROBLEMS IN ONE DIMENSION

The W transformation discussed in Section 3.5.1 does not apply to steady fin problems
because the W transformation relies on the time derivative ∂T / ∂t to cancel the fin
term from the differential equation. Many steady fin solutions exist in the literature
and methods other than GFs may be appropriate.

Steady fin problems may be solved with the steady GF method if the steady-fin
GF can be found. An example of a steady fin problem is given in the next section.
A list of steady-fin GFs in rectangular coordinates is given in Appendix X, Tables X.2
and X.4, for the special case m2 = constant. Steady-fin GF for radial-cylindrical
coordinates are given in Chapter 9, Equation 9.21; these were developed for steady-
periodic conditions, but apply to annular fins of uniform thickness.

3.6 STEADY HEAT CONDUCTION

In this section, steady GFs are presented through their relationship with the tran-
sient GFs. The steady-state GFSE is stated in a general form.
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TABLE 3.2
Units of Steady and Transient GFs in Cartesian Coordinates

Geometry Units of Transient GF Units of Steady GF

One dimension m−1 m
Two dimensions m−2 1 (dimensionless)
Three dimensions m−3 m−1

3.6.1 RELATIONSHIP BETWEEN STEADY AND TRANSIENT GREEN’S FUNCTIONS

The steady GF is the limit as t → ∞ of the time integral of the transient GF:

G(r|r′) = lim
t→∞

∫ t

τ=0
α G(r, t|r′, τ) dτ (3.89)

This relationship may be regarded as the definition of the steady GF and it is one way
to find the steady GF if the transient GF is known. For two- and three-dimensional
geometries, this relationship is useful; refer to Section 4.7.3 on the limit method.
For one-dimensional geometries, it is better to find the steady GF directly from the
auxiliary equation for G as discussed earlier in Section 1.7.2.

The limit in Equation 3.89 does not exist for all geometries. Specifically, for ge-
ometries with all boundaries insulated the usual GF does not exist. However, in these
cases a pseudo-GF can be used instead, as discussed later in Section 4.7.2.

In Equation 3.89, the transient GF is multiplied by the term αdτ with units (m2),
so the steady GF has different units than the transient GFs which depend on the
dimensionality of the geometry under discussion. The relationship between units of
steady and transient GF in Cartesian coordinates are given in Table 3.2.

3.6.2 STEADY GREEN’S FUNCTION SOLUTION EQUATION

In this section, the steady GFSE is stated in a general form. The steady GFSE may be
derived as the limit of the transient GFSE as t → ∞ because the steady temperature
is simply the transient temperature in the limit as t → ∞. The steady GFSE may also
be derived directly from the boundary value problem for the temperature and from the
auxiliary equation for the GF in a manner parallel to that for the transient GFSE pre-
sented in Section 3.3; this derivation is given as Problem 3.18 at the end of the chapter.

The partial differential equation that describes steady, multidimensional, linear
heat conduction is

∇2T + 1

k
g(r) − m2T = 0 in region R (3.90)

where ∇2 is the Laplacian operator in the appropriate coordinate system. The ther-
mal conductivity k is constant with position and temperature. The m2T term could
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represent side heat losses for a fin; in general m2 can be a function of r. (The m2T

term is not needed for the three-dimensional treatment of fins.)
The steady boundary conditions for Equation 3.90 have the general form

ki

∂T

∂ni

+ hiT = fi(ri) (3.91)

where the temperature T and its derivatives are evaluated at the boundary surface
Si , and ri denotes the location of the boundary. The spatial derivative ∂ / ∂ni de-
notes differentiation along an outward drawn normal to the boundary surface Si ,
i = 1, 2, . . . , S. The heat transfer coefficient hi can vary with position on Si but
is independent of temperature. Three different boundary conditions can be obtained
from Equation 3.91 by setting ki = 0 or k, and by setting hi = 0 or h. Boundary
conditions of type 4 or 5 involve energy storage ∂T / ∂t and therefore do not appear
in steady problems.

The steady GF satisfies the auxiliary equation

∇2G + δ(r − r′) − m2G = 0 (3.92)

ki

∂G

∂n′
i

+ hiG = 0 (3.93)

If the GF is known for a geometry, the steady temperature may be found from the
steady-state GFSE:

T (r) =
∫

R

1

k
G(r|r′) g(r′) dv ′ (for internal energy generation)

+
S∑

i=1

∫
Si

fi(r′
i)

ki

G(r|r′
i) ds′

i (for boundary conditions of
the second and third kind)

−
S∑

j=1

∫
Sj

fj (r′
j )

∂G

∂n′
j

∣∣∣∣
r′=r′

j

ds ′
j (for boundary condition

of the first kind only) (3.94)

Next, a steady example is given that includes the fin term. Other examples of
steady heat transfer are given in Sections 6.9, 7.13, and 8.8.

Example 3.7:

Steady fin of constant cross-section with specified temperatures on the ends. Find
the steady temperature in a fin with equation and boundary conditions given by

d 2T
dx2 − m2(T − T∞ ) = 0 0 < x < L

T (0) = T0 (3.95)

T (L) = T∞

where T0 and T∞ are constant temperatures, and m2 = 2h /(kδ), as shown in
Figure 3.7.This is a fin of constant cross-section and the number of this case is X11.
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Solution

Define variable Θ(x ) = T (x ) − T∞ to simplify the temperature relations:

d 2Θ

dx2 − m2Θ = 0 Θ(0) = T0 − T∞ Θ(L) = 0 (3.96)

The GF for the X11 case is given in Appendix X, Table X.3 as

G (x |x ′) = e−m(2 L−|x−x’|) − e−m(2 L−x−x’) + e−m|x−x’| − e−m(x+x’)

2m
(
1 − e−2 mL

) (3.97)

The boundary-condition term of the steady GFSE, Equation 3.94, gives

T (x ) − T∞ = −(T0 − T∞)
dG
dn′

∣∣∣∣
x ′=0

= (T0 − T∞ )
dG
dx ′

∣∣∣∣
x ′=0

(3.98)

Because the boundary term is evaluated at x ′ = 0, the x > x ′ form of the above
GF must be used to give

T (x ) − T∞
T0 − T∞

= e−mx − e−m(2L−x )

(1 − e−2mL)
(3.99)

The usual fin solutions, as given in heat transfer texts, are found by direct solution
of Equation 3.96 with independent solutions cosh and sinh (for example Nellis
and Klein, 2009). To show that the above temperature expression may be restated
with hyperbolic trig functions, rearrange as follows:

T (x ) − T∞
T0 − T∞

= e−mx − e−m(2L−x )

(1 − e−2mL)
emL / 2
emL / 2

= sinh m(L − x )
sinh mL

However it is expressed, the shape of the temperature distribution is a decreasing
exponential.

3.7 MOVING SOLIDS

3.7.1 INTRODUCTION

Moving solid problems occur in many cases in heat conduction. These problems can
be the result of a solid moving past a heating condition, such an extruded wire moving
out of a die and being cooled by convection and radiation.Another case is a physically
fixed solid with a moving heat source, such as a moving laser source on the surface of
a plate. A third case can result from a moving surface, such as the ablating surface of
a reentry heat shield. In each of these cases, it frequently is convenient to formulate
the problem so that the coordinate system is attached to the heat source which causes
a velocity term to appear in the partial differential equation of heat conduction. The
equations usually must be derived using a control volume approach as discussed in
Chapter 1.

These problems can be one-, two-, or three-dimensional. An example of a one-
dimensional problem is a moving circular die that is convectively cooled and lumped
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in the radial direction. That is, the temperature is only a function of the axial coordinate
(not radial also) and possibly time. The describing equation can be given as

k
∂2T

∂x2
− 2h

a
(T − T∞) = ρc

(
∂T

∂t
+ U

∂T

∂x

)
(3.100)

where the thermal conductivity is assumed to be independent of temperature, the
coordinate system is fixed at the die with the wire moving at a velocity of U in
the positive x-direction, and a is the wire radius. It is possible to have a steady state
(actually, called a quasisteady state) in this problem with respect to the die. In that
case, the time derivative disappears in Equation 3.100. The expression “quasisteady
state” is used because the temperature at any location fixed in the body varies with
time, even though the temperature at a location fixed with respect to the die does not
depend on time.

Another problem is for a small laser beam heating the surface of a plate. One way
to visualize the problem is for the beam to be stationary and the plate to be moving in
the x-, y-, and z-directions with velocities of U1, U2, and U3, respectively. Another
way is to visualize that the beam is moving in the −U1, −U2, and −U3 directions, in
other words, just opposite to the previous way. In both cases, the coordinate system
is fixed on the beam. The describing equation can be given as

k

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
= ρc

(
∂T

∂t
+ U1

∂T

∂x
+ U2

∂T

∂y
+ U3

∂T

∂z

)
(3.101)

The velocities U1, U2, and U3 are assumed to be known. Again, a quasisteady state
exists for the coordinates fixed on the beam and the velocities being steady, although
the temperature varies with time for a fixed point in the plate. To simplify the problem,
assume that the beam is moving in the negative x-direction while the plate is fixed
(or equivalently, the beam is fixed and the plate is moving in the positive direction),
then the equation becomes

k

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
= ρc

(
∂T

∂t
+ U1

∂T

∂x

)
(3.102)

A further simplification occurs when the velocity U1 is sufficiently large that the U1

term in Equation 3.102 is much larger than the second derivative with respect to the
x term, resulting in the second derivative in the x term being negligible. If, further,
there is a quasisteady state, then Equation 3.102 simplifies to

k

(
∂2T

∂y2
+ ∂2T

∂z2

)
= ρcU1

∂T

∂x
(3.103)

This equation is interesting because it is the same parabolic type as the heat conduction
equation, but now the time is replaced by x / U1. This is an important point, but it is
not the main thrust of this section.
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3.7.2 THREE-DIMENSIONAL FORMULATION

The emphasis in this section is to develop a method to treat moving solid problems
in a manner that the same GF and GFSE can be used, with appropriate modifications.
We consider the describing equation

k

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
= ρc

(
∂T

∂t
+ V

∂T

∂x

)
(3.104)

where V is the velocity in the positive direction of the solid through a fixed control
volume. (A more general equation is considered in the problems at the end of this
chapter.) The boundary conditions can be of the first kind such as

T (0, y, z, t) = Tx1(y, z, t) (3.105)

T (L, y, z, t) = Tx2(y, z, t) (3.106)

and the second and third kinds,

−k
∂T

∂x

∣∣∣∣
x=0

= hx1[Tx∞1(y, z, t) − T (0, y, z, t)] + qx1(y, z, t) (3.107a)

−k
∂T

∂x

∣∣∣∣
x=L

= hx2[T (L, y, z, t) − Tx∞2(y, z, t)] − qx2(y, z, t) (3.107b)

or equivalently,

−k
∂T

∂x

∣∣∣∣
x=0

+ hx1T (0, y, z, t) = hx1Tx∞1(y, z, t) + qx1(y, z, t)

= fx1(y, z, t) (3.108a)

k
∂T

∂x

∣∣∣∣
x=L

+ hx2T (L, y, z, t) = hx2Tx∞2(y, z, t) + qx2(y, z, t)

= fx2(y, z, t) (3.108b)

Notice the definition of fx1 and fx2 implied by these equations.
The initial condition is

T (x, y, z, 0) = F (x, y, z) (3.109)

These equations and boundary conditions are transformed using

T (x, y, z, t) = W (x, y, z, t) exp

(
V x

2α
− V 2

4α
t

)
(3.110)

where W (x, y, z, t) is the velocity transformation and is described by

k

(
∂2W

∂x2
+ ∂2W

∂y2
+ ∂2W

∂z2

)
= ρc

∂W

∂t
(3.111)
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with boundary conditions of the first kind

W (0, y, z, t) = Tx1(y, z, t) eV 2t /(4α) (3.112)

W (L, y, z, t) = Tx2(y, z, t) e−V L /(2α)+(V 2t) /(4α) (3.113)

or boundary conditions of the second or third kinds,

−k
∂W

∂x

∣∣∣∣
x=0

+ hxe1W
∣∣
x=0 = fx1(y, z, t)eV 2t /(4α) (3.114)

hxe1 = hx1 − kV

2α
(3.115)

k
∂W

∂x

∣∣∣∣
x=L

+ hxe2W
∣∣
x=L

= fx2(y, z, t)e−V L /(2α)+V 2t(4α) (3.116)

hxe2 = hx2 + kV

2α
(3.117)

Notice the effective heat transfer coefficient definitions in Equations 3.115 and 3.117.
Also notice that the boundary condition of the second kind turns into one of the third
kind; this means that the GX2− and GX−2 GFs are transformed to the GX3− and GX−3

GFs with the effective h values being −kV / 2α and kV / 2α, respectively.
The initial condition for W is obtained from Equations 3.109 and 3.110, given by

W (x, y, z, 0) = F (x, y, z) exp

(
−V x

2α

)
(3.118)

This concludes the formulation of the W problem. It now remains to obtain the solution
to the W problem and then to use Equation 3.110 to get the T solution.

The GFSE can be written as

T (x, y, z, t) = exp

(
V x

2α
− V 2t

4α

)
[Win(x, y, z, t)

+ Wbc1(x, y, z, t) + Wbc2,3(x, y, z, t)] (3.119)

where Win(·) is for the initial condition, Wbc1(·) is for boundary conditions only of the
first kind, and Wbc2,3(·) is for boundary conditions of the second and third kinds. It is
important to note that there can only be one boundary condition at a given boundary,
but it can be of the first or second or third kinds. The second and third kinds are
treated in a similar manner. The boundary condition of the zeroth kind (no physical
boundary) does not have an explicit term in Equation 3.119.

Each of the W terms in Equation 3.119 is now considered separately. The expres-
sion for Win(·) is

Win(x, y, z, t) =
∫ L

x′=0

∫
y′

∫
z′

GX--(x, t |x′, 0)GY --(y, t |y′, 0)

× GZ--(z, t |z′, 0) e−V x′ /(2α)F (x ′, y′, z′) dx′ dy ′ dz′ (3.120)
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The dashes in X-- can be 1, 2, or 3; the second dash could also be 0, but then the
upper limit L must be changed to infinity. The first dash in Y -- and Z-- can be 1, 2,
or 3, while the second dash can be 0, 1, 2, or 3. If the problem is two-dimensional
with x- and y-coordinates, then the dependence on z and z′ disappears. If the problem
is one-dimensional with x being the only coordinate, Equation 3.120 becomes

Win(x, t) =
∫ L

x′=0′
GX--(x, t |x′, 0) e−V x′ /(2α)F (x ′) dx′ (3.121)

Consider next the boundary conditions of the first kind. There could be all boundary
conditions of this kind in a given problem or none might be present. Also the problem
might be only one- or two-dimensional. For reasons of brevity and clarity, only the
x = 0 and x = L boundaries are explicitly considered to be of the first kind for the
three-dimensional case, resulting in the Wbcl(x, y, z, t) expression of

Wbcl(x, y, z, t) = α

∫ t

τ=0

∫
y′

∫
z′

∂GX1-(x, t |0, τ)

∂x ′ GY (y, t |y′, τ) GZ(z, t |z′, τ)

× Tx1(y ′, z′, τ)eV 2τ /(4α)dτ dy′ dz′

− α

∫ t

τ=0

∫
y′

∫
z′

∂ GX−1(x, t |L, τ)

∂x ′ GY (y, t |y′, τ) GZ(z, t |z′, τ)

× Tx2(y ′, z′, τ)eV 2τ /(4α)e−V L /(2α) dτ dy′ dz′ (3.122)

where the Y and Z notation subscripts have omitted the -- symbols. Recall that
boundary conditions of the second kind have been transformed to those of the third
kind. If there are boundary conditions of the first kind at the y boundaries as well as
at the x boundaries, then in addition to the two terms in Equation 3.122, two more
terms are added with the integration now on x ′, z′ and τ, the x ′ derivative replaced
with one with respect to y ′, and the appropriate boundary temperature used. For a
one-dimensional problem in the x-direction, Equation 3.122 reduces to

Wbcl(x, t) = α

∫ t

τ=0

∂GX1−(x, t |0, τ)

∂x ′ Tx1(τ)eV 2τ /(4α) dτ

− α

∫ t

τ=0

∂GX−1(x, t |L, τ)

∂x ′ Tx2(τ) e−V L /(2α)+V 2τ /(4α) dτ (3.123)

Consider next boundary conditions of the second and/or third kinds.Again for brevity,
only the x-direction boundary conditions are treated. The result for Wbc2,3(x, y, z, t) is

Wbc2,3(x, y, z, t) = α

k

∫ t

τ=0

∫
y′

∫
z′

GX3-(x, t |0, τ)GY (y, t |y′, τ)

× GZ(z, t |z′, τ) fx1(y ′, z′, τ)eV 2τ /(4α) dτ dy′ dz′

+ α

k

∫ t

τ=0

∫
y′

∫
z′

GX−3(x, t |L, τ) GY (y, t |y′, τ)

× GZ(z, t |z′, τ) fx2(y ′, z′, τ)e−V L /(2α)+V 2τ /(4α) dτ dy′ dz′
(3.124)
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The GFs used above, [GX--(x, t |x′, τ), GY --(y, t |y′, τ), GZ--(z, t |z′, τ)], are tabu-
lated in the appendices and can be used, along with the eigenconditions. There are
some changes, however. The boundary condition of the second kind is transformed
to the third kind, while the first and third kinds remain the same. For both the second
and third kinds, however, the h1 and h2 values are replaced by other values. At x = 0,
for boundary conditions of the second kind (having GX2-), G becomes GX3-, and
the h1 values become

h1 → h1 − kV

2α
= −kV

2α
(3.125)

where h1 on the right is zero for boundary conditions of the second kind. For x = L

with GX−2, G goes to GX−3 and h2 goes to

h2 → h2 + kV

2α
= kV

2α
(3.126)

Hence, at x = 0 for V > 0, the effective h is decreased while it is increased at x = L.
If the velocity is in the negative direction, these relations are changed.

Example 3.8:

A large body is initially at the temperature Ti , and then its surface at x = 0 is
suddenly decreased to zero. The body is porous and a fluid is flowing through so
that the describing partial differential equation is

k
∂2T
∂x2 = ρc

(
∂T
∂t

+ V
∂T
∂x

)
(3.127)

The body can be considered to be semi-infinite (0 < x < ∞) since it is said to be
large. The boundary and initial conditions are

T (0, t ) = 0 (3.128)

T (x → ∞, t ) → Ti (3.129)

T (x , 0) = Ti (3.130)

Solution

Only the initial condition gives a contribution so that Equations 3.119 and 3.120
are needed. The number of this case is XV 10B0T 1. The equations become

T (x , t ) = exp

(
Vx
2α

− V 2t
4α

)

×
∫ ∞

x ′=0
GX10(x , t |x ′, 0)e−Vx ′ /(2α)Tidx ′ (3.131)

The GX10(x , t |x ′, 0) GF can be found in Appendix X and is equal to

GX10(x , t |x ′, 0) = (4παt )−1 / 2

{
exp

[
− (x − x ′)2

4αt

]

− exp

[
− (x + x ′)2

4αt

]}
(3.132)
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Integrals of the type

I1 =
∫ ∞

x ′=0
exp

[
− (x − x ′)2

4αt

]
exp

(
−Vx ′

2α

)
dx ′

= (παt )1 / 2 exp

(
V 2t
4α

− Vx
2α

)

× erfc

[
(αt )1 / 2V

2α
− x

(4αt )1 / 2

]
(3.133)

and another integral of the same type is needed with x replaced by −x . This
integral can be evaluated by completing the square or by usingTable I.6, integral 1,
Appendix I. Then using Equation 3.133 in Equation 3.131 gives

T (x , t ) = Ti

2

{
erfc

[
(αt )1 / 2V

2α
− x

(4αt )1 / 2

]
− eVx / α erfc

[
(αt )1 / 2V

2α
+ x

(4αt )1 / 2

]}

(3.134)

For the case of positive V and t → ∞, the steady-state temperature T (x , ∞) goes
to zero, while for a negative V (=−U) and t → ∞, T (x , ∞) goes to

T (x , ∞) = Ti

[
1 − exp

(
−Ux

α

)]
(3.135)

where erfc (−∞) = 2 is used. Equation 3.135 is also valid for steady-state ablation
in which a solid is being decomposed at its heated surface by intense heating and
is moving at a constant velocity; x would be measured from the ablating surface
and T and Ti would be interpreted as the temperature differences from the ablation
temperature.

PROBLEMS
Note: Unless otherwise requested, the explicit forms of the GFs are not needed;
simply using the notation GX12(·), for example, is sufficient.

3.1 For a vector A, Green’s theorem is usually stated

∫∫∫
∇ · A dv =

∫∫
A · n ds

where n is the outward normal. Use this form of Green’s theorem to
establish the following identities:

(a)
∫∫∫ {Φ∇2Φ + |∇Φ|2}dv = ∫∫

Φ(∇Φ) · n ds

(b)
∫∫∫ {Ψ∇2Φ − Φ∇2Ψ}dv = ∫∫ [Ψ(∇Φ) · n − Φ(∇Ψ) · n]ds

3.2 Demonstrate for XIJ (I , J = 1, 2, 3, and 4) that

T (x, t) =
∫ L

x ′=0
GXIJ (x, t |x′, 0)F (x′) dx′
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is the solution to the equation

α
∂2T

∂x2
= ∂T

∂t

with the initial condition of T (x, t) = F (x) and appropriate homo-
geneous boundary conditions. Use Equation 3.4a in your solution.

3.3 A plate has the boundary conditions given by

T (0, t) = T0(t) and T (L, t) = Ti

and the initial condition T (x, 0) = Ti . Give the solution for the
temperature in terms of the appropriate GF. Only one integral should
be in the solution.

3.4 A semi-infinite region, 0 ≤ x ≤ ∞, is initially at temperature F (x).
For times t > 0, boundary surface at x = 0 is kept at zero tempera-
ture and heat is generated within the solid at the rate of g(x, t). Give
the expression for the temperature distribution in terms of GFs.

3.5 A semi-infinite region, 0 ≤ x ≤ ∞, is initially at zero temperature.
For times t > 0, boundary surface at x = 0 is heated by a constant
heat flux q0. Heat is generated within the solid at the rate of g0 =
constant from x = a to b. Give the GF solution equation for the
temperature distribution.

3.6 Give the GF solution to the problems in Problem 2.10.
3.7 Give the Green’s function solution for determining the temperature

in a concrete driveway (modeled as a one-dimensional semi-infinite
solid) that is exposed to a convective surface heating condition with
heat transfer coefficient hs , plus a net radiative heat input of q(t). The
ambient temperature is assumed to be varying with time and is given
by T∞(t). At time zero, there is a nonuniform initial temperature-
distribution given by F (x).

3.8 Give the GF solution to the problem denoted X23B10Y13B00T -
G- and also give the describing differential equation, boundary, and
initial conditions.

3.9 A plane wall is suddenly subjected to a step change in temperature at
x = 0 to temperature of 100◦C and the initial temperature is 50◦C.
The x = L boundary is exposed to a convection condition with an h

of 10 W / m2 ◦C and a fluid temperature of 50+50 sin(5t) ◦C. Obtain
three different expressions for the temperature distribution in terms
of the appropriate Gx (which should not be given explicitly). The
three different expressions are found by different treatments of the
initial condition and the boundary conditions.

3.10 A cube is initially at the temperature F (x, y, z) and the surfaces are
exposed to a fluid at temperature T∞, which is a constant, and a heat
transfer coefficient h. Give an expression using GF for T (x, y, z, t).

3.11 A solid cylinder of radius a in a nuclear reactor is initially at the tem-
perature F (r). It is cooled by a fluid at T∞(t) and has a heat transfer
coefficient of h. Give a mathematical statement of the problem and
also the number using the number system of Chapter 2. Find the
solution in terms of GFs.
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3.12 Solve Problem 3.11 also with a volumetric heat source due the nu-
clear reactions of g(r) = g0 exp[−(a−r) / R] where R is a constant.

3.13 The alternative GF solution equation involves the quantity T ∗, de-
fined by

∇2T ∗ − m2T ∗ = 1

k
g∗(r, t)

Give a physical interpretation of T ∗, then in one-dimensional rect-
angular coordinates find a general solution for T ∗ for the following
cases for m2 = 0:

(a) g∗(r, t) = g1, a constant
(b) g∗ = x

(c) g∗ = e−ax

3.14 Using the notation G(r , θ, φ, t |r ′, θ′, φ′, τ) for the GF, write the GF
solution equation for the temperature in an infinite body in spherical
polar coordinates. The initial condition is F (r , θ, φ) and the volume
energy generation is g(r , θ, φ, t).

3.15 Using this name G(r , φ, z, t |r ′, φ′, z′, τ) for the GF, write the GF so-
lution equation for the temperature in a half cylinder, 0 ≤ r ≤ a, 0 ≤
φ ≤ π, 0 ≤ z ≤ L. The boundary conditions are homogeneous, the
initial condition is F (r , φ, z) and the volume energy generation is
g(r , φ, z, t).

3.16 Repeat the derivation of Section 3.3 for the same problem but the
right-hand side replaced by

1

α
u(r)

∂T

∂t

The function u(r) could represent a velocity term for a flow problem
if the second derivative in the flow direction were dropped and t

were replaced by the coordinate in the flow direction. Show that the
GF solution equation is the same as Equation 3.46 except u(r′) is
also inside the first integral of Equation 3.46b.

3.17 An orthotropic plate is a model for aligned-fiber composite materials.
For a two-dimensional orthotropic body, the thermal conductivity
has two components (and only two), such as kx and ky for the x- and
y-directions, respectively. Consider the problem of

kx
∂2T

∂x2
+ ky

∂2T

∂y2
= ρc

∂T

∂t

−kx
∂T

∂x

∣∣∣∣
x=0

= qx0(y, t) T (a, y, t) = Ta(y, t) T (x, 0, t) = 0

−ky
∂T

∂y

∣∣∣∣
y=b

= hyb[T (x, b, t) − T∞(x, t)]

The objective is to obtain a GF solution equation for this case by
using the transformation given below.
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(a) By using the transformation y′ = y(kx |ky )1 / 2, show that the
problem can be transformed to

kx
∂2T

∂x2
+ kx

∂2T

∂y′2 = ρc
∂T

∂t

−kx
∂T

∂x

∣∣∣∣
x=0

= qx0(y′, t) T (a, y′, t) = Ta(y′, t) T (x, 0, t) = 0

−kx
∂T

∂y′

∣∣∣∣
y ′=b′

= h′
yb[T (x, b′, t) − T∞ (x, t)]

where b′ = b(kx / ky )1 / 2 and h′
yb = hyb(kx / ky )1 / 2.

(b) By comparing the above problem with those previously given,
obtain a GF solution equation. (It is not necessary to completely
rederive the GF solution equation.) Leave in a form that does
not contain the GFs in explicit form.

(c) Give the GF(s) for this problem.
3.18 Derive the steady-state GF solution equation, Equation 3.94, from

first principles.
3.19 Derive Equation 3.100 using the control volume equation from

Chapter 1.
3.20 Using the relationship between steady and unsteady GF, (Equation

3.89), show how the unsteady GF solution equation reduces to the
steady GF solution equation in the limit as t → ∞.

3.21 Repeat Example 3.7 with added constant energy generation in the
body: g(x, t) → g0.

3.22 Repeat Example 3.7 with the boundary condition x → L given by

k
∂T (x = L)

∂x
+ h[T (x = L) − T∞] = 0

3.23 Show that if m = ax in the equation

∂2T

∂x2
− m2T = 1

α

∂T

∂t

that the W transformation (Equation 3.73) does not eliminate the
m2T term.

3.24 Give the solution in terms of GFs for the moving long circular die
described by Equation 3.100 for T∞ equal to a constant and the
boundary condition at x = 0 of T = T0. The initial temperature is
F (x).

3.25 Give the solution using GFs for the problem denoted XV 23B11T −.
3.26 Use the alternative GF solution equation to obtain T (x, t) for

α
∂2T

∂x2
= ∂T

∂t
+ V

∂T

∂x

−k
∂T

∂x
= h(T (0, t) − T∞) at x = 0

T = 0 at x = L T (x, 0) = 0
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3.27 The GF for the hyperbolic energy equation is defined by

∇2G − 1

α

∂G

∂t
− 1

σ2

∂2G

∂t2
= − δ(r − r′) δ(t − τ)

α

Derive the GF solution equation for the hyperbolic energy equation
in the infinite body.

3.28 Show that the equation

∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
+ g(x, y, z, t)

k
− m2T

= 1

α

[
∂T

∂t
+ u

∂T

∂x
+ V

∂T

∂y
+ w

∂T

∂z

]

by using the transformation

T (x, y, z, t) = W (x, y, z, t) exp

[
ux

2α
−

(
u2

4α
+ m2α

)
t

]

× exp

[
vy

2α
− v2t

4α

]
exp

[
wz

2α
− w2t

4α

]

can be written as

∂2W

∂x2
+ ∂2W

∂y2
+ ∂2W

∂z2
+ H (x, y, z, t)

k
= 1

α

∂W

∂t

where H is defined to be

H = g(x, y, z, t) exp

[
−ux

2α
+

(
u2

4α
+ m2α

)
t

]

× exp

[
−vy

2α
+ v2t

4α

]
exp

[
−wz

2α
+ w2t

4α

]

REFERENCES

Beck, J. V., Blackwell, E., and St. Clair, C. R., Jr., 1985, Inverse Heat Conduction, Ill-Posed
Problems, John Wiley, New York.

Nellis, G. and Klein, S., 2009, Heat Transfer, Cambridge University Press, Cambridge, U.K.,
p. 104.



T&F Cat # K10695, Chapter 3, Page 100, 12-6-2010



T&F Cat # K10695, Chapter 4, Page 101, 12-6-2010

4 Methods for Obtaining
Green’s Functions

4.1 INTRODUCTION

Although the Green’s function (GF) approach represents a powerful and flexible
method for solving heat conduction and diffusion problems, it is necessary to have
mathematical expressions for the GFs. Many GFs are known; Appendixes X, R,
and RS provide listings of GFs in a systematic form for rectangular, cylindrical, and
spherical coordinates, respectively. The purpose of this chapter is to demonstrate sev-
eral methods of obtaining exact expressions for the GFs. Galerkin-based GFs for com-
posite bodies and other difficult cases are discussed in Chapters 10 and 11. Once the GF
is known for a given problem, the general solution of the problem can be written down
immediately using the GF solution equations given in Chapter 3; integrations may
still be needed, but the integrations can be performed numerically, if not analytically.

For many problems involving finite bodies, the GF expressions have two different
forms: the small-cotime GF and the large-cotime GF. Various solution techniques are
used to determine the different forms. The small-cotime and large-cotime forms of
the GF are mathematically equivalent and both apply for t ≥ 0; however, depending
on the practical applications, one may be preferred to the other. Applications of the
small-cotime and large-cotime GF are discussed in more detail in Chapter 5.

In Chapter 1, we saw that the appropriate GF for a given problem is the solution
to the corresponding homogeneous auxiliary problem. Consequently, the GFs them-
selves can be found by classic mathematical methods. In this chapter, several different
approaches for obtaining the GFs are discussed and illustrated through various exam-
ples. The first method uses sources and sinks in an infinite body for construction of
the GF in a finite planar body. This method, which is known as the method of images,
is illustrated in Section 4.2. The next method utilizes the Laplace transform. Many
small-cotime GFs are derived from the Laplace transform solutions of the heat con-
duction equation. This approach is discussed in Section 4.3. The third method uses the
separation of variables technique. Many large-cotime GFs are obtained through this
procedure. The method of separation of variables (and its relation to the GF) is dis-
cussed in Section 4.4. Section 4.5 shows that certain two- and three-dimensional GFs
can be found by simple multiplication of the corresponding one-dimensional GFs.
The method of eigenvalue expansion is discussed in Section 4.6. Finally, Section 4.7
covers steady-state GFs and their relationship with transient GFs.

4.2 METHOD OF IMAGES

The method of images for rectangular coordinates is based on the construction
of a transient GF for a finite body from the transient GF for an infinite body

101
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(the fundamental heat conduction solution). This method readily applies to transient
problems with boundary conditions of the zeroth, first, and second kinds.Afew steady
GF may be found with the method of images for boundaries of the first kind only (see
Barton, 1989, pp. 127).

Earlier in Section 1.11 the method of images was used to find transient GFs for a
semi-infinite body. Here the method of images is used to find transient GFs for four
different flat plate cases. They are denoted X11, X12, X21, and X22 in the heat con-
duction numbering system. Transient planar sources and sinks are used for these
one-dimensional cases, but transient line and point sources can also be used in two-
or three-dimensional geometries.

The temperature solutions for each of the cases mentioned above with an initial
temperature of F (x) and homogeneous boundary conditions is given by

T (x, t) =
∫ L

x′=0
G

(
x, t |x ′, 0

)
F (x′) dx ′ (4.1)

The integration is over the domain 0 to L. Four G(·) functions can be constructed by
superimposing the plane source solution for an infinite body (the fundamental heat
conduction solution). See Figure 4.1 for the location of these plane sources (which
are denoted by the plus signs) or sinks (which are denoted by the minus signs). The
physical locations of the sources or sinks are at positions included by the equations

z− = 2nL + x − x ′ n = . . . , −2, −1, 0, 1, 2, . . . (4.2a)

z+ = 2nL + x + x ′ n = . . . , −2, −1, 0, 1, 2, . . . (4.2b)

One of the simplest cases to visualize is the X22 case which has two insulated
boundary conditions; these boundary conditions can be modeled by symmetric images
or reflections. The result is a series of sources (not sinks) at the z− and z+ locations
given by Equation 4.2a and b. As a consequence, the X22 GF has only positive
components as given in Table 4.1.

Another case is denoted X11 and is shown at the top of Figure 4.1. Notice that
each image (at x = 0, ±L, ±2L, . . . ) must have the opposite sign to the adjacent
one in order to have a zero contribution at the common boundary. This leads to the
distribution of signs shown in the X11 case in Figure 4.1 and the X11 GF given
in Table 4.1. A similar procedure is followed in the X12 and X21 cases shown in
Figure 4.1. The boundaries at x = 0, ±2L, ±4L, . . . are repeated as are those at x =
±L, ±3L, . . . ; as a consequence, the symmetric condition (boundary condition of
the second kind) has the same sign on both sides of a boundary and the antisymmetric
condition (boundary condition of the first kind) is modeled by a source on one side
and a sink on the other.

The cases shown in Figure 4.1 have the GFs that are tabulated in Table 4.1 as the
last five cases, with the last case being a general form containing all of the previous
four cases. There are summations that extend from n = −∞ to n = +∞, but only a
few terms are needed for small dimensionless times; this is discussed further in the
next paragraph. A more extensive table of GFs for Cartesian coordinates is given in
Appendix X.
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Finite body with
source at x́x́
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FIGURE 4.1 Location of sources (+) and sinks (−) for finite-body GFs created from infinite-
body GFs by the method of images.

It is instructive to see how many terms in the X11, X12, X21, and X22 cases
are needed for small dimensionless times, α(t − τ) / L2. Consider the typical term,
K(2nL + x ± x ′, t − τ) · L, which is plotted in Figures 4.2 and 4.3. Results for the
dimensionless time of 0.025 are plotted in the first figure and for the dimensionless
time of 0.1 in the second figure. The function K · L is plotted versus (x − x ′) / L or
(x + x′) / L, where (x − x′) / L can vary from −1 to +1, and (x + x ′) / L can vary
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TABLE 4.1
Green’s Functions Formed from Fundamental Heat Conduction Solution

Case Green’s Function

X00 K(x − x ′, t − τ) = [4πα(t − τ)]−1 / 2 exp[−(x − x′)2 / 4α(t − τ)]
X10 K(x − x′, t − τ) − K(x + x ′, t − τ)

X20 K(x − x ′, t − τ) + K(x + x ′, t − τ)

X11
∞∑

n=−∞
[K(2nL + x − x ′, t − τ) − K(2nL + x + x ′, t − τ)]

X12
∞∑

n=−∞
(−1)n[K(2nL + x − x ′, t − τ) − K(2nL + x + x ′, t − τ)]

X21
∞∑

n=−∞
(−1)n[K(2nL + x − x ′, t − τ) + K(2nL + x + x ′, t − τ)]

X22
∞∑

n=−∞
[K(2nL + x − x ′, t − τ) + K(2nL + x + x ′, t − τ)]

XIJ
∞∑

n=−∞
(−1)(I+J )n[K(2nL + x − x ′, t − τ) + (−1)I K(2nL + x + x ′, t − τ)], I , J = 1, 2

10.0000

1.0000

0.1000

0.0100

0.0010

0.0001

10–5

10–6

10–7

–1.0 –0.8 –0.4

n = 1

n = –1

n = 0
Dim. time = 0.025

(x–x´)/L or (x+x´)/L
0.4 0.8 1.2 1.6 1.80.0

K(
2n

L 
+ 

x 
± 

x´
,t

–τ
)·L

FIGURE 4.2 Function K(2nL + x ± x′, t − τ) · L, a component of the small-cotime GF, at
dimensionless time α(t − τ) / L2 = 0.025.

from 0 to 2. For α(t − τ) / L2 = 0.025, the maximum K · L value is almost 2. See
Figure 4.2. For terms with values at least 0.0001 (0.005% of the maximum), the n = 0
term is needed for (x − x′) / L between −1 and 1, and for the (x + x′) / L term for 0
to 1. The n = −1 term is needed only for (x + x′) / L between 1 and 2. For the larger
time of α(t − τ) / L2 = 0.1, Figure 4.3 shows that for terms being less than 0.005%
of the maximum, the K · L terms for (x − x′) / L are needed for n = 0 (region of
−1 to 1), n = 1 (region of −1 to 0), and n = −1 (region of 0 to 1). The K · L
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1.0000

0.1000

0.0100

0.0010

0.0001

10–5

10–6

10–7

K(
2n

L 
+ 

x 
± 

x´
, t

–τ
)L

–1.0 –0.6 –0.2
(x–x´)/L or (x+x´)/L

0.6 1.0 1.4 1.80.2

n = –1
n = 1

n = –2

n = 0

Dim. time = 0.1

FIGURE 4.3 Function K(2nL + x ± x′, t − τ) · L, a component of the small-cotime GF, at
dimensionless time α(t − τ) / L2 = 0.10.

terms for (x + x ′) / L are needed for n = 0 (region of 0 to 2) and n = −1 (region
of 0 to 2). For other criteria regarding the magnitude of terms that are neglected, the
number of required terms could be greater or smaller. The major point is that for
small dimensionless times such as α(t − τ) / L2 < 0.025, only two terms are needed
for K(·), one for n = 0 and the other for n = −1.

4.3 LAPLACE TRANSFORM METHOD

The Laplace transformation is a powerful tool in the solution of linear ordinary and
partial differential equations, and has accordingly been applied to many heat con-
duction problems (Carslaw and Jaeger, 1959; Arpaci, 1966; Luikov, 1968; Ozisik,
1993). The method is particularly well suited for the solution of one-dimensional
time-dependent problems. The process of solution consists of three main steps. First,
the time variable is removed from the problem by means of Laplace transformation,
resulting in a simpler equation than the original equation. Next, the new equation
is solved in the transformed space; and finally, the solution of the new equation is
transformed back to obtain the solution to the original problem. Since a brief intro-
duction to the Laplace transform method was given earlier in Section 1.8, the present
discussion is intended mainly to illustrate various approaches for obtaining the GFs.
For a more comprehensive presentation of the Laplace transform method applied to
heat conduction problems, see Carslaw and Jaeger (1959, Chapters 12, 13, and 15).

In this section, we first present a brief definition of the Laplace transformation.
An example problem is given next, to demonstrate the application of the method to a
typical heat conduction problem by employing a table of transform pairs. Then, the
method is utilized for the determination of the GFs through the use of three examples.
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4.3.1 DEFINITION

Consider a function f (t) for t ≥ 0. This function can be multiplied by e−st and
integrated with respect to t from zero to infinity. Then, if the resulting integral exists,
it is a function of the parameter s; that is,

f (s) =
∫ ∞

0
e−st f (t) dt (4.3)

The function f (s) is called the Laplace transform of the function f (t), and is denoted
by L [ f (t)]. The original function f (t) is called the inverse transform of f (s) and is
denoted by

f (t) = L −1[ f (s)] (4.4)

Both functions f (t) and f (s) are called a Laplace transform pair, and knowledge
of either one enables the other to be recovered. A list of properties of the Laplace
transform is given in Appendix L.

An important step in the process of solving a problem by Laplace transforms is
that of inverting the transform to obtain the solution to the original problem. Fortu-
nately, extensive tables of transform pairs are available which can directly be utilized
for the solution of many problems (Appendix L, Table L.1)

4.3.2 TEMPERATURE EXAMPLE

As a demonstration of the Laplace transform method, an example of finding the
transient temperature is given next.

Example 4.1: Heat Conduction in a Semi-Infinite Body with Specified
Surface Temperature—X 10B1T 0-Case

Consider a semi-infinite body initially at zero temperature subjected to a constant
surface temperature T0, for times t > 0. There is no volume energy generation
in the body. Using the Laplace transform method, find the transient temperature
distribution in the body.

Solution

The differential equation and the boundary and initial conditions for this problem
are given as

∂2T (x , t )
∂x2 = 1

α

∂T (x , t )
∂t

(4.5)

T (0, t ) = T0 (4.6a)

lim T (x , t ) → 0 as x → ∞ (4.6b)

T (x , 0) = 0 (4.6c)
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The first step in the solution is to find the Laplace transform of the differential
equation (4.5) with respect to t ; that is,

L

[
∂2T (x , t )

∂x2

]
= 1

α
L

[
∂T (x , t )

∂t

]
(4.7)

The use of the properties of Laplace transform yields

L

[
∂2T (x , t )

∂x2

]
= d 2T (x , s)

dx2 (4.8a)

L

[
∂T (x , t )

∂t

]
= sT (x , s) − T (x , 0)

= sT (x , s) since T (x , 0) = 0
(4.8b)

where

T (x , s) = L [T (x , t )] =
∫ ∞

0
e−st T (x , t ) dt (4.8c)

Thus, Equation 4.7 can be written as

d 2T (x , s)
dx2 − s

α
T (x , s) = 0 (4.9)

Similarly, the Laplace transform of the boundary conditions, Equation 4.6a and b,
yields

T (0, s) = L [T0] = T0

s
(4.10a)

T (x , s) → 0 as x → ∞ (4.10b)

Equation 4.9 is an ordinary differential equation for T (x , s) with the only indepen-
dent variable being x . The solution of this equation with the boundary conditions
given by Equation 4.10a and b may be written as

T (x , s) = T0

s
e−x

√
s / α (4.11)

The final step is now to transform T (x , s) back to obtain the solution for T (x , t );
that is,

T (x , t ) = L −1
[

T0

s
e−x

√
s / α

]
(4.12)

Equation 4.12 can be inverted simply by utilizing a table of transform pairs (Ap-
pendix L, Table L.1, number 42) to obtain

T (x , t ) = T0 erfc
[

x
(4αt )1 / 2

]
(4.13)

This is the same solution as given by Equation 1.112 which was obtained by the
GF method.
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4.3.3 DERIVATION OF GREEN’S FUNCTIONS

The short-cotime GF for many heat conduction problems are derived from the Laplace
transform solution of the corresponding auxiliary equation with homogeneous bound-
ary conditions.As discussed in Chapter 1, the auxiliary equation for a given problem is
identical to the original heat conduction equation for that problem except for the heat
generation term, which is replaced by a unit instantaneous heat source (a Dirac delta
function). The homogeneous boundary conditions for the auxiliary problem must be
of the same kind as the original problem. Determination of the GFs by the method of
Laplace transform is best illustrated through the use of examples.

Example 4.2: Semi-Infinite Body with Convection—X30 Case

Find the GF for the problem of a semi-infinite body with the convective boundary
condition at the surface.

Solution

This is the X30 case. The GF associated with this problem is the solution to the
following auxiliary equation:

∂2G
∂x2 + 1

α
δ(x − x ′) δ(t − 0) = 1

α

∂G
∂t

t ≥ 0 x > 0 (4.14)

subject to the homogeneous boundary conditions of

−k
∂G (0, t |x ′, 0)

∂x
+ hG (0, t |x ′, 0) = 0 t ≥ 0 (4.15a)

G (∞, t |x ′, 0) is bounded t ≥ 0 (4.15b)

and initial condition

G (x , t |x ′, 0) = 0 t < 0 (4.15c)

Notice that the second term in Equation 4.14 represents a unit instantaneous plane
source at location x ′ released at time τ = 0. Consequently, G (x , t |x ′, 0) is the X30
GF for τ = 0. Once the appropriate expression for G (x , t |x ′, 0) is determined,
then GF for τ �= 0 can be found by replacing t by t − τ in that expression.

In the Laplace transform approach, the auxiliary problem given by Equa-
tion 4.14 is subdivided into two problems. One gives the solution due to the instan-
taneous plane source at location x ′ and at time τ for an infinite one-dimensional
body (the fundamental heat conduction solution), and the other satisfies the given
initial and boundary conditions. Hence G (x , t |x ′, 0) is written as

G (x , t |x ′, 0) = K (x − x ′, t − 0) + v(x , t ) (4.16)

where K is the fundamental heat conduction solution for τ = 0, given by

K (x − x ′, t − 0) = (4παt )−1 / 2 exp

[
− (x − x ′)2

4αt

]
(4.17)
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and v(x , t ) satisfies the one-dimensional heat conduction equation in the semi-
infinite region; that is,

∂2
v(x , t )
∂x2 = 1

α

∂v(x , t )
∂t

for t > 0 and 0 < x < ∞ (4.18a)

with the initial condition of

v(x , 0) = 0 (4.18b)

and v should be such that the boundary conditions, Equation 4.15a and b, is
satisfied.

Next Laplace transform will be used to replace time t by transform parameter s.
Taking the Laplace transform of K (use Appendix L, Table L.1, number 43) gives

K = 1
2(αs)1 / 2 exp

[
−

( s
α

)1 / 2 |x − x ′|
]

(4.19)

Taking the Laplace transform of Equation 4.18a, using the same techniques dis-
cussed in Example 4.1, results in

d 2
v

dx2 − s
α
v = 0 (4.20)

The general solution of Equation 4.20 may be written as

v (x , s) = A exp
[( s

α

)1 / 2
x
]

+ B exp
[
−

( s
α

)1 / 2
x
]

(4.21)

Now, taking the Laplace transform of Equation 4.16 and substituting the values for
K and v from Equations 4.19 and 4.21 into the transformed equation yields

G (x , s|x ′, 0) = 1
2(αs)1 / 2 exp

[
−

( s
α

)1 / 2 |x − x ′|
]

+ A exp
[( s

α

)1 / 2
x
]

+ B exp
[
−

( s
α

)1 / 2
x
]

(4.22)

The constants A and B in Equation 4.22 are determined from the boundary con-
ditions 4.15a, b. The Laplace transform of these equations are

−k
∂G (0, s|x ′, 0)

∂x
+ hG (0, s|x ′, 0) = 0 (4.23a)

G (∞, s|x ′, 0) is bounded (4.23b)

Then, by introducing the transformed conditions Equation 4.23a and b into Equa-
tion 4.22, the constants A and B are

A = 0 (4.24a)

B = 1
2(αs)1 / 2

(s / α)1 / 2 − H
(s / α)1 / 2 + H

exp
[
−

( s
α

)1 / 2
x ′

]
(4.24b)
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where H = h / k . Substituting Equation 4.24a and b back into Equation 4.22 yields

G (x , s|x ′, 0) = 1
2(αs)1 / 2

{
exp

[
−

( s
α

)1 / 2 |x − x ′|
]

+ exp
[
−

( s
α

)1 / 2
(x + x ′)

]
− 2H

[(s / α)1 / 2 + H]
× exp

[
−

( s
α

)1 / 2
(x + x ′)

]}
(4.25)

From the Laplace transform table (Appendix L, numbers 43 and 47), the inverse
transform of Equation 4.25 gives the solution G (x , t |x ′, 0); that is,

G (x , t |x ′, 0) = 1
2(παt )1 / 2

{
exp

[
− (x − x ′)2

4αt

]
+ exp

[
− (x + x ′)2

4αt

]}

− h
k

exp

[
h
k

(x + x ′) + α
h2t
k2

]
erfc

[
(x + x ′)
(4αt )1 / 2 + h

k
(αt )1 / 2

]
(4.26)

which is the X30 GF for τ = 0. The X30 GF for τ �= 0 can now be determined by
replacing t by t − τ in Equation 4.26; that is,

GX30 (x , t |x ′, τ)

= 1
[4πα(t − τ)]1 / 2

{
exp

[
− (x − x ′)2

4α(t − τ)

]
+ exp

[
− (x + x ′)2

4α(t − τ)

]}

− h
k

exp

[
h
k

(x + x ′) + α
h2(t − τ)

k2

]
erfc

{
x + x ′

[4α(t − τ)]1 / 2 + h
k

[α(t − τ)]1 / 2
}

(4.27)

This equation is tabulated in Appendix X. Note that for h → 0 the error function
term drops out, demonstrating that the convection boundary (third kind) reduces
to the insulated boundary (second kind) when convection goes to zero. That is,
GX30(h → 0) = GX20.

Example 4.3: Region outside a Spherical Cavity with Convection—RS30
Case

Find the GF for the infinite region outside a spherical cavity of radius a with a
convective boundary condition. This is the RS30 case.

Solution

The GF is the solution to the auxiliary equation,

1
r

∂2(rG )
∂r2 + 1

α
δ(r − r′) δ(t − 0) = 1

α

∂G
∂t

a < r < ∞ t ≥ 0 (4.28)

Here δ(r − r′) has units m−3. The homogeneous boundary conditions are

−k
∂G (a, t |r ′, 0)

∂r
+ hG (a, t |r ′, 0) = 0 t ≥ 0 (4.29a)

G (∞, t |r ′, 0) is bounded, t ≥ 0 (4.29b)
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and the initial condition is

G (r , t |r ′, 0) = 0 t < 0 (4.29c)

Equations 4.28 and 4.29 represent the problem of an infinite region outside the
spherical cavity of r = a (initially at zero temperature) subject to a unit instanta-
neous spherical surface source at r = r ′ released at time τ = 0 with a homogeneous
convective boundary condition at r = a.

Again, in a manner similar to that used in the previous example, the solution
for G (r , t |r ′, 0) is subdivided into two parts in the following form:

G (r , t |r ′, 0) = Ks (r − r ′, t − 0) + v(r , t ) (4.30)

where Ks is the fundamental heat conduction solution for radial flow in the spher-
ical region; it is the GF for the RS00 case (see Appendix RS) and is given by

Ks (r − r ′, t − 0) = 1
8πrr′(παt )1 / 2

{
exp

[
− (r − r ′)2

4αt

]
− exp

[
− (r + r ′)2

4αt

]}
(4.31)

and its Laplace transform is given by (Appendix L, number 43)

K s = 1
8πrr ′(αs)1 / 2

{
exp

[
−

( s
α

)1 / 2 |r − r ′|
]

− exp
[
−

( s
α

)1 / 2
(r + r ′)

]}
(4.32)

The temperature v in this case satisfies the heat conduction equation for one-
dimensional heat flow in the region outside the spherical cavity r = a; that is,

∂2[rv(r , t )]
∂r2 = 1

α

∂ [rv(r , t )]
∂t

for t > 0 and a < r < ∞ (4.33a)

with the initial condition of

v(r , 0) = 0 (4.33b)

The Laplace transform of Equation 4.33a yields

d 2(rv)
dr2 − s

α
rv = 0 for a < r < ∞ (4.34)

which has the general solution of the form

v(r , s) = A
r

exp
[( s

α

)1 / 2
r
]

+ B
r

exp
[
−

( s
α

)1 / 2
r
]

(4.35)

Taking the Laplace transform of Equation 4.30 and substituting the values for K
and v from Equations 4.32 and 4.35 into the result gives

G (r , s|r ′, 0) = 1
8πrr ′(αt )1 / 2

{
exp

[
−

( s
α

)1 / 2 |r − r ′|
]

− exp
[
−

( s
α

)1 / 2
(r + r ′)

]}

+ A
r

exp
[( s

α

)1 / 2
r
]

+ B
r

exp
[
−

( s
α

)1 / 2
r
]

(4.36)
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Equation 4.36 must satisfy the boundary conditions Equation 4.29a and b. The
Laplace transforms of these equations are

−∂G (a, s|r ′, 0)
∂r

+ HG (a, s|r ′, 0) = 0 (4.37a)

G (∞, s|r ′, 0) = 0 (4.37b)

where h / k is denoted H . It follows from Equation 4.37b that

A = 0 (4.38a)

Then, from Equation 4.37a, one can show that

B = 1
8πr ′(αs)1 / 2

{
exp

[
−

( s
α

)1 / 2
r ′
]

− exp
[
−

( s
α

)1 / 2
(r ′ − 2a)

]

+ 2(s / α)1 / 2

(s / α)1 / 2 + 1
a + H

exp
[
−

( s
α

)1 / 2
(r ′ − 2a)

]}
(4.38b)

Substituting the values for A and B from Equation 4.38a and b into Equation 4.36
yields,

G (r , s|r ′, 0) = 1
8πrr ′(αs)1 / 2

{
exp

[
−

( s
α

)1 / 2 |r − r ′|
]

− exp
[
−

( s
α

)1 / 2
(r + r ′ − 2a)

]
+ 2(s / α)1 / 2

(s / α)1 / 2 + 1
a

+ H

× exp
[
−

( s
α

)1 / 2
(r + r ′ − 2a)

]}
(4.39)

which is the Laplace transform of G (r , t |r ′, 0).Taking the inverse transform of Equa-
tion 4.39 (see Appendix L, number 43 and 47) and by replacing t by t − τ gives

GRS30 (r , t |r ′, τ)

= 1
8πrr ′[απ(t − τ)]1 / 2

(
exp

[
− (r − r ′)2

4α(t − τ)

]
+ exp

[
− (r + r ′ − 2a)2

4α(t − τ)

]

−k + ah
ak

[4πα(t − τ)]1 / 2 exp

[
α(t − τ)

(
k + ah

ak

)2
+ k + ah

ak
(r + r ′ − 2a)

]

× erfc
{

(r + r ′ − 2a)
2[α(t − τ)]1 / 2 + k + ah

ak
[α(t − τ)]1 / 2

})
(4.40)

which is the RS30 Green’s function; it is included in Appendix RS.

Example 4.4: Transient Slab Body, Case X12

Use the Laplace transform method to find the transient GF in the slab with G = 0
at x = 0 and ∂G / ∂x = 0 at x = L.



T&F Cat # K10695, Chapter 4, Page 113, 12-6-2010

Methods for Obtaining Green’s Functions 113

Solution

The GF satisfies

∂2G
∂x2 − 1

α

∂G
∂u

+ 1
α

δ(x − x ′)δ(u) = 0 (4.41)

G (x = 0, x ′, u) = 0 (4.42)

dG
dx

∣∣∣∣
x=L

= 0 (4.43)

G (x , x ′, u = 0) = 0 (4.44)

where u = t − τ is the cotime. As before, the solution will be sought in the form

G (x , x ′, u) = K (x , x ′, u) + v(x , u) (4.45)

where K is the fundamental heat conduction solution. Replace this form of G into
the auxiliary problem for G , Equation 4.41, to find the boundary value problem
for v:

∂2v
∂x2 − 1

α

∂v
∂u

= 0 (4.46)

v(x = 0) = −K (x = 0) (4.47)

dv
dx

∣∣∣∣
x=L

= − dK
dx

∣∣∣∣
x=L

(4.48)

v(x , x ′, u = 0) = 0 (4.49)

With this procedure the nonhomogeneous term has moved from the differential
equation for G to the boundary conditions for v. Now apply the Laplace transform,
to find the s-space relations for v:

∂2v
∂x2 − s

α
v = 0 (4.50)

v(x = 0) = −K (x = 0) (4.51)

dv
dx

∣∣∣∣
x=L

= − dK
dx

∣∣∣∣∣
x=L

(4.52)

The general solution for v was discussed in the previous example, and it is given by

v(x , x ′, s) = A exp[(s / α)1 / 2x] + B exp[−(s / α)1 / 2x] (4.53)

Constants A and B may be found by replacing v in the boundary conditions for v.
The result, after some algebra, is

A = exp[−(s / α)1 / 2(2L − x ′)] − exp[−(s / α)1 / 2(2L + x ′)]√
4αs

(
1 + exp[−2L(s / α)1 / 2]) (4.54)

B = −exp[−(s / α)1 / 2(2L − x ′)] + exp[−(s / α)1 / 2x ′]√
4αs

(
1 + exp[−2L(s / α)1 / 2]) (4.55)
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Substitute A and B into v, and then use G = K + v to find the GF in Laplace
transform space:

G (x , x ′, s) = 1√
4αs

exp[−(s / α)1 / 2|x − x ′|] (4.56)

+ exp[−(s / α)1 / 2(2L − x − x ′)] − exp[−(s / α)1 / 2(2L − x + x ′)]√
4αs

(
1 + exp[−2L(s / α)1 / 2])

− exp[−(s / α)1 / 2(2L + x − x ′)] + exp[−(s / α)1 / 2(x + x ′)]√
4αs

(
1 + exp[−2L(s / α)1 / 2])

The next step is to inverse transform this expression. This inverse transform of the
first term gives the fundamental solution K . The inverse transform of the second
and third terms is more difficult, because none of the transform pairs in Table L.1
(Appendix L) contain exponentials in the denominator. Consider the binomial
theorem

1
1 + z

= 1 − z + z2 − z3 + . . . =
∞∑

n=0

(−1)nzn for |z | < 1 (4.57)

The binomial theorem with z = exp[−2L(s / α)1 / 2] can be used to replace the
exponential term in the denominator (Carslaw and Jaeger, 1959, p. 309), as follows:

1
1 + exp[−2L(s / α)1 / 2] =

∞∑
n=0

(−1)n exp[−2nL(s / α)1 / 2] (4.58)

Substitute this series into the equation for G , and then the inverse Laplace transform
may be carried out (refer to Appendix L, Table L.1, number 43). Retaining only the
n = 0 term from the series, the GF in the time domain is given approximately by

G (x , x ′, u) ≈ 1√
4παu

{
exp

(
−(x − x ′)2

4αu

)
− exp

(
−(x + x ′)2

4αu

)

+ exp

(
−(2L − x − x ′)2

4αu

)
− exp

(
−(2L − x + x ′)2

4αu

)

− exp

(
−(2L + x − x ′)2

4αu

)}
(4.59)

This approximate expression is accurate for αu / L2 < 0.1. Many of the short-
cotime GF given in the Appendices have been derived in this fashion. The above
expression for GX12 also agrees with the first few terms of the series found by the
image method, which is listed in Table 4.1.

In two of the example problems considered above, the inversion of the transformed
solutions were obtained directly from a table of Laplace transforms. However, there
are cases for which the transformed solution G does not appear in the Laplace trans-
form tables (such as in finite bodies including plates, cylinders, and spheres). In such
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cases the Laplace-transform inverse is carried out with the use of a series expansion
(as in Example 4.4, above) or with the inversion theorem (see Appendix L). The
series expansion approach is often less complicated and more useful than the use
of the inversion theorem, particularly for small times. For further discussion of the
series-expansion approach see Chapter 12 of Carslaw and Jaeger (1959).

4.4 METHOD OF SEPARATION OF VARIABLES

The method of separation of variables can be used to find the GFs through the re-
lationship between the GF and the Dirac delta function. Chapter 1 showed that GFs
are proportional to the temperature rise in a body driven by a Dirac delta function
initial temperature distribution. The method of separation of variables provides a
straight-forward method for solving finite-body problems with arbitrary initial tem-
perature distributions. Once the temperature T (x, t) is known for an arbitrary space-
variable initial temperature F (x), then the GF can be found from T (x, t) because an
arbitrary initial temperature includes the Dirac delta function as a special case.

In this section, several one-dimensional flat plate GFs are found using the method
of separation of variables. The flat plate with the temperature fixed at both sides
(X11) is used in a full discussion of the method and the flat plate with two insulated
boundaries (X22) is discussed in an example. A more general derivation of GFs using
the separation of variables method is given by Beck (1984) for the flat plate with
boundary conditions of the first, second, third, fourth, or fifth kinds.

4.4.1 PLATE WITH TEMPERATURE FIXED AT BOTH SIDES (X11)

One of the simplest cases to consider using the method of separation of variables
is for prescribed temperatures of zero at both boundaries of a plate. The describing
partial differential equation, boundary conditions, and initial conditions are given by

∂2T

∂x2
= 1

α

∂T

∂t
0 < x < L (4.60)

T (0, t) = 0 T (L, t) = 0 (4.61a, b)

T (x, 0) = F (x) (4.62)

Note that the boundary conditions and the partial differential equation are both ho-
mogeneous. This case has the notation X11B00T-.

Since the thermal diffusivity α is a constant, the differential equation can be solved
by adding many solutions, each of which satisfies the differential equation. This is
also called superimposing solutions. Let

T (x, t) =
∞∑

n=1

Tn(x, t) (4.63)

where the solutions Tn(x, t) satisfy Equation 4.60. That is, when Tn(x, t) is substituted
into Equation 4.60, an identity results. In addition, each Tn(x, t) solution satisfies the
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homogeneous boundary conditions given by Equation 4.61a and b. ATn(x, t) solution
for a given n does not usually satisfy the initial condition given by Equation 4.62.

The procedure continues by assuming that

Tn(x, t) = X(x) Θ(t) (4.64)

where X(x) is a function of only x, and where Θ(t) is a function of only t . In other
words, Tn(x, t) is chosen to be a product of two functions, one that depends only
on x and the other that depends only on t . The variables have been separated in
Equation 4.64, hence the name separation of variables technique. Replacing T in
Equation 4.60 by Tn gives

∂2Tn

∂x2
= 1

α

∂Tn

∂t
(4.65)

and substituting Equation 4.64 into Equation 4.65 gives

d2X
dx2

Θ = X
α

dΘ

dt
(4.66)

Dividing Equation 4.66 by X(x)Θ(t) yields

1

X
d2X
dx2

= 1

αΘ

dΘ

dt
(4.67)

This equation states that a function of x is equal to a function of t . This equality can
only be true if the functions are both simply the same constant. For that reason, let
both sides be equal to the negative (real) quantity of −λ2,

1

X
d2X
dx2

= 1

αΘ

dΘ

dt
= −λ2 (4.68)

Another choice is a positive constant λ2, but as is shown below, a positive constant
gives meaningless results. (This assumes that λ is restricted to real and not imaginary
values.) In some cases, the constant may be equal to zero.

Two ordinary differential equations now must be solved.

d2X
dx2

+ λ2X = 0 (4.69a)

dΘ

dt
+ αλ2Θ = 0 (4.69b)

The general solutions of these equations are

X = C1 sin λx + C2 cos λx (4.70a)

Θ = C3e
−λ2αt (4.70b)

Notice that X is a sum of two periodic functions. Also Θ is a decaying exponential
function. Note that if −λ2 were replaced by λ2, the solution for Θ would result in
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explosive growth over time—clearly not physically reasonable. (Again, if λ is allowed
to be imaginary, different conclusions are possible.) For large times, the solution of the
problem given by Equations 4.60 through 4.62 must tend toward zero. Consequently,
the constant in Equation 4.68 must be −λ2, where the negative sign is both necessary
and important.

At this point, it has been assured that Tn(x, t) satisfies the partial differential equa-
tion. Next, Tn(x, t) must satisfy the two (homogeneous) boundary conditions. From
the boundary condition at x = 0, we have

Tn(0, t) = X(0) Θ(t) = 0 (4.71)

Since Θ(t) is an arbitrary function of time, it cannot be set equal to zero without
causing Tn(x, t) to be zero for all values of t ; such a trivial solution clearly can-
not satisfy the nonzero initial conditions which will be examined shortly. Hence,
X(0) = 0, and from Equation 4.70a it is necessary that

X(0) = 0 = C1 · 0 + C2 · 1 (4.72)

which yields

C2 = 0 (4.73)

Next consider the boundary condition at x = L which gives

Tn(L, t) = X(L) Θ(t) = 0 (4.74)

and again since Θ(t) cannot be always zero, the result is

X(L) = 0 = C1 sin λL (4.75)

Consequently the eigencondition is

sin λnL = 0 (4.76)

which can occur at only certain values, namely,

λnL = nπ n = . . . , −2, −1, 0, 1, 2, . . .

All of these n values are not needed, however. The negative values do not give
independent eigenfunctions (sin λnx is called an eigenfunction), since

sin(−λnL) = − sin(−λnL) (4.77)

Also the n = 0 value makes no contribution in this case since sin (0) = 0. Hence, the
eigenvalues λn are given by

λn = nπ

L
n = 1, 2, 3, . . . (4.78)



T&F Cat # K10695, Chapter 4, Page 118, 12-6-2010

118 Heat Conduction Using Green’s Functions

Usually the eigenvalues in this book are made dimensionless. Let the dimensionless
eigenvalues be denoted βn where for this case

βn = nπ n = 1, 2, 3, . . . (4.79)

and the eigenfunction is

sin
βnx

L
(4.80)

At this point the differential equation and the two homogeneous boundary condi-
tions for Tn(x, t) have been satisfied. The next step is to bring the two parts of Tn(x, t)
together to find

Tn(x, t) = C1 sin
βnx

L
C3e

−β2
nαt / L2 = An sin

βnx

L
e−β2

nαt / L2
(4.81)

where An is a constant that depends on n. Introduce this form of Tn into Equation
4.63 to get

T (x, t) =
∞∑

n=1

An sin
βnx

L
e−β2

nαt / L2
(4.82)

The remaining condition to satisfy is the initial condition, Equation 4.62. This con-
dition is nonzero, unlike the boundary conditions. Using the value of t = 0 in Equa-
tion 4.82 and the value of T (x, 0) = F (x) gives

F (x) =
∞∑

n=1

An sin
βnx

L
(4.83)

The objective is now to determine values of the constants An, for n = 1, 2, etc.Aresult
from the theory of Fourier series is that the sine functions are orthogonal, which can
be stated as ∫ L

x=0
sin

βnx

L
sin

βmx

L
dx =




L

2
m = n �= 0

0 m �= n

(4.84)

for the βn values of nπ, n = 1, 2, . . . . This orthogonality condition provides a very
powerful tool for determining one value of An at a time. Multiplying both sides of
Equation 4.83 by sin(βmx / L) dx and integrating from x = 0 to L yields∫ L

x=0
F (x) sin

βmx

L
dx =

∫ L

x=0

∞∑
n=1

An sin
βnx

L
sin

βmx

L
dx (4.85)

Now, according to the orthogonality condition, Equation 4.84, there is a nonzero
term on the right-hand side of Equation 4.85 only when m = n. In other words, the
orthogonality condition just picks out one term in the summation to give∫ L

x=0
F (x) sin

βmx

L
dx = AmL

2
(4.86)
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Another way to think of this procedure is to imagine that m is a particular value such
as 2. If m = 2, then the right side of Equation 4.85 is∫ L

x=0
A1 sin

β1x

L
sin

β2x

L
dx

+
∫ L

x=0
A2 sin2 β2x

L
dx +

∫ L

x=0
A3 sin

β3x

L
sin

β2x

L
dx + · · ·

Only the second term (when βm = βn = β2) yields a nonzero value, namely, A2L / 2.
See Equation 4.84. Solving Equation 4.86 for Am yields

Am = 2

L

∫ L

x=0
F (x) sin

βmx

L
dx (4.87)

where m = 1, 2, . . . , and the m subscript in Equation 4.87 could be replaced by
another index symbol, such as n.

Normally, the separation of variables procedure terminates at this point with the
observation that Am (with m → n) in Equation 4.87 can be used to obtain the An

values for Equation 4.82. This gives the complete solution, since the partial differential
equation, the two homogeneous boundary conditions, and the initial condition are all
satisfied. Since our objective is to obtain a GF, further steps are added. Introducing
Am from Equation 4.87 (with m → n and x → x′) in Equation 4.82 results in

T (x, t) =
∞∑

n=1

2

L

∫ L

x′=0
F (x ′) sin

βnx
′

L
sin

βnx

L
dx ′e−β2

nαt / L2
(4.88)

Taking the integral outside and rearranging gives

T (x, t) =
∫ L

x′=0

[
2

L

∞∑
n=1

e−β2
nαt / L2

sin
βnx

L
sin

βnx
′

L

]
F (x′) dx ′ (4.89a)

T (x, t) =
∫ L

x′=0
GX11(x, t |x′, 0) F (x ′) dx ′ (4.89b)

Notice that the expression inside the brackets in Equation 4.89a is the X11 GF,
evaluated at τ = 0. The X11 GF for τ �= 0 can be found by replacing (t −0) by (t −τ)
inside the brackets to obtain

GX11(x, t |x′, τ) = 2

L

∞∑
n=1

e−β2
nα(t−τ) / L2

sin
βnx

L
sin

βnx
′

L
(4.90)

where the βn values are

βn = nπ, n = 1, 2, . . . (4.91)

A few more comments are appropriate regarding this result. It is stated in Chapter 1
that GF can be interpreted as the temperature rise in the body caused by a Dirac delta
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function of unit value at position x0 and time t0 = 0. Since F (x) is arbitrary, let F (x)
be the impulse of T0L δ(x′ − x0). Then, integrating Equation 4.89b gives

T (x, t) = T0L GX11(x, t |x0, 0) (4.92)

That is, the temperature rise is equal to the GF for the source located at x0 and t0 = 0
with strength T0L (the units of T0L are K-m). The symbol x0 in Equation 4.92 could
be replaced by x ′ to denote that the source is at x ′.

The GX11(x, t |x′, τ) function is found by replacing t in Equation 4.90 by t − τ

and limiting the time domain to 0 ≤ τ ≤ t . The GX11(·) function satisfies the
boundary conditions of GX11(0, t |x′, τ) = 0 and GX11(L, t |x′, τ) = 0. Also note that
the GX11(·) function given by Equation 4.90 is unchanged by interchanging x and x ′.
In other words, if the value of a GF at x is known for a source at x′, then the same
value applies to the GF at x′ for a source at x; G(·) is symmetric in x and x ′.

It is instructive to examine a plot of GX11(·) for several values of α(t − τ) / L2

and several values of x ′ / L. See Figure X11.1 in Appendix X. For small time values
such as α(t − τ) / L2 < 0.025 and x′ not near the boundary, GX11(·) is approximated
by GX10(·). See Section 4.2 and the short cotime expression given in Table 4.1. As the
time α(t − τ) / L2 becomes larger, the effects of the boundaries increase. The GX11(·)
function approaches zero for α(t − τ) / L2 > 0.5.

The GX11(·) expression given by Equation 4.90 and that in Table 4.1 are both exact
and give the same numerical values, but the former only needs a few terms for large
α(t − τ) / L2 values, while the latter needs only a few terms for small α(t − τ) / L2

values. In general, the large cotime expression, Equation 4.90, is easier to manipulate
mathematically.

Example 4.5: Plate Insulated on Both Sides—X22 Case

Find the GF for a plate insulated at both x = 0 and at x = L with the separation
of variables method.

Solution

The boundary value problem for an arbitrary initial condition is given by

∂2T
∂x2 = 1

α

∂T
∂t

0 < x < L t > 0 (4.93)

∂T
∂x

∣∣∣∣
x=0

= 0
∂T
∂x

∣∣∣∣
x=L

= 0 (4.94)

T (x , 0) = F (x ) (4.95)

The solution procedure is similar to that for the X11 case, and Equations 4.63
through 4.70 also apply to this case. The boundary condition at x = 0 is different,
however, and yields

∂Tn(x , t )
∂x

∣∣∣∣
x=0

= d X
dx

∣∣∣∣
x=0

Θ(t ) = 0 (4.96)
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and thus d X / dx = 0 at x = 0 to give, from Equation 4.70a,

d X
dx

∣∣∣∣
x=0

= 0 = C1λ cos(0) − C2λ sin(0)

= B · 1 − C · 0 (4.97)

and thus C1 = 0. Repeating this procedure at x = L gives

d X
dx

∣∣∣∣
x=L

= 0 = −C2λ sin λL (4.98)

and thus the eigencondition is

sin λnL = 0 (4.99)

with eigenvalues βn = λnL = nπ for n = 0, 1, 2, and so on. Notice that n = 0 is
included because the eigenfunction for this case, cos(βnx / L), reduces to unity for
n = 0. The X(x ) function (the eigenfunction) now becomes

X(x ) =

Cn cos

βnx
L

n = 1, 2, . . .

C0 · 1 n = 0
(4.100)

where Equation 4.70 is used with Equation 4.99 and with C1 = 0. At this point
the partial differential equation for Tn(x , t ) and the two homogeneous boundary
conditions are satisfied.

Using the relation that T (x , t ) is the sum of the Tn(x , t ) values gives

T (x , t ) =
∞∑

n=0

An e−β2
nαt / L2

cos
βnx
L

(4.101)

Using the initial condition, Equation 4.95, yields

F (x ) =
∞∑

n=0

An cos
βnx
L

(4.102)

which is a Fourier cosine series. The An’s can be found by multiplying Equa-
tion 4.102 by cos(βmx / L) dx and integrating over the domain, which is 0 < x < L,

∫ L

x=0
F (x ) cos

βmx
L

dx =
∫ L

x=0

∞∑
n=0

An cos
βnx
L

cos
βmx

L
dx (4.103)

For the βn values of nπ, the orthogonality relation involving the cosine function is

∫ L

x=0
cos

βnx
L

cos
βmx

L
dx =




0 m �= n
L m = n = 0
L
2

m = n �= 0

(4.104)
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Utilizing this relation in Equation 4.103 gives

A0 = 1
L

∫ L

x=0
F (x ) dx (4.105a)

Am = 2
L

∫ L

x=0
F (x ) cos

βmx
L

dx m = 1, 2, . . . (4.105b)

As noted in connection with Equation 4.87, the subscript m in Equation 4.105b
can be replaced by another index such as n.

The complete solution to this X22 problem posed by Equations 4.93 through
4.95 is given by Equation 4.101 with Am(m → n) given by Equation 4.105b. How-
ever, the purpose here is to demonstrate that a GF can be derived with separation
of variables theory. Hence, introduce Equation 4.105b with m → n and x → x ′
into Equation 4.101 to get

T (x , t ) = 1
L

∫ L

x=0
F (x ′) dx ′ +

∞∑
n=1

2
L

∫ L

x=0
F (x ′) cos

βnx ′
L

dx ′

× e−β2
nαt / L2

cos
βnx
L

(4.106)

T (x , t ) =
∫ L

x=0

[
1
L

+ 2
L

∞∑
n=1

e−β2
nαt / L2

cos
βnx
L

cos
βnx ′

L

]
F (x ′) dx ′ (4.107)

in which the term in brackets is the GX22 (x , t |x ′, τ) GF evaluated at τ = 0. That is,
Equation 4.107 can be written as

T (x , t ) =
∫ L

x=0
GX22 (x , t |x ′, 0) F (x ′) dx ′ (4.108)

where GX22 (x , t |x ′, τ) is found from the bracketed term in Equation 4.107 by
replacing (t − 0) by (t − τ) for τ ≤ t ,

GX22 (x , t |x ′, τ) = 1
L

+ 2
L

∞∑
n=1

e−β2
nα(t−τ) / L2

cos
βnx
L

cos
βnx ′

L
(4.109a)

βn = nπ n = 1, 2, . . . (4.109b)

Notice that the X22 GF in Equation 4.109a has one more explicit term than the
X11 GF in Equation 4.90. Then n = 0 term is not zero in the X22 case because
cos(βnx / L) is not zero for n = 0. The summation terms of the X11 and X22 GFs are
quite similar. Both summations contain two trigonometric functions with arguments
βnx / L and βnx

′ / L. The eigenvalues are equal to nπ for the two summations. Both
summations contain the factor exp[−β2

nα(t−τ) / L2]. For “large” values of dimension-
less time, such as α(t −τ) / L2 ≥ 1, this exponential factor causes the summations in
Equations 4.90 and 4.109 to approach zero in value. That is, GX11(·) goes to zero and
GX22(·) goes to 1 / L for large values of α(t −τ) / L2. See Figure X22.1 (Appendix X)
for several plots of GX22.
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TABLE 4.2
Eigenfunctions for the Long-Cotime Green’s Functions Given by

G(x, t|x′, τ) = X0(x)
N0

+
∞∑

m=1

exp
[−β2

mα(t − τ) / L2]Xm(x)Xm(x′)
Nm

Number Eigenfunctions, Xm(x) A1 A2

X1J , J = 1, 2, 3, 4, 5 sin βmx / L 1 0

X2J , J = 1, 2, 3, 4, 5 cos βmx / L 0 1

X31 sin βm(L − x) / L 1 0

X32 cos βm(L − x) / L 0 1

X33, X34, X35 B1 sin(βmx / L) + βm cos(βmx / L) B1 βm

X4J , J = 1, 2, 3, 4, 5 −C1βm sin(βmx / L) + cos(βmx / L) −C1βm 1

X5J , J = 1, 2, 3, 4, 5 (B1 − C1β
2
m) sin(βmx / L) + βm cos(βmx / L) B1 − C1β

2
m βm

Special cases:
For X22, X24, X42, and X44: X0(x) = 1

For all other cases X0(x) = 0

Bi = hiL / k, Ci = (ρcb)i / ρcL, i = 1, 2

A compact list of one-dimensional GFs based on the separation of variables ap-
proach is contained in Tables 4.2 and 4.3. These are best for “large” cotimes; a com-
plete compilation for both large and small cotimes are given in Appendix X. A brief
list of eigenvalues for some flat plate geometries involving convection boundary
conditions (3rd kind) are given in Table 4.4.

4.5 PRODUCT SOLUTION FOR TRANSIENT GF

The solution of certain two- and three-dimensional transient heat conduction problems
can be obtained very simply as the product of one-dimensional transient solutions.
In this section, certain two- and three-dimensional GFs are shown to be products of
one-dimensional GFs in the rectangular and cylindrical coordinate systems. Product
solutions are not permitted in the spherical coordinate system. Product solutions are
not generally possible for steady heat conduction.

4.5.1 RECTANGULAR COORDINATES

In rectangular coordinates, one-dimensional transient GFs can be multiplied together
to form two- and three-dimensional GFs under the following restrictions: (1) the
boundary conditions are of the type 0, 1, 2, or 3 (types 4 and 5 are not permitted);
(2) if boundary conditions of the third type are present, the heat transfer coefficient
hi must be a constant for a given surface si .
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TABLE 4.3
Eigenvalues and Norms for Green’s Functions Obtained Using the Method of
Separation of Variables

Eigenvalues are positive roots of:

tan βm = βm[K1(B2 − C2β
2
m) + K2(B1 − C1β

2
m)]

K1K2β2
m − (B1 − C1β2

m)(B2 − C2β2
m)

(K , B, and C are defined below.)

Simple Cases:
for X11 and X22, βm = mπ, m = 1, 2, . . .

for X12 and X21, βm = (2m − 1)π / 2, m = 1, 2, . . .

Norms for m = 1, 2, . . .

Nm = L

(
1

2

(
A2

1 + A2
2

) + A2
2(C1 + C2)

+ tan βm

1 + tan2 βm

{
1

2βm

(
A2

2 − A2
1

) + 2C2A1A2 + tan βm

[
C2

(
A2

1 − A2
2

) + 1

βm

A1A2

]})

(A1 and A2 are given in Table 4.2.)

Simple cases: Nm = L / 2 for X11, X12, X21, and X22.

Special cases: N0 = (1 + C1 + C2)L for X22, X24, X42, and X44 for β0 = 0.

Use XIJ ; I , J = 1, 2, 3, 4, 5:

I K1 B1 C1 J K2 B2 C2

1 0 1 0 1 0 1 0
2 1 0 0 2 1 0 0
3 1 B1 0 3 1 B2 0
4 1 0 C1 4 1 0 C2

5 1 B1 C1 5 1 B2 C2

and where Ki = ki / k, Bi = hiL / k, Ci = (ρcb)i / ρcL, i = 1, 2.

The following discussion of product solutions begins with product solutions for
temperature due to arbitrary initial conditions. Then, a particular initial condition,
the Dirac delta function, is used to show that GFs also form product solutions. A
two-dimensional case is demonstrated, but the procedure can be repeated to treat
three-dimensional cases.

Arbitrary initial conditions. Consider first the temperature due to an arbitrary
initial condition in a two-dimensional body described by rectangular coordinates. The
boundary conditions are homogeneous and volume energy generation is zero. That
is, consider the following heat conduction problem:

∂2T

∂x2
+ ∂2T

∂y2
= 1

α

∂T

∂t
(4.110a)

T (x, y, t = 0)

T0
= F+(x, y) (4.110b)
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TABLE 4.4
Some Eigenvalues for X13, X31, X23, X32, and X33 (Haji-Sheikh and Beck,
2000)

Eigenvalues B β1 β2 β3

Of tan βm = −βm / B 0 1.5708 4.7124 7.8540 (also X12 and X21)

for X13 and X31 0.1 1.6320 4.7335 7.8667

1 2.0288 4.9132 7.9787

10 2.8628 5.7606 8.7083

100 3.1105 6.2211 9.3317

∞ 3.1416 6.2832 9.4248 (also X11)

Of tan βm = B / βm 0 0 3.1416 6.2832 (also X22)

for X23 and X32 0.1 0.3111 3.1731 6.2991

1 0.8603 3.4256 6.4373

10 1.4289 4.3058 7.2281

100 1.5552 4.6658 7.7764

∞ 1.5708 4.7124 7.8540 (also X12 and X21)

Of tan βm = 2βmB /(β2
m − B2) 0 0 3.1416 6.2832 (also X22)

for X33 with B1 = B2 0.1 0.4435 3.2040 6.3149

1 1.3065 3.6918 6.5854

10 2.6277 5.3073 8.0671

100 3.0800 6.1601 9.2405

∞ 3.1416 6.2832 9.4248 (also X11)

Source: Haji-Sheikh, A. and Beck, J.V., Numerical Heat Transfer Part B Fundamentals, 38, 133–156,
2000.

kj

∂T

∂nj

+ hjT = 0 j = 1, 2, . . . , s (4.110c)

where T0 is a characteristic temperature, and s represents the number of boundary
conditions (0 ≤ s ≤ 4 for the two-dimensional case). The convection heat transfer
coefficient hj must be a constant. Only boundary conditions of types 0, 1, 2, or 3 are
treated.

Suppose that the dimensionless initial condition, F+(x, y), can be written as a
product of two functions, one a function of x and the other a function of y:

F+(x, y) = F+
1 (x) F+

2 ( y) (4.111)

Then, the following statement is true: the solution of the two-dimensional heat con-
duction problem defined by Equation 4.110a, b and c, can be written as the product
of two functions

T (x, y, t)

T0
= T1(x, t) T2( y, t) (4.112)
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where T1 and T2 are dimensionless, and are defined by the following one-dimensional
heat conduction problems:

x direction: ∂2T1

∂x2
− 1

α

∂T1

∂t
= 0 (4.113a)

T1(x, t = 0) = F+
1 (x) (4.113b)

ki

∂T1

∂ni

∣∣∣∣
x=xi

+ hiT1|x=xi
= 0 i = 1, 2 (4.113c)

y direction: ∂2T2

∂y2
− 1

α

∂T2

∂t
= 0 (4.114a)

T2(y, t = 0) = F+
2 (y) (4.114b)

ki

∂T2

∂ni

∣∣∣∣
y=yi

+ hiT2|y=yi
= 0 i = 1, 2 (4.114c)

Note that i = 1, 2 defines the two boundaries for each finite geometry. However,
semi-infinite and infinite geometries are also allowed.

The above statement is proved by direct substitution of the product solution, Equa-
tion 4.112, into Equations 4.110a, b, and c. First, consider Equation 4.110a, the dif-
ferential equation,

T2
∂2T1

∂x2
+ T1

∂2T2

∂y2
− 1

α

(
T2

∂T1

∂t
+ T1

∂T2

∂t

)
= 0 (4.115)

which can be written as

T2

(
∂2T1

∂x2
− 1

α

∂T1

∂t

)
+ T1

(
∂2T2

∂y2
− 1

α

∂T2

∂t

)
= 0 (4.116)

This equation is satisfied because it is the sum of the one-dimensional heat conduction
Equations 4.113a and 4.114a.

Next, consider the initial condition, Equation 4.110b. Direct substitution of the
product solution gives

T1(x, 0) T2( y, 0) = F+(x, y) (4.117)

and the initial condition has a product form given by Equation 4.111 to give

T1(x, 0) T2( y, 0) = F+
1 (x) F+

2 ( y) (4.118)

This equation is satisfied because it is the product of Equation 4.113b and Equa-
tion 4.114b. There are no unusual restrictions on the functions F+

1 and F+
2 (they may

be zero, piecewise continuous functions, etc.).
Finally, consider the boundary conditions Equation 4.110c. Direct substitution of

the product solution gives

kj

∂(T1T2)

∂nj

+ hj (T1T2) = 0 (4.119)
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There are two possibilities for the normal vector nj in a two-dimensional rectangular
coordinate system. The first possibility is for nj parallel to the x-direction, in which
case Equation 4.119 becomes

T2

(
kj

∂T1

∂nj

+ hjT1

)
= 0 (4.120)

This equation is satisfied because it is Equation 4.113a multiplied by T2. The
second possibility is for nj parallel to the y-direction, in which case
Equation 4.119 is identical to Equation 4.114c multiplied by T1. This concludes the
proof of product solutions for temperature due to arbitrary initial conditions given by
Equation 4.111.

Dirac delta function initial condition. Next, consider a specific initial condition,
the Dirac delta function, given by

F+(x, y) = L2δ(x − x ′) δ(y − y ′) (4.121)

where the length L may have any desired significance; it is used to make F+(x, y)
dimensionless. The dimensionless initial condition, Equation 4.121, can be written
as a product,

F+(x, y) = Lδ(x − x′) · Lδ(y − y ′) (4.122)

Then, the temperature T (x, y) in a two-dimensional body that obeys Equation 4.110a
and boundary conditions given by Equation 4.110c can also be written in product
form (Equation 4.112):

T (x, y, t)

T0
= T1(x, t) T2(y, t) (4.123)

Chapter 1 showed that the temperature, T (r , t) caused by a Dirac delta function initial
condition is equivalent to a GF multiplied by a constant:

T (r , t) = T0L
mG(r , t |r ′, 0) (4.124)

where m = 1, 2, or 3 for one-, two-, or three-dimensional bodies; G(·) is the GF;
T0 is a characteristic temperature; and L is a characteristic length (for dimensional
consistency).

Now, each of the functions T1(x, t) and T2(y, t) in Equation 4.123 can also be
written in the form of GFs given in Equation 4.124,

T1(x, t) = L G1(x, t |x′, 0) (4.125a)

T2( y, t) = L G2( y, t |y′, 0) (4.125b)

Replace Equations 4.124 and 4.125 into Equation 4.123 to obtain

G(x, y, t |x′, y′, 0) = G(x, t |x ′, 0) · G( y, t |y′, 0) (4.126)
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Finally, the time dependence of all GFs is (t − τ), so that in general, (t − 0) can be
replaced by (t − τ) to give

G(x, y, t |x ′, y′, τ) = G(x, t |x′, τ) · G( y, t |y′, τ) (4.127)

That is, the GF for the two-dimensional boundary value problem given in Equa-
tion 4.110 is the product of the one-dimensional GFs associated with the boundary
value problems given in Equations 4.113 and 4.114.

In general, one-dimensional GFs multiply in rectangular coordinates to give two-
dimensional GFs. Recall that product solutions are limited to boundary conditions of
types 0, 1, 2, and 3. A repeated application of this analysis can be carried out to show
the three-dimensional GF in rectangular coordinates can be found from a product of
three one-dimensional GFs; that is, GXYZ = GX · GY · GZ .

4.5.2 CYLINDRICAL COORDINATES

In cylindrical coordinates (r , φ, z), product solutions of transient GFs are allowed
under the following restrictions: (1) the boundary conditions are of the type 0, 1, 2,
or 3 (types 4 and 5 are not permitted); (2) if boundary conditions of the third type
are present, the heat transfer coefficient hi must be a constant for a given surface si ;
(3) a GF that depends only on the z-coordinate is multiplied by another GF that does
not depend on the z-coordinate.

For example, let GR , GΦ, and GZ represent one-dimensional GFs, let GRZ , GRΦ,
and GΦZ represent all possible two-dimensional GFs, and let GRΦZ represent the
three-dimensional GF in cylindrical coordinates. Then, if the boundary conditions
meet restrictions (1) and (2), the following product solutions are allowed in cylindrical
coordinates:

GRZ = GR · GZ (4.128a)

GΦZ = GΦ · GZ (4.128b)

GRΦZ = GRΦ · GZ (4.128c)

Note that the GF GRΦ cannot be found by a product solution.

4.6 METHOD OF EIGENFUNCTION EXPANSIONS

We have seen that the separation of variables method, when applied to transient
conduction, produces series solutions that involve eigenfunctions. In this section,
eigenfunction expansions will be used directly to find the steady Green’s function
on finite domains. Earlier in this chapter, the eigenfunctions for the slab were found
by separation of variables. In later chapters the appropriate eigenfunctions are given
for the cylinder (Chapter 7) and for the sphere (Chapter 8) that can be used with this
method. Eigenfunction expansions are also discussed elsewhere, for example Barton
(1989, Chapter 5) and Duffy (2001, Chapter 5).
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In the present discussion, we begin with the series form of the Dirac delta function.
The series form of the Dirac delta function on finite domain R involves eigenfunctions
φm and norm Nm, as follows (see Appendix D):

∑
m

φ∗
m(r ′)φm(r)

Nm

=




δ(r − r ′); Cartesian

δ(r − r ′) /(2πr); cylindrical

δ(r − r ′) /(4πr2); spherical-radial

(4.129)

Forms for three coordinate systems are given here; note that the cylindrical and spheri-
cal coordinates include weighting factors (2πr) and (4πr2), respectively∗. Eigenfunc-
tions φm satisfy the specified homogeneous boundary conditions at the boundaries
of domain R, the same conditions also satisfied by the GF on R. For each combina-
tion of boundary conditions, there is a distinct GF and a distinct series form of the
δ-function. For most geometries the summation begins at m = 1, but for bodies with
all boundaries insulated, the summation begins at m = 0; see Section 4.7.2 for further
discussion of this point.

We seek a series form of the GF identical to the δ-function series, but with an
undetermined parameter (this method is also called “variation of parameters”). That
is, we seek G in the form

G(r , r ′) =
∑
m

Cm

φ∗
m(r ′)φm(r)

Nm

(4.130)

To find unknown parameter Cm, simply replace this series into the differential equation
for G. Rather than continue with a general discussion, specific examples are next
given to demonstrate the procedure. The first example is a one-dimensional steady
case, given only as a demonstration of the method. The second example is steady
heat conduction in a two-dimensional rectangle, since the method of eigenfunction
expansion is most important for two-and three-dimensional cases. The third example,
a one-dimensional transient case, combines the eigenfunction expansion method and
the Laplace transform method.

Example 4.6: Steady Case X 12

Consider a 1D plate (0 < x < L) with boundary conditions of the first kind at
x = 0 and of the second kind at x = L. Find the steady GF with eigenfunction
expansions.

Solution

The Green’s function satisfies the following equations:

d 2G
dx2 = −δ(x − x ′) (4.131)

G (0, x ′) = 0
dG (L, x ′)

dx
= 0

∗Other authors use weighting factors (r) and (r2) for cylindrical and spherical coordinates, respectively.
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For these boundary conditions, the eigenfunctions are φm = sin(βmx / L) (see
Table 4.2), the norm is Nm = L / 2, and the eigenvalues are βm = (m − 1 / 2)π
(see Table 4.3). Next, assemble the series forms for both δ and G using Equa-
tions 4.129 and 4.130 and substitute them into Equation 4.131, the differential
equation for G . The result is

d 2

dx2

{ ∞∑
m=1

Cm
sin(βm

x ′
L ) sin(βm

x
L )

L / 2

}
= −

∞∑
m=1

sin(βm
x ′
L ) sin(βm

x
L )

L / 2
(4.132)

Differentiate two times, and rearrange to restate the differential equation as one
series:

2
L

∞∑
m=1

sin
(

βm
x ′
L

)
sin

(
βm

x
L

){
−Cm

(
βm

L

)2
+ 1

}
= 0 (4.133)

The above equation will be satisfied for all m if the expression in braces is zero.
That is,

−Cm

(
βm

L

)2
+ 1 = 0 (4.134)

which is satisfied by Cm = (L / βm)2. Replace this value for Cm into the series
expansion for G to find, for steady case X12,

G (x , x ′) = 2
L

∞∑
m=1

(
L

βm

)2
sin

(
βm

x ′
L

)
sin

(
βm

x
L

)
(4.135)

In this example a series form of a steady 1D GF was found by eigenfunction
expansion. Such series for 1D GF, although mathematically correct, are not
recommended for numerical computation because nonseries forms for G may
be found by direct integration (see Section 1.7.1). For two- or three-dimensional
problems, however, the eigenfunction expansion method produces a very useful
series form for the GF, as in the next example.

Example 4.7: Steady Case X 12Y 12

Consider a rectangle described by coordinates (0 < x < L) and (0 < y < W ).
Suppose the boundary conditions are G = 0 at x = 0 and at y = 0, and, ∂G / ∂n =
0 at x = L and y = W . Find the steady GF.

Solution

The steady GF satisfies the following equations:

∂2G
∂x2 + ∂2G

∂y2 = −δ(x − x ′)δ(y − y ′) (4.136)

G (x = 0) = G (y = 0) = 0
∂G
∂x

∣∣∣∣
x=L

= 0; ∂G
∂y

∣∣∣∣
y=W

= 0
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This is case X12Y12. The eigenfunction expansion for G is patterned on the series
form of the Dirac delta function. The delta function appropriate for the x-direction
is for case X12, which was also used in the previous example, is given by

δ(x − x ′) = 2
L

∞∑
m=1

sin
(
βm

x
L

)
sin

(
βm

x ′
L

)
(4.137)

We seek the GF of a similar form,

G (x , y |x ′, y ′) = 2
L

∞∑
m=1

sin
(
βm

x
L

)
sin

(
βm

x ′
L

)
P (y , y ′) (4.138)

where P (y , y ′) is an unknown kernel function. Replace the above series for G and
δ(x − x ′) in Equation 4.136 to find, after some rearranging:

2
L

∞∑
m=1

sin
(
βm

x
L

)
sin

(
βm

x ′
L

){
−P

(
βm

L

)2
+ P ′′ + δ(y − y ′)

}
= 0 (4.139)

This equation will be satisfied if the term in braces is zero, that is,

P ′′ − σ2
mP + δ(y − y ′) = 0, (0 < y < W ) (4.140)

where σ2
m = β2

m / L2. We could solve for P by once again using eigenfunction
expansion which would produce a double summation for G . However, a better-
behaved solution can be found by directly integrating Equation 4.140 for P . As
in Section 1.7.2, divide the domain at y = y ′ to remove the δ-function from the
differential equation. Then seek P1 on (0 < y < y ′) and seek P2 on (y ′ < y < W ),
that satisfy

P ′′
i − σ2

mPi = 0, for i = 1, 2 (4.141)

Integrate directly to find a general solution for P in the form

P1 = C1eσmy + C2e−σmy , y < y ′

P2 = C3eσmy + C4e−σmy , y > y ′ (4.142)

Four conditions are needed to find the four coefficients. Two conditions on Pi
come from the boundary conditions for G at y = 0 and y = W :

(i) P1(y = 0) = 0

(ii)
∂P2

∂y

∣∣∣∣
y=W

= 0

Two more conditions at y = y ′ are the matching condition and the jump condition
(see Section 1.7.2):

(iii) P1(y ′, y ′) = P2(y ′, y ′)

(iv)
∂P2

∂y ′

∣∣∣∣
y=y ′

− ∂P1

∂y ′

∣∣∣∣
y=y ′

= −1
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Using these four conditions, coefficients Ci may be found algebraically and re-
placed into Equation 4.142. The result is, for (y < y ′),

P1(y , y ′) = −e−σm (2W +y−y ′) + e−σm (2W −y−y ′)

2σm(1 + e−2σmW )
(4.143)

+ e−σm (y ′−y ) − e−σm (y+y ′)

2σm(1 + e−2σmW )

and for (y > y ′),

P2(y , y ′) = −e−σm (2W −y+y ′) + e−σm (2W −y−y ′)

2σm(1 + e−2σmW )
(4.144)

+ e−σm (y−y ′) − e−σm (y+y ′)

2σm(1 + e−2σmW )

Then replace P into the series for G to obtain

G (x , y |x ′, y ′) = 2
L

∞∑
m=1

sin(βm
x
L

) sin(βm
x ′
L

)

[
−e−σm (2W +|y ′−y |) + e−σm (2W −y−y ′)

2σm(1 + e−2σmW )

+ e−σm |y−y ′| − e−σm (y+y ′)

2σm(1 + e−2σmW )

]
(4.145)

Here an absolute value has been used to give P with a single expression.The above
series was created by examining the δ-function along the x-direction. An alternate
single-sum form for G may be found by starting with the y -direction δ function,
placing eigenfunctions along the y -direction, and seeking kernel function Q(x , x ′).
Alternate forms for G are very important for checking purposes and for verification,
as discussed in Chapter 5.

The above example is one of several GF that may be constructed for the rectangle.
For other combinations of boundary conditions in the rectangle, see Table 4.2 for the
appropriate eigenfunctions and Table X.4 (Appendix X) for the appropriate kernel
functions. There is a special case for the rectangle when the series for Y22 is involved.
In this case the summation begins at m = 0 and β0 = 0 is an eigenvalue, and an
additional kernel function P0 is required. See Tables X.2 and X.4 in Appendix X for
these kernel functions. For case X22Y22, the rectangle with all boundaries insulated,
a pseudo-GF is required (see Section 4.7.2).

The eigenfunction expansion method may be used to find steady GF in any or-
thogonal coordinate system and for other combinations of boundary conditions. Ad-
ditional examples are given elsewhere for the rectangle (Cole and Yen, 2001a), the
two-dimensional slab (Cole and Yen, 2001b), the parallelepiped (Crittenden and Cole,
2002) and the cylinder (Cole, 2004).

Transient problems may be treated with the eigenfunction expansion method if
the time-derivative term can first be removed. Later in Chapter 9, steady-periodic
heat conduction is treated by the eigenfunction expansion method. In the following
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example, the Laplace transform method is combined with the eigenfunction expansion
method.

Example 4.8: Transient Case X 12

Consider the transient temperature in a one-dimensional slab (0 < x < L) with
boundary conditions of the first kind at x = 0 and of the second kind at x = L. Find
the transient GF by combining the Laplace transform method and the eigenfunction
expansion method.

Solution

The GF for transient case X12 satisfies following equations:

∂2G
∂x2 − 1

α

∂G
∂u

+ 1
α

δ(x − x ′) δ(u) = 0 (4.146a)

G (0, x ′, u) = 0 (4.146b)

dG (L, x ′, u)
dx

= 0 (4.146c)

G (x , x ′, 0) = 0 (4.146d)

where u = t −τ is the cotime.The GF will be sought by using the Laplace transform
on the above equations, with respect to cotime, to give

∂2G
∂x2 − s

α
G + 1

α
δ(x − x ′) · 1 = 0 (4.147a)

G (0, x ′) = 0 (4.147b)

dG (L, x ′)
dx

= 0 (4.147c)

Note that the Laplace transform of δ (u) is unity. Next we seek the Laplace-domain
solution for G using eigenfunction expansions in the form

G (x , x ′, s) =
∞∑

m=1

Dm
sin(βm

x ′
L ) sin(βm

x
L )

L / 2
(4.148)

where Dm is an undetermined parameter and where the eigenfunctions, eigenval-
ues, and norm for the X12 case are taken from the from the previous example.
Eigenfunctions, eigenvalues, and norms for other kinds of boundaries are given in
Tables 4.2 and 4.3. Note that the above series automatically satisfies the boundary
conditions at x = 0 and x = L through the eigenfunctions and eigenvalues. We
also need the series form of δ(x −x ′), which from the previous example is given by

δX12(x − x ′) =
∞∑

m=1

sin(βm
x ′
L ) sin(βm

x
L )

L / 2
(4.149)

To determine parameter Dm, substitute the series expressions for G and δ(x −x ′)
into Equation 4.147a to find:

2
L

∞∑
m=1

sin
(

βm
x ′
L

)
sin

(
βm

x
L

)[
−Dm

(
βm

L

)2
− Dm

s
α

+ 1
α

]
= 0 (4.150)
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Here the common elements in each series have been grouped together. The above
equation will be true if the expression in brackets is zero for all m. That is,

−Dm

(
βm

L

)2
− Dm

s
α

+ 1
α

= 0 (4.151)

Solving for Dm, we find

Dm = 1
s + αβ2

m / L2 (4.152)

Replace this value for Dm back into the series for G , Equation 4.148, to find the
solution in transform space:

G (x , x ′, s) =
∞∑

m=1

(
1

αβ2
m / L2 + s

)
sin(βm

x ′
L ) sin(βm

x
L )

L / 2
(4.153)

To complete the solution, this series can be inverse-Laplace-transformed term by
term (using the linear property) along with the following transform pair (Appendix
L, Table L.1, number 12):

L −1
(

1
s + a

)
= e−at (4.154)

Then the time-domain solution is given by

G (x , x ′, u) = 2
L

∞∑
m=1

e−β2
mαu / L2

sin
(

βm
x ′
L

)
sin

(
βm

x
L

)
(4.155)

where u is the cotime. This is the large-cotime form of the GF for case X12, and
this GF is also listed in Appendix X. In this example the eigenfunction expansion
method has been applied to a transient problem in combination with the Laplace
transform method; the result is identical to that found by the separation of variables
method.

4.7 STEADY GREEN’S FUNCTIONS

Under steady-state conditions the heat conduction equation reduces to the Poisson
equation. Much has been written about the Poisson equation in the fields of elec-
trostatics, elasticity, diffusion, and heat transfer. Many books on theoretical physics
contain an overview of solution methods to the Poisson equation and its special case,
the Laplace equation, including Morse and Feshbach (1953), Melnikov (1999) and
Duffy (2001). The method of GFs is only one of many solution methods, and we
have chosen a unified treatment of GFs at the expense of completeness. Although we
do not present other methods, we do not mean to imply that other methods are not
important. For example, the use of complex variables and conformal transformations
is a powerful method for two-dimensional problems.



T&F Cat # K10695, Chapter 4, Page 135, 12-6-2010

Methods for Obtaining Green’s Functions 135

In some ways the steady GFs are more difficult to apply than the transient GFs. The
steady GFs behave very differently in one, two, and three dimensions. Unlike the tran-
sient GFs, the one-dimensional steady GF may not be multiplied to find two- or three-
dimensional solutions; the steady GF for each geometry must be found separately.

There are sometimes two forms of the steady GF, depending on the method used
to derive it. For example, in a two-dimensional rectangle, eigenfunction expansions
may be carried out along x or along y to produce distinct series. These are different
expansions of the same unique solution, with different convergence properties that
can be used to advantage.

In this section, three topics on steady GFs are discussed. The source solutions,
basic functions found by direct integration, are presented to indicate when a steady
GF exists. The pseudo-GF is presented for those cases for which the (usual) steady
GF does not exist. Finally, the limit method is presented to show the relationship
between steady and transient GF.

4.7.1 INTEGRATION OF THE AUXILIARY EQUATION: THE SOURCE SOLUTIONS

For one-dimensional cases the auxiliary equation for the steady GF can be solved
directly by integration. The solution for the point source, the line source, and the
plane source in the infinite body will be examined to demonstrate the method. The
source solutions are important in certain numerical methods, such as the bound-
ary element method. For the present discussion, the source solutions are useful in
understanding the functional form of the steady GF before considering the added
complexity of boundary conditions. The distinction between the source solutions and
the GF is important: the source solution satisfies the auxiliary equation alone and may
or may not satisfy homogeneous boundary conditions, but the GF satisfies a bound-
ary value problem which includes the auxiliary equation and homogeneous boundary
conditions.

Point source (three dimensions). The point source solution is the steady tem-
perature induced at location r by a point heat source at location r′. The point
source solution depends only on the distance (r − r′), so the appropriate coordi-
nate system is spherical polar coordinates. The point-source solution satisfies the
equation

1

r2

d

dr

(
r2 dG

dr

)
= −δ(r − r ′)

4πr2
(4.156)

The solution to Equation 4.156 is:

G(r|r′) = 1

4π|r − r ′| (4.157)

The point-source solution is given by symbol G(r|r′) because it is also a GF: it
satisfies the homogeneous boundary condition G(r → ∞) = 0. The point source
solution is singular at |r − r′| = 0. In rectangular coordinates the point source solution
may be written
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G(x, y, z|x′, y′, z′) = 1

4π

[
(x − x ′)2 + (y − y ′)2 + (z − z′)2]−1 / 2

(4.158)

Derivation of the point source solution. The point source may be found by inte-
grating the differential Equation 4.156. For the moment, let the source be located at
r′ = 0 to simplify the analysis. We can translate the source back to r′ �= 0 later. The
Dirac delta function δ(r) is zero everywhere except at r = 0, so except at this point,
G should satisfy the Laplace equation in spherical polar coordinates

1

r2

d

dr

(
r2 dG

dr

)
= 0 (4.159)

Integrating once:

r2 dG

dr
= C1

dG

dr
= C1

r2
(4.160)

integrating again gives,

G = −C1

r
+ C2 (4.161)

The constant C2 may have any value to satisfy the Laplace equation and, if we take
C2 = 0, it will also satisfy the GF boundary condition G → 0 at r → ∞. The
constant C1 may be found to have the value −1 /(4π) by replacing G back into the
differential equation 4.156 and integrating both sides of the equation over all space.
The nature of the Dirac delta function allows us to equivalently integrate over a small
sphere P centered at r = 0 with arbitrary small radius σ, because the integrand is
zero for any integral that does not include the location of the Dirac delta function:∫

P

∇2G dv = −
∫

P

δ(r − r ′)
4π(r ′)2

dv (4.162)

Here dv = 4π(r ′)2dr ′ is the differential volume. The right-hand side yields, with the
sifting property of the Dirac delta function,∫

P

∇2G dv = −1 (4.163)

The left-hand side may be simplified with the divergence theorem to give the integral
over the surface of sphere P : ∫

r=σ

dS · ∇G = −1 (4.164)

The value of ∇G in spherical coordinates evaluated at r = σ may be substituted to
give ∫

r=σ

ds
C1

σ2
= −1 (4.165)
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Finally, the integral may be evaluated to give the surface area of the sphere,

4ψ2C1

σ2
= −1 (4.166)

or, C1 = −1 /(4π), which completes the derivation for r ′ = 0: G(r|0) = 1 /(4πr).
Finally, the point source may be translated to arbitrary location r ′ �= 0 by noting that
G(r|0) > 0, and since a change of coordinate system should not change the sign of G,
the vector magnitude is required: G(r|r′) = 1 /(4π|r − r′|).

Line source (two dimensions). The cylindrical coordinate system is appropriate
for the line source. The two-dimension differential equation for the line source in
cylindrical coordinates is

1

r

d

dr

(
r
dG

dr

)
= −δ(r − r ′)

2πr ′ (4.167)

The solution to Equation 4.167 is

G(r|r ′) = −1

2π
ln |r − r′| (4.168)

where |r − r′| is a vector magnitude in cylindrical coordinates. Strictly speaking,
Equation 4.168 has an error in the units because the argument of the log function
should be dimensionless; however, in physical use the line source always has the
form ln(a / |r − r′|) where a has the units of meters. In rectangular coordinates, the
line source may be written

G(x, y|x ′, y′) = − 1

2π
ln
{[

(x − x ′)2 + (y − y ′)2]1 / 2
}

= − 1

4π
ln

[
(x − x ′)2 + (y − y ′)2] (4.169)

Unlike the point source solution, the line source does not satisfy the homogeneous
boundary condition G → 0 at r → ∞; the log function increases without bound as
r → ∞. However the heat flux approaches zero far from the line source (k∂G / ∂r → 0
as r → ∞). This far-field boundary condition (second kind) is adequate for the line-
source solution to be used to construct temperature solutions in the infinite body.

The line source is important in numerical methods such as the boundary element
method. The boundary element method in two dimensions involves a distribution
of line sources on a closed curve in the infinite body. The closed curve is broken
into line segments called boundary elements, and the distribution of the line sources
on the boundary elements is chosen to satisfy boundary conditions on the closed
curve. The temperature in the body is evaluated by numerical summation over all the
boundary elements, in effect superimposing the temperature induced by each source
distribution. This is equivalent to the GF procedure of integrating over the volume to
account for volume energy generation. For an introduction to the method see Brebbia
and Dominquez (1992).
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Plane source (one dimension). The steady plane source solution is described by
the one-dimension steady-state heat equation

d2G0

dx2
= −δ(x − x ′) (4.170)

where δ(x − x ′) has units of (meters)−1. The solution for G0 is

G0(x|x ′) = − 1
2 |x − x ′| (4.171)

The notation G0 is used for the plane source solution because it is not a proper GF,
because it does not satisfy homogeneous boundary conditions of the first or second
kind as x → ∞. The plane source solution blows up at x → ∞, and in fact it blows
up proportional to |x − x ′|, which is faster than the line source solution which blows
up like ln|r − r′|. The heat flux, although not zero, is at least bounded as x → ∞; this
condition is sufficient for G0 to be used for constructing temperature solutions.

The plane source solution may be derived by integrating the differential Equation
4.170 directly, but a little care is required. Since the heated plane divides the infinite
body into two regions, the differential equation is integrated in two different regions
and then the two solutions are linked by a jump condition at (x − x ′) = 0.

The plane source is not a GF because of a problem with the boundary conditions.
The auxiliary equation always has a general solution, but the homogeneous boundary
conditions cannot always be satisfied. There are several other geometries for which
this problem occurs and such geometries do not have a steady GF. For example, the
X22 geometry has no steady GF and neither do finite geometries with specified heat
flux on all of the boundaries (boundary conditions of the second kind, also called
Neumann boundary conditions).

A physical reason that some geometries do not have a steady GF function comes
from the perspective of a GF as the response to a heat source. In steady heat transfer,
any heat introduced inside the body must either flow out of the boundaries or flow
off to infinity if the body is of infinite extent. If all the boundaries are insulated, there
is nowhere for the heat to go and, consequently, there is no steady GF.

Steady temperature distributions can exist in bodies with no steady GF, but the
usual GF method cannot be used to find the temperature. For example, the X22
geometry has a linear temperature distribution if the same amount of heat that flows
into the body at x = 0 also flows out at x = L. In this simple case, the temperature
distribution can be found by applying the nonhomogeneous boundary conditions to
the general solution of the differential equation. The steady temperature can always
be found with the transient GF solution equation (GFSE) in the limit as time becomes
large (t → ∞). Any questions on the existence of the steady-state temperature can
be answered this way.

In the next section a pseudo-GF is discussed to deal with those geometries that do
not have a steady GF because of insulated boundaries. The pseudo-GF differs from the
ordinary GF by an additive constant. In physical terms, the additive constant cancels
out the heat flow introduced by the heat source. A modified GFSE is then needed to
calculate temperatures from the pseudo-GF.
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4.7.2 PSEUDO-GREEN’S FUNCTION FOR INSULATED BOUNDARIES

For the special case in which all boundaries of the body are insulated, the usual
steady GF does not exist and the usual steady GF solution cannot be used to find the
temperature. In this section a pseudo-GF is discussed that can be used instead.

In this case the input data to the temperature problem must satisfy a constraint—
the sum of the heat passing through the boundaries of the body must be equal to
the (negative of the) integral of the heat introduced by volume energy generation.
This is equivalent to an energy balance over the volume of the body. If there is no
volume energy generation then the boundary heat fluxes must sum to zero. In addition,
the solution for the temperature contains an arbitrary additive constant that must be
supplied as input data.

The pseudo-GF, given the name GPS , satisfies the following differential equation
(Barton, 1989)

∇2GPS = −δ(r − r′) + 1

V
(4.172)

Here constant V represents the integration volume associated with δ(r − r′). The
boundary conditions (second kind) are given by

∂GPS

∂ni

= 0 at boundary i. (4.173)

To use the pseudo-GF for finding temperature, a special form of the GF solution
equation must be used:

T (r) =
∑

i

∫
fi

k
GPS(r, r′) dS′

i (4.174)

+
∫

g

k
GPS(r, r′) dV ′ + 〈Tav〉 (4.175)

where 〈Tav〉 is the spatial-average temperature in the body. For this solution to make
sense, the boundary heating fi and the internal heating g must satisfy an energy
balance.

Two Cartesian cases are discussed below to demonstrate the pseudo-GF. For the
one-dimensional slab, the pseudo-GF satisfies

∂2GPS

∂x2
= −δ(x − x ′) + 1

L
; 0 < x < L (4.176)

∂GPS

∂x

∣∣∣∣
x=0

= ∂GPS

∂x

∣∣∣∣
x=L

= 0 (4.177)

Note that additive constant is 1 / L because the appropriate domain for the delta
function is (0 < x < L). The solution for this pseudo-GF may be found by direct
integration (see Section 1.7.2):

GPS(x, x′) =
{(

(x′)2 + x2
)

/(2L) − x ′ + L / 3, x < x′(
x2 + (x ′)2

)
/(2L) − x + L / 3, x > x′ (4.178)
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Note that this pseudo-GF contains an additive constant, L / 3, that is needed to satisfy
the differential equation but does not contribute to satisfying boundary conditions.

For the two-dimensional rectangle, case X22Y22, the pseudo-GF satisfies

∂2GPS

∂x2
+ ∂2GPS

∂y2
= −δ(x − x ′) δ(y − y ′) + 1

LW
(4.179)

Here the additive constant is 1 /(LW ) because the integration domain for the 2D delta
function is (0 < x < L) and (0 < y < W ). The pseudo-GF in the rectangle has two
alternate forms; using eigenfunction expansions along the x-axis,

GPS(x, y|x′, y′) = P0(y, y′)
L

+ 2

L

∞∑
m=1

cos (βmx / L ) cos
(
βmx ′ / L

)
Pm(y, y′)

(4.180)

where βm = mπ for m = 0, 1, 2, and so on. Here Pm is the usual kernel function that
satisfies

P ′′
m − β2

m

L2
Pm + δ(y − y ′) = 0 (4.181)

Note that in this insulated-boundary case the eigenfunction expansion for δ(x − x′)
has the form

δ(x − x′) = 1

L
+ 2

L

∞∑
m=1

cos (βmx / L ) cos
(
βmx ′ / L

)
(4.182)

where additive term 1 / L is associated with the zero eigenvalue (β0 = 0). Then,
an additional kernel function, P0, is also associated with the zero eigenvalue, which
satisfies

P ′′
0 + δ(y − y ′) = 1

W
(4.183)

Kernel function P0(y, y′) may be found from the 1D Cartesian pseudo-GF given
above in Equation 4.178, by replacing x by y and replacing L by W .

An alternate pseudo-GF may be constructed, with eigenfunction expansions along
the y-axis, in the form

Galt(x, y|x′, y′) = P0(x, x′)
W

+ 2

W

∞∑
n=1

cos (γny / W) cos
(
γny

′ / W
)

Pn(x, x′)

(4.184)

where γn = nπ. Kernel functions P0(x, x′) and Pn(x, x′) may be derived in a manner
similar to that given above.

In this section the pseudo-GF has been explored for finite-domain Cartesian cases
in 1D and 2D. The same principles apply for the 3D parallelepiped (case X22Y22Z22),
and to insulated boundary geometries in cylindrical coordinates (cases R02, R02Z22,
R02Z22φ22, etc.) and spherical coordinates (cases RS02, RS02φ22, etc.).
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4.7.3 LIMIT METHOD

The steady GF can be calculated from the large-cotime transient GF by integrating
over time and taking the limit as t → ∞. That is,

G(r, r′) = lim
t→∞ α

∫ t

τ=0
G(r, t |r′, τ) dτ (4.185)

This is the limit method. Many steady GFs can be written down immediately in integral
form with the limit method. Three examples of the limit method are discussed below.

Example 4.9: Point Source in the Infinite Body

Find the steady point-source solution from the transient point source solution
GX00Y 00Z 00.

Solution

The point source will be located at the origin (x ′ = 0, y ′ = 0, z ′ = 0) for
convenience. Later the source can be translated to any position. The limit method
is given by the integral

G (x , y , z |0, 0, 0) = lim
t→∞ α

∫ t

τ=0
GX00Y 00Z 00(x , y , z , t |0, 0, 0, τ) dτ (4.186)

The product solution may be used for the transient X00Y 00Z 00 GF to give

GX00Y 00Z 00(x , y , z , t |0, 0, 0, τ) = GX00(x , t |0, τ) GY 00( y , t |0, τ) GZ 00(z , t |0, τ)

where

GX00(x , t |0, τ) = [4πα(t − τ)]−1 / 2 exp

[
−x2

4α(t − τ)

]

GY 00( y , t |0, τ) = [4πα(t − τ)]−1 / 2 exp

[
−y2

4α(t − τ)

]

GZ 00(z , t |0, τ) = [4πα(t − τ)]−1 / 2 exp

[
−z2

4α(t − τ)

]

Then Equation 4.186 may be written

G (x , y , z |0, 0, 0) = lim
t→∞ α

∫ t

τ=0
[4πα(t − τ)]−3 / 2

× exp


−

(
x2 + y2 + z2

)
4α(t − τ)


 dτ (4.187)

Note that the product of the three one-dimensional GFs is also the same as the
RS00 GF given in Appendix RS for the case r ′ = 0. The above integral may be
evaluated to give

G (x , y , z |0, 0, 0) = lim
t→∞

1
4πr

erfc
[

r
(4αt )1 / 2

]
= 1

4π|r | (4.188)
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FIGURE 4.4 Parallelepiped geometry for Example 4.10.

where r2 = (x2 + y2 + z2). This is the steady point-source solution located at
r ′ = 0, as discussed in Section 4.7.1.

Example 4.10: Parallelepiped with Specified Surface Temperature—
X11Y11Z11 Case

Find the steady GF in the parallelepiped with temperature boundary conditions
(type 1) on all six surfaces.

Solution

The parallelepiped body is shown in Figure 4.4. The limit method integral for this
case is given by

G (x , y , z |x ′, y ′, z ′) = lim
t→∞ α

∫ t

τ=0
GX11Y 11Z 11 (x , y , z , t |x ′, y ′, z ′, τ) dτ (4.189)

The transient GF for the X11Y 11Z 11 geometry is given by the product of one-
dimensional transient solutions: GX11GY 11GZ 11. The function GX11 is given in
Appendix X:

GX11(x , t |x ′, τ) = 2
a

∞∑
m=1

e−m2π2α(t−τ) / a2
sin

mπx
a

sin
mπx ′

a
(4.190)

where a is the length of the body in the x-direction. The functions GY 11 and GZ 11
are similar; for example, GY 11 is given by Equation 4.190 with x and a replaced
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by y and b, respectively. Replace the transient GF into the integral to give

G (x , y , z |x ′, y ′, z ′)

= lim
t→∞

8α

abc

∞∑
m=1

∞∑
n=1

∞∑
p=1

∫ t

τ=0
exp

[
−απ2(t − τ)

(
m2

a2 + n2

b2 + p2

c2

)]
dτ

× sin
(
mπ

x
a

)
sin

(
mπ

x ′
a

)
sin

(
pπ

z
c

)
sin

(
pπ

z ′
c

)
sin

(
nπ

y
b

)
sin

(
nπ

y ′
b

)
(4.191)

When the time integral is carried out and the limit taken, the steady GF becomes

G (x , y , z |x ′, y ′, z ′)

= 8
∞∑

m=1

∞∑
n=1

∞∑
p=1

sin
(
mπ

x
a

)
sin

(
mπ

x ′
a

)
sin

(
pπ

z
c

)
sin

(
pπ

z ′
c

)

× sin
(
nπ

y
b

)
sin

(
nπ

y ′
b

)[
abcπ2

(
m2

a2 + n2

b2 + p2

c2

)]−1

(4.192)

Generally triple-sum series such as this converge slowly, and alternate series
should be used for numerical evaluation, if possible. In the parallelepiped the
eigenfunction expansion method can be used to construct three alternate double-
sum series. For example, the double-sum form with kernel function along the
z-direction is given by

G (x , y , z |x ′, y ′, z ′) =
∞∑

m=1

∞∑
n=1

sin
(
mπ

x
a

)
sin

(
mπ

x ′
a

)

× sin
(
nπ

y
b

)
sin

(
nπ

y ′
b

)
Pnm(z , z ′) (4.193)

where the kernel function Pnm is given by (Table X.4, case X11)

Pnm(z , z ′) = e−σ(2c+|z−z ′|) − e−σ(2c−z−z ′)

2σ(1 − e−2σc )
+ e−σ|z−z ′| − e−σ(z+z ′)

2σ(1 − e−2σc )
(4.194)

where σ2 = π2(n2 + m2). Further discussion of the convergence speed of series
solutions is given in Chapter 5.

Example 4.11: Two-Dimensional Slab with One Side Semi-Infinite—
X11Y 20 Case

Find the steady-state GF for the region 0 < x < a, y > 0 with G = 0 at x = 0 and
at x = a and ∂G / ∂y = 0 at y = 0.

Solution

The limit method integral for this case is given (with u = t − τ)

G (x , y |x ′, y ′) = α

∫ ∞

0
GX11(x , u|x ′) GY 20(y , u|y ′) du (4.195)
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where GX11(x , u|x ′) is given by Equation 4.190 with u = t − τ and GY 20( y , u|y ′)
is (see Equation X20.1, Appendix X)

GY 20( y , u|y ′) = (4παu)−1 / 2
(
e−( y−y ′)2 /(4αu) + e−( y+y ′)2 /(4αu)

)
(4.196)

Integrals of the form (see integral 12 in Table I.6, Appendix I)

∫ ∞

0
u−1 / 2e−a2u−b2u−1

du = π1 / 2

a
e−2ab (4.197)

are needed. Then, using Equations 4.190, 4.196, and 4.197 in Equation 4.195
gives

G (x , y |x ′, y ′) = 1
π

∞∑
m=1

1
m

(
e−mπ|y−y ′| / a + e−mπ(y+y ′) / a

)

× sin
mπx

a
sin

mπx ′
a

(4.198)

Observe for the point y = y ′, x = x ′ (with x not at 0 or a) that the value of G
is unbounded, which is unlike the behavior of the one-dimensional GFs in the
x-coordinate. Green’s functions in the cylindrical coordinate system also have
this unbounded behavior for r and r ′ going to zero.

PROBLEMS
Note: In many of the problems in this chapter the partial answers can be obtained
by using the GFs tabulated in the appendixes. Unless otherwise requested, the
reader should use Appendix I to evaluate integrals.

4.1 Using the method of images, find the transient GF for the region
0 < x < ∞, 0 < y < ∞, with the boundary conditions of ∂G / ∂x = 0
at x = 0 and ∂G / ∂y = 0 at y = 0.Also find the GF using the product
of the appropriate GFs and relate the corresponding terms.

4.2 Using the method of images, find the transient GF for the region
0 < x < L, 0 < y < ∞, with ∂G / ∂x = 0 at x = 0 and L, and
∂G / ∂y = 0 at y = 0. Also find the GF using the product of the
appropriate GFs and relate the corresponding terms.

4.3 Use the Laplace transform method to find the GF for the semi-infinite
body with an insulated boundary (case X20).

4.4 Use the Laplace transform method to find the small-cotime form of
the GF with boundaries of first kind at x = 0 and x = L (case X11).
Check your answer against Table 4.1.

4.5 Using a computer, evaluate LGX11(x, t |x′, τ) at x / L = x′ / L = 0.5
for times α(t − τ) / L2 = 0.025, 0.1, 0.5, and 1.0. Use two differ-
ent expressions, one from Table 4.1 and the other from Tables 4.2
and 4.3. Determine the number of terms required for each expres-
sion for the different dimensionless times for the errors to be less
than 0.0001 in value. Compare the values with those obtained from
LGX00(·).



T&F Cat # K10695, Chapter 4, Page 145, 12-6-2010

Methods for Obtaining Green’s Functions 145

4.6 EvaluateLGX22 (x, t |x′, τ) atx / L = x′ / L = 0.5 forα(t−τ) / L2 =
0.025, 0.1, 0.5, and 1.0. Use two different expressions, one from
Table 4.1 and the other from Tables 4.2 and 4.3. Determine the num-
ber of terms required for each expression for the different dimen-
sionless times for the errors to be less than 0.0001. Compare the
values with those obtained from LGX00(·) and LGX11(·).

4.7 Using expressions in Table 4.3, consider boundary conditions of the
first and second kinds and also of the third kind for small values of
B1 and B2 compared to 1 and both K1 and K2 not equal to zero (one
K can be zero). Find an approximation of the first eigenvalue, β1,
using the approximate relation.

cot x = 1

x
− x

3

in the eigencondition in Table 4.3. The use of this approximation
yields a more accurate equation than a two-term approximation for
tan x. Why?

4.8 Show that eigenvalues calculated using the eigencondition in Ta-
ble 4.3 gives βm+1 = βm + π for large βm values.

4.9 For cases RS30 and X30, in the limit as h → ∞ the following limit
must be evaluated:

lim
m→∞ em2

erfc m

Evaluate this limit (a) by using a series expression for the comple-
mentary error function, and (b) by using L’Hospital’s rule. What kind
of boundary condition results from this limit?

4.10 An instantaneous volume source from −a to a in an infinite body is
to be approximated by a finite number of line sources. Show that the
exact solution is

1

2

[
erfc

(
x − a√

4αu

)
− erfc

(
x + a√

4αu

)]
where u = t − τ

(The detailed derivation of this equation is not required if an ap-
propriate integral in the book can be used.) This solution is to be
approximated by a series of plane sources. Derive and evaluate the
expressions for (a) a single source at x = 0, (b) three equally spaced,
and (c) five equally spaced plane sources. Show that these approxi-
mations can be used to obtain

(a) erf (z) � 2z / π1 / 2

(b) erf (z) � (2z / π1 / 2) (1 + 2 e−4z2 / 9) / 3
(c) erf (z) � (2z / π1 / 2) (1 + 2 e−4z2 / 25 + 2 e−16z2 / 25) / 5

Evaluate and compare these expressions with the exact values
at z = 0.05, 0.25, 1, and 2.

4.11 Show all the steps to obtain the transient GF for case X12 us-
ing the separation of variables method. Check your answer with
Appendix X.
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4.12 Show all the steps to obtain the transient GF for case X23 us-
ing the separation of variables method. Check your answer with
Appendix X.

4.13 Determine the transient GF for a line source at x = x′, y = y′ for
the boundary condition of the third kind at y = 0 and for the region
of −∞ < x < ∞, y > 0.

4.14 Obtain the transient GF function for the case denoted X13Z00 using
the product method.

4.15 Obtain the transient GF for the cases denoted R02Z20 and
R01Φ00Z10 using the product method.

4.16 Give the expressions for the GFs for the cases represented by X00,
X00Y00, and X00Y00Z00. What is the physical significance for each
case?

4.17 Evaluate the following integrals∫ b

a

GX00 (x, t |x′, τ) dx′,
∫ b

a

GX00Y00 (x, y, t |x′, y′, τ) dx′,

and
∫ a

b

GX00Y00Z00 (x, y, z, t |x′, y′, z′, τ) dx′

(Perform the integration either explicitly or by using a table.) What
physical situation does each integral represent? (Hint: compare to
the GF solution equation.)

4.18 Compute numerical values from the series form of the steady case
X12 (Example 4.6, Equation 4.135) for x′ = 0.2 and for 50, 500,
and 5000 terms of the series. Plot your numerical values over (0 < x
< L) and discuss how well your plot agrees with the algebraic form
of the this steady GF (Section 1.7.2).

4.19 Derive the steady-state GF for the X11 case by direct integration of
the auxiliary problem

d2G

dx2
= −δ(x − x′); G(0, x′) = G(L, x′) = 0

Compare your answer to Table X.1, Appendix X.
4.20 Derive the steady-state GF for the X11 case using the limit method

and starting with Equation 4.190 for GX11(·).
The answer is

GX11(x, x′) = 2a

π2

∞∑
m=1

1

m2
sin

mπx

a
sin

mπx′
a

4.21 (a) Program on a computer the expression for GX11(·) / a given in
Problem 4.20 as a function of x / a, x′ / a and M; here M is the
maximum number of terms used.

(b) Calculate using the computer program GX11(·) / a as a function
of the number of terms for x / a = x′ / a = 1 / 2. Also tabu-
late the errors by using the nonseries solution of Problem 4.19.
How many terms are needed to obtain accuracy within 1%? By
observing the dependence the error as a function of number of
terms, how many terms would be needed to obtain 0.1%?
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4.22 Verify that in two-dimensional cylindrical coordinates the function

G (r|r ′) = − 1

2π
ln |r − r ′|

satisfies the differential equation ∇2G = −δ(r − r ′) /(2πr ′).
4.23 Show by direct integration of the energy equation that the steady GF

for the X23 geometry is given by

G(x|x′) =




L

(
1 + B

B
− x

L

)
0 ≤ x′ ≤ x

L

(
1 + B

B
− x′

L

)
x ≤ x′ ≤ L

where B = hL / k is the Biot number.
4.24 Use the method of eigenvalue expansions to find the steady GF in the

rectangle for case X12Y11 with eigenfunctions in the x-direction.
Compare your expression with Example 4.7 and comment on the
similarities and/or differences.

4.25 Use the method of eigenvalue expansions to find the steady GF in
the semi-infinite slab for case X11Y00. Compare your expression to
Example 4.11 and comment on the similarities and/or differences.

4.26 Use the limit method to find the steady GF for case X12. Com-
pare your answer to the result given by the eigenfunction expansion
method in Example 4.6.

4.27 Use the limit method to solve for the steady-state GF for the problem
denoted X11Y10.
(a) Use the X11 GF best for small cotimes.
(b) Use the X11 GF best for large cotimes.

4.28 Use the limit method to solve for the steady-state GF for the problem
denoted X11Y10Z12. Use the X11 and Z12 GFs best for large cotimes.
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5 Improvement of
Convergence and
Intrinsic Verification

5.1 INTRODUCTION

For heat conduction in finite bodies, expressions for temperature often involve in-
finite series. This chapter is devoted to numerical issues associated with evaluation
of infinite-series solutions. Slow convergence of these infinite-series expressions can
make it difficult to obtain accurate numerical values because many terms must be
evaluated. Slow series convergence can also contribute to lengthy computer evalua-
tion time.

Lengthy evaluation time will always be an issue, no matter how fast computers may
become, because scientists and engineers will always be able to imagine calculations
that outstrip their computer resources. Lengthy evaluation times can occur in heat
conduction when many temperature values are needed (at many locations in time or
space), or, when very high numerical accuracy is needed.

The concept of intrinsic verification, introduced in this chapter, is the process
of determining correct numerical values from an exact analytical solution, to many
significant figures, in two or more independent ways. Arising as it does from the
solutions themselves (“intrinsic”), this type of checking is easy to implement and
provides assurance that numerical results are correct. We strongly recommend this
approach.

The remainder of this section introduces the Cartesian geometries considered in
this chapter, the two basic functions that arise in heat conduction for these geome-
tries (short cotime and long cotime), and the convergence issues associated with long
cotime functions. In Section 5.2 strategies are given for identifying when slow con-
vergence is a problem. Three methods for improving convergence are discussed in
Section 5.3: replacement of steady-state; the alternate Green’s function (GF) solution;
and, time partitioning. In Section 5.4 the concept of intrinsic verification is introduced
as a means to improve one’s confidence that the numerical values computed from exact
solutions are correct.

5.1.1 PROBLEMS CONSIDERED IN THIS CHAPTER

In this chapter some problems associated with series convergence are introduced for
Cartesian bodies for purposes of illustration. The same concepts apply for other co-
ordinate systems and multiple dimensions. Three types of problems are considered:
those containing a nonzero initial temperature distribution F (�r); those containing an

149
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energy generation term g(�r , t); and, those containing one nonzero boundary-heating
term f at boundary location x = 0. Simultaneous heating at additional boundaries
can be included by superposition of additional boundary terms, evaluated at the ap-
propriate boundary.

The describing partial differential equation for the temperature in Cartesian bodies
with uniform thermal properties is

∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
+ 1

k
g(�r , t) = 1

α

∂T

∂t
in finite domain R, t > 0 (5.1)

The finite domain R can include slabs, rectangles, and parallelepipeds. Notice that
this equation contains an energy generation term, and hence is nonhomogeneous. At
boundary x = 0 there may be a nonzero boundary-heating term of the first, second,
or third kinds described by

T = f or
∂T

∂n
= f or k

∂T

∂n
+ hT = f (5.2)

The other boundary conditions are homogeneous (fi = 0). For the nonzero initial
temperature distribution one writes

T (�r , 0) = F (�r) in finite domain R (5.3)

Analogous to Equation 1.74, the solution of the above problem using GFs for a finite
body is

T (�r , t) =
∫

R

G(�r , t | �r ′, 0)F ( �r ′) dv′

+ α

k

∫ t

τ=0

∫
R

G(�r , t | �r ′, τ) g( �r ′, τ) dv′dτ

+ α

∫ t

τ=0

∫
s

{
f (r ′, τ) ∂G / ∂x ′; first kind only
1
k

f (r ′, τ) G; 2nd or 3rd kind

}
x′=0

ds ′ dτ (5.4)

For one-dimensional slab bodies the GF is given in Chapter 4 for many cases, and
more extensive tables of GFs for rectangular coordinates are given in Appendix X.
For 2D and 3D Cartesian bodies, the transient GF may be found by products of
one-dimensional GF.

5.1.2 TWO BASIC FUNCTIONS

The GF for one-dimensional slab bodies have the form of infinite series of basic
functions. (For semi-infinite or infinite bodies, the GF is usually given as a finite sum
of such functions.) There are two types of basic functions that occur in the expression
for GXIJ (·) for I = 1, 2 and J = 0, 1, and 2. One is the fundamental heat conduction
function, K(z + x ′, t − τ),

K(z + x ′, t − τ) = [4πα(t − τ)]−1 / 2 exp

[
− (z + x ′)2

4α(t − τ)

]
(5.5)
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The variable z is 2nL+x or 2nL−x. See Section 4.2. In this function the variables x ′
and cotime (t − τ) occur in the same group as in the argument of exp(·). This is a
compact form, but integrations involving K(·) can be quite complicated and can be
difficult to do analytically.

The other type of basic function involves the product of an exponential that is a
function of only cotime (t − τ) and two identical eigenfunctions, one a function of x

and the other of x′, and a norm Nm,

exp

[
−β2

mα(t − τ)

L2

]
X(βm, x)X(βm, x′)

Nm

(5.6)

The norm can be L, L / 2, or a more complicated function. The eigenfunctions for the
X11 and X12 geometries are

X(βm, x) = sin
βmx

L

and X(βm, x) = cos
βmx

L

The basic function given by Equation 5.6 is more convenient for mathematical ma-
nipulation than K(·) given by Equation 5.5, because the dependent variables x, x ′,
and (t − τ) all occur in different terms of Equation 5.6. Thus, an integral on one
variable (x, x ′, or t − τ) acts only on one term and does not affect integration on the
other two variables. Whenever practical, the product form given by Equation 5.6 is
preferred for this reason.

5.1.3 CONVERGENCE OF THE GF

There is an important case when the large-cotime GF has convergence difficulties
for large values of αt / L2. It occurs when G(·) is integrated over the dummy time
variable τ. For example, let g(x ′, τ) in Equation 5.4 be simply g0δ(x0 − x′). This
is a continuous (that is, constant over time) source of heat of strength g0 located at
position x0. Then, the second integral of Equation 5.4, restated for a one-dimensional
body, contains typical terms of

α

k
g0

∞∑
m=1

∫ t

τ=0
exp

[
−β2

mα(t − τ)

L2

]
dτ

X(βm, x)X(βm, x0)

Nm

(5.7)

[The integral over x′ has been evaluated with the sifting property of the Dirac delta
function, δ(x0 − x ′).] Next, only the integral over τ is considered, but the upper
limit is replaced by t − ∆t , where ∆t is discussed below. Then the τ integral can be
expressed as

∫ t−∆t

τ=0
exp

[
−β2

mα(t − τ)

L2

]
dτ = L2

αβ2
m

(
e−β2

mα∆t / L2 − e−β2
mαt / L2

)
(5.8)
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If ∆t = 0 in Equation 5.8, then the term exp(−β2
mα∆t / L2) becomes unity, and the

first term of the time integral becomes L2 /(αβ2
m). When this term is replaced back into

the infinite sum in Equation 5.7, for the X21 and X22 cases at x = 0, the resulting
term is proportional to

∞∑
m=1

1

β2
m

(5.9)

which is part of the expression for the temperature. In many cases βm is approximately
equal to m times π

βm ≈ mπ (5.10)

for large values of m. For large m, the “tail” of the summation of Equation 5.9 for
m = M , M + 1, M + 2, etc., is given by the Euler–Maclaurin summation formula
(Abramowitz and Stegun, 1964, p. 16)

∞∑
m=M

1

π2m2
≈ 1

π2

∫ ∞

M

1

m2
dm = 1

π2M
(5.11)

Hence, the tail of the summation is proportional to 1 / M . This means that a very large
number of terms in the series is needed if accurate temperature values are desired.
For example, if M is equal to 100, the error in neglecting the tail is approximately
1 /(100π2) ≈ 0.0010; for M = 1000, the error is one-tenth as large, but there is
10 times as much computation. Note that

∞∑
m=1

1

π2m2
= 1

6

and so using M = 100 would result in an error of about 0.001/(1/6) or a 0.6% error.
One reason that analytical solutions are used is to obtain the “exact” solution which,
in practice, usually means an error of 0.01% or less. In this example, accuracy of
0.01% would require the large number of over 6000 terms in the single-sum infinite
series. For double or triple series the number of terms could be much larger. However,
using the methods in this book the number of terms in a given summation may be
reduced to 40 or less depending upon the desired accuracy.

Suppose that the integrand for the integral is replaced by the appropriate small-
cotime expression, which has terms similar to the one in Equation 5.5. Then the
integral over τ in the range (t − ∆t < τ < t) can be accurately found using only a
small number of terms involving fundamental solution K . Now consider the error in
the tail of the large-cotime expression with a finite number of terms. Then instead of
evaluating the slowly convergent series given by Equation 5.9, it is only necessary to
evaluate the sum

M−1∑
m=1

1

β2
m

exp

[
−β2

mα∆t

L2

]
(5.12)
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which requires many fewer terms for nonzero values of α∆t / L2. If the tail of Equa-
tion 5.12 is calculated, and βm ≈ mπ, the result is

∞∑
m=M

1

m2π2
exp

[
−m2π2α∆t

L2

]
≈ 1

Mπ3 / 2
ierfc

[
Mπ

(
α∆t

L2

)1 / 2
]

(5.13)

which reduces to the Equation 5.11 result for ∆t = 0. For nonzero values of α∆t / L2,
the right side of Equation 5.13 decreases very rapidly as M increases. As an example,
let α∆t / L2 be the small value of 0.025. Then, π(α∆t / L2)1 / 2 = 0.497 ≈ 0.5, and
then ierfc (0.5M) takes on the values 400E−7, 30E−7, and 0.9E−7, for M = 4, 5,
and 6, respectively. Hence for α∆t / L2 = 0.025 and small values of M such as
4, the error by dropping the tail of the summation is negligible. (Larger α∆t / L2

values cause the right-hand side of Equation 5.13 to decrease even more rapidly as
M increases.) The contribution for the integral over τ in the range (t − ∆t < τ < t)
in Equation 5.8 is obtained using just a few terms of the small-cotime GFs.

Consequently, partitioning the time integral in Equation 5.4 has great potential to
improve the computational efficiency of solutions obtained with the GF method, for
two- and three-dimensional problems. It is not usually needed for one-dimensional
problems. Time partitioning, discussed in Section 5.3.3, is one of several methods
that can improve the convergence of a series solution.

The discussion in this section has established that large-cotime GF may produce
slow-converging series for temperature, and that it may be necessary to improve the
series convergence. Further discussion of improvement is premature, because first we
need to determine whether or not slow convergence is actually present in the problem
at hand.

5.2 IDENTIFYING CONVERGENCE PROBLEMS

Evaluating an infinite series is like using a chain saw—you can avoid serious injury if
you follow the safety rules. The safely rules for evaluating an infinite series, discussed
in this section, are the following: use a convergence criterion; monitor the number of
terms; and, be aware that the derivative of a series converges more slowly.

5.2.1 CONVERGENCE CRITERION

Every infinite series must be truncated to a finite number of terms when evaluated
numerically on a computer. The number of terms sets the accuracy of the numerical
result. Unfortunately, the number of terms needed for accurate evaluation can vary
from place to place within the body and can vary with time. This nonuniform con-
vergence makes it difficult to estimate beforehand how many terms of the series are
needed in every circumstance. The use of a fixed number of terms, say for evaluat-
ing temperature at several locations, risks poor accuracy in some locations and risks
wasting computer time in other locations.Aconvergence criterion is needed to choose
the number of terms, at any location or time, to provide a predetermined accuracy
without wasting computer cycles. Two convergence criteria are discussed here.
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TABLE 5.1
Number of Terms and Truncated Sums as a Function of Convergence Criterion
Kmax

∗

Kmax e−Kmax mmax

mmax∑
m=1

e−(mπ)20.01

(mπ)2
mmax

mmax∑
m=1

e−(mπ)20.1

(mπ)2

4.6 1.0E–02 7 0.1152443685 3 0.03825354276
6.9 1.0E–03 9 0.1152476499 3 0.03825354276

11.5 1.0E–05 11 0.1152477078 4 0.03825354364
23.0 1.0E–10 15 0.1152477083 5 0.03825354364

∗Inaccurate digits are underlined.

Maximum exponential argument. When the series contains an exponential fac-
tor, the best convergence criterion is to specify the maximum allowable absolute value
of the exponential argument. For transient heat conduction, the time-exponential is
monotonically decreasing and generally dominates the convergence behavior. Track-
ing the value of the exponential argument is a conservative way to control the con-
vergence. Most importantly, this convergence criterion can be applied ahead of time
to choose the number of series terms needed.

Consider the series given by Equation 5.12 from the large-cotime GF:

∞∑
m=1

1

β2
m

e−A, where A = β2
mα∆t / L2 (5.14)

The convergence criterion is to continue to add terms to the series until A > Kmax

where Kmax is the maximum allowable absolute value of the exponential argument.
The value of Kmax determines the size of the exponential factor as indicated in the
first two columns of Table 5.1. For the above series, for an error of one part in 1010

requires that A ≤ 23 which means that at α∆t / L2 = 1 the eigenvalue must be
β2

m = 23 or βm ≈ 4.8. This convergence test is used later in Section 5.4.
To be more specific, consider the common case of βm = mπ and the dimension-

less times of 0.01 and 0.1. Table 5.1 shows results for the number of series terms
and the truncated sum with the inaccurate digits underlined. The convergence crite-
rion based on the exponential factor is shown to be conservative in each case. For
example, when exp(−Kmax) ≈ 10−5, the truncated sum is accurate to at least seven
digits.

Ratio convergence test. Unfortunately, some series do not contain an exponential
factor. In this case we suggest a convergence test based on a ratio of the average of
the last few terms of the series and the entire series so far. Specifically, let fi be the
ith term of the series and let Sm be the truncated series, given by

Sm =
m∑

i=1

fi (5.15)
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TABLE 5.2
Number of Terms and Truncated Sums as a Function of Convergence Criterion
ε (Equation 5.16)∗

ε mmax

mmax∑
m = 1

1
m2π2

mmax −
mmax∑
m = 1

(−1)m

m2π2

1.0E–03 27 0.1629826658 24 0.0832490393
1.0E–04 81 0.1654234776 66 0.0833218794
1.0E–05 249 0.1662605703 204 0.0833321220
1.0E–06 783 0.1665373480 639 0.0833334572
1.0E–07 2469 0.1666256376 2016 0.0833333209
1.0E–08 7800 0.1666536776 6369 0.0833333346

∗Inaccurate digits are underlined.

Then using the average of the last three terms, the summation is truncated when∣∣∣∣fm−2 + fm−1 + fm

3
· 1

Sm

∣∣∣∣ < ε (5.16)

Using an average of several terms, rather than just the last term, is important because
the last term of the series may not shrink in size monotonically, but may oscillate in
size or repeatedly change sign because of a sine or cosine component. The absolute
value is used to guard against negative values of f , which could prematurely signal
truncation. An average of more than three terms could be used to test convergence,
but this would require additional computer resources to little advantage.

Table 5.2 shows the results of the ratio convergence test applied to two series
that contain factor 1 / m2. The table values show that convergence criterion ε =
10−8 provides about four accurate digits for the first series and about seven accurate
digits for the series with alternating signs (note that the alternating sign speeds the
convergence). Clearly, the number of accurate digits given by this test varies with
the convergence speed of the series. The ratio convergence test can be performed
after each term is added, because the computer time needed to compute the test is
generally small. However, testing every third term can be coded very simply (a simple
sum rather than a moving sum) and it allows the series to establish a trend before the
first test. The convergence test for the values shown in Table 5.2 was applied every
third term; note that all the mmax values listed in the table are divisible by three.

5.2.2 MONITOR THE NUMBER OF TERMS

Even though modern computers can rapidly saw through millions of series terms, it
is important to be aware of the number of terms needed to evaluate your series. For
example, more series terms are often needed near nonhomogeneous boundaries, and
monitoring the number of terms can identify these problem areas.As another example,
if the series is evaluated in a code that specifies the maximum number of terms, there
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should be a warning flag encoded if the maximum number is exceeded. In this way
the code user will know that the computed value may not be accurate because the
series was truncated without satisfying the convergence test.

If the number of terms needed becomes very large (> 105), then round-off errors
can accumulate. Round-off error is the error introduced by the floating-point repre-
sentation of each term, summed over all terms. To address round-off error, the obvious
step is to increase the precision of the floating point representation, for example by
changing from single-precision to double-precision. Unfortunately, this can more than
double the computer evaluation time, depending on how the computer hardware pro-
cesses floating-point numbers. A better approach, discussed in Section 5.3, is to find
a way to improve the convergence speed of the series.

5.2.3 SLOWER CONVERGENCE OF THE DERIVATIVE

Generally the heat flux is found by differentiating the temperature according to
Fourier’s law. However, be careful when evaluating the heat flux from a temperature
series, because differentiation degrades the convergence speed of a series. Worse,
given a convergent series, there is no mathematical guarantee that its derivative will
converge at all (Lanczos, 1966, p. 63).

This problem often occurs near boundaries and corners, and can be severe near
boundaries of the first kind and in 2D and 3D cases. For simplicity in presentation a
1D example is given here.

Consider a nonhomogeneous boundary of the first kind, say at x = 0 for case
X11B10T0. The GF solution has the form:

T (x, t) = α

∫ t

τ=0
T0

∂GX11

∂x ′

∣∣∣∣
x′=0

dτ (5.17)

The long-cotime form of the GF is given by

GX11(x, t |x′, τ) = 2

L

∞∑
m=1

sin(mπx / L) sin(mπx′ / L) exp[−m2π2α(t − τ) / L2]
(5.18)

After evaluating the derivative on x ′ and the integral on τ, the long-cotime temperature
series is given by:

T (x, t) = 2T0

∞∑
m=1

1

mπ
sin(mπx / L)

(
1 − exp[−m2π2αt / L2]) (5.19)

This equation has a steady-state part (the sum of sin(mπx / L) /(mπ)) and an expo-
nentially converging complementary-transient part. The steady state series converges
slowly because the only factor uniformly decreasing to zero is 1 /(mπ). A series com-
posed only of factor 1 /(mπ) will not converge; however this series contains a sine
function whose positive and negative values do allow the series to converge, though
very slowly. Convergence becomes slower and slower as you approach the heated
boundary at x = 0. The slow convergence arises from the Fourier series, not from
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FIGURE 5.1 Series 2
∑

sin(mπx /L) /(mπ) truncated to N = 10, 20 and 80 terms, demon-
strating the Gibbs phenomenon for a type 1 nonhomogeneous boundary (Case X11B10).

the physics of heat conduction. In this case the series attempts to describe T �= 0
near x = 0 using eigenfunctions that approach zero as x → 0, requiring increasingly
more series terms. This phenomenon was first explained by J. Willard Gibbs, one
of America’s foremost scientists∗. The Gibbs phenomenon occurs whenever a trun-
cated Fourier series is used to approximate a discontinuous function (Sommerfeld,
1949, p. 12). A demonstration of the Gibbs phenomenon is given in Figure 5.1, in
a plot of the steady portion of the X11B10 temperature (Equation 5.19) where the
series is truncated to N = 10, 20 and 80 terms. As the number of terms increases,
the curve more closely approaches the exact values (straight line) except near the
x = 0 boundary. The curve for each truncated series begins at zero at x = 0 and rises
sharply to overshoot the exact values. Although the width of the rise-and-overshoot
region shrinks as N increases, the overshoot height never vanishes. In addition, as N

increases the slope at x = 0 becomes steeper and steeper.
Consider next the heat flux series found by term-by-term differentiation of the

temperature series:

q = −k
∂T

∂x
= −2kT0

L

∞∑
m=1

cos(mπx / L)
(
1 − exp[−m2π2αt / L2]) (5.20)

Because the decreasing factor 1 /(mπ) has been removed by differentiation, this series
for heat flux diverges for every value of x. That is, as you add terms to the series the

∗Although renowned as a scientist, Gibbs earned the first American Ph.D. in Engineering in 1863.
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numerical value increases without limit. It is important to remember that this lack of
convergence is a mathematical artifact associated with the series form of the solution;
the physical system is well behaved for all t > 0. Fortunately, for cases like this, there
are alternate forms of the solution, discussed in the next section, that can be used to
evaluate the heat flux (see also Beck and Cole, 2007).

5.3 STRATEGIES TO IMPROVE SERIES CONVERGENCE

When slow convergence becomes a problem, there are specific strategies that can be
used to improve the convergence of series solutions. These strategies are: replacement
of steady-state series; use of the alternate GF solution; and, partitioning the time inte-
gral. The first two methods are easier to implement and should be explored first. Time
partitioning, important for 2D and 3D applications, may require more analytical effort.

5.3.1 REPLACEMENT OF STEADY-STATE SERIES

If a transient solution contains a steady-state portion, often this portion of the solution
converges slowly. One strategy for improving convergence of the entire series is to
replace the steady portion by a better-converging form. How to find this better form
can depend on the body shape and on the number of spatial dimensions involved.

In one-dimensional transient cases, the steady-state portion of the solution can
usually be found in algebraic form by direct integration. When this algebraic form
is substituted for the series form, the accuracy is significantly improved and the
computation time is reduced. Consider a specific one-dimensional example.

Example 5.1: Slab with Elevated Temperature on One Side—X 11B10T 0

Molten metal is suddenly poured over a plate of thickness L and an initial tem-
perature of zero. The temperature at the back side of the plate can be considered
to be fixed at zero also. A reasonable approximation for this problem is a step
change in the x = 0 surface temperature to T0. Assuming temperature-invariable
thermal properties, model the problem and solve using GFs; replace the steady
state component of the solution with a nonseries form and evaluate the heat flux.

Solution

The transient temperature satisfies the following equations:

∂2T
∂x2 = 1

α

∂T
∂t

; 0 < x < L (5.21)

T (x , 0) = 0

T (0, t ) = T0

T (L, t ) = 0

A jump in temperature of size T0 is suddenly imposed at the x = 0 boundary. This
geometry was discussed earlier in Section 5.2.3, and the temperature is given by
(see Equation 5.19)
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T (x , t ) = 2T0

∞∑
m=1

sin(mπx / L)
mπ

− 2T0

∞∑
m=1

sin(mπx / L)
mπ

e−m2π2αt / L2
(5.22)

Note that this equation has the form

T (x , t ) = T0[Sss(x ) + Sc.t .(x , t )] (5.23)

where Sss is the steady term and Sc.t . is the complementary transient term. It is the
steady term that converges slowly. The temperature would converge better if the
slowly converging steady portion could be improved.

Next the steady-state portion is found in nonseries form. Introducing Equa-
tion 5.23 into the boundary value problem for temperature, Equation 5.21, gives

∂2Sss(x )
∂x2 + ∂2Sc.t .(x , t )

∂x2 = 1
α

∂Sc.t .(x , t )
∂t

(5.24)

Sss(x ) + Sc.t .(x , 0) = 0

Sss(0) + Sc.t .(0, t ) = 1

Sss(L) + Sc.t .(L, t ) = 0

For t > 0 we know that the two solutions Sss and Sc.t . are independent. Then we
can obtain

d 2Sss(x )
dx2 = 0; ∂2Sc.t (x , t )

∂x2 − 1
α

∂Sc.t .(x , t )
∂t

= 0 (5.25)

So function Sss satisfies the steady heat conduction equation. Let us choose bound-
ary conditions for Sss to be

Sss(0) = 1; Sss(L) = 0

Then function Sss may be found by direct integration: the steady heat conduction
equation admits a linear distribution in the form Sss(x ) = ax+b, and then constants
a and b may be found from the boundary conditions. Function Sss is then given by

Sss(x ) = (1 − x
L

) = 2
∞∑

m=1

sin(mπx / L)
mπ

(5.26)

Replace this algebraic form for the steady solution into the series solution above
to find

T (x , t ) = T0

(
1 − x

L

)
− 2T0

∞∑
m=1

sin(mπx / L)
mπ

e−m2π2αt / L2
(5.27)

This equation has much better series convergence than the previous series. At large
time (αt / L2 > 0.025) only a few terms are needed for high accuracy.

An important aspect of the temperature expression given by Equation 5.27 is the
possibility of “intrinsic verification” which is discussed in detail in Section 5.4. As
shown in Figure 5.2, the temperature is nearly zero at x / L > 0.4 and at early time



T&F Cat # K10695, Chapter 5, Page 160, 12-6-2010

160 Heat Conduction Using Green’s Functions

1

0.8

0.6

T/
T 0

0.4

0.2

0
0 0.2 0.4 0.6

x/L
0.8 1

0.002
αt/L2

0.01
0.05
0.1
2.0

FIGURE 5.2 Case X11B10T 0. Temperature in the plane wall initially at zero temperature,
with T = T0 applied at x = 0 for t > 0, and with zero temperature at x = L.

such that αt / x2 < 0.01. In this region the steady and complementary transient parts
of the temperature expression must sum to zero. This is useful for checking that the
series is computed accurately.

This better-converging form for the temperature, Equation 5.27, can also be dif-
ferentiated term-by-term to find the heat flux, as follows:

q(x, t) = −k
∂T

∂x
= kT0

L

[
1 + 2

∞∑
m=1

cos(mπx / L)e−m2π2αt / L2

]
(5.28)

This series for the heat flux, unlike Equation 5.20, converges everywhere for t > 0
thanks to the exponential term. At the instant t = 0, however, the exponential term
is unity and the series diverges. The heat flux is infinite at t = 0 not because of some
mathematical flaw, but because of the physically unrealistic boundary condition. The
instantaneous jump in boundary temperature imposed at t = 0 results in a momen-
tarily infinite heat flux. For small dimensionless times such as αt / L2 = 0 to 0.06,
the finite body problem X11B10T0 is better modeled as the X10B1T0 problem. For
any t > 0 the heat flux has a noninfinite value and continues to decay until the steady
state value is reached.

In two- and three-dimensional cases, the steady portion can also be replaced by a
better-converging form, but more effort may be required. For example, in rectangles,
the poorly converging steady portion is a double-infinite series, which can be replaced
by a single-summation series. An example is given below for a rectangle heated at a
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FIGURE 5.3 Geometry for the rectangle, case X12B10Y12B00T 0.

boundary. Similar improvement in series convergence can also be obtained for steady
solutions caused by internal energy generation. A large number of steady solutions,
along with a discussion of the speed of series convergence, are given in the literature
for the following geometries: the rectangle (Melnikov, 1999; Duffy, 2001; Cole and
Yen, 2001a), the two-dimensional semi-slab and the slab (Cole and Yen, 2001b), the
parallelepiped (Crittenden and Cole, 2002); and, the three-dimensional finite cylinder
(Cole, 2004).

Example 5.2: Rectangle with Boundary Heating—X 12B10 Y 12B00T 0

Find the temperature in a rectangle with a suddenly applied change in temperature
at x = 0. Replace the steady portion of the solution with a single-sum form.

Solution

The rectangle (0 < x < L; 0 < y < W ) with number designation X12Y12 is initially
at a uniform temperature, and a sudden change in temperature is applied at the
x = 0 boundary. The other boundaries are homogeneous as shown in Figure 5.3.
The temperature satisfies the following equations:

∂2T
∂x2 + ∂2T

∂y2 = 1
α

∂T
∂t

(5.29)

T (0, y , t ) = T0; ∂T
∂x

∣∣∣∣
x=L

= 0; T (x , 0, t ) = 0; ∂T
∂y

∣∣∣∣
y=W

= 0;

T (x , y , 0) = 0

The GF solution is given by Equation 5.4 in the form

T (x , y , t ) = α

∫ t

τ=0

∫ W

y ′=0
T0

∂

∂x ′

∣∣∣∣
x ′=0

GX12Y 12(x , y , t |x ′, y ′, τ) dy ′ dτ (5.30)

The transient GF is found from a product solution GX12 ·GY 12, so the solution may
be written in the form

T (x , y , t ) = T0 α

∫ t

τ=0

∂GX12

∂x ′ (x , t |0, τ)
∫ W

y ′=0
GY 12(y , t |y ′, τ) dy ′ dτ (5.31)
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and the large cotime form of this GF is given by

GX12GY 12 = 2
L

∞∑
m=1

sin
βmx

L
sin

βmx ′
L

exp
(
−β2

mαu / L2
)

× 2
W

∞∑
n=1

sin
γny
W

sin
γny ′
W

exp
(
−γ2

nαu / W 2
)

(5.32)

where βm = (m − 1 / 2)π; γn = (n − 1 / 2)π

and where u = t − τ is the cotime. The large-cotime form of the GF is easier
to use because the derivatives and integrals in the GF solution can be carried out
separately and in any order.The derivative falls on one of the sine terms, as follows:

∂

∂x ′ sin
βmx ′

L

∣∣∣∣
x ′=0

= βm

L
cos

βmx ′
L

∣∣∣∣
x ′=0

= βm

L
(5.33)

The integral on y ′ falls on another sine term:

∫ W

y ′=0
sin

γny ′
W

dy ′ = −W
γn

cos
γny ′
W

∣∣∣∣
W

0
= W

γn

(
1 − cos γn

) = W
γn

(5.34)

Finally the integral on τ falls on the exponential term

∫ t

τ=0
e−C (t−τ) dτ =

∫ t

u=0
e−Cudu = 1

C

(
1 − e−Ct

)
(5.35)

where C = α
(
β2

m / L2 + γ2
n / W 2

)
(5.36)

Now assemble these portions into the temperature expression to find

T (x , y , t ) = T0
4
L2

∞∑
m=1

∞∑
n=1

sin
βmx

L
sin

γny
W

1( γn
W

)2 +
(

βm
L

)2

× βm

γn

(
1 − exp

[
−

(
γ2

n / W 2 + β2
m / L2

)
αt

])
(5.37)

The steady-state part of the above solution, the slowly converging part, is given by

TS (x , y ) = T0
4
L2

∞∑
m=1

∞∑
n=1

βm

γn

sin βmx
L sin γny

W(
γ2

n / W 2 + β2
m / L2

) (5.38)

Because there is no exponential present to speed the convergence, the steady part
converges slowly.

Next a better-converging form of the steady temperature will be sought with a
single-sum GF found with the eigenfunction expansion method. As discussed in
Section 4.6.3, the general form for the GF in the rectangle is given by

G (x , y |x ′, y ′) =
∞∑

m=1

Xm(x )Xm(x ′)
N (βm)

Pm(y , y ′) (5.39)
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where Xm is an eigenfunction, βm is the eigenvalue, and Nm is the norm along
the x-axis in the rectangle. Function Pm is the kernel function. For the specific
case under discussion, case X12Y12, the GF has previously been derived in Ex-
ample 4.6, and it is given by

GX12Y 12 =
∞∑

m=1

sin
(

βmx
L

)
sin

(
βmx ′

L

)
L / 2

Pm(y , y ′) (5.40)

where

Pm(y , y ′) = e−σm (2W −y−y ′) − e−σm (2W +|y−y ′|) + e−σm|y−y ′| − e−σm (y+y ′)

2σm(1 + e−2σmW )
(5.41)

and where σm = βm / L. Note that the y -direction kernel function depends on the
x-direction eigenvalue through parameter σm; this is how the two coordinate di-
rections communicate with each other in the single-sum solution. The above GF
is also given in the GF Library web site (Cole, 2000). The steady temperature so-
lution needed here is case X12B10 Y12B00, and the steady GF solution equation
for heating at x = 0 is given by (see Equation 5.4 or 3.46):

TS (x , y ) = T0

∫ W

y ′=0

∂GX12Y 12(x , y , x ′, y ′)
∂x ′

∣∣∣∣
x ′=0

dy ′ (5.42)

The derivative required was given earlier, and the integral on y ′ is given by∫ W

y ′=0
Pm(y , y ′)dy ′ = 1

σ2
m

− e−σm (2W −y ) + e−σmy

σ2
m(1 + e−2σmW )

(5.43)

This integral is also given in Cole and Yen (2001a). Then the single-sum steady
temperature may be assembled in the form

TS (x , y ) = 2T0

∞∑
m=1

sin βmx / L
βm

[
1 − e−σm (2W −y ) + e−σmy

1 + e−2σmW

]
(5.44)

The convergence of the above series may be further improved by recognizing that
a portion of the series depends only on coordinate x . This portion of the series
may be replaced by a fully summed form with the identity

2
∞∑

m=1

sin βmx / L
βm

= 1; βm = π(m − 1 / 2) (5.45)

(This identity is further explored in homework problem 5.6 at the end of the chap-
ter.) Then the steady temperature is given by

TS (x , y ) = T0 − 2T0

∞∑
m=1

sin βmx / L
βm

[
e−σm (2W −y ) + e−σmy

1 + e−2σmW

]
(5.46)

This single-sum series for the steady temperature, converges much faster than the
double-sum solution, especially near x = 0. A detailed discussion of the number of
terms needed for convergence of this steady-temperature expression is given later
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in Example 5.4. The point of the present discussion is that Equation 5.46 can be
used to replace the steady portion of Equation 5.37 to construct a faster-converging
transient temperature in the rectangle, in this case given by

T (x , y , t ) = T0 − 2T0

∞∑
m=1

sin βmx / L
βm

[
e−σm (2W −y ) + e−σmy

1 + e−2σmW

]

− T0
4
L2

∞∑
m=1

∞∑
n=1

sin
βmx

L
sin

γny
W

× βm

γn

[
exp

[− (
γ2

n / W 2 + β2
m / L2) αt

]
γ2

n / W 2 + β2
m / L2

]
(5.47)

5.3.2 ALTERNATE GF SOLUTION EQUATION

The alternate GF solution equation (AGFSE), introduced in Section 3.4, is an impor-
tant strategy for improving convergence of series solutions that involve a boundary-
heating effect. The thrust of the AGFSE method is to replace the integral representing
the boundary heating effect in the GF solution by one or more nonboundary integrals.
The resulting alternate temperature series generally has better convergence behavior.

This approach works whether the causative boundary heating is steady or
transient, and it works whether or not the temperature solution tends to a steady-state
condition. However, if a steady-state temperature is present, applying the AGFSE
method is equivalent to replacing the steady-state solution by a better-converging
form (as discussed in the previous section). Next an example will be given to demon-
strate the AGFSE method.

Example 5.3: Transient Boundary Heating—X 21B21T 1

The heat shield on a space vehicle entering the atmosphere experiences a heat flux
which is increasing with time for a short period. Assume that this heat flux increases
linearly with time at location x = 0 and the thermal properties are constant. There
is a fixed temperature at surface x = L. Find the temperature with the standard GF
solution and with the alternate GF solution.

Solution

The temperature satisfies the following equations:

∂2T
∂x2 = 1

α

∂T
∂t

; 0 < x < L (5.48)

T (x , 0) = T0

−k
∂T
∂x

∣∣∣∣
x=0

= q0
t
t0

T (L, t ) = T0

Here q0 and t0 are known constants which produce a time-increasing heat flux
at the boundary. The temperature solution with the GF method is given by the
boundary-heating integral:
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T (x , t ) − T0 = α

k

∫ t

τ=0
q0

τ

t0
GX21|x ′=0 dτ (5.49)

The long-cotime GF for this case is

GX21 = 2
L

∞∑
m=1

e−β2
mα(t−τ) / L2

cos βm
x
L

cos βm
x ′
L

(5.50)

where βm = π(m − 1 / 2)

Introduce this GF into Equation 5.49 and carry out the time integral to obtain the
standard temperature series:

T (x , t ) − T0
q0L
k

L2

αt0

= 2
∞∑

m=1

(
t+
β2

m
− 1

β4
m

+ e−β2
mt+

β4
m

)
cos

(
βm

x
L

)
(5.51)

where t+ = αt / L2

The convergence of the standard series is controlled by the coefficient in paren-
theses, which contains three parts. The part containing the exponential converges
most rapidly as m increases; it has exponential convergence. The part 1 / β4

m con-
verges less rapidly, and finally the part containing t+ / β2

m converges slowly.
The alternate GF solution will now be applied to this problem. We seek to

split the temperature solution as T = T ∗ + T ′, where T ∗ satisfies the original
nonhomogeneous boundary conditions and T ′ will therefore be freed from this
responsibility. First we will find T ∗ that satisfies the following equations:

∂2T ∗
∂x2 = 0; 0 < x < L (5.52)

−k
∂T ∗
∂x

∣∣∣∣
x=0

= q0
t
t0

T ∗ (L, t ) = T0

The quantity T ∗ in this case is a quasisteady temperature. Integrate the above
differential equation twice to find T ∗ = ax + b where a and b are independent
of x . Quantities a and b may be found by application of the nonhomogeneous
boundary conditions at x = 0 and x = L, to give T ∗ in the form

T ∗(x , t ) = q0L
k

t
t0

(
1 − x

L

)
+ T0 (5.53)

Note that if the boundary heating were constant with time, quantity T ∗ would be
a steady-state solution. With T ∗ in hand we can now find the equations that define
T ′ by replacing T = T ∗ + T ′ into the original boundary value problem for T . The
result is:

∂2T ′
∂x2 + 0 = 1

α

∂T ′
∂t

+ 1
α

q0L
k

1
t0

(
1 − x

L

)
(5.54)

T0 + T ′(x , 0) = T0

q0
t
t0

− k
∂T ′
∂x

∣∣∣∣
x=0

= q0
t
t0

T0 + T ′(L, t ) = T0
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In the differential equation, an extra term comes from the time derivative of T ∗.
However, we can treat this extra term as a known source term. Rewrite the bound-
ary value problem for T ′ in the form:

∂2T ′
∂x2 + g∗(x )

k
= 1

α

∂T ′
∂t

(5.55)

T ′(x , 0) = 0

−k
∂T ′
∂x

∣∣∣∣
x=0

= 0

T ′(L, t ) = 0

where g∗(x ) / k is given by

g∗(x )
k

= −1
α

q0L
k

1
t0

(
1 − x

L

)
(5.56)

Because T ∗ satisfies the original boundary conditions, note that the boundary
conditions for T ′ are completely homogeneous. Now the usual GF solution can
be applied to find T ′ in the form

T ′(x , t ) = α

∫ t

τ=0

∫ L

x ′=0

g∗(x ′)
k

GX21|x ′=0 dx ′dτ (5.57)

Compared to the standard approach, there is an additional spatial integral needed,
given by

∫ L

x ′=0

(
1 − x ′

L

)
cos

(
βm

x ′
L

)
dx ′ = L

β2
m

(5.58)

(Note that cos βm = 0 in this case.) Combine the spatial integral with the time
integral, and assemble the solution for T ′ in the form

T ′(x , t )
(q0L / k )

= −2
L2

αt0

∞∑
m=1

1
β4

m

(
1 − e−β2

mαt / L2
)

cos βm
x
L

(5.59)

Finally, the alternate temperature series is the sum T = T ∗ + T ′, which in normal-
ized form is given by

T (x , t ) − T0
q0L
k

L2

αt0

= t+
(
1 − x

L

)
− 2

∞∑
m=1

1 − e−β2
mt+

β4
m

cos βm
x
L

(5.60)

where t+ = αt / L2

Compare the above alternate series above to the standard series (Equation 5.51) to
see that the slowest-converging term from the standard series has been replaced
by a fully summed form, and the remainder of the series is unaffected.

The computational advantage of the alternate solution is apparent in Table 5.3
which shows the number of terms required for evaluating temperature at several loca-
tions and times and for two values of the convergence criterion, ε (see Equation 5.16).
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TABLE 5.3
Number of Series Terms Required for Convergence of Standard Series (Equa-
tion 5.51) and Alternate Series (Equation 5.60) for Case X21B21T1 with Con-
vergence Criterion ε∗

Number of Terms, Number of Terms,
Standard Series Alternate Series

x / L αt / L2 T + ε = 10−4 ε = 10−6 ε = 10−4 ε = 10−6

0.01 0.01 0.659233E–03 51 351 15 36
0.2 0.01 0.289374E–04 534 5229 15 39
0.4 0.01 0.341467E–06 6219 62139 15 39
0.01 0.1 0.228144E–01 45 252 9 24
0.2 0.1 0.971327E–02 99 909 9 24
0.4 0.1 0.352408E–02 189 1764 9 24
0.01 1 0.684581E+00 39 150 9 18
0.2 1 0.511833E+00 48 399 9 15
0.4 1 0.358541E+00 66 564 9 18
0.01 10 0.956672E+01 36 150 9 18
0.2 10 0.768534E+01 39 324 9 15
0.4 10 0.573600E+01 51 444 9 18

∗Convergence was tested every third term. Normalized temperature values shown were found from the
alternate series with ε = 10−6.

The standard series requires many more terms than the alternate series. At small di-
mensionless time and far from the boundary, the standard series requires thousands
of terms. Most importantly, for the alternate solution an increase in precision from
ε = 10−4 to ε = 10−6 can be purchased inexpensively with about two times more
series terms. The same increase in precision with the standard series requires about
ten times more series terms. For more cases see Beck et al. (2008).

5.3.3 TIME PARTITIONING

Time partitioning, first introduced by Beck and Keltner (1987), is a powerful method
for improvement of series convergence. It is intended for the solution of multidimen-
sional problems. It is not needed for one-dimensional problems. The chief motivation
for time partitioning is that the convenient form of the GF given by Equation 5.6, also
called the large-cotime form, cannot efficiently be used for small times. For small
times, a finite body (such as a plate) behaves as if it were a semi-infinite body, since
at small times each boundary condition affects only a small region near its bound-
ary. Small times are defined by dimensionless time αt / L2 ≤ 0.06, or t ≤ 0.06L2 / α
seconds.∗ Under this circumstance, the large-cotime form of the solution requires

∗The number given here as 0.06 may vary between 0.025 and 0.25 depending on the circumstances. The
important point is that Fourier number αt / L2 defines the small-time regime.
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many terms of the infinite series for the GF. This is inefficient and possibly inaccurate
if too few terms are used. The other form of the GF, given by Equation 5.5, also
called the small-cotime form, can be evaluated accurately at small cotimes with only
a few terms of its infinite series; it tends to be more difficult to evaluate analytically,
however.

In the GF equation given by Equation 5.4, the G(·) functions for finite bodies can
be of the small-cotime form (see the X11, X12, X21, and X22 GFs listed in Table 4.1
and Appendix X), or they can be of the large-cotime form (see Section 4.4 and
Appendix X). The small-cotime and large-cotime forms of the GF are each solutions
to the heat conduction boundary value problem, given by Equations 5.1 through 5.3.
These two solutions are mathematically equivalent, as required by the uniqueness
property of solutions of linear boundary value problems (Carslaw and Jaeger, 1959,
pp. 35–38). The numerical values are identical for the two solutions for the same
conditions. The solution of a boundary value problem is unique, but the expansion of
that solution in infinite series form may not be unique. That is, the small-cotime and
large-cotime solutions are different infinite-series expansions of the same solution.

Many small-cotime GFs can be derived from Laplace transform solutions of the
heat conduction equation (refer to Section 4.3 for an example). For plates, small-
cotime GFs take the form of an infinite series of fundamental heat conduction functions
given by Equation 5.5. See also Equation 4.1 and the XIJ case of Table 4.1. For
sufficiently small times, the value of a GF at any x is unaffected by the boundaries
or at most by a single boundary. Hence, the GFs at sufficiently small cotimes can
be described by the same GFs as for infinite or semi-infinite bodies. Consequently,
the small-cotime GFs can be represented by only the few terms which emphasize the
effects of a single boundary.

In contrast, many large-cotime GF expressions are derived from the separation of
variables method of solution of the heat conduction equation. For slab bodies, large-
cotime GFs are composed of infinite series of basic functions given by Equation 5.6.
The large-cotime GFs incorporate the effect of the finite nature of the body and
require only a few terms for sufficiently large times. The large-cotime GFs contain
eigenvalues that are based on the finite thickness of the plate. As a consequence, the
small and large cotime GFs emphasize different aspects of the physical problem in a
manner so that only a few terms, in their respective infinite series, are usually needed.

Time partitioning can speed evaluation of the infinite series expressions com-
pared to using a single form of the series. To take advantage of the different conver-
gence properties of the small-cotime and large-cotime solutions, Equation 5.4 can be
written as

T (�r , t) =
∫

R

GL(�r , t | �r ′, 0)F ( �r ′) dv′

+ α

k

∫ t−tp

τ=0

∫
R

GL(�r , t | �r ′, τ)g( �r ′, τ) dv′dτ

+ α

k

∫ t

τ=t−tp

∫
R

GS(�r , t | �r ′, τ)g( �r ′, τ) dv′dτ
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+ α

∫ t−tp

τ=0

∫
s

{
f ∂GL / ∂x ′; first kind only
(f / k) GL; 2nd or 3rd kind

}
x′=0

ds ′ dτ

+ α

∫ t

τ=t−tp

∫
s

{
f ∂GS / ∂x ′; first kind only
(f / k) GS; 2nd or 3rd kind

}
x′=0

ds ′ dτ

(5.61)

where GS(·) and GL(·) correspond to small-cotime and large-cotime GFs, respec-
tively. The dimensionless time αtp / L2 is small compared with unity.

The value of αtp / L2 for time partitioning is usually chosen to be between 0.025
and 0.25. The benefit of choosing a small value of αtp / L2 is that only a few terms of
the series for GS(·) will be needed in the last integral of Equation 5.61. An example
of time partitioning for the rectangle is given later in Section 5.4.4.

5.4 INTRINSIC VERIFICATION

Intrinsic verification is the process of determining correct numerical values from an
exact analytical solution, to many significant figures, in two or more independent
ways. This provides assurance that the solution is correct and that the process for
obtaining accurate numerical values is sound. We use the word “intrinsic” because for
many exact solutions, the means of verification are contained within the solution itself.

Intrinsic verification is distinct from “code verification” or “solution verification”
which the finite-element and finite-difference community use to assure that their
fully numeric computer codes are sufficiently accurate (Roach, 1998). One type of
code verification is to compare the fully numeric solution with an exact solution. In
contrast, intrinsic verification is a comparison between two exact analytical solutions,
for the purpose of assuring that values are correct, far beyond the precision generally
practicable from fully numeric solutions.

Exact solutions must satisfy the governing partial differential equation and also
the boundary conditions. However, analytical checks of these conditions might not
reveal certain errors. For example, the eigenvalues might not be accurate or an eigen-
value might be missing. It is also possible that convergence of series may be so poor
that accurate values are not obtainable, or perhaps an insufficient number of terms
of the infinite series have been used. By using intrinsic verification we can quanti-
tatively and confidently check the accuracy of numerical values generated by exact
solutions. These concepts have been used in developing computer codes and have
verified literally thousands of exact transient heat conduction solutions involving the
parallelepiped (Beck et al., 2004).

Four different types of intrinsic verification are discussed in this section. The first
type, discussed in Section 5.4.1, uses only long-cotime GF related to the method of
separation of variables, and it has a parameter which can be continuously varied to
demonstrate verification. This type of verification is particularly appropriate for loca-
tions removed from the heated surface where the temperature is known to be zero (or
as close as desired) for sufficiently small times. The second type of verification uses
limiting-case one-dimensional solutions appropriate for short times. The third type
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of intrinsic verification uses different eigenfunction expansions for steady-state prob-
lems; it does not have a parameter that can be continuously varied. Instead different
solutions of the same problem are found and compared. Finally, the fourth type of
intrinsic verification is related to time partitioning and is appropriate for 2D and 3D
geometries. In this method varying a partition time changes numerical values in a min-
imal fashion, and these small changes indicate the accuracy of the numerical values.

5.4.1 INTRINSIC VERIFICATION BY COMPLEMENTARY TRANSIENTS

Intrinsic verification by complementary transients applies to transient cases with
heating (or cooling) at a surface. If the solution contains a steady component and
a time-decaying component that we call the complementary transient, then intrinsic
verification can be carried out at locations removed from the heated surface where
negligible temperature rise occurs for sufficiently small times.

Consider a body of finite extent heated at surface x = 0. Using Equation 5.4 the
temperature may be stated as

T (�r , t) = α

∫ t

u=0

∫
s

{
f ∂GL / ∂x ′; first kind only
(f / k) GL; 2nd or 3rd kind

}
x′=0

ds ′ dτ (5.62)

where u is the cotime; note that the large-cotime form GL is used here. Now the time-
dependence of every large-cotime GF in the finite body has the form e−cnu where u is
the cotime. Evaluate the time integral of this exponential factor as follows:∫ t

u=0
e−cnudu = 1

cn

− e−cnt

cn

(5.63)

Note that as t → ∞ this integral gives a constant value, specifically, factor 1 / cn.
This suggests that the temperature solution can be written as the sum of a steady term
and a time-decaying term, for example in the rectangle:

T (x, y, t) = T L
steady(x, y) + T L

c.t .(x, y, t) (5.64)

At locations removed from the heated surface, for sufficiently small times, tempera-
ture T will be essentially zero:

0 = T L
steady(x, y) + T L

c.t .(x, y, t) for αt / x2 < C0 (5.65)

where the value of the dimensionless cutoff time, C0 is to be determined.
Replacing the inequality in the previous equation by an equality and solving for

the steady state component gives

Tsteady(x, y) = −T L
c.t .(x, y, t0 = C0x

2 / α) (5.66)

This equation suggests that intrinsic verification can be carried out with the comple-
mentary transient. We have the steady state expression on the left which is a function
of only position while on the right side the (negative of the) complementary transient
is a function of position and time. This expression can only be correct if the right side
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TABLE 5.4
Intrinsic Verification for Case X 21B10 Y 11B00T 0 Using the Complementary
Transient for Interior Locations at Early Time∗

Number
x/L y/L αt/L2 Kmax of Terms −Tc·t

0.25 0.5 0.0005 4.6 450 0.1788017425
0.25 0.5 0.0010 4.6 210 0.1788031719
0.25 0.5 0.0020 4.6 105 0.1787935827
0.25 0.5 0.0040 4.6 50 0.1786858298
0.25 0.5 0.0100 4.6 18 0.1743892020

0.25 0.5 0.0005 23 2312 0.1788046222
0.25 0.5 0.0010 23 1152 0.1788046220
0.25 0.5 0.0020 23 578 0.1788035094
0.25 0.5 0.0040 23 288 0.1786662112
0.25 0.5 0.0100 23 105 0.1744284821

0.50 0.5 0.0020 11.5 288 0.0800610324
0.50 0.5 0.0040 11.5 136 0.0800610361
0.50 0.5 0.0080 11.5 72 0.0800588045
0.50 0.5 0.0160 11.5 32 0.0797857482

0.50 0.5 0.0020 23 578 0.0800610334
0.50 0.5 0.0040 23 288 0.0800610330
0.50 0.5 0.0080 23 136 0.0800588080
0.50 0.5 0.0160 23 72 0.0797857689

0.75 0.5 0.0045 11.5 128 0.0303331137
0.75 0.5 0.0090 11.5 55 0.0303331192
0.75 0.5 0.0180 11.5 32 0.0303298132
0.75 0.5 0.0360 11.5 10 0.0299547020

0.75 0.5 0.0045 23 242 0.0303331147
0.75 0.5 0.0090 23 128 0.0303331142
0.75 0.5 0.0180 23 55 0.0303298158
0.75 0.5 0.0360 23 32 0.0299548261

∗Quantity Kmax is the largest allowed absolute value of the exponential argument. Inaccurate digits are
underlined.

gives the same numerical value for all acceptable times. Hence we can verify the so-
lution by examining numerical values with times less than indicated in Equation 5.65.

Consider determination of the temperature in the rectangle with specified heat flux
at the x = 0 boundary, cases X21B10 Y11B00T 0. Table 5.4 shows results for the
complementary transient component of the temperature, Equation 5.64, evaluated
at y = L / 2 and with x = L / 4, L / 2 and 3L / 4. The third column contains the
dimensionless cotime and the fourth column contains the number of series terms
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needed. Note that the same numerical values are repeated in Table 5.4 for sufficiently
small cotimes. This is the essence of intrinsic verification with the complementary
transient, because as the cotime goes to zero the negative of the complementary
transient is equal to the steady-state value.

In the upper part of Table 5.4, for Kmax = 4.6, about five digits are accurate
for dimensionless times αt / L2 < 0.001. For αt / L2 = 0.004 only three digits are
accurate but fewer series terms are required. Further down the table, for Kmax = 23,
there are nine accurate digits present at αt / L2 < 0.001, and 1152 series terms are
required. Similar observations can be made regarding the table entries for x / L = 0.5
and x / L = 0.75. See de Monte et al. (2008).

5.4.2 COMPLEMENTARY TRANSIENT AND 1D SOLUTION

The use of a one-dimensional semi-infinite solution at an appropriate early time
provides another way to use the complementary transient for intrinsic verification.
Consider the rectangle again, case X21B10Y11B00. The one-dimensional semi-
infinite solution denoted X20B1T0 is a close approximation up to about αt / L2 = 0.3
for x small and for y away from the boundaries. In this case x can also be zero. Using
Equation 5.65

T (x, y, t) = TX20B1T 0(x, t1D)

= Tsteady(x, y) + Tc.t .(x, y, t) for t < t1D (5.67)

Now solve for the steady-state result:

Tsteady(x, y) = TX20B1T 0(x, t1D) − Tc.t .(x, y, t1D) (5.68)

This is another expression that demonstrates intrinsic verification, with a continuously
variable parameter, because there is no time dependence on the left side but time
dependence on the right. Varying parameter t1D over an acceptable range should
give the same numerical values for the steady temperature constructed from two
independent pieces. This expression has an advantage over Equation 5.66 which has
only one part on the right-hand side. As a result, the above expression can be used
to find an error in a multiplicative constant in the series for Tc.t . which could not be
accomplished using Equation 5.66.

Although use of a one-dimensional semi-infinite solution was discussed in this
section for verification in a rectangle, the same sort of verification is possible in a
three-dimensional body (the parallelepiped). It is also possible to carry out intrin-
sic verification on the rectangle with a two-dimensional short-cotime solution (case
X20B1Y10B0 to approximate the rectangle discussed above). This would be partic-
ularly efficient near the corner y = 0 and x = 0.

5.4.3 INTRINSIC VERIFICATION BY ALTERNATE SERIES EXPANSION

In this section a method of verifying steady-state solutions in two- or three-
dimensional finite bodies is described. The method requires that solutions can be found
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with the eigenfunction expansions in more than one direction (hence the requirement
of finite bodies). Next an example is given in a rectangle.

Example 5.4: Steady Rectangle—X 12B10 Y 12B00

Find the steady temperature in the rectangle by two different eigenfunction expan-
sions for verification. The x = 0 surface of the rectangle has an elevated tempera-
ture and the other surfaces are homogeneous.

Solution

The steady solution in this rectangle was studied earlier in Example 5.2, in a dis-
cussion of improving series convergence by replacing the double-sum series with
a single-sum series. The temperature satisfies the following equations:

∂2T
∂x2 + ∂2T

∂y2 = 0 (5.69)

T (0, y ) = T0; ∂T
∂x

∣∣∣∣
x=L

= 0; T (x , 0) = 0; ∂T
∂y

∣∣∣∣
y=W

= 0;

The steady GF solution has the form

TS (x , y ) = T0

∫ W

y ′=0

∂G
∂x ′

∣∣∣∣
x ′=0

dy ′ (5.70)

The single-sum steady solution, found with eigenfunctions along the x-direction,
is given by (Equation 5.46):

TS (x , y ) = T0 − 2T0

∞∑
m=1

sin βmx / L
βm

[
e−σm (2W −y ) + e−σmy

1 + e−2σmW

]
(5.71)

where σm = βm / L. It should be noted that this is the preferred single-sum solution
for a rectangle heated on the x = 0 boundary, because the eigenfunction expan-
sions (sines in this case) are in the nonhomogeneous direction (the direction that
locates the heated boundary). This arrangement provides the fastest convergence
for both temperature and for heat flux series near the heated boundary (Cole and
Yen, 2001a).

Next an alternate single-sum solution will be sought, for the purpose of verifica-
tion, using an alternate GF with eigenfunctions along the y -direction, in the form

GX12Y 12 = 2
W

∞∑
n=1

sin
γny
W

sin
γny ′
W

Pn(x , x ′) (5.72)

where kernel function Pn may be found by eigenfunction expansion (see Sec-
tion 4.6)

Pn(x , x ′) = e−σn (2L+|x−x ′|) + e−σn (2L−x−x ′) − e−σn|x−x ′| − e−σn (x+x ′)

2σn(1 − e−2σnL)
(5.73)
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where σn = γn / W . Now replace this GF into the GF solution, Equation 5.70, to
see that one integral is needed that falls on a sine term (see Equation 5.43) and a
derivative is needed that falls on the kernel function (see also Crittenden and Cole,
2002):

∂Pn

∂x ′

∣∣∣∣
x ′=0

= eσn (2L−x ) + e−σnx(
1 + e−2σnL

) (5.74)

Then the alternate temperature expression may be assembled in the form

TS (x , y )
T0

= 2
∞∑

n=1

sin(γny / W )
γn

[
e−σn (2L−x ) + e−σnx

1 + e−2σnL

]
(5.75)

This is the result commonly given in the literature. It has eigenfunctions in the
homogeneous direction, in this case the y -direction. Examination of Equation 5.75
reveals that it converges slowly at x = 0.

Numerical results are given in Table 5.5 for intrinsic verification based on the
two series expressions for the steady temperature in the rectangle with aspect ratio
L / W = 0.5. Convergence testing was carried out every four terms (note that the
number of terms shown are multiples of four) for ε = 10−10. Ten digits of the
normalized temperature are shown in Table 5.5, and the digits that do not agree
between the two series expressions are underlined. The preferred series converges

TABLE 5.5
Normalized Temperature Ts /T0 and Number of Series Terms for Steady Rect-
angle Case X 12B10Y 12B00 for the Preferred Series (Equation 5.71) and the
Alternate Series (Equation 5.75)∗

Alternate Series Number Preferred Series Number
x/L y/W Equation 5.75 of Terms Equation 5.71 of Terms

0.01 0.01 0.7048827901 900 0.7048827774 284
0.20 0.01 0.0644642046 72 0.0644642047 268
0.40 0.01 0.0339116049 40 0.0339116048 268
0.80 0.01 0.0208832146 24 0.0208832145 264
0.01 0.20 0.9850387526 972 0.9850387527 24
0.20 0.20 0.7240794778 64 0.7240794778 20
0.40 0.20 0.5399106059 36 0.5399106059 20
0.80 0.20 0.3878999614 20 0.3878999614 20
0.01 0.40 0.9936861618 968 0.9936861617 16
0.20 0.40 0.8772373586 64 0.8772373586 12
0.40 0.40 0.7732177380 36 0.7732177380 12
0.80 0.40 0.6538082660 20 0.6538082660 12
0.01 0.80 0.9979118895 964 0.9979118894 12
0.20 0.80 0.9589473349 60 0.9589473349 8
0.40 0.80 0.9220505381 36 0.9220505381 8
0.80 0.80 0.8743658796 20 0.8743658796 8

∗The rectangle aspect ratio is L/W = 0.5. Convergence was tested every fourth term and with ε = 10−10.
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better near x = 0, which is the heated surface, and of the most importance in this
case. The alternate series, although requiring more terms over most of the body,
does better near y = 0. From this perspective these two series are complementary.
Neither series converges quickly close to the corner x = y = 0 because of the
jump in temperature there.

In the above example, two different eigenfunction expansions were found in the
rectangle for the steady temperature. In the parallelepiped, three different eigenfunc-
tion expansions are possible in the x-, y-, and z-directions (see Beck et al., 2006).
This method has also been applied to finite cylinders with eigenfunction expansions
along the r- and z-directions (Cole, 2004).

5.4.4 TIME-PARTITIONING INTRINSIC VERIFICATION

The use of time partitioning for intrinsic verification involves varying the partition
time, a parameter in the solution, to construct two or more different series solutions
for the same heat conduction problem. If the formulation is correct, the numerical
values from the different series solutions will agree to high accuracy. This method is
appropriate for 2D and 3D geometries and is best illustrated by a specific example.

Example 5.5: Time Partitioning in the Rectangle

Consider the transient heat conduction in the rectangle (0 < x < L; 0 < y < W )
that is heated by constant heat flux at x = 0 and all the other faces are held at zero
temperature. The initial temperature is zero. The describing differential equation
and related conditions are given by:

∂2T
∂x2 + ∂2T

∂y2 = 1
α

∂T
∂t

; t > 0 (5.76)

−k
∂T
∂x

∣∣∣∣
x=0

= q0; T (L, y , t ) = 0; T (x , 0, t ) = 0; T (x , W , t ) = 0 (5.77)

T (x , y , 0) = 0 (5.78)

Solution

This problem is described by case X21B10 Y11B00T0. This problem can be solved
in several ways, including the separation of variables method which is particularly
effective for large dimensionless times when fewer terms of the series are needed.
The Laplace transform method is most effective (fewer terms needed and better
accuracy) for small dimensionless times.

The time-partitioning method uses components of both separation of variables
and Laplace transform methods, as follows. The GF solution for this problem is
given by

T (x , y , t ) = αq0

k

∫ t

u=0
GX21(x , x ′ = 0, u)

∫ W

y ′=0
GY 11(y , y ′, u) dy ′ du (5.79)
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Here u = t − τ is the cotime. For time partitioning the solution is written in two
parts, one for short cotimes and one for long cotimes, as

T (x , y , t ) = αq0

k

∫ tp

u=0
GS

X21(x , 0, u)
∫ W

y ′=0
GS

Y 11(y , y ′, u) dy ′ du

+ αq0

k

∫ t

u=tp
GL

X21(x , 0, u)
∫ W

y ′=0
GL

Y 11(y , y ′, u) dy ′ du (t > tp ) (5.80)

Superscript S on the GF denotes the small-cotime form, and superscript L de-
notes the long-cotime form. Quantity tp is the partition time, chosen in the range
0 < αtp / L2 < 0.05. In the present example the length scale L is used, however, in
general the characteristic dimension for choosing the partition time should be the
smallest dimension in the body. Note also that in the above equation the second
integral is needed only when t > tp .

The next step is to find the different GF that are needed. The small-cotime GF
are given as approximations for small values of u:

GS
X21(x , 0, u) ≈ 1√

παu
e−x2 /(4αu) (5.81)

(Appendix X, Equation X21.1, n = 0 only)∫ W

y ′=0
GS

Y 11(y , y ′, u) dy ′ ≈ erf
(

y√
4αu

)
− erfc

(
W − y√

4αu

)
+ erfc

(
W + y√

4αu

)

+erfc
(

2W − y√
4αu

)
− erfc

(
2W + y√

4αu

)
(5.82)

(Appendix X, Equation X11.17b, n = 1 only)

The large-cotime GF are given exactly by

GL
X21(x , 0, u) = 2

L

∞∑
m=1

e−β2
mαu / L2

cos(βmx / L) (5.83)

where βm = (m − 1 / 2)π∫ W

y ′=0
GL

Y 11(y , y , u) dy ′ = 4
∞∑

n=1

sin γny / W
γn

e−γ2
nαu / W 2

(5.84)

where γn = (2n − 1)π

(Appendix X, Equation X11.18)

The solution given by Equation 5.80 can be written as

T (x , y , t ) = T S (x , y , tp ) + T L(x , y , u)
∣∣∣t
u=tp

= T S (x , y , tp ) − T L
c.t .(x , y , tp ) + T L

c.t .(x , y , t ) (5.85)

where subscript “c.t.” denotes complementary transient. The short-cotime com-
ponent is given by

T S (x , y , tp ) = αqo

k

∫ tp

u=0

[
GS

X21(x , 0, u)
∫ W

y ′=0
GS

Y 11(y , y , u) dy ′
]

du (5.86)
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Obtaining a general closed-form expression for the integration over u for the short-
cotime components in Equation 5.80 can be difficult, while the long-cotime inte-
gration is straight forward. Generally, the simplest way to perform the short-cotime
integration is numerically (McMasters et al., 2002). However, for x = 0 and y not
too close to the boundaries, the short-cotime solution becomes semi-infinite case
X20B1T0, given by

T S (0, y , tp ) ≈ 2
q0L
k

(
αtp
πL2

)1 / 2
(5.87)

The long-cotime component is found by substituting Equation 5.83 and Equa-
tion 5.84 into the second half of Equation 5.80 and integrating. The result for the
two long-cotime components in the second half of Equation 5.85 is given by

T L
c.t .(x , y , u) = 8

q0L
k

∞∑
m=1

∞∑
n=1

sin(π(2n − 1)y / W )
π(2n − 1)φ2

mn
cos

(
βmx

L

)
e−φ2

mnαu / L2

φmn
(5.88)

where φ2
mn = (2n − 1)2π2L2 / W 2 + (m − 1 / 2)2π2

If the above expression is evaluated at u = 0 the series converges very slowly. The
goal is to make tp as large as possible while still obtaining the desired accuracy.
The limits are that at small tp , many term of the series for T L are needed. At large
values of tp , the approximations in GS are not as accurate.

As t → ∞ in Equation 5.85, the last term on the right disappears and the steady
solution is obtained:

T (x , y , ∞) = T (x , y ) = T S (x , y , tp ) − T L
c.t .(x , y , tp ) (5.89)

This equation provides for intrinsic verification, since the left side is independent of
time while the right side is a function of partition time tp . It is important to note that
the two right-hand side components in Equation 5.89 are independent, since one
comes from the Laplace transform solution and the other from the separation of
variables method. Varying the partition cotime over the acceptable range should
give precisely the same value (for a given number of significant figures), thus
exhibiting intrinsic verification. Generally the steady-state component is the most
difficult part of a solution to evaluate numerically, however using Equation 5.89 is
very efficient. The use of time partitioning to find a rapidly converging form of the
steady solution has also been discussed by Linton (1999) under the name Ewald
summation.

Numerical values for intrinsic verification based on time partitioning are shown
in Table 5.6. In Table 5.6 steady temperature values are computed at one loca-
tion (x / L = 0; y / L = 0.25), but for several values of the partition time and for
two values of convergence parameter Kmax . In this example the simple 1D tran-
sient solution given by Equation 5.87 is used. Verification to 10 digit accuracy is
demonstrated at Kmax = 23 because as the partition time tp becomes smaller, the
steady temperature is unchanged to 10 digits, even though the components of the
steady temperature (complementary transient T L

c.t . and small-cotime T S ) do vary
with partition time and the number of series terms required increases. Table 5.6
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TABLE 5.6
Steady-State Temperature for Case X 21B10 Y 11B00T 0∗

Number
y/L αtp / L2 Kmax of Terms −T L

c.t.(x, y, tp) T S(x, y, tp) Tsteady

0.25 0.00050 11.5 1152 0.2788314014 0.0252313252 0.3040627266
0.25 0.00060 11.5 968 0.2764231950 0.0276395320 0.3040627270
0.25 0.00075 11.5 741 0.2731607902 0.0309019362 0.3040627263
0.25 0.00100 11.5 578 0.2683802437 0.0356824823 0.3040627260
0.25 0.00200 11.5 288 0.2536002774 0.0504626504 0.3040629278
0.25 0.00400 11.5 136 0.2327310450 0.0713649646 0.3040960096
0.25 0.00600 11.5 78 0.2168942410 0.0874038744 0.3042981154
0.25 0.01000 11.5 50 0.1926680623 0.1128379167 0.3055059790

0.25 0.00050 23 2312 0.2788314035 0.0252313252 0.3040627287
0.25 0.00060 23 1922 0.2764231967 0.0276395320 0.3040627287
0.25 0.00075 23 1485 0.2731607925 0.0309019362 0.3040627287
0.25 0.00100 23 1152 0.2683802464 0.0356824823 0.3040627287
0.25 0.00200 23 578 0.2536002814 0.0504626504 0.3040629318
0.25 0.00400 23 288 0.2327310515 0.0713649646 0.3040960161
0.25 0.00600 23 171 0.2168942541 0.0874038744 0.3042981286
0.25 0.01000 23 105 0.1926680993 0.1128379167 0.3055060161

∗x = 0 and y/L = 0.25 with varying partition time for intrinsic verification. Quantity Kmax is the largest
allowed absolute value of the exponential argument. The steady temperature in the last column is the sum
of the two preceding columns. Inaccurate digits are underlined.

also indicates that an adequate partition time for this case is 0.00075 because
it provides a balance between high accuracy and a reasonable number of series
terms. If numerical integration were used to obtain the short-cotime component
for larger partition times up to αt / L2 = 0.05, many fewer terms of the series would
be needed for the same numerical accuracy.

PROBLEMS
5.1 Evaluate the sum

S = 2
∞∑

m=1

sin(nπx / L)

nπ
(5.90)

at x / L = 0.1 by truncating the series when the average of the last
three terms divided by the sum is less than 10−4 (see Equation 5.16).
Compare your result to the exact value of S = (1 − x / L) to find
the number of accurate digits produced by this convergence crite-
rion. Now repeat your calculation at x / L = 0.01. Does this series
converge more rapidly or more slowly as x → 0? Explain.
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5.2 Evaluate the series

2
∞∑

m=1

[1 − (−1)m]
mπ

e−m2π2αt / L2
(5.91)

for αt / L2 = 0.1 using two convergence tests: (a) truncate the se-
ries using Equation 5.16 for ε = 10−5; and (b) truncate the series
when the (absolute value of the) argument of the exponential ex-
ceeds Kmax = 11.5. How many accurate digits of the series does
each convergence test provide?

5.3 Evaluate the temperature for case X11B10T0 using the long-cotime
GF (see Equation 5.19) at x / L = 0.5 and at dimensionless time
αt / L2 = 0.01, 0.1, and 1.0. How many terms of the series are
needed for four-digit accuracy?

5.4 Determine the accuracy of evaluating the series for heat flux given
by Equation 5.28 at x = 0 and at x = L by requiring that the
magnitude of the exponential argument be no greater than 11.5 for
dimensionless times 0.1 and 1.0. How many terms of the series are
required at each time and place?

5.5 Repeat Problem 5.4 for Equation 5.27, to find the number of terms
needed for the series for temperature. Compare the number of terms
needed with that from the heat flux series. Note that the temperature
series contains factor mπ in the denominator and the heat flux series,
Equation 5.28, does not. What effect does factor mπ have in the
convergence speed of the two series?

5.6 Starting with the relation inferred from Equation 5.44 which has the
form

TS (x, y) = T0
[
Sx (x) + Sxy (x, y)

]
, (5.92)

derive the identity given by Equation 5.45 by replacing the above
relation into the boundary value problem for TS , and then solve for
Sx (x). What are the describing differential equation and boundary
conditions for Sxy (x, y)?

5.7 Use the X11B10T0 solution given by Equation 5.27 to investigate
intrinsic verification (by the method of complementary transients)
at location x / L = 0.5. Make a table of your results at five different
dimensionless times.

5.8 Compute numerical values from case X11B10T0 given by Equa-
tion 5.27 near the surface at locations x / L = 0.01, 0.05 and at
dimensionless times αt / L2 = 0.01, 0.05. Verify that your numer-
ical values are correct by comparing them with semi-infinite case
X10B10T0 (see Example 1.4, Equation 1.109). Make a table of your
results including values from both geometries and the percentage
difference between them.

5.9 Write a computer program to evaluate temperatures from case
X21B21T0 given by Equation 5.60. Use intrinsic verification (by
complementary transients) at x / L = 0.5 to check that your cal-
culations are correct. Make a table of your results at five different
dimensionless times.
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6.1 INTRODUCTION

This chapter is concerned with heat conduction in bodies described by rectangular co-
ordinates. Complete examples are included that demonstrate strategies for evaluating
the integrals in the Green’s function solution equation (GFSE).

An important feature of the Green’s function (GF) solution method is the ability
to simply write down the temperature in integral form. Once the problem is properly
defined, one can jump to the solution and gain insight into the problem. For example,
one can also immediately write down the alternative Green’s function solution, and
then the better form of the solution can be selected for evaluation. The student can
concentrate on translating a physical heat transfer situation into a boundary value
problem without getting lost in the details of the solution. There is a sense of ac-
complishment associated with jumping to the solution that can be a valuable part of
the learning process. After the integral form is written down, the integrals can be
examined. If they are familiar, the solution can be completed easily. If the integrals
are unfamiliar they may be available in integral tables, approximate forms may be
substituted, or finally numerical integration will always yield an answer.

The examples in this chapter are concerned with only one nonhomogeneous term
at a time. The nonhomogeneous term may be the initial condition, the volume energy
generation, or the boundary condition. Practical situations often involve two or more
nonhomogeneous terms, but because the GF solution equation is the sum of the con-
tributions from the various nonhomogeneous terms, the temperature resulting from
initial conditions, boundary conditions, and volume energy generation can simply be
added together for the complete solution.

One-dimensional geometries are emphasized in this chapter and the one-
dimensional GFSE is given in Section 6.2. Semi-infinite bodies are discussed in Sec-
tion 6.3. Flat plates are discussed in Section 6.4 through 6.6. Some two-dimensional
cases are discussed in Sections 6.7 and 6.8, and some steady-state cases are discussed
in Section 6.9.

6.2 ONE-DIMENSIONAL GREEN’S FUNCTIONS
SOLUTION EQUATION

The heat conduction equation for homogeneous one-dimensional bodies in the rect-
angular coordinate system is

∂2T

∂x2
+ 1

k
g(x, t) = 1

α

∂T

∂t
(6.1)

181
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with initial condition

T (x, 0) = F (x) (6.2)

and with boundary conditions

ki

∂T

∂ni

∣∣∣∣
xi

+ hiT |xi
= fi(t) − (ρcb)i

∂T

∂t

∣∣∣∣
xi

(6.3)

where ni is an outward normal from the body at the boundary, and xi represents the
two boundaries (i = 1, 2). Equation 6.3 represents five different kinds of boundary
conditions by the choice of ki , hi , fi , and bi . These boundary conditions are discussed
in detail in Chapter 2.

The solution of the temperature problem given in Equations 6.1 through 6.3 is
given by the GFSE for one-dimensional rectangular coordinates (refer to Section 3.2
for a derivation)

T (x, t) =
∫ L

x′=0
G(x, t |x′, 0)F (x′) dx′

(for the initial condition)

+ α

s∑
i=1

[
(ρcb)i

ki

G(x, t |x′, 0)F (x′)
]

x′=xi

(for boundary conditions
of the fourth and fifth
kinds only)

+
∫ t

τ = 0

∫ L

x′=0

α

k
G(x, t |x ′, τ) g(x′, τ) dx′dτ

(for volume
energy generation)

+ α

∫ t

τ = 0
dτ

2∑
i = 1

[
fi(τ)

ki

G(x, t |xi , τ)

] (for boundary conditions
of the second through
fifth kinds)

− α

∫ t

τ = 0
dτ

2∑
i = 1

[
fi(τ)

∂G

∂n′
i

∣∣∣∣
x′ = xi

]
(for boundary conditions
of the first kind only) (6.4)

where G(x, t |x ′, τ) is the GF. For each different set of boundary conditions there is a
different GF that must be used in the GFSE.

6.3 SEMI-INFINITE ONE-DIMENSIONAL BODIES

In this section, the cases under consideration are semi-infinite bodies denoted by
XI0, I = 1, 2, 3, 4. The GFs for infinite and semi-infinite bodies are listed in Table 6.1.
A complete listing of rectangular-coordinate GFs, including certain derivatives, inte-
grals, and approximations is given in Appendix X.

For the semi-infinite cases, the GFs have only one form, do not involve infinite
series, and are mathematically well behaved everywhere except at the point x−x′ = 0
and t − τ = 0, where every GF approaches a Dirac delta function. The temperatures
calculated by integrating these GFs are mathematically well behaved for any location
x and for t > 0.
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TABLE 6.1
GF for Infinite and Semi-Infinite Bodies

GXI0(x, t|x′, τ) = [4πα(t − τ)]−1/2
{

exp
−(x − x′)2

4α(t − τ)
+ M exp

−(x + x′)2

4α(t−τ)

}

−MD1ER(x + x′, t − τ, D1)

Number M D1L

X00 0 0
X10 −1 0
X20 1 0
X30 1 B1

X40 −1 (C1)−1

where ER(x, t , D) = exp(Dx + D2αt) erfc

[
x

(4αt)1 / 2
+ D(αt)1 / 2

]

B1 = hL

k
; C1 = ρcb

ρcL

and L is a reference length that cancels out.

6.3.1 INITIAL CONDITIONS

For the case of spatially uniform initial conditions in semi-infinite bodies, the appro-
priate integrals in the GFSE, Equation 6.4, are known in closed form. The resulting
temperature expressions for homogeneous boundary conditions are listed in Table 6.2
in compact form. The integrals that were used to create Table 6.2 are listed in the in-
tegral tables in Appendix I.

In Table 6.2, one case involves a surface film of high conductivity, numbered X40.
The notation for the initial condition T 01 in Table 6.2 refers to a zero initial tem-
perature in the film and a uniform initial temperature in the body. Conversely the
notation T 10 refers to a uniform initial temperature in the film and a zero initial
temperature in the body. If both the film and the body have the same uniform initial
temperature, the problem can always be formulated with no contribution from the
initial condition by defining a new temperature variable, T − T0, where T0 is the
initial temperature.

Semi-infinite bodies with spatially varying initial conditions are now considered.
Consider the initial temperature distribution of

F (x ′) =
{

T0 a < x ′ < b

0 otherwise
(6.5)

The GF for boundary conditions of type 1 or 2 can be written in terms of the funda-
mental heat conduction solution K(·),

GXI0(x, t |x′, 0) = K(x − x ′, t) + (−1)IK(x + x ′, t) (6.6)
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TABLE 6.2
Temperatures in a Semi-Infinite Body for Uniform Initial Temperature
of Ti for Cases XI0B0T1, I = 1,2,3, and Cases X40B0T10, and X40B0T01

T(x, t ) = Ti

(
1 − 1

2
(1 − M) erfc

[
x

(4αt)1/2

]
− M(D0 − F0)ER(x, t, D1)

)

Number M D0 D1L F 0

X10B0T 1 −1 0 0 0
X20B0T 1 1 0 0 0
X30B0T 1 −1 1 B1 0
X40B0T 10 1 1 C −1

1 1
X40B0T 01 1 1 C −1

1 0

Note: ER(·) is given in Table 6.1.

where I = 1 or 2. The solution for the temperature is obtained by substituting Equa-
tion 6.6 in Equation 6.4, the GFSE, to give (case XI0B0T 5; I = 1 or 2):

T (x, t) = T0

2

(
erfc

[ −x + a

(4αt)1 / 2

]
− erfc

[ −x + b

(4αt)1 / 2

]

+ (−1)I
{

erfc

[
x + a

(4αt)1 / 2

]
− erfc

[
x + b

(4αt)1 / 2

]})
(6.7)

Next consider the initial temperature distribution of a linear function of x ′ over
part of the body,

F (x′) =




T0
x ′

L
for a < x′ < b

0 elsewhere
(6.8)

The length L can have any desired significance; it is only present to make Equation 6.8
dimensionally consistent. The integrals in the GF equation can then be evaluated using
Table I.7 (Appendix I) with z replaced by x′, and t − τ replaced by t . The solution is
(case XI0B0T 2; I = 1 or 2)

T (x, t) = T0

[
x

2L

(
erfc

[
x − b

(4αt)1 / 2

]
− erfc

[
x − a

(4αt)1 / 2

]

+ (−1)I
{

erfc

[
x + b

(4αt)1 / 2

]
− erfc

[
x + a

(4αt)1 / 2

]})

+ 2αt

L

{
K(x − a, t) − K(x − b, t)

+ (−1)I [K(x + a, t) − K(x + b, t)]
}]

(6.9)
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For the boundary condition of the first kind (I = 1), consider the special case of a = 0
and b → ∞, which is for a linear initial temperature F (x′) = T0x

′ / L over the entire
body, 0 ≤ x ≤ ∞. In this case the temperature given by Equation 6.9 reduces to

T (x, t) = T0
x

L
(6.10)

This is a time-independent solution for the case denoted X10B0T 2. For the boundary
condition of the second kind (I = 2) with a = 0 and b → ∞, Equation 6.9 gives
(case X20B0T 2)

T (x, t) = T0

{
x

L
erfc

[
x

(4αt)1 / 2

]
+ 4αt

L
K(x − b, t)

}
(6.11)

This solution is always transient and never reaches a steady state. The transient devia-
tion from the initial straight-line temperature distribution begins at x = 0 and spreads
to larger x values as time increases.

6.3.2 BOUNDARY CONDITIONS

Temperature expressions resulting from time-invariant boundary conditions are listed
in Table 6.3 for four kinds of boundary conditions. These temperature expressions
were found by evaluating the integrals in the GFSE. Two mathematical functions that
appear in Table 6.3 are erfc and ierfc, which are the complementary error function and
the integral of the complementary error function, respectively. Refer to Appendix E
for more information on these functions.

TABLE 6.3
Temperatures for Semi-Infinite Bodies for Constant SourceTerm at x = 0; Case
XI0B1T0, I = 1, 2, 3, and X40B1T00

T(x, t) = H0(1 + M)
(

t
kρc

)1/2

ierfc
[

x
(4αt)1/2

]

+
(

K0 − MD0

kD1

)
erfc

[
x

(4αt)1/2

]
+MD0

kD1
ER(x, t, D1)

Number M H0 K0 D0 D1

X10B1T 0 −1 0 T0 0 0
X20B1T 0 1 q0 0 0 0
X30B1T 0 −1 0 0 q0 + hT∞ h / k
X40B1T 00 1 q0 0 q0 ρc /(ρcb)1

ER(x, t , D) = exp[Dx + D2αt] erfc

[
x

(4αt)1 / 2
+ D(αt)1 / 2

]
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The following examples demonstrate the use of Table 6.1 to find the GF and
demonstrate strategies for finding the integrals that occur for various nonhomoge-
neous boundary conditions.

Example 6.1: Semi-Infinite Body with Specified Surface Temperature—
X10B-T0 Case

Find the temperature distribution in the semi-infinite body with specified surface
temperature f (t ) and with zero initial condition. The volume energy generation is
zero.

Solution

This is the X10B-T 0 geometry. The GFSE gives the temperature as

T (x , t ) = α

∫ t

τ=0
f (τ)

∂GX10

∂x ′

∣∣∣∣
x ′=0

dτ (6.12)

The GF GX10 is found from Table 6.1 by choosing M = −1, D1 = 0, and E1 = 0:

GX10(x , t |x ′, τ) = 1
[4πα(t − τ)]1 / 2

{
exp

[
−(x − x ′)2
4α(t − τ)

]
− exp

[
−(x + x ′)2
4α(t − τ)

]}

(6.13)

The derivative of the GF with respect to x ′ is required here in the form ∂ / ∂x ′ =
−∂ / ∂ni at x ′ = 0. The derivative of GX10 is given in Appendix X as

∂GX10

∂x ′

∣∣∣∣
x ′=0

= x
(4π)1 / 2[α(t − τ)]3 / 2 exp

[
−x2

4α(t − τ)

]

= x
α(t − τ)

K (x , t − τ) (6.14)

where K (·) is the fundamental heat conduction solution. The temperature solution
can then be written as

T (x , t ) = α

∫ t

τ=0
f (τ)

x
α(t − τ)

K (x , t − τ)dτ (6.15)

(a) Case X10B1T0. For the case where the boundary temperature is constant,
f (t ) = T0, the integral in Equation 6.15 is given in Table I.8, Appendix I, as
integral 3,

T (x , t ) = T0 erfc
[

x
(4αt )1 / 2

]
(6.16)

or

T (x , t )
T0

= 1 − erf
[

x
(4αt )1 / 2

]
(6.17)
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Compare this solution to case X10B0T 1 listed in Table 6.2 which is the tem-
perature caused by a zero boundary temperature and uniform initial condition.
The two solutions differ by a constant and a change of sign. The heat conduction
equation is linear, so that multiplying a solution by (−1) gives another solution;
and, adding a constant to a solution gives another solution.

(b) Case X10B3TO. In the case where the boundary temperature is a polynomial
in t n / 2, such as

f (t ) = a−1t−1 / 2 + a0 + a1t1 / 2 + a2t + a3t3 / 2 + · · · (6.18)

then the integral in Equation 6.15 can be written as the sum of the effects of each
term in the polynomial. For the general term of such a polynomial, let f (τ) =
T0(τ / t0)n / 2, where T0 has units of temperature and t0 is some reference time (t0
could be 1 s). Then the integral in Equation 6.15 may be written

T (x , t ) = α

∫ t

τ=0
T0

(
τ

t0

)n / 2 x
α(t − τ)

K (x , t − τ) dτ (6.19)

This integral is listed in Table I.8 (Appendix I) and the temperature resulting from
the applied surface temperature T0(t / t0)n / 2 may be written

T (x , t ) = T0 Γ
(
1 + n

2

)(
4

t
t0

)n / 2
inerfc

[
x

(4αt )1 / 2

]
(6.20)

where n = −1, 0, 1, . . . , and so on. The gamma function Γ(1 + n / 2) takes the
values π1 / 2, 1, π1 / 2 / 2, and 1 for n = −1, 0, 1, and 2, respectively. The function
inerfc(·) is the repeated integral of the error function plotted in Figure 6.1. The

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.5

X
1.0

n = 4
n = 3
n = 2
n = 1

2.01.5

Y

FIGURE 6.1 Repeated integrals of error function, Y = 2nΓ(n / 2 + 1)in erfc(X).
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inerfc(z ) function is related to erfc(z ) by

i0erfc(z ) = erfc(z ) (6.21a)

i1erfc(z ) = 1
π1 / 2 e−z2 − z erfc(z ) (6.21b)

2n inerfc(z ) = in−2erfc(z ) − 2z in−1erfc(z ) (6.21c)

Some numerical values of i1erfc(z ) are listed in Table E.1, in Appendix E, along
with other properties of the error function.

In the case where the surface temperature f (t ) is periodic in time, the Laplace
transform technique can be used on the integral in Equation 6.15 to good advan-
tage. Refer to Carslaw and Jaeger (1959, pp. 399–402) for a general discussion.
See Chapter 9 for a discussion of the steady periodic portion of the temperature
caused by a periodic surface temperature.

Example 6.2: Semi-Infinite Body with Specified Surface Heat Flux—
X20B-T0 Case

Find the temperature in the semi-infinite body that has a heat flux boundary con-
dition and zero initial condition.

Solution

This is the X20B-T 0 geometry. The GFSE for the temperature takes the form

T (x , t ) = α

∫ t

τ=0

f (τ)
k

GX20(x , t |0, τ) dτ (6.22)

The heat flux at the boundary is f (t ) with units of W/m2. Note that the X20 GF is
evaluated at the surface x ′ = 0. The X20 GF given in Table 6.1 is the sum of two
fundamental heat conduction solutions, so the temperature can be written as

T (x , t ) = α

∫ t

τ=0

f (τ)
k

[K (x − 0, t − τ) + K (x + 0, t − τ)] dτ

= 2α

∫ t

τ=0

f (τ)
k

K (x , t − τ) dτ (6.23)

(a) Case X20B1T0. In the case where f (t ) = q0, a constant heat flux, the integral
in Equation 6.23 is given in Table I.8 (Appendix I), and the temperature is given by

T (x , t ) = q0

k
(4αt )1 / 2 ierfc

[
x

(4αt )1 / 2

]
(6.24)

This expression is also listed in Table 6.3. The temperature is plotted in Figure 6.2
in terms of (T − T0) /(q0a / k ), where a is the reference length. Sometimes the
quantity (4αt )1 / 2 is used as a reference length. The quantity q0(4αt / π)1 / 2 / k is
the surface temperature on the semi-infinite body resulting from the heat flux
q0 (ierfc(0) = 1 /

√
π). Equation 6.24 can also be obtained from Equation 6.20 for

n = 1; that is, a surface temperature proportional to t1 / 2 produces a steady surface
heat flux.
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FIGURE 6.2 Temperature in semi-infinite body with constant heat flux at surface.

(b) Case X20B3T0. For the case where the surface heat flux is f (t ) = q0(t / t0)n / 2,
for n = −1, 0, 1, and so on, the integral in Equation 6.23 is also given in Table I.8
(Appendix I). After some simplification, the temperature is given by

T (x , t ) = q0

k
(4αt )1 / 2

(
t
t0

)n / 2
Γ

(
1 + n

2

)
2n

in+1 erfc
[

x
(4αt )1 / 2

]
n = −1, 0, 1, . . . (6.25)

Note that for n = 0, this solution reduces to the constant heat flux case.

Example 6.3: Semi-Infinite Body with Convection—X30B1T0 Case

Find the temperature in a semi-infinite body due the sudden application of the
convection boundary condition where both h and T∞ are constant.The convection
boundary condition is

−k
∂T
∂x

∣∣∣∣
x=0

+ hT |x=0 = hT∞ (6.26)

Solution

This is the X30B1T 0 case. The temperature solution is given by the GF equation as

T (x , t ) = α

∫ t

τ=0

hT∞
k

GX30(x , t |0, τ) dτ (6.27)
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Note that x ′ is evaluated at the surface, x ′ = 0. The function GX30 is listed in
Table 6.1, and Equation 6.27 becomes

T (x , t ) = α

∫ t

τ=0

hT∞
k

(
2

[4πα(t − τ)]1 / 2 exp

[
−x2

4α(t − τ)

]

− h
k

exp

[
hx
k

+ h2

k2 α(t − τ)

]
erfc

{
x

2[α(t − τ)]1 / 2 + h
k

[α(t − τ)]1 / 2
})

dτ

(6.28)

This contains a difficult integral if T∞ = T∞ (t ). Note that if the temperature were
evaluated at x = 0, the integral would be less difficult. Usually, the surface tem-
perature resulting from a boundary condition is much easier to find than the tem-
perature everywhere inside the body.

For the case where T∞ is time invariant, the integral for any value of x given in
Table I.8 (Appendix I) is used to obtain

T (x , t ) = T∞
{

erfc
[

x
2(αt )1 / 2

]
− exp

(
hx
k

+ αt
h2

k2

)

× erfc
[

x
2(αt )1 / 2 + h

k
(αt )1 / 2

]}
(6.29)

This temperature is plotted versus position in Figure 6.3 for several values of the
(normalized) heat transfer coefficient. Note that as h increases the surface temper-
ature approaches the fluid temperature T∞.

0.8
2

1

0.6

0.4 0.5

0.1
0.2

0
0 0.5 1.51

x/(4αt)1/2
2

h(αt)1/2/k = ∞

T/
T ∞

FIGURE 6.3 Temperature in semi-infinite geometry with surface convection defined by
h(αt)1 / 2 / k = 0.1, 0.5, 2.0, ∞.
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6.3.3 VOLUME ENERGY GENERATION

Next consider the temperature in a semi-infinite body caused by volume energy gen-
eration. The boundary conditions and the initial condition are homogeneous. The
temperature is given by the GFSE,

T (x, t) = α

k

∫ t

τ=0

∫ ∞

x′=0
G(x, t |x′, τ) g(x′, τ) dx′ dτ (6.30)

This expression is more complicated than the temperature resulting from a boundary
condition because there are two integrals to evaluate.

Consider the case when the volume energy generation g(x ′, τ) is either independent
of τ or a product of a function of x′ and a function of τ,

g(x ′, τ) = gx(x ′) gt (τ) (6.31)

Then the integrations over x ′ previously discussed can be used. For example, suppose
the volume energy generation is given by one term of a polynomial in time:

g(x ′, τ) = g0

(
τ

t0

)n / 2

n = −1, 0, 1, 2, . . . (6.32)

where g0 is a constant with units of W/m3. That is, g(x ′, τ) is independent of x′ and
is proportional to τn / 2. The time t0 is any convenient value and could be one unit,
such as 1 s.

The solution for the temperature when g(·) is given by Equation 6.32 can be
found for boundary conditions of the first and second kinds using the GF given by
Equation 6.6. The integration over the body (x′ in this case) is usually considered
first, and the integrals required are listed in Table I.7 (Appendix I). Integration of
Equation 6.30 over x ′ yields

T (x, t) = α

2k

∫ t

τ=0
g0

(
τ

t0

)n / 2 (
2 − erfc

{
x

[4α(t − τ)]1 / 2

}

+ (−1)I erfc

{
x

[4α(t − τ)]1 / 2

})
dτ (6.33)

where I = 1 or 2 to represent the kind of boundary condition at x = 0.
The remaining integral on τ in Equation 6.33 is listed in Appendix I (Table I.8,

number 9) to give for I = 1 (boundary condition of the first kind)

T (x, t) = g0αt

k

(
1

n / 2 + 1

)(
t

t0

)n / 2

1 −

in+2 erfc
[

x

(4αt)1 / 2

]
in+2 erfc(0)


 (6.34a)

for n = −1, 0, 1, 2, etc. Values for in+2erfc(0) are given in Appendix E (Equation
E.11). This is case X10B0T 0Gt3 and the temperature is plotted versus position in
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FIGURE 6.4 Temperature in the semi-infinite body with energy generation g � g0t
n / 2.

Figure 6.4. In the figure the temperature is normalized by the temperature far from
the surface, which is proportional to (g0t

n / 2+1).
In the case I = 2 for the boundary condition of the second kind, Equation 6.33

gives,

T (x, t) = g0αt

k

1

n / 2 + 1

(
t

t0

)n / 2

(6.34b)

This is case X20B0T 0Gt3, the temperature in a semi-infinite body with spatially
uniform heat generation and an insulated boundary. The temperature does not depend
on position because there is no heat flow in the body; the temperature increases
everywhere at the same rate. The same result could have been obtained by a simple
lumped capacitance description that is appropriate when the temperature is spatially
uniform: ρc ∂T / ∂t = g(t).

6.4 FLAT PLATES: SMALL-COTIME GREEN’S FUNCTIONS

The cases discussed in this section are one-dimensional flat plates, denoted XIJ , I , J =
1, 2, 3, 4, 5. The small-cotime GF for these cases are infinite-series expressions or
approximate truncated infinite series. The small-cotime GFs are listed in Appendix
X. In general, for α(t − τ) / L2 < 0.05, only three terms of the expressions for the
small-cotime GF are needed for accuracy to four decimal places. Many of these
expressions were derived from a Laplace transform solution of the auxiliary equation
for the GF.
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6.4.1 INITIAL CONDITIONS

Consider the small-cotime solutions of the following equation:

∂2T

∂x2
= 1

α

∂T

∂t
0 < x < L (6.35)

The boundary conditions are homogeneous and the initial temperature distribution is

T (x, 0) = F (x) (6.36)

The solution using GFs is

T (x, t) =
∫ L

x′=0
G(x, t |x′, 0)F (x′) dx′ (6.37)

Consider one term in a quadratic initial temperature distribution,

F (x′) = T0

(
x ′

L

)i

0 < x′ < L i = 0, 1, 2 (6.38)

For boundary of the first and second kinds, the expressions for GXIJ may be written
in the form

GXIJ (x, t |x′, 0) =
∞∑

n=−∞
(−1)(I+J )n [K(2nL + x − x′, t) + (−1)IK(2nL + x + x′, t)]

(6.39)

where I and J describe the boundary conditions types at x = 0 and x = L, respec-
tively. Then the temperature is given by combining Equations 6.37, 6.38 and 6.39 in
the form

T (x, t) = T0

∫ L

x′=0

∞∑
n=−∞

(−1)(I+J )n [K(2nL + x − x ′, t)

+ (−1)IK(2nL + x + x ′, t)]
(

x′

L

)i

dx ′ (6.40)

This is the XIJB00T (i + 1) case, where i = 0, 1, 2; I = 1 or 2; and, J = 1 or 2.
Refer to Table I.7 (Appendix I) for closed form expressions of these integrals.

The solution given by Equation 6.40 is valid for all t > 0, but for small time only
a few terms of the series are needed. As αt / L2 increases, the number of significant
terms in the infinite series increases.

Example 6.4: Slab with Zero-Temperature Boundaries—X11B00T1 Case

Find the temperature in a slab body with zero temperature boundary conditions
and with a spatially uniform initial condition F (x ) = T0.

Solution

This is the X11B00T 1 case and the solution is given by Equation 6.40 where
i = 0 and I = J = 1. This case involves the following integral (see Table I.7,



T&F Cat # K10695, Chapter 6, Page 194, 12-6-2010

194 Heat Conduction Using Green’s Functions

Appendix I):

D(n) =
∫ L

x ′=0
[K (2nL + x − x ′, t ) − K (2nL + x + x ′, t )] dx ′

= 1
2

{
erfc

[
(2n − 1)L + x

(4αt )1 / 2

]
− 2 erfc

[
2nL + x
(4αt )1 / 2

]
+ erfc

[
(2n + 1)L + x

(4αt )1 / 2

]}
(6.41)

The major contributions to the temperature given by Equation 6.40 for small times
come from the smaller values of |n| such as 0 and 1. For n = 0 the above integral
gives

D(0) = 1
2

{
2 − erfc

[
L − x

(4αt )1 / 2

]
− 2 erfc

[
x

(4αt )1 / 2

]
+ erfc

[
L + x

(4αt )1 / 2

]}
(6.42a)

For n = −1 the integral D(n) gives

D(−1) = 1
2

{
−erfc

[
3L − x

(4αt )1 / 2

]
+ 2 erfc

[
2L − x

(4αt )1 / 2

]
− erfc

[
L − x

(4αt )1 / 2

]}
(6.42b)

Note 1. The identity erfc(−u) = 2−erfc(u) has been used in Equation 6.42 to
put positive arguments in each of the terms erfc(·). The quantity (x −
L) is zero or negative since 0 ≤ x ≤ L. Recall that erfc(u → +∞) =
0 but that erfc(u → −∞) = 2, so that positive arguments ensures
that each of the erfc(·) terms will converge to zero as |n| → ∞.

Note 2. The identity erfc(−u) = 2 − erfc(u) applied to the D(n) term in
Equation 6.42b for n = −1 produced three constant terms that
canceled to zero. This cancelation occurs for every n < 0 and it has
an important numerical consequence. As you add more terms to
the infinite series for the temperature to improve the accuracy, it is
important to find a value for each D(n) as a unit and then add that
value to the temperature.This will avoid excessive loss of significant
digits resulting from subtracting numbers that are very close in value.

For small values of αt / L2, the dominant terms in Equation 6.39 for the temperature
in the X11B00T 1 case are given by the largest terms from Equation 6.42a and b
and the n = 1 term multiplied by the initial temperature T0:

T (x , t ) ≈ T0

{
1 − erfc

[
x

(4αt )1 / 2

]
− erfc

[
L − x

(4αt )1 / 2

]

− erfc
[

L + x
(4αt )1 / 2

]
− erfc

[
2L − x

(4αt )1 / 2

]}
(6.43)

Near the boundary x = 0 and for αt / L2 < 0.025, the quantity erfc[L /(4αt )1 / 2] is
less than 0.0001 and the temperature is given approximately by the first two terms
of Equation 6.43:

T (x , t ) ≈ T0

{
1 − erfc

[
x

(4αt )1 / 2

]}

= T0 erf
[

x
(4αt )1 / 2

]
(6.44a)

x�L
αt / L2 small
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This result is identical to the semi-infinite case X10B0T 1.That is, near the boundary
at small time, the temperature in a flat plate is given by the semi-infinite case with
the same boundary condition. For αt / L2 < 0.025 and for x ≈ L, the dominant
terms are

T (x , t ) ≈ T0

{
1 − erfc

[
L − x

(4αt )1 / 2

]}

= T0 erf
[

L − x
(4αt )1 / 2

]
(6.44b)

L − x�L
αt / L2 small

6.4.2 VOLUME ENERGY GENERATION

Early time solutions of

∂2T

∂x2
+ 1

k
g(x, t) = 1

α

∂T

∂t
0 < x < L (6.45)

are discussed in this section for homogeneous boundary conditions and zero initial
condition. Actually the solutions are valid for all times but they are computationally
efficient for early times.

The solution for the temperature using GFs is

T (x, t) = α

k

∫ t

τ=0

∫ L

x′=0
G(x, t |x′, τ) g(x′, τ) dx′ dτ (6.46)

The discussion will be limited to cases for which the volume energy generation g(x′, τ)
is the product of a function of x′ and a function of τ,

g(x′, τ) = gx(x ′)gt (τ) (6.47)

The integration over x′ in Equation 6.46 is similar to that for the nonzero initial
temperature distribution, Equation 6.37. Integrals over time τ are given in Appendix I
(Table I.8).

As an example, the case where g(x′, τ) = g0L δ(x′ − x0)gt (τ) is examined. This is
a plane heat source located at x0 with a time-variable source strength given by gt (τ).
Using Equation 6.46 and the small-cotime GF for geometry XIJ given by Table 4.1
gives

T (x, t) = α

k

∫ t

τ=0

∫ L

x′=0
G(x, t |x′, τ)g0L δ(x′ − x0)gt (τ) dx′ dτ

= α

k
g0L

∫ t

τ=0
G(x, t |x0, τ) gt (τ) dτ

= α

k
g0L

∞∑
n=−∞

∫ t

τ=0
(−1)(I+J )n[K(2nL + x − x0, t − τ)

+ (−1)IK(2nL + x + x0, t − τ)] gt (τ) dτ (6.48)

where I = 1 or 2 and J = 1 or 2 determines the type of boundary conditions.
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Suppose the time variation of the plane source strength gt (τ) is given by

gt (τ) =
(

τ

t0

)m / 2

m = −1, 0, 1, . . . (6.49)

where t0 is some convenient positive time value. Then the time integral in Equation
6.48 is given in Appendix I (Table I.8):

T (x, t) = 1

2

(
αt0

L2

)1 / 2
g0L

2

k
Γ

(m

2
+ 1

)(
4t

t0

)(m+1) / 2

×
∞∑

n=−∞
(−1)−(I+J )n

{
im+1 erfc

[ |2nL + x − x0|
(4αt)1 / 2

]

+ (−1)I im+1 erfc

[ |2nL + x + x0|
(4αt)1 / 2

]}
(6.50)

This solution applies to geometries described by the number XIJB00T 0Gx7t3 for
I , J = 1, 2. The plane source at x0 can vary with time as given by Equation 6.49 with
m = −1, 0, 1, 2, and so on. A particularly important value of m is m = 0, which gives
the temperature resulting from a continuous constant plane source; for m = 0, the t0
values cancel in Equation 6.50.

One possible location for the plane source is at x0 = 0. For this location and case
XIJ with I = 1 (that is, geometries X11 and X12), T (x, t) is equal to zero,

T (x, t) = 0 for all x and t (6.51)

while for cases XIJ with I = 2 (that is, geometries X21 and X22), Equation 6.50
gives

T (x, t) =
(

αt0

L2

)1 / 2
g0L

2

k
Γ

(m

2
+ 1

)(
4t

t0

)(m+1) / 2

×
∞∑

n=−∞
(−1)Jn

{
im+1 erfc

[ |2nL + x|
(4αt)1 / 2

]}
(6.52a)

By isolating the n = 0 term, the temperature can be written as a sum over n = 1
to ∞:

T (x, t) =
(

αt0

L2

)1 / 2
g0L

2

k
Γ

(m

2
+ 1

)(
4t

t0

)(m+1) / 2 (
im+1 erfc

[
x

(4αt)1 / 2

]

+
∞∑

n=1

(−1)Jn

{
im+1 erfc

[ |2nL + x|
(4αt)1 / 2

]
+ im+1 erfc

[ |2nL − x|
(4αt)1 / 2

]})

(6.52b)

For small values of αt / L2 (such as αt / L2 < 0.1), only a few terms of the summation
are needed.
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Equation 6.52 was derived as the temperature resulting from the space- and time-
varying volume energy source

g(x, t) = g0L δ(x = 0)

(
t

t0

)m / 2

(6.53a)

which is a plane heat source located at x = 0, but this plane source produces an effect
identical to a prescribed heat flux at x = 0 given by

−k
∂T

∂x

∣∣∣∣∣
x=0

= q0

(
t

t0

)m / 2

(6.53b)

Therefore, g0 and q0 in Equations 6.53a, b are related by

q0 = g0L (6.53c)

where q0 has units of W/m2 and g0 has units of W/m3. Equation 6.52 has been
described as the temperature for the case X2JB00T 0Gx7t3 (plane heat source at
x = 0), but because the plane heat source at x = 0 is equivalent to a prescribed heat
flux at x = 0, the description X2JB30T 0 also applies to Equation 6.52.

6.5 FLAT PLATES: LARGE-COTIME GREEN’S FUNCTIONS

Large-time GFs are usually derived from a separation of variables solution of the
energy equation. The separation of variables technique is discussed in Chapter 4. The
large-time GFs for slab bodies have the general form

G(x, t |x′, τ) = X0(x)

N0
+

∞∑
m=1

exp

[
−β2

mα(t − τ)

L2

]
Xm(x)Xm(x ′)

Nm

(6.54)

where the eigenfunctions, X0(x) and Xm(x), and the norms N0 and Nm are given in
Tables 4.2 and 4.3. Each GF also has associated eigenvalues βm. For cases involving
only boundary conditions of kinds 1 or 2, the eigenvalues are given in Table 4.3. For
cases with boundary conditions of types 3, 4, or 5, the eigenvalues must be found
numerically as roots of the characteristic equation listed in Table 4.3.Acomplete list of
large-cotime GFs with derivatives and useful approximations is given in Appendix X.

6.5.1 INITIAL CONDITIONS

The temperature in a body resulting from a nonzero initial temperature distribution is
discussed in this section. As an example, consider the initial temperature distribution
given by

F (x ′) =
{

T0 a < x ′ < b

0 otherwise
(6.55)
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For the specific case of a body with zero temperature at boundary x = 0 and with
one of two possible boundary conditions at x = L described by number X1J where
J = 1 or 2, the temperature distribution is found from the initial-temperature term of
the GFSE with the GF given by Equation 6.54:

T (x, t) = 2T0

∞∑
m=1

e−β2
mαt / L2

sin

(
βmx

L

)
cos(βma / L) − cos(βmb / L)

βm

(6.56)

The eigenvalues βm depend on whether J = 1 or 2. The number for this case is
X1JB00T 5 for J = 1 or 2. The presence of the term exp(−β2

mαt / L2) multiplying
by all the other terms in Equation 6.56 causes rapid numerical convergence of the
series for large dimensionless time αt / L2 > 0.025.

Next the convergence criterion introduced in Section 5.2 will be used to determine
the number of series terms needed for accurate evaluation of the above temperature
expression. The exponential term controls the convergence speed, and the exponential
term will be smaller than 0.001 when (the absolute value of) the argument of the
exponential term is greater than Kmax = 6.9. That is,

β2
mαt

L2
> 6.9 (6.57)

For αt / L2 = 0.01, and for case X11 where βm = mπ, the above relation gives
mMAX = 8 (refer to Table 5.1). That is, only eight terms of the infinite series are
sufficient to make the exponential factor smaller than 0.001. For αt / L2 = 0.025,
only five terms of the series are sufficient. For “large” values of αt / L2, such as 0.17
or larger, only one term of the series (the m = 1 term) is sufficient for the X12 case.
For the X11 case, if αt / L2 is larger than 0.31, then one term of the series is sufficient
to make the exponential factor less than 0.001.

Next, consider the uniform initial temperature

F (x ′) = T0 0 < x < L (6.58)

applied to a body with homogeneous boundary conditions of the first kind at both
x = 0 and L. This is case X11B00T 1 and the temperature is given by Equation 6.56
with a = 0 and b = L:

T (x, t) = T0
4

π

∞∑
m=1,3, . . .

e−m2π2αt / L2
sin

(
mπ

x

L

) 1

m
(6.59a)

The first two terms of this infinite series can be used to approximate the temperature
for αt / L2 not too small:

T (x, t) ≈ T0
4

π

[
e−π2αt / L2

sin
(
π

x

L

)
+ 1

3
e−9π2αt / L2

sin
(

3π
x

L

)]
(6.59b)

Equation 6.59b gives satisfactory accuracy for αt / L2 ≥ 0.025. The related small-
time expression, Equation 6.43, is accurate for αt / L2 < 0.025. The least accu-
rate range for Equation 6.59b is in its lower limit (αt / L2 ≈ 0.025) and the least
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accurate range for Equation 6.43 (the small-time form of the same problem) is near
its upper limit (αt / L2 ≈ 0.025). Hence it is instructive to evaluate both expressions
for the temperature when they are least accurate at the middle of the body: at x = L / 2
and at αt / L2 = 0.025. Equation 6.43 evaluated at x = L / 2 is

T

(
L

2
, t

)
≈ T0

{
1 − 2 erfc

[
1

4(αt / L2)1 / 2

]
+ 2 erfc

[
3

4(αt / L2)1 / 2

]}
(6.60a)

which has the numerical components of

T

(
L

2
, 0.025

)
≈ T0[1 − 2(0.0253473) + 2(0.197E-10)] = 0.949305 T0 (6.60b)

The components of Equation 6.59b at x = L / 2 and αt / L2 = 0.025 are

T

(
L

2
, 0.025

)
= T0

4

π
[0.7813437 + 1

3
(0.108537)(−1)] = 0.94877 T0 (6.60c)

The expression given by Equation 6.60b is slightly more accurate, but both expres-
sions are less than 0.1% in error.Again only two terms are needed for each temperature
expression near αt / L2 = 0.025.

6.5.2 PLANE HEAT SOURCE

Consider a plane heat source located at x0 described by

g(x ′, τ) = g0L δ(x0 − x ′) gt (τ) (6.61)

Then, using this expression for g(x ′, τ) in the GFSE gives

T (x, t) = α

k

∫ t

τ=0
G(x, t |x0, τ) g0L gt (τ) dτ (6.62)

Here the integral on x ′ has been evaluated using the sifting property of the Dirac
delta function. When G(·) is given by the large-time GF from Equation 6.54, then
Equation 6.62 becomes

T (x, t) = α

k
g0L

∫ t

τ=0

∞∑
m=1

e−β2
mα(t−τ) / L2 X(βmx / L) X(βmx0 / L)

Nm

gt (τ) dτ

+ α

k
g0L

∫ t

τ=0

X0

N0
gt (τ) dτ (6.63)

The temperature caused by a number of time-varying plane sources can be in-
vestigated with different functions gt (τ) in Equation 6.63. One of the simplest is for
gt (τ) = 1, a constant for which the time integral in Equation 6.63 may be evaluated as

T (x, t) = g0L
3

k

∞∑
m=1

(
1 − e−β2

mαt / L2
) X(βmx / L) X(βmx0 / L)

Nmβ2
m

+ δ2I δ2J

g0L
2

k

αt

L2

(6.64a)
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This solution is denoted XIJB00T 0Gx7t1 where I and J can be 1 or 2. The symbol
δIJ is called the Kronecker delta and is defined to be

δIJ =
{

1 for I = J

0 for I �= J
(6.64b)

Do not confuse δIJ with the Dirac delta function δ(·) defined in Chapter 1. In Equa-
tion 6.63 there is a contribution for the δ2I δ2J term only for I = J = 2. The
term associated with δ2I δ2J comes from the m = 0 term of the summation for G(·)
which must be treated in a special manner when I = J = 2 because in this case
βm=0 = 0 is an eigenvalue. There are two parts in this solution: a steady-state part,
and a transient part. The steady-state part of Equation 6.64a can be written as

T (x) = g0L
3

k

∞∑
m=1

X(βmx / L) X(βmx0 / L)

Nmβ2
m

(6.65)

for the X11, X12, and X21 cases. The X22 case does not in general have a steady-
state part. The series given by Equation 6.65 for the steady-state part converges very
slowly. This slow convergence can be avoided because a simple linear function for the
steady-state solution for the X11, X12, and X21 cases may be found with steady-state
GFs (refer to Section 1.7). The steady-state solution for the X11 case is

T (x) =




g0x(L − x0)

k
0 ≤ x ≤ x0

g0x0(L − x)

k
x0 ≤ x ≤ L

(6.66)

Equation 6.66 is the steady-state GF multiplied by the source strength. The solution
for the X12 case is

T (x) =




g0xL

k
0 ≤ x ≤ x0

g0x0L

k
x0 ≤ x ≤ L

(6.67)

Algebraic expressions such as Equations 6.66 and 6.67 are clearly much easier to
evaluate than the infinite-series expression Equation 6.65. Furthermore, the simple
linear dependence on x can be seen in these equations, while it is not apparent in
Equation 6.65. When it is convenient to do so, the nonseries form of the steady state
should be obtained.

Next, two specific temperature expressions are given that are drawn from the
general expressions discussed above. The solution of the X11B00T 0Gx7t1 problem
is obtained from Equation 6.64, Tables 4.2 and 4.3, and Equation 6.66,

T (x, t) = g0L
2

k

x

L

(
1 − x0

L

)

− 2g0L
2

k

∞∑
m=1

e−m2π2αt / L2 sin(mπx / L) sin(mπx0 / L)

m2π2
(6.68)
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FIGURE 6.5 Temperature in a slab body, heated by a continuous plane source at x′ / L = 0.4,
and with boundary conditions T = 0 at x = 0 and ∂T / ∂x = 0 at x = L (case
X22B00T 0Gx7t1).

for 0 ≤ x ≤ x0. For x0 ≤ x ≤ L, the same expression applies where the x and x0

symbols are interchanged.
For the case of T = 0 at x = 0 and ∂T / ∂x = 0 at x = L (i.e., X12B00T 0Gx7t1),

the solution is

T (x, t) = g0L
2

k
min

( x

L
,
x0

L

)

− 2g0L
2

k

∞∑
m=1

e−β2
mαt / L2 sin(βmx / L) sin(βmx0 / L)

β2
m

(6.69)

where min(x / L, x0 / L) means the minimum values of the choice between x / L and
x0 / L, and where βm = (m− 1

2 )π. This temperature distribution is plotted in Figure 6.5
for the continuous plane source located at x ′ / L = 0.4. Not that some time passes
before heat reaches surface x = L.

The two specific temperature expressions given above as Equations 6.68 and 6.69
are relatively efficient expressions for computation for αt / L2 > 0.025. These equa-
tions are valid for values of αt / L2 that are even smaller, but more computationally
efficient solutions for small times can be obtained by using the small time GFs for
flat plates.

Approximate solutions at small times can also be obtained from the GFs for semi-
infinite bodies. For example, for x / L and x0 / L both less than 0.5, the temperature
solution of the problems X11B00T 0Gx7t1 and X12B00T 0Gx7t1 can be approxi-
mated at small times by the X10B0T 0Gx7t1 problem. In other words, for sufficiently
small times, the temperature distribution is affected most by the nearest boundary.
This is the nature of diffusion—the influence of any transient driving term is localized
in space at early time.
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6.5.3 VOLUME ENERGY GENERATION

Next, heating caused by volume energy generation will be addressed for finite one-
dimensional cases having boundary conditions of the first and second kinds. The
volume energy generation is uniform over a portion of the body. That is,

g(x′, τ) =
{

g0L gt (τ) 0 < x′ < a

0 a < x′ < L
(6.70)

The source strength is spatially uniform from x ′ = 0 to a and is zero otherwise. For
the initial temperature F (x) being zero, the energy-generation term of Equation 6.4
gives

T (x, t) = α

k

∫ t

τ=0

∫ a

x′=0
GL(x, t |x′, τ) g0L gt (τ) dx′ dτ (6.71)

Now, as usual, consider the integrals over x ′ first. The integral of GL(·) over x ′
can be written as∫ a

x′=0
GL(x, t |x′, τ) dx′ =

∞∑
m=0

exp

[
−β2

mα(t − τ)

L2

]

× X(βmx / L)IX(βma / L)

Nm

(6.72)

where IX(·) is defined to be

IX
(

βma

L

)
=

∫ a

0
X

(
βmx

L

)
dx ′ (6.73)

The X(βmx / L) functions are eigenfunctions for GL(·) listed in Table 4.2 and they
are either sin(·) or cos(·) depending on the boundary conditions.

The time integration of Equation 6.71 is now considered. This, in turn, requires a
choice of the form of gt (τ). Two cases are considered here:

gt (τ) = 1 and gt (τ) = τ

t0
(6.74a, b)

For the first of these, gt (τ) = 1, integration over τ in Equation 6.71 yields,

T (x, t) = g0L
2

k

(
L

∞∑
m=1

(
1 − e−β2

mαt / L2
) X(βmx / L)IX(βma / L)

Nm

+ δ2I δ2J

αt

L2

)

(6.75)

The cases covered by Equation 6.75 are denoted XIJB00T 0Gx5t1 for I , J = 1, 2.
Equation 6.75 can also be broken into steady state and transient parts and the speed
of convergence could be improved by replacing the steady series by a nonseries
form.
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Now consider the linear time variation of the volume energy generation,
gt (τ) = τ / t0. The solution is

T (x, t) = g0L
2

k

[
L2

αt0
L

∞∑
m=1

{
[β2

mt+ − 1] + e−β2
mt+

}

× X(βmx / L)IX(βma / L)

Nmβ4
m

+ 1

2
δ2I δ2J

t

t0

αt

L2

]
(6.76)

where t+ = αt / L2. Equation 6.76 has the notation of XIJB00T 0Gx5t2, with
I , J = 1, 2. Notice that for the case I = J = 2, (X22), the Kronecker delta terms
gives δ2I δ2J = 1 and the temperature increases like t2; hence, there is no steady-
state portion in Equation 6.76. The standard separation of variables procedure does
not work for this problem because the source term is not a constant. Note that the
above series expression contains a slowly converging part, proportional to (β2

mt+−1),
because this portion does not include an exponential term. To improve the series con-
vergence, the slowly converging part could be replaced by a nonseries expression
through use of the alternate GF solution method (see Section 3.4).

6.6 FLAT PLATES: THE NONHOMOGENEOUS BOUNDARY

In this section, temperature caused by heating effects at a boundary is explored for
flat plates. Recall that the general boundary condition for temperature has the form

ki

∂T

∂ni

∣∣∣∣
xi

+ hiT

∣∣∣∣
xi

+ (ρcb)i
∂T

∂t

∣∣∣∣
xi

= fi(t) (6.77)

When fi �= 0 we say that the boundary condition is nonhomogeneous. Recall that the
associated GF must satisfy homogeneous boundary conditions (fi = 0) of the same
type at this location. This difference between the boundary conditions for the GF and
the temperature, although required by the GF method, sometimes produces a poorly
converging temperature solution, compared to a solution caused by initial conditions
or internal-heating solutions.

As discussed earlier in Section 5.3, there are several ways to improve the conver-
gence of a solution caused by a nonhomogeneous boundary. Sometimes it is possible
to transform a nonhomogeneous boundary, through a suitable variable normaliza-
tion, into a homogeneous boundary. Such a transformation will concurrently shift
the causative heating effect into a nonzero initial condition. Another approach is the
Alternative GF Solution method, discussed in Section 3.4, which is a formal, step-
by-step method to remove the causative heating effect from the boundary; both the
initial condition and the internal-generation term may be affected. Finally, the method
of time partitioning can be used to improve the convergence properties of a solu-
tion. Next some examples are given for heat conduction caused by nonhomogeneous
boundaries.
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Example 6.5: Slab with One Side Heated, One Side at Fixed
Temperature—X21B10T0 Case

Find the temperature in a flat plate suddenly heated by a constant heat flux q0
at x = 0 and with a fixed zero temperature at x = L. The initial temperature is
zero and there is no volume heat generation. Find expressions that are numerically
efficient for all values of time.

Solution

The GF solution is given by

T (x , t ) = α

∫ t

τ=0

q0

k
GX21(x , t |0, τ) dτ (6.78)

(a) Small-time solution. The temperature for small values of time (αt / L2 <
0.025) is most efficiently found from the GF equation involving the small-
cotime GF. The small-cotime GF is given in Appendix X as an infinite series.
Substituting GS

X21(·) into Equation 6.78 gives

T (x , t ) = αq0

k

∫ t

τ=0

2
[4πα(t − τ)]1 / 2

∞∑
n=−∞

(−1)n exp

[
−(2nL + x )2

4α(t − τ)

]
dτ (6.79)

This integral can be stated in terms of the fundamental heat conduction solution,
K (wn, t − τ), as

T (x , t ) = 2
αq0

k

∞∑
n=−∞

(−1)n
∫ t

τ=0
K (wn, t − τ) dτ (6.80)

where wn = 2nL+x .The integral in Equation 6.80 is given in Appendix I (Table I.8,
number 1) as

T (x , t ) = 2
q0L
k

∞∑
n=−∞

(−1)n
(

αt
L2

)1 / 2
ierfc

[ |2n + x / L|
2(αt / L2)1 / 2

]
(6.81)

This expression applies for any t > 0, however it is numerically efficient for small
times. For αt / L2 < 0.025 only three terms of the series (n = 0, 1, −1) are suffi-
cient to give a temperature that is exact to over 13 digits. (This can be shown by
evaluating the “tail” of the series, n = ±2, ±3, etc.)

(b)Large-time solution. The temperature expression that is best for large time
(αt / L2 > 0.025) involves the large-cotime GF. The large time GF for the X21 case
is given in Appendix X (see also Tables 4.2 and 4.3). Using the large-time GF,
evaluated at x ′ = 0, Equation 6.78 may be written

T (x , t ) = α

∫ t

τ=0

q0

k
2
L

∞∑
m=1

e−β2
mα(t−τ) / L2

cos
(
βm

x
L

)
dτ (6.82)
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FIGURE 6.6 Temperature in a slab body with a constant heat flux at x = 0 and T = 0 at
x = L (case X21B10T 0).

where βm = π(m − 1 / 2). The integral on time may be evaluated to give

T (x , t ) = 2
q0L
k

∞∑
m=1

cos
(
βm

x
L

)
β2

m

(
1 − e−β2

mα(t−τ) / L2
)

(6.83)

As noted in earlier examples, the steady-state portion of the series for the temper-
ature converges very slowly. The convergence speed of the transient temperature
can be greatly improved by replaced the steady series with a nonseries form. For
this one-dimensional case, the steady temperature may be found by direct inte-
gration (see Section 1.7). The steady temperature is given by

Tsteady (x ) = q0

k

(
1 − x

L

)
(6.84)

Using this form of the steady temperature, the large-time form of the transient
temperature, Equation 6.83, may be written

T (x , t ) = q0L
k

(
1 − x

L

)
− 2

q0L
k

∞∑
m=1

e−β2
mαt / L2 cos(βmx / L)

β2
m

(6.85)

This expression can be evaluated for any t > 0 and it converges rapidly at large
times (αt / L2 > 0.025). The temperature for this example is plotted in Figure 6.6.
In this figure, at time αt / L2 = 0.5 the temperature is approaching steady state (a
straight line).

Example 6.6: Slab with One Side Heated, One Side Insulated—
X22B10T0 Case

Consider the flat plate insulated on one side and heated by a steady heat flux on
the other side. Find the temperature using the standard and alternative GFSEs. The
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boundary value problem is given by

∂2T
∂x2 = 1

α

∂T
∂t

(6.86a)

− k
∂T
∂x

∣∣∣∣
x=0

= q0
∂T
∂x

∣∣∣∣
x=L

= 0 (6.86b)

T (x , 0) = 0 (6.86c)

(a) Standard solution. The standard GF solution is given by Equation 6.4 where
the only nonhomogeneous term (the only driving term) is the heat flux at x = 0.This
is the X22B10T 0 case. Then using Equation 6.4 and the X22 GF from Appendix X
gives

T (x , t ) = α

k

∫ t

τ=0
q0GX22(x , t |0, τ) dτ

= αq0

k

∫ t

τ=0

1
L

(
1 + 2

∞∑
m=1

e−m2π2α(t−τ) / L2
cos

(
mπ

x
L

))
dτ

= q0L
k

[
αt
L2 + 2

π2

∞∑
m=1

1
m2 cos

(
mπ

x
L

) (
1 − e−m2π2αt / L2

)]
(6.87)

This expression has three main parts. The first part is proportional to time and thus
increases without limit over time. The last part contains an exponential factor that
decays with time. The middle part that does not depend on time is given by

q0L
k

2
π2

∞∑
m=1

cos(mπx / L)
m2 (6.88)

This part of the temperature expression converges very slowly, that is, many terms
of the infinite series must be evaluated for accurate numerical values, particularly
for small values of x / L.

Next, another temperature expression with better convergence properties will
be found with the alternative GFSE equation.

(b) Alternative solution.The alternative GFSE (AGFSE) involves a known solution
T ∗ that satisfies the boundary conditions but does not need to satisfy the initial
condition. Since Equation 6.87 contains a term proportional to time that dominates
the temperature for large times, the T ∗ solution should display that behavior.The T ∗
solution for this problem is

T ∗(x , t ) = f (x ) + q0L
k

αt
L2 (6.89)

where f (x ) must be chosen to satisfy the boundary conditions. Substitute T ∗ into
the energy equation:

∂2T ∗
∂x2 = 1

α

∂T ∗
∂t

or
d 2f
dx2 = q0

kL
(6.90)

Solve Equation 6.90 for f (x ) (by integrating twice) and then substitute f (x ) back
into Equation 6.89 to give
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T ∗(x , t ) = q0

kL
x2

2
+ C1x + C2 + q0L

k
αt
L2 (6.91)

Using the boundary conditions at x = 0 and L given by Equations 6.86b, c allows
C1 to be found as

C1 = −q0

k
(6.92)

Since C2 cannot be found using these boundary conditions, it is set equal to
zero. The choice of C2 is arbitrary because both boundary conditions for T ∗ are
gradient conditions and a constant can be subtracted from T ∗ without changing
the properties of the solution. Then T ∗ is given by

T ∗(x , t ) = q0L
k

[
1
2

(x
L

)2 − x
L

+ αt
L2

]
(6.93)

Now T ∗ will be used in the alternative GFSE. The only nonzero integral in the
alternative GFSE, Equation 3.66, is the one corresponding to the initial condition.
(Why does the last integral drop out in the case?) The alternative GFSE gives

T (x , t ) = T ∗(x , t ) +
∫ L

x ′= 0
GX22(x , t |x ′, 0) [−T ∗(x ′, 0)] dx ′

= T ∗(x , t ) − q0

k

∫ L

x ′=0

[
1 + 2

∞∑
m=1

e−m2π2αt / L2

× cos
(

mπ
x ′
L

)
cos

(
mπ

x
L

)][
1
2

(
x ′
L

)2

− x ′
L

+ 0

]
dx ′

T (x , t ) = q0L
k

[
αt
L2 + 1

2

(x
L

)2 − x
L

+ 1
3

− 2
π2

∞∑
m=1

1
m2

× cos
(
mπ

x
L

)
e−m2π2αt / L2

]
(6.94)

This temperature is plotted in Figure 6.7 at several dimensionless times. Only after
αt / L2 > 0.1 does the temperature at x = L begin to rise above the initial value; only
then is the insulated boundary evident. Equation 6.94 is valid for any time value
but it has good convergence properties for αt / L2 > 0.025. For αt / L2 < 0.025
the temperature may be found approximately from the semi-infinite body solution
with the same boundary heat flux (the X20B1T 0 case) for five-digit numerical
accuracy near x = 0 and with lesser accuracy near x = L.

It is interesting to equate the two expressions for the temperature found from
the standard and alternate GFSE, Equations 6.87 and 6.94. Setting them equal and
canceling identical terms leaves the equality

2

π2

∞∑
m=1

1

m2
cos

(
mπ

x

L

)
= 1

2

( x

L

)2 − x

L
+ 1

3
(6.95)

In effect, we have found the exact value of the infinite sum.
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FIGURE 6.7 Temperature in a slab body with a constant heat flux at x = 0 and ∂T / ∂x = 0
at x = L (case X22B10T 0).

Example 6.7: Slab with Convection on Both Sides

A large flat plate of thickness 2L, initially at temperature T0, is quenched in a large
tank of fluid at temperature T∞. The heat transfer coefficient for the quenching
process is h, a constant. Find the temperature distribution T (x , t ).

Solution

The geometry of the quenching problem is shown in Figure 6.8a. This problem is
modeled as the X32 geometry shown in Figure 6.8b. The centerline of the plate
is a plane of symmetry, which is modeled as an insulated boundary. The initial
condition can be made homogeneous by defining a new variable T = T −T0, and
the fluid temperature becomes (T∞ − T0). This is the X32B10T 0 case.

The GF solution using time partitioning is given by the boundary-heating inte-
gral of the GF solution equation,

T (x , t ) − T0 = α

∫ t

τ=0

h(T∞ − T0)
k

GL
X32(x , t |0, τ) dτ (6.96)

The large-cotime GF for case X32 is listed in Tables 4.2 and 4.3 (also Appendix X),
and upon substitution into Equation 6.96, the result is

T (x , t ) − T0 = α

∫ t

τ=0
dτ

h(T∞ − T0)
k

2
L

∞∑
m=1

e−β2
mα(t−τ) / L2

× β2
m + B2

β2
m + B2 + B

cos
[
βm

(
1 − x

L

)]
cos βm (6.97)

where eigenvalues βm are roots of the equation βm tan βm = hL / k . The time-
integral in Equation 6.97 operates only on the exponential term, and the result is
given by
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(a)

Fluid T∞

Quench

2L

T(x,0) = T0

L

x

T(x,0) – T0 = 0

(b) ∂T/∂x = 0

–k ∂T/∂x = h [T∞–T]

FIGURE 6.8 (a) Quenching of large plate of thickness 2L. (b) One-dimensional model using
X32 geometry on 0 ≤ x ≤ L.

T (x , t ) − T0 = 2h(T∞ − T0)L
k

∞∑
m=1

1
β2

m

(
1 − e−β2

mαt / L2
)

× β2
m + B2

β2
m + B2 + B

cos
[
βm

(
1 − x

L

)]
cos βm (6.98)

This form of the series solution converges slowly because of the steady-state term.
Two ways to improve the convergence are given here.

(a) Replace steady-state term. The steady-state part of the solution can be found
in a nonseries form, as follows. The steady-state portion of the solutions satisfies:

d 2T
dx2 = 0 (6.99)

at x = 0, −k
dT
dx

= h(T∞ − T ) (6.100)

at x = L,
dT
dx

= 0 (6.101)

Note the sign of the convection boundary condition; heat flux will be in the +x-
direction for T∞ > T . The general steady solution, found by integrating twice, is
given by

T (x ) = ax + b (6.102)

and constants a and b may be found by applying the boundary conditions

at x = L : a = 0 (6.103)

at x = 0 : 0 = h(T∞ − (0 + b)) → b = T∞ (6.104)

Then the steady solution is simply T (x ) = T∞ which makes sense because even-
tually the body takes on the temperature of the fluid.
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Now replace the (uniform) steady solution into the series solution to obtain the
improved-convergence solution:

T (x , t ) − T0 = (T∞ − T0) − 2(T∞ − T0)
hL
k

∞∑
m=1

1
β2

m
e−β2

mαt / L2

× β2
m + B2

β2
m + B2 + B

cos
[
βm

(
1 − x

L

)]
cos βm (6.105)

(b) Convert to homogeneous boundary. In the original transient problem, there
are two nonzero temperatures given, T0 for the initial condition, and T∞ for the
fluid temperature. In the solution discussed above, the initial condition was set
to zero with normalization T − T0. Here, the nonhomogeneous boundary will be
set to zero (made homogeneous) by normalization θ = T − T∞. Then the original
transient problem becomes

∂2θ

∂x2 = 1
α

∂θ

∂t
(6.106)

at x = 0, −k
∂θ

∂x
+ hθ = 0 (6.107)

at x = L,
dθ

dx
= 0 (6.108)

at t = 0, θ(x , t ) = T0 − T∞ (6.109)

This is case X32B00T1. Now only the initial-condition integral is needed from the
GF solution, Equation 6.4, as follows:

T (x , t ) − T∞ =
∫ L

x ′=0
(T0 − T∞ ) GL

X23(x , t |x ′, 0) dx ′ (6.110)

Using the same GF as before, but evaluated at τ = 0, the temperature is

T (x , t ) − T∞ = (T0 − T∞ )
2
L

∞∑
m=1

e−β2
mαt / L2 β2

m + B2

β2
m + B2 + B

cos
[
βm

(
1 − x

L

)]

×
∫ L

x ′=0
cos

[
βm

(
1 − x ′

L

)]
dx ′ (6.111)

After evaluating the integral on x ′, the temperature is given by

T (x , t ) − T∞ = 2(T0 − T∞ )
∞∑

m=1

e−β2
mαt / L2

× β2
m + B2

β2
m + B2 + B

cos
[
βm

(
1 − x

L

)] sin βm

βm
(6.112)

At first glance this solution appears to be different than that found earlier by re-
placing the steady-state part. However, by rearranging the eigencondition into
the form

sin βm

βm
= hL

k
cos βm

β2
m

(6.113)
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FIGURE 6.9 Normalized temperature in a slab body initially at T0 and cooled by convection,
fluid temperature T∞, at surface x = 0. The x = L boundary is insulated. Three levels of
convection are shown for hL / k = 0.4, 1.0, and 5.0.

then Equation 6.112 takes the form

T (x , t ) − T∞ = 2 (T0 − T∞)
hL
k

∞∑
m=1

e−β2
mαt / L2 β2

m + B2

β2
m + B2 + B

× cos
[
βm

(
1 − x

L

)] cos βm

β2
m

(6.114)

which is equivalent to Equation 6.105. Note that this approach provides a rapidly
converging solution in a single step. The point of this example is that when
a nonhomogenous boundary is present, if it is possible to do so, convert the
nonhomogeneous boundary into a homogeneous boundary.

The temperature in the convectively cooled slab wall is plotted in Figure 6.9
for several dimensionless times and for several values of the Biot number hL / k .
When the Biot number is small, the temperature is nearly uniform across the body.
For Biot < 0.1 (not shown) the temperature is uniform within a few percent and a
lumped-capacitance model may be used to describe the temperature as a function
of time alone (Ozisik, 1993, p. 27).

6.7 TWO-DIMENSIONAL RECTANGULAR BODIES

Transient temperatures in two-dimensional rectangular bodies are discussed in this
section. The transient GF for two-dimensional cases can be found by multiplying one-
dimensional GF together for boundary conditions of type 0, 1, 2, and 3. Thus for many
cases the temperature solution can be written down immediately in integral form.
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Multidimension cases are often more difficult than one-dimensional cases because
the integrals in the GFSE are more difficult. Often the spatial integrals can be evalu-
ated, but sometimes the time integral cannot be evaluated in closed form. In this event,
numerical methods may be required to get accurate numbers for the temperature.

Some two-dimension rectangle cases are solved in the literature. Ozisik (1993,
Chapter 2) gives two examples of separation of variables applied to transient
temperature in the rectangle. Carslaw and Jaeger (1959, Chapter 5) discuss several
examples of steady and unsteady temperature in rectangles. Solutions for the rectan-
gle also appear in recent papers on improving series convergence (Beck and Cole,
2007) and on intrinsic verification (Beck et al., 2004); see also Sections 5.3 and 5.4
of this book. In this section two examples are discussed for boundary conditions of
type 1 and 2.

Example 6.8: Rectangular Body with Several Different Boundary
Conditions—X21B10Y21B01 Case

Consider a rectangle with zero initial temperature, with one side uniformly heated,
one side at a fixed temperature, T0, one side at a fixed temperature of zero, and
one side insulated. Find the temperature by using large cotime GFs.

Solution

This is the X21B10Y 21B01 case and the geometry is shown in Figure 6.10. The
boundary value problem is given by

∂2T
∂x2 + ∂2T

∂y2 = 1
α

∂T
∂t

(6.115)

T (x , y , 0) = 0 (6.116a)

−k
∂T
∂x

∣∣∣∣
x=0

= q0 = constant (6.116b)

T (a, y , t ) = 0 (6.116c)

∂T
∂y

∣∣∣∣
y=0

= 0 (6.116d)

T (x , b, t ) = T0 (6.116e)

y

b

x
0 aInsulated

Heat flux
q0

T(x,y,0) = 0

T = T0

T = 0

FIGURE 6.10 Geometry for rectangular body in Example 6.8.
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The integral expression for the temperature can be written down immediately from
the GFSE. There are two terms to account for the heating at x = 0 and the nonzero
temperature at y = b:

T (x , y , t ) = α

∫ t

τ=0
dτ

∫ b

y ′=0

q0

k
GX21Y 21(x , y , t |0, y ′, τ) dy ′

− α

∫ t

τ=0
dτ

∫ a

x ′=0
T0

∂GX21Y 21

∂y ′

∣∣∣∣
y ′=b

dx ′ (6.117)

The GF is formed by multiplying two one-dimensional GFs together. That is,

GX21Y 21(x , y , t |x ′, y ′, τ) = GX21(x , t |x ′, τ) GY 21(y , t |y ′, τ) (6.118)

where GX21 and GY 21 can be readily obtained from Appendix X as

GX21(x , t |x ′, τ) = 2
a

∞∑
m=1

e−β2
mα(t−τ) / a2

cos
(

βmx
a

)
cos

βmx ′
a

(6.119a)

GY 21(y , t |y ′, τ) = 2
b

∞∑
n=1

e−β2
nα(t−τ) / b2

cos
(

βny
b

)
cos

βny ′
b

(6.119b)

where

βm = π
(
m − 1

2

)
βn = π

(
n − 1

2

)
(6.120)

The spatial integrals in Equation 6.117 operate only on the cosine terms. The
time integral can be carried out independently on the product of the exponentials:

∫ t

τ=0
e−β2

mα(t−τ) / a2
e−β2

nα(t−τ) / b2
dτ = 1

αC
(1 − e−αtC ) (6.121)

where C = (βm / a)2 + (βn / b)2. Then the temperature is given by Equation 6.117
with Equations 6.118 and 6.119 (Beck, 1984),

T (x , y , t ) = 4
∞∑

m=1

∞∑
n=1

(
1 − e−αtC )

cos
(

βmx
a

)
cos

(
βny
b

)

× (−1)n
{

q0a
k

1
βn[β2

m + β2
n(a / b)2] + T0

βn(−1)m

βm[β2
n + β2

m(b / a)2]
}

(6.122)

where C = (βm / a)2 + (βn / b)2. There are two difficulties with this solution. First,
this is the large-time solution that converges rapidly only for αt / b2 and αt / a2

large (greater than 0.05, say). Second, the most difficult part of the solution to
evaluate directly is the steady-state part for T0 �= 0 and q0 = 0:

T (x , y ) = 4T0

∞∑
m=1

∞∑
n=1

cos
(

βmx
a

)
cos

(
βny
b

)
βn(−1)m+n

βm[β2
n + β2

m(b / a)2] (6.123)
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FIGURE 6.11 Geometry for rectangular body heated over part of one face.

This part of the solution converges slowly because for m � 1 and n � 1, the series
converges something like n(−1)m+n /(mn2 + m3) which is painfully close to the
slowly converging series 1 / n2. This double-summation form of the steady tem-
perature can be replaced by a better-converging single-sum form with a GF based
on eigenfunction expansions; see Section 4.6. See Beck et al. (2004) for further
discussion of improving the convergence of series expressions for temperature in
the rectangle.

Example 6.9: Rectangular Body Heated over Part of One Face

Consider a rectangle heated over part of one face. The other faces are held at a
fixed temperature of zero and the initial temperature is also zero. The geometry is
shown in Figure 6.11. The boundary value problem is given by

∂2T
∂x2 + ∂2T

∂y2 = 1
α

∂T
∂t

0 < x < a 0 < y < b t > 0 (6.124a)

T (0, y , t ) = T (a, y , t ) = T (x , b, t ) = T (x , y , 0) = 0 (6.124b)

−k
∂T
∂y

∣∣∣∣
y=0

=
{

q0 0 < x < a1

0 a1 < x < a
(6.124c)

(a) Solve the problem using the large-cotime GFs.
(b) Solve the problem using small-cotime GFs and retain only the terms needed

for small times near x = a1, and near y = 0.

Solution

The number for this case is X11B00Y 21B(x5)0T 0. The GFSE for this problem is

T (x , y , t ) = αq0

k

∫ a1

x ′=0

∫ t

τ=0
GX11(x , t |x ′, τ)GY 21(y , t |0, τ) dx ′ dτ (6.125)

(a) Large-time solution. The large-cotime forms of the GFs are

GL
X11(x , t |x ′, τ) = 2

a

∞∑
m=1

e−m2π2α(t−τ) / a2
sin

(
mπ

x
a

)
sin

(
mπ

x ′
a

)
(6.126a)
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GL
Y 21(y , t |y ′, τ) = 2

b

∞∑
n=1

e−β2
nα(t−τ) / b2

cos
(
βn

y
b

)
cos

(
βn

y ′
b

)
(6.126b)

where βn = π(n − 1 / 2). Solving the problem using the GFSE and GL(·) requires
the integrals

∫ a1

x ′=0
sin

(
mπ

x ′
a

)
dx ′ = a

mπ

[
1 − cos

(
mπ

a1

a

)]
(6.127a)

∫ t

τ=0
e−Dα(t−τ) dτ = 1

Dα
(1 − e−Dαt ) (6.127b)

where D is equal to

D =
(

m2π2

a2 + β2
n

b2

)
(6.128)

Using these integrals in Equation 6.125 gives

T (x , y , t ) = 4q0a2

πkb

∞∑
m=1

∞∑
n=1

(1 − e−Dαt )
1 − cos(mπa1 / a)

m[m2π2 + (a2 / b2)β2
n]

× sin
(
mπ

x
a

)
cos

(
βn

y
b

)
(6.129)

There are two parts to this solution: steady-state and transient. The steady-state
part converges something like 1 / m3, which is faster than the steady state in the
previous example but which may still require many terms of the series for accurate
evaluation.The double-summation steady temperature can be replaced by a better-
converging single-summation form with GF based on eigenvalue expansions; this
particular case is discussed later in Example 6.10, Section 6.9.

(b) Small-time solution. At early times, any temperature changes occur near
the heated boundary y = 0, and elsewhere, the temperature remains zero. The
small-cotime GFs useful for the early time solution are given in Appendix X in
the form of infinite series. Near the point x = a1 and y = 0, however, just the
dominant terms of the series may be used. An equivalent point of view at early
time is to replace the rectangle by the quarter-infinite body described by number
X10B0Y 20(x5)T 0. The appropriate GFs are

GS
X11(x , t |x ′, τ) � GX10(x , t |x ′, τ)

= 1
[4πα(t − τ)]1 / 2 (e−(x−x ′)2 /[4α(t−τ)] − e−(x+x ′)2 /[4α(t−τ)]) (6.130)

GS
Y 21(y , t |0, τ) � GY 20(y , t |0, τ)

= 2
[4πα(t − τ)]1 / 2 e−y2 /[4α(t−τ)] (6.131)

Next, replace these GFs into the temperature expression given by Equation 6.125.
The integral over x ′ should be familiar; by focusing on the area of interest near
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x = a1 the integral over x ′ may be written as

∫ a1

x ′=0
GS

X10(x , t |x ′, τ) dx ′

= 1
2

(
erfc

{
x − a1

[4α(t − τ)]1 / 2

}
− 2 erfc

{
x

[4α(t − τ)]1 / 2

}

+ erfc
{

x + a1

[4α(t − τ)]1 / 2

})

� 1
2

erfc
{

x − a1

[4α(t − τ)]1 / 2

}
(6.132)

for x near a1. Then the solution for small y values and for x near a1 becomes

T (x , y , t ) = αq0

k

∫ t

τ=0

1
2

erfc
{

x − a
[4α(t − τ)]1 / 2

}
1

[πα(t − τ)]1 / 2 e−y2 /[4α(t−τ)] dτ

(6.133)

This is a difficult integral and it will be evaluated below with an approximate
integrand. This integral is evaluated exactly in Section 6.8 in the form of an infinite
series.

The integral in Equation 6.133 may be evaluated in closed form if an approx-
imation for the complementary error function is used. The erfc(z ) function for
“small” values of z can be approximated by

erfc(z ) =




1 − Az , −A−1 < z < A−1

0 z > A−1

2 z < −A−1

(6.134)

where A = 2 / π1 / 2. Using this approximation then gives, for the temperature for
small y and near x = a1,

T (x , y , t ) = T0 + αq0

k

∫ t

u=um

1
2

[
1 − A

x − a1

(4αu)1 / 2

]

× 1
(παu)1 / 2 e−y2 /[4αu] du t > um (6.135)

where um = A2(x−a1)2 / α. Note that the region of u = 0 to um (which corresponds
to τ = t to t − um) has no contribution to the temperature using the above appro-
ximation for erfc(z ). This equation also implies that the region under which the
approximation for erfc(z ) is useful is given by coordinate x in the range

a1 − A−1(4αt )1 / 2 < x < a1 + A−1(4αt )1 / 2 (6.136)

This equation defines what the phrase “x near a1 at early time” means in describing
the range of application of Equation 6.135.
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For smaller x values (but not near x = 0), the temperature distribution is given by

T (x , y , t ) = αq0

k

∫
u=0

1
(παu)1 / 2 e−y2 / 4αu du

= 2q0

(
t

kρc

)1 / 2
ierfc

[
y

(4αt )1 / 2

]
(6.137)

This result is exactly the same as for a semi-infinite body that is uniformly heated
over its entire surface.

For x values larger than a1, the surface at y = 0 is insulated. Sufficiently far
from a1 indicated by

x > a1 + A−1(4αu)1 / 2 (6.138)

the temperature near the surface y = 0 is simply zero.
(c) Surface temperature. The temperature on the heated surface can be found

directly by substituting y = 0 into the temperature expression at any point in
the derivation. Often the surface temperature is easier to find than interior temper-
atures. The surface temperature is given by

T (x , 0, t ) � αq0

k

∫ t

um

1
2

[
1 − x − a1

(4αu)1 / 2

]
1

(παu)1 / 2 du

= αq0

k

[
1

(πα)1 / 2 (t1 / 2 − u1 / 2
m ) − A

x − a1

2π1 / 2α
ln

(
t

um

)]

= q0

[(
t

πkρc

)1 / 2
− A(x − a1)

k
√

π

]
− q0(x − a1)

k
A

2
√

π
ln

αt

A2(x − a1)2

(6.139)

for −A−1(4αt )1 / 2 < x − a1 < A−1(4αt )1 / 2 and x �= a1.
For larger values of x in the range a1 < x < a, such that

x > a1 + A−1(4αt )1 / 2

the surface temperature is simply zero, and for smaller values of x in the range
0 < x < a1 such that

x < a1 − A−1(4αt )1 / 2 (6.140a)

the surface temperature is given by

T (x , 0, t ) = 2q0

(
t

πkρc

)1 / 2
(6.140b)

which is the same as the surface temperature for a uniformly heated semi-infinite
body.
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6.8 TWO-DIMENSIONAL SEMI-INFINITE BODIES

The temperature in a semi-infinite body heated over half of the surface and insulated
over the other half is treated in this section. This is a basic solution of two-dimensional
heat conduction because it serves as a building block for other solutions and it is a
kernel function for the unsteady surface element method discussed in Chapter 12.

The temperature is presented first in integral form, and then two series expressions
for the integral are presented to evaluate the temperature efficiently at any location in
the body and at any value of time.

6.8.1 INTEGRAL EXPRESSION FOR THE TEMPERATURE

The geometry for the semi-infinite body heated over the half-plane is shown in
Figure 6.12. The initial temperature is zero and the spatially uniform heat flux q0

begins at time zero. This is the X00Y20B5T 0 case. The temperature is given by the
GF equation in the form

T (x, y, t) = αq0

k

∫ t

τ=0

∫ 0

x′=−∞
GX00Y20(x, y, t |x′, 0, τ) dx ′ dτ (6.141)

where q0 is a constant. Note that the GF is evaluated at the surface y ′ = 0, and that
the integral over surface extends over only the heated half plane −∞ < x′ < 0. The
GF is given by a product solution of two familiar one-dimensional GFs, GX00Y20 =
GX00GY20.

The integral on x′ in Equation 6.141 falls only on GX00, and this integral should
be familiar, so Equation 6.141 can be written

T (x, y, t) = 1

2

αq0

k

∫ t

τ=0
GY20(y, t |0, τ) erfc

{
x

[4α(t − τ)]1 / 2

}
dτ (6.142)

Uniform heat flux q0
over 1/2 space, x<0

y

x

FIGURE 6.12 Geometry for semi-infinite region with uniform heat flux q0 over half-space
∞ < x < 0 and y = 0.
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The function GY20 is listed in Appendix X (replace x by y wherever it appears in the
listing for GX20), and the general expression for the temperature can be written

T (x, y, t) = 1

2

αq0

k

(
1

π

)1 / 2 ∫ t

τ=0

2

[4α(t − τ)]1 / 2

× exp

[ −y2

4α(t − τ)

]
erfc

{
x

[4α(t − τ)]1 / 2

}
dτ (6.143)

This expression is valid for all locations in the body (−∞ < x < ∞, y ≥ 0) and for
any time t ≥ 0.

6.8.2 SPECIAL CASES

The time integral in Equation 6.143 can be evaluated in closed form in two special
cases.

Surface temperature. For the special case of y = 0, the temperature on the
surface is given by (Carslaw and Jaeger, 1959, p. 264)

T (x, 0, t) = q0

k

(
αt

π

)1 / 2 {
erfc

[
x

2(αt)1 / 2

]
− x

2(παt)1 / 2
E1

(
x2

4αt

)}
(6.144)

The function E1(·) is the exponential integral, defined by

E1(z) =
∫ ∞

z

e−u

u
du (6.145)

It is tabulated in Abramowitz and Stegun (1964) and it is available in computer
libraries. See also Appendix I, Table I.1, for some expressions involving function E1.

Centerline temperature. For the special case of x = 0, the temperature at the
centerline is given by

T (0, y, t) = q0

k
(αt)1 / 2 ierfc

[
y

2(αt)1 / 2

]
(6.146)

which is exactly one-half of the solution for a semi-infinite body heated over the entire
y = 0 surface.

6.8.3 SERIES EXPRESSION FOR THE TEMPERATURE

The time integral for the temperature, Equation 6.143 is evaluated in this section with
series expressions. To begin, the time integral is written with a change of variables
using

u = y

2[α(t − τ)]1 / 2
(6.147)

and Equation 6.143 can be written as

T (x, y, t) = q0y

2kπ1 / 2

∫ ∞

y /(4αt)1 / 2

du

u2
e−u2

erfc

(
xu

y

)
(6.148)



T&F Cat # K10695, Chapter 6, Page 220, 12-6-2010

220 Heat Conduction Using Green’s Functions

Further, a set of dimensionless variables will be used to present the temperature
results:

X = x

2(αt)1 / 2
Y = y

2(αt)1 / 2
(6.149a, b)

p = y

x
= Y

X
Θ = T

(q0 / k)(αt / π)1 / 2
(6.149c, d)

Notice that the variable p is independent of time. With these new variables, Equa-
tion 6.148 can be written

Θ(p, Y ) = Y

∫ ∞

Y

du

u2
e−u2

erfc

(
u

p

)
(6.150)

The number of independent variables has been reduced from three (x, y, t) in Equa-
tion 6.148 to two dimensionless variables (p, Y ) in Equation 6.150. The time de-
pendence of the temperature has been absorbed into the coordinates and into the
dimensionless temperature by normalizing them by the “length”

√
(αt).

This type of coordinate transformation is called a similarity transformation,
and the variables are called similarity variables. Heat conduction problems can be
solved this way where the solution depends on a penetration depth

√
(αt), usually

because the geometry has no intrinsic length scale. Certain fluid flow problems may
also be solved with similarity transformations. Equation 6.150 can be integrated by
parts to give (Litkouhi, 1982)

Θ(X, Y ) = π1 / 2 ierfc(Y ) − e−Y 2
erf (X) − X

π1 / 2
E1(X2 + Y 2)

+ 2pY

∫ ∞

X

e−p2u2
erfc(u) du (6.151)

Here u is a dummy variable.
The integral in the last term of Equation 6.151 can be represented by a function H

defined as

H (X, Y ) = 2p

π1 / 2

∫ ∞

X

e−p2u2
erf (u) du (6.152)

Recall that p = Y / X. Then the general temperature solution for a constant heat flux
over the half plane can be written

Θ(X, Y ) = π1 / 2 ierfc (Y ) − e−Y 2
erf (X)

− X

π1 / 2
E1(X2 + Y 2) + π1 / 2Y H (X, Y ) (6.153)

The general solution given by Equation 6.153 is valid for all times and any location
in the body. However, Equation 6.153 is recommended onlyfor X > 0. For X < 0, a
complementary expression is recommended:

Θ(X < 0, Y ) = Yπ1 / 2 ierfc (Y ) − Θ(X > 0, Y ) (6.154)

where the first term on the right-hand side of Equation 6.154 is the solution to the
same problem if the entire surface was heated by a constant heat flux.
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p = –1

p>–1 p<1

p = 0

p = 1

y

x
45°45°

q0

p = ∞

|p|>1

FIGURE 6.13 Geometry showing various regions |p| < 1, |p| = 1, and |p| > 1.

The function H (X, Y ) = H (X, p) can be represented in a series form for the three
different regions indicated in Figure 6.13.

Region |p| > 1. The region |p| > 1 represents the region closest to the surface of
the semi-infinite body. In this region, H (X, p) is given by

H (X, Y ) = H (X, p) = 2

π

∞∑
n=0

(−1)nΓ(n + 1, p2X2)

p2n+1(2n + 1)n! (6.155)

where the truncated exponential function is defined in Abramowitz and Stegun (1964)

Γ(n, u) =
∫ ∞

u

e−t tn−1 dt (6.156)

Region |p| < 1. For the region |p| < 1, the expression 6.155 cannot be used for
H (X, Y ) since the term p2n+1 appearing in the denominator causes the summation
to diverge. In this case the following expression is provided:

H (X, p) = 1 − erf(X) erf(pX) − 2

π

∞∑
n=0

(−1)np2n+1Γ(n + 1, X2)

(2n + 1)n! (6.157)

Region |p| = 1. On the line |p| = 1, it can be shown that H (X, p) is given by

H (X, 1) = −H (X, −1) = 1 − [erf(X)]2

2
(6.158)

Next some numerical results are presented. Figure 6.14 is a plot of function
H (X, p) versus X as calculated from the series expressions. [Numerical results
for H (X, p) to six decimal places are tabulated in Litkouhi, 1982.] Dimensionless
temperature in the semi-infinite body is plotted versus X in Figure 6.15. Recall that
Θ(X, Y ) is normalized by the time, so time does not explicitly appear in the figure.
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1

5

H
(X

, p
)

0
0

4
1.5

0.6
0.4

0.2

1

5
X

10

0.1

p = 0.05

p = 0

FIGURE 6.14 Function H (X, p) versus X for different values of p.
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FIGURE 6.15 Dimensionless temperature Θ(X, Y ) versus X for different values of Y in
semi-infinite body with uniform heat flux over half-space x < 0 and y = 0.

6.8.4 APPLICATION TO THE STRIP HEAT SOURCE

Other boundary conditions can be obtained by using the half-plane solution and
superposition, and Figure 6.16 shows several geometries that are possible. One case
of interest is the semi-infinite body heated by a constant heat flux over an infinite strip
of width 2a and insulated elsewhere as shown in Figure 6.16a. This solution can be
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(a)

(d)

(g) (h) (i)

(e) (f)

T = 0

(b) (c)

FIGURE 6.16 Various possible cases that can be treated using solution given in Figure 6.15
as a building block.

found from the superposition of two half-plane solutions: one half-plane is located at
x − a = 0 with a positive heat flux, and the other half-plane is located at x + a = 0
with a negative heat flux. The resulting temperature is given by (Litkouhi, 1982)

Θ(x+, y+, t+) = e−(y+2 / 4t+)
{
−erf

[
x+ − 1

(4t+)1 / 2

]
+ erf

[
x+ + 1

(4t+)1 / 2

]}

−
(

x+ − 1

(4πt+)1 / 2

)
E1

[
(x+ − 1)2 + (y+)2

4t+

]

+
[

x+ + 1

(4πt+)1 / 2

]
E1

[
(x+ + 1)2 + (y+)2

4t+

]

+ π1 / 2y+

(4t+)1 / 2
H

[
x+ − 1

(4t+)1 / 2
, p

]
− H

[
x+ + 1

(4t+)1 / 2
, p

]
(6.159)
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where now the coordinates are normalized by a, the characteristic length:

x+ = x

a
y+ = y

a
(6.160a, b)

t+ = αt

a2
p = y

x
= y+

x+ (6.160c, d)

and Θ = T /[(q0 / k)(αt / π)1 / 2] as before. Note that the definition of parameter p has
not changed from when it was introduced in Equation 6.149.

Surface temperature. For the special case of y+ = 0, the surface of the semi-
infinite body, the temperature due to the heated strip is (Carslaw and Jaeger, 1959)

Θ(x+, 0, t+) = erf

[
x+ + 1

(4t+)1 / 2

]
− erf

[
x+ − 1

(4t+)1 / 2

]
+

[
x+ + 1

(4πt+)1 / 2

]
E1

[
(x+ + 1)2

4t+

]

−
[

x+ − 1

(4πt+)1 / 2

]
E1

[
(x+ − 1)2

4t+

]
(6.161)

6.8.5 DISCUSSION

Round-off error. The expressions for the temperature in the strip heater case are
recommended only for x+ > 0 due to the possibility of computer round-off error.
The geometry is symmetric about the x-axis so that the temperature for x+ < 0 can
easily be found from T +(x+ < 0, y+, t+) = T +(x+ > 0, y+, t+).

Round-off error comes from subtracting two numbers that are close in value. For
the strip heater problem, round-off error can come from the two superposed half-plane
solutions. The temperature due to the heated strip can be written as

Θstrip(x+) = Θhalf -plane(x+ − 1) − Θhalf -plane(x+ + 1) (6.162)

(For the moment, the dependence on y+ and t+ has been left out.) Now, the physics
of the heat transfer problem requires that sufficiently far from the heated strip, the
temperature must approach zero. As x+ → +∞, the two superposed solutions each
approach zero (within the computation limits of the computer) because the half-plane
solution is heated on the left half of the plane. There is no round-off error associated
with the temperature at x+ > 0.As x+ → −∞, however, the two half-plane solutions
are evaluated near their heated regions and the half-plane temperatures can be very
large (especially near the surfacey+ = 0); the strip-heater temperature is near zero due
to cancellation of the nearly equal half-plane temperatures. This process of canceling
when x+ < 0 can be demonstrated by a numerical example.

Suppose the temperature is evaluated directly at x+ = −3, y+ = 0, and t+ = 0.5
for the heated strip located over (−1 ≤ x+ ≤ 1). The numerical value will be
calculated with seven-digit accuracy using floating-point notation appropriate for a
computer. Using Equation 6.162 with x+ = −3,

Θstrip(x+ = −3) = Θhalf -plane(−3 − 1) − Θhalf -plane(−3 + 1)

= 0.2000000E + 01 − 0.1999587E + 01

= 0.413E − 03
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Note that the two half-plane temperatures are nearly equal, so the subtraction problem
has reduced the accuracy from seven digits to three digits. Loss of accuracy is only
part of the error, however, because a computer working with seven-digit accuracy
will usually give the answer in seven digits, such as 0.4132662E–03 where the last
four digits of the mantissa are computer-generated gibberish (round-off error). Most
computers won’t tell you when this type of error occurs. Again, for the strip heater
problem, this type of error can be avoided by evaluating the temperature only at
x+ > 0 and using symmetry to find the temperature at x+ < 0.

Lack of a steady state. The heated half-plane temperature, T (x, y, t), has no
steady state. As t → ∞, the temperature increases without limit. In Equation 6.153,
this dependence on time is hidden by the normalized temperature Θ which results
in a dimensionless temperature expression that does not explicitly depend on time;
however, the actual temperature in degrees kelvin represented by Equation 6.153 and
Figure 6.15 does depend on time and there is no steady state.

It is not always clear if a semi-infinite body with heat flux boundary conditions
has a steady-state temperature. In general, a semi-infinite body will have a steady-
state temperature if a finite amount of heat ( joules) is added to the body. There are
at least three ways that a finite amount of heat can be added to a semi-infinite body:
through a heated region that is finite in spatial extent, through a short duration of
heating, or through a net zero heat flow into a body (sources and sinks of heat that
balance out). For example, the heated strip solution discussed in this section is infinite
in extent in the z-direction and an infinite amount of heat enters the body per unit
time; consequently, there is no steady state. As a counterexample, a semi-infinite
body heated over its surface for a short period and insulated thereafter always has a
steady-state temperature of zero if you wait long enough after the heating has ended;
in the limit of an infinitesimally short heating period, the temperature is similar to the
GF GX20, which goes to zero as t − τ goes to infinity.

6.9 STEADY STATE

Steady-state solutions have already been touched on in connection with the alter-
native GF solution method in Examples 6.5 and 6.6. In this section, three exam-
ples of steady heat conduction in rectangular coordinates are presented for two-
and three-dimensional geometries. For one-dimensional steady cases in rectangular
coordinates the GFs are listed in Appendix X, Tables X.1 through X.4.

Example 6.10: Rectangle Heated over Part of the y = 0 Boundary

In the rectangle (0 < x < a; 0 < y < b), the y = 0 surface has a uniform heat
flux over 0 < x < a1 and zero heat flux (insulated condition) over a1 < x < a. The
other three boundaries of the rectangle are at zero temperature. Find the steady
temperature.

Solution

This case X11B00Y21B(x5)0. The geometry is shown in Figure 6.11 and the tran-
sient temperature for this rectangle was discussed in Example 6.9. The steady
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temperature is given by

T (x , y ) = 1
k

∫ a1

x ′=0
qo GX11Y 21(x , y , |x ′, y ′ = 0) dx ′ (6.163)

Here the steady GF will be constructed from eigenfunction expansions (see Sec-
tion 4.6). There are two alternate forms of the steady GF in the rectangle. Using
eigenfunctions along the x-direction (X11) gives eigenfunctions which are sines
(see Table 4.2), so the GF has the form

GX11Y 21 = 2
a

∞∑
m=1

sin
(
βm

x
a

)
sin

(
βm

x ′
a

)
Pm(y , y ′) (6.164)

where the eigenvalues are βm = mπ. Kernel function Pm(y , y ′) is denoted case
Y21 and is given by (see Table X.4, Appendix X)

Pm(y , y ′) = −e−σ(2b−|y−y ′|) − e−σ(2b−y−y ′)

2σ(1 + e−2σb )
+ e−σ(|y−y ′|) + e−σ(y+y ′)

2σ(1 + e−2σb )
(6.165)

where σ = βm / a. Replace the GF into the temperature expression, Equation 6.163,
and carry out the integral to find

T (x , y ) = q0a
k

∞∑
m=1

sin
(mπx

a

) [
1 − cos

(mπa1
a

)]
mπ

(
e−σy − e−σ(2b−y )

σa(1 + e−2σb )

)
(6.166)

An alternate temperature expression, useful for intrinsic verification, can be con-
structed with eigenfunctions in the y -direction (Y21) and a kernel function in the
x-direction (X11).

Example 6.11: Two-Dimensional Slab Heated over a Small Region

Find the steady temperature in a two-dimensional slab caused by a uniform heat
flux q0 over a small region −a ≤ x ′ ≤ a and insulated elsewhere on one side
of the slab, and fixed temperature T0 on the other side. The region is very large in
the x-direction and has thickness L in the y -direction. This geometry is related to
the study of surface-mounted heated films.

Solution

This is the X00Y 21 geometry, and the temperature distribution in the body is driven
by heating on the surface y = 0.The geometry is shown in Figure 6.16h.The steady
temperature is given by the surface heating term of the GFSE:

T (x , y ) − T0 =
∫ a

x ′=−a

q0

k
GX00Y 21(x , y |x ′, y ′ = 0) dx ′ (6.167)

The steady GF may be found from the method of limits and by the product of two
one-dimensional transient GFs:

GX00Y 21(x , y |x ′, y ′) = lim
t→∞ α

∫ t

τ=0
GX00(x , t |x ′, τ) GY 21(y , t |y ′, τ) dτ (6.168)
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The transient GFs are available in Appendix X, and Equation 6.168 may be written

GX00Y 21(x , y |x ′, y ′) = lim
t→∞ α

∫ t

τ=0

dτ√
4πα(t − τ)

exp

[
− (x − x ′)2

4α(t − τ)

]

× 2
L

∞∑
m=1

exp

[
−β2

mα(t − τ)
L2

]
cos

[
βmy ′

L

]
cos

[
βmy

L

]
(6.169)

where βm = π(m − 1 / 2). Note that the large-time form of the function GY 21 is
used. The time integral in the above equation involves the error function and is
given in Appendix I (Table I.6, number 12). After the limit is taken, the result is

GX00Y 21(x , y |x ′, y ′) =
∞∑

m=1

1
βm

exp
[−βm|x − x ′|

L

]
cos

[
βmy ′

L

]
cos

[
βmy

L

]

(6.170)

The absolute value |x − x ′| is introduced by the time integral, and it reflects the
symmetry of the GF about (x − x ′) = 0. It also guarantees that the exponential
term dies away as |x − x ′| increases. The same form of the GF may also be found
by the method of eigenfunction expansion (Section 4.6).

Now that the GF has been found, the temperature caused by heating the body
over a small region may be found from Equation 6.167:

T (x , y ) − T0 = q0

k

∫ a

x ′=−a

∞∑
m=1

dx ′
βm

exp
[−βm|x − x ′|

L

]
cos

[
βmy

L

]
(6.171)

The absolute value must be treated carefully by examining (x − x ′) > 0 separately
from (x − x ′) < 0. The result is two expressions for the temperature depending on
the region:

T (x , y ) − T0

q0L / k
=

∞∑
m=1

cos
[

βmy
L

]
β2

m

×
{

e−βm (|x |−a) / L − e−βm (|x |+a) / L; |x | > a
2 − e−βm (|x |−a) / L − e−βm (|x |+a) / L; |x | < a

}
(6.172)

The convergence of this infinite series for |x | > a is controlled by the exponential
terms whose values rapidly go to zero with increasing m. On the heated region,
|x | ≤ a, there is a portion of the series that does not contain an exponential, and
this term causes slow convergence. The slow-converging portion of the series may
be replaced with the following identity (Beck and Cole, 2007)

∞∑
m=1

cos
[

βmy
L

]
β2

m
= 1 − y

L
(6.173)
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FIGURE 6.17 Contour plot of (normalized) temperature for X00Y21 geometry with heating
over a small region at y = 0. Region x < 0 may be inferred from symmetry.

This identity may alternately be deduced by recognizing that the temperature so-
lution in the range |x | < a has the form

T (x , y ) − T0

q0L / k
= Sy (y ) + Sxy (x , y ) (6.174)

Upon replacing the above expression into the original boundary value problem
for the two-dimensional temperature, the solution for Sy may be found by direct
integration (see homework problem 5.6).

Figure 16.17 is a contour plot of the steady temperature for this case, from
Cole and Yen (2001). The thickness is L = a and the unheated surface of the slab
at y = L is held at temperature T0. The heated region is located at y = 0 over
−a < x < a. The temperature is normalized as (T − T0) /(q0L / k ) where q0 is the
heat flux on the surface. The boundary heat flux is proportional to the slope of the
contour lines where they meet the y = 0 boundary. For example, the contours
are perpendicular to the y = 0 surface for x / a > 1 which indicates the zero-flux
conditions there.

Example 6.12: Parallelepiped with Specified Surface Temperature—
X11Z11Y11 Case

Find the steady temperature in the parallelepiped with five faces at zero tempera-
ture and one face (at x = 0) maintained at temperature T0.

Solution

The GF for this geometry was treated in Example 4.10 and the parallelepiped body
is shown in Figure 4.4. The triple-sum GF for this case is given by

G (x , y , z |x ′, y ′, z ′)

= 8
∞∑

m=1

∞∑
n=1

∞∑
p=1

sin
(
mπ

x
a

)
sin

(
mπ

x ′
a

)
sin

(
pπ

z
c

)

× sin
(

pπ
z ′
c

)
sin

(
nπ

y
b

)
sin

(
nπ

y ′
b

)[
abcπ2

(
m2

a2 + n2

b2 + p2

c2

)]−1

(6.175)
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The temperature for this case is given by the boundary term of the steady GFSE,

T (x , y , z ) = −
∫ b

y ′=0
dy ′

∫ c

z ′=0
dz ′ T0

∂G
∂n′

∣∣∣∣
x ′=0

(6.176)

where the surface integral is carried out over the x = 0 face of the parallelepiped.
The required derivative and integrals are elementary, and the temperature is

T (x , y , z ) = 8T0

∞∑
m = 1

∞∑
n = 1

∞∑
p = 1

[1 − (−1)p][1 − (−1)n]

× sin
(
mπ

x
a

)
sin

(
pπ

z
c

)
sin

(
nπ

y
b

)[
a2npπ3

(
m2

a2 + n2

b2 + p2

c2

)]−1

(6.177)

This triple summation expression is not recommended for numerical evaluation
because it converges very slowly. A better-converging temperature expression can
be found using a double-summation GF; one such GF was discussed in Exam-
ple 4.10.The double-summation GF with the kernel function along the z-direction,
is given by

G (x , y , z |x ′, y ′, z ′) =
∞∑

m=1

∞∑
n=1

sin
(
mπ

x
a

)
sin

(
mπ

x ′
a

)

× sin
(
nπ

y
b

)
sin

(
nπ

y ′
b

)
Pnm(z , z ′) (6.178)

where the kernel function Pnm is given by (Table X.4, case X11)

Pnm(z , z ′) = e−σ(2c+|z−z ′|) − e−σ(2c−z−z ′)

2σ(1 − e−2σc )
+ e−σ|z−z ′| − e−σ(z+z ′)

2σ(1 − e−2σc )
(6.179)

where σ2 =
(

n2π2

b2 + m2π

a2

)

Using this GF in the GF solution, Equation 6.176, the double-summation temper-
ature is given by

T (x , y , z ) = T0

∞∑
m=1

∞∑
n=1

sin
(
mπ

x
a

)
sin

(
nπ

y
b

) (mπ

a

) b
nπ

[1 − cos(nπ)]

×
(

1
σ2 − e−σ(c+z ) − e−σ(c−z ′)

σ2(1 − e−2σc )

)
(6.180)

The double-summation form converges much faster than the triple summation
form. Further convergence improvements are possible if the solution is written in
the form

T (x , y , z ) = T0[Sxy (x , y ) + Sxyz (x , y , z )] (6.181)
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The slower-converging term in the above equation is Sxy because it does not con-
tain any z-exponentials. The convergence speed of term Sxy (x , y ) can be improved
by recognizing that it is the solution to a certain two-dimensional heat conduction
problem in a rectangle. The double-sum form of Sxy (x , y ) in the above expression
can be replaced by a better-converging single sum form using an appropriate GF
based on eigenfunction expansions (see Crittenden and Cole, 2002).

PROBLEMS
6.1 Find the temperature in a semi-infinite body resulting from the fol-

lowing surface temperature.

T (x = 0, t) =
{

T1 0 < t ≤ t1

T2 t > t1

The initial temperature is zero. What is the number of this case?
6.2 Find the temperature in a semi-infinite body heated at the surface by

a square pulse of heat:

q(t) =
{

q0 0 < t < t1

0 t > t1

Find the steady-state temperature as t → ∞.
6.3 Suppose the surface temperature on a semi-infinite solid due to sur-

face heating is given by

T (t) − T0 = a

√
t

t0
+ b

(
t

t0

)

where a, b, and t0 are constants. Find the surface heat flux that caused
the temperature to rise.

6.4 Find the prescribed surface temperature, f (t), such that when applied
to the semi-infinite solid with zero initial condition (X10B-T 0 case),
the surface heat flux is given by

−k
∂T

∂x

∣∣∣∣
x = 0

= q0

(
t

t0

)n / 2

for n = 0, 1, 2, . . .

6.5 Consider a semi-infinite solid with a thin, high conductivity film
at −δ ≤ x ≤ 0. Let x > 0 be the semi-infinite body. Find the
temperature at x = 0 for the following heating condition:

− k
∂T

∂x
(0, t) = q0

T (x, 0) = 0

This is case X40B1T 0. Compare your answer to the X20B1T 0 case.
What is a dimensionless parameter that describes the added effect of
the thin surface film on the heated semi-infinite body at early times
after heating begins?
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6.6 Consider the same geometry as in the previous problem, but now the
surface of the thin film is suddenly heated by a convection process.
The initial temperature is zero. Find the transient temperature and
compare it to the X30B1T 0 case.

6.7 Find the small-time form of the temperature for a one-dimensional
slab geometry with one surface heated with a constant heat flux,
one surface insulated, and zero initial conditions (X22B10T 0 case).
Compare your result to the (semi-infinite) X20B1T 0 solution listed
in Table 6.3, and comment on the differences.

6.8 Derive the following expression:

∂TX2JB10T 0

∂t
(x, t) = α

k
qo GX2J (x, 0|t , 0), for J = 0, 1, 2, 3.

6.9 Based on Problem 6.8, show that for αt / L2 < 0.1 to an accuracy of
1 part in 104, that

∂TX2JB10T 0

∂t
(0, t)

∣∣∣∣
αt / L2<0.1

≈ α

k
qo

1√
παt

for J = 0, 1, 2, 3.

Verify numerically by using the exact solution for case X22B10T0.
6.10 Exponential heating is sometimes used to model runaway heating of

nuclear fuel rods. Write down the integral form of the temperature
for the following problem with exponential heating and convection
cooling. Assume that the GF has the name GX33(x, t |x′, τ). Do not
evaluate the GF. Do not evaluate the integrals.

∂2T

∂x2
+ 1

k
g(t) = 1

α

∂T

∂t

T (x, 0) = 0

−k
∂T

∂n

∣∣∣∣
xi

= h(T |xi
− T∞ ), i = 1, 2.

g(t) = g0e
at

6.11 Use the standard Green’s function solution equation (GFSE) to ob-
tain the temperature distribution for the problem

∂2T

∂x2
+ g(x)

k
= 1

α

∂T

∂t
0 < x < L t > 0

T (0, t) = T0 T (L, t) = T0 T (x, 0) = T0

where g(x) = g0 = constant for 0 < x < L1 < L

= 0 otherwise

Use the large cotime GF.
6.12 Restate Problem 6.11 in dimensionless form with new variables ξ =

x / L, η = αt / L2 and θ = (T − T0) /(g0L
2 / k). Do not solve for θ.
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6.13 Solve, using the GFSE, the problem

∂2T

∂x2
= 1

α

∂T

∂t
0 < x < L t > 0

− k
∂T

∂x

∣∣∣∣∣
x = 0

= q0 T (L, t) = T0 T (x, 0) = T0

Use the large cotime GF.
6.14 Solve Problem 6.13 using the Alternate Green’s Function Solution

Equation (AGFSE).
6.15 Solve Problem 6.13 using the GFSE with the small cotime GF.
6.16 Consider the following one-dimensional problem.

∂2T

∂x2
= 1

α

∂T

∂t
− k

∂T

∂x

∣∣∣∣
x = 0

= q0

− k
∂T

∂x

∣∣∣∣
x = L

= h(T |x = L − T∞)

and initial condition T (x, 0) = 0.
(a) Using T (x, t) = T ∗(x) + T1(x, t), write down an alternative

boundary value problem for T1(x, t), where T ∗(x) is the solu-
tion to the following steady problem.

∂2T ∗
∂x2

= 0

−k
∂T ∗
∂x

∣∣∣∣
0

= q0

− k
∂T ∗
∂x

∣∣∣∣
x = L

= h(T ∗|x = L − T∞)

(b) Carry out the transient solution using the large-cotime form of
the GF and the AGFSE. Write your answer in terms of dimen-
sionless parameters hL / k, x / L, and dimensionless tempera-
ture (T − T∞ ) /(q0L / k).

6.17 Write down the GF solution equation for the following two-
dimensional case. Do not derive the GF; do not solve the integrals.
However, use the correct form of dv and dsi . Use the name GX22Y11
(x, y, t |x′, y′, τ) in your expression.

∂2T

∂x2
+ ∂2T

∂y2
+ g0

k
= 1

α

∂T

∂t
g0 is constant

T (x, y, 0) = ax + by + c

∂T

∂x
(x = 0, y, t) = 0

∂T

∂x
(x = Lx , y, t) = 0

T (x, y = 0, t) = T0

T (x, y = Ly , t) = 0
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6.18 Consider the surface temperature on a semi-infinite body heated over
two infinite strips of equal size, case X00T 0Y20B(x5).
(a) Find the surface temperature resulting from the following anti-

symmetric heat flux distribution:

q(x, t) =




0 t = 0

−q0 t > 0 − b < x < −a

+q0 t > 0 a < x < b

0 t > 0 otherwise

(b) Where does the maximum temperature occur?
(c) Plot the steady state surface temperature T (x, y = 0).

6.19 Find the surface temperature T (x, y, t) on a semi-infinite body heated
by a line source located at x = 0, y = 0. The surface heating is
given by:

q(x, t) =
{

0 t = 0

q0δ(x) t > 0

6.20 Find the steady-state temperature at y = 0 for the X00T 0Y21B(x5)0
case (strip heat source) as follows:
(a) First find the integral form of the transient temperature with

the large-time form of the GF. The boundary conditions are the
following:

T (x, y = D, t) = 0

− k
∂T (x, 0, t)

∂y
=

{
q0 −a < x < a

0 elsewhere

T (x → −∞, y, t) = 0

T (x → +∞, y, t) = 0

T (x, y, 0) = 0

(b) Evaluate the temperature at y = 0 and evaluate the integrals.
(c) Suggest one method to improve the convergence of the series

expression.
6.21 A rectangle 0 ≤ x ≤ L, 0 ≤ y ≤ L is initially at temperature

zero. Surfaces y = 0, y = L, and x = L are insulated. Surface
x = 0 is heated by constant heat flux q0 over 0 < y < L / 2 and
is insulated over L / 2 < y < L. Find the temperature at location
x = 0, y = 0 as a function of time.
(a) Using large-cotime GFs.
(b) Using time-partitioning at α∆t / L2 = 0.005.

6.22 Solve the following problem of two-dimensional heat flow.

∂2T

∂x2
+ ∂2T

∂y2
= 1

α

∂T

∂t

T (0, y, t) = T (a, y, t) = T (x, b, t) = T0, T (x, y, 0) = T0

T (x, 0, t) =
{

T1 �= T0 for 0 < x < a1 < a

T0 for a1 < x < a
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(a) Use the GFSE with large-cotime GFs.

(b) Use the GFSE with small-cotime GFs.
6.23 Starting with the transient GF for case X31 for the body with con-

vection at x = 0 and a zero temperature at x = L, show that (a) in
the limit as h → ∞ the GF reduces to case X11, and (b) in the limit
as h → 0 the GF reduces to case X21.

6.24 Starting with the steady-fin GF for case X13 (Table X.4, Appendix
X), show that (a) in the limit as h2 → ∞ the GF reduces to (steady
fin) case X11, and (b) in the limit as h2 → 0 the GF reduces to
(steady fin) case X12.

6.25 Consider the steady temperature in a rectangular fin which satisfies

d2T

dx2
− m2(T − T∞ ) = 0 (6.182)

where m2 = 2h /(dk), h is a heat transfer coefficient (W/m2/K), d

is the fin thickness, k is the fin conductivity (W/m/K), and T∞ is
the fluid temperature. The boundary at x = 0 has T = T0 and the
boundary at x = L has dT / dx = 0. Find the temperature in the fin
using the steady-fin GF given in Table X.4, Appendix X. Compare
your result for T (x) to that given in a heat transfer text for the fin
with an insulated tip and comment on the differences. (Hint: you will
need cosh and sinh.)

6.26 Find the steady temperature in the rectangle with one side at ele-
vated temperature and the other three sides at zero temperature, case
X11B10Y11B00.

6.27 (a) Find an integral expression for a semi-infinite body heated at
the surface over a rectangular area (three-dimensional prob-
lem). This is the X00Y00Z20B(x5y5)T 0 case. The surface
heating is given by

−k
∂T (x, y, z = 0, t)

∂y
=




q0 −a < y < a

−b < x < b t > 0

0 elsewhere on surface

Initially the temperature is zero.

(b) Find the average temperature on the rectangle in the form of an
integral on τ (evaluate spatial integrals).

6.28 Solve, using the GFSE, the problem

∂2T

∂x2
+ g0e

−x / x0

k
= 1

α

∂T

∂t
+ 1

α
U0

∂T

∂x
0 < x < ∞

T (0, t) = T0, T (x, 0) = 0

The quantities, g0, U0, and x0, are constants. What is the number of
this case?
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7.1 INTRODUCTION

Heat conduction in geometries described by the cylindrical coordinate system (r , φ, z)
are discussed in this chapter. Transient radial heat flow is covered in Sections 7.2
through 7.7, for the infinite body, the long cylinder, and the infinite body with a
cylindrical hole. The thin shell is discussed in Section 7.8. The use of limiting cases
for two- and three-dimensional bodies is discussed in Section 7.9. Two-dimensional
transient heat transfer is discussed in Sections 7.10 through 7.12 for finite cylinders
and for a disk heat source on a semi-infinite body. Several steady-state cases are given
in Section 7.13.

7.2 RELATIONS FOR RADIAL HEAT FLOW

Temperature and Green’s functions (GFs) for radial flow of heat in the cylindrical
coordinate system (r, φ, z) are discussed in this section. For radial flow of heat, the
temperature depends on position r and time t, and the heat conduction equation has
the form

1

r

∂

∂r

[
r
∂T

∂r

]
+ 1

k
g(r , t) = 1

α

∂T

∂t
(7.1)

That is, the temperature does not depend on φ or z. The radial GF equation is given by

T (r , t) =
∫

r ′
G(r , t |r ′, 0) F (r ′) 2πr ′dr ′ + α

s∑
i=1

(ρcb)i
ki

× G(r , t |ri , 0) F (ri) 2πri (for boundary conditions
of fourth and fifth kinds only)

+
∫ t

τ=0

∫
r ′

α

k
G(r , t |r ′, τ)g(r ′, τ) 2πr ′dr ′ dτ

+ α

∫ t

τ=0

s∑
i=1

fi(ri , t)

ki

(for boundary conditions of the
second through fifth kinds)

× G(r , t |ri , τ) 2πri dτ

− α

∫ t

τ=0

s∑
j=1

fj (rj , t)

× ∂G

∂n′
j

∣∣∣∣∣
r ′=rj

2πrj dτ (for boundary condition of the
first kind only) (7.2)

237
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z

φ
r

Infinite body

ŕ

FIGURE 7.1 Cylindrical surface heat source located at r ′.

Note that dv ′ = 2πr ′dr ′, and the integrals over boundary surface si have been
replaced by 2πri , the area per unit length. Equation 7.2 may be applied to bodies with
boundary conditions of type 0 through 5. However, the radial heat flow GF actually
listed in this book (Appendix R) are denoted GRIJ (·), where I , J = 0, 1, 2, and 3.

7.3 INFINITE BODY

7.3.1 THE R00 GREEN’S FUNCTION

The GF for the radial flow of heat in the infinite body is denoted GR00(r , t |r ′, τ). This
GF can be interpreted as the response to a cylindrical surface heat source located at
radius r ′ (refer to Figure 7.1), and it is given by

GR00(r , t |r ′, τ) = 1

4πα(t − τ)
exp

[−(r2 + r ′2)

4α(t − τ)

]
I0

[
rr ′

2α(t − τ)

]
(7.3)

for 0 ≤ r ≤ ∞ and 0 ≤ r ′ ≤ ∞. The function I0(·) is the modified Bessel function
of the first kind of order zero [I0(0) = 1 and I0(z → ∞) = ∞]. Refer to Appendix B
for more information on the Bessel functions. The units of GR00 are (meters)−2. Note
that the reciprocity relation holds for this GF because r and r ′ can be reversed and
the function is unchanged.

In the special case where r ′ = 0, the cylindrical source that generates the function
GR00(·) collapses into a line source located at r ′ = 0, given by

GR00(r , t |0, τ) = 1

4πα(t − τ)
exp

[ −r2

4α(t − τ)

]
(7.4a)

Recall that a line source can also be represented by the product of two plane sources,
and that r ′ = 0 corresponds to the point x ′ = 0, y′ = 0. Thus, the identity is

GR00(r , t |0, τ) = GX00(x, t |0, τ) GY00(y, t |0, τ) (7.4b)

This product solution also demonstrates that the units of GR00(·) are m−1m−1 = m−2.

7.3.2 DERIVATION OF THE R00 GREEN’S FUNCTION

There are several ways to derive the R00 GF from first principles (Ozisik, 1993,
p. 107; Carslaw and Jaeger, 1959, p. 259).The following derivation involves an infinite
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body with heat generation in rectangular coordinates. The GFSE in two-dimensional
rectangular coordinates is given by

T (x, y, t) = α

k

∫ t

τ=0

∫
x′

∫
y′

GX00Y00(x, y, t |x′, y′, τ) g(x′, y′, τ) dy′ dx ′ dτ (7.5)

The appropriate heat generation term is an instantaneous cylindrical surface heat
source shown in Figure 7.1 and given by

g(x ′, y′, τ) = g0
δ(τ − τ0) δ(r ′ − r0)

2πr0
(7.6)

Parameter r0 is the radius of the cylindrical surface heat source that introduces heat at
time τ0 and g0 (J/m) is the strength of the heat source per unit length of the cylindrical
surface. [The strength of the heat source per unit area is g0 /(2πr0)].

The appropriate two-dimensional GF in rectangular coordinates is given by

GX00Y00(x, y, t |x′, y′, τ) = 1

4πα(t − τ)
exp

[
− (x − x ′)2 + (y − y ′)2

4α(t − τ)

]
(7.7)

Recall that GX00Y00 represents the response to an instantaneous line heat source
located at (x′, y′, τ), and that GX00Y00 = GX00 GY00.

To evaluate the temperature in Equation 7.5, the integral over the infinite body
must be changed to cylindrical coordinates. First, the distance between points (x, y)
and (x ′, y′) that appears in the expression for GX00Y00 must be converted to cylindrical
coordinates. If the cylindrical coordinates of points (x, y) and (x′, y′) are (r , φ) and
(r ′, φ′), respectively, then the distance between these points is given by

R2 = (x − x ′)2 + (y − y ′)2 = r2 + (r ′)2 − 2rr ′ cos(φ − φ′) (7.8)

Second, the spatial integrals in Equation 7.5 that extend over the entire (x ′, y′) plane,
where dA = dx′dy ′ must be converted to equivalent integrals in the (r ′, φ′) coordinate
system over 0 ≤ r ′ < ∞ and 0 ≤ φ′ ≤ 2π with dA = r ′ dr ′ dφ′. Then Equation 7.5
can be combined with Equations 7.6 through 7.8 to give

T (r , φ, t) = α

k

∫ t

τ=0

∫ ∞

r ′=0

∫ 2π

φ′=0

{
1

4πα(t − τ)
exp

[
− r2 + (r ′)2 − 2rr ′ cos(φ − φ′)

4α(t − τ)

]

× g0
δ(τ − τ0) δ(r ′ − r0)

2πr0

}
dτ r ′ dr ′ dφ′ (7.9)

The integrals over r ′ and τ can be evaluated easily with the sifting property of the
Dirac delta functions:

T (r , φ, t) = α

k

∫ 2π

φ′=0
dφ′

{
r0

4πα(t − τ0)
exp

[
− r2 + r2

0 − 2rr0 cos(φ − φ′)
4α(t − τ0)

]
g0

2πr0

}

= α

k

g0 /(2π)

4πα(t − τ0)
exp

[
−(r2 + r2

0 )

4α(t − τ0)

]∫ 2π

φ′=0
exp

[
rr0 cos(φ − φ′)

2α(t − τ0)

]
dφ′

(7.10)
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TABLE 7.1
Approximate Expressions for GR00 (r, t | r′, τ) Listed in Appendix R

Equation Number
Range of Application Error (%) in Appendix R

α(t − τ)

rr′ < 0.25 0.016 R00.4

α(t − τ)

rr′ > 0.33 −0.012 R00.5

α(t − τ)

r2
large and

α(t − τ)

(r ′)2
large R00.6

The final integral on φ′ is given by Watson (1944). The GF is given by the temperature
divided by the source strength, or

GR00(r , t |r0, τ0) = T (r , φ, t)

αg0 / k

= 1

4πα(t − τ0)
exp

[
−(r2 + r2

0 )

4α(t − τ0)

]
I0

[
rr0

2α(t − τ0)

]
(7.11)

Note that the result does not depend on angle φ. Finally, the GF is usually written
with the heat source located at (r ′, τ) instead of at (r0, τ0), to give the same result as
in Equation 7.3.

7.3.3 APPROXIMATIONS FOR THE R00 GREEN’S FUNCTION

The R00 GF usually must be integrated to find the temperature, but it is not an easy
function to integrate. Most integrals of function GR00 must be evaluated numerically
unless a simple approximate expression can be found. A few approximate expressions
for GR00 are listed in Appendix R, and Table 7.1 is a reference list of these approxima-
tions. These approximations are composed of exponentials and powers and they are
generally easier to manipulate than the exact expression for GR00. Table 7.1 lists the
region of application, the maximum error, and the location in Appendix R of several
approximate expressions for GR00.

7.3.4 TEMPERATURES FROM INITIAL CONDITIONS

The temperature in an infinite body resulting from a nonuniform initial condition is
given by the Green’s function solution equation (GFSE) as

T (r , t) =
∫

r ′
GR00(r , t |r ′, 0) F (r ′) 2πr ′ dr ′ (7.12)
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In this section, the above integral is discussed for the specific case of a uniform initial
temperature near the origin and zero temperature elsewhere:

F (r ′) =
{

T0 0 ≤ r ′ ≤ a

0 r ′ > a
(7.13)

This is the R00T 5 case. The transient temperature is given by

T (r , t) = T0

∫ a

r ′=0
GR00(r , t |r ′, 0) 2πr ′ dr ′

= T0

4παt

∫ a

r ′=0
exp

[−(r2 + r ′2)

4αt

]
I0

[
rr ′

2αt

]
2πr ′ dr ′ (7.14)

Note that the integral is written over 0 ≤ r ′ ≤ a because F (r ′) is zero elsewhere.
In general, this integral must be evaluated numerically, and some numerical values
of this integral are listed in Table R00.1 in Appendix R.

Over the region 0 ≤ r < a / 2, the temperature given by Equation 7.14 remains
within 0.03% of T0 for small values of the time parameter (αt / a2 < 0.01). That is,
T (r = a / 2, αt / a2 = 0.01) = 0.9997 T0.

Several approximate closed form expressions are also available for the integral
given by Equation 7.14, and these expressions are listed in Appendix R. For example,
for αt / a2 < 0.25 and at r / a = 1.0, the temperature resulting from initial tempera-
ture T0 over 0 ≤ r ′ ≤ a is given approximately by Equation R00.9, Appendix R:

T (r , t)

T0
= 1

2

[
1 −

( u

π

)1 / 2 − 1

4
√

π
u3 / 2

]
where u = αt

a2
(7.15)

Equation 7.15 and several other approximate expressions for the integral given by
Equation 7.14 are summarized in Table 7.2 with their region of application, maximum
error, and location in Appendix R. Some of the expressions referenced in Table 7.2
have been found by integration of the expressions for GR00 referenced in Table 7.1.

TABLE 7.2
Approximate Closed-Form Expressions for

∫a
r′=0 GR00(r, t |r′, τ) 2πr′ dr′

Equation Number
Range of Application Error (%) in Appendix R

u < 0.1, r / a ≥ 1 R00.7
u < 0.25, r / a = 1 1.3 R00.9
u < 0.01, 0.5 < r / a < 1 0.03 R00.10
u ≥ 0.25, (r / a)2 /(4u) small −0.016 R00.11

Note: (1) u = α(t − τ) / a2. (2) As a → ∞, the integral approaches the value 1.0.



T&F Cat # K10695, Chapter 7, Page 242, 12-6-2010

242 Heat Conduction Using Green’s Functions

In the special case r = 0, the temperature in the infinite body in Equation 7.14
may be found in closed form. This temperature is given by Equation 7.14 evaluated
at r = 0:

T (r = 0, t) = T0

4παt

∫ a

r ′= 0
exp

[−r ′2

4αt

]
2πr ′ dr ′ (7.16a)

Note that I0(0) = 1. This integral can be evaluated by a change of variables to
z = r ′ /(4αt)1 / 2 to give

T (0, t) = 2T0

∫ a /(4αt)1 / 2

z=0
e−z2

z dz = T0

(
1 − exp

−a2

4αt

)
(7.16b)

This expression is exact for all t . Thus, the temperature at r = 0 decays with time as
(1 − e−1 / 4u), where u = αt / a2, the time parameter.

7.4 SEPARATION OF VARIABLES FOR RADIAL HEAT FLOW

In this section the separation of variables method is used to show how the Bessel
functions arise for cylindrical geometries. For the geometries RIJ, I = 0, 1, 2, 3,
and J = 1, 2, 3, the large-time GFs can be derived by this method. For further
discussion of the separation of variables method for cylinders, refer to Ozisik (1993,
Chapter 3). It is important to note that Ozisik’s notation for GFs in cylindrical and
spherical coordinates differs from this book by a factor of (2π); that is, G (Ozisik,
1993)/2π = G (this volume).

In this section the separation of variables technique will be demonstrated with the
R01 GF (solid cylinder with temperature boundary conditions), but the method also
applies to hollow cylinders. Consider the following initial-value problem for a solid
cylinder:

1

r

∂

∂r

[
r
∂T

∂r

]
= 1

α

∂T

∂t
(7.17)

T (b, t) = 0 (7.18)

T (0, t) < M where M is a finite constant (7.19)

T (r , 0) = F (r) (7.20)

The initial condition is an arbitrary function of position. There is no energy generation
and the boundary condition at r = b is homogeneous. An equivalent boundary con-
dition at r = 0 is that the temperature is symmetric, ∂T / ∂r = 0. The same solution
can be derived with either condition.

The separation of variables technique produces a series solution of the form

T (r , t) =
∞∑

n=1

Tn(r , t) (7.21)

where Tn(r , t) satisfies the differential equation and the boundary conditions. Individ-
ually the Tn(r , t) solutions do not satisfy the initial condition given by Equation 7.20,
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and the series form is used precisely to satisfy the initial condition. The issue of
convergence raised by the infinite series in Equation 7.21 is an important one, but for
the purpose of this book, the solution converges for heat conduction problems and
the results are physically meaningful.

The separation of variables method assumes that the solutions Tn(r , t) have the
form

Tn(r , t) = R(r) θ(t) (7.22)

That is, the dependence on r and t has been separated into a product of a function of
position and a function of time. The function Tn must satisfy the differential equation

∂2Tn

∂r2
+ 1

r

∂Tn

∂r
= 1

α

∂Tn

∂t
(7.23)

Substitute Equation 7.22 in Equation 7.23 to give, after some rearrangement,

1

R

[
∂2R
∂r2

+ 1

r

∂R
∂r

]
= 1

αθ

∂θ

∂t
= −λ2 (7.24)

The negative constant −λ2 is introduced because (a) a function of r set equal to a
function of t must both be equal to a constant function, and (b) the negative value is
required to give physically meaningful results for θ(t). Equation 7.24 represents two
ordinary differential equations. The equation for R is

d2R
dr2

+ 1

r

dR
dr

+ λ2R = 0 (7.25a)

This is the Bessel equation of order zero, and the elementary solutions are

R(r) = A J0(λr) + B Y0(λr) (7.25b)

where J0(·) and Y0(·) are Bessel functions of order zero and A and B are constants.
A graph of these functions in shown in Figure 7.2.

The differential equation for θ(t) is

dθ

dt
+ λ2αθ = 0 (7.26a)

and the elementary solution is

θ(t) = C e−λ2αt (7.26b)

where C is a constant. Thus, the solution Tn(r , t) is given by Equation 7.23, with
Equations 7.25b and 7.26b:

Tn(r , t) = e−λ2
nαt [AnJ0(λnr) + BnY0(λnr)] (7.27)

Here new names have been given to the constants λn, An, and Bn, which must be
determined from the boundary conditions and the initial condition for each geometry.
Up to this point the analysis applies to both solid and hollow cylinders.
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FIGURE 7.2 Bessel functions J0(x), Y0(x), J1(x), Y1(x).

Next, the boundary conditions are applied to the general solution given by Equa-
tion 7.27, so the following analysis applies only to the R01 geometry. At r = 0, the
natural boundary condition given by Equation 7.19 yields

lim
r→0

e−λ2
nαt [An J0(λnr) + Bn Y0(λnr)] �= ∞ (7.28)

In the limit as r → 0, the function J0(λnr) approaches one (1), but the function
Y0(λnr) becomes infinite. The term containing Y0(λnr) does not belong in the solution,
and Equation 7.28 can be satisfied only by

Bn = 0 (7.29)

Next the temperature boundary condition at r = b given by Equation 7.18 is applied
to the general solution to give

Tn(b, t) = 0 = e−λ2
nαtAnJ0(λnb) or 0 = AnJ0(λnb) (7.30)

The exponential is never zero, so it may be canceled out. The constant An cannot be
zero or the entire solution will be identically zero, a trivial result. Equation 7.30 is
satisfied by choosing

J0(βn) = 0 (7.31)

where βn = λnb are the dimensionless eigenvalues for n = 1, 2, and so on. There are
an infinite number of eigenvalues that are distinct for each cylinder geometry. The
first few eigenvalues are listed in Appendix B for the cylinder cases R01, R02, R03,
R11, R12, and R22.
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Next, the initial condition must be satisfied. So far, the complete solution has the
form

T (r , t) =
∞∑

n=1

e−β2
nαt / b2

AnJ0

(
βnr

b

)
(7.32)

The initial condition requires that

T (r , 0) = F (r) =
∞∑

n=1

AnJ0

(
βnr

b

)
(7.33)

The initial condition can be satisfied if an arbitrary function F (r) can be expressed as
an infinite series of Bessel functions. In Chapter 4, expansions of arbitrary functions
in terms of Fourier sine and cosine series arose from one-dimensional plate cases.
Fourier series are a special case of the general theory of orthogonal functions (Wylie
and Barrett, 1995). Bessel functions are simply another class of functions for which
infinite-series expansions are possible, and the infinite series expansion is needed to
satisfy the initial condition.

The orthogonality condition for J0(·) on 0 ≤ r ≤ b is (Appendix B)∫ b

0
J0

(
βmr

b

)
J0

(
βnr

b

)
2πr dr =

{
0 m �= n

πb2J 2
1 (βn) m = n

(7.34a)

To apply the orthogonality condition to find An, multiply Equation 7.33 by J0(βmr / b)
and integrate over the volume of the cylinder (0 ≤ r ≤ b):∫ b

0
J0

(
βmr

b

)
F (r) 2πr dr =

∫ b

0

∞∑
n=1

AnJ0

(
βnr

b

)
J0

(
βmr

b

)
2πr dr (7.34b)

The orthogonality condition applied to the right-hand side of Equation 7.34b gives
exactly one nonzero term from the infinite series, at m = n. Solving for An gives

An = 1

πb2J 2
1 (βn)

∫ b

0
J0

(
βnr

′

b

)
F (r ′) 2πr ′ dr ′ (7.35)

Note that the subscript n is really a dummy subscript, and any letter could be substi-
tuted. Also, the variable of integration has been written as r ′, as it too is a dummy
variable.

Next, replace An into the solution given by Equation 7.32 to give the particular
solution to the initial-value problem (case R01B0T -),

T (r , t) =
∞∑

n=1

e−β2
nαt / b2

∫ b

r ′=0

J0(βnr
′ / b)J0(βnr / b)

πb2J 2
1 (βn)

F (r ′) 2πr ′ dr ′ (7.36)

After some rearrangement, this solution can be written

T (r , t) =
∫ b

r ′=0
F (r ′)

[
1

πb2

∞∑
n=1

e−β2
nαt / b2 J0(βnr

′ / b)J0(βnr / b)

J 2
1 (βn)

]
2πr ′ dr ′ (7.37)
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This is the separation of variables result for the temperature resulting from an arbitrary
initial condition on the R01 geometry.

Finally, the GF can be deduced from the separation of variables solution by also
solving the initial value problem (Equations 7.17 through 7.20) with the GFSE to give

T (r , t) =
∫ b

r ′=0
F (r ′)

[
GR01(r , t |r ′, 0)

]
2πr ′ dr ′ (7.38)

Equations 7.37 and 7.38 are solutions to the same boundary value problem, and since
a boundary value problem has only one unique solution, the expression in brackets
in Equation 7.37 must be identically GR01(r , t |r ′, 0), the GF evaluated at τ = 0:

GR01(r , t |r ′, 0) = 1

πb2

∞∑
n=1

e−β2
nαt / b2 J0(βnr

′ / b) J0(βnr / b)

J 2
1 (βn)

(7.39)

The last step in finding the GF from the separation of variables solution is to replace
(t − 0) in Equation 7.39 by (t − τ). Recall that the time dependence of all GFs is in
the form (t − τ). Then,

GR01(r , t |r ′, τ) = 1

πb2

∞∑
n=1

e−β2
nα(t−τ) / b2 J0(βnr

′ / b) J0(βnr / b)

J 2
1 (βn)

(7.40)

This GF is also listed in Appendix R.
This method for finding the large-time GFs can be used on all of the solid cylinder

and hollow cylinder cases, denoted GRIJ for which I = 0, 1, 2, 3 and J = 1, 2, 3. It
is not necessary to derive these GFs, however, since they are listed in Appendix R.

7.5 LONG SOLID CYLINDER

Some worked examples are next discussed for the temperature in long solid cylin-
ders. Time partitioning is introduced on a case-by-case basis because the choice of
an appropriate small-time GF depends on time, on geometry, and on location in
the cylinder.

7.5.1 INITIAL CONDITIONS

Example 7.1: Solid Cylinder with Zero Surface Temperature—R01B0T-
Case

Find the temperature in a solid cylinder, 0 ≤ r ≤ b, with initial temperature F (r )
and a boundary temperature fixed at T = 0.

Solution

This is the R01B0T - case and it was examined in Section 7.4. The temperature is
given by Equation 7.37, where the expression in brackets is the GF GR01(r , t |r ′, 0).
The eigenvalues βn are defined by the eigencondition J0(βn) = 0, and the first 10
values of βn are listed in Appendix B. The integral on r ′ acts on just a portion of
Equation 7.37:
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T (r , t ) = 1
πb2

∞∑
n=1

e−β2
nαt / b2 J0(βnr / b)

J2
1 (βn)

∫ b

r ′=0
F (r ′) J0

(
βnr ′

b

)
2πr ′ dr ′ (7.41)

(a) Case R01B0T1. If the initial temperature is uniform, F (r ) = T0, then the
above integral is given by∫ b

r ′=0
J0

(
βnr ′

b

)
2πr ′dr ′ = 2πb2 J1(βn)

βn
− 0 (7.42)

and the temperature resulting from initial temperature T0 becomes (case R01B0T 1)

T (r , t ) = 2T0

∞∑
n=1

e−β2
nαt / b2 J0(βnr / b)

βn J1(βn)
(7.43)

For αt / b2 small, the temperature near the center of the cylinder (at r = 0) remains
at T0, because the effect of the surface temperature has not yet penetrated to the
center of the cylinder.

(b) Case R01B0T5. For the initial condition

F (r ) =
{

T0 0 ≤ r ≤ a
0 a < r ≤ b

the temperature is given by

T (r , t ) = 2 T0
a
b

∞∑
n=1

e−β2
nαt / b2 J1(βna / b) J0(βnr / b)

βnJ2
1 (βn)

(7.44)

This solution converges efficiently for large values of time. Small time expressions
for the temperature for the case when a / b �= 1 can be found by approximating the
cylinder as an infinite body. Initially, heat diffuses outward from the point r = a,
and it takes a little time before the diffusion is influenced by the zero-temperature
boundary at r = b. During this small time period, the temperature distribution
is identical to that in an infinite body with the same initial condition. Thus, the
appropriate early-time GF is GR00, and the expressions referenced in Table 7.2
(integral of GR00) may be used to find the temperature at small times. The criterion
for small time is αt /(b − a)2 small (<0.01) because it is the distance between the
initial temperature region and the boundary, (b −a), that determines the time span
of infinite-body behavior.

Example 7.2: Solid Cylinder with Surface Convection—R03B0T1 Case

Find the transient temperature in a cylinder initially at temperature T0 that is sud-
denly quenched in a large tank of fluid at temperature T∞ with heat transfer coef-
ficient h.

Solution

The boundary and initial conditions are given by

T is finite as r → 0

−k
∂T (b, t )

∂r
= h(T (b, t ) − T∞)

T (r , 0) = T0 (7.45)
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This boundary value problem has two nonhomogeneous conditions resulting from
the two temperatures T0 and T∞.Two integrals from the GFSE are needed to directly
describe this problem; however, one nonhomogeneous condition can be removed
by defining a new variable (T − T∞). The new boundary and initial conditions are
given by

(T − T∞) is finite as r → 0

−k
∂(T − T∞)

∂r

∣∣∣∣
r=b

− h(T |r=b − T∞) = 0

T (r , 0) − T∞ = (T0 − T∞) (7.46)

Note that the boundary condition at r = b is now homogeneous in terms of
variable (T − T∞). Variable T − T0 could have been chosen, but it would result
in a form of the solution less well suited to numerical evaluation at small values
of dimensionless time. The temperature in the cylinder is now given by the initial
condition term of the GFSE:

T (r , t ) − T∞ =
∫ b

r ′=0
(T0 − T∞) GR03(r , t |b, 0) 2πr ′ dr ′ (7.47)

Using the R03 GF listed in Appendix R gives

T (r , t ) − T∞ = (T0 − T∞)
∫ b

r ′=0

∞∑
n=1

e−β2
nαt / b2

× β2
n J0(βnr / b) J0(βnr ′ / b)

πb2(B2 + β2
n)J2

0 (βn)
2πr ′ dr ′ (7.48)

where B = hb / k (the Biot number) and eigenvalues βn are the roots of

−βnJ1(βn) + B J0(βn) = 0 (7.49)

Values of βn for several values of B are given in Carslaw and Jaeger (1959).
The integral on r ′ in Equation 7.48 was given earlier in Example 7.1, so the

temperature in the cylinder is given by

T (r , t ) − T∞ = 2(T0 − T∞)
∞∑

n=1

e−β2
nαt / b2 βnJ1(βn) J0(βnr / b)

(B2 + β2
n) J2

0 (βn)
(7.50)

This temperature is plotted in Figure 7.3 for specific case hb / k = 5. Note that the
slope at r = b varies with time according to the temperature there.

7.5.2 BOUNDARY CONDITIONS

Example 7.3: Solid Cylinder with Elevated Surface Temperature—
R01B1T0 Case

Find the temperature in a solid cylinder, 0 ≤ r ≤ b, that has zero initial condition
and has temperature T0 suddenly applied at boundary r = b.
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FIGURE 7.3 Solid cylinder initially at T0 and cooled by surface convection with hb / k = 5
and fluid temperature T∞. This is case R03B0T 1 discussed in Example 7.2.

Standard Solution

The temperature resulting from a boundary temperature is given by the last term
of Equation 7.2 with rj = b:

T (r , t ) = −α

∫ t

τ=0
T0

∂G
∂n′

∣∣∣∣
r ′=b

2πb dτ (7.51)

The required R01 GF and its derivative ∂GR01 / ∂n′ is given in Appendix R, so the
integral in Equation 7.51 is given by

αT0

∫ t

τ=0

2
b2

∞∑
n=1

e−β2
nα(t−τ) / b2 βnJ0(βnr / b)

J1(βn)
dτ (7.52)

and the eigenvalues are given by J0(βm) = 0. The integral on τ is easily evaluated
to give

T (r , t ) = 2T0

∞∑
n=1

(
1 − e−β2

nαt / b2) J0(βnr / b)
βnJ1(βn)

(7.53)

This solution suffers from poor numerical convergence which can be made clear
by writing the solution as the sum of two series,

T (r , t ) = 2T0

∞∑
n=1

J0(βnr / b)
βnJ1(βn)

− 2T0

∞∑
n=1

e−β2
nαt / b2 J0(βnr / b)

βnJ1(βn)
(7.54)

The first series converges slowly and it does not depend on the dimensionless time.
Time partitioning could be used to find a temperature expression that converges
more efficiently, but in this case there is a simple alternative solution.
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Alternative Solution

The alternative solution method discussed in Chapter 3 is useful for improving the
numerical convergence of the temperature driven by nonhomogeneous boundary
conditions. In this case, the steady-state solution is simply T (r , t → ∞) = T0.
Let the known solution be T ∗(r , t ) = T0, and let the unknown temperature be
given by T (r , t ) = T ∗(r , t ) + T ′(r , t ). Temperature T ∗ is of course also a solution to
the transient energy equation. A new solution is now sought for the temperature
T ′(r , t ) = T (r , t ) − T ∗(r , t ) subject to the following boundary value problem:

∂2T ′
∂r2 + 1

r
∂T ′
∂r

= 1
α

∂T ′
∂t

T ′(b, t ) = T (b, t ) − T ∗(b, t ) = T0 − T0 = 0 (7.55)

T ′(r , 0) = T (r , 0) − T ∗(r , 0) = 0 − T0

Then the alternative solution is given by Equation 3.66:

T (r , t ) = T0 +
∫ b

r ′=0
(−T0)

×
[ ∞∑

n=1

e−αβ2
nt / b2 J0(βnr ′ / b) J0(βnr / b)

πb2J2
1 (βn)

]
2πr ′ dr ′ (7.56)

Effectively, the boundary heating problem has been transformed into an initial
heating problem, and this integral has been solved previously as in Example 7.1:

T (r , t ) = T0 − T0

∞∑
n=1

e−αβ2
nt / b2 J0(βnr / b)

βn J1(βn)
(7.57)

This expression converges better than Equation 7.54 for all values of αt / b2.

Example 7.4: Solid Cylinder with Heating at the Surface—R02B1T0 Case

A cylinder whose initial temperature is zero is heated by a suddenly applied surface
heat flux q0. Find (a) the surface temperature on the cylinder at early time, and (b)
the spatial average temperature in the cylinder at any time.

Solution

The boundary conditions are given by

∂T (0, t )
∂r

= 0 (symmetry condition)
(7.58)

−k
∂T (b, t )

∂r
= q0 T (r , 0) = 0

(a) Surface temperature at early time. The surface temperature is given by the
GFSE evaluated at r = b:

T (b, t ) = α

∫ t

τ=0

q0

k
GR02(b, t |b, τ) 2πb dτ (7.59)

For small times, only the small-cotime form of the GF is needed to find the tem-
perature. For the GR02 small-cotime form, Equation R02.5 from Appendix R is
appropriate:
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GR02(b, t |b, τ) ≈ 1
2πb2

[
1√
π

(u)−1 / 2 + 1
2

+ 3
4
√

π
(u)1 / 2 + 3

8
u
]

(7.60)

where u = α(t −τ) / b2 < 0.1.Then the surface temperature can be written in terms
of the integral given by Equation 7.59 with a change of variable to u = α(t −τ) / b2:

T (b, t ) ∼=
∫ αt / b2

u=0

q0b
k

[
1√
π

(u)−1 / 2 + 1
2

+ 3
4
√

π
(u)1 / 2 + 3

8
u
]

du (7.61)

and the time integral can be evaluated to give

T (b, t ) ∼= q0b
k

[
2√
π

(
αt
b2

)1 / 2
+ 1

2

(
αt
b2

)

+ 1
2
√

π

(
αt
b2

)3 / 2
+ 3

16

(
αt
b2

)2
]

(7.62)

for αt / b2 < 0.1. In the above expression, the first term inside the brackets

2√
π

(
αt
b2

)1 / 2

is the same as the temperature on a plane wall caused by a suddenly applied heat
flux. From this perspective, the next term (αt / 2b2) is the first correction term for
the curvature of the cylinder wall (Beck et al., 1985).

(b) Spatial average temperature. The spatial average temperature in the cylinder
may be found from an overall energy balance on the cylinder

qin = qstorage or q0 = ρcπb2 ∂Tav

∂t
(7.63)

This may be integrated from the initial temperature of zero to find

Tav(t ) = q0t
ρcπb2 (7.64)

Note that the spatial average temperature increases linearly with time. The same
behavior occurs in a body with uniform energy generation if the boundary is
insulated (R02B0T 0G1); in both cases there is heating specified and no heat loss.

7.5.3 VOLUME ENERGY GENERATION

In this section two examples are given of long solid cylinders with volume energy
generation.

Example 7.5: Solid Cylinder with Uniform Energy Generation—
R01B0T0G1 Case

A cylinder is initially at zero temperature and the boundary at r = b is maintained
at T = 0. Find the temperature in the cylinder resulting from a uniform volume
energy generation g0 (W/m3).
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Solution

The temperature is given by the GFSE:

T (r , t ) =
∫ t

τ=0

∫ b

r ′=0

α

k
g0 GR01(r , t |r ′, τ) 2πr ′ dr ′ dτ (7.65)

Using the large-cotime form of GR01 from Appendix R, the temperature is given by

T (r , t ) = 2
g0b2

k

∞∑
n=1

(
1 − e−β2

nαt / b2
) J0(βnr / b)

β3
n J1(βn)

(7.66)

where the eigenvalues are roots of the equation J0(βn) = 0.
At large time values the convergence of Equation 7.66 is controlled by a term

that does not depend on time. This is the steady solution, and it can be found
independently (by solving the steady boundary value problem) to give a better
expression for numerical evaluation. Equation 7.66 can be written

T (r , t ) = g0b2

4k

[
1 −

( r
b

)2
]

− 2
g0b2

k

∞∑
n=1

e−β2
nαt / b2 J0(βnr / b)

β3
n J1(βn)

(7.67)

The same result can also be found from the alternate GFSE.
The above series expression converges rapidly for large time (αt / b2 > 0.025).

At early time, the interior of the cylinder will behave like an infinite body and the
zero-temperature boundary at r = b will have only a local influence.To find a form
of the temperature that is numerically efficient at small time, refer to Appendix R
for a suitable small-cotime form of GR01.

Example 7.6: Solid Cylinder with Nonuniform Energy Generation—
R02B0T0Gr5 Case

Consider the solid cylinder 0 ≤ r ≤ b initially at zero temperature with an
insulated boundary. The cylinder is heated by volume energy generation

g (r ′, τ) =
{

0 0 ≤ r ≤ a
g0 a ≤ r ≤ b

(7.68)

where g0 (W/m3) is the energy generation rate. The energy generation is zero deep
inside the cylinder and it has the value g0 near the surface of the cylinder. This
geometry approximately describes microwave heating of food or nuclear radiation
heating of reactor control rods (approximately, because actual radiation heating is
attenuated inside the body). Find the temperature after a long period.

Solution

This is the R02 geometry with energy generation. The GF equation for this case is
given by the second term of Equation 7.2, and GR02 is listed in Appendix R. The
temperature in the cylinder is

T (r , t ) = α

k

∫ t

τ=0

∫ b

r ′=a

g0

πb2

[
1 +

∞∑
n=1

e−β2
nα(t−τ) / b2 J0(βnr / b) J0(βnr ′ / b)

J2
0 (βn)

]
2πr ′dr ′dτ

(7.69)



T&F Cat # K10695, Chapter 7, Page 253, 12-6-2010

Cylindrical Coordinates 253

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

r/b

(T
−T

0)/(
g 0b2 /k

)

0.01
0.05
0.1
0.25

t+

FIGURE 7.4 Solid cylinder with internal energy generation which is nonzero only in the
region a < r < b and with a /b = 0.6. This is case R02B0T 0G(r5) discussed in Example 7.6.

where the eigenvalues βn are defined by J1(βn) = 0. Note that the GF contains
an additive constant that may be interpreted as the n = 0 term of the series. The
integrals can be evaluated to give

T (r , t ) = g0b2

k

[
1 −

( a
b

)2
]

αt
b2 + 2

g0ab
k

∞∑
n=1

e−β2
nαt / b2 J0(βnr / b) J1(βna / b)

β3
nJ2

0 (βn)

− 2
g0ab

k

∞∑
n=1

J0(βnr / b) J1(βna / b)

β3
nJ2

0 (βn)
(7.70)

This temperature is plotted in Figure 7.4 for the specific case a / b = 0.6.
The above solution contains three pieces, one of which does not depend on

time. At t = 0, the temperature is zero as required because the second and third
pieces cancel out, not because each piece is zero. The first piece of the above so-
lution is the spatial average temperature in the cylinder, Tav(t ). This can be demon-
strated by integrating Equation 7.70 over the volume of the cylinder:

Tav(t ) ≡ 1
πb2

∫ b

r=0
T (r , t ) 2πr dr = g0b2

k

[
1 −

( a
b

)2
]

αt
b2 (7.71)

The average temperature increases with time because the heat that is added has
no place to go (the boundary is insulated). There is no steady-state temperature.

In the limit as a / b → 0, the cylinder will be heated uniformly over its volume.
In this case the temperature given by Equation 7.70 reduces to the spatial average
temperature given by Equation 7.71. No heat can escape at the boundary, and
every point in the cylinder is heated equally.
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The second piece of the solution given by Equation 7.70 is

2
g0ab

k

∞∑
n=1

e−β2
nαt / b2 J0(βnr / b) J1(βna / b)

β3
nJ2

0 (βn)
(7.72)

This series decreases exponentially over time. For αt / b2 > 0.3 or so, this series
becomes negligible and the spatial distribution of the temperature stops changing.
The temperature is said to be quasisteady, because although the shape of the
temperature distribution is fixed, the magnitude of the temperature distribution
increases linearly with time according to the average temperature term.

The third piece of the solution given by Equation 7.70 is the quasisteady tem-
perature distribution which does not depend on time,

−2
g0ab

k

∞∑
n=1

J0(βnr / b) J1(βna / b)

β3
nJ2

0 (βn)
(7.73)

For large time (say αt / b2 > 0.3), this piece of the solution describes the shape of
the temperature distribution in the form of deviations from the average temperature
given by Equation 7.71. That is, the temperature is above average near r = b (the
heated region), and the temperature is below average near r = 0 (the unheated
region).

7.6 HOLLOW CYLINDER

Two examples are given for the temperature in hollow cylinders. Compared to solid
cylinders, hollow cylinders have one more physical boundary and consequently the
GF and the eigenconditions are more complex; however, all of the analytical tech-
niques for solid cylinders also apply to hollow cylinders. Another approach for cylin-
ders is the Galerkin-based GF developed in Chapters 10 and 11. For hollow cylinders,
it may be possible to obtain numerical results more easily from the Galerkin-based
GFs than from the analytical GFs discussed in this section.

Example 7.7: Hollow Cylinder with Zero Surface Temperature—
R11B00T1 Case

Consider the hollow cylinder a ≤ r ≤ b with uniform initial temperature T0.
Find the temperature for t > 0 for the boundaries fixed at zero temperature.

Solution

The temperature due to an initial condition is given by the GFSE:

T (r , t ) =
∫ b

r ′=a
GR11(r , t |r ′, 0) T0 2πr ′ dr ′ (7.74)

Note that the integral is evaluated over the hollow cylinder, a ≤ r ′ ≤ b. The
large-time GF is listed in Appendix R to give

T (r , t ) = T0

∫ b

r ′=a

π

4a2

∞∑
m=1

e−β2
mαt / a2 β2

m J2
0 (βm)

J2
0 (βm) − J2

0 (βmb / a)
R(r )R(r ′) 2πr ′ dr ′ (7.75)
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TABLE 7.3
Bessel Function Integral over r ′ of

∫
J0

(
βm

r ′
b

)
F(r ′) r ′ dr ′

F(r ′) Integral
(

let x = βm
r ′

b

)

1

(
b

βm

)2

xJ1(x)

r ′

b

b2

β3
m

[x2J1(x) + xJ0(x) − ∫
J0(x) dx]

(
r ′

b

)2
b2

β4
m

[
(x3 − 4x) J1(x) + 2x2 J0(x)

]

ln
r ′

b

b2

β2
m

[
J0(x) + x ln

(
r ′

b

)
J1(x)

]

TABLE 7.4
Bessel Function Integral over r ′ of

∫
Y0

(
βm

r ′
b

)
F(r ′) r ′ dr ′

F(r ′) Integral
(

let x = βm
r ′

b

)

1

(
b

βm

)2

xY1(x)

r ′

b

b2

β3
m

[x2Y1(x) + xY0(x) − ∫
Y0(x) dx]

(
r ′

b

)2
b2

β4
m

[
(x3 − 4x) Y1(x) + 2x2 Y0(x)

]

ln
r ′

b

b2

β2
m

[
Y0(x) + x ln

(
r ′

b

)
Y1(x)

]

where

R(r ) = J0

(
βmr

a

)
Y0

(
βmb

a

)
− J0

(
βmb

a

)
Y0

(
βmr

a

)
(7.76)

and where the eigenvalues βm satisfy

J0(βm)Y0

(
βmb

a

)
− J0

(
βmb

a

)
Y0(βm) = 0 (7.77)

The first five eigenvalues are listed in Appendix B for various values of b / a (various
cylinder geometries).The integral on r ′ operates only on J0(βmr ′/ a) and Y0(βmr ′/ a),
and the integral can be carried out with the first integrals from Tables 7.3 and 7.4
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to give (see also Appendix B)

T (r , t ) = T0
π2

2a

∞∑
m=1

e−β2
mαt / a2 βm J2

0 (βm)

J2
0 (βm) − J2

0 (βmb / a)
R(r )

×
[
bJ1

(
βm

b
a

)
Y0

(
βm

b
a

)
− aJ1(βm)Y0

(
βm

b
a

)

− bJ0

(
βm

b
a

)
Y1

(
βm

b
a

)
+ aJ0

(
βm

b
a

)
Y1(βm)

]
(7.78)

This is the large-time form of the temperature in the hollow cylinder where R(r ) is
given by Equation 7.76.There are four Bessel functions involved: J0, Y0, J1, and Y1.
For large values of αt / a2 only a few terms of the series are needed for accurate
numerical values.

Example 7.8: Hollow Cylinder Insulated Inside—R21B00T- Case

Consider the hollow cylinder a ≤ r ≤ b has a steady temperature distribution Ti
due to steady heating at the boundary r = a and a zero temperature r = b. That is,

−k
∂Ti (a)

∂r
= q0 (7.79)

Ti (b) = 0 (7.80)

Suppose that for t > 0, the heat flux at r = a suddenly becomes zero (the bound-
ary becomes insulated). Find (a) the initial temperature distribution, and (b) the
transient temperature due to the change in the heating at the boundary r = a.

Solution

(a) Initial temperature. The initial temperature may be found from the steady GFSE,
Equation 3.94, in radial cylindrical coordinates:

Ti (r ) = q0

k
G (r |r ′ = a) 2πa (7.81)

The steady GF is given by Table R.1 in Appendix R:

GR21(r |r ′) =




1
2π

ln
(

b
r ′

)
r < r ′

1
2π

ln
b
r

r > r ′
(7.82)

When GR21 is substituted into Equation 7.81, the steady temperature is given by

Ti (r ) = q0a
k

ln
b
r

= q0a
k

(
ln

b
a

− ln
r
a

)
(7.83)

This form of the steady temperature is convenient for part (b) discussed below. The
steady temperature may also be found by direct integration of the steady energy
equation

1
r

[
d
dr

(
r

dTi

dr

)]
= 0 (7.84)

with boundary conditions given by Equations 7.79 and 7.80.
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(b) Transient temperature. The transient temperature is given by the initial
condition form of the GF equation, Equation 7.2, because the boundary conditions
are homogeneous:

T (r , t ) =
∫ b

r ′=a
GR21(r , t |r ′, 0) Ti (r ′) 2πr ′dr ′ (7.85)

The large-time form of the GF is given in Appendix R, and the initial temperature
is given by Equation 7.84 to give,

T (r , t ) =
∫ b

r ′=a

π

4a2

∞∑
m=1

e−β2
mαt / a2 β2

m J2
1 (βm)

J2
1 (βm) − J2

0 (βmb / a)
R(r )R(r ′)

× q0a
k

(
ln

a
b

− ln
r ′
a

)
2πr ′ dr ′ (7.86)

where

R(r ) = J0

(
βmr

a

)
Y0

(
βmb

a

)
− J0

(
βmb

a

)
Y0

(
βmr

a

)
(7.87)

and where the eigenvalues βm satisfy

J1(βm) Y0

(
βmb

a

)
− J0

(
βmb

a

)
Y1(βm) = 0 (7.88)

The integral in Equation 7.86 contains two basic forms:∫
W0

(
βmr ′

a

)
r ′ dr ′ and

∫
W0

(
βmr ′

a

)(
ln

r ′
a

)
r ′ dr ′

where W0(·) is either J0 or Y0. These integrals are listed in Table 7.3 and Table 7.4
and can also be written as∫

W0

(
βm

r ′
a

)
r ′ dr ′ = a2

β2
m

(
βm

r ′
a

)
W1

(
βm

r ′
a

)
(7.89)

∫
W0

(
βm

r ′
a

)(
ln

r ′
a

)
r ′ dr ′ = a2

β2
m

[
W0

(
βm

r ′
a

)
+ βm

r ′
a

(
ln

r ′
a

)

× W1

(
βm

r ′
a

)]
(7.90)

where W1 is either J1 or Y1. After some simplification involving the eigencondition
Equation 7.88, to cancel some terms, Equation 7.86 may be written

T (r , t ) = π2 q0b
k

∞∑
m=1

e−β2
mαt / a2 βm J2

1 (βm)

J2
1 (βm) − J2

0 (βmb / a)
R(r )

× ln
a
b

[
J1

(
βm

b
a

)
Y0

(
βm

b
a

)
− J0

(
βm

b
a

)
Y1

(
βm

b
a

)]
(7.91)

where R(r ) is given by Equation 7.87. This expression involves four Bessel func-
tions, J0, Y0, J1, and Y1. Only a few terms of the series are needed for αt / a2 large.
For αt / a2 very small, the analysis can be repeated with an approximate small-time
GF, such as (1 / 2πa)GX20 for r ≈ a (refer to Example 7.3).
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7.7 INFINITE BODY WITH A CIRCULAR HOLE

The radial heat flow in an infinite body containing a circular hole is discussed in this
section. Some of the applications for this heat transfer geometry are buried pipes, oil
wells, and a heated wire in a quiescent fluid at early time. The GFs for cases numbered
R10, R20, and R30 are available in Appendix R. Do not confuse these numbers with
the solid cylinder numbers R01, R02, and R03.

The GFs discussed below are derived from Laplace transformation methods
(Carslaw and Jaeger, 1959, p. 334). The GFs for the infinite body with a hole in-
volve integrals over a continuous range of eigenvalues instead of a series over dis-
crete eigenvalues. Although the GFs are more complex, they are used to find the
temperature as any other cylindrical GF.

Example 7.9: Infinite Body with a Circular Hole and Specified Surface
Temperature—R10B1T0 Case

An infinite body bounded internally by the circular hole r = a has an initial
temperature of zero. At t > 0 the surface r = a has a fixed temperature T0. Find
the temperature in the body for t > 0.

Solution

The GF equation for radial flow of heat, Equation 7.2, applies to this case as

T (r , t ) = −α

∫ t

τ=0
T0

∂GR10

∂n′ (r , t |a, τ) 2πa dτ (7.92)

The derivative ∂GR10 / ∂n′ is given in Appendix R as

−∂GR10

∂n′

∣∣∣∣
r ′=a

= − 1
π2a3

∫ ∞

β=0
e−β2α(t−τ) / a2

×
β
[
J0

(
β

r
a

)
Y0(β) − Y0

(
β

r
a

)
J0(β)

]
J2
0 (β) + Y 2

0 (β)
dβ (7.93)

Then, replace Equation 7.93 into Equation 7.92 to find the temperature:

T (r , t ) = T0
2α

πa2

∫ t

τ=0

∫ ∞

β=0
e−β2α(t−τ)a2

×
β
[
J0

(
β

r
a

)
Y0(β) − Y0

(
β

r
a

)
J0(β)

]
J2
0 (β) + Y 2

0 (β)
dβ dτ (7.94)

The time integral may be evaluated to give

T (r , t ) = T0
2
π

∫ ∞

β=0

[
1 − e−β2αt / a2

]

×
[
J0

(
β

r
a

)
Y0

(
β
) − Y0

(
β

r
a

)
J0

(
β
)]

β[J2
0 (β) + Y 2

0 (β)] dβ (7.95)
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The integral on β must be evaluated numerically, but the temperature is bounded
by T0 at r = a and the temperature decays to zero as r → ∞ (as αt / r2 → 0). At
steady state defined by αt / r2 → ∞, the temperature approaches T0 everywhere.
A plot of the temperature given by Equation 7.95 is given by Carslaw and Jaeger
(1959, p. 337). An approximate small-time form of this solution is also listed by
Carslaw and Jaeger (1959) on p. 336; another approximate small-time solution is
GR10 ≈ 1 /(2πa) GX10 (refer to Example 7.3).

Example 7.10: Infinite Body with a Circular Hole and Specified Surface
Heat Flux—R20B-T0 Case

An infinite body bounded internally by the circular hole r = a has a zero initial
temperature. At t ≥ 0 the surface r = a sees an instantaneous pulse of heat given
by q ′δ(t ), where δ(t ) is the Dirac delta function and q ′ has units of J / m2. Find the
surface temperature T (a, t ) due to this heat pulse.

Solution

The temperature is given by the GF equation (7.2), for a boundary condition of the
second kind:

T (r , t ) = α

∫ t

τ=0

q ′δ(τ)
k

GR20(r , t |a, τ) 2πa dτ (7.96)

To evaluate the temperature at r = a apply the sifting property of the Dirac delta
function to the time integral to give

T (a, t ) = 2πα
q ′a
k

GR20(a, t |a, 0) = 2π
q ′a
ρc

GR20(a, t |a, 0) (7.97)

Note that q ′a /(ρc) has units of Km2 and that GR20 has units of m−2, as expected.
The GF GR20 is listed in Appendix R as

GR20(a, t |a, 0) = 2
π2a2

∫ ∞

β=0

e−βαt / a2

β
[
J2
1 (β) + Y 2

1 (β)
] dβ (7.98)

In general, this integral must be evaluated numerically. However, several approxi-
mate expressions for GR20(a, t |a, τ) are listed in Appendix R, and some numerical
values of GR20(a, t |a, τ) are listed in Table R20. For small values of time αt / a2, the
surface temperature is approximately

T (a, t ) ≈ q ′
aρc

[
(πt+)−1 / 2 − 0.5 + 0.413434 (t+)1 / 2 − 0.299877 t+

+ 0.154483 (t+)3 / 2 − 0.045263 (t+)2 + 0.005484 (t+)5 / 2
]

(7.99)

where t+ = αt / a2 < 6. The first term inside the square brackets in Equation 7.99
is the same as the temperature in a plane wall, and the second term is the first cor-
rection for the curvature of the cylindrical hole. For large values of time αt / a2 > 6,
the surface temperature is approximately

T (a, t ) ≈ q ′
aρc

1
t+

{
1 − 1

2t+ L
[
1 + 3

4t+ (1 − L)
]

− (π2 + 4)
C

(4t+)2

}
(7.100)
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where L = ln (4t+) − γ

γ = 0.57722 (Euler’s constant)
C = 0.5

7.8 THIN SHELLS, T = T(φ, t )

Thin shells are bodies for which the coordinates (φ, t) completely describe the heat
transfer. These are closely related to the one-dimensional rectangular cases, although
there are some differences. A thin shell has radius a, thickness δ, and angle φ0. The
shell is thin if the temperature at r = a and at r = a + δ are approximately equal.
If not, then the variable r must be included in the analysis, and the body must be
analyzed with the variables (r , φ, t).

Example 7.11: Thin Shell Heated at One Point and Cooled by Convection

A transient experiment was carried out in a nonrotating railroad roller bearing to
determine how heat moves from a single heated roller through the outer bearing
race. Treat the bearing race as a thin shell heated at one point and with heat
loss, both internal and external, described by qloss = h(T (φ, t )−T0) where h is the
heat transfer coefficient (W/m2 K), and T0 is the temperature of the surroundings. A
schematic of the geometry is shown in Figure 7.5. Find (a) the transient temperature
in the thin shell and (b) the steady temperature.

Solution

The energy equation for the thin shell with heat losses from the sides is given by

1
a2

∂2T
∂φ2 − m2(T − T0) = 1

α

∂T
∂t

(7.101a)

φ

Hot roller

h, T0

aδ

FIGURE 7.5 Schematic of a thin-shell model of the outer race of a railroad roller bearing
heated by one hot roller and with side losses described by convective coefficient h.
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Parameter m2 = h /(kδ) describes heat loss from the sides of the thin shell. As there
is symmetry in the heating geometry, we choose to treat the thin shell as geometry
Φ22 on (0 < φ < π). The boundary conditions are

−k
a

∂T
∂φ

∣∣∣∣
φ=0

= q0 (7.101b)

∂T
∂φ

∣∣∣∣
φ=π

= 0 by symmetry (7.101c)

If the heat flow from the roller to the whole shell is Q0 (watts), then the heat flux
into half of the shell is q0 = Q0 /(2wδ) where w is the roller length out-of-plane.
The initial condition is:

T (φ, t − 0) = T0 (7.101d)

(a)Transient temperature.The GF solution for the transient temperature involves
a variable transformation to eliminate the fin term. Let a new temperature variable
be defined

W (φ, t ) = [T (φ, t ) − T0] em2αt (7.102)

Refer to Section 3.5 for a complete discussion of this procedure. Then, Equa-
tions 7.101a through d can be written with the new temperature variable as

1
a2

∂2W
∂φ2 = 1

α

∂W
∂t

(7.103)

−k
a

∂W
∂φ

∣∣∣∣
φ=0

= q0em2αt (7.104)

∂W
∂φ

∣∣∣∣
φ=π

= 0 (7.105)

W (φ, t = 0) = 0 (7.106)

Note that the fin term is gone and the initial condition is homogeneous, but the
boundary condition is more complicated.

The GF solution to this transformed equation is given by a single integral for
heating at the φ = 0 boundary boundary:

W (φ, t ) = α

k

∫ t

τ=0
q0em2ατGΦ22(φ, t |φ′ = 0, τ) δ dτ (7.107)

The GF, described in Appendix Φ, is given by

GΦ22(φ, t |0, τ) = 1
φ0aδ

+ 2
φ0aδ

∞∑
n = 1

e−n2π2α(t−τ) /(a2φ2
0) cos(nπφ / φ0) (7.108)

where in this case φ0 = π. The time integral may be carried out to give

W (φ, t ) = q0a
kφ0

{
1

m2a2

(
em2αt − 1

)

+ 2
∞∑

n=1

em2αt − e−n2π2αt /(a2φ2
0)

m2a2 + n2π2 / φ2
0

cos(nπφ / φ0)

}
(7.109)
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FIGURE 7.6 Normalized temperature along the thin shell heated at φ = 0 for convective
losses described by ma = 0.2 at times αt / a2 = 0.25, 1.0, 4.0, and 8.0.

In evaluating the integral, do not confuse the fin parameter m2 with quantity n2

which comes from the eigenvalue and is part of the infinite series.
Finally, to find the temperature in the original problem, convert back according

to the transformation T − T0 = W (φ, t ) e−m2αt :

T (φ, t ) − T0 = q0a
kφ0

{
1

m2a2

(
1 − e−m2αt

)

+ 2
∞∑

n=1

1 − exp[−(m2a2 + n2π2 / φ2
0)αt / a2]

m2a2 + n2π2 / φ2
0

cos(nπφ / φ0)

}
(7.110)

A plot of the spatial distribution of the (normalized) temperature in the thin shell
heated at φ = 0 is given in Figure 7.6 for convection condition ma = 0.2 at several
dimensionless times. For more information on this thermal model and its use in
determining h from transient experiments on railroad roller bearings, see (Cole
et al., 2009).

(b) Steady temperature. The steady-state temperature is given by the limit as
t → ∞, or,

Tsteady (φ) − T0 = q0a
kφ0

{
1

m2a2 + 2
∞∑

n=1

cos(nπφ / φ0)

m2a2 + n2π2 / φ2
0

}
(7.111a)

If slow series convergence is a problem, the steady-state series can be replaced
by a nonseries form, constructed from the steady-fin GF (adapted from Table X.4,
Appendix X). The result is
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Tsteady (φ) − T0 = q0a
k

[
e−2maφ0 emaφ + e−maφ

ma(1 − e−2maφ0 )

]
(7.111b)

where for the half-shell the maximum angle is φ0 = π.

7.9 LIMITING CASES FOR 2D AND 3D GEOMETRIES

The ability to analyze two- and three-dimensional heat transfer geometries is an im-
portant feature of the GF method. Multidimensional geometries can be so challenging
that finding ways to verify the results, including analysis of limiting cases, is usually
an important step in the solution process. Limiting cases can improve one’s insight
and contribute to a better understanding of the whole problem.

One-dimensional limiting cases can be important for checking the analysis of
two- or three-dimensional temperature expressions and for checking the numerical
results. Under the limiting conditions, the multidimension expression for the temper-
ature should reduce to the limiting-case expression and the multidimension computer
program should give numerical values that agree with the limiting case. Numerical
values for simple one-dimensional cases are sometimes tabulated in books such as
this one, whereas numerical values for two-dimensional cases are rarely available.
Comparison with more than one limiting case should be used whenever possible.

7.9.1 FOURIER NUMBER

All of the transient cases discussed in this chapter depend upon a Fourier num-
ber αt / L2, where t is the characteristic time, α is the thermal diffusivity, and L is a
characteristic length. The trick to constructing a limiting case based on the Fourier
number is to use the significant characteristic length. The characteristic length can
depend on (1) time (early, middle, or late); (2) body shape (slab, cylinder, etc.);
(3) location of the driving force for the transient heat transfer (at the surface or inter-
nally); or (4) location of the temperature of interest.

For example, in a solid cylinder heated at the boundary (case R01B1T 0), the
Fourier number is αt / b2, where b is cylinder radius. For sufficiently small values
of this Fourier number, the temperature near r = b is given approximately by the
semi-infinite case X10. The X10 geometry is a limiting case for small time because
the surface heating penetrates the cylinder so slightly that the curvature of the cylinder
may be neglected.

For energy generation inside a body and for small dimensionless times, the char-
acteristic length depends on the heating location. For example, in a cylinder heated
by a cylindrical-shell heat source, R01B0T 0Gr7, the significant Fourier number is
αt /(b − r0)2 where b is the cylinder radius, r0 is the location of the cylindrical-
shell heat source, and r0 / b < 0.5 (this last condition ensures that the boundary is far
enough from the heat source). Then, for αt /(b − r0)2 sufficiently small, the temper-
ature is given by an infinite region (R00) heated by a cylindrical-shell heat source.
The characteristic length is b − r0, the distance from the heating location to the
boundary.
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7.9.2 ASPECT RATIO

Limiting cases may be found by changing the aspect ratio of the body, the ratio of the
width to the length of the body. For solid cylinders, the aspect ratio is b / L, where b

is the cylinder radius and L is the cylinder length. In a solid cylinder there are two
limiting cases based on variations of the aspect ratio. First, consider the cylinder with
aspect ratio b / L > 5 shown in Figure 7.7a. This cylinder is more like a flat disk,
and depending how it is heated, the limiting case may be the one-dimensional slab of
thickness L. Second, for the solid cylinder with aspect ratio b / L < 1 / 10 shown in
Figure 7.7b, the limiting case is the infinite cylinder of radius b for which T = T (r , t).

Three-dimensional bodies may have two aspect ratios. For hollow cylinders, an
additional aspect ratio is (b−a) / b, where (b−a) is the thickness of the cylinder wall.

7.9.3 NONUNIFORM HEATING

When a body is heated nonuniformly over position or over time, the limiting case
of uniform heating is useful for checking purposes. The uniformly heated cases are
generally easier to analyze. For example, a cylinder heated over part of its surface is
shown in Figure 7.8, and it is described by the number R01B(z5)Z11B11T 0. The

2b

(a)
2b

L

L

(b)

FIGURE 7.7 (a) Cylinder with aspect ratio b / L > 5. (b) Cylinder with aspect ratio b / L < 0.1.

z

r

T = 0
(unheated)

T = T0

T = T0

T = T0

FIGURE 7.8 Cylinder with specified temperature over part of its surface.
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limiting case of a uniformly heated cylinder, number R01B1Z11B1T 0, is particularly
easy to find by multiplying two one-dimensional temperature solutions, as discussed
in the next section.

7.10 CYLINDERS WITH T = T(r, z, t)

In this section cylinders are discussed for which the temperature depends on co-
ordinates r and z. The GFs for these cases can be constructed by multiplying two
one-dimensional GFs. That is,

GRZ = (GR)(GZ) (7.112)

The boundary conditions of types 0, 1, 2, and 3, may be treated. Two examples are
given to illustrate the method.

Example 7.12: Finite Cylinder with Specified Surface Temperature—
R01Z11 Geometry

A finite cylinder of length L and radius b has a uniform initial temperature T0. For
t > 0, the entire surface of the cylinder is suddenly set to temperature T1. Find the
temperature in the cylinder for large times.

Solution

The cylinder is shown in Figure 7.9. A detailed statement of the boundary and
initial conditions of this example are

T (r = b, z , t ) = T1 (7.113a)

T (r , z = 0, t ) = T1 (7.113b)

T (r , z = L, t ) = T1 (7.113c)

T (r , z , t = 0) = T0 (7.113d)

The heat conduction numbering system for this case is R01B1T 1Z 11B11.

T = T1

T = T1

r

2b

z = 0 z = L

z

T = T1

FIGURE 7.9 Solid cylinder with temperature boundary conditions, R01B1T 1Z11B11.
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The best solution for this problem using GFs is to cast the problem as an initial-
temperature case, by defining a new temperature T = T −T1. Then, the boundary
temperature is zero, and the initial temperature is T0 −T1. This is equivalent to the
alternative GF solution method with T ∗ = T1. The solution is given by

T (r , z , t ) − T1 =
∫ b

0
2πr ′dr ′

∫ L

0
dz ′ (T0 − T1) GR01Z 11(r , z , t |r ′, z ′, 0) (7.114)

The GF GR01Z 11 may be found from a product solution as shown in Equation 7.112,
and substituted into the spatial integral in Equation 7.114 to give

T (r , z , t ) − T1 = (T0 − T1)

[∫ b

0
GR01(r , t |r ′, 0) 2πr ′ dr ′

]

×
[∫ L

0
GZ 11(z , t |z ′, 0) dz ′

]
(7.115)

The product of the two integrals in Equation 7.115 can be interpreted as the product
of two dimensionless temperatures, one for an infinite cylinder R01B0T 1, and
one for an infinite slab X11B0T 1. A product solution for temperature is possible
only for certain initial conditions, but a product solution for the GF is always
possible for coordinates r and z . Refer to Section 4.6 for a discussion of this point.

Function GR01 comes from Appendix R and function GZ 11 comes from Ap-
pendix X (with x and x ′ replaced by z and z ′). The result for the temperature is

T (r , z , t ) − T1 = (T0 − T1)

[
2

∞∑
m = 1

e−β2
mαt / b2 J0(βmr / b)

βm J2
1 (βm)

]

×
{

2
∞∑

n = 1

e−n2π2αt / L2
sin

(
nπ

z
L

) [1 − (−1)n]
nπ

}
(7.116)

where the eigenvalues βm are the roots of J0(βm) = 0; some values for βm are given
in Appendix B. The expression [1− (−1)n] comes from evaluating the integral of the
sine to give cos(0)−cos(nπ). This expression gives zero for all the odd terms in the
second summation (n = 1, 3, 5, . . . ), and the summation on n could be rewritten
in a form to represent just the nonzero terms:

∞∑
n=1

f (n)[1 − (−1)n] = 2
∞∑

k = 0

f (2k + 1) (7.117)

Although the solution given by Equation 7.116 contains two summations, the
summations converge very rapidly for large times αt / b2 � 1.

Example 7.13: Cylinder Heated over Half of Its Surface—R02Z00 Case

An infinite cylinder initially at zero temperature is suddenly heated over half of its
surface (z < 0) with heat flux q0. The other half of the cylinder is insulated (z > 0).
Refer to Figure 7.10. Find the temperature on the surface of the cylinder soon after
the heating begins.
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r

z

Heat flux q0

FIGURE 7.10 Infinite cylinder heated over half of the surface and insulated elsewhere, case
R02B5T 0Z00.

Solution

This is the R02B(z5)T 0Z 00 geometry with heating at the surface and with no
initial temperature or internal heat generation. The maximum temperature occurs
on the surface of the cylinder and the surface temperature is given by the surface
heating term of the GFSE:

T (b, z , t ) = q0α

k

∫ t

τ = 0

∫ 0

z ′ = −∞
GR20Z 00(b, z , t |b, z ′, τ) 2πbdz ′ dτ (7.118)

The GF is evaluated at r ′ = b where the heating occurs, and the temperature is
evaluated at r = b. Note that the spatial integral over the surface involves differ-
ential area ds = 2πbdz ′ and the integral limits are −∞ < z ′ < 0. The GF is given
by the product (GR02)(GZ 00). To find the temperature soon after heating begins
only the small-time forms of the GFs are needed. An approximate form of GR02
for small times evaluated at the surface r = b is given in Appendix R:

GR02(b, t |b′, τ) ≈ 1
2πb2

{
b

[πα(t − τ)]1 / 2 + 1
2

+ 3
4
√

π

[
α(t − τ)

b2

]1 / 2
}

(7.119)

The GF GZ 00 is given in Appendix X:

GZ 00(z , t |z ′, τ) = 1
[4πα(t − τ)]1 / 2 exp

[
−(z − z ′)2
4α(t − τ)

]
(7.120)

It is generally better to evaluate spatial integrals first, and the integral on z ′ in
Equation 7.118 may be written

T (b, z , t ) = q0α

k
1

2b

∫ t

τ = 0
dτ

{
b

[πα(t − τ)]1 / 2 + 1
2

+ 3
4
√

π

[
α(t − τ)

b2

]1 / 2
}

erfc
{

z
[4α(t − τ)]1 / 2

}
(7.121)
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The integral on τ may be evaluated in three terms and the final result for the surface
temperature may be written (see integral Table I.8, Appendix I)

T (b, z , t ) = q0b
k

1
4π

(
2(t+)1 / 2

×
{

erfc
[

z
(4αt )1 / 2

]
− z

(4παt )1 / 2 E1

(
z2

4αt

)}

+ 2(t+) i2 erfc
[

z
(4αt )1 / 2

]
+ 12√

π
(t+)2

×
{

i2 erfc
[

z
(4αt )1 / 2

]
+ i4 erfc

[
z

(4αt )1 / 2

]})
(7.122)

where t+ = αt / b2.

Discussion. One part of the given temperature expression is multiplied by (t+)1 / 2.
This part is identical to the temperature in a semi-infinite plane body heated over half
of its surface which was studied in Section 6.8. For early times, the surface of the
cylinder displays behavior similar to a plane body. From this perspective the other
terms in the temperature expression Equation 7.122 are corrections to account for the
curvature in the surface of the cylinder.

The temperature expression contains factors like
√

t+, t+, and (t+)2, which indi-
cate that the temperature increases over time without limit; there is no steady-state
solution since all the heat that enters the cylinder remains in the cylinder. The surface
temperature is the largest temperature on the cylinder at any given time.

On the heated region of the cylinder (z < 0) and far away from the point z = 0,
the temperature is described by one-dimensional radial heat conduction, T = T (r , t).
Here “far” is determined by z2 / αt � 1, because the correct Fourier number along
the z-axis is αt / z2. On the nonheated end of the cylinder and for z2 / αt � 1, the
temperature is identically zero.

7.11 DISK HEAT SOURCE ON A SEMI-INFINITE BODY

In this section, the cylindrical GFs are applied to a semi-infinite body heated at the
surface by a disk heat source. Over the disk heat source, the heat flux is constant
with position and with time, while outside the disk, the surface is insulated. This
case is a basic building block in transient heat conduction and in the surface element
method discussed in Chapter 12. Applications of the disk heat source solution include
constriction resistance, the intrinsic thermocouple, and laser heating of a flat surface.

The GF solution yields an exact solution in the form of an integral with limits of
zero and infinity, and the integrand involves error functions and Bessel functions. The
integral is difficult to evaluate numerically because the domain is infinite and because
of the sinusoidal behavior of the Bessel functions. Though this integral represents a
solution valid for any position (r , z), accurate numerical values are difficult to obtain
directly except along the centerline (r = 0).
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The purpose of this section is to present the exact solution with the GF method, to
present closed-form expressions for some special cases, and to present series expres-
sions for the surface temperature that are accurate and easy to evaluate numerically.
Expressions for interior temperatures (z > 0) are given by Beck (1980, 1981).

7.11.1 INTEGRAL EXPRESSION FOR THE TEMPERATURE

The geometry for the disk heat source problem is shown in Figure 7.11. The surface of
the semi-infinite body is insulated except for the disk 0 < r < a. The initial temperature
is zero. A mathematical statement of the energy equation and boundary conditions is
given by

1

r

∂

∂r

(
r
∂T

∂r

)
+ ∂2T

∂z2
= 1

α

∂T

∂t
(7.123)

−k
∂T (r , 0, t)

∂z
=

{
q0 for 0 < r < a

0 for r > a
(7.124a)

T (r , z, t) → 0 for r → ∞ and z → ∞ (7.124b)

T (r , z, 0) = 0 (7.124c)

The GFSE is

T (r , z, t) = α

k

∫ t

τ=0

∫ a

r ′=0
q0 GR00Z20(r , z, t |r ′, 0, τ)2πr ′ dr ′ dτ (7.125)

The integral over the surface involves the area element dA = 2πr ′dr ′, and the GF is
evaluated at the surface z′ = 0.

The GF is given by the multiplication of two one-dimensional functions,
GR00Z20 =(GR00)(GZ20), where

GZ20(z, t |z′ = 0, τ) = 2

[4πα(t − τ]1 / 2
exp

[ −z2

4α(t − τ)

]
(7.126)

a

z

r

qo

Centerline

Semi−infinite
homogeneous body

FIGURE 7.11 Semi-infinite body heated over a disk-shaped region centered at r = 0 and
z = 0 and insulated elsewhere at z = 0.
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from Appendix X, and where

GR00(r , t |r ′, τ) = 1

2πa2

∫ ∞

β=0
e−β2α(t−τ) / a2

β J0

(
βr

a

)
J0

(
βr ′

a

)
dβ (7.127)

fromAppendix R. Note that β is a dimensionless eigenvalue, and that GR00 has units of
meters−2. This form of GR00 is difficult to evaluate for reasons discussed above; but,
because the integrand depends on r ′ and τ in separate terms, the GF equation (7.125)
can be integrated separately over r ′ and τ leaving only the integral on β. The other
form of GR00 listed in Appendix R contains the term I0[(rr ′) /(2α(t − τ)], and the
integrals on r ′ and τ cannot be evaluated separately.

The GF GR00 and GZ20 can now be substituted into the expression for the temper-
ature, and the integrals on r ′ and τ can be evaluated. The integral on r ′ acts only on
the term r ′J0(βr ′ / a), so the integral is given by (Appendix B)

∫ a

r ′=0
J0

[
βr ′

a

]
2πr ′ dr ′ = 2πa2

β
J1(β) (7.128)

Combine the integral on r ′ with the temperature expression, Equation 7.125, to get

T (r , z, t) = α

k

∫ t

τ=0
q0

1

[πα(t − τ)]1 / 2
exp

[ −z2

4α(t − τ)

]

×
∫ ∞

β=0
e−β2α(t−τ) / a2

J0

(
βr

a

)
J1(β) dβ dτ (7.129)

The integral on τ can now be identified as (Appendix I, Table I.6),

∫ t

τ=0

1

[α(t − τ)]1 / 2
exp

[
−β2α(t − τ)

a2
− z2

4α(t − τ)

]
dτ

= 2π1 / 2

2βα

(
e−βz / a

{
1 + erf

[
β(αt)1 / 2

a
− z

2(αt)1 / 2

]}

− eβz / aerfc

[
β(αt)1 / 2

a
+ z

2(αt)1 / 2

])
(7.130)

Then, Equation 7.129 can be written as

T (r , z, t) = 1

2

q0a

k

∫ ∞

β=0
J0

(
βr

a

)
J1(β)

×
(

e−βz / a
{

1 + erf

[
β(αt)1 / 2

a
− z

2(αt)1 / 2

]}

− eβz / aerfc

[
β(αt)1 / 2

a
+ z

2(αt)1 / 2

])
dβ

β
(7.131)
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This is the exact solution in integral form, valid for all values r > 0, z > 0, t > 0
(Carslaw and Jaeger, 1959).

At the surface where z = 0 the exact solution reduces to

T (r , 0, t)

q0a / k
=

∫ ∞

β=0
erf

[
β(αt)1 / 2

a

]
J0

(
βr

a

)
J1(β)

dβ

β
(7.132)

This expression still contains the difficult integral on β.

7.11.2 CLOSED-FORM EXPRESSIONS FOR THE TEMPERATURE

In general, the infinite integral on β in Equation 7.132 cannot be evaluated in closed
form. In restricted cases, however, convenient temperature expressions may be found.

Steady-state temperature. Thomas (1957) derived an exact steady solution for
the surface temperature (z = 0) in terms of known functions. The steady surface
temperature for 0 < r < a is given by

T (r , 0, ∞)

q0a / k
= 2

π
E

( r

a

)
(7.133)

and, for r > a,

T (r , 0, ∞)

q0a / k
= 2r

π

[
E

(a

r

)
− (1 − r−2)K

(a

r

)]
(7.134a)

The functions K(·) and E(·) are the complete elliptic integrals of the first and second
kinds;

K(ε) =
∫ π / 2

0
(1 − ε2 sin2 θ)−1 / 2dθ (7.134b)

E(ε) =
∫ π / 2

0
(1 − ε2 sin2 θ)1 / 2 dθ (7.134c)

These functions are tabulated in Abramowitz and Stegun (1964) and are available in
computer libraries.

At r ≈ 0, [T (r , 0, ∞) − T0] /(q0a / k) = 2 / π. For large values of r / a, Equa-
tion 7.134a can be approximated by

T (r , 0, ∞)

q0a / k
= 1

2r

[
1 + 1

2(2r / a)2
+ 1

22(2r / a)4
+ · · ·

]
(7.135)

The leading term of Equation 7.135 is proportional to 1 /(r), which is the same as a
steady point heat source on the surface.
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Centerline temperature. At the centerline of the body at r = 0, the exact solution
is given by (Carslaw and Jaeger, 1959)

T (0, z, t)

q0a / k
= 2

√
αt

a

{
ierfc

[
z

2(αt)1 / 2

]
− ierfc

[
(z2 + a2)1 / 2

2(αt)1 / 2

]}
(7.136)

where ierfc(·) is the integral of the complementary error function (see Appendix E).
The centerline temperature in Equation 7.136 can be derived using Equation 7.125

and using the following form of the R00 GF listed in Appendix R:

GR00(r , t |r ′, τ) = [4πα(t − τ)]−1 exp

[−(r2 + r ′2)

4α(t − τ)

]
I0

[
rr ′

2α(t − τ)

]

At r = 0, the modified Bessel function drops out (I0(0) = 1), and the integrals on r ′
and τ in Equation 7.125 produce function ierfc (·).

Surface temperature far from the disk source. The surface temperature far from
the disk heat source behaves as if the heat is introduced by a point source and the
temperature is given approximately by

T (r , 0, t)

q0a / k
= 1

2(r / a)
erfc

[
r

2(αt)1 / 2

]
(7.137)

In the limit as t → ∞, the steady-state surface temperature goes like (1 / r).At steady-
state, Equation 7.137 gives for r / a = 8 the value of 0.0625 while the exact value is
0.062623 which is 0.2% higher. For larger r / a, the error in using Equation 7.137 is
less, but the percent error for a given r / a tends to become larger as αt / a2 is reduced.

7.11.3 SERIES EXPRESSION FOR THE SURFACE TEMPERATURE AT LARGE TIMES

By using the relation erf = 1 − erfc, Equation 7.132 for the surface temperature is
given by

T (r , 0, t)

q0a / k
=

∫ ∞

β=0
J0

(
βr

a

)
J1(β)

dβ

β

−
∫ ∞

β=0
erfc

[
β(αt)1 / 2

a

]
J0

(
βr

a

)
J1(β)

dβ

β
(7.138)

Notice that the first integral is a steady-state term and the second integral goes to zero
as t → ∞. Hence, the first integral is equal to the steady-state temperature given
either by Equation 7.133 or 7.134 depending on the range of r.

Consider now the second integral in Equation 7.138. Using the dimensionless
variables r+ = r/a and t+ = αt /a2, an exact series expression for this integral is given
by (Beck, 1981),

I2 = − 1

2
√

π t+

∞∑
k=1

(−1)k

Ck−1(t+)k−1

k∑
j=1

k − j + 1

k
U2

kj (7.139)
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where
Ck = 4k(2k + 1)[(k + 1)!] (7.140)

Uk1 = 1 (7.141a)

Uk j = Uk, j−1
(k − j + 2)r+

( j − 1)
k = 1, 2, . . . j = 2, 3, . . . , k (7.141b)

where Equation 7.141b is a recursion relation.
In summary for 0 < r+ < 1, a series expression for T at z = 0 is

T (r+, 0, t)

q0a / k
= 2

π
E(r+) − I2(r+, t+) (7.142a)

where the fundamental dependence of I2 is noted. For r+ > 1, the temperature is
given by

T (r+, 0, t)

q0a / k
= 2r+

π

[
E

(
1

r+

)
− [1 − (r+)−2]K

(
1

r+

)]
− I2(r+, t+) (7.142b)

The function I2(r+, t+) is calculated using Equations 7.139 through 7.141. These
exact expressions are very efficient for “large” times because the infinite summation
in I2 can be approximated with just a few terms.

In order to display clearly the nature of the summation in I2, several terms are now
given.

T (r+, 0, t+) = T (r+, 0, ∞) − 1

2
√

πt+

{
1 − 1 + 2(r+)2

24t+
+ 1

480(t+)2

× [1 + 6(r+)2 + 3(r+)4] − 1

10752(t+)3
[1 + 12(r+)2

+ 18(r+)4 + 4(r+)6] + · · ·
}

(7.143)

Note that the denominators 24, 480, etc., are the Ck values given by Equation 7.140.
The number of terms required in the series for I2 increases quite rapidly as the dimen-
sionless times become small. Fortunately, for a large range of t+, the required number
of terms is quite modest, that is, less than 7 for r+ = 0 and for t+ > 1 to obtain
eight-significant-figure accuracy. Also the number of additional terms required to go
from three to eight significant figures is not large. The series solution, however, is not
appropriate for very small dimensionless times. The limiting appropriate dimension-
less times are about t+ = 0.01, 0.05, and 0.1 for r+ = 0, 1 and 2, respectively. For
r+ ≥ 1, a convenient limiting time expression is

t+

(r+)2
≥ 0.05 (7.144)

Temperatures for r+ = 0, 0.25, 0.5, 0.75, 0.9, and 1.0 are plotted in Figure 7.12.
For the small dimensionless time values at r+ = 0, temperatures were calculated
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FIGURE 7.12 Local temperature versus time at z = 0 on semi-infinite body heated over a
circular disk.

utilizing Equation 7.136. The r+ = 1 curve for small dimensionless time was found
using

T (1, 0, t+) ≈
(

t+

π

)1 / 2

− t+

2π

[
1 + t+

8
+ 9(t+)2

96

]
(7.145)

where t+ = αt / a2. This expression is accurate to five significant figures for t+ < 0.1.
For very small t+ values (about 10−4) the T given by Equation 7.145 is one-half the
center value given by Equation 7.136.

7.11.4 AVERAGE TEMPERATURE

The temperature averaged over position is of interest for determining the contact
conductance and for other purposes. For the average temperature between r+ = 0
and r+ = c (where c is an arbitrary dimensionless radial location), one can multiply
T (r , 0, t) by 2πrdr , integrate from r / a = 0 to c, and divide by πc2. The result is

T (c, 0, t) = T (c, 0, ∞) − I 2(c, t+) (7.146)

where I 2(c, t+) is exactly the same expression as given by Equation 7.139 except the
inner summation has kj in the denominator instead of simply k and in Equation 7.141b,
r+ is replaced by c. The term T (c, 0, ∞) in Equation 7.146 for 0 < c ≤ 1 is given by

T (c, 0, ∞) = 4

3πc2
[(1 + c2)E(c) − (1 − c2)K(c)] (7.147a)

and for 1 ≤ c ≤ ∞

T (c, 0, ∞) = 4

3πc2
[(1 + c2)E(c−1) − (1 − c2)K(c−1)] (7.147b)
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where E(·) and K(·) are elliptic integrals defined in Equation 7.134. At c = 0,
T (0, 0, ∞) = 1, and at c = 1, T (1, 0, ∞) = 8 / 3π. For large c values, Equa-
tion 7.147b can be approximated by

T (c, 0, ∞) ≈ 1

c

(
1 − 1

8c2
− 1

64c2

)
(7.147c)

An expanded form of Equation 7.146 for a few terms is

T (c, 0, t) = T (c, 0, ∞) − 1

2
√

πt+

×
[

1 − 1 + c2

24t+
+ 1

480(t+)2
(1 + 3c2 + c4)

− 1

10752(t+)3
(1 + 6c2 + 6c4 + 6c6) + · · ·

]
(7.148)

For small t , the average temperature from r+ = 0 to 1 can be approximated by (Beck,
1980)

T (c, 0, t) ≈ 2

(
t+

π

)1 / 2

− t+

π

[
2 − t+

4
− (t+ / 4)2

4
− 15(t+ / 4)3

4

]
(7.149)

which is accurate to five significant digits for 0 < t+ < 0.1.
The average temperatures are plotted in Figure 7.13 (Beck, 1981). The curve of T

for small t+ and for r+ > 1 shown in Figure 7.13 can be obtained by using

T (c, 0, t) ≈ 2

c2

(
t+

π

)1 / 2

(7.150)

This expression becomes more accurate as t → 0 and as c becomes larger. For c = 1.5
and t+ = 0.2, it gives a number that is 5% too large, but for c = 8 and t+ = 4, the
value given by Equation 7.150 is only 0.2% large.

A comparison of Figures 7.12 and 7.13 shows that they have the same general
shape, but the average curves start to rise sooner and reach larger steady-state values.
This is true for all curves except for c = r+ = 0 for which the curves are identical.

7.12 BODIES WITH T = T(r, φ, t)

When the temperature depends on coordinates r and φ, the GFs cannot be found by
multiplying one-dimensional GFs. Consequently, these GFs are tabulated separately
in Appendix RΦ for boundary conditions of type 0, 1, 2, and 3. In this section, two
examples are given of cylinders with angular dependence of the temperature.

In the full cylinder for which 0 < φ < 2π, the GFs contain Bessel functions Jn(·)
and Yn(·) where n is an integer. The GFs for full cylinders are numbered RIJΦ00
where I = 0, 1, 2, or 3 and J = 1, 2, or 3. These GFs are derived from separation of
variable methods (Ozisik, 1993).

In the sector of a cylinder for which 0 < φ < φ0, the GFs contain Bessel functions
of fractional order Jν(·) and Yν(·) where ν is a rational number. Some other names for



T&F Cat # K10695, Chapter 7, Page 276, 12-6-2010

276 Heat Conduction Using Green’s Functions

1.0

0.8

0.6

0.4

0.2

0.0
10–4 10–3 0.01 0.1 1 10

t

8.0

4.0

2.0

1.5
1.25

1.0

0.9
0.75

0.5
c = 0

100 103 104 105

T– (c
, 0

, t
)

FIGURE 7.13 Average temperature versus time at z = 0 on semi-infinite body heated over a
circular disk.

the sector of a cylinder are the wedge, the partial cylindrical shell, and the cylinder
with a radial slot. The temperature in these bodies is described by the GFs numbered
RIJΦKL where J , K , and L are not zero. These functions are listed in table form in
Appendix RΦ in Tables RΦ.1 through RΦ.4.

These Bessel functions can be difficult to work with and there are few closed-form
solutions that result from the GF method. An attractive alternative to the Bessel func-
tions is the use of Galerkin-based GFs discussed in Chapters 10 and 11. Galerkin-based
GFs apply with equal ease to any coordinate system because the GFs are constructed
numerically. Since, with the Bessel functions, numerical integration is often needed
to find the temperature distribution, the Bessel function (exact) form of the GF has
little advantage of accuracy over the Galerkin-based form.

Example 7.14: Cylinder with Initial Temperature Varying with Angle—
R01B0T-Φ00 Case

Find the temperature in the full cylinder with initial condition F (r , φ) and with
specified zero temperature on the boundary r = a.

Solution

This is the R01B0T-Φ00 case. The GF is listed in Appendix RΦ as

GR01Φ00(r , φ, t |r ′, φ′, τ)

= 2
2πa2

∞∑
m=1

e−β2
m0α(t−τ) / a2 J0(βm0r / a)J0(βm0r ′ / a)

[J ′0(βm0)]2

+ 2
πa2

∞∑
n=1

cos n(φ − φ′)
∞∑

m=1

e−β2
mnα(t−τ) / a2 Jn(βmnr / a)Jn(βmnr ′ / a)

[J ′n(βmn)]2 (7.151)
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The index on n is for the eigenfunctions Jn(·) and the index on m is for the eigenval-
ues βmn associated with each eigenfunction.The eigenvalues βmn are the zeroes of

J0(βm0) = 0 for n = 0

J1(βm1) = 0 for n = 1

J2(βm2) = 0 for n = 2, and so on (7.152)

The first 10 eigenvalues for n = 0 through n = 5 are listed in Ozisik (1993, p. 679).
The convergence of the double infinite series in Equation 7.151 is determined
primarily by the exponential term so that for small values of (t − τ), many terms
and many eigenvalues are required; finding the eigenvalues can require significant
effort.

The temperature in the cylinder is given by the initial condition term of the
GFSE:

T (r , φ, t ) =
∫ a

r ′=0

∫ 2π

φ′=0
F (r ′, φ′) × GR01Φ00(r , φ, t |r ′, φ, 0) r ′ dφ′ dr ′ (7.153)

Note that dv′ = r ′ dφ′ dr ′ for this integral. Replace the GF into Equation 7.153 to
get the temperature:

T (r , φ, t ) =
∫ a

r ′=0

∫ 2π

φ′=0
F (r ′, φ′)

{
2

2πa2

∞∑
m=1

× e−β2
m0αt / a2 J0(βm0r / a)J0(βm0r ′ / a)

[J ′0(βm0)]2

+ 2
πa2

∞∑
n=1

cos n(φ − φ′)
∞∑

m=1

× e−β2
mnαt / a2 Jn(βmnr / a)Jn(βmnr ′ / a)

[J ′n(βmn)]2
}

r ′ dφ′ dr ′ (7.154)

The integral on r ′ cannot be evaluated in closed form even if F (r , φ) = F (φ),
because the integral ∫ a

r ′=0
Jn

(
βmnr ′

a

)
r ′ dr ′

is not available in closed form.

Example 7.15: Cylindrical Sector (Wedge) Heated over the Curved Sur-
face and Insulated Elsewhere—R02B–T0Φ22 Case

Find the temperature in a sector of a cylinder that is heated over the surface at
r = b by a heat flux q(φ), a steady heat flux that varies with position. The faces of
the sector at φ = 0 and φ = φ0 are insulated as shown in Figure 7.14. The initial
temperature is zero.
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FIGURE 7.14 Sector of a cylinder heated at r = b and insulated elsewhere, case R02φ22.

Solution

This is the R02B-T 0Φ22 geometry. The temperature in the sector due to heat flux
q(φ) at the surface is given by the GFSE

T (r , φ, t ) = α

k

∫ t

τ=0
dτ

∫ 2π

φ′=0
q(φ′) GR02Φ22(r , φ, t |b, φ, τ) bdφ′ (7.155)

The spatial integral extends over the surface at r = b. The GF for this case is found
from Table RΦ.1 in Appendix RΦ,

G (r , φ, t |r ′, φ′, τ) = R0(β00, r / b)
N (β00)N (ν = 0)

+
∞∑

m=1

∞∑
ν

eβ2
mv α(t−τ) / a2

× Rν(βmν, r / b) Rν(βmν, r ′ / b)
N (βmν)

Φ(ν, φ) Φ(ν, φ′)
N (ν)

(7.156)

The GF is constructed from the particular Rν, Φ, N , and eigenconditions listed in
Tables RΦ.1 through RΦ.4 in Appendix RΦ. In the R02Φ22 case,

Rν(βmν, r / b) =



1 m = 0

Jν

(
βmν r

b

)
for m �= 0 and ν �= 0

(7.157a)

1
N (βmν)

=




2
b2 for m = 0;

2 β2
mν

b2Jν(βmν)(β2
mν − ν2)

for m ≥ 0
(7.157b)

Φ(ν, φ) =
{

1 for ν = 0
cos νφ for ν ≥ 1

(7.157c)
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1
N (ν)

=




1
φ0

for ν = 0

2
φ0

for ν ≥ 1
(7.157d)

and the eigenvalues are given by the roots of

J ′ν(βmν) = 0 (7.158a)

sin(νφ0) = 0 (that is, ν = nπ

φ0
; n = 0, 1, 2, . . . ) (7.158b)

The GF may now be assembled by substituting the pieces (7.157) into the gen-
eral expression (7.156). In the following expression the term for ν = 0 has been
separated from the other summation terms:

G (r , φ, t |r ′, φ′, τ)

= 2
b2φ0

+
∞∑

m=1

2 e−β2
m0α(t−τ) / b2 J0(βm0r / b) J0(βm0r ′ / b)

b2φ0

+
∞∑

m=1

∞∑
ν

4 e−β2
mνα(t−τ) / b2 β2

mν Jν(βmνr / b) Jν(βmνr ′ / b)
b2J2

ν (βmν) (β2
mν − ν2)

cos(νφ) cos(νφ′)
φ0

(7.159)

where now ν = nπ / φ0 for n = 1, 2, 3, . . . .
The GF may be replaced into Equation 7.155 to give the temperature expression.

After the time integral is evaluated, the temperature is given by

T (r , φ, t ) = αt
b2

∫ 2π

φ′=0

2 q(φ′)
k φ0

b dφ′

+ φb
k

∫ 2π

φ′=0
q(φ′)

[ ∞∑
m=1

2
(
1 − e−β2

m0αt / a2
)

× J0(βm0r / a) J0(βm0r ′ / a)

β2
m0φ0

]
dφ′

+ φb
k

∫ 2π

φ′=0
q(φ′)

[ ∞∑
m=1

∞∑
ν

4
(
1 − e−β2

mναt / a2
)

× Jν(βmνr / b) Jν(βmνr ′ / b) cos(νφ) cos(νφ′)
J2
ν (βmν)(β2

mν − ν2) φ0

]
dφ′ (7.160)

The units of each term are qb / k which gives temperature as required.The first term
in the temperature is the quasisteady term. As t → ∞, the summation terms drop
out and the quasisteady term causes the temperature to increase linearly with time.

In the special case φ0 = π, π / 2, π / 3, . . . , where the sector is an even fraction
of a full cylinder, then the temperature may be found by the method of images
on the full cylinder with case R02B-Φ00. The method of images on the cylinder
is discussed in Carslaw and Jaeger (1959), but in brief, the method involves a
fictitious full cylinder with a surface heating pattern composed of “images” of the
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original heating pattern on 0 < φ < φ0 so that the surface φ = 0 and φ0 = 0 satisfy
∂T / ∂φ = 0 (insulated condition). The temperature in the fictitious full cylinder is
found with R02Φ00 analysis and then the desired temperature can be found in
the region 0 < φ < φ0.

7.13 STEADY STATE

Three examples of steady heat transfer in cylindrical coordinates are given in this
section. Included are a long cylinder, a finite cylinder with axisymmetry, and a long
cylinder with angular effects.

For cylindrical-radial cases, several steady GFs are given in Appendix R,
Table R.1. Several 2D GF for cylinders are given elsewhere including Barton (1989,
pp. 149–150), Melnikov (1999, Section 5.2), and Duffy (2001, Section 5.2). Several
steady-temperature examples for cylinders are given by Carslaw and Jaeger (1959,
Sections 8.2 and 8.3) and by Ozisik (1993, Section 3.7).

Example 7.16: Solid Cylinder with Internal Energy Generation—
R03B0G- Case

Find the steady temperature in a solid cylinder with internal heating.The surface of
the cylinder is cooled by convection heat transfer and T∞ is the fluid temperature.

Solution

If the temperature is evaluated in the form (T −T∞), then the convection boundary
condition is homogeneous and this is the R03B0G- case. The energy generation
term of the GFSE may be used to find the temperature as

T (r ) − T∞ =
∫ b

r ′ = 0

g (r ′)
k

GR03(r |r ′) 2πr ′ dr ′ (7.161)

where g (r ′) is the volume energy generation.The steady GF is given in Appendix R,
Table R.1 as

G (r |r ′) =




ln(b / r ′) + 1 / B2

2π
r < r ′

ln(b / r ) + 1 / B2

2π
r > r ′

(7.162)

where B2 is hb / k , and h is the heat transfer coefficient. Because the GF is piece-
wise continuous, the spatial integral in Equation 7.161 must be carried out in two
pieces:

T (r ) − T∞ =
∫ r

r ′ = 0

g (r ′)
k

[
ln

(
b
r

)
+ 1

B2

]
r ′dr ′

+
∫ b

r ′ = r

g (r ′)
k

[
ln

(
b
r ′

)
+ 1

B2

]
r ′dr ′ (7.163)
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(a) Case R03B0G1. For uniform heat generation g (r ) = g0 the integrals in
Equation 7.163 may be evaluated to give

T (r ) − T∞ = g0b2

k

[
1

2B2
+ 1 − (r / b)2

4

]
(7.164)

(b) Case R03B0G5. For piecewise constant energy generation

g (r ′) =
{

0 0 < r ′ < a
g0 a < r ′ < b

(7.165)

the temperature given by Equation 7.164 must be carried out in two parts depend-
ing on the location of the observation point. For 0 < r < a, the temperature does
not depend on location r . Only the first term of Equation 7.163 is used with limits
a < r ′ < b to give

T (r < a) − T∞ = g0b2

k

{
1

2B2

[
1 −

( a
b

)2
]

+ 1
4

[
1 −

( a
b

)2
]

+ 1
2

( a
b

)2
ln

( a
b

)}
(7.166a)

For a < r < b both terms of Equation 7.163 are needed and the temperature is

T (r > a) − T∞ = g0b2

k

{
1

2B2

[
1 −

( a
b

)2
]

+ 1
4

[
1 −

( r
b

)2
]

+ 1
2

( a
b

)2
ln

( r
b

)}
(7.166b)

Note that the piecewise continuous temperature distributions are equal at r = a.
Also, as B2 increases, the surface temperature at r = b approaches T∞.

Example 7.17: Finite Cylinder with Arbitrary SurfaceTemperature on the
Curved Surface—R01B-Z11B00 Case

On a finite cylinder of length L find the steady temperature due a specified tem-
perature f (z ) over surface r = b and zero temperature at the ends z = 0 and
z = L.

Solution

This is the R01B-Z 11B00 geometry. The temperature is given by the steady GFSE
equation as

T (r , z ) = −
∫ L

z ′ = 0
f (z ′) ∂GR01Z 11

∂n

∣∣∣∣∣
r ′ = b

2πb dz ′ (7.167)

One form of the steady GF is given by the method of limits combined with the
multiplicative property of transient GFs:

G (r , z |r ′, z ′) = lim
t→∞ α

∫ t

t=0
GR01(r , t |r ′, τ) GZ 11(z , t |z ′, τ) dτ (7.168)
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The transient GFs are given in Appendixes R and X. The time integral and the limit
may be evaluated to give the steady GF:

G (r , z |r ′, z ′) =
∞∑

m = 1

∞∑
n = 1

2
πb2L

[(
βm

b

)2
+

(nπ

L

)2
]−1

× J0(βmr / b) J0(βmr ′ / b)

J2
1 (βm)

sin
nπz

L
sin

nπz ′
L

(7.169)

The steady GF may be substituted in Equation 7.167 to find the temperature. The
derivative on r ′ is elementary, and the temperature due to surface temperature
distribution f (z ) is given by

T (r , z ) =
∞∑

m = 1

∞∑
n = 1

4
b2L

[(
βm

b

)2
+

(nπ

L

)2
]−1

βm J0(βmr / b)
J1(βm)

sin
nπz

L

×
∫ L

z ′ = 0
f (z ′) sin

nπz ′
L

dz ′ (7.170)

The integral on z ′ can be found in closed form for many functions f (z ′). In the case
of uniform surface temperature, f (z ) = T0, the integral on z ′ may be evaluated
to give

T (r , z ) = T0

∞∑
m = 1

∞∑
n = 1

4
nπ

1 − (−1)n

β2
m + (nπb / L)2

βm J0(βmr / b)
J1(βm)

sin
nπz

L
(7.171)

The double summation in Equation 7.171 converges somewhat slowly. Next
an alternate solution is given based on a single-sum GF.

Alternative Solution

A single-sum GF for geometry R01Z11 can be found with the method of eigen-
function expansion (Section 4.6). Using eigenfunctions in the z-direction, the GF
has the form

G (r , z |r ′, z ′) = 2
L

∞∑
n=1

sin(βnz ) sin(βnz ′)Qn(r , r ′) (7.172)

with βn = nπ / L appropriate for the Z11 geometry.The defining equation for kernel
function Qn may be found by substituting the above series for the GF, along with
the series form for δ(z − z ′) (see Appendix D), into the defining auxiliary equation
for the GF. Then Qn satisfies

∂2Qn

∂r2 + 1
r

∂Qn

∂r
− β2

nQn + δ(r − r ′)
2πr ′ = 0 (7.173)

along with homogeneous boundary conditions for case R01: Qn(0) is bounded;
and, Qn(b) = 0. The above equation for Qn is a modified Bessel equation (see
Appendix B) and the kernel function is given by



T&F Cat # K10695, Chapter 7, Page 283, 12-6-2010

Cylindrical Coordinates 283

z/L

r/
L

T/T0 = 1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

FIGURE 7.15 Contour plot of temperature T /T0 in the finite cylinder, aspect ratio b/L = 0.4,
with T /T0 = 1 at the outer radius and T /T0 = 0 at ends z = 0 and z = L. Contours are at
even intervals T /T0 = 0.1, 0.2, etc.

Qn(r , r ′) = 1
2π

{ [
A2I0(βnr ′) + K0(βnr ′)

]
I0(βnr ); r < r ′

[A2I0(βnr ) + K0(βnr )]I0(βnr ′); r > r ′

}
(7.174)

where A2 = −K0(βnb) / I0(βnb). (7.175)

(See also Section 9.3.2 for kernel functions RIJ derived for steady-periodic condi-
tions.) With the above kernel function, the single-sum GF may be replaced into the
temperature integral, Equation 7.167, to find the alternate single-sum expression
for the temperature caused by f (z ) = T0:

T (r , z ) = T0
2b
L

∞∑
n=1

sin(βnz )[1 − (−1)n]
[

K0(βnb)
I0(βnb)

I1(βnb) + K1(βnb)
]

I0(βnr )

(7.176)

This series converges rapidly everywhere except near r = b (such behavior is
common for nonhomogeneous type 1 boundaries). A contour plot of temperature
T / T0 for this case is given in Figure 7.15. Note that the centerline r = 0 is a line
of symmetry and the plane z / L = 0.5 is a plane of symmetry.

Example 7.18: Long Cylinder with Specified Surface Temperature—
R01B–Φ00 Case

A long cylinder has a piecewise constant temperature imposed on its surface. The
temperature satisfies

∂2T
∂r2 + 1

r
∂T
∂r

+ 1
r2

∂2T
∂φ2 = 0 (7.177)

T (b, φ) =
{

T0, 0 < φ < φ0
0, φ0 < φ < 2π

(7.178)

Find the steady temperature.
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FIGURE 7.16 Contour plot of temperature in the cylinder with elevated boundary temperature
over 0 < φ < π / 4 and zero temperature elsewhere on the boundary. Contours are at even
intervals T / T0 = 0.1, 0.2, etc.

Solution

The steady temperature in the cylinder is given by the GF solution equation which
contains an integral over the surface of the cylinder

T (r , φ) = −
∫ φ0

φ′=0
T0

∂G
∂r ′

∣∣∣∣
r ′=b

b dφ′ (7.179)

The appropriate GF satisfies

∂2G
∂r2 + 1

r
∂G
∂r

+ 1
r2

∂2G
∂φ2 = − δ(r − r ′)

2πr ′ δ(φ − φ′) (7.180)

A single-sum form of the GF may be developed by eigenfunction expansion with
eigenfunctions in the φ-direction. The GF is given by (Melnikov, 1999, p. 223)

G (r , φ|r ′, φ′) = − 1
2π

[
ln(r ′ / b); r < r ′
ln(r / b); r > r ′

]
(7.181)

+
∞∑

n=1

cos[n(φ − φ′)]
2πn


(r / r ′)n −

(
rr ′
b2

)n ; r < r ′

(r ′ / r )n −
(

rr ′
b2

)n ; r > r ′




Note that the n = 0 term is treated separately. Only the r < r ′ portion of the GF is
needed in the temperature integral, Equation 7.179. After evaluating the derivative
on r ′ and the integral on φ′, the temperature is given by
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T (r , φ) = T0

[
φ0

2π
+

∞∑
n=1

[sin nφ − sin n(φ − φ0)]
nπ

( r
b

)n
]

(7.182)

Temperature contours computed from the above temperature expression are plot-
ted in Figure 7.16 for case φ0 = π / 4. That is, the surface temperature is T0 = 1
over (0 < φ < π / 4) and is zero elsewhere on the surface. Note that all of the
temperature contours begin and end where there are jumps in the surface temper-
ature. A double-sum form of the GF may also be found with the method of limits,
but it is not recommended for numerical computation.

PROBLEMS
7.1 Derive the relation of α(t − τ) / r2 = 0.25 for the time of maximum

GR00(r , t |0, τ) for a given r (not equal to zero).
7.2 Plot b2GR00(r , t |0, τ) versus α(t − τ) / b2 for α(t − τ) / b2 values

from 0.1 to 2 for r / b = 0 and 1.
7.3 Derive the dimensionless distance for the values for the GF to drop

to 1% of the r = 0 value for a given value of α(t − τ). (Answer:
r2 / α(t − τ) = 18.42 or α(t − τ) / r2 = 0.054.)

7.4 Plot b2GR00(r , t |0, τ) versus r / b for αt / b2 = 0.01, 1, and 10.
(Three separate plots are to be done.)

7.5 Derive the first few terms of Equation R00.4.
7.6 Under what conditions does GX00(r , t |r ′, τ) approximate GR00(r , t |

r ′, τ) 2πr ′?
7.7 Derive Equation R00.5.
7.8 Derive the approximate expression below for GR00(r , t |r ′, τ) by

approximating the circular source by four line sources.

GR00(r , t |r ′, τ)

� 1

16πα(t − τ)


exp

[
− (r − r ′)2

4α(t − τ)

]
+ exp

[
− (r + r ′)2

4α(t − τ)

]

+ 2 exp

[
− r2 + r ′2

4α(t − τ)

]}

Show that the ratio of this approximate expression to the exact one is

GR00, app

GR00, exact
= cosh{rr ′ /[2α(t − τ)]} + 1

2I0{rr ′ /[2α(t − τ)]}

Calculate values of this ratio, showing that the errors are less than
0.5% for α(t − τ) / rr ′ greater than 0.5.

7.9 Compare the numerical values of GR00(a, t |0, τ) with the average
GF over r and r ′ from the center to r = a, which is denoted
GR00(t , τ), Equation R00.15. Plot the values from α(t − τ) / a2 = 0
to 2.

7.10 A line source is frequently used to measure the thermal conductiv-
ity. It is made of a thin wire which has an electric current flowing
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through it. The temperature of the wire is measured and its asymp-
totic response is used to measure k. Derive an expression using GFs
for the temperature distribution in an infinite solid with a line source.
The initial temperature is zero. The source is to simulate a wire of
radius a and volume energy generation of g0 in W/m3.

7.11 Find an expression for the temperature at r = 0 in infinite body with
the following initial temperature distribution:

F (r) =



0 r ′ < a

T0 a ≤ r ′ ≤ b

0 r ′ > b

7.12 Find an expression for the temperature everywhere in an infinite
body with the following initial temperature:

F (r ′) =




0 r ′ < a

T0

( r0

r ′
)

a < r ′ < b (r0 is a constant)

0 r ′ > b

7.13 Using the series definition of the Bessel function Jν(z):

Jν(z) =
(

1

2
z

)ν ∞∑
k=0

(−1)k
(z / 2)2k

k!Γ(ν + k + 1)

show that

d

dz
[J0(z)] = −J1(z).

7.14 Find a small-time temperature for the R01B0T0G1 case (Example 7.5).
7.15 Find the small-time temperature for the case R03B0T1 which repre-

sents quenching of a hot cylinder in a cold fluid.
7.16 Find the small-time temperature for the case R02B0T0Gr5 (Exam-

ple 7.6).
7.17 In hot-wire anemometry, a heated wire is cooled by a fluid flow. An

important issue is the time constant of the wire, which is the time
for the heated wire to come to steady state. This problem is a simple
model of the time constant of the wire alone (without supports).

(a) Find the spatial average, time-varying temperature in the wire
heated uniformly by energy generation g0 (case R03B0G1T0).

(b) As an estimate of the time constant, find the time it takes for
the average temperature in the wire to reach 90% of the steady
temperature. (See Example 7.16 for the steady temperature.)

7.18 Consider the R21B10T0 case:

(a) Write down the GF solution equation for this case.
(b) Find the transient temperature in integral form using the GF

from Appendix R. (Hint: use R(r) R(r ′) as a shorthand nota-
tion for the eigenfunctions, and refer to Equation 7.87.)

(c) Carry out the integral onτ to find the temperature in closed form.
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7.19 A steel rod 25 mm in diameter is heated to a temperature of 1000◦C,
then quenched in a liquid bath. The temperature of the bath remains
constant and equal to 50◦C. If the heat transfer coefficient is 10,000
W/m2K, calculate the time required for the center temperature to
reach 500◦F. What is the surface temperature at the calculated time?
The thermophysical properties are k = 32 W/m K, cp = 700 J/kg K,
and ρ = 7800 kg/m3.

7.20 An electrical cable with a 1-cm diameter copper wire (k = 400 W/m K)
and 0.5-cm thick electrical insulation (k = 0.5 W/m K) carries elec-
tricity. The current is 300A and resistance is 0.006 ohm/m. When the
ambient temperature is 25◦C, use a steady-state solution to calculate
the surface heat transfer coefficient if the wire temperature is not to
exceed 100◦C. For the same heat transfer coefficient, calculate the
temperature variations as a function of time at the center of wire.
The line frequency is 60 cycles per second.

7.21 Find the steady-state temperature in a thin-walled tube that is cooled
by steady uniform convection inside and heated by incident solar
radiation on the outside. Assume that all of the incident radiation is
absorbed and that the incident radiation is described by q = q0 cos φ

for −π / 2 < φ < π / 2, and q = 0 otherwise. Model the tube as
a fin (see Example 7.11) and treat the surface heat flux as energy
generation g(φ) = q(φ) / δ where δ is the tube-wall thickness.

7.22 Show that
∫ φ0
φ′ = 0 GRIJΦ22(·) dφ′ = GRIJ (·).

7.23 Show that
∫ 2π
φ′ = 0 GRIJΦ00(·) dφ′ = GRIJ (·).

7.24 Does GRIJΦ11(·) for G = 0 at φ = φ0 equal GRIJΦ12(·) for
∂G / ∂φ = 0 at φ = φ0 / 2? Examine both physically and mathe-
matically.

7.25 Does GRIJΦ22(·)|φ0=2π = GRIJΦ00(·)? Examine both physically and
mathematically.

7.26 Derive the centerline temperature (r = 0) for the disk heat source on
a semi-infinite body given by Equation 7.136. Use the form of GR00
that contains the modified Bessel function I0(r r ′ /[4α(t − τ)]).

7.27 Find an integral expression for the surface temperature caused by a
short laser pulse of duration δt on a large flat surface. The surface
heating by the laser may be modelled as a uniform disk heat source of
radius a. Find the average surface temperature over the laser-heated
region as a function of time for t > δt .

7.28 A more realistic model of laser beam absorption involves a distribu-
tion of energy across the beam. Find an integral expression for the
transient temperature on the surface of an opaque semi-infinite solid
caused by a short laser pulse of duration δt where the incident energy
has a Gaussian distribution:

q(r , t) = q0 e−2(r / a)2
for 0 < t < δt

where now a is the Gaussian beam radius. The initial temperature
is zero. Find the maximum temperature on the surface and the time
when it occurs.
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7.29 Find an integral expression for the temperature in a half-cylinder
(sector 0 < φ < π) with initial temperature T0. The surface r = b is
insulated and the flat surface (φ = 0 and φ = π) is held at a fixed
temperature T0.

7.30 Induction heating is a rapid, highly localized heating method that
is used to harden bearing surfaces on crankshafts. If the crankshaft
may be modelled as a solid cylinder and the induction heating may
be modelled as surface heating, find the transient temperature in
the cylinder suddenly heated over a small portion of its length
−a < z < 0. The remainder of the cylinder surface is insulated.
Initially the cylinder has zero temperature.

7.31 Apin fin is a cylinder with a fixed elevated temperature of T0 at z = 0
and convection cooling by a fluid at T∞ over the other surfaces.

(a) Find an exact expression for the steady two-dimensional heat
flow into the pin fin at z = 0 (in watts) by analyzing the geom-
etry R03B0Z11B10 (assume the temperature at z = L is T∞).

(b) Find an approximate expression for the steady heat flow into
the pin fin at z = 0 by analyzing the fin equation ∇2T −m2(T −
T∞) = 0 for geometry Z11.

(c) Compare the numerical answer from parts (a) and (b) in the
specific cases of a pin fin with length/radius of L / a = 3, 10,
and comment on the conditions for which the fin approximation
is useful.

7.32 Find the transient temperature T (r , φ, t) in a long circular cylinder
initially at zero temperature and with uniform heat flux on a sector
of its surface 0 < φ < φ0. The remainder of the surface is insulated.
This is a model of a split-film anemometer sensor formed from a
platinum heater bonded to a quartz cylinder. Write the temperature
as the sum of three terms: the spatial-average (or lumped) term pro-
portional to time, the transient term that dies away as t → ∞, and
the quasisteady term that does not depend on time. If the cylinder
properties are k = 1.4 W/(m K) and α = 8.3E–07 m2/ s, the cylin-
der radius is 2.5E–05 m, and φ0 = π, find the time for the transient
term to die away to 10% of its initial value; this is a measure of the
response time of the split-film anemometer sensor.
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8 Radial Heat Flow
in Spherical Coordinates

8.1 INTRODUCTION

The applications of the Green’s function (GF) solution approach to the problems
posed in the spherical coordinate system are discussed in this chapter. The general
heat conduction equation for linear flow of heat in spherical polar coordinates has
the form

1

r2

∂

∂r

(
r2 ∂T

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
+ 1

r2 sin2 θ

∂2T

∂φ2

+ 1

k
g(r , θ, φ, t) = 1

α

∂T

∂t

(8.1)

where T = T (r , θ, φ, t), g represents the generation rate per unit volume (W/m3)
within the spherical region, and k is constant.

As was mentioned in the previous chapter, the applications of the GF solution
method to multidimensional problems involve cumbersome analytical work. In ad-
dition, for spherical coordinates, unlike the rectangular and cylindrical coordinates,
the two- and three-dimensional GFs cannot be obtained from the product of the one-
dimensional solutions. Because of these problems and because many heat conduction
problems in spherical coordinates involve spherical symmetry (i.e., the temperature
does not depend on θ and φ) this chapter emphasizes problems with temperature dis-
tributions that are functions only of time t and radius r (radial flow of heat). For radial
flow of heat, Equation 8.1 reduces to:

1

r2

∂

∂r

(
r2 ∂T

∂r

)
+ g(r , t)

k
= 1

r

∂2(rT )

∂r2
+ 1

k
g(r , t) = 1

α

∂T

∂t
(8.2)

Later in this chapter, we will show how this equation can further be simplified and
put into the rectangular form by introducing a new temperature U (r , t) = rT (r , t).
Topics covered in the remainder of this chapter include the Green’s function solution
equation (GFSE) for radial flow of heat in spherical coordinates (Section 8.2), the
infinite body with radial flow of heat (Section 8.3), methods for obtaining the related
GFs (Section 8.4), and how the GF solution method can be used to solve a number
of important problems for radial flow of heat in the geometries of solid and hollow
spheres and in the region outside a spherical cavity (Sections 8.6 through 8.8).

291
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8.2 GREEN’S FUNCTION EQUATION FOR RADIAL
SPHERICAL HEAT FLOW

From the general GF equation for heat conduction given by Equation 3.46, one can
write down the GF equation for the radial heat flow in spherical coordinates with the
exclusion of the term associated with the boundary conditions of the fourth and fifth
kinds, as

T (r , t) =
∫

r ′
G(r , t |r ′, 0) F (r ′)4πr ′2dr ′

(for the initial condition)

+
∫ t

τ=0

∫
r ′

α

k
G(r , t |r ′, τ)g(r ′, τ)4πr ′2dr ′ dτ

(for volume energy generation)

+ α

∫ t

τ=0

S∑
i=1

fi(ri , τ)

ki

G(r , t |ri , τ)4πr2
i dτ

(for boundary conditions of the second and third kinds)

− α

∫ t

τ=0

S∑
j=1

fj (rj , τ)
∂G

∂n′
j

∣∣∣∣∣∣
r ′=rj

4πr2
j dτ

(for boundary condition of the first kind only) (8.3)

Note that dV′ = 4πr ′2dr ′, and that the integrals over boundary surface si have been
replaced by 4πr2

i .
The GFs associated with different set of boundary conditions for radial spherical

heat flow are denoted by GRSIJ (·), where subscript RS stands for radial spherical
according to the heat conduction numbering system. Only boundary conditions of the
zeroth through the third kinds are considered here (I , J = 0, 1, 2, 3). A listing of the
available GFs for radial spherical heat flow is provided in Appendix RS.

8.3 INFINITE BODY

The GF for spherical radial flow of heat in an infinite body is denoted by
GRS00(r , t |r ′, τ). It is called the fundamental heat conduction solution for spherical
radial heat flow and is given by

GRS00(r , t |r ′, τ) = 1

8πrr ′[πα(t − τ)]1 / 2

×
{

exp

[
− (r − r ′)2

4α(t − τ)

]
− exp

[
− (r + r ′)2

4α(t − τ)

]}
(8.4)

This GF represents the temperature response due to a unit instantaneous spherical
surface source of radius r ′ at time τ in an infinite body with zero initial condition.
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FIGURE 8.1 The RS00 GF.

Do not confuse the spherical-surface source with the point source discussed in Sec-
tion 4.7.1. This GF satisfies

1

r

∂2(rG)

∂r2
+ 1

α
δ(r − r′) δ(t − τ) = 1

α

∂G

∂t
(8.5a)

∂G

∂r
(0, t |r ′, τ) = 0 (8.5b)

G(∞, t |r ′, τ) = 0 (8.5c)

G(r , 0|r ′, τ > 0) = 0 (8.5d)

Figure 8.1 shows r ′3GRS00(·) versus r+ = r / r ′ for various values of t+ =
α(t − τ) / r ′2. Note that GRS00(·) is unaffected by the axisymmetric condition of
∂G / ∂r = 0 at r = 0 for t+ < 0.03 and approaches the Dirac delta function as t+ goes
to zero. For larger values of t+, the position of the maximum G moves to smaller
r+ values.

It is interesting to note that for the special case where r ′ → 0, the GRS00(·)
becomes:

GRS00(r , t |0, τ) = 1

[4πα(t − τ)]3 / 2
exp

[
− r2

4α(t − τ)

]
(8.6)

which represents the response due to an instantaneous point source at the origin. It
can also be shown that for the case where r ′ is fixed and r → 0, a similar equation to
(8.6) is obtained; that is,
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GRS00(0, t |r ′, τ) = 1

[4πα(t − τ)]3 / 2
exp

[
− r ′2

4α(t − τ)

]
(8.7)

which gives the response at the origin due to an instantaneous spherical surface source
at r ′. From Equations 8.6 and 8.7, it is obvious that the reciprocity relation holds for
this GF.

It is also interesting to note that the point source solution, Equation 8.6, can be
represented by the product of three plane heat sources for the x-, y-, and z-directions;
that is,

GRS00(r , t |0, τ) = GX00(x, t |0, τ) GY00(y, t |0, τ) GZ00(z, t |0, τ) (8.8a)

which also shows that the unit of GRS00(·) is m−1m−1m−1 = m−3. Note that for this
case where the source is at the origin (r ′ = 0), the distance between the impulse and
response points is given by

r = (x2 + y2 + z2)1 / 2 (8.8b)

Similarly, for the case where r ′ is fixed and r = 0, we can write

GRS00(0, t |r ′, τ) = GX00(0, t |x′, τ) GY00(0, t |y′, τ) GZ00(0, t |z′, τ) (8.9a)

where

r ′ = (x′2 + y ′2 + z′2)1 / 2 (8.9b)

represents the distance between the impulse and the response points for this case.
The RS00 GF given by Equation 8.4 may be employed to obtain GFs for other

cases of radial flow of heat in spherical geometry with different types of boundary
conditions. For instance, in Section 4.3, we saw how GRS00(·) was used in the Laplace
transform approach to obtain GRS30 which is the GF for the infinite region outside
the spherical cavity r = a with convective boundary condition at r = a.

8.3.1 DERIVATION OF THE RS00 GREEN’S FUNCTION

The derivation given here is based on the physical interpretation that GRS00(r, t |r′, τ)
is equal to the temperature rise due to an instantaneous spherical surface source at
time τ and location r = r′ divided by the strength of the source and multiplied by ρc.
Having this in mind, we start with the general form of the GF solution equation (3.46).
From this equation, the temperature due to a distributed energy source is an infinite
body with zero initial condition is given by

T (r, t) =
∫ t

τ=0

∫
R

α

k
G(r, t |r′, τ) g(r′, τ)dv′ dτ (8.10)

where G(r, t |r′, τ) represents the temperature response at point r and time t in an
infinite body due to an instantaneous impulse at point r′ and time τ. It is given by

G(r, t |r′, t) = 1

[4πα(t − τ)]3 / 2
exp

[
− R2

4α(t − τ)

]
(8.11)
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where R represents the distance between the points r and r′. In rectangular coordinate
system, this distance is given by

R2 = (x − x ′)2 + (y − y ′)2 + (z − z′)2 (8.12)

where (x, y, z) and (x′, y′, z′) are rectangular coordinates of points r and r′, respec-
tively. The rectangular coordinates (x, y, z) and (x′, y′, z′) can be transformed into the
spherical coordinates (r , θ, φ) and (r ′, θ′, φ′) through the following relations:

x = r sin θ cos φ (8.13a)

y = r sin θ sin φ (8.13b)

z = r cos θ (8.13c)

Then the distance R in spherical coordinates may be presented by

R2 = r2 + r ′2 − 2rr ′[sin θ sin θ′ cos(φ − φ′) + cos θ cos θ′] (8.14a)

For the case of only radial flow of heat in spherical system, there is no temperature
variation with θ and φ. This implies that the temperature at any point r over a spherical
surface which is at an arbitrary distance from the spherical surface source (at r = r ′)
is the same regardless of the values of θ and φ. Accordingly, for simplicity, we choose
the spherical coordinates of point r to be (0, 0, r). Then Equation 8.14a simplifies to

R2 = r2 + r ′2 − 2rr ′ cos θ′ (8.14b)

The generation term in Equation 8.10 represents a continuous distributed volumet-
ric source and has the unit of W/m3. However, since we are seeking the temperature
solution due to an instantaneous spherical surface source, g(r′, τ), in Equation 8.10
is replaced by

g(r′, τ) = δ(τ − τ0)δ(r ′ − r0)g0

4πr2
0

(8.15)

where r0 is the radius of the spherical surface source that pulses at time τ0, and g0

(Joule) represents the strength of the source. (The strength per unit area is given by
g0 / 4πr2

0 and function δ(r − r0) has units of m−1).
Now by substituting the values of G(r, t |r′, τ), R, and g(r′, τ) from Equations 8.11,

8.14b, and 8.15 into Equation 8.10 and integrating over the appropriate ranges for
r ′(0 → ∞), φ′(0 → 2π), and θ′(0 → π), one can write

T (r , t) = α

k

∫ t

τ=0

∫ ∞

r ′=0

∫ π

θ′=0

∫ 2π

φ′=0

×
{

1

[4πα(t − τ)]3 / 2
exp

[
− r2 + r ′2 − 2rr ′ cos θ′

4α(t − τ)

]

× δ(τ − τ0)δ(r ′ − r0)g0

4πr2
0

}
r ′2 sin θ′ dr ′ dθ′ dφ′ dτ (8.16)
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z

dV = r2 sin θ dθ dr dφ

r sin θ dθ dφ

r sin θ

dθ
θ

x

r

dφ

φ

y

dr

FIGURE 8.2 Spherical polar coordinates.

where dv′ in Equation 8.10 has been replaced by r ′2 sin θ′ dr ′ dθ′ dφ′ (see Figure 8.2).
Note that Equation 8.16 gives the temperature due to an instantaneous spherical
surface source at radius r0 and time τ0. The integrals over r ′ and τ can be evaluated
easily with the sifting property of the Dirac delta functions. Then Equation 8.16
reduces to

T (r , t) = α

k

g0 /(4π)

[4πα(t − τ0)]3 / 2
exp

[
− (r2 + r2

0 )

4α(t − τ0)

]∫ 2π

φ′=0
dφ′

∫ π

θ′=0

× exp

[
− rr0 cos θ′

2α(t − τ0)

]
sin θ′ dθ′ (8.17)

The integral over φ′ is equal to 2π and the integral over θ′ can be evaluated easily by
choosing a new variable µ = cos θ′ to give

T (r , t) = g0

ρc

1

8πrr0[απ(t − τ0)]1 / 2

{
exp

[
− (r − r0)2

4α(t − τ0)

]
− exp

[
− (r + r0)2

4α(t − τ0)

]}
(8.18)
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Then, the GF is given by the temperature divided by the source strength and multiplied
by ρc.

GRS00(r , t |r0, τ0) = T (r , t)

g0 / ρc
= 1

8πrr0[απ(t − τ0)]1 / 2

×
{

exp

[
− (r − r0)2

4α(t − τ0)

]
− exp

[
− (r + r0)2

4α(t − τ0)

]}
(8.19)

Finally, by considering the conventional form, that is, the heat source being at (r ′, τ)
instead of at (r0, τ0), the same result as in Equation 8.4 is obtained.

8.4 SEPARATION OF VARIABLES FOR RADIAL HEAT
FLOW IN SPHERES

In the previous chapters, we saw that the separation of variables method provides
an easy and straightforward approach for obtaining the GFs for finite-body prob-
lems posed in the Cartesian and cylindrical coordinate systems with arbitrary initial
temperature distributions provided that the differential equations and the boundary
conditions are homogeneous. This method can also be applied to the radial spherical
heat flow problems to obtain the appropriate GFs. However, for radial flow of heat in
spheres, there is an alternative approach which is more convenient and involves less
analytical work than the separation of variables method; that is, the RSIJ GFs can be
obtained from the XIJ GFs through a simple transformation of the variables. Since the
method of separation of variables has already been discussed and demonstrated in de-
tail for the problems posed in the Cartesian and cylindrical coordinate systems, in this
section we demonstrate only the second approach by considering various examples.

The heat conduction equation for linear radial flow of heat in spherical coordinates
is given by Equation 8.2 as

1

r

∂2(rT )

∂r2
+ 1

k
g(r , t) = 1

α

∂T

∂t
(8.20)

This equation can be put into the rectangular form by introducing a new temperature U

(the dependent variable) as

U (r , t) = rT (r , t) (8.21)

Then Equation 8.20 becomes

∂2U

∂r2
+ 1

k
g∗(r , t) = 1

α

∂U

∂t
(8.22)

where

g∗(r , t) = rg(r , t) (8.23)

Note that U (r , t) in Equation 8.22 is similar to T (x, t) in Equation 1.113 for the
Cartesian coordinate system. The above transformation should also be applied to the
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boundary conditions and the initial condition of the problem under consideration.
Once the problem is completely transformed into the Cartesian coordinate system,
the appropriate XIJ GFs can be found from the separation of variable method or more
conveniently from the available tables given in Appendix X. Then, the RSIJ GFs
are obtained by transforming the results back into the spherical coordinate system.
Note that only the homogeneous part of Equation 8.22 is considered for derivation of
the GFs. The relation between the GRSIJ and GXIJ (I , J = 0, 1, 2, 3) may vary from
case to case depending on the geometry and the type of the boundary conditions. This
is best illustrated through the following examples.

Example 8.1: Derivation of GRS03—Solid Sphere with Convective Bound-
ary Condition

The RS03 GF is obtained from the solution to the following homogeneous problem
with an arbitrary initial condition described by

1
r

∂2(rT )
∂r2 = 1

α

∂T
∂t

0 ≤ r ≤ b t > 0 (8.24)

T is finite at r = 0 t > 0 (8.25a)

∂T (b, t )
∂r

+ HT (b, t ) = 0 t > 0 (8.25b)

where H ≡ h
k

(8.25c)

T (r , 0) = F (r ) 0 ≤ r ≤ b (8.26)

By introducing the new variable U as

U(r , t ) = r T (r , t ) (8.27)

Equations 8.24 through 8.26 become

∂2U(r , t )
∂r2 = 1

α

∂U
∂t

0 ≤ r ≤ b t > 0 (8.28)

U(0, t ) = 0 t > 0 (8.29a)

∂U(b, t )
∂r

+ H∗U(b, t ) = 0 t > 0 (8.29b)

where H∗ = H − 1
b

(8.29c)

U(r , 0) = rF (r ) = F ∗(r ) 0 ≤ r ≤ b (8.30)

The transformed problem described by Equations 8.28 through 8.30 represents a
flat plate problem with an arbitrary initial condition and the homogeneous bound-
ary conditions of the first kind on one side and the third kind on the other side
(X13). See Figures 8.3a and b.
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b

(a) (b)∂T(b, t) T(b, t) = 0

T = 0

x

Lh
k∂r

∂T h+ T = 0∂x k

+

FIGURE 8.3 (a) Solid sphere with convection boundary condition (RS03). (b) Flat plate with
boundary conditions of the first and third kinds (X13).

From the separation of variables method or the available tables in Appendix X,
the GF for the X13 geometry for τ = 0 is given by

GX13(x , t |x ′, 0) = 2
L

∞∑
m=1

exp
(

−β2
m

αt
L2

)
(β2

m + B2) sin(βm x / L) sin(βm x ′ / L)
β2

m + B2 + B

(8.31)

where

βm cot βm = −B B = HL = hL
k

(8.32a,b)

and L represents the thickness of the plate.
Then with L → b, x → r , x ′ → r ′, and H → H∗, one can write,

GX13(r , t |r ′, 0) = 2
b

∞∑
m=1

exp
(

−β2
m

αt
b2

)
(β2

m + B2) sin(βm r / b) sin(βm r ′ / b)
β2

m + B2 + B

(8.33)

where

βm cot βm = −B B = H∗b = Hb − 1 (8.34a,b)

From the first term of Equation 3.16 which gives the temperature in a flat plate due
to a nonuniform initial condition, one can write

U(r , t ) =
∫ b

r ′=0
F ∗(r ′)GX13(r , t |r ′, 0)dr ′ (8.35)

Replacing for F ∗(r ′) = r ′F (r ′), and transforming U(r , t ) back into T (r , t ), gives

T (r , t ) = 1
r

U(r , t ) =
∫ b

r ′=0

r ′
r

F (r ′)GX13(r , t |r ′, 0)dr ′ (8.36)
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Equation 8.36 can be rearranged to give

T (r , t ) =
∫ b

r ′=0

[
1

4πrr ′ GX13(r , t |r ′, 0)
]

F (r ′)4πr ′2 dr ′ (8.37)

T (r , t ) can also be obtained by solving the initial value problem (Equations 8.24
through 8.26) with the GF equation for radial spherical heat flow (Equation 8.3)
to give

T (r , t ) =
∫ b

r ′=0
GRS03(r , t |r ′, 0)F (r ′)4πr ′2 dr ′ (8.38)

Now, by comparing Equations 8.37 and 8.38, which both represent the same
solution, one can conclude that the term in the brackets in Equation 8.37 must be
the RS03 GF evaluated at τ = 0; that is,

GRS03(r , t |r ′, 0) = 1
4πrr ′ GX13(r , t |r ′, 0) (8.39)

Finally by substitution of GX13(r , t |r ′, 0) from Equation 8.33 and by replacement
of (t − 0) by (t − τ), one can write

GRS03(r , t |r ′, τ) = 1
2πbrr ′

∞∑
m=1

exp
[
−β2

m
α(t − τ)

b2

]

× (β2
m + B2) sin(βm r / b) sin(βm r ′ / b)

β2
m + B2 + B

(8.40)

where

βm cot βm = −B B = Hb − 1 (8.41a,b)

This GF is also listed in Appendix RS.

Example 8.2: Derivation of GRS33—Hollow Sphere with Convective
Boundary Conditions

Consider the following homogeneous initial-value problem for a hollow sphere as
shown in Figure 8.4a:

1
r

∂2(rT )
∂r2 = 1

α

∂T
∂t

a ≤ r ≤ b t > 0 (8.42)

∂T (a, t )
∂r

− H1T (a, t ) = 0 t > 0 (8.43a)

∂T (b, t )
∂r

+ H2T (b, t ) = 0 t > 0 (8.43b)

where

H1 = h1

k
H2 = h2

k
(8.43c)

T (r , 0) = F (r ) a ≤ r ≤ b (8.44)
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∂T(b, t)

∂T(a, t)
T(a, t) = 0∂r

∂T –
∂x

h1 T = 0k

∂T +
∂x

h2
T = 0k

x

L

h1–
k

T(b, t) = 0

a

b

h2+
∂r k

FIGURE 8.4 (a) Hollow sphere with convection boundary conditions (b) Flat plate with
convection boundary conditions (X33).

The solution procedure is the same as that used for Example 8.1. By introducing
the new dependent variable U(r , t ) = rT (r , t ), we get a similar differential equation,
in terms of U, as that in the previous example. However, the boundary conditions
are different from the previous case. For this case the transformation of the variables
yields

∂2U
∂r2 = 1

α

∂U
∂t

a ≤ r ≤ b t > 0 (8.45)

∂U(a, t )
∂r

− H∗
1U(a, t ) = 0 t > 0 (8.46a)

∂U(b, t )
∂r

+ H∗
2U(b, t ) = 0 t > 0 (8.46b)

where

H∗
1 = H1 + 1

a
H∗

2 = H2 − 1
b

(8.46c)

U(r , 0) = r F (r ) = F ∗(r ) (8.47)

The transformed equations 8.45 through 8.47 represent a flat plate problem with
an arbitrary initial condition and the homogeneous convective boundary condi-
tions on both sides (X33) (see Figure 8.4b). From Appendix X, Equation X33.2, the
GF for this case, X33 geometry, for τ = 0 is given by

GX33(x , t |x ′, 0) = 2
L

∞∑
m=1

exp
(

−β2
m

αt
L2

)

×

[βm cos(βm x / L) + B1 sin(βm x / L)]
×[βm cos(βm x ′ / L) + B1 sin(βm x ′ / L)]
(β2

m + B2
1 )[1 + B2 /(β2

m + B2
2 )] + B1

(8.48)
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where the βm values are the positive eigenvalues of

tan βm = βm(B1 + B2)
β2

m − B1B2
B1 = H1L = h1L

k
B2 = H2L = h2L

k
(8.49a, b, c)

and L represents the plate thickness. Again in a similar manner to that of the
previous example, one can show that

T (r , t ) = 1
r

U(r , t ) =
∫ b

r ′=a

[
1

4πrr ′ GX33(r , t |r ′, 0)
]

F (r ′)4πr ′2 dr ′ (8.50)

which yields

GRS33(r , t |r ′, 0) = 1
4πrr ′ GX33(r , t |r ′, 0) (8.51)

However, it should be noted that, for this case, the transformation of the
Cartesian variables (x , x ′, L, etc.) to the spherical variables (r , r ′, b, a, etc.)
is not the same as that for the previous example. From Figures 8.4a and b, one can
see that for this case,

L → (b − a) x → (r − a) x ′ → (r ′ − a) (8.52a,b,c)

B1 → H∗
1 (b − a) =

(
H1 + 1

a

)
(b − a) (8.53a)

B2 → H∗
2 (b − a) =

(
H2 − 1

b

)
(b − a) (8.53b)

Finally by substituting for L, x , x ′, B1, and B2 from Equation 8.52a, b, c and
8.53a, b into Equation 8.48, and replacing (t − 0) by (t − τ), one can write

GRS33(r , t |r ′, τ) = 1
2πrr ′(b − a)

∞∑
m=1

exp
[
−β2

m
α(t − τ)
(b − a)2

]

×

{βm cos[βm(r − a) /(b − a)] + B1 sin[βm(r − a) /(b − a)]}
×{βm cos[βm(r ′ − a) /(b − a)] + B1 sin[βm(r ′ − a) /(b − a)]}

(β2
m + B2

1 )[1 + B2 /(β2
m + B2

2 )] + B1
(8.54)

where

B1 =
(

a h1

k
+ 1

)(
b
a

− 1
)

(8.55a)

B2 =
(

b h2

k
− 1

)(
1 − a

b

)
(8.55b)
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with

tan βm = βm(B1 + B2)
β2

m − B1B2
(8.55c)

This GF is also listed in Appendix RS.
The procedure demonstrated in the two previous examples can also be used to

obtain GRSIJ from GXIJ for other types of boundary conditions (I , J = 0, 1, 2, 3).
Table 8.1 gives a summary of how RSIJ GFs are obtained from XIJ GFs for different
values of I , J = 0, 1, 2, 3 with the appropriate variable transformations.

8.5 TEMPERATURE IN SOLID SPHERES

In this section, we demonstrate the application of the GF solution method to the
solid sphere problems with radial flow of heat numbered by RS0J where J = 1, 2,
and 3. Three groups of problems are considered: those with a nonzero initial tempera-
ture distributions F (r); those with nonhomogeneous boundary conditions; and those
containing an energy generation term g(r , t).

The describing partial differential equation for these groups of problems is

1

r

∂2(rT )

∂r2
+ 1

k
g(r , t) = 1

α

∂T

∂t
0 ≤ r ≤ b t > 0 (8.56)

where g(r , t) represents an energy generation term that makes this equation nonhomo-
geneous. The boundary conditions at the center of the sphere (r = 0) are homogeneous
and are given by

∂T (0, t)

∂r
= 0 or T (0, t) �= ∞ t > 0 (8.57)

The condition at the surface of the sphere (r = b), can be of the first, second, or third
kinds depending on the values of J , that is,

for J = 1 : T (b, t) = Tb(t) t > 0 (8.58a)

for J = 2 : k
∂T (b, t)

∂r
= qb(t) t > 0 (8.58b)

and for J = 3 : k
∂T (b, t)

∂r
+ hT (b, t) = hT∞(t) t > 0 (8.58c)

Here qb is heat flow into the sphere. The initial condition is considered to be an
arbitrary function of time, given by

T (r , 0) = F (r) 0 ≤ r ≤ b (8.59)

From the GFSE for radial flow of heat in spheres, Equation 8.3, the temperature
solution is
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T (r , t) =
∫ b

r ′=0
F (r ′)GRS0J (r , t |r ′, 0)4πr ′2 dr ′

+ α

k

∫ t

τ=0

∫ b

r ′=0
GRS0J (r , t |r ′, τ) g(r ′, t) 4πr ′2 dr ′ dτ

− α

∫ t

τ=0
Tb(τ)

∂GRS01(r , t |b, τ)

∂r
4πb2 dτ (for J = 1 only)

+ α

k

∫ t

τ=0
qb(τ)GRS02(r , t |b, τ) 4πb2 dτ (for J = 2 only)

+ α

k

∫ t

τ=0
hT∞(τ)GRS03(r , t |b, τ) 4πb2 dτ (for J = 3 only) (8.60)

Note that since the boundary condition at the center of the solid sphere is homoge-
neous, the last two integrals, associated with boundary conditions, are evaluated only
at the sphere’s outer surface at radius b. The RS0J GFs for the cases of J = 1, 2, 3
are given in Appendix RS or can be obtained from XIJ GFs through the appropriate
transformations provided in Table 8.1. Some example problems are discussed next.

Example 8.3: Solid Sphere with Arbitrary InitialTemperature—RS01B0T-
Case

A solid sphere, 0 ≤ r ≤ b, has a known initial temperature distribution F (r ). The
surface temperature is kept at T = 0. Find the transient temperature distribution
in the sphere.

Solution

The solution can be obtained from Equation 8.60 by considering only the first
integral on the right-hand side which is due to the nonzero initial temperature
distribution. The second through the last integrals vanish since there is no volume
energy generation in the above problem, g (r , t ) = 0, and the boundary condi-
tions are homogeneous. The required GF for this case is GRS01(r , t |r ′, 0) which is
equivalent to GX11 in Cartesian coordinates. Following the procedure explained
in Section 8.4, from Table 8.1, with x → r , x ′ → r ′, and L → b, one can write

GRS01(r , t |r ′, 0) = 1
4πrr ′ GX11(r , t |r ′, 0)

= 1
2πbrr ′

∞∑
m=1

exp

[
−m2π2αt

b2

]
sin

(
mπ

r
b

)
sin

(
mπ

r ′
b

)
(8.61)

Note that the expression for X11 GF used in the above equation is suitable for
large times. Substituting for GRS01 from Equation 8.61 into 8.60 yields

T (r , t ) =
∫ b

r ′=0
F (r ′)

×
[

1
2πbrr ′

∞∑
m=1

exp

(
−m2π2αt

b2

)
sin

(
mπ

r
b

)
sin

(
mπ

r ′
b

)]
4πr ′2 dr ′

(8.62)
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FIGURE 8.5 Temperature in a solid sphere initially at uniform temperature T0 and with
surface temperature set to zero at t = 0. Case RS01B0T 1.

which can be simplified and rearranged to give

T (r , t ) = 2
br

∞∑
m=1

exp

(
−m2π2αt

b2

)

× sin
(
mπ

r
b

) ∫ b

r ′=0
F (r ′) sin

(
mπ

r ′
b

)
r ′ dr ′ (8.63)

For the special case (RS01B0T 1) where there is a uniform initial temperature dis-
tribution, T (r , 0) = F (r ) = T0, the integral in solution (8.63) can easily be evalu-
ated as ∫ b

r ′=0
F (r ′) sin

(
mπ

r ′
b

)
r ′ dr ′ = T0

∫ b

r ′=0
sin

(
mπ

r ′
b

)
r ′ dr ′

= −T0b2

mπ
cos(mπ) = −T0b2

mπ
(−1)m (8.64)

since
∫

x sin x dx = sin x − x cos x and cos(mπ) = (−1)m. Then the solution
becomes

T (r , t ) = 2T0

∞∑
m=1

(−1)m+1 exp[−m2π2αt / b2] sin(mπr / b)
(mπr / b)

(8.65)

This temperature is plotted in Figure 8.5. The above solution represents a rapidly
converging series for large times (αt / b2) since the exponential term rapidly
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decreases as m increases. However, for small times, it takes a large number of
terms for convergence. For small values of αt / b2, it is more computationally ef-
ficient to use the small-cotime GF. For small times, the RS01 GF can be obtained
from the small-cotime expression for X11 GF given by Equation X11.1 in Ap-
pendix X. That is,

GS
RS01(r , t |r ′, 0) = (4πrr ′)−1(4παt )−(1 / 2)

+∞∑
n=−∞

×
{

exp

[
− (2nb + r − r ′)2

4αt

]
− exp

[
− (2nb + r + r ′)2

4αt

]}

(8.66)

In a similar manner to that used for the large-time solution, the small-time solution,
for F (r ) = T0, is obtained by substituting Equation 8.66 into Equation 8.60 and
integrating from r ′ = 0 to r ′ = b to give

T (r , t ) = T0 − bT0

r

∞∑
n=−∞

{
erfc

[
(2n + 1)b − r

(4αt )1 / 2

]
− erfc

[
(2n + 1)b + r

(4αt )1 / 2

]}

(8.67)

Note that since the complementary error function erfc(·), decreases rapidly with
an increase in its argument, for small times (such as αt / b2 < 0.4), the major con-
tribution to the temperature in the above solution is due to the first two terms of
the series (n = 0, 1). For smaller times, say αt / b2 < 0.1, even one term in the
series is sufficient to give accurate results.

The large- and small-time solutions given by Equations 8.65 and 8.67 are ap-
plicable for r > 0. For the temperature at the center of the sphere, these solutions
approach the following expressions as r → 0 at the limit:

T (0, t ) = 2T0

∞∑
m=1

(−1)m+1 exp

[
−m2π2αt

b2

]
(for large times) (8.68)

T (0, t ) = T0 − bT0

(παt )1 / 2

∞∑
n=−∞

exp

[
− (2n + 1)2b2

4αt

]
(for small times) (8.69)

In the above problem, the boundary condition at the surface r = b was con-
sidered to be homogeneous, and consequently, in the derivation of the solution,
we did not have to consider the contributions of the last three integrals in Equa-
tion 8.60.

If the boundary condition at r = b is nonhomogeneous but constant at Tb , the
problem can be cast as one with homogeneous boundary condition, by defining a
new temperature variable T −Tb . Therefore, the solutions given by Equations 8.65
and 8.67 through 8.69 can still be used by replacing T and T0 by T −Tb and T0−Tb ,
respectively, in these solutions. For the case where the boundary condition at r = b
is not constant, the corresponding integral in Equation 8.60 must be included in
the solution. This is best illustrated in the following example.
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Example 8.4: Solid Sphere Heated at Surface—RS02B-T- Case

A solid sphere, 0 ≤ r ≤ b, has a known initial temperature distribution F (r ). The
surface of the sphere is heated uniformly by a known heat flux as a function of
time, qb (t ). Find the temperature distribution in the sphere for large times.

Solution

The partial differential equation, the initial condition, and the boundary condition
at the center of the sphere r = 0 for this case are the same as those for Exam-
ple 8.3. The boundary condition at the surface (r = b) is of second kind (J = 2) and
nonhomogeneous, given by Equation 8.58b as

k
∂T (b, t )

∂r
= qb (t ) (8.70)

From the Equation 8.60, the solution is

T (r , t ) =
∫ b

r ′=0
GRS02(r , t |r ′, 0) F (r ′)4πr ′2 dr ′

+ α

k

∫ t

0
qb (τ) GRS02(r , t |b, τ)4πb2 dτ (8.71)

Note that since there is no energy generation in the sphere, the second integral
in Equation 8.60 is not included in the solution. The required GF for this case,
GRS02(r , t |r ′, τ), can be obtained from the X13 GF through the appropriate trans-
formation of the variables given inTable 8.1. It also can be obtained from the RS03
GF given by Equation 8.40 by setting H = 0. However, note that when H = 0, the
corresponding eigenfunction, Equation 8.41, has a zero root, and consequently, a
term 3 /(4πb3) has to be added to the value of GRS03 given by Equation 8.40 with
H = 0. Therefore, one can write

GRS02(r , t |r ′, τ) = 1
2πbrr ′

∞∑
m=1

exp

[
−β2

mα(t − τ)
b2

]

×
(
β2

m + 1
)

sin
(
βm

r
b

)
sin

(
βm

r ′
b

)
β2

m
+ 3

4πb3 (8.72)

where βm are the roots of the eigenfunction

βm cot βm = 1 (8.73)

The first five values of βm are 4.4934, 7.7253, 10.9041, 14.0662, and 17.2208,
respectively. (Note: Some sources count (β = 0) as the first eigenvalue, however
in our GF expression, Equation 8.72, the contribution of the zero eigenvalue is
included as the additive term outside the series.)

Note that the RS02 GF given here (also listed in Appendix RS) is valid for any
time but is best for “large” values of α(t − τ) / b2. Substituting Equation 8.72 into
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Equation 8.71 yields

T (r , t ) = 3
b3

∫ b

r ′=0
r ′2F (r ′)dr ′

+ 2
br

∞∑
m=1

exp

(
−β2

mαt
b2

)
β2

m + 1
β2

m
sin

(
βm

r
b

) ∫ b

r ′=0
r ′F (r ′)

× sin
(

βm
r ′
b

)
dr ′ + 3α

bk

∫ t

0
qb (τ)dτ

+ 2α

rk

∞∑
m=1

β2
m + 1
β2

m
sin(βm) sin

(
βm

r
b

) ∫ t

0
qb (τ)

× exp

[
−β2

mα(t − τ)
b2

]
dτ (8.74)

Some special cases are considered next.
(a) Case RS02B1T 1. The initial temperature and the surface heat flux are con-

stant and given by

T (r , 0) = F (r ) = T0 qb (t ) = q0 (8.75a, b)

For this case, the last integral for Equation 8.74 is given in Table I.6 (Appendix I)
and the solution becomes

T (r , t ) = T0 + 3αq0t
bk

+ q0(5r2 − 3b2)
10kb

− 2q0b2

kr

∞∑
m=1

sin(βm r / b)
β2

m sin βm
exp

(
−β2

mαt
b2

)
(8.76)

Note that the second integral in Equation 8.74 vanishes for this case since from
the characteristic equation 8.73, we have sin βm − βm cos βm = 0. The third term
on the right-hand side of Equation 8.76 is the nonseries form of the quasisteady
temperature for this case. It can be found by applying the alternative solution
method presented in Example 6.6. The temperature computed from the above
series is plotted in Figure 8.6.

(b) Case RS02B2T 0. Zero initial temperature and the surface heat flux is a linear
function of time, that is,

T (r , 0) = F (r ) = 0 qb (t ) = q0t (8.77)

since the initial condition is zero, there is no contribution to the solution due to
the initial condition and consequently the first two terms in solution (8.74) vanish.
The time integral in the last term can be evaluated using integral number 18 from
Table I.6. Then the solution becomes;

T (r , t ) = 3αq0

2bk
t2 + 2q0b4

kr

∞∑
m=1

sin(βm r / b)
β4

m sin βm

×
[

exp

(
−β2

mαt
b2

)
+ βm

αt
b2 − 1

]
(8.78)
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FIGURE 8.6 Temperature in a solid sphere initially at uniform temperature T0 with a
suddenly-applied surface heat flux. Case RS02B1T 1.

Note that the solutions presented in this example are most efficient for large values
of αt / b2. In the next example, time partitioning, introduced in Chapter 5, is used
to find a solution that is numerically efficient for both small and large times.

Example 8.5: Solid Sphere with Convective Boundary Condition—
RS03B1T 0 Case

A solid sphere, 0 ≤ r ≤ b, initially at temperature T0, is suddenly immersed in
a fluid at a constant temperature T∞. The heat transfer coefficient for this process
is h, a constant. Find separate expressions for temperature distribution, T (r , t ), that
are numerically efficient for small time and for large time.

Solution

For very small times, the change in temperature is limited to a small region near
the surface of the sphere. Using normalized temperature T − T0, the solution due
to the convection boundary condition at the surface of the sphere (r = b) is given
by the last term of Equation 8.60,

T (r , t ) − T0 = α

k

∫ t

τ=0
h(T∞ − T0)GS

RS03(r , t |b, τ) 4πb2 dτ (8.79)

For small-time behavior, the small-cotime GF, GS
RS03, is needed in this integral, and

it can be obtained from GS
X13 given by Equation X13.1 in Appendix X. Following

the procedure explained in Section 8.4 with the appropriate transformation of the
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variables from Table 8.1, one can get

GS
RS03(r , t |r ′, τ) = [4πrr ′]−1[4πα(t − τ)]−1 / 2

{
exp

[
− (r − r ′)2

4α(t − τ)

]

− exp

[
− (r + r ′)2

4α(t − τ)

]
+ exp

[
− (2b − r − r ′)2

4α(t − τ)

]}

− (4πrr ′)−1H∗ exp[H∗(2b − r − r ′)

+ H∗2α(t − τ)]erfc
{

(2b − r − r ′)
[4α(t − τ)]1 / 2

+ H∗[α(t − τ)]1 / 2
}

(8.80a)

where

H∗ = H − 1
b

H = h
k

(8.80b, c)

Evaluating GS
RS03 at r ′ = b and substituting the result into Equation 8.79 with

(t − τ) replaced by cotime u yields

T S (r , t ) = αbhT∞
kr

∫ t

u=0

(
(4παu)−1 / 2

×
{

2 exp

[
− (b − r )2

4αu

]
− exp

[
− (r + b)2

4αu

]}

− H∗ exp[H∗(b − r ) + H∗2αu]
× erfc

[
(b − r )

(4αu)1 / 2 + H∗(αu)1 / 2
])

du, for αt / b2 < 0.022 (8.81)

The above integral can be evaluated using the Laplace transform method. This
method has already been demonstrated in Examples 4.1 and 4.2, where similar
integrals have been solved for the X10 and X30 geometries, respectively. Then the
small-time solution becomes

T S (r , t ) = T∞bh
kr

{
1

H∗ erfc
[

(b − r )
2(αt )1 / 2

]
− 1

H∗

× exp[(b − r )H∗ + αtH∗2] erfc
[

(b − r )
2(αt )1 / 2 + H∗(αt )1 / 2

]

−(αt )1 / 2 ierfc
[

r + b
2(αt )1 / 2

]}
, for αt / b2 < 0.022 (8.82a)

where

H∗ = h
k

− 1
b

(8.82b)

Note that this expression is good for r away from the center where the temperature
remains unchanged for small values of αt / b2.
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Next an expression will be found for the temperature that is rapidly convergent
at larger times and suitable for all times. The required large-cotime GF is found in
Appendix RS, Equation RS03.1. Still using normalized temperature (T (r , t ) − T0)
and Equation 8.79, the temperature is given by

T (r , t ) − T0 = αh(T∞ − T0)
k

∫ t

τ=0
dτ

2
r

∞∑
m=1

× e−β2
mα(t−τ) / b2 (β2

m + B2) sin(βm r / b) sin βm

β2
m + B2 + B

(8.83a)

where

βm cot βm = −B and B = hb
k

− 1 (8.83b)

The integral on τ involves only the exponential term and can easily be evaluated
to give

T (r , t ) − T0 = 2h(T∞ − T0)b2

kr

∞∑
m=1

1
β2

m
(1 − e−β2

mαt / b2
)

× (β2
m + B2) sin(βm r / b) sin βm

β2
m + B2 + B

(8.84)

This series can be split into a time-varying series and a steady series. The steady
series, which represents the steady-state temperature, converges slowly. As dis-
cussed in Chapter 5, it is usually helpful to replace the steady-state series by a
nonseries form if it can be found. In the present case, the steady temperature in the
sphere takes on the temperature of the fluid. That is, the steady series has the value
(T∞ − T0). Making this substitution yields a rapidly converging form of the series:

T (r , t ) − T0 = (T∞ − T0) − 2
hb
k

b
r

(T∞ − T0)
∞∑

m=1

1
β2

m
e−β2

mαt / b2

× (β2
m + B2)

β2
m + B2 + B

sin(βm r / b) sin βm (8.85)

Note that term T0 appears on both side of the equal sign and could be cancelled.
The above series is suitable for all time and converges rapidly at large times, with
only a few terms of the series needed for αt / b2 > 0.022.

Alternate Solution

An alternate derivation of the large-time temperature may be found using the nor-
malized temperature (T −T∞), which makes the boundary condition homogeneous
and moves the causative effect to the initial-condition term of the GF solution.That
is, using the initial condition term of Equation 8.60, the temperature is given by

T (r , t ) − T∞ =
∫ b

r ′=0
h(T0 − T∞)GRS03(r , t |r ′, τ = 0) 4π(r ′)2 dr ′ (8.86a)
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FIGURE 8.7 Solid sphere with convection boundary condition with hb / k = 5.

Upon substituting the large-cotime GF given in Appendix RS, Equation RS03.1
and carrying out the spatial integral, the alternate solution is given by

T (r , t ) − T∞ = 2
b
r

(T0 − T∞)
∞∑

m=1

1
β2

m
e−β2

mαt / b2

× (β2
m + B2)

β2
m + B2 + B

sin(βm r / b)[sin βm − βm cos βm] (8.86b)

At first glance this alternate series appears to be quite different than that found by
the direct solution given in Equation 8.85; however, the alternate series can be
shown to be identical with Equation 8.85 by use of the eigencondition identity,
Equation 8.83b. See Figure 8.7 for a plot of normalized temperature versus position
for the specific condition (hb / k = 5).

Example 8.6: Solid Sphere with Internal Energy Generation and Insulated
Surface—RS02B0T 0G- Case

A solid sphere, 0 ≤ r ≤ b, is initially at zero temperature. For times t > 0, heat
is produced within the sphere at the rate g (r , t ) per unit time per unit volume
while the surface boundary is kept insulated. See Figure 8.8. Find the temperature
distribution within the sphere, T (r , t ) for large times.

Solution

The temperature due to the heat generation within the sphere is given by the second
integral on the right-hand side of Equation 8.60,
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FIGURE 8.8 Solid sphere with insulated surface and energy generation.

T (r , t ) = α

k

∫ t

τ=0

∫ b

r ′=0
GRS02(r , t |r ′, τ) g (r ′, τ) 4π(r ′)2dr ′ dτ (8.87)

Note that since the initial temperature is zero and the boundary conditions are
homogeneous, the other integrals in Equation 8.60 have no contribution in T (r , t ).
The large-time form of GRS02 is found in Appendix RS and is also given by Equa-
tion 8.72. Substituting GRS02 from Equation 8.72 into Equation 8.87 yields

T (r , t ) = α

k

∫ t

τ=0

∫ b

r ′=0

{
1

2πbrr ′
∞∑

m=1

exp

[
−β2

mα(t − τ)
b2

]

× (β2
m + 1) sin(βm r / b) sin(βm r ′ / b)

β2
m

+ 3
4πb3

}
g (r ′, τ)4π(r ′)2dr ′ dτ

(8.88)

which can be simplified and rearranged into two different terms as

T (r , t ) = T1(r , t ) + T2(r , t ) (8.89)

where

T1(r , t ) = 3α

kb3

∫ t

τ=0
dτ

∫ b

r ′=0
g (r ′, τ) (r ′)2dr ′ (8.90a)

T2(r , t ) = 2α

kbr

∞∑
m=1

(β2
m + 1) sin(βm r / b)

β2
m

∫ t

τ=0

× exp

[
−β2

mα(t − τ)
b2

]
dτ

∫ b

r ′=0
sin

(
βm

r ′
b

)
g (r ′, τ) r ′dr ′ (8.90b)

and the eigenvalues βm are defined by βm cot βm − 1 = 0.



T&F Cat # K10695, Chapter 8, Page 316, 15-6-2010

316 Heat Conduction Using Green’s Functions

In the above equations, usually, it is more convenient to carry out the integrals
over r ′ first and then over τ. The solution given by Equations 8.89 and 8.90 is now
examined for some special cases.

(a) Case RS02B0T0G1. Heat is generated within the sphere at a constant rate,
g (r , t ) = g0 = constant. For this case the integrals in Equation 8.90 are easily
evaluated and the solution becomes

T (r , t ) = T1(r , t ) = αg0t
k

(8.91)

Note that T2(r , t ) is equal to zero in this case since the integration over r ′ in
Equation 8.90b results in the term (sin βm − βm cos βm) = 0.

(b) Case RS02B0T0Gr2. Heat is generated within the sphere as a linear function
of radius given by

g (r , t ) = g0(b − r )
b

(8.92)

The integrals in T1(r , t ) are easily evaluated to give

T1(r , t ) = αtg0

4k
(8.93a)

The integrals over r ′ and τ in the T2(r , t ) solution are evaluated to give

T2(r , t ) = 2g0b3

kr

∞∑
m=1

[2 − (2 + β2
m) cos βm](β2

m + 1) sin(βm r / b)
β5

m

×
[

1 − exp

(
−β2

mαt
b2

)]
(8.93b)

Then the solution becomes

T (r , t ) = g0b2

4k

{
αt
b2 + 8b

r

∞∑
m=1

(β2
m + 1)[2 − (2 + β2

m) cos βm] sin(βm r / b)
β5

m

×
[

1 − exp

(
−β2

mαt
b2

)]}
(8.94)

It is interesting to note that T1(r , t ) solution is not a function of r and changes
linearly with t . This term represents the volume-average temperature in the sphere,
defined by

Tav(t ) =
(

4
3

πb3
)−1 ∫ b

r=0
T (r , t ) 4πr2 dr (8.95a)

and can be verified by substituting for T (r , t ) from Equation 8.89 and carrying out
the integration; that is,

Tav(t ) =
(

4
3

πb3
)−1 ∫ b

r=0
[T1(r , t ) + T2(r , t )] 4πr2dr (8.95b)
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The integration over T2(r , t ) becomes zero, since it involves the eigencondition
βm cot βm − 1 = 0. Then, since T1 is not a function of r , one can write

Tav(t ) =
(

4
3

πb3
)−1

T1(t )
∫ b

r=0
4πr2dr = T1(t ) (8.96a)

or

Tav(t ) = αtg0

4k
(8.96b)

It is also interesting to note that the T2(r , t ) solution contains two terms: one is the
transient term which decreases exponentially to zero over time, while the other
term represents the quasisteady temperature distribution which does not depend
on time. After the transient term becomes zero, the shape of the temperature dis-
tribution remains unchanged due to the latter term. Note that even though the
transient term in T2 solution dies out with time, since T1 solution is a function
of time, there is no steady-state temperature for this problem. In other words, the
average temperature of the sphere increases with time since, due to the insulated
surface condition, the heat that is generated has no place to go.

(c) Case RS02B0T0Gr4. Heat is generated within the sphere as an exponential
function of radius given by

g (r , t ) = g0 e−γr / b (8.97)

The T1(r , t ) solution for this case is given by

T1(r , t ) = 3αtg0

kb3

∫ b

r ′=0
e−γr ′ / br ′2dr ′ (8.98)

The integral over r ′ in Equation 8.98 can be evaluated by parts to give

T1(r , t ) = 3αtg0

kγ3 [2 − e−γ(γ2 + 2γ + 2)] (8.99)

After integrating over time, the T2(r , t ) solution becomes

T2(r , t ) = 2g0b3

kr

∞∑
m=1

(β2
m + 1) sin(βm r / b)

β4
m

×
[

1 − exp

(
−β2

mαt
b2

)]∫ 1

0
sin

(
βm

r ′
b

)

× e−γr ′ / b
(

r ′
b

)
d
(

r ′
b

)
(8.100)

The integral over r ′ in Equation 8.100 can be evaluated by using the relation∫
x eAx sin(Bx ) dx = xeAx

A2 + B2

× (A sin Bx − B cos Bx ) − eAx

(A2 + B2)2

× [(A2 − B2) sin Bx − 2AB cos Bx] (8.101)
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Then, one can write

T2(r , t ) = 2g0b3γ

kr

∞∑
m=1

× (1 + β2
m)[2βm − e−γ sin(βm) (2 + 2γ + γ2 + β2

m)]
β4

m(γ2 + β2
m)2

× sin
(
βm

r
b

)[
1 − exp

(
−β2

mαt
b2

)]
(8.102)

Finally, the solution for T (r , t ) becomes

T (r , t ) = 3g0b2

k

{
αt
b2

[
2 − e−γ(γ2 + 2γ + 2)

γ3

]

+ 2γb
3r

∞∑
m=1

(β2
m + 1)
β4

m

× [2βm − e−γ sin(βm)(2 + 2γ + γ2 + β2
m)]

(γ2 + β2
m)2

× sin
(
βm

r
b

)[
1 − exp

(
−β2

mαt
b2

)]}
(8.103)

Note that for this case, similar to the previous case, the T1 solution is not a func-
tion of position, and the T2 solution contains a transient decaying term and a
quasisteady term.

(d) Case RS02B0T0Gt4. Heat is generated within the sphere as an exponential
function of time given by

g (r , t ) = g0e−λt (8.104)

Similar to case 1, since g is not a function of r , T2(r , t ) becomes zero. Then, the
solution is given by

T (r , t ) = T1(r , t ) = αg0

kλ
(1 − e−λt ) (8.105)

Note that, there is a steady-state temperature for this case given by αg0 / kλ.
(e) Case RS02B0T0Gr6. Heat is generated within the sphere with generation

rate given by

g (r , t ) = g0

r
sin

πr
b

(8.106)

The integrals in the T1 solution, for this case, can easily be evaluated to give,

T1(t ) = 3αg0t
πkb

(8.107)
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After integrating over time, the T2 solution becomes

T2(r , t ) = 2g0b2

kr

∞∑
m=1

× (β2
m + 1) sin(βmr / b)

β4
m

[
1 − exp

(
−β2

mαt
b2

)]

×
∫ 1

r ′=0
sin

(
βm

r ′
b

)
sin

(
π

r ′
b

)
d

(
r ′
b

)
(8.108)

The integral over r ′ in Equation 8.108 can be evaluated by using the relation

sin A sin B = ½[cos(A − B) − cos(A + B)] (8.109)

Then, the solution for T (r , t ) becomes

T (r , t ) = 3g0b
πk

{
αt
b2 + 2bπ2

3r

∞∑
m=1

sin(βm r / b)
β2

m(π2 − β2
m)

×
[

1 − exp

(
−β2

mαt
b2

)]}
(8.110)

Again, there is no steady-state temperature for this case.

8.6 TEMPERATURE IN HOLLOW SPHERES

In this section, we demonstrate, with examples, the application of the GF solution
method to the hollow sphere problems with radial flow of heat, denoted by RSIJ,
for I , J = 1, 2, 3. The describing equations and the analytical techniques used for
solid spheres in the previous section are also applicable to hollow spheres. However,
hollow spheres have one more physical boundary (I = 1, 2, or 3) at the inner surface
r = a as compared to solid spheres with no physical boundary (I = 0) at the center
r = 0. Accordingly, for hollow spheres, we may have one of the following boundary
conditions at the inner surface r = a,

for I = 1, T (a, t) = Ta(t) t > 0 (8.111a)

for I = 2, −k
∂T (a, t)

∂r
= qa(t) t > 0 (8.111b)

and for I = 3, −k
∂T (a, t)

∂r
+ h1T (a, t) = h1T∞(t) t > 0 (8.111c)

The appropriate GF for the hollow sphere problems with radial flow of heat can be
obtained from the XIJ GFs by following the procedure explained in Section 8.4. See
Example 8.2. The required transformations are provided in Table 8.1.
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Example 8.7: Hollow Sphere Heated on the Inside Surface—RS21B10T 0
Case

A hollow sphere, a ≤ r ≤ b, is initially at zero temperature. For time t > 0,
the inner surface of the hollow sphere is heated by a constant heat flux q0, while
the outer surface is kept at zero temperature. Find the temperature distribution
in the hollow sphere for large times.

Solution

This is the RS21 geometry with no heat generation and zero initial temperature.
The temperature solution is only due to the boundary conditions and is given by

T (r , t ) = α

∫ t

τ=0

q0

k
GRS21(r , t |a, τ)4πa2 dτ (8.112)

Note that since the boundary condition at r = b is homogeneous, the RS21 GF
in Equation 8.112 is evaluated only at the inner surface boundary, r = a, where
the heat flux is located. The GF for this case is obtained from the large-time form
of GX31 with the appropriate transformations given in Table 8.1.

GRS21(r , t |r ′, τ) = 1
2π(b − a)rr ′

∞∑
m=1

exp
[
−β2

m
α(t − τ)
(b − a)2

]

×
[β2

m + B2] sin{βm[1 − (r − a) /(b − a)]}
sin{βm[1 − (r ′ − a) /(b − a)]}

β2
m + B2 + B

(8.113)

where B = (b − a) / a and the eigenvalues βm are the positive roots of the charac-
teristic equation

βm cot βm = −B (8.114)

Evaluating GRS21(r , t |r ′, τ) at r ′ = a and substituting the result into Equation 8.112
gives

T (r , t ) = 2αq0a
k (b − a)r

∞∑
m=1

(β2
m + B2) sin[βm(b − r ) /(b − a)] sin βm

β2
m + B2 + B

×
∫ t

τ=0
exp

[
−β2

m
α(t − τ)
(b − a)2

]
dτ (8.115)

The time integral in the above equation can be carried out to give

T (r , t ) = 2q0a(b − a)
kr

∞∑
m=1

(β2
m + B2) sin[βm(b − r ) /(b − a)] sin βm

β2
m(β2

m + B2 + B)

×
{

1 − exp
[
− βmαt

(b − a)2

]}
(8.116)

See Figure 8.9 for a plot of this temperature. Note that the steady-state part of the
temperature in Equation 8.116 is given in a series form. The nonseries form of this
part can be found by solving the above problem under the steady-state conditions
to give
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FIGURE 8.9 Hollow sphere with suddenly-applied heat flux at the inner boundary and outer
boundary at zero temperature. Here t+ = αt /(b − a)2.

Ts (r ) = q0a2(b − a)
kbr

(8.117)

Then the alternative form of the solution (8.116) is given by

T (r , t ) = q0a2(b − a)
kbr

− 2q0a(b − a)
kr

∞∑
m=1

(β2
m + B2)

β2
m(β2

m + B2 + B)

× sin
[
βm

(b − r )
(b − a)

]
sin βm exp

[
− βmαt

(b − a)2

]
(8.118)

Example 8.8: Hollow Sphere Exposed to Convection with Large Heat
Transfer Coefficient at the Inside Surface—RS11B10T 0 Case

A hollow sphere, a ≤ r ≤ b, initially at zero temperature is suddenly exposed
to a fluid at a constant temperature T∞ at its inner surface. The outer surface
temperature remains constant at its initial value T = 0.The heat transfer coefficient
between the fluid and the inner surface is very large. Find the transient temperature
distribution within the hollow sphere.

Solution

In this problem, the inner surface boundary is exposed to a fluid with a very large
heat transfer coefficient, which is equivalent to the case where there is a sudden
step change in the surface temperature to the fluid’s temperature T∞. Possible
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examples might be when the fluid is a liquid metal or is changing phase since
these processes usually have very large heat transfer coefficients. Therefore, this is
the RS11 geometry with a homogeneous boundary condition at the outer surface
of the hollow sphere. Since there is no energy generation within the body, and the
initial temperature is zero, the GF solution is only due to the boundary condition
at the inner surface and is given by

T (r , t ) = α

∫ t

τ=0
T∞(τ)

∂GRS11(r , t |a, τ)
∂r

4πa2dτ (8.119)

Note that the above integral is evaluated only at the inner surface with r ′ = a. The
derivative of GRS11 is listed in Appendix RS, Equation RS11.5 as

∂GRS11(r , t |a, τ)
∂r

= 1
2(b − a)2ra

∞∑
m=1

m sin
(
mπ

r − a
b − a

)
exp

[
−m2π2α(t − τ)

(b − a)2

]

(8.120)

Substituting for ∂GRS11 / ∂r from Equation 8.120 into Equation 8.119 gives

T (r , t ) = 2παaT∞
(b − a)2r

∞∑
m=1

m sin
(

mπ
r − a
b − a

)

×
∫ t

0
exp

[
−m2π2α(t − τ)

(b − a)2

]
dτ (8.121)

The time integral in Equation 8.121 can easily be evaluated to give

T (r , t ) = 2aT∞
πr

∞∑
m=1

sin[mπ(r − a) /(b − a)]
m

{
1 − exp

[
−m2π2αt

(b − a)2

]}
(8.122)

See Figure 8.10 for a plot of this temperature. Note that the steady-state part of
the above solution is given in a series form. The nonseries form of this part is ob-
tained by solving the problem under the steady-state conditions. Then the solution
becomes

T (r , t ) = aT∞
r

{
1 − r − a

b − a
− 2

π

∞∑
m=1

sin[mπ(r − a) /(b − a)]
m

× exp

[
−m2π2αt

(b − a)2

]}
(8.123)

8.7 TEMPERATURE IN AN INFINITE REGION OUTSIDE
A SPHERICAL CAVITY

In this section, the GF solution method is applied to two example problems with radial
flow of heat in an infinite region outside a spherical cavity, denoted by RSI0, I = 1, 2, 3.
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FIGURE 8.10 Hollow sphere with sudden increase of temperature at the inner boundary, case
RS11B10T 0. Here t+ = αt /(b − a)2.

There is no physical boundary for this geometry at r = ∞. The possible boundary
conditions at the inner surface (r = a) are similar to those given by Equations 8.111a,
b, c for I = 1, 2, 3, respectively. The GFs for RSI0 cases can be obtained from the
XI0 GFs with the appropriate transformations given in Table 8.1. Note that these GFs
do not involve infinite series; consequently, the solutions are mathematically well
behaved, for all values of time.

Example 8.9: Infinite Body Heated at the Surface of a Spherical Cavity—
RS20B1T 0 Case

An infinite body bounded internally by the spherical cavity r = a, is initially at
zero temperature. For t > 0, the surface of the body (r = a) is heated uniformly
by a known heat flux as a function of time, qa(t ). Find the transient temperature
distribution within the body.

Solution

This is the RS20 geometry with an arbitrary heat flux boundary condition at r = a,
given by Equation 8.111b. The temperature is given by

T (r , t ) = α

k

∫ t

τ=0
qa(τ)GRS20(r , t |a, τ)4πa2 dτ (8.124)



T&F Cat # K10695, Chapter 8, Page 324, 15-6-2010

324 Heat Conduction Using Green’s Functions

The GF function for this case is obtained from the X30 GF with the appropriate
transformations given in Table 8.1.

GRS20(r , t |r ′, τ) = (4πrr ′) −1[4πα(t − τ)]−1 / 2

×
{

exp

[
− (r − r ′)2

4α(t − τ)

]
+ exp

[
− (r + r ′ − 2a)2

4α(t − τ)

]}

− (4πrr ′a)−1 exp
[

α(t − τ)
a2 + 1

a
(r + r ′ − 2a)

]

× erfc
{

(r + r ′ − 2a)
[4α(t − τ)]1 / 2 + 1

a
[α(t − τ)]1 / 2

}
(8.125)

Evaluating GRS20(r , t |r ′, τ) at r ′ = a and substituting the result into Equa-
tion 8.124 gives

T (r , t ) = αa
kr

∫ t

0
qa(τ)

(
2[4πα(t − τ)]−1 / 2

× exp

[
− (r − r ′)2

4α(t − τ)

]
− 1

a
exp

[
α(t − τ)

a2 + r − a
a

]

× erfc
{

r − a
[4α(t − τ)]1 / 2 + 1

a
[α(t − τ)]1 / 2

})
dτ (8.126)

Depending on the functional form of qa(t ), different solutions can be obtained
from Equation 8.126. For special case where qa(t ) = q0 = constant, the solution
becomes

T (r , t ) = q0a2

kr

{
erfc

[
r − a

(4αt )1 / 2

]
− exp

(
r − a

a
+ αt

a2

)

× erfc

[
r − a

(4αt )1 / 2 + (αt )1 / 2

a

]}
(8.127)

See Figure 8.11 for a plot of this temperature at several dimensionless times.

Example 8.10: Infinite Body with a Fixed-Temperature Spherical Cavity
with Internal Energy Generation—RS10B00T 0Gr5 Case

An infinite body bounded internally by the spherical cavity r = a is initially at
zero temperature. For time t > 0, the body is heated by a volume energy source
given by

g (r , t ) = g0 for a ≤ r ≤ b (8.128a)

g (r , t ) = 0 for r > b (8.128b)

and the surface temperature at r = a is kept at its initial value T = 0. Find the
transient temperature distribution within the body.
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FIGURE 8.11 Infinite region outside the spherical cavity with heat flux suddenly applied at
boundary r = a, case RS20B1T 0.

Solution

This is the RS10 geometry with energy generation shown in Figure 8.12. The GF
solution for this case is given by

T (r , t ) = α

k

∫ t

τ=0

∫ b

r ′=a
GRS10(r , t |r ′, τ)g04πr ′2 dr ′ dτ (8.129)

Note that the integral on r ′ is evaluated from a to b since the generation is zero
for r > b. The Green’s function is given in Appendix RS as

GRS10(r , t |r ′, τ) = (4πrr ′)−1[4πα(t − τ)]−1 / 2

×
{

exp

[
− (r − r ′)2

4α(t − τ)

]
− exp

[
− (r + r ′ − 2a)2

4α(t − τ)

]}
(8.130)

Substituting for GRS10 into Equation 8.129 gives

T (r , t ) = αg0

kr

∫ t

τ=0
dτ

∫ b

r ′=a
[4πα(t − τ)]−1 / 2

×
{

exp

[
− (r − r ′)2

4α(t − τ)

]
− exp

[
− (r + r ′ − 2a)2

4α(t − τ)

]}
r ′ dr ′ (8.131)
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T(r, 0) = 0

T = 0
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b

FIGURE 8.12 Infinite region outside the spherical cavity with temperature specified at bound-
ary r = a and with non-uniform energy generation.

The integral over r ′ is carried out first with the use of Table I.7 (Appendix I) to give

T (r , t ) = αg0

kr

∫ t

τ=0

(
r
2

{
erfc

r − b
[4α(t − τ)]1 / 2 − erfc

r + b − 2a
[4α(t − τ)]1 / 2

}

+ a
{

erfc
r + b − 2a

[4α(t − τ)1 / 2] − erfc
r − a

[4α(t − τ)]1 / 2

})
dτ (8.132)

Next, the integral over time can be evaluated with Table I.8 (Appendix I) to give

T (r , t ) = 2αg0t
k

[
i2erfc

r − b
(4αt )1 / 2 −

(
1 − 2a

r

)

× i2erfc
r + b − 2a
(4αt )1 / 2 − 2a

r
i2erfc

r − a
(4αt )1 / 2

]
(8.133)

8.8 STEADY STATE

In this section, three examples of steady heat conduction in radial spherical coordinates
are presented. The GFs are listed in Appendix RS, Table RS.1. For two- and three-
dimensional heat conduction, the steady GF must be found on a case-by-case basis.

Example 8.11: Hollow Sphere Heated on the Inside Surface—RS21B10
Case

Find the steady temperature in the geometry of Example 8.7, the hollow sphere
heated at the inside surface (r = a) by heat flux q0. The outside surface (r = b) is
maintained at zero temperature.
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Solution

This is the RS21B10 geometry. The steady temperature is given by the boundary
condition term of the steady GFSE, Equation 3.94,

T (r ) = q0

k
GRS21(r |r ′ = a) (8.134)

The steady GF given in Appendix RSTable RS.1 is a piecewise continuous function,

GRS21(r |r ′) =




1 / r ′ − 1 / b
4π

r ≤ r ′

1 / r − 1 / b
4π

r ≥ r ′
(8.135)

Substitute the above GF evaluated at r ′ = a into Equation 8.134 by using the
r ≥ r ′ portion of the function to find the temperature,

T (r ) = q0

k

(
1
r

− 1
b

)
a2 (8.136)

Example 8.12: Hollow Sphere with Temperature Fixed on Both
Surfaces—RS11B10 Case

Find the steady temperature in the geometry of Example 8.8, the hollow sphere
with zero temperature on the outside surface (r = b) and with temperature T∞
maintained at the inside surface (r = a).

Solution

This is the RS11 geometry. The steady temperature is driven by the boundary con-
dition at r = a and the steady GFSE, Equation 3.94, gives

T (r ) = −T∞
∂GRS11

∂n′
∣∣∣
r ′=a

4πa2 (8.137)

The steady GF is given in Appendix RS Table RS.1 as a piecewise continuous
function,

GRS11(r ) =




(b − r ′)(1 − a / r )
4πr ′(b − a)

r ≤ r ′

(b − r )(1 − a / r ′)
4πr (b − a)

r ≥ r ′
(8.138)

The derivative in Equation 8.137 is evaluated at the surface r ′ = a so that the
r ≥ r ′ portion of the GF is used:

−∂GRS11

∂n′

∣∣∣∣
r ′=a

= ∂GRS11

∂r ′

∣∣∣∣
r ′=a

= (b − r )a /(r ′)2
4πr (b − a)

∣∣∣∣∣
r ′=a

= b − r
4πar (b − a)

(8.139)
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Then the temperature is given by Equation 8.137

T (r ) = T∞
a(b − r )
r (b − a)

= T∞
a
r

(
1 − r − a

b − a

)
(8.140)

Example 8.13: Solid Sphere with Internal Energy Generation and Con-
vective Boundary Condition

Find the steady temperature in a solid sphere heated by internal energy generation
g (r ) and cooled by convection from the surface. The heat transfer coefficient is h
and the fluid temperature is T∞.

Solution

This geometry is number RS03B0G- if the temperature is normalized in the form
T (r ) − T∞. The temperature is given by the energy generation term of the steady
GFSE, Equation 3.94,

T (r ) − T∞ = 1
k

∫ b

r ′=0
g (r ′)GRS03(r |r ′)4π(r ′)2dr ′ (8.141)

The steady GF is given by

GRS03(r |r ′) =




1 / r ′ + (1 / B2 − 1) / b
4π

r ≤ r ′

1 / r + (1 / B2 − 1) / b
4π

r ≥ r ′
(8.142)

where B2 = hb / k , the Biot number. Because GRS03 is piecewise continuous, the
integral in Equation 8.141 must be carried out in two pieces:

T (r ) − T∞ = 1
k

∫ r

r ′=0
g (r ′)

[
1
r

+ 1 / B2 − 1
b

]
(r ′)2 dr ′

+ 1
k

∫ b

r ′=r
g (r ′)

[
1
r ′ + 1 / B2 − 1

b

]
(r ′)2 dr ′ (8.143)

A symbolic mathematics computer program is very helpful in finding the correct
solution to these integrals. When the GF is piecewise continuous, it is particularly
important to get all the signs correct because there are usually terms with opposite
sign that cancel out.

(a) Case RS03B0G1. In the simple case when the internal energy generation is
constant, g (r ) = g0, the temperature in Equation 8.143 is given by a second-order
polynomial:

T (r ) − T∞ = g0b2

3k

[
1
2

+ 1
B2

− (r / b)2

2

]
(8.144)

Note that Equation 8.143 contains six polynomial terms but the solution (8.144)
contains only three terms. Two terms canceled and two terms were summed
together.
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(b) Case RS03B0G4. If the energy generation is a maximum at the surface r = b
and is attenuated exponentially inside the body as in microwave heating, then the
energy generation term may be written

g (r ) = g0e−c(1−r / b) (8.145)

where c is the attenuation parameter (dimensionless) and g0 is the maximum
energy generation (W / m3). The steady temperature is given by Equations 8.143
and 8.145 as

T (r ) − T∞ = g0b2

kc3

[(
2b
r

− c
)

e−c(1−r / b) +
(

1 − b
r

− 1
B2

)

× e−c + c − 2 + c2 − 2c + 2
B2

]
(8.146)

In the limiting case as B2 → ∞, the temperature at the surface is T (r = b) = T∞.

PROBLEMS
8.1 A solid sphere, 0 ≤ r ≤ b, is initially at a uniform temperature T0

when its surface temperature is suddenly changed to Tb and main-
tained at this value for times t > 0. Using the GF method, find the
transient temperature distribution in the sphere for small and large
times.

8.2 A solid sphere, 0 ≤ r ≤ b, is initially at a uniform temperature of
T0. For times t > 0, its surface temperature changes linearly with
time as T (b, t) = ct . Using the GF method, find the temperature
distribution in the sphere for large times.

8.3 Using the method described in Section 8.4, derive the small-time GF
for a solid sphere, 0 ≤ r ≤ b, with a heat flux boundary condition
(GRS02).

8.4 A solid sphere, 0 ≤ r ≤ b, has an initial temperature distribution
given by

T (r , 0) =
{

T0 for 0 ≤ r ≤ a

0 for a ≤ r ≤ b

For times t > 0, the surface temperature is kept at its initial value.
Using the GF method, find the transient temperature distribution in
the sphere.

8.5 A solid sphere, 0 ≤ r ≤ b, is initially at zero temperature. For
times t > 0, heat is generated uniformly within the sphere with a
constant rate of g0 W/m3, while the surface temperature is kept at
its initial value. Using the GF method, find the transient temperature
distribution in the sphere.

8.6 Using the method described in Section 8.4, derive the small-time
and the large-time GFs for a hollow sphere, a ≤ r ≤ b, with a pre-
scribed temperature boundary condition at r = a and a convection
boundary condition at r = b(GRS13).
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8.7 Ahollow sphere, a ≤ r ≤ b, is initially at temperature T0. For times
t > 0, the boundary at r = a is kept at zero temperature while the
boundary at r = b is dissipating heat by convection into a medium at
zero temperature with a constant heat transfer coefficient h. Using the
GF method, find the transient temperature distribution in the hollow
sphere.

8.8 A spherical capsule contains a fluid with volumetric heat capacity
ρf cf . The inside and outside radii of the capsule wall are ri and ro.
The boundary conditions are

−k∂T

∂r
= h(T − T∞) at r = r0

−
(

3k

ri

)
∂T

∂r
= ρf cf

∂T

∂t
at r = ri

T = Ti at t = 0

Find an expression for the temperature at r = ri . If the encapsu-
lated fluid is an ideal gas at a quasi-uniform temperature and the
initial pressure is pi , find p / pi as a function of time where p is the
instantaneous pressure within the capsule.

8.9 Lead shot is sometimes manufactured in shot towers, where molten
lead falls through the air to solidify and then is quenched in a liquid
to cool.

(a) Suppose the molten lead droplet of radius a starts falling at
the solidification temperature Ts , and the latent heat of fusion
is f0 (J / m3). If the heat transfer coefficient is ha and the air
temperature is Ta , find an expression for the distance the droplet
must fall to solidify. (Hint: use a lumped analysis on the droplet;
neglect air friction.)

(b) If Ts = 327◦C, Ta = 30◦C, and ha = 50 W/(m2 K), what
is the largest size shot that can be dropped in a 50-m tower?
[f0 = 23 kJ/(kg K); ρc = 1330 kJ/(m3K).]

(c) Now the shot is quenched in a liquid at T∞ with heat transfer
coefficient h. Find an expression for the transient temperature
at the surface of the shot.

8.10 In a pulverized-coal furnace coal particles are blown in with pre-
heated air at a temperature Ti . A new coal particle does not begin to
burn until its surface temperature reaches the combustion tempera-
ture Tc. If the primarily radiant heat transfer in the furnace may be
modeled as a uniform heat flux q0, on the surface of an approximately
spherical coal particle of radius a,

(a) Find a small-time expression for the surface temperature of the
particle.

(b) Find an approximate expression for the time it takes the coal
particle to begin burning. (Hint: use only one term of the series
for the temperature.)

8.11 One technique for handling radioactive waste is encapsulating it in
ceramic. Suppose a sphere of the radioactive material of radius a is
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covered by ceramic to form an encapsulated sphere of radius b > a.
If the radioactive material produces heat at the rate g0 W/m3 and if
the outer surface of the sphere (at r = b) is cooled by convection
(temperature T∞, heat transfer coefficient h),

(a) Find the steady-state temperature in the ceramic shell,
a < r < b.

(b) Find an expression for the maximum temperature in the ra-
dioactive material.

8.12 In food processing of prepared foods like soup, the heating must
continue until every part of the largest chunk in the soup exceeds a
specified temperature (to kill bacteria).

(a) Find an expression for the center temperature of a (spherical)
dumpling initially at Ti and suddenly exposed to heated liquid
at T∞. (Assume a heat transfer coefficient h.)

(b) Find an approximate expression for the time it takes to raise the
center temperature of the dumpling to specified temperature Tf .
(Hint: use one term of the large-time form of the temperature.)
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9 Steady-Periodic Heat
Conduction

9.1 INTRODUCTION

In this chapter transient conduction is treated for which the causative heating
is periodic and has continued for a long time. Steady-periodic heating is im-
portant in reciprocating machinery, in manufacturing processes, and in naturally
occurring temperature cycles such as day/night and summer/winter. Steady-periodic
heat transfer is also important in thermal property measurements. Generally ther-
mal properties are measured indirectly, with the thermal properties deduced from
a systematic comparison between measured temperatures and a thermal model.
Thermal modeling is the focus of this chapter; analysis of experimental data
(sometimes called parameter estimation) is beyond the scope of this book. For exam-
ples of thermal-property measurements involving steady-periodic heating, see for
example: Haji-Shiekh et al. (1998); Hu et al. (1999); Naziev (2001); and Wang
et al. (2004).

There are two analytic approaches to steady-periodic heat transfer. In the time-
domain approach, the standard transient Green’s function approach is used (see Sec-
tion 3.4 for an example). A particular simplification is possible if the time-history
of the heating has a simple wave shape (such as on–off, saw-tooth, etc.). In these
cases the time-integral can be evaluated in closed form and the time-dependence
reduces to a series of decaying time-exponentials (Carslaw and Jaeger, 1959,
p. 108).

The frequency-domain approach, discussed in this chapter, is appropriate if the
heating history is sinusoidal, or if the heating is simply periodic and a phase-locked
amplifier is used to select the response at the periodic frequency. In the frequency-
domain approach the temperature is interpreted as a function of frequency, rather than
of time.

The chapter is divided into Green’s function in Cartesian, cylindrical, and spherical
geometries. The remaining sections cover temperatures constructed from Green’s
functions in one-dimensional geometries, in layered bodies, and in two- and three-
dimensional geometries.

9.2 STEADY-PERIODIC RELATIONS

In this section the relations for transient heat conduction are restated under steady-
periodic conditions to emphasize the effect of frequency. The heat equation, the GF
solution equation, and the auxiliary equation will each be discussed.

333
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The usual boundary value problem for heat conduction can be written

∇2T − 1

α

∂T

∂t
= −1

k
g(r, t) (9.1)

ki

∂T

∂ni

+ hiT + (ρcb)i
∂T

∂t
= fi(ri , t) at boundary i. (9.2)

Note that five kinds of boundary conditions are represented by this general boundary
condition which may include a high-conductivity layer of thickness bi (see Chapter 2
for the kinds of boundary conditions). Since in this chapter solutions are sought for
which the heating terms are periodic and have continued for a long time, we take
the heating terms g and f and the resulting temperature T to be steady periodic at a
single frequency. That is, let

g(r, t) = Real[g̃(r, ω)ejωt ]
fi(ri , t) = Real[f̃i(ri , ω)ejωt ]
T (r, t) = Real[T̃ (r, ω)ejωt ] (9.3)

where j = √−1 is a complex number. Now in Equations 9.1 and 9.2 replace g, fi ,
and T by g̃, f̃i , and T̃ , respectively, to find the steady periodic heat conduction
equation:

∇2T̃ − σ2T̃ = −1

k
g̃(r, ω); in domain Ω (9.4)

ki

∂T̃

∂ni

+ [hi + jω(ρcb)i]T̃ = f̃i(ri , ω); at boundary i (9.5)

whereσ2 = jω / α. In this chapter complex-valued T̃ (r, ω) is interpreted as the steady-
periodic temperature (kelvin) at a single frequency ω. For further discussion of this
point see Mandelis (2001, pp. 2–3). Later in the chapter complex-valued temperature
results will be presented in the form of amplitude and phase, which are defined

amp = [T̃ · T̃ ∗]1 / 2

phase = tan−1[Imag(T̃ ) / Real(T̃ )]
where T̃ ∗ is the complex conjugate of the temperature.

The differential equation for T̃ , Equation 9.4, has the character of a steady heat
conduction equation with an additional term (−σ2T̃ ). This term is similar to the
fin term discussed in Chapter 3, except that the coefficient in front of T̃ is now a
complex number. Thus, many steady-periodic solutions may be found from steady-
fin solutions, with the generalization that σ2 is complex. The boundary condition
for T̃ , Equation 9.5, contains term jω(ρcb)i T̃ which represents heat storage in a
surface film, which is important for boundary conditions of the fourth and fifth kinds.
Boundary conditions of the fourth and fifth kind, under steady-periodic conditions,
have the form of boundary conditions of the third kind, except a complex quantity is
added to the heat transfer coefficient.
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Since every solution discussed in this chapter will be steady periodic, from this
point on the notation will be simplified by dropping the tilde notation. For example,
replace T̃ by T . Steady-periodic quantities will be identified by their dependence on
frequency ω, for example T (ω) and G(ω).

Assume for the moment that the Green’s function G is known, then the steady-
periodic temperature is given by the following integral equation:

T (r, ω) = α

k

∫
g(r′, ω)G(r, r′, ω)dv′ (for volume heating) (9.6)

+ α
∑

i

∫
fi(r′

i , ω) ×
[ −∂G / ∂n′ (first kind only)

1
k
G(r, r′

i , ω) (2nd–5th kind)

]
ds′

i

The first integral is the effect of internal heat generation and the second integral is
the effect of each of the nonhomogeneous boundary terms fi . Note that the same GF
appears in each integral but it is evaluated at locations appropriate for each integral.

The GF associated with Equations 9.4 and 9.5 is the response at r to a steady-
periodic heat source located at r′, and the GF satisfies

∇2G − σ2G = −1

α
δ(r − r′) (9.7)

ki

∂G

∂ni

+ [hi + jω(ρcb)i]G = 0; on boundary i (9.8)

Here σ2 = jω / α and δ(r−r′) is the Dirac delta function in the appropriate coordinate
system. The coefficient 1 / α preceding the delta function in Equation 9.7 provides for
units of the steady-periodic Green’s function that are consistent with the time-domain
Green’s functions discussed in earlier chapters.

9.3 ONE-DIMENSIONAL GF

In this section one-dimensional steady-periodic GF are given for geometries in the
Cartesian, cylindrical, and spherical coordinate systems. In each coordinate system
the defining differential equation for the GF is different, but the basic approach to
constructing the GF is the same. In a later section examples are given on finding
temperature with these GF.

9.3.1 ONE-DIMENSIONAL GF IN CARTESIAN COORDINATES

The one-dimensional steady-periodic GF in Cartesian coordinates, appropriate for
slab bodies, semi-infinite bodies, and infinite bodies, satisfies the following equations:

d2G

dx2
− σ2G = −1

α
δ(x − x ′) (9.9)

ki

dG

dni

+ λiG = 0; i = 1, 2 (9.10)
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Here σ2 = jω / α and λi = hi + jω(ρcb)i . The GF that satisfies Equations 9.9
and 9.10 is given by (see Appendix X, Table X.4 or Crittenden and Cole, 2002)

GX(x, x′, σ) = S−
2 (S−

1 e−σ(2L−|x−x′|) + S+
1 e−σ(2L−x−x′))

2ασ(S+
1 S+

2 − S−
1 S−

2 e−2σL)

+ S+
2 (S+

1 e−σ(|x−x′|) + S−
1 e−σ(x+x′))

2ασ(S+
1 S+

2 − S−
1 S−

2 e−2σL)
(9.11)

where the subscripts 1 and 2 represent the two boundaries at the smallest and largest
x-values, respectively. Coefficients S+

M and S−
M depend on the boundary conditions

on side M and are given by

S+
M =

{
1 if side M is kind 0, kind 1, or kind 2

kσ + λM if side M is kind 3, 4, or 5
(9.12a)

S−
M =




0 if side M is kind 0
−1 if side M is kind 1
1 if side M is kind 2

kσ − λM if side M is kind 3, 4, or 5

(9.12b)

A boundary of kind 0 designates a far-away boundary, as in a semi-infinite body.
The derivation of the steady-periodic GF in Equation 9.11 parallels that for steady-
state GF given in Section 1.3.2; however in the present case quantity σ contains an
imaginary component and λi may include effects of surface convection and a thin
surface film.

The above GF can also be expressed in terms of hyperbolic functions sinh and
cosh. However we recommend the form given in Equation 9.11 because it contains
exponentials whose arguments are always negative or zero and therefore this form
is particularly well-behaved for machine computation (Cole and Yen, 2001). More
importantly, temperature expressions based on these GF are similarly well-behaved
for any thickness L and for any frequency.

9.3.2 ONE-DIMENSIONAL GF IN CYLINDRICAL COORDINATES

The steady-periodic GF for the cylinder is treated in this section. Consider a cylin-
drical annulus with inner radius a and outer radius b. The GF satisfies the following
equations:

1

r

d

dr

(
r
dG

dr

)
− σ2G = −1

α

δ(r − r ′)
2πr ′ ; a < r < b (9.13)

k
dG

dni

+ λiG = 0; at boundary i (9.14)

Here, σ2 = jω / α and λi = hi + jω(ρcb)i where bi�ri is assumed (thin surface
layer). Be careful not to confuse outer radius b with surface-layer thickness bi . Note
that the radial-cylindrical form of the Dirac delta function is used here. This Green’s
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function represents the response at location r to a steady-periodic, cylindrical-shell
heat source located at r ′. The GF is constructed in two pieces, that is, function G1 on
(a < r < r ′) and function G2 on (r ′ < r < b). Then the defining equations for G

can be written:

1

r

d

dr

(
r
dGm

dr

)
− σ2Gm = 0; m = 1, 2 (9.15)

−k
dG1

dr
+ λ1G1 = 0; at r = a (9.16)

k
dG2

dr
+ λ2G2 = 0; at r = b (9.17)

Note that the Dirac delta function has been removed from the differential equation.
Two matching conditions must be introduced at r = r ′, which are

G1(r ′, r ′) = G2(r ′, r ′) (9.18)

dG2

dr

∣∣∣∣
r ′

− dG1

dr

∣∣∣∣
r ′

= − 1

2παr ′ (9.19)

This last condition, the jump condition, comes from integrating the original differen-
tial equation, Equation 9.13, over (r ′ − ε, r ′ + ε) and then taking the limit as ε → 0.

The general solution of the differential equation for G has the form

G =
{

C1I0(σr) + C2K0(σr); r < r ′

C3I0(σr) + C4K0(σr); r > r ′ (9.20)

where I0 and K0 are modified Bessel functions of order zero and where Ci are four
undetermined coefficients. The four coefficients may be found by substituting the
general form of G into the four conditions, Equations 9.16 through 9.19. After con-
siderable algebra, the GF may be written (Cole and Crittenden, 2009):

GR(r|r ′) = 1

2πα(1 − S1S2)
(9.21)

×
{[S2I0(σr ′) + K0(σr ′)][I0(σr) + S1K0(σr)], r < r ′
[S2I0(σr) + K0(σr)][I0(σr ′) + S1K0(σr ′)], r > r ′

}

Subscript R denotes radial cylindrical. Coefficients S1 and S2 depend on the kind of
boundary conditions at a and b, as follows:

S1 =




0 kind 0 for a → 0

−I0(σa) / K0(σa) kind 1 at r = a

I1(σa) / K1(σa) kind 2 at r = a[
kσI1(σa) − λ1I0(σa)

kσK1(σa) + λ1K0(σa)

]
kind 3, 4, or 5 at r = a

(9.22a)
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S2 =




0 kind 0 at b → ∞
−K0(σb) / I0(σb) kind 1 at r = b

K1(σb) / I1(σb) kind 2 at r = b[
kσK1(σb) − λ2K0(σb)

kσI1(σb) + λ2I0(σb)

]
kind 3, 4, or 5 at r = b

(9.22b)

To obtain this form of the GF for the cylinder, the Wronskian identity has been used
(Abramowitz and Stegun, 1964, p. 375):

K0(z)I1(z) + K1(z)I0(z) = 1 / z (9.23)

The above GF was constructed from case R55, and then conditions of the first or
second kind were deduced by taking λi → ∞ or λi → 0, respectively, at each
boundary. The boundary condition of kind 0 is also included here to describe the solid
cylinder (cases R0J for J = 1, 2, 3, 4, or 5), the body surrounding a cylindrical hole
(cases RI0 for I = 1, 2, 3, 4, or 5), and the infinite one-dimensional body (case R00).

9.3.3 ONE-DIMENSIONAL GF IN SPHERICAL COORDINATES

The steady-periodic GF for the sphere is treated in this section. Consider a hollow
sphere with inner radius a and outer radius b. The GF satisfies the following equations:

1

r2

d

dr

(
r2 dG

dr

)
− σ2G = −1

α

δ(r − r ′)
4π(r ′)2

; a < r < b (9.24)

k
dG

dni

+ λiG = 0; at boundary i (9.25)

As before, σ2 = jω / α and λi = hi + jω(ρcb)i , where bi�ri is assumed. As in the
cylinder case, do not confuse radius b with surface-layer thickness bi . Note that the
radial-spherical form of the Dirac delta function is used here. This Green’s function
represents the response at location r to a steady-periodic spherical-shell heat source
located at r ′. The GF is constructed in two pieces, that is, function G1 on (a < r < r ′)
and function G2 on (r ′ < r < b). Then the above equations for G can be written:

1

r2

d

dr

(
r2 dGm

dr

)
− σ2Gm = 0; m = 1, 2 (9.26)

−k
dG1

dr
+ λ1G1 = 0; at r = a (9.27)

k
dG2

dr
+ λ2G2 = 0; at r = b (9.28)

Note that the Dirac delta function has been removed from the differential equation.
Two matching conditions must be introduced at r = r ′, which are

G1|r ′ = G2|r ′ (9.29)

dG2

dr

∣∣∣∣
r ′

− dG1

dr

∣∣∣∣
r ′

= − 1

4πα(r ′)2
(9.30)
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This last condition, the jump condition, comes from integrating the original differen-
tial equation over (r ′ − ε, r ′ + ε) and then taking the limit as ε → 0.

Under these conditions the differential equation for G (Equation 9.26), has a gen-
eral solution of the form

G =
{

1
r
(C1e

σr + C2e
−σr ); r < r ′

1
r
(C3e

σr + C4e
−σr ); r > r ′ (9.31)

There are four undetermined coefficients which may be found by substituting the
general form of G into the four conditions, Equations 9.27 through 9.30. After con-
siderable algebra, the GF may be written:

GRS(r , r ′, σ) = S−
1 S−

2 e−σ(b−a−|r−r ′|) + S+
1 S−

2 e−σ(b+a−(r+r ′))

8πασrr ′(S+
1 S+

2 − S−
1 S−

2 e−σ(b−a))

+ S−
1 S+

2 e−σ(r+r ′−2a) + S+
1 S+

2 e−σ|r−r ′|

8πασrr ′(S+
1 S+

2 − S−
1 S−

2 e−σ(b−a))
(9.32)

Here subscript RS denotes radial-spherical. Notation |r − r ′| is used to provide a
single expression for the GF which was constructed from two functions. This single
expression makes it easy to see that the GF satisfies reciprocity, that is, GRS(r , r ′) =
GRS(r ′, r). Coefficients S+

1 , S−
1 , S+

2 , and S−
2 in the expression for the GF depend on

the kind of boundary conditions at a and b, as follows:

S+
1 =




1 kind 0 with a → 0

1 kind 1 at r = a

σa + 1 kind 2 at r = a

σa + 1 + λ1a / k kind 3, 4, or 5 at r = a

(9.33a)

S−
1 =




0 kind 0 with a → 0

−1 kind 1 at r = a

σa − 1 kind 2 at r = a

σa − 1 − λ1a / k kind 3, 4, or 5 at r = a

(9.33b)

S+
2 =




1 kind 0 with b → ∞
1 kind 1 at r = b

σb − 1 kind 2 at r = b

σb − 1 + λ2b / k kind 3, 4, or 5 at r = b

(9.33c)

S−
2 =




0 kind 0 with b → ∞
−1 kind 1 at r = b

σb + 1 kind 2 at r = b

σb + 1 − λ2b / k kind 3, 4, or 5 at r = b

(9.33d)

The boundary condition of kind 0 is included to describe the solid sphere (cases
RS0J for J = 1, 2, 3, 4, or 5), the body surrounding a spherical void (cases RSI0 for
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I = 1, 2, 3, 4, or 5), and the infinite one-dimensional body with spherical symmetry
(case RS00).

9.4 ONE-DIMENSIONAL TEMPERATURE

In this section several examples are given for steady-periodic temperature expressions
constructed from one-dimensional GF in the Cartesian, cylindrical, and spherical
coordinate systems.

Example 9.1: Slab Heated on One Side, X23B60

Consider a slab wall heated steady-periodically at x = 0 and cooled by convection
on the other side. The temperature satisfies

d 2T
dx2 − σ2T = 0 (9.34)

−k
dT
dx

∣∣∣∣
x=0

= q0(ω) (9.35)

−k
dT
dx

∣∣∣∣
x=L

= h(T − 0) (9.36)

The temperature expression is given by Equation 9.6 applied to a 1D Cartesian
body

T (x , ω) = α

k
q0 GX23(x , x ′ = 0, ω) (9.37)

where q0 is magnitude of the specified steady-periodic heat flux at x = 0. The
required GF is case X23 which may be found from Equation 9.11 with S+

1 = 1,
S−

1 = 1, S+
2 = kσ + h2, and S−

2 = kσ − h2. That is,

GX23(x , x ′, ω) =
R2

(
e−σ(2L−|x−x ′|) + e−σ(2L−x−x ′)

)
2ασ(1 − R2e−2σL)

+ e−σ|x−x ′| + e−σ(x−x ′)

2ασ(1 − R2e−2σL)
(9.38)

where R2 = kσ − h2

kσ + h2

Replace this GF into the above temperature expression to find the temperature,
which can be stated in dimensionless form by dividing by q0L / k :

T (x , ω)
q0L / k

=
σ+−B2
σ++B2

(
e−σ+(2−x / L)

)
+ e−σ+x / L

σ+(1 − σ+−B2
σ++B2

e−2σ+ )
(9.39)

where σ+ = (1 + j)√
2

√
ωL2 / α

Here B2 = h2L / k is a Biot number which describes the level of convective cooling
at x = L. Plots of the amplitude and phase of the temperature are shown versus
dimensionless frequency (ωL2 / α) in Figure 9.1.
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FIGURE 9.1 Amplitide and phase of the temperature on the heated surface (at x = 0) of the
slab body, case X23B10, as a function of steady-periodic heating frequency. The Biot number
determines the amount of convection at x = L.

Example 9.2: Semi-Infinite Body with Internal Heating

Consider a one-dimensional semi-infinite region which is heated internally and
cooled by convection at the x = 0 surface. The steady-periodic internal heating
has a spatial distribution described by

g (x , ω) = g0(ω)e−x / a (9.40)

which is typical of microwave absorption (or optical absorption) where a is the
energy penetration depth. This is case X30B0G(x4t6).

The temperature may be formally stated with the GF solution equation:

T (x , ω) = α

k

∫ ∞

x ′=0
g (x ′) GX30(x , x ′, ω) dx ′ (9.41)

The GF is given by Equation 9.11 with, S+
1 = kσ+h1, S−

1 = kσ−h1, S+
2 = 1, and

S−
2 = 0. Then the GF may be written

GX30(x , x ′, ω) = e−σ|x−x ′| + R1e−σ(x−x ′)

2ασ

where R1 = kσ − h1

kσ + h1
(9.42)

Replace this GF into the temperature expression to find

T (x , ω) = g0

2kσ

∫ ∞

x ′=0
e−x ′ / a

(
e−σ|x−x ′| + R1e−σ(x−x ′)

)
dx ′ (9.43)
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FIGURE 9.2 Amplitide and phase of the temperature at the convectively cooled surface (at
x = 0) of a semi-finite body heated internally, case X30B0G(x4t6). The results are normalized
with length scale a, which is the length scale of the exponentially-decaying internal heating.

The portion of the integrand containing the absolute value must be evaluated in
two pieces, that is,

T (x , ω) = g0

2kσ

[∫ x

x ′=0
e−x ′ / ae−σ(x−x ′)dx ′ +

∫ ∞

x ′=x
e−x ′ / ae−σ(x ′−x )dx ′

]

+ g0

2kσ

∫ ∞

x ′=0
e−x ′ / aR1e−σ(x−x ′) dx ′ (9.44)

All the integrals can be evaluated to obtain

T (x , ω)
g0a2 / k

= 1
2σa


e−x / a − e−σx

σa − 1
+

e−x / a +
(

σa−B1
σa+B1

)
e−σx

σa + 1


 (9.45)

where B1 = h1a / k is a Biot number. The dimensionless temperature depends
on Biot number B1, dimensionless location x / a, and dimensionless frequency
ωa2 / α. Phase and amplitude of dimensionless temperature at the surface (x = 0)
are plotted versus dimensionless frequency in Figure 9.2 for several values of the
Biot number.

Example 9.3: Cylinder with Internal Heating and Convective Cooling

Consider a long cylinder with steady-periodic internal heating and with convective
cooling at the surface. This could represent an electric wire carrying alternating
current at frequency ω which produces Joule heating. Suppose that the internal
heating, g0(ω), is spatially uniform, and the convective environment around the
cylinder is characterized by heat transfer coefficient h2 and fluid temperature T∞.
This is case R03B0G(t6x1). Then the temperature in the cylinder is given by

T (r , ω) − T∞ = α

k

∫ b

r ′=0
g0(ω) GR03(r , r ′, ω)2πr ′dr ′ (9.46)
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Note that the differential volume for the 1D cylinder is 2πr ′dr ′. As the GF is com-
posed of two pieces, the integral expression for the temperature must be evaluated
in two pieces also. That is,

T (r , ω) − T∞ = 2παg0

k

[∫ r

r ′=0
GR03|r>r ′ r ′dr ′ +

∫ b

r ′=r
GR03|r<r ′ r ′dr ′

]

(9.47)

The required GF is given by Equation 9.21 with S1 = 0 (appropriate for the solid
cylinder). Replace the GF into the above integral expression to obtain

T (r , ω) − T∞ = g0

kσ

∫ r

r ′=0
[S2I0(σr ′)I0(σr ) + I0(σr ′)K0(σr )]r ′dr ′

+ g0

kσ

∫ b

r ′=r
I0(σr )[S2I0(σr ′) + K0(σr ′)]r ′dr ′ (9.48)

The integrals can be evaluated and simplified with the following identities (see
Appendix B): ∫

I0(σr ′)r ′dr ′ = σ

r ′ I1(σr ′)∫
K0(σr ′)r ′dr ′ = − σ

r ′ K1(σr ′)

K0(z )I1(z ) + I0(z )K1(z ) = z−1 (Wronskian)

Then the temperature may be written

T (r , ω) − T∞
g0b2 / k

= 1
σb

[S2I1(σb) − K1(σb)]I0(σr ) + 1
σ2b2 (9.49)

where S2 = σbK1(σb) − B2K0(σb)
σbI1(σb) + B2I0(σb)

and where Biot number B2 = h2b / k describes the level of external convection.
Note that the temperature distribution has two terms.The first term, which depends
on radius r in the form I0(σr ), is the effect of convection on the temperature distri-
bution. If the convection is turned off, h2 → 0, then the surface of the cylinder is
insulated, and the contribution to convection disappears (note S2 → K1(σb) / I1(σb)
for h2 → 0). The second term, 1 /(σ2b2), represents the steady-periodic (normal-
ized) temperature in the absence of convection cooling. This term is independent
of radius because the heat is introduced uniformly. Amplitude and phase of the
normalized temperature are plotted versus frequency in Figure 9.3 for several Biot
values.

Example 9.4: Large Region Heated by a High-Conductivity Sphere

Consider a large, low-conductivity region containing a sphere of high conductivity
which is heated periodically at rate Q0(ω) (units are watts).This is case RS40B6 and
the geometry is shown in Figure 9.4. For low frequency heating, the sphere will
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FIGURE 9.3 Amplitide and phase of the temperature at the convectively cooled surface (at
r = b) of a cylinder heated internally. The heating is spatially uniform and time-periodic.

r

a

g =
4/3πa3

Q0 eiωt

Embedded  sphere
properties  (ρc)1

Large body
properties (α, k)

FIGURE 9.4 Geometry for a steady-periodic heating of a small high-conductivity sphere
which is embedded in a large, low-conductivity body. Case RS40B6.

behave as a lumped body on the boundary of the large body. One application for
this case is thermal property measurement in the large body in which the sphere
is embedded. The temperature satisfies

1
r2

d
dr

(
r2 dT

dr

)
− jω

α
T = 0; r > a (9.50)

The boundary condition at r = a can be found from an energy balance on the
sphere in the form Qin − Qout = Qstored , for steady-periodic heating:

Q0(ω) − qout A1 = (ρc)1V1jω T |r=a (9.51)

where (ρc)1 is specific heat (per unit volume) of the sphere, and A1 and V1 are
the surface area and volume of the sphere, respectively. Divide this relation by A1,



T&F Cat # K10695, Chapter 9, Page 345, 12-6-2010

Steady-Periodic Heat Conduction 345

replace qout by the heat conduction into the surrounding body, and rearrange
to find

−k
dT
dr

∣∣∣∣
r=a

+ jω(ρc)1
a
3

T |r=a = Q0

4πa2 (9.52)

This boundary condition is similar to the thin-layer boundary condition given
in Equation 9.5, with surface-film thickness b1 replaced by length scale
V1 / A1 = a / 3.

The temperature is given by the Green’s function solution, Equation 9.6, for
this case:

T (r , ω) = α

k
Q0

4πa2 GRS40(r , r ′ = a, σ)4πa2 (9.53)

where properties of the body surrounding the sphere are k and α. Note that the
boundary surface area must be included.The Green’s function for this case is given
by Equation 9.32 with S+

2 = 1, and S−
2 = 0. Then

GRS40(r , r ′, σ) = R · e−σ(r+r ′−2a) + e−σ|r+r ′|
8πασrr ′ (9.54)

where R = σa − 1 − λ1a/k
σa + 1 + λ1a/k

and where λ1 = jω(ρc)1a / 3. Evaluate the GF at r ′ = a and replace into the
temperature expression to obtain

T (r , ω)
Q0 /(ak )

= 1
8π

[
1 + σa − 1 − (σa)2Cr /3

σa + 1 + (σa)2Cr /3

]
e−σ(r−a)

σr
(9.55)

Note that λ1a / k has been restated as (σa)2Cr / 3 where Cr = (ρc)1 /(ρc) to
show that the results depend on the (volumetric) specific-heat ratio. The above
temperature expression applies to low frequency where the high-conductivity
sphere remains lumped (temperature spatially uniform in the sphere). As fre-
quency increases, eventually this assumption will break down, approximately
where ωa2 / α1 > 1 for α1 = k1 /(ρc)1. See Figure 9.5 for plots of amplitude and
phase of this temperature for several values of the specific-heat ratio.

9.5 LAYERED BODIES

One-dimensional steady-periodic heat conduction in a layered body is discussed in
this section. Each layer may have different thermal properties, and the layers may be
in perfect or imperfect contact with one another. Internal heating may be present in
one layer or in all of the layers. The temperature in the layered body will be found by
assigning a GF within each layer and assigning unknown heat fluxes at the interfaces
linking the layers. A matrix solution is used to find the unknown heat fluxes from
which the temperature may be found. This technique for finding temperature has
application in the measurement of thermal properties.
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FIGURE 9.5 Amplitide and phase of the (spatially lumped) temperature in the high conduc-
tivity sphere embedded in a small-conductivity body. Case RS40B6.

It is possible to define one GF to describe a multilayered body, but such an approach
is limited to two or three layers because the complexity of the GF increases very
rapidly as layers are added (Mandelis 2001, Section 1.7). In contrast, the matrix
method presented here involves a simple GF in each layer. Adding internal heating
is straightforward, and adding layers simply increases the size of the matrix solution.
The matrix method has been used with up to 50 layers to simulate a functionally
graded material (Cole, 2004a).

The geometry to be studied is shown in Figure 9.6. There are N + 2 layers,
numbered from 0 to N + 1, with N + 1 interfaces between the layers. Layer i has
thickness Li and thermal properties ki and αi . Within layer i, the interfaces are located
at coordinates xi = 0 and xi = Li . At the interfaces between the layers, let qnm

represent the heat flux leaving layer n and entering layer m. In the formulation given
below, heating is caused by internal energy generation within any layer. This could
describe a semitransparent material heated by a periodically modulated laser beam.
Although heating at the boundaries is not shown, it could easily be added to layers 0
and N + 1.

Consider first the temperature in layer 0 evaluated at its interface with layer 1:

T0(L0, ω) = α0

k0
G0(L0, L0, ω)q10 + E0(L0) (9.56)

In layer i; i = 1, 2, . . . , N : the interface temperatures are:

Ti(0, ω) = αi

ki

Gi(0, 0, ω)qi−1,i + αi

ki

Gi(0, Li , ω)qi+1,i + Ei(0) (9.57)

Ti(Li , ω) = αi

ki

Gi(Li , 0, ω)qi−1,i + αi

ki

Gi(Li , Li , ω)qi+1,i + Ei(Li) (9.58)



T&F Cat # K10695, Chapter 9, Page 347, 12-6-2010

Steady-Periodic Heat Conduction 347

0

1

2

N

Layer 1 

Layer 2 

Layer N

L1

L2

LN

q10

qN+1, N

qN, N+1

q01

N+1

FIGURE 9.6 Geometry for heat conduction in a body composed of many plane layers.

In the last layer (substrate) the temperature at interface N + 1 is:

TN+1(0, ω) = αN+1

kN+1
GN+1(0, 0, ω)qN ,N+1 + EN+1(0) (9.59)

In the above expressions, symbol Ei has been used for the volume-heating integral
term from the GF solution equation, Equation 9.6, specifically,

Ei(x) = αi

ki

∫
x′

g(x ′, ω) Gi(x, x′, ω) dx′ (9.60)

In the case of laser heating, quantity g is the laser energy absorbed in the layer per unit
volume; this can be determined without approximation from the optical properties of
the layers (McGahan and Cole, 1992).

In the above temperature expressions, all of the interface heat fluxes are initially
unknown. The heat flux leaving one layer enters the adjacent layer, qi−1,i = −qi,i−1

and the temperature difference between adjacent layers is related to heat flux through
a contact resistance at each interface:

qi−1,i Ri = Ti(0, ω) − Ti−1(Li−1, ω); i = 1, 2, . . . , N + 1 (9.61)

The contact resistance Ri describes the size of the temperature jump across the in-
terface. Perfect contact is described by Ri = 0. Next Equations 9.56 through 9.59
are combined with Equation 9.61 to eliminate temperature. The result is a set of
N + 1 linear algebraic equations for the unknown heat fluxes, which may be stated
in matrix form:
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


U0 + U1 + R1 −V1 0 . . . 0
−V1 U1 + U2 + R2 −V2 . . . 0

0 −V2 U2 + U3 + R3 . . . 0

. . . . . . . . .
. . . −VN

0 0 . . . −VN UN + UN+1 + RN+1




×




q10

q21

q32

· · ·
qN+1,N


 =




E1(0) − E0(L0)
E2(0) − E1(L1)
E3(0) − E2(L2)

· · ·
EN+1(0) − EN (LN )


 (9.62)

Symbols Ui and Vi used in the above expression are given below:

Ui = αi

ki

Gi(0, 0, ω) = αi

ki

Gi(Li , Li , ω) (9.63)

Vi = αi

ki

Gi(0, Li , ω) = αi

ki

Gi(Li , 0, ω) (9.64)

For any multilayered system, it is now possible to calculate the N + 1 unknown
heat fluxes (qij ) through all interfaces in the system. The above result is exact, and
Cramer’s rule may be used to solve for the q ′s for a sample composed of two or three
layers. For a sample with three or more layers, a numerical solution is best, and the
well-known tridiagonal algorithm may be used (Press et al., 1992, p. 42). Once the
heat fluxes are found, the temperature at any interface is given by Equations 9.56
through 9.59.

Several different GF may be used in a layered material. For layers i = 1, 2, . . . , N
the GF needed are type X22 (specified boundary heat flux). The GF for the outermost
layers depends on the heat transfer environment there. For example, an outer layer
exposed to a fluid could be described by GF number X23, and a thick substrate could
be described by GF number X20.

The above discussion is for plane layers, however layered cylinders or layered
spheres can be treated in a similar manner. First, substitute the appropriate cylindrical
or spherical GF and use the appropriate surface area and differential volume in the
temperature expressions in each layer. For example, in cylindrical layer i located at
(ri−1 < r < ri), the temperature at the inner radius is given by

Ti(ri−1, ω) = αi

ki

Gi(ri−1, ri−1, ω)qi−1,i2πri−1

+ αi

ki

Gi(ri−1, ri , ω)qi+1,i2πri + Ei(ri−1)

where Ei(ri−1) = αi

ki

∫
g(r ′, ω)Gi(ri−1, r ′, ω)2πr ′dr ′ (9.65)

Second, for cylinders and spheres there are two U -terms and two V -terms needed
in each layer, because Gi(ri−1, ri−1, ω) �= Gi(ri , ri , ω) and Gi(ri−1, ri , ω) �=
Gi(ri , ri−1, ω).
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9.6 TWO- AND THREE-DIMENSIONAL CARTESIAN BODIES

In this section several two- and three-dimensional geometries are discussed for steady-
periodic heat conduction in the Cartesian coordinate system.

9.6.1 RECTANGLES AND SLABS

The GF for steady-periodic heat transfer in rectangles (cases XIJYKL) and two-
dimensional slabs (cases X00YKL) may be found with the method of eigenfunction
expansion (see Chapter 4). The GFs for these body shapes that satisfy Equations 9.7
and 9.8 may be found in the form of a single sum (Cole, 2006):

G(x, y, ω | x′, y′) =
∞∑

n=0

Yn(y)Y ∗
n (y ′)

Ny(γn)
P (x, x ′, ν) (9.66)

where eigenfunction Yn, norm Ny , and eigenvalues γn are identical to those discussed
earlier in Chapter 4, except that here the eigenfunctions lie along the y-axis. The n = 0
term of the series is needed only when there are boundaries of the second kind at y = 0
and y = W (when Y22 is part of the GF number). Kernel function P satisfies

d2P

dx2
− ν2P = −δ(x − x ′) (9.67)

along with appropriate homogeneous boundary conditions atx = 0 andx = L. Kernel
function P is similar to the one-dimensional GF given in Equation 9.11 except that σ

is replaced by ν = √
σ2 + γ2

n. That is, P (x, x′, ν) = GX(x, x′, ν).
The above series expression for Cartesian GF also applies to boundary conditions

of the fourth or fifth kind, which include a thin surface film. However, these bound-
ary conditions require special care because the eigenvalues are complex numbers
and the eigenfunctions contain complex-valued sine and/or cosine. Complex-valued
eigenvalues have been previously shown to occur for heat conduction in multilayer,
multidimensional bodies (Haji-Shiekh and Beck, 2002).

Although the GF is unique, for many geometries there exist alternate forms for
the same unique GF. These alternate forms have a very important role in numerical
evaluation of the GF and the temperatures constructed from them. Specifically, the
alternate GF can be used to verify that numerical values are correctly computed.

Alternate GF for rectangles. In the rectangle an alternate series for the GF may
be found by placing the kernel functions in the y-direction and the eigenfunctions
in the x-direction. The alternate GF is important because at a point in the rectangle
where one series converges slowly, the other series converges rapidly, and vice versa.
In previous work with steady temperature (at ω = 0), we have shown that there are
locations in the domain at which the slowly converging series requires thousands of
times more terms than the rapidly converging series (Cole and Yen, 2001; Crittenden
and Cole, 2002). A double-sum form of the GF may also be found from Fourier
expansions along both x and y, however it generally converges very slowly and
should not be used when a single-sum form is available.
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Alternate GF for the 2D slab. An alternate GF for two-dimensional slab bodies
may be found with a spatial Fourier transform. Consider slab bodies described by cases
X00YIJ for which I, J = 1, 2, 3, 4, or 5. The solution will be found with a spatial Fourier
transform defined by the following transform pair (Carslaw and Jaeger, 1959, p. 57):

G(β) =
∫ ∞

−∞
G(x)e−jβxdx (9.68)

G(x) = 1

2π

∫ ∞

−∞
G(β)ejβxdβ (9.69)

Note that variable x ′ has been suppressed by a change of variable, replacing (x − x ′)
by x, which is allowed under the differential equation which defines G. Apply the
above transform to Equations 9.7 and 9.8 to obtain

dG
2

dy2
− ν2G = −1

α
δ(y − y ′) (9.70)

ki

dG

dni

+ λiG = 0 at boundary i (9.71)

where ν2 = β2 + jω / α (9.72)

λi = hi + jω(ρcb)i (9.73)

Equation 9.70 is similar to Equation 9.9 which defines the one-dimensional GF, so
G is given by Equation 9.11 with parameter σ replaced by ν and x replaced by y.
That is, G(y, y′) = GX(y, y′, ν). Finally, the GF in the slab may be formally stated in
x-space by use of the inverse transform:

G(x, y, ω|x′, y′) = 1

2π

∫ ∞

−∞
GX(y, y′, ν) ejβ(x−x′)dβ (9.74)

Here variable x ′ has been recovered by reversing the earlier change of variable and
replacing x by (x − x′). In general the inverse-transform integral must be evaluated
numerically, which is possible because the integrand approaches zero as β → ±∞.

Example 9.5: Slab Heated over a Small Region

In this example a two-dimensional slab body is heated over a small region and
cooled by convection at y = W . The body is insulated at y = 0. This geom-
etry is a model of a thermal conductivity sensor. The number for this case is
X00Y23B0(x5t6) and the geometry is shown in Figure 9.7. The temperature is
formally given by Equation 9.6 with volume heating:

T (x , y , ω) = α

k

∫ ∫
g (x ′, y ′) GX00Y 23(x , x ′, y , y ′, ω) dx ′dy ′ (9.75)

The heated region is of infinitesimal thickness along y and is piecewise constant
along x , described by g (x ′, y ′) = q(x ′)δ(y ′ − W ) where

q(x ′) =
{

q0; |x ′| < a

0; |x ′| > a
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FIGURE 9.7 Two-dimensional slab heated over a small area and cooled by convection on
one side, case X00Y23B00G(x5y7t6).

This heating function could represent a thin metal film which is heated electrically.
Substitute this heating function into the above temperature expression to obtain

T (x , y , ω) = α

k

∫ a

−a
q0GX00Y 23(x , x ′, y , y ′ = W , ω) dx ′ (9.76)

Note that the integral on y ′ has been stripped away by the Dirac delta function.
The series form of the GF, Equation 9.66, will be used to find the temperature.
Substitute the appropriate eigenfunction from Table 4.2, norm from Table 4.3, and
kernel function (1D planar GF in this case) from Equation 9.11 to obtain

T (x , y , ω) = αq0

k

∞∑
n=0

cos(γnW ) cos(γny )
Ny

∫ a

−a

e−ν|x−x ′|
2να

dx ′ (9.77)

where N−1
y = 2

W
γ2

nW 2 + (B2W / a)2

γ2
nW 2 + (B2W / a)2 + B2W / a

(9.78)

and where ν2 = σ2 + γ2
n. Note that the integral on x ′ may be carried out in closed

form.
Figure 9.8 shows the temperature and amplitude and phase on the heated

surface of the slab at B2 = 1 for three frequency frequency values defined by
ω+ = ωa2 / α = 0.1, 1.0, and 10. At low frequency, the amplitude on the heater is
large, the phase is small, and the spatial influence of the heater extends far beyond
the heated region (−1 < x / a < 1). As the frequency increases, the amplitude is
smaller on the heater and the spatial extent of the temperature is limited to the
immediate vicinity of the heater.

The alternate GF may also used to find the temperature in this case.The alternate
GF is given by Equation 9.74 with the necessary 1D GF given by Equation 9.11
with S+

1 = S−
1 = 1, S+

2 = kν + h2, and S−
2 = kν − h2 as appropriate for case

X00Y23. Then the GF, evaluated at y ′ = y = W , is given by

GX00Y 23(x , 0|x ′, 0, ω) = 1
2π

∫ ∞

−∞
e−jβ(x−x ′)W (1 − e−2νW ) dβ

α[νW + B2 − (νW − B2)e−2νW ] (9.79)
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FIGURE 9.8 Amplitide (a) and phase (b) of the surface temperature on a slab heated over
(−1 < x /a < 1) for three heating frequencies. The surface convection is ha /k = 1 and the
slab thickness is W /a = 1. Case X00Y23B0G(x5t6).

where in this expression ν2 = σ2 + β2. The temperature is found by replacing the
above GF into Equation 9.76, and evaluating the integral over x ′:

T (x , y , ω) = q0W
k

∫ ∞

−∞
e−jβ(x−a) − e−jβ(x+a)

jβ

× (1 − e−2νW ) dβ

[νW + B2 − (νW − B2)e−2νW ] (9.80)

Here the integral over x ′ has been carried out in closed form.The remaining integral
on β must be carried out numerically, however the integrand rapidly approaches
zero at large |β|, so the infinite limits can be truncated while providing accurate
numerical values (Cole, 2006).

9.6.2 INFINITE AND SEMI-INFINITE BODIES

The GF for infinite and semi-infinite bodies are found in the same manner as the
alternate GF discussed above for the two-dimensional slab body. For cases X00YI0
for I = 0, 1, 2, 3, 4 or 5, the 1D GF identified in Equation 9.74 may be simplified by
taking S−

2 = 0 and S+
2 = 1. Then the GF for infinite and semi-infinite bodies may be

written:

G(x, y, ω|x′, y′) = 1

2π

∫ ∞

−∞
ejβ(x−x′)

2αν
[e−ν|y−y′| + De−ν(y+y′)]dβ (9.81)

where D =




0 (infinite body)
−1 (first kind)
+1 (second kind)

(kν − λ) /(kν + λ) (3rd, 4th, or 5th kind)
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For some cases the β-integral is known in closed form. For cases X00Y00, X00Y10,
and X00Y20, the GF may be written (Mandelis, 2001, p. 231)

G(x, y, ω|x′, y′) = 1

2πα

[
K0

(
ν

√
(x − x ′)2 + (y − y ′)2

)

+ DK0

(
ν

√
(x + x ′)2 + (y + y ′)2

)]
(9.82)

where K0 is the modified Bessel function of order zero (with complex argument) and
D = 0, −1, or 1 for cases X00Y00, X00Y10, and X00Y20, respectively.

9.6.3 RECTANGULAR PARALLELEPIPED

Consider the rectangular parallelepiped on domain (0 < x < L1, 0 < y < L2,
0 < z < L3). The GF for steady-periodic conduction for this case satisfies the
following equations:

∂2G

∂x2
+ ∂2G

∂y2
+ ∂2G

∂z2
− σ2G = −1

α
δ(x − x ′)δ(y − y ′)δ(z − z′) (9.83)

ki

∂G

∂ni

+ [hi + jω(ρcb)i]G = 0; on boundary i (9.84)

This GF may be found in the form of a double summation with the method of eigen-
function expansion applied along two directions. For eigenfunctions Xm, norm Nx ,
and eigenvalues βm along the x-direction, and, eigenfunctions Yn, norm Ny , and
eigenvalues γn along the y-direction, the GF is given by

G(x, y, z, ω | x′, y′, z′) =
∞∑

n=0

∞∑
m=0

Xm(x)X∗
m(x ′)Yn(y)Y ∗

n (y ′)
Nx(βm)Ny(γn)

P (z, z′, νnm) (9.85)

The eigenfunctions satisfy homogeneous boundary conditions at the appropriate limits
of the x and y domains. The m = 0 term of the series is needed only when there are
boundaries of the second kind at both x = 0 and x = L1 (X22), and the n = 0 term
is needed only when there are boundary conditions of the second kind at both y = 0
and y = L2 (Y22).

Kernel function P satisfies

d2P

dx2
− ν2P = −δ(z − z′) (9.86)

along with appropriate homogeneous boundary conditions at z = 0 and z = L3.
The kernel function is similar to the 1D (slab) Green’s function discussed earlier in
Equation 9.11, except that here σ is replaced by νnm = √

σ2 + β2
m + γ2

n. That is,

P (z, z′, νnm) = GX(z, z′, νnm)
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There are two alternate series expressions for this GF. With kernel functions along
the y-direction, eigenfunctions along the x- and z-directions, and ν2

mp = σ2+β2
m+η2

p,
one alternate GF is

G(x, y, z, ω | x′, y′, z′) =
∞∑

p=0

∞∑
m=0

Xm(x)X∗
m(x ′)Zp(z)Z∗

p(z′)
Nx(βm)Nz(ηp)

P (y, y′, νmp) (9.87)

With kernel functions along the x-direction, eigenfunctions along the y- and
z-directions, and ν2

np = σ2 + γ2
n + η2

p, another alternate GF is

G(x, y, z, ω | x′, y′, z′) =
∞∑

n=0

∞∑
p=0

Yn(y)Y ∗
n (y ′)Zp(z)Z∗

p(z′)
Ny(γn)Nz(ηp)

P (x, x′, νnp) (9.88)

The alternate GF can be used to construct alternate temperature expressions which
are important for verification. The alternate series expressions are also important if
slow series convergence becomes a problem, because they have complementary con-
vergence behavior. That is, at a location where one series converges slowly (often at
a boundary), an alternate series may be found that converges rapidly at that location.
A triple-sum form of the GF may also be constructed from eigenfunction expan-
sions along all three axes, but it is not recommended for numerical computation. See
Crittenden and Cole (2002) for further discussion of the same issues for steady heat
conduction (not steady-periodic) in the parallelepiped.

9.7 TWO-DIMENSIONAL BODIES
IN CYLINDRICAL COORDINATES

In this section steady-periodic heat conduction is treated in geometries in cylindrical
coordinates with axisymmetry, that is, described by coordinates (r , z). The GF is
defined by

1

r

∂

∂r

(
r
∂G

∂r

)
+ ∂2G

∂z2
− σ2G = −1

α

δ(r − r ′)
2πr ′ δ(z − z′); (9.89)

k
∂G

∂ni

+ λiG = 0; at boundary i (9.90)

where σ2 = jω / α and λi = hi + jω(ρcbi) to describe five kinds of boundary
conditions. Earlier the method of eigenfunction expansion was applied to rectangular
geometries. The following development is similar, with eigenfunctions and kernel
functions appropriate for cylinders.

9.7.1 GF WITH EIGENFUNCTIONS ALONG r

Consider steady-periodic conduction in the right circular cylinder, on domain
(0 < r < b), The GF may be constructed with eigenfunctions along the r-direction
in the form
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TABLE 9.1
Eigenfunction, Norm, and Eigencondition for Solid Cylinders. Note B2 =
λ2b / k.

Case Rm
2π

Nr(βm)
Eigencondition

R01 J0(βmr /b) 2
b2J1(βm)

J0(βm) = 0

R02∗ J0(βmr /b) 2
b2J 2

0 (βm)
J ′

0(βm) = 0

R03 J0(βmr /b) 2
b2J 2

0 (βm)

b2β2
m

(B2
2 +b2β2

m)
βmJ ′

0(βm) + B2J0(βm) = 0

∗For this case β0 = 0 is also an eigenvalue; the corresponding eigenfunction is R0 = 1 and the norm is
2π / Nr (β0) = 2 / b2.

G(r , z, ω | r ′, z′) =
∞∑

m=0

Rm(r)R∗
m(r ′)

Nr (βm)
P (z, z′, νm) (9.91)

Eigenfunctions Rm satisfy the Bessel equation of order zero,

R′′
m + 1

r
R′

m + β2
mRm = 0 (9.92)

The eigenfunctions, norms and eigenconditions are given in Table 9.1. The differential
equation for the kernel functions P may be found by replacing the series for the GF,
Equation 9.91, into the auxiliary equation for G, Equation 9.89, along with the series
expansion for δ(r − r ′), given by

δ(r − r ′)
2πr ′ =

∞∑
m=0

Rm(r)R∗
m(r ′)

Nr (βm)
(9.93)

The factor of 2π here is used for consistency with the cylindrical GF defined in Section
7.4. After some algebra, Equation 9.89 takes the form

∞∑
m=0

Rm(r)R∗
m(r ′)

Nr (βm)

{
−β2

mP + P ′′ − σ2P + 1

α
δ(z − z′)

}
= 0 (9.94)

This equation will be satisfied if kernel function P satisfies

d2P

dz2
− ν2

mP = −1

α
δ(z − z′) (9.95)

where ν2
m = β2

m + σ2. The kernel function also satisfies homogeneous boundary
conditions at z = 0 and z = L. Kernel function P is given by Equation 9.11 with σ

replaced by νm. The special case of ω = 0 (steady) requires special care for boundaries
of the second kind for which βm = 0 is an eigenvalue (Cole, 2004b).

In this section the discussion has focused on the solid cylinder (0 < r < b).
The GF for the hollow cylinder has the same form, except that the eigenfunctions
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contain both J0 and Y0. The hollow-cylinder eigenfunctions may be deduced from
the transient cylinder cases given inAppendix R, and they are also tabulated by Ozisik
(1993, Chapter 3). It is important to note, however, that the norms for cylinders given
by Ozisik differ from this book by a factor of (2π), as discussed in Section 7.4. For
the finite cylinder (0 < z < L), an alternate series exists that contains eigenfunctions
along the z-direction, as discussed in the next section.

9.7.2 GF WITH EIGENFUNCTIONS ALONG z

Consider the region bounded by two planes (at z = 0 and z = L) described by spatial
coordinates (r , z). For this geometry the steady-periodic GF can be constructed by
an eigenfunction expansion along the z-direction and a kernel function along the
r-direction, in the form

G(r , z, σ | r ′, z′) =
∞∑

p=0

Z(z)Z∗
p(z′)

Nz(ηp)
Q(r , r ′, νp) (9.96)

where σ2 = jω / α and ν2
p = η2

p + σ2. Eigenfunction Zp, eigenvalues ηp, and norm
Nz are identical to the Cartesian functions discussed earlier for the rectangle and the
parallelepiped except here they are renamed for the z-direction (see also Tables 4.1
through 4.3).

Kernel function Q satisfies

1

r

d

dr

(
r
dQ

dr

)
− ν2

pQ = −1

α

δ(r − r ′)
2πr ′ (9.97)

The kernel function along the r-direction is similar to the 1D cylindrical radial GF

given earlier in Equation 9.21, except here σ is replaced by νp =
√

η2
p + σ2. That is,

Q(r , r ′, νp) = GR(r , r ′, νp)

The GF given by Equation 9.96 applies to the following geometries: the infinite slab
(0 < z < L, r > 0); the infinite slab with a cylindrical hole (0 < z < L, a < r < ∞);
the finite hollow cylinder (0 < z < L, a < r < b); and, the finite solid cylinder
(0 < z < L, 0 < r < b).

Example 9.6: Pin Fin with Heat Flux at Base

Steady-periodic heat transfer in fins has been studied several times; see Kraus et
al. (2001, Chapter 17) for a thorough literature review. Generally a fin is long
and thin and the temperature varies down the long axis, however this example is
concerned with a short cylindrical fin in which two-dimensional heat transfer is
present. The base of the fin is uniformly heated by a steady-periodic heat flux, and
the other surfaces are cooled by convection. The geometry for this case, shown
in Figure 9.9, is described by heat conduction number R03Z23. The temperature
satisfies the following equations:
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k ∂T/∂r + hT = 0

k ∂T/∂z + hT = 0

z
b

L
r

q0eiωt

FIGURE 9.9 Solid cylinder heated steady-periodically over one end and cooled by convection
over the other surfaces, case R03Z23. This is a model of a short pin fin.

1
r

∂

∂r

(
r
∂T
∂r

)
+ ∂2T

∂z2 − σ2T = 0 (9.98)

at z = 0, −k
∂T
∂r

= q0(ω) (9.99)

at z = L, k
∂T
∂z

+ hT = T∞ (9.100)

at r = b, k
∂T
∂r

+ hT = T∞ (9.101)

The temperature may be expressed as an integral involving the appropriate Green’s
function, as follows:

T (r , z , ω) − T∞ = α

k

∫ b

r ′=0
q0 G (r , z , ω|r ′, z ′ = 0) 2πr ′ dr ′ (9.102)

Mathematically, the temperature has a unique solution. However, there are two
series forms of the GF that can provide two distinct series expressions for the
temperature.

Eigenfunctions along z. With eigenfunctions along the z-direction, the GF is
given by Equation 9.96 where the eigenfunction and norm are given by

Zp (z ) = cos(ηpz ) (9.103)

1
Nz (ηp )

= 2
L

(ηpL)2 + B2
2

(ηpL)2 + B2
2 + B2

(9.104)

where B2 = hL / k . Eigenvalues ηp satisfy ηpL tan(ηpL) = hL / k .The kernel function
is given by

Qp (r , r ′, ν) = 1
2πα

{
[A2I0(νpr ′) + K0(νpr ′)]I0(νpr ), r < r ′

[A2I0(νpr ) + K0(νpr )]I0(νpr ′), r > r ′

}
(9.105)

where A2 is given by

A2 = νpLK1(νpb) − B2K0(νpb)
νpLI1(νpb) + B2I0(νpb)

(9.106)

and where ν2
p = β2

p + σ2
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Replace this GF into the temperature integral, Equation 9.102, and evaluate the
integral over r ′ to find:

T (r , z , ω) − T∞
(q0b / k )

=
∞∑

p=1

cos(ηpz )
2b
L

(ηpL)2 + B2
2

(ηpL)2 + B2
2 + B2

(9.107)

×
{

1
νpb

[A2I1(νpb) − K1(νpb)]I0(νpr ) + 1
ν2

pb2

}

Some care is required when combining eigenfunctions and kernel functions, be-
cause each (in general) depends on separate Biot numbers with separate length
scales and separate λ-values. In this example λ = h is the same in each direction,
but the length scales are different. Hence the z-direction Biot number is hL / k
and the r -direction Biot number is hb / k . In the above temperature expression we
have chosen to normalize the temperature by length scale b.

Eigenfunctions along r. An alternate form of the GF has eigenfunctions along
the r -direction, and is given by Equation 9.91 with z ′ = 0,

G (r , z |r ′, z ′ = 0, ω) =
∞∑

m=1

Rm(r )Rm(r ′)
Nr (βm)

Pm(z , z ′ = 0, νm) (9.108)

The eigenfunction, norm, and eigencondition are given by (Table 9.1)

Rm(r ) = J0(βmr ) (9.109)

2π

Nr
= 2

J2
0 (βmb)

β2
m

[(hb/k )2 + b2β2
m)] (9.110)

0 = βmbJ ′0(βmb) + (hb/k )J0(βmb). (9.111)

Kernel function P is given by Equation 9.11 for a type 2 boundary at z = 0 and a
type 3 boundary at z = L (case Z23):

P (z , z ′ = 0, νm) = S−
2 e−νm (2L−z ) + S+

2 e−νmz

νm(S+
2 − S−

2 e−2νmL)
(9.112)

where ν2
m = β2

m + σ2, S+
2 = kνm + h, and S−

2 = kνm − h. This form of the GF may
be substituted into the temperature integral to find an alternate series expression
for the temperature:

T (r , z , ω) − T∞
(q0b/k )

=
∞∑

m=1

J0(βmr )J1(βmb)
πβmb

β2
mb2

J2
0 (βmb)[(hb/k )2 + b2β2

m]

× (νmb − hb/k )e−νm (2L−z ) + (νmb + hb/k )e−νmz

νmb[(νmb + hb/k ) − (νmb − hb/k )e−2νmL] (9.113)

Numerical values for the temperature in the pin fin were computed using both tem-
perature series, Equations 9.107 and 9.113, providing a very strong check on the
correctness of the results. In Figure 9.10 contour plots of the amplitude and phase
of the temperature are given for a fin of aspect ratio b / L = 0.5. In Figure 9.10 the
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FIGURE 9.10 Contour plots of temperature amplitude and phase in a cylinder of aspect
ratio b / L = 0.5. The cylinder is heated at z = 0 and cooled by convection at r / b = 1 and
z / L = 1. The heating frequency is fixed at ωb2 / α = 1.0 and the boundary convection is given
by hb / k = 0.2, 1.0, and 5.0 for the top, middle, and bottom of figure, respectively. (Reprinted
with permission from American Society of Mechanical Engineers; Cole, K. D. and Crittenden,
P. E., J. Heat Transfer, vol. 131, pp. 91301–91308, 2009.)

frequency is fixed at ωb2 / α = 1.0 and the results for Biot number hb / k = 0.2,
1.0, and 5.0 are shown at the top, middle and bottom of the figure, respectively.
The amplitude of the temperature is largest where the heat is added (z = 0) and
decreases along the length of the fin. For the smallest Biot number (at the top of
the figure), the change in phase along the fin is most pronounced, and as the Biot
number increases there is less change in phase along the fin.

9.7.3 AXISYMMETRIC HALF-SPACE

Consider the half-space with axisymmetry on domain (r > 0, z > 0). The steady-
periodic GF will be sought with the Hankel transform defined as follows (Carslaw
and Jaeger, p. 458):
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G(β) =
∫ ∞

r=0
G(r) J0(βr) 2πr dr (9.114)

G(r) = 1

2π

∫ ∞

β=0
G(β) J0(βr) β dβ (9.115)

To apply this transform, multiply the partial differential equation for G, Equation 9.89,
by J0(βr)2πr and integrate over (0 < r < ∞), to find:

−β2G + d2G

dz2
− σ2G = 1

α
δ(z − z′)J0(βr ′) (9.116)

Note that the Hankel transform eliminates the r-direction derivative. Also, the sifting
property is used to evaluate the integral of the δ-function term. To solve the above
ordinary differential equation, define new variable G∗ such that G = G∗ · J0(βr ′),
and replace into the above equation:[

d2G∗

dz2
− ν2G∗ = 1

α
δ(z − z′)

]
J0(βr ′) (9.117)

where ν2 = β2 + σ2. The transformed boundary condition at z = 0 has the same
form as the original boundary condition. In this form, function G∗ is similar to the
1D Cartesian Green’s function given in Equation 9.11. For the present discussion in
the half-space (z > 0), function G∗ may be written

G∗ = e−ν|z−z′| + R · e−ν(z+z′)

2αν
(9.118)

where R =




0; infinite body
−1; case Z10

1; case Z20
kν−λ1
kν+λ1

; case Z30, Z40, Z50

(9.119)

where λ1 comes from the boundary condition at z = 0. Finally, use the definition
of G∗ given above, and the inverse Hankel transform (Equation 9.115) to obtain the
r-space Green’s function:

G(r , z, σ|r ′, z′) = 1

2π

∫ ∞

β=0

e−ν|z−z′| + R · e−ν(z+z′)

2αν
J0(βr ′)Jo(βr) β dβ (9.120)

Although the integrand of this integral approaches zero at β → ∞, it does so slowly at
z = z′ = 0. Fortunately, temperature expressions constructed by integrating this GF
generally contain a faster-decaying integrand which can be evaluated numerically, as
in the following example.

Example 9.7: Half-Space with Heating over a Circular Region

Consider the temperature in a half-space heated over a circle (0 < r < a) and
insulated elsewhere on the z = 0 surface. This is case R00Z20B(t6r5) and the
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q0eiωt 

a

Centerline

z

r

FIGURE 9.11 Geometry for a half space heated over a small circular region.

geometry is shown in Figure 9.11. The heating condition is described by

−k
∂T
∂r

=
{

q0(ω), 0 < r < a
0, r > a

(9.121)

The GF solution for this problem involves an integration over the z = 0 surface of
the body, given by

T (r , z , ω) = 1
k

∫ a

r ′=0
q0GR00Z 20(r , z , σ|r ′, z ′ = 0)2πr ′ dr ′ (9.122)

The GF is given by Equation 9.120 with R = 1. Replacing this GF into the temper-
ature expression, and evaluating the integral over r ′ gives

T (r , z , ω) = q0a
k

∫ ∞

β=0

e−z (β2+σ2)1 / 2√
β2 + σ2

J0(βr ) J1(βa) dβ (9.123)

This improper integral is easily evaluated for all z > 0 because the exponential
term rapidly vanishes as β increases. At the surface z = 0, the rate of decrease
of the integrand is controlled by the Bessel functions, which decrease in size as
Jn ∼ 1 /

√
β (for n = 0, 1). Thus for z = 0, the integrand vanishes like 1 / β2, rapidly

enough to allow accurate numerical evaluation of the surface temperature with a
truncated domain of integration.

9.8 CYLINDER WITH T = T (r, φ, z, ω)

In this section the cylinder with three-dimensional steady-periodic heat conduction is
treated. That is, temperature depends on spatial coordinates (r , φ, z) and frequency ω.

The associated GF for 3D steady-periodic heat conduction in the cylinder satisfies

1

r

∂

∂r

(
r
∂G

∂r

)
+ 1

r2

∂2G

∂φ2
+ ∂2G

∂z2
− σ2G = −1

α

δ(r − r ′)
2πr

δ(z − z′)δ(φ − φ′) (9.124)

and at the boundaries

ki

∂G

∂ni

+ λiG = 0 (9.125)
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The set of GF represented by Equations 9.124 and 9.125 represent 1296 combinations
of boundary conditions (36 along r and 36 along z), denoted by GF number
RIJZKLΦ00. Here I ,J , K , L = 0, 1, . . . , 5 to denote the types of boundary con-
ditions present and Φ00 denotes the angular dependence for the full cylinder.

There are two forms of the double-sum GF, one with eigenfunctions along the
z-direction and the other with eigenfunction along the r-direction. Both are important,
as one can be used to check the other, and where one converges slowly the other
generally converges rapidly.

9.8.1 GF WITH EIGENFUNCTIONS ALONG z

The steady-periodic GF with eigenfunctions along the z-direction, appropriate for the
finite length cylinder (0 < z < L), has the form

G(r , φ, z|r ′, φ′, z′, ω) =
∞∑

n=0

∞∑
p=0

Zp(z)Zp(z′)
Nz(ηp)

cos[n(φ − φ′)]
Nφ

Qnp(r , r ′, νp) (9.126)

This eigenfunction expansion has been chosen so that the boundary conditions at
z = 0 and z = L are satisfied by the eigenfunctions in the z-direction, and the
conditions at φ = 0 and φ = 2π are satisfied by the eigenfunctions in the φ-direction.
Norm Nφ is equal to π for n = 0 and 2π for n ≥ 1.

Kernel function Qnp satisfies

Q
′′
np + 1

r
Q

′
np −

(
ν2
p + n2

r

)
Qnp = −1

α

δ(r − r ′)
2πr

(9.127)

where ν2
p = η2

p + σ2. This is the modified Bessel equation of order n, with general
solution Kn and In. The particular solution may be found with a development similar
to the one-dimensional radial GF discussed earlier, with the Bessel function of order n

replacing that of order zero and with νp replacing σ.Applying the boundary conditions
the solution can be written in the same form as before

Qnp(r , r ′, νp) = 1

2πα(1 − A1A2)
(9.128)

×
{[A2In(νpr ′) + Kn(νpr ′)][In(νpr) + A1Kn(νpr)], r < r ′

[A2In(νpr) + Kn(νpr)][In(νpr ′) + A1Kn(νpr ′)], r > r ′

}

except here

A1 = [νpaIn+1(νpa) + nIn(νpa))] − B1In(νpa)

[νpaKn+1(νpa) − nKn(νpa)] + B1Kn(νpa)
(9.129)

and

A2 = [νpbKn+1(νpb) − nKn(νpb)] − B2Kn(νpb)

[νpbIn+1(νpb) + nIn(νpb)] + B2In(νpb)
(9.130)
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The quantities B1 = λ1a / k1 and B2 = λ2b / k2 are modified Biot numbers at the
inner and outer radius, respectively. The above values for A1 and A2 are for the most
general boundary condition (fifth kind). Values for other kinds of boundaries can be
found by analogy with Equation 9.22.

9.8.2 GF WITH EIGENFUNCTIONS ALONG r

An alternate GF that satisfies Equation 9.124 may also be constructed using eigen-
functions along the r-direction for finite-radius cylinders (r < b). If the r-direction
eigenfunctions are denoted Rnm(r), then the alternate double-sum GF may be written

G(r , φ, z|r ′, φ′, z′, ω) =
∞∑

n=0

∞∑
m=0

Rnm(r)Rnm(r ′)
Nr (βnm)

cos[n(φ − φ′)]
Nφ

Pm(z, z′, νm)

(9.131)

The m = 0 term of the series is needed only when zero is an eigenvalue (for cases R02,
R22). The series on n involves the functions cos[n(φ − φ′)] which satisfy periodic
boundary conditions at φ = 0 and φ = 2π. Eigenfunctions Rnm satisfy

1

r

∂

∂r

(
r
∂Rnm

∂r

)
= −

(
β2

nm − n2

r2

)
Rnm (9.132)

along with boundary conditions at r = a and r = b. For solid cylinders, eigenfunc-
tions Rnm have the form of Bessel functions of order n and may be deduced from
Table 9.1 for n �= 0. For hollow cylinders the eigenfunctions may be deduced from
the transient GF listed in Appendix R.

Kernel function Pm satisfies

P
′′
m − ν2

mPm = −1

α
δ(z − z′) (9.133)

where ν2
m = β2

nm + σ2. This kernel function is identical to GX discussed earlier
(Equation 9.11) with x and σ replaced by z and νm, respectively.

Example 9.8: Solid Cylinder Heated over a Sector of Its Surface and
Cooled by Convection

Consider a solid cylinder with steady-periodic heating over an angular sector of
the curved surface, parallel to the cylinder axis, and cooled by convection over
the entire curved surface. The flat ends of the cylinder are fixed at the fluid temper-
ature. This geometry is an approximate thermal model of a hot-film sensor used to
measure fluid flow. The temperature satisfies the following equations:

1
r

∂

∂r

(
r
∂T
∂r

)
+ 1

r2
∂2T
∂φ2 + ∂2T

∂z2 − σ2T + g (r , φ, z )
k

= 0 (9.134)

at z = 0, T = T∞ (9.135)

at z = L, T = T∞ (9.136)

at r = b, k
∂T
∂r

+ hT = hT∞ (9.137)
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The heating function is given by

g (r , φ, z ) =
{

q0δ(r − b) 0 < φ < φ0
0 φ0 < φ < 2π

(9.138)

Note that the heat is introduced at surface r = b. This is geometry R03Z11Φ00
in the heat conduction numbering system. The temperature may be stated in the
form of an integral with the GF, as follows:

T (r , φ, z , ω) − T∞ = α

k

∫ b

r ′=0

∫ φ0

φ′=0

∫ L

z ′=0
q0 δ(r ′ − b) G (·) dz ′ dφ′ r ′ dr ′

(9.139)

The integral on r ′ may be evaluated with the sifting property of δ:

T (r , φ, z , ω) − T∞ = α

k

∫ φ0

φ′=0

∫ L

z ′=0
q0 G (r , φ, z , ω|b, φ′, z ′) dz ′ dφ′ b (9.140)

There are two forms of the GF that allow for two distinct series expressions for the
temperature.

Eigenfunctions along z. With eigenfunctions along the z-direction, the GF is
given by Equation 9.126 with the eigenfunction and norm given by (case Z11)

Zp (z ) = sin(ηpz ), where ηp = pπ / L (9.141)

1 / Nz = 2 / L (9.142)

The kernel function is given by Equation 9.128, (case R03):

Qnp (r , b, νp ) = 1
2πα

{[A2In(νpb) + Kn(νpb)][In(νpr )]} (9.143)

where ν2
p = η2

p + σ2 and where A2(n) is given by

A2(n) = [νpbKn+1(νpb) − nKn(νpb)] − B2Kn(νpb)
[νpbIn+1(νpb) + nIn(νpb)] + B2In(νpb)

(9.144)

Here B2 = hb / k . Replace this GF into the temperature integral, Equation 9.140,
and evaluate the integrals on φ′ and z ′:

T (r , φ, z ) − T∞
q0b / k

=
∞∑

p=1

∞∑
n=0

2 sin(pπz / L)[1 − (−1)p]
pπ

× Cn[A2(n) In(νpb) + Kn(νpb)] In(νpr )
2π

(9.145)

where Cn =
{
φ0 / π; n = 0
{sin(nφ) − sin n(φ − φ0)} /(2πn); n �= 0

Note that the integral over φ′ must be treated separately when n = 0.
Eigenfunctions along r. An alternate GF, with eigenfunctions along the r -

direction, is given by Equation 9.131 with eigenfunction and norm given by

Rnm(r ) = Jn(βnmr ) (9.146)

2π

Nr
= 2

b2J2
n (βnmb)

b2β2
nm

((hb / k )2 + b2β2
nm − n2)

(9.147)
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The eigenvalue βnm satisfies

βnmbJ ′n(βnmb) + (hb/k )Jn(βnmb) = 0, m = 1, 2, 3, . . . (9.148)

The kernel function Pm is given by Equation 9.11, with ν2 = β2
nm + σ2 (case Z11):

P (z , z ′, ν) = e−ν(2L−|z−z ′|) − e−ν(2L−z−z ′)

2αν(1 − e−2νL)
+ e−ν(|z−z ′|) − e−ν(z+z ′)

2αν(1 − e−2νL)
(9.149)

Now replace the alternate GF into the integral expression for the GF, and evalu-
ate the integrals over φ′ and z ′, to find the an alternate series expression for the
temperature (Cole and Crittenden, 2009):

T (r , φ, z ) − T∞
q0b/k

= 1
π

∞∑
m=1

∞∑
n=0

Jn(βnmr )
β2

nm
Jn(βnmb)[(hb/k )2 + b2β2

nm − n2]

× Cn

[
1
ν2 + e−ν(2L−z ) − e−ν(L−z ) − e−2νL − e−νz

ν2(1 − e−2νL)

]

(9.150)

where Cn is given in Equation 9.145. Note that additive term 1/ν2, from integra-
tion on z ′ of the kernel function, may cause slow series convergence, because this
portion of the series does not contain a convergence-promoting exponential func-
tion.The series containing this additive term can be replaced by a faster-converging
single-sum form (see Crittenden and Cole, 2002).

Figure 9.12 shows amplitude and phase of the dimensionless temperature com-
puted on the cylinder surface r = b and at the midpoint z = L/2. The heated strip
is located on 0 < φ < 0.2 and the aspect ratio of the cylinder is b/L = 0.2. The
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FIGURE 9.12 Amplitude and phase of the temperature around the circumference of a cylinder
(r = b, z = L/2) for several values of convection on the curved surface. The cylinder surface
is heated steady-periodically over a small strip 0 < φ < 0.2 and the heating frequency is
ωb2/α = 1.
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figure shows the dimensionless temperature at heating frequency ωb2 /α = 1 for
several values of the Biot number B2 = hb /k , which could represent different
cross-flow velocities. The figure shows that at larger Biot numbers, the tempera-
ture amplitude is localized to the heater location and the phase is nearly uniform.
At smaller Biot numbers, the temperature amplitude is distributed further around
the cylinder, and the phase difference between the heated and unheated surface
is more pronounced.

PROBLEMS
9.1 The Fourier transform is defined by the following equations

T̃ (r, ω) =
∫ ∞

−∞
T (r, t)ejωt dt

T (r, t) = 1

2π

∫ ∞

−∞
T̃ (r, ω)e−jωt dω

Apply the Fourier transform to the heat conduction Equations 9.1 and
9.2 for an alternate derivation of the steady-periodic heat equation,
(9.4 and 9.5. Show all the steps in your derivation. What are the units
of T̃ ?

9.2 Derive the steady-periodic GF for the following cases in the Carte-
sian coordinate system by solving Equation 9.9 directly. Check your
answers against Equation 9.11 with appropriate values for the coef-
ficients.

(a) Case X10, a semi-infinite body with boundary condition of the
first kind at x = 0.

(b) Case X13, a finite body with boundary condition of the first
kind at x = 0 and of the third kind at x = L.

9.3 Using direct integration of Equation 9.13, derive the steady-periodic
GF for the following cases in the cylindrical coordinate system.
Check your answers against Equation 9.21.

(a) Case R02, a solid cylinder with specified heat flux at r = b.
(b) Case R11, a hollow cylinder with boundary conditions of the

first kind at both r = a and r = b.
9.4 Using direct integration of Equation 9.24, derive the steady-periodic

GF for the following cases in the spherical coordinate system. Check
your answers against Equation 9.32 with appropriate values for the
coefficients.

(a) Case RS10, a large body with a spherical cavity with boundary
condition of first kind at r = a.

(b) Case RS03, a solid sphere with boundary condition of third kind
at r = a.

9.5 A spacecraft in earth orbit is slowly rotating to produce periodic
heating by absorbed sunlight. Model the spacecraft as a thin shell
with wall thickness d, and use lumped capacitance theory:

q0 cos ωt − hT = ρcd
∂T

∂t
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(a) Find the steady-periodic form of the lumped capacitance equa-
tion.

(b) If q0 is the solar constant (W/m2) and h describes heat loss,
find the steady-periodic temperature excursion as a function of
rotation frequency, heat loss rate, etc.

(c) Suggest two improvements that could be made to make this
model more realistic.

9.6 Find the steady-periodic temperature in deep soil caused by the
day/night cycles of the air temperature. Assume the soil has uni-
form properties and the heat transfer coefficient between the air and
soil is constant. What is the heat conduction number of this case?

9.7 Find the steady-periodic temperature in deep soil with a steady-
periodic temperature imposed at the surface. Using this solution to
describe the response of the soil to yearly temperature variation at
the surface, find the soil depth at which the amplitude of temperature
variation is 1% of the surface temperature variation.

9.8 Find the steady-periodic temperature in a slab with a specified heat
flux at x = 0 and zero temperature at x = L, case X21B60. Compare
your answer to Example 9.1 in the limit for B2 → ∞.

9.9 Find the temperature in a slab for steady periodic heating at x = 0
and for an insulated condition at x = L, case X22B10. Show that at
high frequency the solution reduces to the semi-infinite case X20B1,
and discuss this limiting case on the basis of the physics involved.

9.10 Find the steady-periodic temperature in a solid sphere caused by
surface convection, case RS03B1, where the time-variation of the
surface heating is caused by a time-varying fluid temperature.

9.11 Consider a 2D solid cylinder with spatially uniform heat flux at
z = 0, and with zero temperature at z = L and r = b. This is
case R01B0Z21B60. Find the steady-periodic temperature (a) with
eigenfunctions along the z-direction, and (b) with eigenfunctions
along the r-direction.

9.12 Apply the Hankel transform given by Equation 9.114 to the heat
conduction equation on (r , z) coordinates, Equation 9.89, to verify
Equation 9.116. Show all your steps.

9.13 Find an integral expression for the temperature in the axisymmetric
half-space (r > 0, z > 0) heated by laser absorption at the surface,
g(r , z = 0), and cooled by surface convection. What is the number
of this case?
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10 Galerkin-Based Green’s
Functions and Solutions

10.1 INTRODUCTION

The Green’s functions (GFs) for regularly shaped bodies, such as plates, cylinders, and
spheres, can be obtained by classical methods. These regularly shaped bodies shall be
called orthogonal bodies.Anormal at any point on the boundary of an orthogonal body
is parallel to the direction of a coordinate axis. The solution methods and the derivation
of the GFs for various orthogonal bodies are discussed elsewhere in this book. The
formulation of the GFs for nonorthogonal bodies, as investigated by Haji-Sheikh and
Lakshminarayanan (1987) and Haji-Sheikh and Beck (1988), are in this chapter.

The objective is to provide a methodology for solving the diffusion equation in
various orthogonal and nonorthogonal bodies. The orthogonal bodies include plates,
solid cylinders, hollow cylinders, solid spheres, and hollow spheres. The examples
in this chapter consist of one-dimensional conduction in isotropic media problems
that have exact solutions. The procedure is described, convenient and appropriate
expressions are provided, and the accuracy of the results is compared with the exact
solution. The study of multidimensional conduction in orthogonal and nonorthogonal
bodies and related examples are included in Chapter 11.Also, the utility of this method
when applied to conduction in heterogeneous problems is demonstrated.

The solution method discussed in this chapter is a Galerkin-based integral method
and it is referred to as the Galerkin-based integral (GBI) method. The range of its
usefulness encompasses thermal conduction problems with homogeneous or non-
homogeneous boundary conditions. The diffusion equation, Equation 3.28, can be
written in a generalized form

∇ · [k(r)∇T ] + g(r, t) − m(r)2T = ρ(r)cp (r)u(r)
∂T

∂t
(10.1)

where T = T (r, t) is temperature, r is position vector, and t is time. The thermophys-
ical properties ρ(r), cp(r), and k(r) are position-dependent density, specific heat, and
thermal conductivity, respectively. The term m(r)2T is the fin convection effect. The
function u(r) is designated as the velocity function. When dealing with pure conduc-
tion, the function u(r) is equal to 1. Section 11.5 deals with flow in ducts where the
functional values of u(r) are considered and t is replaced by the axial coordinate. The
nonhomogeneous boundary conditions are accommodated by using the GF solution
method.

An outline of the remainder of this chapter follows. First, in Section 10.2, the
standard derivation of the Green’s function solution equation (GFSE) given in
Chapter 3 is modified to account for the position-dependent thermophysical prop-
erties. Section 10.3 presents an alternative derivation of the GFSE which, when
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available, provides a rapidly converging temperature solution. This method uses
a set of basis functions that need not be orthogonal. In Section 10.4, we demon-
strate that, unlike the exact solutions, the functional form of the basis functions for
one-dimensional solutions remains unchanged in different coordinates; however, the
boundary conditions affect the values of each basis function.

Examples 10.1 and 10.2 are presented mainly to elaborate on the mathematical
steps and to introduce the numerical steps in the integral method. Example 10.3 shows
the use of the alternative GF solution when the surface temperature is prescribed.
Example 10.4 uses a unified solution and compares the accuracy of different GF
solutions.

Extensions of this method to deal with multidimensional conduction problems in
heterogeneous materials and steady-state conduction are in Chapter 11. A study of
heat transfer in the thermal entrance region of ducts is also included in Chapter 11.

10.2 GREEN’S FUNCTIONS AND GREEN’S FUNCTION
SOLUTION METHOD

The GF method permits the solution of diffusion problems with nonhomogeneous
boundary conditions. The GF solution method described in Chapter 3 is modified.
The modifications allow the properties ρ, cp, and k to be position-dependent, and
the results are useful for the study of conduction of heat in homogeneous as well as
heterogeneous bodies. The GF for a body with given boundary conditions describes
the temperature effect at point r at time t if there is an impulsive point energy source of
strength unity located at point r′ and released at time τ. The GFs become the solutions
of Equation 10.1 if the term g(r, t) in Equation 10.1 is replaced by a point energy
source mathematically described by the following delta functions

g(r, t) = ρ(r)cp (r)δ(r − r′)δ(t − τ) (10.2)

Accordingly, the GF is defined so that it satisfies homogeneous boundary conditions
and it is the solution of the following auxiliary equation:

∇ · [k(r)∇G(r, t |r′, τ)] + C(r)δ(r − r′)δ(t − τ)

− m(r)2G(r, t |r′, τ) = C(r)u(r)
∂G(r, t |r′, τ)

∂t
(10.3)

where

C(r) = ρ(r)cp(r) (10.4)

where ρ(r), cp(r), k(r), u(r), and m(r)2 are position-dependent density, specific heat,
thermal conductivity, velocity function, and fin effect as described for Equation 10.1.
Based on the above-mentioned descriptions of the GF, Equation 10.1 for temperature
and Equation 10.3 for the GF are the same, except that in Equation 10.3 the functional
value of g(r, t) is specified. The function G(r, t |r′, τ) is called the GF (Ozisik, 1993).
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A formal solution of Equation 10.3 based on the Galerkin method yields the GF and
is presented in this section. Following the discussion of the properties of the GFs, the
GF solution method is presented.

10.2.1 GALERKIN-BASED INTEGRAL METHOD

The solution of the diffusion equation in a relatively general form, Equation 10.1,
or the auxiliary equation for the GFs, Equation 10.3, is derived using a GBI
method. It is assumed that the thermal conductivity, density, specific heat, ve-
locity function, and fin effect are independent of temperature; however, no other
restriction as to spatial variation of these thermophysical properties is needed. As
described earlier, when the boundary conditions are homogeneous, T (r, 0) = 0, and
g(r, t) = C(r)δ(r − r′)δ(t − τ), the function T (r, t) is equal to the GF G(r, t |r′, τ).
Therefore, the value of the GF is readily available after a generalized solution of
Equation 10.1 is accomplished. The GBI solution described here was used by LeCroy
and Eraslan (1969) in the study of temperature development in the entrance region
of an MHD parallel plate channel.

To solve a differential equation with a nonhomogeneous term, the solution is
frequently broken into two parts, complementary and particular. The complementary
form of Equation 10.1, that is, in essence, the diffusion equation in the absence of
energy generation, is (Haji-Sheikh and Mashena, 1987)

∇ · (k∇Θ) − m(r)2Θ = ρ(r)cp (r)u(r)
∂Θ

∂t
(10.5)

The boundary conditions for Equation 10.5 are the same as those for Equations 10.1
or 10.3 and must be homogeneous. They are of the first kind (prescribed temperature),
the second kind (prescribed heat flux), and the third kind (convective). It is also
permissible for different parts of the boundary to have different kinds of boundary
conditions. A solution to Equation 10.5 can be written as

Θ =
N∑

n = 1

cnψn(r) exp(−γnt) (10.6)

where γn is the nth eigenvalue and is independent of r, and cn is a constant to be
evaluated. For convenience, assume that the body has finite dimensions. Because
Θ is the complementary solution, it is not necessary to specify the initial condition
at this time. The function ψn(r) is selected so that (1) the homogeneous boundary
conditions are satisfied, and (2) Equation 10.6 is a solution of Equation 10.5. The
former condition is exactly satisfied if ψn(r) satisfies the boundary conditions. The
latter is accommodated if Equation 10.6 is substituted in Equation 10.5, resulting in

∇ · [k∇ψn(r)] − m(r)2ψn + ρ(r)cp (r)u(r)γnψn(r) = 0 (10.7)

for every n value. The diffusion equation now becomes an eigenvalue problem and
the function ψn(r) is the eigenfunction.
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When an exact solution does not exist or a simpler approximate solution is
preferred, Equation 10.7 will be approximately satisfied. A function ψn(r) is to be
constructed as a linear combination of a properly selected set of basis functions. A
properly selected set of basis functions is a complete set, its members are linearly
independent, each member satisfies exactly the same homogeneous boundary condi-
tions as those given for Θ, and not all members become zero at any interior point.
The function ψn(r), for n = 1, 2, . . . , N , is chosen to be a linear combination of N

basis functions,

ψn(r) =
N∑

j = 1

dnjfj (r) (10.8)

where fj (r) is an element of a set of basis functions and the dnj ’s are constants to be
evaluated.

The Galerkin procedure (Kantorovich and Krylov, 1960) is now used; that is, both
sides of Equation 10.7 are multiplied by fidV and integrated over the volume V

to get∫
v

fi∇ · (k∇ψn)dV −
∫
v

m(r)2fiψndV +γn

∫
v

ρ(r)cp (r)u(r)fiψndV = 0 (10.9)

Substituting ψn from Equation 10.8 into Equation 10.9 yields

N∑
j = 1

dnj

[∫
v

fi∇ · (k∇fj )dV −
∫
v

m(r)2fi fj dV + γn

∫
v

ρ(r)cp (r)u(r)fi fj dV

]
= 0

(10.10)

in which i = 1, 2, . . . , N . The matrix form of Equation 10.10 is

(A + γn B)dn = 0 (10.11)

where A and B are square matrices of size N with the elements

aij =
∫
v

fi∇ · (k∇fj ) dV −
∫
v

m(r)2fifj dV (10.12)

and

bij =
∫
v

ρ(r)cp (r)u(r)fifj dV (10.13)

The coefficients dn1, dn2, . . . , dnN in Equation 10.8 are the member elements of the
vector dn in Equation 10.11. The second integral in Equation 10.12 vanishes in
the absence of the fin effect. The fin effect, m(r)2, influences only the elements of
matrix A.

An examination of Equation 10.13 reveals that matrix B is symmetric; that is,
bij = bji . When i and j are switched, the second integral on the right side of
Equation 10.12 will not be affected. Matrix A is also symmetric if the first term on
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the right side of Equation 10.12 is symmetric. This is accomplished by using the
identities 1, 2, and 3 in Note 1 at the end of this chapter to show that∫

v

fi∇ · (k∇fj )dV =
∫
v

∇ · (kfi∇fj )dV −
∫
v

k∇fi · ∇fjdV

=
∫

S

kfi∇fj · ndS −
∫
v

k∇fi · ∇fjdV

=
∫

S

kfi

(
∂fj

∂n

)
dS −

∫
v

k∇fi · ∇fjdV (10.14)

When dealing with homogeneous boundary conditions of the first kind (prescribed
temperature fj = 0) or the second kind (prescribed heat flux ∂fj /∂n = 0), the first
term on the right side of Equation 10.14 is zero while the second term is always
symmetric. For homogeneous boundary conditions of the third kind (convective,
−k∂fj / ∂n = hfj ), the first term on the right side of Equation 10.14 becomes∫

S

kfi (∂fj /∂n)dS = −
∫

S

hfifjdS (10.15)

which is also symmetric when i and j are switched. In as much as the boundary
conditions for fi and fj are always homogeneous, matrix A is always symmetric.

The calculation procedure for temperature distribution is summarized below:

(a) It is important to select a complete set of basis functions that are linearly
independent. A complete set requires that all contributing members of the
set be included. The members of a set are linearly independent if no member
of the set is a linear combination of the other members.

(b) The computations of the values of aij and bij in Equations 10.12 and 10.13
are the major analytical or numerical computational tasks. For N = 1 and 2
and simple geometries, the computations are not difficult. For some complex
geometries, it is convenient to utilize a symbolic software to carry out the
analytical integrations which result in more accurate values and often require
less computation time. When exact integration is not possible, numerical
integrations can be used.

(c) The next step is to calculate the eigenvalues and eigenvectors of Equa-
tion 10.11 to be used in Equation 10.6. When N = 1 or N = 2, the proce-
dure is discussed in Example 10.2. The details, when N is large, are given
after Example 10.2.

(d) Following the calculation of eigenvalues and eigenvectors, the eigenfunc-
tions, Equation 10.8, are known. The solution for temperature is complete
after calculation of cn in Equation 10.6. The initial temperature distribution
is used to calculate the cn values.

Examples 10.1 and 10.2 demonstrate the steps itemized above. Notice that the
boundary conditions are homogeneous. The nonhomogeneous boundary conditions
will be included using the Green’s function solution method in Section 10.2.3.
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Example 10.1:

Consider an infinite homogeneous plate with thickness L and having boundary
conditions T (0, t ) = T (L, t ) = 0 when t > 0. The thermal properties have constant
values, u(r) = 1, and m(r) = 0. Furthermore, the initial temperature distribution is
F (x ) = T0. Find the temperature distribution using orthogonal basis functions.

Solution

The number for this case is X11B00T 1. A mathematical statement of this problem is

α
∂2T
∂x2 = ∂T

∂t
for 0 < x < L and t > 0 (10.16)

T (0, t ) = 0 T (L, t ) = 0 and T (x , 0) = T0

If the set of orthogonal basis functions has the two members, f1 = sin(πx / L),
and f2 = sin(2πx / L), the function ψn, using Equation 10.8, is

ψn = dn1 sin
(πx

L

)
+ dn2 sin

(
2πx

L

)
(10.17)

Both f1 = sin(πx / L) and f2 = sin(2πx / L) functions satisfy the homogeneous
boundary conditions (f1 = f2 = 0 at x = 0 and L). Here, the energy equation in
its integral form, Equation 10.10, must be satisfied instead of Equation 10.7.

It is convenient to designate fi = sin(iπx / L), for i = 1, 2, and fj = sin(jπx / L),
for j = 1, 2.Then, when k is a constant, ∇ · (k∇fj ) = k∇2fj = −k (jπ / L)2 sin(jπx / L).
The elements of matrix A, using Equation 10.12, become

aij = −k
(

jπ
L

)2 ∫ L

0
sin

(
jπx

L

)
sin

(
iπx

L

)
dx

for i = 1, 2, and j = 1, 2 (10.18)

For off-diagonal elements where i and j are not the same, this equation yields
a12 = a21 = 0. When i = j, ajj = −k ( jπ)2 / 2L, resulting in a11 = −kπ2 / 2L and
a22 = −2kπ2 / L. Similarly, the elements of matrix B using Equation 10.13 are

bij = ρcp

∫ L

0
sin

(
jπx

L

)
sin

(
iπx

L

)
dx

for i = 1, 2, and j = 1, 2 (10.19)

Because the basis functions are orthogonal, only the diagonal terms have nonzero
values; for example, b12 = b21 = 0. However, the diagonal terms are b11 = b22 =
ρcpL / 2. Then, Equation 10.11 takes the following dimensionless form for n = 1
and n = 2: 


−π2

2
+ L2γ

α

1
2

0

0 −(2π2) + L2γ

α

1
2







dn1

dn2


 = 0 (10.20)

where α = k / ρcp is the thermal diffusivity.
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The eigenvalues γ1 and γ2 are chosen to make the determinant of this matrix
equal to zero. Because all the off-diagonal terms are zero, the determinant is
the product of the diagonal terms; the eigenvalues are obtained by setting each
diagonal element equal to zero, γ1 = π2α / L2 and γ2 = 4π2α / L2. Since the
simultaneous equations resulting from Equation 10.20 are homogeneous, one of
the coefficients, dn1 or dn2, can be arbitrarily selected. By choosing d11 = d22 = 1,
for both n = 1 and 2, the other unknowns become d12 = d21 = 0. In as much
as the differential equation for T is the same as that for Θ, then T = Θ and the
solution using Equation 10.6 is

T = c1 sin
(πx

L

)
exp

(
−π2αt

L2

)
+ c2 sin

(
2πx

L

)
exp

(
−4π2αt

L2

)
(10.21)

Substitute t = 0 and the initial temperature T (x , 0) = T0 into Equation 10.21, to
obtain

T0 = c1 sin
(πx

L

)
+ c2 sin

(
2πx

L

)
(10.22)

Analogous to the exact solution and the Fourier series expansion, both sides of
this equation are multiplied by sin(πx / L), and then integrated over x from 0 to
L to yield c1 = 4T0 / π. Repeating the calculation but using sin(2πx / L) produces
c2 = 0. The final temperature solution is

T
T0

= 4
π

sin
(πx

L

)
exp

(
−π2αt

L2

)
(10.23)

The generalization of this procedure is discussed in Section 10.2.3 and later verified
in Section 10.4.

Equation 10.23 is identical to the first two terms of the exact solution. The
procedure used to approximately satisfy the initial condition is not required when
calculating the GF. However, it is used in Haji-Sheikh and Mashena (1987) in the
integral solution as a standard procedure of dealing with the initial condition. It is
used here to show the equivalence of the GF solution method and the Galerkin-
based integral solution as they deal with the initial temperature distribution.

Example 10.2:

Repeat the procedure used in Example 10.1 and use nonorthogonal basis
functions.

Solution

Because the boundaries of the slab are at x = 0 and L − x = 0 surfaces, the
function (L − x )x will vanish on both surfaces. Also, the product of (L − x )x and a
member of a polynomial series (e.g., 1, x , x2, . . . ) will vanish on x = 0 and x = L
surfaces. For this two-term solution, both (L − x )x and (L − x )x2 functions satisfy
the boundary conditions.These functions will be designated as the basis functions.
More details concerning the method of selecting these basis functions are given in
Section 10.4. Then, in the dimensionless form, one may write f1 = (1 − x / L)(x / L)
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and f2 = (1 − x / L)(x / L)2. The eigenfunction ψn becomes

ψn = dn1

(
1 − x

L

) x
L

+ dn2

(
1 − x

L

) (x
L

)2
for n = 1 and 2 (10.24)

Equation 10.12 is used to compute aij using fi = (1 − x / L)(x / L)i , for i = 1
and 2, and fj = (1−x / L)(x / L) j , for j = 1 and 2. When m(r) = 0 and k = constant,
Equation 10.12 for a one-dimensional Cartesian system is

aij = k
∫ L

0
fi

(
d 2fj
dx2

)
dx (10.25a)

in which

d 2fj
dx2 = j( j − 1)(x / L) j−2 − ( j + 1)j(x / L) j−1

L2 (10.25b)

resulting in

aij = −k
(

1
L

)2 ∫ L

0

(
1 − x

L

) (x
L

)i

×
[
j( j − 1)

(x
L

)j−2 − ( j + 1)j
(x

L

)j−1
]

dx

= k
L

[
j( j − 1)
i + j − 1

− j( j − 1)
i + j

− ( j + 1)j
i + j

+ ( j + 1)j
i + j + 1

]
for i = 1, 2, and j = 1, 2 (10.25c)

Substituting for i and j results in a11 = −k / 3L, a12 = a21 = −k / 6L, a22 =
−2k / 15L. Similarly, the substitution of fi and fj in Equation 10.13 produces (set
u = 1)

bij =
∫ L

0
ρcp

[(
1 − x

L

) (x
L

)i
]

×
[(

1 − x
L

) (x
L

)j
]

dx

= ρcpL
[

1
i + j + 1

− 2
i + j + 2

+ 1
i + j + 3

]
for i = 1, 2, and j = 1, 2 (10.26)

which results in b11 = ρcpL / 30, b12 = b21 = ρcpL / 60, b22 = ρcpL / 105. After
substituting matrices A and B in Equation 10.11 and putting parameters in the
dimensionless form, one obtains




−1
3

+ γL2

α

1
30

−1
6

+ γL2

α

1
60

−1
6

+ γL2

α

1
60

− 2
15

+ γL2

α

1
105





dn1

dn2


 = 0 (10.27)
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Notice that this square matrix is symmetric, as discussed in the derivation of
Equations 10.14 and 10.16. Unlike Example 10.1, the off-diagonal elements are
not equal to zero; therefore, the basis functions f1 and f2 are not orthogonal.
However, it is easy to show that ψn’s are orthogonal; see Problem 10.7.

Since the two equations described by Equation 10.27 are homogeneous, the
values of dn1 and dn2 exist if the determinant of their coefficients is zero, that is,(

−1
3

+ γL2 / α

30

)(
− 2

15
+ γL2 / α

105

)
−

(
−1

6
+ γL2 / α

60

)2

=
(

1
3150

− 1
3600

)(
γL2

α

)2

+
(

1
180

− 1
315

− 1
225

)

×
(

γL2

α

)
+

(
2
45

− 2
36

)
= 0 (10.28)

The solution of this quadratic equation yields γ1L2 / α = 10, γ2L2 / α = 42. When
n = 1, the value of γ1 is substituted in Equation 10.27. Note that Equation 10.27
is homogeneous and one of the d ’s can be selected arbitrarily. After selecting
d11 = 1, either one of two equations yields d12 = 0. Repeating this process, but
using n = 2 and d22 = 1, gives d21 = −½. The eigenfunctions ψ1 and ψ2, using
Equation 10.24 are plotted on Figure 10.1. For comparison, the corresponding
eigenfunctions of the exact solution are plotted on the same figure. Except for a
scale factor, the shape of the ψ1 and sin(πx / L) are similar. Notice that ψ2 and
sin(2πx / L) have opposite signs which will be accounted for when calculating
the coefficient c2. The function T = Θ using Equation 10.24 in Equation 10.6
becomes

1.00

0.50

0.00

–0.50

–1.00
0.00 0.20 0.40

x/L
0.60 0.80 1.00

ψ n

ψ1

ψ2

sin(πx/L)

sin(2πx/L)

FIGURE 10.1 Eigenfunctions for Example 10.2 and exact eigen functions.
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T =
N∑

n = 1

cnψ exp(−γnt )

= c1(d11f1 + d12f2) exp(−γ1t ) + c2(d21f1 + d22f2) exp(−γ2t )

= c1(1)
(
1 − x

L

) x
L

exp
(

−10αt
L2

)
+ c2

[
−1

2

(
1 − x

L

) x
L

+ (1)
(
1 − x

L

) (x
L

)2
]

exp
(

−42αt
L2

)
(10.29)

The solution is complete, except for the evaluation of c1 and c2 which are found
from the initial condition.

Applying the initial condition, T (0, x ) = T0 at t = 0, to Equation 10.29 and
multiplying the resulting relation by f1 = (1 − x / L)(x / L) and then integrating
over x from 0 to L results in one equation. Repeating this process but using f2 =
(1 − x / L)(x / L)2 produces a second equation. The simultaneous solution of these
two equations yields c1 = 5T0 and c2 = 0. Because ψ1 is smaller than sin(πx / L) in
Example 10.1, the calculated value of c1 is larger than the corresponding value of
4t0 / π obtained in Example 10.1. The solution in this example, as well as in Exam-
ple 10.1, is for T (0, x ) = T0, which gives c2 = 0. Therefore, the resulting solution

T
T0

= 5
(
1 − x

L

) (x
L

)
exp

(
−10αt

L2

)
(10.30)

is also a one-term solution.
Table 10.1 provides a comparison of the temperatures at x = 0.5L obtained from

the one-term solutions given in Examples 10.1 an 10.2 with the exact solution.
Also, the polynomial-based solutions for N = 3 and N = 5 are recorded. The one-
term solution using the GBI method is usually less accurate when αt / L2 > 0.06
than the results of the first term of the exact solution. However, when N = 3

TABLE 10.1
Comparison of T(0.5L, t ) Using GBI Solution and Exact Solution for
a Slab in Examples 10.1 and 10.2

GBI Solution
αt

L2
Exact Solution

N = 1 N = 3 N = 5 (one term) Exact Solution

0.02 1.0234 0.9927 0.97605 1.0452 0.97516
0.04 0.8379 0.8505 0.84629 0.8579 0.84580
0.06 0.6860 0.7028 0.70229 0.7043 0.70220
0.08 0.5617 0.5775 0.57777 0.5781 0.57775
0.10 0.4598 0.4741 0.47449 0.4745 0.47449
0.15 0.2789 0.2894 0.28971 0.2897 0.28971
0.20 0.1692 0.1767 0.17687 0.1769 0.17687
0.25 0.1026 0.1079 0.10798 0.1080 0.10798
0.30 0.0622 0.0659 0.06592 0.0659 0.06592
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(actually a two-term solution), the accuracy of the GBI solution is substantially
improved (within 0.1% when αt / L2 ≥ 0.06). When N = 5, the GBI solution
exhibits extremely good accuracy (within 0.013% at αt / L2 ≥ 0.06).

10.2.2 NUMERICAL CALCULATION OF EIGENVALUES

As a generalized and formal procedure, the computation of the temperature T and
subsequent determination of the GF can be accomplished by algebraic manipulation
of N × N square matrices A and B. The next step is the evaluation of the needed
eigenvalues. The eigenvaluesγ1, γ2, . . . , γN can be obtained analytically ifN is small;
otherwise, numerical steps may become necessary. In Example 10.2, the method of
calculating eigenvalues and eigenvectors when N = 2 was discussed. However,
when N is larger than four, the eigenvalues must be computed numerically. There
are many numerical methods available in the literature (Carnahan et al., 1969) with
various degrees of efficiency. In order to utilize these eigenvalue-solving routines,
Equation 10.11 should be reduced to the following form:

(A + γnI) · dn = 0 (10.31)

where I is the identity matrix and dn is a column vector with N elements.
The symmetric nature of matrices A and B permits accurate and fast numerical

computation of eigenvalues and eigenvectors, e.g., by the Jacobi method (Carnahan
et al., 1969). An accurate method is to use the Cholesky decomposition (Forsyth and
Moler, 1967) to decompose matrix B into L · LT , where L is a lower triangular matrix
and LT is its transposed matrix. This decomposition of matrix B is instrumental in
reducing Equation 10.11, following some elementary matrix algebra, to

(L−1 · A · L−T + γnI) · dn = 0 (10.32)

where L−1 and L−T are the inverses of L and LT , respectively. Now, Equation 10.32
has an acceptable form of Equation 10.31 for all available eigenvalue solvers. Since
matrix A = L−1 · A · L−T is symmetric, the computationally efficient Jacobi
method (Carnahan et al., 1969), can be used to find the eigenvalues and eigenvectors
of Equation 10.32. The eigenvectors dn, computed using Equation 10.32, are different
from but related to the eigenvectors of Equation 10.11 through the relation

dn = L−T · dn (10.33)

A Mathematica (Wolfram, 2005) program that uses Cholesky decomposition and
determines eigenvalues, eigenvectors, and temperature for Example 10.2 is given in
Note 2.

Once the eigenvalues are found, the values of the coefficient dnn, for n = 1,
2, . . . , N , may be selected equal to unity without any loss of generality. For conve-
nience of analysis, matrix D is defined so that its nth row has the components of the
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eigenvector dn; the components are dn1, dn2, . . . , dnN

D =




dT
1

dT
2
...

dT
N


 =




d11 d12 . . . d1N

d21 d22 . . . d2N

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .
dN1 dN2 . . . dNN


 (10.34)

Often, standard subroutine packages place eigenvectors in the columns of a matrix
which must be transposed to obtain matrix D.

10.2.3 NONHOMOGENEOUS SOLUTION

The objective of the following derivation is to solve Equation 10.3 which yields an ex-
pression for the GF. Equation 10.3 is essentially the same as Equation 10.1, except the
volume energy source term in Equation 10.1 is specified in Equation 10.3. A solution
for the nonhomogeneous equation, Equation 10.1, is now proposed by considering
cn in Equation 10.6 to be time dependent. The variation of parameters method is
used to solve the nonhomogeneous, first-order, ordinary differential equations. Now,
a general solution is considered as

T =
N∑

n = 1

cn(t) ψn (r)e−γnt (10.35)

Equation 10.35 is an acceptable solution if it can satisfy the basic differential equa-
tion 10.1. The substitution of Equation 10.35 into Equation 10.1, followed by mul-
tiplying both sides of the resulting equation by fi , for i = 1, 2, . . . , N , and then
integrating over the volume yields

N∑
n = 1

cn

[∫
V

∇ · (k∇ψn)fidV −
∫

V

m(r)2fi ψn dV

+ γn

∫
V

ρ(r)cp(r)u(r)ψn fidV

]
e−γnt

+
∫

V

fig(r, t)dV −
N∑

n = 1

[
dcn(t)

dt

]
e−γnt

×
∫

V

ρ(r)cp(r)u(r)ψn fidV = 0 (10.36)

The above procedure is called the Galerkin method (Kantorovich and Krylov, 1960).
The first summation term is zero for any value of n because of Equation 10.9. The
remaining two terms constitute a system of N ordinary differential equations

N∑
n = 1

[
dcn(t)

dt

]
e−γnt

∫
v

ρ(r)cp(r)u(r)ψn fidV = g∗
i (10.37)
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where

g∗
i =

∫
v

[g(r, t)] fi(r)dV (10.38)

for i = 1, 2, . . . , N . Note that the homogeneous partial differential equation, Equa-
tion 10.5 and the nonhomogeneous partial differential equation, Equation 10.1, are
approximated by the Galerkin integral procedure. Also, the solution for T satisfies
homogeneous boundary conditions.

Once the expression for ψn(r) from Equation 10.8 is substituted into Equa-
tion 10.37, the result will be (see Problem 10.8)

N∑
n = 1

ein

[
dcn(t)

dt

]
e−γnt = g∗

i (t) (10.39)

where

ein =
N∑

j = 1

dnjbji (10.40)

and i = 1, 2, . . . , N . Therefore, ein in Equation 10.40 is an element of the square of
matrix E. Matrix E is also obtained if D, Equation 10.34, is multiplied by B, whose
elements are defined by Equation 10.13, and the resulting matrix transposed

E = (DB)T (10.41)

Let

χn =
[
dcn(t)

dt

]
exp(−γnt) (10.42a)

in Equation 10.39; then the following set of N simultaneous equations

N∑
n=1

einχn = g∗
i for i = 1, 2, . . . , N (10.42b)

are obtained. They can be presented in matrix form as

E · {X} = {g∗} (10.43)

The notation {·} indicates that the arrays X and g∗ in Equation 10.43 are column
vectors.

Since the elements of the vector g∗ = {g∗
1 , g∗

2 , . . . , g∗
N } are known, the elements

of the array X can be calculated if both sides of Equation 10.43 are premultiplied
by E−1, the inverse of matrix E, to obtain

{X} = E−1 · {g∗} (10.44)
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The matrix E−1 may be designated as P

P = E−1 (10.45)

with elements pni . Then the elements of array X given by Equation 10.42a are deter-
mined by Equation 10.44 as

χn =
[
dcn(t)

dt

]
e−γnt =

N∑
i=1

pni g∗
i (t) n = 1, 2, . . . , N (10.46)

which can be solved for dcn(t) / dt to obtain

dcn(t)

dt
=

N∑
i=1

pni g∗
i (t)eγnt n = 1, 2, . . . , N (10.47)

in which pni’s are constants given by Equation 10.45.
The integration of Equation 10.47 yields the function cn(t) as

cn(t) = An +
N∑

i=1

pni

∫ t

0
g∗

i (t ′)eγnt ′dt ′ n = 1, 2, . . . , N (10.48)

where An represents the constant of integration. The expression for cn(t) is now
known. Substitution of Equation 10.48 into Equation 10.35 yields the final form of
the solution

T =
N∑

n=1

ψn(r)e−γnt

[
An +

N∑
i=1

pni

∫ t

0
g∗

i (t ′) exp(γnt
′) dt ′

]
(10.49)

The second term in the square bracket represents the contribution of the internal
energy source. The solution presented by Equation 10.49 is completed after An is
evaluated. The initial condition (the t = 0 temperature distribution), F (r), can be
utilized to compute the constant An. When t = 0, the integral in Equation 10.49
vanishes and the resulting equation is

F (r) =
N∑

n=1

ψn(r)An (10.50)

When calculating the GF, the initial temperature F (r) = 0; hence, An = 0. However,
to show the equivalence between the GF solution and the GBI solution when boundary
conditions are homogeneous, the calculation of An is necessary.

The calculation of An when F (r) is nonzero can be carried out by the GBI method
(Section 10.2.6 shows that the following procedure agrees with the GFSE). The pro-
cedure to determine An is to multiply both sides of Equation 10.50 by ρcpu(r)fi(r)dV
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and to integrate over the volume. Then, using Equation 10.8 for ψn(r) results in a set
of N linear algebraic equations for evaluating A1, A2, . . . , AN ,

N∑
n=1

Anein = λi for i = 1, 2, . . . , N (10.51)

where

λi =
∫
v

ρ(r)cp(r)u(r)F (r)fi(r) dV (10.52)

in which ein is the element of matrix E and defined in Equation 10.40. The inverse of
matrix E is given as P by Equation 10.45. The coefficients A1, A2, AN , are obtained
when matrix P is multiplied by a column vector whose elements are λ1, λ2, . . . , λN as

An =
N∑

i=1

pniλi

=
N∑

i=1

pni

∫
v

ρ(r)cp(r)u(r)F (r)fi(r)dV for n = 1, 2, . . . , N (10.53)

The coefficients A1, A2, . . . , AN are analogous to the Fourier coefficients in the exact
solutions.

Equation 10.49, following the substitution of g∗
i from Equation 10.38 and An from

Equation 10.53, becomes

T =
N∑

n = 1

N∑
i = 1

pniψn(r)
∫
v

e−γntρ(r∗)cp(r∗)u(r∗)F (r∗) fi(r∗) dV ∗

+
N∑

n = 1

N∑
i = 1

pniψn(r)
∫ t

0

∫
v

e−γn(t−t ′)g(r∗, t ′) fi(r∗) dV ∗ dt ′ (10.54)

where r∗ and t ′ are dummy variables of integration, dV ∗ is the volume element in r∗
space, and ψn(r) is obtained from Equation 10.8.

10.2.4 GREEN’S FUNCTIONS EXPRESSION

It is now possible to obtain an expression for the GF. Equation 10.54 is the solution
of Equation 10.1 when the boundary conditions are homogeneous and the initial
temperature distribution is F (r). The temperature T in Equation 10.54 is identical to
G(r, t |r′, τ) if F (r) = 0 and g(r, t) = ρ(r)cp(r)δ(r − r′)δ(t − τ); see Equation 10.2.
Because F (r) = 0, the first term on the right side of Equation 10.54 is zero. The next
step is to replace the variable r and t in g(r, t) by r∗ and t ′, and insert g(r∗, t ′) =
ρ(r∗)cp(r∗)δ(r∗−r′)δ(t ′−τ) in Equation 10.54. After performing the integration over
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r∗ and t ′ and using the Identity 6 in Note 1, the GF becomes

G(r, t |r′, τ) = C(r′)
N∑

n=1

N∑
j=1

N∑
i=1

dnjpni exp[−γn(t − τ)]fj (r)fi(r′) (10.55)

where C(r′) = ρ(r′)cp(r′), and dnj and pni are numbers.

10.2.5 PROPERTIES OF GREEN’S FUNCTIONS

The GF defined by Equation 10.55 has the following three properties:

1. If t is replaced by −τ and τ by −t , the following GF property applies:

G(r, t |r′, τ) = G(r, −τ|r′, −t) (10.56)

This can readily be proved by replacing t by −τ and τ by −t in Equa-
tion 10.55.

2. The GF remains the same if r is changed to r′ and r′ to r, provided C(r) or
ρ(r)cp(r) is constant,

G(r, t |r′, τ) = G(r′, t |r, τ) (10.57)

3. It is also possible to derive the following GF relation when C(r) is variable.

G(r, t |r′, τ)

C(r′)
= G(r′, t |r, τ)

C(r)
(10.58)

The above GF properties are useful in the derivation of the GF solution discussed in
Section 10.2.6.

The derivation of the second and third properties of the GF is accomplished by
considering that the temperature at point r′ is caused by an energy source located at
the point r. The temperature distribution is the solution of the equation

∇0 · [k(r′)∇0G(r′, t |r, τ)] + C(r′)δ(r′ − r)δ(t − τ) − m(r′)2G(r′, t |r, τ)

= C(r′)u(r′)
∂G(r′, t |r, τ)

∂t
(10.59)

which is Equation 10.3 with r and r′ interchanged; the del operator ∇0 uses the
components of the r′ position vector. The solution of Equation 10.59 is identical
to that of Equation 10.3, except r and r′ have switched places. Repeating the same
algebraic steps that led to the derivation of Equation 10.55 yields

G(r′, t |r, τ) = C(r)
N∑

n=1

N∑
j=1

N∑
i=1

dnjpni exp[−γn(t − τ)] fj (r′)fi(r) (10.60)

Because the volume integrals and other algebraic operations used to compute pni

and dnj are not affected by switching r and r′, one can conclude from a comparison
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of Equations 10.55 and 10.60 that Equation 10.58 is valid. Equation 10.58 implies
that the GF remains the same when r and r′ are switched if C(r) is a constant and
Equation 10.57 is valid.

In the above analysis, it is possible to modify the source term, Equation 10.2, [by
omitting C(r)] so that the GF remains symmetric in r and r′ even when the properties
are variable. However, the GF is not modified here in order to adhere to the existing
technical literature. The three properties of the GF described above are essential when
deriving the GFSE.

10.2.6 GREEN’S FUNCTION SOLUTION EQUATION

The purpose of this section is to derive an equation for the temperature distribution in
terms of the GF. The solution will consider the effects of nonzero initial conditions,
distributed volumetric energy source, and nonhomogeneous boundary conditions of
the first, second, and third kinds. The body may be nonhomogeneous (i.e., composed
of several different materials with different k and ρcp values) and have irregular
shapes. As usual, the solution is restricted to linear problems which means that k and
ρcp cannot be functions of temperature.

The del operator ∇ in Equation 10.3 uses the components of r (not r′). The del
operator ∇0 is defined earlier that uses the components of r′. If r is now replaced by
r′, r′ by r, t by −τ, and τ by −t , Equation 10.3 becomes

∇0 · [k(r′)∇0G(r′, −τ|r, −t)] + C(r′)δ(r′ − r)δ(τ − t) − m(r′)2G(r′, −τ|r, −t)

= −C(r′)u(r′)
∂G(r′, −τ|r, −t)

∂τ
(10.61)

The diffusion equation, Equation 10.1, using r′ and τ as the independent variables
can be written as

∇0 · [k(r′)∇0T (r′, τ)] + g(r′, τ) − m(r′)2T (r′, τ) = C(r′)u(r′)
∂T (r′, τ)

∂τ
(10.62)

where g(r′, τ) is the contribution of a distributed volumetric energy source. To shorten
the equations, the function G(r′, −τ|r, −t) will be designated as G.

Equation 10.62 is now multiplied by G, and Equation 10.61 multiplied by T . The
resulting equations are then subtracted from each other to produce

T ∇0 · [k(r′)∇0G] − G∇0 · [k(r′)∇0T ] + C(r′)T δ(r′ − r)δ(τ − t) − Gg(r′, τ)

= −C(r′)u(r′)
∂(T G)

∂τ
(10.63)

The following two relations, derived using Identity 1 in Note 1,

∇0 · [T k(r′)∇0G] = T ∇0 · [k(r′)∇0G] + k(r′)∇0T · ∇0G (10.64)

∇0 · [Gk(r′)∇0T ] = G∇0 · [k(r′)∇0T ] + k(r′)∇0G · ∇0T (10.65)
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provide the expressions for the first two terms on the left side of Equation 10.63 when
Equation 10.64 is subtracted from Equation 10.65. Upon substituting the results in
Equation 10.63, integrating in r′ space over the volume V , and over τ from 0 to
t∗ = t + ε where ε has a small but positive value, one obtains∫ t∗

τ = 0

∫
v

{∇0 · [k(r′)T ∇0G] − ∇0 · [k(r′)G∇0T ]}dV ′ dτ

+
∫ t∗

τ = 0

∫
v

C(r′)T δ(r′ − r)δ(τ − t)dV ′dτ

−
∫ t∗

τ = 0

∫
v

Gg(r′, τ)dV ′ dτ

= −
∫ t∗

τ = 0

∫
v

×
[
C(r′)u(r′)

∂(T G)

∂τ

]
dτ dV ′ (10.66)

Various terms in Equation 10.66 are now considered. Green’s theorem, Identity 3 in
Note 1, can be used to reduce the first volume integral on the left side of Equation 10.66
to a surface integral. In addition, Identity 6 in Note 1 reduces the second term on the
left side of Equation 10.66 to become C(r)T . Furthermore, the term on the right side
of Equation 10.66 can be readily integrated over τ. Note that∫ t∗

τ = 0

[
∂(GT )

∂τ

]
dτ = G(r′, −t∗|r, −t)T (r′, t∗) − G|τ = 0 T (r′, 0) (10.67a)

and the value of the GF, G, at the upper limit when τ = t∗ is (see Equations 10.56
and 10.58)

G(r′, −t∗|r, −t) = G(r, t |r′, t∗)C(r)

C(r′)
= 0 (10.67b)

which is the value of temperature at time t when a pulse appears at a later time,
t∗ = t + ε; hence, the first term on the right side of Equation 10.67a is zero. Equa-
tion 10.66 then becomes

C(r)T (r, t) =
∫
v

C(r′)u(r′)G|τ=0F (r′)dV ′

+
∫ t

τ = 0
dτ

∫
v

g(r′, τ)G dV ′ +
∫ t

τ=0
dτ

∫
S

× k(S ′)
[
G

(
∂T

∂n

)
− T

(
∂G

∂n

)]
S′

dS ′ (10.68)

where F (r′) = T (r′, 0), C(r) = ρ(r)cp(r) and G = G(r′, −τ|r, −t). Equation 10.68
is the basic GFSE for heterogeneous and homogeneous materials.

The operator ∂ / ∂n designates differentiation along the outer normal to the external
surface and F (r′) is the initial temperature distribution. The first term on the right
side of Equation 10.68 is the contribution of the initial temperature distribution. The
influence of the volumetric energy source is included in the second term. The boundary
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conditions for G in Equation 10.68 are homogeneous. The third term on the right
side describes the boundary condition effects. When the surface temperature T |S′
is prescribed (boundary condition of the first kind), then G|S′ = 0. When the heat
flux is given (boundary condition of the second kind), ∂T /∂n = −(q / k)|S′ , then
∂G/∂n|S′ = 0. For convective boundary conditions (boundary conditions of the third
kind), the boundary conditions are

−k
∂T

∂n
= h(T − T∞) on S ′ (10.69)

and

−k
∂G

∂n
= hG on S ′ (10.70)

where k and h may vary with position. When Equation 10.69 is multiplied by G|S, and
Equation 10.70 by T |S , and the resulting equations are subtracted from each other,
the following relation is obtained[

G

(
∂T

∂n

)
− T

(
∂G

∂n

)]∣∣∣∣
S′

=
(

h

k

)
GT∞ |S′ (10.71)

The right side of Equation 10.71 then replaces the term in square brackets in Equa-
tion 10.68.

In the derivation of Equation 10.54 the boundary conditions were considered to
be homogeneous. It is of interest to compare Equations 10.68 and 10.54. For homo-
geneous boundary conditions, the third term on the right side of the GFSE, Equa-
tion 10.68, is equal to 0. Then, taking the Green’s function, G = G(r′, −τ|r, −t) =
G(r′, t |r, τ), from Equation 10.60 and substituting it into Equation 10.68 yields
Equation 10.54. This indicates the procedure used to include the initial conditions
in Equation 10.54 and in Examples 10.1 and 10.2 are consistent with the derivation
of the GFSE.

The last term in the GFSE, Equation 10.68, contains the contribution of nonhomo-
geneity of the boundary conditions. Boundary conditions of the first and (or) second
kinds are nonhomogeneous if the surface temperature and (or) the surface heat flux
are nonzero. Boundary conditions of the third kind (convective) are nonhomogeneous
if the ambient temperature is nonzero. The convergence of Equation 10.68, in some
cases, is slow. For instance, when the surface temperature is prescribed, the term fj (r)
in the GF, Equation 10.60, takes the value of zero after ∂G/∂n is computed over S ′.
The temperature solution at the surface becomes singular (cannot be computed) and is
inaccurate in the vicinity of the surface. Similar situations also exist for other bound-
ary conditions. A GF expression that behaves more favorably and converges more
rapidly for nonhomogeneous boundary conditions is derived in the next section.

10.3 ALTERNATIVE FORM OFTHE GREEN’S FUNCTION SOLUTION

As discussed in the previous section, when the temperature is prescribed on the exter-
nal surface, there is a singularity associated with using Equation 10.68. Equation 10.68
yields a value of zero for the surface temperature because fj (r) has a zero value at the
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FIGURE 10.2 (a) Geometry for Equation 10.72b, and (b) geometry for Equation 10.72c.

surface. The implication is that Equation 10.68 may provide inaccurate temperature
values in the vicinity of the wall and erroneous heat flux at the wall. When the wall
heat flux is prescribed, the convergence at the boundaries can be very slow.

The following procedure removes this singularity and improves the convergence of
the GF solution for the temperature distribution (Haji-Sheikh, 1988; Haji-Sheikh and
Beck, 1988). It begins by defining a differentiable temperature function that satisfies
the boundary conditions used in Equation 10.68. This new function is designated
as T ∗. It is usually possible to find a function T ∗ such as

T ∗ = c1up + c2 (10.72a)

For example, consider a body bounded by two surfaces as shown in Figure 10.2a.
When the surface temperature is prescribed, the steady-state temperature is approxi-
mated by

T ∗ = (T2 − T1)
ln(r / r1)

ln(r2 / r1)
+ T1 (10.72b)

where r1 = r1(θ, z) and r2 = r2(θ, z) are coordinates of two arbitrarily selected
inner and outer surfaces whose respective temperatures are T1 = T1(θ, z, t) and
T2 = T2(θ, z, t). For a different geometry, shown in Figure 10.2b, the following
form is sometimes preferred:

T ∗ = (T2 − T1)
x − x1(y, z)

x2(y, z) − x1(y, z)
+ T1 (10.72c)

The function T ∗ is called the quasisteady solution if it satisfies the Laplace equation
and the prescribed boundary conditions. In this part of the analyses, any internal source
can be ignored. However, T ∗ given by Equation 10.72b or c does not always satisfy
the Laplace equation, but it will satisfy the Laplace equation in cylindrical coordinates
if r1 and r2 are constants. Also, T ∗ given by Equation 10.72c will satisfy the Laplace
equation in Cartesian coordinates if x1 and x2 are constants. In one-dimensional
coordinates, except when dealing with prescribed heat flux at both surfaces, it is
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possible to use Equation 10.72a to derive an equation for T ∗ that satisfies the boundary
conditions. The function up takes the value of x in Cartesian coordinates and ln r or
−1 / r in the radial cylindrical or spherical coordinates, respectively.

Except when the heat flux is prescribed on both surfaces, the constants c1 and c2 can
be determined by applying the appropriate boundary conditions. The calculation of
c1 and c2, for nonhomogeneous boundary conditions of the second and third kinds, is
included in Examples 10.5 and 10.6. However, when the heat flux on both surfaces is
given, the constant c2 in Equation 10.72a should be replaced by c2r

2 before calculating
c1 and c2; see Example 10.7. Although there are numerous conduction problems for
which a T ∗ can be computed, it is sometimes impossible or cumbersome to find
this function for many problems, e.g., locally varying heat flux and heat transfer
coefficients in multidimensional bodies. In the absence of a suitable T ∗, the time
partitioning of the GF discussed in Chapter 5 is a logical approach.

Whenever an auxiliary function T ∗ is available, a function f ∗(r′, τ) is defined
(Haji-Sheikh and Beck, 1988) so that

∇0 · [k∇0T
∗(r′, τ)] = f ∗(r′, τ) (10.73)

The function f ∗(r′, τ) defined by Equation 10.73 is unrelated to the basis functions
fj (r). When Equation 10.73 is multiplied by G and Equation 10.3 is multiplied
by T ∗ = T ∗(r′, τ), then, after subtracting the former from the latter, the following
equation is obtained

T ∗∇0 · (k∇0G) − G∇0 · (k∇0T
∗) + T ∗C(r′) δ(r′ − r) δ(τ − t)

= −Gf ∗ − T ∗C(r′)u(r′)
∂G

∂τ
(10.74)

Integration of Equation 10.74 over τ is carried out between the limits of 0 and
t∗ = t + ε, where ε is a small positive number. Then integration with respect to
r′ over the entire volume, application of the Green’s theorem (see Note 1), and re-
duction of some algebraic terms, results in∫ t∗

τ = 0
dτ

∫
v

k

(
G

∂T ∗

∂n
− T ∗ ∂G

∂n

)∣∣∣∣
S′

dS ′

= C(r)T ∗ +
∫
v

C(r′)u(r′)

[∫ t∗

τ=0
T ∗

(
∂G

∂τ

)
dτ

]
dV ′

+
∫ t∗

τ = 0
dτ

∫
v

Gf ∗ dV ′ (10.75)

Integrating by parts and then letting ε go to zero, the term in the square bracket in
Equation 10.75 becomes

lim
ε→0

∫ t∗

τ=0
T ∗

(
∂G

∂τ

)
dτ = lim

ε→0

[
GT ∗∣∣t∗

τ=0 −
∫ t∗

τ=0
G

(
∂T ∗

∂τ

)
dτ

]

= −G|τ=0T
∗(r, 0) −

∫ t

τ = 0
G

(
∂T ∗

∂τ

)
dτ (10.76)
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The substitution of Equation 10.76 into Equation 10.75 followed by the substitution
of the resulting equation into Equation 10.68, the basic GFSE for heterogeneous
materials, and some minor algebraic simplifications produces the alternative form of
the GF solution (Haji-Sheikh and Beck, 1988) for T (r, t),

C(r)T (r, t) = C(r)T ∗(r, t) +
∫ t

τ = 0
dτ

∫
v

G

[
g(r′, τ)

− C(r′)u(r′)
∂T ∗(r′, τ)

∂τ

]
dV ′

+
∫
v

C(r′)u(r′)G|τ = 0[F (r′) − T ∗(r′, 0)]dV ′

+
∫ t

τ=0
dτ

∫
v

Gf ∗ dV ′ (10.77)

An expression for the function G = G(r′, −τ|r, −t) = G(r′, t |r, τ) is given by Equa-
tion 10.60. The function T ∗ contains the contribution of nonhomogeneous boundary
conditions. If f ∗(r′, τ) is zero, then T ∗(r′, τ) satisfies the Laplace equation and it is
the quasisteady solution; accordingly, the term that contains f ∗ in Equation 10.77 is
equal to zero.

As a special case, when the temperature of the entire surface Ts has a constant
value and is different from F (r) = T0 = constant and g = 0, then T ∗ = Ts , f ∗ = 0,
and Equation 10.77 reduces to

C(r)

[
T (r, τ) − Ts

T0 − Ts

]
=

∫
v

C(r′)u(r)G
∣∣∣
τ = 0

dV ′ (10.78)

Example 10.3:

Consider a slab of isotropic and homogeneous material with thickness L and which
is initially at zero temperature, F (x ) = 0. Assume thermophysical properties are
constants and there is no volumetric energy source, g = 0. The boundary con-
ditions are T (0, t ) = 0 and T (L, t ) = TL sin(ωt ). Use Equation 10.77 to calculate
temperature at x = L / 2 and compare the results with the exact solution.

Solution

A function T ∗, using Equation 10.72a, that satisfies both boundary conditions
is T ∗ = TL(x / L) sin(ωt ). In this example, the value of ∇2T ∗ = d 2T ∗ / dx2 =
f ∗ / k = 0; see Equation 10.73. The last term in Equation 10.77 is zero and the
function T ∗ is called the quasisteady solution.The solution using Equation 10.77 is

T = T ∗ −
∫ t

0
dτ

∫ L

0
G

(
∂T ∗
∂τ

)
dx ′ (10.79)

since g = 0 and F (x ) − T ∗(x , 0) = 0. The basis functions, X11 case, are presented
in Example 10.2 as fj = (1 − x / L)(x / L)j . The elements of matrices A and B are
given by Equations 10.25 and 10.26.The eigenvalues are calculated as discussed in
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Example 10.2. For N = 3, the eigenvalues are γ1 = 9.86975α / L2, γ2 = 42α / L2,
and γ3 = 102.13α / L2. Using Equations 10.11 matrix D is

D =



1 1.1331 −1.1331
−0.5 1 0

0.21584 −1 1


 (10.80)

Equations 10.41 and 10.45 are used to calculate the elements of matrix P:

P =



19.395 21.977 −21.977
−420 840 0
3802 −17615 17615


 (10.81)

The GF is obtained from Equation 10.60 as

G (x ′, −τ|x , −t ) = C (r)
N∑

n=1

N∑
j = 1

N∑
i=1

× dnjpni exp[−γn(t − τ)] fj (x ′) fi (x ) (10.82)

where fj = (1 − x / L)(x / L) j . The final solution is obtained by substituting the
GF from Equation 10.82 into Equation 10.79 as

T
TL

= x
L

sin(ωt ) − ω

N∑
n=1

×

 N∑

j = 1

dnj

(
1 − x

L

) (x
L

)j




 N∑

i=1

pni

(
1

i + 2
− 1

i + 3

)


× γn cos(ωt ) + ω sin(ωt ) − γn exp(−γnt )
γ2

n + ω2 (10.83)

For N = 2 and N = 3, the results obtained by this equation are given inTable 10.2.
The exact solution is (Ozisik, 1993, Equation 5-50, p. 203)

T
TL

= x
L

sin(ωt ) + 2ω

π

∞∑
n=1

(−1)n

n
sin

(nπx
L

)

× α(nπ / L)2{cos(ωt ) − exp[−(nπ / L)2αt ]} + ω sin(ωt )
α2(nπ / L)4 + ω2 (10.84)

which is used to check the accuracy of the alternative GF solution. The entries in
Table 10.2 are for x = 0.5L and L2ω / α = π / 10. The results for N = 2 and N = 3
are quite accurate. Table 10.2 shows that a three-term solution yields results com-
parable to 10 terms of the exact solution. Even for N = 2, the solution closely
agrees with the exact solution when the dimensionless time is larger than 0.2.
A significantly better agreement with the exact solution is attributed to the lack
of step change in the surface temperature. In addition to removing the singular-
ity at the surface associated with Equation 10.68, the alternative form of the GF
solution, Equation 10.77, has another advantage; it provides a faster converging
solution than Equation 10.68 when t becomes large. For further discussion, see
Example 10.4.
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TABLE 10.2
Results for Example 10.3 for L2ω / α = π / 10. Comparison of T(0.5L, t) Using
the Alternative Green’s Function Solution and Exact Solution for a Slab

AGFSa, Equation 10.83 Exact Solution, Equation 10.84
αt

L2 N = 2 N = 3 N = 10 N = 30

0.1 0.00330 0.00362 0.00362 0.00365
0.2 0.01443 0.01459 0.01458 0.01459
0.5 0.05888 0.05889 0.05888 0.05889
1 0.13566 0.13566 0.13565 0.13566
2 0.27766 0.27765 0.27764 0.27765
3 0.39248 0.39246 0.39245 0.39246
4 0.46888 0.46886 0.46885 0.46886
5 0.49938 0.49936 0.49936 0.49936
6 0.48098 0.48098 0.48098 0.48098

aAlternative GF solution, Equation 10.77.

10.4 BASIS FUNCTIONS AND SIMPLE MATRIX OPERATIONS

A major step in obtaining an integral solution is to construct a set of basis functions.
The set must contain linearly independent elements, and each element must satisfy all
homogeneous boundary conditions. If the boundary conditions are nonhomogeneous,
the basis functions must be homogeneous and of the same type. Consideration is given
to two types of problems. First, the basis functions for one-dimensional and regular
geometries are presented. It is shown that a unified solution procedure is possible for
regular-shaped bodies. Then, the method of finding basis functions for some irregular-
shaped bodies is presented; an irregular-shaped body refers to a nonorthogonal body.
Although obtaining the basis functions for many irregular-shaped bodies is a simple
task, for many others it can become cumbersome. The reason is that each irregular-
shaped body must be treated differently. After the basis functions are determined,
Equations 10.12 and 10.13 yield matrices A and B. Next, Equation 10.11 yields the
eigenvalues and eigenvectors. The computation of matrix P completes the variables
needed for calculation of the GF using Equation 10.60.

10.4.1 ONE-DIMENSIONAL BODIES

The method for establishing the basis functions for one-dimensional problems is an
interesting feature of the GBI method. When these basis functions are established, the
remaining steps for finding temperature solutions follow the same procedures as dis-
cussed in Examples 10.1 through 10.3. Moreover, the basis functions for multidimen-
sional regular geometries can be constructed as a product of one-dimensional basis
functions. The product method of finding the basis functions is valid even when the
GF cannot be obtained using a product of the corresponding one-dimensional GF; see
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Example 10.8. This subsection describes a method of obtaining the basis functions for
one-dimensional bodies subject to boundary conditions of the first, second, and third
kinds. The basis functions must satisfy homogeneous boundary conditions whether
the actual boundary conditions are homogeneous or nonhomogeneous. For example,
if a boundary condition for temperature is nonhomogeneous, the basis functions must
satisfy the homogeneous boundary condition of the same kind. The variable z used
in this derivation stands for axial, radial, or angular coordinates.

A generalized set of basis functions that satisfies the homogeneous boundary con-
ditions k1dfj /dz = h1fj at z = a and −k2dfj /dz = h2fj at z = b (where b > a) is

fj = (δj z
2 + βj z + ηj )z j−1 for j = 1, 2, . . . , N (10.85)

The variable z stands for the specific coordinate system; for example, z isx in Cartesian
coordinates, XIJ , or r in cylindrical, RIJ , and spherical coordinates, RSIJ .

Two equations for determining the three coefficients, δj , βj , and ηj , are obtained by
evaluating Equation 10.85 at the two boundaries. Since one of the coefficients δj , βj ,
or ηj can be selected arbitrarily, the coefficient δj is set equal to the determinant
of the coefficients in the two equations. The resulting expressions for δj , βj , and
ηj are

δj = a(j − aB1)(j − 1 + bB2) − b(j + bB2)(j − 1 − aB1) (10.86a)

βj = a2(aB1 − j − 1)(j − 1 + bB2)

+ b2(bB2 + j + 1)(j − 1 − aB1) (10.86b)

ηj = −ab2(j − aB1)(bB2 + j + 1) − ba2(j + bB2)(aB1 − j − 1) (10.86c)

for j = 1, 2, 3, . . . , N.

The parameters B1 and B2 appearing in Equations 10.86a through c are h1/k1 and
h2 / k2, respectively. The parameters B1 and B2 are finite for X33, R33, and RS33
cases. If the surface z = a is insulated, then B1 = 0; X23, R23, or RS23. Similarly,
B2 = 0 if the z = b surface is insulated; X32, R32, or RS32. For X22, R22, and RS22
problems, B1 and B2 are set equal to 0 in Equations 10.86a through c. Equation 10.85
holds for any one-dimensional conduction problem in a finite domain. Modifications
are necessary when B1, B2, or both, are infinite; boundary conditions of the first kind,
see Table 10.3a. In special cases when a = 0 or both a and B1 are equal to zero,
the coefficients δj , βj , and ηj also must be modified. The values of δj , βj , and ηj for
special cases are found in Table 10.3b.

10.4.2 MATRICES A AND B FOR ONE-DIMENSIONAL PROBLEMS

After expressions for δj , βj , and ηj are available, Equations 10.12 and 10.13 yield the
values of aij and bij. Next, two indefinite integrals useful for calculating the values of
aij and bij are presented.
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TABLE 10.3a
Coefficients δj, βj, and ηj in Equation 10.85 When B1 or B2 Are Infinite

B1 = ∞; prescribed T at z = a, i.e., boundary conditions of the first kind at z = a; X13a

δj = −a(j − 1 + bB2) + b(j + bB2) (10.87a)

βj = a2(j − 1 + bB2) − b2(bB2 + j + 1) (10.87b)

ηj = ab2(bB2 + j + 1) − ba2(j + bB2) (10.87c)

for j = 1, 2, 3, . . . , N

B2 = ∞; prescribed T at z = b, i.e., boundary conditions of the first kind at z = b; X31a

δj = a(j − aB1) − b(j − 1 − aB1) (10.88a)

βj = a2(aB1 − j − 1) + b2(j − 1 − aB1) (10.88b)

ηj = −ab2(j − aB1) − ba2(aB1 − j − 1) (10.88c)

for j = 1, 2, 3, . . . , N

B1 = ∞ and B2 = ∞; boundary conditions of the first kind at z = a and z = b; X11a

δj = 1 (10.89a)

βj = −(a + b) (10.89b)

ηj = ab (10.89c)

for j = 1, 2, 3, . . . , N

aAlso for RIJ and RSIJ cases.

Matrix A

When calculating the elements of matrix A, and the thermal conductivity is constant,
the following integral can be used as a computational aid:

Ia(z) =
∫

fi

(∇2fj

)
zp dz =

5∑
k=1

Pk

zi + j + p + 2 − k

i + j + p + 2 − k
(10.94)

where

P1 = δiδj (j + 1)(j + p) (10.95a)

P2 = βiδj (j + 1)(j + p) + βj δi(j + p − 1)j (10.95b)

P3 = ηiδj (j + 1)(j + p)

+ βiβj (j + p − 1)j + ηj δi(j + p − 2)(j − 1) (10.95c)

P4 = ηiβj (j + p − 1)j + ηjβi(j − 1)(j + p − 2) (10.95d)

P5 = ηiηj (j − 1)(j + p − 2) (10.95e)
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TABLE 10.3b
Coefficients δj, βj, and ηj in Equation 10.85 for Special Cases When a = 0

a = 0, B1 and B2 finite, and B1 > 0; X33a

δ1 = B1 + B2 + bB1B2 (10.90a)

η1 = −2b − b2B2 (10.90b)

β1 = −2bB1 − b2B1B2 (10.90c)

and for j > 1

δj = j + bB2 (10.90d)

ηj = 0 (10.90e)

βj = −b(j + 1) − b2B2 (10.90f)

for j = 2, 3, . . . , N

a = 0, B1 = 0, and B2 finite; X23a

δj = j − 1 + bB2 (10.91a)

βj = 0 (10.91b)

ηj = −b2(j + 1) − b3B2 (10.91c)

for j = 1, 3, 5, . . . , N

a = 0, B1 = 0, and B2 = ∞;X21a

δj = 1 (10.92a)

βj = 0 (10.92b)

ηj = −b2 (10.92c)

for j = 1, 3, 5, . . . , N

a = 0 and B1 = ∞;X13a

δj = j + bB2 (10.93a)

βj = −b2B2 − (j + 1)b (10.93b)

ηj = 0 (10.93c)

for j = 1, 2, 3, . . . , N

aAlso for RIJ and RSIJ cases.

Note that when p = 0 and j = 1, the term containing P4 is zero. Also, when j = 1
or j + p = 2, the term containing P5 is zero. When there is a fin effect, additional
terms are necessary (see Equation 10.12).

Matrix B

The following integral can be used as a computational aid to calculate the elements
of matrix B when ρcpu(r) is constant.

Ib(z) =
∫

fifj z
pdz =

5∑
k=1

Qk

zi + j + p + 4 − k

i + j + p + 4 − k
(10.96)
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where

Q1 = δiδj (10.97a)

Q2 = βiδj + βj δi (10.97b)

Q3 = ηiδj + βiβj + ηj δi (10.97c)

Q4 = βiηj + βjηi (10.97d)

Q5 = ηiηj (10.97e)

Also this integral provides the contribution of the fin effect for the elements of matrix
A when m(r) = constant.

10.4.3 MATRIX OPERATIONS WHEN N = 1 AND N = 2

Following the computation of the values of the components of matrices A and B,
the eigenvalues and the eigenvectors are computed using Equation 10.11. After
the computation of pni’s, using Equations 10.41 and 10.45, the GF is obtained
using Equation 10.60. The mathematical procedure is to solve Equation 10.11 when
N = 1 to obtain γ1 = −a11 / b11, d11 = 1, and then Equations 10.41 and 10.45 yield
p11 = 1 / b11. The one-term GF is

G(z′, −τ|z, −t) = ρcpd11p11 exp[−γ1(t − τ)] f1(z′)f1(z) (10.98)

Expressions for finding γn, dnj and pni , when N = 2, follow the procedure pre-
sented in Example 10.2. The eigenvalues are the roots of a quadratic equation

Det|A + γB| = D1γ
2 + D2γ + D3 = 0 (10.99)

where

D1 = Det(B) = b11b22 − b12b21 (10.100a)

D2 = (a11b22 − a12b21) + (b11a22 − b12a21) (10.100b)

D2 = Det(A) = a11a22 − a12a21 (10.100c)

The elements of matrix D are computed after arbitrarily selecting d11 = d22 = 1. The
reason for the arbitrary choice of d11 and d22 is that cn in Equation 10.6 is yet to be
determined and, at this stage, cn can be multiplied or divided by a constant. The other
elements are

d12 = −a12 + γ1b12

a22 + γ1b22
(10.101a)

d21 = −a12 + γ2b12

a11 + γ2b11
(10.101b)

Since the transpose of matrix BD is matrix E, Equation 10.41, and matrix P is the
inverse of matrix E, Equation 10.45, the elements of matrix P are for N = 2
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p11 = e22

det(E)
(10.102a)

p12 = − e12

det(E)
(10.102b)

p21 = − e21

det(E)
(10.102c)

p22 = e11

det(E)
(10.102d)

The GF is obtained when r and r′ are replaced by z and z′, and N is set equal to 2 in
Equation 10.60.

Example 10.4:

A homogeneous hollow cylinder (Figure 10.3), with inner radius a and outer radius
b = 2a, is considered with the boundary conditions kdT /dr = h1T at r = a and
−kdT /dr = q(t ). Furthermore, it is assumed that the initial temperature distribution
is zero, T (r , 0) = 0. The heat flux q(t ) at r = b is given by the relation q(t ) = q0 t
so that q varies linearly with t . The h1a/k ratio is selected to be 1. Compare the
alternative GF solution with the exact solution.

Solution

The notation for this case is R32B02T 0. The temperature at r = b is to be found as
a function of time. The step-by-step procedure for obtaining the GF is presented in
this example for N = 2. The basic procedure, except for the method of obtaining
the basis functions, is applicable to all transient, one-dimensional conduction
problems.

1. It is necessary to introduce a set of basis functions, fj . A general set
of basis functions that satisfies the homogeneous convective condi-
tions kdfj /dr = h1fj at r = a and kdfj /dr = 0 at r = b are
obtained from Equation 10.85 when z is replaced by r . Using j = 1
and 2, the coefficients δj , βj , and ηj in Equation 10.85 are avail-
able from Equations 10.86a through c for b = 2a as δ1 = 1,

a
x

r

y

b

FIGURE 10.3 Hollow cylinder in Example 10.4; boundary conditions denoted R32.
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β1 = −4, η1 = 1, δ2 = 1, β2 = −2, and η2 = −4. Because the basis func-
tions are not unique, the function fj as given by Equation 10.85 is divided
by δj and then made dimensionless. The basis functions f1 and f2, with
B1 = 1 and B2 = 0 are

f1 =
( r

a

)2 − 4
r
a

+ 1 (10.103a)

f2 =
( r

a

)3 − 2
( r

a

)2 − 4
r
a

(10.103b)

2. Once the basis functions are available, Equation 10.103a and b, the el-
ements of matrices A and B are calculated using Equations 10.12 and
10.13. Because the conduction is one-dimensional and there is no fin
effect, the definite integrals can be evaluated using Equations 10.94
through 10.97 to yield

a11 = −34π

3a
(10.104a)

a12 = a21 = −446π

15a
(10.104b)

a22 = −1181π

15a
(10.104c)

and

b11 = 337πa
15

(10.105a)

b12 = b21 = 1231πa
21

(10.105b)

b22 = 21421πa
140

(10.105c)

3. The eigenvalues and the eigenvectors are computed using Equa-
tion 10.11. Equation 10.99 is used (for N = 2) to obtain

γ1 = 0.50276α

a2 (10.106a)

γ2 = 11.9830α

a2 (10.106b)

4. The elements of matrix D are computed after arbitrarily selecting

d11 = d22 = 1 (10.107a)

The other elements according to Equations 10.101a and b are

d12 = −a12 + γ1b12

a22 + γ1b22
= −0.14495 (10.107b)

d21 = −a12 + γ2b12

a11 + γ2b11
= −2.6085 (10.107c)

5. Following computation of matrix E from Equation 10.40 or Equa-
tion 10.41, matrix P is the inverse of matrix E. When N = 2, Equa-
tions 10.102a through d provide the elements of matrix P as
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p11 = e22

det(E)
= 3.6638 (10.108a)

p12 = − e12

det(E)
= −0.0053107 (10.108b)

p21 = − e21

det(E)
= −13.637 (10.108c)

p22 = e11

det(E)
= 5.2279 (10.108d)

6. All the parameters needed to calculate the GF relation are now available
and Equation 10.60 becomes

G (r ′, −τ|r , −t ) = C (r )
2∑

n=1

2∑
j=1

2∑
i=1

dnjpni exp[−γn(t − τ)] fj (r ′) fi (r )

(10.109)

The temperature distribution is given by Equation 10.68 or Equation 10.77.
When using Equation 10.77, T ∗ is not a unique function. A function such as
T ∗ = −bq0t [k /(ha) + ln(r / a)] / k would satisfy the nonhomogeneous boundary
conditions. For this case, the value of f ∗ is zero; see Equation 10.73. Therefore,
the analysis is simpler. The temperature solution when ha / k = 1 is obtained using
Equation 10.77:

kT
q0

= −bt
(
1 + ln

r
a

)
+

∫ t

0
dτ

∫ b

a
4πG

(
1 + ln

r ′
a

)
r ′dr ′ (10.110)

Since b = 2a and G is given by Equation 10.109, Equation 10.77 becomes

kT
a3q0 / α

= −2αt
a2

(
1 + ln

r
a

)
+ 4π

N∑
n=1

×



N∑
j=1

dnj

[
δj

( r
a

)2 + βj
r
a

+ ηj

] ( r
a

)j−1




×
{ N∑

i=1

pni

[
δj

2i+3(1 + ln 2) − 1
i + 3

+ βi
2i+2(1 + ln 2) − 1

i + 2

+ ηi
2i+1(1 + ln 2) − 1

i + 1
− δi

2i+3 − 1
(i + 3)2

− βi
2i+2 − 1
(i + 2)2

− ηi
2i+1 − 1
(i + 1)2

]}
1 − exp(−γnt )

a2γn / α
(10.111)

Notice that ∂T ∗/∂t = − bq0[k /(ha) + ln(r / a)] / k is multiplied by G =
G (r ′, −τ|r , −t ) and dA = 2πr dr and then integrated between a and b = 2a.

Table 10.4 shows the numerical values of the GFs. The values of the GFs us-
ing the integral method agree well with the exact values when N ≥ 5 and the
α(t − τ) /(b − a)2 > 0.04. Table 10.4 suggests using the small-time solution when
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TABLE 10.4
Values of the Green’s Functions G(b, t|b, τ) for the Integral Method, Exact, and
Small-Time Asymptotic Solutions (R32 Case with B1 = 1)

Galerkin-Based Integral Method
α(t − τ)
(b − a)2

Small-Time Exact
N = 2 N = 3 N = 5 N = 7 Solution Solution

0.01 0.26457 0.38672 0.49460 0.47371 0.46974 0.46975
0.02 0.24802 0.32655 0.34709 0.33841 0.33862 0.33863
0.05 0.20838 0.22820 0.22280 0.22275 0.22275 0.22277
0.1 0.16600 0.16691 0.16495 0.16498 0.16491 0.16499
0.2 0.12670 0.12632 0.12588 0.12588 0.12480 0.12588
0.5 0.096912 0.097070 0.097042 0.097042 0.091206 0.097042
1 0.075063 0.075199 0.075185 0.075184 0.076939 0.075184
2 0.045402 0.045485 0.045477 0.045477 – 0.045477
5 0.010047 0.010066 0.010064 0.010064 – 0.010064

TABLE 10.5
Partitioned and Alternative Green’s Function Solution for Dimension-Less
Surface Temperature −kT / (a3q0 / α) at r / a = 2

N = 2 N = 7 Exact Series
Time (first 14,000
αt / a2 AGFSa PGFSb AGFSa GFSc PGFSb terms)

0.01 0.001372 0.000765 0.000765 0.000608 0.000765 0.000765

0.02 0.003072 0.002179 0.002179 0.001870 0.002179 0.002179

0.05 0.009945 0.008740 0.008740 0.007973 0.008740 0.008739

0.1 0.026438 0.025135 0.025136 0.023607 0.025136 0.025134

0.2 0.074303 0.072923 0.072872 0.069817 0.072870 0.072868

0.5 0.30721 0.30574 0.30518 0.29755 0.30518 0.30517

1 0.93291 0.93117 0.93001 0.91475 0.93000 0.92999

2 2.8434 2.8406 2.8393 2.8088 2.8393 2.8392

5 11.243 11.235 11.237 11.161 11.237 11.237

10 27.715 27.696 27.709 27.557 27.709 27.709

aAlternative Green’s function solution, Equation 10.111.
bPartitioned Green’s function solution, see Chapter 5.
c Green’s function solution, Equation 10.68.

α(t − τ) /(b − a)2 < 0.12. This latter number is used for the time partitioning of the
integral solution results appearing in Table 10.5 when N = 2.

The dimensionless temperature solution, kT /(a3q0 / α), at r = 2a and for N = 2
and 7 is presented in Table 10.5. The results for the alternative GF solution, which
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uses Equation 10.77, agree closely with the exact solution. However, the standard
GF solution using Equation 10.68 is much less accurate for N = 7. When N < 7
(not shown in this table), the accuracy further decreases. Notice the remarkable
accuracy of the solution using the time-partitioned GF when N = 2. The eigenval-
ues in this example were computed using Cholesky’s decomposition of matrix B
and applying the Jacobi method (Carnahan et al., 1969, p. 250; see p. 255 for
FORTRAN subroutine) to Equation 10.32.

As discussed earlier, the alternative GF solution requires an auxiliary equation
which is usually available for one-dimensional geometries. However, in multidi-
mensional and complex geometries, this auxiliary equation either is unavailable or
difficult to obtain. The partitioning of the Green’s function, as given in Chapter 5,
Equation 5.17, is an attractive option. Equation R02.5 in Appendix R provides the
small-time GF while Equation 10.60 is used to obtain the large-time GF. As shown
in Table 10.5, partitioning of the GF and alternative GF solutions exhibit good ac-
curacy. Even when N = 2, the time-partitioned solution produces accurate results.

Example 10.5:

Derive Equation 10.72a and calculate c1 and c2 when the boundary conditions are

∂T
∂z

= h1

k1
(T − T∞1) at z = a (10.112a)

∂T
∂z

= −h2

k2
(T − T∞2) at z = b (10.112b)

Solution

The generalized form of the Laplace equation in one-dimensional bodies is

1
zp

d
dz

(
zp dT ∗

dz

)
= 0 (10.113)

where p = 0 in Cartesian coordinates
p = 1 in cylindrical coordinates
p = 2 in spherical coordinates

Integrate twice to obtain

T ∗ = c1

∫
dz
zp + c2 = c1up (z ) + c2 (10.114)

This equation assumes different forms in different coordinate systems:

In Cartesian coordinates, z = x , p = 0, and up (z ) = x
In cylindrical coordinates, z = r , p = 1, and up (z ) = ln r
In spherical coordinates, z = r , p = 2, and up (z ) = −1 / r

The first term on the right side of Equation 10.77 contains T ∗, which must satisfy
the nonhomogeneous boundary conditions because the remaining terms in Equa-
tion 10.77 only satisfy the homogeneous boundary conditions.Then, the boundary
conditions for T ∗ are
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∂T ∗
∂z

= h1

k1
(T ∗ − T∞1) at z = a (10.115a)

∂T ∗
∂z

= −h2

k2
(T ∗ − T∞2) at z = b (10.115b)

Introducing T ∗ from Equation 10.114 in Equation 10.115a and b results in the
following two simultaneous equations:[

up (a) − k1

h1ap

]
c1 + c2 = T∞1 (10.116a)[

up (b) + k2

h2bp

]
c1 + c2 = T∞2 (10.116b)

The solutions for c1 and c2 are

c1 = T∞2 − T∞1

up (b) − up (a) + k1 /(h1ap ) + k2 /(h2bp )
(10.117a)

c2 = T∞2[up (b) + k2 /(h2bp )] − T∞1[up (a) − k1 /(h1ap )]
up (b) − up (a) + k1 /(h1ap ) + k2 /(h2bp )

(10.117b)

The above choice of T ∗ forces f ∗ to become equal to zero. The basis functions,
as usual, must satisfy homogeneous boundary conditions, and they are given by
Equations 10.85 and 10.86 when h1 or h2 are nonzero. The case when h1 = 0
or h2 = 0 is trivial. When h1 = 0, T ∗ = T∞2, and when h2 = 0, T ∗ = T∞1.
Equations 10.177a and b can be used to calculate c1 and c2 when either h1 or h2,
or both are infinite.

Example 10.6:

In this example, T ∗, using Equation 10.72a, is to be calculated when heat flux
is prescribed on one surface and the other surface is exposed to a convective
boundary condition.

Solution

First consider the following boundary conditions:

∂T ∗
∂z

= q1

k1
at z = a (10.118a)

∂T ∗
∂z

= −h2

k2
(T ∗ − T∞2) at z = b (10.118b)

Using these boundary conditions, the following two simultaneous equations are
obtained

c1

ap = +q1

k
(10.119a)

[
up (b) + k2

h2bp

]
c1 + c2 = T∞2 (10.119b)
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The solutions for c1 and c2 are

c1 = +q1ap

k1
(10.120a)

and

c2 = −
[
k2 /(h2bp ) + up (b)

]
q1ap

k1
+ T∞2 (10.120b)

when the boundary conditions at z = a and z = b are switched, that is,

∂T ∗
∂z

= h1

k1
(T ∗ − T∞1) at z = a (10.121a)

∂T ∗
∂z

= −q2

k2
at z = b (10.121b)

The two simultaneous equations are

c1 = −q2bp

k2
(10.122a)

c2 = −[k1 /(h1ap ) − up (a)]q2bp

k2
+ T∞1 (10.122b)

In this example, similar to Example 10.5, f ∗ = 0 because the Laplace equation is
satisfied.

Example 10.7:

Consider a one-dimensional conduction problem when heat flux is prescribed on
both surfaces. The goal is to calculate the values of T ∗ and f ∗.

Solution

As before, the nonhomogeneous boundary conditions are assigned to T ∗. The
boundary conditions are

∂T ∗
∂z

= q1

k1
at z = a (10.123a)

∂T ∗
∂z

= −q2

k2
at z = b (10.123b)

The proposed auxiliary solution T ∗ is

T ∗ = c1up (z ) + c2z2 (10.124)

This equation must satisfy the boundary conditions given by Equation 10.123a
and b. After substituting T ∗ from Equation 10.124 in Equation 10.123a and b, the
following two simultaneous relations are obtained:

k1up (a)
ap c1 + 2ac2 = q1 (10.125a)

k2up (b)
bp c1 + 2bc2 = −q2 (10.125b)
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The constants c1 and c2 are calculated as

c1 = q2a + q1b
k1ba−pup (a) − k2ab−pup (b)

(10.126a)

and

c2 = −q2 + k2b−pup (b)c1

2b
(10.126b)

The value of f ∗ is obtained from the relation

f ∗ = 1
zp

d
dz

(
zp dT

dz

)
= 1

zp
d
dz

[
zp

( c1

zp + 2c2z
)]

= 2c2(p + 1) (10.127)

Using Equation 10.77, the term that contains f ∗ behaves as a uniform energy
source that liberates 2c2(p + 1) units of energy per unit time and per unit volume.
Indeed, as a general rule, the function f ∗(r′, τ) can be lumped together with g (r′, τ).

The basis functions needed for calculating the GF are given by Equation 10.127
for which the values of δj , βj , and ηj are given by Equations 10.86a through c as

δj = j(j − 1)(a − b) (10.128a)

βj = (j2 − 1)(b2 − a2) (10.128b)

ηj = abj(j + 1)(a2 − b2) (10.128c)

For a special case when a = 0, Equations 10.91a through c yield

δj = j − 1 βj = 0 and ηj = −b2(j + 1) (10.129)

Example 10.8:

Consider a finite cylinder with boundary conditions

∂T
∂x

= 0 at x = 0 (10.130a)

∂T
∂x

= −h2

k
(T − T∞) at x = L (10.130b)

∂T
∂r

= 0 at r = 0 (10.130c)

T = T∞ at r = r0 (10.130d)

and find a set of basis functions.

Solution

The basis functions must satisfy homogeneous boundary conditions of the same
types as the boundary conditions on temperature
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∂fj
∂x

= 0 at x = 0 (10.131a)

∂fj
∂x

= −h2

k
fj at x = L (10.131b)

∂fj
∂r

= 0 at r = 0 (10.131c)

fj = 0 at r = r0 (10.131d)

The contribution of the x-direction to the basis functions is obtained using Equa-
tion 10.85 for which δj , βj , and ηj coefficients are given by Equation 10.91a
through c. The contribution of the r -direction to the basis functions is computed,
in a similar manner, using Equation 10.85. Setting B2 = h2/k , the basis functions
become

fj = [(mj − 1 + LB2)x2 − L2(mj + 1)

− L3B2](r2 − r2
0 )xmj−1r nj−1 (10.132)

The variables mj and nj replaced j in Equation 10.85 to account for all combina-
tions of mj = 1, 2, 3, . . . , and nj = 1, 2, 3, . . . , for example

j = 1 mj = 1 and nj = 1
j = 2 mj = 2 and nj = 1
j = 3 mj = 1 and nj = 2
j = 4 mj = 3 and nj = 1
j = 5 mj = 2 and nj = 2
j = 6 mj = 1 and nj = 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To include all relevant powers of x and r , use mj = 1 and nj = 1 for a one-term
solution. For more accuracy, N = 3 should be used for which the polynomial co-
efficients are x0r0, x1r0, x0r1. The accuracy can be further improved by including
higher order polynomial coefficients x2r0, x1r1, and x0r2 with N taking the value
of 6. The next higher level of accuracy is achieved when N = 10, 15, and so on.

Instead of finding the set of two-dimensional basis functions and then cal-
culating the GF, the two-dimensional GF can be computed as a product of
two one-dimensional GFs. However, the two-dimensional basis functions, Equa-
tion 10.132, can be used to calculate the temperature field in a finite cylinder if it
also contains inclusions with different thermophysical properties; see Section 11.3.
In this latter case, the GF is not a product of two one-dimensional GFs.

The product method can be used for all multidimensional regular bodies with
a few exceptions. The noted exception is the case when the regular geometry is
cylindrical or spherical and there is a surface that convects heat in angular direc-
tions. However, boundary conditions of the first and second kinds in an angular
direction can be accommodated by the product method.

10.5 FINS AND FIN EFFECT

The GF solution, Equation 10.77, is modified to solve temperature and heat flux in
bodies with fin effect (Haji-Sheikh et al., 1991). The bodies can be single layer or
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multilayers, although bodies with multilayers are treated in Chapter 11. For mul-
tidimensional conduction with fin effect, Equation 10.77 is valid. For quasi-one-
dimensional conduction Equation 10.77 is written as

T (r , t) = T ∗(r , t) + 1

ρ(r)cp(r)

{∫ t

τ = 0
dτ

∫
v

× G

[
f ∗ + g(r ′, τ) − ρ(r ′)cp(r ′)

∂T ∗(r ′, τ)

∂τ

]
dV ′

+
∫
v

ρ(r ′)cp(r ′)G|τ = 0[F (r ′) − T ∗(r ′, 0)] dV ′
}

(10.133)

where r is the axial coordinate.
The auxiliary function T ∗ must satisfy the nonhomogeneous boundary conditions

but it is not necessarily the steady-state or quasisteady-state solution. The function T ∗
contains only the contribution of nonhomogeneous boundary conditions. The func-
tion f ∗, appearing as a source term in Equation 10.133, compensates for the arbitrary
nature of T ∗ and is given by the modified form of Equation 10.73 as

f ∗(r ′, τ) = ∇0 · [k∇0T
∗(r ′, τ)] − m(r)2T ∗ (10.134)

where ∇0 implies the derivatives are in r ′ space. If f ∗(r ′, τ) = 0 and m(r)2 = 0,
then T ∗(r ′, τ) satisfies the Laplace equation and it is the quasisteady solution. The
function T ∗ is chosen in the same manner as discussed in the examples with no fin
effect.

Example 10.9:

Calculate the fin efficiency in a straight cylindrical fin. The boundary conditions
are: T = Tb = 1 at r = r1 and q = 0 at r = r2. Finally, compare the results with
the exact values.

Solution

The selection of the basis functions for this problem is exactly the same as earlier
examples with no fin effect. Also, the function T ∗ is selected in a similar manner
using Equation 10.72a mainly to satisfy the boundary conditions; here, T ∗ = 1
and f ∗ = −m2 where m2 is 2h / δ∗, and δ∗ is the fin thickness. Equation 10.1 in
cylindrical coordinates, when T = T (r , t ), g (r) = 0, u(r) = 1 and thermophysical
properties are constant, is

1
r

∂

∂r

(
r
∂T
∂r

)
− 2h

kδ∗ T = 1
α

∂T
∂t

(10.135)

The basis functions are given by Equation 10.85 and the coefficients δj , βj , and
ηj by Equation 10.89a through c. The fin efficiency is defined as the ratio of heat
transfer from an actual fin to the heat transfer from an isothermal fin at T = Tb .
Figure 10.4 shows the efficiency, when r2 / r1 = 2, as a function of dimensionless
time, αt / r2

1 , for different values of m∗ = r1(2h / kδ∗)0.5.
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FIGURE 10.4 Fin efficiency versus time when m∗ = 2 and r2 / r1 = 2.

TABLE 10.6
Fin Efficiency Using GBI Method and Comparison with the Exact Solution for
Cylindrical Fins

r2 / r1 = 1.2 r2 / r1 = 2.0 r2 / r1 = 3.0

m∗ GBI Exact GBI Exact GBI Exact

0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.4 0.99766 0.99767 0.93025 0.93024 0.73696 0.73700
0.8 0.99074 0.99075 0.77434 0.77434 0.43493 0.43494
1.2 0.97946 0.97946 0.61464 0.61464 0.27932 0.27934
1.6 0.96416 0.96417 0.48705 0.48706 0.19933 0.19935
2.0 0.94531 0.94531 0.39335 0.39332 0.15338 0.15340
2.4 0.92341 0.92342 0.32543 0.32542 0.12415 0.12419
5.0 0.74443 0.74448 0.14607 0.14609 0.05460 0.05479
8.0 0.55316 0.55334 0.08821 0.08840 0.03249 0.03315

To show the accuracy obtainable with the single-equation solution, the steady-
state efficiency for different r2 / r1 ratios, for a range of values of m are shown
in Table 10.6. The data compare well with the exact solution; usually up to five
significant figures. All entries in Table 10.6 are for N = 9. Table 10.7 contains the
efficiency calculated for different values of N . Only one value of r2 / r1 is used
in this presentation. Table 10.7 shows that, when N = 5, sufficient accuracy is
achieved for nearly all practical applications.
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TABLE 10.7
Fin Efficiency Using GBI Method with Different N Values for Straight Cylin-
drical Fins, r2 / r1 = 2

GBI Solution
Exact

m∗ N = 2 N = 5 N = 7 Solution

0.0 1.00000 1.00000 1.00000 1.00000
0.4 0.90400 0.93008 0.93021 0.93024
0.8 0.74667 0.77418 0.77432 0.77434
1.2 0.58523 0.61449 0.61463 0.61464
1.6 0.45599 0.48688 0.48706 0.48706
2.0 0.36067 0.39312 0.39332 0.39332
2.4 0.29133 0.32516 0.32541 0.32542
5.0 0.10673 0.14515 0.14603 0.14609
8.0 0.04999 0.08590 0.08807 0.08840

10.6 CONCLUSIONS

The Galerkin-based GF solution method discussed in this chapter has many ad-
vantages. Generally, for one-dimensional problems, a two-term solution provides
results accurate enough for most applications. The methodology, especially for one-
dimensional bodies, is universal, and a single computer program can be used for
different-shaped bodies with different boundary conditions. This is a unique feature
that is not shared by the exact solution.

Two solution methods were covered in this chapter: a GF solution and an alterna-
tive GF solution. The general solution method requires time partitioning of the GF
to achieve a high degree of accuracy. The alternative GF solution, when available,
is simple and accurate if time is not extremely small. If time is extremely small,
the small-time solution yields the temperature and time partitioning of the GF is
not a prerequisite. The time-partitioned Galerkin-based GF solution has flexibility,
accuracy, and computational speed, which are the features of an efficient compu-
tational method. The unique feature is that a single solution is used for nearly all
one-dimensional conduction problems. This feature was successfully incorporated in
a computer program.

Many GFs for two- or three-dimensional solutions of regular bodies are the prod-
ucts of appropriate one-dimensional GFs; others must be computed in multidimen-
sional space, see Chapter 11.

The derivation of the GF solution presented in this chapter applies to heterogeneous
as well as homogeneous bodies. However, all examples given in this chapter are for
homogeneous and regular bodies. Further discussion of this solution method and
additional examples are presented in Chapter 11.
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PROBLEMS
10.1 Verify Equation 10.33.
10.2 Repeat Example 10.2, except assume the surface at x = 0 is

insulated.
10.3 Find the eigenvalues and write a two-term expression for temperature

distribution in a solid cylinder with radius r0. The initial temperature
is T0 and the surface temperature is suddenly reduced to Ts . (Answer:
γ1 = 5.784α / r2

0 , γ2 = 36.88α / r2
0 .)

10.4 Consider the GF in Problem 3 to be the large-time GF. Find a small-
time GF to solve for temperature distribution using the time parti-
tioning of the GF.

10.5 A solid cylinder with radius r0 is initially at temperature T0. If there
is a prescribed heat flux at the rate q(t), find the basis functions,
Retaining only two eigenvalues, N = 2, calculate the eigenvalues,
and derive an expression for the temperature distribution. (Answer:
γ1 = 0, γ2 = 15α / r2

0 .)
10.6 Use the GF partitioning to derive an equation for the temperature at

the surface of the cylinder described in Problem 5.
10.7 Show that the functions ψ1, ψ2, ψ3, . . . , are orthogonal, that is,∫

v
ρcpψmψndV = 0

when m and n are not equal. (Hint: substitute ψm and ψn in Equa-
tion 10.5, then use Identities 1 through 3 in Note 1.)

10.8 Verify Equations 10.39 and 10.40.
10.9 Verify Equation 10.77.

10.10 Find the eigenvalues and write a two-term expression for temperature
distribution in a solid sphere with radius r0. The initial temperature is
T0 and the surface temperature is suddenly reduced to Ts . (Answer:
γ1 = 9.875α / r2

0 , γ2 = 50.12α / r2
0 .)

10.11 Find the eigenvalues and write a two-term expression for temperature
distribution in a hollow cylinder whose inner radius is r1 and outer
radius is r2. The initial temperature is T0, the surface temperature
is suddenly reduced to Ts at r = r1, and the surface at r = r2 is
insulated. (Answer: γ1 = 7.407α / r2

2 , γ2 = 88.61α / r2
2 .)

10.12 Find the eigenvalues and write a two-term expression for temperature
distribution in a hollow sphere whose inner radius is r1 and outer
radius is r2. The initial temperature is T0 and the surface at r = r2 is
insulated. There is convection to a zero temperature fluid at r = r1
surface and hr2 / k = 1. (Answer: γ1 = 7.480α / r2

2 , γ2 = 47.02α / r2
2 .)

10.13 A straight fin with constant cross-sectional area A and length L is
insulated at the tip while the base temperature is Tb. Find T ∗ and
use the alternative GFSE to derive a solution. Compare the fin effi-
ciency for N = 2 with its exact value when L(hP /kA)0.5 I; P is the
perimeter. (Answer: Fin efficiency when N = 2 is 0.75312.)

10.14 For a circular pin fin write the temperature solution. The radius r

varies as x2, the tip at x = 0 may be considered insulated, and the
base is at a constant temperature.
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NOTE 1: MATHEMATICAL IDENTITIES

Consider V to be a scalar and W to be a vector.

Identity 1

(Hay, 1953, p. 117)

∇ · (vW) = v(∇ · W) + (∇v) · W

Identity 2

∇v · n = ∂v

∂n

Identity 3

The generalization of the Green’s theorem for line integrals is called the Green’s
theorem in space (Hay, 1953, p. 143), the Green’s theorem, the divergence theorem,
or Gauss’s theorem (Kaplan, 1956, p. 269).∫

V
∇ · W dV =

∫
S

W · n dS

Identity 4

δ(z − b) = 0 when z �= b and
∫ +∞

−∞
δ(z)dz = 1

Identity 5

v(z)δ(z − b) = v(b)δ(z − b)

Identity 6 ∫ +∞

−∞
v(z)δ(z − b)dz = v(b)

NOTE 2: A MATHEMATICA PROGRAM FOR DETERMINATION OF
TEMPERATURE IN EXAMPLE 10.2

This Mathematica program (Wolfram, 2005) below determines eigenvalues, eigen-
vectors, and temperature as described in Example 2.

(*INPUT DATA, Part 1*)
n=15;l1=0;lb=1;cap=1;k=1;
(*Basis functions*)
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fj=x*(1-x)*xˆ(j-1); fi=x*(1-x)*xˆ(i-1);
(*Determination of the Matrices A and B, Part 2*)
Amat=Table[Integrate[fi*(D[k*D[fj,x],x]),x,l1,lb],i,1,n,j,1,n];
Bmat=Table[Integrate[cap*fi*fj,x,l1,lb],i,1,n,j,1,n];
(*Calculation of Eigenvalues and Matrices D and P, Part 3*)
Amat=N[Amat,48]; Bmat=N[Bmat,48];
Lmat=CholeskyDecomposition[Bmat];
LmatT=Transpose[Lmat];
linv=Inverse[bbt]; linvt=Inverse[bb1];
Abar=-(Inverse[LmatT]).Amat.(Inverse[Lmat]);
Eigv=N[Eigenvalues[Abar],20];
Dmat=Transpose[(Inverse[Lmat]).Transpose[Eigenvectors[Abar]]];
Pmat=Inverse[Transpose[Dmat.Bmat]];
(*Calculation of Temperature, Part 4*)
temp=0;
Do[psi[ne]=Sum[Dmat[[ne,j]]*fj,j,1,n],ne,1,n];
temp=Sum[psi[ne]*Exp[-Eigv[[ne]]*t]*Sum[Pmat[[ne,i]]*Integrate[cap*fi,x,l1,lb],{i,1,n}],{ne,1,n}];

Below is a modification for Part 3 when Equation 10.11 is written as for deter-
mination of the eigenvalues and eigenvectors. To get proper matrix inversion in this
simplification, listed below, every term within an assigned 15´15 matrix B must be
computed with more that 640 significant figures, instead of 48 in the program above
that uses the Cholesky decomposition technique.

Amat=N[Amat,641];Bmat=N[Bmat,641];
Abar=-Inverse[Bmat].Amat; Eigv=N[Eigenvalues[Abar],20]
Dmat=Eigenvectors[Abar]; Pmat=Inverse[Transpose[Dmat.Bmat]];
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11 Applications of the
Galerkin-Based
Green’s Functions

11.1 INTRODUCTION

The Galerkin-based Green’s function (GF) solution of the diffusion equation is
presented in Chapter 10, which also contains simple one-dimensional examples that
demonstrate the method of solution and that discuss the accuracy of the results. In this
chapter, the Galerkin-based GF solution method is extended to more advanced prob-
lems. Thermal conduction in multidimensional bodies is presented in Section 11.2.
In Section 11.3 the basis functions are modified so that conduction in heterogeneous
materials can be accommodated. Then, in Section 11.4, the GF solution is developed
and applied to steady-state conduction problems. Finally, a study of heat transfer in
the thermal entrance region of ducts is included in Section 11.5.

Sections 11.2 through 11.6 each include one or more examples that demonstrate
the procedure. Except for selection of basis functions, the same mathematical proce-
dure applies to simple and complex problems. The major difficulty in dealing with
complex problems is the selection of a complete and linearly independent set of basis
functions that satisfy the boundary conditions. Unlike the one-dimensional problems
studied in Chapter 10, there is no generalized form for the basis functions; hence,
each multidimensional body must be treated differently.

The GF for a few orthogonal multidimensional bodies are products of one-
dimensional GFs. However, it is not difficult to define basis functions for most or-
thogonal multidimensional bodies. The basis functions are usually the products of
one-dimensional basis functions. It is also possible to find basis functions for irregular
bodies when boundary conditions are of the first kind. However, the basis functions
for nonorthogonal bodies with boundary conditions of second and third kinds are
sometimes difficult to obtain. Once the basis functions are defined, the computation
of matrices A and B may require numerical integration. After the matrices A and B are
determined, the calculation of parameters in the GF is exactly the same as that for one-
dimensional bodies. Indeed, the matrix algebra, the GFs, and the GF solution method
are the same for one-dimensional or multidimensional, and orthogonal or nonorthog-
onal bodies. In this chapter, emphasis is placed on finding the basis functions.

11.2 BASIS FUNCTIONS IN SOME COMPLEX GEOMETRIES

As discussed earlier, the derivation of the GF solution method is in Chapter 10. The
algebraic steps leading to the computation of the GF and the GF solution method are

413
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the same for bodies of different shapes. The method of finding the basis functions
and the analytical (or numerical) efforts needed to compute matricesAand B elucidate
the complexity of the problem. The procedure for finding the basis functions is not
unique and any properly defined basis functions, as discussed in Section 10.2, are
acceptable; a few methods of selecting basis functions for nonorthogonal bodies are
discussed. The procedure includes the basis functions that satisfy boundary conditions
of the first kind (prescribed temperature, fj = 0), the second kind (prescribed heat
flux, ∂fj / ∂n = 0), or the third kind (convective, −k∂fj / ∂n = hfj ).

11.2.1 BOUNDARY CONDITIONS OF THE FIRST KIND

A universal relation to give aij and bij for many regular geometries is derived in
Chapter 10. For more complex geometries, the necessary integrations using Equa-
tions 10.12 and 10.13 may require a symbolic software or numerical quadrature. By
using time partitioning, it may be possible to reduce the computations in these cases.
The remaining matrix operation is independent of the dimensions of the body and
the boundary conditions. When a multidimensional body has a regular shape, the GF
is a product of one-dimensional GFs. To obtain a reasonably accurate solution for
irregular multidimensional bodies, the number of basis functions is usually larger
than 2. Numerical matrix operation becomes necessary when dealing with complex
multidimensional problems.

The method of selecting the basis functions for boundary conditions of the first
kind is available in the literature (Kantorovich and Krylov, 1960; Ozisik, 1993; Haji-
Sheikh and Mashena, 1987). If a region is bounded by M surfaces φ1, φ2, . . . , φM

(Figure 11.1), the first member of the set of basis functions is

f1(r) = φ1φ2φ3 · · · φM (11.1)

Each subsequent member of the set of basis functions is obtained by multiply-
ing f1(r) by an element of a complete set, for example, in a Cartesian coordinate
system

f2(r) = f1(r)x (11.2a)

f3(r) = f1(r)y (11.2b)

f4(r) = f1(r)z (11.2c)

f5(r) = f1(r)x2 (11.2d)

f6(r) = f1(r)xy (11.2e)

f7(r) = f1(r)xz (11.2f )

f8(r) = f1(r)y2 (11.2g)

f9(r) = f1(r)yz (11.2h)

f10(r) = f1(r)z2 (11.2i)
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φ1 = 0

φ2 = 0

φ3 = 0

φ4 = 0

FIGURE 11.1 Generalized configuration for use with Equation 11.1.

y

b

–a –c c

φ3 = b – y = 0

φ2 = a + x = 0

φ5 = c2 – x2 – y2
φ4 = b + y = 0–b

φ5 = 0

φ1 = a – x = 0

a
x

FIGURE 11.2 Two-dimensional body for Example 11.1 with boundary conditions of the first
kind.

Each basis function is required to vanish only over the exterior boundaries. Some,
but not all, basis functions may become zero at any interior point. This can be ensured
if f1(r) is not zero within the region. Whenever all basis functions vanish at an interior
point, the region can be subdivided into different subregions. The basis functions are
constructed for each subregion and then are matched at the common boundary of the
subregions (Kantorovich and Krylov, 1960).

Example 11.1:

Consider a two-dimensional solid bounded by the surfaces a − x = 0, a + x = 0,
b − y = 0, b + y = 0, and a circular surface c2 − x2 − y2 = 0 (Figure 11.2) and
find the basis functions.
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Solution

The first basis function, for this example, is a product of all the functions
representing the surfaces of this body,

f1 = (a2 − x2)(b2 − y2)(c2 − x2 − y2) (11.3a)

The other basis functions are obtained when f1 is multiplied by polynomial terms
in the ascending order (1 has already been used),

f2 = (a2 − x2)(b2 − y2)(c2 − x2 − y2)x (11.3b)

f3 = (a2 − x2)(b2 − y2)(c2 − x2 − y2)y (11.3c)

f4 = (a2 − x2)(b2 − y2)(c2 − x2 − y2)x2 (11.3d)

f5 = (a2 − x2)(b2 − y2)(c2 − x2 − y2)xy (11.3e)

f6 = (a2 − x2)(b2 − y2)(c2 − x2 − y2)y2 (11.3f)

In the absence of the circular hole within this rectangular body, clearly the basis
functions are the products of one-dimensional basis functions; see Problem 11.1
in this chapter.

Example 11.2:

Calculate temperature distribution in a spheroidal body (see the inset of
Figure 11.3) whose contour is defined by

1 − r2 − z2

b2 = 0 (11.4a)

The initial temperature is zero and, at t ≥ 0, the surface temperature is equal to one.
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FIGURE 11.3 Example 11.2 results for temperature at r = 0 versus αt /a2.
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Solution

First, the function f1 is chosen as

f1 = 1 − r2 − z2

b2

and then the remaining basis functions are

f2 =
(

1 − r2 − z2

b2

)
r2 (11.4b)

f3 =
(

1 − r2 − z2

b2

)
z2 (11.4c)

f4 =
(

1 − r2 − z2

b2

)
r4 (11.4d)

f5 =
(

1 − r2 − z2

b2

)
r2z2 (11.4e)

f6 =
(

1 − r2 − z2

b2

)
z4 (11.4f)

The spheroidal solid is homogeneous with constant thermophysical properties.
The coordinates and time are viewed as dimensionless. Using Equations 10.12
and 10.13, the elements of the matrices A and B for a three-term solution are
(Haji-Sheikh, 1986)

a11 = 4(2b2 + 1)
5b2 a12 = 8(2b2 + 1)

35b2 a13 = 4(2b2 + 1)
35

a22 = 32(4b2 + 1)
(315b2)

a23 = 8(2b2 + 1)
315

a33 = 4b2(4b2 + 11)
315

and

b11 = 8
35

b12 = 16
315

b13 = 8b2

315
b22 = 64

3465

b23 = 16b2

3465
b33 = 8b4

1155

Symbolic computer programming was used to calculate the integrals. Each of
these values is divided by the volume of the spheroid. Additionally, the integration
of the function fi over the volume is needed in the GF solution method, Equa-
tion 10.77. The corresponding values, after they are divided by the volume of the
spheroid, are 2/5, 4/35, and 2b2/35.

The steps for a one-eigenvalue solution are discussed mainly to show that the
procedure is independent of the shape of the domain and complexity of the prob-
lem. Equation 10.11 yields the eigenvalue γ1 = a11 /b11 = 7(2b2 + 1) /(2b2) and
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the eigenvector d11 = 1. Equations 10.41 and 10.45 yield p11 = 35 / 8 and the
GF using Equation 10.60 is

G (r ′, z ′, t |r , z , τ) = 35
8

f1(r , z )f1(r ′, z ′) exp[−γ1(t − τ)]

Finally, the solution using Equation 10.77 is

T (r , z , τ) = 1 − 7
4

(
1 − r2 − z2

b2

)
exp

[
−7(2b2 + 1)t

2b2

]

A one-eigenvalue solution is a crude approximation to the exact solution. A 10-
term solution yields four accurate digits except at small time. For example when
b = 2 and t = 0.3 the exact solution is 0.7758, while a one-term solution gives
0.835 and a three-term solution is 0.780.

A desktop computer is adequate to perform similar calculations using more
eigenvalues. For instance, the calculated values of temperature at the point (0, 0)
are computed with speed and efficiency using a small personal computer, and the
results are plotted in Figure 11.3. As many as 21 eigenvalues are used to compute
the data. The large-time data agree with the exact solution within five significant
digits; this accuracy diminishes as t becomes small (Haji-Sheikh, 1986).

11.2.2 BOUNDARY CONDITIONS OF THE SECOND KIND

We now focus on the insulated boundaries. The selection of the basis functions be-
comes simple if a flat section of boundary is insulated. As an illustration, Figure 11.4b
shows a flat section of the boundary described by φ1 = 0, which is insulated. For
this planar surface, a condition of symmetry about that surface is implied. Then, the
original region can be replaced by a new region that includes itself and its mirror im-
age (Figure 11.4a). If, for instance, x is selected perpendicular to the φ1 = 0 surface,
then φ3 = 0 is φ2 = 0 except the variable x is replaced by −x. Therefore, the basis
function f1 is obtained using the boundary conditions of the first kind, by utilizing
Equation 11.1, as f1 = φ2φ3. Then, the remaining basis functions are defined by

φ1 = 0

φ2 = 0

(a) (b)

φ3 = 0
φ1 = 0

φ2 = 0

xx

FIGURE 11.4 Body with flat surface insulated at φ1 = 0.
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using Equation 11.2 and retaining the terms with x to the power of even numbers.
This will automatically result in ∂fj / ∂n = 0 along the x-axis on the φ1 = 0 line for
all the basis functions.

There are other methods of finding the basis functions that satisfy the boundary
conditions of the second kind (Lee and Haji-Sheikh, 1991). One way of finding the
basis functions for boundary conditions of the second kind can be illustrated through a
simple example. Consider that the geometry depicted in Figure 11.4b has the following
boundary conditions: fj = 0 on the φ1 = 0 line and ∂fj / ∂n = 0 on the φ2 = 0 line.

The basis function f
(2)

j that satisfies the boundary conditions of the second kind is
considered to be of the form

f
(2)

j = f
(1)

j (φ2H − 1) (11.5)

The term −1 in the parentheses is for the convenience of analysis and has no effect
on the final solution because f

(2)
j can be multiplied by a constant without loss of

generality, and H is yet to be determined. The function f
(1)

j satisfies the boundary
condition of the first kind everywhere except on the φ2 = 0 surface, which is insulated

f
(1)

j = φ1x
mj ynj zlj (11.6)

Since the surface φ2 = 0 is insulated, then the relation ∂f
(2)

j / ∂n = 0 on the φ2 = 0
surface requires that

−∂f
(1)

j

∂n
+ f

(1)
j

(
∂φ2

∂n

)
H = 0 on φ2 = 0 surface (11.7)

which yields a relation for function H to be used in Equation 11.5 as

H =
(

∂f
(1)

j / ∂n

f
(1)

j ∂φ2 / ∂n

)∣∣∣∣∣
φ2=0

=
( ∇f

(1)
j · ∇φ2

f
(1)

j ∇φ2 · ∇φ2

)∣∣∣∣∣
φ2=0

(11.8)

For some geometric configurations, it is possible to define a set of basis functions
in the polynomial form with free constants. The free constants can be evaluated so
that ∇fj · ∇φ = 0 on the φ = 0 surface. This procedure is described in a forthcoming
example. However, no established method is presently available to determine the
basis functions for all different-shaped bodies with some (or all) walls insulated.

Example 11.3:

Consider a homogeneous spheroidal solid, Figure 11.5, whose boundary in the
cylindrical coordinate system is given by the equation φ1 = 1 − r2 / a2 − z2 / b2

and find the basis functions when the external surface is insulated.

Solution

Although this is a regular or orthogonal body in spheroidal coordinates, it is a non-
orthogonal body in the cylindrical coordinates. The temperature is independent of
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z
b

z

r
a

(r, z)

FIGURE 11.5 Spheroidal body for Examples 11.3 and 11.4.

the angular coordinate and is symmetric about the z = 0 plane. Basis functions for
boundary conditions of the second kind are (Haji-Sheikh and Lakshminarayanan,
1987)

f (2)
j = rmj znj (B1r2 + B2z2 + B3) j = 1, 2, . . . , N (11.9)

where mj = 0, 2, 4, . . . , and nj = 0, 2, 4, . . . . However, if the temperature is
not symmetric about the z = 0 plane, the odd nj ’s must be included. The basis
functions, Equation 11.9, must satisfy the boundary condition

∂f (2)
j

∂n
= 0 when φ1 = 0 (11.10)

which can be written as

∇f (2)
j · ∇φ1 = 0 when φ1 = 0 (11.11)

Introducing Equation 11.9 into Equation 11.11 and deleting z using the relation
φ1 = 0, the following second-degree polynomial equation is obtained:[

B1

(
mj + 2

a2 + nj

b2

)
− B2

(
mj

a2 + nj + 2

b2

)
b2

a2

]
r2

+
[
B2

(
mj

a2 + nj + 2

b2

)
b2 + B3

(
mj

a2 +
nj

b2

)]
r0 = 0 (11.12)

Since Equation 11.12 is satisfied at all r ’s, then the coefficients that multiply by r
to any power must be zero, or

B2 = − B3(mj /a2 + nj /b2)

b2(mj /a2 + (nj + 2) / b2)
= B3

[
2/b2

mjb2/a2 + nj + 2
− 1

b2

]
(11.13)
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and

B1 = B2b2/a2[mj /a2 + (nj + 2)/b2]
(mj + 2) / a2 + nj / b2

= B3
1
a2

[
2b2/a2

(mj + 2)b2/a2 + nj
− 1

]
(11.14)

One of the three coefficients can be selected arbitrarily (e.g., B3 = 1).

11.2.3 BOUNDARY CONDITIONS OF THE THIRD KIND

We will demonstrate that the basis functions satisfying the boundary conditions of
the third kind can be constructed from the basis functions that satisfy the boundary
conditions of the second kind. For this presentation, f

(2)
j will designate the basis

functions that satisfy the boundary conditions of the second kind on the φ1 = 0
surface. The basis functions satisfying the boundary conditions of the third kind are
obtained from the simple relation,

f
(3)

j = f
(2)

j

(
φ1H − k

h

)
j = 1, 2, . . . , N (11.15)

The method of calculating H in Equation 11.15 is similar to that for Equation 11.5.
The function f

(3)
j must satisfy the relation −k∂f

(3)
j /∂n = hf

(3)
j on the surface φ1 = 0.

This leads to

−kf
(2)

j

H∂φ1

∂n
= hf

(2)
j

(−k

h

)
when φ1 = 0 (11.16)

The function H to be used in Equation 11.15 then becomes

H =
(

1

∂φ1 / ∂n

)∣∣∣∣
φ1=0

(11.17)

in which φ1 = 0 designates the convective surface. It is also possible to obtain, for
some geometries, the basis functions using series expansion as discussed for boundary
conditions of the second kind.

Example 11.4:

Spheroidal bodies with a convective surface have many interesting applications
in aerospace, food, and agricultural industries. The spheroidal body defined in
Example 11.3 is subject to convective boundary conditions.The initial temperature
is T0 and the ambient temperature is T∞ when t ≥ 0. Calculate the temperature
at the point r = 0 and z = 0.

Solution

Although, in theory, a spheroid with a convective surface submits to an exact solu-
tion, such an exact solution has not been found.This is due to the complexity of the
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exact mathematical and subsequent numerical procedures. Using Equation 11.15,
it is possible to find a set of basis functions that satisfy the convective boundary
conditions. After f (2)

j from Equation 11.9 is inserted into Equation 11.15, the basis
functions for convective spheroids are

f (3)
j = f (2)

j

{
Bi[(b2/a2)(1 − r2/a2) − z2/a2]

2(b /a)[(b2/a2)(r2/a2) − r2/a2 + 1]1 / 2 − 1

}
(11.18)

Next, the function f (3)
j must replace fj in Equations 10.12 and 10.13 to compute

matrices A and B. The analytical integrations of the resulting equations, if possi-
ble, are complicated and are not cost effective. Numerical quadrature was used
by Haji-Sheikh and Lakshminarayanan (1987) to compute aij ’s and bij ’s. The re-
maining steps are identical to those described in Example 11.2. In fact, the same
computer program is used to solve for temperature here and for Example 11.2, ex-
cept matrices A and B in this example are computed numerically, while symbolic
computer algebra was used to calculate A and B in Example 10.2. The com-
puted temperature results for a range of Biot numbers, ha / k , and aspect ratios
are shown in Figure 11.6. The solid lines are generally in good agreement with
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FIGURE 11.6 Example 11.4 results for temperature, (T − T0) /(T∞ − T0), at r = 0 versus
αt /a2.
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the Monte Carlo data (Haji-Sheikh and Sparrow, 1967). Previous comparisons, in
Example 10.2, with the exact solution imply that any small discrepancy can be
attributed to the sampling error in the Monte Carlo solution.

11.3 HETEROGENEOUS SOLIDS

The derivation of the GF solution, Equation 10.68 or the alternative GF solution,
Equation 10.77 permits the computation of thermal conduction in heterogeneous
bodies. The only difference between solutions for homogeneous and heterogeneous
solids is the selection of a set of basis functions. First, a set of basis functions must
be defined that satisfies the boundary conditions on the external surfaces and perfect
or imperfect contact relations between adjacent materials. Then, the basis functions
are used to solve a numerical example.

Let the subscript e identify an inclusion of different material enclosed in the main
body (Figure 11.7), and let m denote the main domain. The basis function fj ,m, which
satisfies the boundary conditions of the main body, is selected ignoring the inclusion;
therefore, fj is fj ,m in the main body. However, the basis function should be modified
as it crosses the boundary of the inclusion. The formulation of the basis functions in
the absence of contact conductance is given by Haji-Sheikh (1988). The formulation
is then modified to include the effect of finite contact conductance as (Haji-Sheikh
and Beck, 1990)

fj = fj ,m (in the main domain) (11.19a)

and

fj = fj ,m + U + φeH (in the ith inclusion) (11.19b)

for j = 1, 2, . . . , N . The continuity condition that km(∂fj /∂n)m = ke(∂fj /∂n)e and
the jump condition fj ,e = fj ,m − (km / C)(∂fj ,m / ∂n) at the boundary of the inclusion
(φe = 0 surface is different for different inclusions) permit the calculation of U

and H as

U = −
(

km

C

)(
∂fj ,m

∂n

)∣∣∣∣
φe=0

(11.20)

Vm

Vε–ε
ε

n

–Vε

Ve

FIGURE 11.7 Composite body with inclusion.
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and

H = [(∇fj , m · ∇φe)|φe=0(km / ke − 1) − ∇U · ∇φe|φe=0]
(∇φe · ∇φe)|φe=0

(11.21)

where C is the contact conductance. A linear combination of the basis function fj

satisfies the continuity of heat flux, km(∂T /∂n)m = ke(∂T /∂n)e, and temperature jump,
Te = Tm − (km /C)(∂Tj ,m /∂n), on the boundary of inclusion e. When the inclusion
has other boundaries in addition to the φe = 0 surface, other modifications to the
values of U and H become necessary (e.g., see Example 11.5).

Example 11.5:

To illustrate the method for accommodating the contribution of contact conduc-
tance, consider two plates: one has a thickness of a and the other L − a (see
Figure 11.8). It is convenient to let subscripts e and m stand for the regions
designated using these letters in Figure 11.8. The composite slab is initially at
temperature T0 and has the following boundary conditions

−km
∂T
∂x

= hT at x = L and when t > 0 (11.22a)

and

∂T
∂x

= 0 at x = 0 and when t > 0 (11.22b)

Write an equation for temperature distribution.

Solution

The basis function, fj , that satisfies the conditions −km∂fj,m /∂x = hfj,m at x = L
and ∂fj,m /∂x = 0 at x = 0, for j = 1, 2, 3, . . . , is

x = 0 x = a x = L

x

me

FIGURE 11.8 Two-layer wall insulated at x = 0 and convective surface at x = L for
Example 11.5.
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fj = fj,m =
(

δj − x2

a2

)(
x
a

)2(j−1)
a < x < L (11.23a)

where δj = (L /a)2(L /a + 2j/Bi) /[L /a + 2( j − 1) / Bi] and Bi = ha/km. A function
φ(x ) = 1 − x2/a2 is selected to satisfy the boundary condition given by Equa-
tion 11.22b and to vanish at x = a; then

fj = fj,e =
(

δj − x2

a2

)(
x
a

)2( j−1)

+ U +
(

1 − x2

a2

)
H 0 < x < a (11.23b)

The value of U = 2[ j − ( j − 1)δj ] /(Ca/km) is computed so that the equation
fj,e = fj,m − (km /C )(∂fj,m /∂x ) at x = a is satisfied, where C is the contact conduc-
tance. The continuity of heat flux at x = a yields H = (km /ke − 1)[ j − ( j − 1)δj ].
The solution when N = 2, L /a = 2, ke /km = 2, ha/km = 1, Ca/km = 1, and
ρecpe /ρmcpm = 1 is

T
T0

= 0.15048ψ1(x ) exp
(

−1.5407αt
a2

)

+ 0.006762ψ2(x ) exp
(

−11.449αt
a2

)
(11.24)

where

ψ1(x ) = f1 − 0.040305f2 (11.25a)

ψ2(x ) = f1 + 20.999f2 (11.25b)

When x ≤ a (that is, in region e), the functions f1,e and f2,e replace the f1 and f2
functions. However, when x ≥ a, the functions f1,m and f2,m replace the f1 and
f2 functions.

Whenever the boundary condition at x = 0 is convective, U must also satisfy
the convective boundary condition at x = 0. In addition, the coefficient (1−x2/a2)
that multiplies H should be replaced by a function that becomes 0 when x = a
and satisfies the convective condition at x = 0.

When calculating aij from Equation 10.12, the function fj suffers a step change
at and along the contact surface.The derivatives of fj across the inclusion boundary
are singular, and it can be shown that the value of the volume integral over the
singularity zone is zero. The integral given in Equation 10.12 for this example is∫

V
fi∇ · (k∇fj )dV =

∫
Ve−Vε

fi,e∇ · (k∇fj,e ) dV

+
∫ Ve+Vε

Ve−Vε

fi ∇ · (k∇fj ) dV

+
∫

V −Ve−Vε

fi,m∇ · (k∇fj,m) dV (11.26)
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The contact zone (Figure 11.7) is divided into +Vε and −Vε. The first integration on
the right side is over the inclusion up to the contact zone. The second integration
on the right side is over the contact zone, and the last integration is over the entire
domain less the inclusion and the contact zone. It can be shown that, as ε → 0, the
first and third integrals yield the value of aij if the second integral (over the contact
zone) on the right side of Equation 11.26 vanishes. Assuming the thickness of the
contact zone is extremely small, it is possible to ignore the derivatives of fj in the
directions perpendicular to the normal to the contact surface n (see Figure 11.7).
Then, the second term on the right side is integrated by parts

∫ +ε

−ε
fi

d
dn

(
k

dfj
dn

)
dn = fi

(
kdfj
dn

)∣∣∣∣
+ε

−ε

−
∫ +ε

−ε
k
(

dfi
dn

)(
dfj
dn

)
dn (11.27)

At the limit as ε → 0, Equation 11.27 reduces to

lim
ε→0

qj [( fi,m(ε) − fi,e (−ε)] − qj [( fi,m(ε) − fi,e (−ε)] = 0 (11.28)

where qj = km∂fj,m /∂n = ke∂fj,e /∂n is a constant in Vε.
When fj or its normal derivative on the exterior surfaces is zero, it is possible

to substitute Equation 10.14 in Equation 10.12 to obtain

aij = −
∫

V
k∇fi · ∇fj dV (11.29)

If this equation is utilized to compute aij instead of Equation 10.12, the value of
the integral over the contact zone, where the derivatives of fj are singular, is not
zero and should be evaluated.

At this stage, it is appropriate to solve a three-dimensional nonorthogonal prob-
lem to illustrate the strength of this Galerkin-based integral (GBI) solution. The
following example does not have an exact solution and numerical computation of
the temperature is a formidable task. The procedure discussed in Example 11.5 is
applied to a more complex problem to demonstrate the possibility of accommo-
dating difficult thermal conduction problems.

Example 11.6:

Consider a spherical inclusion whose radius is equal to a, centrally located in a
cubical body with dimensions 2b × 2b × 2b (Figure 11.9). The initial temperature
is 0 and the external surface temperature is maintained at 1 when t ≥ 0. Find the
temperature distribution.

Solution

Although the shape of the body is simple, it contains all the complexities one
expects in a conduction problem. The procedure described in this example and
the previous example can be applied to other geometries. The basis functions are

fj,m = (b2 − x2)(b2 − y2)(b2 − z2)xmj ynj z lj (11.30)

in which mj , nj , and lj take values of 0, 1, 2, . . . . The function φe is given by

φe = a2 − x2 − y2 − z2 (11.31)
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FIGURE 11.9 Cubical body with centrally located spherical inclusion.

which unconditionally vanishes on the surface of the inclusion. The function fj
in the inclusion is fj,e obtained from Equation 11.19b assuming a perfect contact
between materials (U = 0). Due to symmetry, only even values of mj , nj , and lj
need be considered. However, for a one-term solution, mj = nj = lj = 0, the
functions f1,m, f1,e are

f1,m = (b2 − x2)(b2 − y2)(b2 − z2) (11.32a)

f1,e = f1,m +
(

km

ke
− 1

)
(a2 − x2 − y2 − z2)

× [x2(b2 − y2)(b2 − z2) + y2(b2 − x2)(b2 − z2)

+ z2(b2 − x2)(b2 − y2)] (11.32b)

A solution with a higher degree polynomial is a four-term solution, and the next
higher degree polynomial yields a 10-term solution. Problems with high degree
polynomials are ideally suited to symbolic algebra software because the exact
integrations leading to the computation of matrices A and B are repetitive and
lengthy. To show the mathematical steps, the elements of matrices A and B, when
N = 1, are evaluated using Equations 10.12 and 10.13:

a11 = Ia1 +
(

ke

km
− 1

)
(Ia2 − Ia3) + ke

km

(
km

ke
− 1

)2
Ia4 (11.33)

and

b11 = Ib1 +
(

Ce

Cm
− 1

)
Ib2 + Ce

Cm

[(
km

ke
− 1

)
Ib3 +

(
km

ke
− 1

)2
Ib4

]
(11.34)

where Cm and Ce stand for ρcp of the main region and inclusion, respectively,
and the values of Ia2, Ia3, Ia4, Ib1, Ib2, Ib3, and Ib4 in Equations 11.33 and 11.34 are
in Table 11.1. The alternative GF solution, Equation 10.77 is used to compute the
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TABLE 11.1
Values of the Integrals in Equations 11.33 through 11.35

Integralsa b / a = 1.5 b / a = 2.0 b / a = 2.5 b / a = 3 b / a = 5

Ia1 −2.214 × 102 −9.321 × 103 −1.695 × 105 −1.814 × 106 −1.389 × 109

Ia2 −1.138 × 102 −2.488 × 103 −2.545 × 104 −1.657 × 105 −2.945 × 107

Ia3 −1.098 × 102 −2.444 × 103 −2.517 × 104 −1.644 × 105 −2.936 × 107

Ia4 −9.063 × 100 −1.014 × 102 −6.374 × 103 −2.820 × 103 −1.751 × 105

Ib1 6.643 × 101 4.971 × 103 1.413 × 105 2.177 × 106 4.630 × 109

Ib2 3.895 × 101 1.576 × 103 2.566 × 104 2.430 × 105 1.217 × 108

Ib3 7.199 × 100 1.505 × 102 1.508 × 103 9.713 × 103 1.699 × 106

Ib4 3.828 × 10−1 4.165 × 100 2.582 × 101 1.134 × 102 6.962 × 103

Ic1 1.139 × 101 1.517 × 102 1.130 × 103 5.832 × 103 5.787 × 105

Ic2 4.471 × 100 2.864 × 101 1.158 × 102 3.564 × 102 7.981 × 103

Ic3 4.104 × 10−1 1.357 × 100 3.383 × 101 7.092 × 100 5.560 × 101

aIa1 = −256a13 / 255, Ib1 = (8a5 / 15)3, and Ic1 = (2a3 / 3)3.

temperature distribution

T − T0

Ts − T0
= 1 − p11

[
Ic1 +

(
Ce

Cm
− 1

)
Ic2 + Ce

Cm

(
km

ke
− 1

)
Ic3

]
f1 exp(−γ1t )

(11.35)

The integrals Ic1, Ic2, and Ic3 are also presented in Table 11.1. The function f1
is fj when j = 1 given by Equation 11.30 outside of the inclusion and by Equa-
tion 11.32 inside of the inclusion. When the initial temperature F (r) = T0, the
surface temperature Ts is a constant, b /a = 3, ke /km = 10, and Ce /Cm = 1, the
following dimensionless parameters are obtained:

a11 = 1.848 × 106 (11.36a)

b11 = 2.168 × 106 (11.36b)

a2γ1

αm
= − a11

b11
= 0.8525 (11.36c)

d11 = 1 (11.36d)

p11 = 1
b11

(11.36e)

and the temperature solution using Equations 11.36c through e is

T − T0

Ts − T0
= 1 − 2.687 × 10−3f1 exp

(
−0.8525αt

a2

)
(11.37)

Similar calculations, using many basis functions, were carried out by Nomura
and Haji-Sheikh (1988). The computed temperature when ke /km = 10 and for
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FIGURE 11.10 Dimensionless temperature, (T − T0) /(Ts − T0), versus dimensionless time
αt /a2 for a sphere in cubical body.

a = 3 is shown in Figure 11.10. It is evident that, because of the high thermal
conductivity of the inclusion, the temperature change within the inclusion is ex-
tremely small. Figure 11.10 shows the temperature at the center of the inclusion,
point (0, 0, 0), is nearly the same as the temperature at the contact point (1, 0,
0). The differentiations and integrations required for calculating aij can be done
manually; however, manual integrations are too time consuming. Nomura and
Haji-Sheikh (1988) performed the integrations with the aid of the symbolic soft-
ware, REDUCE-3 (Hearn, 1983). Note that it is mathematically and numerically
feasible to add inclusions of various shapes to the main domain.

11.4 STEADY-STATE CONDUCTION

The GFs and GF solutions for steady-state conduction can be deduced by modifying
the GF and GF solutions for transient conduction. The steady state is defined as being
independent of time. The modification is equally applicable to the GF solution, Equa-
tion 10.68, and the alternative GF solution, Equation 10.77. The transient solution
approaches the steady-state solution as t → ∞. Accordingly, the contribution of the
initial temperature distribution in the GF solution will not influence the steady-state
solution. If Gss is defined as the steady-state GF, then, using Equation 10.60,

Gss = G(r′|r)

= lim
t→∞

∫ t

τ=0
G(r′, −τ|r, t) dτ

=
N∑

n=1

N∑
j=1

N∑
i=1

dnjpniρ(r)cp(r)fj (r′)fi(r)

γn

(11.38)
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The GF solution then becomes

ρ(r)cp(r)T (r) =
∫

V

g(r′)GssdV ′ +
∫

S

k(S ′)
(

Gss

∂T

∂n
− T

∂Gss

∂n

)
S′

dS ′ (11.39)

Similarly, the alternative GF solution reduces to

ρ(r)cp(r)T (r) = ρ(r)cp(r)T ∗(r) +
∫

V

Gss[g(r′) + f ∗]dV ′ (11.40)

One can show analytically that Equation 11.40 reduces to the standard Galerkin
solution (Kantorovich and Krylov, 1960)

T = T ∗ − [{A−1 · {g∗}}T ]{f} (11.41)

where {f} is a column vector with elements f1, f2, . . . , fN and {g∗} is another column
vector whose members are

g∗
i =

∫
V

[g(r′) + f ∗(r′)] fi(r′) dV ′ (11.42)

When the boundary conditions are nonhomogeneous, the standard Galerkin solution
of Poisson’s equation is possible if an auxiliary function, T ∗, exists.

Example 11.7:

Consider a cylindrical pipe with radius r = a centrally placed in a long square box
2b × 2b (Figure 11.11). The boundary conditions are T = T0 at r = a and T = 0
at x = b and at y = b. Calculate the temperature field and plot the isotherms.

Solution

This example shows the method of calculating the steady-state temperature using
the quasisteady temperature T ∗.The method is applicable to numerous conduction
problems for which an exact solution does not exist. The computation begins by
utilizing Equation 10.72b which satisfies the boundary conditions T = T ∗ = T0
at r = a and T = T ∗ = 0 on the surface of the square box

T ∗
T0

= 1 − ln[(x2 + y2) / a2]
ln[(b2 + x2y2 / b2) / a2] (11.43)

The basis functions are

fj =
(

1 − x2

b2

)(
1 − y2

b2

)(
x2

b2 + y2

b2 − a2

b2

)(
x
b

)mj
(

y
b

)nj

(11.44)

When N = 3, a/b = 0.75, g = 0, and f ∗ is defined by substituting T ∗ from
Equation 11.43 in Equation 10.73, then Equation 11.42 yields

g∗ = {0.10750, 0.050747, 0.050747} (11.45)
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FIGURE 11.11 Long pipe in square box with isotherms in Example 11.7.

Note that when j = 1, mj = nj = 0; when j = 2, mj = 2 and nj = 0; when
j = 3, mj = 0 and nj = 2. After the basis functions defined by Equation 11.44 are
inserted in Equation 10.12, matrix A becomes (fin effect is neglected)

A =



0.13268 0.065463 0.065463
0.065463 0.046750 0.024989
0.065463 0.024989 0.046750


 (11.46)

Here, matrices A and B can be evaluated analytically, but numerical quadrature
is needed to evaluate the elements of g∗. Then Equation 11.41 provides the tem-
perature distribution

T
T0

= T ∗ + (b2 − x2)(b2 − y2)(x2 + y2 − a2)(d1 + d2x2 + d3y2) (11.47)

where d2 and d3 are identical. The isotherms are computed by this method and
plotted in Figure 11.11. Table 11.2 also supplies temperature distribution for other
values of b / a = 0.25, 0.5, and 1.

The availability of an auxiliary function T ∗ eliminates the need to compute
matrix B because Equation 11.41 yields the same results as Equation 11.40, yet the
number of algebraic and matrix operations are substantially less. However, when
T ∗ is not available, the steady-state formulation of the GF solution, Equation 11.39,
should be used.
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TABLE 11.2
Coefficients d1, d2, and d3 = d2 in Equation 11.47

d’s a/b = 0.25 a/b = 0.5 a/b = 0.75 a/b = 0.9 a/b = 1

d1 0.15837 0.33238 1.1268 4.7624 19.092
d2 −0.055156 −0.087483 −0.32086 −2.0544 −10.001

11.5 FLUID FLOW IN DUCTS

A knowledge of heat transfer in the entrance region of ducts is essential in the design
of compact heat exchangers. The analytical steps described in this section apply
to entrance flow in ducts with various cross-sectional shapes; hence, the geometric
restriction to obtain a solution is essentially eliminated. The restrictions are that the
flow must be hydrodynamically fully developed. The velocity profile is the solution
of the momentum equation written for hydrodynamically fully developed, laminar,
and Newtonian flow as

∂2W

∂X2
+ ∂2W

∂Y 2
+ 1 = 0 (11.48a)

where

W = −w

(a2 /µ)(∂P /∂z)
(11.48b)

P is pressure, w is local velocity in the z-direction, a is the characteristic length,
X = x / a, Y = y / a, and µ is the viscosity coefficient. After defining the basis
functions so that fi = 0 at the wall (note w = 0 at the wall), Equation 11.48a
yields the value of W using Equation 11.41. The parameters g∗

i are obtained from
Equation 11.42 after substituting g = 1 and f ∗ = 0 as

g∗
i = 1

Ac

∫
Ac

fi dA (11.49)

where Ac is the cross-sectional area of the duct. Equation 11.41, which is the standard
Galerkin method, is used to solve for the velocity distribution. The auxiliary func-
tion T ∗ is zero since the boundary conditions are homogeneous. The A−1 · {g∗} in
Equation 11.41 results in coefficients d1, d2, . . . , dN , and the solution for W is

W =
N∑

i=1

difi (11.50)

The standard definition for average velocity is used to calculate the value of Wav as

Wav = 1

Ac

∫
Ac

WdA =
N∑

i=1

dig
∗
i (11.51)
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The friction factor Cf is defined as −De(∂P /∂z) /(ρ w2
av /2) and it can be written as

Cf Re = 2D2
e

aWav
= 2D2

e

Wav
(11.52)

where Re = ρDewav /µ, and De /a is designated as the dimensionless hydraulic
diameter. Then, the dimensionless velocity is

W

Wav
= w

wav
= Cf Re

2D2
e /a2

N∑
j=1

dj fj (11.53)

After calculating w (or W ), attention must be focused on the computation of tem-
perature. The value of w(r) replaces u(r) and z replaces t in Equation 10.11 to yield
the energy equation for incompressible fluid flowing at a constant rate in a duct
[g(r, t) = 0 and m(r) = 0] as

ρ(r)cp(r)w(r)
∂T

∂z
= ∂

∂x

[
k(r)

∂T

∂x

]
+ ∂

∂y

[
k(r)

∂T

∂y

]
(11.54)

Here, the effect of axial conduction is neglected. A solution method that includes
the effect of axial conduction is reported in Lakshminarayanan (1988) and Lakshmi-
narayanan and Haji-Sheikh (1988).

The volume integrals in Equations 10.12 and 10.13 become surface integrals once
V is replaced by the cross-sectional area Ac, and the variable t is replaced by the axial
coordinate z. Equations 10.12 and 10.13 yield the elements of matrices A and B

aij = 1

Ac

∫
Ac

fi∇ · (∇fj ) dA (11.55a)

which, for boundary conditions of the first or second kind, can be written as

aij = − a2

Ac

∫
Ac

∇fi · ∇fi dA (11.55b)

and

bij = 1

Ac

∫
Ac

w

wav
fi fj dA (11.56)

The thermophysical properties in the definition of aij and bij are omitted to make aij

and bij dimensionless. The quantity

γn = a2wavγn

α
(11.57)

is now the dimensionless eigenvalue, since dimensionless variables in the math-
ematical formulations of aij and bij are being used. The conservation of energy,
dQs = hdAs(Ts − Tb) = ρwavAccpdTb, at any z, dictates that

4h

ρcpwavDe

= −d(Tb − Ts) / dz

Tb − Ts

(11.58)
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where Tb is the bulk temperature defined by

Tb = 1

Ac

∫
Ac

(w/wav)T dA (11.59)

Also, Ts , Qs , and As are the surface temperature, surface heat flux, and surface area,
respectively. Equation 10.77 when g = 0 and T ∗ = Ts provides the temperature dis-
tribution which can be substituted in Equation 11.59 to obtain the bulk temperature Tb.
The substitution of the bulk temperature in Equation 11.58 results in the value of the
circumferentially averaged heat transfer coefficient, h = h(z). As z approaches infin-
ity, the contribution of all eigenvalues will diminish except the first eigenvalue and
the left side of Equation 11.58 becomes γn. Then, using Equation 11.57 to evaluate γn,
Equation 11.58 reduces to

Nu = hDe

k
= D2

eγ1

4
(11.60)

Therefore, the first eigenvalue is proportional to the thermally fully developed Nusselt
number. Table 11.3 gives the analytical expressions of the components of matrices A
and B and vector g∗ needed to solve the velocity and temperature fields in selected
ducts. The entries in Table 11.3 are for the prescribed surface temperature. Equa-
tion 11.55b is used to calculate the elements of matrix A.

Example 11.8:

For a laminar and fully developed flow of an incompressible and Newtonian fluid
in a circular pipe, calculate temperature distribution and the heat transfer coeffi-
cient. Fluid at temperature of 0 enters a heated pipe and the surface temperature
of the pipe is maintained at temperature of 1.

Solution

The well-known Graetz problem is selected to illustrate how to use the integral
method; it leads to the solution of the heat transfer coefficient for flow in circular
pipes. The basis functions are

fj =
(

1 − r2

r2
0

)(
r
r0

)2( j−1)

for j = 1, 2, . . . , N (11.61)

The velocity profile for fully developed flow is w / wav = 2(1 − r2 / r2
0 ). This ve-

locity profile can be obtained from the exact solution or the Galerkin method.
The elements of matrix B that use this parabolic velocity profile and the ele-
ments of matrix A are in Table 11.3. Again, Equation 10.11 yields the eigen-
values. As discussed earlier, the first eigenvalue in the duct flow problems is
of special importance. It provides the fully developed heat transfer coefficient.
When N = 1, Nu = 3, whereas a two-term solution (i.e., N = 2) yields
Nu = 20[1−(2 / 3)1 / 2] = 3.6701; this is very close to the value of 3.6568 obtained
from the exact solution. When N is increased to 3, a very accurate value of the
Nu = 3.6570 is obtained.
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TABLE 11.3
Matrices A and B and Vector g* for Selected Ducts

Circular duct

w / wav = 2(1 − r2), φ = 1 − r2

aij = −(8i − 4)

(
1

i + j − 1
− 1

i + j

)
+ 4(i − 1)2

(
1

i + j − 2
− 2

i + j − 1
+ 1

i + j

)
and

bij = 2

(
1

i + j − 1
− 3

i + j
+ 3

i + j + 1
− 1

i + j + 2

)

Right triangular ducts

fj = (x / a)( y / a − b / a)[ y / a − (b / a)(x / a)](x / a)mj ( y / b)nj

j = 1; m1 = 0 and n1 = 0
j = 2; m2 = 1 and n2 = 0
j = 3; m3 = 0 and n3 = 1
j = 4; m4 = 2 and n4 = 0
j = 5; m4 = 1 and n4 = 1

y

b

a
x

(a)

aij = −2

(
b

a

)ni+nj +4 [
(mi + 1)(mj + 1)

mi + mj + 1
− 2mimj + 3(mi + mj ) + 4

mi + mj + 2

+ (mi + 2)(mj + 2)

mi + mj + 3

](
1

l + 6
− 2

l + 5
+ 1

l + 4

)

−2

(
b

a

)ni+nj +2 (
G1

mi + mj + 3
− G2

mi + mj + 4
+ G3

mi + mj + 5

)

where

G1 = ninj + 2(ni + nj ) + 4

l + 6
− 2ninj + 3(ni + nj ) + 4

l + 5
+ ninj + (ni + nj ) + 1

l + 4

G2 = 2ninj + 3(ni + nj ) + 4

l + 6
− 4ninj + 4(ni + nj ) + 2

l + 5
+ 2ninj + ni + nj

l + 4

G3 = ninj + ni + nj + 1

l + 6
− 2ninj + ni + nj

l + 5
+ ninj

l + 4

bij = 2
Cf Re

2D2
e / a2

M∑
k=1

dk

(
b

a

)ν1+6 (
1

µ1 + 4
− 3

µ1 + 5
+ 3

µ1 + 6
− 1

µ1 + 7

)

×
(

1

ν + 11
− 3

ν + 10
+ 3

ν + 9
− 1

ν + 8

)

ψj = 2(b / a)nj +2

(mj + 2)(mj + 3)(mj + nj + 4)(mj + nj + 5)

(Continued)
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TABLE 11.3
Matrices A and B and Vector g* for Selected Ducts (Continued)

Isosceles triangular ducts

fj = (y /a − b/a)[(y /a)2 − (b/a)2(x /a)2](x /a)mj (y /b)nj

j = 1; m1 = 0 and n1 = 0
j = 2; m2 = 0 and n2 = 1
j = 3; m3 = 2 and n3 = 0
j = 4; m4 = 0 and n4 = 2

aij = −2

(
b

a

)ni+nj +6 [
mimj

mi + mj − 1
− 2(mimj + mi + mj )

mi + mj + 1

+ (mi + 2)(mj + 2)

mi + mj + 3

](
1

l + 6
− 2

l + 5
+ 1

l + 4

)
− 2

(
b

a

)ni+nj +4

×
(

G1

mi + mj + 1
− G2

mi + mj + 3
+ G3

mi + mj + 5

)

where

G1 = (ni + 3)(nj + 3)

l + 6
− (ni + 2)(nj + 3) + (ni + 3)(nj + 2)

l + 5
+ (ni + 2)(nj + 2)

l + 4

G2 = 2

[
ninj + 2(ni + nj ) + 3

l + 6
− 2ninj + 3(ni + nj ) + 2

l + 5
+ ninj + ni + nj

l + 4

]

G3 = ninj + ni + nj + 1

l + 6
− 2ninj + ni + nj

l + 5
+ ninj

l + 4

bij = 2
Cf Re

2D2
e / a2

M∑
k=1

dk

(
b

a

)ν1+9 (
1

µ1 + 1
− 3

µ1 + 3
+ 3

µ1 + 5
− 1

µ1 + 7

)

×
(

1

ν + 11
− 3

ν + 10
+ 3

ν + 9
− 1

ν + 8

)

g∗
j = 4(b / a)nj +3

(mj + 1)(mj + 3)(mj + nj + 4)(mj + nj + 5)

Nomenclature of indices

i, j , k, m, n indices

l mi + ni + mj + nj

µ1 mi + mj + mk

ν1 ni + nj + nk

ν µ1 + ν1

y

b

a
x

(b)
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TABLE 11.4
Local Nusselt Number in Circular Ducts

Results

z / De

Pe
Integral method, Kays and Perkins Shah and London

N = 12 (1973) (1978)

0.00001 59.621 – 61.877
0.0001 28.148 – 28.254
0.001 12.824 12.86 12.824
0.004 8.036 7.91 8.036
0.01 6.002 5.99 6.002
0.04 4.172 4.18 4.172
0.08 3.769 3.79 3.769
0.1 3.710 3.71 3.710
0.2 3.658 3.66 3.658
0.5 3.657 3.66 3.657

After computation of the eigenvalues and matrices D and P, the alternative
GF solution, Equation 10.77, yields the temperature distribution. The values of
the Nusselt number within the entrance region of the pipe are computed by
Lakshminarayanan (1988) and Lakshminarayanan and Haji-Sheikh (1986), and
compared with the exact solution in Table 11.4. The agreement between the two
solutions is generally excellent. The GF solution method permits the inclusion of
position dependent wall temperature and locally variable volumetric heat gen-
eration in the solution. The boundary condition of second and third kinds can
be accommodated using the one-dimensional basis functions already defined in
Chapter 10. The calculation can be extended to ducts with more complex cross-
sections. For instance, the heat transfer coefficients for various isosceles and right
triangular ducts are calculated and reported by Lakshminarayanan (1988) and
Lakshminarayanan and Haji-Sheikh (1986). The matrices A and B for the above-
mentioned ducts are in Table 11.3.

11.6 CONCLUSION

The multidimensional applications discussed in this chapter show that many complex
geometries can be accommodated using the Galerkin-based GF. The success of this
method depends on the availability of the basis functions for a given application or
one’s ability to find a set of basis functions. Because the number of basis functions
needed to provide an accurate solution is usually small, numerical computation can
be used to compute the elements of matrices A and B. Various symbolic software
programs are widely available and are valuable tools to assist in the mathemati-
cal differentiation of the basis functions. Also, the symbolic integration, whenever
possible, results in high-speed computer operation by providing virtually error-free
mathematical equations.
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We showed that the application of the Galerkin-based GF solution to heterogeneous
bodies is possible and the generalized formulation of the GF can be used once the
basis functions are available. In addition, we showed that the generalized GF solution
can be modified for steady-state conduction problems. However, the steady-state
solution, using the alternative formulation of the GF, reduces to the standard Galerkin
method.

The Galerkin-based solution can also be used to solve for the heat transfer co-
efficient in the entrance region of ducts. The usefulness of the GF solution method
given in Chapter 10 and utilized in this chapter is limited to the case when the ther-
mal conduction in the flow direction is negligible (large Péclet number). However, it
is possible to modify the Galerkin-based integral method so that the effect of axial
conduction can be included in the analysis.

PROBLEMS
11.1 A square bar has dimensions 1 × 1. When the boundary conditions

are of the first kind, use the product method to compute the basis
functions. Repeat the steps using the method used in Example 11.1.

11.2 A finite cylinder with radius r0 is subject to convective heat transfer
at r = r0 while the temperature is prescribed on other surfaces. Find
the GF using the product method.

11.3 A hemisphere of radius r0 has prescribed convection on r = r0
surface while the temperature is prescribed at the other surface. Use
the product method to define the basis functions. Comment on the
case when convection is prescribed for all surfaces.

11.4 Consider a spheroidal solid whose surface is given by equation
r2 / a2 + z2 / b2 = 1. For boundary conditions of the first kind,
show that a11 = −96(19b2 + 13)V / 945b2 and b11 = 384V / 2079,
where V is the volume of the spheroid. Find matrices D and P and
the GF. Propose a small-time GF for the purpose of partitioning.

11.5 Equations 11.5 and 11.9 give the basis functions for a spheroidal
solid with insulated external surface. A spheroid, a = 1 and b = 6,
receives heat from a heat source at the rate of q(t). Is it possible to
have a one-term solution using Equation 10.68? What is the small-
est number of terms for a reasonable solution? Show that the first
eigenvalue is γ1 = 0.

11.6 Repeat Example 11.5, except let T = 0 at x = 0. Redefine fj ,m, U ,
and H so that the boundary conditions are satisfied.

11.7 An isosceles right triangular solid bar is externally insulated. The
central portion of this long bar, in a circular zone, has thermophysical
properties different from the rest of the bar. Find the parametric
relations for the basis functions.

11.8 Use a one-term solution to show that the alternative GF solution
becomes identical to the Galerkin solutions as t → ∞. (Hint: when
j = 1, Equations 11.40 and 11.41 are identical.)

11.9 Show that Equations 11.40 and 11.41 produce the same results for
any number of terms.
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11.10 Calculate the Nusselt number for a fully developed laminar flow
in an elliptical duct. The duct’s wall temperature is constant. Find
a solution that uses the GF for an arbitrarily selected surface
temperature.

11.11 Reproduce the data near the entry point of a circular duct using time
partitioning of the GF and compare with the entries in Table 11.4.

11.12 The GFs in solid right-triangular rods are needed. Show that the el-
ements of matrix A for boundary conditions of the first kind are the
same as those given in Table 11.3. Calculate a similar relation for ma-
trix B. (Caution: The entries in Table 11.3 are from Equations 11.51b
and 11.52.)

11.13 Fluid passes through an annulus whose external surface is elliptical
and the internal surface is circular. Consider that the flow is lami-
nar and the boundary conditions are of the first kind. Find the GFs
assuming: (a) slug flow, and (b) viscous flow.

11.14 Use Example 11.8 and find a two-term temperature solution when
heat generates at the rate of g W/m2. The inlet and wall temperatures
are maintained at zero.

11.15 Repeat Example 11.8, except, now the surface heat flux is prescribed
instead of the wall temperature.

11.16 Repeat Problem 11.14, except now the surface heat flux instead of
surface temperature is prescribed.

11.17 A 10-cm diameter steel pipe 3 mm thick, k = 60 W/mK, ρ =
7850 kg/m3, and cp = 434 J/kgK, is carrying a gas. It has a
5-cm-thick insulation with thermophysical properties k = 0.04 W/mk,
ρ = 100 kg/m3, and cp = 1200 J/kgK. Inside and outside fluid
temperatures are 600 K and 300 K, the corresponding heat transfer
coefficients are 100 W/m2K and 50 W/m2K, and the contact conduc-
tance between two layers is 10 W/m2K. If the initial temperature is
300 K, using the COND program, display the surface temperatures
and calculate the variation of external and internal heat flux with
time.

11.18 A straight fin has dimensionless quantities L = 0, T = 1 at x = 0,
q = 0 at x = 1. When m = √

hP / kA = 0.5 and fin is ini-
tially at zero temperature, use the COND program to calculate
the dimensionless heat flux per unit area of the base at αt /L2 =
0.2, 0.4, 0.8, 1, 2, ∞.

11.19 The radius r of a pin fin varies as x2 when 0.5 < x / x2 < 1. Also,
the perimeter varies as x2. The initial and ambient temperatures
are 0. The boundary condition at x = x1 = x2 / 2 is convective so
that h1x2 / k = 0.02. The heat transfer coefficient, h, on the fin surface
varies as r−0.25 so that x2

2 (hP / kA) = 2x−2.5. Find temperature dis-
tribution as a function of αt / L2 at x = x1 using the COND program.

11.20 When initial temperature is 1, a = 0, b = 1, q1 / k = −1, q2 /
k = −2, and α = 1, for Example 10.7, use the COND program to dis-
play temperature distribution at x = 0, 0.2, 0.4, 0.6, 0.8, and 1. Ex-
plain the nature of steady-state solution. Repeat the calculations but
consider that the plate has a uniform volumetric heat source, g = 3.
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Element Method

12.1 INTRODUCTION

The unsteady surface element (USE) method is a boundary discretization method
for solution of linear transient two- and three-dimensional heat transfer problems. Its
development originated with the need to calculate interface temperatures and heat
fluxes for similar and dissimilar geometries connected over a relatively small portion
of their surface boundaries. Examples of bodies connected over a small area occur
in contact conductance problems such as the case of two semi-infinite cylinders in
contact over only a central circular region, as shown in Figure 12.1a. An example
involving dissimilar geometries is the intrinsic thermocouple problem which involves
a semi-infinite cylinder attached to a semi-infinite body (Figure 12.1b) or to an infinite
plate (Figure 12.1c). Other related examples are those associated with the electrical
contacts, cooling of electronic systems, fins, and conjugated problems.

The above-mentioned problems may involve transient heat transfer and differing
thermophysical properties. The solution is difficult because the separate regions are
coupled by simultaneous interfacial boundary conditions that may vary with time in
some unspecified manner. Numerical methods are the primary means to solve such
problems, even though for certain problems it is sometimes possible to obtain ap-
proximate solutions by relaxing the conditions that the coupled regions must satisfy.

Closely related to the USE method is the boundary element (BE) method, which
has been used in a variety of engineering problems such as solid mechanics, fluid flow,
soil mechanics, water waves, heat conduction, electrical problems and a broad range
of other applications (Banerjee and Butterfield, 1979; Banerjee and Shaw, 1982;
Banerjee and Mukherjee, 1984; and Banerjee and Watson, 1985). The BE method
involves Green’s theorem to formulate the problem described by a partial differential
equation in a given region with some specific boundary conditions as an integral
equation which applies only to the boundary of the region. Basic building blocks
used in the BE method are source solutions (Green’s functions, GFs) for infinite
homogeneous bodies.

The BE method is well suited for solving steady-state problems with infinite do-
main and irregular-shaped boundaries. A number of papers have been written for
steady-state heat conduction problems (Schneider, 1979; Schneider and LeDain,
1979; Khader, 1980; Khader and Hanna, 1981).

Application of the BE method to transient problems has received less attention
compared to the steady-state problems. This is due to the complexity of having the
independent variable of time. There are two basic ways of handling the effects of
time. One is to temporarily eliminate time as an independent variable by utilizing
the Laplace transform and then solving the problem in the transform space by using

441
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FIGURE 12.1 (a) Two connected semi-infinite cylinders simulating contact conductance
problem. (b, c) Some geometries for intrinsic thermocouple problem.

the BE method. The time solution is then obtained by numerical transform inversion.
This is the approach taken by Rizzo and Shippy (1970) to solve the problem of heat
conduction in an infinite cylinder of an isotropic medium. The other approach is
to treat the time directly in the same manner as the spatial coordinates are treated,
integrating numerically over the time as well as over the boundary of the body. Shaw
(1974) utilized the direct approach to investigate heat conduction in a circular sector
of an isotropic medium. A similar approach was taken by Chang et al. (1973) to
treat anisotropic heat conduction in the transient case with heat generation. Wrobel
and Brebbia (1981) employed this approach to solve three-dimensional axisymmetric
transient heat conduction problems of a solid cylinder, a prolate spheroid, and a solid
sphere, all with time-dependent boundary conditions.

In the USE method, only the interface between the contacted bodies (or the active
part of the boundary) requires discretization as compared to the discretization of
the whole domain required in the finite-difference and finite-element methods or
discretization of the whole boundary in the BE method. This, in turn, reduces the
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size of numerical computations, especially for three-dimensional problems. Another
aspect of the USE method is that, unlike the above-mentioned alternative methods,
it does not require any modifications or special handling of points near the domain
boundaries. The USE method uses Duhamel’s theorem and involves the inversion of
a set of Volterra integral equations, one for each surface element. Though the method
is limited to linear regions it can be used for nonlinear boundary conditions.

Two types of kernels (“building blocks” or influence functions) can be employed
in the USE method: temperature based and heat flux based. The method requires
that these kernels or influence functions be known for the basic geometries under
consideration. For many geometries, the influence functions are known or can be
obtained by analytical methods or through the use of GFs.

Yovanovich and Martin (1980) suggested the name “surface element method” and
did early work on a steady-state form of this method. Keltner and Beck (1981) were the
first to employ the surface element method for transient problems. They considered
only one element along the interface and utilized the Laplace transform technique
to obtain “early” and “late” time approximate analytical solutions for two arbitrary
bodies suddenly brought into thermal contact over a small area. The multinode form
of USE (numerical approach) was originally developed by Litkouhi and Beck (1985,
1986) and applied to contact between large bodies over a small circular area and the
intrinsic thermocouple problem. Cole and Beck (1987, 1988) have extended the USE
method to a conjugated heat transfer problem.

The objective of this chapter is to introduce the basic mathematical concepts and
formulations of the USE method and to demonstrate its applications by present-
ing some example problems. Duhamel’s theorem and its relation to the GF function
method is presented in Section 12.2. Section 12.3 is devoted to formulation and devel-
opment of the USE equations and the related numerical solutions. The approximate
analytical solutions of the USE equations are discussed in Section 12.4, and finally,
to illustrate the application of the USE method, some example problems are given
and discussed in Section 12.5.

12.2 DUHAMEL’S THEOREM AND GREEN’S
FUNCTION METHOD

When the boundary condition is a function of time, solution of a linear heat conduc-
tion problem may be deduced from the well-known Duhamel’s theorem. Duhamel’s
theorem employs a fundamental (or a “building block”) solution which is used with
the superposition principle to obtain temperature at any point r, and time t . Briefly,
it states that if ψ(r, t) is the solution to a linear system initially at zero temperature,
due to a unit stepwise input, then the solution to the same system initially at zero
temperature due to a time-varying input F (t) (instead of unit step) is given by

T (r, t) = ∂

∂t

∫ t

0
F (τ)ψ(r, t − τ)dτ (12.1a)

where r is the position vector, t is time, and τ is a dummy variable for integration.
The input function F (t) can be any type of time-dependent boundary condition (such
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as prescribed surface temperature, ambient temperature, or prescribed surface heat
flux) or heat generation. An alternative form of Equation 12.1a can be obtained with
Leibniz’s rule for differentiation of an integral,

T (r, t) =
∫ t

0
F (τ)

∂ψ(r, t − τ)

∂t
dτ (12.1b)

Equation 12.1a and b represent a form of Duhamel’s theorem where the input func-
tion F (t) varies only with time. The derivation of this form of Duhamel’s theorem is
given by several authors using different approaches. The approach presented by Ozisik
(1993, p. 195) and Luikov (1968, p. 344) uses Laplace transformations. Myers (1987,
p. 153) uses the concept of superposition to derive Duhamel’s theorem for prescribed
surface temperature boundary condition; while Beck et al. (1985a, p. 81) employ
the same principle to derive Duhamel’s theorem for heat flux boundary conditions.
It is also conventional to treat problems with spatially varying boundary conditions
by using Duhamel’s theorem with integration over space (Eckert and Drake, 1972,
p. 322) and (Kays et al., 2005, p. 111). The following derivation of Duhamel’s theorem
involves simultaneous variation of both time and space conditions for an arbitrary
two-dimensional geometry.

12.2.1 DERIVATION OF DUHAMEL’S THEOREM FOR TIME- AND

SPACE-VARIABLE BOUNDARY CONDITIONS

Consider the boundary value problem of heat conduction for an arbitrary two-
dimensional region R initially at zero temperature, with a time- and space-variable
heat flux over boundary S as shown in Figure 12.2. For simplicity, it is assumed that
q(s, t) is nonzero only over the portion of boundary S from s = 0 to s = L, and the
other portion of the boundary is insulated [q(s, t) = 0, for s > L]. The objective is
to find an expression for the solution of above problem using Duhamel’s theorem.

In the first step the solution to the fundamental problem is found. The fundamental
problem is identical to the above problem with the exception that the variable flux
boundary condition, q(s, t), is replaced by a special unit step function. It is described
by the following equations:

∇2ψq = 1

α

∂ψq

∂t
(12.2)

ψq (x, y, 0) = 0 (12.3)

k
∂ψq

∂ns

= 0 for t < 0 or s < η

= 1 for t > 0 and η < s < L (12.4)

where η is a dummy length variable along the boundary S between s = 0 to s = L,
and ψq (x, y, η, t) is the temperature rise at position (x, y) and time t caused by a unit
step change of heat flux at time t = 0, from s = η to s = L as shown in Figure 12.2
by the cross-hatched portion. It is called the flux-based fundamental solution (FBFS).
Notice that, for fixed (x, y) and t , ψq (x, y, η, t) decreases as η increases, that is,
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q(s, t)
q(s, t)dη
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S

FIGURE 12.2 Geometry showing two-dimensional region heated by arbitrary heat flux.

ψq (x, y, η, t) > ψq (x, y, η + dη, t) (12.5)

Temporarily, let η be fixed and consider the variation of the heat flux with time
only. From the fundamental solution, the temperature rise at position (x, y) and time t

due to a unit step change of heat flux at time τ is

ψq (x, y, η, t − τ) (12.6a)

where t − τ is the time that has elapsed since the step at τ. Also the temperature rise
at time t due to a unit step change of heat flux at time τ + dτ is

ψq [x, y, η, t − (τ + dτ)] (12.6b)

Then from Equation 12.6a and b, the temperature rise at position (x, y) and time t

due to a unit step change in q for τ < t < τ + dτ is

−dτψq (x, y, η, t − τ) = ψq (x, y, η, t − τ) − ψq [x, y, η, t − (τ + dτ)] (12.7)

where dτ is a differentiation operator for τ. Notice that ψq (x, y, η, t − τ) is greater
than ψq [x, y, η, t − (τ + dτ)]. Using Equation 12.7, the temperature rise at position
(x, y) and time t due to the value q(η, t) for τ < t < τ + dτ and η being fixed is

−q(η, τ)dτψq (x, y, η, t − τ) = −q(η, τ)
∂ψq (x, y, η, t − τ)

∂τ
dτ (12.8)

for small dτ. Since the problem is linear, superposition can be employed and the total
effect of all step changes of heat flux over small dτ’s from time zero to time t is simply
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found by integrating Equation 12.8 from 0 to t . Denoting the result ψ′
q (x, y, η, t), one

can write

ψ′
q (x, y, η, t) = −

∫ t

0
q(η, τ)

∂ψq (x, y, η, t − τ)

∂τ
dτ (12.9a)

From the relation

∂ψq (x, y, η, t − τ)

∂τ
= −∂ψq (x, y, η, t − τ)

∂t

Equation 12.9a can be written as

ψ′
q (x, y, η, t) =

∫ t

0
q(η, τ)

∂ψq (x, y, η, t − τ)

∂t
dτ (12.9b)

Note that ψ′
q is the temperature rise for the case that the time-variable q is zero for

s < η, and is uniformly distributed over space for η < s < L.
In a similar way, one can show that the temperature rise for the case that the flux

q is zero for s < η + dη, and is uniformly distributed for η + dη < s < L, is

ψ′
q (x, y, η + dη, t) =

∫ t

0
q(η, τ)

∂ψq (x, y, η + dη, t − τ)

∂t
dτ (12.10)

Using Equations 12.9b and 12.10, the temperature rise due to a uniform heat flux q,
between s = η and s = η + dη and for t > 0 is

−dηψ
′
q (x, y, η, t) = ψ′

q (x, y, η, t) − ψ′
q (x, y, η + dη, t)

= −∂ψ′
q (x, y, η, t)

∂η
dη (12.11)

where dη is a differentiation operator for η. Notice that ψ′
q (x, y, η, t) is greater than

ψ′
q (x, y, η + dη, t). Introducing Equations 12.9b and 12.10 into Equation 12.11 yields

−dηψ
′
q (x, y, η, t) = −

∫ t

0
q(η, τ)

∂2ψq (x, y, η, t − τ)

∂t∂η
dτ dη (12.12)

Again superposition can be employed and the total effect of the variation of heat flux
from s = 0 to s = L can be found by integrating Equation 12.12 over space from 0
to L, to give

T (x, y, t) = −
∫ L

0

∫ t

0
q(η, τ)

∂2ψq (x, y, η, t − τ)

∂t∂η
dτ dη (12.13)

In this problem, it was assumed that only a portion of the surface boundary is
exposed to heat flux with the remainder being insulated. However, if none of the
boundary S is insulated, the first integral in Equation 12.13 extends over the entire
boundary S. Furthermore, if the initial temperature of the system is T0 instead of
being zero, the solution becomes

T (x, y, t) − T0 = −
∫

S

∫ t

0
q(η, τ)

∂2ψq (x, y, η, t − τ)

∂t∂η
dτ dη (12.14)
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In Equation 12.14, the input function q(η, τ) is the heat flux along the boundary
(surface heat flux) which varies with both space and time, and the solution is in terms
of the FBFS, ψq . If, however, the surface temperature is known along the boundary
as the input function (instead of heat flux), then in a similar manner to that described
above, the solution in terms of the temperature-based fundamental solution (TBFS),
ψT , can be obtained as

T (x, y, t) − T0 = −
∫

S

∫ t

0
[Ts(η, τ) − T0]∂

2ψT (x, y, η, t − τ)

∂η ∂t
dτ dη (12.15)

Equations 12.14 and 12.15 are rather general expressions for the case that the
input function varies with both space and time in a two-dimensional region. Both
equations can be employed to obtain the temperature history at any position (x, y)
of the region. However, depending on the type of boundary condition, one might be
more appropriate than the other. To compare the two approaches and discuss their
utility for each particular type of boundary condition, both forms of solutions are
examined below.

For problems with boundary conditions of the first kind, where the temperature
is specified everywhere along the boundary, the right-hand side of Equation 12.15 is
known, and one can solve for the temperature history of any interior point of R, by
direct integration. If, however, Equation 12.14 is employed instead of Equation 12.15,
the direct evaluation of T (x, y, t) is not possible because of the unknown heat flux q

in the right-hand side of this equation. In this case, an inverse integration must first be
performed to solve for the unknown surface heat flux which is the information needed
by Equation 12.14 to find T (x, y, t) at any interior point. Therefore, in problems
with the first kind boundary conditions, Equation 12.15 is more appropriate than
Equation 12.14.

On the other hand, if the boundary condition is of the second kind where q is
specified along the boundary S, then the right-hand side of Equation 12.14 is known
which leads to evaluation of a direct integral. In this case Equation 12.14 is more
appropriate than Equation 12.15.

For boundary conditions of the third kind where neither the surface temperature
nor its normal derivative are completely known over the entire boundary S (mixed
boundary conditions), none of the above equations can be used directly to obtain
temperature history for any interior point. An example is given to illustrate this case
better.

Consider the homogeneous convective boundary condition given by

k
∂T (s, t)

∂ηs

+ hsTs(s, t) = 0 on S (12.16)

where ∂/∂ηs denotes differentiation with respect to the outward pointing normal to
the surface boundary S as shown in Figure 12.2. Substituting for q in Equation 12.14
from Equation 12.16, one can write

T (x, y, t) − T0 = −
∫

S

∫ t

0
hsTs(η, τ)

∂2ψq (x, y, η, t − τ)

∂t∂η
dτ dη (12.17)



T&F Cat # K10695, Chapter 12, Page 448, 12-6-2010

448 Heat Conduction Using Green’s Functions

Equation 12.17 cannot directly be integrated for T (x, y, t), since Ts(s, t) inside the
integral is unknown. In other words, the number of unknown functions in Equa-
tion 12.17 is more than one, Ts(s, t) and T (x, y, t). However, for a point along the
boundary S, Equation 12.17 reduces to

Ts(s, t) − T0 = −
∫

S

∫ t

0
hsTs(η, τ)

∂2ψq (η, t − τ)

∂t∂η
dτ dη (12.18)

which is a Volterra integral equation of the second kind with the only unknown func-
tion, Ts(s, t), both inside and outside the integral. In an inverse manner, Equation 12.18
can be solved numerically for Ts(s, t). Once the surface temperature, Ts(s, t), has been
determined, the solution to the interior temperature history, T (x, y, t), can be obtained
by substituting Ts(s, t) into Equation 12.17.

Hence, for the problems with mixed or convective boundary conditions, the tem-
perature history at any interior point can be determined in two steps:

1. Find the boundary information by solving an inverse integral equation.
2. Using the boundary data obtained in step 1, find the interior temperature

history by using a direct integration.

Equations 12.14 and 12.15 are the flux-based and temperature-based forms of
Duhamel’s theorem. They are used as the basic building blocks in the development
of the USE formulation in the following sections.

12.2.2 RELATION TO THE GREEN’S FUNCTION METHOD

The Duhamel’s theorem (sometimes called Duhamel’s integral) approach given herein
is related to the GF method. One advantage of the Duhamel’s theorem approach is that
it follows from the well-known concepts of superposition in a more direct manner than
the GF method.Another advantage is that there are no singularities in the fundamental
solutions; that is, the ψ(·) functions are finite for t − τ → 0, while the GFs go to
infinity. The GF method, however, has the advantage that the GFs are more accessible
and easier to obtain than the ψ(·) functions.

To show the relationship between the Duhamel’s theorem approach and the GF
method, two examples are given below. One example demonstrates the application of
Equation 12.1b, where the boundary condition is only a function of time (no spatial
variation), while the other example shows the applications of Equations 12.14 and
12.15, where the boundary conditions vary with both time and space.

Example 12.1: X11B-0T0 Case

Consider a one-dimensional flat plate geometry initially at zero temperature with
an arbitrary time-dependent prescribed surface temperature at x = 0 as shown in
Figure 12.3. For t > 0, the surface temperature at x = L is kept at its initial value
T0 = 0. The describing equations are

∂2T (x , t )
∂x2 = 1

α

∂T (x , t )
∂t

(12.19)
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T(L, t) = 0

Ti = 0

x

L

T(0, t) = f(t)

FIGURE 12.3 A flat plate with prescribed surface temperatures.

T (0, t ) = f (t ) for t > 0 (12.20a)

T (L, t ) = 0 for t > 0 (12.20b)

T (x , 0) = 0 (12.20c)

The fundamental solution for this problem is ψT (x , t ), which represents the tem-
perature at point x and at time t in the flat plate geometry, with zero initial tem-
perature and with a unit-step temperature at the boundary x = 0. It is a solution
of the problem

∂2ψT (x , t )
∂x2 = 1

α

∂ψT (x , t )
∂t

(12.21)

ψT (0, t ) = 0 for t < 0

= 1 for t > 0 (12.22a)

ψT (L, t ) = 0 for t > 0 (12.22b)

ψT (x , 0) = 0 (12.22c)

Note that the subscript T in ψT (·) function indicates that it is a TBFS.
From the Duhamel’s integral Equation 12.1b, the transient temperature distri-

bution in the plate is given by

T (x , t ) =
∫ t

τ = 0
f (τ)

∂ψT (x , t − τ)
∂t

dτ (12.23)

The GF solution to this problem is given by Equation 3.46 with zero initial condition
and no energy generation within the body,

T (x , t ) = α

∫ t

τ = 0
f (τ)

∂G (x , t |x ′, τ)
∂x ′

∣∣∣∣
x ′ = 0

dτ (12.24)

Note that since n′
i in Equation 3.46 represents the outward normal from the

body, the (∂G / ∂n′
i )|x ′ = xi

term in this equation is replaced by −(∂G / ∂x ′)|x ′ = 0 in
Equation 12.24. Also, since T (L, t ) is equal to zero for t > 0, there is no contribution
due to the boundary condition at x = L.
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A comparison of the GF solution, Equation 12.24, and the Duhamel’s theorem
solution, Equation 12.23, reveals that

∂ψT (x , t − τ)
∂t

= −∂ψT (x , t − τ)
∂τ

= α
∂G (x , t |x ′, τ)

∂x ′

∣∣∣∣
x ′=0

(12.25)

and, then, integrating Equation 12.25 over times gives

ψT (x , t − τ) = −
∫ t

t ′=τ
α

∂G (x , t |x ′, t ′)
∂x ′

∣∣∣∣
x ′=0

dt ′ (12.26)

Thus, Duhamel’s theorem for this case is the same as the GF equation for a spec-
ified boundary temperature, where the fundamental solution is related to the GF
function by Equations 12.25 and 12.26.

Example 12.2: X20B(x-t-)T 0 Case

Consider a semi-infinite body initially at zero temperature exposed to a time- and
space-variable heat flux boundary condition over a portion of its surface boundary
from x = 0 to x = L, with the rest of the surface boundary being insulated
(see Figure 12.4). From the flux-based Duhamel’s integral, Equation 12.14, the
temperature at any point (x , z ) of the semi-infinite body and at any time t is given by

T (x , z , t ) = −
∫ L

0

∫ t

0
q(η, τ)

∂2ψq (x , z , η, t − τ)
∂t ∂η

dτ dη (12.27)

Here η is a dummy length variable along the surface boundary between x = 0 to
x = L, and ψq is the flux-based fundamental solution for this problem, described
by the following equations:

∇2ψq = 1
α

∂ψq

∂t
(12.28)

k
∂ψq

∂z
= 0 for t < 0 or x < η z = 0

= 1 for t > 0 and η < x < L z = 0 (12.29a)

ψq (x , ∞, η, t ) = 0 (12.29b)

ψq (x , z , η, 0) = 0 (12.29c)

Similar to that of the previous example, the solution to this example problem
can also be obtained from Equation 3.46 for the boundary condition of the second
kind, with zero initial temperature and no energy generation as

T (r, t ) = α

k

∫ t

τ = 0

∫
Si

q(r′
i , τ)G (r, t |r′

i , τ) dsi dτ (12.30)

where Si is the heated surface. For the coordinates r = (x , z ), the heat flux at
z = 0, and heating from x ′ = η = 0 to L, Equation 12.30 can be written as

T (x , z , t ) =
∫ L

η=0

∫ t

τ = 0

α

k
q(η, τ)G (x , z , t |η, 0, τ) dτ dη (12.31)
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q(x, t)

x
L

z

FIGURE 12.4 Semi-infinite body exposed to time- and space-variable boundary condition.

Comparing Equations 12.27 and 12.31 yields

−∂2ψq (x , z , η, t − τ)
∂t ∂η

= α

k
G (x , z , t |η, 0, τ) (12.32)

and then, integrating Equation 12.32 twice (over time and space), gives

ψq (x , z , η, t − τ) =
∫ t

t ′=τ

∫ L

x ′=η

α

k
G (x , z , t |x ′, 0, t ′) dx ′ dt ′ (12.33)

which demonstrates the relationship between the flux-based fundamental solution
and the GF for the semi-infinite body problem given above.

Both Duhamel’s theorem and the GF equation are convolution integrals be-
cause they involve a product of two functions, one a function of τ and the other a
function of t − τ. Duhamel’s theorem can be thought of as a boundary condition
term of the GF equation, a special case of the general method of GF.

12.3 UNSTEADY SURFACE ELEMENT FORMULATIONS

There are two different formulations of the USE method. One is the single-node
formulation, which uses the Laplace transform technique to obtain an approximate
analytical solution. The other one is the multinode formulation (numerical solution)
which is more general and can be applied to a variety of problems. The multinode
formulation allows for spatial variation of surface heat flux and temperature by di-
viding the surface boundary into several surface elements, while in the single-node
formulation, the surface heat flux and temperature are considered spatially constant.

Both formulations may be used with either heat flux-based or TBFS. The multin-
ode formulation is given in this section. In Section 12.4, the single-node analytical
solution is given as a special case where there is only one element along the surface
boundary.



T&F Cat # K10695, Chapter 12, Page 452, 12-6-2010

452 Heat Conduction Using Green’s Functions

S

s0 s1 s2 s3 sj–1  sj sN

qj (t)
∆sj

q(s, t)
s

S q1 q2 q3 qN

N

qj(t)

(a)

(b)

FIGURE 12.5 (a) Geometry showing discretization over heated portion of surface boundary.
(b) Uniform heat flux assumption over each surface element.

12.3.1 SURFACE ELEMENT DISCRETIZATION

To numerically solve the Duhamel’s integral Equations 12.14 and 12.15, the surface
boundary is divided into N finite surface elements, ∆sj , as shown in Figure 12.5a
and b. Notice that only the parts of the boundary with nonzero values of heat flux
(for Equation 12.14) and with a temperature different from the initial temperature
(for Equation 12.15) need to be discretized. Then, Equations 12.14 and 12.15 can be
written as

T (x, y, t) − T0 = −
∫ t

0


 N∑

j=1

∫
∆sj

q(η, τ)
∂2ψq (x, y, η, t − τ)

∂t ∂η
dη


 dτ (12.34a)

and

T (x, y, t) − T0 = −
∫ t

0




n∑
j=1

∫
∆sj

[Ts(η, τ) − T0] ∂2ψT (x, y, η, t − τ)

∂t ∂η
dη


 dτ

(12.34b)

By assuming uniform heat flux and temperature over each surface element in Equa-
tions 12.34a and 12.34b, respectively, one can write, for flux-based equations,
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T (x, y, t) − T0 = −
∫ t

0




N∑
j=1

qj (τ)
∂

∂t

[
ψq (x, y, η, t − τ)

∣∣sj
sj−1

]
 dτ

= −
∫ t

0




N∑
j=1

qj (τ)
∂

∂t
[∆ψqj (x, y, t − τ)]


 dτ (12.35a)

and, for temperature-based equations,

T (x, y, t) − T0 = −
∫ t

0




N∑
j=1

[Tsj(τ) − T0] ∂

∂t

[
ψTj(x, y, t − τ)

∣∣sj
sj−1

]
 dτ

= −
∫ t

0




N∑
j=1

[
Tsj(τ) − T0

] ∂

∂t
[∆ψTj(x, y, t − τ)]


 dτ

(12.35b)

where

∆ψqj = ψq (x, y, sj , t) − ψq (x, y, sj−1, t) (12.36a)

∆ψTj = ψT (x, y, sj , t) − ψT (x, y, sj−1, t) (12.36b)

Further, if the temperature rise at position (x, y) due to a unit step increase in heat flux
and temperature at the element j are denoted φj (x, y, t) and θj (x, y, t), respectively,
then it can be shown that

− ∆ψqj(x, y, t) ≡ φj (x, y, t) (12.37a)

− ∆ψTj(x, y, t) ≡ θj (x, y, t) (12.37b)

Using Equation 12.37a in Equation 12.35a, and Equation 12.37b in Equation 12.35b
gives,

T (x, y, t) − T0 =
N∑

j=1

∫ t

0
qj (τ)

∂φj (x, y, t − τ)

∂t
dτ (12.38a)

and

T (x, y, t) − T0 =
N∑

j=1

∫ t

0

[
Tsj(τ) − T0

] ∂θj (x, y, t − τ)

∂t
dτ (12.38b)

Equations 12.38a and b are the Duhamel’s integral forms of the flux-based and the
temperature-based USE equations for a single two-dimensional body.

Equation 12.38a gives the temperature rise at location (x, y) and time t due to the
effect of N surface heat flux histories q1(t), q2(t), . . . , qN (t); while Equation 12.38b
gives the temperature rise at the same location and time due to the effect of N time-
varying surface temperatures Ts1(t), Ts2(t), . . . , TsN (t). The functions φj and θj are
the basic building-block solutions needed in the above expressions and are termed as
the flux-based and the temperature-based influence functions. They are called influ-
ence functions because they give the influence of the j th surface element on the body.
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Uniform heat flux q0

x
2a

z

FIGURE 12.6 Geometry of semi-infinite body heated by a uniform heat flux over an infinite
strip.

The USE method requires that the influence functions be known for the geometries
under consideration. For instance, for the geometry of Figure 12.4, the flux-based
influence function φ is the solution to the problem of a semi-infinite body heated by
a constant heat flux over an infinite strip as shown in Figure 12.6.

The USE Equations 12.38a and b can be written in their general forms by replacing
(x, y) in these equations with a position vector r; that is,

Flux-based USE: T (r, t) − T0 =
N∑

j=1

∫ t

0
qj (τ)

∂φj (r, t − τ)

∂t
dτ (12.39a)

Temperature-based USE: T (r, t) − T0 =
N∑

j=1

∫ t

0
[Tsj(τ) − T0] ∂θj (r, t − τ)

∂t
dτ

(12.39b)

12.3.2 GREEN’S FUNCTION FORM OF THE USE EQUATIONS

The flux-based and temperature-based Equations 12.39a and b represent the
Duhamel’s integral forms of the USE equations. The GF forms of the USE equa-
tions can be obtained by discretizing Equation 3.46 over N surface elements. For
convenience, it is assumed that there is only one nonhomogeneous boundary (with
a nonzero value of heat flux or a temperature different from the initial temperature).
Accordingly, the summation terms in Equation 3.46 which are for more than one
nonhomogeneous boundary condition are dropped and one can write, for boundary
condition of the second kind (flux-based equations),

T (r, t) − T0 =
∫ t

0


 N∑

j=1

α

k

∫
∆sj

q(r′
j , τ)G(r, t |r′

j , τ)dsj


 dτ (12.40a)
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and for boundary condition of the first kind (temperature-based equations):

T (r, t) − T0 =
∫ t

0




N∑
j=1

α

∫
∆sj

[Ts(r′, τ) − T0]
∂G(r, t |r ′

j , τ)

∂n′
j

dsj


 dτ (12.40b)

By assuming uniform heat flux and temperature over each surface element in Equa-
tion 12.40a and b, respectively, one can get for the flux-based equation:

T (r, t) − T0 =
N∑

j=1

∫ t

0
qj (τ)Gj (r, t |r′

j , τ) dτ (12.41a)

for the temperature-based equation:

T (r, t) − T0 =
N∑

j=1

∫ t

0
[Tsj(τ) − T0]G′

j (r, t |r′
j , τ) dτ (12.41b)

The notations Gj and G′
j are defined as

Gj (r, t |r′
j , τ) = α

k

∫
∆sj

G(r, t |r′
j , τ) dsj (12.42a)

G′
j (r, t |r′

j , τ) = −α

∫
∆sj

∂G(r, t |r′, τ)

∂n′
j

dsj (12.42b)

Equation 12.41a and b are the GF forms of the flux-based and temperature-based USE
equations. Note that Gj and G′

j appearing in these equations correspond to the time
derivatives of the flux-based and temperature-based influence functions, φj and θj ,
given in Equation 12.39a and b, respectively.

In the derivation of Equation 12.41a and b, it was assumed that there is only
one nonhomogeneous boundary in the problem under consideration. For the prob-
lems with more than one nonhomogeneous boundary condition, a summation term
should be added to each of these equations. Furthermore, it should be noted that
Equation 12.41a and b are, respectively, for the problems with the second kind (pre-
scribed surface heat flux) and first kind (prescribed surface temperature) boundary
conditions. For the problems with mixed boundary conditions, these two equations
can be superimposed.

The USE Equations 12.39a, b and 12.41a, b can be applied to two- or three-
dimensional geometries in the rectangular, cylindrical, or spherical coordinate sys-
tems. In the two-dimensional USE equations, the surface elements are infinite strips
that may be treated as one-dimensional elements (or line elements). In the three-
dimensional USE equations, the surface elements are two-dimensional elements and
can be chosen in different shapes such as triangular, rectangular, or circular, depending
on the nature of the problem under consideration.
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12.3.3 TIME INTEGRATION OF THE USE EQUATIONS

The time integration of the USE Equations 12.39a, b and 12.41a, b, can be performed
directly by dividing the entire time domain into M equal small time intervals, ∆t ,
that is, for Duhamel’s integral fluxed-based equation:

T (r, t) − T0 =
N∑

j=1

M∑
i=1

∫ ti

ti−1

qj (τ)
∂φj (r, t − τ)

∂t
dτ (12.43a)

for Duhamel’s integral temperature-based equation:

T (r, t) − T0 =
N∑

j=1

M∑
i=1

∫ ti

ti−1

[Tsj(τ) − T0]∂θj (r, t − τ)

∂t
dτ (12.43b)

for the GF flux-based equation:

T (r, t) − T0 =
N∑

j=1

M∑
i=1

∫ ti

ti−1

qj (τ)Gj (r, t |r′
j , τ) dτ (12.44a)

for the GF temperature-based equation:

T (r, t) − T0 =
N∑

j=1

M∑
i=1

∫ ti

ti−1

[Tsj(τ) − T0]G′
j (r, t |r′

j , τ) dτ (12.44b)

By assuming the elemental heat flux and temperature histories being uniform
over each time interval, for temperature at time tM = M∆t , one can write, for the
Duhamel’s integral flux-based USE equation:

T (r, tM ) − T0 =
N∑

j=1

M∑
i=1

qji∆φj ,M−i(r) (12.45a)

for the Duhamel’s integral temperature-based equation:

T (r, tM ) − T0 =
N∑

j=1

M∑
i=1

[Tsji − T0]∆θj ,M−i(r) (12.45b)

for the GF flux-based equation:

T (r, tM ) − T0 =
N∑

j=1

M∑
i=1

qji∆Gj ,M−i(r) (12.46a)

for the GF temperature-based equation:

T (r, tM ) − T0 =
N∑

j=1

M∑
i=1

(Tsji − T0)∆G
′
j ,M−i(r) (12.46b)
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where qji and Tsji represent the j th surface heat flux and temperature evaluated at
time ti , and

∆φj ,M−i(r) = φj (r, tM+1−i) − φj (r, tM−i) (12.47a)

∆θj ,M−i(r) = θj (r, tM+1−i) − θj (r, tM−i) (12.47b)

∆Gj ,M−i(r) =
∫ ti

ti−1

G(r, tM |r′
j , τ)dτ (12.47c)

∆G
′
j ,M−i(r) =

∫ ti

ti−1

G
′
(r, tM |r′

j , τ)dτ (12.47d)

Notice that ∆G and ∆G
′
each involve two integrations, one over the element and the

other over the time step. For certain geometries, these integrations can be performed
analytically (see Problem 12.3). With problems for which the analytical evaluations of
these integrals are not possible, the GF USE equations could still be used by replacing
the integrals with suitable quadrature formulas.

12.3.4 FLUX-BASED USE EQUATIONS FOR BODIES IN CONTACT

For convenience, in the further development of the USE formulation, given in the
rest of this section, only the flux-based Equation 12.38a and 12.39a are considered.
The temperature-based USE formulation can be developed in a similar manner as the
flux-based case.

Consider two arbitrary bodies, initially at uniform but different temperatures
(T01 and T02), brought into perfect contact over a portion of their boundaries, as shown
in Figure 12.7. The bodies may have different conductivities, k, and different density-
specific heats ρc. For simplicity, a two-dimensional geometry is assumed; there is no
variation of temperature or heat flux in the z-direction. To apply the USE method,
the interface is divided into N surface elements, each being an infinite strip, �sj .
It is assumed that the flux and temperature are uniform over each surface element.
The temperature associated with element j will be taken as the temperature at the
center of the element, located at point s′

j = sj − �sj / 2. The average temperature
over the element may also be used as the temperature associated with the element but
it complicates the analysis slightly and will not be discussed here. The heat flux qj (t),
associated with element j , which leaves body 2 in Figure 12.7, is the same heat flux
that enters body 1 over the region s = sj−1 to s = sj , that is,

−k1
∂T1

∂nj

= −k2
∂T2

∂nj

for t > 0, sj−1 ≤ s ≤ sj on S (12.48)

where nj is the outward normal to element j . Using Equation 12.38a, the temperature
at element k in body 1 and time t can be given by

Tk1(t) = T01 +
N∑

j=1

∫ t

0
qj (τ)

∂φ
(1)
kj (t − τ)

∂t
dτ (12.49)
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FIGURE 12.7 Possible distribution of surface elements for connected geometries.

where φ
(1)
kj (t) is the temperature rise at element k and time t due to unit step heat flux

over element j of surface 1. Similar to Equation 12.49, an integral equation can be
given for the kth surface element of body 2.

Tk2(t) = T02 −
N∑

j=1

∫ t

0
qj (τ)

∂φ
(2)
kj (t − τ)

∂t
dτ (12.50)

where φ
(2)
kj (t) is the influence function for body 2. Note that the minus sign before the

summation in Equation 12.50 is used because the heat flux is pointing outward from
body 2. For the case where the bodies are in perfect contact, one can write

Tk1(t) = Tk2(t) for k = 1, 2, . . . , N (12.51)

Then, by introducing Equations 12.49 and 12.50 into Equation 12.51, a set of integral
equations for k = 1, 2, . . . , N is obtained as

T02 − T01 =
N∑

j=1

∫ t

0
qj (τ)

∂φkj (t − τ)

∂t
dτ for k = 1, 2, 3, . . . , N (12.52)

where

φkj = φ
(1)
kj (t) + φ

(2)
kj (t) (12.53)
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Equation 12.52 is the flux-based USE equation for two bodies in perfect contact.
It represents a set of Volterra equations of the first kind with the unknown heat
fluxes, qk(t)’s, appearing inside the integrals.

Even though the perfect contact is a common interface assumption, it will only be
valid for very intimate contact, such as a soldered joint. For a more general case of
imperfect contact, Equation 12.51 is replaced by

qk(t) = hk(t)[Tk2(t) − Tk1(t)] for k = 1, 2, . . . , N (12.54)

where hk(t) is the time-variable contact conductance for surface element k. The above
relation tends to the case of perfect contact as hk → ∞. It also includes the cases of
convection, prescribed heat flux, and prescribed temperature boundary conditions. By
introducing Equations 12.49 and 12.50 into Equation 12.54, a set of integral equations
for k = 1, 2, . . . , N , is obtained:

T02 − T01 = qk(t)

hk(t)
+

N∑
j=1

∫ t

0
qj (τ)

∂φkj (t − τ)

∂t
dτ for k = 1, 2, . . . , N (12.55)

Equation 12.55 is the flux-based USE equation for two bodies with imperfect contacts.
It represents a set of Volterra equations of the second kind with the unknown heat
fluxes, qk(t)’s, appearing both inside and outside the integrals.

The sets of integral equations presented by the USE equations (12.52)
and (12.55) can be solved simultaneously for N unknown heat flux histories
q1(t), q2(t), . . . , qN (t). The method of solution is described for the case of imper-
fect contact which includes the other cases as well.

12.3.5 NUMERICAL SOLUTION OF THE USE EQUATIONS FOR BODIES IN CONTACT

In a similar manner to that discussed in Section 12.3.3, the flux-based USE equation
(12.55) can be approximated by a system of linear algebraic equations by replacing
the integrals with summations. As the first step, the time region 0 to t is divided into
M equal small time intervals, �t , so that tM represents the value of t at the end point
of the Mth interval (tM = M�t). Then, Equation 12.55 can be written as

T02 − T01 = qk(tM )

hk(tM )
+

N∑
j=1

M∑
i=1

∫ ti

ti−1

qj (τ)
∂φkj (tM − τ)

∂t
dτ

for k = 1, 2, . . . , N (12.56a)

where
t0 ≡ 0 (12.56b)

In the simplest form of approximation the heat flux histories qj (t) are assumed to
have constant values in each time interval so that

T0 = qkM

hkM

+
N∑

j=1

M∑
i=1

qji∆φkj ,M−i for k = 1, 2, . . . , N (12.57a)
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where

T0 = T02 − T01 ∆φkj ,M−i = φkj ,M+1−i − φkj ,M−i (12.57b, c)

and

qji ≡ qj (ti) φkj ,i ≡ φkj (ti) (12.57d, e)

In the form given by Equation 12.57a, the heat fluxes qjM ’s (for j = 1, 2, . . . , N )
can be determined at different time intervals one after another, by marching forward
in time for M = 1, 2, 3, . . . . While calculating each new time component, the fluxes
at previous times, qj1, qj2, qj3, . . . , qj ,M−2, qj ,M−1 are known for j = 1, 2, . . . , N .
Thus for each time step, Equation 12.57a represents a system of N equations with
N unknowns q1M , q2M , q3M , . . . , qNM . The objective is to solve this system for the
unknowns qjM , for j = 1, 2, . . . , N . Rearranging Equation 12.57a in standard form
with unknowns, qjM ’s, on the left, and knowns on the right, and noting that φkj0 = 0,
one can write

qkM

hkM

+
N∑

j=1

qjM φkj1 = T0 −
N∑

j=1

M−1∑
i=1

qji∆φkj ,M−i (12.58)

Expressing Equation 12.58 in matrix form gives

(HM + Φ1)qM = T 0 −
M−1∑
i=1

∆ΦM−i qi (12.59)

where T 0 is the initial temperature vector, HM is the conductance matrix, Φi and qi

are the influence matrix and the heat flux vector at time ti , respectively.

Φi ≡




φ11i φ12i · · · φ1Ni

φ21i φ22i φ2Ni
...

φN1i φN2i φNNi


 (12.60a)

HM ≡ diag

[
1

h1M

1

h2M

· · · 1

hNM

]
(12.60b)

qi ≡




q1i

q2i

...
qNi


 T 0 ≡




T0

T0
...

T0


 (12.60c, d)

If further CM and DM are defined to be the matrices

CM = HM + Φ1 DM = T 0 + EM − FM (12.61a, b)



T&F Cat # K10695, Chapter 12, Page 461, 12-6-2010

Unsteady Surface Element Method 461

where

EM =
M−1∑
i=1

ΦM−i qi (12.62a)

and

FM =
M−1∑
i=1

ΦM+1−i qi (12.62b)

Then Equation 12.59 can be written as

CMqM = DM (12.63)

Solving Equation 12.63 for qM , gives

qM = C−1
M DM (12.64)

The CM matrix, multiplier of qM , has to be calculated at each time step if the diagonal

matrix HM is a function of time. However, if contact conductances do not change

with time, the CM matrix needs to be calculated only once during the entire solution
and an alternative form of solution can be given as (see Note 1 at end of the chapter).

q1 = C−1T 0 (12.65a)

qM = Mq1 + B

[
M−1∑
i=1

qi

]
− C−1FM for M = 2, 3, . . . (12.65b)

where

B = H−1Φ1 (12.66)

Notice that, since C and H are not functions of time in Equations 12.65 and 12.66,
the subscript M is dropped. For the case of perfect contact where hkM → ∞, the

diagonal conductance matrix, HM , becomes zero, which implies that

C = Φ1 (12.67)

Introducing Equations 12.61b, 12.62a, b and 12.67 into Equation 12.64 results in a
simpler form of solution as

q1 = C−1T 0 (12.68a)

qM = Mq1 − C−1FM for M = 2, 3, . . . (12.68b)
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The elements of the [N × N ] influence matrix Φi are

φkji = φ
(1)
kji + φ

(2)
kji (12.69)

If the two bodies in contact have the same geometry and thermal properties, then

φkji = 2φ
(1)
kji = 2φ

(2)
kji (12.70)

It is helpful to display the expression for qM more explicitly. To illustrate, the case
of perfect contact at the interface with only two elements is considered (N = 2).
In other words there are two heat flux histories, q1(t) and q2(t), to be determined.
For simplicity, only three time steps are considered (M = 3). At the first time step,
Equation 12.68a becomes [

q11

q12

]
=

[
C11 C12

C21 C22

]−1 [
T0

T0

]
(12.71)

where

Ckj = φkj1 = φ
(1)
kj1 + φ

(2)
kj1 (12.72)

Solving the above system, Equation 12.71 for q11 and q21 yields

q11 = T0(C22 − C12)

∆
(12.73a)

q21 = T0(C11 − C21)

∆
(12.73b)

where

∆ = C11C22 − C12C21 (12.73c)

For the second time step, M = 2, Equation 12.68b becomes[
q12

q22

]
= 2

[
q11

q21

]
−

[
C11 C12

C21 C22

]−1 [
F12

F22

]
(12.74)

Solving Equation 12.74 for q12 and q22 yields

q12 = (2T0 − F12)C22 − (2T0 − F22)C12

∆

= 2q11 − F12C22 − F22C12

∆
(12.75a)

q22 = (2T0 − F22)C11 − (2T0 − F12)C21

∆

= 2q21 − F22C11 − F12C21

∆
(12.75b)



T&F Cat # K10695, Chapter 12, Page 463, 12-6-2010

Unsteady Surface Element Method 463

where

F12 = φ112q11 + φ122q21 (12.76a)

F22 = φ212q11 + φ222q21 (12.76b)

In a similar manner, for the third time step, M = 3, one can write

q13 = 3q11 − F13C22 − F23C12

∆
(12.77a)

q23 = 3q21 − F23C11 − F13C21

∆
(12.77b)

where

F13 =
2∑

i=1

(φ11,4−i q1i + φ12,4−i q2i) (12.78a)

F23 =
2∑

i=1

(φ21,4−i q1i + φ22,4−i q2i) (12.78b)

Notice that F1M and F2M are the only terms that should be evaluated at each time
step.

Because of convolution behavior of the summations given in Equations 12.62a

and b, the influence matrices, Φi’s, need to calculated at each time step. Consequently,
most of the computation effort is in the evaluation of column matrix D, particularly
as the value of M becomes larger.

12.3.6 INFLUENCE FUNCTIONS

An influence function, φkj (t), is the temperature rise at time t and element k due to
a unit step heat flux at t = 0 at element j . When providing the influence functions,
there are two cases to consider: when k = j (temperature rise at location of heating)
and k �= j (temperature rise at other than the heating location). The more important
and more difficult to obtain is for k = j , particularly for small times. A number of
influence functions for φkk(t) are described and referenced in this section. For the
case of k �= j , the �φkj .M values, given by Equation 12.57c, are efficiently obtained
through the use of GFs.

The simplest influence functions are for one-dimensional cases, such as shown in
Figure 12.8a, b, c. The first is for constant heat flux q0 equal to unity over the surface
of a semi-infinite body. The φkk(t) expression at the heated surface of a semi-infinite
body shown in Figure 12.8a is simply

φkk(t) = 2

(
t

πkρc

)1 / 2

(12.79)
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FIGURE 12.8 Geometries and boundary conditions for various influence functions.

Figure 12.8b is for a solid cylinder or sphere. Another basic case is for the region
outside a radius of a and with the heat flux of q0 = 1 at r = a; this can be for
both cylindrical and spherical geometries and is illustrated by Figure 12.8c. For early
times, the geometries shown in Figure 12.8b and c have φkj (t) values that contain
additive curvature corrections (Beck et al., 1985b) to Equation 12.79.

Two cases having two-dimensional heat transfer for the semi-infinite geometries
are shown in Figure 12.8d and e. Figure 12.8d is for a heated strip 2a wide (Litkouhi
and Beck, 1982), and Figure 12.8e has a circular source of radius a (Beck, 1980). These
two cases have “edge” corrections for small times that are additive to Equation 12.79.
Large-time behavior of these two cases are also known; Figure 12.8d approaches
an ln(t) variation that is typical of a line source. The circular heat source case of
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Figure 12.8e goes to steady state for large times. There is also a principle of additivity
for large times, which is discussed by Beck et al. (1985b) in detail. Another case of
circular source is when it is centered in the surface of a semi-infinite cylinder (Beck,
1981b); see Figure 12.8f. A case of rectangular heat source on the surface of a semi-
infinite body (Keltner et al., 1988) is depicted by Figure 12.8g. A finite geometry is
shown by Figure 12.8h; a circular source is applied at the end of finite cylinder (Beck
and Keltner, 1987). Figure 12.8i and j show two solutions that can be constructed
by the principles of additivity that are discussed by Beck et al. (1984). Many other
solutions can be constructed in a similar manner.

12.4 APPROXIMATE ANALYTICAL SOLUTION (SINGLE ELEMENT)

It is sometimes possible to obtain approximate analytical solutions by considering
only one surface element along the interface between the connected bodies. This is
known as the single-node USE approach. In this approach the coupling interfacial
boundary conditions is relaxed so that neither temperature nor heat flux need simul-
taneously match for all points along the interface and at all times. Instead, a less
stringent requirement equates average heat fluxes between the coupled regions while
still requiring simultaneous matching of area-average interfacial temperatures.

For one surface element, the sets of integral equations represented by Equa-
tion 12.39a and b reduce to two single integral equations given, for flux-based equa-
tions, by

T (r, t) =
∫ t

0
q(τ)

∂φ(r, t − τ)

∂t
dτ (12.80a)

and, for temperature-based equations:

T (r, t) − T0 =
∫ t

0
[Ts(τ) − T0]

∂θ(r, t − τ)

∂t
dτ (12.80b)

These Duhamel’s integral equations can be written in their alternative forms (see
Equation 12.1a and b) as

flux-based equation: T (r, t) = ∂

∂t

∫ t

0
q(τ)φ(r, t − τ)dτ (12.81a)

temperature-based equation: T (r, t) − T0 = ∂

∂t

∫ t

0
[TS(τ) − T0]

× θ(r, t − τ)dτ (12.81b)

Taking the Laplace transform of Equation 12.81a and b, analytical solutions may be
obtained that yield relatively accurate results for a certain class of problems. The ease
or difficulty of obtaining such solutions depends entirely on the particular expressions
for the influence functions φ or θ. The procedure is best illustrated with the following
example.
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FIGURE 12.9 Two homogeneous semi-infinite bodies at different initial temperatures
brought into thermal contact.

Example 12.3:

Consider the specific classic case of two homogeneous semi-infinite bodies
initially at different temperatures T01 and T02 brought together as shown in
Figure 12.9. The objective is to find approximate analytical solutions for the inter-
face temperature and/or heat flux by utilizing the Laplace transformations. Both
temperature-based and heat flux-based solutions are considered here.

Temperature-Based Solution

From the temperature-based Equation 12.81b, the temperature at position x in
body 1 and at time t is given by

T1(x , t ) = T01 + ∂

∂t

∫ t

0
[T1(0, τ) − T01]θ(1)(x , t − τ) dτ (12.82)

where θ(1)(x , t ) is the temperature-based influence function for body 1. It repre-
sents the temperature rise at position x in body 1 due to a unit step increase in
temperature at the surface of the body. The heat flow through the surface region
of body 1 is given by

q1(t )A = ∂

∂t

{
A

∫ t

0
[T1(0, τ) − T01]θ(1)

q (0, t − τ)dτ

}
(12.83)

where A is the surface area and q1(t ) is the surface (or interface) heat flux. The
function θ

(1)
q is the area average heat flux for a unit increase in surface temperature.

It is given by

θ(1)
q (0, t ) = 1

A

∫
A

−k
∂θ(1)(x , t )

∂x

∣∣∣∣∣
x=0

dA (12.84)

If there are no interface heat sources, the same average heat flux that enters body
1 then leaves body 2 so that

Aq1(t ) = −Aq2(t ) (12.85)
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For perfect or imperfect contact the influence function θ(i)(x , t ) is (Carslaw and
Jaeger, 1959)

θ(i)(x , t ) = erfc
( |x |

2
√

αi t

)
(12.86)

The related heat flux is

θ(i)
q (0, t ) = ± ki

(παi t )1 / 2 exp

(
−x2

4αi t

)∣∣∣∣∣
x=0

(12.87)

where the plus sign is for i = 1 (body 1) and the minus sign is for i = 2 (body 2).
For perfect contact, the interface temperature (at x = 0) is identical for both

bodies so that T1(0, t ) = T2(0, t ) = T (0, t ). Substituting Equation 12.83 in Equa-
tion 12.85 gives

∂

∂t

∫ t

0
[T (0, τ) − T01]θ(1)

q (0, t − τ)dτ

= ∂

∂t

∫ t

0
[T (0, τ) − T02]θ(2)

q (0, t − τ)dτ (12.88)

and then using Equation 12.87 gives

∂

∂t

∫ t

0
[T (0, τ) − T01] k1√

πα1(t − τ)
dτ

= − ∂

∂t

∫ t

0
[T (0, τ) − T02] k2√

πα2(t − τ)
dτ (12.89)

This is a Volterra equation of the first kind where the unknown function is T (0, t ).
Taking the Laplace transform of Equation 12.89 gives

sL[T (0, t ) − T01] · k1√
α1s

= −sL[T (0, t ) − T02] · k2√
α2s

(12.90)

where L[T (0, t )] is the Laplace transform of T (0, t ) and s is the Laplace transform
parameter. For convenience, let T̂ (0, s) = L[T (0, t )]. Without loss of generality, let
T01 = T0 and T02 = 0, then

[
T̂ (0, s) − T0

s

]
· k1√

α1s
= −T̂ (0, s) · k2√

α2s
(12.91)

Solving for T̂ (0, s) gives

T̂ (0, s) = T0

s
k1

(α1s)1 / 2

[
k1

(α1s)1 / 2 + k2

(α2s)1 / 2

]−1
(12.92)

which has the inverse Laplace transform of

T (0, t ) = T0(1 + β)−1 (12.93a)
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where

β =
(

k2ρ2c2

k1ρ1c1

)1 / 2
(12.93b)

This is the desired exact solution for the surface temperature for both bodies for
the case of perfect contact (Carslaw and Jaeger, 1959).

Next, consider the more complex case of imperfect contact of two semi-infinite
bodies. Let there be a contact conductance h between the bodies. The heat fluxes
are related by

q1(t ) = −q2(t ) = h[T1(0, t ) − T2(0, t )] (12.94)

where now both T1(0, t ) and T2(0, t ) are unknown functions.
Solving Equation 12.94 for T1(0, t ), in terms of q2(t ), substituting in Equa-

tion 12.83 and again equating the heat flows gives

∂

∂t

(∫ t

0
[T2(0, τ) − T01]θ(1)

q (0, t − τ)dτ +
∫ t

0

{
1
h

∂

∂t

∫ τ

0
[T2(0, γ)

− T02]θ(2)
q (0, τ − γ)dγ

}
θ(1)

q (0, t − τ)dτ

)

= − ∂

∂t

∫ t

0
[T2(0, τ) − T02]θ(2)

q (0, t − τ)dτ (12.95)

This is an integral equation of the Volterra type, except now a double integration
is present; the unknown function is T2(0, t ).

The integral equation given by Equation 12.95 would in most cases be solved
numerically, but fortunately in this case the exact solution can be found using the
Laplace transform.

s
[(

T̂2 − T01

s

)
θ̂(1)

q + s
h

(
T̂2 − T02

s

)
θ̂(2)

q θ̂(1)
q

]
= −s

(
T̂2 − T02

s

)
θ̂(2)

q (12.96)

where θ̂
(i)
q = ki /(αi s)1 / 2.

Factoring out common terms and letting T01 = T0 and T02 = 0 gives

T̂2 = T0

s

(
k1 /

√
α1s

k1 /
√

α1s + k1k2 / h
√

α1α2 + k2 /
√

α2s

)

= T0h√
k2ρ2c2

· 1

s[√s + h(1 /
√

k1ρ1c1 + 1 /
√

k2ρ2c2)] (12.97)

Taking the inverse Laplace transform yields the desired exact interface temper-
ature of

T2(0, t ) = T0[1 − eh2b2t erfc(hb
√

t )]
1 + β

(12.98a)

where β is defined in Equation 12.93b and

b = (k1ρ1c1)−1 / 2 + (k2ρ2c2)−1 / 2 (12.98b)
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Interior temperatures can now be found by introducing the expression given by
Equation 12.98a into a Duhamel’s integral similar to Equation 12.82 with θ(x , t )
given by Equation 12.86. The heat flow across the interface can be found by using
Equation 12.98a in Duhamel’s integral similar to Equation 12.83.

Heat Flux-Based Solution

The heat flux-based solution can be obtained in a similar manner as the
temperature-based solution. From the heat flux-based integral Equation 12.81a,
the temperature at position x in body 1 for a time variable surface heat flux q(t ) is
given by

T1(x , t ) = T01 + ∂

∂t

∫ t

0
q(τ)φ(1)(x , t − τ)dτ (12.99)

where φ(1)(x , t ) is the flux-based influence function for body 1. It represents the
temperature rise at position x in body 1 and at time t due to unit step increase in
the surface heat flux at time zero. Similarly, the temperature at any position x in
body 2 and at time t is given by

T2(x , t ) = T02 − ∂

∂t

∫ t

0
q(τ)φ(2)(x , t − τ)dτ (12.100)

where φ(2)(x , t ) is the influence function for body 2. The assumption of a spatially
uniform heat flux is not always compatible with a spatially uniform temperature.
The statement in terms of an average heat flux given by Equation 12.85 is al-
ways true.

For the special geometry of two-infinite bodies coming into uniform contact
over the complete interface, the interface temperatures are not functions of po-
sition. The influence function φ(i)(x , t ) is a function of a single space dimension
and time,

φ(i)(x , t ) = 2t1 / 2

(kiρi ci )1 / 2 ierfc
[

x
2(αi t )1 / 2

]
(12.101)

where x is directed inward in each body and the i is 1 or 2. At the surface of the
body, x = 0 and ierfc (0) = π−1 / 2.

Consider the first case of perfect contact for which the interface temperature
must be the same for both bodies. Equating Equations 12.99 and 12.100 with
T01 = T0 and T02 = 0 at x = 0 yields

T0 + ∂

∂t

∫ t

0
q(τ)

2(t − τ)1 / 2dτ

(πk1ρ1c1)1 / 2 = − ∂

∂t

∫ t

0
q(τ)

2(t − τ)1 / 2dτ

(πk2ρ2c2)1 / 2 (12.102)

which can be rearranged to the form

∂

∂t

∫ t

0
q(τ)2bπ−1 / 2(t − τ)1 / 2dτ = −T0 (12.103)

This is again a Volterra integral equation of the first kind and can be solved for q(t )
using the numerical methods in (Beck, 1968). For this simple case, the solution
can be obtained as above by utilizing the Laplace transform to get

q(t ) = −T0b−1(πt )−1 / 2 (12.104)
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Utilizing Equation 12.101 (with x = 0) and Equation 12.104 in Equation 12.99
yields

T1(0, t ) = T0(1 + β)−1 (12.105)

which is the same as Equation 12.93 which was derived using the temperature
form of Duhamel’s theorem.

A comparison of the above procedures for the T - and q-based solutions for
the perfect contact example considered shows both approaches yield a Volterra
integral equation of the first kind. In the temperature case, the solution is for
the interface temperature while in the heat flux case the solution is for q(t ). The
solutions are similar, although different quantities are found. For the T case, the
q(t ) function is found by solving Equation 12.83 given T1(0, t ) and, for the heat flux
case, the Ti (0, t ) function is found by solving Equations 12.99 or 12.100 given q(t ).
If only the interface temperature is desired, then the T -based method is more direct.

Next, for the q-based approach, consider the imperfect contact case. Equa-
tion 12.94 still applies but utilizing Equations 12.99 through 12.101 yields

−T0 + q(t )
h

= 2b√
π

∂

∂t

∫ t

0
q(τ)(t − τ)1 / 2dτ (12.106)

which is again a Volterra integral equation of the second kind since q(t ) appears
both inside and outside the integral. Equation 12.106 is simpler than the compa-
rable T -based Equation 12.95 which has a double integral. A solution of Equa-
tion 12.106 for q(t ) utilizing the Laplace transform is

q(t ) = −hT0eh2b2t erfc(hbt1 / 2) (12.107)

where b is defined by Equation 12.98b. If h goes to infinity, Equation 12.107
reduces to Equation 12.104. The next step is to use Equations 12.99 and 12.100
with Equation 12.107 to determine the surface temperature histories. Though the
integrals are not easy to evaluate, the same results are found as by the temperature-
based approach.

From a comparison of the T - and q-based USE integral equations (12.95) and
(12.106), the q-based equation has a simpler form and poses less difficulty in
numerical solution (which might be required for more complex geometries). Fur-
thermore, the q-based Equation 12.106, is derived in a much more straightforward
manner. Hence, based on the above example, the q-based approach is to be rec-
ommended over the T -based approach.

12.5 EXAMPLES

To demonstrate the utility of the USE method, two well-known problems are solved in
this section. The first problem is a semi-infinite body with the mixed boundary condi-
tions of a step change of the surface temperature over a disk of radius a and insulated
elsewhere, as shown in Figure 12.10a. This problem is similar to the problem of
two semi-infinite bodies initially at different uniform temperatures suddenly brought
together over a circular area, as shown in Figure 12.10b (a contact conductance prob-
lem). The second problem involves a semi-infinite cylinder attached perpendicularly
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FIGURE 12.10 (a) A semi-infinite body with step change of surface temperature over a cir-
cular area and insulated elsewhere. (b) Two homogeneous semi-infinite bodies at different
initial temperatures brought into thermal contact over a circular area (a contact conductance
problem). (c) Semi-infinite cylinder attached to semi-infinite body simulating intrinsic thermo-
couple problem.
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FIGURE 12.11 Distribution of surface elements for connected semi-infinite bodies.

to a semi-infinite body (an intrinsic thermocouple problem); see Figure 12.10c. Both
single-node and multinode USE solutions are given and the results are compared with
other existing analytical and numerical solutions.

Due to the axisymmetric nature of these problems, in each case the interface area is
divided into 10 annular variable-spaced surface elements with smaller elements being
closer to the edge of the contact area, as shown in Figures 12.11 and 12.12. The inner
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FIGURE 12.12 Distribution of surface elements for connected semi-infinite cylinder and
semi-infinite body.

and outer radii of each element are denoted by aj−1 and aj , respectively (j = 1, 10
and a0 = 0). The heat flux and temperature are approximated to be constant over
each surface element and are specified at the points.

r1 = 0 (12.108a)

rj = aj − aj−1

2
for j = 2, 10 (12.108b)

Since, in each problem, the connected bodies are assumed to be in perfect contact,
the simplified form of solution given by Equation 12.68a and b are used. Substituting
Equations 12.62b and 12.67 into Equation 12.68a, b yields

q1 = Φ1
−1T 0 (12.109a)

qM = Mq1 − Φ1
−1

M−1∑
i=1

qi for M = 2, 3, . . . (12.109b)

At each time step, Equation 12.109a, b are solved for unknown elemental heat fluxes
q1M , q2M , . . . , q10M .

The required influence functions for the above problems are shown in Figure 12.13a
and b. They are evaluated from the available exact closed-form solutions of a semi-
infinite body heated by a constant disk heat source (Beck, 1981a, Figure 12.14a)
and a semi-infinite insulated cylinder heated by a constant heat flux over a disk area
centered at the end (Beck, 1981b, Figure 12.14b), by simple superposition. That is,
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FIGURE 12.13 (a) Semi-infinite body heated at surface over annular-shaped region. (b) Semi-
infinite insulated cylinder heated with constant annular-shaped heat source.

φkji = γkji −
j−1∑
n=1

φkni for j , k = 1, 2, . . . , 10 (12.110)

where γkji represents the temperature rise at element k(r = rk) due to a unit heat flux
at the disk with radius aj and at time ti . See Figure 12.15.

For the first problem, the USE solutions are compared with other available so-
lutions (Schneider et al., 1977; Sadhel, 1980; Keltner, 1973) on the basis of the
dimensionless thermal constriction resistance across the interface area. The transient
thermal constriction resistance is defined as “the difference between the average tem-
perature of the contact area and the temperature far from the contact area divided by
the total instantaneous heat flow through the contact area” (Schnider, 1979), and is
given by

Rc1(t) = Tc(t) − T01

Qc(t)
Rc2(t) = T02 − Tc(t)

Qc(t)
(12.111a, b)

where Tc(t) is the average temperature of the contact area, Qc(t) is the total heat
flow through the contact area, and the Rc1(t) and Rc2(t) are the thermal constriction
resistances for bodies 1 and 2, respectively. The total thermal constriction resistance
for the two semi-infinite bodies is then determined by

Rc(t) = Rc1(t) + Rc2(t) = T02 − T01

Qc(t)
(12.112)
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FIGURE 12.14 (a) Semi-infinite body heated over circular area. (b) Semi-infinite insulated
cylinder with constant disk heat source.
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FIGURE 12.15 Geometry describing the influence functions for semi-infinite body.
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The average contact area temperature Tc is obtained by summing the products of
the elemental temperature and the fraction of the total contact area occupied by the
element.

Tc(tM ) =
N∑

j=1

TjM

(
Aj

Ac

)
(12.113)

where TjM is the temperature at the center of element j at time tM , and

Ac = πa2 Aj = π(a2
j − a2

j−1) (12.114a, b)

The total heat flow through the contact area, Qc, is determined by summing up the
heat flows over all elements,

Qc(tM ) =
N∑

j=1

qjM Aj (12.115)

Substituting Equation 12.115 into Equation 12.112 yields

Rc(tM ) = T02 − T01∑N
j=1 qjM Aj

(12.116)

With the values of k’s = 1, α’, s = 1, a = 1, T02 = 2, and T01 = 0, the first problem
was solved for elemental heat fluxes using Equations 12.109a, b. The fluxes were
then introduced into Equation 12.116 to evaluate the thermal constriction resistance
across the contact area. The results are shown in Table 12.1. The first column in this
table is the dimensionless time (t+ = αt / a2) which extends over many decades.
The results from the finite-difference solution of Schneider et al. (1977) are provided
in the second column which are most accurate at the late times and least accurate
at the early times. The third column comes from an exact solution given by Sadhel
(1980) which is claimed to be valid for only large times. The next two columns are
for the T -based and the q-based single-node USE solutions. The T -based solution
is appropriate for late times and the q-based solution is accurate at early times. The
results from the multinode USE solution are displayed in the sixth column. The last
column is from a one-dimensional approximate solution given by Keltner (1973)
which closely matches the multinode USE solution at short times and retains good
accuracy for the mid to late times.

For the second problem, the intrinsic thermocouple problem, the USE solutions
are compared with other existing solutions (Henning and Parker, 1967; Keltner,
1973; Shewen, 1976), based on the normalized area averaged interface temperature,
defined as

T +
c = Tc − T01

T02 − T01
(12.117)

where Tc is the area averaged interface temperature given by Equation 12.112,
and T01 and T02 are the initial temperatures of the wire (semi-infinite cylinder) and
the substrate (semi-infinite body), respectively. Note that at the initial moment
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TABLE 12.1
Results for Dimensionless Constriction Resistance, for an Isothermal
Disk Region on the Surface of a Semi-Infinite Body. R+

c = Rc. a.k.

Beck and Keltner, 1982
SSY Sadhal Keltner

t+ (1977) (1980) Eq. 56 Eq. 22 MUSE (1973)

0.001 0.0386 0.0202 0.0172 0.0166 0.0162
0.002 0.0409 0.0277 0.0240 0.0230 0.0223
0.005 0.0463 0.0411 0.0368 0.0349 0.0340
0.01 0.0532 0.0544 0.0503 0.0471 0.0473
0.02 0.0637 0.0706 0.0678 0.0625 0.0641
0.05 0.0851 4.8988 0.0959 0.0972 0.0879 0.0914
0.1 0.1074 0.2029 0.1171 0.1226 0.1102 0.1142
0.2 0.1336 0.1685 0.1386 0.1468 0.1336 0.1382
0.5 0.1695 0.1752 0.1658 0.1634 0.1631 0.1685
1 0.1933 0.1879 0.1839 0.1500 0.1824 0.1895
2 0.2120 0.2010 0.1994 0.1071 0.1984 0.2074

10 0.2368 0.2247 0.2245 0.2242 0.2347
100 0.2475 0.2413 0.2413 0.2414 0.2477

1000 0.2495 0.2472 0.2472 0.2472
10000 0.2499 0.2491 0.2491 0.2491
∞ 0.2500 0.2500 0.2500 0.2500

when the substrate undergoes a step change of temperature, there is no spatial vari-
ation in the interface temperature. The normalized value of this instantaneous initial
interface temperature is given by Keltner and Beck (1981) as

T +
0c = T0c − T01

T02 − T01
= (1 + β′)−1 (12.118)

where T0c is the instantaneous initial interface temperature and β′ is the reciprocal of
β defined by Equation 12.93b; that is,

β′ =
(

k1ρ1c1

k2ρ2c2

)1 / 2

(12.119)

Using the thermal properties of a chromel substrate (k = 19.21 W / m K, α =
0.492×10−5 m2 / s) and an alumel wire (k = 29.76 W / m K, α = 0.663 × 10−5 m2 / s),
the USE results for normalized area averaged interface temperatures compared with
other existing values are as shown in Table 12.2. For a chromel and an alumel
combination, the normalized instantaneous initial interface temperature, given by
Equation 12.118, is equal to 0.4285. The results presented are actually valid for any
combination of the materials with the ratios of k2 / k1 = 0.645 and α2 / α1 = 0.742.
The first column in this table is the dimensionless time which extends from t+ = 0.001
to t+ = 500. The dimensionless time is based on the thermal diffusivity of the sub-
strate (body 2),
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TABLE 12.2
Normalized Area Averaged Interface Temperature Histories for Chromel
Semi-Infinite Body and Alumel Semi-Infinite Cylinder

T-based (1981) q-based
FD Solutions

Henning and Early Late Early Late
t+ 1973 1976 Parker, 1967 Time Time Time Time MUSE

.001 .6084 .4489 .4342 .4335

.002 .4421 .6118 .4500 .4366 .4364

.005 .4480 .6185 .4521 .4413 .4422

.01 .4402 .4510 .6257 .4545 .4467 .4488

.02 .4505 .4599 .6356 .4546 .4581

.05 .4700 .4782 .6540 .4709 .4765

.1 .4916 .4991 .6731 .4907 .4904 .4973

.2 .5215 .5283 .6972 .5280 .5263

.5 .5770 .5826 .7373 .5910 .5805
1 .6302 .6338 .7729 .6452 .6328
2 .6896 .6921 .8109 .7042 .6915
5 .7688 .7714 .8602 .7810 .7700

10 .8202 .8246 .8933 .8327 .8091 .8236
20 .8694 .9207 .8757 .8614 .8687
50 .9139 .9482 .9186 .9108 .9137

100 .9382 .9689 .9417 .9365 .9381
200 .9786 .9585 .9550 .9559
500 .9832 .9737 .9715 .9719

Note: kch = 19.21 and ka1 = 29.76 w / m-K, αch = .492 × 10−5 and αa1 = .663 × 10−5 m2 / s.

t+ = α2t

a2
(12.120)

The second and the third columns give the results of the finite-difference solutions
given by Keltner (1973) and Shewen (1967), respectively. The fourth column is eval-
uated from the analytical solution given by Henning and Parker (1967) which is only
good for late times (t+ > 20). The early and late times results of the T -based and the
q-based single-node USE solutions are displayed in the next four columns. The last
column represents the multinode USE solution.

As can be seen from Table 12.2, there is a very good agreement between the finite-
difference solutions and the USE solutions for the time range covered. However, note
that both finite-difference solutions have difficulty regarding the computational effort
and cost, particularly for the early times, t+ < 0.01, and the late times, t+ > 10.
The T -based and the q-based single-node USE solutions are convenient in that the
mathematics is not difficult and the expressions are simple to evaluate. Each solution
provides two expressions; one for early times and the other for late times. The q-based
solution is more appropriate for the early times. It approaches the exact solution
(0.4285) as t+ goes to zero, and closely matches the multinode USE solution up
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to dimensionless time t+ = 0.1. It also provides relatively good results for the late
times, t+ > 10. The T -based solution does not approach the exact solution as t+ goes
to zero, and consequently, is less accurate than the q-based solution for early times.
Because of the uniform interface temperature assumption, however, it yields very
good results for the times of t+ > 0.1. Even though neither the T -based solution nor
the q-based solution is solely suitable for the complete time domain, a combination
of the early-time q-based solution and the late-time T -based solution provides very
good results over the entire time domain. These two solutions match very closely at
the dimensionless time t+ = 0.1.

A study of the Tables 12.1 and 12.2 shows that for each of the above problems,
the USE method performed very well. The single-node solutions represent relatively
accurate results for certain ranges of time. The advantage of this approach is in
its simplicity. The multinode solution is superior to other analytical and numerical
solutions in terms of accuracy and ability to treat the complete time range. Also, there
is no restriction regarding the choice of the time step in the multinode approach. For
instance, in the above problems, the elemental surface heat fluxes are determined for
various values of t+, in 20 time steps. This means that for larger times, larger time
steps are considered. [To evaluate, qj (t+)’s, at times of t+ = 0.01, 1, and 1000, the
time steps of ∆t+ = 0.0005, 0.05, and 50, were used, respectively.] This substantially
reduces the computational work compared with the case where a small constant time
step in used for the entire time range.

PROBLEMS
12.1 A semi-infinite body is initially at zero temperature. For times t > 0,

the surface at x = 0 is subjected to a temperature which varies
linearly with time as T (0, x) = at . Using the Duhamel’s theorem,
find the transient temperature distribution in the body.

12.2 Consider a semi-infinite body initially at zero temperature subjected
to a uniform surface temperature over an infinite strip of width 2a

with the rest of the surface being insulated. See Figure 12.10a.
(a) By considering only two elements along the active part of the

surface, give the appropriate USE equations for three time steps
(M = 3).

(b) What is the required influence function for this problem?
12.3 Show that for Problem 12.2 the integration of the corresponding GF

over the surface element and the time step results in the correspond-
ing flux-based influence function.

12.4 Solve Problem 12.2 by utilizing the GF USE formulation.
12.5 Starting with Equation 12.46a, derive the appropriate GF form of

the flux-based USE Equation 12.64 for two bodies in perfect contact
over a portion of their boundaries with the rest of the boundaries
being insulated.

12.6 Consider two semi-infinite bodies initially at different temperatures,
Ti1 and Ti2, brought together in perfect contact over an infinite strip
of width 2a with the rest of the boundaries being insulated. Using the



T&F Cat # K10695, Chapter 12, Page 479, 12-6-2010

Unsteady Surface Element Method 479

single-node USE method, obtain an approximate analytical solution
for the interface heat flux.

12.7 Athermal property probe can be made by placing a small, thin rectan-
gular electrical resistance heater on a large flat body, named body 1,
for which k1, and α1, are known. If body 1 and the heater are put
into good thermal contact with some body 2 with unknown ther-
mal properties, a transient experiment may be carried out to find k2
and α2. The matching conditions between body 1 and body 2 are
T 1(t) = T 2(t) and

q1(t) + q2(t) =
{

q0 for t > 0 on heater

0 otherwise

where the overbar (−) denotes spatial average over the rectangu-
lar heater and where q1 and q2 are the surface heat flux into bod-
ies 1 and 2, respectively. Initially body 1 and body 2 are at zero
temperature.

(a) Formulate the flux-based one-node USE method for two bodies
with a heater between them. The heater has negligible mass and
negligible temperature gradients perpendicular to the interface.

(b) Using names φ1(t) and φ2(t) for the dimensionless spatial aver-
age influence functions on the heater, solve the one-node USE
equation in the Laplace transform domain.

(c) Ifφ1 = 2(t+ / π)1 / 2−(t+ / π)[1+1 /(b / a)−2 / 3(t+ / π)1 / 2 / b]
where t+ = α1t / a2 and b / a is the length/width of the rect-
angular heater, find T (t), the spatial average temperature on
the heater at early time (an approximate inverse transform is
required). If T (t) and q0 are measured, is it possible to deduce
k2 and α2?

NOTE 1: DERIVATION OF EQUATIONS 12.65A AND 12.65B

Equation 12.65a can readily be obtained by considering that for the first time step
(M = 1), the vectors EM and FM (given by Equation 12.62a and b, respectively)
are zero.

EM = FM = 0 (1)

Substituting Equation 1 into Equation 12.61b and then its results into Equa-
tion 12.64 yields

q1 = C−1T 0 (2)

which is the same as Equation 12.65a.
To show how Equation 12.65b is derived, Equation 12.63 is expanded for different

values of M . By introducing Equations 12.61b and 12.62a and b into Equation 12.63,
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for M = 1, 2, 3, . . . , one can write

for M = 1, Cq1 = T 0 (3.1)

for M = 2, Cq2 = T 0 + E2 − F 2 (3.2)

for M = 3, Cq3 = T 0 + E3 − F 3 (3.3)

for M − 1, CqM−1 = T 0 + EM−1 − FM−1 (3.M-1)

for M CqM = T 0 + EM − FM (3.M)

By adding all M Equations together, 3.1 through 3.M, and noticing that

EM = FM−1 + Φ1qM−1 (4)

it can be shown that

C

{
M∑
i=1

qi

}
= MT 0 + Φ1

M−1∑
i=1

qi − FM (5)

or

qM +
M−1∑
i=1

qi = MC−1T 0 + C−1Φ1

M−1∑
i=1

qi − C−1FM (6)

Substituting for C, FM and C−1T 0 from Equations 12.61a, 12.62b, and 2, respec-
tively, yields

qM = Mq1 + B

{
M−1∑
i=1

qi

}
− C−1FM (7)

where the matrix B is defined as

B = H−1Φ1 (8)

Equation 7 is the same as Equation 12.65b and is valid for M ≥ 2. Notice that
the vector FM is a function of time and should be calculated at each time step.
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B Bessel Functions

The differential equation

d2R

dz2
+ 1

z

dR

dz
+

(
1 − ν2

z2

)
R = 0 (B.1)

is called the Bessel equation of order ν. Two linearly independent solutions of this
equation for all values of ν are Jν(z), the Bessel function of the first kind of order ν

and Yν(z), the Bessel function of the second kind of order ν. Thus, the general solution
of Equation B.1 is written as (Hildebrand, 1949; McLachlan, 1961; Watson, 1966)

R(z) = c1Jν(z) + c2Yν(z) (B.2)

The Bessel function Jν(z) in series form is defined as

Jν(z) =
(

1

2
z

)ν ∞∑
k=0

(−1)k
[(1 / 2) z]2k

k!Γ(ν + k + 1)
(B.3)

and

Yν(z) = Jν(z) cos(νπ) − J−ν(z)

sin(νπ)

where Γ(x) is the gamma function. The differential equation

d2R

dz2
+ 1

z

dR

dz
−

(
1 + ν2

z2

)
R = 0 (B.4)

is called the modified Bessel equation of order ν. Two linearly independent solutions
of this equation for all values of ν are Iν(z) (the modified Bessel function of the
first kind of order ν) and Kν(z) (the modified Bessel function of the second kind of
order ν). Thus, the general solution of Equation B.4 is written as

R(z) = c1Iν(z) + c2Kν(z) (B.5)

Iν(z) and Kν(z) are real and positive when ν > −1 and z > 0. The Bessel function
Iν(z) in series form is given by

Iν(z) =
(

1

2
z

)ν ∞∑
k=0

[(1 / 2)z]2k

k!Γ(ν + k + 1)
(B.6)

When ν is neither zero nor a positive integer, the general solutions B.2 and B.5
can be taken, respectively, in the form

R(z) = c1Jν(z) + c2J−ν(z) (B.7a)

R(z) = c1Iν(z) + c2I−ν(z) (B.7b)
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TABLE B.1
First Ten Roots of Jn(z) = 0; n = 0, 1, 2, 3, 4, 5

J0 J1
n (R01 Case) (R02 Case) J2 J3 J4 J5

1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715
2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386
3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002
4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801
5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178
6 18.0711 19.6159 21.1170 22.5827 24.0190 25.4303
7 21.2116 22.7601 24.2701 25.7482 27.1991 28.6266
8 24.3525 25.9037 27.4206 28.9084 30.3710 31.8117
9 27.4935 29.0468 30.5692 32.0649 33.5371 34.9888

10 30.6346 32.1897 33.7165 35.2187 36.6990 38.1599

When ν = n is a positive integer, the solutions Jn(z) and J−n(z) are not independent
(see Tables B.1 through B.5); they are related by

Jn(z) = (−1)nJ−n(z) and J−n(z) = Jn(−z) (B.8)

(n = integer). Similarly, when ν = n is a positive integer, the solutions In(z) and
I−n(z) are not independent.

We summarize various forms of solutions of Equation B.1 as

R(z) = c1Jν(z) + c2Yν(z) always (B.9a)

R(z) = c1Jν(z) + c2J−ν(z) ν is not zero or a positive integer (B.9b)

and the solutions of Equation B.4 as

R(z) = c1Iν(z) + c2Kν(z) always (B.10a)

R(z) = c1Iν(z) + c2I−ν(z) ν is not zero or a positive integer (B.10b)

B.1 GENERALIZED BESSEL EQUATION

Sometimes a given differential equation, after suitable transformation of the inde-
pendent variable, yields a solution that is a linear combination of Bessel functions.
A convenient way of finding out whether a given differential equation possesses a
solution in terms of Bessel functions is to compare it with the generalized Bessel
equation (Sherwood and Reed, 1939, p. 65)

d2R

dx2
+

(
1 − 2m

x
− 2α

)
dR

dx

+
[
p2a2x2p−2 + α2 + α(2m − 1)

x
+ m2 − p2ν2

x2

]
R = 0 (B.11a)
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TABLE B.2
First Six Roots of βJ1(β) − cJ0(β) = 0 (Case R03, where c = h b / k)a

c β1 β2 β3 β4 β5 β6

0.00 0.0000 3.8317 7.0156 10.1735 13.3237 16.4706
0.01 0.1412 3.8343 7.0170 10.1745 13.3244 16.4712
0.02 0.1995 3.8369 7.0184 10.1754 13.3252 16.4718
0.04 0.2814 3.8421 7.0213 10.1774 13.3267 16.4731
0.06 0.3438 3.8473 7.0241 10.1794 13.3282 16.4743
0.08 0.3960 3.8525 7.0270 10.1813 13.3297 16.4755
0.10 0.4417 3.8577 7.0298 10.1833 13.3312 16.4767
0.15 0.5376 3.8706 7.0369 10.1882 13.3349 16.4797
0.20 0.6170 3.8835 7.0440 10.1931 13.3387 16.4828
0.30 0.7465 3.9091 7.0582 10.2029 13.3462 16.4888
0.40 0.8516 3.9344 7.0723 10.2127 13.3537 16.4949
0.50 0.9408 3.9594 7.0864 10.2225 13.3611 16.5010
0.60 1.0184 3.9841 7.1004 10.2322 13.3686 16.5070
0.70 1.0873 4.0085 7.1143 10.2419 13.3761 16.5131
0.80 1.1490 4.0325 7.1282 10.2516 13.3835 16.5191
0.90 1.2048 4.0562 7.1421 10.2613 13.3910 16.5251
1.00 1.2558 4.0795 7.1558 10.2710 13.3984 16.5312
1.50 1.4569 4.1902 7.2233 10.3188 13.4353 16.5612
2.00 1.5994 4.2910 7.2884 10.3658 13.4719 16.5910
3.00 1.7887 4.4634 7.4103 10.4566 13.5434 16.6499
4.00 1.9081 4.6018 7.5201 10.5423 13.6125 16.7073
5.00 1.9898 4.7131 7.6177 10.6223 13.6786 16.7630
6.00 2.0490 4.8033 7.7039 10.6964 13.7414 16.8168
7.00 2.0937 4.8772 7.7797 10.7646 13.8008 16.8684
8.00 2.1286 4.9384 7.8464 10.8271 13.8566 16.9179
9.00 2.1566 4.9897 7.9051 10.8842 13.9090 16.9650

10.00 2.1795 5.0332 7.9569 10.9363 13.9580 17.0099
15.00 2.2509 5.1773 8.1422 11.1367 14.1576 17.2008
20.00 2.2880 5.2568 8.2534 11.2677 14.2983 17.3442
30.00 2.3261 5.3410 8.3771 11.4221 14.4748 17.5348
40.00 2.3455 5.3846 8.4432 11.5081 14.5774 17.6508
50.00 2.3572 5.4112 8.4840 11.5621 14.6433 17.7272
60.00 2.3651 5.4291 8.5116 11.5990 14.6889 17.7807
80.00 2.3750 5.4516 8.5466 11.6461 14.7475 17.8502

100.00 2.3809 5.4652 8.5678 11.6747 14.7834 17.8931
∞ 2.4048 5.5201 8.6537 11.7915 14.9309 18.0711

aFrom Carslaw and Jaeger (1959).
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TABLE B.3
First Five Roots of J0(β)Y0(λβ)−Y0(β)J0(λβ) (Case R11, where λ = b / a, λ > 1)

λ−1 1 2 3 4 5

0.80 12.55847 031 25.12877 37.69646 50.26349 62.83026
0.60 4.69706 410 9.41690 14.13189 18.84558 23.55876
0.40 2.07322 886 4.17730 6.27537 8.37167 10.46723
0.20 0.76319 127 1.55710 2.34641 3.13403 3.92084

0.10 0.33139 387 0.68576 1.03774 1.38864 1.73896
0.08 0.25732 649 0.53485 0.81055 1.08536 1.35969
0.06 0.18699 458 0.39079 0.59334 0.79522 0.99673
0.04 0.12038 637 0.25340 0.38570 0.51759 0.64923
0.02 0.05768 450 0.12272 0.18751 0.25214 0.31666
0.00 0.00000 000 0.00000 0.00000 0.00000 0.00000

TABLE B.4
First Five Roots of J1(β)Y0(λβ) −Y1(β)J0(λβ) (Cases R12 or R21, where
λ = b / a, λ > 1)

λ−1 1 2 3 4 5

0.80 6.56973 310 18.94971 31.47626 44.02544 56.58224
0.60 2.60328 138 7.16213 11.83783 16.53413 21.23751
0.40 1.24266 626 3.22655 5.28885 7.36856 9.45462
0.20 0.51472 663 1.24657 2.00959 2.78326 3.56157

0.10 0.24481 004 0.57258 0.90956 1.25099 1.59489
0.08 0.19461 772 0.45251 0.71635 0.98327 1.25203
0.06 0.14523 798 0.33597 0.53005 0.72594 0.92301
0.04 0.09647 602 0.22226 0.34957 0.47768 0.60634
0.02 0.04813 209 0.11059 0.17353 0.23666 0.29991
0.00 0.00000 000 0.00000 0.00000 0.00000 0.00000

and the corresponding solution of which is

R = xmeαx[c1Jν(axp) + c2Yν(axp)] (B.11b)

where c1 and c2 are arbitrary constants. For example, by comparing the differential
equation

d2R

dx2
+ 1

x

dR

dx
− β

x
R = 0 (B.12)

with the above generalized Bessel equation, we find

α = 0 m = 0 p = 1

2
a = 2i

√
β ν = 0
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TABLE B.5
First Five Roots of J1(β)Y1(λβ) − Y1(β)J1(λβ) (Case R22, where λ = b / a,
λ > 1)

λ−1 1 2 3 4 5

0.80 12.59004 151 25.14465 37.70706 50.27145 62.83662
0.60 4.75805 426 9.44837 14.15300 18.86146 23.57148
0.40 2.15647 249 4.22309 6.30658 8.39528 10.48619
0.20 0.84714 961 1.61108 2.38532 3.16421 3.94541

0.10 0.39409 416 0.73306 1.07483 1.41886 1.76433
0.08 0.31223 576 0.57816 0.84552 1.11441 1.38440
0.06 0.23235 256 0.42843 0.62483 0.82207 1.02001
0.04 0.15400 729 0.28296 0.41157 0.54044 0.66961
0.02 0.07672 788 0.14062 0.20409 0.26752 0.33097
0.00 0.00000 000 0.00000 0.00000 0.00000 0.00000

Hence, the solution of differential equation B.12 is in the form

R = c1J0(2i
√

βx) + c2Y0(2i
√

βx) (B.13a)

or

R = c1I0(2
√

βx) + c2K0(2
√

βx) (B.13b)

which involves Bessel functions.

B.2 LIMITING FORM FOR SMALL z

For small values of z(z → 0), the retention of the leading terms in the series results
in the following approximations for the values of Bessel functions (Abramowitz and
Stegun, 1964, p. 360)

Jν(z) ≈
(

1

2
z

)ν 1

Γ(ν + 1)
ν �= −1, −2, −3, . . . (B.14a)

Yν(z) ≈ − 1

π

(
2

z

)ν

Γ(ν) ν �= 0 and Y0(z) = 2

π
ln z (B.14b)

Iν(z) ≈
(

1

2
z

)ν 1

Γ(ν + 1)
ν �= −1, −2, −3, . . . (B.15a)

Kν(z) ≈ 1

2

(
2

z

)ν

Γ(ν) ν �= 0 K0(z) ≈ − ln z (B.15b)
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B.3 LIMITING FORM FOR LARGE z

For large values of z (z → ∞), the values of Bessel functions can be approximated
as (Abramowitz and Stegun, 1964, pp. 364 and 377)

Jν(z) ≈
(

2

πz

)1 / 2

cos
(
z − π

4
− νπ

2

)
(B.16a)

Yν(z) ≈
(

2

πz

)1 / 2

sin
(
z − π

4
− νπ

4

)
(B.16b)

Iν(z) ≈ ez

√
2πz

and Kν(z) ≈
(

2

πz

)1 / 2

e−z (B.16c)

B.4 DERIVATIVES OF BESSEL FUNCTIONS (HILDEBRAND, 1949,
PP. 161–163)

d

dz
[zνWν(βz)] =

{
βzνWν−1(βz) for W = J , Y , I (B.17a)

−βzνWν−1(βz) for W = K (B.17b)

d

dz
[z−νWν(βz)] =

{−βz−νWν+1(βz) for W = J , Y , K (B.18a)

βz−νWν+1(βz) for W = I (B.18b)

For example, by setting ν = 0, we obtain

d

dz
[W0(βz)] =

{−βW1(βz) for W = J , Y , K (B.19a)

βW1(βz) for W = I (B.19b)

B.5 RECURRENCE RELATIONS

The recurrence formulas for the Bessel functions are given as (Abramowitz and
Stegun, 1964, p. 361; Watson, 1966, pp. 45 and 66)

Wν−1(z) + Wν+1(z) = 2ν

z
Wν(z) (B.20a)

Wν−1(z) − Wν+1(z) = 2W ′
ν(z) (B.20b)

Wν−1(z) − ν

z
Wν(z) = W ′

ν(z) (B.20c)

−Wν+1(z) + ν

z
Wν(z) = W ′

ν(z) (B.20d)

where W = J or Y or any linear combination of these functions the coefficients in
which are independent of z and ν.
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B.6 INTEGRALS OF BESSEL FUNCTIONS

∫
xJ0(x)dx = xJ1(x) (B.21)∫
J1(x)dx = −J0(x) (B.22)

∫ z

0
J0(x)dx = z

∞∑
k=0

J2k+1(z) (B.23)

Note: Numerical values for
∫

J0(x) and
∫

Y0(x) are tabulated in Abramowitz and
Stegun (1964, pp. 491–493). ∫

xY0(x)dx = xY1(x) (B.24)∫
Y1(x)dx = −Y0(x) (B.25)

(β2 − α2)
∫ 1

0
xJk(αx)Jk(βx)dx = αβ

2k
[Jk−1(α)Jk+1(β) − Jk+1(α)Jk−1(β)] (B.26)

∫
xJ 2

k (αx)dx = x2

2
[J 2

k (αx) − Jk−1(αx)Jk+1(αx)] (B.27)

In the following formulas, Ck(x) and Ck(x) denote two general Bessel functions,
(i.e., linear combinations):

Ck(x) = aJk(x) + bYk(x) Ck(x) = aJk(x) + bYk(x)

with arbitrary constant, a, b, a, b.∫
xk+1Ck(x)dx = xk+1Ck+1(x) (B.28)∫
x1−kCk(x)dx = −x1−kCk−1(x) (B.29)

∫
xCk(hx)Ck(gx)dx = (h2 − g2)−1x

[
hCk+1(hx)Ck(gx)

− gCk(hx)Ck+1(gx)
]

(B.30)∫
xCk(hx)Ck(hx)dx = −1

4
x2 [

Ck−1(hx)Ck+1(hx)

− 2Ck(hx)Ck(hx) + Ck+1(hx)Ck−1(hx)
]

(B.31)∫
x−1Cm(hx)Ck(hx)dx = (m2 − k2)−1 [

(m − k)Cm(hx)Ck+1(hx)

− hxCm+1(hx)Ck(hx) + hxCm(hx)Ck+1(hx)
]

(B.32)
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D Dirac Delta Function

The Dirac delta function (sometimes called the unit impulse function) plays a central
role in the method of Green’s functions. The Dirac delta function δ(x) is defined to be
zero when x �= 0, and infinite at x = 0 in such a way that the area under the function
is unity. A concise definition is the following: given nonzero numbers η1 > 0 and
η2 > 0,

δ(x) = 0 if x �= 0;
∫ η2

−η1

δ(x) dx = 1 (D.1)

This is a “weak” definition of δ(x), since the limits of integration are never allowed
to be precisely zero. This definition is sufficient for work with Green’s functions. See
Barton (1989, p. 11) for a discussion of “weak” and “strong” definitions.

D.1 PROPERTIES OF THE DIRAC DELTA FUNCTION

1. Sifting property. Given function f (x) continuous at x = x′,∫ b

a

f (x′) δ(x − x ′) dx′ =
{

f (x) if a < x < b

0 if (a, b) does not contain x
(D.2)

When integrated, the product of any (well-behaved) function and the Dirac
delta yields the function evaluated where the Dirac delta is singular. The
sifting property also applies if the arguments of functions f and δ are ex-
changed: f (x′) δ(x − x ′)dx ′ = f (x) δ(x′ − x)dx.
Next the sifting property will be proved. Let γ = x − x ′. Then∫ b

a

f (x′) δ(x − x ′) dx′ =
∫ x−a

γ=x−b

f (x − γ) δ(γ) dγ (D.3)

From the definition, δ(x) = 0 for any x �= 0 so the limits on γ may be
replaced by (−ε, ε) for some small ε > 0.∫ b

a

f (x) δ(x − x′) dx =
∫ ε

−ε

f (x − γ) δ(γ) dγ

Now take ε to be very small, so that over the interval (−ε, ε) function f is
essentially constant. That is, f (x −γ) ≈ f (x) so that f (x) may be removed
from the integral over γ∫ b

a

f (x) δ(x − x ′) dx = f (x)
∫ ε

−ε

δ(γ) dγ

= f (x) · 1 (D.4)

The integral of the delta function completes the proof.
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2. Relationship with the step function.∫ t

−∞
δ(τ) dτ = H (t); dH (t − τ)

dt
= δ(t − τ) (D.5)

where H (t) is the Heaviside unit step function defined as

H (t) =
{

0 if t < 0
1 if t > 0

(D.6)

3. Units. Since the definition of the Dirac delta requires that the product δ(x)dx

is dimensionless, the units of the Dirac delta are the inverse of those of the
argument x. That is, δ(x) has units meters−1, and δ(t) has units sec−1.

4. Definition for radial, 2D, and 3D geometries. For two- and three-dimensional
problems with vector coordinate −→r , the Dirac delta function is defined:

δ(−→r ) = 0 if −→r �= 0∫
Ω

δ(−→r ) dv =
{

1 if Ω contains −→r
0 if Ω does not contain −→r (D.7)

where dv is differential volume. The units of δ(−→r ) are given by [dv]−1, and
three important cases are the listed below.
a. 1D radial cylindrical coordinates: dv = 2πrdr , and units of δ(−→r ) are

[meters]−2.
b. 1D radial spherical coordinates: dv = 4πr2dr ,and units of δ(−→r ) are

[meters]−3.
c. 2D Cartesian coordinates: dv = dxdy, and units of δ(−→r ) are [meters]−2.

D.2 REPRESENTATIONS OF δ

In use, the Dirac delta function is never evaluated without multiplying by a test
function and integrating over some domain. Equations involving Dirac delta functions
without such integrations are a convenient half-way stage that nevertheless have
enormous utility. Properly speaking, the Dirac delta function is not a function at all
(it is a generalized function), however it can be represented as the limit of a sequence
of ordinary functions.

Representations of the Dirac delta with ordinary functions provide a way to vi-
sualize the Dirac delta. Let F (x, ε) be a function that has a peak near x = 0, and
the shape of the peak is controlled by parameter ε. If the integral of F (x, ε) is unity,
that is, ∫ ∞

−∞
F (x, ε) dx = 1

for any value of parameter ε > 0, then the Dirac delta function may be represented
in the limit:

δ(x) = lim
ε→0

F (x, ε)

The following example representations are illustrated in Figure D.1.
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FIGURE D.1 Representations of the Dirac delta function, with ε = 0.2.

1. Top-hat function (square step).

F (x, ε) =
{

1 / ε −ε / 2 < x < ε / 2
0 otherwise

(D.8)

2. Diffraction peak.

F (x, ε) = sin(x / ε)

πx
(D.9)

3. Lorentzian.

F (x, ε) = ε / π

(x2 + ε2)
(D.10)

4. Gaussian.

F (x, ε) = 1

2ε
exp(−x2 / ε2) (D.11)

Although all of the above functions F (x, ε) are symmetric, symmetry is not essential.
Nonsymmetric functions produce perfectly good representations of the Dirac delta
function.
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D.3 SERIES FORM OF δ

In this section the Dirac delta function will be stated in the form of an infinite series.
This discussion will begin with the definition of a complete orthogonal set.

A set of functions {φn(x)}, defined over a finite interval R, and subject to the
usual kinds of homogeneous boundary conditions, is complete if any (appropriately
restricted) function f (x) may be expressed as a linear combination of the set. That is,

f (x) =
∑

n

cnφn(x) (D.12)

The set {φn(x)} is orthogonal if, integrating over interval R,∫
R

φ∗
m(x) φn(x) dx =

{
Nn n = m

0 n �= m
(D.13)

where (·)∗ is the complex conjugate. Quantity Nm is the (square of the) norm, given by

Nn =
∫

R

[φn(x)]2 dx

The coefficients cn are found by multiplying both sides of Equation D.12 by φ∗
m(x)

and integrating over the interval R∫
R

f (x) φ∗
m(x) dx =

∫
R

(∑
n

cnφn(x)

)
φ∗

m(x) dx (D.14)

= 0 + 0 + · · · + 0 + cnNn + 0 + · · · (D.15)

Then the coefficient is given by

cn = 1

Nn

∫
R

f (x) φ∗
n(x) dx (D.16)

There are many complete orthogonal sets, including the familiar Fourier series. Many
are composed of real-valued functions for which the complex conjugate plays no role.

The importance of complete orthogonal sets is that each one provides a different
series representation of the Dirac delta function. Given a complete orthogonal set
{φn(x)}, then the Dirac delta may be expressed as the following series:

δ(x − x ′) =
∑

n

φ∗
n(x ′) φn(x)

Nn

(D.17)

The proof follows from the definition of a complete orthogonal set. Function f (x)
may be written

f (x) =
∑

n

cnφn(x) (D.18)

=
∑

n

[∫
R

f (x ′) φ∗
n(x ′) dx′

Nn

]
φn(x) (D.19)
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Now swap the order of the integral and the sum

f (x) =
∫

R

f (x ′)
[∑

n

φ∗
n(x ′)φn(x)

Nn

]
dx. (D.20)

Compare this to the sifting property, and this equation can only be true if the quantity
in brackets is the Dirac delta function δ(x − x ′).

The series form of the Dirac delta function, customized as it is to specific boundary
conditions on interval R, can be used to construct series forms of Green’s functions
on finite intervals.

D.4 INTEGRAL FORM OF δ AND THE FOURIER TRANSFORM

In this section two integral expressions will be developed for the Dirac delta function.
Consider the following integral, which can be found in standard integral tables (for
example, Gradshteyn and Rhzhik, 2007, number 2.663.3):

1

π

∫ ∞

0
e−εk cos(kx)dk = ε / π

x2 + ε2

Because the cosine is an even function, we can write

1

2π

∫ ∞

−∞
e−ε|k| cos(kx)dk = ε / π

x2 + ε2

Notice that the right-hand side of the above equation is the Lorentz representation of δ.

F (x, ε) = 1

2π

∫ ∞

−∞
e−ε|k| cos(kx)dk = ε / π

x2 + ε2

The limit as (ε → 0) can be explicitly evaluated to obtain

lim
ε→0

F (x, ε) = δ(x) = 1

2π

∫ ∞

−∞
cos(kx) dk (D.21)

This is an integral form of the Dirac delta function constructed from the Lorentz rep-
resentation. A similar result may be obtained from the diffraction peak representation.
Consider the following integral, for a > 0 (recall eiθ = cos θ + i sin θ):∫ a

−a

eikxdk = 2 sin(ax)

x

Now let a = 1 / ε and divide by 2π to get

sin(x / ε)

πx
= 1

2π

∫ 1 / ε

−1 / ε
eikxdk (D.22)
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That is, the diffraction peak representation of the Dirac delta function also has an
integral form. In the limit as ε → 0, we find

lim
ε→0

F (x, ε) = δ(x) = 1

2π

∫ ∞

−∞
eikx dk (D.23)

These representations are important for the Fourier transform, defined by the following
transform pair:

F (k) =
∫ ∞

−∞
F (x) e−ikx dx

F (x) = 1

2π

∫ ∞

−∞
F (k)eikx dk (D.24)

Note δ(x) and 1 are Fourier transforms of each other; likewise δ(x−x′) and exp(−ikx′)
are Fourier transforms of each other.

REFERENCES
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E Error Function and
Related Functions

E.1 DEFINITION

The error function is denoted erf(x) and is defined by

erf (x) = 2

π1 / 2

∫ x

0
e−t2

dt (E.1)

and the complementary error function, erfc(x), is defined by

erfc(x) = 2

π1 / 2

∫ ∞

x

e−t2
dt (E.2)

It can be shown that

erf (∞) = 1 (E.3a)

erf (−x) = −erf (x) (E.3b)

erf (x) + erfc(x) = 1 (E.3c)

erfc(−x) = 1 + erf (x) = 2 − erfc(x) (E.3d)

Alternative definitions of erf (x) are

erf (x) = sign (x)

π1 / 2

∫ x2

0
t−1 / 2e−t dt (E.4a)

erf (x) = 2

π

∫ ∞

0
t−1e−t2

sin(2xt) dt (E.4b)

erf (x) = 2x

π1 / 2

∫ 1

0
e−x2t2

dt (E.4c)

E.2 SERIES EXPRESSIONS

Two ways to expand erf(x) are

erf (x) = 2

π1 / 2

[
x − x3

3
+ x5

10
− · · ·

]
= 2x

π1 / 2

∞∑
j=0

(−x2)j

j !(2j + 1)
(E.5a)

erf (x) = 2

π1 / 2
e−x2

(
x + 2x3

3
+ 4x5

15
+ · · ·

)
= e−x2

∞∑
j=0

x2j+1

Γ[(2j + 3) / 2] (E.5b)

497
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Here Γ(·) is the gamma function. The above expressions are most useful for small
values of x. For large values of x, erfc(x) is expandable asymptotically as

erfc(x) ∼ exp(−x2)

xπ1 / 2

(
1 − 1

2x2
+ 1 · 3

22x4
− 1 · 3 · 5

23x6
+ · · ·

)
(E.6)

Care must be exercised in using Equation E.6 numerically because the error is only
less than the absolute value of the last term retained. Also for large x, the continued
fraction expression given below may be used:

erfc(x) = π−1 / 2 exp(−x2)

x + 1

2x + 2

x + 3

2x + 4

x + 5

2x + 6

x + · · · (E.7)

See Press et al. (1992, p. 163) for an efficient way to evaluate continued fractions.

E.3 RELATED FUNCTIONS

A set of functions is defined by the integral

inerfc(x) = 2

π1 / 2

∫ ∞

x

(t − x)n

n! e−t2
dt n = 2, 3, 4, . . . (E.8)

The notation is usually extended to embrace

i1erfc(x) = ierfc(x) =
∫ ∞

x

erfc(t)dt (E.9a)

i0erfc(x) = erfc(x) (E.9b)

i−1erfc(x) = 2

π1 / 2
e−x2

(E.9c)

The ierfc and in erfc functions are known as the complementary error function integral,
and the repeated integrals of the error function complement, respectively. Plots of
some of these functions are given in Figure E.1. Some numerical values of erfc and
related functions are given in Table E.1.
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FIGURE E.1 Error function erf(x) and related functions.

The power series expansion is

inerfc(x) = 1

2n

∞∑
j=0

(−2x) j

j !Γ[(2 + n − j ) / 2] (E.10)

which shows that

inerfc(0) =
[
2nΓ

(
1 + n

2

)]−1
(E.11)

of which the first few values are shown in Table E.2. The behavior of in erfc(x) for
large values of x is described by

inerfc(x) ∼ 2 exp(−x2)

π1 / 2(2x)n+1

[
1 − (n + 1)(n + 2)

4x2

+ (n + 1)(n + 2)(n + 3)(n + 4)

32x4

− · · · + (n + 2j )!
n! j !(−4x2) j

+ · · ·
]

(E.12)

E.4 RECURSION RELATION

The inerfc(x) functions obey the relation

inerfc(x) = −x

n
in−1 erfc(x) + 1

2n
in−2 erfc(x) n = 1, 2, 3, . . . , (E.13)
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TABLE E.1
Error Functions for Argument Common in Heat Conduction

z erf [(4z)−1/2] erfc [(4z)−1/2] (4z)1/2 ierfc [(4z)−1/2]
0.01 1.000000 0.000000 0.000000
0.02 0.999999 0.000001 0.000000
0.03 0.999955 0.000045 0.000002
0.04 0.999593 0.000407 0.000029
0.05 0.998435 0.001565 0.000135
0.06 0.996108 0.003892 0.000393
0.07 0.992474 0.007526 0.000867
0.08 0.987581 0.012419 0.001603
0.09 0.981578 0.018422 0.002625
0.10 0.974653 0.025347 0.003943
0.20 0.886154 0.113846 0.030732
0.30 0.803294 0.196706 0.071893
0.40 0.736448 0.263552 0.118437
0.50 0.682689 0.317311 0.166631
0.60 0.638690 0.361310 0.214891
0.70 0.601975 0.398025 0.262515
0.80 0.570805 0.429195 0.309190
0.90 0.543943 0.456057 0.354791
1.00 0.520500 0.479500 0.399282
2.00 0.382925 0.617075 0.791186
3.00 0.316909 0.683091 1.115053
4.00 0.276326 0.723674 1.396355
5.00 0.248170 0.751830 1.648248
6.00 0.227170 0.772830 1.878325
7.00 0.210732 0.789268 2.091402
8.00 0.197413 0.802587 2.290758
9.00 0.186336 0.813664 2.478736

10.00 0.176937 0.823063 2.657085
20.00 0.125633 0.874367 4.109212
40.00 0.089021 0.910979 6.181053
60.00 0.072736 0.927264 7.776780
80.00 0.063013 0.936987 9.124053

100.00 0.056372 0.943628 10.311989
200.00 0.039878 0.960122 14.977634
400.00 0.028204 0.971796 21.581687
600.00 0.023030 0.976970 26.651048
800.00 0.019945 0.980055 30.925355

1000.00 0.017840 0.982160 34.691403
2000.00 0.012615 0.987385 49.468958
3000.00 0.010300 0.989700 60.809023
4000.00 0.008920 0.991080 70.369425
5000.00 0.007979 0.992021 78.792445
6000.00 0.007284 0.992716 86.407516
7000.00 0.006743 0.993257 93.410346
8000.00 0.006308 0.993692 99.928455
9000.00 0.005947 0.994053 106.050420

10000.00 0.005642 0.994358 111.840738
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TABLE E.2
Values of inerfc(0)

n in erfc (0)

−1 2π−1 / 2

0 1
1 π−1 / 2

2
1

4

3
π−1 / 2

6

4
1

32

Sufficient applications of this formula permits any of the inerfc(x) functions to be
expressed in terms of erfc(x) and exp(−x2) and hence evaluated. Some examples are

ierfc(x) = π−1 / 2e−x2 − x erfc(x) (E.14a)

i2 erfc(x) = 1 + 2x2

4
erfc(x) − x

2π1 / 2
e−x2

(E.14b)

i3 erfc(x) = 1 + x2

6π1 / 2
e−x2 − 3x + 2x3

12
erfc(x) (E.14c)

E.5 INTEGRALS AND DERIVATIVES

Differentiation gives

d

dx
erf (bx + c) = − d

dx
erfc(bx + c) = 2b

π1 / 2
e−(bx+c)2

(E.15a)

Integration gives

∫ x

0
erf (bt)dt = x erf (bx) − 1 − exp(−b2x2)

bπ1 / 2
(E.15b)

∫ ∞

x

erfc(bt)dt = 1

b
ierfc(bx) (E.15c)

Also for the inerfc(x) function the following relations are valid:

d

dx
inerfc(x) = −in−1erfc(x) (E.16a)∫ ∞

x

inerfc(t)dt = in+1erfc(x) (E.16b)
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Notice that

d

dx
erfc(x) = − 2

π1 / 2
e−x2

(E.16c)

E.6 COMPLEX ARGUMENT

For x replaced by x + iy, the complex function is given by

erf (x + iy) = 2

π1 / 2

[
ey2

∫ x

0
e−t2

cos(2yt)dt

+ e−x2
∫ y

0
et2

sin(2xt)dt

]

− 2i

π1 / 2

[
ey2

∫ x

0
e−t2

sin(2yt)dt

− e−x2
∫ y

0
et2

cos(2xt)dt

]
(E.17)

These four integrals cannot be evaluated in simpler terms. Confusingly, the function
generally known as the “error function of the complex argument” is denoted

W (x + iy) = W (z) = e−z2
[

1 + 2i

π1 / 2

∫ z

0
et2

dt

]
= e−z2

erfc(−iz) (E.18)
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No. Equation Reference

1
∞∑

n=1

cos(nπx)

n
= −ln

(
2 sin

πx

2

)
(0 < x < 1) (A + S, p. 1005)

= 1

2
ln

1

2[1 − cos(πx)] (0 < x < 1) (G + R, p. 38)

2
∞∑

n=1

cos(nπx)

n2
= π2

2

[
1

2
x2 − x + 1

3

]
(0 ≤ x ≤ 1) (A + S, p. 1005)

3
∞∑

n=1

(−1)n−1 cos(nπx)

n2
= π2

4

(
1

3
− x2

)
− 1 ≤ x ≤ 1 (G + R, p. 38)

4
2

π3

∞∑
n=1

1

n3
cos(nπx) sin(nπδ)

=




[
− 1

2
x2 + δ

3
− δ2

6

]
(1 − δ) 0 ≤ x ≤ δ

1

2
δx(x − 2) + δ3

6
+ 1

3
δ δ ≤ x ≤ 1

5.1
2

π

∞∑
n=1

cos(nπx) sin(nπδ)

n
=

{
1 − δ 0 ≤ x < δ

−δ δ < x ≤ 1

5.2
2

π

∞∑
n=1

sin(nπx) cos(nπδ)

n
=

{ −x 0 ≤ x < δ

1 − x δ < x ≤ 1

6
4

π3

∞∑
m=1

∞∑
n=1

1

m3

[
1 +

(
n

m

Lx

Ly

)2
]−1

cos

(
mπ

x

Lx

)
cos

(
nπ

y

Ly

)
sin

(
mπ

δ

Lx

)
(−1)n

= − 2

π3

∞∑
m=1

1

m3
cos

(
mπ

x

Lx

)
sin

(
mπ

δ

Lx

)

+ Ly

Lx

2

π3

∞∑
n=1

sin(nπδ / Lx ) cos(nπx / Lx ) cosh(nπy / Lx )

n2 sinh(nπLy / Lx )

0 ≤ x ≤ Lx

0 ≤ y ≤ Ly

0 ≤ δ ≤ Lx

(Continued)
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No. Equation Reference

7
2

π

∞∑
m=1

sin(mπy / Ly )

m{1 + [(n / m)(Ly / Lx )]2} = sinh[nπ(Ly − y) / Lx ]
sinh(nπLy / Lx )

8
∞∑

n=−∞
e−(x−x′+2nL)2 / 4αt = (παt)1 / 2

L

×
[

1 + 2
∞∑

n=1

cos
nπ(x − x′)

L
e−n2π2αt / L2

]

(Poisson’s summation formula, Carslaw and Jaeger, 1959, p. 275)
x′ can be positive or negative

9
∞∑

n=1

(−1)nn sin
(
nπ

x

L

)
e−n2π2αt / L2

= − L

2π3 / 2(αt / L2)1 / 2

d

dx

∞∑
n=−∞

exp

{
−[x − (2n + 1)L]2

4αt

}
(M + F, p. 1587)

10
∞∑

n=1

sin(nπx)

n
= π

2
(1 − x) 0 < x < 2 (A + S, p. 1005)

11
∞∑

n=1

(−1)n
sin (nπx)

n
= −π

2
x (Ozisik, p. 203)

12
∞∑

n=1

(−1)n cos(nπy / Ly )

[(m / Lx )2 + (n / Ly )2] = − 1

2
(Lx / m)2

+ Ly

π

2
(Lx / m)

cosh(mπy / Lx )

sinh(mπLy / Lx )

13
∞∑

n=1

(−1)n{1 + [(n / m)(Lx / Ly )]2}−1 cos

(
nπ

y

Ly

)

= π

2

mLy

Lx

cosh(mπy / Lx )

sinh(mπLy / Lx )
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TABLE I.1
Expressions Involving Exponential Functions and Integrals

No. Equation Reference

0 E0(z) = z−1e−z (A + S)

1 E1(z) =
∫ ∞

z

e−t

t
dt =

∫ ∞

z/c2

e−c2t

t
dt (|arg z| < π)

2 E1(x) = −Ei(−x) (A + S)

3 En(z) =
∫ ∞

1

e−zt

tn
dt (Rz > 0)

3.1 En(x) = xn−1
∫ ∞

x

e−w

wn
dw

3.2
∫ t

0
u j e−a/u du = t j+1Ej+2(at−1)

3.3
∫ ∞

x

1

t i+1
e−c2t dt = x−iEi+1(c2x)

4 En+1(z) = 1

n
[e−z − zEn(z)] n = 1, 2, 3, . . . (A + S)

4.1 E2(z) = e−z − zE1(z)

4.2 E3(z) = 1

2
[z2E1(z) + e−z(1 − z)]

5
∫

1

r2m−1
e−r2 /(4t) dr = − 1

2
r2(1−m)Em

(
r2

4t

)
for m = 1, 2, 3, . . .

5.1
∫

1

r
e−r2 /(4t) dr = − 1

2
E1

(
r2

4t

)

5.2
∫

1

r3
e−r2 /(4t) dr = − 1

2
r−2E2

(
r2

4t

)

6
∫

r2n+1e−r2 /(4t) dr = 1

2
(4t)n+1

∫ r2 / 4t

v
ne−V dv

= − 1

2
(4t)n+1e−r2 /(4t)

n∑
i=0

n!
(n − i)!

(
r2

4t

)n−i

for n = 0, 1, 2, . . .

6.1
∫

re−r2 /(4t) dr = −2te−r2 /(4t)

6.2
∫

r3e−r2 /(4t) dr = −8t2
(

1 + r2

4t

)
e−r2 /(4t)

(Continued)
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TABLE I.1
Expressions Involving Exponential Functions and Integrals (Continued)

No. Equation Reference

6.3
∫

r5e−r2 /(4t) dr = −32t3e−r2 /(4t)

[
2 + 2r2

4t
+

(
r2

4t

)2
]

7
∫

En(u)du = −En+1(u)

8
∫ b

0
xE1(x2)dx = 1

2

∫ b2

0
E1(u)du = 1

2
[1 − E2(b2)]

9
∫ ∞

a

x2E1(x2)dx = 1

6
[√π erfc(a) + 2aE2(a2)]

10a
∫ ∞

z

E1(u2)du = √
π erfc(z) − zE1(z2)

10b
∫ ∞

0
E1(u2)du = √

π

11 E3/2(x2) = 2
√

π ierfc(x), x > 0

12
∫ ∞

a

1

w(1 + bw)
e−w dw = E1(a) − eb−1E1(a + b−1)

TABLE I.2
Integrals Involving erf(x) and erfc(x)

No. Equation Reference

1
∫

erf (ax)dx = x erf (ax) + 1

a
√

π
e−a2x2 = x + 1

a
ierfc(ax) (N + G 4.1.1)

2
∫

erfc(ax)dx = x erfc(ax) − 1

a
√

π
e−a2x2 = − 1

a
ierfc(ax) (N + G 4.1.2)

3
∫

x erf (ax)dx =
(

x2

2
− 1

4a2

)
erf (ax) + x

2a
√

π
e−a2x2

= x2

2
− 1

4a2
erf (ax) + x

2a
ierfc(ax) (N + G 4.1.4)

4
∫

x erfc(ax)dx = 1

4a2
erf (ax) + x2

2
erfc(ax) − x

2a
√

π
e−x2a2

= 1

4a2
erf (ax) − x

2a
ierfc(ax) (N + G 4.1.5)

5
∫

x−1 erf (ax)dx = ln(x) erf (ax) − 2a√
π

∫
ln(x)e−a2x2

dx (N + G 4.1.12)
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TABLE I.2
Integrals Involving erf(x) and erfc(x) (Continued)

No. Equation Reference

6
∫

x−1 erfc(ax)dx = ln(x) erfc(ax) + 2a√
π

∫
ln(x)e−a2x2

dx (N + G 4.1.13)

7
∫

x−n erf (ax)dx = −erf (ax)

(n − 1)xn−1
+ 2a

(n − 1)
√

π

×
∫

e−a2x2

xn−1
dx n ≥ 2 (N + G 4.1.14)

8
∫

x−n erfc(ax)dx = −erfc(ax)

(n − 1)xn−1
− 2a

(n − 1)
√

π

×
∫

e−a2x2

xn−1
dx n ≥ 2 (N + G 4.1.15)

9
∫

ebx erf (ax + c)dx = ebx

b
erf (ax + c) − e(b2/4a2−bc/a)

b
erf

(
ax + c − b

2a

)

10
∫

ebx erfc(ax)dx = ebx

b
erfc(ax) + eb2/4a2

b
erf

(
ax − b

2a

)
(N + G 4.2.2)

11
∫

x erf 3(x)dx =
(

x2

2
− 1

4

)
erf 3(x) + 3x

2
√

π
e−x2

erf 2(x)

+ 3

2π
e−2x2

erf (x) −
√

3

2π
erf (x

√
3) (Cho 2.3.6)

12
∫ ∞

z

1

x4
ierfc(ax)dx = 2

z3
i3 erfc(az)

13
∫ ∞

z

e−a2x2
erf (x)dx = π1/2

2a
H (z, a) (See Section 6.8)

TABLE I.3
Integrals Involving erf(a

√
x ) or erfc(a

√
x )

No. Equation Reference

1
∫

erf (a
√

x)dx =
(

x − 1

2a2

)
erf (a

√
x) + 1

a

√
x

π
e−a2x a �= 0 (Cho 2.4.1)

= x − 1

2a2
(erf (a

√
x) − 1) +

√
x

a2
ierfc(a

√
x)

2
∫

x erf (a
√

x)dx = x2

2
erf (a

√
x) − 3

8a4
erf (a

√
x)

+
(

x3/2

2a
√

π
+ 3x1/2

4a3
√

π

)
e−a2x a �= 0 (Cho 2.4.2)

(Continued)
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TABLE I.3
Integrals Involving erf(a

√
x ) or erfc(a

√
x ) (Continued)

No. Equation Reference

3
∫

erf (a
√

x)√
x

dx = 2
√

x erf (a
√

x) + 2

a
√

π
e−a2x

= 2
√

x + 2

a
ierfc(a

√
x) a �= 0 (Cho 2.4.3)

4
∫

x − b√
x(x + b)2

erf (a
√

x)dx = 2
√

x

x + b
erf (a

√
x)

− 2ea2b

(
a√
π

)
E1(a2b + a2x)

5
∫

e x erf (
√

x)dx = e xerf
√

x − 2(x/π)1/2 (Cho 2.4.4)

5.1
∫

e x erfc(x1/2)dx = e xerfc(x1/2) + 2(x/π)1/2

6
∫

eax erf (
√

bx)dx = 1

a
eaxerf (

√
bx) − 1

a

√
b

b − a

× erf {[(b − a)x]1/2} a �= 0 b �= 0 a �= b (Cho 2.4.5)

7
∫ t

0
ua / 2eu erf (u1/2)du

= 2

π1/2

∞∑
i=0

2i t i+(a+3) / 2

1 · 3 · 5 · · · (2i + 1)[i + (a + 3) / 2] a > −3

≈ 2

π1/2

(
t2

2
+ 2t3

9
+ 1

15
t4
)

for a = 1 and small t values

≈ 2

π1/2

(
t3

3
+ t4

6
+ 4t5

75

)
for a = 3 and small t values

8
∫ t

0
ua / 2eu erfc(u1/2)du ≈ t (a+2) / 2

[
2

a + 2
− 4

a + 3

(
t

π

)1/2

+ · · ·
]

for small t values and a > −2

9
∫ t

0
u−1/2eu erfc(u1/2)du = 2

∫ t1/2

0
eV 2

erfc(V )dv ≈ 2t1/2

[
1 −

(
t

π

)1/2

+ 1

3
t

]

for small t values

10
∫

u1/2eu erfc(u1/2)du = 2
∫
v

2eV 2
erfc(V )dv

= u

π1/2
+ u1/2eu erfc(u1/2)

− 1

2

∫
u−1/2eu erfc(u1/2)du
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TABLE I.3
Integrals Involving erf(a

√
x ) or erfc(a

√
x ) (Continued)

No. Equation Reference

11
∫ t

0
(1 − e−1/4u)eB2u erfc(Bu1/2)du

≈ t

[
1 − E2

(
1

4t

)]

− B

π1/2

[
4

3
t3/2 − 1

3
π1/2 erfc

(
1

2t1/2

)
+ 2

3
t1/2e−1 / 4t (1 − 2t)

]

+ 1

2
B2t2

[
1 − 2E3

(
1

4t

)]
for Bt1/2 << 1

12
∫ t

0

1

(t − u)1/2

{
1

u1/2
− (πα)1/2

a
eαu / a2

erfc

[
(αu)1/2

a

]}
du

= πeαt / a2
erfc

[
(αt)1/2

a

]
(Levine)

TABLE I.4
Integrals Involving erf(a/

√
x ) or erfc(a/

√
x )

No. Equation Reference

1
∫

erfc

(
a√
x

)
dx = (x + 2a2) erfc

(
a√
x

)
− 2a

√
x

π
e−a2/x

= x erfc

(
a√
x

)
− 2a

√
x ierfc

(
a√
x

)
(Cho 2.5.1)

2
∫

x erfc(a /
√

x)dx =
(

x2

2
− 2a4

3

)
erfc(a

√
x)

− (x3/2 − 2a2x1/2)
a

3
√

π
e−a2/x

= x2

2
erfc

(
a√
x

)
− a

3

√
x3

π
e−a2/x

+ 2a3√x

3
ierfc

(
a√
x

)
(Cho 2.5.2)

3a
∫ t

u=0

1

u2
erf

(
x

(4αu)1/2

)
e−y2 / 4αu du = 4α

y2

{
e−y2 / 4αt erf

[
x

(4αt)1/2

]

+ x

(x2 + y2)1/2

× erfc

[
(x2 + y2)1/2

(4αt)1/2

]}
y �= 0

(Continued)
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TABLE I.4
Integrals Involving erf(a/

√
x ) or erfc(a/

√
x ) (Continued)

No. Equation Reference

3b
∫ t

u=0

1

u2
erfc

(
x

(4αu)1/2

)
e−y2 / 4αu du = 4α

y2

{
e−y2 / 4αt erfc

[
x

(4αt)1/2

]

− x

(x2 + y2)1/2

× erfc

[
(x2 + y2)1/2

(4αt)1/2

]}
y �= 0

4
∫ t

u=0

1

u3/2
e−y2 / 4αu erf

[
x

(4αu)1/2

]
du = 2

√
απ

y
H

(
x√
4αt

,
y

x

)

(see Section 6.8)

5
∫ t

u=0

1

(παu)1/2
erfc

[
C1

(4αu)1/2

]
erfc

[
C2

(4αu)1/2

]
du

≈ 1

π3/2

(C2
1 + C2

2 )3/2

2αC1C2

{
Γ

(
− 3

2
,
C2

1 + C2
2

4αt

)

− 1

2

[
C2

1 + C2
2

C1C2

]2

Γ

(
− 5

2
,
C2

1 + C2
2

4αt

)


≈ 1

π3/2

(C2
1 + C2

2 )1/2

C1C2
exp

[
−C2

1 + C2
2

4αt

]

×
(

4αt

C2
1 + C2

2

)5/2

1 − 5

2

4αt

C2
1 + C2

2

− 1

2

[
C2

1 + C2
2

C1C2

]2 [
4αt

C2
1 + C2

2

]


for small values of
4αt

C2
1

and
4αt

C2
2

6
∫ t

u=0
[4παu]−1/2 exp

(
− z2

4αu

)
erf

[
a

(4αu)1/2

]
erf

[
b

(4αu)1/2

]
du

≈
(

t

α

)1/2

ierfc

[ |z|
(4αt)1/2

]
− t

π

[
1

a
E2

(
z2 + a2

4αt

)

+ 1

b
E2

(
z2 + b2

4αt

)]
for small

αt

a2
and

αt

b2
values

7a
∫ t

0

1

(παu)1/2

(4αu)(m+n+2) / 2

Cm+1
1 Cn+1

2

e−(C2
1 +C2

2 ) /(4αu) du

= 1

2απ3/2

(C2
1 + C2

2 )(m+n+3) / 2

Cm+1
1 Cn+1

2

Γ

(
−m + n + 3

2
,
C2

1 + C2
2

4αt

)
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TABLE I.4
Integrals Involving erf(a/

√
x ) or erfc(a/

√
x ) (Continued)

No. Equation Reference

7b
∫ t

0

1

(παu)1/2
(4αu)(n+2) / 2e−C2 /(4αu) du = 1

2απ3/2
Cn+3Γ

(
−n + 3

2
,

C2

4αt

)

8
α

a2

∫ t

u=0

(αu

a2

)n/2
ierfc

[
a

(αu)1/2

]
du

= 2
∫ ∞

a /(αt)1/2

1

wn+3
ierfc(w)dw

= 2

n + 2

{(
αt

a2

)n/2+1

ierfc

[
a

(αt)1/2

]
− 1

n + 1

(
αt

a2

)n/2+1/2

× erfc

[
a

(αt)1 / 2

]
+ 1

n + 1

1

π1/2
Γ

(
−n

2
,
a2

αt

)}
n = 0, 1, 2, . . .

9
∫ t

0

(
τ

t0

)m/2

erfc

{
z

[4α(t − τ)]1/2

}
dτ

= t0Γ
(m

2
+ 1

)(
4t

t0

)(m+2) / 2

im+2 erfc

[
z

(4αt)1/2

]
, m = −1, 0, 1, 2, . . .

10
∫ t

0

(
τ

t0

)m/2 α(t − τ)

L2
erfc

{
z

[4α(t − τ)]1/2

}
dτ = t0

αt0

L2

(
4t

t0

)(m+4) / 2

×
{

1

4
Γ

(m

2
+ 1

)
im+2 erfc

[
z

(4αt)1/2

]

− Γ
(m

2
+ 1

)
im+4 erfc

[
z

(4αt)1/2

]}
, m = −1, 0, 1, 2, . . .

Below are some Γ(−m, x2) relations:

Γ(−m, x2) = x−2mEm+1(x2) m = 0, 1, 2, 3, . . .

Γ

(
− 1

2
, x2

)
= 2π1/2

x
ierfc(x)

Γ

(
− 3

2
, x2

)
= 4

3

[
π1/2 erfc(x) − 1

x
e−x2

(
1 − 1

2x2

)]

(See also Appendix E)
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TABLE I.5
Integrals Involving erfc(a

√
x + b /

√
x)

No. Equation Reference

1
∫

erfc

(
a
√

x + b√
x

)
dx = −

[
1

4a2

(
erfc(a

√
x + b /

√
x)

+ e−4ab erfc(a
√

x − b /
√

x)
)

+
√

x

a
ierfc

(
a
√

x + b√
x

)]
a �= 0 (Cho 2.6.1)

2
∫

e x erfc

(
a
√

x + b√
x

)
dx = e x erfc

(
a
√

x + b√
x

)

− 1

2

(
1 + a

(a2 − 1)1 / 2

)
e−2b[a−(a2−1)1/2]

× erfc

[
(a2 − 1)1/2x1/2 + b√

x

]

+ 1

2

(
1 − a

(a2 − 1)1/2

)
e−2b[a+(a2−1)1/2]

× erfc

[
(a2 − 1)1/2x1/2 − b√

x

]
a > 1 (Cho 2.6.3)

3
∫

e(a2−b2)x erfc

(
a
√

x + c√
x

)
dx = 1

a2 − b2
e(a2−b2)x erfc

(
a
√

x + c√
x

)

− 1

2(a2 − b2)

(
1 + a

b

)
e−2(a−b)c

× erfc

(
b
√

x + c√
x

)
+ 1

2(a2 − b2)

×
(

1 − a

b

)
e−2(a+b)c

× erfc

(
b
√

x − c√
x

)
a2 �= b2 (Cho 2.6.4)

4
∫ t

0
τm/2 exp

[
hx

k
+ h2

k2
α(t − τ)

]
erfc

{
x

[4α(t − τ)]1/2
+ h

k
[α(t − τ)]1/2

}
dτ

= Γ
(

m
2 + 1

)
αm/2+1

(
− k

h

)m+2

 exp

[
hx

k
+ h2

k2
αt

]
erfc

[
x

(4αt)1/2
+ h

k
(αt)1/2

]

−
m+1∑
j=0

[
−h

k
(4αt)1/2

]j

i j erfc

[
x

(4αt)1/2

]
 , m = −1, 0, 1, 2, 3, . . .

Note: Γ(z) is the gamma function (Abramowitz and Stegun, 1964, p. 255).
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TABLE I.6
Integrals Involving the Exponential Function

No. Equation Reference

1
∫

e−(ax2+2bx+c) dx = 1

2

√
π

a
e(b2−ac) / a erf

(√
ax + b√

a

)
a > 0 (A + S 7.4.32)

2
∫

e−a2x2+bx dx =
√

π

2a
eb2 / 4a2

erf

(
ax − b

2a

)

3
∫

x3/2e−a2x dx = 3
√

π

4a5
erf (a

√
x) − 3

√
x

2a4
e−a2x − x3/2

a2
e−a2x

= 3
√

π

4a5
erf (a

√
x) −

(
3
√

x

2a4
+ x3/2

a2

)
e−a2x a �= 0 (Cho 2.7.2)

4
∫ √

xe−a2x dx =
√

π

2a3
erf (a

√
x) −

√
x

a2
e−a2x a �= 0 (Cho 2.7.3)

5
∫

x−1/2e−a2x dx =
√

π

a
erf (a

√
x) a �= 0 (Cho 2.7.4)

6
∫

x−3/2e−a2x dx = −2a
√

π erf (a
√

x) − 2√
x

e−a2x

= −2a
√

π

(
1 + 1

a
√

x
ierfc(a

√
x)

)
a �= 0 (Cho 2.7.5)

7
∫ √

xe−a2/x dx =
(

2x3/2

3
− 4a2√x

3

)
e−a2/x − 4a3√π

3
erf

(
a√
x

)

= 2

3
x3/2e−a2/x − 4

3
a2√π

[
a + √

x ierfc

(
a√
x

)]
(Cho 2.8.2)

8
∫

x3/2e−a2/x dx =
(

2x5/2

5
− 4a2x3/2

15
+ 8a4x1/2

15

)
e−a2/x

+ 8a5√π

15
erf

(
a√
x

)

= x3/2

15
(6x − 4a2)e−a2/x + 8a4√π

15

×
[
a + √

x ierfc

(
a√
x

)]
(Cho 2.8.1)

9
∫

x−1/2e−a2/x dx = 2a
√

π erf

(
a√
x

)
+ 2

√
xe−a2/x

= 2π1/2
[
a + √

x ierfc

(
a√
x

)]
(Cho 2.8.3)

10
∫

x−3/2e−a2/x dx = −
√

π

a
erf

(
a√
x

)
a �= 0 (Cho 2.8.4)

(Continued)
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TABLE I.6
Integrals Involving the Exponential Function (Continued)

No. Equation Reference

11
∫

e−a2x2−b2/x2
dx =

√
π

4a

[
e2ab erf

(
ax + b

x

)

+ e−2ab erf

(
ax − b

x

)]
a �= 0 (Cho 2.9.1)

12
∫

x−1/2e−a2x−b2/x dx =
√

π

2a

[
e2ab erf

(
a
√

x + b√
x

)

+ e−2ab erf

(
a
√

x − b√
x

)]
a �= 0 (Cho 2.9.4)

13
∫

x−3/2e−a2x−b2/x dx =
√

π

2b

[
e−2ab erf

(
a
√

x − b√
x

)

− e2ab erf

(
a
√

x + b√
x

)]
b �= 0 (Cho 2.9.5)

14
∫

x1/2e−a2x−b2/x dx =
√

π

2a2

(
1

2a
− b

)
e2ab erf

(
a
√

x + b√
x

)

−
√

x

a2
e−a2x−b2 / x +

√
π

2a2

(
1

2a
+ b

)
e−2ab

× erf

(
a
√

x − b√
x

)
a �= 0 (Cho 2.9.3)

15
∫

x3/2e−a2x−b2/x dx =
(

b2 + 3

4a2
− 3b

2a

) √
π

2a3
e2ab erf

(
a
√

x + b√
x

)

− 3
√

x

2a4
e−a2x−b2 / x +

(
b2 + 3

4a2
+ 3b

2a

) √
π

2a3
e−2ab

× erf

(
a
√

x − b√
x

)
− x3/2

a2
e−a2x−b2 / x a �= 0 (Cho 2.9.2)

16
∫ t

0
e−a2(t−τ) dτ = 1

a2

[
1 − e−a2t

]

17
∫ t

0
e−Cτe−a2(t−τ) dτ = 1

a2 − C

{
e−Ct − e−a2t

}
; a2 �= C

18
∫ t

0

τ

t0
e−a2(t−τ) dτ = t0

(
1

a2t0

)2 {
(a2t − 1) + e−a2t

}

19
∫ t

0

(
τ

t0

)−1/2

e−a2(t−τ) dτ = t0

(
1

a2t0

)1/2

F
(

(a2t)1/2
)

Note that F (z) ≡ e−z2
∫ z

0
ex2

dx, the Dawson integral.
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TABLE I.7
Spatial Integrals with K(z − x′, u), the Fundamental Heat Conduction Solution

No. Equation

1
∫ b

a

K(z − x′, u) dx′ = 1

2

(
erfc

{
z − b

[4αu]1/2

}
− erfc

{
z − a

[4αu]1/2

})

2
∫ b

a

x′

L
K(z − x′, u)dx′ = z

2L

(
erfc

{
z − b

[4αu]1/2

}
− erfc

{
z − a

[4αu]1/2

})

+ 2αu
L

[−K(z − b, u) + K(z − a, u)]

3
∫ b

a

(
x′

L

)2

K(z − x′, u) dx′ =
[

1

2

( z

L

)2 + αu

L2

](
erfc

{
z − b

[4αu]1/2

}
− erfc

{
z − a

[4αu]1/2

})

+ 2αu

L2 [−(z + b)K(z − b, u) + (z + a)K(z − a, u)]

4
∫ b

a

exp

(−Bx′

2α

)
K(z − x ′, u) dx′ = 1

2
exp

[
B2u

4α
− Bz

2α

]
erf

{
x′ − z

[4αu]1/2
+ Bu1/2

2α1/2

}∣∣∣∣
b

x′=a

TABLE I.8
Time Integrals Related to the Short-Cotime GFs

No. Equation

1
∫ t

t−∆t

K(z, t − τ)dτ =
(

∆t

α

)1/2

ierfc

[ |z|
(4α∆t)1/2

]

2
∫ t

t−∆t

α(t − τ)

L2
K(z, t − τ)dτ = |z|

L2
∆t

×
[(

4α∆t

z2

)1/2

i3 erfc
|z|

(4α∆t)1/2
+ i2 erfc

|z|
(4α∆t)1/2

]

3
∫ t

t−∆t

1

t − τ
K(z, t − τ)dτ = 1

|z| erfc
|z|

(4α∆t)1/2

4
∫ t

t−∆t

erfc

{
z

[4α(t − τ)]1/2

}
dτ = 4∆t i2 erfc

[ |z|
(4α∆t)1/2

]

5
∫ t

t−∆t

α(t − τ)

L2
erfc

{
z

[4α(t − τ)]1/2

}
dτ

= α

L2
(4∆t)2

{
1

4
i2 erfc

[ |z|
(4α∆t)1/2

]
− i4 erfc

[ |z|
(4α∆t)1/2

]}

(Continued)
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TABLE I.8
Time Integrals Related to the Short-Cotime GFs (Continued)

No. Equation

6
∫ t

0

(
τ

t0

)m/2

K(z, t − τ)dτ

= 1

2α1/2
Γ

(m

2
+ 1

)(
4t

t0

)(m+1) / 2

t1/2
0 im+1 erfc

[ |z|
(4αt)1/2

]
,

m = −1, 0, 1, 2, . . .

7
∫ t

0

(
τ

t0

)m/2 α(t − τ)

L2
K(z, t − τ)dτ = t0

|z|
L2

Γ
(m

2
+ 1

)
2m

(
t

t0

)(m+2) / 2

×
[(

4αt

z2

)1/2

im+3 erfc
|z|

(4αt)1/2
+ im+2 erfc

|z|
(4αt)1/2

]
,

m = −2, −1, 0, 1, 2, . . .

8
∫ t

0

(
τ

t0

)m/2 1

t − τ
K(z, t − τ)dτ

= 1

|z|
(

4t

t0

)m/2

im erfc

[ |z|
(4αt)1/2

]
Γ

(m

2
+ 1

)
, m = 0, 1, 2, . . .

9
∫ t

0

(
τ

t0

)m/2

erfc

{
z

[4α(t − τ)]1/2

}
dτ

= t0Γ
(m

2
+ 1

)(
4t

t0

)(m+2) / 2

im+2 erfc

[
z

(4αt)1/2

]
,

m = −1, 0, 1, 2, . . .

10
∫ t

0

(
τ

t0

)m/2 α(t − τ)

L2
erfc

{
z

[4α(t − τ)]1/2

}
dτ = t0

αt0

L2

(
4t

t0

)(m+4) / 2

×
{

1

4
Γ

(m

2
+ 1

)
im+2 erfc

[
z

(4αt)1/2

]
− Γ

(m

2
+ 1

)

× im+4 erfc

[
z

(4αt)1/2

]}
, m = −1, 0, 1, 2, . . .

11
∫ t

0
τm/2 exp

[
hx

k
+ h2

k2
α(t − τ)

]
erfc

{
x

[4α(t − τ)]1/2
+ h

k
[α(t − τ)]1/2

}
dτ

= Γ
(

m
2 + 1

)
αm/2+1

(
− k

h

)m+2

 exp

[
hx

k
+ h2

k2
αt

]
erfc

[
x

(4αt)1/2
+ h

k
(αt)1/2

]

−
m+1∑
j=0

[
−h

k
(4αt)1/2

]j

i j erfc

[
x

(4αt)1/2

]
 , m = −1, 0, 1, 2, 3, . . .

Note: Γ(z) is the gamma function; see Abramowitz and Stegun (1964, p. 255).
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L Laplace Transform Method

In this appendix, the highlights of the Laplace transform method are given without
presenting detailed mathematical theorems. A table of Laplace transform pairs is also
given.

L.1 DEFINITION

For a piecewise continuous function of t, the Laplace transform is defined as
(Churchill, 1958) ∫ ∞

0
e−stf (t)dt = f (s)

= L [f (t)] (L.1)

The notation L [f (t)] refers to the Laplace transform of function f (t). The Laplace
transform exists if the integral in Equation L.1 converges uniformly; that is,∫ ∞

0
e−st |f (t)|dt < ∞ (L.2)

Alternatively, the following notation is used to define the inverse Laplace transform

f (t) = L −1[f (s)] (L.3)

where L −1[·] is the inverse Laplace transform operator. The Cauchy’s integral for-
mula in a complex plane, Figure L.1, (Kreyszig, 1979) for complex variable z and
complex constant s,

f (s) = 1

2πi

∫
c

f (z)

z − s
dz (L.4)

can be written for the region R ≥ γ where γ is a real number and c is the contour of
region R. One assumes that f (s) is an analytic function of the order O(s−m) in the
complex half plane x ≥ γ as z → ∞, where m > 0 is a real constant. The contour
integral reduces to

f (s) = 1

2πi
lim

β→∞

∫ γ+iβ

γ−iβ

f (z)

s − z
dz (L.5)

The inverse Laplace transformation for the transformed variable s on either side
of this equation is obtained by applying Equation L.3 to both sides of Equation L.5,

L −1[f (s)] = 1

2πi
lim

β→∞

∫ γ+iβ

γ−iβ

L −1

[
f (z)

s − z

]
dz (L.6a)

519
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TABLE L.1
Table of Laplace Transforms

No. f (s) f (t )

1
1

s
1

2
1

s2

1

t

3
n!

sn+1
(n = 0, 1, . . . ) tn

4
a

s2 + a2
sin at

5
s

s2 + a2
cos at

6
a

s2 − a2
sinh at

7
s

s2 − a2
cosh at

8
1√
s

1√
πt

9 s−3 / 2 2
√

t / π

10 s−(n+1 / 2) (n = 1, 2, . . . )
2n

[1 · 3 · 5 · . . . · (2n − 1)]
tn−1 / 2

√
π

11
1

sn
(n > 0)

1

Γ(n)
tn−1

12
1

s + a
e−at

13
1

(s + a)n
(n = 1, 2, 3, . . . )

tn−1e−at

(n − 1)!

14
Γ(k)

(s + a)k
(k > 0) tk−1e−at

15
1

(s + a)(s + b)
(a �= b)

e−at − e−bt

(b − a)

16
s

(s + a)(s + b)
(a �= b)

ae−at − be−bt

(b − a)

17
1

s(s2 + a2)

1

a2
(1 − cos at)

18
1

s2(s2 + a2)

1

a3
(at − sin at)

19
1

(s2 + a2)2

1

2a3
(sin at − at cos at)
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TABLE L.1
Table of Laplace Transforms (Continued)

No. f (s) f (t )

20
s

(s2 + a2)

t

2a
sin at

21
s2

(s2 + a2)

1

2a
(sin at + at cos at)

22
s2 − a2

(s2 + a2)
t cos at

23
1√

s + a

1√
πt

− aea2t erfc a
√

t

24

√
s

s − a2

1√
πt

+ aea2t erf a
√

t

25

√
s

s + a2

1√
πt

− 2a√
π

e−a2t

∫ a
√

t

0
eλ2

dλ

26
1√

s (s − a2)

1

a
ea2t erf a

√
t

27
1√

s (s + a2)

2

a
√

π
e−a2t

∫ a
√

t

0
eλ2

dλ

28
b2 − a2

(s − a2)(b + √
s )

ea2t [b − a erf a
√

t] − b eb2t erfc b
√

t

29
1√

s (
√

s + a)
ea2t erfc a

√
t

30
1

(s + a)
√

s + b

1√
b − a

e−at erf (
√

b − a
√

t)

31

√
s + 2a√

s
− 1 a e−at [I1(at) + I0(at)]

32
1√

s + a
√

s + b
e−(a+b)t / 2 I0

(
a − b

2
t

)

33
1√

s2 + a2
J0(at)

34
(
√

s2 + a2 − s)ν√
s2 + a2

(ν > −1) aνJν(at)

(Continued)
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TABLE L.1
Table of Laplace Transforms (Continued)

No. f (s) f (t )

35
(s − √

s2 + a2)ν√
s2 − a2

(ν > −1) aνIν(at)

36
1

s
e−ks H (t − k)a

37
1

s2
e−ks (t − k) H (t − k)

38
1

s
e−k / s J0(2

√
kt)

39
1

sµ
e−k / s (µ > 0)

(
t

k

)(µ−1) / 2

Jµ−1(2
√

kt)

40
1

sµ
e+k / s (µ > 0)

(
t

k

)(µ−1) / 2

Iµ−1(2
√

kt)

41 e−k
√

s (k > 0)
k

2
√

πt3
exp

(
− k2

4t

)

42
1

s
e−k

√
s (k ≥ 0) erfc

(
k

2
√

t

)

43
1√
s

e−k
√

s (k ≥ 0)
1√
πt

exp

(
− k2

4t

)

44
1

s3 / 2
e−k

√
s (k ≥ 0) 2

√
t

π
exp

(
− k2

4t

)
− k erfc

k

2
√

t

= 2
√

t i erfc
k

2
√

t

45
e−k

√
s

s1+n / 2
(n = 0, 1, 2, . . . , k ≥ 0) (4t)n / 2 in erfc

k

2
√

t

46
e−k

√
s

a + √
s

(k ≥ 0)
1√
πt

exp

(
− k2

4t

)
− aeak ea2t

× erfc

(
a
√

t + k

2
√

t

)

47
e−k

√
s

√
s (a + √

s)
(k ≥ 0) eak ea2t erfc

(
a
√

t + k

2
√

t

)

48
e−k

√
s2+as√

s(s + a)
(k ≥ 0) e−at / 2 I0

(a

2

√
t2 − k2

)
H (t − k)
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TABLE L.1
Table of Laplace Transforms (Continued)

No. f (s) f (t )

49
e−k

√
s2+a2

√
s2 + a2

(k ≥ 0) J0(a
√

t2 − k2) H (t − k)

50
e−k

√
s2+a2

√
s2 − a2

(k ≥ 0) I0(a
√

t2 − k2) H (t − k)

51
e−k

√
s

s(a + √
s)

(k ≥ 0) −eakea2t erfc

(
a
√

t + k

2
√

t

)
+ erfc

k

2
√

t

52
1

s2
e−k

√
s 4t i2 erfc

(
k

2
√

t

)
=

(
t + k2

2

)

× erfc

(
k

2
√

t

)
− k

(
t

π

)1 / 2

exp

(
− k2

4t

)

53
1

s
ln s −γ − ln t (γ = 0.57721 56649 . . . ,

Euler’s constant)

54 ln
s + a

s + b

1

t
(e−bt − e−at )

55 ln
s2 + a2

s2

2

t
(1 − cos at)

56 ln
s2 − a2

s2

2

t
(1 − cosh at)

57 K0(ks) (k > 0)
1√

t2 − k2
H (t − k)

58 K0(k
√

s) (k > 0)
1

2t
exp

(
− k2

4t

)

59
1√
s

K1(k
√

s) (k > 0)
1

k
exp

(
− k2

4t

)

aH (t) is the Heaviside unit-step function
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y

x0

γ–iβ

z = x+iy plane

γ+iy

γ+iβ

FIGURE L.1 Complex z-plane.

or

f (t) = 1

2πi
lim

β→∞

∫ γ+iβ

γ−iβ

f (z)eztdz (L.6b)

The specific conditions to be satisfied are: f (z) is analytic in the half plane x ≥ γ

and there exists two constants m and M such that

f (z) <
M

|z|m+1
when x ≥ c (L.7)

It is possible to prove that the inversion integral, Equation L.6b, converges to the
function f (t), and f (t) is continuous when t ≥ 0 when the real part of z or s is
larger than γ and F (0) = 0 (Churchill, 1958). The conditions set forth in the inverse
transform formula are often more severe than necessary to insure the convergence of
the inversion integral to the inverse transformation, e.g., the condition f (0) = 0.

The second derivation of the inversion formula begins by using the Fourier integral,

G(t) = 1

2π
lim

β→∞

∫ +β

−β

eiyt
∫ +∞

−∞
G(τ)e−iyτdτdy (L.8)

The function G(t) and G′(t) are sectionally continuous on each finite integral along
the t-axis between −∞ and +∞, and G(t) takes its average value across each jump
at t = to,

G(to) = 1

2
[G(to − 0) + G(to + 0)] (L.9)

Moreover, the integral ∫ +∞

−∞
|G(t)|dt (L.10)

converges. Now, we define a function f (t) so that f (t) and f ′(t) are continuous for
t ≥ 0 and of exponential order for large t, that is,

|f (t)| < Meat (L.11)
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Then, the Laplace transformation of f (t), or f (s) exists when Re(s) > a. Define the
function G in Equation L.8 by the relation

G(t) = 0 when t < 0
= e−γt f (t) when t > 0
= 1

2f (0) when t = 0
(L.12)

where γ > a. Equation L.8 then becomes (Churchill, 1958),

1

2π
lim

β→∞

∫ +β

−β

eiyt
∫ +∞

−∞
e−(γ+iy)τ f (τ)dτdy = e−γt f (t) when t > 0

= 0 when t > 0 (L.13)

= 1

2
f (0) when t = 0

The inside integral is f (z) where z = γ + iy, and if z = γ + iy, then for all t values,

eγt G(t) = lim
β→∞

1

2πi

∫ γ+iβ

γ−iβ

eztf (z)dz; t > 0

= f (t) (L.14)

This equation is known as the Cauchy principal value of the inversion integral and,
as β → ∞, it becomes

f (t) = 1

2πi

∫ γ+iβ

γ−iβ

eztf (z)dz; t > 0 (L.15)

Therefore, if f (s) is the transform of f (t), and f (t) and f ′(t) are sectionally contin-
uous and of exponential order, then the inverse Laplace transformation converges to

L −1[f (s)] = f (t) when t > 0

= 1

2
when t = 0 (L.16)

= 0 when t < 0

L.2 PROPERTIES OF LAPLACE TRANSFORMATION

This section contains a few properties of the Laplace transformation that are use-
ful when solving heat conduction problems. First a brief list of properties is given,
followed by a discussion of transforms of simple functions, derivatives, and integrals.

(a) Linear property. For c1 and c2 arbitrary constants,

L [c1 f (t) + c2 g(t)] = c1L [f (t)] + c2L [g(t)] = c1 f (s) + c2 g(s)
(L.17a)
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(b) Multiplication by tn. For n any positive integer,

L [tnf (t)] = (−1)n
dnf (s)

dsn
= (−1)n f

(n)
(s) (L.17b)

(c) Division by t .

L

[
f (t)

t

]
=

∫ ∞

s

f (s ′) ds ′ (L.17c)

(d) Transform of derivatives. If n > 0 is an integer and lim f (t)e−st = 0 as
t → ∞, then for t > 0,

L [f (n)(t)] = snf (s)−sn−1f (0)−sn−2f ′(0)−· · · · ·−f (n−1)(0) (L.17d)

(e) Transform of integrals. If lim e−st
∫ t

0 f (u) du = 0 as t → ∞, then

L

[∫ t

0
f (u) du

]
= 1

s
f (s) (L.17e)

(f) Change of scale. If a is any positive constant, then

L [f (at)] = 1

a
f

( s

a

)
(L.17f )

(g) Transform of convolution. If f (s) is L [f (t)] and g(s) is L [g(t)], then

L

[∫ t

0
f (u) g(t − u) du

]
= L

[∫ t

0
f (t − u) g(u) du

]
= f (s) · g(s)

(L.17g)

Transformation of polynomials. The transform of powers of t are given by:

L [t] =
∫ ∞

0
(t)e−stdt = −

(
t

s
+ 1

s2

)
e−st

∣∣∣∣
∞

0
= 1

s2
(L.18a)

L [t2] =
∫ ∞

0
(t2)e−stdt = −

(
t2

s
+ 2t

s2
+ 2

s3

)
e−st

∣∣∣∣
∞

0
= 2

s3
(L.18b)

and

L [tn] =
∫ ∞

0
(tn)e−stdt = n!

sn+1
(L.18c)

Transformation of derivatives. Using Equation L.1, the transformation of a
derivative is

L

[
d

dt
f (t)

]
=

∫ ∞

0
e−st

[
d

dt
f (t)

]
dt

= f (t)e−st
∣∣∞
0 + s

∫ ∞

0
e−stf (t)dt
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Therefore,

L

[
d

dt
f (t)

]
= s f (s) − f (0) (L.19a)

L

[
d2

dt2
f (t)

]
= s2 f (s) − s f (0) − f ′(0) (L.19b)

L

[
d3

dt3
f (t)

]
= s3 f (s) − s2 f (0) − s f ′(0) − f ′′(0) (L.19c)

and

L

[
dn

dtn
f (t)

]
= sn f (s) − sn−1 f (0) − sn−2 f ′(0) − sn−3 f ′′(0) − · · · − f (n−1)(0)

(L.19d)

where f (0) is the initial condition and f ′(0), f ′′(0), · · · , f (n−1)(0) are first, sec-
ond, · · · , (n − 1)th derivatives evaluated at t = 0.

Transform of Integrals. The transform of definite integrals is obtained using the
definition of the Laplace transformation, Equation L.1,

L

[∫ t

0
f (t)dt

]
=

∫ ∞

0

[∫ t

0
f (t)dt

]
e−stdt (L.20a)

After integrating by parts and applying the limits from 0 to ∞, the following relation
is obtained,

L

[∫ t

0
f (t)dt

]
= 1

s
f (s) (L.20b)

Any indefinite integral can be replaced by an equivalent definite integral of the form,

∫
f (t)dt =

∫ t

0
f (t)dt + C (L.21)

where C represents the value of the indefinite integral at t = 0. The transform of the
first term on the right side of Equation L.21 is given by Equation L.20b while the
transform of C is C/s; accordingly,

L

[∫ t

0
f (t)dt + C

]
= 1

s
[f (s) + C] (L.22)

L.3 LAPLACE TRANSFORM THEOREMS

There are theorems of general interest and a few are especially useful for calculating
the Green’s function.
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First Shift Theorem. This theorem describes the situation when s in the Laplace
transformation is replaced by s − a,

f (s − a) =
∫ ∞

0
e−(s−a)t f (t)dt

=
∫ ∞

0
e−steatf (t)dt

=
∫ ∞

0
e−st [eatf (t)

]
dt

= L [eatf (t)] (L.23)

Second-Shift Theorem. The second-shift theorem concerns the replacement of t

by t − a. It seeks the Laplace transformation of f (t − a) subject to the condition that
f (t − a) = 0 when t < a. Then, using the definition of the Laplace transformation,
one obtains,

L [f (t − a)] =
∫ ∞

0
e−stf (t − a)dt

=
∫ ∞

a

e−stf (t − a)dt (L.24a)

Now, replacing t by τ + a yields

L [f (t − a)] =
∫ ∞

0
e−s(τ+a)f (τ)dτ

= e−as
∫ ∞

0
e−sτf (τ)dτ

= e−as f (s) (L.24b)

This theorem is useful when mathematically describing functions with built-in delays.
Initial-Value Theorem. The initial-value theorem enables one to calculate the

value of f (t) at time 0+ from the transform function f (s). The function f (t) has
a zero value when t ≤ 0 and its value suffers a jump at 0+. The transform of the
function f ′(t) = df (t) / dt can be expressed as

L [f ′(t)] =
∫ ∞

0
e−st f ′(t)dt

=
∫ 0+

0
f ′(t)dt +

∫ ∞

0+
e−stf ′(t)dt (L.25)

Note that the quantity e−st in the first term o n the right side of Equation L.25 vanishes
since s is finite and 0 ≤ t ≤ 0+. As s → ∞, the second term on the right side of
Equation L.25 will vanish since e−∞ = 0. Moreover, Equation L.19a yields the limit
for the term L [f ′(t)], in Equation L.25, when s → ∞, as

lim
s→∞ L [f ′(t)] = lim

s→∞[s f (s) − f (0)] (L.26)
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Therefore, the limit of Equation L.25 as s → ∞ is

lim
s→∞[s f (s) − f (0)] = f (0+) − f (0)

or

lim
s→∞[s f (s))] = f (0+) (L.27)

The initial-value theorem described by Equation L.27 yields the initial condition at
t = 0+ following an initial jump condition for function f (t). In the absence of a
jump at t = 0, the function f (0+) becomes f (0).

Final-Value Theorem. This theorem yields the value of f (s), the Laplace trans-
formation of f (t) as t → ∞. The theorem applies when function f (t) approaches
a finite limit as t → ∞; otherwise, the final-value theorem does not apply. The
derivation of this theorem follows examination of L [f ′(t)],

L [f ′(t)] =
∫ ∞

0
e−st f ′(t)dt

= s f (s) − f (0) (L.28)

As s → 0, the integral in Equation L.28 reduces to∫ ∞

0
e−st f ′(t)dt =

∫ ∞

0
f ′(t)dt = f (∞) − f (0)

that can be inserted in Equation L.28 to give

f (∞) − f (0) = lim
s→0

[s f (s) − f (0)]

or

lim
s→0

[s f (s)] = f (∞) (L.29)

Equation L.29 mathematically describes the final-value theorem.

L.4 TABLE OF LAPLACE TRANSFORMS

Table L.1 contains a list of Laplace – transform pairs, several of which are useful for
heat conduction and for Green’s functions.

REFERENCES

Churchill, R. V., 1958, Operational Mathematics, McGraw-Hill, New York.
Kreyszig, E., 1979, Advanced Engineering Mathematics, John Wiley, New York.
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P Properties of Selected
Materials

This table is intended to indicate the order of magnitude of property values likely
to occur in practice. For additional information, and for the variation of property
values with temperature, consult standard works. The values for nonmetals should
be regarded as rough averages, as there is considerable variation between different
samples of the same substance.

TABLE P.1
Table of Properties of Selected Materials at 300 K

ρ c k α ×106

Substance kg/m3 J/kg/K W/m/K m2/s

Metals
silver 10,500 235 429 174
copper 8933 385 401 117
gold 19,300 129 317 127
aluminum 2702 903 237 97.1
magnesium 1740 1024 156 87.6
brass (0.3 Zn) 8530 380 111 34.2
nickel 8900 444 91 23
mild steel (0.1 % C) 7830 434 64 18.8
stainless steel (AISI 316) 8238 468 13 3.4
lead 11,340 129 35 24.1
titanium 4500 522 21.9 9.32
bismuth 9780 122 7.9 6.59

Nonmetals
silicon 2330 712 148 89.2
alumina (Al2 03) 3970 765 36 11.9
carbon (graphite) 1810 1300 98 42
teflon 2200 1050 0.35 0.15
polyethylene (high-dens.) 960 2090 0.33 0.16
polyamide (nylon) 1140 1670 0.24 0.13
ice (273K) 910 1930 2.22 1.26
snow (fresh, 273K) 110 1930 0.049 0.23
water 996 4178 0.611 0.147
air (1 atm) 1.177 1005 0.0267 22.5

(Continued)
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TABLE P.1
Table of Properties of Selected Materials at 300 K (Continued)

ρ c k α ×106

Substance kg/m3 J/kg/K W/m/K m2/s

Building materials
brick, common 1920 835 0.72 0.45
concrete (1:2:4) 2100 880 1.4 0.75
glass, silica 2220 745 1.38 0.83
fiberglass batting 16 835 0.046 3.4
polystyrene, rigid foam 30–60 1210 0.028 0.4–0.8
soil, dry 1500 1900 1.0 0.35
soil, wet 1900 2200 2.0 0.50
white pine (with grain) 500 2800 0.24 0.17
white pine (across grain) 500 2800 0.10 0.071
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R Green’s Functions for
Radial-Cylindrical
Coordinates (r)

dv ′ = 2πr′dr′

ds′ = 2πa or 2πb

The partial differential equation for transient, cylindrical radial heat conduction is

1

r

∂

∂r

(
r
∂T

∂r

)
= 1

α

∂T

∂t

R00 INFINITE BODY

For steady Green’s functions (GFs) in cylindrical coordinates see Table R.1. The GF is

GR00(r , t |r ′, τ) = 1

4πα(t − τ)
exp

[
− r2 + r ′2

4α(t − τ)

]
I0

[
rr ′

2α(t − τ)

]
(R00.1a)

GR00(r , t |r ′, τ) = 1

4πα(t − τ)
exp

[
− (r − r ′)2

4α(t − τ)

]

× exp

[
− rr ′

2α(t − τ)

]
I0

[
rr ′

2α(t − τ)

]
(R00.1b)

(units of 1 / m2) (Carslaw and Jaeger, 1959, pp. 259 and 368). See Figure R00.1 which
shows r ′2GR00(●) versus r / r ′ for fixed values of α(t − τ) / r ′2. A similar plot is given
by Figure R00.2 for r ′2GR00(●) versus r / r ′ for fixed values of α(t − τ) / rr ′. The
integral of GR002πr dr ′ for r ′ = 0 to ∞ is unity,∫ ∞

0
GR00(r , t |r ′, τ)2πr ′ dr ′ = 1 (R00.2)

A special case is for the source at r ′ = 0 (or equivalently for a source at r ′ = r

and the observation at r = 0):

GR00(r , t |0, τ) = 1

4πα(t − τ)
e−r2 /[4α(t−τ)] (R00.3a)

GR00(r , t |0, τ) = GX00(x, t |0, τ)GY00(y, t |0, t) (R00.3b)

since r2 = x2 + y2.
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FIGURE R00.1 Green’s function GR00 (multiplied by 2πr ′2) versus r/r ′ for several values
of α(t − τ) / r ′2.
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FIGURE R00.2 Green’s function GR00 (multiplied by 2πr ′2) versus r/r ′ for several values
of α(t − τ) /(rr ′).

R.1 SMALL- AND LARGE-TIME APPROXIMATIONS FOR GR00(·)
For small values of α(t − τ) /(rr ′), GR00(r , t |r ′, t) can be approximated by

GR00(r , t |r ′, τ) ≈ 1

2π[4πrr ′α(t − τ)]1/2
exp

[
− (r − r ′)2

4α(t − τ)

]

×
{

1 + α(t − τ)

4rr ′ + 9[α(t − τ)]2

32(rr ′)2

+ 1.5
75[α(t − τ)]3

128(rr ′)3

}
(R00.4)



T&F Cat # K10695, Appendix R, Page 536, 12-6-2010

536 Heat Conduction Using Green’s Functions

The coefficient 1.5 in the last term is used to improve the accuracy. (The series
expansion has a unity coefficient instead of 1.5.) The percent errors for Equation R00.4
are given by:

α(t − τ)

rr′ 0 0.05 0.1 0.125 0.167 0.25

% error 0 0.0022 −0.005 −0.038 −0.14 0.016

For large values of α(t − τ) / rr′, GR00(●) can be approximated by:

GR00(r , t |r ′, τ) ≈ 1

4α(t − τ)
e−r ′2/ [4α(t−τ)]

{
1 + (rr′)2

[4α(t − τ)]2

+ 1

4

(rr′)4

[4α(t − τ)]4
+ 1

36

(rr′)6

[4α(t − τ)]6

}
(R00.5)

where the errors are given by

α(t − τ)

rr′ 0.25 0.33 0.5 0.625 ∞

% error −0.08 −0.012 −0.0005 −0.00009 0

For large values of both α(t − τ)/r2 and α(t − τ)/r ′2, G(r , t |r ′, τ) can be approxi-
mated by

GR00(r , t |r ′, τ) ≈ 1

4πα(t − τ)

[
1 − r2 + r ′2

4α(t − τ)
+ r4 + 3r2r ′2 + r ′4

[4α (t − τ)]2

]
(R00.6)

R.2 INTEGRAL FROM r′ = 0 TO r′ = a

For small times, an approximate result for the integral over r ′ from r ′ = 0 to a for
r+ ≥ 1 is∫ a

0
GR00(r , t |r ′, τ)2πr ′dr ′

≈ 1

2
(r+)−1/2

{
erfc

[
r+ − 1

(4u)1/2

]
− 1

4

(
1

r+ + 3

)
u1/2 ierfc

[
r+ − 1

(4u)1/2

]

+ 3

32

[
3

(r+)2
+ 2

r+ − 5

]
u i2erfc

r+ − 1

(4u)1/2

}
(R00.7)

where

u ≡ α(t − τ)

a2
r+ ≡ r

a
(R00.8a, b)

This expression is accurate for u < 0.1. For u < (r+ − 1)2 / 36, the integral is nearly
zero.
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For r+ = 1, Equation R00.7 gives∫ a

0
GR00(a, t |r ′, τ) 2πr ′ dr ≈ 1

2

[
1 −

( u

π

)1/2 − 1

4π1/2
u3/2

]
(R00.9)

At u = 0.25, this gives the value of 0.35014 which is 1.3% high and is more accurate
for smaller u values.

For a /2 < r < a and for small times u, the integral over r ′ is∫ a

0
GR00(r , t |r ′, τ)2πr ′dr ′

≈ 1 − 1

2
(r+)−1/2

{
erfc

[
1 − r+

(4u)1/2

]
+ 1

4

(
1

r+ + 3

)
u1/2 ierfc

1 − r+

(4u)1/2

+ 3

32

(
3

r+2
+ 2

r+ − 5

)
u i2erfc

1 − r+

(4u)1/2

}
(R00.10)

Note the similarity with Equation R00.7. Equation R00.10 is accurate for u < 0.01.
For 0 < r < a /2, the value of the integral is nearly unity. For r+ = 0.5 and u = 0.01,
Equation R00.10 gives 0.9997. For large times u, an approximate result for the integral
over r ′ from r ′ = 0 to a is∫ a

0
GR00(r , t |r ′, τ)2πr ′ dr ′

≈ e− r+2/4u

[
P

(
1,

1

4u

)
+ r+2

4u
P

(
2,

1

4u

)

+ 1

2!
r+4

(4u)2
P

(
3,

1

4u

)
+ 1

3!
r+6

(4u)3
P

(
4,

1

4u

)]
(R00.11)

where P (n, x) is given by

P (n, x) = 1 − en−1(x)e− x n = 1, 2, . . . (R00.12a)

en−1(x) =
n−1∑
j=0

xj

j ! (R00.12b)

Equation R00.11 was derived using the four-term expression for I0(x) for large x for
x = α(t − τ) / rr ′.

For the center point, r+ = 0, the integral is∫ a

0
GR00(0, t |r ′, τ)2πr ′ dr ′ = 1 − e−1/4u = P

(
1,

1

4u

)
(R00.13)

which is exact. For r+ = 1 and u = 0.25, the value of given by Equation R00.11
is 0.34569 which is −0.016% in error. Some values of the integral versus u for
r+ = 0, 0.51/2, 1, 2, and 4 are given in Table R00.1.
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TABLE R00.1
Integral of GR00(r, t|r ′, τ) From r ′ = 0 to a for Various Radii

Values for Radii

ua r+ = 0 r+ = 2−1/2 r+ = 1 r+ = 2 r+ = 4

0.020 0.999996 0.910694 0.459902 0.000000 0.000000
0.100 0.917915 0.646447 0.408230 0.008333 0.000000
0.200 0.713495 0.515406 0.364977 0.035206 0.000000
0.500 0.393469 0.324351 0.267120 0.081892 0.000590
1.000 0.221199 0.198146 0.177482 0.091529 0.006337

10.000 0.024690 0.024387 0.024088 0.022368 0.016633
100.000 0.002497 0.002494 0.002491 0.002472 0.002399

au ≡ α(t − τ) / a2.

Another expression for large times is (Beck, 1981)

∫ a

0
GR00(r , t |r ′, τ)2πr ′ dr ′

≈ 1

4u

{
1 − 1 + 2r+2

2!
1

4u
+ 1 + 6r+2 + 3r+4

3!
1

(4u)2

}
(R00.14)

which requires larger u values as r+ increases.

R.3 AVERAGE GREEN’S FUNCTION FOR CIRCULAR REGION

The exact expression for the average GF for a circular region is (Amos, 1979)

GR00(t , τ) ≡ 4

a4

∫ a

r=0

∫ a

r ′=0
GR00(r , t |r ′, τ)r ′ r dr ′ dr

= 1

πa2

{
1 − e− 1/2u

[
I0

(
1

2u

)
+ I1

(
1

2u

)]}
(R00.15)

where u ≡ α(t − τ) / a2. Because this expression is not an easy one for subsequent
integration, some approximate relations are given. One expression is

πa2GR00(t , τ) = 1 −
( u

π

)1/2
(

2 − u

2
− u2

4

)
for 0 < u < 0.5 (R00.16a)

πa2GR00(t , τ) = 1

4u

(
1 − 1

4u
+ 5

96u2
− 1

128u3

)
for u > 0.5 (R00.16b)
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This is about 0.5% in error for u = 0.4 and more accurate elsewhere. Much more
accurate relations are, for 0 < u < 0.15:

GR00(t , τ) ≈ 1

πa2

[
1 −

( u

π

)1/2 (
2 − u

2
− 3u2

16

− 15u3

64
− 525u4

1024
− 6615u5

2048

)]
(R00.17a)

for 0.15 < u < 0.55:

GR00(t , τ) ≈ 1

πa2

6∑
n=1

Ane
−β2

nu / 9 (R00.17b)

where the An and βn values are:

n An βn

1 0.350307417 2.4048256
2 0.383866200 5.5200781
3 0.10146524 8.6537279
4 0.0008193642 11.7915344
5 0.044399184 14.9309177
6 0.0257058527 18.0710640

for u > 0.55:

GR00(t , τ) ≈ v

πa2

(
1 − v+ 5v2

6
− 7v3

12

+ 7v4

20
− 11v5

60
+ 143v6

1680
− 143v7

8064

)
(R00.17c)

where v ≡ 1/4u = a2 /[4α(t − τ)].
The Equation R00.17a expression is only −0.001% in error at u = 0.15 and

is better for smaller u values. The Equation R00.17b expression is accurate to six
significant figures at u = 0.15 and is −0.009% in error at u = 0.55. At u = 0.55,
Equation R00.17c is 0.007% in error and the accuracy improves with increasing u.

Values of πa2GR00 are given in Table R00.2 along with values for πa2GR0I ,
I = 1, 2, 3 for b+ = b/a = 2.

R.4 DERIVATIVE OF GR00 WITH RESPECT TO r

Using Equation R00.4, for small values of α(t − τ) / rr ′, the derivative of GR00 with
respect to r is

∂GR00

∂r
≈ − 1

2π[4πrr ′α(t − τ)]1/2

1

2α(t − τ)
exp

[
− (r − r ′)2

4α(t − τ)

]

×
[

(r − r ′) + α(t − τ)

4rr ′ (r + 3r ′) + [α(t − τ)]2

32(rr ′)2
(9r + 63r ′)

]
(R00.18)
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TABLE R00.2
Comparison of πa2GR0I Values for b+ = 2 with Values of πa2GR00

πa2GR03

u πa2GR00 πa2GR01 πa2GR02 B = 0.0002 B = 104

0.001 0.964326
0.01 0.887445
0.1 0.652487 0.652480 0.652487 0.652488 0.652279
0.2 0.523369 0.523620

1 0.198544 0.150571 0.264423 0.264415 0.150534
10 0.024388 0.00000034 0.25 0.249769 3.3E–7
100 0.002494 0.25 0.247531
1000 0.000250 0.25 0.226227

If r = r ′, the first term inside the braces disappears and makes no contribution for
t − τ greater than zero. However, as t − τ goes to zero, there can be a Dirac delta
function at r = r ′. See the X00 case.

R01 SOLID CYLINDER, G = 0 AT r = b

GR01(r , t |r ′, τ) = 1

πb2

∞∑
m=1

e−β2
mα(t−τ) / b2 J0(βmr/b)J0(βmr ′/b)

J 2
1 (βm)

(R01.1)

Eigenvalues are found from

J0(βm) = 0 (R01.2)

The derivative of G with respect to n′ and evaluated at r ′ = b is

−∂GR01

∂n′

∣∣∣∣
r ′=b

= 1

πb3

∞∑
m=1

e−β2
mα(t−τ) / b2 βmJ0(βmr /b)

J1(βm)
(R01.3)

Also the cross derivative at r = r ′ = b is

−∂2GR01

∂r ∂r ′

∣∣∣∣
r=r ′=b

= 1

2πb

1

{4π[α(t − τ)]3}1/2

[
1 + α(t − τ)

8b2

]
(R01.4)

For small values of α(t − τ) / b2 and r and r ′ not near b,

GR01(r , t |r ′, τ) ≈ GR00(r , t |r ′, τ)
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For small α(t − τ) / b2 values and r and r ′ not near zero, G(●) is

GR01(r , t |r ′, τ)

≈ 1

4π[παrr ′(t − τ)]1/2

{
exp

[
− (r − r ′)2

4α(t − τ)

]
− exp

[
− (2b − r − r ′)2

4α(t − τ)

]}

+ 1

32π(rr ′)1/2

((
1

r ′ − 1

r

)
erfc

{
r − r ′

[4α(t − τ)]1/2

}

−
(

1

r ′ + 1

r
− 2

b

)
erfc

{
2b − r − r ′

[4α(t − τ)]1/2

})
(R01.5)

for 0 < r ′ < r . For 0 < r < r ′, exchange r and r ′. For small α(t − τ) / b2 values and
r not near zero, the derivative is

−∂GR01

∂n′

∣∣∣∣
r ′=b

≈ 1

4πb2
√

rb

r − b

[πα(t − τ)]1/2
e−(b − r)2 /[4α(t − τ)]

[
b2

α(t − τ)
+ 1

8

b

r

]
(R01.6)

The average GF for a circular region of radius a is given by Equation R00.19 for
u ≡ α(t − τ) / a2 less than (b+ − 1)2 / 12 (with b+ ≡ b/a) and for larger u values by

GR01(t , τ) ≡ 4

a2

∫ a

r=0

∫ a

r ′=0
GR01(r , t |r ′, τ)rr ′ dr dr ′

= 4

πa2

∞∑
m=1

e− β2
mα(t − τ) / b2

[
J1(βma /b)

βmJ1(βm)

]2

(R01.7)

R02 SOLID CYLINDER, ∂G/∂r = 0 AT r = b

GR02(r , t |r ′, τ) = 1

πb2

[
1 +

∞∑
m=1

e−β2
mα(t−τ) / b2 J0(βmr /b)J0(βmr ′ / b)

J 2
0 (βm)

]
(R02.1)

Eigenvalues are found from

J1(βm) = 0 (R02.2)

Some values are given in Table R02.

TABLE R02

m βm J0(βm)

1 3.83170597 −0.40275940
2 7.01558667 0.30011575
3 10.17346814 −0.24970488
4 13.32369194 0.21835941
5 16.47063005 −0.19646537
6 19.61585851 0.18006338
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For small times (αt /b2 < .01) and r/b and r ′/b not near zero, GR02(●) is

GR02(r , t |r ′, τ) ≈ GR00(r , t |r ′, τ) + 1

4πb(rr ′)1/2

(
b

[πα(t − τ)]1/2

×exp

[
− (2b − r − r ′)2

4α(t − τ)

]

+ 1

8

(
6 + b

r
+ b

r ′

)
erfc

{
2b − r − r ′

[4α(t − τ)]1/2

}

+ 1

64

[
36 + 12

b

r
+ 12

b

r ′ + 9

(
b

r

)2

+ 9

(
b

r ′

)2

+ 2
b

r

b

r ′

]

×
[
α(t − τ)

b2

]1/2

ierfc

{
2b − r − r ′

[4α(t − τ)]1/2

})
(R02.3)

For r = r ′ = b, this expression with τ = 0 reduces to

GR02(b, t |b, 0) ≈ 1

2πb2

[
b

(παt)1/2
+ 1

2
+ 3

4(π)1/2

(
αt

b2

)1/2
]

(R02.4)

A more accurate expression is given by Equation R02.5. For αt /b2 < 0.1 and at
r = b′ = b(−0.1% at αt /b2 = 0.04 and −0.8% at 0.1),

G(b, t |b, 0) ≈ 1

2πb2

[
b

(παt)1/2
+ 1

2
+ 3

4
√

π

(
αt

b2

)1/2

+ 3

8

(
αt

b2

)]
(R02.5)

For αt /b2 > 0.04 at r = r ′ = b (0.002% error at αt /b2 = 0.04),

GR02(b, t |b, 0) ≈ 1

πb2

(
1 +

4∑
m=1

e−β2
mαt /b2

)
(R02.6)

The βm values are given in Table R02.
For αt /b2 < 0.02 for r = 0 and r ′ = b (about 0.0015% error at αt /b2 = 0.02),

b2G(0, t |b, 0) ≈ b2[4πα(t − τ)]−1 exp

[
− b2

4α(t − τ)

]
(R02.7)

and for αt /b2 > 0.02 for r = 0 and r ′ = b (about 0.005% error at αt /b2 = 0.02)

b2G(0, t |b, 0) = 1

π

[
1 +

6∑
m=1

1

J0(βm)
exp

(
−β2

m

αt

b2

)]
(R02.8)

where the βm and J0(βm) values are given in Table R02.
The integral of GR02(r , t |r ′, τ)2πr ′dr ′ from r ′ = 0 to a is∫ a

0
GR02(r , t |r ′, τ)2πr ′ dr ′

=
(a

b

)2 + 2a

b

∞∑
m=1

e−β2
mα(t−τ) / b2 J0(βmr /b)J1(βma /b)

βmJ 2
0 (βm)

(R02.9)



T&F Cat # K10695, Appendix R, Page 543, 12-6-2010

Green’s Functions for Radial-Cylindrical Coordinates (r) 543

Though this expression applies for all α(t − τ) / b2 values equal to or greater than
zero, for small dimensionless times the expression for the integral over GR00 can be
used. The average GF for a circular region of radius a is given by Equation R00.15
for u ≡ α(t − τ) / a2 less than (b+ − 1)2/12 (with b+ ≡ b/a) and for larger values
of u by

GR02(t , τ) ≡ 4

a4

∫ a

r=0

∫ a

r ′=0
GR02(r , t |r ′, τ)rr ′ dr ′ dr

= 1

πb2

{
1 + 4

(
b

a

)2 ∞∑
m=1

e−β2
mα(t−τ) / b2

[
J1(βma /b)

βmJ0(βm)

]2
}

(R02.10)

For a /b = 1, GR02(t , τ) is given by

GR02(t , τ) = 1

πb2
(R02.11)

The integral of GR02 2πr ′ dr ′ for r ′ = 0 to b is unity:∫ b

0
GR02(r , t |r ′, τ)2πr ′ dr ′ = 1 (R02.12)

R03 SOLID CYLINDER, k∂G/∂r + hG = 0 AT r = b

GR03(r , t |r ′, τ) = 1

πb2

∞∑
m=1

e−β2
mα(t−τ) / b2 β2

mJ0(βmr /b)J0(βmr ′ /b)

J 2
0 (βm)(B2 + β2

m)
(R03.1)

The eigencondition is

−βmJ1(βm) + BJ0(βm) = 0 (R03.2)

B = hb

k
(R03.3)

The average GF for a circular region of radius a is given by Equation R00.15 for
u ≡ α(t −τ) / a2 less than (b+−1)2 / 12 (with b+ ≡ b/a) and for larger values of u by

GR03(t , τ) = 4

πa2

∞∑
m=1

e−β2
mα(t−τ) / b2 J 2

1 (βma /b)

J 2
0 (βm)(B2 + β2

m)
(R03.4)

R10 OUTSIDE THE CYLINDRICAL REGION r = a, G = 0 AT r = a

GR10(r , t |r ′, τ) = 1

2πa2

∫ ∞

β=0
e−β2α(t−τ) / a2

× β[J0(βr /a)Y0(β) − Y0(βr /a)J0(β)]
× [J0(βr ′/a)Y0(β) − Y0(βr ′/a)J0(β)]

J 2
0 (β) + Y 2

0 (β)
dβ (R10.1)
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−∂GR10

∂n′

∣∣∣∣
r ′=a

= − 1

π2a3

∫ ∞

β=0
e−β2α(t−τ) / a2

× β[J0(βr /a)Y0(β) − Y0(βr /a)J0(β)]
J 2

0 (β) + Y 2
0 (β)

dβ (R10.2)

−∂2GR10

∂r∂n′

∣∣∣∣
r ′=r=a

= 2

π3a4

∫ ∞

β=0
e−β2α(t−τ) / a2 β

J 2
0 (β) + Y 2

0 (β)
dβ (R10.3)

R11 HOLLOW CYLINDER, G = 0 AT r = a AND b

GR11(r , t |r ′, τ) = π

4a2

∞∑
m=1

e−β2
mα(t−τ) / a2

× β2
mJ 2

0 (βm)[J0(βmr /a)Y0(βmb / a) − J0(βmb/a)Y0(βmr /a)]
J 2

0 (βm) − J 2
0 (βmb/a)

×
[
J0

(
βm

r ′

a

)
Y0

(
βm

b

a

)
− J0

(
βm

b

a

)
Y0

(
βm

r ′

a

)]
(R11.1)

The eigenvalues are found from

J0(βm)Y0

(
βm

b

a

)
− J0

(
βm

b

a

)
Y0(βm) = 0 (R11.2)

The normal derivatives at r ′ = a and b are

−∂GR11

∂n′

∣∣∣∣
r ′=a

= π

4a3

∞∑
m=1

e−β2
mα(t−τ) / a2

× β3
mJ 2

0 (βm)[J0(βmr /a)Y0(βmb/a) − J0(βmb/a)Y0(βmr /a)]
× [J1(βm)Y0(βmb/a) − J0(βmb/a)Y1(βm)]

J 2
0 (βm) − J 2

0 (βmb/a)
(R11.3)

−∂GR11

∂n′

∣∣∣∣
r ′=b

= 1

2a3

a

b

∞∑
m=1

e−β2
mα(t−τ) / a2

× β2
mJ 2

0 (βm)[J0(βmr /a)Y0(βmb/a) − J0(βmb/a)Y0(βmr /a)]
J 2

0 (βm) − J 2
0 (βmb/a)

(R11.4)

R12 HOLLOW CYLINDER, G = 0 AT r = a, ∂G/∂r = 0 AT r = b

GR12(r , t |r ′, τ) = π

4a2

∞∑
m=1

e−β2
mα(t−τ) / a2 β2

mJ 2
0 (βm)

J 2
0 (βm) − J 2

1 (βmb/a)

× [J0(βmr /a)Y1(βmb/a) − J1(βmb/a)Y0(βmr /a)]
× [J0(βmr ′/a)Y1(βmb/a) − J1(βmb/a)Y0(βmr ′/a)] (R12.1)
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where the eigenvalues are found from

J0(βm)Y1(βmb/a) − J1(βmb/a)Y0(βm) = 0 (R12.2)

The normal derivative at r ′ = a is

−∂GR12

∂n′

∣∣∣∣
r ′=a

= π

4a3

∞∑
m=1

e−β2
mα(t−τ) / a2 β3

mJ 2
0 (βm)

J 2
0 (βm) − J 2

1 (βmb/a)

×
[
J0

(
βm

r

a

)
Y1

(
βm

b

a

)
− J1

(
βm

b

a

)
Y0

(
βm

r

a

)]

×
[
J1(βm)Y1

(
βm

b

a

)
− J1

(
βm

b

a

)
Y1(βm)

]
(R12.3)

R13 HOLLOW CYLINDER, G = 0 AT r = a, k∂G/∂r + hG = 0 AT r = b

GR13(r , t |r ′, τ) = π

4a2

∞∑
m=1

e−β2
mα(t−τ) / a2 β2

mJ 2
0 (βm)

(B2 + β2
m)J 2

0 (βm) − V 2
0

×
[
S0J0

(
βm

r

a

)
− V0Y0

(
βm

r

a

)]
×

[
S0J0

(
βm

r ′

a

)
− V0Y0

(
βm

r ′

a

)]
(R13.1)

where

V0 = −βmJ1

(
βm

b

a

)
+ BJ0

(
βm

b

a

)
B = ha

k
(R13.2a, b)

S0 = −βmY1

(
βm

b

a

)
+ BY0

(
βm

b

a

)
(R13.3)

and the eigencondition is

S0J0(βm) − V0Y0(βm) = 0 (R13.4)

The normal derivative at r ′ = a is

−∂GR13

∂n′

∣∣∣∣
r ′=a

= π

4a3

∞∑
m=1

e−β2
mα(t−τ) / a2 β3

mJ 2
0 (βm)

(B2 + β2
m)J 2

0 (βm) − V 2
0

×
[
S0J0

(
βm

r

a

)
− V0Y0

(
βm

r

a

)]
× [S0J1(βm) − V0Y1(βm)] (R13.5)
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R20 OUTSIDE THE CYLINDRICAL REGION r = a, ∂G/∂r = 0 AT r = a

GR20(r , t |r ′, τ) = 1

2πa2

∫ ∞

β=0
e−β2α(t−τ) / a2

dβ

× β[J0(βr /a)Y1(β) − Y0(βr /a)J1(β)]
× [J0(βr ′/a)Y1(β) − Y0(βr ′/a)J1(β)]

J 2
1 (β) + Y 2

1 (β)
(R20.1)

Note that J0(z)Y1(z) − Y0(z)J1(z) = −2 /(πz) (see Carslaw and Jaeger, 1959,
p. 489)

For r = r ′ = a

GR20(a, t |a, τ) = 1

2πa2

4

π2

∫ ∞

0

exp[−β2α(t − τ) / a2]dβ

β[J 2
1 (β) + Y 2

1 (β)] (R20.2)

Approximate values for GR20(a, t |a, τ) are given below.
For small t+ = α(t − τ) / a2 values,

GR20(a, t |a, τ) ≈ 1

2πa2

[
(πt+)−1/2 − 1

2
C1

+ 3

4

(
t+

π

)1 / 2

C2 − 3

8
t+C3 + 21

32

1

π1/2
(t+)3/2C4

]
(R20.3)

The series expansion has C1 = C2 = C3 = C4 = 1 which is accurate only for
α(t − τ) / a2 << 1.0. If Euler’s transformation is used (Abramowitz and Stegun,
1964, p. 16), C1 = 15/16, C2 = 11/16, C3 = 5/16, and C4 = 1/16 and the accuracy
is much improved, better than 0.15% for t+ < 0.4. See Table R20 where (R20.3)
denotes Equation R20.3 for C1 = 15/16 and so on. More accurate values are obtained
using the polynomial fit of

GR20(a, t |a, τ) ≈ 1

2πa2

[
(πt+)−1/2 − 0.5 + 0.413434(t+)1/2

− 0.299877t+ + 0.154483(t+)3/2

− 0.045263(t+)2 + 0.005484(t+)5/2] (R20.4)

For large t+ values,

GR20(a, t |a, τ) ≈ 1

4πa2

1

t+

{
1 − 1

2t+
L

[
1 + 3

4t+
(1 − L)

]

− (π2 + 4)
C

16t+2

}
L = ln 4t+ − γ (R20.5)
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TABLE R20
Exact 2πa2GR20(a, t|a, τ) and Approximate Equations R20.4, R20.3, and
R20.5. u ≡ α(t − τ) / a2.

u (R20.4) (R20.3) (R20.5) Exact

0.5 0.4846 0.4844 0.484220
1.0 0.2924 0.2923 0.292633
1.5 0.2143 0.2149 0.214567
2.0 0.1708 0.1727 0.170938
2.5 0.1428 0.1465 0.142723
3.0 0.1230 0.122844
3.5 0.1082 0.1053 0.108019
4.0 0.0966 0.0950 0.096506
4.5 0.0872 0.0864 0.087288
5.0 0.0796 0.0792 0.079730
5.5 0.0733 0.0731 0.073414
6.0 0.0683 0.0679 0.068058
6.5 0.0646 0.0633 0.063440
7.0 0.0621 0.0594 0.059429
7.5 0.0609 0.0559 0.055907

Percent Errors

0.5 0.07 0.04
1.0 −0.06 −0.11
1.5 −0.13 0.16
2.0 −0.08 1.01
2.5 0.03 2.67
3.0 0.15
3.5 0.18 −2.51
4.0 0.09 −1.56
4.5 −0.07 −0.98
5.0 −0.21 −0.63
5.5 −0.15 −0.40
6.0 0.38 −0.25
6.5 1.77 −0.14
7.0 4.46 −0.07
7.5 9.00 −0.02

where γ = Euler′s constant = 0.57722. This equation with C = 0.5 is accurate
to +0.1% for t+ > 10, to −0.6% at t+ = 5. A comparison of results is given in
Table R20. Equation R20.4 is recommended for t+ < 6 and Equation R20.5 for
t+ > 6.

The integral of GR20(r , t |r ′, τ)2πr ′dr ′ from r ′ = a to ∞ is unity,

∫ ∞

a

GR20(r , t |r ′, τ)2πr ′dr ′ = 1 (R20.6)
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R21 HOLLOW CYLINDER, ∂G / ∂r = 0 AT r = a, G = 0 AT r = b

GR21(r , t |r ′, τ) = π

4a2

∞∑
m=1

e−β2
mα(t−τ) / a2 β2

mJ 2
1 (βm)

J 2
1 (βm) − J 2

0 (βmb / a)

×
[
J0

(
βm

r

a

)
Y0

(
βm

b

a

)
− J0

(
βm

b

a

)
Y0

(
βm

r

a

)]

×
[
J0

(
βm

r ′

a

)
Y0

(
βm

b

a

)
− J0

(
βm

b

a

)
Y0

(
βm

r ′

a

)]
(R21.1)

Eigencondition

J1(βm)Y0

(
βm

b

a

)
− J0

(
βm

b

a

)
Y1(βm) = 0 (R21.2)

−∂GR21

∂n′

∣∣∣∣
r ′=b

= − 1

2a2

1

b

∞∑
m=1

e−β2
mα(t−τ) / a2 β2

mJ 2
0 (βm)

J 2
1 (βm) − J 2

0 (βmb/a)

×
[
J0

(
βm

r

a

)
Y0

(
βm

b

a

)
− J0

(
βm

b

a

)
Y0

(
βm

r

a

)]
(R21.3)

R22 HOLLOW CYLINDER, ∂G / ∂r = 0 AT r = a AND b

GR22(r , t |r ′, τ) = 1

π(b2 − a2)
+ π

4a2

∞∑
m=1

e−β2
mα(t−τ) / a2

× β2
mJ 2

1 (βm)

J 2
1 (βm) − J 2

1 (βmb/a)

×
[
J0

(
βm

r

a

)
Y1

(
βm

b

a

)
− J1

(
βm

b

a

)
Y0

(
βm

r

a

)]

×
[
J0

(
βm

r ′

a

)
Y1

(
βm

b

a

)
− J1

(
βm

b

a

)
Y0

(
βm

r ′

a

)]
(R22.1)

Eigencondition

J1(βm)Y1

(
βm

b

a

)
− J1

(
βm

b

a

)
Y1(βm) = 0 (R22.2)

For r = r ′ = b and α(t − τ) /(b − a)2 < 1 / 12,

GR22(b, t |b, τ) ≈ 1

2πb2

{
b

[πα(t − τ)]1/2
+ 1

2

+ 3

4
√

π

[
α(t − τ)

b2

]1/2

+ 3

8

[
α(t − τ)

b2

]}
(R22.3)
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For r = r ′ = a and α(t − τ) /(b − a)2 < 1/12 and α(t − τ) / a2 < 0.4 (or for
b/a > 3, only α(t − τ) / a2 < 0.4), use the small t+ expression of the R20 case. The
integral of GR22(r , t |r ′, τ)2πr ′ dr ′ from r ′ = a to b is unity,∫ b

a

GR22(r , t |r ′, τ)2πr ′ dr ′ = 1 (R22.4)

R23 HOLLOW CYLINDER, ∂G / ∂r = 0 AT r = a, k∂G / ∂r + hG = 0 AT r = b

GR23(r , t |r ′, τ) = π

4a2

∞∑
m=1

e−β2
mα(t−τ) / a2 β2

mJ 2
1 (βm)

(B2 + β2
m)J 2

1 (βm) − V 2
0

×
[
S0J0

(
βm

r

a

)
− V0Y0

(
βm

r

a

)]
×

[
S0J0

(
βm

r ′

a

)
− V0Y0

(
βm

r ′

a

)]
(R23.1)

where S0 and V0 are defined for R13.
Eigencondition

S0J1(βm) − V0Y1(βm) = 0 (R23.2)

For r = r ′ = a and α(t − τ) /(b − a)2 < 1 / 12 and α(t − τ) / a2 < 0.4 [or for
b/a > 3, only α(t − τ) / a2 < 0.4], use the small t+ expression of the R20 case.

R30 REGION OUTSIDE r = a, – k∂G/∂r + hG = 0 AT r = a

GR30(r , t |r ′, τ) = 1

2πa2

∫ ∞

β=0
e−β2α(t−τ) / a2

× β[W0J0(βr /a) − U0Y0(βr /a)]
× [W0J0(βr ′ /a) − U0Y0(βr ′ /a)]

U2
0 + W 2

0

dβ (R30.1)

where

W0 = −βY1(β) − BY0(β) (R30.2)

U0 = −βJ1(β) − BJ0(β) B = ha

k
(R30.3a, b)

GR30(a, t |a, τ) ≈ kB

α

{[
α

πa2(t − τ)

]1/2

+
(

B + 1

2

)
α

a2

− 2

(
B2 + B + 3

8

)[
α3(t − τ)

a6

]1/2
}

(R30.4)

for small α(t − τ) / a2 values and B ≤ 1.
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R31 HOLLOW CYLINDER, – k∂G/∂r + hG = 0 AT r = a, G = 0 AT r = b

GR31(r , t |r ′, τ) = π

4a2

∞∑
m=1

e−β2
mα(t−τ) / a2

× β2
mU2

0

U2
0 − (B2 + β2

m)J 2
0 (βmb/a)

×
[
J0

(
βm

r

a

)
Y0

(
βm

b

a

)
− J0

(
βm

b

a

)
Y0

(
βm

r

a

)]

×
[
J0

(
βm

r ′

a

)
Y0

(
βm

b

a

)
− J0

(
βm

b

a

)
Y0

(
βm

r ′

a

)]
(R31.1)

where

U0 = −βmJ1(βm) − BJ0(βm)

W0 = −βmY1(βm) − BY0(βm) B = ha

k
(R31.2a, b, c)

Eigencondition:

U0Y0

(
βm

b

a

)
− W0J0

(
βm

b

a

)
(R31.3)

−∂GR31

∂n′

∣∣∣∣
r ′=b

= 1

2a2

1

b

∞∑
m=1

e−β2
mα(t−τ) / a2

× β2
mU2

0 [J0(βmr /a)Y0(βmb/a) − J0(βmb/a)Y0(βmr /a)]
U2

0 − (B2 + β2
m)J 2

0 (βmb/a)
(R31.4)

R32 HOLLOW CYLINDER, – k∂G/∂r + hG = 0 AT r = a, ∂G/∂r = 0
AT r = b

GR32(r , t |r ′, τ) = π

4a2

∞∑
m=1

e−β2
mα(t−τ) / a2

× β2
mU2

0

U2
0 − (B2 + β2

m)J 2
1 (βmb/a)

×
[
J0

(
βm

r

a

)
Y1

(
βm

b

a

)
− J1

(
βm

b

a

)
Y0

(
βm

r

a

)]

×
[
J0

(
βm

r ′

a

)
Y1

(
βm

b

a

)
−J1

(
βm

b

a

)
Y0

(
βm

r ′

a

)]
(R32.1)

For U0 and W0 see R31.
Eigencondition

U0Y1

(
βm

b

a

)
− W0J1

(
βm

b

a

)
= 0 (R32.2)
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R33 HOLLOW CYLINDER, – k∂G/∂r + h1G = 0 AT r = a,
k∂G/∂r + h2G = 0 AT r = b

GR33(r , t |r ′, τ) = π

4a2

∞∑
m=1

e−β2
mα(t−τ) / a2

× β2
mU2

0(
B2

2 + β2
m

)
U2

0 − (
B2

1 + β2
m

)
V 2

0

×
[
S0J0

(
βm

r

a

)
− V0Y0

(
βm

r

a

)]
×

[
S0J0

(
βm

r ′

a

)
− V0Y0

(
βm

r ′

a

)]
(R33.1)

where

S0 ≡ −βmY1

(
βm

b

a

)
+ B2Y0

(
βm

b

a

)
(R33.2)

U0 ≡ −βmJ1(βm) − B1J0(βm) (R33.3)

V0 ≡ −βmJ1

(
βm

b

a

)
+ B2J0

(
βm

b

a

)
(R33.4)

W0 ≡ −βmY1(βm) − B1Y0(βm) (R33.5)

B1 ≡ h1a

k
B2 ≡ h2a

k
(R33.6a, b)

Eigencondition

S0U0 − V0W0 = 0 (R33.7)
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RΦGreen’s Functions
for Cylindrical
Coordinates (r , φ)

dv ′ = r ′ dr ′ dφ′

ds ′ = adφ′ at r = a and ds′ = bdφ′ at r = b

ds′ = dr ′ at φ = 0 or φ0

The partial differential equation for transient conduction with cylindrical coordinates
(r , φ) is

1

r

∂

∂r

(
r
∂T

∂r

)
+ 1

r2

∂2T

∂φ2
= 1

α

∂T

∂t

R00Φ11 WEDGE FOR 0 < φ < φ0 < 2π AND WITH G = 0 AT φ = 0
AND φ = φ0

G(r , φ, t |r ′, φ′, τ) = 1

φ0α(t − τ)
e−(r2+r ′2) /[4α(t−τ)]

×
∞∑

n=1

nIs

(
rr ′

2α(t − τ)

)
sin

(
nπ

φ

φ0

)

× sin

(
nπ

φ′

φ0

)
(R00Φ11.1)

where s = nπ/φ0 (Carslaw and Jaeger, 1959, p. 379).

− ∂G

∂n′

∣∣∣∣
φ′=0

= π

r ′φ2
0α(t − τ)

e−(r2+r ′2) /[4α(t−τ)]

×
∞∑

n=1

nIs

[
rr ′

2α(t − τ)

]
sin

(
nπ

φ

φ0

)
(R00Φ11.2)

− ∂G

∂n′

∣∣∣∣
φ′=φ0

= − π

r ′φ2
0α(t − τ)

e−(r2+r ′2) /[4α(t−τ)]

×
∞∑

n=1

nIs

[
rr ′

2α(t − τ)

]
sin

(
nπ

φ

φ0

)
(−1)n (R00Φ11.3)

553
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R00Φ12 WEDGE FOR 0 < φ < φ0 < 2π AND WITH G = 0 AT φ = 0
AND ∂G / ∂φ = 0 AT φ = φ0

G(r , φ, t |r ′, φ′, τ) = 1

φ0α(t − τ)
e−(r2+r ′2) /[4α(t−τ)]

×
∞∑

m=1

Iβm

(
rr ′

2α(t − τ)

)
sin(βmφ) sin (βmφ′) (R00Φ12.1)

where βm = (2m − 1)
π

2φ0
, m = 1, 2, . . . .

R00Φ22 WEDGE FOR 0 < φ < φ0 < 2π AND WITH ∂G / ∂φ = 0 AT
φ = 0 AND AT φ = φ0

G(r , φ, t |r ′, φ′, τ) = 1

2φ0α(t − τ)
e−(r2+r ′2) /[4α(t−τ)]

{
I0

[
rr ′

2α(t − τ)

]

+ 2
∞∑

n=1

cos

(
nπ

φ

φ0

)
cos

(
nπ

φ′

φ0

)

× Is

[
rr ′

2α(t − τ)

]}
(R00Φ22.1)

where s = nπ / φ0 (Carslaw and Jaeger, 1959, p. 379).

R01Φ00 SOLID CYLINDER WITH RADIAL AND ANGULAR
DEPENDENCE; G = 0 AT r = a

G(r , φ, t |r ′, φ′, τ) = 2

a2

∞∑
n=0

1

π
cos [n(φ − φ′)]

∞∑
m=1

e−β2
mnα(t−τ) / a2

× Jn(βmnr / a) Jn(βmnr
′ /a)

[J ′
n(βmn)]2

(R01Φ00.1)

where βmn for m, n = 1, 2, . . . are the positive roots of Jn(βmn) = 0. Replace π for
2π for n = 0 (Carslaw and Jaeger, 1959, p. 377, Equation 6; Ozisik, 1993, p. 134).

R01Φ11 SECTOR OF RADIUS b; 0 ≤ φ ≤ φ0 < 2π; G = 0 AT r = b,
φ = 0 AND φ = φ0

G(r , φ, t |r ′, φ′, τ) = 4

b2φ0

∞∑
m=1

∞∑
ν

e−β2
mνα(t−τ) / b2

× Jν(βmνr /b) Jν(βmνr
′/b) sin (νφ) sin (νφ′)

J ′ 2
ν (βmν)

(R01Φ11.1)
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where

ν = nπ

φ0
n = 1, 2, 3, . . . (R01Φ11.2)

and the βmv eigenvalues are given by the positive roots of

Jv(βmv) = 0 for the above v values (R01Φ11.3)

R01Φ12 SECTOR OF RADIUS b; 0 ≤ φ ≤ φ0 < 2π; G = 0 AT r = b
AND φ = 0, ∂G/∂φ = 0 AT φ = φ0

G(r , φ, t |r ′, φ′, τ) = 4

b2φ0

∞∑
m=1

∞∑
ν

e−β2
mνα(t−τ) / b2

× Jν(βmvr /b) Jν(βmνr
′/b) sin vφ sin νφ′

J ′ 2
ν (βmν)

(R01Φ12.1)

where

v = (2n − 1)
π

2φ0
n = 1, 2, 3, . . . (R01Φ12.2)

and the βmv eigenvalues are given by the positive roots of

Jv(βmv) = 0 for the above v values (R01Φ12.3)

R01Φ22 SECTOR OF RADIUS b; 0 ≤ φ ≤ φ0 < 2π; G = 0 AT r = b,
∂G/∂φ = 0 AT φ = 0 AND φ = φ0

G(r , φ, t |r ′, φ′, τ) = 1

b2φ0

∞∑
m=1

∞∑
v

4e−β2
mvα(t−τ) / b2

× Jv(βmvr /b) Jv(βmvr
′/b) cos (vφ) cos (vφ′)

J ′ 2
v (βmv)

(R01Φ22.1)

where

ν = nπ

φ0
n = 0, 1, 2, 3, . . . (R01Φ22.2)

and the βmv eigenvalues are given by the positive roots of

Jv(βmv) = 0 for the above v values. (R01Φ22.3)

Also replace the 4 coefficient for v = 0 by the value of 2.
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R02Φ00 SOLID CYLINDER WITH RADIAL AND ANGULAR
DEPENDENCE; ∂G/∂r = 0 AT r = a

G(r , φ, t |r ′, φ′, τ) = 2

a2

{
1

2π
+

∞∑
n=0

1

π
cos [n(φ − φ′)]

∞∑
m=1

e−β2
mnα(t−τ) / a2

× β2
mnJn(βmnr /a) Jn(βmnr

′ /a)

(β2
mn − n2) J 2

n (βmn)

}
(R02Φ00.1)

where βmn are the positive roots of J ′
n(βmn) = 0. (For β = 0, the r-direction equation

from the separation of variables is r2R′′ + rR′ − n2R = 0 which has the solution
R = C1r

−n + C2r
n, n �= 0. The solution is R = 0. For n = 0, R = C.) Replace π

inside the summation by 2π for n = 0 (Carslaw and Jaeger, 1959, p. 378, Equation 7).

R02Φ11 SECTOR OF RADIUS b; ∂G/∂r = 0 AT r = b, AT G = 0
AT φ = 0 AND φ0

G(r , φ, t |r ′, φ′, τ) = 4

b2φ0

{
1

2
+

∞∑
m=1

∞∑
v

e−β2
mvα(t−τ) / b2

× β2
mvJv(βmvr /b) Jv(βmvr

′/b) sin (vφ) sin (vφ′)
(β2

mv − v2) J 2
v (βmv)

}
(R02Φ11.1)

where
v = nπ

φ0
n = 1, 2, 3, . . . (R02Φ11.2)

and the βmv eigenvalues are given by the positive roots of

J ′
v(βmv) = 0 (R02Φ11.3)

R02Φ12 SECTOR OF RADIUS b; ∂G/∂r = 0 AT r = b, G = 0 AT φ =
0 AND ∂G/∂r = 0 AT φ = φ0

G(r , φ, t |r ′, φ′, τ) = 4

b2φ0

[
1

2
+

∞∑
m=1

∞∑
v

e−β2
mvα(t−τ) / b2

× β2
mvJv(βmvr /b) Jv(βmv r ′/b) sin (vφ) sin (vφ′)

(β2
mv − v2) J 2

v (βmv)

]
(R02Φ12.1)

where
v = (2n − 1)

π

2φ0
n = 1, 2, 3, . . . (R02Φ12.2)
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and the βmv eigenvalues are given by the positive roots of

J ′
v(βmv) = 0 (R02Φ12.3)

R02Φ22 SECTOR OF RADIUS b; ∂G/∂r = 0 AT r = b,
∂G/∂r = 0 AT φ = 0 AND φ0

G(r , φ, t |r ′, φ′, τ) = 1

b2φ0

[
2 +

∞∑
m=1

∞∑
v

4e−β2
mvα(t−τ) / b2

× β2
mvJv(βmvr /b) Jv(βmvr

′/b) cos (vφ) cos (vφ′)
(β2

mv − v2) J 2
v (βmv)

]
(R02Φ22.1)

where

v = nπ

φ0
n = 0, 1, 2, . . . (R02Φ22.2)

and the βmv eigenvalues are given by the positive roots of

J ′
v(βmv) = 0 for the above v values (R02Φ22.3)

Also replace the 4 coefficient for v = 0 by the value of 2.

R11Φ00 ANNULUS WITH RADIAL AND ANGULAR DEPENDENCE;
G = 0 AT r = a AND b

G(r , φ, t |r ′, φ′, τ) = 1

b2

∞∑
m=1

∞∑
n=0

e−β2
mnα(t−τ) / b2

πN (βmn)
Rn(βmn, r) Rn(βmn, r ′)

× cos [n(φ − φ′)]

Replace π by 2π for n = 0. Also the following relations are given:

Rn(βmn, r) = Jn(βmnr /b) Yn(βmn) − Jn(βmn) Yn(βmnr /b)

1

N (βmn)
= π2

2

β2
mnJ

2
n (βmna /b)

J 2
n (βmna /b) − J 2

n (βmn)

and βmn’s are the positive roots of

Jn(βmna /b) Yn(βmn) − Jn(βmn) Yn(βmna /b) = 0
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R12Φ00 ANNULUS WITH RADIAL AND ANGULAR DEPENDENCE;
G = 0 AT r = a AND ∂G/∂x = 0 AT r = b

G(r , φ, t |r ′, φ′, τ) = 1

b2

∞∑
m=1

∞∑
n=0

e−β2
mna(t−τ) / b2

πN (βmn)
Rn(βmn, r) Rn(βmn, r ′)

× cos [n(φ − φ′)]

Replace π by 2π for n = 0. Also the following relations are given:

Rmn(βmn, r) = Jn(βmnr /b) Y ′
n(βmn) − J ′

n(βmn) Yn(βmnr /b)

1

N (βmn)
= π2

2

β2
mnJ

2
n (βmna /b)

[1 − (n / βmn)2] J 2
n (βmna /b) − J ′2

n (βmn)

and the βmn’s are the positive roots of

Jn(βmna /b) Y ′
n(βmn) − J ′

n(βmn) Yn(βmna /b) = 0

for m = 1, 2, . . . , and n = 0, 1, 2, . . .

R13Φ00 ANNULUS WITH RADIAL AND ANGULAR DEPENDENCE;
G = 0 AT r = a AND k∂G/∂r + hG = 0 AT r = b

G(r , φ, t |r ′, φ′, τ) = 1

b2

∞∑
m=1

∞∑
n=0

e−β2
mnα(t−τ) / b2

πN (βmn)
Rn(βmn, r) Rn(βmn, r ′)

× cos [n(φ − φ′)]

Replace π by 2π for n = 0. Also the following relations are given:

Rmn(βmn, r) = SmnJn(βmnr /b) − VmnYn(βmnr /b)

Smn ≡ βmnY
′
n(βmn) + BYn(βmn) B ≡ hb/k

Vmn ≡ βmnJ
′
n(βmn) + BJn(βmn)

1

N (βmn)
= π2

2

β2
mnJ

2
n (βmna /b)

CmnJ 2
n (βmna /b) − V 2

mn

Cmn ≡ B2 + β2
mn

[
1 −

(
n

βmn

)2
]

and the βmn’s are the positive roots of

SmnJn(βmna /b) − VmnYn(βmna /b) = 0

for m = 1, 2, . . . , and n = 0, 1, 2, . . . .
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R21Φ00 ANNULUS WITH RADIAL AND ANGULAR DEPENDENCE;
∂G/∂r = 0 AT r = a AND G = 0 AT r = b. SAME AS R12Φ00 WITH
a → b AND b → a

R22Φ00 ANNULUS WITH RADIAL AND ANGULAR DEPENDENCE;
∂G/∂r = 0 AT r = a AND r = b

G(r , φ, t |r ′, φ′, τ) = 1

b2

{
1

π[1 − (a /b)2] +
∞∑

m=1

∞∑
n=0

e−β2
mnα(t−τ) / b2

πN (βmn)

× Rn(βmn, r) Rn(βmn, r ′) cos [n(φ − φ′)]
}

For n = 0, replace π inside the summation by 2π. Also the following relations are
given:

Rn(βmn, r) = Jn(βmnr /b) Y ′
n(βmn) − J ′

n(βmn) Yn(βmnr /b)

1

N (βmn)
= π2

2

β2
mnJ

′2
n (βmna /b)

[1 − (n / βmn)2] J ′2
n (βmna /b) − {1 − [nb/(βmna)]2} J ′2

n (βmn)

and the βmn’s are the positive roots of

J ′
n(βmna /b) Y ′

n(βmn) − J ′
n(βmn) Y ′

n(βmna /b) = 0

for m = 1, 2, . . . , and n = 0, 1, 2, . . . .

R23Φ00 ANNULUS WITH RADIAL AND ANGULAR DEPENDENCE;
∂G/∂r = 0 AT r = a AND + k∂G/∂r + hG = 0 AT r = b

G(r , φ, t |r ′, φ′, τ) = 1

b2

∞∑
m=1

∞∑
n=0

e−β2
mnα(t−τ) / b2

πN (βmn)
Rn(βmn, r) Rn(βmn, r ′)

× cos [n(φ − φ′)]
Replace π by 2π for n = 0. Also the following relations are given:

Rmn(βmn, r) = SmnJm(βmnr /b) − VmnY (βmnr /b)

See R13Φ00 for Smn and Vmn.

1

N (βmn)
= π2

2

β2
mnJ

′2
n (βmna /b)

BJ ′2
n (βmna /b) − {1 − [nb/(βmna)]2}V 2

mn

B ≡ hb

k

and the βmn’s are the positive roots of

SmnJ
′
n(βmna /b) − VmnY

′
n(βmna /b) = 0

for m = 1, 2, . . . , and n = 0, 1, 2, . . . .
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TABLE RΦ.1

IJ R0(β00, r / b) Rv(βmv, r / b), m �= 0

01 0 Jv(βmvr /b)
02 1 Jv(βmvr /b)
03 0 Jv(βmvr /b)

11 0 Jv

(
βmv

r

b

)
Yv(βmv) − Jv(βmv) Yv

(
βmv

r

b

)
12 0 Jv

(
βmv

r

b

)
Y ′

v(βmv) − J ′
v(βmv) Yv

(
βmv

r
b

)
13 0 SmvJv

(
βmv

r
b

) − VmvYv

(
βmv

r
b

)
21 0 Same as R11
22 1 Same as R12
23 0 Same as R13
31 0 Same as R11
32 0 Same as R12
33 0 Same as R13

R31Φ00 ANNULUS WITH RADIAL AND ANGULAR DEPENDENCE:
−k∂G/∂r + hG = 0 AT r = a AND G = 0 AT r = b. SAME AS R13Φ00
WITH a → b, b → a AND h → −h

R32Φ00 ANNULUS WITH RADIAL AND ANGULAR DEPENDENCE:
−k∂G / ∂r + hG = 0 AT r = a AND ∂G / ∂r = 0 AT r = b. SAME AS
R23Φ00 WITH a → b, b → a, AND h → − h

R33Φ00 ANNULUS WITH RADIAL AND ANGULAR DEPENDENCE:
−k∂G / ∂r + h1G = 0 AT r = a AND k∂G / ∂r + h2G = 0 AT r = b (SEE
TABLES RΦ.1 THROUGH RΦ.4 FOR A SUMMARY OF THE RΦ CASES)

G(r , φ, t |r ′, φ′, τ) = 1

b2

∞∑
m=1

∞∑
n=0

e−β2
mnα(t−τ) / b2

πN (βmn)
Rn(βmn, r) Rn(βmn, r ′)

× cos [n(φ − φ′)]
Replace π by 2π for n = 0. Also the following relations are given:

Rmn(βmn, r) = SmnJn(βmnr /b) − VmnYn(βmnr /b)

Smn = βmnY
′
n(βmn) + B2Yn(βmn) B2 = h2b

k

Vmn = βmnJ
′
n(βmn) + B2Jn(βmn)

1

N (βmn)
= π2

2

β2
mnU

2
mn

C2U2
mn − C1V 2

mn

C1 = B2
1 + β2

mn

[
1 −

(
n

βmna /b

)2
]

B1 = h1b/k
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TABLE RΦ.2

IJ 1/N(β00) 1/N(βmv), m �= 0

01 – 2 /[b2J ′2
v (βmv)]

02 2 / b2 2β2
mv[b2J 2

v (βmv)(β2
mv − v2)]−1

03 – 2β2
mv[b2J 2

v (βmv)(B2
2 + β2

mv − v2)]−1

11 – [π2 /(2b2)][β2
mvJ

2
v (βmva /b)][J 2

v (βmvab) − J 2
v (βmv)]−1

12 – [π2 /(2b2)][β2
mvJ

2
v (βmva /b)][A2vJ

2
v (βmva /b) − J ′ 2

v (βmv)]−1

13 – [π2 /(2b2)][β2
mvJ

2
v (βmva /b)][(B2

2 + β2
mvA2v)J 2

v (βmva /b) − V 2
mv]−1

21 – [π2 /(2b2)][β2
mvJ

′ 2
m (βmva /b)][J ′ 2

v (βmva /b) − A1vJ
2
v (βmv)]−1

22 2 /(b2 − a2) [π2 /(2b2)][β2
mvJ

′ 2
v (βmva /b)][A2vJ

′ 2
v (βmva /b) − A1vJ

′ 2
v (βmv)]−1

23 – [π2 /(2b2)][β2
mvJ

′ 2
v (βmva /b)][(B2

2 + A2vβ
2
mv)J ′ 2

v (βmva /b) − A1vV
2
mv]−1

31 – [π2 /(2b2)][β2
mvU

2
mv][U2

mv − (B2
1 + A1vβ

2
mv)J 2

v (βmv)]−1

32 – [π2 /(2b2)][β2
mvU

2
mv][A2vU

2
mv − (B2

1 + A1vβ
2
mv)J ′ 2

v (βmv)]−1

33 – [π2 /(2b2)][β2
mvU

2
mv][(B2

2 + A2vβ
2
mv)U2

mv − (B2
1 + A1vβ

2
mv)V 2

mv]−1

TABLE RΦ.3

IJ β00 Eigencondition (Positive Roots of), m �= 0

01 – Jv(βmv) = 0

02 0 J ′
v(βmv) = 0

03 – βmvJ
′
v(βmv) + B2Jv(βmv) = 0

11 – Jv(βmva /b) Yv(βmv) − Jv(βmv) Yv(βmva /b) = 0

12 – Jv(βmva /b) Y ′
v(βmv) − J ′

v(βmv) Yv(βmva /b) = 0

13 – SmvJv(βmva /b) − VmvYv(βmva /b) = 0

21 – J ′
v(βmva /b) Yv(βmv) − Jv(βmv) Y ′

v(βmva /b) = 0

22 0 J ′
v(βmva /b) Y ′

v(βmv) − J ′
v(βmv) Y ′

v(βmva /b) = 0

23 – SmvJ
′
v(βmva /b) − VmvY

′
v(βmva /b) = 0

31 – UmvYv(βmv) − WmvJv(βmv) = 0

32 – UmvY
′
v(βmv) − WmvJ

′
v(βmv) = 0

33 – SmvUmv − VmvWmv = 0

C2 = B2
2 + β2

mn

[
1 −

(
n

βmn

)2
]

Umn = βmnJ
′
n(βmna /b) − B1Jn(βmna /b)

and the βmn’s are the positive roots of

SmnUmn − VmnWmn = 0
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TABLE RΦ.4

KL Φ(v, φ) 1 / N(v) Eigencondition

11 sin vφ 2 / φ0 sin vφ0 = 0
12 sin vφ 2 / φ0 cos vφ0 = 0

13 cos vφ 2 / φ0 cos vφ0 = 0

22 v = 0 : 1 v = 0 : 1 / φ0 v = 0

v �= 0 : cos (vφ) v �= 0 : 2 / φ0 v �= 0 : sin (vφ0) = 0

for m = 1, 2, . . . , and n = 0, 1, 2, . . . .

Wmn = βmnY
′
n

(
βmn

a

b

)
− B1Yn

(
βmn

a

b

)

SUMMARY FOR CASES RIJΦKL J �= 0, K, L �= 0

G(r , φ, t |r ′, φ′, τ) =
∞∑

m=0

∞∑
v

e−β2
mvα(t−τ) / b2

× Rv(βmv , r /b) Rv(βmv , r ′/b)

N (βmv)

Φ(v, φ) Φ(v, φ′)
N (v)

Smv = βmvY
′
v(βmv) + B2Yv(βmv)

Vmv = βmvJ
′
v(βmv) + B2Jv(βmv)

B1 = h1b/k; B2 = h2b/k; A1v = 1 −
(

v

βmna /b

)2

; A2v = 1 −
(

v

βmn

)2

Vmv = βmvJ
′
v(βmva /b) − B1Jv(βmva /b); Wmv = βmvY

′
v(βmva /b) − B1Yv(βma /b)

where Rv , N (βmn), βmn, N (v) and Φ are given in Tables RΦ.1 through RΦ.4.

REFERENCES

Carslaw, H. S. and Jaeger, J. C., 1959, Conduction of Heat in Solids, 2nd edn, Oxford University
Press, New York.

Ozisik, M. N., 1993, Heat Conduction, John Wiley, New York.
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Φ Cylindrical Polar
Coordinate, φ Thin Shell
Case

dv′ = δadφ′ · ds′ = δ

Partial differential equation:

1

a2

∂2T

∂φ2
= 1

α

∂T

∂t

Φ00 COMPLETE CYLINDRICAL SHELL OF RADIUS a

G(φ, t |φ′, τ) = 1

δa

∞∑
m=0

1

π
e−m2α(t−τ) / a2

cos [m(φ − φ′)]

where π is replaced by 2π for m = 0.

Φ11 PARTIAL CYLINDRICAL SHELL OF RADIUS a

G(φ, t |φ′, τ) = 2

aφ0δ

∞∑
m=1

e
− m2π2α(t−τ)

φ2
0a2

sin

(
mπ

φ

φ0

)
sin

(
mπ

φ′

φ0

)

The Φ12, Φ13, . . . , Φ33 cases are the same as the standard X12, X13, . . . , X33
cases with L replaced by aφ0, x by aφ and x ′ by aφ′. Also the GX−− expression is
divided by δ.
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RS Green’s Functions
for Radial Spherical
Geometries

dv′ = 4πr′2 dr′,
ds′ = 4πa2 or 4πb2

STEADY GREEN’S FUNCTIONS

The spherical-radial steady heat conduction equation is

1

r2

d

dr

(
r2 dT

dr

)
= 0

The steady GF associated with this heat conduction equation, for boundary conditions
of the first, second, and third kinds, are given in Table RS.1 for the infinite body and
solid spheres, and in Table RS.2 for hollow spheres.

TRANSIENT GREEN’S FUNCTIONS

The partial differential equation for transient, radial-spherical heat conduction can be
written as

1

r

∂2(rT )

∂r2
= 1

α

∂T

∂t
or

1

r2

∂

∂r

(
r2 ∂T

∂r

)
= 1

α

∂T

∂t

RS00 INFINITE REGION WITH RADIAL SPHERICAL SYMMETRY

G(r , t |r ′, t) = 1

8πrr ′[πα(t − τ)]1/2

{
exp

[
− (r − r ′)2

4α(t − τ)

]

− exp

[
− (r + r ′)2

4α(t − τ)

]}
(RS00.1)

(Carslaw and Jaeger, 1959, p. 259, Equation 6).

RS01 SOLID SPHERE, G = 0 AT r = b

There are two expressions, one better for small times and one better for large times.
For small times, the better expression to use is (see Carslaw and Jaeger, 1959, pp. 275
and 367)
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TABLE RS.1
Steady Green’s Functions, Radial Spherical Coordinates.

G Satisfies:
1
r2

d
dr

(
r2 dG

dr

)
= −δ(r − r′)

4πr2

Case Boundary Conditions 4πG(r|r ′) (m−1)

Infinite Body

RS00 ∂G(0|r ′)/∂r = 0 1/r ′; r < r ′

G(r → ∞, r ′) = 0 1/r; r > r ′

Infinite Body with Spherical Void

RS10 G(a|r ′) = 0 (1 − a /r) / r ′; r < r ′

G(r → ∞|r ′) = 0 (1 − a /r ′) / r; r > r ′

RS20 ∂G(a|r ′)/∂r = 0 1/r ′; r < r ′

G(r → ∞|r ′) = 0 1/r; r > r ′

RS30 k∂G(a|r ′)/∂r − h1G(a|r ′) = 0 1/r ′ − B1a /((1 + B1)rr ′); r < r ′

G(r → ∞|r ′) = 0 1/r − B1a /((1 + B1)rr ′); r > r ′

where B1 = h1a /k

Solid Sphere of Radius b

RS01 ∂G(0|r ′) / ∂r = 0 1/r ′ − 1/b; r < r ′

G(b, r ′) = 0 1/r − 1/b; r > r ′

RS02a ∂G(0|r ′) / ∂r = 0 1/r ′ + [r2 + (r ′)2] /(2b3); r < r ′

∂G(b|r ′) / ∂r = 0 1/r + [r2 + (r ′)2] /(2b3); r > r ′

RS03 ∂G(0|r ′) / ∂r = 0 1/r ′ + (1/B2 − 1) / b; r < r ′

k∂G(b|r ′) / ∂r + h2G(b|r ′) = 0 1/r + (1/B2 − 1) / b; r > r ′

where B2 = h2b/k

aSpecial temperature solution needed with this pseudo-GF.

G(r , t |r ′, τ) = (4πrr ′)−1 [4πα(t − τ)]−1/2
∞∑

n = −∞

×
{

exp

[
− (2nb + r − r ′)2

4α(t − τ)

]
− exp

[
− (2nb + r + r ′)2

4α(t − τ)

]}
(RS01.1)

− ∂G

∂n′

∣∣∣∣
r ′ = b

= 1

rb
[4πα(t − τ)]−3/2

∞∑
n = −∞

|(2n − 1)b + r|

× exp

[
− (2nb + r − b)2

4α(t − τ)

]
(RS01.2)
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TABLE RS.2
Steady Green’s Functions for the Hollow Sphere, Where B1 = h1a / k, B2 =
h2b / k. G Satisfies :

1
r2

d
dr

(
r2 dG

dr

)
= −δ(r − r′)

4πr2
; a < r < b

Case Boundary Conditions 4πG(r|r′) (m−1)

RS11 G(a|r ′) = 0 (b − r ′)(1 − a /r) /[r ′(b − a)]; r < r ′

G(b|r ′) = 0 (b − r)(1 − a /r ′) /[r(b − a)]; r > r ′

RS12 G(a|r ′) = 0 1/a − 1/r; r < r ′

∂G(b|r ′) / ∂r = 0 1/a − 1/r ′; r > r ′

RS13 G(a|r ′) = 0

[
B2

(
a

r
− ba

rr ′ − 1 + b

r ′

)
− a

r
+ 1

]
k∂G(b|r ′) / ∂r + h2G(b|r ′) = 0 ÷(B2b − B2a + a); r < r ′[

B2

(
a

r ′ − ba

rr ′ − 1 + b

r

)
− a

r ′ + 1

]
÷(B2b − B2a + a); r > r ′

RS21 ∂G(a|r ′) / ∂r = 0 1/r ′ − 1/b; r < r ′

G(b|r ′) = 0 1/r − 1/b; r > r ′

RS22a ∂G(a|r ′) / ∂r = 0

[
r2 + (r ′)2

2
+ a3

r
+ b3

r ′

]
/(b3 − a3); r < r ′

∂G(b|r ′) / ∂r = 0

[
r2 + (r ′)2

2
+ a3

r ′ + b3

r

]
/(b3 − a3); r > r ′

RS23 ∂G(a|r ′) / ∂r = 0 1/r ′ + (1/B2 − 1) / b; r < r ′

k∂G(b|r ′) / ∂r + h2G(b|r ′) = 0 1/r + (1/B2 − 1) / b; r > r ′

RS31 k∂G(a|r ′) / ∂r − h1G(a|r ′) = 0

[
B1

(
b

r ′ − ba

rr ′ − 1 + a

r

)
+ b

r ′ − 1

]
G(b|r ′) = 0 ÷(B1b − B1a + b); r < r ′[

B1

(
b

r
− ba

rr ′ − 1 + a

r ′

)
+ b

r ′ − 1

]
÷(B1b − B1a + b); r > r ′

RS32 k∂G(a|r ′) / ∂r − h1G(a|r ′) = 0 −1/r + (1/B1 + 1) / a; r < r ′

∂G(b|r ′) / ∂r = 0 −1/r ′ + (1/B1 + 1) / a; r > r ′

RS33 k∂G(a|r ′) / ∂r − h1G(a|r ′) = 0

[
B1

(
1 − a

r

)
+ B1B2

(
a

r
− ab

rr ′ + b

r ′ − 1

)

k∂G(b|r ′) / ∂r + h2G(b|r ′) = 0 − B2

(
1 − b

r ′

)
+ 1

]
÷ D; r < r ′[

B1

(
1 − a

r ′
)

+ B1B2

(
a

r ′ − ab

rr ′ + b

r
− 1

)

− B2(1 − b

r
) + 1

]
÷ D; r > r ′

where D = [B2b + B1a + B1B2(b − a)].

aSpecial temperature solution needed with this pseudo-GF.
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For large times, the better expression is (Carslaw and Jaeger, 1959, pp. 233 and 366)

G(r , t |r ′, τ) = 1

2πbrr ′
∞∑

m=1

e−m2π2α(t−τ) / b2

× sin

(
mπ

r

b

)
sin

(
mπ

r ′

b

)
(RS01.3)

−∂G

∂n′

∣∣∣∣
r ′=b

= − 1

2b3r

∞∑
m=1

e−m2π2α(t−τ) / b2

× (−1)mm sin
(
mπ

r

b

)
(RS01.4)

Note the similarity with the X11 case with Lx → b, x → r , x ′ → r ′ and the GX11

expression divided by 4πrr ′.

RS02 SOLID SPHERE, ∂G/∂r = 0 AT r = b

G(r , t |r ′, τ) = 3

4πb3
+ 1

2πbrr ′

×
∞∑

m=1

e−β2
mα(t−τ) / b2 β2

m + 1

β2
m

× sin

(
βm

r

b

)
sin

(
βm

r ′

b

)
(RS02.1)

The eigenvalues are found from the positive roots of

βm cot βm = 1 (RS02.2)

For the small times of α(t − τ) / b2 ≤ 0.022

G(r , t |r ′, τ) ≈ 1

4πrr ′
1

[4πα(t − τ)]1/2

{
exp

[
− (r − r ′)2

4α(t − τ)

]

− exp

[
− (r + r ′)2

4α(t − τ)

]
+ exp

[
− (2b − r − r ′)2

4α(t − τ)

]}

− B2

4πbrr ′ exp

[
B2

(2b − r − r ′)
b

+ B2
2
α(t − τ)

b2

]

× erfc

{
2b − r − r ′

[4α(t − τ)]1/2
+ B2

b
[α(t − τ)]1/2

}
(RS02.3)

B2 = −1 (RS02.4)
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RS03 SOLID SPHERE, k∂G/∂r + h2G = 0 AT r = b

G(r , t |r ′, τ) = 1

2πbrr ′
∞∑

m=1

e−β2
mα(t−τ) / b2 β2

m + B2
2

β2
m + B2

2 + B2

× sin
(
βm

r

b

)
sin

(
βm

r ′

b

)
(RS03.1)

where

B2 = h2b

k
− 1 (RS03.2)

and βm, m = 1, 2, . . ., are the positive roots of

βm cot βm = −B2 (RS03.3)

Carslaw and Jaeger, 1959, p. 367). For small times α(t−τ) / b2 ≤ 0.022, G(r , t |r ′, τ)
is approximated by Equation RS02.3 with B2 defined by Equation RS03.2.

RS10 INFINITE REGION OUTSIDE THE SPHERICAL CAVITY,
r > a; G = 0 AT r = a

G(r , t |r ′, τ) = 1

4πrr ′[4πα(t − τ)]1/2

×
(
e−(r−r ′)2 /[4α(t−τ)] − e−(r+r ′−2a)2 /[4α(t−τ)]

)
(RS10.1)

(Carslaw and Jaeger, 1959, p. 247)

− ∂G

∂n′

∣∣∣∣
r ′=a

= r − a

ra[4πα(t − τ)]3/2
e−(r−a)2 /[4α(t−τ)] (RS10.2)

RS11 HOLLOW SPHERE WITH G = 0 AT r = a AND b

The better expression for small times is:

G(r , t |r ′, τ) = 1

4πrr ′[4πα(t − τ)]1/2

×
∞∑

n=−∞

{
exp

[
− (2n(b − a) + r − r ′)2

4α(t − τ)

]

− exp

[
− (2n(b − a) + r + r ′ − 2a)2

4α(t − τ)

]}
(RS11.1)
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− ∂G

∂n′

∣∣∣∣
r ′=a

= 1

ra[4πα(t − τ)]3/2

∞∑
n=−∞

|2n(b − a) + r − a|

× exp

[
− (2n(b − a) + r − a)2

4α(t − τ)

]
(RS11.2)

− ∂G

∂n′

∣∣∣∣
r ′=b

= 1

rb[4πα(t − τ)]3/2

∞∑
n=−∞

|2n(b − a) + r − b|

× exp

[
− (2n(b − a) + r − b)2

4α(t − τ)

]
(RS11.3)

The better expression for large times is

G(r , t |r ′, τ) = 1

2π(b − a)rr ′
∞∑

m=1

e−m2π2α(t−τ) /(b−a)2

× sin

(
mπ

r − a

b − a

)
sin

(
mπ

r ′ − a

b − a

)
(RS11.4)

− ∂G

∂n′

∣∣∣∣
r ′=a

= 1

2(a − b)2ra

∞∑
m=1

e−m2π2α(t−τ) /(b−a)2

× m sin

(
mπ

r − a

b − a

)
(RS11.5)

− ∂G

∂n′

∣∣∣∣
r ′=b

= 1

2(b − a)2rb

∞∑
m=1

e−m2π2α(t−τ) /(b−a)2

× m sin

(
mπ

r − a

b − a

)
(−1)m (RS11.6)

RS12 HOLLOW SPHERE WITH G = 0 AT r = a AND
∂G/∂r = 0 AT r = b

For large times, a convenient expression is (Shakir, 1982)

G(r , t |r ′, τ) = 1

2π(b − a)rr ′
∞∑

m=1

e−β2
mα(t−τ) /(b−a)2

× β2
m + H 2

2

β2
m + H 2

2 + H2
sin

(
βm

r − a

b − a

)
sin

(
βm

r ′ − a

b − a

)
(RS12.1)

where βm are the positive roots of

βm cot βm = −H2 H2 = B2R2 (RS12.2a, b)

B2 = −1 R2 = 1 − a

b
(RS12.3a, b)
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−∂G

∂n′

∣∣∣∣
r ′=a

= 1

2π(b − a)2ra

∞∑
m=1

e−β2
mα(t−τ) /(b−a)2

× βm

(
β2

m + H 2
2

)
β2

m + H 2
2 + H2

sin

(
βm

r − a

b − a

)
(RS12.4)

For small times, α(t − τ) /(b − a)2 ≤ 0.022, G(r , t |r ′, τ) is efficiently given by

G(r , t |r ′, τ) ≈ 1

4πrr ′
1

[4πα(t − τ)]1/2

{
exp

[
− (r − r ′)2

4α(t − τ)

]

− exp

[
− (r + r ′ − 2a)2

4α(t − τ)

]
+ exp

[
− (2b − r − r ′)2

4α(t − τ)

]}

− B2

4πrr ′b
exp

[
B2

(2b − r ′ − r)

b
+ B2

2
α(t − τ)

b2

]

× erfc

{
2b − r − r ′

[4α(t − τ)]1/2
+ B2

b
[α(t − τ)]1/2

}
(RS12.5)

RS13 HOLLOW SPHERE WITH G = 0 AT r = a AND
k∂G/∂r + h2G = 0 AT r = b

For large times, the G(r , t |r ′, τ) relations are found using Equations RS12.1 through
RS12.3 with

B2 = h2b

k
− 1 (RS13.1)

For small times, G(r , t |r ′, τ) is approximated by Equation RS12.5 with B2 given
by Equation RS13.1.

RS20 INFINITE REGION OUTSIDE A SPHERICAL CAVITY
AT r = a WITH ∂G/∂r = 0 AT r = a

G(r , t |r ′, τ) = 1

4πrr ′[4πα(t − τ)]1/2

×
{

exp

[
− (r − r ′)2

4α(t − τ)

]
+ exp

[
− (r + r ′ − 2a)2

4α(t − τ)

]}

− B1

4πrr ′a
exp

[
B1

r + r ′ − 2a

a
+ B2

1
α(t − τ)

a2

]

× erfc

{
r + r ′ − 2a

[4α(t − τ)]1/2
+ B1

a
[α(t − τ)]1/2

}
(RS20.1)

where B1 is equal to 1. See X30 case for approximate values.
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RS21 HOLLOW SPHERE WITH ∂G/∂r = 0 AT r = a AND
G = 0 AT r = b

G(r , t |r ′, τ) = 1

2π(b − a)rr ′
∞∑

m=1

e−β2
mα(t−τ) /(b−a)2

× (β2
m + H 2

1 ) sin[βm(b − r) /(b − a)] sin [βm(b − r ′) /(b − a)]
β2

m + H 2
1 + H1

(RS21.1)

where βm are the positive roots of

βm cot βm = −H1 H1 = B1R1 (RS21.2a, b)

B1 = 1 R1 = b

a
− 1 (RS21.3a, b)

A useful derivative is

− ∂G

∂n′

∣∣∣∣
r ′=b

= 1

2π(b − a)2br

∞∑
m=1

e−β2
mα(t−τ) /(b−a)2

× βm(β2
m + H 2

1 ) sin [βm(b − r) /(b − a)]
β2

m + H 2
1 + H1

(RS21.4)

For small times, α(t − τ) /(b − a)2 ≤ 0.022, G(·) is approximated by

G(r , t |r ′, τ) ≈ 1

4πrr ′[4πα(t − τ)]1/2

{
exp

[
− (r − r ′)2

4α(t − τ)

]

+ exp

[
− (r + r ′ − 2a)2

4α(t − τ)

]
− exp

[
− (2b − r − r ′)2

4α(t − τ)

]}

− B1

4πrr ′a
exp

[
B1

r + r ′ − 2a

a
+ B2

1
α(t − τ)

a2

]

× erfc

{
r + r ′ − 2a

[4α(t − τ)]1/2
+ B1

a
[α(t − τ)]1/2

}
(RS21.5)

RS22 HOLLOW SPHERE WITH ∂G/∂r = 0 AT r = a AND b

For large times (Shakir, 1982)

G(r , t |r ′, τ) = 3B0

4π(b3 − a3)
+ 1

2π(b − a)rr ′
∞∑

m=1

e−β2
mα(t−τ) /(b−a)2

× {βm cos [βm(r − a) /(b − a)] + H1 sin [βm(r − a) /(b − a)]}
×

{
βm cos [βm(r ′ − a) /(b − a)] + H1 sin [βm(r ′ − a) /(b − a)]}

(β2
m + H 2

1 )[1 + H2 /(β2
m + H 2

2 )] + H1

(RS22.1)
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B0 = 1 H1 = B1R1 H2 = B2R2 (RS22.2a, b)

B1 = 1 B2 = −1

R1 = b

a
− 1 R2 = a

b
− 1 (RS22.3a, b, c, d)

The eigenvalues βm are the positive roots of

tan βm = βm(H1 + H2)

β2
m − H1H2

(RS22.4)

For small times such that, α(t − τ) /(b − a)2 ≤ 0.022, G(·) is approximated by

G(r , t |r ′, τ) ≈ 1

4πrr ′[4πα(t − τ)]1/2

{
exp

[
− (r − r ′)2

4α(t − τ)

]

+ exp

[
− (r + r ′ − 2a)2

4α(t − τ)

]
+ exp

[
− (2b − r − r ′)2

4α(t − τ)

]}

− B1

4πrr ′a
exp

[
B1

r + r ′ − 2a

a
+ B2

1
α(t − τ)

a2

]

× erfc

{
r + r ′ − 2a

[4α(t − τ)]1/2
+ B1

a
[α(t − τ)]1/2

}

− B2

4πrr ′b
exp

[
B2

2b − r − r ′

b
+ B2

2
α(t − τ)

b2

]

× erfc

{
(2b − r − r ′)
[4α(t − τ)]1/2

+ B2

b
[α(t − τ)]1/2

}
(RS22.5)

RS23 HOLLOW SPHERE WITH ∂G/∂r = 0 AT r = a AND
k∂G/∂r + h2G = 0 AT r = b

For large times, G(r , t |r ′, τ) is found using Equations RS22.1 through RS22.4 with

B0 = 0 B1 = 1 B2 = h2b

k
− 1 (RS23.1)

For small times, G(r , t |r ′, τ) is given by Equation RS22.5.

RS30 INFINITE REGION OUTSIDE A SPHERICAL CAVITY
(r ≥ a) WITH k∂G/∂r − h1G = 0 AT r = a

G(r , t |r ′, τ) is given by Equation RS20.1 with B1 given by

B1 = h1a

k
+ 1 (RS30.1)

See X30 case for approximate values.
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RS31 HOLLOW SPHERE WITH – k∂G/∂r + h1G = 0 AT r = a AND
G = 0 AT r = b

For large times, the G(r , t |r ′, τ) relations are found from using Equations RS21.1
through RS21.4 with

B1 = ha

k
+ 1 (RS31.1)

For small times, G(r , t |r ′, τ) is found from Equation RS21.5.

RS32 HOLLOW SPHERE WITH – k∂G/∂r + h1G = 0 AT r = a AND
∂G/∂r = 0 AT r = b

For large times, the G(r , t |r ′, τ) relations are given by Equation RS22.1 through
RS22.4 with

B0 = 0 B1 = h1a

k
+ 1 B2 = −1 (RS32.1a, b, c)

For small times, α(t − τ) /(b − a)2 ≤ 0.022, G(r , t |r ′, τ) is approximated by
Equation RS22.5.

RS33 HOLLOW SPHERE WITH – k∂G/∂r + h1G = 0 AT r = a AND
k∂G/∂r + h2G = 0 AT r = b

For large times, the G(r , t |r ′, τ) relations are given by Equations RS22.1 through
RS22.4 with

B0 = 1 B1 =
(

h1a

k
+ 1

)
b

a
B2 = h2b

k
− 1 (RS33.1a, b, c)

For small times, α(t − τ) /(a − b)2 ≤ 0.022, G(r , t |r ′, τ) is approximated by
Equation RS22.5.

RS01θ00 SOLID SPHERE WITH RADIAL AND AZIMUTHAL
DEPENDENCE; G = 0 AT r = b

dv ′ = 2πr2dr ′dµ′ µ′ = cos θ′ − 1 < µ < 1

ds′ = 2πb2dµ′

GRS01θ00(r , θ, t |r ′, θ′, τ)

= 1

2π(rr ′)1/2b2

∞∑
n=0

∞∑
p=1

e−β2
npα(t−τ) / b2

× (2n + 1) Jn+1/2(βnpr /b) Jn+1/2(βnpr ′/b) Pn(µ) Pn(µ′)
[J ′

n+1/2(βnp)]2
(RS01θ00.1)
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where the βnp’s are the positive roots of

Jn+1/2(βnp) = 0 (RS01θ00.2)

and Pn(µ) is the nth Legendre polynomial.
Note that

J1/2(x) =
(

2

πx

)1/2

sin x; J−1/2(x) =
(

2

πx

)1/2

cos x (RS01θ00.3a, b)

Jn+1/2(x) = 2n − 1

x
Jn−1/2(x) − Jn−3/2(x) (RS01θ00.4)

RS01θ01 HEMISPHERE WITH RADIAL AND AZIMUTHAL
DEPENDENCE; G = 0 AT r = b AND G = 0 AT µ = 0
(OR θ = π/2) (0 < µ < 1)

GRS01θ01(r , θ, t |r ′, θ′, τ) = 1

π(rr ′)1/2b2

∞∑
n=1, 3, . . .

∞∑
p=1

× e−β2
npα(t−τ) / b2 2n + 1

−Jn−1/2(βnp) Jn+3/2(βnp)

× Jn+1/2

(
βnp

r

b

)
Jn+1/2

(
βnp

r ′

b

)
× Pn(µ) Pn(µ′) (RS01θ01.1)

where the eigenvalues βnp are the positive roots of

Jn+1/2(βnp) = 0 (RS01θ01.2)

RS00Φ00θ00 INFINITE REGION WITH (r, φ, θ) DEPENDENCE
(BUTKOVSKIY, P. 171)

G(r , φ, θ, t |r ′, 0, 0, τ) = 1

[4πα(t − τ)]3/2
exp

[
− r2 + r ′2 − 2rr ′ cos θ

4α(t − τ)

]

RS00Φ00 INFINITE REGION WITH (r, φ) DEPENDENCE
(BUTKOVSKIY, P. 140)

G(r , φ, t |r ′, φ′, τ) = 1

4πα(t − τ)
exp

[
− r2 − r ′2 + 2rr ′ cos(φ − φ′)

4α(t − τ)

]

RSIJΦ00, J �= 0 FINITE REGION WITH (r, φ) DEPENDENCE

G(r , φ, t |r ′, φ′, τ) =
∞∑

m=0

∞∑
n=0

e−β2
mnα(t−τ) / b2

× Rn(βmn, r /b) Rn(βmn, r ′/b)

πN (βmn)
cos[n(φ − φ′)]
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Replace π by 2π for n = 0. In Appendix RΦ, see Table RΦ.1 for Rn(βmn, r /b), Table
RΦ.2 for N (βmn) and Table RΦ.3 for eigenconditions.
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Rectangular Coordinates

STEADY GREEN’S FUNCTIONS

Two types of steady one-dimensional GF are given here, ordinary conduction and
conduction with fin losses. The one-dimensional heat conduction equation is

d2T

dx2
= 0

The GF associated with this heat conduction equation, for boundary conditions of
the first, second, and third kinds, are given in Table X.1 for infinite and semi-infinite
bodies, and in Table X.3 for slab bodies.

The one-dimensional fin equation is given by

d2T

dx2
− m2T = 0

where m2 is constant. The GF associated with this equation are listed in Table X.2 for
infinite and semi-infinite bodies and in Table X.4 for slab bodies. These GF also find
use as kernel functions in two- and three-dimensional bodies in rectangular coordi-
nates. For this reason these GF are given in the form of exponentials with negative
exponents, which are computationally better behaved, for large arguments, than the
hyperbolic trigonometric functions (i.e., cosh and sinh) that are given elsewhere.

TRANSIENT GREEN’S FUNCTIONS

The transient Green’s functions (GFs) are for the equation

∂2T

∂x2
= 1

α

∂T

∂t

where α = constant.
The solutions are arranged using a numbering system for the x-coordinate with an

X being the first letter. The X is followed by two numbers, the first is for the x = 0
boundary and the second is for the x = L boundary. If the boundary goes to infinity,
the digit zero is used. See Chapter 2 for more information on the heat conduction
numbering system.

Products of two or three one-dimensional GFs for boundary conditions of the
zeroth, first, second, and third kinds can be used to get two- and three-dimensional
GFs in rectangular coordinates. Hence, it is necessary to give the GFs for only one
rectangular coordinate for these cases.

577
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TABLE X.1
Steady Green’s Function in the Infinite and Semi-Infinite Body, Satisfies

d 2G

dx2
= −δ(x − x ′); 0 < x < ∞

Case Boundary Conditions G(x|x ′) (in meters)

X00a
dG(x → ±∞|x′)

dx
is bounded − 1

2

∣∣x − x′∣∣
X10 G(0|x′) = 0;

dG(∞|x′)
dx

is bounded − 1
2

∣∣x − x′∣∣ + 1
2

∣∣x + x′∣∣

X20a
dG(0|x′)

dx
= 0;

dG(∞|x′)
dx

is bounded − 1
2

∣∣x − x′∣∣ − 1
2

∣∣x + x′∣∣

X30

− dG(0|x′)
dx

+ hG(0|x′) = 0

dG(∞|x′)
dx

is bounded

− 1
2

∣∣x − x′∣∣ + 1
2

∣∣x + x′∣∣ + k

h

aPseudo-GF; special temperature solution needed.

TABLE X.2
Steady Green’s Function with Fin Term, (m2 = Constant), for Infinite and
Semi-Infinite Body, Satisfies

d 2G

dx2
− m2G = −δ(x − x ′); 0 < x < ∞

Case Boundary Conditions G(x|x ′) (in meters)

X00
G(−∞|x′) = 0

G(+∞|x′) = 0

e−m|x−x′|
2m

X10
G(0|x′) = 0

G(+∞|x′) = 0

e−m|x−x′| − e−m(x+x′)

2m

X20
dG(0|x′) / dx = 0

G(+∞|x′) = 0

e−m|x−x′| + e−m(x+x′)

2m

X30
−k

dG

dx

∣∣∣∣
0
+ h1G|0 = 0

G(+∞|x′) = 0

(km + h1) e−m|x−x′| + (km − h1) e−m(x+x′)

2m (km + h1)
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TABLE X.3
Steady Green’s Functions, One-Dimensional Rectangular Coordinates,
Where B1 = h1L / k, B2 = h2L / k

G Satisfies:
d2G

dx2
= −δ(x − x′); 0 < x < L

Case Boundary Conditions G(x|x ′) (in meters)

X11 G(0|x′) = 0 x(1 − x′ /L); x < x′
G(L|x′) = 0 x′(1 − x /L); x > x′

X12 G(0|x′) = 0 x; x < x′
dG

dx
(L|x′) = 0 x′; x > x′

X13 G(0|x′) = 0 x[1 − B2(x′ /L) /(1 + B2)]; x < x′

k
dG

dx
(L|x′) + h2G(L|x′) = 0 x′[1 − B2(x /L) /(1 + B2)]; x > x′

X21
dG(0|x′)

dx
= 0 L − x ′; x < x′

G(L|x′) = 0 L − x; x > x′

X22a
dG(0|x′)

dx
= 0;

dG(L|x′)
dx

= 0
[(x′)2 + x2] /(2L) − x′ + L / 3; x < x′

[x2 + (x′)2] /(2L) − x + L / 3; x > x′

X23
dG(0|x′)

dx
= 0 L(1 + 1 / B2 − x′ /L); x < x′

k
dG(L|x′)

dx
+ h2G(L|x′) = 0 L(1 + 1 / B2 − x /L); x > x′

X31b k
dG(0|x′)

dn
+ h1G(0|x′) = 0

B1x − B1x
′x /L + L − x ′

1 + B1
; x < x′

G(L|x′) = 0
B1x

′ − B1x
′x /L + L − x

1 + B1
; x > x′

X32b k
dG(0|x′)

dn
+ h1G(0|x′) = 0 L(1 / B1 + x /L); x < x′

dG(L|x′)
dx

= 0 L(1 / B1 + x′ /L); x > x′

X33b k
dG(0|x′)

dn
+ h1G(0|x′) = 0 (B1B2x + B1x − B1B2xx′ /L − B2x

′

+ B2L + L) /(B1B2 + B1 + B2); x < x′

k
dG(L|x′)

dx
+ h2G(L|x′) = 0 (B1B2x

′ + B1x
′ − B1B2xx′ /L − B2x

+ B2L + L) /(B1B2 + B1 + B2); x > x′

aSpecial temperature solution needed with this pseudo-GF.
bNote d / dn|x=0 = −d / dx|x=0; d / dn|x=L = +d / dx|x=L.
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TABLE X.4
Steady Green’s Function with Fin Term (m2 = Constant), Satisfiesa

d 2G

dx2
− m2G = −δ(x − x ′); 0 < x < L

Case G(x|x ′) (in meters)

X11
e−m(2 L−|x−x′|) − e−m(2 L−x−x′)

2m
(
1 − e−2 mL

) + e−m|x−x′| − e−m(x+x′)

2m
(
1 − e−2 mL

)
X12

−e−m(2 L−|x−x′|) + e−m(2 L−x−x′)

2m
(
1 + e−2 mL

) + e−m|x−x′| − e−m(x+x′)

2m
(
1 + e−2 mL

)

X13




(km − h2)
(
−e−m(2 L−|x−x′|) + e−m(2 L−x−x′)

)
2m

(
km + h2 + (km − h2)e−2 mL

)

+
(km + h2)

(
e−m|x−x′| − e−m(x+x′)

)
2m(km + h2 + (km − h2)e−2 mL)




X21
−e−m(2 L−|x−x′|) − e−m(2 L−x−x′)

2m
(
1 + e−2 mL

) + e−m|x−x′| + e−m(x+x′)

2m
(
1 + e−2 mL

)
X22

e−m(2 L−|x−x′|) + e−m(2 L−x−x′)

2m
(
1 − e−2 mL

) + e−m|x−x′| + e−m(x+x′)

2m
(
1 − e−2 mL

)

X23




(km − h2)
(
e−m(2 L−|x−x′|) + e−m(2 L−x−x′)

)
2m(km + h2 − (km − h2)e−2 mL)

+
(km + h2)

(
e−m|x−x′| + e−m(x+x′)

)
2m(km + h2 − (km − h2)e−2 mL)




X31b Let x = L − ξ and x′ = L − ξ′ in case X13.

X32b Let x = L − ξ and x′ = L − ξ′ in case X23.

X33




(km − h2)
(

(km − h1)e−m(2 L−|x−x′|) + (km + h1)e−m(2 L−x−x′)
)

2m[(km + h1)(km + h2) − (km − h1)(km − h2)e−2 mL]

+
(km + h2)

(
(km + h1)e−m|x−x′| + (km − h1)e−m(x+x′)

)
2m[(km + h1)(km + h2) − (km − h1)(km − h2)e−2 mL]




aBoundary conditions are given in Table X.3.
bSee also the GF Library internet site (http://www.greensfunction.unl.edu).
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For a one-dimensional case, dv′ = dx′.
For a two-dimensional case, dv′ = dx′dy ′.
For a three-dimensional case, dv′ = dx′dy ′dz′.

In most finite-body cases (XIJ, I, and J not equal to zero) two forms of the GFs are
given, one best for small values of α(t − τ)/L2, sometimes referred to as “small co-
time,” and one for large values of α(t −τ)/L2 (large cotime). If an infinite summation
is used in an expression, it is actually valid for all cotimes, both small and large.

X 00 INFINITE REGION

GX00(x, t |x′, τ) = GX00(x − x ′, t − τ)

= [4πα(t − τ)]−1/2 exp

[
− (x − x′)2

4α(t − τ)

]
(X00.1)

Notice that ∫ ∞

−∞
GX00(x, t |x′, τ)dx′ = 1 (X00.2a)

∂GX00(x − x ′, t − τ)

∂x
= −∂GX00(x − x ′, t − τ)

∂x ′ (X00.2b)

Notice that the integral over x ′ from a to b is

[4πα(t − τ)]−1/2
∫ b

a

exp

[
− (x − x′)2

4α(t − τ)

]
dx ′

= 1

2

(
erfc

{
x − b

[4α(t − τ)]1/2

}
− erfc

{
x − a

[4α(t − τ)]1/2

})
(X00.3)

and thus ∫ ∞

0
GX00(x, t |x′, τ)dx′ = 1 − 1

2
erfc

x

[4α(t − τ)]1/2
(X00.4)

A relation involving differentiation and integration is

∂

∂x

∫ b

a

GX00(x − x ′, t − τ)dx ′ = GX00(x − a, t − τ) − GX00(x − b, t − τ)

(X00.5)

The average from x = c to d for integration over x ′ from a to b is

1

d − c

∫ d

x=c

∫ b

x′=a

GX00(x, t |x′, τ)dx′dx

= [α(t − τ)]1/2

d − c

{
ierfc

c − b

[4α(t − τ)]1/2
− ierfc

d − b

[4α(t − τ)]1/2

− ierfc
c − a

[4α(t − τ)]1/2
+ ierfc

d − a

[4α(t − τ)]1/2

}
(X00.6)
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The average over a < x < b is

GX00 = 1

b − a

∫ b

x=a

∫ b

x′=a

GX00(x − x ′, t − τ)dx ′dx

= 1 − [4α(t − τ)]1/2

b − a

(
π−1/2 − ierfc

{
b − a

[4α(t − τ)]1/2

})
(X00.7)

For accurate, approximate expressions, see the X20 case.
Let 4α(t − τ) /(b − a)2 for the X00 case be equal to u in the GX20 approximations.
The integral of GX00 over τ is∫ t

0
GX00(x − x ′, t − τ)dτ = (αt)1/2

α
ierfc

[ |x − x′|
(4αt)1/2

]
(X00.8a)

An integral from t1 to t2 over τ and at x = x′ is∫ t2

t1

GX00(x, t |x, τ)dτ

= (πα)−1/2[(t − t1)1/2 − (t − t2)1/2] t1 < t2 ≤ t (X00.8b)

A general integral is∫ t

0
τn / 2GX00(x − x ′, t − τ)dτ

= Γ
(n

2
+ 1

) 1

2α1/2
(4t)(n+1) / 2 in+1 erfc

[ |x − x ′|
(4αt)1/2

]
(X00.9)

The integral over τ from 0 to t of ∂G/∂x is∫ t

0

∂GX00

∂x
(x, t |x ′, τ)dτ = −

∫ t

0

2(x − x ′)
π1/2[4α(t − τ)]3/2

e−(x−x′)2 /[4α(t−τ)]dτ

= − sgn (x − x ′)
1

2α
erfc

[ |x − x ′|
(4αt)1/2

]
(X00.10)

where sgn (x − x ′) means the sign of (x − x ′). Note that

−k

∫ t

0

∂GX00(x, t |x′, τ)

∂x
dτ

∣∣∣∣
x→x′+

x→x′−
= −k

(
− 1

2α

)
[1 − (−1)] = ρc (X00.11)

X 10 SEMI-INFINITE REGION WITH G = 0 AT x = 0

GX10(x, t |x′, τ) = 1

[4πα(t − τ)]1/2

×
{

exp

[
− (x − x ′)2

4α(t − τ)

]
− exp

[
− (x + x ′)2

4α(t − τ)

]}
(X10.1)
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−∂GX10

∂n′

∣∣∣∣
x′=0

= x

{4π[α(t − τ)]3}1/2
exp

[
− x2

4α(t − τ)

]
(X10.2)

α

∫ t

0

(
−∂2GX10

∂x ∂n′

∣∣∣∣
x′=0

)
dτ

∣∣∣∣
x=0

= −(παt)−1/2 (X10.3)

A relation between the X00 and X10 GFs is

GX10(x, t |x′, τ) = GX10(x, x′, t − τ)

= GX00(x − x ′, t − τ) − GX00(x + x ′, t − τ) (X10.4)

A relation between the X00, X10, and X20 GFs is

2GX00(x − x ′, t − τ) = GX10(x, x′, t − τ) + GX20(x, x′, t − τ) (X10.5)

An integral from x′ = 0 to b gives

∫ b

0
GX10(x, t |x′, τ)dx′ = 1

2

(
erfc

{
x − b

[4α(t − τ)]1/2

}

− 2 erfc

{
x

[4α(t − τ)]1/2

}
+ erfc

{
x + b

[4α(t − τ)]1/2

})
(X10.6)

and for b → ∞,∫ ∞

0
GX10(x, t |x′, τ)dx′ = 1 − erfc

{
x

[4α(t − τ)]1/2

}

= erf

{
x

[4α(t − τ)]1/2

}
(X10.7)

The average of the integral over x of the integral over x ′ is

GX10(t |τ) = 1

b

∫ b

0

∫ b

0
GX10(x, t |x′, τ)dx′ dx

= 1 −
[
α(t − τ)

b2

]1/2 (
3√
π

+ ierfc

{
b

[α(t − τ)]1/2

}

− 4 ierfc

{
b

[4α(t − τ)]1/2

})
(X10.8)

For α(t − τ) / b2 less than 0.0625, the error in G(t |τ) is less than 0.05% using

GX10(t |τ) ≈ 1 − 3

[
α(t − τ)

πb2

]1/2

+ 8

π1/2

[
α(t − τ)

b2

]3/2

e−b2 /[4α(t−τ)] (X10.9)
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and for α(t − τ) / b2 > 1, G(t |τ) is within 0.1% using

GX10(t |τ) ≈ 1

π1/2

1

8

[
b2

α(t − τ)

]3/2 {
1 − 1

4

b2

α(t − τ)

+ 3

64

[
b2

α(t − τ)

]2

− 17

2304

[
b2

α(t − τ)

]3
}

(X10.10)

X 11 PLATE WITH G = 0 AT x = 0 AND L

Two expressions are available: one is computationally better for “small” α(t − τ)/L2

values and the other for “large” values. See Figure X11.1 for plots of GX11. The
expression best for small cotimes (see Equation X11.10 for long-cotime expression) is

GX11(x, t |x′, τ) = [4πα(t − τ)]−1/2
∞∑

n=−∞

×
{

exp

[
− (2nL + x − x ′)2

4α(t − τ)

]
− exp

[
− (2nL + x + x ′)2

4α(t − τ)

]}
(X11.1)

(see Carslaw and Jaeger, 1959, p. 274). For α(t − τ)/L2 < 0.022 use

GX11(x, t |x′, τ) ≈ [4πα(t − τ)]−1/2
{

exp

[
− (x − x′)2

4α(t − τ)

]

− exp

[
− (x + x ′)2

4α(t − τ)

]
− exp

[
− (2L − x − x ′)2

4α(t − τ)

]}
(X11.2)

Some important derivatives are

−∂GX11

∂n′

∣∣∣∣
x′=0

= {4π[α(t − τ)]3}−1/2
∞∑

n=−∞
(2nL + x)

× exp

[
− (2nL + x)2

4α(t − τ)

]
(X11.3)

−∂GX11

∂n′

∣∣∣∣
x′=L

= {4π[α(t − τ)]3}−1/2
∞∑

n=−∞
[(2n − 1)L + x]

× exp

[
−[(2n − 1)L + x]2

4α(t − τ)

]
(X11.4)

−∂2GX11

∂x ∂n′

∣∣∣∣
x′=x=0

= {4π[α(t − τ)]3}−1/2
∞∑

n=−∞

(
1 − 2n2L2

α(t − τ)

)

× e−n2L2 /[α(t−τ)], t − τ > 0 (X11.5)
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FIGURE X11.1 LGX11(x, t |x′, T ) versus x /L for α(t − r)/L2 = 0.025, 0.05, 0.10, and 0.25
and for five different heat-source locations x′/L.
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For α(t − τ)/L2 < 0.05, the approximations

−∂GX11

∂n′

∣∣∣∣
x′=0

≈ x{4π[α(t − τ)]3}−1/2e−x2 /[4α(t−τ)] (X11.6)

−∂GX11

∂n′

∣∣∣∣
x′=L

≈ (L − x){4π[α(t − τ)]3}−1/2 exp

[
− (L − x)2

4α(t − τ)

]
(X11.7)

are quite accurate. For α(t − τ)/L2 < 0.2, with errors less than (1E–6)/L3, the
mixed-derivative at x = x′ = 0 is

−∂2GX11

∂x ∂n′

∣∣∣∣
x′=x=0

≈ {4π[α(t − τ)]3}−1/2

×
{

1 +
[

2 − 4L2

α(t − τ)

]
e−L2 /[α(t−τ)]

}
, t − τ > 0 (X11.8)

and for α(t − τ)/L2 < 0.067, the error is less than 0.002% using

−∂2GX11

∂x∂n′

∣∣∣∣
x′=x=0

≈ {
4π[α(t − τ)]3}−1/2

, t − τ > 0 (X11.9)

The expression best for large cotimes is

GX11(x, t |x′, τ) = 2

L

∞∑
m=1

e−m2π2α(t−τ)/L2
sin

(
mπ

x

L

)
sin

(
mπ

x′

L

)
(X11.10)

For α(t − τ)/L2 > 0.1, the errors are less than about 0.0003 / L for the max-
imum m value of 2; for the maximum m = 3, the error is less than (3E–7)/L.
For α(t − τ)/L2 > 0.05 and the maximum m = 5, the error is less than (4E–8)/L.
Some important derivatives are

−∂GX11

∂n′

∣∣∣∣
x′=0

= 2π

L2

∞∑
m=1

e−m2π2α(t−τ)/L2
m sin

(
mπ

x

L

)
(X11.11)

−∂GX11

∂n′

∣∣∣∣
x′=L

= −2π

L2

∞∑
m=1

e−m2π2α(t−τ)/L2
m(−1)m sin

(
mπ

x

L

)
(X11.12)

−∂2GX11

∂x ∂n′

∣∣∣∣
x′=x=0

= −2π2

L3

∞∑
m=1

m2e−m2π2α(t−τ)/L2
, t − τ > 0 (X11.13)

For α(t − τ)/L2 > 0.2, with errors less than 0.0002%, the mixed-derivative is

−∂2GX11

∂x ∂n′

∣∣∣∣
x′=x=0

≈ 2π2

L3

[
e−π2α(t−τ)/L2 + 4e−4π2α(t−τ)/L2]

, t − τ > 0

(X11.14)
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and for α(t − τ)/L2 > 0.067, with errors less than 0.0004%, the maximum m needed
is 4. An integral of GX11(·) from x ′ = 0 to b for small cotimes is best given by

∫ b

0
GX11(x, t |x′, τ) dx′ = 1

2

∞∑
n=−∞

(
erfc

{
2nL + x − b

[4α(t − τ)]1/2

}

− 2 erfc

{
2nL + x

[4α(t − τ)]1/2

}

+ erfc

{
2nL + x + b

[4α(t − τ)]1/2

})
(X11.15)

and for large cotimes by

∫ b

0
GX11(·)dx ′ = 2

π

∞∑
m=1

e−m2π2α(t−τ)/L2 1

m
sin

(
mπ

x

L

)

×
[

1 − cos

(
mπ

b

L

)]
(X11.16)

For b = L, the integral for small cotimes is

∫ L

0
GX11(x, t |x′, τ)dx′

= 1

2

∞∑
n=−∞

(
erfc

{
(2n − 1)L + x

[4α(t − τ)]1/2

}

− 2 erfc

{
2nL + x

[4α(t − τ)]1/2

}
+ erfc

{
(2n + 1)L + x

[4α(t − τ)]1/2

})
(X11.17a)

= erf

{
x

[4α(t − τ)]1/2

}
−

∞∑
n=1

(
erfc

{
2nL + x

[4α(t − τ)]1/2

}

+ erfc

{
(2n − 1)L − x

[4α(t − τ)]1/2

}

− erfc

{
2nL − x

[4α(t − τ)]1/2

}
− erfc

{
(2n − 1)L + x

[4α(t − τ)]1/2

})
(X11.17b)

For large cotimes, use

∫ L

0
GX11(·)dx ′ = 4

π

∞∑
m=1

sin[(2m − 1)πx /L]
2m − 1

e−(2m−1)2π2α(t−τ)/L2
(X11.18)
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The average of the integral from x ′ = 0 to L is

GX11(t |τ) ≡ 1

L

∫ L

x=0

∫ L

x′=0
GX11(x, t |x′, τ)dx′dx

= 1 − 4

[
α(t − τ)

L2

]1/2 [
1

π1/2
− 2

∞∑
n=1

(
ierfc

{
(2n − 1)L

[4α(t − τ)]1/2

}

− ierfc

{
2nL

[4α(t − τ)]1/2

})]
(X11.19a)

= 8

π2

∞∑
m=1

1

(2m − 1)2
e−(2m−1)2π2α(t−τ)/L2

(X11.19b)

where Equation X11.19a is best for small cotimes and Equation X11.19b is best for
large cotimes. For α(t − τ)/L2 < 0.03, an accurate expression is simply

GX11(t |τ) ≈ 1 − 4

[
α(t − τ)

πL2

]1/2

(X11.19c)

The error is less than 0.0016%. For α(t − τ)/L2 > 0.03, only two terms in
the large-cotime expression, Equation X11.19b, are needed for an error of less
than 0.003%.

X 12 PLATE WITH G = 0 AT x = 0 AND ∂G/∂x = 0 AT L

Two expressions are available: one is more computationally efficient for small α(t −
τ)/L2 values and the other for large values.

Expression best for small cotimes

GX12(x, t |x′, τ) = [4πα(t − τ)]−1/2
∞∑

n=−∞
(−1)n

{
exp

[
− (2nL + x − x ′)2

4α(t − τ)

]

− exp

[
− (2nL + x + x ′)2

4α(t − τ)

]}
(X12.1)

For α(t − τ)/L2 < 0.2 and for a maximum n = 2, the errors are less than
(2E–14)/L. For α(t − τ)/L2 < 0.022, use

GX12(x, t |x′, τ) ≈ [4πα(t − τ)]−1/2
{

exp

[
− (x − x′)2

4α(t − τ)

]

− exp

[
− (x + x ′)2

4α(t − τ)

]
+ exp

[
− (2L − x − x ′)2

4α(t − τ)

]}
(X12.2)
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For α(t − τ)/L2 < 0.2, with errors less than (3E–9) / L:

GX12(L, t |L, τ) ≈ [πα(t − τ)]−1/2
(

1 − 2e−L2 /[α(t−τ)]
)

(X12.3)

An expression for −∂G / ∂n′|x′=0 is

−∂GX12

∂n′

∣∣∣∣
x′=0

= {
4π[α(t − τ)]3}−1/2

∞∑
n=−∞

(−1)n(2nL + x)

× exp

[
− (2nL + x)2

4α(t − τ)

]
(X12.4)

For α(t − τ)/L2 < 0.022, use

−∂GX12

∂n′

∣∣∣∣
x′=0

≈ x

{4π[α(t − τ)]3}1/2
e−x2 /[4α(t−τ)] (X12.5)

The mixed-derivative evaluated at x = x′ = 0 is

−∂2GX12

∂x ∂n′

∣∣∣∣
x=x′=0

= {
4π[α(t − τ)]3}−1/2

∞∑
n=−∞

(−1)n

×
[

1 − 2n2L2

α(t − τ)

]
e−n2L2 /[α(t−τ)] (X12.6)

For α(t − τ)/L2 < 0.2, with errors less than (5E–7)/L3,

−∂2GX12

∂x ∂n′

∣∣∣∣
x=x′=0

≈ {4π[α(t − τ)]3}−1/2

×
{

1 − 2

[
1 − 2L2

α(t − τ)

]
e−L2 /[α(t−τ)]

}
(X12.7)

Expression best for large cotimes:

GX12(x, t |x′, τ) = 2

L

∞∑
m=1

e−β2
mα(t−τ)/L2

sin
(
βm

x

L

)
sin

(
βm

x ′

L

)
(X12.8)

where βm = (2m − 1)(π / 2), m = 1, 2, . . . .
For α(t−τ)/L2 > 0.2 and for a maximum m = 2, the errors are less than (9E–6)/L.

For α(t − τ)/L2 > 0.2, with errors less than (5E–6) / L, at x = x′ = L, G is

GX12(L, t |L, τ) ≈ 2

L

(
e−π2α(t−τ) /(4L2) + e−9π2α(t−τ) /(4L2)

)
(X12.9)

An expression for −∂G / ∂n′|x′=0 is

−∂GX12

∂n′

∣∣∣∣
x′=0

= 2

L2

∞∑
m=1

e−β2
mα(t−τ)/L2

βm sin
(
βm

x

L

)
(X12.10)

−∂2GX12

∂x ∂n′

∣∣∣∣
x′=x=0

= 2

L3

∞∑
m=1

e−β2
mα(t−τ)/L2

β2
m (X12.11)
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For α(t − τ)/L2 > 0.2, with errors less than 0.0006/L3 (i.e., 0.02%) a mixed-
derivative is

−∂2GX12

∂x ∂n′

∣∣∣∣
x′=x=0

≈ π2

2L3

(
e−π2α(t−τ) /(4L2) + 9e−9π2α(t−τ) /(4L2)

)
(X12.12)

X 13 PLATE WITH G = 0 AT x = 0 AND k∂G/∂x + hG = 0 AT x = L

For small values of α(t − τ)/L2 (≤0.022) use

GX13(x, t |x′, τ) ≈ [4πα(t − τ)]−1/2
{

exp

[
− (x − x′)2

4α(t − τ)

]

− exp

[
− (x + x ′)2

4α(t − τ)

]
+ exp

[
− (2L − x − x ′)2

4α(t − τ)

]}

− h

k
exp

[
h(2L − x − x ′)

k
+ h2α(t − τ)

k2

]

× erfc

{
2L − x − x ′

[4α(t − τ)]1/2
+ h

k
[α(t − τ)]1/2

}
(X13.1)

Also, for small α(t − τ)/L2 values, use

−∂GX13

∂n′

∣∣∣∣
x′=0

≈ x

{4π[α(t − τ)]3}1/2
exp

[
− x2

4α(t − τ)

]
(X13.2)

−∂2GX13

∂x∂n′

∣∣∣∣
x=x′=0

≈ {4π[α(t − τ)]3}−1/2 (X13.3)

For any time, but best for large α(t − τ)/L2 values, use

GX13(x, t |x′, τ) = 2

L

∞∑
m=1

e−β2
mα(t−τ)/L2

× (β2
m + B2) sin(βmx /L) sin(βmx ′ /L)

β2
m + B2 + B

(X13.4)
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Eigencondition:
βm cot βm = −B B ≡ hL

k
(X13.5a, b)

GX13(L, t |L, τ) = 2

L

∞∑
m=1

e−β2
mα(t−τ)/L2 β2

m

β2
m + B2 + B

(X13.6)

− ∂GX13

∂n′

∣∣∣∣
x′=0

= 2

L2

∞∑
m=1

e−β2
mα(t−τ)/L2 βm(β2

m + B2) sin(βmx /L)

β2
m + B2 + B

(X13.7)

X 14 PLATE WITH G = 0 AT x = 0 AND k∂G/∂x + (ρcb)2 ∂G/∂t = 0
AT x = L

For small values of α(t − τ)/L2(≤0.022), use

GX14(x, t |x′, τ) ≈ [4πα(t − τ)]−1/2
{

exp

[
− (x − x′)2

4α(t − τ)

]

− exp

[
− (x + x ′)2

4α(t − τ)

]
− exp

[
− (2L − x − x ′)2

4α(t − τ)

]}

+ 1

LC2
exp

[
1

C2

2L − x − x ′

L
+ 1

C2
2

α(t − τ)

L2

]

× erfc

{
2L − x − x ′

[4α(t − τ)]1/2
+ 1

C2

[α(t − τ)]1/2

L

}
(X14.1)

Also, for small α(t − τ)/L2 values,

− ∂GX14

∂n′

∣∣∣∣
x′=0

≈ x

{4π[α(t − τ)]3}1/2
exp

[
− x2

4α(t − τ)

]
(X14.2)

−∂2GX14

∂x ∂n′

∣∣∣∣
x=x′=0

≈ {
4π[α(t − τ)]3}−1/2

(X14.3)

For any time, but best for large α(t − τ)/L2 values, use

GX14(x, t |x′, τ) = 2

L

∞∑
m=1

e−β2
mα(t−τ)/L2

×
(
C2

2β2
m + 1

)
sin(βmx /L) sin(βmx ′ /L)

C2
2β2

m + C2 + 1
(X14.4)

Eigencondition: βm tan βm = 1

C2
βm > 0 m = 1, 2, . . . (X14.5)

C2 ≡ (ρcb)2

ρcL
(X14.6)



T&F Cat # K10695, Appendix X, Page 592, 12-6-2010

592 Heat Conduction Using Green’s Functions

X 15 PLATE WITH G = 0 AT x = 0 AND k∂G/∂x + h2G + (ρcb)2
∂G/∂t = 0 AT x = L

For small values of α(t − τ)/L2(≤0.022), use

GX15(x, t |x′, τ) ≈ [4πα(t − τ)]−1/2
{

exp

[
− (x − x′)2

4α(t − τ)

]

− exp

[
− (x + x ′)2

4α(t − τ)

]
− exp

[
− (2L − x − x ′)2

4α(t − τ)

]}

+ 1

L

1

C2(S4 − S3)

{
exp

[
1

S4

2L − x − x ′

L
+ 1

S2
4

α(t − τ)

L2

]

× erfc

[
2L − x − x ′

[4α(t − τ)]1/2
+ 1

S4

[α(t − τ)]1/2

L

]

− exp

[
1

S3

2L − x − x ′

L
+ 1

S2
3

α(t − τ)

L2

]

× erfc

[
2L − x − x ′

[4α(t − τ)]1/2
+ 1

S3

[α(t − τ)]1/2

L

]}
(X15.1)

for C2 < 1/4 B2 and

S3 = 1

2C2

[
1 − (1 − 4 B2C2)1/2] (X15.2a)

S4 = 1

2C2

[
1 + (1 − 4 B2C2)1/2] (X15.2b)

Also, for small α(t − τ)/L2 values,

− ∂GX15

∂n′

∣∣∣∣
x′=0

≈ x

{4π[α(t − τ)]3}1/2
exp

[
− x2

4α(t − τ)

]
(X15.3)

−∂2GX15

∂x ∂n′

∣∣∣∣
x=x′=0

≈ {
4π[α(t − τ)]3}−1/2

(X15.4)

For any time, but best for large α(t − τ)/L2 values, use

GX15(x, t |x′, τ) =
∞∑

m=1

e−β2
mα(t−τ)/L2 sin(βmx /L) sin(βmx ′ /L)

Nm

where

Nm = L

2

(
B2 − C2β

2
m

)2 + β2
m + B2 + C2β

2
m(

B2 − C2β2
m

)2 + β2
m

(X15.5)
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Eigencondition:
(
B2 − C2β

2
m

)
tan βm = −βm

βm > 0 m = 1, 2, . . .
(X15.6)

C2 ≡ (ρcb)2

ρcL
B2 = h2L

k
(X15.7a, b)

X 20 SEMI-INFINITE BODY WITH ∂G/∂x = 0 AT x = 0

GX20(x, t |x′, τ) = 1

[4πα(t − τ)]1/2

{
exp

[
− (x − x′)2

4α(t − τ)

]

+ exp

[
− (x + x ′)2

4α(t − τ)

]}
(X20.1)

GX20(0, t |0, τ) = [πα(t − τ)]−1/2 (X20.2)

See Figures X20.1 and X20.2. A relation between the X00 and X20 GFs is

GX20(x, t |x′, τ) = GX20(x, x′, t − τ)

= GX00(x − x ′, t − τ) + GX00(x + x ′, t − τ) (X20.3)

An integral from x ′ = 0 to ∞ is∫ ∞

x′=0
GX20(x, t |x′, τ)dx′ = 1 (X20.4)

The integral of GX20 from x ′ = 0 to b is∫ b

0
GX20(x, t |x′, τ)dx′

= 1

2

(
erfc

{
x − b

[4α(t − τ)]1/2

}
− erfc

{
x + b

[4α(t − τ)]1/2

})
(X20.5)

3.0

2.0

1.0

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

x/x´

10
1

0.25

0.1

0.05x´
G

x2
0

αt/x́ 2 = 0.01

FIGURE X20.1 x′GX20(x, t |x′, 0) versus x /x′ for αt /(x′)2 = 0.01, 0.05, 0.1, 0.25, 1.0 and 10.
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0.5

0.4

0.3

0.2

0.1

0.0
0.0 5.0 10.0 15.0 20.0

α(t–τ)/x2

xGx20(x, t|0, τ)

[x2/πα(t–τ)]1/2
xG

x2
0 (

x,
 t|

0,
τ)

FIGURE X20.2 xGX20(x, t |0, τ) versus α(t − τ) / x2.

The average of this integral over x = 0 to b is

GX20 ≡ 1

b

∫ b

x=0

∫ b

x′=0
GX20(x, t |x′, τ) dx′ dx

= 1 −
[
α(t − τ)

πb2

]1/2 (
1 − π1/2 ierfc

{
b

[α(t − τ)]1/2

})
(X20.6)

Integrals of GX20 in this form can be difficult to evaluate analytically due to the
ierfc(·) term. Expressions more amenable to analytical integrals are given next. For
small values of u ≡ α(t − τ) / b2, GX20 is approximated by

GX20 ≈ 1 −
( u

π

)1/2 + u3/2

2π1/2
e−1 / u

[
1 − 3

2
u + 15

4
u2 − 105

8
C1u

3
]

(X20.7)

where the greatest accuracy is found for C1 near 1/3. Hence, let C1 = 1 / 3. For large
values of u, GX20 is approximated by

GX20 ≈ 1

(πu)1/2

(
1 − 1

6u
+ 1

30u2
− 1

168u3
+ 1

1080u4
− C2

7920u5

)
(X20.8)

where C2 = 0.89 improves accuracy over C2 = 1 which comes from a series approx-
imation. Table X.5 provides a comparison of results. Equation X20.7 is an accurate
approximation for u ≤ 0.5 and Equation X20.8 for u > 0.5.

If desired, an even more accurate approximation in the intermediate range can be
obtained from the GX22 equation for b / L = 0.25; the result is

GX20 ≈ 1

4
+ 8

π2

7∑
m=1

Am

m2
e−m2π2u / 16 (X20.9)



T&F Cat # K10695, Appendix X, Page 595, 12-6-2010

Green’s Functions: Rectangular Coordinates 595

TABLE X.5
Comparison of Results for GX20

Exact, Approx., % Error, Approx., % Error,
u Eq. X20.6 Eq. X20.7 Eq. X20.7 Eq. X20.8 Eq. X20.8

0 1 1
0.25 0.718394 0.718416 +0.003
0.4 0.647118 0.647393 +0.042 0.645724
0.5 0.609548 0.609705 +0.026 0.609265 −0.046
0.6 0.577634 0.575486 −0.37 0.577562 −0.012
0.75 0.537721 0.518095 −3.6 0.537711 −0.002
1 0.486065 0.486065
2 0.368746 0.368746
4 0.270903

10 0.1955
100 0.0563

where A1 = A3 = A5 = A7 = 0.5, A2 = A6 = 1 and A4 = 0. The answers are
accurate to six significant figures for u = 0.25–0.75. An alternative set of equations
can be obtained by restricting Equation X20.7 to the first two terms, namely

GX20 ≈ 1 −
( u

π

)1/2
(X20.10)

for u ≤ 0.125 and by using Equation X20.9 for an intermediate range but with the
number of terms changed to 9 with A8 = 0 and A9 = 0.5. The errors would be less
than 10−5.

X 21 PLATE WITH ∂G/∂x = 0 AT x = 0 AND G = 0 AT x = L

General expressions best for small cotimes:

GX21(x, t |x′, τ) = [4πα(t − τ)]−1/2
∞∑

n=−∞
(−1)n

{
exp

[
− (2nL + x − x ′)2

4α(t − τ)

]

+ exp

[
− (2nL + x + x ′)2

4α(t − τ)

]}
(X21.1)

−∂GX21

∂n′

∣∣∣∣
x′=L

= [4π[α(t − τ)]3]1/2
∞∑

n=−∞
(−1)n[(2n + 1)L − x]

× exp

[
−[(2n + 1)L − x]2

4α(t − τ)

]
(X21.2)
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For small values of α(t − τ)/L2(≤0.022), use

GX21(x, t |x′, τ) ≈ [4πα(t − τ)]−1/2
{

exp

[
− (x − x′)2

4α(t − τ)

]

+ exp

[
− (x + x ′)2

4α(t − τ)

]
− exp

[
− (2L − x − x ′)2

4α(t − τ)

]}
(X21.3)

−∂GX21

∂n′

∣∣∣∣
x′=L

≈ L − x

[4π[α(t − τ)]3]1/2
exp

[
− (L − x)2

4α(t − τ)

]
(X21.4)

−∂2GX21

∂x ∂n′

∣∣∣∣
x=x′=L

≈ [4π[α(t − τ)]3]−1/2 (X21.5)

General expressions best for large cotimes:

GX21(x, t |x′, τ) = 2

L

∞∑
m=1

e−β2
mα(t−τ)/L2

cos
(
βm

x

L

)
cos

(
βm

x ′

L

)
(X21.6)

βm = π

(
m − 1

2

)

− ∂GX21

∂n′

∣∣∣∣
x′=L

= − 2

L2

∞∑
m=1

e−β2
mα(t−τ)/L2

βm(−1)m cos
(
βm

x

L

)
(X21.7)

X 22 PLATE WITH ∂G/∂x = 0 AT x = 0 AND L

Expression best for small cotimes:

GX22(x, t |x′, τ) = [4πα(t − τ)]−1/2
∞∑

n=−∞

{
exp

[
− (2nL + x − x ′)2

4α(t − τ)

]

+ exp

[
− (2nL + x + x ′)2

4α(t − τ)

]}
(X22.1)

For α(t − τ)/L2 < 0.25, the maximum n value needed for four significant figures
is 1. For small values of α(t − τ)/L2 (≤0.022), use

GX22(x, t |x′, τ) ≈ [4πα(t − τ)]−1/2
{

exp

[
− (x − x′)2

4α(t − τ)

]
+ exp

[
− (x + x ′)2

4α(t − τ)

]

+ exp

[
− (2L − x − x ′)2

4α(t − τ)

]}
(X22.2)
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3

2

1

0
0 0.5 1

3

2

1

0
0 0.5

x/Lx/L
1

0.50.05
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FIGURE X22.1 LGX22(x /L, x′/L, u) versus x /L for several values of u = α(t − τ)/L2 and
six different heat-source locations x′/L.

Expression best for large cotimes:

GX22(x, t |x′, τ) = 1

L

[
1 + 2

∞∑
m=1

e−m2π2α(t−τ)/L2
cos

(mπx

L

)
cos

(
mπx′

L

)]

(X22.3)

See Figure X22.1 for LGX22(·) for various values of x ′ /L and u(≡α(t − τ)/L2)
versus x′ /L. Also see Figure X22.2 for LGX2I (0, t / 0, τ) for I = 0, 1, 2, and 3.

For α(t − τ)/L2 > 0.25, the maximum m value needed for four significant figures
is 2. For the locations x = x′ = 0 or x = x′ = L,

GX22(0, t |0, τ) = G(L, t |L, τ)

≈ [πα(t − τ)]−1/2
(

1 + 2e−L2 /[α(t−τ)]
)

(X22.4a)

≈ 1

L

(
1 + 2e−π2α(t−τ)/L2

)
(X22.4b)
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0.01
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u
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X20
X23 (B2  = 2)

X23 (B2 = 1)

X23 (B2 = 0.5)
L 

G
(0

, 0
, t

–τ
)

FIGURE X22.2 LGX22(0, 0, t − τ) versus u = α(t − τ)/L2 for several geometries.

where Equation X22.4a is used for α(t − τ)/L2 < π−1 and Equation X22.4b for
larger values. The error is in the sixth significant figure or less. For example, at
α(t − τ)/L2 = π−1, both give LGX22(0, t |0, τ) = 1.086428, while the exact value is
1.086435.

Alternative expressions are

GX22(0, t |0, τ) ≈ [πα(t − τ)]−1/2 (X22.5a)

for α(t − τ)/L2 < 0.08 and for larger values of α(t − τ)/L2,

GX22(0, t |0, τ) ≈ 1

L

[
1 + 2

(
e−π2α(t−τ)/L2

+ e−4π2α(t−τ)/L2 + e−9π2α(t−τ)/L2
)]

(X22.5b)

which are also accurate to about six decimal places. For G(L, t |0, τ) [=G(0, t |L, τ)]
approximate expressions accurate to about six decimal places are

G(L, t |0, τ) ≈ 0 (X22.6a)

for α(t − τ)/L2 < 0.02 and for greater values of α(t − τ)/L2, use

G(L, t |0, τ) ≈ 1

L

[
1 + 2

7∑
m=1

(−1)me−m2π2α(t−τ)/L2

]
(X22.6b)

The integral of GX22 from x ′ = 0 to b is∫ b

0
GX22(x, t |x′, τ) dx′ = 1

2

∞∑
n=−∞

(
erfc

{
2nL + x − b

[4α(t − τ)]1/2

}

− erfc

{
2nL + x + b

[4α(t − τ)]1/2

})
(X22.7a)
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0
GX22(x, t |x′, τ)dx′

= b

L
+ 2

π

∞∑
m=1

1

m
e−m2π2α(t−τ)/L2

cos
(mπx

L

)
sin

(
mπb

L

)
(X22.7b)

where Equation X22.7a is better for small cotimes, and Equation X22.7b is better for
large cotimes. For b = L, the integral is∫ L

0
GX22(x, t |x′, τ) dx′ = 1 (X22.8)

At x = 0 for small cotimes,∫ b

0
GX22(0, t |x′, τ) dx′

≈ 1 − erfc
b

[4α(t − τ)]1/2

+ erfc
2L − b

[4α(t − τ)]1/2
− erfc

2L + b

[4α(t − τ)]1/2
(X22.9)

For α(t − τ) / b2 < 0.02 and to six significant figures∫ b

0
GX22(0, t |x′, τ) dx′ ≈ 1 (X22.10)

For the average of the integral from x′ = 0 to b, the result for small cotimes is

1

b

∫ b

x=0

∫ b

x′=0
GX22(x, t |x′, τ) dx′ dx

≈ 1 + [α(t − τ)]1/2

b

{
− 1

π1/2
+ ierfc

L − b

[α(t − τ)]1/2

+ ierfc
b

[α(t − τ)]1/2
− 2 ierfc

L

[α(t − τ)]1/2

+ ierfc
L + b

[α(t − τ)]1/2

}
(X22.11a)

and for large cotimes

= b

L
+ L

b

2

π2

∞∑
m=1

1

m2
e−m2π2α(t−τ)/L2

(
sin

mπb

L

)2

(X22.11b)

For α(t − τ)/L2 = 0.25 and b / L = 0.25, the small cotime expression, Equation
X22.11a, gives 0.2842 and the large cotime expression, Equation X22.11b, the value
of 0.2844 which are in good agreement. For 0.1 < b / L < 0.9 and α(t−τ)/L2 < 0.09,
only the first two ierfc (·) functions are needed in Equation X22.11a with an error less
than in the sixth significant digit.
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X 23 PLATE WITH ∂G/∂x = 0 AT x = 0 AND k∂G/∂x + h2G = 0
AT x = L

For small values of α(t − τ)/L2(≤ 0.022) use

GX23(x, t |x′, τ) ≈ [4πα(t − τ)]−1/2
{

exp

[
− (x − x′)2

4α(t − τ)

]

+ exp

[
− (x + x ′)2

4α(t − τ)

]
+ exp

[
− (2L − x − x ′)2

4α(t − τ)

]}

− 1

L
B2 exp

[
B2

2L − x − x ′

L
+ B2

2
α(t − τ)

L2

]

× erfc

{
2L − x − x ′

[4α(t − τ)]1/2
+ B2

[α(t − τ)]1/2

L

}
(X23.1)

For any value of α(t − τ)/L2 but best for α(t − τ)/L2 > 0.022,

GX23(x, t |x′, τ) = 2

L

∞∑
m=1

e−β2
mα(t−τ)/L2 β2

m + B2
2

β2
m + B2

2 + B2

× cos
(
βm

x

L

)
cos

(
βm

x ′

L

)
(X23.2)

Eigencondition:
βm tan βm = B2 B2 ≡ h2L

k
(X23.3)

X 24 PLATE WITH ∂G/∂x = 0 AT x = 0 AND FILM
WITH FINITE HEAT CAPACITY AT x = L

The boundary condition at x = L is k∂G / ∂x + (ρcb)2∂G / ∂t = 0. For small values
of α(t − τ)/L2 (≤ 0.022) use

GX24(x, t |x′, τ) ≈ [4πα(t − τ)]−1/2
{

exp

[
− (x − x′)2

4α(t − τ)

]

+ exp

[
− (x + x ′)2

4α(t − τ)

]
− exp

[
− (2L − x − x ′)2

4α(t − τ)

]}

+ 1

LC2
exp

[
1

C2

2L − x − x ′

L
+ 1

C2
2

α(t − τ)

L2

]

× erfc

{
2L − x − x ′

[4α(t − τ)]1/2
+ 1

C2

[α(t − τ)]1/2

L

}
(X24.1)

where

C2 ≡ (ρcb)2

ρcL
(X24.2)
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For any value of α(t − τ)/L2 but best for α(t − τ)/L2 > 0.022,

GX24(x, t |x′, τ) = (1 / L)

1 + C2

+
∞∑

m=1

e−β2
mα(t−τ)/L2 cos(βmx /L) cos(βmx ′ /L)

Nm

(X24.3)

where

Nm = L

2

1 + C2
2β2

m + C2

1 + C2
2β2

m

(X24.4)

Eigencondition: tan βm = −C2βm m = 1, 2, . . . βm > 0 (X24.5)

X 25 PLATE WITH ∂G/∂x = 0 AT x = 0 AND FILM WITH FINITE
HEAT CAPACITY AND CONVECTION COEFFICIENT AT x = L

The boundary condition at x = L is k ∂G/∂x + h2G + (ρcb)2∂G/∂t = 0. For small
values of α(t − τ)/L2(≤ 0.022), use

GX25(x, t |x′, τ) ≈ [4πα(t − τ)]−1/2
{

exp

[
− (x − x′)2

4α(t − τ)

]

+ exp

[
− (x + x ′)2

4α(t − τ)

]
− exp

[
− (2L − x − x ′)2

4α(t − τ)

]}

+ 1

L(1 − 4B2C2)1/2

(
exp

[
S4

2L − x − x ′

L
+ S2

4
α(t − τ)

L2

]

× erfc

{
2L − x − x ′

[4α(t − τ)]1/2
+ S4

[α(t − τ)]1/2

L

}

− exp

[
S3

2L − x − x ′

L
+ S2

3
α(t − τ)

L2

]

× erfc

{
2L − x − x ′

[4α(t − τ)]1/2
+ S3

[α(t − τ)]1/2

L

})
(X25.1)

where

C2 ≡ (ρcb)2

ρcL
B2 ≡ h2L

k
(X25.2a, b)

See Equations X15a, b for S3 and S4, For any value of α(t − τ)/L2 but best for
α(t − τ)/L2 > 0.022,

GX25(x, t |x′, τ) =
∞∑

m=1

e−β2
mα(t−τ)/L2 cos(βmx /L) cos(βmx ′ /L)

Nm

(X25.3)
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where

Nm = L

2

[
β2

m + (
B2 − C2β

2
m

)2
]
(1 + 2C2) + (

B2 − C2β
2
m

) [
1 − 2C2

(
B2 − C2β

2
m

)]
β2

m + (
B2 − C2β2

m

)2

(X25.4)

Eigencondition : βm tan βm = B2 − C2β
2
m (X25.5)

m = 1, 2, . . . , B2 �= 0

X 30 SEMI-INFINITE BODY WITH –k∂G/∂x + hG = 0 AT x = 0

GX30(x, t |x′, τ) = [4πα(t − τ)]−1/2
{

exp

[
− (x − x′)2

4α(t − τ)

]

+ exp

[
− (x + x ′)2

4α(t − τ)

]}
− h

k
exp[α(t − τ)h2k−2

+ h(x + x ′)k−1] erfc

{
x + x ′

[4α(t − τ)]1/2
+ h

k
[α(t − τ)]1/2

}
(X30.1)

Notice that the first two exp(·) terms in Equation X30.1 are equal to GX20(x, t |x′, τ).
Then the GF can also be written as

GX30(x, t |x′, τ) = GX20 − h

k
exp

[
− (x + x′)2

4α(t − τ)

]

× rerf

{
x + x ′

[4α(t − τ)]1/2
+ h

k
[α(t − τ)]1/2

}
(X30.2)

where

rerf (z) ≡ ez2
erfc (z) (X30.3)

For x = x′ = 0,

GX30(0, t |0, τ) = [πα(t − τ)]−1/2

− h

k
exp

[
α(t − τ)h2

k2

]
erfc

{
h

k
[α(t − τ)]1/2

}
(X30.4)

For small (h / k)[α(t − τ)]1/2 values,

GX30(0, t |0, τ) ≈ [πα(t − τ)]−1/2 − h

k

{
1 − 2

h

k

[
α(t − τ)

π

]1/2
}

(X30.5)
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For large values of (h / k)[α(t − τ)]1/2:

GX30(0, t |0, τ) ≈ k2

2h2π1/2

1

[α(t − τ)]3/2

{
1 − 3

2

k2

h2[α(t − τ)]
}

(X30.6)

For small values of (h / k)[α(t − τ)]1/2 and any x and x ′ values,

GX30(x, t |x′, τ) ≈ GX20(x, t |x′, τ) − h

k

(
erfc

{
x + x ′

[4α(t − τ)]1/2

}

− h

k
[4α(t − τ)]1/2 ierfc

{
x + x ′

[4α(t − τ)]1/2

})
(X30.7)

For large values of (h / k)[α(t − τ)]1/2 and any x and x ′ values,

GX30(x, t |x′, τ) ≈ GX10(x, t |x′, τ)

+ x + x′

2π1/2[α(t − τ)]3/2

k

h
exp

[
− (x + x′)2

4α(t − τ)

]
(X30.8)

For any time with h(x + x ′) / k large (about 10 or larger),

GX30(x, t |x′, τ) ≈ GX20(x, t |x′, τ) − [πα(t − τ)]−1/2

×
[

1 + (x + x ′)2

2α(t − τ)

k

h(x + x ′)

]−1

exp

[
− (x + x′)2

4α(t − τ)

]
(X30.9)

The integral of GX30 from x ′ = 0 to b is

∫ b

0
GX30(x, t |x′, τ) dx′ = 1

2

(
erfc

[
x − b

[4α(t − τ)]1/2

]

+ erfc

{
x + b

[4α(t − τ)]1/2

}
− 2erfc

[
x

[4α(t − τ)]1/2

])

+ exp

[
hx

k
+ h2

k2
α(t − τ)

]

× erfc

{
x

[4α(t − τ)]1/2
+ h

k
[α(t − τ)]1/2

}

− exp

[
h(x + b)

k
+ h2

k2
α(t − τ)

]

× erfc

{
x + b

[4α(t − τ)]1/2
+ h

k
[α(t − τ)]1/2

}
(X30.10)
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If b → ∞, the integral becomes∫ ∞

0
GX30(x, t |x′, τ)dx′

= erf

[
x

[4α(t − τ)]1/2

]
+ exp

[
hx

k
+ h2

k2
α(t − τ)

]

× erfc

[
x

[4α(t − τ)]1/2
+ h

k
[α(t − τ)]1/2

]
(X30.11)

X 31 PLATE WITH −k∂G/∂x + hG = 0 AT x = 0 AND G = 0 AT x = L

For small values of α(t − τ)/L2(≤ 0.022) use

GX31(x, t |x′, τ) ≈ [4πα(t − τ)]−1/2
{

exp

[
− (x − x′)2

4α(t − τ)

]

+ exp

[
− (x + x ′)2

4α(t − τ)

]
− exp

[
− (2L − x − x ′)2

4α(t − τ)

]}

− h

k
exp

[
h(x + x ′)

k
+ h2α(t − τ)

k2

]

× erfc

{
x + x ′

[4α(t − τ)]1/2
+ h

k
[α(t − τ)]1/2

}
(X31.1)

−∂GX31

∂n′

∣∣∣∣
x′=L

≈ L − x

{4π[α(t − τ)]3}1/2
exp

[
− (L − x)2

4α(t − τ)

]
(X31.2)

−∂GX31

∂n′

∣∣∣∣
x=x′=L

≈ {4π[α(t − τ)]3}−1/2 (X31.3)

For larger values of α(t − τ)/L2 (but valid for all times) use

GX31(x, t |x′, τ) = 2

L

∞∑
m=1

e−β2
mα(t−τ)/L2

× (β2
m + B2) sin[βm(1 − x /L)] sin[βm(1 − x ′ /L)]

β2
m + B2 + B

(X31.4)

Eigencondition:

βm cot βm = −B B = hL

k
(X31.5a, b)

−∂GX31

∂n′

∣∣∣∣
x′=L

= 2

L2

∞∑
m=1

e−β2
mα(t−τ)/L2 βm(β2

m + B2) sin[βm(1 − x /L)]
β2

m + B2 + B
(X31.6)
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X 32 PLATE WITH −k∂G/∂x + hG = 0 AT x = 0
AND ∂G/∂x = 0 AT x = L

For small values of α(t − τ)/L2(≤ 0.022) use

GX32(x, t |x′, τ) ≈ [4πα(t − τ)]−1/2
{

exp

[
− (x − x′)2

4α(t − τ)

]

+ exp

[
− (x + x ′)2

4α(t − τ)

]
+ exp

[
− (2L − x − x ′)2

4α(t − τ)

]}

− h

k
exp

[
h(x + x ′)

k
+ h2α(t − τ)

k2

]

× erfc

{
x + x ′

[4α(t − τ)]1/2
+ h

k
[α(t − τ)]1/2

}
(X32.1)

For larger values of α(t − τ)/L2 (but valid for all times), use

GX32(x, t |x′, τ) = 2

L

∞∑
m=1

e−β2
mα(t−τ)/L2 β2

m + B2

β2
m + B2 + B

× cos
[
βm

(
1 − x

L

)]
cos

[
βm

(
1 − x ′

L

)]
(X32.2)

Eigencondition : βm tan βm = B B = hL

k
(X32.3a, b)

X 33 PLATE WITH –k∂G/∂x + h1G = 0 AT x = 0
AND k∂G/∂x + h2G = 0 AT x = L

For small values of α(t − τ)/L2 (≤ 0.022) use

GX33(x, t |x′, τ) ≈ [4πα(t − τ)]−1/2
{

exp

[
− (x − x′)2

4α(t − τ)

]

+ exp

[
− (x + x ′)2

4α(t − τ)

]
+ exp

[
− (2L − x − x ′)2

4α(t − τ)

]}

− h1

k
exp

[
h1(x + x ′)

k
+ h2

1α(t − τ)

k2

]

× erfc

{
x + x ′

[4α(t − τ)]1/2
+ h1

k
[α(t − τ)]1/2

}

− h2

k
exp

[
h2(2L − x − x ′)

k
+ h2

2α(t − τ)

k2

]

× erfc

{
2L − x − x ′

[4α(t − τ)]1/2
+ h2

k
[α(t − τ)]1/2

}
(X33.1)
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For larger values of α(t − τ)/L2 (but valid for all times), use

GX33(x, t |x′, τ) = 2

L

∞∑
m=1

e−β2
mα(t−τ)/L2 [βm cos(βmx /L) + B1 sin(βmx /L)]

× [βm cos(βmx ′ /L) + B1 sin(βmx ′ /L)]
(β2

m + B2
1 )[1 + B2 /(β2

m + B2
2 )] + B1

(X33.2)

where the βm values are the positive eigenvalues (arranged in increasing order) of

tan βm = βm(B1 + B2)

β2
m − B1B2

B1 = h1L

k
B2 = h2L

k
(X33.3a, b, c)

X 34 PLATE WITH –k∂G/∂x + h1G = 0 AT x = 0 AND AT x = L THE
BOUNDARY CONDITION IS k∂G/∂x + (ρcb)2 ∂G/∂t = 0

For small values of α(t − τ)/L2(≤ 0.022) use

GX34(x, t |x′, τ)

≈ [4πα(t − τ)]−1/2
{

exp

[
− (x − x′)2

4α(t − τ)

]

+ exp

[
− (x + x ′)2

4α(t − τ)

]
− exp

[
− (2L − x − x ′)2

4α(t − τ)

]}

− h1

k
exp

[
h1(x + x ′)

k
+ h2

1α(t − τ)

k2

]

× erfc

{
x + x ′

[4α(t − τ)]1/2
+ h1

k
[α(t − τ)]1/2

}

+ ρc

(ρcb)2
exp

[
ρc(2L − x − x ′)

(ρcb)2
+ (ρc)2α(t − τ)

(ρcb)2
2

]

× erfc

{
2L − x − x ′

[4α(t − τ)]1/2
+ ρc

(ρcb)2
[α(t − τ)]1/2

}
(X34.1)

For larger values of α(t − τ)/L2 (but valid for all times), use

GX34(x, t |x′, τ) =
∞∑

m=1

e−β2
mα(t−τ)/L2 Xm(x, βm)Xm(x ′, βm)

Nm

(X34.2)

where

Xm(x, βm) = B1 sin
(
βm

x

L

)
+ βm cos

(
βm

x

L

)
(X34.3)

Nm = L

(
1

2
(B2

1 + β2
m) + β2

mC2 + tan βm

1 + tan2 βm

{
1

2βm

(β2
m − B2

1 )

+ 2C2B1βm + tan(βm)[C2(B2
1 − β2

m) + B1]
})

(X34.4)
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The eigenvalues are the positive roots of

tan βm = B1 − C2β
2
m

βm(1 + B1C2)
(X34.5)

where
B1 = h1L

k
C2 = (ρcb)2

ρcL
(X34.6a, b)

X 35 PLATE WITH −k∂G/∂x + h1G = 0 AT x = 0 AND AT x = L, THE
BOUNDARY CONDITION IS k∂G/∂x + h2G + (ρcb)2 ∂G/∂ t = 0

For small values of α(t − τ)/L2(≤ 0.022) use

GX35(x, t |x′, τ) ≈ [4πα(t − τ)]−1/2
{

exp

[
− (x − x′)2

4α(t − τ)

]

+ exp

[
− (x + x ′)2

4α(t − τ)

]
− exp

[
− (2L − x − x ′)2

4α(t − τ)

]}

+ 1

L

{
−B1ER(x + x ′, t − τ, B1)

+ 1

(1 − 4B2C2)1/2
[S4ER(2L − x − x ′, t − τ, S4)

− S3ER(2L − x − x ′, t − τ, S3)]
}

(X35.1)

where for C2 < 1/4B2

S3 = 1

2C2
[1 − (1 − 4B2C2)1/2] (X35.2)

S4 = 1

2C2
[1 + (1 − 4B2C2)1/2] (X35.3)

ER(x, t − τ, B) = exp

[
Bx

L
+ B2α(t − τ)

L2

]

× erfc

{
x

[4α(t − τ)]1/2
+ B

[α(t − τ)]1/2

L

}
(X35.4)

For larger times of α(t − τ)/L2 (but valid for all times), use

GX35(x, t |x′, τ) =
∞∑

m=1

e−β2
mα(t−τ)/L2 Xm(x, βm)Xm(x ′, βm)

Nm

(X35.5)
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where

Xm(x, βm) = B1 sin
(
βm

x

L

)
+ βm cos

(
βm

x

L

)
(X35.6)

Nm = L

(
1

2
(B2

1 + β2
m) + β2

mC2 + tan βm

1 + tan2 βm

×
{

1

2βm

(β2
m − B2

1 ) + 2C2B1βm + tan βm[C2(B2
1 − β2

m) + B1]
})

(X35.7)

The eigenvalues are the positive roots of

tan βm = βm(B1 + B2 − C2β
2
m)

β2
m − B1(B2 − C2β2

m)
(X35.8)

where

B1 = h1L

k
B2 = h2L

k
C2 = (ρcb)2

ρcL
(X35.9a, b, c)

X 40 SEMI-INFINITE BODY WITH −k∂G/∂x + (ρcb)1∂G/∂t = 0
AT x = 0

GX40(x, t |x′, τ) = [4πα(t − τ)]−1/2
{

exp

[
− (x − x′)2

4α(t − τ)

]
− exp

[
− (x + x ′)2

4α(t − τ)

]}

+ 1

bP
exp

[
− (x + x′)2

4α(t − τ)

]

× rerf

{
x + x ′

2[α(t − τ)]1/2
+ 1

P

[α(t − τ)]1/2

b

}
(X40.1)

P = (ρc)1

ρc
rerf (z) = ez2

erfc (z) (X40.2a, b)

X 41 PLATE WITH −k∂G/∂x + (ρcb)1∂G/∂ t = 0 AT x = 0
AND G = 0 AT x = L

For α(t − τ)/L2 < 0.1, an accurate approximation is

GX41(x, x′|t , τ) ≈ 1

L
{EX (x − x ′, t − τ) − EX (x + x ′, t − τ)

− EX (2L − x − x ′, t − τ)

+ EX (2L + x − x ′, t − τ)

+ EX (2L − x + x ′, t − τ)

+ C −1
1 [ER(x + x ′, t − τ, C −1

1 )

− ER(2L + x − x ′, t − τ, C −1
1 )

− ER(2L − x + x ′, t − τ, C −1
1 )]} (X41.1)
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where ER(·) is defined by Equation X35.4, and

EX (z, t − τ) = [4πα(t − τ)]−1/2 exp

[
− z2

4α(t − τ)

]
(X41.2)

For all times but best for large times, GX41(·) is

GX41(x, t |x′, τ) =
∞∑

m=1

1

Nm

e−β2
mα(t−τ)/L2

Xm(x)Xm(x ′) (X41.3)

where

Xm(x) = cos
(
βm

x

L

)
− C1βm sin

(
βm

x

L

)
(X41.4)

C1 = (ρcb)1

ρcL
(X41.5)

Nm = L

2
[(C1βm)2 + C1 + 1] (X41.6)

Eigencondition:
βm tan βm = C −1

1 (X41.7)

X 42 PLATE WITH −k∂G/∂x + (ρcb)1∂G/∂t = 0 AT x = 0
AND ∂G/∂ x = 0 AT x = L

G(x, t |x′, τ) =
[

1

N0
+

∞∑
m=1

1

Nm

e−β2
mα(t−τ)/L2

Xm(x)Xm(x ′)
]

(X42.1)

where

Xm(x) = cos
(
βm

x

L

)
− C1βm sin

(
βm

x

L

)
(X42.2)

C1 = (ρcb)1

ρcL
(X42.3)

N0 = L(C1 + 1) (X42.4)

Nm = L

2
[(C1βm)2 + C1 + 1] m = 1, 2, . . . (X42.5)

Eigencondition:

βm cot βm = −1

C1
(X42.6)
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X 50 SEMI-INFINITE BODY WITH −k∂G/∂x + hG + (ρcb)1∂G/∂t = 0
AT x = 0

GX50(x, t |x′, τ) = [4πα(t − τ)]−1/2
{

exp

[
− (x − x′)2

4α(t − τ)

]
− exp

[
− (x + x ′)2

4α(t − τ)

]}

+ 1

2bAP
exp

[
− (x + x′)2

4α(t − τ)

]

×
(

(1 + A)rerf

{
x + x ′

2[α(t − τ)]1/2
+ (1 + A)

[α(t − τ)]1/2

2bP

}

−(1 − A)rerf

{
x + x ′

2[α(t − τ)]1/2
+ (1 − A)

[α(t − τ)]1/2

2bP

})
(X50.1)

P = (ρc)1

ρc
B = hb

k
A = (1 − 4BP )1/2 for 4BP < 1 (X50.2a, b, c)

X 51 PLATE WITH −k∂G/∂x + hG + (ρcb)1 ∂G/∂t = 0 AT x = 0
AND G = 0 AT x = L

For α(t − τ)/L2 < 0.1, an approximate expression is

GX51(x, x′|t , τ) ≈ 1

L
{EX (x − x ′, t − τ) − EX (x + x ′, t − τ)

− EX (2L − x − x ′, t − τ)

+ EX (2L + x − x ′, t − τ)

+ EX (2L − x + x ′, t − τ)

+ 1

C1(S1 − S2)
[ER(x + x ′, t − τ, S2)

− ER(x + x ′, t − τ, S1)

− ER(2L + x − x ′, t − τ, S2)

+ ER(2L + x − x ′, t − τ, S1)

− ER(2L − x + x ′, t − τ, S2)

+ ER(2L − x + x ′, t − τ, S1)]}
for C1 < (1/4B1) (X51.1)

where

S1 = 1

2C1

[−1 + (1 − 4B1C1)1/2]
S2 = 1

2C1

[−1 − (1 − 4B1C1)1/2] (X51.2)
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For larger α(t − τ)/L2 (but valid for any time), GX51(·) is given by

GX51(x, t |x′, τ) =
∞∑

m=1

1

Nm

e−β2
mα(t−τ)/L2

Xm(x)Xm(x ′) (X51.3)

where

Xm(x) = Dm sin
(
βm

x

L

)
+ cos

(
βm

x

L

)
(X51.4)

Dm = B

βm

− Cβm B = hL

k
C = (ρc)1b

ρcL
(X51.5)

Nm = L

2

(
D2

m + Dm

βm

+ 2C + 1

)
(X51.6)

Eigencondition:

tan βm = βm

Cβ2
m − B

m = 1, 2, . . . βm > 0 (X51.7)

For eigenvalues, see case X33.

X 52 PLATE WITH −k∂G/∂x + hG + (ρcb)1∂G/∂t = 0
AT x = 0 AND ∂G/∂x = 0 AT x = L

G(x, t |x′, τ) =
∞∑

m=1

1

Nm

e−β2
mα(t−τ)/L2

Xm(x)Xm(x ′) (X52.1)

where

Xm(x) = Dm sin
(
βm

x

L

)
+ cos

(
βm

x

L

)
(X52.2)

Dm = B

βm

− Cβm B = hL

k
C = (ρc)1b

ρcL
(X52.3a, b, c)

Nm = L

2

(
D2

m + 1

βm

Dm + 2C + 1

)
(X52.4)

Eigencondition:
tan βm = Dm m = 1, 2, . . . (X52.5)

(βm > 0 for B > 0)
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Index of Solutions by Number
System

Number Equation Comment
R00 (7.3) Transient GF, cylindrical case
R00T5 (7.16b) Temperature at r = 0
R01 (7.40) Transient GF, cylinder
R01B0T1 (7.43) Solid cylinder
R01B0T5 (7.44) Piecewise-constant initial condition
R01B1T0 (7.54) Standard solution
R01B1T0 (7.57) Alternate solution
R01B0T0G1 (7.66) Standard form
R01B0T0G1 (7.67) Improved convergence
R02B1T0 (7.62) Best for small time
R02B1T0 (7.64) Spatial average temperature
R02B0T0G(r5) (7.70) Piecewise-constant internal heating
R03B0T1 (7.50) Cylinder, suddenly quenched
R03B0G1 (7.164) Steady, uniform internal heating
R03B0G5 (7.166) Steady, piecewise internal heating
R03B0G(x1t6) (9.49) Steady periodic, internal heating
R10B1T0 (7.95) Infinite body with cylindrical hole
R20B–T0 (7.99) Surface temp. at small time
R20B–T0 (7.100) Surface temp. at large time
R11B00T1 (7.78) Hollow cylinder
R21B10 (7.83) Steady, hollow cylinder
R21B00T- (7.91) Initially steady case R21B10
R23B02T0 (10.111) From Galerkin-based GF
R00 Z20B(r5)T0 (7.131) Semi-infinite cylinder
R00 Z20B(r5) (7.133) Steady, surface temperature
R00 Z20B(r5)T0 (7.136) Centerline temperature
R00 Z20B(r5t6) (9.123) Steady periodic, half space
R01B0 Z11B00T1 (7.116) Finite cylinder
R01B1 Z11B00 (7.171) Steady, double-sum form
R01B1 Z11B00 (7.176) Steady, single-sum form
R02B(z5) Z00T0 (7.122) Surface temperature
R03B0 Z23B60 (9.107) Steady periodic, eigenfunctions along z

R03B0 Z23B60 (9.113) Steady periodic, eigenfunctions along r

R03 ZI0 (9.120) Steady periodic GF, I = 0, 1, 2, 3, 4, 5.
R01B0 Φ00T– (7.154) Integral expression
R01B5 Φ00 (7.182) Steady, piecewise surface temperature
R02B– Φ22T0 (7.160) Cylindrical sector
R03B0 Z11B00 Φ00G(r7φ5t6) (9.145) Model of hotfilm sensor
R03B0 Z11B00 Φ00G(r7φ5t6) (9.150) Alternate form
RS00 (4.157) Steady point source
RS00 (4.188) Steady point source
RS00 (8.4) Transient GF, spherical coordinates
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Number Equation Comment
RS00 (8.6) Point source at origin
RS01 (8.61) Transient GF, sphere
RS01B0T1 (8.65) Large-time form
RS02 (8.72) Transient GF, sphere
RS02B1T1 (8.76) Constant surface heat flux
RS02B2T0 (8.78) Linear-in-time surface heat flux
RS02B0T0G1 (8.91) Uniform heating
RS02B0T0G(r2) (8.94) Linear-in-radius heating
RS02B0T0G(r4) (8.103) Exponential-in-radius heating
RS02B0T0G(t4) (8.105) Exponential-in-time heating
RS02B0T0G(r6) (8.110) Sinusoidal-in-radius heating
RS03 (8.142) Steady GF
RS03 (8.40) Transient GF, sphere
RS03B1T0 (8.82) Small-time form
RS03B1T0 (8.85) Large-time form
RS03B0G1 (8.144) Steady, sphere
RS03B0G4 (8.146) Steady, spatially-varying heating
RS10 (8.130) Transient GF, large body with void
RS10B0T0G(r5) (8.133) Spatially-varying heating
RS20 (8.125) Transient GF, large body with void
RS20B1T0 (8.127) Uniform surface flux
RS30 (4.40) Transient GF, large body with void
RS11 (8.138) Steady GF
RS11B10 (8.140) Steady, hollow sphere
RS11B10T0 (8.122) Standard solution
RS11B10T0 (8.123) Alternate solution
RS21 (8.135) Steady GF, hollow sphere
RS21B10 (8.136) Steady, hollow sphere
RS21 (8.113) Transient GF, hollow sphere
RS21B10T0 (8.116) Standard solution
RS21B10T0 (8.118) Alternate solution
RS33 (8.54) Transient GF, hollow sphere
RS40B6 (9.55) Steady periodic, lumped sphere
X00 (1.72) Transient GF, infinite body
X00 (1.75) Fundamental heat conduction solution
X00T5 (1.79) Example 1.1, one piecewise segment
X00T5 (1.83) Example 1.2, two piecewise segments
X00T0G(x7t1) (1.89) Example 1.3, plane source
X10 (1.101) Transient GF, semi-infinite body
X10B1T0 (4.13) By Laplace transform
X10B0T1 (1.109) Example 1.4
X10B0T5 (6.7) I = 1
X10B1T0 (1.112) Example 1.5
X10B1T0 (6.16) Constant boundary temperature
X10B3T0 (6.20) Boundary varying as tn / 2

X10B0T0G(t3) (6.34a) Generation varies as tn / 2

X20 (1.107) Transient GF, semi-infinite body
X20B0T5 (6.7) I = 2
X20B0T2 (6.11) Linearly-varying initial condition
X20B1T0 (6.24) Constant boundary heat flux
X20B3T0 (6.25) Boundary varying as tn / 2

X20B0T0G(t3) (6.34b) Generation varies as tn / 2

X30 (4.27) Transient GF, semi-infinite body
X30B1T0 (6.29) Boundary convection suddenly applied
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Number Equation Comment
X30B0G(x4t6) (9.45) Steady periodic, internal heating
X11 (4.90) Large-cotime form
X11B00T1 (3.88) Transient with fin losses
X11B00T1 (6.43) Small-time form
X11B00T1 (6.59a) large-time form
X11B00T1 (10.23) One-term solution
X11B00T1 (10.30) From polynomial basis functions
X11B00T5 (6.56) J = 1
X11B00G(x7) (6.66) Steady, plane source
X11B00T0G(x7t1) (6.68) Transient, plane source
X11B06T0 (10.83) From Galerkin-based GF
X11B06T0 (10.84) Exact solution
X11B06T0 (3.67) Standard solution
X11B06T0 (3.72) Alternate solution
X11B10 (3.99) Steady fin, T specified at end
X11B10T0 (5.19) Large-time form
X11B10T0 (5.27) Steady series removed
X12 (1.52) Steady GF, plane wall
X12 (4.59) Small-cotime form
X12 (4.155) Transient GF, plane wall
X12B00G1 (1.40) Steady, uniform heat generation
X12B00G4 (1.54) Steady, heating varies exponentially
X12B00G5 (1.55) Steady, step in heat generation
X12B00T5 (6.56) J = 2
X12B00G(x7) (6.67) Steady, plane source
X12B00T0G(x7t1) (6.69) Transient, plane source
X21B1T0 (6.81) Best for small time
X21B1T0 (6.83) Best for large time
X21B1T0 (6.85) Improved convergence
X21B21T1 (5.51) Standard form
X21B21T1 (5.60) Improved-convergence form
X21B30T0 (6.52) boundary varying as tn / 2

X22 (4.178) Pseudo GF, steady 1D
X22 (4.109) Large-cotime form
X22B10T0 (6.87) Standard form
X22B10T0 (6.94) Alternate form
X22B30T0 (6.52) boundary varying as tn / 2

X23B60 (9.39) Steady periodic, surface heating
X32B10T0 (6.98) Standard form
X32B10T0 (6.105) Improved convergence
X32B00T1 (6.112) Homogeneous boundary
XIJB00T0G(x7t3) (6.50) I , J = 1, 2; plane source varying as tn / 2

XV10B0T1 (3.134) Moving body, velocity V
X00 Y20B5T0 (6.143) Heated over half of surface
X00 Y20B5T0 (6.144) Surface temperature only, half is heated
X00 Y20B5T0 (6.161) Surface temperature only, strip is heated
X00 Y21 (6.170) Steady GF, 2D
X00 Y21B(x5)0 (6.172) Steady, strip heater
X00 Y23B00G(x5y7t6) (9.77) Steady periodic, heated strip
X00 Y23B00G(x5y7t6) (9.80) Steady periodic, alternate form
X00 YI0 (9.81) Steady periodic GF, I = 1, 2, 3, 4, 5.
X11 Y20 (4.198) Steady GF, 2D
X11B00 Y21B(x5)0T0 (6.129) Best for large time
X11B00 Y21B(x5)0T0 (6.133) For small y and x near a1
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Number Equation Comment
X11B00 Y21B(x5)0 (6.166) Steady, step in wall heating
X12 Y12 (4.145) Steady GF, 2D
X12 Y12 (5.32) Steady GF, double-sum form
X12 Y12 (5.40) Steady GF, single sum form
X12B10 Y12B00 (5.44) Steady, single-sum form
X12B10 Y12B00 (5.75) Steady, alternate form
X12B10 Y12B00T0 (5.37) Large-time form
X12B10 Y12B00T0 (5.47) Improved-convergence form
X21B10 Y21B01 (6.122) Best for large time
X22 Y22 (4.180) Pseudo GF, steady 2D
X22 Y22 (4.184) Pseudo GF, alternate form
X11 Y11 Z11 (4.192) Steady 3D GF, triple-sum form
X11 Y11 Z11 (4.193) Steady 3D GF, double-sum form
X11 Y11 Z11 (6.177) Steady, triple-sum form
X11 Y11 Z11 (6.180) Steady, double-sum form
Φ22B10 (7.111) Steady with fin losses
Φ22B10T0 (7.110) Transient with fin losses
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Subject Index

A
Alternative GF solution

for one-dimensional conduction problems,
397, 400–401

hollow cylinder and boundary conditions,
397

numerical values, 400
partitioned and alternative solution, 400
procedure for, 397–399

Alternative Green’s function solution equation
(AGFSE)

boundary condition, 79–80
initial condition, 79
transient boundary heating, X21B21T 1,

164–167
transient heat conduction problem, 79

Anisotropic bodies
conductivity matrix

components of heat flux vector, 38
Fourier’s law, 38
orthotropic bodies, 38
in rectangular coordinates, 38

defined, 38
Aspect ratio, 264; see also Limiting cases for 2D

and 3D geometries
Auxiliary equation, for GF, 370
Auxiliary equation for steady GF

boundary conditions, 136, 138
Dirac delta function, 136
divergence theorem, 136
Laplace equation in spherical polar

coordinates, 136
line source in cylindrical coordinates, 137
one-dimension steady-state heat equation, 138
plane source solution, 138
point-source solution, 135

derivation, 136
in rectangular coordinates, 135–137
temperature distributions, 138

Axial conduction effect, 433

B
Basis functions, 392, 413

in complex bodies, 413–414
finding, example of, 404–405
first kind, 414–418
for irregular-shaped bodies, 392
for one-dimensional problems calculation,

392–393, 413
eigenvalues and eigenvectors, 396

matrices A, 394–395
matrices B, 395–396
matrices D, 396
matrix P, 396–397

second kind, 418–421
third kind, 421–423

Bessel function
approximations for values, 487
derivatives of, 488
differential equation, 484
generalized Bessel equation

differential equation, 486–487
integrals of

with arbitrary constant, 489
numerical values, 489

large values of, 488
recurrence formulas for, 488
roots of, 484–487
in series form, 483

Boundary condition numbering system and
geometry

boundary condition modifiers
X12B14, 52
X20B1 and R03B1, 52–53

cylindrical coordinates
three-dimensional equation for, 48

kinds of
fifth, 50
first, 48–49
fourth, 49
natural, 50
second, 49
third, 49
zeroth, 52–53

one-dimensional Cartesian geometries, 50
one-dimensional cylindrical radial

geometries, 51
rectangular coordinate system, 48
ring geometries, 51
spherical coordinates, 48
three dimensional equation

isotropic thermal conductivity, 48
for transient conduction, 48

time-and space-variable function, types, 52
Boundary conditions

effects, 387
first kind, 30–32
of first kind, selection of basis functions for

example on, 415–418
first member of set, 414

619



T&F Cat # K10695, K10695_IDXc, Page 620, 12-6-2010

620 Subject Index

procedure for subsequent members, 415
two-dimensional body for, 415

second kind, 32–33
of second kind, selection of basis functions for

example of, 419–421
insulated boundaries and, 418
methods of, 418–419

of third kind, selection of basis functions for
example on, 421–423

Boundary element (BE) method
transient problems, application to, 441–442

Boundary value problem, 7
boundary conditions for, 8
initial conditions, 8

Bulk temperature, 434

C
Cartesian coordinates

one-dimensional steady-periodic GF
coefficients, value of, 336
differential equation for GF, 335
far-away boundary, 336
GF, expression for, 336

Cartesian coordinates, two- and
three-dimensional bodies in, 349

infinite and semi-infinite bodies
GF expression for, 352
modified Bessel function of order

zero, 353
rectangles and slabs

alternate GF for 2D slabs, 350
alternate GF for rectangles, 349
eigenfunction expansion method,

use of, 349
fourth and fifth kind boundary

conditions, 349
GF expression for, 349
kernel function, 349
slab heated over small region, example of,

350–352
rectangular parallelepiped

alternate GF, use of, 354
eigenfunction expansion method,

use of, 353
GF expression for, 353
kernel function and GF, 353–354

CAS, see Chemical Abstracts Service (CAS)
Cauchy principal value, 525
Cauchy’s integral formula, 519
Chemical Abstracts Service (CAS)

numbers for chemical compounds, 47
Cholesky decomposition, 379, 411
Compact heat exchangers, 432

Complementary transients
intrinsic verification by

body of finite extent heated at surface, 170
for case X21B10 Y11B00T 0, 171
dimensionless cutoff time, 170
dimensionless times, 172
heat flux, 171
large-cotime GF, 170
steady state component, 170
steady-state value, 172
steady term, 170
time-decaying term, 170
time integral of exponential factor, 170

Conductance matrix, 460
Contact conductance, 424–425; see also

Heterogeneous solids, thermal
conduction computation in

problems, 441–442
Control volume, 4–5

Reynolds transport theorem for, 9
Convergence of GF

convergent series, 152
Dirac delta function, 151
errors, 152
Euler–Maclaurin summation formula, 152
expression for temperature, 152
nonzero values, 153
for one-dimensional body, 151
time integral, 152

Convergence problems identifying
criteria, 153

number of terms and truncated sums as
function, 154–155

maximum exponential argument
large-cotime GF, 154

number of terms, 155–156
ratio convergence test

truncated series, 154–155
slower convergence of derivative

Fourier series, 156
GF solution, 156
Gibbs phenomenon for, 157
heat flux series, 157
long-cotime form of GF, 156
steady state series, 156
term-by-term differentiation of temperature

series, 157
Convergence series strategies

replacement of steady-state series
rectangle with boundary heating, X12B10

Y12B00T 0, 161–164
slab with elevated temperature on one side,

X11B10T 0, 158–161
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Cubical body with sphere, temperature
distribution in

alternative GF solution, use of, 428–429
basis functions in, 426
cubical body with centrally located spherical

inclusion, 427
dimensionless parameters and, 429
dimensionless temperature and time,

plot of, 429
elements of matrices, computation of, 427
function for one-term solution, 427
temperature solution equation, 429
values of integrals, 428

Cylinder
with aspect ratio, 264
heated over curved surface and insulated,

277–280
heated over half of surface, R02Z00 case,

266–268
with initial temperature varying with angle,

R01B0T -Φ00 case, 276–277
with internal heating and convective

cooling, 342
Biot number, 343
evaluation of integral, 343
GF replacement in integral

expression, 343
integral expression for temperature, 343
temperature and frequency, 344
temperature distribution, 342–343

with specified surface temperature, R01Z11
geometry, 265–266

Cylinder, 3D steady-periodic heat conduction
in, 361

and associated GF for, 361
GF with eigenfunctions along, 362–363
solid cylinder heated surface and cooled by

convection, example
amplitude and phase of temperature on

cylinder surface, 365–366
eigenfunctions, 364–365
equations satisfying temperature, 363
GF and temperature expression, 364
heating function, 364

Cylindrical coordinates
with Green’s function (GF)

annulus with radial and angular
dependence, 558–560

case summary, 562
sector of radius, 554–557
solid cylinder with radial and angular

dependence, 554, 556
wedge for, 553–554

one-dimensional steady-periodic GF
coefficients, expression for, 337–338
construction of GF, 337
defining equations for G, 337
differential equation for GF, 336
jump condition, 337
matching conditions, 337
modified Bessel functions, 337
radial cylindrical, 337
Wronskian identity, use of, 338

Cylindrical coordinates, two-dimensional
bodies in

axisymmetric half-space
GF, expression for, 360
half-space with heating over circular

region, example, 360–361
Hankel transform, and GF, 359–360
r-space Green’s function, 360

GF, expression for, 354
GF with eigenfunctions, 354

Bessel equation of order zero, 355
GF, construction of, 356
hollow-cylinder eigenfunctions, 356
kernel function, differential equation

for, 355–356
norms and eigenconditions, 355

pin fin with heat flux at base, example, 356
contour plots of temperature amplitude and

phase, 359
eigenfunctions, 357–358
temperature expression, 357

Cylindrical coordinate system, 7
radial heat flow in

heat conduction equation, 237
radial GF equation, 237

Cylindrical polar coordinate
radius

complete cylindrical shell of, 563
partial cylindrical shell of, 563

Cylindrical surface heat source, 238

D
Data base in transient heat conduction, 58–59
Differential energy equation

control volume, 4–5
in cylindrical coordinate system, 7
energy generation rate, 5
flow of heat, 5
Fourier’s law, 6
heat flux, Taylor series, 5–6
net rate of heat flow in, 4
specific energy storage rate, 5
in spherical coordinate system, 7
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storage of energy rate, 5
thermal conductivity, 6
thermal diffusivity, 6
vector form, 6

Diffusion equation, 369
Dirac delta function

definition, 11, 491
and Fourier transform

diffraction peak representation, 496
Lorentz representation of, 495

Heaviside unit step function, 12
integral form

diffraction peak representation, 496
Fourier transform, 496
Lorentz representation of, 495

properties of, 12
relationship with step function, 492
sifting property, 491
two-and three-dimensional problems

with, 492
units, 492

relation to unit step function, 12
representations of, 492

diffraction peak, 493
Gaussian, 493
Lorentzian, 493
top-hat function, 493

series form of, 495
orthogonal set, 494

sifting property, 11–12
units of, 12

Dirichlet condition for flat plate, 36
Disk heat source on semi-infinite body, 268

average temperature, 274–275
closed-form expressions for temperature

Bessel function, 272
centerline temperature, 272
steady surface temperature, 271
surface temperature, 272

integral expression for temperature
energy equation and boundary

conditions, 269
GFSE for, 269
temperature expression, 270–271

series expression for surface temperature at
large times, 272–274

Ducts, fluid flow in, 432
average velocity, use of, 432
bulk temperature, equation for, 434
components of matrices and vector,

expression of, 435–436
dimensionless eigenvalue, 433
dimensionless hydraulic diameter, 433

dimensionless velocity, calculation of, 433
example for, 434
friction factor, 433
heat transfer coefficient, value of, 434
Nusselt number, 434
standard Galerkin method, use of, 432
temperature, computation of, 433–434
velocity profile, 432

Duhamel’s integral forms of USE equations,
453–454

Duhamel’s theorem
alternative form of, 444
boundary conditions of third kind and

example of, 447–448
derivation of

boundary value problem of heat
conduction, 444

flux-based fundamental solution, 444
solution to fundamental problem, 444
temperature-based fundamental

solution, 447
for time-and space-variable boundary

conditions, 444–448
variation of heat flux with time, 445–446

equation of, 443
and first kind boundary conditions, 447
flux-based forms of, 446
and GF method, relationship between

examples on, 448–451
second kind boundary conditions and, 447
temperature-based forms of, 447
two-dimensional region heated by arbitrary

heat flux, geometry of, 445

E
Eigenfunctions for long-cotime GF, 123
Eigenvalues

method of expansions, 128
Dirac delta function on finite domain, 129
forms for three coordinate systems, 129
one-dimensional steady case, 129
steady case X12, 129–130
steady case X12Y12, 130–133
transient case X12, 133–134
two-dimensional rectangle, 129
variation of parameters, 129

method of separation of variables and norms
for GF, 124

numerical calculation, 379–380
for X13, X31, X23, X32, and X33, 125

Electron–phonon coupling factor, 42
Energy equation, for incompressible fluid, 433
Energy storage defined, 5
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Error function
for argument common in heat conduction, 500
behavior of, 499
complementary error function, 498
complex argument, 502
definition, 497
and derivatives, 502

differentiation, 501
integration, 501

notation, 498
power series expansion, 499
recursion relation, 499
and related functions, 499
repeated integrals of, 498
series expressions, 497

fraction expression, 498
gamma function, 498

Euler–Maclaurin summation formula, 152
Examples

composite slab, contribution of contact
conductance

boundary conditions, 424–425
integration, 426

cubical body, spherical inclusion
basis functions, 426
dimensionless parameters, 428
dimensionless temperature, 429
one-term solution, 427
temperature distribution for, 428

cylinder heated over half of surface, R02Z00
case, 266

GFSE for, 267
temperature, 268

cylinder with initial temperature varying with
angle, R01B0T -Φ00 case

eigenvalues, 277
GF for, 276
initial condition, 277
temperature, 277

cylinder with internal heating and convective
cooling

Biot number, 343
integral expression, 343
temperature in, 342

cylindrical pipe in square box
auxiliary function, 431
basis functions, 430
with isotherms, 431
temperature distribution, 431

cylindrical sector (wedge) heated over curved
surface and insulated elsewhere,
R02B-T 0Φ22 case

eigenconditions, 278–279

heat flux, 278
initial temperature, 277
temperature expression, 279

derivation of GRS33, hollow sphere with
convective boundary conditions

Cartesian variables, 302
eigenvalues, 302
GF equation, 303
initial value problem, 300
transformation of variables, 301

derivation of GRS03, solid sphere with
convective boundary condition

initial condition, 298
initial value problem, 300
nonuniform initial condition, 299
radial spherical heat flow, 300
separation of variables method, 299
transformed problem, 298

finite cylinder
basis functions, 405
with boundary conditions, 404

finite cylinder with arbitrary surface
temperature on curved surface,
R01B-Z11B00 case

alternative solution, 282–283
GFSE for, 281
steady GF, 282
surface temperature distribution, 282

finite cylinder with specified surface
temperature, R01Z11 geometry

alternative GF solution method, 266
boundary and initial conditions, 265
eigenvalues, 266
heat conduction numbering system, 265
temperature, 266

half-space with heating over circular
region, 360

heating condition, 361
temperature expression, 361

hollow cylinder insulated inside, R21B00T

case
radial cylindrical coordinates, 256
steady energy equation, 256
steady GF, 256
transient temperature, 257

hollow cylinder with zero surface temperature,
R11B00T 1 case

Bessel functions, 256
eigenvalues, 255
initial condition, 254
large-time GF, 254
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hollow sphere exposed to convection with
large heat transfer coefficient at inside
surface, RS11B10T 0 case

boundary condition, 322
heat transfer coefficient, 321
steady-state conditions, 322
time integral, 322

hollow sphere heated on inside surface,
RS21B10 case

piecewise continuous function, 327
steady GFSE, 327
steady temperature, 326

hollow sphere heated on inside surface,
RS21B10T 0 case

boundary conditions, 320
suddenly-applied heat flux, 321
time integral, 320
transformations, 320

hollow sphere with temperature fixed on both
surfaces, RS11B10 case

piecewise continuous function, 327
steady GFSE, 327
temperature, 328

homogeneous hollow cylinder
basis functions, 398
dimensionless temperature solution,

400–401
eigenvalues and eigenvectors, 398
fin effect, 398
GF relation, 399
one-dimensional conduction problems, 397
temperature solution, 399

homogeneous semi-infinite bodies
heat flux-based solution, 469–470
Laplace transformations, 466
temperature-based solution, 466–469

infinite body heated at surface of spherical
cavity, RS20B1T 0 case

GF function, 324
temperature, 323

infinite body with circular hole and specified
surface temperature, R10B1T 0 case

radial flow of heat, 258
temperature, 258
time integral, 258

infinite body with circular hole and specified
surface heat flux, R20B-T 0 case

boundary condition, 259
Dirac delta function, 259
surface temperature, 259
time integral, 259

infinite body with fixed-temperature spherical
cavity with internal energy generation,
RS10B00T 0Gr5 case

GF solution for, 325
integral, 326
temperature distribution, 324

infinite homogeneous plate
diagonal terms, 374
eigenfunctions, 377
eigenvalues, 375
nonorthogonal basis functions, 375
off-diagonal elements, 374
one-dimensional Cartesian system, 376
one-term solution, 378
orthogonal basis functions, 374
temperature solution, 375
thermal diffusivity, 374

large region heated by high-conductivity
sphere, 343

amplitide and phase, 344
boundary conditions, 344
Green’s function solution, 345
steady-periodic heating, 344
temperature expression, 345

long cylinder with specified surface
temperature, R01B-Φ00 case

GF solution equation, 284
temperature, 283, 285

Newtonian fluid in circular pipe
eigenvalues and matrices, 437
Graetz problem, 434
velocity profile, 434

one-dimensional bodies
boundary conditions, 401
coordinate systems, 401
Laplace equation, 401

parallelepiped with specified surface
temperature, X11Y11Z11 case

double-sum series, 143
limit method integral for, 142
transient GF for, 142–143
triple-sum series, 143

parallelepiped with specified surface
temperature, X11Z11Y11 case

temperature for, 229
triple-sum GF for, 228

pin fin with heat flux at base, 356
Biot number, 359
contour plots of temperature amplitude and

phase, 359
eigenfunction, 357–358
Green’s function, 357
kernel function, 357–358
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plate insulated on both sides, X22 case,
120–121

point source in infinite body
limit method, 141
three one-dimensional GFs, product,

141–142
rectangle heated over part

geometry, 225
kernel function, 226
steady temperature, 225–226

rectangle with boundary heating, X12B10
Y12B00T 0

better-converging form of steady
temperature, 162–163

faster-converging transient temperature,
164

GF solution, 161
kernel function, 163
large cotime form of, 162
single-sum series for steady temperature,

163–164
steady-state part of, 162
temperature equation, 161
transient GF, 161–162

rectangular body heated over part of one face
boundary value problem, 214
GFSE for, 214
integral in, 216
large-time solution, 214–215
semi-infinite body, 217
small-time solution, 215–216
surface temperature, 217

rectangular body with several different
boundary conditions, X21B10 Y21B01
case

double-summation form, 214
and geometry for rectangular body, 212
GF, 213
integral expression for temperature, 213
spatial integrals in, 213

RS30 case, region outside spherical cavity
with convection, 110–112

semi-infinite body with convection,
X30B1T 0 case

convection boundary condition, 189
heat transfer coefficient, 190
surface temperature, 190
temperature solution, 189–190

semi-infinite body with convection, X30 case,
108–109

semi-infinite body with internal heating
amplitide and phase, 342
GF solution equation, 341

spatial distribution, 341
temperature expression, 341

semi-infinite body with specified surface heat
flux, X20B-T 0 case

case X20B1T0, 188
case X20B3T0, 189
GFSE for temperature, 188
heat flux, 188

semi-infinite body with specified surface
temperature, X10B-T 0 case, 188

case X10B1T0, 186–187
case X10B3T0, 187
fundamental heat conduction

solution, 186
GFSE, 186
volume energy generation, 186

slab heated on one side, X23B60
Biot number, 340
steady-periodic heat flux, 340
temperature expression, 340

slab heated over small region
alternate GF for, 351
eigenfunction, 351
kernel function, 351
piecewise constant, 350
temperature expression, 351
volume heating, 350

slab of isotropic and homogeneous material
GF equation, 391
matrix for, 391
quasisteady solution, 390

slab with convection on both sides
convert to homogeneous boundary, 210
GF solution equation, 208
large-cotime GF for, 208
quenching process, heat transfer coefficient

for, 208
replace steady-state term, 209–210
time integral, 208–209

slab with elevated temperature on one side,
X11B10T 0

molten metal, 158
steady heat conduction equation, 159
steady-state portion, 159
transient temperature, 158–159

slab with one side heated, one side at fixed
temperature, X21B10T 0 case

GF solution, 204
large-time solution, 204–205
small-time solution, 204

slab with one side heated, one side insulated,
X22B10T 0 case, 205

alternative GFSE (AGFSE), 206–207
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infinite sum, value, 207
standard solution, 206

slab with zero-temperature boundaries,
X11B00T 1 case, 193–194

dominant terms, 195
small values of, 194

solid cylinder heated over sector of surface
and cooled by convection

amplitude and phase, 365
dimensionless temperature, 366
eigenfunction and norm, 364–365
heating function, 364
kernel function, 364
series expressions, 364
temperature, 363

solid cylinder with elevated surface
temperature, R01B1T 0 case, 248

alternative solution, 250
standard solution, 249

solid cylinder with heating at surface,
R02B1T 0 case

boundary conditions, 250
spatial average temperature, 251
surface temperature, 250–251

solid cylinder with internal energy generation,
R03B0G case

case R03B0G1, 281
case R03B0G5, 281
temperature, 280
volume energy generation, 280

solid cylinder with nonuniform energy
generation, R02B0T 0Gr5 case

integrals, 253
quasisteady temperature distribution,

254
temperature, 252
volume energy generation, 252

solid cylinder with surface convection,
R03B0T 1 case

Biot number, 248
boundary and initial conditions, 247–248
eigenvalues, 248
GFSE for, 248

solid cylinder with uniform energy generation,
R01B0T 0G1 case

temperature, 252
uniform volume generation, 251

solid cylinder with zero surface temperature,
R01B0T case, 246

case R01B0T1, 247
case R01B0T5, 247

solid sphere heated at surface, RS02B-T case,
310–311

boundary conditions, 309
eigenfunction, 309

solid sphere with arbitrary initial temperature,
RS01B0T case

in Cartesian coordinates, 306
small-cotime GF, 308
temperature in, 307

solid sphere with convective boundary
condition, RS03B1T 0 case

alternate solution, 313–314
small-cotime GF, 311
small-time solution, 312
temperature, 313

solid sphere with internal energy generation
and convective boundary condition

Biot number, 328
case RS03B0G1, 328
case RS03B0G4, 329
energy generation term, 328
steady GF, 328
steady GFSE, 328

solid sphere with internal energy generation
and insulated surface, RS02B0T 0G

case, 314
boundary conditions, 315
case RS02B0T0G1, 316
case RS02B0T0Gr2, 316
case RS02B0T0Gr4, 317–318
case RS02B0T0Gr6, 318–319
case RS02B0T0Gt4, 318
eigenvalues, 315
initial temperature, 315

steady case X12, 129–130
steady case, X12Y 12

Dirac delta function, 131
eigenfunction expansion method, 131–132
GF equation, 130–131
kernel function, 131
Laplace transform method, 133
matching condition and jump

condition, 131
transient problems, 132–133

steady rectangle, X12B10 Y12B00
alternate temperature expression, 174
kernel function, 173
numerical results, 174
single-sum solution, 173
steady GF solution, 173
temperature equations, 173

straight cylindrical fin
in cylindrical coordinates, 406
fin efficiency and time, 407
thermophysical properties, 406
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thin shell heated at one point and cooled by
convection

boundary conditions, 261
heat losses, 260
initial condition, 261
steady-state temperature, 262–263
transient temperature, 261–262

time partitioning in rectangle
case X21B10Y11B00T0, 175
complementary transient, 176
differential equation and related

conditions, 175
Laplace transform method, 175
large-cotime GF, 176
quantity, 176
short-cotime component, 176
small-cotime GF, 176
time-partitioning method, 175–176
transient heat conduction, 175

transient boundary heating, X21B21T 1
alternate temperature series, 166
boundary-heating integral, 164–165
differential equation, 166
heat flux, 164
long-cotime GF for, 165
quantities, 165
source term, 166
steady-state solution, 165
temperature equations, 164

transient case, X12
GF for, 133
inverse-Laplace-transformed, 134
Laplace transform, 133
series expressions, 133–134
time-domain solution, 134

transient slab body, X12 case, 113–115
two-dimensional slab heated over small region

absolute value, 227
one-dimensional transient GFs, 226
slow-converging portion of series, 227
steady temperature, contour plot of, 228
surface-mounted heated films, study, 226
time integral, 227
transient GFs, 226–227

two-dimensional slab with one side
semi-infinite, X11Y20 case

GF in cylindrical coordinate system, 144
limit method integral for, 143–144

X11B-0T 0 case
Duhamel’s integral, 449
energy generation within body, 449
fundamental solution, 449
GF solution, 450

one-dimensional flat plate geometry, 448
with zero initial condition, 449

X10B1T 0 case heat conduction in
semi-infinite body with specified
surface temperature, 106–107

X20B(x-t-)T 0 case
Duhamel’s theorem, 451
flux-based fundamental solution for, 450
GF equation, 451
semi-infinite body, 450

X11 case with fin term
differential equation, 84–85
Green’s function solution, 85–86

Exponential functions and integrals, expressions
involving, 505–506

F
FBFS, see Flux-based fundamental solution

(FBFS)
Final-value theorem, 529
Fin effect, 369, 405–406
Fin efficiency, 406

calculated for different N values, 408
GBI method and exact solution, comparison

of, 407
in straight cylindrical fin, calculation of,

406–407
and time, 407

Fin term, 82
steady fin problems in one dimension

steady-fin GF method, 86
transformation, 86

transformations, 40
boundary conditions, 41
heat conduction equation for, 41

transient fin problems
boundary condition, 83–84
dependent variable, 83
initial condition, 83
spatially constant, 83
steady-state problems with, 83

X11 case with, 84–86
First shift theorem, 528
Flat plate

auxiliary problem for
Dirac delta function, 37
equation for, 36
homogeneous boundary conditions, 36
zero initial condition, 36

with boundary conditions, 35–36
Dirichlet condition, 36
initial condition, 36
large-cotime GF
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boundary conditions, 198
convergence criterion, 198
Dirac delta function, 200
eigenfunctions, 197
form of, 197
initial-temperature distribution, 197
initial-temperature term of GFSE

with GF, 198
Kronecker delta, 200
numerical components, 199
plane heat source, 199
steady-state part, 200
uniform initial temperature, 198
volume energy generation, 202–203

Neumann condition, 36
nonhomogeneous boundary

slab with convection on both sides,
208–211

slab with one side heated, one side at fixed
temperature, X21B10T 0 case, 204–205

slab with one side heated, one side
insulated, X22B10T 0 case, 205–208

for temperature, 203
one-dimensional GF for, 35
Robin condition, 36
small-cotime GF, 192

initial conditions, 193
slab with zero-temperature boundaries,

X11B00T 1 case, 193–195
volume energy generation, 195–197

surface temperature, 36
temperature problem, 35

Fluid flow in ducts, 432
average velocity, use of, 432
bulk temperature, equation for, 434
components of matrices and vector,

expression of, 435–436
dimensionless eigenvalue, 433
dimensionless hydraulic diameter, 433
dimensionless velocity, calculation of, 433
example for, 434
friction factor, 433
heat transfer coefficient, value of, 434
Nusselt number, 434
standard Galerkin method, use of, 432
temperature, computation of, 433–434
velocity profile, 432

Flux-based fundamental solution (FBFS), 444
Flux-based USE equation, 454

for two bodies
with imperfect contacts, 459
in perfect contact, 458

Fourier number, 263

Fourier’s law of heat conduction, 4
Friction factor, 433
Functions and series, 503

Poisson’s summation formula, 504
Fundamental heat conduction solution, 22

Dirac delta function, 24
Gaussian distribution, 24
geometry and boundary conditions,

expressions for, 23
Green’s functions formed from, 104
heat conduction solution, 23
temperature distribution, 24
volumetric energy generation, 24

G
Galerkin-based Green’s functions applications

basis functions, in complex geometries,
413–423

fluid flow in ducts, 432–436
heterogeneous solids and, 423–429
steady-state conduction, 429–432

Galerkin-based integral (GBI) method, 369, 380
for solution of diffusion equation

complementary form and solution, 371
eigenvalue problem and eigenfunction, 371
examples on (see Temperature distribution

calculation)
fin effect, influence of, 372
Galerkin procedure, use of, 372
homogeneous boundary conditions and

symmetric matrix, 373
linear combination of set of basis

functions, 372
mathematical identities, use of, 373, 410
matrix form of equation, 372
temperature distribution, calculation

procedure for, 373
Generalized Bessel equation, 484

differential equation
comparison of, 486
solution of, 487

Geometry and boundary condition numbering
system

cylindrical coordinates
three-dimensional equation for, 48

kinds of, 48–53
one-dimensional Cartesian geometries, 50
one-dimensional cylindrical radial

geometries, 51
for one-dimensional slab bodies

eigenfunctions, 151
fundamental heat conduction function, 150

rectangular coordinate system, 48
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ring geometries, 51
spherical coordinates, 48
three dimensional equation

isotropic thermal conductivity, 48
for transient conduction, 48

Gibbs phenomenon, 157
Green’s functions (GFs), 1, 527

advantage
alternative form, 2
flexible and powerful, 2
intrinsic verification, 2
systematic solution procedure, 2
time partitioning, 2–3
two- and three-dimensional, 2

convergence of
convergent series, 152
Dirac delta function, 151
errors, 152
Euler–Maclaurin summation formula, 152
expression for temperature, 152
nonzero values, 153
for one-dimensional body, 151
time integral, 152–153

cylindrical coordinates with
annulus with radial and angular

dependence, 558–560
case summary, 562
sector of radius, 554–557
solid cylinder with radial and angular

dependence, 554, 556
wedge for, 553–554

expression for, 383–384
forms of USE equations, 455
Green’s Function Library, database, 47
for infinite and semi-infinite bodies, 183
infinite one-dimensional body, auxiliary

problem in, 18
boundary conditions, 20
differential equation, 20
equations for, 19
inverse Laplace transform, 19
Laplace transforms, 19
transform of derivative, 19–20

physical interpretations
differential equation for, 29
Dirac delta function, 28
initial temperature distribution, 28
solution for, 29
volumetric energy generation, 28

properties of, 384–385
radial-cylindrical coordinates

for circular region, 538–539
comparison of, 540

derivative of, 539
exact and approximate equations, 547
hollow cylinder, 543–546, 548–551
infinite body, 533
integral from, 536–537
outside cylindrical region, 543, 546
region outside, 549
for several values, 535
small and large-time approximations for,

535–536
solid cylinder, 540–543
steady, 534
for various radii, 538

for radial spherical geometries
finite region with, 575
heat conduction equation, 565
hemisphere with radial and azimuthal

dependence, 575
hollow sphere with, 569–574
infinite body with spherical void, 566
infinite region outside spherical cavity,

569, 571, 573
infinite region with, 575
infinite region with radial spherical

symmetry, 565
solid sphere, 565–566, 568–569
solid sphere with radial and azimuthal

dependence, 574–575
rectangular coordinates

comparison of results for, 595
and film with finite heat capacity,

600–601
finite-body cases, 581
with fin term, 578, 580
heat capacity and convection coefficient,

601–602
for infinite, 578
in infinite and semi-infinite body, 578
infinite region, 581–582
one-dimensional heat conduction

equation, 577
one-dimensional rectangular

coordinates, 579
plate with, 584–593, 595–611
and semi-infinite body, 578, 582–584,

593–594, 602–603, 608, 610
for semi-infinite body

with insulation condition, 33
with isothermal condition, 30–31

steady and transient
relationship between, 87
units in Cartesian coordinates, 87

transient heat conduction, properties for, 37
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Green’s functions (GFs) solution method
alternative form of, 387–392

constants, determination of, 389
differentiable temperature function, 388
equation for, 390
Green’s theorem, application of, 389
for improving convergence at

boundaries, 388
integration steps, 389
quasisteady solution, 388
steady-state temperature for surface

bounded body, 388
and temperature calculation example,

390–392
auxiliary equation and, 370–371
differentiable temperature function

calculation of, examples of, 402–405
equation, 385–387
expression for, 383–384
fin effect, 405–406
Galerkin-based integral method, 371–379
nonhomogeneous solution, 380–383
numerical calculation of eigenvalues, 379–380
properties of, 384–385

Green’s function solution equation (GFSE), 48,
369, 385–387

auxiliary equation, 72
boundary conditions, 73–74
derivation of one-dimensional

auxiliary boundary value problem, 64
boundary conditions, 66–67
boundary value problem for temperature,

63–64
change of variables, 64
Dirac delta function, 64–65
initial condition, 65
inverse heat conduction problem, 67
for one-dimensional rectangular

coordinates, 65
outward normal from, 66
reciprocity relation, 64
time derivative, 64

heat conduction for homogeneous bodies, 74
heat flux, 75
initial conditions, 74
Laplacian operator, 72
orthogonal coordinate system, 75
radial flow of heat in spherical coordinates

for boundary conditions of first kinds, 292
for boundary conditions of second and

third kinds, 292
conversion components for derivation of,

304–305

flow in spheres, separation of, 297–303
hollow sphere with convective boundary

condition, derivation, 300–303
infinite body, 292–297
for initial condition, 292
large and small-time solutions, 308
large-time temperature, alternate

derivation, 313–314
RS02B0T0G1 case, 316
RS02B0T0Gr2 case, 316–317
RS02B0T0Gr4 case, 317–318
RS02B0T0Gr6 case, 318–319
RS02B0T0Gt4 case, 318
solid sphere heated at surface, 309–311
solid sphere with arbitrary initial

temperature, 306–308
solid sphere with convective boundary

condition, 298–300, 311–314
solid sphere with internal energy generation

and insulated surface, 314–315
steady state, 326–329
temperature in hollow spheres, 319–322
temperature in infinite region outside

spherical cavity, 322–326
temperature in solid spheres, 297–298,

303–319
for volume energy generation, 292

reciprocity relation of, 72
temperature distribution, 73
temperature problem

boundary conditions for, 70
convection boundary conditions on

rectangular body, 71
film boundary condition, 72
first and second kinds, boundary

conditions, 71
in homogeneous isotropic body, 70
initial temperature distribution, 70
linear heat conduction, 70
spatial derivative, 70
thermal conductivity and diffusivity, 70

three coordinate systems, 76
volume element, 73
volumetric energy generation, 75

H
Heat conduction, numbering system in, 47

advantages
algebra for linear cases, 59–61
data base in transient heat conduction,

58–59
examples of, 57–58

one-dimensional, 54
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three-dimensional, 56
two-dimensional, 55

geometry and boundary condition
axial coordinate, 48
cylindrical coordinates, 48
rectangular coordinate system, 48
types of, 49–50

volumetric source term
notation for, 55
source term, 55
sum of problems, 57

Heat flux
defined, 3
in positive coordinate directions, 4
solid body with steady temperature gradient,

3–4
Heat transfer coefficient, 434
Heat transfer in solid

integral energy equation for
conduction and radiation, 10
energy across control surface, 9–10
first law of thermodynamics for, 8–9
for fixed control volume, 10
function of temperature, 10
internal energy, 9
moving system and fixed control volume,

relation between, 9
path dependent quantities, 8
rate of work done, 10
Reynolds transport theorem for change of

energy, 9
specific heat at constant volume, 10
specific volume, 10
volume energy generation, 10

Heaviside unit step function, 12
Heterogeneous body

defined, 37
Fourier’s law for, 37

Heterogeneous solids, thermal conduction
computation in, 423

boundary of inclusion and calculations,
423–424

composite body with inclusion, 423
contact conductance, 424
effect of finite contact conductance, 423
examples on, 425–429
linear combination of basis function, 424
modification of basis functions, 423
set of basis functions, selection of, 423

High degree polynomials problems, 427
Hollow cylinders

insulated inside, R21B00T case, 256–257

with zero surface temperature, R11B00T 1
case, 254–256

I
Identity matrix, 379
Incompressible solid

integral energy equation for
specific heat at constant volume/pressure,

11
Infinite bodies

Cartesian coordinates and
GF expression for, 352
modified Bessel function of order zero,

353
with circular hole

and specified surface heat flux, R20B-T 0
case, 259–260

and specified surface temperature,
R10B1T 0 case, 258–259

Dirac delta function, 293
fundamental heat conduction solution for

spherical radial heat flow, 292
GF, axisymmetric condition of, 293
impulse and response points

distance between, 294
point source solution, 294
R00 GF for

approximations for, 240
Bessel function, 238
derivation, 238–240
reciprocity relation, 238
temperatures from initial conditions,

240–242
RS00 GF for

continuous distributed volumetric source,
295

Dirac delta functions, sifting property of,
296

general form, 294
instantaneous spherical surface source, 295
rectangular coordinate system, 295
in spherical polar coordinates, 295–296
temperature divided by, 297
temperature response and instantaneous

impulse at, 294
Infinite one-dimensional body

GF in auxiliary problem, 18
boundary conditions, 20
differential equation, 20
equations for, 19
inverse Laplace transform, 19
Laplace transforms, 19
transform of derivative, 19–20
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temperature
fundamental heat conduction solution,

22–24
Green’s function solution equation, 22

Influence functions, 453, 463–465
Influence matrix, 460
Initial temperature distribution

in general coordinates, 53
numbering system, 53
for one-dimensional case, 53

Initial-value theorem, 528–529
Insulated boundaries, 418–419

pseudo-GF for
boundary conditions, 139
Cartesian cases, 139–140
in cylindrical coordinates, 140
differential equation, 139
eigenfunction expansions, 140
kernel function, 140
spatial-average temperature, 139
spherical coordinates, 140

Integral energy equation
for heat transfer in solid

conduction and radiation, 10
energy across control surface, 9–10
first law of thermodynamics for, 8–9
for fixed control volume, 10
function of temperature, 10
internal energy, 9
moving system and fixed control volume,

relation between, 9
path dependent quantities, 8
rate of work done, 10
Reynolds transport theorem for change of

energy, 9
specific heat at constant volume, 10
specific volume, 10
volume energy generation, 10

in incompressible solid
specific heat at constant volume/

pressure, 11
Integral expression for temperature

two-dimensional semi-infinite bodies
expression for, 219
GF equation for, 218
with uniform heat flux, 218

Integrals, 506–512
exponential functions, 513–514

expressions involving, 505–506
fundamental heat conduction solution, 515
short-cotime GFs, 515–516

Interface descriptors, 54
types, 56

Internal heating and convective cooling, cylinder
with, 342

Biot number, 343
evaluation of integral, 343
GF replacement in integral expression, 343
integral expression for temperature, 343
temperature

and frequency, 344
distribution, 343
in cylinder, 342

Intrinsic thermocouple problem, 441
geometries for, 442

Intrinsic verification, 169
by alternate series expansion, 172

steady rectangle, X12B10 Y12B00,
173–175

by complementary transients
body of finite extent heated at surface, 170
for case X21B10 Y11B00T 0, 171
dimensionless cutoff time, 170
dimensionless times, 172
heat flux, 171
large-cotime GF, 170
steady-state component, 170
steady-state value, 172
steady term, 170
time-decaying term, 170
time integral of exponential factor, 170

1D solution and complementary transients
for case X21B10Y11B00, 172
steady-state, 172
variable parameter, 172

time-partitioning
in rectangle, 175–178

J
Jacobi method, 379

K
Kronecker delta, 200

L
Laplace transformation method, 19, 105

Cauchy principal value of, 525
Cauchy’s integral formula in, 519
complex z-plane, 524
contour integral, 519
defined, 519
derivation of GF

region outside spherical cavity with
convection, RS30 case, 110–112

semi-infinite body with convection, X30
case, 108–110

transient slab body, case X12, 112–115
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Fourier integral, 524
functions, 519, 524

of parameter, 106
heat conduction in semi-infinite body

with surface temperature, X10B1T 0-Case,
106–107

inverse transform, 106
for one-dimensional bodies, 401
properties

change of scale, 526
of convolution, 526
of derivative, 526–527
of derivatives, 526
division by, 526
of integrals, 526–527
linear property, 525
multiplication by, 526
of polynomials, 526

relation, 525
table of, 520–523
technique, 441, 443–444, 451, 465–466
theorems

final-value theorem, 529
first shift theorem, 528
Green’s function, 527
initial-value theorem, 528–529
second shift theorem, 528

Large-cotime GF, flat plate
boundary conditions, 198
convergence criterion, 198
Dirac delta function, 200
eigenfunctions, 197
form of, 197
initial temperature distribution, 197
initial temperature term of GFSE with GF, 198
Kronecker delta, 200
numerical components, 199
plane heat source, 199
steady-state part, 200
uniform initial temperature, 198
volume energy generation, 202–203

Large region heated by high-conductivity
sphere, 343

boundary condition, 344–345
geometry for, 344
GF replacement in temperature

expression, 345
Green’s function, expression for, 345
plots of amplitude and temperature, 346
specific-heat ratio, 345
temperature expression, 345
temperature satisfaction equation, 344

Layered bodies, steady-periodic heat conduction
in, 345

geometry studied, 346–347
GF in layered material, 348
heat fluxes, calculation of, 348
interface heat fluxes, 347
interface temperatures

in last layer, 347
in layer, 346

matrix form for unknown heat fluxes, 348
matrix method, use of, 346
temperature

expression for layered cylinders/
spheres, 348

in layer, 346
volume-heating integral term, 347

Leibniz’s rule for differentiation of
integral, 444

Limiting cases for 2D and 3D geometries
aspect ratio, 264
Fourier number, 263
nonuniform heating, 264–265

Limit method
parallelepiped with specified surface

temperature, X11Y11Z11 case,
142–143

point source in, 141–142
two-dimensional slab with one side

semi-infinite, X11Y20 case,
143–144

Long solid cylinder
boundary conditions

with elevated surface temperature,
R01B1T 0 case, 248–250

with heating at surface, R02B1T 0 case,
250–251

initial conditions
with surface convection, R03B0T 1 case,

247–248
with zero surface temperature, R01B0T

case, 246–247
volume energy generation

with nonuniform energy generation,
R02B0T 0Gr5 case, 252–254

with uniform energy generation,
R01B0T 0G1 case, 251–252

M
Materials properties

table of, 531–532
Mathematical identities use, 373, 384–386, 389,

410
Mathematica program, 379, 410–411
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Method of expansions for eigenvalues, 128
Dirac delta function on finite domain, 129
forms for three coordinate systems, 129
one-dimensional steady case, 129
steady case X12, 129–130
steady case X12Y12, 130–133
transient case X12, 133–134
two-dimensional rectangle, 129
variation of parameters, 129

Method of images
for rectangular coordinates, 101
transient GFs for semi-infinite body

boundary conditions, 102
dimensionless time plot, 103–105
equations for, 102
initial temperature, 102
location of sources and sinks, 103
X12 and X21 cases, 102
X22 GF case, 102

Method of separation of variables
eigenvalues and norms for GF using, 124
plate with temperature fixed at both sides

arbitrary function of time, 117
boundary conditions, 115, 117
differential equations, 116
eigencondition, 117
eigenfunction, 117–118
Fourier series, 118
index symbol, 119
initial conditions, 115–116
name separation of variables technique, 116
orthogonality condition, 118
partial differential equation, 115
periodic functions, 116
plate insulated on both sides, X22 case,

120–123
superimposing solutions, 115
trivial solution, 117

Moving solid
example, 94–95
one dimensional problem, 89

coordinate system, 90
equation for, 90
quasisteady state, 90
thermal conductivity, 90

three-dimensional formulation
boundary conditions, 91–92, 94
equation for, 91
expression for, 92–93
GFSE for, 92
heat transfer coefficient, 92
initial condition, 91
velocity transformation, 91

N
Name separation of variables technique, 116
Neumann condition for flat plate, 36
Non-Fourier heat conduction, 4

divergence, 42
electron and lattice temperature, 42
electron and phonon transport, 42
electron capacitance, 42
electron–phonon coupling factor, 42
energy equation for, 42
finite speed of heat propagation, 42
temperature and heat flux, relation

between, 41
vector energy equation, 42
wave term and speed, 42

Nonhomogeneous differential equation
solutions, 380

calculation of constant of integration,
382–383

column vectors, elements of, 381
element of square of matrix, value of, 381
elements of array, determination of,

381–382
final form of solution, 382
Galerkin integral procedure, approximation

by, 381
Galerkin method, 380
internal energy source, contribution of, 382
solution equation, 380
temperature, expression for, 383

Nonorthogonal basis functions
temperature distribution calculation by

basis functions, selection of, 375
eigenfunction, expression for, 376
eigenfunctions, plot of, 377
GBI solution, accuracy of, 378–379
one-dimensional Cartesian system,

equation for, 376
one-term solution, 378
parameters in dimensionless form, putting

of, 376–377
temperature for, 378

Numbering system in heat conduction, 47
advantages

algebra for linear cases, 59–61
data base in transient heat conduction,

58–59
examples of, 57–58
geometry and boundary condition

axial coordinate, 48
cylindrical coordinates, 48
rectangular coordinate system, 48
types of, 49–50
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one-dimensional examples of, 54
three-dimensional examples of, 56
two-dimensional examples of, 55
volumetric source term

notation for, 55
source term, 55
sum of problems, 57

Numerical quadrature, 422, 431
Numerical transform inversion, 442
Nusselt number, 434

O
One-dimensional Cartesian geometries, 50
One-dimensional conduction problems; see also

Green’s functions solution method
alternative GF solution, 401

hollow cylinder and boundary conditions,
397

numerical values of, 400
partitioned and alternative solution, 400
procedure for, 397–399

basis functions, 392–393, 413
eigenvalues and eigenvectors, 396
matrices A, 394–395
matrices B, 395–396
matrices D, 396
matrices P, 396–397

One-dimensional cylindrical radial
geometries, 51

One-dimensional GF solution equation
boundary conditions, 182
initial condition, 182
in rectangular coordinate system, 181
solution of temperature problem, 182

One dimensional problem in moving
solid, 89

coordinate system, 90
equation for, 90
quasisteady state, 90
thermal conductivity, 90

One-dimensional semi-infinite body
convection boundary condition

heat conduction equation, 69
initial condition, 69

One-dimensional steady heat conduction
exponentially varying generation

temperature expression, 17–18
piecewise constant energy generation

temperature integral, 18
slab body

boundary conditions, 13
energy equation for, 13
steady temperature in, 14

solution by GF
algebraic solution, 16
auxiliary problem, 14–15
boundary conditions, 15
differential equation for, 15
Dirac delta function, 16
jump condition, 16, 21
steady GF, 17
temperature expression, 15

solution by integration
boundary conditions, 13
energy equation, 13

uniform energy generation, 16–17
One-dimensional steady-periodic GF

in Cartesian coordinates
coefficients, value of, 336
differential equation for GF, 335
far-away boundary, 336
GF, expression for, 336

in cylindrical coordinates
coefficients, expression for, 337–338
construction of GF, 337
differential equation for GF, 336
jump condition, 337
matching conditions, 337
modified Bessel functions, 337
radial cylindrical, 337
Wronskian identity, use of, 338

in spherical coordinates
algebric expression for GF, 339
coefficients, expression for, 339
construction of GF, 338
differential equation for GF, 338
general solution of equation, 339
jump condition, 339
matching conditions, 338
single expression for GF, 339

One-eigenvalue solution steps, 417–418
Orthogonal basis functions

temperature distribution calculation by
diagonal terms, value for, 374
differential equation for temperature, 375
elements of matrix, equation for, 374
final temperature solution, 375
mathematical statement, 374
members of sets of basis function, 374

Orthogonal bodies, 369
Orthotropic body transformations

boundary conditions, 39
differential volume scales, 39
heat conduction equation in Cartesian

coordinates, 39
reference conductivity, 39
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P
Parallelepiped geometry, 142
Pin fin with heat flux at base, example,

356–357
contour plots of temperature amplitude and

phase, 359
eigenfunctions, 357–358
temperature expression, 357

Plate with temperature fixed at both sides
method of separation of variables

arbitrary function of time, 117
boundary conditions, 115, 117
differential equations, 116
eigencondition, 117
eigenfunction, 117–118
Fourier series, 118
index symbol, 119
initial conditions, 115–116
name separation of variables technique,

116
orthogonality condition, 118
partial differential equation, 115
periodic functions, 116
plate insulated on both sides, X22 case,

120–123
superimposing solutions, 115
trivial solution, 117

Poisson equation, 134
Product solution for transient GFs

arbitrary initial condition, 124
boundary conditions, 126
in cylindrical coordinates, 128
differential equation, 126
dimensionless initial condition, 125
Dirac delta function, 127–128
heat conduction problem, 124–125
heat transfer coefficient, 123
initial condition, 126
one-dimensional heat conduction

problems, 126
rectangular coordinates, 123
two-dimensional rectangular coordinate

system, 127
Pseudo-GF, 87

for insulated boundaries
boundary conditions, 139
Cartesian cases, 139–140
in cylindrical coordinates, 140
differential equation, 139
eigenfunction expansions, 140
kernel function, 140
spatial-average temperature, 139
spherical coordinates, 140

Q
Quasisteady solution, 388, 390, 406

R
Radial-cylindrical coordinates

for circular region, 538–539
comparison of, 540
derivative of, 539
exact and approximate equations, 547
hollow cylinder, 543–546, 548–551
infinite body, 533
integral from, 536–537
outside cylindrical region, 543, 546
region outside, 549
for several values, 535
small and large-time approximations for,

535–536
solid cylinder, 540–543
steady, 534
for various radii, 538

Radial heat flow
in cylindrical coordinate system

heat conduction equation, 237
radial GF equation, 237

separation of variables for
Bessel equation, 243–244
boundary conditions, 244
differential equation, 243
dimensionless eigenvalues, 244
dummy variable, 245
GFSE for, 246
initial conditions, 245
initial-value problem for, 242, 245
orthogonality condition, 245
series solution of form, 242

Radial spherical geometries
for GF

finite region with, 575
heat conduction equation, 565
hemisphere with radial and azimuthal

dependence, 575
hollow sphere with, 569–574
infinite body, 566
infinite region outside spherical cavity,

569, 571, 573
infinite region with, 575
infinite region with radial spherical

symmetry, 565
solid sphere, 565–566, 568–569
solid sphere with radial and azimuthal

dependence, 574–575
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Rectangles and slabs, Cartesian coordinates and
alternate GF for 2D slabs, 350
alternate GF for rectangles, 349
eigenfunction expansion method, use of, 349
fourth and fifth kind boundary

conditions, 349
GF expression for, 349
kernel function, 349
slab heated over small region, example of,

350–352
Rectangular coordinates

for GF
comparison of results for, 595
finite-body cases, 581
with fin term, 578, 580
heat capacity and convection coefficient,

601–602
for infinite, 578
in infinite and semi-infinite body, 578
infinite region, 581–582
one-dimensional rectangular coordinates,

579
plate with, 584–593, 595–611
semi-infinite body with, 578, 582–584,

602–603, 608, 610
method of images, 101

Rectangular parallelepiped, Cartesian coordinates
and

alternate GF, use of, 354
eigenfunction expansion method, use of, 353
GF expression for, 353
kernel function and GF, 353–354

REDUCE-3, symbolic software, 429
Repeated integrals of error function, 187
Reynolds transport theorem, 9
Ring geometries, 51
Robin condition for flat plate, 36

S
Second shift theorem, 528
Semi-infinite bodies, 29

boundary condition, temperature in
of first kind, 30–32
with insulated boundary, 32
with isothermal boundary, 30
of second kind, 32–33

Cartesian coordinates and
GF expression for, 352
modified Bessel function of order zero,

353
with convection at boundary

and internal energy generation, 69
example for, 34–35

GF for
with insulation condition, 33
with isothermal condition, 30–31

with internal heating
Biot number, 342
dimensionless temperature and frequency,

plot of, 342
equation for GF, 341
GF placement in temperature equation,

341–342
steady-periodic internal heating, 341
temperature expression, 341

method of images, transient GFs for
boundary conditions, 102
dimensionless time plot, 103–105
equations for, 102
initial temperature, 102
location of sources and sinks, 103
X12 and X21 cases, 102
X22 GF case, 102

Semi-infinite bodies, disk heat source on, 268
average temperature, 274–275
closed-form expressions for temperature

Bessel function, 272
centerline temperature, 272
steady surface temperature, 271
surface temperature, 272

integral expression for temperature
energy equation and boundary conditions,

269
GFSE for, 269
temperature expression, 270–271

Semi-infinite one-dimensional bodies
for boundary conditions, 183, 185
with convection, X30B1T 0 case, 189–190
Dirac delta function, 182
fundamental heat conduction, 183
GF equation for, 184
GFSE for, 184
linear function, 184
spatially uniform initial conditions

initial temperature distribution, 183
with specified surface heat flux, X20B-T 0

case, 188–189
with specified surface temperature, X10B-T 0

case, 186–188
time-independent solution for case X10B0T 2,

185
volume energy generation

boundary conditions, 191
GFSE for, 191
initial condition, 191
temperature, 192
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Separation of variables for radial heat flow
Bessel equation, 243–244
boundary conditions, 244
differential equation, 243
dimensionless eigenvalues, 244
dummy variable, 245
GFSE for, 246
initial conditions, 245
initial-value problem for, 242, 245
orthogonality condition, 245
series solution of form, 242

Series convergence
boundary conditions, 150
in Cartesian bodies with uniform thermal

properties, 150
energy generation term, 150
GFs for

finite body, 150
one-dimensional slab bodies, 150

nonzero boundary-heating term, 150
nonzero initial temperature distribution,

149–150
Series expression for temperature

two-dimensional semi-infinite bodies
complementary expression, 220
constant heat flux, 220
coordinate transformation, 220
dimensionless temperature, 222
dimensionless variables, 220
dummy variable, 220
time integral for, 219
truncated exponential function, 221

Sifting property, 11–12; see also Dirac delta
function

Single-node USE approach, 465
Duhamel’s integral equations, alternative

forms, 465
example for

heat flux-based solution, 469–470
temperature-based solution, 466–469
two homogeneous semi-infinite

bodies at different initial temperatures,
466

single integral equations, 465
Slab body geometry, 68
Slab heated on one side

amplitude and phase of temperature,
plots of, 341

and Biot number, 340
temperature expression, equation for, 340
temperature in dimensionless form, 340

Small-cotime GF, flat plate, 192
initial conditions, 193

slab with zero-temperature boundaries,
X11B00T 1 case, 193–195

volume energy generation, 195–197
Solid cylinder

with internal energy generation, R03B0G

case, 280–281
with temperature boundary conditions, 265

Solid, heat transfer in
integral energy equation for

conduction and radiation, 10
energy across control surface, 9–10
first law of thermodynamics for, 8–9
for fixed control volume, 10
function of temperature, 10
internal energy, 9
moving system and fixed control volume,

relation between, 9
path dependent quantities, 8
rate of work done, 10
Reynolds transport theorem for change of

energy, 9
specific heat at constant volume, 10
specific volume, 10
volume energy generation, 10

Solid sphere heated at surface
GFSE, radial flow of heat in spherical

coordinates, 309–311
with arbitrary initial temperature,

306–308
with convective boundary condition,

derivation, 298–300, 311–314
with internal energy generation and

insulated surface, 314–315
Solution of diffusion equation, GBI method

complementary form and solution, 371
eigenvalue problem and eigenfunction,

371
examples on (see Temperature distribution

calculation)
fin effect, influence of, 372
Galerkin procedure, use of, 372
homogeneous boundary conditions and

symmetric matrix, 373
linear combination of set of basis functions,

372
mathematical identities, use of, 373, 410
matrix form of equation, 372
temperature distribution, calculation

procedure for, 373
Space-variable initial conditions types, 53
Spatial Fourier transform, and alternate GF for

2D slab, 250
Specific energy storage, 5
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Spherical coordinate system, 7
one-dimensional steady-periodic GF

algebric expression for GF, 339
coefficients, expression for, 339
construction of GF, 338
differential equation for GF, 338
general solution of equation, 339
jump condition, 339
matching conditions, 338

Spheroidal bodies
calculation of temperature distribution in,

416–418
with convective surface, set of basis functions

for, 421–423
Steady fin problems in one dimension; see also

Fin term
steady-fin GF method, 86
transformation, 86

Steady Green’s function
auxiliary equation for

boundary conditions, 136, 138
Dirac delta function, 136
divergence theorem, 136
Laplace equation in spherical polar

coordinates, 136
line source in cylindrical coordinates, 137
one-dimension steady-state heat equation,

138
plane source solution, 138
point-source solution, 135–136
in rectangular coordinates, 135–137
temperature distributions, 138

complex variables and conformal
transformations, 134

Poisson equation, 134
solution equation

auxiliary equation, 88
boundary conditions, 88
example, 88–89
Laplacian operator, 87–88
partial differential equation, 87
steady temperature, 88

Steady heat conduction
steady-state GFSE, 86–87

Steady heat conduction in one-dimension
exponentially varying generation

temperature expression, 17–18
piecewise constant energy generation

temperature integral, 18
slab body

boundary conditions, 13
energy equation for, 13
steady temperature in, 14

solution by GF
algebraic solution, 16
auxiliary problem, 14–15
boundary conditions, 15
differential equation for, 15
Dirac delta function, 16
jump condition, 16
steady GF, 17
temperature expression, 15

solution by integration
boundary conditions, 13
energy equation, 13

uniform energy generation, 16–17
Steady-periodic heat conduction

approaches to
frequency-domain approach, 333
time-domain approach, 333

in cylindrical coordinates with axisymmetry
GF with eigenfunctions, 354–359
half-space, 359–361

importance of, 333
in layered body, 345–348
one-dimensional GF

in Cartesian coordinates, 335–336
in cylindrical coordinates, 336–338
in spherical coordinates, 338–340

one-dimensional temperature, examples for
cylinder with internal heating and

convective cooling, 342–343
large region heated by high-conductivity

sphere, 343–345
semi-infinite body with internal heating,

341–342
slab heated on one side, 340–341

relations for, 333
boundary conditions of fourth and fifth

kind, 334
complex conjugate of temperature, 334
Dirac delta function, 335
Green’s function and, 335
heat conduction, boundary value problem

for, 334
heating terms, 334
steady heat conduction equation, 334
steady-periodic temperature, integral

equation, 335
temperature at single frequency, 334

in two-and three-dimensional Cartesian
bodies, 349

infinite and semi-infinite bodies,
352–353

rectangles and slabs, 349–352
rectangular parallelepiped, 353–354



T&F Cat # K10695, K10695_IDXc, Page 640, 12-6-2010

640 Subject Index

3D Steady-periodic heat conduction in cylinder
and associated GF for, 361
GF with eigenfunctions along, 362–363
solid cylinder heated over sector of surface

and cooled by convection, example, 363
amplitude and phase of temperature on

cylinder surface, 365–366
eigenfunctions along, 364–365
equations satisfying temperature, 363
GF and temperature expression, 364
heating function, 364

Steady-periodic heat conduction in layered
bodies, 345

geometry studied, 346–347
GF in layered material, 348
heat fluxes, calculation of, 348
interface heat fluxes, 347
interface temperatures in last layer, 347
matrix form for unknown heat fluxes, 348
matrix method, use of, 346
temperature expression for layered cylinders/

spheres, 348
temperature in layer, 346
volume-heating integral term, 347

Steady-periodic quantities, 335
Steady state

definition, 429
finite cylinder with

arbitrary surface temperature on curved
surface, R01B-Z11B00 case, 281–283

hollow sphere heated on inside surface
RS21B10 case, 326–327

hollow sphere with temperature fixed on both
surfaces

RS11B10 case, 327–328
long cylinder with specified surface

temperature, R01B-Φ00 case, 283–285
solid cylinder

with internal energy generation, R03B0G

case, 280–281
solid sphere with internal energy generation

and convective boundary condition
case RS03B0G1, 328
case RS03B0G4, 329

solutions
parallelepiped with specified surface

temperature, X11Z11Y11 case,
228–230

rectangle heated over part, 225–226
two-dimensional slab heated over small

region, 226–228
Steady-state conduction, GF solutions, 429

column vector members, 430

example of (see Steady-state temperature)
GF solution, equation for, 430
GF solutions for transient conduction,

modification of, 429
nonhomogeneous boundary conditions and,

430
standard Galerkin solution, 430
steady-state GF, 429

Steady-state temperature
calculation

basis functions, 430
coefficients, value of, 432
long pipe in square box with isotherms, 431
matrices, evaluation of, 431
quasisteady temperature, use of, 430
temperature distribution, equation for, 431

for case X21B10 Y11B00T 0, 178
Surface element method, 443
Surface of control volume, 9
Symbolic computer programming, 417

T
Taylor series, 5–6
TBFS, see Temperature-based fundamental

solution (TBFS)
Temperature

distribution for nonuniform initial temperature
in infinite body, 24, 26

complementary error function, 25
error function, 25

distribution in cubical body with sphere
alternative GF solution, use of, 428–429
basis functions in, 426
cubical body with centrally located

spherical inclusion, 427
dimensionless parameters and, 429
dimensionless temperature and time, plot

of, 429
elements of matrices, computation of, 427
function for one-term solution, 427
temperature solution equation, 429
values of integrals, 428

in infinite one-dimensional body
fundamental heat conduction solution,

22–24
Green’s function solution equation, 22

problem and Green’s function solution
equation

boundary conditions for, 70
convection boundary conditions on

rectangular body, 71
film boundary condition, 72
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first and second kinds, boundary
conditions, 71

in homogeneous isotropic body, 70
initial temperature distribution, 70
linear heat conduction, 70
spatial derivative, 70
thermal conductivity and diffusivity, 70

in semi-infinite bodies, 29
boundary condition of first kind, 30–32
boundary condition of second kind, 32–33
with constant heat flux at surface, 189
with energy generation, 192
with surface convection, 190
uniform initial temperature for cases

XI0B0T 1, 184
in slab body

with constant heat flux, 205, 208
heated by continuous plane source, 201

Temperature-based fundamental solution (TBFS),
447

Temperature-based USE equations, 454
Temperature distribution calculation

by nonorthogonal basis functions
basis functions, selection of, 375
eigenfunction, expression for, 376
eigenfunctions, plot of, 377
GBI solution, accuracy of, 378–379
one-dimensional Cartesian system,

equation for, 376
one-term solution, 378
parameters in dimensionless form, putting

of, 376–377
temperature for, 378

by orthogonal basis functions
diagonal terms, value for, 374
differential equation for temperature, 375
elements of matrix, equation for, 374
final temperature solution, 375
mathematical statement, 374
members of sets of basis function, 374

Temperature in hollow spheres, 319
exposed to convection with large heat transfer

coefficient
RS11B10T 0 case, 321–322

heated on inside surface
with applied heat flux at inner and outer

boundary, 321
RS21B10T 0 case, 320

Temperature in infinite region outside spherical
cavity, 322

hollow sphere with sudden increase of
temperature at inner boundary

case RS11B10T 0, 323

infinite body heated at surface of
RS20B1T 0 case, 323–324

infinite body with fixed-temperature, internal
energy generation

RS10B00T 0Gr5 case, 324–326
Thermal conduction computation in

heterogeneous solids, 423
boundary of inclusion and calculations,

423–424
composite body with inclusion, 423
contact conductance, 424
effect of finite contact conductance, 423
examples on, 425–429
linear combination of basis function, 424
modification of basis functions, 423
set of basis functions, selection of, 423

Thin shells
heated at one point and cooled by convection,

260–263
Three-dimensional examples of numbering

system, 56
Three-dimensional formulation in moving

solid
boundary conditions, 91–92, 94
equation for, 91
expression for, 92–93
GFSE for, 92
heat transfer coefficient, 92
initial condition, 91
velocity transformation, 91

Time partitioning, 167
Time-variable source terms notation, 57
Transformations, 38

fin term, 40
boundary conditions, 41
heat conduction equation for, 41

moving solids, 39
boundary conditions, 40
constant thermal properties, 40
heat transfer equation for, 40

orthotropic body
boundary conditions, 39
differential volume scales, 39
heat conduction equation in Cartesian

coordinates, 39
reference conductivity, 39

Transient fin problems; see also Fin term
boundary condition, 83–84
dependent variable, 83
initial condition, 83
spatially constant, 83
steady-state problems with, 83
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Transient GFs
method of images, semi-infinite body

boundary conditions, 102
dimensionless time plot, 103–105
equations for, 102
initial temperature, 102
location of sources and sinks, 103
X12 and X21 cases, 102
X22 GF case, 102

product solution for
arbitrary initial condition, 124
boundary conditions, 126
in cylindrical coordinates, 128
differential equation, 126
dimensionless initial condition, 125
Dirac delta function, 127–128
heat conduction problem, 124–125
heat transfer coefficient, 123
initial condition, 126
one-dimensional heat conduction

problems, 126
rectangular coordinates, 123
two-dimensional rectangular coordinate

system, 127
Transient heat conduction, data base in,

58–59
Transient thermal constriction resistance,

473
Two-dimensional bodies in cylindrical

coordinates
axisymmetric half-space

GF, expression for, 360
half-space with heating over circular

region, example, 360–361
Hankel transform, and GF, 359–360
r-space Green’s function, 360

GF, expression for, 354
GF with eigenfunctions, 354

Bessel equation of order zero, 355
GF, construction of, 356
hollow-cylinder eigenfunctions, 356
kernel function, differential equation for,

355
kernel function, equation for, 356
norms and eigenconditions, 355

pin fin with heat flux at base, example,
356–357

contour plots of temperature amplitude and
phase, 359

eigenfunctions, 357–358
temperature expression, 357

Two-dimensional energy equation in rectangular
coordinate system, 8

Two-dimensional rectangular bodies, 75, 211
boundary condition, 77
geometry for, 76
heated over part of one face, 214–217
heat transfer coefficient, 77
with several different boundary conditions,

X21B10Y21B01 case, 212–214
thermal conductivity, 77
two-dimensional GFSE, 78

Two-dimensional semi-infinite bodies
application to strip heat source, 222

characteristic length, 224
resulting temperature, 223
surface temperature, 224

centerline temperature, 219
floating-point notation appropriate, 224
integral expression for temperature

expression for, 219
GF equation for, 218
with uniform heat flux, 218

lack of steady state, 225
round-off error, 224
series expression for temperature

complementary expression, 220
constant heat flux, 220
coordinate transformation, 220
dimensionless temperature, 222
dimensionless variables, 220
dummy variable, 220
time integral for, 219
truncated exponential function, 221

surface temperature, 219

U
Uniform initial temperature distribution, 59
Unit impulse function, see Dirac delta function
Unsteady surface element (USE) method,

441–443
conjugated heat transfer problem and, 443
Duhamel’s theorem, 443–448

and GF method, relationship between,
448–451

formulations of
multinode formulation, 443, 451
single-node formulation, 451

kernels in, 443
multinode formulation, 451

flux-based USE equations, 457–459
GF forms of USE equations, 454–455
influence functions, 463–465
numerical solution of USE equations,

459–463, 479–480
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surface element discretization, 452–454
time integration of USE equations,

456–457
single-node USE approach, 465–470
surface element method, 443
utility of, examples on, 470, 477–478

area averaged interface temperature, 475
average contact area temperature, 475
distribution of surface elements, 471–472
influence functions for semi-infinite body,

geometry of, 474
instantaneous initial interface temperature,

476
normalized area averaged interface

temperature histories, 476–477
results for dimensionless constriction

resistance, 475–476
semi-infinite bodies, geometry of, 471
semi-infinite body heated at surface over

annular-shaped region, 473

semi-infinite body heated over circular
area, 474

semi-infinite insulated cylinder with
constant disk heat source, 474

thermal constriction resistance across
contact area, 475

total heat flow through contact area, 475
transient thermal constriction resistance,

473

V
Volterra integral equations, 443, 448, 459
Volume energy generation, 10
Volumetric source term, numbering system in

notation for, 55
source term, 55
sum of problems, 57

W
Wronskian identity, 338
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