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Preface

This book demonstrates some statistical techniques useful in
the study of politics and policy. My aim is to present fundamental
material not found in statistics books, and, in particular, to show
techniques of quantitative analysis in action on problems of politics
and public policy. Most of the examples can be understood without
a mathematical or statistical background; some sections require
familiarity with basic statistical inference. Not all methodological
bases are touched; still, in the chapters that follow, quite a number
of important statistical concepts are illustrated.

The approach centers on fitting equations to data. More fundamental,
however, is the illustration and development of good statistical think-
ing—a sense of judgment about what we can and can’t learn about
the world by locking at quantitative data.

Much of this material was first prepared for courses I have taught
at Princeton University. I am indebted to several of my students
and colleagues for suggesting improvements and also to Marver
Bernstein who first encouraged me to teach a course in the quantitative
analysis of public policy issues. I am deeply grateful to many people
for their help, both direct and indirect, in the writing of this volume.
In particular, John McCarthy read several drafts with great care;
and Walter Gilbert, Walter Murphy, Dennis Thompson, and David
Wallace commented on various sections of the manuscript. Over the
years, Robert Dahl, Stanley Kelley, Jr., Frederick Mosteller, and John
Tukey have given me good advice and encouragement on this project.
Joseph G. Verbalis, Alice Anne Navin, Jan Juran, and Marge Cruise
helped to gather and analyze much of the data. Mrs. Virginia Anderson
prepared the final manuscript with care and accuracy. Barbra and
Irma Kay Power provided a room of my own in London for writing
the first draft. The section in Chapter 2 on bellwether electoral districts
was coauthored with Richard A. Sun—and, without his energy and
persistence, that difficult project would never have been completed.
At Princeton University, the Computer Center, the Woodrow Wilson
School, and the Department of Politics all provided superb institutional
support. Finally, a fellowship at the Center for Advanced Study in
the Behavioral Sciences in 1973-74 gave me time for final revisions.
These individuals and institutions are not, of course, responsible for
the faults of the book; they did help me very much and I am deeply
indebted to them. In addition, I especially thank David Hoaglin of
Harvard University for his careful reading of the first printing.

E.R. T.



THE FAIRLY INTELLIGENT FLY

A large spider in an old house built a beautiful web in which
to catch flies. Every time a fly landed on the web and was entangled
in it the spider devoured him, so that when another fly came along
he would think the web was a safe and quiet place in which to rest.
One day a fairly intelligent fly buzzed around above the web so long
without lighting that the spider appeared and said, “Come on down.”
But the fly was too clever for him and said, “I never light where
I don’t see other flies and I don’t see any other flies in your house.”
So he flew away until he came to a place where there were a great
many other flies. He was about to settle down among them when
a bee buzzed up and said, “Hold it, stupid, that’s flypaper. All those
flies are trapped.” “Don’t be silly,” said the fly, “they’re dancing.”
So he settled down and became stuck to the flypaper with all the
other flies.

Moral: There is no safety in numbers, or in anything else.

James Thurber,
Fables for Our Time

Reproduced from Fables for Our Time by James Thurber. Copyright ©
1940 by James Thurber; © 1968 by Helen Thurber. Published by Harper & Row,
Publishers, New York. Originally printed in the New Yorker. Permission for British
rights by Hamish Hamilton, Ltd.



CHAPTER 1

Introduction to Data Analysis

“Because that’s where they keep the money.”

—Willie Sutton, when asked why he robbed banks

Introduction

Students of political and social problems use statistical tech-
niques to help

test theories and explanations by confronting them with empirical
evidence,

summarize a large body of data into a small collection of typical
values,

confirm that relationships in the data did not arise merely because
of happenstance or random error,

discover some new relationship in the data, and

inform readers about what is going on in the data.

The use of statistical methods to analyze data does not make a
study any more “scientific,” “rigorous,” or “objective.” The purpose
of quantitative analysis is not to sanctify a set of findings. Unfortu-
nately, some studies, in the words of one critic, “use statistics as
a drunk uses a street lamp, for support rather than illumination.”
Quantitative techniques will be more likely to illuminate if the data
analyst is guided in methodological choices by a substantive under-
standing of the problem he or she is trying to learn about. Good
procedures in data analysis involve techniques that help to (a) answer
the substantive questions at hand, (b) squeeze all the relevant in-

1



2 INTRODUCTION TO DATA ANALYSIS

formation out of the data, and (c¢) learn something new about the
world.

Causal Explanation

All inquiry begins with a problem, a question to be answered.
Why have some countries, despite great natural resources, remained
economically weak? Why do some nations spend more on military
equipment than others? Does smoking cause lung cancer? Do auto-
mobile safety inspections reduce the number of traffic accidents? Do
economic conditions help determine what candidates the people vote
for?

The thing to be explained is the response variable or dependent
variable. In the questions above, the response variables are, respec-
tively, the level of economic development, military expenditures, the
frequency of lung cancer, the number of traffic accidents, and an
individual’s choice in an election. The causes, explanations, or predic-
tors of the response variable are the describing variablesor independent
variables. Usually more than one describing variable will help explain
the response variable; and an analysis with several describing variables
is called, in the jargon, multivariate analysis. For example, two causes
of lung cancer might be smoking and amount of time spent in a
coal mine. Here the two describing variables are the amount of smoking
and amount of time digging coal (and inhaling coal and rock dust).

Although it is sometimes difficult to speak in causal terms in studies
of social problems, it is clear that if we want to explain or change
anything, we will eventually have to work in terms of cause and
effect. As Dahl put it, “policy-thinking is and must be causality-think-
ing.”! Wold has even suggested a link between explanation and policy
outcomes:

A frequent situation is that description serves to maintain some
modus vivendi (the control of an established production process, the
tolerance of a limited number of epidemic cases), whereas explanation
serves the purpose of reform (raising the agricultural yield, reducing
the mortality rates, improving a production process). In other words,
description is employed as an aid in the human adjustment to
conditions, while explanation is a vehicle for ascendancy over the
environment.?

IRobert A. Dahl, “Cause and Effect in the Study of Politics,” in Daniel Lerner,
ed., Cause and Effect (New York: Free Press, 1965), p. 88

2Herman Wold, “Causal Inference from Observational Data,” Journal of the
Royal Statistical Society, Series A, 119 (1956), p. 29.
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Sometimes, especially in studies based on data collected from
observational records rather than from controlled experiments, re-
searchers avoid causal language and use wishy-washy phrases to report
their results: one variable is said to “predict” another: or a variable
is “strongly related,” “associated,” or “varies regularly” with another
variable. The language of association and prediction is probably most
often used because the evidence seems insufficient to justify a direct
causal statement. A better practice is to state the causal hypothesis
and then to present the evidence along with an assessment with respect
to the causal hypothesis—instead of letting the quality of the data
determine the language of the explanation.

In other cases, researchers appear only interested in studying
associations and have no causal mechanisms in mind. These studies
seek to discover “patterns of association” and “clusters of interrelated
variables.” Such discoveries can sometimes be a helpful first step
toward developing explanations.

A good research design is a successful strategy for collecting and
analyzing data that help to assess the validity of competing explana-
tions of the variation in the response variable. In causal analysis,
the basic purpose of research design is to observe or control covariation
between the response and describing variables in a context such that
these variables are not confounded with other uncontrolled or extrane-
ous influences. Thus the key element in developing and testing
explanations is controlled comparison. By such comparison we evaluate
and decide among theories about what variables cause what effects.
The importance of comparison or control groups in making inferences
is illustrated by Cochran’s account of a study by Seltser and Sartwell
on the effects of exposure to atomic radiation:

As pointed out by Seltser and Sartwell, the principal opportunities
for investigations in human subjects are confined to the following:
(a) the Japanese survivors of the atomic bombs in Hiroshima and
Nagasaki, involving a single exposure, (b) groups occupationally
exposed to radiation at times when the possible danger from this
source was not realized—radiologists, dentists, and makers of watches
with luminous dials, (c) persons who received medical radiation, as
in the treatment of some forms of cancer, or infants exposed in
utero through pelvic X-rays of the mother in the late stages of
pregnancy, and (d) areas of the earth in which natural radioactivity
is unusually high.

None of these sources provides more than limited material for
constructing a dosage-response curve. . . .

The study by Seltser and Sartwell of the mortality of radiologists
is an excellent example of the possibilities from groups occupationally
or medically exposed. They chose male members of the Radiological
Society of North America. For each member they obtained by a
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painstaking search the status (dead or alive) as of December 31,
1958, with cause of death and any available information on other
factors such as age that might influence duration of life. Research
of this type always raises the question: with what are the exposed
group to be compared? Ideally, we seek a non-exposed group which
is similar to the exposed group with regard to any other variable
that is known or suspected to have a material effect on duration
of life. . . . In an observational study the extent to which this goal
can be met is of course dependent on our ability to measure such
variables and to find a group that has similar distributions with
respect to them.

The authors chose two comparison groups. As the nearest to a
non-exposed group they used the American Academy of Opthalmology
and Otolaryngology, whose members rarely have occasion to employ
X-radiation. As an intermediate group they also included the Ameri-
can College of Physicians, since some of these members use X-rays,
for example, in ear examinations. In such studies the inclusion of
a middle group is advantageous in either adding confirmation to
the results given by the two extreme groups or in casting doubt
upon them. This study, however, again has the weakness that no
measures of the doses of radiation experienced by the subjects are
available, except as a rough guess for the group as a whole. Studies
similar in structure have been done of the later development of
infants in utero, as compared with a control group of non-exposed
infants born in the same hospital at the same time.?

The importance of controlled comparison in the assessment of causal
relationships is made even more bluntly in a doctor’s story about
the evaluation of surgical procedures:

One day when I was a junior medical student, a very important
Boston surgeon visited the school and delivered a great treatise on
a large number of patients who had undergone successful operations
for vascular reconstruction. At the end of the lecture, a young student
at the back of the room timidly asked, “Do you have any controls?”
Well, the great surgeon drew himself up to his full height, hit the
desk, and said, “Do you mean did I not operate on half of the patients?”
The hall grew very quiet then. The voice at the back of the room
very hesitantly replied, “Yes, that’s what I had in mind.” Then the
visitor’s fist really came down as he thundered, “Of course not. That
would have doomed half of them to their death.” God, it was quiet
then, and one could scarcely hear the small voice ask, “Which half?”4

3William G. Cochran, “Planning and Analysis of Non-Experimental Studies,”
ONR Technical Report No. 19 (April 1968), Department of Statistics, Harvard University,
pp. 7-9, italics added. The cited study is R. Seltser and P. E. Sartwell, “The Influence
of Occupational Exposure to Radiation on the Mortality of American Radiologists
and Other Medical Specialists,” American Journal of Epidemiology, 81 (1965), 2-22.

“Dr. E. E. Peacock, Jr., Chairman of Surgery, University of Arizona College
of Medicine; quoted in Medical World News (September 1, 1972), p. 45. I am indebted
to my colleague Herman Somers for pointing out this citation to me.
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One final point about the relationship between causal inferences
and statistical analysis. Statistical techniques do not solve any of
the common-sense difficulties about making causal inferences. Such
techniques may help organize or arrange the data so that the numbers
speak more clearly to the question of causality—but that is all
statistical techniques can do. All the logical, theoretical, and empirical
difficulties attendant to establishing a causal relationship persist no
matter what type of statistical analysis is applied. “There is,” as
Thurber moralized, “no safety in numbers, or in anything else.”

An Example: Do Automobile
Safety Inspections Save Lives?

Let us now go through an example, analyzing some data to
answer a particular question and, in the process, showing several
basic techniques for looking at a collection of data. We will, in this
example, try to find out whether compulsory automobile safety inspec-
tions (the describing variable) help reduce traffic fatalities (the
response variable).

In 1967, nineteen states in the United States had some form of
automobile safety inspection with the consequent correction of me-
chanical defects. Some states, such as New Jersey, had rather thorough
yearly inspections, testing headlight alignment, other lights, brakes,
steering, and tires. Other states had superficial inspections; most had
none at all.

Inspections can produce significant benefits if they help to reduce
the yearly toll of 55,000 deaths and 4.4 million minor and major
injuries resulting from automobile crashes. The economic costs, too,
are considerable: “A disproportionate number of the persons killed
or permanently disabled represents an almost complete loss on a heavy
investment: they are persons with twenty years of nurture behind
them and presumedly forty years of productive work ahead. The cost
estimates are surpassingly fuzzy, but something like 2 percent of
the Gross National Product seems about right, if property damage
accidents are included.”® Finally, one estimate is that “perhaps 20
percent of the automobile industry is required to replace or repair
damaged vehicles.”®

But inspections also have significant costs, both of administration
and enforcement as well as of delay and aggravation to the individual
driver, who must often spend several hours having his car examined.

5Daniel P. Moynihan, “The War Against the Automobile,” The Public Interest,
no. 3 (Spring 1966), p. 10.
8Ibid., p. 13
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Inspections cost directly about $500 million each year—plus the hidden
and nonfinancial costs to the individual driver. There are good reasons,
then, for trying to find out whether inspections make any difference.
If they do actually reduce the death rate significantly, inspection
programs should be strengthened; if they have little effect, then the
money might be better spent some other way.

We can imagine a controlled experiment—first choosing randomly
alarge number of cars, inspecting them and correcting their mechanical
defects, and then following their history of accidents for several years.
Another group of cars, remaining uninspected, would serve as a
comparison or control group. Such an experiment would require a
rather large sample, since fatal auto crashes are a relatively rare
event, with about one car in a thousand being involved in a fatal
accident in a given year. (Many cars during their lifetime, however,
are in some sort of accident and probably at least one car in three
winds up with blood on it.”)

Not only would the sample have to be large, but it would have
tobe randomly chosen. We couldn’t rely entirely on volunteers, because
those car owners who volunteered to have their cars inspected and
to participate in the experiment would be likely to be quite different
from the typical car owner. The more safety-conscious driver who
owned a car with few mechanical defects would probably be more
likely to volunteer than the owner of a dilapidated car. And so we
would have totake steps to avoid a bias toward safety-conscious drivers,
for they would probably be overrepresented in a volunteer group and
other types of drivers underrepresented.

Unfortunately, few such social experiments of this type have ever
been tried. Donald T. Campbell points out in his paper “Reforms
as Experiments” that “The United States and other modern nations
should be ready for an experimental approach to social reform, an
approach in which we try out new programs designed to cure specific
social problems, in which we learn whether or not these programs
are effective, and in which we retain, imitate, modify or discard them
on the basis of apparent effectiveness. . .. [M]ost ameliorative
programs end up with no interpretable evaluation.”®

What are some alternatives to a large-scale experiment—which
would be the most inferentially sound way to study the problem—in
order to evaluate the impact, if any, of automobile inspections? Two
other methods provide help. First, a time-series analysis follows the
trend of the death rate before and then after the adoption of inspections

7 Ibid.
8 American Psychologist, 24 (1969), p. 409.
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in a given state. In other words, for each of the states that now
have inspections, the job is to see whether fatalities decreased after
the inspections were started. The states that still do not have inspec-
tions can be used as a comparison or control group to test other
explanations (other than introduction of inspections) for changes in
the death rate over time. Thus the control group helps us find out
whether the fatality rate goes down, relative to similar states, when
inspections are introduced in a given state.®
The second method, a cross-section analysis, compares at a given
point in time the death rates in those states that have inspections
with the death rates in those states without inspections. The important
assumption here is that other factors affecting the death rate are
equal for the inspected and the uninspected states. “Other things
being equal” is sometimes only a faint hope, although often we can
insure that at least some important things are approximately equal.
The remainder of this chapter consists of a cross-section analysis
of the effects of inspections. The purpose is to show some basic concepts
of data analysis by means of a substantive example. In the cross-section
approach, the question becomes: “Do states that have automobile safety
inspections have lower fatality rates than those states without inspec-
tions—other things being equal?” Comparing the variations in rates
between inspected and uninspected states is not a perfect test—partly
because both inspected and uninspected cars can cross state lines
and be involved in accidents in other states. Furthermore, inspections
may constitute part of a larger safety program that includes strong
checks on drunken driving, better roads, and so forth. Thus, it might
be more appropriate to attribute differences in death rates to an
overall safety program in the state rather than just to inspections.
In summary, even if rates are low in inspected compared to unin-
spected states, we want to be very careful in attributing variations
in rates only to the presence or absence of inspections. These and
other complicating factors work against getting a clean test of the
relationship between inspections and death rates. Such confounding
factors enter into almost every analysis of social and political problems.
(warNING: Typically, data analysis is messy, and little details clutter
it. Not only confounding factors, but also deviant cases, minor problems
in measurement, and ambiguous results lead to frustration and
discouragement, so that more data are collected than analyzed. Ne-

%A good example of such a study is Donald T. Campbell and H. Laurence
Ross, “The Connecticut Crackdown on Speeding: Time-Series Data in Quasi-Experimen-
tal Analysis,” Law and Society Review, 3 (August 1968), 33-53, and reprinted in Edward
R. Tufte, ed., The Quantitative Analysis of Social Problems (Reading, Mass.: Addison-
Wesley, 1970) pp. 110-25.
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glecting or hiding the messy details of the data reduces the researcher’s
chances of discovering something new. One common error is to
underestimate the time necessary for the analysis. Although there
is a good deal of variability, in many projects the analysis and synthesis
of the data consume 80 to 90 percent of the total time spent. Often,
after the initial collection and first analysis of the data, it is necessary
and wise to go back and acquire additional information suggested
by the first results. A good rule of thumb for deciding how long
the analysis of the data actually will take is

(1) to add up all the time for everything you can think of—editing
the data, checking for errors, calculating various statistics, thinking
about the results, going back to the data to try out a new idea, and

(2) then multiply the estimate obtained in this first step by five.
With these words of warning, let us get on with the present analysis).

The fifty states differ greatly in their automobile fatality rates:
Connecticut, with the lowest rate, had 14.8 deaths per 100,000 residents
in 1968; Wyoming, the highest, had a rate more than three times
greater at 52.1 deaths per 100,000 people.!® Figure 1-1 reveals the
wide variation in death rates for the states. If all states had a death
rate as low as Connecticut, instead of 55,000 deaths in automobile
accidents each year, only 30,000 deaths would occur—a reduction
of 46 percent.

Figure 1-1, below, shows a cluster of three states with rather
high rates: Wyoming, Nevada, and New Mexico all have rates near
50. Three other states—Idaho, Arizona, and Montana—also are quite
high with rates exceeding 40 deaths per 100,000 people per year.

60
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FIGURE 1-1 Death rate, motor-vehicle accidents, 1968

Six states distinguish themselves at the low end of the scale: Connecti-
cut, Rhode Island, Massachusetts, New York, Hawaii, and New Jersey
all have rates less than 20. Already, perhaps, we can see some
characteristics of high-rate compared to low-rate states:

States with extremely high
rates are more likely

States with extremely low
rates are more likely

—to be located in the eastern
part of the United States

—t0 be located in the western
part of the United States

—to be thinly populated —to be thickly populated
(i.e., low density, few people (i.e., high density, many
per square mile) people per square mile)

—not to have been one of —to0 have been one of the
the original 13 states original 13 states of the
of the United States United States

10 Accident rates, unless otherwise noted, are taken from the appropriate
annual edition of Accidents Facts (Chicago: National Safety Council).



States with extremely high States with extremely low

rates are more likely rates are more likely

—not to have inspections —to have inspections

—t0 have seven or less -—to have more than seven
letters in their names letters in their names

A number of factors, of varying relevance to be sure, seem to be
associated with the death rate for the extremely high and extremely
low states. Note that while we observe many different associations
between the death rate and other characteristics of the state, it is
our substantive judgment, and not merely the observed association,
that tells us density and inspections might have something to do
with the death rate and that the number of letters in the name
of the state has nothing to do with it.

So far we have looked only at the states with either extremely
high or extremely low death rates. Such a procedure, while giving
some useful indications, can also be misleading: all the data should
be used, not just a fraction.

In looking at Figure 1-1, one should begin to wonder just how
reliable these figures are. Perhaps Wyoming is high because a bad
accident involving many deaths—such as a bus accident—occurred
in 1968. In a “normal” year, would Wyoming have a lower death
rate? Would a different set of states fall at the low end of the scale
a year before or a year after these data were collected? Do Wyoming,
New Mexico, and Nevada usually have high rates—and do Rhode
Island, Connecticut, and Massachusetts usually have low rates? In
short, then, how do the rates vary from year to year? These questions
are good ones, because if the variation in death rates across the different
states changed wildly from one year to the next, we might begin
to suspect that states were merely high or low because they were
“lucky” or “unlucky,” because they had a few accidents resulting
in many deaths in a “bad” year.

These questions are easy to answer. A number of different approaches
all produce the same result: the large differences between states in
their death rates have remained relatively persistent over the years.
For example, the five states with the highest death rates in 1948
also had the five highest death rates in 1958 and again in 1968.
Similarly the states with the five lowest death rates in 1948 were
also the five lowest in 1958;- in 1968, four of these five remained
among the five lowest. Figure 1-2 also gives a sharp and clear answer.
This scatterplot plots each state’s 1958 death rate against its 1968
rate. The picture shows:
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FIGURE 1-2 Death rates, 1958 and 1968

1. The states that had high rates in 1958 remained high in 1968;

those with average death rates in 1958 had similar rates in 1968;
and low rates in 1958 continued to be low in 1968. Such a
relationship is called a positive relationship; as one variable grows
bigger, so does the other variable. The scatterplot shows a fairly
strong relationship in that the points increase in a relatively orderly
fashion; they are not scattered all over the graph. In summary,
there is a strong positive relationship between rates for 1958
and 1968.

. Most states have somewhat higher rates in 1968 than they did

ten years earlier, since most states lie above the 45° line (which
is the area where the 1968 rate always exceeds the 1958 rate).
All of the states with middle-level death rates show some increase
between 1958 and 1968, since they lie above the line in the area
where the 1968 rate is always greater than the 1958 rate. Finally,
those states with very high death rates show a fair amount of
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scatter around the 45° line, with two of them showing a lower
rate in 1968 than in 1958 (since they lie below the 45° line).

The large differences between the various states in death rates
and the relative stability of the rates over time indicate that persistent
factors have great consequences for the risk one assumes when driving
on the roads of the various states. The differences are not happenstance
or peculiar to a particular year. There must be something that makes
the death rate consistently three times higher in Wyoming than in
Rhode Island. Since Rhode Island has safety inspections and Wyoming
does not, it appears worthwhile to look into the relationship between
inspections and death rates—as well as for other relationships.

Figure 1-2 shows the relative persistence of the rates for the states;
the unique yearly variation does not dramatically shuffle the states
relative to one another. But influences on the accident death rate
peculiar or unique to a given year do contribute to some of the variation
in a single year’s set of accident figures for each state. In order
to reduce the effect of such influences, we will average out the unique
yearly variation by averaging the death rate for each state over a
three-year period—with the hope of producing a fairer picture of
the typical or normal behavior of the accident rate in a state. Thus,
for example, the rates for Montana in 1966, 1967, and 1968 were
39.3, 45.5, and 41.7. The middle year, 1967, was unusually high and
not typical of the long-run rate over the years in Montana. Yet it
is an actual piece of data and not to be discounted entirely. A useful
compromise, then, is the averaging technique. For Montana, the
average rate over the three-year period is

39.3 + 45,5 + 41.7
3

= 42.2.

This procedure is repeated for the remaining 49 states to compute
a three-year death rate. This average rate is the response variable,
the thing we are trying to explain.

Do inspections make any difference in these death rates? Figure
1-3 reveals that states with inspections tend to have lower death
rates than states without inspections, although the two groups of
states overlap a good deal. Most states with inspections, as the figure
shows, beat the average for the uninspected states, although one
inspected state, New Mexico, has an extremely high death rate
compared to the rest of the inspected states. In the states without
inspections, Connecticut has a very low rate (Connecticut has inspec-
tions for used cars that are sold in the state but not for new cars).
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Figure 1-3 shows that those states with inspections typically have
a death rate lower by around six deaths per 100,000 people than
states without inspections. If inspections are, in fact, the cause of
this observed difference, then the adoption of inspections by those
states that do not have them would apparently save some 15,000
lives a year. Thus Figure 1-3, on the surface at least, indicates that
inspections are very effective. But such an inference is very insecure.
The most important source of doubt is that inspected and uninspected
states may differ not only with respect to inspections, but also with
respect to other factors that affect the death rate in automobile
accidents. Thus the benefits of these other factors are wrongly
attributed to inspections. (There is also a possibility that Figure 1-3
understates the benefits of inspections—for perhaps it was states
with especially high death rates that adopted inspections several years
ago.)

The measurement of the variables also raises questions. After
discussing measurement difficulties, we will turn to the even more
serious problem of the impact of other factors not now in the analysis.

1. The describing variable, inspections, is not measured particularly
well. Right now, all the states are thrown into one of two mutually
exclusive bins: either they have inspections or they do not. Such
dichotomous or dummy variables, as they are called, should be used
when there really are only two levels of the variable. In this case,
since inspections differ widely in quality, a better way to assess the
effects of inspections would be to classify states in several categories
such as (a) no inspections at all, (b) relatively superficial inspections
every other year, (¢) superficial inspections every year, and (d)
extensive inspections every year. If the fatality rate decreased as
the quality of inspections improved, this would provide somewhat
stronger support for the hypothesis that inspections do make a
difference than the present evidence showing a difference only between
inspected and uninspected states.

Figure 1-4 plots the average death rates for states without inspections
and for states with three different “qualities” of inspections. There
is a mild indication that the rate goes down as inspections improve,
although the result is not striking.

2. States may differ in how they record deaths from auto accidents;
such differences could, in turn, be linked to the presence or absence
of inspections. In particular, states that have inspections might also
have better investigation and reporting systems that distinguish
traffic-accident deaths from, say, suicides and heart attacks that lead
to motor-vehicle collisions. If there are such differences in recording
deaths between the states, then in Figure 1-3 we would be observing
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a difference due to reporting of deaths rather than to inspections.

In such situations it is not enough to say: “There’s error in the
data and therefore the study must be terribly dubious.” A good critic
and data analyst must do more: he or she must also show how the
error in the measurement or the analysis affects the inferences made
on the basis of that data and analysis. Thus, in this case, two lines
of argument are necessary to produce a legitimate statistical criticism.
First, it is suggested that states may record deaths from automobile
accidents differently. The second step is to suggest a mechanism by
which such differences in the recording rate could lead to our present
findings. Thus, it is further necessary to suggest not only that states
differin the way they record auto deaths, but also that these differences
are related to whether a state has inspections. This seems to be a
fair statement, since states with good procedures for analyzing the
causes of death in automobile accidents might be those states with

15



16 INTRODUCTION TO DATA ANALYSIS

activist state governments—indeed, the kind of state governments
also likely to have a state inspection program.

3. The response variable is now measured in terms of per capita
deaths—deaths per 100,000 people living in the state. But the individ-
ual driver might be more interested in the risk of death that is assumed
for each mile traveled along the roads in that state. This reasoning
suggests taking a look at the death rate per hundred million miles
traveled, asking whether inspections reduce the risk of being killed
for each mile driven. It turns out that in states with inspections,
the death rate is 5.48 deaths per hundred million miles traveled,
compared with 5.95 in states without inspections. The inspected states
do somewhat better.

Aninteresting problem arises here in the computation of the mileage
death rate. This rate is computed by taking the total number of deaths
due to traffic accidents and dividing by the total number of miles
traveled in the state. And how is the latter computed? Certainly
the number of miles can’t be measured directly. Rather, it is known
how many gallons of gas are sold in each state, since all states have
a gas tax yielding a few cents for each gallon of gas sold. The number
of gallons sold are converted inte number of miles traveled by assuming
that cars get an average of about 12 miles for each gallon of gas.
So, the overall computation is

estimate of total _ revenue from gas tax
miles traveled gas tax rate (cents/gallon)

x 12 miles/gallon.

For example, if the total tax revenue in a state was $1,000,000 and
the tax rate was $0.10 per gallon, then 10,000,000 gallons were sold
and an estimated 120,000,000 miles were traveled.!' That is,

$1,000,000

x 12 = 120,000,000.
$0.10
4. Inspections cannot be expected to save all victims of auto acci-
dents, simply because a large share of accidents are not the result
of brake failure, bad tires, faulty steering, a missing tail light, or
other mechanical defects detected and repaired as a consequence of
inspections. A good many crashes are caused by factors that inspections

"' The actual calculation is somewhat more complicated, taking into account
evaporation of gasoline, road differences between states, and so forth.
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cannot remedy. For example, each year about 1500 people are killed
in cars by trains at grade crossings. Probably another 500 die in
the course of “hot pursuit” police chases.'* An unknown (but probably
significant) number of people choose the car as their suicide weapon.
Finally, inspections will do little to reduce accidents due to drunken
driving—and study after study clearly convicts drunken driving as
the most important single factor leading to auto accidents. At least
half of all fatal crashes involve a driver who had been drinking heavily
and had a very high blood alcohol concentration ac the time of the
crash.

Thus some bias may enter the analysis because states may differ
with respect to the proportion of accidents that can be prevented
by inspections. Ideally, in the data analyst’s heaven, the first step
would be to determine the number of accidents potentially preventable
by inspections and then, by comparing inspected and uninspected
states, see whether inspections as currently used actually did prevent
the accidents that they should have.

Discussing measurement of the quality of school facilities, Mosteller
and Moynihan made the following observations, relevant to our
discussion here, about “crude” versus “refined” measures in the study
of policy:

. it is the experience of statisticians that when fairly “crude”
measurements are refined, the change more often than not turns
out to be small. Merely counting the number of laboratories in a
school system is, in this sense, a “crude” measurement. It is possible
to learn a good deal more about the quality of those laboratories.
It could be that on further assessment the judgment to be had from
the original crude measurement would be changed. But to repeat,
statisticians would not leap too readily to that expectation.. . . Sadly,
perhaps, in real life the similarities of basic categories are often
far more powerful and important than the nice differences which
can come to absorb individuals so disposed, but which really don’t
make a great difference in the aggregate.

The statistician would wholeheartedly say go ahead and make
the better measurements, but he would often give a low probability
to the prospect that the finer measures would produce information
that would lead to different policy.

The reasons are several. One is that policy decisions are often
rather insensitive to the measures—the same policy is often a good
one across a great variety of measures. Secondly, the finer measures,
as in the case of laboratories, can be thought of as something like

12This is a crude estimate; such estimates are obviously difficult to make
accurately. See “500 Traffic Deaths Annually Attributed to Police ‘Hot Pursuit’,” The
New York Times, June 18, 1968.
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weights. For example, perhaps one science laboratory is only half
as good as another—well and good, let us count it 1/2. It turns
out as an empirical fact that in a great variety of occasions, we
get much the same policy decisions in spite of the weights. So there
are some technical reasons for thinking that the finer measurement
may not change the main thrust of one’s policy. None of this is
an argument against getting better information if it is needed, or
against having reservations. More data cost money, and one has
to decide where the good places are to put the next money acquired
for investigations. If we think it matters a lot by all means let
us measure it better.

Still another point about aggregative statistics is worth emphasizing
for large social studies. Although the data may sometimes not be
adequate for decisions about individual persons, they may well be
adequate for deciding policy for groups. Thus we may not be able
to predict which of two ways of teaching spelling will be preferable
for a given child, but we may well be able to say that, on the average,
a particular method does better. And then the policy is clear, at
least until someone learns how to tell which children would do better
under the differing methods.!®

We have observed an association between inspections and lower
death rates and have also considered some questions about that
relationship. What do these results mean? Are there different explana-
tions of the association between inspections and death rates?

Developing Explanations for the
Observed Relationship

Many explanatory models begin by working with two variables:
a response variable and a single describing variable. Usually, as the
analysis develops, additional describing variables come into the model.
Let Ydenote the response (or dependent) variable and X the describing
(or independent) variable. Begin by considering the notion that X
causes Y:

X — Y

Returning to our example, we sought to find out whether

automobile low rate of traffic
inspections — fatalities.
(X) (Y)

13From “A Pathbreaking Report,” in On Equality of Educational Opportunity
by Frederick Mosteller and Daniel P. Moynihan, eds. Copyright © 1972 by Random
House, Inc. Reprinted by permission of the publisher.
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An observed association between two variables can occur for many
reasons. There may be a causal relationship between the two variables.
The relationship may occur simply by chance. Or X may covary with
Y because both X and Y are jointly caused by some third factor
Z. Thus, the observation that Y increases as X increases is consistent
with many explanations.

Once we establish some kind of association between X and Y, the
problem is what to make of it. There is supposedly a rather strong
association over many years between the salaries of Presbyterian
ministers and the price of rum in Havana—yet I doubt that we would
want to suggest a causal relationship between the two. The apparent
association between the ministers’ salaries and the price of rum might
arise because both were linked to some extent to the ups and downs
of business conditions:

business conditions

e

ministers’ salaries price of rum in Havana

Thus, while salaries and rum prices apparently covary together with
great regularity, it is not because ministers are spending their money
for rum in Havana, but rather because both salaries and prices are
linked to a common, third factor—the business climate. A correlation
such as that between ministers’ salaries and the price of rum is often
called a spurious correlation; the relationship is spurious or misleading
because the two variables are related only by some third cause.

Is there a possibility that the association between inspections and
low death rates is spurious? Do states with both low rates and
inspections have some third factor, Z, in common?

/ Z\
inspections death rate
And how do we go about finding likely candidates for this variable
Z? Our substantive understanding of the problem may suggest some
possible third variables to check for spuricus correlation. In other
cases, we simply might check through a number of possible variables
that seem, for one reason or another, good possibilities. One useful

guideline is simply to ask: What other factors are related to either
X or Y? In other words, are there any variables closely linked to
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FIGURE 1-5 Death rate and density

death rate-—and if so, are they also linked to the presence or absence
of inspections?

In looking for other such variables, we turn up several candidates:
the density of the state, its weather conditions, and the percentage
of young drivers. The density (number of people per square mile)
is strongly related to the death rate: as the density of a state increases,
the death rate decreases. In other words, thickly populated states
such as Connecticut and New Jersey have low death rates from
automobile accidents; thinly populated states such as Nevada and
Wyoming have high rates. Figure 1-5 shows the relations between
density and death rate for the fifty states.’ Such a pattern indicates
a negative relationship, since the variables vary inversely; that is,
as X gets bigger and bigger, Y tends to get smaller and smaller.
States of high density, then, have low death rates; and states of
low density have high rates. The scatterplot reveals a rather strong
relationship between density and death rate, since the states progress
in a relatively orderly fashion across the scatterplot.

Thinly populated states have higher fatality rates compared to
thickly populated states because drivers go for longer distances at

14 Density is plotted on a logarithmic scale in Figure 1-5 for reasons explained
in Chapter 3. Alaska has been dropped from further analysis because of its atypical
nature differing apparently from the other 49 states.
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higher speeds in the less dense states. Accidents in states like Nevada
and Arizona are probably typically more severe since they occur at
a higher speed. It is not, however, just a matter of the number of
miles driven, because there is also a fairly strong negative relationship
between density and the deaths per 100 million miles driven in the
state. Victims of accidents in the more thinly populated states, in
addition to being involved in more severe accidents, are also less
likely to be discovered and treated immediately, since both Good
Samaritans and hospitals are more scattered in thinly populated states
compared to the denser states.

Is the correlation between inspections of automobiles and low traffic
death rates spurious? Given the strong relationship between density
and the death rate, might there also be a relationship between density
and the presence or absence of safety inspections? Are the high-density
states (with their low death rates) more likely to have inspections?
It looks that way; eight of the nine most thickly populated states
have inspections, as compared with only one of the eight least dense
states. This preliminary look suggests that the model

high density

/

auto safety low traffic
inspections death rate

has some merit.

The density of a state’s population certainly doesn’t directly cause
auto safety inspections. But a plausible argument explains the rela-
tionship between the two: the denser states tend to be the urbanized,
industrialized, northeastern, politically competitive states with activist
state governments—governments that would be more likely to inau-
gurate an inspection program. Looking at the data will help decide
whether the relationship between inspections and reduced death rates
is a spurious one resulting from the common element of density.
To find out whether inspections have an effect, discounting the
influence of density on the death rate, we will want to compare states
at a similar level of density to see whether inspected states have
lower death rate than uninspected states. To put it another way,
it is necessary to hold density constant in order to observe the
uncluttered (by density) effects of inspections on accident deaths.

Two different methods, matching and adjustment, help take into
account the effects of density. Let us try it both ways here.

Matching simply involves taking states of roughly the same density
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and seeing whether inspected states have lower rates than uninspected
states within the density groupings. States are matched, then, with
respect to density; often this procedure is called “controlling for”
density. Table 1-1, comparing the average death rate for inspected
and uninspected states for thinly, moderately, and thickly populated
states, shows:

1. The averaged death rates are lowest in the thickly populated
states and highest in the thinly populated states, regardless of
whether they have inspections or not (in other words, the averaged
rates decrease as we read across either the inspected-states row
or the uninspected-states row).

2. At each level of density (thin, medium, and thick) the average
death rate for the inspected states is lower than for uninspected
states.

The average death rate for each of the six cells is computed by
adding up the rates for the states in given cell and dividing by the
number of states in the cell. This average or mean rate is very sensitive
to extreme values; for example, for the thinly populated states with
inspections, the three states have the rates 28.8, 30.9, and 45.0. New
Mexico, at 45.0, forces the average up to almost 35, even though
two of the three states are actually close to 30.

The division and assignment of states into three categories is
perfectly arbitrary. Many other divisions are probably just as good.
Table 1-2 shows a slightly different set of categories; it differs
somewhat from Table 1-1 because the shuffling of a few states from
one category to another affects the averages to some extent. Table
1-2, like Table 1-1, however, shows that some relationship remains
between inspections and a reduced death rate even when the effects
of density are controlled.

The matching procedure often helps inform the reader what is going
oninthedata: Tables 1-1 and 1-2 clearly display the effect of inspections
at the three density levels and also the effect of density at each
inspection level. Matching has some defects, chiefly that it is difficult
to do a very good job of matching in complex situations without a
large number of cases. In Table 1-1 we have not really matched the
states in a very satisfactory way by throwing them into three bins
labeled “thin,” “moderate,” and “thick.” A good deal of variation still
remains within each of the three levels of density. For instance, both
Wyoming (density = 3.2 people per square mile) and Oregon (density
= 20.8) are described as “thinly populated,” although they differ widely
in density. Thus by putting the states into only three categories we
lose some information about one of the key variables (density). Before
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TABLE 1-1
Inspections, Density, and Average Death Rates

Density
Thin Medium Thick
Average N Average N Average N
States without inspections 38.5 9 31.5 16 236 6
States with inspections 34.9 3 28.4 9 183 6
Definitions:

Thin = density less than or equal to 25 people per square mile.

Medium = more than 25 and less than 125 people per square mile.

Thick = 125 or more people per square mile.

Average = mean death rate for states in that category (computed by adding up
the death rates for all the states in that category and dividing by
the number of states in that category).

N = number of states in that category.

Total = 49 states (all states except Alaska).

ORIGINAL DATA (STATES AND THEIR DEATH RATES)
Density
Thin Medium Thick
Arizona 38.8 Alabama 31.2 Connecticut  14.7
Idaho 40.2 Arkansas 34.2 Illinois 23.0
Montana 42.2 California 25.4 Indiana 31.1
States Nebraska 30.5 Florida 31.4 Maryland 22.0
without Nevada 45.4 Georgia 36.9 Michigan 26.5
inspections North Dakota 31.7 Iowa 31.3 Ohio 24.5
Oregon 33.3 Kansas 30.0
South Dakota 37.0 Kentucky 33.0
Wyoming 48.0 Minnesota 27.7
Missouri 30.5
North Carolina 35.1
Oklahoma 35.0
South Carolina 36.6
Tennessee 31.5
Washington 28.1
Wisconsin 27.4
States Colorado 30.9 Louisiana 34.1 Delaware 27.0
with New Mexico 45.0 Maine 24.7 Massachusetts 16.4
inspections Utah 28.8 Mississippi 36.0 New Jersey 17.3
New Hampshire 23.8 New York 16.1
Texas 31.5 Pennsylvania 19.8
Vermont 32.0 Rhode Island 13.0
West Virginia 30.1
Virginia 26.0
Hawaii 17.8
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TABLE 1-2
Inspections, Density (Different Division), and Average Death Rates

Thin Medium Thick
Average N  Average N  Average N
States without inspections 37.6 11 32.1 11 26.0 9
States with inspections 324 4 31.2 6 19.2 8

Identical to Table 1-1 except:

Thin = density less or equal to than 37 people per square mile.
Medium = more than 37 and less than 100 people per square mile.
Thick = 100 or more people per square mile.

classifying both Wyoming and Oregon as thinly populated, we knew
that they differed by such-and-such amount in their densities. But
now, in Table 1-1, this information is not used in the analysis, and
the two states are treated as if they were alike. The situation is
just as troubling for the states in the thickly populated category.
Here, the states range from a density of 138.3 people per square
mile in Indiana up to New Jersey with 929.8.

One limitation of matching, then, is that quite often the match
is not very accurate. A second limitation is that if we want to control
for more than one variable using matching procedures, the tables
begin to have combinations of categories without any cases at all
in them, and they become somewhat more difficult for the reader
to understand. For example, if states were matched with respect to
density (three categories in this case) and, in addition, their weather
(say five categories), the fifty states would be scattered over fifteen
different combinations of density and weather conditions (and some
combinations might not even exist empirically—for example, a warm,
dry state that was also densely populated). When the inspection
classification was added, the fifty states would then be classified
into thirty categories. The scattering of cases over many different
cells (or combinations of different levels of variables) of the table
can be avoided by collapsing categories (using, say, two levels of
density instead of three)—but then, of course, states become less
and less well matched, and the effects of density are less well controlled
because of the wide variations in density in supposedly “matched”
groups.

Adjustment, the other procedure for controlling the effects of a
third variable, sometimes partially overcomes these difficulties. By
standardizing the death rate of each state for the density of that
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FIGURE 1-8 Fitted line: death rate and density

state, the adjustment procedure takes out the effect of density on
the death rate, producing what might be called a “density-standardized
deathrate.” We can employ the procedure informally merely by looking
at the scatterplot (Figure 1-6), which shows the plot of the death
rate against density for the inspected and uninspected states. The
line fitted to the points here is the line that best fits the relationship
between density and deaths.

The line makes what is essentially an average prediction: given
that a state has a certain density, the line predicts that state’s death
rate. Some states lie below the prediction line, indicating that they
have a lower death rate than predicted by their density. States that
lie above the line have a higher death rate than predicted. If inspected
states have a lower death rate—for their density level—than unins-
pected states, then they should tend to lie below the line and below
the points representing the uninspected states in the same region
of density on the scatterplot. In other words, the little crosses (repre-
senting the inspected states) should, at a given density level, tend
to lie below the dots (representing the uninspected states) if inspections
have an effect after controlling for density. Although no vivid effect
appears in Figure 1-6, it is possible to see a slight tendency indicating
lower rates in inspected states.

Let us now formalize the adjustment procedure and take out the
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effects of density mathematically. The line fitted to the points repre-
sents the predicted death rate for a given density. Thus for each
state there is a predicted death rate—a prediction based on its density.
Also, we know the actual death rate in each state. The difference
between the actual, observed death rate for a state and the predicted
death rate represents that part of the death rate that is unaccounted
for by the state’s density. The difference between the observed and
the predicted death rate is called the residual:

residual actual observed predicted (by
for a = death rate — density) death rate
given state for that state for that state

Thus the residuals for all the states are computed simply by subtracting
the density-predicted death rate from the actual rate.'® Each residual
can be viewed as a death rate adjusted for density; it is that part
of the death rate that is unexplained by density. Figure 1-7 shows
the logic. Generating a predicted death on the basis of density and
then examining the residual death rate is, in effect, a statistical

15The computational method is described in Chapter 3.
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way of matching or equating all states with respect to density. The
examination of residuals is a powerful tool for the analysis of data,
since the residual represents that part of the variation in the response
variable that remains unexplained after looking at a set of describing
variables. The residuals measure what remains to be explained in
the response variable. New explanations can be developed by seeing
how the residuals are related to other describing variables. Examples
and further details are found in Chapters 3 and 4.

Figure 1-8 shows the residuals (or the density-adjusted death rates)
for the inspected and the uninspected states. Generally, those states
with a lower death rate than expected are those states that have
inspections—with Mississippi, Louisiana, and New Mexico being very
prominent exceptions. On the average, states with inspections have
a rate 1.63 deaths per 100,000 people lower than expected, and states
without inspections have a rate of 0.90 deaths per 100,000 population
higher than expected—yielding a difference of 2.5 deaths per 100,000
between inspected and uninspected states after adjustment of the
rates for density. While the difference is neither large nor sure, it
does favor inspections. The difference might suggest that if inspections
were implemented by all states, perhaps an additional 2500 lives
would be saved each year. This is far from certain. Greater certainty
might be obtained by taking other variables into account. But to
increase substantially the credibility of the view that inspections make
a difference would require a well-designed experiment. The nonexperi-
mental data examined here can only give small hints about what

is going on.
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FIGURE 1-8 Residuals—the density-adjusted death rate—for inspected and uninspected states

Compulsory inspections of automobiles, by getting some mechanical
defects straightened out, might produce a modest reduction in the
death rate from car crashes. If intervention at the level of the car
owner has effects of the size observed in this study, then what additional
measures, beyond inspections, might cut the death and injury rate
from automobile accidents? As mentioned earlier, efforts to reduce
drunken driving may be helpful. But safety efforts at the level of
the individual driver are limited; as Moynihan wrote:

There is not much evidence that the number of accidents can be
substantially reduced simply by altering the behavior of drivers while
maintaining a near universal driving population. It may be this
can be done, but it has not been done. This leads to the basic strategy
of crash injury protection: it is assumed that a great many automobile
accidents will continue to occur. That being the case, the most efficient
way to minimize the overall cost of accidents is to design the interior
of the vehicles so that the injuries that follow the accidents are
relatively mild. An attraction of this approach is that it could be
put into effect by changing the behavior of a tiny population—the
forty or fifty executives who run the automobile industry.*®

6 Moynihan, op. cit., p. 12.
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Costs and Unquantifiable Aspects

To conclude let us briefly consider some of the costs of
inspections and look at some aspects of the problem that are not
quantifiable.

Inspections, as noted earlier, have significant costs. Almost all of
these costs, direct and indirect, fall on the individual car owner.
Inspections, therefore, produce few pressures on or incentives for
automobile manufacturers to build safer cars free of mechanical
defects. Under an inspection system, if the headlights of a car are
misaligned in the factory or if a tail light burns out, the car owner
paysthe cost of fixing the defect when it is discovered in the inspection.
Not only is there no cost to the manufacturer for having produced
a car with a defect, but indeed there is a further profit to be made
on the replacement part correcting the defect. Thus inspections are
a limited strategy for coping with car crashes because of their modest
effects, their significant costs, and their failure—if it may be called
that—to snowball into further safety efforts.

Earlier, some crude estimates of the economic costs of inspections
were given—the figure running to perhaps $500 million in those
states with inspections. There are also political and social costs of
programs (such as inspections) which require coercion by the threat
of arrest and fine of large number of citizens (in this case, 80 million
car owners). While the total experiences of most citizens with their
government occur in similarly coercive and bureaucratic contexts—
such as the income tax, the draft, traffic tickets, and auto licensing—
what are, in fact, the long-run costs of bureaucratic and arbitrary
impingements upon citizens by the government? Do some citizens
consequently become alienated and cynical about its performance?
Does the modest coercion involved in inspection programs lead to
the eventual acceptance of increasingly more severe coercion?

Since it is difficult to measure certain kinds of political and social
costs, as well as benefits, of a program, such unmeasurable factors
sometimes receive less emphasis than they should. (On the other
hand, bizarre estimates of such costs may go unchallenged for the
lack of data to prove them wrong.) For example, in the judicial process,
it is easy to measure police performance in terms of the numbers
of arrests made; but it is more difficult to assess performance with
respect to equal or fair treatment. Or, to take another example, the
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apparently huge costs of smoking cigarettes—the years of life lost
to early death, the excess illness among smokers, the fires started
by smoking—have been measured carefully and extensively in the
last twenty years. In contrast, the gratification received from smoking
by the smoker cannot be ascertained; and presumably such information
has at least modest relevance to decisions about public policy toward
smoking.

Our inability to measure important factors does not mean either
that we should sweep those factors under the rug or that we should
give them all the weight in a decision. Some important factors in
some problems can be assessed quantitatively. And even though
thoughtful and imaginative efforts have sometimes turned the “un-
measurable” into a useful number, some important factors are simply
not measurable. As always, every bit of the investigator’s ingenuity
and good judgment must be brought into play. And, whatever un-
knowns may remain, the analysis of quantitative data nonetheless
can help us learn something about the world—even if it is not the
whole story.



CHAPTER 2

Predictions and Projections:
Some lIssues of
Research Design

“There will be no nuclear war within the next fifty years.”
“In the period 1965-70, Mao Tse-tung and De Gaulle will die.”

“Major fighting in Viet-Nam will peter out about 1967; and most
objective observers will regard it as a substantial American victory.”

“In the United States Lyndon Johnson will have been re-elected
in 1968.”

—TIthiel de Sola Pool!

Introduction

Projections of the future can be useful or embarrassing,
depending on their accuracy. The assumption that a wide range of
factors remain constant or continue to change at current rates can
quickly crumble.? And yet how imbedded in our thought is the idea
that the future is a straightforward projection of the past: we may
doubt the optimism of Professor Pool’s first prediction if only because
of the failure of the other predictions on the list. At least, unlike
some predictions, these have the modest virtue of being explicit, and
it is easy to tell whether they went wrong.?

!“The International System in the Next Half Century,” in Daniel Bell, ed.,
Toward the Year 2000: Work in Progress (Boston: Beacon Press, 1967), pp. 319-20.

2A very useful discussion of the assumptions behind many projections is
Otis Dudley Duncan, “Social Forecasting—The State of the Art,” The Public Interest,
no. 17 (Fall 1969), 88-118.

30n previous prophecies, see Arthur M. Schlesinger, “Casting the National
Horoscope,” Proceedings of the American Antiquarian Society, 55 (1945), 53-93.

31
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Almost all efforts at data analysis seek, at some point, to generalize
the results and extend the reach of the conclusions beyond a particular
set of data. The inferential leap may be from past experiences to
future ones, from a sample of a population to the whole population,
or from a narrow range of a variable to a wider range. The real
difficulty is in deciding when the extrapolation beyond the range

Y X
Observed range of experience
with X

FIGURE 2-1 Problem of simple extrapolation

Q: Should the fitted line be extended to predict the value y’ for
the new observation x’ (which is outside the range of previous
experience with the x-variable)? Or, is A or B a better model?

A: “A priori nonstatistical considerations . . .”

of the variables is warranted and when it is merely naive. As usual,
it is largely a matter of substantive judgment—or, as it is sometimes
more delicately put, a matter of “a priori nonstatistical considerations”
(Figure 2-1).

If the observed variation in a variable is small relative to its total
possible variation, then the extension of the inference based on a
narrow range of observations is less warranted than extrapolation
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based on a wider range of observed variations. Equally obvious is
the observation that the risk of error is less if the extrapolated value
is “close” to the previous pattern of experience rather than greatly
different, other things being equal. In some cases it may be useful
to conduct trial runs at extrapolation by using a fraction of the available
data to produce a fitted curve, using the remaining data to test the
accuracy of the extrapclated results. Obviously if the conditions
governing a relationship change in relevant respects, the effort at
extension of results is in danger of making errors.

Simple extrapolation involves the extension of results outside the
range of experience of a single describing variable. A more subtle
situation arises in the multivariate case involving extrapolation beyond
the range of the combination of experience jointly observed in two
or more describing variables. Karl A. Fox has described this situation
as “hidden extrapolation.”*

Figure 2-2 shows the pattern of correlation between two describing
variables. Assume these two describing variables, X, and X,, are
used in combination to predict a response variable, Y. The situation
appears to be relatively satisfactory because there is a wide range
of experience with both X, and X,. But note how little experience
there is concerning certain combinations of X, and X,—since all
the points representing joint occurrences of X, and X, are contained
in the narrow band surrounding the line. There is no experience
with combinations such as low X, -high X, (in the upper left of the
rectangle) or high X,-low X, (lower right) and how such unobserved
combinations of X, and X, might affect the response variable. The
response variable may behave very differently for such combinations
of X, and X,. Thus a prediction equation, predicting Y from X,
and X,, may be quite misleading if applied to situations in which
X, and X, occur in combinations different from those observed here.

Thus the extension of the inference over all combinations of X,
and X, may founder on the possibility of an interaction effect between
X, and X, in their influence on Y in the region of the combinations
with which there is no experience. The problem arises because of
limited experience with the joint relationship of X, and X,, even
though there may be extensive experience with the entire range of
each variable taken singly. Thus the name, “hidden extrapolation.”

The problem arises in any predictive study involving correlated
describing variables. Figure 2-3 shows the narrowed range of joint
experience in the case of three correlated describing variables.

We diagnose the problem by considering the scatterplots of the

2This discussion is based on Karl A. Fox, Intermediate Economic Statistics
(New York: Wiley, 1968), pp. 265-66.
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Describing
variable X

PRy

Range of experience with X',
A

o Describing
variable X,

Range of experience with X;

FIGURE 2-2 Correlation between two describing variables

relationships between the describing variables and by looking over
the original joint observations. Cures for the difficulty include the
collection of additional data, particularly of “deviant cases” in areas
outside the previously experienced combinations of describing vari-
ables.

Let us now turn to several examples illustrating and evaluating
methods of prediction. These case studies show different statistical
tools in action. Note, however, that the central consideration in most
cases is the research design, rather than the mechanics of using the
statistical tool. Mosteller and Bush make this point quite sharply:

We first wish to emphasize that formal statistics provides the
investigator with tools useful in conducting thoughtful research; these
tools are not a substitute for either thinking or working. A major
goal for the statistical training of students should be statistical
thinking rather than statistical formulas, by which we mean specifi-
cally: thinking about (1) the conception and design of the study
and what it is that is to be measured and why, (2) the definitions
of the terms being used, and how modifications in definition might
change both the outcome and the interpretation of a study, (3) sources
of variation in every part of the study, including such things as
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individual differences, group and race differences, environmental
differences, instrumental or measuring errors, and intrinsic variation
fundamental to the process under investigation. In no circumstances
do we think that sophisticated analytical devices should replace clean
design and careful execution, unless very unusual economic consider-
ations arise. However, it may be worth remarking that crude data
collected as best the investigator could may require the most advanced
statistical tools. Here a quotation from Wallis may be appropriate:

In general, if a statistical investigation . . . is well planned and the
data properly collected the interpretation will pretty well take care of
itself. So-called “high-powered,” “refined,” or “elaborate” statistical tech-
niques are generally called for when the data are crude and inadequate—
exactly the opposite, if I may be permitted an obiter dictum, of what
crude and inadequate statisticians usually think.”?

Describing variable X,
Joint experience

of Xy, X3, and X3

Describing
variable X3

Describing
variable X,

FIGURE 2-3 Range of joint experience—three describing variables

5Frederick Mosteller and Robert R. Bush, “Selected Quantitative Techniques,”
in Gardner Lindzey, ed., Handbook of Social Psychology: Vol. I, Theory and Method
(Cambridge, Mass.: Addison-Wesley, 1954), p. 331. The passage by Wallis is found
in W. Allen Wallis, “Statistics of the Kinsey Report,” Journal of the American Statistical
Association, 44 (1949), p. 471.
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Problem in Prediction: The National
Crime Test and a Cancer Test

Assessing the quality of a prediction or extrapolation can
sometimes be a tricky matter. Consider the following example, which
reveals the interplay between the properties of the predictive device
and the tested population.

A proposal was once made that every 6-, 7-, and 8-year-old child
(a total of 13 million in all) be given psychological tests to identify
potential “criminality” in order that the supposed lawbreakers of the
future be given some sort of treatment. The proposal encountered
a storm of moral, legal, and technical criticism which led to its apparent
abandonment. One of the technical flaws, which also serves to empha-
size the moral and legal criticism of the proposal, is shown in the
following model. Assume the National Crime Test has the following
hypothetical properties:

1. It will successfully identify 40 percent of those arrested in the
future. (Unfortunately, a child’s “identification” by the NCT might
help insure his future arrest through the mechanism of a self-ful-
filling prophecy, operating with respect to the child or the police
or both. Perhaps even NCT scores would be used to convince a
jury of the guilt of the accused—thereby further increasing the
“accuracy” of the prediction.)

2. It will also correctly classify 90 percent of those children who
will not be arrested in the future.

Do these characteristics of our hypothetical NCT indicate it is a
useful predictor of criminality? It might seem so, since it does identify
four out of ten of the future “bad guys” and nine out of ten of the
“good guys.” But let us look into the errors in prediction made by
a test with these characteristics. Assuming that three percent of these
children will, later in life, commit a serious crime, we can construct
Table 2-1, which shows the predictive performance of the NCT.

The table shows the errors made in the test; let us consider the
“false positives” in which the test predicts criminality incorrectly.
The upper righthand corner of the table shows 1,261,000 false positives
compared to 156,000 correct predictions of criminality. Thus for every
correct prediction of future difficulties, there are eight incorrect ones!
In this light, such a test would be unacceptable to most people—even
though its predictive characteristics, as originally expressed, seemed
impressive. Furthermore, the assumptions we made about the predic-
tive powers of such tests were, if anything, much too generous, given
the poor performance of psychological tests of “criminality.”
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TABLE 2-1
Hypothetical (Fortunately) National Crime Test

Reality
Criminal Noncriminal
Criminal 156,000 1,261,000
Test predicts
Noncriminal 234,000 11,349,000
390,000 12,610,000

Total = 13,000,000

COMPUTATIONS:

3 percent of 13,000,000 children will commit a serious crime:
(.03)(13,000,000) = 390,000 children. NCT accurately predicts 40 percent:
(.40)(390,000) = 156,000

97 percent of 13,000,000 are not future criminals:
(.97)(13,000,000) = 12,610,000. NCT accurately predicts 90 percent:
(.90)(12,610,000) = 11,349,000.

Consider another example of the same problem. A hypothetical
test for cancer has the following characteristics:

1. Pr(test positive | cancer) = .95. This conditional probability
indicates that the test reads “positive” 95 percent of the
time given that the person tested in fact has cancer.

2. Pr(test negative | no cancer) = .96.

In other words, the test correctly identifies, on the average, 95
out of 100 of those who do have cancer and also 96 out of 100 of
those who do not have cancer. These characteristics give the following
table of probabilities:

Reality
Cancer No cancer
Positive .95 .04
Test predicts
Negative .05 .96
1.00 1.00

Now assume that one percent of those tested actually do have cancer;
that is, Pr(cancer) = .01. (This is an unconditional probability, since
it depends upon no given prior condition.) Note that since only one
percent of those tested have cancer, the flow of those tested is mainly
down the righthand column of the table of probabilities.

What proportion of false positives (and false negatives) will be
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TABLE 2-2
Computation of Probabilities

We have the following data:
Pr(cancer) = .01
Therefore Pr(not cancer) = 1.00 — .01 = .99.
Similarly,
Pr(test positive | cancer) = .95, and therefore
Pr(test negative | cancer) = .05.

Also,
Pr(test negative | no cancer)
Pr(test positive | no cancer)

.96, and therefore
04.

The problem is to compute Pr(cancer | test positive), which equals, by
Bayes’ theorem:

Pr(test positive | cancer) Pr(cancer)

Pro(test positive | cancer) Pr(cancer) + Pr(test positive | not cancer) Pr(not cancer)
(.95)(.01)

 — = ]9,
(.95)(.01) + (.04)(.96)

produced by the test? One way to answer with respect to false positives
is to compute Pr(cancer | test positive)—the probability that a person
has cancer, given that the test reads positive. This can be done, using
the appropriate equations for conditional probabilities, shown in Table
2-2. Another way to handle the problem is to consider what happens
when, say, 10,000 people are screened for cancer using the hypothetical
test. Computations analogous to those in Table 2-1 yield the following
expected results:

Reality
Cancer No cancer
Positive 95 396
Test predicts
Negative 5 9,504
and therefore
. 95
Pr(cancer | positive) = ———— = .19
95 + 396

Thus about 19 percent of those indicated positive will actually have
cancer; 81 percent of the positives will be false. The decision whether
this is a good test depends upon the cost of such false positives and
their consequent detection as well as the benefits that derive from
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the detection of the disease. Perhaps such a test would be most useful
as a screening device to indicate patients needing further tests.

Similar arguments apply to the use of lie detectors, the prediction
of juvenile delinquency on the basis of family background, and the
use of “preventive detention.”® The reason the original qualities of
the prediction seem to collapse when the test is applied to data is
that, in these two cases, the quality to be detected is rather rare.
Therefore, even though the hypothetical cancer test correctly predicts
cancer 95 percent of the time and noncancer 96 percent of the time,
so many people (99 percent in our example) flow through the right
(noncancer) side of the table of probabilities that even the low error
rate (4 percent) produces a large number of errors relative to the
number of correct predictions of cancer. If, on the other hand, half
the tested population had cancer, then the expected table (for 10,000
people) would be:

Reality
Cancer No Cancer
Positive 4750 200
Test predicts
Negative 250 4800

This is pretty sensational predicting!

The properties of the test are the same in both cases, but the
populations tested differ with respect to the distribution of the
characteristic to be detected. Thus a test which does a good job of
prediction on one population may not perform so well on a second
trial if distribution of the characteristic sought differs markedly in
the second population. Thus it will be worthwhile to try out—if only
by working through the arithmetic as we have done here—the test
on a population for which the distribution of the characteristic to
be predicted is the same as the population for which the ultimate
prediction is to be made. Note that the two numbers Pr(positive |
cancer) and Pr(negative | not cancer) were not enough to describe
adequately the performance of the prediction. Instead, a third piece
of information, in this case Pr(cancer), was necessary to permit an
adequate assessment of the performance of the test for that population.

5See Jerome H. Skolnick, “Scientific Theory and Scientific Evidence: An
Analysis of Lie-Detection,” Yale Law Journal, 70 (April 1961), 694-728; and Travis
Hirschi and Hanan C. Selvin, Delinquency Research (New York: Free Press, 1967),
chap. 14.
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Finally, some very high rates of successful “prediction” should not
fool us. After all, we can achieve 99 percent “accuracy” simply by
predicting that no person has cancer. Since 99 percent of the people
in our example don’t have cancer, the rule is 99 percent “accurate”
in a sense, although next to worthless medically.

Election-Night Forecasting

Each election night, when the polls have closed and the votes
are being counted, the three television networks forecast the electoral
outcome on the basis of early, partial returns—often needing only
a few percent of the vote to predict accurately the final outcome.
The networks invest millions of dollars in their electoral coverage,
which allows their viewers to learn the results of the election several
hours earlier than they might otherwise. Although this is perhaps
a small yield for the investment, the scramble for early returns needed
for the projection of the winner might, in some places in some elections,
discourage corrupt election officials from greatly altering the real
count of the vote—since the pressure of getting the vote count in
may reduce the time needed to fix the returns.

For example, pressures for a timely count may curb such abuses
as those in Ilinois in the 1968 tabulation:

For days before the election, the Chicago papers were full of tales
of heavy crops of bums and derelicts being registered in West Side
flophouses to provide the names for a fine Democratic turnout. And
suspicion became certainty inthe pressrooms. . . when it was learned
that “computer breakdowns” and “disputed vote counts” were holding
the Illinois decision back. Veteran reporters could be heard explaining
. . . how the game was played in Illinois: how both the iron Mayor
and his Republican enemies downstate would “hold back” hundreds
of precincts in an effort to finesse each other to give a hint of the
size of the total they had to beat; how they would release a few
precinct§ as bait to lure the other man into giving away some of
his. . . .

This suggests that the count of the vote is a rather unusual statistic.
For most social and economic indicators, there is a tradeoff between
timeliness and accuracy: the quicker we get the information, the
greater the error. Sometimes the making of economic policy has been
based on very short-run economic statistics—with a resulting reliance

"Lewis Chester, Godfrey Hodgson, and Bruce Page, An American Melodrama:
The Presidential Campaign of 1968 (New York: Viking, 1969), pp. 760-61.
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on less accurate statistics—and more accurate figures might well
have produced a different policy. In contrast to the usual case, however,
a slow count of the vote often indicates vote fraud, or at least the
opportunity for vote fraud.®

Although they may, in passing, reduce vote fraud, the central concern
of the networks is to forecast the winner of the election (and,
secondarily, the winner’s share of the vote) on the basis of scattered
and very incomplete returns. Two methods, both interpreting early
returns with reference to a historical baseline drawn from previous
elections, have been favored: (1) comparison of tonight’s returns with
the returns from previous elections at the same stage of the count
and (2) comparison of tonight’s returns from various counties with
the returns from previous elections from those same counties.

The first method begins by constructing, on the basis of a previous
election, a curve showing the relationship between the proportion
of the vote reported and the proportion of the reported vote for the
Democratic (or Republican) candidate. Figure 2-4 shows one such
pattern, indicating that in this case a Democratic candidate who has
more than about 40 percent of the vote when less than about 70
percent of the vote has reported can expect to win rather easily when
all the returns are in. Such a pattern might result from the early
reporting of certain Republican areas and a slower count in heavily
Democratic areas. Thus the curve—called a “mu curve”’—helps adjust
for the bias favoring one party or the other in the sequence of early
returns. Figure 2-5 indicates how this might be done. Tonight’s returns
are compared with the historical pattern of reporting, an appropriate
adjustment for reporting bias is made, and the final projection is
put on the air. In practice, the method is fancied up a bit—but still
its basic defect persists: it relies on the assumption that the order
inwhich the vote is reported remains the same from election to election.
This assumption has led to several predictive disasters, and now mu
curves only supplement other, more solidly based techniques.

One such predictive botch occurred during an election when a heavily
Republican state first introduced voting machines. As a result, that
state’s flood of Republican ballots came in hours earlier than usual;
the mu curve, believing that these were the same votes it saw in
each election every four years, quickly projected a Republican landslide
for president. Hours and hours later, John Kennedy won one of the
closest presidential contests in history.

8The problem of inaccurate counts of the vote is not unimportant; political
observers guess that two or three million votes are stolen, miscounted, or changed
ina U.S. presidential election. Nobody has a good guess about the partisan advantage,
if any, resulting from stolen votes. The advantage differs by state.
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FIGURE 2-4 Historical pattern of the vote as more and more precincts
report their returns on election night

Some practitioners patch up their mu curves by taking into account
expected changes in the order of reporting:

In deriving mu curves which are empirical in nature—they have
to be—one must take into very careful consideration whether or
not there have been any changes in voting patterns resulting from
voting machines, or changes in poll closing times. Where there are
such changes—and in every election we find that there are some—the
mu curves have to be suitably adjusted in order to render them
suitable.’

This sort of repair requires knowledge in advance of those changes
in election procedures that might affect the sequence of the vote
report—and must then guess how much earlier or later the affected
returns will show up in the reporting sequence. The method also
rests on the fragile hope that the patched-up curve traced out by
tonight’s returns will flow parallel to the historical curve-—an assump-
tion that will not hold up if there is a differential shift in particular

SJack Moshman, “Mathematical and Computational Considerations of the
Election Night Projection Program,” paper presented at the Spring Joint Computer
Conference in Atlantic City, N.J., on May 2, 1968, p. 3.
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areas to a particular candidate. For example, if areas that normally
report late and also normally vote somewhat Democratic suddenly
shift very strongly toward the Democratic candidate because of that
candidate’s special appeal in those areas, then the paths traced out
by the historical curve and tonight’s curve would not be parallel,
and the projection might be wrong. Finally, the method does not
easily accommodate new political factors, such as a third-party candi-
date.

Because of these limitations and the availability of more powerful,
more inferentially secure methods, mu curves are not now widely
used in electoral projections, although they do retain some utility
for informal use in interpreting election returns. That utility comes
from the limited insight upon which mu curves are based: that different
areas, with different voting patterns, report their returns at different
times on election evening. Of course we knew that anyway.

The second—and preferred—forecasting method compares tonight’s
returns from those counties (or wards, precincts, or the like) that
have reported early with the returns from previous elections in those
same counties. The adjustment of current returns by previous per-

Final projection, given
tonight's returns and
assumption that historical
pattern continues

~
(8]
1

Tonight's returns
® \
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I

Democratic share of vote based
on the precincts that have reported
o
S

! ! | L
25 50 75 100

Percent of precincts having reported

FIGURE 2-5 Comparing tonight’s returns with the historical pattern
to make a projection
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formance at a disaggregated level (that is, at the county level) requires
more detailed data and analysis than the mu-curve method—but it
yields far more inferentially secure results. That is, there is a good
chance that we know more after having done the analysis than we
did before.

Comparing tonight’s returns from a county with its previous voting
patterns takes into account that the counties reporting first are not
a representative sample. Counties with early complete returns may
tend, in some states, to be Republican counties; in others, Democratic
counties. At any rate, why hope they are typical or representative?
Comparing current returns with old returns will adjust or control
for a county’s normal political leanings. For example, the raw returns
from Massachusetts are not very helpful in projecting the national
winner in a presidential race; but such returns are helpful if we
know that Massachusetts normally runs heavily Democratic. So, if
the Democratic candidate barely leads in Massachusetts, then that
candidate is surely in real trouble nationwide.

Note the assumption here that the shift or the swing toward one
party is roughly the same over the whole state or the whole nation.
This assumption will not however lead to disaster—because it can
be checked on election night with the data in hand simply by comparing
the shifts across the counties that have reported. If the shifts are
not consistent across counties, then either the historical base values
from previous elections for the counties are ill-chosen and inappropriate
for judging the pattern of tonight’s election, or else the candidates
had a special appeal to certain groups clustered by region and the
shifts are not the same for different parts of the country. In contrast,
violations of assumptions behind the mu-curve method are not easily
discovered—at least in the short-run on election night.

Thus the second projection method is somewhat more powerful and
safer than the use of mu curves because its assumptions are more
modest and because some of its important assumptions can be verified
during the course of the analysis. The second method does, however,
require much more data and computing power; the grand assumptions
of the mu curves are replaced by the collection and analysis of data.

In practice, the final projection of the election consists of a combina-
tion of several separate projections. This mixture forming the final,
aggregate projection melds several component projections together:

1. the projection from the method of county-adjusted returns:
%D _ = percent Democratic projected from counties;

2. the projection resulting from the so-called “key precincts,” which
are chosen either randomly or because of their special political
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interest: %D, = percent Democratic projected from key precincts;

3. the projection of the race before any returns are in at all, called
a “prior”’—a projection based on pre-election polls or political
judgment: %DP = prior projection of percent Democratic.

How much of each projection is mixed into the overall combined
or “meld” projection? The prior, of course, receives full weight when
no returns are in; as the returns pile up, the prior should carry less
and less weight in the meld projection. Figure 2-6 shows one such
weighting plan, with the weight, w(r), a function of the number
of precincts reporting. How should the other factors, %D_ and %D,
be weighted in the grand meld projection? Statisticians have a standard
answer: form a weighted average using the reciprocal of the variances
for weights.

Reciprocal weights are a reasonable choice—for, if the variance
of an estimate is big, the weight should be small; if the variance
of the estimate is small, then the estimate should have a relatively
heavy weight and count for more because we have that estimate
more precisely pinned down. Weighting by reciprocal variances gives,
under ideal circumstances, the most precise combination. For the

When no returns are in on
1004 / election night, the prior
equals the meld~~that is,

the prior receives 100%
of the weight

[®2]
[«

Weight on the prior
in the meld projection W (r)

[l
w

0 25 50 75 100

Percent precincts reporting

FIGURE 2-6 Weighting the prior in the overall meld



46 PREDICTIONS AND PROJECTIONS: SOME ISSUES OF RESEARCH DESIGN

realities of election night, less simple combinations may be important.
At any rate, one possible meld is the weighted average (weighted
by the reciprocal of the variances) of the component projections:

1 1
— %D + S_i %D, + w(r) %D,

meld projection = ) 1
— + =+ w(r)
Sc Sh

where S? and S} are the variances of the estimates of %D, and
%D, . This is simply the particular realization of the general formula
for a weighted average:

sum of weighted components 2 w;x

i

weighted average = -
sum of weights Zw;

Although based on the principles we have looked at here, con-
temporary projection models include many additional complications—
complex estimation procedures, specially tailored base values, checks
for bad data, and estimates of turnout. While today’s elaborate models
must be entirely computer based, in past years the votes were tabulated
by hand on adding machines. Some years ago, the story has it, the
truck delivering the dozens of rented adding machines to the studio
on election day never arrived. Momentary panic arose, for how could
they tabulate all the separate vote reports about to start pouring
in? Finally, someone discovered a quickly available substitute for
the adding machines. That night, ignoring the heavy-handed symbol-
ism, they rang up the vote for president on cash registers!

Our next example evaluates another device for electoral forecast-
ing—the “bellwether” district.

Bellwether Electoral Districts®

Time present and time past
Are both perhaps present in time future,
And time future contained in time past.

—T. 8. Eliot, Four Quartets*

10This section was co-authored with Richard A. Sun.
*From Four Quartetsby T. S. Eliot. Reprinted by permission of the publishers,
Harcourt Brace Jovanovich, Inc. and Faber and Faber Ltd.



47 PREDICTIONS AND PROJECTIONS: SOME ISSUES OF RESEARCH DESIGN

Prior to the 1936 presidential election, the conventional political
wisdom had it that as Maine voted, so went the rest of the nation.
After the 46-state landslide, James Farley, Roosevelt’s campaign
manager, revised the theory: “As goes Maine, so goes Vermont.” Such
is perhaps the inevitable fate of so-called bellwether or barometric
electoral districts; still, there are always new contenders with markedly
unblemished records of retrospective accuracy to replace wayward
bellwethers. Given the familiar inferential caution that retrospective
accuracy provides little guarantee of prospective accuracy, what is
the worth of claims that certain districts invariably reflect the national
division of the vote?

The answers at hand differ: a skeptical statistician probably has
little faith in the after-the-fact predictive success of bellwether
districts; the collector of political folklore marvels at the record of
such byways as Palo Alto County (Iowa) and Crook County, (Oregon)
which have voted for the winner of every presidential election in
this century; the newspaper reporter interviews a few citizens of Palo
Alto or Crook County in search of “clues as to what will happen
next Tuesday”; and Louis Bean has written four bocks premised on
the notion that as goes X, so goes the country.'! Here we will examine
the question more deeply—and, at the same time, see a number of
fundamental statistical techniques in action.

The data for the analysis are the election returns from almost
all 3100 U.S. counties for the fourteen presidential elections from
1916 to 1968.'? We will be looking for what are called “all-or-nothing”
bellwethers: the county either votes for the winner of the presidential
election or it does not. This seems to be the usual meaning of “bellwether
district”; most discussions of supposed bellwethers report that the
district has voted with the winner in the last N elections. Sometimes

' Ballot Behavior (Washington, D.C.: Public Affairs Press, 1940); How to
Predict Elections (New York; Knopf, 1948) How America Votes in Presidential Elections
(Metuchen, N.J.: Scarecrow Press, 1968); and How to Predict the 1972 Election (New
York: Quadrangle, 1972).

12The data tapes were made available through the Inter-University Consortium
for Political Research. We edited them extensively, correcting errors and adding missing
data. Of the 3070 counties in the United States, we have the complete two-party
election returns for the fourteen elections from 1916 to 1968 for 2938 counties, or
96 percent. The remaining counties had to be dropped because one election in the
fourteen election series was missing; others may have changed names or are mixed
in with other political units. A listing of the missing counties and election years
was reviewed both before and after our analysis; both times it appears that the small
amount of missing data had no consequences for our findings. Some of our early
computations carried along votes for four different parties in each county, but we
finally edited the data to include only the returns for the two major parties. Therefore
all election returns reported here are based on the votes of the two major parties
in all the elections.
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N is surprisingly small; some journalists have interviewed nonran-
domly selected citizens of “bellwether” communities that have voted
for the winner in only three or four previous elections.

One good test of the credibility of bellwethers is to conduct a series
of historical experiments, each designed to answer the question: How
well would we have done in predicting the election of 19XX if we
had followed a group of supposedly bellwether counties chosen on
the basis of past elections before the election of 19XX? For example,
going into the 1968 election, there were 49 counties that had voted
for the winner in every presidential election since 1916—thirteen
elections (or more) in a row with the winner. Were these 49 retrospective
bellwethers more likely than other counties to support the winner
in 19687 This is the sort of question that we will answer over and
over, for different elections and for different choices of historical
bellwethers.

Since they directly answer the question at hand, the historical
experiments seem to provide the most powerful means of assessing
the credibility of bellwethers. It is also possible to construct probability
models to provide a baseline or null hypothesis against which to
compare the observed performance of reputed bellwethers. We met
with little success in developing models based on reasonable assump-
tions. The construction of a useful probability model remains an open
question, although we suspect that even a very good model would
still not provide as direct and powerful test of bellwethers as the
historical experiment.

Another statistical problem arises because bellwethers are found
in an after-the-fact search through election returns; there is no theory
identifying particular areas as potential bellwethers before the fact.
We have then a situation analogous to that of “shotgunning” in survey
research: the searching through of a large body of data for statistically
significant results leads to difficulties in just how to include the
fact of the search in an adjusted significance test. One answer is
simply the independent replication on a fresh collection of data of
the results found through searching. That is, of course, the underlying
logicof the historical experiment: bellwethers are chosen from a search,
and then we see if their bellwether performance is replicated in the
historical future.

The usual technique for evaluating bellwethers is retrospective
admiration of the historical record. Almost all written accounts of
reputed bellwethers describe an area’s lengthy record in voting for
winners and then ask, in effect, “Isn’t that something?” These accounts
evaluate the predictive performance of the past without reference
to either prospective accuracy or the predictive record of other areas.
Consider excerpts from a typical New York Times story on bellwethers:
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Town Votes 'Em As It Sees 'Em
And It Usually Sees 'Em Right

Salem, N.J., April 8—The political professionals are keeping an
eye on this small Quaker community in southern New Jersey for
clues to the outcome of the presidential election.

For fifty years, with only two exceptions, Salem has voted for
the victorious Presidential candidate. . . .

There is no clear reason for Salem’s stature as an election indicator.

“But,” says County Clerk Thomas J. Grieves, “you can’t call it
chance or a quirk. It happens too often. . . .”!?

Actually, there are several hundred counties with predictive records
better than Salem’s over the last fifty years. But the important point
is that no evaluation of Salem’s record can be made on the basis
of past election returns from Salem alone. A bellwether’s credibility
can only be assessed by examining, in comparison to other districts,
its predictive record and not merely its postdictive record.

Consider the following historical experiment: let us choose the
counties with the best records for predicting presidential elections
from 1916 to 1964 and see how well they predicted the outcome of
the 1968 election. There were 49 such counties with records of
supporting the winner in all 13 elections from 1916 to 1964. Such
a record, by almost any standard, is a bellwether performance—if
the counties had been identified in 1916 instead of after the fact.
How well did the 49 retrospective bellwethers of 1916-1964 do in
predicting the winner in 19687 Not very well at all; 27 of the 49
(or 55.1 percent) voted with the winner in 1968. Two-thirds of all
counties supported the winner in 1968, and so a county chosen at
random could typically have been expected to outpredict the counties
with previously perfect predictive records. Table 2-3 shows the full
array of results, with the 1968 predictive performance tabulated
against the prior record of predictive accuracy. Oddly enough, the
best predictions in 1968 were made by counties that had had the
worst, record in the past (5 right, 8 wrong). These 80 counties (that
went 100 percent for the winner in 1968) were, of course, counties
that had voted without fail for the Republican candidate in every
previous election since 1916 and persisted in 1968. So it is easy to
find a group of counties, identified by their past voting record, that
will support the upcoming winner—if you only know how the election
is going to turn out!

The election of 1968 was a particularly bad year for the bellwethers
of the past. Table 2-4, repeating the tests for the presidential elections
from 1936 to 1964, shows that for some elections the bellwethers

'3 The New York Times, April 9, 1964, p. 29.
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TABLE 2-3
Predictive Performance from 1916 to 1964 Compared with Predictive Record
in 1968 Election

Past Performance, 1916-1964 1968 Performance

Past Predictions Counties Right Wrong
Per-
Right Wrong Number Percent Number Percent Number cent
0 13 0 0.0 0 0.0 0 0.0
1 12 0 0.0 0 0.0 0 0.0
2 11 0 0.0 0 0.0 0 0.0
3 10 0 0.0 0 0.0 0 0.0
4 9 0 0.0 0 0.0 0 0.0
5 8 80 2.7 80 100.0 0 0.0
6 7 229 7.8 209 91.3 20 8.7
7 6 502 17.1 303 60.3 199 39.6
8 5 708 24.1 424 59.9 284 40.1
9 4 554 18.8 397 71.6 157 28.3
10 3 380 12.9 251 66.0 129 33.9
11 2 274 9.3 148 54.0 126 45.9
12 1 162 5.5 97 59.9 65 40.1
13 0 49 1.6 27 55.1 22 44.9
2938 100.0 1936 65.9 1002 34.1

of the past do predict the upcoming election somewhat more accurately
than a typical county.

Tables 2-3 and 2-4 provide us with a great deal of experience with
retrospective all-or-nothing bellwethers. The tables suggest:

1. Perhaps each time one hears of an area with a spectacular
predictive record in the past, a glimmer of hope and curiosity arises
suggesting that surely this fine record couldn’t be mere chance—there
must be something going on. Whatever that something might be,
it isn’t a high degree of prospective accuracy. Sometimes previously
accurate districts do better than just any collection of districts;
sometimes they don’t. The retrospective bellwethers were particularly
poor in the close elections of 1960 and 1968. The compilations of
Table 2-4 show the erratic record of the retrospective all-or-nothing
bellwethers in predicting the future.

2. We have identified “bellwethers” in Tables 2-3 and 2-4 by their
previously perfect predictive records in at least six consecutive previous
elections. If this standard is applied to judging the results of our
historical experiment, then the bellwethers of the past are not the
bellwethers of the present. In five of the eight elections, the previously
bellwether counties had a higher probability of voting with the winner



TABLE 2-4
Predictive Record of Previously Accurate Counties in Presidential Elections,

1940-1964
PREDICTING 1940 Number of Percent voting with
counties winner, 1940

1916-1936 past
performance, 602 52.9
right-wrong = 6-0

Nationwide 2938 61.6
PREDICTING 1944 Number of Percent voting with
counties winner, 1944

1916-1940 past
performance, 319 72.7
right-wrong = 7-0

Nationwide 2938 55.3
PREDICTING 1948 Number of Percent voting with
counties winner, 1948

1916-1944 past
performance, 232 87.5
right-wrong = 8-0

Nationwide 2938 59.9
PREDICTING 1952 Number of Percent voting with
counties winner, 1952

1916-1948 past
performance, 203 81.3
right-wrong = 9-0

Nationwide 2938 68.3
PREDICTING 1956 Number of Percent voting with
counties winner, 1956

1916-1952 past
performance, 165 87.3
right-wrong = 10-0

Nationwide 2938 70.0
PREDICTING 1960 Number of Percent voting with
counties winner, 1960

1916-1956 past
performance, 144 354
right-wrong = 11-0

Nationwide 2938 38.6
PREDICTING 1964 Number of Percent voting with
counties winner, 1964

1916-1960 past
performance, 51 96.1
right-wrong = 12-0

Nationwide 2938 73.3

51
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than a county chosen at random from the nation as a whole; in the
other three elections (1940, 1960, and 1968), a county chosen at random
would be the county of choice in predicting the upcoming election.

3. The retrospective bellwethers, taken as a group, correctly predict-
ed seven of the eight trial elections—in the sense that a majority
of the group of retrospective bellwethers supported the winner. Exactly
the same was true of a group of randomly selected counties (within
the limits of sampling error).

4. There were, alas, no anti-bellwether counties. No county had
such an outstandingly poor record that it could serve, by reversing
its preferences, as a predictive (or even postdictive) guide.

5. Tables 2-3 and 2-4 indicate clearly why one obvious probability
model, the binomial, for all-or-nothing bellwethers does not provide
a useful baseline. Consider the following: if a fair coin, labeled
“Democratic candidate will win” on one side and “Republican candidate
will win” on the other, were tossed prior to each of the last 14
presidential elections, the probability that the coin would successfully
predict the winner of all 14 contests is

1\™ 1
(—) = = .000061.
2 16,384

If this toss of the coin were performed in each of the 3100 counties,
then it would be expected that

(.000061) (3100) = 0.2 counties

would correctly go along with the winner 14 elections in a row. More
generally, the binomial model for k successes in 14 independent trials
with probability of success equal to one-half generates the distribution
of predictions shown in Figure 2-7. The actual distribution of counties
is also shown in the figure. It is clear that the distribution of actual
election outcomes is not generated by a process of 14 independent
trials with probability of success equal to one-half. That is because
the probability of success usually substantially exceeds one-half and
the trials are, in fact, highly dependent. The chances that a given
county votes with the winner is usually around two-thirds, as Tables
2-3 and 2-4 show.

A more difficult problem in constructing a probability model is
that the election results are not independent over space and time:
both the interelection and intercounty correlations are very high.
For example, the correlation between the division of the vote from
one election to the next over all counties is almost always greater
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25 Binomial distribution, Binomial distribution, Actual distribution
P=0.5 P=10.65 of outcomes
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Percentage of counties at
each number of correct predictions

W

0 2 4 6 8101214 0 2 4 6 8101214 0 2 4 6 8101214
Number of correct Number of correct Actual number of
predictions in 14 predictions in 14 correct predictions
elections— elections— in the 14 elections
binomial model binomial model from 1916 — 1968

FIGURE 2-7 Binomial and actual outcome distributions

than .90. Considering that a county could go either Democratic or
Republican in each of the 14 elections yields 2'* = 16,384 theoretically
possible electoral histories or paths that the counties could have
followed over the 56 years. Less than 400 of these electoral histories
actually occur, and only about 30 contain more than a handful of
counties. At least 40 percent of all counties have gone more or less
straight Democratic or straight Republican with occasional deviations
in landslide years (Table 2-5).

TABLE 2-5
Most Frequently Occurring County Electoral Histories, 1916-1968

History Number of counties
Straight Democratic 200
Democratic, except 1964 160
Democratic, except 1968 54
Democratic, except 1964 and 1968 58
Straight Republican 79
Republican, except 1964 128
Republican, except 1932, 1936, and 1964 136
Republican, except 1916, 1932, 1936, and 1964 155
Followed nation, all elections 27

Followed nation, except 1960 68
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6. Twenty-seven of the nation’s 3100 counties voted for the winner
inevery presidential election from 1916 to 1968. It may be possible—or
at least a firm believer in bellwethers might well argue—that there
are some truly bellwether districts hidden in those counties. What
we have shown, of course, is only that counties with perfect postdictive
records have undistinguished predictive records—when those counties
are taken as a group. The only way we can identify bellwethers is
as members of such a group. One final shred of evidence is to consider
the performance of the nation’s finest bellwethers. Prior to the 1960
election, there were eight counties in the nation with records of
supporting every winner in this century. After 1968, only three of
these eight superbellwethers still had unblemished records: Crook
County, Oregon; Laramie County, Wyoming; and Palo Alto County,
TIowa. They remained accurate in 1972.

Our conclusion in the case of all-or-nothing bellwethers is clear:
the usual concept of a bellwether electoral district has no useful
predictive properties. The all-or-nothing counties are only a curiosity
and probably should be forgotten. It is a waste of time to send reporters
out to interview nonrandomly selected citizens of Crook County a
week or two before the election—at least it is a waste of time from
any sort of scientific point of view. Such news reports create mystery
where little exists.

There perhaps remains a magical air about the bellwethers of the
past; some of these districts, considered individually, seemingly have
such phenomenal records and yet we know better than to take them
seriously—but still. . . . It may be best to look not to the election
returns for the source of the mystery, but rather to ourselves. Maugham
once wrote:

The faculty for myth is innate in the human race. It seizes with
avidity upon any incidents, surprising or mysterious, in the career
of those who have distinguished themselves from their fellows, and
invents a legend to which it then attaches a fanatical belief. It is
the protest of romance against the commonplace of life. 4

4 Somerset Maugham, The Moon and Sixpence (Harmondsworth, Middlesex,
England: Penguin Books, 1941), p. 7.
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Regression Toward the Mean: How
Prior Selection Affects the Measurement
of Future Performance

Consider the defects in research design in the following
example:

Students in a statistics course who needed remedial teaching (as
indicated by their performance in the lower quartile of an achievement
test in arithmetic) were assigned to a special class in sensitivity
training. Soon the teacher of the special class was able to go into
full-time educational consulting because of the success of his new
book, Ending Educational Hangups in Statistics: How Empathy Pays
Off. The book showed that the special class was strikingly effective
because when the students in the special class took the tests again
after only six months, their test scores had greatly increased—in-
creased, in fact, almost all the way up to the average of the first
test scores of all the students who initially took the arithmetic test.

Several difficulties that are common in research designs compromise
this hypothetical example.

This design uses the first test to divide the class into a treatment
group (consisting of the lower quartile of students) and a control
group (the remainder of the class). Students in the treatment group
took the same tests again six months after joining the special class.
The following comparisons were made in an effort to assess the benefits
of the special class:

1. Average “gain” for special class equals

average of scores on average of scores on
second test for special] minus first test for special
class class

2. “Improvement” relative to rest of class equals

average of scores on average of scores for
second test for special | minus | whole class on the first
group test
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Two serious defects in the research design result in a bias in the
“gain” and “improvement” scores such that the beneficial effect of
the special class is exaggerated. The first defect is the failure to
take into account the effect of practice and maturation on the test
scores. Students taking a test a second time, as in the special class,
can be generally expected to get better at taking tests; consequently,
their scores improve merely because of their increased experience.
Similarly, since the treatment-group scores on the second test are
compared with the earlier test scores of the control group, a bias
due to the maturation of the special group results. In other words,
the students in the special group may improve relative to their previous
performance (and the previous performance of their contemporaries)
merely because they are older and smarter and not because they
are necessarily benefiting from the special class.

In this design, then, the improvements in the scores of the special
group due to practice and maturation effects are incorrectly attributed
to the effect of the special class. Although it is impossible without
additional information (or a better research design—see below) to
judge the exact strength of the bias, we do at least know its direction:
it favors the hypothesis that there is benefit from the special class.

The second defect in the research design is more subtle. It is a
version of what is called the “regression fallacy.” If members of a
group are selected because their scores are extreme (either high or
low) on a variable and if this extreme group are later tested once
again, we will generally find that the group are “more average” than
they were on the first test. Their scores will have moved or “regressed”
toward the mean. One way to view the situation is to think of the
extreme group as consisting of two sorts of people: (a) those who
deserve really to be in that group and (b) these who are there because
of random error—unlucky guesses on the test, an “off” day, and so
forth. When the extreme group is tested a second time, the group
(b) will typically perform more like their true selves, thereby raising
their scores on the average at least. The deserving extremists in
group (a) will continue their poor scores, albeit with some variation.

Thus the average score of the extreme group will typically increase
because of the more typical performance of group (b) on the second
test. There is no way of distinguishing group (a) from group (b) with
only one test.

The problem arises when any group is formed by selecting its
members because they are extreme on a single measure. For example,
let us say that the highest quartile of students were placed in the
special class instead of the bottom quartile. What would happen then?
Once again, two types of students make up the extreme top group:
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(a) those who are actually skilled and who deserve to be placed in
the top quartile and (b) those who are lucky, who guess right, and
so on. Now if this group is tested once again, it will generally be
found that the overall average of the original extreme group has
dropped somewhat—because not all the lucky performers on the first
test will be lucky again.

The fallacy occurs in all sorts of situations. Wallis and Roberts
provide several good examples including the following:

Teachers—except, of course, statistics teachers—sometimes commit
the regression fallacy in comparing grades on a final examination
with those on a midterm examination. They find that their competent
teaching has succeeded, on the average, in improving the performance
of those who had seemed at midterm to be in precarious condition.
This accomplishment naturally brings the teacher keen satisfaction,
which is only partially dampened by the fact that the best students
at midterm have done somewhat less on the final—an “obvious”
indication of slackening off by these students due to overconfidence. %

Let us examine a numerical example of what might have happened
in the case of the special class. Make the following assumptions:

1. There are no practice or maturation effects.
2. The special class has no effect at all on the students’ test scores.

Under these assumptions we should observe no significant gains
or improvements by the special class if the research design is free
of bias. If, however, the research design has a bias, we will be able
to get at least an approximate idea of its extent. Table 2-6 shows
three sets of made-up test scores:

Column I:  The “true score” of each student on the test. This, of course,
is never actually measured perfectly, and the remaining
columns represent the true score plus some random
measurement error.

Column II:  The “true score” for each student with a random number
between —20 and 20 added to each score.

Column IIl: Again the “true score” with another random number added
to column I

Let the numbers in column Il represent the scores of all the students
on the first test and those in column III the scores on the second
test. Since the test scores were computed by adding a random error
to the “true scores,” we find that there is very little difference in

15W. Allen Wallis and Harry V. Roberts, Statistics: A New Approach (New
York: Free Press, 1956), p. 262.
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TABLE 2-6
Random Errors Added to True Scores

I I I
Random Observed Random Observed
True error, score, error, score,
Student score test 1 test 1 test 2 test 2

A 70 +13 83* +1 71
B 75 —20 55* +15 90
C 80 +8 88 -13 67
D 84 +7 91 -1 83
E 87 -15 72* -9 78
F 90 +2 92 +8 98
G 93 —4 89 +12 105
H 95 -7 88 +16 111
I 96 +3 99 -12 84
J 97 +17 114 +20 117
K 98 -19 79* -1 97
L 99 +11 110 +5 104
M 99 -18 81%* -17 82
N 100 -13 87* +3 103
0] 100 +9 109 -7 93
P 101 +12 113 +10 111
Q 101 -0 101 -5 96
R 102 -18 84* +2 104
S 103 +13 116 +9 112
T 104 +7 111 -15 89
U 105 +3 108 +14 119
A" 107 +12 119 -7 100
w 110 -11 99 +16 126
X 113 -20 93 +5 118
Y 116 +15 131 -19 97
Z 120 +1 121 +5 125
AA 125 -2 123 -2 123
BB 130 -14 116 -14 116

*The asterisk indicates students in lowest quartile on test 1.

the average score of the whole class on test 1 compared with test
2. Also the test seems to be measuring something: the correlation
between the tests is .51. The correlation would be perfect, if we had
not introduced the random measurement error into the true score
on each test. Furthermore, note that the variability on both tests
1 and 2 is the same.

It should be clear that all that has been done is to construct some
test scores containing some random error. No systematic effects in
the data enable one to differentiate between the results of test 1
and test 2. But let us now see what happens in the research design
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used in assessing the effects of the special class. The students in
the special class were chosen because they were in the bottom of
the class on the first test. Compare, then, the scores of the lowest
seven students in the class as measured by test 1 (Table 2-7).

This research design generates the following misleading results.
The average score of the group entering the special class was 77.3;
after attending the special class for six months, their average score
was 89.3—a “gain” of 12.0 points. Thus, because of the regression
effects operating in this research design, a pseudo-gain of 12 points
was found between test 1 and test 2, even though all the difference
between test 1 and test 2 was generated by random numbers.

Note how plausible it all seems. A group of students are selected
on the basis of test scores to enter the special class, and when the
same students are tested later, those in the special class appear to
have gained 12 points. Test 1 and test 2 are rather highly correlated,
indicating that the tests are moderately reliable. And yet it is all
a statistical artifact.

What would be a better research design—one that assesses the
effect, if any, of the special class but avoids the bias resulting from
the effects of practice, maturation, and regression toward the mean?
The essential feature of an improved research designs is that not
all of the low scorers should be placed in the special group. Ideally,
some of the low scorers on test 1 should be randomly assigned to
the special group; the others should remain in the regular class. In
evaluating the effects of the special class, then, the basic comparison
should be made between those low scorers in special class versus
those low scorers in the regular class. Regression toward the mean
still operates in this design, but its impact is roughly equal on the

TABLE 2-7
Scores on Test 1 Compared to Scores on Test 2 for the Lowest Quartile of
Students on Test 1: Pseudo-Gains and Pseudo-Losses

Difference:
“Gain” > 0
Student Test 1 Test 2 “Loss” < 0
A 83 71 -12
B 55 90 35
E 72 78 6
K 79 97 18
M 81 82 1
N 87 103 13
R 84 104 20
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control group and the treatment group because students were randomly
assigned to the two groups.

The improved design, however, does give us a chance to separate
out the genuine effects resulting from membership in the special
class from the artifactual effects deriving from practice, maturation,
and regression toward the mean. The original design confounds these
factors and throws them all into the gain score.

This example also illustrates the utility of trying out the design
and analysis on realistic but random data. Random data contain no
substantive effects; thus if the analysis of the random data results
in some sort of effect, then we know that the analysis is producing
that spurious effect, and we must be on the lookout for such artifacts
when the genuine data are analyzed.

Prediction of Accident Proneness:

Can Producers of Automobile Accidents
Be Identified in Advance as

Consumers of Traffic Violations?

Only a small number of drivers are involved in severe auto-
mobile accidents. This fact gives rise to statements like “Three percent
of all drivers produce one hundred percent of all severe accidents.”
The statement, while true, can be misleading. It does not mean that
a small group of drivers go around systematically running down people
or ramming other cars. “Accident proneness” may or may not be
a useful concept.

It is empirically true that a small number of people, not necessarily
identifiable in advance, are involved in serious accidents. Do these
people have any characteristics in common? Can we ascertain roughly
the probability that a given driver will be involved in an accident
within a certain period of time? Insurance companies already make
such predictions in a crude way by setting their rates in relation
to factors including the driver’s age, sex, marital status, accident
history, type of driving, and record of traffic violations. Such proce-
dures, at least as they are employed in Canada, are biased against
some drivers (particularly high-risk drivers) because the various
factors are not independent, resulting in double counting of risks
against some drivers.®

6See R. A. Holmes, “Discriminatory Bias in Rates Charged by the Canadian
Automobile Insurance Industry,” Journal of the American Statistical Association, 65
(March 1970), 108-22.
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A study of the relationship between the number of traffic violations
a driver collects and his or her involvement in accidents is threatened
by possible spurious correlations. First, one result of a motor vehicle
accident is a traffic ticket. One driver or another is found to have
committed a violation which “explains” the accident. This leads to
statements such as “Accidents are caused by excessive speed,” which
are based on evidence that in many accidents, drivers involved are
adjudged to have exceeded the speed limit. Lacking here is a comparison
group of the speed of drivers not involved in accidents. There is some
evidence that a large proportion of all drivers on the road are, in
fact, exceeding the speed limit. In any case, a first step in a study
of traffic violations and accidents is to control for the tickets produced
by accidents—at least if the task is to predict, on the basis of a
past history of traffic violations, that certain drivers will be more
likely to be involved in accidents.

A second problem of potential spuriousness is suggested by the
following model:

many miles driven

more traffic tickets more accidents

Thus, high-mileage drivers face greater exposure to the risk of both
a traffic ticket and an accident—even if they drive with a care equal
to that of low-mileage drivers.

A review of the studies of the relationship between violations and
accident involvements points to both of these problems and to a partial
solution:

Ross investigated the relationship between violations and accidents
for the 36 accident-involved drivers . . . and found that 12 of these
36 drivers had reported traffic convictions on their official records.
These 12 people had 18 convictions. However, since there was no
control group in this study, it is not possible to ascertain whether
drivers with accidents had a higher violation rate than drivers without
accidents. A point made by Ross, and one which has an important
bearing on other studies using official records or information collected
in interviews, is that there were discrepancies between interviewee-
reported and recorded accidents and violations large enough to throw
question upon studies relying on one or the other source of information
in arriving at an accident or violation record.

As part of a California driver record study, relationships between
concurrent recorded accidents and citations (convictions for moving
traffic violations) were analyzed. The data for this analysis consisted
of a random sample of 225,000 out of approximately eleven million
existing California driving records. Each driving record included a
three-year history of both accidents and citations. Toavoid inadvertent
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correlation effects, citations directly resulting from accident inves-
tigations were labeled as “spurious” and were removed from the
citation counts in most of the analysis.

The driver records were grouped according to the number of
nonspurious citations, and the mean number of accidents per 100
drivers was calculated for each group. This analysis indicated an
approximately linear relationship between citations and accidents
with fluctuations at the high end of the citation count scale as a
result of reduced sample size. Whereas those with no countable
citations in the three-year period had only 14 accidents per 100
individuals, those with five citations had 62 accidents per 100
individuals and those with nine or more citations had 89 accidents
per 100 individuals.

These figures indicate that there is a strong relationship between
the mean number of accidents per driver and the number of concurrent
citations when large groups of drivers are considered. On the other
hand, the correlation coefficient between accidents and nonspurious
citations was only 0.23. This low figure indicates that large errors
could be made if one attempted to estimate the number of accidents
an individual driver had on the basis of his citation record over
the same time period. One would generally expect the correlation
between concurrent events to be higher than nonconcurrent events.
Thus, one should expect even larger errors, if one attempted to predict
an individual’s future accident record on the basis of his past citation
record.

High-mileage drivers, other factors being equal, are exposed to
a higher risk of both accidents and citations. Variations from driver
to driver in exposure in general and annual mileage in particular
may produce part of the correlation between accidents and citations
that has been observed. Another California study examined charac-
teristics of negligent drivers, defined as those whose record indicated
a point count of four or more in 12 months, of six or more in 24
months, or eight or more in 36 months. (A point is scored for each
traffic violation involving the unsafe operation of a motor vehicle
or accident for which the operator is deemed responsible; two points
are scored for a few types of violations deemed especially serious.)

When the annual mileage for a group of negligent drivers over
age 20 was compared with that for a random sample of renewal
applicants it was found that the negligent group averaged 17,219
miles per year while the applicant group averaged 7,449 miles per
year. When males and females were treated separately it was found
that negligent males averaged 17,591 miles per year as contrasted
to 9,649 miles per year for the male applicants, while negligent
females averaged 9,403 miles per year as contrasted to 5,519 miles
per year for female applicants. The negligent drivers may have
inflated their reported annual mileage in order to impress officials
with their need to drive; nevertheless, it appears very likely that
the negligent drivers do indeed drive more than average.!”

" The State of the Art of Traffic Safety, by Arthur D. Little, Inc., for the
Automobile Manufacturers Association, Inc. (Cambridge, Mass.: Arthur D. Little, Inc.,
June 1966) pp. 42-43.
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Spellbinding Extrapolation

One of the most spellbinding efforts at simple extrapolation
beyond the data arises in this history of guano:

Guano, as most people understand, is imported from the [islands
of the] Pacific—mostly of the Chincha group, off the coast of Peru,
and under the dominion of that government.

Its sale is made a monopoly, and the avails, to a great extent,
go to pay the British holders of Peruvian Government bonds, giving
them, to all intents and purposes, a lien upon the profits of a treasure
intrinsically more valuable than the gold mines of California. There
are deposits of this unsurpassed fertilizer, in some places, to the
depth of sixty or seventy feet, and over large extents of surface.
The guano fields are generally conceded to be the excrements of
aquatic fowls, which live and nestle in great numbers around the
islands. They seem designed by nature to rescue, at least in part,
that untold amount of fertilizing material which every river and
brooklet is rolling into the sea. The wash of alluvial soils, the floating
refuse of the field and forest, and, above all, the wasted materials
of great cities, are constantly being carried by the tidal currents
out to sea. These, to a certain extent at least, go to nourish, directly
or indirectly, submarine vegetable and animal life, which in turn
goes to feed the birds, whose excrements in our day are brought
away by the ship-load from the Chincha Islands.

The bird is a beautifully arranged chemical laboratory, fitted up
to perform a single operation, viz.: to take the fish as food, burn
out the carbon by means of its respiratory functions, and deposit
the remainder in the shape of an incomparable fertilizer. But how
many ages have these depositions of seventy feet in thickness been
accumulating!

There are at the present day countless numbers of the birds resting
upon the islands at night; but, according to Baron Humboldt, the
excrements of the birds for the space of three centuries would not
form a stratum over one-third of an inch in thickness. By an easy
mathematical calculation, it will be seen, that at this rate of deposi-
tion, it would take seven thousand five hundred and sixty centuries,
or seven hundred and fifty-six thousand years, to form the deepest
guano bed. Such a calculation carries us back well on towards a
former geological period, and proves one, and perhaps both, of two
things—first, that in past ages, an infinitely greater number of these
birds hovered over the islands; and secondly, that the material world
existed at a period long anterior to its fitness as the abode of man.
The length of man’s existence is infinitesimal, compared with such
a cycle of years; and the facts recorded on every leaf of the material
universe ought, if it does not, to teach us humility. That a little
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bird, whose individual existence is as nothing, should, in its united
action, produce the means of bringing back to an active fertility
whole provinces of waste and barren lands, is one of a thousand

facts to show how comparatively insignificant agencies in the economy
of nature produce momentous results.'®

Rather substantial inferences, given the observed data!

18 London Farmer’s Magazine: Prospectus of the American Guano Company
(New York: John F. Trow, 1855).



CHAPTER 3

Two-Variable Linear Regression

“Yet to calculate is not in itself to analyze.”
—Edgar Allen Poe, The Murders in the Rue Morgue

Introduction

Fitting lines to relationships between variables is the major
tool of data analysis. Fitted lines often effectively summarize the
data and, by doing so, help communicate the analytic results to others.
Estimating a fitted line is also the first step in squeezing further
information from the data. Since the observed value can be broken
up into two pieces,

observation = fitted value + residual,

we can therefore find the remaining part of the observed value that
is unexplained,

residual = observation — fitted value,
and work with the residuals to discover a more complete explanation

of the influences on the response variable.! Such was the procedure
used in the study of automobile safety inspections in Chapter 1.

'This follows J. W. Tukey and M. B. Wilk, “Data Analysis and Statistics:
Techniques and Approaches,” in E. R. Tufte, ed., The Quantitative Analysis of Social
Problems (Reading, Mass.: Addison-Wesley, 1970), pp. 373-74.

65
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We now briefly review the mechanics of linear regression. The
equation of a straight line is

Y=8,+8,%X

where B, is the intercept and B, is the slope as shown in Figure
3-1. The observed data are used to estimate the two parameters, B8,
and B, of the model. The actual numerical estimates of the intercept
and the slope are written as 3, and ,, where the “hats” indicate
that the quantity is an estimate of a model parameter—an estimate
that is computed from the observed data.

Y =8t B X

Change in ¥ AY

= | = = 2
B = slope Change in X Ay

B, = intercept

= valve of ¥ when X is0

Bo

o

FIGURE 3-1 Equation of a straight line

The slope, a summary of the relationship between X and Y, answers
the question: when X changes by one unit, by how many units does
Y change? The answer is that Y changes by B, units. Consider the
following example. In the 36 congressional elections from 1900 to
1972, the line (shown in Figure 3-2)

% seats Democratic = —49.64 + 2.07 (% votes Democratic)

fits the relationship between the share of congressional seats won
by the Democrats and the share of votes that party received nationwide
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for their congressional candidates. The estimated slope, B, is 2.07;
that is,

n changein Y change in percent of seats 9.07

1 = - = N = .

* change in X  change in percent of votes
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Percentage vote Democratic
Percentage seats Democratic = -49,64 + 2,07 (Percentage votes Democratic)

= -49.64 +2,07X
N = 37 Congressional elections, 1900~ 1972

FIGURE 3-2 Fitted line and observed data
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This means that a one percent change in the share of the Democratic
vote was typically accompanied by a change of 2.07 percent in the
Democratic share of seats in Congress. Thus an increase of only one
percent in the share of the vote was worth a substantially larger
increase (of a little over two percent) in the share of seats. Of course,
it works the other way, too: a drop of one percent of the vote is
associated with a loss of two percent of seats. Figure 3-2 shows the
data and the fitted line. In this particular case, the estimate of the
slope measures what is called the “swing ratio”—the swing or change
in seats for a given change in votes. Often, then, the substance of
the problem gives a special meaning to the slope, even though the
mechanics of computing the slope are the same in each case.

The estimates of the slope and the intercept are chosen so as to
minimize the sum of the squares of the residuals from the fitted
line. This is the principle of least squares, which says

minimize 2 e?,
—that is, minimize X (Y, - Y,)?

in the notation of Figure 3-3.

One of the glories of the principle of least squares is that it leads
immediately to specific instructions as to how to use the data to
compute @0 and @1 such that they uniquely satisfy the principle.
The mathematics are found in any statistics text, where it is proved
that the least-squares estimates of the slope and the intercept are
computed from the observed data by

. (X, - XY, - Y)
Pr= 3 (X, - X)?

B,=Y-B, X

The fitted line minimizes errors in prediction when X is used to
predict Y—and the errors in prediction are measured with respect
to the Y variable. The estimate of the slope in this case is the slope
of the regression of Y on X. If the roles of X and Y were reversed,
and the values of X predicted from the variable labeled Y, then we
would be looking at the regression of X on Y. In this second case,
the errors in prediction are measured with respect to the X axis.
Unless all the observed points fall on a 45-degree line, the two slopes
are not equal. Thus the regression model is asymmetric—since the
describing variable and the response variable are treated differently
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and different fitted lines result, depending upon which variable the
researcher decides is the response variable and which is the describing
variable.

Note that the question of a possible causal relationship is not decided
by calling one variable the describing variable and the other the
response variable. The question of causality is a separate and often
difficult issue. By effectively summarizing the data, the regression

N
Residual, or error=¢, =Y ;- Y,

Fitted line
Yi=BotB X

Predicted value of Y; given X;.
This is called Y ;.

Predicted value of ¥ for a given X ; = Q/-

=Bo+ BiX;
FIGURE 3-3 Notation for least-squares regression

analysis may sometimes provide some help in deciding if there is
a causal relationship between the variables.

After fitting a line to a collection of data, the obvious question
is: How well does the line fit? Here are four measures of the quality
of fit:

1. the Nresiduals: Y, - f’i,
2. the residual variation:
, (Y, - ¥)?

YiX N-29

’
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3. the ratio of explained to total variation:

(Y, - )2
r? = ——t——
(Y, - V)2

4. the standard error of the estimate of the slope:

SY!X

VIX,-%)?

All these measures are functions of the residuals, Y, — Y,. And
all except the first are functions of the sum of squares of the residuals,
S (Y, - Y,)? which is the sum of squares minimized in estimating
the parameters, B, and B,, of the fitted line. Such a functional
dependence is not surprising, since reasonable measures of the quality
of a line’s fit to the data could hardly be anything except a function
of the magnitude of the errors.

The residuals are particularly useful in assessing the fit of a line,
since they are measured with respect to the Y axis—that is, they
are measured in the same units as the response variable.

Instead of looking at the whole collection of N residuals—for there
is a residual for each observation—we can summarize them by
estimating the variability about the fitted line:

S(Y,- Y,)?

Sometimes the square root is taken, yielding the residual standard
error for the fitted line.

Probably the most frequently used measure assessing the quality
of fit of the line is r?, the proportion of the variance explained. Figure
3-4 shows the components of r® For a given observation, Y, — Y
is the deviation of that observation from the mean, Y. And £ (Y]
— Y)? is the total variation in Y (that is, the sum of the squares
of all the deviations from the mean). The describing variable seeks
to predict or explain the individual deviations from the mean. The
error in prediction for the ith observation is Y, — Y¥;; and the error
variation for all the observations is £ (Y, — Y,)%. An intuitively
sensible measure of the fit of the line is the ratio of this error or
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Y +.\
Observed data
point (X;,Y;)
A
\ Yi=Y;=
Observed "unexplained"”,
Y
value ! T deviation
_ |
Y.-Y= ‘
| deviation | |
fofal deviation : Predicted value,
A A A
Predicted ! Yi=Be+ B, X;
value predicted from X,
A —
- Y=Y = "explained" deviation
Mean — Yme e e e e e A e Y
X

FIGURE 3-4 Components of r?

unexplained variation to the total variation; the smaller this ratio,
the better the fit:

one measure of fit

unexplained variation in Y

total variationin Y
S(Y,- Y,)?
S(Y,- 9?2

The commonly used measure, r?, is simply this ratio subtracted from
one:

S(Y, - Y,)?
I‘z =1- T,
(Y, - Y)?
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A little algebra proves that
( total ) _ (explaix}ed) + (unexpla.ined)
variation variation variation
or
(Y, - V2 =3(Y, - P2+32(Y,-Y)%

Therefore, since

unexplained variation

=1 —
total variation

we have

explained variation X (Y,- Y
total variation S(Y,- Y2

This interpretation of r?, as the ratio of explained to total variation,
is very common. Often r? is expressed in percentage terms—for
example, a value of r? of .51 will be described as “X explained 51
percent of the variance in Y.” “Explained variance,” as used in the
statistical jargon, refers only to the sum of squares, X (Yi - V)2
It may or may not refer to a good substantive explanation. A big
r®> means that X is relatively successful in predicting the value of
Y — not necessarily that X causes Y or even that X is a meaningful
explanation of Y. As you might imagine, some researchers, in present-
ing their results, tend to play on the ambiguity of the word “explain”
in this context to avoid the risk of making an out-and-out assertion
of causality while creating the appearance that something really was
explained substantively as well as statistically.

If the fitted line has no errors of fit (that is, if the observed points
all lie in a straight line), r? equals one, since there is no unexplained
variation. At the other extreme, if the describing variable is no help
at all in predicting the value of Y, r* will be near zero, since no
variance is explained. In this unfortunate case, the regression line
is simply Y = Y (in other words, the predicted value of Y does not
depend on the value of X).

In evaluating the fitted line, it is useful to know if the slope differs
from zero. If the slope does not differ meaningfully from zero, then
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X gives no help in explaining Y—the line is ¥ = Y. As explained
in textbooks on statistics, a test of statistical significance and a
confidence interval for the estimate of slope are constructed from the
standard error of the estimate of the slope, which equals

_ S Y|X

8, =
B ‘/E(Xi—X)Z

To conduct the test of statistical significance for §, # 0, we consider
the ratio of the estimated slope and its standard error:

él_o
Sa

Under appropriate statistical assumptions, this has a t-distribution,
with N— 2degrees of freedom. For Ngreater than 30, the t-distribution
closely matches the normal distribution. It is this match that gives
rise to the rule of thumb that a regression coefficient should be
roughly twice its standard error if it is to be statistically significant
at the .05 level—since, for the normal, the two-tailed .05 limits are
at +1.96 standard deviations.

Finally, note from the denominator of the formula for S; that
the error in the estimate of the slope grows smaller as the variability
of X increases; that is, if the observations on the X variable are
spread out instead of bunched together, the standard error of the
estimate of the slope will be reduced. Consequently, if there is reason
to believe that there is a linear relation between X and Y and if
we can control the intervals at which X is measured, then it is better
to choose values of X over a fairly wide range rather than bunched
up together. For example, in a study of the effects of class size on
teaching effectiveness, it would be better to construct classes of size
10, 15, and 20 students rather than 13, 15, and 17. By doing so,
we might obtain a more secure estimate of the relationship between
size and effectiveness.

This section has outlined the statistical mechanics of two-variable
linear regression. We now apply the methods to a variety of data.

Example 1: Presidential Popularity and
the Results of Congressional Elections

Let us, by way of review, apply all the different statistics
estimated in the linear regression model to a single problem. Figure
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3-5 shows the relationship between the President’s approval rating
(from the Gallup Poll) shortly before the midterm congressional
election and the number of seats the President’s political party loses
in that congressional election, from 1946 to 1970. Table 3-1 shows

60+
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Number of House seats lost
by President's party in the off-year election (Y)
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Percent approving the way President
is currently handling his job ( X)

FIGURE 3-5 President’s approval rating vs. his party’s seat loss

the details of the data. Note that the political party of the President
lost seats in each of the seven midterm elections from 1946 to 1970.
Sometimes the loss was small—in 1962, for example, the Democrats
lost only four seats in the House of Representatives compared to
what they had in 1960. In other elections, many seats were lost:
the Democrats suffered a decline of 55 Congressional seats in 1946.
The Republicans, under President Eisenhower, had a bad year in
the 1958 midterm elections, losing 48 seats.

Is, then, the extent of the loss of congressional seats by the President’s



75  TWO-VARIABLE LINEAR REGRESSION

TABLE 3-1
Congressional Seats and Presidential Popularity

Seats held in House of R

Year Representatives by midterm election by
Democrats Republicans President’s party

1944 243 190

1946 188 246 Democrats lost 55

1948 263 171

1950 234 199 Democrats lost 29

1952 213 221

1954 232 203 Republicans lost 18

1956 234 201

1958 283 153 Republicans lost 48

1960 262 175

1962 258 176 Democrats lost 4

1964 295 140

1966 248 187 Democrats lost 47

1968 243 192

1970 255 180 Republicans lost 12

President’s popularity rating early September in

Year off-year elections (percent approve)?
1946 Truman 32%
1950 Truman 43%
1954 Eisenhower 65%
1958 Eisenhower 56%
1962 Kennedy 67%
1966 Johnson 48%
1970 Nixon 56%

source: Gallup Political Index, October 1970, No. 64, page 16.

2Percent approve + percent disapprove + percent no opinion = 100 percent.
The question is worded as follows: “Do you approve or disapprove of the way Blank
is handling his job as President?”

party related to the approval rating of the President?? The correlation
between popularity and seat loss is, for the seven elections, —.75,

2Two papers dealing with the issues raised by these data are: Angus Campbell,
“Voters and Elections: Past and Present,” Journal of Politics, 26 (November 1964);
745-57, and John E. Mueller, “Presidential Popularity from Truman to Johnson,”
American Political Science Review, 64 (March 1970), 18-34. See also, for a more
sophisticated discussion, Douglas A. Hibbs, Jr., “Problems of Statistical Estimation
and Casual Inference in Dynamic, Time-Series Regression Models,” in Herbert Costner,
ed., Sociological Methodology, 1973-1974 (San Francisco: Jossey-Bass, 1974), ch. 10.
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indicating that the lower the President’s popularity, the more seats
his party loses in the off-year elections. This is, for most political
research at least, a rather strong, impressive correlation—although
note that the correlation coefficient doesn’t tell us how much a decline
in the approval rating is associated with a loss of how many seats.
The regression coefficient does, however, provide some help with this.
The equation of the least-squares line is

seats lost = 93.36 — 1.20 (percent approving President)

Figure 3-5 shows this line. The slope is —1.20, indicating that a
one percent decline in the percent approving the current president
is associated with a loss of about 1.2 seats in the upcoming off-year
election. That regression coefficient is statistically significant:

estimate of regression coefficient _—1.20

= —-2.50,
standard error .48

which, for five degrees of freedom, (N— 2 = 7 — 2 = 5) exceeds
the one-tailed t-value at the .05 level (—2.02).

Furthermore, the President’s approval rating explains a good deal
of the statistical variation in the outcome of the election:

r=-.75, r2 = 586.

Thus the regression statistically explains 56 percent of the variation
in the shifts in congressional seats.

All in all, this is a fairly impressive regression—a good correlation,
a substantively meaningful regression coefficient that is statistically
significant, and more than half the variance explained. Since it is
so good, perhaps we can use the model for predictive purposes: taking
the pre-election approval rating for the President and plugging into
the regression equation to come up with an estimate of the loss of
seats in the congressional election. This is all very nice, except that
the prediction will not be a very secure one. Let us evaluate the
quality of predictions based on the fitted line.

One way to get an idea of the predictive properties of the model
is to look at the estimate of the variability about the line, the residual
variance:
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The numerator is simply the unexplained variation. Taking the square
root puts this statistic into the units in which the response variable,
Y, is measured:

S y)x = 13.3 seats,

which is a rather large standard error in terms of predicting seats—
especially when we start to consider confidence intervals of = two
standard errors.

Or, to evaluate the predictive quality of the model, we might look
directly at the residuals for each year of the observed data. Table 3-2
shows the computations. Once again, we see pretty substantial errors
in prediction from the observed data—and, of course, the model itself
is estimated so as to minimize the sum of squares of these residuals.

In short, then, we have here the beginnings of a good explanatory
model, but it still needs improvement if it is to be useful for predictive
purposes. How might we build a better, more complete model? Consider
a model that also takes into account the economic conditions—for
which some voters might hold the President and his party responsi-
ble—prevailing at the time of the election:

seats lost = B, + B, (presidential + B, (economic
popularity) conditions).

Just as in the two-variable case, this three-variable model is
estimated by least squares. Such a multiple regression, as it is called,
will be examined in Chapter 4.

TABLE 3-2
Residual Analysis

~

Y, = observed X, = Y, = predicted Residual®
seat loss by Presidential  seat loss for a = observed
President’s  approval given X, Y, = — predicted
Year party rating 93.4 - 1.20X,; =Y, -Y,
1946 55 seats 32% 934 — 1.2(32) =55 55 — 55 = 0 seats
1950 29 seats 43% 934 — 1.2(43) = 42 29 — 42 = —13 seats
1954 18 seats 65% 934 —1.2(65) =15 18 — 15 = 3 seats
1958 48 seats 56% 934 — 1.2(56) = 26 48 — 26 = 22 seats
1962 4 seats 67% 934 — 1.2(67) =13 4 - 13 = -9 geats
1966 47 seats 48% 93.4 — 1.2(48) = 36 47 — 36 = 11 seats
1970 12 seats 56% 934 — 1.2(56) = 26 12 — 26 = —14 seats

2 Note that if residual > 0, the President’s party lost more seats than predicted;
if residual < 0, the President’s party lost less seats than predicted.
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Example 2: Lung Cancer and Smoking

THE FITTED LINE

Figure 3-6 shows the relationship between the death rate from lung
cancer in 1950 and the cigarette comsumption in eleven countries
in 1930. Cigarette consumption is lagged twenty years behind the
death rate on the assumption that the carcinogenic consequences of
smoking require a considerable length of time to show up. The fitted
regression line is

lung cancer deaths .
per million people | =.23 Flgarettes consumed + 66
in 1950 (Y) in 1930 (X) ’

standard error of slope = .07 r2 = .54

The regression indicates that when cigarette consumption in 1930
from one country to another is greater by, say, 500 cigarettes per
year per person, the lung cancer rate apparently increased by about
115 deaths per million in 1950.

SCALING OF VARIABLES AND INTERPRETATION OF
REGRESSION COEFFICIENTS

Note that in order to make an accurate interpretation of the regression
coefficients, we must keep track of the units of measurement of each
variable. For example, if the lung cancer rate were expressed as deaths
per 100,000 people (instead of per 1,000,000), then the regression
coefficient would be reduced by a corresponding factor of ten down
to .023. This coefficient, although it is numerically smaller, reflects
only the change in the scaling of the death rate—and the coefficient
has exactly the same substantive meaning and importance as the
original coefficient of .23. This obvious point is worth keeping in
mind because some research reports are not particularly clear in
reporting the units of measurement associated with each regression
coefficient—and the reader must dig out the units of measurement
and the scaling of the variables from the footnotes.

ANOTHER FITTED LINE: A REGRESSION WITHOUT
THE UNITED STATES

A further look at the scatterplot shows the rather strong effect of
one extreme point in shifting the fitted line. The line is pulled down
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countries

source: R. Doll, “Etiology of Lung Cancer,” Advances in Cancer

Research, 3 (1955), reprinted in Smoking and Health, Report of the

Advisory Committee to the Surgeon General (Washington: USGPO,

1964), p. 176.

by the low death rate for the United States. Removing that country
from the data and computing a new regression line based on the
remaining ten countries yields quite a different fitted line:

N = 10 Countries N = 11 Countries
(Without U.S.) (With U.S.)
Y=36X+ 14 Y=.23X+66
r2 = .89 r2 = 54
Standard error of slope = .05 Standard error of slope = .07

Dotted line in Figure 3-7 Solid line in Figure 3-7
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FIGURE 3-7 Lung cancer and cigarette consumption: fitted line for
ten countries, omitting the United States

Notethe great improvementin the explained variance in the regression
based on the ten countries; a straight line really fits the ten quite
well. Perhaps we should look more carefully into the conditions that
make for a somewhat lower death rate than expected, given the amount
of tobacco consumed, in the United States. That will be done below.

WHAT IF NOBODY SMOKED? INTERPRETING THE INTERCEPT

Let us return to consideration of the original regression for all eleven
countries. Can we find out what the lung cancer rate might have
been if there had been no smoking? Not very well with these particular
data—for several reasons.

First, there is simply no experience at all with any countries
consuming less tobacco per capita than Iceland, at 220 cigarettes
per year per person in 1930. Obviously we want to be careful in
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extending our results beyond the range of the data; some of the
particular problems of extrapolation are discussed in Chapter 2.

Second, one naive way to answer the question meets some difficulties
after a careful examination of the scatterplot. The naive approach
is to set cigarette smoking at zero in the fitted regression equation
and see what the lung cancer rate is. That rate is simply the intercept,
66 deaths per million per year. But note the pattern of countries
down at the low end with respect to smoking: the three lowest countries
have negative residuals, all lying below the fitted regression line.
Thus, in the countries with a low consumption of cigarettes, there
is some indication that a better-fitting curve would bend more sharply
downward; thus the straight line imposed on the data is a bit misleading
at the low end of the scale. This suggests that the rate would be
considerably lower than 66 if nobody smoked. Perhaps a better estimate
would be around 14 deaths per million—the intercept for the regression
line that excluded the United States. The exclusion of that outlying
value seems appropriate in estimating the intercept, since the outlier
is far from the region of interest and since the residuals near the
region of interest indicate that the extreme point has shifted the
regression line based on all the countries.

Note finally that the line is literally imposed on the data—and
just because we do the computations necessary to produce a slope
and an r?, does not, of course, necessarily mean that the straight
line is the best curve to fit to the data or that the two variables
are, in fact, related in a linear fashion. In a later example, we will
use “linear” regression to fit some other curves to data.

What kind of data would satisfactorily estimate the death rate
from lung cancer if nobody smoked cigarettes? First, we need data
based on individuals—smokers and nonsmokers—to make compari-
sons of lung cancer rates. Second, it is important to make sure that
people susceptible—perhaps because of genetic or environmental
factors—to lung cancer are not also people who are more likely to
smoke. Thus we might compute the lung cancer rate for many different
sorts of people who are smokers or nonsmokers. Such differential
rates for different population groups could then be adjusted to the
population as a whole to estimate the lung cancer rate if, contrary
to fact, no one smoked.

ANALYZING THE RESIDUALS

Table 3-3 displays the original data, along with the predicted values
for the lung cancer rate (predicted on the basis of cigarette consump-
tion) and the errors made in the prediction for each country. Note



82

TWO-VARIABLE LINEAR REGRESSION

TABLE 3-3
Residual Analysis

Y, = observed X, = )
lung cancer  cigarettes Y, = predicted lung Residual
deaths per  consumed cancer death rate = observed
million per capita for a given X, — predicted
Country in 1950 in 1930 Y, = .23X, + 66 =Y, - Y,
Iceland 58 220 .23(220) + 66 =116 58 — 116 = —58
Norway 90 250 .23(250) + 66 = 123 90 — 123 = -33
Sweden 115 310 .23(310) + 66 = 137 115 — 137 = —-22
Canada 150 510 .23(510) + 66 = 183 150 — 183 = -33
Denmark 165 380 .23(380) + 66 = 153 165 — 153 =
Australia 170 455 .23(455) + 66 = 170 170 — 170 =
United States 190 1280 .23(1280) + 66 = 359 190 — 359 = —169
Holland 245 460 .23(460) + 66 = 171 245 - 171 =
Switzerland 250 530 .23(530) + 66 = 187 250 — 187 =
Finland 350 1115 .23(1115) + 66 = 321 350 — 321 =
Great Britain 465 1145 .23(1145) + 66 = 328 465 — 328 =

the large residuals for Great Britain and the United States and the
negative residuals for the smaller values of tobacco consumption.
The residuals add up to zero; the sum of the squared residuals is
the smallest it can be—no other line can improve over the least-squares
line in minimizing the sum of the squares of the residuals. These
two properties of the residuals—

(1)2(Y, - Y,) =0, and
(2) = (Y, - Y,)? is minimized

—are properties of all least-squares lines.

A further analysis of the residuals can be made by plotting the
residuals against the predicted values (Y) as shown in Figure 3-8.
Sometimes such a display yields up more information because the
reference line is a horizontal line rather than the tilted line fitted
to the original scatterplot. Contemplation of the residuals reveals
large errors in the prediction of the death rate for Great Britain
and the United States. Great Britain had a much higher death rate
than the United States in 1950, although the per capita consumption
of cigarettes in the two countries in 1930 was roughly equal. What
differences between the two countries might account for the differences
in lung cancer death rates even though the tobacco consumption was
roughly the same? A few possibilities include:

1. Differences in air pollution between the two countries.
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2. Differences in the age distribution of the populations of the two
countries. Since lung cancer occurs more frequently among older
smokers, the rate of cancer might well be higher in a country that
had a larger share of older people.

3. Differences in smoking habits (such as smoking cigarettes right
down to the end) that expose the lungs to different doses of smoke
from each cigarette consumed. Observers have reported that the British
often smoke their cigarettes right down to the very end (probably
because cigarettes are heavily taxed and very expensive in England)
and also that the British tend to be “drooper” smokers—they let
the cigarette droop from the mouth rather than placing it in an
ashtray or holding in the hand. Some researchers compared the lengths
of discarded cigarette butts in the two countries and discovered rather
large differences in length, the American discards being considerably
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longer (30.9 mm) than the British (18.7 mm).® Other studies found
that “the mortality rate for lung cancer in England was especially
high for the smokers who ‘drooped’ the cigarettes off the lip while
they smoked, a habit which may result in the delivery of a greater
dose of smoke from each cigarette.”*

4. Differences in the composition of the tobacco.

5. Differences in the factors which mute or accentuate the health
consequences of smoking. For example, construction workers and
others exposed to the insulating material asbestos who also smoke
have a very high risk of lung ailments—a much higher risk than
expected by merely adding up the excess risk from smoking plus
the excess risk from working with asbestos. (This extra risk coming
from the combination of the two factors is called, in the statistical
jargon, an “interaction effect.”) Thus if more smokers in a country
were exposed to asbestos, then that country would have a higher
rate of lung cancer than expected on the basis of tobacco consumption
alone.

6. Differences across countries in what medical symptoms doctors
define or describe to be lung cancer.

VALUE OF THESE DATA AS EVIDENCE

These data have only a very modest value as evidence bearing on
the relationship between smoking and lung cancer. Since the data
are aggregate, countrywide figures, they provide very indirect evidence
concerning the relationship between smoking and health among
individuals. Furthermore, eleven data points aren’t much to work
with—and the exclusion of a single observation shifted the variance
explained from 54 percent to 89 percent, indicating the sensitivity
of the analysis to outlying observations.

A big worry about the sort of data presented in Figures 3-6 and
3-7 is selection—how were the eleven countries included in the analysis
chosen from all the countries of the world? Why these eleven? Would
the results be the same if more countries were selected? Or eleven
different countries? With so few data points, the analysis is very
fragile; just a couple of fresh observations divergent from the fitted
line would cause the whole relationship to fall apart. Careful, if
manipulative, selection of data points can easily generate pseudo-rela-

3Report of the Advisory Committee to the Surgeon General of the Public
Health Service, Smoking and Health (Washington, D.C.: U.S. Government Printing
Office, 1959), p. 177.

*The Health Consequences of Smoking, 1969 Supplement to the 1967 Public
Health Service Review (Washington, D.C.: U.S. Government Printing Office), p. 57.
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tionships. Yerushalmy points out such an example:

Another important error often encountered in the literature is the
fallacy of utilizing evidence supporting a given hypothesis and
neglecting evidence contradicting it. Anillustration is shown in Figure
[3-9]. In this case, the investigator selected six countries and corre-
lated the percent of fat in the diet with the mortality of coronary
heart disease in these six countries. . . . On the face of it, the
correlation appears very striking, and indeed the author in reviewing
the data in Figure [3-9] makes the following strong statement: “The
analysis of international vital statistics shows a striking feature
when the national food consumption statistics are studied in parallel.
Then it appears that for men aged 40 to 60 or 70, that is, at the
ages when the fatal results of atherosclerosis are most prominent,
there is a remarkable relationship between the death rate from
degenerative heart disease and the proportion of fat calories in the
national diet. A regular progression exists from Japan through Italy,
Sweden, England and Wales, Canada, and Australia to the United
States. No other variable in the mode of life besides the fat calories
in the diet is known which shows anything like such a consistent
relationship to the mortality rate from coronary or degenerative heart
disease.”
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The question arises how were these six countries selected. Further
investigation reveals that these six countries are not representative
of all countries for which the data are available. For example, it
is easy enough to select six other countries which differ greatly
in their dietary fat consumptions, but have nearly equal death rates
from coronary heart disease [Figure 3-10]. Similarly, six other
countries were easily selected which consumed nearly equal propor-
tions of dietary fat, but which differed widely in their death rates
from coronary heart disease [Figure 3-11]. This tendency of selecting
evidence biased for a favorable hypothesis is very common. For
example, investigations among the Bantu in Africa are often men-
tioned in support of the dietary fat hypothesis of coronary heart
disease, while observations on other African tribes, Eskimos, and
other groups which do not support the hypothesis are generally
ignored.

However, even when these errors are avoided and the studies are
well conducted, the conclusions which may be derived from observa-
tional studies have great limitations stemming primarily from non-
comparability of the self-formed groups. The phenomenon of self-
selection is the root of many of the difficulties. Were all other
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complications eliminated, the inequalities between groups which
result from self-selection would still leave in doubt inferences on
causality. For example, in the study of the relationship of cigarette
smoking to health, if we assume well-conducted investigations in
which (a) large random samples of the population have been selected
and the individuals correctly identified as smokers, nonsmokers, or
past smokers, (b) the problem of nonresponse did not exist, (c) the
population had been followed long enough to identify all cases of
the disease in question, (d) no problems of misdiagnosis and misclassi-
fication existed, (e) and no one in the population had been lost from
observation, then even under these ideal conditions, the inferences
that may be drawn from the study are limited because the individuals
being observed, rather than the investigator, made for themselves
the crucial choice: smoker, nonsmoker, or past smoker.?

800 -
® Unifed Stafes
600 —
® Canada
=)
S
<.
8
l“g_’_ 400 @ New Zealand
£ ® United Kingdom
3
@ Sweden
200 - ® Denmark
0 | | | |
10 20 30 40

Fat calories as percent of total calories

FIGURE 3-11 Six countries selected for equality in consumption of
fat calories in percent of total calories, but differing
greatly in mortality from coronary heart disease

Source: Yerushalmy, op. cit.

5J. Yerushalmy, “Self-Selection—A Major Problem in Observational Studies,”
in Lucien M. Lecam, Jerzy Neyman, and Elizabeth L. Scott, eds., Proceedings of the
Sixth Berkeley Symposium on Mathematical Statistics and Probability, Biology and
Health, Volume IV (Berkeley and Los Angeles, California: University of California
Press, 1972), pp. 332-33. The internal quotation is from A. Keys, “Atherosclerosis—A
Problem in Newer Public Health,” Journal of Mt. Sinai Hospital, 20 (1953), 134.
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Still another reason for not taking our little analysis as serious
evidence is that much better data are available to answer questions
concerning the relationship between smoking and health. Smoking
is probably the most carefully investigated public health problem
there is; a vast amount of information has been gathered from health
interviews with many people over many years, from autopsies, hospital
records, animal studies, and so on. In other fields, where the amount
and variety of evidence is less and the resources for collecting new
data scarcer, the evidence of the sort examined here might represent
the best available information and, furthermore, theories would have
to stand or fall and decisions be made in the faint light of such
analysis. Thus the overall importance of a particular piece of analysis
varies in relation to what other evidence there is that bears on the
question at hand.

Example 3: Increase in the Number of
Radios and Increase in the Number of
Mental Defectives, Great Britain,
1924-1937

The table shows a measure of the number of radios in the
United Kingdom from 1924 to 1937 and the number of mental
defectives per 10,000 people for the same years. These data form
the basis for the discussion of “nonsense correlations” by the famous
British statisticians, G. Udny Yule and M. G. Kendall.

The fit of the line is remarkably good, with a bit over 99% of
the variation in number of mental defectives “explained” (in a
statistical sense!) by the growth in the number of radios. Note the
small, but systematic variation in the residuals, with the points
weaving around the fitted line in clusters above and then below the
fitted line. These “wrinkles” in the residuals might be worth pursuing
if this were more than a nonsense correlation.

Why does this extremely strong, although nonsensical, relationship
come about? This is a relationship formed by relating two increasing
time series. In other words, the number of radios is increasing over
time and also the number of mental defectives is increasing over
time. Millions of other things are increasing over the time period
from 1924 to 1937, including the population, the number of smokers,
military expenditures in Europe, the number of patents issued, and
the number of letters in the first name of the Presidents of the United
States (Calvin, Herbert, and Franklin). For example, consider this
regression:
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Number of radio Number of notified mental
receiver licenses defectives per 10,000 of

Year issued (millions) estimated population

1924 1.350 8

1925 1.960 8

1926 2.270 9

1927 2.483 10

1928 2.730 11

1929 3.091 11

1930 3.647 12

1931 4.620 16

1932 5.497 18

1933 6.260 19

1934 7.012 20

1935 7.618 21

1936 8.131 22

1937 8.593 23

Figure 3-12 displays the regression line fitted to the above data:

number of mental
= 2.20

defectives per ?i‘rlmnrlnbiel;isrfxsr)adms} + 4.58,
10,000

r2 = .99, standard error of slope = .08.

numbﬁr of mental number of letters
defectives per 10,000 in the first name

in the United = 590\ of the President | — 2644,
Kingdom, 1924-1937 of U.S., 1924-1937

r? = .89, standard error of slope = .66.

Yule and Kendall further observe:

. . it might be argued that the period in question was one of great
technical progress in many scientific fields; that one effect of this
movement was the development of broadcasting and the general
spread of the practice of listening evinced by the increased number
of [radio] licenses taken out; that another effect was the greater
interest in psychological ailments and increased facilities for treat-
ment, resulting in either more discoveries of mental defect or greater
readiness to submit cases to medical notice. Whether this is the
right explanation is doubtful, but it is a possible rational explanation
of what at first sight seems absurd.®

8G. Udny Yule and M. G. Kendall, An Introduction to the Theory of Statistics

14th ed., (London: Charles Griffin, 1950), p. 315-16.
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Whether listening to the radio produced mental defectives (or,
perhaps, whether the increase in number of mental defectives led
to a greater demand for radios) is not answered by this regression
of two increasing time series. And the relationship between the number
of British mental defectives and the first names of American Presidents
during 1924 to 1937 does not gain in credibility because the length
of the name “explained” 87 percent of the variation in the number
of mental defectives. What is clear, however, is that:

1. Even very high values of “explained” variance can occur without
the slightest suspicion of a causal relationship between variables.
There are times when a high value for r? might increase our
degree of belief that there is a causal relationship, but this depends
upon the substantive nature of the problem.

2. If nonsense goes into a statistical analysis, nonsense will come
out. The nonsensical output will have all the statistical trappings,
will look just as official, just as “scientific,” and just as “objective”
as a substantively useful regression. It is, however, the substance
and not the form that is the important thing. As Justice Holmes
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once wrote: “The only use of forms is to present their contents,
just as the only use of a pint pot is to present the beer . . .
and infinite meditation upon the pot will never give you the beer.”

We have now seen regression techniques applied to several prob-
lems—automobile safety inspections, smoking and lung cancer, and
radios and mental problems. These examples all served to illustrate
certain aspects of the logic and mechanics of fitting a line to the
relationship between two variables. It is now time to examine a more
extensive regression analysis in action, going into detail on a sericus
problem. Such is our next application.

Example 4: The Relationship between
Seats and Votes in Two-Party Systems’

Arrangements for translating votes into legislative seats al-
most always work to benefit the party winning the largest share
of the votes. That the politically rich get richer has infuriated the
partisans of minority parties, encouraged those favoring majority
parliamentary rule, and, finally, bemused a variety of statisticians
and political scientists who have tried to develop parsimonious descrip-
tions and explanations of the inflation of the legislative power of
the victorious party. Here we will use a linear regression model to
describe how the votes of citizens are aggregated into legislative seats
and also to estimate the bias in an electoral system.

Figure 3-13 shows the data used in the analysis.? These six scatter-
plots indicate that the relationship between seats and votes in most
two-party systems displays four obvious characteristics:

1. As a party’s share of the vote increases, its share of the seats
also increases in a fairly regular fashion.

7A more extended version of this material appeared in Edward R. Tufte,
“The Relationship Between Seats and Votes in Two-Party Systems,” American Political
Science Review, 68 (June 1974), 540-54.

8The election tabulations were collected from state and national yearbooks.
The U.S. congressional returns have been collected together in Donald Stokes and
Gudmund Iversen, “National Totals of Votes Cast for Democratic and Republican
Candidates for the U.S. House of Representatives, 1866-1960,” July 1962, mimeo,
Survey Research Center, University of Michigan. Congressional Directories (Washing-
ton, D.C.: U.S. Government Printing Office) were used to update the Stokes-Iversen
compilation and also as the source for tabulations requiring election returns in individual
congressional districts. All percentages of the vote were computed from the votes
received by the two major parties only.
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2. The party that receives a majority of the votes usually receives
a majority of parliamentary seats. Such was the case in 93 percent
of the national elections and 53 percent of the state elections
examined here. The points in the upper left and lower right
quadrants represent those elections in which the party winning
a majority of votes failed to take a majority of seats. New Jersey,
like many other states prior to redistricting (and some after
redistricting), shows many markedly biased outcomes, with the
Democrats often winning fully three-fifths of the votes but less
than one-third of the seats.

3. A party that wins a majority of votes generally wins an even
larger majority of seats.

4. In most elections (100 percent in this series), the winning party
receives less than 65 percent of the votes (although it may receive
a much larger share of seats).

Even a casual inspection of the data displayed in Figure 3-13
indicates that almost any curve with a slope around two or three
in the region from 35 to 65 percent of the vote for a party will
fit the relationships rather well. Let us now examine the regression
model.

The relationship between seats and votes is described most directly
by a simple linear equation:

(percentage of seats for) (percentage of votes ) ‘B
= P 0

a given political party for that party

The estimate of the slope, Gl, measures the percentage change in
seats corresponding to a change of one percent in the votes for a
party. Thus Bl estimates the swing ratio or the responsiveness of
the partisan composition of parliamentary bodies to changes in the
partisan division of the vote in two-party systems. For example, the
swing ratio during the last twelve U.S. congressional elections is
1.9, indicating that a net shift of 1.0 percent in the national vote
for a party has typically been associated with a net shift of 1.9 percent
in congressional seats for a party.

In addition, the fitted line provides an estimate of another important
parameter of the electoral system: the bias for or against a particular
party in the translation of votes into seats. Setting the percentage
of seats at 50 percent and solving for the percentage of votes in
the equation of the fitted line tells one the share of the vote that
a party typically needs in order to win a majority of seats in the
legislative body. The difference between this number and 50 percent
is the bias or party advantage, as illustrated in Figure 3-14. For
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example, in recent congressional elections, the Democrats have typi-
cally needed only about 48 percent of the national vote in order to
win a majority of House seats; thus the bias or party advantage
is about 2 percent. Later we will explain some of the variations in
the swing ratio and bias for different electoral systems over the years.

Note that we are using the estimate of the slope in the linear
model in order to estimate the swing ratio; the analogue of the intercept
in the linear model is, in this case, the bias. Thus both the parameters
estimated by the linear regression model are useful in this analysis.

One minor defect of the linear fit is that in general the fitted
line will not pass through the end points (0 percent votes, 0 percent
seats) and (100 percent votes, 100 percent seats), which are on the
seats-votes curve by definition. Although slightly inelegant, this
shortcoming is hardly troublesome—especially since parties in two-
party systems almost never get less than 35 percent of the vote nor
more than 65 percent of it.° The clear advantage of the linear fit

9A “logit” model dealing with this problem is described in Example 6 of
this chapter.
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is that it yields two politically meaningful numbers, the swing ratio
and the bias, that can be compared over time and electoral systems.
Table 3-4 records the fitted lines for a variety of elections. The
swing ratios and the biases show considerable variation both between
electoral systems and within some systems over time. Among the
countries, Great Britain has the greatest swing ratio at 2.8. In the
United States the swing ratio has been about two, although, as we
shall see later, there is evidence that in the last few elections the
swing ratio has decreased considerably. The U.K. electoral system
shows little bias; in the United States a persistent bias has favored

TABLE 3-4
Linear Fit for the Relationship between Seats and Votes

B . Percentage votes
Swing ratio required to give Advantaged
and the indicated party party and
(standard a majority of seats amount of
error) r? in the legislature advantage

Great Britain, 2.83 94 50.2% Labour Conservatives,
1945-1970 (.29) 2%
New Zealand, 2.27 91 51.4% Labour National, 1.4%
1946-1969 (.27
United States, 2.39 71 49.1% Democrats Democrats, 0.9%
1868-1970 (.21)
United States, 2.09 87 48.0% Democrats Democrats, 2.0%
1900-1970 (.14)
United States, 1.93 81 48.8% Democrats Democrats, 1.2%
1948-1970 (.29)
Michigan, 2.06 76 52.1% Democrats Republicans,
1950-1968 (.41) 2.1%
New Jersey, 2.10 .53 61.3% Democrats Republicans,
1926-1947 (.44) 11.3%
New Jersey, 3.65 .63 52.0% Democrats Republicans,
1947-1969 (.89) 2.0%
New York, 1.28 .73 54.3% Democrats Republicans,
1934-1966 (.19) 4.3%
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the Democratic party—partially the result of that party’s victories
in small congressional districts and in districts with low turnouts.
In Michigan, New Jersey, and New York there have been large biases
favoring the Republicans and a great deal of variation in swing ratios.
The relationship between votes and seats is weaker for the three
states than for the three countries; in fact, in the states during some
time periods there was virtually no correlation between the share
of seats that a party won in the legislature and the share of votes
it had received at the polls! In more recent elections, however, there
was a fairly strong relationship between seats and votes in all three
states—probably the result of new rules and practices for districting.

THE SWING RATIO IN RECENT CONGRESSIONAL ELECTIONS

We now examine changes in the swing ratio in elections for the U.S.
House of Representatives. Table 3-5 shows estimates of swing ratio
and bias for congressional elections for the last hundred years. It
appears that a shift—in fact, a rather striking shift—in the relation-
ship between seats and votes has taken place in the last decade.
The 1966-1970 triplet displays the second lowest swing ratio of the
17 election triplets since 1870. No doubt the recent elections provide
a somewhat narrow range of electoral experience; the Democrats won
with votes between 50.9 and 54.3 percent (a range in votes that is
the fifth smallest of the 17 triplets). Until the Republicans control
Congress or the Democrats win more decisively, the “new” swing
ratio and bias will not be well estimated. The bias is a spectacular
7.9 percent, reflecting the two close votes that yielded the Democrats
a substantial party majority in the House. The estimate of the bias
forthe 1966-1970 election triplet is, however, somewhat more insecure
than for previous blocs of elections because the error of the estimated
bias is proportional to the reciprocal of the swing ratio—and in this
case the swing ratio is moderately small.

Compared with all the other performances of the electoral systems
examined here, a system with a swing ratio of .7 and a bias of 7.9
percent describes a set of electoral arrangements that is both quite
unresponsive to shifts in the preferences of voters (as expressed in
their party votes for their representatives) and, at the same time,
badly biased. How did the low value of the swing ratio for 1966-1970
come about? Certainly the Democratic party, after their substantial
gainin votes (3.4 percent) and relatively tiny gain—given the “normal”
swing ratio exceeding 2.0—in seats (3.2 percent) would like to know
what happened in 1970. And for Republicans, 1966 and 1968 need
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TABLE 3-5
Three Elections at a Time: Estimates of Swing Ratio and Bias

Percentage of
votes to elect

Years of Swing 50% seats for Size of Democratic
elections ratio Democrats party advantage
1870-74 6.01 51.4% —-1.4%
1876-80 1.48 50.0% .0%
1882-86 3.30 50.8% —.8%
1888-92 6.01 50.9% -.9%
1894-98 2.82 51.7% -1.7%
1900-04 2.23 50.1% —.1%
1906-10 4.21 48.8% 1.2%
1912-16 2.39 48.8% 1.2%
1918-22 1.96 47.6% 2.4%
1924-28% -5.75% 40.8%* 9.2%"°
1930-34 2.28 45.9% 4.1%
1936-40 2.50 47.1% 2.9%
194246 1.90 48.1% 1.9%
1948-52 2.82 49.5% 5%
1954-58 2.35 50.1% -.1%
1960-64 1.65 47.4% 2.6%
1966-70 71 42.1% 7.9%

2The figures estimated for the 1924-1928 election triplet are peculiar because of
the extremely narrow range of variation in the share of the vote (42.1, 41.6, and
42.8 percent) during that period. The average range within an election triplet is about
6 percent.

explanation: after all, they managed to make the national division
of the vote very close but in neither year were they able to win
even 45 percent of the House seats.

The swing ratio indicates the potential for turnover in repre-
sentation. The smaller the swing ratio, the less responsive the party
distribution of seats is to shifts in the preferences of voters. The
extreme case is a swing ratio near zero; such a flat seats-votes curve
means that the distribution of seats does not change with the distribu-
tion of votes. Figure 3-15 shows the strong relationship between the
swing ratio and the turnover in the House of Representatives for
election triplets since 1870. Note the steady drift downward over
the years in both the swing ratio and the turnover. Since 1948, the
swing ratio has shifted from 2.8 to 2.4 to 1.7, and, most recently,
to 0.7. Similarly the turnover in the House has declined, reflecting
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the long-run decrease in the intensity of competition for congressional
seats.'?

One element in the job security of incumbents is their ability to
exert significant control over the drawing of district boundaries; indeed,
some recent redistricting laws have been described as the Incumbent
Survival Acts of 1974. It is hardly surprising that legislators, like
businessmen, collaborate with their nominal adversaries to eliminate
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FIGURE 3-15 Turnover and swing ratio

dangerous competition. Ironically, reapportionment rulings have given
incumbents new opportunities to construct secure districts for them-

YFor example, Nelson W. Polsby, “The Institutionalization of the U.S. House
of Representatives,” American Political Science Review, 62 (March 1968), 144-68; and
David R. Mayhew, “Congressional Representation: Theory and Practice in Drawing
the Districts,” in Reapportionment in the 1970s, ed. N. Polsby, pp. 249-90.
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selves, leading to a reduction in turnover that is, in turn, reflected
in the sharply reduced swing ratio of the last few elections. One
apparent consequence is the remarkable change in the shape of the
distribution of congressional votes in recent elections. Prior to 1964,
the congressional vote by district was distributed the way everyone
expects votes to be distributed: a big clump of relatively competitive
districts in the middle, tailing off away from 50 percent with some
peaks at the ends of the distribution for districts without an opposition
candidate:

l
0% 50% 100 %

Democratic share of vote
by congressional district

In recent elections the shape of the distribution of the vote by
district has changed; Figure 3-16 shows the movement of district
outcomes away from the danger area of 50 percent in recent years—
note the development of bimodality in the 1968 and 1970 district
vote compared to previous years (the left peak contains the Republican
safe seats; the right peak contains the Democratic safe seats). Perhaps
the best way to see how this pattern developed over time is to array
the vote distributions over the years and riffle through them—Iike
an old-time peep show—and watch the middle of the distribution
sag and the areas of incumbent safety bulge in the more recent
elections.

Many states, in part through recent reapportionments, have practi-
cally eliminated political competition for congressional seats-—even
compared to the relatively small proportion of competitive seats in
the past. In the 1970 elections in Michigan, for example, not one
of the 19 districts was a close contest; the most marginal Republican
victor won 56 percent of the vote and the most marginal Democrat
won fully 70% of the vote in his district. In Illinois, the most closely
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FIGURE 3-16 Distribution of congressional vote by district

contested race in all 24 congressional districts in 1970 was a 54-46
division of the vote; in contrast, in 1960, seven districts had closer
races than that. The closest 1970 race in Pennsylvania was 55-45;
in Ohio, 53-47.

In conclusion, then, we have seen here how the linear regression
model can be used to measure two important qualities of an electoral
system—the responsiveness and the partisan bias of the system. These
two measurements might even be used by the courts to evaluate
the fairness and the effectiveness of redistricting plans submitted
to the courts.

This example has shown the economy of the regression model, in
which the estimate of the slope takes us quickly to the central political
issuesin the data. There was little to learn frem a correlation coefficient
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in this case (and in many others), for we already knew that there
was a strong relationship between how many votes and how many
seats a party received. In contrast to the correlation coefficient, the
regression model gave us a measure permitting politically meaningful
comparisons across different political systems. Note also that a corre-
lational analysis misses the method of assessing the partisan bias—an
estimate which flows naturally from the regression model. Finally,
look back at those four histograms in Figure 3-16. Note how informative
they are with respect to the performance of the electoral system and
how directly they make the point. Such is generally the case. Pictures
of the data—charts, scatterplots, histograms, or just the values of
a variable marked out on a line—are powerful aids to analysis. They
also are easy to produce, either by hand or by computer.

Example 5: Comparing the Slope and
the Correlation Coefficient

_ Both the correlation coefficient, r, and the slope of the fitted
line, B,, are numerical summaries of the relationship between two
variables. The slope, since it expresses the relationship in terms of
the units in which X and Y are measured, is often a more useful
summary measure than the correlation. This was true in the examples
dealing with midterm congressional elections and the translation of
votes into seats. In those examples the slope carried the important
message in the data. Such interpretations of the slope require, however,
that the units of measurement of the X and Y variables make some
sort of interpretative sense.

For example, in examining responses to an interview question-
naire—and correlating relationships over the different responses to
questions—it is difficult to interpret a measure of the rate of change
on the intensity of feeling on one question with respect to the intensity
of feeling on another. In such a case, the correlation coefficient may
be more appropriate.

John Tukey has expressed these views strongly:

. . . [M]ost correlation coefficients should never be calculated. . . .
[Clorrelation coefficients are justified in two and only two circum-
stances, when they are regression coefficients, or when measurement
of one or both variables on a determinate scale is hopeless. . . .
The other area in which correlation coefficients are prominent
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includes psychometrics and educational testing in general. This is
surely a situation where determinate scales are hopeless."

The correlation coefficient, r, can be interpreted in a number of
ways. Its square, r?, is the proportion of variance in the response
variable explained by the describing variable. Or it can be viewed
as the average covariation of standardized variables:

1N /X -X\/Y.-Y
w2 )05
N & Sx Sy

That is, each observation is rescaled and measured in terms of how
many standard deviations it is from the mean-—for a given observation
(X;, Y,

The product of the rescaled variables is averaged over all observations
to yield the correlation coefficient.

Both the correlation coefficient and the slope can be dominated
by a few extreme values in the data. Since we are working with
products of deviations from the mean, a data point far from the mean
on both variables can virtually determine the value of r and B,.
Thus sometimes r and B, do not provide very good summaries of
the relationship between X and Y. They fail when the relationship
is nonlinear and when the data contain extreme outlying values.'?
The problems are easily detected from a scatterplot of the data. Thus
one practical moral is that every calculation of r and $, should also
involve an inspection of the scatterplot.

Let us now look at a series of scatterplots. First are examples in
which the data are well described by the linear model: the data are

11J, W. Tukey, “Causation, Regression, and Path Analysis,” in O. Kempthorne,
et al., eds., Statistics and Mathematics in Biology (Ames, Jowa: Jowa State College
Press, 1956), pp. 38-39.

12In the case of many nonlinear scatterplots, the data can be transformed
and the linear model estimated. Outliers can be treated by transformations, by removing
them from the analysis, or by “Winsorizing” them (setting the most extreme value
on a variable to the next most extreme). See Joseph B. Kruskal, “Special Problems
of Statistical Analysis: Transformations of Data,” International Encyclopedia of the
Social Sciences (New York: Macmillan, 1968), vol. 15, 182-93; and F. J. Anscombe,
“Qutliers,” ibid., 178-82.
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roughly oriented around a straight line with no extreme outliers
(Figure 3-17).

We finally turn to some data sets for which the correlation and
the fitted line fail to summarize the data effectively. Figure 3-18
shows three scatterplots with widely divergent patterns of relationship
between X and Y. The first plot shows no relationship, discounting
the one extreme outlier on both measures. The second plot suggests
a moderately strong linear relationship between X and Y. The third
plot reveals a rather marked curvilinear relationship between X and
Y, revealing that as X increases, Y gets bigger even faster. Despite
the great variation in the visual message, the correlation between
X and Y is the same in all three cases. Also, the slopes do not differ
greatly in the three cases.

Often a set of data for which the linear model is not immediately
applicable can be transformed so the linear model is valuable. Or,
to put it the other way around: many models with nonlinearities
in the variables can be estimated by so-called “linear” regression.

For example, suppose we work with the logarithm of the one of
the variables and have the model

Y=8,+B,log X

This model is estimated by letting X' = log X and then performing
the usual least-squares regression for the model

Y=8,+8,X"

Thus the criticism sometimes made that linear regression “assumes
linearity” is a bit misleading, since the assumption can, in fact, be
checked—and, if false, the model then redesigned for purposes of
estimation. In fact, a better name for what this chapter has been
all about is “fitting curves to relationships between two variables.”

In summary, then, fitting lines to relationships between variables
is often a useful and powerful method of summarizing a set of data.
Regression analysis fits naturally with the development of causal
explanations, simply because the research worker must, at a minimum,
know what he or she is seeking to explain. The regression model
is surprisingly flexible; and we now illustrate methods that increase
its range of application.
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Example 6: Interpretation of Regression
Coefficients when the Variables are
Re-expressed as Logarithms (with Five

Ex

Da

amples)

ta that are counts of populations, vital statistics, census data,

and the like are almost always improved by taking logs. . . . Charles
Winsor frequently prescribed the taking of logs of all naturally
occurring counts (plus one, to handle that embarrassing quantity
zero) ll)sefore analyzing them—no matter what the sources [of the
data].

Often the logarithm of a variable is taken before entering that

variable 1
serves sev

1.

n a regression analysis. The logarithmic transformation
eral purposes:

The resulting regression coefficients sometimes have a more useful
theoretical interpretation compared to a regression based on
unlogged variables.

. Badly skewed distributions—in which many of the observations

are clustered together combined with a few outlying values on
the scale of measurement—are transformed by taking the loga-
rithm of the measurements so that the clustered values are spread
out and the large values pulled in more toward the middle of
the distribution.

. Some of the assumptions underlying the regression model and

the associated significance tests are better met when the logarithm
of the measured variables is taken.

REMEMBERING LOGARITHMS

The logarithm to the base b of a number x, written as log, x, is

the power to which the base must be raised to yield x. Thus
log,, 1000 = 3, because 10% = 1000.
Similarly:
log,, 10,000 = 4, because 10* = 10,000.
log,, 1 =0, because 10° = 1.
log,, 2 = .30103, because 103019 = 2.
log ,, 2000 = 3.30103,  because 10°°°1% = 200.
log ,, 20,000 = 4.30103, because 10*°°*%% = 20,000.

In short, then, logarithms are powers of the base. The base 10,
the base e (which forms what are called “natural” logarithms), and

¥ Forman S. Acton, Analysis of Straight-Line Data (New York: Wiley, 1959),

p. 223.
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the base 2 are the ones most commonly used. Logs to the base 2
take the following form:

log, 8 = 3, because 2° = 8.

The logarithm of zero does not exist (regardless of the base) and
therefore must be avoided. In logging variables with some zero values
(especially those deriving from counts), the most common procedure
is to add one to all the observations of the variable.

Finally, we should recall the following rules for manipulation of
logarithms:

For x > 0 and y > 0:

log xy =log x + log y.
For example,

log 20,000 = log (2)(10,000)

log 2 + log 10,000
.30103 + 4

= 4.30103.

Il

x

log — = logx — logy.
y

log x™ = nlog x.

Let us first look at the effect of taking logarithms on the measure-
ment scale of a single variable. Figure 3-19 shows the relationship
between Xand log X; and Table 3-6 (page 111) tabulates the populations
of some 29 countries of the world along with the logarithm of
population. Note how the logarithmic transformation pulls the ex-
tremely large values in toward the middle of the scale and spreads
the smaller values out in comparison to the original, unlogged values
of the variable. Although the transformation preserves the rank
ordering of the countries with respect to population, it still does produce
quite a major change in the scaling of the variable here: the correlation
between the population and the logarithm of population for the 29
countries is .68.

One reason for expressing population size here as a power of ten
(that is, logging size to the base ten) is simply for convenience: if
our scatterplots are going to include and differentiate between Iceland
and Norway as well as the United States and India, then something
must be done to compress the extreme end of the distribution. Logging
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(1,0

FIGURE 3-19 X vs. log X

size transforms the original skewed distribution into a more symmetri-
cal one by pulling in the long right tail of the distribution toward
the mean. The short left tail is, in addition, stretched. The shift
toward symmetrical distribution produced by the log transform is
not, of course, merely for convenience. Symmetrical distributions,
especially those that resemble the normal distribution, fulfill statistical
assumptions that form the basis of statistical significance testing
in the regression model. Figure 3-20 shows the contrast between the
logged and unlogged frequency distributions of population.

Logging skewed variables also helps to reveal the patterns in the
data. Figure 3-21 shows the relationship between the population size
of a country and the size of its parliament—for the unlogged and
the logged variables. Note how the rescaling of the variables by taking
logarithms reduces the nonlinearity in the relationship and removes
much of the clutter resulting from the skewed distributions on both
variables; in short, the transformation helps clarify the relationship
between the two variables. It also, as we will see now, leads to a
theoretically meaningful regression coefficient.

Much of the value of the logarithmic transformation derives from
its contribution to the testing of theoretical models by means of linear
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TABLE 3-6
Population, 29 Countries, 1970

Country Population Log (Population)
Iceland 200,000 5.30
Luxembourg 400,000 5.60
Trinidad and Tobago 1,100,000 6.04
Costa Rica 1,800,000 6.25
Jamaica 2,000,000 6.30
New Zealand 2,800,000 6.45
Lebanon 2,800,000 6.45
Israel 2,900,000 6.46
Uruguay 2,900,000 6.46
Ireland 3,000,000 6.48
Norway 3,900,000 6.59
Finland 4,700,000 6.67
Denmark 4,900,000 6.69
Switzerland 6,300,000 6.80
Austria 7,400,000 6.87
Sweden 8,000,000 6.90
Belgium 9,700,000 6.99
Chile 9,800,000 6.99
Australia 12,500,000 7.10
Netherlands 13,000,000 7.11
Canada 21,400,000 7.33
Philippines 38,100,000 7.58
France 51,100,000 7.71
Italy 53,700,000 7.73
United Kingdom 56,000,000 7.75
West Germany 58,500,000 7.77
Japan 103,500,000 8.02
United States 204,600,000 8.31
India 554,600,000 8.74

regression.'* In interpreting regression coefficients of such models
when the variables are logged, we have the following possibilities:

Describing variable (X)

Response variable (Y)

Logged Not logged
Logged I II
Not logged I v

4 For further information see J. Johnston, Econometric Methods, 2d ed. (New
York: McGraw-Hill, 1972), chap. 3; N. R. Draper and H. Smith, Applied Regression
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Analysis (New York: Wiley, 1966); J. W. Richards, Interpretation of Technical Data
(New York: Van Nostrand-Reinhold, 1967); and Joseph B. Kruskal, op. cit. For
applications to political data see Hayward Alker and Bruce Russett, “Multifactor
Explanations of Social Change,” in Russett et al., World Handbook of Political and
Social Indicators (New Haven, Conn.: Yale, 1964), 311-21.
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Case IV is simply the usual two-variable regression model with
both variables unlogged. We now consider the three cases in which
at least one of the variables in the analysis is logged.

CASE I—BOTH THE DESCRIBING AND THE RESPONSE
VARIABLE LOGGED

In the model
log Y=8,log X+ B,,

we estimate B, and B, by ordinary least squares by letting X' =
log X and Y’ = log Y, which yields the linear form

Y ' =8,X + B,

How is the regression coefficient in the double-log case interpreted?
Beginning with the regression

log,, Y = B,log,, X + B,y
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and taking derivatives,

dv’ 1 log. 10 (log .10) ! +0
ar - _ o ~ 4o,
Xy ‘e B log. X

) dY X

yields K?: B,
dY/Y

By =
dX/ X

or , which is the elasticity of Y with respect to X.

Thus B, measures the percentage change in Y with respect to a
percentage change in X. The slope can be written approximately as
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_AY/Y
Br= AX/X

and, when both the describing and the response variables are logged,
the estimate of the slope assesses the proportionate change in Y
resulting from a proportionate change in X. Note how this differs
from the usual interpretation of the slope when both variables are
unlogged (case IV):

_AY
BI_AX'

It is important to realize that fitting the model
log Y=8,log X+ B,,

does not test the assumption that there is, in fact, a proportionate
relationship between X and Y. The logic is: Assuming that there is
a proportionate relationship between X and Y, what is the best estimate
of that proportionality or elasticity? Thus the regression answers the
quantitative question by estimating a parameter in a model—on the
assumption that the model is correct. We choose between competing
models by comparing their goodness of fit, by thinking about their
theoretical underpinnings, and by adding sufficient degrees of freedom
in the model to allow the data to indicate the best fit. Our first
example illustrates this point.

EXAMPLE 1 FOR THE LOG-LOG CASE: RELATIONSHIP
BETWEEN PARLIAMENTARY SIZE AND POPULATION SIZE

Figure 3-22 shows the relationship, with both variables logged,
between the population of a country and the size of its parliament
for 135 countries of the world.'®> This relationship appears nearly
linear in logarithms, and the fitted line is

log ;, members = .396 log,, population — .564,

which explains, statistically at least, some 70.7 percent of the variation

15 A discussion of the substantive issues involved in this relationship is found
in Robert A. Dahl and Edward R. Tufte, Size and Democracy (Stanford, Calif.: Stanford
University Press, 1973), Ch. 7.
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FIGURE 3-22 Population vs. parliament size—both variables logged

in parliamentary size. The estimated slope, .396, indicates that if
a country was one percent above the average population of all countries,
it was also typically about .4 percent above average with respect
to size of parliament. A slightly more daring interpretation is to
say that a change of one percent in population typically produces
a change of .4 percent in parliamentary size.

Figure 3-22 and the residuals from the fitted line show a bend
in the data—there is something of a threshold in the size of parliament
for the smaller countries. For most of the countries with less than
one million people, the observed points lie above the fitted line,
indicating a tendency toward a minimum size of parliament around
thirty members. We can improve upon the first fitted line for the
135 countries by examining some models that avoid the assumption
of constant elasticity for all values of population (P) and take the
bend in the data into account. One good approach, upon observing
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FIGURE 3-23 Fitted line with quadratic term

a curve in the data, is to introduce a quadratic term. The following
fit, with its (log P)? term, is our second model:

log M = .031(log P)? + .667.

Figure 3-23 shows the fit. This regression predicts 73.1 percent of
the variation in the logarithm of parliamentary size—an improvement
of 2.4 percentage points over the first model with no increase in
the number of coefficients used in the model. What is the interpretation
of this result? In particular, what does the regression coefficient mean?
We get the answer by applying the same logic used in deriving the
elasticity in the log-log case. The model is

log,, M= B, + B,Uog,, P)?

Taking derivatives, as before,
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dM 1 1
Eﬁloge 10 = ZBl(loge 10)(10g10 P) ;,

which yields

dM P . i
—— — = elasticity of M with respect to P
dP M

= 2p, log,, P,
or, in our particular case,
= .062 log,, P.
Thus in this model the elasticity of M with respect to P is a slowly
increasing function of log P. For countries around 100,000, the
elasticity of parliamentary size with respect to population is about

.3; for countries of 100,000,000, it is nearly .5. Table 3-7 tabulates
the relationship.

TABLE 3-7
Predictions of the Second Model

Elasticity of M with

Population Log population respect to P = .062 log ,, P
10,000 4 .248
100,000 5 310
1,000,000 6 .372
10,000,000 7 434
100,000,000 8 .496
750,000,000 8.875 .550

The first model assumes that the elasticity is constant and provides
an estimate under that untested assumption. The second model
assumes that the elasticity varies as the population varies and provides
an estimate under that untested assumption. The second is now favored
because (1) visual inspection of the scatterplot and the residuals shows
a bend in the data and (2) the second explains more variance than
the first, even though both models estimate the same number of
coefficients.
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EXAMPLE 2 FOR THE LOG-LOG CASE: SIZE OF GOVERNMENTAL
BUREAUCRACY AND POPULATION SIZE

For the fifty U.S. states, let B = the number of employees of the
state government and let P = the number of people living in the
state. Both P and B are highly skewed variables, and so we will
work with log P and log B. Figure 3-24 shows log B plotted against
log P.

Three sorts of general results could emerge from this analysis:
(1) if a kind of Parkinson’s Law held, then we would expect the
bureaucracies of state governments to grow faster than the size of
the state; (2) if there were, say, economies of scale, then we would
expect bureaucracies to grow more slowly than the population of the
state; and (3) the number of bureaucrats could grow in constant
proportion to the size of the state. Obviously, other sorts of explanations
can be used to explain the results of the analysis. The point here
is that the number of employees of the state government can grow

°
log 8= .772 log P+ .,282
Standard error of slope = ,025
r2=,953
5.00
(100,000)
4,501
4,00~
(10, 000)
] | I ] l
5.50 6.00 6.50 7.00 7.50
(1,000,000) (10,000, 000)

Population (log scale)

FIGURE 3-24 Population and state government employees
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faster, slower, or at the same rate as the number of citizens in the

state.
The model that helps to choose among these possibilities is

log B= B, log P+ B,

or letting B, = log ¢ and taking antilogs puts the model in terms
of the untransformed variables:

B = cP*f.

If B, is approximately one, then B approximately equals ¢P, which
says that B grows linearly in direct proportion as P grows. In this
case, there is support for what might loosely be called the “null
hypothesis” concerning the relationship between size and the depen-
dent variable. An example where 3, would be very close to one and
the null hypothesis accepted would be the relationship between the

g

! @
B]=]
>
2
Q
< ®
5 0<B,< 1
]
o
o)
£
=1
i
P

Population

@ B grows faster than P
@ B grows proportionally to P
@ B grows more slowly than P

FIGURE 3-25 Three types of relationships between B and P
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size of the population and the number of women in the population.
In this case, given the sex ratio, ¢ would be about .52.

In terms of the untransformed variables, if the estimated regression
coefficient is greater than one, the slope increases as P increases.
If B, lies between zero and one, the slope continually decreases. Figure
3-25 shows this result in a plot of the untransformed variables.

For the fifty states, we have the following results:

log B= 772 log P + .282,
Elasticity = B, = .772,
Standard error of elasticity = .025, r? = 953,

Figure 3-24 shows the fitted curve.

The estimated elasticity is less than unity, indicating that the
number of government employees grows somewhat more slowly than
population. A change of one percent in the size of the population
of a state is associated with a change of .772 percent in the number
of government employees.

Note that the correlation coefficient is virtually useless in this
problem. The square of the correlation provides a measure of the
goodness of fit; but what is important is the estimate of the slope.

EXAMPLE 3 FOR THE LOG-LOG CASE: TESTING THE “CUBE LAW”
RELATING SEATS AND VOTES WITH A LOGIT MODEL

One well-known description of the relationship between votes and
seats in two-party systems is the “cube law.”'® The most economical
statement of the law is that the cube of the vote odds equals the
seat odds, where the vote odds are the ratio of the share of the votes
received by one party divided by the share of the votes received by
the competing party. For example, if both parties win 50 percent
of the votes, then the odds are one to one. Figure 3-26 shows the
line traced out by the cube law.

Quite a number of papers have touched upon the law and, in the
last few years, the law has enjoyed a certain vogue and has been
fitted to electoral outcomes in England, the United States, New
Zealand, and, in a modified form, Canada. With one or two exceptions,
discussions of the law are quite sympathetic, suggesting that it is

16This discussion follows E. R. Tufte, “The Relationship Between Seats and
Votes in Two-Party Systems,” American Political Science Review, 68 (June 1973), 540-54.

Additional discussion of the paper is found in the American Political Science Review,
68 (March, 1974), 207-13.



122  TWO-VARIABLE LINEAR REGRESSION

S [V
= (=7
g,
b - vl
1-3v+3v2

0 | i |
0 .25 .50 .75 1

Votes

S = proportion of seats for one party

1~ S = proportion of seats for the other party
in a two party system
V = proportion of votes for one party

1-V = proportion of votes for other party

FIGURE 3-26 The cube law
source: Figure follows James G. March, “Party Representation as

a Function of Election Results,” Public Opinion Quarterly,
11 (Winter 1957-58), p. 524.

a useful and accurate description of electoral realities. Most studies
consider no more than a few data points and conclude that the law
fits rather well—although the quality of fit is usually assessed
informally and no alternative fits are tried. Let us consider a direct

test of the predictions of the cube law by using the log-log model.
The law is

S _( 1% f
1-§ \1-v/~
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The ratio of shares of seats and votes won by the two parties represents
the odds that a party will win a seat or a vote. Taking logarithms
yields

14

S
log, 1-5° 3 log,

S 1-V

and therefore in the regression of log-odds on seats against log-odds
on votes,

log, =B, + B, log,

S
1-8 1-V’
the cube law makes the simultaneous joint prediction that g, = 0
and B, = 3. Table 3-8 reports the results of tests of these predictions.

The table indicates that the cube law fits poorly in six of the seven
trials. It fits quite well for the last eight elections in Great Britain,
but otherwise its predictions are not confirmed. In short, it is not
a “law.” Since previous studies have not tested the exact joint
predictions of the cube law (that is, B, = 0 and B, = 3) or used
as extensive a collection of data, these results should be decisive
in evaluating the empirical merits of the cube law.

Our previous analysis of seats and votes (Example 4) points to
other defects in the cube law. The law hides important political issues
because it implies that the translation of votes into seats is (1)
unvarying over place and time, and (2) always “fair,” in the sense
that the curve traced out by the law passes through the point (50
percent votes, 50 percent seats), and the bias is zero.

As we have seen, these implications are not true. The rate of
translation of votes into seats differs greatly across political systems,
ranging between gains of 1.3 to 3.7 percent in seats for each 1.0
percent gain in votes. Also the results in Table 3-8 indicate that
some electoral systems persistently favor a particular party; the
votes-seats curve traced out by the data does not inevitably pass
close by the point (50 percent votes, 50 percent seats).

The model estimated in the test of the cube law is called a “logit
model.” Define the odds in favor of a party winning a seat as S/(1
— S) and the vote odds as V/(1 — V). The logit model is the regression
of the logarithm of seat odds against the logarithm of vote odds (a
regression used earlier to test the specific predictions of the cube
law):
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TABLE 3-8
Testing the Predictions of the Cube Law (and Simultaneously Estimating
the Logit Model)

Stan- Does, =0
dard andB, =3 IsB,# O; that is,
) . errorof as cube is there a sig-
B, B, slope r? law predicts? nificant bias?
Great Britain —.02 2.88 .30 94 Yes No bias
New Zealand -.12 2.31 .27 91 No Yes, there
is a bias
United States, .09 2.52 .24 .68 No Yes
1868-1970
United States, .17 2.20 .15 .86 No Yes
1900-1970
Michigan —-.17 2.19 43 76 No Yes
New Jersey —.77 2.09 .59 .29 No Yes
New York -.23 1.33 .19 714 No Yes

S
log, === Bo + B, log,

1-V
Since both variables are logged, the estimate of the slope, él, is
the estimated elasticity of seat odds with respect to vote odds; that
is, a change of one percent in the vote odds is associated with a
change of [31 percent in seat odds.

The logit model has the advantage over the linear fit used in Example
4 of producing a reasonable predicted value for the share of seats
for all logically possible values of the share of votes; the predicted
values stay between 0 and 100 percent seats for any percentage share
of votes. As noted earlier, this is only a theoretical virtue, since the
more extreme values do not occur empirically. The logit model also
provides a direct test of the hypothesis that an electoral system is
unbiased, since B, = 0 in an unbiased system. As shown in Table
3-8, there is a statistically significant bias in all cases except Great
Britain.

CASE II—RESPONSE VARIABLE LOGGED, DESCRIBING
VARIABLE NOT LOGGED

Here we have the model of the form

log Y=8,+8,X.
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One particularly interesting application of such a model derives from
the exponential:

Y = ae®*.

Taking natural logarithms and letting ¢ = log, a puts this model
into the form of case II:

log, Y= c+ bX.
This exponential model can be estimated by ordinary least squares,

and the regression coefficient has the following interpretation:

In the model Y = ae®®, b x 100 is approximately equal
to the percent increase in Y per unit increase in X, if b is
small (say, less than .25).

The proof of this statement relies on the series expansion of e*:
Percent increase in Y per unit increase in X
AY

Y
AX

Y,- Y
=—2—1 (sinceAX=X,-X,=1)

1

aebXz — gebXs

aebx,

= obXp—bX1) _

=eP—-1 (sinceX,—- X,=1)

1 1
[1+b+—=b%2+—=0b%+..]-1,
2! 3!

by the expansion of e’ So, if bis small, we can drop the higher-order
terms, leaving

(1+b)-1=hb.
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Thus b x 100 equals the percent increase in Y associated with a
unit increase in X.'7

The logarithm of the response variable is used in estimating rates
of increase over time. Table 3-9 shows the gross national product
of Japan from 1961 to 1970. Note the increasing absolute increase
in GNP growth—GNP (the yearly absolute increase) itself increases
over time. One process generating such increasing increases is a
constant percentage growth rate—just like compound interest. What
is the appropriate model for a constant percentage growth rate?
Consider compound interest, at i percent per year. Beginning the
first year with principal P, leads to principal P, after ¢ years:

P,=P,1+ "
For example, after one year:
P,=P,1+1i).
After two years
P,=P, 1+ 1)
=P,(1+ D)3
and so on. To put this into slightly more familiar notation:
Y, =Y, 1+ D

Taking the logarithm of both sides

log Y,=log[Y,(1+ ],
log Y,=1log Y, + log(1 + )",

log Y, =log Y, + tlog(l + i).

'7An application of this interpretation is found in Philip E. Sartwell and
Charles Anello, “Trends in Mortality from Thromboembolic Disorders,” in Advisory
Committee on Obstetrics and Gynecology, Food and Drug Administration, Second Report
on the Oral Contraceptives (Washington, D.C.: U.S. Government Printing Office, 1969),
37-39.
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Now let
Bo=1log Y,,
B, =log(l + i),
and we have the model
log Y, =B, + B, ¢

—that is, case II. The model is estimated by letting Y = log Y,,
yielding

Y=B0+ Blt’

the usual linear model.

Figure 3-27 shows the GNP of Japan plotted on both an absolute
scale and a logarithmic scale. Note how, for these data, the log scale
throws the data points into a straight line. The changes in the logarithm
of GNP are relatively constant (Table 3-9), indicating a relatively
constant percentage rate of growth over time. The line for log GNP
fits considerably better than the line for absolute GNP—as the r?
shows. The fitted line for the logarithmic case is

log ;o GNP = 1.627 + .064t.

The rate of growth, i, can be estimated by going back to the original
linearization of the model,

B, = log(1 + i),
and solving by taking antilogarithms. This yields

i =.159,

or a growth rate of almost 16 percent per year.'®
This is the yearly rate of growth. An instantaneous rate of growth
can be estimated by fitting the model

8Unfortunately the estimate, i, is biased. It does not have least-squares
properties because the sum of squares was minimized with respect to log GNP rather
than GNP over time.
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FIGURE 3-27 Growth of GNP, Japan, 1961-1970
log, Y=8,+ B,t.
Differentiating gives

5 - 4Y/Y
! dt

3

the percentage rate of growth in Y.

Finally, a growth rate can be estimated quite soundly without the
regression model, simply by taking the average (mean, median, or
midmean) of the yearly growth rates, or the average of the logarithm.

CASE [I1——RESPONSE VARIABLE UNLOGGED, DESCRIBING
VARIABLE LOGGED

The model is

Y=8,+8,log X.
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TABLE 3-9
Gross National Product, Japan, 1961-1970

GNP Yearly increase Yearly increase
Year ¢ ($ Billion) in GNP log,, GNP in log,, GNP
1961 1 53 1.72
6 .05
1962 2 59 1.77
9 .06
1963 3 68 1.83
0 .00
1964 4 68 1.83
17 .10
1965 5 85 1.93
12 .06
1966 6 97 1.99
19 .07
1967 7 116 2.06
26 .09
1968 8 142 2.15
24 .07
1968 9 166 2.22
31 .08
1970 10 197 2.30

If the logarithm of the describing variable is taken to the base 10,
the regression indicates that a change in the order of magnitude
of X—that is, a tenfold increase in X—is associated with a change
of B, unitsin Y.

Sometimes it is useful to take the logarithm to the base 2 in this
model. In such a case, the regression coefficient estimates the increase
in Y when X doubles. And so when X is measured with respect to
time, the estimate of the regression coefficient may be said to assess
the “doubling time” of Y with respect to X. It is easy to prove that
when X doubles, Y increases by B, units. The model is

Y = By + B, log, X.

Now suppose X doubles:

Y

new

Bo+ B, log,2X

Bo + B,Uog,2 + log, X)

Bo + B, log, X + B,

Y+ B,
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—that is, the value of Y after X doubles is the old value of Y plus
B,. Thus Y increases by 8, units when X doubles.

Consider the following application of this model. Kelley and Mirer
have developed a rule predicting how voters will vote; the predictions
are made on the basis of an interview with the voter D days before
the election. After the election, the voter is reinterviewed and asked
how he or she voted. Thus it is possible to find the rate of error
in prediction—and such errors might well be related to how many
days before the election the voter was interviewed. If D were 1000
days, to take an extreme example, the error rate in prediction would
be higher than if D were one day. The researchers analyzed the data
first with a linear model, then with a logarithmic model:

A simple linear regression of the first of these variables on the
second shows them to be strongly related. The equation yielded is:

rate of error = 17.4 + .23(days before election).

In a statistical sense this relationship explains some 28 percent
of the variance in the dependent variable, and, since the standard
error of the estimated coefficient is .07, the relationship is statistically
significant (¢ = 3.15). Most interesting, perhaps, is the implication
of the equation’s constant term: Had the interviews of these respon-
dents been conducted on election day, the mean rate of error in
predicting their votes would have been 17.4 percent. . . .

And it is quite possible that this value for the constant term is
too high. The volume of partisan propaganda is normally much heavier
in the last two or three weeks of a presidential campaign than it
is earlier. We might therefore suppose the relationship between time
and changes of opinion to be like that shown in Figure [3-28], in
which the likelihood of such changes (and thus the error rates of
our predictions) at first increases rapidly with increases in the number
of days between election day and the time the opinions were expressed,
then more slowly. By regressing the rates of error in our predictions
for groups of respondents on the logarithm (to the base 2) of the
mean number of days before election day that the respondents in
each group were interviewed, one can see if a curve like that shown
in Figure [3-28] fits the data that entered into the first regression.
The equation produced by this new regression is:

rate of error = 5.3 + 4.03(log, days before election).

This second equation accounts for as much of the variance in the
dependent variable as did the first and yields an equally reliable
estimate of the regression coefficient (r> = .28, t = 3.14). The value
of the equation’s constant term implies that our mean rate of error
in predicting the votes of groups of respondents would have been
5.3 percent . . . if those respondents had been interviewed one day



131 TWO-VARIABLE LINEAR REGRESSION
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Days before election day

rFIGURE 3-28 Hypothetical relationship between the likelihood that
opinions will change and the time that attitudes toward
parties and candidates are expressed

before election day. The equation as a whole implies that, starting
from the day before the election, the error rate in predictions derived
from the Rule will rise by four percentage points with each doubling
of the length of time before election day that respondents are
interviewed.!®

Example 7: Regressions Aren’t Enough—
Looking at the Scatterplot

F. J. Anscombe has constructed a nice set of numbers illustrating
why it is important to look at scatterplots along with the fitted
equation.?® Table 3-10 shows four sets of data. Their remarkable
property is that all four yield exactly the same result when a linear
model is fitted. The regression in all four cases is:

Y=30+.5X%

r? = .667, estimated standard error of B, = 0.118,

1%Stanley Kelley, Jr., and Thad W. Mirer, “The Simple Act of Voting,”
American Political Science Review, 68 (June 1974), pp. 582-83.

20F. J. Anscombe, “Graphs in Statistical Analysis,” American Statistician,
27 (February 1973), 17-21. Copyright 1973 by the American Statistical Association.
Reprinted by permission.
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TABLE 3-10
Four Data Sets

DATA SET 1 DATA SET 2
X Y X Y
10.0 8.04 10.0 9.14
8.0 6.95 8.0 8.14
13.0 7.58 13.0 8.74
9.0 8.81 9.0 8.77
11.0 8.33 11.0 9.26
14.0 9.96 14.0 8.10
6.0 7.24 6.0 6.13
4.0 4.26 4.0 3.10
12.0 10.84 12.0 9.13
7.0 4.82 7.0 7.26
5.0 5.68 5.0 4,74
DATA SET 3 DATA SET 4
X Y X Y
10.0 7.46 8.0 6.58
8.0 6.77 8.0 5.76
13.0 12.74 8.0 7.71
9.0 7.11 8.0 8.84
11.0 7.81 8.0 8.47
14.0 8.84 8.0 7.04
6.0 6.08 8.0 5.25
4.0 5.39 19.0 12.50
12.0 8.15 8.0 5.56
7.0 6.42 8.0 7.91
5.0 5.73 8.0 6.89

soUrCE: F. J. Anscombe, op. cit.

mean of X = 9.0,

mean of Y = 7.5, for all four data sets.

And yet the four situations—although numerically equivalent in major
respects—are substantively very different. Figure 3-29 shows how
very different the four data sets actually are.

Anscombe has emphasized the importance of visual displays in
statistical analysis:

Most textbooks on statistical methods, and most statistical computer
programs, pay too little attention to graphs. Few of us escape being
indoctrinated with these notions:
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FIGURE 3-29 Scatterplots for the four data sets of Table 3-10
source: F. J. Anscombe, op cit.

(1) numerical calculations are exact, but graphs are rough;

(2) for any particular kind of statistical data there is just one
set of calculations constituting a correct statistical analysis;

(3) performing intricate calculations is virtuous, whereas actually
looking at the data is cheating.

A computer should make both calculations and graphs. Both sorts
of output should be studied; each will contribute to understanding.

Graphs can have various purposes, such as: (i) to help us perceive
and appreciate some broad features of the data, (ii) to let us look
behind those broad features and see what else is there. Most kinds
of statistical calculation rest on assumptions about the behavior of
the data. Those assumptions may be false, and then the calculations
may be misleading. We ought always to try to check whether the
assumptions are reasonably correct; and if they are wrong we ought
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to be able to perceive in what ways they are wrong. Graphs are
very valuable for these purposes.?!

Up until now we have considered only one-variable explanations
of the response variable. But the world is surely often more complicated
than that and response variables have more than a single cause.
In the next chapter, we examine the multiple regression model which
allows us to take into account effectively several explanatory varia-
bles—at least some of the time.

2! Anscombe, op. cit., p. 17.



CHAPTER 4

Multiple Regression

“Some circumstantial evidence is very strong, as when you find
a trout in the milk.”

—Henry David Thoreau

The Model

In chapter 3 we estimated the two-variable model,

Loss by President’s
party in midterm = B, + B, (presidential
congressional elections approval rating),

and decided that a more elaborate model would help explain additional
variation in the response variable. The more elaborate version used
two describing variables, presidential approval and economic condi-
tions:

vote loss = B, + B, (presidential + B, (economic
approval) conditions).

Just as in the two-variable case, we can use the data to estimate
the three parameters of this model:

1. the constant term, B,
2. the regression coefficient for presidential popularity, B,
3. the regression coefficient for economic conditions, B,.

135
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And, as before, the parameters are estimated by least squares,
minimizing the sum of the squared deviations of the observed value
from the fitted value:

minimize X (Y, - Y,)?2

This is the multiple regression model. We can have more than
two describing variables: the general multiple regression model with
k describing variables is

Y=B,+B, X, +B, X+ - -+ B, X,

The causal model behind multiple regression is that there are k
multiple, independent causes of Y, the response variable:

X, X,...X,

NS

Y

This is a somewhat limited model, since it excludes estimates of links
between the describing variables—for example,

U

Also simple multiple regression models do not estimate feedback
relationships:

AN

Under some circumstances, models involving feedback and simulta-
neous relationships can be estimated.

Multiple regression is widely used in the study of economics, politics,
and policy. It allows the inclusion of many describing variables in
a convenient framework. It is a carefully investigated and fairly widely
understood statistical procedure; thus it is a relatively effective way
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to communicate the results of a multivariate analysis. And packages
for running multiple regressions are available with most every com-
puter.

Almost all of the technical apparatus used in the two-variable model
applies to the multivariate case. Consider the three-variable model:

Y=8,+B8,X,+8,X

We use the data to compute:

1. the estimated regression coefficients, éo, Ev and ﬁz;

2. their standard errors, S; S;,;

3. t-values to test for statistical significance of the coefficients,
B,/Ss, By/ Sy,

4. the ratio of explained variation to total variation, R?.

The estimated coefficients of the model generate the predicted values
?i = Bo + [-5’1 X+ lgz Xois

where X, and X,, are the observed values of X, and X,, respectively,
for the ith case. Now, since we have an observed and a predicted
value for each observation, the residuals are defined as usual, measured
along the Y axis:

Y, - Y,

and T (Y, - Y, ;)? is minimized in the estimates of B,, B,, and B,.
No other set of Bo» Bl, and B, will make the sum of the squared
deviations smaller. As in the two-variable case, the principle of least
squares generates the estimating equations for the coefficients. And,
as in the two-variable case, a variety of assumptions about the data
are required for the sound application of statistical significance testing
in the model.!

The percentage of the variance explained statistically is also analo-
gous to the two-variable case:

explained variation X (Y, - Y)?

2 _ = —.
total variation (Y, - Y)?

1See Ronald J. Wonnacott and Thomas H. Wonnacott, Econometrics (New
York: Wiley, 1970); J. Johnston, Econometric Methods, 2d ed. (New York: McGraw-Hill,
1972); or other statistics or econometrics texts for discussion of the assumptions.
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Since the R? provides some measure of the quality of overall fit
of the describing variables in predicting Y, it is sometimes used to
choose between different regressions containing different combinations
of describing variables.

R can also be interpreted as the simple corrrelation between the
observed and predicted values; that is,

R = rye

The estimated regression coefficients in a multiple regression are
interpreted as partial slopes. They try to answer the question: When
X, the ith describing variable, changes by one unit and all the
other describing variables are held constant (in a statistical sense),
how much change is expected in Y? The answer is B, units. If the
describing variables were completely unrelated to one another, then
the regression coefficients in the multiple regression would be the
same as if each describing variable were regressed one at a time
on Y. However, the describing variables are inevitably interrelated,
and thus all the coefficients in the model are estimated and examined
in combination.

Two different types of regression coefficients—unstandardized and
standardized—are used in practice. Unstandardized coefficients are
interpreted in the units of measurement in which the variables are
measured; for example, a one percent change in votes is associated
with a B, percent change in seats. Standardized coefficients rescale
all the variables into standard deviations from the mean:

Sk,

Thus, in the standardized case, all variables are expressed in the
same units—that is, in standard deviations. Standardized regression
coefficients are analogous to the correlation coefficient in the two-
variable case; unstandardized coefficients are analogous to the slope
in the two-variable case. Standardized coefficients are useful when
the natural scale of measurement does not have a particularly
meaningful interpretation or when some relative comparison of the
variables with respect to their standard deviations is needed. All the
examples presented here use unstandardized regression coefficients.
The regression coefficients gain their meaning from the substance
of the problem at hand. The statistical model merely provides the
answer to the question: Under the assumption that X, is a cause
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of Y, what is the expected change in Y for a unit change in X,?
Thus the estimating procedure assumes the causal model:

Xl\ ji/ X,

Whether or not there really is a causal relationship between Y and
X,,X,, ..., X, depends on having a theory, consistent with the data,
that links the variables. And in trying to assess the independent
effect of one of the describing variables on Y by “holding constant”
or “adjusting out” all the other describing variables, we must always
keep in mind that the “holding constant” or “adjusting out” is done
statistically, by the manipulation of the observed data. The variables
are passively observed; we are not really intervening in the system
and holding constant all variables except one. And so the causal
structure of the multiple regression model is not strongly tested by
the statistical control, adjustment, or holding constant of the variables.
George Box soundly described the contrast between the statistical
control of observed variables and the actual experimental control (and
deliberate manipulation) of variables: “To find out what happens to
a system when you interfere with it, you have to interfere with it
(not just passively observe it).”?

Still, in many cases in political and policy analysis, the best we
can do in trying to understand what is going on is to hold constant
or control variables statistically rather than experimentally—for there
is simply no other way to investigate many important questions.

Example 1: Midterm Congressional Elections—
Presidential Popularity and Economic Conditions

In every midterm congressional election but one since the Civil
War, the political party of the incumbent President has lost seats
in the House of Representatives. This persistent outcome results from
differences in turnout in midterm compared to on-year elections:

Explanation of the Administration’s loss at midterm must be sought
not so much by examining the midterm election itself as by looking

2Quoted in John P. Gilbert and Frederick Mosteller, “The Urgent Need for
Experimentation,” in Frederick Mosteller and Daniel P. Moynihan, eds., On Equality
of Educational Opportunity (New York: Vintage, 1972), p. 372.
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at the preceding presidential election. The stimulation of the presi-
dential campaign brings a relatively large turnout. It attracts to
the polls persons of low political interest who in large degree support
the winning presidential candidate and, incidentally, his party’s
congressional candidates. At the following midterm congressional
election, turnout drops sharply. . . . Those who stay home include
in special degree the in-and-out voters who had helped the President
and his congressional ticket into office. As they remain on the sidelines
at midterm, the President’s allies in marginal districts may find
themselves voted from office. The coattail vote of the preceding
presidential year that edged these Representatives into office simply
stays at home . . °

Yet this view of midterm elections is incomplete—for it only explains
why the President’s party should almost always be operating in the
loss column rather than accounting for the amount of votes lost by
the President’s party. In statistical parlance, what has been explained
is the location of the mean rather than variability about the mean.
In studying the variability about the mean, we seek to answer such
questions as: Why do some Presidents lose fewer congressional seats
at the midterm than other Presidents? What factors affect the magni-
tude of the loss of congressional seats by the President’s party? In
Chapter 3, we used a two-variable regression to begin to answer these
questions; however, that model left some variability unexplained. A
more complicated model, bringing in the effect of economic conditions
on the election, appears useful.

In order to explain the magnitude of the loss of votes and congres-
sional seats by the President’s party in midterm elections, we will
estimate the following multiple regression model:

Votes loss by =B, + B, | Presidential | + B, | Economic
President’s party popularity conditions

The idea is, then, that the lower the approval rating of the incumbent
President and the less prosperous the economy, the greater the loss
of support for the President’s party in the midterm congressional
elections. Thus the model assumes that voters, in midterm elections,
reward or punish the political party of the President on the basis
of their evaluation of (1) the performance of the President in general
and (2) his management of the economy in particular.

3V. 0. Key, Politics, Parties, and Pressure Groups, 5th ed. (NewYork: Thomas
Y. Crowell, 1964), pp. 568-69.
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The model is:

Public approval Economic
of the President conditions

Magnitude of national vote
loss by President’s party

Three variables must be measured. With respect to economic condi-
tions, recent studies of the relationship between aggregate economic
conditions and the outcome of congressional elections show that
interelection shifts of ordinary magnitude in unemployment have less
impact on congressional elections than do shifts in real income.* Thus
the most meaningful measure of economic conditions for our model
appears to be the interelection change in real disposable income per
capita. This measure probably may reflect the economic concerns of
most voters, for it assesses the short-run shift in the average economic
conditions prevailing at the individual level—a shift in conditions
for which some voters might hold the incumbent administration
responsible.

For this model, the public’s evaluation of the President’s general
performance is measured by the standard Gallup Poll question: “Do
you approve or disapprove of the way President is handling
his job as President?” Table 4-1 shows responses to the survey taken
each September prior to the midterm election.

TABLE 4-1
The Data
Mean congressional Nationwide Gallup Poll Current yearly
vote for party of congressional vote rating of change in real
current President for party of Standardized President at disposable income
Year in last 8 elections current President vote loss time of election per capita
1946  Democratic 52.57% 45.27% 7.30% 32% —$36
1950  Demuocratic 52.04% 50.04% 2.00% 43% $99
1954 Republican 49.79% 47.46% 2.33% 65% -$12
1958 Republican 49.83% 43.91% 5.92% 56% —-$13
1962  Democratic 51.63% 52.42% —.79% 67% $60
1966  Democratic 53.06% 51.33% 1.73% 48% $96
1970  Republican 46.66% 45.68% .98% 56% $69

The most important variable to measure well is the magnitude
of the vote loss by the President’s party. The idea of “loss” implies
the question “Relative to what?” The relevant comparison is between
the normal, long-run congressional vote for the political party of the
current President and the outcome of the midterm election at hand—
that is, a standardized vote loss:

standardized vote average vote for vote for
loss by President’s\ _ [ party of current |} [ President’s
party in the ith ~ | President in the party in the
midterm election last 8 elections ith election

The loss is measured with respect to how well the party of the current

Gerald H. Kramer, “Short-Term Fluctuations in U.S. Voting Behavior,
1896-1964,” American Political Science Review, 65 (March 1971), 131-43; George J.
Stigler, “General Economic Conditions and National Elections,” American Economic
Review Papers and Proceedings, 63 (May 1973), 160-67 and further discussion, 169-80.
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President has normally tended to do, where the normal vote is computed
by averaging that party’s vote over the eight preceding congressional
elections. This standardization is necessary because the Democrats
have dominated postwar congressional elections; thus, if the unstan-
dardized vote won by the President’s party is used as the response
(dependent) variable, the Republican presidents would appear to do
poorly. For example, when the Republicans win 48 percent of the
national congressional vote, it is, relatively, a substantial victory for
that party and should be measured as such. The eight-election normal-
ization takes this effect into account.

Table 4-1 shows the data matrix for the postwar midterm elections.
We now consider the multiple regression fitting these data.

Table 4-2 shows the estimates of the model’s coefficients. The results
are statistically secure, since the coefficients are several times their
standard errors. The fitted equation indicates:

1. A change in Presidential popularity of 10 percentage points in
the Gallup Poll is associated with a national change of 1.3
percentage points in national midterm votes for congressional
candidates of the President’s party.

2. A change of $100 in real disposable personal income per capita
in the year prior to the midterm election is associated with a
national change of 3.5 percentage points in midterm votes for
congressional candidates of the President’s party.

The fitted equation explains statistically 89.1 percent of the variance
in national midterm election outcomes; or, to put it another way,
the correlation between the actual election results and those predicted
by the model is .944. Since the fitted equation uses two meaningful
explanatory variables, it seems reasonable to believe in this case

TABLE 4-2
Multiple Regression Fitting Standardized Vote Loss by
President’s Party in Midterm Elections

Regression coefficient
and (standard error)

B, Presidential approval -.133
rating (Gallup Poll, two (.038)
months before election)

B, Inter-election change in —.035
real disposable personal (.015)

income per capita

B, = 11.083, R = .891.
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that a successful statistical explanation is also a successful substantive
explanation.

The multiple regression model is an equation, weighting the particu-
lar values (prevailing in a given election) of Presidential popularity
and economic conditions. Thus the recipe for predicting the midterm
outcome is to take .133 of the percent approving the President and
.035 of the recent change in disposable personal income, subtract
all this from B, (which is 11.083), and this gives the predicted shift
in the midterm vote. Let us see how the equation worked for 1970.
The equation, as shown in Table 4-2, fitted to the data is:

standardized = 11.083 — .133 { Percent approving \ — .035 {Change in
vote loss President income

For 1970, the percent approving the President was 56 percent; the
change in disposable personal income per capita was $69. Putting
these particular values in the weighted combination of the regression
yields:

standardized
vote loss
predicted for 1970

11.083 — .133 (56) — .035 (69)

11.083 — 7.448 — 2.415

1.2

As Table 4-1 shows, the actual standardized vote loss for 1970 was
1.0, and thus the model fits the data rather well for 1970. As usual,
the residual is the observed minus the predicted value; and thus
the residual for 1970 from the fitted regression is —0.2.

As another check of the adequacy of the model, its predictions
of midterm outcomes were compared with those made by the Gallup
Poll in the national survey conducted a week to ten days before each
election. As Table 4-3 shows, the model outperforms, in six of seven
elections, the pre-election predictions based on surveys directly asking
voters how they intend to vote. All this, of course, is after the fact;
it would be more useful to have a prediction in hand prior to the
election to test the model.

An analysis based on so few data points (N = 7 elections) can
be very sensitive to outlying values in the data. In order to test
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TABLE 4-3
After-the-Fact Predictive Error of the Model

Actual vote for Gallup Model
House candidates, Gallup Poll Model absolute absolute

Year President’s party  prediction prediction error error
1946 45.3 42 44.5 3.3 .8
1950 50.0 51 50.2 1.0 2
1954 47.5 48.5 46.9 1.1 .6
1958 43.9 43 45.6 .9 1.7
1962 52.4 55.5 51.6 3.1 .8
1966 51.3 52.5 51.8 1.2 5
1970 45.7 47 45.5 1.3 2

Average absolute error, Gallup = 1.7 percentage points
Average absolute error, Model = 0.7 percentage points

the stability of the fitted equation, the multiple regression was
recomputed after omitting one election at a time. Table 4-4 shows
the results; even when the regression is based on six elections, the
regression coefficients remain fairly stable. The greatest shift occurs
when the outlying values for 1946 (very low Presidential approval
ratings and a decline in real disposable income per capita in the
early postwar period) are dropped from the estimation.

Does the strong aggregate responsiveness of midterm outcomes to
economic conditions and evaluations of the President’s performance
indicate anything about the rationality of the electorate—or about,
at least, that half of the eligible citizenry turns out in off-year
elections?® Such is the usual line of argument, for how else does
one explain the choice of variables in the model and the ultimate
results? It is important to realize, however, that all we are seeing
inthese data (and in the many similar studies) is the totally aggregated
evidence that speaks only most indirectly to what must be the central
pelitical questions concerning the rationality of individual voters:

1. Dosome voters make more rational calculations than others? Which
voters? How many?

2. What are the components of these calculations?

3. What kinds of decision rules do individual voters use? Which
voters use what decision rules?

4, What conditions encourage voter rationality?
5. How may these conditions be nurtured?

5 Angus Campbell, “Voters and Elections: Past and Present,” Journal of Politics,
26 (November 1964), 745-57.
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TABLE 4-4

Re-estimating the Regression Coefficients When the Data Points are

Omitted One at a Time

Year Constant Presidential Change in economic
omitted term popularity conditions R?
1946 17.62 -.23 ~.052 .94
1950 10.93 -.13 —-.036 .89
1954 10.57 -.12 -.038 .90
1958 11.10 -.15 —-.028 .99
1962 10.11 -.11 —-.034 .88
1966 10.87 -.13 —.037 .89
1970 11.06 -.13 -.035 .88

Thus, although the results are impressive in terms of the large
R?, there are still substantial inferential problems in trying to interpret
the meaning of the model—since the data do not speak directly to
the explanatory mechanism postulated to explain the findings.

Let us consider the steps in the construction of this regression
in order to look at some of the broader issues in constructing explana-
tory models. The steps were these:

1. A model, based on prior research and some general ideas, was

specified. The model included two basic variables, presidential
popularity and economic conditions. There were also several other
variables that were candidates for inclusion in the model: whether
the nation was involved in a war at the time of the election,
the magnitude of the victory of the President’s party in the
preceding election, and a few others.

. Each variable in the model was operationalized; that is, a numerical

measure for the concept was found. The construction of appropriate
measures required some further thought, especially with respect
to the response variable, the standardized vote.

. Several economic variables were included in the initial analysis—

changes in unemployment, inflation, GNP per capita, and real
disposable personal income per capita. From the beginning, the
change in real disposable personal income per capita made the
most substantive sense, and it turned out that it led to the most
successful explanatory model in terms of variance explained. A
variety of different regressions were computed.

There is, then, an interplay between explanatory ideas and the
examination of the data. Some variables were tried out on the basis
of a vague idea and were then discarded when they yielded no
explanatoryreturn. For example, some regressionsincluded a variable
indicating whether the nation was involved in a war (Korea or Vietnam)
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during the midterm congressional election—on the hypothesis that
there might be a “rally round the flag” effect helping the President.
Such appeared tobe the case—and the sign of the regression coefficient
was in the expected direction—but the results just did not seem solid
enough to warrant inclusion in the final model, especially since there
are only seven data points and also since only two explanatory variables
do so well.

Now, looking at several different multiple regressions and sorting
around through different variables may not fit some abstract models
of scientific research procedure—but it is normally done in constructing
explanatory models, and it is precisely this sorting through of various
notions that is the heart of data analysis. The final model reported
here has gained inferential strength as a consequence of this directed
search through a variety of ideas because the model has been tested
against many other alternative possibilities and has survived. The
strength of such an interplay between theory and data has been
strongly put by Jacob Viner:

If there is agreement that relevance is of supreme importance for
economic theory, it leads to certain rules of guidance as to the
procedure we should follow in constructing our theoretical models.
It is common practice to start with the simplest and the most rigorous
model, and to leave it to a later stage, or to others, to introduce
into the model additional variables or other complicating elements.
I venture to suggest that the most useful type of “first approximation”
would often be of a radically different character. It would consist
of a listing of all the variables known or believed to be or suspected
of being of substantial significance, and corresponding listing of types
and directions of interrelationship between these variables. A second
stage of analysis would consist of a combing out on the basis of
such empirical evidence as can be accumulated of the probably least
significant variables and interrelationships between variables. In-
stead of beginning with rigor and elegance, only from this second
stage on would these become legitimate goals, and even then for
a time they should be distant goals, to be given high value only
after it is clear that they can be reached without substantial loss
of relevance.

Such procedure, it would seem to me, would have some distinct
advantages as compared to the more usual procedure on the part
of theorists of starting—and often ending—with models that gain
their rigor at the cost of unrealistic simplification. In the first case,
important variables would be less likely to be omitted from consider-
ation because of oversight, traditional practice, difficulty of manipu-
lation, or unsuitability for specific types of analytical manipulation
to which the researcher has an irrational attachment. Secondly, there
would be at least partial awareness of what variables had been omitted
from the final analysis, and therefore greater likelihood than at
present that the conclusions will be offered with the qualifications
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and the caution that such omission makes appropriate. Third, if
the presentation of the final results includes a statement with respect
to the omitted variables and the reasons for their omission, the reader
of such presentation is in better position to appraise the significance
of the findings and is afforded some measure of guidance as to the
further information and the new or improved techniques of analysis
that would be most helpful.

The final outcome of such a change in analytical procedure might
well be a definite loss in rigor and elegance at least for a long
time, on the one hand, but a definite gain in scope for the useful
exploitation of new information and of wisdom and insight on the
other hand. Such a result, I hope and believe, would in most cases
constitute a new gain in relevance for understanding of reality and
for the promotion of economic welfare by means of economic theoriz-

ing.®

Example 2: Equality of Educational
Opportunity and Multicollinearity

Modern statisticians are familiar with the notions that any finite
body of data contains only a limited amount of information, on any
point under examination: that this limit is set by the nature of
the data themselves, and cannot be increased by any amount of
ingenuity expended in their statistical examination: that the statisti-
cian’s task, in fact, is limited to the extraction of the whole of the

available information on any particular issue.”
—R. A. Fisher

If two or more describing variables in an analysis are highly
intercorrelated, it will be difficult and perhaps impossible to assess
accurately their independent impacts on the response variable. As
the association between two or more describing variables grows
stronger, it becomes more and more difficult to tell one variable from
the other. This problem, called “multicollinearity” in the statistical
jargon, sometimes causes difficulties in the analysis of nonexperimen-
tal data.

For example, if, in Chapter 1, density and inspections (the two
describing variables for the response variable of traffic fatalities)
were highly associated—say, all states above a certain density had
inspections and all below did not—then it would be very difficult
to discover if inspections made a difference because the effect of
inspections would be confounded with the effect of density. The

8Jacob Viner, “International Trade Theory and Its Present Day Relevance,”
in Brookings Lectures, 1954, Economics and the Public Policy. © 1955 by the Brookings
Institution, Washington, D.C., pp. 128-30.

7R. A. Fisher, The Design of Experiments, 8th ed. (London: Oliver and Boyd,
1966), p. 40.
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scatterplot, in this hypothetical example, would resemble Figure 4-1.
In such a case there is insufficient independent variation in the two
describing variables; in particular, there is a shortage of thickly
populated states without inspections and thinly populated states with
inspections. Without such conditions prevailing in at least a few states,
the independent effect of inspections and the independent effect of
density on the death rate could not be assessed.

Sometimes clusters of variables tend to vary together in the normal
course of events, thereby rendering it difficult to discover the magni-
tude of the independent effects of the different variables in the cluster.
And yet it may be most desirable, from a practical as well as scientific
point of view, to disentangle correlated describing variables in order
to discover more effective policies to improve conditions. Many eco-
nomic indicators tend to move together in response to underlying
economic and political events. Or consider a research design seeking
to assess the effects of air pollution on the health of a city’s residents.
Such a study might be based on three areas in a city—one with
badly polluted air, one with moderate pollution, and (if it could be
found) one with relatively clean air. But chances are that the poor
are more likely to find housing only in those unpleasant parts of

High Q. Do these states have a high
death rate because they lack
inspections or because they
are thinly populated ?

O = States without inspections

® = States with inspections

o
o0 Q. How i N .
oo . How important are inspections
% o o and how important is high
o density in producing the low

00 death rate in these states?

A. We can't tell because all
the states with inspections

Death rate
® O

°
°

e

® e ee are also thickly populated
® :. e and all the states without
o inspections are also thinly
° populated.
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FIGURE 4-1 Hypothetical data showing collinearity between density
and inspections
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the city near factories and highways producing very polluted air;
the moderately polluted area is more likely to be the home of those
with moderate incomes; and the wealthy will be concentrated in areas
relatively free of pollution. In such a situation, then, the effects of
air pollution on health are confounded with the effects of income
and housing on health.

The problem of multicollinearity involves a lack of data, a lack
of information. In the first example, there were no thinly populated
states with inspections (and vice versa); in the study of the health
effects of air pollution, we lacked information about rich neighborhoods
with polluted air and poor areas with fresh air.

Recognition of multicollinearity as a lack of information has two
important consequences:

1. In order to alleviate the problem, it is necessary to collect more
data—especially on the rarer combinations of the describing
variables.

2. No statistical technique can go very far to remedy the problem
because the fault lies basically with the data rather than the
method of analysis. Multicollinearity weakens inferences based
on any statistical method—regression, path analysis, causal mod-
eling, or cross-tabulations (where the difficulty shows up as a
lack of deviant cases and as near-empty cells).

Figure 4-2 shows how, when two describing variables are highly
intercorrelated, a control for one variable reduces the range of variation
in the other.

Since multicollinearity affects our ability to assess the independent
influence of each describing variable, its consequences in the multiple
regression model include increased errors in the estimate of the
regression coefficients. The variance of the estimate of the regression
coefficient, Qi, is given by:

1 S%2 1- R%
N-n-18% 1-R%’

where N = number of observations,
n = number of describing variables,
S% = variance of Y,
S = variance of X,
R% = squared multiple correlation for the regression
Y=B,+B, X, +...+B8,X,,
R% = squared multiple correlation for the regression
X, =B+ B/ X+ .. +B X, 1 +BL Xy + ..
+ B;}, X"l

variance of 8; =
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FIGURE 4-2 Effect of controlling for a variable when describing
variables are strongly correlated
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—that is, the regression of the ith describing variable on all the
other describing variables.
This equation repays study. The key element is:

the variance of f?»i is proportional to ————.
1 - R%,

Now R% is the R? for the regression of the ith describing variable
on all the other remaining describing variables—that is, R assesses
how well the describing variable X is explained by the other descrlbmg
variables. So if X, is strongly entangled with one or more of the
other describing varlables R2 ,will be large, close to 1.0. Consequently
1/(1 — R% ) and the variance of B, will grow larger as R% _approaches
1.0. And so the estimate of B, grows more insecure as R2 approaches
closer to 1.0.

Although multicollinearity is sometimes viewed as a problem of
the intercorrelation of two describing variables, it can be seen here
that the variances of the estimated regression coefficients will be
big whenever R% is large—which can result from a high intercorrela-
tion between two of the describing variables or from a combination
of three or more of the describing variables accurately predicting
another describing variable. Note the variance of B, is infinite when
R% isunity (that is, when a describing variable X, is perfectly predicted
by one or more of the other describing variables). In this case, of
course, it is literally impossible to tell X, from another describing
variable or combination of other describing variables. The equation
for the variance of B, also shows that the variance of the estimates
of the regression coefficients will decrease as additional data are
collected (as N grows larger).

In summary, the symptoms of multicollinearity in regression analy-
sis include:

. high intercorrelations between the describing variables,
. large variances in the estimates of the regression coefficients,
. large R% ,

W QO hO

. large R?% coupled with statistically nonsignificant regression coef-
ficients,
5. large changes in the values of estimated regression coefficients
when new variables are added to the regression, and
6. inability of computer program to compute regression coefficients
(which occurs only in very severe cases of multicollinearity—in
most cases the estimation procedures produce numbers as usual).
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Cures for multicollinearity can sometimes be found in the following
list:

1. Collect additional data, concentrating on gathering information
that will alleviate the difficulty. In some research contexts, this
may involve seeking information on deviant cases or special
combinations of the describing variables. Johnston cites an econ-
ometric example: “Early demand studies, for example, which were
based on time-series data, often ran into difficulties because of
the correlation between the explanatory variables, income and
prices, plus the often inadequate variation in the income series.
The use of cross-section budget data, however, gives a wide range
of income variation, thus permitting a fairly precise determination
of the income coefficient, which can then be employed in the
time-series analysis.”®

2. Give up on nonexperimental data and consider research designs
in which the key variables can be systematically varied or at
least randomized out. Do experiments.

3. Remove some of the variables from the regression that are causing
the trouble. For example, if two of the describing variables are
highly correlated, compute regressions with only one of the vari-
ables present at a time. Or combine the variables into a summary
measure (less often an approved strategy). These steps should
be taken only if they make good substantive sense.

Although the use of additional information and special statistical
techniques may at times alleviate the problem, it often happens in
social research based on “experiments” performed by nature that it
will be difficult to obtain the independent variation necessary to assess
the independent effects of the describing variables. Thus some theories
that assert the importance of one variable over another, while theoret-
ically testable, are actually incapable of being tested in the face of
multicollinearity.

Finally, it is important to be clear about the signs of multicollinearity
and just when it is a genuine threat to the validity of a study. It
is not a sound or a fair statistical eriticism to cry “multicollinearity”
to discredit every analysis involving three or more variables.

A multicollinearity problem arose in the report on Eguality of
Educational Opportunity by James Coleman and others.? The model
used seeks to explain student achievement in school (as measured

8J. Johnston, Econometric Methods, 2d ed. (New York: McGraw-Hill, 1972),
p. 164.

9James Coleman, Ernest Q. Campbell, Carol J. Hobson, James McPartland,
Alexander M. Mood, Frederic Weinfield, and Robert L. York, Equality of Educational
Opportunity (Washington, D.C.. Office of Education, 1966). Parts of the report are
reprinted in E. R. Tufte, ed., The Quantitative Analysis of Social Problems (Reading,
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by test scores) with two clusters of variables, measures of family
background aiding children in their schoolwork (such as books in
the home) and measures of school resources such as the teacher-student
ratio and the number of books per student in the library. In compressed
form, the model is:

family background school resources

N/

achievement

The analysis proceeded by first regressing achievement against the
family background variables, which yielded an R? Then a new
regression was computed that included the school resources variables
as well as family background, yielding a coefficient of R'Z The
difference,

RIZ _ RZ,

was taken as measure of the effect of school resources on educational
achievement. Although using the increase in the percent of variance
explained as a measure of school resource effects on education did
not ultimately compromise the main findings of the study, the method
would tend to underestimate school effects somewhat and received
criticism. Bowles and Levin wrote:

The most severe deficiency of the regression analysis is produced
by the addition to the proportion of variance in achievement scores
explained (addition to R?) by each variable entered in the relationship
as a measure of the unique importance of that variable. For example,
assume that we seek to estimate the relationship between achievement
level, @, and two explanatory variables, X, and X,. The approach
adopted in the Report is to first determine the amount of variance
in @ that can be statistically explained by one variable, say X,,
and then to determine the amount of variation in @ that can be
explained by both X, and X,. The increment in explained variance
(i.e., the change in the coefficient of determination, R?) associated
with the addition of X, to the explanatory equation is the measure
used in the Report for the unique effect of that variable on Q. Thus,
if X, explained 30 percent of the variance in @ and X, and X,
together explained 40 percent, the difference, or 10 percent, is the
measure of the unique effect of X,.

Mass.: Addison-Wesley, 1970), 285-351. See also Frederick Mosteller and Daniel P.
Moynihan, eds., On Equality of Educational Opportunity (New York: Random House,
1972).
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If X, and X, are completely independent of each other (orthogenal),
the use of addition to the proportion of variance explained as a
measure of the unique explanatory value of X, and X, is not
objectionable. X, will yield the same increment to explained variance
whether it is entered into the relationship first or second, and vice
versa. But when the explanatory variables X, and X, are highly
correlated with each other, as are the background characteristics
of students and the characteristics of the schools that they attend,
the addition to the proportion of variance in achievement that each
will explain is dependent on the order in which each is entered
into the regression equation. By being related to each other, X,
and X, share a certain amount of explanatory power which is common
to both of them. The shared portion of variance in achievement
which could be accounted for by either X, or X, will always be
attributed to that variable which is entered into the regression first.
Accordingly, the explanatory value of the first variable will be
overstated and that of the second variable understated.

The relevance of this problem to the analysis in the Report is
readily apparent. The family background characteristics of a set
of students determine not only the advantages with which they come
to school; they also are associated closely with the amount and quality
of resources which are invested in the schools. As a result, higher
status children have two distinct advantages over lower status ones:
First, the combination of material advantages and strong educational
interests provided by their parents stimulate high achievement and
education motivation; and second, their parents’ relatively high
incomes and interest in education leads to stronger financial support
for and greater participation in the schools that their children attend.
This reinforcing effect of family background on student achievement,
both directly through the child and indirectly through the school,
leads to a high statistical correlation between family background
and school resources.

The two sets of explanatory variables are so highly correlated
that after including one set in a regression on achievement, the
addition to the fraction of total variance explained (R2) by the second
set will seriously understate the strength of the relationship between
the second variables and achievement. Yet the survey made the
arbitrary choice of first “controlling” for student background and
then introducing school resources into the analysis. Because the
student background variables—even though crudely measured—
served to some extent as statistical proxies for school resources, the
later introduction of the school resource variables themselves had
a small explanatory effect. The explanatory power shared jointly
by school resources and social background was thus associated entirely
with social background. Accordingly, the importance of background
factors in accounting for differences in achievement is systematically

inflated and the role of school resources is consistently underestimat-
ed.!?

19Samuel Bowles and Harry Levin, “The Determinants of Scholastic Achieve-
ment—An Appraisal of Some Recent Evidence,” Journal of Human Resources, 3 (©
1968 by the Regents of the University of Wisconsin), pp. 14-16.
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Example 3: A Five-Variable Regression—
The Size of Democratic Parliaments

Here we examine a five-variable multiple regression that illustrates
the following statistical points:

— taking logarithms to test a “cube root law” by converting the
law into a linear model,

— interpreting a regression coefficient as an elasticity,

— using R? as a check for multicollinearity,

— usinga “dummy variable” so that a dichotomous, categoric variable
can be included in a regression,

— interpreting R? as the square of the correlation between the
observed and predicted values of the response variable.

The multiple regression reported here evaluates some of factors
determining parliamentary size—the number of representatives in the
lower house—in twenty-nine relatively democratic countries of the
world. Parliaments differ greatly in size; Liechtenstein’s Diet has
15 deputies, the Italian Chamber of Deputies has 630 members, West
Germany’s Bundestag 496, the French National Assembly 481, and
Sweden’s new unicameral parliament 350. Some large countries have
relatively small parliments: India, with a population 21/ times that
of the United States, has 500 deputies sitting in its House of the
People with each deputy representing, on average, over one million
citizens. At the other extreme, the 19,000 residents of San Marino
have a 60-member Great and General Council—resulting in one
representative for every 320 citizens.

The number of representatives elected to parliament determines,
in part, the extent to which local interests are represented at the
national level; larger parliaments, other things (especially population)
being equal, permit a more precise representation. However, in larger
parliaments each member not only has an arithmetically smaller voice,
but also larger parliaments typically have greater centralization of
leadership and more rules limiting the conduct of their members
both in debate and in the diversity of their concerns. These two
conflicting factors—the representation of citizens and the manage-
ability of the chamber—must be resolved by the framers of new
constitutions. Many constitutions of the eighteenth and nineteenth
centuries specified a particular ratio of citizens to representatives,
and parliamentary size grew right along with the population.
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As a consequence of this mixture of factors, parliamentary size
is closely linked to population: the more populous countries have larger
parliaments. Dodd proposed a “cube-root law”:

number of members of parliament = (population)?/2,

Dodd correlated these variables and found that the cube root of
population explained 67 percent of the variation in parliamentary
size for 55 nations in 1950.

Dodd’s model may be written by taking logarithms
log members = 1/3 (log population).

Thus in the regression of members (log) against population (log),
log members = B, (log population) + B,,

the cube-root law predicts that B, = /s and B, = 0. Confirming
these predictions provides a better test of the law than merely
correlating the cube root with the size of parliament. That correlation
does not test the specific hypothesis of the law; it merely supports
the general proposition that there is a relationship between the two
variables. Taking the logarithms of both variables also, as we saw
in Chapter 3, yields a useful interpretation of the slope of the fitted
line. The estimate of the slope, B,, measures the percentage change
in the size of parliament associated with a change of one percent
in the size of the population: B, is the least-squares estimate of the
elasticity of parliamentary size with respect to population.

Here Dodd’s law is tested with data from twenty-nine of the more
democratic countries in the world in 1970. The multiple regression
in Table 4-5 shows that the population elasticity of parliamentary
size is .44, indicating that if a county was one percent above the
average in population size, it was typically .44 percent above the
average in parliamentary size. The standard error of the estimated
elasticity is quite small, .022; thus the estimate of the elasticity itself,
.44, quite surely differs from the prediction of the cube-root law.

There are three other describing variables in the regression shown
in Table 4-5:

Population growth rate Although many of the democracies have
relatively low growth rates, there is still sufficient variability to
explain differences in parliamentary size. Countries that are growing
rapidly in population size tend to have smaller parliaments, other
things being equal, than countries growing more slowly. When all
the other describing variables in the equation are fixed at their means,
a change of one percentage point in growth rate from an annual
rate of one percent to two percent across countries is associated with
a decrease in the size of parliament from 196 seats to 144 seats.
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TABLE 4-5
Parliamentary Size (logarithm) for Twenty-nine Democracies

Regression Standard

coefficient error R?
Population (log) 440 .022 14
Annual population growth rate —-.135 .020 13
Number of political parties .051 .013 26
Bicameral-—unicameral .066 .040 .20

R? = 952

All coefficients are statistically significant at the .001 level, with the exception
of the variable bicameral—unicameral. That coefficient is significantly different from
zero at the .06 level.

Number of parties in the party system The greater the number
of parties in the present-day party system, the larger the parliament.
Other things being equal, two-party systems have parliaments averag-
ing about 137 seats; multiparty systems, 195 seats. A larger party
system may reflect somewhat greater underlying diversity in the
society, and the constitutional framers may then create a larger than
normal parliament in an effort to represent that diversity. Perhaps
a more plausible explanation is that in a multiparty system, many
parties will participate in the bargaining over parliamentary size
and the smaller parties will work hard for a large-sized parliament,
so that at least some of their party officials will be able to hold
parliamentary seats. Parliaments sufficiently large to include the
leading officials of each party may be quite inflated in size, particularly
if the votes of the minor parties are scattered. If such a process
operated for a number of years as the distribution of seats shifted
from party to party, then the incumbent parliamentarians might well
favorincreases in the size of parliament so that they or their colleagues
would stay in office even with some shifts in the share of votes received
by each party.

Bicameral—unicameral parliaments Unicameral parliaments are
typically somewhat larger than the lower chambers of bicameral
parliaments. Some unicameral systems have come about from a merger
of two chambers; here the interests of incumbent parliamentarians
are obvious. Other things being equal, the unicameral parliaments
average 189 seats in the fitted model; the lower chamber of bicameral
parliaments, 163 seats.

The numerical coding for this variable was:
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bicameral = 0,
1.

1l

unicameral

4

Such a dichotomous categoric variable is called a “dummy variable,’
and such variables are used to include categoric variables in multiple
regression models. The following are examples of dummy variables:

REGION
0 = North
1 = South

CHANGE IN A TIME SERIES

0 = before tax cut,

1 = after tax cut
SEX
0 = male,
1 = female
3.0
r= .976
- ®
™
®
°
'-6 2.5 ~
3
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= ®
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Actual size (log scale)

FIGURE 4-3 Actual and predicted parlimentary size, twenty-nine
democracies
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Table 4-5 shows the value of R?, the value of R? resulting from
the regression of the ith describing variable on all the other describing
variables. The values are quité small, indicating that multicollinearity
is not a problem here.

Figure 4-3 shows the relationship between the observed and predicted
values of the response variable, the logarithm of parliamentary size.
The correlation, ryg, between the observed and predicted values
is .976. That value squared is mathematically equivalent to R?, the
proportion of variance in the logarithm of parliamentary size explained
by the regression:

rZ,=(976)2 = 952 = R2.

How was the regression reported in Table 4-5 chosen? At the start
of the analysis, six describing variables were considered as possible
candidates for inclusion in the final model. In addition to the four
variables already discussed, two others were considered good candi-
dates: whether or not the country was in Europe and the institutional
age of the currently established parliament. It appeared that European
countries, for one reason or another, had large parliaments. The length
of time the parliament had been established under the current
constitution was included as a possible describing variable on the
speculation that older parliaments might be larger. Table 4-6 shows
twelve different multiple regressions using various combinations of
the six candidate describing variables. Let us look through these twelve
different regressions to see the search for the model previously reported
in Table 4-5. It will be clear that several different models could have
been the model of choice.

TABLE 4-6
Twelve Regressions Explaining Parliamentary Size (Log)

Regression number

Describing variables 1 2 3 4 5 6 7 8 9 10 11 12
Population size (log) 41 40 42 41 .38 .38 .40 39 40 41 43 44
Population growth rate -.16 -.10 -.13 -13 -.06 -.07 -.13 -.14
Bicameral—unicameral 12 A1 12 .07
Number political parties .06 .05
European—not European .26 13 .20 13 .20 13
Age of current parliament 17 13 A1 12 .18 13

R? 760 900 .891 912 916 908 928 923 934 941 946 952
Number of describing variables 1 2 2 3 3 3 4 4 4 5 3 4

The numbers shown in the table are regression coefficients for each regression. Each of the twelve columns shows a different
regression.

Regression 1 is simply the two-variable regression of parliamentary
size (log) against population size (log). The regression coefficient
reported in Table 4-6 indicates that a change of one percent in
population was associated with a change of .41 percent in parlia-
mentary size; 76 percent of the variance was statistically explained.
Regressions 2 and 3, both with two describing variables, send the
R? up to about 90 percent. Either the population growth rate or the
country’s geographic location in or out of Europe adds an additional
14 percent to the variance explained in the first regression. This
suggests that we can go much farther with a model that includes
both the location and the growth rate along with population size.
This is regression 4; and it doesn’t work. Little additional variance
is picked up—and also there is a multicollinearity problem. Note
how the regression coefficients on growth and European location have
shifted from their previous values in regressions 2 and 3, respectively.
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This is a sign of multicollinearity, confirmed by the correlation of
—.77 (European countries have low population growth rates) between
the two variables.

Regressions 5 through 9 try out various combinations of the describ-
ing variables. These trials verify the multicollinearity problem with
respect to the European location variable and raise some doubts about
the effectiveness of the age variable. Throwing in every variable
examined so far gives regression 10, which picks up 94.1 percent
of the statistical variation in parliamentary size (log) but with some
problems. The European location variable is quite bothersome by now,
in part because of multicollinearity but also—and more importantly—
what does it mean, anyway? It is vague; such a regional variable
doesn’t tell us much substantively. What is it, specifically, about
location in Europe that makes for big parliaments? So, regression
10 is about the best that can be done with the current candidate
variables.

The last two multiple regressions try out a new candidate variable,
the number of political parties in a country. Regression 11 reports
a simple model with only three describing variables that outper-
forms—at least in terms of R%—all the previous models, including
those that contain more variables. It is a parsimonious model and
a relatively successful one in terms of RZ Regression 12 adds one
more variable—the dummy variable on whether the parliament is
unicameral or bicameral—to take the variance explained up to 95.2
percent.

What we have seen here is an empirical search through a variety
of theoretically plausible models. The search started with some
candidate variables, which were suggested by our political and histori-
cal understanding of what factors might affect this particular charac-
teristic—size—of a political institution. The search was conducted
with a variety of criteria for evaluating the different models that
turned up: certain substantive criteria (for example, in part, the
grounds for rejection of the European location variable) and certain
statistical criteria (the statistical significance of individual regression
coefficients, the value of R%, and multicollinearity). Now these criteria
are not “merely” statistical matters, for the statistical criteria used
in the choice of the models inform us about the quantitative quality
of the model under examination. Or, more precisely, the statistical
criteria help evaluate the quantitative quality of different models
within the theoretical and substantive context of the search for models.
The context is vital; the best statistical techniques can’t rescue
theoretical models that are poor, unintelligent, or misguided.

Table 4-6 also shows one of the sad facts of building complex
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explanations of most political, economic, and social phenomena: often
a variety of models will fit the same data relatively well. That is,
the empirical evidence that is available does not always allow one
to choose among different models that seek to explain the response
variable. In this case, regressions 11 and 12 both do rather well;
but even regressions 2 and 3 seem relatively acceptable. It is probably
fair to say, however, that regressions 11 and 12 are pretty much
the best among the lot. Both regressions are quite effective in
predicting—and explaining—parliamentary size (log) as Table 4-5
indicated.

Table 4-6 does not, fortunately, show all possible combinations of
describing variables. With six describing variables, there are a grand
total of 63 different regressions involving combinations of one or
more describing variables. In general, with K describing variables,
there are 2% — 1 possible regressions. Some regression programs can,
in fact, search through all possible combinations to find one or more
“best” regressions. Although such searches may seem rather like
brute-force empiricism (and they often are!), the criteria of choice
for the best regression or regressions are intelligent and may provide
a reasonable guide—when combined with substantive understand-
ing—in searching for models. Some elegant computer programming
has enabled one regression program to examine quickly every regres-
sion in cases with up to 12 describing variables—that is, 4,095
regressions.’* The view is: If you're going to search for a model, why
not search thoroughly?

Of course, we would trade all those searches in for one good idea.
And that idea might come from looking at the data.

N Cuthbert Daniel and Fred Wood, Fitting Equations to Data (New York:
Wiley, 1971).
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Data Analysis for Politics and Policy,

Edward R. Tufte. Englewood Clifls, New Jersey : Prentice-Hall,
1974. x + 179 pp. $3.95 (paperback).

Edward R. Tufte’s book Data Analysis for Politics and Policy is,
quite simply, excellent. The aims of the author in the writing of this
book is ‘... to present fundamental material not found in statistics
books, and in particular, to show techniques of quantitative analysis
in action on problems of politics and policy” (p. ix). To achieve this
end, Tufte considers a narrow range of important topics in statistical
analysis, primarily dealing with problems of prediction (including a
good discussion of the concept of causation) and the relationships
among variables through simple and multiple regression.

Most of the ideas discussed are presented in several detailed
examples. For example, much of the first chapter explores the re-
lationship, causal or otherwise, between mandatory motor vehicle
inspection and deaths due to automobile accidents. This example
begins with an interesting problem and then suggests a collection of
data to study it (i.e., data on 49 states for the years 1966-68). Prob-
lems, such as units of measurements, causation vs. association, and
the types of inference possible from such data, naturally arise. Tufte
leads the reader through a systematic analysis and, by presenting
the raw data in the text, leaves the reader to pursue the problem.

The bulk of the book concerns the use and interpretation of simple
and multiple regression. Here, the discussion centers on issues that,
as Tufte claims, do not usually find a place in standard statistics
texts. For example, in simple regression, the book stresses the central
role of residuals and residual analysis, and describes many of the
measures familiar to social scientists, r%, S?*yx, etc., as functions of
the residuals, ‘... since reasonable measures of the quality of a
line’s fit to the data could hardly be anything but a function of the
magnitudes of the errors” (page 70). Tufte puts residual plots to
good use to gain understanding of a data set, and he shows how finding
outliers gives the analyst hints about the inadequacy of a statistical
model. This attitude is clearly passed along to the reader. The dis-
cussion of graphical techniques in general is quite good and includes
the reproduction of graphs of several scatter plots with the same
regression line from [1].

Other topics in simple regression are also considered. A brief but
compelling discussion of the “value of data as evidence,” with regard
to the interpretation of nonrandom samples, is presented. An im-
portant discussion of the usefulness of computing slopes instead of
correlation coefficients is given, complete with a good quote from
John Tukey. Several examples requiring transformations of one or
both variables to the logarithmic scale are given, along with an
interpretation of transformed variables. The section on transforma-
tions is difficult for many students, but it contains information that
is not usually available to the beginning nontechnical student.

The presentation of multiple regression is rather brief. There is
sufficient content for the reader to appreciate multiple regression, but
not really enough to actually do it. The discussion concentrates on
the meaning of several predictors for a single response variable and
on ways to understand complicated relationships. There is also a fine
discussion of multicollinearity. The examples of the use of multiple
regression are rather small, but I have found them useful in classes
since the reader can reproduce the analysis with a minimum of effort.

The book was probably intended to be used in quantitative-
methods courses in political science, public affairs or similar fields.
For the last two years, I have use it as a supplemental text in a de-
manding statistics service course for first year social science graduate
students. The book has received almost uniform praise from the
students involved.

SanrForp WEISBERG
University of Minnesola
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