Computational and ~
Mathematical Modelin

in the Social s:ie:n;s
scott de Marchi «

www.cambridge.org/9780521853620


http://www.cambridge.org/9780521853620

This page intentionally left blank



Computational and Mathematical Modeling
in the Social Sciences

Mathematical models in the social sciences have become increasingly
sophisticated and widespread in the last decade. This period also has seen
many critiques, most lamenting the sacrifices incurred in pursuit of mathe-
matical rigor. If, as critics argue, our ability to understand the world has not
improved during the mathematization of the social sciences, we might want
to adopt a different paradigm. This book examines the three main fields
of mathematical modeling — game theory, statistics, and computational
methods — and proposes a new framework for modeling. Unlike previous
treatments that view each field separately, this book provides a framework
that spans and incorporates the different methodological approaches. The
goal is to arrive at a new vision of modeling that allows researchers to
solve more complex problems in the social sciences. Additionally, a spe-
cial emphasis is placed upon the role of computational modeling in the
social sciences.

Scott de Marchi is Assistant Professor of Political Science at Duke Univer-
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Prelude

When Aeneas fled from burning Troy, he had some difficult decisions
to make. His first priority was to rescue his country gods and relics, but
he was covered in gore from combat and did not want to carry these
sacred artifacts with his own hands. His solution was novel: Anchises,
his father, could carry the artifacts and Aeneas would carry him upon
his back. His second priority was to guard the safety of his wife Creusa
and his son. With his heavy burden, he “satisficed” by holding the hand
of his son and bidding his wife to follow him. Unfortunately, though
he succeeded in rescuing the country gods and his son, he lost his wife
during his flight from the doomed city.

Earning the appellation “pious” involved some cruel choices for
Aeneas, but despite this offense to modern sensibilities (I daresay many
of us would have tossed the country gods and told Anchises to walk on
his own two feet), it is hard to blame him. Weary from battle, burdened
with both his family and the country gods, it would be difficult to pay
attention to everything of merit. It is not surprising that he did not even
know when or how he had lost his wife.

Graduate school has some similarities. Granted, most students do
not have to face a ravaging horde of Greek soldiers, nor are they
surrounded by burning buildings. But the press of time is a constant
weight, and one is forced to attend to some matters more than oth-
ers. It is not a coincidence that if you ask students trained in the top
research programs in the social sciences what their field is they may
answer “mathematical methods” or even something more precise such
as “game theory” or “econometrics.” Most students spend a large frac-
tion of their time learning these methods, and this comes at the expense
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of other sorts of work such as history and case studies. Like pious
Aeneas, we make choices, and even the most heroic of us are forced
to ignore many worthwhile subjects.

The important thing to note is that many of the social sciences,
most notably political science and economics, have made a wager. This
wager involves both time and space. From graduate students to faculty,
we spend our time learning and practicing mathematical methods, in
particular game theory and statistical modeling. For the journals and
presses, the lion’s share of space is devoted to the results generated by
mathematical methods. One does not find the best journals customarily
publishing case studies of individual countries, firms, or political cam-
paigns. Nor, in the case of the top journals in political science, is much
advice (either prescriptive or predictive) given to real-world political
actors. Based on the 2002-2003 Report of the Editor of the American
Political Science Review, 69% of submissions were accounted for by
the formal, quantitative, or formal and quantitative categories; 63 % of
accepted articles were in these categories — this during the tenure of
an editor striving for diversity.

The presumption of this book will be to examine this epistemo-
logical gamble more closely and recommend a set of changes to cur-
rent practice. It is not as if every scholar has embraced the increasing
emphasis on mathematical methods. The last two decades have seen
many critiques, most lamenting the sacrifices incurred in pursuit of
mathematical rigor. If, as the critics argue, our ability to understand
the world has not improved during the mathematization of the social
sciences, we might want to adopt a different paradigm. Historiography
(or qualitative research) is most often presented as the alternative to
the abstractions of mathematical methods. It might, say the critics, be
better for the discipline to turn out area-specialists who at least know
the history of their cases than to engage in bad modeling that lacks any
clear connection to the real world.

I have the good fortune of better than adequate training in history,'
and I can argue with some fervor that a turn to historiography would not

1T took undergraduate degrees in computer science and history. Because of latent
schizophrenia, I completed the coursework and thesis for a Master’s degree in
European history at the University of North Carolina—Chapel Hill before switching
to the social sciences.
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be good for the social sciences. Despite its problems, I remain devoted
to mathematical modeling, and the goal of this book is to improve
current practice rather than to supplant it. Area-specialization and
case studies are necessary prerequisites for the inspiration and under-
standing implicit in all good models, but in my mind they do not of
themselves constitute a coherent methodology for discovering causal
relationships.”

Required reading for those who wish to supplant mathematical
methods with qualitative research should include Peter Novick’s That
Noble Dream: The “Objectivity Question” and the American Historical
Profession (1998). From the end of the 19th century to the beginning
of the Cold War, history as a discipline was very similar in outlook
to modern political science.” Novick’s book lays out the history of
the professionalization project in American history departments over
this time period. Much like current social science disciplines, histori-
ans believed in their ability to understand causal relationships in the
world and sought to give answers to pressing questions about how one
prevents war between nation-states or the republican cycle of decay
highlighted by political theorists such as Machiavelli.

The problem, after a century of consensus on method, was that
historiography foundered upon the shoals of the objectivity ques-
tion. For Novick, historians who believed in scientific objectivity never
adequately answered the fundamental questions of how to tell good
research from bad and neutral research from biased. Many historians,
spurred on by the emergence of social history and other trends, sim-
ply did not believe that the empirical, objectivist tradition produced
superior research.?

2 There is an enormous literature on qualitative versus quantitative research. For an
examination of some of the problems implicit in historical research from a political
science perspective, good examples are Lustick (1996) and Goemans (2000).
Although there was not great technical skill present in most historical research, there
was a belief in empirical work and the use of history for understanding causality in
human affairs. The letters of Henry Adams (at Harvard) to Herbert Baxter Adams
(at Johns Hopkins), for example, demonstrate a high level of familiarity and respect
for the hard sciences among practicing historians at the end of the 19th century and a
belief that scientific objectivity was a worthwhile aspiration for the social sciences.
For an example of an alternative approach to historiography, read Natalie Zemon
Davis’s The Return of Martin Guerre (1983). Davis’s work concerns a French tale
from the 16th century in which a woman discovers her husband is an imposter and
takes him to court. Because the penalty was death by hanging, this was no laughing

W
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One of the more sobering examples Novick uses to illustrate the
death of objectivity in the historical profession is the case of David
Abraham. The role of German industrialists in the rise of the Nazi
Party was a contentious one, and Abraham, a junior faculty member
at Princeton in the early 1980s, wrote a manuscript that emphasized
the structural relationships in German society that precluded a more
moderate outcome to the political turmoil of the Weimar state.

Unfortunately for Abraham, his abstract modeling, which was influ-
enced by Marxist theory, did not endear him to senior researchers in the
field. Despite many positive book reviews, Henry Turner at Yale Uni-
versity and Gerald Feldman at the University of California at Berkeley
led an assault on Abraham’s book. They believed that the footnotes to
Abraham’s monograph contained serious, willful errors. Misattributed
citations, missing or incorrect quotations, and other errors were, in fact,
plentiful in Abraham’s work. For Turner and Feldman, these mistakes
were proof of a malicious agenda that violated norms of historiography.
In a book review in Political Science Quarterly, Turner wrote:

Invoking the familiar primacy of economics, Abraham presents a highly reduc-
tionist version of the dissolution of the Republic and the rise of Nazism,
which he explains in terms of his vastly simplified model of German soci-
ety.... Unfortunately, Abraham’s footnotes do not marshal evidence adequate
to support his thesis. Informed readers will also balk at his disparagement or
omission of institutions, ideologies, and personalities vital to comprehension
of the German calamity. (Turner 1982, 740)

It is hard to convey how contentious this affair became. The journal
Central European History, for example, featured an exchange between
Feldman and Abraham that even included a complete list by Abraham
of his errors and whether or not the corrections helped, hurt, or were
neutral to his argument. The exchange appeared in press in 1985, but
by then Abraham had been driven from the field. For Novick, who
was Abraham’s advisor, the lesson for historians was that optimism

matter. Davis had completed a screenplay on the story and found that her “appetite
was whetted” for a more scholarly investigation, despite the lack of an expansive
historical record on the story. Her approach to this problem is distinct from previous
understandings of historiography: “Watching Gerard Depardieu [the actor] feel his
way into the role of the false Martin Guerre gave me new ways to think about the
accomplishments of the real imposter, Arnaud du Tilh. I felt I had my own historical
laboratory, generating not proofs, but historical possibilities” (Davis 1983, viii).
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about the ability to discern causality in history had been replaced
by a naive and defensive empiricism. Other than getting one’s foot-
notes right, there was no other avenue for attacking or defending a
model.

There are more modern examples of the continuing crisis in histori-
ography. Michael Bellesiles’s book Arming America: The Origins of a
National Gun Culture, which presented the argument that gun culture
in early American society was not as widespread as believed, won the
Bancroft Prize when it was released in 2000. Much like Abraham,
Bellesiles riled opponents of a different political stripe, and upon
scrutiny, it was discovered that much of the data underlying the book’s
quantitative analysis was either misused (in the case of probate data)
or entirely missing from the archives. Despite these glaring problems,
the question remained about whether or not his core argument was
valid. Ultimately, like Abraham, Bellesiles was forced from the dis-
cipline, resigning his post at Emory University under pressure from
the trustees at the end of 2002. The Bancroft Prize for his book was
rescinded shortly thereafter.’

Although I do not believe that Novick has much of a remedy for
historiography, I do accept his diagnosis of the problem. If a partic-
ular methodological paradigm is to survive, a large majority of prac-
ticing scholars has to believe that the costs involved in training and
research are merited. Simply put, the output of a methodology has
to be superior results, at least compared to existing alternatives. The
question economists and political scientists should ask is whether or
not Novick’s history of the erosion of the belief in objectivity among
historians holds any lessons for us.

Despite the enormous successes made possible by the mathemat-
ical approach — the Arrow, McKelvey, and Schofield work on social
choice is an excellent example — many critics, rightfully, want to know
what the last decade has produced. The argument that I will present
in this book is that the practice of mathematical modeling is due for
a revision. In particular, existing methods are brittle when confronted
with complex problems, and there is a genuine lack of correspondence

5 A special issue of the William and Mary Quarterly (2002) featured essays by Bellesiles
and several other historians that examine the controversy and its implications for
historiography.
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between deductive models, on the one hand, and empirical tests of
these models, on the other.

There are additional problems unique to each of the two major sub-
fields within mathematical methodology. Game theory, for example,
has a troubling answer to the question “Is game theory meant to pre-
dict what people do, to give them advice, or what?” As Camerer (2003,
5) notes, many game theorists believe that “game theory is none of
the above —it is simply ‘analytical,” a body of answers to mathematical
questions about what players with various degrees of rationality will
do. If people don’t play the way the theory says, their behavior has not
proved the mathematics wrong, any more than finding that cashiers
sometimes give the wrong change disproves arithmetic.” Although
there are examples of formal modelers tackling real-world problems,
such as the interesting work of Groseclose, Milyo, and Primo on top-
ics that include the dollar value of a House of Representatives seat,
campaign finance, and empirical measures of media bias, many game
theorists do not believe that their work needs an empirical referent.”

Statistical methodology in the social sciences has its own set of prob-
lems that mirrors the opening passage in Dickens’s A Tale of Two Cities.
We have increasingly sophisticated forays into Bayesian and nonpara-
metric techniques. At the same time, replication continues to be prob-
lematic, especially as the complexity of statistical methods increases.
Recently, the laudable goal of linking formal theory with statistical
models has received renewed attention in the research of Signorino
and others. Yet, most published research continues to ignore the most
basic tenet of statistical work, which requires out-of-sample testing
to validate a model.” Never before has training in statistical model-
ing been so widespread in graduate departments around the nation.
So, too, has suspicion deepened, as many researchers have adopted
Achen’s (2003) admonition that a model with more than three inde-
pendent variables is immediate cause for concern.

6 On the value of a seat, see Groseclose and Milyo (2004a); on campaign finance, see
Primo and Milyo (2004); and, on media bias, see Groseclose and Milyo (2004b). Behav-
ioral game theory also tries to put game theory on a more empirical footing — Camerer’s
book provides a nice introduction to the field. One also might visit Roth’s Web site at
http://www.economics.harvard.edu/~aroth/alroth.html.

7 For an excellent statement on statistical modeling that also happens to make this point
on the neglect of out-of-sample work, see Good and Hardin (2003).
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While some might question whether or not mathematical method-
ology is in need of revision, it is the case that a sense of unease per-
meates the social sciences. Those who do not practice these methods
are deeply suspicious of the validity of results generated from mathe-
matical models. And those that do practice one field of mathematical
methodology are often just as suspicious about the other fields. I will
argue that at least some of this suspicion is warranted, and the goal
of this book is to provide a set of tools designed to increase trans-
parency and improve modeling. Part of this enterprise involves a con-
structive critique of existing practice. Despite the widespread belief
that the problems that beset mathematical methods are idiosyncratic
to each subfield, I will demonstrate that there are a set of underly-
ing problems that span subfields (including analytic, empirical, and
qualitative).

Of the problems detailed in this book, the most severe is the curse
of dimensionality. In the nonparametric statistics and artificial intel-
ligence literatures, the “curse of dimensionality” is incredibly impor-
tant, but it is not well known in the social sciences. In brief, the curse
states that for any interesting problem, one should count the size of the
parameter space needed to model the problem, paying special atten-
tion to how large this space becomes as the problem increases in size.
If the parameter space implied by a naive encoding of the problem is
huge, one must resort to domain-specific information and a good dose
of cleverness to surmount the curse of dimensionality. A brief example
will clarify this informal definition.®

In the social sciences, preferences are almost always the subject
of assumption rather than study. We simplify preferences by imposing
a priori that for most human decisions, preferences are unidimensional,
single-peaked, symmetric, and so on.” There is little justification for
these assumptions, so why do we make them? Mathematical conve-
nience is the typical answer, but this masks a more serious difficulty.
Without simplifying assumptions, many of our models would produce
different or unpredictable results.

8 An excellent overview of this problem for statistical models is found in Chapters 4 and
8 of Harrell (2001).

9 Note that assumptions of this type go well beyond more fundamental (and defensible)
axioms such as well-ordered preferences and transitivity.
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To be more concrete, imagine you were in an expensive ice cream
parlor and had never before tasted ice cream. In addition to the flavors
of ice cream, you have the option of adding sprinkles, nuts, syrups,
and the like. All told, you have 10 flavors of ice cream and 10 dif-
ferent optional ingredients and want to test every possible flavor so
that you could determine a preference ordering. This natural enough
desire would probably bankrupt the store (and require you to do some
shopping for larger clothes), as 10 - 2 '° possible combinations (recipes)
exist. Unless one imposes limiting assumptions on the nature of pref-
erences, there are no shortcuts possible — you would need to test every
flavor if you wanted to be certain about your preference ordering. In
many cases, you would feel justified in asking for this huge number of
samples, because most everyone would agree that although sprinkles
and marshmallows taste great singly, in combination they might be
too sweet. Recipes are one example where the different dimensions of
choice are nonseparable. We do not independently sample each ingre-
dient, arrive at a set of ideal points, and then throw them all together
in a pot.

This problem worsens if the ice cream parlor subsequently adds
ingredients. Imagine you had just completed the extensive taste tests
outlined above and then strawberries were provided as a new option.
Would you be able to somehow “save” the results of your previous
search, or would you have to begin an entirely new set of tests?'’
Few of us would think that adding strawberries to a hot fudge sun-
dae, for example, would improve the sundae, whatever our preference
for strawberries. It is easy to see that as the number of ingredients
increases, the size of the resultant parameter space for ice cream recipes
expands exponentially —and this is not a good thing!'" In the context of
recipes, making the assumption that preferences are always separable
would be quite odd, and would likely lead to equally odd results. One
should instead depend upon domain-specific knowledge about cooking
to simplify matters, but it may not be obvious how to go about this.'?

10 This exercise is left to readers, especially for those who like ice cream.

111 will argue throughout this book that trying to understand a problem like prefer-
ence formation, without assuming away the complexities of the phenomenon (e.g.,
nonseparability), is a very important activity despite the ugly combinatorics involved.

12 Domain-specific knowledge is information about the problem under consideration.
Unidimensionality, for example, is appropriate to some contexts and not others — for



Prelude XiX

Ice cream recipes aside, how ubiquitous is the curse of dimen-
sionality? Some readers will immediately point to statistical work,
where the curse of dimensionality appears in a nearly equivalent form.
Often, our data are insufficient for testing the huge parameter spaces
implied by our independent variables and modeling choices. Like
the preferences literature, empirical modelers often resort to limiting
assumptions (e.g., linearity of the functional form) to derive results. We
rightfully question these results due to their dependence upon atheo-
retic modeling choices and data mining.

The curse of dimensionality is not, however, limited to statistical
work. Game theoretic work falls prey equally often. Assumptions
are also parameters, and the structure of game theory comes at the
price that results are conditioned upon the values chosen for these
assumptions. Additionally, not just any assumptions will do, as for-
mal modelers have to find a way to fit problems into the encoding
of game theory (i.e., an extensive or normal form representation of
strategies, explicit utility functions, and backwards induction as the
solution algorithm). Many “games” do not fit comfortably within this
encoding; as a consequence, technical assumptions end up doing a great
deal of heavy lifting in many formal models. The intellectual process
involved in finding a set of assumptions, choosing an equilibrium con-
cept, and choosing an abstract game to produce an outcome desired
a prioriis not different in kind from the curve fitting of some empirical
researchers.

It is important to go beyond criticism, however. The more impor-
tant objective of this book is to provide both a framework for eval-
uating models and a set of tools designed to deal with the problems
sketched in this prelude. The curse of dimensionality highlights the
difficulty of using mathematical models to study complex phenom-
ena. Contributing to this difficulty is the gap between analytic mod-
els and empirical tests; it is not a coincidence that as we extend our
reach to investigate more complex phenomena, concerns have grown
about the quality of our results. One consistent answer to these dif-
ficulties is to keep modeling simple, such that one can understand

recipes, it would be inappropriate. In all cases, one has to justify assumptions by the
final performance of the model, not by appeals to abstract and untested notions about
rationality or mathematical simplicity.
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and test all the moving parts in a given model. This position is elab-
orated quite well by Axelrod (1984), but it is not surprising that his
advice is largely ignored by scholars attempting to “push the enve-
lope.” The main question is how to build more complex models of
behavior without sacrificing the ability to subject the results to exacting
scrutiny.

Thus, I do not believe that mere ignorance accounts for the existing
problems in mathematical modeling in the social sciences. Rather, the
complexity inherent in many problems of interest has hampered our
ability to generate models with clear empirical referents. In this book,
I will integrate computational modeling into existing methods and
demonstrate how many classes of problems demand a shared approach
that includes computational modeling."® Computational methods are
poorly understood (and sometimes poorly utilized) in the social sci-
ences, despite an increasing presence in both training and research.
Yet, it is my contention that computational modeling offers several
advantages over traditional modeling strategies when confronted with
a variety of games and decision contexts.

THE BOOK IN A NUTSHELL

There are three components to this book. The first builds a framework
for evaluating models. Whatever the methodological orientation of a
model, one should ask the following questions:

1) What are the assumptions/parameters of the model? Do the
values chosen for the parameters come from qualitative or
empirical research, or are they chosen arbitrarily (i.e., for
convenience)? More important still, do the assumptions spring
from a consideration of the problem itself, or are they unrelated
to the main logic of the model?

2) Isthere any assurance that the results of the model are immune
to small perturbations of the parameters; that is, is there an
equivalence class where the model yields the same results for a

13 At the broadest level, computational models are numerical experiments where one
uses computers to simulate a problem rather than solve it deductively — Monte Carlo
statistical methods are one familiar example.
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neighborhood around the chosen parameters? Or, is the model
brittle?

Do the results of the model map directly to a dependent variable,
or is the author of the model making analogies from the model to
the empirical referent? Although toy models'* have their place
in developing intuition, they are difficult to falsify, and even more
difficult to build on in a cumulative fashion.

Are the results of the model verified by out-of-sample tests?
In this book, it will be argued that the only appropriate out-of-
sample tests for a model are either

a. alarge-N statistical approach that tests the model directly;
b. alogical implication derived deductively from the model.

Is the parameter space of the model too large to span with the
available data? This, as noted earlier, is the curse of dimen-
sionality, and one should never neglect the importance of bean
counting. To cope with large parameter spaces, did the author of
the model derive a domain-specific encoding, provide a feature
space,”” or use theory in other ways to lessen the impact of the
curse of dimensionality?

Topics 1-3 are covered in Chapter 1 of this book. In addition, Chapter 1
presents a comprehensive statement on epistemology that justifies the
above framework. Topics 4 and 5 are covered in Chapter 2, which also
introduces the concept of feature spaces and their role in surmounting

large parameter spaces. Examples using currency adoption and the
security studies literature on militarized interstate disputes illustrate
the main concepts.

While the first two chapters focus on how to assess models, Chap-
ters 3 and 4 focus on the second component of this book: computational

14 Toy models are defined here as a class of simple models without any unique empirical

referent. For example, the iterated prisoner’s dilemma (IPD) is a simple game that
investigates cooperation. It seems unlikely that all of human cooperation is a two-
player contest with the exact strategy set of the IPD, and there is enormous difficulty
in analogizing from the IPD to actual human behavior with enough precision to do
any sort of predictive work.

Feature spaces will be covered in Chapter 2. Feature spaces use domain-specific infor-
mation (i.e., theory) to reduce the dimensionality/complexity of a problem.
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methods and their role in addressing more complex phenomena. The
use of computational methods makes it easier to build models that
directly map to empirical tests. The main topics are:

1) How do game theoretic and computational models differ? Illus-
trations will be drawn from the artificial intelligence and combi-
natorics game theory literatures.

2) How does one “break up” a problem into smaller pieces, thereby
overcoming the curse of dimensionality? The concepts of com-
ponent games and idiosyncratic utility functions are examined
in detail.

3) How does one use statistical work or logical implications to ver-
ify the results of a computational model (to the degree this is
possible)?

In addition to these questions, these chapters provide a gentle introduc-
tion to the skills needed for computational modeling. Topics include
programming languages, good programming style, and testing compu-
tational results.

The final component of the book provides two lengthy illustrations
of the main concepts of the previous chapters. Chapter 4 presents
the first example, which builds a complete encoding for a complex
alliance game. Unlike most game theoretic models, the alliance game
presented here has infinite strategies, four or more players, and the pos-
sibility of cooperation between different, endogenously created coali-
tions. Chapter 5 returns to the problem of the ice cream store and
nonseparable preferences. Unlike situations in which one has enough
high-quality data to do out-of-sample statistical work, studying non-
separable preferences requires the creation of logical implications to
leverage existing survey data.



Not All Fun and Games

Challenges in Mathematical Modeling

INTRODUCTION

In large part, the inspiration for this book came from three sources,
which can be categorized neatly as a failure, a challenge, and an ideal.
First, the failure. When I began teaching in the profession, I was imme-
diately assigned to graduate methods coursework. This is the experi-
ence of many professors trained in the last decade with a mathematical
bent, and I was lucky enough to teach at an institution with an excellent
culture. Unlike many other political science departments that exist in
a state in which “there is war of every one against every one,” Duke’s
political science department is almost entirely free of disputes about
the value of mathematical modeling in the social sciences. Divisions
of opinion certainly exist but, more or less, everyone in the depart-
ment recognizes the virtue of mathematical methods for at least some
problems.

Better still, even those who do not practice mathematical mod-
eling believe in good research design. As many prospective faculty
members discover during their job talks, “methods questions” and
questions about research design are just as likely to come from the
theorists of the department as anyone else (though couched in differ-
ent terminology). Between job talks, faculty brown bags, and infor-
mal interactions graduate students have with faculty, it would be hard
to finish a Ph.D. at Duke and not try your hand at mathematical
modeling.

Despite this positive culture, teaching graduate methods course-
work has not been easy. As has been noted in numerous places, the
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shock most politics students experience on entering graduate school is
severe. They expect to talk shop, debate the issues, and deal with “big”
questions about the state of the world; instead, their first experience of
graduate training at Duke involves a mathematics camp in the dull heat
of August. No weighty matters of politics are discussed in this camp,
unless one thinks that urns and the different colors of balls one places
in them are of great import. Some students take years to get over this
shock, essentially repeating much of their methods coursework when
they come to a point in their own research where they have a press-
ing need for it. Others acquire good technical skills but nonetheless
have great difficulty finding interesting questions or arriving at “good”
models. Clearly, my best efforts were not sufficient and it drove me
to think about issues of modeling in the social sciences and how one
should attempt to improve matters.

In particular, why were so many bright graduate students, many of
whom had good technical skills, unable to make the leap to generat-
ing testable theories? Why did many graduate students identify them-
selves primarily by their choice of method (e.g., game theory) rather
than their research question? And, finally, were there any features of
mathematical methodology in political science that added to the diffi-
culty of training graduate students? These questions form a thread that
continues throughout this book, and, hopefully, the questions offered
here will demonstrate that many of the problems in training are related
to conceptual problems in our mathematical methodologies.

The second influence on this book concerns a challenge to the
discipline raised by Beck, King, and Zheng (hereafter, BKZ). Their
paper — “Improving Quantitative Studies of International Conflict: A
Conjecture” — appeared in the American Political Science Review in
2000. The paper was a broad challenge to empirical work throughout
the social sciences, not just in international relations, and turned on
the idea of what the proper relationship was between deductive mod-
els (usually represented by game theory) and empirical work (applied
statistics). Normally, the ideal paper for the mathematical modeling
crowd is a well-specified game that reaches some equilibrium out-
come, which is then instantiated and tested in an appropriate statistical
model. If hiring is any signal of departmental preferences, empirical
work or game theoretic work alone is not as desirable as a combination
of the two.
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The importance of the paper by BKZ is that they argue for an
entirely different approach. Instead of modeling the data generating
process (DGP), they assume it is complex and interactive, and that
prior efforts to model the origin of conflicts using game theory have
not amounted to much (at least not anything testable). They conclude
that the only reasonable standard for evaluating a statistical model
is out-of-sample performance, without regard to the assumptions or
specification of the statistical model. Not surprisingly, they adopt a non-
parametric approach and use a neural network to generate an empir-
ical model of conflict without regard to any underlying theory. Their
article thus challenges the current methodological orientation of the
discipline, insofar as they eschew the ideal of mapping a strategic game
to an empirical specification.

I was confident that BKZ were wrong on several particulars, most
notably whether their model actually outperformed the standard logit
model used by many scholars in quantitative international relations.
Along with Christopher Gelpi and Jeffrey Grynaviski, I wrote a reply
addressing this problem. Additionally, we presented a general frame-
work for comparing models when the goal is maximizing out-of-sample
performance.’ The larger epistemological questions raised by BKZ
remained, however, and their challenge cast into doubt the proper
relationship between deductive and empirical models. This dispute and
how it relates to the broader themes of this book are dealt with starting
in the next chapter.

The final source of inspiration that led to this book concerned an
ideal of the proper approach to mathematical modeling in the social
sciences. This ideal was first advanced in a set of workshops dubbed
“Empirical Implications of Theoretical Models” (hereafter, EITM)
funded by the National Science Foundation (NSF) in 2002. After
these initial meetings, EITM evolved into a joint effort of Harvard,
Michigan, Duke, and Berkeley to train advanced graduate students
during the summer. Unlike other methods workshops that focus on
particular skills (e.g., the Interuniversity Consortium for Political and
Social Research’s summer courses), EITM has the larger, epistemo-
logical goal of helping young researchers to bridge the divide between

I Our article, plus a response from BKZ, is in the May 2004 issue of the American
Political Science Review.
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deductive and empirical methodology. The goals of EITM were sum-
marized in a 2002 report presented at the NSF:

Significant scientific progress can be made by a synthesis of formal and empir-
ical modeling. The advancement of this synthesis requires the highest possible
levels of communication between the two groups. Formal modelers must sub-
ject their theories to closely related tests while, at the same time, empirical
modelers must formalize their models before they conduct various statistical
tests. The point is not to sacrifice logically coherent and mathematical models.
Rather, it is to apply that same rigor to include new developments in bounded
rationality, learning, and evolutionary modeling. These breakthroughs in the-
ory will be accomplished with the assistance of empirical models in experimen-
tal and non-experimental settings.

How will progress be measured? There are several performance indicators,
including the number of articles that use formal and empirical analysis in the
major professional journals. Another measurable indicator is the number of
NSF grant proposal submissions by faculty and graduate students (doctoral
dissertations) that use both approaches. However, the one area that may be
the most difficult to measure is improvement in the quality of knowledge.
In this regard, the ramifications of merging formal and empirical analysis is
a transformation of how researchers think about problems and whether they
takeintellectual risks in synthesizing the model and testing it. When they do, the
primary achievement of EITM will be a better understanding of the political
and social world, more accurate predictions, and ultimately the provision of
solid information to policymakers whose choices can profoundly affect citizens’
quality of life.

Although out-of-sample forecasting is specifically emphasized in
the above passage, it is obvious that the EITM founders have in mind
something quite different than the nonparametric work of BKZ. Their
goal is to rework the discipline so that the chasm between formal mod-
elers and empirical researchers is bridged, with the hopes that this
synthesis will lead to better models that have clearly testable empirical
hypotheses.

By and large, I was very sympathetic to the goals of EITM, and
was lucky enough to be invited to participate as a faculty member in
the 2003 session at Michigan. My job seemed easy: take two days and
present a framework for accomplishing EITM-style research. In my
mind, this meant making an argument for how one might bridge the
gap between models (usually deductive) and empirical tests; currently,
the clearest statement of the difficulties inherent in this problem is
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found in two articles by Signorino (1999) and Ramsay and Signorino
(2003). After a bit of reflection, the issues involved were more difficult
than I at first realized. Many of the arguments presented in this text
are a direct result of the questions I faced in formulating my talks
for EITM. Chapter 3 lays the groundwork for this investigation, and
Chapters 4 and 5 provide a set of tentative answers to how one might
implement the EITM statement on methodology.

WHAT THIS BOOK IS NOT

Before proceeding, it is important to say what this book is not. This
book, despite appearances in some places, is not a critique of game
theory (or formal theory more broadly). Although I am critical of
some current practices, it should be obvious that I firmly believe in
the aspirations of those who wish to make political science an actual
science, complete with predictions and policy advice about eventsin the
real world. My main concern is that game theory has become confused
with definitions of human rationality. In this text, I will argue that
game theory is a mathematical tool, not a proxy for human rationality
where if one departs from game theoretic models one automatically
sacrifices any notion of rational agents. As a tool, it is one way to “solve”
problems and is better suited to some classes of problems than others.
Most of the examples I focus upon concern classes of problems that for
anumber of reasons are ill-suited for a game theoretic approach, and I
propose a set of methods “rational” agents might employ to deal with
these complications. The reason for providing tools that expand the
class of problems one can deal with analytically is in my mind simple:
better models, with more verisimilitude, allow an easier transition to
empirical tests. This is the primary goal advanced by EITM.

Game theory also has been confused with pure mathematics, insofar
as many practitioners feel no need to connect their models to empirical
tests. Much that masquerades under the classification of “theory build-
ing” is not worth the appendices, and one should question the useful-
ness of models that rely upon limiting assumptions to produce whatever
narrow result is desired by the researcher.” Following Granger (1999),

2 Arrow’s impossibility theorem, in contrast, depends upon assumptions that are of
substantive interest and produces a result that is extraordinarily broad.
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the viewpoint adopted here is that the connection between theoretical
models and their empirical referents needs to be direct enough such
that we can be satisfied that the tests we conduct are actually disposi-
tive. Dispositive tests distinguish the actual model (or data generating
process) from the universe of possible models. This viewpoint is by
no means new; rather, it has been the subject of debate in economics
for decades.” What is perhaps new will be the particular modeling
approach adopted here, which combines traditional game theoretic
investigations with computational models. The reason for this union
hopefully will become clear in subsequent chapters.

This book is also not a critique of empirical work in political science,
though, again, one might be confused given that in places I am critical
of existing efforts. Just as models without empirical tests are suspect, so,
too, are data-driven statistical investigations that fail to make apparent
what model is being tested. Good statistical work allows us to distin-
guish useful models from the universe of irrelevant models; further, it
allows us to investigate the generality of a model and the places where
assumptions are carrying too much of the load. I will, however, place
rather more emphasis on predictive work than is currently the norm
within the social sciences, as much of the statistical research that has
been conducted in the social sciences aims solely at comparing the
in-sample performance (or “explanatory power”) of various models.

In-sample comparisons should be seen as innately suspect, as one
can easily overfit a statistical model and claim “success” for a the-
ory. More time will thus be spent in this text addressing the curse of
dimensionality that has to this point been largely ignored by social
scientists.

A Simple Example: Applause, Applause

As s fitting for a book on modeling, let us begin with a simple question.
Hopefully, this will introduce most of my essential arguments before
we wade into the deep end of the book. The history of this example is

3 See, for example, the October 1993 Special Issue Anniversary of the American Journal
of Agricultural Economics. Castle (1993) and Leontief (1993) are particularly useful
in this issue, insofar as they outline a set of requirements that would help connect
deductive models with empirical tests.
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a rich one, given that it was used for many years by John Miller and
Scott Page at their Computational Economics Workshop at the Santa
Fe Institute.*

Imagine you are asked to explain or predict the occurrence of stand-
ing ovations. You have a performance of some type, where each mem-
ber of the audience receives a signal from the performance about how
good it is (based upon their own internal preferences). Each audience
member can then choose to do nothing, applaud, or stand and applaud.
They also can sit down again at any point should they decide to stand
initially. This is a highly stylized problem but has relevance for social
scientists. We often want to understand who stands, or votes, or partic-
ipates in a riot, and how individual characteristics and social dynamics
lead to this behavior.

There are different approaches one might take to this problem, and
in social science one can roughly describe the three methodological
traditions that could be utilized: empirical, deductive (i.e., game the-
oretic), and computational. Let us investigate what sorts of answers
these traditions, in isolation, might provide to the standing ovation
problem.

An empirical researcher would likely start out with questions con-
cerning what measures would be collected for both the dependent and
independent variables, and not all of the forms of these measures would
be obvious. For example, the dependent variable might be coded as a
binary variable measuring whether or not the ovation occurred. If this
encoding is adopted, what would the right threshold be for distinguish-
ing an ovation? Would 90% have to stand? More? Less? The choice of
scale for the dependent variable is also not obvious; one could change
both the temporal and spatial characteristics of the dependent vari-
able. For example, one encoding would measure the length in time of
the ovation, but any such measure of time would retain the problem of
choosing an appropriate threshold. Alternately, one could measure the
likelihood that any given audience member participates in the ovation,
thus changing the unit of analysis spatially from the entire audience to
each individual member.

4 Past answers to this problem are archived at http://zia.hss.cmu.edu/econ/home-
work95.html. For the most recent investigation of this problem, see Miller and Page
(forthcoming).
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Another more insidious problem would involve the nonindepen-
dence of observations.’ Cleary, if subsets of the data set involved repeat
performances by the same artist, “buzz” might result in a lack of inde-
pendent, identically distributed (IID) observations. This problem also
would complicate the measure of independent variables. Measures of
performance quality and the like could easily be contaminated by inter-
actions either between guests of the same performance (e.g., social
pressure) or for members that attend multiple performances across
observations in the data set. And members of different audiences are
obviously not drawn from identical distributions, as people sometimes
choose which performances they attend.

Problems aside, what sorts of questions would the empirical
researcher answer? Likely, it would involve establishing relationships
between such concepts as “performance quality” (as perceived by the
audience), the type of performance, the number of audience members,
and so on, and the likelihood or length of an ovation.

A deductive (or formal) modeler would come at this problem from
a different angle, where the most important decision would involve
specifying the benefits and costs that are present for members of the
audience when they decide to ovate or not. Clearly, you do not want to
be the only fool in the audience standing and clapping madly; people
would stare. Just as clear, you do not want to be the grinch, sitting alone
in a sea of excited fans. At some level, though “quality” matters, you
only want to reward “good” performances with an ovation, given the
effort involved in standing and clapping.

The structure of the game would also involve a set of important
considerations on the part of the deductive modeler. How many peri-
ods would be included in the game where agents could update their
information and make choices? If an ovation occurred, how would
people get back to their seats? The same sorts of utility considerations
discussed in the preceding paragraph would apply with equal force to
agents making choices to sit back down again.

Given these modeling choices, and the input of a few “state of
nature variables” such as the quality of the performance, the deductive

5 One also might point out that the observations are not independent spatially — that is,
whether or not one member of the audience stands (or later, sits) is likely correlated
with the actions of other audience members.
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modeler might well reach a good understanding of the individual deci-
sions that work together to produce an ovation. A model might also
help worried performance-goers in reaching decisions about whether
or not to stand for an ovation in future performances. Ever present,
however, would be the worry that the limiting assumptions relied upon
to formulate a sufficiently simple model might cut against the useful-
ness of any insight gained.

The final tradition that might generate a solution for this problem is
less well known in the social sciences. A computational (or dynamic sys-
tems) researcher, in contrast to the two preceding approaches, would
specify a set of rules that governed the behavior of individual audience
members, along with a set of contextual variables that described such
features as the seating arrangement, the shape of the performance hall,
relationships between audience members, and so on. What would these
rules look like? On one level, the rules would be functional expressions
that would be similar to the utility functions used by a game theorist,
though these functions might well be allowed to vary both in time and
by the individual type of audience member. On another level, these
rules could add substantial verisimilitude to the computational model
by incorporating features of the problem that would be difficult to
model in a deductive framework (e.g., learning models based upon
research in cognitive psychology). One such rule might involve adding
vision to the model — given the shape of the performance hall, not
all audience members can physically see all other audience members.
Any utility function that involved peer pressure should be more sensi-
tive to people within an agent’s field of vision than agents outside this
field.’

Unlike a game theoretic model, it is unlikely that a computational
model would produce a set of deductive results. What is far more
likely is that the researcher, confronted with the large parameter
space generated by the rules used in formulating the computational
model, would have to rely upon statistical investigations to understand

% The outcome of such a rule is that not all audience members are created equal — that is,
audience members in the middle rows nearest the stage would have a disproportionate
share of influence. One also might consider the type of individual audience members.
For example, if a group of Catholics got together to watch a play, it might matter if
the Pope were sitting in the audience. I would hazard that if the Pope ovates, so, too,
would everyone else.
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any “results” of the computational model, much as in the empirical
tradition. Statistical relationships between parameters, rules of inter-
est, and the likelihood of an ovation would then be presented, albeit
substituting artificial data for real data.

This is a brief sketch of an interesting problem, but it raises ques-
tions of importance to all modelers. To begin with, are the approaches
complementary or distinct? On the face of it, our three stereotypical
methodologists would not have much to say to each other. The empir-
ical researcher is establishing correlations between different measures
and the likelihood of ovation; the game theorist provides advice on how
rational audience members should select strategies; and the computa-
tional modeler incorporates aspects of both of the forgoing approaches
to produce a dynamic model that recreates a standing ovation.

All of these models ostensibly explain the same phenomenon, but
can one compare or integrate the results? Or, are these simply dif-
ferent answers to different questions? I will argue in the succeeding
chapters that it is undesirable to let each type of modeler work in a
vacuum; models need to produce results that are directly comparable to
competing explanations. Even within each methodological approach,
models are often not unique. Different modelers will produce different
answers, and the job of social science should be to sort among them by
insisting on out-of-sample tests of some kind. If, for example, we are
confronted with several different game theoretic models, all explain-
ing standing ovations, how do we decide which one is closest to being
right? Unless one of the game theorists makes a deductive mistake,
the models will differ because the assumptions differ. Arguing about
assumptions is a little like arguing about whether Wolverine is tougher
than the Hulk; ultimately, it comes down to taste. This book will argue
that a different, integrated approach is required to make sense of these
questions.

STRIFE BETWEEN METHODOLOGICAL CAMPS

Currently, there is a sense of mutual distrust between different method-
ological camps. Let us start with the more forceful critiques of the
empirical tradition. As part of the EITM meetings, Christopher Achen
argued that one must be suspicious of empirical modeling in the social
sciences. Because many models are quite complex, researchers have
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an abundance of parameter choices that allow them to overfit models,
generating any outcome they wish:

Empirical work, the way too many political scientists do it, is relatively easy.
Gather the data, run the regression/MLE with the usual list of control variables,
report the significance tests, and announce that one’s pet variable “passed.”
This dreary hypothesis-testing framework is sometimes even insisted upon by
journal editors. Being purely mechanical, it saves a great deal of thinking and
anxiety, and cannot help being popular. But obviously, it has to go. Our best
empirical generalizations do not derive from that kind of work. How to stop
it? The key point is that no one can know whether regressions and MLEs actu-
ally fit the data when there are more than two or three independent variables.
These high-dimensional explanatory spaces will wrap themselves around any
data set, but typically by distorting what is going on. They find the crudest
correlations of course: education increases support for abortion, for exam-
ple. In the behavioral tradition, that counts as a reliable finding. But no one
knows why education is associated with that moral position (higher intellect
discovering the truth? mindless adoption of elite tribal norms? correlation with
something else entirely?), and that leaves open the possibility that abortion
attitudes do not work the way the literature says they do. Getting rid of this
cheap sense of “empirical findings” is probably the central task that empirical
political research faces. . ..

As an instance of the altered perspective I have in mind, I propose the
following simple rule: Any statistical specification with more than three inde-
pendent variables should be disregarded as meaningless. With more variables
than that, no one can do the careful data analysis to be sure that the model
specification is what s/he says it is. (Achen in the National Science Foundation
EITM Report, 2002, Appendix B)

Or, one might look farther back to Keynes, and his critique of the
hapless Professor Tinbergen:

I infer that he considers independence of no importance. But my mind goes
back to the days when Mr. Yule sprang a mine under the contraptions of
optimistic statisticians by his discovery of spurious correlation. In plain terms,
it is evident that if what is really the same factor is appearing in several places
under various disguises, a free choice of regression coefficients can lead to
strange results. It becomes like those puzzles for children where you write down
your age, multiply, add this and that, subtract something else, and eventually
end up with the number of the Beast in Revelation. . ..

To the best of my understanding, Prof. Tinbergen is not presented with his
time-lags, as he is with his qualitative analysis, by his economist friends, but
invents them for himself. This he seems to do by some sort of trial-and-error
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method. That is to say, he fidgets about until he finds a time-lag which does not
fitin too badly with the theory he is testing and with the general presuppositions
of his method. No example is given of the process of determining time-lags
which appear, when the come, ready-made. But, there is another passage
where Prof. Tinbergen seems to agree that the time-lags must be given
a priori. . ..

These many doubts are superimposed on the frightful inadequacy of most
of the statistics employed, a difficulty so obvious and so inevitable that it is
scarcely worth the time to dwell on it. (Keynes 1939)

At root, Achen and Keynes are addressing the same problem in
empirical methods. Unbeknown to anyone save the original researcher,
choices are made in empirical work. Lots of choices. Given the obvious
problem of false correlation, it does not seem too much of a stretch to
imagine that any empirical modeler, given time, can produce almost
any result that is desired. Journals and monographs, by their nature,
only report “positive” results and only the “final” model. How much
pain or guesswork or outright cheating at the margins that goes into
an empirical paper is never seen in print. One way to think of this is
to imagine every salient choice made by the empirical modeler as a
parameter; results are thus conditional statements made upon the par-
ticular set of parameter values chosen. Given how large these implied
parameter spaces are, one cannot place much faith in a final report of
in-sample performance.

A deductive modeler (typically relying upon game theory) would
certainly agree with the forgoing critique of statistical methods/
econometrics. Moreover, most formal theorists believe that their
methodological approach is immune to the flaws that plague other
approaches. Niou and Ordeshook, for example, cite the transparency
of formal theory as an enormous advantage over both qualitative and
empirical methodologies:

But the rational choice paradigm and formalism are not mushrooms that
sprung up in an unattended intellectual forest. They are reactions to a discipline
mired in imprecision, vagueness, obscure logic, ill-defined constructs, non-
testable hypotheses, and ad hoc argument. They are a reaction to a discipline
that in the 1920s proclaimed the Weimar constitution the greatest political-
intellectual achievement of its age; a discipline that in the 1960s substituted
correlation for cause; a discipline submerged in such conveniently vague and
ill-defined ideas as “power,” “leadership,”

“function,” “ideology,” “culture,
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authority,” “group,” “alliance,”
” “stability,” and “balance.” They
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regime,
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are reactions to a discipline that substituted the well-turned phrase for concrete
constructs, operational measures for theoretical primitives, and the gloss of
methodological sophistication for true theory. They are, in short, a reaction to
adiscipline that did and does precisely what Walt critiques the formal analyst of
doing — burying key assumptions in an indecipherable format, although gener-
ally that format was a language more to the liking of those who studied French
and Plato in college rather than calculus. (Niou and Ordeshook 1999, 87)

In addition, it is obvious that Niou and Ordeshook draw a sharp dis-
tinction between the results of formal theory (which are uncontestable;
that is, the results follow deductively from the premises) and empirical
work that could be rife with spurious correlation. Bueno de Mesquita
and Morrow go even further in a defense of formal theory by arguing
that of all the virtues one might discover in a social science theory,
logical consistency is foremost:

Walt gives three criteria for evaluating social science theories: logical con-
sistency, degree of originality, and empirical validity. We believe that logical
consistency takes precedence over the other two criteria; without logical con-
sistency, neither the originality of a theory nor its empirical validity can be
judged. Logical consistency is the first test of a theory because consistency is
necessary, though not sufficient, for understanding how international politics
works.

A basic point in logic drives our view. A theory, in terms of logic, consists
of a system of assumptions and conclusions derived from those assumptions.
A logical inconsistency exists when two mutually contradictory statements
can be derived from the assumptions of a theory. When such a contradiction
exists in a theory, then any statement follows logically from the theory. There
is, then, no discipline for arguments in a logically inconsistent theory; those
using the theory are free to draw any conclusion they wish from the premises
of the theory. Logical inconsistencies deny the possibility of a theory having
empirical content. Theories derive empirical content by producing falsifiable
hypotheses, conclusions that could be contradicted by evidence. A theory gains
credence as more of its falsifiable propositions are supported by evidence,
although there are no hard and fast rules here. However, because any pattern
of evidence can be matched with some conclusion of a logically inconsistent
theory, such theories cannot be falsified and so cannot have empirical content.
A theory is falsified when an alternative is shown to fit the range of predictions
better than the initial theory. Falsification of a theory cannot happen if any
evidence can be interpreted as an implication of the theory.. ..

Again, any conclusion can be derived when a logical inconsistency exists,
and so the choice of which conclusion to use for policy purposes falls entirely
on the tastes or prejudices of the party making the prescription. Indeed, the use
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of a logically inconsistent theory to justify a policy recommendation is worse
than recommendations not supported by any theory.. ..

For these reasons, we believe that logical consistency has pride of place
among the criteria for judging social science theories. (Bueno de Mesquita
and Morrow 1999, 56-7)

There is, of course, a problem with arguments that attempt to draw
a sharp distinction between empirical modeling and formal theory.
Although it is the case, as Bueno de Mesquita and Morrow note, that
“any pattern of evidence can be matched with some conclusion of a
logically inconsistent theory,” the exact same statement is true of log-
ically consistent theory. As should be obvious (but for some reason is
not), one may achieve any outcome one desires with consistent theory;
all it takes is the right combination of assumptions, solution concepts,
and the like. The chore for formal theory cannot rest solely upon con-
sistency, as the class of “consistent” games that provide any given result
is infinite.

One can think of this argument in a different way. Imagine a
researcher perceives an empirical regularity — for example, that candi-
dates tend to take positions near the middle of a left-right ideological
dimension. How many consistent models could the researcher con-
struct that would produce center-seeking candidates? Infinitely many.
And only some of the models are “right” in the sense that they are
analogous to the real, underlying process. All the other (infinite) mod-
els are correlated with the empirical regularity in much the same way
that an empirical specification is spuriously correlated with a given
sample. Without finding novel data or deriving secondary conclusions,
one cannot place much certainty in any single model of center-seeking
candidates.’

So while one must agree with Bueno de Mesquita and Morrow that
consistency is a necessary condition, the more important goal is to
choose the “best” theory from the class of consistent theories that
produce a desired result. Friedman (1953) sums up the problem created
by attributing virtue to consistency alone:

Logical completeness and consistency are relevant but play a subsidiary role;
their function is to assure that the hypothesis says what it is intended to say

7 For a similar perspective worth further study, see Lave and March (1975).
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and does so alike for all users — they play the same role here as checks for
arithmetical accuracy do in statistical computations. One effect of the difficulty
of testing substantive economic hypotheses has been to foster a retreat into
purely formal or tautological analysis. As already, noted, tautologies have an
extremely important place in economics and other sciences as a specialized lan-
guage or “analytical filing system.” Beyond this, formal logic and mathematics,
which are both tautologies, are essential aids in checking the correctness of rea-
soning, discovering the implications of hypotheses, and determining whether
supposedly different hypotheses may not really be equivalent or wherein the
differences lie. ... But economic theory must be more than a structure of tau-
tologies if it is to be able to predict and not merely describe the consequences
of action; if it is to be something different from disguised mathematics. And the
usefulness of the tautologies themselves ultimately depends, as noted above,
on the acceptability of the substantive hypotheses that suggest the particu-
lar categories into which they organize the refractory empirical phenomena.
(Friedman 1953, 11-12)

Choosing a game that provides a given result (that you want to
achieve a priori) is thus not at all different than the problem of false
correlation in the statistical literature. Not only is this always possible,
it is also the case that the mapping of formal theories to results is not
a one-to-one correspondence.® One might appeal to maxims such as
parsimony, or generalizability (or whatever) to discriminate between
competing formal theories, but this is very slippery epistemological
ground, and places such discrimination firmly in the land of taste rather
than science.

Moreover, all choices that go into a particular formal theory that are
left to the modeler should be seen as traversing a very large parameter
space; again, this problem mirrors the corresponding complaint levied
against empirical modelers. As Peltzman (1991) notes, “Game theory
has introduced a rigor in the analysis of rational behavior that was
missing [but] skepticism about the marginal value of recent theory is
warranted [because] conclusions drawn tend to be very sensitive to
the way problems are defined and to the assumptions that follow.”
Game theoretic results are conditional upon these choices, and given

8 Other than trivial examples, it is clear that the mapping of theories X to results Y is
a bijection but not an injection. Rather, mapping theories to results is a many-to-one
process, and the goal of formal theory should be to sort between the class of possible
theories.
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the size of these parameter spaces, results must be seen as exceptionally
brittle things when the only test is whether or not the formal theory
produces an expected outcome. The problems that plague empirical
methodologies thus have almost perfect analogues in formal modeling.

One example of the forgoing pathology in formal theory can be
found in the dispute between Banks (2000) and Groseclose and Snyder
(2000) in the pages of the American Political Science Review. Banks,
in short, shows that one of the results in Groseclose and Snyder’s orig-
inal paper on creating supermajorities in legislatures is wrong; that
is, it fails the consistency condition raised above. The response, how-
ever, by Groseclose and Snyder is illuminating, insofar as they simply
change an assumption such that the original result holds. As they note,
the changed assumption “is crucial for our [Groseclose and Snyder’s]
results” and “the opposite assumption is crucial for Banks’s results”
(Groseclose and Snyder 2000, 683).” If one perceives that minimal win-
ning coalitions are rare in actual legislatures, this dispute proves that
one can certainly arrive at a model that yields that general result, even
if one stumbles along the way. Further, it shows that although game
theoretic results are in principle transparent, this is not necessarily the
case in practice. The Groseclose and Snyder result was in print for four
years before the error was found.!”

Does computational modeling have similar defects? Of course it
does. Like the formal theorists, computational modelers often claim
that they also have transparent models. Instead of presenting a list of
assumptions as a fait accompli as formal theorists do, the best compu-
tational models typically provide not only the assumptions but also an
idea of what happens to the model’s results when the assumptions are
modified. But, despite this potential advantage, the fact remains that
most social scientists cannot be expected to wade through thousands of
lines of C++ code to understand the inner workings of a computational
model, nor do journals and book editors publish such details. Just as

9 As Groseclose notes (personal communication), empirical work could in principle dis-
tinguish between these competing models. Yet, the articles in this debate are entirely
absent empirical work, which forces one to argue about assumptions rather than the
question at hand (that is, the actual frequency of minimal winning coalitions).

10 In addition, the normal review process would indicate that three referees also missed
the error, as did the dozen or so citations of the article that occurred before Banks’s
reply (according to the ISS Web of Science).
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with empirical and formal models, we are left with a situation in which
one can write a computational model (actually, infinitely many) that
will (with the right parameter settings, rules, etc.) produce any given
result.

The only qualitative differences between computational models and
formal theory is that computational models are rather more ecumeni-
cal in how they encode problems. Additionally, computational models
often possess more verisimilitude at the cost of deductive tractability.
One does not “solve” a computational model; one uses it to generate
simulated data that one tests with the tools of applied statistics. Com-
putational models are thus related to game theoretic models, except
that they usually address more complex problems and lack deductive
solutions (but, more on this in Chapter 3).

What sorts of additional problems plague computational models?
Take for example the outputs of three models captured in Figure 1.1.
Absent any additional information, it is difficult to discern what these
slides are showing. All three look very much alike, though there are
some differences in the level of clustering apparent in the slides. It may
come as a surprise, then, that each of these slides purports to demon-
strate a different computational “result,” explaining such diverse phe-
nomena as state formation (Cederman 1994), culture dissemination
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(Axelrod 1997), and collective identity (Lustick 1999).!" While it is the
case that the underpinnings of all of the models are related, this is not a
cause for rejoicing — unless one has hopes that social science has stum-
bled on another iterated prisoner’s dilemma. Each model is based upon
an Ising model borrowed from physics, where it is used in statistical
mechanics. By tweaking parameters (e.g., whether the neighborhood
is Von Neumann or Moore), each author produced qualitative out-
put that for whatever reason was suggestive to them. Given how slip-
pery evaluations can be of such visual output, plus the huge parameter
space underlying all such models, it is difficult to be any more opti-
mistic about these results than those from any other methodological
approach.

The main question is what one does about these difficulties. As we
have seen, the problems that haunt the various methodological schools
are more similar than they first appear, and the main goal of this book
is to propose a solution to these problems. The short answer is that a
structured combination of the methodological approaches I have listed
is far superior to any approach taken separately. Much of the rest of this
book will be spent examining what this “combination” looks like. While
this position is at present only sketched, a brief tour of epistemology
will help motivate the more detailed proposals that follow.

A SHORT STATEMENT ON EPISTEMOLOGY

From the preceding discussion, I have sketched a few of the prob-
lems that complicate the use of mathematical methods in the social
sciences. If things are to improve, I would argue that a shift in our
underlying epistemology is needed. The argument presented here is
very close to the classic statement of Friedman (1953), and it is worth
exploring how Friedman’s view of epistemology has been critiqued

1 Tt is important to note that Lustick’s model is available for download in a format in
which one can easily modify parameter values to test their impact on the results. This is
extraordinarily helpful, but falls short of best practice, insofar as what computational
modeling needs is a clear result that provides better predictive leverage on a question
researchers care about. Like game theory, computational models most often serve as
existence proofs.
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(and subsequently ignored). As noted by Hausman, Friedman is not a
standard instrumentalist:

Friedman declares, “The ultimate goal of a positive science is the development
of a ‘theory’ or ‘hypothesis’ that yields valid and meaningful (i.e., not truistic)
predictions about phenomena not yet observed” (p. 7). This is the central thesis
of instrumentalism. But from a standard instrumentalist perspective, in which
all the observable consequences of a theory are significant, it is impossible to
defend Friedman’s central claim that the realism of assumptions is irrelevant
to the assessment of a scientific theory. For the assumptions of economics are
testable, and a standard instrumentalist would not dismiss apparent disconfir-
mations. (Hausman 1984, 217)

What troubles Hausman about Friedman’s modification of instru-
mentalism? In Friedman’s words,

Viewed as a body of substantive hypotheses, theory is to be judged by its pre-
dictive power for the class of phenomena which it is intended to “explain”.
Only factual evidence can show whether it is “right” or “wrong” or, better,
tentatively “accepted” as valid or “rejected.” As I shall argue at greater length
below, the only relevant test of the validity of a hypothesis is comparison of
its predictions with experience. The hypothesis is rejected if its predictions are
contradicted (“frequently” or more often than predictions from an alternative
hypothesis); it is accepted if its predictions are not contradicted; great confi-
dence is attached to it if it has survived many opportunities for contradiction.
Factual evidence can never “prove” a hypothesis; it can only fail to disprove
it, which is what we generally mean when we say, somewhat inexactly, that the
hypothesis has been “confirmed” by experience. (Friedman 1953, 8-9; empha-
sis added)

The distinction between proving a theory false and confirming a
theory by experience is nothing new; most texts on modeling in the
social sciences have adopted some version of Popper’s work on falsi-
fication. What is new is that Freidman, as Hausman points out, limits
the investigation or testing of a theory to the particular dependent
variable the theory aims to explain. Under this limitation, attacking
a rational choice model by “proving” the assumptions are not held
by actual human actors is entirely beside the point. Experiments of
the sort conducted by Kahneman and Tversky (1979) are useless in
critiquing the results of a rational choice model designed to study a
particular phenomenon; unless, of course, prospect theory has better
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predictive ability for the phenomenon in question. Thus, in Fried-
man’s terms, one can only compare theories based upon how well they
predict out-of-sample, and the theorist is allowed to pick the dependent
variable.

Hausman'’s problem with this statement is best revealed by his own
example:

I suggest that Friedman uses this view that science aims at narrow predictive
success as a premise in the following implicit argument:

1. A good hypothesis provides valid and meaningful predictions concern-
ing the class of phenomena it is intended to explain. (premise)

2. The only test of whether an hypothesis is a good hypothesis is whether
it provides valid and meaningful predictions concerning the class of
phenomena it is intended to explain. (invalidly from 1)

3. Any other facts about an hypothesis, including whether its assumptions
are realistic, are irrelevant to its scientific assessment. (trivially from 2).

If (1) the criterion of a good theory is narrow predictive success, then surely
(2) the test of a good theory is narrow predictive success, and Friedman’s claim
that the realism of assumptions is irrelevant follows trivially. This is a tempting
and persuasive argument.

But it is fallacious. (2) is not true, and it does not follow from (1). To see
why, consider the following analogous argument.

1. A good used car drives safely, economically and comfortably. (oversim-
plified premise)

2'. The only test of whether a used car is a good used car is to check whether
it drives safely, economically and comfortably. (invalidly from 1')

3’. Anything one discovers by opening the hood and checking the sepa-
rate components of a used car is irrelevant to its assessment. (trivially
from 2')

Presumably nobody believes 3'. What is wrong with the argument? It
assumes that a road test is a conclusive test of a car’s future performance.
(Hausman 1984, 218)

Hausman’s example is quite nice: Assume one has a theory that
predicts car performance (i.e., does the vehicle drive “safely, economi-
cally, and comfortably”) based upon a test drive (in which “test drive”
is the theory that produces an expectation about the car performance).
Further assume that one can take the car to a mechanic, and that the
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mechanic can open the hood and evaluate (in his mind) the status of
various components of the car.

But Hausman makes a logical mistake in the above analysis. The
main problem with Hausman’s argument concerns his use of the
term “only” both in propositions (2) and (2'). Proposition (2) is (in
Friedman’s terms) correct, but proposition (2') is a misuse of Friedman
and contains a logical contradiction. 2 states that the only test of a used
car is to see if it drives well, but Friedman certainly does not mean this.
Many theories could be proposed other than a test drive to determine
the quality of a used car; the only qualification Friedman raises is that
all theories have the same empirical referent. If the mechanic in 3’
points at a component and states that a component is flawed, one has
two choices. Either this theory (i.e., flaws in components imply poor car
quality) has an implication for the used car’s quality, or else it has no
bearing at all on overall quality. If the former is true, Friedman places
the implicit theory of 3’ on equal footing with the test drive theory;
the way one chooses between the two theories is to examine their
out-of-sample performance. If the latter is true — a mechanic inspect-
ing components is unwilling to make a statement about the used car’s
quality — one must agree with Friedman in saying that this statement
has little bearing on evaluating our “test drive” theory.

Proposition (2') is thus false, but only because Hausman failed to
map his proposition to what Friedman is actually saying. Friedman
believes that there is a universe of models, not just one. Thus, the use
of the term “only” in reference to the “test drive” theory in proposition
(2') is unwarranted:

Additional evidence with which the hypothesis is to be consistent may rule out
some of these possibilities; it can never reduce them to a single possibility alone
capable of being consistent with the finite evidence. (Friedman 1953, 9-10)

Proposition (2') and (3'), properly restated to be in accord with
Friedman, should be:

2'. Testing a used car’s quality by seeing if it drives safely, economically
and comfortably is one theory of many. One selects from the universe
of possible theories by relying upon out-of-sample performance. This
selection is also supplemented by consideration of the “fruitfulness”
and “simplicity” of a theory.
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3’. Anything one discovers by opening the hood and checking the separate
components of a used car is irrelevant to its assessment unless one
develops a mapping between the mechanic’s assessment and the used
car’s quality.

Of course, what Hausman means to say is that if the mechanic looks
at the engine and sees something wrong, we know for a fact that the
mechanic is “right” and the test drive is “wrong.” But this kind of clas-
sification makes no deductive sense, especially if one has ever visited a
mechanic or listened to Car Talk on National Public Radio. Real-world
mechanics get things wrong all the time, and there is no reason what-
soever to privilege the “mechanic’s evaluation” over the “test drive”
theory. Friedman’s claim that one should treat both of these as compet-
ing theories, and adjudicate between them based upon out-of-sample
performance, is thus not only logically consistent but far superior to
Hausman’s classification, which depends upon an unstated and unsup-
portable leap of faith in the mechanic.

In all of the above, one must distinguish between deductive logic
and probabilistic knowledge.'? If p is a model and g an implication or
test of that model, a restatement of Hausman’s critique of Friedman
seems to be:

iLp&q
ii. ~p—> ~q
iii. Show ~p to prove that the model is wrong.

Step iii. contains Hausman’s argument in a nutshell: showing that
p is false — either because the model is inconsistent or because the
assumptions are wrong — is all that is required to reject the model.
In particular, many within the social sciences advocate scrutinizing the
assumptions of a model and are reluctant to accept models that depend
upon assumptions known to be false.

This line of attack misses something fundamental about research,
however. Models are probabilistic in nature and one often chooses
to model a phenomenon at a tractable level of granularity given the
precise question asked or the data that are available. Thus, models are

12 1 am obliged to John Aldrich for this example.
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rarely unique, as the use of “if and only if” in (i) implies. As Nagel
notes:

In any event, physicists show no noticeable compunction in using one theory
for dealing with one class of problems and an apparently discordant theory for
handling another class. .. They introduce considerations based on the theory
of relativity in applying quantum mechanics to the analysis of the fine struc-
ture of spectral lines; they ignore such considerations when quantum theory is
exploited for analyzing the nature of chemical bonds. (Nagel 1961, 133-4)

When testing a used car, it is possible that several models all seek to
explain the performance of the car and no dispositive test exists to sort
between them. Better to adopt Friedman’s famous “as if” approach to
theories and allow for multiple theories than to decide that some sorts
of knowledge (e.g., the mechanic) are privileged.'

A better approach than a purely deductive formulation is illustrated
by the following graph:

~
-
~
y
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DGP — q

There exists, we would hope, a “true” data generating process that
produces the sample g; to our sadness, we will never know what this pro-
cess is with any accuracy for most phenomena of interest. Our model
p, however, may reflect something systematic about the DGP, though
itis unlikely it will capture everything systematic about a complex pro-
cess.'* A model p that captures something (though not everything)
essential of the DGP trumps other models, however, that fail to mirror

13 Compare Friedman’s “as if” argument to Nagel’s description of physics:

Everything depends on the problem; there is no inconsistency in regarding the same
firm as if it were a perfect competitor for one problem, and a monopolist for another,
just as there is none in regarding the same chalk mark as a Euclidean line for one
problem, a Euclidean surface for asecond, and a Euclidean solid for a third. (Friedman
1953, 36; emphasis added)

This argument has caused a good deal of controversy — see footnote 14 in this chapter.

14 Asargued earlier, it is also likely that p is not unique — there are a multitude of models
that all reflect different parts of the true DGP — the double arrow between p and the
DGP thus reflects Friedman’s controversial use of “as if” in his essay.
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the DGP. Thus, it is not enough to say that if the assumptions of p
are false then the model must be discarded."” In the case of statistical
models, we accept arguments like this one without question and there
is no reason the analogy does not hold for models more generally.

I would thus argue that Friedman’s statement on epistemology is
more compelling than critics have allowed. I would, however, make
two amendments to Friedman’s version of instrumentalism.

Amendment 1: Constraints upon Assumptions

On the one hand, I agree that assumptions are often proximate mea-
sures for more complicated phenomena, and to the extent they corre-
late with the real-world process, it is difficult to place much value in
criticizing assumptions. As Friedman notes:

Misunderstanding about this apparently straightforward process centers on
the phrase “the class of phenomena the hypothesis is designed to explain.”
The difficulty in the social sciences of getting new evidence for this class of
phenomena and of judging its conformity with the implications of the hypoth-
esis makes it tempting to suppose that other, more readily available, evidence
is equally relevant to the validity of the hypothesis-to suppose that hypotheses
have not only “implications” but also “assumptions” and that the conformity
of these “assumptions” to “reality” is a test of the validity of the hypothesis
different from or additional to the test by implications. This widely held view
is fundamentally wrong and productive of much mischief. . .. Truly important
and significant hypotheses will be found to have “assumptions” that are wildly
inaccurate descriptive representations of reality, and, in general, the more sig-
nificant the theory, the more unrealistic the assumptions (in this sense). The
reason is simple. A hypothesis is important if it “explains” much by little, that
is, if it abstracts the common and crucial elements from the mass of complex
and detailed circumstances surrounding the phenomena to be explained and
permits valid predictions on the basis of them alone. (Friedman 1953, 14)

On the other hand, there is the problem of false correlation. One
may always discover a model that predicts a given empirical referent,
and it is difficult at times to know whether this discovery constitutes

15 Tt is always possible that the nonsystematic component of g is what the model actually
exploits. One can thus have the appearance of a good model when in fact p only
predicts a component of g that is accidental. This is the main reason why one must
always compare models based upon out-of-sample tests.



Not All Fun and Games 25

an advance of knowledge. An oft-used example is using the winning
conference in the Super Bowl to predict the outcome of the presidential
race — whatever theory that is advanced in defense of this result would
be met with a great deal of skepticism, no matter how accurately it
predicted the presidential race out-of-sample.

Hinich and Munger (1997), in their text on analytic methods, by
and large adopt Friedman’s perspective on epistemology, with one
exception that addresses the forgoing concern about assumptions. They
add the criterion that assumptions must be plausible, because opaque
assumptions make it difficult to understand how brittle a model’s
result is:

We claimed above that a strength of mathematical models is the clarity of the
statement of the assumptions. Yet clarity is only a strength if the assumptions
themselves are plausible. One cannot tell if an argument works outside its
own stylized context by looking only at the argument itself. Consequently, the
external application, or “testing,” of formal theory is by analogy: The theory is
tested by measuring relationships among observable phenomena, in hopes that
the observable phenomena are “like” the relationships the model focuses on.
Without careful empirical tests, models would just be amusing mathematical
exercises. (Hinich and Munger 1997, 5)

Like Friedman, Hinich and Munger also note that empirical failure
or falsification is one of the key motive forces in improving models. Why
then do Hinich and Munger add the consideration of “plausibility” to
Friedman’s statement?

While Hinich and Munger do not precisely define a plausibility stan-
dard for assumptions, this kind of concept is echoed throughout much
of the public choice school, and there is an expectation that assump-
tions have something to do with the phenomena under investigation.
Mueller (2003) and Aldrich (1995, 1997), for example, discuss the idea
of adding a constant to models of turnout. As most everyone learns in
their first formal theory class, rational voters, knowing that the odds of
affecting the outcome of an election (either because their vote decides
the election outright or because their vote causes a tie) are negligible,
cannot justify turning out to vote because of whatever benefits might
accrue due to their preferred candidate winning election. Following
Aldrich, if p represents the odds of affecting turnout, B represents the
benefit derived from one’s preferred candidate winning, ¢ is the cost
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of voting, and d is the intrinsic benefit of voting (e.g., the expression of
citizenship), then when

pB—c+d>0

a citizen will vote. Given that p is in most elections arbitrarily close to
0, one has to believe that d > ¢ to avoid universal abstention.

Most models avoid the result of zero turnout by theorizing about
the role of d; Mueller points out that although adding the assumption
that d > ¢ to models of turnout may seem plausible, it is very difficult to
say what the assumption represents. One may claim it stands for civic
duty, but just as easily someone else could say the constant stands for
the utility of voting as an expressive act. A plausible assumption, then,
for Mueller boils down to one’s ability to map the assumption to the
phenomena in question (i.e., as with Hinich and Munger, the assump-
tion should relate to turnout and decision making). Additionally, the
assumption should allow the researcher to distinguish between rival
hypotheses.

Here I will settle on a distinction that is broad and builds upon
Hinich and Munger’s argument that assumptions are related to the phe-
nomena in question and Mueller’s additional constraint that assump-
tions uniquely identify concepts. Assumptions are plausible if three
conditions are met:

I. The assumption is related to the phenomena under investiga-
tion in a fashion that is not absurd. That is, assumptions may
well be gross simplifications of reality. As Friedman notes, the
best models are simple, yet nonetheless provide great predic-
tive leverage. “Assume a frictionless surface” is certainly false in
many contexts, but it is simple to relate this assumption to mod-
els that study motion. As such, it should be preserved without
criticism and one should follow Friedman’s advice that the way
to compare models is to compare out-of-sample performance
on the dependent variable selected by the researcher. Argu-
ments that a given model’s predictive power is void because
actual surfaces are not frictionless would not be compelling.

II. The assumption is organically related to logic of the model. For
example, one might create a rational investment model that pre-
dicts little or no turnout. If one adds an assumption of the sort
detailed above that people have a consumption value for voting,
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this would likely improve the predictive ability of the model, but
it fails this condition. The assumption that voting has consump-
tion value and can be represented by the addition of a constant
to the turnout calculus is indistinguishable from a universe of
other explanations for this constant (e.g., civic virtue). Further,
it violates the basic spirit of model, which explicitly focused on
investment and not consumption.

III. The assignment of a particular value to an assumption is not,
by itself, the dispositive factor in achieving a result. One way
to think of this condition is to examine whether or not there is
“result convergence” (a continuity condition) when the param-
eter embodying the assumption is subject to perturbations. As
the assumption moves closer and closer to being satisfied, the
outcome of the model should move closer and closer to the
final result. To the extent there are discontinuities or knife-
edge results based upon changing the value of an assumption,
one would question the use of the assumption, as the assump-
tion is doing all the work, not the core logic of the model. One
example of an assumption that fails to satisfy this condition is the
neighborhood metric relied upon in the social science version
of the Ising model (see the earlier discussion and Figure 1.1) —
slightly different metrics yield dramatically different results.
Assumptions are always abstractions from reality, and as such,
one would want to believe that results hold within a reasonable
neighborhood for each parameter value. If results only hold for
a particular value and no other, one would have to defend the
choice of this value or else discard the model.'®

16. One might fault these criteria because they cut against the spirit of Friedman’s instru-
mentalism — if a theory succeeds in out-of-sample tests, why bother with any con-
sideration of the assumptions? The problem, as Nagel (1961, 1963) points out in his
discussion of Craig’s theorem, is that theoretical statements (whether true or false)
have great value in organizing knowledge and in producing new theories. All theo-
ries are not equally useful in pursuing these ends, even if they have some empirical
success. Moreover, Friedman does not explicitly deal with the problem that theories
must include statements (which are themselves theories) on how to map theoretical
objects to empirically observable objects. To the extent that this process allows for
sleight of hand, insofar as arbitrary or shifting domain restrictions are often embed-
ded in such practices, one should place less confidence in theories that violate the
constraints raised here. As a concrete example, imagine N researchers provide N
competing theories, all of which are consistent with a data set A, but all of which
are wrong. If a new data set B is introduced, by chance alone some subset of the N
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Readers will note that one class of assumptions would deserve par-
ticular scrutiny under the above conditions: technical assumptions. The
name itself should raise a note of caution! To the extent that one finds
technical assumptions in a model in which slight perturbations of these
assumptions drive the behavior of the model, it is difficult to separate
this problem from that of spurious correlation in the world of statistical
methodology. At root, when technical assumptions drive results, one
has to question how comfortable one is with the idea that an assumption
thatis unrelated to the phenomenon in question ends up accounting for
amodel’s brittle results. To the extent it is difficult to justify one’s choice
of such assumptions (or values for them) endogenous to the problem
under consideration, this seems exactly the same kind of practice that
leads careless empirical researchers to include independent variables
in a willy-nilly fashion until an arbitrarily high R? is reached.

At this point, many formal theorists may object to the above condi-
tions as overly limiting. Providing a statement along with every deduc-
tive model of how changes in the values chosen for the assumptions
would impact the results of a model would be quite difficult. Game the-
ory, for example, has no ready-to-hand theory of equivalence classes
of games, and it is typically the case that any change in an assumption
or parameter value results in an incommensurable game.!” To demon-
strate that results are constant across perturbations in the assumption
space would thus be impossible unless one adopts a different approach
to modeling.

theories may still be seen as valid. There also will be new researchers who produce
new and (let us assume) wrong models that comport with (A x B). If there are con-
tinual novel datasets, one would hope that at the end of the day, all the prior models
are rejected and the difficulty of inventing a new model that comports with (A x
B x...)is progressively more difficult. Whenever data are sparse, however, it seems
something else is needed to prevent random chance from usurping good judgment
as the final arbiter between competing theories. Keep in mind that journals typically
print only positive results, and thus condition III (equivalence classes in parameter
space) is particularly useful — else, one cannot know when a model has failed over and
again only to be resuscitated at the last moment by a fortuitous selection of parameter
values or domain restrictions. In addition to Nagel, Simon (1963), Samuelson (1963),
Boland (1979), and Hirsch and de Marchi (1984) represent high points in the lengthy
debate over Friedman.

Some of the inspiration for this concept comes from efforts to examine complex
models for robustness. In particular, Miller (1998) was particularly influential, as well
as the idea of parametric continuity from the optimization literature — see Sundaram
(1996) for an overview.

17
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But this is exactly the point. The parameter space generated by
assumptions in deductive models should be viewed in exactly the same
manner as the parameter spaces underlying statistical models. These
“assumption spaces,” as noted earlier, are usually quite large, even for
simple games. To the extent we are critical of empirical modelers for
loading the dice in the myriad of unreported choices they make in
formulating a model, so, too, should we be critical of the choices made
by formal theorists, especially as it is very difficult to know how crucial
a given assumption or parameter value is in generating a result. In this
sense, parsimony in parameter spaces is just as valuable in a formal
model as it is in an empirical model.

One example of the importance of the concept of assumption spaces
is demonstrated in Ramsay and Signorino (2003). Their goal is to
derive a statistical model of the divide-the-dollar game directly from
the extensive form of the game. The players each have a reservation
value that is unobserved. To generate a unique maximum likelihood
estimator (MLE), Ramsay and Signorino assign disturbance terms to
these reservation values that are IID logistic variables. Their claim is
that the MLE estimator they derive depends solely upon the form of
the game; further, if one does statistical work using divide-the-dollar
games as the data generating process (e.g., through experiments with
human subjects), only their MLE estimator is appropriate. The prob-
lem they point toisimportant —using an Ordinary Least Squares (OLS)
or some other estimator may not be appropriate to the game generat-
ing the data. But the fact that their estimator achieves different results
than other statistical models should come as no surprise.

The main worry is that their assumption that the disturbance terms
for each player’s reservation value are IID and logistic violates condi-
tion III. For different distributions of the disturbance terms, Ramsay
and Signorino would have to derive a unique MLE estimator for the
divide-the-dollar game, and there is no logical implication from the
structure of the game that one particular distribution is appropriate.
Results generated with one assumption concerning the disturbance
term would not be the same as results generated with other distur-
bance terms, even those with similar properties (e.g., a truncated nor-
malbounded by 0and 1). The fact that Ramsay and Signorino get differ-
ent results with their method does not of itself cast doubt on prior work
that makes different distributional assumptions. To demonstrate their
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claim that their method is better, Ramsay and Signorino would have to
show that the only logical choice of disturbance term was IID and logis-
tic. Given that the subject of study is the divide-the-dollar game across
different cultures, this would seem to be a difficult task that seems
unrelated to the main problem under consideration (thereby violating
condition IT as well).'®
Amendment 2: Logical Implications'’

Reading this chapter might incline one to the belief that large N studies
are the only appropriate way to test models. The main problem with
mathematical modeling in the social sciences emphasized throughout
is the disconnect between models and empirical tests that have the
power to discriminate between competing models.

The reason models need to be clear about their empirical referent
(i.e., the dependent variable that will test the model) is that, all too
often, we resort to games such as the iterated prisoners’ dilemma (IPD)
and make broad claims about the results. The IPD purports to study
cooperation, and surely it does detail cooperation of a kind. The most
celebrated “result” of the IPD demonstrated by Axelrod’s (1984) path-
breaking tournaments is that tit-for-tat is the right strategy to employ
when confronted by an IPD —many articles have taken this as a starting
point and the literature on the IPD is vast. Unfortunately, this result is
wrong on technical grounds (Binmore 1997), as the success of tit-for-
tat depends upon the starting population. Another concern is more
fundamental. Axelrod and other scholars use their results from the
IPD to arrive at policy recommendations for phenomena ranging from
Cold War deterrence strategies to regulatory compliance on the part
of firms. Although results from the IPD might help one’s intuition in

18 One also should critique the assumption that the errors are IID. In many cultures,
it is possible to imagine that the variance of the error term on the reservation value
is correlated with the initial offer by player 1. For example, if player 1 makes a high
offer (more than 50 cents, which some might label “irrational”), there would likely
be very little variance in the error term. And if player 1 offers something close to
0 one would expect little variance. Across cultures, the variety of disturbance terms
that might account for the data would be quite large. The logic of condition I1I would
argue that how one’s results change based on this choice should be the focus of study
rather than a minor technical aside.

This section was derived from conversations with Robert Keohane, during a seminar
we jointly taught at Duke University on qualitative research methods in the fall of
2003.
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facing the complexities of real-world problems, intuition is difficult
to falsify. Once one decides that the IPD and tit-for-tat embody the
essence of cooperation, everything looks like an IPD and it is difficult
to know when one is in new territory.

Friedman’s admonition to do out-of-sample testing curbs this kind of
loose analogizing. Large N studies allow for the necessary and repeated
confrontations with novel data that all modeling requires. There is,
however, another approach to model testing that has a long history in
the natural sciences as well as the social sciences (for an overview, see
King, Keohane, and Verba 1994, section 1.1.3). One can derive logical
implications of a model, and see if the implications in fact hold. The
example provided by King, Keohane, and Verba concerns the study of
dinosaur extinction:

Nevertheless, dinosaur extinction can be studied scientifically: alternative
hypotheses can be developed and tested with respect to their observable impli-
cations. One hypothesis to account for dinosaur extinction, developed by Luis
Alvarez and collaborators at Berkeley in the late 1970s (W. Alvarez 1990),
posits a cosmic collision: a meteorite crashed into the earth at about 72,000
kilometers an hour, creating a blast greater than that from a full-scale nuclear
war. If this hypothesis is correct, it would have the observable implication that
iridium (an element common in meteorites but rare on earth) should be found
in the particular layer of the earth’s crust that corresponds to sediment laid
down sixty-five million years ago; indeed, the discovery of iridium at predicted
layers in the earth has been taken as partial confirming evidence for the theory.
Although this is an unambiguously unique event, there are many other observ-
able implications. For one example, it should be possible to find the meteorite’s
crater somewhere on Earth. (King, Keohane, and Verba 1994, 11)

Note that unlike many modeling exercises, the researchers studying
extinction did not attempt to fit a model to existing facts.”’ Failure to
succeed at this activity is a sign of mathematical ineptitude, rather than
a signal of a model’s strength. For logical implications to be used as
a test, they must be novel and uniquely connected to the logic of the
model. This is a harder set of conditions then one might expect; as
King, Keohane, and Verba note in a footnote on the same page:

However, an alternative hypothesis, that extinction was caused by volcanic

eruptions, is also consistent with the presence of iridium, and seems more

20 For example, if we know that parties converge in a two-party system, producing a
model that has this as an implication is trivial.
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consistent than the meteorite hypothesis with the finding that all the species
extinctions did not occur simultaneously.

We thus have a conundrum. It must be the case that logical implica-
tions are able to test theories — the examples of such tests are abundant
and important in the history of science. It seems impossible to imagine
that anyone would not have been jubilant when Sir Arthur Eddington’s
expedition verified Einstein’s claim that mass curves space, by observ-
ing how light bends around stars. When there are other models that (as
in the case of iridium deposits) might produce the same logical implica-
tion, one has to adopt a betting mentality. The test provided by deriving
logical implications matters more when the implications are novel and
untested — after one finds, for example, that light bends around stars,
future models that “predict” this fact do not gain the same amount of
credibility.

Novel implications are thus important in testing models, but one
must be careful that the implication follows uniquely from the model
in question. Unlike out-of-sample statistical work with large numbers
of observations, logical implications, as a kind of test, are of a more
qualitative nature. One has to ask how surprising the implication is, and
how likely it is that a large class of other models might yield the same
result. As noted in King, Keohane, and Verba, one aspect of testing
a model via logical implications is shared with statistical work. To the
degree possible, one should maximize variance in one’s implications
thereby enhancing the odds that one might be wrong. For example,
instead of merely predicting the presence of iridium, one might derive
a specific amount or pattern of sediment around the impact crater,
decreasing the odds that other models produce the same implication.

Fortunately, this practice has a long history in natural science and we
can stick with Einstein to provide a final example. In a close analogue to
the Eddington experiment, the astronomer Sergei Kopeikin measured
the displacement of light from a quasar moving around the mass of
Jupiter during an eclipse. Because displacement depends upon gravity,
he tested whether Einstein’s theory that the speed of gravity is equal
to the speed of light is true or not (it is — see Whitfield 2003). This test,
obviously, is much easier to falsify, as any deviation from the constant
for the speed of light would signal disconfirmation. An example of
how to derive and test logical implications in the social sciences will be
presented in Chapter 5 of this book.
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LOOKING AHEAD

One of the core arguments of this text will be that deductive models are
most useful in generating intuition about a problem, especially when
one investigates limiting cases. But just as important is the process of
developing an equivalence class where one has some idea about how
changes in assumptions or parameter values change the results of a
model.

Computational models supplement game theoretic models by allow-
ing the researcher to investigate explicitly the properties of the assump-
tion space. Computational modeling thus extends purely deductive
work by generating equivalence classes of models, thereby increasing
the confidence we have in our results. Of course, I agree wholeheart-
edly with Friedman’s original statement of epistemology: Theory with-
out an empirical referent is almost always navel-gazing. To the extent
we can all agree on what the salient dependent variables are, thereby
avoiding vague mappings from models to empirical referents, so much
the better.

The goal of this book will be to provide the tools necessary to
develop links between the three methodological traditions in the social
sciences and avoid the problems detailed above. As there are already
excellent texts on statistical methodology and game theory, much of
the focus will be on computational models and out-of-sample fore-
casting. If the use of out-of-sample empirical tests are the best way
to sort between competing theories, computational models naturally
lend themselves to drawing out the implications of a purely deductive
theory by allowing the researcher to build models with more verisimil-
itude, thereby decreasing the “gap” between the analytic model and
the empirical test.
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INTRODUCTION

As we saw in the first chapter, there is a great deal of suspicion in the
social sciences about purely empirical research. All too often, one finds
models that fit a sample rather too well, demonstrating how modeling
choices allow a researcher to discover relationships that are not gen-
uine. Worse still, it is often unclear what is being tested in empirical
work when there are ambiguities in the underlying deductive models.
In this chapter, I will use the problems that complicate empirical work
to highlight more general problems with both deductive and computa-
tional modeling. I will focus on empirical modeling initially, however,
because these problems appear in a very clear form in empirical mod-
els. Moreover, empirical work is more common in the social sciences
than either of the other traditions and thus deserves early attention.
The goal, however, is not simply to criticize empirical work. Without
it, no model stands on very firm ground, so this critique aims at the
higher goal of generating a set of standards that would allow empirical
work to be tied more closely to testing deductive and computational
models. To demonstrate the main points I wish to make, I will draw
more from the nonparametric and neural networks literatures than
is common in social science. Additionally, research I have conducted
with Christopher Gelpi and Jeffrey Grynaviski, and an ensuing debate
with Nathaniel Beck, Gary King, and Langche Zheng will provide an
example from an ongoing research question in security studies.'

1 See de Marchi, Gelpi, and Grynaviski (2004) and the response by Beck, King, and
Zeng (2004).
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With this in mind, there are two problems I wish to consider in empir-
ical work. The first problem concerns the trade-off between overfitting
and underfitting a model. The second problem is named the “curse
of dimensionality” in the nonparametric statistics literature, and con-
cerns the size of parameter spaces in models. Both of these problems
are underappreciated in social science and so deserve some attention
here before progressing to the section on neural networks and security
studies. After the section on neural networks, I will conclude with a
brief section that outlines how the problems presented in this chapter
apply with equal force to deductive and computational modeling — a
subject that will be taken up in more detail in Chapter 3 of this book.

CHALLENGES IN BUILDING EMPIRICAL MODELS

Overfitting

We all learn in our first statistical methods class that the data generat-
ing process (DGP) is a big part of empirical modeling. It is, after all, the
underlying process that we (hopefully) capture in our empirical speci-
fication, and to do statistical work we are forced to make assumptions
about the nature of the DGP. The more precise we can be in these
assumptions and the more accurate our assumptions about the DGP
are, the better our statistical work will be — or so the story taught in
most seminars goes. Spanos (1986) relates the accepted view of the role
between theorizing about the DGP and building a statistical model:

Observed data in econometric modelling are rarely the result of the exper-
iments on some isolated system as projected by a theory. They constitute a
sample taken from an on-going real DGP with all its variability and “irrelevant”
features (as far as the theory in question is concerned). These, together with the
sampling impurities and observational errors, suggest that published data are
far from being objective facts against which theories are to be appraised, strik-
ing at the very foundation of logical positivism. Clearly the econometrician can
do very little to improve the quality of the published data in the short-run apart
from suggesting better ways of collecting and processing data. On the other
hand, bridging the gap between the isolated system projected by a theory and
the actual DGP giving rise to the observed data chosen is the econometrician’s
responsibility. Hence, in view of this and the multitude of observed data series
which can be chosen to correspond to the concepts of theory, a distinction is
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suggested between a theoretical and an estimable model. A theoretical model
is simply a mathematical formulation of a theory.. .. This is to be contrasted
with an estimable model whose form depends crucially on the nature of the
observed data series chosen. . .. In order to determine the form of the estimable
model the econometrician might be required to use auxiliary hypotheses in an
attempt to bridge the gap between the theory and the actual DGP. It is, how-
ever, important to emphasise that an estimable model is defined in terms of
the concepts of the theory and not the observed data chosen. (Spanos, 664;
emphases in original)

As with most coins, there is a flip side: data mining. Unfortunately
(again, according to seminar wisdom), many researchers engage in data
mining, which is a brute force approach of searching through the space
of possible models (an infinite set) until one finds a model that “works”
for the existing sample. Contrasted with the above approach outlined
by Spanos, data mining is empirical work absent any consideration of
the underlying DGP. Kmenta (1997) sums up the conventional wisdom
neatly:

In current research practice, the availability of well-defined competing models
is not that frequent. Economic theory can often indicate which explanatory
variables should be included but does not give much guidance with respect
to functional form, lags in behavior, inclusion of control variables (e.g., social
or demographic), or measurement of variables. Typically a researcher is faced
with a list of regressors of which some are clearly to be included in the equation
but most are uncertain candidates. The researchers then resort to some ad hoc
criteria that enable to them to make a choice. . .. Probably the most common
way of choosing a modelin empirical research is by “data mining.” A researcher
confronted by a list of regressors tries various combinations of variables until
satisfactory results (high R? “correct” signs of regression coefficients, a rea-
sonable value of the Durbin-Watson test statistic, etc.) are obtained. This is
known as “torturing the data until they confess.” (Kmenta, 598-9)

Data mining is one example of the more general problem of overfitting.
Asnotedin the first chapter, many researchers distrust empirical results
due to the large parameter spaces involved. Often, it is all too easy
to “discover” models by leveraging nonsystematic characteristics of a
fixed sample. Overfitting is dangerous because it confuses the partially
idiosyncratic nature of any fixed sample with genuine characteristics
of the data generating process.
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A standard example of overfitting can be provided by a very low-
tech Monte Carlo experiment. First, generate a standard uniform vari-
able named normals for some number of observations.” Treat this
as your dependent variable. Next, generate a simple index variable
x that counts the number of observations (i.e., x ~ [1..N]). Obvi-
ously, normals and x are completely unrelated, but imagine a modeler
does not know anything about the DGP that created these variables
and is convinced that the two are related. The question is, how far
wrong could a modeler go in pursuing a relationship between normals
and x?

If our creative modeler tries a linear regression, disappointment
will result. The R? is close to 0 and a histogram of the residuals does
not look normal for most small samples.® Visually, the predicted linear
regression line will have a slope close to 0, indicating that no relation-
ship exists. If she turns to a more complex statistical model what might
happen? Figure 2.1 shows the results of fitting a lowess regression that
depends upon local neighborhoods to fit a function — similar results
can be obtained for any neighborhood regression technique* (e.g.,
median splines) or for other techniques that allow dramatic changes in
slope (e.g., including several higher order polynomials of x in a linear
regression).

The Stata function for lowess allows one to easily change the size
of the neighborhood used to fit the estimated function. As the neigh-
borhood gets larger, the results of lowess approach that of the linear

()

In Stata, one has to set the number of observations and then generate the standard
normal variable and the index. To accomplish this, use the following commands:

set obs 15

gen normals = invnorm(uniform())

genx = _n

To graph both the sample and regressions on the sample, use the following command
with different parameter values for bwidth:

scatter normals x || lowess normals x, bwidth(.5)

Our creative modeler sees this as evidence that a more complicated relationship is
latentin the data. When the sample size exceeds 50 observations, however, the residuals
will look normally distributed.

Neighborhood techniques partition the data into different adjacent subsets and fit
each subset separately. Imagine a real valued independent variable that ranges from 1
to 100 — dividing this domain into 10 equal intervals and fitting a linear regression to
each of them is a crude example of a neighborhood technique. The key parameter is
the size of the neighborhoods.

w
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Figure 2.1. Creative Modeling

regression; as the neighborhood gets smaller, the lowess function
becomes even more irregular, though better fitted to the sample.
Figure 2.1 shows a middle value for the neighborhood size. Absent
knowledge of the underlying DGP, a creative modeler will be satis-
fied with these overfit models (that depend upon small neighborhood
values) given how well they conform to the data. In essence, a relation-
ship has been created out of thin air, but visually it is easy to see that
overfitting has occurred. The data in Figure 2.1 are evenly distributed
around O with constant variance, and the lowess function is hopping
from one point to another in an unpredictable fashion.

Repeating this experiment for a variety of samples demonstrates
that things can go very badly for any modeling technique. Even if one
avoids the mistake of using a complex model that overfits the sample,
OLS models also can go astray if the sample has a trend (just as this
sample has a slight positive slope). It is easy to forget that a sample
is exactly that, and there is no direct way to verify that you have not
overfit a model.’

5 As I have argued in Chapter 1, out-of-sample testing is the only way to avoid the
problems raised in this section.
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Underfitting

It may not be as obvious that it is also possible to underfit a model,
which would mean that one ignores systematic components latent in
a sample. Sometimes, underfitting is justified by the researcher on the
grounds that self-imposed handcuffs in the estimation process are a
necessary safeguard, given the way results are presented in journals.
As has been noted in many places, one only publishes the final model,
and there is little room in journals for details of the journey that led to
those results (or for negative results or replications). If one follows the
admonition from Achen quoted in the first chapter, it makes sense to
adopt a minimalist strategy, especially if one cares more about overall
confirmation for a model than particular point estimates.

But for other research problems, this strategy will not do. In the
quantitative literature on the causes of international conflicts, it is clear
that better fit models are valuable. Underfitting, when one wishes to
predict or assess the possibility of the outbreak of conflict between
nations or any other important political event, is every bit as problem-
atic as overfitting. One might imagine that decision makers desire as
good a model as possible for use in the allocation of limited diplomatic
and military resources for the prevention of war.

An Example: The Currency Game

For most modeling exercises, there is a trade-off between overfitting
and underfitting that is difficult for a researcher to detect with any pre-
cision. Consider the following example borrowed from Young (2001).
N actors in a society must decide on a currency, and there are two pos-
sibilities to choose from. Let the first currency be gold and the second
silver. Initially, the N actors will be randomly assigned gold or silver
with equal probability. Let p; be the proportion of gold users in the pop-
ulation at time t and (1 — p;) be the silver users. At each subsequent
time period, one actor will be chosen by a uniform draw from the pop-
ulation and will make a new decision according to the following rule:

1. With probability (1 — ¢), if p; > 0.5 (i.e., gold is the dominant
currency) the actor chooses gold or remains a gold user if one
already; else, if p; < 0.5 (i.e., silver is the dominant currency)
the actor choose silver or remains a silver user if one already. If
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pt = 0.5 exactly, the actor continues with whatever currency they
were using previously.

2. With probability ¢ > 0 (by assumption) the actor makes a new
uniform draw between the two currencies (which means the
actor changes currency with a chance of 50%).

Perl code that implements this model is available in the appendix to
this chapter.

In this model, a natural dependent variable would be the average
number of regime shifts one sees over any given time period; that is,
if one allows the above game to go on for 100 iterations, how many
times would the currency change from one standard to another? This
variable is an integer with a range from [0. .t]. Fortunately, there are not
very many parameters that might explain this dependent variable. The
two main candidates for independent variables are ¢ (the mutation
rate) and N (the population size). For the sake of this initial exam-
ple,’ let us assume that the mutation rate is fixed at 0.5, reducing our
investigation to a bivariate regression focusing on the role of N. One
would imagine that this setup is straightforward (certainly simpler than
a cross-sectional time series study involving multiple nation-states) and
that finding a “good” model should be easy.

To look at the issue of overfitting versus underfitting, I created a
training set of 500 observations varying N from 10 to 50 (in fact, there
are 100 observations for each multiple of 10). Using this sample, I
fit three candidate models: a linear, polynomial, and median spline
regression. In Figure 2.2, the fit between the three models and a test
data set of 500 new observations is presented; the linear, polynomial,
and median spline model are graphed against the dependent vari-
able for the number of regime shifts.” As is obvious, seemingly trivial

© We will, however, return to this simple currency game at several points (albeit with
some amendment).

7 Given that the parameter space is small and the model is deterministic, one does not
strictly have to go to the trouble to produce a test data set. I have done so here for
the sake of good pedagogy (many thanks to Ken Kollman for suggesting this). What
may not be obvious to readers that have never done out-of-sample testing before is
how easy this is. Simply fit your model(s) to the training set, record the equation, and
then generate predicted values using this equation on a new test set. If there is not an
actual test set available, one can do this artificially by taking a sample and removing
some of the observations with uniform random draws to form the test set.
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Figure 2.2. Models, Models Everywhere

modeling assumptions result in large differences in model fit, even
though each model returns a qualitatively similar set of summary statis-
tics for model performance. The good news in Figure 2.2 is that all three
models seem relatively stable; although the linear model underfits the
data, it would be difficult to argue that either of the more complex
models is overfit or underfit. So as a baseline, one can see that if one
is lucky enough to have data generated deterministically in a compu-
tational model, the problems of fit are not extreme.

Figure 2.3, however, demonstrates a different lesson. The DGPis the
same, except a stochastic term (~N(0,16)) was added to the measure-
ment of population size. One can imagine that in real-world datasets
on currency use the measure for population size is a bit noisy, or there
are recording errors, or any number of other problems, though in the
data presented here the errors are both relatively small and centered
on the true value. As is obvious from Figure 2.3, the addition of a
stochastic term to the measurement of population size affects both
the linear model and the spline model in unfortunate though different
ways. On the one hand, the linear model is clearly underfit, and even
within the sample it does fairly poorly at both the low and the high
end of the scale for the independent variable. The spline, on the other
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Figure 2.3. Once Again, With Noise

hand, is overfit to the data, with eight internal changes in the sign of
the slope.

Only the polynomial model avoids these pathologies, and that is
entirely because I limited the order of the highest polynomial term
to 2 — allowing the polynomial to add additional terms would have
resulted in an overfitted model. If these models were compared using
anew test data set, the polynomial model would outperform the others
as it is (by construction) less sensitive to idiosyncrasies in the training
set. While careful graphical techniques and the availability of out-of-
sample test sets can help researchers to select an appropriate model,
as I have with the polynomial model, such techniques cannot be relied
upon, especially when matters become more complex.® Keep in mind
that the data in question for this example were generated according
to a very simple DGP and that we are only estimating a bivariate

8 Note that the polynomial model has only one parameter (i.e., the order of the highest
term) and one independent variable. Thus, one only needs a couple of tries — each
requiring a novel out-of-sample set — to arrive at good parameter values. If, however,
one has many independent variables and a more complex statistical model, there is
never enough data in the world to traverse the parameter space in any systematic
fashion.
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relationship (which adds simplicity to both the estimation process and
any subsequent use of graphical techniques).

There are alternatives to graphical techniques. To deal with more
complex modeling situations, a researcher might add a penalty term
to summary measures of model fit to reflect the costs of increased
model complexity; for example, for polynomial models, a penalty term
might be based upon some function of the second derivative of the
estimated function, thereby penalizing a model with large changes in
slope (see Bishop 1995, sections 1.5, 1.6, and 5.4 for a review of the
literature). Penalty terms of this kind essentially smooth the output of
a model. “Smoothing” (or regularization) means nothing more than
reducing the large slope changes and responsiveness of a model fo the
sample, in the hopes of eliminating the undue influence of outliers or
nonsystematic variance in a sample. In Figure 2.3, one can see that
flattening out the median spline model would have advantages.

Evaluating theories based upon statistical models is thus a very risky
business. As we have seen, the consequences for overfitting or underfit-
ting a model can be disastrous. Even simple decisions are problematic
when one is aware of these difficulties. For example, imagine you are
considering adding an X? term to a regression. Perhaps you have an
excellent theoretical reason for doing so, but perhaps not. If the addi-
tion of X? improves your model, it may just be because you have
overfit the sample. By contrast, omitting X? might be wrong, causing
your model to underfit the sample and denying you vital information
about the DGP. Without access to multiple out-of-sample datasets,
how would you know which choice was correct?

Parameter Spaces and the Curse of Dimensionality

One way of looking at empirical modeling that may not be obvious is
suggested by the above (brief) discussion of smoothing. If one has a
model that is overfitted and to the eye appears to have large oscilla-
tions, it is natural to look for a way to smooth out these oscillations,
thereby producing a better match to the underlying DGP.” Modeling

 And, it should be noted, a concomitantly worse match to the sample. As an exam-
ple of this point, see Figure 2.1. Imagine a curve that simply connected the dots.
This would fit the sample perfectly, but the true DGP in this case is a straight line
at 0 on the y-axis. Deviation from this line is noise, and smoothing prevents one’s
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choices, then, can be thought of as rules for interpolating between dif-
ferent neighborhoods in a sample. Consider the example of a naive
researcher who reads the results of the bivariate regression detailed
here on currency adoption. As one could easily imagine, our researcher
is dissatisfied with the exclusion of other, possibly relevant, variables,
such as culture, government type, urbanization, and the like.!" He
applies for a grant to supplement the above data set of 500 obser-
vations with more independent variables; in short, he wants to receive
funds to add independent variables to each of the 500 cases in the data
set so he can run “better” models that include more aspects of the real
world phenomenon. On the face of it, this is a laudable goal, and any-
one who has taken a semester or two of statistics in a political science
department will have the rule of thumb that so long as the observa-
tions are greater than the number of independent variables, everything
is fine. Given that 500 observations exist, this seems to be a grant worth
funding.

Assume that the naive researcher wants to collect 10 additional
independent variables, and that each variable has a range of 10 possi-
ble values (e.g., there are 10 possible values for the culture variable).
What size is the resultant parameter space? Sadly, it is 10'°, which is
impossibly large.!! One should immediately see that 500 observations
will populate this parameter space very, very sparsely, and any results
of models incorporating 10 independent variables are automatically
suspect. Modeling choices, such as the reliance on OLS regression, are
thus a way of forcing a particular method of interpolation on mod-
els that must span a given parameter space. In most parameter spaces
found in empirical work in the social sciences, the data are quite sparse
when one considers the parameter spaces they are asked to populate.
OLS, as one type of model, simply imposes the constraint that when-
ever one finds blank spaces in a parameter space, one continues to draw
a line through the voids. Other models, such as a polynomial model,

model from fitting the noise. It also should be noted that smoothing represents a bet —
you could be wrong (the underlying DGP really could have multiple large changes in
slope).

10" Often, arguments of this sort are made by qualitative researchers who recommend
using case studies as a way to investigate the intricacies of a problem.

11 T am being generous here. One also has to add parameters that are required by the
model to any calculation of the complete parameter space.
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use more complex functions to interpolate against empty or minimally
populated regions of a parameter space.

Since almost any model must interpolate, how does one choose a
particular model form? By and large, empirical modelers in the social
sciences reason from first principles or by analogy to preexisting prob-
lems. For example, when one allows both the population size and the
mutation rate to vary in the currency adoption problem, a family of
models that works quite well is a maximum likelihood regression using
the Poisson distribution for the dependent variable. OLS models, in
contrast, fit the data quite poorly (i.e., by underfitting). How would
one arrive at the choice of a Poisson model? While some researchers
might engage in the naughty practice of graphing a histogram of their
dependent variable, one can instead consult a text on distributions and
see if the properties of the Poisson distribution match the DGP of the
currency adoption game. From Taylor and Karlin (1998) or DeGroot
and Schervish (2002), one finds that a Poisson process has the following
properties:

i. The number of events (in this case, the number of regime shifts in
currency use) in any two disjoint time intervals are independent
random variables;

ii. The probability of an event (regime shift) is proportional to the
length of the time interval and not to the point in time at which
the interval occurs (i.e., the process is stationary);

iii. For short intervals, the probability of two or more events occur-
ring is of a smaller order of magnitude than just one event.

By and large, these properties seem to be a rough approximation of
the currency game. Note, however, that (i) is violated, insofar as when
a population tips into a different currency regime, it is easier to tip
back into the former regime, given that the majority in favor of the
new currency has only one extra vote (i.e., only one actor chooses in
each time period t). Nevertheless, although the Poisson model is not
quite right, it is a better choice than OLS, and probably good enough
for most purposes.

There is, however, a quite different tradition for choosing model
forms. Nonparametric statistics uses the sample itself to justify the
choice of model form, and places much more emphasis on out-
of-sample tests to curb tendencies toward overfitting. In order to
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understand the basic issues involved in nonparametric estimation, it
is useful to develop some notation.”

Let Y € % be a dependent variable, X € %" be a vector of n inde-
pendent variables, and f(x, y) be the joint probability density function
(p.d.f.) of X and Y. Our goal is simple: to develop a model m(X) that
matches the data generating process of Y as closely as possible. Our
first choice thus involves the selection of a loss function.'® As we have
seen earlier in this chapter, the construction of a loss function can be
complicated by the addition of penalty terms for model complexity and
the like, but a natural first step would be to use mean squared error
(MSE): E[(Y — f(X))?]. Clearly, Y and X are given (i.e., they constitute
the data), so how does one choose the model m(-)?

In one adopts the assumptions of Ordinary Least Squares regression
choosing m(-) is straightforward, and almost everyone at some point
in their graduate training has derived the normal equations.'* OLS
regression replaces m(-) with X’b and uses calculus to determine the
optimal values of the coefficients b. In the case of an arbitrary function
m(-), things are not much more complicated:

1. E[Y —m(X)*] = [[(y — m(x))* f(y, x)dydx; by the definition of
expected value.

2. = [ = m))* fy | x)dy/f(x)dx = EcEx[(Y — m(X)* | X];
by the definition of conditional probability (i.e., Pr(A|B) =
Pr(AB)/Pr(B)).

3. m(x) =arg min. Ey|x[(Y — ¢)? | X =x)]; at each point X = x, find
the optimal value for the model m(x) by minimizing the relevant
term in 2 (the other term can be discarded as it includes only X).

4. argmin, Ey\x[(Y —¢)? | X =x) = E[(Y? = 2Yc+?) | x] = ¢ =
E(Y | x); using calculus, one can see that the optimal value for
the model m(x) is reached when ¢ = Y in the above formula.

12 There are many treatments of the curse of dimensionality and related issues; the
notation and development used here is taken from Hastie, Tibshirani, and Friedman
(Section 2.4, 2001, section 2.4). One should also look at Bishop (1995, section 6.1.3),
DeGroot and Schervish (2002, section 9.6), and Gentle (2002, section 1.3).

13 A loss function is the measure one uses to penalize models for deviating from the
data.

14 Griffiths, Hill, and Judge (1993) is an excellent introductory text on the subject. The
normal equations, in matrix form, are derived by minimizing the residual sum of
squares (Y — Xb)> - X'(Y = Xb) =0 — b = (X'X)"IX'Y.
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We thus reach an answer that is hopefully not too surprising: the opti-
mal model, at each point x € X, selects the average of Y for all the
observations at that particular point x. And, better still, this choice is
optimal, in the sense that the mean squared error is minimized.

This is not, however, what most of us do in practice, though we
may not realize how very different our normal practice is. Typically, we
replace m(x) with the linear function X’b.'> What is remarkable about
this choice is that we have made an incredible assumption. In our use
of X’b as a model choice, you will note that we are pooling the data
to derive our point estimate. Put another way, the entire data set X is
used to determine the value of y at every point on the line. Even when
there are gaps where no y’s exist, we still draw the line to produce a
predicted value. As noted earlier, this represents a leap of faith about
how to pool data and interpolate across spaces where no (or little) data
exist.

The result of equations 1-4, however, are quite different. The opti-
mal choice is E(Y | x). Although this looks familiar — it is simply the
mean of Y conditional upon x — it presents a very different problem.
By not making an assumption that allows us to pool our observations
of Y, we must derive our predicted value for Y separately at each point
x € X. If we do not have any observations (x,y) at a given point x,
then we are out of luck. More disturbing is the implication for the
amount of data we need. To be certain of our estimates, we need sev-
eral observations for each x € X; for even simple modeling exercises,
this demands a monstrous amount of data. As noted above, for a model
with 10 independent variables, each one taking 10 possible values, we
have a parameter space of 10! — to employ the model where m(x) =
E(Y | x) and we want y observations for each predicted value y, we
would need y10'? observations. This is in contrast to our linear model
X’b, which is parsimonious in its demand for data because it assumes
the relationship between X and Y is the same throughout the entire
domain of X.

In the nonparametric modeling literature, the problem involved
with estimating E(Y | x) is known as the curse of dimensionality. As

15 The point raised here is not unique to OLS regression. If one engages in maximum
likelihood modeling, as an alternative example, one chooses a different distribution
for the model but one is still pooling the data for the estimation of Y in exactly the
same way as in OLS.
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the parameter space of a model or problem increases, one’s confidence
in E(Y | X) (which, remember, is the optimal estimate for minimizing
MSE) drops precipitously. Fortunately, there are a number of avenues
one can take to escape this problem, short of the dramatic assump-
tions involved in choosing a priori a well-behaved functional form
and distribution for Y. One avenue relies upon the idea of a neigh-
borhood. A neighborhood is a parameter § that defines a local space
around a point. When one has sparse (or nonexistent) data, for exam-
ple, at a given point x;, instead of relying upon the limited observations
(or making no prediction at all) to predict y, one could instead esti-
mate E(Y | x) using the observations contained within (x; — §, X; + §),
thereby increasing the number of observations available and reducing
the variance in the conditional mean of Y. The parameter § can be
adjusted to produce a more or less granular function, depending upon
the modeling needs and the number of observations present in the
sample.'®

Sadly, one cannot escape the curse of dimensionality completely.
The use of the neighborhood estimate E(Y|(x; — §, x; + §) in place
of E(Y | x), for example, still becomes problematic as the parame-
ter space increases. Imagine one has 10 independent variables each
of which is selected from the Reals [0..1], and the desired granular-
ity for each dimension requires that 10% of the domain of a single
dimension make up the neighborhood. In 1 dimension, this means that
§ = £0.05, which does not seem too difficult. But, in 10 dimensions,
to achieve a hypercube that is equivalent to 10% of the total volume
of the parameter space would require .794 of each individual dimen-
sion to make up such a neighborhood (i.e., § would have to increase
to £.397). As noted in Hastie, Tibshirani, and Friedman (2001, 22),
“sampling density is proportional to NP, where p is the dimension of
the input [parameter] space and N is the [desired] sample size. Thus, if
N; = 100 represents a dense sample for a single input problem, then
Ny = 100" is the sample size required for the same sampling density
with 10 inputs.” Changing the size of the neighborhood can only help
so much in grappling with combinatorics of this magnitude.

16 Note that, for an OLS model, the neighborhood for each point xj is the entire domain
of x.
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PARTIAL SOLUTIONS FROM THE NONPARAMETRICS LITERATURE

The preceding section has left us with significant problems. Ideally, we
would like to be able to construct empirical models that avoid overfit-
ting or underfitting the data. We also would like to sidestep the curse of
dimensionality, without resort to extraordinarily limiting assumptions
arrived at a priori. As argued in the first chapter, assumptions that
allow us to “solve” a complex problem are always suspect, especially
when they are not organic to the problem under consideration. One
must admit that, in many contexts, choosing a particular distribution
and functional form is inappropriate (or at the least, atheoretic). Fortu-
nately, there are some things that one can do to arrive at a theoretically
appropriate model that nonetheless avoids the problems noted here.

Feature Spaces

As one will quickly learn teaching a graduate research methods class,
the modal graduate student sees enormous shortcomings in everything
that has been published to date. This, obviously, is healthy, unless one
subscribes to the notion that social science has discovered all that can
be discovered — we will know we have achieved parity with the physical
sciences when we produce our first Roger Penrose. Unfortunately, the
most common fault students detect in existing research is that it is
incomplete; that is, it is missing essential features or details of the
“real-world” process under consideration.

This sort of idea is especially popular in “qualitative research” and
the more historical schools within social science. Terms like “process
tracing” along with citations to Clifford Geertz and thick description
portray situations, which, from the perspective outlined above on the
importance of the size of parameter spaces, seem completely impossi-
ble as objects of rigorous study. One example of this line of reasoning
is exemplified in a thoughtful piece by Buthe (2002):

The institutions within which actors interact are social constructs, as are the
aggregate actors that populate so many of our models in political science. Due
to factors such as uneven growth, increasing or diminishing marginal utility,
and accumulation or ratcheting effects as well as the tendency of actors to
attempt to manipulate or escape constraints, the passage of time makes it,
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ceteris paribus, more likely that institutions, actors themselves, and their pref-
erences may change. Recognizing this dynamic aspect of temporality does not
mean that everything is constantly in flux. In fact, institutions and aggregate
actors can be extremely stable for a long period of time. But the possibility
of change implies that explanations of temporally large processes must allow
for change in the constitution of actors as well as for change in their pref-
erences. In the sense of the inherent dynamism of temporality, then, history
is “the study of changes of things that change.” Models of “history” must
explain stability rather than assume it. ... The dynamic quality of temporality
suggests that models based on assumptions of stable institutional contexts, sta-
ble preferences, and constant units for which we record variable, independent
attributes at any given point in time would be unsuited if we are concerned with
explaining history, understood as a macroprocess. Endogenizing explanatory
variables, however, comes at the expense of parsimony or worse: Scholars who
seek causal explanations usually frown upon endogenization because when
the dependent variable is not only explained by, but also (partly) explains the
independent variables, we run the risk of circular reasoning. Can we avoid this
problem? Sequence provides the answer. . . . Sequence allows us to endogenize
the explanatory variables without having to abandon modeling and scientific
aspirations because it enables us to avoid circular reasoning. Endogenization
involves incorporating into the model some variation of causal feedback loops
from the explanandum to the explanatory variables. (Buthe, 485; internal cita-
tions omitted)

The goal of this article is laudable — how to study historical processes
scientifically — but the proposed solution is lamentable, given what we
know about the effects of increasing the size of parameter spaces. If one
actually believes that a process has actors, preferences, and institutions,
none of which can be held constant, introducing time (here defined
as sequence, with the possibility of feedback between different time
periods) has the unsalutary effect of changing each observation into
a statement that is conditional based upon time (i.e., Pr(X) becomes
Pr(X | t)). Simple bean counting of the magnitude of the parameter
space, as we have engaged in throughout this chapter, would convince
the prospective modeler that this is a bad idea.

Letusimagine, however, that we genuinely believe that time and the
possibility of feedback are essential components of a given problem.
Simply adding time will not do; the problem must first be simplified to
a degree that an additional parameter will not result in a huge increase
in the size of the parameter space. A better approach is to reduce the
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size of the parameter space, such that the addition of a new variable
(in this case, time), will not result in a sparsely populated space given
the available data. In the artificial intelligence, nonparametric statistics,
and related literatures this process is known as preprocessing or feature
extraction. Feature extraction can be seen as a transformation of the
raw data into a new set of inputs that dramatically reduces the size of
the parameter or state space.

Itisimportant to note that feature spaces are not unique; that is, any
given input (parameter) space can be transformed in a large number
of sensible ways. What is required to transform a given input space
is either domain-specific knowledge'’ that allows the researcher to
choose a theoretically justified feature space or a data-driven technique
(e.g., principal component analysis) that produces an input space of
reduced dimensionality and maximum variance on each of the remain-
ing dimensions.'® A ready example of the utility of feature spaces is
provided by face recognition (a topic of much concern, given the world
security situation).'” One might think that better cameras would be
useful in an automated system to recognize faces, but this is not obvi-
ously the case. Even a lousy camera with a pixel field that measures
100 x 100 with 8 bits for recording color would have a parameter space
of (28)199%0 _ allowing for an unimaginably large number of possible
faces. Any number of observations would sparsely populate such a
parameter space and increasing the resolution or color depth of the
camera is the last thing one needs. Even if one argues, as Buthe does
for the inclusion of time into historical models, that better cameras

17 Readers may note that domain-specific knowledge is what qualitative researchers
and historians are after. If qualitative researchers use their intimate knowledge of the
details of a problem to derive better measures, features, and assumptions, so much
the better. The argument here is against the idea that there is any free lunch in adding
complexity to a causal argument — qualitative models are bound by the same laws as
other models.

For good treatments of the prevailing data-driven techniques, see Ballard (1997, Chap-
ter 4) or Bishop (1995, Chapter 8). In additional to principal component analysis, one
can rely upon a number of iterative techniques that sequentially discard inputs that
fail to contribute to overall model performance.

This example is taken from Ballard (1997, 85-6), who relies upon Turk and Pentland
(1991). Turk and Pentland use eigenspaces to identify eigenvectors (features) that
stratify different pixel-fields recording faces. The earlier discussion of theoretical
feature selection owes much to Bishop (1995, section 1.3) and Russell and Norvig
(1995, Chapter 4). In the social sciences, see Master (1988).

18
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would provide details that inferior models miss (e.g., instead of a still
shot, one could use a videoclip), without a feature space to reduce the
complexity of the inputs, any proposed gain would be eclipsed by the
curse of dimensionality.

To extract a useful feature space that would allow the available
observations to span the reduced parameter space one might first adopt
a data-driven method. The idea is simple: The population of faces fol-
low rules that constrain the possible faces one could observe. The data
never span the entire parameter space; rather, a lot of variance exists
on a few dimensions but, otherwise, there are huge amounts of empty
space. If one could find the reduced space that captures the systematic
variance of human faces, one could safely do away with the larger
parameter space that includes faces one would never observe in a
human population (as opposed to a Martian or Plutonian one — on
Earth, for example, we all have at most two eyes). A variety of tech-
niques exist to do just this; a prominent example is principal component
analysis. Fortunately, these techniques are familiar to social scientists,
but it is important to keep in mind that these are linear transforma-
tions. It is possible that one can miss a great deal, even if “most” of the
variance is retained in the reduced space.

Of more interest here is a second approach, which for lack of a
better term I will call theory-driven feature extraction. Unlike game
theoretic and statistical methods texts in the social sciences, artificial
intelligence texts, which treat many of the same topics, always include
a chapter on feature extraction. Russell and Norvig (1995) is one good
example, and they make clear early on that most problems of inter-
est are unsolvable without feature extraction/dimension reduction. In
contrast to “uninformed search methods” (which is more or less what
game theory equates with human rationality — but, see the next chap-
ter), “informed search methods” are those “in which we see how infor-
mation about the state [parameter] space can prevent algorithms from
blundering about in the dark” (Russell and Norvig, 92). Solving com-
plex problems without feature extraction, whether they are found in
the context of a deductive or a statistical model is literally unthinkable
within this tradition. Typically, researchers attempt to create feature
spaces using domain-specific knowledge.

Using the example of face recognition, what would a theory-driven
feature space look like? It would require that researchers deduce a set
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of transforms to reduce the size of the input space into something much
smaller using what we know about human features. Relevant measures
might include the distance between the eyes, the size or shape of the
nose, mouth, ears, and eyes, the shape of the hairline, and so on. The
raw data would be used to form these summary measures and then
discarded, resulting in an enormous reduction in the size of the param-
eter space. It is important to note that theory-driven feature extraction
might not work perfectly. Given the size of the parameter space for
problems such as face recognition, it is impossible to deductively show
whether or not a given feature space will work. But, given the com-
plexity of such problems, no other approach is possible.”’ Adding new
variables or thickly describing complex phenomena is not a realistic
alternative.

Out-of-sample Forecasting and Deriving Testable Implications

As the preceding section shows, one must strive to reduce the dimen-
sionality of parameter spaces when one confronts complex problems;
otherwise, one never has enough data to determine whether a model
captures something essential about a problem or only some nonsystem-
atic component of the sample. Determining whether a model “works”
is difficult, however, and this difficulty is compounded by the fact that
social scientists are loathe to compare models on out-of-sample perfor-
mance. Rather, it is most often the case that the only results presented
for amodel are those for a fixed sample. A very persuasive monograph
on this topic is provided by Granger (1999), where he notes that

Cross-sectional and panel models are usually evaluated in-sample whereas
time series models are also evaluated post-sample. To illustrate this difference,
suppose one is interested in estimating the elasticity of demand for water-
melons and has available some appropriate cross-sectional data set 1. Two
applied econometricians each build models, M; and M,, using the same data
and produce elasticity estimates ey, e, ...If I ask a group of decision mak-
ers for advice, they are likely to expend a great deal of effort in comparing

20 Explicit feature extraction also results in greater transparency. Rather than hiding
such details through limiting assumptions — typically given short shrift in papers — one
would have to present a case up front for the choice of a particular feature space.
This of course assumes that researchers openly present their affirmative arguments
for choosing a particular feature set.
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the quality of the alternative models. Values of summary statistics such as R?,
likelihood values and model selection criteria, for instance BIC, can be com-
pared and even tested for superiority of one model over the other. Doubtless
the properties of the estimation techniques used in deriving the models will
be discovered and compared, including (asymptotic) consistency and relative
efficiency. Potential problems with the alternative estimating methods will be
emphasized. It is possible to ask if M; encompasses M,, or vice-versa, using
alternative forms of encompassing. A single model can be viewed in terms of
how well it performs under various “specification tests,” against specific miss-
ing variables or linear trends or ARCH, general malaise such as non-linearity,
the t-values of the included variables, can be discussed, and the coefficients of
variables queried as to their economic meaning as well as asking if their signs
are “correct” according to some particular naive theory. However, all of this
activity is aimed at discussing the (relative) quality of the models and ignores
the quality of the outputs which I, as a decision maker, am most concerned
about.

In contrast, consider a similar forecasting situation starting with a time
series data set. ... Although it is standard practice to pay some attention to the
relative quality of the models, the majority of the evaluation effort is directed
to comparing the quality of the forecasts, that is to the outputs. As a decision
maker having to choose between two methods of forecasting, it is the quality
of the output that is more important rather than the quality of the model.

Why this difference of approach? There seems to be two obvious distinc-
tions. The first is the idea that a decision maker will be using the output of
the model for some previously stated purpose and how well the models do in
achieving this purpose provides a natural way of evaluating them. . .. A second
idea, which I think is now widely accepted by time series econometricians, is
that if M; produces better forecasts than M, it is unlikely that model M, will
prove to be superior in other tasks such as testing theories or making control
and policy statements. (Granger 1999, 63-5)

Note the close similarity between Granger’s statement on the pur-
pose of modeling and that of Friedman’s discussed in Chapter 1. Mod-
els should be compared based upon their stated objective, and not on
other grounds. Moreover, this stated objective should be as closely
aligned as possible to the dependent variable used in the model, as
loose analogies between a model and the empirical referent remain
just that (loose).

Equally important is Granger’s distinction between the quality of
the model and the quality of a model’s output. Discussions centering on
model quality obviously consume the greatest share of methodological
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debate within political science, much to our detriment. Instead of com-
paring ourselves based upon methodological allegiance (e.g., Bayesian
vs. Frequentist), we might do better by comparing the results of our
models using real or artificial out-of-sample performance. If novel data
exist to decide between competing models, we should focus upon how
models perform on these data. If we lack such data, we can divide our
sample into a training set (i.e., data used to generate a model) and an
artificial test set (i.e., a surrogate for novel out-of-sample data). One
might even adopt a more complicated structure for model testing; that
is, set aside 50% of a sample for training models, 25% for a validation
set used to distinguish between different candidate models, and then
a final 25% held independently to be used as a test set as well as to
provide final results.

One might object that for some samples it is impossible to create
an artificial test set to be used in generating out-of-sample results,
because of a small sample size. In this case, one is pressing up against
the curse of dimensionality, and there can be no great confidence in the
results. Results, when predicated solely upon a fixed sample/training
set, are woefully nonrobust, and usually present a rosy picture of model
performance based upon overfitting the sample.”! Thus, while out-of-
sample forecasting, real or artificial, curbs many sins of modeling, it
does present additional difficulties. As one increases the number of
steps involved in modeling a given problem, it becomes more difficult
for other researchers to replicate this process. Put another way, when
one is left alone to train many candidate models on a training set,
and then chooses among them by resorting to a validation set, and
then presents results for a final, (hopefully) independent test set, other
researchers require a great deal more information to replicate this
process fully.

Out-of-sample forecasting, along with feature selection, offers a
great deal of hope for addressing complex problems in the social sci-
ences. But both avenues might inadvertently complicate the hoped for
transparency of mathematical models, thereby requiring extra effort
on the part of researchers for others to replicate their steps. The
next section demonstrates how difficult this process can be, using a

21 Though see Chapter 1, Section 4, and Chapter 5 on Logical Implications for an alter-
native route in testing models.
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recent forum in the American Political Science Review as grist for
the mill.

AN EXTENDED EXAMPLE: PREDICTING
CONFLICT BETWEEN NATIONS?Z

During the 1990s, quantitative security studies became an increasingly
prominent and sophisticated area of inquiry within our discipline. In
particular, estimators based on the general linear model have been
central to the development of extensive literatures on deterrence, the
impact of democracy and trade on international conflict, and other
issues. In 2000, BKZ offered a sweeping critique of these research
programs and argued that nonparametric estimation was more appro-
priate for predicting the outbreak of war using the Correlates of War
data on militarized interstate disputes. This viewpoint was challenged
by de Marchi, Gelpi, and Grynaviski (2004), which elicited a response
by BKZ (2004). In both their original article and the subsequent
exchange, BKZ contend that standard parametric procedures under-
fit the data, missing systematic components best described as “highly
non-linear, massively interactive, and heavily context dependent or
contingent (22).” As noted earlier, underfitting the data is typically
not a problem with most empirical models in the social sciences; in
fact, given the overreliance on the sample (i.e., training set) and the
qualitative features of the model rather than the output, it would take
a leap of faith to imagine that underfitting had plagued a field for any
appreciable amount of time. Too many researchers with too many free
parameters (variables, model choices, etc.) have attacked the problem
of predicting conflict.

BKZ, however, offer a partially convincing explanation for why
underfitting might plague models of conflict. If, indeed, the outbreak of
amilitarized dispute is caused by highly nonlinear interactions between
variables, termwise linear models or close analogs such as a logit specifi-
cation might systematically miss these interactions, even if researchers
designate a few modest nonlinear terms (e.g., by squaring the years a
particular dyad had been at peace). Nonparametric techniques such

22 This section borrows heavily from de Marchi, Gelpi, and Grynaviski (2004) and owes
a huge debt to our continued conversations on these topics.
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as the neural networks used by BKZ would thus pick up on these
interactions in a way that more limited functional forms such as OLS
could not.

As argued in the preceding section, nonparametric statistics offers a
great deal of insight into how empirical research goes wrong and points
to several interesting approaches to take in solving these problems.
Moreover, the militarized interstate disputes data set offers what seems
to be a great opportunity to utilize the approach detailed in section 111
of this chapter: a focus on out-of-sample forecasting. Given the number
of observations in the disputes data set, one can easily divide the sample
into several subsamples for training, validation, and testing. On the
face of it, BKZ’s approach seems reasonable, and their focus on out-
of-sample results is noteworthy.

Unfortunately, a closer evaluation of the data and models relied
upon by BKZ reveals several flaws in their approach, highlighting how
difficultit can be to apply the principles outlined in this chapter without
a great deal of care. As we will see, BKZ present results that are likely
overfitted, and suffer from a lack of theorizing about what would be
an appropriate feature space for predicting the outbreak of conflict.
Additionally, BKZ forget one of the simple rules of research developed
in Chapter 1: build models to test hypothesis, rather than engaging in
atheoretic data mining.

Torturing Innocent Data Always Produces a Confession

The first place to begin is always the data. The data set used by BKZ
records the initiation of militarized disputes within “politically relevant
dyads” between 1947 and 1989 from the Correlates of War (COW)
project.”’ The data include 23,529 dyad years; 976 of these years include
a militarized dispute.

Dependent variable: Dispute, coded 1 for the presence of a conflict
and O for peace. The threshold for the presence of a conflictis arbitrary —
1,000 battle deaths, and is somewhat compounded by elaborate coding
rules. One example is taken from the codebook for the COW 2 data:
“One dispute, 3575 in MID 2.1, was removed from the MID 3.0 data

23 Documentation on the project and the included variables may be found at
http://cow2.1a.psu.edu and http://www.umich.edu/~cowproj.
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set. Papua New Guinea launched a raid against the Solomon Islands
on March 12, 1992. Subsequently, Papua New Guinea apologized for
the raid, said that it was not authorized and promised to pay compen-
sation. That apology is sufficient for us to delete the dispute” (from the
codebook at http://cow2.la.psu.edu). While there are enormous bene-
fits for the scholarly community to agree on one particular set of coding
rules, it does complicate matters for evaluating out-of-sample forecasts.
The possibility that results are not robust under different codings of
this variable is a distinct possibility, especially given the relatively rare
nature of conflicts (they account for ~4% of the data). Applying the
lessons of Chapter 1 on assumptions, one would not place much confi-
dence in a model that provided varying levels of predictive capability
based upon small changes in the threshold of battle deaths.”*

What is more subtle, however, is to decide what it is that one is
predicting when one uses this dependent variable. A naive answer
is that investigations using these data discover high-risk dyads; that
1s, those pairs of nation-states that are likely to go to war in a given
year. This, however, is not quite sufficient for understanding the chal-
lenge presented by these data. Given the fact that the data are cross-
sectionalized (i.e., time has been stripped away), what one is actually
doing is discriminating between the observations in which a particu-
lar dyad chose to fight and the larger aggregation of observations in
which the exact same dyad did not choose to fight — and all of this with
sequence removed from the data!

A brief example will make the point. As part of a larger Arab-Israeli
conflict, Egypt and Israel fought a war in 1967. Egypt and Israel, how-
ever, are in the data set for each year between 1947 and 1989, including
some years when there was a conflict (e.g., 1973) and many more years
when there was not. Sequence, obviously, is lost, given that the data
are cross-sectionalized, so the real task is to distinguish between obser-
vations in which the dyad fought a conflict from observations in which
the dyad did not. Under most investigations, Egypt and Israel are a

24 Literally, current models including those of BKZ predict 1,000 or more battle deaths,
and not conflict per se. It would be informative to see if one’s results were consistent
when noise is added to the above variable — for an example of checking for robustness
by adding noise to a model, see Axelrod (1984).
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high-risk dyad, but a model that “discovered” this fact would not be
very informative, nor would it predict the outbreak of conflict with
much accuracy in a particular year.

The task of predicting conflict out-of-sample turns out to be quite
difficult and its importance is underappreciated in the literature. Simply
determining that Egypt and Israel are a high-risk dyad resultsin a large
number of false positives for the majority of observations that do not
involve a conflict between the two nations. And, as we will see below,
with one exception, none of the independent variables changes from
observation to observation within a dyad, complicating this process
significantly.”’

Independent Variables

* Contiguous landmass, coded 1 if the nations are contiguous and 0
otherwise.

¢ Distance, coded as the actual distance between states. This has been
shown to have a substantial impact on military conflict (Bremer
1992, Maoz and Russett 1993; Oneal and Russett 1999) and was
derived from the EUGene program (Bennett and Stam 2000).

* Similarity of alliance portfolios, coded as a real from —1 to 1, where
1 indicates maximum similarity and —1 indicates dissimilarity. This
variable measures whether or not each state in a dyad has similar
relationships with other nation-states.

25 Matters are worse in BKZ’s chosen coding of the dependent variable. Their depen-
dent variable includes multiple years of a conflict as observations — e.g., a dyad that
participated in the Thirty Years’ War would produce 30 observations coded as a war.
The problem with this coding is that it violates the assumption of IID observations —
and this is never trivial. The result is that BKZ’s model (or any other using their
dependent variable) only produces true positives (i.e., correct predictions of war at
any reasonable threshold) when the Peace Years variable equals 0 (note that this
is true even if one drops the classification threshold to very small thresholds — for
example, .25, where one finds a huge number of false positives). Put another way, the
presence of multiple years of a conflict as “independent” observations means that a
flexible technique like a neural network can leverage the fact that if you fought in
year t, you are likely to continue fighting in year t 4+ 1. One should thus take BKZ’s
results in this chapter with an additional grain of salt. Their model does not predict
war; rather, it says one should predict war whenever the dyad fought in the preceding
year.
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e Alliance status, coded 1 if the two nations share a treaty and 0
otherwise.

e Asymmetry of Military Capabilities, coded as a real from 0 to 1
where 1 represents imbalance and 0 represents parity in the dyad.
Most work (e.g., Oneal and Russett 1999) has hypothesized that
the relationship between military capabilities is curvilinear. The
square of the asymmetry value is used in order to account for this
relationship.

* Major Power Status, coded 1 if one of the dyad members is a major
power and 0 otherwise. It is well established that major power states
are much more likely to engage in military conflict. (Bremer 1992;
Maoz and Russett 1993; Oneal and Russett 1999).

* Democracy, coded from the Polity III data set, and ranging from
—10 (autocracy) to +10 (democracy); typically, one adds +11 to
each variable (to eliminate negative numbers) and multiplies them
to create a summary interaction of the joint level of democracy in
the dyad (Bueno de Mesquita and Lalman 1992; Maoz and Russett
1993; Rousseau, Gelpi, Reiter,and Huth 1996). Additionally, a num-
ber of scholars suggest that the impact of democracy on conflict may
be curvilinear (Snyder 1991; Mansfield and Snyder 1995; Goemans
2000), so the square of the joint variable is also included.

¢ Peace Years, coded as an integer from 0 to N, where 0 indicates the
dyad fought in the previous year and N is the number of years in
the data set. This variable is coded oddly, insofar as all states start
out at either a 0 (indicating a conflict in 1946) or a 1 (indicating no
conflict in 1946 and any number of years before that).

What should be noted about the above independent variables is that
they preclude the data generating process stipulated by BKZ. Although
one might imagine that war is a complex function of nonlinear interac-
tions between variables (i.e., BKZ may be right), the data must allow
one to test such a notion. Keep in mind that the real difficulty in this
data set is to distinguish observations in which disputes occurred from
the much more numerous observations in which peace occurred within
each dyad. Merely identifying high-risk dyads is a recipe for large num-
bers of false positives and little predictive power. Thus, if one’s hypoth-
esis is that war is the complex accumulation of factors, the data must
support a direct test of this (admittedly nebulous) hypothesis.
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Unfortunately, it seems obvious that the above independent vari-
ables are poorly suited to the task. This is largely because all but one of
these variables do not change significantly from observation to obser-
vation within a dyad. For Egypt and Israel, as one example, Contiguity,
Distance, Similarity of Alliance Portfolios, Major Power Status, and so
on do not change very much between observations. If these variables
jointly indicate that conflict is likely, then they must do so for all obser-
vations in the data set featuring these two countries. If they fail to
indicate that conflict is likely, then peace will be predicted instead for
all observations for Egypt and Israel. This represents an enormous
problem, and it is mitigated only partially by the inclusion of Peace
Years as a variable. As stands to reason, Peace Years does change
from observation to observation, and not surprisingly, it accounts for
most of the performance of all models relying upon these data (alone,
through functional transformations, and through modest interactions).
Given the coding of this variable, it is necessarily a blunt instrument,
but it is all one has in this data set.”®

Thus, while BKZ might hope to model war with more complicated
nonparametric models designed to capture massive nonlinearities and
interactions between different independent variables, the data simply
do not support such a venture. One should not be surprised to find
that a simple logit model using only Peace Years along with splines
of this variable yields a baseline for out-of-sample performance that is
equivalent to BKZ’s original model from 2000, and less than 2% worse
than BKZ’s subsequent effort in 2004 using a committee of neural net-
works and the entire complement of independent variables. Moreover,
BKZ’s 2004 effort represented their third effort at modeling the exact
same out-of-sample test set (the data post-1985), which by any notion
of forecasting is a violation of the spirit of the enterprise.

BKZ, despite repeated attempts to model conflict, have very lit-
tle hope of improving upon previous efforts given the limitations of
the data on militarized interstate disputes. Complicating their efforts

26 A more sensible coding for Peace Years would be to count backward in time to arrive
atreal starting values for 1947. That is, instead of coding the United States and Britain
as a 1 (indicating that they had fought a war two years earlier), one could code it as
125. If this is too arduous, use the average of Peace Years across the range of 1947—
1989 as the starting value, and count from there. Otherwise, one confuses early years
with years that genuinely saw violence.
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are problems with the idiosyncratic coding of both the dependent vari-
able (which depends upon an arbitrary number of battle deaths) and
the most salient independent variable (peace years, which also is coded
idiosyncratically given the arbitrary starting values — see the descrip-
tion of this variable earlier). Although there are many useful lessons in
their approach to this long-standing problem in security studies (e.g., a
focus on out-of-sample forecasting to compare models), this does not
mean that one allows the data to speak without any intervention by
theory. And to the extend their model does improve upon far simpler
models, one has to question whether the improvement of ~2% rep-
resents genuine progress or overfitting.”” Overfitting, even in what is
supposed to be an out-of-sample experiment, is much exacerbated by
repeated efforts against a fixed and known out-of-sample set. Arbitrary
coding rules compounds the problem by calling into question whether
one is explaining systematic components of the DGP or simply a small
set of observations right at the threshold of 1,000 battle deaths (or
the initial values of Peace Years, or any number of other idiosyncratic
factors).

Is There a Theory in the House? Not Without a Feature Space . . .

In large part, BKZ’s repeated attempts to model conflict with such
paltry rewards is a byproduct of the fact that their theory is not only
vague but unsupported by even rudimentary consideration of the data
at hand. As noted in Chapter 1, empirical models serve to test theories.
Even if BKZ had reaped greater rewards from their neural networks,
it is not at all obvious what these solely empirical exercises would
tell us.

27 The difference between the best model of BKZ, arrived at after numerous attempts
at predicting the same out-of-sample set, is within any reasonable confidence interval
of our logit model for summary statistics such as the area under an ROC curve - see
Figure 2.4. One should note that the results for BKZ in this table are taken from their
published papers — we have subsequently discovered that they normalized their data
incorrectly and these results are wrong. To help their optimization algorithm, they
took the sensible step of normalizing each input variable to a mean of 0 and a variance
of 1. Unfortunately, they normalized the training and predictive sets together — that
is, they used a global mean and global standard deviation. The correct procedure is to
normalize the training and test sets independently, else one is peeking into the future.
BKZ’s published results benefited substantially from this mistake.
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One might defend the practice of using an atheoretically derived
empirical model, especially given their reliance (however imperfect)
upon out-of-sample forecasting. There is, however, a problem that is
revealed by bean counting. Given the independent variables in the
previous section, one can come up with a rough idea of the size of the
parameter space by dividing the real-valued independent variables into
bins. To accomplish a back-of-the-envelope calculation, I use Stata’s
formula for histograms:

k = min(sqrt(N), 10* In(N)/In(10))
where N is the (weighted) number of observations.

This results in
2.43.43.2-.43-43.2.43 .44 =50,570,904,392

possible parameterizations for the models of conflict used by BKZ. If
one adds the five splines for peace years and squared terms for joint
democracy and asymmetry, one gets

=50,570,904,392 - 437

total parameterizations. Lest one forget, this already enormous space
is further expanded by the choices made in the modeling process. In
an OLS or MLE model, the researcher has comparatively few choices
to make. But, in a neural network such as the one utilized by BKZ,
researchers make an incredible number of choices related to the fol-
lowing features of the model:

i. random number generation and the distribution of seeds for the
optimization procedure;
ii. the composition of training/validation/test datasets;
iii. smoothing or penalizing results to account for model complexity;
iv. the number of hidden neurons and the number of layers in the
network;
v. the target evaluation function (e.g., maximizing area under the
receiver-operating characteristic [ROC] curve);
vi. the type of committee system for producing predictive values.

Including these choices as parameters expands the parameter space
even more, and allows researchers to do great damage to the data,
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usually through overfitting.”® Thus, 23,529 observations seems like a
large number only if one ignores the vast parameter space BKZ ask
these observations to span.

In more restricted models such as OLS or logit, one can do an end-
run around such data problems if one is testing a theory arrived at
before statistical work. In this case, a well-developed theory is but-
tressed by empirical findings that demonstrate the main tenets of the
theory hold, even in an impossibly large parameter space. Think of this
as a betting person would — even though the parameter space is large
and the data populate a fraction of the total space, finding that the
main tenets of the theory hold would increase one’s priors about the
usefulness/correctness of the overall theory. Simply stating a theory
prior to looking at the data and then testing it increases the likelihood
that one is “right” — inventing a theory after finding a statistical model
cannot be counted as evidence supporting the theory.

BKZ thus have a problem because that they are not testing a theory,
nor even presenting a specific statement about the DGP. Feed forward,
multilayer neural networks such as the one relied upon by BKZ have
the virtue that they are universal function estimators, but this is offset
by the “black box” nature of interpreting these models.”” Recovering
the exact functional form for a particular neural network is impossible.
With the huge size of the parameter space, tricks that work for simple
models like logit — taking the first derivative for each independent
variable and setting the other variables to their medians — fail miserably
in a neural network model. The possibility of dramatically nonlinear
and interactive functional forms means that one cannot look at a first
derivative and recover anything meaningful, as the slope for a given
independent variable at a particular point does not provide anything
but an estimate for the variable in a narrow neighborhood. Literally
anything can happen as one allows the values of the other variables to
stray from their fixed, arbitrary values.

28 Defining choices of this sort as parameters is a slight abuse of terminology, but is
defensible given that all results are predicated upon these choices.

2 For a general overview of the black box problem and an interesting mapping between
feed forward, multilayer neural networks, and fuzzy rule-based systems (i.e., systems
based upon fuzzy logic) see Benitez, Castro, and Requena (1997). Such approaches
are obviously a bit far afield from mainline econometrics/statistical methods, and
impose significant costs on researchers hoping to interpret the role of the independent
variables in a model.
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To simplify the coincident problems of an intractable parameter
space and hard to interpret independent variables, one should follow
the advice of section III of this chapter and derive a theoretically jus-
tified feature space.’’ Given the computational costs of estimating a
neural network, itis difficult to simply try all combinations and transfor-
mations of the full set of possible explanatory variables and modeling
choices. Without the “correct” set of explanatory variables, modeling
choices, and a theoretically justified feature space, one cannot place
much confidence in the output of a neural network or any other non-
parametric technique. Studies of the performance of neural networks
in the related literature of macroeconomics reveals a quite mixed set of
outcomes (Gonzalez 2000), reinforcing the need for theoretical work
prior to estimating a neural network. Even though neural networks
should in theory encompass and outperform a simple logit model, the
results of actual applications in the macroeconomics literature sug-
gest that these models often overfit the data, due in large part to the
enormous size of the parameter spaces being tested relative to the
number of observations in the data.

Feature sets, as noted in section I1I, make everything easier, increas-
ing one’s confidence that the results of a nonparametric model are
in response to systematic components of the DGP as well as allow-
ing for easier interpretation of results. Without feature sets, one is
searching in a very large space with a tiny flashlight, and the odds
that you are fitting your model to nonsystematic aspects of the sam-
ple are heightened (see footnotes 25 and 27). Given the task at hand
is predicting conflict, any reasonable feature set would focus upon
factors that would discriminate the small proportion of years when a
high-risk dyad would engage in a conflict. One would think that the
dimensionality of many of the independent variables (e.g., distance,

30 BKZ (2004) seem to confuse normalization with preprocessing/feature extraction.
They cite Bishop (1995, Chapter 8) on feature extraction, but, in reality, they merely
rescale their existing variables to a mean of 0 and unit standard deviation. If the
independent variables have dramatically different scales, normalization can be use-
ful insofar as it simplifies the task of choosing starting values for the optimization
procedure used by the nonparametric estimation technique (usually some variant on
hill-climbing). But in this data set, few variables are not on a similar scale, typically
binary or [0..1]. Only distance has an extraordinary range (integers from 0 to ~12,000),
but the log of this is used. The argument here is that BKZ should have engaged in the
sort of feature extraction covered in Bishop necessary to reduce the pathologically
large parameter space of their model; rescaling does not accomplish this task.
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similarity of alliance portfolios, democracy) could be dramatically
reduced.”

How Do You Know When You Are Right? Evaluating Models

Imagine that BKZ had avoided most of the mistakes listed earlier.
How would we know whether their model was better than previous
efforts? Almost every mathematical methods book (at least those in
the empirical tradition) have a section on model selection. Typically,
these sections offer vague advice, because in the most general case, this
is a difficult question. Granger (2000), however, offers extraordinarily
lucid advice. As noted previously, his focus is on comparing the quality
of outputs, rather than features of the model itself. He notes that many
models are “the result of considerable specification searching. .. data
mining, or data snooping in which data are used several times” and
suffer from the curse of dimensionality. “Unfortunate experience,”
Granger argues, has led time series econometricians to focus on out-
of-sample testing.

Comparing models in this way is easier said than done. First, all par-
ties must agree on a reasonable loss function; typically, mean squared
error is used for regression problems, but there are other error func-
tions that are more appropriate for dependent variables that are non-
Gaussian.”> Second, one has to agree on a standard for comparing
different models. For mean squared error as the error function, it may
seem natural to compare models based upon the ratio of the error

31" Although a pessimist would conclude that most of the independent variables already
contained within the COW data are not suitable for discriminating between conflicts
and peaceful observations. Changes in economic conditions, demographics, and so
on seem far more fruitful than the existing variables, and Peace Years is likely a
blunt proxy for these processes. An inability to define a reasonable feature space that
corresponds to a well-defined model of conflict is probably a sign that the data are
not adequate to the task of testing a model. Yet, even with data of this quality, it is
still better to define a feature space, rather than let your statistics package do it for
you (atheoretically). Inevitably, you will find that you rarely produce stable models
without a feature space.

For example, one can use a Minkowski-R error function to minimize the influence of
outliers in fat-tailed distributions (by setting the parameter R < 2). See Bishop (1995),
Chapter 6, for a selection of error functions. Also note the arguments presented earlier
in the chapter for smoothing, which complicates error functions by adding a term to
account for model complexity.

32
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functions using an F-test, but Granger notes that “there are good rea-
sons for expecting that ey, ey [the errors] will be highly correlated”
thereby decreasing the value of the F-test (Granger 2000, 69). Alter-
nately, one could generate a linear regression comprised of two com-
peting models M and M;:

Xiest = & + B1M1 + BoMy + erest,  Where e 71 N(O, 02)

If B, is significant and B, is not, one can conclude that M; dominates
M,; the converse also holds (Granger 2000, 69-70). Or, it may be the
case that neither model dominates, but a committee of models (in this
case, the number of members = 2) performs better than any individual
model.

Fortunately, the special case in which one has a binary dependent
variable is considerably simpler than the general case, though a bit
of explanation is required to make this point. Once again, I will use
the work by BKZ and de Marchi, Gelpi, and Grynaviski on predicting
militarized interstate disputes to examine model comparison with a
binary dependent variable.*’

As BKZ (2000, 21) correctly note, out-of-sample results indicate
whether a model reflects the “true” causal process driving the phe-
nomena of interest and guards us against “taking advantage of some
idiosyncratic feature of the data.” Predictive success against a binary
dependent variable, however, should never be judged on the basis
against an arbitrary 0.5 probability threshold or a single classification
table. BKZ, by relying upon such a poor standard for adjudicating out-
of-sample performance, diminish their contribution to the literature.

In general, the use of any arbitrary cutoff point to discriminate
between “peace” and “war” or “success” and “failure” in classifica-
tion tasks is risky, and may simply be inappropriate (Greene 1997,
892-3; King and Zeng 2001, 11-13; Swets 1988, 1285-93). Theoretical
work on international conflicts provides us with an additional worry
in choosing such a threshold. Statistical models provide the predicted
probability of a conflict, but this probability may be low in all cases.
As noted in Greene, “0.5, although the usual choice may not be a very
good value to use for the threshold. If the sample is unbalanced — that

33 This subsection follows the “Evaluation of Dichotomous Forecasts” section of de
Marchi, Gelpi, and Grynaviski (2004).
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is, has many more 1’s than 0’s, or vice versa — then by this prediction
rule, it might never predict a 1 (or 0) . .. The obvious adjustment is to
reduce [the threshold]” (892).%

Even wars that ultimately do occur may have been generated by
circumstances where the ex ante probability of war was less than 0.5
(Fearon 1995). For example, if we view war as “off-equilibrium” behav-
ior (Gartzke 1999), then the precise timing of the outbreak of military
conflict may result from some combination of idiosyncratic events. In
this case, any attempt to build systematic statistical models that gener-
ate high ex ante probabilities of military disputes will inevitably become
an exercise in overfitting a particular data set, especially given the
nature of coding rules such as those used for the dependent variable
(i.e., 1,000 battle deaths constitute a dispute) and the key indepen-
dent variable Peace Years (i.e., the arbitrary starting values for all
dyads).

A better alternative would be to use the criterion developed in de
Marchi, Gelpi, and Grynavisky: examine the trade-offs between false-
positives and false-negatives for a variety of predictive thresholds, and
do not penalize a model predisposed to predictions biased too high or
too low. One way to look at different thresholds would be to generate
a huge number of classification tables. A better solution, however, is
to use ROC curves. ROC curves are diagnostics that are able to cope
with the trade-offs between false positives and false negatives in model
assessment (Swets 1988). These curves plot the proportion of conflicts
correctly predicted on the x-axis and the proportion of nonconflicts
correctly predicted on the y-axis. The intuition behind the graph is that
any threshold used as the cutoff between a conflict or peace prediction
will correspond to a single point on this curve. The area below a single
point on the curve corresponds to the proportion of true negatives for
that cutoff, while the area above the point indicates the proportion of
false positives. Similarly, the area to the left of a point corresponds to
the proportion of true positives, while the area to the right of the point
represents the proportion of false negatives. For example, if the cutoff
is zero, then all disputes (but no cases of peace) are predicted correctly.
Finally, as the cutoff varies over the range between zero and one, the

34 See Morrow (1989) for an early attempt to address this problem with international
conflict data.
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curve will be negatively sloped, as fewer conflicts and greater numbers
of peaceful dyads are forecast correctly.

The key point to glean from a pair of ROC curves used for model
comparison is that the curve with more area underneath it corre-
sponds to a greater proportion of successful predictions, regardless
of what arbitrary threshold is settled upon for predicting the depen-
dent variable. In the absence of a specified optimal threshold based
upon decision-theoretic criteria (see Granger 2000, Chapter 3, or de
Finetti 1974), the area under an ROC curve provides a useful summary
statistic that can arbitrate between competing models.

As an example of how necessary ROC curves are, consider the
model presented in BKZ (2000). They discover that neural networks
predict wars with a probability greater than 0.5, whereas prior logit
models do not. One might conclude that this demonstrates the superi-
ority of the particular brand of nonparametric techniques used by BKZ
at the expense of simpler logit models.*> The question then is how does
one compare models of conflict to make this determination? For this
example, I present several models, ordered from the least complex to
the most complex:

* a very simple linear discriminant in which each class is assumed to
have an equivalent covariance matrix;

* alogit model derived from the existing security studies literature;

* (tie) a feed forward neural network presented in BKZ (2000) using
an incorrect error function based upon the number of correct clas-
sifications at the 0.5 threshold;

* (tie) aneural network from de Marchi, Gelpi, and Grynaviski (2004)
using the correct error function of area under the ROC curve;

e BKZ’s 2004 committee of three neural networks estimated using
the correct error function of area under the ROC curve.

Results are presented for two different test sets. One of these is
the test set originally reported in BKZ (2000), consisting of all dyads
in the years after 1985. A second test set was created by drawing a

35 BKZ correct this mistake in their 2004 publication. As noted in this section, the choice
of error function is crucial. BKZ in 2000 did not use MSE; rather, they used a weighted
function that rewarded true positives and true negatives. Maximizing the area under
the ROC curve is the correct error function for this problem, however.
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Forecast Set | Uniform Draws (Pre-1985) Post-1985
Model & selected 95% confidence & selected 95% confidence
intervals intervals
Peace Years (+ splines) 0.805 0.904
Linear discriminant 0.815 0.872
Logit 0.837 0.915
[0.77 ... 0.9] [0.89 ... 0.94]
Single neural net - 0.801 0.87
classification
Single neural net - ROC area 0.856 0.869
[0.77 ... 0.91] [0.79 ... 0.94]
Committee of neural nets 0.871 0.927
[0.82 ... 0.92] [0.91 ... 0.95]

Figure 2.4. Area Under ROC Curves

5% uniform random sample of the dyad-years from 1947 to 1985. The
latter test set was used to test for robustness, and serves as a use-
ful tool to determine whether the particular cutoff of 1986 might be
fortuitous, aiding or hurting different models. Second, I do not present
results from the training set; to do so may artificially inflate the models’
apparent performances and deflect attention from their out-of-sample
performance.

Note that these models range from the simple linear discriminant
to a very complex committee comprised of three different neural net-
works. Given the increase in the parameter space intrinsic to complex
models, and the difficulty in understanding the moving parts in a com-
plex model, it is always useful to see whether or not the complexity of
a model is warranted by the data at hand. When in doubt, one should
follow Friedman and Granger’s advice and choose the simplest “best”
model.

How do these very different models perform? Figure 2.4 reports
the area under the ROC curves for all the models detailed above and
Figure 2.5 plots the ROC curve for selected models. As Figure 2.4
indicates, the committee of neural networks that maximized the area
under the ROC curve in the training set outperformed all of the other
models in this forecast set for both the uniform draws test set and the
post-1985 test set.

Given the rarity of militarized disputes, one should not dismiss even
a modest increase in forecasting accuracy, but one cannot avoid the
impression that the difference between all of these models is quite
small. Figure 2.4 reports that the committee of neural networks had
the greatest area under its ROC curve at 0.9271, while the logistic
regression had the second greatest at 0.9152. Figure 2.5 demonstrates
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ROC Curves for Uniform ROC Curves for Post-1985
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Figure 2.5. ROC Curves for Neural Net (classification), Neural Net (ROC)
Logit, and Linear Discriminant Across Uniform Draw and Post-1985
Test Sets

that for practically any given tolerance of false positives, the logit model
was nearly indistinguishable from its rivals. The overwhelming impres-
sion left by this set of results is that there is little difference between
the various neural networks, logit and discriminant analysis in terms of
their ability to distinguish between dispute and nondispute cases, once
one controls for a model’s inherent bias toward predictive probabilities
that are either too high or too low.

But, as with many methodological ventures, such impressions may
be wrong. How could we explicitly test whether or not one model
outperforms another based upon the results of the ROC curves?
Fortunately, there is an easy answer to this question. One can compare
different ROC curves by using a chi-square test, or a number of related
techniques such as the Kolmogorov-Smirnov test (see Scott and Fasli
2001) or the algorithm developed by DeLong, DeLong, and Clarke-
Pearson (1988).%° All of these approaches make no assumptions about
the distributions in question, and are appropriate to comparing ROC
curves. As one might guess from inspecting Figures 2.4 and 2.5, the
differences between the competing models are in fact not significant
(not even at the P = 0.20 level). Given the limitations in the data and

36 See the Stata Reference Manual, Rel. 8 (2003). The latest version of Stata has imple-
mented very robust code for computing ROC curves as well as comparing different
models with either correlated or independent ROC curves.
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the overall level of performance of all the models (which is quite high),
this should not be seen as surprising.

As noted in Chapter 1, a better approach by far would be to use a
genuinely new out-of-sample set, such as the recently released 1990—
2001 data, in which the differences between the models would likely be
far greater. Repeated efforts to achieve marginally better performance
on the 1986-1989 data, by contrast, runs counter to the entire predictive
enterprise.

A GENERAL STATEMENT ON MODELS

As noted in the first section, the problems discussed in this chapter are
by no means limited to empirical modeling. Since the next chapter will
concern itself with game theoretic and computational models, I will
limit myself to three brief remarks.

First, just as one would argue that empirical models can overfit the
data, so, too, can deductive models “overfit” a desired end result. With
a combination of limiting assumptions, information restrictions, and
equilibrium concepts, one can achieve any desired result with a formal
or game theoretic model. The fact that one can prove something to
be true is not of itself useful; there are an infinite number of models
that prove any given result is true. As with empirical modeling, the
task is to discriminate between competing models. As I argued in the
first chapter of this book, one must avoid what Friedman defines as a
“retreat into purely formal or tautological analysis.”

Second, one must bean count for analytic models in much the same
fashion as the preceding sections have bean counted the various param-
eters involved in formulating empirical models. Parameter spaces are
parameter spaces, and to the extent that one is making choices for a
deductive model, the stability of the result depends upon both how
many choices are made as well as the nature of these choices.”’ A
reasonable question to ask is how robust one’s deductive results are
given perturbations in any of these assumptions. And, if one believes
in the epistemological arguments from Chapter 1, we should be
particularly worried about technical assumptions or assumptions that
seem unrelated to the empirical referent.

37 See the section in Chapter 1 on conditions that should be placed upon assumptions.
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There is, perhaps, a more subtle point to be made here. Unlike
empirical models, deductive models do not depend upon stochastic
components in producing results; that is, assumptions are not noisy
in the way that data are. If you have a set of rotten assumptions in an
empirical model, confronting that model with the data willimmediately
reveal this fact. For a deductive model, however, one might arrive
unknowingly at a set of knife-edge values for what seem to be trivial
or purely technical assumptions but account entirely for the result.
Perturbing any of these assumptions may produce drastically different
outcomes for the model.

As I will argue in Chapter 3, this is a real problem, especially if
one adopts the normal science notion that models should build upon
previous research (and previous models). Fragile models make this
goal difficult. What one requires is a theory of equivalence classes for
formal or game theoretic models. Much of the remainder of the book
attempts to build such equivalence classes, so I will say no more about
it here.

Third, one has to test deductive models. I believe most researchers
would accept that the work of BKZ is incomplete given the fact that
there is no real model being tested. So, too, must one be wary about
deductive models that are “proven” with case studies or qualitative
anecdotes. The exact same standards should apply to deductive work:
When the parameter space of a deductive model is large, one needs a
plentiful supply of out-of-sample data or a set of novel logical impli-
cations to test the deductive model. To the extent that the data do not
span the deductive model’s parameter space, we have less confidence
in the utility of the deductive model. Granger’s admonition that the
consideration of empirical models should focus on the outputs and
not characteristics of the modeling process also applies to deductive
models. The attractiveness of one equilibrium concept over another,
or whether the result was generated with one set of assumptions over
another, is only so useful.*® One should instead focus on how well
models do when confronted with their empirical referents.

38 In large part, it seems the conflation of “rationality” with game theory has diverted
attention from the theories generated by game theoretic models. The rational choice
debate, in Granger’s terms, concerns features of the modeling process, not the quality
of the results.
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A final point concerns these outputs. It is often the case that the
mapping from a deductive model’s results to an empirical referent
is attenuated. To the extent that a deductive model has only loose
application to an empirical referent, we should ignore it, as no real
testing can proceed. As noted in the first chapter, one obvious example
is the iterated prisoner’s dilemma. What, exactly, are the predictions of
this class of models given the plethora of equilibria one can generate?
That people in some settings cooperate?

APPENDIX: PERL CODE FOR THE CURRENCY GAME

1. use Math::BigFloat;

3 # parameters

4

5 $loops=100; # number of times program is repeated

6 SN=10; # population size

7 $ep=0.50; # mutation rate

8 Stime=100; # length of horizon

9 Searly=SN/2; # number of early adopters/those changing
each time period; must be <= SN

10

11 # do file I/0; in this case, output only
12

13 open DATA_DUMP, ">>dump.txt";

14 select DATA_DUMP;

15

16 # print header for data 1x

17 # print “NUMBER of regime shifts | OVERALL MEAN of
populations | Delta |

N | Mutatation Rate | Time \n”;

18



19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
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# repeat program Sloops times; output at the end of the

program body

for ($z=0; $z<$loops; S$z++)

{

# initialize population - uniform draws

Spop_mean=0; # population mean
Scurrent_standard=0; # either 0 or 1 based upon pop mean
Sregime_shifts=0; # number of regime shifts
Spop_total=0; # keeps total population values for

use later in determining mean

for ($i=0; $i<$N; $i++)
{
if (rand()<0.5)({
Sagents[$i]1=0;
}

else {Sagents[$i]=1; S$pop_mean++;}

if ($pop_mean>S$N/2) {$Scurrent_standard=1;} else

{Scurrent_standard=0;}

# start main loop; pick one agent at random and allow

change

for ($i=0; Si<Stime; S$i++)

{
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45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

# set temp_regime to existing standard for later

comparison at loop end

Stemp_regime=$current_standard;

for

(Se=0; Se<Searly; Se++) # start loop of switchers
{

# draw the agent who considers change
Stemp=int (rand (SN)) ;

Sval=Sagents[Stemp] ;

# draw the epsilon

if (rand()<Sep) {Sagents[Stemp] = sprintf
("% .0f", rand ()); }

# otherwise, act like a sheep
else {if (Sagents[Stemp]!=S$current_standard)

{Sagents|[Stemp]=Scurrent_standard; }

#check for change, update Spop_mean and Scurrent_

standard
if (Sagents[Stemp]>Sval) {Spop_mean++;}else
{if (Sagents[$temp]l<S$val) {$pop_mean--;}}

if ($pop_mean>$N/2) {$current_standard=1; }else

{$Scurrent_standard=0;}

}# end Searly loop for all switchers

# save pop_total and print out values of interest

$Spop_total=$pop_total+$Spop_mean;
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70 # print "“Pop_mean: ”, Spop mean, "“Standard: ”,

Scurrent_standard, "“\n”;

71

72 # check to see if a regime shift occurs

73 if (Stemp_regime!=Scurrent_standard) {Sregime_
shifts++; }

74

75 }

76

77 # determine overall pop mean
78 $pop_total=spop_total / S$time;
79

80 # print data

81 print S$regime_shifts, " ", Math::BigFloat->bceil
(Spop_total), " ", abs(Math::BigFloat->bceil ($pop_total)
—$N/2), n u’ sN’ n n, $ep”n ||, $time, " \nn;

82

83 } # end Sloops

84

85 close DATA_DUMP; # close output file

77



From Curses to Complexity

The Justification for Computational Modeling

INTRODUCTION

The study of international conflict, like many fields, has hosted a long-
standing debate between rational choice theory and its critics.! Ratio-
nal choice, in this debate, is in some sense a misnomer, as the critics
almost solely reference game theoretic models in which the nation-
state is the primary actor. The overall question, however, raised by
critics of game theory is whether or not three decades of formal mod-
eling has helped us to understand complicated phenomena such as the
causes of war and alliance formation.

In this chapter, I will review the main positions taken in this debate,
using some of the more prominent game theoretic models as illustra-
tions. It will become obvious that I am critical of the efforts of game
theory to date, despite my support for the idea that one must engage
in modeling as an enterprise to understand complicated phenomena.
My focus, however, is not solely on the limitations of existing models
nor is it on any particular substantive area (although problems in secu-
rity studies will be used as examples); rather, it is to investigate these
models with the goal of determining which complications systemat-
ically hamper their effectiveness when applied to difficult problems.
Obviously, game theory has been tremendously effective in solving
other problems, so one must wonder where the stumbling blocks lie in

1 See, in particular, Walt (1999a) which launched the thousand ships, and Walt (1999b),
which is aresponse to various defenses of game theory in a special issue of International
Security (Vol. 24:2, Fall 1999). The most salient defenses were written by Bueno de
Mequita and Morrow (1999), Niou and Ordeshook (1999), and Powell (1999).
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complex problem areas like security studies and what the implications
are for game theory more generally.”

As we have seen in the previous chapter, there are two problems
that complicate empirical research. First, the curse of dimensionality
hampers one’s ability to test the results of complex models. Second,
one needs to avoid brittle models, in which seemingly trivial changes
to a model’s assumptions cause huge swings in the results. This chap-
ter demonstrates that these problems affect game theoretic models in
exactly the same fashion as empirical models. Fortunately, the solu-
tions to these problems are much the same for game theory as they
were for empirical models. We will see that one must develop feature
spaces that encode problems in a parsimonious fashion. Further, with-
out the development of equivalence classes, it is difficult to engage in
cumulative research.

I will thus present an approach that borrows from both game theory
and computational political economy, and, as such, will likely cause
some discomfort to both methodological “camps.” To illustrate the
promise of a combined approach, I use two examples that serve as illus-
trations of how to apply the proposed methodology. The first example
(beginning in this chapter and continuing to the next) concerns the
problem of alliance formation. The second example (in Chapter 5)
examines nonseparable preferences and survey data.

A DETOUR! A BRIEF CRITIQUE OF GAME THEORY
(AND SUNDRY COMMENTS ON MACHINE CHESS)

In the debate between formal modelers and their naysayers, model-
ing complex processes such as war is most often framed as a dichoto-
mous choice between game theoretic models, on the one hand, and
qualitative/historical work, on the other.® It is worth repeating that

2 One example involving a complicated auction would be Binmore and Klemperer
(2002). In April 2000, they organized the license auction of Britain’s third-generation
mobile phones. The total revenue of the auction was equivalent to 2.5% of Britain’s
GNP. There are, of course, other examples of the utility of game theory.

3 As argued in the first chapter of this book, there is a third approach, which is to
adopt Friedman’s (1953) maxim that models and their assumptions are not worth
arguing over; rather, one should be ecumenical with regard to models and base com-
parisons solely upon their out-of-sample performance. Sadly, most social scientists
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game theory has been widely accepted in large part due to analytic
simplicity and broad applicability. Most would believe that game the-
ory deserves the name — all games are potentially representable within
the confines of game theory.

Thus, if game theory is to work as advertised, we have to have some
way to encode most of the games we are interested in studying; or, more
in the vein of mathematics proper, build upon previous efforts to derive
increasingly complicated models that achieve more verisimilitude with
the problem at hand. It is worth summarizing what is required by game
theory to encode a given problem. To accomplish this task, game theory
requires three moving parts. First, one needs an instantiation for the
problems that humans confront, and ideally this encoding represents
what players know at different points in the game. In game theory, this
instantiation is most often an extensive form game, where the inno-
vation of information sets provides a nice vehicle for understanding
how knowledge impacts play. Second, one needs explicit utility func-
tions that represent how players evaluate the outcomes of the game.
Last, one needs a solution concept and an algorithm that “solves” a
given problem; game theory typically utilizes a Nash equilibrium (or
a refinement) as the solution concept and backwards induction as the
algorithm. Given an extensive form and a utility function, one can
readily apply backwards induction and test for the existence of a Nash
equilibrium.

Although I am working toward a critique, I would like to distin-
guish the current work from the approach taken by most critics of
game theory (and rational choice more generally). There are two
main streams of criticism. The first has focused upon whether humans
can actually frame problems correctly (i.e., can we satisfy information
requirements?) or apply the appropriate solution concept (i.e., can we
satisfy computational requirements?). The consensus of this line of
research is that humans are quite stupid compared to the ideal rational
choice player, even if the humans in question are heads of state.

The problem with the standard criticism is that it (bizarrely) con-
cedes that the definition of human rationality coincides with a game
theoretic player, and this is what Green and Shapiro (1994), and other
critics of rational choice theory, have failed to recognize. Humans are in

have fetishized the different methodological approaches at the expense of focusing
upon results and predictive performance.
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many ways limited or less good than homo economicus, butit s also the
case that humans typically make choices in difficult environments with
limited information. Kahneman and Tversky (1979) style experiments
point to our obvious flaws in relatively simple tasks; but up the ante a
bit by presenting humans with more complicated games and the tables
turn quite dramatically. We “outperform” rational choice players, and
there is no reason to suspect that game theoretic models have much
to say about certain (complex) classes of human games and decision
contexts. So although we may sometimes make mistakes calculating
simple expected value problems, it is also true that we thrash rational
choice players at games like poker.”*

The second, equally critical line of research, focuses upon the sup-
posed ahistoric, simplifying assumptions relied upon in most game the-
oretic models.” The argument from proponents of a more historical
approach is that the models are assumption driven, and that careful
attention to case studies is a more appropriate avenue toward under-
standing complex problems.

History, regrettably, seems less than fruitful as a model of how to
conduct research in the social sciences, unless one wishes to give up
on any notion of causality.® If one adopts a King, Keohane, and Verba
sensibility about the nature of epistemology underlying both mathe-
matical methods and historiography, one has to admit that “case stud-
ies” of itself is not a methodology.” Much as some would wish, the use
of history does not somehow avoid problems inherent in models of any
kind (game theoretic or not). As I have argued in Chapter 2, a param-
eter space is a parameter space, whether the parameters involved are
quantitative or qualitative.

Despite my belief that game theory, as currently employed, is inad-
equate to the challenge posed by many important problems in the

4 The most ambitious poker research project is currently run by the University of Alberta
Computer Poker Research Group. See http://www.cs.ualberta.ca/~games/poker/ for
more details.

5 For an overview in the security studies literature, see Walt (1999a); for an attempt at
a general synthesis of game theory with case studies, see (Bates et al. 1998).

% For a considered treatment of the role of causality in historiography, see Novick (1998).

7 Typically, proponents of qualitative/historical methods state that one should match
assumptions with reality, incorporate dynamic/path dependent elements, and be sen-
sitive to the possibility that preferences or institutions may change through time. Typ-
ically, they are not troubled by the complications that ensue due to a loss of IID
observations and the explosion of the parameter space.
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social sciences, I do believe that mathematical modeling is the best
of all approaches, so long as we remember the arguments presented
in Chapter 1. Models should be compared by examining how fruit-
ful their predictions are, rather than the supposed accuracy of their
assumptions. This implies that models should provide results that cor-
respond to the real-world phenomenon that is being measured with a
dependent variable; qualitative assessments and analogies that aim to
“bridge the gap” between the model and the data are troubling.

Extensive Game Forms, Utility Functions, and Feature Spaces

In Chapter 2 of what is perhaps the most important book ever written
in economics, Von Neumann and Morgenstern state what has now
become a tenet of belief for most of us:

It should be clear from the discussions of Chapter I that a theory of rational
behavior —i.e., of the foundations of economics and of the main mechanisms of
social organization — requires a thorough study of the “games of strategy”. . .in
the process of this analysis it will be technically advantageous to rely on pictures
and examples which are rather remote from the field of economics proper,
and belong strictly to the field of games of the conventional variety. Thus
the discussions which follow will be dominated by illustrations from Chess,
“Matching Pennies,” Poker, Bridge, etc., and not from the structure of cartels,
markets, oligopolies, etc. (1944, 46-7)

There is, however, one point of difference between the program spec-
ified by Von Neumann and Morgenstern and that advocated by more
modern game theorists. The games Von Neumann and Morgenstern
viewed as “essential” to any theory of rational behavior have been
dramatically dumbed down or truncated from modern game theory —
bridge and poker, for example, are not active research concerns. And
it is not as if Von Neumann and Morgenstern were alone in their ear-
lier belief that game theory’s domain should involve complex human
games. John Nash, famously, was interested in Go, and invented the
game Hex while he was at graduate school at Princeton.® Ken Binmore,
after finding one of Von Neumann’s poker models counterintuitive (yet
helpful for actual play), also decided to study game theory.” Many of

8 See, for example, Kuhn and Nasar (2002, Chapter 3).

9 Personal communication with Binmore and Binmore (1992, 573). As Binmore details
in Chapter 12 of Fun and Games, many other game theorists were interested in poker,
including Borel and Shapley.
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the brightest game theorists had, at some point, a desire to use the tools
of game theory to study real, human games.

Ironically, Go, Hex, chess, and poker are largely immune to game
theoretic treatments. The main reason that the tools of game theory
(and the early research program of Von Neumann and Morgenstern)
have failed so completely is because of the encoding used to study
games. What is wrong with using a normal form or extensive form to
encode games? To understand the issues involved, a brief detour to
machine chess is necessary.

Of all the games noted here, chess, on the face of it, is by far the most
amenable to game theoretic treatments. Chess also has the beneficial
feature that decades of work have been devoted toward building a
machine player that is the equivalent of human masters. Periodically,
one can measure the success of this program by taking stock of the
frequent matches between machines and human opponents.

Of all these matches, the most famous is the second tournament
between IBM’s Deep Blue and Garry Kasparov that occurred in the
spring of 1997. After watching Kasparov lose to Deep Blue, chess mas-
ters went on record with statements such as:

“Nice style!” said Susan Polgar, the women’s world champion. “Really impres-
sive. The computer played a champion’s style, like Karpov,” she continued,
referring to Anatoly Karpov, a former world champion who is widely regarded
as second in strength only to Kasparov. “Deep Blue made many moves that
were based on understanding chess, on feeling the position. We all thought
computers couldn’t do that.” (New York Times, “Computer Defeats Kasparov,
Stunning the Chess Experts,” May 5, 1997)

The problem, of course, is that Deep Blue does not represent a
triumph for artificial intelligence, a fact the IBM team is quite up-front
about (though the media has not been). From the official IBM FAQ
on Deep Blue:

Does Deep Blue use artificial intelligence?

The short answer is “no.” Earlier computer designs that tried to mimic human
thinking weren’t very good at it. No formula exists for intuition. So Deep
Blue’s designers have gone “back to the future.” Deep Blue relies more on
computational power and a simpler search and evaluation function. (Deep
Blue FAQ. http://www.research.ibm.com/deepblue/meet/html/d.3.3.html)

Even though Deep Blue is not what one might expect from artificial
intelligence — a learning, strategic algorithm — Deep Blue is (rather
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surprisingly) the ultimate game theoretic player. By this, I mean that
Deep Blue approaches the problem of chess in much the same way a
game theorist would recommend. It uses an extensive form for chess
positions, and “solves” this tree with a variant of backwards induction
(i.e., alpha-beta pruning, which is computationally more efficient than
backwards induction).

So, Zermelo had it right all along; at some point, chess will be con-
quered by computers, given any reasonable increase in the power of
hardware. And more important for the argument here is that chess
has been conquered by an encoding and a solution algorithm that look
very much like game theory. One could argue that success in such a
complex game is an indication that game theory is an appropriate tool
for studying all human games and decision contexts.

The problem is that looks are deceiving in this case. Two charac-
teristics in particular of Deep Blue (and machine game players more
generally) distinguish it from game theory proper; moreover, these dis-
tinctions are instrumental in highlighting what goes wrong when game
theorists approach complex problems.

The first characteristic worth noting is the use of idiosyncratic utility
functions. Chess, obviously, has a well-known utility function with three
elements {win, lose, draw}. Unfortunately, encoding chess with game
theory requires the ability to match strategies with outcomes; given
the combinatorics of chess, this is not feasible. It is also obvious, to
anyone who plays the game, that human players are able in most cases
to evaluate a game before the terminal nodes are reached, based upon
features such as material, position, pawn support, and the like. These
features are mysterious, insofar as they bear no obvious connection to
the ultimate utility function (or strategies) of the game as encoded by
game theory.!’

But perhaps after reading Chapter 2 they are not so mysterious to
us! The terms of the utility function used in models of chess can be seen
as analogous to the features described by Bishop and other researchers
in non-parametric statistics. Just as in empirical models, not all features

10" Concepts such as “material” do not bear any relation to the rules of chess either,
thereby compounding the mystery. Whether one assigns a single point to a pawn and
three to a bishop or entirely different values is not, in any way, deducible from the
rules of the game.
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in machine chess are created equal — a random feature of chess, such as
how close to the center of a square one places one’s pieces, would prob-
ably not be useful. Machine algorithms thus incorporate an insight that
is common to both empirical and analytic work: By utilizing (linear)
combinations of features that characterize utility derived from inter-
mediate actions taken within the game, one can reduce the parameter
space of an impossibly complex game. Without such a simplification,
no analytic work would be possible.

Thus, one surmounts a logical problem. Even though Deep Blue
could calculate hundreds of millions of moves a second, all of this
processing power would be for naught unless it could span complete
strategies. Game theory, as noted earlier, requires complete extensive
forms, so that one can map terminal nodes to payoffs — an impossible
feat in chess. Instead, Deep Blue used its formidable computational
power to generate partial extensive forms (e.g., a tree that represents
10 moves out from the current game state) and assigned the terminal
nodes of these partial extensive forms values taken from idiosyncratic
utility functions. “Idiosyncratic” is taken here to mean a utility function
comprised of features that bear no necessary relation to the utility
function or rules of chess but are nonetheless helpful in evaluating
intermediate positions in chess.

Where does such a utility function come from? The researchers
involved used a combination of domain specific knowledge of chess
to choose the terms in the utility function, plus empirical work drawn
from past games of human chess masters:

The evaluation hardware has four components. A piece placement evaluation
scores pieces according to their central placement, their mobility and other
considerations. A pawn structure evaluation scores pawns according to such
parameters as their mutual support, their control of the center of the board
and their protection of the king. A passed-pawn evaluation considers pawns
that are unopposed by enemy pawns and can therefore be advanced to the
eighth rank and promoted to queens. A file structure evaluation assigns val-
ues to more complicated configurations of pawns and rooks on a particular
file.

We also began to consider ways of tuning the evaluation function’s 120 or so
parameters, specified in software. Traditionally, programmers had hand-tuned
the weights that programs assigned to material — pawns and pieces — and to
positional considerations. We believe ours is the only major program to tune
its own weights automatically.
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We acquired 900 sample master games and arbitrarily defined the optimum
weights as those that produce the best match between the moves the machine
judges to be best and those that the masters actually played. (Hsu et al. 1990, 18)

Essentially, the researchers relied upon a combination of hill-climbing
and OLS estimation to provide a fit between feature weights and opti-
mum play, where “optimum” is defined as a correspondence between
good human play and the idiosyncratic utility function’s evaluation of
intermediate strategies.'" A combination of deductive (particularly for
the end game) and computational work thus chose the features, while
clever empirical work using a data set comprised of expert human play
determined the weights of these features in a linear function.

The second characteristic that distinguishes machine chess from
game theory proper concerns the use of components, which may be
thought of in similar terms as a subgame. The distinction between
the two concepts is that subgames, starting with a node in the exten-
sive form, include all possible histories generated from that node
(i.e., all actions from the starting node to the corresponding termi-
nal actions). Component games, in contrast, are here defined as any
linked collection of actions, whether or not the partial strategy includes
terminal actions.

In machine chess, components often are used to simplify play. In
fact, independent algorithms are defined for different components that
added together form a complete game of chess. One example would
be opening move libraries; another would be a specialized algorithm
for end games in chess. What should be obvious is that the use of
components dramatically reduces the combinatorics of strategies by
decomposing them into computationally independent parts. It should
be equally clear that doing so represents an enormous leap of faith,
insofar as the independence of components does not at all follow from
the extensive form of a game.

I Hill-climbing refers to a computational technique akin to a gradient search. One
defines a neighborhood as a number of perturbations originating from a given action,
then chooses a perturbation that results in the greatest increase in utility. By following
the “best” perturbation from each action’s neighborhood, one can computationally
determine the location of local optima. Note that the idiosyncratic utility function
defined above is a real-valued function defined on incomplete extensive forms, while
the actual utility function for chess is {win, lose, draw} defined on the complete
extensive form. There will be more discussion of optimization in the next chapter.
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Components, like subgames, have associated utility functions, but,
as noted earlier, they do not necessarily include terminal nodes as in
game theory. This complicates the issue of assigning utility to strate-
gies taken in a component game, as one cannot simply use the overall
utility function of the complete game for the partial strategies of a
component. The lack of complete strategies demands that “solving”
any given component rests upon the assignment of an idiosyncratic
utility function tailored to that component. As we have seen, these
utility functions have no necessary relationship to the overall utility
function of the game itself.

One example of the relationship between components and idiosyn-
cratic utility functions would be the idea (probably correct, but perhaps
wrong) that a rook’s-pawn opening is inferior to a king or queen’s
pawn opening. If our component is taken to be the first N moves of
the game (spanning most opening move libraries), and our idiosyn-
cratic utility function is taken as outlined earlier (some combination
of position, attacks on central squares, etc.), rook’s-pawn openings are
inferior. In game theoretic terms, this kind of statement is impossible
to make given the combinatorics involved — and would be quite suspect
if made informally. After all, it is possible that an equilibrium strategy
for white for the complete game of chess starts with a rook’s-pawn
move.

Machine chess thus provides a great deal of insight into how one
might go about modeling complex games using feature spaces and
domain specific encodings. One starts with deductive models to gain
insight into a problem using transparent, tractable methods; one also
may use deductive methods to solve “easy” parts of a problem (e.g., the
end game in chess readily succumbs to purely deductive approaches).
Instead of resting at this point, however, one should try to build cumu-
lative models that add verisimilitude, which I have defined as a model
that provides results directly connected to empirical tests (whether
they be out-of-sample data or analytic implications of the model). This
may well mean that early deductive models are expanded using com-
putational models; in machine chess, this process was aided by empir-
ical work that chose the key parameter values of the idiosyncratic
utility functions. At the end of the day, the “closer” the final model
is to the real-world referent, the better. After all, one would be far
less impressed with machine chess algorithms if they did not actually
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play the game but instead yielded vague aphorisms about cooperation,
bluffing, and the like.'”

“Brittle” Encodings and Equivalence Classes of Games:
Empirical Implications

A quite different problem with the application of game theory to secu-
rity studies concerns the “brittleness” of game theoretic models. But
what does this mean? Simply put, it means that game theory should be
able to model a broad range of games, and moreover, scale well with
the different sorts of complexity one finds as problems in subfields like
security studies. Else, we run into the difficulty that we model what we
can and depend upon loose analogies to talk about the problems we
are really interested in.'”

This is potentially quite embarrassing, and much like the situation
of teaching the IPD to undergraduates. In every class, at least one stu-
dent, dissatisfied with the outcome of the single-stage game, attempts
to change the payoffs.'* We patiently explain that changing the payoffs,
or the strategy sets, results in a different game; moreover, the “novel”
game bears no obvious relationship to the original. This runs counter to
most students’ intuition and for good reason: Game theory demands
a high level of precision because of the way it encodes games. The
problem, of course, is that all this precision usually goes out the win-
dow when we make analogies and derive empirical implications of our
models. One cannot assume that a two-player, complete information
game of interactions between nations is useful for understanding the

12 Note that there is an enormous “peace dividend” of writing models that play the
actual game, rather than relying upon simplifying assumptions that change the game
under consideration. By forcing modelers to focus on chess (rather than some simpler
game that one believes, through unprovable analogies, is “like” chess), one can use
data from real games to improve one’s models.

One example of this phenomenon is the short, unhappy literature on Colonel Blotto-
type games. Despite enormous interest by military planners and think tanks, the lit-
erature petered out when results were not forthcoming. There is, however, relatively
recent work (in the style of Axelrod’s tournaments with the IPD) by the mathemati-
cian Jonathan Partington.

You want to partially reward this type of behavior — at least it shows an understanding
of the logic of the game, and there are examples where this type of skullduggery is
rewarded. See, for example, Kreps and Wilson 1982 and their modification of the
chain store paradox (Selten 1978).

13

14
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nondyadic conflicts of the real world. Small changes (e.g., increasing
the numbers of players) matter a lot; to date, there is no aspect of game
theory that readily lends itself to theory that persists across “equiva-
lence classes” of games.

The work of Signorino (1999) details exactly how disastrous this
is for the empirical study of international conflict. On the one hand,
Signorino notes that the measures typically employed in quantitative
studies of conflicts (e.g., the balance of military forces) fail to “cap-
ture the structure of that strategic interdependence — that is, the set
of states interacting, their sequence of decisions, options at decision
points, the factors that influence their incentives, and the equilibrium
effects of this interdependence on outcomes” (280). Further, if more
than two states are involved in a conflict, using dyadic observations (as
most everyone does), means that “each N-nation interaction becomes
N(N —1)/2 independent observations, greatly expanding the size of the
data set without adding any additional information toit” (280)."> Given
these problems, Signorino does the only sensible thing, and builds an
empirical model that is more closely connected to the strategic game
responsible for conflict.'®

On the other hand, the obvious merit in including the structure of
a game in the empirical specification leads to an unexpected difficulty
in evaluating the predictive power of the model:

We know that small changes to a theory (e.g., the number of players, the
sequence of their moves, the choices and information available to them, and
their incentives) can have large consequences in what the theory predicts. If a
theory is vague, then it is unclear what statistical model would be consistent
with that theory. Therefore, if we want to ensure consistency between a theory
and a statistical model, we must be as precise as possible in the specification
of the theory. Given the requirement for theoretical precision, how are we to
specify and test strategic theories without doing so formally? ... although the
call for increased formalization of theories may be welcomed by many posi-
tivists, the importance of structures also seems to cut the other way. Consider
the typical derivation and analysis of a positive theory. One major assumption

15 1 would quibble with the characterization of these expanded observations as inde-
pendent — they are not IID, and this obviously sows confusion for empirical models.

16 Essentially, he assigns probabilities to histories of the extensive game form. To
avoid the problem of null probability histories, an error term is attached to these
probabilities.
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generally held — indeed, held throughout this article — is that the structure of
the model remains constant across all observations in the data. ... It does not
seems unreasonable to suspect, however, that the true game structure changes
over time and place. If even small changes in structure can make a large dif-
ference in likely outcomes, and if the true structure of the strategic interaction
changes from observation to observation in our data, then what are we to
make of any statistical results predicated on the assumption of a fixed game?
(294-5)

One could easily expand the above point to include the possibility that
the game in question is not quite right. Absent any theory of equiva-
lence classes that would describe “similar” games, one has to suspect
that empirical “verification” of a game has more to do with building
a game to match a preconceived idea of the correct outcome than
any genuine understanding of the causal processes involved. There
are, after all, a universe of possible games. For any given empirical
outcome, 10 different researchers might construct ten different games
that all yield the “right” answer. Unless we have a source of novel data,
it would be impossible to discriminate between them.

How brittle are game theoretic results? In the next section, I will
review one of the more prominent models of international conflict, and
see how well it holds up under the sorts of criticism advanced in this
section.

AN EXISTING MODEL OF CONFLICT INITIATION

Perhaps the most famous paper that uses game theory to examine con-
flict is Fearon’s (1995) “Rationalist Explanations for War.” A game
theoretic paper by Brito and Intriligator (1985) and work in military
history by Blainey (1988) predate the work by Fearon in political sci-
ence, and along with several decades of work in labor economics, all of
these papers make essentially the same argument: wars, given what we
know about bargaining theory, are not “rational” enterprises, insofar
as one could always transfer resources rather than incur the costs of
a conflict. Wars are thus the byproducts of incomplete or asymmetric
information; or, as Gartzke (1999) puts it, “War is in the Error Term.”

To make his argument, Fearon relies upon a standard bargain-
ing game (see Osborne and Rubinstein 1990, for an overview) and



From Curses to Complexity 91

makes the following assumptions to justify the claim that completely
informed, rational players do not initiate conflicts:

war is costly for both participants;

two nations constitute the set of players;

the game is a single-stage, not repeated;

there exists a single fungible, continuous resource (i.e., no non-
separabilities or discontinuities exist over multiple issues).

Sl

Given the bargaining model and requisite assumptions employed by
Fearon, is there any reason to place much stock in his conclusions?

A fair answer has to be “no.” The problem, as noted by Signorino,
is that the conclusions of Fearon’s work are very much dependent
upon the structure of the formal model; if any of these assumptions
are incorrect (or simply different), one can make no prediction about
the effect this perturbation would have in generating his conclusions.
And as I argued in the first chapter, one has to be especially wary of
models that do not have the property of result convergence; that is,
if minor perturbations of assumptions produce dramatically different
results, one cannot place much confidence in the model.

His first assumption, that war is costly, is far from obvious in the
macroeconomics peace literature. In their review of the macroeco-
nomics literature, Isard and Anderton (1999) detail the impact of
defense spending and conflict on various measures of the domestic
economy, including GDP, inflation, unemployment, and technological
investment. This overview makes clear that it is difficult to discern what
the overall impact of military spending or a conflict is, especially if one
understands that “the good” is not a single feature (e.g., GDP might go
up if the resources used for the military were optimally reallocated but
unemployment might rise). If one adds more dramatic but longer term
effects such as a nation’s overall technology for war and the experience
gained from fighting, the picture becomes murkier still.'” Last, Fearon
is reluctant to identify who the relevant agents are in his model — who,

17" See Diamond (1997) or Kennedy (1987). While one can take issue with the analysis
presented within these volumes, they do serve as warnings to how difficult it is to
evaluate the costs and benefits of military resource allocations over long time spans.
Of the more memorable examples of how decreased military spending can result in
dramatic, unexpected costs is China’s self-mandated destruction of its naval resources
in the 15th century.
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in particular, receives utility from conflict (or its avoidance)? As
Goemans (2000) has pointed out, it may in fact be beneficial for state
leaders to engage in conflict in some circumstances, and they are but
one candidate for the agent under consideration in Fearon’s work.'®

Fearon’s second assumption limits the set of players to two nation-
states. This adds obvious analytic tractability but at the cost of compro-
mising any general conclusion generated by such a model. It is worth
repeating that war is often nondyadic, and models that assume dyadic
conflicts cannot be expected to have anything general to say about
nondyadic conflicts (i.e., structure matters). As noted earlier, N-player
games are difficult, in most circumstances, for game theory to encode;
thus, formal modelers often make the choice of making analogies to
the multiplayer case from a two-player game.

Fearon’s third assumption is equally injurious if one wishes to derive
general conclusions from his work. Conflicts in the international system
are not single-shot games; and again, we should have no expectation
that a model with repeated plays would generate the same conclu-
sion. In fact, working from similar assumptions but generalizing to
the repeated case, Garfinkel and Skaperdas (2000) show that it is often
“rational” toinitiate conflicts. The reason for thisis easy tounderstand —
following Fearon’s setup, if nation A has epsilon more power than
nation B, it could extract some amount from B so long as this total is
less than the cost to B of fighting. Unfortunately (for B), if the game
is iterated, the extraction of resources by A would certainly continue,
and the gap would grow while B’s chances of winning a conflict would
decrease monotonically. B’s best chance, then, of winning a conflict
would be on the first round. By considering the repeated game, one
arrives at an equilibrium result that is exactly the opposite of that pre-
sented by Fearon in his section on “Preventive War.”

The final assumption, which seems trivial, is that nations may
exchange resources in a transferable, continuous commodity. Impos-
ing the assumption of unidimensionality in this way avoids a problem
that Fearon himself notes: If the issues at stake are discontinuous or
nonseparable, war may be the inevitable result of an inability to reach
a bargaining outcome all sides prefer to war. Fearon dismisses this as
unlikely, but surely, this is an empirical question, and issues such as the

18 One also could look to Machiavelli’s Discourses for a distinct viewpoint on the costs
and benefits of war for a republic.
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status of Jerusalem in the Israeli-Palestinian conflict might lead one to
reconsider this assumption.

At this point, one might object that attacking assumptions in this
manner is counterproductive, and cite the treatment of Friedman
(1953) in Chapter 1 of this book as proof of this position. Friedman’s
version of instrumentalism is consistent, however, only if one heeds
his call to compare models based upon their predictive power, rather
than the verisimilitude of their assumptions. Fearon’s model has no
hypotheses that one could test, so under Friedman’s terms it would be
impossible to support or reject his model by tying the results to exist-
ing (or even hypothetical) sources of data on conflicts.'” Assumptions,
in this case, are all we have, both for evaluating the model and for
generating substantive conclusions. Slight changes in the assumptions
result in huge changes in the conclusions, and that should be a cause
for alarm, especially when the assumptions fail to comport with the
phenomenon in question.

Put another way, all conflicts are characterized by asymmetric/
incomplete information. But not all nations fight wars. For Fearon’s
model to be useful, one would have to provide a measurable depen-
dent variable that could falsify the model.”’

On a theoretical front, it seems that the state of affairs has not
advanced much past the description offered in Niou and Ordeshook
(1991):

For those who are not a party to it, the debate between realists and neoliberals
seems a curious circus. While realists struggle with the specification of state
goals and with alternative conceptualizations of balance of power, neoliberals
offer vague admonitions that goals depend on context. Realists see coopera-
tion as secondary to the conflictual processes of politics even though stability

19" As noted in Chapter 1, one might also test a model by deriving nonobvious implica-
tions of the model, especially for problems that are data-poor.

This is not to say that all purely deductive models are without merit — contrast Fearon’s
model with Arrow’s (1963) seminal work. For Fearon, one needs to be confident that
one is observing a two-player noniterated game where war is costly. For Arrow, any
preference aggregation mechanism fails to satisfy a set of conditions one would like
to be true of democracy. Absent any way to directly test a deductive model, one
must consider the breadth of the theory. In Fearon’s case, it seems fair to say that the
model does not obviously describe anything about the world. To the degree it is a
simplification of reality, one needs to map the results of the model back to empirical
work to see if the simplification is a useful one. In the case of Arrow’s impossibility
result, it applies to all conceivable voting rules, which clearly covers any real-world
case. Empirical work is thus beside the point.

20
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requires some minimal level of cooperation to maintain alliances, whereas
neoliberals, aside from references to examples in game theory that do not nec-
essarily model any specific international process, fail to define precisely the
necessary and sufficient conditions for cooperation. ... Neoliberalism argues
that institutions matter because they somehow modify the actions of decision
makers both directly by altering the costs and benefits of actions and indirectly
by modifying goals, whereas realism has difficulty explaining the institutions
and patters of cooperation that characterize human affairs. (481-2)

In large part, many of the debates about the nature of the international
system stem from the underlying difficulty of modeling processes such
as alliance formation and the initiation of conflicts. Fearon’s model was
used here because it is widely recognized as one of the better efforts
to model conflict initiation; one should not be deceived, however, into
believing that better models exist elsewhere.” What is needed is a
different approach that avoids the shortfalls noted earlier.

A final note to the wary is in order. Critics of game theory often
depend upon unstated assumptions about the nature of reason or other
matters of taste. That is not the case with the criticism presented here.
What is at issue is whether or not game theory, as one encoding of
many that exists for investigating human games, is particularly effec-
tive in generating predictions or explaining current strategic problems.
My answer is that it is not, and to make this case, I depend upon an
examination of existing models.

Additional weight may be added to the argument presented here
by borrowing from analytic results into the nature of the encoding
offered by game theory. Conitzer and Sandholm (2002) have shown

21 Powell’s (1993) work on the trade-off between domestic spending and military allot-
ments is less a well-stated game than it is a set of parameters, where Powell picks
parameter values (by assumption) that allow him to make his argument. The Markov
Perfect Equilibrium is also superfluous in this paper, as it does not serve to refine the
equilibria past what a subgame perfect equilibrium would do. Niou and Ordeshook’s
(1991) paper is the best of the existing models, as it tries to incorporate N players with
the possibility of coalitions. Unfortunately, the results are driven by the twin assump-
tions of a single, continuous resource and the fact that the game terminates when one
coalition achieves exactly one half of the available resources. The main strategy, given
this condition, is for the losing nations to achieve a coalition with exactly one half
the resources, thereby artificially terminating the game before one nation dominates.
Both of these papers violate the spirit of my arguments on the nature of assumptions
in Chapter 1, insofar as technical assumptions (or parameter choices) unrelated to
the phenomenon in question drive the results.
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that for many classes of “simple” games, finding a Nash equilibrium
(or a related refinement) is a nonpolynomial (or, NP) hard problem:*

Noncooperative game theory provides a normative framework for analyzing
strategic interactions. However, for the toolbox to be operational, the solutions
it defines will have to be computed. In this paper, we provided a single reduc-
tion that 1) demonstrates NP-hardness of determining whether Nash equilib-
ria with certain natural properties exist, and 2) demonstrates the #P-hardness
of counting Nash equilibria (or connected sets of Nash equilibria). We also
showed that 3) determining whether a pure-strategy Bayes-Nash equilibrium
exists is NP-hard, and that 4) determining whether a pure-strategy Nash equi-
librium exists in a stochastic (Markov) game is PSPACE-hard even in invisible
games (and remains NP-hard if the game is finite). All of our hardness results
hold even if there are only two players and the game is symmetric. (10)

What does this result imply? It means that as the size of even the
simplest games increase, the number of computations that must be
performed to check for the existence of a Nash equilibrium increases
in nonpolynomial time (i.e., greater than polynomial). And yes, thisis a
very, very bad thing. Again, simple bean counting of the sort performed
in Chapter 2 comes in handy. Fearon’s model, despite the apparent sim-
plicity, has a quite large parameter space, where almost any deviation
from his assigned parameter values causes substantially (and unpre-
dictably) different results.””

22 For an overview of computational theory, see Papadimitriou (1994).
23 For his basic bargaining model, you have the following parameter space:

. N players (set to 2 in Fearon’s model)

. A single issue with a real value from the set [0..1]

. An ideal point for player A and B (or N in the most general case)

. A choice of utility function for A and B

. A number of iterations (set to 1)

. A rule for conflict (in Fearon’s model, a simple statement of probability p)
. Costs C, and Cy, for the two players (assumed to be >0)

. An equilibrium concept (perfect Bayesian, a refinement of the Nash)

S0 .0 20 O

One could quite easily generalize Fearon’s model by resorting to a computational
model, thereby increasing one’s ability to track how changes in parameter values
modify the results Fearon presents. Using a deductive model with a particular set of
parameter values as Fearon does is a valid first step to gain intuition about a problem.
The argument in this and subsequent chapters of this book is that building a more
general model is an essential second step in this process, even if this means abandoning
apurely game theoretic approach and moving toward computational models. The final
step, of course, is empirical work to test one’s results.
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AN ALTERNATIVE METHODOLOGICAL APPROACH

Game theory is a powerful tool, but, as I have argued here, it has
limitations that prevent it from aiding us in understanding some of
the more complex human games and decision-making contexts. In this
section, I will start to build a methodological approach that aims to:

a. allow researchers to explicitly model more complex games and
build upon prior efforts using feature spaces and domain-specific
encodings;

b. avoid brittle encodings that limit the generalizability of results
(i.e., develop an equivalence class for your model);

c. introduce a methodology to model component games and their
associated (idiosyncratic) utility functions.

So what should one do differently if one wishes to study more complex
games that model conflict initiation, alliance formation, and the like?
As noted earlier in this chapter, machine chess offers a great deal of
guidance in solving this problem using the tools of computational polit-
ical economy. Accordingly, I will argue that a combination of method-
ological approaches yields better answers for complex problems in the
social sciences.

Is Computational Political Economy Different?

I have presented a number of examples of computational modeling
in this book, focusing on problems ranging from standing ovations to
machine chess. As I have argued, the best examples of computational
models often model things as they are, without relying upon simplifica-
tions that distort the problem of interest. The merit in computational
methods is that the space between the model and the empirical ref-
erent, as in machine chess, is entirely absent. This allows for a much
easier transition to empirical tests, which curbs many of the problems
of mathematical modeling highlighted by this book. Further, compu-
tational models can also serve as bridges between different methods.
In the alliance game presented later in this chapter, game theory will
provide most of the intuition about this problem, which will then be
expanded on using computational methods.

It is, however, true that many computational models fall short of
the research design standards presented here. Just as in game theory,
researchers are often content to present a model that is more of an
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existence proof than anything dispositive. To take one example, con-
sider the investigation of state formation by Cederman (1994). In his
computational model, there are roughly two dozen parameters cho-
sen for convenience; changing them produces qualitatively different
results than those found in the paper.”* As with Fearon’s model of
conflict, one needs out-of-sample work to increase confidence that the
model has something genuine to say about the world.”

Combinatorial Game Theory

In addition to the computational political economy literature, a source
of inspiration is the almost unknown (in the social sciences) combi-
natorial game theory literature.”® Combinatorial game theory studies
human games with the following properties:*’

1. there are two players;

moves are sequential (rather than simultaneous);

there is complete information;

strategies are finite;

there is an ending condition, which specifies a constraint that

AR

determines the winner. Typically, a player loses if she cannot
move; for example, checkmate in chess;

2% Some of these parameters are reported in the paper and some are only found in the

code. A more thorough treatment of the fragility of Cederman’s model and the impli-
cations for computational political economy is the subject of ongoing research by a
team of graduate students at Duke University (look for a paper by Jolly, Reifler, Tofias,
and Warren in the near future). In Cederman’s defense, his practice of using compu-
tational models essentially as existence proofs is no different from the standard prac-
tice in game theoretic articles. For a more modern computational model, see Lustick,
Miodownik, and Eidelson (2004). Like Cederman, Lustick has constructed a brittle
model without any empirical tests, but there is the advantage that Lustick has made
the code available with an interface that allows one to modify the parameters easily.
Predictive tests aside, one can still improve on current practice in choosing parameter
values. Instead of relying upon a magician’s hat or convenience, why not choose val-
ues based upon real-world data? One may still go wrong (e.g., any particular sample
may be misrepresentative), but a bet placed on data trumps bets placed on fancy.
Rabinowitz, MacDonald, and Listhaug (2004), for example, develop a computational
model of issue voting using parameters derived from the 1989 Norwegian Election
Study. Another compelling alternative is to use qualitative or historiographical meth-
ods to choose parameter values.

For an introductory text, see Conway (1976).

This partial list is taken from Berlekamp, Conway, and Guy (2001). The list included
in their volume is somewhat more restrictive, but relatively recent work in the field
has relaxed some of their assumptions (which I have dropped).

2.

%

2
2
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6. there is an effort to build equivalence classes for all results; that
is, to see whether one’s results apply to other games.

This strain of game theory has been the province of mathematics
departments, and at first glance, seems to have much in common with
game theory or even represents a quite drastic domain restriction of
game theory.”

What is less obvious, however, is the way the above tenets are trans-
lated into practice, which is quite different from game theory in the
social sciences:

I. encodings are specific to particular games;
II. rules are often expressed as constraints rather than a set of
strategies and associated utility functions;
III. failing equilibrium play, the goal is for “better” play, typically
measured against human performance;
IV. the focus is upon more complex games that humans actually
play; for example, hex, Go, or poker.

A trade-off is taking place here. By giving up a ubiquitous encoding and
an emphasis on backwards induction as the solution algorithm (with the
goal of finding equilibrium play), the above approach has more latitude
to attack harder problems. The cost for more verisimilitude, as we will
see, is a change in the nature of the conclusions we may draw from
our models and complications in encoding the model (see Chapter 4).
Combinatorial game theory and computational political economy thus
share common goals; the following examples will demonstrate how to
apply these abstractions to research questions in the social sciences.

A Return to the Currency Game

Machine chess, as outlined earlier, is an example of a computational
approach to modeling. What this entails may not be entirely clear,
however, without an example from the social sciences. Let us return to
the currency game of the preceding chapter to see what distinguishes
computational modeling from game theory.

In the last chapter, I developed a model of the currency game using
the programming language Perl. Building a computational model of

28 Tt does, however, have a great deal to do with constraint satisfaction problems/logic
programming, a field of artificial intelligence.
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this kind was a straightforward process of translating the dynamics
of the game into Perl — in many respects, this is much easier than
constructing a game theoretic model of comparable complexity. What
do the results of a computational model look like?*’

In my initial presentation, epsilon (the parameter for mutation) was
held constant while N (the parameter for population size) was allowed
to vary in a limited range. Despite the fact that the game has only
two parameters, it is complex enough such that one’s intuition can be
wrong. Young (1998), from whom I borrowed the setup of the currency
game, is in part led astray because he considers a very small subset of
the parameter space in his initial forays into modeling the game. His
claim is that the currency game is useful in studying path dependent
processes, such as competing technologies (see Arthur 1989):

Qualitatively, this process evolves in the following manner. After an initial
shakeout, the process converges quite rapidly to a situation in which most peo-
ple are carrying the same currency —say, gold. This norm will very likely stay in
place for a considerable period of time. Eventually, however, an accumulation
of random shocks will “tip” the process into the silver norm. These tipping inci-
dents are infrequent compared to the periods in which one or the other norm
is in place (assuming ¢ is small). Moreover, once a tipping incident occurs, the
process will tend to adjust quite rapidly to the new norm. This pattern — long
periods of stasis punctuated by sudden changes of regime — is known in biology
as the punctuated equilibrium effect. (Young, 11-12; emphases in original)

Along with the text, Young provides graphs of his experiments with the
currency game, illustrating how one sees multiple regime shifts when
the game is allowed to run through 30,000 iterations. Unfortunately, for
the experiments he details in the text, he relied upon small population
sizes (N = 10) and a very high mutation rate (¢ = .5) to generate his
intuition about the properties of the game.

Young’s intuition that the currency game generates relatively
long periods of convergence characterized by sudden shifts to the

29 I should caveat this to say what the results of a “good” computational model do look
like. As noted in Chapter 1, some computational modelers present qualitative results
based upon a limited sample of synthetic data. This practice should be avoided. To
have any hope of understanding a computational model of any complexity, one needs
to develop a theoretically justified feature space and present statistical work for the
parameters that make up that reduced space. Results are thus specific to a feature
space.
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alternative currency is supplemented by a deductive result he derives
later in his book. The theorem is short enough to be stated here:

Let G be a 2 x 2 symmetric coordination game with a strictly risk dominant
equilibrium, and let Q,,, ¢ be adaptive learning in the playing the field model
with population size m, complete sampling, and error [mutation] rate ¢, 0 <
e <1.For every ¢’ > ¢, the probability is arbitrarily high that at least 1 — ¢//2 of
the population is playing the risk dominant equilibrium when m is sufficiently
large. (Young, 76)

What this theorem states is that if you have a suitably large population,
a majority of the agents will be playing one currency. This majority is
largest when ¢ is small. This adds quite a bit to his earlier chapter,
but many readers might not be certain about what the properties of
the currency game are for different values of n (m in Young’s notation)
and ¢. Interpreting this theorem is elusive, even though it is deductively
true.

Contrast Young’s deductive approach with a computational model.
In the appendix to Chapter 2, I list the Perl code that implements the
currency game. The choice of language (Perl) is a matter of personal
preference; what matters is that the goal of a computational model is
twofold:

I. encode the rules of the game as accurately as possible;
II. iterate the computational model through a wide range of param-
eter values.

Once this process is accomplished, one has a tidy data set comprised
of the following observations:

mean regime shifts ~ N, ¢.

The final step is then to investigate the relationship of N and ¢ on
the dependent variable (mean regime shifts) by estimating a statistical
model. As noted in Chapter 2, a good model for the data generated by
the currency game is a Poisson regression, which for a large number
of observations spanning much of the parameter space described by N
and ¢ is:*

30 For the empirical work presented here, I generated 1,600 observations allowing N to
range between [10...10,000] and ¢ to range between [.05 . . . .5]. This is not in actuality
anywhere near enough observations for an accurate representation of the underlying
DGP, but it is close enough for the purposes of this exposition.
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Table 3.1. Results for the Currency Game
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Poisson regression Number = 1600
of obs
LR = 19492.69
chi2(2)
Prob > = 0.0000
chi2
Pseudo = 0.8128
Log likelihood = —2244.3969 R2
Num_reg Coef. Std.Err. z P>|z| [95% Conf. Interval]
N_pop —.0351948 .0007884 —44.64  0.000 —.03674 —.0336496

Mutat_rate 15.4024 9942932 15.49 0.000 13.45362 17.35118
_cons —4.148296 .4970227 —8.35 0.000 —5.122443  —-3.17415

The above model has a reasonable fit to the data and the residu-
als are normally distributed with very little variance. These results are
different in character than Young’s deductive work and easier to inter-
pret. For a Poisson regression, the predicted values are given by e*”.
By examining representative values, it is easy to gain a more complete
understanding of the currency game. For example, Young’s preliminary
analysis of the game is misleading, insofar as it only applies to very small
populations. For N = 10 and ¢ = .5, E(-) = 0.015 — in 1000 iterations of
the game, this indicates that one would expect to see 15 regime shifts. If
one considers a larger population and a smaller mutation rate — which
more closely mirrors the nature of the real-world problem Young is
using the currency game to investigate®! — one quickly discovers that
regime shifts never, ever happen. For N = 100,000 (still a tiny popula-
tion) and ¢ = .05 (a reasonably high mutation rate), E(regime shifts) =
6.89E-1534 — and that is a lot of 0’s.

As argued in the concluding remarks of Chapter 1, purely deductive
investigations are most useful in starting an investigation and gaining
some insight into how a problem works. Young’s work is certainly
helpful in understanding the dynamic process by which one regime,
subject to small mutations, can move to another regime because of the
nonzero probability that an arbitrarily large number of mutations will
accumulate, pushing the system into a different regime. The possibility

31 For example, the adoption of competing technologies such as a Wintel computer
versus an Apple.
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of regime changes, however, and the usefulness of this particular model
is better understood when one develops a full-fledged computational
model with the appropriate statistical analysis of the results. By doing
so, one avoids intuition based upon a very small subset of the parameter
space and brittle assumptions.

An Example Alliance Game

From the preceding example, we have seen how computational mod-
eling can complement game theory; what we have not seen is what
one does when presented with a more difficult problem. Often, com-
putational and complex systems research in the social sciences has
addressed different sorts of problems, such as path dependency, mas-
sively interactive social games, and the like. There are, however,
domains of problems, such as those represented in security studies,
where the focus is on complex interactions between highly motivated
actors engaged in strategic games such as alliance formation and con-
flict. It is my contention that the lessons of computational modeling
and combinatorial game theory offer insight into classes of difficult
problems that elude purely game theoretic approaches.

To illustrate how one might develop models of complex phenomena
in security studies, I now present an alliance game:
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Figure 3.1. The Simple Diplomacy Game
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Instead of representing this game as a set of strategies and their associ-
ated payoffs, one should note that Figure 3.1 uses a graph to represent
the game. Additionally, the rules associated with this game are, in the
spirit of combinatorial game theory, defined without explicit reference
to the set of strategies:

The Alliance Game

1. The alliance game is represented by a graph G with a set of
vertices X and edges U. There are six vertices in Figure 3.1; each
vertex represents a location for a military unit. Each vertex also
represents a supply (or resource) for building/maintaining a unit.
Edges in G represent allowable moves for the units in the game.

2. Four players exist; each has a “home” territory where he or she
starts with one unit on a vertex of the graph G (depicted with
different shapes and colors on the graph). The home vertex is
the only territory on the graph where a player may add units
during Build/Remove (see below).

3. Each turn has three phases of play: Spring, Fall, and Build/
Remove.

a. Spring: units may move (change location between vertices),
support (aid another unit in staying at a location or in moving
to anew location), or do nothing (hold). One action per unit is
allowed per turn. Territories captured (green circles on graph
above) do not count for unit totals during the Spring turn.

b. Fall: the allowable moves are identical to the Spring turn,
except that territories captured DO count toward unit totals.
If you capture a territory it remains yours unless another
player occupies it for a Fall phase (n.b., moving into a territory
in the Spring and leaving before Fall does not change owner-
ship of a territory).

c. Build/Remove: Count up the number of territories you own.
Ownership, as noted above, is established by holding a
territory for a Fall move (one also includes the starting terri-
tory). Ownership does not require a unit to stay in a territory;
it is only disrupted by a different player occupying the terri-
tory for a Fall turn. If one owns more territory than one has
units on the board, one adds units to the home territory (if it
is owned by the player). If one owns less territory than one
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has units on the board, one removes units from any territory
on the board (player choice).

d. More than one unit of the same side may occupy a territory;
but different players may not “share” a territory.

e. Units may support units of another player, as well as their
own. Support may be given to defending units as well as to
attacks.

f. When units come into conflict (i.e., different players move to
the same territory, or a player attempts to dislodge a unitin a
territory), numerical superiority — adding all support orders —
wins. Losing units must retreat to an empty territory or be
eliminated. For example, if two units attack a territory with
one unit, the single unit must retreat. If another unit sup-
ported the defender, a tie would result and none of the four
involved units would move.

g. Ending condition: the player who captures all six territories
wins the game.™

It should be apparent that this game would be extraordinarily diffi-
cult to analyze within the confines of game theory. The strategies are
(potentially) infinite, and despite the simple structure of the game, four
players plus the ability to cooperate through support moves makes the
combinatorics of this game quite ugly. One could, perhaps, argue that a
few simplifying assumptions would somehow help one to gain leverage,
but it is difficult to imagine what the complexion of these assumptions
would be (unless they completely violated the spirit of the game).

So let us imagine we want to study this game, with the hope of
improving our play against sophisticated human opponents or for
developing insight into the dynamics of n-player alliances. Two def-
initions will help in examining the alliance game presented here:

Component game: A component of the game in Figure 3.1 is any
proper, connected subgraph of G.

Component (idiosyncratic) utility function: Given that strategies are
not necessarily finite (even in a component game), one needs to
assign reasonable payoffs to actions taken in component games.

32 This game is a simplification of the Avalon Hill game of Diplomacy, which is the study
of some research in the artificial intelligence community.
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One thus has to solve two problems before assigning payoffs to
actions taken in a component game. First, one needs to choose an
interval for analyzing payoffs; this can be difficult given the poten-
tial for nonterminating strategies. Second, one needs to choose a
function that represents “progress” in the context of the com-
ponent. For the purposes of the alliance game represented in
Figure 3.1, one example of a component utility function has a
horizon of one complete year, and the payoff is an integer that
represents the delta of units in the last year (e.g., 0 = no change in
the number of territories/units; +1 = one territory gained; —2 =
two territories lost).

Some Example Components

So how does the forgoing discussion aid us in examining games like
the alliance game? The (brief) inspection of several components will
illustrate the main lessons of this section, and lay the groundwork for
the more technical material in Chapter 4.

Example 1: Friends and Enemies, Together Forever. Figure 3.2 presents
a typical component; in fact, this component eliminates the other two
players of the game and focuses on one’s own neighborhood. What,
given this truncation of the game, would constitute good play? Given
that we have already decided upon our component game, we also need
to specify a component utility function. For the sake of the example,
imagine we adopt the straightforward function that counts the delta in
territories after each turn for each player (i.e., an integer from —1 to
+1 for Figure 3.2). What type of play might transpire?

On the face of it, “safe” play might involve each player using their
single unit to attack the other, as noted by the gray arrows in Figure 3.2.

1]
Figure 3.2. Friends and Enemies, Together Forever




106 Computational and Mathematical Modeling in the Social Sciences

What would the outcome of these actions be? Under the proposed
utility function, the outcome would be 0 for both players. This infinite
strategy {attack, attack, . ..} would be supported in part by the fact that
moving away in the Fall turn would give the other player your home
territory, thereby awarding an additional unit to your opponent along
with your home base. Mopping up the remaining territory would be
easy at this point.

There is one caveat to the play proposed here. Suppose that the
players on the other side of the board have not read a book on game
theory, and for whatever reason, they fight and one of them wins their
half of the graph. While you continue with a self-reinforcing strategy,
the lucky (or foolish?) winner on the other half of the graph will then
have superior forces with which to attack your half. This should cause
some concern with the forgoing analysis and illustrates how difficult the
selection of a component and corresponding utility function can be.

Example 2: For Better or For Worse? Does the strategy set forth for
both players in Example 1 constitute an equilibrium of sorts? Imagine
that one of the players “defected” from the strategy on a Spring turn,
resulting in Figure 3.3. At this point in the game, the all-important
Fall turn is about to occur, and one would like to know which player
has the advantage. At first glance, many people evaluate Figure 3.3 by
awarding the advantage to player 4; he does, after all, occupy player
3’s home territory, and stands to gain a unit as outlined above.

It is important to remember that any such evaluation depends upon
an (often unstated) component utility function. As always, the compo-
nent we are studying bears no obvious relationship to the final outcome
of the game, and so any associated component utility function is in some
sense unsupportable within the context of the complete game. Given

Figure 3.3. For Better or For Worse
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the arbitrary nature of components and their utility functions, let us
consider two candidates for a utility function:

Candidate 1:u;(-) = {—1, 0, +1}. This represents the delta in territo-
ries after the Fall move. It is plausible, insofar as gaining territory
has to be seen as “good” and losing territory as “bad.”

Candidate 2: u(-) = {—1, 0, +1}, where —1 = your opponent has
more territory than you do at turn end; 0 = equal territory; and
+1 = you have more territory. Again, this is plausible, as it incor-
porates some notion of relative gains.

It cannot be overemphasized that there are a universe of utility func-
tions that might be paired with any given component; these are simply
two choices from that set. But, it is not the case that any component
utility function will do — some are clearly better than others, though at
this point it would be difficult to say why.

Nonetheless, what sort of action is implied by the two-candidate
payoff structures? As in the preceding example, game theory will be
used to build our intuition about the component game and these payoff
functions.

Table 3.2. Component Game u,

Attack Open  Attack I'V’s

Hold Territory Home
Hold (0,1) (0,1) (1,0)
Attack III’s home (0,1) (0,1) (0,0)
Attack IV’s home (0,0) (1,0) (0,1)

Nash Equilibria: [hold, hold]; [attack III’s home, hold]; [attack IV’s
home, hold]; [attack IV’s home, attack open territory]; [attack IV’s
home; 1/2 attack open territory and 1/2 attack IV’s home)]

Table 3.3. Component Game with u,

Attack Open Attack I'V’s

Hold Territory Home
Hold (-1,1) (-1,1) 1,-1)
Attack IIT’s home (-1,1) (-1,1) (0,0)
Attack TV’s home (0,0) 1,-1) (-1,1)

Nash Equilibrium: [1/3 hold and 2/3 attack IV’s home, 2/3 hold and
1/3 attack IV’s home]
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With component utility function u; one finds multiple equilibria, and
it would be difficult to guess what the outcome would be (or what
strategy would result — see Binmore’s (1992) discussion of chicken,
2825-6). One would imagine that player III would very much prefer the
equilibrium [attack I'V’s home, attack open territory], but that player
IV might well dissent given the comparative wealth of equilibria that
advantage her.

With component utility function u, one finds a different outcome —
a unique mixed equilibrium exists. Under this utility function, player
II1 is at a disadvantage — his expected value is —1/3, while player IV
can expect to receive +1/3.

Again one must raise the question of which utility function is “bet-
ter.” On the face of it, it would seem the second candidate does a better
job capturing the reality of the game, but the only way to demonstrate
the superiority of this selection would be to somehow show it results
in better play (where “better” is defined as improving one’s chances in
the overall game).

Example 3: Tough Choices ... The last example, displayed in Fig-
ure 3.4, represents a tough choice for both players III and IV.
Ostensibly, they are potential enemies (i.e., there are no exogenously
determined alliances), and player III has the opportunity to eliminate

ad> @ e

Figure 3.4. Tough Choices ...
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player IV from the game. Player II is dominant, however, on the north-
ern half of the graph, and will win the game (by taking the open terri-
tory on the southern half of the graph) before player 111 completes his
conquest.

There is, however, one possible play that would salvage player 111
and IV - it would involve player IV supporting player III at the open
territory and player III holding. One could pick a component utility
function that would result in precisely this play, but it is hard to imagine
this particular utility function performing well when player II is not
threatening the southern half of the graph — in most cases, player 111
should eliminate player IV. If player IV supports player III and player
1V refrains from attacking player IV, one would have to admit that
this unmistakably represents an alliance, given that these actions are
costly (in the short term) to both players.

What is needed (for players III and IV) is an indicator of what is
happening on the other half of the graph. When no clear victor exists
on the northern half of the graph, player III should crush player IV and
player IV should seek allies elsewhere (perhaps in attacking the open
territory held by player IIT). When there is a victor, as in Figure 3.4,
players III and IV should instead be the best of friends.

CONCLUDING REMARKS ON A METHODOLOGY FOR CHOOSING
COMPONENTS AND IDIOSYNCRATIC PAYOFFS

If one has been counting, I have so far defined three sets in the previous
section. First, there is the set of all possible component games; even
in the relatively simple alliance game, there are a great number of
components; for example, the number of combinations with one to five
vertices is 62. Second, there is the set of component utility functions,
which in most cases is infinite, although usually this set is limited by
and naturally formed by the rules of the game. For example, the rules
of chess would naturally constrain the terms of the component utility
functions to the squares of the board, the pieces, and relations between
the pieces. Last, there is the infinite set of indicators that might aid a
player’s selection of components or utility functions in different states
of the game. What is one to do?

Before proceeding, consider the alternative. One could define a
simpler game that is “solvable” using the encoding and algorithms
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of standard game theory and avoid the difficulties detailed earlier.
Accordingly, one would then be forced to resort to analogies to discuss
the behavior one is actually interested in. In the case of the alliance
game, it would be difficult to imagine that the simplifying assumptions
necessary for a game theoretic treatment would result in a game that
had anything at all to do with the original version. And, as it stands, the
unmodified alliance game presented here seems to illustrate alliance
formation and conflict over resources in a much more realistic context
than existing game theoretic treatments of these phenomena.

Seen this way, the preceding section has only made explicit what has
been there all along — a huge search space (in terms of the combina-
torics) that we can either account for in our models or assume away. We
thus find ourselves in exactly the same situation as the last chapter when
we considered empirical research. The curse of dimensionality and the
possibility of brittle encodings are difficulties that models should grap-
ple with. As we will see in the next chapter, developing a feature space
that accounts for the complex strategic considerations highlighted in
the preceding examples without running afoul of these difficulties is
not easy. But, working through different encodings does develop a
real understanding about the problem; this is to be contrasted with a
game theoretic approach that would focus on deriving a set of limiting
assumptions to produce an analogous game.

What methodology, then, is appropriate for constructing complex
models with more verisimilitude? Given the difficulties in making
analogies from existing game theoretic models to empirical tests, it
is my belief that the only avenue available for studying more complex
classes of games involves the use of computational models. As with the
example of machine chess, a combination of deductive modeling to get
one’s feet wet and solve “easy” parts of the problem, computational
modeling that builds upon this and adds verisimilitude, and statisti-
cal work to fix parameters and examine model performance, seems
appropriate for most games.

This, in brief, would mean taking the following steps for the alliance
game:

1. Use game theory to examine several candidate component
games and associated utility functions, thereby developing
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intuition about the problem. For each possible encoding, exam-
ine the implied parameter space to see if it is reasonable.
Define a population of agents, their selection of components,
associated utility functions, and features of the game’s state
space. In preliminary trials, components that result from most
specifications are quite simple — the reason for this is that larger
components (i.e., with a greater number of vertices) make learn-
ing more difficult and are selected against in an evolutionary
framework. The same general rule also seems to be true of fea-
tures. Within components and their associated utility functions,
the preceding examples make clear that a good deal of “deduc-
tive” or game theoretic reasoning is employed by agents in the
model. The main thrust of the computational work is toreduce an
incredibly complex game into bite-size fragments (fit for chewing
by limited game theoretic agents).

Optimization theory would be employed to traverse the space
of possible components and idiosyncratic utility functions. For
example, if one used a genetic algorithm, less “fit” members
of the population would reproduce proportionately less than
more fit members. Operators such as mutation and crossover
would be applied at the level of component selection and the
idiosyncratic utility functions. One might, of course, use an alter-
native stochastic optimization technique such as hill-climbing,
simulated annealing, or genetic programming.

The results of the computational model would be probabilis-
tic assessments of favorable components (i.e., those most often
employed by agents in the population), idiosyncratic utility func-
tions, and features.

To test for stability, one would test populations against “similar”
games or against human play (which provides an infinite supply
of novel data) —if a population was robust under perturbations in
the model’s form and diverse human strategies, one would have
more confidence that the model was not overly brittle. E.g., one
could expand the alliance game in Figure 3.1 to include N players
(where N is even) by adding symmetric components that match
the existing component games defined in Figures 3.2 and 3.3. In
all the games of this class, one would expect that the components
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discussed in the previous section and their utility functions would
have similar properties.

As noted earlier, the knowledge that results from this approach is
probabilistic in nature (i.e., regressions would be used to demonstrate
the utility of different components, their associated utility functions, or
indicators), much as it was for the computational model of the currency
game above. Further, results from computational models, while not as
brittle as a game theoretic treatment, would be specific to classes of
similar games — there would not be a universal encoding suitable for all
possible games.* This represents a trade-off, insofar as the qualitative
character of our knowledge of games would change dramatically under
this methodology. In compensation, however, one arrives naturally at
a way to provide equivalence classes of games, which I have argued is
necessary if one is to link deductive or computational models to their
empirical referents.

In the next chapter, we will explore these issues further, and I will
detail both the optimization theory and computational tools necessary
to derive computational models of the sort hinted at above. As an
extended illustration of this methodological approach, I will develop
the specific algorithms that instantiate component games and the asso-
ciated utility functions that provide an encoding for the alliance game.
Examining the choices involved in developing such an encoding will
demonstrate the advantages and trade-offs between computational
modeling and purely deductive work.

3 As we will see in the next chapter, components and their associated idiosyncratic
utility functions will be useful (i.e., robust) under many modifications to the structure
of the alliance game. For example, if one defines an equivalence class by adding
additional players in a symmetric fashion (i.e., groups of three nodes akin to those
found in the current game) thereby expanding the number of players from 4 to higher
multiples of 2, most of the results of the simpler game carry over without modification.
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Deriving Parsimonious Encodings for Complex Games

INTRODUCTION

In this text, there have been a number of models presented, ranging
in complexity from the currency game to the alliance game. On the
simpler end of things, the currency game (in Chapters 2 and 3) can
be implemented with 85 lines of documented Perl code.! The alliance
game, by contrast, represents a much more significant undertaking.
If, in fact, one set out as I did for the currency game, fired up a text
editor, and typed in the code without any prior planning, disaster would
certainly result. While it may well be the case that Perl would serve
for this project, one would need a different paradigm for building a
computational model to accommodate the complexities of the alliance
game.

The goal of this chapter is to cover some of the material that would
allow a researcher who is not an expert in computer science to derive

I Perl is a programming language derived from C and originally used for system pro-
gramming in the Unix environment. It is often referred to as the “Swiss Army Chain-
saw” of programming languages (this last is attributed to the hacker Harry Spencer).
For more on the origin of Perl, see the FAQ at http://www.perldoc.com/perl5.6/pod/
perlfaql.html. For our purposes, it is important to note that Perl does not impose a
specific paradigm of programming (e.g., object oriented); rather, it is an easy-to-use
language for many jobs. It is worth noting that after assigning this project to some smart
undergraduates, I discovered that one can produce a smaller (though more opaque)
program in about half the size of my version (see the appendix to Chapter 2). Instead
of recording the preference of each member of the population in a vector, one can
instead store only the proportion of gold adopters and modify this scalar value as the
result of single agents changing their preferences. If one wishes to extend the model to
allow social networks, for example, then one has to return to a vector representation.

113
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their own computational models for both simple and complex prob-
lems. I see this as fundamental to the methodology. If researchers take
the alternative route — letting someone who is skilled in computer sci-
ence derive models for them — there is a high likelihood that the final
results will be difficult for the original researcher to interpret or ver-
ify, much less an outsider. There are simply too many choices made in
the process of coding a model for the primary researcher to be disen-
gaged from the process. Often, a qualitative final result will be desired,
and the contract programmer will produce a model that achieves this
result. But as is obvious from the previous chapters, with the size of
the parameter spaces in question for most problems of interest, this is
a trivial task. One can always produce a desired result; the subject of
social science should be to pick the particular model that has the best
chance of representing something genuine about the DGP. Moreover,
when you do not build your models, you are unaware of how sensi-
tive the results are to different encodings of the problem or parameter
choices. If we believe the arguments in Chapter 1 on the nature of
technical assumptions, it is imperative that the researcher be aware of
the influence of these modeling choices.

For this reason, I am presenting a “work in progress” in this chapter.
My research on the alliance game from the last chapter and alliance
formation more generally is not finished, but because of this it provides
anideal opportunity to examine the choices made in deriving an encod-
ing that specifically addresses the complexities of the alliance game. I
hope it will become apparent that the choices involved in building a
computational model are worthy of debate and constitute the core of
any serious research endeavor. One should not “contract out” these
choices or resort to limiting assumptions.

An additional goal of this chapter is to illustrate the process of
constructing a computational model, along with some of the technical
apparatus needed for such an enterprise. Given that much of this will be
unfamiliar to social scientists, Appendix 1 to this chapter lists additional
resources that are available to new computational modelers.

In addition to covering some of the computer science skills necessary
for engaging in a computational modeling project, I also will provide a
very brief overview of stochastic optimization theory. Most computa-
tional models are at core an exercise in optimization, and although
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there are very good mathematical treatments of optimization, it is
easiest to understand the main issues from an algorithmic perspective —
for example, how does one write a model that meets the requirements
for implementing a genetic algorithm?

RULES OF CODING

The good news is that nearly everyone trained in a social science depart-
ment has done some coding. Writing scripts in Excel, using a statistical
package such as Stata or using an applied mathematics package such as
Matlab all involve coding. Some of these packages make things quite
difficult and have poorly implemented programming languages (e.g.,
SAS), while others are relatively easy to use and are based upon mod-
ern programming languages (e.g., S-Plus is similar to C/C++). Just as
with scripts or statistical packages, computational models demand an
attention to detail that is uncommon in human languages. Typically,
when we speak or write something for human use, there is a large
amount of redundancy built into our efforts. Making small errors does
not make it all that difficult for someone to understand you. For exam-
ple, fy rmv th vwls frm ths sntnc, y cn stll rd t wtht mch trbl. If, however,
you type a line into Stata with just one mistake, you get an error that
terminates your program.

The bad news is that the number and variety of programming lan-
guages and programming environments (i.e., the actual tool you use to
create programs in a given language) are bewildering. There also are
quasi-religious conflicts fought over which language/environment is
the “best” for a particular type of application, further complicating the
issue. The position taken here is that of the Luddite: Use the simplest
tool that will get the job done with maximum transparency. Ideally,
we would like to build models that other people can read and exper-
iment with; the advice provided here thus serves that goal, and is not
as concerned with more technical matters such as which programming
paradigm is “best.”

Choice #1: Programming Language

The first choice is not as important as you might think. Although there
are a huge number of programming languages, most languages share a
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large subset of features. If you learn one language, you have in effect
learned them all. Each programming language provides the ability to
create:

i. datastructures ranging fromscalars (e.g., int fred=99;isasin-
gle integer) to arrays (e.g., int fred[100]; generates a vector
of 100 integers; fred[50] is one of them);

ii. user-defined functions (e.g., finding the maximum value in a
vector);

iii. conditional statements (e.g., if ($pop_mean>$N/2) {$current_
standard=1;} else {$Scurrent_standard=0; );

iv. IOOpS (e.g., for ($1i=0; S$i<$time; $i++) {// do some-
thing a number of times});

v. input and output, typically to flat data files for use in a statistical
package.

As you may guess from this list, constructing a computational model
is not entirely dissimilar to constructing a proof. Functions, condi-
tional statements, and loops are purely deductive in nature, and one
can read a program in much the same way one reads a proof. The
most salient difference is that the size of most computational models
is an order of magnitude or two larger than a proof, thereby mak-
ing it very difficult to “comprehend” an entire body of code. While
there are examples of published proofs that are wrong, it is far more
likely that insidious mistakes of logic lurk within a large computa-
tional model, undetected by anyone.” There is also the subsidiary
problem that journals do not have the space to print an entire com-
putational model, thus compounding the difficulty in evaluating these
models.

Given these problems, my advice in choosing a programming lan-
guage is thus motivated by transparency rather than current ideas
about what constitutes “the good” in computer science curricula. For
other people to evaluate your work (and hopefully catch some of your

2 It may not be obvious to new programmers that even if your program executes, you
may still have logical mistakes in the code. This means that although your model is
producing results, they are not the results you were looking for.
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errors), it seems important to focus on languages that are widely used,
readable, and parsimonious.’

I would thus recommend Perl, Python, or C as a starting language.
Although there are excellent reasons for adopting an object-oriented
language such as Java or C#, the barriers to entry for these languages
are relatively high and it is more difficult for nonprogrammers to read
your code. Many programmers, once they learn a simple language such
as Perl, Python, or C, will have an easy time learning another language
and will have the background to evaluate the other available choices.
But if the goal is to start building models with a minimum of training
in computer science, Perl, Python, or C are good choices.* By learning
one of these language, you also will join a larger community. This, of
course, means that you can share code with other researchers.’

Choice #2: Development Environment

As noted, social scientists have two goals in building computational
models: The models must be transparent (i.e., other researchers can

3 For example, to write the standard introductory program that prints out the message
“Hello World!,” Java requires some code that looks like this:

public class helloworld {
public static void main(Stringl[] args) {

System.out.println("Hello World") ;

}
To do the same task in Perl, you need:
print "Hello World";

While there are excellent reasons for the overhead in the Java program that become
more apparent in a larger project, it is clear that for a novice, the Perl code is much
easier to interpret (or show to a colleague).

An additional benefit of C is that C is the parent of many other languages (including
Perl).

One key example of the importance of sharing code is the “Numerical Recipes” series
of books by William Press. This series contains algorithms for mathematical and sci-
entific programming and as such is an enormous time-saver (e.g., pretend you want to
write a random number generator, or a Normal distribution, or . . .). The series has
algorithms for C, C++, Fortran, and Pascal, but there are differences in how much
attention is paid to each language. The latest C++ edition is from 2002; C and Fortran
are 1992; Pascal is 1989. Though there are numerous libraries for scientific program-
ming in Java or Pascal, the user community is not at this point in time as large as the
C/C++ community (and closely related languages).

~
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look at the code) and easy to manipulate (i.e., others can change
parameters/explore the model). Ideally, computational models should
be made freely available for every publication and have an interface
that allows complete novices to adjust parameter settings and produce
novel data.’

The Quick and Dirty Approach: The easiest way to begin program-
ming would be to use a scripting language such as Perl or Python
along with a quality editor/debugging tool. The editor for a devel-
opment environment is typically a customized Microsoft Word style
of program. Features include auto-indenting the bodies of loops and
other stylistic modifications applied to what you type, thereby mak-
ing it easier to read the source code. The debugger allows you to do
things like watch the values of different variables as your program exe-
cutes and set stop-points in the code so you can halt execution and see
what is transpiring. ActiveState Komodo for Perl and Python is my
current favorite, but there are many other editor/debugging tools on
the market.’

The only disadvantage to this approach is that the support for math-
ematical and scientific programming is not as robust as in C/C++ or
Java, and one will be forced to reinvent the wheel in some cases. An
additional consideration is that the equivalent program in Java, Perl,
or Python is typically much slower than a program written in C/C++
or C# for many mathematical or scientific applications.® When you are
trying to traverse a large parameter space, this actually matters despite
advances in hardware.

The Pay to Play Approach: Perhaps the best way to build appli-
cations is to provide a Windows OS-based Graphical User Interface
(GUI), so that programming novices can easily modify your parameter

6 All of the latest versions of the source code and computational models used in this text
are available on the author’s Web site http://moria.poli.duke.edu/overallpage.htm.

7 Komodo runs on Windows, Solaris, and Linux operating systems.

8 Tt is worth noting that for computationally intensive models, all languages are not
created equal. For my simple currency model, there were large differences in the
speed of executables. For a parameterization with a population of 10,000 agents, 1,000
iterations, and one agent changing per iteration, a Windows application written in C++
(with the Borland Builder compiler) took 3 seconds. A console application written
in Perl took 13 seconds, and a Python program profiled with the Psyco tool took 6
seconds. Java would likely finish somewhere between the Python and Perl programs.
These measures are, of course, hardware specific.
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values. Both the Borland Builder series of development environ-
ments and the Microsoft Visual Studio are excellent tools for building
Windows OS applications. Both tools provide a palette of Windows
features (e.g., menus, toolbars, etc.) that allow a relative novice to
produce a graphical interface for their application. Although there
is an opportunity cost to learning these tools, the payoff is that
one can produce a computational model in which it is easy to
modify parameters without requiring that someone fiddle with a
compiler.

The largest negative for pursuing this course is the startup cost. To
program for the Windows OS, you have to learn a smattering of object-
oriented programming, as all the elements of the GUI are objects.
Windows OS applications are also driven by events — for example,
a mouse click or a menu choice — and program execution is not a
straight-forward progression from point A in the code to point B.’
Finally, if you use the Microsoft Visual Studio, you are constrained to
producing applications for one hardware platform and one operating
system.'?

Once you choose a programming language and a development envi-
ronment, the next step is to start programming. One good option would
be to replicate (without peeking) the currency game detailed in this
text. Given that the outcome is known (see the results in Chapter 3)
and the code is straightforward (see the appendix to Chapter 2), this
would be a feasible first project. It also would be worthwhile to buy
an introductory text on programming — my favorites are offered by
O’Reilly Press.'! Be warned, however, as even introductory texts cover
a huge amount of material. Learn the absolute basics (see the list above
under Choice #1: Programming Language) and start coding! For an
additional set of books you should add to your programming library,
see Appendix 1 to this chapter.

9 In many C-based languages, there is a main() function where the program starts exe-
cution, though in Python this is implied rather than explicit. In event-driven programs
in a graphical user interface type of operating system, your main() function will often
be the result of the user selecting a menu item or clicking on a button to start execution
of the main block of code. In standard console applications (e.g., for Unix command
shells), one explicitly declares a main() function where execution begins.

10 The Builder package adds the ability to produce Linux applications.
11 http://www.oreilly.com/
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A final note is warranted whatever approach one adopts. Whenever
possible, use functions. In this respect, my Perl code in Chapter 2 for
the currency game is quite poor, as it has no functions. A good practice
in coding models is to make certain that each function is correct, rather
than continuing to add code. If you have an error in your code (and
you will), and your code is divided into a logical set of functions, you
only have so far to look to discover the error. If, however, your code is
not divided into functions, it is impossible to know where the errors lie.
You will have to search the entire body of code for every error, which
substantially complicates the process of debugging. My Perl code would
be much better if I had one function to initialize the population, one
function to draw an agent and update the agent, and another function
to check for regime shifts and output the data. With this framework, I
could have tested and debugged each function independently — a huge
savings in debugging effort.'”

An example of how to use functions is in Appendix 2 of this chap-
ter.”> For this example, I used Python instead of Perl, but, as you
will note, the code is very similar, reinforcing the point that get-
ting started using any programming language is better than delay-
ing. Once you know one language, it is almost always possible to
read another language. The size of the program is increased some-
what over the Perl code,'* but it has improved readability and one
could more easily use these functions for other projects. In addition
to using functions to aid in debugging, breaking up the code in my
Python program allowed me to profile the code and see where it was
slow. My initial program used integer random number functions in the
init_all () function, which were poorly implemented in the Python
libraries. The result was an executable program that was three times
slower than the version presented here that uses real valued random
number functions. By commenting out my functions one by one, a

12 But, for small projects, one sometimes cuts corners . . .

13 In Perl, functions start with the keyword sub, for subroutine. In Python, def accom-
plishes the same task. Python is also unusual insofar as it uses the tab key to declare
blocks of code, while Perl follows the more traditional approach of using brackets
(i.e., {and}).

14 Note that the Python code does less than the Perl program. It does not allow for
printing to a file, nor does it allow for multiple agents to choose each time period.
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helpful individual on the comp.lang.python newsgroup discovered the
problem.

BUILDING COMPUTATIONAL MODELS"S

In this section, I will use the alliance game to demonstrate how one
goes about building computational models. There are two main issues
involved in most computational models that warrant treatment here:

I. What is the best encoding for the problem? That is, how does
one represent stategies and utility functions for the popluation
of agents that will play the game?

II. How does one search this population for good strategies? That
is, what stochastic optimization technique is appropriate for the
problem?

Answers to these questions are rarely cut and dried, and for that reason,
a computational modeler will continually revise these answers until
useful results are achieved. Empirical work is thus a necessary part
of modeling; without it, little progress is possible and it is difficult to
discern how much of the heavy lifting is being done by assumptions
rather than the core logic of the model.

As noted in the previous chapter, the alliance game is not an “easy”
problem. Strategies are infinite and backwards induction is impossible.
An additional complication is that a naive parameter space is patholog-
ically huge — without a good encoding and concomitant feature space,
any results would likely be fragile. It is necessary to emphasize a point
raised above. Problem encodings and feature spaces are not unique;
different (and reasonable) researchers may arrive at very different
computational models. This is why, to a large degree, I adopt a mod-
ified view of Friedman’s epistemology in Chapter 1 and insist on the
importance of out-of-sample tests and equivalence classes of games.
Models need to be immune to minor perturbations in how different
researchers encode the problem. Further, models should have as lit-
tle distance as possible between the model result and the real-world

15 This section assumes some familiarity with a modern programming language. Most
of the example code aims at simplicity (over parsimony or elegance), however.
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referent. Without the same empirical referent (that is, the same depen-
dent variable), comparisons between models become impossible.

Fortunately, humans can play the alliance game, and one additional
benefit of dealing with the actual game rather than an analogy that is
amenable to game theory is that one can test results against human
play. This is a huge benefit, as it allows the researcher to use novel data
to continually revise the computational model without running afoul
of the prohibition on overfitting models.

A Failed Encoding for the Alliance Game

The main idea behind the the alliance game encoding discussed in
Chapter 3 is straightforward. Agents playing the game have a set of
component games and utility functions, so that in any given state of the
game they produce a strategy for that state. A number of key details
necessary for implementing these ideas in code were not, however,
developed in Chapter 3. The trick to studying the alliance game is to
arrive at a representation of possible strategies and payoffs that results
in a tractable parameter space. To see why this is important, it is useful
to examine an attempt (on my part) that failed to produce an encoding
that was parsimonious enough.

The goal of a successful encoding is to initialize a population of
agents that will search for effective strategies to play the alliance game.
As T argued in Chapter 3, agents playing the game will rarely “look”
at the complete graph and will instead focus on component games as
a way to defeat the curse of dimensionality. Because components rep-
resent a partition of the game graph, the encoding needs to be flexible
enough to represent arbitrary component games for different agents.'®
Each component has a corresponding idiosyncratic utility function so
that component strategies can be evaluated. For playeri e N (N =4 for
the version of the alliance game considered here), we have a set of com-
ponents Ci, where |, C; = G, xis anindex of components and G is the
graph of the entire alliance game. Each Ci, has an associated Uiy, which

16 The reason is that we do not know a priori what the good components or idiosyncratic
utility functions are. We thus choose an encoding, generate a large population of
agents with a variety of different component games and utility functions, then use a
stochastic optimization algorithm to find good components / utility functions.
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is an idiosyncratic utility function for that component. Each agent is
thus represented as a pair (Cj, U;) and will be randomly initialized at
the start of the model. Note that, at this point, it is not obvious what
terms will make up the component utility functions (though see below).

My first attempt at modeling component games was to partition the
game graph and develop a normal form game representation for the
components. The main parameter in such an encoding is the horizon
for the normal form game — that is, how many turns into the future
should be used to generate the strategies for the normal form game?
The structure of the game might lead one to the conclusion that agents
should consider an entire turn in their components. Strategies for both
the spring and the fall move would thus be included in the normal form
game. After each spring and fall phase the game updates how many
units each player possesses, thereby creating a powerful argument for
a horizon that includes both phases.

To see how this possible encoding would work, consult Figure 3.1 and
assume it is the fall phase after which new units are added. Recall that
player III’s unitis represented on the figure by a triangle and player I'V’s
by asquare, and the component game includes three vertices (the lower
half of the overall game) labeled {1,2,3}. As a final step, assume the
component utility functionis a calculation of how many units are gained
or lost by the players.!” The normal form of the game for the fall move
would be:

Table 4.1. Component Normal Form for the Alliance Game

Oholdsat {3} O— {1} O— {2} Os{1} Os{2}

A holds at {2} (0,0) 04+1) (000  (00) (0,0
A {1} (+1,0) 00) (041 (+1.0) (+1.0)
A— {3) (0.0) (+10*  (00)  (00)  (00)
As {1} (0,0) 0A4+1)  (00)  (00) (0,0
As {3} (0,0) 0+1)  (00)  (00)  (00)

Note: — indicates an attack and s indicates a support order. * represents a lost starting
vertex.

17 This component utility function is of course not unique. Another candidate would be
the actual number of units available to each player after the fall update, or the delta
between the two players’ unit counts, or some consideration of whether or not the
player has lost their starting vertex (in the normal form used as an example in the
chapter, these payoffs are marked with an *).
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Throughout this chapter, the example code will be in the program-
ming language C. One should note that the syntax is almost identical
to Perl or Python code and instantiating normal forms in C is quite
easy.'® One only needs to declare a two-dimensional array and store
each player’s payoffs:'”

enum strategy {hold, attack, support}; // list possible
strategies

struct payoff {

// record player 1 and player 2's payoffs -- one could use
doubles instead of ints

int pl; // record player 1l's payoff

strategy pl_strat; // record player 1's move

int p2; // record player 2's payoff

strategy p2_strat; // record player 2's move

};

payoff normal_form[5][5]; // declare normal form for component

game

For bookkeeping, I have added the strategy of each player to the pay-
off matrix. Otherwise, the only (perhaps) unfamiliar piece of code in
the above declaration is the use of the enum statement; this allows one
to declare an ordered list of names that can be used in assigning vari-
ables. Implicit in this declaration is a one-to-one correspondence with
the integers [0...n], for the n elements in the enum statement. As an
example, if player 1 holds for a unit, one can write very readable code:

Normal_form[O0][0].pl_strat = hold;
// this is much better than Normal_form[0][0].pl_strat=0;

// where you have to remember that 0 = hold

The idea behind this code may not be apparent unless you have
previous experience with computational models.’’ At this point, we
have empty arrays representing normal form component games. What

18 Lines preceded by // are comments; that is, the compiler ignores them as whitespace.
Brackets ({,}) denote blocks of code. Semicolons (;) denote the end of a block or a
line.

19 This snipped of code features a custom data type defined by the modeler starting
with the keyword struct, which stands for structure. Structs are common in many
languages, though sometimes they go by different names. And sometimes, to confuse
new programmers, languages rename keywords. In C#, for example, structs are a type
of object.

20 One can find a very clear presentation of how to initialize agents in the case of the
IPD in Axelrod (1984).
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is missing is a set of payoffs for each element in the array. One could
certainly choose (by hand) a utility function for each agent, though as
we will see, this turns out to be too costly given the parameter space
for the problem. An easier way to define payoffs would be to randomly
initialize each cell, and trust that if we have a big enough population
of agents and a reliable optimization technique, we would select out
agents with “good” utility functions. Yet another approach would be to
define a feature space that takes the state of the game as an input and
produces a preference ordering for possible moves. Each agent would
have slightly different weights on the elements of this feature space, as
was the case with the chess example in Chapter 3 (see the section on
Fitness Functions later in this chatper for more on this technique).

To expand this approach to an encoding that includes both the spring
and the fall moves together in the component would require a larger
normal form game consisting of a 25 x 25 matrix. This is still tractable,
but keep in mind that what we are modeling is the smallest of special
cases — the component game in Figure 3.2 has only two units. To be
truly general, we would need to plan for the possibility that a player
had up to five units in the component game.”!

As advocated in Chapter 2, one should at this point determine the
approximate size of the parameter space implied by this encoding of
the alliance game to see whether one is running afoul of the curse of
dimensionality. In the component game of Figure 3.2, each unit has
five options: {hold, attack the other two vertices, support the other
two vertices}.”” Thus, the number of entries in the normal form matrix
would be 5° for the player with five units and 5 for the player with one
unit for each spring/fall phase; an encoding which had a horizon that
spanned one year (i.e., both phases) would have 5> elements in the
normal form matrix.

While we could certainly try to be clever and strip away a large
number of these elements, 5'? is far too large a parameter space, and
we have only modeled part of the game. Given the logic of the pre-
ceding chapter on component utility functions, it would be desirable to

21 One does not need to plan for six units, as at that point the game is over.

22 If one changes the component, this calculation will not be invariant. For example, in
Figure 3.4 of Chapter 3 one might decide an appropriate component adds the nearest
middle vertex. This would expand the number of options for units on the middle
vertex to seven possible strategies.
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avoid “picking” a particular utility function for each component, and
instead allow different agents to arrive at different component utilities.
A natural way to do this with the normal form games presented here
would be to assign random utilities to the payoffs of the normal form
matrix that would result in a total ordering. But, with 5'? elements in
the array, this approach to encoding the alliance game is impossible.

The main advantage of using game theory to model player actions
within each component is that strategy is based upon a consideration of
the other player’s possible actions and incentives. One way to reduce
the size of the game’s encoding would be to go the route of the machine
chess models detailed in Chapter 3, which sacrifices a consideration of
the opponent’s future moves for utility functions that are essentially
“blind” to strategic considerations.”’

A Better Encoding

The preceding encoding is a failure, but it is useful to think about why
it failed. Take a moment and think about what is responsible for the
explosion in size of the parameter space. The first complication involves
the joint consideration of a player’s strategies. With, for example, four
units and five possible actions for each unit, considering the units in
concert as one would do if one relied upon a normal form game involves
5% possible actions and up to 25 actions for opponents. A slightly bigger
graph for the alliance game with the possibility of more units would
complicate matters enormously, even though the new game might be
fundamentally similar. It would be difficult to argue that this encoding
would allow one to investigate a very large class of games or produce
results that were insensitive to small changes in the game (i.e., the
results would not apply to an equivalence class of similar games).
The second complication involves the horizon for a component
game. As noted, the most natural encoding would model decisions

23 The idiosyncratic utility functions for chess included terms such as material, position,
and the like, which reduces the parameter space substantially. As soon as one includes
terms for the opponent’s actions, the parameter space explodes. In terms of the com-
ponent game that is the subject of this chapter, one could adopt this approach by
encoding strategies for each player without regard to opponent strategies. The resul-
tant parameter space would be then be 5!° in the worst case scenario (i.e., a player
has 5 units), a considerable reduction but still not enough.
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for spring and fall simultaneously. The fact that units are updated after
a complete year is likely important, but again, there is a cost for the
parameter space. Whatever choice one makes for strategies must be
squared if one choose a horizon spanning a complete year. Four units
with five actions each thus balloons into 5'? possible outcomes when
the horizon is extended.”

The main advantage of thinking about problems in this fashion is
that it forces the researcher to confront the unique complexities of the
problem itself. Limiting assumptions, in contrast, deflect attention from
what makes a problem difficult and turns the focus to the mathematical
technique. Assumptions may allow you to “solve” a game using the
tools of game theory, but the cost is obvious: You are no longer study-
ing the problem you set out to understand, and you will not generate
results that directly map to the empirical referent. Whatever encoding
one finally settles upon for the alliance game, it is necessary to produce
aset of results thatlet you play the game directly. Without this standard,
it would be difficult to test one’s results.

With this said, the encoding I have currently settled upon has a few
subtleties designed to incorporate as much of the complexity of the
game as possible within a parsimonious framework. The first “trick”
involves disentangling the moves of multiple units. A player would
like to use units in concert — for example, an attack with one unit might
benefit enormously from the support of other units. To capture this
behavior without the enormous costs of the forgoing approach, I use
an encoding where strategies for units are decided upon sequentially,
but with a small innovation. Each unit of a player after the first has
the additional information of what the preceding unit in the sequence
chose to do. For example, if the first unit moves to a vertex, the second
unit has that action as a parameter.” The question then is how large is
this strategy space?

If, in the worst case scenario there are five units and the first
unit has five possible actions. The second and all subsequent units
have five actions that are conditioned by the possible actions of the

24 More generally, the parameter space increases exponentially as the horizon is length-
ened.

25 One could instead have all units access the action of the first unit. Preliminary tests
indicate that accessing the (n — 1)4 unit is a better encoding.
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first unit. This results in 105 elements in the parameter space, and
instead of expanding exponentially as in the encoding that relied
upon the normal game form this encoding is linear in the number of
units.”®

The second simplification in this encoding is that the explicit strate-
gies of opponents are not accounted for. Rather, I use a feature space
that stores the opponents’ likely actions in a far more economical man-
ner without completely ignoring their strategies. The preceding strate-
gies are parameterized for the following features of each vertex on the
board:

i. the owner = {the player, an opponent, empty};
ii. the number of units = {0..5}.

The number of elements in this feature space is equal to the number
of vertices in the component multiplied by the forgoing two param-
eters. For the example component considered here, this would be
3.3.6 = 54, which also scales as a linear function of the number of
vertices.”’ This encoding thus considers the location and the number of
the opponents’ units as a proxy for their strategies. If one knows how
one’s opponents have allocated their forces, one can assume the worst
and make plans accordingly.

The complete parameter space for the example component used
in this encoding would thus be 108 - 54 = 5832 elements. This is not
by any means small, but, compared to 102, one has to be happier.
More to the point, this is close to a size that is small enough to model
computationally with confidence that optimization algorithms will be
effective.””

26 This is equal to (n units) - (5 actions) - (5 actions for unitn — 1) + (5 actions for unit 1).

27 This is equal to (m vertices) - 9.

8 In subsequent (and ongoing) revisions of the computational model, I have simplified
the encoding further. For the ownership parameter, I removed “open” and expanded
the category of “opponent” to include open vertices — they are now recorded as
an opponent’s vertex with 0 units. For the number of units, I replaced {0..6} with
{0, 1, 2+}. Since at most 6 units can exist at any time in the game and this total is
subdivided between components, this alteration has had no negative effect on per-
formance. Finally, the graph G is symmetric, so I do not have multiple components
for each agent. Rather, if the agent uses a 3-vertex component (like the one used
for the example in this section) the “optimal” play that results from the first com-
ponent is applied to units on the other half of the graph. I also use this approach to
modeling 2- and 4-vertex components, even though there is some overlap of vertices.
Finally, I run tournaments of each component game separately, and “piece together”
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The final complication involves the horizon. We would not, by
including both spring and fall together, want to square the forgoing
parameter space. In general, choices that involve exponential expan-
sions of the parameter space are to be avoided — imagine if we wanted
to include a longer horizon. The feature settled upon here to model
time without significantly expanding the parameter space uses a binary
variable to record whether it is spring or fall. This doubles the param-
eter space, but the hope is that conditioning the strategy selection on
which part of the year it is hopefully captures most of what we are after.

Optimization in the Alliance Game

Now that we have a rough idea of what the encoding for component
games will look like, we have to address the related problem of con-
forming our encoding to a stochastic optimization procedure. Instead
of deducing what good play looks like for one player with enormous
ability, computational models typically model a population of limited
agents evolving strategies through time. The optimization algorithm
employed here will be a genetic algorithm, and our encoding will need
to provide agents in a format that allows the genetic algorithm to
function.

Before we examine how well the preceding encoding conforms to
the requirements of a genetic algorithm, it is necessary to sketch a
bit of optimization theory. Many readers are probably familiar with
analytic optimization methods such as a gradient search or Newton’s
method. Both of these require a continuous, differentiable function and
have difficulties with local optima. In contrast, stochastic optimization
algorithms, such as simulated annealing and genetic algorithms, do
not require well-behaved functions and to some degree overcome the
presence of local optima.”’

meta-agents with multiple components at the end of these tournaments. An open
question for this ongoing line of research is how much the parameter for {spring, fall}
helps performance. Because it doubles the parameter space, I am investigating ways
to remove it. See the author’s Web site http://moria.poli.duke.edu/overallpage.htm
for more details and the latest source code.

For good introductory texts on optimization, see Ballard (1997), Chong and Zak
(1996), Mitchell (1996), and Sundaram (1996). Ballard is the best introductory treat-
ment, though Chong and Zak is nearly as readable and covers more territory in
optimization proper. Mitchell’s text is an excellent union of theory and practice, but
focuses solely upon genetic algorithms. Sundaram is the most theoretical of the lot
and is geared toward the economics literature.

29
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For the encoding detailed for the alliance game, a genetic algorithm
is appropriate. The parameter space utilized by the agents playing this
game is a complex function that is not suitable for analytic methods;
the hope is that a stochastic method such as a genetic algorithm will
produce tolerable solutions comparable to nonexpert human play.

Genetic algorithms, like all stochastic optimization approaches,
have two essential elements.’’ The first element attempts to optimize
locally by searching within a neighborhood of the current location in
the parameter space. The second element perturbs locations to jostle
solutions from local optima.

To see how this works, it is easiest to first consider the simpler hill-
climbing algorithm.’! Hill-climbing involves searching within a well-
defined neighborhood of the current location. The direction of greatest
improvement in that neighborhood is selected as the new location; this
process is then iterated until every point in the neighborhood is inferior
to the current location. The way hill-climbing avoids local optima is by
repeating the search algorithm for different starting values. The hope is
that one of the starting values achieves a global optimum (or something
close to it), but there is always the chance that in a rugged landscape,
one will never succeed.’” It is, however, easy to see that hill-climbing
locally optimizes through an iterated exploitation of neighborhoods
and perturbs away from local solutions by repeatedly trying new start-
ing values. Figure 4.1 shows a very simple fitness landscape (not least
because it is one dimensional) where there are two local optima and
one global optimum. Note that where you end up is sensitive to your
initial condition — for example, if the pink ball had started a bit further
to the left, it would have ended at the leftmost local optimum. Only
by dropping multiple balls do you have any confidence you will find
the global optimum. This is why, in the context of a complex problem

30 What follows is a gross simplification, although I hope a useful one. This is not a text
on optimization, but I believe the main issues involved in stochastic algorithms are
simple enough to be understood in the terms presented here. You have been warned.

31 Hill-climbing is very similar to a gradient search but does not require that the function
be differentiable.

32 Another problems concerns the selection of a step-size for the algorithm. Imagine
that a large step was chosen for Figure 4.1 — it is possible the ball might miss an
optimum by stepping over it. For a real-valued function, it is obvious that one cannot
pick a step size small enough to completely avoid this problem, so one is in essence
betting that the function is well behaved.
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Figure 4.1. An Example Fitness Landscape

Note: Illustration by Claus Wilke (http:/nemus.dllab.caltech.edu/~wilke/).
Reproduced with permission.

such as the alliance game, one uses a population of agents to search for
good strategies, each with a different starting set of components and
idiosyncratic utility functions.

Genetic algorithms approach the problem of optimization a bit dif-
ferently, though the two main elements of the simpler hill-climbing
algorithm are still present. They optimize locally through the operation
of crossover, which involves combining pieces of different agents into a
new agent. Figure 4.2, for example, demonstrates how crossover in the-
ory is effective. In this figure, there are two agents that are represented
by a set of six binary parameter choices.’” The gray-shaded parameter
values are “good” choices, insofar as they add to the overall utility of
the agent, while the white choices are poor. Crossover picks one or
more points and swaps material from the two agents, thereby creating
two new agents. Note that in this example, the swap was particularly
fortuitous for the topmost agent — it received both of the good halves
of the parent agents and will likely do quite well compared to either
parent. The bottom agent, in comparison, received both of the poorly
performing halves and will likely have very low fitness. If reproduction

3 One can think of each parameter as a gene. In this figure, the genes are indepen-
dent/separable. If genes impact the expression of other genes, matters are more com-
plicated — see the next chapter for details. In terms of Figure 4.2, imagine what would
happen if the genes in each parent were not independent! It would be impossible to
predict the fitness of the offspring.
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Figure 4.2. The Crossover Operator

of agents is unequal (or one kills off agents below a certain threshold
each iteration), the top agent will expand in the population.

Effective crossover involves picking a number of crossover points
and identifying where crossover should be performed. Crossover
points can themselves be treated as parameters and allowed to evolve
in a population; in the biology literature, these are called “hot spots.”
Mitchell (1996) offers more details on this and other issues pertain-
ing to crossover. For our purposes, the natural location for crossover
to act on the agents in the alliance game encoding is between dif-
ferent component games and idiosyncratic utility functions (but see
later).*

The other element of genetic algorithms perturbs solutions so that
local optima are not traps. This operator is mutation, and is easy to
understand. At some constant rate (yet another parameter value), a
parameter in an agent is perturbed to a new value chosen uniformly
from the domain for that parameter. Since most genetic algorithms
rely upon binary encodings, this usually involves flipping a single bit.
Mutations help populations avoid getting trapped on some subset of
the optima in a fitness landscape, much in the same way that random
initial values aid hill-climbing.

Given that I rely upon a genetic algorithm to search for good strate-
gies for the alliance game, it must be verified that the encoding settled
on above works within this framework. Figure 4.3 is a visual represen-
tation of how the encoding is instantiated in a genetic algorithm: The
good news, from a programming perspective, is that that the agents in
the population are all simple vectors. Note that the figure differentiates

34 Tt is worth noting that the theoretical work behind genetic algorithms is incomplete.
The schema theorem advanced by Holland is almost certainly false. Analogies to
n-Armed Bandit problems demonstrate that when the arms are not independent,
nothing really works as advertised.
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Game State (Three Vertex Component): State 1.
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Unit 1's First State Unit 2's First Action

A={m,s,h} | Vi={C; 3} | Unitias | Uity | Unityay | Unitoy,

Unit, Unit,,
Figure 4.3. An Encoding of the Alliance Game

between states (represented in gray) and actual parameter values that
would be stored in the program’s data structures (in black boldface).
The vector only records parameter values and the code “remembers”
the ordering of the array, such that a correspondence is created to the
underlying states in the encoding. The figure thus displays one partic-
ular state of a component game that is described by the owner and
number of units in each of the three vertices. For this component game
there is an associated strategy that consists of the first unit’s action
along with the second and subsequent unit actions. Note that within
this strategy there are also states for the second and subsequent units
that correspond to the (n-7) unit’s action. As noted earlier, crossover
points can occur between each unit or between larger groupings like
complete components, while mutation is applied with a fixed (small)
probability to each individual parameter.

This encoding does much of the heavy lifting, and initializing a pop-
ulation of agents is a simple task of randomly assigning starting values
from a uniform distribution to the above arrays. One final complication
remains, however, involving the fitness functions for the alliance game.

FITNESS FUNCTIONS AND EQUIVALENCE CLASSES

The final choice involved in using a genetic algorithm (or any other
optimization procedure) concerns the selection of a fitness (or objec-
tive) function. For many tasks, both the problem encoding and the
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associated fitness function are straight-forward; one example is the
iterated prisoner’s dilemma, where the fitness function is based upon
the payoffs of the game. But for other tasks, such as the alliance game,
itis not obvious what the right form is for either the encoding or the fit-
ness function. While I have described the process by which one arrives
at an encoding for a complex game, I have not yet matched this encod-
ing to a fitness function. Given that strategies in the alliance game are
potentially infinite in length, one cannot simply use the actual payoffs
of the game and hope for the best.*

In the examination of idiosyncratic utility functions used in machine
chess research from Chapter 3, the fitness functions were arrived at
empirically by matching a set of features with expert human play
using OLS regression. For the alliance game I follow a similar strategy,
though this is a matter of ongoing research.’® Fitness, like the above
encoding for component games, is represented on a horizon of one
phase (i.e., spring and fall phases are separate) and relies upon two
measures:®’

1. &(units;): how many units are gained or lost by player i during
the year

ii. [units;/ max(units,;)]: the number of units player i owns divided
by the next highest unit total for the other players.

These two features are weighted by coefficients idiosyncratic to each
agent in the population. The coefficients are real-valued numbers

35 As one might expect, in early versions of the computational model using the game’s
payoffs as the utility function the population had a difficult time learning strategies
for the early/middle parts of the game. In essence, the histories of play were simply
too long to develop a correlation between early/middle actions and final payoffs.
What one would like is a function that takes the game rules as an input and produces a
set of features for the fitness function. Given that different features produce different
metrics in the resultant fitness landscape, this turns out to be a difficult problem.
The fitness function has to be matched to the encoding for the component game
actions, otherwise it would be impossible for the genetic algorithm to select “good”
actions. The oddity is that spring actions are evaluated in exactly the same fashion
as fall actions, even though the agents do not actually update units at the end of
the spring phase. To do otherwise would (as usual) result in a much larger parameter
space. Finding a way to look further into the future (e.g., as in sacrificing play in chess)
would be desirable.

36

37
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from [0..1], with the constraint that they sum to one.”® One should
note that a parameter representing these weights must be added
to the forgoing agent encoding, somewhat expanding the parameter
space.

The derivation of these features is by all lights inexplicable, but,
as argued in Chapter 3, the proof of their usefulness (or that of fea-
tures like them) in constructing fitness functions is ultimately decided
by success against human players. Intuition suggests that evaluating
agent strategies every phase (as opposed to waiting until the game’s
termination), allows for learning that would not otherwise be possible
in the early and middle parts of the game. Moreover, it is not unrea-
sonable to believe that the change in units during a phase is correlated
with success in the overall game and that the ratio of the player’s unit
total compared to the nearest competitor serves as a measure of strate-
gic threat. As in machine chess models, I could use expert human play
as a guide to picking the coefficients for the above features, or I could
allow the genetic algorithm to improve random starting values in a
population of agents. But the best intuition can be wrong, and one
needs a final check on all of the choices that go into a model. Plentiful
data from play against humans provides this check in the case of the
alliance game.

One might feel some discomfort with the seemingly arbitrary nature
of these features and their coefficients — other features might better
capture an essential aspect of the game or the list may not be expansive
enough. What I hope to demonstrate, however, is that the choice of an
encoding and component utilities revolves around a consideration of
the game itself. Thisis to be contrasted with assumptions typically relied
upon in purely formal work, where the assumptions serve the quite
different purpose of detailing a new and simpler game amenable to
the fixed encoding and solution algorithm of game theory. This chapter
thus shows how one can arrive at an encoding and feature space for

38 That is, they function like weights (p, (1 — p)). With this form, one needs include only
one parameter in the agent arrays. Agents thus “improve” their fitness based on these
local weights. When I construct meta-agents that play the complete game, however,
fitness is derived directly from success in the overall (i.e., not component) game G. A
two-stage fitness function, in which one is idiosyncratic to the agent, is an alteration
of normal practice using genetic algorithms.
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fitness functions that reflect a deep consideration of the problem itself,
rather than some desired equilibrium property or belief about human
rationality. Since the computational model produces results that map
directly to the actual game, it is possible to test the results against
human play, which is a great source of out-of-sample data. Only by
developing such a close correspondence between the model and the
empirical referent is this possible.

Although there are trade-offs involved in following the approach
advocated here (e.g., one might reasonably disagree with all of the
choices I have made in this chapter for encoding the game), there is
one additional and subtle benefit that should not be overlooked. As
discussed in Chapters 1 and 3, equivalence classes of games should be
the focus of research, especially if one agrees with the statistical argu-
ments presented in this text on the nature of out-of-sample testing
and its role in inference. One natural outcome of deriving an encoding
that depends upon components for a complex game and a set of fea-
tures that describe component utility functions is that in effect one gets
equivalence classes for free. Abstracting away from the game itself is
thus a useful step in building equivalence classes. As a concrete exam-
ple, imagine that I add additional players and subgraphs to the alliance
game like those in Figure 3.1, keeping the overall nature of the game
similar to the base game. Because this expansion of the game maps
to and is invariant within the encoding/feature space outlined earlier,
I would not have to derive a new computational model to deal with
the additional complexity. Therefore, if one solves the base game, any
other game that has a correspondence to the components used in the
encoding and the feature space used to produce component utility func-
tions fits within the equivalence class described by the computational
results.””

3 1f you are interested in the ongoing research on the alliance game, the latest source
code and results are posted on my Web site, along with data from human players.
Currently, I am investigating how to divide a player’s units into subsets to reduce the
combinatorics of the encodings detailed here. The possibility of 5 units (or more if
you consider related games that add players and territory) greatly expands the com-
binatorics of many encodings; it may well be the case that component games limited
to two or three units are superior. One would then apply these smaller encodings to
subsets of units until a complete strategy is arrived at.
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SELF-DESTRUCTION IS THE ANSWER

Throughout this book, I have been very critical of existing approaches
to modeling; my hope is that many readers will turn the tables and
examine the work I have presented in this chapter just as closely. After
all, it seems more than fair to subject my work on the alliance game to
the standards developed in the first three chapters of this book. There
is more than fairness at stake, however. I believe that the best way to
improve modeling in the social sciences is to apply these standards to
all modeling efforts, including my own.

One reading of this book is that game theoretic and statistical models
are often very poor and that computational models are a panacea for
all the ailments of mathematical methodology. This, however, is not
the argument I am making. What I am trying to show is that very
different modeling approaches can all be examined using the same
critical framework. The most pressing reason to do this is to force
models to focus on the substantive problem, rather than the technique.
If, for example, a game theorist and a computational modeler both want
to investigate the alliance game, they should model the game as it is,
with a focus on providing comparable empirical tests. Otherwise, the
different practitioners will simply talk past one another, making it very
difficult to engage in cumulative knowledge building.

In all likelihood, the flaws in the game theoretic and computational
models will be different. Thus, while we do not necessarily get a com-
plete understanding with either model alone, we get two understand-
ings with different weaknesses and strengths. Most important, if both
models address the same empirical referent, we can learn from both
despite their different vantage points.

So, without further ado, what are the biggest problems with my
preliminary efforts to solve the alliance game? My first encoding
attempted to implement the logic of game theory and arbitrarily estab-
lished that the component games would have a horizon of one year.
This approach was adopted because it was a direct way to produce
components that incorporated the strategic considerations necessary
for good play. Unfortunately, the number of possible units, locations,
and strategies made this encoding unworkable; that is, the parame-
ter space for the encoding was much, much too large. Worse still, the



138 Computational and Mathematical Modeling in the Social Sciences

encoding depended upon an arbitrary parameter choice for the length
of the component game horizon, and given the size of the resultant
parameter space, it would be difficult to generate enough data to be
comfortable with this choice.

My current encoding reduces the dimensionality of the parameter
space, but at the expense of doing away with a straightforward game
theoretic implementation of strategy. Instead of explicitly modeling
how a player’s choices are conditioned upon the actions of the other
players, the current model resorts to a series of parameter choices that
limit the amount of strategic flexibility in the component games. The
mitigating factor, as noted in the preceding text, is that the parameter
space is now small enough to use stochastic optimization to generate
desirable components.

The domain restrictions imposed upon the component games are
severe, but the weakest part of the computational model is the
approach taken to generating idiosyncratic utility functions. I would
much rather create a flexible model that accepts the game rules (in
some form) and produces a set of features that measure good play.
Unfortunately, the model now depends upon constructing features by
hand (though the weights are endogenous). These also must be consid-
ered as parameter choices, and by their nature, they are exceptionally
brittle — that is, a lot depends on correctly evaluating the component
games, so one should be very suspicious of these component utility
features. Only by repeatedly testing the model against a wide variety
of human players would one gain confidence in these choices.*’

Finally, while it is the case that the alliance game is orders of mag-
nitude more complex than the sorts of games one usually studies using
the tools of game theory, it is still arguable that the intuition generated
is not qualitatively different from the previous generation of toy games
(e.g., the IPD). If one were to make any broad claims about results for
the alliance game, it is worth noting that important work remains

40 To bolster the results from human play, I have used game theory to test the utility
measures in a way that may seem novel. Since many components are small enough
to be solvable with game theory, one can test the choice of idiosyncratic utility func-
tions (along with the quality of the component encoding) by seeing if the resultant
strategies identified as highly fit match up with game theoretic outcomes. In this way,
a combination of techniques — computational modeling with game theory — allows for
a rate of progress that is not possible with a single approach.
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undone. One would have to provide a set of empirical tests using real
data from the international system before these results would gain any
credibility, and I have provided no guidance on how to accomplish this
task. Thus, at this stage, the alliance game is more of a laboratory for
building modeling techniques for complex games rather than a dispos-
itive statement on alliance formation in the real world.

One might ask at this point why are we any better off with the com-
putational model. First, and most important, this chapter has always
focused upon the alliance game itself, which represents a problem that
would not yield to traditional methodological approaches. There are
a large number of assumptions and parameters underlying the model,
but at every point they have been chosen by focusing upon the difficul-
ties presented by the alliance game, and not some atheoretical notion
of what constitutes human rationality or mathematical tractability.

Second, this approach demonstrates how computational political
economy, game theory, and empirical work can be coordinated. Choos-
ing a reasonable encoding for the alliance game depended upon game
theoretic investigations of strategy in the sample component games;
proof of the reasonableness of different parameter values was provided
by game theory (i.e., does one achieve results from the computational
model that match our intuition from game theory) along with statis-
tical work. Fortunately, by modeling the alliance game as it is, [ have
been able to conduct experiments to see how the strategies discovered
by the most fit agents fare against human play. Without this plentiful
source of data, I would have a very difficult time distinguishing my
multiple attempts to generate successful encodings and idiosyncratic
utility functions from the worst examples of curve-fitting.

Third, even though generalizing from the alliance game to actual
alliances between states is a stretch, the question remains as to whether
or not studying a complex game is worth the loss of analytic certainty.
To the extent that one disagrees with the sentiment of Von Neumann
and Morgenstern that one way to understand complex reality is to
model the games people actually play, my efforts here along with
almost all of game theory would have to be rejected. The question
is where to draw the line between a reasonable abstraction (blemishes
and all) and a toy model that provides little insight; upon this distinc-
tion there may be continuing disagreement. This said, efforts to model
more complex phenomenon directly and to build cumulative models
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seems worthwhile, as the only possible answer to the forgoing charge
that a model lacks sufficient verisimilitude is to build a more complex
model. Because we lack the methodological tools to do that, the ongo-
ing enterprise of computational political economists to build better
models is desirable whether or not the payoff is in sight.

The next chapter continues the arguments presented here, but
instead of focusing upon how one derives an encoding and fitness func-
tion for an ongoing research problem, it is geared toward developing
results from a completed computational model. In particular, I will
show how one can derive a logical implication to test the main impli-
cations of a complex model with less than ideal data.

APPENDIX I: A BEGINNING PROGRAMMING LIBRARY

1. Reference for the programming language. O’Reilly Press
(http://www.oreilly.com), as noted previously, has excellent ref-
erence and instructional volumes on almost all programming
languages.

2. Numerical algorithms: The standard has long been William
Press’s Numerical Recipes series of books (http://www.nr.com).
Additional help for numerical algorithms can be found in James
Gentle’s Elements of Computational Statistics and the compan-
ion volume Number Generation and Monte Carlo Methods or
Kenneth Judd’s Numerical Methods in Economics.

3. Computational Methods/Optimization Algorithms: The stan-
dard reference (which includes pseudo-code for many applica-
tions) is Stuart Russell and Peter Norvig’s Artificial Intelligence:
A Modern Approach. For genetic algorithms, Melanie Mitchell’s
An Introduction To Genetic Algorithms is comprehensive and
covers a good deal of the analytic work (and resulting ambigui-
ties) behind genetic algorithms. Dana Ballard’s An Introduction
to Natural Computation is an excellent reference for computa-
tional modeling.

APPENDIX 2. PYTHON CODE FOR THE CURRENCY GAME,

WITH FUNCTIONS

1 #!/usr/bin/env python

2 import random # import random number library
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3 import psyco # import code profiler for generating faster

executables

4 psyco.full() # call profiler

5

6 pop=[] # popluation of agents; initially empty list
7 N = 10000 # population size

8 ep = .05 # mutation rate

9 its = 100 # number of times through the main loop

10 gold=0 # initial number of gold adopters; (l1-gold) =

silver adopters

11 standard=0 # either 1 for gold or 2 for silver

12 shifts=0 # number of regime shifts
13
14 def init_all(): # init globals

15 global pop, gold, standard # tell interpreter to change

globals, not locals
16 pop = []
17 gold = 0
18 for i in range(N):

19 if random.random()<0.5: # assign to gold or silver

uniform draw

20 pop .append (1)
21 gold=gold+1
22 else: pop.append(2)

23 if gold>N/2: standard=1

24 else: standard=2 # if tie, silver wins
25 # end function init_all

26

27 def one_choose():

28 global pop, standard, gold, shifts # change globals, don’t

create locals
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29 for i in range(its): # horizon / how many

agents per its

30 temp = random.randint (0,N-1) # choose one member of

population to change

31 tempval = popl[temp]
32 old_stand = standard
33 if random.random()<ep: # 1if epsilon, then

change uniformly

34 if random.random()<0.5:

35 popl[temp]l=1

36 if tempval!=pop[temp]:

37 gold=gold+1

38 if gold>N/2: standard=1
39 else:

40 pop[temp] =2

41 if tempval!=pop[temp] :

42 gold=gold-1

43 if gold<N/2: standard=2
44 if standard!=o0ld_stand: shifts=shifts+1 # check for

regime shift

45 else: # if (l-ep) then change to majority 1f not
already there

46 if gold>N/2:

47 if popltemp]!=1:

48 pop[temp]=1

49 gold=gold+1

50 if gold>N/2: standard=1
51 else:

52 if popltemp]!=2:

53 pop[temp] =2
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54 gold=gold-1
55 if gold<N/2: standard=2
56 if standard!=old_stand: shifts=shifts+1 # check for

regime shift

57 # end function one_choose

58

59 # start main loop

60

61 for i in range (1000):

62 init_all() # call init function
63 one_choose () # call draw function

64 print "Number of regime shifts:," shifts # print to console



KKV Redux

Deriving and Testing Logical Implications'

INTRODUCTION

For most of this book, the focus has been on the necessity of conduct-
ing out-of-sample statistical work to sort between competing models.
Models are unfortunately not unique, even when they produce iden-
tical results. We thus face the task of choosing the most likely model
from the class of logically consistent models using out-of-sample com-
parisons. But, as detailed in Chapter 3, it is often the case that the gap
between the model and the empirical referent does not allow for dis-
positive tests. Or worse still, the amount or quality of available data
precludes out-of-sample testing with statistical methods. In these situ-
ations, deriving logical implications of a model is a parsimonious way
to test the model when the data are not accommodating.”

King, Keohane, and Verba (1994) — henceforth KKV - emphasize
the importance of deriving the logical implications of models, and I
borrow heavily from their treatment in Chapter 1 of this book. Like
KKV, Idepend upon examples from physics to demonstrate that logical
implications can be an alternative to statistical modeling. The problem,
however, is that there are few examples in the social sciences of this

! This chapter owes an enormous debt to Dean Lacy, Emerson Niou, and George
Rabinowitz.

2 As we have seen in Chapter 2 with the study of militarized international disputes,
repeated attempts against the same sample often go awry. To test a model under
circumstances when no new out-of-sample data is available, one should resort to testing
the logical implications of the candidate models. Of course, if one cannot reconstruct
the theory underlying the statistical model, this is impossible.

144
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approach to testing amodel. KKV donot provide an extended example,
and to this point, neither have 1.

To address this shortcoming, I will return to the problem of nonsepa-
rable preferences featured in the Prelude. The focus will, however, shift
to a topic thatis more interesting to social scientists than recipes for hot
fudge sundaes: voter preferences. As has been my tack throughout this
book, it seems better to choose a difficult problem than an easy one to
make a point about methodology, and nonseparable preferences in the
context of voting certainly qualifies. The study of voter preferences is
a long-standing research concern in American politics. Unfortunately,
most survey work assumes that preferences are separable, thereby con-
fining a matter of great theoretical interest to an unjustified assumption
about the DGP? This is not because survey researchers are malicious;
rather, it is yet another example of the curse of dimensionality in prac-
tice. Imagine what a survey that attempted to measure nonseparable
preferences would look like. If, for example, a survey wanted to mea-
sure your opinion on the use of military force in Iraq, it would have to
simultaneously measure your preferences on every potentially related
issue. No sensible respondent would want to say “go in with guns blaz-
ing” without also stipulating that the war would have to be funded at
a certain level, and this funding would have obvious implications for
policies such as tax cuts and spending.* There is the additional question

3 There is considerable empirical support for the presence of nonseparable prefer-
ences. Lacy (2001a and 2001b) derives a general model that accounts for the presence
of nonseparable preferences in individual-level responses to public opinion surveys.
Lacy, along with Gerber and Lewis (n.d.), also furnish evidence that preferences in a
variety of contexts, including public opinion surveys and votes on referenda, do not
always obey the simplifying assumptions of separability. Lacy distinguishes between
the effects of preference complexity and bounded rationality explanations; in particu-
lar, he shows that ordering effects can be attributed to nonseparability and not priming.
Gerber and Lewis note that most models of legislative representation characterize dis-
tricts with a simple summary statistic, such as the mean or median preference. Using
proposition voting data from Los Angeles County, they argue that better measures
of district complexity are more useful indicators of electorate preferences, and allow
for more variegated research into the relationship between legislative outcomes and
electorate preferences (see also Fiorina 1974, and Brady and Bailey 1998).

One way to conceptualize nonseparability using these issues is to create a two dimen-
sional space, where the X axis represents war in Iraq and the Y axis represents defense
spending. If both the X and Y axis are scaled so that positive values represent conser-
vative responses (that is, pro-war and pro-defense spending are positive values), one
would expect that voters might be found in quadrants 1, 2, and 3, but not 4. In words,

o~
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of who does the fighting, and this touches on policies dealing with race
and class. Leaving open the possibility of nonseparable preferences
would hideously complicate survey work, but it may well be that the
nature of voter preferences demands this kind of survey. How would
we investigate this problem given the limitations of existing surveys?

In addition to the problem with survey data, most of the models of
electoral decision making depend upon the simplicity separable pref-
erences afford.” Spatial voting (Downs 1957), for example, assumes
that voters pick the candidate that is closest to them in policy space. If
preferences are separable, this is a relatively easy thing to model. Sim-
ply place the candidates and voters in an N-dimensional policy space.
Each voter would then use Euclidean distance to determine which
candidate is closest and vote accordingly. Improvements to the basic
spatial model such as ideology (Hinich and Munger 1994) and direc-
tional theory (Rabinowitz and MacDonald 1989) do not alter this key
assumption.

Why would anyone care about this technical assumption given the
analytic tractability it provides? I would argue that despite reasonable
performance, all of these models have left something on the table. Typi-
cally, regressions explaining candidate approval yield in-sample results
with R?’s of well under 0.50; out-of-sample tests are not commonplace.’
Either one can conclude that voters are dim and that everything sys-
tematic has been explained, or that the models are incomplete.

There are thus two reasons to be skeptical of existing models of elec-
toral behavior. First, they violate the constraint developed in Chapter 1

quadrant 1 stands for pro-war and pro-defense spending; 2 stands for anti-war and
pro-defense spending; and 3 stands for anti-war and anti-defense spending. Quadrant
4, which stands for pro-war and anti-defense spending, is not a platform that would
attract much support. It is worth noting that in the 2004 campaign, Bush repeatedly
tried to paint Kerry as a candidate located in quadrant 4 (that is, he voted for the war
and against defense spending).

Milyo (2000) and Lacy and Niou (1999) detail the importance of discerning the true
structure of preferences instead of simply assuming the presence of Euclidean pref-
erences. Milyo (2000) reviews the formal literature in political science and economics
and correctly notes that the assumption of Euclidean preferences is both ubiquitous
and in almost all cases unjustified. Niou and Lacy (1999) explore different voting rules
and the quality of resultant outcomes when voter preferences are nonseparable. In
particular, they note that confidence in the outcomes of referenda is misplaced when
voter preferences are nonseparable.

Additionally, proximity (i.e., spatial models using policy scales) and directional models
add party identification, race, region, and other control variables.

w
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that there should be an equivalence class for all crucial assumptions.
Nonseparability drives results, and without it, voting models provide
little intuition even in cases where there are small deviations from this
assumption (e.g., some pairs of issues might be related). Second, cur-
rent models are compared solely based upon in-sample performance.
Once again we find ourselves in a situation where the models are brit-
tle, no out-of-sample work exists to test these models, and even the
in-sample performance is not terribly compelling.

Before we go any further, it seems reasonable to ask if there is any
easy way to explore this question using existing survey data. After all,
a large number of models depend upon the assumption of separability
and for good reason. Allowing for complex preferences would com-
plicate modeling throughout the social sciences, and if there is no real
payoff, it is not worth the effort. We are, however, faced with the prob-
lem that existing survey data assumes separability. What is one to do?

In this chapter, we will take the alternative route of using the logical
implications of various models of electoral behavior to examine their
plausibility. Our first question then is to determine if voters act accord-
ing to the logic of spatial models. A straightforward implication of
spatial voting is that voters have separable preferences and choose the
“closest” candidate. Some issues are likely so complicated that voters
may get confused easily, so why not choose a salient, simple issue where
the parties have taken extremely clear positions?’ Abortion thus seems
to be a good candidate, and the implication we are testing is whether
or not Democrats line up on one side of the issue and Republicans on
the other. The American National Election Survey (A-NES) has used
the following question in 1988, 1992, 1996, and 2000:

WHEN SHOULD ABORTION BE ALLOWED BY LAW
There has been some discussion about abortion during recent years.
Which one of the opinions on this page best agrees with your view?

VALID CODES:

1. By law, abortion should never be permitted.
2. The law should permit abortion only in case of rape, incest, or when the
woman’s life is in danger.

7 For an extended treatment of the important of an issue’s salience and complexity, see
Canes-Wrone and de Marchi (2002).
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WHEN SHOULD ABORTION BE ALLOWED BY LAW

Figure 5.1. A-NES Abortion Positions 1988-2000. Graphs by Education and
Party.

3. The law should permit abortion for reasons other than rape, incest, or
danger to the woman’s life, but only after the need for the abortion has
been clearly established.

4. Bylaw, a woman should always be able to obtain an abortion as a matter
of personal choice.

It is not a huge leap to assume that Democratic candidates for office
usually line up somewhere between response 3 and 4, while Republi-
cans locate between 2 and 1. Using the respondent’s choice of president
as a way of dividing up the sample between Democrats and Republi-
cans, one should find that Democrats overwhelmingly choose positions
3 and 4 while Republicans choose 1 and 2.° Figure 5.1 presents these
results: What is interesting is that only a bit more than half of the
electorate is consistent. Figure 5.1 also demonstrates that even when
one confines the sample to highly educated voters (here defined as a

8 One can also partition using self-reported ideology or party identification — the results
do not vary.
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college degree or more), just under 20% of Democrats and over 50%
of Republicans are inconsistent.

One could at this point say that the forgoing is not surprising. Voters
may be ignorant of abortion policy, or they may attach little salience
to it. But without more effort, neither of these claims seems terri-
bly convincing, both due to the historical context of the issue in the
United States as well as the fact that even highly educated voters are
inconsistent.’

To buttress the case for reexamining our assumptions about prefer-
ences, let us develop another implication of the basic spatial model. If,
as we find here, abortion is an issue where a number of respondents are
inconsistent, does this have any necessary implication for their location
on other issues? Put another way, if I look at the group of Republicans
who favor abortion, would I find that their positions on other issues
vary from the Republican platform in any systematic way? If one con-
fines oneself to separable preferences, one would have to say “no” to
this question.'’

Again, using data from the A-NES between 1988 and 2000, I looked
at questions measuring the major political issues facing the American
electorate and compared consistent with inconsistent respondents to
see if any systematic differences on other issues than abortion were
present.'! Figures 5.2 and 5.3 present pro- and antiabortion respon-
dents in both parties, segregated by education level.

Contrary to expectations, voters that are inconsistent on abortion
are also inconsistent on a set of other issues, regardless of their level of
education, party affiliation, or choice of president. For both Democrats

9 Although it may seem counterintuitive, highly educated voters are more ideological
and more partisan than less educated voters (Zaller 1992).

Jennifer Harrod and Michael Munger (personal communication) argue that, if any-
thing, one would expect that the inconsistent group is closer to the party platform on
other issues, given that spatial models assume separability and the use of Euclidean
distance. One way out of this conundrum is to believe that salience is the determi-
nant factor, but salience does not seem to help voting models and is not commonly
included on surveys.

Because the sample sizes were large, I used a cutoff of one half to distinguish
the responses of the groups rather than a chi-square test. Not surprisingly, a chi-
square test finds that the groups are different on most issues, but this is not an
appropriate use of the test. A cutoff of one half, although arbitrary, does represent
a real difference in terms of policy given that the questions use either 5- or 7-point
scales.

10
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Democrats, High Education Anti Pro

A-NES Code Question Mean Mean Delta Min Max
VCF0104 RESPONDENT GENDER 1.52 1.53 1 2
VCF0106a RESPONDENT RACE 1.60 1.38 1 5
VCFO111 URBANISM 1.89 1.82 1 3
VCFO0301 PARTY IDENTIFICATION 2.46 2.39 1 7
VCF0838 WHEN SHOULD ABORTION BE ALLOWED BY LAW 1.80 3.82 2.02 1 4
VCF0803 LIBERAL-CONSERVATIVE 7PT SCALE 4.00 3.22 0.78 1 7
VCF0834 R POSITION 7PT WOMENS EQUAL ROLE 2.15 1.49 0.66 1 7
VCF0843 R POSITION 7PT DEFENSE SPENDING 3.72 3.07 0.66 1 7
VCF0876a STRENGTH OPIN LAW TO PROTECT GAYS 2.30 1.72 0.59 1 5
VCF0854 MORE TOLERANT OF DIFFERENT MORAL STDS 2.63 2.06 0.57 1 5
VCF0830 R POSITION 7PT AID TO BLACKS 4.38 3.92 0.46 1 7
VCF9046 FOOD STAMPS SPENDING -FEDERAL SPENDING 2.21 1.99 0.22 1 7
VCF0809 R POSITION 7PT GOVT GUARANTEED JOBS 4.26 4.05 0.21 1 7
VCF9049 SOCIAL SECURITY - FEDERAL SPENDING 1.38 1.57 0.19 1 7
VCF0604 HOW MUCH DOES R TRUST FEDERAL GOVT 2.49 2.37 0.12 1 4
VCF0887 CHILD CARE - FEDERAL SPENDING 1.43 1.32 0.11 1 3
VCF9047 ENVIRONMENT - FEDERAL SPENDING 1.33 1.32 0.01 1 3
VCF0890 PUBLIC SCHOOLS - FEDERAL SPENDING 1.21 1.22 0.01 1 3
VCF0806 R POSITION 7PT GOVT HEALTH INSURANCE 3.29 3.29 0.00 1 7
D ats, Low Educati Anti Pro

A-NES Code Question Mean Mean Delta Min Max
VCF0104 RESPONDENT GENDER 1.55 1.57 1 2
VCF0106a RESPONDENT RACE 1.78 1.53 1 5
VCFO0111 URBANISM 1.09 1.92 1 3
VCF0301 PARTY IDENTIFICATION 1.95 2.23 1 7
VCF0838 WHEN SHOULD ABORTION BE ALLOWED BY LAW 1.74 3.72 1.98 1 4
VCF0834 R POSITION 7PT WOMENS EQUAL ROLE 266 199 0.67 1 7
VCF0803 LIBERAL-CONSERVATIVE 7PT SCALE 4.03 3.65 0.38 1 7
VCF0876a STRENGTH OPIN LAW TO PROTECT GAYS 2.56 2.20 0.36 1 5
VCF0854 MORE TOLERANT OF DIFFERENT MORAL STDS 2.52 2.34 0.18 1 5
VCF0830 R POSITION 7PT AID TO BLACKS 4.49 4.31 0.18 1 7
VCF0887 CHILD CARE - FEDERAL SPENDING 1.50 1.37 0.13 1 3
VCF0809 R POSITION 7PT GOVT GUARANTEED JOBS 3.85 3.97 0.12 1 7
VCF9047 ENVIRONMENT - FEDERAL SPENDING 1.42 1.47 0.05 1 3
VCF0604 HOW MUCH DOES R TRUST FEDERAL GOVT 2.40 2.45 0.04 1 4
VCF9046 FOOD STAMPS SPENDING -FEDERAL SPENDING 2.07 2.03 0.04 1 7
VCF0843 R POSITION 7PT DEFENSE SPENDING 3.87 3.90 0.03 1 7
VCF0890 PUBLIC SCHOOLS - FEDERAL SPENDING 1.28 1.26 0.03 1 3
VCF9049 SOCIAL SECURITY - FEDERAL SPENDING 1.37 1.39 0.02 1 7
VCF0806 R POSITION 7PT GOVT HEALTH INSURANCE 320 321 0.00 1 7

Figure 5.2. Policy Positions of Democrats

and Republicans, sizeable differences exist on policy preferences
concerning women in the workplace, gay rights, and tolerance. Addi-
tionally, highly educated Democrats differ on aid to African Americans
and defense spending. In all cases, inconsistency on abortion signals
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Republi , High Anti Pro
A-NES Code Question Mean Mean Delta Min Max
VCF0104 RESPONDENT GENDER 1.42 1.44 1 2
VCF0106a RESPONDENT RACE 1.29 117 1 5
VCF0111 URBANISM 215 2.02 1 3
VCF0301 PARTY IDENTIFICATION 5.93 5.76 1 7
WHEN SHOULD ABORTION BE ALLOWED BY
VCF0838 LAW 1.76 3.61 1.85 1 4
VCF0834 R POSITION 7PT WOMENS EQUAL ROLE 3.03 1.95 1.08 1 7
VCF0876a STRENGTH OPIN LAW TO PROTECT GAYS 356 288 0.68 1 5
VCF0854 MORE TOLERANT OF DIFFERENT MORAL STDS 3.37 2.72 0.65 1 5
VCF0803 LIBERAL-CONSERVATIVE 7PT SCALE 547 498 049 1 7
VCF0806 R POSITION 7PT GOVT HEALTH INSURANCE 5.02 4.79 0.22 1 7
VCF0890 PUBLIC SCHOOLS - FEDERAL SPENDING 1.70 153  0.17 1 3
VCF0887 CHILD CARE - FEDERAL SPENDING 1.97 1.83 0.14 1 3
VCF0830 R POSITION 7PT AID TO BLACKS 5.20 509 0.11 1 7
VCF9047 ENVIRONMENT - FEDERAL SPENDING 1.80 1.69 0.10 1 3
VCF0604 HOW MUCH DOES R TRUST FEDERAL GOVT 235 246 0.10 1 4
VCF0843 R POSITION 7PT DEFENSE SPENDING 4.35 4.26 0.10 1 7
FOOD STAMPS SPENDING -FEDERAL
VCF9046 SPENDING 2.51 2.54 0.04 1 7
VCF0809 R POSITION 7PT GOVT GUARANTEED JOBS 5.34 5.37 0.03 1 7
VCF9049 SOCIAL SECURITY - FEDERAL SPENDING 1.80 1.80 0.00 1 7
Republi , Low Ed Anti Pro
A-NES Code Question Mean Mean Delta Min__Max
VCF0104 RESPONDENT GENDER 1.55 1.47 1 2
VCF0106a RESPONDENT RACE 1.27 1.20 1 5
VCF0111 URBANISM 2.28 2.09 1 3
VCF0301 PARTY IDENTIFICATION 5.75 5.42 1 7
WHEN SHOULD ABORTION BE ALLOWED BY
VCF0838 LAW 1.71 3.62 1.91 1 4
VCF0834 R POSITION 7PT WOMENS EQUAL ROLE 3.20 2.29 0.91 1 7
VCF0854 MORE TOLERANT OF DIFFERENT MORAL STDS 333 264 070 1 5
VCF0876a STRENGTH OPIN LAW TO PROTECT GAYS 3.53 2.93 0.60 1 5
VCF0803 LIBERAL-CONSERVATIVE 7PT SCALE 5.26 4.66 0.59 1 7
VCF0806 R POSITION 7PT GOVT HEALTH INSURANCE 4.48 4.28 0.20 1 7
VCF0604 HOW MUCH DOES R TRUST FEDERAL GOVT 2.36 2.55 0.20 1 4
VCF0887 CHILD CARE - FEDERAL SPENDING 1.84 1.65 0.19 1 3
VCF9047 ENVIRONMENT - FEDERAL SPENDING 1.80 1.63 0.17 1 3
FOOD STAMPS SPENDING -FEDERAL
VCF9046 SPENDING 2.53 2.38 0.15 1 7
VCF0843 R POSITION 7PT DEFENSE SPENDING 4.55 4.41 0.15 1 7
VCF0890 PUBLIC SCHOOLS - FEDERAL SPENDING 1.55 144 0.1 1 3
VCF0809 R POSITION 7PT GOVT GUARANTEED JOBS 5.27 517 0.10 1 7
VCF0830 R POSITION 7PT AID TO BLACKS 5.46 539  0.07 1 7
VCF9049 SOCIAL SECURITY - FEDERAL SPENDING 1.59 1.59  0.00 1 7

Figure 5.3. Policy Positions of Republicans
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more moderate views (i.e., inconsistent with the party core) on these
other issues.'”

It is worth noting that factor analysis and related techniques would
confuse the above distinctions. If one runs a factor analysis or principal
components analysis, one finds that two dimensions exist in the data: an
ideological dimension accounting for most of the issues, and a moral
dimension that partially accounts for attitudes on abortion, women,
gay rights, and tolerance. This “finding” is obviously misleading, inso-
far as only the consistent Democrats and Republicans fit nicely into
this reduced space.'? The inconsistent voters, to the extent they are
relying upon a reduced choice space, are moving in the opposite direc-
tion on a substantial subset of issues. For example, a highly educated,
proabortion Democrat can be expected to be very liberal on defense
spending, tolerance, and so on. But, another Democrat who looks very
similar on all demographic measures but happens to be antiabortion
is much more moderate than other Democrats on these same issues.
For each Democrat, the cluster of related issues can be thought of as
moving in an opposite direction conditional upon their position on
abortion.

We are thus left with more questions than when we started.
Although I chose to focus on abortion, it may well be the case that
other “clumps” of interconnected issues exist.* How ubiquitous is this
phenomena? Is there any way to test for the exact level of nonsepara-
bility of this kind (or any other) in survey data?

12 Tn addition to the demographic controlsincluded in Figures 5.2 and 5.3, 1 also inspected
age cohort, income, region, and several other variables. No substantial differences on
any of these variables existed between the groups of interest. Region and income were
important to look at, insofar as Southern Democrats and country club Republicans
might have explained the differences between groups.

This is reflected in the overall poor fit of the individual issues to the factors, even
when one confines the sample to highly educated voters.

There are at least two possible micro-level explanations for clumps/nonseparable
issues. First, these dependencies may exist in long-term memory. Imagine, as one
example, a budget constraint. One likes more spending on each issue separately,
but considered together there is a point at which utility drops off sharply. Sec-
ond, elite communication may create nonseparabilities. For example, “weakness”
on one issue may be used by elites to argue that the candidate is similarly weak on
other, related issues. Given the data problems mentioned in this chapter, the best
way to distinguish between these explanations would be to generate further logical
implications.

13
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Optimization and Preference Complexity

As I have argued, if issues are not independent of other issues or con-
cerns, extracting meaningful information from survey data is a diffi-
cult exercise. When preferences are nonseparable, the resultant objec-
tive functions'® make it difficult to interpret survey data; conversely,
when preferences are Euclidean, preference data is useful in answering
all sorts of questions about the electorate. The goal is to develop an
approach that will allow one to discern the underlying level of nonsep-
arability in preference data given its limitations.

Although we have strong reasons from the preceding section on
the logical implications of spatial models to suspect that voters have
complex preferences, we lack an analytic measure of complexity that
could determine whether a particular electorate fell into the simplest
case (i.e., separable, Euclidean preferences) or the most complex case
(i.e., completely nonseparable preferences).'® While preferences from
1988 to 2000 seem to be complex, we would like to be able to com-
pare different electorates in different contexts and see how they stack
up. What sort of analytic framework would allow us to build such a
measure? An example helps to clarify this question.

Example: A “Complex” Objective Function — the Traveling
Salesman Problem

The Traveling Salesman Problem (TSP) is a canonical problem in com-
puter science and optimization theory, largely because it is an easily
described member of a class of very difficult problems.'” The setup for

15 The argument presented here is that aggregations of voters are best understood as
objective functions of varying complexity; if this is so, tools borrowed from optimiza-
tion theory are appropriate for analyzing different electorates.

In order to discern what makes preferences “complex” or “simple,” I relied upon
Page’s (2000) general framework that differentiates between difficult and complex
problems. Qualitatively different aspects of a problem can cause hardships in search-
ing for an outcome. Measures of complexity must be sensitive to the distinct features
of a problem that make it “hard” for players. In the case of preferences, separability
is the crucial factor in generating complex preferences.

TSP is an NP-complete problem, which means that no polynomial solution exists.
That is, as the number of cities increases, the number of steps an algorithm requires
to solve the problem increases faster than polynomial time.

1

=N

17



154 Computational and Mathematical Modeling in the Social Sciences

the problem is simple: Imagine you are a salesman and have to travel
between N cities. Trace the shortest possible path that spans the cities
with the constraint that you can only visit each city once. Another way
of describing this is to stipulate that your path must be drawn without
retracing a route or lifting your pencil from the map.

The difficulty of this problem lies in the fact that each step is contin-
gent upon all prior choices; thus, the problem is highly nonseparable
and no clear avenue exists out of this difficulty. In all such problems, it is
very easy to get trapped on local optima, and for large N one may miss
the global optimum entirely. Imagine the difficulty involved in using
a genetic algorithm if all of the genes in each agent were not inde-
pendent (see Figure 4.1 for an example of how much independence
helps us).

It should be noted, however, that the complexity of a particular
TSP varies greatly. Imagine, for example, that you are using cities in the
Midwestern United States as the basis for your instantiation of the TSP;
even with a large number of cities, one immediately intuits that finding
a solution will not be very difficult. By contrast, for relatively smaller
N, where each element is a location in Manhattan, one apprehends the
ugliness of a complex TSP. Thus, even for a problem like TSP, which is
known as a class to be generally hard to solve, it is still useful to derive
measures which can tell you how difficult a particular member of the
class is. That is, when you choose an algorithm to approach a particular
TSP, it would be very helpful to know ahead of time whether things
were going to be simple or complex.

TSP is a real problem and real people chart routes between cities.
Elections represent another problem faced by humans, and like other
problems, it is difficult to decide a priori how much complexity is
present. It may be the case that voters in some countries or time periods
have more complex preferences than at other times. If voter prefer-
ences are nonseparable, the only justifiable representation of an elec-
torate’s preferences would require weak orderings over all platforms
for every voter.'® If weak orderings were the simplest possible rep-
resentation of preferences, surveys that asked for ideal points would

18 < is a weak ordering on the set of platforms P if three conditions are met: (1) For all
ainPa <o, (2)Ifa < Band B < «then o = B; (3) transitivity: If o < B and B < x
then o < y.
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not tell us much, as any departure from a voter’s ideal would result in
completely unpredictable changes in utility."”

Alternately, if voters have Euclidean preferences, we could conduct
surveys as we do now by recording voter ideal positions across issues.
As noted in the introduction to this chapter, spatial models of elections
and of electoral bargaining (whether they occur in a legislature or in
some other arena) assume that preferences are Euclidean; that is, a
Euclidean metric provides easy intuition about the meaning of distance
and neighborhoods in the issue space. For example, in an » dimensional
issue space if a politician adopts platform x, where xis a vector of n issue
positions, the presence of a Euclidean metric allows one to reason that
neighboring platforms are similar to x in utility. Thus, if x = (x1, X2, . . .,
Xp) is replaced by a platform that is some ¢ different on one policy
dimension such that x' = (xq, X, ¢, ..., X, ), we naturally assume that
x and x’ are evaluated almost identically by the voter.

The existence of Euclidean preferences for all relevant actors is
more important still for models of political bargaining. As policies are
separable by assumption in many models, one may substitute move-
ment on one issue for movement on another; that is, side-payments
are usually easy to find. In the general case in which weak order-
ings describe preferences, however, it is far from clear how bargaining
would take place because policies must be evaluated solely as complete
platforms (and not as individual, additive parts). Offering to “split the
baby” would only sow confusion in such a case.

AN ENCODING FOR PREFERENCE COMPLEXITY

The preceding introduction makes the case for further consideration
of the nature of preferences in an electorate. What we lack is a mea-
sure that takes current survey data as an input and returns the level
of complexity (i.e., nonseparability) that is present in an electorate’s

19 For a good overview of this problem, and the ways in which various subfields within
economics and political science are damaged by it, see Milyo (2000). As proof that
Milyo is not overstating the harm caused by arbitrary limitations on the domain of
preferences, consider that several models even assume electorates hold preferences
that result in the unlikely existence of a median-in-all-directions. See, for example,
Calvert (1985) and McKelvey and Ordeshook (1985a and 1985b). And, for an excel-
lent treatise on preferences and the problem of representation, see Katzner (1970).
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preferences. As noted in Chapters 3 and 4, the first step in deriving such
a measure is a scheme for encoding preferences. Although there are
many such schemes, the encoding settled upon here allows us to lever-
age existing research in optimization theory and computational model-
ing.”’ The plan is to build a computational model that will generate lots
of different kinds of preferences with tunable levels of nonseparability.
This is not different in kind from Monte Carlo experiments, and it will
allow us to see if my proposed measure responds correctly to vary-
ing levels of complexity in the artificial preference data. The key is
to develop a measure that demands no more of the data than what
existing political surveys normally provide.

Encoding Preferences

The basic framework for encoding preferences is a fitness (or adaptive)
landscape that represents aggregated voter preferences. This encoding
is generated as follows:

i. The issue space forms an adaptive landscape, of dimensionality N + 1
(where the first N dimensions record possible platforms which span
all N issues and the extra dimension is a measure of the likelihood
of winning the election at that unique platform). One can thus treat
adaptive landscapes much like geographical landscapes, where regions
of greater height represent policy platforms that will likely be more
successful than lower regions.

ii. The difficulty of locating optima on a given landscape can be characteri-
zed by measures of ruggedness and slope. Rugged landscapes have many
local optima; alternatively, an example of a simple landscape would be
one in which a single peak exists (i.e., 1 optimum). Slope is a measure
of the average rate-of-change between any two points on a landscape’s
surface. A preponderance of voters with Euclidean preferences, for
example, would lead to less rugged landscapes than if the electorate
were comprised primarily of voters with more complex preferences.
Similarly, if voter utility functions decrease gradually as they leave their

20 The work of Kollman, Miller, and Page (1992, 1998) and de Marchi (1999) applies
this literature to the problem of elections. Additionally, Bailey (2003) has applied
computational methods to the study of campaign finance, Franklin and Rich (n.d.)
have built a model that describes party formation, and Taber and Steenbergen (1995)
have used computational experiments to analyze different algorithms that describe
electoral behavior.
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ideal point, landscapes will have smoother slopes than those in which
voters have sharply decreasing or uncorrelated utility functions.

iii. Preferences with varying levels of nonseparability will be generated
using Kauffman’s N-K model (see later).

Given this encoding for the computational model, it is natural to look at
existing measures of landscape complexity, and see how these might be
applied to the problem of nonseparability in preferences. It is impor-
tant to remember that any such measure must allow for the use of
survey data, even if relying upon this source of data results in a blunter
measure.

Kauffman’s N-K Model and Complexity Measures
for Survey Data

Prior work in population genetics and optimization theory, in par-
ticular the work on N-K landscapes of Kauffman (1993), Kauffman
and Levin (1987), Kauffman and Weinberger (1989), and Weinberger
(1988, 1990), and Page’s (n.d.) P-Alpha Model of Rugged Policies, pro-
vide analytic frameworks that are enormously useful in approaching
the problem of arriving at appropriate measures for electoral complex-
ity. In Kauffman’s N-K model, N represents the dimensionality of the
fitness landscape (for us, the number of issues present). The parameter
K represents the level of constraint (i.e., the level of non-separability)
between issues. In the nomenclature provided by the N-K model, K is
the number of elements within each subset of related issues.

For example, an electoral landscape with N = 10 and K = 9 has
10 unique issues, where each issue is constrained by choices on all
other issues in a given preference vector. Such levels of high constraint
are extraordinarily difficult to search, as choices on positions are not
independent, thereby exacerbating the innate combinatorial difficulty
of the optimization problem at hand.

Another extreme example would be where N = 10 and K = 0; in
such a landscape, each issue is independent of every other issue, and
may be considered separately. Clearly, a homogenous landscape such
as this one would allow for easy interpretation of survey data. Note
that preferences may be non-Euclidean but still separable.

In the social sciences, nonseparability is most often treated as a com-
plication of the salience matrix in spatial voting models (see Enelow
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and Hinich and their definition of the A matrix).”! This theoretical
framework is problematic, because nondiagonal elements in a salience
matrix only capture pairwise nonseparability. N-K models, in contrast,
parameterize the level of nonseparability as an integer value that can
encompass any possible level of separability among arbitrary subsets of
issues (and not simply pairs). Given that no work to date has succeeded
in empirically establishing the level of nonseparability present in the
preferences of different electorates, it seems vital to have a theoretical
framework that generalizes to the full range of possible values.

One can thus use Kauffman’s N-K model to generate preferences
ranging from very simple, Euclidean preferences to much more com-
plex preferences. Using Kauffman’s basic model, I create electorates
with different parameter values for N, K, and whether or not the pref-
erences are Euclidean. Given the landscape encoding detailed above,
I then generate a landscape that represents the electorate’s evaluation
for candidates located at every possible platform in the issue space.

To understand the nature of these electorate landscapes, I resorted
to full-information measures of landscape complexity. Fortunately,
Kauffman has investigated several full-information measures of com-
plexity that can be accommodated to deal with the electoral landscapes
generated by my computational model. In addition to the normal mea-
sures of mean slope and the number of optima, Kauffman and others
have proposed:”

Mean and variance of the fitness of local optima;

Mean length of an adaptive walk from a random start to an optima;

The number of improvements possible (i.e., along a gradient) at
each point along an adaptive walk;

The mean basin size of optima;

The autocorrelation of fitness results during a random walk.

Measures of this kind are essentially features (see Chapter 2),
which allow us to investigate complex preferences in a parsimonious
fashion. In the more specific realm of electorate preferences, one has to

21 The A matrix in Enelow and Hinich can account only for pairwise nonseparability
with the inclusion of off-diagonal elements. See Lacy (2001b) for a cogent explanation
of this.

22 This list is taken in large part from Kauffman (1993, 55).
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remember that the trick is to adapt these measures of complexity to
cope with the limitations of survey data, which means we have to focus
on a feature space that is measurable given existing data sources.”® As
has been argued throughout this text, choosing the “best” feature space
(based upon analytic properties) is not typically a useful enterprise if
one cannot measure these features. One has to harmonize analytically
justified features with empirically measurable features.

WHEN DATA FAIL YOU, DERIVE A LOGICAL
IMPLICATION (AGAIN)

We have come a long way in attempting to derive a measure of prefer-
ence complexity suitable for survey data, and it is worthwhile to pause
for a moment and look back on our steps. First, I demonstrated that
the logical implications of spatial models are not maintained when one
examines A-NES data. Rather, it seems to be the case that a significant
amount of nonseparability exists in the American electorate between
1988 and 2000. Second, I presented a framework for building a com-
putational model of voter preferences based upon Kauffman’s N-K
model. This model allows us to generate artificial preference data with
varying levels of complexity. This is extremely desirable, because we
know everything about this data and can see whether or not a proposed
measure correctly determines the underlying level of preference com-
plexity. Several measures in the optimization literature already accom-
plish this task; the problem for us is that these measures require much
more information than survey data provides. Thus, we have preliminary
investigations of real data on the American electorate which suggests
that issues are related, and we have a computational model that allows
us to generate test beds for new measures. The problem that remains is
to create a measure that is parsimonious enough to work with survey
data.

23 As noted by Hinich and Munger (1994), the ideal survey would ask respondents to
state their opinion on all possible platforms, but this would be quite onerous. There
is thus a contrast between the data generated by my computational model (which
meets Hinich and Munger’s standard of capturing relationships between issues) and
real survey data (which only provides respondent ideal points). A good empirical
measure of complexity would have to work on both datasets, not just the ideal case.
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While it is clear that any possible empirical measure of complexity
is partly inadequate given the limitations of survey data, my belief
was that one could arrive at a rough approximation that captured the
essence of the full-information measures.”* To construct an empirical
measure, consider the measures of ruggedness proposed by Kauffman.
All of these measures capture the inherent predictability of a fitness
landscape; expressed another way, ideas such as the basin size of an
optimum, or the length of an adaptive walk, all point to how smoothly
varying a landscape is in any given local neighborhood.

We also saw in the Introduction that this idea of predictability or
smoothly varying landscapes has a clear analog to our logical tests of
spatial theory. Imagine, for a moment, if voters had completely non-
separable preferences; that is, the only unit of analysis would be com-
plete platforms, and there would be no continuity in policy neighbor-
hoods. What would Figure 5.1 look like? And, more to the point, what
would a two- or three-dimensional graph of issue positions measuring
the consistency of party affiliation with issue positions look like? It
is clear that with maximum preference complexity, voters would be
located randomly throughout the issue space and there would be no
great propensity for members of the party to cluster together (unless,
of course, they had exactly the same platform).

The answer I arrived at thus depends upon deducing a logical impli-
cation of the full-information measures along with the preliminary
work on the issue of abortion in this chapter. Assume there are N can-
didates for an office. Using the individual’s response to which candi-
date they prefer, one can divide respondents into N groups, where
each group is comprised of respondents who selected a candidate
n € N, thus forming a partition on the space of respondents. To construct
the measure one would then evaluate the consistency of each subgroup
by examining the variance within each subgroup’s policy preferences
around their preferred candidate’s platform. The logical implication is
that variance in preferred policy platforms in each subgroup is a proxy
for actual complexity in the electorate.

Given this implication, the measure of an electorate’s complex-
ity is simple, and as we will see, this extraordinarily parsimonious
measure (in terms of data requirements) tracks very well with the

24 By “empirical measure” I mean a measure that could be generated using survey data.
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full-information measures. The algorithm for constructing this mea-
sure can be stated simply:

I. Partition i € I voters into S disjoint subsets based upon each
voter i’s choice of candidate.
II. For each subset s; where j € S, each voter in s; is represented
by a vector a; of policy positions of length N; each component
k € N of this vector has A unique positions. The measure is thus:
M; = Var(s;)

This measure, M;, is broadly applicable to different types of survey
data and makes a good deal of intuitive sense. To develop this intu-
ition, consider the two extreme cases. First, imagine that voters have
Euclidean preferences. In this case, when one partitions them by their
preferred candidate, one will find that voters in each subgroup have
very similar preferences. In essence, each candidate has a platform that
attracts the “nearest” voters in issue space. Distance obeys our intu-
ition, and voters’ will be responsive to side-payments in a bargaining
process and local movement in a neighborhood by candidates.

The Euclidean case is illustrated in Figures 5.4 and 5.5. In Figure 5.4,
the issue space is one dimensional. With some error, voters more or
less vote for the candidate that is closest to their ideal point. Although
errors may result (notice the two misclassified voters in these figures),
this is the normal result of voter confusion or voter estimates of candi-
date variance (as detailed in probabilistic voting models). In Figure 5.5,
the two-dimensional case is illustrated, and a hyperplane divides the
regions favorable to each candidate. In both figures, it is clear that the
variance in each subgroup of voters, as constructed using the above
measure, will be slight, as voters for a given candidate are constrained
within a limited region.

As one would expect, the Euclidean case is simple to analyze and
does not require a computational model to generate expectations for
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Figure 5.4. One-dimensional Euclidean Preferences
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Figure 5.5. Two-dimensional Euclidean Preferences

the above measure M;. Given that distance in this case is the familiar
expression and that u;i is the mean for subset j on issue k,

1 N %
Mj=5- DD (@i — i)
k=1

1€8;

Itis clear that in the Euclidean case, M increases proportionally to the
number of issues; thus, it is normalized by N in the equation above.
Further, assume that candidates locate near the center of the space as
in Figures 5.4 and 5.5. One would then expect that M; is very small,
as Var(e/c) is equal to (1/c?)Var(e). For example, if the separating
hyperplane induced by the candidates’ locations divides the issue space
in half, one would expect that the variance measured by M; would be
one quarter of the value for unconstrained voters.”’

25 Kauffman derives rough values for various complexity measures in the case in which
alleles are normally distributed. In the computational experiments presented here,
voters ideal points are distributed uniformly across the issue space to bias against
finding results consistent with my complexity measure (see the Results section for
details on this choice). In the Euclidean case, it is easy to check to see if the experiment
yields values consistent with theory. For example, in the case of N = 2 and voter
preferences are Euclidean, one can approximate M; (by using a real distribution
instead of a discrete, following Kauffman) by the simple expected value calculation:

1
Var(Dj) = /ijmdaldaz
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Figure 5.6. Unidimensional Weak Ordering

Next, imagine the most complex case where voters have completely
nonseparable preferences represented as weak orderings (i.e., the
highly complex case where N = the number of issues and K =N — 1).
In this electorate, there is no meaningful concept of a neighborhood
in issue space. Simply because a voter’s most preferred position, mea-
sured as an ideal point on a survey, is (X,Y), there is no relation-
ship whatsoever between the ideal point and surrounding points in
the space — the candidate would have to be located exactly on the
voter’s ideal point to draw any conclusions about the voter’s utility.
Moving away from (X,Y) by any ¢ on either issue results in platforms
that have completely unrelated utility. In this case, bargaining is nearly
impossible and politicians have little latitude to move their platforms
predictably during or subsequent to a campaign. The measure detailed
here captures this complexity because supporters of a given politician
will not have similar ideal points; rather, in the completely nonsepara-
ble case their ideal points will seem to be randomly distributed.

This complex case is illustrated in Figures 5.6 and 5.7. As earlier,
Figure 5.6 displays a unidimensional issue space, while Figure 5.7
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Figure 5.7. N =2, K =1 (Weak Ordering)
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displays two dimensions. Given that a voter’s preferences are described
by a weak ordering (i.e., no simpler functional representation exists),
it should not be surprising that voters who prefer a given candidate are
located apparently randomly throughout the entire issue space. Vari-
ance for each subgroup would in these cases be much larger than the
Euclidean case. Extending the example, one would expect that for an
issue space of identical size, under any set of choices by candidates the
value of M; would be roughly four times that of the Euclidean case.

RESULTS

When evaluating a new empirical measure, such as the one I pro-
pose here for preference complexity in an electorate, it is important to
see whether or not the empirical measure M; is consistent with other,
full-information measures generated by the computational model. In
this case this practice is particularly important, as my complexity mea-
sure is designed specifically for use when we have relatively poor infor-
mation. Surveys that focus solely upon recording a respondent’s ideal
point make a number of assumptions about the nature of underlying
preferences, and this makes any measure that attempts to reconstruct
the level of complexity of underlying preferences hazardous.

The computational model I have presented here thus serves two
distinct roles. First, it helped me generate intuition about the problem
to the point at which I was able to derive a logical implication that
led to the creation of the measure M;. Second, I also can use the full-
information measures derived from the computational model’s artifi-
cial data to verify that M really does order electorates from the simple
to the complex.

Table 5.1 compares three different measures of complexity. As noted
earlier, two of these measures were generated from artificial data and
depend upon complete information; one cannot recover them from
survey data. These full-information measures — neighborhood vari-
ance and adaptive steps — do, however, have well-understood proper-
ties, and to the extent that they correlate with the empirical measure
for survey data presented earlier, we can be more confident in the
new measure. Neighborhood variance looks at the average amount
of change in a neighborhood around a point in the issue space.’

26 Neighborhood is defined here as a hamming distance of 1 around a given platform.
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Table 5.1. Computational Results'

Neighborhood Adaptive  Variance within

Variance Steps Voter Groups (M;)

Euclidian

N=4A=5 673.61 7.73 1.52
(St. Dev.) (54.48) (0.34) (0.18)
Weak Orderings

N=4A=5K=0 519.24 4.09 1.92
(St. Dev.) (182.31) (0.95) (0.14)
N=4A=5K=1 10404.67 3.33 1.94
(St. Dev.) (2988.46) (0.67) (0.13)
N=4A=5K=3 6410831 2.14 1.94
(St. Dev.) (1518946) (0.25) (0.10)

! Ttalicized values represent standard deviations for all iterations of a given experiment.
In all cases, 100 iterations were performed. Electorates consisted of 1,000 voters with
ideal points/weak orderings drawn from uniform distributions. It is important to note
that these results hold regardless of the value chosen for A; the table is generated as an
example for a single choice of A. Finally, values are normalized for N, the number of
issues. Four issues were chosen as a parameter for purposes of illustration; the results
are largely invariant under this parameter for N > 3.

The intuition behind this measure is that if variance in the neigh-
borhood of a given platform is high, the mean slope of the adap-
tive landscape is also high — essentially, you have sharp peaks and
drastic changes in utility as you take steps around the electoral land-
scape. When variance is low, you have gently rolling hills, and one plat-
form tends to be evaluated almost the same as other platforms in the
neighborhood.

Adaptive steps measures the mean number of steps it is possible
to take before getting trapped upon a local optimum.”’” The intuition
behind this measure is that if candidates “tweak” platforms by making
local improvements, there is a limit to how far they can travel in such a
fashion before hitting a local optimum.”® On smoother, more regular
electoral landscapes, one can take more steps, but on more rugged
landscapes the risk of being trapped on a local optimum is high at each
step.

27 A step is an alteration of an existing platform by randomly changing the value of a
single issue in the platform by one unit (i.e., the smallest interval possible).

28 Most optimization procedures depend upon hillclimbing in some form or another
for the systematic aspect of the search, and this measure captures this feature of
searches.
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As stated earlier, one can only apply these two measures when one
has full information about the electorate. In this context, full informa-
tion means that one has a complete evaluation of every possible plat-
form in the issue space by voters — obviously, existing surveys do not
provide this quality of information and my computational model was
needed to produce them. The goal is thus to see how full-information
measures compare to my more parsimonious measure, which has been
designed for real-world surveys that only record ideal points.

As is readily apparent from Table 5.1, both of the full-information
measures move in the same direction as preferences become more
rugged. In the Euclidean case, neighborhood variance is slight, and
the number of adaptive steps is quite large. At the other end of the
spectrum, where weak orderings are the only possible representation
of preferences (i.e., K = N — 1), variance is quite high and the adaptive
steps is low.

As one would hope, the complexity measure I propose for survey
data is consistent with the full-information measures. In the Euclidean
case, in which one would expect supporters of a candidate to “look”
much alike, the measure achieves its minimum. In the most complex
case, the measure records higher variance, indicating that voters within
each subgroup do not have very similar preferences.

Applying the Measure to Survey Data

As noted previously, the goal is simple — find which category of com-
plexity surveys fall into by comparing empirical values for M; (derived
from surveys) with computational results for M;. Due to widespread
use and accessibility, the results presented here utilize A-NES data, the
Israeli Election Survey, and a survey designed by Lacy (2001a, 2001b).
If, in fact, voter preferences recorded by these surveys are Euclidean,
one would expect the complexity measure would match the computa-
tional results for Euclidean preferences. Alternately, survey data might
betray non-separable preferences.

Table 5.2 displays the results of the survey data from the 1964 and
1980 A-NES, and it is quite clear that American preferences are quite
different in the two periods. In 1964, voter preferences are decidedly
non-Euclidean, with little difference between the general sample and
highly educated voters. The fact that highly educated voters have the
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Table 5.2. Variance for Subgroups of Voters Partitioned
by Candidate Choice!

1964 Goldwater Johnson Closest Match (M;)
Non-Euclidean

A =5 (all) 2.61 272 (threshold ~1.57)
Non-Euclidean

A =5 (high education only) 227 2.50  (threshold ~1.57)

1980 Reagan  Carter Closest Match (M;)
Non-Euclidean

A =7 (all) 2.25 2.40  (threshold = ~3.10)
Non-Euclidean

A =7 (high education only) 1.76 1.74  (threshold = ~3.10)

1996 Israeli Study Netanyahu Peres Closest Match (M;)

Non-Euclidean
A =4 (all) 1.03 92 (threshold =.~93)

1 Variance is reported both for the entire electorate (all) and for those with an education
of greater than 12 years (high). Two separate issues were used to generate the A =7 case,
and four issues for the A =4 case. Values for 1992 were tightly clustered and ranged from
.95 to 1.16. For 1996, values ranged from .86 to 1.28. In the Israeli case, highly educated
voters had almost identical values for M;.

same value for M; indicates that genuine complexity (e.g., nonsepa-
rability) is responsible, and not simple randomness. In 1980, however,
preferences are likely Euclidean, especially when one considers that
the subset of highly-educated voters has dramatically lower values for
M; than the whole sample. In accord with our intuition about these
time periods, Democrats as a group display more complexity on M;
than Republicans in both elections, though less so in 1980.

In addition to the American case, Table 5.2 also shows results for
the 1996 Israeli election. Given that results are biased against find-
ing non-Euclidean preferences (see the Appendix on caveats), these
results are strong support for the idea that the current Israeli electorate
is characterized by nonseparable preferences. Many of the questions
on the Israeli survey concerned the peace process along with reli-
gious issues, so this finding is in accord with intuition about the Israeli
electorate.

A final test of the measure M, relies upon data collected by Lacy (see
2001a, 2001b for details) in February of 1998. This phone survey used
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pairs of issue questions along with instruments designed to detect pair-
wise nonseparability. Questions were asked in a standard branching
format, and recorded seven possible values. For example, the environ-
ment question Lacy used was:

CLEAN UP ENVIRONMENT: Do you think the amount of money the U.S.
spends cleaning up the environment should go up, go down, or remain at
current levels?

Follow-up: Go up (down) a lot, somewhat, or a little?

Other seven-valued questions measure attitudes on defense, social
spending, education, taxation, welfare, and immigration. For purposes
of comparison, it is useful to see if the measure outlined here detects
nonseparability across the pairs in this data set, given that Lacy’s pro-
cedure revealed nonseparability.

As expected, Table 5.3 demonstrates that the measure M; also
detects the presence of nonseparability across issue pairs for the major-
ity of categories (i.e., Republican or Democrat respondents divided
into low and high education groups). Although not all categories reg-
ister as nonseparable under the measure M;, these results should be
seen as broadly supportive for Lacy’s work. Unlike the tests devel-
oped by Lacy, M; does not explicitly test for question ordering effects;
further, the questions used in the survey depend upon relative quan-
tities for a given policy (i.e., more or less), rather than enumerating
qualitatively different policy positions. Given these constraints, along
with the fact that both low and high education respondents reveal
nonseparable preferences, few other interpretations of his data seem
likely.

One point raised by the forgoing research deserves clarification.
The empirical results presented here detect nonseparable preferences
in many different datasets, and one might ask if this is evidence of
more voter sophistication than previously thought (Lupia, McCubbins,
and Popkin 2000). On the one hand, most survey research, by assum-
ing Euclidean preferences, would “find” that voters are less than
perfect citizens, when in fact, the survey design itself was at fault.””
Voters might simply have more complex preferences than can be

29 This is the argument made by Lacy in the two articles cited earlier.
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Table 5.3. Variance for Issue Pairs Using Data from Lacy (2001a, 2001b)"

Republican  Democratic
Value for M;  Value for M;
Lacy% for Low/High for Low/High Closest Match

Issue Pairs Nonseparable Educations Educations (M;)
Environment/

Pollution Non-Euclidean

Regulations 34% or 71% 2.74/1.99 2.55/2.07 (threshold ~2.10)
Income

Taxes/Crime Non-Euclidean

Spending 48% or 54% 2.39/2.17 2.48/1.98 (threshold ~2.10)
Social

Spending/

Defense Non-Euclidean

Spending 28% or 42% 2.69/3.13 2.11/217  (threshold ~2.15)

! Not all issue pairs from Lacy (2001a, 2001b) are included, because the survey questions on
Abortion and English Use were measured on different scales, making them unsuitable for use
with the measure of non-separability presented here. Two percentage estimates are reported for
Lacy; in his work, he measures the direction of the effect (i.e., does Environment occur prior to
Pollution, or vice versa?). In the columns for Republican and Democratic respondents, values
that indicate nonseparability are boldfaced (i.e., the value is greater than the threshold value
indicated in the last column).

recorded with existing surveys, therefore arguing for different sorts
of surveys entirely before one can address the question of citizen
competence.”’ On the other hand, relatively simple heuristics also
might be responsible for nonseparable preferences. For example, if
a respondent had some idea that there was a federal budget, pref-
erences on spending policies might be subject to a constraint; that
is, once a certain total level of spending was reached, any bundle
of policies that when added together resulted in excessive spending
would be much less desirable. Other such examples abound, including
the constraint on attention found in directional theory (Rabinowitz
and MacDonald 1993) and heterogeneous agents (Hong and Page
1998).

30 See Hinich and Munger (1994) on the question of how to design surveys to detect
complex preferences.
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YET ANOTHER IMPLICATION

Despite the evidence presented above, one could still believe (reason-
ably) that noise is the culprit, rather than nonseparability. By focusing
upon individual issues, I may have inadvertantly increased the amount
of variance by including issues of little salience to the survey respon-
dents. Or, the problem may be more general. Respondents might not
care about any issue, thereby producing the variance measured M;.

Although I have used the education of respondents to test the
hypothesis that noise is responsible, there is a more direct way to exam-
ine this question. Using data from the A- NES survey, I performed the
following experiment for the 1992, 1996, and 2000 samples:

I. Run a principal components factor analysis on the most salient/
important issue questions on each survey. Not surprisingly, one
finds two dimensions. Loosely, one dimension measures eco-
nomic concerns and the other measures ethical.’!

II. Create a space using factor scores where the X axis is the eco-
nomic dimension and the Y axis is the ethical dimension. Scale
each dimension so that positive values equate to conservative
positions and negative to liberal positions.

In this space, quadrant 1 (with positive values for X and Y) is where
one would expect to find most Republicans. Quadrant 3 (with negative
values for X and Y) is where one would expect to find most Democrats.

I am once again interested in looking at inconsistent respondents;
thatis, how many respondents that are located in quadrants 1 and 3 vote
for the wrong party? If one believes that noise is responsible for the
findings of this chapter, the implication is clear: Inconsistent respon-
dents should be clustered in only two places. If their issue positions are
not well-described by the factor space, they will be located near the
origin. This would imply that there is not a great deal of structure to
their issue responses and variance is a byproduct of voter inattention
orignorance. Alternately, if the inconsistent voters are cross-pressured

31 For more details, see the author’s Web site. Issues were chosen based on their predic-
tive power in standard directional and spatial models. The sample used for the factor
analyses was truncated, because most respondents (about two thirds) did not respond
to the entire set of issue questions. There are various approaches one might use in
interpolating missing values, but this would not affect the results presented here.
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(that is, they are conservative on one factor and liberal on the other),
they will be located along the X or Y axis within their quadrants and
variance indicates ambivalence.

To answer this question, one can either graph the inconsistent vot-
ers on a contour map and visually inspect their locations, or one can
run a regression where the dependent variable is consistency and the
independent variable is distance from the origin.

What is genuinely surprising about this experiment is that not only
are inconsistent voters found throughout quadrants 1 and 3, distance
has no explanatory power for predicting consistency. Moreover, the
number of inconsistent voters is quite large. In 1996, 20 percent are
inconsistent and in 1992 and 2000, nearly 30 percent are inconsistent.
Keep in mind that the sample used for this experiment is truncated to
include only the respondents that answered a large number of issue
questions and had structured enough positions to place them in quad-
rants 1 and 3. Truncating the sample still further to include only those
respondents with a college degree or more does not change the results.

One can, of course, still wonder whether nonseparability is the
explanation for these results. If noise is ruled out as an alternative
explanation, it may be that some other mechanism accounts for the
high variance and large numbers of inconsistent voters.”” Such chal-
lenges, however, exemplify the main argument of this book: Specifying
competing explanations and testing them against data is the best way
to build theory. And when the data are less than perfect, logical impli-
cations can serve as excellent substitutes.

FINAL COMMENTS

Models of human decision making underlie almost all research prob-
lems in the social sciences. A crucial component of any decision is a set
of preferences, and to a large degree, preferences are treated as a mat-
ter of assumption, not genuine research. This chapter adds additional

32 Munger (personal communication) suggests that the presence of multiple ideologies
may be the actual mechanism. Aldrich (personal communication) suggests that a
better way to examine salience would be to leverage the open-ended question on each
A-NES that asks which issues are most important to the respondent. Additionally,
Aldrich believes that panel data could be helpful in discovering whether changes in
issue positions are independent over time.
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support to the hypothesis that preferences are worthy of further study.
Hopefully, I also have demonstrated that in less than ideal circum-
stances, it is still possible to test the main implications of a model by
deriving a logical implication that matches up with existing data. By cal-
ibrating the empirical measure M; against the artificial data provided
by the computational model and then testing it against a variety of
surveys, I was able to add credibility to my hypothesis that electorates
contain individuals with nonseparable preferences.

The measure of preference complexity presented here is far from
perfect (see the appendix), and throughout I have noted the weak-
nesses of my own work. Other explanations — for example, elite com-
munication, ignorance, or salience — could account for these results,
and nonseparability is not the only source of complexity possible in
preferences. The goal of this work, however, is to force researchers to
reconsider their models of electoral decision making.

The existing paradigm, which depends upon fitting models ever
closer to fixed samples, should be replaced with a new focus on testing
the core models against out-of-sample data or with logical implications.
Most everyone in the field is guilty of this lapse, and as a result, most
models are difficult to compare. Directional theorists should be lauded
for producing a number of in-sample comparisons with spatial theory,
but, by and large, every voting model has its own empirical referent.
In large part, this has prevented other head-to-head comparisons, and
has limited the amount of interplay between political psychologists and
mathematical modelers. Without agreed-upon dependent variables,
this lack of cumulative model building will continue to characterize
the field.

Readers may be uncomfortable with the idea that preferences are
complex, especially given the modeling difficulties such a position
entails. Yet, it seems to me that the best way to counter this work
is to directly confront it by building a better model using the same
empirical referent.

APPENDIX: CAVEATS, ENDLESS CAVEATS TO THE MEASURE
OF PREFERENCE COMPLEXITY

There are six important points to make about the use of complex-
ity measures and survey data. First, in my computational experiment,
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voter preferences are drawn from uniform distributions. It is quite pos-
sible that actual voters are drawn from different distributions. Imag-
ine, for example, that American voters with allegiance to a given party
are drawn instead from a truncated normal distribution centered on
the candidate and with low variance. If anything, the presence of an
alternative distribution would likely decrease the amount of variance
reported by my complexity measure, thus pushing the measure to the
Euclidean case. The fact that this measure reports substantial variance,
despite this, is encouraging.

Of course, this problem can be more extreme insofar as their dis-
tribution on ideal points may have little variance, even though their
underlying preferences across all policy options are complex. For exam-
ple, supporters of a candidate may tend to have the same ideal point,
particularly on survey questions with little policy granularity; that is,
when presented with a four-point policy scale, they may choose the
same ideal point simply because of priming, the campaign, and other
factors. The measure in no way accounts for this tendency, and to the
extent that it exists, my measure of variance in each subset of the parti-
tion will be artificially deflated. This, in short, is the two-edged nature of
a measure designed for existing survey data: It has broad applicability,
but is unable to capture some of the nuance one would hope for. The
important point, though, is that this measure is conservative, and any
findings should be treated with high levels of confidence.

Second, as the number of issues N increases, it is not a straight-
forward process to normalize the complexity measure M;. Unlike the
continuous case, discrete policy questions and the concomitant discrete
platform locations for candidates result in a nonlinear progression of
M; in N, although it remains monotonic increasing in N. Fortunately,
d(M;)/d(N) quickly approaches 0 for all values of A; typically, there
are only marginal increases in M; after 4 or 5 issues. Once again, to bias
against finding non-Euclidean preferences, survey data is always com-
pared against the limit of M. What this means is that even if voter pref-
erences can be represented in fewer dimensions, | nonetheless compare
the complexity measure to the limit of M;.

Third, a related problem concerns the size of the issue space N.
As we have seen, normalizing M; to account for the size of the issue
space is difficult for the Euclidean case, but fortunately M; converges
to a fixed value quite quickly. Normalizing for N is more difficult,
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however, when issues are nonseparable (i.e., K > 0), because by defi-
nition nonseparability implies that the true complexity of a given set
of preferences will only be measured when all relevant issues appear
in the survey. Given the paucity of good policy questions on surveys,
along with the inconsistency of most surveys in asking any given policy
question, one cannot be certain that all relevant policies exist in a single
survey. It is thus the case that the level of complexity that is revealed in
any given survey may be underestimated, simply because all relevant
policy questions were not asked. While this is a nontrivial defect, it is
once more the case that this would bias against finding non-Euclidean
preferences.

Fourth, it is impossible to distinguish between rational voters with
weak orderings for preferences and voters who choose completely at
random, with no consistency through time. At root, a weak ordering
looks random, insofar as there is no similarity between neighboring
platforms. Although it is impossible to discriminate between these two
cases using existing survey data, one can offer suggestive evidence
by dividing the sample of voters into the lowest and highest educated
voters. Table 5.2 reports results for voters with 13 years of education or
more and compares this with the total sample. While such a comparison
is hardly dispositive, it does appear that education does not result in
different results. Thus, the question posed here is important (i.e., we
really would like to be able to discriminate with certainty between
“random” voters and complex policy voters), but survey limitations
prevent us from providing a complete answer.

Fifth, one might argue against the use of the measure M; because it
fails to distinguish between salient and nonsalient issues. In fact, one
might even propose weighting the component issues in the measure by
resort to a regression that predicted political choice based upon policy
positions (and using the resultant standardized coefficients as weights).
Sadly, this puts the cart before the horse, as salience as a concept is
only meaningful given separable preferences. As with the other caveats
listed here, the presence of nonsalient issues works against any positive
findings for the proposed measure to the degree that positions on these
issues are correlated with party identification or ideology (Hinich and
Munger 1994).

Finally, one will notice in Table 5.1 that values for M; flatten dra-
matically for all non-Euclidean cases. At first blush, this might seem
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alarming, as there is little ability to discern one value of K from another.
While this is a shortcoming, any other result would be more alarming
still. By construction, survey data that only records ideal points cannot
ever reveal the level of K in non-Euclidean data. To recover the exact
value of K from survey data one would have to be able to test the
precise nature of dependency between issues; for example, one would
have to discriminate between pairwise nonseparability (K = 1) and 3-
tuples (K =2). Given that this is impossible in survey data, the measure
M; conforms to what we can reasonably deduce.

It is worth restating that these caveats do not diminish the main
contribution of the measure M;. No measure that relies upon actual
survey data would be immune to the forgoing caveats, and, in all cases,
I have chosen a course that would mitigate against positive findings of
nonseparability.



A Short Conclusion

Despite the suspicion that often arises between the methodological
camps, it is my belief that most researchers in social science want to
move in the same direction. We all have a desire to understand how
economic and political actors (ranging from individual voters to crowds
to nation states) make decisions. To the extent we understand social
science, any of us would be happy to have policy relevance. As noted
by Friedman (1953) and Granger (1999), the research community has
many shared beliefs — we all, more or less, agree on what “the good” is
in terms of outcomes. What we disagree about is methodology, because
it is not obvious which approach provides the most leverage in under-
standing the world. Put another way, while we might all agree on the
merits of preventing nuclear warfare, the more salient question is how
to discriminate good models and good advice from bad.

Part of the problem is that the social sciences do not have a shared
understanding of what constitutes a reasonable question. Too often,
asking a good question is confused with providing a good answer. One
might want to understand the causes of a particular event (say, World
War II), but, without a great deal of care, a few cases do not constitute a
coherent problem suitable for research. As I have argued throughout,
the main problem that confronts us in research design is the curse of
dimensionality. It cannot be ignored, whatever one’s methodological
orientation. When one resorts to limiting assumptions in game theo-
retic work, or distributional choices and a functional form in empirical
work, one is implicitly making a statement about the parameter space.
The curse remains in much the same form in historiography, as every
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detail included in a narrative represents a dimension that is used to
examine the research question.'

Whatever your research question, you thus need to ask whether or
not it is possible to distinguish your work from a just-so story. How
one deals with the curse of dimensionality is what matters, and as |
have argued here, there are three main rules of thumb one should con-
sider.” The first rule is to derive a parsimonious feature space/encoding
appropriate to the question. This applies with equal force to deduc-
tive, statistical, or qualitative modeling. If one refuses to derive a fea-
ture space, one is in essence hiding crucial elements of one’s work, or
worse still, relying upon the software package or some other conven-
tion to choose the feature space atheoretically. Adding more details to
amodel, whether through assumptions, independent variables, histori-
cal details, and so on, is of itself never helpful. One needs a framework
that allows for relevant detail without grossly expanding the size of
the parameter space.’ Deriving a feature space is one way to incorpo-
rate details in a theoretically aware process. For example, my efforts in

1 Choosing a level of specificity in an historical narrative is very problematic, if one
realizes the nature of parameter spaces. See Lustick (1996) or Goemans (2000) for a
restatement of this conceptual problem that relates it to historiographical curve-fitting.
Although I do not believe that history (or qualitative work and the examination of
small numbers of cases more generally) is a coherent methodology for discovering
casual relationships, it can be used to ground assumptions and parameters in the real
world. As noted earlier, an excellent example of this practice is found in Rabinowitz,
MacDonald, and Listhaug (working paper). One can also look to history as a source
for data (for a good example of this practice, see Scruggs and Allen 2004) or for testing
logical implications.

An alternative that I do not advocate would be to create only very simple models,
thereby avoiding the problems detailed in this book (for a reasoned statement on
the virtue of simple models, see Axelrod 1984). At the end of the day, we would
like our models to be about something important. If our methodologies are not up
to the task of addressing the problems we care about, we need to develop better
methods. Moreover, simple models are simple because of limiting assumptions, which
is one way to hide the curse of dimensionality without eliminating the effects of this
curse.

As noted in Chapters | and 2, adding independent variables willy-nilly is the most
common mistake researchers make in statistical modeling. The analogous problem in
qualitative research is the desire for detail. Unless one can justify it, including details
of the particular form of government (as one example) in a case study is a waste of time
unless one’s cases span the possible government types. It is far better to limit oneself
to fewer, less granular descriptions of government types; that way, one can span the
types with cases.

N
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Chapter 4 are certainly transparent and would be the subject of debate
if others were interested in modeling the alliance game. Debating
the characteristics of the feature space, rather than comparing incom-
mensurable results, places modeling on a more defensible, empirical
footing.

The second rule is to hedge one’s bet by resorting to out-of-sample
testing. Hopefully, I have presented convincing arguments that evalu-
ating models by examining in-sample comparisons is not possible. That
leaves only two options. Either abundant out-of-sample data must be
available, or one must derive novel logical implications of a model and
see if these implications hold empirically. However assiduous we are
in deriving a theoretically justified model, we are always making a haz-
ardous inference. The only way to hedge one’s bet is to test inferences
against out-of-sample data or logical implications. Without these tests,
clever researchers will always succeed in fitting a model to a sample.
Their clever graduate students will fit new models to the same sample
and claim progress has been made.

It is worth noting the corollary that for out-of-sample testing to
work, we all have to focus on the same dependent variables. For exam-
ple, unless there is some agreement on what constitutes “cooperation”
and how to measure it, we will, as a community, derive models that
have no common empirical referent. Common measures are thus a
prerequisite for progress.

Finally, one should work to develop more complex models that
are cumulative in nature. Computational modeling provides at least
a promise of more verisimilitude in our models, which raises the ante
in interesting ways. By incorporating more elements of the real-world
into our models, the odds that one is wrong increase dramatically (and
this is a good thing). Moreover, Chapters 4 and 5 demonstrate that the
difficulty in incorporating the complex elements of a problem into a
model is intimately connected to understanding the phenomenon in
question. Complexity always comes at a cost, but wrestling with these
issues and building cumulative models seems a better approach than
eliminating most issues of interest through limiting assumptions or a
fortuitous selection of cases. In short, we should avoid the current prac-
tice of creating toy models and letting our analogies from these models
to the real world do all the work.
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If the goal is to build better models, as it is in most of the physical sci-
ences, [ would argue that the social sciences are in need of a paradigm
shift. It should be obvious that methods are only useful insofar as they
allow us to provide better answers to problems. Ifitis not obvious that a
new estimator or equilibrium concept advances the out-of-sample per-
formance of a particular model, one has to question its relevance. And
if amodel is so brittle that minor changes to the parameters change the
results, this is a cause for concern. Reducing the gap between deductive
models and their empirical referents seems to be an acute need in the
social sciences, as does building equivalence classes for formal models.
Computational modeling provides one avenue toward reaching these
goals, and should therefore be seen as aneeded complement to existing
methodologies.
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