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Introduction

The primary purpose of this book is to provide an easy-to-use,
unified approach to statistical power analysis in order to enable investigators
to avail themselves of the advantages of this powerful tool in the design of
their experiments. It is our firm conviction that no other process possesses
more potential for increasing the scientific and societal yields accruing from
our experiments. It is also our firm belief that the a priori consideration of
power is so integral to the entire design process that its consideration should
not be delegated to individuals not integrally involved in the conduct of an
investigation, hence the present volume has been written to be completely
accessible to practicing researchers. For this reason we have studiously
avoided the use of technical terms and formulas until the appendix to make
it as accessible (and hopefully interesting) to individuals without advanced
statistical training as possible.

This is not to say that statistical collaboration in the conduct of most
experiments is not desirable. It is, in fact, often absolutely essential and we
have written this work to make it as helpful as possible to statisticians
charged with the task of performing a power or sample size analysis. It has
been our experience, however, that while principal investigators are well
versed in formulating research hypotheses, they often conceptualize the
determination of power (or the sample size necessary to achieve a desired
value thereof) as a technical exercise better delegated to someone with the
appropriate expertise. Our purpose in writing this book is to simplify the
power analytic process to the point that it can become the integral compo-
nent of experimental design in practice that it occupies in theory. The true
value of the concept of statistical power, in fact, lies in the fact that its con-
sideration forces investigators to think in terms of the strength of the effects
their experiments are likely to produce, which is absolutely crucial to the
design process itself. It is for this reason that it is not wise or fair to delegate
the power analytic process to a statistician, no matter how skilled, who is
not immersed in the subject matter and previous research surrounding the
experiment being designed. With this principle in mind, we hope that this
work will facilitate the statistician’s role both with respect to computing the
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power analysis for a wide range of experimental designs and to involving
his/her non-statistical collaborators in the process.

What makes this collaboration so important is the fact that the types
of hypotheses that most scientists have been trained to write are not nearly
as scientifically (or clinically) relevant as they could be. In designing most
experiments, for example, it is almost trivial to posit something to the effect
that “Patients exposed to intervention X will experience significantly fewer
occurrences of symptom Y at the end of Z weeks than patients receiving
standard care.” In designing such an experiment it is almost a foregone con-
clusion that the investigator (and his/her potential funding agency) believes
that the proposed intervention will be better than a control. From an epis-
temological point of view it is tautological that the intervention will not
produce exactly the same effects as the control. What the investigator’s true
job description involves, therefore, is the design of experiments that are
capable of demonstrating the intervention’s effectiveness or, at the very least,
of designing experiments that provide an adequate chance of demonstrat-
ing the intervention’s effectiveness.

Many researchers consider this the province of statistical
significance, and in one sense they are correct. Statistical significance,
however, is only one of two pillars upon which the process of accepting or
rejecting scientific hypotheses rests. The other pillar is statistical power, or
the probability that statistical significance will be obtained and that proba-
bility is determined primarily by the size of the effect that an experiment
1s most likely to produce. Statistical significance, the supreme arbiter of an
intervention’s effectiveness, is also determined primarily by the size of the
effect that is actually obtained after the experiment is conducted and the
data are collected. If the experiment is not designed with sufficient power
to detect the intervention’s true effect size, then statistical significance will
not be obtained once the data are collected and the intervention will be
declared non-effective, even if a clinically relevant difference occurs
between it and its control and even if the intervention “truly” is effective
and is capable of saving thousands of lives (or of improving their quality) if
implemented. It is therefore absolutely incumbent upon investigators to
design their experiments in such a way that societally important effect sizes
will be statistically significant. This, then, is the essence and true purpose of
a power analysis. It also represents the true value of the power analytic
process in the sense that it forces the investigator to consider what size of
effect must be obtained in order to provide a reasonable chance of obtain-
ing statistical significance. Said another way, statistical power involves forcing
the investigator to perform a hypothetical statistical analysis prior to col-
lecting data. This is accomplished by simply substituting the minimum effect
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the intervention is expected to have upon the outcome within the experi-
mental context being designed. This in turn unequivocally yields a discrete,
numerical probability of how likely this result will be to occur in the actual
data analysis performed at the end of the experiment.

About the book

This book constitutes the most comprehensive power analytic tool available
and this statement is not made lightly because it was written standing upon
the shoulders of giants — notably Jacob Cohen’s seminal Stafistical power
analysis for the behavioral sciences and Mark Lipsey’s delightful Design sensitiv-
ity: statistical power for experimental research. (We would also like to acknow-
ledge Professor Karen L. Soeken for her contributions made to this project
from its inception.) What this book basically does is extend the work of
these and numerous others to additional designs via tables (and detailed tem-
plates to facilitate their use) that permit a one-step approach to power analy-
sis, while making a few advances of its own including the computation of
power for multiple comparison procedures and mixed interactions.

The book itself is organized around those parametric statistical pro-
cedures most commonly employed in the analysis of experiments involving
continuous outcome data. In a sense the volume need not be read from
cover to cover, although we do recommend a perusal of the first three intro-
ductory chapters since they lay the conceptual foundation for the use of the
tables and templates that follow.

Supplementary software

‘While we believe the treatment of power for experimental research is as com-
prehensive as is possible within the confines of a single volume, there are
relatively rare occasions when an investigator or a statistician does need to
compute power for, say, an alpha level other than 0.05 or for a different para-
meter than our tables permit. We have, therefore, in collaboration with
Mikolaj Franaszczuk (who at the time of this writing is a brilliant under-
graduate computer science student at Cornell University), prepared a com-
puter program entitled Power analysis for experimental research that exactly
mirrors each of the procedures covered in this volume, but which permits
different (and more exact) parameters to be input. The program may be
obtained free of charge to readers of this book by email from the first author
(bbausell@compmed.umm.edu).

Xi






1 The conceptual underpinnings of
statistical power

The importance of statistical power

As currently practiced in the social and health sciences, inferential statistics
rest solidly upon two pillars: statistical significance and statistical power. The
two concepts, both of which are expressed in terms of probabilities (i.e.,
how likely events are to occur), are so integrally related to one another that
it is almost impossible to consider them separately.

Statistical significance, the first pillar, is a probability level generated
as a byproduct of the statistical analytic process. It is computed affer a study
is completed and its data are collected. It is used to estimate how probable the
study’s obtained difference or relationship (which is called its effect size)
would be to occur by chance alone. Based in large part upon Sir Ronald
Fisher’s (1935) recommendations, this probability level is often interpreted
as an absolute standard. If it is 0.05 or below, the results are said to be
statistically significant and the researcher has, by definition, supported
his/her hypothesis. If it is 0.06 or above, then statistical significance is not
obtained and the research hypothesis is not supported.

Statistical power, on the other hand, is computed before a study’s
final data are collected. It involves a two-step process: (a) hypothesizing the
effect size which is most likely to occur based upon the study’s theoretical
and empirical context and (b) estimating how probable the study’s results are
to result in statistical significance if this hypothesis is correct.

Said another way, statistical significance is used to ascertain whether
or not a given effect size can be interpreted as being reliable enough to allow
the scientific community to accept a hypothesis once a study is completed.
Statistical power, in contrast, is used to ascertain how likely a study’s data are
to result in statistical significance before the study is begun. It is, in effect, a
hypothetical or projected test of statistical significance conducted before an
investigator has access to data.

Although reliance upon this genre of hypothesis testing is not
without its critics (Neyman & Pearson, 1933), the convention of determin-
ing whether or not a given effect size is statistically significant (hence can be
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considered reliable enough to support a researcher’s hypothesis) is almost
universally employed in empirical research. Even when confidence intervals
are substituted for statistical significance, research consumers still check to
see whether a zero effect size resides within that reported confidence inter-
val — which normally occurs only when statistical significance is not
achieved and hence is synonymous therewith.

In effect, then, researchers have no choice other than to subject
their data to statistical analysis and report the resulting “significance level”
in one form or another. There is, in fact, something rather comforting to
many scientists about the definitiveness of a decision-making process in
which “truth” is always obtained at the end of a study and questions can
always be answered with a simple “yes” or “no” and not prefaced with such
qualifiers as “perhaps” or “maybe.”!

Without delving into the philosophical wisdom of this process, its
almost universal acceptance in day-to-day scientific practice has resulted in
an ironic twist of fate: almost everyone analyzes their data to ascertain
whether it is “statistically significant” but a large number of researchers?
either do not ascertain how likely they are to obtain this statistical signifi-
cance prior to conducting these studies or at least conduct them with an
insufficient amount of power.

What makes this situation ironic is that, to a very real extent, the
achievement of statistical significance has become a prime determinant of
scientific success and a primary scientific objective in itself. This is because
an investigation which does not achieve statistical significance (a) does not
support its authors” hypotheses, (b) is often not considered to be as reliable
as research which does, and (c) is not as likely to be published. From both
a pragmatic and a scientific point of view, therefore, it behoves anyone inter-
ested in conducting empirical research to do everything legitimately pos-
sible to design his/her research in such a way that it has a reasonable chance
of obtaining statistical significance and to a large extent this is synonymous
with designing research with a reasonable amount of power.

In effect, then, this entire volume is dedicated to showing research-
ers how to determine the probability of obtaining statistical significance
when designing their empirical investigations. Said another way, this book
is dedicated to the second pillar upon which the scientific inferential process
rests: statistical power. Said one final way, this book is dedicated to enabling
scientists to be successful in the conduct of their scientific endeavors.

Statistical power is therefore of paramount importance, not only
because its consideration is a necessary condition of achieving success
in scientific research, but also because it constitutes a procedural facet
which is largely under the individual scientist’s control. As such, it is not only
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professionally self-destructive to design research which does not have a high
probability of success, it is unethical to do so for the simple reason that all
scientific investigations consume scarce societal resources — be these mone-
tary in nature or reflected in terms of the time and effort required of their
participating human subjects. Since such investments are made on the
premise that scientific investigations have the potential of contributing to
society and the quality of the human condition, to conduct these investiga-
tions without optimizing their chances of success is tantamount to consum-
ing scarce resources under false pretenses.

The book’s approach to power

This book is unique in the sense that it represents the most comprehensive
treatise presently available on statistical power, yet the only statistical know-
ledge it assumes on the part of its users is a conceptual understanding of (a)
the arithmetic mean, (b) the standard deviation, and (c) the normal curve.
Even this prerequisite knowledge is probably not essential for the actual
determination of a study’s statistical power, but it is necessary in understand-
ing the process itself.

The remainder of this chapter, then, is largely dedicated to provid-
ing the reader with a conceptual basis for understanding what statistical
power means. To do this it is necessary to first introduce the concept of a
study’s effect size, after which we will demonstrate how power is actually
computed using only the mean, standard deviation, and the normal curve
as prerequisite concepts.

Chapter 2 presents 11 key design factors which an investigator may
manipulate to increase the statistical power of an empirical investigation
and Chapter 3 illustrates the use of the power tables presented in this book
and provides a number of guidelines regarding the conduct of a power/
sample size analysis. Each of the remaining chapters is dedicated to one of
the discrete statistical procedures that can be used to analyze the full spec-
trum of hypotheses and research designs employed in present day scientific
practice.

The effect size concept

The most integral statistical component in the power analytic process is the
concept of a study’s effect size, which is nothing more than a standardized
measure of the size of the mean difference(s) among the study’s groups or
of the strength of the relationship(s) among its variables. Although this
book requires no computation whatever to conduct a power analysis, it is
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always necessary to be able to conceptualize a study’s most likely outcome
in terms of a hypothesized effect size.

To examine this concept in a little more detail, therefore, let us
assume the simplest possible example: a two-group design with (a) one
group receiving an experimental treatment (E), (b) a separate group serving
as the control (C), and (c) a single continuous dependent variable (i.e., a
measure which can be appropriately described by the mean). In such a study,
the intuitively most obvious indicator of the experimental treatment’s
success will be the size of the difference between its mean and the mean of
its control group. Unfortunately, this particular indicator is dependent upon
a number of factors including (a) the scale with which the dependent vari-
able is measured and (b) how heterogeneous the research sample turns out
to be. Since the primary benefit to be derived from a power analysis is at the
design stage, which occurs before subjects are selected and data are collected,
it is obviously advantageous to employ an a priori measure of effect size that
is independent of the type of dependent variable(s) and the types of subjects
the investigator will be using.

Fortunately, by expressing the potential mean difference between
any two groups in terms of standard deviation units we are able to achieve
an effect size measure which is completely independent of both the depend-
ent variable’s measurement scale and the type of sample that happens to be
selected for the study. This scale- and distribution-free measure of effect size
(ES) is expressed by the following formula:

Formula 1.1. Effect size formula for two independent

groups
ps == Me
SDpooled

Although computationally quite simple, this formula produces a descriptive
statistic of great power and generality. It allows us, for example, to compare
directly the effects resulting from two completely different experimental
treatments performed on two different samples employing two completely
different dependent variables. This very useful characteristic emanates from
the standard deviation concept itself, which it will be remembered is, along
with the mean, the key component of one of the most successtul of all
mathematical models: the normal (or bell-shaped) curve. An ES, then,
is nothing more than a mean difference expressed in standard deviation
units, which means that it is exactly comparable to a z-score (i.e., a stan-
dardized score in which the mean is zero and the standard deviation is 1.0).
An ES of 1.0 therefore implies that one group’s mean differs from that of

4
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another by one standard deviation (which is comparable to a z-score of 1.0).
An ES of 0.50 implies that one group’s mean differs from that of another by
one-half (0.50) of one standard deviation (and can be interpreted exactly
the same way as an individual who achieves a z-score of 0.50, meaning that
he/she scored one-half of a standard deviation above the mean of his/her
reference group).

From a research perspective, then, the ES is a superior concept to
either the mean or the standard deviation in the sense that it is completely
independent of the dependent variable’s scale of measurement. The actual
value of the standard deviation, like that of the mean, is dependent upon
the scale of measurement and the characteristics of the sample. The number
of standard deviations a score is from its mean, or the number of standard
deviations (or standard deviation units) two scores are from one another,
however, is not specific to the particular attribution being described or com-
pared because the ES is expressed in terms of standard deviation units.

To illustrate, let us consider some hypothetical results emanating
from two separate experiments: one designed to influence the quantitative
subtest of the Scholastic Aptitude Test (SAT), which we will assume has a
mean of 500 and a standard deviation of 100, and one designed to change
attitudinal scores measured by a single item Likert scale (mean=3.00;
SD =1.00). Now obviously we could never directly compare the raw mean
differences generated by two studies designed to affect such disparate vari-
ables. Regardless of how successful the intervention designed to change atti-
tudes was, for example, the experiment as designed could never result in a
mean difference greater than 4.00 (since a Likert scale item can only range
between 1 and 5). We would hope, however, that an experimental treatment
worth testing would differ from its control by considerably more than 4 SAT
points.

This is where standard deviation units become so helpful in estimat-
ing power. Suppose the first experiment resulted in an experimental vs.
control (E vs. C) difference of 50 SAT points while the second yielded a
mean difference of only one-half of a Likert scale point. At first glance there
might seem to be a major discrepancy between the relative potency of these
two interventions. As indicated in the computation in Figure 1.1, however,
dividing by the appropriate standard deviation indicates that the strength or
size of the two interventions is identical when expressed in terms of the ES.

This example demonstrates one of the most useful attributes of the
ES concept: it provides a distribution-free statistic by which the results (or
hypothesized results) of any experiment can be described and by which any
two experiments can be directly compared. To be truly useful to investiga-
tors who are interested in estimating the amount of power available at the
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Table 1.1. The ES as an index of the proportion of
subjects helped by the intervention

ES % of experimental
> control subjects

0.0 50

0.1 54

0.2 58

0.3 62

0.4 66

0.5 69

0.6 73

0.7 76

0.8 79

1.0 84

1.5 93

2.0 98

Experiment 1 (SAT) Experiment 2 (LS)

Mg — M 550 — 500 Mg — M:  3.50—3.00
ES= = =0.50 ES= = =0.50
SD 100 SD 1.0

Figure 1.1. The ES as a distribution-free measure. SAT, Scholastic
Aptitude Test; LS, Likert Scale.

design phase of a study, however, it is necessary for them to be able to hypoth-
esize what will be the most likely value for the ES they will obtain once their
research has been completed. To do this, it is quite helpful for them to be
able to visualize what an ES “means.”

The most straightforward way of doing this is probably to think in
terms of mean differences and standard deviations and apply Formula 1.1.
For investigators who have trouble doing this, there are other ways of think-
ing about the ES. One of these is to ignore the size of the mean difference
likely to accrue from an experiment and to think only in terms of the per-
centage of subjects that the intervention is likely to “help” in comparison
with the control. This index is far from perfect, since automatically (i.e., due
to chance alone) 50% of the experimental subjects will score as well as or
better than the mean of the control subjects with no intervention at all. Still,
if an investigator thinks that his/her intervention will result in, say, approx-
imately two-thirds of the experimental group scoring higher than the mean
of the control group as a function of that intervention, Table 1.1 could be
used to translate this estimate to a hypothesized ES of approximately 0.40.
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Table 1.2. The ES as a measure of shared variance
(r?) or the Pearson r

ES I r

0.0 0.00 0.00
0.1 0.002 0.05
0.2 0.01 0.10
0.3 0.02 0.15
0.4 0.04 0.20
0.5 0.06 0.24
0.6 0.08 0.29
0.7 0.11 0.33
0.8 0.14 0.37
1.0 0.20 0.45
1.5 0.36 0.60
2.0 0.50 0.71

Other researchers find it more convenient to conceptualize the ES
in terms of #* or the amount of variance in the dependent variable which is
explained in terms of the independent variable. (The independent variable
in the present case is defined as whether or not an individual receives the
intervention.) Thus, a researcher who “thinks” in terms of “percentage of
variance explained” (or in terms of the Pearson r, which is a measure of asso-
ciation between two variables) can use Table 1.2 to convert such an estimate
directly to an ES, although this index too has its limitations. Most experi-
mental researchers, for example, do not visualize their effects in these terms
and have difficulty conceptualizing what it means to say that 6% (a medium
ES of 0.50) of the dependent variable is shared by variations in group mem-
bership.

Finally, those investigators who prefer to think in terms of propor-
tions or success rates may use Table 1.3 to conceptualize the ES. Thus, if
the E vs. C average “success rate” is 50%, an ES of 0.50 translates to an
approximate 25% superiority for the intervention as compared to the
control. If the E vs. C average “success rate” is either below or above 50%,
then the E vs. C difference (E — C) for any given ES is less than the esti-
mates presented in Table 1.3.

Hypothesizing an appropriate effect size. Regardless of how an ES
is visualized, it is still necessary for an investigator to hypothesize what the
most likely value he/she is to obtain from the study being designed prior to
conducting a power analysis. This is, if anything, the concept’s Achilles heel,
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Table 1.3. The ES as a measure of differences in
proportion (E vs. C average= 0.50)

ES E vs. C success rate
C E E—-C

0.0 0.50 0.50 0.00
0.1 0.47 0.52 0.05
0.2 0.45 0.55 0.10
0.3 0.42 0.57 0.15
0.4 0.40 0.60 0.20
0.5 0.38 0.62 0.24
0.6 0.35 0.64 0.29
0.7 0.33 0.66 0.33
0.8 0.31 0.68 0.37
1.0 0.27 0.72 0.45
1.5 0.20 0.80 0.60
2.0 0.14 0.85 0.71

because many investigators simply throw up their hands in frustration at this
step, asking “How can I know what the ES will be before I conduct the

study?” The answer, of course, 1s that they cannot —although they can certainly
formulate a hypothesis regarding this value. In reality, the process of estimat-
ing a study’s ES is similar to the process of formulating a classical hypothesis;
the only difference is that this hypothesis states how much better one group will
be than another. There are basically three ways in which this is done:

M

@

The first is by conducting a pilot study and using the ES obtained
therefrom. In some cases this is not optimal because of the small
number of subjects typically available for pilot studies. Preliminary
studies involving a study’s primary variables should aliways be run as
a matter of course, however, and the resulting data can often
provide relatively good ES estimates. (This is especially true if a rel-
atively large scale preliminary effort involving the same conditions
which will be employed in the final study (e.g., the existence of a
randomly assigned control group) are employed.)

Another method of hypothesizing an appropriate ES is by carefully
reviewing similar studies conducted by other investigators and
ascertaining the types of results obtained therein. The increased
availability of meta-analyses (i.e., review articles which actually
compute mean ES values for research studies testing the same basic
hypotheses) makes this a relatively attractive option.
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(3) In the absence of a pilot study or sufficiently detailed information
from the literature to hypothesize an ES, a very reasonable strategy
involves using Jacob Cohen’s (1988) ES recommendations.
Professor Cohen suggests that researchers hypothesize a small (0.20
standard deviation units for two-group studies), medium (0.50 SD
units), or large (0.80 SD units) ES based upon their knowledge of
the variables involved. In the absence of specific insights, he re-
commends choosing a medium ES of 0.50. This latter advice has
historically been adopted by a great many researchers and now has
an extremely impressive empirical rationale following Lipsey &
Wilson’s (1993) seminal meta-analysis of 302 social and behavioral
meta-analyses in which they found the average ES of over 10000
individual research studies. Incredibly they found the average ES to
be exactly 0.50, which leads us to paraphrase Professor Cohen’s orig-
inal advice (at least for social and behavioral research):

When in doubt, hypothesize an ES of 0.50.°

The meaning of power

Once an ES is hypothesized, power becomes quite easy both to compute
and to conceptualize. To gain a clearer understanding of what power means,
let us consider a typical power analysis. Let us assume that an investigator
wishes to evaluate a treatment’s success in decreasing patients’ headache pain
as measured by a visual analog scale, that she/he hypothesizes that the most
likely ES to accrue would be 0.50, and knows she/he has enough subjects
to achieve an N per group of 64. Note that the discussion that follows is equally
applicable to determining the sample size needed to achieve a desired level of power
or the maximum detectable effect size emanating from a fixed sample size and desired
level of power: these are all key, integrally related components and are all subsumed
under the concept we are referring to as “power” and the process we are referring to
as a “power analysis.”

To ascertain how much power would be available for such an
experiment, all the researcher would be required to do is decide what stat-
istical procedure would be appropriate for this particular experiment. Since
only two groups are involved and the outcome variable is continuous in
nature, an independent samples t-test is appropriate. The investigator would
therefore turn to Table 4.1 at the end of Chapter 4 and locate the power
level at the juncture of the 0.50 ES column and the N/group row closest to
64 (i.e., 65) which would yield a power estimate of 0.81, which in turn
would lead our investigator to conclude correspondingly that, she/he would

9
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have an approximately 80% chance of achieving statistical significance (or of
rejecting a false null hypothesis) at the 0.05 level with a sample size of 64
subjects per group if indeed the hypothesized ES of 0.50 were appropriate.
To communicate the results of this particular power analysis, our investiga-
tor would include a statement something like the following in his/her
research report or grant proposal:

A power analysis (Bausell & Li, 2002) indicated 64 subjects per group
would yield an 80% chance (i.e., power=0.80) of detecting an ES of
0.50 between the experimental and control conditions using an
independent samples ¢-test (two-tailed alpha=0.05).

In non-statistical language, what this is telling us is that, if everything
goes as planned, our investigator will have an 80% chance of achieving statist-
ical significance. In other words, if the experimental treatment is indeed
capable of producing a gain of one-half of the dependent variable’s standard
deviation as compared to no treatment at all (i.e., if the hypothesized ES is
accurate), then eight out of ten properly performed experiments using 64 subjects
per group will result in statistical significance at the 0.05 level.

Although certainly efficient, there is a decided black box quality to
this process. Since the computational procedures for power are not difficult,
however, perhaps actually seeing how power could be obtained without the
help of tables or computer programs may be helpful in conceptualizing what
it really means to say that a study “has an 80% chance of achieving statist-
ical significance.”

The calculation of power. Re-examining the above statement
indicates that our researcher has hypothesized an ES of one-half of a stand-
ard deviation (i.e., (M —M_)/SD), expects to employ 64 subjects in both
the experimental and control groups, and will use a significance level of
0.05. Actually computing the power available for such a study, then, would
require access to only three sources of information:

(1) The critical value of the t-statistic (i.e., t ) which would be nec-
essary to achieve statistical significance at an alpha level of 0.05 if the
N/group employed were equal to 64. This information can be
found in tables present in almost all elementary statistics texts or
from commonly used statistical packages such as SPSS or SAS and
would be equal to 1.98. This value, then, is the necessary t we must
obtain in order to achieve statistical significance. (Note that there
are no probabilities here: if a t of 1.98 is obtained using 64 subjects
per group the researcher will (i.e., p=1.00) obtain statistical signifi-
cance.)
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(2) The t-statistic which would accrue if the hypothesized medium ES
of 0.50 were actually obtained after the study had been conducted
and its data analyzed. This value can be obtained by simply substi-
tuting an ES of 0.50 and N= 64 into the most simple f-test formula:

Formula 1.2. t-test formula using the ES concept

ESyy, 0.50 580

t = = =2.
"POV2/N G V2/64
This value (+=2.82) could be called the hypothesized ¢ (thyp) because
it is the exact f-statistic that we would obtain if our hypothesized ES
of 0.50 were obtained employing 64 subjects per group. (Here
again, note that this is not a probabilistic statement: a ¢t of 2.82 will
be obtained (p=1.00) if an ES of 0.50 is obtained.)

(3) A distribution (or table) presenting areas under the unit normal
curve associated with different standard deviation units (also called

z-scores), which 1s also present in practically all elementary statis-
tics texts or computer packages and is really nothing more than the
values upon which the normal curve is based.

Once these pieces of readily available information are obtained, the com-
putation of power is simplicity itself because for all practical purposes we
can subtract our two ¢t values (i.e., g t_) and treat the difference as though
it were expressed in standard deviation units (i.e., a z-score or an ES). This
means that to obtain the power available for a study all we need do is look
up the difference between the t which we must obtain in order to achieve
statistical significance (¢_) and the ¢ which will be obtained if our hypothe-
sized ES is correct (thyp) in a table representing the unit normal curve or a
distribution of z-scores (all of which are expressed in standard deviation
units, as are ES values).

Thus in our present example, given a hypothesized ES of 0.50 and
estimated N of 64, what we have so far is a - of 2.82 that we will obtain
if (and only if) we obtain our hypothesized ES of 0.50 and a critical value
of t(t_) of 1.98 (which is necessary if we are to obtain statistical significance
with 64 subjects per group). To determine the statistical power for this two-
group study (with a projected N of 64 and a projected ES of 0.50), all we

basically have to do is answer the following question:

Given a distribution in which the mean is the ¢ representing the
hypothesized ES (i.e., thyp) for a two-group study, what percentage of the
t values in this distribution are greater than the critical value needed for
statistical significance (i.e., t_)?

11
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Figure 1.2. Power depicted as the difference between two t-statistics.

This specific scenario is illustrated in Figure 1.2.
This figure, then, refers to the theoretical scenario in which an

infinite number of experiments are conducted which meet the following

criteria:

(1)

The “real” ES is exactly the same as the researcher’s “hypothesized”
ES (i.e., 0.50). Naturally the researcher will never be perfectly
accurate in hypothesizing the “real” ES, but hopefully this hypoth-
esis will be a reasonable estimate. (This of course means that a
power analysis computed at the design stage is actually an estimate,
often a very gross estimate, of the amount of power available.)

Each experiment is conducted perfectly, which is another way of
saying that the only sources of error are random in nature. At first
glance this may seem overly theoretical, but it is really why we
need inferential statistics in the first place. To illustrate, suppose a
researcher conducted two identical experiments which employed
subjects who were randomly drawn from the same population. It
would be unreasonable to expect the mean differences resulting
from these two studies to be identical, since there would be some
individual differences among the subjects involved. It follows then,
that even if our researcher were perfectly correct in hypothesizing
what the “real” ES was for the variables being studied and ran the
two studies perfectly, he/she would be extremely unlikely to
obtain an ES of exactly 0.50 for both experiments. If enough
identical experiments were conducted, however, their distribution
of ES values would begin to approximate the curve depicted in
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Figure 1.2 in which the mean ES was the “real” or hypothesized value
of 0.50.

Returning to our numerical example, since the area under the
curve represented by Figure 1.2 very nicely approximates that of the unit
normal curve, the actual area to the right of the ¢_ can be approximated by
using the unit normal distribution. To do this, we would simply subtract
the t associated with the critical value (¢_ or 1.98) from the ¢ associated with
the hypothesized ES of 0.50 (i.e., t,(=2.82) and “pretend” that the result-
ing difference (i.e., 2.82 —1.98 =0.84) is a z-score representing 0.84 stand-
ard deviation units. The unit normal distribution would then inform us
that 80% of the area of Figure 1.2 is to the right of ¢_ (i.e., 50% is to the
right of the mean (t,,) and 30% falls between this mean and ¢_), which not
coincidentally is the same value we would obtain from the use of a power
table.

This method of computing power is very succinctly summarized by
the following formula:

Formula 1.3. Power as a function of the difference
between t-statistics*

power = probability of a z-score = (thYp —t.)

An alternative definition of power. Formula 1.3 very nicely
encompasses the entire conceptual basis of power. If our hypothesized ES
of 0.50 were exactly correct, and if we were to conduct an infinite number
of identical experiments, we would obtain a distribution of ES values (i.e.,
mean differences between E and C) where the mean would be 0.50. If we
can assume that the only error operating in this process were random in
nature, half of these obtained values would be greater than 0.50 and half
would be less. We would, in other words, obtain a normal curve in which
the hypothesized ES of 0.50 would be the mean and we would be back to
the distribution represented in Figure 1.2. (As we will discuss in subsequent
chapters, this basic logic holds even when more complex research designs
and more sophisticated statistical procedures are employed.)

Said another way, to evoke the statistical theory behind the power
concept it is necessary to assume that:

(1) an appropriate intervention is chosen in the first place (i.e., it really
was half of a standard deviation “better” than whatever was chosen
to compare it to), and

(2) the experiment was conducted properly.

13
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Hopefully, then, this discussion has logically led to the following
conclusions concerning what power is not:

(1) Power is not “the probability of obtaining statistical significance if a spec-
ified ES is obtained.” 1f the critical value of t, for example, is
obtained, then by definition we have a 100% chance of achieving
statistical significance (and, also by definition, the null hypothesis
will be rejected).

(2)  Power is not “the probability that a test will yield statistical significance”
irrespective of whether or not the data upon which it is based were collected
appropriately. If a study is badly run, employs invalid or unreliable
measures, utilizes subjects who were inappropriate, or is subject to
any number of other glitches, then power is basically irrelevant
because any hypothesized ES based upon a true representation of
the constructs under study will be inaccurate (and, again, basically
irrelevant).

(3)  Power is not “the probability of obtaining statistical significance if the null
hypothesis is false.” The null hypothesis can be false, but if the
hypothesized ES is not appropriate, then any power analysis based
upon it is inappropriate. If the true ES is larger than hypothesized,
then power will be underestimated. If smaller, then the computed
power will be an overestimate.

It therefore follows that:

Power is the probability of obtaining statistical significance in a properly
run study when the hypothesized ES is correct.

With this definition in mind, then, the computation of statistical
power for any projected study involves only (1) hypothesizing the ES most
likely to accrue from the study, (2) deciding what statistical procedure will
be used to analyze the ES which actually does result, (3) turning to the
chapter dedicated to that statistical procedure, and (4) using the appropriate
tables (as explained for each test) to estimate (a) the power available for a
fixed sample size or (b) the sample size needed to produce a desired level of
power. (For more complex designs, additional parameters must be specified,
such as the correlation between variables, but these conditions will be
clearly specified in the chapters which follow.)

Prior to actually using these tables to conduct a power analysis,
however, it is important to consider all of the factors that potentially influ-
ence statistical power. Chapter 2 is therefore devoted to those design com-
ponents under the investigator’s control capable of maximizing the chances
of a scientific experiment’s success.

14



ENDNOTES

Endnotes

1 This book will not delve into the myriad criticisms of classic hypothesis testing
nor the perceived advantages of employing alternatives thereto. In many ways
the present authors’ view of the process is closer to that of Neyman & Pearson
(1933) than Fisher (1935), but for all practical purposes research practice in the
social and health sciences does approximate the latter’s dichotomous approach
to null hypothesis testing, even though hypotheses themselves are seldom stated
in present day published literature.

2 A number of authors have surveyed various social and health related literatures
and found that the majority of studies do not have an 80% chance of detecting
a medium ES. Examples are Cohen (1962), Brewer (1972), Katzer & Sodt
(1973), Haase (1974), Chase & Tucker (1975), Knoll & Chase (1975), Chase &
Chase (1976), Reed & Slaichert (1981), Sedlmeier & Gigerenzer (1989), Polit
& Sherman (1990), Moyer ef al. (1994), Clark-Carter (1997). Some disciplines
(sociology, marketing, and management), however, were found to have reason-
able levels of power (Mazen ef al., 1974; Sawyer & Ball, 1981). Freiman et al.
(1978) present an interesting twist on this literature, finding a decided lack of
statistical power in an analysis of clinical trials which did not obtain statistical
significance.

3 While excellent advice, no funding agency of which we are aware is likely to
accept this as the sole justification for a hypothesized effect size.

4 The Technical appendix presents more detail on the application of this formula
plus the following correction factor recommended by Hays (1973) and Schefte
(1959):

thvp -
power=p| z= -
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2  Strategies for increasing statistical
power

The three basic parameters that affect power are: (a) the proposed
sample size, (b) the significance level which will be used to determine
whether or not to accept the study’s hypothesis(es) and (c) the hypothesized
effect size. Each of these has a number of different facets or applications that
potentially affect power. Since power is one of the primary keys to the
success of a scientific investigation, we will organize the remainder of the
chapter in terms of strategies for increasing it. (For ease of exposition, we will
assume a two-group experimental design as the basic departure point,
although all of the concepts discussed apply to any type of design, experi-
mental or non-experimental.)

The 11 strategies (the mathematical rationale for which is presented
in the Technical appendix), along with their relationship to the three basic
power parameters, can be summarized as follows:

Parameter I: Sample size
Strategy 1: Adding subjects
Strategy 2: Assigning more subjects to groups which are
cheaper to run

Parameter II: Significance level
Strategy 3: Choosing a less stringent significance or alpha level

Parameter III: Effect size
Strategy 4: Increasing the size of the hypothesized ES
Strategy 5: Employing as few groups as possible
Strategy 6: Employing covariates and/or blocking variables
Strategy 7: Employing a cross-over or repeated
measures/within subject design
Strategy 8: Hypothesizing main effects rather than interactions
Strategy 9: Employing measures which are sensitive to change
Strategy 10: Employing reliable measures
Strategy 11: Using direct rather than indirect dependent
variables
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Table 2.1. The relationship between power and sample
size (alpha= 0.05; two-tailed)

N/group ES
0.20 0.50 0.80
15 0.07 0.26 0.57
25 0.10 0.41 0.79
50 0.16 0.70 0.98
100 0.29 0.94 *a
150 0.41 0.99 *a
Notes:

4 Power value is equal to or greater than 0.995.

Eleven strategies for increasing statistical power

Strategy 1: Adding subjects. This is perhaps the most direct (and
expensive) means of increasing statistical power available to the researcher.
Without exception, the larger the N employed, the more power is available
for testing a hypothesis. Returning to the two-group example discussed in
Chapter 1 (i.e., ES=0.50; n=64; alpha=0.05, two-tailed), increasing the
sample size by 40 subjects per group would increase the power from 0.80 to
0.95. Alternatively, reducing the group size by 40 subjects would result in a
power reduction from 0.80 to 0.39.

This relationship is illustrated quite clearly in Table 2.1 for a two-
group design using the types of sample sizes commonly found in experi-
mental research. It is worth repeating that the same relationships hold for
more complex experimental and correlational designs as well. They also
hold for other significance levels. Thus, assuming an ES of 0.50, increasing
the sample size from 50 to 100 subjects per group increases the available
power from (a) 0.70 to 0.94 for a two-tailed alpha of 0.05, (b) 0.45 to 0.82
for a two-tailed alpha of 0.01, and (c) 0.80 to 0.97 for a one-tailed alpha of
0.05.

Strategy 2: Assigning more subjects to groups which are cheaper
to run. This strategy is really a corollary of the first suggestion, since it is
simply a more cost effective means of increasing a study’s overall sample size.
Equal numbers of subjects per group are always optimal, but if practical con-
straints limit the number of subjects which can either be run or obtained in,
say, the intervention group, then it would be foolish to truncate a study’s
overall sample size artificially by limiting the number of control subjects if

17
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Table 2.2. Effects of different N/group ratios (ES= 0.50; alpha= 0.05;
two-tailed)

N/group Power
Group 1 Group 2 Ratio  Harmonic Arithmetic ~ Harmonic  Arithmetic
mean mean mean mean
40 40 1:1 40 40 0.60 0.60
40 80 1:2 53 60 0.72 0.77
40 120 1:3 60 80 0.77 0.92
40 160 1:4 64 100 0.80 0.94
40 200 1:5 67 120 0.82 0.97

the latter are easily attainable. Instead, the researcher should run as many
subjects in his/her control group as necessary to achieve the desired level of
power. It is important to keep in mind, however, that it is the harmonic
mean (see the Technical appendix) rather than the arithmetic mean which
is used to determine how many control subjects would be needed. (As indi-
cated in Table 2.2, then, the relative advantages accruing from this strategy
begin to dissipate rapidly after a 1:2 ratio is achieved for two-group studies.)

The same logic holds for non-experimental studies as well. For
example, suppose a study were to be conducted comparing smokers to non-
smokers with respect to the number of sick days taken during the course of
a year’s employment. If only 20% of a given company’s 100 workers smoke,
it would not be wise from a power perspective to compare the 20 smokers
with a random sample of 20 non-smokers. Considerably more power would
accrue from comparing either the 20 smokers to 40 non-smokers or, if data
were easily collected, the 20 smokers to all 80 non-smokers. (The power
listed under the “arithmetic mean” refers to the power that would have
accrued if the total N had been equally distributed in a 1:1 ratio between
the two groups.)

Strategy 3: Choosing a less stringent significance or alpha level. As
discussed in Chapter 1, the decision regarding what probability level will
determine statistical significance is not entirely under the researcher’s
control unless he/she opts for a more stringent than customary significance
level. As indicated in Table 2.3, choosing an alpha level of 0.01 instead of
0.05 significantly reduces the chance of obtaining statistical significance from
0.70 to 0.45 for an ES of 0.50 and an N/group of 50, while relaxing the
significance criterion to 0.10 increases it to 0.80.

18
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Table 2.3. The relationship between the alpha level
(ES=0.50; two-tailed) and statistical power

N/group Alpha
0.20 0.10 0.05 0.01
15 0.52 0.37 0.26 0.10
25 0.68 0.54 0.41 0.19
50 0.89 0.80 0.70 0.45
100 0.99 0.97 0.94 0.82
150 *a *a 0.99 0.96
Notes:

4 Power value is equal to or greater than 0.995.

‘While researchers seldom have the option of increasing their alpha
levels to 0.20, there are occasions when an alpha of 0.10 is appropriate and
indeed is sometimes the only viable option for a study in which a small ES
is the most likely outcome. If, for example, there is strong empirical and
theoretical evidence regarding the direction of an effect, journal editors and
funding agencies will sometimes permit the use of a directional (also called
a one-tailed) hypothesis test, which is equivalent to the two-tailed alpha
level of 0.10. (Such evidence might include scenarios in which (a) exten-
sive pilot work has been conducted (e.g., in drug trials) or (b) a sufficiently
strong theoretical rationale exists (e.g., in mature disciplines involving
extensively researched dependent variables) that the researcher can be almost
certain that the intervention will not be harmful.) In such instances, there is
really no reason not to employ a one-tailed significance test if the investig-
ator makes this decision a priori and if he/she is willing to interpret even
the strongest negative effect as statistically non-significant. Because of the
number of tables required, we have not presented power tables for one-tailed
tests. We have, however, included sample size tables for p=0.10 (which is
equivalent to a one-tailed p=0.05) for each statistical procedure covered.

Strategy 4: Increasing the size of the hypothesized ES. It is much
easier to achieve statistical significance when the variables involved are
strongly related to one another. For experimental research, the ES is synon-
ymous with the strength of the relationship between the independent vari-
able (i.e., the experimental groups) and the dependent variable. For
correlational research, stronger relationships can be visualized simply as a
larger correlation coefficient (e.g., Pearson r, ¢) between the independent
and dependent variables.
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Table 2.1 can also serve to illustrate the relationship between the
hypothesized ES and power. Continuing with our two-group example,
power increases from 0.10 to 0.41 when the hypothesized ES rises from 0.20
to 0.50 for a fixed N of 25 subjects and from 0.41 to 0.79 when the ES rises
to 0.80 (assuming a two-tailed alpha level of 0.05).

Increasing the ES likely to accrue from a study can, of course, be a
relatively problematic task fraught with difficult trade-offs. If we assume that
different subjects have been assigned to the two groups and that there are no
additional variables that can be used for control purposes (see strategy 6),
there are basically three strategies which the investigator can employ. These
involve (a) strengthening the intervention, (b) weakening the comparison
group, and (for non-manipulated variables) (c) contrasting extreme groups.
Let us consider each in turn.

Strengthening the intervention. The strength of an intervention is
most directly affected by:

(1) increasing the dose (e.g., literally in the case of a drug trial or by
offering more or longer training sessions in a behavioral one), or
(2) adding additional components thereto.

To illustrate, let us assume that an investigator is interested in
designing an intervention capable of effecting weight loss in overweight
cardiac patients, but has access to only a relatively limited number of such
patients. If the literature indicates that a single session of dietary instruction
customarily yields a weight loss ES of approximately 0.20, a sample size
analysis conducted using Table 4.2 Chart B would indicate that almost 400
subjects per group would be needed to produce an 80% chance of obtain-
ing statistical significance.

Our researcher would thus obviously have little choice but to alter
his/her design in some way. To increase the strength of the study’s interven-
tion, he/she could (a) design the study to include multiple sessions of
instruction and/or (b) add a component (e.g., exercise) to the intervention
for which there was adequate theoretical/empirical evidence supporting its
effectiveness with respect to inducing weight loss.

Naturally, other considerations would need to be balanced before
making such a decision. Adding multiple sessions, for example, might
increase experimental attrition as well as make the intervention too costly
to implement clinically. Coupling an exercise component with the original
instructional intervention, on the other hand, would cloud the ultimate eti-
ology of the effect being demonstrated (i.e., the investigator would have no
way of knowing whether the resulting experimental vs. control (E vs. C)
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difference was primarily attributable to dietary instruction, exercise, or some
combination/interaction between the two). Decisions such as this must
therefore be made by the individual investigator based upon the ultimate sci-
entific objective of the study. One of the purposes of the tables in this book
is to alert investigators to the fact that if the ES is likely to be small (e.g.,
=<0.20), and if a relatively small number of subjects is available for the study,
then the chances of achieving statistical significance at the 0.05 level are
exceedingly low.

Weakening the control (comparison) group. Since the ES is deter-
mined by the mean difference between the experimental group and its
control, weakening the control group can be as effective as strengthening
the experimental group. One method of doing this is to use a pure, no-
treatment control rather than a treatment-as-usual group or to use the latter
in lieu of a placebo. As with altering the intervention, scientific and clinical
considerations must always take precedence here over purely statistical ones,
but it should be noted that statistical considerations can effectively prohibit a trial from
ever being mounted. In those cases in which no contact with subjects at all can
be justified on epistemological (and ethical) grounds, however, such a strat-
egy will usually result in a larger ES. (Based upon the results of over 300
social and behavioral meta-analyses, Lipsey & Wilson (1993) have estimated
that the use of a no treatment control is likely to increase an ES by approx-
imately 0.20 as opposed to use of an attention placebo group. Definitive
estimates such as this for health related placebo ES values unfortunately do
not yet exist.)

Employing extreme groups for non-manipulated variables. When
power is an issue for non-manipulated variables (i.e., in correlational
research or for blocking variables in experimental designs), the ES can be
increased by “throwing out” the central part of a distribution (Feldt, 1961).
As an example, suppose a researcher needed to study the effects of an inter-
vention designed to increase productivity in the work place, but suspected
that his/her treatment would be more effective for non-smokers than
smokers (because of the number of breaks taken by the latter). Under
normal circumstances the investigator would employ smoking as a blocking
variable (i.e., identify employees who smoked vs. those who did not and
randomly assign each group to experimental vs. control groups). Assuming
that only a limited number of employees could be included because of eco-
nomic constraints, however, the investigator might be wise to increase the
smoking vs. non-smoking ES in his/her study by contrasting, say, individ-
uals who smoked two or more packs per day with those who did not smoke
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at all. The ES for this comparison would probably be considerably greater
than for one which included some individuals who only smoked occasion-
ally or who were very light smokers. (Of course the omnipresent trade-off
here would involve not knowing anything about the differential effective-
ness of the intervention for the remainder of the smoking continuum and

productivity.)

Strategy 5: Employing as few groups as possible. As will be dis-
cussed in Chapter 6, the use of more than two groups in experimental
research necessitates the use of post hoc tests for statistically significant
effects. When the sample size is limited, this has the potential of greatly
reducing the probability of achieving statistical significance for all resulting
pairwise comparisons. As with all the factors affecting power, decisions
regarding whether or not to employ multiple groups must ultimately be
made by weighing statistical vs. substantive issues.

Returning to the hypothetical clinical weight loss study posited
above, suppose our investigator had decided that it was important to deter-
mine the etiology of any potential effect resulting from the combined
dietary/exercise intervention. Procedurally, he/she would therefore have
little choice other than to add two additional intervention groups to the
original design: one employing dietary information alone and one employ-
ing exercise alone. If he/she wanted to ensure that any observed difference
was not due to a placebo effect involving contacts between patients and cli-
nicians, a fifth group would be required as depicted below:

(1) E1: Exercise only.

(2) E2: Dietary information only.

(3) E3: Exercise and dietary information.

(4) C1: No treatment (or treatment as usual).
(5) C2: Attention placebo.

To illustrate the potential adverse effect upon power of such a deci-
sion, let us assume that the maximum number of subjects available for this
study was 120. Table 2.4 illustrates the relative loss in power associated with
the addition of groups to the original two-group design proposed for a rep-
resented range of ES values. (We will assume a two-tailed alpha of 0.05 and
that Tukey’s honestly significant difference (HSD) post hoc test will be
employed.) As an example, for an ES of 0.50 the power drops from a mar-
ginally acceptable 0.77 for a two-group study employing a total N of 120
to an abysmal 0.15 for our five-group example above for this specific pair-
wise comparison (i.e., the 0.50 ES).

Obviously a multiple group study such as this is feasible only for a
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Table 2.4. The relationship between number of groups and statistical power for
pairwise comparisons (total N of 120; alpha= 0.05; two-tailed; multiple
comparison procedure (MCP), Titkey’s HSD)

ES Number of groups
2 3 4 5
(N/group =60) (N/group =40) (N/group=30) (N/group=24)
0.20 0.19 0.07 0.04 0.02
0.50 0.77 0.45 0.25 0.15
0.80 0.99 0.88 0.69 0.50
1.10 *d 0.99 0.95 0.85
Notes:

“ Power value is equal to or greater than 0.995.

Table 2.5. The relationship between number of groups and statistical power for
pairwise comparisons (N/group= 60; alpha= 0.05, two-tailed; MCDE, HSD)

ES Number of groups
2 3 4 5
(Total N=120) (Total N=180) (Total N=240) (Total N=300)
0.20 0.19 0.10 0.07 0.05
0.50 0.77 0.65 0.56 0.50
0.80 0.99 0.98 0.96 0.95
1.10 *a *a *a *a
Notes:

4 Power value is equal to or greater than 0.995.

relatively large hypothesized ES. As illustrated in Table 2.5, however, the sit-
uation improves dramatically if the N per group remains unchanged (i.e.,
power decreases only from 0.77 to 0.50 and the power for the overall F-
ratio, the statistic used to test the difference between three or more groups,
increases dramatically), although a considerable amount of power is still lost
for the individual group-by-group contrasts (even though the total N more than
doubles from 120 to 300). This leads us to suggest that if a limited number
of subjects is available, the researcher should give serious consideration to
employing as few groups as scientifically defensible. (Two groups are always
optimal, since this avoids the power reducing necessities of decreasing the
number of subjects per group and of employing post hoc tests to evaluate
the statistical significance of individual pairwise comparisons.)
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Pattern A. ES pattern associated with low F power @ 2e® ®
Pattern B. ES pattern associated with medium Fpower @ @ & @ 6
Pattern C. ES pattern associated with high F power [eE) @G

or ®@ QO]

Figure 2.1. The relationship between spread and power of pairwise ES
values.

In many ways Tables 2.4 and 2.5 are counter-intuitive, since we
have repeatedly stressed the direct relationship between sample size and
power, yet the principle holds both for multiple comparison procedures and
the power of the overall F-ratio. It also holds across different types of
designs, such as those employing covariates and repeated measures. The only
exception of which we are aware is the investigator’s choice of multiple
comparison procedures (MCP). This is the primary reason that we have
included sample size tables for the Newman—Keuls approach, since it is con-
siderably more liberal with respect to power than the Tukey HSD (as well
as most other MCPs) for those contrasts whose pairwise ES values are
nearest to one another (see Chapter 6).

Another potential exception involves the power of the overall F-
ratio when the spacing or pattern of the hypothesized pairwise ES values for
the various groups is allowed to vary. While this does not affect power esti-
mates emanating from MCPs, generally speaking patterns of means that
cluster together away from the midpoint of the distribution will result in
more power for the overall F-ratio as illustrated in Figure 2.1.

These principles, then, lead us to offer two related, supplementary
strategies for those instances in which the number of groups cannot be
reduced:

Supplementary strategy 5a. When the number of groups is fixed,
consider employing the Newman—Keuls MCP in preference to the Tukey
HSD or an equally conservative procedure. The powers of the two proce-
dures are identical for the two largest pairwise ES values of an experiment,
but the former is considerably more powerful than the latter for groups that
are adjacent to one another (see Figure 2.1).

Supplementary strategy 5b. When scientific considerations
permit, design treatments with the greatest possible ES spreads. In other
words, an overall hypothesized spread of pairwise ES values such as depicted
in pattern C of Figure 2.1 is superior (from the perspective of the power of
the overall F-ratio) to a study in which a number of the group means are
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expected to fall half~way between the extreme groups (pattern A) or are
equally spread between them (pattern B).

Strategy 6: Employing covariates and/or blocking variables. Few
present day studies employ a single independent variable as depicted in our
generic two-group example. Almost without exception investigators collect
additional data on their subjects which they have reason to suspect may have
a bearing on their experimental outcomes.

These additional variables normally have one of three potential
uses: (a) they may be used simply to describe the sample to give the research
consumer a feel for the types of subjects used (and hence make an informed
decision about how far the results may be generalized), (b) they may be used
for statistical control purposes (i.e., as a covariate/blocking variable in
experimental research or as a control variable in a regression study), and/or
(c) they may be used to test additional hypotheses regarding potential differ-
ential effects of the treatment (e.g., as the interaction between a blocking
variable and the experimental intervention). Using this additional informa-
tion either for statistical control purposes, or to test differential treatment
effects, has the potential of increasing a study’s statistical power, depending
upon the degree to which the additional covariate(s) or blocking variable(s)
is/are related to the study’s dependent variable. (A more thorough discus-
sion on covariates and blocking variables will be provided in Chapter 7;
interaction effects will be discussed in Chapter 9.)

Fortunately, when the additional variables do not increase the
overall variability among the subjects chosen to participate in the study (e.g.,
when they are used as covariates or employed as post hoc blocking vari-
ables), the resulting increase in statistical power is relatively easily quantified.
This is due to the fact that the resulting effect upon power is related to the
size of the correlation coefficient between the covariate/blocking variable
and the dependent variable, which serves to increase the study’s ES.

As illustrated in Table 2.6, the increment to power increases directly
with the size of this hypothesized correlation. Thus if an r of 0.60 exists
between the covariate and the dependent variable, a study’s power would
increase from 0.80 to 0.94 assuming an ES of 0.50 and an N/group of 64.
Alternatively, if a power of 0.80 were deemed sufficient, the researcher
could decrease his/her sample size by 22 subjects per group.

When a blocking variable is employed, an additional increment to
statistical power may be provided over and above the increase illustrated in
Table 2.6 if this new variable interacts with the treatment and if it can be
assumed that the addition of the blocking variable does not increase the
overall within-group difference between subjects. Since this latter point is a
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Table 2.6. The relationship between the use of a control variable and power
(ES=0.50; N/group= 64, alpha=0.05)

Expected r Adjusted ES Power N/group for power of 0.80
0.00 0.50 0.80 64

0.20 0.51 0.82 62

0.40 0.55 0.86 54

0.50 0.58 0.90 49

0.60 0.63 0.94 42

0.70 0.70 0.98 34

0.80 0.83 *a 24

0.90 1.15 *a 14

Notes:

* Power value is equal to or greater than 0.995.

relatively tenuous assumption except for post hoc blocking, we will not
bother to quantify the potential increase in power due to a statistically sig-
nificant interaction in this book. If there is a strong theoretical reason to
suspect such an interaction, however, and if it is deemed nof to be appropri-
ate to use the interaction variable as an inclusion/exclusion criterion, then
Chapter 10 presents modeling algorithms to estimate this power increment.

Strategy 7: Employing a cross-over or repeated measures/within
subject design.  Although often contraindicated (such as when an inter-
vention produces a permanent eftect on the dependent variable, hence pre-
cluding a return to baseline), allowing each subject to receive all
experimental treatments can greatly increase a study’s available power. Even
when these criteria cannot be met, a randomized matched design (in which
subjects are rank ordered via a blocking variable of some sort and randomly
assigned to treatments in blocks) can be used to simulate the effects of
employing a true repeated measures design. Alternatively, a single group
pretest—posttest design, while not a particularly good choice from a method-
ological perspective, does greatly increase power if the correlation between
subject pretest (baseline) and posttest scores is relatively strong.

The increase in power accruing from both types of designs (i.e.,
those contrasting mean differences involving the same subjects and those
involving matched subjects) is directly related to the correlation between
the dependent observations (i.e., between each subjects’ repeated scores or
between matched subjects’ scores). As illustrated in Table 2.7, this effect can
be considerably more dramatic than was the case for covariates. This is due
to the fact that the ES is adjusted (prior to being tested for statistical
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Table 2.7. Power increases as a_function of r in a two-group (or single group
pretest—posttest) within subjects design (ES= 0.50; alpha= 0.05; N=50)

Size of r Adjusted ES Power N/group for power of 0.80
0.00 0.50 0.70 64

0.20 0.56 0.79 52

0.40 0.65 0.89 39

0.50 0.71 0.94 33

0.60 0.79 0.97 27

0.70 0.91 0.99 21

0.80 1.12 *a 14

0.90 1.58 *a 8

Notes:

“ Power value is equal to or greater than 0.995.

significance) more directly based upon the relationship between the
repeated measures as explained in the Technical appendix.

In Table 2.7, the second column illustrates the increment to the ES
that occurs for varying correlations between the dependent observations,
assuming an originally hypothesized value of 0.50. This effect becomes
quite dramatic when the correlation can be assumed to be as high as 0.60
(which is not an unreasonable expectation for reliable measures), with the
originally hypothesized ES rising to almost 0.80 and the power rising to
0.97 (assuming 50 subjects per group). Alternatively, the final column illus-
trates the decreases in required sample size necessary to produce a desired
power level of 0.80, which decreases from 64 assuming no correlation to
less than half (N=27) assuming an r of 0.60.

Strategy 8: Hypothesizing main effects rather than interactions.
Our rationale for this strategy is more conceptual than statistical and is based
primarily upon the difficulties involved in hypothesizing interaction ES
values. To illustrate the difference between a main eftect ES and its interac-
tional counterpart, let us begin with an extremely potent (and unlikely)
hypothesized interaction emanating from the following pattern of means for
a 2 (experimental vs. control) X 2 (males vs. females) design in which the
standard deviation is held at one (Table 2.8).

Basically Table 2.8 reflects a scenario in which both the treatment
and gender ES values as well as the treatment X gender interaction ES are all
0.50, although the hypothesized means themselves reflect a scenario in
which the treatment is really only effective for male subjects. A closer exam-
ination of these hypothesized means, however, indicates that for this scenario
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Table 2.8. A hypothetical 2 X 2 interaction

B1 Males B2 Females  Treatment means

A1l Treatment 1.00 0.00 0.50
A2 Control 0.00 0.00 0.00
Gender means  0.50 0.00

Table 2.9. A more veridical hypothetical 2 X 2 interaction

B1 Males B2 Females  Treatment means

A1l Treatment 0.80 0.40 0.60
A2 Control 0.00 0.00 0.00
Gender means  0.40 0.20

to occur in an experiment the treatment would need to be extremely potent
for males, the documentation of which is difficult in practice because the N
for the A1B1 cell is only one-half the N for the entire experimental group.
(Obviously if this were a 3 X3 design, the N for any single cell would be
only one-third the N for the main effect.)

Since the pattern of means reflected in Table 2.8 would surely
almost never occur in an actual experiment, let us hypothesize a more verid-
ical interaction ES in which the treatment was expected to be effective for
both genders, but more so for one than the other (Table 2.9).

A close examination of this study indicates that the investigator is
still hypothesizing an extremely potent interaction in the sense that he/she
is expecting the intervention to be twice as effective for males as it is for
females. (In real world clinical research, such dramatic treatment X aptitude
interactions are extremely rare.)

For this design, however, the ES for the treatment is considerably
larger (0.60, since we are still assuming a standard deviation of 1.0) than the
treatment X gender interaction, which is only 0.20 (see Chapter 9 or the
Technical appendix for a description of how an interaction ES is calculated).
Thus, for a study with a total N of 100 subjects, the power for the treatment
vs. control contrast would be 0.84 while the power for the treat-
ment X gender interaction would be only 0.16.

This is not to say that factorial studies should not be designed to test
interactions. We are simply cautioning the reader to be quite careful in
designing an experiment in which the primary hypothesis is tested via an
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Pretest Intervention Posttest

Figure 2.2. A single group, pretest—posttest design.

interaction unless this hypothesis is guided by a strong theory. (Actually we tender
even this advice only for experiments involving between subject factors
since it often does not apply to designs employing repeated measures.)

Strategy 9: Employing measures which are sensitive to change.
The ES, as we have employed it to this point, is a descriptive statistic which
indicates the expected improvement that an experimental group is capable
of producing over and above that of a comparison group. Conceptually, this
is no different from estimating how likely the same subjects are to change
following the introduction of an intervention via a single group,
pretest—posttest design (see Figure 2.2). The existence of a separate control
group simply provides a procedurally much cleaner estimate of this effect by
“controlling” for a number of experimental artifacts.

The purpose of an experiment, therefore, is to produce changes in
a dependent variable by introducing an intervention that is theoretically
capable of causing such a change. If the dependent variable is a relatively
stable attribute, however, this purpose is not likely to be realized. Thus it
behoves the investigator to select a dependent variable which has been
shown in previous research to be sensitive to change and then to pilot test
the specific measure, perhaps employing a small single group pretest—
posttest design as depicted above to ensure that the dependent variable does
indeed change as a function of the intervention.

As an example, suppose a researcher hypothesized that using a
focused health education intervention targeted specifically at individuals
with high serum cholesterol levels would result in substantive learning gains
as opposed to the type of hit-or-miss educational advice normally afforded
to these patients by their primary care providers. Our hypothetical investig-
ator would have several options for choosing an appropriate learning
measure. He/she might, for example, opt to use a comprehensive know-
ledge test developed by a national dietary association that possessed
extremely high reliability and content/criterion-related validity due to its
extensive use both in research and in patient education. Ironically, however,
such a measure might be far less likely to document an effect for the tested
intervention than a briefer, less reliable assessment tool constructed espe-
cially to measure the specific content which would be taught during the

29



STRATEGIES FOR INCREASING STATISTICAL POWER

Table 2.10. The relationship between dependent variable (DV) sensitivity and
power (N/group=50; alpha= 0.05; two-tailed)

Hypothesized ES Increased DV sensitivity

0% 20% 40% 60% 80% 100%
0.20 0.16 0.22 0.28 0.35 0.43 0.51
0.50 0.70 0.84 0.93 0.98 0.99 >0.99

course of the experiment itself. (This even takes into consideration, as dis-
cussed in the next strategy, that everything else being equal, more reliable
measures produce greater power than less reliable ones.) The reason is prob-
ably obvious: the nationally validated achievement test would contain large
numbers of items basically irrelevant to the experimental curriculum, which
would have the effect of “watering down” the study’s ES.

‘What our researcher would be wise to do, therefore, is to construct
an instrument tailored to his/her study that would be as sensitive as possible
to the specific instruction being offered. One method of achieving this
objective would be (a) to pretest a group of comparable subjects on as many
items as possible which were relevant to the experimental curriculum, (b)
to teach this group of students the said curriculum (perhaps using standard
instructional methods as opposed to the experimental teaching method),
and (c) to construct the final achievement measure based upon those items
upon which performance changed most dramatically as a function of
instruction. (While this is an extreme case, the bottom line here is that an
investigator should employ dependent variables shown to be amenable to
experimental change.) Table 2.10 illustrates the rather dramatic increases in
power (especially for larger hypothesized ES values) attributable to increases
in the sensitivity of a study’s dependent variable.

This general principle even applies to correlational research even
though no actual change in dependent variable is produced, since the invest-
igator normally is still interested in whether or not the dependent variable
is capable of being changed by the independent variables of interest.

Strategy 10: Employing reliable measures. Assuming that the
dependent variable is sensitive to change (and theoretically linked to the
independent variable), the more reliable this dependent variable is the
greater the statistical power will be. To illustrate this relationship, let us
assume that an ES was hypothesized based upon previous research in which
the dependent variables employed had a reliability averaging 0.80 (which
means that 20% of any given score generated by the measure in question
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Table 2.11 Changes in power as a function of changes
in the reliability of the dependent variable (ES= 0.50,
alpha= 0.05, N/group=50)

Reliability
ES Hypothesized Obtained Power
0.50 0.90 0.90 0.70
0.47 0.80 0.64
0.44 0.70 0.58
0.40 0.60 0.51
0.37 0.50 0.45
0.53 0.80 0.90 0.75
0.50 0.80 0.70
0.47 0.70 0.64
0.43 0.60 0.57
0.39 0.50 0.49
0.57 0.70 0.90 0.89
0.54 0.80 0.76
0.50 0.70 0.70
0.46 0.60 0.62
0.42 0.50 0.55
0.62 0.60 0.90 0.87
0.58 0.80 0.82
0.54 0.70 0.76
0.50 0.60 0.70
0.45 0.50 0.60
0.69 0.50 0.90 0.93
0.65 0.80 0.89
0.60 0.70 0.84
0.55 0.60 0.78
0.50 0.50 0.70

was error and 80% was systematic in nature). If the reliability of the depend-
ent variable measure actually employed in a study turns out to substantially
lower than 0.80, then the study’s power will be lower as well. Conceptually,
this is because the standard deviation will be inflated by the concomitant
increase in error and this, in turn, will lower the study’s ES (since the mean
difference between the two groups, which is systematic in nature, will not
increase as a function of an error-inflated standard deviation). This relation-
ship is illustrated in Table 2.11 in which the reliability obtained is contrasted
with the one assumed when hypothesizing the study’s ES. As indicated
therein, power drops off relatively dramatically as the reliability of the
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dependent variable is reduced below the levels assumed in constructing the
study’s hypothesized ES. Thus a measure which the investigator expected to
have a reliability of 0.80 (based upon either pilot work or the literature), and
upon which assumption he/she based a hypothesized ES of 0.50, would
produce an estimated power of 0.70 for 50 subjects per group. Should the
actual reliability obtained in the study be considerably less than this,
however, the “true” hypothesized ES would be lower as would the power
of the study. If, for example, the actual reliability turned out to be only 0.50,
then the power would be effectively reduced from 0.70 to 0.49 because of
the concomitant reduction in the ES.

This principle also holds for correlational research, where it can be
directly applied to both the independent and dependent variables. The rela-
tionship further holds for covariates and blocking variables in experimental
designs, although power is not affected as dramatically by an unreliable
covariate as it is by an unreliable dependent variable.

Strategy 11: Using direct rather than indirect dependent variables (or
proximal rather than distal variables (Lipsey, 1990)). In both social and
health research, power considerations often preclude employing what inves-
tigators consider to be the most important outcomes as a study’s primary
dependent variable. There are a number of reasons for this, including the
length of time it takes for certain outcomes to manifest themselves and their
relative rarity. Another factor that must be considered, however, is the inevit-
able loss of power associated with each step that a study’s dependent vari-
able is removed from the actual intervention employed. Let us return to our
study designed to evaluate the effects of a dietary education intervention for
individuals with high serum cholesterol levels. The “true” purpose of such
an intervention would probably be to avoid adverse health consequences
such as, say, the incidence of stroke and/or heart attacks. Ignoring the
obvious procedural difficulties of waiting the requisite time for such out-
comes to manifest themselves, this study would probably not have a great
deal of power to detect an experimental effect upon such an outcome given
the distance along the causal chain on which the occurrence of a stroke was
removed from the educational intervention. The most appropriate way of
estimating how many steps are involved in such a chain is to construct a
theoretical model of the study itself. One possible model for this experi-
ment is depicted in Figure 2.3, where the development of a stroke is six steps
removed from the educational intervention itself.

Examination of this model indicates that the most direct (and hence
the greatest accruing ES) would probably occur for a dependent variable
measuring learning of the content of the experimental curriculum.
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Step 1 Step 2 Step 3

Learning about
negative effects
of cholesterol

Reducing
cholesterol
consumption

Reducing serum
cholesterol levels

Step 5 Step 4

Reducing arterial

Reducing strokes plaque buildup

Figure 2.3. Dietary instruction designed to decrease cholesterol
consumption.

Unfortunately this would not be a particularly interesting variable. Many
health researchers would probably settle for changes in dietary behavior,
however, while more physiologically oriented colleagues would consider
changes in serum levels to be more meaningful.

Where the selected dependent variable falls along the above con-
tinuum is quite important because a study’s ES is reduced at each point in
this chain to the extent that the correlation between these successive out-
comes is not perfect. (For example, some people may learn a great deal
about the perils of a high cholesterol diet but not be able to change their
behavior; some individuals may change their cholesterol intake as a function
of the intervention but other physiological parameters exist which mitigate
against the reduction of their serum cholesterol levels; some people may
have high serum cholesterol levels but never develop clogged arteries due to
protective genetic factors; some may have terribly blocked arteries but never
suffer a stroke due to genetic or other as yet undiscovered factors.)

Table 2.12 illustrates the relationship between the number of steps
two variables are separated from one another in a causal chain and the sub-
sequent reduction in power based upon less than perfect correlations
between the sequential measures representing these steps. Thus, if a medium
ES were hypothesized for the intervention’s effect upon knowledge and the
researcher had access to 64 subjects per group, we already know that the
researcher would have an 80% chance of obtaining statistical significance
using this specific outcome variable. Table 2.12, however, can be used to
estimate the concomitant loss in power should serum cholesterol levels be
selected as the dependent variable rather than education if the correlation
between these various dependent variables can be estimated. As an example,
let us assume an average r of 0.90 between these steps (which is actually quite
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Table 2.12. The relationship between dependent variable “distance” from an
intervention (N/group= 64; alpha= 0.05; two-tailed)

Ty between steps Two steps Three steps Four steps
ES Power ES Power ES Power

1.00 0.50 0.80 0.50 0.80 0.50 0.80
0.90 0.45 0.71 0.40 0.61 0.36 0.52
0.80 0.40 0.61 0.31 0.41 0.41 0.29
0.70 0.35 0.50 0.24 0.27 0.27 0.16
0.60 0.20 0.37 0.18 0.17 0.17 0.09
0.50 0.24 0.27 0.12 0.10 0.10 0.05
0.40 0.20 0.20 0.08 0.06 0.06 0.04

high). Using Table 2.12 we would observe the ES reducing from 0.50 to
0.45 for the second step (changes in dietary behavior) with a subsequent
drop in power from 0.80 to 0.71 (assuming an N per group of 64). Moving
to reducing serum cholesterol levels (step 3), the power drops to 0.61, all of
which should serve to illustrate the importance of selecting dependent vari-
ables as closely matched to the intervention as possible. (As always, this rela-
tionship holds for correlational as well as experimental research (e.g., a study
interested in assessing the relationship between dietary knowledge and the
incidence of stroke).) Naturally, these adjustments are extremely tenuous in
the absence of good estimates of r between steps, but Table 2.12 can at least
be used to alert the researcher to the perils of moving too far down the
causal chain in the absence of large sample sizes or extremely high correla-
tions between these steps. (It should be noted that these adjustments apply
only to the scenario in which the originally hypothesized ES is based upon
a dependent variable other than the one ultimately used. Thus, if a study
were originally planned around the use of serum levels and the ES based
upon previous literature involving that variable, then obviously Table 2.12
does not apply.)

Summary

All 11 strategies presented in this chapter have the capability of increasing a
study’s statistical power. All 11 also involve trade-offs of one sort or another
which must be evaluated based upon scientific considerations. Still, each of
these strategies should be considered at the design stage of any experiment
because they all have the potential of increasing the sensitivity and validity
of the hypothesis test itself.
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SUMMARY

Keeping the principles discussed in this chapter and the conceptual
underpinning of the power analytic concept itself in mind, it is now time
to discuss the steps actually required in computing a power analysis. These
are illustrated in Chapter 3 and basically involve nothing more than (a) spec-
ifying the hypothesized ES, (b) choosing an alpha level (which we will
assume to be 0.05), (c) choosing the statistical test which will be used to
evaluate the hypothesis in question, and (d) turning to the chapter which
presents power and sample size tables for that test.
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3  General guidelines for conducting a
power analysis

The purpose of this chapter is to provide some very brief guide-
lines for using the power tables in this book. We will illustrate their appli-
cation within the context of the t-test tables presented at the end of Chapter
4 and a number of common sense principles.

Basically the power tables provided in the chapters which follow
may be used to estimate (a) power given an available sample size and hypoth-
esized ES, (b) the sample size required to achieve a given level of power for
a hypothesized ES, or (c) the minimum detectable ES for a given level of
power and sample size. (For convenience, exact sample size tables are also
provided for the most common targeted power levels, ES values, and sig-
nificance levels.) The following examples illustrate how the power tables
may be used for each of these purposes.

Example 1: Calculating power. Suppose that an investigator (a)
“knew” (we seldom know anything with any degree of certainty before we
conduct an experiment) that 45 subjects per group would be available for
his/her two-arm study, (b) estimated that his/her ES would be approxi-
mately 0.60 (i.e., the experimental group would differ from the control
group by slightly more than one-half of a standard deviation), and (c) wished
to know how much power would be available for the experiment. Since the
t-test for independent samples would be the statistic of choice for such an
experiment, the investigator would turn to Table 4.1 and simply locate the
intersection of the N/group =45 row and the ES=0.60 column. This, as
illustrated in Figure 3.1, would yield a power estimate of 0.80.

Example 2: Determining the N/group. Suppose instead our invest-
igator (a) wished to know how many subjects per group he/she would need
for (b) an estimated ES of 0.60 and (c) a desired power level of 0.80. The
easiest way to accomplish this would be to use Table 4.2 Chart B in Chapter
4 and read the N/group value at the intersection of the 0.80 power row and
the 0.60 ES column, which would indicate that 45 subjects per group would
be needed. Alternatively, he/she could use Table 4.1 and locate the closest
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n Hypothesized ES
0.10 | 0.20 | 0.30 | 035 | 0.40 | 0.45 | 050 | 0.55 | Q.60 | 0.65
5 3 4 6 6 7 8 9 11 12 13
10 4 6 9 11 13 15 18 21 24 27
15 4 7 12 15 18 22 26 30 35 40
20 5 9 15 19 23 28 33 39 45 51
25 5 10 18 22 28 34 41 47 54 61
30 6 11 20 26 33 40 47 55 62 69
35 6 13 23 30 38 46 54 62 69 76
40 6 14 26 34 42 51 60 68 | Y75 82
7] 15| 20| 37| 40| 56| 6| 73 88
50 7 16 32 41 51 60 70 78 84 89

Figure 3.1. Determining power using a typical power table.

n Hypothesized ES
0.10 | 0.20 | 030 | 0.35 | 0.40 | 0.45 | 050 | 055 @ 0.65
5 3 4 6 6 7 8 9 11 12 13
10 4 6 9 11 13 15 18 21 24 27
15 4 7 12 15 18 22 26 30 35 40
20 5 9 15 19 23 28 33 39 45 51
25 5 10 18 22 28 34 41 47 54 61
30 6 1 20 26 33 40 47 55 62 69
35 6 13 23 30 38 46 54 62 69 76
40 6 14 26 34 42 51 60 68 | Y75 82
@ 7 15 20 37| 40| 56| 6| 73 (80| 88
50 7 16 32 41 51 60 70 78 84 89

Figure 3.2. Determining the N/group.

value (see our suggestions regarding estimation/interpolation below when
exact values are not obtained) to 0.80 in the ES=0.60 column. The neces-
sary N/group could then be read in the left-most column as illustrated in
Figure 3.2.

Example 3: Determining the minimum detectable ES.  Finally, let us
suppose that an investigator (a) wanted to know the smallest ES he/she could
reasonably expect to produce statistical significance if (b) 45 subjects per
group were used and (c) he/she desired at least an 80% chance of obtaining
statistical significance. Here, our investigator would find the nearest value to
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n Hypothesized ES
0.10 | 020 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | 0.55 | ©.60 | 0.65
5 3 4 6 6 7 8 o 11| A2 | 13
10 4 6 o | 11| 13| 15| 18| 21| |24 | 27
15 4 7| 12| 15| 18| 22| 26| 30| 35| 40
20 5 9o 15| 19| 23| 28| 33| 39| |45 | 51
25 50 10| 18| 22| 28| 34| 41| 47 | [54 | 6l
30 6 11| 20| 26| 33| 40| 47| 55| |62| 69
35 6 13| 23| 30| 38| 46| 54| 62| |69 76
40 6| 14| 26| 34| 42| 51| 60| 68 ] 175 82
7] 15| 20| 37| 40| 56| 65| 73 88
50 70 16| 32| 41| 51| 60| 70| 78| 84| 89

Figure 3.3. Determining the minimum detectable ES.

0.80 in the N/group =45 row in Table 4.1, and then read the minimum
detectable ES at the top of the column associated with this value, which of
course 1s 0.60 (Figure 3.3).

Estimating power values

The examples provided above all conveniently used exact values contained
in the power table. In actual practice, of course, some degree of estimation
or interpolation will often be required. At the risk of being redundant, it is
important to remember that the primary purpose of a power analysis is to
estimate one of the following three parameters: (a) the number of subjects
needed, (b) the maximum detectable effect size, or (c) the available power at
the design phase of an experiment based upon a fixed number of subjects
and the hypothesized effect size. (This assumes that the alpha level is fixed;
if it is not, it becomes a fourth parameter.) Since the hypothesized ES is always
an estimate (or guess), however, it is really quite spurious to attempt to predict (a) the
necessary N per group to the nearest single subject or (b) the available power to the
nearest hundredth. What this means for the practicing researcher is that it is
not necessary to have access to (a) a computer program that produces this
level of precision or (b) power/sample size tables that contain all possible ES
or N/group values. Simple estimation or rounding techniques are perfectly
acceptable and may even be preferable if they remind their users that what
is being generated is an estimate.

To illustrate, let us again use the independent samples f-test table as
an example. Let us suppose that our investigator estimated that he/she
would have 42 subjects per group for the above mentioned experiment and
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n Hypothesized ES
0.10 | 020 | 030 | 035 | 0.40 | 045 | 050 | 055 | 0.60 | 0.65
5 3 4 6 6 7 8 9 11 12 13
10 4 6 9 11 13 15 18 21 24 27
15 4 7 12 15 18 22 26 30 35 40
20 5 9 15 19 23 28 33 39 45 51
25 5 10 18 22 28 34 41 47 54 61
30 6 11 20 26 33 40 47 55 62 69
35 6 13 23 30 38 46 54 62 69 76
6| 14| 26| 34| 42| 51 68 | 75| 82
@& 7 157 29[ 37 40| 56 (65 73| 80 | 88
50 7 16 32 41 51 60 70 78 84 89

Figure 3.4. Interpolations for an N/group.

estimated the most likely ES to accrue would be 0.50. Unfortunately, as
indicated in Figure 3.4, there is an N/group of 40 and 45 in Table 4.1, but

no 42.

Hence the table “only” produces an exact estimate for the available

power for values of N/group of 40 and 45, which are 0.60 and 0.65 respec-
tively. The truth of the matter is, however, that either estimate (i.e., 0.60 or
0.65) 1s sufficiently accurate since the “true” ES is almost certainly not exactly
0.50 (e.g., it is surely almost as likely to be, say, 0.52 or 0.47 as it is to be
0.50). Hence we suggest that the users of these tables consistently employ
one of three rounding strategies:

1)
)

)

Use the more conservative tabled value (in this case an N value of
40) which would yield an estimated power of 0.60.

Use a linear or estimated interpolation of some sort. This could
involve “splitting the difference” and estimating the available power
to be (0.60+0.65)/2=10.63 (rounded) or an actual linear interpo-
lation (e.g., 42 is 2/5 or 0.40 of the distance between 40 and 45,
hence the estimated power is equal to 0.40(0.65— 0.60)=0.02,
which when added to the power of 0.60 obtained for the N/group
of 40 yields 0.62 (0.60+0.02)), or

Simply estimate the closest tabled value (which in this case would
be a power level of 0.60 since the N/group of 42 is closer to 40
than it is to the N/group of 45).

Any of these estimates (i.e., 0.60, 0.62, 0.63, or even 0.65) is perfectly
acceptable. There are relatively rare situations, it is true, in which reasonably
large differences do exist between tabled values. If an investigator feels
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relatively confident in his/her estimated parameters in such an instance, then
option (2) will provide more precision. Alternatively, the formulas provided
in the Technical appendix (in this case Formula 1.4) may be used to provide
exact values, although this is seldom if ever warranted. In the examples that
follow we will usually employ a linear interpolation (i.e., strategy (2)) for
the sake of consistency.

Recommended power and alpha values

Two of the parameters that must be considered in conducting a power ana-
lysis, the acceptable level of power and the significance criterion (alpha), are
often set by conventions within the investigator’s discipline. Almost without
exception the alpha level is set at p=0.05 and the minimum acceptable
power level is most often considered to be 0.80.

Certainly there are legitimate reasons to use different values for
both of these parameters, but there is no question that these are the most
commonly employed. A power level of 0.80, for example, means that, if
everything goes as planned (i.e., if the hypothesized ES is correct and the
study is run properly), the experiment has an 80% chance of achieving stat-
istical significance and a 20% chance of not achieving statistical significance.
There are occasions, however, when the stakes are too high to accept odds
such as this and the investigator (or his/her funding agency) may not accept
a failure rate of anything more than 10% (power=0.90) or even 5%
(power=0.95).

There is usually less latitude with respect to the alpha level, but occa-
sions exist in which more lenient or more stringent values are justified. (An
alpha level of 0.05, it will be remembered, means that 95% of the time a stat-
istically significant difference will indeed be “real.””) Here again it is conceiv-
able that this 5% error rate might be considered excessive, hence an
investigator might opt for a somewhat lower value — such as 1%. (Similarly,
if an experiment involves multiple statistical evaluations of many outcome
variables a more stringent alpha level might be employed.) Researchers
seldom have the resources to employ alpha levels of 0.01 or below, however,
because they require such larger sample sizes (see Chapter 2). A far more
likely scenario, therefore, is to employ a one-tailed alpha level of 0.05 which
requires fewer subjects if the investigator (and his/her audience) are con-
vinced that there is only one reasonable direction for the study outcomes to
take and if there is no practical or theoretical reason to evaluate statistical sig-
nificance when the results are not in this direction.! There are occasions on
which this is completely justifiable (e.g., in the presence of strong theory or
prior research), although the investigator must be willing to consider any

40



RECOMMENDED POWER AND ALPHA VALUES

Chart A. Independent sample r-test at alpha=10.05

Power

Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 |[394| 176| 130| 100| 79| 64| 54| 45| 39| 34| 30| 26| 17| 12 9 7 6 4
0.90 | 527| 235|173| 133| 105 86| 71| 60| 51| 45| 39| 34| 23| 15| 11 9] 7| 5
Chart B. Independent sample f-test at alpha=0.10
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80(1.00| 1.25| 1.50| 1.75| 2.00( 2.50| 3.00
0.80 | 310| 139] 102| 79| 62| 51| 42| 36| 31| 27| 23| 21| 14| 9| 7| 6| 5 4| 3
0.90 | 430| 192] 141| 108| 86| 70| 58| 49| 42| 35| 32| 28| 18 12| 9| 7| 6| 4

Figure 3.5. Using the sample size tables.

difference in the non-hypothesized direction, no matter how great, as non-
significant. This is a heavy price to pay, however, hence this option is used
relatively rarely. The bottom line, then, is that under all but the most unusual circum-
stances, experiments should be designed to achieve a power level of 0.80 and use a
two-tailed alpha of 0.05.

Since providing power tables for both a one-tailed alpha of 0.05
and a two-tailed alpha of 0.01 would triple the number of tables required
for this book, we have opted to provide exact sample size tables for the two
most commonly employed levels of desired power (0.80 and 0.90) and
alphas of both 0.05 and 0.10 (which is equivalent to a one-tailed 0.05
level).

To illustrate the use of these tables, let us assume that our investig-
ator wanted to know exactly how many subjects would be required to
achieve a power level of 0.80 for all three of these different levels of statist-
ical significance. Let us further assume that the hypothesized ES was 0.50
and that an independent samples ¢-test was again to be employed.

Figure 3.5 presents a portion of the sample size table that would be
used for this purpose. (One advantage of these tables is that, if the desired
power level is indeed 0.80 or 0.90, there is usually no need to interpolate
with respect to the necessary number of subjects needed in each group.) The
N/group, then, that would be necessary to assure a power level of 0.80 at a
two-tailed alpha of 0.05 would be found at the intersection of the 0.80
power row and the 0.50 ES column in Chart A (alpha=0.05), which would
be 64. For an alpha of 0.10, Chart B would be employed with the resulting
N/group being 51, obviously a considerable saving in sample size.
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Hypothesizing the effect size

If the power analytic process has an Achilles heel, it is undoubtedly the
process of hypothesizing an effect size. It is far easier to hypothesize which
group(s) will be superior to which other group(s) than it is to predict the
magnitude of this difference. From a power analytic perspective, however, the
hypothesis being tested is not simply that “the experimental group mean
will be significantly greater than that of the control group.” Instead the
hypothesis is in effect that “the experimental group mean will be a certain
number of standard deviation units greater than that of the control group.”
(Note that if multiple groups or multiple dependent variables are employed,
an experiment is almost certain to have more than one ES and hence more
than one power analysis will need to be conducted.)

We have discussed defensible methods of estimating an ES (e.g.,
meta-analyses or primary trials involving similar interventions and outcome
variables and/or pilot studies), although all too often investigators determine
their ES values based upon how many subjects will be available or how many
they can afford to run in order to achieve a specified level of power. An ES
generated in this manner, or a power analysis performed based upon an
unrealistic ES, is completely worthless at best and fraudulent at worst.
Carefully estimating a realistically obtainable ES is an integral part of the sci-
entific process and as such should be justified and documented with great
care and explicitness. When there is truly no information that can be
brought to bear with respect to hypothesizing an effect size, then for the
social and behavioral sciences there is considerable justification for employ-
ing an effect size of 0.50 as discussed earlier (e.g., Cohen, 1988; Lipsey,
1990; Lipsey & Wilson, 1993). It is doubtful, however, that many major
funding agencies would accept this guideline and most certainly agencies
such as the National Insititutes of Health (NIH) or National Science
Foundation (NSF) would require a more explicit justification. Regardless of
the method used to arrive at a hypothesized ES, the investigator should
always present the rationale for his/her final decision(s) clearly and expli-
citly. If published research is employed, the citation should be provided, the
actual summary statistics should be reproduced, and the reasons that these
values may and may not apply to the proposed study should be explicated.
If a pilot study has been used, the methods (including sample size and
summary statistics) should also be presented in the study’s Institutional
Review Board (IRB) and/or grant application.
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USING PAIRWISE (1 df) CONTRASTS

Selecting an appropriate statistical procedure

There are always numerous options for analyzing the same data. Generally
speaking, the most powerful, classic parametric procedures available have
been presented in this book based upon the philosophy (generally supported
by Monte Carlo studies) that violations of their assumptions do not produce
spurious values or incorrect inferences. We do not, therefore, quibble
regarding whether or not a dependent variable is measured at the ordinal or
interval level. Instead, if a variable is continuous (as opposed to categorical)
we assume that the data will be subjected to one of these procedures, regard-
less of whether we can justify, say, that the intervals between the possible
values are strictly equal to one another.

This is not a universally accepted view, of course, hence some stat-
isticians insist on the use of non-parametric or other options for which con-
venient power tables are not generally available. What we suggest, therefore,
is that an investigator who plans to employ, say, a Mann—Whitney U test
based upon the belief that the data are more ordinal than interval (or that
they are not normally distributed) still employ the tables presented in
Chapter 4 as an estimate of the power available (or sample size needed).
Alternatively, should a slightly more sophisticated design (e.g., one employ-
ing a nested factor) be employed, or a new statistical approach used for
which power calculation procedures have not yet been developed, we would
suggest that the closest analog present in the chapters that follow be
employed. As we have emphasized before, a power/sample size analysis is an
estimate at best and is not exact because the hypothesized effect size is far
from an exact quantity under even the best circumstances. (Should the
investigator or his/her statistician feel especially insecure about such an
estimate, the computation can be based upon a desired power of 0.90 instead
of 0.80 with the reason for this change being explicitly stated when the
power analysis is reported.) Also, as a general rule of thumb, if an investig-
ator estimates power based upon a slightly less sophisticated model than the
one actually employed (and also states this clearly when the results of the
power analysis are described), then he/she is not likely to be criticized
because the resulting power/sample size values would err only slightly on the
conservative side.

Using pairwise (1 df) contrasts

When more than two groups or arms are employed in an experiment, the
primary comparisons of interest are the individual comparisons between the
various groups involved. Thus if an experiment were to employ four groups,
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our statistical textbooks tell us that the most appropriate way to analyze the
data resulting from this experiment would be an analysis of variance proced-
ure that would produce an F-ratio with three degrees of freedom in the
numerator. If this statistic were found to be statistically significant, the next
step would be to determine which of the four groups differed significantly
from one another — thereby producing six pairwise contrasts.

From a power analytic perspective, the power present to produce a
statistically significant F-ratio is largely irrelevant, however, since the
primary purpose of the experiment lies embedded in these individual con-
trasts. (Determining the power of an F-ratio is analogous to determining the
power of the multiple R in a regression study where the primary question
of interest is whether or not a particular independent variable is independently
related to an outcome variable. In the latter case, the statistic that is of inter-
est is the individual beta weight associated with the independent variable,
not the multiple R — which addresses the question of whether or not the set
of included independent variables are significantly related to the dependent
variable of interest.)

In the case of the omnibus F-ratio for a four-group study, then, it
is not the pattern or spread of all of the mean differences involved that is of
interest, but the power for each of the six individual contrasts that is crucial
(most of which will incidentally have completely different hypothesized ES
values and hence be associated with completely different power/sample size
estimates). For this reason, the tables provided in Chapters 6 through 8
(which deal with between subject, analysis of covariance, and repeated
measures designs respectively) allow the reader to compute the power of
individual pairwise mean differences as well as the overall F-ratio.

The importance of modeling different power parameters

Since the ES and available N are usually only estimates, it is wise to model
different values for these parameters as well as different analytic/design
strategies when performing a power analysis. In other words, since one
never knows for sure exactly what a study’s final ES will be (and we seldom
know how many subjects will be eligible or will agree to participate), it
makes sense to produce multiple power/sample size estimates based upon
different experimental scenarios. When these scenarios are equally prob-
able, the final power/sample size estimates should be presented either as a
range or as the most conservative estimate generated (i.e., the largest
required sample size, the smallest maximum detectable ES, or the largest
N/group).

The primary benefit generated from modeling such as this,
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however, is to determine those design components that could potentially be
added to a study to assure the availability of sufficient power — which
happens to be far and away the most important contribution the power ana-
lytic process makes to research itself.

As one example of this principle, suppose that an investigator’s best
estimate for an ES was indeed 0.50, but he/she knew that only 40 subjects
per group for a two-group trial would be available (or that resources existed
only to recruit and run 40 subjects per group). Use of Table 4.1 would
indicate that the power available for such a study if it were to be analyzed
via an independent samples f-test would be 0.60, and Table 4.2 Chart B
would indicate that another 24 subjects per group would be needed to
achieve a desired power level of 0.80.

For anything but a pilot study, a 60% chance of achieving statistical
significance is really not adequate, hence (assuming that the sample size is
indeed fixed), our hypothetical investigator needs to explore his/her options
to see whether indeed a more reasonable power estimate can be obtained
given these constraints. Referral to Chapter 2 provides the full range of
options available, but from the perspective of the tables presented in this
book there are basically three genres of variable that can be modeled.

Modeling genre 1: Relaxing the significance level from 0.05 to 0.10
(in the relatively rare environment in which this would be permitted). To
ascertain the effect of this modification, Table 4.2 Chart C could be
employed. Locating the intersection between the power = 0.80 row and the
0.50 ES column, producing a sample size requirement of 51 subjects per
group, which in this particular experiment does not particularly help the
investigator.

Modeling genre 2: Changing the design from a between subject to a
within subject trial (in the equally rare situations in which the same or a
priori matched subjects can be employed in both intervention and control
groups). As will be described in more detail in Chapter 5, an additional
parameter must be hypothesized for this scenario: the correlation between
subjects’ dependent variable scores under the two different treatments (e.g.,
the experimental vs. control groups). Table 5.6 allows the investigator to
model several options, here, which indicate that when the r1is as low as 0.40,
only 40 total patients are required to achieve a power level of 0.80. This is
indicative of how efficient this strategy is, although it is an option for only
a relatively limited range of studies (e.g., those for which the treatment effect
is transitory and subjects’ dependent variable scores return to baseline
values).

45



GENERAL GUIDELINES FOR CONDUCTING A POWER ANALYSIS

Modeling genre 3: Employing a baseline (pretest) measure of the
dependent variable (or other comparable variable) collected on all subjects
prior to the introduction of the intervention (which usually is feasible). For
this scenario, different subjects are still randomly assigned to the two groups,
but all subjects are measured prior to treatment implementation. As with the
within subject option above, a correlation between the baseline and end-of-
treatment measures must be hypothesized (as described in Chapter 7) and,
depending upon the proposed r (which may be ascertained via a pilot study),
either Table 7.1 (for r=0.40) or Table 7.2 (r=0.60) can be employed if the
baseline measure is conceptualized as a covariate. In the first case, for an ES
of 0.50 and 40 subjects per group, the power would rise to 0.68 and in the
second it would become an acceptable 0.80, which the investigator might
select as the most viable approach; of course he/she might also prefer one
of the options presented in Chapter 2 (e.g., changing the intervention or
control group to increase the ES, increasing the reliability of sensitivity of
the dependent variable, or combining strategies such as relaxing the alpha
level and using a covariate).

An algorithm for selecting among analytic options available
in later chapters

Basically, three of the next five chapters are devoted to options 2 and 3
above. Although each chapter begins with an explicit description of the
types of scenarios in which its tables are appropriate, we also offer the fol-
lowing algorithm for facilitating the process of determining which analytic
procedure is most appropriate for any given study design.

For within subject (repeated measures) designs

* For two-group studies involving only a single administration of
the dependent variable or one-group studies employing baseline
and end of treatment (EOT) measures, see Chapter 5.

* For three- to five-group studies involving only a single adminis-
tration of the dependent variable, see Chapter 8.

e For two- to five-group studies employing another between
subject grouping variable (or for two- to five-group studies
employing different subjects in the treatment groups but that
employ multiple administrations of the dependent variable (e.g.,
baseline, EOT, and follow-up)), see Chapter 9.
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For between subject designs

* For two-group studies involving only a single administration of
the dependent variable, see Chapter 4.

* For three- to five-group studies involving only a single adminis-
tration of the dependent variable, see Chapter 6.

* For two- to five-group studies involving a baseline measure or
other variable that will be employed as a covariate, see Chapter 7.

* For two- to five-group studies that also contain a second group-
ing variable (with or without a covariate), see Chapter 9.

For other designs

* See Chapter 10, or simply employ the nearest analog discussed
therein or in one of the previous chapters (always explaining this
compromise when reporting the results of the power analysis).

Reporting the results of a power analysis

Since even the most simple power analysis involves specifying three para-
meters (i.e., the N/group, the ES, and the alpha level) in addition to the stat-
istical procedure that will be employed to ascertain statistical significance or
the lack thereof, it follows that all of these factors should be described when
the results are presented. In addition, the ES should be justified by telling
the reviewer of the research protocol, in a few succinct paragraphs, exactly
how it was derived — such as via a pilot test, a meta-analysis, or a very similar
experiment with appropriate citations. (Normally the other parameters
involved in a power analysis do not need justification unless an alpha level
other than 0.05 is to be employed. The statistical procedure and the alpha
level should be mentioned, however, if they are not specified elsewhere in
the proposal.)

Most journals do not require the explicit ES justification that we
are describing here (although they probably should), but almost all funding
agencies do. The important point to remember in describing and justifying
one’s hypothesized ES, however, is to be honest and realistic. To be other-
wise increases the probability of the proposed study’s failure, and the most
immediate victim of this failure is the investigator who will spend a signifi-
cant portion of his/her life conducting an unsuccessful trial. (Ultimately, of
course, those members of society who might have profited from the discov-
ery of a successful intervention suffer perhaps the greatest loss.)

The power analysis itself, along with a reference to alert the reader
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to the specific method employed in arriving at the final results, may be
described in a single sentence, such as:

A power analysis (Bausell & Li, 2002) indicated that 64 subjects per
group would result in an 80% chance of obtaining statistical significance
via an independent samples f-test (p=0.05) assuming the ES of 0.50
observed in our previously described pilot study.

Alternatively, if the necessary sample size were derived for a desired level of
power, this sentence might read as follows:

Assuming the use of an independent samples ¢-test, a power analysis
(Bausell & Li, 2002) indicated that 64 subjects per group would be
needed in order to produce an 80% chance of obtaining statistical
significance at the 0.05 level for the 0.50 ES observed in our previously
reported pilot study (Jones & Smith, 2000).

As the complexity of experimental designs increases, additional
parameters are involved in the calculation of power (e.g., the correlation
between the independent variable and the covariate in an analysis of covari-
ance), hence they too must be specified and justified. (Examples of how
the results of these power/sample size analyses can be reported are presented
in the chapters that follow.) Often it is difficult to justify adequately all of
the values needed in some of these designs, especially in the absence of a
pilot study, since they are seldom found in published reports. In these
instances, modeling different parameter values can be especially helpful in
arriving at reasonable power or sample size estimates. Additional suggestions
for this modeling process (for which the provided templates are especially
helpful) are presented in the sections devoted to the relevant statistical pro-
cedures.

Summary

This chapter has provided guidelines for using the tables presented in the
next six chapters to estimate power, sample size, and the maximum detect-
able ES. A case is made for the importance of explicitly stating one’s assump-
tions and rationales made during the course of a power analysis, as well as
being extremely forthright and honest in the reporting of this information.
Modeling suggestions are provided and an algorithm presented that directs
the reader to the appropriate chapter for more information regarding the
analytic options available.
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Endnote

1

A one-tailed test assumes that any outcome in the opposite direction than the
one hypothesized is spurious and therefore cannot be statistically significant.
Thus if an investigator uses a one-tailed test to evaluate the effect of an inter-
vention and the control group is actually superior, the inferential conclusion
must be that there is no statistically significant difference between the two treat-
ments no matter how large this difference turns out to be. By implication, there-
fore, use of a one-tailed test is inappropriate for an experiment in which it is
also important to evaluate potential harmful effects of an intervention.
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4

The t-test for independent samples

Purpose of the statistic

The t-test for independent samples is used to ascertain how likely an
observed mean difference between two groups would be to occur by chance
alone. The groups may be experimental conditions to which subjects have
been randomly assigned (e.g., an intervention vs. a control), a naturally
occurring dichotomy (e.g., a comparison among males and females), or a
binary comparison of any sort (e.g., smokers vs. non-smokers) as long as the
two groups are nof made up of the same or matched! subjects.
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The independent samples t-test, then, is used when:

there is a single, dichotomous independent variable (e.g., two dis-
crete groups),

the dependent variable is continuous in nature,

the hypothesis to be tested is expressed in terms of a mean difference,
and

the subjects or observations contained in the two groups are inde-
pendent of one another (e.g., they have been randomly assigned or
assigned by some non-matched manner).

The independent samples ¢-test is not used when:

there is more than one independent variable such as a covariate
(which is used strictly for statistical control purposes) or a blocking
variable (which is used to ascertain if one fype of subject responds
differently to the intervention),

this single independent variable is continuous in nature or contains
more than two groups,

the hypothesis is expressed in terms of a relationship between vari-
ables rather than a difference between groups,

the dependent variable is categorical in nature, or

the two groups contain the same or matched subjects.



TEMPLATES FOR THE INDEPENDENT SAMPLES t-TEST

The t-test tables

Table 4.1 presents a power table that can be used for most two-group experi-
ments that fit the criteria listed above. As described in Chapter 3, this table
may be used (with appropriate estimating/interpolating steps) to estimate
(a) the power that will be available for a wide range of hypothesized ES
values or (b) the minimum detectable ES given a fixed N/group and a
desired level of power.

Table 4.2 presents the exact sample size needed to achieve two
commonly employed levels of power, 0.80 and 0.90 and three alpha levels:
0.01, 0.05, and 0.10 (which is equivalent to a one-tailed test of significance
at the 0.05 level). To use this table the investigator need only locate the
intersection between the row associated with the level of power and the
column associated with the hypothesized ES in the appropriate chart
(which in most cases will be Chart B). Thus, should an investigator wish
to determine how many subjects per group would be needed to provide
an 80% chance of achieving statistical significance for a hypothesized ES of
0.50 at the 0.05 level of significance, he/she would simply locate the inter-
section of the 0.80 power row and the ES=0.50 column in Chart B (yield-
ing a required N/group of 64). Alternatively, it a power level of 0.90 were
desired, this N/group would rise to 86 subjects. Should a one-tailed test be
desired, Chart C would provide respective values of N/group of 51 and
70. (Note that the necessary N/group becomes quite small for large ES
values, which are sometimes applicable to laboratory research involving
animals.)

Templates for the independent samples t-test

Conducting a power analysis for an experiment that can be analyzed via a
t-test for independent samples involves so few parameters that a template is
hardly necessary except for modeling purposes. For the latter, we have pro-
vided a template that allows the use of (a) three different hypothesized ES
values, each with three different values of N/group, to be modeled or (b)
three difterent hypothesized ES values to be modeled for the desired power
level. Obviously modeling such as this is only indicated when different
values of ES or N/group are feasible.

Although the use of the power and sample size tables in this chapter
has already been illustrated in Chapter 3, we will provide a further example
to demonstrate the use of Template 4.1. Let us assume that an investigator
wished to evaluate an educational program developed by the Arthritis
Foundation with respect to its effect upon increasing functional ability in
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Chart 4.1. A modeling strategy employing Template 4.1 (¢-test for independent
samples)

Hypothesized ES= 0.40 0.50 0.60
N/group = 50 60 70 50 60 70 50 60 70
Power = 0.51 0.58 0.65 0.70 0.77 0.83 0.84 0.90 0.94

from Table 4.1 or 4.2

individuals recently diagnosed with rheumatoid arthritis. Based upon a pilot
study employing 12 subjects who took the course over a six-week period,
the investigator’s best estimate for this program’s ES was hypothesized to be
four-tenths of a standard deviation. Let us further assume that he/she estim-
ated that 50 patients per group would probably be available for this study
and that logistic issues precluded the possibility of obtaining baseline meas-
ures on any of the patients.

Following steps 1 and 2 in Template 4.1, then, would produce the
following results:

Step 1. To estimate the power, specify one or more hypothesized ES values in the blanks
below as well as the N/group available for the experiment. (To estimate the required
N/group for a desired level of power of 0.80 or 0.90, go to step 3.)

Hypothesized ES=0.40
N/group =50
Step 2. For each set of parameters listed in step 1, find the available power at the

intersection of the ES column and the N/group row in Table 4.1. Interpolate as
necessary.

Power (Table 4.1)=0.51

Not being particularly impressed by this value, our investigator’s next step
might be to consult Table 4.2 (steps 3 and 4) to ascertain how many patients
would be necessary to achieve a reasonable level of power (say, 0.80).
Locating the intersection of the 0.80 power row and the ES=0.40 column
indicates this value to be 100 subjects per group, which was deemed to be
too large an experiment to be feasible.

Faced with this problem, the investigator decided that the best
approach would be to model different ES values and more realistic values of
N/group, since it might be possible to increase the ES by increasing the
length of the course and possibly by selecting individuals who had been
diagnosed with the disease for a longer period of time. Chart 4.1 gives the
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SUMMARY

results of this modeling exercise. The results indicated to the investigator
that a more feasible approach might be to increase the strength (duration) of
the intervention to the point at which the hypothesized ES would be 50%
greater than the originally projected 0.40, thereby allowing him/her to
conduct the experiment with the originally projected N/group.

As indicated, our investigator finds that an acceptable power level
only begins to manifest itself if an ES of 0.50 can be achieved and even
then a slightly increased sample size is indicated. It would be necessary to
double the group size to achieve a power of 0.80 if the originally hypoth-
esized ES of 0.40 is still deemed the most realistic. (Alternatively, our invest-
igator could ascertain what type of ES would be required to yield a desired
power of 0.80 for his/her fixed N/group of 50 by locating the nearest value
to 50 in the appropriate chart in Table 4.2 and finding its associated ES
column. Here, he/she would find that 50 subjects fell about half~way
between the 0.55 and 0.60 ES columns, indicating that the study would
need to be designed to obtain an ES within this interval if nothing else
varied.)

Usually, of course, an investigator would have additional options,
the most obvious being to measure the subjects at baseline on the depend-
ent variable, which changes the analytic model from an independent samples
t-test to, among other options, a two-group ANCOVA. By simply turning
to Chapter 7 he/she learns that the trial’s power increases to 0.71, 0.79, and
0.84 for the different modeled values of N/group (i.e., 50, 60, and 70) for
an ES of 0.40, assuming that the covariate—dependent variable relationship
is hypothesized to be approximately 0.60 (Table 7.2).

Alternatively some of the additional options listed in Chapter 2
might be appropriate, but the point to be emphasized here is that (a) mod-
eling is almost always indicated since the input parameters for a power ana-
lysis are almost always estimates and (b) the most powerful statistical model
available should be employed (although methodological and scientific con-
straints always take precedence in this decision). It should also be noted that
an additional benefit of modeling power and sample size estimates is to warn
the investigator what will occur if his/her parameter estimates tend to be
overestimates, hence it is always wise to build in some room for error in this
direction if this is deemed likely.

Summary

Power and sample size tables are presented for a wide range of value of N
and hypothesized ES. In addition, a power/sample size template is used to
allow the modeling of different ES, N/group, and power parameters.
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Endnote

1 An example of matching within an experimental context is the scenario in
which a continuous variable exists on the subjects prior to random assignment.
Subjects are rank ordered on this variable and then randomly assigned in blocks
of two to either the experimental or the control group, beginning with the
highest two subjects and continuing through to the subjects with the lowest two
scores.

Template 4.1. Power and sample size template for the independent samples
t-test

Step 1. To estimate the power, specify one or more hypothesized ES values in the blanks
below as well as the N/group available for the experiment. (To estimate the required
N/group for a desired level of power of 0.80 or 0.90, go to step 3.)

Hypothesized ES= ___

N/group =

Step 2. For each set of parameters listed in step 1, find the available power at the
intersection of the ES column and the N/group row in Table 4.1. Interpolate as necessary.

Power (Table 4.1)=___

Step 3. For the estimated N/group necessary for a fixed level of power, enter the desired
power level and the hypothesized ES.

Desired power=

Hypothesized ES=

Step 4. For desired powers other than 0.80 or 0.90, locate the closet value to the targeted
power in the ES column of Table 4.1 and read the necessary N/group in the left-most
column. (Interpolate as desired.) For a power of 0.80 or 0.90, employ the chart in Table
4.2 that corresponds to the desired alpha level (in most cases this will be Chart B, alpha=
0.05). Locate the required N/group at the intersection of the desired power row and the
ES column. Interpolate as desired.

N/group =
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Table 4.1. Power table for the independent samples t-test at alpha =0.05

CHAPTER 4 TABLES

n Hypothesized ES
0.2010.30{0.35[0.40]0.45(0.50 | 0.55] 0.60 0.65]0.70|0.75] 0.80 {1.00|1.25|1.50 [1.75| 2.00 | 2.50| 3.00
5( 4| 6 6 7| 8 9| 11| 12| 13| 15| 17| 18| 27| 39| 52| 66| 77| 92| 98
6 5| o6 7| 8| 10| 11| 13| 14| 16| 18| 20| 23| 33| 48| 63| 76| 87| 97
7 5 7 8| 10| 11| 13| 15| 17| 19| 21| 24| 27| 39| 56| 72| 84| 92| 99
8 5| 8| 9| 11| 12| 14| 17| 19| 22| 25| 28| 31| 45| 63| 79| 90| 96
9 6 8| 10| 12| 14| 16| 19| 21| 24| 28| 31| 35| 50| 69| 84| 93| 98
10 6 9| 11| 13| 15| 18| 21| 24| 27| 31| 34| 38| 55| 74| 88| 96| 99
11 6| 9| 11| 14| 16| 19| 22| 26| 30| 34| 38| 42 60| 79| 91| 97| 99
12| 7| 10| 12| 15| 18| 21| 24| 28| 32| 37| 41| 46| 64| 83| 94| 98
131 7| 11| 13| 16| 19| 22| 26 30| 35| 39| 44| 49| 68| 86| 95| 99
14 7| 11| 14| 17| 20| 24| 28| 33| 37| 42| 47| 52| 71| 89| 97| 99
15| 7| 12| 15| 18| 22{ 26| 30| 35| 40| 45| 50| 55| 75| 91| 98
200 9| 15| 19| 23| 28| 33| 39| 45| 51| 57| 63| 69| 87| 97
25| 10| 18| 22| 28| 34| 41| 47| 54| 61| 68| 73| 79| 93| 99
30( 11| 20| 26| 33| 40| 47| 55| 62| 69| 76| 81| 86| 97
35( 13| 23| 30| 38| 46| 54| 62| 69| 76| 82| 87| 91| 98
40| 14| 26| 34| 42| 51| 60| 68| 75| 82| 87| 91| 94| 99
45| 15| 29| 37| 46| 56| 65| 73| 80| 86| 91| 94| 96
50| 16| 32| 41| 51| 60| 70| 78| 84| 89| 93| 96| 98
55| 18| 34| 44| 55| 65| 74| 81| 88| 92| 95 97| 99
60| 19| 37| 47| 58| 68| 77| 85| 90| 94| 97| 98| 99
65| 20| 39| 51| 62| 72| 81| 87| 92 96| 98| 99| 99
70| 22 42| 54| 65| 75| 83| 90| 94| 97| 98| 99
75| 23| 45| 57| 68| 78| 86| 92| 95| 98| 99
80| 24| 47| 59| 71| 81| 88| 93| 96| 98| 99
90| 26| 52| 65| 76| 85| 92| 96 98| 99
100 29| 56| 69| 80| 89| 94| 97| 99
110 31| 60| 73| 84| 91| 96| 98| 99
120 34| o4| 77| 87| 93| 97| 99
130 36| 67| 80| 89| 95| 98| 99
140( 38| 71| 83| 92| 96| 99
150 41| 74| 86| 93| 97| 99
175| 46| 80| 90| 96| 99
200| 51| 85| 94| 98| 99
225| 56| 89| 96| 99
250 61| 92| 97| 99
300 69| 96| 99
400| 81| 99
500| 88

55




THE t-TEST FOR INDEPENDENT SAMPLES

Table 4.2. Sample size table for the independent sample f-test

Chart A. Independent sample t-test at alpha=0.01

Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[586] 262( 193] 148| 118| 96| 80| 67| 58| 50| 44| 39| 26| 17| 13| 10 8 6 5
0.90 | 746| 333| 245| 188| 149 121| 101| 85| 73| 63| 55| 49| 32| 21| 16| 12| 10| 7| 6
Chart B. Independent sample t-test at alpha =0.05
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 394| 176] 130| 100| 79| 64| 54| 45| 39| 34| 30| 26| 17{ 12| 9 7| 6| 4| 4
0.90 |[527| 235|173 133| 105| 86| 71| 60| 51| 45| 39| 34| 23| 15| 11 9 7 5 4
Chart C. Independent sample f-test at alpha=0.10
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[310| 139| 102| 79| 62| 51| 42| 36| 31| 27| 23| 21| 14| 9| 7| 6| 5| 4| 3
0.90 | 430| 192| 141| 108| 86| 70| 58| 49| 42| 35| 32| 28| 18 12| 9 7| 6| 4| 4
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5

The paired t-test

Purpose of the statistic

The paired t-test (also called the correlated t-test and the t-test for depend-
ent means) is used to ascertain how likely the difference between two means
that contain the same (or matched) observations is to occur by chance alone.
These means may represent pretest—posttest differences involving the same
group of subjects, posttest differences when subjects are randomly assigned
to two groups in pairs based upon a pre-existing variable (or a pretest), or
differences between two scores available on the same group of subjects in
non-experimental research.

(1)
)

4)

The paired #-test, then, is used when:

there are two continuous sets of numbers, and
the hypothesis to be tested is expressed in terms of a mean difference
between these two sets of numbers.

The paired f-test is not used when:

the hypothesis to be tested is expressed in terms of whether or not
these two sets of continuous numbers are related to one another,
there are more than two continuous sets of numbers (e.g., when
there are pretest and posttest scores available on two or more
groups),

there is another independent variable of interest besides the con-
trast between paired observations (e.g., it is desired to contrast a
single group of subjects in a second manner, such as males vs.
females), or

the two sets of continuous numbers are independent of one another
(i.e., are not generated from the same group of subjects or matched
pairs of subjects).

The paired ¢-test normally yields significantly more power than an independ-

ent samples f-test, especially when the correlation between the two paired
sets of numbers is relatively high.
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THE PAIRED t-TEST

The paired t-test tables

More power and sample size tables are required for the paired t-test than was
the case for the independent samples f-test because the former requires the
estimation of one additional parameter: the most likely correlation between
two sets of continuous numbers. Thus if an investigator wishes to estimate
the power available for a fixed number of available subjects who will be
measured at baseline, administered an intervention, and then measured
again, he/she must hypothesize both an effect size (in the same manner that
would be done if two independent groups were being contrasted) and the
correlation that is likely to be obtained between subjects’ baseline and
follow-up scores.

Guidelines for estimating the correlation between paired observa-
tions. While the effect size is hypothesized in the same manner as
described previously (e.g., from a pilot study or from similar research con-
ducted using similar interventions/dependent variables), estimating the
Pearson r between the paired observations involved (i.e., the set of two con-
tinuous numbers alluded to above) is sometimes a slightly more tenuous
proposition since many studies do not report this value. It can be relatively
easily calculated from studies involving the paired f-test that report both the
tand summary statistics (which most do), however. Alternatively the authors
of previous studies that employed the independent variable of interest in a
pre—post design (it is not particularly important that the same intervention
be employed) may be contacted to ascertain whether they still have access
to this information.

If this is not feasible, the next best options are either a small scale
pilot study or, depending upon the dependent variable’s reliability, for the
investigator simply to assume that this correlation will be somewhere within
the 0.40 to 0.60 range. Specifically, if the dependent variable is reasonably
reliable (e.g., has a test—retest or internal consistency reliability =0.75) it is
probably safe to assume that the correlation between baseline and follow-up
administrations of the measure will approach 0.60. If the reliability of the
measure is less than this, but still fairly high, then 0.40 may be a reasonable
estimate. In the absence of good information regarding the stability of a
measure, we recommend (as always) that the investigator (a) err on the con-
servative side and/or (b) model different values in order to be aware of the
effects that discrepant values may play on power/sample size estimates. In
summary, then, we suggest the following strategies:

(1)  Attempt to derive the Pearson r from previous studies.
(2)  When this is not possible, contact the authors of those studies.
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(3) Conduct a small pilot (which should always be done anyway before
launching the final study) to calculate the Pearson r.

(4) For stable measures (i.e., whose reliabilities tend to be relatively
high), assume that the Pearson r may be as high as 0.60.

(5) For less stable but still reasonably reliable measures, assume an r of
0.40.

(6) Model several values of r, since this parameter has a relatively dra-
matic effect on power/sample size estimates.

Using the paired t-test power/sample size tables. Tables 5.1 to 5.5
present power tables for five different estimated correlation coefhicients, r=
0.40 through 0.80. Basically these tables are used identically to those in
Chapter 4 (and as described in Chapter 3) except that the choice of tables
is dictated by the estimated r between paired observations. Thus if this value
is estimated to be 0.40 using the guidelines presented above, then Table 5.1
is used to determine power. As described in Chapter 3, these tables may be
used to estimate (a) the power that will be available for a wide range of
hypothesized ES values or (b) the minimum detectable ES given a fixed
N/group and a desired level of power. The same interpolation advice holds
for ES and N values that fall between those provided, although such preci-
sion is a bit more elusive here because of the additional parameter (i.e., 7)
that must be estimated.

Tables 5.6 through 5.8 present sample size tables for desired power
levels of 0.80 and 0.90. Table 5.6 presents these required N values for the
five correlation coefficients for p=0.05, while Tables 5.7 and 5.8 present
the comparable values for p=0.01 and 0.10.

Example. To illustrate the use of these tables, let us return to the
hypothetical study posited in Chpater 4 in which the Arthritis Foundation’s
educational program is to be evaluated with respect to increasing the func-
tional ability of rheumatoid arthritis patients. Let us assume, however, that
all of the power calculations involving the independent samples t-test
(which employed two groups, one that received the intervention and one
that did not) were deemed moot for the simple reason that the investigator
only had access to a total of 30 patients (which would produce a power
estimate of only 0.18 if this sample size had to be divided between two
experimental groups).

One option that our investigator would have, however, would be
to employ a single group design in which his/her 30 patients were admin-
istered the test of functional ability at baseline, then exposed to the educa-
tional program, and measured again eight weeks later. While this design is
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obviously not optimal (given the lack of a control group), it has the poten-
tial of increasing the available statistical power, depending upon the size of
the correlation coefficient that could be expected to accrue by administer-
ing the same measure to the same group of individuals twice. Let us assume
that previous research had shown this particular dependent variable to be
quite stable and a Pearson r of 0.60 could be expected to accrue over the
relatively brief time period chosen, although the investigator wished to
model an r of 0.50 as well to be safe. (Generally speaking, the longer the
interval between the repeated measures, the lower the correlation coeffi-
cient would be expected to be.)

Assuming, then, that research with previous educational interven-
tions had found that the difference between the baseline and posttest means
divided by the pooled standard deviation generally resulted in an increase of
0.50 standard deviation units for dependent variables such as functional
ability, the investigator decided to proceed with his/her power analysis based
upon this information.

To facilitate this process, Template 5.1 is provided. Following steps
1 through 4 would produce the following results:

Step 1. Hypothesize the most likely ES to be obtained between pre and post
administrations of the dependent variable. This is done by dividing the difference between
the pretest (or baseline) and posttest means by their pooled standard deviation (not the
standard deviation of the differences scores).

Hypothesized ES=0.50

Step 2. Hypothesize one or more likely values for the Pearson r between the repeated
measures.

Hypothesized r=0.50 0.60
Step 3. For power, specify the total N available. For sample size, go to step 5.
N=30

Step 4. Locate the power available at the intersection of the ES column and the N/row in
the table specified below. Interpolate as necessary.

For r=0.40, access Table 5.1.
For r=0.50, access Table 5.2.
For r=0.60, access Table 5.3.
For r=0.70, access Table 5.4.
For r=0.80, access Table 5.5.

Power=0.75 (r=0.50, Table 5.2) 0.84 (r=0.60, Table 5.3)

Based upon these results, the investigator might decide to go ahead
with the experiment, in effect trading a superior design for a reasonable
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SUMMARY

chance of obtaining statistical significance. The analysis itself could be
described to a funding agency or IRB as follows:

A power analysis indicated that the experiment would have an 84%
chance of achieving statistical significance assuming an ES of 0.50
between baseline and post-intervention means and an estimated
correlation of 0.60 between the two repeated measures (Bausell & Li,

2002).

Prior to this statement, of course, the investigator would need to describe
where he/she obtained the estimates for both the ES and the Pearson r. This
justification, since it was based upon previous research, should include cita-
tions regarding the actual studies employed and possibly a table including
summary statistics gleaned therefrom.

Should our investigator wish to estimate more exactly what type of
sample size would be available to achieve, say, a power level of 0.80, he/she
could follow steps 5 and 6 of Template 5.1. Assuming that the alpha level
was set at 0.05, Charts B (r=0.50) and C (r=0.60) of Table 5.6 would be
used for this purpose, resulting in estimates of 34 and 28 participants respect-
ively for the two modeled r values (for sample size requirements for an alpha
level of 0.01, see Table 5.7; for 0.10, see Table 5.8):

Step 5. For required sample size, specify the desired level of power.
Desired power=0.80

Step 6. Locate the chart corresponding to the hypothesized r in Table 5.6. For powers of
0.80 and 0.90, the required sample size is located at the intersection of the power row and
the hypothesized ES column.

Sample size = 34 (r=0.50, Chart B, Table 5.6) 28 (r=0.60, Chart C, Table 5.6)

Following a description of the ES and correlational rationale (the
latter of which could cite our guidelines presented in this chapter), the
results of this analysis might be described as follows:

Employing the tables in Bausell & Li (2002) it was estimated that 28
participants would be needed to enable the detection of an ES of 0.50
between baseline and post-intervention means, assuming that the two
measures were correlated 0.60. Should the correlation be as low as 0.50,
34 participants would be needed.

Summary

The paired t-test is an extremely powerful statistical procedure that can be
used when the same subjects are measured before and after an intervention.
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Following guidelines for employing the procedure as well as for estimating
the most likely correlation across the dual administrations of the dependent
variable, power and sample size tables are presented for a wide range of r,
ES, and N values across these repeated observations.

Template 5.1. Power and sample size template for the paired f-test

Step 1. Hypothesize the most likely ES to be obtained between pre and post
administrations of the dependent variable. This is done by dividing the difference between
the pretest (or baseline) and posttest means by their pooled standard deviation.

Hypothesized ES= ____

Step 2. Hypothesize one or more likely values for the Pearson r between the repeated
measures.

Hypothesized r=

Step 3. For power, specify the total N available. For sample size, go to step 5.

N=

Step 4. Locate the power available at the intersection of the ES column and the N/row in
the table specified below. Interpolate as necessary.

For r=0.40, access Table 5.1.
For r=0.50, access Table 5.2.
For r=0.60, access Table 5.3.
For r=0.70, access Table 5.4.
For r=0.80, access Table 5.5.

Power = - -
Step 5. For required sample size, specify the desired level of power.

Desired power=

Step 6. Locate the chart corresponding to the hypothesized r in Table 5.6. For powers of
0.80 and 0.90, the required sample size is located at the intersection of the power row and
the hypothesized ES column. For p-values of 0.01, see Table 5.7. For p-values of 0.10, use
Table 5.8.

Sample size =
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Table 5.1. Power table for correlated t-test; r=0.40 at alpha=0.05

CHAPTER 5 TABLES

n Hypothesized ES
0.2010.30{0.35[0.40]0.45(0.50 | 0.55] 0.60 0.65]0.70|0.75]0.80 {1.00|1.25|1.50 [1.75| 2.00 | 2.50| 3.00

5 5 6 7 8 91 11 12 13 151 17 19| 21| 30| 44| 58| 71| 82| 95 99
6 5 7 8 101 11 13 15| 17 191 22 24| 27| 40| 57| 73| 85 93| 99
7 5 8| 10 11 13| 16 18 21 24 27| 30 34| 49 68| 83| 93| 97
8 6 9 11 13| 15 18| 21| 25| 28| 32| 36| 40| 57| 77| 90| 97 99
9 6| 10| 12 15 18 21 24| 28| 321 37| 41 46| 65 83| 94| 98

10 71 11 13 16| 20 23| 28| 32| 37| 42| 47| 52| 71| 88| 97| 99

11 7| 12| 15 18| 22 26| 31| 36| 41| 46| 52| 57| 76| 92| 98

12 8| 13| 16| 20( 24| 29| 34| 39| 45| 50| 56| 62| 81| 94 99

13 8| 14| 17 22 26| 31 37 43| 49| 55 60| 66| 85| 96| 99

14 91 15| 19| 23| 28| 34| 40| 46| 52| 58 64| 70| 88| 97

15 91 16| 20| 25 30| 36| 43| 49| 56| 62 68| 74| 90| 98

20 11 21| 26| 33| 40| 48| 56| 63| 70| 77| 82| 87| 97

25 13| 25 33| 41| 50| 58 67| 74| 81| 86 90| 94| 99

30 16| 30| 39| 48| 58| 67| 75| 82| 88 92 95| 97

35 18| 34| 45| 55| 65| 74| 82| 88| 92 96| 97 99

40 200 39| 50| 61| 71| 80 87 92 95 98 99| 99

45 22| 43| 55| 66| 77| 85| 91| 95| 97 99| 99

50 24| 471 60| 71 81| 88| 93| 97| 98| 99

55 26| 51| 64| 76| 85| 91 95 98| 99

60 28| 55| 68| 79| 88| 93| 97| 99 99

65 300 58] 72 82 90| 95| 98| 99

70 321 61| 75 85 92| 96| 99| 99

75 34| 65| 78| 88| 94| 97 99

80 361 67| 80 90| 95| 98 99

90 401 73| 85| 93| 97| 99

100 441 771 88| 95 98| 99

110 471 81| 91 97 99

120 51| 84| 93 98 99

130 | 54| 87 95| 98

140 571 90| 96| 99

150 60 91 97| 99

175 67| 95| 99

200 731 97| 99

225 78| 98

250 82| 99

300 88

400 95

500 98
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Table 5.2. Power table for correlated f-test; r=10.50 at alpha =0.05

n Hypothesized ES
0.2010.30{0.35[0.40|0.45[0.50|0.55] 0.60| 0.65]0.70|0.75] 0.80{1.00|1.25|1.50 {1.75| 2.00 | 2.50| 3.00

5 5 7 8 91 10| 12 13| 15 171 19 22| 24| 35| 51 66| 79| 89| 98
6 5 8 9 11 13 15 17| 20 22| 25| 28| 32| 46| 65| 80| 91| 96
7 6 9 11 13| 15 18| 21| 24| 28| 31| 35| 39| 56| 76| 89| 96| 99
8 6 10f 12 151 18] 21 25| 29| 33| 37| 42 47| 65| 84| 94| 99
9 7| 11| 14 17| 20| 24| 28| 33| 38| 43| 48| 53| 73| 89 97| 99

10 8| 12 15 191 23 27| 32 37| 43| 48| 54| 59 79| 93| 99

1 8 13| 17| 21| 26| 31 36| 42| 47 53| 59| 65 84 96| 99

12 91 15| 19| 23| 28| 34| 39| 46| 52| 58| 64| 70| 87| 97

13 91 16| 20 25 31| 37| 43| 49 56| 62 68| 74| 90| 98

14 100 17| 22 27| 33| 39| 46| 53| 60| 66| 72| 78 93| 99

15 100 18| 23| 29| 35 42| 49| 57| 64| 70| 76| 81| 95| 99

20 13| 24| 31| 39| 47| 55| o4| 71| 78| 84| 88 92| 99

25 151 29| 38| 48| 57 66| 74| 82| 87| 92| 95| 97

30 18 35| 45 56| 66 75| 82| 88| 93| 96| 98| 99

35 20| 40| 51 63| 73| 82 88 93| 96 98| 99

40 23| 45| 57| 69 79| 87| 92| 96| 98| 99

45| 26| 50| 63| 74| 84| 90| 95 98| 99

50 28| 54| o8| 79 87| 93| 97| 99| 99

55 300 59 72 83| 90| 95 98| 99

60 33| 62| 76| 86 93| 97 99

65 35| 66 79| 89 95| 98| 99

70 38| 69| 82| 91 96| 98| 99

75 4001 72| 85 93 97| 99

80 421 75 87| 94| 98| 99

90 46| 80| 91 9| 99

100 511 84| 93 98| 99

110 55| 88| 95| 99

120 58 90 97| 99

130 62| 921 98| 99

140 65| 94| 98

150 [ 68| 95[ 99

175 75| 98

200 80| 99

225 85| 99

250 88

300 | 93

400 98

500 99
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Table 5.3. Power table for correlated t-test; r=0.60 at alpha =0.05

CHAPTER 5 TABLES

n Hypothesized ES
0.2010.30{0.35[0.40]0.45(0.50 | 0.55] 0.60 0.65]0.70|0.75] 0.80 {1.00|1.25|1.50 [1.75] 2.00 | 2.50| 3.00

5 5 7 9 100 12 14| 16| 18| 21| 23| 26| 29| 42| 60| 76| 87 94| 99
6 6 9 11 131 15 18] 20[ 24| 27| 31 34 38( 55| 75| 88| 96 99
7 6| 10| 12 151 18 21 251 29[ 33| 38| 43| 47| 66| 85 95 99
8 71 12| 14 181 21| 25| 30| 35| 40| 45| 50 56 75 91 98
9 8| 13| 16| 20| 25| 29| 34| 40| 46| 51| 57 63| 82| 95 99

10 9 14| 18| 23| 28| 33| 39| 45| 51| 57 63| 69| 87| 97

1 9| 16| 20| 25| 31| 37| 43| 50| 56 63| 69| 75 91| 98

12 100 17 22| 28| 34| 41 47| 54| 61| 68| 74 79| 93| 99

13 101 19| 24| 30| 37| 44| 51| 59| 66| 72| 78 83 95

14 11 20 26| 33| 40| 47| 55 63| 70 76| 82| 86| 97

15 12| 22| 28| 35| 43| 51 591 66| 73| 79| 85 89| 98

20 15| 29 37| 46| 56 65| 73| 80| 86| 91| 94| 96

25 18] 36| 46| 57| 67| 76| 83 89| 93| 96| 98 99

30 21 421 54| 65 75| 84 90[ 94 97| 98 99

35 25 48| 61 721 82| 89 94 97 99| 99

40 28| 54| 67 78 87| 93| 97| 98| 99

45 31| 59 72 83| 91| 96| 98| 99

50 34| o4 77| 87| 94| 97 99

55 371 o8] 81 90| 95| 98 99

60 400 721 84| 92 97| 99

65 421 76| 87| 94| 98| 99

70 451 791 90 96| 99

75 48| 82| 92 97 99

80 50 84 93| 98| 99

90 55| 88| 96| 99

100 60 91 97| 99

110 64 94| 98

120 68| 95| 99

130 7 971 99

140 75| 98

150 78| 98

175 84| 99

200 88

225 92

250 94

300 97

400 99

500

65




THE PAIRED t-TEST

Table 5.4. Power table for correlated t-test; r=0.70 at alpha =0.05

n Hypothesized ES
0.2010.30{0.35[0.40|0.45[0.50|0.55] 0.60| 0.65]0.70|0.75] 0.80{1.00|1.25|1.50 {1.75| 2.00 | 2.50| 3.00

5 6 91 10| 12 15| 17 20 23| 26| 29| 33| 37| 53| 72| 87| 95 98
6 71 10| 13 16 191 22 26 30 34| 39| 44| 49| 68| 86 95 99
7 71 12| 15 191 23 27| 32 37| 43| 48| 54| 59| 79| 93| 99
8 8| 14| 18| 22| 27| 32 38| 44| 50 56| 62 68| 86 97

9 9] 16| 21 26| 31| 37| 44 51 571 64| 70 75| 91| 99

10 101 18| 23| 29| 35 42| 49| 57| 64| 70| 76| 81| 95| 99

11 11| 20| 26| 32| 39| 47| 55 62| 69| 75| 81 86| 97

12 12| 22| 28| 35| 43| 51 591 67| 74| 80| 85 89| 98

13 13| 24| 31 39 47 55 o4 71 78| 84| 88 92| 99

14 14 26| 33| 42| 50 59| 68| 75| 82| 87| 91 94| 99

15 14 28| 36| 45| 54 63| 71| 79| 85| 90| 93| 96

20 191 37| 47[ 58| 68| 77| 85 90| 94| 97 98| 99

25 23| 45| 57| 69 79| 87| 92 96| 98| 99

30 271 53| o6 78 86| 92 96 98 99

35 31 60| 73| 84 91| 96| 98| 99

40 35| 66| 79| 89 95| 98| 99

45 391 72| 84 92| 97| 99

50 431 76| 88| 95 98| 99

55 46 80 91 96| 99

60 500 84| 93 98 99

65 53| 87 95| 98

70 56| 89| 96| 99

75 591 91 97| 99

80| 62| 93| 98

90 68| 95| 99

100 721 97| 99

110 76| 98

120 80| 99

130 83 99

140 86

150 88

175 92

200 95

225 97

250 98

300 | 99

400

500
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Table 5.5. Power table for correlated t-test; r=0.80 at alpha =0.05

CHAPTER 5 TABLES

n Hypothesized ES
0.2010.30{0.35[0.40]0.45[0.50 | 0.55] 0.60 0.65]0.70|0.75] 0.80 {1.00|1.25|1.50 [1.75] 2.00 | 2.50| 3.00

5 71 11| 14 171 20 24| 28| 32| 37| 41| 46| 51| 71| 88| 96| 99
6 8| 14| 17 21| 26| 31 37 42 48| 54 60| 66| 84| 96| 99
7 91 17| 21 26 32| 39| 45 52 59| 65 71 770 921 99
8 11 191 25 31| 38| 46| 53| o6l 68 74| 80| 85| 96
9 121 22 29| 36| 44| 52| 60 68| 75| 81| 86| 90| 98

10 131 25 33| 41| 50| 58| 67| 74| 81| 86| 91 941 99

11 15| 28| 36| 45| 55| 64| 72| 79| 85 90| 94| 96

12 16| 31 40| 50| 59| 69| 77| 84| 89| 93] 96| 98

13 17 33| 43| 54| o4 73| 81 87| 92| 95| 97 99

14 18] 36| 47| 58| 68| 77| 84| 90| 94| 97| 98| 99

15 200 39| 50| e61f 71| 80 87 92 96| 98 99| 99

20 26| 51| 64| 76| 85| 91 96 98| 99

25 321 62| 75 85 92| 96| 99| 99

30 38 70[ 83| 91| 96| 99

35 441 771 89| 95 98| 99

40 491 83| 93 97 99

45 541 87 95| 99

50 591 91| 97| 99

55 63 93] 98

60 67| 95| 99

65 71 96| 99

70 74 97

75 771 98

80 80| 99

90 84| 99

100 88

110 91

120 93

130 95

140 96

150 97

175 99

200 99

225

250

300

400

500
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THE PAIRED t-TEST

Table 5.6. Sample size table for the paired t-test (alpha=10.05)

Chart A. Paired t-test; r=0.4 at alpha=0.05

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65]0.700.75|0.80| 1.00| 1.25| 1.50(1.75(2.00| 2.50| 3.00

0.80 |[238]| 107 80| 62| 49| 40| 34| 29| 25| 22| 20| 18| 12| 9| 7| 6 5 41 4
0.90 |[318] 143| 106| 82| 65| 53| 44| 38| 33| 29| 25| 23| 15| 11 9 7 6 5 4

Chart B. Paired t-test; r=10.5 at alpha=0.05

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00

0.80 [199] 90| 67| 52| 42| 34| 29| 25| 21| 19| 17| 15| 11 8 6| 6 5 4] 4
0.90 |[265| 119 89| 68| 55| 45| 38| 32| 28| 24| 21| 19| 13| 10| 8| 6 6 5 4

Chart C. Paired t-test; r=0.6 at alpha=0.05

Power Hypothesized ES

0.20{0.30]0.35(0.40{0.45(0.50{0.55[0.60]0.65|0.70{0.75]0.80{1.00{1.25]| 1.50{1.75{ 2.00|2.50{3.00

0.80 [ 160 73| 54| 42| 34| 28| 24| 20| 18| 16| 14| 13 91 7| 6 5 5 41 4
0.90 |[213] 96| 71| 55| 44| 36| 31| 26| 23| 20| 18] 16| 11 8 7| 6 5 41 4

Chart D. Paired t-test; r=0.7 at alpha=0.05

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00

0.80 |[121| 55| 41| 32| 26| 22| 18| 16| 14| 13| 11| 10| 8 6 5 5 41 41 3
0.90 [ 160 73| 54| 42| 34| 28| 24| 20| 18| 16| 14| 13 91 7| 6 5 5 41 4

Chart E. Paired t-test; r= 0.8 at alpha=0.05

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00

0.80 81| 38| 28| 22| 18| 15| 13| 12| 10| 9 9 8 6 5/ 4| 4 41 31 3
0.90 |[108| 49| 37| 29| 24| 20 17| 15| 13| 11| 10| 9| 7 6 5 4 41 41 3

68



Table 5.7. Sample size table for the paired t-test (alpha =0.01)

CHAPTER 5 TABLES

Chart A. Paired t-test; r=0.4 at alpha=0.01
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50| 3.00
0.80 |355| 160| 119| 92| 73| 60| 51| 43| 37| 33| 29| 26| 18| 13| 10| 9| 8| 6| 6
0.90 | 451| 203| 150| 116 92| 76| 63| 54| 46| 41| 36| 32| 22| 16| 12| 10| 9| 7| 6
Chart B. Paired t-test; r=0.5 at alpha=0.01
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80(1.00| 1.25| 1.50| 1.75| 2.00| 2.50| 3.00
0.80 | 296| 134| 100| 77| 62| 51| 43| 37| 32| 28| 25| 22| 16| 12| 9| 8| 7| 6 5
0.90 |376| 169| 126| 97| 78| 64| 53| 46| 39| 35| 31| 27| 19| 14| 11| 9| 8| 6| 6
Chart C. Paired t-test; r= 0.6 at alpha=0.01
Power Hypothesized ES
0.20(0.30]0.35]0.40(0.45]0.50{0.55[0.60|0.65|0.70{0.75|0.80{1.00| 1.25| 1.50{1.75| 2.00{2.50| 3.00
0.80 | 238| 108| 80| 63| 50| 42| 35| 30| 26| 23| 21| 19| 14| 10| 8| 7| 6| 5[ 5
0.90 | 302| 136| 101| 79| 63| 52| 44| 37| 32| 28| 25| 23| 16| 12| 9| 8| 7| 6 5
Chart D. Paired t-test; r=0.7 at alpha=0.01
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80(1.00| 1.25| 1.50| 1.75| 2.00( 2.50| 3.00
0.80 | 179| 82| o1| 48| 39| 32| 27| 24| 21| 19| 17| 15| 11| 9| 7| 6| 6| 5/ 5
0.90 |227| 103| 77| 60| 48| 40| 34| 29| 25| 22| 20| 18| 13| 10| 8| 7| 6| 5/ 5
Chart E. Paired t-test; r= 0.8 at alpha=0.01
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80(1.00| 1.25| 1.50| 1.75| 2.00( 2.50| 3.00
0.80 | 121| 56| 42| 33| 27| 23| 20| 17| 15| 14| 13| 12| 9| 7| 6| 6| 5/ 5| 4
0.90 | 153| 70| 53| 41| 34| 28| 24| 21| 18| 16| 15| 14| 10| 8| 7| 6| 5| 5| 4
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THE PAIRED t-TEST

Table 5.8. Sample size table for the paired t-test (alpha=0.10)

Chart A. Paired t-test; r=0.4 at alpha=0.10

Power Hypothesized ES
0.20/0.30{0.35|0.40(0.45{0.50|0.55|0.60|0.65|0.70{0.75[0.80{1.00{1.25| 1.50(1.75| 2.00{2.50 | 3.00
0.80 | 188| 85| 63| 49| 39| 32| 27| 23| 20| 17| 15| 14| 10{ 7| 6| 5| 4| 4| 3
0.90 |259| 116| 86| 66| 53| 43| 36| 31| 27| 23| 20| 18| 13| 9| 7| 6| 5| 4| 4
Chart B. Paired f-test; r=10.5 at alpha=0.10
Power Hypothesized ES
0.20/0.30{0.35|0.40{0.45{0.50|0.55|0.60|0.65|0.70{0.75[0.80{ 1.00{1.25| 1.50|1.75| 2.00{2.50 | 3.00
0.80 | 157| 71| 53| 41| 33| 27| 23| 19| 17| 15| 13| 12| 9 6| 5 5| 4| 4| 3
0.90 |216| 97| 72| 56| 44| 36| 30| 26| 22| 20| 17| 16| 11{ 8 6 5/ 5] 4| 3
Chart C. Paired t-test; r=0.6 at alpha=0.10
Power Hypothesized ES
0.20(0.30]0.35(0.40(0.45(0.50{0.55[0.60]0.65|0.70{0.75|0.80{ 1.00{1.25| 1.50{ 1.75{ 2.00|2.50{3.00
0.80 | 126| 57| 43| 33| 27| 22| 19| 16| 14| 12| 11| 10| 7{ 6| 5| 4| 4| 3| 3
0.90 | 173| 78| 58| 45| 36| 30| 25| 21| 18| 16| 14| 13| 9 7| 5| 5| 4| 4| 3
Chart D. Paired t-test; r=0.7 at alpha=0.10
Power Hypothesized ES
0.20/0.30{0.35|0.40{0.45{0.50|0.55|0.60|0.65|0.70{0.75[0.80{1.00{1.25| 1.50(1.75| 2.00{2.50 | 3.00
0.80 95| 43| 33| 25| 21| 17| 15| 13| 11| 10| 9| 8| 6| 5| 4| 4| 3| 3| 3
0.90 | 131| 59| 44| 34| 28| 23| 19| 17| 14| 13| 11| 10| 7{ 6| 5| 4| 4| 3| 3
Chart E. Paired t-test; r= 0.8 at alpha=0.10
Power Hypothesized ES
0.20/0.30{0.35|0.40{0.45[0.50|0.55|0.60|0.65|0.70{0.75[0.80{ 1.00{1.25| 1.50| 1.75| 2.00{2.50 | 3.00
0.80 64| 30| 22| 18| 14| 12| 10| 9 8| 7| 7| 6| 5| 4| 4| 3| 3| 3| 3
0.90 88| 40| 30| 24| 19| 16| 14| 12{ 10 9 8| 8| 6| 5| 4| 4| 3| 3| 3
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6 One-way between subjects analysis of
variance

Purpose of the statistic

The one-way between subjects analysis of variance (ANOVA) is used to
ascertain how likely the differences among three or more groups would be to
occur by chance alone. It is a direct extension of the f-test for independent
samples, which assesses only differences between two groups. The groups
may be experimental conditions to which subjects have been randomly
assigned (e.g., two experimental treatments vs. a control) or they may be
defined by a naturally occurring phenomenon (e.g., a comparison of several
different diagnoses with respect to the amount of chronic pain experienced).
As with the independent samples f-test (other than the standard assumptions
of the procedure itself), the only stipulations for its use are that the hypoth-
eses being tested involve group means (which implies that the dependent
variable is continuous in nature) and the groups are nof made up of the same
or matched subjects. Also, as with the t-test for independent samples, from
a power analytic perspective, this procedure is not recommended if covariates, base-
line values on the dependent variable, or blocking variables are available.

To review then, a one-way between subjects ANOVA is used when:

(1) there is a single, independent variable which is defined as group
membership in three or more groups,

(2) the dependent variable is measured in such a way that it can be
described by a mean (i.e., it is continuous in nature and not cate-
gorical),

(3) the hypothesis being tested is expressed in terms of a mean differ-
ence, and

(4) the subjects assigned or contained in the groups are statistically
independent of one another (i.e., they are different individuals and
are not specifically matched in some way).

The statistic is not used when:
(1) there is more than one independent variable (such as covariates,

which are used to control statistically for initial differences between
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ONE-WAY BETWEEN SUBJECTS ANALYSIS OF VARIANCE

groups, or blocking variables, which are used to ascertain whether
one type of subject responds differently to the interventions(s) than
another),

(2) this single independent variable is continuous in nature (unless a
decision is made to divide it into three or more arbitrary catego-
ries),

(3) the hypothesis is expressed in terms of a relationship between vari-
ables rather than a difference among groups,

(4) the dependent variable is categorical in nature, or

(5) the multiple groups involved contain the same or matched subjects.

A one-way ANOVA is really a two-step process. The first step
entails computing an F-ratio, which is analogous to a t (for two groups, in
fact, #=F). Unlike the t-test, however, the process does not stop at this
point. If the F-ratio is statistically significant, then the second step involves
ascertaining which groups differ significantly from which other groups.

As mentioned previously, we are of the opinion that statistics
involving more than one degree of freedom for the primary contrast of
interest have very limited utility from a scientific perspective. It is therefore
very rare for an overall F-ratio to be used directly to test a hypothesis. In
most day-to-day research practice, all the F-ratio does is serve in a sort of
gate-keeping function to tell the scientist when he/she is “permitted” to
conduct a multiple comparison procedure (MCP) to ascertain which
experimental groups differ from which others. This approach helps to guard
against the production of false positive results by providing a degree of protection
against inflating the alpha level when performing multiple significance tests.

Thus, if the F-ratio is not statistically significant, many statisticians
advise their clients not to proceed further but to declare the entire study as
“non-significant” unless prior, orthogonal contrasts! have been specified.
We consider this approach too rigid, however, given that the appropriate
use of an MCP should itself provide adequate protection against false posit-
ive findings (Miller, 1966; Petrinovich & Hardyck, 1969; Davis & Gaito,
1984), especially with respect to the primary hypothesized contrasts of inter-
est. Since most journals expect an overall F-ratio to be reported prior to
considering individual differences among groups, however, we provide
tables for computing power and sample size requirements for this statistic.

The remainder of this chapter will therefore be divided into two
parts. The first will present power and sample size tables for the overall F-
ratio. The second will present tables that allow the investigator to estimate
the power (or sample size requirements) for individual contrasts using two
common multiple comparison procedures
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THE F-RATIO TABLES

Part l. The F-ratio tables

Tables 6.1 through 6.11 present estimated power values and required sample
sizes for a wide range of values of ES and N/group for F-ratios involving
three through five groups. In addition to the parameters encountered in
Chapters 4 and 5, the use of these tables involves one additional step: esti-
mating what the pattern of the various group means is most likely to look
like. This latter step, of course, necessitates hypothesizing the ES values
involved in all of the pairwise contrasts among each of the groups employed
in the proposed trial.

Power. To illustrate how these tables are employed, let us assume
the use of a three-group study contrasting the effects of an intervention con-
sisting of a combination of dietary education and exercise, an attention
placebo comprising information about cardiovascular disease, and treat-
ment-as-usual with the outcome variable being the amount of weight loss
registered by overweight post-surgical cardiovascular patients. Computing
the power of the overall F-ratio for such a study involves specifying the fol-
lowing parameters:

(1) the ES for the largest mean difference (remembering that there are
three in this particular study — the weight loss intervention vs. the
attention placebo, the weight loss intervention vs. treatment-as-
usual, and the attention placebo vs. treatment-as-usual),

(2) the projected N/group, and

(3) whether the spread of means is likely to reflect a low to medium,
or a high dispersion pattern.

To facilitate this process, two templates (6.1 and 6.2) are provided. Let us
therefore illustrate how an investigator would estimate the power for the
overall F-ratio for this three-group study employing these two templates,
the first of which is basically designed to facilitate the estimation of the three
power parameters just listed. Variations in any of these parameters exhibit a
dramatic effect upon the power of a study. The type of hypothesized pattern
alone, for example, can more than double the required sample size to
achieve a desired level of power. Thus in a five-group study with a hypoth-
esized ES of 0.50, the estimated N/group necessary to achieve a power level
of 0.80 is 96 if three of the five means are expected to fall half~way between
the two extreme groups (a low dispersion pattern). Should two of the five
means be expected to fall at one end of the ES continuum and three at the
other (a high dispersion pattern), however, only 41 subjects per group would
be needed.
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ONE-WAY BETWEEN SUBJECTS ANALYSIS OF VARIANCE

The first step in preliminary Template 6.1 simply requests that the
groups involved are ordered from weakest to strongest with respect to their
likely effect sizes. In the current example we would obviously expect the
usual treatment group to experience the least amount of weight loss, fol-
lowed by the attention placebo (since this group would also receive treat-
ment-as-usual for ethical reasons), with patients receiving the experimental
intervention hypothesized to lose the most weight:

Step 1. Write in the names/codes of the groups in the chart to ~ Group definitions

the right in ascending order based upon their expected means ® Treatment-as-usual
(i.e., the name of the group expected to have the lowest mean or @ Attention placebo
the weakest effect will be written next to @, followed by the ® Exercise + education
next strongest treatment and so forth).

The next step in the process is the most difficult, because here the
investigator must have access to preliminary data, either from his/her own
pilot work or from the empirical literature in order to be able to estimate
the effect sizes (i.e., the average amount of weight loss divided by the stand-
ard deviation) for each group. Let us assume, therefore, that our investig-
ator has indeed conducted such a pilot study in which his/her
exercise/education intervention was found to produce an ES of 0.50 com-
pared to treatment-as-usual. Group 3 is correspondingly plotted on the ES
line.

Let us further assume that while the investigator did not pilot the
planned attention placebo, other studies upon which it was based had
observed an ES of approximately 0.20 with comparable samples. Armed
with this information the middle group is plotted on the ES line, complet-
ing the most difficult (and crucial) step in the power analytic process as illus-
trated below. Note that the treatment-as-usual group ES has been arbitrarily
set at zero. When beginning with raw data, this is done by dividing each
hypothesized mean by the pooled standard deviation and then simply sub-
tracting the lowest resulting standardized mean from each of the other stand-
ardized group means (including itself). In the present case this will produce
a zero value for the treatment-as-usual group, which in no way implies that
this group will lose or gain no weight at all.

Converting multiple raw means to ES values. In the current
example, let us assume that our investigator based his/her weight loss estim-
ates upon both a previous pilot study and the empirical literature employ-
ing similar populations. From these sources, he/she found that the standard
deviation for weight loss averaged 10 lb with even treatment-as-usual
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controls normally losing approximately 5 1b. An attention placebo was
further hypothesized to result in an additional weight loss of at least 2 Ib,
while the experimental intervention was expected to result in twice as much
weight loss as treatment-as-usual. This produces the following scenario:

Condition Weight loss (standard deviation)
Treatment-as-usual 51b (10.0)
Placebo 7 1b (10.0)
Intervention 10 1b (10.0)

Since use of all of the power tables in this book involve converting
raw means such as this to ES values, the next step involves dividing each of
these means by the pooled standard deviation and then subtracting the
lowest standardized group mean from all of the others (including itself),
producing the following results:

Condition Standardized mean (with the lowest mean set at 0)
Treatment-as-usual 516/10.0=0.5—0.5=0.0
Placebo 71b/10.0=0.7—-0.5=0.2
Intervention 101b/10.0=1.0—-0.5=0.5

Step 2. Plot these groups, using the circled numbers rather than their codes, on the ES
line below. In the case of a tie between two groups with respect to their actual ES value,
place one to the right of the other based upon the best theoretical evidence for which
might be slightly superior.

ES line

) ® ®

0010203040506070809101112131415

The next step involves either specifying (a) how many subjects are
expected to be available per group (if power is desired) or (b) what the
desired power level is if the investigator wishes to calculate the number of
subjects needed to achieve this desired level of power. For present purposes
we will assume the former, although a sample size analysis will also be illus-
trated later in the chapter. Let us therefore assume that our investigator
wishes to ascertain how much power would be available if 50 subjects per
group were available. (Note that the N/group posited here should take attri-
tion into account, thus if 50 subjects/group was the maximum sample size
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that was likely to be available and the investigator expected that approx-
imately 10% of his/her sample would drop out of the study, then 45 would
be entered in step 3.)

The final parameter called for by preliminary Template 6.1 is the
hypothesized pattern of means that will accrue from the experiment. Since
this pattern has already been graphed in step 2, all that is necessary is to con-
trast it to the three-group options presented under step 4(a). While none of
the three options matches this pattern perfectly, the first pattern is closer
than the second two, hence our investigator would conclude that the
low/medium dispersion pattern is the best model for estimating power for
this particular study. Formulas exist (see the Technical appendix) that exactly
express all of the possible patterns of ES values that can accrue from differ-
ent numbers of groups. Given our belief that such precision is in many ways
specious, we have opted to present graphically three patterns that reflect (a)
the largest possible spread among multiple means (i.e., the scenario in which
the means produce the largest number of maximum ES values, which
implies that half will be located at one end of the line and the other half will
be clustered at the other end), (b) the smallest possible spread (the scenario
in which the extra means are located at the middle of the continuum), and
(c) a medium pattern, in which the means are evenly spaced along the con-
tinuum.? (Note that for a three-group experiment, and only for a three-
group experiment, the patterns for a low and medium spread of means are
identical, hence only two patterns need be considered for this type of
experiment.)

For all practical purposes, now, all that is necessary to compute the
power available for the overall F-ratio for this hypothetical experiment is to
access the appropriate power table, which is dictated by Template 6.2. Here,
step 5 requests the largest ES from step 2 above, which is the 0.5 difference
between group 3 and group 1. Tables 6.1 and 6.2 are both relevant to F-
ratios based upon three groups, but as indicated in step 6, it is Table 6.1 that
is specifically designed for the low/medium dispersion pattern. (Table 6.2
would have been used if the high dispersion pattern had been selected.)

Step 7 correspondingly informs the reader that the power for
his/her study will be located at the intersection of the 0.50 ES column and
the N/group=>50 row of Table 6.1, which is 0.60. This means, in effect,
that our investigator will have a 60% chance of obtaining statistical signifi-
cance if the assumptions he/she has made are correct. (Note that the power
would have been only 0.73 if the high ES pattern had been hypothesized,
which would have indicated that the three group means would have been
hypothesized to be located at the extremes of the ES line (e.g., treatment as
usual 0, attention placebo 0.10, and true acupuncture 0.50).)
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The entire process could be communicated as follows:

Based upon our preliminary work contrasting the exercise/education
intervention with a treatment as usual control, an ES (d) of 0.50 was
hypothesized between these two groups. In addition, we used the
weight loss study conducted by Jones & Smith (2000) to estimate that
the attention placebo condition would result in an ES of 0.20 as
compared to cardiovascular patients who received routine clinical care
only. Using the tables prepared by Bausell & Li (2002), we therefore
estimated that 50 subjects per group would yield a 60% chance of the
one-way ANOVA F-ratio reaching statistical significance at the 0.05
level.

Modeling the results

Since all of these parameters (IN/group, largest pairwise ES, and the ES
pattern) are obviously estimates prior to conducting an experiment, it is
always a good idea to model different values for each. This is not a time con-
suming endeavor once the first power value has been computed and simply
involves duplicating multiple copies of the templates and modeling as many
different values of the above parameters as relevant. Should a 60% chance
of achieving statistical significance not be deemed sufficient, as it probably
would not, our investigator would have the option of changing the study
design such as (a) employing only one control group, thereby producing an
N/group of 75 and increasing power to 0.86 (Table 4.1), (b) adding covari-
ates (see Chapter 7), or for certain types of studies, (c) employing a within
subject design of some sort (see Chapter 8).

Estimating sample size

Tables 6.9 to 6.11 allow the investigator to calculate the minimum sample
size needed to achieve two desired power levels (0.80 and 0.90) for experi-
ments involving three, four, and five groups respectively. Basically the steps
are the same here as they were for computing power, except that step 3 of
the preliminary Template 6.1 requires that the investigator specify the
desired level of power instead of the N/group. For present purposes, let us
assume the minimum level of power our investigator is willing to accept is
0.80. Once this decision is made and the pattern of means is hypothesized
(step 4), the last step in the preliminary template directs the investigator to
the sample size template (6.3). Here, the first task (step 5) is the same as in
Template 6.2, specifying the ES associated with the most powerful group
(the exercise + dietary education intervention), which again is 0.50.
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Step 6 then indicates that the N/group will be found at the inter-
section of the 0.50 ES column and the power = 0.80 row of Table 6.9, Chart
C (i.e., N/group=77). Should this value be deemed unrealistic, the
researcher has the option of either (a) adopting one of the strategies listed
in Chapter 2 (e.g., increasing the sample size, decreasing the number of
groups, making the intervention stronger and/or the control groups weaker,
employing a covariate or blocking variable, and so forth) or (b) accepting a
lower power level. Let us therefore assume that this latter option was chosen
and that the investigator was specifically interested in determining how
many subjects per group would be necessary to achieve a power level of 0.70
instead of 0.80.

Following the instructions in step 7 of the sample size template, the
investigator is instructed to access Table 6.1 from step 6 of the previous tem-
plate and locate the closest approximation (or interpolated value) to the
desired power of 0.70 in the 0.50 ES column. This value is 0.69, which cor-
responds to an N/group of 60 (or 61 if interpolation is used) located at the
extreme left of the row containing said value. Thus, an N/group of approx-
imately 60 (or a total sample size of 180) would be needed to yield a 70%
chance of achieving statistical significance if the specified parameters were
appropriate. The results of such a sample size analysis could be written in
the same manner as suggested for the power analysis above, with a few rel-
atively obvious changes:

Based upon our preliminary work contrasting the exercise/education
intervention with a treatment as usual control, an ES (d) of 0.50 was
hypothesized between these two groups. In addition, we used the
weight loss study conducted by Jones & Smith (2000) to estimate that
the attention placebo condition would result in an ES of 0.20 as
compared to cardiovascular patients who received routine clinical care
only. Using the tables prepared by Bausell & Li (2002), we therefore
estimated that 60 subjects per group would be necessary to provide a
70% chance of the one-way ANOVA F-ratio reaching statistical
significance at the 0.05 level.

Part Il. The multiple comparison tables

In many ways it is the second step in the evaluation of multiple group
experiments that is crucial, since it is usually of little scientific interest to
know that, say, statistically significant differences exist somewhere among
three different experimental groups. What the researcher really needs to
know 1s which specific groups differ from which other groups and this
involves the computation of what are termed multiple comparison
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procedures (MCPs). These are conceptually quite similar to t-tests in the
sense that they test one mean difference at a time. They differ from the t-
test, however, in that they avoid the inflation of false positive errors asso-
ciated with repeated tests involving an alpha level of 0.05.3

A wide variety of MCPs are presently computed by most of the
major statistical packages. Basically these procedures differ from one another
with respect to how they go about protecting the study against false positive
results. The method selected is quite relevant, however, because it can have
a major impact upon the statistical power available for the pairwise compar-
1sons among means (L1, 1997).

Some procedures are quite conservative, such as the Bonferroni ¢
(the original developer of whom is unknown, although Dunn (1961) has
perhaps done the most to explicate its use) which basically adjusts the alpha
level by dividing it by the number of pairwise comparisons, while other
Bonferroni-type adaptations such as Sidak’s multiplicative inequality are
slightly more powerful (Sidak, 1967). We have chosen to present two com-
monly employed MCPs based upon the Studentized range statistic: the rel-
atively liberal Newman—Keuls (Newman, 1939; Keuls, 1952) which was the
first multiple range test developed and Tukey’s relatively conservative hon-
estly significant difference (HSD) procedure (1984). For a more thorough
treatment of additional options and their relative power, see Li (1997).

Power. Unlike estimating the power of the overall F-ratio, the
hypothesized dispersion pattern among the means involved in an experi-
ment does not enter into the estimation of power for pairwise contrasts.
Only three power tables (Tables 6.12 through 6.14) and three sample size
charts (Table 6.15 through 6.17) are necessary, therefore, to represent
experiments involving three through five groups.

The same three templates, using the same parameter values (with
the exception of the hypothesized dispersion pattern which is not needed)
that were used to calculate the power/required sample size for the F-ratio
are also employed for these analyses. To compute the power of MCPs for a
three-group experiment, then, the preliminary template (6.1) is used in
exactly the same way as described for estimating the power available for the
overall F-ratio (Part I above) except that step 4 is superfluous.

The last instructions in Template 6.1 direct the researcher to
Template 6.2 for determining power. Entering this template at step 8 under
the heading “Power of the pairwise contrasts,” the reader is instructed to
perform the indicated subtractions based upon the ES line already com-
pleted. Since only three groups are involved in the present example, only
three differences need to be calculated:
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Step 8. Using the hypothesized values from step 2 in the preliminary template (6.1), fill
out the hypothesized ES values by performing the indicated subtractions listed under the
“Contrasts” column in the chart below.

ES@—-®=0.2—-0=0.2
ES®—-®=0.5—-0=0.5
ES®—-®@=0.5-0.2=0.3

Step 9 next instructs the investigator to choose either the Tukey
HSD or the Newman—Keuls procedure. The latter is a more liberal (i.e.,
powerful) test than is the Tukey procedure for all individual pairwise con-
trasts except for the one representing the largest possible ES. Once this deci-
sion has been made, the actual tables to be employed are provided in step
9.

These tables are set up and employed identically to the f-test tables
in Chapters 4 and 5. For each of the three contrasts, the intersection
between the ES column and the N/group row yields the power estimate for
that particular ES. Thus, the Tukey HSD, which employs Table 6.12 for all
three comparisons, yields power values of 0.09, 0.20, and 0.55 while
Newman—Keuls yields higher estimates for two of the three contrasts:

ES Power (Tukey HSD) Power (Newman—Keuls)
[2—1] 0.2 0.09 0.16
[3—2] 0.3 0.20 0.32
[3—1] 0.5 0.55 0.55

Obviously there is not sufficient power for the treatment-as-usual
vs. attention placebo contrast using either (or any) MCP. This lack of power
for certain contrasts, in fact, is a characteristic of almost all multiple group
experiments and should be taken into consideration at the design stage.
There are other reasons for including multiple arms in a study than the
power of pairwise contrasts, but if a major reason to include a particular con-
dition does involve ascertaining whether or not it is statistically significant
from another condition, and if the likelihood of achieving same is less than
10% as in the example above, the investigator might well reconsider the
original design. Unfortunately there is not a great deal of power for any of
these pairwise contrasts employing either procedure, hence the investigator
might be wise to rethink his/her design at this stage. Assuming that this is
not the case, however, the following power statement would be produced,
which actually could be tacked onto the results for the overall F-ratio pre-
sented above:
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Based upon our preliminary work contrasting the exercise/education
intervention with a treatment-as-usual control, an ES (d) of 0.50 was
hypothesized between these two groups. In addition, we used the
weight loss study conducted by Jones & Smith (2000) to estimate that
the attention placebo condition would result in an ES of 0.20 as
compared to cardiovascular patients who received routine clinical care
only. Using the tables prepared by Bausell & Li (2002), we therefore
estimated that 50 subjects per group would yield a 60% chance of the
one-way ANOVA F-ratio reaching statistical significance at the 0.05
level. These same parameters would produce a power of 0.55 for the
exercise/education vs. treatment-as-usual contrast, although only 0.20
and 0.09 respectively for the intervention vs. attention placebo and
the contrast (employing the Tukey HSD multiple comparison
procedure).

Modeling the power of an MICP

As always, we encourage investigators to model different values (e.g., ES,
N/group) when computing the power of an MCP. (This can be done by
simply duplicating the relevant template and changing the parameter values
as desired.) The power values provided by an MCP analysis can be especially
helpful in selecting the optimal number and types of groups to be employed
at the design phase. Taking our hypothetical example above, let us assume
that the primary contrast of interest was the intervention vs. treatment-as-
usual control and that the estimated power for this contrast (0.55) was indeed
deemed not to be acceptable. Obviously the investigator has the usual
options for improving this estimate (e.g., increasing the N/group, employ-
ing one or more covariates, increasing the ES by increasing the intensity of
the treatment), but should none of these strategies prove viable he/she
might opt to do away with the education control and redistribute the pro-
posed total sample size (N=150) to the resulting two groups, thereby pro-
ducing a power level of 0.86 (see Table 4.1). Needless to say, scientific
considerations must take precedence for decisions such as this, but ulti-
mately science should not be conducted that does not have a reasonable
chance of success. Let us assume, however, that increasing the sample size is
a viable option, in which case a sample size analysis would be in order.

Estimating the required sample size to produce a desired power
level. The second half of Template 6.3 is provided for this option. Its use
predisposes the same preliminary steps as was indicated for estimating the
power of an MCP except that the desired power would be inputted in step
3 of preliminary Template 6.1 instead of the N/group. The follow-up
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sample size template instructs the user to calculate the same pairwise ES
values as was performed in step 8 of Template 6.2. Step 9 directs the invest-
igator to the sample size table necessary for powers of 0.80 and 0.90 for both
the Tukey and Newman—Keuls procedures. For other power levels, the
reader is instructed to use the power tables suggested in step 9 of Template
6.2.

In way of illustration, let us assume that a power level of 0.80 was
specified in step 3 of Template 6.1. To calculate the required sample sizes
for the three ES values represented by the previously illustrated ES line (i.e.,
0.2, 0.3, and 0.5), step 8 instructs the reader to access Table 6.15, Chart B
for the Tukey HSD procedure. For the Newman—Keuls procedure, Chart A
of the same table is mandated for contrasting group 1 vs. group 2 and group
2 vs. group 3 while Chart B is relevant for group 1 vs. group 3. Accessing
these charts would produce the following eye-opening sample size require-
ments for the two procedures:

ES N/group (Tukey HSD) N/group (Newman—Keuls)
[2-1] 0.2 509 394
[3—2] 0.3 227 176
[3—1] 0.5 83 83

From these results it should be fairly obvious that a very large size
trial will be required to provide an 80% chance of obtaining statistical sig-
nificance of ES values of anything much less than 0.50 for individual con-
trasts. This stands in relatively sharp contrast to the N/group requirements
for achieving an 80% chance of obtaining statistical significance for the
overall F-ratio and serves to highlight the difference between omnibus and
pairwise post hoc procedures. If, indeed, the investigator is satisfied with
providing an 80% chance of obtaining statistical significance only for the
single contrast indicated above (i.e., in the present example, the exer-
cise/education intervention vs. treatment-as-usual), then perhaps it would
be reasonable to conduct the present study. It probably would be necessary,
however, to justify exactly why the second control was designed into this
particular trial in the funding or IRB proposal.

Summary

The one-way between subjects analysis of variance is an extension of the
t-test for independent samples to three or more groups. The technique
involves a two-step process whereby (a) an overall omnibus F statistic is first
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ENDNOTES

computed to ascertain whether the multiple groups involved differ signifi-
cantly from one another and, if they do, (b) a multiple comparison proce-
dure is next computed to ascertain which of the individual groups differ
from one another and which do not. Three templates are presented to
facilitate the use of the power and sample size tables provided for this
purpose. Through the use of examples, it is shown that it is often quite
difficult to design a study in which sufficient power is present for all of the
pairwise contrasts normally present in a multiple group study. While this is
not problematic for comparisons of minimal scientific interest, a power
analysis of this sort can force an investigator to make some difficult design
decisions.

Endnotes

1 One relatively rare exception exists to the rule that multiple group studies must
be analyzed by MCPs (also called a posteriori tests). If an investigator is only
interested in a limited number of contrasts among his/her available groups, and
if hypotheses involving these contrasts are specified prior to collecting data, then
no protection of the alpha level is required. This means that, in effect, the invest-
igator may perform multiple #-tests on his/her data and need not even perform
an initial ANOVA as a gate-keeping step. Additionally, this strategy permits the
combining of two or more groups into a single group to compare with another
group (or combination of other groups).

While an effective procedure for increasing statistical power, a priori (or
orthogonal) contrasts, as they are sometimes called, do not come without a
heavy price. In the first place, only the number of groups minus one contrasts
are permitted — which means that only two a priori contrasts are permitted for
a three-group study, three comparisons for a four-group study, and so forth. The
second price that must be paid resides in the requirement that the same group
may not be used in more than one contrast. Hence in our three-group weight
loss study, the intervention group could not be used in two separate contrasts
involving the two control groups. What it could be compared to is the combi-
nation (or average) of the fwo control groups (i.e., treatment as usual and
placebo), leaving one additional comparison, which in this case could only be
between the two controls. (Algorithms exist in most standard texts (e.g., Bausell,
1986; Keppel, 1991) to illustrate which contrasts are and are not orthogonal to
one another, although again this option is seldom used in modern day experi-
mentation.)

2 These patterns represent the fact that the largest pairwise ES does not com-
pletely determine the size of an F-ratio (and therefore the power associated with
a multiple group experiment), although certainly the larger this ES is, the more
power will be available for the F-ratio. The size (and hence the power) of an F-
ratio is actually proportionate to the average distance each mean (or ES) is from
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the grand mean (or mean ES), hence if all of the means are as far from this mid-
point as possible, the F-ratio will be larger than if some of the means fall very
near (or exactly on) the grand mean.

3 If a researcher were to compute the ten f-tests necessary to ascertain whether
all the mean differences contained within a five-group study are statistically sig-
nificant, the effective level of significance rises from 0.05 to 0.40
(1—(1—0.05)1=0.40).

Template 6.1. Preliminary one-way between subjects ANOVA power/sample
size template

This preliminary template is applicable to all one-way between subjects ANOVA designs
employing between three and five groups.

Step 1. Write in the names/codes of the groups in the chart to Group definitions

the right in ascending order based upon their expected means @
(i.e., the name of the group expected to have the lowest mean or @
the weakest effect will be written next to @, followed by the ®
next strongest treatment and so forth). @

®

Step 2. Plot these groups, using the circled numbers rather than their codes, on the ES
line below. In the case of a tie between two groups with respect to their actual ES values,
place one to the right of the other based upon the best theoretical evidence for which
might be slightly superior.

ES line

@

00.10203040506070809101112131415

Step 3. For the estimation of power, specify the N/group available. For required sample
size, enter the desired power level.

N/group= or, desired power=

Step 4. Compare the low, medium, and high ES patterns below with the graphed ES line
from step 2 above. Choose the pattern which most closely matches the hypothesized
pattern of means (step 2). Note that this step does not need to be performed for two-
group designs (see Chapter 4), since there is only one possible pattern of means. Note also
that three-group studies have only two patterns as we define them.

(a) Three-group designs

ES pattern for low/medium F power @ ©) ®
ES pattern for high F power 0] ®
or @ @®

(b) Four-group designs

ES pattern for low F power ) @ @
ES pattern for medium F power @ &) ® @
ES pattern for high F power 0] @@
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(c) Five-group designs

ES pattern for low F power ©) 2B9® ®
ES pattern for medium F power O o0 ©® @ 6
ES pattern for high F power Ol6) @G

or @@ ©06)

To compute power, turn to Template 6.2. To determine N/group, turn to Template
6.3.

Template 6.2. One-way between subjects ANOVA power template

Power of the overall F-ratio
Steps 1—4, see preliminary Template 6.1.

Step 5. Use the largest hypothesized ES produced in step 2 (Template 6.1). For two-group
studies, this will be the ES for group @, for three-group studies it will be the ES for group
®, and so forth.

Largest ES from preliminary step 2:

Step 6. Use the chart below to find the appropriate power table.
(a) For two groups use Table 4.1 in Chapter 4.
(b) For three groups, choose the appropriate model below:
Pattern of means ~ Table
L/M pattern 6.1
H pattern 6.2
(c) For four groups, choose the appropriate model below:

Pattern of means Table

L pattern 6.3
M pattern 6.4
H pattern 6.5

(d) For five groups, choose the appropriate model below:

Pattern of means Table

L pattern 6.6
M pattern 6.7
H pattern 6.8

Step 7. Turn to the table identified in step 6 and find the power at the intersection
between the ES column from step 5 and the N/group specified in step 3 of the
preliminary template. Interpolate as desired.

Power=

Power of the pairwise contrasts

Step 8. Using the hypothesized values from step 2 in the preliminary template (6.1), fill
out the hypothesized ES values by performing the indicated subtractions listed under the
“Contrasts” column in the chart below.
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ES@-0= ES®-0= ES®—-0=
ES®@—-®= ES®—-Q@= ES®—-©@=
ES®—-@= ES®—-®= ES®—-®=

ES®-@=

Step 9. For power of the above pairwise contrasts (step 8) using the Tukey HSD
procedure, use the tables indicated in the “Power tables for the Tukey HSD

procedure” chart. For the Newman—Keuls procedure, only sample size tables

(see Template 6.3) are provided. (Note that the tables specified for the Tukey procedure
are based only upon the number of groups and not the particular contrast involved

while the tables used for Newman—Keuls are based only upon the contrasts involved

and not the number of groups.) Locate the power in the indicated table at the intersection
of the ES column (step 8) and the N/group row (preliminary step 3). Interpolate as
desired.

Power tables for the Tukey HSD procedure

Three-group studies Table 6.12
Four-group studies Table 6.13
Five-group studies Table 6.14
Power @ —®= Power @ —®© = Power ® —®=
Power @ —®= Power ® —@= Power ® —@=
Power @ —@= Power @ — @ = Power ® — @ =
Power ® — @ =

Template 6.3. One-way between subjects ANOVA sample size template

Required sample size for a statistically significant overall F-ratio

Steps 1—4, see the preliminary Template 6.1.

Step 5. Use the largest hypothesized ES produced in preliminary step 2. For two-group
studies, this will be the ES for group @, for three-group studies it will be the ES for group
®, and so forth.

Largest ES from preliminary step 2:

Step 6. For desired power values of 0.80 and 0.90, use the chart below to find the
appropriate sample size table. (For desired power values other than 0.80 or 0.90, go to step
7.) Locate the N/group at the intersection of the ES column (step 5) and the desired
power row. (Note that these tables also provide the necessary N/group for p=0.01 and
p=0.10.)

(a) For two groups see Chapter 4.

(b) For three groups, choose the appropriate model below:
p=0.05 p=0.01

Table 6.9 Chart C Table 6.9 Chart A
Table 6.9 Chart D Table 6.9 Chart B

Pattern of means
L/M pattern
H pattern

p=0.10
Table 6.9 Chart E
Table 6.9 Chart F
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(c) For four groups, choose the appropriate model below:

Pattern of means p=0.05 p=0.01 p=0.10

L pattern Table 6.10 Chart D Table 6.10 Chart A Table 6.10 Chart G
M pattern Table 6.10 Chart E Table 6.10 Chart B Table 6.10 Chart H
H pattern Table 6.10 Chart F Table 6.10 Chart C  Table 6.10 Chart I

(d) For five groups, choose the appropriate model below:

Pattern of means p=0.05 p=0.01 p=0.10

L pattern Table 6.11 Chart D Table 6.11 Chart A Table 6.11 Chart G
M pattern Table 6.11 Chart E Table 6.11 Chart B Table 6.11 Chart H
H pattern Table 6.11 Chart F Table 6.11 Chart C ~ Table 6.11 Chart I

Step 7. For desired powers other than 0.80 and 0.90, turn to the table identified in step 6
of the power template (6.2) and find the N/group to the left of the row in the ES column
(from step 5) that most closely matches the desired power level. Interpolate as desired.

N/group =

Sample size for the pairwise contrasts

Step 8. Using the hypothesized values from step 2 in the preliminary template, fill out the
hypothesized ES values by performing the indicated subtractions listed under the
“Contrasts” column in the chart below.

ES@—-0®= ES®-0®= ES®-®=
ES®@—0®= ES®-@= ES®-@=
ES®—-0@= ES®—-®= ES®—-0®=

ES®—-@®=

Step 9. For the required sample size for powers of 0.80 or 0.90 of the pairwise contrasts
listed in step 8 for the Tukey HSD procedure, use the tables indicated in the “Tukey
HSD” chart below. For powers of 0.80 or 0.90 for the Newman—Keuls procedure, use
the tables indicated in the “Newman—Keuls” chart. (Note that the tables specified for the
Tukey procedure are based only upon the number of groups and not the particular contrast
involved while the tables used for Newman—Keuls are based only upon the contrasts
involved and not the number of groups.) Locate the N/group in the indicated table at the
intersection of the ES column (step 8) and the desired power row (preliminary step 3). For
powers other than 0.80 and 0.90, use the appropriate tables indicated in step 9 of Template
6.2 by finding the nearest power value in the ES column (step 8) and reading the N/group
associated with that row. Interpolate as desired.

Sample size tables for the Tukey HSD procedure

p=0.05 p=0.01 p=0.10

Three-group studies
Four-group studies
Five-group studies

Table 6.15 Chart B
Table 6.15 Chart E
Table 6.15 Chart I

Table 6.16 Chart B
Table 6.16 Chart E
Table 6.16 Chart I

Sample size tables for the Newman—Keuls procedure

Table 6.17 Chart B
Table 6.17 Chart E
Table 6.17 Chart I

Determining the sample size requirements for the Newman—Keuls procedure is slightly

more complicated since different charts within the Tables 6.15 (p=10.05), 6.16 (p=0.01),
and 6.17 (p=0.10) are used to determine sample sizes for both the number of groups and
the number of intervening variables.
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Three groups

Contrast Chart
-0 A
®-0® B
®-© A
Five groups
Contrast Chart
@-0 F
®-0® G
®-© F
N/group @ —@=
N/group @ —®=
N/group @ —@=

Four groups

Contrast
-0 C
®-0® D
®-© C
Contrast
®-0 H
®-0® G
®-0® F
N/group ® —@=
N/group ® —@=
N/group ® —@ =

Chart

Chart

Contrast Chart
@®-0 E
@®-@ D
®-0® C
Contrast Chart
®&-0® [
®-@ H
®-® G
®-® F
N/group ® —@=
N/group ® —@=
N/group ® —@=
N/group ® —@®=

88



Table 6.1. Power table for F-test; pattern L/M, 3 groups at alpha =0.05

CHAPTER 6 TABLES

n Hypothesized ES
0.2010.30{0.35[0.40]0.45(0.50 | 0.55] 0.60 0.65]0.70|0.75] 0.80 {1.00|1.25|1.50 [1.75| 2.00 | 2.50| 3.00
5( 5 6 7| 7| 8 9| 10| 11| 12| 13| 14| 16| 22| 33| 45| 58| 71| 89| 97
6 5| o6 7| 8| 9| 10| 11| 12| 14| 15| 17| 19| 27| 40| 55| 69| 81| 95| 99
7 6 7 8 9| 10| 11| 12| 14| 16| 17| 20| 22| 32| 48| 64| 78| 88| 98
8 6| 7| 8| 9| 10| 12| 14| 16| 18| 20| 22| 25| 37| 54| 71| 84| 93| 99
9 6 7 91 10| 11| 13| 15[ 17| 20| 22| 25| 28| 42| 61| 77| 89| 96
10| 6 8| 9 11| 12 14| 16| 19| 22| 25| 28| 31| 46| 66| 82| 92| 97
11 6| 8| 10| 11| 13| 15| 18| 21| 24| 27| 31| 34| 51| 71| 86| 95| 99
12| 6| 8| 10 12| 14| 17| 19| 23| 26| 30| 33| 38| 55| 75| 89| 97| 99
131 6| 9 11| 13| 15| 18| 21| 24| 28| 32| 36| 41| 59| 79| 92| 98
14 6 9 11| 13| 16| 19| 22| 26| 30| 34| 39| 44| 63| 83| 94| 98
15| 7| 10| 12| 14| 17| 20| 24| 28| 32| 37| 42| 47| 66| 85| 95| 99
20( 7| 12| 15| 18| 22| 27| 31| 37| 42| 48| 54| 60| 80| 94| 99
25| 8| 14| 18| 22| 27| 33| 39| 45| 52| 58| 65| 71| 89| 98
300 9| 16| 21| 26| 32| 39| 46| 53| 60| 67| 73| 79| 94| 99
35( 10| 18| 24| 30| 37| 45| 52| 60| 68| 74| 80| 85| 97
40 11| 20| 27| 34| 42| 50| 59| 67| 74| 80| 86| 90| 98
45| 12| 23| 30| 38| 47| 55| 64| 72| 79| 85| 90| 93| 99
50| 13| 25| 33| 42| 51| 60| 69| 77| 83| 89| 93| 95
55| 14| 27| 36| 45| 55| 65| 73| 81| 87| 92 95| 97
60| 15 29| 39| 49| 59| 69| 77| 84| 90| 94| 96| 98
65| 16| 32| 42| 52| 63| 73| 81| 87| 92| 95 98| 99
70 17| 34| 44| 56| 66| 76| 84| 90| 94| 97| 98| 99
75| 18| 36| 47| 59| 70| 79| 86| 92| 95 98| 99| 99
80| 19| 38| 50| 62| 73| 82| 89| 93| 97| 98| 99
90| 21| 42| 55| 67| 78| 86| 92| 96| 98| 99
100 23| 47| 60| 72| 82| 90| 95| 97| 99
110| 25| 50| 64| 76| 86| 92| 96| 98| 99
120 27| 54| 68| 80| 89| 94| 98| 99
130 29| 58| 72| 83| 91| 96| 98| 99
140 31| 61| 75| 86| 93| 97| 99
150 33| 64| 78| 88| 95| 98| 99
175| 37| 72| 85| 93| 97| 99
200 42| 78| 89| 96| 99
225| 47| 82| 93| 97| 99
250| 51| 86| 95| 99
300 59| 92| 98
400| 72| 98
500| 82| 99
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Table 6.2. Power table for F-test; pattern H, 3 groups at alpha =0.05

n Hypothesized ES
0.2010.30{0.35[0.40|0.45[0.50|0.55] 0.60| 0.65]0.70|0.75] 0.80{1.00|1.25|1.50 {1.75| 2.00 | 2.50| 3.00
51 6 7| 7| 8| 9| 10| 11| 13| 14| 16| 18| 20| 29| 42| 57| 71| 83| 96| 99
6 6| 7| 8| 9| 10| 12| 13| 15| 17| 19| 21| 24| 35| 52| 68| 82| 91| 99
7 6 7 9 10| 11| 13| 15| 17| 20| 22| 25| 28| 42| 60| 77| 89| 95
8| o6 8 9| 11| 13| 15| 17| 20| 22| 25| 29| 32| 48| 68| 83| 93| 98
9 6 8| 10| 12| 14| 16| 19| 22 25| 29| 32| 36| 53| 74| 88| 96| 99

100 6| 9 11| 13| 15| 18| 21| 24| 28| 32| 36| 40| 59| 79| 92| 98

11 7| 9 11| 14| 16| 19| 23| 27| 31| 35| 40| 44| 64| 83| 94| 99

12{ 7| 10| 12| 15| 18| 21| 25| 29| 34| 38| 43| 48| 68| 87| 96| 99

131 7| 10| 13| 16| 19| 23| 27| 31| 36| 41| 47| 52| 72| 90| 97

14 7| 11| 14| 17| 20| 24| 29| 34| 39| 44| 50| 56| 76| 92| 98

151 7| 12| 14| 18| 22| 26| 31| 36| 42| 47| 53| 59| 79| 94| 99

20| 9| 14| 18| 23| 28| 34| 41| 47| 54| 61| 67| 73| 90| 98

25| 10| 17| 22| 28| 35| 42| 50| 57| 65| 72| 78| 83| 96

30| 11| 20| 26| 34| 42| 50| 58| 66| 73| 80| 85| 90| 98

35| 12| 23| 31| 39| 48| 57| 65| 73| 80| 86| 91| 94| 99

40| 13| 26| 35| 44| 53| 63| 72| 79| 86| 91| 94| 96

45| 151 29| 39| 49| 59| 69| 77| 84| 90| 94| 96| 98

50| 16| 32| 42| 53| 64| 73| 82| 88| 93| 96| 98| 99

55| 17| 35| 46| 57| 68| 78| 85| 91| 95| 97 99| 99

60| 19| 38| 50| 61| 72| 81| 88| 93| 96| 98| 99

65| 20| 41| 53| 65| 76| 85| 91| 95| 98| 99

701 21| 44| 56| 69| 79| 87| 93| 96| 98| 99

75| 23| 46| 60| 72| 82| 90| 94| 97| 99

80| 24| 49| 63| 75| 85| 91| 96| 98| 99

90| 27| 54| 68| 80| 89| 94| 98 99

100 29| 59| 73| 84| 92| 96| 99

110 32| 63| 77| 88| 94| 98| 99

120 34| 67| 81| 90| 96| 99

130 37| 71| 84| 93| 97| 99

140 40| 74| 87| 94| 98| 99

150 42| 77| 89| 96| 99

175| 48| 84| 93| 98| 99

200| 54| 89 96| 99

225| 59| 92 98

250| 64| 951 99

300| 72 97

400| 85

500| 92
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Table 6.3. Power table for F-test; pattern L, 4 groups at alpha =0.05

CHAPTER 6 TABLES

n Hypothesized ES
0.2010.30{0.35[0.40]0.45(0.50 | 0.55] 0.60 0.65]0.70|0.75] 0.80 {1.00|1.25|1.50 [1.75| 2.00 | 2.50| 3.00
5( 5 6/ 6 7| 7| 8| 9 10| 10| 11| 12| 14| 19| 28| 40| 52| 65| 85| 95
6 5| o6 7| 71 8 9| 10/ 11| 12| 13| 15| 16| 23| 35| 49| 63| 76| 92| 99
7 5 6 7 8 91 10( 11 12| 13| 15| 17| 19| 28| 42| 57| 72| 84| 96
8 5| 7| 7| 8| 9| 10| 12| 13| 15| 17| 19| 21| 32| 48| 65| 79| 90| 98
9 6 7 8 91 10| 11| 13| 15| 17| 19| 21| 24| 36| 54| 71| 85 93| 99
100 6 7| 8| 9| 11| 12| 14| 16| 19| 21| 24| 27| 41| 60| 77| 89| 96
11y 6| 7/ 9| 10| 11| 13| 15| 18| 20| 23| 26| 30| 45| 65| 82| 92| 98
12| 6| 8| 9| 10| 12| 14| 17| 19| 22| 25| 29| 32| 49| 69| 85| 95| 99
13 6| 8 9| 11| 13| 15| 18| 21| 24| 27| 31| 35| 52| 74| 89| 96| 99
14 6 8| 10| 12| 14| 16| 19| 22| 26| 30| 34| 38| 56| 77| 91| 97| 99
15| 6| 9| 10| 12| 15| 17| 20| 24| 28| 32| 36| 41| 60| 81| 93| 98
20( 7| 10| 13| 15| 19| 23| 27| 32| 37| 42| 48| 53| 74| 92| 98
25| 8| 12| 15| 19| 23| 28| 33| 39| 45| 52| 58| 64| 84| 97
300 8| 14| 18| 22| 27| 33| 40| 47| 54| 60| 67| 73| 91| 99
35 9] 16| 20| 26| 32| 39| 46| 54| o1| 68 75| 80| 95
40 10| 17| 23| 29| 36| 44| 52| 60| 68| 75| 81| 86| 97
45| 10| 19| 25| 32| 40| 49| 57| 66| 73| 80| 86| 90| 99
50| 11| 21| 28| 36| 45| 54| 63| 71| 78| 84| 89| 93| 99
55| 12| 23| 31| 39| 49| 58| 67| 75| 82| 88| 92| 95
60| 13| 25| 33| 43| 52| 62| 71| 79| 86| 91| 94| 97
65| 13| 27| 36| 46| 56| 66| 75| 83| 89| 93| 96| 98
70( 14 29 39| 49| 60| 70| 79 86| 91| 95| 97| 99
75| 15| 31| 41| 52| 63| 73| 82| 88| 93| 96| 98| 99
80| 16| 33| 44| 55| 66| 76| 84| 90 95| 97| 99| 99
90| 18| 37| 49| 61| 72| 81| 89 94| 97| 98| 99
100 19| 40| 53| 66| 77| 86| 92| 96| 98| 99
110| 21| 44| 58| 70| 81| 89| 94| 97| 99
120 23| 48| 62| 74| 85| 92| 96 98| 99
130 24| 51| 66| 78| 88| 94| 97| 99
140 26| 55 69| 81| 90| 95| 98| 99
150 28| 58| 72| 84| 92| 97| 99
175| 32| 65| 80| 90| 96| 98
2001 36( 72| 85| 93| 98| 99
225| 41| 77| 89| 96| 99
250 45( 82| 92| 97| 99
300| 53| 89| 96| 99
400| 66 96| 99
500| 77| 99
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ONE-WAY BETWEEN SUBJECTS ANALYSIS OF VARIANCE

Table 6.4. Power table for F-test; pattern M, 4 groups at alpha =0.05

n Hypothesized ES
0.2010.30{0.35[0.40|0.45[0.50|0.55] 0.60| 0.65]0.70|0.75] 0.80{1.00|1.25|1.50 {1.75| 2.00 | 2.50| 3.00
5/ 51 6| 7| 7| 8 8 9 10| 11| 12 13| 15| 21| 31| 44| 57| 70| 89| 97
6 5| o 7| 8] 8 9| 10/ 11| 13| 14| 16| 17| 26| 39| 54| 68| 80| 95| 99
7 5 7 7 8 91 10| 12| 13| 15| 16| 18| 20| 31| 46| 62| 77| 88| 98
8| o 7| 8| 9| 10| 11| 13| 14| 16| 19| 21| 23| 35| 53| 70| 84| 93| 99
9 6 7 8 9| 11| 12| 14| 16| 18| 21| 24| 26| 40| 59| 76| 89| 96
10 6| 7 9| 10| 11| 13| 15| 18| 20| 23| 26| 30| 45| 65| 82| 92| 97
11 6| 8| 9| 11| 12| 14| 17| 19| 22| 25| 29| 33| 49| 70| 86| 95| 99
12 6| 8 10| 11| 13| 16| 18| 21| 24| 28| 32| 36| 53| 74| 89| 97| 99
131 6| 8 10| 12| 14| 17| 20 23| 26| 30| 34| 39| 57| 78| 92| 98
14 6 91 10| 13| 15| 18| 21| 24| 28| 33| 37| 42| 61| 82| 94| 99
151 6| 9 11| 13| 16| 19| 22 26| 30| 35| 40| 45| 65| 85| 95| 99
20| 7| 11| 14| 17| 21| 25| 30| 35| 40| 46| 52| 58| 79| 94| 99
25| 8| 13| 16| 21| 25| 31| 37| 43| 50| 57| 63| 69| 88| 98
301 9| 15| 19| 24| 30| 37| 44| 51| 58| 66| 72| 78| 94| 99
35 91 17| 22| 28| 35| 43| 51| 58| 66| 73| 79| 85| 97
40| 10 19| 25| 32| 40| 48| 57| 65| 73| 79| 85| 90| 98
45| 11| 21| 28| 36| 45| 54| 62| 71| 78| 84| 89| 93| 99
50| 12| 23| 31| 40| 49| 58| 68| 76| 83| 88| 92| 95
55| 13| 25| 34| 43| 53| 63| 72| 80| 86| 91| 95| 97
60| 14| 28| 37| 47| 57| 67| 76| 84| 90| 94| 96| 98
65| 15| 30| 40| 50| 61| 71| 80| 87| 92| 95| 98| 99
70 16| 32| 42| 54| 65| 75| 83| 89| 94| 97| 98| 99
75| 16| 34| 45| 57| 68| 78| 86| 92 95| 98| 99
80| 17| 36| 48| 60| 71| 81| 88| 93| 96| 98| 99
90| 19| 40| 53| 66| 77| 86| 92| 96| 98| 99
100 21| 45| 58| 71| 81| 89| 94| 97| 99
110| 23| 49| 63| 75| 85| 92| 96| 98| 99
120 25| 52| 67| 79| 88| 94| 98 99
130 27| 56| 71| 83| 91| 96| 98| 99
140 29| 59| 74| 86| 93| 97| 99
150 31| 63| 77| 88| 95| 98| 99
175| 35| 70| 84| 93| 97| 99
200| 40| 76| 89| 96| 99
225| 45| 82| 92 97 99
250| 49| 86| 95| 99
300 57| 92| 98
400| 71| 98
500 81| 99
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Table 6.5. Power table for F-test; pattern H, 4 groups at alpha =0.05

CHAPTER 6 TABLES

n Hypothesized ES
0.2010.30{0.35[0.40]0.45(0.50 | 0.55] 0.60 0.65]0.70|0.75]0.80 {1.00|1.25|1.50 [1.75| 2.00 | 2.50| 3.00
5( 6| 7| 8| 9| 10| 12| 13| 15| 17| 19| 21| 24| 36| 53| 70| 84| 93| 99
6 6| 8 9| 10| 12| 13| 15| 18| 20| 23| 26| 29| 44| 64| 81| 92| 97
7 6 8 10| 11| 13| 15| 18| 21| 24| 27| 31| 35| 52| 73| 88| 96| 99
8 6| 9| 10| 12| 15| 17| 20| 24| 27| 31| 36| 40| 59| 80| 93| 98
91 7| 9| 11| 14| 16| 19| 23| 27| 31| 36| 40| 46| 66| 86| 96| 99
10| 7| 10| 12| 15| 18| 21| 25| 30| 35| 40| 45| 51| 71| 90| 98
11 7| 11| 13| 16| 20| 24| 28| 33| 38| 44| 50| 55 76| 93| 99
12| 7| 11| 14| 17| 21| 26| 31| 36| 42| 48| 54| 60| 81| 95| 99
131 8| 12| 15| 19| 23| 28| 33| 39| 45| 52| 58| 64| 84| 97
14| 8| 13| 16| 20| 25| 30| 36| 42| 49| 55| 62| 68| 87| 98
15| 8| 13| 17| 21| 27| 32| 38| 45| 52| 59| 65| 71| 90| 98
20| 10| 17| 22| 28| 35| 43| 51| 59| 66| 73| 80| 85| 97
25| 11| 21| 27| 35| 44| 53| 61| 70| 77| 84| 89| 93| 99
30 13| 25| 33| 42| 52| 61| 71| 79| 85| 90| 94| 96
35| 14| 29| 38| 48| 59| 69| 78 85| 91| 94| 97| 98
40| 16| 32| 43| 54| 66| 76| 84| 90| 94| 97| 99| 99
45| 17| 36| 48| 60| 71| 81| 88 93| 97| 98| 99
50| 19| 40| 53| 65| 76| 85| 92| 96 98| 99
55| 21| 44| 57| 70| 81| 89| 94| 97| 99
60| 22| 47| 61| 74| 84| 91| 96| 98| 99
65| 24| 51| 65| 78| 87| 94| 97| 99
70| 26| 54| 69| 81| 90| 95| 98| 99
75| 28| 57| 72| 84| 92| 96| 99
80| 29| 61| 75| 86| 94| 97| 99
90| 33| 66| 80| 90| 96| 99
100 36| 71| 85| 93| 98| 99
110| 40| 76| 88| 95| 99
120 43| 80| 91| 97| 99
130| 46| 83| 93| 98
140 49| 86| 95| 99
150 52| 88| 96| 99
175 60| 93| 98
200| 66 96| 99
225| 72| 98
250 77| 99
300 84
400 93
500| 98
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ONE-WAY BETWEEN SUBJECTS ANALYSIS OF VARIANCE

Table 6.6. Power table for F-test; pattern L, 5 groups at alpha=0.05

n Hypothesized ES
0.2010.30{0.35[0.40|0.45[0.50|0.55] 0.60| 0.65]0.70|0.75] 0.80{1.00|1.25|1.50 {1.75| 2.00 | 2.50| 3.00
5/ 51 6| 6| 7| 7| 8| 8 9 10| 10{ 11| 12| 17| 26| 36| 48| 60| 82| 94
6 5| o 6 7 7| 8| 9 10| 11| 12| 13| 14| 21| 32| 45| 59| 72| 90| 98
7 5 6 7 7 8 9| 10| 11| 12| 14| 15| 17| 25| 38| 53| 68| 80| 95| 99
8| 51 6| 7| 8 9| 10| 11| 12 14| 15| 17| 19| 29| 44| 60| 75| 87| 98
9 5 7 7 8 91 10| 12| 13| 15| 17 19| 21| 33| 49| 67| 81| 91| 99
10 6| 7 8 9| 10| 11| 13| 15| 17| 19| 21| 24| 36| 55| 73| 86| 94
11y 6| 7/ 8| 9| 10| 12| 14| 16| 18| 21| 23| 26( 40| 60| 78| 90| 96
12 6| 7| 8| 10| 11| 13| 15| 17| 20| 23| 26| 29| 44| 65| 82| 93| 98
13 6| 7| 9| 10| 12| 14| 16| 18| 21| 24| 28| 31| 48| 69| 86| 95| 99
14 6 8 9 11| 12| 15| 17| 20| 23| 26| 30| 34| 51| 73| 88| 96| 99
151 6| 8 9| 11| 13| 15| 18| 21| 25| 28| 32| 36| 55| 76| 91| 97
201 7| 9| 11| 14| 17| 20| 24| 28| 33| 38| 43| 48| 70| 89| 97
25| 7| 11| 13| 17| 21| 25| 30| 35| 41| 47| 53| 59| 81| 95| 99
301 8| 12| 16| 20| 24| 30| 36| 42| 49| 56| 62| 69| 88| 98
35 8| 14| 18| 23| 28| 35| 42| 49| 56| 63| 70| 76| 93| 99
40| 9| 15| 20| 26| 32| 40| 47| 55| 63| 70| 77| 82| 96
45| 9 17| 23| 29| 36| 44| 53| 61| 69| 76| 82| 87| 98
50| 10 19| 25| 32| 40| 49| 58| 66| 74| 81| 86| 91| 99
55| 11| 20| 27| 35| 44| 53| 62| 71| 78| 85| 90| 93| 99
60| 11| 22| 30| 38| 48| 57| 67| 75| 82| 88| 92| 95
65| 12| 24| 32| 41| 51| 61| 71| 79| 86| 91| 94| 97
700 13| 26| 34| 44| 55| 65| 74| 82| 88| 93| 96| 98
75| 14| 27| 37| 47| 58| 68| 78| 85| 91| 95| 97| 99
80| 14| 29| 39| 50| 61| 72| 80| 87| 93| 96| 98| 99
90| 16| 33| 44| 56| 67| 77| 85| 91| 95| 98| 99
100 17| 36| 48| o1| 72| 82| 89| 94| 97| 99| 99
110 19| 40| 53| 66| 77| 86| 92| 96| 98| 99
120 20| 43| 57| 70| 81| 89| 94| 97| 99
130 22| 46| 61| 74| 84| 92| 96 98| 99
140 23| 50| 64| 77| 87| 94| 97| 99
150 25| 53| 68| 80| 89| 95| 98| 99
175 29| 60| 75| 87| 94| 98| 99
200| 33| 67| 81| 91| 97 99
225| 36| 73| 86| 94| 98| 99
250| 40| 78| 90| 96| 99
300 48| 85| 95| 99
400| 61| 94 99
500 72| 98
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Table 6.7. Power table for F-test; pattern M, 5 groups at alpha=0.05

CHAPTER 6 TABLES

n Hypothesized ES
0.2010.30{0.35[0.40]0.45(0.50 | 0.55] 0.60 0.65]0.70|0.75] 0.80 {1.00|1.25|1.50 [1.75| 2.00 | 2.50| 3.00
5( 5| 6| 6 7| 8 8| 9 10| 11| 12| 13| 14| 21| 32| 44| 58| 71| 90| 98
6 5| o6 7| 7| 8 9| 10/ 11| 13| 14| 16| 17| 26| 39| 55| 70{ 82| 96 99
7 5 6 7 8 91 10 11| 13| 14| 16| 18| 20| 31| 47| 64| 78| 89| 98
8 6| 7| 8| 9 10| 11| 13| 14| 16| 18| 21| 23| 35| 53| 71| 85| 94| 99
9 6 7 8 91 10| 12| 14 16| 18| 21| 23| 26| 40| 60| 78| 90| 96
10| 6 7| 8| 10| 11| 13| 15| 17| 20| 23| 26| 29| 45| 66| 83| 93| 98
11 6| 8 9| 10| 12| 14| 17| 19| 22| 25| 29| 33| 50| 71| 87| 96| 99
12| 6| 8| 9 11| 13| 15| 18| 21| 24| 28| 32| 36| 54| 76| 90| 97| 99
13| 6| 8| 10| 12| 14| 16| 19| 23| 26| 30| 34| 39| 58| 80| 93| 98
14 6 91 10| 12| 15| 18| 21| 24| 28| 33| 37| 42| 62| 83| 95| 99
15| 6| 9| 11| 13| 16| 19| 22| 26| 30| 35| 40| 45| 66| 86| 96| 99
20( 7| 11| 13| 17| 20| 25| 30| 35| 41| 47| 53| 59| 80| 95| 99
25| 8| 13| 16| 20| 25| 31| 37| 43| 50| 57| 64| 70| 89| 98
300 9| 15| 19| 24| 30| 37| 44| 52| 59| 66| 73| 79| 95
35 9| 17| 22| 28| 35| 43| 51| 59| 67| 74| 80| 86| 97
40 10| 19| 25| 32| 40| 49| 57| 66| 74| 80| 86| 91| 99
45| 11| 21| 28| 36| 45| 54| 63| 72| 79| 85| 90| 94| 99
50| 12| 23| 31| 40| 49| 59| 68| 77| 84| 89| 93| 96
55| 13| 25| 34| 43| 54| o4| 73| 81| 88| 92 95| 98
60| 13| 27| 37| 47| 58| 68| 77| 85| 91| 94| 97| 98
65| 14| 30| 40| 51| 62| 72| 81| 88| 93| 96| 98| 99
70( 15{ 32| 43| 54| 66| 76| 84 90| 95| 97| 99| 99
75| 16| 34| 45| 58| 69| 79| 87| 92| 96| 98| 99
80| 17| 36| 48| o1| 72| 82| 89| 94 97| 99| 99
90| 19| 41| 54| 67| 78| 87| 93| 96| 98| 99
100 21| 45| 59| 72| 83| 90| 95| 98| 99
110 23| 49| 63| 76| 86| 93| 97| 99
120 25| 53| 68| 80| 89| 95| 98| 99
130 27| 57| 72| 84| 92| 97| 99
140 29| 60| 75| 87| 94| 98| 99
150 31| o4| 78| 89| 95| 98
175| 35| 71| 85| 94| 98| 99
200 40( 78| 90| 96| 99
225| 45| 83| 93| 98
250| 50| 87| 96| 99
300 58| 93| 98
400| 72| 98
500| 82
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ONE-WAY BETWEEN SUBJECTS ANALYSIS OF VARIANCE

Table 6.8. Power table for F-test; pattern H, 5 groups at alpha =0.05

n Hypothesized ES
0.2010.30{0.35[0.40|0.45[0.50|0.55] 0.60| 0.65]0.70|0.75] 0.80{1.00|1.25|1.50 {1.75| 2.00 | 2.50| 3.00
5/ 6 7| 8| 9| 10| 12| 13| 15| 17| 20| 22| 25| 38| 57| 75| 88| 95
6 6| 8| 9| 10| 12| 14| 16| 18| 21| 24| 28| 31| 47| 69| 85| 95| 99
7 6 8| 10| 11| 13| 16| 19| 22| 25| 29| 33| 37| 56| 77| 92| 98
8| 6| 9| 11| 13| 15| 18| 21| 25| 29| 33| 38| 43| 63| 84| 95| 99
91 7| 10| 12| 14| 17| 20| 24| 28| 33| 38| 43| 49| 70| 89| 98

10( 7| 10| 13| 15| 19| 23| 27| 32| 37| 43| 48| 54| 76| 93| 99

11 7| 11| 14| 17| 20| 25| 30[ 35| 41| 47| 53| 59| 81| 95| 99

121 7| 12| 15| 18| 22| 27| 33| 38| 45| 51| 58| 64| 85| 97

131 8| 12| 16| 20| 24| 30| 35| 42| 48| 55| 62| 68| 88| 98

14 8| 13| 17| 21| 26| 32| 38| 45| 52| 59| 66| 72| 91| 99

151 8| 14| 18| 22| 28| 34| 41| 48| 55| 63| 69| 76| 93| 99

20| 10| 18| 23| 30| 37| 46| 54| 63| 70| 77| 83| 88| 98

25| 11| 22| 29| 37| 47| 56| 65| 74| 81| 87 92| 95

30| 13| 26| 35| 45| 55| 65| 75| 83| 89| 93| 96| 98

35| 15| 30| 40| 52| 63| 73| 82| 89| 93| 96| 98| 99

40| 16| 34| 46| 58| 70| 80| 87| 93| 96| 98| 99

45| 18| 39| 51| 64| 75| 85| 91| 96| 98| 99

50| 20| 43| 56| 69| 80| 89| 94| 97| 99

55| 22| 47| 61| 74| 84| 92 96| 98| 99

60| 24| 51| 65| 78| 88| 94| 97| 99

65| 25| 54| 69| 82| 90| 96| 98 99

70| 27| 58| 73| 85| 93| 97| 99

75| 29| 61| 76| 87| 94| 98| 99

80| 31| 64| 79| 90| 96| 99

90| 35| 70| 84| 93| 98| 99

100 39 75| 88| 96| 99

110| 42| 80| 91| 97| 99

120 46| 84| 94| 98

130 49 87| 95| 99

140 53| 89| 97| 99

150 56| 91| 98

175 63| 95| 99

200 70| 97

225| 76| 99

250 80| 99

300| 88

400| 96

500| 99
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Table 6.9. Sample size table for three-group independent samples ANOVA

CHAPTER 6 TABLES

Chart A. Independent samples ANOVA; pattern L/M, 3 groups at alpha=0.01
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80(1.00| 1.25| 1.50| 1.75| 2.00( 2.50 | 3.00
0.80 |[690| 308 227| 174| 138| 112| 93| 78| 67| 58| 51| 45| 30( 20| 14| 11 9 7 5
0.90 | 867| 386| 284| 218| 173| 140| 116| 98| 84| 73| 64| 56| 37| 24| 17| 13| 11| 8| 6
Chart B. Independent samples ANOVA; pattern H, 3 groups at alpha=0.01
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80(1.00| 1.25| 1.50| 1.75| 2.00( 2.50| 3.00
0.80 | 518| 231| 170| 131| 104| 85| 70| 59| 51| 44| 39| 34| 23| 15 11| 9| 7| 6| 5
0.90 | 650| 290| 214| 164| 130| 106| 88| 74| 63| 55| 48| 43| 28| 19| 14| 11 9] 6| 5
Chart C. Independent samples ANOVA; pattern L/M, 3 groups at alpha=0.05
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80(1.00| 1.25|1.50| 1.75| 2.00(2.50| 3.00
0.80 | 476| 212| 156| 120 95| 77| 64| 54| 46| 40| 35| 31| 21| 14| 10| 8| 6 5 4
0.90 | 627| 279] 206| 158| 125| 102| 84| 71| 61| 53| 46| 41| 27| 18| 13| 10| 8| 6| 4
Chart D. Independent samples ANOVA; pattern H, 3 groups at alpha = 0.05
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80{1.00| 1.25| 1.50| 1.75| 2.00| 2.50 | 3.00
0.80 | 357| 160| 118| 90| 72| 58| 49| 41| 35| 31| 27| 24| 16| 11| 8| 6| 5| 4| 3
0.90 | 470| 210| 155| 119 94| 77| 64| 54| 46| 40| 35| 31| 20| 14| 10| 8| 6 5 4
Chart E. Independent samples ANOVA; pattern L/M, 3 groups at alpha=0.10
Power Hypothesized ES
0.20{0.30]0.35]0.40(0.45]0.50{0.55[0.60|0.65|0.70{0.75|0.80{1.00| 1.25| 1.50{1.75| 2.00{2.50| 3.00
0.80 | 379| 169| 125| 96| 76| 62| 51| 43| 37| 32| 28| 25| 16| 11| 8| 6| 5| 4| 3
0.90 [517| 230( 170| 130{ 103| 84| 69| 59| 50| 43| 38| 34| 22| 15| 11 8 7 5 4
Chart E Independent samples ANOVA; pattern H, 3 groups at alpha=10.10
Power Hypothesized ES
0.20(0.300.35{0.40|0.45|0.50{0.55{0.60(0.65 [0.70 [0.75 [0.80 | 1.00|1.25]1.50{1.75 [ 2.00|2.50|3.00
0.80 |285|127| 94| 72| 57| 47| 39| 33| 28| 24| 21| 19| 13| 9| 6| 5| 4| 3| 3
0.90 |388| 173|127 98| 78| 63| 52| 44| 38| 33| 29| 25| 17| 11| 8| 6| 5| 4| 3
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ONE-WAY BETWEEN SUBJECTS ANALYSIS OF VARIANCE

Table 6.10. Sample size table for four-group independent samples ANOVA

Chart A. Independent samples ANOVA; pattern L, 4 groups at alpha=10.01

Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 [ 769| 343 252| 194| 154| 125| 103| 87| 75| 65| 57| 50| 33| 22| 16| 12| 10 7 5
0.90 | 959| 427| 314| 241| 191| 155| 129| 108| 93| 80| 70| 62| 40| 26| 19| 14 8| 6
Chart B. Independent samples ANOVA; pattern M, 4 groups at alpha=0.01
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 693| 309|227 175| 138| 112| 93| 79| 67| 58| 51| 45| 30{ 20| 14| 11| 9| 6 5
0.90 |863| 385|283| 217| 172| 140| 116 98| 83| 72| 63| 56| 36| 24| 17| 13 8| 6
Chart C. Independent samples ANOVA; pattern H, 4 groups at alpha=10.01
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[386| 172| 127| 98| 78| 63| 53| 45| 38| 33| 29| 26| 17| 12| 9| 7| 6| 5| 4
0.90 | 481| 215] 158 122 96| 79| 65| 55| 47| 41| 36| 32| 21| 14| 11| 8 5| 4
Chart D. Independent samples ANOVA; pattern L, 4 groups at alpha=0.05
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 540| 241|177 135| 108| 88| 73| 61| 53| 46| 40| 35| 23| 15| 11| 9| 7| 5| 4
0.90 | 705| 314| 231| 177| 140| 114 95| 80| 68| 59| 52| 45| 30| 20| 14| 11| 9| 6| 5
Chart E. Independent samples ANOVA; pattern M, 4 groups at alpha =0.05
Power Hypothesized ES
0.20/0.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00
0.80 |487| 217| 160| 123| 97| 79| 66| 55| 47| 41| 36| 32| 21| 14| 10| 8| 6| 5| 4
0.90 | 635|283 208| 160| 127| 103| 85| 72| 61| 53| 47| 41| 27| 18] 13| 10 8 6 4
Chart E Independent samples ANOVA; pattern H, 4 groups at alpha=0.05
Power Hypothesized ES
0.200.300.350.400.45{0.50{0.55]0.60 [0.65]0.70|0.75{0.80|1.00 | 1.25[1.50|1.75 | 2.00 |2.50 | 3.00
0.80 |271|121| 89| 69| 55| 45| 37| 31| 27| 24| 21| 18| 12| 8| 6| 5| 4| 3| 3
0.90 |353|158|116| 89| 71| 58| 48| 41| 35 30| 27| 23| 16| 11| 8| 6| 5| 4| 3

98




CHAPTER 6 TABLES

Table 6.10. (cont.)

Chart G. Independent samples ANOVA; pattern L, 4 groups at alpha=0.10

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

(S8)

0.80 [ 435| 194 143| 110 87| 71| 59| 49| 42| 37| 32| 28| 19| 12 9 7 6 4
0.90 |[586] 261 192| 148| 117| 95| 79| 66| 57| 49| 43| 38| 25| 16| 12 9 7 5 4

Chart H. Independent samples ANOVA; pattern M, 4 groups at alpha=0.10

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

©

0.80 [391] 175( 129 99| 78| 64| 53| 45| 38| 33| 29| 26| 17| 11 8 6 5| 4
0.90 [528] 235| 173| 133| 105| 86| 71| 60| 51| 44| 39| 34| 22| 15| 11 8 7 5| 4

Chart I. Independent samples ANOVA; pattern H, 4 groups at alpha=0.10

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 |[218| 98| 72| 55| 44| 36| 30| 25| 22| 19| 17| 15| 10| 7 5 4 4 31 3
0.90 [294| 131| 97| 74| 59| 48| 40| 34| 29| 25| 22| 20| 13| 9| 7 5 4 31 3
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Table 6.11. Sample size table for five-group independent samples ANOVA

Chart A. Independent samples ANOVA; pattern L, 5 groups at alpha=10.01

Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 834| 372 274| 210| 166| 135| 112 94| 81| 70| 61| 54| 35| 23| 17| 13| 10 7 6
0.90 [1035| 461| 339| 260| 206| 167| 138| 117| 100{ 86| 75| 66| 43| 28| 20| 15| 12| 9| 7
Chart B. Independent samples ANOVA; pattern M, 5 groups at alpha=0.01
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45|0.50| 0.55[0.60{0.65|0.70{0.75]|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 668| 298| 219| 168] 133| 108| 90| 76| 65| 56| 49| 43| 28| 19| 14| 11| 9| 6 5
0.90 | 828| 369 272| 208| 165| 134| 111 94| 80| 69| 61| 53| 35| 23| 17| 13| 10 7 6
Chart C. Independent samples ANOVA; pattern H, 5 groups at alpha=10.01
Power Hypothesized ES
0.20/0.30{0.35|0.40{0.45[0.50|0.55|0.60|0.65|0.70{0.75[0.80{1.00{1.25| 1.50(1.75| 2.00{2.50 | 3.00
0.80 |349| 156| 115| 89| 70| 57| 48| 40| 35| 30| 27| 24| 16| 11| 8| 6| 5| 4| 4
0.90 | 432| 193] 142| 109| 87| 71| 59| 50| 43| 37| 32| 29| 19 13| 10| 8| 6| 5| 4
Chart D. Independent samples ANOVA; pattern L, 5 groups at alpha=0.05
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 593| 264| 195| 149| 118| 96| 80| 67| 57| 50| 44| 38| 25( 17| 12| 9| 7| 5| 4
0.90 | 768| 342| 252| 193| 153| 124| 103| 87| 74| 64| 56| 49| 32| 21| 15| 12| 9| 6| 5
Chart E. Independent samples ANOVA; pattern M, 5 groups at alpha =0.05
Power Hypothesized ES
0.20{0.30]0.35(0.40{0.45(0.50{0.55[0.60]0.65|0.70{0.75]0.80{ 1.00{1.25]| 1.50{1.75{ 2.00|2.50{3.00
0.80 | 475| 212| 156| 120| 95| 77| 64| 54| 46| 40| 35| 31| 20| 14| 10| 8| 6| 5| 4
0.90 | 615| 274| 202| 155| 123| 100| 83| 70| 60| 52| 45| 40| 26 17| 12| 10| 8| 5| 4
Chart E Independent samples ANOVA; pattern H, 5 groups at alpha=0.05
Power Hypothesized ES
0.20{0.300.35]0.40 (0.45|0.50]0.55[0.60 [0.65 [0.70 [0.75 [0.80 | 1.00|1.25]1.50|1.75|2.00 |2.50 | 3.00
0.80 |248| 111| 82| 63| 50| 41| 34| 29| 25| 22| 19| 17| 11| 8| 6| 5| 4| 3| 3
0.90 |321| 143106 81| 65| 53| 44| 37| 32| 28| 24| 21| 14| 10{ 7| 6| 5| 4| 3
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Table 6.11. (cont.)

Chart G. Independent samples ANOVA; pattern L, 5 groups at alpha=0.10

Power Hypothesized ES

0.2010.30{0.35|0.40{0.45|0.50|0.55]0.60{0.65]|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 |[480| 214 158| 121 96| 78| 65| 54| 47| 40| 35| 31| 20| 14| 10| 8 6] 4| 4
0.90 | 642|286 211| 162| 128| 104| 86| 72| 62| 54| 47| 41| 27| 18] 13| 10 8 5| 4

Chart H. Independent samples ANOVA; pattern M, 5 groups at alpha=0.10

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.801.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

©

0.80 [ 384| 171|126 97| 77| 63| 52| 44| 38| 33| 29| 25| 17| 11 8 6 5| 4
0.90 [ 514] 229( 169| 129| 103| 83| 69| 58| 50| 43| 38| 33| 22| 14| 10| 8 6 5| 4

Chart I. Independent samples ANOVA; pattern H, 5 groups at alpha=0.10

Power Hypothesized ES

0.2010.30(0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 [201| 90| 66| 51| 41| 33| 28| 23| 20| 18| 16| 14| 9| 6| 5 4 3 31 2
0.90 [268]| 120 88| 68| 54| 44| 37| 31| 27| 23| 20| 18| 12| 8| 6| 5 4 3 3
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ONE-WAY BETWEEN SUBJECTS ANALYSIS OF VARIANCE

Table 6.12. Power table for independent samples ANOVA for Tukey HSD; 3 groups at alpha=0.05

n Hypothesized ES
0.2010.30{0.35[0.40|0.45[0.50|0.55] 0.60| 0.65]0.70|0.75] 0.80{1.00|1.25|1.50 {1.75| 2.00 | 2.50| 3.00
51 2 3| 3| 4| 4| 5| 6 7 7| 9 10| 11| 17| 27| 40| 53| 67| 87| 97
6 2| 3| 4| 4| 5| 6| 7| 8| 9| 11| 12| 14| 22 35| 50| 65| 78| 94| 99
7 2 3 4 5 6 7 8 9| 11| 13| 15| 17| 27| 42| 59| 75| 86| 97
8| 2 4| 4| 5[ 7| 8] 9 11| 13| 15| 17| 20| 31| 49| 67| 82| 92| 99
9 3| 4 5| o 7| 9| 11| 12| 15| 17| 20| 23| 36| 56| 74| 87| 95
10 3| 4| 5| 7| 8| 10| 12| 14| 17| 19| 22| 26| 41| 62| 80| 91| 97
11y 3| 5 6| 7| 9| 11| 13| 16| 18| 22| 25| 29| 45| 67| 84| 94| 98
121 3| 5| 6| 8| 10| 12| 14| 17| 20| 24| 28| 32| 50| 72| 88| 96| 99
131 3| 5| 7| 9| 11| 13| 16| 19| 22| 26| 30| 35 54| 76| 91| 97| 99
14 3 6 7 9| 11| 14| 17[ 21| 24| 29| 33| 38| 58| 80| 93| 98
151 3| o6 8| 10| 12| 15| 19| 22| 27| 31| 36| 41| 62| 83| 95| 99
20| 4| 8| 10| 13| 17| 21| 26| 31| 37| 43| 49| 55| 77| 93| 99
25| 5| 10| 13| 17| 22| 27| 33| 39| 46| 53| 60| 67| 87| 98
301 6| 11| 16| 21| 26| 33| 40| 48| 55| 63| 70| 76| 93| 99
35 6 13| 18| 24| 31| 39| 47| 55| 63| 71| 77| 83| 96
40| 7| 15| 21| 28| 36| 45| 53| 62| 70| 77| 83| 88| 98
45| 8| 17| 24| 32| 41| 50| 59| 68| 76| 83| 88| 92| 99
50| 9| 20| 27| 36| 45| 55| 65| 73| 81| 87| 91| 95
55| 10| 22| 30| 40| 50| 60| 70| 78| 85| 90| 94| 97
60| 10| 24| 33| 43| 54| 65| 74| 82| 88| 93| 96| 98
65| 11| 26| 36| 47| 58| 69| 78| 85| 91| 95| 97| 99
70( 12| 28| 39| 50| 62| 72| 81| 88| 93| 96| 98| 99
75| 13| 30| 41| 54| 65| 76| 84| 90| 95| 97| 99| 99
80| 14| 32| 44| 57| 69| 79| 87| 92 96| 98| 99
90| 16| 37| 50| 63| 74| 84| 91| 95| 98| 99
100 17| 41| 55| 68| 79| 88| 94| 97| 99
110 19| 45| 59| 73| 84| 91| 96| 98| 99
120 21| 49| 64| 77( 87| 93| 97| 99
130 23| 53| 68| 81| 90| 95| 98| 99
140 25| 56| 72| 84| 92| 97| 99
150 27| 60| 75| 87| 94| 98| 99
175| 32| 68| 82| 92| 97| 99
200| 36| 74| 87| 95| 98
225| 41| 80 91 97 99
250| 46| 84| 94| 98
300| 54| 91 97| 99
400| 68| 97
500 79| 99
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Table 6.13. Power table for independent samples ANOVA for Tukey HSD; 4 groups at alpha =0.05

n Hypothesized ES
0.2010.30{0.35[0.40]0.45[0.50 | 0.55] 0.60 0.65]0.70|0.75]0.80 {1.00|1.25|1.50 [1.75] 2.00 | 2.50| 3.00
5( 1| 2| 2| 2| 3| 3| 4 4| 5| 6| 7| 8| 13| 21| 33| 47| 61| 84| 95
6 1| 2| 2| 3| 3| 4| 5 5| 6| 7| 9| 10| 16| 28| 43| 58| 73| 92| 99
7 1 2 3 3 4 5 5 6 8 9| 10| 12| 20| 35| 52| 68| 82| 96
8 1| 2| 3| 3| 4 5| 6 8| 9| 11| 12| 14| 25| 41| 60| 77| 88| 98
9 2| 2| 3| 4| 5| 6| 7/ 9| 10| 12| 14| 17| 29| 48| 67| 83| 93| 99
10 2 3| 3| 4| 5[ 7| 8 10| 12| 14| 17| 19| 33| 54| 74| 88| 96
1y 2| 3| 4 5| 6| 7| 9 11| 13| 16| 19| 22 37| 60| 79| 91| 97
12 2 3 4 5 7 8| 10| 12| 15| 18| 21| 25| 42| 65| 83| 94| 98
131 2| 3| 4| 6| 7| 9| 11| 14| 17| 20| 23| 27| 46| 69| 87| 96| 99
14| 2| 4| 5[ 6| 8 10| 12| 15| 18| 22| 26| 30| 50| 74| 90| 97| 99
15| 2| 4| 5[ 7| 8| 11| 13| 16| 20| 24| 28| 33| 54| 77| 92| 98
200 3| 5| 7| 9| 12| 15| 19| 24| 29| 34| 40| 46| 70| 90| 98
251 3| 6| 9| 12| 16| 20| 26 31| 38| 45| 51| 58| 82| 96
300 4| 8| 11| 15| 20| 25| 32| 39| 46| 54| 62| 69| 89| 99
35 4 9 13| 18| 24| 31| 38| 46| 55| 63| 70| 77| 94
40( 5| 11| 15| 21| 28| 36| 45| 53| 62| 70| 77| 83| 97
45| 5| 12| 18| 25| 32| 41| 51| 60| 69| 76| 83| 88| 98
50| 6| 14| 20| 28| 37| 46| 56| 66| 74| 82 87| 92| 99
55| 6| 16| 23| 31| 41| 51| 62| 71| 79| 86| 91| 94
60 7| 17| 25| 35| 45| 56| 66| 76| 83| 89| 93| 96
65| 8| 19| 28| 38| 49| 60| 71| 80| 87| 92 95| 98
700 8| 21| 30| 41| 53| 64| 75| 83| 89| 94| 97| 98
750 9| 23| 33| 45| 57| 68| 78| 86| 92| 95| 98| 99
80| 9| 25| 36| 48| 60| 72| 81| 89| 94| 97| 98| 99
90| 11| 29| 41| 54| 67| 78| 87| 92| 96| 98| 99
100 12| 32| 46| 60| 73| 83| 90| 95| 98| 99
110| 14| 36| 51| 65| 77| 87| 93| 97| 99
120 15| 40| 55| 70| 82| 90| 95| 98| 99
130 17| 44| 60| 74| 85| 93| 97| 99
140| 18| 47| 64| 78| 88| 95| 98| 99
150 20| 51| 67| 81| 91| 96| 99
175| 24| 59| 76| 88| 95| 98| 99
200 28| 66| 82| 92| 97| 99
225| 33| 73| 87| 95| 99
250 37( 78| 91| 97| 99
300| 45[ 86| 96| 99
400| 60| 95| 99
500| 72| 99
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Table 6.14. Power table for independent samples ANOVA for Tukey HSD; 5 groups at alpha=0.05

n Hypothesized ES
0.2010.30{0.35[0.40|0.45[0.50|0.55] 0.60| 0.65]0.70|0.75] 0.80{1.00|1.25|1.50 {1.75| 2.00 | 2.50| 3.00
50 1 1| 1| 2| 2| 2| 3] 3| 4| 4| 5| 6| 10| 18| 29| 42| 56| 81| 94
6 1| 1| 2| 2 2| 3| 3 4| 5| 6| 7| 8| 13| 24| 38| 53| 69| 90| 98
7 1 1 2 2 3 3 4 5 6 7 8 91 17| 30| 46| 64| 78| 95| 99
8| 1f 2| 2| 2 3| 4| 5 6| 7| 8 10| 11| 20| 36| 55| 72| 86| 98
9 1 2 2 3 4 4 5 7 8| 10 11| 13| 24| 42| 62| 79| 91| 99
100 1| 2| 2| 3| 4| 5| 6/ 8 9 11| 13| 16| 28| 48| 69| 85| 94
1 1| 2 3| 3| 4 6| 7| 9| 10| 13| 15| 18| 32| 54| 75| 89| 96
12 1| 2| 3| 4| 5| 6| 8 10| 12| 14| 17| 20| 36| 59| 80| 92| 98
13 1| 2 3| 4| 5| 7| 9 11| 13| 16| 19| 23| 40| 64| 84| 94| 99
14 1 3 3 4 6 7 9| 12| 15| 18| 21| 25| 44| 69| 87| 96| 99
15 1| 3| 4| 5| 6| 8| 10[ 13| 16| 20| 23| 28| 48| 73| 90| 97
201 2| 4| 5| 7| 9| 12| 15| 19| 24| 29| 34| 40| 65| 87| 97
25| 2| 5| 7| 9| 12| 16| 21| 26| 32| 39| 45| 52| 77| 95| 99
301 2 6| 8| 12| 16| 21| 27| 33| 40| 48| 56| 63| 86| 98
35 3 7\ 10| 14| 19| 26| 33| 40| 48| 57| 65| 72| 92| 99
40| 3| 8| 12| 17| 23| 30| 39| 47| 56| 65| 72| 79| 96
45| 4| 9| 14| 20| 27| 35| 44| 54| 63| 71| 79| 85| 98
50| 4| 11| 16| 23| 31| 40| 50| 60| 69| 77| 84| 89| 99
55| 5| 12| 18| 26| 35| 45| 55| 65| 74| 82| 88| 92| 99
60| 5| 14| 21| 29| 39| 50| 60| 70| 79| 86| 91| 95
65| 6| 15| 23| 32| 43| 54| 65| 75| 83| 89| 94| 96
70 6 17| 25| 35| 47| 58| 69| 79 86| 92| 95| 98
75| 7| 18| 28| 39| 51| 63| 73| 82| 89| 94| 97| 98
80| 7| 20| 30| 42| 54| 66| 77| 85| 91| 95| 98| 99
90| 8| 23| 35| 48| 61| 73| 83| 90 95| 97| 99
100 9| 27| 40| 54| 67| 79| 87| 93| 97| 99| 99
110 11| 30| 44| 59| 73| 83| 91| 96| 98| 99
120 12| 34| 49| o4| 77| 87| 94| 97| 99
130 13| 38| 53| 69| 81| 90| 95| 98| 99
140 14| 41| 58| 73| 85| 93| 97| 99
150 16| 45| 62| 77| 88| 94| 98 99
175 19| 53| 71| 84| 93| 97| 99
200| 23| 61| 78 90| 96| 99
225| 27| 67| 84| 93| 98| 99
250| 31| 73| 88| 96| 99
300 39| 83| 94| 98
400| 54| 93| 99
500 67| 98
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Table 6.15. Sample size table for between subjects ANOVA, MCP; p=0.05

CHAPTER 6 TABLES

Chart A. 3 groups at alpha = 0.05; NK no intervening groups
Power Hypothesized ES
0.20(0.30{0.35|0.40{0.45{0.50{0.55[0.60| 0.65|0.70]0.75]|0.80{ 1.00{ 1.25[1.50( 1.75| 2.00{2.50{ 3.00
0.80 | 394| 176|129 99| 79| 64| 53| 45| 38| 33| 29| 26| 17| 11 8 7 5 4 3
0.90 | 527| 235| 173| 133| 105 85| 71| 60| 51| 44| 39| 34| 22| 15| 11| 8| 7| 5| 4
Chart B. 3 groups at alpha=0.05; NK 1 intervening group, Tukey 3 groups
Power Hypothesized ES
0.20(0.30{0.35|0.40(0.45[0.50{0.55[0.60| 0.65|0.70|0.75]|0.80[ 1.00{ 1.25[1.50| 1.75| 2.00{2.50{ 3.00
0.80 | 509| 227| 167| 128| 102| 83| 69| 58| 50| 43| 38| 33| 22| 15| 11| 8| 7| 5| 4
0.90 | 659| 294 216| 166| 131| 107 88| 74| 64| 55| 48| 43| 28| 18| 13| 10 8 6 5
Chart C. 4 groups at alpha = 0.05; NK no intervening groups
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50(0.55]0.60|0.65[0.70{0.75|0.80( 1.00{ 1.25| 1.50( 1.75| 2.00| 2.50| 3.00
0.80 | 394| 175] 126| 99| 79| 64| 53| 45| 38| 33| 29| 20| 17| 11| 8| 6| 5| 4 3
0.90 |526| 235|173| 132| 105 85| 71| 59| 51| 44| 38| 34| 22| 15| 10| 8| o6 5 4
Chart D. 4 groups at alpha=0.05; NK 1 intervening group
Power Hypothesized ES
0.20(0.30{0.35|0.40{0.45{0.50{0.55[0.60| 0.65|0.70]0.75]|0.80[ 1.00{ 1.25[1.50( 1.75| 2.00{2.50{ 3.00
0.80 | 509| 227| 167| 128| 101| 82| 68| 58| 49| 43| 37| 33| 22| 14| 10| 8| o6 5| 4
0.90 | 658 293| 216| 166| 131| 106| 88| 74| 63| 55| 48| 42| 28| 18| 13| 10| 8| o6 4
Chart E. 4 groups at alpha=0.05; NK 2 intervening groups, Tukey 4 groups
Power Hypothesized ES
0.20{0.30]0.35{0.40|0.45|0.50(0.55(0.60] 0.65[0.70{0.75[0.80| 1.00( 1.25[1.50(1.75| 2.00| 2.50| 3.00
0.80 | 583| 260| 191| 147| 116| 94| 78| 66| 56| 49| 43| 38| 25| 16| 12| 9| 7/ 5| 4
0.90 | 743| 331| 243| 187| 148| 120 99| 84| 72| 62| 54| 48| 31| 20 15| 11| 9| 6 5
Chart E 5 groups at alpha=0.05; NK no intervening groups
Power Hypothesized ES
0.20{0.30 [0.350.400.45[0.50|0.55 [0.60[0.65]0.70[0.75]0.80|1.00|1.25{1.50|1.75|2.00 [2.50 | 3.00
0.80 393 175|129 99| 78| 64| 53| 45| 38| 33| 29| 25| 17| 11| 8| 6| 5| 4| 3
0.90 |526|234|172| 132| 105| 85| 70| 59| 51| 44| 38| 34| 22| 14 10{ 8| o6| 4| 3
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Table 6.15. (cont.)

Chart G. 5 groups at alpha=0.05; NK 1 intervening group

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00

0.80 |[508| 227 167| 128| 101| 82| 68| 57| 49| 43| 37| 33| 21| 14| 10 8 6 4
0.90 | 658|293 216| 165| 131| 106 88| 74| 63| 55| 48| 42| 27| 18] 13| 10 8 5 4

=

Chart H. 5 groups at alpha = 0.05; NK 2 intervening groups

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00

0.80 |[583]| 260( 191| 147| 116| 94| 78| 66| 56| 49| 43| 38| 24| 16| 12| 9
0.90 | 743| 331 243| 187| 148| 120 99| 84| 71| 62| 54| 48| 31| 20| 14| 11 9l 6| 5

~
u
&~

Chart I. 5 groups at alpha=0.05; NK 3 intervening groups, Tukey 5 groups

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65]0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00| 2.50| 3.00

0.80 | 638] 284 209| 160| 127| 103| 85| 72| 62| 53| 47| 41| 27| 18] 13| 10 8 5 4
0.90 | 805| 358 264| 202| 160| 130| 108 91| 77| 67| 58| 51| 33| 22| 16| 12 9l 6| 5
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Table 6.16. Sample size table for between subjects ANOVA, MCP; p=0.01

CHAPTER 6 TABLES

Chart A. 3 groups at alpha=0.01; NK no intervening groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 [ 586|261 192| 148| 117| 95| 79| 67| 57| 49| 43| 38| 25| 17| 12 9 8 6 5
0.90 | 746| 332| 245| 188| 149| 121| 100| 100| 72 62| 55| 48| 32 21| 15| 12| 9| 7| 5
Chart B. 3 groups at alpha=0.01; NK 1 intervening group, Tukey 3 groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 707| 315| 232| 178| 141| 115 95| 80| 69| 60| 52| 46| 30| 20| 15| 11| 9| 7| 5
0.90 |882| 393| 289| 222| 176| 143| 118| 100| 85| 74| 65| 57| 37| 25| 18| 14| 11| 8| 6
Chart C. 4 groups at alpha=0.01; NK no intervening groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50]|0.55[0.60{0.65|0.70{0.75]|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |[585| 261| 192| 147| 117| 95| 79| 66| 57| 49| 43| 38| 25| 16| 12| 9| 7| 5| 4
0.90 | 745| 332| 244| 187| 148| 120| 100| 84| 72| 62| 54| 48| 31| 20| 15| 11| 9| 6 5
Chart D. 4 groups at alpha=0.01; NK 1 intervening group
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 707| 315| 232| 178| 141| 114| 95| 80| 68| 59| 52| 46| 30 20 14| 11| 9| 6 5
0.90 |882| 393| 289| 222| 175| 142| 118 99| 85| 73| 64| 57| 37| 24| 17| 13| 11| 7| 6
Chart E. 4 groups at alpha=0.01; NK 2 intervening groups, Tukey 4 groups
Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00
0.80 | 784| 349| 257| 197| 156| 127| 105| 89| 76| 66| 57| 51| 33| 22| 16| 12| 10| 7| 5
0.90 [ 967| 431 317| 243| 193| 156| 129] 109 93| 81| 70| 62| 40 27| 19| 14| 11 8 6
Chart E 5 groups at alpha =0.01; NK no intervening groups
Power Hypothesized ES
0.200.300.35|0.40{0.45[0.50{0.55]0.60|0.65{0.700.75 {0.80|1.00 | 1.25[1.50{1.75]2.00|2.50 | 3.00
0.80 |585|261(192| 147|117 95| 78| 66| 57| 49| 43| 38| 25| 16| 12| 9| 7| 5| 4
0.90 | 745|332 244| 187| 148| 120| 100| 84| 72| 62| 54| 48| 31| 20| 15( 11| 9| 6| 5

107




ONE-WAY BETWEEN SUBJECTS ANALYSIS OF VARIANCE

Table 6.16. (cont.)

Chart G. 5 groups at alpha=0.01; NK 1 intervening group

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 [ 707| 315 232| 178| 141| 114 95| 80| 68| 59| 52| 45| 30| 19| 14| 11 9 6 5
0.90 |881| 392| 289| 221| 175| 142| 118 99| 85| 73| 64| 56| 37| 24| 17| 13| 10| 7| 5

Chart H. 5 groups at alpha=0.01; NK 2 intervening groups

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75]|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 784| 349 257| 197| 156| 127| 105| 88| 76| 65| 57| 50| 33| 22| 15 12| 9| 7 5
0.90 | 967| 431 317| 243| 192| 156| 129] 109| 93| 80| 70| 62| 40| 26| 19| 14| 11 8 6

Chart I. 5 groups at alpha=0.01; NK 3 intervening groups, Tukey 5 groups

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 841| 374| 276| 211| 167| 136| 113| 95| 81| 70| 61| 54| 35| 23| 17| 13| 10| 7| 5
0.90 [1030| 459 338| 259| 205| 166| 138| 116| 99| 86| 75| 66| 43| 28| 20| 15| 12| 8| 6
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Table 6.17. Sample size table for between subjects ANOVA, MCP; p=0.10

CHAPTER 6 TABLES

Chart A. 3 groups at alpha=0.10; NK no intervening groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |[310] 138 102| 78| 62| 51| 42| 35| 30| 26| 23| 20| 13 9 7 5 4 3 3
0.90 |429| 191| 141| 108| 86| 70| 58| 49| 42| 36| 32| 28| 18| 12| 9| 7| 5| 4| 3
Chart B. 3 groups at alpha=0.10; NK 1 intervening group, Tukey 3 groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 420| 187| 138| 106 84| 68| 57| 48| 41| 35| 31| 27| 18| 12| 9| 7| 6| 4| 3
0.90 [ 557|248 183| 140( 111 90| 75| 63| 54| 47| 41| 36| 23| 16| 11 9 7 5 4
Chart C. 4 groups at alpha=0.10; NK no intervening groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50]|0.55[0.60{0.65|0.70{0.75]0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |[310| 138] 102| 78| 62| 50| 42| 35| 30( 26| 23| 20 13| 9| 6| 5| 4| 3| 3
0.90 | 429| 191 141| 108| 85| 69| 58| 48| 41| 36| 31| 28| 18| 12| 9| 7| 5| 4| 3
Chart D. 4 groups at alpha=0.10; NK 1 intervening group
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50| 3.00
0.80 | 420| 187| 138| 106 84| 68| 56| 48| 41| 35| 31| 27| 18| 12| 9| 7| 5| 4| 3
0.90 |[557| 248| 183| 140( 111| 90| 75| 63| 54| 46| 41| 36| 23| 15| 11| 8| 7| 5| 4
Chart E. 4 groups at alpha=0.10; NK 2 intervening groups, Tukey 4 groups
Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]|0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00
0.80 |[492]| 219| 161| 124 98| 80| 66| 56| 48| 41| 36| 32| 21| 14| 10| 8| 6| 4| 4
0.90 | 639| 285| 210| 161| 127| 103| 86| 72| 62| 53| 47| 41| 27| 18| 13| 10| 8| 5 4
Chart E 5 groups at alpha=0.10; NK no intervening groups
Power Hypothesized ES
0.200.300.35|0.40{0.45(0.50{0.55]0.60|0.65|0.700.75 {0.80|1.00 | 1.25[1.50(1.75]2.00|2.50 |3.00
0.80 |310| 138|102 78| 62| 50| 42| 35| 30| 26| 23| 20| 13| 9| 6| 5| 4| 3| 3
0.90 |429(191|141| 108| 85| 69| 57| 48| 41| 36| 31| 28| 18| 12| 8| 6| 5 4| 3
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Table 6.17. (cont.)

Chart G. 5 groups at alpha=0.10; NK 1 intervening group

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00

0.80 |[420| 187 138| 106| 84| 68| 56| 47| 41| 35| 31| 27| 18] 12| 8| 6
0.90 |[557| 248 182| 140| 111| 90| 74| 63| 54| 46| 40| 36| 23| 15| 11 8 A 4

U1
~
©

Chart H. 5 groups at alpha=0.10; NK 2 intervening groups

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00

0.80 [ 492]| 219 161| 124 98| 80| 66| 56| 47| 41| 36| 32| 21| 14| 10| 8 6 4 3
0.90 [639] 285(209| 161| 127| 103| 85| 72| 61| 53| 46| 41| 27| 17| 12| 9 71 5 4

Chart I. 5 groups at alpha =0.10; NK 3 intervening groups, Tukey 5 groups

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.700.75|0.80| 1.00| 1.25| 1.50( 1.75(2.00| 2.50| 3.00

0.80 | 546| 243| 179| 137| 109| 88| 73| 62| 53| 46| 40| 35| 23| 15| 11 8 A 4
0.90 [ 701] 312| 230| 176| 139| 113| 94| 79| 67| 58| 51| 45| 29| 19| 14| 10 8 o6 4
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7

One-way between subjects analysis of
covariance

Purpose of the statistic

The one-way analysis of covariance (ANCOVA) is used to ascertain how
likely the difference(s) in means among two or more groups would be to
occur by chance alone daffer the effects of one or more pre-existing variables
have been taken into account (i.e., statistically controlled). As such, it is an
extension of both the independent samples ¢-test (since it can be employed
with only two groups) and the between subjects ANOVA model. This stat-
istical control of a pre-existing variable (called a covariate) can be visualized
as accomplishing three distinct functions:!

1)

In the presence of a pretest or baseline measure identical to the
outcome variable, the results of a one-way ANCOVA can be inter-
preted as the extent to which the groups involved have changed over
time. In this sense it is interpreted identically to the time (e.g., base-
line vs. end-of-treatment) X treatment interaction in a mixed
within group (repeated measures) design except that it does not
provide for a main effect test of the hypothesis regarding an overall
baseline to end-of-treatment change (see Chapter 9). As was dis-
cussed in Chapter 2, however, it is usually a slightly more powerful
test of treatment changes than this two-factor model. If more than
one post-baseline interval is used, as is often the case, then a factor-
ial ANCOVA must be employed, although the effect of interest
may now be the between group main effect (which combines
means across these post-intervention assessments) rather than the
interaction (see Chapter 10).

If the covariate is not identical to the outcome variable, it still serves
to increase the study’s overall power by decreasing the error term.
The results, however, are strictly speaking not interpretable as group
changes due to the experimental intervention(s). However, when
subjects are randomly assigned to groups, then these groups can be
assumed to be equal with respect to baseline measures even though
none exist — hence this issue becomes a moot point.
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(3) For both of the above scenarios, the existence of one or more
covariates helps to equate statistically the groups’ follow-up means
for minor pre-existing differences. As such the resulting F-ratio
really tests differences between adjusted (i.e., for these pre-existing
covariate differences) outcome (dependent variable) means.
Because these adjustments should be quite minor in the presence of
randomization or appropriate control group selection in non-ran-
domized but controlled experiments (both of which should theor-
etically result in no pre-existing differences), we will assume that no
adjustment occurs in the discussions that follow. In those rare
circumstances in which such an adjustment is hypothesized, then
this adjustment should simply be added (if it increases differences
between groups) or subtracted (if it decreases them) from the
hypothesized ES.

The ANCOVA, then, while it is a direct extension of the t-test and
one-way between subjects ANOVA, is a more sensitive, powerful statistic
than either of these options. It is, in many ways, the least expensive and least
burdensome existing mechanism for increasing a trial’s statistical power since all that
its use requires is the existence of a pre-existing correlate of the dependent variable. If
such a correlate can be identified, then a one-way ANCOVA is always preferable to
the use of a one-way between subjects analysis of variance design. The only caveat
to this generalization is the occasional difficulty involved in identifying a
covariate that correlates substantially (i.e., 0.40 or more) with the depend-
ent variable. Such variables usually exist, but they are identifiable only
through the previous literature or extensive pilot work. They can almost
never be identified via post hoc “fishing” expeditions using data collected
for other trial purposes, nor should they be because of the likelihood of pro-
ducing spurious, non-replicable results.

As with ANOVA, the groups themselves may be experimental con-
ditions to which subjects have been randomly assigned or they may be
defined by a naturally occurring phenomenon. Also as with ANOVA (other
than the standard assumptions of the procedure itself), the only stipulations
for its use are that the hypotheses being tested involve group means (which
implies that the dependent variable is continuous in nature) and the groups
are not made up of the same or matched subjects. (As discussed in Chapters
9 and 10, ANCOVA may still be appropriate for such designs, but the tables
presented in this chapter are not useful for ascertaining their power/sample
size requirements.)

The procedure does assume that the pre-existing variable (for con-
venience we will assume one covariate although multiple variables can be
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employed)? is either continuous or dichotomous in nature® and that it is lin-
early related to the dependent variable.

1)

A one-way between subjects ANCOVA, then, is used when:

a single, independent variable is employed (i.e., membership in two
or more groups: note that a one-way ANOVA assumes three or
more groups, but ANCOVA is appropriate for two groups because
the independent samples f-test cannot incorporate a pre-existing
variable, called a covariate, into an analysis),

the dependent variable is measured in such a way that it can be
described by a mean (i.e., it is continuous in nature and not cate-
gorical, although a strongly correlated dichotomous variable can be
employed as a covariate if it is not expected to interact with the
treatment),

an appropriate! pre-existing variable (i.e., the covariate) exists
which is linearly related to the dependent variable,

this linear correlation is approximately the same for each of the
experimental groups (which is called homogeneity of the regres-
sion slopes),

this pre-existing variable does not interact with group membership,
and

the subjects within the different treatment groups are statistically
independent of one another (i.e., they are different individuals and
are not specifically matched in some way).

A one-way between subjects ANCOVA is not used when:

a one-way ANOVA (in the absence of a covariate) would not be
appropriate, and/or

the investigator is interested in ascertaining whether the treatments
are differentially effective for individuals with certain levels of the
covariate (in which case, as described in Chapter 9, the various
levels of the covariate would be entered as a second independent
variable in a factorial ANOVA and these differential treatment
effects would be tested by the interaction term).

Like a one-way ANOVA, a one-way ANCOVA is a two-step

process when three or more groups are employed. The first step involves the
computation of an overall F-ratio to ascertain whether indeed the treat-
ments do differ from one another after the covariate has been statistically
controlled. The second step, which occurs only in the presence of a statist-
ically significant F-ratio, involves ascertaining which of the individual treat-
ments do differ significantly from one another via the use of a multiple
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comparison procedure. (This latter step is not necessary for a two-group
ANCOVA since there is only one mean difference involved, hence a statist-
ically significant overall F indicates that this one mean difference is statist-
ically significant.) This in turn dictates that a power analysis for such a design
is also a two-step process.

The remainder of this chapter is therefore divided into two parts.
The first presents power and sample size tables for the overall F-ratio. The
second presents tables that allow the investigator to estimate the power (or
sample size requirements) for individual contrasts using the Tukey HSD and
Newman—Keuls multiple comparison procedures. In effect, the use of these
tables is identical to the process described in Chapter 6 with one exception:
the necessity of estimating the correlation that will accrue between the
covariate and the dependent variable. Once this r is hypothesized, the esti-
mation of power involves nothing more than accessing the appropriate
table(s) indicated in the templates at the end of this chapter.

Hypothesizing the correlation between a covariate and a dependent
variable. The most direct way of hypothesizing the size of the relationship
between the variable chosen as the covariate and a study’s dependent vari-
able is from the data collected in the pilot study (which should always
precede a full blown experiment). This can, of course, be done by simply
running a Pearson r between the two variables.

Other sources of this information include previous research
employing the variables of interest, although unfortunately journal articles
do not often directly report correlations such as these since their relation-
ship to the power analytic process is not well understood. The authors of
these former studies can be contacted directly, however, although many will
not know this value since they did not report it in their original research
report. Occasionally, however, an investigator will be kind enough to look
up or recompute the statistic.

In lieu of all of the above, it is truly difficult to estimate an exact
correlation between a pre-existing variable (the covariate) and a variable that
is expected to be influenced by the study itself (the dependent variable),
although minor variations in these estimates do not greatly influence the
results of a power analysis. With this said, we recommend the following
guidelines:

(1) If the covariate is conceptualized as baseline values of the study’s
actual dependent variable (and if this variable is a well established
empirical outcome that has been employed in similar studies with
similar types of subjects), then it is probably safe to assume that the
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correlation between the two variables may be as high as 0.60.

(2) If the covariate is not identical to the dependent variable, but both
constitute relatively stable attributes (e.g., not something such as
blood pressure which varies considerably across time and situation)
with reliabilities in excess of 0.70, then it may be safe to assume
r=0.60 if this type of relationship has been observed consistently
in previous research. If all of these conditions do not hold, then an r of
0.40 is a safer assumption as long as there is previous evidence for such a
correlation. If no previous evidence exists, such a variable should not be
selected as a covariate at all in the absence of pilot data.

In either of the above situations, however, it is always wise to model both
of these values in the power analytic process.

Chapter 10 provides a table by which a wider range of covari-
ate—dependent variable correlation coefficients can be modeled. As with
Chapter 6, sample size tables are provided for different alpha levels (0.01 and
0.10) for the overall F-ratio as well as MCPs (Tukey and Newman—Keuls).

Part I. Power of the overall F-ratio

Tables 7.1 through 7.24 present power and sample size tables for a wide range
of parameters for F-ratios involving two through five groups. These tables
are used in the same way as those presented in Chapter 6 except that for an
ANCOVA it is also necessary to estimate the most likely correlation between
the covariate(s) and the dependent (outcome) variable. As discussed above,
this can be relatively difficult; hence we recommend that the investigator
model his/her power estimates based upon r values of both 0.40 and 0.60 in
the absence of reliable pilot data (for other values, see Chapter 10).

Example. To illustrate how these tables are employed, let us posit
a trial in which the investigator is interested in learning whether traditional
Chinese acupuncture is capable of reducing the pain associated with osteo-
arthritis of the knee. Because an education/self-help course offered by the
Arthritis Foundation has been shown also to produce salutary outcomes
among this type of patient, a decision is made to employ this intervention
as a second active non-pharmacological comparison group. Also, since it is
quite possible that the novelty of receiving acupuncture could result in a
placebo effect in the absence of a true analgesic mechanism, a sham proce-
dure is employed to control for this possibility. This control mechanism
mimics the true acupuncture process but does not employ needle insertion
in active points. Pilot work has indicated that patients cannot distinguish it
from true acupuncture.
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The basic protocol for this trial, then, involves (a) obtaining a base-
line assessment of the eligible participants’ pain prior to the initiation of the
study, (b) the random assignment of these subjects to one of three groups
(true acupuncture, education/self-help groups, and sham acupuncture), (c)
the implementation of the interventions, and (d) the re-assessment of all
subjects at the end of the study. The functional hypotheses (which can also
be written as specific aims, objectives, or research questions as long as the
explicit contrasts are specified) for this study are:

(1) Patients with osteoarthritis of the knee who receive acupuncture
will experience less pain than patients who receive sham acupunc-
ture after controlling for pre-existing pain levels.

(2) Patients with osteoarthritis of the knee who receive acupuncture
will experience less pain than patients who receive an education
self-help intervention after controlling for pre-existing pain levels.

(3) Patients with osteoarthritis of the knee who receive an education
selt-help intervention will experience less pain than patients who
receive sham acupuncture after controlling for pre-existing pain
levels.

Prior to submitting this protocol for funding and IRB approval, the
most pressing issues facing the investigator are (a) how many subjects will be
required to provide the trial with a reasonable chance of obtaining statist-
ical significance among the three groups and (b) how much power will be
available for testing the hypothesis given a fixed sample size. In the present
case, let us begin by assuming this latter scenario.

To answer the question of how much power would be available for
a fixed sample size, then, the following parameters must be specified:

(1)  the ES for the largest mean difference among the three groups,

(2) the projected N/group,

(3) whether the spread of means is likely to reflect a low/medium, or
high dispersion pattern, and

(4)  the most likely covariate—dependent variable relationship.

Templates are provided at the end of this chapter to facilitate the
computation of power for this and any one-way ANCOVA design employ-
ing from two to five groups. Let us begin this process, then, by employing
preliminary Template 7.1.

The first steps involve specifying the hypothesized order (step 1)
and magnitude (step 2) of the differences among the three group means,
both of which are identical to the process employed in a one-way
ANOVA. Step 1 is normally already accomplished by the time the study’s
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Chart 7.1. Converting a negative dependent variable scale for entry on the ES line

Sham acupuncture  Education control True acupuncture
Mean (SD) Mean (SD) Mean (SD)
Baseline 6.00 (2.5) 6.04 (2.4) 6.10 (2.6)
End-of-treatment 6.50 (2.4) 6.29 (2.5) 5.10 (2.6)
Raw change —0.50 —0.25 1.00
Lowest treatment —0.50+0.50=0 —0.25+(0.50)=0.25 1.00+0.50=1.50
effect set to zero
Conversion to ES 0/2.5=0 0.25/2.5= 0.1 1.5/2.5= 0.6

hypotheses are formulated. In this case, the investigator believes that true
Chinese acupuncture will be the most effective treatment and has included
the education self-help comparison only because it is known to have a sta-
tistically significant but small effect upon arthritis pain; hence the order of
treatment effects requested by step 1 of the preliminary template would be
as follows:

Step 1. Write in the names/codes of the groups in the chart to Group definitions

the right in ascending order based upon their expected means ® Sham acupuncture
(i.e., the name of the group expected to have the lowest mean @ Education self-help
or the weakest effect will be written next to @, followed by the ® True acupuncture
next strongest treatment and so forth). @

Step 2 involves specifying the individual ES values for each of the
groups listed above (with the exception of the “weakest” condition, which
is arbitrarily set at zero). Chart 7.1 illustrates one of a number of ways to
approach this task. (If the Pearson r is not readily available (which is often
the case when summary statistics from previously published research are
used), for example, one can always use the standard deviations of the differ-
ences between baseline and end-of-treatment (if presented) to calculate
both r and the EOT standard deviations via Formula 7.1 in the Technical
appendix.) For present purposes, however, let us assume that these results
accrue from the investigator’s own pilot study and a Pearson r is already avail-
able.

The first step, then, in standardizing the EOT means for entry onto
the ES line is to calculate raw changes from the baseline to EOT. This is
done by (a) subtracting baseline from EOT values, (b) performing whatever
addition or subtraction operation across the groups that will produce a zero
value for the poorest performing group (in this case, since lower scores on
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the pain measure are optimal, this will involve adding the absolute value of
the negative gain to each of the raw change scores), and (c) dividing by the
pooled standard deviation (2.4 +2.5+2.6)/3=2.5). This process (Chart
7.1) results in an arbitrary zero score for the sham group, an ES of 0.1 for
the sham vs. education control contrast, and an ES of 0.6 for the sham vs.
true acupuncture contrast. (The same power analytic results will accrue if
the direction of the scale is not corrected; we simply believe that it is con-
ceptually easier to do so.)

Step 2 of the preliminary template would then consist of simply
plotting these values:

Step 2. Plot these groups, using the circled numbers rather than their codes, on the ES
line below. In the case of a tie between two groups with respect to their actual ES value,
place one to the right of the other based upon the best theoretical evidence for which
might be slightly superior.
ES line
(ONE) ®
00.102030405060.70809101112131415

There are now only three parameters that need to be specified prior
to calculating the power of the overall F-ratio: (a) the N/group that the
investigator expects to be available for the trial, (b) the estimated pattern of
means (which is obtained by simply comparing the ES line above to the two
options for three-group designs in step 4), and (c) the most likely covari-
ate—dependent variable relationship to accrue (step 5).

Let us assume that our investigator knew that he/she would have
approximately 150 potential subjects available for the study, without resort-
ing to extensive (and expensive) recruitment efforts, of which no more than
20% would be likely to withdraw from the trial prior to its completion.
This would mean that effectively the N/group would be 40 (assuming
equal attrition among the groups, which is not always the case). The pattern
of means resulting from the hypothesized ES line above most closely
approximates the high dispersion pattern in step 4(a). Finally, step 5 requires
the estimation of the most likely covariate—dependent variable correlation
coeflicient. In this example, although baseline pain measures are to be
employed whose measurement is identical to the end-of-treatment
dependent variable assessment, let us assume that previous research has
indicated that pain related to osteoarthritis of the knee can be relatively
variable, hence the investigator decides to opt for the more conservative
estimate of 0.40 for the covariate—dependent variable correlation, at which
point the final instruction in step 5 sends the investigator to Template 7.2.
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Based upon this information, the three power analytic steps related
to the overall F-ratio dictated by Template 7.2 can be accomplished quite
easily. The largest ES based upon the ES line is 0.60 for group 3 (step 6),
and step 7 indicates that (for three-group studies hypothesizing a high mean
pattern and a covariate—dependent variable correlation of 0.40) the best es-
timate for power can be found in Table 7.5.

By locating the intersection between the ES column of 0.60 and
the N/group row of 40 (following the instructions in step 8), the investig-
ator learns that the power for the overall ANCOVA F-ratio based upon the
parameters specified above would be 0.86. In the past, most funding agen-
cies would have accepted this as adequate justification for the proposed
sample size, but a properly written description of this power analysis indi-
cates a basic weakness with this particular end point:

A power analysis indicated that the hypothesized ES between the true
and sham acupuncture arms of 0.60 (assuming a high dispersion
pattern for the three means and an average correlation between the
covariate and the dependent variable of 0.40) would provide an 86%
chance of obtaining statistical significance at the 0.05 level for the
overall F-ratio.

If this statement were compared to the trial’s original actual hypoth-
eses and/or specific aims as presented above, however, a discrepancy would
most likely be apparent because this power level tests the following hypoth-
esis:

There is difference in the amount of pain associated with osteoarthritis
of the knee between patients who receive true Chinese acupuncture,
sham acupuncture, and an education self-help intervention after control-
ling for pre-existing pain levels.

Note that this hypothesis does not specity which groups would be
superior to which other groups because the overall F-ratio does not test for
directionality. What the investigator (and his/her funding agency) would be
most interested in ascertaining would be the individual contrasts among the
three groups, especially the contrasts between (a) true and sham acupuncture
(group 3 vs. group 1), which would indicate whether or not true acupuncture
actually had an analgesic effect over and above a simple placebo effect, and (b)
true acupuncture vs. the education self-help intervention (group 3 vs. group
2), which would indicate whether or not the study’s primary intervention
(acupuncture) possessed an analgesic effect over-and-above the only other
non-pharmacological treatment known to be effective in reducing pain from
osteoarthritis of the knee. From a scientific point of view, even the group 2 vs.
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group 1 contrast might be interesting as a preliminary assessment of the extent
to which this non-pharmacological treatment could be explained solely in
terms of a placebo effect. Let us assume, therefore, that the investigator is
indeed interested in testing all three of the hypotheses logically generated by
this study, although it is a rare trial that will produce sufficient power for all of
the pairwise contrasts available, even in a three-group study such as this.

Part Il. Power of individual pairwise contrasts

To assess how much power would be available for these three pairwise con-
trasts, then, the investigator would need to complete steps 9 and 10 of
Template 7.2. Step 9 simply asks him/her to compute the individual pair-
wise ES values based upon the already completed ES line, which would
entail the following operations: group 2 ES —group 1 ES=0.1—-0=0.1,
group 3 ES —group 1 ES=0.6—0=0.6, and group 3 ES —group 2 ES=
0.6 —0.1=0.5.

Step 9. Using the hypothesized values from step 2 in the preliminary template (7.1), fill
out the hypothesized ES values by performing the indicated subtractions listed under the
“Contrasts” column in the chart below. Note that for two-group designs, the power of the
single pairwise contrast is identical to the power of the overall F (i.e., if r=0.40, Table 7.1
is used and for r=0.60, Table 7.2 is used).

ES@—-©®=0.1 ES®—-0®= ES®—-0®=
ES®—-®=0.6 ES®—-0@= ES®—-@=
ES@—©®=0.5 ES®-0@= ES®—-0@=

ES®-@=

Step 10 indicates the appropriate power table for the Tukey HSD
procedure (Table 7.25). Assuming that the investigator is interested in
computing all three pairwise power levels, these values will be found at the
intersection of the appropriate ES columns (i.e., 0.1, 0.5, and 0.6) and the
N/group row of 40 in Table 7.25. Since our power tables do not provide
for powers of ES below 0.20 because there is seldom enough power for
effects this small in experimental research, we suggest that the reader simply
estimate power to be less than the closest tabled value. Following the instruc-
tions in step 10, then, produces the following results:

Tukey HSD Newman-Keuls

Power @ —®<0.08 Power @ —®<0.16
Power @ —®=0.71 Power @ —®=0.71
Power @ —@=10.53 Power @ —@=10.67
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What has resulted here, then, is a situation in which the power of

the overall F-ratio is quite adequate but each of the individual contrasts is
underpowered. These results might be appended to the write-up of the
power analysis conducted for the overall F-ratio as follows:

A power analysis indicated that the hypothesized ES between the true
and sham acupuncture arms of 0.60 (assuming a high dispersion pattern
for the three means and an average correlation between the covariate
and the dependent variable of 0.40) would provide an 86% chance of
obtaining statistical significance at the 0.05 level for the overall F-ratio.
The powers for the individual contrasts assuming the analytic use of the
Tukey HSD multiple comparison procedure were as follows: (a)

true acupuncture vs. education self-help (power=0.53), (b) true vs.
sham acupuncture (power=0.71), and (c) education self-help vs.

sham acupuncture (power<0.08) (Bausell & Li, 2002).

As mentioned elsewhere, it is not unusual for the power of the

overall F-ratio to be quite adequate, with the corresponding values for the
more important individual contrasts to be considerably less than adequate. In
such a situation the investigator would need to make a decision regarding
whether to proceed with the experiment or to adopt another strategy. In the
present case, from a practical perspective the manner in which this trial is

designed will preclude any true test of the group 2 vs. group 1 contrast short
of increasing the sample size by 500 subjects or so. One benefit of a power
analysis such as this, however, is to force the investigator to come to grips with this
fact and potentially make some hard decisions. Some of his/her options include:

1)

Dropping either the education self-help or the sham acupuncture
group. This would allow each of the remaining groups to share the
40 extra subjects and would result in an increase of power to 0.85
if the sham control is dropped or to 0.95 if the education self~help
group is dropped (see Table 7.1).

Increasing the sample size.

Implementing a strategy to decrease the attrition rate (since the
N/group of 40 is based upon the sample size following attrition).
Increasing the ES for the primary intervention (e.g., increasing the
dose by adding more acupuncture sessions or performing acupunc-
ture for a longer period of time) or weakening the control (e.g., by
employing a treatment-as-usual or a wait list control).

Employing a dependent variable or an additional covariate that
would raise the estimated covariate—dependent variable correlation.
If, for example, a means were found to raise this value to 0.60, the
following power results would be obtained from Table 7.26.
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Tukey HSD

Power @ —® <0.11
Power @ —®=10.83
Power @ —@=0.66

All or none of these options could be viable, depending upon the science
being conducted. The bottom line is always that scientific considerations
must take precedence over statistical ones, but a power analysis is capable of
telling an investigator how likely his/her scientific objectives — whatever
they may be — are to be realized and this is a valuable service indeed.

A power analysis also can provide the investigator with some valu-
able information for the process of making these decisions. One helpful
strategy in this regard is to determine the maximum detectable ES that can
be detected with the available sample size.

Conducting a maximum detectable ES analysis. When an investig-
ator’s available sample size is fixed it is often helpful for him/her to know
exactly what size effect can be detected at various power levels given the
proposed design. In our example above, suppose that our investigator
wondered what the maximum detectable ES size would be for 40 sub-
jects per group using the Tukey HSD procedure. If a power level of 0.80
or 0.90 were deemed essential (assuming as always an alpha level of 0.05),
he/she could employ Table 7.31 Chart B and locate the closest approxima-
tion to an N/group of 40. For a power level of 0.80, this would fall
between an ES of 0.65 and 0.70, which might provide some valuable guid-
ance if a decision were made to strengthen the intervention or weaken the
control.

If a lower power level were deemed sufficient, the tables listed in
step 10 of Template 7.2 could be employed in reverse. In other words, the
power closest to the desired value could be located in the N/group =40 row
and the maximum detectable ES could be read at the top of its intersecting
column. Let us assume in the present case that a power of 0.60 was deter-
mined to be adequate. Template 7.2 has already indicated that Table 7.25 is
appropriate for a Tukey HSD procedure involving three groups. Reading
across the N/group row of 40, 0.62 is the closest value to 0.60 and it is
located in the 0.55 ES column, which means that: using a Tukey HSD
multiple comparison procedure, approximately 40 subjects per group will
produce a 60% chance of detecting a pairwise ES of 0.55.

Sample size analysis. Template 7.3 is provided for those
instances in which the investigator wishes to determine how many sub-

122



POWER OF INDIVIDUAL PAIRWISE CONTRASTS

jects per group will be necessary to achieve a given level of power. This
template, like the power template (7.2) whose use we have just illustrated,
is designed to be employed following the preliminary steps suggested in
Template 7.1.

Using the same hypothetical study, let us assume that our investig-
ator had wished to ascertain the necessary N/group he/she would have
needed to achieve an 80% chance of obtaining statistical significance. All of
the preliminary steps involved in specifying the necessary parameters
employed to determine power would be used in this scenario with the
exception of step 3, where the desired power level would be specified rather
than the N/group. The instructions in Template 7.3 would therefore yield
the following results:

Step 6. As in step 6 of the power template, the largest ES corres-
ponds to group 3, which is 0.6.

Step 7. Since the desired power level is 0.80, three groups are
involved, the hypothesized ris 0.40, and a high dispersion pattern of means
is predicted, the investigator is directed to find the intersection of the 0.80
row and the ES=0.60 column of Table 7.19 Chart C which yields the
minimum N/group value of 35. This analysis could be described as follows:

A sample size analysis indicated that the hypothesized ES between the
true and sham acupuncture arms of 0.60 (assuming a high dispersion
pattern for the three means and an average correlation between the
covariate and the dependent variable of 0.40) would require 35 subjects
per group (total N=105) to provide an 80% chance of obtaining
statistical significance at the 0.05 level for the overall ANCOVA F-ratio
(Bausell & Li, 2002).

To determine the minimum N/group required to obtain statistical
significance for the pairwise contrasts of interest, the investigator would
proceed to the second half of Template 7.3. Let us assume that the group 1
vs. group 2 ES of 0.1 was not deemed to be of sufficient scientific interest
to enter into this analysis, but that all of the effects involving the true acu-
puncture group were deemed crucial.

Step 9 has already been performed in the present example produc-
ing ES values of 0.5 for the group 3 vs. group 2 contrast and 0.6 for group
3 vs. group 1.

Step 10 instructs the reader to find the required N/group for the
Tukey procedure in Table 7.31 Chart B at the intersections of the 0.50 and
0.60 columns and the power = 0.80 row. Following these instructions yields
values of N/group of 70 and 49 respectively, which in effect means that the
N/group for this experiment must be 70 in order to produce at least an 80%
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chance of achieving statistical significance for both contrasts. (Naturally the
available power using an N/group of 70 for the true vs. sham acupuncture
comparison would be considerably greater, >0.90 rather than 0.80.) For the
Newman—Keuls procedure, the N/group for the 0.50 ES is found to be 54
in Table 7.31 Chart A (and 49 in Table 7.31 Chart B for the true vs. sham
acupuncture ES).

The results of this analysis might be appended to the earlier results
for the overall F-ratio as follows:

A sample size analysis indicated that the hypothesized ES between the
true and sham acupuncture arms of 0.60 (assuming a high dispersion
pattern for the three means and an average correlation between the
covariate and the dependent variable of 0.40) would require 35 subjects
per group (total N=105) to provide an 80% chance of obtaining
statistical significance at the 0.05 level for the overall ANCOVA F-ratio.
However, using the Tukey HSD multiple comparison procedure, an N
of 70 per group would be required to assure an 80% chance of
demonstrating that true acupuncture was superior to the education
control after statistically controlling for patients’ pre-existing levels of
pain.

This, then, illustrates another potential benefit of conducting a
power analysis at an experiment’s design stage: namely that not only does
such an analysis force an investigator to refine and prioritize his/her object-
ives/hypotheses, it also permits the optimal marshalling of study resources
for achieving those objectives. Sometimes this can be a painful process when
it requires the acknowledgement that a cherished objective for conducting
the study in the first place cannot be achieved with the resources available,
but in science knowledge is ultimately advantageous in comparison to the
alternative, which is ignorance.

Summary

The analysis of covariance (ANCOVA) is a powerful analytic tool for
increasing the sensitivity and cost-effectiveness of conducting experimental
research. The higher the covariate—dependent variable correlation, the
more effective this procedure becomes. Assuming an ES of 0.50, for
example, the existence of a covariate possessing a 0.40 correlation with the
dependent variable would allow an investigator to reduce his/her total
sample size by 48 subjects in a four-group design (assuming that a 0.80 level
of power was desired for the significance of the overall F-ratio and a
medium dispersion pattern were predicted), while an r of 0.60 would allow
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for a total 112 subject reduction (or a 35% reduction in the total sample
size).

Other designs employing analysis of covariance are discussed else-
where in this text. Computing the power for ANCOVA interactions, for
example, is discussed in Chapter 9, while ANCOVA main effects for higher
level designs are discussed in Chapter 10. Analysis of covariance is, in many
ways, the least expensive and least burdensome existing mechanism for
increasing a trial’s statistical power since all that its use requires is the exist-
ence of a pre-existing correlate of the dependent variable. If such a correl-
ate can be identified, and if it makes theoretical sense as a control variable,
then a one-way ANCOVA is always preferable to the use of a one-way
between subjects analysis of variance design.

Endnotes

1 Actually there is a fourth function that will not be considered here. The
ANCOVA model is often employed as an analytic approach in quasi-experi-
mental designs (i.e., studies that employ non-randomized comparison groups).
We will not discuss this option here since the covariate is used to adjust the
dependent variable based upon expected pre-experimental differences among the
groups. In this chapter, we assume that the experimental groups will be equi-
valent on the covariate at the initiation of the trial.

2 If two or more covariates are employed, it is their multiple correlation [R] with
the dependent variable that is of interest. This will add some imprecision to the
use of the tables in this chapter since one degree of freedom is subtracted from
the error term for each covariate employed. The effect will be noticeable only
for extremely small values of N/group, hence the use of multiple covariates in
such studies should be employed with care.

3 Although rarely done in experimental research, a categorical variable may be
dummy coded into multiple variables and the resulting constructions may be
employed as multiple covariates.

4 An investigator must be careful both in non-experimental research and in
experimental factorial studies in which a blocking variable is employed, that
statistically controlling for pre-existing differences among groups does not run
counter to the purposes of the research. As an example, if severity of an illness
were used as a blocking variable in a factorial study investigating an interven-
tion’s effectiveness, a researcher should not use a covariate such as health status
as a covariate, since this would decrease the effect due to severity.
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Template 7.1. Preliminary one-way between subjects ANCOVA power/sample
size template

This preliminary template is applicable to all one-way between subjects ANCOVA designs
employing between two and five groups.

Step 1. Write in the names/codes of the groups in the chart to Group definitions
the right in ascending order based upon their expected means
(i.e., the name of the group expected to have the lowest mean
or the weakest effect will be written next to @, followed by the
next strongest treatment and so forth).

@® e

Step 2. Plot these groups, using the circled numbers rather than their codes, on the ES
line below. In the case of a tie between two groups with respect to their actual ES value,
place one to the right of the other based upon the best theoretical evidence for which
might be slightly superior.
ES line
@

00.10203040506070809101112131415

Step 3. For the estimation of power, specify the N/group available. For required sample
size, enter the desired power level.

N/group = or, desired power=
Step 4. Compare the low, medium, and high ES patterns below with the graphed ES line
from step 2 above. Choose the pattern which most closely matches the hypothesized

pattern of means (step 2). Note that this step does not need to be performed for two-
group designs, since there is only one possible pattern of means.

(a) Three-group designs

ES pattern for low/medium F power @ ) ®
ES pattern for high F power 06 ®
or @ @®

(b) Four-group designs

ES pattern for low F power @ @
ES pattern for medium F power @ @ ® @
ES pattern for high F power @ @

(c) Five-group designs

ES pattern for low F power ) @0® ®
ES pattern for medium F power @ o B @® 6
ES pattern for high F power )] @G

or @@ ®@6

Step 5. Select the most likely correlation between the covariate and the dependent
variable. (For values other than 0.40 or 0.60, see Chapter 10.)

r=0.40___ r=0.60 ___

To compute power, turn to Template 7.2. To determine N/group, turn to Template 7.3.
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Template 7.2. One-way between subjects ANCOVA power template

Power of the overall F-ratio
Steps 1-5, see preliminary Template 7.1.

Step 6. Use the largest hypothesized ES produced in step 2 (Template 7.1). For two-group
studies, this will be the ES for group @, for three-group studies it will be the ES for group
®, and so forth.

Largest ES from preliminary step 2:

Step 7. Use the chart below to find the appropriate power table.
(a) For two groups, if r=0.40, use Table 7.1, if r=0.60, use Table 7.2.

(b) For three groups, choose the appropriate model below:

r=0.40 Table r=0.60 Table
L/M pattern 7.3 L/M pattern 7.4
H pattern 7.5 H pattern 7.6
(¢) For four groups, choose the appropriate model below:
r=0.40 Table r=0.60 Table
L pattern 7.7 L pattern 7.8
M pattern 7.9 M pattern 7.10
H pattern 7.11 H pattern 7.12
(d) For five groups, choose the appropriate model below:
r=0.40 Table r=0.60 Table
L pattern 7.13 L pattern 7.14
M pattern 7.15 M pattern 7.16
H pattern 7.17 H pattern 7.18

Step 8. Turn to the table identified in step 7 and find the power at the intersection
between the ES column from step 6 and the N/group specified in step 3 of the
preliminary template. Interpolate as desired.

Power=

Power of the pairwise contrasts

Step 9. Using the hypothesized values from step 2 in the preliminary template (7.1), fill
out the hypothesized ES values by performing the indicated subtractions listed under the
“Contrasts” column in the chart below. Note that for two-group designs, the power of the
single pairwise contrast is identical to the power of the overall F (i.e., if r=0.40, Table 7.1
is used and for r=0.60, Table 7.2 is used).

ES@-0®= ES®-0®= ES®-®=
ES®@-0®= ES®-@= ES®-@=
ES@—@= ES@®—-®= ES®-®=

ES®-@=

Step 10. For power of the above pairwise contrasts (step 9) using the Tukey HSD, use
the tables indicated in the “Power tables for the Tukey HSD procedure” chart (only sample
size tables are available for the Newman—Keuls procedure, see Template 7.3). Locate the
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power in the indicated table at the intersection of the ES column (step 9) and the N/group
row (preliminary step 3). Interpolate as desired.

Power tables for the Tukey HSD procedure

Three-group studies If r=0.40, use Table 7.25 If r=0.60, use Table 7.26
Four-group studies If r=0.40, use Table 7.27 If r=0.60, use Table 7.28
Five-group studies If r=0.40, use Table 7.29 If r=0.60, use Table 7.30
Power @ —@®= Power @ —®= Power ® —®=
Power ® —®= Power @ —@= Power ® —@=
Power @ —@= Power ® —®@= Power ® —@=

Power ® —@ =

Template 7.3. One-way between subjects ANCOVA sample size template

Required sample size for a statistically significant overall F-ratio

Steps 1-5, see preliminary Template 7.1.

Step 6. Use the largest hypothesized ES produced in preliminary step 2. For two-group
studies, this will be the ES for group @, for three-group studies it will be the ES for group
®, and so forth.

Largest ES from preliminary step 2:

Step 7. For desired power values of 0.80 and 0.90, use the chart below to find the
appropriate sample size table. Note that sample size tables are also provided for p=0.01
(Table 7.21 for r=0.40; Table 7.22 for r=0.60) and p=0.10 (Tables 7.23 and 7.24).

(a) For two groups, use Table 7.19 Chart A for r=0.40 and Table 7.20 Chart A for
r=0.60.

(b) For three groups, choose the appropriate model below:

r=0.40 Table r=0.60 Table

L/M pattern 7.19 Chart B L/M pattern 7.20 Chart B

H pattern 7.19 Chart C H pattern 7.20 Chart C
(c) For four groups, choose the appropriate model below:

r=0.40 Table r=0.60 Table

L pattern 7.19 Chart D L pattern 7.20 Chart D

M pattern 7.19 Chart E M pattern 7.20 Chart E

H pattern 7.19 Chart F H pattern 7.20 Chart F
(d) For five groups, choose the appropriate model below:

r=0.40 Table r=0.60 Table

L pattern 7.19 Chart G L pattern 7.20 Chart G

M pattern 7.19 Chart H M pattern 7.20 Chart H

H pattern 7.19 Chart I H pattern 7.20 Chart I

Step 8. For desired powers of 0.80 and 0.90, turn to the table identified in step 7 and find
the N/group at the intersection between the ES column from step 6 and the N/group
specified in step 3 of the preliminary template. For powers other than 0.80 and 0.90, find
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the appropriate table from step 7 in Template 7.2. Locate the nearest power value in the
ES row (step 6) and read the required N/group associated with that row. Interpolate as
desired.

N/group =

Sample size for the pairwise contrasts

Step 9. Using the hypothesized values from step 2 in the preliminary template, fill out
the hypothesized ES values by performing the indicated subtractions listed under the
“Contrasts” column in the chart below. Note that for two-group designs, the N/group
of the single pairwise contrast is identical to that for the overall F as given in Tables 7.1
(r=0.40) and 7.2 (r=0.60). For two-group desired powers of 0.80 and 0.90, see Table
7.19 Chart A (r=0.40) and 7.19 Chart B (r=0.60).

ES@-0®= ES®-0®= ES®-O=
ES@—0®= ES®-@= ES®-@=
ES®@—@= ES®-@®= ES®-@=

ES®-@=

Step 10. For the required sample size for powers of 0.80 or 0.90 of the pairwise contrasts
listed in step 9 for the Tukey HSD procedure, use the tables indicated in the “Tukey
HSD” chart below. For powers of 0.80 or 0.90 for the Newman—Keuls procedure, use
the tables indicated in the “Newman—Keuls” chart. (Note that the table specified for the
Tukey procedure are based only upon the number of groups and not the particular contrast
involved while the tables used for Newman—Keuls are based only upon the contrasts
involved and not the number of groups.) Locate the N/group in the indicated table at the
intersection of the ES column (step 9) and the desired power row (preliminary step 3). For
powers other than 0.80 and 0.90 (for the Tukey HSD procedure), use the appropriate
tables indicated in step 10 of Template 7.2 by finding the nearest power value in the ES
column (step 9) and reading the N/group associated with that row. Interpolate as desired.
(Note that sample size requirements for p=0.10 and p=0.01 are provided in Tables 7.33
to 7.36 and are mirror images of the p=10.05 tables/charts presented in the template
below.)

Sample size tables for the Tukey HSD procedure

Three-group studies

If r=0.40, use Table 7.31 Chart B If r=0.60, use Table 7.32 Chart B
Four-group studies

If r=0.40, use Table 7.31 Chart E If r=0.60, use Table7.32 Chart E
Five-group studies

If ¥=0.40, use Table 7.31 Chart I If r=0.60, use Table 7.32 Chart I

Sample size tables for the Newman-Keuls procedure

Determining the sample size requirements for the Newman—Keuls procedure is slightly
more complicated since different charts within Tables 7.31 (r=0.40, p=0.05), 7.32 (r=
0.60, p=0.05), 7.33 (r=0.40, p=0.01), 7.34 (r=0.60, p=0.01), 7.35 (r=0.40, p=0.10),
and 7.36 (r=0.60, p=0.10) are used to determine sample sizes for both the number of
groups and the number of intervening variables:
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Three groups

Contrast Chart
-0 A
®-0® B
®-© A
Five groups
Contrast Chart
@-® F
®-0® G
®-© F
N/group @ —®=
N/group @ —®=
N/group @ —@=

Four groups

Contrast
@-0® C
®-0® D
®-© C
Contrast
@®-@ H
®-0® G
®-©® F
N/group ® —®=
N/group ® —@=
N/group ® —@=

Chart

Chart

Contrast Chart
@®-® E
@®-@ D
®-Q® C
Contrast Chart
®&-0® I
®-® H
®-©® G
®-®@ F
N/group ® —®=
N/group ® —@=
N/group ® —@ =
N/group ® —@®=
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Table 7.1. Power table for ANCOVA F-ratio and pairwise contrast; r=0.40, 2 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 {1.00|1.25[1.50 1.75]2.00| 2.50 | 3.00
5 6 7| 8| 9| 10| 12| 13| 15| 16| 18| 20 22| 32| 46| 61| 74| 84| 96| 99
6| 6| 8| 9 10| 12| 13| 15| 17| 20| 22| 25| 27| 40| 56| 72| 84| 92| 99
7 6 8| 10| 11| 13| 15| 18| 20| 23| 26| 29| 32| 47| 65| 80| 91| 96
8| 6| 9| 10| 12| 15| 17| 20| 23| 26| 30| 33| 37| 53| 72| 86| 94| 98
9 6 9 11| 14| 16| 19| 22| 26| 29| 33| 37| 42| 59 78| 90 97| 99
101 7{ 10| 12| 15| 18| 21| 25| 28| 33| 37| 41| 46| 64| 83| 94| 98

11 7{ 11| 13| 16| 19| 23| 27| 31| 36| 40| 45| 50| 69| 86| 96| 99

121 7\ 11| 14| 17| 21| 25| 29| 34| 39| 44| 49| 54| 73| 90| 97| 99

13| 7| 12| 15| 18| 22| 27| 31| 37| 42| 47| 52| 58| 77| 92| 98

14| 8| 13| 16| 20| 24| 29| 34| 39| 45| 50| 56| 61| 80| 94| 99

151 8| 13| 17| 21| 26| 31| 36| 42| 47| 53| 59| 65| 83| 95| 99

20| 9| 17| 22| 27| 33| 40| 46| 53| 60| 66| 72| 78| 92| 99

25| 11| 20| 26| 33| 41| 48| 56| 63| 70| 76| 82| 86| 97

30| 13| 24| 31| 39| 47| 56| o4| 71| 78| 84| 88| 92| 99

35| 14| 27| 36| 45| 54| 63| 71| 78| 84| 89| 93| 95 99

40| 16| 31| 40| 50| 59| 68| 77| 83| 89| 93| 95| 97

45| 17| 34| 44| 55| 65| 74| 81| 87| 92| 95| 97| 98

50| 19| 37| 48| 59| 69| 78| 85| 91| 94| 97| 98| 99

55| 20| 41| 52| 63| 73| 82| 88| 93| 96| 98| 99

60| 22| 44| 56| 67| 77 85| 91| 95| 97| 99| 99

65| 23| 47| 59| 71| 80| 88| 93| 96| 98| 99

701 25| 50| 62| 74| 83 90| 95| 97| 99| 99

75| 27| 52| 65| 77| 86| 92| 96| 98| 99

80| 28| 55| 68| 79| 88| 93| 97| 99| 99

90| 31| 60| 73| 84| 91| 96| 98| 99

100| 34| 65| 78| 87| 94| 97| 99

110 37| 69| 81| 90| 96| 98| 99

120 40 73| 85| 93| 97 99

130 43| 76| 87 94| 98| 99

140 45 79| 90| 96| 98

150| 48| 82| 91| 97| 99

175| 54| 87| 95| 98

200 60| 91| 97| 99

225| 65| 94| 98

250 69| 96| 99

300 77| 98

350 83| 99

400| 88

450 91

500 94

600| 97

700| 98

800 99

900

1000
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Table 7.2. Power table for ANCOVA F-ratio and pairwise contrast; r=0.60, 2 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55]0.60| 0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5/ 6 8| 9| 10| 12| 14| 16| 18| 20| 23| 25| 28| 40| 57| 73| 85| 92| 99
6| 6 9| 10| 12| 14| 16| 19| 21| 24| 28| 31| 34| 50| 68| 83| 92| 97
7 7 9| 11| 13| 16| 19| 22| 25| 29| 33| 36| 41| 58| 77| 89| 96| 99
8| 7| 10| 12| 15| 18| 21| 25| 29| 33| 37| 42| 46| 65| 83| 94| 98
9 7| 11| 14| 17| 20| 24| 28| 32| 37| 42| 47| 52| 71| 88| 96| 99
101 8| 12| 15| 18| 22| 26| 31| 36| 41| 46| 52| 57| 76| 91| 98

11| 8| 13| 16| 20| 24| 29| 34| 39| 45| 50| 56| 61| 80| 94| 99

12| 8| 14| 17| 21| 26| 31| 37| 43| 48| 54| 60| 66| 84| 96| 99

13| 9| 15| 19| 23| 28| 34| 40| 46| 52| 58| 64| 69| 87| 97

14| 9] 15| 20 25| 30| 36| 42| 49| 55| 61| 67| 73| 89| 98

15| 9 16| 21| 26| 32| 39| 45| 52| 58| 65| 71| 76| 91| 99

20 11| 21| 27| 34| 42| 50| 57| 65| 72| 78| 83| 88| 97

25| 13| 26| 33| 42| 51| 59| 67| 75| 81| 86| 91| 94| 99

30| 15| 30| 39| 49| 58| 67| 75| 82| 88| 92| 95| 97

35| 17| 35| 45| 55| 65| 74| 82| 88| 92| 95 97| 99

40| 19| 39| 50| 61| 71| 80| 87| 92| 95| 97| 99| 99

45| 22| 43| 55| 66| 76 84| 90| 94| 97| 99| 99

50( 24| 47| 59| 71| 80| 88| 93| 96| 98] 99

55 26| 51| 63| 75| 84| 91 95| 98| 99

60| 28| 54| 67| 79| 87 93| 96| 98| 99

65| 30| 58| 71| 82| 90| 95| 98| 99

70| 32| 61| 74| 84| 92| 96| 98| 99

75| 34| 64| 77| 87| 93| 97| 99

80 36| 67| 80| 89| 95| 98| 99

90| 39| 72| 84| 92| 97 99

100| 43| 76| 88| 94| 98| 99

110 46| 80| 90| 96 99

120 50| 83| 93| 97| 99

130| 53| 86| 94| 98

140| 56| 89| 96| 99

150 59 91| 97| 99

175| 66| 94| 98

200 71| 97| 99

225 76| 98

250 81| 99

300( 87

350 92

400 95

450 97

500 98

600| 99

700

800

900

1000
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Table 7.3. Power table for ANCOVA F-ratio; r=0.40, pattern L/M, 3 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35]0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 {1.00|1.25[1.50 1.75]2.00| 2.50 | 3.00
5 6 7| 7| 8| 9 10| 11| 12| 13| 14| 16| 18| 25| 38| 51| 65| 77| 93| 99
6| 6| 7| 8 9| 10| 11| 12| 14| 15| 17| 19| 21| 31| 46| 62| 76| 87| 97
7 6 7 8 91 11| 12| 14| 16| 18| 20| 22| 25| 37| 55| 71| 84| 93| 99
8| 6 8| 9 10| 12| 13| 15| 18| 20| 23| 26| 29| 43| 62| 78| 90| 96
91 6| 8| 9 11| 13| 15| 17{ 20| 23| 26| 29| 33| 48| 68| 84| 94| 98
101 6 8| 10{ 12| 14| 16| 19| 22| 25| 29| 32| 36| 54| 74| 88| 96| 99
11 6 9| 11 13| 15| 18| 21| 24| 28| 32| 36| 40| 58| 79| 92| 98| 99
120 71 9| 11| 13| 16| 19| 22| 26| 30| 34| 39| 44| 63| 83| 94| 99

13| 7( 10| 12| 14| 17| 21| 24| 28| 33| 37| 42| 47| 67| 86| 96| 99

14| 7| 10| 13| 15| 18| 22| 26| 30| 35| 40| 45| 51| 71| 89| 97| 99

151 7| 11| 13| 16| 20| 24| 28| 33| 38| 43| 48| 54| 74| 91| 98

20| 8| 13| 17| 21| 26| 31| 37| 43| 49| 56| 62| 68| 87| 97

25| 9| 16| 20| 26| 32| 38| 45| 52| 59| 66| 73| 78| 93| 99

30| 10| 18| 24| 30| 38| 45| 53| 61| 68| 75| 81| 86| 97

35| 11| 21| 28| 35| 43| 52| 60| 68| 75| 82| 87| 91| 99

40| 12| 24| 31| 40| 49| 58| 67| 74| 81| 87| 91| 94| 99

45| 13| 26| 35| 44| 54| 63| 72| 80| 86| 91| 94| 97

50| 15| 29| 38| 48| 59| 68| 77| 84| 90| 94| 96| 98

55| 16| 32| 42| 52| 63| 73| 81| 87| 92| 96| 98| 99

60| 17| 34| 45| 56| 67| 77| 84| 90| 94| 97| 98| 99

65| 18| 37| 48| 60| 71| 80| 87| 93| 96| 98| 99

70| 19| 40| 52| 63| 74| 83| 90| 94| 97| 99| 99

75| 20| 42| 55| 67| 77| 86| 92| 96| 98| 99

80| 22| 45| 57| 70| 80| 88| 93| 97| 99| 99

90| 24| 49| 63| 75| 85 92| 96| 98| 99

100| 26| 54| 68| 80| 89 94| 97| 99

110 29| 58| 72| 84| 91| 96| 98| 99

120 31| 62| 76| 87| 94| 97| 99

130 33| 66| 80| 89| 95| 98| 99

140 36| 69| 83| 92| 97| 99

150 38| 72| 85| 93| 98| 99

175( 44| 79| 90| 96| 99

200 49| 85| 94| 98

225| 54| 89| 96| 99

250 59| 92| 98

300 67| 96| 99

350| 74| 98

400| 80| 99

450| 85

500 88

600 93

700| 96

800| 98

900| 99

1000
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Table 7.4. Power table for ANCOVA F-ratio; r=0.60, pattern L/M, 3 groups at alpha =0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55{0.60| 0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5/ 6 7| 8 9| 10| 11| 13| 14| 16| 18| 20| 22| 32| 48| 63| 77| 88| 98
6| o6 7| 9 10| 11 13| 15| 17| 19| 21| 24| 27| 40| 58| 75| 87| 94| 99
7 6 8 9l 11| 13| 15| 17| 19| 22| 25| 28| 32| 47| 67| 83| 93| 98
8| 6 9| 10| 12| 14| 16| 19| 22| 25| 29| 33| 37| 54| 74| 89| 96| 99
91 6| 9| 11| 13| 16| 18| 21| 25| 29| 33| 37| 42| 60| 80| 93| 98

101 7[ 10| 12| 14| 17| 20| 24| 28| 32| 37| 41| 46| 66| 85| 95| 99

11| 7{ 10| 13| 15| 19| 22| 26| 31| 35| 40| 45| 51| 71| 89| 97| 99

121 7 11| 14 17| 20| 24| 29| 33| 39| 44| 49| 55| 75| 92| 98

13| 7| 12| 14| 18| 22| 26| 31| 36| 42| 47| 53| 59| 79| 94| 99

14 8 12| 15| 19| 23| 28| 33| 39| 45| 51| 57| 63| 82| 96| 99

15| 8| 13| 16| 20| 25| 30| 36| 42| 48| 54| 60| 66| 85| 97

20| 9| 16| 21| 26| 33| 40| 47| 54| 61| 68| 74| 80| 94| 99

25| 11| 20| 26| 33| 40| 48| 57| 65| 72| 79| 84| 89| 98

30| 12| 23| 31| 39| 48| 57| 65| 73| 80| 86| 91| 94| 99

35| 14| 27| 35| 45| 54| 64| 73| 80| 86| 91| 94| 97

40| 15| 30| 40| 50| 61 70| 79| 86| 91| 94| 97| 98

45| 17| 34| 44| 55| 66| 76| 84| 90| 94| 97| 98| 99

50( 18| 37| 49| 60| 71| 80| 88| 93| 96| 98| 99

55( 20| 40| 53| 65| 75| 84| 91| 95| 97| 99

60| 21| 44| 57| 69| 79| 87| 93| 96| 98| 99

65| 23| 47| 60| 73| 83| 90| 95| 98| 99

701 24| 50| 64| 76| 85[ 92| 96| 98| 99

75| 26| 53| 67| 79| 88| 94| 97| 99

80| 28| 56| 70| 82| 90| 95 98| 99

90| 31| 61| 75| 86| 93| 97| 99

100 34| 66| 80| 90| 95 98| 99

110 37| 71| 84| 92 97 99

120| 40| 75| 87| 94| 98| 99

130 43| 78| 90| 96| 99

140 46| 81| 92| 97| 99

150 48| 84| 93| 98| 99

175| 55| 89| 96| 99

200 61| 93| 98

225 66| 96| 99

250 71| 97

300 79| 99

350 85

400 90

450 93

500 95

600| 98

700 99

800

900

1000
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Table 7.5. Power table for ANCOVA F-ratio; r=0.40, pattern H, 3 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35]0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 {1.00|1.25[1.50 1.75]2.00| 2.50 | 3.00
5 6 7| 8| 9| 10| 11| 13| 14| 16| 18| 20 22| 33| 48| 64| 78| 83| 98
6| 6 8| 9 10| 11| 13| 15| 17| 19| 22| 24| 27| 41| 59| 75| 88| 95
7 6 8 9 11| 13| 15| 17| 20| 22| 26| 29| 32| 48| 68| 84| 93| 98
8| 6| 9| 10| 12| 14| 17| 19| 22| 26| 29| 33| 37| 55| 75| 89| 96| 99
9 7 9 11| 13| 16| 19| 22| 25| 29| 33| 38| 42| 61| 81| 93| 98

100 7{ 10| 12| 14| 17| 21| 24| 28| 33| 37| 42| 47| 67| 86| 96| 99

11 7( 10| 13| 16| 19| 22| 27| 31| 36| 41| 46| 51| 72| 89| 97

121 7 11| 14| 17| 20| 24| 29| 34| 39| 45| 50| 56| 76| 92| 98

13| 7| 12| 15| 18| 22| 26| 31| 37| 42| 48| 54| 60| 80| 94| 99

14| 8| 12| 16| 19| 24| 28| 34| 39| 45| 51| 57| 63| 83| 96| 99

15| 8| 13| 16| 21| 25| 30| 36| 42| 48| 55| 61| 67| 86| 97

20| 9| 16| 21| 27| 33| 40| 47| 55| 62| 69| 75| 81| 95| 99

25| 11| 20| 26| 33| 41| 49| 57| 65| 73| 79| 85| 89| 98

30| 12| 23| 31| 39| 48| 57| 66| 74| 81| 87| 91| 94| 99

35| 14| 27| 36| 45| 55| 65| 73| 81| 87| 92| 95| 97

40| 15| 31| 40| 51| 61| 71| 79| 86| 91| 95| 97| 98

45| 17| 34| 45| 56| 67| 76| 84| 90| 94| 97| 98| 99

50| 18| 38| 49| 61| 72 81| 88| 93| 96| 98| 99

55| 20| 41| 53| 65| 76| 85| 91| 95| 98| 99

60| 22| 44| 57| 70| 80| 88| 93| 97| 98| 99

65| 23| 48| 61| 73| 83| 90| 95| 98| 99

701 25| 51| 64 77| 86 92| 96| 98| 99

75| 26| 54| 68| 80| 88| 94| 97| 99

80| 28| 57| 71| 82| 90| 95| 98| 99

90| 31| 62| 76| 87| 94| 97| 99

100 34| 67| 81| 90| 96 98

110 37| 71| 84| 93| 97| 99

120 40| 75| 88| 95| 98| 99

130 43| 79| 90| 96| 99

140 46| 82| 92 97| 99

150 49| 85| 94| 98

175 56| 90| 97| 99

200 62| 93| 98

2251 67| 96| 99

250| 72| 97

300 80| 99

350| 86

400| 90

450 93

500 96

600 98

700| 99

800

900

1000
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Table 7.6. Power table for ANCOVA F-ratio; r=0.60, pattern H, 3 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55]0.60| 0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5/ 6/ 8| 9| 10| 12| 13| 15| 17| 20| 22| 25| 28| 41| 60| 76| 88| 95
6| o6 8| 10| 12| 13| 16| 18| 21| 24| 27| 31| 35| 51| 71| 86| 95| 99
7 7 9| 11| 13| 15| 18| 21| 25| 28| 33| 37| 41| 60| 80| 92| 98
8| 7| 10| 12| 15| 17| 21| 24| 29| 33| 38| 42| 47| 67| 86| 96| 99
9| 7| 11| 13| 16| 20| 23| 28| 32| 37| 42| 48| 53| 74| 91| 98
10| 8 12| 14| 18| 22| 26| 31| 36| 41| 47| 53| 59| 79| 94| 99

11| 8| 12| 16| 19| 24| 29| 34| 40| 46| 52| 58| 64| 83| 96| 99
12| 8| 13| 17 21| 26| 31| 37| 43| 49| 56| 62| 68| 87| 97

13| 9| 14| 18| 23| 28| 34| 40| 47| 53| 60| 66| 72| 90| 98

14| 9| 15| 19| 24| 30| 36| 43| 50| 57| 64| 70| 76| 92| 99

15| 9 16| 21| 26| 32| 39| 46| 53| 60| 67| 73| 79| 94| 99

20 11| 21| 27| 34| 42| 51| 59| 67| 74| 81| 86| 90| 98

25| 13| 25| 33| 42| 52| 61| 70| 78| 84| 89| 93| 96

30| 15| 30| 39| 50| 60 70| 78| 85| 91| 94| 97| 98

35| 17| 35| 45( 57| 67| 77| 85| 91| 95 97| 99| 99

40| 19| 39| 51| 63| 74| 83| 89| 94| 97| 99| 99

45| 21| 44| 56| 69| 79 87| 93| 96| 98| 99

50( 23| 48| 61| 73| 83| 91| 95| 98| 99

55 25| 52| 66| 78| 87| 93| 97| 99

60| 27| 56| 70| 81| 90| 95| 98| 99

65| 29| 59| 73| 85| 92| 96| 99

70| 32| 63| 77| 87| 94| 98| 99

75| 34| 66| 80| 90| 95 98| 99

80| 36| 69| 82| 91| 96| 99

90| 40| 74| 87| 94| 98| 99

100 44| 79| 90| 96| 99

110 47| 83| 93| 98| 99

120 51| 86| 95| 99

130 54| 89| 96| 99

1400 58| 91| 97| 99

150 61| 93| 98

175| 68| 96| 99

200 74| 98

2251 79| 99

250( 84| 99

300 90

350 94

400| 96

450 98

500 99

600

700

800

900

1000
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Table 7.7. Power table for ANCOVA F-ratio; r=0.40, pattern L, 4 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 {1.00|1.25[1.50 1.75]2.00| 2.50 | 3.00
5 51 6| 7| 7| 8| 9| 9| 10| 11| 13| 14 15| 22| 33| 46| 60| 72| 90| 98
6| 5[ 6| 7 8 9| 10| 11| 12| 13| 15| 17| 18| 27| 41| 56| 71| 83| 96| 99
71 6| 7| 7 8| 9| 11| 12| 14| 15| 17| 19| 22| 32| 49| 65| 80| 90| 98
8| 6| 7| 8 9| 10| 12| 13| 15| 17| 20| 22| 25| 37| 56| 73| 86| 94| 99
9 6 7 8 10| 11| 13| 15| 17| 19 22| 25| 28| 42| 62| 79| 91| 97

100 6 8| 9 10| 12| 14| 16| 19| 22| 25| 28| 31| 47| 68| 84| 94| 98

11 6| 8| 9 11| 13| 15| 18| 21| 24| 27| 31| 35| 52| 73| 88| 96| 99
12| 6| 8| 10 12| 14| 16| 19| 22| 26| 30| 34| 38| 56| 77| 91| 98

13| 6| 9| 10{ 12| 15| 18| 21| 24| 28| 32| 37| 41| 60| 81| 94| 98

14 6 91 11| 13| 16| 19| 22| 26| 30| 35| 39| 44| 64| 85| 95| 99

15| 7( 9| 12| 14| 17| 20| 24| 28| 32| 37| 42| 47| 68| 87| 97| 99

20| 7| 11| 14| 18| 22| 26| 32| 37| 43| 49| 55| 61| 82| 96| 99

25| 8| 14| 17| 22| 27| 33| 39| 46| 53| 60| 66 72| 90| 99

301 9| 16| 20| 26| 32| 39| 47| 54| 62| 69| 75| 81| 95

35| 10| 18| 23| 30| 37| 45| 54| 62| 69| 76| 82| 87| 98

40| 11| 20| 27| 34| 42| 51| 60| 68| 76| 82| 88| 92| 99

45| 12| 22| 30| 38| 47| 57| 66| 74| 81| 87| 91| 95

50| 13| 25| 33| 42| 52| 62| 71| 79| 85| 90| 94| 97

55| 14| 27| 36| 46| 56| 66| 75| 83| 89| 93| 96| 98

60| 14| 29| 39| 50| 61| 71| 79| 86| 92| 95| 97| 99

65| 15| 32| 42| 53| 64| 74| 83| 89| 94| 97| 98| 99

70| 16| 34| 45| 57| 68| 78| 86| 91| 95| 98| 99

75| 17| 36| 48| 60| 71| 81| 88| 93| 97| 98| 99

80| 18| 39| 51| 63| 74| 84| 90| 95| 97| 99

90| 20| 43| 56| 69| 80| 88| 94| 97| 99| 99

100 22| 47| 61| 74| 84| 91| 96| 98| 99

110 25| 51| 66| 78| 88| 94| 97| 99

120| 27| 55| 70| 82| 91| 96| 98| 99

130 29| 59| 74| 85| 93| 97| 99

140 31| 63| 77| 88| 95| 98| 99

150 33| 66| 80| 90| 96 99

175| 38| 73| 87| 94| 98| 99

200( 43| 80| 91| 97| 99

225| 48| 84| 94| 98

250| 52| 88| 96| 99

300 61| 94| 98

350 68| 97| 99

400| 74| 98

450 80| 99

500 84

600 90

700| 94

800 97

900| 98

1000 99
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Table 7.8. Power table for ANCOVA F-ratio; r=0.60, pattern L, 4 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55]0.60| 0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5 6 7| 7| 8| 9 10| 11| 12| 14| 15| 17| 19| 28| 42| 58| 72| 84| 97
6| o 7| 8 9| 10 11| 13| 14| 16| 18| 21| 23| 35| 52| 69| 83| 92| 99
7 6 7 8| 10| 11| 13| 15| 17| 19| 22| 24| 28| 42| 61| 78| 90| 96
8 6 8| 9| 10| 12 14| 16| 19| 22| 25| 28| 32| 48| 69| 85| 94| 98
9 o6 8| 10| 11| 13| 16| 18| 21| 25| 28| 32| 36| 54| 75| 90| 97| 99
10 6] 9| 10{ 12| 15| 17| 20| 24| 28| 32| 36| 40| 60| 80| 93| 98

11 6] 9| 11| 13| 16| 19| 22 26| 30 35| 40| 45| 65| 85| 95| 99

121 7[ 10| 12| 14| 17| 21| 24| 29| 33| 38| 43| 49| 69| 88| 97

13| 7| 10| 12| 15| 19 22| 26| 31| 36| 41| 47| 52| 73| 91| 98

14 7[ 11| 13| 16| 20| 24| 29| 34| 39| 45| 50| 56| 77| 93| 99

15| 7 11| 14 17| 21| 26| 31| 36| 42| 48| 54| 60| 80| 95| 99

20| 8| 14| 18| 23| 28| 34| 41| 48| 55| 62| 68| 74| 92| 99

25| 9| 17| 22| 28| 35| 42| 50| 58| 66| 73| 79| 84| 97

30| 11| 20| 26| 33| 42| 50| 59| 67| 75| 81| 87| 91| 99

35| 12| 23| 30| 39| 48| 57| 66| 75| 82| 87| 92| 95

40| 13| 26| 34| 44| 54| 64| 73| 81| 87| 92| 95| 97

45| 14| 29| 38| 49| 60 70| 78| 86| 91| 95| 97| 99

50( 16| 32| 42| 54| 65| 75| 83| 89| 94| 97| 98| 99

55( 17| 35| 46| 58| 69| 79| 87| 92| 96| 98| 99

60| 18| 38| 50| 62| 74 83| 90| 94| 97| 99| 99

65| 19| 41| 54| 66| 77| 86| 92| 96| 98| 99

70| 21| 44| 57| 70| 81 89| 94| 97| 99

75| 22| 47| 60| 73| 83| 91| 95| 98| 99

80| 23| 49| 63| 76| 86| 93| 97| 99

90| 26| 55| 69| 81| 90| 95| 98| 99

100| 29| 60| 74| 86| 93| 97| 99

110 32| 64| 79| 89| 95 98| 99

120 34| 68| 82| 92| 97 99

130| 37| 72| 85| 94| 98| 99

140| 40| 76| 88| 95| 99

150 42| 79| 90| 97| 99

175 48| 85| 94| 98

200 54| 90| 97| 99

225 60| 93| 98

250 65| 95 99

300 74| 98

350 81| 99

400| 86

450 90

500 93

600 97

700( 98

800 99

900

1000
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Table 7.9. Power table for ANCOVA F-ratio; r= 0.40, pattern M, 4 groups at alpha =0.05

CHAPTER 7 TABLES

n Hypothesized ES
0.20{0.30(0.35]0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 {1.00|1.25[1.50 1.75]2.00| 2.50 | 3.00
50 6 6| 7| 7| 8| 9| 10| 11| 12| 14| 15| 17| 24| 36| 50| 65| 77| 93| 99
6| o 7| 7 8| 9| 10| 11| 13| 14| 16| 18| 20| 30| 45| 61| 76| 87| 98
7 6 7 8 91 10| 11| 13| 15| 17| 19| 21| 24| 36| 53| 70| 84| 93| 99
8| 6 7| 8| 10| 11| 13| 14| 17| 19| 21| 24| 27| 41| 61| 78| 90| 96
9 6 8| 9| 10| 12| 14| 16| 19| 21| 24| 28| 31| 47| 67| 84| 94| 98
100 6 8| 9 11| 13| 15| 18| 21| 24| 27| 31| 35| 52| 73| 88| 96| 99
11| 6| 8| 10{ 12| 14| 16| 19| 23| 26| 30| 34| 38| 57| 78| 91| 98

121 6| 9| 11| 13| 15| 18| 21| 25| 28| 33| 37| 42| 61| 82| 94| 99

13| 6| 9| 11| 13| 16| 19| 23| 27| 31| 35| 40| 45| 66| 85| 96| 99

14 70 10 12 14| 17| 21| 24| 29| 33| 38| 43| 49| 69| 88| 97

151 7| 10| 12| 15| 18| 22| 26| 31| 36| 41| 46| 52| 73| 91| 98

20| 8| 12| 16| 19| 24| 29| 35| 41| 47| 54| 60| 66| 86| 97

25| 9| 15| 19| 24| 30| 36| 43| 50| 58| 65| 71| 77| 93| 99

30| 10| 17| 22| 29| 36| 43| 51| 59| 67| 74| 80| 85| 97

35| 11| 20| 26| 33| 41| 50| 58| 67| 74| 81| 86| 91| 99

40| 12| 22| 29| 38| 47| 56| 65| 73| 80| 86| 91| 94| 99

45| 13| 25| 33| 42| 52| 62| 71| 79| 85| 90| 94| 97

50| 14| 27| 36| 46| 57| 67| 76| 83| 89| 93| 96| 98

55| 15| 30| 40| 51| 61| 71| 80| 87| 92| 95| 98| 99

60| 16| 32| 43| 54| 66| 76| 84| 90| 94| 97| 99| 99

65| 17| 35| 46| 58| 69 79| 87| 92| 96| 98| 99

70| 18| 38| 50| 62| 73| 82| 89| 94| 97| 99| 99

75| 19| 40| 53| 65| 76| 85| 92| 96| 98| 99

80| 20| 43| 56| 68| 79| 88| 93| 97| 99| 99

90| 22| 47| 61| 74| 84| 91| 96| 98| 99

100| 25 52| 66| 79| 88| 94| 97| 99

110 27| 56| 71| 83| 91| 96| 98| 99

120 29| 60| 75| 86| 93| 97| 99

130 32| 64| 79| 89| 95| 98| 99

140 34| 68| 82 91| 97| 99

150 36| 71| 85| 93| 98| 99

175( 42| 78| 90| 96| 99

200| 47| 84| 94| 98

225| 52| 88| 96| 99

250 57| 92| 98

300 66| 96| 99

350 73| 98

400 79| 99

450| 84

500 88

600 93

700| 96

800| 98

900| 99

1000
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ONE-WAY BETWEEN SUBJECTS ANALYSIS OF COVARIANCE

Table 7.10. Power table for ANCOVA F-ratio; r=0.60, pattern M, 4 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55{0.60| 0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5 6 7| 8 8| 9 10| 12| 13| 15| 17| 19| 21| 31| 46| 63| 77| 88| 98
6| o6 7| 8 9| 11| 12| 14| 16| 18| 20| 23| 25| 38| 57| 74| 87| 95
7 6 8 91 10| 12| 14| 16| 18| 21| 24| 27| 30| 46| 66| 83| 93| 98
8| 6 8| 10| 11| 13| 15| 18| 21| 24| 27| 31| 35| 53| 74| 89| 96| 99
91 6| 9| 10| 12| 15| 17| 20| 23| 27| 31| 35| 40| 59| 80| 93| 98

100 7{ 9| 11| 13| 16| 19| 22| 26| 30| 35| 40| 44| 65| 85| 95| 99

11 7[ 10| 12 14| 17| 21| 25| 29| 34| 38| 44| 49| 70| 89| 97

12| 7[ 10| 13| 15| 19| 23| 27| 32| 37| 42| 48| 53| 74| 92| 98

13| 7| 11| 13| 17| 20| 24| 29| 34| 40| 45| 51| 57| 78| 94| 99

14 71 11| 14| 18| 22| 26| 31| 37| 43| 49| 55| 61| 82| 96| 99

15| 8| 12| 15[ 19| 23| 28| 34| 40| 46| 52| 58| 65| 85| 97

20| 9| 15| 20| 25| 31| 38| 45| 52| 59| 67| 73| 79| 94| 99

25| 10| 18| 24| 31| 38| 47| 55| 63| 71| 78| 83| 88| 98

30| 11| 22| 29| 37| 46| 55| 64| 72| 79| 85| 90| 94| 99

35| 13| 25| 33| 43| 52| 62| 71| 79| 86| 91| 94| 97

40| 14| 28| 38| 48| 59 69| 78| 85| 91| 94| 97| 98

45| 15| 32| 42| 54| 65| 75| 83| 89| 94| 97| 98| 99

50( 17| 35| 47| 58| 70| 79| 87| 92| 96| 98| 99

55( 18| 38| 51| 63| 74| 83| 90| 95| 97| 99

60| 20| 42| 55| 67| 78| 87| 93| 96| 98| 99

65| 21| 45| 58| 71| 82 90| 95| 98| 99

701 23| 48| 62 75| 85 92| 96| 98| 99

75| 24| 51| 65| 78| 87| 94| 97| 99

80| 26| 54| 69| 81| 90| 95 98| 99

90| 29| 59| 74| 86| 93| 97| 99

100 32| 65| 79| 89| 95| 98| 99

110 35 69| 83| 92 97 99

120 38| 73| 86| 94| 98| 99

130 41 77| 89| 96| 99

140| 44| 80| 91| 97| 99

150 46| 83| 93| 98

175| 53| 89| 96| 99

200 59| 93| 98

225 65| 95| 99

250 70| 97

300 78| 99

350 85

400 90

450 93

500 95

600| 98

700 99

800

900

1000
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Table 7.11. Power table for ANCOVA F-ratio; r=0.40, pattern H, 4 groups at alpha=0.05

CHAPTER 7 TABLES

n Hypothesized ES
0.20{0.30(0.35]0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 {1.00|1.25[1.50 1.75]2.00| 2.50 | 3.00
5/ 6 8| 9| 10| 11| 13| 15| 17| 19| 22| 24| 27| 41| 60| 78| 90| 96
6| 6 8| 9 11| 13| 15| 18| 20| 23| 27| 30| 34| 51| 72| 87| 96| 99
7 6 91 10| 12| 15| 17| 21| 24| 28| 32| 36| 41| 60| 81| 93| 98
8| 7| 10| 12| 14| 17| 20| 24| 28| 32| 37| 42| 47| 67| 87| 96| 99
91 7| 10| 13| 15| 19| 22| 27| 31| 36| 42| 47| 53| 74| 91| 98

100 7 11| 14| 17| 21| 25| 30| 35| 41| 46| 52| 58| 79| 94| 99

11 8| 12| 15[ 19| 23| 28| 33| 39| 45| 51| 57| 63| 84| 96

12| 8| 13| 16| 20| 25| 30| 36| 42| 49| 55| 62| 68| 87| 98

13| 8| 14| 17 22| 27| 33| 39| 46| 53| 60| 66| 72| 90| 99

14| 9 14| 19 23| 29| 35| 42| 49| 56| 63| 70| 76| 93| 99

15| 9 15| 20| 25| 31| 38| 45| 52| 60| 67| 74| 79| 94| 99

20 11| 20| 26| 33| 41| 50| 59| 67| 75| 81| 87| 91| 99

25| 12| 24| 32| 41| 51| 61| 70| 78| 85| 90| 94| 96

30| 14| 29| 39| 49| 60| 70| 79| 86| 91| 95| 97| 99

35| 16| 34| 45| 56| 67| 77| 85| 91| 95| 97| 99| 99

40| 18| 38| 50| 63| 74| 83| 90| 95| 97| 99

45| 20| 43| 56| 68| 79| 88| 93| 97| 99| 99

50| 22| 47| 61| 73| 84| 91| 96| 98| 99

55| 24| 51| 65| 78| 87| 94| 97| 99

60| 26| 55| 70| 82| 90| 96| 98| 99

65| 28| 59| 74| 85| 93| 97| 99

70| 30| 62| 77| 88| 94| 98| 99

75| 33| 66| 80| 90| 96 99

80| 35| 69| 83| 92| 97 99

90| 39| 75| 87| 95| 98

100 43| 79| 91| 97| 99

110 46| 83| 93| 98

120 50 87| 95| 99

130 54| 89| 97 99

140 57| 92| 98

150| 60| 93| 98

175 68| 97| 99

200| 74| 98

225 80 99

250| 84

300 90

350 94

400| 97

450| 98

500 99

600

700

800

900

1000
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ONE-WAY BETWEEN SUBJECTS ANALYSIS OF COVARIANCE

Table 7.12. Power table for ANCOVA F-ratio; r=0.60, pattern H, 4 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55]0.60| 0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5/ 6 8| 10| 11| 13| 16| 18| 21| 24| 28| 31| 35| 52| 73| 89| 96| 99
6| 7| 9| 11| 13| 16| 19| 22| 26| 30| 34| 39| 44| 04| 84| 95| 99
7 71 10 13| 15| 18| 22| 26| 31| 36| 41| 46| 52| 73| 91| 98
8| 7| 11| 14| 17| 21| 25| 30| 36| 41| 47| 53| 59| 80| 95| 99
9| 8| 12| 15| 19| 24| 29| 34| 40| 47| 53| 59| 66| 86| 97

101 8| 13| 17[ 21| 26| 32| 38| 45| 52| 59| 65| 71| 90| 98

11| 9] 15| 19| 24| 29| 36| 42 49| 57| 64| 70| 76| 93| 99

12| 9] 16| 20| 26| 32| 39| 46| 54| 61| 68| 75| 81| 95

13| 9 17| 22| 28| 35| 42| 50| 58| 65| 73| 79| 84| 97

14| 10{ 18| 23| 30| 37| 45| 54| 62| 69 76| 82| 87| 98

15| 10{ 19| 25 32| 40| 48| 57| 65| 73| 80| 85| 90| 98

20| 13| 25| 33| 43| 53| 62| 72| 80| 86| 91| 94| 97

25| 15| 31| 42| 53| 64| 74| 82| 89| 93| 96| 98| 99

30| 18| 37| 49| 61| 73| 82| 89| 94| 97| 99| 99

35| 20| 43| 56| 69| 80| 88| 94| 97| 99| 99

40| 23| 49| 63| 76| 85| 92| 96| 98| 99

45| 26| 54| 69| 81| 90| 95| 98| 99

50( 29| 59| 74| 85| 93| 97 99

55( 31| 64| 78| 89| 95| 98| 99

60| 34| 68| 82| 91| 97 99

65| 37| 72| 85| 94| 98| 99

70| 39| 75| 88| 95| 98

75| 42| 78| 90| 96| 99

80| 44| 81| 92| 97| 99

90| 49| 86| 95| 99

100 54| 90| 97| 99

1101 59| 92| 98

120 63| 95| 99

130 67| 96| 99

140 70| 97

150 73| 98

175 80| 99

200( 86

225 90

250 93

300 97

350 98

400 99

450

500

600

700

800

900

1000
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Table 7.13. Power table for ANCOVA F-ratio; r=0.40, pattern L, 5 groups at alpha=0.05

CHAPTER 7 TABLES

n Hypothesized ES
0.20{0.30(0.35{0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 {1.00|1.25[1.50 1.75]2.00| 2.50 | 3.00
51 5 6| 6 7| 7| 8 9| 10| 11| 12| 13| 14| 20| 30| 42| 55| 68| 88| 97
6| 50 o6 7( 7 8 9| 10| 11| 12| 13| 15| 17| 24| 37| 52| 67| 80| 95| 99
7 5 6 7 8 9 10 11| 12| 14| 15| 17| 19| 29| 44| 61| 76| 87| 98
8| e 7| 7| 8| 9| 11| 12| 14| 16| 18| 20| 22| 34| 51| 69| 83| 92| 99
91 6| 7| 8 9| 10| 12| 13| 15| 17| 20| 22| 25| 38| 57| 75| 88| 95

100 6 7| 8 9| 11| 13| 15| 17| 19| 22| 25| 28| 43| 63| 81| 92| 97

11 6] 7| 9 10| 12| 14| 16| 18| 21| 24| 27| 31| 47| 68| 85| 95| 99

121 6 8| 9 11| 13| 15| 17| 20| 23| 26| 30| 34| 52| 73| 89| 96| 99

13| 6| 8| 10{ 11| 13| 16| 18| 22| 25| 29| 33| 37| 56| 77| 91| 98

14 6 8| 10| 12| 14| 17| 20| 23| 27| 31| 35| 40| 60| 81| 94| 99

15| 6| 9| 10{ 13| 15| 18| 21| 25| 29| 33| 38| 43| 63| 84| 95| 99

20| 7| 10| 13| 16| 19| 24| 28| 33| 39| 44| 50| 56| 78| 94| 99

25| 8| 12| 15| 19| 24| 29| 35| 42| 48| 55| 61| 68| 88| 98

30| 8| 14| 18| 23| 29| 35| 42| 49| 57| 64| 71| 77| 93| 99

35 9 16| 21| 27| 33| 41| 49| 57| 65| 72| 78| 84| 97

40| 10| 18| 24| 30| 38| 46| 55| 63| 71| 78| 84| 89| 98

45| 11| 20| 27| 34| 43| 52| o1| 69| 77| 84| 89| 93| 99

50| 11| 22| 29| 38| 47| 57| 66| 75| 82| 88| 92| 95

55| 12| 24| 32| 42| 52| 61| 71| 79| 86| 91| 94| 97

60| 13| 26| 35| 45| 56| 66| 75| 83| 89| 93| 96| 98

65| 14| 28| 38| 49| 60| 70| 79| 86| 91| 95| 97| 99

701 15| 30| 41| 52| 63| 73| 82| 89| 94| 97| 98| 99

75| 16| 32| 43| 55| 67| 77| 85| 91| 95| 98| 99

80| 16| 35| 46| 58| 70 80| 87| 93| 96| 98| 99

90| 18| 39| 51| 64| 76| 85| 91| 96| 98| 99

100| 20| 43| 56| 69| 80| 89| 94| 97| 99

110 22| 47| 61| 74| 84| 92| 96| 98| 99

120| 24| 51| 65| 78| 88| 94| 97| 99

130 25 54| 69 82| 90| 96| 98| 99

140 27| 58| 73| 85| 93| 97| 99

150 29| 61| 76| 87| 94| 98| 99

175 34| 69| 83| 92| 97| 99

200 38| 75| 88| 95| 99

225| 43 81| 92| 97| 99

250| 47| 85| 95| 99

300 56| 91| 98

350 63| 95| 99

400| 70| 97

450 75 99

500 80| 99

600| 88

700| 92

800| 96

900| 97

1000 99
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ONE-WAY BETWEEN SUBJECTS ANALYSIS OF COVARIANCE

Table 7.14. Power table for ANCOVA F-ratio; r=0.60, pattern L, 5 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55]0.60| 0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5 5 6| 7| 8| 8| 9| 10| 11| 13| 14| 15| 17| 25| 38| 54| 69| 81| 96| 99
6| o 7| 7| 8 9 10| 12| 13| 15| 17| 19| 21| 31| 48| 65| 80| 90| 99
7 6 7 8 9| 10| 12| 13| 15[ 17| 19| 22| 25| 38| 56| 74| 87| 95
8 6 7| 8| 10| 11| 13| 15| 17| 20| 22| 25| 29| 44| 64| 81| 92| 98
9 6 8 9 10| 12| 14| 16| 19| 22| 25| 29| 32| 49| 71| 87| 96| 99
10 6] 8| 9 11| 13| 16| 18| 21| 25| 28| 32| 36| 55| 76| 91| 97

11| 6| 8| 10{ 12| 14| 17| 20| 23| 27| 31| 36| 40| 60| 81| 94| 99

12| 6] 9| 11| 13| 15| 18| 22| 26| 30| 34| 39| 44| 65| 85| 96| 99

131 7( 9| 11| 14| 17| 20| 24| 28| 32| 37| 42| 48| 69| 88| 97

14| 7( 10| 12 15| 18| 21| 25| 30| 35| 40| 46| 51| 73| 91| 98

15| 7{ 10| 13| 15| 19| 23| 27| 32| 37| 43| 49| 55| 76| 93| 99

20| 8| 13| 16| 20| 25 30| 36| 43| 50| 57| 63| 70| 89| 98

25| 9| 15| 19| 25| 31| 38| 45| 53| 61| 68| 75| 81| 95

30| 10| 18| 23| 30| 37| 45| 54| 62| 70| 77| 83| 88| 98

35| 11| 20| 27| 35| 43| 52| 61| 70| 78| 84| 89 93| 99

40| 12| 23| 31| 39| 49| 59| 68| 77| 84| 89| 93| 96

45| 13| 26| 34| 44| 55| 65| 74| 82| 88| 93| 96| 98

50( 14| 28| 38| 49| 60| 70[ 79| 86| 92| 95| 98| 99

55 15| 31| 42| 53| 64| 75| 83| 90| 94| 97| 99| 99

60| 16| 34| 45| 57| 69 79| 87| 92| 96| 98| 99

65| 17| 37| 49| 61| 73| 82| 90| 94| 97| 99

70| 18| 39| 52| 65| 76| 85| 92| 96| 98| 99

75| 20| 42| 55| 68| 80| 88| 94| 97| 99

80| 21| 45( 59| 72| 82| 90 95| 98| 99

90| 23| 50| 64| 77| 87| 94| 97| 99

100| 26| 55| 70 82| 91| 96| 98| 99

110 28| 59| 74| 86| 93| 97| 99

120 31| 63| 78| 89| 95| 98

130 33| 67| 82| 92 97| 99

140 35 71| 85| 94| 98| 99

150 38| 74| 88| 95| 98

175 44| 81| 92| 98| 99

200 49| 87| 96| 99

225( 55| 91| 97| 99

250 60| 94| 99

300 69| 97

350 76| 99

400| 82

450( 87

500 91

600 95

700( 98

800 99

900

1000
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CHAPTER 7 TABLES

Table 7.15. Power table for ANCOVA F-ratio; r=0.40, pattern M, 5 groups at alpha =0.05

n Hypothesized ES
0.20{0.30(0.35]0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 {1.00|1.25[1.50 1.75]2.00| 2.50 | 3.00
5 51 6| 7| 7| 8| 9| 10| 11| 12| 13| 15| 16| 24| 37| 51| 66| 79| 94| 99
6| o 7| 7 8| 9| 10| 11| 13| 14| 16| 18| 20| 30| 46| 63| 78| 88| 98
7 6 7 8 91 10| 11| 13| 14| 16| 19| 21| 24| 36| 54| 72| 86| 94| 99
8| 6 7| 8| 9| 11| 12| 14| 16| 19| 21| 24| 27| 42| 62| 79| 91| 97
9 6 8| 9| 10| 12| 14| 16| 18| 21| 24| 27| 31| 47| 68| 85| 95| 99
100 6 8| 9 11| 13| 15| 17| 20| 23| 27| 31| 35| 53| 74| 89| 97| 99
11| 6| 8| 10{ 12| 14| 16| 19 22| 26| 30| 34| 38| 58| 79| 93| 98

12| 6| 9| 10{ 12| 15| 18| 21| 24| 28| 33| 37| 42| 62| 83| 95| 99

13| 6| 9| 11| 13| 16| 19| 23| 26| 31| 36| 40| 46| 67| 87| 96| 99

141 71 9| 12| 14| 17| 20| 24| 29| 33| 38| 44| 49| 70| 90| 98

15| 7| 10| 12| 15| 18| 22| 26| 31| 36| 41| 47| 52| 74| 92| 98

20| 8| 12| 15| 19| 24| 29| 35| 41| 48| 54| 61| 67| 87| 98

25| 8| 14| 19| 24| 30| 36| 43| 51| 58| 66| 72| 78| 94| 99

30 9| 17| 22| 28| 36| 43| 52| 60| 68| 75| 81| 86| 98

35| 10| 19| 26| 33| 41| 50| 59| 68| 75| 82| 87| 92| 99

40| 11| 22| 29| 38| 47| 57| 66| 74| 82| 87| 92| 95

45| 12| 24| 33| 42| 52| 62| 72| 80| 86| 91| 95| 97

50| 13| 27| 36| 47| 57| 68| 77| 84| 90| 94| 97| 98

55| 14| 30| 40| 51| 62| 72| 81| 88| 93| 96| 98| 99

60| 15| 32| 43| 55| 66 77| 85| 91| 95| 97| 99

65| 17| 35| 47| 59| 70 80| 88| 93| 97| 98| 99

70| 18| 38| 50| 63| 74| 84| 90| 95| 98| 99

75| 19| 40| 53| 66| 77| 86| 92| 96| 98| 99

80| 20| 43| 56| 69| 80 89| 94| 97| 99

90| 22| 48| 62| 75| 85 92| 96| 99| 99

100| 24| 52| 67| 80| 89 95| 98| 99

110 27| 57| 72| 84| 92| 97| 99

120 29| 61| 76| 87| 94| 98| 99

130 31| 65| 80[ 90| 96| 99

140 34| 69| 83| 92| 97| 99

150 36| 72| 86| 94| 98| 99

175 42 79| 91| 97| 99

200| 47| 85| 95| 99

225| 53| 89| 97| 99

250 58| 92| 98

300 66| 96| 99

350| 74| 98

400| 80| 99

450| 85

500 89

600 94

700| 97

800 99

900| 99

1000
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ONE-WAY BETWEEN SUBJECTS ANALYSIS OF COVARIANCE

Table 7.16. Power table for ANCOVA F-ratio; r=0.60, pattern M, 5 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55{0.60| 0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5 6 7| 7| 8| 9 10| 12| 13| 15| 17| 19| 21| 31| 47| 64| 79| 90| 99
6| o6 7| 8 9| 10[ 12| 14| 15| 18| 20| 23| 25| 39| 58| 76| 89| 96
7 6 8 91 10| 12| 13| 16| 18| 21| 24| 27| 30| 46| 67| 84| 94| 98
8 6 8| 9| 11| 13| 15| 18| 21| 24| 27| 31| 35| 53| 75| 90| 97| 99
9 6 91 10| 12| 14| 17 20| 23| 27| 31| 36| 40| 60 81| 94| 99

100 6] 9| 11| 13| 16| 19| 22 26| 30| 35| 40| 45| 66| 86| 96| 99

11 7[ 10| 12 14| 17| 21| 24| 29| 34| 39| 44| 49| 71| 90| 98

12| 7[ 10| 12 15| 19| 22| 27| 32| 37| 42| 48| 54| 75| 93| 99

13| 7| 11| 13| 16| 20| 24| 29| 34| 40| 46| 52| 58| 80| 95| 99

14 71 11| 14| 18| 22| 26| 31| 37| 43| 49| 56| 62| 83| 96

15| 8| 12| 15[ 19| 23| 28| 34| 40| 46| 53| 59| 66| 86| 97

20| 9| 15| 19| 25| 31| 38| 45| 53| 60| 68| 74| 80| 95

25| 10| 18| 24| 31| 38| 47| 55| 64| 72| 79| 85| 89| 98

30| 11| 21| 29| 37| 46| 55| 65| 73| 81| 87| 91| 95

35| 12| 25| 33| 43| 53| 63| 72| 80| 87| 92| 95| 97

40| 14| 28| 38| 49| 59| 70| 79| 86| 91| 95| 97| 99

45| 15| 32| 42| 54| 65| 76| 84| 90| 95| 97| 99| 99

50( 17| 35| 47| 59| 71| 81| 88| 93| 97| 98| 99

55( 18| 39| 51| 64| 75| 85| 91| 95| 98| 99

60| 20| 42| 55| 68| 79| 88| 94| 97| 99

65| 21| 45| 59| 72| 83| 91| 95| 98| 99

70| 23| 48] 63| 76| 86| 93| 97| 99

75| 24| 51| 66| 79| 88| 94| 98| 99

80| 26| 54| 69| 82| 91| 96| 98| 99

90| 29| 60| 75| 87| 94| 98| 99

100 32| 65| 80| 90| 96 99

110 35 70| 84| 93| 98| 99

120 38| 74| 87| 95| 98

130| 41 78| 90| 97| 99

140| 44| 81| 92| 98| 99

150 47| 84| 94| 98

175| 53| 90| 97| 99

200 60| 94| 99

225 66| 96| 99

250 71| 98

300 79| 99

350 86

400 91

450 94

500 96

600| 98

700 99

800

900

1000
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Table 7.17. Power table for ANCOVA F-ratio; r=0.40, pattern H, 5 groups at alpha=0.05

CHAPTER 7 TABLES

n Hypothesized ES
0.20{0.30(0.35]0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 {1.00|1.25[1.50 1.75]2.00| 2.50 | 3.00
5 6/ 8| 9| 10| 11| 13| 15| 18| 20| 23| 26 29| 45| 65| 82| 93| 98
6| 6| 8| 10| 11| 13| 16| 18| 21| 25| 28| 32| 37| 55| 77| 91| 98
7 6 9 11| 13| 15| 18| 22| 25| 29| 34| 39| 44| o4| 85| 96| 99
8| 7| 10| 12| 14| 17| 21| 25| 29| 34| 39| 45| 50| 72| 90| 98
9l 7| 11| 13| 16| 20| 24| 28| 33| 39| 45| 51| 57| 78| 94| 99
100 7[ 11| 14| 18| 22| 26| 32| 37| 43| 50| 56| 62| 83| 96

11| 8| 12| 15[ 19| 24| 29| 35| 41| 48| 55| 61| 68| 88| 98

121 8| 13| 17| 21| 26| 32| 38| 45| 52| 59| 66| 72| 91| 99

13| 8| 14| 18| 23| 28| 35| 42| 49| 56| 64| 70| 77| 93| 99

14| 9 15| 19| 25| 31| 38| 45| 53| 60| 67| 74| 80| 95

15| 9 16| 21| 26| 33| 40| 48| 56| 64| 71| 78| 83| 96

20 11| 21| 27| 35| 44| 53| 62| 71| 79| 85| 90| 94| 99

25| 13| 26| 34| 44| 54| 65| 74| 82| 88| 93| 96| 98

30| 15| 31| 41| 52| 64| 74| 83| 89| 94| 97| 98| 99

35| 17| 36| 48| 60| 71| 81| 89| 94| 97 99| 99

40| 19| 41| 54| 67| 78| 87| 93| 96| 98| 99

45| 21| 45| 59| 72| 83| 91| 96| 98| 99

50| 23| 50| 65| 78| 87| 94| 97| 99

55| 26| 54| 69| 82| 91| 96| 98| 99

60| 28| 59| 74| 85| 93| 97| 99

65| 30| 63| 78| 88| 95| 98| 99

701 32| 66| 81| 91| 96 99

75| 35| 70| 84| 93| 97 99

80| 37| 73| 86| 94| 98

90| 41| 79| 91| 97| 99

100| 45| 83| 93| 98

110 50 87| 96| 99

120 54| 90| 97| 99

130 57| 92| 98

140 61 94| 99

150 64| 96| 99

175 72| 98

200| 78| 99

225| 83

250| 87

300 93

350 96

400| 98

450 99

500

600

700

800

900

1000
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Table 7.18. Power table for ANCOVA F-ratio; r=0.60, pattern H, 5 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55]0.60| 0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5/ 6| 9| 10| 12| 14| 16| 19| 22| 26| 29| 34| 38| 57| 78| 92| 98
6| 7| 9| 11| 14| 16| 20| 23| 27| 32| 37| 42| 47| 68| 88| 97
7 71 10 13| 16| 19| 23| 28| 33| 38| 44| 50| 56| 77| 94| 99
8| 7| 12| 14| 18| 22| 27| 32| 38| 44| 51| 57| 63| 84| 97
9| 8| 13| 16| 20| 25| 31| 37| 43| 50| 57| 64| 70| 89| 98
10| 8| 14| 18| 22| 28| 34| 41| 48| 55| 63| 69| 76| 93| 99
11| 9 15| 19 25| 31| 38| 45| 53| 61| 68| 75| 81| 95

12| 9] 16| 21| 27| 34| 41| 49| 57| 65| 73| 79| 85| 97

13| 10| 17| 23| 29| 37| 45| 53| 62| 70| 77| 83| 88| 98
14| 10{ 19| 25 32| 40| 48| 57| 66| 74/ 80| 86| 91| 99
15| 11| 20| 27{ 34| 43| 52| 61| 69| 77 84| 89| 93| 99
20| 13| 26| 36| 46| 56| 67| 76| 83| 89| 94| 96| 98

25| 16| 33| 44| 56| 68| 78| 86| 92| 96| 98| 99

30| 19| 40| 53| 65| 77| 86| 92| 96| 98| 99

35| 21| 46| 60| 73| 84| 91| 96| 98| 99

40| 24| 52| 67| 80| 89| 95| 98| 99

45| 27| 58| 73| 85| 93| 97| 99

50( 30| 63| 78| 89| 95| 98| 99

55 33| 68| 82| 92| 97| 99

60| 36| 72| 86| 94| 98| 99

65| 39| 76| 89| 96| 99

701 42| 79| 91 97| 99

75| 45| 82| 93| 98

80| 47| 85| 95| 99

90| 53| 89| 97| 99

100 58| 93| 98

110 62 95 99

120 67| 96| 99

130 71| 98

140| 74| 98

150 77| 99

175| 84

200( 89

225 93

250 95

300 98

350 99

400

450

500

600

700

800

900

1000
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Table 7.19. Sample size table for one-way ANCOVA; alpha=0.05, r=0.40

CHAPTER 7 TABLES

Chart A. 2 groups

Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80{1.00| 1.25| 1.50| 1.75| 2.00( 2.50 | 3.00
0.80 |[323| 144| 106| 82| 65| 53| 44| 37| 32| 28| 24| 22| 14| 10 7 6 5 4 4
0.90 | 433| 193] 142| 109 87| 71| 59| 49| 42| 37| 32| 29| 19| 13| 9| 7| o6 5| 4

Chart B. 3 groups, pattern L/M

Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80(1.00| 1.25|1.50| 1.75| 2.00( 2.50 | 3.00
0.80 | 400| 179] 132| 101| 80| 65| 54| 46| 39| 34| 30| 26| 18| 12| 9| 7| o6 4| 4
0.90 | 527| 235| 173| 133| 105 86| 71| 60| 51| 44| 39| 34| 23| 15| 11| 9| 7| 5| 4

Chart C. 3 groups, pattern H

Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50]|0.55[0.60{0.65|0.70{0.75]|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 300| 134 99| 76| 61| 49| 41| 35| 30| 26| 23| 20 14| 9| 7| 6| 5 4 3
0.90 | 395| 177| 130| 100| 79| 65| 54| 45| 39| 34| 30| 26| 17| 12| 9| 7| 6| 4| 4

Chart D. 4 groups, pattern L

Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]0.60(0.65|0.70{0.75[0.80{1.00| 1.25| 1.50| 1.75| 2.00(2.50 | 3.00
0.80 | 454| 203| 149| 115 91| 74| 61| 52| 44| 38| 34| 30 20| 13| 10| 8| o6 5 4
0.90 | 592| 264| 194| 149| 118| 96| 80| 67| 57| 50| 44| 38| 25| 17| 12| 9| 8| 5| 4

Chart E. 4 groups, pattern M

Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00
0.80 | 409| 183| 135| 103| 82| 67| 55| 47| 40| 35| 31| 27| 18| 12| 9| 7| o6 4| 4
0.90 |[533| 238 175| 134| 107| 87| 72| 61| 52| 45| 39| 35| 23| 15| 11 9 7 5 4

Chart E 4 groups, pattern H

Power Hypothesized ES
0.200.300.35|0.40{0.45[0.50{0.55]0.60|0.65{0.700.75 {0.80|1.00 | 1.25[1.50{1.75]2.00|2.50 | 3.00
0.80 |228]102| 75| 58| 46| 38| 31| 27| 23| 20| 18| 16| 11| 7 6 5| 4| 3| 3
0.90 |297|133| 98| 75| 60| 49| 41| 34| 29| 26| 23| 20| 13| 9 7| 6| 5| 4| 3
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Table 7.19. (cont.)

Chart G. 5 groups, pattern L

Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 498| 222 164| 126| 100| 81| 67| 57| 49| 42| 37| 33| 21| 14| 10 8 7 5 4
0.90 | 645| 288| 212| 162| 129| 104| 87| 73| 62| 54| 47| 42| 27| 18| 13| 10| 8| 6| 5
Chart H. 5 groups, pattern M
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75]|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[399| 178| 131| 101| 80| 65| 54| 46| 39 34| 30| 26| 17| 12| 9| 7| 6| 4| 3
0.90 |[517| 230( 170| 130| 103| 84| 70| 59| 50| 44| 38| 34| 22| 15| 11 8 7 5 4
Chart I. 5 groups, pattern H
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[208| 93| 69| 53| 42| 35| 29| 24| 21| 18| 16| 14| 10| 7| 5| 4| 4| 3| 3
0.90 |270| 121| 89| 69| 54| 44| 37| 31| 27| 23| 21| 18| 12{ 8| o6 5| 4| 3| 3
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Table 7.20. Sample size table for one-way ANCOVA; alpha=0.05, r=0.60

CHAPTER 7 TABLES

Chart A. 2 groups

Power Hypothesized ES
0.2010.30{0.35] 0.40(0.45(0.50|0.55|0.60(0.65|0.70{0.75[0.80{1.00| 1.25| 1.50| 1.75| 2.00( 2.50 | 3.00
0.80 |[246| 110 81| 63| 50| 41| 34| 29| 25| 22| 19| 17| 11 8 6 5 4 4 3
0.90 | 330| 148] 109| 84| 66| 54| 45| 38| 33| 28| 25| 22| 15| 10| 8| 6| 5| 4| 4

Chart B. 3 groups, pattern L/M

Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]0.60(0.65|0.70{0.75[0.80(1.00| 1.25|1.50| 1.75| 2.00( 2.50 | 3.00
0.80 | 305| 136| 101| 77| 62| 50| 42| 35| 30| 26| 23| 21| 14| 9| 7| 6| 5 4| 3
0.90 |[402| 179 132| 102 81| 66| 54| 46| 39| 34| 30| 27| 18| 12 9 7 6 4 4

Chart C. 3 groups, pattern H

Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50]|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |229| 103| 76| 58| 47| 38| 32| 27| 23| 20| 18| 16| 11| 7| 6| 5| 4| 3| 3
0.90 |302| 135] 100| 77| 61| 50| 41| 35| 30| 26| 23| 20| 14| 9| 7| 6| 5| 4| 3

Chart D. 4 groups, pattern L

Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80{1.00| 1.25|1.50| 1.75| 2.00( 2.50 | 3.00
0.80 | 346| 155| 114| 88| 70| 57| 47| 40| 34| 30| 26| 23| 15| 10| 8| 6| 5| 4| 3
0.90 | 452| 202| 148| 114 90| 74| 61| 52| 44| 38| 34| 30| 20| 13| 10| 7| o6 5| 4

Chart E. 4 groups, pattern M

Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]|0.60{0.65|0.70|0.75|0.801.00| 1.25| 1.50| 1.75]| 2.00| 2.50| 3.00
0.80 | 312| 139] 103| 79| 63| 51| 43| 37| 31| 27| 24| 21| 14| 10| 7| 6| 5| 4 3
0.90 | 407| 182| 134| 103| 82| 66| 55| 48| 40| 35| 30| 27| 18| 12| 9| 7| o6 4| 4

Chart E 4 groups, pattern H

Power Hypothesized ES
0.200.300.35|0.40{0.45[0.50{0.55]0.60|0.65{0.700.75 {0.80|1.00 | 1.25[1.50{1.75]2.00|2.50 | 3.00
0.80 |174| 78| 58| 45| 36| 29| 24| 21| 18| 16| 14| 12| 9| 6 5[ 4| 4| 3| 3
0.90 |227]102| 75| 59| 46| 38| 31| 27| 23| 20| 18| 16| 11| 7 6 5[ 4| 3| 3
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Table 7.20. (cont.)

Chart G. 5 groups, pattern L

Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[380| 170( 125| 96| 75| 62| 52| 44| 37| 32| 28| 25| 17| 11 8 7 5 4 3
0.90 |492| 220| 162| 124| 98| 80| 66| 56| 48| 42| 36| 32| 21| 14| 10| 8| 6| 5| 4
Chart H. 5 groups, pattern M
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 304| 136| 100| 77| 61| 50| 42| 35| 30{ 26| 23| 20 14| 9 7| 6| 5| 4| 3
0.90 |394| 176| 130| 100| 79| 64| 53| 45| 39 34| 29| 26| 17| 12| 9| 7| 6| 4| 3
Chart I. 5 groups, pattern H
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[159| 72| 53| 41| 33| 27| 22| 19| 16| 14| 13| 11| 8| 6| 4| 4| 3| 3| 3
0.90 |206| 92| 68| 53| 42| 34| 29| 24| 21| 18| 16| 14| 10{ 7| 5| 4| 4| 3| 3
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Table 7.21. Sample size table for ANCOVA; alpha=0.01, r=0.40

CHAPTER 7 TABLES

Chart A. 2 groups

Power Hypothesized ES
0.2010.30{0.35] 0.40(0.45(0.50|0.55|0.60(0.65|0.70{0.75[0.80{1.00| 1.25| 1.50| 1.75| 2.00( 2.50 | 3.00
0.80 |[486] 217| 160| 123 98| 80| 66| 56| 48| 42| 37| 33| 22| 15| 11 9 7 6 5
0.90 | 619 276| 204| 156| 124| 101| 84| 71| 61| 53| 46| 41| 27| 18| 13| 10| 9| 7| 5

Chart B. 3 groups, pattern L/M

Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]0.60(0.65|0.70{0.75[0.80(1.00| 1.25|1.50| 1.75| 2.00( 2.50 | 3.00
0.80 | 580| 259 191| 146| 116 95| 78| 66| 57| 49| 43| 38| 25| 17| 12| 10| 8| 6 5
0.90 | 728| 325| 239| 184| 146| 118| 98| 83| 71| 61| 54| 47| 31| 21| 15| 12| 9| 7| 6

Chart C. 3 groups, pattern H

Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50]|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 435| 195| 144| 110 88| 71| 59| 50| 43| 37| 33| 29| 19| 13| 10| 8| 7| 5| 4
0.90 | 457| 244| 180| 138| 110 89| 74| 63| 54| 47| 41| 36| 24| 16| 12| 9| 8| 6 5

Chart D. 4 groups, pattern L

Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80{1.00| 1.25|1.50| 1.75| 2.00( 2.50 | 3.00
0.80 | 646| 288 212| 163| 129| 105| 87| 74| 63| 55| 48| 42| 28| 29| 13| 10| 9| 6| 5
0.90 | 806| 359 264| 203| 161| 131| 108| 91| 78| 68| 59| 52| 34| 23| 16| 13| 10| 7| 6

Chart E. 4 groups, pattern M

Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]|0.60{0.65|0.70|0.75|0.801.00| 1.25| 1.50| 1.75]| 2.00| 2.50| 3.00
0.80 | 582| 260| 191| 147| 117 95| 79| 66| 57| 49| 43| 38| 25| 17| 12| 10| 8| 6 5
0.90 | 726| 324| 238| 183| 145| 118| 98| 82| 70| 61| 53| 47| 31| 21| 15| 11| 9| 7| 5

Chart E 4 groups, pattern H

Power Hypothesized ES
0.200.300.35|0.40{0.45[0.50{0.55]0.60|0.65{0.700.75 {0.80|1.00 | 1.25[1.50{1.75]2.00|2.50 | 3.00
0.80 |324| 145|107 83| 55| 54| 45| 38| 32| 28| 25| 22| 15| 10| 8| 6 5| 4| 4
0.90 |404|181|133| 102| 81| 66| 55| 47| 40| 35| 31| 27| 18| 12| 9 7 6| 5| 4
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Table 7.21. (cont.)

Chart G. 5 groups, pattern L

Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 [ 701| 313|230| 177| 140| 114 94| 80| 68| 59| 52| 46| 30| 20| 14| 11 9 6 5
0.90 |869| 387|285| 219| 173| 141| 117| 98| 84| 73| 64| 56| 37| 24| 17| 13| 11| 8| 6
Chart H. 5 groups, pattern M
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75]|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 561| 250| 185 142| 112 91| 76| 64| 55| 48| 42| 37| 24| 16| 12| 9| 8| 6 5
0.90 | 696| 310 228| 175| 139| 113| 94| 79| 68| 59| 51| 45| 30| 20| 14| 11 9 6 5
Chart I. 5 groups, pattern H
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[293| 131| 97| 75| 59| 48| 40| 34| 29| 26| 23| 20 14| 9 7| 6| 5| 4| 3
0.90 |[363| 163| 120| 92| 73| 60| 50| 42| 36| 31| 28| 24| 16| 11| 8| 7| 6| 4| 4
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Table 7.22. Sample size table for ANCOVA; alpha=0.01, r=0.60

CHAPTER 7 TABLES

Chart A. 2 groups

Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80{1.00| 1.25| 1.50| 1.75| 2.00( 2.50 | 3.00
0.80 |[371| 166| 123| 94| 75| 61| 51| 43| 37| 32| 29| 25| 17| 12 9 7 6 5 4
0.90 | 472| 211| 156| 120 95| 77| 64| 54| 47| 41| 36| 32| 21| 14 11| 9| 7| 6 5

Chart B. 3 groups, pattern L/M

Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80(1.00| 1.25|1.50| 1.75| 2.00( 2.50 | 3.00
0.80 | 442| 198 146| 112 89| 73| 60| 51| 44| 38| 33| 30| 20| 13| 10| 8| 7| 5 4
0.90 | 555| 248 183| 140| 111| 91| 75| 64| 54| 47| 41| 37| 24| 16| 12| 9| 8| 6 5

Chart C. 3 groups, pattern H

Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50]|0.55[0.60{0.65|0.70{0.75]|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 332| 149] 110| 85| 67| 55| 46| 39| 33| 29| 26| 23| 15| 11| 8| 7| o6 4| 4
0.90 | 417| 186| 138| 106| 84| 68| 57| 48| 41| 36| 32| 28| 19| 13| 10| 8| 6 5 4

Chart D. 4 groups, pattern L

Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]0.60(0.65|0.70{0.75[0.80{1.00| 1.25| 1.50| 1.75| 2.00(2.50 | 3.00
0.80 | 493| 220| 162| 125 99| 81| 67| 57| 48| 42| 37| 33| 22| 15| 11| 8| 7| 5| 4
0.90 | 615| 274 202| 155| 123| 100| 83| 70| 60| 52| 46| 40| 26| 18| 13| 10| 8| 6 5

Chart E. 4 groups, pattern M

Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00
0.80 | 444| 198 146| 112 89| 73| 60| 51| 44| 38| 33| 30| 20| 13| 10| 8| 7| 5| 4
0.90 [ 553|247 182| 140( 111 90| 75| 63| 54| 47| 41| 36| 24| 16| 12 9 8 6 5

Chart E 4 groups, pattern H

Power Hypothesized ES
0.200.300.35|0.40{0.45[0.50{0.55]0.60|0.65{0.700.75 {0.80|1.00 | 1.25[1.50{1.75]2.00|2.50 | 3.00
0.80 |247| 111 82| 63| 50| 41| 34| 29| 25( 22| 19| 17| 12| 8| 6 5[ 5| 4| 3
0.90 |308| 138|102 79| 62| 51| 42| 36| 31| 27| 24| 21| 14| 10| 8| 6 5| 4| 4
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Table 7.22. (cont.)

Chart G. 5 groups, pattern L

Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[535| 239| 176| 135| 107| 87| 72| 61| 52| 45| 40| 35| 23| 16| 11 9 7 5 4
0.90 | 663| 296| 218| 167| 132| 108| 89| 75| 64| 56| 49| 43| 28| 19| 14| 11| 9| 6| 5
Chart H. 5 groups, pattern M
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75]|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |428| 191| 141| 108| 86| 70| 58| 49| 42 37| 32| 29| 19| 13| 10| 8| 6| 5| 4
0.90 |[531| 237| 175| 134| 106| 86| 72| 61| 52| 45| 39| 35| 23| 15| 11 9 7 5 4
Chart I. 5 groups, pattern H
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |224| 101| 74| 57| 46| 37| 31| 27| 23| 20| 18| 16| 11| 8| 6| 5| 4| 4 3
0.90 |277| 124| 92| 71| 56| 46| 38| 32| 28| 24| 21| 19| 13| 9| 7| 6| 5| 4| 3
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Table 7.23. Sample size table for ANCOVA; alpha=0.10, r=0.40

CHAPTER 7 TABLES

Chart A. 2 groups

Power Hypothesized ES
0.2010.30{0.35] 0.40(0.45(0.50|0.55|0.60(0.65|0.70{0.75[0.80{1.00| 1.25| 1.50| 1.75| 2.00( 2.50 | 3.00
0.80 [251| 112 83| 64| 51| 41| 34| 29| 25| 22| 19| 17| 11 8 6 5 4 3 3
0.90 | 350| 156| 115| 88| 70| 57| 47| 40| 34| 30| 26| 23| 15| 10| 8| 6| 5| 4 3

Chart B. 3 groups, pattern L/M

Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]0.60(0.65|0.70{0.75[0.80(1.00| 1.25|1.50| 1.75| 2.00( 2.50 | 3.00
0.80 | 319| 142| 105| 81| 64| 52| 43| 37| 31| 27| 24| 21| 14| 10| 7| 6| 5| 4| 3
0.90 | 434| 194 143| 109 87| 71| 59| 49| 42| 37| 32| 28| 19| 12 9 7 6 4 4

Chart C. 3 groups, pattern H

Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50]|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 239|107 79| 61| 48| 39| 33| 28| 24| 21| 18| 16| 11| 8| 6| 5| 4| 3| 3
0.90 |326| 146| 107| 82| 65| 53| 44| 37| 32| 28| 24| 22| 14| 10| 7| 6| 5| 4| 3

Chart D. 4 groups, pattern L

Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80{1.00| 1.25|1.50| 1.75| 2.00( 2.50 | 3.00
0.80 | 365| 163| 120| 92| 73| 60| 49| 42| 36| 31| 27| 24| 16| 11| 8| 6| 5| 4| 3
0.90 | 493 220| 162| 124| 98| 80| 66| 56| 48| 41| 36| 32| 21| 14| 10| 8| o6 5 4

Chart E. 4 groups, pattern M

Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]|0.60{0.65|0.70|0.75|0.801.00| 1.25| 1.50| 1.75]| 2.00| 2.50| 3.00
0.80 | 329| 147| 108| 83| 66| 54| 45| 38| 32| 28| 25| 22| 14| 10| 7| 6| 5| 4 3
0.90 | 443| 198 146| 112 89| 72| 60| 50| 43| 37| 33| 29| 19| 13| 9| 7| o6 4| 4

Chart E 4 groups, pattern H

Power Hypothesized ES
0.200.300.35|0.40{0.45[0.50{0.55]0.60|0.65{0.700.75 {0.80|1.00 | 1.25[1.50{1.75]2.00|2.50 | 3.00
0.80 |183| 82| 61| 47| 37| 30| 25| 22| 19| 16| 14| 13| 9| o6 5[ 4| 3| 3| 3
0.90 |247|110| 82| 63| 50| 41| 34| 29| 25( 21| 19| 17| 11| 8| 6 5[ 4| 3| 3
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ONE-WAY BETWEEN SUBJECTS ANALYSIS OF COVARIANCE

Table 7.23. (cont.)

Chart G. 5 groups, pattern L

Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[403| 180| 133| 102| 81| 66| 54| 46| 39| 34| 30| 26| 17| 12 9 7 5 4 3
0.90 |540| 241| 177| 136| 108| 87| 72| 61| 52| 45| 40| 35| 23| 15| 11| 8| 7| 5| 4
Chart H. 5 groups, pattern M
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 323| 144| 106| 82| 65| 53| 44| 37| 32| 28| 24| 21| 14{ 10| 7| 6| 5| 4| 3
0.90 |432| 193] 142| 109| 86| 70| 58| 49| 42 36| 32| 28| 19| 12| 9| 7| 6| 4| 3
Chart I. 5 groups, pattern H
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[169| 76| 56| 43| 34| 28| 23| 20| 17 15| 13| 12| 8| 6| 4| 4| 3| 3| 2
0.90 |226| 101| 75| 57| 46| 37| 31| 26| 23| 20| 17| 15| 10{ 7| 5| 4| 4| 3| 3
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Table 7.24. Sample size table for ANCOVA; alpha=0.10, r=0.60

CHAPTER 7 TABLES

Chart A. 2 groups

Power Hypothesized ES
0.2010.30{0.35] 0.40(0.45(0.50|0.55|0.60(0.65|0.70{0.75[0.80{1.00| 1.25| 1.50| 1.75| 2.00( 2.50 | 3.00
0.80 |[192| 86| 64| 49 39| 32| 26| 22| 19| 17| 15| 13 9 6 5 4 4 3 3
0.90 |267| 119] 88| 68| 54| 44| 36| 31| 26| 23| 20| 18| 12| 8| 6| 5| 4| 4 3

Chart B. 3 groups, pattern L/M

Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]0.60(0.65|0.70{0.75[0.80(1.00| 1.25|1.50| 1.75| 2.00( 2.50 | 3.00
0.80 | 243| 109| 80| 62| 49| 40| 33| 28| 24| 21| 19| 16| 11| 8| 6| 5| 4| 3| 3
0.90 |[331| 148| 109| 84| 66| 54| 45| 39| 33| 28| 25| 22| 15| 10 7 6 5 4 3

Chart C. 3 groups, pattern H

Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50]|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 183| 82| 60| 47| 37| 30| 25| 21| 18| 16| 14| 13| 9| 6| 5| 4| 3| 3| 2
0.90 |249| 111| 82| 63| 50| 41| 34| 29| 25| 22| 19| 17| 11| 8| 6| 5| 4| 3| 3

Chart D. 4 groups, pattern L

Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80{1.00| 1.25|1.50| 1.75| 2.00( 2.50 | 3.00
0.80 | 279| 125| 92| 71| 56| 46| 38| 32| 28| 24| 21| 19| 12| 9| 6| 5| 4| 3| 3
0.90 | 376| 168| 124| 95 75| o1| 51| 43| 37| 32| 28| 25| 16| 11| 8| 6| 5| 4| 3

Chart E. 4 groups, pattern M

Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]|0.60{0.65|0.70|0.75|0.801.00| 1.25| 1.50| 1.75]| 2.00| 2.50| 3.00
0.80 | 251| 12| 83| 64| 51| 41| 34| 29| 25| 22| 19| 17{ 11| 8| 6| 5| 4| 3| 3
0.90 | 338| 151| 111| 86| 68| 55| 46| 39| 33| 29| 25| 22| 15| 10| 7| 6| 5| 4| 3

Chart E 4 groups, pattern H

Power Hypothesized ES
0.200.300.35|0.40{0.45[0.50{0.55]0.60|0.65{0.700.75 {0.80|1.00 | 1.25[1.50{1.75]2.00|2.50 | 3.00
0.80 |140| 63| 47| 36| 29| 24| 20| 17| 14| 13| 11| 10| 7| 5[ 4 3| 3| 3| 2
0.90 |188| 84| 62| 48| 38| 31| 26| 22| 19 17| 15| 13| 9| o6 5[ 4 3| 3| 3
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Table 7.24. (cont.)

Chart G. 5 groups, pattern L

Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[308| 137| 101| 78| 62| 50| 42| 35| 30| 26| 23| 20| 14 9 7 5 5 4 3
0.90 |411| 184| 135| 104| 82| 67| 56| 47| 40( 35| 30| 27| 18| 12| 9| 7| 6| 4| 3
Chart H. 5 groups, pattern M
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75]|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |246| 110 81| 63| 50| 41| 34| 29| 25| 21| 19| 17| 11{ 8| o6 5| 4| 3| 3
0.90 |[329| 147| 108| 83| 66| 54| 45| 38| 32| 28| 25| 22| 14| 10 7 6 5 4 3
Chart I. 5 groups, pattern H
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[129| 58| 43| 33| 27| 22| 18| 16| 13| 12| 10| 9| 7| 5| 4| 3| 3| 3| 2
0.90 | 172| 77| 57| 44| 35| 29| 24| 20| 17| 15| 13| 12| 8| 6| 5 4| 3| 3| 2
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CHAPTER 7 TABLES

Table 7.25. ANCOVA power table for Tukey HSD; r=0.40, 3 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 {1.00|1.25[1.50 1.75]2.00| 2.50 | 3.00
5 21 3| 3| 4| 5| 6| 6| 7| 9| 10| 11 13| 20| 32| 46| 61| 74| 92| 98
6| 2 3| 4| 5 6 7| 8 9| 11| 12| 14| 16| 26| 41| 58| 73| 85| 97
71 2 4| 5| 5 7| 8 9 11| 13| 15| 17| 20| 32| 49| 68| 82| 92| 99
8| 3| 4| 5| 6 8 9| 11| 13| 15| 18| 20| 23| 37| 57| 75| 88| 96
91 3| 4| o6 7| 8| 10| 12 15| 17| 20| 24| 27| 43| 64| 82| 93| 98
100 3] 5| 6| 8 9| 12| 14| 17| 20| 23| 27| 31| 48| 70| 87| 95| 99
11 3] 5| 7{ 8| 10| 13| 16| 19| 22| 26| 30| 34| 53| 76| 90| 97| 99
121 3] 6| 7 9| 12| 14| 17{ 21| 25| 29| 33| 38| 58| 80| 93| 98

13| 3] 6| 8 10| 13| 16| 19| 23| 27| 32| 36| 42| 63| 84| 95| 99

14| 4] 6| 8| 11| 14| 17| 21| 25| 29| 34| 40| 45| 67| 87| 97| 99

15| 4| 7| 9| 12| 15| 18| 22| 27| 32| 37| 43| 48| 70| 90| 98

20| 5| 9| 12| 16| 20| 25| 31| 37| 44| 50| 57| 63| 85| 97

25| 6| 11| 15| 20| 26| 32| 39| 47| 54| 62| 69| 75| 92| 99

30 6| 14| 19| 25| 32| 39| 48| 56| 64| 71| 78| 84| 96

35 71 16| 22| 29| 37| 46| 55| 64| 72| 79| 85| 90| 98

40| 8| 18| 26| 34| 43| 53| 62| 71| 78| 85| 90| 93| 99

45| 9| 21| 29| 38| 48| 59| 68| 77| 84| 89| 93| 96

50| 10| 23| 32| 43| 53| 64| 73| 82| 88| 92| 96| 98

55| 11| 26| 36| 47| 58| 69| 78| 86| 91| 95| 97| 99

60| 12| 29| 39| 51| 63| 73| 82| 89| 93| 96| 98| 99

65| 13| 31| 43| 55| 67| 77| 85| 91| 95| 98| 99

70| 14| 34| 46| 59| 71| 81| 88| 93| 97| 98| 99

75| 15| 36| 49| 62| 74| 84| 90| 95| 98| 99

80| 17| 39| 52| 66| 77| 86| 92| 96| 98| 99

90| 19| 44| 58| 71| 82 90| 95| 98| 99

100 21| 48| 63| 77| 87[ 93| 97| 99

110 23| 53| 68| 81| 90| 95| 98| 99

120 25| 57| 73| 85| 93| 97| 99

130 28| 61| 77| 88| 95| 98| 99

140 30| 65| 80[ 90| 96| 99

150 32| 68| 83| 92| 97 99

175 38| 76| 89| 96| 99

200( 43| 82| 93| 98| 99

225| 49| 87| 96| 99

250 54| 90| 97| 99

300 63| 95| 99

350 71| 98

400 77| 99

450 82| 99

500 87

600 92

700| 96

800| 98

900| 99

1000 99
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Table 7.26. Power table for Tukey HSD; r=0.60, 3 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55]0.60| 0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5 2| 3| 4| 5| 6| 7| 8 9| 11| 13| 15| 17| 27| 42| 59| 74| 86| 97
6| 3| 4| 5| 6| 7| 8 10| 12| 14| 16| 19| 21| 34| 53| 71| 85| 94| 99
7 3 4 5 7 8| 10| 12| 14| 17| 20| 23| 26| 42| 63| 81| 92| 97
8 3| 5| o6 8| 10[ 12| 14| 17| 20| 23| 27| 31| 49| 71| 87| 96| 99
91 3| 5| 7| 9| 11| 13| 16| 20| 23| 27| 31| 36| 55| 78| 92| 98

10 3] 6| 8| 10| 12| 15| 19| 22| 26| 31| 36| 41| 62| 83| 95| 99

11| 4 7| 8| 11| 14| 17| 21| 25| 30| 35| 40| 45| 67| 87| 97| 99

12| 4 7| 9| 12| 15| 19| 23| 28| 33| 38| 44| 50| 72| 90| 98

13| 4 8| 10| 13| 17 21| 25| 30| 36| 42| 48| 54| 76| 93| 99

14| 4 8| 11| 14| 18| 22| 28| 33| 39| 45| 52| 58| 80| 95| 99

15| 5] 9| 12 15| 19| 24| 30| 36| 42| 49| 55| 62| 83| 96

20| 6| 12| 16| 21| 27| 34| 41| 49| 56| 64| 71| 77| 93| 99

25| 7| 15| 20| 27| 35| 43| 51| 60| 68| 75| 82| 87| 98

30| 8| 18| 25| 33| 42| 51| 61| 70| 77| 84| 89| 93| 99

35 91 21| 29 39| 49| 59| 69| 77| 84| 90| 94| 96

40| 11| 25| 34| 45| 56| 66| 76| 83| 89| 94| 96| 98

45| 12| 28| 39| 50| 62| 72| 81| 88| 93| 96| 98| 99

50( 13| 31| 43| 55| 67| 77| 86| 91| 95| 98| 99

55( 15| 35| 47| 60| 72| 82 89| 94| 97| 99| 99

60| 16| 38| 51| 65| 76| 85| 92| 96| 98| 99

65| 18| 41| 55| 69| 80 88| 94| 97| 99

70| 19| 44| 59| 72| 83| 91| 95| 98| 99

75| 21| 47| 62| 76| 86| 93| 97| 99

80| 22| 51| 66| 79| 88| 94| 98| 99

90| 25| 56| 72| 84| 92 97| 99

100 28| 62| 77| 88| 95| 98| 99

110 31| 66| 81| 91| 96 99

120 34| 71| 85| 93| 98| 99

130| 37| 75| 88| 95| 99

140 40 78| 90| 97| 99

150 43| 81| 92| 98| 99

175| 50| 88| 96| 99

200 56| 92| 98

225 62| 95| 99

250 67| 97| 99

300 76| 99

350 83

400| 88

450 92

500 95

600 98

700 99

800

900

1000
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Table 7.27. Power table for Tukey HSD; r=0.40, 4 groups at alpha =0.05

CHAPTER 7 TABLES

n Hypothesized ES
0.20{0.30(0.35]0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 {1.00|1.25[1.50 1.75]2.00| 2.50 | 3.00
5 11 2| 2| 3| 3| 4| 4| 5| 6| 7| 8 9| 15| 26| 40| 55| 69| 90| 98
6| 1 2| 3| 3| 4| 4 5| 6 7| 9| 10| 12| 20| 34| 51| 67| 81| 96
7 1 2 3 4 4 5 6 8 9 11| 13| 15| 25| 42| 61| 77| 89| 98
8| 2 3| 3| 4| 5 6| 7| 9| 11| 13| 15| 18| 30| 50| 69| 84| 94| 99
91 2f 3| 4| 5 6| 7| 9 11| 13| 15| 18| 21| 35| 57| 76| 90| 96

100 2[ 3| 4 5| 6| 8| 10| 12| 15| 17| 20| 24| 40| 63| 82| 93| 98

11 2 3| 4 6 7| 9| 11| 14| 16| 20| 23| 27| 45| 69| 87| 96| 99

12| 2 4| 5| 6| 8| 10| 12| 15| 18| 22| 26| 30| 50| 74| 90| 97| 99

13| 2 4| 5[ 7 9| 11| 14| 17| 20| 24| 29| 34| 55| 78| 93| 98

14 2 4 6 7 91 12| 15| 19| 23| 27| 32| 37| 59| 82| 95| 99

15| 2| 4| 6| 8| 10| 13| 16| 20| 25| 29| 35| 40| 63| 85| 96| 99

200 3| 6| 8| 11| 15| 19| 24| 29| 35| 42| 48| 55| 79| 95| 99

25| 4| 8| 11| 15| 19| 25| 31| 38| 46| 53| 61| 68| 89| 98

30 4| 9| 13| 18| 24| 31| 39| 47| 55| 64| 71| 78| 94

35 5 11| 16| 22| 29| 38| 46| 55| 64| 72| 79| 85| 97

40| 5| 13| 19| 26| 35| 44| 53| 63| 72| 79| 85| 90| 99

45| 6| 15| 22| 30| 40 50| 60| 69| 78| 85| 90| 94| 99

50| 7| 17| 25| 34| 45| 55| 66| 75| 83| 89| 93| 96

55| 8| 19| 28| 38| 49| 61| 71| 80| 87| 92| 95| 98

60| 8| 22| 31| 42| 54| 65| 76| 84| 90| 94| 97| 99

65| 9| 24| 34| 46| 58| 70| 80| 87| 93| 96| 98| 99

70| 10| 26| 37| 50| 62| 74| 83| 90| 95| 97| 99| 99

75| 11| 28| 40| 54| 66 77| 86| 92| 96| 98| 99

80| 12| 31| 43| 57| 70| 81| 89| 94| 97| 99

90| 13| 35| 49| 63| 76| 86| 92| 96| 98| 99

100 15| 40| 55| 69| 81 90| 95| 98| 99

110 17| 44| 60| 74| 86| 93| 97| 99

120| 19| 48| 65 79| 89 95| 98| 99

130 21| 52| 69| 83| 92 97| 99

140 23| 56| 73| 86| 94| 98| 99

150 25| 60| 77| 88| 95| 98

175 30| 69| 84| 93| 98| 99

200 35| 76| 89| 96| 99

225| 40| 81| 93| 98

250| 45| 86| 95| 99

300 54| 92| 98

350 62| 96| 99

400| 70| 98

450 76| 99

500( 81

600| 89

700| 93

800 96

900| 98

1000 99
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Table 7.28. Power table for Tukey HSD; r=0.60, 4 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55{0.60| 0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5 1 2| 3| 3| 4/ 5/ 6 7| 8 9| 11| 12| 21| 36| 53| 70| 83| 97
6| 2| 2| 3| 4| 5| 6 7| 8| 10| 12| 14| 16| 28| 46| 65| 81| 92| 99
7 2 3 4 4 6 7 91 10| 12| 15| 17| 20| 35| 56| 75| 89| 96
8| 2| 3| 4| 5| 7| 8| 10| 12| 15| 18| 21| 25| 41| 64| 83| 94| 98
9 2 3 5 6 8 9 12| 14| 17| 21| 25| 29| 48| 71| 88| 97| 99
10 2{ 4| 5[ 7| 9| 11| 13| 17| 20| 24| 28| 33| 54| 78| 92| 98

11 2{ 4| 6| 7| 10| 12| 15| 19| 23| 27| 32| 37| 59| 83| 95| 99

12| 2{ 5| 6| 8| 11| 14| 17| 21| 26| 31| 36| 42| 65| 87| 97

131 3| 5| 7| 9| 12 15| 19| 23| 28| 34| 40| 46| 69| 90| 98

14 3 5 7( 10 13| 17| 21| 26| 31| 37| 43| 50| 74| 92| 99

15| 3| 6| 8| 11| 14| 18| 23| 28| 34| 40| 47| 53| 77| 94| 99

20| 4| 8| 11| 15| 20 26| 33| 40| 48| 55| 63| 70| 90| 99

25| 4| 10| 15| 20| 27| 35| 43| 51| 60| 68| 75| 82| 96

30 5| 13| 18| 25| 34| 43| 52| 62| 70| 78| 84| 89| 99

35 6| 15| 22 31| 40| 51| 61| 70| 78| 85| 90| 94

40| 7| 18| 26| 36| 47| 58| 68| 77| 85| 90| 94| 97

45| 8| 21| 30| 41| 53| 64| 75| 83| 89| 94| 97| 98

50( 9| 24| 34| 46| 59| 70| 80| 87| 93| 96| 98| 99

55( 10| 27| 38| 51| 64| 75| 84| 91| 95| 98| 99

60| 11| 30| 42| 56| 69 80| 88| 93| 97| 99| 99

65| 12| 33| 46| 60| 73| 83| 91| 95| 98| 99

70| 14| 36| 50| 64| 77( 87| 93| 97| 99

75| 15| 39| 54| 68| 80| 89| 95| 98| 99

80| 16| 42| 57| 72| 83| 91| 96| 98| 99

90| 18| 47| 64| 78| 88| 95| 98| 99

100 21| 53| 70| 83| 92 97| 99

110 24| 58| 75| 87| 94| 98| 99

120| 26| 63| 79| 90| 96 99

1301 29 67| 83| 93| 97| 99

140\ 31| 71| 86| 95| 98

150 34| 75| 89| 96| 99

175 41| 82| 93| 98

200( 47| 88| 96| 99

225 53| 92| 98

250 59| 95 99

300 69| 98

350 77| 99

400( 83

450| 88

500 92

600 96

700( 98

800 99

900

1000
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Table 7.29. Power table for Tukey HSD; r=0.40, 5 groups at alpha =0.05

CHAPTER 7 TABLES

n Hypothesized ES
0.20{0.30(0.35]0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 {1.00|1.25[1.50 1.75]2.00| 2.50 | 3.00
5 1 1| 2| 2| 2| 3] 3| 4| 5| 5| 6| 7| 12| 22| 35| 50| 65| 88| 97
6 1 1 2| 2| 3| 3| 4] 5| 6| 7| 8 9| 17| 30| 46| 63| 78| 95| 99
7 1 2 2 3 3 4 5 6 7 8| 10| 12| 21| 37| 56| 73| 86| 98
8| 1| 2| 2 3| 4] 5| o6 7| 8 10| 12| 14| 26| 44| 64| 81| 92| 99
9 1f 2| 3| 3| 4| 5 7( 8| 10| 12| 14| 17| 30| 51| 72| 87| 95
10 1} 2| 3| 4| 5| 6| 8| 9| 11| 14| 17| 20| 35| 58| 78| 91| 97

1 1 2| 3| 4 5| 7| 9 11| 13| 16| 19| 23| 40| 64| 83| 94| 99

121 1} 3| 3| 5| 6| 8| 10| 12| 15| 18| 22| 25| 44| 69| 87| 96| 99

13| 1| 3| 4 5 7| 8| 11| 13| 17| 20| 24| 28| 49| 74| 91| 98

14 2 3 4 5 7 91 12| 15| 18| 22| 27| 31| 53| 78| 93| 99

15| 2[ 3| 4 6| 8| 10| 13| 16| 20| 25| 29| 34| 57| 82| 95| 99

200 2| 4| 6| 8| 11| 15| 19| 24| 30| 36| 42| 49| 74| 93| 99

25| 2| 6| 8| 11| 15| 20| 26| 33| 40| 47| 55| 62| 86| 98

301 3| 7| 10| 14| 20| 26| 33| 41| 49| 58| 66 73| 93| 99

35 3 8| 13| 18| 24| 32 40| 49| 58| 67| 74| 81| 96

40| 4| 10| 15| 21| 29| 38| 47| 57| 66| 74| 82 87| 98

45| 4| 12| 18| 25| 34| 44| 54| o4| 73| 81| 87| 92| 99

50| 5| 13| 20| 29| 39| 49| 60| 70| 79| 86| 91| 95

55| 6| 15| 23| 32| 43| 55| 65| 75| 83| 89| 94| 97

60| 6| 17| 26| 36| 48| 60| 70| 80| 87| 92| 96| 98

65| 7| 19| 29| 40| 52| 64| 75| 84| 90| 95| 97| 99

70 71 21 32| 44| 56| 69| 79| 87| 93| 96| 98| 99

75| 8| 23| 34| 47| 60| 72| 82| 90| 94| 97| 99

80| 9| 25| 37| 51| 64| 76| 85| 92| 96| 98| 99

90| 10| 29| 43| 57| 71| 82| 90| 95| 98| 99

100 12| 34| 49| 64| 77 87| 93| 97| 99

110 13| 38| 54| 69| 82| 90| 96| 98| 99

120 15| 42| 59| 74| 86| 93| 97| 99

130 17| 46| 63| 78| 89| 95| 98| 99

140 18| 50| 68| 82| 91| 97| 99

150 20| 54| 72| 85| 93| 98| 99

175 24| 63| 80| 91| 97| 99

200 29| 71| 86| 95| 99

225( 34 77| 91| 97| 99

250 39| 82| 94| 98

300 48| 90| 97

350 56| 94| 99

400| 64| 97

450 71| 99

500 76| 99

600| 85

700 91

800| 95

900| 97

1000| 98
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Table 7.30. Power table for Tukey HSD; r=0.60, 5 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55]0.60| 0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5 1 2| 2| 2 3| 3 4 5| 6| 7| 9| 10| 18| 31| 48| 66| 80| 96
6 1| 2| 2| 3| 3| 4 5/ 6| 8 9| 11| 13| 24| 41| 61| 78| 90| 99
7 1 2 3 3 4 5 7 8| 10| 12| 14| 17| 30| 51| 71| 87| 95
8 1| 2| 3| 4| 5| 6| 8 10| 12| 14| 17| 20| 36| 59| 79| 92| 98
91 1| 2| 3| 4| o 7| 9| 11| 14| 17| 20| 24| 42| 67| 86| 95| 99
100 1| 3| 4 5[ 6| 8| 11| 13| 16| 20| 24| 28| 48| 73| 90| 97

11 2 3| 4 6 7| 9| 12 15 19| 23| 27| 32| 54| 79| 93| 99

12 2 3 5 6 8| 11| 14| 17| 21| 26| 31| 36| 59| 83| 96| 99

131 2| 4| 5| 7| 9| 12| 15| 19| 24| 29| 34| 40| 04| 87| 97

14 2[ 4| 5| 7| 10| 13| 17| 21| 26| 32| 38| 44| 69| 90| 98

15| 2 4| 6| 8| 11| 14| 19| 23| 29| 35| 41| 48| 73| 92| 99

200 3| 6| 9| 12| 16| 22| 28| 34| 42| 49| 57| 65| 87| 98

25| 3| 8| 11| 16| 22 29| 37| 45| 54| 62| 70| 77| 95

30| 4| 10| 15| 21| 28| 37| 46| 56| 65| 73| 80| 86| 98

35 5| 12| 18| 26| 34| 44| 55| 65| 74| 81| 88| 92| 99

40| 5| 14| 21| 30| 41| 52| 62| 72| 81| 87| 92| 96

45| 6| 17| 25| 35| 47| 58| 69| 79| 86| 92| 95| 98

50( 7| 19| 29| 40| 53| 65| 75| 84| 90| 95| 97| 99

55 8| 22| 33| 45| 58| 70| 80| 88| 93| 97| 98| 99

60 91 25| 36| 50| 63| 75| 84| 91| 95| 98| 99

65| 10| 27| 40| 54| 68| 79| 88| 94| 97| 99

70| 10| 30| 44| 58| 72| 83| 91| 95| 98| 99

75| 11| 33| 48| 63| 76| 86| 93| 97| 99

80 12| 36| 51| 66| 79| 89 95| 98| 99

90| 15| 41| 58| 73| 85| 93| 97| 99

100| 17| 47| 64| 79| 89| 95| 98| 99

110 19 52 69| 83| 92| 97| 99

120\ 21| 57| 74| 87| 95| 98

130 24| 61| 79| 90| 96| 99

140| 26| 66| 82| 93| 98| 99

150| 29 70| 85| 94| 98

175 35| 78| 91| 97| 99

200 41| 85| 95| 99

225( 47| 89| 97| 99

250 53| 93| 98

300 63| 97

350 72| 99

400 79| 99

450 85

500 89

600 95

700 97

800 99

900| 99

1000
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Table 7.31. Sample size table for ANCOVA multiple comparison; p=0.05, r=0.40

Chart A. 3 groups, r=10.40 at alpha = 0.05; NK no intervening groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |[331| 148| 109| 84| 66| 54| 45| 38| 32| 28| 25| 22| 15| 10 7 6 5 4 3
0.90 |443| 197| 145| 112 88| 72| 60| 50| 43| 37| 33| 29| 19| 13| 9| 7| 6| 4| 4
Chart B. 3 groups, r=0.40 at alpha=0.05; NK 1 intervening group, Tukey 3 groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 428| 191 141| 108| 86| 70| 58| 49| 42| 36| 32| 28| 19| 12| 9| 7| 6| 5 4
0.90 |[553| 247| 182| 139| 111| 90| 74| 63| 54| 47| 41| 36| 24| 16| 11| 9| 7| 5| 4
Chart C. 4 groups, r=0.40 at alpha=0.05; NK no intervening groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50]|0.55[0.60{0.65|0.70{0.75]|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |[331| 148|109 83| 66| 54| 45| 38| 32 28| 25| 22| 14| 10| 7| 6| 5| 4| 3
0.90 | 442| 197| 145| 111| 88| 72| 59| 50| 43| 37| 32| 29| 19| 12| 9| 7| o6 4| 3
Chart D. 4 groups, r=0.40 at alpha=0.05; NK 1 intervening group
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 427| 191 140| 108| 85| 69| 58| 49| 42| 36| 32| 28| 18| 12| 9| 7| o 4| 4
0.90 |553| 247| 181| 139| 110| 90| 74| 63| 54| 46| 40| 37| 23| 15| 11| 9| 7| 5| 4
Chart E. 4 groups, r=0.40 at alpha =0.05; NK 2 intervening groups, Tukey 4 groups
Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00
0.80 |[490| 218| 161| 123| 98| 80| 66| 56| 48| 41| 36| 32| 21| 14| 10| 8| 6| 5| 4
0.90 | 624| 278 205| 157| 124| 101| 84| 71| 60| 52| 46| 40| 26| 17| 12| 10 8 6 4
Chart E 5 groups, r=0.40 at alpha=0.05; NK no intervening groups
Power Hypothesized ES
0.200.300.35|0.40{0.45[0.50{0.55]0.60|0.65{0.700.75 {0.80|1.00 | 1.25[1.50{1.75]2.00|2.50 | 3.00
0.80 |331|147[109| 83| 66| 54| 45| 38| 32| 28| 24| 22| 14| 9 7| 5| 4| 3| 3
0.90 |442|197|145| 11| 88| 72| 59| 50| 43| 37| 32| 29| 19| 12 9 7| 5| 4| 3
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Table 7.31. (cont.)

Chart G. 5 groups, r=0.40 at alpha=0.05; NK 1 intervening group

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00

0.80 |[427| 190| 140| 108| 85| 69| 57| 48| 41| 36| 31| 28| 18] 12| 9| 7 6 4
0.90 |[553] 246 181| 139| 110| 89| 74| 62| 53| 46| 40| 36| 23| 15| 11 8 71 5 4

W

Chart H. 5 groups, r=0.40 at alpha=0.05; NK 2 intervening groups

Power Hypothesized ES

0.20/0.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00

0.80 [ 490| 218 161| 123| 98| 79| 66| 55| 47| 41| 36| 32| 21| 14| 10| 8 6 5 4
0.90 | 624| 278 205| 157| 124| 101| 84| 70| 60| 52| 45| 40| 26| 17| 12| 9 8 5 4

Chart I. 5 groups, r=0.40 at alpha=0.05; NK 3 intervening groups, Tukey 5 groups

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00| 2.50| 3.00

0.80 |[536] 239| 176| 135| 107| 87| 72| 61| 52| 45| 39| 35| 23| 15| 11 8 71 5 4
0.90 | 676] 301|222| 170| 135| 109 91| 76| 65| 56| 49| 43| 28| 19| 13| 10 8 o6 4
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Table 7.32. Sample size table for ANCOVA multiple comparison; p=0.05, r=0.60

Chart A. 3 groups, r=0.60 at alpha=0.05; NK no intervening groups

Power Hypothesized ES

0.2010.30(0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.700.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 [252]| 113| 83| 64| 51| 41| 34| 29| 25| 22| 19| 17| 11 8 6 5 4 3
0.90 [337| 151|111 85| 68| 55| 46| 39| 33| 29| 25| 22| 15| 10 7 6 5 4 3

(9]

Chart B. 3 groups, r=0.60 at alpha=0.05; NK 1 intervening group, Tukey 3 groups

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 |[326] 146| 108| 83| 66| 53| 44| 38 32| 28| 25| 22| 15| 10| 7 6 5/ 4| 3
0.90 |[422] 188 139| 107 85| 69| 57| 48| 41| 36| 31| 28| 18| 12| 9| 7 6 5| 4

Chart C. 4 groups, r=10.60 at alpha=0.05; NK no intervening groups

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 [252]| 113| 83| 64| 51| 41| 34| 29| 25| 22| 19| 17| 11 8 6| 5 4 31 3
0.90 [337| 150| 111 85| 67| 55| 46| 38 33| 29| 25| 22| 15| 10| 7 6 5/ 4| 3

Chart D. 4 groups, r=0.60 at alpha=0.05; NK 1 intervening group

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 |[326] 146|107 82| 65| 53| 44| 37| 32| 28| 24| 22| 14| 10| 7 6 5| 4 3
0.90 |[422] 188| 139| 106 84| 69| 57| 48| 41| 36| 31| 28| 18| 12| 9| 7 6] 4| 3

Chart E. 4 groups, r=0.60 at alpha =0.05; NK 2 intervening groups, Tukey 4 groups

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]|0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 [ 374| 167 123| 94| 75| 61| 51| 43| 37| 32| 28| 25| 16| 11 8 6 5/ 4| 3
0.90 | 476] 212| 156| 120{ 95| 77| 64| 54| 46| 40| 35| 31| 20| 14| 10| 8 6 5| 4

Chart E 5 groups, r=0.60 at alpha = 0.05; NK no intervening groups

Power Hypothesized ES

0.2010.30 [0.35]0.40{0.45{0.50{0.55{0.60(0.65]0.70{0.75]0.80(1.00|1.25[1.50(1.75]2.00 {2.50 { 3.00

0.80 [252| 113 83| 64| 51| 41| 34| 29| 25| 21| 19| 17| 11 70 6| 4 4 3| 3
0.90 337|150 111 85| 67| 55| 45| 38| 33| 28| 25 22| 14| 10( 7 5 41 3] 3
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Table 7.32. (cont.)

Chart G. 5 groups, r=0.60 at alpha=0.05; NK 1 intervening group

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[326] 145| 107| 82| 65| 53| 44| 37| 32| 28| 24| 21| 14 9 7 5 5 3 3
0.90 |422| 188| 138| 106| 106| 68| 57| 48| 41 35| 31| 27| 18| 12| 9| 7| 5| 4| 3

Chart H. 5 groups, r=0.60 at alpha=0.05; NK 2 intervening groups

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 373| 167| 123| 94| 75| 61| 50| 43| 36| 32| 28| 24| 16 11| 8| 6| 5| 4| 3
0.90 |476| 212| 156| 120| 95| 77| 64| 54| 46| 40| 35| 31| 20| 13| 10| 7| 6| 4| 4

Chart I. 5 groups, r=0.60 at alpha=0.05; NK 3 intervening groups, Tukey 5 groups

Power Hypothesized ES

0.20/0.30{0.35|0.40{0.45[0.50|0.55|0.60|0.65|0.70{0.75[0.80{1.00{1.25| 1.50(1.75| 2.00{2.50 | 3.00
0.80 |409| 182| 134| 103| 82| 66| 55| 47| 40 35| 30| 27| 18| 12| 9| 7| 5| 4| 3
0.90 | 516| 230| 169| 130| 103| 84| 69| 58| 50| 43| 38| 33| 22 14| 10| 8| 7| 5| 4
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Table 7.33. Sample size table for ANCOVA multiple comparison; p=0.01, r=0.40

Chart A. 3 groups, r=10.40 at alpha=0.01; NK no intervening groups

Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 492| 220| 162| 124| 99| 80| 67| 56| 48| 42| 37| 32| 21| 14| 11| 8| 7| 5| 4
0.90 |627| 280| 206| 158| 125| 102| 84| 71| 61| 53| 46| 41| 27| 18| 13| 10| 8| 6| 5
Chart B. 3 groups, r=0.40 at alpha=0.01; NK 1 intervening group, Tukey 3 groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 594| 265| 195| 150| 119| 97| 80| 68| 58| 50| 44| 39| 26 17| 13| 10| 8| 6| 5
0.90 | 741| 331|243| 187| 148| 120| 100| 84| 72| 62| 55| 48| 32 21| 15| 12| 10| 7| 6
Chart C. 4 groups, r=0.40 at alpha=0.01; NK no intervening groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50]|0.55[0.60{0.65|0.70{0.75]|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 492| 219| 162| 124| 98| 80| 66| 56| 48| 41| 36| 32| 21| 14| 10 8| 7| 5| 4
0.90 | 626| 276| 206| 158| 125| 101| 84| 71| 61| 52| 46| 40| 26| 17| 13| 10| 8| 6 5
Chart D. 4 groups, r=0.40 at alpha=0.01; NK 1 intervening group
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 594| 265| 195| 150( 119 96| 80| 67| 58| 50| 44| 39| 25| 17| 12| 9| 8| 6 5
0.90 | 741| 330| 243| 186| 148| 120 99| 84| 72| 62| 54| 48| 31| 21| 15| 11| 9| 7| 5
Chart E. 4 groups, r=0.40 at alpha=0.01; NK 2 intervening groups, Tukey 4 groups
Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00
0.80 [ 659| 294| 216| 166| 132| 107 89| 75| 64| 55| 48| 43| 28| 19| 14| 10| 8| 6| 5
0.90 [ 813] 362 267| 205| 162| 132| 109 92| 79| 68| 59| 52| 34| 23| 16| 12| 10 7 6
Chart E 5 groups, r=0.40 at alpha=0.01; NK no intervening groups
Power Hypothesized ES
0.200.300.35|0.40{0.45[0.50{0.55]0.60|0.65{0.700.75 {0.80|1.00 | 1.25[1.50{1.75]2.00|2.50 | 3.00
0.80 |492|219[161| 124| 98| 80| 66| 56| 48| 41| 36| 32| 21| 14| 10| 8| 6| 5| 4
0.90 |626|279[205| 157 125] 101| 84| 71| 60| 52| 46| 40| 26| 17 12| 9| 8| 5| 4
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Table 7.33. (cont.)

Chart G. 5 groups, r=0.40 at alpha=0.01; NK 1 intervening group

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00

0.80 [ 594| 265| 195| 149| 118| 96| 80| 67| 57| 50| 44| 38| 25| 17| 12 9 7 5 4
0.90 [ 741| 330| 243| 186| 147| 120 99| 84| 71| 62| 54| 48| 31| 20| 15| 11 9 6 5

Chart H. 5 groups, r=0.40 at alpha=0.01; NK 2 intervening groups

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00

0.80 [ 658] 293 216| 166| 131| 107 88| 75| 64| 55| 48| 43| 28| 18| 13| 10 8 6/ 5
0.90 | 813] 362 266| 204| 162| 131| 109 92| 78| 68| 59| 52| 34| 22| 16| 12| 10| 7 5

Chart I. 5 groups, r=0.40 at alpha=0.01; NK 3 intervening groups, Tukey 5 groups

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65]0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00| 2.50| 3.00

0.80 |[706| 315|232 178| 141| 114 95| 80| 68| 59| 52| 46| 30| 20| 14| 11 9l 6| 5
0.90 | 866| 386 284| 218| 172| 140| 116 98| 83| 72| 63| 56| 36| 24| 17| 13| 10| 7 6
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Table 7.34. Sample size table for ANCOVA multiple comparison; p=0.01, r=0.60

Chart A. 3 groups, r=0.60 at alpha=0.01; NK no intervening groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |[376] 168 124| 95| 76| 62| 51| 43| 39| 32| 28| 25| 17| 11 9 7 6 5 4
0.90 |478| 213| 157| 121 96| 78| 65| 55| 49| 41| 36| 32| 21| 14| 10| 8| 7| 5| 4
Chart B. 3 groups, r=0.60 at alpha=0.01; NK 1 intervening group, Tukey 3 groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 453| 203| 149| 115 91| 74| 62| 52| 45| 39| 34| 30| 20| 14| 10| 8| 7| 5| 4
0.90 |565| 252| 186| 143| 113| 92| 76| 65| 55| 48| 42| 37| 25| 17| 12| 10| 8| 6| 5
Chart C. 4 groups, r=0.60 at alpha=0.01; NK no intervening groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50]|0.55[0.60{0.65|0.70{0.75]|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |[375| 168|123| 95| 75| 61| 51| 43| 37| 32| 28| 25| 16| 11| 8| 6| 5| 4| 4
0.90 | 478| 213| 157| 120 95| 78| 64| 54| 47| 40| 35| 31| 21| 14| 10| 8| o6 5 4
Chart D. 4 groups, r=0.60 at alpha=0.01; NK 1 intervening group
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 453| 202| 149| 114 91| 74| 61| 52| 44| 38| 34| 30[ 20| 13| 10| 8| o6 5 4
0.90 |[565| 252| 186| 142| 113| 92| 76| 64| 55| 48| 42| 37| 24| 16| 12| 9| 7| 5| 4
Chart E. 4 groups, r=0.60 at alpha=0.01; NK 2 intervening groups, Tukey 4 groups
Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00
0.80 |[502| 224| 165| 127| 101| 82| 68| 57| 49| 43| 37| 33| 22| 15| 11| 8| 7| 5| 4
0.90 | 620| 276| 204| 156( 124| 101| 83| 70[ 60| 52| 46| 40| 27| 18| 13| 10 8 6 5
Chart E 5 groups, r=0.60 at alpha=0.01; NK no intervening groups
Power Hypothesized ES
0.200.300.35|0.40{0.45[0.50{0.55]0.60|0.65{0.700.75 {0.80|1.00 | 1.25[1.50{1.75]2.00|2.50 | 3.00
0.80 |375|167(123| 95| 75| 61| 51| 43| 37| 32| 28| 25| 16| 11| 8| 6| 5 4| 3
0.90 |477|213|157| 120| 95| 77| 64| 54| 46| 40| 35| 31| 20| 13| 10| 8| 6| 5| 4
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Table 7.34. (cont.)

Chart G. 5 groups, r=0.60 at alpha=0.01; NK 1 intervening group

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00

0.80 |[453| 202( 149| 114| 91| 74| o1| 52| 44| 38| 34| 30| 19| 13| 10| 7 6 5
0.90 [ 565|262 185| 142| 113| 92| 76| 64| 55| 47| 41| 37| 24| 16| 11 9 A 4

=

Chart H. 5 groups, r=0.60 at alpha=0.01; NK 2 intervening groups

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00

0.80 |[502| 224 165| 127| 100| 82| 68| 57| 49| 42| 37| 33| 22| 14| 10| 8
0.90 | 620| 276 203| 156| 124| 100{ 83| 70| 60| 52| 45| 40| 26| 17| 13| 10 8 6/ 5

~
u
=

Chart I. 5 groups, r=0.60 at alpha=0.01; NK 3 intervening groups, Tukey 5 groups

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.700.75|0.80| 1.00| 1.25| 1.50( 1.75(2.00| 2.50| 3.00

0.80 |[539| 240( 177| 136| 108| 88| 73| 61| 52| 45| 40| 35| 23| 15| 11 9 A 4
0.90 [ 660| 294 217| 166| 132| 107 89| 75| 64| 55| 48| 43| 28| 18] 13| 10 8 6| 5

174




CHAPTER 7 TABLES

Table 7.35. Sample size table for ANCOVA multiple comparison; p=0.10, r=0.40

Chart A. 3 groups, r=0.40 at alpha=0.10; NK no intervening groups

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.801.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 |[261] 116 86| 66| 52| 43| 35| 30 26| 22| 20| 17| 12 8 6 5 4
0.90 |[361| 161| 118| 91| 72| 59| 49| 41| 35| 30| 27| 24| 15| 10 8 6 5 4 3

|3
(9]

Chart B. 3 groups, r=0.40 at alpha=0.10; NK 1 intervening group, Tukey 3 groups

Power Hypothesized ES

0.2010.30(0.35|0.40|0.45|0.50|0.55]|0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 |[353| 158 116 89| 71| 58| 48| 40 35| 30| 26| 23| 15| 10| 8 6 5| 4
0.90 [ 468|209 154| 118 93| 76| 63| 53| 45| 39| 34| 30| 20| 13| 10| 7 6 5[ 4

©

Chart C. 4 groups, r=10.40 at alpha=0.10; NK no intervening groups

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00| 2.50| 3.00

0.80 |[261] 116 86| 66| 52| 42| 35| 30[ 26| 22| 19| 17| 11 8 6| 4 4 31 3
0.90 |[361] 161|118 91| 72| 58| 48| 41| 35| 30| 27| 23| 15| 10| 7 6 5/ 31 3

Chart D. 4 groups, r=0.40 at alpha=0.10; NK 1 intervening group

Power Hypothesized ES

0.2010.30{0.35|0.40{0.45|0.50|0.55]0.60{0.65]|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 [353| 157| 116 89| 71| 57| 48| 40 34| 30| 26| 23| 15| 10| 7 6 5| 4 3
0.90 [ 468|209 153| 118 93| 76| 63| 53| 45| 39| 34| 30| 20| 13 9 7 6] 4| 3

Chart E. 4 groups, r=0.40 at alpha =0.10; NK 2 intervening groups, Tukey 4 groups

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]|0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 | 413| 184 136| 104 83| 67| 56| 47| 40| 35| 30| 27| 18| 12| 9| 7 5/ 4| 3
0.90 [ 537|239 176| 135| 107 87| 72| 61| 52| 45| 39| 35| 23| 15| 11 8 71 5| 4

Chart E 5 groups, r=0.40 at alpha=0.10; NK no intervening groups

Power Hypothesized ES

0.2010.30 [0.35]0.40{0.45{0.50{0.55{0.60(0.65]0.70{0.75]0.80(1.00|1.25[1.50(1.75]2.00 {2.50 {3.00

0.80 |[261|116| 86| 66| 52| 42| 35| 30| 25| 22| 19| 17| 11 8| 6| 4 4 3| 2
0.90 361|161 118 91| 72| 58| 48| 41| 35| 30| 26| 23| 15| 10f 7 6 5/ 3] 3
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Table 7.35. (cont.)

Chart G. 5 groups, r=0.40 at alpha=0.10; NK 1 intervening group

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[353| 157| 116| 89| 70| 57| 47| 40| 34| 30| 26| 23| 15| 10 7 6 5 3 3
0.90 | 468| 208| 153| 118| 93| 76| 63| 53| 45 39| 34| 30{ 20| 13| 9| 7| 6| 4| 3

Chart H. 5 groups, r=0.40 at alpha=0.10; NK 2 intervening groups

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 413| 184| 136| 104| 82| 67| 56| 47| 40( 35| 30| 27| 18| 12| 8| 7| 5| 4| 3
0.90 |537| 239| 176| 135| 107| 87| 72| 61| 52| 45| 39| 35| 22| 15| 11| 8| 6| 5| 4

Chart I. 5 groups, r=0.40 at alpha=0.10; NK 3 intervening groups, Tukey 5 groups

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |459| 205| 151| 116| 91| 74| 62| 52| 44 38| 34| 30{ 19| 13| 9| 7| 6| 4| 3
0.90 |[589] 262| 193] 148| 117| 95| 79| 66| 57| 49| 43| 38| 25| 16| 12| 9| 7| 5| 4
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Table 7.36. Sample size table for ANCOVA multiple comparison; p=0.10, r=0.60

Chart A. 3 groups, r=0.60 at alpha=0.10; NK no intervening groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 [199| 89| 66| 51| 40| 33| 27| 23| 20| 17| 15| 13 9 6 5 4 3 3 3
0.90 |[275| 123| 91| 70| 55| 45| 37| 32| 27 23| 21| 18| 12| 8| 6| 5| 4| 3| 3
Chart B. 3 groups, r=0.60 at alpha=0.10; NK 1 intervening group, Tukey 3 groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |269| 120 89| 68| 54| 44| 37| 31| 27| 23| 20| 18| 12| 8| 6| 5| 4| 3| 3
0.90 |[357| 159| 117| 90| 72| 58| 48| 41| 35| 30| 27| 24| 16| 10| 8| 6| 5| 4| 3
Chart C. 4 groups, r=0.60 at alpha=0.10; NK no intervening groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50]|0.55[0.60{0.65|0.70{0.75]|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 [199| 89| 66| 50| 40| 33| 27| 23| 20 17| 15| 13| 9| 6| 5| 4| 3| 3| 2
0.90 | 275| 123| 90| 69| 55| 45| 37| 31| 27| 23| 20| 18| 12| 8| 6| 5| 4| 3| 3
Chart D. 4 groups, r=0.60 at alpha=0.10; NK 1 intervening group
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |269| 120 89| 68| 54| 44| 37| 31| 26| 23| 20| 18| 12| 8| 6| 5| 4| 3| 3
0.90 |[357| 159| 117| 90| 71| 58| 48| 41| 35| 30| 26| 23| 15| 10| 7| 6| 5| 4| 3
Chart E. 4 groups, r=0.60 at alpha =0.10; NK 2 intervening groups, Tukey 4 groups
Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00
0.80 |[315| 141| 104| 80| 63| 51| 43| 36| 31| 27| 24| 21| 14 9| 7| 5| 5| 4| 3
0.90 |[410| 183| 135| 103| 82| 67| 55| 47| 40| 35| 30| 27| 18| 12 9 7 5 4 3
Chart E 5 groups, r=0.60 at alpha=0.10; NK no intervening groups
Power Hypothesized ES
0.200.300.35|0.40{0.45[0.50{0.55]0.60|0.65{0.700.75 {0.80|1.00 | 1.25[1.50{1.75]2.00|2.50 | 3.00
0.80 |199| 89| 65| 50| 40| 33| 27| 23| 20| 17| 15| 13| 9| 6| 4| 4| 3| 3| 2
0.90 |275|123| 90| 69| 55| 45| 37| 31| 27| 23| 20| 18| 12| 8| 6 5| 4| 3| 2
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Table 7.36. (cont.)

Chart G. 5 groups, r=0.60 at alpha=0.10; NK 1 intervening group

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 [269] 120 88| 68| 54| 44| 36| 31| 26| 23| 20| 18| 12 8 6 5 4 3 3
0.90 |357| 159| 117| 90| 71| 58| 48| 40| 35| 30| 26| 23| 15| 10| 7| 6| 5| 3| 3

Chart H. 5 groups, r=0.60 at alpha=0.10; NK 2 intervening groups

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45|0.50| 0.55[0.60{0.65|0.70{0.75]|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 315| 141| 104| 80| 63| 51| 43| 36| 31| 27| 23| 21| 14{ 9 7 5| 4| 3| 3
0.90 |[410| 183| 134| 103| 82| 66| 55| 46| 40| 34| 30| 27| 17| 12 8 6 5 4 3

Chart I. 5 groups, r=0.60 at alpha=0.10; NK 3 intervening groups, Tukey 5 groups

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[350| 156| 115| 88| 70| 57| 47| 40| 34 30| 26| 23| 15| 10| 7| 6| 5| 4| 3
0.90 | 449| 200| 147| 113| 90| 73| 60| 51| 43| 38| 33| 29| 19| 13| 9| 7| 6| 4| 3
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8 One-way repeated measures analysis of
variance

Purpose of the statistic

The one-way, repeated measures analysis of variance is exactly analogous to
the one-way between subjects ANOVA except that the groups contain
either the same subjects or individuals who have been explicitly matched!
in some way. It is used to ascertain how likely these within subject mean
differences would be to occur by chance alone. Studies that might employ
such a design include the multiple (i.e., three or more times) measurement
of a single group of individuals across time (e.g., adding a long term follow-
up assessment to a single group, pretest—posttest design) or, less commonly,
a situation in which the same group of individuals is exposed to three or
more different conditions.

A within subject design is extremely efficient in comparison to one
which employs different subjects in each group, requiring far fewer subjects
when even a moderate correlation can be obtained among its repeated obser-
vations. A one-way, repeated measures (RM) ANOVA, then, is used when:

(1) there is a single, independent variable which is defined as group
membership in three or more groups or as three or more separate
points in time (recalling that if only two groups are involved a paired
t-test can be employed, which is inferentially identical to a two-
group RM ANOVA),

(2) the dependent variable is measured in such a way that it can be
described by a mean (i.e., it is continuous in nature and not cate-
gorical),

(3) the same or matched subjects are contained in the groups (or meas-
ured at the indicated time intervals),

(4)  the hypothesis being tested is expressed in terms of a mean differ-
ence, and

(5) there is no other independent variable (e.g., a baseline/pretest
measure, or covariate) present (if there are such measures, these
tables may still be used although the ES must first be adjusted as
described in Chapter 10).
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This latter condition deserves some explication because it is an
important one. For most cross-over designs (i.e., studies in which the same
subjects receive different treatments), there is a washout period following
each treatment, after which a baseline measure is obtained prior to imple-
menting the next treatment. In these circumstances there are three accept-
able alternatives:

(1) The data are analyzed as a two-factor (i.e., group Xtime) RM
ANOVA in which case the contrast of interest is the interaction
(and both factors are repeated measures).

(2) The data are analyzed as a one-way RM ANCOVA, where each
unique baseline assessment serves as the covariate.

(3) Difterence scores are computed between each unique baseline and
each EOT assessment and these difference scores are used as the
dependent variable in a one-way RM ANOVA.

From a purely statistical perspective we would normally recommend the
second option, although it is becoming increasingly difficult to find software
capable of performing this analysis easily. From a power analytic perspect-
ive, however, we recommend that for either of the first two options the
researcher employ either (a) the tables in this chapter to produce a relatively
conservative power/sample size estimate (since the analytic use of the base-
line will normally result in an increase in statistical power over and above a
one-way RM ANOVA) or (b) the ANCOVA strategy detailed in Chapter
10 that allows for adjusting the tables in this chapter. We normally do not
recommend the use of difference scores (the third analytic option) because
they are usually less reliable than either the baseline or EOT scores upon
which they are based, but for practical purposes their use will also provide
an acceptable power analytic result as long as the hypothesized ES values are
framed in terms of difference scores rather than raw means. When this
option is used, the tables in this chapter are directly applicable for studies
employing three to five groups, while the tables in Chapter 5 are applicable
for two-group studies.

Assuming that some variant of a one-way RM ANOVA or RM
ANCOVA is employed, the primary assumption governing the use of this
statistic is that the correlations among the groups with respect to the depend-
ent variable are similar and that the variances within the groups are approx-
imately equal. The combination of these two assumptions is defined as
sphericity, which is routinely tested by most statistical packages. The primary
implication of not meeting this assumption from the present perspective is
that power will be overestimated, although violation of the assumption
should have little effect upon the power of pairwise comparisons employing
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MUCPs as long as the estimated power analytic parameters (e.g., the pairwise
ES values and correlations across the repeated observations) are appropriate.
There is some evidence, however, that the average correlation among the
repeated measures will produce reasonably accurate results from a power
analytic perspective.

Like its between subjects analog, a one-way repeated measures
ANOVA is a two-step process, involving (a) computing an overall F-ratio
and, if statistically significant, (b) computing a multiple comparison proce-
dure of some sort to indicate exactly which means differ significantly from
which other means. The remainder of this chapter will therefore be divided
into two parts as was done in the previous two chapters. The first will
present power and sample size tables for the overall F-ratio. The second will
present tables that allow the investigator to estimate the power (or sample
size requirements) for individual contrasts using two common multiple
comparison procedures.

Part I. The F-ratio tables

Tables 8.1 through 8.16 present estimated power for a wide range of values
of ES, N/group, and patterns of group means for F-ratios involving three
through five groups. (Tables 8.17 through 8.22 present the comparable
sample size tables for powers of 0.80 and 0.90 relevant to three alpha levels,
0.05, 0.01, and 0.10.) These tables are used in the same way as those pre-
sented in Chapter 7 except that for an RM ANOVA the Pearson r that
must be estimated involves the most likely correlation between the subjects’
multiple measurements. The repeated measures model, however, results in
considerably more power than does the ANCOVA (which in turn pro-
duced more power than an ANOVA without comparable control vari-
ables).

As with any analysis of variance model employing more than
three groups per factor, a power analysis involving the overall F-ratio is of
limited use due to the facts that (a) further pairwise comparisons among
the group means are almost always required and (b) the hypothesized
pattern/dispersion of these means exerts such a dramatic effect upon
power.

As with ANCOVA, it is sometimes relatively difficult to estimate
the exact correlation among subjects (or matched subjects) with respect to
their repeated measures scores. As always the results of pilot work or previ-
ously published studies provide the best estimates for these values. In lieu of
such estimates, the guidelines presented in Chapter 7 are also applicable
here:
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(1)  If the dependent variable is a relatively stable attribute a correlation
of 0.60 may be possible (although the length of the interval among
the measurements is negatively correlated with r).

(2) Since the estimation of this parameter (like most of the others
involved in a power analysis) is subject to error, it is always wise to
model power/sample size estimates based upon different values of
r. To facilitate this process, we have provided tables for r values of
both 0.40 and 0.60 as well as Table 10.3 in Chapter 10 which
permits the present tables to be converted to more exact values of
r ranging from 0.20 to 0.80.

Example. To illustrate how these tables are employed, let us
assume that a researcher wishes to test three different types of acupuncture
(i.e., with no electrical stimulation, with electrical stimulation involving a
very weak current, and with relatively strong electrical stimulation) with
respect to one another and a sham acupuncture procedure involving the
insertion of needles in non-active points (to control for the stress of hand-
ling and needle insertion over and above any analgesic effects of acupunc-
ture itself). Employing the latency with which rats withdraw their paw from
a thermal stimulus as the dependent variable, the investigator decided to
subject each animal to each type of acupuncture (counterbalancing the
order in which the treatments were introduced) following a suitable washout
period in order to decrease the number of animals required for the experi-
ment.

Let us further assume that no baseline latency measures were col-
lected following each washout period because of the desire to avoid inject-
ing this additional source of stress into the experiment. If a baseline measure
had been administered prior to each condition, then the investigator could
(a) employ difference scores, (b) first adjust the hypothesized ES based upon
the estimated correlation between the baseline and end-of-period latency
measure as described in Chapter 10, or (c) opt for a slightly more conservat-
ive power/sample size estimate by ignoring the effect of the baseline (hence
employing each latency measure following the administration of the treat-
ment as the dependent variable). Option (b) would normally provide the
highest (and probably most accurate) estimate of power, but options (a) and
(c) would probably provide sufficiently accurate results as well.

Assuming, however, that our investigator needed to determine how
much power would be available for achieving statistical significance in an
experiment employing 20 rats in which no unique baseline measure was
available for each treatment, it would be necessary to specify the following
parameters:
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(1) The ES for the largest mean difference likely to occur among the
four groups (which in this case would probably involve the control
condition vs. acupuncture accompanied by a relatively strong
current).

(2) The projected N/group (20, since in a repeated measures design the
total N is the same as the N/group).

(3) A judgment regarding whether the spread of means is likely to
reflect a low, medium, or high dispersion pattern (low/medium in
this case since the researcher would probably hypothesize a fairly
even spread among the groups).

(4) The most likely baseline to end-of-treatment dependent variable
relationship.

At the risk of redundancy, this latter correlation can also be estim-
ated from (a) pilot work, (b) previous published research (in our experience
these relationships are seldom mentioned in published reports, although the
requisite information can occasionally be obtained by contacting the inves-
tigators of these reports), or (c) modeling different values of .

Let us assume in this example that the investigator did not have
prior information on the most likely value of the relationship and therefore
chose to model both correlations of 0.40 and 0.60. To facilitate the actual
power calculations, two templates are provided that are relevant for from
three to five groups (Templates 8.1 and 8.2) and are presented at the end of
this chapter. (For two-group studies the tables presented in Chapter 5 may
be used.)

Basically these templates are employed in exactly the same manner
as described in Chapter 7. In way of illustration, let us therefore posit the
necessary parameters for this four-group model as requested by the prelim-
inary Template 8.1.

The first and most crucial step involves estimating the ES values
among the four experimental conditions. For investigators uncomfortable
with working directly with standardized means, this (as always) can be
accomplished by (a) hypothesizing the means accruing from each experi-
mental condition in the original metric, (b) dividing them by the pooled
standard deviation, and (c) setting the lowest standardized mean to zero by
simply subtracting it from itself and each of the remaining group means.
(Please refer to Chart 7.1 in the previous chapter for a numerical review of
this process.)

Specifically, our investigator would need to begin by rank ordering
the four means with respect to their most likely outcome and then placing
them on the provided ES line as follows:
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Step 1. Write in the names/codes of the groups in the chart to Group definitions

the right in ascending order based upon their expected means ~ © Sham control

(i-e., the name of the group expected to have the lowest mean ~ @ Low Hz acupuncture
or the weakest effect will be written next to @, followed by the ® Med. Hz acupuncture
next strongest treatment and so forth). @ High Hz acupuncture

®
(Note that the fifth number is not used since there are only four groups.)

Step 2. Plot these groups, using the circled numbers rather than their codes, on the ES
line below. In the case of a tie between two groups with respect to their actual ES value,
place one to the right of the other based upon the best theoretical evidence for which
might be slightly superior.
ES line
) ) ® @
00.10203040506070809101112131415

From this hypothesized spread of means, we would estimate the ES
to be entered into the power table (step 3) to be 1.0 (i.e., the largest stand-
ardized mean difference or the control vs. acupuncture accompanied by a
strong electrical current). Assuming that 20 rats were projected to be
employed (each of which, it will be remembered, is subjected to all four
conditions) this value is entered as the step 3 parameter. (If the sample size
necessary for a fixed level of power were desired, the latter would be entered
here.) The mean differences most closely approximate a medium dispersion
pattern when compared to the options in step 4 and, not knowing exactly
which correlation among the repeated observations to posit, our investig-
ator decides to model both 0.40 and 0.60 (step 5) in the power analysis, at
which point he/she is directed to Template 8.2.

Step 6 in the power template (8.2) requests the specification of the
largest group ES, which is, by definition, the ES corresponding to group 4
from the ES line in step 2, or 1.0. Armed with these estimates, step 7 directs
our investigator to find the intersection of the 1.0 ES column and the row
N/group =20 in Table 8.7 for r= 0.40 (medium mean pattern) and Table
8.8 for r= 0.60 (medium mean pattern), producing power estimates of 0.95
and 0.99 respectively. Heartened by this finding, our investigator would
rightly conclude that he/she had an excellent chance of obtaining a statist-
ically significant F-ratio for either of the projected correlation coefficients.
The results of this power analysis, which would follow a justification for the
hypothesized ES between the highest and lowest groups with respect to the
dependent variable (perhaps based upon a smaller pilot study) and the most
likely pattern of means to accrue (which could be justified rationally), might
be presented as follows:

184



THE MULTIPLE COMPARISON TABLES

A power analysis indicated that this four-group experiment would have
a 95% chance of yielding a statistically significant F-ratio given a
medium dispersion of group means, an average correlation of 0.40
among the repeated measures for a difference between the most extreme
groups (the control vs. acupuncture with strong electrical stimulation) of
one standard deviation. Should a correlation of 0.60 accrue with these
data, the available power would be 0.99.

Part ll. The multiple comparison tables

The researcher would be incorrect, however, if he/she concluded that the
probability of obtaining statistical significance between two specific groups
would range between 0.95 and 0.99. The statistically correct way to ascer-
tain the probability of obtaining statistical significance for individual group
contrasts is to compute the power for a multiple comparison procedure,
which can be accomplished by completing the remainder of the within
group power template.

The first step in ascertaining the power of the six pairwise compar-
isons resulting from a four-group study is to compute their individual ES
values. These have already been hypothesized via step 2 in the preliminary
template; hence all that needs to be done is to perform the actual subtrac-
tions requested by step 9 of Template 8.2.

In most cases an investigator would probably not be interested in all
of these contrasts from a scientific perspective, or even expect that they all
would prove to be statistically significant. There is no harm in reviewing all
of the individual pairwise ES values via the completion of step 9, however,
since if nothing else this will force the researcher to consider explicitly his/her
implicit expectations for the study. It may also suggest, upon reflection, that
the initial ES line projections (step 2, Template 8.1) should be revised (in
which case the power of the overall F might need to be recalculated).

In any case, let us assume that our investigator did not need to revise
his/her original hypothesized pairwise ES values, which in turn would
produce the following six ES values (note that any contrasts involving a fifth
group are irrelevant for this study):

Step 9. Using the hypothesized values from step 2 in the preliminary template (8.1), fill
out the hypothesized ES values by performing the indicated subtractions listed under the
“Contrasts” column under the appropriate model.

ES@-®=03 ES@®—-0=1.0 ES®-0=
ES®—-0=0.6 ES®—-®=0.7 ES®-0=
ES®—-®=0.3 ES@®—-3®=0.4 ES®—-@=

ES®-®=

185



ONE-WAY REPEATED MEASURES ANALYSIS OF VARIANCE

The final step in the process, once the MCP is chosen, is to access the power
tables indicated in step 10. Assuming that the Tukey HSD procedure were
chosen, the provided chart indicates that Tables 8.25 (for r=0.40) and 8.26
(for r=0.60) would be employed for all six contrasts. Locating the inter-
section of the N/group row of 20 and the five different ES values would
produce the following range of results for r=0.40 and r=0.60:

Step 10. For power of the above pairwise contrasts (step 9) using the Tukey HSD
procedure, use the tables indicated in the following chart. (Note that the table is chosen
based only upon the contrasts involved and not the number of groups.) Locate the power in
the indicated table at the intersection of the ES column (step 9) and the N/group row
(preliminary step 3, Template 8.1). Interpolate as desired.

For contrasts @ —@ ,®—@ ,®—® , and/or ® — @

If r=0.40, use Table 8.23 If r=0.60, use Table 8.24
For contrasts @ —@® @ — @, and/or ® — @

If r=0.40, use Table 8.25 If r=0.60, use Table 8.26
For contrasts @ — @, and/or ® — @

If r=0.40, use Table 8.27 If r=0.60, use Table 8.28
For contrast ® — ®©

If r=0.40, use Table 8.29 If r=0.60, use Table 8.30

Power @ —®=0.08-0.13 Power @ —®=0.92-0.99 Power ® — @ =
Power @ —®=0.42-0.63 Power @ —@=0.58-0.80 Power ® —@=
Power @ —@=0.08-0.13 Power @ —®=0.16-0.27 Power ® —@=

Power ® — @ =

Thus while the power of the overall F ranged from an impressive 0.95 to
very close to 1.0, only two of the contrasts (group 4, acupuncture coupled
with high frequency electrical stimulation, vs. group 1, the sham control,
and group 4 vs. group 2 assuming a correlation of 0.60 between observa-
tions) possess an adequate level of power.

Computing the required N/group for a within group multiple compar-
ison procedure. Let us assume that all six of the contrasts produced by this
design were of sufficient scientific interest to question the wisdom of con-
ducting the study as currently designed. The first step in deciding how to
proceed would therefore probably entail determining how many subjects
per group would be needed to yield an acceptable power, which in this case
we will assume to be 0.80. Let us further assume that our investigator
decided to employ the Newman—Keuls procedure and was willing to take a
chance that a correlation among the repeated observations of 0.60 would
be obtained.
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To conduct this sample size analysis our investigator could simply
proceed directly to step 10 of Template 8.3 since all of the preliminary steps
have already been completed. There, he/she would be instructed to access
Table 8.30 where Chart C would be used for three of the contrasts, Chart
D for two, and Chart E for the high frequency acupuncture vs. control con-
trast. Following these instructions would produce the following six sample
size requirements:

N/group @ —®=71 N/group ®—D=11 N/group ® —®=
N/group @ — @ =24 N/group ®—@=18 N/group ® —@=
N/group @ —@=71 N/group ® —@=41 N/group ® —@=

N/group ® —@=

Armed with this information, the investigator would need to make
a number of decisions. If he/she had 71 rats available, then the experiment
might be quite feasible to run, since sufficient power would be assured for
all of the available contrasts. Otherwise, one or more of the options pre-
sented in Chapter 2 might be considered, such as reducing the number of
groups and/or increasing the ES. One possibility, for example, might be to
combine the low and medium frequency groups by selecting a frequency
halfway in between, thereby producing the following revised ES line:

Group definitions
® Sham control
® Moderate Hz acupuncture
® High Hz acupuncture
ES line
©) &) ®
0 0.1 0203040506070809101112131415

This strategy would increase the smallest pairwise ES to 0.40 which, using
Table 8.30 Chart A would reduce the number of animals by more than half
(71 to 33) for these contrasts, which in turn would provide even more power
for the sham vs. high Hz acupuncture contrast. Other alternatives exist, but
they would not be available if the problem were not identified prior to con-
ducting the study, which is the primary value of conducting an a priori
power analysis.

Computing the maximum detectable ES. Unfortunately it is not
uncommon for both the N/group and the acceptable power level to be fixed
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for an investigator by practical constraints. Returning to our four-group
example, let us assume that the minimum acceptable power level for the
investigator’s discipline is 0.80 and he/she had exactly 20 rats with which to
work.

A natural question might then arise as to what type of ES would
have to be obtained in this experiment in order actually to provide an 80%
chance of obtaining statistical significance. (We will further assume that a
hypothesized r of 0.60 between the repeated measures s still reasonable and
that the Newman—Keuls procedure is still the MCP of choice.)

The simplest way to perform this analysis would be to access Table
8.30 Chart C and locate the nearest N/group value to 20 in the power=
0.80 row in the appropriate chart. For the adjacent groups (i.e., 2 vs. 1, 3
vs. 2, and 4 vs. 3) on the ES line (i.e., that possessed no intervening groups
separating them), this value would be 20, which corresponds to the ES of
0.60. For groups 3 vs. 1 and 4 vs. 2, the closest detectable ES value (Chart
D) would be 0.65 or 0.70 (corresponding to the N/group of 21 or 18,
respectively). Our investigator would either interpolate or choose the more
conservative figure, which would produce a detectable ES of 0.68 or 0.70
respectively. For the largest ES (4 vs. 1), the corresponding smallest detect-
able ES would be approximately 0.70 (Chart E). At this point, the obvious
decision would become whether or not it would be practical and scien-
tifically defensible to design an experiment capable of achieving an ES of
this magnitude.

Template 8.1. Preliminary one-way within subjects ANOVA power and sample
size template

This preliminary template is applicable to all one-way within subjects (repeated measures)
ANOVA designs employing between three and five groups.

Step 1. Write in the names/codes of the groups in the chart to Group definitions

the right in ascending order based upon their expected means @
(i.e., the name of the group expected to have the lowest mean @
or the weakest effect will be written next to @, followed by the @
next strongest treatment and so forth). @

®

Step 2. Plot these groups, using the circled numbers rather than their codes, on the ES
line below. In the case of a tie between two groups with respect to their actual ES value,
place one to the right of the other based upon the best theoretical evidence for which
might be slightly superior.
ES line
©)
00.102030405060.70809101112131415
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Step 3. For the estimation of power, specify the N/group available. For required sample
size, enter the desired power level.

N/group = or, desired power =

Step 4. Compare the low, medium, and high ES patterns below with the graphed ES line
from step 2 above. Choose the pattern which most closely matches the hypothesized
pattern of means (step 2).

(a) Three-group designs

ES pattern for low/medium F power @ &) ®
ES pattern for high F power 0 ®
or @ @B
(b) Four-group designs
ES pattern for low F power ©) (6) @
ES pattern for medium F power ©) ® ® @
ES pattern for high F power ) @@
(c) Five-group designs
ES pattern for low F power @ 20® ®
ES pattern for medium F power @ ©® @ 6
ES pattern for high F power DB @6
or @@ ®D®

Step 5. Select the most likely correlation between the repeated (or matched) dependent
variable observations. (For values other than 0.40 or 0.60, see Chapter 10.)

r=0.40 ___ r=0.60 ___

To compute power, turn to Template 8.2. To determine N/group, turn to Template 8.3.

Template 8.2. One-way within subjects ANOVA power template

Power of the overall F-ratio

Steps 1-5, see preliminary Template 8.1.

Step 6. Use the largest hypothesized ES produced in preliminary step 2 (Template 8.1).
For three-group studies this will be the ES for group @, and so forth.

Largest ES from preliminary step 2:
Step 7. Use the chart below to find the appropriate power table.

(a) For three groups, choose the appropriate model below:

r=0.40 Table r=0.60 Table
L/M pattern 8.1 L/M pattern 8.2
H pattern 8.3 H pattern 8.4
(b) For four groups, choose the appropriate model below:

r=0.40 Table r=0.60 Table
L pattern 8.5 L pattern 8.6
M pattern 8.7 M pattern 8.8
H pattern 8.9 H pattern 8.10
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(c) For five groups, choose the appropriate model below:

r=0.40 Table r=0.60 Table
L pattern 8.11 L pattern 8.12
M pattern 8.13 M pattern 8.14
H pattern 8.15 H pattern 8.16

Step 8. Turn to the table identified in step 7 and find the power at the intersection
between the ES column from step 6 and the N/group specified in step 3 of the
preliminary template. Interpolate as desired.

Power=

Power of the pairwise contrasts

Step 9. Using the hypothesized values from step 2 in the preliminary template (8.1), fill
out the hypothesized ES values by performing the indicated subtractions listed under the
“Contrasts” column in the chart below.

ES@—-0= ES®—-0= ES®—-O=
ES®@—-0= ES®—-@= ES®—-@=
ES@—0@= ES@®—-Q= ES®-@=

ES®-@=

Step 10. For power of the above pairwise contrasts (step 9) using the Tukey HSD
procedure, use the tables indicated in the “Power tables for the Tukey HSD procedure”
chart (only sample size tables are available for the Newman—Keuls procedure, see
Template 8.3). Locate the power in the indicated table at the intersection of the ES
column (step 9) and the N/group row (preliminary step 3, Template 8.1). Interpolate as
desired.

Power tables for the Tukey HSD procedure

Three-group studies If r=0.40, use Table 8.23 If r=0.60, use Table 8.24
Four-group studies If r=0.40, use Table 8.25 If r=0.60, use Table 8.26
Five-group studies If r=0.40, use Table 8.27 If r=0.60, use Table 8.28
Power @ —@= Power ® —®@= Power ® —®=
Power ® —®= Power ® —@= Power ® —@=
Power @ —@= Power ® —®@= Power ® —@=

Power ® —@ =

Template 8.3. One-way within subjects ANOVA sample size template

Required sample size for a statistically significant overall F-ratio

Steps 1-5, see preliminary Template 8.1.

Step 6. Use the largest hypothesized ES produced in preliminary step 2 (Template 8.1).
For three-group studies this will be the ES for group @, and so forth.

Largest ES from preliminary step 2:
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Step 7. For desired power values of 0.80 and 0.90, use the chart below to find the
appropriate sample size table. Note that sample size tables are also provided for p=10.01
(Table 8.19 for r=0.40; Table 8.20 for r=0.60) and p=0.10 (Tables 8.21 and 8.22).

(a) For three groups, choose the appropriate model below:

r=0.40 Table r=0.60 Table

L/M pattern 8.17 Chart A L/M pattern 8.18 Chart A

H pattern 8.17 Chart B H pattern 8.18 Chart B
(b) For four groups, choose the appropriate model below:

r=0.40 Table r=0.60 Table

L pattern 8.17 Chart C L pattern 8.18 Chart C

M pattern 8.17 Chart D M pattern 8.18 Chart D

H pattern 8.17 Chart E H pattern 8.18 Chart E
(c) For five groups, choose the appropriate model below:

r=0.40 Table r=0.60 Table

L pattern 8.17 Chart F L pattern 8.18 Chart F

M pattern 8.17 Chart G M pattern 8.18 Chart G

H pattern 8.17 Chart H H pattern 8.18 Chart H

Step 8. For desired powers of 0.80 and 0.90, turn to the table identified in step 7 and find
the N/group at the intersection between the ES column from step 6 and the N/group
specified in step 3 of the preliminary template. For powers other than 0.80 and 0.90, find
the appropriate table from step 7 in Template 8.2. Locate the nearest power value in the
ES row (step 6) and read the required N/group associated with that row. Interpolate as
desired.

N/group=
Sample size for the pairwise contrasts

Step 9. Using the hypothesized values from step 2 in the preliminary template (8.1), fill
out the hypothesized ES values by performing the indicated subtractions listed under the
“Contrasts” column in the chart below.

ES@—-0®= ES®-0®= ES®-O=
ES®@—0®= ES®-@= ES®-@=
ES®@—@= ES®-@®= ES®-@®=

ES®-@=

Step 10. For the required sample size for powers of 0.80 or 0.90 of the pairwise contrasts
listed in step 9 for the Tukey HSD procedure, use the tables indicated in the “Tukey
HSD?” chart below. For powers of 0.80 or 0.90 for the Newman-Keuls procedure, use
the tables indicated in the “Newman—Keuls” chart. (Note that the tables specified for the
Tukey procedure are based only upon the number of groups and not the particular contrast
involved while the tables used for Newman—Keuls are based only upon the contrasts
involved and not the number of groups.) Locate the N/group in the indicated table at the
intersection of the ES column (step 9) and the desired power row (preliminary step 3,
Template 8.1). For powers other than 0.80 and 0.90 (for the Tukey HSD procedure), use
the appropriate tables indicated in step 10 of Template 8.2 by finding the nearest power
value in the ES column (step 9) and reading the N/group associated with that row.
Interpolate as desired. (Note that sample size requirements for p=0.10 and p=0.01 are
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provided in Tables 8.31 to 8.34 and are mirror images of the p=0.05 tables/charts
presented below:)

Sample size tables for the Tukey HSD procedure

Three-group studies
If r=0.40, use Table 8.29 Chart B If r=0.60, use Table 8.30 Chart B

Four-group studies
If ¥=0.40, use Table 8.29 Chart E If r=0.60, use Table 8.30 Chart E

Five-group studies
If r=0.40, use Table 8.29 Chart I If r=0.60, use Table 8.30 Chart I

Sample size tables for the Newman—-Keuls procedure

Determining the sample size requirements for the Newman—Keuls procedure is slightly
more complicated since the sample size is determined by both the number of groups and
the number of intervening variables in Table 8.29 (r=0.40) and 8.30 (r=0.60) for p=0.05
and Tables 8.31 to 8.34 for p=0.01 and p=0.10:

Three groups Four groups
Contrast Chart Contrast Chart Contrast Chart
@-0 A @-0 C @—-0 E
(ORIO) B @—-® D @®—-©@ D
®@—-® A @—-® C (ORI C
Five groups
Contrast Chart Contrast Chart Contrast Chart
@-0 F @—-0 H ®&—-0 I
®@—-0® G ®@—-0® G ®—-© H
®—-© F @—-® F ®—-©® G
6&-® F
N/group @ —®= N/group ® — O = N/group ® —O=
N/group @ —@= N/group ® —@= N/group ® —@=
N/group ® —@= N/group ® —@= N/group ® —@=

N/group ® —@=
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Table 8.1. Power table for repeated measures ANOVA; r=0.40, pattern L/M, 3 groups at alpha=0.05

CHAPTER 8 TABLES

n Hypothesized ES
0.20{0.30(0.35{0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 [1.00|1.25[1.50 1.75|2.00| 2.50 | 3.00
5 6 7| 8| 9| 10| 11| 12| 14| 16| 17| 19| 21| 31| 46| 61| 75| 86| 97
6| 6| 8| 9 10| 11| 13| 15| 17| 19| 21| 24| 26| 39| 57| 73| 86| 94| 99
7 6 8 9 11| 13| 15| 17| 19| 22| 25| 28| 32| 47| 66| 82| 92| 97
8| 6 9| 10| 12| 14| 17| 19| 22| 25| 29| 33| 37| 54| 74| 89| 96| 99
9 7| 9| 11| 13| 16| 18| 22 25| 29| 33| 37| 42| 60| 80| 93| 98

100 7{ 10| 12| 14| 17| 20| 24| 28| 32| 37| 42| 47| 66| 85| 96| 99

11 7( 11| 13| 16| 19| 23| 27| 31| 36| 41| 46| 51| 72| 89| 97

12 70 11| 14| 17| 21| 25| 29| 34| 39| 45| 50| 56| 76| 92| 98

13| 8| 12| 15| 18| 22| 27| 32| 37| 43| 48| 54| 60| 80| 94| 99

14| 8| 13| 16| 19| 24| 29| 34| 40| 46| 52| 58| 64| 83| 96| 99

15| 8| 13| 17| 21| 26| 31| 37| 43| 49| 55| 61| 67| 86| 97

20| 10| 17| 22| 27| 34| 41| 48| 56| 63| 70| 76/ 81| 95

25| 11| 20| 27| 34| 42| 50| 59| 67| 74| 80| 86/ 90| 98

30| 13| 24| 32| 40| 50| 59| 68| 75| 82| 88| 92| 95

35| 14| 28| 37| 47| 57| 66| 75| 82| 88| 92| 95| 97

40| 16| 32| 42| 52| 63| 73| 81| 87| 92| 95| 98| 99

45| 17| 35| 46| 58| 69| 78| 86| 91| 95| 97| 99| 99

50| 19| 39| 51| 63| 74| 83| 89| 94| 97| 98| 99

55| 21| 42| 55| 67| 78| 86| 92| 96| 98| 99

60| 22| 46| 59| 71| 82| 89| 94| 97| 99

65| 24| 49| 63| 75| 85| 92| 96| 98| 99

70| 26| 52| 66| 78| 87| 94| 97| 99

75| 27| 56| 70| 81| 90| 95| 98| 99

80| 29| 58| 73| 84| 92| 96| 98| 99

90| 32| 64| 78| 88| 95| 98| 99

100 36| 69| 82| 91| 96 99

1101 39| 73| 86| 94| 98| 99

120 42| 77| 89| 96| 99

130 45 81| 91| 97| 99

140 48| 84| 93| 98| 99

150| 51| 86| 95| 98

175 58| 91| 97| 99

200 64| 94| 99

2251 69 97| 99

250| 74| 98

300 82| 99

350| 88

400| 92

450 95

500 96

600 99

700| 99

800

900

1000
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Table 8.2. Power table for repeated measures ANOVA; r=0.60, pattern L/M, 3 groups at alpha=0.05

n Hypothesized ES

0.20{0.30]0.35{0.40{0.45[{0.50{0.55[0.60 | 0.65]0.700.75|0.80 {1.00 {1.25[1.50 [1.75 | 2.00{2.50| 3.00

5 7 8| 10| 11| 12| 14| 16| 19| 21| 24| 27| 30| 44| 63| 79| 90| 96
6 7 9| 11| 12 15| 17| 20| 23| 26| 30| 34| 38| 55| 75| 89| 96| 99
7 7| 10{ 12| 14| 17| 20| 23| 27| 31| 36| 40| 45| 64| 84| 95| 99

8 71 11 13| 16| 19| 23| 27| 32| 36| 42| 47| 52| 72| 90| 97

9 8 12| 15| 18| 22| 26| 31| 36| 41| 47| 53| 59| 79| 94| 99

10 8| 13| 16| 20| 24| 29| 35| 40| 46| 52| 59| 64| 84| 96| 99

11 8| 14| 17 22| 27| 32| 38| 44| 51| 57| 64| 70| 88| 98

12 91 15| 19| 24| 29| 35| 42| 49| 55| 62| 68| 74| 91| 99

13 91 16| 20 26| 32| 38| 45| 52| 59| 66| 73| 78| 93| 99

14| 10| 17| 22| 28| 34| 41| 49| 56| 63| 70| 76| 82| 95

15| 10| 18| 23| 30| 37| 44| 52 60| 67| 74| 80| 85| 97

20| 12| 24| 31| 39| 48| 57| 66| 74| 81| 87 91| 94| 99

25| 15| 29| 38| 49| 59| 68| 77| 84| 90| 94| 96| 98

30| 17| 35| 46| 57| 68| 77| 85| 91| 95 97| 99| 99

35| 20| 40| 52| 64| 75| 84| 90| 95| 97| 99| 99

40| 22| 45| 58| 71| 81| 89| 94| 97| 99| 99

45| 25| 50| o4 76| 86| 92| 96| 98| 99

w1
(=}
%]
~
ol
ol
[N
O
[o2)
g
o]
O

95 98| 99

55 30 59| 74| 85| 92| 97| 99
60| 32| 64| 78| 88| 94| 98| 99
65| 34| 67| 81| 90| 96| 99
701 37| 71| 84| 93| 97| 99
75| 39| 74| 87| 94| 98| 99
80| 42 77| 89| 95| 99
90| 46| 82| 92| 97| 99
100 51| 86| 95| 98

110 55 89| 96| 99

1201 59| 92| 98

130 62| 94| 98

140 66| 95| 99

1501 69| 97| 99

175| 76| 98

200 82| 99

225 86

250 90

300 94

350 97

400 99

450 99

500

600

700

800

900

1000
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Table 8.3. Power table for repeated measures ANOVA; r=0.40, pattern H, 3 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 {1.00|1.25[1.50 1.75]2.00| 2.50 | 3.00
5/ 6 8| 9| 10| 12| 13| 15| 17| 19| 22| 24| 27| 40| 58| 74| 87| 94| 99
6| 7( 9| 10| 12| 13| 16| 18| 21| 24| 27| 30| 34| 50| 70| 85| 94| 98
71 7( 9| 11| 13| 15| 18| 21| 25| 28| 32| 36| 41| 59| 79| 92| 98
8| 7| 10| 12| 15| 18] 21| 24| 28| 33| 37| 42| 47| 67| 86| 96| 99
9l 7| 11| 13| 16| 20| 24| 28| 32| 37| 43| 48| 53| 74| 91| 98

101 8 12| 15| 18| 22| 26| 31| 36| 42| 48| 53| 59| 79| 94| 99

11 8| 13| 16| 20| 24| 29| 34| 40| 46| 52| 58| 64| 84| 96| 99

12| 8| 14| 17| 21| 26| 32| 38| 44| 50| 57| 63| 69| 87| 98

13| 9 15| 18| 23| 29| 34| 41| 47| 54| 61| 67| 73| 90| 99

14| 9 15| 20 25| 31| 37| 44| 51| 58| 65| 71| 77| 93| 99

15| 9 16| 21| 27| 33| 40| 47| 54| 62| 68| 75| 80| 94| 99

20 11| 21| 28| 35| 44| 52| o1| 69| 76| 82| 87| 91| 99

25| 13| 26| 35| 44| 54| 63| 72| 79| 86| 91| 94| 96

30| 16| 31| 41| 52| 62| 72| 80| 87| 92| 95| 97| 99

35| 18| 36| 47| 59| 70| 79| 87| 92| 95 98| 99

40| 20| 41| 53| 65| 76| 85| 91| 95| 98| 99

45| 22| 46| 59| 71| 81 89| 94| 97| 99| 99

50| 24| 50| 64| 76| 85| 92| 96| 98| 99

55| 27| 54| 68| 80| 89| 94| 98| 99

60| 29| 58| 72| 84| 91| 96| 98| 99

65| 31| 62| 76| 87| 94| 97| 99

701 33| 65| 79 89| 95 98| 99

75| 35| 69| 82| 91| 96 99

80| 38| 72| 85| 93| 97 99

90| 42| 77| 89| 96| 99

100| 46| 82| 92| 97| 99

110 50| 85| 94| 98

120 54| 88| 96| 99

130 57| 91| 97 99

140 61| 93| 98

150| 64| 94| 99

175 71| 97| 99

200( 77| 99

225 82| 99

250| 86

300| 92

350 95

400| 97

450 99

500 99

600

700

800

900

1000
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Table 8.4. Power table for repeated measures ANOVA; r=0.60, pattern H, 3 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55{0.60|0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5/ 7| 9| 11| 13| 15| 18| 20| 23| 27| 31| 34| 39| 56| 76| 90| 97| 99
6| 7| 11| 13| 15| 18| 21| 25| 29| 34| 38| 43| 48| 68| 87| 96| 99
7 8| 12| 14| 18| 21| 25| 30| 35| 40| 46| 52| 57| 77| 93| 99
8| 8| 13| 16| 20| 25| 30| 35| 41| 47| 53| 59| 65| 84| 96
9| 9| 14| 18| 23| 28| 34| 40| 46| 53| 60| 66| 72| 89| 98
10| 9| 16| 20 25| 31| 38| 44| 52| 59| 65| 72| 77| 93| 99
11| 10{ 17| 22| 28| 34| 42| 49| 56| 64| 71| 77| 82| 95

12| 10| 19| 24| 31| 38| 45| 53| 61| 68| 75| 81| 86| 97

13| 11| 20| 26| 33| 41 49| 57| 65| 73| 79| 85| 89| 98
14| 12 22| 28| 36| 44| 53| 61| 69| 76| 83| 88 92| 99

15| 12| 23| 30 38| 47| 56| 65| 73| 80| 86| 90| 94| 99
20| 15| 30| 40| 51| 61| 71| 79| 86| 91| 95| 97| 98

25| 19| 38| 49| 61| 72 81| 88| 93| 96| 98| 99

30| 22| 45| 58| 70| 80| 88| 94| 97| 99| 99

35| 25| 51| 65 77| 87| 93| 97| 99| 99

40| 28| 58| 72| 83| 91| 96| 98| 99

45| 32| 63| 77| 88| 94| 98| 99

50( 35| 68| 82| 91| 96| 99

55 38| 73| 85| 93| 98| 99

60| 41| 77| 89| 95| 98

65| 45 80| 91| 97| 99

70| 48| 83| 93| 98| 99

75| 50| 86| 95| 98

80| 53| 88| 96| 99

90| 59| 92| 98| 99

100 63| 94| 99

110 68| 96| 99

120 72| 97

130| 76| 98

140 79| 99

150 82| 99

175 88

200 92

225 94

250 96

300 99

350 99

400

450

500

600

700

800

900

1000
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Table 8.5. Power table for repeated measures ANOVA; r=0.40, pattern L, 4 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 {1.00|1.25[1.50 1.75]2.00| 2.50 | 3.00
51 6 7| 7| 8| 9 10| 11| 12| 14| 15| 17{ 19| 28| 42| 58| 72| 84| 97
6| o6 7| 8 9| 10| 11| 13| 15| 17| 19| 21| 23| 35| 52| 70| 83| 92| 99
7 6 7 9 10| 11| 13| 15| 17| 19| 22| 25| 28| 42| 62| 79| 90| 97
8| 6 8| 9 11| 12| 15| 17{ 19| 22| 25| 29| 33| 49| 70| 86| 95| 99
9 6 8| 10| 12| 14| 16| 19| 22| 25 29| 33| 37| 55| 76| 90| 97| 99
100 6 9| 11| 13| 15| 18| 21| 24| 28| 32| 37| 42| 61| 82| 94| 99

11 7( 9| 11| 14| 16| 20| 23| 27| 31| 36| 41| 46| 66| 86| 96| 99

121 7{ 10| 12| 15| 18| 21| 25| 30| 34| 39| 45| 50| 71| 89| 98

13| 7( 10| 13| 16| 19| 23| 27| 32| 37| 43| 48| 54| 75| 92| 98

14 70 11 14 17| 21| 25| 30| 35| 40| 46| 52| 58| 79| 94| 99

151 7| 12| 14| 18| 22| 27| 32| 37| 43| 49| 56| 62| 82| 96| 99

20| 9| 14| 19| 24| 29| 36| 42| 50| 57| 64| 70| 76| 93| 99

25| 10| 18| 23| 29| 37| 44| 52| 60| 68| 75| 81| 86| 97

30( 11| 21| 27| 35| 44| 52| 61| 70| 77| 83| 89| 92| 99

35| 12| 24| 32| 41| 50| 60| 69| 77| 84| 89| 93| 96

40| 14| 27| 36| 46| 56| 66| 75| 83| 89| 93| 96| 98

45| 15| 30| 40| 51| 62| 72| 81| 88| 93| 96| 98| 99

50| 16| 34| 45| 56| 67| 77| 85| 91| 95| 97| 99| 99

55| 18| 37| 49| 61| 72 82| 89| 94| 97| 98| 99

60| 19| 40| 53| 65| 76| 85| 91| 96| 98| 99

65| 20| 43| 56| 69| 80| 88| 94| 97| 99| 99

70| 22| 46| 60| 73| 83| 91| 95| 98| 99

75| 23| 49| 63| 76| 86[ 93| 97| 99| 99

80| 25| 52| 66| 79| 88| 94| 97| 99

90| 28| 57| 72| 84| 92| 96| 99

100 31| 62| 77| 88| 94| 98| 99

110 33| 67| 81| 91| 96| 99

120| 36| 71| 85| 93| 98| 99

130 39| 75| 88| 95| 98

140 42 78| 90| 96| 99

150| 45| 81| 92| 97| 99

175 51| 87| 96| 99

200 57| 92| 98

2251 63| 95| 99

250 68| 97| 99

300 76| 99

350| 83

400| 88

450 92

500 94

600| 98

700| 99

800

900

1000

197




ONE-WAY REPEATED MEASURES ANALYSIS OF VARIANCE

Table 8.6. Power table for repeated measures ANOVA; r=0.60, pattern L, 4 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55{0.60| 0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5/ 6 8| 9| 10| 11 13| 15| 17| 19| 21| 24| 27| 41| 60| 77| 89| 96
6| o6 8| 10| 11| 13| 15| 18| 20| 23| 27| 30| 34| 51| 72| 87| 96| 99
7 7 9| 11| 13| 15| 18| 21| 24| 28| 32| 36| 41| 60| 81| 93| 98
8| 7| 10| 12| 14| 17| 20| 24| 28| 32| 37| 42| 47| 68| 87| 97| 99
9 7| 10| 13| 16| 19| 23| 27| 32| 37| 42| 48| 53| 74| 92| 98
100 7{ 11| 14 17| 21| 25| 30| 36| 41| 47| 53| 59| 80| 95| 99

11| 8| 12| 15[ 19| 23| 28| 33| 39| 46| 52| 58| 64| 85| 97

12| 8| 13| 16| 21| 25| 31| 37| 43| 50| 56| 63| 69| 88| 98

13| 8| 14| 18| 22| 28| 33| 40| 47| 54| 61| 67| 73| 91| 99

14 9 15| 19| 24| 30| 36| 43| 50 57| 65| 71| 77| 93| 99

15| 9| 16| 20 26| 32| 39| 46| 54| 61| 68| 75| 81| 95

20| 11| 20| 27| 34| 43| 51| 60| 68| 76| 82| 88| 92| 99

25| 13| 25| 33| 43| 53| 62| 71| 79| 86| 91| 94| 97

30| 15| 30| 40| 51| 61| 72| 80| 87| 92| 96| 98| 99

35| 17| 35| 46| 58| 69| 79| 87| 92| 96 98| 99

40| 19| 40| 52| 65| 76| 85| 91| 95| 98| 99

45| 21| 44| 58| 70| 81| 89| 94| 97| 99

50( 23| 49| 63| 75| 85| 92 96| 98| 99

55( 25| 53| 67| 80| 89| 95| 98| 99

60| 27| 57| 72| 84| 92| 96| 99

65| 30| 61| 76| 87| 94 97| 99

701 32| 65| 79 89| 95 98| 99

75| 34| 68| 82| 91| 97 99

80 36| 71| 85| 93| 97| 99

90| 40| 77| 89| 96| 99

100| 44| 81| 92| 97| 99

110 48| 85| 94| 98

120 52| 88| 96| 99

130 56 91| 97| 99

140| 59| 93| 98

150 63| 95| 99

175| 70| 97

200 76| 99

225( 82| 99

250| 86

300 92

350 95

400( 98

450 99

500 99

600

700

800

900

1000

198
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Table 8.7. Power table for repeated measures ANOVA; r=0.40, pattern M, 4 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 [1.00|1.25[1.50 1.75|2.00| 2.50 | 3.00
5 6 7| 8| 9| 10| 11| 12| 13| 15| 17| 19| 21| 31| 46| 63| 77| 88| 98
6| 6| 7| 8 9| 11| 12| 14| 16| 18| 20| 23| 26| 39| 57| 75| 87| 95
7 6 8 91 10| 12| 14| 16| 19| 21| 24| 27| 31| 46| 67| 83| 93| 98
8| 6 8| 10| 11| 13| 16| 18| 21| 25| 28| 32| 36| 53| 75| 89| 97| 99
9 6 9 11| 13| 15| 18| 21| 24| 28| 32| 36| 41| 60 81| 93| 98

100 71 9| 11| 14| 16| 19| 23| 27| 31| 36| 41| 46| 66| 86| 96| 99

11 7{ 10| 12| 15| 18| 21| 25| 30| 35| 40| 45| 50| 71| 90| 98

121 7( 11| 13| 16| 19| 23| 28| 33| 38| 43| 49| 55| 76| 93| 99

13| 7 11| 14| 17| 21| 25| 30| 36| 41| 47| 53| 59| 80| 95| 99

14| 8| 12| 15| 18| 23| 27| 33| 38| 44| 51| 57| 63| 83| 96

15| 8| 12| 16| 20| 24| 29| 35| 41| 48| 54| 60| 67| 86| 97

20| 9| 16| 20| 26| 32| 39| 47| 54| 62| 69| 75| 81| 95

25| 10| 19| 25| 32| 40| 49| 57| 65| 73| 80| 85| 90| 98

30| 12| 23| 30| 39| 48| 57| 66| 75| 82| 87| 92| 95

35| 13| 26| 35| 45| 55| 65| 74| 82| 88| 92| 96| 98

40| 15| 30| 40| 51| 61| 72| 80| 87| 92| 96| 98| 99

45| 16| 34| 45| 56| 67| 77| 85| 91| 95| 97| 99| 99

50| 18| 37| 49| 61| 72 82| 89| 94| 97| 99| 99

55| 19| 41| 53| 66| 77| 86| 92| 96| 98| 99

60| 21| 44| 57| 70| 81| 89| 94| 97| 99

65| 22| 47| 61| 74| 84| 91| 96| 98| 99

70| 24| 51| 65| 77| 87| 93| 97| 99

75| 26| 54| 68| 81| 89| 95| 98| 99

80| 27| 57| 71| 83| 91| 96| 99

90| 30| 62| 77| 88| 94| 98| 99

100 34| 67| 82| 91| 96 99

110 37| 72| 85| 94| 98| 99

120 40| 76| 89| 96| 99

130 43| 80| 91| 97| 99

140 46| 83| 93| 98| 99

150 49| 86| 95| 99

175 56| 91| 97| 99

200 62| 94| 99

225 68| 97| 99

250 73| 98

300 81| 99

350| 87

400 91

450| 94

500 96

600 99

700| 99

800

900

1000

199
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Table 8.8. Power table for repeated measures ANOVA; r=0.60, pattern M, 4 groups at alpha =0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55{0.60| 0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5/ 6 8| 9| 10| 12 14| 16| 18| 21| 23| 27| 30| 45| 65| 81| 92| 97
6| 7| 9| 10| 12| 14| 16| 19| 22| 26| 29| 33| 37| 55| 76| 91| 97| 99
7 7 9| 11| 14| 16| 19| 23| 26| 31| 35| 40| 45| 65| 85| 95| 99
8| 7| 10| 13| 15| 18| 22| 26| 31| 36| 41| 46| 52| 73| 91| 98
9 70 11| 14| 17| 21| 25| 30| 35| 41| 46| 52| 58| 79| 94| 99
10| 8| 12| 15[ 19| 23| 28| 33| 39| 45| 52| 58| 64| 84| 97

11 8| 13| 17 21| 25| 31| 37| 43| 50| 57| 63| 69| 88| 98

12| 8| 14| 18| 23| 28| 34| 40| 47| 54| 61| 68| 74| 91| 99

13| 9| 15| 19| 24| 30| 37| 44| 51| 59| 66| 72| 78| 94| 99

14| 9] 16| 21| 26| 33| 40| 47| 55| 62 70| 76| 82| 96

15| 10{ 17| 22{ 28| 35| 43| 51| 59| 66| 73| 79| 85| 97

20 12| 22| 29| 38| 47| 56| 65| 73| 81| 87| 91| 94| 99

25| 14| 28| 37| 47| 57| 67| 76| 84| 90| 94| 96| 98

30| 16| 33| 44| 55| 67 76| 85| 91| 95| 97| 99| 99

35| 18| 38| 51| 63| 74| 83| 90| 95| 97| 99

40| 21| 44| 57| 70| 80| 88| 94| 97| 99

45| 23| 49| 63| 75| 85| 92| 96| 98| 99

50( 25| 53| 68| 80| 89| 95 98| 99

55 28| 58| 72| 84| 92| 97| 99

60| 30| 62| 77| 87| 94| 98| 99

65| 33| 66| 80| 90| 96 99

701 35| 70| 83| 92| 97| 99

75| 37| 73| 86| 94| 98| 99

80| 40| 76| 88| 95| 99

90| 44| 81| 92| 97| 99

100 49| 85| 95| 98

110 53| 89| 96| 99

120 57| 92| 98

130 61| 94| 98

140| 64| 95| 99

150 68| 97| 99

175| 75| 98

200 81| 99

225 86

250( 89

300 94

350 97

400 99

450 99

500

600

700

800

900

1000

200
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Table 8.9. Power table for repeated measures ANOVA; r=0.40, pattern H, 4 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 {1.00|1.25[1.50 1.75]2.00| 2.50 | 3.00
5/ 7| 9| 10| 12| 13| 16| 18| 21| 24| 28| 31| 35| 52| 73| 88| 96| 99
6| 7( 9| 11| 13| 16| 19| 22| 26| 30| 35| 39| 44| 64| 84| 95| 99
7 7\ 10| 13| 15| 19| 22 27| 31| 36| 41| 47| 52| 73| 91| 98
8| 8| 12| 14| 18| 21| 26| 31| 36| 42| 48| 54| 60| 81| 95| 99
91 8| 13| 16| 20| 24| 30| 35| 41| 48| 54| o1| 67| 87| 97

101 8| 14| 18| 22| 27| 33| 39| 46| 53| 60| 67| 73| 91| 99

11| 9 15| 19| 24| 30| 37| 44| 51| 58| 65| 72| 78| 94| 99

12| 9 16| 21| 27| 33| 40| 48| 55| 63| 70| 76| 82| 96

13| 10{ 17| 23| 29| 36| 44| 52| 60| 67| 74| 80| 86| 97

14| 10| 19| 24| 31| 39| 47| 55| 64| 71| 78| 84| 89| 98

15| 11| 20| 26| 33| 42| 50| 59 67| 75| 81| 87| 91| 99

20| 13| 26| 35| 45| 55| 65| 74| 82| 88| 92| 95| 97

25| 16| 33| 43| 55| 66| 76| 84| 90| 94| 97| 99| 99

30| 19| 39| 52| 64| 75| 84| 91| 95| 98| 99

35| 21| 45| 59| 72| 82 90| 95| 98| 99

40| 24| 51| 66| 78| 88| 94| 97| 99

45| 27| 57| 71| 83| 91| 96| 99

50| 30| 62| 76| 87| 94| 98| 99

55| 33| 66| 81| 91| 96 99

60| 36| 71| 84| 93| 97 99

65| 39| 75| 87| 95| 98

70| 41| 78| 90 96| 99

75| 44| 81| 92| 97| 99

80| 47| 84| 94| 98

90| 52| 88| 96| 99

100 57| 92| 98

110 61| 94| 99

120 66 96| 99

130 70 97

140 73| 98

150 76| 99

175| 83| 99

200| 88

225| 92

250| 94

300 97

350 99

400

450

500

600

700

800

900

1000

201
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Table 8.10. Power table for repeated measures ANOVA; r=0.60, pattern H, 4 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55{0.60|0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5| 7| 10| 13| 15| 18| 22| 26| 30| 35| 40| 45| 51| 71| 90| 98
6| 8| 12| 15| 18| 22| 27| 32| 38| 44| 50| 56| 62| 83| 96| 99
7 8| 14| 17| 22| 27| 32| 39| 45| 52| 59| 65| 72| 90| 98
8| 9| 15| 20| 25| 31| 38| 45| 52| 60| 67| 73| 79| 94| 99
9| 10| 17| 22| 28| 35 43| 51| 59| 66| 73| 80| 85| 97

10| 10{ 19| 25| 32| 40| 48| 56| 65| 72| 79| 85| 89| 98

11 11] 21| 28| 35| 44| 53| 62| 70| 77| 84| 89| 93| 99

12| 12| 23| 30| 39| 48| 57| 66| 75| 82| 87| 92| 95

13| 13| 25| 33| 42| 52| 62| 71| 79| 85| 90| 94| 97

14| 13| 27| 35| 45| 56| 66| 75 82| 88| 93| 96| 98

15| 14| 29| 38| 48| 59| 69| 78| 85| 91| 95| 97| 98

20| 18| 38| 50| 63| 74| 83| 90| 95| 97| 99

25| 23| 47| 61| 74| 84| 91| 96| 98| 99

30| 27| 56| 71| 83| 91| 96| 98| 99

35| 31| 64| 78 89| 95| 98| 99

40| 35| 70| 84| 93| 97 99

45| 40| 76| 88| 95| 99

50 44| 81| 92| 97| 99

55| 48| 85| 94| 98

60| 52| 88| 96| 99

65| 55| 91| 97| 99

701 59| 93| 98

75| 62| 94| 99

80| 65| 96| 99

90| 71| 98

100 76| 99

110 80 99

120| 84

130 87

140 90

150| 92

175| 95

200( 97

2251 99

250 99

300

350

400

450

500

600

700

800

900

1000

202
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Table 8.11. Power table for repeated measures ANOVA; r=0.40, pattern L, 5 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 {1.00|1.25[1.50 1.75]2.00| 2.50 | 3.00
51 6 6| 7| 8| 8| 9| 10| 11| 13| 14| 16| 17| 26| 39| 55| 69| 82| 96| 99
6| o 7| 7\ 8 9| 11| 12| 13| 15| 17| 19| 21| 32| 49| 66| 81| 91| 99
7 6 7 8 91 10| 12| 14| 15| 18| 20| 23| 25| 39| 58| 76| 88| 96
8| 6 7| 9 10| 11| 13| 15| 18| 20| 23| 26| 30| 45| 66| 83| 93| 98
91 6 8| 9 11| 12| 15| 17{ 20| 23| 26| 30| 34| 51| 73| 88| 96 99
101 6| 8| 10{ 12| 14| 16| 19| 22| 26| 29| 33| 38| 57| 78| 92| 98

11 6| 9| 10{ 12| 15| 18| 21| 24| 28| 33| 37| 42| 62| 83| 95| 99

121 6| 9| 11| 13| 16| 19| 23| 27| 31| 36| 41| 46| 67| 87| 97| 99

13| 7( 10| 12| 14| 17| 21| 25| 29| 34| 39| 44| 50| 71| 90| 98

14 70 10 12 15| 18| 22| 27| 31| 36| 42| 48| 53| 75| 92 99

150 7 11| 13| 16| 20| 24| 29| 34| 39| 45| 51| 57| 79| 94| 99

20| 8| 13| 17| 21| 26| 32| 38| 45| 52| 59| 66 72| 91| 99

25| 9| 16| 20| 26| 33| 40| 48| 56| 63| 71| 77| 83| 96

30{ 10| 18| 24| 31| 39| 48| 57| 65| 73| 80| 85| 90| 99

35| 11| 21| 28| 37| 46| 55| 64| 73| 80| 86| 91| 94

40| 12| 24| 32| 42| 52| 62| 71| 79| 86| 91| 95| 97

45| 13| 27| 36| 47| 57| 68| 77| 84| 90| 94| 97| 98

50| 15| 30| 40| 51| 63| 73| 82| 88| 93| 96| 98| 99

55| 16| 33| 44| 56| 67| 78| 86| 92| 95| 98| 99

60| 17| 36| 48| 60| 72 82| 89| 94| 97| 99| 99

65| 18| 39| 52| 64| 76| 85| 91| 96| 98| 99

701 19| 42| 55 68| 79[ 88| 93| 97| 99

75| 21| 44| 58| 71| 82 90| 95| 98| 99

80| 22| 47| 62| 75| 85| 92| 96| 98| 99

90| 25| 53| 67| 80| 89| 95| 98| 99

100 27| 58| 73| 85| 92 97| 99

110 30| 62| 77| 88| 95| 98| 99

120 32| 67| 81| 91| 96| 99

130 35 71| 84| 93| 98| 99

140 38| 74| 87| 95| 98

150 40 77| 90| 96| 99

175| 46| 84| 94| 98

200 52| 89| 97| 99

225| 58| 93| 98

250 63| 95| 99

300 72| 98

350 79| 99

400| 85

450| 89

500 92

600| 96

700| 98

800 99

900

1000

203
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Table 8.12. Power table for repeated measures ANOVA; r=0.60, pattern L, 5 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55{0.60| 0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5 6 7| 8 9| 10| 12| 13| 15| 17| 20| 22| 25| 38| 56| 74| 87| 95
6| 6 8| 9| 10| 12 14| 16| 18| 21| 24| 27| 31| 47| 68| 85| 95 99
7 6 8| 10| 12| 14| 16| 19| 22| 25| 29| 33| 37| 56| 78| 92| 98
8| 6 9| 11| 13| 15| 18| 21| 25| 29| 34| 38| 43| 64| 85| 95| 99
91 7| 10| 12| 14| 17| 20| 24| 29| 33| 38| 44| 49| 71| 90| 98
100 7{ 10| 13| 16| 19| 23| 27| 32| 37| 43| 49| 55| 76| 93| 99

11 7( 11| 14 17| 21| 25| 30| 36| 42| 48| 54| 60| 81| 96| 99
12| 8| 12| 15| 18| 23| 28| 33| 39| 45| 52| 58| 65| 85| 97

13| 8| 13| 16| 20| 25| 30| 36| 43| 49| 56| 63| 69| 89| 98

14 8| 13| 17| 21| 27| 33| 39| 46| 53| 60| 67| 73| 91| 99

15| 8| 14| 18| 23| 29| 35| 42| 49| 57| 64| 71| 77| 93| 99

20{ 10| 18| 24| 31| 38| 47| 55| 64| 72| 79| 85| 89| 98

25| 12| 22| 30| 39| 48| 58| 67| 75| 83| 88| 93| 96

30| 13| 27| 36| 46| 57| 67| 76| 84| 90| 94| 97| 98

35| 15| 31| 42| 53| 65| 75| 83| 90| 94| 97| 99| 99

40| 17| 36| 47| 60| 71| 81| 89| 94| 97| 99| 99

45| 19| 40| 53| 66| 77| 86| 92| 96| 98| 99

50( 21| 44| 58| 71| 82| 90 95| 98| 99

55 22| 48| 63| 76| 86| 93| 97| 99

60| 24| 52| 67| 80| 89| 95| 98| 99

65| 26| 56| 71| 83| 92 96| 99

701 28| 60| 75 86| 94| 97| 99

75| 30| 63| 78| 89| 95| 98| 99

80 32| 66 81| 91| 96| 99

90| 36| 72| 86| 94| 98| 99

100 40 77| 90| 96| 99

110 44| 81| 92| 98 99

120 47| 85| 95| 99

130 51| 88| 96| 99

140 54| 91| 97| 99

150 58| 93| 98

175| 65| 96| 99

200 72| 98

225 78| 99

250 82| 99

300 89

350 94

400| 96

450 98

500 99

600

700

800

900

1000

204
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Table 8.13. Power table for repeated measures ANOVA; r=0.40, pattern M, 5 groups at alpha =0.05

n Hypothesized ES
0.20{0.30(0.35{0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 [1.00|1.25[1.50 1.75|2.00| 2.50 | 3.00
5 6 7| 8 8| 9 11| 12| 13| 15| 17| 19| 21| 32| 48| 65| 80| 90| 99
6l 6 7| 8 9| 11| 12| 14| 16| 18| 21| 23| 26| 40| 59| 77| 89| 96
7 6 8 91 10| 12| 14| 16| 19| 21| 24| 28| 31| 48| 69| 85| 95| 99
8| 6| 8| 10| 11| 13| 16| 18| 21| 25| 28| 32| 36| 55| 77| 91| 98
9 6 9 10| 12| 15| 17| 21| 24| 28| 32| 37| 42| 62| 83| 95 99
100 71 9| 11| 13| 16| 19| 23| 27| 31| 36| 41| 47| 68| 88| 97| 99
11 7{ 10| 12| 15| 18| 21| 25| 30| 35| 40| 46| 51| 73| 91| 98

121 7( 10| 13| 16| 19| 23| 28| 33| 38| 44| 50| 56| 78| 94| 99

13| 7| 11| 14 17| 21| 25| 30| 36| 42| 48| 54| 60| 82| 96| 99
14 7 12| 15| 18| 23| 27| 33| 39| 45| 51| 58| 64| 85| 97

15| 8| 12| 16| 19| 24| 29| 35| 42| 48| 55| 62| 68| 83| 98

20| 9| 16| 20| 26| 32| 40| 47| 55| 63| 70| 77| 82| 96

25| 10| 19| 25| 32| 41| 49| 58| 67| 74| 81| 87| 91| 99

30| 12| 23| 30| 39| 48| 58| 67| 76| 83| 89| 93| 96

35| 13| 26| 35| 45| 56| 66| 75| 83| 89| 93| 96| 98

40| 14| 30| 40| 51| 62| 73| 81| 88| 93| 96| 98| 99

45| 16| 34| 45| 57| 68| 78| 86| 92| 96| 98| 99

50| 18| 37| 49| 62| 74| 83| 90| 95| 97| 99

55| 19| 41| 54| 67| 78| 87| 93| 97| 99| 99

60| 21| 44| 58| 71| 82| 90| 95| 98| 99

65| 22| 48| 62| 75| 85 92| 97| 99

70| 24| 51| 66| 79| 88| 94| 98| 99

75| 25| 54| 69| 82| 90| 96| 98| 99

80| 27| 57| 72| 84| 92| 97| 99

90| 30| 63| 78| 89| 95| 98| 99

100| 34| 68| 83| 92| 97 99

110 37| 73| 87| 95| 98

120 40 77| 90| 96| 99

130 43| 81| 92 97| 99

140 46| 84| 94| 98

150 49| 87| 95| 99

175 56| 92| 98

200 63| 95| 99

2251 69| 97

250| 74| 98

300| 82

350| 88

400| 92

450 95

500 97

600 99

700

800

900

1000

205
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Table 8.14. Power table for repeated measures ANOVA; r=0.60, pattern M, 5 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55{0.60| 0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5/ 6 8| 9| 10| 12| 14| 16| 18| 21| 24| 27| 31| 46| 67| 84| 94| 98
6| 6 9| 10| 12| 14| 16| 19| 22| 26| 30| 34| 38| 57| 79| 92| 98
7 7 9| 11| 13| 16| 19| 23| 27| 31| 36| 41| 46| 67| 87| 97| 99
8| 7| 10| 12| 15| 18| 22| 26| 31| 36| 42| 47| 53| 75| 92| 99
9 7| 11| 14| 17| 21| 25| 30| 35| 41| 47| 53| 60| 81| 95| 99
10| 8| 12| 15[ 19| 23| 28| 34| 40| 46| 53| 59| 66| 86| 97

11| 8| 13| 16| 21| 26| 31| 37| 44| 51| 58| 65| 71| 90| 99

12| 8| 14| 18| 22| 28| 34| 41| 48| 55| 63| 69| 76| 93| 99

13| 9| 15| 19| 24| 30| 37| 45| 52| 60| 67| 74| 80| 95

14| 9] 16| 21| 26| 33| 40| 48| 56| 64| 71| 78| 83| 96

15| 9| 17| 22 28| 35| 43| 51| 60| 67 75| 81| 86| 98

20| 11| 22| 29| 38| 47| 57| 66| 75| 82| 88| 92| 95

25| 14| 28| 37| 47| 58| 69| 78| 85| 91| 95| 97| 99

30| 16| 33| 44| 56| 68 78| 86| 92| 96| 98| 99

35| 18| 39| 51| 64| 75| 85| 91| 96| 98| 99

40| 20| 44| 58| 71| 82 90| 95| 98| 99

45| 23| 49| 64| 76| 86| 93| 97| 99

50( 25| 54| 69| 81| 90| 96| 98| 99

55( 28| 59| 74| 85| 93| 97| 99

60| 30| 63| 78| 89| 95| 98| 99

65| 33| 67| 81| 91| 97 99

701 35| 71| 85| 93| 98| 99

75| 37| 74| 87| 95| 98

80| 40| 77| 89| 96| 99

90| 45| 82| 93| 98

100 49| 87| 95| 99

110 53| 90| 97| 99

120 58| 93| 98

130 62 95| 99

140 65 96| 99

150 69| 97

175 76| 99

200 82| 99

225| 87

250 90

300 95

350 98

400 99

450

500

600

700

800

900

1000
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CHAPTER 8 TABLES

Table 8.15. Power table for repeated measures ANOVA; r=0.40, pattern H, 5 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 {1.00|1.25[1.50 1.75]2.00| 2.50 | 3.00
5/ 7| 9| 10| 12| 14| 17| 19| 23| 26| 30| 34 39| 58| 79| 93| 98
6| 7 10| 12| 14| 17| 20| 24| 28| 33| 38| 43| 48| 69| 89| 97
7 70 11 13| 16| 20| 24| 29| 34| 39| 45| 51| 57| 79| 94| 99
8| 8| 12| 15| 19| 23| 28| 33| 39| 46| 52| 59| 65| 85| 97
91 8| 13| 17| 21| 26| 32| 38| 45| 52| 59| 65| 72| 90| 99
101 9 14| 18| 23| 29| 36| 43| 50| 57| 65| 71| 78| 94| 99
11| 9 16| 20 26| 32| 39| 47| 55| 63| 70| 77| 82| 96

12| 9 17| 22| 28| 35| 43| 51| 60| 67| 75| 81| 86| 98
13| 10 18| 24| 31| 39| 47| 56| 64| 72| 79| 85| 89| 98

14| 10| 20| 26| 33| 42| 51| 59| 68| 76| 82| 88| 92| 99

15| 11| 21| 28| 36| 45| 54| 63| 72| 79| 85| 90| 94| 99
20| 14| 28| 37| 48| 59 69| 78| 86| 91| 95| 97| 99

25| 17| 35| 47| 59| 70 80| 88| 93| 97| 98| 99

30| 20| 42| 55| 68| 79| 88| 94| 97| 99

35| 23| 48| 63| 76| 86| 93| 97| 99

40| 26| 55| 70| 82| 91| 96| 98| 99

45| 29| 61| 76| 87| 94| 98| 99

50 32| 66| 80| 91| 96 99

55| 35| 71| 85| 93| 98| 99

60| 38| 75| 88| 95| 99

65| 41| 79| 91| 97| 99

70| 44| 82| 93| 98| 99

75| 47| 85| 94| 98

80| 50| 87| 96| 99

90| 56| 91| 98

100 61| 94| 99

110 65| 96| 99

120 70| 97

130 74| 98

140 77{ 99

150 80| 99

175| 87

200 91

225| 94

250| 96

300 99

350 99

400

450

500

600

700

800

900

1000
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ONE-WAY REPEATED MEASURES ANALYSIS OF VARIANCE

Table 8.16. Power table for repeated measures ANOVA; r=0.60, pattern H, 5 groups at alpha=0.05

n Hypothesized ES

0.20{0.30]0.35{0.40{0.45[{0.50{0.55[0.60 | 0.65]0.700.75|0.80 {1.00 {1.25[1.50 [1.75 | 2.00{2.50| 3.00

71 11| 13| 16| 19| 23| 28| 33| 38| 44| 50| 56| 77| 94| 99
8| 12| 16| 19| 24| 29| 35| 41| 48| 54| 61| 67| 87| 98
14| 18| 23| 29| 35| 42| 49| 57| 64| 71| 77| 93| 99
91 16| 21| 27| 33| 41| 49| 57| 64| 72| 78| 84| 97
91 10 18| 24| 30| 38| 46| 55| 63| 71| 78| 84| 89| 98
101 11| 20| 27| 34| 43| 52| 61| 69| 77| 84| 89| 93| 99
11 12| 22 29 38| 47| 57| 66| 75| 82| 88| 92| 95
12| 12| 24| 32| 42| 52| 62 71| 79| 86| 91| 95| 97
13| 13| 26| 35| 45| 56| 66| 75| 83| 89| 93| 96| 98
14| 14| 28| 38| 49| 60 70 79| 86| 92| 95| 98| 99
15| 15| 30| 41| 52| 63| 74| 82 89| 94| 97| 98| 99
20| 19| 41| 54| 67| 78| 87| 93| 97| 99| 99
25| 24| 51| 66| 78| 88| 94| 98| 99
30| 28| 60| 75 86| 94| 98| 99
35| 33| 68| 82 92| 97| 99
40| 38| 74| 88| 95| 98
45| 42| 80| 91| 97| 99

®w ~J o u
O

55( 51| 88| 96| 99
60| 55| 91| 98
65| 59| 93| 98
701 63| 95| 99
75| 66| 96| 99
80| 69 97
90| 75| 99
100 80| 99
110 84
120| 88
1301 90
140 92
150 94
175| 97
200 99
225| 99
250
300
350
400
450
500
600
700
800
900
1000
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Table 8.17. Sample size table for repeated measures ANOVA F-ratio; alpha=0.05, r=0.40

CHAPTER 8 TABLES

Chart A. 3 groups, pattern L/M
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80{1.00| 1.25| 1.50| 1.75| 2.00( 2.50 | 3.00
0.80 [ 287|129 95| 73| 58| 48| 40| 34| 29| 25| 22| 20| 13 9 7 6 5 4 4
0.90 | 377| 169] 125| 96| 76| 62| 52| 44| 38| 33| 29| 26| 17| 12| 9| 7| o6 5| 4
Chart B. 3 groups, pattern H
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80(1.00| 1.25|1.50| 1.75| 2.00( 2.50 | 3.00
0.80 |216| 97| 72| 55| 44| 36| 30| 26| 22| 20| 17| 15| 11| 8| 6| 5| 4| 4| 3
0.90 | 283| 127| 94| 72| 58| 47| 39| 33| 29| 25| 22| 20| 13| 9| 7| 6| 5| 4| 4
Chart C. 4 groups, pattern L
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80(1.00| 1.25|1.50| 1.75| 2.00(2.50| 3.00
0.80 | 325| 146| 107| 83| 66| 54| 45| 38| 32| 28| 25| 22 15| 10| 8| 6| 5| 4 3
0.90 | 424| 189 140| 107 85| 69| 58| 49| 42| 36| 32| 28| 19| 13| 9| 7| 6| 5/ 5
Chart D. 4 groups, pattern M
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]0.60(0.65|0.70{0.75[0.80{1.00| 1.25| 1.50| 1.75| 2.00(2.50 | 3.00
0.80 | 293| 131| 97| 75| 59| 48| 40| 34| 29| 26| 23| 20 14| 9| 7| 6| 5 4 3
0.90 | 382| 171| 126| 97| 77| 63| 52| 44| 38| 33| 29| 26| 17| 12| 9| 7| o6 4| 4
Chart E. 4 groups, pattern H
Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00
0.80 | 164| 74| 55| 42| 34| 28| 23| 20| 17| 15| 13| 12| 8| 6| 5| 4| 4/ 3| 3
0.90 |[213] 96| 71| 55| 44| 36| 30| 25 22| 19| 17| 15| 10 7 6 5 4 3 3
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ONE-WAY REPEATED MEASURES ANALYSIS OF VARIANCE

Table 8.17. (cont.)

Chart E 5 groups, pattern L

Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[356] 159( 118| 90| 72| 58| 49| 41| 35| 31| 27| 24| 16| 11 8 6 5 4 3
0.90 |462| 206| 152| 117| 93| 75| 63| 53| 45| 39| 34| 30| 20| 14| 10| 8| 6| 5| 4
Chart G. 5 groups, pattern M
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 286| 128| 94| 73| 58| 47| 39| 33| 29| 25| 22| 19| 13| 9| 7| 5| 5| 4| 3
0.90 |[370| 165| 122| 94| 74| 61| 50| 43| 37 32| 28| 25| 16| 11| 8| 7| 5| 4| 3
Chart H. 5 groups, pattern H
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[150| 67| 50| 39| 31| 25| 21| 18| 16| 14| 12| 11| 8| 6| 4| 4| 3| 3| 3
0.90 | 193] 87| 64| 50| 40| 32| 27| 23| 20| 17| 15| 14| 9 7| 5| 4| 4| 3| 3
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CHAPTER 8 TABLES

Table 8.18. Sample size table for repeated measures ANOVA F-ratio; alpha=0.05, r=0.60

Chart A. 3 groups, pattern L/M

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.801.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 [ 192 86| 64| 49| 40| 32| 27| 23| 20| 18| 16| 14| 10
0.90 |[252] 113| 84| 65 51| 42| 35| 30 26| 22| 20| 18| 12 9 7 5 5 4 3

~
N
Ul
-
s
w

Chart B. 3 groups, pattern H

Power Hypothesized ES

0.2010.30(0.35|0.40|0.45|0.50|0.55]|0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 | 144 65| 49| 38| 30| 25| 21| 18| 16| 14| 12| 11 8 6| 5 4 4 31 3
0.90 [190| 85| 63| 49| 39| 32| 27| 23| 20| 17| 15| 14| 10| 7 6 5 4 3 3

Chart C. 4 groups, pattern L

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00| 2.50| 3.00

0.80 [217| 98| 72| 56| 44| 36| 30| 26| 22| 19| 17| 15| 11 7 6] 5 4 31 3
0.90 [283| 127 94| 72| 57| 47| 39| 33| 28| 25| 22| 19| 13| 9| 7 6 5 4 3

Chart D. 4 groups, pattern M

Power Hypothesized ES

0.2010.30{0.35|0.40{0.45|0.50|0.55]0.60{0.65]|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 [ 196 88| 65| 50 40 33| 28| 23| 20| 18| 16| 14| 10| 7 5 4 4 3 3
0.90 |[255| 114| 85| 65 52| 42| 35| 30 26| 23| 20| 18| 12| 8| 6| 5 41 4| 3

Chart E. 4 groups, pattern H

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]|0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 [ 110| 50( 37| 29 23| 19| 16| 14| 12| 11| 10| 9| 6| 5| 4| 3 31 31 2
0.90 | 142 o4 48| 37( 30 24| 20| 17 15| 13| 12| 11 8 6 4| 4 31 31 3
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Table 8.18. (cont.)

Chart E 5 groups, pattern L

Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[238]| 107 79| 61| 48| 40| 33| 28| 24| 21| 19| 17| 11 8 6 5 4 3 3
0.90 |308| 138| 102| 78| 62| 51| 42| 36| 31| 27| 24| 21| 14| 10| 7| 6| 5| 4| 3
Chart G. 5 groups, pattern M
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 191| 86| 64| 49| 39| 32| 27| 23| 20| 17| 15| 14| 9 7| 5| 4| 4| 3| 3
0.90 |247| 111| 82| 63| 50| 41| 34| 29| 25| 22| 19| 17| 12| 8| 6| 5| 4| 3| 3
Chart H. 5 groups, pattern H
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[100| 46| 34| 26| 21| 18| 15| 13| 11 10| 9| 8| 6| 4| 4| 3| 3| 3| 2
0.90 | 129| 58| 43| 34| 27| 22| 19| 16| 14| 12| 11| 10| 7{ 5| 4| 4| 3| 3| 2
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Table 8.19. Sample size table for repeated measures ANOVA F-ratio; alpha=0.01, r=0.40

CHAPTER 8 TABLES

Chart A. 3 groups, pattern L/M
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80{1.00| 1.25| 1.50| 1.75| 2.00( 2.50 | 3.00
0.80 |[415| 186 138| 106 84| 69| 57| 49| 42| 37| 32| 29| 19| 13| 10 8 7 6 5
0.90 | 522| 233| 172| 133| 105 86| 71| 60| 52| 45| 40| 35| 24| 16| 12| 10| 8| 6 5
Chart B. 3 groups, pattern H
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80(1.00| 1.25|1.50| 1.75| 2.00( 2.50 | 3.00
0.80 | 312| 140| 104| 80| 64| 52| 44| 37| 32| 28| 25| 22| 15| 11| 8| 7| 6| 5 4
0.90 | 392| 176] 130| 100 80| 65| 54| 46| 40| 35| 31| 27| 18| 13| 10| 8| 7| 5/ 5
Chart C. 4 groups, pattern L
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80(1.00| 1.25|1.50| 1.75| 2.00(2.50| 3.00
0.80 | 463| 207| 153| 118 93| 76| 63| 54| 46| 40| 35| 31| 21| 14 11| 8| 7| 5[ 5
0.90 | 577| 258| 190| 146| 116 94| 78| 66| 57| 49| 43| 38| 25| 17| 13| 10| 8| 6 5
Chart D. 4 groups, pattern M
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]0.60(0.65|0.70{0.75[0.80{1.00| 1.25| 1.50| 1.75| 2.00(2.50 | 3.00
0.80 | 417| 187| 138| 106 84| 69| 57| 48| 42| 36| 32| 28| 19| 13| 10| 8| 7| 5| 4
0.90 | 519 232| 171| 132| 105 85| 71| 60| 51| 45| 39| 35| 23| 16| 12| 9| 8| 6 5
Chart E. 4 groups, pattern H
Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00
0.80 | 233| 105 78| 60| 48| 39| 33| 28| 24| 21| 19| 17( 12| 8| 7| 5| 5| 4| 3
0.90 [290| 130 96| 74| 59| 48| 40| 34| 30| 26| 23| 20| 14| 10 8 6 5 4 4
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Table 8.19. (cont.)

Chart E 5 groups, pattern L

Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[502| 224 165| 127| 101| 82| 68| 58| 49| 43| 38| 33| 22| 15| 11 9 7 5 4
0.90 |622| 278| 205| 157| 125| 101| 84| 71| 61| 53| 46| 41| 27| 18| 13| 10| 8| 6| 5
Chart G. 5 groups, pattern M
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45|0.50| 0.55[0.60{0.65|0.70{0.75]|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |402| 180| 133| 102| 81| 66| 55| 47| 40 35| 31| 27| 18| 12| 9| 7| 6| 5| 4
0.90 | 498| 223| 164| 126| 100| 81| 68| 57| 49| 43| 37| 33| 22| 15| 11 9 7 5 4
Chart H. 5 groups, pattern H
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[210| 95| 70| 54| 43| 35| 30| 25| 22 19| 17| 15| 11| 8| 6| 5| 4| 4| 3
0.90 |[260| 117| 86| 67| 53| 43| 36| 31| 27 23| 21| 18| 13| 9| 7| 6| 5| 4| 3
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Table 8.20. Sample size table for repeated measures ANOVA F-ratio; alpha=0.01, r=0.60

CHAPTER 8 TABLES

Chart A. 3 groups, pattern L/M
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80{1.00| 1.25| 1.50| 1.75| 2.00( 2.50 | 3.00
0.80 [278| 125 93| 72| 57| 47| 39| 33| 29| 25| 22| 20| 14| 10 8 6 6 5 4
0.90 | 349| 157| 116| 89| 71| 58| 49| 41| 36| 31| 27| 24| 17| 12| 9| 7| o6 5| 4
Chart B. 3 groups, pattern H
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80(1.00| 1.25|1.50| 1.75| 2.00( 2.50 | 3.00
0.80 |209| 95| 70| 54| 44| 36| 30| 26| 22| 20| 18| 16| 11| 8| 7| 6| 5| 4| 4
0.90 |2062| 118| 88| 68| 54| 44| 37| 32| 27| 24| 21| 19| 13| 10| 8| 6| o6 5 4
Chart C. 4 groups, pattern L
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80(1.00| 1.25|1.50| 1.75| 2.00(2.50| 3.00
0.80 | 309| 139] 103| 79| 63| 52| 43| 37| 31| 27| 24| 22| 15| 10| 8| 6| o 4| 4
0.90 |385| 173|127 98| 78| 64| 53| 45| 39| 34| 30| 26| 18| 12| 9| 7| 6| 5| 4
Chart D. 4 groups, pattern M
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]0.60(0.65|0.70{0.75[0.80{1.00| 1.25| 1.50| 1.75| 2.00(2.50 | 3.00
0.80 | 279| 125| 93| 71| 57| 47| 39| 33| 29| 25| 22| 20| 13| 10| 7| 6| 5| 4| 4
0.90 | 347| 156| 115| 89| 70| 58| 48| 41| 35| 31| 27| 24| 16| 11| 9| 7| o6 5| 4
Chart E. 4 groups, pattern H
Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00
0.80 | 156| 71| 53| 41| 33| 27| 23| 19| 17| 15| 13| 12| 9| 6| 5| 4| 4| 3| 3
0.90 |[194| 87| 65| 50| 40| 33| 28| 24| 21| 18| 16| 14| 10 7 6 5 4 4 3
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Table 8.20. (cont.)

Chart E 5 groups, pattern L

Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[335| 150( 111| 85| 68| 55| 46| 39| 34| 29| 26| 23| 16| 11 8 7 6 4 4
0.90 |415| 186| 137| 105| 84| 68| 57| 48| 41| 36| 32| 28| 19| 13| 10| 8| 6| 5| 4
Chart G. 5 groups, pattern M
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |269| 121 89| 69| 55| 45| 37| 32| 27| 24| 21| 19| 13| 9| 7| 6| 5| 4| 3
0.90 |333| 149| 110| 85| 67| 55| 46| 39| 33| 29| 26| 23| 15| 11| 8| 7| 6| 4| 4
Chart H. 5 groups, pattern H
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 141| 64| 47| 37| 30| 24| 21| 18| 15| 14| 12| 11| 8| 6| 5| 4| 4| 3| 3
0.90 | 174| 79| 58| 45| 36| 30| 25| 21| 18| 16| 14| 13| 9 7| 5| 4| 4| 3| 3
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Table 8.21. Sample size table for repeated measures ANOVA F-ratio; alpha=0.10, r=0.40

CHAPTER 8 TABLES

Chart A. 3 groups, pattern L/M
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |[228]| 102 76| 58| 46| 38| 32| 27 23| 20| 18] 16| 11 8 6 5 4 3 3
0.90 |[311]| 139 103| 79| 63| 51| 43| 36| 31| 27| 24| 21| 14| 10| 7| 6| 5| 4| 3
Chart B. 3 groups, pattern H
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 172| 77| 57| 44| 35| 29| 24| 21| 18| 16| 14| 12| 9| 6| 5| 4| 4| 3| 3
0.90 |[234]| 105 77| 60| 47| 39| 32| 27| 24| 21| 18] 16| 11 8 6 5 4 3 3
Chart C. 4 groups, pattern L
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]0.60(0.65|0.70{0.75[0.80(1.00| 1.25|1.50| 1.75| 2.00( 2.50| 3.00
0.80 |[262| 117| 86| 67| 53| 43| 36| 30| 26 23| 20| 18| 12| 8| 6| 5| 4| 3| 3
0.90 |352| 158| 116| 89| 71| 58| 48| 41| 35| 30| 27| 24| 16| 11| 8| 6| 5| 4| 3
Chart D. 4 groups, pattern M
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50| 3.00
0.80 |236| 106 78| 60| 48| 39| 33| 28| 24| 21| 18| 16| 11| 8| 6| 5| 4| 3| 3
0.90 |317| 142|105 81| 64| 52| 43| 37| 31| 27| 24| 21| 14| 10| 7| 6| 5| 4| 3
Chart E. 4 groups, pattern H
Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]|0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00
0.80 |[132| 59| 44| 34| 27| 22| 19| 16| 14 12| 11| 10{ 7[ 5| 4| 3| 3| 3| 2
0.90 | 177| 80| 59| 45| 36| 30| 25| 21| 18| 16| 14| 13| 9| 6| 5| 4| 4| 3| 3
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Table 8.21. (cont.)

Chart E 5 groups, pattern L

Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[289] 129| 95| 73| 58| 47| 39| 33| 29| 25| 22| 19| 13| 9| 7| 5| 4| 3| 3
0.90 |386| 172| 127| 98| 77| 63| 52| 44| 38| 33| 29| 26| 17| 11| 8| 7| 5| 4| 3
Chart G. 5 groups, pattern M
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 231| 104| 77| 59| 47| 38| 32| 27| 23| 20| 18| 16| 11{ 7| o6 5| 4| 3| 3
0.90 |[309| 138| 102| 78| 62| 51| 42| 36| 31| 27| 23| 21| 14| 9| 7| 6| 5| 4| 3
Chart H. 5 groups, pattern H
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[121| 55| 41| 31| 25| 21| 17| 15| 13| 11| 10| 9| 6| 5| 4| 3| 3| 2| 2
0.90 | 162| 73| 54| 42| 33| 27| 23| 19| 17| 15| 13| 12| 8| 6| 4| 4| 3| 3| 2

218




Table 8.22. Sample size table for repeated measures ANOVA F-ratio; alpha=0.10, r=0.60

CHAPTER 8 TABLES

Chart A. 3 groups, pattern L/M
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80{1.00| 1.25| 1.50| 1.75| 2.00( 2.50 | 3.00
0.80 |[153| 69| 51| 39 32| 26| 22 19 16| 14| 13| 11 8 6 5 4 3 3 3
0.90 |208| 93| 69| 53| 42| 35| 29| 25| 21| 19| 16| 15| 10| 7| 6| 5| 4| 3| 3
Chart B. 3 groups, pattern H
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80(1.00| 1.25|1.50| 1.75| 2.00( 2.50 | 3.00
0.80 | 115| 52| 39| 30| 24| 20| 17| 14| 12| 11| 10 9| 6| 5 4| 3| 3| 3| 3
0.90 | 156| 70| 52| 40| 32| 26| 22| 19| 16| 14| 13| 11| 8| 6| 5| 4| 3| 3| 3
Chart C. 4 groups, pattern L
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80(1.00| 1.25|1.50| 1.75| 2.00(2.50| 3.00
0.80 | 175 79| 58| 45| 36| 29| 25| 21| 18| 16| 14| 12| 9| 6| 5| 4| 3| 3| 3
0.90 |235| 106| 78| 60| 48| 39| 33| 28| 24| 21| 18| 16| 11| 8| 6| 5| 4| 3| 3
Chart D. 4 groups, pattern M
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]0.60(0.65|0.70{0.75[0.80{1.00| 1.25| 1.50| 1.75| 2.00(2.50 | 3.00
0.80 |[158| 71| 53| 41| 32 27| 22| 19| 16| 14| 13| 11 8 6 4 4 3 3 3
0.90 |212| 95| 70| 54| 43| 35| 29| 25| 22| 19| 17| 15| 10| 7| 5| 4| 4| 3| 3
Chart E. 4 groups, pattern H
Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00
0.80 88| 40| 30| 23| 19| 15| 13| 11| 10{ 9 8| 7| 5| 4| 3| 3| 3| 2| 2
0.90 | 119 54| 40| 31| 25| 20| 17| 15| 13| 11| 10 9 6 5 4 3 3 3 2
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Table 8.22. (cont.)

Chart E 5 groups, pattern L

Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 [ 193] 87| 64| 49| 39| 32| 27| 23| 20| 17| 15| 13 9 6 5 4 4 3 3
0.90 |[258| 115| 85| 66| 52| 43| 35| 30| 26 22| 20| 18| 12| 8| 6| 5| 4| 3| 3
Chart G. 5 groups, pattern M
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45|0.50| 0.55[0.60{0.65|0.70{0.75]|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 155 70| 52| 40| 32| 26| 22| 19| 16| 14| 12| 11| 8| 6| 4| 4| 3| 3| 2
0.90 [207| 93| 68| 53| 42| 34| 29| 24| 21| 18| 16| 14| 10 7 5 4 4 3 3
Chart H. 5 groups, pattern H
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 81| 37| 28| 21| 17| 14| 12| 10f 9| 8| 7| 7| 5| 4| 3| 3| 3| 2| 2
0.90 | 108| 49| 36| 28| 23| 19| 16| 13| 12| 10| 9| 8| 6 4| 4| 3| 3| 2| 2
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Table 8.23. Power table for repeated measures ANOVA; Tukey HSD MCP, r=0.40, 3 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 {1.00|1.25[1.50 1.75]2.00| 2.50 | 3.00
5/ 2| 3| 4| 5| 6| 7| 8 9| 11| 12| 14 16| 25| 40| 57| 72| 84| 97
6| 3| 4| 5| 6 7| 8| 10| 12| 14| 16| 18| 21| 33| 52| 70| 84| 93| 99
7 3 4 5 7 8| 10| 12| 14| 17| 20| 23| 26| 41| 62| 80| 91| 97
8| 3| 5| 6 8| 10| 12| 14| 17| 20| 23| 27| 31| 49| 71| 87| 96| 99
91 3| 5| 7| 9| 11| 14| 16| 20| 23| 27| 32| 36| 56| 78| 92| 98

100 3] 6| 8 10| 12| 15| 19 23| 27| 31| 36| 41| 62| 83| 95| 99

11| 4 7| 9| 11| 14| 17| 21| 25| 30| 35| 40| 46| 68| 88| 97| 99

121 4 7| 9| 12| 15| 19| 23| 28| 33| 39| 45| 51| 73| 91| 98

13| 4 8| 10 13| 17| 21| 26| 31| 37| 43| 49| 55| 77| 94| 99

14 4 8| 11| 15[ 19| 23| 28| 34| 40| 46| 53| 59| 81| 95| 99

15| 5[ 9| 12| 16| 20| 25| 31| 37| 43| 50| 57| 63| 84| 97

20| 6| 12| 17| 22| 28| 35| 43| 50| 58| 66| 73| 79| 94| 99

25| 7| 15| 21| 28| 36| 45| 54| 62| 70| 77| 84| 88| 98

301 9| 19| 26| 35| 44| 54| 63| 72| 80| 86| 91| 94| 99

35| 10| 22| 31| 41| 51| 62| 71| 80| 86| 91| 95| 97

40| 11| 26| 36| 47| 58| 69| 78| 85| 91| 95| 97| 99

45| 13| 30| 41| 53| 64| 75| 83| 90| 94| 97| 99| 99

50| 14| 33| 45| 58| 70 80| 88| 93| 96| 98| 99

55| 16| 37| 50| 63| 75| 84| 91| 95| 98| 99

60| 17| 40| 54| 67| 79| 87| 93| 97| 99| 99

65| 19| 44| 58| 71| 82 90| 95| 98| 99

701 20| 47| 62 75| 85 92| 97| 99| 99

75| 22| 50| 65| 78| 88| 94| 98| 99

80| 23| 53| 69| 81| 90| 96| 98| 99

90| 27| 59| 75| 86| 94| 97| 99

100 30 65| 80| 90| 96 99

110 33| 69| 84| 93| 97| 99

120 36| 74| 87| 95| 98

130 39 78| 90| 96| 99

140 42| 81| 92| 97| 99

150| 45| 84| 94| 98

175 52 90| 97 99

200 59| 94| 98

225 65 96| 99

250 70| 98

300 79| 99

350| 86

400| 90

450| 94

500 96

600| 98

700| 99

800

900

1000
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Table 8.24. Power table for repeated measures ANOVA; Tukey HSD MCP, r=0.60, 3 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55{0.60| 0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5/ 3| 4| 5| 7| 8| 10| 11| 13| 16| 18| 21| 24| 39| 59| 77| 89| 96
6| 3| 5| o 8| 10f 12| 15| 17| 21| 24| 28| 32| 50| 72| 88| 96| 99
7 3 6 8| 10| 12| 15| 18| 22| 26| 30| 35 40| 60| 82| 94| 99
8| 4| 7| 9| 11| 14| 18| 22| 26| 31| 36| 41| 47| 69| 88| 97
9 4| 8| 10| 13| 16| 21| 25| 30| 36| 42| 48| 54| 76| 93| 99
10| 4 8| 11 15| 19| 24| 29| 35| 41| 47| 54| 60| 82| 96| 99
11| 5] 9| 13| 17| 21| 27| 32| 39| 46| 52| 59| 66| 86| 97

12| 5| 10| 14| 18| 24| 30| 36| 43| 50| 57| 64| 71| 90| 99

13| 6| 11| 15| 20| 26| 33| 40| 47| 55| 62| 69| 75| 93| 99

14 6 12| 17| 22| 28| 36| 43| 51| 59| 66| 73| 79| 95

15| 6| 13| 18| 24| 31| 38| 46| 55| 63| 70| 77| 83| 96

20| 8| 18| 25| 34| 43| 52| 62| 71| 78| 85| 90| 93| 99

25| 10| 24| 33| 43| 54| 64| 74| 82| 88| 93| 96| 98

30| 12| 29| 40| 52| 63| 74| 83| 89| 94| 97| 98| 99

35| 15| 34| 47| 60| 72| 81| 89| 94| 97| 99| 99

40| 17| 40| 53| 67| 78| 87| 93| 97| 98| 99

45| 19| 45| 59| 73| 84| 91| 96| 98| 99

50( 22| 50| 65| 78| 88| 94| 97| 99

55( 24| 54| 70| 82| 91| 96| 98| 99

60| 26| 59| 74| 86| 93| 97| 99

65| 29| 63| 78| 89| 95| 98| 99

701 31| 67| 81| 91| 97| 99

75| 33| 70| 84| 93| 98| 99

80| 36| 74| 87| 95| 98

90| 41| 79| 91| 97| 99

100 45| 84| 94| 98

110 49| 88| 96| 99

120 54 90| 97| 99

130| 58| 93| 98

140 61| 95| 99

150| 65 96| 99

175 73| 98

200 79| 99

225| 84

250| 88

300 94

350 97

400( 98

450 99

500

600

700

800

900

1000
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Table 8.25. Power table for repeated measures ANOVA; Tukey HSD MCP, r=0.40, 4 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 [1.00|1.25[1.50 1.75|2.00| 2.50 | 3.00
5 1| 2| 3| 3| 4| 5 6| 7| 8 9| 11| 13| 21| 36| 53| 70| 83| 97
6| 2 3| 3| 4| 5 6| 7| 9| 10| 12| 14| 17| 28| 47| 66| 82| 92| 99
7 2 3 4 5 6 7 9| 11| 13| 15| 18| 21| 35| 57| 76| 90| 97
8| 2 3| 4| 5 7| 8| 10f 13| 15| 18| 22| 25| 43| 66| 84| 94| 99
91 2f 4| 5| 6| 8| 10| 12 15| 18| 22| 26| 30| 49| 73| 90| 97| 99
100 2 4| 5[ 7 9| 11| 14| 17| 21| 25| 30| 34| 56| 79| 93| 98

11 2[ 4| 6 8| 10| 13| 16 20| 24| 29| 34| 39| 61| 84| 96| 99

121 2 5| 6| 9| 11| 14| 18| 22| 27| 32| 38| 43| 67| 83| 97

131 3] 5| 7[ 9| 12| 16| 20 25| 30| 36| 42| 48| 72| 91| 98

141 3| 6| 8| 10| 14| 18| 22| 27| 33| 39| 45| 52| 76| 94| 99

15| 3| 6| 8| 11| 15| 19| 24| 30| 36| 42| 49| 56| 80| 95| 99

20| 4| 8| 12| 16| 22| 28| 35| 42| 50| 58| 66 73| 92| 99

25| 5| 11| 16| 22| 29| 37| 45| 54| 63| 71| 78| 84| 97

30| 6| 14| 20| 27| 36| 45| 55| 65| 73| 81| 87| 91| 99

35 7| 16| 24| 33| 43| 53| 64| 73| 81| 87| 92| 95

40| 8| 19| 28| 38| 50| 61| 71| 80| 87| 92| 96| 98

45| 9| 23| 33| 44| 56| 68| 78| 86| 91| 95| 98| 99

50| 10| 26| 37| 49| 62| 73| 83| 90| 94| 97| 99| 99

55| 11| 29| 41| 54| 67| 78| 87| 93| 96| 98| 99

60| 12| 32| 45| 59| 72| 82| 90| 95| 98| 99

65| 13| 35| 49| 64| 76| 86| 93| 96| 99| 99

70| 15| 38| 53| 68| 80| 89| 94| 98| 99

75| 16| 41| 57| 72| 83| 91| 96| 98| 99

80| 17| 45| o1| 75| 86| 93| 97| 99

90| 20| 51| 67| 81| 90| 96| 98

100 23| 56| 73| 86| 94| 98| 99

110 25 61| 78] 89| 96| 99

120 28| 66| 82| 92| 97 99

130 31| 71| 85| 94| 98

140 34| 74| 88| 96| 99

150 37| 78| 91| 97| 99

175 44| 85| 95| 99

200 50| 90| 97

225 56| 94| 99

250 62| 96| 99

300 72| 98

350 80| 99

400| 86

450| 90

500 93

600| 97

700| 99

800

900

1000

223




ONE-WAY REPEATED MEASURES ANALYSIS OF VARIANCE

Table 8.26. Power table for repeated measures ANOVA; Tukey HSD MCP, r=0.60, 4 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55{0.60| 0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5/ 2| 3| 4 5| 6| 7| 9 10| 13| 15| 17| 20| 34| 55| 75| 89| 96
6 2| 3| 4 6| 7| 9| 11| 14| 16| 20| 23| 27| 45| 68| 86| 95| 99
7 2 4 5 7 9| 11| 14| 17| 21| 25| 29| 34| 55| 78| 93| 98
8| 2| 5| o6 8| 11| 13| 17| 21| 25| 30| 35| 41| 63| 86| 96| 99
9 3 5 7 91 12| 16| 20| 24| 30 35| 41| 47| 71| 91| 98

100 3] 6| 8| 11| 14| 18| 23| 28| 34| 40| 47| 53| 77| 94| 99

11 3] 6| 9 12| 16| 21| 26| 32| 39| 45| 52| 59| 82| 96

12| 3| 7| 10 14| 18| 23| 29| 36| 43| 50| 58| 65| 87| 98

13| 4| 8| 11| 15| 20| 26| 32| 40| 47| 55| 62| 69| 90| 99

14 4 91 12 17| 22 29| 36| 43| 51| 59| 67| 74| 92| 99

15| 4] 9| 13| 18| 24| 31| 39| 47| 55| 63| 71| 78| 94

20| 6| 13| 19| 27| 35| 44| 54| 63| 72| 80| 86| 91| 99

25| 7| 18| 26| 35| 46| 56| 67| 76| 84| 89| 94| 96

30 9| 22| 32| 43| 55| 67| 77| 85| 91| 95| 97| 99

35| 10| 27| 39| 51| 64| 75| 84| 91| 95 98| 99

40| 12| 32| 45| 59| 71| 82| 90| 95| 98| 99

45| 14| 36| 51| 65| 78| 87| 93| 97| 99

50( 16| 41| 57| 71| 83| 91| 96| 98| 99

55( 18| 46| 62| 76| 87| 94| 97| 99

60| 20| 50| 67| 81| 90| 96| 98

65| 22| 54| 71| 84| 93| 97| 99

70| 24| 58| 75| 87| 95| 98| 99

75| 26| 62| 79| 90| 96 99

80| 28| 66 82| 92| 97| 99

90| 32| 72| 87| 95| 99

100 36| 78| 91| 97| 99

110 41| 82| 93| 98

120 45| 86| 96| 99

130 49 89| 97| 99

140 53| 92| 98

150 56 94| 99

175| 65| 97

200 72| 98

225 78| 99

250( 83

300 90

350 95

400( 97

450 98

500 99

600

700

800

900

1000
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Table 8.27. Power table for repeated measures ANOVA; Tukey HSD MCP, r=0.40, 5 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40(0.45|0.50(0.55|0.60 | 0.65[0.70|0.75|0.80 {1.00|1.25[1.50 1.75]2.00| 2.50 | 3.00
5 1| 2| 2| 2| 3| 4| 4| 5| 6| 8| 9 10| 18| 33| 50| 67| 81| 96
6| 1 2| 2 3| 4] 51 o6 7| 8 10| 12| 14| 25| 43| 63| 80| 91| 99
7 1 2 3 3 4 5 7 8| 10| 12| 15| 18| 31| 53| 73| 88| 96
8| 1{ 2| 3| 4| 5 7| 8 10 12 15| 18| 21| 38| 62| 81| 93| 98
91 1f 3| 3| 5| 6| 8| 10 12| 15| 18| 22| 26| 44| 69| 87| 96| 99
100 1 3| 4 5 7| 9| 11| 14| 17| 21| 25| 30| 51| 76| 92| 98

11 2f 3| 4 6| 8| 10| 13| 16| 20| 24| 29| 34| 56| 81| 95| 99

121 2 3| 5| 7| 9| 11| 15| 18| 23| 27| 33| 38| 62| 86| 97| 99

13| 2 4| 5| 7| 10| 13| 16| 20| 25| 31| 36| 42| 67| 89| 98

14 2 4 6 8| 11| 14| 18| 23| 28| 34| 40| 46| 72| 92| 99

151 2[ 4| 6| 9| 12| 15| 20| 25| 31| 37| 44| 50| 76| 94| 99

200 3| 6| 9| 13| 18| 23| 30| 37| 45| 52| 60| 68| 90| 99

25| 3| 8| 12| 17| 24| 31| 40| 48| 57| 66| 74| 80| 96

30| 4| 11| 16| 22| 30 39| 49| 59| 68| 76| 83| 89| 99

35 5| 13| 19 28| 37| 47| 58| 68| 77| 84| 90| 94

40| 6| 15| 23| 33| 44| 55| 66| 76| 84| 90| 94| 97

45| 6| 18| 27| 38| 50| 62| 73| 82| 89| 93| 97| 98

50| 7| 21| 31| 43| 56| 68| 79| 87| 92| 96| 98| 99

55| 8| 24| 35| 48| 62| 74| 83| 90| 95| 98| 99

60| 9| 27| 39| 53| 67| 78| 87| 93| 97| 99| 99

65| 10| 30| 43| 58| 71| 82| 90| 95| 98| 99

701 11| 33| 47 62| 75| 86| 93| 97| 99

75| 12| 36| 51| 66| 79| 89| 94| 98| 99

80| 13| 38| 55| 70| 82 91| 96| 98| 99

90| 16| 44| 61| 76| 87| 94| 98| 99

100 18| 50| 67| 82| 91| 97| 99

110 21| 55| 73| 86| 94| 98| 99

120 23| 60| 78| 90| 96 99

130| 26| 65| 82 92| 97| 99

140 28| 69| 85| 94| 98

150 31| 73| 88| 96| 99

175| 37| 81| 93| 98

200| 44| 87| 96| 99

2251 50 91| 98

250 56| 94| 99

300 67| 98

350 75| 99

400| 82

450| 87

500( 91

600| 96

700| 98

800 99

900

1000

225
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Table 8.28. Power table for repeated measures ANOVA; Tukey HSD MCP, r=0.60, 5 groups at alpha=0.05

n Hypothesized ES
0.20{0.30(0.35{0.40{0.45|0.50{0.55{0.60|0.65]0.70|0.75[0.80 | 1.00 [1.25|1.50{1.75]2.00|2.50{3.00
5/ 1 2| 3| 3| 4| 6| 7| 8| 10| 12| 15| 17| 31| 52| 73| 88| 96
6 1| 2| 3| 4| 6| 7| 9 11| 14| 17| 20| 23| 41| 65| 84| 95 99
7 2 3 4 5 7 9 11| 14| 17| 21| 25| 30| 50| 76( 91| 98
8| 2| 3| 5| 6| 8 11| 14| 17| 21| 26| 31| 36| 59| 83| 96| 99
91 2| 4| 5| 7| 10f 13| 16| 20| 25| 31| 36| 42| 67| 89| 98
100 2 4| 6| 8| 11| 15| 19| 24| 29| 35| 42| 48| 74| 93| 99

11 2[ 5| 7 10| 13| 17| 22| 27| 34| 40| 47| 54| 79| 95

12 2 5 8| 11| 15| 19| 25| 31| 38| 45| 52| 60| 84| 97

131 3| 6| 9| 12| 16| 22| 28| 34| 42| 50| 57| 65| 87| 98

14| 3] 7| 9 13| 18| 24| 31| 38| 46| 54| 62| 69| 90| 99

15| 3| 7| 10{ 15| 20| 26| 34| 42| 50| 58| 66| 73| 93| 99

20| 4| 10| 15| 22| 30 39| 48| 58| 67| 75| 82| 88| 98

25| 5| 14| 21| 30| 40| 51| 61| 71| 80| 87| 92| 95

30 6| 18| 27| 38| 49| 61| 72| 81| 88| 93| 96| 98

35 8 22| 33| 45| 58| 70 81| 88| 93| 97| 98| 99

40| 9| 26| 39| 53| 66 78| 87| 93| 97| 98| 99

45| 11| 31| 45| 60| 73| 84| 91| 96| 98| 99

50( 12| 35| 51| 66| 79| 88| 94| 98| 99

55( 14| 40| 56| 71| 83| 92 96| 99

60| 16| 44| 61| 76| 87| 94| 98| 99

65| 17| 48| 66| 80| 90 96| 99

70| 19| 52| 70| 84| 93| 97| 99

75| 21| 56| 74| 87| 95| 98| 99

80 23| 60| 77| 89| 96| 99

90| 27| 67| 83| 93| 98| 99

100 31| 73| 88| 96| 99

110 35 78| 91| 97 99

120 39| 82| 94| 98

130| 43| 86| 96| 99

140| 46| 89| 97| 99

150| 50 91| 98

175| 59| 96| 99

200 67| 98

225( 73| 99

250 79| 99

300( 87

350 93

400| 96

450| 98

500 99

600

700

800

900

1000
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Table 8.29. Sample size table for one-way repeated measures ANOVA MCP; p=0.05, r=0.40

Chart A. 3 groups, r=10.40 at alpha = 0.05; NK no intervening groups

Power Hypothesized ES

0.2010.30{0.35|0.40{0.45|0.50|0.55]0.60{0.65]|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

~
©

0.80 |[237| 106 79| 61| 48| 39| 33| 28| 24| 21| 18] 16| 11 8 6| 5 4
0.90 |[317| 142| 105| 80| 64| 52| 43| 37| 31| 27| 24| 21| 14| 10| 7 6 5/ 4| 3

Chart B. 3 groups, r=0.40 at alpha=0.05; NK 1 intervening group, Tukey 3 groups

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.801.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 [306| 137|101 78| 62| 51| 42| 36 31| 27| 24| 21| 14| 10| 8 6 5| 4| 4
0.90 [396| 177| 131| 101 80| 65| 54| 46| 39| 34| 30| 27| 18| 12| 9| 7 6 5| 4

Chart C. 4 groups, r=0.40 at alpha=0.05; NK no intervening groups

Power Hypothesized ES

0.2010.30(0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 [237| 106 78| 60 48| 39| 32| 27| 24| 21| 18] 15| 11 7 6] 5 4 31 3
0.90 |[316] 141| 104| 80| 64| 52 43| 36 31| 27| 24| 21| 14| 9| 7 6 5 4 3

Chart D. 4 groups, r=0.40 at alpha=0.05; NK 1 intervening group

Power Hypothesized ES

0.2010.30{0.35|0.40{0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 [306| 137|101 78| 62| 50( 42| 35 30| 26| 23| 21| 14| 9| 7 6 5
0.90 [396| 177|130 100{ 79| 65| 54| 45| 39| 34| 30| 26| 17| 12| 9 7 6] 4| 4

-
w

Chart E. 4 groups, r=0.40 at alpha =0.05; NK 2 intervening groups, Tukey 4 groups

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 |[351| 157 116| 89| 71| 57| 48| 40 35| 30| 26| 23| 16| 11 8 6 5 4
0.90 | 446| 199 147| 113 89| 73| 61| 51| 44| 38| 33| 29| 19| 13| 10 8 6 5 4

©

Chart E 5 groups, r=0.40 at alpha = 0.05; NK no intervening groups

Power Hypothesized ES

0.2010.30 {0.35]0.40{0.45{0.50{0.55{0.60(0.65]0.70{0.75]0.80(1.00|1.25[1.50(1.75]2.00 {2.50 { 3.00

0.80 |[237[106| 78| 60| 48| 39| 32| 27| 23| 20| 18| 16| 11 70 5 4 4 3| 3
0.90 |316| 141|104 80| 63| 52| 43| 36| 31| 27| 23| 21| 14| 9 7 5 4 3| 3
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Table 8.29. (cont.)

Chart G. 5 groups, r=0.40 at alpha=0.05; NK 1 intervening groups

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[306| 137| 101| 77| 61| 50| 41| 35| 30| 26| 23| 20| 13 9 7 5 4 3 3
0.90 |396| 176| 130| 100| 79| 64| 53| 45| 39 33| 29| 26| 17| 11| 8| 6| 5| 4| 3

Chart H. 5 groups, r=0.40 at alpha=0.05; NK 2 intervening groups

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 350| 156| 115| 89| 70| 57| 47| 40| 34| 30| 26| 23| 15[ 10| 8| 6| 5| 4| 3
0.90 |446| 199| 147| 113| 89| 73| 60| 51| 43| 38| 33| 29| 19| 13| 9| 7| 6| 4| 4

Chart I. 5 groups, r=0.40 at alpha=0.05; NK 3 intervening groups, Tukey 5 groups

Power Hypothesized ES

0.20/0.30{0.35|0.40{0.45[0.50|0.55|0.60|0.65|0.70{0.75[0.80{1.00{1.25| 1.50(1.75| 2.00{2.50 | 3.00
0.80 |384| 171| 126| 97| 77| 63| 52| 44| 38 33| 29| 25| 17| 11| 8| 7| 5| 4| 3
0.90 | 484| 216|159 122 97| 79| 65| 55| 47| 41| 36| 32| 21 14| 10| 8| 6| 5| 4
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Table 8.30. Sample size table for one-way repeated measures ANOVA MCP; p=0.05, r=0.60

Chart A. 3 groups, r=0.60 at alpha=0.05; NK no intervening groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 [ 159 71| 53| 41| 33| 27| 22| 19 17| 15| 13| 12 8 6 5 4 4 3 3
0.90 |[212| 95| 70| 54| 43| 35| 29| 25| 22 19| 17| 15| 10[ 7| 6| 5| 4| 3| 3
Chart B. 3 groups, r=0.60 at alpha=0.05; NK 1 intervening group, Tukey 3 groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |205| 92| 68| 53| 42| 34| 29| 25| 21| 19| 16| 15| 10| 7| 6| 5| 4| 4| 3
0.90 |[265| 119 88| 68| 54| 44| 37| 31| 27| 23| 21| 18| 13 9 7 6 5 4 3
Chart C. 4 groups, r=10.60 at alpha=0.05; NK no intervening groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50]|0.55[0.60{0.65|0.70{0.75]0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |[158| 71| 53| 41| 32| 26| 22| 19| 16| 14| 12| 11| 8| 5| 4| 4| 3| 3| 2
0.90 |211| 95| 70| 54| 43| 35| 29| 25| 21| 18| 16| 14| 10| 7| 5| 4| 4| 3| 3
Chart D. 4 groups, r=0.60 at alpha=0.05; NK 1 intervening group
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50| 3.00
0.80 |206| 92| 68| 52| 42| 34| 28| 24| 21| 18| 16| 14| 10| 7| 5| 4| 4| 3| 3
0.90 |264| 118| 87| 67| 53| 44| 36| 31| 26| 23| 20| 18| 12| 8| 6| 5| 4| 3| 3
Chart E. 4 groups, r=0.60 at alpha =0.05; NK 2 intervening groups, Tukey 4 groups
Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]|0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00
0.80 |[234]| 105| 78| 60| 48| 39| 32| 27| 24| 21| 18| 16| 11| 8| 6| 5| 4| 3| 3
0.90 | 298| 133 98| 76| 60| 49| 41| 35| 30| 26| 23| 20 14| 9| 7| 6| 5 4| 3
Chart E 5 groups, r=0.60 at alpha=0.05; NK no intervening groups
Power Hypothesized ES
0.200.300.35|0.40{0.45(0.50{0.55]0.60|0.65|0.700.75 {0.80|1.00 | 1.25[1.50(1.75]2.00|2.50 |3.00
0.80 |158| 71| 52| 40| 32| 26| 22| 19| 16| 14| 12| 11| 7| 5| 4| 3| 3| 3| 2
0.90 |211| 94| 70| 54| 43| 35| 29| 24| 21| 18| 16| 14| 10{ 7| 5| 4| 3| 3| 2
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Table 8.30. (cont.)

Chart G. 5 groups, r=0.60 at alpha=0.05; NK 1 intervening group

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 [204| 91| 68| 52| 41| 34| 28| 24| 20| 18| 16| 14 9 7 5 4 4 3 3
0.90 |264| 118| 87| 67| 53| 43| 36| 30| 26| 23| 20| 18| 12| 8| 6| 5| 4| 3| 3

Chart H. 5 groups, r=0.60 at alpha=0.05; NK 2 intervening groups

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 234| 105 77| 60| 47| 39| 32| 27| 23| 20| 18| 16| 11{ 7| o6 5| 4| 3| 3
0.90 |[298]| 133| 98| 75| 60| 49| 41| 34| 29| 26| 22| 20 13| 9| 7| 5| 4| 4| 3

Chart I. 5 groups, r=0.60 at alpha=0.05; NK 3 intervening groups, Tukey 5 groups

Power Hypothesized ES

0.20/0.30{0.35|0.40{0.45[0.50|0.55|0.60|0.65|0.70{0.75[0.80{1.00{1.25| 1.50(1.75| 2.00{2.50 | 3.00
0.80 |[256| 115| 85| 65| 53| 42| 35| 30| 26| 22| 20| 17| 12| 8| 6| 5| 4| 3| 3
0.90 | 323| 144| 106| 82| 65| 53| 44| 37| 32| 28| 24| 22| 14{ 10| 7| 6| 5| 4| 3
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Table 8.31. Sample size table for one-way repeated measures ANOVA MCP; p=0.01, r=0.40

Chart A. 3 groups, r=10.40 at alpha=0.01; NK no intervening groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |[353| 158 117| 90| 72| 58| 49| 41| 36| 31| 27| 24| 16| 11 9 7 6 5 4
0.90 | 449| 201| 148| 114 91| 74| 61| 52| 45 39| 34| 30{ 20( 14| 10| 8| 7| 5| 5
Chart B. 3 groups, r=0.40 at alpha=0.01; NK 1 intervening group, Tukey 3 groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 426| 191| 141| 109 86| 70| 59| 50| 43| 37| 33| 29| 20| 14| 10| 8| 7| 6| 5
0.90 |531| 237| 175| 135| 107| 87| 73| 61| 53| 46| 40| 36| 24| 16| 12| 10| 8| 6| 5
Chart C. 4 groups, r=0.40 at alpha=0.01; NK no intervening groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50]|0.55[0.60{0.65|0.70{0.75]|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |[352| 157| 116 89| 71| 58| 48| 41| 35| 30| 27| 24| 16| 11| 8| 6| 5| 4| 4
0.90 | 448| 200| 147| 13| 90| 73| o1| 51| 44| 38| 33| 30| 20| 13| 10| 8| o6 5 4
Chart D. 4 groups, r=0.40 at alpha=0.01; NK 1 intervening group
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 425| 190| 140| 108| 86| 70| 58| 49| 42| 37| 32| 28| 19| 13| 10| 8| o6 5 4
0.90 |[530| 237| 174| 134| 106| 86| 72| 61| 52 45| 40| 35| 23| 16| 11| 9| 7| 6| 5
Chart E. 4 groups, r=0.40 at alpha=0.01; NK 2 intervening groups, Tukey 4 groups
Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00
0.80 |[471| 211| 155| 119 95| 77| 64| 54| 47| 40| 36| 32| 21| 14| 11| 8| 7| 5| 4
0.90 [582] 260( 191| 147| 117 95| 79| 67| 57| 49| 43| 38| 25| 17| 13| 10 8 6 5
Chart E 5 groups, r=0.40 at alpha=0.01; NK no intervening groups
Power Hypothesized ES
0.200.300.35|0.40{0.45[0.50{0.55]0.60|0.65{0.700.75 {0.80|1.00 | 1.25[1.50{1.75]2.00|2.50 | 3.00
0.80 |352| 157|116 89| 71| 58| 48| 40| 35| 30| 26| 23| 15| 10| 8| 6| 5| 4| 3
0.90 | 448|200 147|113 90| 73| 60| 51| 44| 38| 33| 29| 19| 13| 9| 7| 6| 5| 4
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Table 8.31. (cont.)

Chart G. 5 groups, r=0.40 at alpha=0.01; NK 1 intervening group

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[425| 190| 140| 107| 85| 69| 58| 49| 42| 36| 32| 28| 19| 13 9 7 6 5 4
0.90 |[530| 236| 174| 134| 106 86| 71| 60| 52| 45| 39| 35| 23| 15| 11| 9| 7| 5| 4

Chart H. 5 groups, r=0.40 at alpha=0.01; NK 2 intervening groups

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45|0.50| 0.55[0.60{0.65|0.70{0.75]|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 471| 210| 155| 119| 94| 77| 64| 54| 46| 40| 35| 31| 21| 14| 10| 8| 7| 5| 4
0.90 |[581] 259 191| 147| 116| 94| 78| 66| 57| 49| 43| 38| 25| 17| 12 9 8 6 5

Chart I. 5 groups, r=0.40 at alpha=0.01; NK 3 intervening groups, Tukey 5 groups

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[505| 226| 166| 128| 101| 82| 68| 58| 50| 43| 38| 33| 22| 15| 11| 9| 7| 5| 4
0.90 | 619 276| 203| 156| 124| 101| 83| 70| 60| 52| 46| 40 27 18| 13| 10| 8| 6 5
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Table 8.32. Sample size table for one-way repeated measures ANOVA MCP; p=0.01, r=0.60

Chart A. 3 groups, r=0.60 at alpha=0.01; NK no intervening groups

Power Hypothesized ES

0.2010.30{0.35|0.40{0.45|0.50|0.55]0.60{0.65]|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 |[236]| 106 79| 61| 49| 40| 33| 28| 25| 21| 19| 17| 12| 8| 7 6 5
0.90 [300| 135(100| 77| 61| 50| 42| 35 31| 27| 24| 21| 14| 10| 8 6 6| 4| 4

=
~

Chart B. 3 groups, r=0.60 at alpha=0.01; NK 1 intervening group, Tukey 3 groups

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.801.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 [285]| 128 95| 73| 58| 48| 40| 34| 29| 26| 23| 20| 14| 10| 8| 7 6 5| 4
0.90 |[355| 159|118 91| 72| 59| 49| 42| 36| 32| 28| 25| 17| 12| 9| 7 6 5| 4

Chart C. 4 groups, r=0.60 at alpha=0.01; NK no intervening groups

Power Hypothesized ES

0.2010.30(0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 [235]| 106 78| 60 48| 39| 33| 28| 24| 21| 18] 16| 11 8 6] 5 4 4| 3
0.90 [299] 134 99| 76| 61| 49| 41| 35| 30| 26| 23| 20| 14| 9| 7 6 5 4 3

Chart D. 4 groups, r=0.60 at alpha=0.01; NK 1 intervening group

Power Hypothesized ES

0.2010.30{0.35|0.40{0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 [ 284| 127 94| 73| 58| 47| 39| 33| 29| 25| 22| 20| 13| 9| 7 6 5
0.90 [ 354| 158 117| 90 72| 58| 49| 41| 35| 31| 27| 24| 16| 11 8 7 6| 4| 4

S
-~

Chart E. 4 groups, r=0.60 at alpha=0.01; NK 2 intervening groups, Tukey 4 groups

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 |[315| 141| 104| 80| 64| 52| 44| 37| 32| 28| 24| 22| 15| 10 8 6 5 41 4
0.90 |[388]| 174|128 99| 78| 64| 53| 45| 39| 34| 30| 26| 18| 12 9 7 6 5 4

Chart E 5 groups, r=0.60 at alpha=0.01; NK no intervening groups

Power Hypothesized ES

0.2010.30 {0.35]0.40{0.45{0.50{0.55{0.60(0.65]0.70{0.75]0.80(1.00|1.25[1.50(1.75]2.00 {2.50 { 3.00

0.80 |[235[105| 78| 60| 48| 39| 32| 27| 24| 21| 18| 16| 11 8 6| 5 4 3| 3
0.90 299|134 99| 76| 60| 49| 41| 35| 30| 26| 23| 20| 13| 9 7 5 5 4] 3
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Table 8.32. (cont.)

Chart G. 5 groups, r=0.60 at alpha=0.01; NK 1 intervening group

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 284| 127 94| 72| 57| 47| 39| 33| 28| 25| 22| 19| 13 9 7 5 5 4 3
0.90 |354| 158| 117| 90| 71| 58| 48| 41| 35 30| 27| 24| 16| 11| 8| 6| 5| 4| 3

Chart H. 5 groups, r=0.60 at alpha=0.01; NK 2 intervening groups

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 315 141| 104| 80| 64| 52| 43| 37| 31 27| 24| 21| 14| 10| 7| 6| 5| 4| 3
0.90 |388| 173| 128| 98| 78| 64| 53| 45| 38| 33| 29| 26| 17| 12| 9| 7| 6| 4| 4

Chart I. 5 groups, r=0.60 at alpha=0.01; NK 3 intervening groups, Tukey 5 groups

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[337| 151| 111 86| 68| 56| 46| 39| 34| 29| 26| 23| 15| 11| 8| 6| 5| 4| 4
0.90 |413| 185| 136| 105| 83| 68| 56| 48| 41| 35| 31| 28| 18| 12| 9| 7| 6| 5| 4
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Table 8.33. Sample size table for one-way repeated measures ANOVA MCP; p=0.10, r=0.40

Chart A. 3 groups, r=0.40 at alpha=0.10; NK no intervening groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |[187| 84| 62| 48| 38| 31| 26| 22 19| 17| 15| 13 9 6 5 4 4 3 3
0.90 |[258| 116| 85| 66| 52| 42| 35| 30| 26 22| 20| 17{ 12 8| 6| 5| 4| 3| 3
Chart B. 3 groups, r=0.40 at alpha=0.10; NK 1 intervening group, Tukey 3 groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |253| 113| 84| 64| 51| 42| 35| 30| 25| 22| 20| 17| 12| 8| 6| 5| 4| 4| 3
0.90 |[335| 150( 110| 85| 67| 55| 46| 39| 33| 29| 25| 22| 15| 10 8 6 5 4 3
Chart C. 4 groups, r=10.40 at alpha=0.10; NK no intervening groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50]|0.55[0.60{0.65|0.70{0.75]0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |[187| 84| 62| 47| 38| 31| 26| 22| 19 16| 14| 13| 9| 6| 5| 4| 3| 3| 2
0.90 |258| 115| 85| 65| 52| 42| 35| 30| 25| 22| 19| 17| 11| 8| 6| 5| 4| 3| 3
Chart D. 4 groups, r=0.40 at alpha=0.10; NK 1 intervening group
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50| 3.00
0.80 |252| 113| 83| 64| 51| 41| 34| 29| 25| 22| 19| 17| 11| 8| 6| 5| 4| 3| 3
0.90 |335| 149| 119| 85| 67| 55| 45| 38| 33| 28| 25| 22| 15| 10| 7| 6| 5| 4| 3
Chart E. 4 groups, r=0.40 at alpha =0.10; NK 2 intervening groups, Tukey 4 groups
Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]|0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00
0.80 [296| 132 98| 75| 60| 48| 40| 34| 29 25| 22| 20| 13| 9| 7| 5| 5| 4| 3
0.90 | 384| 172| 126| 97| 77| 63| 52| 44| 38| 33| 29| 25| 17| 11| 8| 6| 5| 4| 3
Chart E 5 groups, r=0.40 at alpha=0.10; NK no intervening groups
Power Hypothesized ES
0.200.300.35|0.40{0.45(0.50{0.55]0.60|0.65|0.700.75 {0.80|1.00 | 1.25[1.50(1.75]2.00|2.50 |3.00
0.80 |186| 83| 61| 47| 38| 31| 25| 22| 19| 16| 14| 13| 8| 6| 4| 4| 3| 2| 2
0.90 |258| 115| 85| 65| 52| 42| 35 29| 25| 22| 19| 17| 11| 8| 6| 4| 4| 3| 2
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Table 8.33. (cont.)

Chart G. 5 groups r=0.40 at alpha=0.10; NK 1 intervening group

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[252| 113 83| 64| 51| 41| 34| 29| 25| 22| 19| 17| 11 8 6 4 4 3 3
0.90 |334| 149| 110| 84| 67| 54| 45| 38| 33| 28| 25| 22| 14| 10| 7| 6| 5| 3| 3

Chart H. 5 groups r=0.40 at alpha =0.10; NK 2 intervening groups

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[296| 132 97| 75| 59| 48| 40| 34| 29| 25| 22| 20 13| 9| 6| 5| 4| 3| 3
0.90 |384| 171| 126| 97| 77| 62| 52| 44| 37( 32| 28| 25| 17| 11| 8| 6| 5| 4| 3

Chart 1. 5 groups r=0.40 at alpha = 0.10; NK 3 intervening groups, Tukey 5 groups

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |328| 147| 108| 83| 66| 54| 44| 38| 32 28| 24| 22| 14| 10| 7| 6| 5| 4| 3
0.90 |421| 188| 138| 106| 84| 68| 57| 48| 41 36| 31| 27 18| 12| 9| 7| 6| 4| 3
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Table 8.34. Sample size table for one-way repeated measures ANOVA MCP; p=0.10, r=0.60

Chart A. 3 groups, r=0.60 at alpha=0.10; NK no intervening groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |[125| 56| 42| 32 26| 21| 18| 15| 13| 12| 10 9 6 5 4 3 3 3 2
0.90 [173| 77| 57| 44| 35| 29| 24| 20| 18| 15| 14| 12| 8| 6| 5| 4| 3| 3| 3
Chart B. 3 groups, r=0.60 at alpha=0.10; NK 1 intervening group, Tukey 3 groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 169| 76| 56| 44| 35| 28| 24| 20| 18| 15| 14| 12| 8| 6| 5| 4| 4| 3| 3
0.90 |224| 100| 74| 57| 46| 37| 31| 26| 23| 20| 17| 16| 10[ 7| 6| 5| 4| 3| 3
Chart C. 4 groups, r=0.60 at alpha=0.10; NK no intervening groups
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50]|0.55[0.60{0.65|0.70{0.75]|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |[125| 56| 41| 32| 26| 21| 17| 15| 13| 11| 10| 9| 6| 4| 4| 3| 3| 2| 2
0.90 | 172| 77| 57| 44| 35| 28| 24| 20| 17| 15| 13| 12| 8| 6| 4| 4| 3| 3| 2
Chart D. 4 groups, r=0.60 at alpha=0.10; NK 1 intervening group
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 169| 76| 56| 43| 34| 28| 23| 20| 17| 15| 13| 12| 8| 6| 4| 4| 3| 3| 2
0.90 |224| 100| 74| 57| 45| 37| 31| 26| 22 19| 17| 15| 10| 7| 5| 4| 4| 3| 3
Chart E. 4 groups, r=0.60 at alpha =0.10; NK 2 intervening groups, Tukey 4 groups
Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00
0.80 [198| 89| 65| 50| 40| 33| 27| 23| 20 17| 15| 14| 9| 7| 5| 4| 4| 3| 3
0.90 |[257| 115 85| 65| 52| 42| 35| 30 26| 22| 20| 17| 12 8 6 5 4 3 3
Chart E 5 groups, r=0.60 at alpha=0.10; NK no intervening groups
Power Hypothesized ES
0.200.300.35|0.40{0.45[0.50{0.55]0.60|0.65{0.700.75 {0.80|1.00 | 1.25[1.50{1.75]2.00|2.50 | 3.00
0.80 |125| 56| 41| 32| 25| 21| 17| 15| 13| 11| 10| 9| 6| 4| 3| 3| 3| 2| 2
0.90 |172| 77| 57| 44| 35| 28| 24| 20| 17| 15| 13| 12| 8| 5[ 4| 3| 3| 2| 2
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Table 8.34. (cont.)

Chart G. 5 groups, r=0.60 at alpha=0.10; NK 1 intervening group

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 [ 169 76| 56| 43| 34| 28| 23| 20| 17| 15| 13| 12 8 5 4 3 3 3 2
0.90 |223| 100| 74| 57| 45| 37| 30| 26| 22{ 19| 17| 15| 10| 7| 5| 4| 4| 3| 2

Chart H. 5 groups, r=0.60 at alpha=0.10; NK 2 intervening groups

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45|0.50| 0.55[0.60{0.65|0.70{0.75]|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 197| 88| 65| 50| 40| 33| 27| 23| 20| 17| 15| 13| 9 6| 5| 4| 3| 3| 2
0.90 |[256| 115 85| 65| 52| 42| 35| 30| 25| 22| 19| 17| 11 8 6 5 4 3 3

Chart I. 5 groups, r=0.60 at alpha=0.10; NK 3 intervening groups, Tukey 5 groups

Power Hypothesized ES

0.20{0.30{0.35[0.40{0.45]0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[219| 98| 72| 56| 44| 36| 30| 25| 22 19| 17| 15| 10| 7| 5| 4| 4| 3| 3
0.90 |281| 126 93| 71| 57| 46| 38| 32| 28| 24| 21| 19| 12{ 8| o6 5| 4| 3| 3
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9 Interaction effects for factorial analysis
of variance

Purpose of the statistic

To this point we have considered only differences among groups that can be
conceptualized as representing a single independent variable. There are
many occasions, however, when the investigator is interested in ascertaining
the joint or differential effects that two or more independent variables exert
on a dependent variable.

The two most common of these scenarios involve (a) testing
whether or not an intervention is differentially more effective for one group
(e.g., males vs. females, severely ill vs. less severely ill patients with the same
diagnosis) than another and (b) testing whether or not subjects receiving the
intervention change across assessment intervals more during the course of
the study than do those in the control group.

In most cases the first scenario involves a between subjects design
(i.e., different people are in all of the groups) while the second is usually a
mixed design (i.e., although different individuals are contained in the treat-
ment groups everyone in these groups is measured two or more times, such
as at baseline and at the end of the study). In this chapter we will present
power and sample size tables for two-factor interactions involving both
between subject (including ANCOVA) and mixed designs.

Regardless of the type of design employed, however, an interaction
tests a completely different hypothesis than occurs when the two independ-
ent variables are considered separately. In fact, all two-factor designs provide
the opportunity to test a total of three hypotheses: (a) two for each of the
independent variables (called main effects) which are basically identical to
all of the hypotheses that have been discussed to this point in Chapters 4
through 8 and (b) one for the interaction between them. Let us illustrate
these hypotheses and the method by which their all important effect sizes
are calculated.
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Experimental interactions

Let us assume that an intervention is designed that is expected to result in a
greater reduction in pain, when compared to an appropriate control, among
males than females. Assuming that no baseline assessments nor additional
independent variables were employed, the most appropriate analysis for this
study would be described as a 2 (intervention vs. control) X2 (males vs.
females) between subjects factorial ANOVA which would, in turn, yield
three F-ratios addressing the following questions:

(1) Do males, irrespective of whether they received the intervention or
not, differ from females with respect to self-reported pain at the end
of the study?

(2) Do both males and females (considered together) who receive the
intervention differ from males and females who do not with respect
to self-reported pain measured at the end of the study?

(3) Is the intervention more (or less) effective for one gender than the
other?

Now obviously these three questions would probably not be of equal inter-
est, but all three of the F-ratios resulting from this study are independent of
one another and all three would be tested via the 2 X2 ANOVA. The inter-
action F, for example, could be significant even if males did not differ overall
from females and if the intervention was not superior to the control for both
genders combined. Figure 9.1 illustrates two of several scenarios reflecting
this possibility.

Scenario A, which fortunately rarely occurs in actual clinical
research, reflects a situation in which (a) the treatment main effect is zero
(that is the grand mean of males and females receiving experimental treat-
ment (E) is equal to the grand mean of both genders receiving control treat-
ment (C)), (b) the gender main effect is zero (the grand mean of males
receiving E and males receiving C is equal to the grand mean of females
receiving both conditions), but (¢) the interaction effect is statistically sig-
nificant since males receiving E experience less pain than control males
while females receiving E actually experience more pain than control
females. Scenario B, which is much less rare although not common, reflects
a situation in which (a) the grand mean for E would differ slightly from the
grand mean of C (indicating that overall individuals receiving the interven-
tion experienced less pain than those not receiving same), (b) the grand
mean for males would be slightly less than the grand mean for females, but
(c) the difference between males who receive E and those who receive C is
considerably less than the difference between females who receive E and

240



EXPERIMENTAL INTERACTIONS

Scenario A. No treatment or gender main effects but the intervention is effective
for males and harmful for females.

(more)
A
£
©
o
A
(less) i ,
Females Males

—@—C —4—E

Scenario B. Small (but non-significant) treatment and gender main effects but
the intervention is less effective for males than females.

(more)
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(less)
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Figure 9.1. Two (of several) scenarios in which a statistically significant
interaction may occur in the absence of any main effects.

those who receive C (which is defined as the interaction between the two
variables: treatments and gender). Interaction F-ratios, then, test differences
between completely different sets of means than do main effect F-ratios
(which only look at one independent variable irrespective of any other(s)).

The purpose of this chapter, therefore, is to elucidate the estima-
tion of power/required sample size for this third genre of research question,
the interaction between two independent variables. (To calculate the power
available for answering the first two questions the researcher could use the
t-test tables in Chapter 4 after making the indicated N/group adjustment
detailed in Chapter 10.) A between subjects ANOVA interaction term,
then, is used when:

(1) atleast two independent, non-continuous variables are present,
(2) the dependent variable is continuous, and
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Figure 9.2. A complex (and unlikely) three-group interaction.

(3) the hypothesis being tested is expressed in terms of the differences
between one or more levels of one independent variable being
greater or less than the differences between one or more of the
other levels of the same independent variable (see the third ques-
tion above).

There is no theoretical limit on the number of independent variables that
can be represented as factors in an ANOVA design, but in the vast majority
of cases the interaction of interest is between two independent variables —
hence we will only consider these two-way interactions in the present
chapter. There is also no limit on the number of levels (i.e., groups) any
given independent variable can have. Thus, in the hypothetical weight loss
trial first presented in Chapter 6, a differential treatment effect for gender
would be represented as a 3 (exercise/education intervention vs. attention
placebo vs. treatment-as-usual) X2 (male vs. female) interaction. On the
surface, relationships such as this can appear relatively complicated, but
usually even potentially complex interactions conceptually reduce to 2 X2
interactions and, as we will demonstrate later, these 2 X2 conceptualizations
are quite convenient in facilitating estimation of the interaction ES values
for a large number of designs. (It would be quite unusual, for example, for
an investigator to hypothesize that (a) the exercise/education intervention
would be less effective for males but more effective for females when com-
pared to the attention placebo while (b) there would be no difference
between males and females with respect to the amount of weight lost when
they were receiving treatment-as-usual (see Figure 9.2).)

A much more likely hypothesized interaction in real world research
would be something to the effect that (a) the weight loss intervention would
be more effective for males than females but (b) there would be no concom-
itant differential effect for gender within the two control groups (see Figure
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Figure 9.3. A more typical treatment X attribute interaction.

9.3). This hypothesis is conceptually quite similar to a 2 (male vs. females)
X2 (exercise/education intervention vs. the placebo + treatment-as-usual
control groups combined), although the power of this interaction would be
calculated based upon a two-degree rather than a one-degree of freedom
model.

Regardless of the form the interaction is hypothesized to take,
however, it is important to remember that one infegral aspect of the power
analytic process is that the ES must be hypothesized a priori. As difficult as
this process is for main effects, it is an even more tenuous enterprise for
interactions, especially anything more complex than those represented by 2
X 2 models. Let us therefore consider this more simple, and practical, model
first since (a) they are much easier to conceptualize and, perhaps partly
because of this, (b) most interaction hypotheses are conceived either in
terms of a 2X2 framework (or are reducible thereto), and (c) because of
this, we will conclude our discussion by recommending that all interaction
ES values be estimated based upon this 2 X2 model anyway.

A note on within subjects and ANCOVA interactions. Conceptually
within subjects (including mixed designs containing both between and
within subjects factors) and ANCOVA interactions are interpreted identi-
cally to their between subjects counterparts. Of equal importance, their
interaction effect sizes are also computed identically, although different
power tables are employed. Usually in within subjects or mixed designs, one
main effect is represented as a time factor (e.g., baseline, EOT, first follow-
up, second follow-up) and the other is a between subjects factor in which
participants are randomly assigned to groups. (There are occasions, of
course, when the same subjects are administered all treatments as well, pro-
ducing a pure repeated measures design.) For an ANCOVA interaction,
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which can be used in either between or within subjects designs (see Chapter
10), the only practical effect that the covariate has from a power analytic per-
spective is that (a) more power is available for the interaction and (b) the pat-
terns of means being tested are adjusted based upon pre-existing differences
on the covariate.

Effect sizes for 2 X 2 interactions

Ina?2 (E vs. C) X2 (attribute A vs. attribute B) design, for a non-zero inter-
action to occur there must be a differential treatment effect between the two
attributes. (In a2 (E vs. C) X2 (baseline vs. end-of-treatment) mixed design,
for a non-zero interaction to occur one of the two groups must change more
from baseline to EOT than the other.) From a between subject perspective,
then, a statistically significant interaction implies that the intervention (or its
control) must be relatively more or less effective for attribute A than it is for
attribute B. (Alternatively, in the relatively rare scenario in which both
factors represent experimental manipulations, an interaction implies an
additive effect for the two treatment factors.) Given this, the possibilities by
which this differential effect occurs can be conceptualized as reducing to
one of the following: (a) there is a treatment effect (e.g., the intervention is
superior to the control) for attribute A but none for attribute B, (b) there is
a larger intervention effect for one attribute than another, or (c) there is a
reverse effect whereby the intervention will have the opposite effect upon
attribute B as it had on attribute A.

Let us illustrate one scenario (of several) for each of these possibil-
ities employing gender as the attribute and a single experimental and control
group as the treatment groups. As always, we recommend the use of stand-
ardized means (produced by dividing raw means by their standard devia-
tions), which allows us to compute ES values quite directly by arbitrarily
setting the lowest cell means to zero. Once this is done, the ES for a 2X2
interaction is nothing more than the difference between the two means for
each level of one factor divided by the number of observations (or 2):

[ES difference A1 (or B1) — ES difference A2 (or B2)]
2

Interaction ES=

As will be illustrated shortly, this very simple formula results in
much smaller ES values than appears to be the case from simply examining
the means involved. Formula 9.3 in the Technical appendix presents the eti-
ology of this phenomenon more clearly, but basically it is due to the fact
that the interaction ES must be independent of any residual effects due to
either of the main effects considered in isolation. Let us illustrate this
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computational process via the three general forms (there are of course many
specific variations that can emanate from these themes):

Chart 9.1. Three general forms for a 2 (treatment) X 2 (attribute) interaction
Scenario A. Intervention effective for males and not effective for females

B1 Females B2 Males ES Difference
Al Intervention 0.00 1.00 1.00
A2 Control 0.00 0.00 0.00
ES Difference 0.00 1.00 1.0—0=1.0"
Notes:
20r 0—1.0=—1.0 if column ES differences are subtracted from one another.

Interaction ES= [ES difference (A1 or B1) —ES difference (A2 or B2)]/2=(1.0-0.0)/2=
0.50

Scenario B. Intervention effective for both genders, but more so for males than
females

B1 Females B2 Males ES Difference
Al Intervention 0.50 1.00 0.50
A2 Control 0.00 0.00 0.00
ES Difference 0.50 1.00 1—-0.5=0.5¢

Notes:

70r 0.5—1.0=—0.50 if column ES differences are subtracted from one another.
Interaction ES= [ES difference (A1 or B1) —ES difference (A2 or B2)]/2=(0.5-0.0)/2=
0.25

Scenario C. Intervention effective for males but harmful for females

B1 Females B2 Males ES Difference
A1 Intervention 0.00 1.00 1.00
A2 Control 1.00 0.00 —1.00
ES Difference —1.00 1.00 1.0—(—1.0)=27

Notes:

7Or —1.0—1.0=—2 if column ES differences are subtracted from one another.
Interaction ES= [ES difference (Al or B1) —ES difference (A2 or B2)]/2=
1.0~ (—1.0)/2)=1.0

In 2X2 designs such as this, the meaning of the interaction is
quite easy to grasp from these standardized means and the interaction ES is
also quite easy to calculate. In scenario A, for example, the investigator is
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basically positing that the intervention will be effective only for males while
the control will have no effect for either males or females. This is a very dra-
matic interaction and is not very likely to occur in an actual experiment. If
the second factor were conceived as the baseline vs. the end of treatment
(EOT) administrations of the outcome measure, however, this interaction
could be quite realistic:

Chart 9.2. Scenario A recast as a mixed design

B1 Baseline B2 EOT ES Difference
Al Intervention 0.00 1.00 1.00
A2 Control 0.00 0.00 0.00
ES Difference 0.00 1.00 1.0—-0=1.0

In either case, the calculation of the interaction ES (expressed in terms of
d) involves nothing more than subtracting the difference between the
experimental standardized means at the different levels of B (whether
gender or time) and then subtracting these two differences from one another
and dividing by 2. In other words, in Chart 9.2 the ES for the intervention
alone between baseline and end of treatment is 1.00 (1.00 —0.00) while the
ES for the control across time is 0, hence the interaction ES is the difference
between these two ES values divided by 2 or (1.00 —0)/2=0.50.

In scenario B of Chart 9.1, the investigator is also hypothesizing
that the treatment will be effective for males but relatively less eftective for
females. Here, however, the same pattern occurs in the control group but
less dramatically, since a positive mean difference exists between both
genders considered separately (i.e., with respect to the intervention vs. the
control group), although it is higher for males than females, indicating that
the treatments were differential with respect to gender.

Recast as a mixed design in Chart 9.3, scenario B translates to a
much more realistic hypothesis since both the intervention and the control
subjects improved over time, although the intervention group improved
considerably more:

Chart 9.3. Scenario B recast as a mixed design

B1 Baseline B2 EOT ES Difference
Al Intervention 0.00 1.00 1.00
A2 Control 0.00 0.50 0.50
ES Difference 0.00 0.50 1.0—0.5=0.5
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Again, the ES expressed in terms of d is obtained by subtracting the ES for
the control group alone from the ES for the experimental group alone
(1.0—0.5=0.5) and dividing by 2 (or the intervention vs. control ES at
baseline (0) from the intervention vs. control ES at EOT (0.5) producing a
negative 0.5 (the differences in signs between the row subtractions and the
column subtractions are irrelevant in this situation)) which yields an inter-
action ES of 0.25.

Converting raw interaction means to standardized means. Prior to
demonstrating the use of the 2 X2 templates for calculating the power of an
interaction, we will illustrate how raw cell means can be standardized.
Basically all that is entailed, regardless of whether a between subjects or
within subjects design is being employed, is for the investigator to write in
the hypothesized means based upon the actual outcome measure to be
employed as depicted in Chart 9.4. (Naturally the investigator will need to
be familiar with the measure involved, both with respect to the likely mean
scores to be obtained and their standard deviation. This information,
however, is normally readily available from his/her preliminary studies or
knowledge of the literature, thus let us assume that the measure in question
has a score range from 10 to 50 in previous studies involving similar popu-
lations with a standard deviation of 11.5.)

Chart 9.4. Positing a 2 X 2 interaction using raw hypothesized scores

Males Females Raw difference
Experimental 24.00 42.00 18.00
Control 11.50 16.10 4.60

This group of means is then converted to standard scores with a standard
deviation of one by dividing each mean by the scale’s standard deviation of
11.5, producing the following ES differences:

Chart 9.5. Conwverting raw hypothesized scores to standard scores

Males Females ES Difference
Experimental 2.1 3.7 1.6
Control 1.0 1.4 0.4
ES Difference 1.1 2.3 1.2
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Next, as illustrated in Chart 9.6, the smallest cell mean (males in the control

group) is subtracted from each of the cells (including itself), which will
permit the direct calculations of all the ES values relevant to this design.

Chart 9.6. Ensuring at least one cell will have a standardized mean of zero

Males Females ES Difference
Experimental 21-1.0=1.1 3.7—-1.0=27 27—11=1.6
Control 1.0—1.0=0.0 1.4—1.0=04 0.4—0.0=04
ES Difference 1.1-0.0=1.1 2.7—0.4=23 1.6—0.4=12

Thus the interaction ES can be calculated by simply finding the difference
between the male vs. female ES values within each treatment and then
dividing by 2 (which yields an interaction ES expressed in terms of d), or
(1.6 —0.4)/2=1.2/2=0.6. (Alternatively, employing column differences:
(1.1—2.3)/2= —1.2/2= —0.6, which is the same as 0.6 since the sign is
irrelevant except for interpretative purposes.)

Estimating the power for a between subject 2 X 2 interaction. At this
point, all that is necessary for computing the power of a 2 X 2 between subject
interaction, once the ES is estimated as described above, is to locate the inter-
section of the ES column and the N/cell row in Table 9.1, interpolating or
rounding as desired. To facilitate this process for more complex studies,
however, a preliminary template (9.1) is provided that will permit the com-
putation of the interaction ES for both between subject ANOVA and
ANCOVA designs and the five different interaction table sizes (i.e., 2 X2,
2X 3,2X4,3X3,and 3 X 4) covered in the present chapter, after which the
investigator is instructed to access the template specific to his/her design.

Let us illustrate this process via the hypothesized interaction pre-
sented in Chart 9.6. Turning to the preliminary template (9.1), then, our
investigator would follow the following steps:

Preliminary step 1. The 2 X2 table shell would be selected and the
hypothesized standardized means would be filled in as follows:

2X2 B1 M B2 F
Al E 1.1 2.7
A2 C 0.0 0.4
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Preliminary step 2. Let us assume that 25 subjects per cell (total
N=100) were available.

Preliminary step 3. The values from step 1 would basically be
copied and the appropriate differences computed as follows:

Males Females ES Difference
Experimental 1.1 2.7 1.6
Control 0.0 0.4 0.4
ES Difference 1.1 2.3 Diff of diff =1.2

Preliminary step 4. The interaction ES would be computed by
dividing the “differences of the effect size differences” by 2:

Interaction ES=1.2/2=0.6

Preliminary step 5. This instructs the investigator to access Template
9.2 since this design does not employ a covariate.

Following the instructions in Template 9.2 yields the following
results.

Power. Step 6. Since this is a 2X2 design and power is desired,
Table 9.1 is accessed.

Step 7. Locating the intersection of the 0.60 ES column and the
row N/cell=25 produces an estimated power level of 0.84 for this particu-
lar hypothesized interaction.

Sample size. Alternatively, if the N/cell required to produce a
power level of, say, 0.80 is desired, the first five steps would be identical
except this desired value would be specified in step 2 instead of the N/cell.
(Other than this, the steps involved in the preliminary template are ident-
ical to those employed for power.) Then, accessing Template 9.2:

Step 6. This instructs the investigator to access Table 9.26, Chart A.

Step 7. Locating the intersection of the 0.80 row and the 0.60 ES
would indicate that an N/cell of 23 is needed to assure an 80% chance of
achieving statistical significance for this particular hypothesized ES. Should
values other than 0.80 and 0.90 be desired, step 7 of Template 9.2 instructs
the investigator to again use Table 9.1 with the desired power level being
located in the 0.60 ES column and the N/cell read to the left of the row in
which this power level resides. Interpolation or estimation is used as desired.
Thus if, for some reason, a power level of 0.60 were deemed sufficient, the
closest value in the ES=0.60 column would be 0.59 and the correspond-
ing N/cell value would be 14.
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Assuming that 0.80 was the desired power level and that an N/cell
of 25 subjects (total N=100) was the maximum sample size likely to be
available to the investigator, the results of this analysis might be described as
follows:

A power analysis indicated that an N/cell of 25 subjects (total N=100)
would produce a power level of 0.84 for the 2 (treatment) X 2 (gender)
between subjects interaction assuming an ES of 0.60 based upon the
tollowing pattern of means (standard deviation 11.5) observed in our
pilot study (it is always assumed that a citation or description is provided
to justify the summary statistics upon which a power/sample size analysis

is based):

Males Females
Experimental 24.00 42.00
Control 11.50 16.10

(Note that, depending upon the audience, raw means and standard devi-
ations may be more meaningful when describing the results of a power ana-
lysis, especially to other investigators who are familiar with the dependent
variable metric as opposed to statisticians or methodologists.)

Alternatively, the interaction ES can simply be posited with refer-
ence to either the raw or standardized means sans a table (or a graph such as
the ones presented in Figures 9.1 to 9.3 can be employed). Assuming that
the necessary sample size were required to produce a desired power level of
0.80, the resulting analysis could be described as follows (if the targeted
reader could be assumed to be conversant with the ES concept):

A sample size analysis indicated that 23 participants per cell (or a total N
of 92) would be required to yield an 80% chance of obtaining statistical
significance for the 2 (intervention vs. control) X2 (gender) between
subjects interaction assuming a hypothesized interaction ES of 0.60
(Bausell & Li, 2002).

Within subject example of more complex two-factor
interactions

As previously discussed, it is not at all uncommon to employ experimental
designs with three or more levels of a treatment variable (e.g., an interven-
tion and two different controls) or as many as four different time periods in
a mixed design. Unfortunately interactions employing more than one
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degree of freedom are not as easily conceptualized as 2 X2 designs nor are
their effect sizes as simple to compute.

What we suggest, therefore, as witnessed by preliminary step 3 in
Template 9.1, is that the interactions emanating from these more compli-
cated designs be reduced by averaging across cells until the 2X2 interac-
tion most closely associated with the actual hypothesized interaction is
represented. In most cases this will be the largest possible ES resulting from
the collapsing process. (If it is not, an investigator might be wise to rede-
sign his/her study, since it is the largest possible interaction ES that will be
tested inferentially.) This process makes these more complex interactions
easier to conceptualize and it allows their ES values to be computed in the
same metric (d) as employed in the previous chapters (i.e., by simply sub-
tracting two ES differences from one another and dividing the resulting
difference by 2 as discussed above). Admittedly this process introduces a
degree of imprecision into the power analytic process since the resulting ES
is not precisely the same as would be computed using Formula 9.3 in the
Technical appendix. It is our opinion, however, that for most purposes the
resulting estimate will be sufficiently accurate. Should more precision be
desired, then Formula 9.3 can be employed to produce an exact hypothes-
ized ES.

Collapsing a 2X3 interaction. Let us begin by illustrating this
process via a study designed to assess the effects of an intervention across
three time periods: (a) baseline (prior to implementation of the interven-
tion), (b) end-of treatment (EOT, in which subjects are assessed after the
completion of the intervention), and (c) a follow-up interval (measured at
some pre-determined point in time after the EOT assessment to ascertain
how long the intervention effect, if any, is capable of lasting). This thus
results in a 2 X3 mixed ANOVA model in which the first factor (interven-
tion vs. control) is represented as a between subject factor and the time
factor (baseline vs. EOT vs. follow-up) would serve as a within subject
factor (or repeated measure), since the same subjects are represented within
these cells.

In this type of design, then, it is the interaction (which assesses
whether or not the two treatment groups change differentially across time)
that is of primary scientific interest. As with power/sample size analyses for
all interactions, the first step involves hypothesizing the pattern of cell means
that will make up this interaction. To do this, we would begin by filling in
the hypothesized pattern of standardized means into a 2X3 cell exactly as
we did for the between subject 2 X2 design. Let us suppose that this process
resulted in the following hypothesized pattern of standardized means:
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Chart 9.7. A hypothetical 2 X 3 interaction

B1 Baseline B2 EOT B3 Follow-up
Al Intervention 0.0 0.8 0.7
A2 Control 0.0 0.1 0.0

In words, what this pattern is hypothesizing is that the intervention will
result in significantly greater changes from baseline to the end of the inter-
vention interval and this superiority will largely be maintained during the
entire follow-up time interval. The second step, assuming that power (and
not sample size) were desired, would be to estimate how many subjects
would be available in each cell, which we will assume to be equal to 25 (total
N=50).

Step 3. Here the investigator will need to collapse the pattern of
means in Chart 9.7 to the best 2 X2 approximation possible. It is probably
obvious how this would be accomplished, since Al and A2 cannot be col-
lapsed and overall the two follow-up measures (B2 and B3) are hypothes-
ized to be considerably more similar to one another than B1 (baseline) will
be to either. Sometimes the results are not quite this obvious, however,
hence we suggest that the investigator always write the original interaction
hypothesis in prose since this often holds a key to its subsequent collapsing.
One way to express the interaction hypothesized in Chart 9.7 in prose
would be:

Subjects in the intervention group are hypothesized to improve more
from baseline to EOT than are subjects in the control group. While
subjects’ scores are expected to decrease slightly over the follow-up
period, the initial EOT superiority witnessed by the intervention group
will be largely maintained.

Alternatively, this hypothesized interaction can be expressed more
mechanistically by simply reiterating the relationships represented as though
they have already occurred: (a) no difference exists between the two groups
at baseline (which is reasonable since subjects were randomly assigned to the
two groups), (b) the intervention is superior to the control by EOT (the
control group is expected to change slightly, perhaps because of a placebo
effect, but the intervention is hypothesized to change considerably more),
and (c) by the follow-up interval both groups have regressed slightly but the
intervention still appears to be superior to the control. (Note that the zero
values hypothesized for both groups at baseline and for the control group
after six months does not imply that the subjects have really achieved a zero
score on whatever the outcome variable happens to be. This is simply due
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to our convention of making the table easier to read and interpret and is
generated by first standardizing the means by dividing them by the standard
deviation and then subtracting the lowest resulting standardized mean from
each cell.)

Thus, either verbally or empirically, it would appear that cells B2
and B3 are the ones that should be combined. There are, however, three
possible ways to collapse the data represented by a 2X 3 design into a 2 X2
table and these are depicted in Chart 9.8:

Chart 9.8. Possible ways to collapse a 2 X 3 table to a 2 X 2 table
Scenario A

Baseline/EOT Follow-up ES Difference
Intervention 0.40 0.70 0.30
Control 0.05 0.00 —0.05
ES Difference 0.25 0.50 Diff — diff = 0.35

Interaction ES = (ES Difference — ES Difference)/2=0.35/2=0.175

Scenario B
Baseline/Follow-up EOT ES Difference
Intervention 0.35 0.80 0.45
Control 0.00 0.10 0.10
ES Difference 0.35 0.70 Diff—diff=0.35

Interaction ES= (ES Difference — ES Difference)/2=0.35/2=0.175

Scenario C

Baseline EOT/Follow-up ES Difference
Intervention 0.00 0.75 0.75
Control 0.00 0.05 0.05
ES Difference 0.00 0.60 Diff — diff=0.70

Interaction ES= (ES Difference — ES Difference)/2=0.70/2=0.35

While any of the three could theoretically be chosen as the col-
lapsed 2X2 table from which to calculate the interaction ES, obviously
scenario C best reflects the actual interaction posited. Not coincidentally, this
permutation also produces the largest possible interaction ES since it represents the
hypothesis that generated the projected means in the first place. (It is the largest col-
lapsed ES that is actually tested by the interaction term, hence it is the largest
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possible 2 X2 ES that should normally be employed in estimating the power
of the overall interaction.)

Armed with this ES, the investigator is instructed to turn to
Template 9.4 (after completing the preliminary Template 9.1), since the
represented design involves one between and one within subjects factor.
Here the investigator is asked (step 6) to estimate the most likely average
correlation among the repeated measures (i.e., 0.40 or 0.60, for other
values see Chapter 10). Assuming that 0.60 was chosen, step 7 instructs the
investigator to turn to Table 9.19. Step 8 indicates that the power for this
particular interaction would be found at the intersection of the N/cell row
of 25 and the 0.35 ES column and found to be 0.85. Should the N/cell
value to achieve a power level of exactly 0.80 be required for these para-
meters, Table 9.36 Chart B would indicate this value to be 22 by follow-
ing the instructions in steps 7 and 8, which in turn would translate to a
total N of 22 X2=44, since the same subjects are represented in the B2
and B3 cells.

Collapsing a 2 X 4 table. In most cases, the more cells involved in
a table, the more combinations of 2X2 tables by which these cells can be
collapsed. With a 2X 3 shell there are three possible 2 X2 tables that can be
constructed; for a 2X4 design there are six, for a 3 X3 there are nine, and
the possibilities increase correspondingly thereafter. This potential prolife-
ration highlights the importance of constructing a definitive interaction
hypothesis to guide the collapsing process, since there is almost always one
2 X2 combination that “best” captures the investigator’s actual expectations.
(If there is not, then there is no real choice other than to employ Formula
9.3 in the Technical appendix to compute the ES, although the investigator
should remember that he/she will need to double this value when employ-
ing one of the tables in the present chapter since their ES values are
expressed in terms of d rather than f)

To illustrate, let us extend the previous design to a 2 X4 configura-
tion by adding a fourth level to our original design. (For a between subjects
design, the most likely scenario would be a trial in which the differential
effects of two treatments upon four time periods were to be tested.)

Even though there are six possible ways to collapse a 2 X 4 table into
a 2X2 representation (i.e., B1 vs. B2/B3/B4, B2 vs. B1/B3/B4, B3 vs.
B1/B2/B4, B4 vs. B1/B2/B3, B1/B2 vs. B3/B4, and B1/B3 vs. B2/B4),
let us consider the scenario in which originally the same configuration of
means illustrated in Chart 9.8 were expected to accrue through the first
follow-up, but the intervention superiority was expected to dissipate com-
pletely by the second follow-up assessment:
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Chart 9.9. A hypothetical 2 X 4 interaction

B1 Baseline B2 EOT B3 1st Follow-up ~ B4 2nd Follow-up

Al Intervention 0.0 0.8 0.7 0.0
A2 Control 0.0 0.1 0.0 0.0

In words, this might be described as follows: Subjects in the interven-
tion group are hypothesized to improve more from baseline to EOT than are
subjects in the control group. While subjects’ scores are expected to decrease
only slightly over the first follow-up period, this process will accelerate by the
second follow-up interval to the point that scores basically return to baseline
values. Now admittedly this is a wordy description of the hypothesized inter-
action, but the more complex the interactions become, the more unwieldy
their prose descriptions become. It is an accurate translation of the numbers
the investigator is hypothesizing in Chart 9.9, however, and it suggests the best
2 X2 representation of this interaction: namely that the EOT/first follow-up
and the baseline/second follow-up intervals are more similar to one another
than is true of any of the other possible combinations, and as usual this pro-
duces the largest 2 X2 ES of the six possible combinations.

Combining cells B1 with B4 and B2 with B3, then, produces the
following 2 X2 representation:

Chart 9.10. Chart 9.9 collapsed as a 2 X 2 interaction

Baseline/2nd Follow-up EOT/1st Follow-up ES Difference

Intervention 0.00 0.75 0.75
Control 0.00 0.05 0.05
ES Difference 0.00 0.70 Diff —diff=0.70

Interaction ES= (ES Difference — ES Difference)/2=0.70/2=0.35

Once this step is completed, the computation of power is quite
simple. If we assume that the N/cell (again we are referring to the number
of observations, not the number of “unique” subjects) is 25 and the average
correlation across repeated measures is 0.60, then the power to test this
interaction would be interpolated to be approximately 0.91 via the use of
Table 9.21.

Collapsing a 3X 3 table. Although we cannot illustrate all of the
possible interaction designs, we will provide one final example in which
both factors involve more than two levels. Let us employ a between subjects
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ANCOVA example for this interaction. Suppose, therefore, that a trial
involved three treatments (one intervention, a treatment-as-usual control,
and an attention placebo control) and three levels of an attribute for which
the treatment was hypothesized to be differentially effective (e.g., adults 18
to 39, 40 to 65, and over 65 years of age) with pre-experimental values on
the dependent variable serving as the covariate. Let us assume that the
investigator hypothesized the following interaction: (a) the intervention is
expected to be more effective than either of the two controls for the two
younger age groups but only marginally so for subjects 65 years of age and
older, (b) there will be very little difference between the two control groups
although a slight placebo effect is expected, and (c) there should be little or
no difference between the age groups with respect to whether or not they
manifest a placebo effect.

This particular 3 X 3 interaction hypothesis therefore might be asso-
ciated with the following hypothesized pattern of standardized means:

Chart 9.11. A hypothetical 3 X 3 interaction

18-39 years 40-65 years Over 65 years
Intervention 1.0 0.8 0.2
Attention control 0.2 0.2 0.2
Treat-as-usual 0.0 0.0 0.0

Collapsed, this table would produce the following 2 X2 pattern:

Chart 9.12. Chart 9.11 collapsed into a 2 X 2 interaction shell

18-65 years Over 65 years ES Difference
Intervention 0.90 0.20 0.70
Control 0.10 0.10 0.00
ES Difference 0.80 0.10 Diff — diff=0.70

Interaction ES = (ES Difference — ES Difference)/2=0.70/2=0.35

Assuming the same N/cell of 25, step 5 in the preliminary template
would send the investigator to Template 9.3, where, assuming a covariate to
dependent variable correlation of 0.60 (step 6) were hypothesized, step 7
would in turn indicate that the power (0.74) for this interaction could be
interpolated from Table 9.13 (or the necessary N/cell (29 for power of 0.80
and 37 for 0.90) for a desired power level could be obtained in Table 9.30
Chart D).
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SUMMARY

The results of this analysis might be communicated as follows:

A power analysis indicated that an N/cell of 25 subjects (total N=225)
would produce a power level of 0.74 for the 3 (intervention vs.
attention placebo vs. treatment-as-usual) X3 (19-39 vs. 4065 vs. >65
years of age) between subjects ANCOVA assuming an ES of 0.35 and a
covariate—dependent variable relationship of 0.60 based upon the
pattern of standardized means hypothesized in Chart 9.11. (Some
justification of this pattern should be tendered.) A sample size analysis
indicated that 29 subjects per cell would be required to yield an 80%
chance of this hypothesized interaction reaching statistical significance.

Should such a sample size (total N for the trial of 261) be judged as
unrealistic, the investigator would need to explore seriously his/her other
options, among which would be to (a) settle for testing the main effect
hypothesis that the treatment was effective, (b) employ fewer cells (e.g.,
contrasting younger vs. over 65 subjects sans the middle group), (c) exclude
over 65 years of age subjects altogether since the intervention was not
hypothesized to be effective for this group. Assuming the latter option were
chosen, the investigator would have a three condition, one-way ANCOVA
design with the following hypothesized standardized means: intervention
group (0.90) and attention placebo group (0.20) vs. treatment-as-usual
(0.00). Accessing the relevant tables in Chapter 7 would indicate that an
N/group of only 17 subjects (total N=51) would be necessary to obtain an
80% chance of achieving a statistically significant omnibus F-ratio and only
28 subjects per group (total N=84) to have an 80% chance of obtaining
statistically significant pairwise comparisons between the intervention and
the attention control group using the conservative Tukey HSD procedure —
hence our advice in Chapter 2 concerning hypothesizing main effects rather
than interactions when possible, since the latter come with a heavy price.

Summary

Interaction hypotheses involve the differential effects that two separate, cat-
egorical independent variables have upon one another. In experimental
research they are normally written in terms of the various treatments (a)
being more or less effective for different attributes of the participating sub-
jects or (b) changing differentially across time (e.g., from baseline to EOT
to follow-up).

While the steps in performing a power/sample size analysis for an
interaction hypothesis are the same as those for main effects (i.e., specifying
the hypothesized ES, p-value, and number of subjects/desired power), the
process of hypothesizing an interaction ES is somewhat more complex than
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was the case for the ES values discussed in previous chapters. We have,
however, provided templates and suggestions to facilitate this process includ-
ing:

(1) selecting the table shell that reflects the configuration of cells
involved (i.e., 2X2,2X 3, 2X4,3X 3, and 3X4),

(2) writing a detailed prose description of the expected interaction,

(3) filling the table shell in with standardized means that best reflect this
hypothesis,

(4)  collapsing the table shell to the 2 X2 configuration that best repre-
sents the hypothesis (or that produces the most dramatic 2 X 2 inter-
action representation),

(5) computing the ES by subtracting the difference of differences of the
treatment effect for each level of the second independent variable
and dividing by two, and

(6) accessing the appropriate table indicated in the power/sample size
templates provided.

Power estimates based upon interactions appear to be considerably
smaller than those for overall between groups because their ES values must
be corrected for any effects due to the main effects involved. For this reason
it is especially important to conduct such analyses if an interaction is an inte-
gral component of the study being conducted.

Template 9.1. Generic preliminary two-factor ANOVA interaction template

Because of the number of permutations involved in estimating the power/sample size of a
two-factor ANOVA, it is not possible to present separate templates for every possibility.
Regardless of the design, however, all two-factor interactions involve the same preliminary
steps, hence the following instructions:

Preliminary step 1. Choose one of the following table shells and fill in the standardized
means that are expected to make up the hypothesized interaction. (It is recommended that
actual variable names be written next to the letters representing the various cells and factor
levels.)

2X2 | Bl B2 2X3 | Bl B2 | B3
Al Al
A2 A2
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2X4 | Bl | B2 | B3 | B4 3X3 | Bl | B2 | B3
Al Al
A2 A2

A3

3X4 | Bl | B2 | B3 | B4 | B5

Al

A2

A3

Preliminary step 2. For the estimation of power, estimate the “N/cell” available
(recalling that it is always wise to model power parameters); for the estimation of sample
size, fill in the desired power:

N/cell= or, desired power=

Preliminary step 3. Collapse the standardized means from step 1 above into the
following 2 X 2 table. (For actual 2 X 2 analyses, simply copy the results from step 1.)

B1 B2 ES Difference
Al AlB1= Al1B2= B1—B2=
A2 A2B1= A2B2= B1—B2=
ES Difference Al—A2= Al—A2= Diff of diff=

Preliminary step 4. Calculate the interaction ES by dividing the differences of the ES
differences by 2:

Interaction ES=diff of diff, e.g., [B1 — B2 for Al) — (B1 — B2 for A2)]/2=

Preliminary step 5. If both factors involve different, unmatched subjects, go to Template
9.2. If both factors involve different subjects, but a covariate is used, go to Template 9.3. If
one factor involves a repeated measure, go to Template 9.4.

Template 9.2. Interaction power and sample size for between subject designs

Step 6. Locate the appropriate table based upon the following chart:
Design ~ Power Sample size (for powers 0.80 or 0.90)
p=0.05 p=0.01 p=0.10

2X2 Table 9.1 Table 9.26 Chart A Table 9.27 Chart A Table 9.28 Chart A
2X3 Table 9.2 Table 9.26 Chart B Table 9.27 Chart B Table 9.28 Chart B
2X4 Table 9.3 Table 9.26 Chart C  Table 9.27 Chart C  Table 9.28 Chart C
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3X3 Table 9.4 Table 9.26 Chart D Table 9.27 Chart D Table 9.28 Chart D
3X4 Table 9.5 Table 9.26 Chart E Table 9.27 Chart E Table 9.28 Chart E

Step 7. Locate power (interpolate as necessary) at the intersection of the ES column (step
4) and the N/cell row (step 2).

Power =
Or, to locate the N/cell necessary to achieve desired power:

(1) For desired power levels of 0.80 and 0.90, locate the N/cell at the intersection of the
ES column and the desired power row for the indicated table detailed in step 6.

(2) for other power levels, use the power tables indicated in step 6 and locate the nearest
value to the desired power level in the ES column (or interpolate as desired) and read
the N/cell at the beginning of that row.

N/cell=

Template 9.3. Interaction power and sample size for ANCOVA designs

Step 6. Select 0.40 or 0.60 as the most likely value for the covariate—dependent variable

correlation:
r=

Step 7. Locate the appropriate table based upon the following chart:
(A=Chart A; B=Chart B; C=Chart C; D= Chart D; E= Chart E).

Design  Power Sample size
p=0.05 p=0.01 p=0.10
r=0.40 r=0.60 r=040 r=0.60 r=0.40 r=0.60 r=0.40 r=0.60
2X2 9.6 9.7 929A 930A 931A 932A 933A 934A
2X3 9.8 9.9 929B 930B 931B 932B 933B 934B

2X4 9.10 9.11 929C 930C 931C 932C 933C 934C
3X3 9.12 9.13 929D 930D 931D 932D 933D 934D
3X4 9.14 9.15 929E 930E 931E 932E 933E 934E

Step 8. Locate power (interpolate as necessary) at the intersection of the ES column (step
4) and the N/cell row (step 3), interpolating or rounding as desired.

Power=
Or, to locate the N/cell necessary to achieve desired power:

(3) For desired power levels of 0.80 and 0.90, locate the N/cell at the intersection of the
ES column and the desired power row for the indicated table detailed in step 7.

(4) For other power levels, locate the nearest value to desired power level in the ES
column (or interpolate as desired) and read the N/cell at the beginning of that row.

N/cell=
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Template 9.4. Interaction power and sample size for mixed designs

Step 6. Select 0.40 or 0.60 as the most likely correlation for the within subject factor:
r=

Step 7. Locate the appropriate table based upon the following chart:
(A= Chart A; B=Chart B; C=Chart C; D= Chart D; E=Chart E).

Design  Power Sample size
p=0.05 p=0.01 p=0.10
r=0.40 r=0.60 r=040 r=0.60 r=0.40 r=0.60 r=0.40 r=0.60

2X2 9.16 9.17 935A 936A 937A 938A 939A 940A
2X3 9.18 9.19 935B 936B 937B 938B 939B 940B
2X4 9.20 9.21 935C 936C 937C 938C 939C 940C
3X3 9.22 9.23 935D 936D 937D 938D 939D 940D
3X4 9.24 9.25 935E 936E 937E 938E 939E 940E

Step 8. Locate power (interpolate as necessary) at the intersection of the ES column (step
4) and the N/cell row (step 2), interpolating or rounding as desired.

Power =
Or, to locate the N/cell necessary to achieve desired power:

(5) For desired power levels of 0.80 and 0.90, locate the N/cell at the intersection of the
ES column and the desired power row for the indicated table detailed in step 7.

(6) For other power levels, access the power table indicated in step 7 and locate the nearest
value to the desired power level in the ES column (or interpolate as desired) and read
the N/cell at the beginning of that row.

N/cell=
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Table 9.1. Power table for between subjects analysis; 2 X 2 design at alpha =0.05

n Hypothesized ES
0.10]0.15[ 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65[ 0.70] 0.75] 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 5 5 6 7 8 8 9| 11| 12| 13| 15| 16| 18| 20| 29| 42| 55| 69| 80| 93| 99
4 5 5 6 8 9 10| 12| 13| 16| 18| 20| 23| 25| 28| 41| 58| 74| 86| 93| 99
5 5 5 6 9| 10| 12| 14| 17| 19| 22| 26| 29| 33| 36| 52| 71| 85| 94| 98
6 5 5 6| 10| 12| 14| 17| 20| 23| 27| 31| 35| 39| 44| 62| 80| 92| 98| 99
7 5 6 70 11| 13| 16| 19| 23| 27| 32| 36| 41| 46| 51| 70| 87 96 99

8 5 6 71 12| 15 18| 22| 26| 31| 36| 41| 47| 52| 57| 76| 92| 98

9 5 6 8| 13| 16| 20| 25| 30| 35| 40| 46| 52| 57| 63| 82| 95| 99

10 5 6 8 14| 18| 22| 27| 33| 39| 45| 51| 57| 62| 68| 86 97 99

1 5 7 9| 15| 20| 24| 30| 36| 42| 48| 55| 61| 67| 73| 89| 98

12 5 7 9 16| 21| 27| 33| 39| 46| 52| 59| 65| 71| 77| 92| 99

13 5 71 10 18| 23| 29| 35| 42| 49| 56| 63| 69| 75 80| 94| 99

14 5 71 10 19| 24| 31| 37| 45| 52| 59| 66| 72| 78| 83| 95

15 6 8| 11| 20| 26| 33| 40| 47| 55| 62| 69| 76| 81| 86| 97

20 6 9 13| 26| 34| 42| 51| 60| 68| 75| 82 87| 91| 94| 99

25 71 11| 16| 32| 41| 51| 61| 70| 78| 84| 90 93| 96| 98

30 71 12| 19 37| 48| 59 69| 78| 85| 90| 94| 97| 98] 99

35 8| 13| 21| 43| 54| 66| 76| 84| 90| 94| 97| 98| 99

40 9 15| 24| 48| 60| 72| 81| 88| 93| 97| 98| 99

45 9 16| 27| 52 65 77| 86| 92| 96| 98| 99

50| 10| 18| 29| 57| 70| 81| 89| 94| 97| 99

55 11| 19| 32| 61| 74| 84 92| 96| 98| 99

60| 11| 21| 34| o5 78| 87 94| 97 99

65| 12| 22| 37| 68| 81| 90[ 95 98| 99

700 12| 24| 39| 71| 84| 92 97| 99

75| 13| 25| 41| 74| 86| 94 97| 99

80| 14| 27| 44| 77| 88 95 98] 99

90| 15| 30| 48| 82 92 97| 99

100| 16| 33| 52| 86| 94| 98| 99

110| 18] 35| 56| 89| 96| 99

120 19| 38| 60| 91| 97| 99

1301 20| 41| 63| 93| 98

140( 22| 43| 67| 95 99

150 23| 46| 70| 96| 99

175| 26| 52| 76| 98

200| 30| 57| 82 99

225 33| 62| 86 99

250| 36| 67| 89

300| 42| 75| 94

350| 47| 81| 96

400 53| 86| 98

450| 58] 90| 99

500 62 92| 99

600 70| 96

700 76| 98

800 82 99

900 86 99

1000| 89
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Table 9.2. Power table for between subjects analysis; 2 X 3 design at alpha =0.05

CHAPTER 9 TABLES

n Hypothesized ES
0.10{0.15] 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65[ 0.70{ 0.75[ 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 5 5 6 7 8 9 10| 11| 12| 14| 16| 17| 19| 22| 32| 47| 63| 77| 87| 97
4 5 5 6 8 9 11| 12| 14| 16| 19| 22| 25| 28| 31| 46| 66| 82 92| 97
5 5 6 6 9| 11| 13| 15| 18| 21| 24| 28| 32| 36| 40 59| 79| 92| 98
6 5 6 7| 10 12| 15| 18| 21| 25| 30| 34| 39| 44| 49| 69| 88| 97| 99
7 5 6 7| 11| 14| 17| 21| 25| 30| 35| 40| 46| 52| 57| 77| 93| 99

8 5 6 8| 13| 16| 20| 24| 29| 34| 40| 46| 52| 58| 64| 84| 96| 99

9 5 7 8| 14| 18| 22| 27| 33| 39| 45| 52| 58| 65 70 89| 98

10 5 7 9 15| 19| 24| 30| 36| 43| 50| 57| 64| 70| 76| 92 99

1 6 7 9 16| 21| 27| 33| 40| 47| 54| 62| 69| 75 80| 95| 99

12 6 7| 10| 18| 23| 29| 36| 43| 51| 59| 66 73| 79| 84| 96

13 6 8| 10| 19| 25| 32| 39| 47| 55| 63| 70| 77| 83| 87| 98

14 6 8| 11| 20 27| 34| 42| 50| 58| 66| 74 80 86 90| 98

15 6 8| 12| 22| 29| 36| 45| 53| 62| 70| 77| 83| 88| 92| 99

20 7| 10| 14| 28| 38| 47| 58| 67| 76| 83| 89| 93| 96| 98

25 7| 11| 17| 35| 46| 57| 68| 78| 85| 91| 95 97| 99| 99

30 8| 13| 20| 42| 54| o6 77| 85| 91| 95| 98| 99

35 8| 14| 23| 48| o1 73| 83| 91| 95| 98| 99

40 9| 16| 26| 54| 67| 79| 88| 94| 97| 99

45) 10 18| 29 59| 73| 84| 92| 96| 99

501 11| 19| 32| 64| 78| 88| 94| 98| 99

55 11| 21| 35| 68 82 91 96| 99

60| 12| 23| 38| 72| 85| 93| 97| 99

65| 13| 24| 41| 76| 88| 95| 98

700 13| 26| 44 79| 90| 96| 99

75| 14| 28| 46| 82| 92| 97| 99

80| 15| 29| 49| 85 94| 98

90| 16| 33| 54| 89| 96| 99

100 18] 36 59| 92| 98

110 19| 39| 63| 94| 99

120 21| 43| 67| 96| 99

130 22| 46| 71| 97

140| 24| 49| 74| 98

150 25| 52 77 99

175 29| 58| 84 99

200 33| 65| 89

225( 36 70| 92

250 40| 75| 95

300 47| 82| 97

350| 53| 88| 99

400 59| 92

450 65 95

500 70 97

600 78 99

700 84| 99

800 89

90| 92

1000| 95
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INTERACTION EFFECTS FOR ANALYSIS OF VARIANCE

Table 9.3. Power table for between subjects analysis; 2 X 4 design at alpha =0.05

n Hypothesized ES
0.10]0.15[ 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65| 0.70] 0.75] 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 5 5 6 7 8 9] 10 12| 13| 15| 17| 19| 21| 24| 36| 53| 70| 84| 93| 99
4 5 5 6 8| 10| 11| 13| 15| 18| 21| 24| 27| 31| 35| 52| 73| 88| 96| 99
5 5 6 7 9 11| 14| 16| 19| 23| 27| 31| 36| 40| 46| 66| 86| 96| 99
6 5 6 70 11 13| 16| 20| 24| 28| 33| 38| 44| 50| 55 76| 93| 99
7 5 6 8| 12| 15| 19| 23| 28| 33| 39| 45| 52| 58| 64| 84| 97

8 5 6 8| 13| 17| 21| 27| 32| 38| 45| 52| 59| 65| 71| 90| 98

9 5 7 9| 15| 19| 24| 30| 37| 44| 51| 58| 65 72| 78| 94| 99

10 6 7 9 16| 21| 27| 34| 41| 48| 56| 64| 71| 77| 83| 96

11 6 71 10 18| 23| 30| 37| 45| 53| 61| 69 76| 82| 87| 98

12 6 8| 10| 19| 25| 32| 40 49| 57| 66| 73| 80| 86| 90| 99

13 6 8| 11| 21| 27| 35| 44| 53| 61| 70| 77| 84| 89| 93| 99

14 6 8| 12| 22| 30| 38| 47| 56| 65| 74| 81| 87| 91| 94| 99

15 6 9 12| 24| 32 41| 50| 60| 69| 77| 84| 89| 93| 96

20 71 10| 15| 32| 42| 53| 64| 74| 83| 89| 94| 97| 98| 99

25 71 12| 19| 39| 52| 64| 75| 84| 91| 95| 98| 99

30 8| 14| 22| 47| 61| 73| 84| 91| 96| 98| 99

35 9| 16| 26| 54| 68 80| 89| 95| 98| 99

40 10| 17| 29| 60| 75 86 93| 97| 99

45( 10 19| 33| 66 80[ 90[ 96| 99

50| 11| 21| 36| 71| 84| 93| 97| 99

55( 12| 23| 39| 75| 88| 95 98

60 13| 25| 43 79 91 97 99

65| 13| 27| 46| 83| 93 98| 99

700 14 29| 49| 86| 95 99

75| 15 31| 52| 88| 96 99

80| 16| 33| 55 90| 97| 99

90| 18| 37| 61| 94| 98

100| 19| 40| 66| 96| 99

110| 21| 44| 70| 97

120 23| 48| 74| 98

130 24| 51 78] 99

140| 26| 55| 81| 99

150| 28| 58| 84

175 32| 65 90

200| 36| 72| 93

225| 41| 77| 96

250| 45| 82| 97

300| 53| 89 99

350 60| 93

400| 66] 96

450 72| 98

500( 77| 99

600 84

700] 90

800 94

900| 96

1000| 98
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Table 9.4. Power table for between subjects analysis; 3 X 3 design at alpha =0.05

CHAPTER 9 TABLES

n Hypothesized ES
0.10{0.15] 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65[ 0.70{ 0.75[ 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 5 5 6 7 8 9 10| 11| 13| 15| 17| 19| 21| 24| 36| 54| 72| 86| 94| 99
4 5 5 6 8 9 11| 13| 15| 18| 20| 24| 27| 31| 35| 53| 74| 89| 97| 99
5 5 6 7 9 11| 13| 16| 19| 23| 27| 31| 36| 41| 46| 67| 87| 97| 99
6 5 6 71 10 13| 16| 19| 23| 28| 33| 38| 44| 50| 56| 78| 94| 99
7 5 6 8| 12| 15| 18| 23| 28| 33| 39| 46| 52 59| 65 85| 97

8 5 6 8| 13| 17| 21| 26| 32| 39| 45| 52| 59| 66 73| 91| 99

9 5 7 9 15 19| 24| 30| 37| 44| 51| 59| 66| 73| 79| 94

10 6 7 9 16| 21| 27| 33| 41| 49| 57| 65| 72| 78| 84| 97

1 6 7| 10| 17{ 23| 30| 37| 45| 54| 62| 70 77| 83| 88| 98

12 6 8| 10| 19| 25( 32| 41| 49| 58| 67| 74| 81| 87| 91| 99

13 6 8| 11| 21| 27| 35| 44| 53| 62| 71| 78| 85 90| 93| 99

14 6 8| 11| 22 29| 38| 47| 57| 66| 75| 82| 88| 92| 95

15 6 8| 12| 24| 32| 41| 51| 60| 70| 78| 85 90| 94| 97

20 7| 10| 15| 32| 42| 54| 65| 75| 84| 90| 94| 97| 99| 99

25 71 12| 18] 39| 52| 65| 76| 86| 92| 96| 98| 99

30 8| 13| 22| 47| o1 74| 85| 92| 96| 98| 99

35 9 15| 25| 54| 69| 82 90| 96| 98| 99

40 9l 17| 29| ot1| 76| 87| 94| 98| 99

45 10 19| 32 67| 81| 91| 96| 99

501 11| 21| 36| 72| 86| 94| 98| 99

55| 12| 23| 39| 76| 89| 96| 99

60| 12| 25| 43| 80| 92| 97| 99

65| 13| 27| 46| 84| 94| 98

700 14 29 49| 87| 96| 99

751 15| 31| 53| 89| 97| 99

80 16| 33| 56 91| 98

90| 17| 37| 61| 94| 99

100 19| 41 67| 96| 99

110 21| 44| 71 98

120 22| 48| 75 99

130 24| 521 79[ 99

140| 26| 55| 82

150 28] 58| 85

175 32| 66| 91

200 36| 73| 94

225( 41| 78| 97

250( 45 83| 98

300 53 90| 99

350 60| 94

400 67| 97

450 73| 98

500 78| 99

600 85

700 91

800 94

90| 97

1000| 98
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INTERACTION EFFECTS FOR ANALYSIS OF VARIANCE

Table 9.5. Power table for between subjects analysis; 3 X 4 design at alpha =0.05

n Hypothesized ES
0.10]0.15[ 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65| 0.70] 0.75] 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 5 5 6 7 8 9 11| 12| 14| 16| 18| 21| 23| 27| 41| 62| 80 92| 97
4 5 6 6 8| 10| 12| 14| 16| 19| 23| 26| 30| 35| 40| 60| 82| 94| 99
5 5 6 71 10f 12| 14| 17| 21| 25| 30| 35| 40| 46| 52 75| 93| 99
6 5 6 70 11| 14 17( 21| 26| 31| 37| 43| 50| 57| 63| 85| 97
7 5 6 8| 13| 16| 20| 25| 31| 37| 44| 52| 59| 66| 72| 91| 99
8 5 7 8| 14| 18| 23| 29| 36| 44| 51| 59| 67| 74| 80| 95

9 6 7 9 16| 21| 27| 33| 41| 49| 58| 66| 73| 80| 86| 98

10 6 7 10 17| 23| 30| 38| 46| 55| 64| 72| 79| 85 90| 99

11 6 71 10f 19 25 33| 42| 51| 60| 69| 77| 84| 89 93| 99

12 6 8| 11| 21| 28| 36| 46| 56| 65| 74| 82| 88| 92| 95

13 6 8| 11| 23| 30| 40| 50| 60| 70| 78| 85| 91| 94| 97

14 6 8| 12| 24| 33| 43| 53| 64| 74| 82| 88| 93| 96| 98

15 6 9 13| 26| 35 46| 57| 68| 77| 85| 91| 95| 97| 99

20 71 11| 16| 35[ 48[ 60| 72| 82| 90| 95| 98| 99

25 8 12| 20| 44| 59| 72| 83| 91| 96| 98| 99

30 8| 14| 24| 53| 68| 81| 90| 96| 98

35 9 16| 28 o1 76| 88 95| 98| 99

40 10 19| 32| 68| 83 92 97| 99

45 11| 21| 36| 74| 87 95 99

50| 12| 23| 40| 79| 91| 97| 99

55( 12| 25| 44| 83| 94| 98

60| 13| 27| 48] 87 96 99

65| 14| 30 52 90| 97 99

700 15| 32| 56[ 92 98

75| 16| 34| 59 94| 99

80| 17| 37| 62| 95 99

90| 19| 41| 68| 97

100 21| 46| 74| 99

110 23| 50[ 78] 99

120| 25| 54| 82

130 27| 58| 86

140 29| 62 89

150 31| 65| 91

175| 36| 73| 95

200| 41| 80| 97

225| 46| 85 99

250| 51| 89| 99

300 60| 94

350 67| 97

400| 74 99

450 80| 99

500 84

600 91

700] 95

800 97

900| 99

1000 99
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CHAPTER 9 TABLES

Table 9.6. Power table for ANCOVA analysis; 2 X 2 design at r=0.40 and alpha=0.05

n Hypothesized ES
0.10{0.15] 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65[ 0.70{ 0.75[ 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 5 5 6 7 8 9 10| 11| 12| 14| 15 17| 19| 21| 30| 43| 57| 70 80| 94| 99
4 5 5 6 8 9 11| 12| 14| 17| 19| 22| 24| 27| 30| 44| 62| 77| 88| 95 99
5 5 5 6 9| 11| 13| 15| 18| 21| 24| 28| 32| 36| 40| 57| 76| 89| 96| 99
6 5 6 71 10 13| 15| 19| 22| 26| 30| 34| 39| 44| 48| 67| 85| 95| 99
7 5 6 7| 12| 15| 18| 22| 26| 30| 35| 40| 46| 51| 56| 75| 91| 98

8 5 6 8| 13| 16| 20| 25| 30| 35| 40| 46| 52| 58| 63| 82| 95| 99

9 5 6 8| 14| 18| 23| 28| 33| 39| 45| 52| 58| 64| 69| 87| 97

10 5 7 9 16| 20| 25| 31| 37| 43| 50| 57| 63| 69| 74| 90| 98

1 5 7| 10| 17| 22| 28| 34| 41| 48| 54| 61| 68| 73| 79| 93| 99

12 5 7| 10| 19| 24| 30| 37| 44| 51| 58| 65| 72| 77| 82| 95| 99

13 6 8| 11| 20| 26| 33| 40| 47| 55| 62| 69| 75| 81| 86| 97

14 6 8| 11| 21| 28| 35 43| 51| 58| 66| 73| 79| 84| 88| 98

15 6 8| 12| 23| 30| 37| 45| 54| 62| 69| 76| 82 87| 90| 98

20 7| 10| 15| 30| 39| 48| 58| 67| 75| 82| 87| 92| 95| 97

25 71 12| 18] 36| 47| 58| 68| 77| 84| 90| 94| 96| 98| 99

30 8| 14| 21| 43| 55 66| 76| 84| 90| 94| 97| 98| 99

35 9 15| 25| 49| o1 73| 82| 89| 94| 97| 99| 99

40 10| 17| 28| 54| 67| 79| 87| 93| 96| 98| 99

45 10 19| 31| 59| 73| 83| 91| 95| 98| 99

50 11| 21| 34| 64| 77| 87| 93| 97| 99

55| 12| 22| 37| 68| 81 90 95 98| 99

60| 13| 24| 39| 72| 84| 92| 97| 99

65| 13| 26| 42 75| 87| 94| 98| 99

70 14| 28| 45 78| 89| 95| 98

750 15 29| 48[ 81| 91| 97| 99

80 16| 31| 50| 84| 93 97| 99

90| 17| 34| 55| 88| 95| 99

100 19| 38| 59| 91| 97| 99

110 20| 41| 64| 93| 98

120 22| 44| 67| 95| 99

130| 24| 47( 71| 96| 99

140 25| 50 74| 97| 99

150| 27| 53| 77| 98

175 31| 59| 83| 99

200 34| 65| 88

225( 38| 70| 91

250 41| 74| 94

300 48| 82| 97

350| 54| 87| 98

400 60 91| 99

450 65| 94

500 70| 96

600 77| 98

700 83| 99

800 88

900| 91

1000| 94
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INTERACTION EFFECTS FOR ANALYSIS OF VARIANCE

Table 9.7. Power table for ANCOVA analysis; 2 X 2 design at r=0.60 and alpha=0.05

n Hypothesized ES
0.10]0.15[ 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65| 0.70] 0.75] 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 5 6 6 8 9 10| 11| 13| 15| 16| 19| 21| 23| 26| 37| 53| 68| 81| 90| 98
4 5 6 6 9| 11| 13| 15| 18| 20| 24| 27| 31| 34| 38| 55| 73| 87| 95| 98
5 5 6 70 11 13| 16| 19| 23| 27| 31| 35| 40 45| 50 68| 86 95 99
6 5 6 8| 12| 15| 19| 23| 28| 33| 38| 43| 49| 54| 59| 78| 93| 98
7 5 6 8| 14| 18| 22| 27| 33| 38| 44| 50| 56| 62| 68| 86| 96| 99
8 5 7 9| 16| 20| 26| 31| 37| 44| 50| 57| 63| 69| 75| 91| 98

9 5 71 10 18| 23| 29| 35| 42| 49| 56| 63| 69| 75 80| 94| 99

10 6 8| 11| 20| 25| 32| 39| 46| 54| 61| 68 74| 80| 85| 96

11 6 8| 12| 21| 28| 35| 43| 51| 58| 66| 73| 79| 84| 88| 98

12 6 9 12| 23| 30| 38| 46| 55| 63| 70| 77| 83| 87| 91| 98

13 6 9 13| 25 33| 41| 50| 58| 67| 74| 80 86| 90| 93| 99

14 6 9 14| 27| 35| 44| 53| 62| 70| 77| 84| 88| 92| 95 99

15 6 10| 15[ 29| 37| 47| 56| 65| 73| 80| 86| 91| 94| 96

20 71 12| 19| 38| 48| 59 69| 78| 85| 91| 94| 97| 98] 99

25 8| 14| 23| 46| 58| 69| 79| 87| 92| 96| 98| 99

30 9 17| 27| 53| 66| 77| 86| 92| 96| 98| 99

350 10 19| 31| 60 73| 84| 91| 96| 98| 99

400 11| 21| 35 66| 79 88 94| 98| 99

45( 12| 24| 39| 71| 83 92 96| 99

50| 13| 26| 42| 76| 87| 94| 98| 99

55( 14| 28| 46| 80 90 96 99

60| 15| 30| 49| 83| 92 97| 99

65| 17| 33| 53| 86| 94| 98| 99

701 18] 35| 56| 88 96 99

751 191 37| 59 90| 97 99

80 20| 39| 61| 92 97 99

90| 22| 43| 67| 95| 99

100 24| 47( 71| 96| 99

110| 26| 51| 75| 98

120 28| 54| 79| 98

130 30| 58| 82 99

140| 32| 61| 85| 99

150 34| 64| 87

175 39 71| 91

200| 43| 76| 95

225| 47| 81| 97

250| 52| 85| 98

300 59 91| 99

350 66| 94

400| 72| 97

450 77| 98

500( 81| 99

600 87

700] 92

800 95

900| 97

1000| 98
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CHAPTER 9 TABLES

Table 9.8. Power table for ANCOVA analysis; 2 X 3 design at r=0.40 and alpha=0.05

n Hypothesized ES
0.10{0.15] 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65[ 0.70{ 0.75[ 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 5 5 6 7 8 9 10| 12| 13| 15| 17| 19| 21| 23| 34| 50| 66| 80 90| 98
4 5 6 6 8| 10 11| 13| 16| 18| 21| 24| 27| 31| 34| 51| 71| 86| 95| 98
5 5 6 7| 10 12| 14| 17| 20| 23| 27| 31| 36| 40| 45| 65| 84| 95| 99
6 5 6 7| 11| 14| 17| 20| 24| 29| 34| 39| 44| 50| 55| 76| 92| 98
7 5 6 8| 12| 16| 19| 24| 29| 34| 40| 46| 52| 58| 64| 83| 96| 99
8 5 7 8| 14| 18| 22 27| 33| 39| 46| 52| 59| 65 71| 89| 98

9 5 7 9| 16| 20 25| 31| 37| 44| 51| 58| 65 72 77| 93| 99

10 6 7| 10| 17| 22| 28| 35| 42| 49| 57| 64| 71| 77| 82| 96

1 6 8| 10| 19| 24| 31| 38| 46| 54| 62| 69| 76| 82| 86| 97

12 6 8| 11| 20| 26| 34| 42| 50| 58| 66| 73 80 85 90| 98

13 6 8| 12| 22| 29| 36| 45| 54| 62| 70| 77| 83| 88| 92| 99

14 6 9| 12| 23| 31| 39| 48| 57| 66| 74| 81| 86 91| 94| 99

15 6 9| 13| 25| 33| 42| 51| 61| 69| 77| 84| 89| 93| 96

20 71 11| 16| 33| 43| 54| 65| 75| 83| 89| 93| 96| 98| 99

25 8 13| 20| 41| 53| 65| 76| 85| 91| 95| 98 99

30 9 15| 23| 48| 62| 74| 84| 91| 95| 98| 99

35 9 16| 27| 55| 69| 81| 89| 95| 98| 99

401 10| 18| 31| 61| 75| 86| 93| 97| 99

45 11| 20| 34| 67| 80| 90| 96| 98| 99

501 12| 22 38| 72| 85| 93| 97| 99

55| 13| 24| 41| 76| 88| 95| 98

60| 13| 26| 44| 80| 91| 97| 99

65( 14| 28| 47| 83| 93| 98] 99

701 15| 30 51| 86| 95| 98

751 16| 32| 54| 88| 96| 99

80| 17| 34| 56| 90 97| 99

90| 19| 38| 62| 94| 98

100 20| 42| 67| 96| 99

110 22| 46| 71| 97

120 24| 49 75| 98

130 26| 53| 79| 99

140 28] 56| 82 99

150 29| 59| 84

175| 34| 66| 90

200 38| 72| 93

225( 42| 78| 96

250 46| 82| 97

300 54 89| 99

350| 61| 93

400 67| 96

450 73| 98

500 77| 99

600 85

700 90

800 94

900| 96

1000| 97
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INTERACTION EFFECTS FOR ANALYSIS OF VARIANCE

Table 9.9. Power table for ANCOVA analysis; 2 X 3 design at r=0.60 and alpha=0.05

n Hypothesized ES
0.10]0.15[ 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65| 0.70] 0.75] 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 5 6 6 8 9] 10| 12| 14| 16| 18| 21| 23| 26| 29| 43| 62| 79| 90| 96
4 5 6 71 10f 11 14| 16| 19| 23| 26| 30| 35 39| 44| 63| 83 94| 99
5 5 6 7\ 11| 14| 17| 21| 25| 30| 35| 40| 45 51| 57 77| 93| 99
6 5 6 8| 13| 17| 21| 26| 31| 37| 43| 49| 55| 62| 68| 86| 97
7 5 7 9| 15| 20| 25| 30| 37| 43| 50| 57| 64| 70 76| 92| 99
8 6 71 10 17( 22| 28| 35| 42| 50| 57| 65 71| 78| 83| 96

9 6 8| 11| 19| 25| 32| 40| 48| 56| 64| 71| 78| 83| 88| 98

10 6 8| 11| 21| 28| 36| 44| 53| 61| 69| 76 83| 88| 92| 99

11 6 9 12| 24| 31| 39| 48| 57| 66| 74| 81| 87| 91| 94| 99

12 6 9 13| 26| 34| 43| 52| 62| 71| 78| 85| 90| 93| 96

13 71 10| 14| 28| 37| 46| 56| 66| 75| 82| 88 92 95| 97

14 71 101 15( 30 39| 50 60| 70| 78| 85| 90| 94| 97| 98

15 71 11| 16| 32| 42| 53| 63| 73| 81| 88| 92 96| 98] 99

20 8| 13| 20| 42| 55| 67| 77| 86| 92| 96| 98| 99

25 9] 15| 25| 52| 65| 77| 87| 93| 97| 99| 99

300 10| 18| 30| 60 74 85[ 92 97| 99

35 11| 21| 34| 67| 81| 90[ 96| 99

40| 12| 23| 39| 74| 86| 94| 98] 99

45( 13| 26| 43| 79 90 96 99

50| 14| 29| 48| 83| 93| 98| 99

55 16| 31| 52 87| 95 99

60| 17| 34| 56| 90| 97 99

65| 18] 36| 59 92| 98

700 191 39| 63| 94| 98

75| 20| 41| 66] 95 99

80| 21| 44| 69| 96| 99

90| 24| 49| 74| 98

100| 26| 53| 79| 99

110| 28| 57| 83| 99

120 31| 61 86

130 33| 65 89

140 35| 69| 91

150 38| 72 93

175 43| 79| 96

200| 48| 84| 98

225| 53| 88| 99

250| 58] 91| 99

300| 66] 96

350 74| 98

400| 791 99

450 84| 99

500( 88

600 93

700] 96

800 98

900| 99

1000 99
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Table 9.10. Power table for ANCOVA analysis; 2 X 4 design at r=0.40 and alpha=0.05

CHAPTER 9 TABLES

n Hypothesized ES
0.10{0.15] 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65[ 0.70{ 0.75[ 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 5 5 6 7 8 9 11| 12| 14| 16| 18| 21| 23| 26| 39| 58| 75| 88 95
4 5 6 6 9 10 12| 14| 17| 20| 23| 27| 31| 35| 39| 58| 79| 92| 98
5 5 6 71 10 12| 15| 18| 22| 26| 31| 35| 41| 46| 52| 73| 91| 98
6 5 6 8| 12| 15| 18| 22| 27| 32| 38| 44| 50| 56| 62| 83| 96| 99
7 5 6 8| 13| 17| 21| 26| 32| 38| 45| 52| 59| 65 71| 90| 98

8 5 7 9 15| 19| 25( 31| 37| 44| 52| 59| 66| 73| 79 94| 99

9 6 7 9l 17| 22| 28| 35| 42| 50| 58| 66 73| 79| 84| 97

10 6 8| 10| 19| 24| 31| 39| 47| 55| 64| 71| 78| 84| 89| 98

1 6 8| 11| 20 27| 35| 43| 52| 60| 69| 76 83| 88 92 99

12 6 8| 12| 22| 29| 38| 47| 56| 65| 73| 81| 86 91| 94| 99

13 6 9| 12| 24| 32 41| 51| 60| 69| 77| 84| 90| 93| 96

14 6 9| 13| 26| 34| 44| 54| o4| 73| 81| 87 92| 95| 97

15 6 9| 14| 28| 37| 47| 58| 68| 77| 84| 90| 94| 97| 98

20 7| 11| 18| 37| 49| o1 72| 82| 89| 94| 97| 99| 99

25 8 13| 22| 46| 60 72| 83| 90| 95| 98| 99

30 9| 16| 26| 54| 69| 81| 90| 95| 98| 99

350 10| 18| 30| 62| 76| 87| 94| 98| 99

40 11 20| 34| 68| 82| 92| 97| 99

45( 12| 22| 38| 74| 87| 95| 98

50| 13| 25| 42 79| 90| 97| 99

55| 14| 27| 46| 83| 93| 98| 99

60| 14| 29| 50| 86| 95 99

65| 15| 32| 53| 89| 97| 99

701 16| 34 57| 91| 98

751 17| 36| 60| 93| 98

80 18| 39| 63| 95 99

90| 20| 43| 69| 97| 99

100 22| 47| 74 98

110 24| 51| 78] 99

120 27| 55 82| 99

130 29| 59| 85

140| 31| 63| 88

150| 33| 66| 90

175 38| 73| 94

200( 43| 79| 97

225( 48| 84| 98

250 52| 88| 99

3000 61| 94

350| 68| 97

400( 74| 98

450 80 99

500 84

600 90

700 94

800 97

900| 98

1000 99
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INTERACTION EFFECTS FOR ANALYSIS OF VARIANCE

Table 9.11. Power table for ANCOVA analysis; 2 X 4 design at r=0.60 and alpha=0.05

n Hypothesized ES
0.10]0.15[ 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65| 0.70] 0.75] 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 5 6 6 8| 10| 11| 13| 15| 17| 20| 23| 26| 30| 34| 50| 71| 87| 95| 99
4 5 6 71 10f 12| 15| 18| 21| 25| 30| 34| 39| 45| 50 71| 89| 98
5 5 6 8| 12| 15| 19| 23| 28| 33| 39| 45| 52| 58| 64| 84| 97
6 5 7 9| 14| 18| 23| 29| 35| 41| 48| 56| 63| 69| 75| 92| 99
7 6 7 9 17| 21| 27| 34| 41| 49| 57| 64| 72| 78| 83| 96

8 6 8| 10| 19| 25| 32| 39| 48| 56| 64| 72| 79| 85| 89| 98

9 6 8| 11| 21| 28| 36| 45| 54| 63| 71| 78| 85| 89| 93| 99

10 6 9 12| 24| 31| 40| 50| 59| 68| 77| 83| 89| 93| 96

11 6 9 13| 26| 35| 44| 54| 64| 73| 81| 87| 92| 95| 97

12 71 10| 14| 28| 38| 48| 59| 69| 78| 85 91| 94| 97| 98

13 71 10| 15 31| 41| 52 63| 73| 82| 88| 93| 96| 98 99

14 71 11| 16| 33| 44| 56| 67| 77| 85| 91| 95 97| 99 99

15 70 11 17| 36| 47| 59 71| 80| 88| 93| 96| 98] 99

20 8| 14| 22| 47| 61| 74| 84| 91| 96| 98| 99

25 9| 17| 28| 58| 73| 84| 92| 97| 99

300 11| 20| 33| 67| 81| 91| 96| 99

35( 12| 23| 39| 74| 87 95 98

40 13| 26| 44| 81| 92 97 99

45( 14| 29| 49| 85] 95 99

50| 15| 32| 54| 89 97 99

55| 17| 35| 58] 92| 98

60 18| 38| 62 94| 99

65| 19| 41| 66] 96 99

700 21| 44| 70| 97

75| 22| 46| 73| 98

80[ 23| 49| 76 99

90| 26| 55| 81| 99

100 29| 59| 86

110 32| 64| 89

120 34| 68| 92

130 37| 72| 94

140| 40| 76 95

150 42| 79| 97

175| 48| 85 98

200| 54| 90| 99

225 60| 93

250| 65| 95

300| 74| 98

350] 80| 99

400| 86

450] 90

500( 93

600 97

700] 98

800 99

900

1000
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Table 9.12. Power table for ANCOVA analysis; 3 X 3 design at r=0.40 and alpha=0.05

CHAPTER 9 TABLES

n Hypothesized ES
0.10{0.15] 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65[ 0.70{ 0.75[ 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 5 6 6 7 8 9 11| 12| 14| 16| 18| 21| 23| 26| 40| 59 77| 90| 96
4 5 6 6 9 10 12| 14| 17| 20| 23| 27| 31| 35| 40| 59| 81| 93| 98
5 5 6 71 10 12| 15| 18| 22| 26| 31| 36| 41| 47| 52| 74 92| 98
6 5 6 7| 12| 14| 18| 22| 27| 32| 38| 44| 51| 57| 63| 84| 97
7 5 6 8| 13| 17| 21| 26| 32| 39| 45| 52| 59| 66 73| 91| 99
8 5 7 9 15| 19| 24| 31| 37| 45| 52| 60| 67| 74| 80| 95

9 6 7 9| 17| 22| 28| 35| 43| 51| 59| 67| 74| 80| 86| 97

10 6 7| 10| 18] 24| 31| 39| 48| 56| 65| 72| 79| 85| 90| 99

1 6 8| 11| 20| 27| 35| 43| 52| 61| 70| 78| 84| 89| 93| 99

12 6 8| 11| 22 29| 38| 47| 57| 66| 75| 82| 88| 92| 95

13 6 8| 12| 24| 32| 41| 51| 61| 70| 79| 85 91| 94| 97

14 6 9| 13| 26| 34| 44| 55| 65| 74| 82| 88| 93| 96| 98

15 6 9| 14| 28| 37| 48| 58| 69| 78| 85| 91| 95 97| 99

20 71 11] 17| 37| 49| 62| 73| 83| 90| 95 97| 99

25 8 13| 21| 46| 60| 73| 84| 91| 96| 98| 99

30 9| 15| 26| 55| 70| 82 91| 96| 98| 99

350 10 18| 30| 62| 77| 88| 95| 98| 99

40 11| 20| 34| 69| 83| 92| 97| 99

45 11| 22| 38 75| 88| 95 99

50| 12| 24| 42| 80| 91| 97| 99

55| 13| 27| 46| 84| 94| 98

60| 14 29| 50| 87| 96 99

65| 15| 32| 54| 90| 97| 99

701 16| 34| 57| 92| 98

750 17| 36| 61 94| 99

80 18| 39| 64| 96 99

90| 20| 43| 70| 97

100 22| 48| 75 99

110 24| 521 79[ 99

120 26| 56| 83

130 28] 60| 86

140| 31| 63| 89

150 33| 67| 91

175 38| 74| 95

200( 43| 81| 97

225( 48| 85| 99

250 53| 89| 99

3000 61| 94

350 69| 97

400 75 99

450 81| 99

500 85

600 91

700 95

800 97

90| 99

1000 99
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INTERACTION EFFECTS FOR ANALYSIS OF VARIANCE

Table 9.13. Power table for ANCOVA analysis; 3 X 3 design at r=0.60 and alpha=0.05

n Hypothesized ES
0.10]0.15[ 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65| 0.70] 0.75] 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 5 6 6 8 9 11| 13| 15| 17| 20| 23| 26| 30| 34| 51| 73| 88| 96| 99
4 5 6 71 10f 12 15| 18| 21| 25| 30| 35| 40| 45| 51| 72| 91| 98
5 5 6 8| 12| 15| 19| 23| 28| 34| 40| 46| 53| 59| 65| 86| 97
6 5 7 8| 14| 18| 23| 29| 35| 42| 49| 56| 64| 70 77| 93| 99
7 6 7 9 16| 21| 27| 34| 42| 50| 58| 66| 73| 79| 85| 97

8 6 8| 10| 19| 25| 32| 40| 48| 57| 65| 73| 80| 86| 90| 99

9 6 8| 11| 21| 28| 36| 45| 54| 64| 72| 80| 86| 91| 94| 99

10 6 8| 12| 23| 31| 40| 50| 60| 69| 78| 85 90| 94| 96

11 6 9 13| 26| 35 45 55| 65| 75| 82| 89| 93| 96| 98

12 7 9 14| 28| 38 49| 60| 70| 79| 86| 92| 95| 98| 99

13 71 10| 15[ 31| 41| 53| 64| 74| 83| 89| 94| 97| 98] 99

14 71 101 16| 33| 45 57| 68| 78| 86| 92| 96| 98 99

15 70 11 17| 36| 48| 60 72| 81| 89| 94| 97| 99| 99

20 8| 14| 22| 48| 62| 75| 85| 92| 97| 99

25 9| 16| 28| 59| 74| 85| 93| 97| 99

300 10 19| 33| 68| 82 92 97| 99

35 12 22| 39 76| 88 96 99

40 13| 25| 44| 82 93| 98| 99

45( 14| 29| 49| 87| 95 99

50| 15| 32| 54| 90| 97 99

55| 16| 35 59| 93| 98

60| 18] 38 63 95 99

65| 19| 41| 67| 97| 99

700 20| 44| 71| 98

75| 22| 47| 74| 98

80[ 23| 50 77| 99

90| 26| 55| 82

100 29| 60| 87

110| 31| 65[ 90

120 34| 69| 93

130 37| 73| 95

140| 40| 77| 96

150| 42| 80| 97

175| 49| 86| 99

200| 55 91| 99

225| 60| 94

250| 66| 96

300 75 98

350| 82 99

400| 87

450 91

500 94

600 97

700 99

800

900

1000
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Table 9.14. Power table for ANCOVA analysis; 3 X 4 design at r=0.40 and alpha=0.05

CHAPTER 9 TABLES

n Hypothesized ES
0.10{0.15] 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65[ 0.70{ 0.75[ 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 5 6 6 8 9 10 11| 13| 15| 18| 20| 23| 27| 30| 47| 68| 86| 95 99
4 5 6 7 9 11| 13| 15| 19| 22| 26| 30| 35| 40| 46| 67| 88| 97
5 5 6 71 11| 13| 16| 20| 24| 29| 35| 41| 47| 53| 60| 82| 96
6 5 6 8| 12| 16| 20| 25| 30| 37| 43| 50| 58| 65 71| 91| 99
7 5 7 8| 14| 18| 23| 30| 36| 44| 52| 59| 67| 74| 80| 95

8 6 7 9| 16| 21| 27| 34| 42| 51| 59| 67| 75| 81| 87| 98

9 6 7| 10| 18| 24| 31| 39| 48| 57| 66| 74| 81| 87 91| 99

10 6 8| 11| 20| 27| 35| 44| 54| 63| 72| 80| 86 91| 95

1 6 8| 11| 22 30 39| 49| 59| 69| 77| 85| 90| 94| 97

12 6 8| 12| 24| 33| 43| 53| 64| 74| 82| 88| 93| 96| 98

13 6 9| 13| 26| 36| 47| 58| 68| 78| 86| 91| 95 97| 99

14 6 9| 14| 29| 39| 50 62| 72| 82| 89| 93| 97| 98| 99

15 7| 10| 15| 31| 42| 54| 66| 76| 85| 91| 95| 98| 99

20 71 12| 19| 42| 56| 69| 81| 89| 95| 98| 99

25 8| 14| 24| 52| 67| 81| 90| 96| 98| 99

30 9| 17| 28| ot1| 77| 88| 95| 98

350 10( 19| 33| 70| 84| 93| 98| 99

400 11| 22| 38 76| 89| 96 99

45( 12| 24| 43| 82| 93| 98

501 13| 27| 48] 86| 96 99

55| 14| 30| 52| 90 97| 99

60| 15| 33| 56 93| 98

65| 16| 35/ 60[ 95| 99

700 17| 38| 64 96| 99

750 19 41| 68| 97

80 20 43| 71| 98

90| 22| 49| 77| 99

100| 24| 54| 82

110 27| 58| 86

120 29| 63| 89

130 32| 67| 92

140| 34| 71| 94

150| 37| 74| 95

175| 43| 81| 98

200( 48| 87| 99

225 54| 91

250 59| 94

300 68| 97

350 76| 99

400 82

450 87

500 91

600 95

700 98

800 99

900

1000
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INTERACTION EFFECTS FOR ANALYSIS OF VARIANCE

Table 9.15. Power table for ANCOVA analysis; 3 X 4 design at r=0.60 and alpha=0.05

n Hypothesized ES
0.10]0.15[ 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65| 0.70] 0.75] 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 5 6 6 8| 10| 12| 14| 16| 19| 23| 26| 30| 35| 39| 59| 82| 94| 99
4 5 6 71 10f 13| 16| 20| 24| 29| 34| 40| 46| 52| 58 81| 96| 99
5 5 6 8| 13| 16| 21| 26| 32| 38| 45| 53| 60| 67| 73| 92| 99
6 6 7 9| 15| 20| 26| 32| 40| 48| 56| 64| 71| 78| 84| 97
7 6 71 10 18| 24| 31| 39| 47| 56| 65| 73| 80| 86 91| 99
8 6 8| 11| 20| 27| 36| 45| 55| 64| 73| 81| 87| 92| 95

9 6 8| 12| 23| 31| 41| 51| 61| 71| 80| 86| 92| 95| 97
10 6 9 13| 26| 35| 46| 57| 67| 77| 85| 91| 95| 97 99

11 7 9 14 29| 39| 51| 62| 73| 82| 89| 94| 97| 98] 99

12 71 10| 15| 32| 43| 55 67| 78| 86| 92| 96 98| 99

13 71 101 16| 35 47| 59 71| 82| 89| 94| 97| 99

14 71 11| 17 37| 50| 64| 75| 85| 92| 96| 98| 99

15 71 12| 18| 40| 54| 67 79| 88| 94| 97| 99

20 8| 15| 25| 54| 69| 82| 91| 96| 99

25| 10| 18| 31| 66] 81| 91| 97| 99

300 11| 21| 37 75 88| 96| 99

35 12| 25| 44| 83| 93] 98

40| 14| 28| 50| 88| 96 99

45) 15| 32| 55 92 98

501 16| 35 61| 95 99

55| 18] 39| 66[ 97| 99

60 19 43| 70[ 98

65| 21| 46| 74 99

700 22| 49 78] 99

75| 24| 53| 81

80| 26| 56| 84

90| 29| 62| 89

100 32| 67| 92

110| 35| 72 95

120 38| 76 96

130 41| 80| 98

140| 45| 84| 98

150 48| 86[ 99

175] 55| 92

200| 62| 95

225| 68| 97

250| 73] 98

300| 82

350| 88

400| 92

450] 95

500( 97

600 99

700

800

900

1000
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CHAPTER 9 TABLES

Table 9.16. Power table for repeated measures interaction ANOVA; 2 X 2 mixed design at r=0.40 and alpha=0.05

n Hypothesized ES
0.10{0.15] 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65[ 0.70{ 0.75[ 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 6 7 7 8 9 11| 12| 13| 15| 17| 18| 20| 22| 25| 35| 49| 63| 76| 86| 96| 99
4 6 6 7 9 11| 13| 15| 18| 20| 23| 27| 30| 34| 37| 53| 72| 86| 94| 98
5 5 6 7| 11 13| 16| 19| 23| 27| 31| 35| 40| 44| 49| 68| 85| 95 99
6 5 6 8| 13| 16| 19| 24| 28| 33| 38| 43| 49| 54| 60| 78| 93| 98
7 5 7 9 15| 18| 23| 28| 33| 39| 45| 51| 57| 63| 68| 86| 97

8 6 7| 10| 16| 21| 26| 32| 38| 45| 51| 58| 64| 70| 76| 91| 98

9 6 8| 10| 18| 24| 30| 36| 43| 50| 57| 64| 71| 76| 81| 94| 99

10 6 8| 11| 20| 26| 33| 40| 48| 55| 63| 70| 76| 81| 86| 97

1 6 8| 12| 22| 29| 36| 44| 52| 60| 68| 74| 80| 85 89| 98

12 6 9| 13| 24| 31| 39| 48| 56| 64| 72| 78| 84| 89| 92 99

13 6 9| 14| 26| 34| 43| 51| 60| 68| 76| 82 87 91| 94| 99

14 7| 10| 14| 28| 37| 46| 55| 64| 72| 79| 85 90| 93| 96

15 7| 10| 15| 30| 39| 48| 58| 67| 75| 82| 88| 92| 95| 97

20 8| 13| 20| 39| 50| 61| 72| 80| 87| 92| 95 97| 99| 99

25 9 15| 24| 48] 60| 72| 81| 89| 94| 97| 98| 99

300 10 18| 28| 55| 69| 80| 88| 94| 97| 99| 99

350 11 20| 33| 62| 75| 86| 92| 96| 99| 99

400 12 22| 37| 68| 81| 90| 95| 98| 99

45( 13| 25| 41| 74| 85| 93| 97| 99

50| 14| 27 45| 78] 89| 95| 98| 99

55| 15| 30| 48| 82 92 97| 99

60| 16| 32| 52| 85| 94| 98| 99

65| 17| 34| 55| 88| 95| 99

7001 18] 37| 58] 90| 97| 99

751 20 39 61| 92| 97| 99

80 21| 41| o4 93| 98

90| 23| 45| 69| 96| 99

100 25| 50 74| 97| 99

110 27| 53| 78| 98

120 29| 57| 81| 99

130 31| 60 84 99

140| 34| 64| 87

150| 36| 67| 89

175| 41 73| 93

200 45 79| 96

225( 50 83| 97

250 54| 87| 98

3000 62 92| 99

350 69| 95

400 74| 97

450 791 99

500 83| 99

600 89

700 93

800 96

90| 97

1000| 98
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INTERACTION EFFECTS FOR ANALYSIS OF VARIANCE

Table 9.17. Power table for repeated measures interaction ANOVA; 2 X 2 mixed design at r=0.60 and alpha=0.05

n Hypothesized ES
0.10]0.15[ 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65| 0.70] 0.75] 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 6 7 8| 10| 11| 13| 15| 17| 19| 22| 25| 27| 31| 34| 48| 65| 80| 90| 96
4 6 7 8| 12| 14| 17| 21| 24| 28| 32| 37| 42| 46| 51| 70| 87| 96| 99
5 6 7 9| 14| 18| 22| 27| 32| 37| 43| 49| 55| 60| 66| 84| 96| 99
6 6 71 10 17| 22| 27| 33| 39| 46| 53| 59| 66| 71| 77| 92| 99
7 6 8| 11| 20| 26| 32| 39| 46| 54| 61| 68| 74| 80| 85| 96

8 6 9 12| 23| 30| 37| 45| 53| 61| 68| 75 81| 86 90| 98

9 6 9 14| 26 33| 42| 50| 59| 67| 75| 81| 86| 91| 94| 99

10 71 10| 15| 29| 37| 46| 56| 64| 73| 80| 86| 90| 94| 96

11 71 11| 16| 31| 41| 51| 60| 69| 77| 84| 89 93| 96| 98

12 7\ 11| 17| 34| 44| 55 65| 74| 81| 87| 92 95 97| 98

13 8| 12| 19| 37| 48| 58| 69| 77| 85| 90| 94| 97| 98| 99

14 8| 13| 20| 40| 51| 62| 72| 81| 87| 92| 96| 98| 99| 99

15 8| 14| 21| 42| 54| 65| 75| 84| 90| 94| 97| 98| 99

20 10| 17| 28| 54| 67 79| 87| 93| 97| 98| 99

25| 11| 21| 34| 64| 78| 87| 94| 97| 99

300 13| 25| 40| 73| 85 93 97| 99

35( 14| 28| 46| 79[ 90 96 99

40| 16| 32| 51| 85 93| 98| 99

45( 18] 35| 56| 89 96 99

50| 19 39| 61| 92 97 99

55[ 21| 42| 65 94| 98

60 23| 45 69| 96 99

65| 24| 48 72| 97| 99

700 26| 51| 76[ 98

75| 28] 54| 78] 98

80 29| 57| 81| 99

90| 32| 62| 85| 99

100| 35| 67| 89

110 38 71| 91

120 41| 74| 94

130 44| 78| 95

140| 47| 81| 96

150| 50| 83| 97

175] 56| 88 99

200 62 92| 99

225 67| 95

250 71| 97

300 79 99

350 85| 99

400| 89

450] 92

500( 95

600 97

700 99

800 99

900

1000
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Table 9.18. Power table for repeated measures interaction ANOVA; 2 X 3 mixed design at r=0.40 and alpha=0.05

n Hypothesized ES
0.10{0.15] 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65[ 0.70{ 0.75[ 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 6 6 7 8| 10 11| 12| 14| 16| 19| 21| 24| 27| 30| 44| 63| 79| 90| 96
4 5 6 7| 10 12| 14| 17| 20| 23| 27| 31| 36| 40| 45| 64| 84| 95 99
5 5 6 8| 12| 15[ 18| 22| 26| 31| 36| 41| 47| 53| 59| 79| 94| 99
6 6 7 8| 14| 17| 22| 27| 32| 38| 44| 51| 57| 64| 70| 88| 98
7 6 7 9l 16| 20| 26| 32| 38| 45| 52| 59| 66 73| 78 93| 99
8 6 8| 10| 18| 23| 30| 37| 44| 52| 60| 67| 74| 80| 85 97

9 6 8| 11| 20| 26| 34| 41| 50| 58| 66| 73| 80 85 90| 98

10 6 8| 12| 22| 30| 37| 46| 55| 64| 72| 79| 85| 89| 93| 99

1 6 9| 13| 25| 33| 41| 51| 60| 69| 76| 83| 88| 92| 95

12 7 9| 14| 27| 36| 45| 55| o4| 73| 81| 87| 91| 95| 97

13 7| 10| 15| 29| 38| 49| 59| 68| 77| 84| 90| 94| 96| 98

14 7|1 10| 16| 31| 41| 52 63| 72| 81| 87| 92 95 97| 99

15 7| 11| 17| 34| 44| 55 66| 76| 84| 90| 94| 97| 98| 99

20 8| 14| 22| 44| 57| 70 80| 88| 93| 97| 98| 99

25 9 16| 27| 54| 68| 80| 89| 94| 98| 99

300 10 19| 32| 63| 77| 87| 94| 98| 99

350 12 22| 36 70| 83| 92| 97| 99

40 13| 25| 41| 76| 88| 95| 98

45( 14| 27| 46| 81| 92| 97| 99

50 15| 30| 50| 86| 95| 98

55| 16| 33| 54| 89| 96| 99

60| 18] 36| 58| 92| 98] 99

65 19 38| 62 94| 98

701 20| 41 66] 95| 99

750 21| 44| 69| 96| 99

80| 23| 46| 72 97

90| 25| 51| 77| 99

100 28] 56 82 99

110 30| 60| 85

120 32| 64| 88

130 35| 68 91

140| 37| 71| 93

150| 40| 75| 94

175| 46| 81| 97

200 51| 86| 99

225 56 90| 99

250 61| 93

3000 69| 97

350| 76| 98

400 82 99

450 86

500 90

600 95

700 97

800 99

900| 99

1000
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INTERACTION EFFECTS FOR ANALYSIS OF VARIANCE

Table 9.19. Power table for repeated measures interaction ANOVA; 2 X 3 mixed design at r=0.60 and alpha=0.05

n Hypothesized ES
0.10]0.15[ 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65| 0.70] 0.75] 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 6 6 71 10f 12 14| 16| 19| 22| 26| 30| 34| 38| 43| 61| 81| 93| 98
4 6 7 8| 13| 16| 19| 23| 28| 33| 39| 45| 51| 57| 62| 82| 95| 99
5 6 7 9| 16| 20| 25| 31| 37| 44| 51| 58| 65| 71| 77| 93| 99
6 6 8| 11| 19| 25| 31| 38| 46| 54| 62| 69| 76| 82| 87| 97
7 6 8| 12| 22| 29| 37| 45| 54| 63| 71| 78| 84| 89| 93| 99
8 6 9 13| 26| 34| 43| 52| 61| 70| 78| 84| 90| 93| 96

9 71 10| 15[ 29| 38| 48| 58| 68| 76| 84| 89 93| 96| 98

10 7| 11] 16| 32| 42| 53| 64| 73| 82| 88| 93| 96 98| 99

11 71 11 17 35| 47| 58| 69| 78| 86| 91| 95 97 99| 99

12 8 12 19| 39| 51| 62| 73| 82| 89| 94| 97| 98| 99

13 8| 13| 20| 42| 54| 67| 77| 86| 92| 96| 98| 99

14 8| 14| 22| 45| 58| 70| 81| 89| 94| 97| 99| 99

15 9 15| 23| 48| 62| 74| 84| 91| 95| 98| 99

201 10 19| 31| 62| 76| 87 93| 97| 99

25| 12| 23| 38| 73| 85| 93| 98| 99

30 14| 27| 45| 81 92 97 99

350 16| 31| 52 87 95 99

40 17| 35| 58] 91| 97 99

451 19 39| 63| 94| 99

50| 21| 43| 68| 96 99

55| 23| 47| 73| 98

60 251 51 77 99

65| 27| 54| 80[ 99

700 29| 58| 83 99

75| 30| 61| 86

80| 32| 64| 88

90| 36| 70| 92

100 40| 74| 94

110 43| 79| 96

120| 47| 82| 97

130 50| 85 98

140| 53| 88 99

150 56| 90[ 99

175] 63| 94

200 69| 97

225| 75 98

250 791 99

300| 86

350 91

400| 95

450( 97

500( 98

600 99

700

800

900

1000
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Table 9.20. Power table for repeated measures interaction ANOVA; 2 X 4 mixed design at r=0.40 and alpha=0.05

n Hypothesized ES
0.10{0.15] 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65[ 0.70{ 0.75[ 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 5 6 7 9 10 12| 13| 16| 18| 21| 24| 28| 31| 35| 52| 73| 88| 96| 99
4 5 6 71 10 13| 15| 19| 22| 27| 31| 36| 41| 47| 52| 73| 91| 98
5 5 6 8| 13| 16| 20| 24| 30| 35| 41| 48| 54| o1 67| 87| 97
6 6 7 9 15| 19| 24| 30| 37| 44| 51| 58| 65 72| 78| 94| 99
7 6 7| 10| 17| 23| 29| 36| 44| 52| 60| 67| 74 80| 86 97

8 6 8| 11| 20| 26| 33| 42| 50| 59| 67| 75| 81| 87| 91| 99

9 6 8| 12| 22| 30| 38| 47| 56| 65| 74| 81| 87| 91| 95

10 6 9| 13| 25| 33| 42| 52| 62 71| 79| 86| 91| 94| 97

1 7 9| 14| 28| 37| 47| 57| 67| 76| 84| 89| 94| 96| 98

12 7| 10| 15| 30| 40| 51| 62| 72| 81| 87| 92 96 98| 99

13 7| 10| 16| 33| 43| 55 66| 76| 84| 90| 94| 97| 99| 99

14 71 11| 17| 35| 47| 59| 70| 80| 87| 93| 96| 98| 99

15 7| 12| 18| 38| 50| 62| 73| 83| 90| 94| 97| 99| 99

20 9| 15| 24| 50| o4| 77| 87| 93| 97| 99

25| 10| 18| 30| 61| 75| 87| 94| 97| 99

300 11| 21| 35[ 70| 84| 93| 97| 99

35 12| 24| 41 77| 89| 96| 99

40| 14| 27| 46| 83| 93| 98

45( 15 31| 52 88| 96| 99

501 16| 34| 56| 91| 98| 99

55| 18| 37| 61| 94 99

60 19| 40| 65 96 99

65| 20| 43| 69| 97| 99

701 22| 46| 73] 98

751 23| 49| 76| 99

80 25 52| 79 99

90| 28| 57| 84

100 31| 63| 88

110 33| 67 91

120 36| 71| 93

130 39| 75| 95

140| 42| 78| 96

150| 45| 81| 97

175 51| 87| 99

200 57| 92

225 63| 95

250 68| 97

3001 77 99

350( 83

400 88

450 92

500 94

600 98

700 99

800

900

1000
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Table 9.21. Power table for repeated measures interaction ANOVA; 2 X 4 mixed design at r=0.60 and alpha=0.05

n Hypothesized ES
0.10]0.15[ 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65| 0.70] 0.75] 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 6 6 71 10f 13| 15| 18| 22| 26| 30| 35| 40[ 45| 51| 71| 90| 98
4 6 7 8| 14| 17| 22| 27| 32| 39| 45| 52| 59| 65| 72| 90| 98
5 6 71 10 17( 22| 28| 35| 43| 51| 59| 66 73| 80| 85 97
6 6 8| 11| 21| 28| 35| 44| 53| 62| 70| 77| 84| 89| 93| 99
7 6 9 13| 25| 33| 42| 52| 62| 71| 79| 85| 90| 94| 97

8 71 10| 14 29| 38| 48| 59| 69| 78| 85| 91| 95| 97| 98

9 71 10| 16| 32| 43| 55| 66| 76| 84| 90| 94| 97 99 99

10 71 11] 17| 36| 48| 60| 71| 81| 88| 93| 97| 98| 99

11 8| 12| 19| 40| 53| 65| 76| 85| 92| 96| 98| 99

12 8| 13| 21| 44| 57| 70| 81| 89| 94| 97| 99

13 8| 14| 23| 47| 61| 74| 84| 91| 96| 98| 99

14 9 15| 24| 51| 65 78 87| 94| 97| 99

15 9| 16| 26| 54 69 81| 90| 95| 98| 99

20 11| 20| 35 69| 83 92 97| 99

25| 13| 25| 43| 80| 91| 97| 99

300 15 30 51| 87| 96 99

350 17| 35 58] 92| 98

401 19| 40 65 95 99

45( 21| 44| 71| 97

50| 23| 49| 76| 99

55 25| 53| 80 99

60| 28] 57| 84

65| 30| 61| 87

70| 32| 65 89

75| 34| 68 91

80| 36| 71| 93

90| 40| 77| 96

100| 44| 81| 97

110| 48| 85 98

120 52| 88| 99

130 56| 91| 99

140 59| 93

150 63| 95

175 70| 97

200| 76| 99

225| 82 99

250| 86

300 92

350 95

400| 98

450 99

500( 99

600

700

800

900

1000
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Table 9.22. Power table for repeated measures interaction ANOVA; 3 X 3 mixed design at r=0.40 and alpha=0.05

n Hypothesized ES
0.10{0.15] 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65[ 0.70{ 0.75[ 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 6 6 7 8| 10 11| 13| 15| 17| 20| 23| 27| 30| 34| 51| 73| 88| 96| 99
4 5 6 71 10 12| 15| 18| 22| 26| 30| 35| 41| 46| 52| 73| 91| 98
5 5 6 8| 12| 15[ 19| 24| 29| 34| 41| 47| 54| 60 67| 87| 98
6 6 7 9 15| 19| 24| 30| 36| 43| 51| 58| 65 72| 78| 94| 99
7 6 7| 10| 17| 22| 28| 35| 43| 51| 60| 67| 75 81| 86| 98

8 6 8| 10| 19| 26| 33| 41| 50| 59| 68| 75| 82| 87| 92| 99

9 6 8| 11| 22| 29| 38| 47| 56| 66| 74| 82 87| 92| 95

10 6 9| 12| 24| 33| 42| 52| 62| 72| 80| 86| 91| 95| 97

1 6 9| 13| 27| 36| 47| 57| 68| 77| 84| 90| 94| 97| 98

12 7| 10| 14| 30( 40| 51| 62| 73| 81| 88| 93| 96| 98| 99

13 7| 10| 16| 32| 43| 55 67| 77| 85| 91| 95| 98| 99

14 71 11| 17| 35| 47| 59| 71| 80| 88| 93| 97| 98| 99

15 7| 11| 18| 38| 50| 63| 74| 84| 91| 95 98| 99

20 8| 14| 23| 50| 65| 78| 87| 94| 97| 99

25| 10| 17| 29| 61| 76| 88| 94| 98| 99

300 11 20| 35[ 71| 85| 93| 98| 99

35 12| 24| 41 78] 90| 97| 99

40 13| 27| 47| 84| 94| 98

45 15 30 52 89| 97| 99

50| 16| 34| 57| 92| 98

55 17| 37| 62| 95 99

60 19| 40| 66| 96 99

65| 20| 43| 70[ 97

700 22| 46| 74 98

751 23| 49 77| 99

80 25 52| 80 99

90| 27| 58| 85

100 30| 63| 89

110 33| 68| 92

120 36| 72| 94

130 39| 76| 96

140| 42| 80| 97

150| 45| 83| 98

175 52| 89 99

200 58| 93

225 64| 95

250 69| 97

300 78| 99

350 84

400 89

450 93

500 95

600 98

700 99

800

900

1000
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Table 9.23. Power table for repeated measures interaction ANOVA; 3 X 3 mixed design at r=0.60 and alpha=0.05

n Hypothesized ES
0.10]0.15[ 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65| 0.70] 0.75] 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 6 6 70 10f 12 15 18| 21| 25| 29| 34| 39| 44| 49| 71| 90| 98
4 6 7 8| 13| 17| 21| 26| 31| 38| 44| 51| 58| 65 71| 90| 99
5 6 71 10 17( 22| 28| 35| 42| 50| 58| 66 74| 80| 85 97
6 6 8| 11| 20| 27| 35| 43| 52| 62| 70| 78| 84| 89| 93| 99
7 6 9 12| 24| 32| 42| 52| 62| 71| 79| 86| 91| 95| 97

8 7 9 14| 28| 38 48| 59| 70| 79| 86| 91| 95| 97| 99

9 71 10| 15[ 32| 43| 55| 66| 76| 85| 91| 95 97 99 99

10 71 11 17| 36| 48| 60| 72| 82| 89| 94| 97| 99| 99

11 8| 12| 19| 40| 53| 66| 77| 86| 92| 96| 98| 99

12 8| 13| 20| 44| 57| 71| 81| 90| 95| 98| 99

13 8| 14| 22| 47| 62| 75| 85| 92| 96| 99| 99

14 9 14| 24| 51| o6 79 88| 94| 98| 99

15 9 15| 26| 55| 70 82 91| 96| 98| 99

20 11| 20| 34| 70 84| 93| 97| 99

25| 13| 25| 43| 81| 92 97| 99

300 14| 30 51| 88| 96 99

350 17| 35 59| 93| 98

401 19| 40| 65 96 99

45( 21| 44| 71| 98

50| 23| 49| 77| 99

55[ 25| 54| 81| 99

60| 27| 58| 85

65| 29 62| 88

70| 32 65 90

75| 34| 69 92

80| 36| 72| 94

90| 40| 78| 96

100| 45| 82 98

110 49| 86[ 99

120 53| 89 99

130 56| 92

140 60| 94

150 63| 95

175 71| 98

200| 77| 99

225| 83

250| 87

300 93

350 96

400| 98

450 99

500

600

700

800

900

1000
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Table 9.24. Power table for repeated measures interaction ANOVA; 3 X 4 mixed design at r=0.40 and alpha=0.05

n Hypothesized ES
0.10{0.15] 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65[ 0.70{ 0.75[ 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 5 6 7 9 10 12| 14| 17| 20| 23| 27| 31| 36| 40| 61| 83| 95 99
4 5 6 71 11| 13| 17| 20| 25| 30| 35| 41| 47| 54| 60| 82| 96
5 6 7 8| 13| 17| 21| 27| 33| 40| 47| 55| 62 69| 76 93| 99
6 6 7 9| 16| 21| 27| 34| 41| 50| 58| 66 74| 80| 86| 98
7 6 8| 10| 19| 25( 32| 41| 50| 59| 68| 76 83| 88 92 99
8 6 8| 11| 21| 29| 38| 47| 57| 67| 76| 83| 89| 93| 96

9 6 9| 12| 24| 33| 43| 54| o4| 74| 82| 88| 93| 96| 98

10 6 9| 13| 27| 37| 48| 59| 70| 80| 87| 92 96 98| 99

1 7| 10| 14| 30( 41| 53| 65| 76| 84| 91| 95 98| 99

12 7| 10| 16| 34| 45 58| 70| 80| 88| 93| 97| 99| 99

13 71 11] 17| 37| 49| 62| 74| 84| 91| 95| 98| 99

14 7| 11| 18| 40| 53| 66| 78| 87| 93| 97| 99

15 8| 12| 19| 43| 57| 70 82| 90| 95| 98| 99

20 9 15| 26| 57| 72| 85 93| 97| 99

25| 10| 19| 33| 69| 83| 93| 98| 99

30 11| 23| 40 78| 91| 97| 99

35 13| 26| 46| 85| 95| 99

40| 14| 30 52 90| 97| 99

45] 16| 34| 58] 94| 99

501 17| 38| 64| 96 99

55 19| 42| 69| 98

60| 21| 45| 73| 99

65| 22 49 77| 99

701 24| 52| 81 99

75| 25| 56| 84

80| 27| 59| 87

90| 31| 65| 91

100| 34| 70| 94

110 37| 75| 96

120 41| 79 97

130| 44| 83| 98

140| 47| 86| 99

150 50 89 99

175 58] 93

200 65| 96

225 71| 98

250 76| 99

300 84

350 90

400 94

450 96

500 98

600 99

700

800

900

1000
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Table 9.25. Power table for repeated measures interaction ANOVA; 3 X 4 mixed design at r=0.60 and alpha=0.05

n Hypothesized ES
0.10]0.15[ 0.20{ 0.30{ 0.35] 0.40{ 0.45] 0.50 [ 0.55 [ 0.60 | 0.65| 0.70] 0.75] 0.80| 1.00| 1.25| 1.50| 1.75] 2.00| 2.50| 3.00
3 6 6 70 11| 13| 16| 20| 24| 29| 34| 40| 46| 52| 59| 81| 96
4 6 7 9| 14| 19| 24| 30| 37| 44| 52| 60| 67| 74| 81| 96
5 6 8| 10| 18| 24| 32| 40| 49| 58| 67| 75| 82| 88| 92 99
6 6 8| 12| 23| 31| 40| 50 60| 70| 79| 86| 91| 95| 97
7 6 9 13| 27| 37| 48| 59| 70| 79| 87| 92| 96| 98| 99
8 71 101 15| 32| 43| 55| 67| 78| 86| 92| 96| 98] 99

9 70 11 17 36| 49| 62| 74| 84| 91| 95| 98| 99

10 71 12| 19| 41| 55| 68| 80| 88| 94| 97| 99

11 8| 13| 21| 45| 60| 74| 84| 92| 96| 99

12 8| 14| 23| 50| 65| 78| 88| 94| 98| 99

13 9 15| 25 54 69| 82 91| 96| 99

14 9 16| 27| 58| 74| 86| 93| 98| 99

15 9 17| 29| 62| 77| 89 95| 98

20 11| 22| 39 77 90 97| 99

25| 13| 28| 49| 87| 96 99

300 16| 33| 58] 93] 99

350 18] 39| 66] 97

40 20| 45 73| 98

45( 23| 501 79[ 99

50| 25| 55| 84

55| 28] 60| 87

60| 30 65 91

65| 33| 69 93

70 35| 73| 95

75| 38| 76| 96

80| 41| 79 97

90| 45| 84| 99

100| 50| 89 99

110| 55| 92

120 59| 94

130 63| 96

140| 67| 97

150 71| 98

175 78| 99

200| 84

225[ 89

250 92

300| 96

350] 98

400] 99

450

500

600

700

800

900

1000
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Table 9.26. Sample size table for between subjects analysis; p = 0.05

CHAPTER 9 TABLES

Chart A. 2 X 2 design at alpha=0.05

Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |[193| 87| 64| 49 39| 32| 27| 23| 20| 17| 15| 13 9 6 5 4 4 3 3
0.90 |[258]| 116| 85| 66| 52| 43| 35| 30| 26 22| 20| 18| 12| 8| 6| 5| 4| 3| 3
Chart B. 2X 3 design at alpha=0.05
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 160| 72| 53| 41| 33| 27| 22| 19| 16| 14| 13| 11| 8| 6| 4| 4| 3| 3| 2
0.90 |[210| 94| 70| 54| 43| 35| 29| 25| 21| 19| 16| 15| 10| 7| 5| 4| 4| 3| 3
Chart C. 2 X4 design at alpha=0.05
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80(1.00| 1.25|1.50| 1.75| 2.00(2.50| 3.00
0.80 |[136| 61| 45| 35| 28| 23| 19| 16| 14 13| 11| 10{ 7[ 5| 4| 3| 3| 2| 2
0.90 | 177| 80| 59| 45| 36| 30| 25| 21| 18| 16| 14| 12| 9| 6| 5| 4| 3| 3| 2
Chart D. 3 X 3 design at alpha=0.05
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 133| 60| 44| 34| 27| 23| 19| 16| 14| 12| 11| 10{ 7| 5| 4| 3| 3| 2| 2
0.90 [172| 77| 57| 44| 35| 29| 24| 20| 18| 15| 14| 12| 8| 6| 5| 4| 3| 3| 2
Chart E. 3X 4 design at alpha=0.05
Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00
0.80 |[114| 52| 38| 30| 24| 19| 16| 14| 12f 11| 9| 9| 6| 4| 4| 3| 3| 2| 2
0.90 |[146| o6| 49| 38| 30| 25| 21| 18| 15| 13| 12| 11 7 5 4 3 3 2 2
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Table 9.27. Sample size table for between subjects analysis; p=0.01

Chart A. 2 X 2 design at alpha=0.01

Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 [290] 130 96| 74| 59| 48| 40| 34| 29| 25| 22| 20| 13 9 7 6 5 4 3
0.90 |[369| 165| 122| 94| 74| 61| 50| 43| 37 32| 28| 25| 17| 11| 8| 7| 6| 4| 4
Chart B. 2X 3 design at alpha=0.01
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 231| 104| 77| 59| 47| 38| 32| 27| 23| 21| 18| 16| 11{ 8 o6 5| 4| 3| 3
0.90 |[290| 130| 96| 74| 59| 48| 40| 34| 29| 25| 22| 20| 13| 9| 7| 6| 5| 4 3
Chart C. 2 X4 design at alpha=0.01
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[194| 87| 64| 50| 40| 32 27| 23| 20 17| 15| 14| 9| 7| 5| 4| 4| 3| 3
0.90 | 241| 108| 80| 62| 49| 40| 33| 28| 24| 21| 19| 17| 11{ 8| o6 5| 4| 3| 3
Chart D. 3 X3 design at alpha=0.01
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 187| 84| 62| 48| 38| 31| 26| 22| 19| 17| 15| 13| 9 6| 5| 4| 4| 3| 3
0.90 |[231| 104| 77| 59| 47| 38| 32| 27| 23| 20| 18| 16| 11| 8 6| 5| 4| 3| 3
Chart E. 3 X4 design at alpha=0.01
Power Hypothesized ES
0.20/0.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00
0.80 |[158| 71| 53| 41| 33| 27| 22| 19| 16| 14| 13| 11| 8| 6| 4| 4| 3| 3| 2
0.90 | 194| 87| 65| 50| 40| 32| 27| 23| 20| 17| 15| 14 9 7 5 4 4 3 3
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Table 9.28. Sample size table for between subjects analysis; p=0.10

CHAPTER 9 TABLES

Chart A. 2X 2 design at alpha=0.10
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |[150| 68| 50| 39| 31| 25| 21| 18| 15 14| 12| 11| 7[ 5| 4| 3| 3| 2| 2
0.90 [209| 94| 69| 53| 42| 35| 29| 24| 21| 18| 16| 14| 10[ 7| 5| 4| 4| 3| 2
Chart B. 2X 3 design at alpha=0.10
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 127| 57| 43| 33| 26| 22| 18| 15| 13| 12| 10| 9| 6| 5 4| 3| 3| 2| 2
0.90 |[173| 78| 57| 44| 35| 27| 24| 20| 18| 15| 14| 12| 8| 6| 4| 4| 3| 3| 2
Chart C. 2 X 4 design at alpha=0.10
Power Hypothesized ES
0.20/0.30{0.35] 0.40(0.45(0.50|0.55]|0.60(0.65|0.70{0.75[0.80(1.00| 1.25|1.50| 1.75| 2.00(2.50| 3.00
0.80 |[110| 50| 37| 28| 23| 19| 16| 13| 12f 10| 9| 8| 6| 4| 3| 3| 3| 2| 2
0.90 | 148| 66| 49| 38| 30| 25| 21| 18| 15| 13| 12| 11| 7| 5| 4| 3| 3| 2| 2
Chart D. 3 X 3 design at alpha=0.10
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 108| 49| 36| 28| 22| 18| 15| 13| 11| 10| 9| 8| o 4 3| 3| 3| 2 2
0.90 |144| 65| 48| 37| 30| 24| 20| 17| 15[ 13| 12| 10{ 7[ 5| 4| 3| 3| 2| 2
Chart E. 3X 4 design at alpha=0.10
Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00
0.80 93| 42| 31| 24| 20| 16| 14| 12| 10| 9| 8| 7| 5| 4 3| 3| 2| 2 2
0.90 |[123| 56| 41| 32 25| 21| 17| 15| 13| 11| 10 9 6 5 4 3 3 2 2
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Table 9.29. Sample size table for ANCOVA analysis; r=0.40

Chart A. 2 X 2 design at alpha=10.05

Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[162| 73| 54| 42| 34| 27| 23| 20| 17| 15| 13| 12 8 6 5 4 3 3 3
0.90 |[218| 98| 72| 56| 44| 36| 30| 26| 22{ 19| 17| 15| 10| 7| 6| 5| 4| 3| 3
Chart B. 2 X 3 design at alpha=0.05
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 135| 61| 45| 35| 28| 23| 19| 16| 14| 13| 11| 10| 7{ 5| 4| 3| 3| 3| 2
0.90 |[177| 79| 59| 45| 36| 30| 25| 21| 18| 16| 14| 13| 9| 6| 5| 4| 4| 3| 3
Chart C. 2X 4 design at alpha=10.05
Power Hypothesized ES
0.20/0.30{0.35|0.40{0.45[0.50|0.55|0.60|0.65|0.70{0.75[0.80{1.00{1.25| 1.50(1.75| 2.00{2.50 | 3.00
0.80 | 115| 52| 39| 30| 24| 20 17| 14| 12{ 11| 10| 9| 6| 5| 4| 3| 3| 2| 2
0.90 | 149| 67| 50| 39| 31| 25| 21| 18| 16| 14| 12| 11| 8| 5| 4| 4| 3| 3| 2
Chart D. 3 X 3 design at alpha=0.05
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 [ 112) 51f 38| 29| 23| 19| 16| 14| 12| 11 9 9 6 4 4 3 3 2 2
0.90 |145| 65| 48| 37| 30| 24| 21| 17| 15| 13| 12| 11| 7| 5| 4| 4| 3| 3| 2
Chart E. 3 X4 design at alpha=0.05
Power Hypothesized ES
0.20/0.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00
0.80 96| 44| 32| 25| 20 17| 14| 12{ 11| 9 8| 7| 5| 4| 3| 3| 3| 2| 2
0.90 |[123| 56| 41| 32| 26| 21| 18| 15| 13| 11| 10 9 6 5 4 3 3 2 2
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Table 9.30. Sample size table for ANCOVA analysis; r=0.60

Chart A. 2 X 2 design at alpha=0.05

Power Hypothesized ES

0.2010.30{0.35|0.40{0.45|0.50|0.55]0.60{0.65]|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 | 124| 56| 42| 32 26| 21| 18| 15| 13| 12| 10| 9| 7
0.90 |[166| 75| 55| 43| 34| 28| 24| 20 17| 15| 13| 12| 8] 6| 5 4 4 31 3

U1
i~
>
>
s
8]

Chart B. 2 X 3 design at alpha=0.05

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.801.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 |[103| 47| 35| 27{ 22| 18| 15| 13| 11| 10| 9| 8| 6| 4| 4| 3 3 2
0.90 |[135| 61| 45| 35| 28| 23| 19| 17| 14| 13| 11| 10| 7| 5 4] 4 3 31 2

\S)

Chart C. 2 X4 design at alpha=0.05

Power Hypothesized ES

0.2010.30(0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 88| 40| 30 23| 19| 15| 13| 11| 10| 9 8 71 5 4 3 3 3 21 2
0.90 | 114 52| 38| 30 24| 20| 17| 14| 12| 11| 10| 9| 6| 5 4 3 3 2 2

Chart D. 3 X 3 design at alpha=0.05

Power Hypothesized ES

0.2010.30{0.35|0.40{0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 86| 39| 29| 23| 18] 15| 13| 11| 10 8 8 71 5 4 3 3 31 21 2
0.90 [ 111 50( 37| 29 23| 19| 16| 14| 12| 11 9 8| o6 4 4| 3 3 2 2

Chart E. 3 X4 design at alpha=0.05

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 74| 34| 25 20| 16| 13| 11| 10 8 7 7 6 4 3 3 3 2 2 2
0.90 94| 43| 32| 25| 20| 16| 14| 12 10 9 8 7 5 4 3 3 3 2 2
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Table 9.31. Sample size table for ANCOVA; p=0.01, r=0.40

Chart A. 2X2 ANCOVA at alpha=0.01, r=10.40

Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[244| 110 81| 63| 50| 41| 34| 29| 25| 22| 19| 17| 12 8 6 5 5 4 3
0.90 |311]| 139 103| 79| 63| 51| 43| 36| 31| 27| 24| 21| 14| 10| 8| 6| 5| 4| 4
Chart B. 2X3 ANCOVA at alpha=0.01, r=0.40
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 195 88| 65| 50| 40| 33| 27| 23| 20| 18| 16| 14| 10{ 7| 5| 5| 4| 3| 3
0.90 |244| 110| 81| 62| 50| 41| 34| 29| 25| 22| 19| 17| 12| 8| 6| 5| 4| 4| 3
Chart C. 2X 4 ANCOVA at alpha=0.01, r=0.40
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 |[163| 73| 54| 42| 34| 28| 23| 20| 17 15| 13| 12| 8| 6| 5| 4| 4| 3| 3
0.90 |203| 91| 67| 52| 42| 34| 28| 24| 21| 18| 16| 14| 10{ 7| 5| 5| 4| 3| 3
Chart D. 3X3 ANCOVA at alpha=0.01, r=0.40
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 157| 71| 53| 41| 33| 27| 22| 19| 17| 14| 13| 12| 8| o6 5 4| 3| 3| 3
0.90 |[195| 87| 65| 50| 40| 33| 27| 23| 20| 18| 16| 14| 10| 7| 5| 4| 4| 3| 3
Chart E. 3X 4 ANCOVA at alpha=0.01, r=0.40
Power Hypothesized ES
0.20/0.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00
0.80 |[133| 60| 45| 35| 28| 23| 19| 16| 14| 12| 11| 10{ 7| 5| 4| 3| 3| 3| 2
0.90 | 164| 74| 55| 42| 34| 28| 23| 20| 17| 15| 13| 12 8 6 5 4 3 3 3
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Chart A. 2X2 ANCOVA at alpha=0.01, r=0.60
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |[186| 84| 62| 48| 39| 32| 26| 23| 20| 17| 15| 14| 10 7 5 5 4 3 3
0.90 |[237| 107 79| 61| 49| 40| 33| 28| 24| 21| 19| 17{ 12 8| 6| 5| 5| 4| 3
Chart B. 2X3 ANCOVA at alpha=0.01, r=0.60
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 | 149| 67| 50| 39| 31| 25| 21| 18| 16| 14| 12| 11| 8| 6| 5| 4| 3| 3| 3
0.90 |[186| 84| 62| 48| 38| 31| 26| 22| 19( 17| 15| 13| 9| 7| 5| 4| 4| 3| 3
Chart C. 2X4 ANCOVA at alpha=0.01, r=0.60
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45]0.50]|0.55[0.60{0.65|0.70{0.75]|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |[125| 56| 42| 33| 26| 21| 18| 15| 13| 12| 11| 10{ 7| 5| 4| 4| 3| 3| 2
0.90 | 155 70| 52| 40| 32| 26| 22| 19| 16| 14| 13| 11| 8| 6| 5| 4| 3| 3| 3
Chart D. 3 X3 ANCOVA at alpha=0.01, r=0.60
Power Hypothesized ES
0.20{0.30{0.35|0.40(0.45[0.50|0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50| 1.75| 2.00(2.50{ 3.00
0.80 |[120| 54| 40 31| 25 21| 17| 15| 13| 11| 10 9 7 5 4 3 3 3 2
0.90 |[149| 67| 50| 39| 31| 25| 21| 18| 16| 14| 12| 11| 8| 6| 4| 4| 3| 3| 3
Chart E. 3 X4 ANCOVA at alpha=0.01, r=0.60
Power Hypothesized ES
0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00
0.80 |[102| 46| 34| 27| 22| 18| 15| 13| 11{ 10| 9| 8| 6| 4| 4| 3| 3| 2| 2
0.90 |[125| 57| 42| 33| 26| 21| 18| 15| 13| 12| 10 9 7 5 4 3 3 3 2

293




INTERACTION EFFECTS FOR ANALYSIS OF VARIANCE

Table 9.33. Sample size table for ANCOVA; p=10.10, r=0.40

Chart A. 2X2 ANCOVA at alpha=0.10, r=0.40

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00

0.80 |[127| 57| 42| 33| 26| 22| 18| 16| 13| 12| 11 91 7 5/ 4| 3 3 31 2
0.90 |[176| 79| 59| 45| 36| 30 25| 21| 18| 16| 14| 13 9 6 5 4 3 31 3

Chart B. 2 X3 ANCOVA at alpha=0.10, r=0.40

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00

\S)

0.80 |[107| 49| 36| 28| 22| 18| 16| 13| 12| 10| 9 8 6| 4| 4 3 3 2
0.90 |[146| o6| 49| 38| 30| 25| 21| 18| 15| 13| 12| 11 7 5/ 4| 4 3 31 2

Chart C. 2X4 ANCOVA at alpha=0.10, r=0.40

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.700.75|0.80| 1.00| 1.25| 1.50( 1.75(2.00| 2.50| 3.00

0.80 93| 42| 31| 24| 20| 16| 14| 12| 10| 9 8| 7 5| 4
0.90 [ 124 56| 42| 32| 26| 21| 18| 15| 13| 12| 10| 9 6 5/ 4| 3 3 21 2

O
O
&
D
A8}

Chart D. 3 X3 ANCOVA at alpha=0.10, r=10.40

Power Hypothesized ES

0.2010.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00

0.80 91 41| 31| 24| 19| 16| 13| 11| 10{ 9 8| 7 5| 4
0.90 [ 121 55| 41| 31| 25| 21| 17| 15| 13| 11| 10| 9 6 5/ 4| 3 3 2 2

)
)
)
)
\S)

Chart E. 3 X4 ANCOVA at alpha=0.10, r=0.40

Power Hypothesized ES

0.20/0.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00

0.80 791 36| 27| 21| 17| 14| 12| 10 9 8 7 6 5 3 3 3 2 2 2
0.90 |[104| 47| 35| 27| 22| 18| 15| 13| 11| 10 9 8 6 4 3 3 3 2 2
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Table 9.34. Sample size table for ANCOVA; p=10.10, r=0.60

Chart A. 2X2 ANCOVA at alpha=0.10, r=0.60

Power Hypothesized ES

0.2010.30{0.35|0.40{0.45|0.50|0.55]0.60{0.65]|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 97| 44| 33| 25| 20| 17| 14| 12| 11 9 8 8| 5 4 3 3 31 21 2
0.90 |[135| 61| 45| 35| 28| 23| 23| 19| 16| 14| 12| 11| 10| 7 5 4 3 3 2

Chart B. 2X3 ANCOVA at alpha=0.10, r=0.60

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.801.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

%]
\S)

0.80 82| 37| 28| 22| 17| 14| 12| 11 9 8 71 7| 5 4 3 3 3
0.90 [111| 50 37| 29 23| 19| 16| 14| 12| 11 9 8| o6 4 4| 3 31 21 2

Chart C. 2X4 ANCOVA at alpha=0.10, r=0.60

Power Hypothesized ES

0.2010.30(0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 71| 32| 24| 19| 15| 13| 11 9 8 7| 6| 6| 4 3 3 3 21 21 2
0.90 95| 43| 32| 25| 20| 17| 14| 12| 10| 9 8 71 5 4 3 3 3 2] 2

Chart D. 3 X3 ANCOVA at alpha=0.10, r=10.60

Power Hypothesized ES

0.2010.30{0.35|0.40{0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 70( 32| 24| 19| 15| 12| 11 9 8 7 6 6 4 3 3 2 2 2 2
0.90 93| 42| 31| 24| 20| 16| 14| 12| 10 9 8 7 5 4 3 3 3 2 2

Chart E. 3 X4 ANCOVA at alpha=0.10, r=0.60

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 60| 28| 21| 16| 13| 11 9 8 7 6 6 5 4 3 3 2 2 2 2
0.90 791 36| 27| 21| 17| 14| 12| 10 9 8 7 6 5 3 3 3 2 2 2
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Table 9.35. Sample size table for repeated measures interaction ANOVA; mixed design, r=10.40

Chart A. 2 X2 design at alpha=0.05, r=0.40

Power Hypothesized ES
0.20/0.30{0.35|0.40{0.45{0.50|0.55|0.60|0.65|0.70{0.75[0.80{ 1.00{1.25| 1.50(1.75| 2.00{2.50 | 3.00
0.80 |[117| 53| 40| 31| 25| 20| 17| 15| 13| 11| 10 9 7 5 4 4 3 3 3
0.90 | 156| 71| 52| 41| 32| 27| 22| 19| 17| 15| 13| 12| 8| 6| 5 4| 4| 3| 3
Chart B. 2 X3 design at alpha=0.05, r=0.40
Power Hypothesized ES
0.20/0.30{0.35|0.40{0.45[0.50|0.55|0.60|0.65|0.70{0.75[0.80{ 1.00{1.25| 1.50| 1.75| 2.00{2.50 | 3.00
0.80 97| 44| 33| 25| 21| 17| 14| 12{ 11| 10| 9 8| 6| 4| 4| 3| 3| 2| 2
0.90 | 127| 57| 43| 33| 26| 22| 18| 16| 14| 12| 11| 10| 7{ 5| 4| 3| 3| 3| 2
Chart C. 2 X 4 design at alpha=0.05, r=0.40
Power Hypothesized ES
0.20/0.30{0.35|0.40{0.45[0.50|0.55|0.60|0.65|0.70{0.75[0.80{1.00{1.25| 1.50(1.75| 2.00{2.50 | 3.00
0.80 83| 38| 28| 22| 18| 15| 12| 11| 9 8 7| 7| 5| 4| 3| 3| 3| 2| 2
0.90 | 107| 49| 36| 28| 23| 19| 16| 13| 12| 10| 9| 8| 6 4| 4| 3| 3| 2| 2
Chart D. 3 X 3 design at alpha =0.05, r=0.40
Power Hypothesized ES
0.20/0.30{0.35|0.40{0.45{0.50|0.55|0.60|0.65|0.70{0.75[0.80[ 1.00{1.25| 1.50|1.75| 2.00{2.50 | 3.00
0.80 81 37| 27| 21| 17| 14| 12| 11{ 9 8 7| 7| 5| 4| 3| 3| 3| 2| 2
0.90 | 104| 47| 35| 27| 22| 18| 15| 13| 11| 10| 9| 8| 6 4| 4 3| 3| 2 2
Chart E. 3X 4 design at alpha=0.05, r=0.40
Power Hypothesized ES
0.20(0.30]0.35(0.40(0.45(0.50{0.55[0.60]0.65|0.70{0.75|0.80{ 1.00{1.25]| 1.50{ 1.75{ 2.00|2.50{3.00
0.80 69 32| 24| 19| 15| 12| 11| 9 8| 7| o6 o 4| 3| 3| 3| 2 2| 2
0.90 89| 40| 30| 23| 19| 16| 13| 11| 10 9 8 7 5 4 3 3 3 2 2
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Table 9.36. Sample size table for repeated measures interaction ANOVA; mixed design, r=0.60

Chart A. 2 X2 design at alpha=0.05, r=0.60

Power Hypothesized ES

0.2010.30{0.35|0.40{0.45|0.50|0.55]0.60{0.65]|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 791 36| 27| 21| 17| 14| 12| 11 9 8 8 7| 5 4 4| 3 3 31 2
0.90 |[105| 48| 36| 28| 22| 18| 16| 13| 12| 10| 9| 8| 6| 5 41 4 3 31 3

Chart B. 2 X3 design at alpha=0.05, r=0.60

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.801.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 65| 30| 22| 18| 14| 12| 10| 9 8 7| 6| o6 4 3 3 3 3
0.90 85| 39| 29| 23| 18| 15| 13| 11| 10| 9 8 7| 5 4 3 3 31 21 2

%]
\S)

Chart C. 2X 4 design at alpha =0.05, r=0.60

Power Hypothesized ES

0.2010.30(0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 56| 26| 19| 15| 12| 10| 9 8 7| 6| 6 5 4 3 3 2 21 21 2
0.90 72| 33| 25 19| 16| 13| 11 9 8 7| 7| 6| 5 4 3 3 21 21 2

Chart D. 3 X 3 design at alpha=0.05, r=0.60

Power Hypothesized ES

0.2010.30{0.35|0.40{0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 54 25| 19| 15| 12| 10 9 8 7 6 6 5 4 3 3 2 2 2 2
0.90 70| 32| 24| 19| 15| 13| 11 9 8 7 7 6 4 4 3 3 2 2 2

Chart E. 3 X4 design at alpha=0.05, r=0.60

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 47| 22| 16| 13| 11 9 8 7 6 5 5 4 3 3 2 2 2 2 2
0.90 60| 27| 21| 16| 13| 11 9 8 7 6 6 5 4 3 3 2 2 2 2
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Table 9.37. Sample size table for repeated measures interaction ANOVA; mixed design, r=10.40

Chart A. 2 X2 design at alpha=0.01, r=0.40

Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 [ 176 80| 59| 46| 37| 30| 26| 22| 19| 17| 15| 14| 10 7 6 5 4 4 3
0.90 |[223| 101| 75| 58| 46| 38| 32| 27| 24 21| 18| 16| 12| 8| 7| 6| 5| 4| 4
Chart B. 2 X3 design at alpha=0.01, r=0.40
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00| 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 140| 63| 47| 37| 29| 24| 20| 17| 15| 13| 12| 11| 8| 6| 5 4| 4| 3| 3
0.90 |[175| 79| 59| 45| 36| 30| 25| 21| 19| 16| 14| 13| 9| 7| 5| 4| 4| 3| 3
Chart C. 2 X 4 design at alpha=0.01, r=0.40
Power Hypothesized ES
0.20/0.30{0.35|0.40{0.45[0.50|0.55|0.60|0.65|0.70{0.75[0.80{1.00{1.25| 1.50(1.75| 2.00{2.50 | 3.00
0.80 |117| 53| 40| 31| 25 20 17| 15| 13| 11| 10| 9| 7| 5| 4| 3| 3| 3| 2
0.90 | 146| 66| 49| 38| 30| 25| 21| 18| 16| 14| 12| 11| 8| 6| 5 4| 3| 3| 3
Chart D. 3 X 3 design at alpha=0.01, r=0.40
Power Hypothesized ES
0.20{0.30{0.35[0.40{0.45]|0.50| 0.55[0.60{0.65|0.70{0.75|0.80(1.00{ 1.25| 1.50(1.75| 2.00{2.50| 3.00
0.80 | 113| 51| 38| 30| 24| 20| 17| 14| 13| 11| 10| 9| 7{ 5| 4| 4| 3| 3| 3
0.90 |140| 63| 47| 36| 29| 24| 20| 17| 15| 13| 12| 11| 8| 6| 5| 4| 3| 3| 3
Chart E. 3X 4 design at alpha=0.01, r=0.40
Power Hypothesized ES
0.20/0.30{0.35{0.40|0.45|0.50|0.55]0.60]0.65|0.70|0.75|0.80| 1.00| 1.25| 1.50(1.75(2.00|2.50| 3.00
0.80 96| 44| 33| 25| 20| 17| 14| 12 11| 10| 9| 8| o 4| 4| 3| 3| 2| 2
0.90 |[118| 53| 40| 31| 25| 20 17 15| 13| 11| 10 9 6 5 4 3 3 3 2
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Table 9.38. Sample size table for repeated measures interaction ANOVA; mixed design, r=0.60

Chart A. 2 X2 design at alpha=0.01, r=0.60

Power Hypothesized ES

0.2010.30{0.35|0.40{0.45|0.50|0.55]0.60{0.65]|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 [ 118 54| 40| 32| 25| 21| 18| 16| 14| 12| 11| 10| 7| 6| 5 4 4
0.90 [150| 68| 51| 39| 32| 26| 22| 19| 17| 15| 13| 12| 9| 7 5 5 41 4| 3

|3
(S

Chart B. 2 X3 design at alpha=0.01, r=10.60

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.801.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 94| 43| 32| 25| 20| 17| 14| 12| 11| 10 9| 8| 6| 5 4 3 3 3l 3
0.90 |[117| 53| 40| 31| 25| 21| 17| 15| 13| 12| 10| 9| 7| 5 4] 4 3 3 3

Chart C. 2X 4 design at alpha=0.01, r=0.60

Power Hypothesized ES

0.2010.30(0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 791 36| 27| 21| 17| 14| 12| 10| 9 8 71 7| 5 4 3 3 3 21 2
0.90 98| 44| 33| 26| 21| 17| 15| 13| 11| 10| 9| 8| 6| 4| 4| 3 3 3l 2

Chart D. 3 X 3 design at alpha=0.01, r=0.60

Power Hypothesized ES

0.2010.30{0.35|0.40{0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 76| 35| 26| 21| 17| 14| 12| 10| 9 8 71 7| 5 4 3 3 3l 21 2
0.90 94| 43| 32| 25| 20| 17| 14| 12| 11| 10| 9| 8| 6| 4| 4| 3 3 3 2

Chart E. 3 X4 design at alpha=0.01, r=0.60

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 64| 30| 22| 18| 14| 12| 10| 9 8 7| 6| o6 4 3 3 3 21 21 2
0.90 791 36| 27| 21| 17| 14| 12| 10| 9 8 7| 7| 5 4 3 3 3l 21 2
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Table 9.39. Sample size table for repeated measures interaction ANOVA; mixed design, r=10.40

Chart A. 2 X2 design at alpha=0.10, r=0.40

Power Hypothesized ES
0.20/0.30{0.35|0.40{0.45{0.50|0.55|0.60|0.65|0.70{0.75[0.80{ 1.00{1.25| 1.50(1.75| 2.00{2.50 | 3.00
0.80 91| 41| 31| 24| 19| 16| 14| 12| 10 9 8 7 5 4 3 3 3 3 2
0.90 | 126| 57| 42| 33| 26| 22| 18| 16| 14| 12| 11| 10| 7{ 5| 4| 4| 3| 3| 2
Chart B. 2 X3 design at alpha=0.10, r=0.40
Power Hypothesized ES
0.20/0.30{0.35|0.40{0.45[0.50|0.55|0.60|0.65|0.70{0.75[0.80{ 1.00{1.25| 1.50| 1.75| 2.00{2.50 | 3.00
0.80 77\ 35| 26| 20| 17| 14| 12| 10{ 9| 8| 7| 6| 5| 4| 3| 3| 2| 2| 2
0.90 | 105| 47| 35| 27| 22| 18| 15| 13| 11| 10| 9| 8| 6 4 4 3| 3| 2| 2
Chart C. 2 X 4 design at alpha=0.10, r=0.40
Power Hypothesized ES
0.20/0.30{0.35|0.40{0.45[0.50|0.55|0.60|0.65|0.70{0.75[0.80{1.00{1.25| 1.50(1.75| 2.00{2.50 | 3.00
0.80 67| 30| 23| 18| 14| 12| 10| 9 8| 7| o6 o 4 3| 3| 2| 2 2 2
0.90 89| 41| 30| 23| 19| 16| 13| 11| 10{ 9 8| 7| 5| 4| 3| 3| 3| 2| 2
Chart D. 3 X 3 design at alpha=0.10, r=0.40
Power Hypothesized ES
0.20/0.30{0.35|0.40{0.45{0.50|0.55|0.60|0.65|0.70{0.75[0.80[ 1.00{1.25| 1.50|1.75| 2.00{2.50 | 3.00
0.80 65 30| 22| 18| 14| 12| 10| 9 8| 7| o o 4 3| 3| 3| 2 2| 2
0.90 87| 40| 30| 23| 18| 15| 13| 11{ 10 9 8| 7| 5| 4| 3| 3| 3| 2| 2
Chart E. 3X 4 design at alpha=0.10, r=0.40
Power Hypothesized ES
0.20(0.30]0.35(0.40(0.45(0.50{0.55[0.60]0.65|0.70{0.75|0.80{ 1.00{1.25]| 1.50{ 1.75{ 2.00|2.50{3.00
0.80 57\ 26| 20| 15| 12| 10| 9| 8| 7| o6 5/ 5| 4| 3| 3| 2| 2 2 2
0.90 75| 34| 25| 20| 16| 13| 11| 10 8 7 7 6 4 3 3 3 2 2 2
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Table 9.40. Sample size table for repeated measures interaction ANOVA; mixed design, r=0.60

Chart A. 2 X2 design at alpha=0.10, r=0.60

Power Hypothesized ES

0.2010.30{0.35|0.40{0.45|0.50|0.55]0.60{0.65]|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 61| 28| 21| 17| 14| 11| 10| 8| 7 7| 6| 6| 4
0.90 85| 39| 29| 23| 18| 15| 13| 11| 10| 9 8 71 5 4 3 3 3 2 2

[S5)
S5
S5
|3
D
\S}

Chart B. 2 X3 design at alpha=0.10, r=10.60

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.801.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 52| 24| 18| 14| 12| 10| 8| 7 6] 6| 5 5 4 3 3 2 2
0.90 70| 32| 24| 19| 15| 13| 11 9 8 7| 7| 6| 4 3 3 3 21 21 2

%]
\S)

Chart C. 2X 4 design at alpha=0.10, r=0.60

Power Hypothesized ES

0.2010.30(0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 45| 21| 16| 12| 10| 8| 7 6 6 5 5 41 31 3 21 2 21 21 2
0.90 60| 28| 21| 16| 13| 11 9 8 7| 6 6/ 5 41 3 3 2 22 2

Chart D. 3 X 3 design at alpha=0.10, r=0.60

Power Hypothesized ES

0.2010.30{0.35|0.40{0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 44| 21| 16| 12f 101 8| 7 6 6 5 5 41 3] 3 2 2 20 21 2
0.90 59| 27| 20 16| 13| 11 9 8 7| 6/ 6 5 4 3 3 2 21 2 2

Chart E. 3 X4 design at alpha=0.10, r=0.60

Power Hypothesized ES

0.2010.30{0.35|0.40|0.45|0.50|0.55]0.60{0.65|0.70|0.75|0.80|1.00| 1.25| 1.50| 1.75]| 2.00{ 2.50| 3.00

0.80 38 18| 14| 11 9 7 6 6 5 5 4 4 3 3 2 2 2 2 2
0.90 50 23| 17| 14| 11 9 8 7 6 6 5 5 4 3 2 2 2 2 2
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10 Power analysis for more complex
designs

In Chapters 4 through 9 we have presented power and sample size
tables that can be addressed directly with no preliminary adjustments to the
effect size or N. Unfortunately the complexity of some research designs intro-
duces scenarios in which this convenience is not always feasible, hence in this
chapter we present a number of tables and algorithms by which both the ES
and N can be adjusted to permit the reader to adapt the tables presented in
previous chapters. Unfortunately, our guidelines in this chapter will not be
quite as explicit as those provided to this point — because the techniques for
modeling the power of complex designs are not well developed and there is
little consensus regarding the appropriateness for those that do exist. Our
advice for employing the modeling procedures presented in this chapter,
therefore, is to approach the task from the perspective that any accruing results
will truly be estimates (as all power/sample size estimates are). It s also a good
practice, when communicating these results, to present both a conservative
estimate (based upon the procedures employing relatively fewer assumptions
presented in previous chapters) along with these modeled estimates.

To this point, then, we have provided tables applicable to designs
involving a continuous dependent variable coupled with (a) a single group-
ing variable involving from two to five groups (with and without repeated
measures), (b) the interaction between two grouping variables when no
more than one of these variables involves a repeated measure, and (c) the
addition of one or more covariates to all of these designs which do not
involve repeated measures. Common effects that are not applicable to these
tables include those experiments that employ (a) more than two grouping
variables, (b) two or more repeated measures, and (c) the addition of one or
more covariates to a mixed design.

Main effects in two-factor designs

In Chapter 9 we considered the interaction term produced by a two-way
ANOVA/ANCOVA. At first glance it might appear that the power of the
two main effects could be computed using either the one-way ANOVA/
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ANCOVA or t-test tables already presented, but unfortunately the N/group
must be adjusted prior to doing this based upon the differing degrees of
freedom associated with a factorial as opposed to a one-way ANOVA.

As discussed previously, the most common scenario for this type of
design (at least from a between subject perspective) involves a treatment
factor combined with a subject characteristic (or attribute) for which the
treatment is hypothesized to be differentially effective. (Alternatively the
second independent variable can be employed simply because it is known to
be related to the dependent variable, and hence is included as a post hoc
blocking variable for its potential to increase statistical power.) It is also quite
possible, however, for both grouping variables to represent different genres
of experimental interventions — an example of which will be provided below.

One way to calculate the N/group for, say factor A in a two-factor
experiment, is simply to multiply the N/cell used to calculate the power of
the interaction in Chapter 9 by the number of levels contained in the second
factor (B). Thus, in an A(2) X B(4) design employing 10 subjects per cell, the
N/group for the main effect for factor A would be 10X4=40 and the
N/group for factor B would be 10X 2=20. This strategy does not take into
consideration that the degree of freedom for the error term is slightly difter-
ent for a factorial design as opposed to a one-way ANOVA, since the degrees
of freedom for both the second factor and the interaction must be subtracted
therefrom. While this will not prove to be a major factor in designs employ-
ing moderate to large numbers of subjects, it can prove substantive for smaller
values of N, especially those with more than two groups per factor.

A better approximation, therefore, is provided by the following
formula:

Formula 10.1. Calculating the N/group for a factorial
design

df,

CIror + 1
df, + 1)

numerator

N/group= (

This in turn results in the following calculations for a 2 X4 design employ-
ing 10 subjects per cell:

df, = # cellsX N/cell) — # cells= (8 X 10) —8=72,
messio = (# groups — 1) or 1 df for factor A and 3 df for factor B,

N/group A=[72/(1+1)]+1=37 and N/group B=[72/(3+1)] +
1=19.

Note that these N values are quite close to the values that would be gener-
ated by simply multiplying the N/cell by 2 and 4 respectively as described
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above. This procedure is simply one mechanism by which the additional
degrees of freedom associated with the other main effect (one in the case of
B and three in the case of A) and interaction (three degrees of freedom) may
be taken into account.

For convenience we have provided Table 10.1 involving a number
of common N values and factorial designs. To use this table, the N/group
is located at the intersection of the N/cell row corresponding to the design
(e.g., 2X2, 2X3) and the factor (i.e., A vs. B). It should be noted that the
results produced by this strategy (as well as most of the strategies proposed
in this chapter) will not be exact, since the one-way ANOVA/ANCOVA
tables presented in the previous chapters were set up using the N/group and
degree of freedom for error specifically based upon a single factor, which in
the case of factor A would be 78 and for factor B would be 76. The lack of
precision resulting from this fact is trivial, however (except for the very
smallest of trials), and largely avoids the potentially larger errors involved
noted by Bradley ef al. (1996).

Example. Suppose an animal study is proposed to provide a pre-
liminary test of an experimental weight loss drug hypothesized to be espe-
cially effective when coupled with high intensity exercise. Although there
would be several reasonable design options, let us assume that the investig-
ator decided to employ two grouping variables: (a) animals that received the
drug vs. those that did not and (b) animals that received high intensity exer-
cise (i.e., were required to run for extended periods of time on a treadmill
to avoid a noxious stimulus) vs. those required to run only a few minutes
per day vs. those who were not required to exercise at all. These conditions
thus produce a perfectly crossed 2 (drug vs. no drug) X3 (high intensity
exercise vs. low intensity exercise vs. no exercise) design that would test two
main effect and one interaction hypotheses:

(1)  Main effect A: Animals that receive drug A will lose more weight
than animals that do not.

(2)  Main effect B: Animals that receive high intensity exercise will lose
more weight than animals that receive either low intensity or no
exercise.

(3) Interaction AB: Animals that receive drug A and who receive high
intensity exercise will lose more weight than animals who receive
the drug but do not receive high intensity exercise or who do not
receive the drug at all.

Converting grams of weight lost to standardized means with the weakest
condition set at 0.0 allows us to hypothesize the following results:
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Chart 10.1. Hypothetical results for a drug trial conducted under different exercise
conditions

High intensity exercise Low intensity exercise No exercise
Drug A 1.2 0.6 0.6
No drug 0.2 0.0 0.0

Before we proceed, it should be noted that it is a relatively rare study
employing a factorial design in which all of the main effects and interac-
tions are of scientific interest. Of the three above hypotheses, for example,
the drug main effect would probably be of some interest, although its inter-
pretation would depend upon the characteristics of any drug-by-exercise
interaction that occurred. (If no such interaction existed, then the drug
main effect would be of primary interest.) The exercise main effect, on the
other hand, would probably be of little scientific interest since it does not
test the effects of exercise upon weight loss in rats given that half of the
entire sample also received a drug designed to cause weight loss. (For a com-
pletely uncontaminated test of the hypothesis that these three levels of exer-
cise would result in weight loss in rats, the investigator would be better
served to examine only the mean differences represented by the second (no
drug) row of Chart 10.1 via a one-way ANOVA employing half of the
overall sample size.)

Thus, in most cases, as discussed in Chapter 9, it would be the inter-
action hypothesis (hence the interaction ES) that would be of primary inter-
est in a study such as this and we have shown how such an interaction can
be computed by either (a) the use of Formula 9.3 in the Technical appen-
dix or (b) collapsing the 2 X3 interaction table represented above into a 2 X
2 table that best reflects the hypothesis or that results in the largest ES.

This is not to say, however, that main effects such as these could not
be of substantive interest as long as they are interpreted properly — which
would be to consider them in the perspective of the interaction. As we have
just mentioned, if there were no interaction between the drug and exercise
factors (1.e., if the interaction ES were truly zero), then the drug main effect
would be of interest. Alternatively, if there were no interaction and no drug
effect, then the exercise main effect would not be contaminated.

Estimating the power of between subject main effects. To estimate
the power of the main effects represented in Chart 10.1, the investigator
would access Template 10.1 and follow the indicated steps. Step 1 asks the
user (a) to select the shell that reflects the design of the study (which in this
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case would be the 2X3 table), (b) to fill in the interior rows and columns
(i.e. A1-A2 X B1-B3) with standardized means that best reflect the hypoth-
esized patterns (based upon preliminary data or previous relevant research
literature), and (c) to calculate each row and column mean based upon aver-
aging the appropriate standardized cell means. (Note, that the process is
identical to the steps in Template 9.1 with the exception of calculating the
column/row means.)

While probably obvious, the grand or total means for each row and
column are computed, which would occur as follows (see Chart 10.2):

(1) The column means, collapsing across the drug factor, would be 0.7
for high intensity exercise (i.e., 1.2+0.2=1.4/2=0.7) and 0.3
(0.6 +0.0=0.6/2=0.3) for both low intensity and no exercise.

(2) The row means, collapsing across exercise level, for drug A vs. no
drug would be 0.8 (1.24+0.6+0.6=2.4/3=0.8) and 0.067
(0.2+0+0=0.2/3=0.067), which can safely be rounded to 0.1.

Chart 10.2. Row and column totals computed for Chart 10. 1

B1 High B2 Low B3 No exercise  Total
intensity exercise intensity exercise
Al Drug A 1.2 0.6 0.6 0.8
A2 No drug 0.2 0.0 0.0 0.067 or 0.1
Total 0.7 0.3 0.3

Step 2 requests that the ES values for two main effects be computed
by simply subtracting the smallest row total from the largest for main effect
A and the smallest column total from its largest counterpart for main effect
B. This would produce a hypothesized ES for the drug main effect of 0.7
and an ES for the exercise main effect of 0.4:

main effect A ES =largest row mean (0.8) —smallest row mean
(0.1)=0.7

main effect B ES =largest row mean (0.7) — smallest row mean

(0.3)=0.4

Step 3 dictates that the ES for the interaction be computed by fol-
lowing the instructions in Template 9.1 in Chapter 9. This involves collaps-
ing the above 2 X 3 table into a 2 X 2 shell (which as discussed above would
mean combining cells B2 and B3) and performing the following computa-
tion:
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Interaction ES = {[(B1-B2/B3) for A1] — [(B1-B2/B3) for
A2]}/2=1(1.2-0.6) — (0.2-0.0)]/2=(0.6-0.2)/2=0.2

At this point, all that is necessary to compute the power for the
interaction is to continue to follow the instructions in Template 9.1. Thus,
assuming that 20 animals per cell were to be employed, the investigator
would access Table 9.2 and find the intersection of the 0.2 ES column and
the N/cell= 20 row, producing a power level of 0.14, obviously not a very
encouraging result.

For the main effects in our example, the tables in Chapter 4 (for the
two-group drug comparison) and Chapter 6 (for the overall three-group
exercise comparison) can be used for power and sample size analyses once
the N/group is adjusted for the fact that this is truly a factorial ANOVA
rather than a one-way analysis. We have provided Table 10.1 for conven-
ience which converts the N/cell available in a two-factor study such as
depicted in Chart 10.1 to the N/group parameter required for a number of
the more common factorial designs (i.e., 2X2, 2X3, 3X3, 2X4, and 3 X
4) for a relatively wide range of N values.

To illustrate, let us begin with factor A, the two-level drug variable
(drug A vs. no drug). To ascertain the N/group to be employed in Table 4.1,
step 4 instructs us that all we need do is locate the intersection of the N/cell
row of 20 and the “2 X 3:A” column in Table 10.1, which yields an N/group
of 58. (The “A” always denotes the first factor in the design, the “B” the
second factor.) The N/group for the exercise factor is correspondingly
found at the intersection of the same row and the “2 X 3:B” column, or 39.

To obtain the power for main effect A, step 6 of Template 10.1 sends
us to the appropriate template in the previous chapter that deals with the
design employed, which is Template 4.1 for the two-group factor that in
turn indicates the power for this main effect is located at the intersection of
the N/group =58 row and the ES=0.70 column of Table 4.1, which pro-
duces an interpolated value of 0.96. For the required sample size to achieve
an 80% chance of obtaining statistical significance, Template 4.1 sends us to
Table 4.2, where the N/group of 34 is located at the intersection of the 0.80
power row and the 0.70 ES column. It is important to remember that this
N/group must be translated back to an N/cell for present purposes, which can be done
by employing ‘Table 10.1 backwards (i.e., by locating the closest value to 34 in the
2X 3:A column and reading the N/cell in the left-most column, which is 12).

Since we already have the N/group for the exercise main effect (39),
it is necessary to return to Chapter 6 to obtain its power, where, once the
pattern of means is specified (high dispersion), the power (0.43) power of
the main effect can be obtained directly from Table 6.2. Should the
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N/group be desired, the template directs us to Table 6.9, yielding a value of
90 for a desired power level of 0.80. Run backwards through Table 10.1,
this in turn yields an approximate N/cell of 45. Should the power available
or sample size requirements for a multiple comparison procedure be desired,
the appropriate steps in the Chapter 6 templates would be followed.

Estimating the power of complex designs employing three or
more factors

From a power analytic perspective, the more complex the design becomes,
the more parameters must be hypothesized and hence the more tenuous the
results of the power analytic process become. One way around this problem
is to simplify the design artificially for power/sample size estimation pur-
poses. This will normally result in a more conservative estimate, but only
slightly so since the adjustments made based upon additional factors, inter-
actions, and variations in covariate—dependent variable estimates do not
exert a great deal of influence thereon. Let us therefore illustrate how this
process can be accomplished for a three-factor design.

Example. A meta-analysis was performed on the relative efficacy
of N-acetylcysteine with respect to reducing the number of severe bron-
chial episodes experienced over a fixed time interval. Two additional vari-
ables (severity of the disease and length of treatment) were identified that
could potentially affect this outcome. Testing all three variables simultane-
ously, therefore, would produce a 2 (drug: N-acetylcyteine vs. placebo) X2
(severity: high vs. low airway obstruction) X2 (length of treatment: one
month vs. two months) between subject design. This model would conse-
quently result in the ability to answer seven questions, the first four being
of potential scientific interest:

(1) Is N-acetylcysteine more effective than placebo irrespective of
length of treatment or severity of the disease (main effect A)?

(2) Is N-acetylcysteine more effective after three months of treatment
than at the end of one month as compared to a placebo (AC inter-
action)?

(3) Is N-acetylcysteine relatively more effective for individuals with
lower severity of airway obstruction than individuals with a high
degree of obstruction (as compared to placebo) (AB interaction)?

(4) Is N-acetylcysteine administered for longer periods of time to
patients with relatively less airway obstruction more effective than
N-acetylcysteine administered for shorter periods of time to
patients with severe airway obstruction (as compared to placebo)
(ABC interaction)?
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Three additional terms are tested, but these would probably not be partic-
ularly interesting:

(5) Do patients with severe airway obstruction experience more bron-
chial episodes than individuals with relatively less severe obstruction
(main effect B)?

(6) Do patients undergoing an extended treatment regimen experience
fewer bronchial episodes than individuals administered a more brief
treatment regimen (main effect C — note that effects such as this are
confounded, since half of the patients receiving each length of
treatment actually receive nothing but a placebo)?

(7) Do patients with relatively greater airway obstruction benefit more
from an extended regimen than individuals with less severe obstruc-
tion (BC interaction — note the same confound exists for this effect
as described in (6) above)?

The first step in estimating the power for these seven effects is, as always, to
hypothesize their ES values. The most direct method of doing this would
be for the investigator to fill in the mean numbers of bronchial episodes
he/she hypothesizes would occur within each of the eight cells represented
by this 2 X2 X2 design. This can be a complicated process which definitely
merits a considerable amount of thought, not to mention knowledge of the
literature. For illustrative purposes, however, let us assume that this process
produced the following results:

Chart 10.3. Number of bronchial episodes for hypothesized three-factor design

C1 1 Month C2 2 Months
Al Drug B1 High obstruction 6 4
B2 Low obstruction 4 2
A2 Placebo B1 High obstruction 8 8
B2 Low obstruction 6 6

What is being hypothesized here, then, is a scenario in which
patients with more severe disease will experience more adverse bronchial
episodes than individuals with less severe disease states. The investigator is
also hypothesizing a rather dramatic effect for N-acetylcysteine in compar-
ison to a placebo, especially given a longer treatment interval.

As was discussed in Chapter 9, the next step in the process is to
compute standardized means for the eight cells and then to convert the
lowest of these means to zero. In this case, since lower dependent variable
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means are the “desired” outcomes, it is helpful to subtract the “weakest”
condition (or the highest standardized cell mean which would be the raw
mean of 8.0 converted to a standardized mean of 6.4 (8.0/1.25)) from all of
the other cells, producing the following results (note that the sign is ignored):

Chart 10.4. Standardized means for the hypothetical 2X 2 X 2 design

C1 1 Month C2 2 Months

Al Drug B1 High obstruction 48—64=1.6 32—-64=32
B2 Low obstruction 32—-64=32 1.6—6.4=438

A2 Placebo B1 High obstruction 6.4—6.4=0.0 6.4—6.4=0.0
B2 Low obstruction 48—64=1.6 48—64=1.6

For ease of interpretation from a power analytic viewpoint, all the effects
except the three-way interaction can now be interpreted by collapsing these
results into two-way tables and the ES values for the main effects and inter-
actions can be computed as previously illustrated. There are three possible
two-factor interactions in a three-way ANOVA/ANCOVA, although in
this case the investigator would probably be primarily interested only in
those involving factor A (drug vs. placebo). It is important, however, that
all of these combinations be considered carefully at the planning phase of a
trial, since one or more may be interesting enough for the investigator to
design his/her study to ensure sufficient power specifically for these effects:

Chart 10.5. The three-factor design (Chart 10.4) collapsed as two-factor designs
Scenario A. The A (drug) X B (severity) interaction collapsed across C (duration
of treatment)

B1 High obstruction ~ B2 Low obstruction  Difference

Al Drug (1.6+3.2)/2=2.4 (3.2+4.8)/2=4.0 4.0-24=16
A2 Placebo (0.0+0.0)/2=0.0 (1.6+1.6)/2=1.6 (1.6—0.00=1.6
Difference 24—-0.0=24 40—-1.6=24 ES=(1.6—1.6)/2=0.0

Scenario B. The A (drug) X C (duration of treatment) interaction collapsed across
B (severity)

C1 1 Month C2 2 Months Difference
Al Drug (1.6+3.2)/2=2.4 (3.2+4.8)/2=4.0 4.0-24)=1.6
A2 Placebo 0.0+1.6)/2=0.8 0.0+1.6)/2=0.8 (0.8—0.8)=0.0
Difference 24—-0.8=1.6 4.0-0.8=3.2 ES=(1.6—0.0)/2=0.8
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Scenario C. The B (severity) X C (duration of treatment) interaction collapsed
across A (drug)

C1 1 Month C2 2 Months Difference

B1 High obstruction  (1.6+0.0)/2=0.8 (3.2+0.0)/2=1.6 (1.6—0.8)=0.8
B2 Low obstruction ~ (3.2+1.6)/2=2.4 (4.8+1.6)/2=32 (3.2—24)=038
Difference 24-08=1.6 32-1.6=16 ES=(0.8—0.8)/2=0.0

A close examination of Chart 10.5 indicates that a relatively dra-
matic drug X treatment duration interaction is being hypothesized here. By
employing Templates 9.1 and 9.2 in the previous chapter, the investigator
will be directed to either Table 9.1 to obtain the power available for testing
this interaction or Table 9.26 (it the desired sample size is required for
power levels of 0.80 or 0.90). It is important to remember, however, that the
values of N/cell in these collapsed tables actually represent twice as many subjects as
did the two-factor power and sample size tables presented in Chapter 9, although of
course the investigator always has the option of deleting a factor should it prove unin-
teresting upon reflection. It is also important to remember that just as it was
necessary to adjust the N/group for main effects in factorial designs based
upon the additional terms employed, strictly speaking it is also important
to adjust the N/cell for a two-factor design based upon the additional
degrees of freedom associated with the extra main effect and three interac-
tions (two two-factor and one three-factor) emanating from the use of
three independent variables, hence the results from the tables in Chapter 9
will not be extremely precise. It is our opinion, however, that we have
achieved a point at which there is an acceptable trade-oft with respect to
precision and the complexities involved in attempting to achieve it. For
those individuals who do desire a greater degree of precision, however,
Formula 10.1 can be used to adjust either the N/cell or the N/group based
upon any number of independent variables and Formula 6.1 in the
Technical appendix can be employed to calculate the exact power emanat-
ing therefrom.

A note on main effects in a three-factor ANOVA. The same logic
holds for assessing the power of main effects in more complex designs. In
our example above, the main effects for duration of treatment and the
experimental drug could be assessed using standardized means in Chart 10.6
(since each factor contained only two groups):
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Chart 10.6. Treatment (drug) and duration of treatment main effects

B1 1 Month B2 2 Months Treatment main effect
Al Drug (1.6 +3.2)/2=2.4 (3.2+4.8)/2=40 (4.0+2.4)/2=3.2
A2 Placebo (0.0+1.6)/2=0.8 (0.0+1.6)/2=0.8 (0.8+0.8)/2=0.8

Duration main effect  (2.4+0.8)/2=1.6 (4.0+0.8)/2=2.4 ESA=32-08=24
ESB=24-1.6=0.8

Should the power of either of these effects be desired, an estimate may be
obtained by accessing Table 4.1 (since there are only two levels per factor).
(The N/group may be adjusted based upon Formula 10.1.)

Thus, if 20 subjects per cell were projected for the above design,
the dfwould be equal to (20 X 8) — 8 (because there are three factors each
possessing two groups) or 152 and the df for each factor would be
2—1=1. Hence, the N/group that could be inputted into Table 4.1 would
be 152/2+1=77, which would produce approximately the same results as
would be the case if the N/cell were simply multiplied by the relevant
number of factors (4) over which the main effect means in Chart 10.5
(Scenario B) were collapsed. (It should be noted, however, that when more
than two groups are represented in the various factors, it becomes more
important to adjust the N/group.)

Three-way interactions. It is rare that it is essential for the power
(or required N/cell) to be required for a three-way interaction. Should this
be necessary, a very gross method of estimating the hypothesized ES for such
an interaction can be obtained by assessing the difference between the ES
values of the two relevant two-way interactions upon which this term is
based. Thus for the ABC interaction implied by question (4) above (“Is N-
acetylcysteine administered for longer periods of time to patients with rel-
atively less airway obstruction more effective than N-acetylcysteine
administered for shorter periods of time to patients with severe airway
obstruction”), the investigator is basically positing that the ES for the two-
way, uncollapsed BC interactions for the drug will be different and in a differ-
ent direction from the two-way, uncollapsed BC interaction for the placebo.
(Said another way, the pattern of means in the top four cells in Chart 10.4
will be different from the pattern of means in the bottom four cells.) Upon
examination, this is obviously not the case, since the ES values for both the
placebo BC interaction and its BC drug counterpart are 0.0. If there were
a substantive difference between the two two-way interaction ES values,
then (a) the actual ES could be computed via Formula 9.3 in the Technical
appendix, (b) the N/group could be computed via Formula 10.1, and (c)
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the power available for the contrast could be obtained from Formula 6.1 in
the Technical appendix.

In general it is worth repeating, however, that the more complex
the design becomes, the more tenuous the power estimates become due to
the number of assumptions required and the approximations we have intro-
duced for convenience sake. With this in mind it is better to conduct a
tenuous power analysis, even if this involves nothing more than computing
an ES and entering it into the table that most closely approximates the model
involved, than to design an experiment without doing so. Our practical
advice here is for a researcher to be most hesitant to design a study primar-
ily designed to test a three-way interaction, especially from a between
subject perspective because of both (a) the low degree of power normally
available for such effects and (b) the difficulties involved in hypothesizing
the exact pattern of means that is likely to accrue from the myriad cells con-
tained therein. If such an experiment is planned, the investigator should be
cognizant of the fact he/she has probably reached a point at which a power
analysis becomes more of a heuristic than a statistical tool.?

One-way between subjects ANCOVA designs with r values
other than 0.40 and 0.60

The tables in Chapter 7 are set up for only two values of the covari-
ate—dependent variable correlation, 0.40 and 0.60. If an investigator wishes
to model a different correlation coeflicient, Table 10.2 is provided for this
purpose. (Table 10.3 represents a different type of conversion table for
within subject designs to facilitate modeling for repeated measures.) All that
needs to be done to model a different covariate—dependent ris to locate the
adjusted ES at the intersection of the hypothesized covariate—dependent
variable correlation row and the unadjusted ES column. This value can then
be inputted into the appropriate Chapter 6 template, which will then
produce either the power or required sample size for an ANCOVA design
involving the desired estimate for the covariate—dependent variable corre-
lation. Although we will illustrate this process for power, the same proce-
dures are followed to determine the required N/group with the exception
that Template 6.3 instead of 6.2 is employed.

As an example, let us recast the three-group example provided in
Chapter 6 to one in which an available covariate was hypothesized to cor-
relate 0.70 with the dependent variable (weight loss). Assuming that the
remainder of the parameters did not change, Table 10.2 can be employed to
adjust the original ES value(s) and then the process proceeds identically to
the procedures outlined in Templates 6.1 and 6.2.
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To review the original parameters, it will be remembered that three
groups with 50 subjects each were employed ((1) treatment-as-usual, (2) an
attention placebo, and (3) an exercise plus education intervention) in order
to compare their effectiveness with respect to the amount of weight lost
with the ES differences between the three groups being:

ES (2)— (1)=0.2
ES (3)—(1)=0.5
ES (3)—(2)=0.3

Following the steps outlined in Templates 6.1 and 6.2 indicated that the ES
for the F-ratio is 0.5, the ES differences represented a low/medium disper-
sion pattern and that the intersection between the ES column of 0.5 and
the N/group row of 50 in Table 6.1 indicated that the power for this study
would have been 0.60.

The simplest way to perform this analysis based upon the addition
of a hypothesized covariate—dependent variable relationship of 0.70, would
thus be to adjust the original ES of 0.50 via the use of Table 10.2 and then
follow the templates presented in Chapter 6 as though a one-way between
subject ANOVA was to be employed. Locating the intersection between the
0.50 column and the r=0.70 row, then, provides an adjusted ES of 0.70.
Finding the intersection of this ES column and the N/row of 50 in Table
6.1 indicates that the power for the overall F-ratio would be 0.89 instead of
the original 0.60. It is also interesting to compare this figure to the power
that would have been obtained if Table 7.4 had been employed which
assumes an r of 0.60. This value, it will be noted would have been 0.80,
which while not dramatically different from the value obtained by using
Table 10.2, does reflect a substantive change in power.

Continuing this analysis for the power of the pairwise contrasts
would require that the other two ES differences (i.e., 0.2 (group 2 vs. group
1) and 0.3 (group 3 vs. group 2)) also be adjusted via Table 10.2, which
would yield adjusted ES values of 0.28 and 0.42 in addition to the 0.70
adjustment for group 3 vs. group 1. Assuming the use of the Tukey HSD
multiple comparison procedure, Table 6.12 would result in interpolated
power estimates of 0.19, 0.41, and 0.87 respectively, which again are higher
than the values that would have accrued via the use of Table 7.26 and the
use of a hypothesized r of 0.60.

Caveat. Two caveats are in order. In the first place, the ANOVA
tables in Chapter 6 are not adjusted for the one degree of freedom per covar-
iate loss to the error term associated with ANCOVA as are the tables in
Chapter 7. This is usually trivial, however, for all but the smallest studies.
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The second caveat involves the fact that minor variations from the 0.40 and
0.60 options provided in Chapter 7 truly have very little practical implica-
tions for the resulting power/sample size estimates as an examination of
Table 10.2 will illustrate. However, for differences of 0.10 or greater, espe-
cially for higher correlations, it is probably worthwhile to make the indi-
cated adjustment.

One-way within subject designs with r values other than 0.40
and 0.60

As with the tables for between subject ANCOVA designs, the tables in
Chapter 8 are only set up for hypothesized correlations among the depend-
ent observations of 0.40 and 0.60. Given the fact that within subject corre-
lations can exhibit a more dramatic effect upon power than is true for the
covariate—dependent variable relationship, any hypothesized divergence
from these two values of r is relatively more important to model. For this
reason, Table 10.3 is provided to adjust the ES values based upon small incre-
ments in correlations ranging between 0.20 and 0.80. These values can then
be modeled to determine their effects upon both the power of the overall
F-ratio and the pairwise contrasts for studies involving from three to five
groups. To facilitate this process, we have linked the use of Table 10.3 to the
tables in Chapters 8 and 9 relevant to a repeated measures correlation coeffi-
cient of 0.40.

Specifically, Table 10.3 is provided to indicate how the ES values in
both the MCP and overall F tables can be adjusted to permit the use of the
appropriate r=0.40 tables. As an example, if the within subject r were
hypothesized to be 0.20 rather than 0.40, the intersection of the 0.20 row
and the unadjusted ES column would indicate what value would need to be
subtracted from the ES that would normally be employed in the appropriate
use of the Chapter 8 or 9, r=0.40 tables. In other words, if the actual
hypothesized ES were 0.60, Table 10.3 indicates that an adjustment of 0.10
would be subtracted (because of the negative sign) from this value prior (i.e.,
0.60—0.10=0.50) and that this interpolated value (0.50) would be entered
into the appropriate power or sample size table.

Example. In way of illustration, let us use the actual four-group,
medium dispersion acupuncture example provided in Chapter 8 in which
the basic parameters were hypothesized as follows:

(1) four groups,
(2) ANOVA ES of 1.0,
(3) individual pairwise ES values ranging from 0.3 to 1.0,
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(4) medium mean dispersion pattern, and
(5) N/group=20.

Let us assume, however, that the correlation across the repeated observations
was hypothesized to be 0.50 instead of the modeled 0.40 and 0.60. Table
10.3 could therefore be accessed to determine the adjusted increase in the
overall F-ratio ES of 1.0 in comparison to the r=0.40 table (Table 8.9 as
indicated in Template 8.2). This value (located at the intersection of the 1.0
ES column and the r=10.50 row) is found to be +0.12, which when added
to the 1.0 ES in Table 8.9 yields an interpolated power level of 0.97 (obvi-
ously not a substantive difference). The same process applied to the pairwise
comparisons (using the Tukey HSD procedure) provides similar alterations:

Contrast Unadjusted Adjusted Unadjusted Adjusted
ES ES power power
2—1 0.3 0.33 0.08 0.10
3-2 0.3 0.33 0.08 0.10
4-3 0.4 0.45 0.16 0.22
3—-1 0.6 0.68 0.31 0.55
4-2 0.7 0.79 0.58 0.72
4—-1 1.0 1.12 0.92 0.95

‘While these particular examples do not reflect a major difference in
power, they are also not completely trivial in nature. It should also be noted
that the higher the 7, the more dramatic the power/sample size adjustments,
hence they should be considered if there is good reason to hypothesize an r
among repeated observations different than 0.40 or 0.60.

Other techniques for adjusting the ES values of main effects
and interactions

There are occasions when it is desirable to adjust the ES values emanating
from an experiment based upon the hypothetical addition of one or more
other design components capable of reducing the original model’s error
term. One example includes the use of a post hoc blocking variable (i.e.,
one which was not employed in subject selection for the study in the first
place') that was not originally included as part of trial.

Interestingly, other between subject terms such as this (including
interactions with the original grouping variable) basically affect power iden-
tically to the addition of a covariate (except that the N/group and the N/cell
must be adjusted slightly given the fact that only one degree of freedom is
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lost from the error term with the addition of a covariate but more are typ-
ically lost with the addition of a blocking variable).

Since categorical variables such as the three levels of exercise
employed in Chart 10.1, or a dichotomous characteristic such as gender, are
somewhat difficult to conceptualize in terms of r or r2, the easiest way to
estimate the hypothetical reduction in the error term is to hypothesize an
ES for these additional variables and then convert them to either ror r using
the following formula:

Formula 10.2. Translation of an ES (d) to r?

_ ES?
ES?+ 4

Once accomplished, a categorical independent variable (and its hypothe-
sized interaction) can then be used in the same way that a covariate’s
dependent variable correlation is used to adjust the study’s primary ES of
interest (although the changes in the error term’s degrees of freedom should
be taken into account as described later). To facilitate this process, we have
provided Table 10.4 which allows ES values to be expressed in terms of
either r? or r. In fact, since squared correlation coefficients are additive, and
since there are occasions when multiple ES values are theoretically additive,
Table 10.4 can be employed to facilitate this process via the substitution of
the sum of two or more squared correlation coefficients (i.e., by replacing
r? with R?).

To illustrate one simple application of Table 10.4, let us suppose that
a two-group trial was planned with a hypothesized ES of 0.50. If 50 sub-
jects per group were available, Table 4.1 would indicate that the power for
this experiment would be 0.70. What if, however, our researcher wished to
know what effect a post hoc blocking variable such as gender would have
upon such a trial? Assuming that he/she estimated that the ES for males vs.
females would also be 0.50, Table 10.4 could be used to convert this addi-
tional ES (0.50) to a correlation coefficient, which would be 0.24 and could
be treated identically to the addition of a covariate possessing that correla-
tion assuming no interaction between gender and the intervention was
hypothesized. Locating the intersection between the closest row value (r=
0.25) in Table 10.2 and the ES column of 0.50, the investigator would find
that the adjusted ES for the intervention would be 0.52 which would
produce a power level of 0.73, which in this case would probably have little
practical import upon the planning of this particular study. If, however,
gender were expected to interact with the grouping variable and the inter-
action ES was hypothesized to also be 0.50, these two ES values could be
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added together once they were converted to r* and the resulting sum could
be used to estimate the adjusted ES by employing Table 10.4 backwards.
The steps employed in this process are as follows:

(1)  The ES values for any terms that are to be used to adjust the primary
ES are converted to r? via the use of Table 10.4.

(2) Al of the relevant r? values are added together.

(3) The sum (which is now technically an R?) is then located under
the r? column in Table 10.4 and the Pearson r is read in the same

row under the r column variable.
(4)  This value is then used in Table 10.2 to find the adjusted ES.

Thus, in our original example in which the treatment ES was hypothesized
to be 0.50 as was the gender and the treatment X gender interaction, the
computation of the adjusted ES would proceed as follows:

(1)  gender r>+ gender X treatment interaction r>=adjusted R?,

(2)  converting the adjusted R to r via Table 10.4 produced the value
that will be used via Table 10.2 to produce the study’s adjusted ES,
or 0.06+0.06=0.12,

(3) converted to r=0.35,

(4) used to adjust the original ES of 0.50 via Table 10.2 producing an
adjusted ES of 0.53,

(5) which would yield an interpolated power value of 0.75 using Table
4.1. (If the original design had employed a covariate, this ES would
have been used in the appropriate table in Chapter 7.)

Modeling more complex designs employing simpler analogs

By now it is probably obvious that we are treading in gray areas at the border
between accepted procedures and techniques that have not yet been fully
developed. The only viable option at this point, therefore, is to model these
more complex designs employing one or more simple analogs. This can be
a time consuming process, but hopefully will be facilitated by the aids pro-
vided in this book. It is also a worthwhile process because it often points the
way for refining one’s hypotheses and for making design changes that
improve the quality of the planned trial.

As an example, let us hypothesize a mixed, two-factor design
employing a covariate. The first consideration is what type of covariate is
being employed. For mixed designs there are two genres: (a) those measured
once prior to the implementation of the study and (b) those measured each
time the treatment (when it is represented as a repeated measure) is
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implemented. In the first scenario, the covariate serves to increase the power
of the between subject treatment variable only, having no substantive impact
upon the power of the repeated measure nor of the interaction.

To illustrate, let us consider a preliminary experiment designed to
evaluate the effects of a quick acting (and transitory) hypertension drug
upon systolic blood pressure under different, experimentally manipulated
levels of stressful activities. Let us assume that three groups were used to
accomplish the latter. These were (a) two computerized tasks, one of which
constituted a relatively simple problem solving exercise (low induced stress)
and one with high stress potential possessing a built in algorithm that pre-
cluded its successful completion within the allotted time and (b) a condi-
tion in which subjects simply sat and listened to pleasant music.

Instead of randomly assigning different subjects to each of the six
resulting cells (the two drug conditions X the three tasks), however, it was
proposed that healthy college students be randomly assigned to either
receive the blood pressure medication or its placebo, although all subjects
would perform all three tasks (i.e., the high stress task, its low stress counter-
part, and simply sitting in a resting position for the allotted time period).
Obviously the order in which subjects performed the tasks would be ran-
domly assigned in some counterbalanced way and the experimenter would
take pains to assure that his/her subjects’ blood pressure was given a chance
to return to baseline values following each assessment (and prior to the
beginning of each new task). This would thus produce the following mixed
2 (drug vs. placebo) X 3 (stress level) design in which the second factor was
represented as a repeated measure or within subject factor:

Chart 10.7. Mixed subject design in which both factors are manipulated but the
second factor is a repeated measure

High stress task Low stress task No activity

BP drug
Placebo

Now obviously a covariate, such as blood pressure, could be meas-
ured once immediately before administration of the drug as would be done
if this were a between subjects design. Such a covariate, however, would
serve only to adjust the overall drug vs. placebo main effect (i.e., the average
drug pressure collapsed across all three stress levels) but would have no eftect
upon the stress factor or its crucial interaction with the BP drug (because its
values could not vary across all three stress levels for each subject and hence
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it would have no way of impacting the power of either the stress main effect
or the drug by task interaction). Should this particular design be employed,
then, the drug main effect could be adjusted for the effects of the covariate
via the use of Table 10.2 and this adjusted ES could be employed in subse-
quent power/sample size analyses.

What, however, if each of the three tasks could be preceded by a
unique covariate, such as baseline blood pressure (BP) levels producing the
mixed design depicted in Chart 10.8?

Chart 10.8. Mixed design in which both factors are manipulated with the task
represented as a within subject factor and baseline blood pressure measures serving
as unique covariates for each condition

Covariate 1 High Covariate 2 Low stress Covariate 3 No activity
(baseline 1)  stress task  (baseline 2)  task (baseline 3)

Drug
Placebo

Here, the covariate affects the power of the within subject (type of task)
main effect and its interaction with the drug factor, as well as the between
subject drug factor. The data emanating from this design could be appro-
priately analyzed in one of three ways:

(1) Classically, the recommended approach would be a 2 (drug) X3
(baseline BP for the three tasks) X3 (post task BP) mixed ANOVA
in which the final two factors represented repeated measures. This
design, however, employs four error terms (unless the three within
subject terms can be pooled) and multiple correlations (e.g., across
baseline/post-task assessment and across performances on the three
tasks). It also has the inherent disadvantage of testing the primary
hypothesis via a three-way interaction.

(2) Perhaps because of the complexity of this analysis (and the general
distaste of experienced data analysts for three-way interactions), the
analytic option most likely to be employed would probably be a 2
(drug) X 3 (type of task) mixed ANOVA with the dependent vari-
able being changes or difference scores in BP calculated by subtracting
baseline values measured prior to the beginning of each task from
BP levels following same. Here, the primary hypothesis would be
tested by the two-way interaction, which on the surface would
require fewer assumptions from a power analytic perspective. The
problem, however, resides in estimating the correlation among
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these differences scores across tasks, since measures such as this tend
to be relatively unreliable.

(3) Finally, the data could be analyzed via a 2 (drug) X3 (type of task)
ANCOVA in which each baseline measure would serve as the
covariate for the subjects as they participated in the indicated task.
The problem with this analysis, however, also resides in the difh-
culty of estimating two separate correlations (i.e., for the covariate
and for the repeated measures) and hence would be relatively
tenuous.

The question becomes, then, how should the investigator go about estimat-
ing the power likely to be available for a design such as this? Our advice is
to employ multiple modeling strategies (none of which will probably be
optimal in and of themselves) irrespective of the final analytic option that
will be ultimately employed.

Difference scores, for example, could be modeled relatively easily if
the investigator had a reasonable idea of what the baseline-to-post interven-
tion BP correlations were likely to be. Standardizing each score (and thus
setting the standard deviation of each measure to 1.0) would permit the
standard deviation of these difference scores to be assessed quite easily via
Formula 10.3, in which case the appropriate ES values for the two main
effects and the interaction could be calculated as previously discussed. The
problem with this analysis, as indicated above, resides in the difficulty of esti-
mating the correlation across tasks based upon these difference scores. The
investigator could therefore conduct a pilot study to estimate this relation-
ship or he/she could assume a relatively low correlation (certainly no more
than r=0.40) and then analyze the within subject main effect and interac-
tion as already discussed.

Formula 10.3. Standard deviation of difference scores

SD differences= V2 — 2r

Another option would be to break the design into its most relevant
pieces and estimate the power of these fractions. Thus, the power of the
separate 2 (drug vs. placebo) X2 (baseline BP vs. post task BP) interactions
emanating from each task could be assessed. (Alternatively, the power of
separate two-group ANCOVAs could be estimated for each task employing
the relevant baseline measure as the covariate.) Obviously this would be a
very gross approach, but the investigator would be heartened if there were
sufficient power for one of these analyses, which would indicate that the
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drug would at least be effective for one level of stress. The process of
hypothesizing the ES values for each of these contrasts might also be
enlightening, since if there were little difference in the ES values between
the three tasks (and the pattern of means were in the same direction), then
the investigator would definitely want to collapse the hypothesized means
across tasks and assess the power of the resulting ES for the 2 (drug vs.
placebo) X 2 (baseline vs. post task BP) interaction.

While power calculations such as these are admittedly imperfect,
they can be invaluable in the design phase of an experiment. As one
example, if the differences between ES values for the separate 2 X2 task
interactions did not seem to be large enough to result in statistical signifi-
cance, then the investigator would most certainly want to ensure that there
was sufficient power for the 2 X2 interaction collapsed across tasks. If there
were not, it would be essential to address this issue, either by increasing the
sample size or perhaps by deleting (or altering) a task that might be dissipat-
ing the 2 X2 collapsed (across tasks) interaction ES.

The results of a power analysis such as this should be reported
exactly the way in which it was conducted. The investigator should, in other
words, report the modeling procedures employed and the relevant power
levels obtained along with a frank admission that the results were primarily
heuristic in nature.

Obviously there are many design permutations whose power ana-
lysis has not been considered in this or the previous chapters. We recom-
mend this same basic approach for dealing with them, however, which is
(a) simply to select the model from the options that we have discussed that
most closely matches the one that will actually be used and then estimate
the power based upon this less complicated version, (b) to break the
complex design into its constituent parts and assess the power of the more
interesting of these, or () to opt for a less complex design in the first place.
In most cases the first two options will produce an underestimate of the
actual power available (or an overestimate of the sample size required), but
usually the resulting imprecision will not be severe and if the investigator
explicitly states the basis of his/her calculations (which we always advocate), a
funding agency or an IRB is exceedingly unlikely to object to the result-
Ing approximation.

Summary

Techniques for extending the tables presented in previous chapters to more
complex designs are presented. These include the calculation of power and
sample size for main effects in factorial designs, extensions to higher level
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CHAPTER 10 TEMPLATE

(i.e., three or more factor designs), modeling procedures for covariate and
within subject correlations other than 0.40 and 0.60, and the addition of a
covariate to a mixed design.

All of the processes discussed provide estimates rather than exact
values, but as we have emphasized throughout this book, a power/sample
size analysis is by definition an estimate anyway given the number of
hypotheses and assumptions necessitated. We therefore advise the investig-
ator to describe quite explicitly the assumptions and techniques employed
in any such analysis, especially those involving the more complex scenarios
discussed in this chapter, which will then give the research consumer a basis
upon which to evaluate the results. We have found that sophisticated
reviewers and colleagues appreciate the vantage point this additional infor-
mation provides, even when they do not completely agree with some of the
assumptions/hypotheses themselves.

Endnotes

1 When a blocking variable is employed in the original sampling design or in the
random assignment process, it does not necessarily increase the power of the
other terms since the error term is also increased along with the overall vari-
ance. When such a variable is identified after the data have been collected (or
the inclusion of this variable does not increase the overall variance if identified
a priori), then the error term will not be increased and power will be favorably
affected. From a post hoc perspective, however, the investigator should take
steps to ensure that any effect due to this blocking variable is not a chance occur-
rence.

2 When it is advantageous to calculate the power of a three-way interaction, a
gross indicator of its ES can be obtained by subtracting the ES values of the two
collapsed 2 X 2 interactions hypothesized to best reflect this higher level inter-
action.

Template 10.1. Two-factor power and sample size template

Step 1. Choose one of the following table shells and fill in the standardized means that are
expected to make up the interior cells. (These means should be hypothesized prior to
filling in the row and column totals.) This is done by subtracting the smallest cell mean
from itself and all of the other cells, thereby providing a zero value for the lowest mean.
All cell means are then divided by the estimated standard deviation to produce
standardized means. Compute the grand means for each row and column and fill them

in the appropriate “Mean” cells. (As an example, the grand mean for level Al in the

2 X2 shell would be computed by adding the B1 and B2 ES values and dividing

by 2.)
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2X2 | Bl | B2 | Mean 2X3 | Bl | B2 | B3 | Mean
Al Al
A2 A2
Mean Mean
2X4 | Bl | B2 | B3 | B4 | Mean 3X3 | Bl | B2 | B3 | Mean
Al Al
A2 A2
Mean A3
Mean

3X4 | Bl | B2 | B3 | B4 | Mean

Al

A2

A3

Mean

Step 2. Compute main effect ES values by simply subtracting the smallest row mean from
the largest row mean and the smallest column mean from the largest column mean.

Main effect A ES=largest “A” row mean — smallest “A” row mean=
Main effect B ES=largest “B” row mean —smallest “B” row mean=

Step 3. Compute the interaction ES by following the instructions in Template 9.1.
Interaction ES=

Step 4. If no further adjustments to the ES values emanating from steps 2 and 3 are
indicated, proceed to step 5. Otherwise, employ one of the procedures discussed in this
chapter to adjust one or more of the ES values emanating from steps 2 and 3 prior to
proceeding to step 5 if the design is to include:

(a) use of a covariate other than 0.40 or 0.60 for a between subject effect,

(b) use of a within subject r other than 0.40 or 0.60 for a within subject effect,
(c) use of a post hoc grouping variable or other between design element, or
(d) addition of a covariate to a within subject effect.

Step 5. Calculate the N/group for each main effect as follows:

(a) For main effects, locate the intersection between the N/cell row for each factor and
the appropriate column associated with the design/factor column in Table 10.1.
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(b) For the interaction, simply enter the N/cell or the desired power level.

N/group (main effect A) =
N/group (main effect B) =
N/cell (interaction AXB)=

or desired power =
or desired power =
or desired power =

CHAPTER 10 TABLES

Step 6. Proceed to calculate the power/required sample size as dictated in previous

chapters using the appropriate adjusted (step 4) or unadjusted (steps 2 and 3) ES values as

appropriate.

Table 10.1. N/group for between subject main effects A and B

N/cell Design
2X2 2X3 2X4 3X3 3X4
A B A B A B A B A B

3 5 5 7 5 9 5 7 7 9 7
4 7 7 10 7 13 7 10 10 13 10
5 9 9 13 9 17 9 13 13 17 13
6 11 11 16 11 21 11 16 16 21 16
7 13 13 19 13 25 13 19 19 25 19
8 15 15 22 15 29 15 22 22 29 22
9 17 17 25 17 33 17 25 25 33 25
10 19 19 28 19 37 19 28 28 37 28
11 21 21 31 21 41 21 31 31 41 31
12 23 23 34 23 45 23 34 34 45 34
13 25 25 37 25 49 25 37 37 49 37
14 27 27 40 27 53 27 40 40 53 40
15 29 29 43 29 57 29 43 43 57 43
16 31 31 46 31 61 31 46 46 61 46
17 33 33 49 33 65 33 49 49 65 49
18 35 35 52 35 69 35 52 52 69 52
19 37 37 55 37 73 37 55 55 73 55
20 39 39 58 39 77 39 58 58 77 58
25 49 49 73 49 97 49 73 73 97 73
30 59 59 88 59 117 59 88 88 117 88
35 69 69 103 69 137 69 103 103 137 103
40 79 79 118 79 157 79 118 118 157 118
45 89 89 133 39 177 89 133 133 177 133
50 99 99 148 99 197 99 148 148 197 148
55 109 109 163 109 217 109 163 163 217 163
60 119 119 178 119 237 119 178 178 237 178
65 129 129 193 129 257 129 193 193 257 193
70 139 139 208 139 277 139 208 208 277 208
75 149 149 223 149 297 149 223 223 297 223
80 159 159 238 159 317 159 238 238 317 238
85 169 169 253 169 337 169 253 253 337 253
90 179 179 268 179 357 179 268 268 357 268
95 189 189 283 189 377 189 283 283 377 283
100 199 199 298 199 397 199 298 298 397 298
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Table 10.2. ANCOVA conversion for effect sizes

Hypothesized ES

0.20

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

1.00

1.25

1.50

1.75

2.00

2.50

3.00

0.200
0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400
0.425
0.450
0.475
0.500
0.525
0.550
0.575
0.600
0.625
0.650
0.675
0.700
0.725
0.750
0.775

0.800

0.20
0.21
0.21
0.21
0.21
0.21
0.21
0.22
0.22
0.22
0.22
0.23
0.23
0.23
0.24
0.24
0.25
0.26
0.26
0.27
0.28
0.29
0.30
0.32
0.33

0.31
0.31
0.31
0.31
0.31
0.32
0.32
0.32
0.33
0.33
0.34
0.34
0.35
0.35
0.36
0.37
0.38
0.38
0.39
0.41
0.42
0.44
0.45
0.47
0.50

0.36
0.36
0.36
0.36
0.37
0.37
0.37
0.38
0.38
0.39
0.39
0.40
0.40
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.49
0.51
0.53
0.55
0.58

0.41
0.41
0.41
0.42
0.42
0.42
0.43
0.43
0.44
0.44
0.45
0.45
0.46
0.47
0.48
0.49
0.50
0.51
0.53
0.54
0.56
0.58
0.60
0.63
0.67

0.46
0.46
0.46
0.47
0.47
0.48
0.48
0.49
0.49
0.50
0.50
0.51
0.52
0.53
0.54
0.55
0.56
0.58
0.59
0.61
0.63
0.65
0.68
0.71
0.75

0.51
0.51
0.52
0.52
0.52
0.53
0.53
0.54
0.55
0.55
0.56
0.57
0.58
0.59
0.60
0.61
0.63
0.64
0.66
0.68
0.70
0.73
0.76
0.79
0.83

0.56
0.56
0.57
0.57
0.58
0.58
0.59
0.59
0.60
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.69
0.70
0.72
0.75
0.77
0.80
0.83
0.87
0.92

0.61
0.62
0.62
0.62
0.63
0.63
0.64
0.65
0.65
0.66
0.67
0.68
0.69
0.70
0.72
0.73
0.75
0.77
0.79
0.81
0.84
0.87
0.91
0.95
1.00

0.66
0.67
0.67
0.68
0.68
0.69
0.69
0.70
0.71
0.72
0.73
0.74
0.75
0.76
0.78
0.79
0.81
0.83
0.86
0.88
0.91
0.94
0.98
1.03
1.08

0.71
0.72
0.72
0.73
0.73
0.74
0.75
0.76
0.76
0.77
0.78
0.80
0.81
0.82
0.84
0.86
0.88
0.90
0.92
0.95
0.98
1.02
1.06
1.11
1.17

0.77
0.77
0.77
0.78
0.79
0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.87
0.88
0.90
0.92
0.94
0.96
0.99
1.02
1.05
1.09
1.13
1.19
1.25

0.82
0.82
0.83
0.83
0.84
0.85
0.85
0.86
0.87
0.88
0.90
0.91
0.92
0.94
0.96
0.98
1.00
1.02
1.05
1.08
1.12
1.16
1.21
1.27

1.33

1.02
1.03
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10
1.12
1.14
1.15
1.17
1.20
1.22
1.25
1.28
1.32
1.36
1.40
1.45
1.51
1.58
1.67

1.28
1.28
1.29
1.30
1.31
1.32
1.33
1.35
1.36
1.38
1.40
1.42
1.44
1.47
1.50
1.53
1.56
1.60
1.64
1.69
1.75
1.81
1.89
1.98
2.08

1.53
1.54
1.55
1.56
1.57
1.59
1.60
1.62
1.64
1.66
1.68
1.70
1.73
1.76
1.80
1.83
1.88
1.92
1.97
2.03
2.10
2.18
2.27
2.37
2.50

1.79
1.80
1.81
1.82
1.83
1.85
1.87
1.89
1.91
1.93
1.96
1.99
2.02
2.06
2.10
2.14
2.19
2.24
2.30
2.37
2.45
2.54
2.65
2.77
2.92

2.04
2.05
2.07
2.08
2.10
2.11
2.14
2.16
2.18
2.21
2.24
2.27
2.31
2.35
2.39
2.44
2.50
2.56
2.63
2.71
2.80
2.90
3.02
3.16
3.33

2.55
2.57
2.58
2.60
2.62
2.64
2.67
2.70
2.73
2.76
2.80
2.84
2.89
2.94
2.99
3.06
3.13
3.20
3.29
3.39
3.50
3.63
3.78
3.96
4.17

3.06
3.08
3.10
3.12
3.14
3.17
3.20
3.24
3.27
3.31
3.36
341
3.46
3.52
3.59
3.67
3.75
3.84
3.95
4.07
4.20
4.36
4.54
4.75
5.00
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Table 10.4. Effect size based on rand r?

ES r r?

0.10 0.05 0.00
0.15 0.07 0.01
0.20 0.10 0.01
0.25 0.12 0.02
0.30 0.15 0.02
0.35 0.17 0.03
0.40 0.20 0.04
0.45 0.22 0.05
0.50 0.24 0.06
0.55 0.27 0.07
0.60 0.29 0.08
0.65 0.31 0.10
0.70 0.33 0.11
0.75 0.35 0.12
0.80 0.37 0.14
0.85 0.39 0.15
0.90 0.41 0.17
0.95 0.43 0.18
1.0 0.45 0.20
1.1 0.48 0.23
1.2 0.51 0.26
1.3 0.54 0.30
1.4 0.57 0.33
1.5 0.60 0.36
1.6 0.62 0.39
1.7 0.65 0.42
1.8 0.67 0.45
1.9 0.69 0.47
2.0 0.71 0.50
2.25 0.75 0.56
2.50 0.78 0.61
2.75 0.81 0.65
3.00 0.83 0.69
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11 Other power analytic issues and
resources for addressing them*

While we have attempted to be as comprehensive in our treatment
of power analytic concepts as possible in the space available to us, there are
a number of issues that we have not been able to address. The purpose of
this chapter, therefore, is to touch briefly on some of these issues and provide
suggestions for what we consider to be the most useful resources available
for investigators who (a) find themselves in need of conducting a more spe-
cialized power analysis than the tables in this book permit or (b) simply want
to know more about the area.

Fortunately, there are a number of books, computer programs, and
websites that can be quite helpful in these regards. While we do not aspire to
be exhaustive in our treatment, we will mention those that we believe will be
most likely to be of benefit or interest to the readers of this particular book.

Specialized books on power

Cohen, J. (1977). Statistical power for the behavioral sciences (2nd edn). New
York: Academic Press. Reprinted by Laurence Erlbaum, Mahwah, NJ, 1988.

This is the best and most comprehensive text ever written on the
topic. The book requires a bit more work than the present one on the part
of the reader to use, but it is not exclusively geared toward experiments as
ours is and covers a number of topics which we do not discuss including
power/sample size tables for correlational procedures such as the Pearson r,
multiple correlation, and X

Lipsey, M.W. (1990). Design sensitivity: statistical power for experiment-
al research. Newbury Park, CA: Sage.

This is a truly excellent book which anyone contemplating the
conduct of an experiment should own, although it is now rather difficult to
obtain. The author makes the crucial point that power is dependent upon

* The publisher has used its best endeavors to ensure that the URLs for external websites
referred to in this book are correct and active at the time of going to press. However, the
publisher has no responsibility for the websites and can make no guarantee that a site will
remain live or that the content is or will remain appropriate.
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far more than sample size and that perhaps the most important factor of all
is the care with which a trial is designed. Its treatment of power is extremely
accessible and the case it makes for the importance of the topic in empir-
ical research is truly compelling. It is an especially good resource on the stat-
istical and conceptual underpinnings of the effect size concept.

Kraemer, H.C. & Thiemann, S. (1987). How many subjects?: statist-
ical power analysis in research. Newbury Park, CA: Sage.

This brief text presents a single “master table” designed to be applic-
able to a wide range of designs and statistical procedures. Its unifying
theory is based upon the intraclass correlation test, which allows the use of
the same ES metric regardless of the design (the lack of which the authors
use to criticize Cohen’s text, although they, like everyone else with an inter-
est in power, acknowledge the magnitude of his contribution to the field).

Murphy, K.R. & Myors, B. (1998). Statistical power analysis: a simple
and general model for traditional and modern hypothesis tests. Mahwah, NJ:
Lawrence Erlbaum.

This text is similar to Kraemer & Thiemann (1987) in the sense that
it uses a general approach to estimating power and accordingly offers a single
“one-stop F table” designed to fit a wide variety of designs. The book
approaches power from the perspective of the general linear model. The
authors make a number of excellent points regarding power (e.g., “When
power is less than .50 and researchers are certain (or virtually certain) that
H, is wrong, the test is more likely to yield a wrong answer than a right one.
More to the point, the test cannot possibly produce new and useful know-
ledge; it can only be misleading (p. 81)”). The authors also believe that
testing the null hypothesis in general is relatively old fashioned since most
interventions are conceptualized, not on the basis that they have no effect
at all, but that they have at least a small effect, hence they make the case that
the ES should be formulated based upon the distance between this hypoth-
esized (even if trivial) effect rather than zero.

General statistical texts of interest

In addition to these texts, many statistical textbooks provide relatively exten-
sive treatments of power. There are so many, in fact, that we cannot name
them all nor can we pretend even to be familiar with them all. Some of our
favorites include the following.

Keppel, G. (1991). Design and analysis: a researcher’s handbook (3rd
edn). Englewood Cliffs, NJ: Prentice-Hall.

‘While not providing tables per se, this book does include clear com-
putational approaches for most analysis of variance procedures.
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Maxwell, S. & Delaney, H. (1990). Designing experiments and analyz-
ing data: a model comparison perspective. Belmont, CA: Wadsworth.

This actually may be more comprehensive than Keppel with respect
to certain designs.

Cohen, J. & Cohen, P. (1983). Applied multiple regression/correlation
analysis for the behavioral sciences. Mahwah, NJ: Lawrence Erlbaum.

This classic probably provides more detail on the power of correla-
tional procedures (e.g., power and sample size for increments to R?) than
almost any other source.

Power software

All the power analytic techniques presented in this book are available free
of charge in a computer program by Bausell and Franaszczuk entitled Power
analysis for experimental research which can be obtained by email from
bbausell@compmed.umm.edu.

There are also a large number of commercial power programs and
free software available, often downloadable directly from the web. In addi-
tion, the journal literature is replete with descriptions of free programs and
a number of journals routinely provide software reviews.

We did not have the resources to purchase any sizable number of
the former nor the time to explore the latter in any detail, although Len
Thomas and Charles J. Krebs (1997) have provided a Herculean review of
29 such programs which included “13 stand-alone power and sample size
programs, 11 general purpose statistics packages with built-in power capa-
bilities, 2 programs that deal only with determining sample size, and 3 spe-
cialized power programs of interest to ecologists (the authors’ substantive
area of expertise).” They also provide separate, informative websites with
more information  (www.forestry.ubc.ca/conservation/power/  and
www.bcu.ubc.ca/~krebs/power.html), the latter of which allows the down-
loading of the actual review article, which we recommend. There have been
a number of other very excellent reviews of power analytic software in a
variety of journals (e.g., Goldstein, R. (1989). Power and sample size via
MS/PC-DOS computers. The American Statistician, 43, 253-260; also Iwane
et al.’s (1997) review of specialized software using survival data), but this one
is relatively up-to-date and quite comprehensive.

Before discussing this review, we should mention that power pro-
grams can be quite helpful to the investigator for some of the more special-
ized applications for which neither we, nor any other source of which we are
aware, provide simple-to-use tables. They also provide an option that tables
cannot: the ability (a) to generate power and sample size estimates for any
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alpha level (which is especially helpful in experiments designed to establish
bio-equivalence), (b) to allow the investigator to present his/her results graph-
ically, and (c) to provide sample text for the reporting of the results produced.

Before discussing Thomas and Krebs’ much more comprehensive
review, we will mention our more idiosyncratic impressions of the two pro-
grams with which we have the most experience. The first of these we found
easier to use, probably because it is largely based upon Jacob Cohen’s work
and he remains a co-author; the second requires more expertise on the part
of the user, but also covers a wider range of statistical procedures.

Borenstein, M., Rothstein, H., Cohen, J., Schoenteld, D., Berlin,
J., & Lakatos, E. (2001). Power and precision: a computer program for statistical
power analysis and confidence intervals. Englewood, NJ: Biostat.

As mentioned, this is a relatively easy-to-use program that covers a
wide range of ANOVA/ANCOVA designs, non-parametric procedures
such as the McNemar test and x?, as well as both linear and logistic regres-
sion. In addition there is a section on survival analysis and equivalence tests
that may prove helpful.

Elashoff, J.D. (1999). nQuery advisor. Cork: Statistical Solutions.

This is a more biostatistically oriented package which is not quite
as user friendly as Power and precision and, in our opinion, requires somewhat
more statistical training to use effectively. We suspect that biostatisticians
may prefer its approach, however, being more familiar with its input require-
ments. It is not quite as flexible with respect to the analysis of variance as
we would prefer, however, and the parameters it requires for techniques
such as logistic regression are sometimes unrealistic. The program does have
a very interesting feature that enables the user actually to input sample data
into a data entry screen to allow the investigator to estimate some of these
parameters.

Thomas, L. & Krebs, C. (1997). A review of statistical power ana-
lysis software. Bulletin of the Ecological Society of America, 78, 126-139.
Interestingly, these authors picked five general purpose power programs that
they found the easiest to use and both Power and precision and nQuery advisor
were among these. The other three were:

(1) PASS, NCSS Statistical Software, 329 North 1000 East, Kaysville,
UT 84037 (www.ncss.com). This was ranked as easiest to use by the
authors’ graduate students.

(2) Stat Power, Statistical Design Analysis Software, P.O. Box 12734,
Portland, OR 97212 (email: QEISys@aol.com).

(3) GPOWER, which is available on the web at www.psychologie.uni-
tier.de:8000/ projects/gpower.html.
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Other programs that were reviewed and judged to be potentially
useful although not quite as user friendly (at least at the time of this review)
included:

(1) PC-Size that calculates power or sample sizes for a restricted
number of tests (shareware available at ftp.simtel.net/publ/simtel-
net/msdos/statstcs/size102.zip).

(2) PowerPack, which is command driven and programmable
(ftp.stat.uiowa.edu/pub/rlenth/Powerpack).

(3) PowerPlant, which is free and was judged to have considerable poten-
tial (CSIRO Biometrics Unit, e-mail: biometrics@ccmar.csiro.au).

(4) N, a commercial program that calculates N but not power (SciTech
International, Inc., 2525 North Elston Avenue, Chicago, IL 60647-
3011).

In addition to this 1997 review, Len Thomas routinely updates available soft-
ware at the following address: www.forestry.ubc.ca/conservation/power,
where he lists 58 software packages (along with addresses at which they can
be obtained) under six categories: (1) general purpose statistical software that
contain power analysis routines, (2) general purpose statistical software that
can be used to calculate power (i.e., calculate non-central distributions), (3)
specialized statistical software that contains power analysis routines, (4) stand-
alone power analysis software, (5) stand-alone power analysis software for
specialized applications, and (6) packages that calculate sample size but not
power. We all owe a considerable debt to Professor Thomas for his unselfish
service in making this resource available to the professional community.

The journal literature

The journal literature on power is much too voluminous to attempt to
review in a single chapter. What we will attempt to do here, therefore, is to
mention a sample of those articles that (a) discuss important topics in more
detail than we have done in this book, (b) cover issues that we did not because
of our focus on experiments primarily involving continuous outcome vari-
ables, and/or (c) include specialized power/sample size tables/formulas that
we feel may supplement the ones presented in the present book.

It is worth repeating the fact that this list is by no means complete.
We are personally aware of many other very thoughtful journal articles that
make a decided contribution to the field but are not mentioned here
because (a) we felt that they did not apply directly to the everyday conduct
of empirical research or (b) they were too technically oriented or discussed
a topic too specialized to be helpful to practicing researchers.
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For those individuals who desire more technical and specialized
treatments of the topic, there are a number of journals that routinely publish
papers on power including Biometrics, Controlled Clinical Trials, Journal of the
American Statistical Association, Journal of Educational Statistics, The American
Statistician, and Statistics in Medicine among others.

To facilitate the use of this brief bibliography, we have attempted
to categorize the references by topic area and indicated (via an asterisk)
those papers dealing with specific statistical procedures that contain
power/sample size tables deemed to contain sufficient parameters to be helpful in
the actual design of a study (those that do not present tables usually present for-
mulas for computing the power or sample size associated with the relevant
statistical procedure). Prior to presenting this list, however, we would like
to recommend a few more general treatments of the subject that we feel
would be worthwhile for anyone interested in the subject to retrieve and
read.

Conceptual/philosophical issues

Cascio, W.E & Zedeck, S. (1983). Open a new window in rational research
planning: adjust alpha to maximize statistical power. Personnel Psychology, 36,
517-526.

After discussing ways to increase statistical power, the authors argue
that a minimum useful effect size should be specified and the power analy-
sis performed on that. They go further, however, and suggest that the alpha
level be adjusted based upon the relative costs of making a false positive or
false negative error. They also advise that the prior probability based upon
past research should be taken into account (advice which has largely been
ignored in practice) except for equivalence trials.

Cohen, J. (1990). Things I have learned (so far). American
Psychologist, 45, 1304—-1312.

From the author’s abstract: “This is an account of what I have
learned (so far) about the application of statistics to psychology and the other
sociobiomedical sciences. It includes the principles ‘less is more’ (fewer vari-
ables, more highly targeted issues, sharp rounding off), ‘simple is better’. . . .
I have also learned the importance of power analysis and the determination
of just how big (rather than how statistically significant) are the effects we
study. Finally, I have learned that there is no royal road to statistical induc-
tion, that the informed judgment of the investigator is the crucial element
in the interpretation of data, and that things take time.”

Cohen, J. (1992). A power primer. Psychological Bulletin, 112,
150-159.
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Hypothesizing that one possible reason for the continued neglect of
power analysis might be the inaccessibility of resources on the topic,
Professor Cohen attempts once more to remedy this problem with two very
useful and succinct tables, one summarizing the different ES indices and one
presenting the power of the most common statistical tests, ES values, and
significance levels.

Cohen, J. (1994). The earth is round (p <.05). American Psychologist,
49, 997-1003.

This is a lightly written paper that contains a rare commodity:
wisdom. Basically Cohen says that while the null hypothesis test is not
perfect, there is no real substitute for it. Instead he implies that we should
use a little common sense, improve the quality of our data, and report con-
fidence intervals in addition to the p-values.

Lachin, J.M. (1981). Introduction to sample size determination and
power analysis for clinical trials. Controlled Clinical Trials, 2, 93—113.

This is a helpful introductory article with a specific focus on bio-
medical clinical trials that both makes the case for the importance of per-
forming a power analysis and provides a number of specific guidelines for
accomplishing same.

Power/sample size of specific statistical procedures

ANOVA/ANCOVA

*Keselman, H.J. & Keselman, ]J.D. (1987). Type I error control and the
power to detect factorial effects. British Journal of Mathematical and Statistical
Psychology, 40, 196-208.

Muller, K.E. & Burton, C.N. (1989). Approximate power for repeated-
measures ANOVA lacking sphericity. Journal of the American Statistical
Association, 84, 549-555.

*Tiku, M.L. (1967). Tables of the power of the F-test. Journal of the American
Statistical Association, 62, 525—539.

Attrition (loss of subjects)

*Palta, M. & McHugh, R. (1970). Adjusting for losses to follow-up in
sample size determination for cohort studies. Journal of Chronic Diseases (now
Journal of Clinical Epidemiology), 32, 315-316.

Bio-equivalence

Hauschke, D., Kieser, M., Diletti, E., & Burke, M. (1999). Sample size
determination for proving equivalence based on the ratio of two means for
normally distributed data. Statistics in Medicine, 18, 93—105.
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Makuch, R. & Johnson, M.E (1986). Some issues in the design and inter-
pretation of “negative” clinical studies. Archives of Internal Medicine, 146,
986—989.

Makuch, R. & Simon, R. (1978). Sample size requirements for evaluating
a conservative therapy. Cancer Treatment Reports, 62, 1037—1040.
Schuirmann, DJ. (1987). A comparison of the two one-sided tests
procedure and the power approach for assessing the equivalence of
average bioavailability. Journal of Pharmacokinetics and Biopharmaceutics, 15,
657-680.

Censored data and attrition/loss to follow-up

*Palta, M. & McHugh, R. (1979). Adjusting for losses to follow-up in
sample size determination for cohort studies. Journal of Chronic Diseases (now
Journal of Clinical Epidemiology), 12, 315-326.

Palta, M. & McHugh, R. (1980). Planning the size of a cohort study in the
presence of both losses to follow-up and non-compliance. Journal of Chronic
Diseases (now Journal of Clinical Epidemiology), 13, 501-512.

Schumacher, M. (1981). Power and sample size determination in survival
time studies with special regard to the censoring mechanism. Methods of
Information in Medicine, 20, 110-115.

*Wu, M.C. (1988). Sample size for comparison of changes in the presence
of right censoring caused by death, withdrawal, and staggered entry.
Controlled Clinical Trials, 9, 32—46.

x? (also see Cohen, 1977)

Lachin, J.M. (1977). Sample size determination for rxc comparative trials.
Biometrics, 33, 315-324.

Correlation techniques

Tattner, M.H. & O’Leary, B.S. (1980). Sample sizes for specified statistical
power in testing for differential validity. Journal of Applied Psychology, 65,
127-134.

Dunnett multiple comparison procedure

Liu, W. (1997). On sample size determination of Dunnett’s procedure for
comparing several treatments with a control. Journal of Statistical Planning and
Inference, 62, 25-261.

Group means

*Barcikowski, R.S. (1981). Statistical power with group means as the unit
of analysis. Journal of Educational Statistics, 6, 267—285.
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*QOverall, J.E., Hollister, L.E., & Dalal, S.N. (1967). Psychiatric drug
research: sample size requirements for one vs. two raters. Archives of General
Psychiatry, 16, 152—-161.

Group sequential designs

*Case, L.D., Morgan, T.M., & Davis, C.E. (1987). Optimal restricted two-
stage designs. Controlled Clinical Trials, 8, 146—156.

*Lim, K. & Demets, D.L. (1992). Sample size determinations for group
sequential clinical trials with immediate response. Statistics in Medicine, 11,
1391-1399.

*Pasternack, PS. (1981). Sample sizes for group sequential cohort and
case—control study designs. American Journal of Epidemiology, 113, 182—191.
*Wieand, S. & Therneau, T. (1987). A two-stage design for randomized
trials with binary outcomes. Controlled Clinical Tiials, 8, 20-28.

Logistic regression

*Hsieh, EY. (1989). Sample size tables for logistic regression. Statistics in
Medicine, 8, 795—-802.

*Whittemore, A.S. (1981). Sample size for logistic regression with small
response probability. Journal of the American Statistical Association, 76, 27-32.

Logrank test

Lan, K.K.G. (1992). A comparison of sample size methods for the logrank
statistic. Statistics in Medicine, 11, 179—-191.

Freedman, L.S. (1982). Tables of the number of patients required in clinical
trials using the logrank test. Statistics in Medicine, 1, 121-129.

*Rubinstein, L.V., Gail, M.H., & Santner, T.J. (1981). Planning the dura-
tion of a comparative clinical trial with loss to follow-up and a period of
continued observations. Journal of Chronic Diseases, 34, 469—479.

Kappa

Block, D.A. & Kraemer, H.C. (1989). 2 X2 kappa coefficients: measures of
agreement or association. Biometrics, 45, 269—287.

Multivariate analysis of variance

Stevens, J.P. (1980). Power of the multivariate analysis of variance tests.
Psychological Bulletin, 88, 728—737.

A table is presented that enables the estimation of power for the
two-group MANOVA. Tables of from three to five groups are presented in
the author’s 1986 text:

Stevens, J.P. (1986). Applied multivariate statistics for the social sciences. Hillsdale,
NJ: Lawrence Erlbaum.
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Non-central tand F

Owens, D.B. (1965). A special case of a bivariate non-central t-distribution.
Biometrika, 52, 437—446.

Non-parametric procedures

Noether, G.E. (1987). Sample size determination for some common non-
parametric tests. Journal of the American Statistical Association, 82, 645—647.

Relative risks

*Blackwelder, W.C. (1993). Sample size and power for prospective analysis
of relative risk. Statistics in Medicine, 12, 691—698.

This gives a table for very small risks such as for vaccine trials.
*Walter, S.D. (1977). Determination of significant relative risks and optimal
sampling procedures in prospective and retrospective comparative studies of
various sizes. American Journal of Epidemiology, 105, 387-397.

Reliability

*Feldt, L.S. & Ankenmann, R.D. (1998). Appropriate sample size for com-
paring alpha reliabilities. Applied Psychological Measurement, 22, 170-178.

Survival endpoints

Shih, J.H. (1996). Sample size calculation for complex clinical trials with
survival endpoints. Controlled Clinical Trials, 16, 395—407.

Web based resources

Despite being well aware of the exponential growth of information on the
web, we were still somewhat surprised by the wealth of information on
power located thereon. As with the other surveys of resources presented
here, this one is idiosyncratic and not particularly systematic, partly because
the searcher (first author) is not an accomplished web navigator. With all of
this said, one starting point is the impressive index of statistical pages in
general compiled by John C. Pezzullo.

members.aol.com/johnp71/javastat.html

The site is described as a project that “represents an ongoing effort
to develop and disseminate statistical analysis software in the form of web
pages.” It contains interactive statistical pages, links to other resources, and
free software (among other things) relevant to power. Specifically, it offers
access to the following power aids:
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(1) DQO-PRO, which is a sample-size calculator capable of “deter-
mining the rate at which an event occurs (confidence levels versus
numbers of false positive or negative conclusions), determining an
estimate of an average within a tolerable error (given the standard
deviation of individual measurements), and determining the sam-
pling grid necessary to detect ‘hot spots’ of various assumed
shapes,”

(2) logistic regression power calculation with a continuous exposure
variable and an additional continuous covariate.

ebook.stat.ucla.edu

The UCLA statistics department provides this site that contains
everything from a history of statistics to online statistical consulting. It also
contains two power calculators:

(1) Power Calculator written by Jason Bond which provides (a) power
or sample size for one- and two-sample studies, equal and unequal
variances, raw scores and lognormal transformation, (b) the same
information for exponential, binomial, and Poisson distributions,
and (c) power and sample size calculations for the correlation coeffi-
cient,

(2)  Sample Size Calculator which computes the sample size needed for
confidence and maximum allowable deviation for (a) means, (b)
proportions, and (c) totals.

home.clara.net/sisa
This site contains online statistical computational capability and a
power/sample size program for the t-test.

www.stat.uiowa.edu/~rlenth/Power/index.html

Entitled “Java Applets for Power and Sample Size,” this page
(Russell Lenth, University of Iowa) provides an online program capable of
computing the power, sample size, and confidence intervals for means, pro-
portions, and a balanced ANOVA. It is quite easy to use and the page also
contains useful links to other sites.

Additional issues

Even with the references presented in this chapter, there will occasionally
be unique power analytic aspects of an experiment or an analysis that are
difficult to address — and which neither we nor the authors cited in this text
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have specifically addressed. Examples include violations of statistical
assumptions (e.g., hetereogeneity of variance in the analysis of variance), the
use of random rather than fixed effects in the analysis of variance, and the
use of new, specialized, or idiosyncratic statistical procedures.

Our approach to addressing these issues is relatively simple and has
been stressed throughout this book. First, when power analytic approaches
have not been developed for a specific statistical procedure, we suggest that
the investigator either (a) use a more conventional analytic approach or (b)
model his/her power based upon the closest simple analog. When assump-
tions are more likely to be violated than not (e.g., heterogeneous covariate—
dependent variable regression slopes), then the results can be modeled using
a less restrictive approach (e.g., one-way ANOVA rather than ANCOVA).
When neither of these options is feasible (e.g., a within subjects design must
be used but it is suspected that sphericity will be violated and Muller &
Burton (1989) above does not specifically address the issue at hand), then
the formulas in the Technical appendix may be used to calculate power after
adjusting for the hypothesized problems (e.g., by altering the degrees of
freedom based upon the Greenhouse—Geisser correction factor). This may
well mean that technical statistical assistance will be required, but this is
always an appropriate (and recommended) option. Regardless of the
approach taken, however, an explicit description of the modeling assump-
tions made and the power analytic methods used to arrive at the indicated
power/sample size estimates should always be provided to enable the pro-
fessional consumer to understand the rationale by which the results were
obtained. The power analytic process, after all, is ultimately simply an
imperfect (but extremely valuable) tool for helping to ensure the ultimate
success of our experimental efforts.

Conclusion

The above resources are only a sample of those available and they represent
only a single snapshot in time (August 11, 2001). We expect that these will
increase exponentially over the next decade due to (a) the increased use of
the web (and the unstinting willingness of statisticians and research method-
ologists to share their expertise with the professional community) and (b)
the increasing availability of non-commericial, downloadable software.
Perhaps eventually the availability of these resources, more than any other
factor, will make a reality of Jacob Cohen’s dream of a power analysis being
performed at the design stage of every experiment.
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The purposes of this appendix are (a) to provide the detail neces-
sary for the evaluation and/or replication of our results and (b) to allow an
investigator to tailor our tables to other values and parameters that may be
encountered in the conduct of certain experiments. Different formulas for
the calculation of power will produce slightly different results but, as
described elsewhere in this book, a power analysis is basically an estimating
modeling procedure, hence the relatively minor differences accruing from
the various formulas presented in the literature are usually trivial in nature.

Chapter 1. The conceptual underpinnings of statistical power

The most basic (and perhaps the most important) formula used in our con-
siderations of power involves the effect size (ES) concept as it applies to the
difference between two means:

Formula 1.1. The effect size between two independent

means
Mg — M,
ES=—Et "€
SDpooled

Most of the power calculations presented in this book are based
upon adjustments and extensions related to this two-group ES. Let us there-
fore begin with the statistical procedure used to evaluate the statistical sig-
nificance of this unadjusted ES, which is the independent samples ¢-test. To
calculate its power, it is necessary to specify three parameters: (1) the alpha
level, (2) the N/group to be employed, and (3) the hypothesized ES which
is expected to accrue as a result of the proposed experiment. Once these
values have been specified, it is possible to compute the power available for
any two-group study (involving independent means) based upon only two
statistics: the critical value of the f needed for statistical significance (which
of course is based upon the alpha level to be employed (the first parameter),
and the projected N/group (the second parameter)), and the hypothesized
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t which will occur if the third parameter (the hypothesized ES) is appropri-
ate.

The critical value of ¢ is available directly from a t-distribution (we
employed the COMPUTE function in SPSS) using degrees of freedom
equal to 2N — 2 (where N refers here, and elsewhere, to the number of sub-
jects per group). As indicated above, the hypothesized f can be calculated
directly from the hypothesized ES:

Formula 1.2. The independent samples t-test
- ESpyp

t =
be \/2/N

Once these values are computed, an intuitively attractive means of
computing the power of a t-test simply involves (a) subtracting the critical
value of f from the hypothesized ¢, (b) “pretending” that the difference is a
z-statistic, and (c) ascertaining what proportion of the normal curve is to
the left of the z-score (the COMPUTE function of SPSS gives exact values
for this parameter).

Formally, this process is depicted by the following formula:

Formula 1.3. An intuitively attractive (and surprisingly
accurate) power formula

power=p (z= b t.)

Since the hypothesized ¢ is not normally distributed (it is slightly
skewed because it, for example, does not have a mean of zero), Hays (1973)
suggests a correction term derived by Scheffe (1959), producing Formula
1.4 which we have used to construct many of the power tables throughout
this book. In actuality, the differences between the values produced by this
correction and Formula 1.3 are completely trivial in all but the smallest
experiments and many texts do not bother to apply it, using instead some
variant of Formula 1.3 (which provides perfectly acceptable results).

Formula 1.4. Scheffe’s corrected power formula

tC A%

thyp -
power=p| z=

342



STRATEGIES FOR INCREASING STATISTICAL POWER

Chapter 2. Strategies for increasing statistical power

Strategies 1 through 4 follow directly from Formulas 1.3 and 1.4 above in
the sense that the size and statistical significance of the hypothesized ¢ is
directly influenced by N and the ES. Strategy 5 (employing as few groups
as possible) is based upon the fact that multiple comparison procedures are
necessary when three or more group means are employed. The fact that ¢
is increased (and the method by which this occurs) when it is derived from
the Studentized range distribution is documented in the Chapter 6 heading
below. Strategy 6 1s based upon the fact that the use of a covariate or block-
ing variable adjusts the hypothesized ES upwards and the method in which
this is computed is described in the section below devoted to Chapter 7.
The computational procedures demonstrating strategy 7 (employing
repeated measures) are presented under Chapter 8. Techniques for assessing
the power of interactions are presented under the Chapter 9 heading.

Strategy 9: Employing measures which are sensitive to change.
Table 2.10 was produced by a linear adjustment to the hypothesized ES
based upon proposed increases in dependent variable sensitivity. Hence if
the originally hypothesized ES was 0.50, and it was possible to construct a
dependent variable that was 40% more sensitive to change from baseline to
end-of-treatment, then the actual hypothesized ES would be 0.50X 1.4 or
0.70.

Strategy 10: Employing reliable measures. The relationship
between increases in dependent variable reliability is based upon the classi-
cal measurement formula that quantifies the attenuating effect of reliability
upon validity. To generate the values presented in Table 2.11, we first con-
verted the hypothesized ES to an r via the following formula:

Formula 2.1. Relationship between r and the ES concept

~ ES?
e\ ES?+ 4

Once this is done, a formula presented by Nunally (1967, p. 219) and others
can be used to adjust the hypothesized r (since the ES can be conceptual-
ized as an instance of concurrent validity):

Formula 2.2. Relationship between reliability and validity

Rely,
r/ldj = rhyp Rel
‘ €l
yp
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Where

(1)  Rel, is the reliability actually obtained after collecting data, and
() Rel s the reliability the investigator expected to obtain.

Once accomplished, the adjusted r can be converted back to an adjusted ES:

Formula 2.3. Converting r to ES

2r
V1—r?
This ES, then, becomes the ES that has been adjusted based upon changes or
discrepancies in reliability between the reliability of the dependent variable
upon which the hypothesized ES was based and the hypothesized reliabil-

ity of the dependent variable that will be employed in the study being
designed.

ES=

Strategy 11: Using direct rather than indirect dependent variables.
Here again it is convenient to convert the hypothesized ES to a hypothe-
sized r via Formula 2.1 and, once it is adjusted, convert it back again using
Formula 2.3. The adjustment process for the hypothesized r is then given
by the following formula:

Formula 2.4. Effects of causal distance between indirect
and direct dependent variables upon r

r =r Xr_
xy—adj xy X,

1><r

x xlx2 " T

Where

(1) r, is the originally hypothesized ES (converted to r) between the IV
and the DV of choice,

(2) ., 1s the correlation between the DV of choice and the DV which
is one step removed from this DV of choice,

(3) r,,,1s the correlation between the DV which is one step removed
with the DV which is two steps removed, and

4) Ty ad 19 the adjusted correlation between the IV and the DV at the
final step in the causal chain.

Chapter 5. The paired t-test

The basic power formula for the paired t-test is the same as for its independ-
ent samples counterpart, except that the actual values of the following
parameters change based upon differing degrees of freedom and the fact that
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the correlation between the paired correlations directly impacts the error
term.

The hypothesized ES is adjusted based upon the projected correla-
tion between paired observations:

Formula 5.1. ES adjustment based upon the correlation
between paired observations

EShyp
ES, =
VT =

Where ES,  1s the original hypothesized mean difterence between
the two paired groups (e.g., baseline vs. follow-up) divided by the pooled
standard deviation of each group using Formula 1.1 and r is the projected
correlation between pairs of observations; df now becomes the number of
pairs minus 1 (i.e., N—1 rather than 2N —2).

Thus, returning to our earlier example in which the EShyp was 0.50
and the N/group was 64, we obtained a difterence between the ¢_ (1.98 for
126 df) and the fyp (2-82) of 0.84, which when converted to a z yielded a
power of 0.80 using Formula 1.4. Let us suppose now, however, that we had
a pre—post design employing 64 subjects and the same hypothesized ES of
0.50, but that the r between our paired observations was 0.60.

As described above, both our hypothesized f and the critical value
of t would change, although the hypothesized ¢ will change the most dra-
matically because of the direct adjustment to the ES based Formula 5.1:

0.50
ES . =————=0.79
4 \/1—0.60

Which affects the hypothesized ¢ as follows:

L

"PN2/64

The ¢_ is now computed based upon 63 df (instead of 126) and is
reduced slightly to 2.00. Using Formula 1.3, the z corresponding to the
difference between these two t values (4.47 —2.00) is 2.47, which corres-
ponds to the 99th percentile, which also means that the power has increased
from 0.80 to 0.99 via the use of a paired t-test under the above conditions.

Chapter 6. One-way analysis of variance

Power of the F-ratio. For the power of the F-ratio, we used a
formula provided by Laubscher (1960, Formula 6), which is simplified as
follows:
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—~
N
~
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TN
L

(6)

Formula 6.1. Power of the between groups F-ratio

dfnunl + 2NCP df;lump cv
Z(dfl]l]!ll + NCP) - - (2dfnum - 1)
_ dfnum + NCP dfden

pO\VCr dfnum FCV + dﬁllllll + 2NCP
dfden df + NCP

Where

num

Z is the percentile value for power,
power

df  isthe degrees of freedom for the numerator of the F-ratio
(number of groups — 1),

NCP  is the nowcentraling parameter or f2N (df +1),

num

f=1 d, where in this case d is the ES for the two most divergent
means:

df, =~ is the degree of freedom for the denominator of the F-
ratio, df, =(df +1) (N—1), where Nis the number of subjects

num

per group, and
F is the critical value of F for df  and df

num den”

Since the significance, hence power, of F is dependent upon the

pattern of means for a study of three or more groups, however, it is neces-

sary to adjust this formula for the hypothesized pattern or spread of means.
For this step, we rely upon formulas presented in Cohen (1977) that repre-
sent low, medium, and high dispersion patterns (which produce low,
medium, and high power values) for F. These weights are multiplied by d
(the largest pairwise ES in the experiment), thereby adjusting f in
Laubscher’s formula above as follows:

f=wd

where W, is the weight for the hypothesized pattern of means.

The specific formulas for low, medium, and high mean dispersions

are as follows:

346

Formula 6.2. Adjustment values for fbased upon the
dispersion pattern of means; K is the number of groups
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K+1
V 3(k—1)

W (medium dispersion pattern) = >

VK2—-1

W (high dispersion pattern) = K

The weights themselves, for three-, four-, and five-group studies produced
by these formulas are:

Groups W, W w,

L M H
3 0.408 0.408 0.471
4 0.354 0.373 0.500
5 0.316 0.354 0.490

To illustrate the calculation of the power of F, then, let us assume
the following parameters:

(1) four groups,

(2) N/group=>50,

(3) ES, ,=0.50 (i.e., the largest pairwise difference between means),
and

(4)  a high dispersion pattern for the four means.

The first step in the process is to adjust f based upon the hypothesized dis-
persion pattern, or f= W, d=0.50X0.5=0.25. Next, the remaining values
described above are computed as follows:

o = H groups — 1=3,
N=50,
f=0.25,
NCP=0.25>X50X4=12.50, and
df, =4N—df —1=196.

den num

Filling these values into Formula 6.1 produces a z of 1.044, which corres-
ponds to a power value of 0.85 (i.e., the area of the normal curve to the left
of this particular z-score).

It is important to note that the above formula is applicable to any
F-ratio emanating from any design as long as (a) the degrees of freedom for
the numerator and denominator (as well as the appropriate values built upon
them) and (b) the ES are adjusted appropriately.
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Multiple comparison procedures. We will now describe the ration-
ale used for computing power for two multiple comparison procedures
designed to protect the alpha level while permitting the statistical evalua-
tion of all available pairwise contrasts. Both procedures employ the
Studentized range statistic, for which distributions exist for experiments
with different numbers of groups. The first, Tukey’s HSD procedure, is
designed to compensate based solely upon the number of groups involved,
while the second, the Newman—Keuls procedure, is a more liberal proce-
dure that is based upon how many group means separate a particular pair-
wise comparison.

Since both the Studentized range statistic (designated as ) and f, for
which we have already demonstrated the computation of power, can be
expressed in terms of the ES concept (see Formula 1.2 for the relationship
between ES and 1), it follows that the procedures used to produce the power
tables for the independent samples t-test could be used for g (and thus for
experiments involving different numbers of groups), if it were possible to
adjust a pairwise ES based upon the appropriate Studentized range statistic
rather than t.

Fortunately, a formula provided by Tukey (1953) designed to deter-
mine the mean difference between any two groups needed to achieve stat-
istical significance (which we will designate as the critical value of the mean
difference or MD_ ) in a multiple group study serves quite nicely for this
purpose:

Formula 6.3. Critical value of mean differences based
upon studentized range statistic

At first glance this formula may not appear particularly helpful in
an a priori consideration of power since the ANOVA term (MS__ ) is not
typically known until after the study data have been collected and analyzed.
N, of course, can be specified in advance and ¢ can be determined from
the Studentized range distribution based upon N and the number of groups
being employed (i.e., comparable to the degrees of freedom for the F-
ratio).

As in our previous computational procedures for the overall F-ratio,
however, if we assume a within group standard deviation of one (by stand-
ardizing the scores involved if nothing else), this sets the MS__ to 1.0. It
also means that MD_ automatically becomes ES_ based upon the Studentized
range distribution since the ES is the mean difference divided by the standard
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deviation and, when SD=1, the ES equals the mean difference. Tukey’s
formula thus reduces to the following much more useful construction:

Formula 6.4. ES based upon the Studentized range statistic

ES =4 N

Since we can easily calculate ¢ based upon ES _ using Formula 1.2:
cv v
ES,,

P

“ V2/N
it follows that we now have the basic constituents to calculate the power of
an MCP that employs the Studentized range distribution. In other words,
what we have done in effect is to determine the critical value of ¢ which
will be necessary to achieve statistical significance for a pairwise compari-

son based upon any number of groups in an experiment. All we need do is
calculate the hypothesized ¢ and the corrected critical value of ¢ between any

two means that we wish to compare and then compute the available power
based upon Formula 1.4.

Let us illustrate this process for the Tukey HSD procedure by
employing the numerical example used to show how power is computed
for the overall F-ratio in the previous section. There, it will be recalled, the
relevant parameters were:

(1) N/group=50,
(2) the number of groups is four, and

3) ES,, of the largest pairwise comparison is 0.50.

In order to employ either Formula 1.3 or Formula 1.4, we must calculate
both the fy, and the 7 . The £ is calculated irrespective of the number of
groups involved as follows:
ESyy, 0.50
(o= = =250
OV2/N O V2/50

The ¢ _ is calculated based upon the g-distribution for four groups and the
df,  for the F-ratio of 196 (i.e., df=4N—4), which in this case is 3.64.
(This value can be obtained from many standard statistical texts or from dis-
tributions available in statistical packages such as SPSS or SAS.) Filling these
values into Formulas 6.4 and 1.2, we obtain the following:

1 1
ES_ = q\/;= 3.64 \/;:0.514
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and,

ESCV

0.514
t = = =2.57
Y V2/N V2/50

Filling these values into Formula 1.3 then produces a power estimate of 0.46
and the required sample size to achieve a power level of 0.80 is 92 subjects
per group. The power/sample size requirements based upon the Studentized
range statistic are, of course, only relevant for the single pairwise compari-
son involving an ES of 0.50 and it is only relevant for Tukey’s HSD. The
Newman—Keuls procedure employs different g-statistics based upon how
many means are hypothesized to fall between the two groups upon which
the ES is based. Thus, assuming the ES remains at 0.50, if the two groups
upon which this mean is based are separated only by one additional mean,
the required sample size drops from 92 to 82 and if no groups intervene
between the pairwise ES of 0.50, the Newman—Keuls procedure allows stat-
istical significance to be achieved between these two groups 80% of the time
using only 64 subjects per group. (Note that, not coincidentally, this is the
same result that would have accrued if an independent samples ¢-test were
to be employed for this contrast.)

The Newman—Keuls MCP can, therefore, result in significant savings
with respect to required sample sizes under certain circumstances, namely
when the contrast of interest does not correspond to the largest possible pair-
wise ES in an experiment. (Power and sample size requirements are identical
for the two MCPs when this is the case, because both the Newman—Keuls
and the Tukey procedures employ identical Studentized range statistics.)

Because of the number of tables involved (and the fact that many
statisticians disagree with the assumptions made by the Newman—Keuls pro-
cedure, considering it too liberal), we have provided power tables only for
the Tukey HSD procedure, although we have provided sample size charts
for both the Newman—Keuls and the Tukey HSD multiple comparison pro-
cedures.

Chapter 7. One-way analysis of covariance

The computation of power for the between subject analysis of covariance
(ANCOVA) is exactly comparable to the between subject ANOVA except
that (a) the presence of the covariate decreases the size of the error term and
(b) one degree of freedom per covariate is lost therefrom.

For power analytic purposes it is more convenient to adjust the ES
than the error term, the former of which can be done via the following
formula:
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Formula 7.1. Adjusting the ES based upon the presence
of a covariate

ES - B
TN
Thus, let us return to our four-group ANOVA example above in
which the following parameters were posited:

(1)  the number of groups is four,

(2) the ES for the largest mean difference among groups is 0.50,

(3) there is a maximum spread among the four means (high dispersion
pattern), and

(4) N/group =50, and the additional parameter needed for ANCOVA.

These parameters, it will be remembered, resulted in a power estimate of
0.85 for the overall F-ratio. If a covariate were available for this study,
however, an additional parameter would need to be posited which would
be the correlation between this new variable and the dependent variable.
Let us assume, therefore, that this value was hypothesized to be r=0.60.

In applying Laubscher’s formula (6.1), the following parameters
would change: (a) df,  (this will now be 4N—5 or 195, instead of 4N—4
or 196, which would have a completely minimal effect upon the overall
power calculation) and (b) f, the multiple group ES adjusted for the eftects
of the covariate, which it will be remembered is equal to d/2, or the ES for
the largest difference among the four means adjusted for the effects of the
covariate. This latter adjustment, employing Formula 7.1, would produce
the following result:

ES .= 050 =0.50/0.80=0.625
From this point on, using Laubscher’s formula is the same, regardless of
whether an ANCOVA or ANOVA F-ratio is being computed. First, for
example, it is necessary to adjust the ES (d), which is now 0.625, based upon
the hypothesized pattern of means. For the high dispersion pattern, this
involves multiplying by 0.50 (which actually is no adjustment at all since no
power is lost for this pattern) and f=0.50d:

f=0.50X0.625=0.3125
The other values that will be needed for Formula 6.1 are as follows:

1) df =3,

num

2) N=50,
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(3) NCP=f? NXgroups=0.312X50X4=19.22
(4) df, =195,

Filling these values into Formula 6.1 will produce a z of 1.84, which in turn
corresponds to a power of 0.97 (i.e., the area of the normal curve to the left
of a z of 1.84), which constitutes a substantive increase from the previously
computed power of 0.85 for the F-ratio produced without the benefit of a
covariate.

Multiple comparison procedures. The rationale for calculating the
power of individual MCPs is exactly the same as the development presented
earlier for the one-way analysis of variance except that here, again, the pres-
ence of the covariate changes a number of the relevant parameters: namely
(a) each of the individual pairwise ES values must be adjusted for the covari-
ate—dependent variable rvia Formula 7.1 and (b) the df;  of the Studentized
range statistic (¢) must be adjusted for the one degree of freedom consumed
by the covariate (which again is minimal except for the very smallest N
values).

Power and sample size tables for ANCOVA. For convenience, the
power and sample size tables for both the overall ANCOVA F-ratio and the
multiple comparison procedures are constructed based upon the unadjusted
ES (d). Thus, while the tables themselves employ the unadjusted ES, the
power and sample size values were computed based upon the adjusted ES
to avoid the necessity of the user to employ Formula 7.1 each time he/she
wished to perform a power/sample size analysis for a design employing a
covariate.

Chapter 8. One-way repeated measures analysis of variance

The power of the repeated measures (within groups) F-ratio is, not surpris-
ingly, also computed by the use of the Laubscher formula (6.1) that was
employed for both the one-way between subject ANOVA and the one-way
between subject ANCOVA, although of course the df, ~and the ES (f)
were adjusted based upon the design and the correlation between the
dependent observations. As in the independent samples ANOVA, fis based
upon the largest pairwise difference among groups and, in the present case,
is adjusted in the same manner as described for the paired t-test:

Formula 8.1. Within subject adjustment of the ES (d)

ES = o
adj V1—r

where r is now the correlation between the repeated observations.
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In way of illustration, let us use the same example and parameters
employed in the ANCOVA discussion above, except now r will be used as
the correlation among the repeated measures instead of the correlation
between each subject’s covariate and dependent variable score. These
parameters, then, are:

(1) the number of groups is four,

(2) the ES for the largest mean difference among groupsis 0.50,

(3) there is a maximum spread among the four means (high dispersion
pattern),

(4)  N/group =50 (which, of course, is the same 50 subjects represented
in each of the four groups), and the additional parameter needed for RM
ANOIVA, and

(5) r=0.60 between the matched group scores.

Our first step is to adjust d (which is the ES between the largest pairwise
group difference) based upon the r of 0.60, which we have already done for
an ES of 0.50 in computing the power of the paired ¢-test and found to be:

ES —&—O 50/0.63=0.79

WoV1I-060 '
(Note that this is a considerably more dramatic ES adjustment than was
observed using Formula 7.1.)

The next step is to convert this value to f by multiplying it by the
appropriate weight presented in Chapter 6 for a four-group study with a
high dispersion pattern (or 0.500) or: 0.79X0.5=10.40.

Once these two steps are completed, the appropriate values are
filled into Formula 6.1, although it should be noted that df,_ employs the
following formula:

df = (# groups — 1) X (N— 1) = (4— 1) X (50 — 1) =3 X 49 =147

den

(which 1s considerably less than the 195 present for the between subject
ANCOVA). These values, then, produce an estimated power in excess of
0.99 which is considerably higher than either the value obtained for the
one-way between subject ANOVA (0.85) or the one-way ANCOVA
(0.97), even though substantively fewer subjects were employed (i.e., 50 as
opposed to 200).

Multiple comparison procedures. The rationale for calculating the
power of individual MCPs is exactly the same as the development presented
earlier for the one-way analysis of variance, except that the ES is adjusted
for (a) the effects of the correlation among the matched observations and
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(b) the df, for the g-statistic is adjusted based upon the value used for the
overall F-ratio discussed above. For our RM ANOVA example, the power
for detecting a pairwise comparison involving 0.50 between two most
extreme groups (employing the Tukey HSD procedure) would thus be 0.91
as compared to 0.46 for a between subject ANOVA and 0.70 for an
ANCOVA (assuming a covariate—dependent variable r of 0.60).

The power and sample size tables. As with the ANCOVA, it is the
adjusted ES values based upon Formula 8.1 that are actually represented in
the columns presented in Chapter 8, although it is the unadjusted ES values
that are actually presented for the reader’s convenience. (In other words,
while the user specifies an ES of 0.50 for the above analysis and locates the
power at the intersection of this column value and the N/group row, the
table itself has been constructed based upon an ES of 0.79 instead of 0.50.)

Chapter 9. Interaction effects for two-factor between and
mixed analysis of variance

Since interaction effects deal with patterns among cell means that occur inde-
pendently of the main effects that comprise them, their ES values must be
computed independently thereof as well. The general formula for an inter-
action ES, however, is conceptually the same as for a f-test, although it is
helpful to remember that an ANOVA ES (often designated as f) is inter-
preted on a different scale than is the case for the two-group ES that we use
throughout this book. (Specifically, for one degree of freedom effects, d=
2f).

Conceptually, then, it is convenient to view the interaction ES in
terms of the standard deviation of each cell’s inferaction effect, since we can
(and always do) set the within cell standard deviation to 1.0:

Formula 9.1. Conceptual formula for an interaction ES

_ standard deviation of each cell’s interaction effect

interaction

within cell standard deviations

Prior to calculating the interaction effect’s standard deviation, however, it is
important to note that any given cell’s contribution to the overall interac-
tion term must first have the contribution due to each main effect factored
out, which can be accomplished computationally as follows:

Formula 9.2. Individual cell interaction effect

M

2nd factor + ]Vltotal

Cell interaction effect = M —M

1st factor
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A very useful formula provided by Cohen (1977) can then be adapted to
provide the standard deviation of the interaction effects (or the interaction ES):

Formula 9.3. ES for a two-factor interaction

B 2 (interaction effects for each cell)?
Esinteraction -

(#rows) (#columns)

Which can be generalized to higher levels (e.g., a three-way interaction) as

ES _ 2 (interaction effects for each cell)?
interaction (total # CCHS)

Remembering, that both of these formulas assume that the standard devia-
tion within each cell is 1.0. That is:

SD

S _ interaction __
interaction SD cells interaction

follows:

To illustrate numerically, let us consider a 2X2 example in which the fol-
lowing standardized means were hypothesized. (Standardized means from an
interaction perspective are calculated by subtracting the smallest hypothe-
sized unstandardized mean from each cell and then dividing by the pooled
standard deviation.)

Males (B1) Females (B2) Gender main effect
Experimental (A1) 1.00 (A1B1) 0.00 (A1B2) 0.50
Control (A2) 0.00 (A2B1) 0.00 (A2B2) 0.00
Treatment main effect 0.50 0.00 Total mean=0.25

Filling these values into Formula 9.3, we obtain:

Effect 1.0—0.5 —0.5+0.25)2=+0.252=0.0625

A1B12:(
Effect, .2= (0.0 — 0.5 — 0.0+0.25)>= —0.25>=0.0625
Effect,,,,>= (0.0 —0.0 = 0.5+0.25)>= —0.25%=0.0625
Effect, ,,,2= (0.0 — 0.0 — 0.0+ 0.25)>= +0.252=0.0625
Total=0.25

interaction

=—=0.25
1
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Which when converted to d (since we are dealing with only one degree of
freedom and we employ d throughout this book), becomes 0.25 X 2=0.50.

This, in turn, encouraged us to suggest that all interactions be vis-
ualized in terms of collapsed 2 X2 shells, thereby providing a more appeal-
ing conceptual basis for interpreting the interactions and the far simpler
computational procedure for 2 X 2 interactions, or simply subtracting the ES
values for each level of B at each level of A (or vice versa) and dividing the
difference by 2 to express the ES in terms of d:

[(A1B1—A1B2)— (A2B1 — A2B2)]/2=
[(1.0—0.0) — (0.0~ 0.0)]/2=0.5

The N/group for a between subject interaction, then, is given in Formula
9.4:

Formula 9.4. Generalized formula for calculating
N/group in ANOVA designs

df,

N/group = e

+1
[df, +1]

Where the df__ is calculated via the following formula:

umerator

df  =[(# cells) X (N/cell)] — [# cells]

error

The power tables for the designs presented in Chapter 9 are based upon
these values of N/group, although for convenience sake the tabled values
are presented as N/cell. The same basic ANOVA power formula (6.1) is
employed here as in Chapter 6, except that the parameters employed (e.g.,
df . F_ ) are based upon the specific design employed (hence for the
present 2 X2 design with an N/cell of 25, the df__would be 96, the crit-
ical value of F would be 3.94, the df  would be one, and so forth). The
N/group, here, would be (4X25) — 4 or 96/2=48.

The interpolated power could be estimated using either Table 4.1
(using the appropriate adjustments) or Table 9.1, although for convenience
sake the interaction tables presented in Chapter 9 are based upon the N/cell,
hence the power (0.70) is found at the intersection of the N/cell row of 25
and the ES=0.50 column.

Between subject ANCOVA interactions. The same computational
procedures were employed for the ANCOVA interaction tables as just dis-
cussed, although the df was reduced by one based upon the existence of
a covariate and the interaction ES was reduced based upon the covari-
ate—dependent variable correlations of 0.40 and 0.60 via Formula 7.1.
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Mixed design two-factor interactions. Since the interaction in a
mixed design is a within subject (or repeated measures) effect, the degrees
of freedom for the error term (and hence the critical value of F) and the
interaction ES ( f) must be adjusted accordingly.

For convenience, all of the interaction tables, including mixed
designs, are constructed based upon N/cell (instead of N/group) and the
unadjusted ES expressed in terms of d (rather than the adjusted ES based
upon f which is inputted into Formula 6.1).

Chapter 10. Power analysis for complex designs

The extensions to other designs discussed in this chapter are based upon pre-
vious formulas presented earlier in this Technical appendix. For example,
the values of N/group for calculating the power of main effects in multi-
factor designs (and hence the values presented in Table 10.1) are based upon
Formula 9.4. The adjustments to ES values other than 0.40 and 0.60 pre-
sented in Tables 10.2 and 10.3 are based upon Formulas 7.1 and 8.1 respec-
tively. The formula for converting ES to r (and vice versa) is provided by
Formula 2.1 and so forth. In general, then, while a number of shortcuts have
been suggested in Chapter 10 to facilitate a quick estimate of power for the
more complex designs discussed, more precise estimates may be obtained by
actually computing the power based upon the formulas already presented in
this appendix.
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