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Preface

Since the late 1950s, when the race for more and more ambitious projects in
aerospace in many countries started, there has been a necessity for a good book
in this subject area for engineering students, which is the motivation for writing this
book. There is no doubt that a number of books are already available in the market,
but either they are generally too mathematical or they cater mainly to the interests
of students of physics.

This book is an outgrowth of lectures given by the author to the undergraduate
and graduate students of aerospace engineering at the Indian Institute of Tech-
nology, Madras, India, specializing in the fields of aerodynamics and propulsion.
In their later profession these students are increasingly called to tackle real gas
problems of hypersonic flight speeds including reentry and high rate of heat
flux in nozzles and reentry bodies and for various exotic and sophisticated high
temperature manufacturing processes. It was, therefore, necessary to develop a
course of lectures containing the fundamentals of the high temperature gases,
the effects of the high temperature on the thermophysical, transport, and other
properties, the diagnostic techniques, and the preliminaries about the behavior of
the ionized gases in electromagnetic fields. These topics, however, belong to such
diversified areas as statistical thermodynamics, kinetic theory of gases, plasma
physics, plasma diagnostic techniques, magnetogasdynamics, and conventional gas
dynamics. Treatment of these topics has been kept to a level which a student with
adequate mathematics and physics background should understand. Therefore at
various places in the book the derivation of equations has been done in considerable
detail. In this connection mention must be made of the chapter on diagnostic
techniques, because some reviewers felt that the optical techniques discussed are
too preliminary since very advanced techniques are nowadays used for the collection
and evaluation of the optical signals. However this author feels the necessity of an
approach with prisms and lenses for the understanding of the fundamentals. No
single book can possibly cover all the topics handled in the book adequately and
there could be differences of opinion about the best way of treating a topic. For
example, the so-called Monte Carlo method may be considered to be the method for
radiation gas dynamics, but this author feels that for general engineering students a
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more deterministic method would be appropriate. A book, including all the topics
above was, therefore, published several years back and in a limited Indian edition,
but it is not available now. In the meantime, there has been considerable progress in
the subject, and it was thought necessary to rewrite the book with the inclusion of
much additional material.

Some of the subject areas of immediate interest, which were developed during
the last 30 years, concern two- and multi-temperature plasmas and these have been
described in this book in considerable detail. The topics have been chosen no
doubt from the personal interest and areas of research of this author. Study of the
interaction between the hot gas containing charged particles and the electromagnetic
fields, especially the conditions under which Alfvén and other electromagnetic
shocks are generated, was, personally speaking, very fascinating. I would be happy
to discuss any of the topics in this book with readers if I am contacted through e-mail
under “tkbose@earthlink.net.” While the manuscript of this book was originally
written at the time the author was a professor of aerospace engineering at the Indian
Institute of Technology, Madras (current name: Chennai), India, he has, however,
retired in 1998 and moved to California.

Reproduction from several sources has been done in this book with the permis-
sion of the authors and publishers. This has been acknowledged at proper places.
Thanks are also due to the publisher, Springer Verlag, for the excellent job done
in publishing this book, especially in helping to convert from Corel Ventura, the
desktop language used initially to write the manuscript, to LATEX, which is the
preferred Springer typesetting system for book production.

The figures for this book were drawn generally with a computer, but where
it was too cumbersome, these were drawn originally by Mr. Karuppaiah of the
Indian Institute of Technology, Madras. Charts in Appendices are reproduced from
my earlier book, which again were reproduced from the book by Bosnjakovic
by permission of Verlag Theodor Steinkoff. Similarly the statistical weights and
energy levels given in Table 6.2 were published by permission of Springer Verlag
and similar tables given in Appendix A from my earlier book. Some other results
in Chaps. 8 and 9 were published in my earlier book by permission of Dover
Publications. This book was typeset completely on a PC by the author personally.
In addition, I would like to thank Professor Heberlein of the High Temperature Lab,
Department of Mechanical Engineering, University of Minnesota, Minneapolis,
USA, for the use of his figure of a supersonic free plasma jet at moderately low
pressures.

Finally, I would like to thank my wife, Preetishree, and the three children, Mohua,
Mayukh, and Manjul, for having put up with me during the writing of this book.

Reseda, CA, USA Tarit K. Bose
October 2003



Preface

For Revised Edition

Much has changed in the 10 years since the publication of the first edition of High
Temperature Gas Dynamics. Many topics presented in the book required updates,
and several new topics needed to be introduced to the book. As the book has been
available only sporadically in the past few years, it made sense to issue a new
edition, which you now hold in your hands.

The author would like to thank Springer Verlag for the love and care with which
the book is published. Also to thank are the two anonymous reviewers who made
useful comments.

The author has now returned to India and would welcome questions for
clarifications and suggestions for improvement of this edition through email,
“bose.tarit@gmail.com.”

Kolkata, India Tarit K. Bose
October 2013

ix

bose.tarit@gmail.com




Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Introduction to Quantum Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Line, Band, and Continuous Spectra: Bohr’s Atomic Theory . . . . 6
2.2 Wave-Particle Dualism and Wave Mechanics . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Rigid Rotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Anharmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Introduction to Statistical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Bose, Boltzmann, and Fermi Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Thermodynamic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Contribution of Translational Energy . . . . . . . . . . . . . . . . . . . 38
3.2.2 Contribution of Rotational and Vibrational

Energy Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Contribution of Electronic Energy . . . . . . . . . . . . . . . . . . . . . . 51
3.2.4 Sample Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Distribution of Energy Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Radiative Properties of High Temperature Gases . . . . . . . . . . . . . . . . . . . . . . 61
4.1 Basic Concepts and Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Gas Radiation and Equation of Energy Transfer . . . . . . . . . . . . . . . . . . 71
4.3 Radiative Characteristics for Ionized Gases . . . . . . . . . . . . . . . . . . . . . . . 95
4.4 Radiative Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4.1 Propagation of Electromagnetic Waves
in an Isotropic Media of Finite Conductivity . . . . . . . . . . . 109

4.4.2 Absorption and Scattering Coefficients of Particles . . . . 110
4.5 Radiation from Clouds of Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.6 Evaluation of Radiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6.1 View Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

xi



xii Contents

4.7 Radiation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.7.1 Rosseland Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.7.2 Optical Thin Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.7.3 Multi-Flux Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.7.4 Monte Carlo Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.7.5 Ray Tracing or DTRM Model. . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.7.6 Discrete Ordinate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.7.7 Discrete Transfer or Discrete Ordinate Model . . . . . . . . . 156
4.7.8 P-N Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.7.9 Marshak Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4.7.10 Gray and Multiband Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
4.7.11 Greenhouse Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

4.8 Solar Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
4.9 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5 Collision Processes for High Temperature Gases . . . . . . . . . . . . . . . . . . . . . . . 191
5.1 Dynamics of Binary Collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.2 Collision Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.2.1 Collision Between Neutrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
5.2.2 Collision Between Electrons and Neutrals . . . . . . . . . . . . . 202
5.2.3 Ion-Neutral Collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.2.4 Charged Particle Collision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

5.3 Collision Frequency, Mean Free Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
5.4 Reaction Rates and Vibrational and Temperature

Nonequilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
5.5 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

6 Equilibrium Composition of a Reacting Gas Mixture . . . . . . . . . . . . . . . . . . 225
6.1 Vant’ Hoff Model of Chemical Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . 226
6.2 Heat of Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
6.3 Properties of Mixture of Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
6.4 Equilibrium Composition of an Ideal Dissociating

Diatomic Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.5 Equilibrium Composition for a Multiple Component Gas . . . . . . . . 238
6.6 Equilibrium Composition for a Pure Monatomic Gas Plasma . . . . 244
6.7 Equilibrium Composition of a Multiple Temperature Gas

Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
6.8 Temperature Derivatives of Equilibrium Gas Mixtures . . . . . . . . . . . 254
6.9 Effect of Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
6.10 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

7 Transport Properties of High Temperature Gases . . . . . . . . . . . . . . . . . . . . . . 259
7.1 Motion of a Singly Charged Particle in

Electromagnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
7.2 Collision-Dominated Ionized Gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
7.3 Diffusion, Ambipolar Diffusion, and Mobility . . . . . . . . . . . . . . . . . . . . 269



Contents xiii

7.4 Viscosity, Heat Conductivity, and Electrical Conductivity. . . . . . . . 276
7.5 Diffusion and Radiative Heat Conduction . . . . . . . . . . . . . . . . . . . . . . . . . 282
7.6 Effect of Magnetic Field on the Transport Properties

of Ionized Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
7.7 Transport Properties of an Ideal Dissociating Gas . . . . . . . . . . . . . . . . 288
7.8 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

8 Boundary Effects for High Temperature Gases . . . . . . . . . . . . . . . . . . . . . . . . . 291
8.1 Emission of Electrons and Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
8.2 One-Dimensional Sheath Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
8.3 Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

9 Production of High Temperature Gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
9.1 Thermodynamic Charts for Air Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
9.2 Isentropic Flow in a Nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
9.3 Gas State After a Shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
9.4 Vibrational Relaxation Effects in Gas Dynamics. . . . . . . . . . . . . . . . . . 320
9.5 Electrical Breakdown in Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
9.6 High-Frequency Discharges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

10 Diagnostic Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
10.1 Temperature Measurement—Probe Method . . . . . . . . . . . . . . . . . . . . . . . 339
10.2 Temperature Measurement—Spectroscopical Methods. . . . . . . . . . . 343
10.3 Temperature Measurement—Interferometric Methods . . . . . . . . . . . 350
10.4 Velocity Measurement by Laser Doppler Velocimeter . . . . . . . . . . . . 353
10.5 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

11 High Temperature Gas and Magnetogasdynamics . . . . . . . . . . . . . . . . . . . . . 355
11.1 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
11.2 Magneto- and Electromagneto-Gas-Dynamic

Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
11.3 Wave Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
11.4 Small Perturbation of a Magnetogasdynamic Flow . . . . . . . . . . . . . . . 381
11.5 Shocks in Magnetogasdynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
11.6 Stability of 2D Ionized Gas Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

11.6.1 Hartmann Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
11.6.2 Numerical Procedure and Results . . . . . . . . . . . . . . . . . . . . . . . 407

12 Some Practical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
12.1 Arc Plasma Flow in a Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
12.2 Impinging Plasma Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
12.3 Particle-Plasma Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

12.3.1 Drag and Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
12.3.2 Internal Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
12.3.3 Low Pressure Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
12.3.4 Particle Charging Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
12.3.5 Fluctuating Velocity and Temperature . . . . . . . . . . . . . . . . . . 429



xiv Contents

12.4 A Transverse Blown Arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
12.5 Magneto-Gas-Dynamic Flow Inside Ducts . . . . . . . . . . . . . . . . . . . . . . . . 434
12.6 MGD Power Generation or Gas Acceleration . . . . . . . . . . . . . . . . . . . . . 437
12.7 Plasma Manufacturing and Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
12.8 Weakly Ionized Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
12.9 MGD Power Generation Topping Gas-Dynamic Cycle . . . . . . . . . . . 447

12.9.1 1D MGD Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
12.9.2 Two Basic MGD Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

12.10 Hall and Ion Thruster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
12.10.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
12.10.2 Numerical Procedure and Results . . . . . . . . . . . . . . . . . . . . . . . 461
12.10.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
12.10.4 Property Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

12.11 Faraday Generator: 3D Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
12.12 AJAX Project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
12.13 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

A Statistical Weights and Energy (cm�1)
for Selected Atoms and Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

B Enthalpy (MJ/kmol) for Different Gases
(1 MJ = 1 Mega Joule) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

C Entropy (MJ/kmol) for Different Gases
(1 MJ = 1 Mega Joule) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513



Physical Constants

c D Velocity of light in vacuum D 3:0 � 108 ms�1
e D Elementary charge D 1:602 � 10�19 As
h D Planck’s constant D 6:63 � 10�34 Js
kB D Boltzmann constant D 1:38 � 10�23 J K�1 D 8:61 � 10�5 eVK�1
Me D Mass of an electron D 9:108 � 10�31 kg
Mp D Mass of a proton D 1:672 � 10�27 kg D 1; 836:5 Me

NA D Avogadro number D .6:02544˙ 0:0004/ � 1026 molecules:kmole�1
R� D Universal gas constant D kB:NA D 8; 314 J.kmoleK/�1

RH D Rydberg constant for hydrogen D 10; 967; 757:6˙3:12m�1
�o D Dielectric constant in vacuum D 8:8550 � 10�12 As.Vm/�1

�o D Magnetic permeability in vacuum D 1:25664 � 10�6 Vs.Am/�1

� D Boltzmann constant of radiation D 5:672 � 10�8 Wm�2 K�4
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Conversion Factors

1 Newton (N) D 1 kgms�2
1 Joule (J) D 1Nm D 1 kgm2 s�2
1 Watt (W) D 1 Js�1 D 1Nms�1 D 1 kgm2s�3

D 1 Volt (V) � Ampere (A)
1 Gauss (G) D 10�4 Vsm�2 D 10�4 Tesla (T)
1 Ohm .�/ D 1VA�1
1 kmole D 1 kg-mole
1 Poise (P) D 10�1 kgm�1 s�1
1 Angstrom (Å) D 10�10 m
1 bar D 105 Nm�2 D 105 Pascal (Pa)
1 atm D 1:013 bar

Energy units (explained later in text) used generally are in J, K, cm�1, and eV. These
can be converted from one unit to another using the following relations:

1 electron volt (eV) D 1:602 � 10�19 J D 11; 614:4 K D 8; 058:26 cm�1
1 J D 7:246377 � 1022 K
1 cm�1 D 1:441304K D 1:989 � 10�23 J
1 Tesla D 1Vsm�2

xvii



Chapter 1
Introduction

All in a hot and copper sky
The bloody Sun at noon
Right up above the mast did start
No bigger than the moon.
(From “The Ancient Mariner”
by Samuel Taylor Coleridge)

From ancient times the sun, apparently the largest and the brightest of stars
visible to the naked eye, has been both an object of reverence and awe for the
common man and a source of inspiration and inquisitiveness. It is also the source
of all conventional energy on the earth. In ancient Egypt, the sun god Ra was
the dominating figure among the high gods. In India the sun is glorified in the
vedic hymns and there is even a dynasty of sun kings. There are over 200 known
quotations relating to the sun in English poetry. In recent times, all over the world,
the scientists, faced with the crisis of the conventional energy sources, are working
hard to develop an artificial controllable sun in the laboratory by nuclear fusion.

While the development of a practical artificial controllable sun will take some
more time, indeed years, there are many technologies in practical life in which the
application of high temperature gas is required. For example, it is a well-known fact
to thermodynamicists and heat power engineers that the thermal cycle efficiency of
a system depends on the ratio of the highest to the lowest temperature in the system.
Thus, any consideration for an increase in the thermal efficiency of the system,
especially in view of the very severe energy crisis these days, must necessarily mean
an increase of this temperature ratio. Now in a thermodynamic cycle the lowest
temperature is restricted by the ambient temperature. It is, therefore, evident that any
effort to increase the thermal cycle efficiency of a system will mean necessarily that
the highest temperature in the system must be pushed higher and higher. Corollaries
to this are that ways and means must be found to have better cooling of strongly
heated parts of the equipment, better materials, and more radical designs. As an
example, in gas turbine engines the maximum possible gas temperature at the time
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2 1 Introduction

of development of the first Whittle engine was around 750ıC, which has increased
to about 1; 500ıC in recent years. It is probable that this temperature may not
increase substantially in the future, since the maximum stoichiometric temperature
for aviation kerosene with air is around 1; 800ıC. Even if a different fuel is used and
air is replaced by pure oxygen, an increase in the turbine inlet temperature is very
unlikely, despite the best efforts to cool the blades and to develop new materials.
It has, therefore, been suggested to combine a conventional gas turbine engine with
a previously unconventional magnetogasdynamic system, which, with hardly any
moving parts, can operate at much higher temperatures. Furthermore, for aerospace
applications like rocket motors or in high-speed wind tunnels, the gas should be
heated to as high a temperature as possible before expansion to high speeds through
convergent-divergent nozzles. Currently this means densities of particles on the
order of 1024 per m3 and temperatures up to about 15,000 K. This temperature
limit is increased by several orders of magnitude in atomic bomb fireballs, the solar
interior, and in hydrogen bomb explosions.

Since the late 1950s, there has been tremendous space travel activity with
substantial focus on bringing human passengers back to the earth safely. Man has
gone to the moon and returned, and man-made probes have gone to most of the
planets around the sun. The technologies associated with space travel have brought
with them a betterment of human life here on earth, for example, in meteorology,
communication, weather forecasting, television, etc. For these purposes there is
a need for long-term positioning of satellites in earth orbit. For orbit correction,
ion and plasma propulsion devices have been in use for a number of years. The
industry uses several plasma devices regularly, for example, in plasma cutting,
plasma spraying, etc. All of these require an understanding of the behavior of high
temperature gases and their interaction with electric and magnetic fields.

It can thus be seen that there are many cases where knowledge of thermophysical
and transport properties of high temperature gases as well as their gas-dynamic
behavior in the presence of electric and/or magnetic fields is essential. For example,
the properties of flow through a convergent-divergent nozzle, at moderate temper-
atures, can easily be calculated for known constant value of specific heat ratio
� D Cp=Cv . For a gas like nitrogen, in which the contribution of the vibrational
energy to the total energy at room temperatures is small, � D 7=5 D 1:4, but at
an elevated temperature, say 3,000 K, there is a full contribution of the vibrational
energy and � D 9=7 D 1:29. At temperatures around 7,000 K and a pressure
around 1 atm, the nitrogen molecules are completely dissociated, and for these a
value of � D 5=3 is valid. Finally at temperatures above 20,000 K, where the
nitrogen atoms at a pressure of 1 atm are completely broken into singly or multiple-
charged ions and electrons, because of very large values of the ionization energy, it
is of the order of one. Furthermore, in the above temperature range, the mole mass
of the nitrogen gas decreases continuously from a value for a nitrogen molecule
gas of 28 kg/kmole, to the value for a nitrogen atom gas of 14 kg/kmole, and then
further to a very small value for the gas mixture in which the electrons are the
main constituents. It can, therefore, be seen that for nozzle calculations for high
temperature gases, variation of the specific heat ratio and the mole mass of the gas
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have to be taken into account, complicating the computation procedure considerably.
Similar to the preceding gas properties, other transport properties like the viscosity
coefficient, the thermal conductivity coefficient, and the diffusion coefficient change
their values considerably with temperature, as well as some of the dimensionless
transport property parameters like the Prandtl or Schmidt numbers.

We ask now the question. What is the temperature? While classical thermody-
namics fails to give a definite answer on this, it is answered through the concept
of equilibrium. According to the zeroth law of thermodynamics, if two bodies
brought in contact with each other are in equilibrium, then they both have the
same temperature. Further, the second law states that heat will flow from the
higher to lower temperature, which is a nonequilibrium condition. Here, again,
the temperature itself is not defined.

A slightly different question is about the nature of different energy forms in
solids, liquids, or gases, and the pursuit of an answer has led to the concepts of
kinetic and potential energies. Therefore, the gas molecules have energy forms
like translational, rotational, vibrational, electronic excitation energy, etc., and any
changes in any of these energy forms manifest themselves in the form of radiative
electro-magnetic energy. The concept of various energy forms has led also to
the question of their distribution and to the definition of temperature in terms of
statistical distribution of the energy form under equilibrium conditions. Any flow of
mass, momentum or kinetic energy, or electric current is now computed from the
first order perturbation of the equilibrium values.

A related question is, therefore, what is nonequilibrium? It can be again of
various types. A chemical nonequilibrium is when the molecular particles react
with each other to reach a chemical equilibrium state. On the other hand, a thermal
nonequilibrium may be when the various energy forms can be described by different
temperatures. For example, if a strong current is passed through a gas, the electrons
may absorb more electromagnetic energy than the heavy particles, but they may
not be able to give up that energy to the heavy particles because of inefficient
energy transfer due to collision and, therefore, the electrons and heavy particles may
have effectively two different temperatures. Similarly in an expanding gas flowing
through a convergent-divergent nozzle or in a gas-dynamic shock, the translational
and rotational temperature may change quickly, but not the vibrational temperature.

Because of the dissociation and ionization of gases at higher temperatures, there
would be areas of variable concentration of different specie, as a result of which
the particles tend to diffuse from the regions of higher concentration to those
of lower concentration. Thus in electric discharges, the ions and the electrons
tend to diffuse out from hotter to cooler regions and recombine there; similar
recombinations take place at lower temperatures between the atoms to become
molecules. These diffusions and recombinations give rise to energy transport from
hotter to cooler regions and may allow energy transfer at least of the same order of
magnitude as by pure conduction.

Ionization of gases at high temperatures gives additional properties to gases in
the presence of electromagnetic fields. This induced many authors to talk about
the ionized gas as the fourth state of matter, the first three states being the solid, the



4 1 Introduction

liquid, and the non-ionized gas state. Another name for the gas mixture consisting of
charged particles was used by the American scientist I. Langmuir, who called such a
gas mixture a gas plasma—a similar name to blood plasma, known to the physicians
and the medical students, being only incidental. With the help of electromagnetic
fields, the magnitude and the direction of velocity of such high temperature gases
can be altered and they can be confined into a space without touching the solid
boundaries, increasing the prospects for radical designs of equipment. For the
uninitiated, however, the distinguishing feature of an ionized gas is its ability to
conduct electricity.

This book starts with a discussion on the rudimentaries of modern quantum
mechanics, followed by an introduction to statistical mechanics and the methods
to obtain the thermophysical properties. From the concept of energy levels, the
principles to determine the radiative properties of high temperature gases are
discussed exhaustively, so that the ranges of optically thin and optically thick
radiation are clearly delineated. Further, the collision processes between different
particles are discussed, and expressions for the collision frequency and the mean free
path are given. It is shown that the charged particles of a collisionless plasma gyrate
around the magnetic field lines, and in a collision-dominated plasma the effect of a
strong magnetic field is to give tensor properties to the transport properties.

Separate chapters deal with the production of high temperature gases, and with
electron emission, if the gas is heated by electrical means. It is shown that there
is actually a considerable reduction in the adiabatic flame temperature during
combustion, as well as in the temperature behind a strong shock, only if real
variations of the gas properties are taken into account. Finally a chapter is devoted
to diagnostic techniques for the high temperature gases, followed by a chapter on
the gas-dynamic equations and gas-dynamic interactions with the electromagnetic
fields, which brings us to the actual title of this book.



Chapter 2
Introduction to Quantum Mechanics

In 1802 Dalton formulated the law of multiple proportions, which states that if two
elements combine in more than one proportion to form different compounds the
masses of one of the elements with identical amounts of the second element are
in the ratio of integral numbers. In 1833 Faraday found the law of electrolysis
as a proof for the existence of an electrical elementary quantum of charge. These
discoveries supported the postulation of the particle (atom, molecule) theory of
matter. On this basis, during the second half of the nineteenth century, the mechan-
ical theory of heat was first formulated by Clausius and was further developed by
Maxwell and Boltzmann. Mechanical explanation of the pressure of a gas in a closed
vessel, as well as the phenomenon of linear increase of pressure with temperature
was possible in this way. In 1811 Avogadro’s hypothesis was formulated, which
stated that equal volume of different gases, under the same conditions of temperature
and pressure, contains equal number of molecules. Russian Chemistry Professor
Dimitric Mendeljeff [D. Mendelejeev, ‘Ueber die Beziehungen der Eigenschaften
zur den Atomgewichten der Elemente’, Z.f.Chemie (in German), 1869, pp. 405–
406] and German Chemist Julius Lothar Meyer independently published their
Periodic Tables in 1869 and 1870, respectively. They arranged the elements colum-
nwise on the basis of certain chemical properties, and it was found subsequently
that these properties are dependent on the number of electrons on the outermost
orbit around the nucleus of the element. Proceeding from Rayleigh-Jeans law of
radiation for large wavelengths and from Wien’s law for short wavelengths, Planck
in 1900 combined these two laws semiempirically and found the famous law of
radiation that bears his name. From his analysis, for the first time, the existence of
an elementary quantum of radiation was found. A rigorous explanation of Planck’s
law was, however, left to Albert Einstein, who in the 1920s applied the results of
a statistic developed by Indian scientist Satyendra Nath Bose to the light particles
(photons). In 1905, based on astronomical experiments, Einstein also formulated his
theory of relativity and gave for the first time a mass-energy equivalence principle.
From the alpha particle scattering experiments in 1906–1913, Rutherford concluded
that the mass of the atom should almost be totally concentrated around a very dense
nucleus. He further suggested a simple model of an atom consisting of a very dense
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6 2 Introduction to Quantum Mechanics

nucleus around which the electrons move in orbits. The electrons are kept in orbits
by a balance between the centrifugal and Coulomb forces. His theory, however,
could not explain how the electrons could stay in orbit without any dipole radiation,
which would result in their slowing down. An explanation for this was left to the
Danish scientist, Niels Bohr, who, by drawing help from another branch of physics,
namely, spectroscopy, could explain in 1913 the nature and radius of the electron
orbit. This is discussed in detail in the following section.

Although the principles of radiation energy, quantum energy, and the energy-
mass equivalence were known at the time of Bohr, particles and radiation energy
were considered as two different natural objects. However, various experiments
showed that under certain circumstances light behaved like particles, and particles
exhibited the wave nature. Thus in 1924, de Broglie formulated his principle of
particle-wave dualism. Based on this, in 1926, Heisenberg and von Schrödinger
formulated, by two independent methods, the two important theories named after
them and thus founded the basic principles of modern quantum mechanics.

2.1 Line, Band, and Continuous Spectra: Bohr’s
Atomic Theory

When the science of spectroscopy was in its infancy, the spectra were divided
by their appearance, as given in Fig. 2.1, into line, band, and continuous spectra.
Before man learnt the origin of these different types of spectra, which have been
identified later as due to atomic, molecular, and solid body radiation, respectively, it
was obvious from the line spectra of hydrogen, given schematically in Fig. 2.1a,
that there must have been a relation between the wavelength and frequency of
different lines.

The first series law of spectra in the visible region of hydrogen was found in 1885
by Balmer, a school teacher from Basel, and is given by the relation

� / .2�2 � n�2/; .n D 3; 4; 5; : : :/: (2.1)

Fig. 2.1 Types of spectra:
(a) line, (b) band, and
(c) continuous spectra
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Although this equation could not be explained by the Rutherford model of atomic
structure, it was thought that the orbiting electron around the nucleus must represent
a dipole and thus must be capable of radiation. The main difficulty, however, was
that this model could not explain the occurrence of a discrete line radiation on
account of their being no possibility of having stable orbits. In 1913 Bohr gave the
solution to this problem by postulating that the electrons travel in certain stationary
orbits in which they do not radiate energy and that in such an orbit the circular
line integral of the electron angular momentum should be a multiple of the basic
quantum number h. Thus the mathematical formulation of Bohr’s hypothesis for a
circular orbit of a hydrogen atom is

I
Meweds D 2�Mewr D nh; .n D 1; 2; 3; 4/; (2.2)

where w is the orbiting velocity of the electrons. Further, Bohr postulated that the
atom emits (or absorbs) a quantum of electromagnetic radiation when the electron
transits from one orbit to another. The frequency of the radiation is dependent on
the energy difference 	E between the two orbits and is given by

	E D h�: (2.3)

Total energy in an orbit consists of the potential and kinetic energies:

E D Epot CEkin D �C e
2

r
C 1

2
Mew

2; (2.4)

where C D 1=.4��o/ D 8:986 � 109 Vm.As/�1.
The force balance equation (centrifugal force D Coulomb force) in the orbit for

hydrogen atom (one proton, one electron) is

C
e2

r2
D Me

w2

r
: (2.5)

From (2.2) and (2.5), we get two equations for orbital speed and radius,

w D r! D 2�e2C

nh
(2.6)

and

r D Ce2

Mew2
D n2h2

4�2e2MeC
; (2.7)

where ! D w=r is the orbital radian frequency. Substituting the approximate values
for electrons, we get for hydrogen atom

w D 2:18 � 106=n;ms�1 (2.8)
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and

r D 0:53 � n2;Å: (2.9)

Thus the orbital frequency for the hydrogen atom is

�orb D w

2�r
D 6:563 � 1015

n3
; s�1. (2.10)

In the ground state .n D 1/ for hydrogen atom, the collision cross section, therefore,

is �r2 D 0:8825 .Å/
2

and is of the same order of magnitude as it is obtained from
the measurement of the transport properties. Substituting the relations for w and
r , (2.6), (2.7), into (2.4), the total energy of the orbiting electron is

E D �2�
2e4C 2Me

n2h2
(2.11)

which, after substitution of relevant values for electrons in the hydrogen atom, gives

E D �2:17 � 10�18=n2 [J] D �13:54=n2 eV. (2.12)

From (2.12) it is seen that for n = 1, E is a negative quantity, but for n going to
infinity (ionization!), where the electron is at an infinite distance from the nucleus,
E goes to zero. Thus, according to (2.12), the ionized atom has zero energy, whereas
the bound atom has a negative energy. However, from convention, it is found
convenient to put zero energy at the ground level .n D 1/. This is done easily
by subtracting the ground level energy and (2.11) becomes

E D 2�2e4C 2Me

h2

�
1 � 1

n2

�
. (2.13)

Now substituting (2.11) or (2.13) into (2.3), one gets

� D 	E

h
D E 00 �E 0

h
D 2�2e4C 2Me

h3

�
1

n02 � 1

n002

�
. (2.14)

From the science of spectroscopy, the spectral frequency � is where the transition
from one energy level to the other takes place. If n00 > n0, a transition takes
place from the higher energy level E 00 to the lower energy level E 0 with consequent
release of energy in emission. If, however, n00 < n0, the radiative transfer is due
to absorption. While the frequency of the radiative energy is in s�1, from the
convention in spectroscopy, it is easier to work with the wave number N� D �=c D
1=
 where 
 is the wavelength. Thus, from (2.14), the wave number for hydrogen
is given by the relation

N� D R0
H

�
1

n02 � 1

n002

�
; (2.15)
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where

R0
H D 2�2e4C 2Me

h3c
D 10973731:2˙ 0:8 m�1 (2.16)

is the so-called Rydberg constant for hydrogen. There is a small discrepancy,
however, between the frequency and wavelength of radiation for hydrogen as given
by (2.15) and experimental results. This discrepancy can be taken care of by
introducing a small correction, which, as it is physically explained, is due to the
electron and the nucleus moving around a common axis, instead of the electron
only moving around the nucleus. The corrected Rydberg constant is now

RH D R0
H

�
1C Me

Matom

�
D 10967757:6˙ 3:12; m�1. (2.17)

From (2.15), it is now possible to calculate exactly the wavelength region of the
spectra. In case n0 D 1 and n00 D n, we get from (2.15)

N� D 
�1 D RH

�
1 � 1

n2

�
; n D 2; 3; 4; : : : (2.18)

which is in a series form and is called after its discoverer, the Lyman series for the
hydrogen atom radiation. The wavelengths of the Lyman series are given by the
relation


 D 1

RH

�
1 � 1

n2

� D 912�
1 � 1

n2

� ; Å, n D 2; 3; 4; : : :: (2.19)

For n D 2; 3; 4; : : :, the corresponding wavelengths are 1216, 1026, 972.8, . . . ,
912 Å. It is seen that all these lines are in the ultraviolet region. It is, therefore, not
surprising that this series was discovered later. The earliest series discovered is the
Balmer series given by the relation


 D 1

RH

�
1

22
� 1

n2

� ; n D 3; 4; 5; : : : (2.20)

which is in the visible region. Similarly there are other series as follows:

• Paschen series: N� D 
�1 D RHŒ1=3
2 � 1=n2�, n D 4; 5; 6; : : :

• Brackett series: N� D 
�1 D RHŒ1=4
2 � 1=n2�, n D 5; 6; 7; : : :

• Pfund series: N� D 
�1 D RHŒ1=5
2 � 1=n2�, n D 6; 7; 8; : : :

Series with n0 > 5 have no names, but the wavelengths for each of these series
can be determined easily by the procedure given above.
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Fig. 2.2 Energy levels for
hydrogen atom

From (2.13) and the definition of the Rydberg constant, we see now that the
energy level is given by the expression

E D RHhc

�
1 � 1

n2

�
(2.21)

in which the proportionality constant RHhc D 2:18148702 � 10�18 J D 13:62 eV.
For n D 1; 2; 3; : : : the corresponding energy levels can be computed from (2.21),

and these in electron volt (eV) are 0, 10.21, 12.11, 12.77, . . . , 13.62 eV. These
energy levels for the hydrogen atom are shown in Fig. 2.2, with the corresponding
values of n. One can show Fig. 2.2 with possible transitions, both in emission and
absorption. For example, for the Lyman series, all transitions take place from a
higher energy level to the ground level and in absorption from the ground level
to a higher energy level.

The unit of the energy level in the present case is shown in J or eV, and these
are not the only units currently in existence. We can write energy also in m�1 or
in cm�1, which is obtained by dividing (2.21) by (hc). In fact, many of the energy
level tables given in books of reference are in cm�1, which is the reason to give
in this book the conversion factor from cm�1 to J or eV. In other books the energy
levels are given in K. These can be converted into J or eV by multiplying with the
respective conversion factor.

Bohr’s atomic model is successful in explaining the spectra of the hydrogen atom
in a very lucid manner and with great accuracy. This is reflected in the fact, that
the Rydberg constant is obtained theoretically with great accuracy. The model is
also valid for all particles which are similar to the hydrogen atom, namely, a single
electron around a nucleus like HeC, LiCC, . . . , etc. In such cases, one can think of an
electron around a nucleus of charge CZe, whereZ is the charge number. The reader
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should work out, in analogy to those for hydrogen, the details of calculation to
show that the Rydberg constant R0

H in such cases is to be multiplied simply by Z2

to R0
H . Further it is found that for those atoms which have just one electron in the

outermost orbit, which is the case for alkali atoms, the earlier analysis is valid, at
least in principle. The failure of the Bohr model for the line spectra of multielectron
atoms led Sommerfeld to consider that besides circular orbits, elliptical orbits may
also be possible. To describe elliptical orbits more than one quantum number is
needed. Hence, n is called the “principal quantum number” and can have values
n D 1; 2; 3; : : : . In addition, the following are the other quantum numbers with
possible values against each of them:

• l D angular quantum number D 1; 2; : : :; .n � 1/; n; n values
• m D magnetic quantum number

D �.l � 1/;�.l � 2/; : : :;�2;�1; 0; 1; 2; : : :; .l � 2/; .l � 1/; .2l � 1/ values
• s D spin quantum D ˙1=2; 2 values

In case we assume that the electron energy in an atomic structure is dependent
on the value of the four quantum numbers n, l , m, and s and assuming, according
to Pauli principle, that no two electrons in the ground state may have exactly the
same energy, it is possible to determine the maximum number of electrons in the
orbit (shell) in the ground state. For example, for n D 1, l and m can have only 1
value each and s can have only two values. Therefore, the innermost orbit .n D 1/

can have a maximum of only two electrons. Similarly for the next higher principal
quantum number .n D 2/, l can have two values (1 and 2),m can have only 4 values
(1 value for l D 1 and 3 values for l D 2), and s can have two values for each l .
Therefore, for the second orbit .n D 2/, if l D 1, there can be only two values, and
if l D 2, there can be only six values—a total of eight values. In a similar manner,
we can show that for the next higher principal quantum number .n D 3/, there can
be a total of 18 values. These results can be generalized by writing 2n2 as the total
number of electron energy values available in ground state and have some relevance
with the chemical properties of the pure gas.

The angular quantum numbers are written, by convention, as l D s; p; d; f; : : :,
instead of l D 1; 2; 3; 4; : : :. Even with modification from the single principal
quantum number, Bohr’s atomic theory can explain and interpret the wave lengths of
spectra due to hydrogen or hydrogen-like atoms. However, for many other cases, like
the anomalies in Zeeman effect, tunnel effect, etc., where the particles go through a
potential barrier, and so on, new theories had to be developed.

2.2 Wave-Particle Dualism and Wave Mechanics

In spite of success with the wave theory of light in providing explanations for
phenomena such as interference and refraction, there are many phenomena such as
the photoelectric effect that could not be explained by this theory. The explanation of
these phenomena led to the quantum theory of radiation. Max Planck in A.D. 1900



12 2 Introduction to Quantum Mechanics

postulated that in its interaction with matter, electromagnetic radiation behaved
as though it consisted of particles, or quantum of energy, called photons, having
an energy given by E D h�. This showed the dual character of electromagnetic
radiation and led de Broglie, in 1924, to suggest that a similar dualism might exist
for material particles and electrons. From the mass-energy equivalence relation of
Einstein, E D Mc2, we obtain the relation for momentum of photons as Mc D
h�=c D h=
. Assuming that this equation also applies to material particles and
electrons, we have for a particle of mass M moving with velocity w the momentum
p D Mw D h=
, so that


 D h=.Mw/ D h=p. (2.22)

This equation gives the wavelength 
 of the hypothetical matter waves associated
with the material particles and is the fundamental equation of de Broglie’s theory.
Equation (2.22) is now used to work out two specific cases. First, consider a man
of mass 60 kg being stationary, which means w D 0 and the equivalent wavelength

 ! 1. If the man walks at the speed of 5 km h�1, then the equivalent wavelength
is 10�35 Å. For either of these cases, and also at other velocities in between, the
equivalent wavelengths are either too small or too large to detect or to measure.
Similarly, while investigating the particle nature of a light of wavelength 5,000 Å
with the speed of light w D c D 3 � 108 ms�1, the equivalent mass is M D
10�37 kg, which is too small to be measured. Thus it is found that under most test
conditions it is possible to recognize either the wave aspect or the particle aspect,
but not both at the same time. This raises questions regarding the actual character of
the universe bringing these to the realm of philosophical speculations, as is found in
the Upanishads.

For monochromatic radiation the wavelength may be known, and thus
from (2.22), the equivalent momentum can be determined. In 1927 Heisenberg
put forward the uncertainty principle, which states that the exact simultaneous
determination of the position and momentum of a particle is impossible. If 	x is
the uncertainty involved in the measurement of the coordinate of a particle [in m]
and 	p is the uncertainty in the simultaneous measurement of its momentum [in
kgms�1], then

	x:	p � h; Js. (2.23)

It has been shown clearly from refraction experiments that the uncertainty is due
to the wave-particle dualism and not due to errors in the measurement of certain
quantities.

From (2.2) and (2.22), one can write further

2�Mewr D nh D nMew
 (2.24)

and thus, the circumference of the orbit is 2�r D n
 .n D 1; 2; 3; : : :/. For n D 1,
in the ground level, the circumference is equal to a certain wavelength 
. Similarly,
for an arbitrary n, Bohr’s quantum condition is reduced to the condition that there
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must be an integer number of wavelengths that would just fit into the circular orbit.
Such integer number of wavelengths would generate a standing wave instead of a
stationary Bohr orbit. As a result, while the orbiting electrons move in a path of
wave pattern, the orbit, as defined by the Bohr’s quantum condition, becomes the
path in which an electron has the maximum probability to stay.

This concept has further been exploited by Schrödinger by introducing a wave
function,  , which satisfies the general wave equation

1

c2
@2 

@t2
D r2 ; (2.25)

where the velocity of propagation is c D �
 D h�=.Mw/. Now, if E is the total
energy and U the potential energy, then

M

2
w2 D E � U (2.26)

and, therefore,

Mw D
p
2M.E � U/ D h�

c
. (2.27)

Thus, further,

c D h�p
2M.E � U/ . (2.28)

Let  .x; y; z; t / D N .x; y; z/ exp�2�j�t in which j D p
.�1/ and N is an

amplitude function. Thus, from (2.25), the final form of Schrödinger’s wave
equation is

r2 N C 8�2M

h2
.E � U/ N D 0. (2.29)

By comparison with classical problems of wave propagation, it is clear that the
solution of N has the character of an eigenfunction and is complex. It has further
been shown by theoretical physicists that the square of the absolute value obtained
by multiplying with its conjugate complex N � gives the probability of a particle
being found at time t , in a volume element at x, y, and z formed between x and
x C dx, y and y C dy, and z and z C dz. While the general analysis of (2.29) is
outside the scope of this book, a few sample results will now be derived.
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2.2.1 Rigid Rotors

For this case it is assumed that two equal masses are rotating around a common axis
separated by a distance r . Further, let U D 0. ReplacingM by 2M , whereM is the
mass of a single atom, and if ' is the azimuthal coordinate, (2.29) becomes

d2 N 
d'2

C 16�2Mr2

h2
E N D 0. (2.30)

Since solutions found are of the type N .'/ D N .'C2 /, condition for periodicity,
the general solution sought is of a simple harmonic nature. That is, the trial solution
is N .'/ D expjJ' , where j =

p
.�1/. By substituting the trial solution into the

differential equation one gets the particular solution

EJ D h2

16�2Mr2
J 2 D hcBJ 2 D kB�rJ

2; (2.31)

where J D 0, ˙1; ˙2; : : : D rotational quantum number, B D �rkB=.hc/, and
�r D characteristic rotational temperature.

It may be pointed out that jJ j is a measure of the number of nodes in the value
of N . Further the characteristic rotational temperature is inversely proportional to
Mr2, which is the mass moment of inertia.

For a diatomic molecule, in which two masses, M1 and M2, are connected to
each other and are at a distance r1 and r2, respectively, from the center of gravity,
it is evident that r1 C r2 D r , the distance between the atoms, and M1r1 D M2r2.
Therefore, one can show that the mass moment of inertia is

I D M1r
2
1 CM2r

2
2 D �r2; (2.32)

where � D M1M2=.M1 C M2/ is the reduced mass. Thus the characteristic rota-
tional temperature and the moment of inertia for a homopolar diatomic molecule
are related by the relation

�r D h2=Œ32�2kBI �. (2.33)

We discuss now the more general case when we determine for a given body the
mass moment of inertia around various axes through the one and the same point
(center of mass). We find, according to a theorem of mechanics, that there are three
mutually perpendicular directions for which the moment of inertia is a maximum
or minimum. These directions are called the principal axes and the corresponding
moment of inertia as the principal moments of inertia, IA, IB , and IC . Diatomic
molecules and multiatomic molecules, in which two principal moments of inertia
are equal and that of the third is zero or very small, are called linear molecules.
If the three principal moments of inertia are all equal, then the molecule is called the
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spherical top molecule, but if they are all unequal to each other, then the molecule
is called the asymmetric top (asymmetric rotor) molecule. On the other hand, if at
least two of the principal moments of inertia are equal, then it is a symmetric top
(symmetric rotor) molecule.

In the more elaborate theory of quantum mechanics for a diatomic molecule J 2

in (2.31) is replaced by J.J C 1/. Thus the energy of a rigid diatomic rotor is

EJ D kBJ.J C 1/�r . (2.34)

The frequencies of the spectral lines for transition between pure rotational energy
levels can be calculated for rigid diatomic rotor from Planck’s radiation law:

� D 	E

h
D E 00 �E 0

h
D kB�r

h
ŒJ 00.J 00 C 1/ � J 0.J 0 C 1/�

D kB�r

h
.J 00 � J 0/.J 00 C J 0 C 1/. (2.35)

Now the selection rule for such transitions is 	J D ˙1. Thus, the equation for the
frequencies of the lines due to transitions between pure rotational energy levels in a
diatomic rotor is

� D 2kB�r

h
J 00 (2.36)

for emission and

� D 2kB�r

h
.J 0 C 1/ (2.37)

for absorption.
It is clear that these are equidistant lines. It may be pointed out that for homopolar

molecules a change in the rotational quantum number does not mean any change
in the electronic dipole moment, and as such for these molecules, transitions
between pure rotational energy levels may take place by collision without radiation.
However, the rotational bands may occur in Raman spectrum, as well as at the
time of coupling with the electronic energy levels. In Table 2.1, the characteristic
values of �r and some other data for different diatomic molecular gases have been
given, which have been determined from spectroscopical data. The electronic and
vibrational energy levels are assumed to be in the respective ground state.

From the values of �r given in Table 2.1 and (2.36) and (2.37), one can estimate
the wavelength of radiation of lines for transition between pure rotational energy
levels, 
 � hc=.2�rkB/ D 7:21�107=�r , where 
 is determined in Å. Thus it can
be seen that these lines should appear in the wavelength range of 70 to 1:3�105 
m
(far infrared). Further, the energy difference for these transitions, 	E � 2�rkBJ

(in eV), is extremely small at small quantum numbers, but increases proportionately
to the quantum number J .
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Table 2.1 Characteristic data for different diatomic molecular gases

Gas �r (K) �v(K) x vmax ED.eV/ ˛.K/

H2 87.6 6333 0.0266 18.8 5.125 4.31eC0
N2 2.89 3400 0.0061 82.0 11.997 2.69e�2
O2 2.082 2280 0.0076 65.8 6.457 2.27e�2
Cl2 0.351 815 0.0070 17.2 0.605 2.86e�2
Br2 0.117 468 0.0033 40.3 0.812 2.44e�3
I2 0.054 309 0.0028 178.6 2.375 1.68e�4
OH 27.2 5375 0.0222 22.7 5.259 1.03eC0
CN 2.74 2981 0.0063 79.4 10.185 2.50e�2
CO 2.78 3130 0.0062 80.6 10.867 2.52e�2
NO 2.46 2745 0.0073 68.5 8.094 2.56e�2
HCl 15.26 4310 0.0174 28.7 5.332 1.61e�1

Table 2.2 Characteristic rotational data for multiatomic molecules

Rotor
Molecule type � �r (K) �A(K) �B (K) �C (K)

HCN (a) 1 0.213 0.213
CO2 (a) 2 0.056 0.056
CS2 (a) 2 0.016 0.016
N2O (a) 1 0.060 0.060
C2H2 (a) 2 0.170 0.170
SO2 (a) 2 0.949 0.949
NH3 (b) 3 0.840 1.433 0.908
BF3 (b) 3 0.027 0.050 0.024
C2H6 (b) 6 0.102 0.095 0.366
H2O2 (b) 2 0.188 0.118 1.449
C2H4 (b) 4 0.156 0.131 0.701
CH4 (c) 12 0.517 0.757
H2O (d) 2 1.527 2.090 4.005 1.337
H2S (d) 2 0.750 1.303 1.498 0.681

In addition, Table 2.2 contains rotational data for various molecules with more
than two atoms, in which�A,�B , and�C are characteristic temperatures along the
principal rotational axis. The characteristic rotational temperature, �r , is obtained
from these values according to the following formulas:

(a) Linear molecules .�A D �B/: �r D �A
(b) Symmetric top molecules .�B D �C /: �r D .�A�

2
B=�/

1=3

(c) Spherical top molecules .�A D �B D �C /: �r D �A=�
1=3

(d) Asymmetric top molecules .�A ¤ �B ¤ �C /: �r D .�A�B�C=�/
1=3

In complex molecules, in addition, the rotation of one group of atoms relative to
another (for example of the group CH3 about the bond C–C in ethane) must be taken
into consideration. Internal rotation may be hindered as well as free, because a
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Fig. 2.3 Model and energy levels of a harmonic diatomic oscillator

molecule has a force field tending to orient a group of atoms in a definite position
where the force inhibiting rotation is minimum to the position, where it is maximum,
and is called the energy or potential barrier.

2.2.2 Harmonic Oscillator

Let there be two particles of equal mass M connected with a spring of spring
constant k (Fig. 2.3). If the spring-mass system oscillates symmetric around a mean
position, it is called a harmonic oscillator. From the theory of vibrations it can be
shown that the frequency of oscillation for such a case is given by the relation

� D
p
k=M

2�
. (2.38)

Since the force F D �kx D �dU=dx, where U is the potential,
U D kx2=2 D 2�2M�oscx

2.
Thus (2.29) becomes

d2 N 
dx2

C 8�2M

h2
.E � 2�2M�2oscx

2/ N D 0 . (2.39)



18 2 Introduction to Quantum Mechanics

With � D 2�x
p
M�osc=h, C D 2E=.h�osc/, the wave equation becomes

d2 N 
d�2

C .C � �2/ N D 0 . (2.40)

Let there be a general trial function N .�/ D H.�/ exp��2=2. Substituting this into
the wave equation, the wave equation becomes

d2H

d�2
� 2� dH

d�
C .C � 1/H D 0 . (2.41)

This equation is solved with the boundary conditions

� ! 1 W d2H

d�2
! 0;

dH

d�
! 0 , H is finite. (2.42)

This equation is the so-called Hermite equation, which has a finite solution only
when .C � 1/=2 is an integer. Assuming .C � 1/=2 D v, where v is an integer, we
get C D 2v C 1 D 2E=.h�osc/ and thus, the allowed vibrational energy levels of
the diatomic harmonic oscillator are

Ev D h�osc.v C 1=2/; v D 0; 1; 2; : : :; (2.43)

where v is called the vibrational quantum number .v D 0; 1; 2; 3; : : :/. From
Planck’s radiation law, the frequency of radiation is � D j	Ej=h D �oscj	vj,
and since from quantum mechanical considerations the most probable selection rule
is j	vj D ˙1, the frequency of radiation is equal to the frequency of oscillation
.� D �osc/ of a single line.

Defining a characteristic vibrational temperature �v D h�=kB , (2.43) becomes

Ev D kB�v.v C 1=2/. (2.44)

Values of �v for various diatomic gases given in Table 2.1 are applicable when the
electron energy is in the ground level .v D 0/. However, in the vibrational ground
state .v D 0/, the molecule possesses a nonzero vibrational energy Eo D kB�v=2.
Consistent with the convention adopted to measure the vibration energy from the
ground state, we subtract this energy, and we get for the vibration energy as

Ev D vkB�v . (2.45)

It may now be seen that for pure vibrational transitions, the energy difference
.j	vj D 1/ is about two to three orders of magnitude larger than for pure rotational
transitions. Thus any vibrational transition is almost always accompanied by rota-
tional transitions. For rigid rotors, it has already been pointed out that the spectral
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frequency in emission is given by the relation � D 2BcJ 00, where B D �rkB=hc.
For a not so rigid rotor, there is a new value of �r or B for every combination of
the electron and vibration energy levels. Since the difference between the electronic
energy levels are quite large in comparison to the difference between the vibrational
energy levels, it may be assumed that the transitions between the vibrational energy
levels may take place at the ground electronic energy level. The change in the value
of�r for different values of the vibrational quantum number is given approximately
by the formula

	�r D .�r/vD0 � ˛v; (2.46)

where values of ˛ for various diatomic molecular gases are given in Table 2.1. Thus
for a not so rigid rotor with vibrational and rotational transitions, and with 	J D
J 00 � J 0, the wave number of radiation is

N� D �=c D B 00J 00.J 00 C 1/ � B 0J 0.J 00 C 1/C N�v
D .B 00 � B 0/.J 0 C 1/J 0 C B 00	J.2J 0 C	J C 1/C N�v; (2.47)

where N�v D kB�v	v=.hc/.
For the three cases of 	J D �1, 0, and C1, we get

	J D �1 W N� D .B 00 � B 0/.J 0 C 1/J 0 � 2B 00J 0 C N�v;
	J D 0 W N� D .B 00 � B 0/.J 0 C 1/J 0 C N�v;
	J D 1 W N� D .B 00 � B 0/.J 0 C 1/J 0 C 2B 00.J 0 C 1/C N�v . (2.48)

Actually, corresponding to these three cases, there are three branches of spectral
lines which together give a band structure. This is further repeated in the hyperfine
structure of the spectra in the case of an electronic transition coupled with transitions
between vibrational-rotational energy levels. It may again be pointed out, as in
the case of transitions between pure rotational energy levels, that for homopolar
molecules such transitions without an electronic transition do not involve a change
in electronic dipole moment. Thus, no electromagnetic wave radiation is possible
for these homopolar molecules, except when these transitions are coupled with
transitions between electronic energy levels also.

For heteropolar diatomic molecules with two atomic masses M1 and M2

connected with a spring of spring constant k, the two differential equations are

M1 Rx1 C k.x1 � x2/ D 0 and M2 Rx2 C k.x2 � x1/ D 0 . (2.49)

Thus, M1 Rx1 CM2 Rx2 D 0. Let x1 D xm1 cos.!t/ and x2 D xm2cos.!t/. Therefore,
xm2 D �M1xm1=M2 and from the first differential equation, the frequency of
oscillation is
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�osc D !

2�
D 1

2�

s
k

�
; (2.50)

where the reduced mass is � D M1M2=.M1 CM2/.
For further analysis (2.43) and the subsequent text are valid. Figure 2.3 shows

the energy levels which are the sum total of the kinetic and potential energies
of the vibrating atoms in the molecule, calculated from (2.43), as a function
of the vibrational quantum number. The wavelength range of the spectra for the
transition between the two vibrational energy levels can easily be computed from
the values of the characteristic vibrational temperature in Table 2.1, and this should
be between 104 and 106 Å to which transitions between the rotational energy levels
are superimposed as the hyperfine structure of the spectra. While the harmonic
oscillator model is adequate as long as the ratio of T=�v is small, the model fails
with increasing temperature because the dissociation and the increase in the volume
with temperature cannot be explained. Therefore, under these conditions the model
of an anharmonic oscillator is studied, which is discussed in the next section.

For multiatomic molecules (number of atoms in the molecule > 2), there can be
different characteristic temperature for each degree of freedom of vibration; values
of the characteristic vibration temperature for a select number of gases are given in
Table 2.3 with the associated degeneracy given within the parenthesis.

2.2.3 Anharmonic Oscillator

While the concept of vibration rests on the assumption of sufficiently small
amplitude, actually the amplitudes are by no means infinitesimal small and for
accurate calculations higher order terms in the potential energy are required. Energy
levels for such an oscillator are modified from (2.43) and are given by the relation

Ev D .v C 1=2/h�osc � x.v C 1=2/2h�osc; (2.51)

where x is a material constant and is acting as a correction factor in the
harmonic oscillator model. The value of x is determined from the maxi-
mum value of v D vmax when dissociation takes place. Since v ! vmax,
Ev ! ED = dissociation energy, and dEv=dv D 0, it is evident that vmax D
.1 � x/=.2x/ and ED D h�osc=.4x/. Thus from (2.51)

Ev

ED
D .1C 2v/

1C 2vmax

�
2 � .1C 2v/

1C 2vmax

�
. (2.52)

For a harmonic oscillator x ! 0, �max ! 1, and ED ! 1, but for anharmonic
oscillator as v ! vmax the ratio Ev=ED goes to one. Therefore, use of (2.52) is not
meaningful, since there is no dissociation. However, for the purpose of comparison
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Fig. 2.4 Energy levels of an anharmonic oscillator .vmax D 7/

with anharmonic oscillator, ED is kept the same for both oscillators. Therefore for
a harmonic oscillator, the expression taken is Ev=ED D .v C 1=2/=.4x/. With a
value of vmax around seven, corresponding to a value of x around 0.0667, values of
Ev=ED are plotted in Fig. 2.4 along with energy levels and approximate potential
distribution curves for both harmonic and anharmonic oscillators. It is seen that
for a given value of the vibrational quantum number, a harmonic oscillator has a
higher energy level than an anharmonic one. Further vmax need not have a round
figure, and is only an approximation obtained from the energy levels determined
spectroscopically. From Table 2.1, it is clear that the above value of vmax D 7

is no way near the actual value for a diatomic molecular gas, and the smallest
value of vmax is 18. This has the effect that the vibrational energy levels for small
values of v are not much different for harmonic and anharmonic vibrational models.
From (2.51), one obtains the equation for the wave number of the vibration spectra
of an anharmonicoscillator for an energy level jump from quantum number v00 to
v0 as

N�v D �v

c
D �vkB

hc
.v00 � v0/Œ1 � x.v00 � v0 C 1/� . (2.53)

In emission, for 	v D v00 � v0 D 1,

N�v D �vkB

hc
Œ1 � 2x.v0 C 1/� . (2.54)

Since x is much smaller than one, for small values of v0, the spectral frequency of
the vibrational lines is dependent only on the characteristic vibrational temperature
of the gas. By accurately measuring the frequency of the spectral lines of vibration
it is possible to determine �v , x, and the dissociation energy. These are given
in Table 2.1.
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Table 2.4 Anharmonicity constants for some multi-atomic
molecules

Gas x11 x22 x33 x12 x13 x23
CO2 �0:3 �1:3 �12:5 5.7 �21:9 �11:0
HCN 52.0 �2:8 �35:5 �4:2 �14:4 �19:5
N2O �3:2 �2:2 �13:7 4.7 �12:4 �26:1
H2O �43:8 �19:5 �46:3 �20:0 �155. �19:8

While the expression for potential as given in (2.51) represents the potential
energy of a diatomic molecule near the equilibrium position only, the expression
for the potential curve better representing the vibration potential distribution given
by Morse (for reference, see Herzberg [73]) is

U.r � re/ D ED
�
1 � expˇ.r�re/

�2
; (2.55)

where ED is the dissociation energy. Note that as r ! 1 and U ! De and at
r D re , equilibrium distance, U D 0.

While further we have assumed so far that there is no coupling between the
rotational and vibrational energy levels, in actual practice this is not so. In the case
of nonrigid rotor, the rotational energy for a diatomic molecule is

EJ D J.J C 1/kB�r � 4kB�r.�r=�v/2J 2.J C 1/2 (2.56)

in which�r is calculated at the vibrational ground level and in which for most of the
molecular species, the effect of the change of�v at high rotational quantum number
J is neglected.

For a multiple atomic gas, depending on the symmetry, there can be a number
of values of v and x. In addition, there are cross-terms linking different modes of
vibration, for which the vibration energy becomes

Ev D Ev.v1; v2; v3/

D kB

3X
iD1

"
�vi

�
vi C 1

2

�
�

3X
kD1

xik

�
vi C 1

2

��
vk C 1

2

�#
(2.57)

in which xik are the anharmonicity constants. For some typical molecules these are
given in Table 2.4.

Finally, we would discuss the effect of putting the ground vibrational energy
level to zero as per the convention. For the anharmonic oscillator, this results in the
relation vmax D 1=.2x/, but the relation between ED and h�osc does not change.
Equation (2.52) becomes
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Ev

ED
D v

vmax

�
2 � v

vmax

�
. (2.58)

Noting that the energy levels of a rotor are much smaller than the vibrational energy
levels (for both harmonic and anharmonic vibration models), which, in turn, are
much smaller than those of the electronic excitation, a pure rotational spectra of
equidistant lines can be expected only in the far infrared region with very small
change in the energy values. On the other hand, the rotation-vibration spectra (with
most probable selection rule j	vj D 1 giving a strong single rotation-vibration band
in near infrared having larger change in the vibration energy values) have rotational
lines as fine structures. Similarly, the electronic transitions are always accompanied
by vibrational transitions (without the restriction of the previous selection rule),
which in turn are accompanied by rotational lines as the hyperfine structure of the
spectra; these are generally found in the visible and the ultraviolet regions.

While we have discussed, at least partially, the energy levels in molecules in the
form of rotational, vibrational, and electronic energy, there are other energies like
translational energy which we did not discuss. Further we have not discussed so far
about the distribution of these energies among the molecules. This we would discuss
further in the next chapter.

2.3 Exercise

2.3.1 Estimate the spectral wavelengths for HeC and LiCC.
2.3.2 Calculate the wavelengths and energy exchanged in the Balmer series lines

of hydrogen atom.
2.3.3 Calculate the spectral wavelengths in rotation and vibration separately for

the heteropolar diatomic molecules OH, CN, CO, NO, and HCl.
2.3.4 Using the characteristic vibrational temperature for various molecules

given in Tables 2.1 and 2.3, calculate the spectral wavelength of vibrational-
rotational band and the corresponding energy.

2.3.5 Verify the values of dissociation energy of diatomic molecules given in
Table 2.1, when the anharmonicity constant x is given.



Chapter 3
Introduction to Statistical Mechanics

It is probably clear by now that the gas particles, of which there are several different
varieties, have electronic excitation, vibrational, rotational, spin, and translational
energies. While it is impossible to keep track of the exact total quantum energy an
individual particle may possess at any given time, it is possible to determine for
a large number of particles the approximate percentage distribution of the energy
with suitable auxiliary conditions like the total energy being kept constant. Methods
by which the statistics of the possible energy distributions are made do vary no
doubt, but the most probable distribution for a large number of particles to be
accommodated in a still larger number of energy levels seems to give similar results,
as will be shown later.

While trying to obtain the statistics of the energy distributions of the particles,
we denote the particles, considered to be balls, with letters like a, b, c, d, : : :, so
that we can exactly distinguish these from each other, and place these in boxes
each having a definite energy. Thus, merely placing one ball in one particular box
allows the ball to attain the particular energy. Now let the number of balls (particles)
be N and the number of boxes (energy levels or energy states) be g. If the balls are
distinguishable from each other (since they are labeled) and they are put into the
boxes without any restriction on the number of balls in each box, the distribution is
called Boltzmann statistic. In case the balls are not distinguishable, then it is Bose
statistic developed by Satyendra Nath Bose of India in the twenties of the twentieth
century and subsequently used by Einstein for the statistics of electromagnetic
radiating particles (photons). However, if the particles are not distinguishable from
each other and if the number of particles in each box is restricted to a maximum
of one for each box, since according to Pauli principle no two particles may have
exactly the same energy, then it is the Fermi statistic. Obviously in this last case, N
is less or equal to g. While the consequence of these different statistical procedures
is examined later, in the sections that follow we discuss without proof some possible
arrangements, without any auxiliary restrictions on the total energy.

T.K. Bose, High Temperature Gas Dynamics: An Introduction for Physicists and Engineers,
DOI 10.1007/978-3-319-05200-7__3, © Springer International Publishing Switzerland 2014
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(a) N balls are all distinguishable from each other, and they are placed maximum
one (1 or 0) in g boxes. Obviously, N is less or equal to g. While the first
ball can be placed in any of the g boxes, the second ball can be placed only in
.g � 1/ boxes. Thus for the two balls there are g.g � 1/ possibilities, and in
a similar fashion for N balls placed maximum one in each box, the number of
possibilities is

W1 D g.g � 1/.g � 2/: : :.g �N C 1/ D gŠ

.g �N/Š . (3.1)

If g D N , obviously, W1 D gŠ since 0Š D 1.

Example. N D g D 3 and the balls are denoted by a, b, c. Possible
arrangements in the three boxes are

a a b b c c
b c a c a b
c b c a b a

and W1 D 3Š D 6.

(b) Out of N balls N1 are not distinguishable and a maximum of one ball is placed
in each box. Obviously N1 � N � g. Thus the number of possibilities is

W2 D gŠ

.g �N/ŠN1Š . (3.2)

Example. N D g D 3, N1 D 2, and the balls are denoted by a, a, b. Possible
arrangements in these boxes are

a a b
a b a
b a a

and W2 D 3.

(c) Out of a total ofN balls,N1; : : :; Np balls in each group are not distinguishable
from each other in a particular group and are to be arranged in g boxes.
Obviously N is smaller than or equal to g and N is smaller than or equal to
.N1 CN2 C : : :CNp/. Thus, the number of possibilities is

W3 D NŠ

.g �N/ŠN1ŠN2Š: : :NpŠ . (3.3)

(d) Let there be N balls, which cannot be distinguished from each other and which
are to be distributed to a number of boxes .D g/ without restriction on the
number of balls in each box. Note that this is actually the Bose statistic. The
number of possibilities is



3 Introduction to Statistical Mechanics 27

Fig. 3.1 Possible arrangements in Bose statistics

W4 D .N C g � 1/Š
.g � 1/ŠN Š . (3.4)

(e) Let there be N balls, which cannot be distinguished from each other, and not
more than one ball can be placed in a box, number of which is g. This is the
Fermi statistic. The number of possibilities is

W5 D gŠ

.g �N/ŠN Š . (3.5)

Example. 3 balls not distinguishable from each other are to be placed in five boxes.
Thus N D 3 and g D 5, and from (3.4), W4 D 35 and from (3.5), W5 D 10.
The possible distributions are given in Fig. 3.1 in each column, the rows being the
different boxes. It can be seen that the distribution of type A, which can have 3
particles in each box, has 5 possibilities; distribution B, which can have a maximum
of 2 balls in each box, has 20 possibilities; and distribution C with a maximum of
one ball in each box has 10 possibilities. Thus, in Bose statistic, A distribution has
a probability of 5/35, B distribution has 20/35, and C distribution has 10/35. In case
the balls are distinguishable (Boltzmann statistic), distribution A remains the same,
but in distribution B one must distinguish about which two should be in each box,
and in distribution C again each of the balls in the box has to be distinguished.
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Table 3.1 Possible arrangements for distinguishable particles with g D 5,
N D 3 and total energy restriction

Energy State A B C

0 bc ac ab c b c b a a c b a
1 b c a a c b
2 ab ac bc
3 a a b c b c
4 a b c

Thus, for the Boltzmann statistic, there will be 5 possibilities in distribution A, 60
possibilities in distribution B, and 60 in distribution C, and there is a total of 125
possibilities with a probability of 5/125 in distribution A, 60/125 in distribution B,
and 60/125 in distribution C. The last value for single occupancy in the Boltzmann
statistic can be found out from (3.1). Note that for very large number of particles
and energy levels, single occupancy is rather a rule than an exception, and it is quite
adequate to use (3.1) for the Boltzmann statistic. In case the number of balls is
restricted to one in each box and the balls are not distinguishable (Fermi statistic),
there are only 10 possibilities in C distribution, which can be evaluated from (3.5).

It is, therefore, in order at least to estimate the number of possibilities for Boltz-
mann, Bose, and Fermi statistics that we consider (3.1), (3.4), and (3.5), respectively,
and the corresponding numbers of possible distributions are 60 (distribution C,
distinguishable), 35, and 10. Thus, the number of possibilities, without considering
the limit of the total energy, is largest in the Boltzmann statistics (even neglecting
the other two distributions for it), followed by the Bose and Fermi statistic. We are,
however, not bothered only about the number of possibilities but about the most
probable distribution for a given total energy. For this purpose let us consider again
the case of three balls denoted by a, b, and c put in five boxes with energies 0, 1,
2, 3, and 4. Further let the total energy be 4. The possible arrangements are given
in Table 3.1. If now the particles are not distinguishable, but more than one particle
in each box is allowed (Boltzmann statistic), the distribution of type A has 3, B
has 6 possibilities, and C has 3 possibilities. On the other hand, for Bose statistic,
there are 1 possibility of type A, 1 possibility of type B, and 1 possibility of type C,
that is, a total of 3 possibilities. For the Fermi statistic only 1 possibility of type
B is available. Hence, in all the three statistics, the B distribution under given total
energy of four is at least one of the probable, if not the most probable. This is further
elaborated in the next section.
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3.1 Bose, Boltzmann, and Fermi Statistics

We have just given the essential differences among the three statistical procedures,
and now we shall examine the most probable distribution of energy levels with a
given total energy. For this purpose, we consider only the Bose and Fermi statistics,
and we derive the expression for the Boltzmann statistic as a limiting case for the
other two. Let the energy levels be grouped in such a way that the approximate
energy levels are in one group. Let there be gi energy levels in the group with
approximate energy Ei , in which Ni particles are to be distributed. Let gi be larger
than or equal to Ni . Since the total number of possibilities is the product of the
number of possibilities in each energy level, one can write from (3.4) and (3.5) that

Bose statistic:

W D
Y

Wi D
Y .Ni C gi � 1/Š

.gi � 1/ŠNi Š (3.6)

and

Fermi statistic:

W D
Y

Wi D
Y gi Š

.gi �Ni/ŠNi Š (3.7)

with auxiliary conditions N D P
Ni and total energy E D P

NiEi .

Now the approximate Stirling formula

ln xŠ D x ln x � x (3.8)

is used, which is valid for large value of x, as is shown in Table 3.2.
By taking the logarithm of (3.6) and (3.7) with the help of (3.8), we get for gi > 1

and .gi CNi/ > 1 the following equations:

Equation (3.6):

lnW D
X

ln
.gi CNi � 1/Š
Ni Š.gi � 1/Š �

X
ln
.gi CNi/Š

Ni Šgi Š

D
X

Œ.giCNi/ ln.giCNi/�gi lngi�.giCNi/C.giCNi/�Ni lnNi �

D
X

Œ.giCNi/ ln.giCNi/�gi lngi�Ni lnNi �: (3.9)

Table 3.2 Validity of
Stirling formula

x 1 2 4 6 10 20
lnx! 0 0.693 3.18 6.57 15.35 42.4
x ln x � x �1:0 �0:614 1.54 4.74 13.03 39.9
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Equation (3.7):

lnW D
X

Œgi lngi � gi �Ni lnNi CNi � .gi �Ni/ ln.gi �Ni/C gi �Ni �

D
X

Œgi lngi �Ni lnNi � .gi �Ni/ ln.gi �Ni/�. (3.10)

From (3.9) and (3.10), the most probable distribution is obtained by making for
each of the statistic the derivative of lnW with respect to Ni equal to zero under
the auxiliary conditions, @N=@Ni D 0 and @E=@Ni D 0. As is well known, such
problems can be solved by introducing the Lagrange multiplier, 
 and�, with which
the auxiliary conditions are multiplied and then added to the main equation. Thus,
the equation to be satisfied is

@ lnW

@Ni
C 


@N

@Ni
C �

@E

@Ni
D 0: (3.11)

and one obtains the expression

ln

�
gi ˙Ni

Ni

�
C 
C �Ei D 0. (3.12)

Herein the upper sign is for Bose statistic and the lower sign is for the Fermi statistic.
From (3.12) we get the number of particles in the energy state Ei to be

Ni D gi

exp�.
C�Ei / ˙.�1/ . (3.13)

Now for the case that �Ei � 0, a condition that will be examined later, the
exponential term in the denominator is much larger than one.

Since

N D
X

Ni D exp

X

gi exp�Ei : (3.14)

we write

Ni

N
D gi exp�EiP

gi exp�Ei
D gi exp�Ei

Z
; (3.15)

where

Z D
X

gi exp�Ei : (3.16)

is called the partition function. After (3.13), two systems, A and A0, isolated from
each other and from outside, have number of particles with energy Ei as follows:

Ni D gi

exp�.
C�Ei / ˙1 and N 0
i D g0

i

exp�.
0C�0Ei / ˙1 : (3.17)
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with auxiliary conditions
X

Ni D N;
X

N 0
i D N 0;

X
NiEi C

X
N 0
i E

0
i D E. (3.18)

In case the energy transfer is allowed between the two systems, but not the
transfer of particles, there is only one Lagrange multiplier common to both the
systems, which is also a function of the energy or the temperature common to both
the systems. Thus,

� D �0 D �.T /. (3.19)

Now the kinetic (translational) energy of a gas particle is given by the relation

E D 1

2
Mw2 D M

2
.w2x C w2y C w2z /: (3.20)

We denote with w the velocity of a single particle with respect to the laboratory
coordinate and with v the kinetic speed (associated with temperature, as will be
shown later) of a single particle with respect to the mass-average velocity. For the
present, we assume that the mass-average velocity is zero. We consider the number
of particles whose kinetic speed in respective coordinate direction is between vx
and vx C dvx , vy and vy C dvy , and vz and vz C dvz, denoted as .vx; vx C dvx/,
.vy; vy C dvy/ and .vz; vz C dvz/. From (3.13), the number of particles in this
volume element in the velocity space is proportional to the volume and is given by
the relation

dN D C
N

Z
exp�

M
2 .v

2
xCv2yCv2z / dvxdvydvz. (3.21)

The proportionality constant C is of the order of Z in magnitude, but it
takes care of the dimension. Thus, C has the dimension per unit velocity space
volume .s3m�3/. Similarly, � has the dimension of the inverse kinetic energy .J�1/.
By integrating twice over all speeds in y and z directions, we get the relation for the
number of particles between .vx; vx C dvx/

dNx D NC

Z

�Z Z 1

�1
exp�

M
2 .v

2
xCv2yCv2z /=2 dvydvz

�
dvx . (3.22)

Now we consider a cubic element and calculate the momentum transfer on
one plane surface perpendicular to the x-axis. In time dt, the particles with speed
.vx; vx C dvx/ striking the wall are those which were in the volume Avxdt ; A is
the cross-section of the wall of the elementary cube perpendicular to the x-axis.
Thus the number of particles with speed .vx; vx C dvx/ reaching the particular wall
is AvxdtdNx and the momentum transferred by each particle to the wall is 2Mvx .
Thus the total momentum given to the wall in time dt is 2Mvx .AvxdtdNx . Since
the force applied on this wall is the momentum transfer per unit time, the force
Adp D 2MAv2xdNx , where p is the pressure. Thus,

dp D 2Mv2xdNx D 2Mv2x
NC

Z

�Z Z 1

�1
exp�M.v

2
xCv2yCv2z / dvydvz

�
dvx . (3.23)
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By integration,

p D 2M

Z 1

�1
v2xdNx

D 2MNC

Z

Z 1

0

v2x

�Z Z 1

�1
exp�M.v

2
xCv2yCv2z dvydvz/

�
dvx

D 2MNC

Z

Z 1

0

v2x exp�Mv2x=2

�Z Z 1

�1
exp�M.v

2
yCv2z dvydvz/

�
dvx . (3.24)

Now from mathematical tables,

Z 1

�1
exp�.ax2C2bxCc/ dx D

p
�=a exp.b

2�ac/=a : (3.25)

for .a > 0/
and

Z 1

0

exp�ˇx2 dx D
p

��=ˇ. (3.26)

Thus,

Z 1

�1
exp�Mv2x=2 dvx D

p
.�2�/=.�M/ (3.27)

and

Z 1

�1
v2x exp�Mv2x=2 dvx D

Z 1

�1

2
664 @

@

�
�M

2

� exp�Mv2x=2

3
775 dvx

D @

@

�
�M

2

�
s

� 2�

�M

D
r
�

2

�
��M

2

�1=2

D � 1

�M

Z 1

�1
exp�Mv2x=2 dvx . (3.28)
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From (3.24), therefore,

p D MNC

Z

�
� 1

�M

Z 1

�1
exp�Mv2x=2

�Z Z 1

�1
exp�M.v

2
yCv2z /=2 dvydvz/

�
dvx

�

D �NC
�Z

Z Z Z 1

�1
exp�M.v

2
xCv2yCv2z /=2 dvxdvydvz. (3.29)

Now from (3.21)

N D
Z

dN D NC

Z

Z Z Z 1

�1
exp�M.v

2
xCv2yCv2z /=2 dvxdvydvz (3.30)

which means that the value of the triple integral is equal toZ=C . Thus, from (3.29),
p D �N=�. Putting N equal to the number density n (number of particles per unit
volume, m�3) and using the equation of state of a gas,

p D �n=� D nkBT; (3.31)

we get the relation

� D �1=.kBT /. (3.32)

It was shown earlier that for the condition �Ei � 0, Bose and Fermi statistics
tend to converge to Boltzmann statistic. This is now equivalent to stating that for
Ei=.kBT / � 0, which, for all temperatures of interest T , is always true for a finite
Ei , Bose and Fermi statistics tend to converge to Boltzmann statistic. Thus the most
probable distribution according to the three statistics is the following:

Bose statistic:

Ni D gi

expEi =.kBT /�
 �1 : (3.33)

Fermi statistic:

Ni D gi

expEi =.kBT /�
 C1 : (3.34)

Boltzmann statistic:

Ni

N
D gi exp�Ei =.kBT /

Z
; (3.35)

where Z is the partition function given by the relation

Z D
X

gi exp�Ei =.kBT / (3.36)

and gi is called the statistical weight (alternatively also called as the degeneracy).
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Now we write (3.21) in a slightly different form,

dN D CN

Z
exp�E=.kBT / dE. (3.37)

Thus, for T ! 0, the kinetic energy of all particles tends to zero, which is not
permissible according to the Pauli principle (Fermi statistic), since, according to the
principle, the particles cannot all have the same energy even for T ! 0. Thus, there
is a limit on the minimum of the highest energy of particles at 0 K, which is called
the Fermi limiting energy given by the relation

EF D h2n2=3

8M
; (3.38)

where h is the Planck constant, n is the number density of particles, and M is the
mass of the particles.

3.2 Thermodynamic Properties

The starting point of our present discussion is the concept of distribution of energy
in a system. Now the number of distribution possibilities of two systems is equal to
the product of the possibilities in individual systems, that is,W D W1:W2. However
from thermodynamics the total entropy in a reversible mixing is obtained by simple
addition. It may be pointed out that the entropy is not the only thermodynamic state
variable that is additive, and a similar analysis is possible with other thermodynamic
properties as well. It is, however, found that the relationship between the number of
possibilities W and entropy S gives meaningful results. A trial function connecting
the two

S D C lnW (3.39)

is, therefore, suggested, in which C is a proportionality constant to be determined
later. Now from (3.9), (3.10), (3.12), and (3.32), we get

d.lnW /

dNi
D ln

gi ˙Ni

Ni
D
X�

Ei

kBT
� 


�
(3.40)

and further from (3.39),

dS D Cd.lnW / D C
X

ln
.gi ˙Ni/

Ni
dNi D C

X�
Ei

kBT
� 


�
dNi . (3.41)
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Therefore,

T dS D C
X�

Ei

kB
� 
T

�
dNi . (3.42)

Since N D P
Ni and E D P

NiEi ,

T dS D C
X�

1

kB
.d.NiEi / �NidEi / � 
T dNi

�

D C

�
1

kB

n
d
�X

NiEi

	
�
X

NidEi/
o

� 
T d
�X

Ni

	�

D C

kB
dE � C

kB

X
NidEi � 
CT dN . (3.43)

The physical meaning of the second and the third terms in the right-hand side
of (3.43) is as follows:

X
NidEi


 D 0 , inside the system
¤ 0 , work done external to the system = dL.


CT dN D �dN


 D 0 , to conserve particles
¤ 0 , to introduce or remove particles.

Thus, from (3.43), we can write

T dS D .C=kB/dE � .C=kB/dL � �dN (3.44)

which can be compared with the energy equation, as it is known from thermody-
namics,

T dS D dE � dL � �dN . (3.45)

It is now evident that C D kB and the trial function, (3.39), is correct. From (3.9)
for Bose statistic, which is essentially similar to the Fermi statistic, one can,
therefore, write

S D kB lnW D kB
X

Œ.gi CNi/ ln.gi CNi/ � gi lngi �Ni lnNi �

D kB
X�

.gi CNi/ ln

�
gi

�
1C Ni

gi

��
� gi lngi �Ni lnNi

�

D kB
X�

.gi CNi/ lngi C .gi CNi/ ln

�
1C Ni

gi

�
� gi lngi �Ni lnNi

�

D kB
X�

Ni lngi C .gi CNi/ ln

�
1C Ni

gi

�
�Ni lnNi

�
. (3.46)
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Note that for x � 1,

ln.1C x/ D x � x2=2C x3=3 � x4=4C �: : : (3.47)

and thus for Ni < gi

S D kB lnW D kB
X�

Ni ln

�
gi

Ni

�
C .gi CNi/

�
Ni

gi

��

D kB
X�

Ni ln

�
gi

Ni

�
CNi C N2

i

gi

�

� kB
X�

Ni ln

�
gi

Ni

�
CNi

�
. (3.48)

For large temperatures, that is, for gi � Ni and 
kBT � 1, it has already been
shown that both Bose and Fermi statistics merge into the Boltzmann statistic. Under
these and also the equilibrium condition, the number density is given by (3.35),
which becomes

lnNi D lnN C lngi �Ei=.kBT / � lnZ. (3.49)

Thus,

ln.gi=Ni / D ln.Z=N/CEi=.kBT /. (3.50)

Substituting the above expression into (3.48), we get therefore,

S D kB
X�

Ni ln

�
Z

N

�
C NiEi

kBT
CNi ln.exp1/

�

D kB
X�

Ni ln

�
Z: exp1

N

�
C NiEi

kBT

�

D 1

T

�
E CNkBT ln

�
Z: exp1

N

��
. (3.51)

If N is now put equal to NA, the Avogadro number, the entropy becomes molar
entropy (per kmole). Further noting that NAkB D R�, universal gas constant,

S D 1

T

�
E CR�T ln

�
Z exp1

NA

��
. (3.52)

From (3.35) and noting that N D NA, one may write

E D
X

NiEi D NA

Z

X
giEi exp�Ei =.kBT / (3.53)
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and also

d lnZ

dT
D 1

Z

dZ

dT
D 1

Z

X giEi

kBT 2
exp�Ei =.kBT / D E

NAkBT 2
D E

R�T 2
. (3.54)

Thus, it is now possible to derive the general expressions for the following
thermodynamic variables:

Internal energy:

E D R�T 2
@ lnZ

@T
: (3.55)

Entropy:

S D R�T
@ lnZ

@T
CR� ln

�
Z exp1

NA

�
: (3.56)

Enthalpy:

H D R�T CR�T 2
@ lnZ

@T
: (3.57)

Free energy:

F D TS �E D R�T ln

�
Z exp1

NA

�
: (3.58)

Free enthalpy:

G D TS �H D R�T ln

�
Z

NA

�
: (3.59)

Specific heats:

Cp D @H=@T , Cv D @E=@T : (3.60)

It may be noted that for the internal energy it is assumed that for T ! 0, E ! 0,
and it does not contain any reaction or bond energy. Thus the bond or reaction
energy at T ! 0 is added to the internal energy or enthalpy in (3.55, 3.57
to 3.59). Determination of the thermodynamic properties is now reduced to
merely determining the partition function Z, which will be determined for
different modes of energy in the sections which follow.
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3.2.1 Contribution of Translational Energy

While discussing the wave-particle dualism it was noted that the particles can be
thought of as equivalent to waves of wavelength 
. We consider now standing waves
between two parallel plates at a distance L apart. For the standing wave pattern
L D kx
=2, where kx D 1; 2; 3; : : :, and has the character of an eigenvalue
(multiplier of a basic wavelength) and .kx � 1/ is the number of nodes between the
two plates. Therefore, with the help of (2.22),

.Mv/2 D 2M.Mv2=2/ D 2MEI kx D 2L=
 D 2LMv=h (3.61)

and it follows that

k2x D 8L2ME=h2. (3.62)

It is seen that kx corresponds to the kinetic energy contributed by the velocity in
x-direction. If

k2 D k2x C k2y C k2z (3.63)

then the volume of a shell of sphere of radius k and thickness dk represents the
number of energy state g. Between kx , ky , and kz, there is 1/8-th of a solid angle
4� . Thus,

g.E/ D 4�

8
k2dk Š �

2
k2xdkx

D �

2

�
8L2ME

h2

�
L

h

p
2M=EdE D 4

p
2�
M3=2

h3
L3

p
EdE (3.64)

and the partition function for the translational energy is

Ztrans D
X

gi exp�Ei =.kBT / Š
X

g.E/ exp�Ei =.kBT /

D 4
p
2�M3=2L3

h3

Z 1

0

p
E exp�E=.kBT / dE. (3.65)

The integral, as can be seen from mathematical tables, has the value
p
�.kBT /

3=2=2. (3.66)

Noting further that L3 is the volume of the cube, for which substituting the value of
molar volume V �, we get the relation for the partition function in the translational
mode

Ztrans D V �
�
2�kBMT

h2

�3=2
. (3.67)
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Now the equation of state is pV � D R�T and the mole mass is m D M:NA. Since
further for translation,

@ lnZ

@T
D 3

2T
(3.68)

we get the expressions to determine the contribution of the translational energy to
the following thermodynamic properties:

Internal energy:

Etrans D 3

2
R�T . (3.69)

Entropy:

Strans D R�
"
5

2
C ln

V �

NA

�
2�MkBT

h2

�3=2#

D R�
"
5

2
C ln

kBT

p

�
2�mkBT

h2NA

�3=2#

D R�
"
5

2
C 5

2
lnT � lnp C 3

2
lnmC ln

 
kB

�
2�kB

h2NA

�3=2!#

D R� Œ�1:15548C 2:5 lnT � lnp C 1:5 lnm� . (3.70)

where T is in K, p is in bar, and m is the mole mass in kg.kmole�1.
Enthalpy:

Htrans D 5

2
R�T . (3.71)

Free energy:

Ftrans D TStrans �Etrans. (3.72)

Free enthalpy:

Gtrans D TStrans �Htrans. (3.73)

Specific heats:

Cp;trans D .5=2/R� , Cv;trans D .3=2/R�. (3.74)
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Note that for free electrons the contribution of the direction of the electron spin
with respect to the direction of motion is taken into account by multiplying the
relation for the partition function, (3.67), by a factor 2. Thus, for the entropy
of the electrons, a term ln2 must be added within the bracket. Further since for
electrons, m D 1=1836:5, we get the following relation for the molar entropy of
the electrons only:

Strans;el D R�Œ�11:735758C 2:5 lnT � lnp�. (3.75)

Herein p is again in bar and T is in K. It is interesting to note that as T ! 0,
the molar entropy S ! �1. However, as T ! 0, the pressure p must also tend
to zero and the molar entropy becomes indeterminate, when no known substance
in gaseous form can exist. It is, therefore, stated that the molar entropy of a
substance is zero as T ! 0 (third law of thermodynamics).

3.2.2 Contribution of Rotational and Vibrational
Energy Forms

While for the translation of a particle there are three degrees of freedom, for rotation
of diatomic molecules there are only two degrees of freedom. We write (in analogy
to (3.67)) by replacing the exponent 3/2 in (3.67) for three degrees of freedom of a
particle by the exponent 2/2 for two degrees of freedom of each of the two atoms
and adding them. The relation for the rotational partition function of a diatomic
molecule is now

Zr D V1

�
2�kBMT

h2

�2=2
C V2

�
2�kBMT

h2

�2=2
. (3.76)

Further, let r1 and r2 be the distance of the two masses from the common axis of
rotation. Thus,

M1r1 D M2r2 and r1 C r2 D r . (3.77)

Now as per the usual definition of the mass moment of inertia, I D M2
1 r

2
1CM2

2 r
2
2 D

�r2, where � D M1M2=.M1 C M2/ is the reduced mass. In addition, analogous
to volume V in (3.67) and justified from dimensional considerations, we write the
expression for surfaces for the rotational case

V1 D 4�r21 ; V2 D 4�r22 (3.78)

and the rotational partition function is

Zr D 8�2kBT

h2

�
M1r

2
1 CM2r

2
2

� D 8�2kBIT

h2
D T

�r
; (3.79)
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where�r is the characteristic rotational temperature of the gas, values of which are
given in Table 2.1 for some diatomic gases. Equation (3.79) is slightly modified to

Zr D T

��r
; (3.80)

where � is the symmetry factor with value equal to two for homopolar molecules
like H2, N2, O2, etc., and is equal to one for heteropolar molecules like HCl, CO, etc.
Further for most of the high temperature gases T > �r , and (3.80) is a sufficiently
good approximation for the rotational partition function. While determining the
contribution of the rotational states to the thermodynamic properties, as well as to
determine the contribution of the vibrational and electronic states later, it may be
noted that the total partition function is the product of the partition function for each
of the different kinds of energy states. Thus all constants in (3.56), (3.58), and (3.59)
appearing under the natural logarithm may be considered only once, which has
already been done in the case of the translational energy. Further, the difference
between the enthalpy, the free enthalpy, and the specific heat at constant pressure
on the one side and the internal energy, the free energy, and the specific heat at
constant volume on the other need not be considered again, since it has already been
done in the case of the translational energy. Under the approximation of T � �r
only and keeping the preceding discussion in mind, the following equations are
derived from (3.55–3.60) to determine the contribution of the rotational energy to
the thermodynamic properties of the diatomic gases:

Internal energy:

Erot D R�T . (3.81)

Entropy:

Srot D R�Œ1C ln.T=�r/�. (3.82)

Enthalpy:

Hrot D Erot D R�T . (3.83)

Free energy:

Frot D TSrot �Erot D R�T ln.T=�r/. (3.84)

Free enthalpy:

Grot D Frot D TSrot �Erot D R�T ln.T=�r/. (3.85)
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Specific heat:

Cp;rot D Cv;rot D R�. (3.86)

It has been mentioned already that (3.80), derived analogous to the translational
energy by a semi-rigorous method, is valid only under the condition T > �r .
When this condition is not satisfied, we have to get a more exact relationship,
which will now be explained. For this purpose, the rotational energy level for a
diatomic molecule, given by (2.34), as E D kBJ.J C 1/�r is taken. Further,
degeneracy for rotation, that is, the number of states with identical energy, is
g D 2J C 1. Thus, the rotational partition function is

Zr D 1

�

1X
JD0

.2J C 1/ exp��rJ.JC1/=T ; (3.87)

where � is equal to one or two depending on whether we are considering a
heteropolar molecule or a homopolar molecule, as it has already been mentioned
after (3.80).

For �r=T � 1, the above summation can be replaced by an integral

Zr D 1

�

Z 1

0

.2J C 1/ exp��rJ.JC1/=T dJ D 1

2�

Z 1

0

exp�z�r=T d z; (3.88)

where z D J.J C 1/. One can show easily that the above integral leads to (3.80).
While evaluation of the above expressions for Zr and the temperature derivative

of lnZr is quite straightforward, it requires numerical evaluation of very time-
consuming exponential functions. For most of the cases, one can, therefore, use
a simpler formula

Zr D T

��r

"
1C �r

T
C 1

15

�
�r

T

�2
C : : :

#
. (3.89)

For any of the above formulations determination of the thermophysical properties
like enthalpy, entropy, and specific heats is quite straightforward by using a digital
computer to add the terms. For this purpose, let us define the following identifiers:

D1 D
1X
JD0

.2J C 1/ exp�J.JC1/�r=T . (3.90)

D2 D
1X
JD0

J.J C 1/.2J C 1/ exp�J.JC1/�r=T . (3.91)

D3 D
1X
JD0

J 2.J C 1/2.2J C 1/ exp�J.JC1/�r=T . (3.92)
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We can now write for the contribution of the rotational energy in a general case as
follows:

Internal energy:

Erot D R��r.D2=D1/. (3.93)

Entropy:

Srot D Erot

T
CR� ln

�
D1

�

�
. (3.94)

Enthalpy:

Hrot D Erot D R��r.D2=D1/. (3.95)

Free energy:

Frot D TSrot �Erot D R�T ln

�
D1

�

�
. (3.96)

Free enthalpy:

Grot D Frot D R�T ln

�
D1

�

�
. (3.97)

Specific heats:

Cp;rot D Cv;rot D R�
�
�r

T

�2 "�
D3

D1

�
�
�
D2

D1

�2#
. (3.98)

Results of the calculation of Hrot; Srot=R
�, and Cp=R� for T > �r , (3.81, 3.82,

3.86), designated as analytical, and for a more general case, (3.93, 3.94), and (3.98),
designated as exact numerical, are now shown in Fig. 3.2. It is seen that as T=�r
goes to zero, all the values for the general case go to zero, but for the case of T > �r ,
enthalpy changes linearly with temperature, entropy becomes even negative, and the
specific heat remains a constant at the high temperature value. It is seen further that
both sets of results merge to each other, when .T=�r/ > 4.

In molecules with more than two atoms, the characteristic rotational temperature
is dependent on those on the principal axes, and the matter has been discussed at
some length in Sect. 2.2.1. Of the four types of molecules discussed there, namely
(a) the linear molecules, (b) the symmetric top molecules, (c) the spherical top
molecules, and (d) the asymmetric top molecules, the molecules belonging to the
first group are those which have symmetrical atoms like O-C-O or H-O-H, and
for the calculation of the thermophysical properties for these, the methodology
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Fig. 3.2 Nondimensional enthalpy, entropy, and specific heat for rotation of diatomic molecules

for diatomic molecules can be used with � equal to 2. For other molecules
the characteristic rotational temperature �r and the symmetry factor � given in
Table 2.2 are to be taken and substituted in (3.55–3.60), as discussed below.
In addition, in complex molecules, the rotation of one group of atoms relative to
another (for example of the group CH3 about the bond C-C in ethane) must be
taken into consideration. Internal rotation may be hindered as well as free, because
a molecule has a force field tending to orient a group of atoms in a definite position,
where the force inhibiting the rotation is minimum to the position, where it is
maximum, and is called the energy or potential barrier.

Now for multiatomic molecules, the rotational energy and the partition function
for rotation are dependent on the detailed molecular structure and, as such, can
be discussed under the following headings: (a) diatomic and linear polyatomic
molecules, (b) rigid symmetric top molecules, (c) spherical top molecules, and (d)
asymmetrical top molecules. These are discussed one by one in the following:

(a) Diatomic and linear molecules: The partition function is given by the relation

Zr D 1

�

1X
JD0

.2J C 1/ exp��rJ.JC1/=T ; (3.99)

where � is the symmetry factor, and the above relation has been discussed
extensively already.
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(b) Rigid symmetrical top molecules like NH3, C2H4, etc.: Since the mass moment
of inertia for various principal axes can be different, the partition function is
given by the relation

Zr D 1

�

1X
JD0

JX
KD�J

gJ exp�Œ�BJ.JC1/C.�A��B/K2�=T ; (3.100)

where

K D 0; 1; 2; : : :; J

gJ D .2J C 1/, if K D 0, and gJ D 2.2J C 1/, if K > 0

�A D h2=.8�2IAkB/ and �B D h2=.8�2IBkB/; .�A < �B � �C /

IA, IB D mass moment of inertia on the two principal axes.

For T � �B , the above equation is reduced to

Zr D 1

�

�
�T 3

�2
B�A

�1=2
D 1

�

�
T

�r

�3=2
; (3.101)

where

�r D
�
�2
B�A

�

�1=3
. (3.102)

(c) Spherical top molecules, like CH4: Herein�A D �B ; otherwise the relation for
the symmetric top molecules is used.

(d) Asymmetric top molecules, like H2O, H2S, etc.: For T � .�A; �B; �C /, the
relation for the partition function and the characteristic rotational temperature is

Zr D 1

�

�
�T 3

�A�B�C

�1=2
D 1

�

�
T

�r

�3=2
; (3.103)

where

�r D
�
�A�B�C

�

�1=3
. (3.104)

From (3.99), (3.101), and (3.103), one can, therefore, write the general expres-
sion for rotation of diatomic or multiatomic molecules at higher temperatures as

Zr D 1

�

�
T

�r

�n
; (3.105)

where n D 1 for diatomic molecules or rotor type (a) in Table 2.2, or else
n D 3=2.
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By a straightforward application of (3.55–3.60), we can now derive the following
relations for the thermodynamic properties:

Internal energy and enthalpy:

Erot D nR�T . (3.106)

Entropy:

Srot D R� ŒnC ln ..T=�r/
n=�/� . (3.107)

Free energy and free enthalpy:

Frot D Grot D R� ln Œ.T=�r/
n=�� . (3.108)

Specific heats:

Cp;rot D Cv;rot D nR�. (3.109)

The expression for the partition function for a diatomic molecule as a harmonic
oscillator can be determined from (2.44) and (3.36) as

Zv;harm D
1X
vD0

exp�.vC1=2/�v=T D exp��v=.2T /
1X
vD0

exp�v�v=T

D exp��v=.2T / �1C exp��v=T C exp�2�v=T C: : :� . (3.110)

For�v=T around and larger than one the succeeding exponential terms in the series
become negligible with respect to the preceding term. For this condition only, and
since for a small value of x,

1C x C x2 C x3 C : : : � 1

1 � x (3.111)

the term inside the parenthesis can be substituted by

�
1 � exp��v=T ��1 (3.112)

and thus for a harmonic oscillator under the condition �v=T � 1

Zv;harm D exp��v=.2T / �1 � exp��v=T ��1 D 1

2 sinh Œ�v=.2T /�
. (3.113)

Note that since (3.113) is valid strictly only for T � �v , that is, when most of
the particles are in the vibration energy levels for which the vibration quantum
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number v is small, this is also the main assumption for the validity of the
harmonic oscillator model. However, in many cases, even when this condition is not
met, (3.113), because of its very convenient form, is preferred to the anharmonic
oscillator model for quick determination of the contribution of the vibrational
energy. Further derivation of relations for the contribution of the vibration energy
to the thermodynamic properties is a straightforward application of (3.55–3.60),
although the limiting values of these at 0 K are to be taken into account, and we
derive first the following relations:

Internal energy and enthalpy:

Evib;harm D Hvib;harm D R��v
2

coth

�
�v

2T

�
. (3.114)

Entropy:

Svib;harm D R��v
2T

coth

�
�v

2T

�
CR� ln

�
1

2 sinhŒ�v=.2T /�

�
. (3.115)

Free energy and free enthalpy:

Fvib;harm D Gvib;harm D TSvib;harm �Evib;harm

D R�T ln

�
1

2 sinhŒ�v=.2T /�

�
. (3.116)

Specific heats:

Cp;vib;harm D Cv;vib;harm D R�
�
�v

2T

�2
1

sinh2Œ�v=.2T /�
. (3.117)

Limiting values of the thermodynamic properties for harmonic oscillator are for
T ! 0: E=.R��v/ ! 0:5, .S=R�/ ! 0, and Cp=R� ! 0 and for T !
1: Cp=R� ! 1. Thus, all properties except the internal energy for a harmonic
oscillator model is zero as T ! 0. For the internal energy, this limiting energy
at T ! 0 has to be subtracted from (3.114), since the vibration energy even at
the lowest vibration quantum number .v D 0/ is not zero. Thus, the equation for
determination of the internal energy and enthalpy, substituting (3.113), is

Evib;harm D Hvib;harm D R��v
2

�
coth

�
�v

2T

�
� 1

�
: (3.118)

While in the above analysis, internal energy at 0K was deducted afterward, an
alternative method, consistent with the convention that the vibration energy in the
ground state is zero, is now discussed. For this purpose, the partition function for
harmonic oscillator is written from (3.110) by dropping (1/2) in the exponential
to get
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Zv;harm D
1X
vD0

exp�v�v=T

D 1C exp��v=T C exp�2�v=T C: : : D 1

1 � exp��v=T (3.119)

which gives further the following relations for the thermophysical properties of
the harmonic diatomic oscillator:

Internal energy and enthalpy:

Evib;harm D Hvib;harm D R��v
exp�v=T �1 . (3.120)

Entropy:

Svib;harm D R�
�
�v

T

1

exp�v=T �1 C ln
1

1 � exp��v=T

�
. (3.121)

Free energy and free enthalpy:

Fvib;harm D Gvib;harm D R�T ln
1

1 � exp��v=T . (3.122)

Specific heats:

Cp;vib;harm D Cv;vib;harm D R�
�
�v

T

�2 exp�v=T

.exp�v=T �1/2 . (3.123)

Numerical results ofEvib;harm=.R
��v/ and Svib;harm=R

�, calculated with the help
of two different sets of equations above and also by taking more number of terms
in calculation of the partition function of a harmonic oscillator between T=�v
from 0.1 to 3, have no significant difference between the methods, and the results
of the calculation of the thermodynamic properties for a harmonic oscillator have
been shown in Fig. 3.3. However, for T=�v > 1, the thermophysical property
results calculated for an anharmonic oscillator are larger than those calculated
from the harmonic oscillator model (typically, for T=�v D 3:0, the internal
energy and entropy calculated by anharmonic oscillator model is slightly larger
than those calculated by the harmonic oscillator model depending on the value
of the anharmonicity constant x). We would discuss, therefore, calculation of
the thermodynamic properties by the anharmonic oscillator model briefly. The
starting point of calculation is the definition of the partition function for the
anharmonic oscillator

D1 D Zv;anh: D
vmaxX
vD0

exp�v.1�xv/�v=T (3.124)
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Fig. 3.3 Nondimensional
enthalpy, entropy, and
specific heat for harmonic
diatomic oscillators

and two other identifiers (equivalent of temperature derivatives)

D2 D
vmaxX
vD0

v.1 � xv/ exp�v.1�xv/�v=T (3.125)

and

D3 D
vmaxX
vD0

v2.1 � xv/2 exp�v.1�xv/�v=T . (3.126)

These identifiers are similar in structure as those given in (3.90–3.92) for rotors,
and the thermophysical properties relations are also very similar to those given for
rotors in (3.93–3.98). Therefore, the individual thermodynamic properties for an
anharmonic oscillator (and for a harmonic oscillator by putting x D 0 and vmax

going to infinity) can be calculated from the following relations:

Internal energy and enthalpy:

Evib D Hvib D R��v.D2=D1/. (3.127)

Entropy:

Svib D .Evib=T /CR� ln.D1/. (3.128)

Specific heats:

Cp;vib D Cv;vib D R�.�v=T /2Œ.D3=D1/ � .D2=D1/
2�. (3.129)
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For multiatomic molecules with degeneracy in energy or different modes of
vibration in different directions, the partition function of vibration for the entire
molecule is obtained as a product of partition function in different modes of
vibration (for harmonic oscillator, as a first approximation) and is given by the
relation

Zv D
Y
k

Zv;k D
Y
k

" 1X
vD0

exp�v�v;k=T
#dk

D
Y
k

1�
1 � exp��v;k=T �dk (3.130)

where the characteristic oscillation temperature for different modes of operation,
�v;k , and degeneracy, dk , for various gases are given in Table 2.3. Accordingly, the
following equations can be used for the calculation of the thermophysical properties
(harmonic oscillation):

Internal energy and enthalpy:

Evib D Hvib D
X

Hvib;k D R�X
k

�v;kdk�
exp�v;k=T �1� . (3.131)

Entropy:

Svib D
X
k

�
Hvib;k

T
CR�dk ln

1

1 � exp��v;k=T

�
. (3.132)

Specific heats:

Cp;vib D Cv;vib D R�X
k

dk

�
�v;k

T

�2 exp�v;k=T�
exp�v;k=T �1�2 . (3.133)

For multiatomic anharmonic oscillator model, (3.131–3.133) may be suitably
modified as per the procedure discussed already for a diatomic molecule.

It has already been pointed out that generally in a transition between the vibra-
tional energy levels there is always a simultaneous transition between the rotational
energy levels, although the reverse is not possible (since energy requirement for
vibrational transitions is much larger than for the rotational transitions). We would
now discuss the interaction of rotation and oscillation in a molecular structure,
which is further accentuated due to expansion of the distance between the two
atoms in a diatomic molecule, and also in the change in the mass moment of inertia.
Now, the characteristic rotational temperature changes linearly with the vibrational
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quantum number v. If �r;o is the characteristic rotational temperature with the
vibrational energy in the ground state .v D 0/, then at another v the characteristic
rotational temperature is given by the relation

�r D �ro � ˛.v C 1=2/ (3.134)

and the rotational energy of a single molecule in the rotational quantum level J is

EJ D J.J C 1/kB�r � 4kB�r.�r=�v/2J 2.J C 1/2. (3.135)

in which the second term in the right-hand side is the nonrigid rotor term. Value of
˛ is given in Table 2.1. For the vibration energy, the anharmonic oscillator model
with the anharmonicity function x (given in Table 2.1) can be used. For a multiple
atomic gas, depending on the symmetry, there can be a number of values of v, x,
and ˛. However, for most of the molecular specie, the effect of the nonrigid term
and ˛ on the rotational energy is small enough to be neglected, and these need not
be considered for evaluation of thermodynamic properties.

3.2.3 Contribution of Electronic Energy

Since for most of the rotational-vibrational transitions, the electrons are still in the
ground state, the electronic energy contribution to the thermodynamic properties
need not be considered at moderate temperatures. At higher temperatures, however,
these need be considered, for which the partition function is given for Boltzmann
statistic by (3.36), in which Ei in each of the energy level of a particular ionization
state is calculated from the ground level of that particular ionization state. Tables
of gi , Ei , and ionization energy for various gases are readily available in books
such as Atomic Energy Levels by Moore[113] published by the National Bureau
of Standards of the USA. Some of these recalculated and used by this author
for various gases are given in the table in Appendix-I. For this purpose, please
note that the roman numeral after the name of the species minus one is the
ionization level of the gas. For example, the roman numeral “I” refers to neutral
state, “II” means singly charged ion, etc. Further, as the principal quantum number
n ! 1, the corresponding statistical weight g ! 1, and the energy given is
the ionization energy in cm�1. In actual calculation of the partition function and
the thermodynamic properties, it is, therefore, necessary to have a cutoff condition
of energy, so that the partition function does not become infinity. From the several
formulas available for this purpose, the following by Unsoeld [156] is easy to apply:

Ei � Elimit D Ii � .3e2=�o/.qeffne/
1=3 (3.136)
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in which

Elimit D cutoff energy
Ii D ionization potential from the ground level of the particular ionization state
qeff D effective charge number of electrons in the outermost shell
ne D electron number density, m�3
e2=�o D 2:9 � 10�26, Jm.

Once again, the contribution of the electronic excitation to the thermodynamic
properties can be calculated, as it has been done for other modes of energy. Noting
the identifiers,

D1 D
X

gi exp�Ei =.kBT / (3.137)

D2 D
X

giEi exp�Ei =.kBT / (3.138)

and

D2 D
X

giE
2
i exp�Ei =.kBT / (3.139)

formulas for calculation of the contribution to the various thermodynamic properties
are as follows:

Internal energy or enthalpy:

Eel D Hel D .R�=kB/.D2=D1/. (3.140)

Entropy:

Sel D .Eel=T /CR� ln.D1/. (3.141)

Specific heats:

Cp;el D Cv;el D ŒR�=.kB=T /2�Œ.D3=D1/ � .D2=D1/
2�. (3.142)

The total values of the thermodynamic properties are, of course, obtained by
adding individual contributions from different modes of energy. For the internal
energy or enthalpy, one has to add further the reaction energy or reaction enthalpy
at 0 K. The actual results of the enthalpy and the entropy at 1 bar for different
gases and temperature up to 15,000 K, reproduced from Bosnjakovic [31], are
given in the two tables in Appendix B and C.
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Table 3.3 Calculation of molar enthalpy, entropy, and specific heat at constant
pressure for CO and H2 molecules

Gas H2 CO

�r (K) 87.6 2.78
� 2.0 1.0
�v (K) 6333.0 3130.0
x 0.0266 0.0061
	Ho.MJ=kmole/ 0.0 �113:88
Temp. (K) 298.15 1000 298.15 1000

Htrans (MJ/kmole) 6.20 20.78 6.20 20.78
Strans (MJ/kmoleK) 0.11756 0.14271 0.15037 0.17533
Cp,trans (MJ/kmoleK) 0.021 0.021 0.021 0.021
Hrot (MJ/kmole) 2.23 8.07 2.47 8.25
Srot (MJ/kmoleK) 0.01272 0.02279 0.04718 0.05718
Cp,rot (MJ/kmoleK) 0.008 0.008 0.008 0.008
Hhar (MJ/kmole) 0.00 0.09 0.00 1.19
Shar (MJ/kmoleK) 0.00 0.00011 0.00 0.00156
Cp,har (MJ/kmoleK) 0.00 0.001 0.00 0.004
Hanh (MJ/kmole) 0.00 0.11 0.00 1.21
Sanh (MJ/kmoleK) 0.00 0.00013 0.00 0.00159
Cp,anh (MJ/kmoleK) 0.00 0.001 0.00 0.004

Incl. harm.:

Htot (MJ/kmole) 8.43 28.95 �105:21 �83:65
Stot (MJ/kmoleK) 0.13029 0.16562 0.19756 0.23427
Cp,tot (MJ/kmoleK) 0.029 0.030 0.029 0.033

Incl. anharm.:

Htot (MJ/kmole) 8.43 28.96 �105:21 �83:63
Stot (MJ/kmoleK) 0.13029 0.16564 0.19756 0.23430
Cp,tot (MJ/kmoleK) 0.029 0.030 0.029 0.033

3.2.4 Sample Calculations

Results of calculation for molar enthalpy (in MJ:kmole�1), entropy (in
MJ:kmole�1K�1), and specific heat at constant pressure (in MJ:kmole�1K�1) for H2

and CO at two different temperatures, 298.15 and 1,000 K, are given in tabular form
in Table 3.3 in order to familiarize the reader about the procedure involved. At the
top of the Table, values are given for the characteristic rotational temperature, �r ,
the symmetry constant,� , the characteristic vibrational temperature, �v , the anhar-
monicity coefficient, x, and the heat of formation at 0 K, �Ho.MJ:kmole�1/. Fur-
ther below are the results of calculation of molar enthalpy, entropy, and specific heat
at constant pressure for translation (3.70), (3.71), and (3.74), rotation (3.82), (3.83),
and (3.86), harmonic oscillator model (3.114), (3.116), and (3.117), anharmonic
oscillator model (3.124), (3.125), and (3.126), and the sum of all the above (total
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Table 3.4 Calculation of
molar enthalpy, entropy, and
specific heat at constant
pressure for CO2

Temp. (K) 298.15 500 1000

Htrans (MJ/kmole) 6.20 10.39 20.78
Strans (MJ/kmoleK) 0.15601 0.16676 0.18166
Cp,trans (MJ/kmoleK) 0.021 0.021 0.021
Hrot (MJ/kmole) 2.48 4.16 8.31
Srot (MJ/kmoleK) 0.07389 0.07818 0.08395
Cp,rot (MJ/kmoleK) 0.008 0.008 0.008
Hvib,har (MJ/kmole) 0.36 1.75 8.66
Svib,har (MJ/kmoleK) 0.00155 0.00500 0.01426
Cp,vib,har (MJ/kmoleK) 0.004 0.009 0.017
Htot (MJ/kmole) �384.20 �376.93 �355.47
Stot (MJ/kmoleK) 0.23145 0.24994 0.27937
Cp,tot (MJ/kmoleK) 0.033 0.038 0.046

values for both harmonic and anharmonic models). It is recommended that the
reader should test the results of exact calculation for a rotor (3.93–3.98) with those
under ideal rotor model (3.81–3.86).

Table 3.4 contains also the result of calculation of the enthalpy, the entropy, and
the specific heat for CO2 by taking the rotor data from Tables 2.1 and 2.2 and the
harmonic oscillator data from Table 2.3 and using (3.106–3.109) and (3.131–3.133).
Heat of formation for CO2 is �393:23MJ:kmole�1.

3.3 Distribution of Energy Levels

In the previous section, statistical methods have been developed to compute the
thermophysical properties without any regard to the actual energy distribution which
is to be discussed in the present section. In the translational mode, the energy of
individual particles is E D Mv2=2. If E is not discrete but continuous, then the
number of particles with velocities between v and vC dv is the number of particles
in the volume 4�v2dv. Thus, from (3.21) and (3.32),

dN D CN

Z
exp�Mv2=.2kBT / 4�v2dv; (3.143)

where C is a constant, which accounts for the dimension, and its value will be
determined. Now, integrating (3.143) and noting that the integral

Z 1

0

exp�Mv2=.2kBT / v2dv D
p
2

M3=2

Z 1

0

p
E exp�E=.kBT / dE

D
r
�

2

�
kBT

M

�3=2
(3.144)
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we get

N D
Z

dN D 4�CN

Z

Z 1

0

exp�Mv2=.2kBT / v2dv D CN

Z

�
2�kBT

M

�3=2
.

(3.145)

Thus,

Z=C D
�
2�kBT

M

�3=2
(3.146)

and (3.143) becomes

dN D 4�Nv2
�

M

2�kBT

�3=2
exp�Mv2=.2kBT / dv; (3.147)

where the distribution function

f .v/ D 4�v2
�

M

2�kBT

�3=2
exp�Mv2=.2kBT / (3.148)

gives the fraction of total number of particles with kinetic speed v and speed
interval dv.

Let us now define a nondimensional kinetic speed:

v0 D v=
p
2kBT=M . (3.149)

Thus, from (3.148), we write

dN D Nf .v/dv D Nf .v0/dv0; (3.150)

where

f .v0/ D
�
4p
�

�
v02 exp�v02

. (3.151)

Now f .v0/ ! 0, if v0 ! 0 and v0 ! 1, and the maximum value is obtained
by differentiation with respect to v0 and putting it equal to zero; the maximum is
at v0 D 1. Equation (3.150) is integrated numerically between 0 and 3 in steps of
	v0 D 0:2 and is plotted in Fig. 3.4 along withf .v0/. It can be seen that 95 % of all
the particles have speed in the range between 0 and 2 with the most probable value
at v0 D 1. One can, of course, determine the average of any other property, ', from
the integral relation

N' D
Z
'f .v0/dv0 D

Z
'dN . (3.152)
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Fig. 3.4 Mole fraction
distribution for translational
energy at different reduced
speeds

In this connection, it is worthwhile to consider the integral
Z 1

0

x˛ exp�ˇx2 dx.

By putting ˇx2 D y, 2ˇ xdx D dy, the above integral can be written in terms of
the gamma function as

1

2ˇ.˛C1/=2 �
�
˛ C 1

2

�
.

Now note the following gamma function results:

� .0/ D 1I�
�
1

2

�
D p

� I� .1/ D 1

�

�
3

2

�
D

p
�

2
I� .2/ D 1I�

�
5

2

�
D 3

p
�

4
.

By putting ' D 1, we get the normalizing relation

Z 1

0

f .v0/dv0 D 2p
�
�

�
3

2

�
D 1.

The average nondimensional kinetic speed of the molecule is obtained by putting
' D v0 and integrating to get

Nv0 D
Z 1

0

v0f .v0/dv0 D 4p
�

Z 1

0

v03 exp�v02

dv0 D 2p
�

.
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Similarly, the mean of the square of the nondimensional speed is obtained by
substituting ' D v02 and integrating to get

. Nv02/ D
Z 1

0

v02f .v0/dv0 D 4p
�
v04 exp�v02

dv0 D 3

2
.

From the speed distribution function, it is, therefore, possible to obtain the following
three important speeds:

1. Most probable speed v0 D v0
p D 1, that is,

vp D
p
2kBT=M . (3.153)

2. Average speed Nv0 D .2=
p
�/v0

p D 1:129v0
p , that is,

Nv D
p
8kBT=.�M/. (3.154)

3. Root mean square of the speed (since Nv02 D .3=2/v02
p ), that is,

p
. Nv/2 D

p
3kBT=M . (3.155)

For comparison, the isentropic sonic speed in a gas is

a D
p
�R�T=m D

p
�kBT=M D vp

p
�=2 (3.156)

where m is the mole mass of the gas, � is the specific heat ratio, and R� is the
universal gas constant. In general the isentropic sonic speed is slightly smaller
than vp , but it is of the same order of magnitude. Thus a disturbance propagates
in a gas with almost the most probable speed.

While (3.150) gives the mole fraction of particles, which are found in the kinetic
speed range between v and v C dv, we would now derive similar relations for
rotational and vibrational energies. These relations are obtained from the Boltzmann
statistic, (3.35). Thus, for the rotational energy level distribution, the mole fraction
at any rotational quantum number J is

xJDNJ

N
D .2JC1/

Zr
exp�J.JC1/�r=T D�r

T
.2JC1/ exp�J.JC1/�r=T . (3.157)

The expression, plotted in Fig. 3.5, has a maximum, which can be easily obtained
by differentiating (3.157) with respect to J and putting it equal to zero to get the
maximum at J D .

p
2T=�r � 1/=2.

Similarly, for an anharmonic oscillator model, the mole fraction at any vibration
quantum number v is given by the relation
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Fig. 3.5 Mole fraction
distribution for different
T=�r

Fig. 3.6 Mole fraction
distribution for different
T=�v

xv D exp�v.1�xv/�v=TP
exp�v.1�xv/�v=T (3.158)

which is plotted in Fig. 3.6 for an anharmonicity coefficient, x D 0:01.
The physical meaning of the pressure in terms of the mean kinetic speed can

now be given also in a simplified manner as follows. Let us consider a cube of side
“a” containing N particles having a mean kinetic speed v. Therefore, N D na3,
where n is the number density Œm�3� of the particles. Now the momentum transfer
per collision while reflecting from one wall is 2Mv, and in time t D 2a=v, (1/3)
of N particles are going to fall on each wall. Therefore, the momentum transfer per
second is pa2 D .N=3/.2Mv=t/ D na2Mv2=3 and noting Mv2 D 3kBT , we get
the equation of state again as p D nkBT .
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3.4 Exercise

3.4.1 For various gases estimate the value of molar enthalpy, entropy, and specific
heat at different temperatures and pressures and compare these with those
given in available literatures.

3.4.2 Calculate the nondimensional values of enthalpy, entropy, and specific
heat as a function of the ratio of the temperature and the characteristic
temperature separately for diatomic rotor and harmonic oscillator.

3.4.3 Calculate the energy distribution of energy in rotor and oscillator (harmonic
and anharmonic) modes as a function of the ratio of the temperature to the
characteristic temperature.

3.4.4 Calculate the specific heat ratio of the diatomic molecules in the temperature
range 100 to 5,000 K and show how values deviate from the ideal gas values.

3.4.5 For various diatomic molecules given in Table 2.1, estimate the temperature
where the contribution of vibration in Cp is less than 1 % of the total.

3.4.6 Determine the population distribution with temperature of the first four
energy levels of hydrogen atom by Boltzmann distribution.



Chapter 4
Radiative Properties of High Temperature Gases

4.1 Basic Concepts and Laws

We consider emission of radiation from a surface element dA in a hemispherical
space with radius of the hemisphere being r (Fig. 4.1). Further we consider a surface
element area dA0 D r2 sin d d� on this hemisphere and thus a solid angle
d˝ D dA0=r2 D sin d d� . In addition any radiation quantity emanating normal
to the surface element dA0 has components in three directions:

lx D sin sin �; ly D sin cos �; lz D cos . (4.1)

Obviously if l is in the direction in which the radiative energy propagates with its
three angles flx; ly; and lzg, then the normal unit vector n fi; j; kg is given by the
relation [160]

n D i cos.lx/C j cos.ly/C k cos.lz/ . (4.2)

Radiation in all wavelengths 
 D 0 to 1 (or all frequencies, � D c=
 D 0 to 1, c
D speed of light) or in a particular wavelength 
 (or a particular frequency �) may
be considered. Further, we define some of the other radiative quantities as follows.

Total or integrated radiation PQ [in W] is the total radiation in all wavelengths
(frequencies), in all directions from the surface of a body, per unit time out of a
hemisphere.

Emissive power or integral density of radiation PE [in Wm�2] is now the energy
at all wavelengths, in all directions, per unit wavelength, and per unit surface area
of the body, and is related to the spectral intensity of radiation

B
 D d PE=d
 D PE
 D d2 PQ=.dAd
/Wm�3. (4.3)

T.K. Bose, High Temperature Gas Dynamics: An Introduction for Physicists and Engineers,
DOI 10.1007/978-3-319-05200-7__4, © Springer International Publishing Switzerland 2014
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Fig. 4.1 Determining solid
angles in spherical
coordinates

Similarly, in terms of frequency, we write

B� D d PE=d� D PE� D d2 PQ=.dAd�/ Jm�2 . (4.4)

Noting that B
d
 D �B�d�, one can write

B
 D B�.c=

2/ D B��

2=c. (4.5)

Radiation of energy per unit wavelength, unit surface area, and unit solid angle
(steradian) of the body in one direction is the angular spectral intensity of radiation

I
 D dB
=d˝ D d2 PE=.d
d˝/ D d2 PQ=.dAd
d˝/Wm�3 sterad�1. (4.6)

Similarly in terms of the spectral frequency the angular intensity of radiation is

I� D dB�=d˝ D d2 PE=.d�d˝/ D d2 PQ=.dAd�d˝/ Jm�2 sterad�1 . (4.7)

Noting (4.5), we get

I
 D I�.c=

2/ D I�.�

2=c/. (4.8)

Integrating (4.6) over all wavelengths

I D
Z
I
d
 D d PE=d˝ (4.9)

we get the total angular intensity of radiation [in Wm�2 sterad�1] which is the
radiation of energy at all wavelengths per unit surface area of the body and solid
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angle. Further, integrating (4.3) over all wavelengths, we get the relation for the
total intensity of radiation

B D
Z
B
d
 D PEWm�2. (4.10)

Now the energy radiated through the hemispherical surface element is d PE� D
I�d�d˝, and the flux of photons through this surface element is d Pnf . The
photon flux (number of photons per unit area, m�2) is given by the relation
d Pnf D .h�/�1d PEf [in m�2 s�1], whose three components in the three positive
coordinate directions can be obtained by multiplying it with the cosines in the three
directions (4.1). Since the energy per photon is h� and the momentum in the j th
coordinate direction is .h�=c/lj (see also Sect. 4.2), the differential fluxes of radiant
spectral energy and momentum are given by the relation

d PEj� D I�lj d˝ D I�lj sin d d� (4.11)

and

d�ij� D .I�=c/li lj d˝ D .I�=c/li lj sin d d� . (4.12)

We would now evaluate (4.11) and (4.12) for the special case of an isotropic
radiation, in which I� or I
 are independent of the direction of propagation.
Assuming j th coordinate direction is normal to the surface

dB� D d PE� D I� cos d˝ D .1=2/I� sin.2 /d d� (4.13)

which states that the component of the intensity of radiation in the direction of the
normal to the surface is proportional to the cosine of the angle formed between the
direction of radiation and the normal to the surface of the body (Lambert’s cosine
law). Thus, for isotropic radiation, the relation between B� and I� functions can be
obtained by integrating over all directions out of a hemisphere [in Jm�2]

B� D 1

2

Z 0

 D�=2

Z 2�

�D0
I� sin.2 /d d� D �I� Jm�2. (4.14)

Similarly

B
 D �I
 Wm�2. (4.15)

Further, for isotropic radiation,

�ij� D
Z
.I�=c/li lj sin d d� D I�

c



2�=3 for i D j;

0 for i ¤ j .
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Radiative pressure applied to a fully reflecting surface is twice the momentum flux
in that direction. Thus, in the i th direction, the spectral radiative pressure is given
by the average of the sum of all momentum flux with i D j and leads to the relation

p� D 2

3X
iD1

�ij� D 4�

3

�
I�

c

�
Nsm�2. (4.16)

We now examine, for the isotropic radiation, the spectral energy of radiation in
transit from a small sphere to a larger sphere, but small enough to consider the value
of the intensity of radiation to be uniform. It is also assumed that all radiative energy
emanating from the smaller sphere is absorbed on the surface of the larger sphere.
The flux of photons is then 4�I�=.h�/ and the energy flux is 4�I� D cu� , where u�
is the spectral internal energy of radiation. Thus, for isotropic radiation,

u� D 4�

c
I� D 3p� Jsm�3. (4.17)

A very special case of isotropic radiation is the radiation inside a cavity, which
we would consider now for its importance, in which the cavity wall at a given
temperature is emitting and absorbing the radiative energy in such a manner that
an equilibrium radiation, also called black-body radiation, exists in the cavity. It is
easy to verify that neither I� nor u� nor p� depend on the size of the two spheres.

By combining the empirical relations for radiation, known as Wien’s law and
Rayleigh-Jean’s law (to be discussed later), Max Planck developed a semiempirical
law (which was subsequently named after him) giving a relation for the spectral
intensity of equilibrium radiation (denoted by an asterisk as superscript)

B�

 D C1=


5

expC2=.
T / �1 Wm�3; (4.18)

where 
 is the wavelength [in m] and C1 and C2 are constants whose values have
subsequently been found to be

C1 D 2�hc2 D 3:7483 � 10�16 Wm2 (4.19)

and

C2 D hc=kB D 0:014388mK: (4.20)

Results of B�

 against wavelength and temperature as a parameter are shown in

Fig. 4.2. While Planck’s law of radiation was good enough to investigate a number
of problems, its rigorous theoretical derivation was done by Albert Einstein who
applied the statistics developed earlier by Satyendra Nath Bose, which we would
follow. We would now discuss the method to calculate the distribution of photons
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Fig. 4.2 Spectral intensity of
a black-body radiation

for an equilibrium radiation. As a consequence of the fact that the total energy of
radiation, for a given temperature, is fixed but not the number of photons, only one
Lagrange undetermined multiplier is used as constraints in the statistical equations
discussed in Chap. 3. We write now, therefore, from (3.12),

ln

�
gi CNi

Ni

�
D Ei

kBT
(4.21)

which can be rewritten as

Ni D gi

expEi =.kBT /
. (4.22)

Herein Ni D N�d� is the number of photons in the volume element in energy space
with average energy h�. Thus N� D Ni=d� is the change in the number of photons
with respect to �, the energy of all photons with associated frequency of radiation �
is N�h�, and the associated energy density in the volume V is
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u�
� D N�h�=V; (4.23)

where u�
� is the spectral radiative energy for equilibrium radiation.

Now for the photons from a discussion regarding the translational energy of
particles (3.64), gi D .�=2/k2dk. With k D 2L=
, 
 D c=� D wavelength of
radiation, and volume V D L3, we can then write

gi D 4�V.�2=c3/d�. (4.24)

Note that for an unpolarized radiation, the value of gi in this relation has to be
multiplied by two. Since

Ni Š N�d� D 4�V

h�c
I �
� d� D u�

� V

h�
d� (4.25)

we write further

4�V

h�c
I �
� d� D 1

exph�=.kBT / �18�V
�2

c3
d� (4.26)

which follows

I �
� D 2h�3

c2
1

exph�=.kBT / �1 Jm�2 sterad�1. (4.27)

From (4.5), (4.8), and (4.15) for isotropic and equilibrium radiation, we can also
write

I �

 D 2hc2


5
1

exphc=.
kBT / �1 Wm�3 sterad�1; (4.28)

B�
� D 2�h�3

c2
1

exph�=.kBT / �1 Jm�2; (4.29)

and

B�

 D 2�hc2


5
1

exphc=.
kBT / �1 Wm�3: (4.30)

By comparing (4.18) with (4.30), the values of constants C1 and C2 can be obtained,
which are given in (4.19) and (4.20). In this process we completed the derivation of
Planck’s radiation law by rigorous statistical method. The result of the calculation
of B�


 has been plotted in Fig. 4.2 and a discussion will follow (4.42).
Now, with the help of (4.16) and (4.17), the relations for the spectral radiative

pressure and the spectral radiative energy for equilibrium radiation are
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p�
� D 4�

3c
I �
� D 8�h�3

3c3
1

exph�=.kBT / �1 Nsm�2 (4.31)

and

u�
� D 3p�

� D 8�h�3

c3
1

exph�=.kBT / � 1 Jsm�3. (4.32)

Total quantities of equilibrium radiation can now be obtained by integrating (4.26–
4.32) over all frequencies. Thus the total intensity of equilibrium radiation is

I � D
Z
I �
� d� D

Z 1

0

2h�3

c2
d�

exph�=.kBT / �1

D 2k4BT
4

h3c2

Z 1

0

Œh�=.kBT /�
3

exph�=.kBT / �1d

�
h�

kBT

�
.

Let x D h�=.kBT/. Further, noting for x < 1 that

1C x C x2 C x3 C � � � D 1

1 � x (4.33)

and also

1

1 � exp�x D 1C
1X
nD1

exp�nx I
Z 1

0

x3 exp�nx dx D 6

n4
. (4.34)

Thus,

Z 1

0

x3

expx �1dx D
Z 1

0

x3 exp�x

1 � exp�x dx D
Z 1

0

x3 exp�x
"
1C

1X
nD1

exp�nx
#

dx

D
Z 1

0

1X
nD1

�
x3

expnx

�
dx D 6

1X
nD1

�
1

n4

�
D �4

15
. (4.35)

and we get the following equations for the total quantities of equilibrium radiation.

Total angular intensity of equilibrium radiation:

I � D 2�4k4BT
4

15h3c2
D �

�
T 4 Wm�2 sterad�1. (4.36)

Total intensity of equilibrium radiation:

B� D �I � D �T 4 Wm�2 . (4.37)
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Total equilibrium pressure:

p� D 4�

3c
I � D 4�

3c
T 4 D 2:51986 � 10�16T 4 Nm�2. (4.38)

Total equilibrium radiative internal energy (D radiant energy density):

u� D 3p� D 4�

c
T 4 Jm�3 ; (4.39)

where

� D 2�5k4B
15h3c2

D 5:6697 � 10�8 Wm�2 K�4 (4.40)

is the total radiation constant obtained experimentally by Stefan and later sub-
stantiated analytically by Boltzmann; herein, � is usually called the “Boltzmann
constant of radiation”. Equation (4.37) is the analytical formulation of the Stefan-
Boltzmann’s law and was formulated chronologically prior to Planck’s law of
radiation (4.18). From (4.38), it is found that the radiation pressure of a black-body
radiation of a gas in a cavity at 100,000 K is around 0.252 bar. Thus, if the total
pressure measured at the wall at this gas temperature is 0.252 bar, then the cavity
is filled up entirely by the radiative energy as particles. The wall temperature of the
cavity has to be also at 100,000 K. In practice, however, the wall temperature of the
cavity is at a much lower temperature and the gas may radiate freely without much
absorption, so that the radiative pressure is negligible. Thus for most of the practical
cases radiative pressure may be considered equal to zero, although the radiative
energy flux (intensity of radiation) may be substantial.

We would now discuss the method to calculate the entropy for an equilibrium
radiation. For the general case of equilibrium gas radiation, we can use the statistical
methods discussed in Chap. 3 with the exception that here we have the auxiliary
condition for prescribed total energy but no restriction on the number of photons.
We write now, therefore, from (3.12) with Lagrange undetermined multiplier 
 put
equal to zero for Bose statistics, as

ln

�
gi CNi

Ni

�
D Ei

kBT
(4.41)

and thus from (3.43), for Bose statistics,

dS D kBd.lnW / D
X

ln

�
gi CNi

Ni

�
dNi D

X Ei

kBT
dNi

D 1

T

X
EidNi D 1

T

h
d
X

.EiNi / �
X

NidEi
i

.
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The first term within the bracket is the change in the internal energy of radiation du�
and the second term vanishes, since no work is done externally by radiation. The
concept of entropy here is, however, the same as in classical thermodynamics, that
is, the radiative heat flux can take place always from the region of higher temperature
to lower temperature. Thus, when two bodies are in relation to each other, the body
at higher temperature gives to the body at lower temperature the heat by radiation,
and only in the equilibrium case, when the temperature of the two bodies is common,
the radiative heat flux is that for a black-body radiation. For the equilibrium case,
denoted by an asterisk as superscript, the expression T dS� D du� D .16�=c/T 3dT
is obtained and thus for equilibrium radiation the entropy of radiation is given by
the relation

S� D 16

3

�

c
T 3 Jm�3 K�1 . (4.42)

We would now discuss some special cases of Planck’s radiation law, which is given
in equation form by (4.18) or (4.30), for which the values of B�


 [in kW m�3] are
plotted against 
 [in 
] for different temperatures (Fig. 4.2). It can be seen that
the numerator in these equations decreases with increasing 
 due to 
�5 term,
but the inverse of the denominator increases with 
. The product of the two can,
therefore, be expected to have a maximum. By differentiating B�


 with respect to the
wavelength and equating to zero gives the maximum value of B�


 at the wavelength
designated as 
max. The latter is given by the relation


maxT D 2; 898
K (4.43)

with the associated maximum emissive power

B�

max

D 1:307 � 10�8T 5 kWm�3. (4.44)

Equation (4.43) shows that the wavelength at which the maximum emissive power is
radiated shifts to shorter wavelengths at higher temperatures (Wien’s displacement
law). This law was formulated by Wien in 1898 by applying Doppler principle
(shifting in the frequency or wavelength of the radiative energy of a moving source
or receiver) to the adiabatic compression of radiation in a perfectly reflecting
enclosure, and he deduced that the wave length of each constituent of the radiation
should be shortened in proportion to the rise of temperature produced by the
compression. At smaller temperatures, the maximum radiative energy distribution
is in the far infrared. It is also known that rotational energy transmission spectra
has very little energy emission/absorption. As the temperature of the body is raised,
the maximum emissive power shifts to the near infrared, then visible and further to
the ultraviolet region at a very high temperature. This is observed when a metallike
iron is heated and when it gives first invisible radiation, then it becomes red hot
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and then finally white hot. We can find also from (4.43) that the sun’s maximum
radiative power is at about 4,830 Å, corresponding to the disk temperature of the
sun at 6,000 K. It is interesting to note that the maximum sensitivity of the human
eye coincides somewhat with the maximum radiative power of the sun, whereas for
many animals or birds the maximum sensitivity may be in the infrared, which is
why many animals can see in the darkness when the human eye cannot.

Assuming Wien’s displacement law it may be conjectured that the form of the
curve representing the distribution of radiative intensity should be the same for
different temperatures with the maximum displaced in proportion to the absolute
temperature, with the total area increasing proportional to the fourth power of
the absolute temperature. This is now shown with the help of Planck’s law.
Planck’s radiation law has two particular solutions: the one for large wavelengths
is called Rayleigh-Jean’s law and the other for short wavelengths is Wien’s law. By
expanding the exponential term in (4.18)

expC2=.
T / D 1C
�
C2


T

�
C 1

2Š

�
C2


T

�2
C � � � (4.45)

in series and terminating the series only with two terms for 
T � C2, we get the
expression

B�

 D C1T=.C2


4/ (4.46)

which expresses Rayleigh-Jean’s law. According to this, although B�

 increases

proportional to the temperature, it tends to 0 as 
 ! 1 and one had to find a
method to calculate it for very large wavelengths.

In the second extreme case of 
T � C2, one in the denominator can be neglected
compared to the exponential term to express Wien’s law:

B�

 D .C1=


5/ exp�C2=.
T / (4.47)

from which again the Wien’s displacement 
max. T D C2=5 D 2; 877:6
K can be
derived.

Although the above two laws, in addition to Planck’s radiation law, provide
expressions for the intensity of radiation for a black body, it should be mentioned,
that gases, in general, radiate at moderate pressures only selectively in line or band
radiations, which may not be considered even approximately as a grey or black
body radiation. Even the gas continuum radiation has features which may not be
approximated in a similar manner by the black-body radiation.
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4.2 Gas Radiation and Equation of Energy Transfer

While the gases radiate in general very selectively at various frequencies, it is
possible to have a radiative energy balance at the radiating frequency taking into
account the emission and the absorption of the energy by the gas. In addition to the
absorption and the emission, the “radiant particles” (photons) may be scattered by
gas molecules, which is equivalent of the change of direction by elastic collision
between particles. However, it is found for most situations in gas dynamics that
the scattering is unimportant and hence in the following section consideration of
scattering is neglected.

Equation of radiative transfer can be explained more easily if a one-dimensional
model is used. In such a case, it is a continuity equation for the number density,
nR, of the part of the photons emanating through the end surface element having
a direction of propagation normal to the surface element in the frequency range
between � and � C d� with the associated energy h� [J]. The number density of
the photons, nR Œsm�3�, is compatible with the definition of the radiative internal
energy u� ŒJsm�3� if we multiply the number density with the energy of a single
photon h� [J]. Thus there is a flux Pnf D cnR through the surface element.
Taken in a Cartesian coordinate system with a cubical volume element dV D
dxdydz, the number of photons in dV is nRdxdydz and its time rate of change
is .@nR=@t/dxdydz, due to the rate of change of the number of photons through
the surfaces of this cubical volume as well as the result of changes due to emission
and absorption and to a lesser extent due to scattering, which is neglected in the
present treatment of the subject. The contribution of convection is proportional to
the divergence of the number flux

� @

@xj
.lj Pnf /dxdydz D �clj @nR

@xj
dxdydz; (4.48)

where lj is again the cosine of the angle of the direction of flux of photons with the
normal to the respective surface of the volume element. If we add to it a term

�
@nR

@t

�
e;a

dxdydz (4.49)

for the net rate of change of the number of photons due to emission and absorption,
then the continuity equation for the number of photons becomes

@nR

@t
C clj

@nR

@xj
D
�
@nR

@t

�
e;a

. (4.50)

This equation can now be written in terms of the angular spectral intensity of
radiation, I� , by multiplying the equation with h�c=.4�/, since
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I� D h�c

4�
nR Jm�2 sterad�1. (4.51)

Further, the right-hand side of (4.50) can be written in terms of the properties of
the gas through the definition of coefficients of emission and absorption. Thus the
spectral mass emission coefficient j� [in Jm�3 sterad�1] is defined in such a manner
that the radiant energy emitted per unit volume, frequency, and solid angle is given
by the relation

Pee� D 4�j� D h�

4�
.@nR=@t/e Jm�3 sterad�1 . (4.52)

The rate of absorption of the radiant energy by a gas is found to be proportional
to the angular spectral intensity I� . Accordingly, the absorption coefficient �� [in
m�1] is defined such that the radiant energy absorbed by the gas per unit volume,
frequency, and solid angle is given by the relation

Pea� D ���I� D h�

4�
.@nR=@t/a Jm�3 sterad�1 . (4.53)

Substituting (4.51)–(4.53) into (4.50), the equation of radiative transfer, in the
absence of scattering, becomes

1

c

@I�

@t
C lj

@I�

@xj
D .j� � ��I�/ Jm�3 sterad�1 . (4.54)

One general remark about the diffuse reflection and transmission (scattering) may
now be mentioned. If a parallel beam of radiation is incident on a plane-parallel
radiation path in a specified direction, it is required to find the angular distribution
of the intensities diffusely reflected from the surface and diffusely transmitted below
the surface. It can, in principle, be considered in terms of a scattering function
and a transmission function. It is, therefore, necessary to distinguish between the
reduced induced radiation which penetrates without having suffered any scattering
or absorption process and the diffuse radiation field which has arisen in consequence
of one or other of the scattering processes (Chandrasekhar [41]).

It is also found convenient to use a term called the source function S� given by
the relation

S� D j�=�� Jm�2 sterad�1 (4.55)

and (4.54) can also be written in the following form:

1

c

@I�

@t
C lj

@I�

@xj
D ��.S� � I�/ . (4.56)
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For the solution of (4.54) or (4.56), it is necessary to know the values of j� and
�� or S� and �� , determination of which becomes somewhat easier from quantum
mechanical considerations applied to special cases of chemical and radiative
equilibria. In the case of chemical equilibrium, the mole fraction of particles in
different energy levels can be determined from statistical considerations, whereas in
the case of radiative equilibrium the emitted and the absorbed energies equalize.

As the general case of radiative non-equilibrium, transitions between a higher
energy level m and a lower energy level n are considered, in which an energy h� is
involved. For spontaneous emission from the energy level m to the energy level n,
the number of transitions is proportional to the number of particles in energy levelm.
The proportionality non-dimensional constant is Amn and the energy released per
unit time and solid angle is

Pes� D js� D 1

4�
Amnnmh� Jm�3 sterad�1 (4.57)

if Amn is nondimensional.
In addition to the spontaneous emission, there is also the induced emission in

the direction along the incident radiation, for which the proportionality constant
Bmn Œm2 J�1� is used. Thus for the induced emission

Pei� D ji� D BmnnmI�h� Jm�3 sterad�1 . (4.58)

Similarly, the energy absorbed per unit time, volume, and solid angle is given by the
relation

Pea� D ��I� D BnmnnI�h� Jm�3 sterad�1; (4.59)

where Bnm is the proportionality constant for absorption Œm2J�1� and �� is the
spectral absorption coefficient in Œm�1�. The constants Amn, Bmn, and Bnm are
called Einstein’s coefficients for probability of transition and they are related to each
other, as it will be shown shortly. At this point it would be in order to mention an
important application of the induced emission in lasers. In the simplest solid state
lasers the electrons around the nucleus of a solid state crystal are brought to a higher
energy level by subjecting the crystal to an external radiation. This is followed
initially by spontaneous emission in all directions. However, if the solid state crystal
is placed between two highly reflecting parallel mirrors, one of which may be nearly
100 % reflecting and the other just about 1 % less reflecting the spontaneous emitted
radiation in the direction of the axis of the two mirrors is reflected back and forth and
it causes the induced emission in the direction of the radiation intensity to grow as
soon as it hits one of the excited atoms. Thus, very quickly, a very strong radiation
intensity in the direction of the above mentioned axis is built up. In gas lasers a
mixture of two gases with similar relevant energy levels is used in which one of the
gases has a metastable energy state. The gases are mixed with each other in such
a proportion that if the electrons in one are brought to a higher energy level in an



74 4 Radiative Properties of High Temperature Gases

electric discharge is followed by the transfer of energy by collision to the metastable
energy level of the second gas, in which a spontaneous emission is comparatively
rare. This induced emission is built up in this case also in a similar manner to that
in the case of a solid state laser. While (4.57)–(4.59) are also valid if there is no
chemical or radiative equilibrium, validity of these equilibrium conditions means
that

I� D I �
� , Pes� C Pei� D Pea� and .js� � ��I�/ D 0 (4.60)

(for radiative equilibrium)

and

n�
n

n�
m

D gn

gm
exp�.En�Em/=.kBT / D gn

gm
exph�=.kBT / . (4.61)

(for chemical equilibrium)

Herein, g is the statistical weight and the asterisk as superscript denotes the equilib-
rium. Thus, from (4.57)–(4.59) and (4.60), (4.61), and in comparison with (4.27),
we get the relation

I �
� D Amn=.4�Bmn/

gn

gm

Bnm

Bmn
exph�=.kBT / �1

D 2h�3

c2
1

exph�.kBT / �1 Jm�2 sterad�1 . (4.62)

By comparing the terms, we can, therefore, write

Amn

Bmn
D 8�h�3

c2
;
gn

gm

Bnm

Bmn
D 1 . (4.63)

For continuum radiation, the transition probability of spontaneous emission, Amn is
non-dimensional. On the other hand, the radiative energy flux (radiosity) of a line,
when obtained experimentally, is obtained by integrating this over the line width,
and thus the transition probability of spontaneous emission, NAmn D R

L
Amnd�,

is in Œs�1�. In a similar manner one can integrate the other transition probability
coefficients over the line width

NBmn D
Z
L

Bmnd�[m2 J�1 s�1] (4.64)

and

NBnm D
Z
L

Bnmd�m2 J�1 s�1: (4.65)
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Similarly, the integration of the absorption coefficient over the line width

S D
Z
L

��d� (4.66)

gives us the integrated line absorption area.
Further in literatures, often the nondimensional line oscillator strength, fmn or

fnm, is given, which are related to the transition probability coefficients as follows:

NAmn D 8�2�2oe
2

Mec3�o

gn

gm
fmn; (4.67)

NBmn D 4�2e2

Mech�o�o
fmn; (4.68)

NBnm D 4�2e2

Mech�o�o
fnm; (4.69)

fmngm D fnmgn; (4.70)

where �o is the mid-frequency of the line.
Now the source function is determined only for chemical equilibrium, and the

restriction of the radiative equilibrium will only be considered to make certain
conclusions. Noting that j� D . Pes� C Pei�/ and ��I� D Pea� , the source function
is given by the relation

S� D j�

��
D 1

Bnmn�
nh�

�
1

4�
Amnn

�
mh� C n�

mBmnI�h�

�

D
�
2h�3

c2
C I�

�
exp�h�=.kBT /

D �
I �
�

�
exph�=.kBT / �1�C I�

�
exp�h�=.kBT /

D I �
� C .I� � I �

� / exp�h�=.kBT / . (4.71)

Equation (4.71) has been derived under the condition that the chemical equilibrium
is satisfied. For the radiative equilibrium, I� D I �

� , and it follows that

S� D I �
� D j�=�� . (4.72)

Equation (4.72) is the mathematical formulation of the Kirchhoff’s law of radiation,
the physical explanation of which is given in the following paragraph. Further, it can
be seen from (4.71) that for I�=I �

� less or equal to one, the ratio S�=I �
� is also less

or equal to one. However, for the limit of S�=I �
� ! 0, that is, when the intensity of

radiation is very much smaller than the black-body radiation,
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lim
I�!0

.S�=I
�
� / D 1 � exp�h�=.kBT / (4.73)

which has values between 0 at � D 0 and 1 at � ! 1. Physically, when a body is
irradiated like a black body from the surrounding medium, the condition I�=I �

� D 1

means that the temperature of the body is the temperature of the radiating energy
flux of the surrounding medium and the body emits the same quantity of radiant
energy as it absorbs. On the other hand, I� ! 0 means the case of a freely emitting
gas without absorption.

In most of the books dealing with radiation, Kirchhoff’s law is described
physically in the following manner. Let there be two bodies: one black and the
other “not black” at temperature T within a cavity whose wall is at the same
temperature. The second body being “not black” absorbs a certain percentage of
the incident energy, but the first body absorbs everything. In such a case both bodies
must emit as much energy as they absorb. Unless this is the case, there will be a
temperature difference between the two bodies, which violates the second law of
thermodynamics. Thus Kirchhoff’s law of radiation states: when a body emits a
quantity of radiative energy at a particular temperature and wavelength (frequency),
it absorbs also the same energy at the same temperature and the same wavelength.
Now for a chemical equilibrium but radiative non-equilibrium,

.j� � ��I�/ D n�
m

�
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4�
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�
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Applying (4.59), (4.61), and (4.62) the above equation can further be reduced to

j� � ��I� D ��
�
exp�h�=.kBT / I �

�

�
exph�=.kBT / �1�C I� exp�h�=.kBT / �I�

�
(4.74)

in which the individual terms can be designated as follows:

– Spontaneous emission: js� D ��
�
1 � exp�h�=.kBT /� I�

� D �0
�I

�
�

– Induced emission: ji� D I��� exp�h�=.kBT /
– Absorption: ��I�

where

�0
� D ��

�
1 � exp�h�=.kBT /� (4.75)
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is the apparent absorption coefficient. We have, therefore, a method to combine
the spontaneous volumetric energy coefficient with the corresponding absorption
coefficient.

We would now like to demonstrate the relationship between the spontaneous
emission and absorption. By using (4.57) and (4.59) and taking the help of (4.61)
and (4.63) we write

js�

��
D 1

4�

Amn

Bnm

n�
m

n�
n

D 1

4�

Amn

Bmn
exph�=.kBT / D 2h�3

c2
exph�=.kBT /

D 1:4733 � 10�50�3 exp �h�=.kBT / Jm�2 sterad�1; (4.76)

where js� is in [Jm�3sterad�1] and �� is in Œm�1�, and show how one can compute
these from each other.

We would also like to point out to another definition of the absorption coefficient,
which some other authors use, by linking the absorption coefficient with the radia-
tive absorption cross section Q� [in m2] by writing, under chemical equilibrium,
the expression

�� D nnQ� , (4.77)

where nn is the number density in the lower nth energy level. By using (4.59) we
can now write for the absorption cross section:

Q� D Bnmh�. (4.78)

From (4.63) we can now write also

Q� D gm

gn

c2

2��2
Amn: (4.79)

Thus, in principle, it is possible to compute the radiative cross section from the
published value of Amn.

After combining the various terms in (4.74), we get

j� � ��I� D �0
�.I

�
� � I�/ . (4.80)

It can be verified easily that the first term within the bracket in (4.80) is the
spontaneous emission term and the second term is a combination of the induced
emission and the absorption. Therefore, we may interpret ��I� as the true absorption
term whereas �0

�I� as the apparent absorption term. By dimensional analysis it can
be seen that �� and �0

� are both in Œm�1�.
While the above discussion concerns an entire spectral line by integrating (4.54)

across the line width, a general equation need not be restricted to an individual
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line, but should be equally valid for a continuum radiation. For this purpose, (4.54)
becomes

1

c

@I�

@t
C lj

@I�

@xj
D �0

�.I
�
� � I�/; (4.81)

where

�0
� D ��

�
1 � exp�h�=.kBT /� . (4.82)

As before in (4.81), the first term in the right-hand side of (4.81) is due to
spontaneous emission and the second term is due to the combined induced emission
and absorption.

A formal solution of (4.81) is simple if it is a one-dimensional case and if the time
derivative term is neglected. The latter is allowed in case the ratio of a characteristic
distance and time is smaller than the velocity of light. Since this is found to be
the case for almost all problems in gas dynamics, it is concluded that omission of
the time derivative term is allowed in most cases. Further, we would measure the
coordinate from the point of the observer in the direction opposite to the direction
of propagation of the radiation. Thus (4.81) is reduced to

@I�

@r
D �0

�.I
�
� � I�/ . (4.83)

Now r D 0 is the point at which the observer is receiving radiation and let, at r D R,
I� have a known boundary value I�.R/. Equation (4.83) is an equation of the type

dy

dx
C P.x/y D Q.x/ (4.84)

which has a general solution

y D K exp� R
Pdx C

Z
exp

R
Pdx Qdx; (4.85)

where K is an arbitrary constant. The particular solution of (4.83), with the
prescribed boundary condition, is

I�.0/ D I�.R/ exp� R R
0 �0

�dr C
Z R

0

�0
�I

�
� .r/ exp� R r

0 �
0

�dr dr . (4.86)

Equation (4.86) gives the angular spectral intensity of radiation at the point of the
observer, which consists of two parts:

1. The contribution of the boundary located at a distance R in the direction
opposite to that of propagation of the radiation, attenuated by a factor
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exp� R R
0 �0

�dr

to account for absorption and induced emission in the intervening gas
2. The contribution of the spontaneous emission from the gas volume element at

a varying distance r , each elementary contribution attenuated by a factor

exp� R r
0 �

0

�dr

and the whole summed over all the elements between the observer and the
boundary

Since the second term in the right-hand side of (4.86) gives the contribution of the
spontaneous emission, we investigate this first. Let I�.R/ D 0 and the first term in
the right-hand side of (4.86) is put equal to zero. Further, let the spectral volumetric
radiative energy release(by spontaneous emission) be Pe� D js D �0

�I
�
� ŒJm�3�. The

emissivity is defined by the relation �� D I�=I�
� . It may be noted that if �� � 1,

spontaneous emission is dominating, and if �� D 1, it is the black-body radiation
dominating. Now let r� D r=R, and from (4.86), we get the relation for emissivity
coefficient

��.r
� D 0/ D I�.0/

I �
� .0/

D
Z 1

0

Pe�R
I �
� .0/

exp� R r�
0 �0

�Rdr�

dr� D 1 � exp��� ; (4.87)

where

�� D
Z R

0

�0
�dr (4.88)

is called the optical length, which is nondimensional and is equal to .�0
�R/ for a

constant absorption coefficient. Note the difference between geometrical length,
which is dimensional [m], and the optical length, which is nondimensional. On the
other hand, .1 � ��/ is the transmissivity coefficient. Results of �� versus .�0

�R/ is
plotted in Fig. 4.3. It can be seen that for .�0

�R/ < 0:25, there is a linear relationship
between �� and .�0

�R/, where it is possible to assume that the radiation is completely
dominated by the spontaneous emission, and the radiating gas column is said to be
optically thin. On the other hand for .�0

�R/ > 5, �� D 1 and I� D I �
� , the gas

column is said to be optically thick. Since for free-free and free-bound radiation,
which are important for radiative energy transfer in gas dynamics rather than the
bound-bound (line) radiation, �0

� is proportional to

pm exp�h�=.kBT / . (4.89)

It is evident that for large pressures and small frequencies (large wavelengths), the
effect of absorption coefficient may be quite significant.
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Fig. 4.3 Results of emissivity coefficient as a function of the optical length

We can now obtain the total emitted energy for “optical thin” gas by integrating
emitted energy over all frequencies to get

j D
Z 1

0

j�d� D
Z 1

0

�0
�I

�
� d� D �0

Z 1

0

I �
� d� D �0I � D ��0

�
T 4 Wm�3 sterad�1 .

(4.90)

Herein, �0 is the integrated absorption coefficient given by the equation

�0 D
R1
0
�0
�I

�
� d�R1

0
I �
� d�

D 1

�T 4

Z 1

0

�0
�B

�
� d� m�1; (4.91)

where there is no initial radiation. Thus all variables in (4.91) refer to gas. On the
other hand if a pencil of black-body radiation emanating from a surface is intervened
by a gas volume, then the absorption of the gas is given by

Pea D
Z 1

0

��I
�
� d� (4.92)

and for the overall gas absorptivity in comparison to the original black-body surface
radiation of the gas column we get

a D �

�T 4

Z 1

0

��I
�
� d� D 1

�T 4

Z 1

0

��B
�
� d� m�1 . (4.93)

It can be seen that between (4.91) and (4.93) the difference is only that while in
the former induced emission has been taken into account, the latter deals with
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regular absorption. Obviously, the absorptivity a from (4.93) may replace integrated
absorption coefficient �0

� from (4.90) if induced emission is neglected.
While the above definition of absorptivity requires integration over wavelength

from 0 to 1, the method can be extended for wavelength (or frequency) intervals
specific for individual gases and frequency band. Starting point of this discussion is
the one-dimensional steady radiative transfer equation (4.83), which we integrate in
the frequency range �1 and �2 to get

d

dr

Z �2

�1

I�d� D
Z �2

�1

�0
�.I

�
� � I�/d� . (4.94)

We write the expressions for total intensity within the range as

I	� D
Z �2

�1

I�d�; I
�
	� D

Z �2

�1

I �
� d� (4.95)

and also for the absorptivity within the same range as

a	� D 1

I �
	�

Z �2

�1

�0
�I

�
� d� . (4.96)

While the absorptivity coefficient is frequency dependent, and is not actually
constant in the field of integration, and it is only an assumption at present, which
will enable us to determine the fraction of the total emissive power that is emitted
in a given frequency band. Noting that

I �
	� D

Z �2

�1

I �
� d� D

Z �2

0

I �
� d� �

Z �1

0

I �
� d� D I �.F2 � F1/; (4.97)

where

I � D �T 4

�
D 2.�kBT /

4

15h3c2
; (4.98)

F D 1

I �

Z �

0

I �
� d� D 2�h

�cT 4

Z �

0

�3

exph�=.kBT / �1d�: (4.99)

let � D h�=.kBT / and thus the radiation fraction is given by

F D 15

�4

Z �

0

�3

exp� �1 D 1 � 15

�4

1X
nD1

exp�n�

n

�
�3 C 3�2

n
C 6�

n2
C 6

n3
C � � �

�
:

(4.100)

We may formally replace �0
� in (4.94) by a	� , although this is not strictly valid when

such replacement is done also for the second term in the right-hand side of (4.94).
Thus we write



82 4 Radiative Properties of High Temperature Gases

d

dr
I	� D a	�

�
I �
	� � I	�

�
. (4.101)

Now the equivalent solution equation of (4.86) is

I	�.0/ D I	�.R/ exp� R R
0 a	� dr C

Z R

0

a	�I
�
	�.r/ exp� R r

0 a	�dr dr . (4.102)

In homogeneous gas a	� and a	�I �
	� can be taken out of the integrals, and we write

I	�.0/ D I	�.R/ exp�a	�R CI �
	�

�
1 � exp�a	�R� (4.103)

from which we get the relation for emissivity as

�	� D I	�.0/ � I	�.R/
I �
	�.0/ � I	�.R/ D 1 � exp�a	�R (4.104)

or if there is no incoming radiative flux at the boundary, I	�.R/ D 0, then

�	� D I	�.0/

I �
	�

D 1 � exp�a	�R . (4.105)

We note that

I �
	� D

Z �2

�1

I �
� d� D

Z �2

0

I �
� d� �

Z �1

0

I �
� d� D I �.F2 � F1/ , (4.106)

where again

F D 1

I �

Z �

0

I �
� d� D �

�T 4
2h

c

Z �

0

�2

exph�=.kBT / �1d� (4.107)

is the fraction of the total emissive power that is emitted in a given frequency band
and again is given by (4.100).

For a gas it is customary to measure experimentally the overall emissivity
coefficient of a gas column by sending a radiative intensity I�.0/ into the gas column
of uniform composition and temperature in a transparent cell of length L and the
measured intensity at the end of the cell is

I�.L/ D I�.0/ exp���L CI �
�

�
1 � exp���L� : (4.108)

As already explained, in the first term in the right-hand side of the equation, exp���L
is the spectral transmissivity (fraction transmitted) of the initial intensity, and (1 �
exp���L) is the fraction that is absorbed. On the other hand the non-dimensional
spectral emissivity at the end of the cell with respect to the black-body radiation is
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�o D I�.L/

I �
�

D I�.0/

I �
�

�
1 � exp���L� : (4.109)

If on the other hand, two end-on arcs of lengthL (seen only in the axial direction) are
used in tandem so that the intensity of the individual arcs are I1 and I2, respectively,
and IS is the sum of intensity of both the arcs, it is now possible to show that

exp�aL D IS � I1
I2

. (4.110)

As a complete measure necessary for the calculation of the radiative exchange
between an isothermal gas mass and its surroundings or the radiative flux in non-
isothermal gas system requires �� or �
 as a function of frequency (or wavelength),
temperature and pressure of all gas components in the radiative mixture. Experimen-
tal measurement of �� is complicated by the limit of resolution of spectrometers, and
have been made only for few gases at very narrow range of conditions, from which
absorptivity may be evaluated from (4.104). Further discussion of total emissivities
or absorptivities must await consideration of various factors influencing which
includes broadening of spectral lines and bands, and are now discussed.

While the line spectra are due to transitions between discrete energy levels in
atoms or ions (bound-bound transitions), in diatomic and polyatomic molecules
and molecular ions, the transitions between vibrational and rotational states
usually provide the main contribution to the absorption coefficient at moderate
temperatures, and the dissociation, electronic transitions, and ionization have to be
considered at higher temperatures. In these the vibration-rotation bands are usually
the most important absorbing and emitting spectral regions in engineering radiation
calculations for simultaneous transitions in the vibrational and rotational energy
levels. On the other hand continuum spectra are when there is continuous transition
between free electrons (free-free transitions or “bremsstrahlung”) or between the
free electrons and discrete levels in the bound state (free-bound transitions). These
will be discussed in the following, starting with the line radiation.

(a) Natural Line Broadening: An estimate of the width of a line can be done with
the help of the Heisenberg uncertainty principle, which states that the product
of uncertainty in frequency and time is of the order of 1=.2�/. In terms of line
broadening in wavelength, the equation is

	
 � 
2=.2�c	t/; (4.111)

where c is the speed of light. Now the average life time of an excited electron
is of the order of 10�6–10�8 s and taking a wavelength of 5,000 Åin the visible
range, the width of the line is between 10�4 and 10�2 Å.

(b) Collision Broadening of Lines: The absorption coefficient in a line due to
collision broadening is expressed in terms of the integrated absorption area of
the line S D R

��d� Œm�1 s�1�, and the half-width of the line bc Œs�1� at the line
mid-frequency �o is given by the relation
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�� D S

�

bc

.� � �o/2 C b2c
. (4.112)

In the above relation bc depends on the frequency of collision between the
particles and has the same unit as the frequency. It is given approximately by
the relation

bc

bco
D p

po

�
To

T

�1=2
; (4.113)

where the subscript o refers to reference values. Further for a particular gas in a
mixture p is the sum of the partial and the total pressure. An order of magnitude
of bco, as given by Hottel and Sarofim [75], is 0:1 cm�1 at S.T.P.

Thus it is seen from the mechanism of the collisional broadening alone that
the absorption coefficient is dependent on the pressure, that is,

��.T; p/ D ��o.T /:p
m; (4.114)

where m D 1 gives Beer’s law.
The spectral emissivity is now written as

��.L/ D I�.L/

I �
�

�
1 � exp���opL� : (4.115)

(c) Doppler Broadening: If an atom or molecule is emitting at frequency �o and at
the same time is moving at the velocity v towards the observer, then the modified
frequency is

� D �o

�
1C v

c

	
: (4.116)

Now for v we take the value from Maxwell-Boltzmann equation and after some
manipulation, the expression for line absorption coefficient is again given in
terms of the integrated line absorption area S and the line half width bD by the
relation

�� D S

bD

p
.ln 2/=� exp�Œ.���o/2 ln 2=b2D�; (4.117)

where

bD

�o
D
p
2�kBT ln 2=.Mc2/ D 6:34288 � 10�7

r
T

m
(4.118)
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in whichm is the mole mass of the radiating particle and T is the heavy particle
translation temperature, since the effect is due to the thermal motion of the
atoms. For the Doppler broadening a typical value in cm�1 is given [75] as
0:06.T=To/

1=2=.m1=2
/, wherem is the mole mass and the wavelength, 
, is in
microns.

Comparison between collision broadening and Doppler broadening shows
that the former decreases with

p
T , while the latter increases with

p
T . Thus

the collision broadening is significant at higher pressures. These two broadening
formulas can also be combined (pressure broadening) into one single line shape
(Voigt line shape). However, if the magnitude of these line shapes is quite
different, then the only one or the other formula need be considered.

While theoretically, a spectral line has a zero thickness at frequency given
by �mn D 	Emn=h, the lines are generally broadened due to various reasons
as already described. The variation of the absorption coefficient with frequency
or wavelength or wave number within the broadened line is the line shape and
the integral is the line absorption area or line strength S . While the magnitude
of S and maximum absorption coefficient in a line, ��nm , depend on the number
of molecules in the energy level n and hence are dependent on the gas (mass
or number) density, their ratio cancels the effect of the density, and the effect
of the density is only in changing the line shape. This can be shown easily
by integrating the absorption coefficient over the line width, for example, for
collision broadening, as

S D
Z
��d� D S

�

Z 1

�1
bc

.� � �o/2 C b2c
d� D S

�

�
tan�1

�
� � �o
bc

��1

�1
D S

(4.119)
which is a trivial solution and does not depend on the line semi-width.

We would now like to point out to certain differences between transition
coefficients in continuum and line radiation. While for the continuum radiation
the spectral angular intensity of radiation is in ŒJm�2 sterad�1� and the transition
probability for spontaneous emission, Amn, is nondimensional, for the line
radiation the former is integrated over the line frequency interval I�L D R

I�d�
in ŒWm�2 sterad�1� and the transition probability for line radiation NAmn has
the unit of s�1 in literatures, for example, in the online data base of NIST
(National Institute of Standards and Technology) of the USA. This is obtained
by integrating (4.57) over the line frequency interval

PesL D
Z
L

Pes� D 1

4�
h� NAmnnm (4.120)

which follows that

NAmn D
Z
Amnd� , s�1:
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Since the spectral angular intensity of radiation, I� , for a line radiation is
dependent on the frequency, one can introduce the concept of the line shape
factor, ', with the unit of frequency so that its derivative with respect to the
frequency is nondimensional. By defining

I� D I�0'� (4.121)

we get further

I�L D I�;0

Z
L

'�d� D I�;0 N'; (4.122)

where N' D R
L
'�d� and I�;0 are the spectral angular intensity at the mid-line

frequency.
We integrate now (4.58) and (4.59) similarly over the line width and write

the two equations as

PeiL D
Z
L

Pei�d� D BmnnmI�;0h� N' Wm�3 sterad�1 (4.123)

and

PeaL D
Z
L

Pea�d� D ��I�L D BnmnnI�h� N' Wm�3 sterad�1: (4.124)

Hence the units of �� D Bnmnnh� are in Œm�1�, those of Bmn and Bnm are in
Œm2 J�1�, and that of the absorption cross section (4.78), Q, is in Œm2�. Further
the equation of radiative transfer for line radiation becomes

1

c

@I�L

@t
C lj

@I�L

@xj
D �

nm NAmn C ŒBmnnm � Bnmnn�I�;0 N'� h� (4.125)

and the black-body spectral angular intensity of radiation becomes

I �
� D 1

'

NAmn=Bmn
gn
gm

Bnm
Bmn

exph�0=.kBT / �1 Wm�2 sterad�1 . (4.126)

Comparing with Planck’s law of equilibrium radiation, we write further that

NAmn
Bmn

D 2�h�30
c2

N'; gn
gm

nn

2� N'
and thus the relation for the absorption coefficient is

�� D gm

gn

nn

2� N'
�
c

�0

�2
NAmn: (4.127)
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One can also obtain the relations for volumetric energy emission and apparent
absorption coefficient; these are relevant only at the particular line frequency
and further have to be added over all line frequencies.

(d) Band Emission: The complexity of evaluating theoretically the bands is such
that these are obtained experimentally. For this purpose, the emissivity of
homogeneous combustible gas is usually calculated by means of diagrams,
for example, by Hottel and Sarofim [75]. The measurements, however, need
be performed only at one temperature since a full measure of the effect of
temperature is given by the shift in the distribution between the different energy
levels. For rotation-vibration energy level the population of the higher energy
levels increases at the expense of the lower levels and, within each vibration
band, the higher energy levels gain importance. Further, the different vibrational
levels interact with radiative energy at slightly different frequencies. Therefore,
both the intensity and the band width increase at higher temperatures. Various
models have been proposed to circumvent the problem of formulating relation
for �� as a function of frequency. Some of these models, discussed in detail by
Hottel and Sarofim [75], are Shack model, Elsasser model, and Meyer-Goody
model.

In addition, if two or more bands of emitting specie overlap, then the emission or
absorption by the mixture will be smaller than the individual contribution. While the
emissivity diagrams are available for homogeneous gases, there is a need to evaluate
the emissivity for a general non-homogeneous gas.

The angular intensity of radiative flux absorbed or emitted for most important
engineering calculations is

Z 1

�1
��I�d.� � �o/: (4.128)

Elsasser model considers all lines having the same Lorentz shape, where ˛� is a
periodic function governing the shape of Lorentz lines, and being of equal heights
and equal spacing ı Œs�1�. Thus summing over all contributions of various lines gives

�� D Sc

�

nD1X
nD�1

bc

b2c C .�o � nı/2 D Sc

ı

sinh.�ˇ=2/

cosh.�ˇ=2/ � cos.�z=2/
; (4.129)

where ˇ D 4bc=ı; z D 4.� � �l /=ı, and .� � �l / vary between �ı=2 and ı over
periodic line interval. ˇ is important, as it specifies the line structure. For large ˇ
the lines are broad compared to their spacing and the line structure is lost since the
lines strongly overlap.

The complexity of evaluating theoretically the band radiation is such that these
are obtained experimentally.

From the above discussion it is evident that the absorptivity of a pure gas (not
mixture) is a function of the temperature and at least a simple polynomial function
of pressure. Therefore, we write formally for the absorptivity, as defined in (4.93), as
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Table 4.1 Calculated coefficients of (4.130)

Gas m b c d e

CO2 0.5 0.1467 1.4691e�4 �8.9808e�8 9.6234e�12
H2O 0.5 0.5600 �3.1511e�4 7.9494e�8 �8.8834e�12
SO2 0.6 0.2737 1.8264e�3 �1.7524e�6 4.3026e�10
CO 0.4 �0.09660 4.9352e�4 �2.8101e�7 4.5907e�11
NH3 0.6 2.6332 �1.9202e�3 4.1109e�7 �9.5962e�12
HCl 0.6 7.0008e�4 7.5059e�7 �3.6177e�10 4.4419e�14
NO 0.6 4.0014e�3 1.1155e�5 �6.3787e�9 8.8948e�13
NO2 0.5 �0.01700 6.7203e�5 �3.18925e�8 4.4421e�12
CH4 0.5 0.06341 4.0691e�4 �3.3004e�7 7.7015e�11
CW� 0.8 0.02400 �1.8924e�5 2.4040e�8 �6.4430e�12

CW� D gas mixture containing CO2 and H2O

� 	 a 	 .b C cT C dT 2 C eT 3/.p=po/
m; (4.130)

where po D 1 bar is a reference pressure. For industrial applications of gas
radiation, where combustion-product radiation is dominant, experimentally deter-
mined total emissivities of carbon dioxide, water vapor and carbon monoxide
have been available since 1930s. In view of the complexity of the theory and the
associated uncertainty in the calculated values of gas emissivities, the absorptivity
measurements are, in many respects, the most reliable source of information and
Hottel and Sarofim [75] have given emissitivity coefficient for many gases in
graphical form as a function of gas temperature and (p.L), where p is the pressure
(in “atm” for Hottel and Sarofim, but in “bar” here) and L is the optical length.
The coefficients b to e and m in (4.130) are now obtained as follows: Since the
experimental data is given as a function of T and (p.L), we put L D 1m. Further we
take different guessed values of m, and for each m, we get b to e by least square fit.
Further m is varied to get the best fit with the emissivity values given in the entire
range. The above coefficients (m and b to e) are given for various gases in Table 4.1,
which are applicable in the temperature range 300–3,000 K for pure gases. For most
of these gases any extrapolation of these polynomials may give unexpected negative
absorptivity. These are now used to compute the integrated absorption coefficient
for different gases at 1 bar, which have been plotted in Fig. 4.4 as a function of
temperature. In a gas mixture the individual gas absorption coefficient can be found
by computing these for partial pressures of individual gases and added together.
This is quite alright, so long the bands for individual gases do not overlap with
each other. This is, however, not true if both CO2 and H2O are present, since both
have overlapping spectral bands in regions 2:7 and 15
 wavelengths. Simplified
emissivity chart for CO2–H2O mixture to show reduction in the value of emissivity
has been given by Hottel and Sarofim as a function of .pCO2 C pH2O/L as a
parameter, and it has been shown further that these change very little for the ratio
.pH2O=pCO2/ in the range 1–2. These have been used to recompute for both CO2 and
H2O present to compute the coefficients as given in Table 4.1, shown as gas CW,
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Table 4.2 Absorptivity a	� Œm�1� for some gases in given mid-wave length

T[K] 300 600 1,200 1,800 2,400 3,000 Mid 
Œ
�

Gas a	�Œm�1�

OH 1.438e�3 0.48485 2.2294 1.83056 1.25898 0.84285 4.82
NO 0.80896 4.8186 3.2834 1.5504 0.81227 0.47439 8.72
HF 1.266e�3 1.0599 7.5561 7.2126 5.0555 3.480 4.69
CN 0.42188 3.57683 2.81478 1.39567 0.76804 0.45707 5.81
HCl 0.02549 1.70333 13.8415 2.2516 1.3164 0.83740 6.55
CO 0.80617 8.25145 16.2623 13.4625 8.6186 6.4675 6.67

Table 4.3 Absorptivity a	� Œm�1� for H2O in given mid-wave length 100


T[K] 300 600 1,000 1,500 2,000 2,500 3,000

Absorptivity 57.9128 30.6066 20.4487 12.8508 8.7034 6.2376 4.4804

and the maximum value of 	�max (to be subtracted from the sum of absorptions
coefficient for CO2 and H2O) has been plotted in Fig. 4.5 along with the absorption
coefficients for pure CO2 and H2O again; herein the pressure to be considered is
the combined pressure .pCO2 CpH2O/. However, we need a relationship to take into
account the effect of (pH2O=pCO2). Although such a relationship about contribution
to the absorption coefficient is not available, we use an expression by Leckner [91]
regarding change in the emissivity.

Using the same factor as his for emissivity, but normalizing, we write the
reduction factor to 	�max as

118:867

�
�

10:7C 101�
� �10:4

111:7

�
; � D pH2O

pH2O C pCO2

. (4.131)

Note that the factor is zero if � D 0.pH2 D 0/ or � D 1.pCO2 D 0/. For some other
gases the spectral absorption data Edwards and Bobco [54] have been recomputed
within the frequency range, but with m D 1. For these gases available data were ��
from which absorptivity a	� was obtained from the formula

a	� D 1

�T 4

Z �2

�1

.��B
�
� /d�: (4.132)

The results of these calculations are given in Table 4.2.
In addition similar data are given for two important triatomic molecules: H2O

and CO2 in Tables 4.3 and 4.4.
Lyon et al. [97] has also provided mass absorption coefficient data in [cm2gm�1

for carbon at seven specified temperatures, at one atm pressure, and between 1 and
4 micron wavelength, which needs to be multiplied with “fluidized” mass density
of carbon in Œgm cm�3� to obtain these data in Œcm�1�. The data have been further
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Table 4.4 Absorptivity a	� Œm�1� for CO2 at three different mid-wavelengths

T[K] 300 600 1,200 1,500 1,800 2,400 3,000

2:99
 0.00069 0.3014 1.9106 2.2612 2.26855 1.9480 1.5462
4:3
 3.85633 69.297 76.2745 57.0525 41.3553 22.5933 13.0729
15
 24.2656 8.86847 1.87067 1.0831 0.65847 0.38080

Table 4.5 Absorptivity a	� Œm�1� for C at different temperatures

T[K] 300 600 1,200 1,700 2,000 2,300 2,600

a	� 1.428e3 1.040e5 6.1027e5 1.0301e6 1.4564e6 1.9375e6 2.552e6

Table 4.6 Coefficients to compute log10 a	� for some gases

Gas mid.
Œ
� b c d e

OH 4.82 �5:1323 0.01018 �5.612e�6 9.299e�10
NO 8.72 �0:71160 0.003039 �2.025e�6 3.53094e�10
HF 4.69 �5:57183 0.011809 �6.429e�6 1.0607e�9
CN 5.81 �1:12994 0.00363 �2.3226e�6 4.0165e�10
HCl 6.55 �3:85281 0.00950 �5.615e�6 9.5911e�10
CO 6.67 �1:08906 0.004346 �2.436e�6 4.0061e�10
H2O 100 2.0157 �0.00100 3.3533e�7 �5.1124e�11
CO2 2.99 �5.39392 0.01007 �5.4046e�6 8.93205e�10
CO2 4.3 �0.39834 0.004711 �2.86139e�6 4.88598e�10
CO2 15 1.88365 �1.784e�3 3.552e�7 �2.1696e�11
C 2.5 1.15240 8.5407e�3 �4.86e�6 9.0997e�10

converted into absorptivity and presented in Table 4.5, to which log10Œ�cm cm�3�
was added.

In order to get the absorptivity data for different gases as a function of temper-
ature, such data given in Tables 4.2–4.5 have been recomputed in the polynomial
form

log10 a	� D b C cT C dT 2 C eT 3 (4.133)

and the coefficients b to e are given in Table 4.6, where a	� Œm�1�. The reason
for taking the logarithm is to make sure that the absorptivity data is never zero or
negative.

In order to compute the global absorptivity coefficient it is necessary to have the
radiosity data in the same wavelength band in polynomial form again,

log10 B
�
	� D b C cT C dT 2 C eT 3 (4.134)

for which the coefficients are given in Table 4.7. The global absorptivity data can
now be obtained by summation of a	� .
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Table 4.7 Radiosity data polynomial coefficients b to e for specific spectral band

Gas mid.
 Œ
� b c d e

OH 4.82 �0:36208 8.1849e�3 �3.825e�6 5.9746e�10
NO 8.72 0.96278 5.59e�3 �2.5951e�6 4.08698e�10
HF 4.69 �0.37739 8.221e�3 �3.80748e�6 5.9201e�10
CN 5.81 �0.14779 7.3118e�3 �3.53539e�6 5.63193e�10
HCl 6.55 0.46187 6.7383e�3 �3.1247e�6 4.86605e�10
CO 6.67 0.40441 6.579e�3 �3.1339e�6 4.95595e�10
H2O 100 1.36921 5.0595e�3 �1.9457e�6 2.77110e�10
CO2 2.99 �3.97758 1.3401e�2 �6.5779e�6 1.05656e�9
CO2 4.3 �1.17414 8.6223e�3 �4.2034e�6 6.748e�10
CO2 15 1.21069 4.188e�3 �2.3664e�6 4.59123e�10
C 2.5 �3.38033 1.3895e�2 �7.22209e�6 1.27849e�9

Fig. 4.4 Mean absorption
coefficient for some gases

Fig. 4.5 Absorption
coefficient for CO2; H2O,
and maximum overlapping
value

Sakai and Saruhashi [137] have further considered in their calculation of
radiation from a shock layer flow in an arc-jet facility a mixture of air-argon model,
which consists of 13 species: O, N, Ar, N2, O2, NO, OC, NC, ArC, OC

2 , NC
2 ,

NOC, and e�. For nitrogen and oxygen and ion radiation the data set from NIST
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Physics Laboratory, NIST Atomic Spectra Database, Version 2.0 (http://physics.nist.
gov/as), was taken. The molecular radiation included � and ˇ systems of NO, the
first negative system of NC

2 , the first and second positive Birge-Hopfield 1 and 2,
Carroll-Yoshino, Worley-Jenkins, and Worley systems of N2, and Schumann-Runge
system of O2.

Overlapping of Bands

It was shown earlier that due to overlapping of bands of CO2 and H2O, the sum of the
absorption coefficients of individual gases need be reduced. This is now explained
by considering two radiating components having spectral absorption coefficient,
�
1.
/ and �
2.
/, respectively, in a gas column of length L. The total emissivity
can now be written as

� D 1

�T 4

Z 1

0

�
1 � exp�.�
1C�
2/L� I �


 d


D 1

�T 4

Z 1

0

Œ1 � exp��
1 C1 � exp��
1 � .1 � exp��
1/ .1 � exp��
1/� I �

 d
:

(4.135)

While the integration of the first four terms contributes for the addition of the two
gas components, the last term is nonzero only if there is overlapping of the bands.

However, for a gas column radiating optically thick, one can consider the
situation also, in which the absorption is significant and I� differs only by a small
amount from I �

� . The discussion will enable us to estimate the radiative heat flux
when there is locally radiative equilibrium, but the local temperature is different
at different places. For simplicity, the discussion is limited to the consideration
of a point in the gas column that is sufficiently at a distance from any boundary
(R ! 1) in terms of the optical length, so that the contribution to I� from I�.R/ is
negligible. Taking the definition of the optical length (4.88) into account, the formal
solution of (4.86) then becomes

I�.0/ D
Z 1

0

�0
�I

�
� .r/ exp� R r

0 �
0

�dr dr D
Z 1

0

I �
� .��/ exp��� d�� . (4.136)

Assuming the value of I �
� .0/ at the point of the observer deviates only slightly from

the value I �
� .��/, one can write I �

� .��/ in a series form by Taylor expansion as

I �
� .��/ D I �

� .0/C
�
@I �
�

@��

�
0

�� C 1

2Š

�
@2I �

�

@�2�

�
0

�2� C � � � (4.137)

http://physics.nist.gov/as
http://physics.nist.gov/as
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and terminate the series after the first two terms only. Substituting the above
expression into (4.136) we get

I�.0/ D
Z 1

0

�
I �
� .0/C

�
@I �
�

@��

�
0

��

�
exp��� d��
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�Z 1

0

exp��� d�� C 1

I �
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1C 1
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�
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�
. (4.138)

Under the assumption that

1

I �
� .0/

�
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�

@��

�
0

� 1 (4.139)

we may write I�.0/ � I �
� .0/, and the radiating gas column is approximately

optically thick. Equation (4.138) is now rewritten into a slightly different form

I� D I �
�

�
1C 1

I �
�

�
@I �
�

@T

�
0

�
@T

@��

��
. (4.140)

Introducing a radiant heat flux vector in the xi coordinate direction

qRi D
Z 1

0

Z 4�

0

I�lid˝d� Wm�2; (4.141)

where li is the cosine of the angle of the direction of radiation with the normal to the
respective surface. Substituting (4.138) into (4.141) and integrating over the entire
solid angle, the first term when integrated is equal to zero and the second term yields

qRi D
Z 1

0

1

�0
�

�
@I �
�

@T

��Z 4�

0

li

�
@T

@r

�
d˝

�
d� . (4.142)

Since,

Z 4�

0

li

�
@T

@r

�
d˝ D �4�

3

@T

@xi
(4.143)
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the radiative heat flux becomes

qRi D �4�
3

@T

@xi

Z 1

0

1

�0
�

@I �
�

@T
d� . (4.144)

A mean absorption coefficient �R, called Rosseland mean absorption coefficient, is
now defined by the relation

1

�R

Z 1

0

@I �
�

@T
d� D 4�T 3

��R
D
Z 1

0

1

�0
�

�
@I �
�

@T

�
d� (4.145)

and the radiant heat flux becomes

qRi D �16
3

�T 3

�R

@T

@xi
Wm�2 . (4.146)

The above equation is similar to the heat conduction equation, which states that the
conductive heat flux is proportional to the negative of the temperature gradient. We
can write similarly for radiative heat transfer. Therefore, for the case of a nearly
optically thick radiation, a radiative thermal conductivity coefficient (valid only for
local radiative equilibrium) can be defined by the relation

kR D 16

3

�T 3

�R
Wm�1 K�1 ; (4.147)

where

1

�R
D �h2

2�T 5c2kB

Z 1

0

�4

�0
�

exph�=.kBT /�
exph�=.kBT / �1�2 d� :

We have discussed in the present section the method by which we can estimate
the radiative energy transfer, provided the absorption coefficient is available from
experiments or otherwise. In the following section, we would discuss further how
these can be used to estimate the radiative heat flux for ionized gases.

Finally, let us discuss the computational aspects of the radiative transfer equation.
While some typical books on radiative transfer, for example, by Siegel and Howell
[146], may discuss various methods of radiative transfer including stochastic
methods, there is generally very little about the calculation of the radiative transfer
for a highly emitting-absorbing gas. For the present discussion, therefore, we make
two simplified assumptions: (1) only the integrated radiative flux is considered, since
consideration of the spectral radiative flux is only going to increase computation
time many folds; and (2) the total intensity of radiation (radiosity) is considered. We
consider further only in one dimension in the Cartesian coordinate system, which
can no doubt be extended to two- or three-dimensional cases fairly easily. When we
consider in one coordinate direction, for example, in Cx-direction, let the radiosity
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in that direction be designated as BC, and similarly in �x-direction let it be B�.
For each of these we write from (4.81) the equation of radiative transfer as

1

c

@B

@t
C @B

@x
D �0 �B� � B� . (4.148)

Now we consider a wall on which B� radiation is falling and BC is emanating. If
the wall emissivity is �w at the wall temperature Tw, then obviously at the wall,

BC D B�.1 � �w/C ��wT
4

w . (4.149)

Thus the energy flux being absorbed at the wall is

qw D B� � BC D B��w � ��wT
4

w . (4.150)

Similarly for the three-dimensional case, one can solve six B-components in three
positive and three negative coordinate directions provided that the expressions or
data to compute the absorptivity be available. The total radiative energy source (or
sink) can, of course, be computed from the sum of the right-hand side of the radiative
energy transfer in individual directions and this can then act as the radiative energy
source (or sink) term in the gas-dynamic energy equation.

4.3 Radiative Characteristics for Ionized Gases

As already pointed out, the energy of particles consists of discrete energy levels
due to rotation, vibration, electronic excitation, etc., and the continuous energy
distribution due to translation. Transition from one discrete energy level to another
discrete higher (excited) energy level can, for example, be of the type

AC efast ! A� C eslow

in which an atom in the ground state or lower energy level is excited by collision
with a fast electron which becomes slower after the collision. A reverse process may
be somewhat less probable than by radiation.

Reactions for photo-excitation and photo-deexcitation including the effect of the
radiation energy can be as

AC h� $ A� .

The reactions by photoionization and photo-recombination are similar:

AC h� $ AC C e C 1

2
Mev

2
e
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except that, in this case, there is no discrete quantum energy jump giving rise to a
continuous free-bound radiation. Ionization, however, is also possible by collision

ACXfast $ AC C e CXslow . (4.151)

In the reverse reaction, at the time of collision of the ion and the electron, the
collision of a slow third partner (three-body recombination) is necessary to take
away the excess energy, failing which, the ion and the electron have to separate
again, except when photo-ionization takes place. For free-free transfer, in which the
emission is due to the retardation of the charge particle (electron), which in german
is called Bremsstrahlung (radiation due to retardation), the radiative energy h� is
given by the relation

h� D 1

2
Me	.v

2
e / . (4.152)

While the continuum spectra can appear when at least one of the energy levels
of transition is not discrete, there can also be such spectra for transitions between
two normally discrete energy levels when these become quite wide due to internal
disturbances or external causes. In addition to these real continuum spectra, there
are also “not real” continuous spectra, which are found continuous because of the
limited resolution capability between neighboring lines in a spectrograph.

In the case of a transition between a discrete energy levelEn and one in which the
electrons are ionized, the electron possesses ionization energy Ei and also a certain
kinetic speed v; the energy balance gives the relation

1

2
Mev

2
e C .Ei �En/ D h� (4.153)

the transition corresponds to transition between elliptic and hyperbolic paths. The
minimum frequency of radiation �n will be for ve D 0, for which �n D .Ei�En/=h,
and the frequency of radiation extends from �n to 1. On the other hand, in the free
state of the electron, the distribution of particles in some velocity interval is

f .ve/ Š exp�Mev
2
e =.2kBTe/ Š exp�h�=.kBTe/ (4.154)

and the intensity of radiation from �n falls exponentially with frequency for each
of the transitions between the bound energy level and the free state. Around the
ionization energy the energy levels are very close to each other, and the indi-
vidual peaks in intensities merge together to give frequency-independent spectral
volumetric radiation energy. Different energy levels and transitions, and schematic
distribution of the spectral volumetric radiative energy, are shown in Fig. 4.6a, b,
where Ii �	I is the effective ionization energy (D ionization energy Ii – “lowering
of the ionization energy”	I ). The transition above the effective ionization energy is
due to free-free transition of the electrons, while the transition between free electron
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Fig. 4.6 (a) Energy levels and (b) Schematic distribution of spectral volumetric energy

Fig. 4.7 Deflection of an electron in the field of an ion with charge Nc

energy levels up to the minimum energy levelEl has a fairly frequency-independent
spectral volumetric radiative energy distribution, which is due to the merging of
transitions to energy levels very near each other. Transitions from the free electron
energy levels to the levels between 0 andEl have a sawtoothlike character, as shown
in Fig. 4.6b.

For the free-free transition, which can be considered as transitions between
hyperbolic orbits, Kramer (for detailed discussion, see Finkelnburg and Peters [62])
derived an expression for the radiated energy following classical electrodynamics
and mechanics. According to the classical electrodynamics, the radiated energy
emitted per unit time due to movement of a free electron around a nucleus with
charge CNce (Fig. 4.7) is given by the relation
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PeR D e2 Pv2e
6�oc3

W . (4.155)

Balancing the inertial and Coulomb forces

Me Pve D Nce
2

4��or2
; (4.156)

where Nc is the effective (positive) multiple of nuclear charge, we get the relation
for the acceleration of the electron

Pve D Nce
2

4�Me�or2
ms�2 . (4.157)

Substituting (4.157) into (4.155), we get

PeR D N2
c e

6

96�2M2
e �

3
oc
3r4

W . (4.158)

Introducing polar coordinates and observing the area rule

r2 P' D pve D constant m2 s�1; (4.159)

where p is the smallest distance without deflection and dt D r2=.pve/d', we get
from (4.158)

PeR D N2
c e

6

96�2M2
e �

3
oc
3

Z
1

r4
dt D N2

c e
6

96�2M2
e �

3
oc
3pve

Z
d'

r2
. (4.160)

In between the coordinates of hyperbolic orbits, there is further the relation

1

r
D 1 � � cos'

p tan'o
m�1 , (4.161)

where � D 1= cos 'o D eccentricity. In addition the law of scattering due to
Rutherford gives the expression

tan'o D Mepv
2
e .4��o/=.Nce

2/; (4.162)

where .� � 2'o/ is the angle of deflection. Substituting the above two expressions
into (4.160), we get after some manipulation
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PeR D N4
c e
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1536�4c3M4
e �

5
op

5v5e

Z 2��'o
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.1 � � cos'/2d'

D N4
c e
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e �
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cos2 'o

�
.� � 'o/C 3 tan'o

�
. (4.163)

Equation (4.163) can be evaluated easily for the limiting cases of 'o ! 0 and
'o D 90ı. In the first case .'o ! 0/, the electron deviates approximately by 180ı
and the orbit can be considered as parabolic near the nucleus .� D 1/.

Distribution of total radiation over frequencies is obtained from the time distri-
bution of the acceleration as per the magnitude and direction of the velocity vector
in the entire orbit. This orbital acceleration is split by Kramer in orbits parallel
and normal to the entire orbit, and after considering various aspects of interaction
between the electrons and the (positive) charge Nc with ion index designated with
subscript i, Kramer derived the following expression for the volumetric energy
emission in a free-free energy transfer [116]:

jff � D N2
c e

6

3
p
3�c3.2�Me/3=2�3o

neniGff

.kBT /1=2
exp�h�=.kBT /

D 5:43 � 10�52 N 2
c neniGffp

T
exp�h�=.kBT / Wsm�3 sterad�1; (4.164)

where ni and ni are the number densities for the i th ions and electrons, respectively.
Further in the above expression Gff .�/ for free-free transition is the correction
factor (Gaunt factor) that has to be brought in, since the initial calculation is done
for the two limiting cases of parabolic and hyperbolic orbits. Normally Gff D 1,
except for � ! 0, which means that for not too small radiative frequencies .� > 0/,
the main part of the free-free radiation is for strongly deflected (parabolic) orbits.
For � ! 0, however, Gff .�/ takes large values and the contribution of more and
more hyperbolic orbits is added. Now for � ! 0, the value of Gff can be obtained
from the relation

Gff D
p
3

�
ln

�okBT

1:44Nce2n
1=3
i

D 0:55133 ln

 
3306:6

T

Ncn
1=3
i

!

D 4:4678C 0:55133 ln

"
T

Ncn
1=3
i

#
.

Obviously we can divide (4.164) by (4.76), and we get the expression for absorp-
tions coefficient as

�ff � D 0:010237
N 2
c neniGff

�3
p
Te

m�1: (4.165)
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For the free-bound transitions when the bound energy levels are very near each other
.� ! 0/, the volumetric energy emission is given by the relation [116]

jf b� D N2
c e

6nine

3
p
3�c3.2�Me/3=2�3o

p
kBTe

D 5:43 � 10�52 nenip
Te

Wsm�3 sterad�1 (for � � �n) (4.166)

which is the same as (4.164), but the expression for the absorption coefficient
remains the same as (4.165) [116].

However in free-bound transitions, the bound state for a hydrogen-like atom,
such as alkali metals, is defined by the principal quantum number, n, with an
equivalent energy En. For a transition from a free state, where the electron velocity
is ve , the kinetic energy is

1

2
Mev

2
e D h.� � �n/, �n � � < 1; (4.167)

where 	I is the lowering of the ionization energy because of polarizing effect of
the charged particles, which has been discussed in Sect. 6.6 (may be put equal to
zero if not known)

h.� � �n/C Ii �	I (4.168)

and the volumetric energy emission to each bound energy level in the range �n <
� < 1 is given by the relation

jf b� D e10MeN
4
c

24
p
3�c3h5�5o

�
2Zi

Zi�1

�
ni�1
n3

Gf b exp�Œh.�n��/CIi�	I�=.kBT / . (4.169)

In (4.169), Z is the partition function of excitation, Gf b is the correction factor
(Gaunt factor) for free-bound transition to energy En (corresponding to the
principal quantum number n for a hydrogen-like atom), and �n is the frequency
of radiation from the effective ionization energy .Ii � 	Ii / to En. Now by using
Saha equation for the single-temperature case (discussed in Chap. 6),

S D neni

ni�1
D 2Zi

Zi�1

�
2�MekBT

h2

�3=2
exp�.Ii�	I/=.kBT / .

Equation (4.169) can now be written as

jf b� D MeN
4
c e

10nineGf b

24
p
3�c3h2n3�5o.2�MekBT /3=2

exp�h.���n/=.kBT / . (4.170)
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By substituting (4.76) into (4.169) or (4.170), we get

�f b� D e10MeN
4
c

48
p
3�ch6�5o

�
2Zi

Zi�1

�
ni�1
.n�/3

Gf b exp�Œh�nCIi�	I�=.kBT / (4.171)

or

�f b� D e10MeN
4
c Gf b

48
p
3�ch3�5o.2�MekBT /3=2

nine

.n�/3
exp�h�n=.kBT / . (4.172)

From more accurate quantum mechanical calculations, however, the frequency
dependency of the absorption coefficient can deviate from the behavior of the
absorption coefficient for hydrogen or similar molecules .�� / ��3/ quite differ-
ently. In some cases even this increases with �, for example, for noble gas neon, or
alkali gas sodium these decrease very steep and for potassium it decreases first to
increase later. In any case the absorption coefficients for neutral atoms and positive
ions approach a finite value at � ! �n, whereas for negative ions, they tend to zero.

By defining an absorption cross section of the gas in (4.77), in which the free
electrons are captured to reach .n; l/ state, where n and l are the principal and the
angular quantum number, respectively, we can write

jf b� D 2h�2

c2
Qn;lnn;l exp�h�=.kBT / D 2h


3
Qn;lnn;l exp�h�=.kBT /

D 3:978 � 10�25 1

2
Qn;lnn;l exp�h�=.kBT / Wsm�3 sterad�1; (4.173)

where 
 is the wavelength [m], Qn;l is the absorption cross section Œm2�, and nn;l
is the number density of particles in the state .n; l/. Zhiguler et al. [160] have
discussed the method of calculation of hydrogen-like atoms. In (4.173) evaluation
of the expression has to be done for � > �n, and overall volumetric energy emission
is given by the relation

j� D jff � C
X

jf b� .

Combining the free-free and free-bound emissions and integrating over all wave-
lengths, Liu et al. [95] give the relation for the total volumetric energy

j D 64N 2
c �

3=2e6G

3
p
6M

3=2
e c3h�3o

neni

.kBTe/1=2
.h�c C kBTe/ , Wm�3; (4.174)

where G is the average Gaunt factor (may be taken equal to one) and �c is the
cutoff frequency. Further Nc is the “effective nuclear charge” to modify the photo-
ionization model for hydrogen to other gas plasmas. Now the rate of radiant energy
loss per unit volume of a plasma consists of the rates of the energy loss through
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continuum radiation and line radiation. Therefore the above equation was multiplied
by 2 and applied to argon plasma (Liu et al. [95]), for which the values taken were
h�c D 2:85 eV (corresponding to 3p electrons) and N2

c D 1:67; a comparison with
Figs. 4.8 and (4.174), specially applied for argon plasma, becomes now ŒWm�3�

j D 4:676 � 10�14 n2ep
Te

�
4:5657 � 10�19 C 1:38 � 10�23Te

�
; (4.175)

where ne Œm�3� is the electron number density.
For a temperature range 10,000–20,000 K and for plasma with maximum singly

charged ion, Zhigular et al. [160] gave relations for hydrogen, oxygen, and nitrogen
in which the volumetric radiative energy and the number densities are in CGS units.
By multiplying with appropriate factors for conversion into SI units, the following
relations ŒWm�3� are obtained:

For hydrogen (at lower kinetic energies of free electrons):

jH D nine
�
6:27 � 10�35T �0:76 C 9:73 � 10�40T �0:16�

For oxygen:

jO D nine

�
2:06 � 10�36

p
T

C 5:46 � 10�41pT C 5:31 � 10�46T 3=2
�

For nitrogen:

jN D nine

�
3:13 � 10�36

p
T

C 7:67 � 10�41pT C 7:74 � 10�46T 3=2
�
;

where the number densities are in Œm�3�.
For the line and band spectra (bound-bound radiation), the distribution of I� for a

spectral line is difficult to obtain since the line shape is determined by a combination
of natural, collision, and Doppler broadening. However, a combination of these
factors can be taken care of in the transition probability coefficient, Amn, and the
intensity of line radiation is

IL D
Z

Line
I�d� D 1

4�
Amn

nrgr;m exp �Er;m=.kBT /P
m gr;m exp �Er;m=.kBT /h�L Wm�2 sterad�1;

(4.176)

whereL is the thickness of a radiating gas [m], gr;m is the statistical weight in the r th
ionization state (r D 0, neutral; r D 1, singly charged ion; etc.) and the mth energy
level in that ionization state, E is the energy, and nr is the total number density in
the r th ionization state. Taking various components of line and continuum radiation,
radiation intensities, and absorption coefficients, Morris [115, 117] and Yos and
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Table 4.8 Calculated coefficients of (4.177)

Gas Nitrogen Oxygen

a �11.360 C 2.731 log10patm �11.424 C 4.1557 log10patm

b 1.767e�3 � 3.360e�3 log10patm 1.658e�3 � 5.7156 log10patm

c �9.0167e�8 C 2.285e�8 log10patm �8.29213e�8 C 3.504e�8 log10patm

d 1.4043e�12�4.264e�13 log10patm �1.2745e�12�6.266e�13 log10patm

Morris et al. [116] calculated the spectral absorption coefficient in a tabulated form
for argon, nitrogen, oxygen, and air for 1–30 bar and 9,000–30,000 K and in the
spectral range 950 Å–6:0
. These tabulated values of the absorption coefficient
�� Œm�1� have been plotted in Fig. 4.8 for argon as a function of wavelength (or
frequency), for two pressures of 1 and 10 bars and temperature range between
10,000 and 20,000 K.

Further for two gas plasmas, nitrogen and oxygen, the overall absorption
coefficient, �0, has been computed by us by using the data in [116] and found that
for the data given in each pressure and in the range 9,000–30,000 K, it can be given
by an approximate relation

log10 �
0 D aC bT C cT 2 C dT 3; (4.177)

where the coefficients (a–d) are dependent on the gas and the pressure.In order
to compute these coefficients at any pressures, these have been computed and
being presented as linear coefficients of log10patm, where patm is the pressure in
atmospheres, and they are given in Table 4.7.

From Fig. 4.3 it is shown that one can consider gas radiation as optically thin if
the product of the absorption coefficient and the nondimensional optical path length
.��L/ < 0:25 and optically thick if the product .��L/ > 5:0. Thus it can be seen
that as a rule, the absorption at large wavelengths starts gaining more importance
for smaller lengths of the optical thickness L. It may, however, be recalled that as
shown schematically in Fig. 4.6, the values of the absorption coefficient may not be
falling uniformly with frequency, but there is, in general, a sawtoothlike character
corresponding to the transitions between the free and different bound energy levels.
Further from Fig. 4.8 it can be seen for p D 1 bar and T D 10; 000K that for
argon plasma in the range considered, one can consider the radiation at 5 � 1013 Hz
as optically thin if L D L1 < 100m and optically thick if L D L2 > 2 km,
whereas at 2 � 1015 Hz optically thin if L D L1 < 250m and optically thick if
L D L2 > 5 km. For practical purposes, these results, however important, may
be used only to examine the limiting cases, but it is more useful to consider values
averaged over all frequencies or wavelengths (Table 4.8).

Although we are going to write down the basic gas-dynamic equations for high
temperature gases later at Chap. 11, it is now worthwhile to point out to the effect of
radiation on the gas-dynamic variables. It is pointed out by Zhiguler et al. [160]
that the total momentum change due to spontaneous emission is zero, although
absorption may cause directional change in the momentum. On the other hand, in



104 4 Radiative Properties of High Temperature Gases

Fig. 4.8 Spectral absorption coefficient Œm�1� for argon [116]

setting up the energy equation, we must consider, in addition to the volume force
(corresponding to the momentum change), also the energy transfer of the particles
by emission (and absorption).

From the values of the spectral absorption coefficient, the spectral volumetric
radiative energy is obtained from the formula

Pe� D �0
�B

�
� . (4.178)

It is found that in the temperature range around 10,000–20,000 K, the maximum
Pe� is in the visible range or near the infrared. Therefore, to determine the total
volumetric radiative energy, it is sufficient, for temperature below 20,000 K, to
cut off the upper frequency limit of integration at around 1016 Hz. Now the total
volumetric radiative energy for spontaneous radiation is defined by the relation

PeR D
Z 1

0

e�d� D
Z 1

0

�0
�B

�
� d� D N�0B� Wm�3
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Fig. 4.9 Total volumetric
radiation energy for argon,
nitrogen, and air

and the average absorption coefficient is given by the relation

N�0 D 1

B�

Z 1

0

�0
�B

�
� d� : (4.179)

The difference between the average absorption coefficient and the Rosseland mean
absorption coefficient (4.145) may be noted. Values of PeR and N�0 for argon, nitrogen,
and air are plotted in Figs. 4.9 and 4.10. If it is assumed that the radiation may
be considered as optically thin, that is, if N�0L1 < 0:25, the maximum length of
path, L1 for optically thin radiation is shown for these three gases in Fig. 4.10.
It is evident that the average L1 is smaller than the range of L1 obtained from
Fig. 4.9. Thus, although for radiative heat transfer calculations the value of average
L1 may be somewhat adequate, for any spectral measurements, the absorption
at long wavelengths may be dominated. It can be seen further from Figs. 4.9–
4.11 that the values of PeR, N�0, and L1 are approximately dependent on the (3/2)th
power of pressure, in which direct proportionality relation should be observed for
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Fig. 4.10 Average
absorption coefficient for
argon, nitrogen, and air

non-reacting gases, and the remaining (1/2) power of pressure is obtained from the
shift in the equilibrium composition of the gases.

We would now discuss briefly the role of particles in absorbing and scattering
radiation. For this purpose we call in the results of electromagnetic wave propa-
gation in Sect. 11.3. Comparing (11.129) with (4.86), it is seen that the absorption
coefficient, �
, and the extinction coefficient, k, which is the imaginary part of the
(complex) refractive index, are related to each other by relation

�
 D 4�k



m�1: (4.180)

For solid particles the refractive index are complex, and some of the typical complex
refractive indexes . Nn D n � ik/ are as follows: dielectric medium: n D 1, k D
0, fly ash: Nn D 1:43 � i0:307 to 1:5 � i0:005, soot of 0.002 percent spheres of
diameter 1; 850Å at wavelength 5; 461Å(Mie scattering): Nn D 1:57 � i0:56, and
soot in methane-oxygen flame at 4; 840Å(Mie scattering): Nn D 1:60 � i0:59. For
acetylene and propane soot at 4; 358Å, Nn D 1:56 � i0:46 and Nn D 1:57 � i0:46,
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Fig. 4.11 Maximum length
of optical path L1 for validity
of the concept of the optically
thin radiation for argon,
nitrogen, and air

respectively, and at wavelength 10.0
 m, the respective (complex) refractive index
are Nn D 4:80� i3:82 and Nn D 3:48� i2:46. Further, values of (complex) refractive
index for some other particles like alumina and carbon are available in literatures as
functions of temperature and wavelength.

Since solid particles behave almost like a grey (continuous) radiation, it is proper
to define an overall absorption coefficient

� D �

�T 4

Z 1

0

�
I
�

 d
 m�1: (4.181)

The scattering and absorption of radiation by single spheres were discussed during
the second half of the nineteenth century by Lord Rayleigh for spheres with diameter
much smaller than the wavelength of radiation, and later in 1908 Gustav Mie
published the more generally valid theory of scattering [109]. The complicated Mie
theory, requiring calculation of very complicated two complex amplitude functions,
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has to be used where the size parameter is too large to apply Rayleigh theory, but
too small to employ geometric optics.

For a cloud of particles, the absorption and scattering depend not only on the
(complex) index of refraction of the particle material but also on the size parameter
� D �dp=
 and on the mean distance between the particles to wavelength ratio.
For the size parameter there are various ranges as follows: (a) � < 0:3, Rayleigh
scattering, (b) � D 0:3 to 5.0, Mie scattering, and (c) � > 5:0, Fresnel diffraction
plus reflection and diffusion.

If N is the number density of the particles Œm�3� of diameter dp , and we define
an efficiency factor (the ratio of the spectral absorption cross section to the physical
cross section of the particles), Ea
, then the absorption coefficient is defined as

�
 D �d2p

4
Ea
N: (4.182)

The following formulas are given by Siegel and Howell [146] for small absorbing
spheres in nonabsorbing medium as follows:

� < 0:3 (Rayleigh absorption) W Ea;
 D �4�Im
�
. Nn/2 � 1
. Nn/2 C 2

�
: (4.183)

� D 0:3 to 5:0 (Mie absorption) W

Ea;
 D �4�Im

��
. Nn/2 � 1
. Nn/2 C 2

�

1C �2

15

�
. Nn/2 � 1
. Nn/2 C 2

��
. Nn/4 C 27. Nn/2 C 18

2. Nn/2 C 3

�
�
;

� > 5:0 W Fresnel diffraction plus reflection and diffusion:

In a similar manner, a scattering cross section, Qs
, and a scattering efficiency
factor, Es
, are defined such that

Qs
 D �d2p

4
Es
 (4.184)

and the scattering coefficient is given by

�
 D �d2p

4
Es
N D Qs
N m�1: (4.185)

For the Rayleigh and Mie scatterings, the scattering efficiency factor, as given by
Siegel and Howell [146] is

� < 0:3(Rayleigh scattering) W Es;
 D 8

3
�4
ˇ̌
ˇ̌ . Nn/2 � 1
. Nn/2 C 2

ˇ̌
ˇ̌2 : (4.186)
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� D 0:3 to 5:0(Mie scattering) W

Es;
 D 8

3

�4

z21

���
n2 C k2

�2 C n2 � k2 � 2
	2 C 36n2k2

�

�
�
1C 1:2

z1

h�
n2 C k2

�2 � 4
i
�2 � 8nk

z1
�3
�
;

z1 D �
n2 C k2

�2 C 4
�
n2 � k2�C 4: (4.187)

Validity of the above expression of absorption and scattering can be examined
by using the above formulas with more exact numerical results given by Modest
[109]. For the sample data of particle diameter 10
m, wavelength � micron (size
parameter � D 10), number density N D 1010 Œm�3� and Nn D 2 � i , the results
of calculation of above formulas give absorption coefficient D 1,249 Œm�1� and
scattering coefficient D 7:548 � 105 Œm�1�. Comparable results using the freely
available software of Modest [109] in Œm�1� are absorption coefficient D 0.8307
and scattering coefficient D 1.073.

Now the scattered energy produces an intensity distribution as a function of angle
� measured in relation to the forward direction and the azimuthal angle '. The
scattered intensity is in the direction (� ,'), and dI
 (� , ') is defined as the energy
scattered in that direction per unit solid angle of the scattered direction and per
normal area and solid angle of the incident radiation:

dI

ds

D �
I

˚.� ,'/

4�
; (4.188)

where ˚ is the phase function describing the angular distribution of the scattered
intensity; when integrated over all directions it is normalized to one.

4.4 Radiative Properties

4.4.1 Propagation of Electromagnetic Waves in an Isotropic
Media of Finite Conductivity

For a medium of finite electrical conductivity, the simple real value of the refractive
index coefficient n is replaced by a complex refractive index Nn D n� i�, where � is
the extinction coefficient. These can be obtained from the following relations:

n2 D �o�oc
2
o

2

2
4�1C

s
1C

�

o�e

2�co�o

�235 ; (4.189)
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�2 D �o�oc
2
o

2

2
41C

s
1C

�

o�e

2�co�o

�235 ; (4.190)

where �o D magnetic permeability (in vacuum) D 1:25664� 10�6 [Vs(Am)�1], �o
D dielectric constant (in vacuum) D 8:555 � 10�6 [As(vm)�12], co D 3 � 10�8
[ms�1], 
 D wavelength (in vacuum) D wavelength [m], and �e D electrical
conductivity of the medium [A(Vm)�1].

The instantaneous energy carried per unit time and area by an electromagnetic
wave is given by the Poynting vector SŒD EXH�, for which the magnitude is
given by

jS j D Nn
�co

jEj2 Wm�2: (4.191)

4.4.2 Absorption and Scattering Coefficients of Particles

Let dN.R/ be the number of particles per unit volume Œm�3� in the radius range
fromR to .RCdR/ and let s.R/ be the scattering cross section Œm2� for a particle of
radius R. The effective scattering area per unit volume ˝ (D scattering coefficient
Œm�1�) is defined as

�s 	
Z 1

n.R/D0
s.R/dN.R/: (4.192)

If the particles are spherical and of uniform diameter dp Œm�, and there are N per
articles per unit volume Œm�3�, then

�s 	 sN D �d2p

4
EsN m�1; (4.193)

where EsŒ1� is the scattering efficiency factor for a particle, then for a cloud of
independently absorbing species, the absorption coefficient

� 	 �d2p

4
EaN , m�1; (4.194)

where EaŒ1� is the absorption efficiency factor.
The interaction of electromagnetic waves with a particle produces scattering by

reflection and refraction, and they depend on two parameters, namely the (complex)
refractive index of the particle material with respect to the surrounding medium (if
the surrounding medium is a gas, then the refractive index is generally equal to one
and its refractive index does not play a role) and the size parameter
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Table 4.9 Refractive index
values for various materials

Material (solid) Wavelength Œ
� n �

Copper 0.65 0.44 3.26
2.25 1.03 11.7
4.00 1.87 21.3
5.50 3.16 28.4

Gold 0.589 0.47 2.83
2.00 0.47 12.5
5.00 1.81 32.8

Silver 0.589 0.18 3.64
2.25 0.77 15.4
4.50 4.49 33.3

Iron 0.589 1.51 1.63
Nickel 0.589 1.79 3.33

2.25 3.95 9.20
Glass (crown) 0.36–2.0 1.50–1.55 0
Quartz 1.19–2.3 1.52–1.68 0
Ice 0.589 1.31 0
Rock salt 0.19–8.8 1.50–1.90 0

� D �dp



; (4.195)

where 
 is the wavelength.
Typical values of the (complex) refractive index for various electrically conduct-

ing and dielectric materials are given in Table 4.9 (data from [146]).
In Table 4.9 it can be seen that for dielectric materials, the imaginary component

of the refractive index is equal to zero. Similar data of optical properties for carbon
particles [92], for aluminum oxide [134], and for aluminum and magnesium oxide
particles [133] are all dependent on both wavelength and temperature (Tables 4.10–
4.14). In view of this, the (complex) refractive index for carbon and aluminum
oxide has been computed by this author by least mean square method in a second-
order polynomial form as a function of temperature (in Kelvin) and wavelength (in
microns) and the results are presented in Table (4.14).

Data for aluminum oxide are given in Table 4.11 and similar data for aluminum
oxide are given in Table 4.12 [134]. Further, the data for aluminum oxide and
magnesium oxide are given in Table 4.13 for a temperature at 1,000 C [133].

It has been shown previously that the (complex) refractive index of carbon
and aluminum oxide are dependent on both wavelength and temperature. These
have been now evaluated, for the ease in doing numerical calculations, in two-
dimensional least square curve fitting, given in a polynomial form with six
coefficients as

Nn D a0 C a1T C a2
C a3T 
C a4T
2 C a5


2: (4.196)
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Table 4.10 Aluminum oxide data in rocket gas

Wave n �

length T[K]

Œ
� 300 1000 1600 2000 3000 300 1000 1600 2000 3000

0.2 0.61 0.83 0.89 0.91 0.94 1.50 1.19 1.05 0.98 0.85
0.3 2.49 1.93 1.75 1.66 1.53 1.09 1.09 1.03 0.99 0.92
0.4 2.16 2.02 1.93 1.87 1.77 0.44 0.63 0.69 0.71 0.73
0.5 1.96 1.96 1.92 1.90 1.83 0.36 0.49 0.54 0.56 0.60
0.6 1.84 1.90 1.90 1.89 1.85 0.39 0.48 0.49 0.51 0.54
0.7 1.76 1.87 1.88 1.87 1.86 0.46 0.46 0.48 0.49 0.51
0.8 1.72 1.85 1.86 1.86 1.86 0.56 0.49 0.49 0.49 0.50
0.9 1.72 1.85 1.86 1.86 1.86 0.67 0.53 0.51 0.51 0.51
1.0 1.73 1.85 1.86 1.86 1.86 0.77 0.58 0.54 0.53 0.52
2.0 2.22 1.98 1.97 1.97 1.96 1.36 1.06 0.94 0.88 0.79
3.0 2.56 2.24 2.20 2.20 2.14 1.59 1.39 1.24 1.17 1.07
4.0 2.77 2.49 2.43 2.43 2.34 1.80 1.59 1.44 1.37 1.22
5.0 2.94 2.71 2.64 2.64 2.52 2.02 1.73 1.58 1.51 1.37
6.0 3.10 2.90 2.82 2.82 2.68 2.24 1.84 1.69 1.61 1.48
7.0 3.25 3.05 2.98 2.98 2.83 2.45 1.93 1.77 1.70 1.57
8.0 3.40 3.19 3.11 3.11 2.96 2.66 2.02 1.85 1.78 1.65
9.0 3.55 3.30 3.23 3.23 3.08 2.85 2.11 1.92 1.84 1.71
10.0 3.70 3.40 3.33 3.33 3.18 3.03 2.20 1.99 1.91 1.77
20.0 4.95 4.09 4.00 4.00 3.83 4.49 3.07 2.68 2.52 2.27

4.5 Radiation from Clouds of Particles

According to Hottel and Sarofim [75], powdered coal flame contains particles of size
less than 250
 with an average size in the neighborhood of 25
, and a composition
varying from a high percentage of carbon to nearly pure ash. On the other hand, the
suspended matter in luminous gas flows consists of carbon and heavy hydrocarbons,
and has an initial size before agglomeration in the range 0.006–0:03
 and after
agglomeration to about 0:15
. Further the volume of soot per total volume of
combustion products has been found experimentally to range from 10�8 to 10�5,
equivalent of particle density between 1017 and 1020 Œm�3�. Flames of heavy residual
oils have particles, due to cracking of evolved gaseous hydrocarbons and due to
cooling of the heavy bituminous material present in each droplet. These particles
are of a size comparable with the original drop size, with mass-medium diameter
from 200 to 50
 or less.

The interaction of electromagnetic waves with a particle produces scattering by
reflection and refraction, and these effects depend on two parameters containing
the particle properties (electric conducting or dielectric material) and size: (a)
components of (complex) index of refraction of the particle relative to those of
the surrounding medium and (b) the ratio of the particle size to the wavelength,
� D �dp=
. If � > 5, the scattering is chiefly a reflection process and can
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Table 4.12 Optical constants of soot in hydrocarbon flames

Wave n �

length T[C]

Œ
� 1200 1500 1600 1700 2020 1200 1500 1600 1700 2020

0.5 1.805 1.814 1.817 1.82 1.83 1.8e�7 5.2e�7 1.1e�6 1.6e�6 1.2e�6
1.0 1.785 1.794 1.797 1.80 1.81 6.0e�8 4.4e�7 1.1e�6 1.8e�6 1.6e�6
2.0 1.775 1.784 1.787 1.79 1.80 5.3e�8 3.8e�7 1.0e�6 1.9e�6 2.2e�6
3.0 1.745 1.754 1.757 1.76 1.77 1.9e�7 8.4e�7 1.7e�6 2.4e�6 3.6e�6
4.0 1.715 1.724 1.727 1.73 1.74 1.4e�5 2.0e�5 2.4e�5 2.9e�5 3.5e�5
5.0 1.665 1.674 1.677 1.68 1.69 1.6e�4 2.3e�4 2.8e�4 3.2e�4 3.7e�4
6.0 1.575 1.584 1.587 1.59 1.60 9.1e�4 1.1e�3 1.4e�3 1.6e�3 1.9e�3

Table 4.13 Mie scattering and absorption cross sections for two metal
oxides

Aluminum oxide Magnesium oxide

Wavelength Œ
� n � n �

0.5 1.77 1.e�6 1.725 5.e�6
1 1.75 1.e�6 1.720 7.e�6
2 1.74 1.e�6 1.705 1.2e�5
3 1.71 1.e�6 1.690 1.6e�5
4 1.68 1.e�5 1.665 2.e�5
5 1.63 1.e�4 1.664 5.e�5
6 1.54 2.2e�4 1.600 1.e�4
8 1.35 3.3e�4 1.510 8.e�4
10 1.00 5.0e�4 1.440 9.e�4

Table 4.14 Six polynomial coefficients for (complex) refractive index for
aluminum oxide and carbon

Coefficients Al2O3 C

a0 1.962Ci0.1711 1.726Ci0.8179
a1 �1.065e�4Ci2.871e�5 �1.320�i3.866e�4
a2 �0.2477Ci0.08947 0.2640Ci0.2726
a3 �1.889e�5Ci1.245e�5 �1.922e�5�i3.796e�5
a4 8.631e�8�i2.867e�8 3.098e�8Ci1.083e�7
a5 1.636e�2Ci9.415e�4 �4.767e�3�i4.300e�3
RMS (error) 1.1695472Ci0.9783615 0.2377174Ci0.242709

be calculated from relatively simple geometric reflection relations, whereas for
� < 0:3, the scattering model may be used. In between these two ranges, Mie
scattering theory may be used. From these theories, closed form expressions for the
phase function are available in literatures, when the direction of the incoming ray
of radiation is known. However, when the radiation is from all directions, obviously
such phase functions cannot be evaluated easily.

Among the particle absorption or scattering due to soot has important industrial
applications and have been measured. The absorption coefficient for soot is obtained
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that the (complex) refractive index of soot is independent of wavelength and the
soot particle diameter is small compared to the wavelength of radiation (� < 1),
so that scattering is negligible. We can test this condition by considering Wien’s
displacement law, which states that for black-body radiation, the wavelength of
maximum intensity of radiation, 
max, multiplied by temperature, T , is a constant
and is given by the value 2; 877:6
K. Hence, for a soot temperature of 1,000–
2,000 K, 
max is in the range of 1.4–2.8
m. Thus the particle diameter, for
consideration of Felske-Tien theory [60], will require diameter of the particle in
the range 0.4–0.8
m. According to the theory, first the value of a variable

X D �sootLTsoot (4.197)

is computed, where �soot is the soot “fluidized” mass density Œkgm�3�, L is a
characteristic length or a length in the direction of propagation Œm�, and Tsoot

is the soot temperature [K]. Further, the optical path length, � , is obtained as a
Penta-Gamma function of X. Note that a Penta-Gamma function is a fourth-order
derivative of a gamma function [1]. Finally, the absorption coefficient of the soot is
obtained from the relation

�soot D � 1

L
ln � (4.198)

and the total absorption coefficient of a gas-soot mixture is now given by

� D �gas C �soot � �gas�soot: (4.199)

4.6 Evaluation of Radiation

In the previous two sections absorption coefficient data for some molecular gases
and plasmas have been given. These are not for any specific wavelength (or
frequency) but are generally applicable for a “gray” gas, and hence these are
averaged absorption coefficient data independent of the frequency. Taking such data,
we would now discuss methods to evaluate volumetric emission and heat flux to the
surrounding wall. For this we would first keep the “scattering” generally out of our
consideration, and the starting point will be the equation of radiative transfer (4.83)
for a gray gas as

@I

@s
D �.I � � I /: (4.200)

Some of the methods we would now discuss require integration in the path of the
ray of radiation in straight line from wall to wall or free space, and hence it will
be good to discuss first some geometrical relations. For this purpose we may have
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Fig. 4.12 Global and local
coordinates

computational grids in global coordinate system .xg; yg; zg/, but we have to trace
the rays originating from a surface with respect to local coordinates .xl ; yl ; zl /
(Fig. 4.12), which may be given also in the local spherical .r; �; �/ system. We
can differentiate between the two coordinate systems with an example as follows.
Let us consider a motor car, in which we can have global coordinates of the car
at the front surface at mid-width, where x is in the direction of rear, y is going
towards right, and z-direction goes vertically above. This itself could be defined
with respect to terrestrial directions like north, east, and zenith. On the other hand,
a local coordinate will be from individual surface element on the car surface (inside
or outside) in the center of which we put the origin of the local coordinates. The ray
emanating from this surface can also be described in local spherical coordinates.
Thus the cosines of the ray with respect to the local Cartesian coordinate are
given by

lx D sin � cos'; ly D sin � sin'; lz D cos � (4.201)

which can be converted to cosines in global coordinates. For this we write first in
terms of the local coordinates

0
@ x � xP
y � yP
z � zP

1
A
l

D r

0
@ lxly
lz

1
A
l

; (4.202)

where r is the radial distance from the local origin. On the other hand the local
Cartesian coordinates with local unit vectors i, j, k may be written in terms of global
Cartesian coordinates as

0
@ x � xP
y � yP
z � zP

1
A
g

D r

0
@ lxly
lz

1
A
g

D r

2
4 ix iy iz
jx jy j z
kx ky kz

3
5
0
@ lxly
lz

1
A
l

(4.203)
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and hence

0
@ lxly
lz

1
A
g

D
2
4 ix iy iz
jx jy j z
kx ky kz

3
5
0
@ lxly
lz

1
A
l

. (4.204)

Example: Let us consider a rectangular box and the local coordinates on the six
surfaces of the box may be defined by unit vectors in local coordinates as follows:

Bottom W i D .1; 0; 0/; j D .0; 1; 0/; k D .0; 0; 1/;

Top W i D .�1; 0; 0/; j D .0; 1; 0/; k D .0; 0;�1/;
West W i D .0; 1; 0/; j D .0; 0; 1/; k D .1; 0; 0/;

East W i D .0;�1; 0/; j D .0; 0; 1/; k D .�1; 0; 0/;
South W i D .0; 0; 1/; j D .1; 0; 0/; k D .0; 1; 0/;

North W i D .0; 0;�1/; j D .1; 0; 0/; k D .0;�1; 0/:

Now let the ray (a straight line) originating at P pass through a point Q at distance
one apart (for example, on the surface of another cell or wall surface). Therefore,

xQ � xP D lx; yQ � yP D ly; zQ � zP D lz .

We compute point Q. Let the straight line be at the intersection of any two planes
out of the possible three planes which pass through the individual coordinates, and
these are PQX , PQY , and PQZ. Further let us consider a point in one plane, for
example, PQX , and coordinate value one, and we write the determinant as follows:

x � xP y � yP z � zP
lx ly lz
1 0 0

.

This is equivalent of the equation

lz.y � yP / � ly.z � zP / D 0:

Similarly for the PQY and PQZ planes we can write the two equations

lx.z � zP / � lz.x � xP / D 0;

ly.x � xP / � lx.y � yP / D 0 .

Adding the three equations, we can write the equation of a straight line as

a.x � xP /C b.y � yP /C c.z � zP / D 0; (4.205)
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where

a D ly � lz; b D lz � lx; c D lx � ly .

There will be a special case if one of the cosines is equal to zero, for example,
lz D 0, for which z � zP D 0 and we can put c D 0.

We determine fag; bg; cgg from the coefficients for local coordinates fal ; bl ; clg
with the help of the relation

0
@ab
c

1
A
g

D
2
4 ix iy iz
jx jy jz

kx ky kz

3
5 D

0
@ab
c

1
A
l

. (4.206)

Now the above ray may impinge on a plane, while the latter passes through a point
fxo; yo; zog and has a normal (unit) vector fkx; ky; kzg. Thus the equation of a plane
is defined by the equation

Ax C By C C z CD D 0; (4.207)

where A D kx; B D ky; C D kz, and D D �.kxxo C kyyo C kzzo/.
Now a plane given by the above equation and a straight line originating at P be

represented by

x D xP C lxr; y D yP C lyr; z D zP C lzr . (4.208)

Substituting the above three equations of (4.208) into (4.207) we get the impinge-
ment distance of the ray to the impinging plane as

r D �AxP C ByP C C zP CD

Alx C Bly C Clz
(4.209)

which, when after substituting back into the three equations of (4.208), gives the
point of intersection of the ray into the impinging plane. However, the plane is
subdivided into elements of cell or wall surface, and identification of the particular
element has, of course, to be done separately.

In addition to the determination of the impinging point for rays, geometric
relations are necessary between surfaces to show how the surfaces view each other
(view factor), without considering emission or absorption of the intermediate gas
(Fig. 4.13).
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Fig. 4.13 Towards view
factors

4.6.1 View Factor

Radiative energy transfer by complete diffuse radiation from the diffuse surface area
A1 to reach the surface area A2, which are arbitrary and have their normals �1 and
�2 to the line of length r . The energy leaving A1 is ��1I �

1 A1. The energy leaving an
element dA1 to reach the elemental dA2 is given by

Pe1 D
Z
A1

Z
A2

��1I
�
1

cos �1cos�2
r2

dA1dA2 (4.210)

and the fraction of the original energy leaving A1 to reach A2 is (view factor)

F1!2 D 1

A1

Z
A1

Z
A2

cos �1 cos �2
�r2

dA1dA2: (4.211)

Note that the view factor for surface 1 to itself is zero, that is, F11 D 0, unless the
surface is concave.

Similarly for a hemisphere 2 of radius r ,

�2 D 0 W dA1 D 2�r 0dr 0 (4.212)

which on integration becomes

A1 D 2�

Z r

0

r 0dr 0 D �r2: (4.213)

Similarly,

dA2 D 2�r2 sin �1d�1, (4.214)

where �1 goes from 0 to �=2 and on integration encloses around a flat surface as

F1!2 D 1

2

Z
A1

Z
A2

2�r2 sin �1 cos �1d�1 D 1

2

Z �=2

0

sin.2�1/d�1 D 1: (4.215)
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Fig. 4.14 Towards view factors

Thus, in an enclosure obviously with connected N surfaces,

NX
jD1

Fi!j D 1; (4.216)

where, if the i th surface is flat, then Fi�i D 0.
A similar derivation of the view factor from A2 to A1 can be derived as

F2!1 D 1

A2

Z
A1

Z
A2A2

cos �1 cos �2
�r2

dA1dA2: (4.217)

Thus from the preceding two double integral relations we get the reciprocity relation

A1F1!2 D A2F2!1: (4.218)

The solution of the above integral has been carried out by various authors, for
example, [146], and some of these for surfaces given in Fig. 4.14 are given in the
following:

(a) Two infinitely long, directly opposed parallel plates of the same finite width:

F1!2 D F2!1 D
p
1CH2 �H IH D h=w: (4.219)
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(b) Identical, parallel, directly opposed rectangles:

F1!2 D 2

�XY

"
Œln

�
.1CX2/.1C Y 2/

1CX2 C Y 2

�1=2

CX
p
1C Y 2 tan�1 Xp

1C Y 2
C Y

p
1CX2 tan�1 Yp

1CX2

�X tan�1 X � Y tan�1 Y
��
;

X D a=cIY D b=c: (4.220)

(c) Two infinitely long plates of equal finite width w, having an included angle ˛ to
each other:

F1�2 D F2�1 D 1 � sin.˛=2/: (4.221)

(d) Two infinitely long plates of unequal widths h and w, having one common edge
and perpendicular to each other:

F1�2 D 1

2

�
1CH �

p
1CH2

	
IH D h=w: (4.222)

(e) Two finite rectangles of same length, having one common edge and perpendic-
ular to each other:

F1!2 D 1

�W

�
W tan�1 1

W
CH tan�1 1

H
�
p
H2 CW 2 tan�1 1p

H2 CW 2

C 1

4
ln
.1CW 2/.1CH2/

1CW 2 CH2

�
W 2.1CW 2 CH2/

.1CW 2/.W 2 CH2/

�W 2

�
�
H2.1CW 2 CH2/

.1CH2/.W 2 CH2/

�H2#
;

H D h=l IW D w=l:

(f) Parallel circular disks with centers along the same normal:

F1!2 D 1

2

2
4X �

s
X2 � 4

�
R2

R1

�235 ; (4.223)

X D 1C 1CR22
R21

IR1 D r1

h
IR2 D r2

h
:
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(g) 2D enclosure of triangular shape consisting of three flat plates of infinite length:
For this, the view factors can, very often, be found by addition or subtraction

of several view factors. Considering, for example, an arbitrary isothermal area
A1 exchanging energy with a second area A2, and the area factor F1!2 is the
fraction of all diffuse energy leaving A1 that is incident on A2, and if A2 is
divided into two parts, A3 and A4, the fractions of the entire energy leaving A1
that are incident on A3 and A4 must add up to F1!2. Thus

F1!2 D F1!.3C4/ D F1!3 C F1!4: (4.224)

Now if F1!2 and F1!4 are known, then the view factor F1!3 can be found
easily by subtracting from each other.

Further, from the reciprocity relation, we get

F3!1 D A1

A3
F1!3 D A1

A3
.F1!2 � F1!4/: (4.225)

Now here since we are considering a closed enclosure, we may write three
equations as

F1!2 C F1!3 D 1; (4.226)

F2!1 C F2!3 D 1; (4.227)

F3!1 C F3!2 D 1: (4.228)

Multiplying the successive equations with A1, A2, and A3, respectively, and we get
the first set of three equations:

A1F1!2 C A1F1!3 D A1; (4.229)

A2F2!1 C A2F2!3 D A2; (4.230)

A3F3!1 C A3F3!2 D A3: (4.231)

Now we apply reciprocal relations and we get the first set of three equations as

A1F1!2 C A1F1!3 D A1 (4.232)

A1F1!2 C A2F2!3 D A2 (4.233)

A1F1!3 C A2F2!3 D A3 (4.234)

from which by addition and subtraction we get

F1!2 D A1 C A2 � A3
2A1

D L1 C L2 � L3
2L1

; (4.235)
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where Ls are width of each plate. In a similar fashion we can also get

F2!3 D A2 C A3 � A1
2A2

D L2 C L3 � L1
2L2

(4.236)

and

F3!1 D A3 C A1 � A2
2A3

D L3 C L1 � L2
2L3

: (4.237)

For the special case of L1 D L2, we can now write

F1!2 D 2L1 � L3
2L1

D 1 � 1

2

L3

L1
D 1 � sin

�˛
2

	
(4.238)

which is the same result as given under (c) above.

Hottel’s Cross-String Method for 2D Case With Partial Obstruction: We consider
radiative exchange between surfaces A1 and A2 with blockage surfaces A3 and A4.
If A1 is not planar, draw the line agf across A1. Now we consider the “triangular”
2D structure abc-cf-fa with “three faces,” and considering the example in (g) above,
we can write (Fig. 4.15)

Aagf Fagf!abc D 1

2

�
Aagf C Adef � Acf

�
: (4.239)

Similarly from the “triangular structure” ad � def � fga, we may write

Aagf Fagf!def D 1

2

�
Aagf C Adef � Aad

�
: (4.240)

Further in an enclosure

Fagf!abc C Fagf!cd C Fagf!def D 1: (4.241)

Substituting the preceding two equations into the third equation, we get

Aagf Fagf!cd D A1F1!2 D 1

2

�
Acf C Aad � Aabc � Adef

�
: (4.242)

If the thin connecting lines are imagined as being lengths of string stretched tightly
between outer edge of the surface, then the right-hand side of the preceding equation
may be considered as one-half the total surfaces formed by the sum of the lengths
of the crossed strings connecting the outer edges of A1 and A2 minus the sum of the
lengths of the uncrossed strings.
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Fig. 4.15 Explaining
Hottel’s cross-string method

Fig. 4.16 Explaining contour
integrals

Contour Integration

A useful method for evaluating view factors is to apply Stokes theorem to reduce the
multiple integration over a surface in x; y; z coordinates with a surface area A1 with
its reference point x1; y1; z1 and normal vector n1lx1; ly1; lz1 and another surface area
A2 with its reference point x2; y2; z2 and normal vector n2lx2; ly2; lz3 (see Fig. 4.16).

Let the line connecting the two reference point have length r and the angle
it makes with two normal be �1 and �2, respectively. The two cosines between
respective normal and the connecting line are

cos �1 D 1

r

�
.x2 � x1/lx1 C .y2 � y1/ly1 C .z2 � z1/lz1

�
; (4.243)

cos �2 D 1

r

�
.x2 � x1/lx2 C .y2 � y1/ly2 C .z2 � z1/lz2

�
: (4.244)

Now the energy exchange between the two surfaces are given by the equation

A1F1!2 D A2F2!1 D
Z
A1

Z
A2

cos �1 cos �2
r2

dA1dA2: (4.245)
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The above double integral over the two surfaces can be written in terms of two
contour integrals by using Stokes theorem (integral of vorticity over a surface = line
integral of velocity along the contour C of the surface) and can be written as [146]

A1F1!2 D A2F 2 ! 1

D 1

2�

I
C2

�I
C1

ln rdx1dx2

�
C 1

2�

I
C2

�I
C1

ln rdy1dy2

�

C 1

2�

I
C2

�I
C1

ln rdz1dz2

�
; (4.246)

where

r D
p
.x1 � x2/2 C .y1 � y2/2 C .z1 � z2/2: (4.247)

If the two contours C1 and C2 are divided into n finite straight lines, then the
integration may be replaced by summation

FI�J D 1

2�AI

nX
iD1

nX
iD1

ln rij	si :	sj ; (4.248)

	si :	sj D 	xi :	xj C	yi :	yj C	zi :	zj ;

where 	s is the length of each straight line segment. For a quadrilateral, the
minimum number of nodes is 4, and the area can be computed easily by the cross
product of two vectors formed by the opposite corners (counted counterclockwise)
and can be written (for quadrilateral only) as

.Ax; Ay; Az/ D
ˇ̌
ˇ̌
ˇ̌

i j k

x3 � x1 y3 � y1 z3 � z1
x4 � x2 y4 � y2 z4 � z2

ˇ̌
ˇ̌
ˇ̌ ! jAj D

q
A2x C A2y C A2z : (4.249)

Dividing each of the four line segments forming the quadrilateral into n divisions
results in a total of 4n nodes around the contour for better accuracy but with
increasing the number of quadrilaterals, the increase in the computation time
typically with a fourth-order polynomial of n.

The above procedure for the contour integral, however, fails if there is one edge
common. This difficulty is overcome for two quadrilaterals by writing the above
equation in a slightly different manner [107], by which one of the integrals can be
integrated analytically and the resulting expression is (Fig. 4.17)
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Fig. 4.17 Explaining contour
integrals

FI!J D 1

2�AI

4X
JD1

4X
ID1

˚.I; J /

I
CJ

ŒT cos� lnT C S cos � lnS C U! �R�dsJ

D 1

2�AI

4X
JD1

4X
ID1

˚.I; J /

nX
jD1

ŒT cos� lnT C S cos � lnS C U! �R�	sJ ;

(4.250)

where S; T; U; �; � , and ! are functions of sJ and

˚.I; J / D lI lJ CmImJ C nInJ (4.251)

and further

U D shortest distance between line (yI D mxI C b; zI D nxI C c) and point
P.xI ; yI ; zI / under consideration of T sin� D S sin � ,
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Fig. 4.18 Towards view
factor algebra

Fig. 4.19 Towards view
factor algebra

S; T D length of distance between the respective corner point and the point under
consideration D p

.xI � xJ /2 C .yI � yJ /2 C .zI � zJ /2.

The angles are all obtained by scalar multiplication of two vectors. Further for 2D
case we have to cancel all calculations with z-coordinates.

A subroutine code in FORTRAN by Mitalas [107] and Stephenson of National
Research Council of Canada is available, for which the code works for more than
two surfaces (for example, in a rectangular box with or without common edge)
(Fig. 4.18).

Radiant Interchange by Specular Reflection

For diffusedly emitting and diffusedly reflecting surfaces, one requires view factor
F, but for specularly reflecting surface, one needs exchange factor E.

Let, in Fig. 4.19, surface 1, 2, 4 be diffuse reflectors, that is, rs D 0, while surface
3 the diffuse and specular reflector .rs ¤ 0/.

Now the energy exchange from surface 1–4 consists of:

(a) Direct transfer, diffuse view factor FA1!A4 ;
(b) Transfer of energy coming from 1 and through specular reflection 3: thus, to

an observer at c, the radiant energy, actually coming from a, appears to come
from a0 on the image surface 1(3) is r.s/3 multiplied by radiosity of surface 1 and

arriving at surface 4 with one intervening specular reflection is r.s/3 FA1.3/!A4

(Fig. 4.20).
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Fig. 4.20 Specular and
diffusive reflection

Fig. 4.21 Further specular
and diffusive reflection

Summing up the contributions, therefore, gives

EA1!A4 D FA1!A4 C rs3FA1.3/!A4 : (4.252)

Similarly,

EA2!A4 D FA2!A4 C rs3FA2.3/!A4 : (4.253)

Further for specular reflection the energy coming from 1 and reflecting at 1(3) is

EA1!A1 D rs3FA1.3/!A1 : (4.254)

Similarly on surface 1 and 4: r.s/3 D 0, but on surface 2,3: r.s/3 ¤ 0 (Fig. 4.21). Thus,

EA1!A4 D FA1!A4 C rs3FA1.3/!A4
C rs2F

s
A1.2/!A4

C F rs2r
s
3FA1.2;3/!A4 (4.255)

in which the last term is due to the reflection on mirror 2 and re-reflected at mirror 3.
Similarly,

EA4!A4 D rs2F
s
A4.2/!A4

C rs2r
s
3

�
F �
A4.2;3/

C FA�

4.3;2/!A4

	
; (4.256)

where ./� denotes partial view.
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Now,

FA�

4.2;3/!A4 C FA�

4.3;2/!A4 D FA4.2;3/!A4 C FA4.3;2/!A4 : (4.257)

In addition, the energy transfer from 3 to others is only diffuse radiation.

Radiant Interchange for Specularly Reflecting and Diffuse Reflecting
Surfaces

Let us consider an enclosure made up of N D total number of surfaces which are
purely diffusing andN�Nd D no. of surfaces which are specularly reflecting (4.24),
for which we have already derived expressions for a diffuse surface. The expression
is written again as

Bi D �i�T
4
i C riHi D �i�T

4
i C .1 � �i /Hi , .1 � i � Nd/Wm�2: (4.258)

From any other surface (diffusing) the radiosity,Bi , multiplied withAi is radiated in
all directions. Some of these reaches directly and other through reflecting surfaces,
and the fraction of the original energy, that is,BjAjEAj!Ai , reaches the surfaceAi .
Thus,

HiAi D
X

BjAjEAj!Ai : (4.259)

Now with reciprocity relation AjEAj!Ai D AiEAi!Aj , we get after some
manipulation the result

Hi D
X

BjEAi!Aj : (4.260)

Now we consider the contribution of specularly reflecting surfaces. Radiation
reflected in these surfaces is included in exchange factors, through above EAi!Aj .
Therefore we have to take into account that the radiation emitted from these surfaces
reach i directly and by all possible specular reflections. In analogy to the foregoing
expression this contribution to Hi is

NX
jD.NdC1/

�j �T
4
j EAi!Aj (4.261)

and we get, therefore, the equation

Hi D
NdX
jD1

BjEAi!Aj C
NX

jD.NdC1/
�j �T

4
j EAi!Aj : (4.262)
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Combining (4.350) and (4.356), we write

Bi D �w�T
4
i C .1 � �i /

2
4 NdX
jD1

BjEAi!Aj C
NX

jD.NdC1/
�j �T

4
j EAi!Aj

3
5 (4.263)

which is further written as

1

�i
Bi � 1 � �i

�i

NdX
jD1

BjEAi!Aj D �T 4i C 1 � �i
�i

NX
jD.NdC1/

�j �T
4
j EAi!Aj : (4.264)

By defining

�ij D 1

�i

�
Œıij � .1 � �i /.1 � ıij /

�
EAi!Aj I

˝i D �T 4i C 1 � �i
�i

NX
jD.NdC1/

�j �T
4
j EAi!Aj

we get the system of equations as

NdX
jD1

�ijBj D ˝i ; .i D 1; 2; : : : ; Nd / ! Œ�� � .B/ D f˝ig (4.265)

and the heat flux can be obtained from similar expression discussed earlier for the
entire diffusing surface:

Qi

Ai
D �i

1 � �i
�
�T 4i � Bi

� I .i D 1; 2; : : : ; Nd /: (4.266)

For specularly reflecting surfaces, these are evaluated from the equations

Qi

Ai
D �i

1 � �i
�
�T 4i �Hi

�
; (4.267)

Hi D
NdX
jD1

BjEAi!Aj C
NX

jD.NdC1/
�j �T

4
j EAi!Aj ; (4.268)

where i D .Nd C 1/ to N .
If instead of Ti ;Q is prescribed for any of the diffusedly reflecting surfaces,

then one could take a method discussed earlier. In case Q is prescribed for any of
the specularly reflecting surfaces, one could assume at these surfaces and take a
Newton-Raphson method to obtain the correct value of Q.
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Radiant Energy Exchange Containing Both Diffusive and Specular
Components

The expressions in the previous sections were derived for one given reflective
coefficient, r , of the surface. However, there can be a separate reflectance due to
diffuse and specular components and one could write r D 1 � � D rd C rs . In
addition, let all surfaces be diffuse emitters of radiant energy.

Let there beN surfaces, for which the radiosity may still be defined (on the basis
of diffusive reflectance only) as

Bi D ��iT
4
i C rdi Hi Wm�2; (4.269)

where Hi is the radiant energy arriving at surface i due to emission and diffuse
reflection and specular reflection and rdi is the diffuse reflectance.

In evaluating, the fact is fully recognized that the specularly reflected radiation is
fully accounted for by the exchange factor. Thus we write

Hi D
NX
jD1

BjEAi!Aj : (4.270)

Substituting back the above expression, we write the following two expressions:

�ij D 1

�i

�
ıij � rdi EAi!Aj

�
; (4.271)

NX
jD1

�ijBj D ˝i D �T 4i ; .i D 1; 2; : : : ; N / ! Œ�� � B D ˝: (4.272)

The heat transfer rate is again

Qi

Ai
D �i

�
�T 4i �Hi

�
(4.273)

and the two special cases are:

rdi D 0 W Qi

Ai
D �i

2
4�T 4i �

NX
jD1

BjEAi!Aj

3
5 ; (4.274)

rdi D¤ 0 W Qi

Ai
D �i

rdi

��
1 � rsi

�
�T 4i � Bi

�
: (4.275)

Note that for a surface with rdi D 0 ! Bj D �j �T
4
j .
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4.7 Radiation Model

Let de� be the amount of energy [in J] in the frequency interval � and .� C d�/,
which is transported across an arbitrary area element dA during a time interval dt
and confined to an element of solid angle d˝ in the direction of unit vector s, which
is different from the surface normal vector n. The surface normal (unit) vector n
makes an angle � with the direction s. Thus,

de� D I� cos �dAd˝d�dt ŒJ � (4.276)

and the spectral intensity of radiation I� can be defined as the spectral intensity of
radiation in the direction s per unit time, frequency, solid angle, and an area normal
to s. The appearance of cos � is due to the fact that we are considering a pencil
of rays, which is not in the direction of n, but in the direction of s. As a result of
this definition, I� does not depend on the choice of � and is only a function of the
general location, the direction s and time t .

From earlier definition in this chapter, the equation of radiative transfer at a given
radiation frequency in a non-scattering medium is

1

c

@I�

@t
C r � I� D �.I �

� � I�/ D j� � ��I�: (4.277)

Now change in intensity along s in the solid angle d˝ about the s direction,

dI

ds

D �a
I
.s/C a
I
�

 .s/ � �s
I
.s/C �s


4�

Z 4�

˝D0
I
.s;˝i /˚.
;˝;˝i /d˝i ;

(4.278)

where �s
 D scattering coefficient [m�1], ai D absorption coefficient Œm�1�, I

D angular spectral intensity of radiation ŒWm sterad�1�, I �


 D Planck’s spectral
distribution of equilibrium radiation intensity ŒWm sterad�1�, and ˚ D phase
function. The right-hand side terms of the preceding equation are (a) loss by
absorption (including by induced emission), (b) gain by emission (not inclusive of
induced emission), (c) loss by scattering, and (d) gain by scattering into s direction.

The terms due to absorption and scattering are combined, K
 D a
 C �s
, and
we get

dI

ds

D �K
I
.s/C a
I
�

 .s/C �s


4�

Z 4�

˝D0
I
.s;˝i˚.
;˝;˝i /d˝i : (4.279)

Defining albedo of scattering as:

!
 D �s


K


D �s


a
 C �s

I 1 � !
 D a


a
 C �s

: (4.280)
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Therefore, if !
 ! 0, it is for absorption alone, and if !
 ! 1, it is for scattering
alone.

Further we define optical length or opacity as

�
.s/ D
Z s

0

K
ds D
Z s

0

Œa
.s/C �s
.s/�ds: (4.281)

Equation (4.416) becomes

dI

d�


D �I
.�
/C.1�!
/I �

 .�
/C

!


4�

Z 4�

˝iD0
I
.�
;˝i /˚.
;˝;˝i /d˝i (4.282)

in which the second and third terms in the right-hand side are defined as the source
function

S
.�
;˝/ D .1 � !
/I �

 .�
/C !


4�

Z 4�

˝iD0
I
.�
;˝i /˚.
;˝;˝i /d˝i (4.283)

and the preceding equation becomes

dI

d�


C I
.�
/ D S
.�
;˝/: (4.284)

Equation (4.284) is a linear first-order differential equation and has the solution

I
.�
;˝/ D I
.0;˝/ exp��
 C
Z �


0

S

�
��

 ;˝i

�
exp�.�
���


 / d��

 ; (4.285)

where ��

 is a dummy variable. Equation (4.285) is the integrated form of the

equation of transfer. Further note that without scattering, �s
 D 0 ! !
 D 0

and S
 D I �

 .

We consider an area element dA, which can be one of the faces of a volume
element and n is along a coordinate direction. Further we integrate the spectral
angular intensity over the entire wavelength from 0 to infinity to get the intensity
in the unit of ŒWm�2 sterad�1�. Since the intensity is energy per unit solid angle
crossing dA per unit area, hence

Radiative flux ŒWm�2�:

qr D iqrx C jqry C kqrz

D
Z 2�

'D0

Z �

�D0
I.�; '/

�
i cos' sin2 � C j sin' sin2 � C k cos � sin �

�
d�d':

(4.286)
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Keeping the volume element very small, all the energy emitted by dV escapes before
any reabsorption within the volume, which is the desired divergence of the radiant
heat flux vector given by

r � qr D 4

Z 1

0

a

�
B�

 .
; T / � � NI
.
/

�
d
; (4.287)

where NI
 is the mean incident density at dV given by the relation

NI
 	 1

4�

Z 4�

0

I
d˝: (4.288)

Note that the energy equation requires �r � qr , which is the energy supplied locally
by the radiative intensities. Further,

B�

 D

Z 2�

0

I �

 d˝ ' �I �


 (4.289)

is the spectral intensity of equilibrium radiation ŒWm�3�.
The divergence of the radiative flux vector including scattering (4.287) is

r � qr D 4

Z 1

0

�
a
.
/B
� � � Œa
.
/C �sh.
/� NI
.
/

C�s


4

Z 4�

0

I
.
;˝i /˚.
;˝i /d˝i

�
d
; (4.290)

where ˚ is the phase function giving the distribution of scattering in various
directions. For isotropic scattering and for anisotropic scattering with scattering
independent of incident radiation direction,

N̊ D 1

4�
˚.
;˝/d˝ D 1 (4.291)

cancel the terms involving scattering and we get (4.287). Incidentally for a pure
scattering medium, a
 D 0 ! r � qr D 0.

We now discuss the various types of scattering:

(a) Isotropic scattering, ˚ D 1: Thus,

N̊ D 1

4�

Z 2�

'D0

Z �

�D0
sin �d�d' D 1: (4.292)
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(b) Linear isotropic scattering, ˚ D .1C ˛1 cos �/:

N̊ D m
1

4�

Z 2�

'D0

Z �

�D0
.1C ˛1 cos �/ sin �d�d' D 1: (4.293)

(c) Rayleigh scattering for incident unpolarized radiation:

˚ D 3

4

�
1C cos2 �

�
(4.294)

with maximum value of 3/2 at � D 0 and � and minimum value of 3/4 at
� D �=2 and 3�=2. For Rayleigh scattering the scattered energy is directed
preferentially along the forward direction and strongly backward the radiation
source.

(d) Mie scattering for incident unpolarized radiation:

˚ D 3

5

"�
1 � 1

2
cos �

�2
C
�

cos � � 1

2

�2#
: (4.295)

The polar diagram of this function has strong scattering back (reflection)
towards the source.

Note further that for Rayleigh and Mie scattering the phase functions are not
normalized. However, it may be useful to note that the integral in the scattering term
in (4.290) may be replaced by a discrete phase function (weighting function) win:

Z 4�

0

I
�d˝ D
X
m

wmI
: (4.296)

Absorption/Scattering by Particles

Let us now consider an arbitrary path s be at an angle � from the positive x-
direction. We also introduce superscripts C or �, corresponding to directions with
positive or negative cos � ; IC corresponds to 0 � � � �=2 and I� corresponds
to �=2 � � � � . Further let the optical path �x be defined along the x coordinate,
�x D R

�.x/dx. Therefore,

�s D
Z
�.s/ds D 1

cos �

Z
�.x/dx D �x

cos �
: (4.297)

Similarly in the negative direction �s D �x= cos � and hence the equation of
radiative transfer, (4.287) is split into two equations:
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cos �
dIC



d�

C IC


 .�
/ D S
.�
;˝/; 0 � � � �=2; (4.298)

cos �
dI�



d�

C I�


 .�
/ D S
.�
;˝/; �=2 � � � �: (4.299)

The corresponding spectral flux in the two directions are

qC
r
 D 2�

Z �=2

�D0
IC

 .�
; �/ cos � sin �d�; (4.300)

q�
r
 D �2�

Z �

�D�=2
I�

 .�
; �/ cos � sin �d�: (4.301)

The net spectral flux in the positive x-direction is, therefore,

qr
 D qC
r
 � q�

r


D 2�

"Z �=2

�D0
IC

 .�
; �/ cos � sin �d� C

Z �

�D�=2
I�

 .�
; �/ cos � sin �d�

#
:

(4.302)

Having discussed the geometrical aspects of the ray of radiation, let us now
discuss the computational aspects of the radiative transfer equation. Although a
typical book on radiative transfer, for example, Siegel and Howell [146] may
discuss various methods of calculation of the radiative transfer including stochastic
methods, one finds very little in the literature about calculation of radiative transfer
for a highly emitting-absorbing gas. Herein we discuss now the following methods:
(a) Rosseland model, (b) optical thin model, (c) multiple flux model, (d) Monte
Carlo model, (e) Ray model, and (f) P-N model. A seventh model, called as the zonal
model, has not been discussed here, since the required mathematical background is
outside the scope of this book.

The radiation emission and absorption quantity and radiation wavelength (fre-
quency) of a radiating gas depend on the gas, pressure, and temperature. In the stars
the pressure and temperature are very high and the absorption coefficient is also very
high (radiation is absorbed within a few molecular path distance and reemitted).
This is optically thick radiation. Here the radiation from the interior of the stars is
completely absorbed and it radiates only in the outer part. Thus the Sun’s interior
at several million degrees Kelvin radiates effectively as a black-body disk of only
6,000 K. The simplest model in such a case is the Rosseland radiation model, where
the radiation exits only at an average surface temperature. Slightly better model will
be P-N model.

For choice of a suitable model, it is necessary to know the characteristic optical
path � D R

�ds, which when less than 0.1 optically thin, but if it is more than 5.0,
it is optically thick.
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4.7.1 Rosseland Model

Rosseland model is a diffusive model, for which it is necessary strictly to have
characteristic optical path length (on the basis of grid size)

� D
Z s

0

�ds > 5:0: (4.303)

The condition is, of course, never satisfied in a terrestrial hot gas, except probably
at a very large pressure (of thousands of atmosphere).

For application of the method, one could write radiative conduction coefficient as

kR D 16

3

�T 3

�R
W.mK/�1 (4.304)

which is added to the heat conduction coefficient due to pure conduction and
diffusion and reaction to get the total heat conduction coefficient.

In the preceding relation �R is the Rosseland mean absorption coefficient
given by

4�T 3

��R
D
Z 1

0

1

��

@I �
�

@T
d�; (4.305)

where �nu is the apparent absorption coefficient. Obviously computation of the
Rosseland mean absorption coefficient is not easy. On the other hand the calculation
of heat flux for optically thick gas is computed by adding the radiative conduction
coefficient to the “pure conduction" coefficient to obtain the total conduction
coefficient.

This is the case when the absorption is significant and local I
 differs very little
from local I �


 . Thus the formal solution of (4.285) becomes

I
.0/ D
Z 1

0

a
I
�

 .x/ exp� R x

0 a
dx dx D
Z 1

0

I �

 exp��
 d�
: (4.306)

Assuming that the value of I �

 .0/ is deviating only slightly from I �


 .�
/, one can
write the latter in a series form by Taylor expansion as follows:

I �
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/ D I �
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�
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�
0

�2
 C � � � (4.307)

and terminate it only after the second term. Thus the preceding equation becomes
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Z 1
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 .0/C
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0

�


�
exp��
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 D I �
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�
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�
0

�
:

(4.308)
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Introducing a radiant heat flux in the i th coordinate direction

qri D
Z 1


D0

Z 4�

˝D0
I
lid˝d
 D

Z 1

0

1

a


�
@I �



@�


��Z 4�

0
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�
@T

@x

�
d˝

�
d
: (4.309)

Since,

Z 4�

0

li

�
@T

@x

�
d˝ D �4�

3

�
@T

@x

�
(4.310)

and defining a Rosseland mean absorption coefficient by
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�
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(4.311)

and the radiant heat flux becomes

qri D �4�
3

@T

@xi

Z 1

0

1

a


�
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@T
d


�
d
 D �16�T

3

3aR

@T

@xi
D �kR @T

@xi
: (4.312)

Thus we can define a radiant heat conductivity coefficient

kR D 16�T 3

3�R
W.mK/�1 (4.313)

which can be computed by computing �R from the relation

�R D 2�h2

4�T 5c2kB

Z 1

0

1

a�

exph�=.kBT /�
exph�=.kBT / �1�2 d� (4.314)

and we can add this to the pure heat conductivity coefficients due to pure conduction
and diffusive reaction to obtain a total heat conductivity coefficient. However,
unfortunately, determination of aR is not very simple except for a gray gas, for
which a D a
 D aP D aR.

4.7.2 Optical Thin Model

Optical thin model is an energy sink model for the energy equation, for which it is
necessary to have the characteristic optical path � < 0:1, when the gas (with a very
small absorption coefficient) only emits but hardly absorbs. Example is that in a hot
gas or plasma jet, where the radiation is emitted in each volume element (volumetric
energy release), the heat sink term in the energy equation due to radiation, is
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Pqr D 4��T 4 ŒWm�3�: (4.315)

When the optical depth along a path is small, the two exponential terms in (4.285)
are of the order of one and we get

I
.�
/ D I
.0/C
Z �


0

.a
 C �
/d�
�

 � I
.0/: (4.316)

This is the nearly transparent approximation, where the local intensity is dominated
by the intensities incident at the boundaries. On the other hand in the emission
approximation the gas is again optically thin, but there is negligible incoming energy
at the boundaries while there is only energy emission within the medium and no
attenuation by either absorption or scattering; the spectral intensity becomes

I
s D
Z s

0

a
I
�

 ds; (4.317)

I.s/ D
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0

a
I
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ds D

Z s

0
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�T 4.s/

�
ds; (4.318)

where aP is the Planck mean absorption coefficient given by

aP .T; p/ D �

�T 4

Z 1

0

a
I
�

 d
: (4.319)

According to the local gas state, it is hardly absorbed. Gas temperature and boundary
heat flux can be determined by the addition of radiative energy along a path.

4.7.3 Multi-Flux Model

For multiple-flux model absorption/scattering by particles: Let us now consider
an arbitrary path s be at an angle � from the positive direction. We also introduce
superscripts C or �, corresponding to directions with positive or negative cos � ; IC
corresponds to 0 � � � �=2 and I� corresponds to �=2 � � � � . Further let the
optical path �x be defined along the x-coordinate as

�x

Z
�.x/dx: (4.320)

Therefore,

�s D
Z
�.s/ds D 1

cos �

Z
�.s/dx D �x

cos �
: (4.321)
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Similarly in the negative direction, ds D �dx= cos.� � �/ D dx= cos � and again
�s D �x= cos � . Now the starting point is the equation of radiative transfer for a gray
gas as

@I

@s
D �.I � � I / (4.322)

which can be split into two equations:

cos �
dIC

dx
C �IC,.0 � � � �=2/ (4.323)

and

cos �
dI�

dx
C �I�,.�=2 � � � �/: (4.324)

The above two first-order differential equations can have only one boundary
condition, each starting from opposite walls. The point of equations is multiplied
with d˝ D 2� sin �d� and integrated over the respective solid angle. Further we
multiply the resultant equation with � and noting thatB D �I , we get the following
payer of equations:

dBC

dx
D 2�.B� � BC/ (4.325)

and

dB�

dx
D 2�.B� � B�/; (4.326)

where B is the radiative energy flux ŒWm�2� and B� is the radiative flux of the
black-body radiation.

Since the above pair of equations is of the first-order, integration has to be
done from a wall in the direction away from the wall. Thus, we may have BC
in one direction and B� in another direction either falling on a wall or escaping
altogether from the computational domain if there is no wall. In the former case and
if there is a wall, on which the radiative energy is perpendicular to the coordinate
direction), then the entire incoming energy will be incident on it. If, however, the
wall surface normal makes an angle �w with respect to the coordinate direction,
then only a smaller surface area is effectively available and hence a smaller energy
flux, Bin D Bi cos �w, is to gall with respect to the original surface area. This,
basically one-dimensional analysis, is modified in the multidimensional case as
Bin D P

Bi li , where li is the cosine with the angle between the surface normal
and the respective coordinate direction. At any wall, the required relation between
the incident and outgoing radiative flux is now
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jBoutj D �w�T
4 C .1 � �w/jBinj (4.327)

which is in the direction of surface normal and the energy flux into the wall is

qw D �w
�jBinj � �T 4� : (4.328)

Herein �w is the emissivity of the wall. For an adiabatic wall, of course, qw D
0 and the wall temperature is determined by the incoming energy flux. The
component of the outgoing energy flux in the i th coordinate direction is obtained by
multiplying (4.327) with li .

The volumetric radiative source term (negative of energy sink in fluid energy
equation) is obtained by integrating the right-hand side of (4.325) and (4.326) for
each direction in a volume element by considering the absolute values of B and B�.
The total volumetric radiative source is now the average of all these “directional”
volume source term where the sum is subdivided by 4 for a two-dimensional case,
or by 6 for a three-dimensional case, to take care of the overlapping of diffusive
radiation integral in hemisphere for each coordinate direction.

4.7.4 Monte Carlo Model

The Monte Carlo model is necessary for the two random numbers R� and R' in
the range 0–1 to determine the ray direction, but otherwise the ray way is followed
in a straight line (Fig. 4.22). In a pure Monte Carlo method, one can model further
absorption/scattering generated by random number generator, through an emitting
absorbing gas. The convenient functions relating the random numbers with the
respective angles (within small angle of interval) are:

Cone angle: sin � D p
R�

Azimuthal angle: ' D 2�R':

Regarding determination of � it may be observed that the operations involved in
solving the relation � D sin�1 p

R� are very time-consuming to be practical when
a large number of photon bundles are to be processed. Instead of that, one may
pre-calculate a table of � versus R�.D sin2 �/ in equal increments of R� . On the
other hand determination of ' direction is straightforward requiring only R' to be
multiplied with 2� .

The emission from the wall per unit time and area of a surface centroid is given by

jBoutj D �w�T
4

w C .1 � �w/jBinj (4.329)

which in a first instance may be put equal to �w�T
4

w . If the surface area of the element
isA andN packets is emitted per unit time, then each packet (in average) must carry
an amount of energy w D ABout=N [W]. A typical packet will travel a distance l or
optical path length



4.7 Radiation Model 143

� D
Z l

0

�ds (4.330)

before getting absorbed. The probability of traveling this distance, Rl , is obtained
from the relation

Rl D 1 � exp�� ! � D � ln.1 �Rl/: (4.331)

The emission per unit time and area of a surface centroid, Bout, is given, which in
a first instance may be put equal to ��T 4w . If the surface area of the element is A
and N packets are emitted per unit time, then each packet must carry an amount of
energy w D ABout=N [W]. The packets are emitted at cone angles � D sin�1 p

R�
and azimuthal angles ' D 2�R' . A typical packet will travel a distance l or optical
path length

� D
Z l

0

�ds (4.332)

before getting absorbed. The probability of traveling this distance, Rl , is obtained
from the relation

Rl D 1 � exp�� ! r D � ln.1 �Rl/: (4.333)

If it is found that distance l is so large that the packet is going to heat a wall, then
they counter for the wall surface; Nw, is increased by 1 and the energy of the packet,
w, is added to that wall surface cell. However, if the energy packet is absorbed in
a cell before reaching a wall surface, then the counter for the cell, Ncel l , where
the absorption takes place, is also increased by one and the energy absorbed in the
cell is tallied (added to the absorbed energy at the cell). However it is assumed that
at each absorption in a volume element it is emitted immediately from the same
element to conserve a radiative equilibrium in the first instance. The new angles of
emission are again obtained by two new random numbers, R� and R' , except that
� D cos�1.1 � 2R�/. The nondimensional net energy flux absorbed in a surface is
then obtained from the tally of the total energy absorbed divided by the number of
packet reaching the surface element; incoming heat flux will, of course, be found by
dividing the surface area.

It is now time to make an estimate of the volumetric energy release or absorption
in each cell. While the total energy absorbed in the cell is the sum of all energy that
has been absorbed [W], the energy emitted from the same cell is [W], where V cell
is the volume of the cell, and the volumetric energy source term (with an opposite
sign) for the energy equation of the fluid is given by

�
4�cell�T

4
cellVcell �

X
w
	
=Vcell: (4.334)
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Fig. 4.22 Schematic sketch
of a cone of ray

On the other hand, for equilibrium radiation, one can put the two terms inside the
parenthesis equal to zero and then the temperature of the cell is

Tcell D
� P

w

4�cell�Vcell

�1=4
: (4.335)

It is now time to make an estimate of the volumetric energy release or absorption in
each cell. While the total energy absorbed in the cell,

P
w, is the sum of all energy

that has been absorbed [W], the energy emitted from the cell is 4�cell�T
4

cellVcell [W],
where Vcell is the volume of the cell. The volumetric energy source term (with an
opposite sign) for the energy equation of the fluid is given by

1

Vcell

�
4�cell�T

4
cellVcell �

X
w
	

. (4.336)

Obviously the method will be difficult to implement for a gas volume with very
strong difference in absorption coefficient, since calculation of the optical path
length will depend very much on the path direction (Lambert’s cosine law).

In addition, the assumptions are:

1. Each surface of the enclosure is isothermal.
2. Each surface is gray.
3. Radiation reflected from any surface is diffusedly distributed. Thus, all incident

radiation is reflected with a uniform intensity regardless of the direction from
which it came. Thus, it is clear that a contact with a diffusedly reflecting surface
completely obliterates the past history of the incident radiation.

4. Radiation emitted from any surface is diffusedly distributed. This assumed dis-
tribution of emitted radiation plus assumed diffused distribution of the reflected
radiation result in the situation given in Fig. 4.24.

5. Emitted radiation from boundary is isotropic.

We have coded a solution of radiant heat transfer between infinite parallel (one-
dimensional) black plates, for which the prescribed input data are number of bundles
per unit time and (nondimensional) optical length.
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Obviously the method will be difficult to implement for a gas volume with very
strong difference in absorption coefficient, since calculation of the optical path
length will depend very much on the path direction.

4.7.5 Ray Tracing or DTRM Model

The method is also called the “discrete transfer radiation model” or DTRM model
and is based on tracing diffuse radiative energy packages originating from a surface
and moving in directions defined by the two random numbers R� and R' , through
an emitting-absorbing gas. The convenient functions relating the random numbers
(distributed uniformly between 0 and 1) with the respective angles within the small
angles of interval are

Cone angle W sin � D
p
R�;

Azimuthal angle W ' D 2�R'

Regarding the determination of � it may be observed that the operations involving
arc of a sine function may be very time-consuming to be practical when a large
number of photon bundles are to be processed. Instead one may pre-calculate a
table of � versus R� to get a faster solution. On the other hand determination
of ' direction is straightforward, requiring only a simple multiplication with the
corresponding random number.

Now let there beN rays of the radiative energy transmitted per ray (at the wall i )
in a straight line during transmittal of the energy from one surface to the other in a
cone form (Fig. 4.22). For each ray, during transmittal through the hot gas, the above
intensity is, no doubt, modified till it reaches another wall or is allowed to escape in
an open boundary.

Integrating (4.200) over the path length inside a cell the change in the intensity is

	Icell D
Z

cell
�.I � � I /ds Wm�2 sterad�1 (4.337)

which is added inside a cell. On reaching a wall the impinging intensity of radiation
is modified by the ratio of the surface area of the ray emanating wall to that of the
absorbing wall, is tallied (added and number of radiative flux is counted), which is
then used to obtain the incoming energy flux to the wall, qin D �

ˇ̌ NIw

ˇ̌
in [Wm�2].

The heat flux to the wall is then obtained from (4.328) and for the next set of
radiative calculations, the outgoing radiative intensity jBoutj =� [in Wm�2 sterad�1]
is calculated from (4.327). Also tallied in a cell is the value of the above 	Icell to
obtain the average of the value of the volumetric energy source per unit solid angle.
This is multiplied with .4�/ and we get, with opposite sign, the volumetric radiation
energy source term ŒWm�3� in the fluid energy equation.
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Let n be the normal vector on the wall surface from which the radiation
is emanating in the direction of s unit vector, which is given in spherical
coordinates r; �; ' system. However, the components of s in local Cartesian
coordinate (sx1; sy1; sz1) system whose values in terms of spherical coordinates, are
(sin � cos'; sin � sin'; cos � ). Therefore, the cosines are given by

�
lx; ly; lz

� D fsin � cos'; sin � sin'; cos �g : (4.338)

The fundamental quantity that governs a radiation field is the spectral angular
intensity of radiation. If d Pe� [J], is the amount of energy in the frequency interval
(�; �Cd�), is transported per unit time across an arbitrarily oriented element of area
dA (located at point P ) and confined to a solid angle d˝ in the direction of s, the
spectral angular intensity of radiation as defined by Viskanta [158] is

I� 	 lim
dA;d˝!0

ˇ̌
ˇ̌d Pe�
cos

�dAd˝

ˇ̌
ˇ̌ J

m2sterad
: (4.339)

In case where the above equation is integrated over all frequencies between 0 and
1, we can similarly define the total amount of energy over all frequencies d Pe [W],
which is related to the total intensity of radiation

I 	 lim
dA;d˝!0

ˇ̌
ˇ̌ d Pe
cos

�dAd˝

ˇ̌
ˇ̌ W

m2sterad
: (4.340)

As a consequence of this definition, I� or I can also be defined as the amount of
(spectral or total energy transported per unit time at point P in the direction of s
per unit solid angle and the originating surface area. The appearance of cos � in the
preceding two equations is due to the fact that we are considering (diffusive) pencil
of rays, which, in general, is not in the direction of the normal unit vector n but in
the direction of s. As a result of such definition, I� or I does not depend on the
choice of � .

Since the differential total energy is

d Pe D I

2
sin.2�/d�d'dAW (4.341)

and the differential of the energy per unit area and time that will emanate from a
hemisphere around a surface is

dB D d Pe
dA

D I

2
sin.2�/d�d'Wm�2: (4.342)
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Integrating over all angles in the hemisphere, we get

B D I

2

Z �=2

�D0

Z 2�

'D0
sin.2�/d�d' D �I Wm�2: (4.343)

For a diffusive surface with emissivity �w and wall temperature Tw, the intensity of
angular distribution, which emanates from a surface (Fig. 4.23), is

jIwjout D ��wT
4

w

�
C .1 � �w/jIwIin: (4.344)

Initially jIwjin is put equal to zero and the intensity of angular radiation is computed
with the first term only. At inlets or outlets the emissivity will normally be equal to
one, and also there may be different temperatures for radiation and convection.

Let there be N rays of the above radiative energy transmitted per ray (at the
wall i ) in a straight line during transmittal of the energy from the surface to another
surface, where t path of each ray, emanating from the centroid of a wall surface
element, will be in direction, which will be determined from the two random
numbers R� and R' , as already discussed. The above intensity, during its path,
will no doubt be modified by the intervening gas till it will reach another wall or be
allowed to escape in an open wall boundary.

Now, as shown earlier, the rate of change in the angular intensity of radiation
(without scattering) is

dI

ds
D �.I � � I /; (4.345)

where I � D �T 4=� D angular intensity of equilibrium radiation. Accordingly,
inside a cell the change is

	Icell D
Z

cell
�.I � � I /dsWm�3 sterad

�1
: (4.346)

Integration is carried out from the surface of a wall cell in the original direction of
the ray till it reaches a wall or it exits the computational domain. In the former case
the intensity is modified by the ratio of the surface area of ray emanating wall to that
of absorbing wall and is tallied (added to the previous value). Also tallied in a cell
will be the value of the volumetric energy source term:

S D
Z

cell
�.I � � I /,Wm�3 stread

�1
: (4.347)

We may now have N samples from each of the emanating surface cell, and after all
samples have been considered, all the above added values would be divided byN to
obtain the average values of the incoming energy fluxH D �j NIwjin; ŒWm�2�, and NS .
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Fig. 4.23 Schematic sketch
of ac cone of ray

The latter is multiplied with .4�/ and with the opposite sign we get the volumetric
radiation energy source term ŒWm�3� in the fluid energy equation. The former is
used to compute the heat flux to the wall and the outgoing radiative energy flux
away from the wall, as given in Fig. 4.23.

Clustering

DTRM method may be very expensive computationally, when there are too many
surfaces and volume elements. In the computation of radiative sources/sinks and
heat flux at the boundary, the number of radiative surfaces and cell volumes is
reduced by having surface and volume clusters. For this purpose the surface and
volume cluster temperatures may be obtained by area and volume averaging as
shown in the following equations:

Tsc D
 P

Af T
4
fP

Af

!1=4
; (4.348)

Tvc D
�P

VcT
4
cP

Vc

�1=4
: (4.349)

4.7.6 Discrete Ordinate Model

Discrete ordinate or DO model, unlike DTRM, does not perform ray tracing. Instead
the DO model transforms radiation transport equation in each direction by solving
the finite number of discrete solid angle direction. Thus it has the advantage of
spanning the entire range of optical thickness from surface to surface, but it has a
limitation for implementation only for gray gas. For this we select rays from a wall
and obtain in each volume element along the way change in intensity.
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For a scattering medium the equation of radiative transfer for spectral intensity is

1

c

@I�

@t
C r � I� D ��I

�
� � .�� C ��/I� C ��

4�

Z
˝D4�

p�.s
0 ! s/I 0

�.s
0/d˝ 0

D ��I
�
� � .�� C ��/I� C �j�H� Jm�3 sterad�1; (4.350)

where �� is the spectral absorption coefficient Œm�1�, �� is the spectral scattering
coefficient Œm�1�, and

H� D 1

4�

Z
˝D4�

p�.s
0 ! s/I 0

�.s
0/d˝ 0 (4.351)

is the spectral source function; herein the scattering or spectral source function,
p�.s

0 ! s/; is defined in such a way that p�.s0 ! s/d˝ 0=.4�/ represents the
probability that an incoming pencil of rays .s0; d˝ 0/ would be scattered into the
direction .s; d˝/. Since the sum of the probability over all directions must be equal
to unity, we must have

1

4�

Z
˝D4�

p�.s ! s0/d˝ 0 D 1: (4.352)

This implies that the scattering function is normalized to unity. In order to examine
the probability of scattering we consider the scattered intensity in the reverse
(normal) direction, that is, .s0 ! s/ and thus evaluate the integral

H�;rev D 1

4�

Z
˝D4�

p�.s
0 ! s/I 0

�.s
0/d˝ 0: (4.353)

In evaluating the above integral, integration is done from  D 0 to 2� and � D 0

to � . Note that  is the azimuthal angle and � is the included angle between the
angle in the direction s0 and the local normal to the surface in the direction s and
d˝ D sin �d d� . Note further that I�.s/ has to be prescribed in some form; in P-N
method that is done as linear combination of some moments of intensity, that we
would discuss later.

For all practical purpose the time-dependent term of (4.350) can be neglected.
Therefore, (4.350), in the direction of propagation of radiation in s-direction, can be
written as

dI�
ds

D ��I
�
� � .�� C ��/I� C ��H�: (4.354)

It is useful to write the direction s in terms of spherical angles � (from 0 to �) and
' (from 0 to 2�) or in terms of the direction cosines li of the coordinate system
.x1; x2; x3/:
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d

ds
D cos �

@

@x1
C sin � cos'

@

@x2
C sin � sin'

@

@x3
D l1

@

@x1
C l2

@

@x2
C l3

@

@x3
;

(4.355)

where l1 D cos �; l2 D sin � cos' and l3 D sin � sin', and (4.350) becomes

3X
iD1

li
@I�

@xi
D �K�I� C ��I

�
� C ��H�: (4.356)

Now interpretation of various terms and variables in (4.350) are as follows:
The first term in the right of (4.350), kvI �

v , is the angular volumetric special
emission, where

I �
� D 2h�3

c2
1

exph�=.kBT / �1 Jm�3 sterad�1 (4.357)

angular spectral intensity of equilibrium radiation, ��I� is the absorption term, ��I�
is the scattering term from the direction being considered to all other directions and
the last term is the scattering from all other direction being considered.

We would however consider overall radiative transfer, in which we integrate all
variables over the frequency range from 0 to 1 and drop the subscript � .I DR1
0
I�d�; �I D R1

0
�nuI�d�/. In the process we write (4.350) as

1

c

@I

@t
C r � I D �I � � .� C �/I� C �

4�

Z
˝D4�

p.s0 ! s/I 0.s0/d˝ 0

D �I � � .� C �/I C �H
�
Wm�3 sterad�1� ; (4.358)

where � is the overall absorption coefficient Œm�1�, � is the overall scattering
coefficient Œm�1�, and

H D 1

4�

Z
˝D4�

p.s0 ! s/I 0
�.s

0/d˝ 0: (4.359)

Equation (4.358) is normally solved for the quasi-steady case (the time-derivative
term is put equal to zero), in which case the equation is reduced to a simple
first-order partial differential equation. If the scattering must be considered, then
isotropic scattering is often assumed. Further, I � is the angular intensity of
equilibrium radiation:

I � D �

�
T 4 Wm�2 sterad�1; (4.360)

where � D 5:678 � 10�8 �Wm�2K�4� D Boltzmann constant of radiation.
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Now for all practical purposes, the time-dependent term in (4.350) can be
neglected. Therefore, in the direction of propagation of radiation in s direction, the
equation can be written as

dI�
ds

D ��I
�
� � .�� C ��/I� C ��H�: (4.361)

We introduce now a term called, “albedo of single scattering” as

!� D ��

�� C ��
(4.362)

in which for !� D 0, scattering is not included and for !� D 1, absorption is
not included. Further let K� D �� C �� be the “total absorption coefficient” in s
direction, and let

��s D
Z s

0

K�.s/ds (4.363)

be the definition of the “spectral optical path”. Hence (4.361) becomes

dI�
d��s

C I� D .1 � !�/I �
� C !�H� D S� D source term: (4.364)

An integrated form of the above equation is

I� D I�.0/ exp���s C
Z ��s

0

S�.�
�
�s exp �.��s � ��

�s/d�
�
�s; (4.365)

where ��
�s is a dummy variable of the integrated form of the equation of radiated

transfer.
The first part of the right-hand side of the above equation is the intensity

reduction of the original intensity due to absorption, which is transmitted, and the
second part is the radiative energy source subsequently absorbed. If we consider
only the first part, then the transmitted energy fraction is I .0/� exp���s and the
absorbed energy, by taking transmitted energy fraction into account, is I .0/v .1 �
exp��vs /.

Now let the arbitrary path s be at an angle � from the positive direction. We now
introduce superscripts C or �, corresponding to directions with positive or negative
cos � ; IC

� corresponds to 0 � � � �=2 and I�
� corresponds to �=2 � � � � .

Further let the optical path ��x now be defined along the x-coordinate as

��s D
Z
K�.x/dx: (4.366)
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Therefore,

��s D
Z
K�.s/ds D 1

cos �

Z
K�.x/dx D ��x

cos �
: (4.367)

Similarly in the negative direction ds D �dx= cos.� � �/ and again ��s D
��x= cos � . Thus (4.364) can now be split into two equations:

cos �
dIC

d��x
C IC

� S�; .0 � � � �=2/; (4.368)

cos �
dI�

d��x
C I�

� S�; .�=2 � � � �/: (4.369)

The above two first-order differential equations can have only one boundary
condition each. These are obtained at the opposite walls.

Motivation for writing the radiative transfer equations in terms of cos � is that
I� cos � is related to the heat flux q by the relation

q� D 1

2

Z �
IC
� C I�

�

�
cos �d˝: (4.370)

Alternative forms of writing of preceding two equations are:

� cos �

��

dIC
�

dx
D IC

� � I �
� ; .0 � � � �=2/; (4.371)

�cos �

��

dI�
�

dx
D I�

� � I �
� ; .�=2 � � � �/: (4.372)

The positive (and negative) intensity depends on � because of the angular depen-
dence of the phase function for anisotropic scattering. However, an isotropic
scattering is a reasonable assumption, and it provides a substantial reduction
in the complexity of the radiative transfer relations. For isotropic scattering the
intensity function is by (4.364). These equations are integrated over their respective
hemispheres to get

� 1

��

dIC
�

dx

Z �=2

0
cos � sin �d� D IC

�

Z �=2

0
sin �d� � I�

�

Z �=2

0
sin �d�; .0 � � � �=2/

(4.373)

� 1

��

d D �I�
�

dx

Z �

0
cos � sin �d� D I�

�

Z �

�=2
sin �d� � I�

�

Z �

�=2
sin �d�; .0 � � � �=2/

(4.374)
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integration of which yields

� 1

2��

dIC
� .x/

dx
D IC

� .x/ � I �
� .x/; (4.375)

� 1

2��

dI�
� .x/

dx
D I�

� .x/ � I �
� .x/: (4.376)

With homogeneous scattering, (4.364) is slightly different and is written as follows:

cos �

��

dI�
dx

D IC
� C .1 � !�/I �

� C !�H�: (4.377)

For isotropic scattering, the integrations are carried out and the results are multiplied
by � , since for isotropic assumption for intensity in each C and � direction to give
the average incident intensity is (1/2) of the positive and negative intensity is added.
Integration is carried out in either hemisphere, and we get for each heat flux

1

��

dIC
�

dx
D �.2 � !�/IC

� C !�I
�
� C 2.1 � !�/I �

� ; (4.378)

� 1

��

dI�
�

dx
D �.2 � !�/I�

� C !�I
C
� C 2.1 � !�/I �

� : (4.379)

Note that for no scattering .!� D 0/, (4.378), (4.379) become identical with (4.375),
(4.376).

The simplest approximation to solve (4.358) is to assume that the intensity
in the positive direction, IC, is isentropic and that in the negative direction the
intensity, I�, is also isentropic but has a different value and does not depend on the
angle (isentropic scattering). Hence, I and I � can be integrated over the respective
hemisphere, and we get

B D
Z
2�

Id˝
�
Wm�2� ; (4.380)

B� D
Z
2�

I �d˝ D �I � D �T 4
�
Wm�2� : (4.381)

Boundary Conditions

Components of intensity of radiation in the direction normal to the surface is
proportional to the cosine of the angle � formed between the direction of radiation
and the surface normal to the body (Lambert’s cosine law) (Fig. 4.24). In addition,
the assumptions are:

1. Each surface of the enclosure is isothermal.
2. Each surface is gray.
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Fig. 4.24 Explaining
boundary conditions

3. Radiation reflected from any surface is diffusedly distributed. Thus, all incident
radiation is reflected with a uniform intensity regardless of the direction from
which it came. Thus, it is clear that a contact with a diffusedly reflecting surface
completely obliterates the past history of the incident radiation.

4. Radiation emitted from any surface is diffusedly distributed. This assumed dis-
tribution of emitted radiation plus assumed diffused distribution of the reflected
radiation results in the situation given in Fig. 4.24.

5. Emitted radiation from boundary is isotropic.

Hence, emitted from the wall: .1 � �w/H C �w
�
�T 4

Absorbed into the wall: �wH � �w
�
�T 4

Herein:

Hi D incident radiant energy arriving at a surface per unit time and area ŒWm�2�
Bi D radiosity (diffusedly distributed) D radian energy away from the surface
per unit area ŒWm�2� D ��T 4 C rH

Note: From the incident radiation, a fraction reflected: 1 D r C ˛. Further
Kirchhoff’s law (under equilibrium): absorption coefficient, ˛ D �.

Thus the net rate of heat loss Q from a typical i th surface is the difference
between the emitted and absorbed portion of the incident radiation (counted positive
if wall is losing heat and is negative if the heat is transmitted into the wall further):

Qi

Ai
D �i�T

4
i � ˛iHi ŒWm�2�: (4.382)

On the other hand,

Bi D �i�T
4
i C riHi D �i�T

4
i C .1 � �i /Hi ŒWm�2�: (4.383)

Using the above two equations,

Qi

Ai
D �i

1 � �i
�
�T 4i � Bi

�
ŒWm�2�: (4.384)
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Now from any other surface, the radiosity Bj , multiplied with Aj , is radiated in all
directions. From this a fraction BjAjFj!i arrives at surface i and thus,

HiAi D
NX
j¤i
jD1

BjAjFj!i ; (4.385)

where F s are view factors between any two panels.
Now from reciprocity relation AjFj!i D AiFi!j , and we can write

Hi D
NX
j¤i
jD1

BjFi!j (4.386)

and thus,

Bi D �i�T
4 C .1 � �i /

NX
j¤i
jD1

BjFi!j : (4.387)

The above equation can be rearranged and modified to

1

�i
Bi � .1 � �i /

�i

NX
j¤i
jD1

BjFi!j D �T 4: (4.388)

By defining

�ij D 1

�i

�
ıij � .1 � �i /

�
1 � ıij

�
Fi!j

� I ıi i D 1; ıij D 0; (4.389)

we rewrite the preceding equation in the following set of system of equations

NX
j

�ijBj D ˝i D �T 4i ! Œ�� D � fBg D f˝g ! fBg: (4.390)

Let Œ � D Œ���1 and from the heat flux equation, we get

Qi

Ai
D �i�T

4
i

1 � �i �
X
i¤j

 ij �T
4
j D �i

1 � �i ˝i �
X

 ij
�
1 � ıij

�
˝j : (4.391)
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By defining

�ij D �i

1 � � � i
�
ıij
�

(4.392)

and noting that ıi i D 1; ıij D 0, we get

Qi

Ai
D
X

�ij �T
4
j : (4.393)

4.7.7 Discrete Transfer or Discrete Ordinate Model

For Discrete Transfer and Discrete Ordinate Methods, according to [146], “The
discrete transfer method was originally formulated in an attempt to provide a fast
and accurate algorithm for incorporating radiative transfer into codes for combustion
and flow in complex geometries. The method as originally proposed consists of
determining the intensity for each of N rays arriving at a surface element P in an
enclosure.” The rays are selected for each impact of the ray of an arriving surface
and prescribed angles from the arriving panel normal; the impact of the ray at the
initial panel is obtained by extending the ray all the way back to the wall of the
panel. Initially the intensity from the wall may not have the effect of rays coming
from other panels; these have to be modified at subsequent iterations. Further no
scattering is considered and also the “source function, temperature, and properties
are usually assumed to be constant within a volume element.” Thus the ray passing
through volume to volume is subjected to the intensity attenuation (ray intensity
leaving boundary n C 1 D ray intensity entering boundary n and attenuated along
the path within the element plus the increase within the element)

D In exp��sn InC1 D In exp��sn CI � .1 � exp��sn/ : (4.394)

The volumetric energy exchange in each volume element has then to be added and
tallied, which would then go to the gas-dynamic energy equation after changing
sign.

Because of the difficulties in handling very large number of rays (N large) plus
including scattering plus part reflection and part absorption of different incoming
intensities, it is proposed to consider the rays only in directions parallel to the
coordinate directions and thus restrict in a 3D case, N D 6 (discrete ordinate
method). The method is originally an extension of a method, now called the two-
flux method, and was subsequently extended as a multi-flux method. However, the
method is similar to the one given by Srivatsa [149].

Here the starting point of the analysis is (4.358) in finite difference form in
positive and negative x-coordinate directions (one could write similar expressions
for y- and z-directions also) as follows:
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dIC
x

dx
D �I � � .� C �/IC

x C �

3

�
I�
x C IC

y C I�
y C IC

z C I�
z

	
; (4.395)

dI�
x

dx
D �I � � .� C �/I�

x C �

3

�
IC
x C IC

y C I�
y C IC

z C I�
z

	
: (4.396)

Defining a radiosity flux in x-direction as

Rx D 1

2

�
IC
x C IC

x

�
: (4.397)

Thus adding the preceding twin equations we can write

dRx
dx

D �I � � .� C �/Rx C �

6

�
2Rx C 4

�
Ry CRz

��
: (4.398)

Equation (4.419), written for zero scattering .� D 0/, becomes a first-order equation

dRx
dx

C �Rx D �I � (4.399)

which has the particular solution

Rx.0/ D Rx.X/ exp� R x
0 �dx C

Z X

0

�I �.x/ exp� R x
0 �dx dx: (4.400)

Herein x D 0 is the point at which the observer is receiving radiation, while at
x D X , the radiosity is a known boundary value. The second term of the above
equation represents the local volumetric emission, and we examine it first by putting
Rx.X/ D 0, which is also the situation with significant absorption coefficient. By
defining an optical length as

� D
Z x

0

�dx (4.401)

and for significant absorption coefficient, we get from (4.447)

Rx.0/ D
Z
I �.� exp�� /d�: (4.402)

Assuming that Rx.0/ at the point of the observer deviates only slightly from I �.�/,
we can write the latter in Taylor expansion series and we get

I �.�/ D I �.0/C
�

dI �

d�

�
0

� C 1

2

�
d2I �

d�2

�
0

�2 C � � � (4.403)
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Fig. 4.25 Further
explanation of boundary
conditions

and terminate the series only after two terms. Substituting the above expression
into (4.451) and integrating over the limits of 0 to 1, we get

Rx.0/ D
Z 1

0

�
I �.0/C

�
dI �

d�

�
0

�

�
exp�� d� D I �.0/

�
1C 1

I �.0/

�
dI �

d�

�
0

�
:

(4.404)

The above equation was written for an x-coordinate direction. Adding for all
the three directions, the volumetric radiative energy gain/loss (negative of the
volumetric radiative energy loss/gain term in the gas-dynamic energy equation) is

1

3

�
dRx
dx

C dRy
dy

C dRz

dz

�
D �I � � �

3

�
Rx CRy CRz

�
Wm�3: (4.405)

Now we introduce a radiative flux potential, 'R, as R D r'R, and substituting
into (4.405) we get

r2'R D 3�I � � �r � 'R D 3�I � � �
�

dRx
dx

C dRy
dy

C dRz

dz

�
: (4.406)

Equation (4.454) is a second-order elliptic type of equation, whose boundary values
must be prescribed (Dirichlet condition) and/or gradients at the boundary (von
Neumann condition must be prescribed. In the latter case completely around the
boundary, the solution is not unique, but only the shape is given, and hence at least
at one place the value needs to be prescribed.

Since (4.395) and (4.396) are first-order differential equations, thereby both
would need only one boundary condition. Let Bin;0 be the energy flux from the
opposite panel of surface area, Ain, through the energy flux at the time of reaching
the other end (with panel area Aout may have changed and have become Bin).
Thus from the wall boundary conditions and from Fig. 4.25, we may write for the
outgoing flux

Bout D .1 � �w/Bin
Ain

Aout
C .1 � �w/�T

4
w Wm�2: (4.407)

The volumetric radiative energy gain/loss is computed by putting � D 0 and from
the divergence of radiosity for the heat flux going into the panel will be
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Fig. 4.26 General DO
method

� qw D �wBin
Ain

Aout
�w�T

4
w : (4.408)

A more general formulation is discussed in the following for a 3D case. The method
consists of determining the intensity of N rays arriving at each surface element P ,
while the point of origin is Q (Fig. 4.25). Let there be a radiative flux from a panel
with centroid Pci , local normal ni , and surface area Ai (area vector in the direction
of the normal) to another panel with centroid Pcj , normal nj , and surface area
Aj , and we do consider any obstruction between the two (Fig. 4.26). The distance
between the two panels is rij D jPci � Pcjj and the angle the distance vector makes
with ni is governed by

cos � D n� r
jrj : (4.409)

The associate solid angle is given by

	˝ D Aj

R2
: (4.410)

The source function, temperature, and properties are usually assumed to be constant
within a given volume element.

The radiative transfer equation along each way, from i to j, can then be placed in
the form of a recurrence relation

InC1 D In exp��sn CI � .1 � exp��sn/ ; (4.411)

where InC1 is the ray intensity leaving boundary .nC 1/ of a volume element (and
entering the next element) and is equal to the ray intensity In crossing boundary n
and attenuated along the path within the element, plus the increase from the source
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function �I � within the element. Taking various ray intensity through the element,
the radiative heat loss (= negative heat gain) in the gas energy equation is

X
.InC1 � In/	˝n Wm�2 (4.412)

has to be tallied (summed) in each volume element and divided in the end with
number of times to obtain the radiative energy source term (divide tallied I with
4�)

�
�
I � I �� D �

�
I � �

�
T 4
	
ŒWm�3 sterad�1� (4.413)

which will go into the gas energy equation as source term with a negative value.
Without any convection and any other heat source (pure conduction) obviously

the following energy equation, which is the Poisson equation, is to be solved

kr2T D 4��
�
I � � I � D 4�

�
�T 4 � �I � (4.414)

which becomes a Laplace equation with zero absorption coefficient.
As discussed already, the intensity emanating from a surface depends, for

emission, on the surface temperature and the emissivity coefficient, which has to
be added due to partial reflection of other incident intensity on the surface minus the
heat to be absorbed at the surface. This requires some iterative procedure.

4.7.8 P-N Model

P-N model is a very powerful model that depends only on the boundary conditions
and not so much on the direction of propagation of the radiative energy. The method
starts basically by assuming the intensity in orthogonal series of harmonics.

For P-N model we include scattering and write the equation of transfer as

1

c

@I�

@t
C r � I� D ��I

� � .�� C ��/C ��

4�

Z
˝D4�

p�.s
0 ! s/I 0�.s/d˝

D ��I
� � .�� C ��/C ��H�; (4.415)

where �� is the scattering coefficient Œm�1� and

H� D 1

4�

Z
˝D4�

p�.s
0 ! s/I 0

�.s/d˝: (4.416)

The scattering or phase function, p� .s0 ! s/, is defined in such a way that
p�.s0 ! s/ d˝=.4�/ represents the probability that an incoming pencil of rays
.s0: d˝/ is scattered into the direction .s: d˝/.
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Since the sum of probability over all directions must be equal to unity, we must
have

1

4�

Z
˝D4�

p�.s
0 ! s/I 0

�.s/d˝
0 D 1: (4.417)

This implies that the scattering function is normalized to unity. In order to examine
the probability of scattering we consider the scattered intensity in the reverse
(normal) direction, that is, s ! s0, and thus evaluate the integral

H�;rev D 1

4�

Z
˝D4�

p�.s
0 ! s/I 0

�.s/d˝
0: (4.418)

In evaluating the integral, integration is done from  D 0 to 2� . Note that  is the
azimuthal angle and � is the included angle between the angle in the direction s0
and the local normal to the surface in the direction s and d˝ D sin �d d� . Note
further that I�.s/ has to be prescribed in some form in the P-N method that is done
as linear combination of some moments of intensity, which we would discuss later.

For all practical purposes the time-dependent term in the left-hand side of (4.415)
can be neglected, and thus (4.415), in the direction of propagation of radiation in
s-direction, can be written as

dI�
ds

D ��I
�
� C ��H� � .�nu C ��/Inu: (4.419)

It is useful to write the direction s in terms of spherical angles � (from 0 to !�)
and ' (from 0 to 2�), or in terms of direction cosines li of the coordinate system
x1; x2; x3:

d

ds
D cos �

@

@x1
C sin � cos'

@

@x2
C sin � sin'

@

@x3
D l1

@

@x1
C l2

@

@x2
C l3

@

@x3
;

(4.420)

where l1 D cos �; l2 D sin � cos', and l3 D sin � sin', and we write (4.415) as

3X
iD1

li
@I�

@xi
D �.�� C ��/I� C ��I

�
nu C ��Hnu: (4.421)

Further defining the albedo as ! D �=.�C�/; ! D 0 is for no scattering and ! D 1

is for no absorption, and K� D .�nu C ��/, total absorption coefficient D extinction
coefficient, and let

��s D
Z s

0

Knu.s/ds (4.422)
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be the definition of the spectral optical path, we get

dI�
d��s

C I� D .1 � !/I �
� C !H� D Snu; (4.423)

where S� is the source term.
Note from (4.423) that the term I� consists of two parts: first fraction is due to

pure absorption and the second fraction !� is due to scattering only.
Now we integrate the above equation first by multiplying with various powers

of the direct cosines individually and in combination and integrate over the solid
angle 4� , for which we define the moments of intensity, of which the first three have
physical significance, as follows:

I .0/.r/ D
Z
˝

I.r;˝/d˝; (4.424)

I .i/.r/ D
Z
˝

I.r;˝/lid˝; (4.425)

I .ij /.r/ D
Z
˝

I.r;˝/li lj d˝: (4.426)

For the evaluation of the integral in the right-hand side of (4.423), Siegel and Howell
[146] suggest that one could consider isotropic intensity and consequently (4.423)
becomes

3X
iD1

li
@I .i/

@�i
C I D .1 � !/I � C !

4�
I .0/ Wm�2: (4.427)

The physical significance of the first three moments are as follows:

Radiant energy intensity W u.r/ D 1

c

Z
˝

I.r;˝/d˝ Jm�3; (4.428)

Heat flux vector W qi .r/ D I .i/ D
Z
˝

I.r;˝/lid˝ Wm�2; (4.429)

Radiation stress tensor W �ij D 1

c
I .ij / D 1

c

Z
˝

li lj I.r;˝/d˝ Nm�2: (4.430)

In above relations, d˝ D sin �d�d', where � goes from 0 to � and ' goes from 0

to 2� . Note that for isotropic radiation (I is independent of ˝), the above integrals
can be evaluated as follows:

I .0/ D I

Z Z
sin �d�d' D 4�I ŒWm�2�; (4.431)
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u D I

c

Z �

�D0

Z 2�

'D0
sin �d'd� D 4�

c
I D I .0/

c
Jm�3: (4.432)

Radiosity (energy flux in one hemisphere):

B D I

Z
lid˝ D I

Z �

�D0

Z 2�

'D0
cos � sin �d'd� D �I D I .0/

4
Wm�2: (4.433)

Further, noting that

Z
˝

li lj d˝ D


2�=3

0
for



i D j

i ¤ j
! �i i D 2�I

3c
Nm�3: (4.434)

Radiative pressure (hydrodynamic):

p D 2

3

3X
iD1

�i i D 4�I

3c
D u

3
D I .0/

3c
Nm�2: (4.435)

Note that both p and u are scalar variables.
At this stage we do not know I , but we expand intensity I.x; ˝/ in terms of an

orthogonal series of spherical harmonics

I.x;˝/ D
1X
lD0

lX
mD�l

Aml .x/Y
m
l .˝/; (4.436)

where Aml are position-dependent coefficients to be determined and Y ml .˝/ are
angularly dependent normalized spherical harmonics given by

Y lm.˝/ D
�
.2l C 1/.l �m/Š
4�.l Cm/Š

�1=2
expjm' Pm

l cos.�/ (4.437)

and Pm
l .cos �/ is the associated Legendre polynomial of the first kind. The values

of Pm
l cos.�/ and P�m

l cos.�/ are related by

P�m
l .cos �/ D .�1/m .l �m/Š

.l Cm/Š
Pm
l .cos �/: (4.438)

In (4.436), the expression is cut off arbitrarily after a certain number of terms and
the value is the value of N in P-N equation, giving the approximation involved. For
P-1 approximation, only two terms (l D 0 and 1) are considered and there are four
terms (l D 0, 1, 2, and 3) for P-3 approximation. Thus, as a consequence of P-1
approximation, one lets Aml D 0 for l > 1 and for P-3 approximation, only Aml D 0

for l > 3.
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Table 4.15 Seven Legendre polynomials

P0.x/ D 1 P4.x/ D .35x4 � 30x2 C 3/=8

P1.x/ D x P5.x/ D .63x5 � 70x3 C 15x/=8

P2.x/ D .3x2 � 1/=2 P6.x/ D .231x6 � 315x4 C 105x2 � 5/=16

P3.x/ D .5x3 � 3x/=2

Legendre/Associated Legendre Polynomial

Legendre polynomial is given by the expression

Pn.x/ D
NX
rD0
.�1/r .2n � 2r/Š

2nrŠ.n � r/Š.n � 2r/Šx
2n�r ; (4.439)

where N D n=2 if n is even and N D .n � 1/=2 if n is odd.
The first seven Legendre polynomials are given in Table 4.15. Note that odd

Legendre polynomials with odd powers of x have the property that they are zero
if x D 0, and they are equal to one if x D 1.

With x D cos � , the first five Legendre polynomials are as follows:

P0.cos �/ D 1;

P1.cos �/ D cos �;

P2.cos �/ D .2 cos 2� C 1/=4;

P3.cos �/ D .5 cos 3� C 3 cos �/=8;

P4.cos �/ D .35 cos 4� C 20 cos 2� C 9/=64: (4.440)

Here for odd polynomials, they are zero if � D ˙�=2 and are equal to one if � D 0.
In order to demonstrate the orthogonality property of Legendre polynomial, it

can be shown that

Z 1

�1
Pm.x/Pn.x/dx D

"
0;m ¤ n
2

2nC1 ;m D n

#
: (4.441)

One can now write functions in terms of Legendre polynomial as

F.x/ D
1X
nD0

anPn.x/: (4.442)
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Table 4.16 Seven Legendre polynomials

l m D 0 m D1 m D2 m D3

0 1.0 – – –
1 cos � sin � – –
2 .3 cos2 � � 1/=2 3 cos � sin � 3 sin2 � –
3 .1=2/.5 cos2 � � 3/ cos � .3=2/.5 cos2 � � 1/ sin 2� 15 cos � sin2 � 15 sin3 �

Multiplying with Pm.x/ and integrating from x D �1 to C1, we get

Z C1

�1
F.x/Pm.x/dx D

1X
nD0

an

Z
Pm.x/Pn.x/dx D 2an

2nC 1
: (4.443)

Thus the general expression for the coefficient is

an D 2nC 1

2

Z C1

�1
F.x/Pn.x/dx: (4.444)

We would now define associated Legendre polynomial as follows:

Pm
l .x/ D .1 � x2/m=2 d

m

dxm
Pl.x/

D .�1/m.l Cm/Š

2mmŠ.l �m/Š .1 � x2/m=2
"
.1 � .l �m/.l CmC 1/

lŠ.mC 1/

�
1 � x
2

�

C .l �m/.l �m � 1/.mC l C 1/.mC l C 2/

2Š.mC 1/.mC 2/

�
1 � x
2

�2
� C � � �

#
:

(4.445)

Note that here for m > n;Pm
n .x/ D 0.

The first few associated Legendre polynomials are as follows:

P 0
0 .x/ D 1;

P 1
1 .x/ D .1 � x2/1=2;
P 0
1 .x/ D x;

P 2
2 .x/ D 3.1 � x2/;
P 1
2 .x/ D 3x.1 � x2/1=2;
P 0
2 .x/ D .3x2 � 1/=2: (4.446)

For x D cos � , the table of associated Legendre polynomials, Pm
l .cos �/, is given

in Table 4.16.
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Spherical Harmonics

Spherical harmonics occur in a large variety of physical situations, for example,
whenever a wave equation or Laplace equation is solved by separation of variables in
spherical coordinates. The normalized spherical harmonic Ylm (�; �), (�l � m � l)
is a function of two coordinates (�; �) on the surface of a sphere and is a function of
the associated Legendre polynomial as follows:

Ylm.�; �/ D
s
.2l C 1/

4�

.l �m/Š

.l Cm/Š
Pm
l .cos �/ expim�; (4.447)

where Pm
l .cos �/ are associated Legendre polynomials of the first kind given in

Table 4.16. A complex conjugate of this obviously is

Y �
lm.�; �/ D

s
.2l C 1/

4�

.l �m/Š

.l Cm/Š
Pm
l .cos �/ exp�im� (4.448)

and thus obviously,

Ylm.�; �/Y
�
lm.�; �/ D .2l C 1/

4�

.l �m/Š

.l Cm/Š

�
Pm
l .cos �/

�2
; (4.449)

Yl;�m.�; �/ D .�1/mY �
lm.�; �/: (4.450)

The following are some of the normalized spherical harmonics:

Y00 D
r

1

4�
;

Y11 D �
r

3

4�
cos � IY10 D

r
3

4�
;

Y22 D 1

4

r
15

2�
sin2 � exp2i� IY21 D �

r
15

8�
sin � cos � expi� ;

Y20 D
r

5

4�

�
3

2
cos2 � � 1

2

�
:

The radiation intensity is now expanded in a series of normalized spherical
harmonics:

I.r;˝/ D
X

l D 01
lX

mD�l
Aml Yml .˝/; (4.451)
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where Aml .r/ is a function to be determined and Yml.˝/ are angularly dependent
normalized spherical harmonics given by (4.447). The above expression is cut off
arbitrarily after a certain number of terms to get P-N approximation. Therefore in
general, Aml D 0 for l > N . Thus for the P-1 approximation Aml D 0 for l 
 2 and
for the P-3 approximation Aml D 0 for l 
 4. Equation (4.451) is now substituted
into moment equations, the series is truncated at the desired level and integration is
carried out over the entire solid angle. It is, in principle, possible to retain higher
order terms, but with each increase in the double summation series (4.451) gives
many more terms in the intensity relation. We can now write (4.419) in terms of
various moments with auxiliary conditions. Now only the boundary conditions are
to be determined to find the coefficients.

Equation (4.451) with series summations is substituted into the moment equa-
tions, summations, and integrals are exchanged with series truncated at desired
level and integrated. For the P-3 approximation this results in 20 coupled algebraic
equations in the 20 moments of intensity, and for P-1 approximation only four
moments of intensity relations are required.

Now for general solution we write (4.451) as

4�I.x; �; '/ D I .0/ C 3I .1/ cos � C 3I .2/ sin � cos' C 3I .3/ sin � sin'

C5

4

�
3I .11/ � I .0/� �3 cos2 � � 1�

C15 �I .12/ cos' C I .13/ sin'
�

cos � sin �

C15

4

��
I .22/ � I .33/� cos.2'/C 2I .23/ sin.2'/

�
sin2 �

C7

4

�
5I .111/ � 3I .1/� �5 cos3 � � 3 cos �

�

C21

8

��
5I .211/ � I .2/� cos' C �

5I .311/ � I .3/� sin'
� �
5 cos2 � � 1� sin �

C105

4

��
I .122/ � I .133/� cos.2'/C 2I .123/ sin.2'/

�
cos � sin2 �

C35

8

h�
I .222/�3I .233/

	
cos.3'/ � �

I .333/ � 3I .322/� sin.3'/�
i

sin.3'/

(4.452)

along with identities

I .0/ D I .11/ C I .22/ C I .33/

I .1/ D I .111/ C I .222/ C I .333/

I .2/ D I .211/ C I .222/ C I .233/

I .2/ D I .311/ C I .322/ C I .333/
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which for P-1 approximation only retains the first three terms of (4.452) to become

I.x; �; '/ D 1

4�

�
I .0/ C 3I ./1 cos � C 3I .2/ sin � cos' C 3I .3/ sin � sin'

�
:

(4.453)

Now it is necessary “to develop expressions so that an explicit relation for intensity
can be obtained from” [146] (4.452) and (4.453). Let us rewrite (4.421)

3X
iD1

li
@I�

@�i
C I D .1 � !/I � C !

4�

Z 4�

0

p.s0 ! s/I 0.xi ;˝ 0/d˝ 0

D .1 � !/I � C !

4�
I .0/: (4.454)

Number of such equations is now
PN

lD0 3l . Hence, for P-1 approximation, number
of equations is 1 C 3 D 4, and for P-3 approximation, number of equation is 1 C
3C 9C 27 D 40. While the evaluation of the moments will be discussed below, it
may be mentioned that the intensity at any point can be evaluated from (4.453) for
P-1 approximation and from (4.452) for P-3 approximation, provided we can define
the two angles (obviously near each wall these angles can be defined).

First of all we evaluate the source term as integral in the right-hand side of the
above equation. We write from (4.430), without writing the subscript � for clarity,

Hrev D
Z
˝D4�

p.s ! s0/I.s/d˝ 0 (4.455)

and for the phase function, we consider linear scattering by taking p D 1CC cos � .
Thus we would evaluate

Hrev D
Z �

�D0

Z 2�

'D0
.1C C cos �/I.s/ sin �d�d': (4.456)

By taking the distribution of intensity from (4.448) for P-1, it is possible to show
that

H D I .0/ C CI .1/: (4.457)

However, by taking the intensity distribution from (4.421) and noting the following
integrals:

Z 2�

'D0
cos.n'/ D 0I

Z �

�D0
sin �d� D

Z 0

�D�
cos �d� D 2

sin � cos �d� D 0I
Z

cos2 � sin �d� D 2

3
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Z
cos3 � sin �d� D 1

3
I
Z

cos4 � sin �d� D 2

5Z
sin2 � cos �d� D 2

3
(4.458)

we get the integral

Hrev D I .0/ C CI .1/ C 5

8

�
3I .11/ � I .0/� .1C C/C 35

24
.3I .111/ � 3I .1//: (4.459)

Siegel and Howell [146] tell that the integral value is H D I .0/, which, as shown
above, assumes isotropic radiation .C D 0/ and also it is in P-1 approximation.
However, being simple to work on, the integral value of H D I .0/ will be retained
and (4.452) will become

3X
iD1

li
@I

@�i
C I D .1 � !/I � C !

4�
I 0: (4.460)

Equation (4.453) is now multiplied with the powers of direction cosines individually
and in combination, and the results are integrated over all solid angles. The results
[equivalent of (4.453)] are given as the following set of four equations:

3X
iD1

@I .i/

@�i
D .1 � !/.4�I � � I 0/ D �

� C �s
.4�I � � I 0/

D
3X
iD1

@I .i/

@xi
D �

�
4�T 4 � I .0/� ; (4.461)

3X
iD1

@I .ij /

@�i
D �I .i/; i D 1; 2; 3; (4.462)

3X
iD1

@I .ijk/

@�i
D �I ijk C 4�ıjk

3

h
.1 � !/I � C !

4�
I 0
i

D �I .jk/ C 4�ıjk

3.� C �s/

h
�I � C �s

4�
I 0
i
; (4.463)

j; k D 1; 2; 3 .9 equations/

ıjk D Kronecker deltaj D k W ıi i D 1; j ¤ k W ıjk D 0/

3X
iD1

@I .ijkl/

@�i
D �I .jkl/ (4.464)

(27 equations:j; k; l D 1; 2; 3/:
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Equation (4.461) gives the divergence of the radiative flux vector

r � qr D �
�
4�T 4 � I .0/� Wm�3 (4.465)

a negative quantity of for the heat flux which the energy term in the gas dynamic
energy equation, in which we write from (4.428) for the heat flux vector as

qri .r/ D I .i/ D
Z
˝

I.r;˝/lid˝ D
Z 2�

'D0

Z �

�D0

I.r; �; '/lid�d' D 1

2

Z �

�D0

I.r; �/lid�:

(4.466)

In the above set of equations for P-1 approximation, the second-order moments only
are present and one considers only (4.461) and (4.462) but not (4.463), (4.464), and
hence P-1 model does not have the effect of scattering in the second hand term in the
right-hand side of (4.463). Further each of the equations (4.461)–(4.464) is written
in such a way that the higher order moment (divergence) expression is written in
terms of the lower order expression. Thus the P-3 approximation is introduced
through the fourth moments I .ijkl/ and the P-1 approximation is written in terms
of the second moments. To close the equations, therefore, it is necessary that of the
(unknown) highest moments must be approximated.

Derivation of Moment Equations

We begin by writing down (4.454) both as it is and in the differential form

3X
iD1

li
@I

@�i
D l1

@I

@�1
C l2

@I

@�2
C l3

@I

@�3
D �I C .1 � !/I � C !

4�
I .0/: (4.467)

In the above, l1 D cos �; l2 D sin � cos'; l3 D sin � sin', and the inte-
gration have to be performed by multiplying the above equation with d˝ D
sin �d�d'; l3 sin � sin � sin', where integration limits are for � D 0 to � and ' D 0

to 2� .

Moment Equation of First Moment

Initial integration is done (after multiplication of (4.454) with li ) over the solid angle
after

Z 4�

0

3X
iD1

li
@I

@�i
d˝ D

3X
iD1

@

@�i

Z 4�

0

li Id˝

D
3X
iD1

@l i

@�i
D
Z 4�

0

h
�I C .1 � !/I � C !

4�
I .0/

i
d˝
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D .1 � !/ �4�I � � I .0/�

! r � I .i/ D @I .1/

@x1
C @I .2/

@x2
C @I .3/

@x3
D �

�
4�I � � I .0/� :

(4.468)

Introducing a potential U .0/, such that the radiative energy flux qr D �rU .0/,

I .1/ D �@U
.0/

@x1
; I .2/ D �@U

.0/

@x2
; I .3/ D �@U

.0/

@x3
:

Equation (4.468) becomes

r2U .0/ D �r � qr D �� �4�I � � I .0/� (4.469)

which is solved under boundary value given U .0/, initially put equal to zero. Note
that (4.469) is the same as (4.465) with a negative sign. Further, on the boundary we
put I .0/ D 4�I �, which means that on boundary, r2U .0/ D �rnI

.i/ D 0, that is,
the flux on the boundary can be extrapolated from the neighboring point.

On the other hand for the calculation in the reverse direction, we can write
from (4.468):

I.x1;x2;x3/ D 4�T 4.x1;x2;x3/�
1

�

�
	I.x1;x2;x3/

	x1
C 	I.x1;x2;x3/

	x2
C 	I.x1;x2;x3/

	x3

�
: (4.470)

Further note that the heat flux at the boundary surface (in the normal direction n) is

qw D �rnU
.0/: (4.471)

Moment Equation of Second Moment

Now we multiply (4.454) by lj (j D 1; 2; 3, and we have three equations, one for
each j ) and integrate over the 4� solid angle:

Z 4�

0

lj

3X
iD1

li
@I

@�i
d˝ D

3X
iD1

@

@�i

Z 4�

0

li lj Id˝

D
3X
iD1

I .j i/

@�i
D
Z 4�

0

lj

h
�I C .1 � !/I � C !

4�
I .0/

i
d˝

D �
Z 4�

0

lj d˝ C
h
.1 � !/I � C !

4�
I .0/

i Z 4�

0

lj d˝

D �J .j / !
3X
iD1

@I .j i/

@xi
D r � I .j i / D �.� C �s/I

j : (4.472)
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When written for three values of the equations for second moments, we get the
following set of three equations:

@I .11/

@�1
C @I .12/

@�2
C @I .13/

@�3
D �I .1/; (4.473)

@I .21/

@�1
C @I .22/

@�2
C @I .23/

@�3
D �I .2/; (4.474)

@I .31/

@�1
C @I .32/

@�2
C @I .33/

@�3
D �I .3/: (4.475)

(4.476)

Once again we introduce for each equation the potential I .j i/ D �riU
.j /, and the

general form of (4.472) is

r2U .j / D .� C �s/I
.j /: (4.477)

On the boundary, we put U .j / D 0 and we obtain the normal component of value
I .nn/ from the negative gradient of the potential U .n/ or any extrapolation from the
value at the neighboring point.

For the calculation in the reverse direction we may write

I
.j /

.x.1/;x.2/;x.3//
D � 1

.� C �s/

"
	.Ix1;x2;x3/

	x1

.1;j /

C	.Ix1;x2;x3/

	x1

.2;j /

C	.Ix1;x2;x3/

	x1

.3;j /
#
:

(4.478)

Moment Equation of Third Moment

We multiply now (4.454) by lklj .j; k D 1; 2, or 3) and for each of these we would
have three equations (a total of nine equations) and integrate over the 4� solid angle

Z 4�

0

lklj

3X
iD1

li
@I

@�i
d˝ D

3X
iD1

@

@�i

Z 4�

0

li lj lkId˝

D
3X

iD1

@I .kj i/

@�i
C
Z 4�

0

lklj

h
�I C .1 � !/I� C !

4�
I .0/

i
d˝

D �
Z 4�

0

lklj Id˝ C
h
.1 � !/I� C !

4�
I 0
i Z 4�

0

lklj d˝

D �I kj C 4�ıjk

3

h
.1 � !/I� C !

4�
I 0
i
: (4.479)
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For each combination of .j; k/, we can write (4.454) as

3X
iD1

@I .kj i/

@xi
D �.� C �s/I

.kj / C ıjk

3

�
�4�I � C �sI

.0/
�
: (4.480)

In the reverse direction, the equation to be solved is

I
jk

.x1;x2;x3/
C ıjk

3.� C �s/

�
�4�T 4 C �sI

.0/
�
.x1;x2;x3/

� 1

.� C �s/

"
	I

.1;jk/

.x1;x2;x3/

	x1
C 	I

.1;jk/

.x1;x2;x3/

	x2
C 	I

.2;jk/

.x1;x2;x3/

	x2
C 	I

.3;jk/

.x1;x2;x3/

	x3

#
:

(4.481)

Moment Equation of Fourth Moment

Now by multiplying (4.454) by ll lklj .j; k; l D 1; 2, or 3) and for each of these we
would have three equations (a total of 27 equations) and integrate over the 4� solid
angle; we write

Z 4�

0

lklj

3X
iD1

li
@I

@�i
d˝ D

3X
iD1

@

@�i

Z 4�

0

li lj lkId˝

D
3X

iD1

@I .kj i/

@�i
C
Z 4�

0

lklj

h
�I C .1 � !/I� C !

4�
I .0/

i
d˝

D �
Z 4�

0

lklj Id˝ C
h
.1 � !/I� C !

4�
I 0
i Z 4�

0

lklj d˝

D �I kj C 4�ıjk

3

h
.1 � !/I� C !

4�
I 0
i
: (4.482)

In reverse direction, the equation to be solved is

I
jkl

.x1;x2;x3/
� 1

.� C �s/

"
	I

.1;jkl/

.x1;x2;x3/

	x1
C 	I.x1;x2;x3/.1;jkl/

	x2

C	I.x1;x2;x3/.2;jkl/

	x2
C 	I.x1;x2;x3/.3;jkl/

	x3

�
: (4.483)
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P-1 Approximation
For P-1 approximation, the closure relation is

I .ij / D 1

3
ıij I

.0/ ! rI .0/ 	 @I .0/

@xi
D �3.� C �s/I

.i/; (4.484)

where ıij is the Kronecker delta (i D j W ıij D 1,i ¤ j W ıij D 0). As a
consequence for P-1 approximation, we may write

i D j W I .i i/ D 1

3
I .0/I i ¤ j W I .ij / D 0 (4.485)

and from (4.461) and (4.462), we write

I .i/ D � 1

.� C �s/

@I .i i/

@xi
D � 1

3.� C �s/

@I .0/

@xi
(4.486)

and substituting further in (4.452), we get

r � I .i/ D
3X
iD1

@I .i/

@xi
D @I .x/

@x
C @I .y/

@y
C @I .z/

@z

D � 1

3.� C �s/

�
@2I .0/

@x2
C @2I .0/

@y2
C @2I .0/

@z2

�
D �

�
4�T 4 � I .0/� ! r2I .0/

D �3�.� C �s/
�
4�T 4 � I .0/� : (4.487)

Note that at a surface, in the absence of any surface at the wall, I .0/ D 4�T 4.
Equation (4.487), discretized in 3D form, is

I
.0/

i;j;k

�
2

�
1

	x2
C 1

	y2
C 1

	z2

�
C 3�.� C �s/

�

D 1

	x2

�
I
.0/

iC1;j;k C I
.0/

i�1;j;k
	

C 1

	y2

�
I
.0/

i;jC1;k C I
.0/

i;j�1;k
	

C 1

	z2

�
I
.0/

i;j;kC1 C I
.0/

i;j;k�1
	

C 12�.� C �s/�T
4
i;j;k: (4.488)

Solution may be started by assuming I .0/ D 4�T 4, under given boundary values.
It may be noted that in case, �.� C �s/ � 0, obviously the solution of (4.487) is
almost equal to the solution of the Laplace equation of I .0/, and hence it would be
slightly different from the average values of the boundary value of I .0/.
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Revised P-1 Model

The original radiation transfer equation is

1

c

@I

@t
C r � I D �I � � .� C �/I C �

4�

Z
˝D4�

p.s0 ! s/I 0.s0/d˝ 0; (4.489)

where � is the absorption coefficient and � is the scattering coefficient. By
neglecting the first term and expanding the intensity in series, the zero-th order
intensity equation becomes

r2I .0/ D �3�.� C �/
�
4�T 4 � I .0/� : (4.490)

The above equation looks like a Poisson equation, but not quite since we have I .0/ in
the right-hand side also, and it would be better to solve the equation in the following
difference form:

I
.0/

i;j;k

�
2

�
1

	x2
C 1

	y2
C 1

	z2

�
C 3�.� C �s/

�

D 1

	x2

�
I
.0/

iC1;j;k C I
.0/

i�1;j;k
	

C 1

	y2

�
I
.0/

i;jC1;k C I
.0/

i;j�1;k
	

C 1

	z2

�
I
.0/

i;j;kC1 C I
.0/

i;j;k�1
	

C 12�.� C �s/�T
4
i;j;k:

The above equation is subject to the boundary condition

�2 � �w

�w

2

3
n � rI D .�j�/ �4�T 4 � I � :

Further the source term for the energy equation and the radiative heat flux at the
boundary are calculated from

r � qR D �
�
4�T 4 � I � � n � qR D �w

2.2 � �w/

�
I � 4�T 4w

�
: (4.491)

P-3 Approximation
For the P-3 approximation the closure relation (81 values) is

I .ijkl/ D 1

7

�
I ij ıkl C I ikıjl C I jkıil C I il ıjk C I kl ıij C I jl ıik

�

� 1

35

�
ıij ıkl C ıil ıjk C ıikıjl

�
: (4.492)

For P-3 approximation we have now four equations (4.461)–(4.464), in which in
the left-hand side we have divergence of scalar potential, vector potential, tensor
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potential, etc. of moments, and in the right-hand side we have expression of
lower moment integral. In principle, we could define, for each equation, a relevant
potential. For this let us consider a 3D domain in Cartesian coordinates x; y; z
divided into grids, in which the temperature distribution and the corresponding
absorptivity coefficient � are given. We start with a guessed distribution of I .0/,
which can be obtained, for example, from the solution of the P-1 approximation.
Now from (4.454)

3X
iD1

@I i

@xi
D
�
@I .x/

@x
C @I .y/

@y
C @I .z/

@z

�
D �

�
4�I � � I .0/� D �

�
4�T 4 � I .0/� :

By defining a potential U .0/, whose negative gradient would be the flux component,
that is,

˚
I .x/; I .y/; I .z/

� D �


@U .0/

@x
;
@U .0/

@y
;
@U .0/

@z



(4.493)

we write the preceding equation further as

r2U .0/ D �� �4�I � � I .0/� D �� �4�T 4 � I .0/�

with the boundary condition U .0/ D 0. Once the equation is obtained, all the three
components of U .0/ are obtained (three values at each grid point) by computing the
gradients

�
I .x/; I .y/; I .z/

�
i1;i2;i3;.jD1;2;3/ D �

�
@U .0/

@x
;
@U .0/

@y
;
@U .0/

@z

�
i1;i2;i3

which has to be stored away in location i1; i2; i3; j D 1 to 3 in a four-dimensional
matrix. The method is repeated to obtain the second-order moment containing nine
variables

I .ij / D
2
4 I

.xx/ I .xy/ I .xz/

I .yx/ I .yy/ I .yz/

I .zx/ I .zy/ I .zz/

3
5
i1;i2;i3;i;j

which has to be stored away in location i1; i2; i3; i; j D 1 to 3 in a five-dimensional
matrix. The method may be repeated now for higher order tensors, which we would
repeat, at least to understand the principle.

We would write now the equation with triple order tensor (4.454),

3X
iD1

@I .ijk/

@xi
D � .� C �s/ I

.jk/ C 4�ıjk

3

h
�I � C �s

4�
I .0/

i
; .j; k D 1; 2; 3/
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in which there are nine equations and there are 27 components in the left-hand side
to be stored in six-dimensional matrix.

We can now finally write expressions for the fourth-order tensor, I ijkl , which
will have three values for each of the third-order tensor, and therefore, there will be
a total of 81 components and they would be stored away in i1; i2; i3; i; j; k; l in a
seven-dimensional matrix.

I .ijkl/ D 1

7

�
I .ij /ıkl C I .ik/ıjl C I .jk/ıil C I .il/ıjk C I .kl/ıij C I .jl/ıik

�

� 1

35

�
ıij ıkl C ıil ıjk C ıikıjl

�
:

We put again extrapolated I .ijkl/ on wall in the direction normal to the wall
and equal to zero in all tangential directions. Once we have done that, we use
equations (4.464), (4.463), (4.462), and (4.461) successively to obtain from the
divergence of higher order moments I .ijkl/; I .ijk/; I .ij /; I .i/ in the left-hand side to
values of the lower order moments. This is possible since each divergence is written
in terms of flux across surface of each volume element. The method is repeated
till convergence is obtained in I .0/. A relaxation factor is introduced to help in the
convergence.

Energy Flux at the Boundary

We consider now the following coordinate system near the wall surface. Let the
coordinate direction x1 be in the direction of the surface normal and the other two
coordinate directions be x2 and x3 in the plane of the wall surface with the origin at
the point on the surface being considered. For this the radiative heat flux vector will
be

q1R D I .1/ D
Z
I.˝/lid˝ D

Z 2�

'D0
I.�; '/ cos � sin �d'd�:

Substituting for the intensity in the expression only the first-order terms of (4.453),

I.x; �; '/ D 1

4�

�
I .0/ C 3I .1/ cos � C 3I .2/ sin � cos' C 3I .3/ sin � sin'

�

and integrating first from ' D 0 to 2� , we get

q1R D �1
2

Z
�

�
I .0/ C 3I .1/ cos �

�
cos � sin �d�: (4.494)
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The equation is a general expression for incoming heat flux at the wall when the
integration is done in the hemisphere around the surface with limits of � from �=2

to 0. In the general case it would mean

q1R D �1
2

�
I .0/ C I .1/

�
: (4.495)

Equation (4.495) is generally true but for P-1 approximation, I.1/ is linked to the
gradient of I.0/

PqR D I .1/ D �1
3

dI .0/

d�1
D � 1

3.� C �s/
rnI

.0/ (4.496)

which is only computed in the P-N methods (contrary to the multi-flux model, in
which the wall heat flux is computed directly) and is linked to the incoming and
outgoing flux

PqR D Pqout � Pqin (4.497)

in which the two terms in the right-hand side of (4.497) are related to each other
through boundary conditions at the wall and to the actual heat flux which goes into
the wall. In terms of incoming and outgoing radiosity,

j Pqoutj D �w�T
4

w C .1 � �w/j Pqinj ! j Pqinj D 1

1 � �w

�j Pqoutj � �w�T
4

w

�
(4.498)

which is the usual equation of the radiative heat flux on one panel in an enclosure.
In the above j Pqinj D incoming radiant energy per unit surface area, j Pqoutj is the
outgoing radiant energy per unit surface area. In Siegel and Howell [146], equivalent
of (4.498) is the Marshak boundary condition, which is

j Pqoutj D �w�T
4

w C .1 � �w/

�

Z 2�

˝D0
I.˝/lid˝ (4.499)

and the integral term in the right-hand side of the above equation is the incoming
heat flux term, and hence, the intensity in this integral belongs to the incoming
component only. If j Pqoutj > j Pqinj, then the difference .j Pqoutj � j Pqinj/ gives the loss in
energy per unit area, j Pqinj, which has to be supplied to the wall as net radiative loss
(and thus it will be negative) from outside the wall by conduction so that the wall
surface area is maintained. The above expression basically states that the net energy
leaving the surface by radiation is the emitted energy, �w�T

4
w , plus a fraction of the

absorbed incident energy .1� �w/j Pqinj goes as outgoing energy flux. As a result, the
heat flux going into the wall (wall heat flux) is
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Fig. 4.27 P-N
approximation: heat fluxes in
boundary condition

� Pqw D j Pqoutj � j Pqinj D �w

1 � �w

�
�T 4w � j Pqoutj

� D �w.�w/
�
�T 4w � j Pqinj� D �w PqR:

(4.500)

Note that the P-N methods for the calculation of net heat flux, and if both � and �s
are zero, then at the wall, rnI

.i/ D 0 (Fig. 4.27). Now let us consider the case that
the wall is at infinity, it may be assumed that Tw D 0 and consequently I .0/ D 0 at
infinity, since there at infinity rnI

.i/ D 0.

Source/Sink for Gas Energy Equation

Since the divergence of the local energy flux is the energy that comes from the gas
or fluid, the source term for the gas energy equation, from P-N model, (4.465), is

Pgas D �r � PqR D �� �4�I � � I .0/� D �
�
4�T 4 � I .0/� Wm�3: (4.501)

A general energy balance on a volume element includes terms due to conduction
(including diffusion-reaction), convection, internal heat sources, compression work,
viscous dissipation, energy storage due to transients, and also by radiative heat
transfer and can be written in terms of the static enthalpy, h, as follows:

@

@t
.�h � p/C r P.Œ.�hV /�/ D r � .krT � qr/C q000 C .V � r/p C �; (4.502)

where qR is the radiant flux vector, q000 is the local heat source other than by radiation
per unit volume and time, and � is the viscous dissipation function. In (4.502), the
radiation term in (4.502) is taken from (4.501). Thus without the convective or heat
source terms, the gas energy equation becomes

r � .krT / D �
�
I .0/ � 4�T 4� : (4.503)
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Fig. 4.28 Boundary
conditions in P-N method for
a 1D case

Note that the right-hand side of (4.503) is almost equal to zero and, with constant
heat conductivity coefficient, the temperature distribution is almost linear (given
temperatures at the boundary).

4.7.9 Marshak Condition

The crucial point to the analysis of the Marshak condition is that the incoming and
outgoing intensities are isotropic (though there is no formal restriction about the
outgoing intensity).

The P-N model, discussed so far, does not work if the medium is transparent,
where the exchange of radiant energy from the walls is important or very nearly
optically thin and where also the wall effects are important. For this reason there
have been attempts to combine the P-N method with the optical thin solution by
writing the intensity as the sum of two components, one of them having contribution
due to the wall and the other due to the medium, I D Iw C Im. The first component
may be handled subject to the extinction to reach another wall, but for the other
component, the usual P-1 or P-3 method can be used. One of the papers in this
direction is by Modest [109].

We examine the boundary conditions that will be applied for radiation problems
for a 1D case (Fig. 4.28). It is useful to express the direction s of intensity I in terms
of spherical angles � and ', in terms of direction cosines as follows:

dI

ds
D l1

@I

@x1
C l2

@I

@x2
C l3

@I

@x3
; (4.504)

where l1 D cos �; l2 D sin � cos'; l3 D sin � sin'; � D 0 to �=2, and ' D 0 to 2�
in a hemisphere and which propagates within a solid angle d˝ D 2� sin �d� . Using
the definition of the optical thickness d�i D .�C�s/dxi and albedo! D �s=.�C�s/,
we write from the equation of transfer

X
li

dI

d�i
C I D .1 � !/I � C !

4�

Z 4�

0

I.s0/d˝: (4.505)
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Now I is expanded in an orthogonal series of spherical harmonics for P-3 model as

4�I.x; �'/ D I .0/ C 3I .1/ cos � C 3I .2/ sin � cos' C 3I .3/ sin � sin'

C5

4

�
I .11/�I .0/

	 �
3 cos2 � � 1�C 15

�
I .12/ cos' C I .13/ sin'

�
cos � sin �

C15

4

��
I .22/ � I .33/� cos 2' C 2I .23/ sin 2'

�
sin2 �

C7

4

�
5I .111/ � 3I .1/� �5 cos3 � � 3 cos �

�

C21

8

��
5I .211/ � I .2/� cos' C �

5I .311/ � I .3/� sin'
� �
5 cos2 � � 1� sin �

C105

4

��
I .122/ � I .133/� cos 2' C 2I .123/ sin 2'

�
cos � sin2 �

C35

8

��
I .222/ � 3I .233/� cos 3' � �

I .333/ � 3I .322/� sin 3'
�

sin 3' (4.506)

and for P-1 model as

4�I.x; �'/ D I .0/ C 3I .1/ cos � C 3I .2/ sin � cos' C 3I .3/ sin � sin' (4.507)

in which the zero-th moment divided by the speed of light gives the radiation energy
density and the first moment of the radiative energy flux in the i th coordinate
direction. In the P-1 approximation with closure condition, we may write the
following set of equations:

3X
iD1

@I .i/

@�i
D .1 � !/ �4�I � � I .0/� !

3X
iD1

@I .i/

@xi
D �

�
4�I � � I .0/� (4.508)

@I .0/

@�i
D �3I .i/ ! @I .0/

@xi
D �3.� C �s/I

.i/ (4.509)

and substituting (4.509) into (4.508), we get finally

3X
iD1

@2

@x2i
D r2I .0/ D �3� .� C �s/

�
4�I � � I .0/� : (4.510)

Noting that qR D I.i/ D radiative heat flux, we get obviously from (4.508)

r � qR D �
�
4�I � � I .0/� D �

�
4�T 4 � I .0/� : (4.511)

Under the equilibrium condition, when the net radiative source term is equal to zero,
the right-hand side of both the equations must be equal to zero, and we have to solve
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the Laplace equation, which will give a linear distribution of I .0/ and corresponding
linear distribution of (T 4) between the walls. For a one-dimensional case, this means
that qR D q as constant.

General Marshak Boundary Condition

The general Marshak boundary condition in 1D on the surface is

Z 2�

˝D0
Ioutlid˝ D qout D

Z 2�

˝D0

�
�w�T

4
w

�
C 1 � �w

�

Z 2�

˝D0
Iin cos �d˝

�
lid˝

D �w�T
4

w C �.1 � �w/

Z �=2

�D0
ŒIin sin.2�/d�� sin.2�/d�:

For isotropic radiation, the radiation intensity Iin can be taken out of the integrals.
Since the integral value is one, we get the result

qout D �w�T
4

w C �.1 � �w/Iin: (4.512)

In terms of incoming and outgoing radiosity, Bout 	 qout; Bin 	 �Iin, the above
equation can be written as

Bout D �w�T
4

w C �.1 � �w/jBinj ! jBinj D 1

1 � �w

�
Bout � �w�T

4
w

�
(4.513)

which is the usual equation of radiative heat flux on one panel in an enclosure. In
the above, jBinj D jqr j D incoming radiant energy per unit surface area, Bout is
the outgoing radiant energy per unit surface area. If Bout > Bin, then the difference
(Bout � jBinj) gives the loss in energy per unit area, qw, which has to be supplied
to the wall as net radiative loss (and thus it would be negative) from inside the wall
by conduction, so that the wall surface temperature is maintained. The expression
basically states that the net energy leaving the surface by radiation is the emitted
energy ˙�w�T

4
w plus a fraction of the absorbed incident energy .1 � �wjBinj D

�.1 � �w/qr . As a result, the heat flux going into the wall is

� qw D Bout � jBinj D �w

1 � �w

�
�T 4w � Bout

�
: (4.514)

For the purpose of using P-N approximation, note that jBinj D jqr j, but taking
the signs of various fluxes (qr is towards the wall, considered in the +ve coordinate
direction and hence Bin D qr ), and the outgoing flux = wall emitted energy ��w�T

4
w

plus a fraction of the incoming energy flux �.1 � �w/qr , and thus,

Bout D ��w�T
4

w � .1 � �w/qr ! qr D �1
1 � �w

�
�w�T

4
w C Bout

�
: (4.515)
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Thus, we may also write

qw D jBinj C Bout D qr � �
�w�T

4
w C .1 � �w/qr

� D �w
�
qr � �T 4w

�
(4.516)

which can be positive or negative depending on which term within the parenthesis is
larger than the other. In a similar manner, if the wall is perpendicular to the negative
coordinate direction, Bin D qr < 0, and outgoing flux is in the positive direction
would be

Bout D �w�T
4

w � .1 � �w/qr ! qr D 1

1 � �w

�
�w�T

4
w � Bout

�
(4.517)

and further,

qw D qr C Bout D qr C �
�w�T

4
w � .1 � �w/qr

� D �w
�
qr C �T 4w

�
(4.518)

and again the sign of the heat flux at the wall can be positive or negative depending
on which term within the parenthesis is larger than the other. The above two
equations can, therefore, be combined to one equation

qw D �w
�
qr � n�T 4w

�
; (4.519)

where n is the surface normal vector. The two terms in the parenthesis have opposite
signs.

While the above expressions are of general nature and do not take into account
the radiative temperature distribution near a wall, this can be examined for a one-
dimensional case for P-1 approximation [146].

1D Application for P-1

Now we consider application of P-1 model for a one-dimensional heat flux between
two infinite plates at two different temperatures and distance L apart (Fig. 4.28). If
there is no radiative source/sink in the medium, qr D I x is constant, for which the
relevant equations are as follows:

I D 1

4�

�
I .0/ C 3I .1/ cos �

�
; (4.520)

dI .1/

d�1
D 4�T 4 � I .0/; (4.521)

dI .2/

d�1
D �I .1/: (4.522)
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Now the closure condition for P-1 approximation is I .2/ D .1=3/I .0/ and (4.522)
becomes

1

3

dI .2/

d�1
D �I .1/: (4.523)

Since I .1/ D qr , the radiative flux for a 1D case has to be constant if there is no
internal source, and with I .0/ D 4�T 4, substituting these in (4.523), we get

1

3

dI .0/

d�1
D 4�

3

dT 4

d�1
D �qr ! �T 4 D �3

4
qr�1 C C: (4.524)

The boundary condition must now be applied to relate the temperature distribution
in the medium to the known boundary temperatures. Measuring �1 from the wall at
Tw1, the general Marshak boundary condition, (4.468), is

qout1 D
Z 2�

˝D0

�
�w1�T

4
w

�
C 1 � �w

�

Z 2�

˝D0
Iin cos �d˝

�
d˝

D �w�T
4

w1 C �.1 � �w/

Z �=2

�D0

"Z �=2

�D0
Iin sin.2�/d�

#
sin.2�/d�: (4.525)

Incident energy, Iin, in the above equation is put, and the above equation becomes

qout1 D�w1�T
4

w1 C �.1 � �w1/

Z �=2

�D0

"Z �=2

�D0
1

4�

�
4�T 4w1 C 3qr cos �

�
sin.2�/

#

� sin.2�/d� (4.526)

On the other hand the radiation expression at wall 1 .qr D qout � qin/ is

qout1 D �T 4w1 � .1 � �w1/qr : (4.527)

By substituting the result for qout1 from an earlier analysis, when starting from wall
1, is

�T 4 D �T 4w1 �
 

1

�w1 � 1
2

!
qr : (4.528)

A very similar analysis applied at wall 2 provides the condition

�T 4 D �T 4w2 �
 

1

�w2 � 1
2

!
qr : (4.529)
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Fig. 4.29 Distribution of temperature distribution and absorption coefficient Œm�1� in cavity

Combining (4.528) and (4.529), we get

�
�
T 4w1 � T 4w2

� D qr

�
1

�w1
� 1

�w2

�
: (4.530)

A slightly different expression is obtained from diffusive radiant energy transfer for
.�w1 D �w2 D �w/ as follows:

qr

�
�
T 4w1 � T 4w2

� D 1
3�L
4

C 2
�w

� 1 : (4.531)

Numerical Experimentation

Numerical experimentation was conducted for both P-1 and P-3 models with
carbon-dioxide as the gas and the maximum and wall temperatures being 500.0 and
300.0 [K], respectively, for a 3D model with two different emissivity coefficients,
0.9 and 1.0, in a cavity size of 0:2 � 0:2 � 0:2 Œm3�. The gas emissivity coefficients
were computed with the help of polynomials given in Table 4.1. Since the box
had equal length in all three directions, the results are discussed for y D z D 0.
The temperature distribution inside the cavity was assumed to be parabolic, and the
corresponding absorption coefficient is shown in Fig. 4.29.

Taking an average coefficient of 0.192, the (nondimensional) optical thickness
0:192 � 0:2 D 0:0384 is very small and it would have been in order if only thin
radiation model would have been considered.

For both the P-1 and P-3 approximations, the initial zero-th value of intensity was
put as I .0/ D 4�T 4. While the zero-th momentum integral changed during iteration
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Fig. 4.30 Distribution of I .0/

across the cavity

Fig. 4.31 Heat flux to wall and volumetric radiation source in the cavity

very little from the wall value 4�T 4wall for the P-1 model, it was different for the P-3
model, and they are shown in Fig. 4.30. Consequent to these results the radiative
heat flux to the wall, PqR, with the P-3 model was found to be considerably of larger
magnitude than the P-1 model. Similarly the volumetric energy source that is needed
for the gas energy equation for P-3 model had a much larger magnitude than for P-1
model; since the central cavity gas temperature selected was very much larger than
at the wall, the volumetric energy source is, of course, negative, and these are shown
in Fig. 4.31.

While the above results all showed a reasonable trend, comparison with pub-
lished literatures was not possible, since the published literatures had all either
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different geometry (1D, 2D, or axi-symmetric) or different approach (for given
unequal wall temperatures or different temperature distribution of the intervening
medium) or ad hoc absorption/scattering coefficient (the present work is the only
one which considers a reasonable coefficient for a realistic gas).

4.7.10 Gray and Multiband Models

Among the Gray and Multiband Models, in the former, it is assumed that the spectral
distribution of radiation is given by the Stefan-Boltzmann spectral distribution
law or a fraction thereof uniformly, while in the latter specified multibands are
considered by discretizing the spectrum into bands of finite frequency width; our
implementation is only for the first case. The total radiative heat flux is computed
by adding the results within each band. Otherwise at least two different spectral
bands must be set and it need to be checked that the spectral bands fully cover the
radiation part of spectrum and they do not overlap with each other.

For using P-1 model for various wave band intervals, the black-body radiation
in the frequency interval, where for blackbody fraction polynomial solutions are
available in tabular or closed form in book like Siegel and Howell [146].

4.7.11 Greenhouse Effect

Our implementation of P-1 model is for uniform scattering only where the scattering
coefficient is a user-specified constant. To explain the greenhouse effect, from
Planck’s radiation law, the maximum emissive power at a given temperature is at
the wave length 2,898/T Œ
�. Accordingly the maximum emissive power for the
sun’s disk .T D 6; 000K/ is at about 0:5
 (yellow), but a hot surface at about
1,000 K is at about 3
 (near infrared). A glass window transmits radiative flux in
the visible range, but not in the infrared. Accordingly, the emissive power of the sun
enters a glass room easily and heats up the surfaces there to increase the temperature
at moderate value. When it emits at an infrared wavelength, the emissive power gets
absorbed by the glass wall increasing the room temperature. The problem can be
solved by a ray tracing method at a narrow incident angle by the method like DO at
a lower wavelength, followed by diffusive transport from a surface at lower surface
temperature and higher wavelength.

4.8 Solar Energy

For the sun being the most important high temperature gas reservoir near the earth,
any discussion on the radiative energy must include the solar energy.
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In Ptolemy’s world vision, the earth was in the center of the universe and
the sun and other stars rotated around the earth. The Italian mathematician and
astronomer, Copernicus, was the first person to find that the sun is at the center
of the solar system and the earth and other planets rotate around it. Copernicus
was part of the church, and hence not much happened to him. The next great
mathematician, theoretical and experimental physicist, and astronomer, Galileo,
confirmed Copernicus system, but faced church inquisition. Next the German
physicist and astronomer, Kepler, defined the three laws of the planetary motion,
which states that all the planets travel in an elliptical orbit, while the sun is at
one focus of the ellipse. The earth is closest to the sun (perihelion) on January 3
at a distance of 1:471 � 108 km and is farthest from the sun (aphelion) on July 4
(American Independence day) at a distance of 1:521 � 108 km. Thus the earth orbit
is almost circular with eccentricity 0.02 at an average distance from the sun being
1:496 � 108 km. The planet, with hot metallic core, also rotates around its own axis
and generates a magnetic field going between the north pole and the south pole. The
planet is 23.4 degrees offset of the axis perpendicular to the earth’s orbital plane
(ecliptic plane), where also all other solar planets stay approximately. Thus there is
23:4ı offset of the equatorial plane and ecliptic plane. This offset is the reason for
the different seasons in northern and southern hemispheres. The time when these
two planes cross each other, when the day time and night time lengths are equal, it
is called equinox, and there are two of them in a year: spring equinox on March 21
and autumn equinox on September 23 in the northern hemisphere; in the southern
hemisphere these names need to be interchanged.

The Earth’s rotation axis, however, is not fixed in space, but like a rotating toy top,
the direction of the rotation axis executes a slow precession with a period of about
26,000 years, caused by the gravitational pull of the sun and the moon. Therefore,
the north celestial pole will not always point to the same star field. While currently
the Polaris is the current north pole star, in 3000 BC, the north pole would have
coincided with the Thuban, a star in the constellation of Draco, and in 14,000 A.D.,
the Vega, in Lyra, would be the northern pole star.

At the center of the solar radiation is the sun that warms our planet every day and
provides the light so that we can see and is necessary for the life on the earth.

Some of the data are given in the following:

Sun’s distance from the Earth D 1:496 � 108 km
Sun’s average diameter D 1:39 � 106 km
Volume of the sun D 1:409 � 1018 km3

Mass of the sun D 1:9891 � 1030 kg
Surface temperature D 5; 778K
Core temperature D 15:6 � 106 K
Sun rotation speed D 1:996 kms�1
Earth diameter D 1:27 � 104 km
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Thus the subtending angle by the sun on the earth is

� D 2 tan�1
�
1:27 � 104 � 0:5
1:495 � 1010

�
D 0:0048ı � 4�

360
D 6:7895 � 10�5 sterad:

The radiation energy emanating from the sun is

�T 4sun D 5:672 � 10�8 � 5:7784 � 1012
D 6:33064 � 107 Wm�2:

Radiation energy falling from the sun to the earth is

G D 6:33064 � 107 � 6:7895 � 10�5=� D 1366:26Wm�2: (4.532)

Energy from the sun per unit time and at mean sun-earth falling on the earth (solar
constant) given in literatures is G D 1; 367Wm�2.

The rotation speed of the sun of 1:997 kms�1 seen in counter clockwise direction
seen from the north at the equator surface, it rotates once every 25.4 days, and near
poles it is as much as in 36 days.

At present the sun consists of 70 % hydrogen and 28 % helium by mass, and
all other else is the 2 % of the mass. The sun’s power (about 386 � 1018 MW) is
produced by nuclear fusion reactions for which about 0.7 billion tons of hydrogen
are converted to about 95 % of helium and the rest converted to energy in the form
of gamma rays. Thus, at the present conversion rate for hydrogen, 2:209 � 1019 kg
per year is converted and hence it would take about 40 billion years to convert.
However, the sun’s diameter would grow many times and would consume most of
its planets to finally become a supernova.

It is now possible to compute the solar radiation at different locations and
different times of the day, with the help of codes developed by this author and
applied for the temperature distribution of panels on a passenger car (Fig. 4.32).
For this purpose we have to input the solar data, that is, the date, month, and year,
time of the day, and location of the object (latitude and the location altitude).

The sun’s location was counted by us from the spring equinox. From the date and
time data we can now see the position of the earth on its orbit around the sun from
the equation

earth position in orbit D 360ı

365:25
� number of days since spring equinox: (4.533)

From the same data and object location data, we get the length of a day and night
(in poles, this would be 6 months each), the sun’s position in the sky (elevation and
azimuthal angle), and the direction of the solar radiation.
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Fig. 4.32 Temperature
distribution on external
panels of a car

Next we have to compute the object panel geometry panel coordinate directions
and view factors between various panels. Finally we compute various radiation
parameters and panel temperatures, as shown in the figure.

4.9 Exercise

4.9.1 The mid-wavelengths of vibration-rotation bands of CO2 are in 2:99, 4:3,
and 15
. Calculate the characteristic vibration temperatures. Similarly the
mid-wavelengths of the vibration-rotation bands of OH, NO, HF, CN, HCl,
and CO are 4:82, 8:72, 4:69, 5:81, 6:55, and 6:67
, respectively. Compute
the characteristic vibration temperatures.

4.9.2 A tubular chamber of length 1m contains CO2 at p D 1 bar and uniform
temperature T D 1; 500K (overall absorption coefficient D 0:2m�1). (a)
Compute the emissivity of gas at one end of the chamber, and (b) if the
chamber length is doubled, then compute the emissivity.

4.9.3 Estimate the volumetric energy release for gases given in Table 4.1 at given
pressure and temperature.

4.9.4 Compare Rayleigh-Jean’s law and Wien’s law with the Prandtl radiation
law for the range of 
T larger than 2,898 mK.

4.9.5 In a solar collector, heat coming from the sun is forwarded by a reflector to
a small area, which is used to heat a fluid inside that area to run a turbine.
If the sun’s disk temperature is given as 5,780 K, can the temperature at the
focusing point be larger than this temperature if the diameter of the focusing
mirror is made very large?



Chapter 5
Collision Processes for High Temperature Gases

In Chap. 3 it has been shown that the individual molecules in a gas are continuously
at random motion, whose velocity distribution at a given instant defines the
translational temperature of the particles. It is evident that the individual particles
do not retain their original speed and direction of motion at all times, and only
for rigid particles and in between collisions these may be considered constant with
time. Although the particles may not be considered to be rigid sphere, such an
assumption simplifies the mathematical procedure considerably, and any deviation
from the rigid sphere model can be taken care of by using correction factors.
While the temperature is considered to be linked with the energy distribution and
hence requires the concept of equilibrium, one can assume local equilibrium to
define the local temperature. Any deviation of the temperature from place to place
is then considered as a deviation of the energy distribution, which causes transport
of mass, momentum, and energy from place to place. In this chapter, therefore, we
consider the collision between the particles.

5.1 Dynamics of Binary Collision

Let us now consider two rigid spherical molecules 1 and 2, with masses M1 and
M2, and let them collide in line with direction of motion of each of them (Fig. 5.1).
Let v0

1 and v0
2 be the respective speeds before collision and v00

1 and v00
2 after the

collision. Therefore the principle of conservation of momentum and energy gives
the following two equations:

M1v
0
1 CM2v

0
2 D M1v

00
1 CM2v

00
2 (5.1)

M1v
02
1 CM2v

02
2 D M1v

002
1 CM2v

002
2 : (5.2)

T.K. Bose, High Temperature Gas Dynamics: An Introduction for Physicists and Engineers,
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Fig. 5.1 Binary collision of non-attracting rigid sphere

From the above two equations, we can write further

M1.v
0
1 � v00

1 / D �M2.v
0
2 � v00

2 / and

M1.v
02
1 � v002

1 / D �M2.v
02
2 � v002

2 /: (5.3)

Dividing one by the other, we get

v0
1 C v00

1 D v0
2 C v00

2 : (5.4)

Hence,

v0
1 � v0

2 D v00
2 � v00

1 : (5.5)

Introducing the concept of the relative speed

g0
21 D v0

2 � v0
1 D �g0

12

g00
21 D v00

2 � v00
1 D �g00

12 (5.6)

we can write, therefore,

g00
21 D g0

12; g
00
12 D g0

21 (5.7)

and can state further that the relative motion of the particles changes in direction
only, but not in magnitude after collision. By simple manipulation of (5.1, 5.2), we
get further

v00
1 D 2M2v

0
2

M1 CM2

C .M1 �M2/v
0
1

M1 CM2

(5.8)

and

v00
2 D 2M1v

0
1

M1 CM2

C .M2 �M1/v
0
2

M1 CM2

: (5.9)
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From (5.8, 5.9) two special situations may be noted. For collision between two
particles of equal mass .M1 D M2/, we get the relation v00

1 D v0
2 and v00

2 D v0
1.

Therefore, in this particular case, the particles exchange their velocities on collision.
In the second case, if one of the particles is very light with respect to the other
(for example, subscript 1 may denote an electron and 2 a heavy particle), then
v00
1 D 2v0

2 � v0
1 � �v0

1 and v00
2 D .2M1=M2/v

0
1 C v0

2 � v0
2 (unless v0

1 � v0
2).

Therefore, the heavy particle continues to move after collision in the same direction
and with the same speed as before the collision, whereas the light electron just
bounces back like an elastic ball.

At this stage we introduce the concept of the mass-averaged speeds from the
definition

G0 D .M1v
0
1 CM2v

0
2/=.M1 CM2/ (5.10)

and

G00 D .M1v
00
1 CM2v

00
2 /=.M1 CM2/: (5.11)

Substituting (5.10, 5.11) into (5.9) and after some manipulation, one can show
easily that

G0 D G00 D G; (5.12)

where

G D Y1v
0
1 C Y2v

0
2 D Y1v

00
1 C Y2v

00
2 : (5.13)

and the respective mass fractions are given by relations

Y1 D M1

M1 CM2

and Y2 D M2

M1 CM2

: (5.14)

From (5.8, 5.9) and the definition of the relative speed and the mass-averaged
speed, (5.6, 5.7) and (5.10, 5.11), we can write, therefore, the following four
expressions

v0
1 D G � Y2g0

21I v00
1 D G � Y2g00

21

v0
2 D G � Y1g0

12I v00
2 D G � Y1g00

12 :

From the above equations we can now find the expressions for the change of
momentum

�p1 D M1.v
00
1 � v0

1/ D �.v0
2 � v0

1/ D �g0
21 (5.15)

and

	p2 D M2.v
00
2 � v0

2/ D �.v0
1 � v0

2/ D �g0
12 (5.16)
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and the change of energy of each particle is

	E1 D M1

2
.v002
1 � v02

1 / D �Gg0
21 (5.17)

and

	E2 D M2

2
.v002
2 � v02

2 / D �Gg0
12; (5.18)

where the reduced mass is

� D 2M1M2

M1 CM2

: (5.19)

On the other hand, the total energy before collision is

E 0 D 1

2
M1v

02
1 C 1

2
M2v

02
2 D M1

2
ŒG � Y2g0

21�
2 C M2

2
ŒG � Y1g0

12�
2

D 1

2
G2.M1 CM2/C 1

4
�g02

12 (5.20)

which remains conserved after collision.
Substituting (5.8) into (5.17) we can write after some manipulation as

	E1 D 2M1M2

.M1 CM2/2
.M1v

0
1 CM2v

0
2/.v

0
2 � v0

1/: (5.21)

If we relate average kinetic energy of each particle with temperature of the
particle by the relation

1

2
Mv02 D 3

2
kBT (5.22)

we can write (5.21) approximately as

	E1 D 3M1M2

.M1 CM2/2
kB.T2 � T1/ : (5.23)

Thus, the energy exchange between the particles depends on the value of the mass
ratio .M1=M2/ and is considerably reduced ifM1 � M2. Based on a rigid analysis,
Sutton and Sherman [150] found that the average change in the kinetic energy per
collision between the electron (subscript “e”) and the heavy particle (subscript “h”)
is given, as also from (5.23), by the relation

	E D 3
Me

Mh

kB.Te � Th/ : (5.24)
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Fig. 5.2 Binary collision
between two spheres: (a)
rigid and (b) attracting

Consideration of the relative speed instead of the absolute speeds simplifies the
analysis considerably and is often used in practice. Thus it is assumed that a
particle at rest is approached by another particle of mass � and relative speed before
collision g0

12 in such a manner that the centers of two particles are separated by a
distance bo (Fig. 5.2a). After collision the relatively moving particle is deflected by
an angle �. Please note that the angle of deflection � and the collision angle  for a
collision between rigid spheres are related by the relation � D � � 2 . It is evident
that for rigid spherical molecules the angle of deflection is dependent on the value
of bo and will be equal to zero if bo 
 .d1 C d2/=2. It is not dependent on the value
of the relative speed before collision g12.

For collisions between molecules in which the long-distance forces act before
and after collision, the flight path of the approaching molecule (when the other
molecule is assumed to be relatively at rest) changes its direction of motion even
before and after collision, as shown for interaction between attracting spheres in
Fig. 5.2b. As a result of the force of attraction the path of the colliding molecule is
curved, whereas the point of collision for an apparent straight path before collision
lies at a larger distance than the actual point of collision.Thus the collision path
and the cross section can be determined from the nature of forces (for example,
attracting or repelling Coulomb force). For collisions between non-similar charges
the particles attract each other, and for collisions between similar charges they repel
each other; the one with an attracting force between the molecules leads to a larger
value of the collision cross section than the one with a repulsive force. This can be
noted from the calculated values of the collision cross sections (for diffusion) for
argon between 5,000 and 20,000 K, as given in Table 5.1. It is worth noting that the
collision cross sections between electrons and neutral atoms are of the same order
of magnitude as that given for hydrogen atom given in Chap. 2 by estimating it from
the electron orbit radius, whereas for neutral-neutral collision these are just about
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Table 5.1 Computed
collision cross section ŒÅ�2

for argon

T[K] Ar-Ar Ar-ArC e-Ar e-ArC e-e

5,000 17.4 100.0 1.48 1.74e4 1.67e4
6,000 16.7 96.3 1.87 6.87e3 6.82e3
7,000 16.1 93.1 2.26 4.28e3 4.19e3
8,000 15.7 90.4 2.66 2.87e3 2.77e3
9,000 15.2 88.1 3.05 2.03e3 1.92e3
10,000 14.9 86.0 3.44 1.50e3 1.39e3
11,000 14.5 84.2 3.84 1.15e3 1.05e3
12,000 14.2 82.5 4.23 918.1 825.4
13,000 14.0 81.0 4.62 753.7 671.0
14,000 13.7 79.6 5.00 640.1 567.5
15,000 13.5 78.3 5.37 560.3 497.4
16,000 13.3 77.1 5.74 502.1 448.0
17,000 13.1 76.0 6.09 456.7 410.4
18,000 12.9 74.9 6.44 418.5 378.8
19,000 12.7 74.0 6.77 386.0 351.7
20,000 12.5 73.0 7.08 357.8 328.2

an order of magnitude larger than those for electron-atom collision cross section.
The collision cross section between charged particles is, however, 3 to 4 orders of
magnitude larger than those for the electron atom, which are due to long-distance
forces acting between them. As a result of these long-distance forces, the collision
cross section has effectively a value Qeff, different from the one that is calculated
from the rigid spherical model Qrigid and they are related by the expression

Qeff D Qrigid

�
1C



4

�

1

Ng2
Z 1

0

�F.r/dr

�
; (5.25)

where Qrigid D �d2, d D .d1 C d2/=2 is the average of diameters of the two
colliding particles, F is the force acting between the two particles, � is the reduced
mass, and Ng2 is the mean of .g2/, that is, the square of the relative speed, as the
particles approach each other. For large values of g, it is possible to assume g2 D Ng2.
Since the force and potential distribution are related, F D �r�, where � is the
potential, then

Z �1

d

�F.r/dr D �1 � �d : (5.26)

Usually, the potential at infinity is assumed to be zero, and it is enough to know the
potential �d at the time of collision. This is further explained in the next section and
the methods to compute the collision cross section are given.
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5.2 Collision Cross Section

5.2.1 Collision Between Neutrals

For a collision between two neutral particles several models are available, some of
which are given in Fig. 5.3 and from which the collision cross sections Q.l;s/ are
obtained. The superscript (l,s) refers to certain values that are given in terms of
the so-called sonine polynomials. Among the various potential models, Lennard-
Jones 6-12 model and exponential repulsive model are both used for neutral-neutral
collision. The Lennard-Jones 6-12 model, so-called, because of the exponents 6 and
12 in the equation for potential, has the advantage of being a two-parameter model,
for which the mole mass and both the parameters .dj ; �=kB/ are tabulated for a
large number of gases (Table 5.2). The collision cross section is obtained by defining
a reduced temperature T � D kB T=�, which is further used to obtain the reduced
collision cross section Q�.l;s/ by interpolating the tabulated reduced cross-sectional
values (for example, by Hirschfelder et al.), part of which is reproduced in Table 5.4.
For collisions between particles of different species, the potential parameter and the
average particle diameter are obtained from the relations

Fig. 5.3 Some commonly
used potentials for collision
between two particles
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Table 5.2 Lennard-Jones
potential constants for
selected molecules

Gas Mole mass dj .Å/ �=kB

He 4.003 2.576 10.22
Ne 20.18 2.858 27.5
Ar 39.94 3.421 119.5
Kr 83.80 3.610 190.0
Xe 131.30 4.055 229.0
Li 6.94 2.970 1848.0
Na 22.99 3.665 1333.0
K 39.10 4.545 1190.0
Cs 132.90 5.005 1097.0
Mg 24.32 2.897 1612.0
Al 26.98 2.615 3003.0
Cu 63.54 2.332 3312.0
Hg 200.6 2.923 728.0
H 1.008 2.680 38.0
N 14.01 3.100 91.5
O 16.0 2.900 100.0
Cl 35.5 3.600 316.0
H2 2.016 2.915 38.0
N2 28.02 3.681 91.5
O2 32.0 3.499 100.0
Cl2 70.9 4.217 316.0
NO2 30.01 3.481 121.0
N2O 44.02 3.816 237.0
NH3 17.03 2.902 692.0
H2O 18.016 2.520 775.0
CO 28.01 3.678 94.5
HCl 36.47 3.305 360.0
CH4 16.04 3.796 144.0
CO2 44.01 3.952 200.0

�jk D p
�j �k and djk D .dj C dk/=2: (5.27)

The Lennard-Jones potential model, because of the availability of the collision
cross-sectional data for a large number of gases, is easy to use. Even when they
are not tabulated, they can be obtained easily from the critical states or state values
at one atmospheric pressure. For this purpose Guldberg’s rule states that at one
atmospheric pressure the boiling point temperature Tb is approximately two-thirds
of the critical temperature Tc . Further, from the principle of corresponding states,
the critical specific volume vc is about three times the liquid specific volume v0

b ,
which is the inverse of the liquid density �0

b at the boiling point temperature,
while the compressibility factor at the critical state, pcvc=.RTc/, is constant and
is equal to 0.293 for nonpolar molecules. Incidentally, some of these properties
for metals given in Table 5.3 were obtained by using these rules if the data were
not otherwise available. In addition, from the correspondence principle of transport
properties, the two parameters of Lennard-Jones model, potential parameter and
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Table 5.3 Critical states for some metals

Element TbŒK� �bŒkgm�3� TcŒK� vc Œm2:kg�1� pcŒbar�

Li 1,600 420 2,400 7.14e-3 1,180
Na 1,155 740 1,732 4.05e-3 453
K 1,030 660 1,545 4.54e-3 212
Cs 950 1,680 1,425 1.78e-3 147
Mg 1,363 1,585 2,093 1.89e-3 1,108
Al 2,600 2,390 3,900 1.25e-3 2,805
Cu 2,868 7,940 4,302 3.78e-4 4,365
Hg 630 12,740 945 2.35e-4 728

molecular diameter, are related to the critical temperature and critical specific
volume. The potential parameter .�=kB/ D 0:77Tc . and the molecular diameter
can be determined, from a dimensional analysis, as

d D .M fkggv0
bfm3kg�1g/1=3 D

�
mv0

b

NA

�1=3
; (5.28)

where the result is in [m]. If it is divided with 10�10, then we get the relation
for molecular diameter d D 11:843.mv0

b/
1=3 ŒÅ�. In literatures the constant is put

slightly different and the molecular diameter is given by the relation

d D 11:659.mv0
b/
1=3 Å : (5.29)

Herein, m is the mole mass and v0
b is the liquid molar specific volume Œm3kg�1� at

normal boiling temperature (equivalent of one atmosphere pressure).
We would examine the above relationship on the basis of existing data for water,

although it is a polar gas. The existing data in literature for water are as follows:

v0
b D 0:0010435 Œm3kg�1�; vc D 0:00326Œm3kg�1�; Tb D 373:15 ŒK�

Tc D 647:30 [K] and pc D 220:64 [bar] :

Accordingly, pcvc=.RTc/ D 0:241 (from van der Waals equation, it should be 3/8
or 0.375). Further from the above sketched estimates for water, .�=kB/ D 498K
and d D 3:100 Å. However the data by Brokaw [36] for these, from viscosity data,
are �=kB D 775 K and d D 2:520 Å.

For some of the technically important metals the values of the critical state are
given in Table 5.3 and the corresponding Lennard-Jones potential parameter is given
in Table 5.2. Table 5.4 contains the nondimensional cross-sectional data Q�.l;s/ as
a function of T � to Lennard-Jones 6-12 potential reproduced from Hirschfelder
et al. [74]. The appropriate Q.l;s/ data is obtained by multiplying Q�.l;s/ with the
cross-sectional area for rigid-body collision, Qrigid D �d2jk . However, Amdur and
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Table 5.4 Q�.l;s/ for Lennard-Jones potential

kBT=� Q�.1;1/ Q�.1;2/ Q�.1;3/ Q�.1;4/ Q�.1;5/ Q�.2;2/ Q�.2;3/ Q�.2;4/ Q�.3;1/

0.3 2.662 2.256 1.962 2.785 2.535 2.333 2.152 1.990 2.557
0.4 2.318 1.931 1.663 2.492 2.232 2.016 1.883 1.682 2.223
0.5 2.066 1.705 1.468 2.257 1.992 1.781 1.614 1.486 1.975
0.6 1.877 1.543 1.336 2.065 1.806 1.610 1.463 1.356 1.788
0.7 1.729 1.423 1.242 1.908 1.661 1.484 1.357 1.267 1.645
0.8 1.612 1.332 1.172 1.780 1.549 1.389 1.278 1.201 1.535
0.9 1.517 1.261 1.119 1.675 1.460 1.316 1.219 1.152 1.447
1.0 1.439 1.204 1.076 1.587 1.388 1.258 1.172 1.113 1.377
1.1 1.375 1.157 1.041 1.514 1.329 1.212 1.135 1.082 1.319
1.2 1.320 1.119 1.013 1.452 1.280 1.174 1.104 1.056 1.272
1.3 1.273 1.086 0.989 1.399 1.239 1.142 1.078 1.035 1.232
1.4 1.233 1.059 0.968 1.353 1.205 1.115 1.057 1.016 1.198
1.5 1.193 1.034 0.950 1.314 1.175 1.092 1.037 1.000 1.169
1.6 1.167 1.013 0.934 1.279 1.149 1.072 1.022 0.986 1.144
1.7 1.140 0.995 0.920 1.248 1.126 1.054 1.007 0.973 1.122
1.8 1.116 0.978 0.908 1.221 1.106 1.038 0.994 0.962 1.103
1.9 1.094 0.963 0.897 1.197 1.088 1.024 0.982 0.952 1.085
2.0 1.075 0.950 0.887 1.175 1.073 1.012 0.972 0.943 1.070
2.2 1.041 0.927 0.869 1.138 1.045 0.989 0.952 0.926 1.043
2.4 1.012 0.907 0.854 1.107 1.022 0.971 0.937 0.912 1.021
2.6 0.988 0.891 0.841 1.081 1.002 0.955 0.923 0.900 1.003
2.8 0.967 0.877 0.829 1.058 0.985 0.941 0.912 0.889 0.986
3.0 0.949 0.864 0.819 1.039 0.971 0.929 0.901 0.879 0.972
3.2 0.933 0.852 0.809 1.022 0.958 0.918 0.891 0.870 0.960
3.4 0.919 0.842 0.801 1.007 0.946 0.908 0.882 0.862 0.948
3.6 0.906 0.833 0.793 0.993 0.936 0.899 0.874 0.854 0.938
3.8 0.894 0.824 0.786 0.981 0.926 0.891 0.867 0.847 0.929
4.0 0.884 0.817 0.779 0.970 0.917 0.884 0.859 0.840 0.920
4.2 0.874 0.809 0.773 0.960 0.909 0.877 0.853 0.834 0.912
4.4 0.865 0.803 0.767 0.951 0.902 0.870 0.847 0.828 0.905
4.6 0.857 0.796 0.761 0.942 0.895 0.864 0.841 0.823 0.899
4.8 0.849 0.791 0.756 0.934 0.888 0.858 0.836 0.818 0.892
5.0 0.842 0.785 0.751 0.927 0.882 0.853 0.831 0.813 0.886
6.0 0.812 0.761 0.729 0.896 0.856 0.829 0.808 0.791 0.861
7.0 0.790 0.742 0.712 0.873 0.836 0.810 0.790 0.774 0.841
8.0 0.771 0.726 0.697 0.854 0.819 0.794 0.775 0.759 0.825
9.0 0.756 0.713 0.685 0.838 0.805 0.781 0.762 0.746 0.811
10 0.742 0.701 0.673 0.824 0.792 0.769 0.750 0.734 0.799
20 0.664 0.629 0.605 0.743 0.716 0.695 0.678 0.664 0.724
30 0.623 0.591 0.568 0.700 0.675 0.655 0.640 0.626 0.684
40 0.596 0.565 0.543 0.672 0.647 0.628 0.613 0.601 0.657
50 0.576 0.546 0.525 0.650 0.627 0.608 0.594 0.582 0.637
60 0.560 0.531 0.510 0.633 0.610 0.593 0.578 0.566 0.621
70 0.546 0.518 0.498 0.619 0.597 0.579 0.566 0.554 0.607
80 0.535 0.507 0.488 0.608 0.585 0.568 0.555 0.543 0.596
90 0.526 0.498 0.479 0.597 0.575 0.559 0.545 0.534 0.587
100 0.517 0.490 0.471 0.588 0.567 0.550 0.537 0.526 0.578
200 0.464 0.440 0.423 0.532 0.513 0.498 0.486 0.476 0.525
300 0.436 0.413 0.397 0.502 0.483 0.469 0.458 0.449 0.495
400 0.417 0.395 0.380 0.481 0.464 0.450 0.439 0.430 0.476
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Table 5.5 Exponential
repulsive potential constants
for selected gases

Gas �o.eV/ ro.Å/

He 386 0.220
Ne 8,680 0.196
Ar 3.23e4 0.224
Kr 3.87e5 0.202
Xe 3.11e6 0.208
N2 1.35e4 0.263

Mason found from a series of experiments that instead of the Lennard-Jones 6-12
model a two-parameter exponential repulsive model

� D �o exp�r=ro (5.30)

requiring the two values of �o and ro gives a fair fit to the potential obtained
both from the scattering data and from the measurements of viscosity at lower
temperatures. These values are given in Table 5.5. For argon, the values were
subsequently modified to �o D 7; 100 eV and ro D 0:258 Å. For collision between
two different particles, the parameters �o and ro for each particle are replaced by the
following expressions:

�o D p
�oj �ok (5.31)

and

1

ro
D 1

2

�
1

roj
C 1

rok

�
: (5.32)

Actual determination of the collision cross section for the exponential repulsive
potential is very simple. A collision parameter

˛ D lnŒ�o=.kBTh/� (5.33)

is used to determine the tabulated values of a function I .l;s/ in Monchik Tables [111]
reproduced in Table 5.6 and Th is the temperature of the heavy particles. Collision
cross section is then obtained from the relation

Q.l;s/ D 8�˛2r2o I
.l;s/

.s C 1/Š

�
1 � 1C .�1/l

2.l C 1/

� : (5.34)
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Table 5.6 Monchik table for exponential repulsive potential for neutral-neutral collision

˛ I .1;1/ I .1;2/ I .1;3/ I .2;2/ I .2;3/ I .3;3/ I .1;4/ I .1;5/ I .2;4/

3.5 0.188 0.445 1.465 0.503 1.713 2.242 6.189 31.93 7.447
4.0 0.193 0.472 1.602 0.509 1.772 2.327 6.958 36.85 7.872
4.5 0.197 0.495 1.718 0.512 1.816 2.396 7.614 41.09 8.195
5.0 0.201 0.515 1.817 0.515 1.849 2.453 8.176 44.74 8.447
5.5 0.204 0.532 1.902 0.516 1.875 2.501 8.660 47.91 8.646
6.0 0.207 0.546 1.976 0.517 1.895 2.541 9.082 50.68 8.807
6.5 0.209 0.559 2.040 0.518 1.911 2.575 9.451 53.11 8.939
7.0 0.212 0.570 2.097 0.518 1.925 2.605 9.777 55.25 9.049
7.5 0.214 0.580 2.147 0.518 1.935 2.630 10.067 57.17 9.141
8.0 0.215 0.589 2.192 0.518 1.944 2.653 10.326 58.89 9.219
8.5 0.217 0.597 2.232 0.518 1.952 2.673 10.560 60.43 9.286
9.0 0.218 0.604 2.269 0.518 1.958 2.691 10.770 61.83 9.344
9.5 0.220 0.611 2.302 0.518 1.963 2.707 10.962 63.10 9.394
10.0 0.221 0.617 2.332 0.518 1.968 2.722 11.137 64.26 9.438
10.5 0.222 0.622 2.360 0.517 1.972 2.735 11.297 65.32 9.477
11.0 0.223 0.627 2.385 0.517 1.975 2.747 11.444 66.30 9.511
11.5 0.224 0.632 2.409 0.517 1.978 2.758 11.580 67.20 9.542
12.0 0.225 0.636 2.430 0.517 1.981 2.768 11.705 68.04 9.569
12.5 0.226 0.640 2.451 0.516 1.983 2.777 11.822 68.82 9.594
13.0 0.227 0.644 2.469 0.516 1.985 2.786 11.931 69.54 9.616
13.5 0.227 0.647 2.487 0.516 1.987 2.794 12.032 70.21 9.636
14.0 0.228 0.651 2.503 0.515 1.988 2.801 12.127 70.84 9.654
14.5 0.229 0.654 2.518 0.515 1.990 2.808 12.215 71.44 9.671
15.0 0.229 0.656 2.533 0.515 1.991 2.814 12.299 71.99 9.686
15.5 0.230 0.659 2.546 0.514 1.992 2.820 12.377 72.51 9.700
16.0 0.230 0.662 2.559 0.514 1.993 2.826 12.451 73.01 9.713
17.0 0.231 0.666 2.583 0.514 1.994 2.836 12.587 73.91 9.736
18.0 0.232 0.670 2.604 0.513 1.996 2.845 12.709 74.73 9.756
19.0 0.233 0.674 2.623 0.513 1.997 2.853 12.819 75.46 9.773
20.0 0.234 0.678 2.640 0.512 1.998 2.860 12.919 76.13 9.788
21.0 0.235 0.681 2.655 0.512 1.998 2.867 13.010 76.73 9.802
22.0 0.235 0.684 2.670 0.511 1.999 2.873 13.093 77.29 9.813
23.0 0.236 0.686 2.683 0.511 2.000 2.879 13.169 77.80 9.824
24.0 0.236 0.689 2.695 0.511 2.000 2.884 13.240 78.27 9.833
25.0 0.237 0.691 2.706 0.510 2.000 2.888 13.305 78.70 9.841
26.0 0.237 0.693 2.717 0.510 2.001 2.892 13.365 79.11 9.849
27.0 0.238 0.695 2.727 0.510 2.001 2.896 13.422 79.48 9.856
28.0 0.238 0.697 2.736 0.509 2.001 2.900 13.474 79.83 9.862
28.5 0.238 0.698 2.740 0.509 2.001 2.902 13.499 80.00 9.865

5.2.2 Collision Between Electrons and Neutrals

The collision cross section for collisions between the electrons and neutral particles
is determined from the experimental values of the gas-kinetic cross sections, Q.1/,
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values of which are given by Kollath [87] and Massey and Burhop [99] as a function
of the kinetic energy E of the colliding electrons. These data for different gases are
given in Tables 5.7 and 5.8. Q.1;s/ is now determined with the help of the equation

Q.l;s/ D .kBTe/
�.sC2/

.s C 1/Š

Z 1

0

exp�E=.kBTe/ Q.1/E.sC1/dE: (5.35)

However, Q.1/ values, which are needed for integration in the kinetic energy range
from zero to infinity, are available experimentally only in a limited range of the
kinetic energy, and the classical methods to determine the collision cross section by
assuming the potential with distance cannot be used because of the so-called Ram-
sauer effect. According to this effect, at low values of the kinetic energy the partici-
pating neutrals in the collision become almost transparent to the electrons. In order
to estimate the effect of truncation in the experimental gas-kinetic cross-sectional
data, we introduce a nondimensional kinetic energy E� D E=.kBTe/. Thus (5.35)
becomes

Q.1;s/ D 1

.s C 1/Š

Z 1

0

exp�E�

Q.1/E�.sC1/dE� : (5.36)

Assuming Q.1/ to be constant in the entire range of the experimentally determined
tabulated data, (5.36) can be integrated within two limitsE�

1 andE�
2 , and it becomes

Q.1;s/

Q.1/
D � exp�E�

�
1CE� C 1

2
E�2 C : : :C 1

.s C 1/Š
E�.sC1/

�ˇ̌
ˇ̌E

�

1

E�

1

: (5.37)

The maximum contribution in the integral comes from around the nondimensional
energy E� D E�

m D .s C 1/. Assuming Te between 5,000 and 20,000K and the
values of s needed to be considered between 1 and 7, the maximum contribution to
the integral should be around Em D 1 eV and 16 eV. Therefore, during evaluation
of (5.35), the experimental Q.1/ data were extrapolated beyond the experimentally
given range of E in order to compute Q.1;s/. Integration was done by Simpson’s
rule and the error due to extrapolation of the experimentally determined gas-kinetic
cross section is estimated to be less than 5%.

5.2.3 Ion-Neutral Collision

In principle, experimentally determined gas-kinetic data for ion-atom collision
similar to the collision between the electrons and neutrals should be used. It has,
however, been noted by Kollath [87] that the light ions moving in a light or heavy
gas show only scattering (for example, LiC in He and in Hg vapor) without any
loss of energy. On the other hand, the heavier ions in heavy neutrals exchange the
charge preferentially and in lighter gases there can be losses in energy. Thus various
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Table 5.7 Tabulated value of Q.1/ ŒÅ2� for selected electron-atom collision

E(eV) He Ne Ar Kr Xe Li Na K Cs H N O

0.00 5.0 0.2 8.1 30.7 176.0 299 338 494 429 17.6 0.00 3.7
0.01 5.2 0.3 6.1 26.0 116.0 272 317 481 397 17.6 0.01 3.7
0.02 5.3 0.3 3.7 19.7 80.0 259 301 476 373 17.6 0.03 3.7
0.03 5.5 0.4 2.8 16.0 61.3 252 292 473 359 17.6 0.04 3.7
0.04 5.5 0.5 2.3 13.5 48.0 247 286 471 350 17.6 0.05 3.7
0.05 5.6 0.5 1.8 11.4 39.5 243 281 469 343 17.5 0.07 3.7
0.06 5.7 0.6 1.5 10.0 33.4 240 277 468 337 17.5 0.08 3.8
0.07 5.7 0.6 1.1 9.1 29.0 238 274 467 332 17.5 0.10 3.8
0.08 5.8 0.6 0.9 8.2 25.6 236 271 466 328 17.5 0.11 3.8
0.09 5.8 0.7 0.6 7.5 23.4 234 269 465 325 17.5 0.12 3.8
0.10 5.9 0.7 0.5 6.8 20.4 232 267 464 321 17.5 0.14 3.8
0.11 5.9 0.7 0.3 6.3 18.7 231 265 464 319 17.4 0.15 3.8
0.12 5.9 0.8 0.3 5.8 16.9 229 263 463 316 17.4 0.16 3.9
0.13 6.0 0.8 0.3 5.3 15.1 228 262 463 314 17.4 0.18 3.9
0.14 6.0 0.8 0.2 4.9 14.1 227 260 462 312 17.4 0.19 3.9
0.15 6.0 0.8 0.2 4.4 13.0 226 259 462 310 17.4 0.20 3.9
0.16 6.1 0.9 0.2 4.0 12.0 225 257 461 308 17.3 0.22 3.9
0.17 6.1 0.9 0.2 3.6 11.1 224 256 461 306 17.3 0.23 4.0
0.18 6.1 0.9 0.2 3.2 10.2 223 255 460 304 17.3 0.25 4.0
0.19 6.1 0.9 0.2 3.0 9.3 222 254 460 303 17.3 0.26 4.0
0.20 6.2 0.9 0.2 2.5 8.4 221 253 460 302 17.2 0.27 4.0
0.25 6.3 1.0 0.2 1.5 5.3 218 249 458 295 17.1 0.34 4.1
0.30 6.3 1.1 0.2 1.0 3.2 215 246 457 290 17.0 0.41 4.2
0.35 6.4 1.1 0.2 0.8 2.5 218 243 456 286 17.0 0.48 4.3
0.40 6.5 1.2 0.2 0.6 1.7 222 240 455 283 16.9 0.55 4.3
0.45 6.5 1.2 0.2 0.6 1.6 226 238 454 280 16.8 0.62 4.4
0.50 6.6 1.3 0.3 0.5 1.4 229 236 453 277 16.7 0.69 4.5
0.55 6.6 1.3 0.3 0.5 1.3 232 235 453 275 16.6 0.75 4.6
0.60 6.7 1.4 0.4 0.5 1.3 235 233 452 272 16.5 0.82 4.7
0.65 6.7 1.4 0.5 0.5 1.4 238 232 451 270 16.4 0.89 4.8
0.70 6.7 1.4 0.5 0.5 1.5 241 230 451 269 16.3 0.96 4.9
0.75 6.7 1.5 0.6 0.5 1.5 243 229 451 267 16.2 1.03 5.0
0.80 6.8 1.5 0.7 0.5 1.6 245 228 450 265 16.1 1.10 5.0
0.85 6.8 1.5 0.8 0.5 1.8 248 227 450 264 16.0 1.17 5.1
0.90 6.8 1.5 0.9 0.6 2.0 250 226 449 262 15.9 1.23 5.2
0.95 6.8 1.6 1.0 0.6 2.3 252 225 449 261 15.8 1.30 5.3
1.00 6.6 1.6 1.0 0.6 2.5 254 224 449 260 15.7 1.37 5.4
1.50 6.4 1.8 1.7 1.3 5.4 273 228 403 348 14.9 2.03 5.9
2.00 6.3 2.0 2.5 2.1 8.2 257 374 358 520 14.0 2.60 6.3
2.50 6.2 2.2 3.3 3.5 12.6 224 345 345 572 13.2 3.14 6.7
3.00 5.9 2.2 4.1 4.8 17.0 211 192 335 553 12.5 3.68 7.0
3.50 5.7 2.3 4.9 7.4 20.9 192 182 309 455 11.8 4.20 7.2
4.00 5.6 2.5 5.8 10.0 24.8 179 179 280 358 11.1 4.71 7.5
6.00 5.0 2.7 8.7 12.6 29.2 153 164 226 226 8.9 5.34 7.7

(continued)
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Table 5.7 (continued)

E(eV) He Ne Ar Kr Xe Li Na K Cs H N O

8.00 4.7 3.0 11.7 15.9 33.7 130 150 202 202 7.0 5.85 7.9
10.00 4.4 3.1 13.8 19.3 32.0 105 128 176 176 5.6 6.27 8.1
12.00 3.7 3.2 14.5 22.0 29.7 91 115 163 163 4.4 6.64 8.2
14.00 3.4 3.2 13.5 21.0 27.5 80 105 152 152 3.5 6.97 8.3
16.00 3.1 3.2 12.4 20.0 25.2 72 97 143 143 2.8 7.27 8.4
18.00 2.9 3.3 11.4 19.0 22.9 65 89 131 131 2.2 7.55 8.5

different collisional models are applicable, and although there is a large quantity
of data for the ion-atom collision available today, it is still not sufficient to explain
the entire phenomenon. For some noble and other gases the charge transfer cross
section for the ion-atom collision, Qtr , is available (please see Hasted [71]), which
is related to the relative speed g by the relation

Qtr D 1

2
.A � B lng/2; (5.38)

where A and B are constants. These constants are obtained from either the direct
measurement of the charge transfer cross section or the measurement of the mobility
coefficient. The value of these constants are given in Table 5.9 for some of the gases.
The collision cross section Q.1;s/, which is needed mainly for calculation of the
diffusion coefficient, is then obtained from the relation

Q.1;s/ D .96B2 � 19:62AB C A2/C .9:8B2 C B2ˇ=2 � AB/ ln.Th=mh/

C B2Œln.Th=mh/�
2=4C B2.ˇ2 C 37:2ˇ C 1:644 � �/ � ABˇ;

(5.39)

where

ˇ D
sC1X
1

�
1

n

�
� � I � D

sC1X
1

1

n2
(5.40)

.� D Euler’s constant D 0:577215665/ :

Further, Q.2;s/ is sometimes determined by taking an average of the two collision
cross sectionsQ.2;s/

1 andQ.2;s/
2 , whereQ1 andQ2 are determined separately for the

exponential repulsive potential with potential constants given in Table 5.10 using
the Monchik or Lennard-Jones tables described earlier for the atom-atom collision.
Thus,

Q.2;s/ D 1

3
Q
.2;s/
1 C 2

3
Q
.2;s/
2 : (5.41)
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Table 5.8 Tabulated value of Q.1/ ŒÅ2� for selected electron-molecule collision

E(eV) H O2 N2 Cl2 NO N2O NH3 H2O CO HCl CH4 CO2

0.00 30.4 12.9 27.5 0 27 80.0 4,730 6,683 25.8 0.0 5.4 266
0.01 29.3 11.7 26.9 200 26 41.4 1,830 3,020 24.6 1.7 4.4 150
0.02 28.1 10.0 25.7 514 25 29.9 896 1,496 22.9 2.4 3.7 112
0.03 27.4 9.2 25.0 583 25 25.3 596 1,059 21.9 3.0 3.3 95
0.04 26.9 8.6 24.5 583 25 21.3 427 794 21.3 3.4 3.1 85
0.05 26.5 8.2 24.2 583 25 19.8 331 635 20.8 3.8 3.0 75
0.06 26.2 7.9 23.9 583 24 18.0 280 536 20.4 4.2 2.8 66
0.07 26.0 7.6 23.6 583 24 16.6 244 464 20.1 4.5 2.7 59
0.08 25.8 7.4 23.4 583 24 15.5 216 410 19.8 4.9 2.6 53
0.09 25.6 7.2 23.2 583 24 14.5 194 367 19.6 5.1 2.5 49
0.10 25.4 7.1 23.1 583 24 13.8 176 333 19.4 5.4 2.5 45
0.11 25.3 6.9 22.9 583 23 13.1 161 305 19.2 5.7 2.4 42
0.12 25.1 6.8 22.8 583 23 12.5 149 281 19.0 5.9 2.4 40
0.13 25.0 6.7 22.7 581 23 12.0 139 261 18.8 6.2 2.3 37
0.14 24.9 6.6 22.6 580 23 11.5 130 243 18.7 6.4 2.3 36
0.15 24.8 6.5 22.5 579 23 11.1 122 228 18.6 6.6 2.2 34
0.16 24.7 6.4 22.4 578 23 10.7 115 215 18.4 6.9 2.2 32
0.17 24.6 6.3 22.3 578 23 10.4 109 203 18.3 7.1 2.2 31
0.18 24.5 6.2 22.2 576 22 10.0 103 192 18.2 7.3 2.1 30
0.19 24.4 6.1 22.1 575 22 9.8 98 183 18.1 7.5 2.1 29
0.20 24.3 6.0 22.0 571 22 9.5 94 174 18.0 7.7 2.1 27
0.25 24.0 5.8 21.7 535 22 8.5 76 142 17.6 8.6 2.0 23
0.30 23.3 6.1 20.0 507 21 7.7 65 120 16.7 9.4 1.9 20
0.35 22.8 6.4 18.6 484 21 7.1 56 104 15.9 10.2 1.8 18
0.40 22.3 6.7 17.5 466 20 6.6 50 91 15.3 10.9 1.7 17
0.45 21.9 6.9 16.6 450 20 6.2 45 82 14.7 11.5 1.7 15
0.50 21.6 7.2 15.8 436 19 5.9 41 74 14.3 12.1 1.9 14
0.55 21.3 7.4 15.2 424 19 5.6 37 68 13.9 12.7 2.0 13
0.60 21.0 7.6 14.6 413 19 5.5 34 63 13.5 13.3 2.2 12
0.65 20.7 7.9 14.3 404 18 5.4 32 58 12.6 13.8 2.4 12
0.70 20.5 8.2 14.0 395 18 5.6 30 54 11.9 14.4 2.6 11
0.75 20.1 8.2 13.6 387 18 5.8 28 51 12.5 14.9 2.7 11
0.80 19.7 8.2 13.2 380 18 6.3 26 48 13.0 15.4 2.9 10
0.90 19.0 8.3 12.6 367 17 6.9 24 43 14.1 16.3 3.2 9
0.95 18.7 8.3 12.3 307 17 7.1 23 41 14.6 16.7 3.4 9
1.00 18.5 8.4 12.0 355 16 7.2 22 39 19.9 17.2 3.6 9
1.50 17.9 9.4 17.6 315 14 11.2 15 27 31.0 21.0 5.2 6
2.00 19.0 9.4 29.6 290 12 17.4 11 20 44.5 28.5 6.8 7
2.50 19.9 9.6 35.1 271 10 22.0 12 18 46.8 24.3 8.3 9
3.00 21.1 9.9 29.3 257 10 16.5 12 17 36.3 29.7 9.9 11
3.50 22.0 10.2 18.1 266 10 11.8 12 16 26.9 32.1 11.4 14
4.00 19.9 10.3 17.0 300 10 9.3 13 16 23.4 34.3 12.9 15
6.00 16.4 10.5 16.4 531 10 9.9 17 16 17.6 41.0 18.7 9
8.00 13.5 11.3 11.1 651 10 11.2 20 16 17.0 45.4 23.5 10
10.00 11.7 15.2 14.0 609 10 12.8 20 17 16.5 44.5 23.8 12

(continued)
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Table 5.8 (continued)

E(eV) H O2 N2 Cl2 NO N2O NH3 H2O CO HCl CH4 CO2

12.00 9.9 15.0 14.2 549 12 14.1 20 17 16.4 39.8 21.8 13
14.00 9.4 14.0 15.0 497 12 15.1 19 17 17.3 37.5 20.2 14
16.00 8.8 13.7 15.2 454 13 16.1 18 16 18.7 34.2 19.0 15
18.00 8.4 13.7 15.5 429 13 17.0 17 15 18.7 32.2 17.9 16
20.00 8.0 13.7 15.8 411 13 17.2 16 15 18.7 30.4 17.0 16
22.00 7.5 13.7 15.1 403 14 17.8 16 14 18.7 29.3 16.3 17
24.00 7.0 13.7 16.4 394 14 17.8 15 13 18.7 28.1 15.6 17
26.00 6.7 13.7 16.3 386 14 17.8 14 12 18.7 26.8 15.0 17
28.00 6.5 13.7 16.1 387 14 17.9 14 12 18.7 25.6 14.5 17
30.00 6.3 13.7 15.9 389 14 17.8 14 12 18.7 23.6 14.0 17
40.00 5.8 13.7 15.0 360 13 16.7 13 10 18.7 17.8 12.2 16
50.00 5.8 13.7 12.9 291 12 15.1 12 10 18.7 14.0 11.2 14

Table 5.9 Constants A and
B for charge transfer
cross-section determination

Gas A B

Cs 46.25 1.99
K 43.79 1.90
Hg 28.43 1.29
Xe 27.24 1.26
H 24.26 1.10
Kr 23.78 1.07

26.10 1.13
Ar 22.24 1.01

36.74 2.11
Ne 17.39 0.71
He 18.04 0.83

18.68 2.11

Table 5.10 Exponential
repulsive potential data for
atom-ion collision for noble
gases

Gas �o1 �o1 �o2 �o1

Ar 900.0 0.431 4640.0 0.306
He 179.7 0.344 179.7 0.344
Ne 734.0 0.322 3460.0 0.277
Xe 3.87e5 0.202 3.87e5 0.202
Kr 3.11e6 0.208 3.11e6 0.208

However since the potential data for the exponential repulsive potential are
known for a small number of pure gases and not for the collision between different
gases, it is convenient to apply the Lennard-Jones potential for both the atom-atom
and the atom-ion collisions. Results of computation for argon, as calculated for the
different potentials (the Lennard-Jones potential, exponential repulsive potential,
the weighted average exponential repulsive potential) and (5.39), have been plotted
for argon in Fig. 5.4, in which the lines denoted by 1 to 3 are Q.1;1/ and by 4 to
6 are Q.2;2/. Line 1 is the charge transfer cross section calculated by (5.39) by
taking A D 36:74 and B D 2:109, line 2 is the cross section calculated using the
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Fig. 5.4 Comparison of
collision cross-section
calculations by different
methods for argon (for
explanation of numbers, see
text)

exponential repulsive potential (5.34) by taking �o D 7; 100 and ro D 0:258 Å,
and line 3 is from the Lennard-Jones potential with �=kB D 119:5K and d

D 3.421Å. Similarly, line 4 is for the cross section by the weighted exponential
repulsive potential (5.41), taking �o1 D 900, �o1 D 0:258, �o2 D 4; 640, and
�o2 D 0:306, line 5 is from the exponential repulsive potential, and line 6 is from
the Lennard-Jones potential. It can be seen that for both Q.1;1/ and Q.2;2/, the cross
section calculated by the exponential repulsive potential and the Lennard-Jones
6-12 potential are in fair agreement with each other, and even Q.2;2/ calculated
by the weighted exponential repulsive potential is a little different. The only
large discrepancy is in the Q.1;1/ values calculated for the charge transfer cross
sections, which are needed for the calculation of the diffusion coefficients and
related properties. For further calculations, therefore, the atom-atom collision cross-
sectional data determined with the help of the Lennard-Jones potential can be used
for atom-ion collisions also.

5.2.4 Charged Particle Collision

The collision cross section between the charged particles (electrons, ions) is
determined from the shielded Coulomb potential. For this purpose a dimensionless
temperature
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T � D
�
4��okB
DeTref

e2 j NcjNck j
�

(5.42)

is defined in which Ncj and Nck are the charge of the j th and kth species,
respectively (for example the charge number for electrons is �1, for singly charged
ion, it is C1, etc.), Tref is the reference temperature (D Te , the electron temperature,
if the electrons are one of the colliding partners, and D Th, heavy particles
translational temperature, for the ion-ion collision), and 
De is the Debye shielding
distance given by the equation .� D Te=Th/


De D
 

2�okBTe

e2
�
ne C �

P
h Ncj nj

�
!1=2

(5.43)

which has been described in detail in a later chapter. Separate tables for the attracting
and the repulsive Coulomb potential can now be used for nondimensional collisional
integralsQ�.l;s/, from which the collision cross section is obtained from the relation

Q.l;s/ D �
2DeQ
�.l;s/: (5.44)

For this purpose the following values are obtained as a function of T �
(Tables 5.11 and 5.12):

A D T �2Q�.1;1/; B D T �2Q�.2;2/; C D Q�.2;2/=Q�.1;1/

D D Œ5Q�.1;2/ � 4Q�.1;3/�=Q�.1;1/

E D Q�.1;2/=Q�.1;1/; F D Q�.2;3/=Q�.2;2/; G D Q�.3;3/=Q�.1;1/

H D Q�.4;4/=Q�.2;2/; I D T �2Q�.1;4/; J D T �2Q�.1;5/; K D T �2Q�.2;4/ :

For additional cross sections Q.2;5/, Q.2;6/, Q.1;6/, and Q.1;7/, the following
equations for calculation of Q�.l;s/ are to be used:

Q�.1;s/ D 16.s � 1/Š
.s C 1/Š

1

�2

"
ln� � 1:65443133C

s�1X
nD1

1

n

#

Q�.2;s/ D 48.s � 1/Š
.s C 1/Š

1

�2

"
ln� � 2:15443133C

s�1X
nD1

1

n

#
: (5.45)

5.3 Collision Frequency, Mean Free Path

For the present, the following simple assumptions are made: (1) There is a mixture
of different species j, each having a translational temperature Tj ; (2) the particles
are rigid, non-attracting spheres with diameter dj ; (3) all particles of one species
travel with the same speed in a reasonable choice of the mean kinetic speed
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Table 5.11 Collision cross-sectional data for Coulomb potential (attracting)

T � A B C D E F G H I J K

1.E�01 0.06 0.04 0.61 1.47 0.76 0.84 0.68 0.86 0.03 0.02 0.03
2.E�01 0.14 0.10 0.71 1.46 0.66 0.81 0.60 0.80 0.05 0.04 0.07
6.E�01 0.33 0.30 0.92 1.37 0.55 0.71 0.59 0.68 0.08 0.06 0.16
8.E�01 0.40 0.38 0.96 1.34 0.54 0.69 0.60 0.66 0.09 0.07 0.19
1.EC00 0.45 0.45 0.99 1.33 0.52 0.67 0.60 0.64 0.10 0.07 0.22
2.EC00 0.65 0.68 1.06 1.28 0.49 0.63 0.61 0.62 0.13 0.09 0.30
3.EC00 0.77 0.84 1.08 1.26 0.48 0.62 0.62 0.60 0.14 0.10 0.35
4.EC00 0.87 0.95 1.09 1.24 0.47 0.61 0.62 0.60 0.16 0.11 0.39
6.EC00 1.02 1.12 1.10 1.23 0.45 0.60 0.62 0.59 0.17 0.12 0.45
8.EC00 1.13 1.25 1.11 1.21 0.45 0.59 0.61 0.58 0.19 0.13 0.49
1.EC01 1.21 1.35 1.11 1.20 0.44 0.58 0.61 0.58 0.20 0.14 0.52
2.EC01 1.50 1.66 1.11 1.18 0.43 0.57 0.60 0.57 0.23 0.16 0.62
3.EC01 1.67 1.85 1.11 1.17 0.42 0.56 0.60 0.56 0.25 0.17 0.67
4.EC01 1.80 1.99 1.11 1.16 0.42 0.56 0.59 0.56 0.26 0.18 0.71
6.EC01 1.98 2.18 1.10 1.15 0.41 0.55 0.59 0.55 0.28 0.20 0.77
8.EC01 2.11 2.32 1.10 1.14 0.41 0.55 0.59 0.55 0.30 0.21 0.82
1.EC02 2.22 2.43 1.10 1.14 0.40 0.55 0.58 0.55 0.31 0.21 0.85
2.EC02 2.54 2.77 1.09 1.12 0.40 0.54 0.58 0.54 0.34 0.24 0.96
3.EC02 2.74 2.97 1.08 1.12 0.39 0.54 0.57 0.54 0.36 0.25 1.02
4.EC02 2.88 3.11 1.08 1.11 0.39 0.54 0.57 0.54 0.38 0.26 1.06
6.EC02 3.08 3.31 1.08 1.10 0.39 0.54 0.57 0.54 0.40 0.27 1.12
8.EC02 3.22 3.46 1.07 1.10 0.38 0.54 0.56 0.54 0.41 0.28 1.16
1.EC03 3.33 3.57 1.07 1.10 0.38 0.54 0.56 0.54 0.42 0.29 1.20
1.EC04 4.48 4.72 1.05 1.07 0.37 0.53 0.55 0.53 0.59 0.37 1.54

vj D
�
8kBTj

�Mj

�1=2
; (5.46)

where Mj is the mass of a single species with diameter dj ; and (4) all particles
travel in a direction parallel to one of the coordinate axes, that is, one-sixth of them
travel at any given instant in the Cx-direction and so on.

Let us now consider a single particle of the j th species moving in the Cx-
direction, and while doing so, it collides with the particles of the kth species moving
in one of the six coordinate directions. In actual practice the j th species particle
should move in a zigzag fashion between collisions, but it is now idealized by
assuming that the zigzag path is lined up in the Cx-direction. The relative velocities
gjk between the two colliding particles j and k are j vj � vk j if the particles are
moving in the same direction, j vj C vk j if they are moving in opposite directions,

and
q
v2j C v2k if they approach each other from any of the four perpendicular

directions. As in the previous section, we now consider all particles of the kth
species made motionless and the single j th species approaching them with a relative
speed gjk . In time �t, the moving particle covers a distance gjk�t . If there are
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Table 5.12 Collision cross-sectional data for Coulomb potential (repulsive)

T � A B C D E F G H I J K

1.E�01 0.02 0.03 1.36 1.36 0.75 0.81 0.97 0.84 0.01 0.01 0.02
2.E�01 0.05 0.07 1.36 1.39 0.71 0.78 0.95 0.81 0.02 0.02 0.04
3.E�01 0.08 0.11 1.36 1.39 0.69 0.76 0.93 0.78 0.03 0.03 0.07
4.E�01 0.11 0.15 1.36 1.40 0.67 0.75 0.91 0.77 0.04 0.03 0.09
6.E�01 0.16 0.21 1.35 1.40 0.64 0.73 0.88 0.74 0.05 0.04 0.12
8.E�01 0.20 0.28 1.35 1.39 0.62 0.71 0.87 0.73 0.06 0.05 0.15
1.EC00 0.25 0.33 1.34 1.39 0.61 0.70 0.85 0.71 0.07 0.06 0.17
2.EC00 0.42 0.55 1.31 1.36 0.56 0.66 0.80 0.67 0.11 0.08 0.26
3.EC00 0.54 0.70 1.29 1.34 0.54 0.64 0.77 0.65 0.13 0.09 0.32
4.EC00 0.65 0.82 1.27 1.33 0.52 0.63 0.75 0.64 0.14 0.10 0.36
6.EC00 0.80 1.00 1.25 1.30 0.50 0.62 0.72 0.62 0.16 0.12 0.42
8.EC00 0.92 1.14 1.23 1.28 0.49 0.61 0.70 0.61 0.18 0.13 0.46
1.EC01 1.02 1.24 1.22 1.27 0.48 0.60 0.69 0.60 0.19 0.13 0.50
2.EC01 1.34 1.59 1.18 1.23 0.45 0.58 0.66 0.58 0.23 0.16 0.60
3.EC01 1.54 1.80 1.17 1.21 0.44 0.57 0.64 0.57 0.25 0.17 0.66
4.EC01 1.68 1.94 1.15 1.19 0.43 0.57 0.63 0.57 0.26 0.18 0.71
6.EC01 1.89 2.15 1.14 1.18 0.42 0.56 0.62 0.56 0.28 0.20 0.77
8.EC01 2.04 2.30 1.13 1.17 0.42 0.56 0.61 0.56 0.30 0.21 0.81
1.EC02 2.15 2.42 1.12 1.16 0.41 0.55 0.60 0.55 0.31 0.21 0.85
2.EC02 2.51 2.77 1.10 1.14 0.40 0.55 0.59 0.55 0.34 0.24 0.95
3.EC02 2.72 2.97 1.09 1.13 0.40 0.54 0.58 0.54 0.36 0.25 1.01
4.EC02 2.86 3.12 1.09 1.12 0.39 0.54 0.57 0.54 0.38 0.26 1.06
6.EC02 3.07 3.32 1.08 1.11 0.39 0.54 0.57 0.54 0.40 0.27 1.12
8.EC02 3.21 3.46 1.08 1.10 0.38 0.54 0.56 0.54 0.41 0.28 1.16
1.EC03 3.33 3.57 1.07 1.10 0.38 0.53 0.56 0.53 0.42 0.29 1.20
1.EC04 4.48 4.72 1.05 1.07 0.37 0.53 0.55 0.53 0.59 0.37 1.54

particles of the kth species in the volume element Qjkgjk	t , where the collision
cross section Qjk D �.d2j C d2k /=4, then there will be collision. If there are nk
molecules of the kth species in unit volume, then there are .nkQjkgjk	t/ particles
which will collide.

Thus the collisional frequency is .nkQjkgjk/. Taking collisions between parti-
cles moving in all six coordinate directions, the collision frequency is

�jk D 1

6
nkQjk

X
6

gjk D �jknkQjk s�1; (5.47)

where nk D number density of the kth species Œm�3�, Qjk D �.d2j C d2k /=4 D
collision cross section Œm2�, and

�jk D 1

6

�
j vj C vk j C j vj � vk j C2

3

q
v2j C v2k

�
(5.48)
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is the average relative speed for a binary collision. If a particle collides with other
particles of the same species .j D k/, then

�jj D vj

 
1

3
C 2

p
2

3

!
D 1:279vj : (5.49)

On the other hand, if vj � vk , for example, for collisions between electrons and
heavy particles h, then �eh D ve .

Thus the total number of collisions per unit volume and time between all particles
of the j th species with all particles of the kth species is

� 0
jk D 1

2
nj�jk D 1

2
�jknj nkQjk: (5.50)

The factor (1/2) is put to take care of duplication of collisions between the same two
particles. Since �jk D �kj ; Qjk D Qkj , it is evident that � 0

jk D � 0
kj . The mean free

path of the species j for collision with species k is


jk D vj =�jk D vj

�jknkQjk

� 1

nkQjk

: (5.51)

It may be noted that 
jk may not be the same as 
kj . For example, in a quasi-
neutral gas mixture of electrons e, singly charged ions i, and atoms a, the number
density of electrons ne = the number density of ions ni and �ie D �ei D ve . Thus,

ie D vi=.vineQei / D .vi=ve/
ei , but 
ie D .neQei /

�1 D 
ei
p
.TiMe/=.TeMi/.

Similarly, 
ea D .naQea/
�1, but


ae D va=.veneQea/ D .na=ne/
ea
p
.ThMe/=.TeMh/ : (5.52)

For determination of the mean free path of a single particle of j th species in a gas
mixture, one can find the following expression:


j D vjP
k.�jknkQjk/

D vjP
k �jk

� 1P
k.nkQjk/

: (5.53)

The above expressions, derived under the assumption of very simple motions in
directions parallel to one of the directions of the Cartesian coordinates, will now be
derived from more rigorous analysis. From the kinetic theory of gases, the fraction
of the number density of the j th particle dnj =nj in the velocity space between vj
and vj C dvj is given by the distribution function given by (3.148),

f .v/ D 4�v2
�

M

2�kBT

�3=2
exp�Mv2=.2kBT / dv (5.54)
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and the corresponding volumetric collision frequency is given by the relation (see,
Chapman and Cowling [42])

� 0
jk D Qjk

Z Z
fj fkg

3G2dGdg

D nj nk.MjMk/
3=2Qjk

�k3B.Tj Tk/
3=2

Z 1

0

Z 1

0

exp
� 1
2kB

 
Mj v

2
j

Tj
CMkv

2
k

Tk

!

g3G2dGdg :

(5.55)

Now,

1

2kB

 
Mjv

2
j

Tj
C Mkv

2
k

Tk

!

D 1

2kB

"
Mj

Tj

�
G � Mkg

Mj CMk

�2
C Mk

Tk

�
G C Mjg

Mj CMk

�2#

� 1

2kB

�
G2

�
Mj

Tj
C Mk

Tk

�
C MjMkg

2

.Mj CMk/2

�
Mj

Tj
C Mk

Tk

��

and thus,

� 0
jk D nj nk.MjMk/

3=2Qjk

�k3B.Tj Tk/
3=2

�
Z 1

0

Z 1

0

exp
� 1
2kB

�
G2
�
Mj
Tj

CMk
Tk

�
C MjMkg

2

.MjCMk/
2

�
Mj
Tj

CMk
Tk

��
g3G2dGdg :

Noting that

Z 1

0

exp
� G2

2kB

�
Mj
Tj

CMk
Tk

�
G2dG D

q
�k3B=2�

Mj

Tj
C Mk

Tk

�3=2 (5.56)

and

Z 1

0

exp
� MjMkg

2

2kB .MjCMk/
2

�
Mj
Tj

CMk
Tk

�
g3dg D 2k2B.Mj CMk/

4

.MjMk/
2

�
Mj

Tk
C Mk

Tj

�2 (5.57)
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we get further the relation

� 0
jk D

�
2kB

�

�1=2 Qjknj nk

.Tj Tk/3=2.MjMk/1=2
.Mj CMk/

4

�
Mj

Tj
C Mk

Tk

�3=2 �Mj

Tk
C Mk

Tj

�2 :

(5.58)

Equating (5.58) with (5.50), we get

�jk D
�
8kB

�

�1=2 .Mj CMk/
4

.Tj Tk/
3=2.MjMk/

1=2

�
Mj

Tj
C Mk

Tk

�3=2 �Mj

Tk
C Mk

Tj

�2 :

(5.59)

Now two special cases are considered. In the first case we consider Tj D Tk D T

and in the second case we consider as the j th species the electrons and as the kth
species the heavy particles .Me � Mk/. For the first case we get

�jk D
�
8kBT

�

�
Mj CMk

MjMk

��1=2
(5.60)

which for the further special case of Mj D Mk becomes �jj D vj
p
2 D 1:414vj

instead of (5.49). For the second case, we get �eh D p
8kBTe=.�Me/ D Nve , the

mean kinetic speed of the electrons. Further discussion about the collision frequency
and the mean free path remains as before.

5.4 Reaction Rates and Vibrational and Temperature
Nonequilibrium

The reaction rate (the number of particles being newly created or destroyed) has
to depend on the number of collisions per unit time, as well as the value of the
total kinetic energy of the two particles concerned. The fact that the rate at which
molecules react is very much less than the rate at which they collide indicates that
additional conditions are required for reaction beyond mere collision, especially
that a collision that results in reaction must involve considerably more energy than is
available in just one collision. In other words the total kinetic energy of the colliding
particles must be larger than a minimum energyEac , the so-called activation energy,
for the collision to result in the reaction. From the gas-kinetic considerations, it can
be shown that the fraction of collisions that result in a reaction is of the order of

exp�Eac=.kBT / : (5.61)
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In addition to this, there is a factor which takes care of the relative geometrical
positions during the collision, and is called the steric factor �, whose determination
poses an insoluble problem in quantum theory and must be found empirically. Thus
we introduce this factor to the theoretically determined reaction rate and write

rate of reacting collisions D rate of collision:�: exp�Eac=.kBT / : (5.62)

For a reaction between the particles A and B in a bimolecular collision to form the
particle AB, that is, for the reaction of the type A C B ! AB, the reaction rate of
production of AB is given by the relation

dnAB

dt
D �dnA

dt
D �dnB

dt
D �� 0

AB exp�Eac=.kBT / D knAnB (5.63)

with the help of (5.50), and we get the relation for the reaction rate constant

k D ��jkQjk exp�Eac=.kBT / D CT n exp�Eac=.kBT / : (5.64)

For nj , nk in (5.63) we have considered the number density in unit m�3, but
the chemical engineers prefer use of concentration in the unit kmol.m�3; this is
easily obtained by dividing the number density by the Avogadro number. Thus k is
given in m3kmol�1:s�1 and the forward reaction rate has the unit kmolm�3:s�1.
Accordingly C has the unit m3kmol�1:s�1:K�n. On the other hand for a three-
body reaction of type A C B C M ! AB C M, the forward reaction rate has the
same unit kmol.m�3:s�1, but then k is given in m6:kmol�2:s�1 and C has the unit
m6kmol�2:s�1:K�n.

Noting from (5.48) that for binary collisions �jk / p
T and hence, the exponent

n in (5.64) is of the order of (1/2). However, Qjk may also be dependent on T ,
and hence, n can be different from (1/2). Equation (5.64) is commonly known as
the Arrhenius equation (after Swedish physicist-chemist Arrhenius, who in 1889
first gave it a theoretical interpretation). Sample values of C , n, and .Eac=R�/
for different reacting gases have been given in Table 5.13; the resultant unit of k
is expressed in cm3, mole, and seconds in combination appropriate for the given
chemical equation.

A similar reaction is AB C M $ A C B C M, in which the arrows in both
directions mean that reactions in both directions are possible. While the forward
reaction

AB C M
kf! A C B C M (5.65)

can be treated as done earlier, the reverse reaction rate

A C B C M
kr! AB C M (5.66)
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Table 5.13 Constants for typical reactions in air ([6])

Reaction C n Eac=kB.K/

H2 C O2 D OH C OH 1.70e13 0 24169
OH C H2 D H2O C H 2.20e13 0 2593
H C O2 D OH C O 2.20e14 0 8459
O C H2 D OH C H 1.80e10 1 4481
OH C OH D H2O + O 6.30e12 0 549
H C OH C M D H2O + M 2.20e22 �2 0
H C O C M D OH C M 6.00e16 �0:6 0
H C H D H2 C M 6.40e17 �1 0
H C O2 C M D HO2 C M 1.70e15 0 �593
HO2 C H D H2 C O2 1.30e13 0 0
HO2 C H D OH C OH 1.40e14 0 544
HO2 C O D OH C O2 1.50e13 0 478
HO2 C OH D H2O C O2 8.00e12 0 0
HO2 C HO2 D H2O2 C O2 2.00e12 0 0
H C H2O2 D H2 C HO2 1.40e12 0 1813
O C H2O2 D OH C HO2 1.40e13 0 3222
OH C H2O2 D H2O C HO2 6.10e12 0 720
M C H2O2 D 2OH C M 1.20e17 0 22910
O C O C M D O2 C M 6.00e13 0 �593
N C N C M D N2 C M 2.80e17 �0:75 0
N C O2 D NO C O 6.40e9 1 3172
N C NO D N2 C O 1.60e13 0 0
N C OH D NO C H 6.30e11 0.5 0
H C NO C M D HNO C M 5.40e15 0 �302
H C HNO D NO C H2 4.80e12 0 0
O C HNO D NO C OH 5.00e11 0.5 0
OH C HNO D NO C H2O 3.60e13 0 0
HO2 C HNO D NO C H2O2 2.00e12 0 0
HO2 C NO D NO2 C OH 3.43e12 0 �131
H C NO2 D NO C OH 3.50e14 0 755
O C NO2 D NO C O2 1.00e13 0 302
NO2 C M D NO C O C M 1.16e16 0 33232

is possible as a three-body recombination in which the third partner M must carry
away the recombination energy between A and B. In case the reaction energy is not
carried away by the third partner, and also if this excess energy after recombination
is not given up as a radiative energy, both particles A and B must separate again.
While kf and kr are the reaction rate constants of forward and backward reactions,
respectively, the overall rate is given by the expression

dnA
dt

D dnB
dt

D �dnAB

dt
D kf nABnM � krnAnBnM : (5.67)
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Now the reaction rate k can be written separately for the forward and backward
reaction, for which the value of C and Eac are considered separately for forward
and backward reaction. At equilibrium, the reaction rate is zero, and as such the
ratio

kf

kr
D nAnB

nAB
D Cf

Cr
exp�.Eac;f �Eac;r /=.R�T / D C exp��H=.R�T / (5.68)

is equal to the equilibrium constant Kn if the number density is written as the
number of particles per unit volume and all other variables are in compatible units.
If, however, n denotes concentration in kmol:m�3, we write the equilibrium constant
as Kc . In the above equation 	H is the heat release due to reaction. Thus knowing
the value of Kn or Kc , and one of the reaction rate constants, it is possible to have
the other reaction rate constant in compatible units.

A similar situation arises for the ionizing and recombining reactions for elec-
trons. According to Igra and Barcessat [78], the following reactions may be
considered:

collisional: A� C e ! AC C e C e (5.69)

AC e ! A� C e (5.70)

radiative: A� ! AC h� (5.71)

AC C e ! AC h� : (5.72)

Herein A denotes an atom, A� is an excited atom, and AC denotes a charged ion.
It is agreed that for plasmas having densities up to ne D 1018 cm�3 and temperatures
around 1 eV, the radiative processes can be ignored. Further it is conjectured that
the most probable recombination is the one in which a free electron is recaptured
into one of the atomic excited states. Therefore, we can limit our interest to the
reaction (5.69) only, for which the forward reaction rate constant is kf and the
reverse reaction rate constant is kr . These reactions require an additional collision
partner, so that during recombination the additional collision partner can take away
the excess energy; otherwise they will separate again. This additional collisional
partner in reaction (5.69) is the electron. The rate of reaction of the electron number
density is therefore

dne
dt

D kf nena � krn2eni D kf n
2xe

�
xa � x2en

kr

kf

�
; (5.73)

where x is the mole fraction of the particular species. At equilibrium, denoted by
superscript .�/, the terms within the parentheses are equal to zero. In addition under
quasi-neutrality condition, ni D ne and we get the recombination rate constant in
terms of the reverse reaction rate constant as follows:

kr D .x�
a =x

�2
e /kf =n

� : (5.74)
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Thus the rate of production of electron number density is given by the relation

Pne D krn
3x3e

"�
x�
e

xe

�2 �
xa

x�
a

�
n�

n
� 1

#
: (5.75)

For the general case of the electron temperature Te larger than the heavy particle
temperature Th (temperature ratio � D Te=Th > 1) it is shown later in Chap. 6
(Sect. 6.7) that the relation

n

n� D 1C x�
e .� � 1/

1C xe.� � 1/ (5.76)

is valid. Under this condition we get

Pne D krn
3x3e

"�
x�
e

xe

�2 �
xa

x�
a

��
1C xe.� � 1/
1C x�

e .� � 1/
�

� 1
#
: (5.77)

For the limiting case, xa D x�
a ! 1; n ! n�, and we get

Pne D krne.n
�2
e � n2e/; (5.78)

where kr for a cesium seeded argon plasma is given by the relation

kr D 1:0744 � 10�21T �4:5
e m6s�1 : (5.79)

For the three-body recombination of potassium plasma, the recombination rate
constant is given by

kr D 3:47 � 10�20T �4:765
e m6s�1: (5.80)

For argon plasma, Igra and Barcessat [78] have considered further the values given
by different authors and decided to take

kr D 6:2 � 10�21T �4:765
e ; m6s�1 (5.81)

and Hasted [71] gave recombination coefficients for many gases.
We now consider the case of a vibrational nonequilibrium due to chemical

processes. As a typical example, one can think of the flow behind shock in
hypersonic flying bodies or large expansion in a nozzle. For a system of harmonic
oscillators which have permissible vibration energy levels

Ev D .v C 1=2/h�; (5.82)
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where v is the vibrational quantum number, we begin by establishing the differential
equation that governs the rate of change of the nonequilibrium values of the number
of particles Nv as a function of time, for which it is assumed, consistent with
detailed quantum mechanical studies of the transition probabilities, that the changes
in energy of oscillators upon collision take place only between adjacent energy
levels, that is, 	v D ˙1. Let kv;vC1 be the rate constant for transition from the
energy level v to v C 1, and then the rate of change of the number of oscillations in
any given energy level v is

dNv
dt

D �kv;vC1Nv C kvC1;vNvC1 � kv;v�1Nv C kv�1;vNv�1: (5.83)

For the special circumstances in which there is an equilibrium, it is obvious that
dNv=dt D 0. Further, assuming that the net interchange between any two adjacent
states under equilibrium conditions is zero, one can write for the equilibrium case
(denoted by the superscript asterisk)

�kv;v�1N �
v C kv�1;vN �

v�1 D 0

�kv;vC1N �
v C kvC1;vN �

vC1 D 0:

Here the k’s have the same value as when the system is out of equilibrium. Noting
that under the equilibrium condition

N �
v

N �
v�1

D kv�1;v
kv;v�1

D exp�Œ.vC1=2/h�=.kBT /�

exp�Œ.v�1=2/h�=.kBT /� D exp�h�=.kBT / (5.84)

and

N �
vC1
N �
v

D kv;vC1
kvC1;v

D exp�Œ.vC3=2/h�=.kBT /�

exp�Œ.vC1=2/h�=.kBT /� D exp�h�=.kBT / (5.85)

and since from quantum mechanical study of the transition probabilities it is
known that

kv;v�1 D vk1;0 (5.86)

the other reaction rate constants can now be determined from the following relations:

kvC1;v D .v C 1/k1;0

kv�1;v D vk1;0 exp�h�=.kBT /

kv;vC1 D .v C 1/k1;0 exp�h�=.kBT / :

Note that we can write alternative of (5.86) also as

kv;vC1 D .v C 1/k0;1 : (5.87)
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By substituting the foregoing expression into (5.83), and with �v D h�=kB , then

dNv
dt

D k1;0
�f�vNv C .v C 1/NvC1g C exp��v=T f�.v C 1/Nv C vNv�1g

�
:

(5.88)
Noting that the total vibration energy

Evib D
1X
0

NvEv D h�

1X
0

�
v C 1

2

�
Nv � h�

1X
0

vNv (5.89)

we get

dEvib
dt

D h�

1X
vD0

v
dNv
dt

D h�k1;0

1X
vD0

v
h

� vNv C .v C 1/NvC1

C exp��v=T .�.v C 1/Nv C vNv�1/
i
: (5.90)

In equation (5.89), the energy quantum .h�/ has the dimension J. Thus if Nv is
the number of particles per kmole (or per m3) of gas in the vibrational level v, then
Evib has the dimension J:kmole�1 (or Jm�3). Further, the series in (5.89) converges
if v ! 1, Nv ! 0. Otherwise we have to consider the anharmonic oscillator
model.

Now adding separately for each of the two brackets,

1X
vD0

v Œ�vNv C .v C 1/NvC1� D �
1X
vD0

vNv (5.91)

and

1X
vD0

� � .v C 1/Nv C vNv�1
� D

1X
vD0
.v C 1/Nv (5.92)

we get from (5.90)

dEvib
dt

D k1;0h�

1X
vD0

Nv
��v C .v C 1/ exp��v=T �

D k1;0h�

"
exp��v=T

1X
vD0

Nv �
1X
vD0

vNv
�
1 � exp��v=T �

#
: (5.93)
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Now since N D P
Nv and Evib=.

P
vNv/ D h�, (5.93) further becomes

dEvib
dt

D k1;0h�

�
N exp��v=T � �1 � exp��v=T � Evib

kB�v

�
: (5.94)

In the present approximation, by replacing (v + 1/2) by v, and considering at
equilibrium, the expression for vibrational internal energy (3.120), as

E�
vib D R��v

exp�v=T �1 (5.95)

in whichR is the gas constant. Noting that h� D kB�v , and introducing the notation

� D 1

k1;0
�
1 � exp��v=T � (5.96)

which has the dimension of time, (5.93) becomes

dEvib
dt

D E�
vib �Evib

�
: (5.97)

In (5.97) E�
vib is the internal energy of the gas under the equilibrium condition

and Evib is the same under vibrational nonequilibrium condition. For the former,
one could estimate it from the equilibrium condition at the translation temperature.
Therefore, (5.97) gives the rate at which the vibrational energy relaxes to the
(equilibrium) translation energy. However, the equation does not give explicitly a
relation linking the rate of collision between molecules due to (relative) translational
velocities of the molecules.

Equation (5.97) can be integrated easily to get the result

Evib �E�
vib

.Evib/tD0 �E�
vib

D exp�t=� : (5.98)

Thus, in case of any departure from the equilibrium, energy is quickly brought
(relaxed) to the equilibrium again in an interval of time of the order of the relaxation
time � . The most commonly cited theory for � is given by Landau and Teller who
obtained the result as

� D K1T
5=6 exp.K2=T /

1=3

p
�
1 � exp��v=T � ; (5.99)

where p is in bar and K1 and K2 are constants depending on the excited species
and also the species with which it collides to relax, and their values are given in
Table 5.14.
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Table 5.14 Constants K1 and K2 for vibration relaxation of selected molecular
pairs

Heat-bath Approximate temperature
Species molecule K1 .atm:ms=K5=6/ K2 (K) range (K)

O2 O2 5.42e-5 2.95e6 800–1,300
O2 Ar 3.58e-4 2.95e6 1,300–4,300
N2 N2 7.12e-3 1.91e6 800–6,000
NO NO 4.86e-3 1.37e5 1,500–3,000
NO Ar 6.16e-1 1.37e5 1,500–4,600

At sufficiently low temperatures .T < �v/, the terms under the parenthesis in
denominator of (5.99) can be approximated to 1, and one may write

� D K1T
5=6 exp.K2=T /

1=3

p
: (5.100)

Taking the data from Table 5.14 for O2-O2 collision one can show, for example, that
at p D 1 atm and T D 2; 000K; � D 4:9ms. From (5.86), (5.96), and 5.100), one
can get the following expression for the reaction rate constant for transition from
the state v to .v � 1/:

kv;v�1 D pv

K1T 5=6 exp.K2=T /1=3
(5.101)

which can be used to evaluate the reaction rates between neighboring vibrational
energy levels. It can be shown that both kv;v�1 and kv�1;v increase proportional to v.

More recently, Millikan and White ([102]) have given vibrational relaxation data
for number of gas molecule collision pairs, which are fitted to the equation

p� D expŒA.T
�1=2�0:015�3=4/�18:42� [ atm.s]; (5.102)

where A is a constant and � is the reduced mole mass for molecular pair 1 and 2
given by the relation

� D m1m2

m1 Cm2

: (5.103)

Relevant values of A and � for selected molecular collisional pairs have been
given in Table 5.15.

In connection with the flow problems of ionized gases it is necessary to study
the ionization and dissociation rates on one hand and on the other knowledge
in the distribution of nonequilibrium vibration energy distribution. According to
Landrum and Candler [90], “when a gas is heated the nonequilibrium vibrational
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Table 5.15
Vibration-relaxation data for
selected molecular pairs

Colliding Species � A

N2-N2 14 220
CO-Ar 16.5 213
CO-CO 14 175
CO-He 3.5 99
CO-H2 1.88 68
O2-Ar 17.8 165
O2-O2 16 129
O2-He 3.56 67
O2-H2 1.88 42
F2-F2 19 63
Cl2-Cl2 35.5 58
Br2-Br2 79.9 48
I2-I2 127 29

distribution of diatomic molecules is formed in three identifiable stages: first,
there is introduction of vibrational quanta over the lower molecular levels by
the heating, next the introduced quanta are redistributed by collisional processes,
primarily vibration-vibration (V-V) exchanges up the vibrational ladder of the
molecule, and finally, the vibrational quanta are dissipated through gas heating by
vibration-translation (V-T) relaxation or in chemical reactions such as dissociation.
The ladder-climbing process occurs over a finite time and therefore significant
dissociation cannot occur until an adequate number of highly vibrationally excited
molecules are present. The net effect of this vibrational exchange is a reduction of
the molecular dissociation rate.”

For determination of V-T relaxation time the rate constants are obtained from the
Landau-Teller theory. For chemical reactions with diatomic molecules like nitrogen
and oxygen in air it is generally assumed that the rotational temperature is the
same as the translational temperature, T , while there can be a separate vibrational
temperature, Tv . A reaction model due to Park [128–130] predicts that the rate
coefficients for dissociation are dictated by a geometrically effective temperaturep
T Tv for the forward rate of dissociation. In addition we should also mention about

the dissociation rate reactions by Adamovich et al. [2, 3] and also a computational
method given by Capitelli et al. [40]. For this purpose the latter have written down
elaborate expressions for the rate coefficients of V-T and V-V reactions. Concerning
the dissociation-recombination reactions, a pseudo level .v C 1/ located just above
the last bound level .v/ is considered, through which the dissociation-recombination
reaction passes. The last vibrational level (at dissociation) for nitrogen is taken at 45
and for oxygen at 33.

Finally, for high temperature gas plasma, there is another kind of nonequi-
librium occurring in an electromagnetic field. By considering the energy trans-
fer due to collision between the electrons and the heavy particles (Gnoffo
et al. [66]; Park [130]) it has been shown that loss or gain in the kinetic
energy is given by (5.23). Now in the case that there is an electric current
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flow, energy in the form of Joule heating j 2=� is introduced, where j is
the current density .Am�2/ and � is the electrical conductivity .A.Vm/�1/.
It will be shown later that the electrical conductivity is given by the
relation

� D e2n2e
2Me�

0
eh

; (5.104)

where � 0
eh is the volumetric collision frequency between the electrons and the

heavies, and thus the temperature difference between the electrons and the heavy
particles in case of the current flow is given by the relation

.Te � Th/ D j 2Mh

3e2n2ekB
: (5.105)

Thus, at a low pressure and high current density, there can be an appreciable
difference in temperature between the electrons and the heavy particles.

5.5 Exercise

5.5.1 Compute collision frequency, volumetric collision frequency, and mean free
path of air .Qrigid D 11:0 Å2/ at T D 288K and as a function of pressure.

5.5.2 Electron mole fraction for argon at 1 bar and 13,000 K is about 0.3. Compute
the number density of the electrons, ions, neutrals, and all particles. Taking
the various collision cross sections for argon from Fig. 5.4, compute the
mean free path and collision frequency for different species of argon.

5.5.3 Estimate the vibration relaxation time for gas molecules given in Table 5.14.
5.5.4 Noting that the ratio of the mean kinetic speed to sonic speed is approx-

imately equal to one, show that the ratio of the Mach number, Ma.D
U=vsonic/, and the Reynolds number, Re.D �UL=�/, is equal to 
=L.
Herein U D flow speed, � D gas mass density D nM, and L is a
characteristic length of a body in a flow.



Chapter 6
Equilibrium Composition of a Reacting
Gas Mixture

In the previous chapter we have discussed the question of reaction rate and how
the reaction rates for the forward and backward reactions may give the equilibrium
composition at a given temperature and pressure. The discussion does not include
the pseudo equilibrium, as it may happen at low temperatures, when both the for-
ward and backward reactions rates are infinitesimal small. As an example, hydrogen
and oxygen can be mixed at moderate pressures and room temperature without
any reaction taking place. However, if a spark is introduced, then there will be
explosive reaction to reach the equilibrium. Although, in principle, mere knowledge
of the values of reaction rate constants for forward and backward reactions may
be sufficient for calculation of the equilibrium composition, in practice, however,
they are generally not known, and, therefore, an alternative method is required. Let
us consider the following basic reaction:

X
˛jAj $

X
ˇjBj (6.1)

for example,

˛1H2 C ˛2O2 $ ˇ1H2 C ˇ2O2 C ˇ3OH C ˇ4H2O C ˇ5H C ˇ6O C : : : : (6.2)

In general, this overall reaction can be broken down into several series and parallel
part reactions, in which for every reaction only two or three collision partners
may be involved at any time, but as a result of all these reactions, the total gas
mixture attains a final composition at a given temperature and pressure, which
does not change with time any further. Thus we can formally consider the reaction
of the above type and designate the left-hand components arbitrarily as reacting
components and the right-hand side components, except those which are in the left-
hand side also, as reacted components. We would now investigate on the basis
of a mathematical model, which is called Vant’ Hoff model, the condition at a
given temperature and pressure that the reacting and reacted components are at
equilibrium. This is not the only model used for the calculation of the equilibrium
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composition, but it is quite transparent and easily understandable. As a consequence
of the model it is shown that one could use free enthalpy of various reacting
components to determine the equilibrium composition. Further, the methodology
has been extended in two directions, namely to multi-temperature plasmas and
how to calculate the temperature derivative of composition, which can be used
further to determine the reactive heat conductivity coefficient for a reactive gas
mixture. Both these have been introduced in this book for the first time to the
knowledge of this author. It need be mentioned, however, that the physical definition
of multi-temperature gas itself is for the nonequilibrium thermal state and, therefore,
computing equilibrium composition for multi-temperature model may be somewhat
questionable.

6.1 Vant’ Hoff Model of Chemical Reaction

The Vant’ Hoff model of reaction uses semipermeable membranes around a reactor,
in which each membrane can allow only one pure component. Although such
semipermeable membranes are few and rare, for the study of very slow reactions, in
which at every stage the temperature and pressure can be kept constant (reversible
reaction!), concept of such membranes is of very great importance.

For a reversible reaction the type of equipment shown in Fig. 6.1 is used as
a model, in which there are containers for different pure reacting and reacted
components. In each of these containers a constant pressure p is maintained. The
reacting components are now expanded at constant temperature in each of the
cylinders to partial pressure pj of that particular component to be maintained in
the reactor for a reversible reaction, and thus, in each of the cylinders some work is
gained and there is an exchange of heat with the reservoir. The reacting components
are brought to the reactor in the exact ratio of a stoichiometric reaction, so that
the mole ratio of each of them corresponds to the ratio of the chemical valency
between the components. Similarly the reacted components at partial pressure
pj are compressed in individual cylinders in the ratio of the chemical valency
between the components to the container pressure p. To differentiate the chemical
valency �j between the reacting and the reacted components, the former is given
a negative sign and the latter a positive sign. After introduction of the components
into the reservoir, they are allowed to react at a constant temperature T sufficiently
slowly, so that the reaction can be assumed to be reversible, and a heat of reaction
QR D 	H D P

�jHj (per unit mole of reacting components), which is negative
in sign if heat is removed, is taken out from the reactor to the reservoir; Hj is the
enthalpy of the components per mole. The total work gained from different cylinders
(per mole) is then

W D R�T
X

�j ln
pj

p
D R�T

X
�j ln xj : (6.3)
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Fig. 6.1 Vant’ Hoff model of reaction

Herein R� is the universal gas constant and xj D pj =p is the mole fraction. Now
for a reversible reaction, the total heat can be written in terms of the entropy change
�S by the equation

Q D T	S D W CQR D R�T
X

�j ln xj C
X

�jHj : (6.4)

For a reversible reaction there is no change in the total entropy of the mixture, and
one can write

	S D
X

�j Sj (6.5)

and therefore,

W D R�T
X

�j ln xj D
X

�j .TSj �Hj / D
X

�jGj ; (6.6)

where Gj D TSj �Hj is the free enthalpy of the j th component.
Defining an equilibrium constant as

Kx D
Y

x
�j
j (6.7)



228 6 Equilibrium Composition of a Reacting Gas Mixture

we get

lnKx D
X

�j ln xj D 1

R�T
X

�jGj D 1

R�T
	G; (6.8)

where	G is the change in free enthalpy between reacting and reacted components.
By having an alternate definition of free enthalpy

NGj .T; p/ D Gj .T; p/ �R�T ln xj (6.9)

it can be shown that the condition for equilibrium can be written also as

X
�j NGj D 0 : (6.10)

Now the enthalpy of a species of a perfect gas is a function of temperature only,
Hj D Hj .T /, whereas the entropy is a function of both the temperature and
pressure, Sj D Sj .T; p/. However, the values of entropy for different gases are
normally given in literatures at a standard pressure po, for example, po = 1 bar.
From thermodynamics we know that

Sj D Sj .T; p/ D Sj .T; po/CR� ln.po=p/ (6.11)

which can be used further to evaluate the free enthalpy of the species. From (3.59)
and (6.8) further,

lnKx D
X

�j ln xj D 1

R�T
X

�jGj D ln
Y
.Zj =NA/

�j ; (6.12)

where Zj is the partition function of the j th component Œkmole�1� and NA is the
Avogadro number Œkmole�1�. Thus,

Kx D
Y

x
�j
j D

Y
.Zj =NA/

�j ; (6.13)

where xj D nj =n; nj is the particle density of the j th species Œm�3� and n is the
particle density of all the specie Œm�3�. Partition functionZj has the same dimension
as NA, and as such it is justified to replace NA by n, and then Zj will also have the
dimension .m�3/. Hence we write

Kx D
Y
.nj =n/

�j D
Y
.Zj =n/

�j (6.14)

and we get the law of mass action in terms of the partition function and particle
density as

Kn D
Y

n
�j
j D

Y
Z
�j
j D n

P
�j Kx : (6.15)
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The above gives a new definition of equilibrium constant in terms of the number
density. Further since xj D pj =p, where pj is the partial pressure of the j th species
and p is the total pressure, we get another definition of the equilibrium constant in
terms of the partial pressure

Kp D
Y

p
�j
j D p

P
�j :Kx : (6.16)

From (6.8) and (6.11) we write

lnKx D 1

R�T
X

�j .TSj �Hj /

D 1

R�T
X

�j .TSj .T; po/ �Hj /C ln.po=p/
P
�j :

Since the standard pressure is usually 1 bar or 1 atm, we can write a new definition
of the equilibrium constant in terms of the standard free enthalpy

lnKp D lnKx C
X

�j lnp D 1

R�T
X

�j .TSj .T; po/ �Hj /

D 1

R�T
X

�jGj .T; po/

which shows that Kp need be calculated at one standard pressure only when
Kp D Kx . At any other pressure, Kx can then be computed with the help of (6.16).

6.2 Heat of Reaction

The term heat of reaction gives the energy that is absorbed or released in a
chemical reaction. In order to explain the concept, we consider now the reaction
of hydrogen and oxygen gas in the volume ratio 2:1 at the initial temperature T1
and initiate reaction (combustion) by increasing the temperature of an infinitesimal
small volume to start the combustion process. The mole mass of the mixture before
reaction .0/ is

m0 D .2 � 2:016C 32/=3 D 12:017 : (6.17)

After reaction water is formed, let the maximum temperature after complete
combustion and no heat loss be T2, which is called the adiabatic flame temperature.
In case the reaction is so complete that there are only water molecules, then after
the reaction .00/ the mole mass is m00 D 18:016. By the process of reaction
(combustion) the total mole of mixture of hydrogen and oxygen is reduced to two-
thirds the original number of moles.
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Now we consider two models. In the first model, we put combustible gases
(reactants) in a cylinder (closed by a symbolic weightless piston, which is movable if
the pressure inside the cylinder is kept constant or is kept fixed to keep the volume
constant) and the entire cylinder is assumed to be thermally insulated (adiabatic
wall). In the first model the heat of reaction is replaced by some heat from an
external source. If we allow the piston to move in such a manner that the pressure
is kept constant, it is evident from the first law of thermodynamics that the heat of
reaction at constant pressure is equal to the change of enthalpy

QRp D 	H D
X

�jHj ; (6.18)

where the subscript j refers to the j th species. On the other hand if the pressure
is allowed to increase at constant volume (as in a bomb calorimeter), then again
from the first law of thermodynamics, the heat of reaction is equal to the change of
internal heat, that is,

QRv D 	E D
X

�jEj : (6.19)

In case of an exothermic reaction the heat of reaction is positive, but it is negative
in the case of an endothermic reaction. From such a definition, we can compute the
temperature after reaction, if we assume an average specific heat and mole mass do
not change much, that is, we model the heat of reaction as a source of heat from
outside. Thus it is evident that the difference of the two heat of reaction (at constant
pressure or volume) is

QRp �QRv D p.v00 � v0/ : (6.20)

We consider now the second model, where the heat of reaction is included in the
enthalpy of the reacting and the reacted components. In this model (Fig. 6.2), no
heat is removed externally after the combustion process is over. Since no heat is
exchanged (adiabatic wall), the specific (per unit mass or per unit mole of reacting
components) enthalpy (for constant pressure process) or internal energy (for the
constant volume process) before reaction (reacting gas components) is equal to
the enthalpy after reaction (for reacted components). In this model, therefore, the
temperature attained is the adiabatic flame temperature, T2, which is larger than
the temperature before reaction T1. The heat of reaction can be found by cooling
the reacted components to the initial temperature T1. While the heat of reaction
is somewhat different depending on whether it is a constant pressure or constant
volume process, we consider further only one of them (for example, the constant
pressure process, and the discussion on the other may follow on similar lines).
According to the model, therefore, we write

QRp.T1/ D
Z T2

T1

C 00
p dT �

Z T1

T1

C 0
pdT D

Z T2

T1

C 00
p dT; (6.21)
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Fig. 6.2 Model to explain heat of reaction and adiabatic flame temperature

where C 0
p and C 00

p are specific heats (per unit mole or mass) of reacting or reacted
components, respectively. The enthalpy of the reacted components at the temper-
ature T1 must, therefore, be lower (for exothermic reaction) and this information
can be taken into consideration for the enthalpy values (absolute enthalpy). Thus,
for an exothermic reaction like hydrogen-oxygen reaction, the enthalpy of the
reacting hydrogen and oxygen molecules is made zero at the reference (absolute)
temperature, and then the enthalpy of water vapor at the reference temperature
is negative.

Very often, however, the heat of reaction in literatures is given asQRp.To). It can
be shown that

QRp D H 0.T1/ �H 00.T1/

D H 0.To/ �H 00.To/ �
Z T1

To

.C 00
p � C 0

p/dT

D QRp.To/ �
Z T1

To

.C 00
p � C 0

p/dT : (6.22)
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In literatures, the tabulated values of the enthalpy for various components are
given in different ways. In this book, for example, the reference temperature is
at the absolute temperature. In many books, however, this may be given relative
to a standard temperature (288.15 K) and the heat of reaction at that standard
temperature. These need be recalculated to the values at another temperature by
the method discussed above.

In the present section, we consider the (thermodynamic) properties of various
components before or after reaction by considering the mixture properties. How to
obtain these mixture properties will now be discussed in the following section.

6.3 Properties of Mixture of Gases

Composition of a mixture of various gas species can be described in terms of either
the mole fraction of the j th species xj D pj =p D nj =n or the mass fraction Yj D
�j =�, where p and � are the pressure and density, respectively, and the quantities
without any subscript are those for the mixture. Relation between these two can be
obtained easily with the help of the equation of state and the definition of the mole
mass m. Since,

p D
X

pj D
X

�jRjT D R�T
X

�j =mj D �R�T=m; (6.23)

where R� is the universal gas constant. Therefore,

m D
X

xjmj D 1=
X

.Yj =mj / (6.24)

and also

xj D pj =p D Yjm=mj : (6.25)

In addition some of the calorific properties of gas specie like enthalpy, entropy,
specific heat, etc. may be written either in terms of unit per mole (designated
with capital letters) or per mass (designated with small letters) of the species.
For example, the specific heat of the mixture at constant pressure can be written as

cp D
X

Yj cpj D
X

YjCpj =mj D 1

m

X
xjCpj D Cp=m : (6.26)

Similarly, for specific heat at constant volume, enthalpy, and internal energy we
write

cv D
X

Yj cvj D
X

YjCvj =mj D 1

m

X
xjCvj D Cv=m : (6.27)
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h D
X

Yj hj D
X

YjHj =mj D 1

m

X
xjHj D H=m : (6.28)

e D
X

Yj ej D
X

YjEj =mj D 1

m

X
xjEj D E=m : (6.29)

The molar entropy of the gas changes with pressure. Hence if the rule is applied to
the partial pressure, we get for the molar entropy

S.T; p/ D
X

xj ŒSj .T; p/ �R� ln xj �

D
X

xj ŒSj .T; po/ �R� ln xj � �R� ln.p=po/; (6.30)

where po is the reference pressure. Entropy per unit mass can of course be obtained
by dividing the above expression by mole mass m.

6.4 Equilibrium Composition of an Ideal Dissociating
Diatomic Gas

In the mid-1950s Lighthill proposed the following model for an ideal dissociating
gas like H2; O2; N2, etc. In all such cases we have a reaction of type

M $ 2A . (6.31)

For such a reaction the mole mass of the molecule is twice that of the atom, mM D
2mA, where the subscript M stands for the molecule and A for the atom and the
mole mass of the mixture is

m D 2mA

.1C YA/
D mM

.2 � YM/ D .2 � xA/mA D 1

2
.1C xM /mM ; (6.32)

where x is the mole fraction and Y is the mass fraction. Relationship between these
is given by

xA D 2YA

.1C YA/
D 2.1 � YM/

.2 � YM / (6.33)

and

xM D YM

.2 � YM/ D 1 � YA
1C YA

: (6.34)

Therefore, for the equilibrium constant, we write in terms of either the mole fraction
x or the mass fraction Y as
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Kx D x2A
xM

D x2A
1 � xA D 4Y 2A

1 � Y 2A
D 4.1 � YM/2
YM .2 � YM/

D 2ŒTSA.T; po/ �HA� � ŒTSM .T; po/ �HM� �R�T ln

�
p

po

�
(6.35)

or in terms of the partial pressure as

Kp D p2A
pM

D p2A
.p � pA/ D 2ŒTSA.T; po/ �HA� � ŒTSM .T; po/ �HM�

D 1

R�T
Œ2GA.T; po/ �GM.T; po/� : (6.36)

One can write for Kx in terms of the partition function from (6.14) as

Kx D Z2
A

ZMNA
; (6.37)

where NA is the Avogadro number; Z with subscripts A and M refers to partition
function of atom or molecule per unit mole, respectively.

Now for the evaluation of the partition function of atoms we have to consider the
translation mode and the energy of dissociation whereas for molecules the transla-
tion, rotation, and vibration modes only, since the electrons, in the temperature range
being considered, are to be in the ground state. From (3.67), (3.80), and (3.113) we
write for the partition functions for atoms

ZA D R�T
p

�
2�kBMAT

h2

�3=2
; kmole�1 (6.38)

and for molecules

ZM D R�T
p

�
2�kBMMT

h2

�3=2
T

2�r

1

1 � exp��v=T expED=.kBT / kmole�1;
(6.39)

where ED is the energy of dissociation (per molecule) and �r and �v are the
characteristic rotational and vibrational temperature of the molecule, respectively.
Further since we are considering homopolar molecules, the value of the symmetry
factor � in (6.39) has been put equal to two. Therefore, from (6.37–6.39), and noting
that MM D 2MA, we get

Kx D Z2
A

ZMNA

D 1p
2

kBT

p

�
2�kBMAT

h2

�3=2
�r

T
.1 � exp��v=T / exp�ED=.kBT / : (6.40)
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Lighthill wrote (6.40) approximately in the form

Kx D 4Y 2A
1 � Y 2A

D �d

�
exp�Td =T ; (6.41)

where Td D ED=kB D HD=R
� is the characteristic dissociation temperature and

�d is the characteristic density of dissociation;HD is the dissociation enthalpy (per
mole of molecules). Since the density

� D p

RT
D pM

kBT
D 2pMA

kBT .1C YA/
D 2pmA

R�T .1C YA/
(6.42)

we get for the characteristic density of dissociation

�d D 2
p
2
MA�r

1C YA

�
2�kBMA

h2

�3=2 p
T
�
1 � exp��v=T � (6.43)

and for the characteristic pressure of dissociation

pd D �d=.RTd / : (6.44)

Noting that YA can have values only between 0 and 1, and for the other temperature-
dependent terms

p
T and .1 � exp��v=T / (6.45)

their temperature dependency in the range of interest (1,000 to 7,000 K) tends to
cancel each other, Lighthill calculated the value of these for N2 and O2, which are
slightly different from values given in Fig. 6.3, which contains also values for H2 and
Cl2 computed by this author. Some of the characteristic values for selected diatomic
molecular gases are given in Table 6.1.

From numerical calculations at 1 bar, it is found that for the four gases under
consideration, there is hardly any dissociation if at 1 bar pressure .T=Td / is less
than 0.05 and complete dissociation if it is larger than 0.08. Hence it is evident that
for these gases dissociation occurs within a very narrow temperature range, where
the atoms and molecules coexist.

Since

� D pm

R�T
D 2pmA

R�T .1C YA/
(6.46)

and the equilibrium constant

Kx D 4Y 2A
1 � YA D �dR

�T .1C YA/

2pmA

exp�Td =T (6.47)
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Fig. 6.3 Mass fraction of atoms for four diatomic molecules at p D 1 bar

Table 6.1 Characteristic values for selected diatomic molecules

�r �v ED pd �d Td
Gas mA [K] [K] [eV] [bar] Œkg:m�3� [K]

H2 1.008 87.6 6333 4.476 9.14e6 2.13e3 51,986
O2 16.00 2.082 3,400 5.080 9.89e5 3.23e4 59,000
N2 14.01 2.89 2,280 7.373 1.98e7 3.90e4 85,633
Cl2 35.46 0.351 815 2.475 2.07e4 2.07e4 28,745

we get the relation for the mass fraction of atom

YA D
p
C=.1C C/; (6.48)

where

C D 1

8

�dR
�T

pmA

exp�Td =T : (6.49)

As an example by keeping p=pd D 10�6 and in the temperature ratio T=Td
between 0.05 and 0.2, it can be seen that the atom mass fraction changes from
0.0036 to 0.997. Thus, as a rule of thumb for starting dissociation, the temperature
for a diatomic gas has to be higher than 0.02 Td , which explains why the oxygen
dissociates at a substantially lower temperature than nitrogen.

Following Lighthill we would now define a few other quantities. Noting that the
mixture enthalpy per unit mass is

h D YAhA C YMhM (6.50)
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we write for the specific heat at constant pressure

cp;eff D
�
@h

@T

�
p

D
�
YA
@hA

@T
C YM

@hM

@T

�
C
�
hA
@YA

@T
C hM

@YM

@T

�

D cp;f C @YA

@T
.hA � hM / : (6.51)

In above cp;f is the specific heat for the frozen composition. Now for the atom the
specific heat at constant volume is

cvA D 3

2

R�

mA

(6.52)

and for the molecule (without considering vibrational energy being effective)

cvM D 5

2

R�

mM

� 6

2

R�

2mA

� 3

2

R�

mA

D cvA (6.53)

and hence per unit of mass of the species they are approximately equal (more so if
the vibrational energy component is zero). Hence for the total mixture enthalpy and
mixture effective specific heat we write

h D 3R�T
2mA

C R�T
m

C HDYA

2mA

D 3R�T
2mA

C R�T
2mA

.1C YA/C HDYA

2mA

;

where HD is again the dissociation enthalpy. Hence the effective specific heat and
the frozen specific heat at constant pressure per unit mass are

cp;eff D
�
@h

@T

�
p

D R�

2mA

�
.4C YA/C .T C Td /

dYA
dT

�
(6.54)

and

cp;f D R�

2mA

.4C YA/ : (6.55)

Thus the ratio of the two specific heats is

cp;eff

cp;f
D 1C T C Td

4C YA

dYA
dT

: (6.56)

The computed results of .cp;eff=cp;f / using (6.56), in which the necessary values
.dYA=dT / are computed by using (6.48) and the data of Table 6.1, are presented for
four diatomic molecular gases in Fig. 6.4. The results show considerable increase in
the value of specific heat in certain temperature range, the maximum being at about
0:08T=Td .
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Fig. 6.4 Specific heat ratio for four diatomic molecular gases at p D 1 bar

6.5 Equilibrium Composition for a Multiple Component Gas

In the present section a very powerful method, originally due to Horn and Schueler
and used by Neumann and Knoche [85], is given. The starting point is the state of the
gas mixture .T; p/, which is assumed as given. Let us now consider the reaction of
the type given in (6.1), in which the quantities on the left-hand side of the equation
are defined as primary components from which the reactions are started. The choice
of the primary components is somewhat arbitrary and depends mainly on whether
sufficient mole fraction of the primary components exist in the equilibrium gas
mixture. Hence, for .H2; O2/ reaction, depending on the gas state, the selected
primary components may either be .H2; O2/ or (H,O). On the other hand for the
reaction of the type

˛1CmHnOp $ ˇ1CO2 C ˇ2H2O C ˇ3H C ˇ4O C ˇ5Cgas C ˇ6CO C ˇ7OHC;
(6.57)

the right-hand side of the equation can be obtained also by reacting Cgas; H2; O2 or
Cgas, H and O or deducting H2 and O2 from H2O and CO2 molecules. Therefore, the
selected primary components may be any of the gas components or something quite
different depending on the ease of calculation of the equilibrium composition. Thus,
we can now, in every chemical reacting gas mixture with n components, think of as
being produced from r primary components and .n � r/ secondary components.
We can also assume that every component is produced by combination of primary
components as follows:

Bj $
rX
iD1

�i;j Bi ; (6.58)
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where

�i;j D valency relation between the primary components and all components
i D index for primary components .i D 1; 2; 3; : : : ; r/

j D index for all components .j D 1; 2; 3; : : : ; n/

rDD number of primary components
n D total number of components

For reaction between H2 and O2, and these being considered as primary components,
it is, therefore, possible to write the following reactions:

H2 $ 1:0H2 C 0:0O2

O2 $ 0:0H2 C 1:0O2

OH $ 0:5H2 C 0:5O2

H $ 0:5H2 C 0:0O2

O $ 0:0H2 C 0:5O2

H2O $ 1:0H2 C 0:5O2

Therefore, for the above reaction n D 6; r D 2. Out of these reactions a valency
matrix, the so-called �-matrix, is written, whose values are �i;j as follows:

� D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1:0 0:0

0:0 1:0

0:5 0:5

0:5 0:0

0:0 0:5

1:0 0:5

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

(6.59)

Now from (6.7), we write

Kxj D xjQ
i x

�i;j
i

(6.60)

for example,

KxOH D xOH

x0:5H2x
0:5
O2

;KxH D xH

x0:5H2x
0:0
O2

; etc. (6.61)

On the other hand, we get from (6.12) the relation

R� lnKxj D R�
"

ln xj �
rX
iD1

�i;j xi

#
D 1

T

"
Gj �

rX
iD1

�i;jGi

#
; (6.62)
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where the free enthalpy of the j th species is

Gj .T; p/ D TSj .T; p/�Hj .T / D T ŒSj .T; po/CR� ln.po=p/��Hj .T / : (6.63)

We can now determine the mole fraction of all the components in the gas mixture
at a given temperature and pressure as follows. First, we compute Gj and the
equilibrium constant from (6.62). We now assume or guess the value of xi for
the primary components and we compute the value of xj for secondary components
from (6.62). We have therefore a mole matrix vector X.n; 1/, which has the first
r guessed mole fraction values of the primary components, followed by .n � r/

computed mole fraction of the secondary components. Now the following two
compatibility relations must be satisfied.

The first compatibility condition comes from the fact that the sum of mole
fractions of all the components must be equal to one, that is,

nX
jD1

xj D 1 : (6.64)

In practical terms, the first compatibility becomes

xH2 C xO2 C xOH C xH C xO C xH2O D 1 : (6.65)

Secondly, if all the components are reconverted (by backward reaction) to their
(original) primary components, then the ratio of these are prescribed by the equation

qk D ˛k

˛1
D
Pn

jD1 xj �j;kPn
jD1 xj �j;1

; k D 2; 3; : : : ; r : (6.66)

By cross-multiplication, we get now

˛1

nX
jD1

xj �j;k � ˛k
nX

jD1
xj �j;1 D

nX
jD1

xj .�j;k � qk�j;1/ D
nX

jD1
xj k;j D 0 (6.67)

.qk D ˛k=˛1; q1 D 1:0/ :

As an example for H2 and O2 being reacted stoichiometrically (two moles H2

reacting with one mole O2), the value of q2 D 1=2, and thus the second
compatibility relation is

q2 D 1

2
D 0:xH2 C 1:0xO2 C 0:5xOH C 0:xH C 0:5xO C 0:5xH2O

1:xH2 C 0:xO2 C 0:5xOH C 0:5xH C 0:xO C 1:0xH2O
: (6.68)

By cross-multiplication of (6.68), it now becomes

� 1:0xH2 C 2:0xO2 C 0:5xOH � 0:5xH C 1:0xO C 0:0xH2O D 0 : (6.69)
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From (6.65, 6.69), we can now write a matrix equation

 � X D b : (6.70)

Thus, from the two compatibility equations, we can define a  -matrix, whose
coefficients are

 k;j D

 D 1 for k D 1

D .�j;k � qk�j;1/ for k D 2; 3; : : : ; r
: (6.71)

In general terms, a  -matrix of dimension .r; n/ will have only 1 in the first row
and in subsequent .r � 1/ rows, the other elements, which are obtained by cross-
multiplication.

The equivalent  -matrix for the H2-O2 reaction will thus be

 D 1:0 1:0 1:0 1:0 1:0 1:0

�1:0 2:0 0:5 �0:5 1:0 0:0
: (6.72)

Now by matrix multiplication of  .r; n/ with the X.n; 1/ vector (containing xj -
values), the compatibility conditions to be satisfied are

bk D


1 for k D 1

0 for k D 2; 3; : : : ; r
: (6.73)

The above compatibility condition however, in general, may not be satisfied since
mole fractions are not of desirable quantity. In order to get the desired mole fraction,
we would undertake a variation of the mole fraction of the primary components,
which will automatically change the mole fraction of the secondary components
also. While the formal expression of (6.70) is

bk D
nX

jD1
 k;j xj (6.74)

the variation formulation of the mole fraction is

ıbk D
nX

jD1
 k;j ıxj D

nX
jD1

 k;j xj ı ln xj : (6.75)

Now from (6.62),

R�ı lnKxj D 0 D R�
"
ı ln xj �

nX
iD1

�j;i ı ln xi

#
: (6.76)
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Thus, the variation formulation of the mole fraction can be written as

ıbk D
nX

jD1

"
rX
iD1

 k;j xj �j;i

#
ı ln xi D

rX
iD1

gi;kı ln xi (6.77)

where

gi;k D
nX

jD1
 k;j xj �j;i : (6.78)

It may be noted that (6.78) is obtained by multiplying Œ � with a diagonal matrix
having diagonal elements xj and then finally by multiplying with �-matrix. Thus
the square g-matrix (with elements gi;k) will have the dimension .r; r/.

Now Equation (6.77) is written in a difference form. Noting that �bk is the
difference between the actual b0

k and desired bk , we write

	bk D b0
k � bk D

rX
iD1

gi;k	 ln xi (6.79)

and we get the desired change in the primary component mole fraction by
solving (6.79). Multiple iteration is possible, according to the Flow Chart (Fig. 6.5),
to get the desired result. The described method in general is very powerful and
gives results with a high degree of accuracy within a few iterations. However,
the method has the following limitations: (1) the guessed values of xi should be
good approximation (a quick hand calculation of the composition of the primary
components on the basis of the calculated equilibrium constant may help!) and
(2) the values of any primary component should not be too small, which can be
understood by noting from (6.60) that, in such a case, the numerator also will
automatically be zero (it is better to change the primary components!). This is
explained with the help of calculations of air plasma given in Fig. 6.6, which is given
at p D 1 bar and temperatures up to 50,000 K. It is seen that the oxygen dissociates
first and in fact there are practically no oxygen molecules beyond 5,000 K. However,
single-charged ionization of the oxygen takes place at a temperature higher than
that for the nitrogen. Hence it is alright to consider oxygen molecule as a primary
component till about 4,500 K, then we could take oxygen atom as a primary
component, and so on.

While the general procedure to compute equilibrium composition of a reacting
gas mixture has been discussed in this section, in the subsequent sections we discuss
the procedures to compute the equilibrium gas composition for ionized gases for
single- or two-temperature cases. We would also discuss in Sect. 6.7 an extension
of the present method for the purpose of computation of temperature derivative of
the mole fraction, which is required for calculation of the equilibrium reactive heat
conductivity coefficient. However, we would first discuss the method to compute
mole fraction of components of ionized gases, by using a slightly different method
and not through the free energy.
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Fig. 6.5 Chart for equilibrium calculations

Fig. 6.6 Composition of air
plasma at p D 1 bar
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6.6 Equilibrium Composition for a Pure Monatomic
Gas Plasma

Let us now assume a gas consisting of ions, neutrals, and electrons. As a special
case, neutrals can be considered as zero-charged ions. Thus we may introduce an
index i whose value gives the number of charges for the particle: neutrals have
the value of index i D 0, for singly charged ions i D 1, for doubly charged ions
i D 2, etc. A mixture of such neutrals, ions, and electrons is called, according to I.
Langmuir, a plasma, but for the present we consider a plasma of a pure monatomic
gas only. However, even for a plasma made out of a pure gas calculation would
have been very complicated, if a wide range of charges were present at a time.
Fortunately, as the calculations show, we have only the electrons and the ions with
i and .i C 1/ charges, and only in a limited overlapping temperature range there are
electrons and ions with i, .iC1/ and .iC2/ charges. Therefore, we have to consider
mostly three species in a pure gas plasma, although in a limited temperature range,
we would consider four species case also. We consider, therefore, a plasma with
only the electrons, and the ions with i and .i C 1/ charges for the present, for which
the reaction considered is

Ai $ AiC1 C e : (6.80)

Equilibrium constant can now be written with the help of (6.15) as

Kn D neniC1
ni

D ZeZiC1
Zi

: (6.81)

Now among the partition functions, Ze has only the translation component and Zi
and ZiC1 have translational and excitational components. These can be written as
follows:

Ze D 2

�
2�MekBT

h2

�3=2
(6.82)

Zi D
�
2�MikBT

h2

�3=2
Zi;exc (6.83)

and

ZiC1 D
�
2�MiC1kBT

h2

�3=2
Zi;exc exp�Ii =.kBT / (6.84)

where

Zi;exc D
X

gi;r exp�E0

i;r =.kBT / � gi;o (6.85)
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and

ZiC1;exc D
X

giC1;r exp�E0

iC1;r
=.kBT / � giC1;o : (6.86)

In above gr is the statistical weight for the r th energy level, E 0
r is the corresponding

excitation energy of the electrons in bound state, and Ii is the ionization energy
(potential) for transition between the ground energy levels of the i th and .i C 1/-th
ionization. Substituting (6.82–6.86) into (6.81) and noting that the mass of ions
at different ionization states are approximately equal, Mi � MiC1, we get the
expression for the equilibrium constant

Kn D neniC1
ni

D n
xexiC1
xi

D 2

�
2�MekBT

h2

�3=2
ZiC1;exc

Zi;exc
exp�Ii =.kBT / : (6.87)

Equation (6.87) can be simplified considerably, if we assume that the first energy
level is large in comparison to the ground level. For such a case, the excitation
partition function can be replaced by the statistical weight at the ground level, and
we get from (6.87) also

Kn D neniC1
ni

D n
xexiC1
xi

D 2

�
2�MekBT

h2

�3=2
giC1;0
gi;0

exp�Ii =.kBT / : (6.88)

Equation (6.87) or (6.88) can be solved under the condition of quasi-neutrality

ne D ini C .i C 1/niC1 (6.89)

and the total particle density prescribed by the temperature and pressure is given by
the relation

n D ne C ni C niC1 D p=.kBT / : (6.90)

Equation (6.87) can also be written (and similarly, (6.88) in terms of the mole
fraction of the j th species, xj D nj =n, .j D e; i; and iC1/), which, by convention,
is written as Saha function, S , after Meghnad Saha, the Indian physicist who
developed it, as follows:

S 	 Kx D Kn

n
D xexiC1

xi

D 2

p

�
2�Me

h2

�3=2
.kBT /

5=2 ZiC1;exc

Zi;exc
exp�Ii =.kBT /

D 6:6 � 10�7 T 5=2

p

giC1;0
gi;0

exp�Ii =.kBT /; (6.91)
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Table 6.2 Statistical weights and ionization potential [eV] of selected atoms

Nc Element m g0;0 I1;0 g1;0 I2;0 g2;0 I3;0 g3;0 I4;0 g4;0

1 H 1.008 2 13.59
2 He 4.003 1 24.58 2 54.40
3 Li 6.94 2 5.39 1 75.62 2 122.42
6 C 12.01 9 11.26 6 24.38 1 47.86 2 64.48 1
7 N 14.01 4 14.54 9 29.60 6 47.43 1 77.45 2
8 O 16.00 9 13.61 4 35.15 9 54.93 6 77.39 1
10 Ne 20.18 1 21.56 6 41.07 9 63.50 4 97.16 9
11 Na 23.00 2 5.14 1 47.29 6 71.65 9 98.88 4
18 A 39.94 1 15.75 6 27.62 9 40.90 4 59.79 9
19 K 39.10 2 4.34 1 31.81 6 46.00 9 60.90 4
36 Kr 83.70 1 14.00 6 24.56 9 36.90

where T is in K (Kelvin) and p is in bars. The value of gi;o and Ii for a few elements
is given in Table 6.2 for a quick estimate of the plasma composition. Also given are
m, the mole mass, and Nc , the charge number of the atom, which is equal to the
number of electrons in the atom if fully ionized. Now Equations (6.89) and (6.90),
in terms of the mole fraction, become

xe D ixi C .i C 1/xiC1 (6.92)

and

xe C xi C xiC1 D 1 : (6.93)

Accordingly,

xiC1 D �i C .i C 1/xe and xi D .i C 1/ � .i C 2/xe (6.94)

with the limit

i

i C 1
� xe � i C 1

i C 2
: (6.95)

Thus, when there are only neutral atoms (i = 0) and singly charged ions and
electrons, xe D xi is between 0 and 0.5 and xa D 1 � 2xe is between 1 and 0.

From Equations (6.91–6.93), we can write now a quadratic equation of xe ,

x2e � i � .i C 1/S

i C 1
xe � S D 0 (6.96)

which can be solved easily. From the solution for i = 0, it can be shown that for
S � 1, xe � p

S and for S � 1, xe � 0:5.
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Table 6.3 Partition function ratio for an excited ion to atom for argon

T[K] 5,000 6,000 7,000 8,000 9,000 10,000 11,000
Z1;exc=Z0;exc 5.325 5.419 5.490 5.591 5.591 5.628 5.658
T[K] 13,000 14,000 15,000 16,000 17,000 18,000 19,000
Z1;exc=Z0;exc 5.707 5.726 5.744 5.759 5.773 5.736 5.799

A quick estimate of the mole fraction of the electrons xe with the help of (6.91)
at p D 1 bar and T D 20; 000K for argon gas gives a value of xe D 0:45 if
for the ratio of statistical weights at ground state .giC1;0=gi;0/ a value of 6.0 is
taken, whereas xe D 0:4953, if the partition functions are evaluated in a more
elaborate manner (the values of partition function ratios for argon plasma are given
in Table 6.3).

While in all these calculations the ionization potential of argon for first ionization
.Io D 15:75 eV/ was taken, it has been found experimentally that, as the
temperature is increased, the ionization potential of particles is lowered due to a
polarizing effect of the charged particles. This indicates that there is a reduction in
the amount of energy to ionize, that is, the ionization potential is reduced. Several
criteria have been suggested by many authors for this, and Veis [157], comparing
the results of these authors suggested, for lowering the potential the formula

	Ii D q2effe
2

4��o
D
; (6.97)

where

�o D dielectric constant in vacuum D 8:855 � 10�12; As.Vm/�1
e D elementary charge D 1:602 � 10�19; As
qeff D effective charge number D i C 1

and 
D is the Debye shielding distance (discussed in later Chap. 8, Sect. 8.2), which
for the general case of different temperature for the electrons and heavy particles
(temperature ratio � D Te=Th > 1) is given by the relation


 D
�

2�okBTe

e2ne.1C �/

�0:5
: (6.98)

Further in the calculation of the partition function of excitation the question arises
as how far the energy levels should be counted. It is known that the statistical
weight g is proportional to the square of the principal quantum number. Thus as
n ! 1, g ! 1 and the partition function of excitation Zexc ! 1, unless a
limit is imposed in considering the energy levels. Suggestions were made by some
authors that the maximum energy for calculating the partition function should be
such that the distance between the electrons and the nucleus should be less than
the mean distance between the particles. It is shown in Chap. 2 that the maximum
energy is inversely proportional to the maximum possible quantum number, whereas



248 6 Equilibrium Composition of a Reacting Gas Mixture

the nucleus-electron distance is directly proportional to the square of the principal
quantum number. If this distance is to be less than the mean distance between the
particles of the order of n1=3, the lowering of the potential should be proportional
to n1=3. A criterion suggested by Unsöld [156] for the limiting maximum energy is,
therefore,

Ei;nmax � Ii � 3e2

�o
.qeffne/

1=3 D Ii � 5:4273 � 10�8.qeffne/
1=3 : (6.99)

The results herein is in electron volts, if the electron particle density ne is in m�3.
It is obvious that the cutoff energy cannot be less than the ground state energy
level Ei;o.

Now we consider the overlapping temperature region where ni is not zero, but
also niC2 is not zero. For such a case we write the Saha function for two-part
equilibrium

Si D xexiC1
xi

D 6:6 � 10�7 T 5=2

p

ZiC1;exc

Zi;exc
exp�Ii =.kBT / (6.100)

SiC1 D xexiC2
xiC1

D 6:6 � 10�7 T 5=2

p

ZiC2;exc

ZiC1;exc
exp�IiC1=.kBT / (6.101)

with the two auxiliary equations, sum of mole fraction equal to one,

xe C xi C xiC1 C xiC2 D 1 (6.102)

and quasi-neutrality condition,

xe � ixi � .i C 1/xiC1 � .i C 2/xiC2 D 0 : (6.103)

Equations (6.100–6.103) can now be solved to determine four unknown mole
fractions. While the method of calculation is a straightforward solution of a
polynomial equation, the situation becomes complicated because of the nonlinearity,
if there are more than three species in the mixture. Because of this reason, we discuss
in the following an alternate general iterative method, which can be applied for any
number of species. Accordingly, we consider a system of equation for reaction

Ae D 1Ae C 0AiC1
AiC1 D 0Ae C 1AiC1

Ai D 1Ae C 1AiC1
AiC2 D �1Ae C 1AiC1 (6.104)
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where the right-hand side components may be considered to be the primary compo-
nents (out of which all other components including each of them are produced) and
the other components are secondary components. We have, therefore, two primary
components and two secondary components. These can now be written in the form
of a valency matrix (�-matrix)

� D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 0

0 1

1 1

�1 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌ : (6.105)

Further, in analogy to (6.70), we write the matrix equation

 � X D b (6.106)

where

 D
ˇ̌
ˇ̌ 1 1 1 1

1 �.i C 1/ �i �.i C 2/

ˇ̌
ˇ̌ ; X D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

xe
xiC1
xi
xiC2

ˇ̌
ˇ̌
ˇ̌
ˇ̌ ; b D

ˇ̌
ˇ̌ 1
0

ˇ̌
ˇ̌ : (6.107)

In actual calculation, the values of mole fraction for the primary components, xe
and xiC1, are guessed at first and xi and xiC2 are calculated. When X vector
is multiplied with  one gets, however, a vector b0, which is generally different
from b. Therefore, we must modify the mole fraction of the primary components
and consequently also the secondary components to modify X, done by the method
already discussed in Sect. 6.4 after Equation (6.70).

6.7 Equilibrium Composition of a Multiple Temperature
Gas Plasma

Already in the beginning of a new section, the question may be raised, whether
equilibrium does not mean equal temperature for all species in all energy modes.
Unfortunately this is not so, especially when transfer of energy in one mode is
quite different (much smaller) than another mode. On the basis of experimen-
tal evidence, the electrons are known to have higher translational temperature
than the heavy particles (atoms, ions) in electric discharges, near cold walls,
etc. In a study of the magneto-gas-dynamic generators using combustion gas
products it was realized (Kerrebrock [81, 82]) that the recombination rates in
molecular gases were too high to permit electron densities to develop, but
concluded that non-equilibrium ionization might be feasible in atomic working
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gases. In experiments with potassium seeded argon and helium plasma (Zukowski
et al. [161,162]) the electrical conductivity determined from the measured values of
total current and the electric field strength seemed to agree well with the values
calculated with the help of an equilibrium composition model, for which the
temperature in the Saha equation was replaced by the electron temperature [81].
A two-temperature model was also established from the measured heat transfer
to a cooled anode (Shih et al. [145]). It was found that in electric discharges the
rotational and vibrational temperatures often deviated from the plasma temperature
(Shahin [144]), since perturbation in the populations of the rotational and vibrational
levels occurs in collisions with metastable atoms and in collisions with chemical
reaction, including those leading to the dissociation of polyatomic molecules or the
recombination of molecular ions. For example, in electric arcs where the electron
density is high, the rotational temperatures, which were observed, were close to
the arc temperature (the arc temperature, measured by the spectrometry, is the
excited electron temperature). Further in reaction zones for flames, abnormally high
rotational and vibrational temperatures resulted from excitations due to elementary
chemical reactions (Emmons [58]). On the other hand if the electronic collisions
were less, the inelastic collisions with electrons provided the electronic excitation
of the molecules, but did not perceptibly alter the angular momentum with the
result that the rotational temperature represented the translational temperature
of the molecules. Because of the difficulties in delineating exactly the range in
which the vibrational, rotational, and excitational temperatures deviate from the
translational temperature, the multi-temperature model described in this section is
restricted to the temperature range in which no molecules are present. Since the
method by Kerrebrock to modify the Saha equation by replacing the temperature by
the electron temperature gives too high value of electron density at lower tempera-
ture range, another method due to Veis [157] has been used. For completeness, we
should mention also the two-temperature model of Morro and Romeo [118], which
is obtained from the condition of the vanishing reaction rates. The problem in this
method is that the equilibrium composition is dependent on the reaction rates (which
may be very inaccurate) and hence the results may be quite different from the values
one can obtain from the more rigorous Saha equation. Another two-temperature
model, similar in structure like that of Morro and Romeo, but derived on the grounds
of more thermodynamic laws, was reported by Sanders et al. [139].

Obviously a two- or multi-temperature plasma is not at equilibrium, and left
to itself for sufficiently long time, a common single temperature will be found.
However, from the examples discussed in the previous paragraph, it is evident that
a quasi-steady model will be properly represented by a two-temperature or a multi-
temperature model, the former being discussed in this section. Therefore, the state
of the plasma being considered is assumed to be characterized by the pressure p,
the electron temperature Te , and the heavy particles translational temperature Th.
The temperature ratio � D Te=Th is assumed to be greater than or equal to one. The
excitation temperature of the electrons in the bound state of the heavy particles is
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Te , and we do not consider presence of molecules. The gas mixture may consist of a
number of components of various species designated with subscript j. The equation
of state for such a plasma is

p D kB
X

nj Tj D kBn
X

xj Tj D nkBTm; (6.108)

where the translational temperature of a specie is Tj , the total number density
n D P

nj , and the mole-fraction xj D nj =n. We can, therefore, evaluate an
average temperature Tm from the relation

Tm D
X

xj Tj : (6.109)

Since we are considering only a two-temperature model, and we have to consider
also the quasi-neutrality condition (the sum of opposite charges cancel each other
globally), (6.109) becomes

Tm D xeTe C Th
X
h

xj D xeTe C .1 � xe/Th D Te

�
xe C 1 � xe

�

�
: (6.110)

Thus for xe ! 0, Tm D Th and for xe ! 1, Tm D Te . In addition to the
state defined in terms of the total pressure and two temperatures we need to know
the mole fraction of the electrons, which can be guessed initially. The starting
point of calculation of equilibrium composition for multi-temperature plasma is the
definition of free enthalpy of the j th species, which is given by the relation for the
single-temperature gas as

Gj D R�Tj ln

�
Zj

NA

�
; (6.111)

where NA is the Avogadro number, R� is the universal gas constant, and Zj is the
partition function given by the relation

Zj D Zj;tr �Zj;r �Zj;v �Zj;exc � � � : (6.112)

In the above equation the second subscript denotes the mode of energy. For example,
“tr” denotes translation, “r” denotes rotation, “v” denotes vibration, “exc” denotes
electronic excitation, and so on. Some of the additional contributions, shown
mathematically with dots, are due to the interaction between different energy types
like rotation and vibration, etc.

In case there are different temperatures for different modes of energy, the above
equation may be written as follows:

Gj D R�Tj;t r lnZj;tr CR�Tj;r lnZj;r

CR�Tj;v lnZj;v CR�Tj;exc lnZj;exc � � � (6.113)
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where for each mode of energy the partition function relation is as follows:

Zj;tr D 1

nj

�
2�kBmjTj;t r

NAh2

�3=2
IZj;r D Tj;r

�j;r

Zj;v D 1

2 sinhŒ�j;v=.2Tj;v/�

Zj;exc D
X

gj;m exp�Ej;m=.kBTj;exc/ D Z0
j;exc exp�Ij =.kBTj;exc/ :

Herein kB is the Boltzmann constant, mj is the mole mass of the j th species, nj
is the particle number density, h is the Planck constant, �j;r is the characteristic
rotational temperature of the species, and �j;v is the characteristic vibrational
temperature of the species. Further, the expression for the vibrational partition
function is written for a diatomic molecule in which the atoms vibrate as a harmonic
oscillator and the expression for the excitation contains the subscript “m” to refer
to a particular energy level for a species like neutrals, singly charged ions, doubly
charged ions, etc. Taken from the ground excitation level of the neutral atom, the
excitation energy Em is the sum of the ionization energy up to the ground level of
the species from the ground level of the neutral atom of the same species, Ij;o, and
the relative excitation energy E 0

jm from the ground level of the particular ionization
level. Thus, the modified partition function, Z0

j;exc accounts from the ground state
of the particular specie only. In addition, the partition function expressions for the
contribution of vibration and rotation of diatomic molecules have to be appropriately
altered for the case of more complicated molecules.

There appears to be experimental evidence that for non-thermal-equilibrium
plasma the excitation temperature of the bound electrons is at equilibrium with
the translational temperature of the free electrons. There is, however, not much of
information for such evidence for rotational and vibrational temperatures, which
need be considered in the case of slightly conducting molecular gas, as in the case
of seeded combustion plasma for magneto-gas-dynamic applications. In view of
this, further analysis in this section is done only for the mixture of the particles like
monatomic neutrals (atoms), ions, and electrons. For the first two the translational
temperature is Th, but the excitation temperature is the same as the electron
translational temperature, Te . We consider now, therefore, the general case of a gas
mixture consisting of atoms (these are considered to be a special case of ions with
charge index zero) and ions of different elements designated with superscripts and
the electrons with e, and the state is given by .Te; Th; p/. Thus at any given gas
mixture state, for each element in the mixture, ions and neutrals are designated by
charge index i, i+1 and i C 2 (i D 0 for neutrals). Thus we consider the reactions

Ak
i $ Ak

iC1 C e ; Ak
iC2 $ Ak

iC1 � e . (6.114)
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Fig. 6.7 Composition of
two-temperature argon
plasma at 1 bar

From (6.91), the equivalent Saha equation for the two reactions will now be

Ski D xe

 
xkiC1
xki

!1=�

D 2Z0k
iC1;exc

Z0k
i;exc

1

n

�
2�mekBTe

NAh2

�3=2
exp�I ki =.kBTe/ (6.115)

SkiC1 D xe

 
xkiC2
xkiC1

!1=�

D 2Z0k
iC2;exc

Z0k
iC1;exc

1

n

�
2�mekBTe

NAh2

�3=2
exp�I k

iC1
=.kBTe/ : (6.116)

Calculation is done by first guessing the mole fractions xe and xkiC1 after which
xki and xkiC2 are computed with the help of (6.115, 6.116). Further calculations are
done by the procedure given in the previous section and the result of calculation for
a two-temperature argon plasma at 1 bar is given in Fig. 6.7 (Bose [17]). The method
is quite straightforward.
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The method is further simplified, if at any time, three species only are considered
.xiC2 D 0/, and we consider only (6.115). We get now the following polynomial
equation

x�C1
iC1 C ix�iC1 C .i C 2/xiC1 � S�i D 0 (6.117)

which for � D 1 reduces to a quadratic equation. Otherwise for � ¤ 1, (6.117) can
be solved by a method such as Newton-Raphson method.

6.8 Temperature Derivatives of Equilibrium Gas Mixtures

When a hot gas is confined in an enclosure with comparatively cold wall, at the
center of the enclosure, there is hot dissociated or ionized gas, while near the cold
wall, there are mainly neutral particles. Therefore gradient of the various species is
created, which causes diffusion of particles with corresponding energy transfer. This
energy transfer is in addition to that will occur due to pure conduction only. One way
we can compute the diffusive mass and energy transfer is if we can determine the
mole fraction derivative with respect to temperature for the single-temperature case
or partial derivatives with respect to multiple temperatures, assuming, of course, that
there is always local equilibrium.

In the previous two sections we discussed methods for determination of
mole fraction of multicomponent gas mixtures. The method requires, in the first
instance, determination of the equilibrium constant, which is required further in an
iterative fashion for determination of the mole fraction of various components, xj ,
in the mixture. In principle, one could use the method further for determination
of the value of .dxj =dT /, the temperature derivative of the mole fraction of the
j th species, which we will require later in our discussion about the reactive heat
conductivity coefficient. However, determination of this temperature derivative of
the mole fraction by the above iterative method is time consuming and hence,
therefore, a simple method is given for this purpose in this section first for a single
temperature (temperature of all species is the same) reacting gas mixture. Starting
point in our discussion is (6.74), the temperature derivative of which is

dbk
dT

D 0 D
nX

jD1
 kj xj

d ln xj
dT

D
nX

jD1
 k;j xj

"
d lnKxj

dT
C

rX
iD1

�j i
d ln xi

dT

#

D
nX

jD1
 kj xj

d lnKxj

dT
C

nX
jD1

 kj xj

rX
iD1

�j i
d ln xi

dT
: (6.118)

From the definition of g-matrix in (6.78), we can now write the above equation as

rX
iD1

gi;k
d ln xi

dT
D �

nX
jD1

 kj xj
d lnKxj

dT
: (6.119)
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Since, from the equilibrium composition calculation of mole fraction described in
previous two sections, the mole fraction xj is known, the coefficient matrix gik can
be determined easily. In the right-hand side the temperature derivative of lnKxj

can be determined numerically or analytically (if lnKx is given, for example, as a
polynomial of T ), and thus a simple solution of a system of simultaneous linear
equation is required to obtain the temperature derivative of all other components,
since from (6.63) we can write

d ln xj
dT

D d lnKxj

dT
C

rX
iD1

�j i
d ln xi

dT
: (6.120)

While we discussed in section (6.4) the method to compute (cp;eff=cp;f ) for ideal
diatomic gases, we would now determine similar properties for a single species gas
plasma, like for noble gases or other monatomic gases. This is one of the simplest
cases of investigation. We consider only three components: electrons, i th, and .i C
1/-th ions (i D 0 for neutral atoms). First we discuss for single-temperature plasma.
Now from (6.94) we write

d ln xiC1
dT

D 1

xiC1
dxiC1

dT
D d ln xe

dT
(6.121)

and

d ln xi
dT

D 1

xi

dxi
dT

D �.2C i/xe

.1C i/ � .2C i/xe

d ln xe
dT

: (6.122)

Further from (6.91)

d lnKx

dT
D d ln xe

dT
C d ln xiC1

dT
� d ln xi

dT

D
�
2.1C i/ � .2C i/xe

.i C 1/ � .i C 2/xe

�
d ln xe

dT
D 1

T

�
5

2
C Ii

kBT

�
(6.123)

and hence,

dxe
dT

D xe

T

�
.i C 1/ � .i C 2/xe

2.1C i/ � .2C i/xe

��
5

2
C Ii

kBT

�
: (6.124)

Since

i

i C 1
� xe � i C 1

i C 2
; .i D 0; 1; 2; � � � / (6.125)

it can be shown easily that at the higher limit of xe for a given ionization index i,
dxe=dT ! 0. On the other hand, only for xe ! 0 (that is, i D 0), dxe=dT D 0.
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We would now derive similar expressions for temperature gradient for multi-
temperature plasma of a single element gas. Noting from the equilibrium
two-temperature model with three components of a single species, as described by
the modified Saha equation

S D nxe

�
xiC1
xi

�1=�
; (6.126)

it can be easily shown that

@xe

@Th
D � g

f Th
C 5

2f

�
�

Te
C Ii

kBT 2e

�
(6.127)

and

@xe

@Te
D g�

f Th
; (6.128)

where

f D �.xe C a/C xe

.xe C a/xe
� �2.1 � bxe/ � b.1 � xe/ � �

.1 � bxe/Œxe.� � 1/C 1�

g D 1 � xe
xe.� � 1/C 1

� ln

�
S

xe

�

a D � i

i C 1
; b D i C 2

i C 1
: (6.129)

The above expressions can now be used easily to get the two reactive heat
conductivity coefficients for the electrons and the heavy particles.

6.9 Effect of Radiation

The calculation of the equilibrium composition of ionized gases was described so
far without taking into account the role of the radiation. This lacuna will now be
removed by trying to estimate the effect of radiation. Effects of radiation on the
general composition of the plasma are twofold. Firstly, in a volume of radiating gas
of a dimension so large that the absorption is significant and the gas radiates an
equilibrium radiation, there are associated radiation quantities,

pressure W pR D 4�

3c
T 4 D 0:252

�
T

105

�4
; bar (6.130)
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enthalpy W hR D 16�

3�c
T 4 D 4

�
pR D 100:8

�

�
T

105

�4
kJ.kg�1 (6.131)

entropy W sR D 16�

3�c
T 3 D 100:8

�

�
T

105

�3
kJ.kg�1K�1; (6.132)

where � is the gas density .kg:m�3/, � D 5:672 � 10�11 kW:m�2:K�4, and c D
speed of light D 2:998 � 108 m:s�1.

It is noted that at temperatures around 10–20,000 K, the partial pressure of the
equilibrium radiation is sufficiently small to warrant special consideration. Even
at temperatures, in which this partial pressure of equilibrium radiation may be
significant, the gas may not actually be radiating as a black body for most cases,
since the local radiation equilibrium is only allowed if the mean free path of
radiation is so small that the radiation can be trapped between the particles, which
is an impossible condition for laboratory plasmas. At the outset, the total pressure,
the enthalpy, and the entropy should include contribution from individual species,
as well as due to radiation, and thus,

ptotal D p C pR; htotal D hC hR and stotal D s C sR : (6.133)

Thus from the given total pressure one may subtract the radiation pressure, which
is zero for laboratory plasmas, to obtain the gas total pressure p, which in turn may
be used to calculate the equilibrium composition given by methods given in earlier
sections.

In many cases, however, one can assume equilibrium among different ionization
and recombination mechanisms to determine the overall equilibrium. Thereby it
is assumed, for simplification, that all atoms and ions are in their respective
ground states only, and the interaction with the radiative energy is to ionize further
or deionize. Thus, excitation and de-excitation are not considered, and only the
following reactions are taken into account.

Ionization by collision by fast electrons and three-body recombination:

Ae C e C 1

2
Mev

2
e $ AiC1 C e C e : (6.134)

The basic requirement in such a case is that the kinetic energy of the colliding
electron must be larger than the ionization energy. On the other hand, a mere coming
in contact of an electron with the ion AiC1 is not sufficient to recombine to get
Ai , unless the ionization energy that is freed is taken away to avoid re-separation.
This excess energy is given up to the third colliding electron, or as will just be
discussed, also by emitting radiation. The number of ionizations per unit volume
and time by collision with fast electrons is N1 D k1nine , where k1 represents
the transition probability for ionization by collision .m3s�1/ and ni , ne are the
number densities .m�3/ for the i th ion and electrons, respectively. Similarly for
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the three-body recombination, the number of ionization per unit volume and time is
N2 D k2niC1n2e , where k2 is in .m6s�1/

Ai C h� $ AiC1 C e : (6.135)

For this the number of ionizations per unit volume and time by radiation is N3 D
k3ni , where k3 is in .s�1/. It may be pointed out that the number of transitions
should also strictly depend on the intensity of radiation about whose influence we
would discuss later. The number of photo-recombinations per unit volume and time
is N4 D k4niC1ne . Now since N1 CN3 D N2 CN4, the relation for the equilibrium
constant is

Kn D niC1ne
ni

D k1ne C k3

k2ne C k4
: (6.136)

While the above equation is very simple and could formally be used for calculation
of the equilibrium composition, there are uncertainties in knowing the values from
k1 to k4. A limiting case may be considered, if the produced radiation may leave the
gas volume freely without absorption, in which case N3 D k3 D 0. Thus specially
under this condition

Kn D niC1ne
ni

D k1ne

k2ne C k4
: (6.137)

Although uncertainties exist in the values of k1, k2, and k4, Elwert’s formula
(Knoche [85]; Elwert [57]) gives an order of magnitude of these quantities.

6.10 Exercise

6.10.1 Compute at a given pressure and temperature the mole fraction of all
components in the dissociation of (a) CO2; (b) N2H4; and (c) H2O.

6.10.2 Compute at a given pressure and temperature the mole fraction of all
components in the ionization of all the five noble gases.

6.10.3 For the diatomic molecules, for which the characteristic temperature and
dissociative energy are given in Table 2.1, derive a close-form equation for
the equilibrium constant. [Hint: write down the expressions for partition
functions for molecules and atoms; how you will take care of the dissoci-
ation energy?]



Chapter 7
Transport Properties of High Temperature
Gases

In the last three chapters we have discussed several aspects of equilibrium state.
In Chap. 3, it was the equilibrium energy distribution of the particles; in Chap. 4, it
was radiation with special emphasis to equilibrium or black-body radiation; and in
Chap. 6 we have talked about chemical equilibrium by considering the extremum of
the free enthalpy. Even the multi-temperature model implies a quasi-equilibrium,
because changes do not take place very slowly. All these require a uniform
distribution of the particle number distribution or the state, and a departure from the
equilibrium from point to point can cause the flow of mass, moment, and energy.

While the transport of particles, momentum, and energy for gases at moderate
temperatures has been dealt suitably by Hirschfelder et al. [74] and Chapman and
Cowling [42], these are now being extended for gases in which there are charged
particles, with or without magnetic fields. In the presence of electromagnetic fields,
singly charged particles are subjected to additional forces, for which Maxwell’s
equations are discussed first in Sect. 7.1, followed by a discussion on the motion
of such particles. Section 7.2 deals next with the transport properties of a collision-
dominated gas, followed by a discussion in Sect. 7.3 on the special features of a
collision-dominated ionized gas plasma in electromagnetic fields. Thus the special
features like the mobility coefficient, the ambipolar diffusion coefficient, and the
electrical conductivity coefficient are considered.

7.1 Motion of a Singly Charged Particle in Electromagnetic
Fields

We begin our study of the motion of charged particles in electromagnetic
fields by a discussion on the convention of signs used. The electric charge
qj of a single particle of the j th species has values �e, 0, and Cie, for an
electron, a neutral, and an ion, which has been formed by removing i electrons
(i D 0 for neutrals) from neutral atoms. It may be noted that e D 1:602 � 10�19
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As is the elementary charge. In case two charged particles j and k are placed in a
vacuum at a distance r apart, then the force acting on each other in the direction of
the line connecting the position of the two particles is given by Coulomb’s law

F D 1

4��o

qj qk

r2
; (7.1)

where �o is the dielectric constant in vacuum. In case the right-hand side of (7.1) is
positive, then the particles repel each other, and if they are negative, then they attract
each other. If one of the particles is held stationary (for example, qk), then the force
divided by qj is called the electric field given by the relation

E D F
qj

D 1

4��o

qk

r2
: (7.2)

Thus, the electric field, E, is the force acting on a unit charge by another charge
in vacuum. However, if there is an intervening medium (not vacuum) between the
two charges, then a shift in the position of charges in the intervening medium can
give rise to a distribution of dipole sources affecting the original electric field E to
change to D, the relation between the two being

D D �E; (7.3)

where � is the permittivity (dielectric) of the medium and D is the electric
displacement.

In (7.2), the electric field in a direction away from the charged particle k is
positive if qk is positive and gives the direction in which the positive unit charge
must move. In case there are several charges qk , which are distributed, then the
electric field at the position of the particle j is given by the vector addition of fields
due to each particle k,

E D
X

Ek D 1

4��o

X qk

r2jk
: (7.4)

The total electric field is dependent only on the position with respect to the fixed k
particles, and thus no work is done, if the single j th particle is moved around and
brought back to the original position. Thus,

Z
F�ds D qj

Z
E�ds D 0 (7.5)

from which it immediately follows from the Stokes theorem and the assumption of
a steady electric field that

r � E D 0 : (7.6)
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It follows further that one can define a potential U, such that

E D �rU : (7.7)

Generally speaking, we are not interested in individual particles, and therefore, we
consider the charge density

nc D
X

nkqk: Asm�3; (7.8)

where k represents a species type (ion, electron, atom, etc.) and nk is the particle
number density of the kth species Œm�3�. Use of the Gauss theorem in converting
from the volume integral to the surface integral yields

r � E D nc=�o (7.9)

and then finally to the Poisson’s equation

r2U D �nc=�o : (7.10)

If there is an intervening medium, (7.9) now gets modified to

r � E D nc

�
D nc

�o
� �o
�
: (7.11)

The ratio �=�o is the relative dielectric constant for the medium. The effect of
different dielectric constants for two different media is shown from (7.7) that at
the interface, the tangential component of the electric field in the two media is the
same .Et1 D Et2/, but for normal components Dn1 D Dn2, and thus the ratio of the
normal components of the electric field is En1=En2 D �2=�1.

Similar to Coulomb’s law giving the force acting between two charged particles,
it is an experimentally observed fact that when electric currents I and I 0 flow
through two parallel conductors at distance r apart, each having length l and l 0,
respectively, then a mutual force in vacuum exerted between them is given by the
relation

F D �o

4�

II 0l l 0

r2
; (7.12)

where �o is the magnetic permeability in vacuum. Just like the definition of the
electric field, the magnetic induction B is defined in the manner to give the force
per unit of the product of the current and length (Il), when there is no intervening
medium (vacuum), and we get the relation

B D �o

4�

I 0l 0

r2
: (7.13)
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Once again we may not be interested in a single current-carrying wire, but there may
be a complete distribution of the current density j. By using the Stokes theorem, it
can be shown again that in vacuum

r � B D �oj : (7.14)

While the electric current flowing through a wire may induce by (7.13) a magnetic
induction B in the surrounding vacuum, this equation is modified if there is an
intervening medium. If the intervening medium is a gas with charged particles
around, there may be other motions in the gas (for example, gyrating motion) giving
rise to magnetic moments. Thus, (7.14) is changed to

r � H D j; (7.15)

where j is now the current density of the guiding centers and H is the magnetic field.
Between B and H the relation is

B D �H (7.16)

and the ratio .�=�o/ is a measure of other effects of the current flow on magnetiza-
tion and � is the permittivity of the gas through which the current is flowing. While
these factors are for a steady-state case, in an unsteady case these are modified. For
example, as a consequence of Faraday’s law of induction, the expression we get is

r � E D �@B
@t

(7.17)

which becomes the same as (7.6) for the steady-state case only. Similarly, as a
consequence of free charge density, the principle of conservation of electric current
may not be valid and (7.15) is suitably modified to include the effect of the rate
of change of the displacement current vector D. As a consequence, one gets the
following electromagnetic equations, known as Maxwell’s equations, in their usual
form as follows:

r � D D nc (7.18)

r � B D 0 (7.19)

D D �E (7.20)

B D �H (7.21)

r � E D �@B
@t

(7.22)

r � H D j C @D
@t

(7.23)
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From (7.19) the auxiliary condition at the interface of two media is that Bn, the
normal component of B across the two media, does not change .Bn1 D Bn2/. This
has important consequences in the study of magneto-gas-dynamic shocks.

For collisionless plasmas (ionized gases), the equation of motion of a single
particle is given by the relation

Mj

dwj

dt
D qj .E C wj�B/; (7.24)

whereMj is the mass of the particle and wj is the velocity of a single particle. Now
the following special cases may be considered:

(a) No magnetic induction, B D 0, but E constant over space and time. Thus the
constant acceleration in the direction of the electric field is

dwj

dt
D qj

Mj

E : (7.25)

(b) No electric field, E D 0, but B constant over space and time. Thus the force
acting on the particle will be at right angle to both wj and B and the particle
must move around the magnetic induction lines B with a radius of curvature
Rcj . Since dwj =dt D w2j =Rcj , from (7.24), we may write

w2j
Rcj

D qj

Mj

wjB (7.26)

and one gets the equation for the radius of the circular path (D Larmor or
cyclotron radius)

Rcj D wjMj

qjB
(7.27)

and the (radian) cyclotron frequency

!cj D wj
Rcj

D qjB

Mj

: (7.28)

While Equation (7.27) does not give an explicit expression for Larmor radius
since wj must be known, an order of magnitude estimation can be done if the
latter is replaced by the mean or most probable kinetic speed. It can then be
shown that the Larmor radius has to be much smaller for the electrons than
the one for the ions.

Looking in the direction of the magnetic induction B, it may be noted that
the positive charges gyrate around the magnetic induction line counterclock-
wise and the electrons clockwise. However, because of the very small mass of
the electrons with respect to that for the ions, the cyclotron frequency for the
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electrons is much larger than that for the ions. Further, the ratio of the radian
cyclotron frequency to the collision frequency is given by the relation

�j D !cj =�j ; (7.29)

where �j is the collision frequency, which may be calculated with the method
discussed in Chap. 5, which has thus important consequences for the transport
properties.

(c) Let E and B be constant in space and time, and let E be perpendicular to B.
Further let

w�
j D wj � E � B

B2
: (7.30)

Thus from (7.24)

Mj

dwj

dt
D qj

�
E C



w�
j C E � B

B2



�B
�

D qj

�
E C w�

j�B C 1

B2
.E � B/�B

�

D qj

h
E C w�

j�B � E
i

D qj .w�
j�B/ (7.31)

which is the same equation, as if the particles, having the velocity w�
j , were

gyrating around the magnetic induction lines and without any effect of the
electric fields. Thus, in crossed electric and magnetic field, there is a drift of
the charged particles

wDj D wj � w�
j D E � B

B2
(7.32)

which is in a perpendicular direction to both electric and magnetic fields.
(d) Charged particles in crossed magnetic and gravitational fields, B, is perpendic-

ular to g. Equation (7.24) is modified to

Mj

dwj

dt
D qj .wj�B/CMj g : (7.33)

Let

w�
j D wj � Mj

qj

g � B
B2

(7.34)

which follows

Mj

dw�
j

dt
D qj

��
w�
j C Mj

qj

g � B
B2

�
�B
�

CMj g D qj .w�
j�B/ : (7.35)
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There may be a drift of the particle

wDj D wj � w�
j D Mj

qj

g � B
B2

D g � B
!cB

: (7.36)

It is of interest to note that the mechanism just described plays a significant role
in trapping charged particles near the earth due to the interaction of the earth’s
magnetic and gravitational fields.

7.2 Collision-Dominated Ionized Gas

While the thermal motion of gas “particles” is random in nature, and is dependent on
the local temperature of the gas, Tj , there are other velocities, which are directional
in nature. The foremost among the latter is the gas-dynamic velocity, which is due to
the pressure gradient that is imposed on the gas externally as boundary condition in
the domain. The other directed velocities are more diffusive in nature such as those
due to concentration gradient or electric potential gradient (electric field). Different
particles diffuse in different directions simultaneously and hence it is convenient to
have an average of velocities of all particles. This average can be done either as a
mass-averaged velocity V or a number-averaged (or molar-averaged) velocity V�.
The thermal velocities (thermal velocity D kinetic speed), for which while the
directions are random, the magnitude can be averaged again, and the different ways
of averaging (either simple mean or root mean square) was discussed already in
Chap. 3. For the moment, let us now designate the random thermal velocity of all
species as v, and the mass-averaged velocity of the j th species, Vj , is superimposed
on it, and thus the velocity of a single particle of the j th species at any given instance
is given by the relation

wj D v C Vj : (7.37)

On the other hand, if we add the thermal velocity to the mass-averaged velocity of
all species, V , then we write a similar relation

w D v C V : (7.38)

Subtracting one from the other, the difference wj � w D Vj � V is the mass-
averaged drift velocity of the j th species due the concentration gradient (diffusion),
the temperature gradient (thermo-diffusion), the electromagnetic fields (conduction
of electric current), etc. One could, of course, define similarly molar-averaged
drift velocity. While a more precise solution to the Boltzmann integro-differential
equation is necessary not only for the exact calculation of the effects due to the
gradients mentioned as above and the fields, the method is highly mathematical,
and in the present case a simple approach will be taken so as not to lose track of
the essential physical concepts (the method is called by Hirschfelder et al. [74] as
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Fig. 7.1 Schematic diagram
to explain transport properties

ultra simplified theory). To begin with, we do not consider any electromagnetic field
and discuss the diffusion, heat conduction, and viscosity coefficients, for a gas in
general, but an ionized gas in particular.

In order to estimate these coefficients we consider global motion of a species
moving parallel to the three planes and in the direction of the x-coordinate (Fig. 7.1)
with a net velocity Vj D Vj .z/. The distance between the two plates is of the order
of magnitude of a mean free path, 
j , so that the particles do not undergo any
collision within this distance from the wall. Thus the particles which leave the plane
A has a momentum .MjVj /A, where Mj is the mass of a single particle. Assuming
that the random velocity of the species is such that at any instant one-sixth of the
total number of particles move along one of the coordinate directions with mean
kinetic speed, Nvj , then the flux of the particles from the plane A to the plane O is
Nvj nj =6. Thus the flux of the momentum of the x-component per unit area in the
z-direction from A to O plane is Nvj nj .MjVj /A=6. Similarly the momentum flux
from the B plane to O plane is �Nvj nj .MjVj /B=6. Thus the net flow of the
momentum flux from A and B planes to the O plane is

�xzj D 1

6
Nvj njMj .VjA � VjB/; Nm�2 : (7.39)

Provided we assume a linear distribution of the macrospeed Vj ,

VjA D VjO � 
j dVj
dz
; VjB D VjO C 
j

dVj
dz

(7.40)

and thus, .VjA � VjB/ D �2
j dVj =dz and
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�xzj D �1
3

Nvj njMj
j

�
dVz

dz

�
: (7.41)

By Newton’s law, however

�xzj D ��j
�

dVz

dz

�
; (7.42)

where �j is the dynamic viscosity coefficient of the j th species. Thus,

�j D 1

3
Nvj njMj
j ; kgm�1s�1 : (7.43)

Similarly at A, the particles have the near-microscopic kinetic energy .Mj Nv2j =2/A D
.3kBTjA=2/ and the net flux of energy in z-direction at O for the j th species is

qj D 1

6
nj kB Nvj 3

2
.TjA � TjB/ : (7.44)

Assuming again a linear distribution of the temperature, we may write
.TjA � TjB/ D �2
j dTj =dz, and we write for the heat flux as

qj D �1
2

Nvj nj kB
j dTj
dz

(7.45)

Now from Fourier’s law

qj D �k0
cj

�
dTz

dz

�
; (7.46)

where k0
cj is the heat conductivity coefficient of the j th species considering

translational motion alone. By taking the translational component of the energy
transfer alone, one gets therefore the relation

k0
cj D 1

2
Nvj nj kB
j D 3

2
Rj�j ; Wm�1K�1 (7.47)

in which Rj is the gas constant for the j th species. This equation is adequate to
predict the heat conductivity coefficient for pure monatomic gases. The theory,
however, does not consider the transfer of other modes of internal energy within the
molecules. Eucken’s method gives the other contributions to the heat conductivity
coefficient

k00
cj D 0:88

�
0:4

�
cpj

Rj

�
� 1

�
k0
cj : (7.48)
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and it may be noted that for a pure gas of the j th species (no gas mixture),

kcj D k0
cj C k00

cj (7.49)

Finally, the net flux of molecules at O in z-direction is

Pnj D 1

6
Nvj .njA � njB/; m�2s�1 : (7.50)

Once again by assuming a linear distribution of the number density,
.njA � njB/ D �2
j dnj =dz, and noting the Fick’s law,

Pnj D �Dj

�
dnz

dz

�
(7.51)

we get the expression of the diffusion coefficient

Dj D 1

3
Nvj 
j ; m2s�1: (7.52)

We would now like to discuss the motion of charged particles with charge ej in
a collision-dominated gas in presence of an externally applied electric field, E0.
We assume now that E0 is in the positive z-direction and the charge of the particles
is such that it accelerates in the direction of E0. Now let us assume one charged
particle comes from B to O, for which it has the free flight time of �j D 
j =vj ; vj
being the kinetic speed of the molecule. Change in the velocity will now be

	vj D ej 
j

Mj vj
E0 : (7.53)

Similarly for a charged particle coming from A to O, there is a retardation in the
velocity. However, if the kinetic speed of the particle, vj , is deducted from the speed
of the above two particles, it gives an average field drift velocity given by the relation

wj D ej 
j

Mj vj
E0 D bjE0; (7.54)

where bj is the mobility coefficient given by the relation

bj D ej 
j

Mj vj
D 3ejDj

Mj v
2
j

D ejDj

kBTj
: (7.55)

In the above equation the relation for the average kinetic energy (translational)

1

2
Mjv

2
j D 3

2
kBTj (7.56)

is used.
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We now use for mean kinetic speed (3.154), for mean free path (5.53), and for
nj from the equation of state, and the relations for the three transport properties
equations for the j th species become

(a) Dynamic viscosity coefficient:

�j D 8:385853 � 10�6pTjmj =Q
.2;2/
jj ; kgm�1s�1 (7.57)

wheremj is the mole mass of the species andQ.2;2/
jj is the collision cross section

for momentum and energy transfer in Å2.
(b) Translation energy contribution of the heat conductivity coefficient:

k0
cj D 2:61644 � 10�4

q
Tj =mj =Q

.2;2/
jj ; kWm�1K�1 (7.58)

and for the contribution of other forms of internal energy it is (7.48).
(c) Self-diffusion coefficient:

Dj D 8:15033 � 10�7
q
T 3j =mj =.pQ

.1;1/
jj / m2s�1; (7.59)

where p is the pressure in bar and Q.1;1/ is the collision cross section for
diffusion transport in Å2.

Explanation of the diffusion coefficient for a single species gas may be somewhat
difficult to visualize, but when we use a radioactive gas isotope of almost the same
molecular weight as that of nonradioactive isotope, it is possible to explain it in
terms of the diffusion of one or the other isotopes. For binary or multicomponent gas
mixtures, the diffusion coefficient can be described with the help of the mean free
path for binary collisions or multiple collisions, as has been described in Chap. 5.
The latter is discussed also in Sect. 7.3.

It needs to be explained further that the collision cross section to be used in
(7.57–7.59) is the same for the rigid sphere model only, but otherwise they could
be different. In the Lennard-Jones 6–12 model Qjj D Q

.2;2/
jj for viscosity and heat

conductivity coefficients and Qjj D Q
.1;1/
jj for diffusion coefficient.

7.3 Diffusion, Ambipolar Diffusion, and Mobility

In the previous section the diffusion coefficient is explained with respect to a
single component gas. Even for a multicomponent gas the diffusion coefficient
relation (7.52) gives the value of only one component gas mixture with the
corresponding particle flux relation (7.51). These relations are written once again
as follows:

Particle flux:

Pnj D njVj D �Djrnj (7.60)
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Diffusion coefficient:

Dj D 1

3
Nvj 
j D Nv2j

3
P
�jknkQjk

: (7.61)

By considering the state equation

p D nkBT : (7.62)

Equation (7.60) can now be written as

Pnj D njVj D �Djrnj D �Djr.nxj /

D �Dj

�
nrxj C xj

kB
r
�p
T

	�
; (7.63)

where xj D nj =n is the mole fraction of the j th species. Further, we get the relation
of the particle average speed as

Vj D �Dj

�
1

xj
rxj C 1

p
rp � 1

T
rT

�
: (7.64)

In the above equation the first term is due to the gradient in the mole fraction of the
j th species, the second term is due to the pressure gradient (pressure diffusion), and
the third term is due to the (thermo-diffusion). For the present we consider the first
term only, which is equivalent of stating that the total number density of all specie,
n, is constant, and we write

Vj D �Dj

xj
rxj : (7.65)

For many cases it is convenient to work with the mass-density flux, rather than the
number density flux. The relation for this can be derived easily by multiplying (7.63)
with the mass of the species, Mj , to get

P�j D �jVj D �Djr�j : (7.66)

In the definition of the diffusion coefficient we have so far assumed the
particle flux dependent basically on its own gradient only, except considering the
collision with other particles. However the diffusion process has to satisfy certain
compatibility conditions. For example, in reacting gases, some gases, which are in
abundant in hot regions, diffuse to the colder wall, during which they may also
undergo collisions with reacting partners, and consequently the reacted particles
diffuse out of the cold regions and move to hotter regions; this, of course, depends on
the reaction rates. For very fast reactions, there can be local chemical equilibrium,
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while for very slow reactions the composition may not change in the gas phase.
However, if there is catalytic surface reaction at the wall, then there can still be
gradients of individual species in the gas phase.

Since the diffusion coefficient and the corresponding flux relation depend on
the temperature of the species, its mole mass, and the collision cross section, it
is evident that even for a bimolecular gas mixture at a common temperature and
common binary cross section (neglecting collisions between particles of its own
kind), but with different mole mass, the flux of each species is different. Hence in
a gas container at a given pressure and temperature (constant volumetric number
density), the gas particles with lighter molecules will have higher particle flux rate
causing an imbalance of pressure and a nonzero particle-average or mass-average
velocity. Thus the above relations for the diffusion coefficients cannot be applied
in a straightforward manner without satisfying certain compatibility conditions
regarding average velocity of the particles, and for this purpose we define now first
the global particle-average and followed by the mass-average velocity as follows:

Particle average velocity:

V� D 1

n

X
njVj D �1

n

X
Djrnj D �

X
xjVj D �

X
Djrxj (7.67)

where V � is the number-average velocity. By defining a diffusion velocity of the
j th species with respect to the particle-average velocity, V�0

j D Vj � V�
j , obviouslyP

njV
�0
j D 0. We introduce now an effective diffusion coefficient, D�

jm, which
represents diffusion with respect to the global average velocity, and for such the
diffusive flux is

nj V
�0
j D nj .Vj � V �/ D �D�

jmrnj D �
 
Djrnj � nj

n

X
k

Dkrnk
!

(7.68)

from which we get the relation for the diffusion coefficient of the j th species against
the gas mixture as

D�
jm D Dj � nj

n

X
k

Dk

@nk

@nj
� .1 � xj /Dj � xj

X
k¤j

Dk

@xk

@xj
(7.69)

where xj is the mole fraction of the j th species.

Mass-average velocity:

V D 1

�

X
�jVj D �1

�

X
Djr�j (7.70)

where V is the mass-average velocity. By a similar method as above, we define now
a diffusion velocity of the j th species with respect to the particle-average velocity,
and we write for the diffusion coefficient
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Djm D Dj � Yj
X
k

Dk

@�k

@�j
� .1 � Yj /Dj � Yj

X
k¤j

Dk

@Yk

@Yj
; (7.71)

where Yj is the mass fraction of the j th species. The analysis may be simpler, for a
binary mixture, however.

For binary mixture of two gas components A and B, where the partial derivative
is equal to �1, Eqs. (7.69 and 7.71) become first binary diffusion coefficient for
particle-averaged velocity

D�
Am D D�

Bm D xADB C xBDA (7.72)

and similarly the binary diffusion coefficient with mass-averaged velocity as

DAm D DBm D YADB C YBDA : (7.73)

We now evaluate the binary diffusion coefficient, for the particular case when the
collision between identical particles of each species is neglected. Although this is a
very sweeping assumption, it is used by most authors. As explained above the molar
binary diffusion coefficient between the j th and kth species is

D�
jk D xkDj C xjDk D

Nv2j C Nv2k
3n�jkQjk

; (7.74)

where the mean relative velocity is

�jk D 1

6

�
j Nvj C Nvk j C j Nvj � Nvk j C

q
Nv2j C Nv2k

�
(7.75)

and the nondimensional mean relative velocity is

� 0
jk D �jk

s
2

Nv2j C Nv2k
: (7.76)

For j = k, we get, of course, the value

� 0
jj D .1C 2

p
2/=3 (7.77)

which is double the value for collisions between identical particles, when calculated
by the more rigorous kinetic theory (Chapman and Cowling [42]). Hence a
correction is introduced as explained in the next paragraph.

Now in the general case of binary mixture of gas particles with different
temperature (the electrons and the heavy particles in a high-temperature gas in an
electric field may have different temperatures) and the mean and the square of the
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mean kinetic speeds can be written in terms of the respective temperature. Thus the
binary molar diffusion coefficient is

D�
jk D C

.xj Tj C xkTk/

pQjk

s
1

2

�
Tj

mj

C Tk

mk

�
; (7.78)

where the expression for C , after the above correction is brought in, is

C D 1:051

� 0
jk

s
8k3BNA

�
: (7.79)

In multiple species gas mixture, determination of the diffusion coefficient is difficult,
and it is found convenient to define an effective diffusion coefficient, Djm, for the
diffusion of the i th component in a mixture (Bird et al. [11]), for which the following
formulas are given:

(a) For trace component of j ¤ i in nearly pure species i, Dim � Dii .
(b) For system in which all the binary diffusion coefficients, Dij , are the same, that

is, Dim D Dij .
(c) All j th species .j ¤ i/ move with the same velocity (or are stationary).

1 � xi
Dim

D
X
j¤i

xj

Dij

: (7.80)

The last expression is for the diffusion of molar flux.

While the above discussion is for a gas mixture, it is evident that the diffusion
coefficient can be calculated depending on the requirement of particle-averaged
diffusion velocity or the mass-averaged diffusion velocity. While for gas-dynamic
flow problems, written in terms of the mass flow velocity is ideal for mass-averaged
diffusion, there can be other situations where the particle number-averaged diffusion
is more appropriate, especially if there are charged particles, where the Coulomb
forces play a dominant role. In order to simplify the problem we do not consider
the diffusion between ions with same charge (neutrals are considered as having
charge zero). Even if there are more number of species, all particles of the same
charge are considered together.

We thus consider the diffusion coefficient of an ionized gas mixture, in which
there are the electrons, the i th ions, and the .i C 1/-th ions (note that i D 0 is for
neutrals). Initially we will not consider the effect of the electric field that is induced
because of the light electrons trying to diffuse out faster from the gas mixture
than the heavier ions and neutrals. We can, therefore, write the two compatibility
conditions

xe C xi C xiC1 D 1 (7.81)

xe � ixi � .i C 1/xiC1 D 0 : (7.82)
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While (7.81) states that the sum of the mole fraction of all species is equal to
zero, (7.82) gives the quasi-neutrality condition. As a result we get mole fractions
of the two positive ions in terms of the mole fraction of the electrons, and as such
we get two equations for the gradients of xi and xiC1 in terms of gradients of the
mole fraction of electrons, xe , as follows:

rxi D �.i C 2/rxe; rxiC1 D .i C 1/rxe : (7.83)

Thus it can be conjectured that without an electric field and due to mole fraction
gradient alone, .iC1/-th ions accompanied by .iC1/ electrons move in the direction
of the lower mole fraction of these ions, and i th ions accompanied by i number
of electrons move in the opposite direction (note that i D 0 for neutrals). In fact
the situation for .i C 1/-th ions is like a very devoted husband, who will always
be accompanied by .i C 1/ number of wives and not allow the ions to go alone.
However, if there is an electric field E, the motion of the charged particles is guided
by the effect of the electric field, through the mobility coefficient bj , (7.55), and
the number density gradient; for the present case we assume that the total number
density is uniform or else additional terms have to be considered. For such a case we
write down expressions for the current density of the three components as follows:

je D �eneV0
e D enebeE C eDenrxe (7.84)

ji D ieniV0
i D ienibiE � eDinrxi (7.85)

jiC1 D .i C 1/eniC1V0
iC1 D .i C 1/eniC1biC1E � eDinrxiC1: (7.86)

Now without an externally applied electric field and due to the mole fraction
gradient alone, the quasi-neutrality condition, as per the above conjecture, requires
that

ji D i je and jiC1 D �.i C 1/je (7.87)

and hence,

je C ji C jiC1 D 0 : (7.88)

We note further from (7.55) that for the three components the mobility coefficient is
given by the relations

be D eDe

kBTe
; bi D ieDi

kBTh
; and biC1 D .i C 1/eDiC1

kBTh
(7.89)

where it is assumed that the positive ions are at a common translational tempera-
ture, Th.

Multiplying (7.84) with .i C 1/niC1biC1 and (7.86) with nebe , subtracting
one from the other so as to eliminate the term containing the electric field, and
noting (7.87), we get
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je
ene

D DexiC1biC1 CDiC1xebe
xiC1biC1 C xebe

rxe

�
�
De

xiC1biC1
xebe

CDiC1
�

rxe : (7.90)

Introducing a new diffusion coefficient in such a way that the electron current
density due to the electron number density gradient and without any electric field is
the same as due to the electric field and the regular diffusion due to number density
gradient, we write

je
ene

D Dambrxe; (7.91)

where

Damb D De

xiC1biC1
xebe

CDiC1 : (7.92)

Noting further that

be

De

D e

kBTe
and

biC1
DiC1

D .i C 1/
e

kBTh
: (7.93)

Thus,

Damb D DiC1
�
.i C 1/�

xiC1
xe

C 1

�
(7.94)

is the ambi-polar diffusion coefficient and � D Te=Th is the temperature ratio.
Substituting (7.94) back into (7.84), we get now the relation for the electric field
that would develop inside the plasma as

Eamb D be

xe
.De �Damb/rxe : (7.95)

The above mechanism is responsible for making an electrically insulated
wall at an electric negative potential so that the electrons are retarded and
the ions are accelerated, so that they reach the surface together. Since,
Mi D MiC1 C Me and the requirement that the sum total of the mass flux due
to diffusion must be equal to zero, the diffusive mass-flux in a single component
ionized gas, is given as

X
�jV0

j D n .�Me CMi �MiC1/Dambrxe D 0 : (7.96)

As a consequence, the i th ions with charge i (i D 0 for neutrals) move in opposite
direction with the (common) effective diffusion coefficient Damb.
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7.4 Viscosity, Heat Conductivity, and Electrical Conductivity

In Sect. 7.2 we have discussed the relations for viscosity, heat conductivity, and
self-diffusion coefficients for a pure gas. We would now discuss derivation of these
relations in case the gas is a mixture of several specie or components. One way
will be to define these properties in terms of the mixed gas properties like number
density, mass, mean free path, and mean kinetic speed. For example, one could write
from (7.43) the relation for the viscosity coefficient

� D 1

3
NvnM
 D 1

3
NvM=Q (7.97)

where Q is the average collision cross section, M is the mixture average mass of
the particles, and 
 is the mixture mean free path. Obviously, � depends on the
mole fraction of the various specie through the mixture particle mass. However the
actual relations for a gas mixture are somewhat more elaborate, which we will now
discuss.

We would now consider the following two cases. Firstly we consider various
chargeless particles at a common temperature T and secondly we consider the case
where at least one of the colliding partners is electrons. It has been shown already
that in the latter case for the electron-electron collisions and the electron-heavy
particles, the effective temperature, because of very high speed of the electrons in
comparison to that for heavy particles, is mainly due to the translation temperature
of the electrons, Te . However, for collision between heavy particles, the important
temperature is the heavy particles temperature, Th. Thus, for a plasma consisting
of the electrons and the heavy particles, it is possible to have separate calculation
of the transport properties for collisions between the heavy particles only and for
collisions in which at least one of the colliding partners is an electron.

For the heavy particles of the j th species, the viscosity coefficient is obtained
from the relation

�j D 8:385853 � 10�6pThmh=Q
.2;2/
jj kgm�1s�1; (7.98)

wheremj is the mole mass of the j th species andQ.2;2/
jj is the collision cross section

in Å2. The collision cross section is represented in the above equation byQ.2;2/

jk ŒÅ2�,
which is called the bracket integral (Hirschfelder et al. [74]), but for collision
between rigid spherical molecules and (l,s) = (1,1), it is equal to the collision cross
section for rigid molecules

Q
.1;1/

jk D �d2jk D �.dj C dk/
2=4 : (7.99)

Similarly for collisions between the j th and kth species (index j,k for any of the
combinations between i th and .i C 1/-th ions), the viscosity coefficient is
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�jk D 8:385853 � 10�6
s
Th

2mjmk

mj Cmk

=Q
.2;2/

jk ; kgm�1s�1 : (7.100)

The viscosity coefficient of the mixture can now be obtained from the relation with
a ratio of determinants

� D

H11 � � � H1N x1
� � � � � � � � � � � �
HN1 � � � HNN xN
x1 � � � xN 0

H11 � � � H1N

� � � � � � � � �
HN1 � � � HNN

kgm�1s�1; (7.101)

where

Hjj D x2j

�j
C

NX
kD1;j¤k

2xj xkmjmk

�jk.mj Cmk/2

"
5

3A�
jk

C mk

mj

#

Hjk D � 2xj xkmjmk

�jk.mj Cmk/2

"
5

3A�
jk

� 1
#
; j ¤ k

A�
jk D Q

.2;2/

jk =Q
.1;1/

jk :

In addition, xj is the mole fraction of the j th species and N is the total number of
the heavy particles. It may be noted that in the above relations the subscripts j and
k refer to the heavy particles specie only. This is because the role of the electrons in
the momentum transfer in an ionized gas is neglected.

For the heat conductivity coefficients of the heavy particles similar expressions
are used. The equivalent expressions of (7.98, 7.101) for the pure conduction due to
the particles translation energy k0 are now

k0
j D 2:61644 � 10�4

q
Th=mj =Q

.2;2/
jj ; kWm�1K�1 (7.102)

and for collision between heavy particles (index j,k for any of the combinations
between i th and (i+1)-th ions), the equation for “pure” conduction is

k0
jk D 2:61644�10�4

q
Th.mj Cmk/2=.2mjmk/=Q

.2;2/

jk ; kWm�1K�1 : (7.103)

The mixture heat conduction due to “pure” conduction can now be computed from
the following relation consisting of ratio of two determinants:
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k0
ch D

L0011 � � � L001N L0111 � � � L011N 0

� � � � � � � � � � � � � � � � � � � � �
L00N1 � � � L00NN L01N1 � � � L01NN 0
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� � � � � � � � � � � � � � � � � � � � �
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� � � � � � � � � � � � � � � � � �
L10N1 � � � L10NN L11N1 � � � L11NN

kWm�1K�1; (7.104)

where subscripts 1 to N refer to i th and .i C 1/-th ion and
for j D k ¤ 1:
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In the above,

A�
jk D Q
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.1;1/

jk ; B�
jk D .5Q
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For the contribution of the internal degrees of freedom of molecules with two or
more atoms to the heat conductivity coefficient k00

j , Eucken’s semiempirical formula
gives

k00
cj D 0:88

�
0:4
Cpj

R� � 1
�
k0
cj ; (7.105)

where Cpj is the molar specific heat of the j th species at constant pressure and
R� is the universal gas constant. The expression is valid for Cpj =R� > 2:5, and
k00
cj is put equal to zero if this condition is not satisfied. The contribution of the

internal energy to the heat conductivity coefficient for a mixture is obtained from
semiempirical formula, like that due to Brokaw, discussed later, and can be added
to the mixture heat conductivity coefficient due to translation only.

The contribution of the electrons for the heat and electrical conductivities is
obtained by evaluating first the determinant elements qrt , for which the following
relations are given:

q00 D 8
X
h

xexjQ
.1;1/
ej (7.106)

q01 D 8
X
h

xexj Œ2:5Q
.1;1/
ej � 3Q.1;2/

ej � (7.107)

q11 D 8
p
2x2eQ

.2;2/
ee C 8

X
h

xexj Œ6:25Q
.1;1/
ej � 15Q.1;2/

ej C 12Q
.1;3/
ej � (7.108)

q02 D 8
X
h

xexj Œ4:75Q
.1;1/
ej � 10:5Q.1;2/

ej C 6Q
.1;3/
ej � (7.109)
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X
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ej � (7.110)
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ej � (7.111)
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q03 D 8
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(7.112)
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The fourth-order diffusion coefficient Dee , thermodiffusion coefficient DT
e , and the

corresponding electrical and thermal conductivities due to pure conduction, � , and
kce are now obtained from the relations which contain the ratio of determinants as
follows:

ŒDee�4 D 3xe

2n

�
2�kBTe

Me

�1=2
q11 q12 q13

q21 q22 q23

q31 q32 q33

j q j (7.116)

ŒDT
e �4 D 15x2e

4

p
2�MekBTe

q01 q02 q03

q21 q22 q23

q31 q32 q33

j q j (7.117)
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� D e2neŒDee�4

kBTe
(7.118)

k0
ce D 75x2ekB

8

p
2�kBTe=Me

q00 q02 q03

q20 q22 q23

q30 q32 q33

j q j (7.119)

kce D k0
ce � kBŒD

T
e �
2

nxeM2
e ŒDee�4

; (7.120)

where n is the number density (the number of particles per unit volume, m�3), Me

is the mass of an electron, e is the elementary charge, kB is the Boltzmann constant,
xe is the mole fraction of the electrons, and j q j is the determinant of the matrix

j q jD
q00 q01 q02 q03

q10 q11 q12 q13

q20 q21 q22 q23

q30 q31 q32 q33

: (7.121)

While the above procedure by rigorous theory is applicable even for multi-
temperature plasma, a much simpler but approximate method has been given by
Brokaw [36] (these are inadequate for ionized gases however) and for which the
resulting equations are as follows:

Viscosity coefficient of a mixture:

�mix D
nX
iD1

�ixiPn
jD1 �i;j xj

(7.122)

Heat conductivity coefficient of a mixture:

k0
c;mix D

nX
iD1

k0
c;i xiPn

jD1  i;j xj
; k00

c;mix D
nX
iD1

k00
c;i xiPn

jD1 �i;j xj
(7.123)

kc;mix D k0
c;mix C k00

c;mix; (7.124)

where

�i;j D Œ1C .�i=�j /
1=2.mj =mi/

1=4�2

2
p
2Œ1C .mi=mj /�1=2

(7.125)

 i;j D �i;j

�
1C 2:42.mi �mj /.mi � 0:142mj /

.mi Cmj /2

�
(7.126)

mi , mj D mole mass of the i th or j th species, respectively.
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Noting (7.89) that be D eDe=.kBTe/ and electrical conductivity � D enebe , we
can write � D e2De=.kBTe/. Since from (7.61), De D Nve
e=3 and, from (5.51),

e D Nve=�eh, we write

� D 1

3

e2 Nv2ene
kBTe�eh

: (7.127)

Now from (3.155), Nv2e D 3kBTe=Me , and hence

� D nee
2=.Me�eh/ : (7.128)

We would now discuss the transport of the thermal energy due to diffusion of
particles from the region of higher temperature to lower temperature. In the process,
the composition changes with a reaction rate that is dependent on the local pressure
and temperature. If the reaction rate is very slow, then there will not be much of
energy transfer due to diffusion, a special case will be the catalytic reaction on the
wall surface at the boundary. In that case the energy release will be only on the
surface enhancing the heat flux at the surface. On the other hand, if the reaction
rate is very fast, then there will be local equilibrium condition and there will be
energy release everywhere due to diffusion and reaction. This diffusion and shifting
equilibrium is the target of our immediate discussion.

7.5 Diffusion and Radiative Heat Conduction

While the heat conduction due to transfer of translational and other internal energies
by collision (the so-called pure conduction) is significant, there are other forms of
transfer of energy of equal significance. The first of these is the diffusive-reactive
heat conduction.

For the general gas mixture, the transport of energy due to diffusion is
P
�V0

j hj ,
which we would derive in Chap. 11. For the present, however, we derive an
expression for the diffusive-reactive heat conduction coefficient for a reactive gas
mixture.

From Sect. (7.3), we write for the mass flux of the j th species as

�jV0
j D ��DjmrYj (7.129)

where Djm is the effective mass diffusive coefficient of the j th species in a gas
mixture and Yj D �j =� is the mass fraction. Therefore the energy flux is

X
�jV0

j hj D ��
X
j

DjmhjrYj D �
�
�
X

Djmhj
@Yj

@T

�
rT D �kdrT;

(7.130)
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where kd is the diffusive-reactive heat conduction coefficient. In order to evaluate
this we require to evaluate @Yj =@T , which can be easily computed from @xj =@T

discussed in Sect. 6.8. For the ionized gases fortunately, we have the relation for a
(common) ambipolar diffusion coefficient, and @xj =@T can be evaluated with the
help of close-form expressions in Sect. 6.8.

Now the diffusive heat flux due to recombination of ionized particles is given by
the relation

X
�jV0

j hj D n
X

xjV0
jHj D n.�He CHiC1 �Hi/Dambrxe

D n.�He CHiC1 �Hi/Damb

�
@xe

@Te
rTe C @xe

@Th
rTh

�
; (7.131)

where n is the number density, Damb is the ambipolar diffusion coefficient, h is the
mass specific enthalpy, and H is the molar specific enthalpy. Hence we get the two
reactive-diffusive heat conductivity coefficients for electrons and heavy particles

kre D n.�He CHiC1 �Hi/Damb
@xe

@Te
(7.132)

and

krh D n.�He CHiC1 �Hi/Damb
@xe

@Th
(7.133)

which are added to the respective pure heat conductivity coefficients. Derivative of
electron mole fraction with respect to Te and Th can be derived easily in a close
form. The ambipolar diffusion coefficient, assuming that i th ion accompanied with
i electrons moves in one direction and .i C 1/-th ion accompanied with .i C 1/

electrons moves in the opposite direction, is given by the relation (7.94)

Damb D DiC1
�
.i C 1/�

xiC1
xe

C 1

�
; (7.134)

where DiC1 is the diffusion coefficient of .i C 1/-th ion due to gradient in number
density of the particles.DiC1 is computed from a complicated relationship including
binary and self-diffusion coefficients of individual specie in such a manner that
the sum of diffusive flux is zero.The total heat conductivity coefficient for heavy
particles and electrons, kh and ke , are obtained by adding the pure and diffusive parts
in the heat conductivity. The volumetric collision cross section between electrons
and heavy particles is given by the relation

� 0
eh D ven

2xe
X

xjQej ; m�3s�1; (7.135)
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Fig. 7.2 Transport properties
of two-temperature plasma

where for collision cross section Qej D Q
.1;1/
ej is taken and ve is the mean kinetic

speed given by the relation ve D p
8kBTe=.�Me/.

Finally, we present the results of calculation of transport properties of two-
temperature argon plasma at 1 bar (Fig. 7.2). It can be seen that at temperatures
around 15,000 K and above for argon plasma at 1 bar pressure, the viscosity
coefficient and heavy particles heat conductivity coefficient are much smaller than
at temperatures around 10,000 K; however, since the mass density decreases with
temperature much faster than the dynamic viscosity coefficient, the kinematic
viscosity coefficient �=� increases with temperature. Further at high temperatures
the heat conductivity coefficient (thermal energy transport) and the electrical
conductivity are mainly due to transport of electrons. Such transport property results
for air and other noble gas plasma have been presented by Bose [17], and also such
calculations have been done for diatomic gases, water vapor, etc.

For the reacting and radiating gas mixture, there can be, under certain circum-
stances, heat flux due to diffusive radiation transport. In case there exists a local
equilibrium of radiation, the heat flux is given by the relation (written for simplicity
as one-dimensional radiative transport)

dqR D �DR

c

@I �

@x
; Wm�3; (7.136)
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where the radiative diffusion coefficient DR is given by the relation

DR D 4�c

3�R
(7.137)

c D velocity of light, and �R D the average Rosseland absorption coefficient which
depends both on the gas density and temperature, m�1.

The radiation energy intensity for black-body radiation I � is given by (4.36) and
from (7.136) the radiative energy flux can be written as

dqR D �4�
�

DR

c
T 3
@T

@x
D �kR @T

@x
: (7.138)

Thus one gets the relation for the so-called radiative heat conductivity coefficient
kR as

kR D 4�

�

DR

c
T 3 : (7.139)

It may be recalled that in presence of a temperature gradient, the radiative heat
flux is only one mechanism of energy transport (valid strictly for optically thick
or diffusive radiation; for a discussion, please see Chap. 4), the other two being
due to pure conduction and due to transport of energy by diffusion of particles and
subsequent recombination. Thus, for the total heat flux, the total heat conductivity
coefficient is the sum of all the three heat conductivity coefficients due to pure
conduction, diffusion, and diffusive radiation. However for most of the terrestrial
applications the transmitting medium radiative flux can be considered as optically
thin, and hence the contribution of radiation in the total heat conductivity coefficient
may be neglected.

7.6 Effect of Magnetic Field on the Transport Properties
of Ionized Gases

We have not considered so far the effect of the magnetic field on the transport
properties of ionized gases. For this purpose, we derive first for an ideal gas the
relation for the electrical conductivity. It has already been noted that, in presence of
an externally applied electric field, E0, the corresponding field drift velocity is given
by the relation

w0
j D ej 
j

Mj vj
E0 D bjE0; (7.140)

where the mobility coefficient

bj D ej 
j

Mj vj
D 3ejDj

Mj v
2
j

D ejDj

kBTj
; m2V�1s�1 : (7.141)
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For multiple-charged particles in a gas mixture (plasma), and in the presence of the
externally applied electric field, the current density is now given by the expression

j D
X

jj D �oE D E
X

ej njV0
fj D E

X
ej bj nj ; Am�2 (7.142)

and thus the electrical conductivity is given by the relation

�o D
X

ej bj nj ; AV�1m�1 : (7.143)

The above electric conductivity �o is a scalar quantity, and the relation is valid if
there is no strong magnetic field. This requires that there is no strong electric current
also, because an electric current induces a magnetic field. Since, in a strong magnetic
induction B, there is a charge-drift in all directions except in the direction of B,
therefore, parallel to the magnetic induction, the electric field is given by the relation

�3 D �o D
X nj q

2
j

Mj�j
� e2ne

Me�e
; AV�1m�1 (7.144)

where �e is the electron collision frequency Œs�1�. If an electric field E is applied
perpendicular to the direction of B, there are effects on the electrical conductivity in
the two directions perpendicular to B. First, in the direction of the electric field, the
conductivity is

�1 D
X nj q

2
j

Mj�j Œ1C �2j �
� �o

Œ1C �2j �
; (7.145)

where � D !cj =�j gives the ratio of the radian cyclotron frequency to the collision
frequency. Equation (7.145) reduces to (7.144) for small values of �j . However, for
large values of �j ,

�1 D
X nj q

2
j

Mj�j �
2
j

D
X njMj�j

B2
AV�1m�1 : (7.146)

Since the mass of ions Mi is much larger than the mass of electrons Me , the
contribution of these ions at high magnetic induction is larger than that of electrons.
Thus, the ion current across a strong magnetic induction is several order of
magnitude larger than that of electrons, which is the reverse of that in the direction
parallel to the magnetic field.

The other conductivity arises from a current flowing perpendicular to both E and
B and is given by the relation

�2 D
X nj q

2
j �j

Mj�j Œ1C �2j �
� �o

�e

1C �2e
: (7.147)
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Fig. 7.3 Explaining
electrical conductivity as
vector

Fig. 7.4 Flow and
electromagnetic fields

These expressions for the electrical conductivity are independent of any modifi-
cation of the electric field due to the magnetic field and the mass-average velocity
field. The directions of these conductivities have been explained in Fig. 7.3.

We would now discuss the derivation of the Ohm’s law in presence of magnetic
field. For this purpose we consider the flow field in the x-direction, an externally
applied magnetic induction, B D f0; By; 0g in the y-direction, and an externally
applied electric field E0 D f0; 0; E 0

zg in the z-direction (Fig. 7.4). If wj is the velocity
of a single-charged particle, then the force acting on the single particle is

F1j D qj .E0 C wj�B/: (7.148)

Now the mass-averaged velocity of the j th species, Vj , may be obtained from
the distribution of the individual particles of the j th species, wj . Further, Vj is
the sum of the mass-averaged velocity of all species, V, and the diffusive velocity
(mass diffusion due to particle number density gradient and due to motion in electro
magnetic field), V0

j . Hence, by multiplying (7.148) by the number density of the j th
species, nj , we get the relation for force as

Fj D njF1j D nj qj .E0 C Vj�B/ D nj qj .E0 C V � B C V0
j�B/ : (7.149)
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At the outset one can add (7.149) over all species to get the total volumetric force.
Since the quasi-neutrality condition and the definition of the current density require
that

X
nj qj D 0 and j D

X
nj qjV0

j (7.150)

and hence,

F D
X

njFj D j � B (7.151)

is in the x-direction.
Further from (7.149) and Fig. 7.4, it can be seen that there is a total electric field

E D E0 C V � B in the z-direction with the consequent current density j D �1E. If
assumed that this current density is carried mainly by the electrons, which is a very
good assumption, then there is an associated field velocity of the electrons as

V0
fe D � j

ene
: (7.152)

An electric field, therefore, is induced in the x-direction and one gets the relation
for the generalized Ohm’s law as

j D �1.E0 C V � B/ � �2.j � B/=.ene/ (7.153)

the last term being the Hall current density in the negative x-direction. It is explained
more in detail in Chap. 11.

7.7 Transport Properties of an Ideal Dissociating Gas

In Sect. 6.4 we have already discussed the thermophysical properties of an ideal
dissociating diatomic molecular gas (Lighthill gas). Here we would now discuss
some simple relations regarding diffusion of such a gas and the related issue of
the diffusive-reactive heat conduction. It may now be recalled that we have now a
reaction of type

M $ 2A (7.154)

for which the heat flux in the direction normal to a wall (y-direction) due to conduc-
tion (both pure conduction and the diffusive-reactive conduction are included, but
not the effect of the radiation) is given by the relation

q D �kc dT

dy
� �DMA

dYM
dy

.hM � hA/

D �kc dT

dy
C �DMA

dYA
dy

.hM � hA/ : (7.155)
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In above, kc is the heat conductivity coefficient due to pure conduction, DMA is
the diffusion coefficient based on the mass-density gradient, YM and YA are the
mass fraction of the molecule and the atom, respectively, and hM and hA are the
corresponding specific (with respect to unit mass of the gas component) enthalpy.
Noting from Sect. 6.4 again that

cp;eff D
�
@h

@T

�
p

D
�
YA
@hA

@T
C YM

@hM

@T
C
�
hA
@YA

@T
C hM

@YM

@T

��

D cp;f C @YA

@T
.hA � hM / ; (7.156)

we can rewrite (7.155) as

q D � �kc C �DMA.cp;eff � cf /
� dT

dy
D �keff

dT

dy
: (7.157)

By defining a Lewis number for the chemically frozen gas from the relation

Lef D �cp;f DMA

kc
(7.158)

we get the relation for the ratio of the effective conductivity to the frozen
conductivity as

keff

kc
D 1C Lef

�
cp;eff

cp;f
� 1

�

D .1 � Lef /C Lef
cp;eff

cp;f
: (7.159)

It is seen that the ratio of heat conductivity is linearly dependent on the ratio of the
specific heat, and they are specially proportional if Lef is equal to one. Now from
Sect. 6.4 it is seen that the latter changes from the value one in certain temperature
change only. It is also known that the frozen Lewis number for a gas is very near
one; it is possible to estimate the effective heat conductivity coefficient for the ideal
dissociating gases.

From the knowledge of properties for the monatomic and diatomic gases, we can
now write for frozen dimensionless properties the following relations:

Prandtl number Prf D �cp;f

kcf
D 2

3

.4C YB/

.3:75C 1:25YB/
(7.160)

Schmidt number Scf D �

�DMA

D 1C YB

2
(7.161)

Lewis number Lef D P rf

Scf
(7.162)
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Fig. 7.5 Heat conductivity
coefficient ratio for ideal
diatomic gas

Hence, from (6.51, 7.159), we get the relation for the heat conductivity ratio as

keff

kc
D 1C 2

3

"
YB.1 � YB/
3:75C 1:25YB

�
1C Td

T

�2#
: (7.163)

These results are shown in Fig. 7.5. The results show that the total heat conductivity
coefficient by including “pure” conduction and diffusion but without radiation to be
up to about four times the value due to “pure” conduction alone.

7.8 Exercise

7.8.1 For a given temperature and pressure, compute the values of the frozen and
effective heat conductivity coefficients for H2; O2; N2, and Cl2.

7.8.2 Compute, for given pressure and temperature(s), the transport properties of
a plasma of a known gas.

7.8.3 From the values of collision cross section computed for T D 12; 000K
and Sect. 5.2, compute the relative change in the value of the electric
conductivity in different directions if the magnetic induction in a direction
is 10,000 Gauss.

7.8.4 Examine the statement that at a given temperature, a lighter molecule will
have smaller viscosity coefficient but larger heat conductivity coefficient.

7.8.5 Compute electron and ion collision frequency with magnetic induction
10,000 Gauss. [Ans: 1.759e11; 2.4168e6 s�1]

7.8.6 Show that the ratio of the Mach number, Ma D U=vsonic, and the Reynolds
number, Re D nMUL=�, is approximately equal to 
=L. Herein U D
flow speed and L D a characteristic flow length.



Chapter 8
Boundary Effects for High Temperature Gases

Phenomena closely related to the transport of mass, momentum, and energy in gas
mixtures are those which take place at the boundary of gas volumes. Firstly, because
of the temperature gradient, there is a transport of dissociated and ionized particles
to cooler regions giving rise to considerable increase in the heat transfer rate and for
ionized gases a loss in the number of the charged particles also. To keep the electric
current flowing in the ionized gases, new charged particles have to be created. This
starts with the generation of the charged particles like the electrons on the surface.
This emission of electrons is one of the factors that determines whether or not a
gas discharge is to be self-sustaining and is, therefore, of considerable interest in the
study of conduction of electricity through gases. In studying the various experiments
on the electron emission taking place under ideal conditions, one must, however,
take care in applying the results to gas discharges in which the emission phenomena
are involved, for the electron emission is greatly influenced by the gas condition of
the emitting surface. Usually, experiments on emission involve a careful preliminary
outgassing of the surfaces in order to obtain results for gas-free surfaces.

In connection with the transport of the charged particles from one place to
another, there is the question of building regions of excess charge of one sort or the
other, which in turn accelerate or decelerate a certain type of particles giving rise to
an increase or decrease in heat transfer rates. Further, because of the metallic wall
surface in a container having a discharge at different electrical potentials, these may
cause several effects, which are the subjects of investigation in the present chapter.

8.1 Emission of Electrons and Ions

The electrons may be emitted at high temperatures by a process called thermo-
ionic emission, by high electric fields, or by bombardment of some of the high
speed charged particles accelerated in electromagnetic fields, or by chemical or
photochemical effects. The thermoionic emission is effected by emission of bonded
electrons in a crystalline structure of a solid body surface due to supply of a large
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quantity of heat externally to the surface. While examining the process, let us
assume that the solid surface of the body and the electrons are at a temperature T .
In case the separation of the electrons would have taken place at the absolute zero
degree Kelvin, where a latent heat of evaporation of electrons at absolute zero,
Lo, has to be supplied, then the value of the latent heat of evaporation at the
temperature T , which is designated as L, can be obtained from the relation

L D Lo �
Z T

0

C1dT C
Z T

0

C2dT C
Z T

0

C3dT; (8.1)

where C1 is the molar specific heat of the metal and electrons in the bounded state
combined, C2 is the molar specific heat of the metal alone, and C3 D .5=2/R� is
the molar specific heat of the free electrons. Thus this mechanism pertains to the
one in which the metal and the bonded electrons are cooled to the absolute zero
degree temperature, the bonded electrons are freed, and both the free electrons and
the metal are brought back to the temperature T . Assuming average values of C1,
C2, and C3 and further assuming that C1 D C2, we may write

L D Lo C 5

2
R�T , J.kmole�1 . (8.2)

Now from Clapeyron’s equation of vapor pressure, as obtained from chemical
thermodynamics,

L D R�T 2
@.lnpe/

@T
, J.kmole�1; (8.3)

where pe is the partial vapor pressure of the free electrons. Combining (8.2)
and (8.3), and integrating with respect to temperature, we get

lnpe D � Lo

R�T
C 5

2
lnT C lnC1; (8.4)

and thus

pe D C1T
5=2 exp�Lo=.R�T / . (8.5)

Herein C1 can be computed from the known partial pressure of the electrons at a
particular temperature.

Now the equation of state for the free electrons is

pe D nekBT . (8.6)

These come out of the surface with a mean kinetic speed

ve D
�
8kBT

�Me

�1=2
. (8.7)



8.1 Emission of Electrons and Ions 293

Table 8.1 Comparison of maximum current densities of several substances

C �o TM jmax k

Mater. ŒAm�2K�2� [V] [K] e�o=kBTM ŒAm�2� W=.mK/�1

C 5.94e4 4.82 4,000 14.0 0.79 –
Cu 7.6e3 4.30 1,356 36.8 1.4e-11 392.5
Hg – 4.53 234 225 – 10.38
K – 2.00 336 69 – 94.2
Li – 2.55 453 64 – 64.8
Na – 2.28 371 71.3 – 134.2
Pt 1.7e8 6.30 2,046 35.7 2.18e-7 69.7
Th 6.02e3 3.35 – 10.7a 143.3a –
W 6.02e3 4.52 3,653 14.3 2.97 199
a For tungsten with Thorium added, let TM D 3; 653K

The particle flux of the electrons is given by the relation

Pne D 1

4
neve; (8.8)

where the factor (1/4) is the product of two (1/2)s, one of which accounts for one-
half of the sphere (a hemisphere) for emission that can be put on the emitting surface
and the other for the integral of cosines of the angle of the direction of emission from
the normal to the surface. Since the electron current density is je D e Pne , one gets
from Eqs. (8.6)–(8.8) the relation

je D e

4
neve D e

4

�
pe

kBT

��
8kBT

�Me

�1=2
. (8.9)

Combining the above relation further with Eq. (8.5), we get

je D CT 2 exp�e�o=.kBT / , Am�2; (8.10)

where

C D eC1=
p
2�MekB , A.m�2K�1; (8.11)

and �o D work function in volts.
The work function is obtained in the following manner. IfLo is the work required

to remove one kmole of electrons andW is the work required to remove an electron,
then the number of electrons per kmole is NA D Lo=W D R�=kB , where R� is
the universal gas constant and kB is the Boltzmann constant. Noting Lo=R� D
e�o=kB , (8.11) is obtained. Now from the tabulation of C and �o in Table 8.1 for
various substances, it can be seen that for most metals, C D 6:105A.mK/�2 and
�o D 1:7 to 4.7 volts. It is noted from (8.10) that the exponential term goes to zero as
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T ! 0 and it goes to one as T ! 1. Therefore the current density is a continuous
increasing function of temperature. It also shows that for a given surface temperature
a lower value of the work function gives a higher current density. It is, therefore,
necessary to have a high current density if the material has a high operational
temperature and low work function, and the maximum operational temperature has
to be the melting or the sublimation temperature TM . From the value of C and
�o given by Cobine [51] (values given in Table 8.1, e�o=.kBTM / were calculated
for several materials), which can be used to evaluate the suitability of a material
for thermoionic emission of electrons. Further, the table includes heat conductivity
coefficient of the material, k.

It may be noted from this comparison that since e�o=.kBTM / must be as small
as possible among the metals and nonmetals given in the table, tungsten and carbon
cathodes give reasonably high electron current density, and initially this can be
further improved by adding one or 2 % thorium to the tungsten. Since alkali metals
and also mercury have low melting temperatures, for these the cathode can be
in liquid state and the electron emission may be by mechanisms other than the
thermoionic emission. Maximum current density in Table 8.1 at the maximum
melting temperature is given, at which the value of the maximum current density,
jmax, is calculated. For most of the metals the maximum current density is too small
for a pure thermoionic emission, except for the thoriated tungsten cathode. For the
carbon electrode the electron emission mechanism seems partly connected with the
sublimation of carbon.

While external heating is used for low power discharges, for high power
discharges, the heat (to heat up the surface) is supplied by the discharge itself,
necessitating a very high rate of heat flux in a very small region of order two to five
millimeter diameter. Assuming that in this small heat region, a constant heat flux Nq
(in Wm�2) is applied, an analysis of the temperature distribution near the surface
has been carried out by Mehta [101]. Let a semi-infinite radius circular plate having
finite thickness h be heated by a uniform heat flux Nq over the area of radius ro, which
is investigated with the intention of finding the role of cooling at the opposite side
of the plate.

The Laplace equation of a steady heat conduction in cylindrical coordinates and
symmetrical to the axis is

r2T .r; z/ D 0; (8.12)

with the boundary conditions that

kTz.r; 0/ D Nq for r � ro;

D 0 for r > ro; (8.13)

where k is the heat conductivity coefficient of the metallic surface and T is the
excess temperature with respect to that at h. Now the infinite Hankel transformation
(Mehta [101]) is given by
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NT D
Z 1

0

rJo.pr/T .r; z/dr; (8.14)

T D
Z 1

0

p NT .p; z/Jo.pr/dr; (8.15)

where Jo is the Bessel function of the zeroth order. Applying Hankel transforma-
tion, (8.14), to (8.12), and inverting with (8.15), the general solution is

T .r; z/ D
Z 1

0

pC exp�pz exp�p.z�2h/ Jo.pr/dr; (8.16)

and the boundary conditions become

Z 1

0

f .p/Jo.rp/dp D Nq=k for r � ro and D 0 for r > ro; (8.17)

where

f .p/ D Cp2
�
1C exp�2hp� : (8.18)

From the boundary conditions the constant C and the function f .p/ are determined
by using a Watson expression (Mehta [101]), and one gets the solution of the Laplace
equation as

T .r; z/ D Nqro
k

Z 1

0

1

p

�
1C exp�2hp�J1.rop/Jo.rp/ �exp�pz � exp�p.z�2h/� dp .

(8.19)
This equation is evaluated conveniently by expressing it in terms of series expansion
of hyperbolic functions and further in terms of Watson expressions. Using the proper
boundary conditions it is found that at z D 0, the maximum temperature at the center
line .r D 0/ is Nqro=k and the mean temperature over the area r < ro is 8 Nqro=.3�/.
For the determination of the temperature distribution one can terminate the series
expansion after two terms because of the very rapid convergence of the series, and
one gets an expression for the temperature distribution in terms of Riemann’s zeta
function. Since the mathematical procedure is somewhat involved, only the results
are discussed.

It can be seen from Fig. 8.1 that the maximum temperature on the center line of
the plate, if its thickness is h ! 1, is .T � Th/ D Nqro=k, where Th D 0 is the
uniform excess temperature of the other surface at z D h. As a result of the finite
thickness of the plate, the surface temperature at the heating side comes down, and
the maximum temperature for the plate thickness h D 1 cm at r D 0; z D 0 is no
more than 0:7 Nqro=k. It shows further that beyond h > 4 cm the effect of cooling on
the other surface is negligible.
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Fig. 8.1 Temperature profile in a circular plate

An estimate of the anode heat load, for a given current, cathode material and
for thermoionic emission can now be made. From the cathode material data given
in Table 8.1 and for a given temperature distribution, for example, the parabolic
temperature distribution

.T � Th/
.TM � Th/ D 1 � r�2; (8.20)

where r� D r=ro and TM D melting (maximum) temperature of the cathode, one
can easily find the distribution of the electric current density, j . From (8.12), one
can thus write for the total current

I D 2�r2o

Z 1

0

jr�dr� D C1r
2
o ; (8.21)

where C1 D 1:14A:mm�2 for a pure tungsten cathode and C1 D 41A:mm�2
for a thoriated tungsten cathode. Thus it is seen that in the electric current range
between 60 to 500 amps, the thoriated tungsten cathode, under the thermoionic
emission, gives a reasonable cathode spot radius ro D p

I=C1 and is used for further
calculation. For the cathode, the average heat flux is

Nq D k.TM � Th/=ro D k.TM � Th/
p
C1=I ; (8.22)
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and the total heat load to the cathode is

Q D �r2o Nq D �k.TM � Th/
p
I=C1 . (8.23)

This is quite a large value and leads to the conclusion that immediately adjacent to
the cathode there must be a very steep temperature gradient to facilitate the large
heating and electron emission. Dividing Q in (8.23) by the total current I , one gets
U1 D .Q=I /, and by subtracting the work function �o to it, one gets the actual heat
load U2 on the cathode. For an electric current of 200 amps, the electrons emitted
from a thoriated tungsten cathode, one may thus calculate the following parameters:
the cathode spot radius ro D 2:21mm, average heat flux Nq D 302W:mm�2, heat
loadQ D 4:63 kW; U1 D 23:15 volts, and U2 D 19:8 volts. It may be noted that U1
and U2 are not directly related to the cathode fall. The analysis leads to quite high
values ofU1 andU2. However, certain conclusions regarding the cathode spot radius,
the minimum cathode radius and length (plate thickness) appear reasonable, but the
temperature at the cathode spot may be with a higher order parabolic distribution
than two.

In case the temperature of the solid metal surface is not too high and is not
sufficient to have a pure thermoionic emission of the electrons, it is necessary to
have a strong electric field to pull out the electrons so that it may overcome the
force acting due to image field on the surface Ei D e=.4x2�o/. The factor (1/4) is
due to the force acting on one side of the wall, as well as due to the integration of the
cosine of the angle with the normal to the surface, and �o is the dielectric constant.
An external field E exerts a force eE on the free electron, and at a distance x D xo
from the cathode, these forces are equal. Thus, an electron, reaching the distance xo
from the cathode, may escape from the influence of the surface. Since at x D xo,
Ei D E, it follows that

xo D
p
e=.4�ojEj/ . (8.24)

Since the applied electric field exerts a force on the escaping electron, it changes
the effective work function of the surface to a value �0

o, which is determined by
calculating the effective energy that must be spent to release the electron from x D 0

to x D xo

e�0
o D e

Z xo

0

jEi �Ejdx

D e

�Z 1

0

jEi jdx �
Z 1

xo

jEi jdx �
Z xo

0

jEi jdx
�

D e

�
�o �

Z 1

xo

e

4�x2�o
dx �

Z xo

0

jEi jdx
�

. (8.25)
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Note that

Z 1

xo

e

4�x2�o
dx D e

4xo�o
D 1

2

r
ejEj
�

. (8.26)

Further assuming that there exists a constant external electric field between x D 0

and x D xo,

Z xo

0

jEjdx D jEjxo D 1

2

s
ejEj
�o

. (8.27)

Thus the effective work function is given by the relation

�0
o D �o �

p
ejEj=�o; (8.28)

which must be substituted in (8.10) to get the modified equation for the current
density of electrons by thermoionic plus field emission. Under the action of the
electrostatic field alone the electrons may be pulled out if

jEj > �o�2o=e D 5:51 � 107�2o , Vm�1; (8.29)

if �o is taken in [volts]. While for an arc plasma this high electric field is never
applied externally, fields of this order may develop between very fine pointed
electrodes, separated by a distance of 1 cm at a potential difference of 1,000 volts
only.

It may be noted that the emission of electrons by bombardment of the charged
particles can be significant at high electric fields like in glow discharges and may
also be significant for arc plasma, in general. If ı is the ratio of the number of
secondary electrons per incident-charged particle, it is evident that this is a function
of both bombarded material and electric field near the surface. In an arc plasma,
where the cathode potential is at a somewhat lower potential than the plasma,
electron bombardment at the cathode is unlikely, and the secondary emission of
electrons at the cathode by the positive ion bombardment may be quite within the
realm of possibilities. In case of an insulator, there may be a positive charge buildup
if the number of the emitted secondary electrons is larger than the number of the
incident primary electrons, leading to the establishment of active hot spots.

A related topic of electron emission at the cathode and such absorption at the
anode is what happens near the solid surface of electrodes by way of potential
or electric field distribution when potential is applied externally with respect to
the plasma. In the following section we would now discuss the sheath effects that
occur near the surface which affects the energy transfer from the hot gas to the cold
surface. This energy or heat transfer is now discussed.
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8.2 One-Dimensional Sheath Effects

There are few studies modelling the physical phenomenon occurring near the
electrodes and the insulated wall. For slightly negative electrostatic (Langmuir)
probes the usual theory assumes a constant ion number density distribution near
the wall, while the electron number density falls exponentially toward the wall.
The main difficulty in such a model is that even for an anode current density in
the practical range (107 to 108 Am�2), the electric potential must fall continuously
from the plasma toward the anode, and the anode should be negative with respect to
the plasma. This is quite different from the experimentally observed phenomenon
whereby, near an anode, the electric potential first increases toward the anode and
then falls slightly, so that the net anode potential is still positive. There have,
however, been efforts (Hsu, Etamadi, and Pfender [76]; Sanders and Pfender [138])
to use for electrons in an adverse field the old Langmuir model, but the ion
distribution is determined on the basis of conservation of ion flux. The present
discussion follows a tentative model by this author (Bose [18]).

For this purpose we consider the plasma as consisting of electrons, atoms, and
singly charged ions, and the region under consideration is bounded by an outside
boundary, where the temperatures and pressure are prescribed, and at the wall
(Fig. 8.2). The entire domain is divided into a collision-dominated or continuum
region, for which the energy equations of the electrons and the heavy particles
are solved, and an electron free-fall region, where the Poisson equation is solved
along with the flux equations for the charged particles. In addition, some of the
basic assumptions are (1) the plasma is in a steady state, (2) the heat and electric
conductivity coefficients are scalar quantities (small magnetic field), and (3) the

Fig. 8.2 Different regions near a wall
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radiation loss is neglected. The electric current density is now allowed to be either
parallel to the wall, so that the electric field E parallel to the wall is uniform in
the direction normal to the wall .E D Eo D j=� D jo=�o/ or it is constant in
the direction normal to the wall .j D jo/. Here j is the current density and �
is the electrical conductivity. On the outer boundary the given parameters are the
temperature To D Tho D Teo, the pressure p, and the magnitude and direction
of the current density jo, which is carried mainly by the electrons due to the
externally applied electric field. The subscripts h and e refer to the heavy particles
and the electrons, respectively, and the subscript o refers to the outer boundary.
In addition, the following motions of the particles are considered. Due to ambipolar
diffusion the electrons and ions move in pairs in the direction of lower mole fraction
of the charged particles, and the neutrals move in the opposite direction, but in an
electric field the electrons move from the region of lower potential to that of higher
potential, and the ions move in the opposite direction. Since in an electric field the
electrons move much faster than the ions, these are mainly responsible for carrying
the current, for which the convention is that the direction of the electric current is
opposite the direction of movement of the electrons. We now consider the situation
in the continuum region, where quasi-neutrality is assumed .ni D ne/, where these
are the number density of the electrons and ions, respectively.

The extent of the various regions of interest in Fig. 8.2 is delineated by calculating
the mean free paths of various species, 
j , and the Debye shielding distance 
D .
These have been computed for an argon plasma for two-different pressures and
single-temperature equilibrium model, and they have been presented in Fig. 8.3.
The results show that, in the pressure range under consideration, the electron and
atom mean free paths (atom mean free paths not shown) are one to two orders of
magnitude larger than the Debye length, but the mean free path of the ions is of the
same order of magnitude as the Debye length. These orders of magnitude estimates
show that the electrons in the collisionless region are affected by the electric field
distribution near the wall only.

Initially we consider the classical Langmuir model, which is valid strictly for a
very low-density gas without a boundary layer. For this purpose, let us consider a
one-dimensional model with the wall surface having a negative external potential
.�w < 0/. It is now assumed that the charged particles fall freely without collision
from the free-fall edge, beyond which there is quasi-neutrality, and no electric field
exists in this region. Now the potential distribution near the body surface, Poisson
equation in one-dimensional case, is

d2�

dx2
D � e

�o
.ni � ne/; (8.30)

where e is the elementary charge, �o is the dielectric constant in vacuum, and ni and
ne are the particle number densities of the (singly charged) ions and the electrons,
respectively.
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Fig. 8.3 Mean free paths and
Debye shielding distance for
argon plasma

The above equation is made nondimensional by introducing the following nondi-
mensional variables:

�� D �e�=.kBTe/In�
i D ni=nebIn�

e D ne=nebI x� D x=
D; (8.31)

where 
D is a characteristic distance and is called the Debye shielding distance
defined as follows:


D D
s
kBTe�o

e2neb
. (8.32)

Thus, the above differential equation (8.30) becomes

d2��

dx�2 D .n�
i � n�

e / . (8.33)
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If the wall surface is positively charged, then the ionnumber density will fall, and the
accelerating electron number density will fall also. On the other hand, for strongly
negatively charged wall surface, the electron number density to wall may fall to
zero, but the number density of the accelerating ions may fall slightly. The third
case, which will now be considered, is that of the slightly negatively charged wall
surface. For this case, n�

i D 1, n�
e � exp���

and (8.33) is written as

d2��

dx�2 D 1 � exp��� � �� . (8.34)

The general solution of Eq. (8.34) is

�� D C1 exp�x� CC2 expx
�

; (8.35)

with boundary conditions, x� D 0: �� D 1 and x� ! 1: �� D 0. Thus one finds
that C1 D 1 and C2 D 0, and the nondimensional potential distribution is given by
the relation

�� D C1 exp�x�

. (8.36)

Substituting (8.36) back into (8.33), one can get the distribution of the electron
number density for a slightly negatively charged surface as

n�
e D 1 � exp�x�

. (8.37)

Equation (8.37) indicates that at the wall surface .x� D 0/, the electron particle
density n�

e � 0 for all slightly negatively charged surface, but independent of the
applied potential. This is, of course, not true, since the result cannot be valid even
for the limiting case of the zero negative potential of the surface, and hence this has
been discussed further below. However, (8.36) gives approximately the potential
distribution, and it is seen that the (negative) potential falls exponentially to about
1 % of its value at about four times 
D . Thus one gets an order of magnitude of the
distance by which the potential applied on the surface drops to a very small value
(shielding distance). Actual value of the surface potential can now be estimated
for the special case of no electric current being collected at the surface (floating
potential). For this case the ion flux must be equal to the electron flux reaching the
surface. While the ion flux, according to the model, can be evaluated at the sheath
edge (at a distance of approximately four times 
D from the wall) and remains
constant in the region, the collected electron flux undergoes a change from the
sheath edge to the wall. Thus, by equating the two fluxes at the wall surface, we
write

1

4
eneb

�
8kBThb

�Mh

�0:5
D 1

4
eneb

�
8kBTeb

�Me

�0:5
expe�w=.kBTeb/; (8.38)
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in which the subscript “h” refers to the heavy particles (ions). It is now possible to
get the wall potential from the above equation as

�w D kBTeb

2e
ln

�
Thb

Teb

Me

Mh

�
D Teb

23200
ln

�
Thb

Teb

Me

Mh

�
. (8.39)

While the current density at the floating potential is equal to zero, at the plasma or
space potential .�w D 0/ the maximum current density (positive since maximum
current is carried by the electrons moving towards the wall) is given by the relation

jmax D eneb.ceb � chb/=4; (8.40)

where ceb and ceb are the mean kinetic speed for the electrons and the ions
at the free-fall edge “b,” respectively. In the intermediate current density region
.0 < j=jmax < 1/, the current density is given by the relation

j D eneb
�
ceb expe�w=.kBTeb/ �chb

�
=4; (8.41)

and the corresponding wall potential can be written as

�w D kBTeb

e
ln

"�
Thb

Teb

Me

Mh

�1=2
C
(
1 �

�
Thb

Teb

Me

Mh

�1=2)
j

jmax

#
. (8.42)

As a sample case, for equal temperature of the ions and the electrons, the wall
floating potential for a particular gas can now be evaluated easily. For argon at
Teb D 10; 000K, for example, the result is Uo D �4:83 volts. However, the above
estimate is only tentative even for the special case of the floating potential, since in
the continuum region of the plasma the electron temperature at the sheath edge may
be quite different from the one at a large distance from the surface (free stream).
Hence a direct numerical simulation has been attempted (Bose [18]). The physical
model being considered is to assume in the continuum region the two-temperature
model (electron temperature different from the heavy particles temperature) without
convective terms in the differential equations. This insures that there is sufficient
number of free electrons in the wall region; the local mole fraction of various
species is computed with the help of two-temperature equilibrium model discussed
in Chap. 6. The equations of energy for the electrons and the heavy particles are

.kteTex/x � 3.me=mh/.kB�eh/.Te � Th/C .j 2=�/ D 0; (8.43)

and the heavy particles are

.kthThx/x C 3.me=mh/.kB�eh/.Te � Th/ D 0 . (8.44)



304 8 Boundary Effects for High Temperature Gases

In the above equations the subscript “t” in the heat conductivity coefficient k
refers to the total value, that is, it includes pure heat conduction and reactive heat
conduction due to ambi-polar diffusion of the j th species (j D h; e for heavy
particles and electrons, respectively). Further, mj is the mole mass of the j th
species, Tj is the temperature, �eh is the collision frequency for collisions between
the electrons and heavy particles, � is the electrical conductivity, and j is the electric
current density. In addition the subscript “x” refers to the derivative with respect to
this coordinate and kB is the Boltzmann constant.

Equations (8.43) and (8.44) are second-order coupled differential equations and
can be solved for the temperatures prescribed at the two ends of the continuum
region. Although in the free-stream region the temperatures for the electrons and
the heavy particles are given quantities, these are obtained at the free-fall edge by
matching the analysis in the sheath region.

Now, at the interface between the continuum and free-fall regions (shown with
“b” in Fig. 8.2 and referred henceforth with subscript “b”), the electron energy
flux at the free-fall edge is due to pure conduction, �kce;b.Tex/b , and diffusion,
.5=2/kBTeb.neV

0
e /b , where V 0

eb is the diffusive speed. In the case where we consider
a positive potential at the wall, the electron flux at this interface reaches the wall
entirely and the electrons can acquire, in addition to the average thermal energy
.2kBTeb/, an additional energy flux e�w. On the other hand, for a negative potential
of the wall, only a fraction of the electron flux reaches the wall. Similar is the case
of the ions, and we can consider both the ions and the electron flux in the sheath
region, which is assumed to be entirely within the free-fall or collisionless region.
The individual species particles are accelerated or decelerated depending on the sign
of the potential of the wall with respect to the potential at the free-fall edge.

Let the mean kinetic speed of the j th species with mass Mj and temperature Tj
at the free-fall edge be cj , and we write

1

2
Mj c

2
j D 3

2
kBTjb D e O�jb; (8.45)

where O�jb is the potential equivalent of the kinetic energy for the j th species at the
boundary “b.” Thus, for the accelerating case (increasing the speed of the particles
in the direction of motion), we may write

1

2
Mj .c

2
j � c2jb/ D 3

2
kB.Tj � Tjb/ D e. O�jb C �/ . (8.46)

In addition, in the collisionless zone, there is no collisional reaction, and
d.nj cj / D 0 especially for the accelerating case.

Thus, for the accelerating case, we get the two relations in differential form as

dTj
dx

D ˙2

3

e

kB

d�

dx
(8.47)

dnj
dx

D ˙1

3

enj

kBTj

d�

dx
. (8.48)
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The signs on the right-hand side of the two equations are such that the temperature
increases and the number density decreases in the direction of motion of the
accelerating charged particles. For the retardation case, it is usually assumed that
the particles at a given reference temperature Tjb must undergo a reduction in the
number density, since the slower particles cannot overcome the potential barrier.
Hence the usual relation for the number density nj in the retardation case with
respect to the reference value at the free-fall edge njb is given by the relation

nj =njb D exp�ej���b j=.kBTjb/ . (8.49)

Thus, in the differential form, the two equations, valid for the retardation case, are

dTj

dx
D 0 (8.50)

dnj

dx
D ˙ enj

kBTj

d�

dx
. (8.51)

Further, the potential distribution in the sheath region is given by the Poisson
equation (8.30).

Computations in the above study (Bose [18]) were done for argon for different
values of the (one-dimensional) electric current density, separately for the contin-
uum and collisionless regions and matching at the interface. In the collisionless
region three different options were used: (a) the electron number density calculated
from (8.47), (8.48) or (8.50), (8.51) but ni D neb; (b) ni and ne are calculated
according to these equations without any restrictions; and (c) ni and ne are
calculated according to these equations but subject to the restrictions that ni < ne
and ni D ne . It is evident that the option (a) is equivalent of the Langmuir model,
except that the results are obtained from the solution of the differential equations.
From extensive numerical experimentation it is concluded that option (a) gives
reasonable result for the cathode or insulated wall (at floating potential) except that
it gives more realistic wall potential in comparison to the Langmuir model, option
(b) gives totally unrealistic wall potential for the wall as the anode, and option (c)
is reasonable for the anode. For the wall as cathode with thermoionic emission,
option (a) gives somewhat reasonable wall potential in comparison to the Langmuir
model. These numerical experimentation throws, therefore, important challenges in
bringing out new theories for studying the sheath region.

Finally we discuss the case of no current flowing through the wall, that is, when
the wall is at the (negative) floating potential, which develops because of the higher
mobility of the electrons. While the ion flux, according to the Langmuir theory,
remains constant across the collisionless region, only a fraction of the electron flux
reaches the wall. At the interface of the two regions, but in the collision-dominated
region side, we can now write the energy balance equation as

� kce;b.rTe/b C 5

2
kBTebnebV0

eb D .2kBTeb C je�wj/.nebV0
eb/ . (8.52)
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The above equation does not consider the contribution of the electric current density
due to the externally applied electric field. In addition, from consideration of the
continuity of electrons at the free-fall edge, the ambipolar diffusion term is now
taken as

� nce;bV0
eb D �nbDamb.rxe/b D �1

4
nebceb exp�ej�wj=.kBTeb/; (8.53)

where j�wj is the floating potential of the wall. Equation (8.52) can now be written as

.rTe/b D �K.rxe/b; (8.54)

where

K D 5

2

kBTeb.nDamb/b

kce;b

�
0:2 � 0:4 je�wj

kBTeb

�
. (8.55)

In the above expression since the pressure dependency of the number density and
ambipolar diffusion coefficient tend to cancel each other, the value ofK is somewhat
independent of pressure. Further, the gradient of the electron temperature at the free-
fall edge of the reacting (chemically and thermally at nonequilibrium) continuum
region is approximately equal to zero since near the wall xe ! 0 and also the
gradient of xe ! 0. On the other hand, for the gradient of xe in the chemically
equilibrium but thermally nonequilibrium case, we write

.rTe/b D �
�

K.@xe=@Th/b

1CK.@xe=@Te/b

�
.rTh/b . (8.56)

In a practical calculation the grid point right next to the wall is so chosen that
it would be well within the continuum region, and thus all the quantities in the
right-hand side of Eq. (8.56) can be evaluated. From sample calculations with argon
plasma it was found that the quantities under [ ] is a very small quantity since
the numerator is much smaller than the denominator (of the order of 10�4), and
therefore, for all practical purposes it is possible to state that the gradient of electron
temperature in the region of a wall at floating potential is equal to zero.

8.3 Heat Transfer

The validity of the continuum theory is assumed in the main flow field to a location
b, which is at one mean free path of the collected particles from the surface. This
mean free path is, as discussed in the previous section, much longer than the distance
across which the applied electric potential on the surface is shielded (sheath region).
At moderate pressures .p > 1 atm/ it is found that the electron mean free path
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e is much longer than the Debye shielding distance 
D , whereas the ion mean
free path 
i � 
D . Now, the heat flux at any surface depends on a conduction
term �kcrTj and a term due to the transport of enthalpy by diffusion

P
�jV0

j hj .
For charged particles in an electromagnetic field, the diffusion velocity consists of
effects due to pure diffusion due to the concentration gradient, which is characterized
by a common ambipolar diffusion coefficient Damb and the electric field diffusion
velocity V0

fj . This second effect can be written as follows:

X
�jV0

fj hj D 5

2
kB
X

jj Tj =qj � 5

2

kB

e
jeTe; (8.57)

where qj is the charge of the particle and e is the elementary charge. If the following
q is designated as heat flux, then the convective heat flux at the free-fall edge b
(Fig. 8.2) is given by the relation

qb D �khrTh � kerTe � �DambEmirYj � 5

2

R�

me

DambTerYe C 5

2

kB

e
jTe; (8.58)

where Yj D �j =�, Th D heavy particles (neutrals, ions) translational temperature,
Te D electron translational temperature, R� D universal gas constant, Emi D
ionization potential per unit mass ions, andme D mole mass of the electrons. It may
be noted that the gradients and the properties in this equation are evaluated at the
free-fall edge b. In addition, kh and ke are not the heat conductivity of the pure gas,
but they specify only the contributions (due to mole or mass fraction) of the heavy
particles and electrons, respectively. In Chap. 7, it has been shown already that Qk0

ce

is of the order of .xek0
ce/ and that Qk0

ch is of the order of .xak0
ca C xik

0
ci /, where the

mole ratio is xj D nj =n (j D a; i; e for atom, ion and electron, respectively) and
k0
cj denotes the heat conductivity coefficient by translation of pure gases. In many

cases the mole fraction of the electrons xe at the wall is very small and the effect
due to the second term in the earlier equation may be neglected.

The heat flux at the wall is now the heat flux at b, qb , plus the energy gained (or
lost) in the free-fall region ı Pe, and the radiative heat flux qR to the surface, and thus
one may write

qw D qb �� Pe C qR , Wm�2 . (8.59)

Next we examine the energy gain or loss in the sheath.

(a) Species in a decelerating field: To compute the energy gain (or loss) in the
sheath� Pe, a potential Uw is applied to the body surface to retard the j th species
and to attract the kth species. The former reaches the wall in free-fall provided
that the random velocity at “b” is vj > .2ej�wj=Mj /

0:5, where Mj is the mass
of a single particle of the j th species. The flux of the j th species reaching the
wall and their associated energy flux at “b” is, therefore, found by integrating
vj from .2ej�wj=Mj /

0:5 to infinity and not from zero to infinity. Thus
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Pnjw D �1
4
njbvjb exp�ej�wj=.kBTjb/ , m�2s�1 (8.60)

qjb D �1
4
njbvjbŒej�wj C 2kBTjb� exp�ej�wj=.kBTjb/ , Wm�2; (8.61)

where the mean kinetic speed is

vj D
�
8kBTj

�Mj

�0:5
. (8.62)

The loss of energy in the retarding field is � Pej D �Pnjwej�wj ŒWm�2� and the
net energy flux from the j th species to the wall is

qjw D 2 PnjwkBTj , Wm�2 . (8.63)

(b) Species in an accelerating field: As in the previous case, for the accelerating kth
species, the flux of particles at the wall as well as the associated energy fluxes
at “b” and “w” and the gain are

Pnkb D Pnkw D �1
4
nkbvkb , m�2s�1 (8.64)

qkb D �1
4
nkbvkb.2kBTkb/ D 2kBTkb Pnkw , Wm�2 (8.65)

qkw D Pnkw.2kBTkb C ej�wj/ , Wm�2 (8.66)

� Pek D Pnkwej�wj , Wm�2 . (8.67)

(c) Species emitted from the wall: In the case of a mass flux of the j th species being
emitted from the wall, namely Pnjw Œm�2s�1�, there is an associated energy flux
at the wall

q0
jw D Pnkw.2kBTkb C ej�wj/ , Wm�2; (8.68)

where Ejw is the average kinetic energy of the particles just emitted and �w

is the work function of the material. The free electrons, on the other hand,
condensing on the wall give rise to a heat flux that is expressed as

qew D Pnkwej�wj D �jej�wj , Wm�2 . (8.69)

(d) Recombination at the wall: Furthermore, there is also a possibility that a flux
exists of the j th species, which recombine with their counterparts at the wall
and release an energy flux
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qjw D Pn00
jw.Ij � ej�wj/ , Wm�2; (8.70)

where Ii is the ionization potential.

We investigate now several heat transfer cases.
At the anode with reference to the previous analysis, and since the current density

j D enebveb=4, the heat flux is

qAnode D qjCj.�AC�w/CqR D �kh.rTh/bC5

2

kB

e
jTebCj.�AC�w/CqR; (8.71)

where �A is the anode fall and �w is the work function of the anode material.
Generally, the ion current attracted at the cathode is very small, and the current is

maintained by the thermoionic and/or the field emission described earlier. A simple
estimation of the different emission mechanisms shows clearly that the thermoionic
emission is indeed the dominating mechanism in high intensity arcs. Neglecting the
enthalpy of the emitted electrons, the total heat flux to the wall is

qCathode D �kh.rTh/b C j�w C qR . (8.72)

When a conducting wall is placed between the electrodes, but insulated from
either of them, it is capable of circulating an electric current. Near the cathode, the
wall is negative with respect to the plasma, and the ions may drift to the wall and
recombine giving rise to an effective electric current j flowing through the wall. The
heat flux to the wall is

qAnode D qb� Pnewe�w C Pniw.Ii �e�w/CqR D �kh.rTh/bC 5

2

kB

e
jTebC j

Ii

e
CqR;

(8.73)

where Ii is the ionization energy of the ions in volts. Unfortunately it is difficult
to estimate the current density distribution. For segmented or nonconducting walls,
j D 0, and the equation reduces to the usual heat transfer relation for a plasma
without a current flow.



Chapter 9
Production of High Temperature Gases

High temperature gases can be produced in different ways, for example, by an
isentropic compression, by an adiabatic compression in shocks, by combustion, by
electrical means, or by thermonuclear reaction, etc. For calculating the temperature
generated by combustion, in general, one has to proceed in two steps. First, one has
to calculate, at given pressure for combustion, the specific enthalpy per unit mass of
the reacting components before combustion and also of the equilibrium composition
after combustion as a function of temperature. In an adiabatic combustion, the
specific enthalpy of the product must be the same (provided the specific enthalpy
is absolute, that is, it includes the heat of reaction as its part) as that of the initial
reacting components, and this allows determination of the temperature after reac-
tion. As an example, the stoichiometric reaction of carbon monoxide with oxygen
is taken, for which, in Fig. 9.1, the equilibrium composition (mole fraction) and
in Fig. 9.2 the enthalpy are plotted against the temperature for different pressures.
Before combustion, the ideal gas mixture is not dependent on pressure, and it gives
in the latter figure a single line. After the combustion, however, the equilibrium
composition is dependent on pressure. To find the adiabatic flame temperature, first
the enthalpy of the gas mixture before combustion is found, and then only one has
to move to the right at constant enthalpy. Thus for the reaction of the stoichiometric
mixture of the carbon monoxide and oxygen, initially at room temperature of 300 K,
the adiabatic flame temperature after reaction at pressures of 10�2, 1, and 102 bar
are 2,780, 3,210, and 3,240 K, respectively. Thus the effect of higher dissociation is
to reduce the adiabatic flame temperature. At the same time it is noted that at high
pressures, an increase in the pressure does not lower the adiabatic flame temperature
proportionately.

We shall now examine the range of temperatures that can be reached by an
isentropic compression. As an example, nitrogen is taken whose specific heat ratio
at room temperature is � D 1:4. In the range of temperatures, in which the value
of � remains essentially constant and equal to 1.4, the temperature ratio .T2=T1/
is dependent only on the pressure ratio .p2=p1/, both of which are linked by the
relation

T.K. Bose, High Temperature Gas Dynamics: An Introduction for Physicists and Engineers,
DOI 10.1007/978-3-319-05200-7__9, © Springer International Publishing Switzerland 2014
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Fig. 9.1 Equilibrium mole
fraction of components of
stoichiometric reaction of
carbon monoxide with
oxygen

T2

T1
D
�
p2

p1

�.��1/=�
. (9.1)

Since, however, at higher temperatures the gases dissociate, it is necessary to
consider the initial state .p1; T1/. Keeping p1 D 10�2 bar and for two different
initial temperatures of 103 and 104 K, the compression ratio for nitrogen is plotted
against the temperature ratio and is shown in Fig. 9.3. It may be noted from the
figure that for a compression ratio of 100, if T1 D 300, 1,000, and 10,000 K, the
respective temperature after compression of nitrogen with real gas properties (� is
not constant) are 1,122, 2,800, and 13,600 K. Calculation of this and other processes
can be studied best with the help of thermodynamic charts, as has been described
for air plasma in the next section.

9.1 Thermodynamic Charts for Air Plasma

For the purpose of studying various thermodynamic processes use of an enthalpy-
entropy chart is well known. Such a chart for equilibrium air plasma is shown in
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Fig. 9.2 Enthalpy-
temperature plot before and
after reaction for
stoichiometric reaction of
carbon monoxide with
oxygen

Fig. 9.4, in which the constant temperature (isotherm) lines are shown between
2,000 and 30,000 K and the constant pressure (isobar) lines between 10�5 and 100
bars.

While an enthalpy-entropy chart is useful in studying an isentropic flow, for
example, in a (convergent or convergent-divergent) nozzle, one requires also the
density information. Unfortunately, plotting of constant density lines in above chart
makes the chart very difficult to read, especially when the plots are in one color.
This is again difficult in studying the shock parameters with the help of such charts.
A better method, shown for the first time independently by Spalding [148] and
Knoche [85, 86], is by studying the processes in a new .h; log10 �/ chart, which has
also been shown for air in Fig. 9.5. This chart contains not only the isotherm and
isobar lines but also the constant entropy lines, which enables one to calculate the
sonic speed of hot gas plasma very efficiently. On the basis of these charts we would
now study, for a real gas (air) plasma, some of the gas-dynamic flow processes.
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Fig. 9.3 Compression ratio vs. temperature ratio for nitrogen for isentropic compression from
p1 D 10�2 bar

9.2 Isentropic Flow in a Nozzle

For the study of a real gas isentropic flow in a nozzle, the starting point is
the knowledge of the stagnation state of pressure-temperature, .po; T o/, or the
corresponding pressure-enthalpy, .po; ho/. One could then follow the constant
entropy process in one of the thermodynamic charts, and for each value of enthalpy
h, the corresponding density value � is noted and the “one-dimensional” gas speed

u D
p
2.ho � h/ , ms�1; (9.2)

is calculated. This enables calculation of .�u/, which can be plotted against u.
A positive slope denotes the subsonic region and a negative slope is for the
supersonic region; the point of zero slope denotes the critical state at the nozzle
throat, where the gas speed is equal to the sonic speed. One could now get the area
ratio .A�=A/ by dividing the local .�u/ with the critical throat value .�u/�.
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Fig. 9.4 Enthalpy-entropy chart for air plasma

In this connection, we note now the definition of the sonic speed as the square
of the sonic speed being equal to the derivative of pressure with density at constant
entropy change, or

a2s D
�
@p

@�

�
s

. (9.3)

Now from the first law of thermodynamics,

T ds D dh � ��1dp; (9.4)

where h is the specific (per unit mass) enthalpy, s is the specific entropy, and � is
the density.

For a constant entropy case .ds D 0/, the left-hand side of the above equation is
made equal to zero, and hence dp D �dh. Therefore

a2s D
�
@p

@�

�
s

D
�

@h

@.ln �/

�
s

D 0:438

�
@h

@.log10 �/

�
s

; (9.5)
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Fig. 9.5 Enthalpy-log(density) chart for air plasma

and from the slope of the constant entropy line in .h; log10 �/ chart, one can
easily get the local sonic speed. In fact, the method is particularly useful for high
temperature dissociated and ionized gases where one does not have an exact value
of the specific heat ratio or mole mass to determine the sonic speed. It may be noted
again that in Fig. 9.5 the constant entropy lines are plotted, the slope of which gives
the square of the sonic speed.

9.3 Gas State After a Shock

The high temperature effect due to shock can best be demonstrated by plotting
values of temperature T2 and pressure p2 behind the shock for different flow
(supersonic) speeds ahead of the shock u1, assuming the temperature and pressure
before the shock as known. These results are calculated for air both as an ideal gas
with constant specific heat and also when the real gas properties are used, and they
have been plotted in Fig. 9.6.

Noting that the typical orbit speed is about 7 km/s, at this speed the calculation
of temperature and pressure behind the shock is of considerable interest to rocket
engineers. It is seen that at such speeds, by considering air as an ideal gas and
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Fig. 9.6 Compression ratio across a normal shock and temperature behind the shock

initial state of air is at sea level .p1 D 100 bar; T1 D 300K/, the temperature
and the pressure are about 25,000 K and 600 bars, respectively. By considering
dissociation and ionization, these are around 10,000 K and 700 bars, respectively.
Thus the conclusion is reached that in a real gas, the temperature behind the shock
is considerably smaller than that if it is computed for an ideal gas, but the pressure
is somewhat larger. While in actual practice, the above high orbital speed is relevant
for reentry vehicles at high altitudes, and thus the absolute pressure behind the shock
may be small, but while watching a reentry vehicle one may always see a long trail
of glowing ionized air at temperatures estimated around 10,000 to 12,000 K.

For real gas properties, as mentioned already in the previous section, the subsonic
and supersonic speeds can be determined by examining in the direction of larger
static enthalpy the sign of Œd.�u/=d.ho � h/�s . When it is positive it is a subsonic
flow, but when it is negative it is a supersonic flow. In case the flow is supersonic,
the state behind a normal shock can be calculated from expressions derived from the
basic one-dimensional equations of mass, momentum and energy, and the equation
of state. These basic equations are as follows:

Continuity:

�1u1 D �2u2 D �; (9.6)
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Momentum:

p1 C u21 D p2 C u22; (9.7)

Energy:

ho D h1 C u21=2 D h2 C u22=2; (9.8)

State:

� D �.p; T /Ih D h.p; T / (9.9)

In these equations � is the mass flux rate Œkgm�2s�1�, which can be computed
exactly from the given state and speed values before the shock. Further, p is the
pressure, � is the density, T is the temperature, and h is the specific enthalpy. The
superscript “o” stands for the stagnation condition. In this, there are seven equations
for conditions before and after the shock, subscripted 1 and 2, namely, the three
conservation equations and four state equations. Also there are the following ten
variables:

p1; T1; �1h1; u1; p2; T2; �2; h2; u2 . (9.10)

Thus one has to specify any three as independent variables – usually they are p1, T1,
and u1. At fairly moderate temperatures, where the specific enthalpy can be given
as a simple relation with temperature, closed form solutions are available to obtain
conditions behind the shock as a function of the earlier three independent variables.
For nonideal gases a more elaborate procedure is necessary.

Combining (9.6) and (9.8), one can write

h D ho � �2=.2�2/; (9.11)

which is called the Fanno equation. Similarly, combining (9.6) and (9.7), one can
write

p � p1 D �2
�
1

�1
� 1

�

�
; (9.12)

which is called the Rayleigh equation. Unfortunately, the process of plotting of the
results of the Fanno and Rayleigh equations in a thermodynamic chart is extremely
tedious and time-consuming, and for every new value of � and .p1; �1/ new
lines have to be drawn. This difficulty can be overcome by combining the three
equations (9.6–9.8), and one obtains the Rankine–Hugoniot equation:

h1 � h D 1

2
.p � p1/

�
1

�1
C 1

�

�
; (9.13)
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Fig. 9.7 Enthalpy-entropy
chart with Rankine–Hugoniot
lines

which does not contain the velocity, implicitly or explicitly, and as such can be used
to study both the normal and oblique shocks. Thus a plot of this equation gives the
locus of all points, which can be reached from the state .p1; T1/, and is called the
Rankine–Hugoniot curve. It has also the advantage that it is of a fairly uniform shape
both in enthalpy-entropy and enthalpy-log(density) charts. Thus these can be drawn
from the beginning on these thermodynamic charts for a few initial states, and for
other states one can easily draw interpolated curves. The state behind the shock is
obtained from the Rankine–Hugoniot curve, satisfying the continuity equation (9.6).
A sketch of these lines in an schematic enthalpy-entropy .h; s/ chart is shown in
Fig. 9.7 to illustrate the method.

A still better method, shown for the first time independently of each other by
Knoche [86] and Spalding [148], using a .h; log10 �/ chart, in which the Rankine–
Hugoniot lines are again drawn at a few places and interpolated in-between, is
described now. For this purpose a regular Fanno-curve, made out of plexiglass or
similar material, can be used easily. This is explained in the following:

From (9.6) and (9.11)

dŒln.ho � h/�
d.ln �/

D �2; (9.14)

and thus,

ho � h D exp�4:606 log10 � . (9.15)

Depending on the scales of the .h; log10 �/ thermodynamic chart, one can use (9.15)
to construct a Fanno-curve once for all, in which the abscissa is log10 � and the
ordinate is .ho � h/. By knowing the values of u1; p1, and T1, one can easily
calculate ho, and then one can place the Fanno-curve on the thermodynamic chart
with its origin at ho and touching the state .p1; T1/. The second intersection of
this Fanno-curve with the plotted or interpolated Rankine–Hugoniot curve gives the
state .p2; T2/, as it has been shown schematically in Fig. 9.8.
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Fig. 9.8 Schematic sketch of
Fanno lines to determine
shock

9.4 Vibrational Relaxation Effects in Gas Dynamics

Vibrational relaxation effects of considerable interest are found in connection with
hypersonic flights, nonequilibrium electric discharge reactors, and gas lasers. In
each of these applications, nonequilibrium of the molecular vibrational modes can
often be a major influence, especially when the translational and rotational molec-
ular energy modes are maintained at equilibrium at a relatively low temperature.
For this purpose expressions for specific enthalpy and entropy (per unit mass) for
a diatomic gas in translational-rotational mode on the one side and the vibrational
mode on the other are now reproduced from Chap. 3 as follows:

(a) Translation and rotation:
enthalpy:

h D 7

2
RT C ho , (9.16)

where ho is specific Enthalpy at 0 K. Entropy:

s D R Œ�0:15548C 3:5 lnT � lnp C 1:5 lnm � ln�r� , (9.17)

where p is in bar.
(b) Vibration: enthalpy:

hv D 1

2
R�v

�
coth

�
�v

2Tv

�
� 1

�
, (9.18)
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entropy:

sv D R

2
4 �v
2Tv

coth

�
�v

2Tv

�
C ln

8<
:

1

2 sinh
�
�v
2Tv

	
9=
;
3
5 . (9.19)

In the above equation, �r and �v are characteristic temperatures of rotation and
vibration, values of which are given in Table 2.1 for several diatomic gases.
Further, T and Tv are the translational-rotational temperature and the vibrational
temperature, respectively. Now the specific entropy of state is given by the relation

s D s.p; T; Tv/; (9.20)

and if s is a total differential, then

ds D
�
@s

@p

�
T;Tv

dp C
�
@s

@T

�
p;Tv

dT C
�
@s

@Tv

�
p;T

dTv . (9.21)

For the adiabatic change of state, ds D 0, and we get the relation
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For an ideal diatomic gas the derivatives are:

(a) Translation and rotation:
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(b) Vibration:
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Hence, under adiabatic condition,
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. (9.25)

For T D Tv , the above equation becomes
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Table 9.1 Effect of equilibrium temperature (T D Tv on �)

T=�v 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

� 1.4 1.399 1.374 1.342 1.322 1.310 1.303 1.299 1.296 1.294 1.292
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. (9.26)

From thermodynamics, the left-hand side of Eq. (9.26) is equal to Œ�=.� � 1/�,
where � is the specific heat ratio, and the numerical results of calculation are
given in Table 9.1. The results show a considerable reduction in the value of �
for diatomic gases (without considering dissociation) at higher temperatures under
equi-temperature .T D Tv/ case.

For a very fast expansion in a convergent-divergent nozzle, the vibrational
temperature may not change .Tv D constant/ and the second term in the right-hand
side of (9.25) may be dropped. Since the state of the gas (pressure, temperature, gas
speed) depends on � , a knowledge of vibrational relaxation is thus of importance.
While an exact calculation of a nozzle flow requires knowledge of the shape of the
nozzle, the problem becomes simpler for the two limiting cases: (1) the vibrational
temperature is not changing and (2) the local vibrational temperature is equal to the
local translational-rotational temperature.

For the above two cases, the starting equation is the one-dimensional energy
equation

ho D cpT
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For case 1 (Tv D To, the initial stagnation temperature), the following equations can
be derived easily:

Gas speed:

u D
�
7RT o

�
1 � T

T o

��0:5
: (9.28)

Pressure-temperature relation:
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Density:

� D p=.RT /: (9.30)

Nozzle cross section area:

A D Pm=.�u/; (9.31)

where Pm D mass flow rate.
For case 2, Tv D T , and the corresponding equations are as follows: Gas speed:
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Pressure-temperature relation:
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Density: same as (9.30)

Nozzle cross section area : same as (9.31)
The solution for both the cases can be obtained in discrete steps from the initial

state .To; po; u D 0/, by solving, for pressure as a dependent variable, as a function
of T with the help of any standard numerical procedure for initial value problems,
for example, the Runge-Kutta procedure. Results show for oxygen and stagnation
state T o D 80K and po D 1 bar that in comparison to case 1, for case 2 the mass
flow rate increases by 0.639 %, the exit pressure (for a given throat area to exit area
ratio) increases by 3.02 %, and the temperature increases by 10 %.

Subsequently, computations are done for oxygen for a normal shock with initial
condition of T1 D 300K and p1 D 1 bar, for the following two cases: (1)
Tv2 D T1 (vibrational nonequilibrium) and (2) Tv2 D T2 (vibrational equilibrium),
where the subscripts 1 and 2 refer to the condition before and after the normal
shock. Computation procedure using the Rankine–Hugoniot and Fanno or Rayleigh
relations, together with the equation of state in an iterative manner, and the results
of calculation after the shock for the two cases as a function of initial Mach number,
M1, are shown in Table 9.2.
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Table 9.2 Computed states
after shock

Vibrational nonequilibrium Vibrational equilibrium

T2 u2 �2 T2 u2 �2
M1 [K] ms�1 kgm�3 [K] ms�1 kgm�3

2.0 505.9 247.5 3.42 499.1 241.4 3.51
2.5 655.9 256.9 4.12 635.4 244.2 4.34
3.0 845.2 277.0 4.59 800.0 254.7 4.99

9.5 Electrical Breakdown in Gases

If in the laboratory, an electric potential difference is applied between two elec-
trodes, a small electric current of the order of a fraction of a microampere may start
flowing between them. This is due to the electron emission caused by irradiation
by a few ionized particles of cosmic origin. With increasing potential difference
the electric current in the gap may be first saturated, and only with higher potential
difference there may be an increase in the current flow due to further secondary
ionization by collision. Discharges of this type are called the Townsend discharges.
These take place because of an external ion source, and thus they are not self-
sustaining if the ions of external origin are removed in some manner. However, in the
presence of normal external ions and with increasing potential difference to reach a
critical voltage Us , which is about 3,500 volts in one cm gap, the current increases
very rapidly and a spark results in one self-sustaining discharge like the glow or arc.
The glow discharges are, for comparatively large potential difference between the
electrodes, completely covered with the glow. If, however, the potential difference
is increased further, an arc, sustained by emitted electrons from the cathode by
thermoionic emission, burns stable in an electric field of about one volt/cm and a
current of more than 10 amps. In summary the voltage-current characteristics of
all the earlier mentioned discharges are given in Fig. 9.9, and the possibility of
having a stable discharge in one or other regions depends on the characteristic of
the external electric power source, the characteristic of the discharge, and the value
of the external impedance. This may be examined for a simple electric circuit given
in Fig. 9.10a, consisting of a power source of infinite capacity to keep the potential
difference Uo constant for any current, but no internal resistance, external resistance
R, and electric discharge between the two electrodes having a voltage drop in the
dischargeU . For a falling voltage-current characteristic in the discharge (Fig. 9.10b)
at point A, a small increase in the value of U has to be compensated by a further
increase in the potential drop across the resistor by increasing the current. Since at
point A, this is not possible, the discharge is unstable. However, by similar reasoning
one can show that at point B, the discharge is stable. The stability criteria may be
stated mathematically as .dU=dI /C R > 0. This discharge characteristic given in
Fig. 9.10c is always stable.

While the previous investigation is done for a simple circuit consisting of only an
external resistor, a discharge itself may have some inductivity L and capacitance C .
Thus a simple experimental setup consisting of a power source, an external resistor,
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Fig. 9.9 Schematic
voltage-current characteristic
of a discharge in various
regimes of operation

Fig. 9.10 On stability of a
discharge. (a) a simple
circuit, (b) a discharge with a
falling U-I characteristic, and
(c) a discharge with a rising
characteristic

and a pair of electrodes may have an equivalent circuit in Fig. 9.11. Generally, for
this circuit I1 D I2CI3. However, under steady state, I3 D 0 and I1 D I2 D I , and
there is a steady potential drop u. Thus, Uo D u C IR. If the fluctuation in current
is denoted by a prime, under unsteady state,

Uo D .I C I 0
1/RC L

d

dt
.I C I 0

2/C Nu C uI I
0
2; (9.34)
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Fig. 9.11 Schematic equivalent circuit of an electric discharge

where

uI D
�
@u

@I

�
. (9.35)

Subtracting the steady state potential balance equation from the unsteady state
potential balance equation, one gets

I 0
1RC L

dI2
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C uI I
0
2 D 0 . (9.36)

Now
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; (9.37)

and
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Noting that

I1 D I D NI C I 0
1 D I2 C I3 D NI C I3 C I 0

2; (9.40)
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one gets

I 0
1 D I3 C I 0
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2 . (9.41)

Substituting the above equation into (9.36), and after some manipulation, one gets
the differential equation
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With a trial function I 0
2 D A exp
t , one gets a quadratic equation 
2 C a
 C b,

whose roots are
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� b; (9.43)

where

a D uI
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. (9.44)

If 
 is real and that a > 2
p
b, then I 0

2 is a pure exponential function, but if a < 2
p
b,

then 
 is complex and so there will be oscillation; however, the process is stable if
the real part is positive.

From these considerations it is clear that in Fig. 9.9, the points A and C are stable,
but B and D are unstable, and this explains why the spark is an unsteady process.

For steady discharges the voltage drop across the external resistor, though
necessary for stability, is an undesirable loss in power. It is, therefore, desirable
that the voltage-current characteristic of the external power source should match
the falling characteristic of the discharge to keep the loss in the external resistor as
minimum. This is actually done in welding transformers, regarding which details are
available in any book on arc welding. However, it may be mentioned here that there
are arc configurations (with tubular electrodes, for example) which have neutral or
slightly rising characteristic for which an external resistor is hardly necessary.

We would now discuss the various discharge regimes given in Fig. 9.9. Initially
we discuss the discharge for very small current to the saturation current. For a
discharge of this type when the voltage is first applied, the electric current (electron
current) from the cathode to the anode increases slowly proportional to the applied
voltage. The electron number density for this type of discharge at steady state,
designated as ne , however, tends to a constant electron density, n�

e , for a given
external radiation source strength, in which the rate of production of electron
number density Œm�3s�1� is postulated to be given by the relation of the type
ne D ne exp�kt , where k is a constant in some kind of rate equation. If the electrons
are drawn sufficiently slowly due to the applied voltage, then the two conditions
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for the solution of the rate equation for the production of the electrons are t D 0,
ne D 0, and t ! 1; ne D n�

e . Thus, from the beginning of the constant irradiation
by the external source, the electron number density is given by the relation

ne D n�
e

�
1 � exp�kt� . (9.45)

However, if at a comparatively large applied voltage between the electrodes,
the electrons are drawn toward the anode as soon as they are produced, and under
the assumption that no electrons are produced by the effects of the applied voltage,
the steady state number density will be smaller than n�

e . Under such a condition, the
electron current, of the order of a few microamperes, is saturated.

With increasing applied voltage between the electrodes, the primary electrons,
gaining kinetic energy from the electric field at the cathode, generate new electrons
by collision.

If ˛ = (number of ionizing collision)/(path distance), m�1, and, in addition,
if Pne and . Pne C d Pne/ are electron flux Œm�2s�1� entering and leaving the two
control surfaces, respectively, perpendicular to the electron flow direction (x is the
coordinate direction away from the cathode), then

d Pne D d.neVe/ D ˛0nedx D ˛Venedx; (9.46)

where ˛0 D number of ionizing collisions per unit time D ˛Ve: s�1.
Assuming a constant drift velocity of the electrons in a constant electric field,

one gets the relation dne D ˛ne dx which upon integration and after multiplication
of both sides by eVe gives the relation

je D jeo exp˛x . (9.47)

At x D 0 (cathode), the electron current is originated due to irradiation of the
cathode due to the external source, and thus jeo is the saturation current.

When the initial source of electrons is not due to irradiation of the cathode but
due to ionizing radiation throughout the volume of the gas, then one can write the
equation

d Pne D ˛0nedx C qdx; (9.48)

where q D number of electron-ion pairs produced per unit volume and time
Œm�3s�1�. An integration of the equation gives the relation

˛ne D A exp˛x �q=Ve . (9.49)

Implicit in the model is that at x D 0, ne D 0. Consequently, A D q=Ve , and one
can write

ne D q

˛Ve
.exp˛x �1/ : (9.50)
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From this expression, one can get the number density of electrons at the anode
at x D L. From experimental results, it can be seen that the value of ˛ depends
on both the electric field and the pressure. Although the ionization by collision
may be present for all electric field strengths, it does not set in sufficiently at
one atmospheric pressure in air at an electric field of less than 30,000 volts/m.
Thus, from the practical point of view, the situation ˛L � 1 is quite justified.
By expanding the exponential .˛L/ in series form and terminating the series after
the second term, one can write for the saturation current jeo D qeL. Thus, one can
write

je D eneVe D jeo

˛L
.exp˛x �1/ . (9.51)

It is noted that since the mean free path is inversely proportional to pressure, the
electron ionization coefficient may be expressed in the form

˛

p
D f .E=p/; (9.52)

where p is the pressure and E is the electric field. For air, argon, and nitrogen, these
values, taken from Cobine [51], are shown in Fig. 9.12. It is found that there is an
optimum pressure at which the electric current becomes maximum. The condition
for this can be found by differentiating Eq. (9.52), and one gets
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�
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�
� E
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�
D 0 . (9.53)

This gives the optimum

�
E

p

�
opt

D f .E=p/

f 0.E=p/
. (9.54)

Now the exponential relation, valid at small voltages, is no longer valid at higher
voltages. It is evident that some other method is playing a role in this region.
Townsend assumed that in this region the positive ions formed by the electron
collision begin to gain sufficient energy from the field to ionize the gas by collision.
This leads to a positive ion coefficient ˇ and to the equation for steady electric
current density:

je D jeo
.˛ � ˇ/ exp.˛�ˇ/x

˛ � ˇ exp.˛�ˇ/x . (9.55)

For small values of ˇ, which occur for a small value of .E=p/, (9.55) leads to (9.51).
However, in the case where ˇ becomes sufficiently large for a large value of .E=p/,
the denominator becomes zero, and the current density becomes infinite. Under
this condition a spark occurs. However, there could be more than one probable
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Fig. 9.12 Coefficient for
field-intensified ionization by
electrons

mechanism at high electric fields, which gives expressions for the electric current
density of the same form as (9.55), and an occurrence of a spark is in no way a proof
of the practical validity of this model.

According to Paschen’s law, the sparking potential is dependent on the product of
pressure and the electrode gap. For spark breakdown in air, the breakdown voltage is
given in Fig. 9.13. However, a spark breakdown depends on the frequency of applied
voltage and is reduced by above to one-third if the frequency is changed from 0 to
500 cycles/sec.

One of the self-sustaining discharges is a glow discharge operating in the range
between a cold Townsend discharge and a high current arc. At low pressures (less
than a few torr) the glow discharge is seen to consist of alternate dark and light
regions. These different regions with their names and the characteristics of such
a discharge in the region are given in Fig. 9.14. At the cathode there is a net
negative charge produced by the emitted electrons. Since their initial velocity is
low, the current is carried entirely by positive ions arriving at the cathode from the
cathode dark space, which is a region of high positive ion density accounting for the
high cathode drop and causing the electrons to accelerate through this region. For
the region between the cathode and the end of the cathode dark space, which are
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Fig. 9.13 Spark breakdown voltage for parallel plane path in air .temperature D 20ıC/

apart by a distance l , the electric field is found experimentally to fall linearly,
E D C.l � x/, where C is a constant. Since E D dU=dx, where U is the potential,

U D
Z x

0

Edx D C

Z x

0

.l � x/dx . (9.56)

For x D l , U D Uc , the cathode potential, and thus, C D 2Uc=l
2, and

U D 2Uc

�
x

l
� 1

2

�x
l

	2�
. (9.57)

Further, from Poisson equation, applied for the one-dimensional case,

d2U

dx2
D �4�nc

�o
D �2Uc

l2
; (9.58)

where nc D e.ne�ni / is the charge density, and thus, nc D Uc�o=.2�l
2/. Although

the exact limits of the cathode drop region are somewhat uncertain, the product K,
of l and gas pressure p, is found to be somewhat constant, and it is less dependent on
the electrode material and more on the gas. The value of K for hydrogen is around
0.84 cm-torr, for helium 1.35, for argon 0.31, for nitrogen 0.36, for oxygen 0.27, and
for air 0.33 cm-torr. These correspond to mean free paths between 50 and 100 cm.
The normal cathode fall depends on the combination of the cathode material and the
gas; in general, the alkali metals as cathode have lower cathode drops. For a typical
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Fig. 9.14 Different regions of a glow discharge

gas like argon, the cathode drop for potassium as the cathode material is 64 volts
whereas with copper as the cathode material it is 130 volts (Cobine [51]).

With low external resistance in the DC circuit, an arc having a stable voltage-
current characteristic may be established. An investigation of the potential dis-
tribution in an arc shows that there are relatively large potential drops near the
cathode (cathode drop) and a region of a fairly uniform voltage gradient in between
these regions called the positive column. An estimate of the electric field in the
positive column without any convection is possible by considering the equation for
current flow by integrating Ohm’s law equation over the cross section (Elenbaas-
Heller model, discussed in detail in Chap. 12),

I D 2�E

Z R

0

�rdr; (9.59)

and the equation of heat balance for a fully developed cylindrical arc is
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D �E2; (9.60)

where � D electrical conductivity ŒA.Vm/�1�, k D coefficient of thermal
conductivity ŒW.mK/�1�, E is the electric field in the axial direction, and r is the
radial coordinate. While the solution of the two equations simultaneously for a given
electric current is somewhat tedious, a quick estimate of the electric field is possible
by considering the first equation alone. Assuming an average electrical conductivity
of 104 A.Vm/�1, current I D 100 to 500 amps and arc radius R D 5 to 10 mm, the
electric field E D 0:3 to 6V:cm�1, and for a quick estimate of the electric field in
the positive column, a value 1Vcm�1 can be considered.

Values of cathode and anode voltage drops in arcs have been given by Cobine
[51] for a few electrodes and gases and for different current ranges. With air as the
working medium and copper, carbon, or iron as electrodes in the electric current
range one to 300 amps, the typical cathode drops are in the range 8 to 10 volts,
and anode drops are in the range 2 to 12 volts. However, experiments conducted
by Bose and Pfender [27] with copper anode and argon as gas at pressures 1 to
80 torr and currents from 60 to 100 amps show a considerably less anode drop of the
order of magnitude of 0 to 2 volts, which appears to be typical of high-current arcs.
In addition, there is increasing evidence of a small negative potential gradient in the
immediate vicinity of an anode in such arcs, for which the model, developed by this
author, was already discussed in the previous chapter.

9.6 High-Frequency Discharges

High-frequency discharges in the frequency range of radio frequency or microwave
are used often as a starter discharge for electric arcs. In a fluctuating electric (or
electromagnetic) field, such as these, one could make an estimate of the energy
contained in such fields and dissipation of such energy. For the guidance of the
energy hollow metallic tubes of circular or rectangular cross section (wave guide)
are used, the minimum dimension being of the order of the wavelength of the
electromagnetic energy. Hence for a wave guide of reasonable dimension very high
frequency energy is generated.

Starting equations for our analysis are Maxwell equations, (7.18–7.23), leading
to the wave equation, which will be discussed later in Sect. 11.3. As a result,
we consider the possibility of generating high-frequency discharges. For such
discharges we may write the continuity equation of the current

@nc

@t
D �r � j; (9.61)
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to get

� r�
�
@E
@t

�
D @nc

@t
D �r � j . (9.62)

Now assuming

E D Eo expi2��t and j D jo expi2��t ; (9.63)

where “i” denotes the imaginary number, � is the discharge frequency, and the
superscript “o” denotes the amplitude, (9.62) is written as

r � jo D �i�2��r � Eo . (9.64)

The only way both sides of the above equation can be equated is if

jo D �i�2��Eo; (9.65)

and the real part of the proportionality constant between the two (by taking the
imaginary part of �) can be considered as the electrical conductivity coefficient in a
fluctuating electric field. The latter is determined from the momentum equation for
electrons

Me

d

dt
.neVe/ D �eneE � �ehneMeVe; (9.66)

where �eh is the collision frequency between the electrons and the heavy particles.
The above equation is the same as (11.15) discussed in Chap. 11, except that we
have neglected the velocity of the heavy particles in comparison to the one for the
electrons and also the pressure gradient term. In addition, we consider the relation
between the current density and the velocity as

j D �eneVe . (9.67)

With the definition of the plasma frequency

�p D 1

2�

s
e2ne

�oMe

; (9.68)

and after some manipulation we get from (9.66, 9.68)

jo.�eh C i2��/ D .2��p/
2�oEo; (9.69)

and finally we get the expression for the electrical conductivity for a fluctuating
electric field as
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�f D 4�2�o�
2
p�eh

� 2
eh C 4�2�2

D e2ne�eh

Me.�
2
eh C 4�2�2/

. (9.70)

It is noted that, for stationary field, � D 0 and hence the electrical conductivity is
� D e2ne=Me�eh, which is the same as (7.128). Obviously, the effective electrical
conductivity, in comparison to the one in a stationary field, can be large. In addition,
the energy dissipation will be dependent on the square of the amplitude of the
electric field and hence large amount of high-frequency electrical energy can be
put to use in a high-frequency discharge.



Chapter 10
Diagnostic Techniques

Side by side with the production of high temperature gases one has to think about
the measurement of gas thermodynamic state and flow parameters. Among the
parameters those which need to be measured are the total and static enthalpy, the
gas velocity, the total and static pressure, and the temperature at different modes
(translation, rotation, vibration, etc.) for different species (electron temperature,
heavy particle translational temperature, heavy particle excitation temperature, etc.).
Out of the various flow variables mentioned above, measurement of the static and
total pressure may pose little difficulty with small static pressure holes on the side
wall of the channel or the body and water-cooled probes for the measurement of
the total pressure, although at low pressures special pressure-measuring equipment
(thermocouple probe, ion probe, etc.) may be necessary.

For the measurement of the temperature, one may choose between the probe and
optical methods as follows:

(1) Probe method:

(a) Thermocouple and resistance thermometer
(b) Total enthalpy-total pressure probe
(c) Electrostatic probe

(2) Optical method:

(a) Optical pyrometry
(b) Line reversal technique
(c) Spectral emission
(d) Interferometric methods—optical interferometry, microwave technique, etc.

Regarding the use of the thermocouple and the resistance thermometer, there
are many excellent treatises available and these need not be discussed here in
detail. They are found to be extremely accurate, in fact much more accurate than
other methods given in the above list. However they have three basic limitations.
Firstly, they can work in a limited range with the maximum temperature around
3,000 K. Thus, they cannot be used in most of the combustion chamber for rockets
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and ramjets and for gas plasmas. Secondly, they are incapable of measuring
the temperature of gas mixtures, when at least one component is at a different
temperature than the others. As an example, we may consider the temperature of
common tube lights in which the electrons, strongly accelerated in the electric field
in one particular direction, may have the kinetic energy equivalent to the electron
temperature of a few hundred-thousand degree Kelvin. Although, since the high
velocity is in one direction, it is difficult to define the temperature; the heavy particle
in tube lights is known to have quite low random particle velocities corresponding
to temperatures of the order of several hundred degree Kelvin only. Thirdly, these
cannot be used easily in corrosive atmospheres.

The total enthalpy-total pressure probe, suggested by Professor Jerry Grey of the
Princeton University, measures the total enthalpy fairly accurately (less than 5%
inaccuracies) and appears at present to be the only method operating at pressures
around one atm and temperatures between 3,000 and 10,000 K. However deduction
of the temperature from the measured total enthalpy assumes the knowledge of
the velocity (or at least the information that the gas kinetic energy is negligible)
and also the knowledge of the enthalpy-temperature relationship. This obviously
means that the method is restricted to gas mixtures in which there is equilibrium
(the temperature of all species are same) and at least some information about the
state of the chemical equilibrium are available. Further, because of the need to cool
these probes properly to prevent disintegration while operating at high temperatures,
they have to be sufficiently large in size so that the complete local measurement
is not possible. In addition, when these probes are used in corrosive atmospheres,
special precautions have to be taken in design to save the vacuum pump and the
pressure-measuring instruments which are accessories to such probes.

The electrostatic probes, in general, are very simple devices, that is, both simple
to manufacture and to measure the translational temperature of charged particles.
However, they can be operated only in the range in which there is sufficient
ionization. Further, the equipment is reliable only at fairly low pressure of operation.
The probe methods, described earlier, are highly accurate and reliable in the range of
operation for which they are designed. However, they may distort the flow field and
also an elaborate cooling arrangement is necessary for continuous measurements.
These defects are absent in the case of optical probes. However, in general, the
optical method is less accurate even if within the limited range of operation.

Among the optical probes the use of bolometers or any other total radiation
probes presumes that the radiation characteristic of the investigating gas is known.
Since gas radiation is dependent on both the state of the gas and the optical
thickness, mere knowledge of the emissivity coefficient as a function of the gas
is not enough. On the other hand, and in general, gases do not radiate even
approximately like a black body and as such these probes are generally not used
for high temperature gas research.

While the total radiation probes are completely insufficient for gases, an optical
pyrometer is useful for some gases especially with carbon particles which radiate
approximately like black body at least in the limited visible range of the spectrum.
The equipment for this is relatively simple and inexpensive and works in comparison
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with the luminosity of an electrically heated and calibrated wire; thus the maximum
temperature for this is limited to about 3,000 K. Similar to this method of the
optical pyrometer the line reversal technique needs comparison with the intensity
of background light source, and if for such a source a tungsten strip lamp is used,
then the maximum temperature is also about 3,000 K, whereas with anode crater
of a carbon arc being the background source the maximum temperature is 4,000 K.
The method is, however, not dependent on the emissivity of the radiating gas and
all that is needed is an inexpensive spectroscope and background source. However,
introduction of commonly used sodium salt locally gives rise to problems, as well
as spatial resolution of the temperature field.

For temperatures above 10,000 K for nitrogen and argon and at different
pressures the spectral line emission method has been used successfully for the
determination of both average and spatial distributions of temperature. The method,
however, lacks accuracy (at temperatures mentioned earlier the accuracy is about
˙500K). At low temperatures infrared spectroscopy of rotational and rotational-
vibrational bands is used. For these purposes it is necessary to make judicious
choice of the spectral equipment needed and these are discussed in detail later. The
temperature measurement methods with a short discussion on interferometry and
the microwave technique, which have been used in a limited way for plasmas at
around one atmosphere pressure, will be described later.

In case the temperature is known by one of the earlier described methods and
also the total enthalpy probe is used, then at least in principle, the velocity can
be determined. However, the method is highly inaccurate and has not been used.
The methods of spark or streak photography have been used successfully in plasma
research, especially for low-velocity carbon arcs. Another promising method is the
use of laser velocity meter, which has also been described later. For research on high
temperature gases, one may also need suitable probes to measure electromagnetic
fields, although these have not been discussed here.

10.1 Temperature Measurement—Probe Method

(a) Total enthalpy-total pressure probe: A schematic sketch of a total enthalpy-
total temperature probe, placed in a supersonic stream of a high temperature
gas, has been given in Fig. 10.1. The probe is amply cooled with water and
the temperature rise of the water is accurately measured. A sample gas is
sucked through the probe with the help of a vacuum pump whose design should
be such so as to cause as little disturbance in the outside flow as possible.
By measuring the pressure before the sonic orifice and making sure that the
pressure at the other end of the orifice is low enough to guarantee sonic condition
at the orifice, the rate of the gas mass flow through the probe can be determined.
Further the water flow rate is measured. The measurement starts by closing
the valve and measuring the stagnation pressure po2. At that moment let the
flow rate of water be Pmw .kgs�1/ and �T 0 be the temperature rise of water.
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Fig. 10.1 Schematic design of a total enthalpy probe in a supersonic stream

Now the valve is opened and the vacuum pump is started. The water mass
flow rate is kept as before. Let the gas flow rate be Pmg and the temperature
rise of water now be �T 00. Further let h3 be the enthalpy of the cooled gas.
If cw D 4:187 kJ.kgK/�1 is the specific heat of water, then, according to the
energy balance,

Pmg.ho2 � h3/ D Pmwcw.�T
00 ��T 0/; (10.1)

and thus the total enthalpy of the gas is

ho2 D Pmw

Pmg

cw.�T
00 ��T 0/C h3 . (10.2)

(b) Electrostatic probes: These probes which are very simple devices are generally
called Langmuir probes. To understand their working let us consider the
phenomenon near the wall surface, where an external potential �o is applied. It is
assumed that the charged particles fall freely without collision from the free-fall
edge beyond which there is the condition of quasi-neutrality and no electric field
due to the applied potential. The theory for the potential distribution near the
probe, which is slightly negative with respect to the plasma, has been described
in Sect. 8.2. The analysis indicates that at the wall .x� D 0/, the electron particle
density ne � 0 for slightly negative probes but independent of the applied
potential.

Now the number of electrons and ions falling freely per unit area and time
without an applied potential on the probe is given by the relation

Pneb D 1

4
nebvebI Pnib D 1

4
nebvib; (10.3)
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because of the quasi-neutrality condition at the sheath edge, neb D nib . In the above
equations, the factor (1/4) consists of two (1/2)s, in which one (1/2) is because of
the flux of electrons in one hemisphere and the other (1/2) is due to the integration
of cosines from all directions. Now, for the probe at the positive potential, only the
electrons may be collected and the electric current density is given by the relation

j D e Pneb D 1

4
enebveb D 1

4
eneb

s
8kBTeb

�Me

(�o > 0) . (10.4)

For slightly negative probes, a lesser number of electrons are collected, but the ion
current density may still be small. Thus,

j D e Pneb expe�o=.kBTe/ D 1

4
enebveb expe�o=.kBTe/

D 1

4
eneb

s
8kBTeb

�Me

expe�o=.kBTe/ (�o < 0) . (10.5)

Further for strongly negative probes, the electrons are completely eliminated and
the collected ion current is given by the relation

ji D e Pnib D 1

4
enebvib D 1

4
eneb

s
8kBTib

�Mi

(�o � 0) . (10.6)

Equations (10.4)–(10.6) have been shown schematically in Fig. 10.2. It is shown that
these expressions in which the current densities are not dependent on the applied
potential and thus they represent saturation electron and ion current densities,
respectively. The ratio of the absolute value of current densities in such a case
would be

ˇ̌
ˇ̌ ji
je

ˇ̌
ˇ̌ D

s
Tib

Teb

Me

Mi

. (10.7)

Now the electrons, which are moving through the thermal boundary layer, to be
collected at the probe surface may not lose their kinetic energy as fast as the ions
to be collected in the same manner. Thus at moderate pressures around one bar,
Teb � Te1 � T1, but Tib � Tw. Thus

ˇ̌
ˇ̌ ji
je

ˇ̌
ˇ̌ D

s
Tw

T1
Me

Mi

; (10.8)

which is a very small quantity.
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Fig. 10.2 Schematic current-voltage characteristic of an electrostatic probe

From (10.4) it is seen that the saturation electron current density is proportional
to the number density of the electrons, neb , and as may be expected, both should
increase with pressure. However, it is found experimentally that the saturation
electron current density decreases with increasing pressure. This can be explained
by the fact that with increasing pressure the value of neb is reduced because of
the combined effect of the smaller diffusion coefficient and higher reaction rate so
that near equilibrium condition is reached; their combined effect is to reduce neb .
On the other hand it is found experimentally that at comparatively low pressures, the
electron current density may be so large that because of large electron bombardment
the probe may soon be corroded.

Since neither the probe collecting surface area for the charged particles nor
the value of ne can be determined accurately, (10.5) can be modified slightly to
determine the electron temperature. From (10.5) one may write

ln I D C C e�o=.2:303kBTeb/; (10.9)

where I is the electric current in amps. Thus the slope of a plot of current versus
potential �o on a semilogarithmic paper gives the value of e=.2:303kBTeb/ D
5037=Teb . The method works fairly well at low pressures and has been used by
this author (Bose and Pfender [27]) for argon plasma at pressures between 1 and
40 mm Hg and temperatures between 5,000 and 12,000 K. Its successful use for
pressures around 1 bar for argon plasma for temperature around 10,000 K has also
been reported in literatures.
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In Fig. 10.2, the point F is the point at which the current densities of the falling
electrons and ions are equal. By equating the absolute value of the current densities
in (10.4)–(10.6) and after taking logarithms, one gets the expression to determine
the required potential

�oF D kBTeb

2e
ln

�
Tib

Teb

Me

Mi

�
; (10.10)

which is called the floating potential. In one of the experiments with electrostatic
probes, Teb was determined from the exponential part of the current-voltage
characteristics curve for argon plasma at pressures around 0.11 to 44.0 mm Hg, and
the measured electron temperature was between 9,000 and 12,500 K. The plasma
potential was also determined from the asymptotic extrapolation of the exponential
part of the current-voltage characteristics estimated to be accurate within �0:2
volts. However, the determination of the electron temperature to heavy particle
temperature ratio �b D Teb=Tib from these experimental data and (10.9) showed
scattered results. Thus, it was to be concluded that the electrostatic probes, although
very simple to use, must be used with caution as a diagnostic tool.

10.2 Temperature Measurement—Spectroscopical Methods

The basic choice of equipment necessary for spectral measurements is based on
the following considerations: (i) range of wavelength to be investigated (ultraviolet,
visible, near and far-infrared, radio range, etc.), (ii) type of dispersion (prism or
grating), and (iii) method of recording (photograph (spectrograph), photosensitive
tubes (spectral photometer or recording spectrograph), visual (spectroscope), etc.).

At temperatures up to about 7,000 K for heteropolar diatomic molecules and
radicals, the useful spectra are those of rotational and rotational-vibrational bands
in the near and far infrared, but for plasmas the useful spectra are generally in the
visible and ultraviolet range. While for the visible range one could use glass opticals;
for operation in the ultraviolet it is necessary to work with quartz opticals. However,
these cannot be used in the infrared region and a number of alkali-salt opticals are
available. The main difficulties with these salt opticals are those regarding their
proper setup and also that most of these salt opticals are highly hygroscopic and
have to be kept in specially heated containers. The advantage of such opticals of
course is the ease with which one can remove the scratches. on the optical surface.

For the choice of a spectral measuring equipment, it is necessary to have one with
a high resolution, that is, the possibility to recognize two spectral lines near each
other, especially if it is necessary to study the molecular band structure. At large
wavelengths the grating spectrograph is superior to the prism spectrographs from
the viewpoint of resolution although the former are much more expensive. Thus,
one has to be careful in the choice of the instrument and should chose on the basis
of the spectral range intended to be studied.
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For identification of some known spectra, or for comparison of intensities in
a limited spectral range, as it is used under the method line reversal techniques,
it is enough to have simple spectroscope in the visible range. However, for
complicated measurements, choice has to be made between spectrograph and
spectral photometer.

The spectrograph with photographic films or plates, sensitive in the suitable
wavelength range, can give in single exposure the entire intensity distribution.
However, each film or plate is different from the other since difference in emulsion,
developer temperature and age, and many other factors influence the density
(darkness) on the plate. It is, therefore, necessary to take on the same plate of the
spectra under investigation, additional spectra for a known gas for identification
purposes, and also stepped continuous spectra of known source under possibly the
same exposure time for calibration purposes. It is a well-known fact that the shutter
speed and intermittency of the light source affect the sensitivity of the photographic
plate also. The calibrated stepping down in the intensity of the known source is done
either with the help of a step filter or the so-called rotating sector. After developing
the exposed plate or film the lines are identified by enlarging the entire spectrum
on a projection screen followed by the measurement of the density of the spectra
under investigation as well as the continuous band of the standard source to obtain
the intensity of the spectra.

The spectral photometers are not restricted to the limited range of sensitivity of a
photographic plate. However, they cannot be used for fluctuating light sources, and
the spatial intensity distribution is possible only by measuring at different points at
different times. On the other hand the photosensitive detectors have a fairly good and
linear sensitivity over a large wavelength range and need not be calibrated each time.

At the outset it may be mentioned that the use of the prism or optical grid-
based spectral equipment is not used for productive spectral analysis anymore,
and intensified CCD (closed-circuit digital) cameras provide time-resolved, high-
resolution spectral measurements. There are several other powerful spectroscopic
techniques available, including dye laser [83], laser-induced fluorescence, cavity
ring-down spectroscopy, etc., which are normally discussed for advance-level
spectroscopical analysis, but they are outside the scope of this book. However,
further discussion on optical measurements through prism-based equipment in this
section is being done to introduce the reader to some preliminary techniques.

Among the spectral temperature measurements there are several methods as
follows:

(a) Temperature measurement by the line reversal technique: The experimental
setup for the line reversal technique is given in Fig. 10.3. On the matt glass
screen of the spectrograph is recorded the continuous spectra of the background
black-body source, on which are superimposed twin (D-) lines of sodium at
5,890 and 5; 896Angstrom.Å/. A part of the intensity of the background source
is absorbed by the flame at the earlier-mentioned spectral lines. If aD is the
absorption coefficient at the wavelength of the D-lines and ID is the intensity
of the flame, then the recorded intensity is
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Fig. 10.3 External setup for line reversal technique

ID.Record/ D ID.Flame/ C ID.Black/
�
1 � aD.Flame/

�
. (10.11)

One has to change the intensity of the background source in such a manner
that the sodium D-lines are neither lighter nor darker than the continuous spectra
of the background source. Under this condition, Kirchoff’s law is satisfied,
which states that a body absorbs as much fraction of the incoming radiation
as it emits, and noting

ID.Record/ D ID.Flame/; (10.12)

results in the relation

aD.Flame/ D ID.Flame/=ID.Black/ . (10.13)

This relation also gives the valid definition of the absorption coefficient. Thus,
if the recorded intensity is the same as the intensity of the black body, then as a
direct consequence of the analysis the temperature of the flame is the same as
the temperature of the background source, which is generally calibrated for the
temperature as a function of the electric current to heat the source.

The method, although it appears to be very simple on the surface, may
be quite difficult to carry out in case local measurement of the temperature
is attempted since it is extremely difficult to keep the yellow sodium flame
confined to a small region. On the other hand, if the sodium flame is allowed to
spread over the entire flame, then one may measure only an average temperature.

(b) Infrared measurement of rotational bands: The intensity of the lines in the
rotational and rotational-vibrational bands depends on the number of particles
in the particular energy level, from which the spontaneous emission takes place,
and the intensity is given by the relation

IL D C.2J C 1/ exp�J.JC1/�r=T ; (10.14)
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where IL is the intensity ŒWm�2steradian�1�, J is the rotational quantum num-
ber, �r is the characteristic rotational temperature, and C is a proportionality
constant. It may be noted that the line intensity IL is determined by integrating
the intensity over the line width, and therefore,

IL D
Z
L

Id� . (10.15)

By taking the logarithm of Eq.(10.14), one gets

log

�
IL

2J C 1

�
D logC � J.J C 1/�r

2:3026T
. (10.16)

Thus a plot of IL=.2J C 1/ on the logarithmic scale of a semilogarithmic
paper versus J.J C 1/�r=2:3026 will have a slope inversely proportional to
the temperature. Although the method is theoretically very simple the actual
plotting of the points, on a semilogarithmic paper, does not show all the points
to lie on a straight line, and there could be considerable scattering. However, an
accuracy of ˙100K is estimated in this method.

(c) Spontaneous line emission: The intensity of a line due to the spontaneous
transition of a bound electron in the ionization state i (for neutral, i D 0) and the
energy level within this ionization to the energy level n is considered so that the
transition under consideration is .i;m/ ! .i; n/. Now the intensity of such
a line IL is directly proportional to the number density of particles in (i,m),
namely, ni;m. The proportionality constant for the transition is Amn, which is
the transition probability for spontaneous emission. Thus,

IL � Amnni;m . (10.17)

Now the ratio of the number density of particles in (i,m), ni;m, to the total
number of particles in the i-th ionization state is given for the Boltzmann statistic
by the relation

ni;m

ni
D gi;m exp�Ei;m=.kBT /P

m gi;m exp�Ei;m=.kBT / . (10.18)

Further from dimensional considerations (10.17) is multiplied by the factor
h�l=.4�/ where l is the length (thickness) of the radiating gas column. Thus

IL D 1

4�
Amnni

gi;m exp�Ei;m=.kBT /P
m gi;m exp�Ei;m=.kBT / h�l , Wm�2sterad.�1 . (10.19)

In Eq. (10.19) if i D 0, the number density of the neutrals (atoms) na decreases
with temperature, but the factor exp�Ei;m=.kBT / increases continuously with
temperature. Further the partition function
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Z D
X
m

gi;m exp�Ei;m=.kBT /; (10.20)

is not strongly dependent of temperature. The intensity, therefore, due to the
product of two factors, one increasing and the other decreasing with temperature
has a maximum with temperature. This fact is also true for single- and multiple-
charged ions, except that the number density of these initially increases with
temperature and then decreases.

Determination of the temperature by measuring the intensity of a line and
using (10.19) is possible directly if the value of Amn is known. This is called
the absolute method. In case the absolute value of Amn is not known accurately,
even a knowledge of the relative values can be used to determine the temperature
in the following manner. From (10.19), one can denote the relative intensities of
the lines, both from the same ionization state, as

IL1

IL2
D Amn1gi;m1

Amn2gi;m2
exp.Ei;m2�Ei;m1/=.kBT / . (10.21)

If, however, Amn is not known, but the point (radius for an axisymmetric plasma
not on axis) at which there is maximum intensity is known, one can use a
modified version of (10.19). By taking the logarithm of (10.19), one gets

ln IL D C � Ei;m

kBT
C lnni ; (10.22)

which has a maximum at a particular temperature. By comparing the intensities
at all points and moving from the point of maximum intensity, one can
determine the temperature distribution.

(d) Continuum emission: For the free-free and free-bound type of transitions
Cramer’s theory gives the spectral distribution of the emitted radiation. These
have been discussed in Chap. 4. From this, for the continuum radiation, one gets
a sawtooth distribution of intensity, each tooth corresponding to a free-bound
transition to the respective bound energy level. The slope of the sawtooth, as
shown in Fig. 10.4, is proportional to T �1.

(e) Broadening of spectral lines: It has been known for a long time that the
broadening of spectral line is a complicated function of the number density
of the charged particles and thus of pressure and temperature. Thus, the
measurement of the profiles combined with the theory is an interesting method
to determine temperature.

On the various mechanisms for line broadening those due to Doppler and
Stark effects are significant practically. While the discussion here is kept very
brief, for a detailed discussion the reader is referred to the book edited by
Huddlestone and Leonard [77]. However, from some calculated values of the
line width, it can be seen that Doppler broadening, which does not depend
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Fig. 10.4 Schematic spectral distribution of intensity in continuum

on the electron number density, becomes important at low electron densities,
whereas the Stark broadening is important at high electron number densities
.ne > 10

16 cm�3/.
If the velocity component of the radiating particle parallel to the direction

of observation is w, then the wavelength shift due to the Doppler effect is
�
=
 D w=c, where c is the velocity of light. By assuming the random nature
of the atomic motion one gets for the half-width (the wavelength width at which
the line intensity is half of the maximum value) by the Doppler effect as

�
Doppler D 7:16 � 10�7

p
T=m . (10.23)

In this equation �
Doppler is obtained in Å, 
 is in Å, T is in K, and m is the
mole mass. Thus (10.23) shows that the Doppler broadening is pronounced for
lines of light element at high temperatures.

For the practical application of the Stark effect the tabulations of width and
shift parameters are of primary interest since they furnish all the essential infor-
mation for electron density determination. It is based on the theory that accord-
ing to the linear Stark-broadening theory, the broadening�
 / electric field E,
which is due to the microelectric field of the charged particles. Now the mean
distance between the charged particles is / n�1=3. Since the Coulomb force
/ e2=distance2 / eE, the electric field E / e=distance2 / en

2=3
e . To deter-

mine the proportionality constant, normalized electric field E� D E=Eo is
introduced, where Eo D 2:61en

2=3
i volts:m�1 and E� D E�.�
/. The mea-

sured result of line width against electron density for a few element has been pre-
sented in the earlier mentioned book of Huddlestone and Leonard. However the
method has not become practically useful for measurement of other elements.

(f) Sideways temperature measurement of nonuniform axisymmetric plasmas
(Fig. 10.5): Implicit in the method is that the absorption within the gas may be



10.2 Temperature Measurement—Spectroscopical Methods 349

Fig. 10.5 Sideways radiation
measurement for an
axisymmetric plasma column

Fig. 10.6 Schematic diagram for side view volumetric emission measurement

neglected. Let the intensity IL.x/ ŒWm�2:sterad�1� be measured sideways of
a different layer of gas. It is assumed that the radiation intensity of volumetric
radiation is dependent on radius only, that is, i D i.r/ ŒWm�3:sterad�1�. Thus,

IL D 2

Z y

0

i.r/dy D 2

Z r

0

i.r/rp
r2 � x2 dr . (10.24)

Note that in the following, I is equivalent of IL.

For an analytically prescribed I.x/, it is possible to get i.r/ by Abel’s inversion
method. However, a numerical method, as given in the following, is quite convenient
for the evaluation of i.r/ from the measured I.x/. For this purpose, let the cylinder
be divided into concentric circles, each concentric circular strip is assumed to radiate
uniformly. Now the measured length of the radiating gas column ı, as given in
Fig. 10.6, has two subscripts, the first giving the concentric circle number and the
second giving the index number of position. Thus one notes the following set of
equations:
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I4 D i4ı44

I3 D i4ı43 C i3ı33

I2 D i4ı42 C i3ı32 C i2ı22

I1 D i4ı41 C i3ı31 C i2ı21 C i1ı11 (10.25)

From this set of equations the values of i1 to i4 are determined easily from
the known measured value of I1 to I4 and ıs. While the method has been
described for axisymmetric plasmas the method has also been used successfully
for non-axisymmetric plasma as well by simultaneously measuring I from different
directions.

10.3 Temperature Measurement—Interferometric Methods

The interferometric method works on the principle that when a ray of light, which
is coherent in time and space, is split, and the split rays are further allowed to
pass through two different media of common thickness L, the relative velocities
of these two split rays are in the ratio of the refractive indices of the two media
and consequently there is a phase shift between the two rays as they are allowed to
recombine. In case the phase shift is exactly opposite, there are dark interference
fringes and if they are in phase there are bright fringes. These alternate dark and
bright interference fringes (Fig. 10.7) are obtained if

Fig. 10.7 Schematic diagram of a microwave generator
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Z L

0

��dl � N��L D z
; (10.26)

where �� is the difference between the refractive indices in both media, z is the
number of fringes, and 
 is the wavelength. For the characteristic length of the order
of 1 cm and 5; 000 Å in the visible range, the average difference in the refractive
index �� is 0.0005 to get 10 fringes.

The total refractivity in either medium depends on the refractivity index of the
electrons, ions, and neutrals, �j , that is,

� D 1C
X

.�j � 1/; (10.27)

where j stands for electrons, ions, neutrals, etc. As long as one is away from the
spectral regions of strong absorption one can talk about the phase refractive index,
which is given for neutrals and ions by the relation

�j D 1C ˛j nj ; (10.28)

where ˛j is a coefficient and nj is the particle number density Œm�3� of the j-th
species. Typical values of ˛j for components of argon plasma at around 5,463 Å
wavelength, as taken from Huddleston and Leonard [77], are as follows: for neutral
argon in ground state Ao, ˛a D 1:036� 10�29 m3 and for singly charged argon AC,
˛C D 7:15 � 10�30 m3.

For the electrons, however, the refractive index is given by the relation

�e D 1 � 1

2

��p
�

	2
; (10.29)

where � is the wave frequency of the radiated ray of light and �p is the electron
plasma frequency given by the relation

�2p D 1

4�2
e2ne

�oMe

; (10.30)

where ne Œm�3� is the electron number density. Substituting this expression for �p
in (10.29) and noting that the wavelength 
 in Angstrom (Å) unit is related to
frequency in s�1 by relation 
 D 3 � 1018=�, (10.29) now becomes

�e � 1 D �4:477 � 10�36
2ne . (10.31)

In (10.31) 
 is in Angstrom units and ne is in m�3. For wavelength region around
5,463 Å, as observed for neutral argon, a coefficient for electrons, ˛e , can also be
defined as done earlier, whose value is ˛e D 4:477�10�25 m3; in microwave region,
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the value is much larger. Now for typical plasma consisting of single charge ions,
electrons, and neutrals the degree of ionization ˛ gives the ratio of electron, ion, and
neutral number density to the total number density by the relation

ne

n
D ni

n

˛

1C ˛
I na
n

D 1 � ˛
1C ˛

. (10.32)

It can be shown that for strongly ionized plasma only the electron concentration
can be determined from the fringes and without any knowledge of the nonelectronic
contribution.

Equation (10.29) is valid under the condition that the frequency of collision
between electrons and heavy particles, �coll, is much smaller than the wave
frequency �, and there is no magnetic field (the electron cyclotron frequency D 0).
For no magnetic field, but �coll= � not small, the expression to be used is

�2 D
1 �

�
�p
�

	2 �
1C i

�coll

�

	
�
1C

��coll

�

	2� ; (10.33)

where i is the imaginary number. Further for wave propagation parallel to the
magnetic field and collision frequency much smaller than the wave frequency, the
expression to be used is

�2 D
1 �

��p
�

	2
h
1 � �cycl

�

i ; (10.34)

where the cyclotron frequency, �cycl, for the charged particles (electrons, ions) may
be computed with the help of relation given in Chap. 7.

An estimate in calculating the sensitivity, for example, to be able to measure
1/100th of fringe spacing is given by the minimum electron number density
acceptable. For this purpose, .�e � 1/min D 10�2
=L, where L is the optical path
length and 
 is the wave length. Equating the above expression with (10.31), and
for strongly ionized plasma we get

ne;min D 2:23 � 1013=.L
/; (10.35)

where ne;min is the minimum electron density in m�3. For a wavelength in optical
range and L D 1 cm; ne;min D 4:5 � 1021 m�3. However, in the microwave region
(� D 1011 to 107 s�1) corresponding to wavelength (
 D 3mm to 30 m) and for the
same value of L, ne;min � 1012 to 1016 m�3.
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10.4 Velocity Measurement by Laser-Doppler Velocimeter

The velocity is determined by measuring the Doppler shift in the frequency (or
wavelength) between the incident and the scattered light due to suspended particles,
which is given by the formula

�� D 2u


o
sin �; (10.36)

where u is the velocity of the scattered particles, 
o is the wavelength of the incident
light, and � is the semi-angle of the split rays. The equipment for the measurement
of the velocity is given in Fig. 10.8. Measurement is done by mixing the scattered
light beam with an undisturbed beam of the incident light into a photomultiplier and
analyzing the spectrum for beam frequency given by (10.36) with the help of an
oscilloscope or spectrum analyzer.

10.5 Exercise

10.5.1 Compute the saturation current density of electrons and ions and the
floating point potential of a typical plasma (mole mass of heavies D 40)
at pressure 0.01 bar, temperature 10,000 K, and electron mole fraction 0.2.
(Ans: 6:379e7Am�2; 2:365e5Am�2; �4:8259V)

10.5.2 For a Balmer series line of hydrogen atom at 4864 Å, calculate the relative
intensity distribution with temperature. [Hint: required hydrogen atom
number density can be computed with the help of Saha equation without
considering molecular hydrogen. For population calculation at the emitting
energy level Boltzmann distribution can be taken.]

Fig. 10.8 Schematic diagram of a laser Doppler velocimeter



Chapter 11
High Temperature Gas
and Magnetogasdynamics

Finally, in this and next chapters, we come to the discussion of some of the special
gas-dynamic problems in high temperature gases. Unfortunately, it is necessary to
conduct our investigation under highly restricted conditions to be able to solve some
of the simplest problems. While, in general, a gas mixture containing electrons, ions,
and neutrals (gas plasma) is considered for such an investigation, the general results
are, however, also applicable to non-ionized or dissociated gases. For the purpose of
our analysis, the following quantities are assumed to be known: (1) the temperatures
Te and Th of the electron and the heavy particles, respectively; (2) the total kinetic
pressure of the gas mixture p and the partial pressure pj of the individual species;
(3) the mass-averaged gas velocity V; (4) the kind of gas; and (5) the magnitude and
direction of any externally applied electromagnetic fields. Furthermore, the analysis
is based on the following quite reasonable assumptions: (1) the electric current is
carried mainly by electrons; and (2) a quasi-neutrality condition exists in general.

Firstly, we present the basic equations of state and conservation of species mass,
global mass, species momentum, global momentum, and energy. The momentum
equations are used to derive the generalized Ohm’s law. These and Maxwell’s
equations are investigated with respect to their similarity parameters and spe-
cial effects under the assumption of infinite electrical conductivity are discussed.
Further discussion on the application of these equations has been deferred to the
next chapter, however.

11.1 Basic Equations

The equation of state for a mixture of gases at different translational temperatures
Tj is

p D kB
X

Tj nj C pR; (11.1)
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where nj is the number density of the j th species, kB is the Boltzmann constant,
and pR is the radiation pressure, which is significant only for a black-body radiation
at high temperatures. For most of the cases of normal application in the laboratory
the assumption pR D 0 can safely be made.

While formulating the gas-dynamic conservation equations, either a balance of
the conserving properties in a volume element can be made or the more sophisticated
Maxwell–Boltzmann integro-differential equation can be used; for the purpose of
clarity it has been thought useful to employ here the first method. It is, however,
necessary to describe some of the velocities and their interrelations as follows:

wj D velocity of particles of the j th species with respect to the laboratory
coordinate
Vj D mass-average velocity of the j th species
vj D kinetic velocity of particles of the j th species with respect to the mass-
average velocity of the j th species D wj � Vj

V D global mass-average velocity
V� D global molar-averaged velocity
V0
j D relative velocity of the j th species with respect to the global mass-average

velocity D Vj � V
V�0
j D relative velocity of the j th species with respect to the molar-averaged

velocity D Vj � V�

The average velocity of a particular species in a gas mixture depends on three
factors: (1) All the species move globally in certain direction depending on the
(gas-dynamic) pressure gradient, which is, very often, due to external boundary
conditions imposed for a particular flow; (2) the relative speeds of various species
(diffusion) due to gradient in number density of these specie; and (3) the motion
of the charged particles in electromagnetic fields. In a high temperature gas inside
a confined space bounded by colder wall, calculation of the local equilibrium
composition will show more dissociated and ionized particles in the interior region
of the gas and more undissociated (and unionized) particles near the wall. Hence
the dissociated (and ionized) species will move from interior regions to the wall and
recombine in the colder region, and there will be movement of undissociated (and
unionized) species towards the hotter region. For ionized species, in particular the
electrons and higher order ions, they move together from hotter to colder regions,
and there can be flux of the electrons and lower order ions (or neutrals) moving in
the opposite direction; the phenomenon is called the ambipolar diffusion. Further to
this if charged species are put in an electric field, then the (negative) electrons move
from the regions of lower electric potential (cathode) toward those of higher electric
potential (anode), and the (positive) ions move in the opposite direction. One can,
therefore, define a sort of global-averaged velocity of all the species together, in
which all the three above part movements of various species are taken into account.
Such an averaging can be done either based on the mass-density fraction or on the
molar fraction. Further discussion on this is done on the basis of the discussion by
this author elsewhere (Bose [17]).
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While a simplified approach using the rigorous kinetic theory to calculate the
viscosity and the heat conductivity coefficients can be taken in a fairly straight
forward manner, as discussed in Chap. 7 of this book, it is quite difficult to take
exactly the same approach for the calculation of the diffusion coefficients and
the related properties. This is because of the additional complication of the relative
velocities between the individual species, which are needed for calculating the
diffusion coefficients. Hence the ultra-simplified approach (Hirschfelder, et al. [74])
of Chap. 7 is taken. It is evident that the mass-averaged velocity and the molar-
averaged velocity are not the same, just like the respective relative velocities.
We would, however, discuss the mass-averaged velocity first, followed by the
molar-averaged velocity.

The relative mass-averaged velocity of the j th species, V0
j , is due to two different

effects and has thus two parts. The first part is due to diffusion by the mass-density
gradient, V0

dj , and the second part is due to the drift of the charged particles in the
gas mixture due to electromagnetic fields V0

fj , the so-called field velocity. Thus,
the mass-average velocity of the j th species is the sum of the global mass-averaged
velocity plus the relative mass-averaged velocity of the j th species

Vj D V C V0
j D V C V0

dj C V0
fj . (11.2)

From the definition of the mass-averaged velocity

V D 1

�

X
�jVj ; (11.3)

where � D P
�j is the total mass density and �j is the mass density of the species.

It follows that

X
�jV0

j D
X

�jV0
dj C

X
�jV0

fj D 0 . (11.4)

While in the above expression the sum of the diffusive flux due to concentration
gradient and electric field must be equal to zero, a simpler model is the one in
which the sum of the above two fluxes individually is equal to zero. These two are
considered separately.

First we examine the validity of the expression for the diffusion part. The mass
diffusion velocity due to the gradient of the mass density of a species is given by the
relation

V0
dj D �

�
�

�j

�
Djr

�
�j

�

�
; (11.5)

where Dj is the mass-diffusion coefficient of the j th species and for ionized gases
specially, Dj D Damb, the ambipolar diffusion coefficient. Thus, specially for the
ionized gas
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X
�jV0

dj D ��Dambr
�X �j

�

�
D 0. (11.6)

Since
P
�j V

0
dj D 0, it follows that the condition

X
�jV0

fj D 0; (11.7)

is to be satisfied. An estimate of the field velocities for a typical case of an argon
plasma at 1 bar in an electric field of 100 V/m shows for the ion that there is a field
velocity of about 1 m/s, whereas for the electrons it is about 600 m/s; these field
velocities are many orders of magnitude larger than the mass diffusion velocity due
to the concentration gradient for charged particles (ambipolar diffusion).

Now one may define the two different electric currents, namely, the convection
current of the j th species

jcj D nj qjVj ; (11.8)

which is the total charge carried by the j th species per unit area and time and the
field current

jj D nj qjV0
fj ; (11.9)

which is diffusive in nature and is part of the convection current. Since for a quasi-
neutral plasma

X
qj nj D 0; (11.10)

the total current density is

j D
X

jcj D
X

qj njVj D
X

qj njV0
fj D

X
jj . (11.11)

Considering the particle flux entering and leaving a volume element, the species
continuity equation for the j th species can be written as

@nj

@t
C r � .njVj / D Pnj;reaction , m�3s�1; (11.12)

where the sign of the right-hand term gives the production or the removal of the
particles of the j th species by reaction. Equation (11.12) is multiplied with Mj ,
mass of a single particle, to get

@�j

@t
C r � .�jVj / D PmRj , kgm�3s�1; (11.13)
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where PmRj is the mass rate of production of the j th species by reaction.
Equation (11.13) is added for all species, and since

P PmRj D 0 and (11.4) are
valid, we get the global continuity equation

@�

@t
C r � .�V/ D 0, kgm�3s�1. (11.14)

Now for the j th species, the species momentum equation is

@

@t
.�jVj /C r � .�jVj Vj / D �rpj C r � �j C Fjf C Fj;coll; (11.15)

where

�rsj D �2
3
�j .r � Vj /ı

rs C �j!
rs
j (11.16)

ırs D Kronecker delta W ırr D 1; ırr D 0 (11.17)

!rsj D @V r
j

@xs
C @V s

j

@xr
; (11.18)

the electromagnetic volume force

Fjf D nj qj ŒE C .Vj�B/�; (11.19)

and the collisional volume force

Fj;coll: D Fj;elast: C Fj;inelast:; (11.20)

in which elastic and inelastic (reactive) components of the collisional volumetric
force are given by the relations

Fj;elast: D 2MjMk

.Mj CMk/
.Vk � Vj /�

0
jk (11.21)

Fj;inelast: D Vj PmRj � V PmRj . (11.22)

Further in some instances it is convenient to define an alternate definition of the
shear stress term by including pressure as

��rs
j D �pırs C �rsj ; (11.23)

so that the pressure term is hidden to shorten the equations.
Through (11.16) and (11.17) the shear stress on the j th species has been

introduced in a formal manner in analogy to the case of the single species gases, the
underlying assumption being that the gradient of the relative mass-average velocities
of the different species and their effect on the shear stress for the j th species is
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negligible. The formal formulation in this manner has the obvious advantage of
clarity with which the ultimate result not being much different from that obtained
through more rigid mathematical approach. Further it may be noted that the dynamic
viscosity coefficient �j in the equation for stress is not that of a pure gas, but it has
already the effect of the mole fraction of the j th species in it, as already explained
in Chap. 7.

Now the left-hand side of (11.15), taking into account (11.13), can be expanded
as follows:

@

@t
.�jVj /C r � .�jVj Vj / D �j

�
@

@t
Vj .Vjr/�Vj

�
C Vj

�
@�j

@t
C r � .�jVj /

�

D �j

�
@

@t
Vj .Vjr/�Vj

�
C Vj PmRj

D �j
D

Dt
Vj C Vj PmRj ;

where the substantive differential quotient is given by the relation

D

Dt
D @

@t
C .Vr/. (11.24)

Thus, the species momentum equation (11.15) becomes

�j
DVj

Dt
D �rpj C r � �j C nj qj ŒE C .Vj�B/�C 2MjMk

.Mj CMk/
.Vk � Vj /�

0
jk .

(11.25)

It may be noted further that neither in (11.15) nor in (11.25) any other types of
volumetric forces, for example, the gravitational buoyancy force or centrifugal or
Coriolis force, have been considered at this stage. Now, the global momentum
equation is derived from the species momentum equation by adding for all species,
for which the term by term added results are

X
Fj;elast: D

X 2MjMk

.Mj CMk/
.Vk � Vj /�

0
jk D 0 (since � 0

jk D � 0
kj )

X
Fj;inelast: D �

X
V PmRj D 0 ,

X
rpj D rp

X @

@t
.�jVj / D @

@t

X
.�jVj / D @

@t
.�V/

X
r � .�jVj Vj / D r �

h
.�VV /C

X
.�jV0

j V
0
j /
i

� r � Œ.�VV /

.some other terms drop off since
X

�j V
0
j D 0/
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X
r � �j D r �

X�
�2
3
�j .r � Vj /ı

rs C �rsj

�

D r �
X�

�2
3
�j .r � V/ırs C �rsj

�
D r � �

.since � D
X

�j )
X

Fjf D
X

nj qj ŒE C .Vj�B/� D
X

.nj qjVfj /�B D j � B;

where �j D xj�
pure
j and �pure

j is the viscosity coefficient of the pure species. It is
multiplied with its mole fraction to obtain its contribution for the species momentum
equation. Thus the global momentum equation becomes

�
DVj

Dt
D �rp C r � � C .j � B/; (11.26)

where for the shear stress term we could use similar expressions as (11.16)–(11.23)
with the species index j removed. We can also derive further the left-hand side
of (11.26), as we did for the species momentum equation (11.15) to get

@

@t
.�V/C r � .�VV / D �

�
@

@t
V C .V r/�V

�
C V

�
@�

@t
C r � .�V/

�
D �

DV
Dt
;

and an alternative formulation of the global momentum equation is

�
DV
Dt

D �rp C r � � C j � B D r � �� C j � B. (11.27)

As we have already done in the case of the continuity and momentum equations, the
balance of the energy flux entering and leaving a volume element, first for a species,
is considered and the following species energy equation can be written:

@

@t
.�jE

o
j /C r � .�jVjE

o
j / D r � .kjrTj /C r � .Vj�

�
j /C PQjf C PQj;coll � �Rj ;

(11.28)

where for the j th species,

Eo
j D total specific energy D 3

2

R�

mj

Tj CEmj C 1

2
V 2
j , Jkg�1;

and

R� D universal gas constant ; mj= mole mass of j th species
Emj D ionization energy per unit mass of j th species
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PQjf D energy production due to product of electric current density and external
electric field D V0

fj �Œnj qj .E0 C Vj�B/� D jj �E0
PQj;coll D energy production due to collision
�Rj D radiative energy loss

In addition for definition of ��
j , see (11.23).

The ionization energy, by convention, is assumed to be zero for the atoms and
free electrons. Further, the collisional energy transfer may be due to elastic and
nonelastic (reacting!) collisions, the former due to the difference of mean kinetic
speed (translational temperature!) and the latter due to loss in energy to the species
due the reaction, PmRjE

o
J . Since, according to the present model, it is assumed that

all species share the total energy of the gas mixture in proportion due to their relative
mass fraction, this loss in energy to the species due to reaction is already included
in the balance of the energy flux and need not be repeated. Thus, for the collisional
energy production, we may write

PQj;coll D 3MjMk

.Mj CMk/2
kB.Tk � Tj /� 0

jk . (11.29)

Further in (11.28), the heat conductivity coefficient kj , similar to the dynamic
viscosity coefficient �j , is not for a pure gas, and it has already the effect of the
mole fraction of the j th species.

Now we perform term by term addition of (11.28) for all species to get the global
energy equation as follows:

X
�Rj D �R D total radiative energy ,

X PQj;coll D 0

X
�jE

o
j D �Eo(by definition of total energy)

X
jj �E0 D j�E0

X
�jVjE

o
j D

X
�j .V C V0

j /E
o
j

D �Eo C
X

�V0
jEj C 1

2
V 2
X

�jV0
j D �VEo C

X
�jV0

jEj

X
.Vj�

�
j / D V�� �

X
pjV0

j :

Thus, after term by term addition of (11.28), we get the global energy equation

@

@t
.�Eo/C r � .�VEo/ D

X
r � .kjrTj / �

X
r � .�jV0

j hj /

Cr � .V��/C PQf � �R . (11.30)
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It is to be noted that the second term
P
�jV0

j hj consists of sum of two terms, that
is,
P
�jV0

jEj and V0
j pj , which together is the energy flux due to diffusion. For the

special case of a plasma at thermal and chemical equilibrium (Tj D T and �j , hj
are given as a function of T, p), the first two terms in the right-hand side of (11.30)
become

X
r � .kjrTj / �

X
r � .�jV0

j hj / D r � .krT /

C�
X

Djhjr
�
�j

�

�
D r � .kc;drT /; (11.31)

where the total conductivity coefficient due to pure conduction and diffusion is

kc;d D k C �
X

Djhj
@

@

�
�j

�

�
. (11.32)

As explained in Chap. 7, the diffusive heat conduction term can be evaluated for
chemical equilibrium in general, but particularly for ionized plasma, the diffusion
coefficient Dj D Damb, and for this special case of a mixture of neutrals, electrons,
and singly charged ions with arbitrary electron and heavy particle temperature and
electric current flow, we have to consider not only the energy transport due to
conventional diffusion but also the diffusive nature of motion of charged particles in
electromagnetic fields. Thus, for an ionized plasma with two temperatures, the first
two terms in the right-hand side of (11.30) become

X
r � .kjrTj / �

X
r � .�j V 0

j hj / D r � .khrTh/C r � .kerTe/

Cr � .�DambEmirYi /C 5

2

R�

me

r � .�DambrYe/ � 5

2

kB

e
r � .jTe/; (11.33)

where the mass fraction Yj D �j =�. Thus the energy equation for a plasma
containing the electrons, the neutrals, and the singly charged ions becomes

�
DEo

Dt
D r � .khrTh/C r � .kerTe/C r � .�DambEmirYi /

C j � E0 � �R C 5

2

R�

me

r � .�DambrYe/

� 5

2

kB

e
r �/.jTe/C r � .V��/ . (11.34)

While the above equation is written in terms of the total internal energy, it is quite
usual in fluid or gas dynamics to write the energy equation also in terms of static
internal energy or even in terms of enthalpy (static or total). Thus we do the same
thing. In order to write the energy equation in terms of the static internal energy,
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we have to subtract the kinetic energy equation from the energy equation written
in terms of the total internal energy. For this purpose, the global momentum equa-
tion (11.27) is multiplied by the velocity component in the respective coordinate
directions, and these are added for all the three directions. Thus we get the equation
for the gas-dynamic kinetic energy as

�
D

Dt

�
V 2

2

�
D .Vr/ � �� C V�.j � B/; (11.35)

where �� D � � pırs . Thus, subtracting (11.35) from (11.34), we get the energy
equation in terms of the static enthalpy as

�
DE

Dt
Cpr � V D

X
r � .kjrTj /�

X
r � .�jV0

j hj /C .Vr/�� C�C j 2

�
� �R;

since j � E0 � V�.j � B/ D j�.E0 C V � B/ D j 2=� . Further � D .�r /�V is the
dissipation function. Noting further that

E D h � p

�
and Eo D ho � p

�
;

we write the energy equation in terms of the static and total enthalpy as follows:

�
Dh

Dt
� Dp

Dt
D
X

r � .kjrTj / �
X

r � .�jV0
j hj /

C� C j 2

�
� �R; (11.36)

and

�
Dho

Dt
� Dp

Dt
� pr � V D

X
r � .kjrTj / �

X
r � .�jV0

j hj /

Cr � .V��/C j � E0 � �R . (11.37)

We now derive from the momentum equation the generalized Ohm’s law by writing
first the species momentum equation separately for the electrons and the singly
charged ions, as well as the global momentum equation in which the shear stress
terms are neglected. Further, in the electron momentum equation, the inertial terms
are neglected. Thus, the three momentum equations are:

Electron momentum:

� rpe � eneŒE0 C Ve�B�C 2MeŒ.Va � Ve/�
0
ea C .Vi � Ve/�

0
ei � D 0; (11.38)
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Ion momentum:

�i
DVi
Dt

� �i
DV

Dt
D �rpi C eneŒE0 C Ve�B�

�2Me.Vi � Ve/�
0
ei � 2MiMa

Mi CMa

.Vi � Va/�
0
ia; (11.39)

Global momentum:

�
DV
Dt

D �rp C j � B: (11.40)

Now a velocity difference be defined as

V� D Ve � Vi D V0
e � V0

i ; (11.41)

and thus (11.11) becomes

j D �eneV� . (11.42)

Further since,

X
�jV0

j D �eV0
e C �iV0

i C �aV0
a D 0; (11.43)

thus,

V0
a D �

�
neMe

naMa

V� C ne

na
V0
i

�
. (11.44)

Now we introduce the following terms:

Electron radian cyclotron frequency: !e D eB=Me

Ion radian cyclotron frequency: !i D eB=Mi

where B is the magnitude of the magnetic induction. Further,
Collision to radian cyclotron frequencies:

Kei D �ei

!e
D � 0

ei

!ene
D �eiMe

eneB

Kea D �ea

!e
D � 0

ea

!ene
D �eaMe

eneB

Kia D �ia

!i
D � 0

ia

!ine
D � 0

iaMi

eneB
.
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Atom fraction:

f D na

na C ne
. (11.45)

Further, assuming quasi-neutrality,
P
nj qj= 0, the following intermediate terms

can be derived:

�je D ene.V� C V0
i / D ji � jI �ji D eneV0

i

�MeV� D Me

ene
j D jB

ne!e
I �MeV�� 0

ea D jBKea �MeV�� 0
ei D jBKei

Me.Ve � Vi /�
0
ei D MeV�� 0

ei D �jBKei

Va � Vi D V0
a � V0

i D �neMe

naMa

V� �
�
1C ne

na

�
V0
i :

With the help of these expressions the electron momentum equation (11.38)
becomes

rpe C eneŒE0 C Ve�B�

D 2Me

�
�
1C neMe

naMa

�
V� C

�
1C ne

na

�
V0
i



� 0
ea C V�� 0

ie

�
;

which may be further expanded into

rpe C eneŒE0 C Ve�B� � .j � ji /�B

D 2

�
jBKei C jBKea

�
1C neMe

naMa

�
� jiBKea

�
1C ne

na

��
.

It is estimated that if na is large, the term (neMe)/(naMa) is small, and if na is
small Kea is small. Thus let (neMe)/(naMa) � 1, and the electron momentum
equation (11.38) becomes

rpe C eneŒE0 C Ve�B� � .j � ji /�B D
�

jB.Kei CKea/ � jiBKea

f

�
. (11.46)

Similarly the ion momentum equation (11.39) becomes

�i
DV
Dt

D �rpi C eneŒE0 C Vi�B�C ji�B C jBKei

�
1 � f
f

� 0
ia

� 0
ie

� 2
�

� jiB
Kia

f
.

(11.47)
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Adding Eqs. (11.46) and (11.47), we get

�i
DV
Dt

D �r .pi C pe/C j�B C jBKei

�
Kei

1 � f
f

� 0
ia

� 0
ie

C 2Kea

�

�jiB
Kia

f
.2Kea CKie/ . (11.48)

Now further we write the global momentum equation. Since

�i

�
D niMi

niMi C naMa

D ni

ni C na
D 1 � f;

the global momentum equation, Eq. (11.40), becomes

�i
DV
Dt

D .1 � f /.�rp C j � B/. (11.49)

Substituting (11.49) into (11.48) we get

.1 � f /.�rp C j � B/ D �r.pi C pe/C j � B

CjB
�
Kei

1 � f
f

� 0
ia

� 0
ie

C 2Kea

�
� jiB

Kia

f
.2Kea CKia/: (11.50)

It is estimated again that in a similar manner as before, the term
Kei .1 � f /� 0

ia=.f�
0
ia/ may be neglected. Further since,

� Œ.pi C pe/ � .1 � f /p� D Œ�2fpe C .1 � f /pa� D �fpe , (11.51)

equation (11.50) becomes

� f rpe C f j � B C 2jBKea � ji
f
B.2Kea CKia/ D 0; (11.52)

from which we get an explicit expression for the ion current density

ji D f

B.2Kea CKia/
Œf .�rpe C j � B/C 2jBKea� . (11.53)

Substituting the above equation into (11.46), we get further

0 D �rpe � eneŒE0 C V � B�C j � B

� f

.2Kea CKia/
Œf .�rpe C j � B/C 2jBKea�� B

B

C 2jB.Kea CKei /
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� 2Kea

.2Kea CKia/
Œf .�rpe C j � B/C 2jBKea� . (11.54)

Noting that Kea � Kia and since

B.Kea CKei / D Me

ene
.� 0

ei C � 0
ea/; (11.55)

we get after some rearrangement

0 D �rpe � eneŒE0 C V � B�C j � B

� f

Kia

Œf .�rpe C j � B/�� B
B

C 2Me

ene
.� 0

ei C � 0
ea/j

C 2jB.Kea CKei /

� 2Kea

.2Kea CKia/
Œf .�rpe C j � B/C 2jBKea� . (11.56)

Further noting the definition of a scalar electrical conductivity

�o D e2n2e
2Me.�

0
ei C � 0

ea/
. (11.57)

Equation (11.56), after some rearrangement, becomes

j
�o

D .E0 C V � B/C 1

ene
rpe � 1

ene
j � B � f 2

Mi�
0
ia

Œrpe�B C B�.j � B/� .

(11.58)

Equation (11.58) is known as the generalized Ohm’s law. It has several terms in the
right-hand side. The first term gives the effect of the externally applied electric field,
the second term takes care of the induced electric field V � B, the third term is due
to electron pressure gradient , the fourth term is the Hall effect, and the terms within
[ ] account for the ion slip; this last term is usually neglected since it is divided by
very large � 0

ia.
We would now discuss the implication of various terms in the above equation.

For this we define first an effective electric field E, consisting of an external electric
field E0 and an induced electric field (V � B), and then neglect the electron pressure
gradient term to get

j
�o

D E � 1

ene
j � B � f 2

Mi�
0
ia

.j � B/ . (11.59)

It can be seen from the above expression that in the direction of B, the second and
third terms in the right-hand side of (11.59) are zero, and if there is an electric field
E parallel to B, then only the scalar value of electrical conductivity is effective in
that direction.
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First we multiply (11.59) by �o and get after some rearrangement

j D �oE � ˇ2 j � B
B

� ˇ1B�.j � B/
B2

; (11.60)

where

ˇ1 D �oB
2f 2

Mi�
0
ia

D f 2n2e!e!i

2� 0
e �

0
ia

D f 2!e!i

2�e�ia
,

ˇ2 D �oB

ene
D ne!e

2� 0
e

D !e

2�e
. (11.61)

It is seen that both ˇs’ depend on the ratio or the square of the ratio of the cyclotron
frequency to the collision frequency. Noting further that the term B�.j � B/may be
reduced to jB2 � B.B � j/, (11.60) is reduced to

.1C ˇ1/j D �oE C ˇ1
B
B

�
B
B

�j
�

� ˇ2j� B
B

. (11.62)

Let us now assume that the electric field E and current density j have only
components in x- and y-direction and the magnetic induction B has component only
in the z-direction. Thus we consider E D {Ex , Ey , 0 }, j D {jx , jy , 0} and B D {0,
0, Bz}. We write, therefore, the three equations

.1C ˇ1/jx C ˇ2jy D �oEx (11.63)

.1C ˇ1/jy � ˇ2jx D �oEy (11.64)

jz D �oEy: (11.65)

We can now write the above three equations in a matrix equation form as

j D � � E; (11.66)

where

� D �o

2
6666666664

1C ˇ1

.1C ˇ1/2 C ˇ22

ˇ2

.1C ˇ1/2 C ˇ22
0

�ˇ2
.1C ˇ1/2 C ˇ22

1C ˇ1

.1C ˇ1/2 C ˇ22
0

0 0 1

3
7777777775

. (11.67)
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It is now worth noting that by neglecting the ion slip term, ˇ1 D 0, it leads to the
expression we have derived in Chap. 7. In addition to the above Ohm’s law, there
are Maxwell’s equations, which must be satisfied. The latter are rewritten again
from Chap. 7 as follows:

r � D D nc (11.68)

r � B D 0 (11.69)

D D �E (11.70)

B D �H (11.71)

r � E D �@B
@t

(11.72)

r � H D j C @D
@t
; (11.73)

where �o is the magnetic permeability in vacuum.
Taking divergence of (11.73) and taking help of (11.68), we write

r � .r � H/ D r � j C �
@

@t
.r � E/

D r � j C @nc

@t
D 0 . (11.74)

Since for a quasi-neutral plasma, the charge density nc D 0, we conclude, therefore,
that for a quasi-neutral plasma the divergence of electric current density must be
equal to zero.

Further at an interface and from the relation at the interface, r � D D 0 and
r � B D 0, and we may write that the normal component across interface for D
and B must remain continuous, that is, Dn1 D Dn2 and Bn1 D Bn2. On the other
hand, the tangential components of E and H remain continuous, that is, Et1 D Et2
and Ht1 D Ht2.

At the outset, we should mention the application of the above derivations in a
type of propulsive device, called Hall thruster. Such a device consists of a co-axial
plasma tube with anode at the closed end and magnetic field in the radial direction.
In such a tube the ions, with cyclotron radius of the order of or larger than the axial
length of the channel, are electrically accelerated in axial direction, but the electrons
are trapped in the magnetic field, because of the very small cyclotron radius. Such
devices were proposed in sixties (Seikel and Reshotko [143]), and since 1971 the
russians have flown many thrusters based on the Hall Transfer Technology.
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11.2 Magneto- and Electromagneto-Gas-Dynamic
Approximations

The basic equations for ionized gases in electromagnetic fields are the Maxwell
equations (11.68)–(11.73), in which the displacement current density term, @D=@t ,
can be neglected, if the ratio of the displacement current density to the current
density due to the externally applied electromagnetic field E

@D
@t

1

�o j E j D �o

�o

@E
@t

1

j E j � 1. (11.75)

The condition, under which this is possible, is now discussed.
Let E D A sin (!t ) and thus,

�o

�o

�
@E
@t

�
max

�
1

j E j
�

max
D �o!

�o
. (11.76)

Assuming in the laboratory typical values of �o between 102 and 104 AV�1m�1, we
find that

�o!

�o
D 10�12! to 10�14!; (11.77)

in which the higher limit is for the smaller values of �o. Thus it is concluded that for
all practical purposes for a laboratory plasma, even at microwave frequencies, the
displacement current can be neglected.

The basic equations are now analyzed under the assumed conditions that
(1) quasi-neutrality exists, (2) translational temperatures of all species are equal,
(3) the effective heat conductivity kc;d used in the analysis consists of contribution
due to pure conduction, as well as the recombination of the diffused particles, (4) the
displacement current density is neglected, and (5) the species conservation equations
are not considered.

Now Ohm’s law, with the ion slip and electron pressure gradient neglected, is

j D �oŒE C V � B � ˇj � B�; (11.78)

where ˇ D .ene/
�1.

From Eq. (11.78),

E D j
�o

� .V � B/C ˇ.j � B/ . (11.79)

Combining this with (11.69),

E D 1

�o�o
.r � B/ � .V � B/C ˇ.j � B/ . (11.80)
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Taking a curl of this equation and substituting (11.68), we get the electromagneto-
gasdynamic equation

@B
@t

C 1

�o�o
r � .r � B/ � r � .V � B/C ˇ

�o
r � Œ.r � B/�B� D 0. (11.81)

Equation (11.81), without the final Hall effect term, is called the induction equation,
and it determines the change in the magnetic induction in space and time, as will be
discussed.

It is sometime the practice to take the approximation that �o ! 1, which also
means that ˇ !0. Under this assumption

@B
@t

D r � .V � B/ . (11.82)

Equation (11.82) is identical with the hydrodynamic equation for the velocity
(defined as the curl of the vector V) of an ideal fluid (without friction), from which
we learn that the vortices move together with the fluid. In an analogous manner
it may be deduced that the magnetic induction should change as if its lines of
force were rigidly tied to the plasma. Physically this means also that when the
plasma moves in a magnetic field, the electric field E D j=�o D V � B is zero
if �o ! 1, and consequently the conducting fluid should not cross any magnetic
lines of force; thus, the magnetic induction is frozen into the plasma. On the other
hand, for stationary plasma (V D 0) and neglecting the Hall current (due to the last
term in (11.78), probably by segmenting the wall of the channel in which the plasma
is flowing), (11.81) becomes

@B
@t

D 1

�o�o
r 2B. (11.83)

This equation has the form of a diffusion equation and shows that the magnetic
induction seeps through the plasma and is damped out in time of the order of
L2�o�o. In general, under laboratory conditions, this time is extremely small.

While the expressions given in (11.81) and (11.82) are of general nature, the
condition for the pure magneto-gas-dynamic approximation is that the externally
applied electric field E0 D 0, from which it follows that @B=@t D 0. Thus
from (11.78) and (11.82), and taking (11.71) into account, the magneto-gas-dynamic
equation becomes

1

�o�o
r � B D V � B � ˇ.r � B/�B

D V � B � ˇŒr.r � B/ � r 2B� D V � B C ˇr 2B. (11.84)

Now we write down the following basic equations:
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Conservation of mass:

@�

@t
C r � .�V/ D 0; (11.85)

Equation of motion (11.27):

�
DV
Dt

D �rp C r � � C j � B; (11.86)

Equation of energy (11.36):

�cp
DT

Dt
� Dp

Dt
� pr � V D r � .kc;drT /C � C j 2

�
� �R; (11.87)

Electromagneto-gas-dynamic equation (11.81) minus deleting the fourth term in the
right-hand side:

@B
@t

C 1

�o�o
Œr � .r � B/� � r � .V � B/ D 0. (11.88)

We would discuss the second term and the third term in the left-hand side further.
For this purpose, we use the two well-known expressions as follows:

r � .r � B/ D r.r � B/ � r 2B (11.89)

r � .V � B/ D .B � r/V � .V � r/B � B.r � V/C V.r � B/: (11.90)

In Cartesian coordinate system the above two expressions in x-direction can be
written as follows:

Œr � .r � B/�x D @

@x

�
@Bx

@x
C @By

@y
C @Bz

@z

�
�
�
@2Bx

@x2
C @2Bx

@y2
C @2Bx

@z2

�

Œr � .V � B/�x D
�
Bx
@u

@x
C By

@u

@y
C Bz

@u

@z

�
�
�

u
@Bx

@x
C v

@Bx

@y
C w

@Bx

@z

�

�Bx
�
@u

@x
C @v

@y
C @w

@z

�
C u

�
@Bx

@x
C @By

@y
C @Bz

@z

�
:

According to Equation (11.71), r � B D 0 and we can write (11.88) as

@B
@t

C .V � r/B C Br�V D 1

�o�o
r 2B C .B � r/V; (11.91)
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which can be written in Cartesian coordinates for x coordinate as

@Bx

@t
C
�
@.uBx/

@x
C @.vBx/

@y
C @.wBx/

@z

�

D 1

�o�o

�
@2Bx

@x2
C @2Bx

@y2
C @2Bx

@z2

�
C
�
Bx
@u

@x
C By

@u

@y
C Bz

@u

@z

�
. (11.92)

For the additional condition of incompressible flow, r � V D 0, (11.91) in x
coordinate direction becomes

@B
@t

C .V � r/B D 1

�o�o
r 2B C .B � r/V; (11.93)

which can be written in Cartesian coordinates in x-direction as

@Bx

@t
C
�

u
@Bx

@x
C v

@Bx

@y
C w

@Bx

@z

�

D 1

�o�o

�
@2Bx

@x2
C @2Bx

@y2
C @2Bx

@z2

�
C
�
Bx
@u

@x
C By

@u

@y
C Bz

@u

@z

�
. (11.94)

In order to understand the problem better, (11.85)–(11.87), (11.93) are now
nondimensionalized by introducing nondimensional variables (designated with
superscript * ):

x� D x=LI t� D Ut=L;V� D V=U; �� D �= O�; p� D p= Op
T � D T= OT ;�� D �= O�; k� D k= Ok; c�

v D cv= Ocv; ��
R D �R=O�R

�� D �o= O�o; ˇ� D ˇ= Ǒ; �� D �= O�; Op=. O� Ocv OT / D . O� � 1/
j� D �oLj=Bo; �� D �=. O�U 2/; �� D �L=. OpU /;B� D B=Bo;

where L, U, and Bo are the characteristic length, the magnitude of the characteristic
velocity, and the magnitude of the characteristic magnetic induction, respectively.
Further, the variables denoted by ()̂ are reference values at a known geometrical
point, and � D specific heat ratio, �o D magnetic permeability, and � D viscosity
coefficient. From the nondimensionalized equations the following nondimensional
numbers are obtained.

– Reynolds number: Re D O�UL= O�,

– Mach number: M D U=
p O�. O� � 1/ OcvT ,

– Hall parameter: K D O!= O� D O�o ǑBo,
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– Magnetic Reynolds number: R� D �o O�oUL,

– Prandtl number: Pr D ( O� O� Ocv/= Ok,

– Radiation parameter: Rd D O�RL=. O� Ocp OTU /,

– Magnetic pressure parameter (magnetic force to dynamic pressure ratio):
RH D B2

o=.�o O�U 2/,

– Hartmann number: Rh D p
Re.R� .RH D BoL

p O�o= O�,

– Joule heating parameter: �1 D B2
o=.�

2
oL O�o OpU /,

– Electric field parameter: �2 D E=.UB/.

Accordingly, (11.85)–(11.88) in nondimensional form (“asterisks” are dropped for
clarity) become

Conservation of mass:

@�

@t
C r � .�V/ D 0; (11.95)

Equation of motion:

�
DV
Dt

D � 1

�M2
rp C 1

Re
r � �C RH j � B; (11.96)

Equation of energy:

O�
O� � 1��cv

DT

Dt
� Dp

Dt
� pr � V

D O�
O� � 1

1

Re.Pr
r � .kc;drT /C � C �1

j 2

�
� Rd

O� � 1�R; (11.97)

Electromagnetic equation:

@B
@t

C 1

R�
r � .r � B/ � r � .V � B/ D 0: (11.98)

The above equations need to be solved under proper boundary conditions. Some of
such applications of the basic equations have been discussed in the next chapter.
However at this stage it is necessary to point out some of the special provisions one
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has to make while solving the equations numerically. For example during solution
of (11.91) by the time-dependent method, the requirement of (11.71) that r � B D 0

may be violated. Let us assume that a correction B0 has to be applied to B to make
r �BCr �B0 D 0. Now let us put B0 D �r'M , where 'M is the magnetic potential.
Therefore, we get the Poisson equation r 2'M D r � B, solution of which under
appropriate boundary condition gives the correction B0. Now the second example
is solving Ohm’s law (11.78), in which E is the externally imposed electric field.
By putting E D �r', the gradient of the externally applied potential, and taking
divergence of both sides obviously, r 2' D 0, which is to be solved under proper
boundary condition to get '. However we must add E0 to (11.78), which should be
called an induced electric field, and write

j D �oŒE C E0 C V � B � ˇj � B�. (11.99)

Taking divergence of both sides, and noting that for quasi-neutral plasma r � j D 0,
we get

0 D
�
.E C E0 C V � B � 1

ene
j � B/r

�
��o C �or � .E0 C V � B � ˇj � B/ .

(11.100)

The first term in the right-hand side will drop off in case of uniform electrical
conductivity. Further by noting E0 D �r'0, we can get a Poisson equation of '0,
which can be solved.

The boundary condition for a conducting wall is that the potential either is
prescribed as constant for the particular wall or is equal to zero, if the walls are
short-circuited. On the other hand, for a nonconducting wall, the electrical current
density or gradient of electric potential normal to the wall is zero.

11.3 Wave Propagation

So far in this chapter we have discussed the plasma flow where the flowing medium
is conducting. From (7.18) to (7.23) we can write for quasi-neutral condition (nc D
0:) the following four equations:

�
@H

@t
D �r � E (11.101)

�
@E

@t
D r � H � �.V � B/ (11.102)

r � E D 0 (11.103)

r � H D 0 (11.104)
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For additional condition of zero electric conductivity (� D 0) , (11.102) is
written as

�
@E

@t
D .r � H/: (11.105)

It may be noted at the outset that (11.101) and either (11.102) or (11.105) are
two equations with time-dependent term will be enough to obtain the solution
and (11.103) and (11.104) represent only additional constraints, which need be
satisfied in an iterative manner.

In Cartesian coordinates these can be written as

�
@

@t

8<
:
Hx

Hy

Hz

9=
; D

8̂
<̂
ˆ̂:

@Ey
@z � @Ez

@y
@Ez
@x

� @Ex
@z

@Ex
@y

� @Ey
@x

9>>=
>>;

(11.106)

�
@

@t

8<
:
Ex
Ey
Ez

9=
; D �

8̂
<̂
ˆ̂:

@Hy
@z � @Hz

@y
@Hz
@x

� @Hx
@z

@Hx
@y

� @Hy
@x

9>>=
>>;

(11.107)

@Hx

@x
C @Hy

@y
C @Hz

@z
D 0 (11.108)

@Ex

@x
C @Ey

@y
C @Ez

@z
D 0: (11.109)

Now taking the curl of (11.101) and taking (11.103) into account,

�
@

@t
.r � H/ D �r � .r � E/ D r 2E � r.r � E/ D r 2E . (11.110)

Considering (11.105) we get further

��
@2E
@t2

D r 2E . (11.111)

Let us now put c2o D .��/�1, which had the unit of m2s�2, and call co as the speed
of propagation of a wave in a dielectric medium. Therefore the above equation is
written as

1

c2o

@2E
@t2

D r 2E. (11.112)

Equation (11.112) is known as the wave equation for propagation of the electric
field wave.
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In a very similar manner we derive the wave equation of the magnetic field
and write

1

c2o

@2H
@t2

D r 2H. (11.113)

Equations (11.112) and (11.113) can be written in Cartesian coordinates as

1

c2o

@2E
@t2

D @2E
@x2

C @2E
@y2

C @2E
@z2

and (11.114)

1

c2o

@2H
@t2

D @2H
@x2

C @2H
@y2

C @2H
@z2

. (11.115)

Let us now consider, for simplicity, a plane wave propagating in x-direction in a
dielectric medium. Such waves are obtained if all the quantities, at any time, are
constant over (y, z), including y and z coordinates extending to infinity. Under these
conditions @=@y D @=@z D 0 and (11.106)–(11.109) reduce to

�
@

@t

8<
:
Hx

Hy

Hz

9=
; D

8̂
<
:̂

0
@Ez
@x

� @Ey
@x

9>=
>; (11.116)

�
@

@t

8<
:
Ex
Ey
Ez

9=
; D

8̂
<
:̂

0

� @Hz
@x

@Hy
@x

9>=
>; (11.117)

@Ex

@x
D 0 (11.118)

@Hx

@x
D 0: (11.119)

Now we first write the wave equation for only E (11.112) and write

1

c2o

@2Ey

@t2
� @2Ey

@x2
D 0 (11.120)

1

c2o

@2Ez

@t2
� @2Ez

@x2
D 0: (11.121)

The two equations represent propagation of Ey and Ez waves in the x-direction. For
simplicity we assume further that the electromagnetic waves are so polarized that
E is contained only within {x, y} plane, that is, Ez D 0; thus (11.121) need not be
considered. The general solution of (11.120) is

Ey D fE.x � cot/C gE.x C cot/; (11.122)
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where f provides wave propagation in the Cx-direction and g provides in
�x-direction. For the present we consider propagation only in the Cx-direction
and write

Ey D fE.x � cot/ 	 AE expi!.t�x=co/ . (11.123)

Accompanying the Ey wave is a companion wave component of the magnetic field
for which we write from (11.113) for plane polarized wave as

1

c2o

@2Hz

@t2
� @2Hz

@x2
D 0; (11.124)

and the magnetic wave propagating in Cx-direction is given by

Hz D fH.x � cot/ 	 AM expi!.t�x=co/ . (11.125)

Both these waves propagate in the Cx-direction in dielectric medium with undimin-
ished amplitude.

In this connection we introduce a simple refractive index, n, defined as the ratio of
the wave speed in vacuum or dielectric medium, co, to the wave speed c D 1=

p
��

in an arbitrary medium including a non-dielectric medium (� ¤ 0). For such a
medium the equivalent wave equations of (11.112) and (11.113) are

1

c2o

@2E
@t2

D r 2E � ��@E
@t

(11.126)

1

c2o

@2H
@t2

D r 2H � ��@H
@t
: (11.127)

It can be shown again for the polarized plane wave of Ey (and similarly for the
companion wave of Hz) that the governing equation is

1

c2o

@2Ey

@t2
� @2Ey

@x2
D 0; (11.128)

and (11.126) is satisfied if we consider the trial function

Ey 	 AE expi!.t�x=co/ exp�!kx=co ; (11.129)

where k is called the extinction coefficient of the medium; the additional factor is an
attenuation term indicating the absorption of the wave energy as it propagates inside
the medium. For a dielectric medium obviously, k D 0 and n D 1.

A comparison of (11.129) with (11.123) shows that a simple refractive index is
replaced by complex refractive index Nn D n�ik. Substituting (11.129) into (11.128)
and separating into the real and the imaginary parts we get the real and imaginary
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components of the complex refractive index ([146]), for which the solution of the
wave equation leads to

n2 D ��c2o
2

"
1C



1C

�

o�

2�co�

�
 1=2#
(11.130)

k2 D ��c2o
2

"
�1C



1C

�

o�

2�co�

�
 1=2#
(11.131)

nk D ��

4�

oco (11.132)

n2 � k2 D ��c2o; (11.133)

where 
o is a mean wavelength.
For a dielectric medium, n D 1, but for a non-dielectric medium the refractive

index is complex. Typical values for various substances are as follows: fly ash Nn D
1:43� i0:307 to 1:5� i0:005, soot of diameter 1850 Å at wavelength 5145 Å, NnD
1.79 � i0.79, etc.

Now the energy carried per unit time and unit area (energy flux) by an
electromagnetic wave is given by the Poynting vector S D E � H [Wm�2]. For a
plane polarized wave the magnitude is j S jDj EyHz j. Now the interaction between
the electric and magnetic waves in a plane polarized wave is given by

�
@Hz

@t
D �@Ey

@x
; (11.134)

and for Ey we put the trial function (11.129). Thus we get

Hz D Nn
�co

Ey; (11.135)

and the magnitude of the Poynting vector is

j S jD Nn
�co

E2
y 	 Nn

�co
j E j2 , W; (11.136)

which decays in the direction of propagation with the factor exp�2!�x=co . This
may now be compared with the decay of thermal radiation factor in an emitting-
absorbing medium discussed in Chap. 4 as exp�a�x , where a� is the absorption
coefficient of intensity of thermal radiation at frequency � (or equivalent wave
length 
) and we get

a� D 2!�

co
D 4���

co
, m�1 . (11.137)
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As a summary for this section, it is, therefore, concluded that in an ionized
gas (plasma) it is not possible to have a sustained electromagnetic wave passing
through it. The cases discussed in the next chapter will, therefore, show all without
electromagnetic waves, although the wave like Alfven wave is possible.

11.4 Small Perturbation of a Magnetogasdynamic Flow

In 1971, Murman and Cole [121] derived linearized 2D Navier–Stokes equations
for transonic flow by introducing the concept of small perturbation of flow, where
the body is mainly aligned to the approaching flow direction and small perturbations
occur in velocity components and pressure due to the body.

ˇ2
@2'

@x2
C @2'

@y2
D 0Iˇ2 D 1 �M21; (11.138)

where ' is the velocity potential. In above equation ˇ2 > 0, that is, M21 � 1, the
equation is an elliptic type for which the boundary condition has to be provided
all around the body, whereas for ˇ20, it is a hyperbolic type where the boundary
conditions have to be given as initial value and they remain constant downstream all
along the characteristic line. For ˇ2 D 0, it is a parabolic equation and the values
propagate only in the lateral direction.

For magnetogasdynamic case, similar considerations lead to small perturbations
of a magneto-gas-dynamic flow. Further assumptions are: quasi-neutrality exists and
the displacement current is neglected. Further, the usual gas-dynamic perturbation
assumptions are: the shear stress, heat conduction, dissipation function, and the
radiation terms are neglected, in addition to the products of the perturbed quantities.
It has been found that very interesting changes in the flow character occur when
the magnetic fields are not only uniform at infinity, but are also parallel (or anti-
parallel), that is, U � Ho D 0. Thus the total velocity vector V consists of the
unperturbed velocity vector U D U; 0; 0 and the perturbed velocity vector V0 D
V 0
x; V

0
y; V

0
z ; similarly the total magnetic field H consists of unperturbed magnetic

field Ho D Ho; 0; 0 and the perturbed magnetic field H0 D H 0
x;H

0
y;H

0
z . Now in a

two-dimensional steady state case, there will be perturbation of the current density
component in z-direction, which would interact with the unperturbed velocity field.

For the special case of aligned field, U � Ho D 0, McCune and Resler [100]
derived the small perturbation potential function equation as

m2 @
2'

@x2
C @2'

@y2
D 0 (11.139)

m2 D ˇ2.1 � ˛2/
.1 � ˇ2˛2/ (11.140)

˛2 D Ho

U

r
�o

�
: (11.141)
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Table 11.1 Different flow regimes in magnetogasdynamics

Flow regime ˇ2 ˛2 m2 Eq. type

Incompr. 1 - 1 Elliptic I
(M1 ! 0)

Subsonic 0 < ˇ2 < 1 0 < ˛2 < 1 > 1 Elliptic II
(0 < M1 < 1) 1 < ˛2 < ˇ�2 < 0 Hyperbolic I

ˇ�2 < ˛2 < 1 > 0 Elliptic III

Supersonic ˇ2 < 0 0 < ˛2 < 1 > 0 Elliptic IV
(M1 > 1) - ˛ > 1 < 0 Hyperbolic II

Herein ˛2 is proportional to the externally applied magnetic field. Thus for no
magnetic field, ˛ D 0, and consequently m2 D ˇ2 is the case of the small
perturbation theory for the classical two-dimensional gas dynamics. For this case
it is well known that in the subsonic flow, ˇ2 > 0, and the flow is described by
elliptic partial differential equation, which, for arbitrary subsonic Mach numbers,
allows Prandtl–Glauert transformation (it is the similarity transformation between
the lateral lengths with the flow Mach number) to result in incompressible flows.
In the supersonic flow, ˇ2 < 0, and the flow is described by the hyperbolic partial
differential equation, in which the solution depends on the characteristic lines on
tan�1p.�ˇ2 � 1/. In principle, a very similar situation exists for the magneto-gas-
dynamic flows (˛ > 0) in aligned fields. It now depends very much on the sign of
m2, so long m2 > 0, when the partial differential equation is of an elliptic type and
is amenable to Prandtl–Glauert transformation, whereas if m2 < 0, then the flow
variables depend on tan�1p..�m2/ � 1//. These facts in different flow regimes and
the types of the equation are shown in Table 11.1.

In Table 11.1 the Hyperbolic II region is analogous to the usual supersonic gas-
dynamic flow having Mach lines inclined rearward to the flow direction; they are
steeper (larger Mach angle) in comparison to those if there is no magnetic field.
However, by keeping ˛2 constant, an increase in Mach number results in a lesser
steepening of the Mach lines. On the other hand, in the subsonic Hypersonic I region
and constant ˛2, an increase in the Mach number causes steepening of the Mach
lines. The implications of this was investigated by [100], and they conclude that the
correct Mach lines must be forward facing.

It is well known from gas dynamics that large disturbances with converging
characteristics coalesce into shocks. Whereas in gas dynamics for normal shocks,
the motion of the gas by definition is normal to the shock front, it is not necessarily
so in magnetogasdynamics [125]. In magnetogasdynamic flows, the direction of
propagation of the shock is perpendicular or parallel to the magnetic induction lines.
For such cases the solutions of the shock equation are obtained under the assumption
of all motions parallel to the shock, which are called longitudinal shocks. In addition
there can be transverse shocks, in which the motion of the gas is along the surface
of the discontinuity and the magnetic induction lines in general have different
directions before and after the shock has passed.
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11.5 Shocks in Magnetogasdynamics

For a normal longitudinal shock, if the gas velocity is u, the density is �, the
pressure is p, the magnetic induction is B and the enthalpy is h, and indices 1
and 2 denote the conditions before and after the shock, the conservation equations
of mass, momentum, and energy in magneto-gas-dynamic approximation are

�1u1 D �2u2 D Pm (11.142)

�1u
2
1 C p1 C B2

1

2�
D �2u

2
2 C p2 C B2

2

2�
(11.143)

h1 C u21
2

C B2
1

�1�
D h2 C u22

2
C B2

2

�2�
; (11.144)

where � is the magnetic permittivity of the gas. Introducing the two auxiliary
variables

p� D p C B2

2�
and h� D hC B2

��
; (11.145)

by replacing p and h by the above p� and h�, the conservation equations reduce to
those for an ordinary gas-dynamic shock, for which the solution is obtained from the
following three equations called Fanno equation, Rayleigh equation, and Rankine–
Hugoniot equation:

h D ho � Pm2

2�2
(11.146)

p � p1 D Pm2

�
1

�1
� 1

�

�
(11.147)

h1 � h D 1

2
.p � p1/

�
1

�1
C 1

�

�
; (11.148)

where, at least for the third equation, it does not contain the velocity, implicitly or
explicitly, and as such can be used to study both the normal and oblique shocks.
Thus a plot of this equation gives the locus of all points, which can be reached
from the state (p1; T1) and which is called the Rankine–Hugoniot curve (Fig. 11.1).
The state behind the shock is obtained from this curve and the Fanno equation.

It can, however, be seen from the conservation equations of mass, momentum,
and energy in magneto-gas-dynamic approximation that there is nothing about the
state of ionization of the gas or whether it is at thermodynamic equilibrium or not.

In recent experiments by Russian scientists by G.I. Mishin ([104]) and others, it
has shown very typical shock structures in front of a sphere released on supersonic
speeds depending on whether the sphere is in non-ionized gas region or in the
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Fig. 11.1 Enthalpy-entropy chart with Rankine–Hugoniot lines

Fig. 11.2 Magneto-gas-dynamic shock

weakly ionized region, Fig. 11.2. More detailed citation references are available by
Bose [21,23,25]. It is understood that after the breakup of the Soviet Union, most of
these scientists have landed in the USA, for example, in Johns Hopkins University.

As it can be seen from the figure, a sphere enters the channel at M1 D 4 to
6, in which the pressure before the shock is p1 D 0.05 bar and heavy particle
temperature Th D 1,400 K. At such a temperature the gas before or after the
shock is not ionized and a usual shock-standoff distance can be found. However,
when this sphere enters a region of a weakly ionized plasma, which is ionized
by either microwave or electron beam or r.f./glow discharge, where electron mole
fraction xe D 10�6 and electron temperature Te D 12; 000K, there is a large
increase of shock-standoff distance, since shock is split into several shocks, as if
the approaching Mach number is nearly one, with corresponding reduction of the
drag coefficient by half.
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For the effects in weakly ionized plasmas [63], in the vicinity of shock, the ions
slow down and their number density increases. Matching of electron and ion number
density requires that the electrons be trapped in the downstream side. It is, however,
not evident how the above description for a one-dimensional case may get translated
into the two- or three-dimensional case, for example, for a hypersonic flow over
a blunted inverted cone, which is the case studied by [25]. It is conjectured that
because of different sonic speeds for the electrons and the heavies, the approaching
electron flow is subsonic although the approaching flow of the heavies is supersonic.
Therefore, at the shock, the ions and neutrals have step increase in pressure, density,
and temperature, whereas a step decrease in the flow velocity. On the other hand,
the electron number density and flow velocity of electrons may not have significant
change across the shock. It is conjectured therefore that this can lead to significant
charge separation and strong electric fields.

An earlier work by [21] considered the model of charge separation behind the
shock with the resultant electric field, which was calculated by two other models:
(a) a diffusive model and (b) an equilibrium model [39, 135]. However, because
of strong attraction between the electrons and the ions without any restriction,
the solutions were unstable and not satisfactory. These were basically due to the
following three reasons: (a) The charge density continued to remain large (an idea
contrary to the usual held belief that there cannot be sufficiently large charge density
outside the distance of the order of the Debye shielding distance), (b) the resulting
electric field and potential levels were much larger than the usually held belief,
and (c) the particles were subjected to very strong pulls and pushes in momentum
equations creating difficulties to obtain stable solution. Here the present study is an
improvement over the previous study [21] by using a 3D Poisson solver which gave
better results, in conjunction with the required source function in solving the Poisson
equation taken directly from the charge density computed from the separate flow
equations for neutrals, electrons, and ions. Further, the electric field is computed
from the electric potential distribution which affects the flow, which, in turn, affects
the charge density and electric potential distributions. The temperature distribution
of the heavies and electrons is obtained by solving the energy equations for heavies
and electrons, respectively.

CFD field calculations are done with Lax-Friedrichs method. Since global
velocity is used in all the equations, it was found that no separate CFL numbers and
time steps for the solution of the energy equations for the heavies and electrons are
required. For the geometry a blunted reverse cone in hypersonic flow is considered
(Fig. 11.3), which, for an ideal gas, was studied by Bohachevsky and Mates[12]
using the same numerical method about forty years back. However, the continued
use of the same geometrical model has the advantage since it is a simple model to
solve a blunt-body problem with shock.

Electric Field Model

We discuss very briefly the two electric field models used by this author [21], for
which only the final equations are given
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Fig. 11.3 Model of a blunted reverse cone in hypersonic flow

(a) Diffusive Model

Writing down separate electric current density equation for ions and electrons
consisting of convective current density and electric field driven drift velocity terms,
and equating the electrons and ions current densities (ambipolar diffusion type
approaxh), the required electric field is given by

E D V �.ni � ne/ � .niVi � neV � e/
ni jbi j C nejbej

D ncV
� � e.niVi � neV � e/
e .ni jbi j C nejbej/ ; (11.149)

where nc D e.ni � ne/ is the charge number density and the molar average
velocity is

V � D naVa C neVe C niVi

ne C ni C na
� Va: (11.150)

(b) Equilibrium Model

This uses a simplified equilibrium form of the electron momentum equation by
neglecting all terms other than the pressure gradient and electric field terms to get
the relation for electric field proportional to the negative of the electron pressure
gradient ([39, 135])
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E D �r' D � 1

ne
rpe D �kBTe

e
r.lnne/: (11.151)

In both the above electric field models, the electric field is computed first from the
charge density and the velocity difference of the charged particles, which may be
used to restore the quasi-neutrality, and the electric potential may be evaluated later.
However, in the present paper, the Poisson equation

d2'

dx2
D � e

�o
.ni � ne/ D �nc

�o
; (11.152)

is computed first from the charge density, which in turn is used to compute the
electric field and further for determination of the forces to act on charged particles
to restore quasi-neutrality.

We consider a singly charged weakly ionized quasi-neutral plasma at a given
pressure p, electron mole fraction xe , and two temperatures for electrons and
heavies, Te and Th, which are prescribed at the incoming boundary. Obviously the
mole fraction of the atom is

xa D 1 � .xe C xi /: (11.153)

Further, the equation of state (� D Te=Th) can be written as

p D nkBŒxeTe C .1 � xe/Th�

D nkBTe

�
Œ1C .� � 1/xe� ; (11.154)

and for a given pressure, two temperatures, and electron mole fraction, it is easy to
compute the total number density. Further, by knowing the mole fraction of either
ions or atoms and assuming quasi-neutrality (xe D xi ), it is possible to compute the
number densities of all the three, which is any way the method to determine these
at the incoming boundary. Elsewhere in the flow field, these mole fractions would
change.

For each of the j th specie (j D a; iore) and without any reaction, the continuity
equation can now be written as

@�j

@t
C r � .�jVj / D 0: (11.155)

The right-hand side of the equation is zero, since we consider frozen chemistry in
the plasma. Further the general expression for the momentum equation (for inviscid
case) for the j th species is written as

@

@t
.�j V

r
j /C r � .�j V r

j V/ D �rpj C F r
j ; (11.156)
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where the volumetric force term in the r th direction is given by the relation

F r
j D c1nj ejE

r C c2
X
j¤k

2MjMk

.Mj CMk/
.V r
k � V r

j /�
0
jk; (11.157)

where c1 and c2 with values between 0 and 1 are two coefficients used for controlling
the effect of these terms, Mj is the mass of a particle of the j th specie, and � 0

jk is

the volumetric collision frequency [m�3s�1]. The first term in the right-hand side
of 11.157 is the volumetric force term due to electric field on the charged particles
and the second is the velocity equilibration term due to collision.

The electric field term is supposed to act continuously on charged particles
causing it to accelerate in line with the electric field. However, it is well known
that in a collision-dominated plasma the acceleration cannot go on continuously but
only till the maximum directional particle velocity in the field, the so-called field
velocity, Vf D bjE is reached (bj is the so-called mobility coefficient). Since
the induced electric field (in absence of an externally applied electric field) and the
number density are directly proportional to the pressure and the volumetric collision
frequency is proportional to the square of the pressure, the mobility coefficient is
inversely proportional to the pressure. Therefore, both the terms for volumetric force
as given in 11.157 are directly proportional to the square of the pressure. Obviously
very large value of source terms in partial differential equations makes them very
stiff and unless special provisions are made for handling the equations, the solution
may blow up at high level of pressure field. This is done by writing the source terms
in implicit manner.

Further the specific stagnation enthalpy and the stagnation internal energy (per
unit mass) of individual species are given by the relations

hj D R�

mj

�
5Tj

2
C Ij

kB

�
(11.158)

hj D R�
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�
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2
C Ij

kB

�
; (11.159)

where R� D 8314 J/(kmole.K) is the universal gas constant, Ij is the ionization
potential, andmj is the mole mass of the j th species. It is obvious that Ia D Ie D 0.
For unionized argon, there are enthalpy and internal energy of only a single species,
and they can be written in terms of the specific heat ratio as follows:

h D 5

2

R�

m
T; h D 3

2

R�

m
T

�e D 3

2
p D p

� � 1 ; �h D �p

� � 1 :
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The energy equation for the unionized gas can now be written as

@

@t
.�e C r � .�hV/ D 1

� � 1
@p

@t
C 1

� � 1r � .pV/ D �.Vr/�p: (11.160)

Since it is convenient to write the energy equation for a weakly ionized plasma in
terms of the specific internal energy, but in the case of an unionized gas in terms
of either internal energy or the specific heat ratio, agreement in solving the energy
equation by the alternate routes is to be examined.

The heavy particle and electron energy equations are

@

@t
.�aea C �iei /C r � .�ahaVa C �ihiVi /
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kB.Te � Th/�ek0 � .Ver/�pe;
(11.161)

where c3 is again user-defined source control coefficient for the two energy
equations, b’s are the mobility coefficients, and E is the externally applied electric
field. Since we are not considering any externally applied electric field, the first term
in the right-hand side of the two equations has been put equal to zero. Further, we
studied the case of c3 D 1 (electron-ion energy exchange term considered) and it
was found that the electron temperature drops drastically right after the approaching
flow boundary. Therefore, further study with c3 D 0 is done in this paper.

For unionized argon (xe D xi D 0), and there is a single temperature, T . For
nonconducting wall, the normal component of the velocity of both electrons and
heavies is zero, whereas for conducting wall, only the normal velocity component of
heavies is zero. Regarding the electric potential boundary on wall, it is put constant
and equal to the value on the axis if the wall is electrically conducting, while the
normal gradient is extrapolated for the nonconducting wall; the electric potential at
the approaching flow boundary is put equal to zero. While the boundary conditions
on the approaching flow boundary are prescribed, the boundary conditions on exit
boundaries are obtained by extrapolation. Wall boundary condition for the heavies
is always no-slip condition for the temperature and the normal velocity components
are zero. For our computation a typical weakly ionized argon plasma (p1 D 0:01

bar, V1 D 4; 200ms�1, Te1 D 15; 000K, Th1 D 1; 400K, and xe1 D 10�6) is
considered.

The numerical method used here is the Lax-Friedrich single-step time-dependent
method, which is described in many books on CFD and was used by Bohachevsky
and Mates [12]. Figure 11.4 shows the mass-density distribution of a neutral gas in
front of the wall. The method, while less accurate than two-step or multiple-step
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Fig. 11.4 Mass-density distribution in front of wall for unionized argon

methods, is stable at different grid intervals. Grid independence is checked for
neutral argon as an ideal gas for three different grids: (73 � 11), (145 � 19), and
(289 � 39), and checked against numerical results of mass-density distribution on
axis [12]. An important result, originally shown by [12], showed that the maximum
density on axis is obtained slightly away from the wall in the stagnation region
behind the shock due to very strong flow acceleration in the lateral direction. If we
consider the distance from the wall stagnation point to the point of maximum density
value on the axis as the shock-standoff distance, this can be compared easily with
the experimental data summarized by Liepmann and Roshko [94] for a sphere in
hypersonic flow of Mach 6. These comparisons show that the grid size (145 � 19)
is adequate for the present calculations. Separate time scales are used for electrons
and heavy particles. Typically, the electron time scale is about one-sixtieth of that
of the heavies and changes considerably from the approaching to exit boundary.
The mole fraction of all particles are allowed to change, but the chemical reactions,
in absence of good reaction kinetic data for multi-temperature plasma available,
have not been considered in species continuity equations (frozen composition!)
(Fig. 11.5).

The first question we investigated was regarding the thermal equilibration of
heavies and electrons, which depend somewhat on whether the wall is electrically
conducting or dielectric. As an example, the electron and heavy particle distributions
are plotted in Figs. 11.6 and 11.7 for conducting wall. The results show that, without
any externally applied electric field, the electron temperature falls drastically due to
collision, whereas the heavies temperature changes very marginally. Since in many
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Fig. 11.5 Comparison of mass-density distribution on axis for unionized argon for different grids

experiments with high-frequency discharge, external energy may not be introduced,
hence this fast fall of electron temperature due to collision may take place and the
collisional energy exchange term in both energy equations for electrons and heavies
are not considered.

The charge density distribution for both conducting and nonconducting walls is
given in Figs. 11.8 and 11.9. The maximum absolute value of the charge density
near the wall and within a certain distance from the approaching flow boundary for
the conducting wall is about 0.001 [Asm�3], but the negative nature of the charge
density can be seen for the nonconducting wall.

This small charge density distribution, however, is sufficient to have considerable
potential distribution, as shown in Figs. 11.10 and 11.11 for conducting and
dielectric walls, respectively. The results show sufficiently large value of electric
potential, which is probably linked to the large field geometry. However it is
interesting to note that for the nonconducting wall, the electric potential is generally
negative, but for the conducting wall it is positive with a maximum in half way
between the wall and the approaching flow boundary.

As a result of the potential distribution corresponding to the electric field distri-
bution (this is different for non-ionized gas), there can be considerable shifting of
the particles and modification of the mass-density distributions for the atom for the
conducting wall and the nonconducting wall, respectively, as shown in Figs. 11.12
and 11.13. In order to understand the distributions properly, the respective mass-
density distributions on axis only are shown in Figs. 11.14 and 11.15. For both the
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Fig. 11.6 Electron temperature distribution for a conducting wall

cases the mass density in half way between the approaching flow mass density of
0.00343 kgm�3 and also quite a weak mass-density shock (elevated mass density)
is seen in both the cases. However for the nonconducting wall the mass-density
shock near the wall is hardly recognizable and the absolute value of the mass
density at the wall is lower, probably because of the large acceleration of the flow
near the wall. The shock distribution near the wall, however, for a unionized gas,
is quite different, as can be seen from Fig. 11.5. Finally in Figs. 11.16 and 11.17,
we show on the axis the radial velocity distribution of atoms for the conducting
and dielectric wall, respectively, going from �4,200 ms�1 on the approaching flow
boundary to zero on the wall. As expected both are non-distinguishable from each
other unless properly labeled. As a result of numerical experimentation we can make
the following conclusions:

1. With separate equations for electrons, ions, and neutrals, we can compute for
weakly ionized flow without quasi-neutrality and obtain the characteristic results,
like smaller drag coefficient and splitting of the shock in a larger domain, in
comparison to the shock in a unionized gas.

2. One has to consider separate time steps for heavies and electrons; as such, the
electrons behave as if there is a subsonic flow, although the heavies flow speed is
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Fig. 11.7 Heavies temperature distribution for a conducting wall

supersonic. As a result charge separation takes place (although the charge density
is small and there is only a small difference from the quasi-neutrality) creating
local electric field in the entire flow domain with weakly ionized plasma to affect
the velocity field of all particles, which subsequently is reduced to almost quasi-
neutral plasma.

3. The shock shape in a weakly ionized plasma is quite different from that in a
unionized gas.

4. There is a sharp change right behind the approaching flow boundary.

11.6 Stability of 2D Ionized Gas Flow

Bose ([24]) studied numerically the hydrodynamic stability on a two-dimensional
Hartmann type magnetohydrodynamic fluid with constant electrical conductivity
between two parallel plates. The externally applied magnetic induction is in the
direction normal to the two plates, and the induced magnetic induction is generated
in the flow direction. However, time-dependent perturbation is only for the velocity
and the time-dependent. The question of hydrodynamic stability and the associate
determination of the critical Reynolds number of a magnetohydrodynamic flow
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Fig. 11.8 Charge density distribution for a conducting wall

between two parallel plates (Hartmann flow) are, therefore, of interest, and the
purpose of the present paper is to investigate the hydrodynamic stability of such
a flow. A 2D analysis is done, since it is known from the analysis of hydrodynamic
stability of the basic flow without magnetic induction that a 2D analysis gives good
agreement with the practical critical Reynolds number. Therefore basically a 2D
Hartmann type flow (Fig. 11.18) is considered which gives the velocity distribution
due to external magnetic induction in the direction perpendicular to the plates [125].
Such a flow is the MHD equivalent of a constant property viscous flow between two
parallel plates, called Poiseuille flow, the latter is given in all standard books of
viscous flows, for example, Schlichting [142]. The flow is in the x-direction and in
the MHD case the magnetic induction Bo is in the y-direction. The velocity profile
perturbation of the induced magnetic induction has not been considered. The flow
perturbation equation is of fourth-order differential equation of Orr–Sommerfeld
type, in which the steady-state Hartmann velocity profile is considered for the
solution. The method of solution is numerical integration through purification of the
solution at each integration step by Gram–Schmidt ortho-normalization technique.
The results show considerable increase in the critical Reynolds number as Hartmann
number is changed from zero to one.

The velocity profile of the laminar magnetohydrodynamic flow of Hartmann
type for constant density, fully developed velocity profile and constant electric
conductivity has been given in closed analytical form by several authors and Pai
[125] is one of them; no attempt is made in this paper to re-derive the equations
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Fig. 11.9 Charge density distribution for a dielectric wall

in detail and they are given briefly only to facilitate discussions. This is now used
in the solution of the well-known Orr–Sommerfeld equation, which is the standard
equation to study the stability of flow between two parallel plates, and has been
discussed again by several authors, for example, in the book by Schlichting [142].

For many years the solution of the Orr–Sommerfeld equation was restricted
to a handful of data points, obtained analytically, and only in 1952 Thomas
[153] obtained the numerical solution by making special provisions to control the
round-off errors, especially that occur at high Reynolds numbers. Using quasi-
linearization and vector normalization, as discussed by Bellman and Kalaba [8]
for real eigenfunctions, it was possible to control the round-off errors even for
complex eigenfunctions, and Bhat [10] and Saxena [141] were able to solve the
Orr–Sommerfeld equation for many data points. Detail of the numerical method
in solving the complex eigenvalue problem is given also by Bose [19]. Zero
magnetic field results were compared with the numerical results of Thomas to
verify the present method and complete agreement with his data has been found.
Subsequently the method is extended to the stability analysis of the Hartmann
flow. A combination of the Hartmann equation and Orr–Sommerfeld equation and
solving these numerically are the main concerns in this paper, and the results show
numerically a dramatic increase in the critical Reynolds number as the Hartmann
number is increased, which is the highlight and important contribution of this paper.

While the flow, in x-direction between two parallel plates at distance 2L apart,
is being considered, the externally applied uniform magnetic induction, Bo, is in
the y-direction (Fig. 11.18). The main flow is in x-direction and there is an induced
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Fig. 11.10 Electric potential distribution for a conducting wall

electric field and associated electric current in z-direction, as a result of which there
is an electromagnetic volumetric force acting in the direction opposing the flow
and there is an induced magnetic gradient @Bx=@y. Thus the basic equations are as
follows:

Continuity:

r � V D 0 ! @u

@x
C @v

@y
D 0; (11.162)

Magnetic induction continuity:

r � B D 0 ! @Bx

@x
C @By

@y
D 0; (11.163)

Magnetic induction:

@B
@t

C 1

��o
r 2B � .B � r/V � .V � r/B D 0; (11.164)
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Fig. 11.11 Electric potential distribution for a dielectric wall

(in x-direction):

@Bx

@t
� 1

��o

�
@2Bx

@x2
C @2Bx

@y2

�
�
�
Bx
@u

@x
C By

@u

@y

�
C
�

u
@Bx

@x
C v

@Bx

@y

�
D 0;

(11.165)

(in y-direction):

@By

@t
� 1

��o

�
@2By

@x2
C @2By

@y2

�
�
�
Bx
@v

@x
C By

@v

@y

�
C
�

u
@By

@x
C v

@By

@y

�
D 0;

(11.166)

Momentum:

�

�
@V
@t

C r � .VV /
�

D �rp C �r2V C 1

�o
.r � B/�B;

(11.167)
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Fig. 11.12 Mass-density distribution of atoms for the conducting wall

(in x-direction):

�

�
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@t
C u
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@x
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�
D �@p
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@x2
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�
C 1
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�
By

�
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��
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(11.168)

(in y-direction):

�

�
@v

@t
C u

@v

@x
C v

@v

@y

�
D �@p

@y
C �

�
@2v

@x2
C @2v

@y2

�
� 1

�o

�
Bx

�
@Bx

@y
� @By

@x

��
:

(11.169)

In preceding equations all dependent flow variables consist of the time-independent
average and time-dependent variables. Thus,

u D Nu.y/C u0; v D v0; p D Np C p0: (11.170)

Due to interaction between the flow and the external magnetic induction, a
magnetic induction, b, mainly with a component in x-direction, is induced. In addi-
tion, because of interaction between time-dependent perturbed velocity fields, a
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Fig. 11.13 Mass-density distribution of atoms for a dielectric wall

(time-dependent) magnetic induction b0 is obtained. Thus let, B D Bo C b C b0. For
the 2D case, all variable dependencies in z-direction are dropped. Also we consider a
fully developed flow, so that all variable dependencies of the time-averaged variables
in x-direction are dropped (@=@x D 0). Therefore, the following conditions are
required to be considered:

@

@z
D 0; Bz D bz D b0

z D 0; By D Bo; by D 0

@bx

@x
D @by

@x
D @bx

@x
D 0 ! bx D bx.y/

u D Nu.y/C u0; v D v0;w D 0:

Further for insulated plates at the wall, Bx D bx D b0
x = 0.

Velocity component in the x-direction is divided by the maximum velocity at the
mid-plane (y D 0), and y-coordinate is divided by L. Further nondimensionaliza-
tion is done by dividing pressure with �U 2, all velocity components with the flow
velocity on the axis, U , the magnetic induction with Bo, and time with .L=U /. The
equations contain “steady,” denoted with .N/ , and “time-dependent,” denoted with
“prime” terms, and it is assumed that each of these satisfies the respective equation
separately, while the terms with product of perturbed quantities are neglected. Then
the following sets of normalized equations are obtained:
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Fig. 11.14 Mass-density distribution of atoms on the axis for the conducting wall

Continuity:

@Nu
@x

D 0 ! Nu D Nu.y/ (11.171)

@u0

@x
C @v0

@y
D 0; (11.172)

x-induction:

@Nu
@y

C 1

R�

@2bx

@y2
D 0 (11.173)

@b0
x

@t
C Nu@b

0
x

@x
C v0 @bx

@y
D
�
bx
@u0

@x
C b0

y

@Nu
@y

C @u0

@y

�
C 1

R�

�
@b0

x

@x2
C @b0

x

@y2

�
;

(11.174)

y-induction: no equation for steady state.

@b0
y

@t
C Nu@b

0
y

@x
D 1

R�

 
@b0

y

@x2
C @b0

y

@y2

!
C
�
bx
@v0

@x
C @v0

@y

�
; (11.175)
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Fig. 11.15 Mass-density distribution of atoms on the axis for a dielectric wall

x-momentum:
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(11.177)

y-momentum:

@ Np
@y

CRH
@

@y

�
b2x
2

�
D @

@y

�
Np CRH

b2x
2

�
D 0 (11.178)

@v0
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0

@x
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C @2v0

@y2
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@y
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@y
� @b0

y
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!
:

(11.179)

In above the three nondimensional numbers are: Re D �UL is the
Reynolds number, R� D UL�o�o is the magnetic Reynolds number, and
RH D B2

o=
�
�U 2�o

�
is the magnetic pressure number.
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Fig. 11.16 Velocity distribution of atoms on the axis for the conducting wall

Derivation of Stability Equations

It has been mentioned already that we consider terms with perturbed velocity
components, but not with perturbed magnetic induction. We differentiate (11.177)
with respect to y and (11.179) with respect to x and subtract from each other to get
the time-dependent vorticity equation

@!0

@t
C Nu@!

0

@x
C v0 @2 Nu

@y2

1

Re

�
@2!0

@x2
C @2!0

@y2

�

CRH
"
b0
y

@2bx

@y2
C @

@x

 
@b0

x

@y
�@b

0
y

@y

!
C @

@y

�
@b0

x

@y
�@b

0
x

@y

�#
; (11.180)

where the perturbed vorticity function is defined as

!0 D @u0

@y
� @v0

@x
: (11.181)
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Fig. 11.17 Velocity distribution of atoms on the axis for a dielectric wall

Fig. 11.18 Plane MHD flow between two parallel plates

The last [ ] term in (11.180) is the feedback of the time-dependent perturbation of
the magnetic induction onto the perturbation of the velocity perturbation. We have
kept this term initially, but retaining this term did not allow us to have a converged
solution. Therefore the effect of the perturbed magnetic induction is not considered
further, but the externally applied magnetic induction is mainly due to change in the
steady velocity field.

Now let us introduce the usual definition of the perturbed stream function, � 0,

u0 D @� 0

@y
; v0 D @� 0

@x
; (11.182)
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and the continuity equation for the perturbed velocity component is identically
satisfied. Let us now consider a trial function

� 0 D �.y/ expi˛.x�ct/; i D p�1; (11.183)

where � is a (complex) amplitude function, ˛ is the wave number, and c is the
(complex) wave speed = cr C ici . Adding term by term in (11.180), except the
perturbed magnetic induction terms as mentioned already, and rearranging, we get
the usual Orr–Sommerfeld equation

.Nu � c/
�
@2�

@y2
� ˛2�

�
� � @

2 Nu
@y2

D 1

i˛Re

�
@4�

@y4
� 2˛2 @

2�

@y2
C ˛4�

�
: (11.184)

Having dropped the perturbed magnetic induction term in (11.180), (11.184) is
independent of the magnetic induction, although it depends on the mean velocity
profile which depends on the magnetic induction. In solving (11.180) we require
four boundary conditions to solve the fourth-order differential equation. These are
well known from books on boundary layer theory that the perturbation and their
space derivative must vanish at the wall, that is,

y D ˙1 W � D �0 D 0; y D 0 W � D 1;

while the center line boundary condition y D 0 W � D 1 is obtained from the
normalization condition for the eigenvalue problem.

The required value of Nu and its second derivative are obtained from the well-
known Hartmann solution, but the method is repeated here again for proper
discussion. Equation (11.184) is solved by introducing linear combination of two
(complex) vectors ˛ D .�"0

1 ; �
"
1; �

0
1; �1/ and ˇ D .�"0

2 ; �
"
2; �

0
2; �2/ orthonormal

to each other, whose initial values (at y D �1) are '1 D .1; 0; 0; 0/ and '2 D
.0; 1; 0; 0/ . While (11.184) is integrated for a given combination of (˛, Re, and
c) from y D �1 to y D C1, the two vectors do not remain orthonormal to each
other for round-off errors overtaking solutions at large Reynolds numbers, unless
they are purified again to make them orthonormal. This is discussed in the following
section. The constants of linear combination of the two vectors and the exact value of
(complex) c are obtained from the boundary conditions. Integration can be done by
any suitable method, but we have used the Runge–Kutta method. Correct value for c
for neutral stability (ci D 0) is obtained by perturbing a complex value of (˛C iRe)
by Newton–Raphson method in the outer iteration loop. The ortho-normalization
procedure for the purification of the two vectors and further numerical procedure
are discussed in the subsection “Numerical Procedure and Results.”
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11.6.1 Hartmann Problem

Since we need the velocity profile and the second derivative of the velocity for
solution of (11.184), we get these from the solution of the Hartmann problem. We
consider a stationary problem, and we write the relevant equations as follows:

Continuity:

@Nu
@x

D 0 ! Nu D Nu.y/; (11.185)

x-induction:

@Nu
@y

C 1

R�

@2bx

@y2
D 0; (11.186)

x-momentum:

1

Re

@2 Nu
@y2

CRH
@bx

@y
D @ Np
@x
; (11.187)

y-momentum:

@ Np
@y

CRH
@

@y

�
b2x
2

�
D @

@y

�
Np CRH

b2x
2

�
D 0: (11.188)

We differentiate (11.188) with respect to x. Since @bx=@x D 0, we get
@2 Np=.@x@y/ D 0. Now we differentiate (11.187) with respect to y and get

1

Re

@3 Nu
@y3

CRH
@2bx

@y2
D 0:

Noting (11.186) and multiplying with Re, we get finally

@3 Nu
@y3

CR2h
@Nu
@y

D 0; (11.189)

where Rh D p
Re:R� :RH is the Hartmann number. The general solution, as given

by Pai [125], is

Nu D 1

Rh
ŒA cosh.Rhy/C B sinh.Rhy/�C C: (11.190)

With boundary conditions

y D 0 W u D 1Iy D ˙1 W u D 0; (11.191)
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Fig. 11.19 Velocity profile for Hartmann numbers 0, 5 and 10

the special solution is

Nu D cosh.Rhy/ � cosh.Rh/

1 � cosh.Rh/
: (11.192)

The first two derivatives of Nu with respect to y are

dNu
dy

D � sinh.Rhy/C yRh cosh.Rhy/

� sinh.Rh/

d2 Nu
dy2

D Rh2 cosh.Rhy/

1 � cosh.Rh/
:

It can be shown that in the limit of Rh ! 0, distribution of Nu and its two derivatives
become Nu D 1 � y2;�2y, and Ű2, respectively. (11.184) does not contain any
term due to induced magnetic induction distribution, which incidentally depend
on the boundary conditions of the induced magnetic induction distribution at the
wall. Herein further Rh D BoL

p
�=� is the Hartmann number, where � is the

electrical conductivity and � is the dynamic viscosity coefficient. For the limiting
Hartmann number, Rh D 0, the flow is without magnetic field, for which the
velocity distribution becomes u D 1�y2. Numerical results of steady flow are given
in Fig. 11.19. For the sake of completeness, we write down also the distribution of
the induced magnetic induction:

(i) Insulated wall:

bx D R�

RH

�
y sinh.Rh/ � sinh.Rhy/

1 � cosh.Rh/

�
;
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(ii) Conducting wall:

bx D R�

1 � cosh.Rh/

�
y cosh.Rh/ � sinh.Rhy/

Rh

�
:

11.6.2 Numerical Procedure and Results

Let us consider the two (complex) vectors ˛ and ˇ which should be orthonormal to
each other, but they are slightly corrupted at some stage because of accumulation of
round-off errors. Therefore two new vectors are defined as follows:

� D ˛

j˛j (11.193)

ı D ˇ � .ˇ � N�/�
jˇ � .ˇ � N�/�j ; (11.194)

where N� is the conjugate complex of the vector � . Obviously, the orthonormality
conditions satisfied are � � N� D j�j2 D 1; ı � Nı D jıj2 D 1, and ı � N� D 0. At the
time of purification the vectors ˛ and ˇ are replaced by the vectors � and ı.

Now since the actual eigenvector ' is a linear combination of two orthonormal
vectors '1 and '2, a linear combination of these and their derivatives (first and
second components of these vectors) can be written as

' D k1'1 C k2'2I'0 D k1'
0
1 C k2'

0
2; (11.195)

and the following relations must be satisfied at the center line (y D 0) and the other
wall (y D 1) to satisfy the boundary conditions

k1'1.0/C k2'2.0/ D 1I
k1'1.1/C k2'2.1/ D 0I
k1'

0
1.1/C k2'

0
2.1/ D 0:

It may be noted that the first equation above only normalizes the eigenfunction at
the mid plane and it has no other significance. On the other hand, the other two give
the relations

k2

k1
D �'1.1/

'2.1/
I k1 D 1

k1'1.0/C .k2=k1/'2.0/
: (11.196)

We can now evaluate k1'0
1.1/ C k2'

0
2.1/ , which must go to zero; this is done by

changing the eigenvalue c and using Newton–Raphson method.
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Fig. 11.20 Typical distribution of real and imaginary value of '

Fig. 11.21 Neutral stability curve for Hartmann flow

Initial testing of the results was done without magnetic induction for different
combinations of (˛;Re) and all the results of Thomas were reproduced with the
highest accuracy of the fourth decimal places reported; our c values, however, were
complex conjugate of c values of Thomas, because of the way that the orthonor-
mality condition for the two vectors is enforced. After this, magnetohydrodynamic
stability was studied. Figure 11.20 shows typical distribution of real and imaginary
eigenfunction ' (the base value of each of these is zero and they are plotted, (scaled
between maximum and minimum values).

As stated earlier, neutral stability curves are obtained by perturbing the complex
(˛ C iRe) to get ci D 0. Such a neutral stability curve is shown in Fig. 11.21. The
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Fig. 11.22 Critical reynolds number as a function of Hartmann number

minimum Reynolds number of a particular curve is the critical Reynolds number,
which is plotted against Rh in Fig. 11.22.

The results can, therefore, be summarized to state that the magnetic induction in
a Hartmann flow, with constant fluid properties, has a very strong effect to increase
the critical Reynolds number almost exponentially.

Thus, a method has been given to calculate the critical Reynolds number in a two-
dimensional Hartmann flow numerically. A purification technique for the solution
has been used, which has been calibrated first by comparing with the numerical
solution for zero magnetic induction. The solution with nonzero magnetic induction
shows considerable effect of the Hartmann number on the critical Reynolds number.



Chapter 12
Some Practical Examples

In this chapter we investigate now some of the plasma dynamic and magneto-gas-
dynamic problems of practical interest. First we discuss the “one-dimensional”
electromagneto-gas-dynamic nozzle and channel flow and the flow through a
convergent-divergent nozzle of a rectangular shape, followed by a discussion on
arc plasma flow in a tube, impinging plasma jet and particle-plasma interaction.
Further, the interaction between the electromagnetic fields and cross-gas flow fields,
magnetohydrodynamic power generation and flow interaction, and application of
plasma in manufacturing and processing are discussed. Weakly ionized plasma,
because of its aerospace application, is just emerging as a hot subject, without being
fully understood at present; the final section on this has, therefore, a very tentative
discussion on this.

12.1 Arc Plasma Flow in a Tube

Model of a fully developed arc plasma in a plasma tube was studied originally by
Elenbaas [55] and Heller [72]; the details are given by Maecker [98]. Subsequently
the subject of thermal nonequilibrium in such arc plasma tubes, which causes
enhancement of plasma transport properties at moderate temperatures, was studied
by various authors also. Motivation and justification for discussion of a 60-year-
old model is because these results are of importance as boundary conditions
for a number of plasma flow field calculations like impinging plasma jet, with
electric current (transferred arc) or without, and plasma particles spraying. Since
among the noble gases helium has the highest ionization potential and xenon the
smallest, one would expect also that for a given arc tube radius, gas pressure,
and arc current, helium would have the highest arc center line temperature and
xenon the lowest. However, as it turns out, the situation is more complex than
just consideration of the ionization potential. Method of analysis presently is
by numerical integration of coupled differential equations of mass, energy, and
current conservation with appropriate boundary conditions, for which the required
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Fig. 12.1 Schematic of a
plasma flow in a tube

thermophysical and transport properties were computed with the help of the method
given in Chap. 7. At least for the two-temperature argon plasma the temperature
distribution results and the wall electron temperature are in reasonable agreement
with experimental results from other authors.

We consider a fully developed arc plasma flow in a plasma tube of diameter d
(Fig. 12.1), in which an external electric field E is applied in the axial direction;
fully developed arc plasma being considered is to be found near the anode if the arc
tube is quite long. The resultant electric current I is, therefore, in the axial direction
also, whereas the temperature and the corresponding plasma thermophysical and
transport properties change only in the radial direction for this fully developed arc
model. Only boundary condition, which is prescribed, is the wall temperature Tw,
which for the single-temperature model is equal to the gas temperature at the wall
and for the two-temperature model is equal to the heavy particle temperature at
the wall, Thw. The common center line temperature of the electrons and the heavy
particles is determined after integration of the energy equation.

For the single-temperature model the energy equation can be written as

1

r

d

dr

�
rk

dT

dr

�
C �E2 � Prad D 0; (12.1)

where k is the thermal conductivity (including conduction and diffusion), T is
the temperature, � is the electrical conductivity, E is the electric field (in axial
direction), Prad is the emitted radiative power, and r is the radial coordinate.

For the two-temperature model the energy equation for the electrons and the
heavy particles (subscripts e and h, respectively) can be written as

d

dr

�
rke

dTe
dr

�
� r

�
3
me

mh

kB.Te � Th/�eh � �E2 C Prad

�
D 0; (12.2)

d

dr

�
rkh

dTh
dr

�
C 3

me

mh

kB.Te � Th/�ehr D 0: (12.3)
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Kruger [88] in his analysis has, in electron continuity, electron energy and global
energy equations, terms corresponding to electron production. In the present case
equilibrium composition at elevated electron temperature, if needed, has been
assumed to eliminate the electron continuity equation, and in the energy equation,
the effect of diffusion and recombination has been taken care of in computing the
energy transport by ambipolar diffusion under equilibrium condition and has been
added to the pure thermal conductivity coefficient to obtain a total conductivity
coefficient for electrons and heavy particles.

For laboratory plasmas radiation can be considered as “optically thin”, and its
overall effect on the temperature profile may be assumed to be small. In any case,
in the absence of reliable data or expression for Prad for all the five noble gases, this
has been neglected.

For both the models the electric current conservation requirement gives the
relation

I D 2�E

Z d=2

0

�rdr; (12.4)

where I is the (prescribed) electric current, E is the (axial) electric field computed
from (12.4) and is substituted in (12.1) or (12.2) and (12.3), and d is the tube
diameter.

The center line boundary condition requires that the center line temperature
gradient is zero on the axis. For the two-temperature plasma with electrically
insulated wall (at negative potential with respect to the plasma) the electron
temperature gradient is determined from a sheath analysis, which has been discussed
in some detail in Chap. 8. However from extensive numerical analysis it is shown
that one could also assume that the gradient of electron temperature at the wall is
approximately equal to zero. Therefore, for the two-temperature model, the wall
electron temperature is much higher than the wall heavy particle temperature.

In actual calculation, first guess temperature profiles are used to compute ke ,
kh, � , and �eh. Subsequently (12.4) is used to obtain the value of the electric field,
which, in turn, is used for the solution of (12.1) or (12.2) and (12.3) to determine the
temperature profiles of the electrons and the heavy particles. Steady-state solution in
temperature profiles is obtained in an iterative manner by using a relaxation factor.

In order to understand the interaction between various arc and gas parameters, we
examine the case of a single-temperature arc and in which we neglect the radiation
term. We define the following nondimensional variables, in which the superscript
(�) refers to a nondimensional variable and the subscripts o and w refer to center
line and wall values, respectively:

r� D 2r=d I �� D �=�oI k� D k=koIT � D .T � Tw/=.To � Tw/;

˝1 D I 2

�2�od2ko.To � Tw/
I˝2 D 2I

�E�od2
:



414 12 Some Practical Examples

Fig. 12.2 Temperature
distribution for
two-temperature argon
plasma for different arc
currents

By simple integration of (12.4) from r� D 0 to 1, we can show that

˝2 D
Z 1

0

��r� dr� . (12.5)

Since �� can be between 0 (at wall) and 1 (center line), ˝2 can have values
between 0 and 1/2; a smaller value shows that the electric current conducting
core is concentrated more near the axis. Similarly, the value of ˝1 can change
only in the limited range, since a higher current I and smaller tube diameter
cause increase in the center line temperature and decrease in the electric field. For
an arc tube diameter of 1 cm, the gas pressure of 1 bar, the wall temperature of
heavy particles, Thw D 1,000 K, and different arc currents, results of computation
for different noble gases and two different temperature models were carried out.
However, only for argon plasma at 1 bar and tube diameter 1 cm, but for different
arc currents, the electron and heavy particle temperature are plotted in Fig. 12.2.
Numerical results for electron temperature only for argon plasma are also plotted
in Fig. 12.3 and are compared for argon plasma with experimental results (Kruger
[88], Bott [32], Giannaris and Incropera [65]), wherever possible; the agreement
is reasonable in view of the discussion that follows. Kruger [88] compared the
temperature profile, measured from the free–free and free-bound continuum spectral
distribution, and the temperature deduced by calculating plasma composition
from the single-temperature model for a 1 cm diameter arc at 1 bar and two arc
currents 150 and 200 A. The respective “experimental” wall temperatures were
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Fig. 12.3 Comparison of
calculated and experimental
electron temperature for
two-temperature argon
plasma

8,500 and 9,000 K, whereas from the present calculations the temperatures are
8,930 and 9,430, respectively (Fig. 12.4). Further, Bose and Seeniraj [28] compared
experimental results evaluated from spectroscopical measurements (Giannaris and
Incropera [65]) but evaluated with two-temperature model for arc tube radius 1 cm
and pressure 1 bar; for argon the results are given for 35 A arc current and for
helium the results are for 100, 160, and 210 A. However the helium experimental
results are suspect since higher electric current is not shown to give higher center
line temperature. For example, the respective center line temperatures for helium
deduced from experiments (Giannaris and Incropera [65]) at the three currents of
100, 160, and 210 A are 16,000, 17,000, and 14,600 K. In addition the electron
temperature profile maximum is not on the axis and the wall electron temperature
for helium plasma is given for higher electric current. Further, Fig. 12.4 presents
results of the present calculation of the center line temperature for the five noble
gases. It shows that the center line temperature for helium, among the five noble
gases, is maximum for all currents being considered.

Experimental measurements and computed results are reported for plasma jets
emanating into free atmosphere (Dilawari et al. [53], Chyou and Pfender [49, 50]).
Data were operated with the torch of 12.7 mm diameter in an argon environment
operating at the power level between 4.8 and 15.3 kW and the current level between
250 and 750 A. The mathematical formulation of the problem is by writing down
the continuity, momentum, and energy equations in axisymmetric system without
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Fig. 12.4 Center line temperature vs. arc current for two-temperature Elenbaas-Heller model for
different noble gases

electromagnetic fields outside the jet and adding a radiation loss term. Along
the entrainment boundary, which is placed sufficiently far away from the axis of
symmetry, the static pressure is assumed constant and the axial velocity zero. The
entrainment velocity is computed by setting the radial gradient of the radial flux
equal to zero and the entraining region is assigned an enthalpy value corresponding
to a temperature of 300 K. The position of the entrainment boundary is obtained
in such a way that moving further away from the axis produced no significant
difference in the computed fields of velocities and temperature; the assumption
of zero axial velocity at the entrainment boundary is a “standard” assumption for
such calculations. Results of such calculations as a sample are taken from Chyou
and Pfender [49, 50], and are shown in Fig. 12.5 where there is only qualitative
agreement. Further such results of calculated temperature field are also available
elsewhere and a detailed description of the solution procedure is given in Lee [92].
In view of the results of calculation, carried out by this author for five noble gases—
helium, neon, argon, krypton, and xenon—the following conclusions can be made:

(a) For a given electric current the arc center line temperature is maximum for
helium.

(b) The maximum arc center line temperature with single-temperature model is
higher than the center line electron temperature in a two-temperature model,
which is again higher than the center line heavy particle temperature; the latter
difference is maximum for helium.
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Fig. 12.5 Comparison of
experimental and
computational isotherms in a
plasma jet

(c) For a given arc current, the diameter of the electric current conducting core
is minimum for helium and maximum for xenon; the core diameter is larger
for the two-temperature model in comparison to the single-temperature model,
the reason being that the electrical conductivity distribution profile in a two-
temperature plasma is flatter than in a single-temperature case;

(d) The diameter of electric current conducting core increases with increasing
electric current.

(e) The wall electron temperature at the wall determined with two-temperature
model can have a quite high value; for neon with arc current 50 [A], it is even
higher than the center line temperature of the heavy particles.

12.2 Impinging Plasma Jet

Now we discuss modeling of a plasma jet impinging on a flat plate (Fig. 12.6). Such
a model is of considerable practical interest in plasma welding (with or without
electric field outside the plasma tube), plasma spraying (by putting solid particles
into the plasma by introducing it, hopefully uniformly at the exit plane of the plasma
tube), etc. The present analysis is done without any electric field outside the plasma
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Fig. 12.6 Model of an
impinging plasma jet

tube, and it is assumed that the plasma state (pressure, temperature, gas velocity) is
known at the exit plane of the tube by the method described in the previous section.

The equations for an impinging plasma jet in cylindrical (x, r) coordinate
system with thin shear layer approximation, where (u, v) are the respective velocity
components, p is the pressure, T is the temperature, and h is the specific enthalpy
(per unit mass), are given with the help of a matrix equation as follows:

2
664

�r

�ur
�vr

.�h � p/r

3
775
t

C

2
664

�ur
.p C �u2/r
.�uv � �vx/r
.�uh � kTx/r

3
775
x

C

2
664

�vr

.�uv � �ur /r
.p C �v2/r

.�vh � kTr/r

3
775
r

D 0: (12.6)

The boundary conditions are

r D 0 W v D 0;
@

@r
D 0I x D 0 W u D v D 0; T D Tw;

x D H; r < Rj W flow prescribed I x D H; r > Rj I v D 0 .

The outer boundary condition at r D Rb is obtained by extrapolation. In addition at
x D H , r > Rtube, various alternate options like ru D 0 have been tried out. Since
we do not consider any current flow outside the plasma tube, a single-temperature
plasma model is sufficient for understanding of the problem. Equation (12.6)
was solved by the finite volume method, developed specifically for the study of
impinging plasma jets and which was found to be numerically very stable.

Solution is obtained by prescribing initial prescription of fields of various
variables, like pressure, temperature, density, and velocity components, and carrying
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Fig. 12.7 Impinging jet heat flux for argon and nitrogen

out numerical integration in time. Numerical calculation of the flow field was done
for a large number of impinging flow data for argon and nitrogen plasmas. However,
only the sample results are presented for I D 200A, tube height H D 5 cm,
and tube diameter dj D 1 cm (corresponding to a nondimensional height H� D
2H=dj D 10), and mass flow rate in the tube is about 0.5 g s�1. Figure 12.7 shows a
comparative heat flux results (in kW m�2) vs. nondimensional radius (r� D 2r=dj )
for nitrogen and argon. It can be seen that between argon and nitrogen plasmas, the
latter gives a somewhat higher heat flux to the wall than the former, but in both cases
the maximum heat flux was on the center line. The entire level of heat flux increases
with increasing current. In these calculations the radiative heat flux has not been
taken into account.

At the outset, we intend to indicate at this stage what happens if there is an
externally applied electric field outside the plasma tube (transferred arc) (Fig. 12.8).
In order that the electric current flows between the exit plane of the plasma tube and
the impinging plate, a two-temperature plasma model is needed near the (cold) plate
and in the outer regions of the impinging plasma. Further, the heat flux to the wall
depends not only on the gradient of temperature at the wall (convective heat flux)
but also on the energy that is carried by the charged particles to the wall and ionizes
or recombines there. If the plate is anode, the second energy transfer mechanism can
be shown to be about an order of magnitude larger than due to pure convection.
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Fig. 12.8 Schematic diagram
of a transferred arc

12.3 Particle-Plasma Interaction

We would now discuss the problems in the application of thermal plasmas for
physical and chemical processing of fine powders, particularly with reference to
introduction of fine powders in an impinging plasma jet (Bourdin et al. [34], Lee
et al. [92], 1985; Gokhale and Bose [67], and Pfender [132]). The high temperature
of the plasma leads to rapid increase in the temperature of the particles, melting of
the particle, and part evaporation. For the purpose of good adhesion of the particles
onto the impinging plate, it is not only necessary that the powders are, at the time
of impingement, in melted form, but also the impinging plate be cooled rapidly, so
that the molten droplets stick to the plate. This leads not only to modeling of the
mechanism of heating of the powder at and inside the plasma but also to the heat
transfer inside the plate. However, in spite of intensive efforts in recent years, our
understanding of interaction of fine particles with thermal plasmas, and further with
the flow, remains incomplete.

A particle injected into a thermal plasma will usually undergo the following
processes: (1) heating of the particle in the solid phase from an initial temperature
to the melting point of the material; (2) melting of the solid phase at a constant
melting (or sublimation) temperature; (3) heating up to the evaporation point; and
(4) evaporation of the liquid phase. Of course, for a solid material like graphite,
only processes (1) and (4) are relevant. On the other hand, only processes (3)–(4)
are relevant for liquid droplets into the plasma. Due to the finite thermal conductivity
of the particle during the heating process, temperature differences may develop
inside the particle, although the assumption of an infinite thermal conductivity of
the particle can considerably simplify the analysis.
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For estimation of the role of internal conduction in a particle immersed in a hot
plasma for the purpose of deciding about the difference between the particle surface
temperature and the center temperature of the particle, the value of the so-called
bio-number, defined as the ratio of the convective to conductive heat transfer in a
particle, is an important criterion. If Bi < 0.1, internal conduction is relatively high
and the temperature variation within a particle is negligible. Since the condition
is generally met, the discussion in this paper is mainly restricted to particles with
uniform temperature. A simple analysis is considered about the drag and heat and
mass transfer for a single particle, and the relations for different characteristic
times are given, for example, relaxation times for momentum and energy transfer,
characteristic times to bring the particles to melting temperature, for melting, to
bring to the evaporation temperature and for evaporation.

Let us consider now a gas-particle mixture, in which the particles are of spherical
shape, and let the gas (assumed to be an ideal gas) and solid particle properties be
considered as given: For gas: density Q�g, temperature Tg, pressure pg D Q�RgTg,
velocity ug , gas mass flow rate Pmg, gas constant Rg , isobaric specific heat cpg ,
volume flow rate PVg D Pmg= Q�g, and specific heat ratio � .

For particles: (average) mass of a particle Mp , number density np , (average)
diameter dp , volume of a single particle V 1

p D .�=6/d3p , particle volume flow

rate PVp D Pmp= Q�p , elemental particle mass density Q�p D 6Mp=.�d
3
p/ D

.6�p/=.�d
3
pnp/, (average) mass density �p D npMp , particle mass flow rate

Pmp , and specific heat cp . For the gas-particle mixture, therefore, the following
expressions can be derived: total volume flow rate D PVp C PVg D . Pmp= Q�p/ C
. Pmg= Q�g/, volume fraction of particles ' D . Pmp= Q�p/=. Pmp= Q�p C Pmg= Q�g/, mixture
mass density � D �g C �p D Q�p' C Q�g.1 � '/, loading ratio Pm� D Pmp= Pmg , and
mass fraction of particles D Pmp=. Pmp C Pmg/ D Q�p'=�.

One can now show that even for Q�p= Q�g D 103 to 104, the volume fraction is
between 2 and 0.2% for �p=�g as high as 0.95.

Solids can alter the flow in following ways: (1) penetration of solids through inner
layer of the turbulent boundary layer causing thinning of the layer; (2) presence of
solids may cause a damping of the convection eddies and a reduction of turbulent
transport energy; (3) slip between particles and gas may enhance the turbulent
mixing of the carrier gas; and (4) radial motion of particles enhancing transfer of
heat. In general, solid particles of smallest size retain the slope of the thin initial
crystal, whereas melted particles are of spherical shape. Now from fluid mechanics
one can estimate the circulation (line integral of velocity component along the line
in a closed path) for a rotating sphere or in a shear flow and the “lift” force on
the particle. The phenomenon is important to understand the interaction between
particles (solid or liquid) and gas in a flow situation.
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12.3.1 Drag and Heat Transfer

Further, the underlying assumptions are: (1) the particle is at a uniform temperature
(infinite heat conductivity); (2) the flow process is steady; and (3) the influence
of vapor from evaporating or sublimating particles on the plasma properties is
neglected. In addition, we consider first only the interaction of the plasma with a
single particle with mass Mp , diameter dp D 2:rp , material mass density Q�p , the
respective particle and gas velocity, up and ug , the respective specific heat of particle
and gas cp and cpg, the respective specific heat conductivity coefficient of particle
and gas, kp and kg , and the gas viscosity �g. At low Reynolds numbers, Re D
�g.ug � up/dp=�g , where �g is the gas mass density, and all gas properties are to
be evaluated at an average temperature between the gas and the particle. The drag
coefficient cDo in the Stokes region (Re < 1) is given by the relation

cDo D 24

Re
. (12.7)

It must, however, be noted that a correction to the above relation for the drag
coefficient can be found easily if we define a drag coefficient ratio, fD D cD=cDo,
and the equations for calculating fD for various ranges of Reynolds number are as
follows (Gokhale and Bose [67]):

Re < 1;000 W fD D 1C 0:15Re0:687; (12.8)

Re > 1;000 W fD D 0:01833Re : (12.9)

Noting that the mass of a single particle is Mp D � Q�pd3p=6, drag on a particle is
cD�d

2
p�g.ug � up/2=8, and writing a force balance between the inertia and drag,

we get

Mp

dup
dt

D �

6
Q�pd3p

dup
dt

D cDofD�d
2
p�g.ug � up/

2=8: (12.10)

By putting the relation between cDo and Re, and in the event of a step change in
the gas speed, we can define a velocity relaxation time �u D Q�pd2p=.18�g/, and the
above differential equation becomes

dup
dt

D .ug � up/

�u
fD: (12.11)

By integration we can show that for a step change of the gas speed ug , the particle
speed at any time will be

ug � up
.ug � up/tD0

D exp� R
1

0 .fD=�u/dt : (12.12)
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Strictly speaking, the drag term in the momentum equation need be supplemented
by Basset history term representing the time-dependent nature of the boundary layer
around the particle (El-Kaddah et al. [56], Boulos and Gauvin [33]). The history
term is necessary, “since for plasma systems particle residence times are comparable
with boundary layer relaxation times (approx. 1 ms).” Boulos and Gauvin [33] report
that the history term should be retained for particle diameters greater than 30
 in
a nonhomogeneous velocity field in plasma. Unfortunately, insufficient information
on this effect is only available and therefore, it is not being considered any further.

For the gas side heat transfer without any gas flow velocity, the energy conserva-
tion equation is

PQ D PQp D 4�r2kg
dT

dr
W: (12.13)

By introducing the heat conductivity potential defined as (Chen and Pfender [44])

� D
Z T

To

kgdT; (12.14)

where � D 0 if T D To, (12.13) can be integrated from a large radial distance to
the wall to get the heat flux relation on the wall

Pq D
PQp

4�r2p
D �g � �gp

rp
; (12.15)

where �g is the gas (plasma) heat conductivity potential and �gp is the same at
the particle surface temperature. The relationship for the Nusselt number relation
(without flow) is given in literatures as

Nu D Pqdp
.�g � �gp/ D 2: (12.16)

Under flow condition a correction to the Nusselt number fN D Nu=Nuo is required,
which is given by the relation valid for a quite large range of Reynolds number, as

fN D 1C 0:2295Re0:55Pr0:33; (12.17)

where Pr D �cp=k is the Prandtl number of the gas. It may be noted that all the gas
properties in Re and Pr are to be evaluated at an average temperature between the
gas and the particle.

Now as a result of heat flowing from the gas to a particle, there will be a rise in
the particle temperature, and from the energy balance we may write the equation

Mpcp
dTp
dt

D �d2p Pqw D 2�dp.�g � �gp/fN D 2� Nkgdp.Tg � Tp/fN ; (12.18)
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where Nkg is the average heat conductivity at an average temperature of the gas and
the particle:

Nkg D �g � �gp
Tg � Tp (12.19)

and �gp is the gas heat conductivity potential at the particle temperature.
The particle temperature can be described by the relation

dTp
dt

D Tg � Tp
�T

fN ; (12.20)

where a particle temperature relaxation time (analogous to velocity relaxation
time) is

�T D 3

2
Prg�u

cg

cgp
. (12.21)

The temperature can, therefore, be given (without phase change) by the relation

Tg � Tp
.Tg � Tp/tD0 D exp� R t

0 .fN =�T /dt : (12.22)

Note that �u and �T are directly proportional to d2p and hence we can reduce these
characteristic temperatures by dividing with d2p to get reduced times ��

u D �u=d
2
p

and ��
T D �T =d

2
p . For an analysis of a typical particle immersed in argon plasma

at 1 bar and 12,000 K with initial temperatures of 300 K and melting temperature
around 1,800 K, the following data are taken:

Q�p D 4;000 kgm�3; Ncp D 500 Jkg�1K�1;

Ncpg D 520 Jkg�1K�1; N�g D 2:2 � 10�4 kgm�1s�1;
Nkg D 0:11Wm�1K�1; and NPrg D 1:04:

Hence the reduced relaxation time ��
u D 177Msm�2 and ��

T D 25:7Msm�2.
Further, considering a time-averaged mean value of NfN from the initial (t D 0)
particle temperature to the particle melting temperature, TM , we get

t1 D �T
NfN

ln

�
.Tg � Tp/tD0
.Tg � TM/

�
: (12.23)

Further, after reaching the melting temperature, the time to melt a particle, t2, is
given by the relation

t2 D MpLM
PQp

D Q�pd2pLM
12.�g � �gM / D �T

Nkg
Ncp

LM

.�g � �gM / ; (12.24)
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where �gM is the heat conductivity potential of the gas at the melting temperature
of the particle and LM is the latent heat of melting of the particle (Chen and
Pfender [44,45]). Further, the time required for the particle to reach the evaporation
temperature of the particle, TV , from its melting temperature, in analogy to (12.23),
can now be written as

t3 D �T
NfN

ln

�
.Tg � TM/
.Tg � TV /

�
: (12.25)

Now let PMp be the mass flow rate [kgs�1] of the particle material from each particle
due to evaporation or sublimation. From the energy balance in the gas side, we write

4�r2p
kg

cpg

dh

dr
D PMp.h � hV C LV /; (12.26)

where hV is the enthalpy of the gas at evaporation (or sublimation) temperature and
LV is the latent heat of evaporation. By simple manipulation and integration we
write

Z h

hV

kg

cpg

dh

.h � hV C LV /
D

PMp

2�dp
(12.27)

from which we get for the particle mass evaporation rate from each particle as

PMp D 2�dp

Z h

hV

dh

.h � hV C LV /
kgs�1: (12.28)

Now the heating rate of a particle is

PQp D PMpLV (12.29)

and the corresponding heat flux is

Pqp D PQp=.�d
2
p/ D 2FLV =dp; (12.30)

where

F D
Z h

hV

kg

cpg

dh

.h � hV C LV /
D F.hg; hp; LV /: (12.31)

While (12.30) gives the heat flux with evaporation or sublimation, (12.15) is the one
without phase change. The ratio between the two is

Pqp
Pq D FLV

�g � �gp D F1.hg; hp; LV /: (12.32)
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Table 12.1 Material
properties for selected
materials

Properties Water Alumina Graphite Tungsten

Q�p;solid kgm�3 – 4,005 2,145 19,350
TM K 273 2,345 – 3,653
LM Jkg�1 3.35e3 1.06e8 – 1.84e5
TV K 373 3,800 4,100 5,950
LV Jkg�1 2.26e6 2.47e8 5.97e7 4.62e6

Simplification of the above equation is possible, if (kg=cpg) can be replaced by their
average value, and we get from (12.31)

F D
Nkg
Ncpg ln

�
1C hg � hgp

LV

�
: (12.33)

We would now evaluate the evaporation time of the particle. For quasi-steady
evaporation

PMp D Q�p PVp D �4� Q�pr2p Prp (12.34)

and hence,

Pqp D FLV

rp
D

PMpLV

4�r2p
D � Q�pLV Prp: (12.35)

Thus further,

rp Prp D 1

2

d

dt
.r2p/ D � F

Q�p D �K
2

(12.36)

which on integration becomes

r2po � r2p D Kt (12.37)

and hence the time required for a complete evaporation is

t4 D r2po

K
D Q�pr2po

2F
: (12.38)

Evaporation constantK depends on the particle material and the gas and the particle
temperature. The typical value of the evaporation constant [m2s�1] in argon and
nitrogen plasmas at 12,000 K is 4 � 10�8 and 1:5 � 10�7, respectively.

An estimate of these times has been done by Chen and Pfender [44, 45] for
argon plasma and different particle substances, for which the properties data given
in Table 12.1 are used. Further, the following data of specific heats and thermal
conductivity of solid particles were also used by them:



12.3 Particle-Plasma Interaction 427

Table 12.2 Typical reduced
times for selected particle
substances

Reduced time Msm�2

Substance t�1 t�2 t�3 t�4

Alumina 1.00 0.40 1.20 20.00
Tungsten 1.20 0.30 1.40 22.00
Graphite 1.05 – – 20.00

Tungsten: cp D 125:46C 4:632 � 1013T �2 exp�38;400=T Jkg�1K�1

kp D 178Wm�1K�1 at 300 K to 30 Wm�1K�1 at TV

Graphite: cp D 837C 0:523.T � 300/Jkg�1K�1

kp D 192Wm�1K�1 at 300 K to 19 Wm�1K�1 at 3,800 K

Alumina: cp D 1; 088C 0:1151.T � 300/Jkg�1K�1

kp D 36Wm�1K�1 at 300 K to 6 Wm�1K�1 at 2,000 K:

Using these properties data, Chen and Pfender [44, 45] calculated times t1 to t4 for
the above substances in argon plasma at various temperatures. These times are all
proportional to the square of the particle diameter and hence reduced times t�1 to t�4
are obtained by dividing t1 to t4 by d2p to obtain values as given in Table 12.2.

The importance of these characteristic times is apparent when compared with
typical flow times that should occur for an application. For plasma spraying appli-
cations, the particles may be introduced at the exit of the jet, where the gas jet speed
may be in the order of several hundred meters per second, and downstream lengths
may be several tens of centimeters per second. Taking a jet speed of 200 ms�1 and
length of the exhaust of about 0.2 m, the characteristic flow time (residence time)
available for the particles is 1 ms, which for an average particle diameter of 100

gives a reduced flow time of 0.1 Msm�2. On the other hand for a particle diameter of
10� the reduced flow time is 10 Msm�2. In comparison, the characteristic reduced
relaxation times are ��

u D 2:22Msm�2 and ��
T D 3:33Msm�2, respectively. These

can be compared with the typical reduced time data given in Table 12.2, from which
it can be seen that only for particles of diameter of a few microns the reduced flow
time is small enough to have complete evaporation. On the other hand for spray of
particles it is necessary to have a comparatively large solid particles. As pointed
out by Chen and Pfender [44, 45], “it is interesting to notice that the evaporation
constant of a water droplet is of the same order of magnitude as that of a fuel droplet
in the combustion chamber of a jet engine; but the evaporation constant for W, C and
Al2O3 are one order of magnitude lower. Therefore, the residence time for particles
(dp D 100
) of such materials in a plasma reactor, if complete evaporation is
desired, should be in the range from 50 to 100 ms (milli-second).”

Vaporization and evaporation, although related to each other, are dependent
on the surface temperature with respect to the boiling temperature. According to
Etemadi and Mostaghimi [59], while “vaporization is defined as a mass transfer
process driven by concentration gradients existing between the free stream and the
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particle surface, : : : evaporation accounts for large amounts of mass transfer as the
surface temperature reaches the boiling point. For the former, mass transport due to
diffusion need be considered.”

12.3.2 Internal Conduction

The above analysis was done under the assumption of infinite heat conductivity of
the particle, velocity of which will now be considered. For this purpose, the Biot
number, Bi, defined as the ratio of the convective to conductive heat transfer, serves
as a criterion for determining the relative importance of heat conduction within a
particle. Because of similarity in definition between Bi and Nu, we can evaluate the
one from the other from the relation

Bi D Nu. Nkg=kp/ D 2. Nkg=kp/fN : (12.39)

As such, under a typical plasma condition, Bi has the value around 0.01, with the
result that the nonuniformity in the particle temperature may be neglected (Pfender
[132], Bourdin et al. [34]).

12.3.3 Low Pressure Effects

The mean free path lengths of the plasma constituents in thermal plasmas are in the
order of microns at atmospheric pressure (Pfender [132]). Particles used in thermal
plasma synthesis or plasma spraying are almost of the same order of magnitude
(1–10
). Therefore the continuum approach is no longer valid and modifications
become necessary. For this purpose the Knudsen number (ratio of mean free path
to particle diameter) is defined; the higher Knudsen numbers are reached at reduced
gas pressures or for smaller particle diameters (Rizk and Elghobashi [136]), and
there is a strong influence on heat transfer with a temperature jump on the particle
surface. Further, a correction term for the drag coefficient is proposed as follows
(Pfender [132]):

cD;slip D cD;cont:

2
664 1

1C
�
2 � a
a

��
�

� C 1

�
4

Prw
Kn�

3
775
0:45

; (12.40)

where a is the thermal accommodation coefficient, � is the specific heat ratio, Prw

is the Prandtl number of the gas at the surface temperature of the sphere, and Kn�
is the Knudsen number based on an effective mean free path length.
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12.3.4 Particle Charging Effect

A particle injected into a thermal plasma is always negatively charged due to
different thermal velocities and mobilities of electrons and ions by retarding electron
bombardment and increasing ion flux.

12.3.5 Fluctuating Velocity and Temperature

While we have analyzed so far the interaction of the particles in a laminar flow, we
consider now the situation that may arise in a turbulent flow. For this purpose we
simplify the turbulence model by considering a fluctuation in the flow properties of
a simple harmonic nature. For uniform particle and gas density, the gas and particle
momentum equations are

�g
dug
dt

D ��p .ug � up/

�u
; (12.41)

�p
dup
dt

D �p
.ug � up/

�u
; (12.42)

where the particle density �p D npMp and np is the particle number density.
Let ug D Ag expi!t and up D Ap expi.!t��/, where Ag and Ap are amplitude

of gas and particle fluctuation, respectively, ! is the radian frequency of harmonic
oscillation of the gas and the particles, i D p�1 is the unit imaginary number; and
� is the phase shift of oscillation between the particle and the gas. Substituting these
into the particle momentum equation and after some manipulation we get

Ap D Ag
1 � i!�up
1C !2�2u

expi� : (12.43)

The middle term in the right-hand side of the above equation can be represented in
a complex plane, in which the real component is 1 and the imaginary component is
�!�u. This is equivalent of an angle � in the complex plane, so that

exp�i� D 1 � i!�up
1C !2�2u

(12.44)

and thus further, Ap D Ag expi.���/. Assuming the phase shift � D � D
arctan.!�u/, we get Ap D Ag=

p
1C !2�2u and the following limiting conditions:

!�u D 0 W � D 0 and Ap D Ag; !�u ! 1 W � D �=2 and Ap D 0:
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While the first limiting case is for small particles and the particles follow the gas
completely without any phase shift, the second limiting case is for a very heavy
particle, where there is a phase shift of 90ı between the particles and the gas and the
amplitude of the particle tends to zero.

In case the turbulence velocity in a fluid can be described by the amplitude and
the frequency of any one velocity component, then the average turbulence kinetic
energy of the particle and the gas is equal to the half of the square of the amplitude.
Hence the ratio of kinetic turbulence energy of the gas, kg, to that of the particles,
kp , is given by the relation

kg

kp
D A2p

A2g
D 1

1C !2�2
. (12.45)

The above expression gives, therefore, a simple method by which by using two
turbulent kinetic energy equations for the particles and the gas, the typical value of
the radian frequency can be obtained; there are similar relations given in literatures
(Soo [147], Rizk and Elgobashi [136]).

kg

kp
D 1C �2 C p

6�3=2 C 3� C p
6�

1C .�=ˇ/2 C p
6�3=2 C 3� C p

6�
; (12.46)

where ˛ D 3�g=.�gd
2
p/, ˇ D 3�g=.�g C �p/, and � D ˇ=˛. Once again one can

see that

dp ! 0; ˛ ! 1; � ! 0 W kp=kg ! 1 and

dp ! 1; ˛ ! 0; � ! 1 W kp=kg ! ˇ2 ! 0 if �g � �p:

Thus once again, a small particle will follow the turbulence motion of the gas, while
for large particles the ratio of the turbulent kinetic energy of the particles to that for
the gas is dependent on the mass fraction of the gas.

12.4 A Transverse Blown Arc

Interaction between an arc and a cross-flowing gas is known since the beginning
of invention of the arc. In fact the name “arc” was given to the discharge struck
between two horizontal electrodes which bent due to the free convection of the
hot gas in upward direction. There are several hundred studies, both analytical and
experimental, to predict the maximum arc deflection of such an arc. This author
[13,15] also studied such interactions between the gas and the electromagnetic fields
which are being described in this section.
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For this purpose a model of an arc is considered, which is of circular shape of
diameter D in which a given electric current I is flowing. Let along the arc D be
varying and a characteristic diameter Do be chosen to normalize the arc diameter.
Further, for simplifications of the analysis, the following assumptions are made: (1)
the gas properties inside the arc are constant, which are assumed to be the same as
at the maximum temperature at the center line of the arc. Thus it is assumed that
inside the arc the electrical conductivity � D �o and the mobility coefficient of the
electrons be D beo, but outside the arc � D 0 and be D 0; (2) the mass velocities
of all particles due to the electromagnetic forces are independent of those due to
the collisional forces; (3) the terms due to the electron partial pressure and the ion
slip in the momentum equation are neglected; and (4) the electric current is mainly
carried by the electrons (the electron current density je D overall current density j).

Thus, one may write the following set of equations:

electron conduction current: jce D �eneV C je; (12.47)

Ohm’s law: je D �

�
E0 C V � B � 1

ene
je � B

�
: (12.48)

Because of assumption (3), it follows that inside the arc, je is uniform in the arc
cross section, which can be determined easily from the equation

I D �D2

4
je: (12.49)

Let us introduce the following dimensionless variables and vectors:

k D I=I;kc D �D2jce=.4I /;E� D �D2
o�E0=.4I /;

V� D V=Vo;B� D B=Bo;D� D D=Do;

where Bo is the characteristic magnetic induction, Vo is the characteristic cross-flow
gas velocity, andDo is the characteristic maximum arc diameter. It may be noted that
k is a unit vector, which does not change the magnitude but the direction. Further,
the following two new nondimensional parameters are defined:

blowing parameter W Bp D eneVo�D
2
o

4I
; (12.50)

magnetic blowing parameter W Mp D VoBo�D
2
o�o

4I
: (12.51)

In these two relations Bp gives the ratio of the gas velocity to the velocity of the
electrons in the arc, and Mp gives the ratio of the velocity of the electrons due to
the magnetic field interaction to the velocity of the electrons in the arc. Thus (12.47)
and (12.48) become
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Fig. 12.9 Gas flow and
electromagnetic fields

Fig. 12.10 Velocity diagram
for interaction between gas
flow and electromagnetic
fields

kc D �BpV�D�2 C k; (12.52)

k D D�2E� CMpD
�2V� � B� � Mp

Bp
k � B�: (12.53)

Now let the magnetic induction B� be in the z-direction only. The electric field E�
is in the plane parallel to the gas-cross-flow field and the electrodes; the gas-cross-
flow is in the y-direction (Fig. 12.9). At any point P on the arc, the different terms
in (12.52) and (12.53) are shown in Fig. 12.10. For many cases we may assume a
uniform velocity field (V� D 1), uniform magnetic induction (B� D 1), and uniform
arc diameter (D� D 1). Further, as per the definition, k D 1. It is now possible, from
geometric considerations and under the assumptions just detailed, to write down the
following set of equations:

cos D kc cos � D E� cos� � Mp

Bp
sin CMp; (12.54)
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sin D kc sin � C Bp D E� sin� C Mp

Bp
cos : (12.55)

It may be noted that the angles � , �, and  refer to the angles that are made on
the x-axis by kc , E�, and k, respectively. Whereas k is the direction in which the
electrons should move without the effect of the flowing gas, kc is the direction
of movement of the electrons due to the interaction of the gas-cross-flow and the
electromagnetic fields. From equations (12.54) and (12.55), one gets the equation

tan D tan � C Bp

cos 
and (12.56)

tan� D sin � .Mp=Bp/ cos 

cos � .Mp=Bp/ sin CMp

. (12.57)

Now the above relations are applied to two different cases. The first case is that of
an gas dynamically balanced arc, between two point electrodes. Since there is no
externally applied magnetic field for this case, Mp D 0, and thus � D  . In the
second case the arc is struck between two parallel electrodes and is magnetically
balanced, which means that � D 0 and  D tan�1.Mp=Bp). Thus the shape of the
arc is given in the respective two cases by the relations

tan � D tan� � Bp

cos�
and (12.58)

tan � C 1p
1C tan2 �

D Mp

Bp
. (12.59)

From the latter equation it is, therefore, concluded that for the parallel rail electrodes
� is negative, so long as the electric, magnetic, and gas flow field directions are as
given in Fig. 12.10. For the gas dynamically balanced arc between the two point
electrodes and without an externally applied magnetic field (Mp D 0), the electric
field direction is given, for two point electrodes, by the relation

tan� D � 4xy

2.y2 � x2 C 1/
; (12.60)

where x and y are nondimensionalized with the semi-width between the two
electrodes. Now the method of evaluation is as follows: For every point in the (x, y)
plane, the slope of the electric field lines, �, are obtained from (12.60). Further for
a given Bp , the arc slope is obtained from (12.58). These slopes may be plotted
on a graph sheet and a smooth curve (without wrinkles) is drawn between the two
electrodes to obtain the arc shape. The maximum deflection, given in Fig. 12.11,
was obtained in this manner and showed good agreement with experimental results.
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Fig. 12.11 Theoretical
maximum deflection in blown
arc between point electrodes

For blown arcs, there is the question whether the so-called Steenbeck’s min-
imization principle is violated. According to this principle, for a given electrode
geometry and electric current without any transverse gas blowing, the arc current
follows the path of the least resistance (the shortest distance), that is, the potential
difference between the two electrodes becomes minimum. Since the heat produced
due to passing of the electric current through a small volume d˝ D �D2ds is j�E0ds,
it is possible to define an integral

Q D
Z
.j � E0/ds; (12.61)

where the arc line element ds is nondimensionalized with semi-width between the
electrodes. This equation, for constant arc diameter (nondimensionalized D� D 1),
is now examined. For the first case with Mp D 0 and k D E D 1, for an arc
without cross-flow blowing the minimization requirement for the heat (minimum
entropy production in unit time) should lead to a straight arc. For the blown arc the
same minimization of energy production (minimum of entropy production) allows
determination of the arc shape, although for various values of Bp and as per (12.61)
the voltage difference between the electrodes increases with increasing blowing
parameter. This is observed experimentally also.

12.5 Magneto-Gas-Dynamic Flow Inside Ducts

We consider now a duct flow in x-direction in a channel of arbitrary cross section
placed in a permanent, uniform, transverse (in y-direction) magnetic induction B ,
as shown in Fig. 12.12. This has a number of applications in MGD channel flows
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Fig. 12.12 Duct flow in the presence of transverse magnetic induction

and two-dimensional applications like Hartmann flow and magnetohydrodynamic
(MHD) Couette flow, and they were studied analytically by many people (Pai [125],
Moreau [114]). Here there will be an induced electric field in the z-direction, causing
an electric current to flow in the z-direction also if the channel flow had been a
fully two-dimensional flow extending infinitely in x- and y-directions. The induced
electric field has only one nonzero component in z-direction, which has the value
uB , but it is distributed in a nonuniform way in the cross section since both u and
temperature are functions of (y, z). If the magnet and the duct are very long, one can
assume that the current density in z-direction remains in the plane of cross section
(y, z). Now the conservation of charge requires that r � j D 0 and the lines of
the electric current be closed surfaces; if the wall is conducting and the gas is also
sufficiently conducting near the wall, part of the current closes up in the wall, or
else the current loop will close within the fluid only. The only way to reconcile
this is to accept that the positive charges are concentrated in the “A” region and the
negative charges in the “B” region, until the electric field created by the distribution
of the surface charge (in an electrically insulated surface) globally balances the
electromotive force. In the (y, z) plane, therefore, the electric field Ez appears so
that the total current in any segment in (x, y) plane is zero. Thus we may write

Z ymax

ymin

jzdy D
Z ymax

ymin

�.�Ez C uBy/dy D 0: (12.62)

The electric potential will be maximum around “A” and minimum around “B.” In the
central region where u is strongest and also for plasmas it is the region of maximum
electrical conductivity, the electromotive field dominates and j is directed from “B”
to “A.” Thus the electrical circuit is made up of two opposing “coils” which induce
Bx component of the magnetic field. Identifying various components of the current
density in expressions drawn separately from Ampere and Ohm’s law, we write
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jx D � 1

�o

@Bz

@x
D 0I (12.63)

jy D � 1

�o

@Bx

@x
D �Ey I and (12.64)

jz D � 1

�o

@Bx

@y
D �.Ez C uBy/; (12.65)

which shows immediately thatBy component is uniform and is equal toBo (because
r � B D 0).

We discuss now several typical MHD cases for which analytical solutions are
available, at least when the properties like density, viscosity coefficient, and elec-
trical conductivity are constant. Among the simplest cases amenable to analytical
solutions are Hartmann flow and MHD Couette flow, both being “fully developed”
(valid far away from inlet and magnetic field extending infinitely both in x- and
z-directions) and an externally applied magnetic induction Bo is in the direction
normal to the parallel plates (y-direction). The flow velocity in x-direction is
u D u.y/ and there is an induced electric field and an associated electric current
in z-direction, as a result of which there is an electromagnetic volumetric force
in the direction opposing the flow and there is an induced magnetic induction
gradient @Bx=@y. We write the equations in nondimensional form as follows.
We nondimensionalize all lengths by dividing with L (distance between the plates
is 2L), all velocities by dividing with U (the characteristic velocity), all properties
like density, viscosity coefficient, and electrical conductivity by dividing with
characteristic respective values O�, O�, and O� , pressure by dividing with �U 2; and
magnetic induction by dividing withBo. The nondimensionalized equations are now

x � momentum W 1

Re

d

dy

�
�

du

dy

�
C RH

dBx
dy

D 1

�

@p

@x
; (12.66)

y � momentum W RHBx
dBx
dy

D �1
�

@p

@y
; (12.67)

x � induction W du

dy
C 1

R�

@2Bx

@y2
D 0; (12.68)

where Re D O�UL= O� is the Reynolds number, R� D �o O�UL is the magnetic
Reynolds number, RH D B2

o=.�o O�oU 2/ is the ratio of magnetic force to dynamic
pressure, and �o is the magnetic permeability (kindly note the difference of the
latter with the nondimensional viscosity �). Now by making derivative of (12.66)
with respect to y and derivative of (12.67) with respect to x, and taking (12.68) into
account, we obtain a third order differential equation of u, which may be solved
under appropriate boundary condition. However, we would do further analysis for
constant properties, for which analytical expressions are available, and we get the
following expression:

d3u

dy3
� Rh2

du

dy
D 0: (12.69)
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Herein Rh D p
Re.RH :R� is the Hartmann number and (12.69) has the general

solution (Pai [125], Moreau [114])

u D 1

Rh
ŒA cosh.Rhy/C B sinh.Rhy/C C � (12.70)

and the special solution (between y D �1 and y D C1) for flow between stationary
parallel plates (Hartmann flow) is

u D cosh.Rh/ � cosh.Rhy/

cosh.Rh/ � 1 (12.71)

and for flow between plates moving in opposite directions (MHD Couette flow) is

u D sinh.Rhy/

sinh.Rh/
. (12.72)

For the magnetic induction the distribution of Bx depends on whether the walls
are electrically conducting or insulated; the wall magnetic induction of electrically
insulated (nonconducting) wall is Bx D 0 and for conducting wall, @Bx=@y D 0.
Finally the relation for the pressure distribution is obtained in closed form. For
insulated wall, the results are

Bx D R�

�
y C 1

2

Z 1

�1
udy �

Z 1

�1
udy

�
; (12.73)

p D �1
2

RHB
2
x C Apx C Bp: (12.74)

In the latter equation, the constant Bp is the pressure at x D 0 and Bx D 0, while
(Ap .Re) is obtained from (12.66).

12.6 MGD Power Generation or Gas Acceleration

Since the 1960s, there have been proposals for magneto-gas-dynamic power
generation cycles to top the conventional cycles. The basic idea arises out of the
thermodynamic principle that improvement in the thermodynamic efficiency in a
process depends on the ratio of the highest to the lowest temperature in the cycle.
In this section therefore, we deal with the thermodynamic aspects of electric power
generation and the irreversibilities occurring for the seeded combustion plasmas in
magneto-gas-dynamic power generators by considering the enthalpy-entropy chart
and the electrical conductivity of the plasma. For countries with large coal reserve
such power generators operating with seeded combustion products of the coal or
various coal gasification products are of interest. For operational reasons these
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Fig. 12.13 Schematic sketch of a Faraday generator

gasification products of coal, like the water gas, the Lurgi gas, the Koppers-Totzek
gas, and the producer gas, are to be preferred against direct combustion of coal, to
which various alkali seeds are added. For comparison purpose these are compared
with methane as the fuel gas. As oxidizer, in addition to the natural air, which gives
a comparatively low adiabatic flame temperature, also the oxygen enrichment is
considered. Among the gasification products of coal, the water gas, burning with
at least 50% oxygen enriched air and 1–3% seed to fuel gas mass ratio, seems to
give adequate electrical conductivity for further study of the magneto-gas-dynamic
process.

There are basically two types of magneto-gas-dynamic generators. In both of
these two types the induced voltage (due to the integrated electric field through the
gas) is the driving force for the electric current through the external electric circuit,
and hence the external electric current direction is in the opposite direction of that in
the gas. In a Faraday-type magneto-gas-dynamic channel flow, as it is well known,
a hot electrical conducting gas is allowed through a rectangular channel, in which a
magnetic field is applied in one direction and an induced electric field is generated
in the direction perpendicular to both the gas flow and the magnetic field directions
(Fig. 12.13). In the Hall-type generator the opposite electrodes are short-circuited to
enable a current flow, which interacts with the magnetic field to induce an electric
field in the flow direction (Fig. 12.14). Thus in the Hall type of generator the electric
power can be extracted from the potential difference between the first electrode and
the last electrode.

The extracted electric power per unit length of the channel in a Faraday generator
is dependent on the gas flow velocity, the externally applied magnetic induction,
and the electrical conductivity of the flowing gas. Generation of high gas velocity
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Fig. 12.14 Schematic sketch
of a Hall generator

in the magneto-gas-dynamic channel is of no consequence if during the expansion
process to generate high gas velocity the gas is cooled and the electrical conductivity
is reduced beyond an acceptable limit. For this purpose, we consider the one-
dimensional channel flow process, as shown in Fig. 12.13 for Faraday generators, in
which the gas flows in x-direction with velocity V D U and the externally applied
magnetic induction B is in the y-direction. Thus an electric field UB is induced in
the z-direction, and for short-circuited electrodes a current density j D �UB flows
in the �z-direction (the electrons move in the �z direction). In case, however, the
electrodes are not connected (open circuit), an induced electric field E is produced
in the �z-direction to retard the electron flow. Thus, if the current is allowed to
flow over a load, which is symbolically represented in Fig. 12.13 by a resistance,
the electric current density is given by the relation

j D �.UB �E/ D �UB.1 �K/; (12.75)

where the load factor

K D E

UB
(12.76)

is the ratio of the actual electric field to the maximum induced electric field, and it
is less than or equal to one. Note that K D 0 is for short-circuited electrodes and
K D 1 is if there is an open-circuit situation. The induced voltage is the line integral
inside the gas of UB.1 �K/, and the electric power extracted from the gas per unit
volume of the gas through the external circuit is then

P D j � E D �U 2B2K.1 �K/ (12.77)

which shows that the maximum extraction of the electric power is when
K D 1=2. An electromagnetodynamic volume force in x-direction,
F D j � B D �UB2K.1 �K/, will oppose the flow. Further, the state change in a



440 12 Some Practical Examples

one-dimensional magneto-gas-dynamic channel flow is obtained from the equations
of momentum and energy as (Bose [16])

�U
dU

dx
D �dp

dx
� �UB2.1 �K/; (12.78)

�U
dh

dx
D U

dp

dx
C �U 2B2.1 �K/2; and (12.79)

�U
dho

dx
D ��U 2B2K.1 �K/ D �P: (12.80)

Note that the stagnation enthalpy ho is related to the static enthalpy h and the gas
velocity U by the relation

ho D hC U 2

2
(12.81)

and, therefore, we get (12.80) by multiplying (12.78) with U and add the resultant
equation with (12.79). Further from (12.79) and the laws of thermodynamics we
write down a relation for entropy s by

T
ds

dx
D dh

dx
� 1

�

dp

dx
D �UB2.1 �K/2=� . (12.82)

From (12.80) and (12.82), we can, therefore, write

ds

dho
D K � 1

KT
(12.83)

which is dependent on K; it is 0 if externally open-circuited (K D 1) and is �1=T
if K D 1=2. This slope of the entropy change with respect to the total enthalpy
change for K D 1=2 is now plotted schematically into the enthalpy-entropy chart
(Fig. 12.15) for proper understanding of the direction in which the magneto-gas-
dynamic power generation process takes place. It can also be shown from (12.80)
and (12.83) that for both the extraction of the electric power per unit channel
volume and the reduction of the relative entropy change with respect to the total
enthalpy change (and less loss due to irreversibility in the thermodynamic sense)
the temperature must be kept as high as possible. An estimate of the change in the
thermodynamic properties can now be done on the basis of the above equations. For
an open-circuit situation, K D 1 and ds D 0, which is evident, since no current
flows. On the other hand for short circuit, K D 0 and dho D 0, and ds=dz can be
calculated from (12.82). This entropy change is always positive, as expected.

Further to the general statement made above regarding the entropy change, the
two special cases are now considered, namely U remains constant along the channel
and p remains constant. For the first case, that is, dU=dx D 0,

dp

dx
D ��UB2.1 �K/ (12.84)
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Fig. 12.15 Schematic sketch
of a Mollier (h, s) chart for
Faraday generator

and

�U
dh

dx
D ��U 2B2K.1 �K/ D �

dho

dx
(12.85)

and hence, both the static pressure and the enthalpy (both static and stagnation)
decrease in the flow direction depending on the value of the electrical conductivity,
if the other parameters are kept constant. Similarly for the case p remaining constant
in the flow direction, we get

�U
dU

dx
D ��UB2.1 �K/ (12.86)

and

�U
dh

dx
D ��U 2B2.1 �K/2 (12.87)

and hence, while the flow velocity decreases in the flow direction, the static enthalpy
increases. These two special cases for an ideal gas are shown in the schematic sketch
of an enthalpy-entropy chart in Fig. 12.16. It can be seen that the exit static pressure
is higher than the constant velocity case with the result that the plasma in the channel
has adequate electrical conductivity; the maximum kinetic energy of the flow is,
however, restricted. On the other hand for the constant velocity case, the temperature
and thus the electrical conductivity may fall fast, so that no electromagnetic
interaction is possible. Thus, the comparison brings to focus the dilemma of using
the two limiting cases for a seeded combustion plasma in a magneto-gas-dynamic
generator. While in the constant pressure case the extracted power per unit channel
length becomes smaller and smaller as U tends to zero, in the constant velocity case
this happens due to the electrical conductivity becoming smaller and smaller inspite
of decreasing pressure as the static temperature is decreased. For such studies it
is, therefore, necessary to plot the electrical conductivity into the enthalpy-entropy
chart of the flowing gas, as shown in Fig. 12.17 for equilibrium water gas (typically,
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Fig. 12.16 (h,s) chart of
equilibrium water gas burnt
with 25% oxygen enriched air

49.5% H2, 37.5% CO, 5.5% N2, and 7.0% CO2 as volume fraction) burnt with 25%
oxygen enriched air (adiabatic flame temperature 2,510 K at one bar pressure) to
which 1% potassium (per mass fraction) is added to generate sufficient electrical
conductivity in the plasma.

We would now discuss the case of the Hall generator. While in the Faraday
generator, separate and parallel load current is obtained in z-direction, in the Hall
generator the opposite electrodes in z-direction are short-circuited, but the load is
applied between the electrodes at extreme ends of the generator in x-direction. For
this let us consider full Ohm’s law equation, without the third pressure gradient
term, as follows:

j
�

D E C V � B � 1

ene
j � B: (12.88)

For the short-circuited opposite electrodes in the z-direction, there will be electric
current density, jz D �UB , and if the electrodes at the opposite ends in z-direction
are short-circuited, there will be electric current density in x-direction:

jx D � �

ene
j � B D �2

ene
UB2 D �beUB

2; (12.89)
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Fig. 12.17 Schematic sketch
of a Faraday accelerator

where be � �=.ene/ is the mobility coefficient of the electrons. Once again if
additionally the electrodes in the opposite sides in the x-direction are not closed
(open circuit), there will be an induced electric field

Ex D ��UB
2

ene
D �beUB2: (12.90)

Between these two extremes the load will be replaced by actual electric field, K D
eneEx=.�UB

2/; the electric current density in x-direction and the extracted electric
power per unit volume of the gas are

jx D �2UB2

ene
.1 �K/; (12.91)

P D �.beUB/
2.1 �K/K: (12.92)

For optimum power again K D 1=2 and further analysis follows the Faraday
generator.

Contrary to two generators discussed already, where there is no externally applied
electric field but the induced electric field depends on the extracted load, in Faraday
accelerator (Bose [20]) an external electric field is imposed in z-direction and
the external magnetic induction is imposed in �y-direction (Fig. 12.17). Hence,
an induced electric field, Eind D �UB , is obtained in �z-direction. An electric
current density in Cz-direction, j D �.E � UB/ D �UB.K � 1/, flows so long
K D E=.UB/ > 1, where K is a computed property changing from point to
point, and there is an accelerating volumetric electromagnetic force in x-direction,
�U 2B2.K � 1/. The corresponding equations of (12.78)–(12.80) remain valid and
obviously, due to flow acceleration (energy introduced), stagnation enthalpy of the
flow will increase.
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12.7 Plasma Manufacturing and Processing

High temperature gases of tens of thousand degrees Celsius have exotic properties
required for manufacturing and other processes, which are required for various
strategically important defense and aerospace applications. The present section
is only an enumeration of such processes, for which various high intensity arcs
of several megawatt power have been developed, like free burning arcs, wall-
stabilized arcs, electrode stabilized arcs, self-stabilized arcs, vortex-stabilized arcs,
etc. In addition, there are electrodeless high frequency discharges, basically of two
types.The first one, due to a capacitive coupling in a very high frequency electric
field, is mainly for nonconducting materials (dielectric heating), for example, in
a microwave oven, but also to generate plasma. The second one, due to inductive
coupling of a magnetic field, works on the principle that the required magnetic field
is produced by circulating a high frequency current through a primary winding coil
of a transformer.

Use of plasma in manufacturing processes is found when materials with very high
melting points are required. Such materials carry names like “refractory materials,”
but also as “ceramics” and, in general, are carbides, nitrides, or oxides of various
metals. These are very important materials for a number of applications in aerospace
and defense. For example, the turbine blades of jet engines which propel our jet
aircrafts are to be sprayed with such oxides, the main component of which is the
oxide of zirconium. Similarly one can use ceramic materials at the nose cone of
missiles or reentry bodies. These ceramic materials are often in fine powder form,
and they are introduced from outside to the gas coming out of an arc plasma jet
forming a spray coating of ceramic materials. It is used in a number of industrial
products as follows:

(a) In aerospace: landing gear components, gas path seals, and turbine blades
(b) In mechanics: as coating of bearing surfaces or coating hard ceramics like

chromium oxide for dry low friction surfaces, as reinforcement of bearing
surfaces on axles and shafts, as protection against corrosive fluids, coating for
conveyor belts against wear and corrosion, and coatings of high temperature
surfaces and dies

(c) In electrical engineering: for coating heaters and contacts
(d) In nuclear reactors: protection with nickel-based alloys or with special hafnium

carbide powder with large neutron cross section

Nearly all binary refracting carbides and some refractory nitrides and oxides are
synthesized in plasmas by gas phase reactions in high frequency plasma generators,
where at temperatures around 10,000–20,000 ıC, reactions are extremely fast. Some
of the reactions are as follows:

(a) Titanium microcrystals formed from a mixture of titanium tetrachloride and
hydrogen in argon plasma

(b) Aluminum nitride and silicon nitride syntheses from elements
(c) Ultrafine refractory carbides
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(d) Boronnitride with special properties produced by arc vaporization of solution
of boron oxide

(e) Silicon carbide from silicon tetrachloride and methanated silicon trichloride or
methylchlorosilane

(f) Oxides of uranium, aluminum, and zirconium
(g) Carbides of uranium, boron, niobium, tantalum, and tungsten

As an example, commercially produced silicon carbide powder, with its hard-
ness and resistance to wear between diamond and corundum and an outstanding
resistance to chemical corrosion and thermal shocks, is attractive for grinding and
cutting purposes and also used as coatings for components to handle abrasive and
corrosive products. This is an important raw material produced in a special furnace
by carbothermic reaction of silica at temperatures above 1,500 ıC with diameter
in the range of 1–85
m (one-thousandth part of 1 mm), whereas such powders
produced by plasma manufacturing processes can be one-thousandth time smaller
in diameter. For the purpose of producing refractory powders, the starting material
may be some suitable solution of a salt, which is sprayed into an atmosphere of
nitrogen, oxygen, or carbon, as the case may be. Because of the high temperature
and cooling rate downstream of a plasma jet, rapid nucleation is obtained. The
submicron products of various refractory materials thus produced can be directly
sintered in a plasma equipment at about 80% of the melting temperature.

Rapid sintering of refractory material powders with the help of plasma has
been demonstrated by various investigators. Enhanced densification up to 96%
of theoretical density value and fine grain surface are observed for oxides of
aluminum, beryllium, hafnium, and magnesium after sintering for a few minutes
and in sintering of cold-pressed oxide of uranium. One typical feature of plasma
sintering is that the run away growth, which is typical in conventional pressureless
sintering, is restrained, and thus the grain growth after plasma sintering is quite
uniform and overall fine structure is retained. Further, decomposition of metallic
ores and oxides is an important application of plasma processing, for example, in
decomposition of molybdenum sulfide to metallic molybdenum. Use of arc furnaces
for extraction of iron from iron ore and making of steel is, of course, well known.
Incidentally in Germany, a process to produce acetylene was developed, in which a
natural gas is fed directly into an electric arc struck between a graphite cathode and
a copper anode, and quenching is achieved by injecting water (or a hydrocarbon to
increase ethylene content).

Destruction of toxic wastes by allowing reaction in a plasma reactor in the
presence of either an oxidizing or a reducing agent, as the case may be, is an
important application of plasma processing, for example, in handling polychlori-
nated biphenyl wastes. Arc welding and arc cutting are two examples of the use
of plasma for fabrication of structures for a long time. Even for these, the theory
behind the mechanism of transfer of energy seems to be not well understood, which
would be necessary, for example, to minimize the electrical energy requirement
but maximize the weldment speed and spot size. Another important application of
plasma, although not as a manufacturing process, is when a plasma is generated to
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simulate very high speeds in wind tunnels (arc-heated tunnels) for testing of reentry
vehicles or very high speed flow fields. When plasma for such purposes is generated
electrically, we have a comparatively clean gas at high temperatures, which can be
easily controlled.

Diamond plating with the help of plasma in electrical discharges has an important
industrial application. Formerly high pressure presses were used to squeeze carbon
into diamonds. The presses were expensive and produced with great difficulty
industrial diamonds of less than one carat. In recent years, the scientists have
found a vapor deposition process, which is cost effective, by heating a mixture of
methane and hydrogen without air in an induction plasma reactor, where the carbon
of methane is deposited into the primary carbon of graphite or diamond structure
depending on the substrate temperature. Diamond layer is formed on substrates of
fused silica, tungsten carbide, graphite, and silicon, if the substrate temperature is
around 1,000 ıC. Diamond film produced this way is very hard and wear resistant
and has a thermal conductivity five times that of copper and an electrical insulator
property on par with the best insulators like quartz. Although generally a good
thermal insulator is also a good electrical insulator, there are a few materials like
diamond or boron nitride for which the general rule is not applicable. In addition,
contrary to the boron nitride, which is very soft, a diamond film, apart being very
hard and wear resistant, can transmit light from ultraviolet to far infrared. Thus a
coating of diamond on easily damageable optical windows made of germanium,
zinc selenide, or zinc sulfate for heat-seeking missiles is ideal when missiles move
through ice particles and rain.

12.8 Weakly Ionized Plasma

This section, as the previous one, is only a description of the problems concerning
weakly ionized plasma, but actual development of the subject should require lot
of work in the future. Some of the properties of weakly ionized plasma being
considered here are the following: pressure about 10–30 Torr, electron temperature
3–20 eV, heavy particle temperature 1,000–5,000 K. Such plasmas are generated in
a variety of ways, like glow discharge, microwave, r.f. discharge, etc. In a supersonic
flow of such a plasma, one finds the shock stand-off distance and other shock
properties to change so much that effectively sonic Mach number (ratio of local gas
speed to local sonic speed) is reduced (Bedin [7], Gloviznin et al. [68], Gorshkhov
et al. [69] Gracev et al. [70], Klinov and Mishin [84] and Mishin [103–106]); there
is also considerable reduction in the drag of the body. Currently, the anomalous
gas-dynamic behavior of such weakly ionized plasma is not well understood and
remains among the most important topics of current research. Some of the solutions,
as discussed by Tidman and Krall [154], postulate considerable charge separation
near the shock, which, according to Poisson equation, can generate strong electric
field, with the possibility of trapping of charge particles near the shock. Interested
readers may look into the references cited and other references. In the previous
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chapter, we have discussed the effect of magnetogasdynamics on the flow itself and
how the magnetic effects cause a more stable flow with enhanced critical Reynolds
number. In this chapter we discuss several applications of magnetogasdynamics.

12.9 MGD Power Generation Topping Gas-Dynamic Cycle

Since the 1960s, there have been proposals for magneto-gas-dynamic power
generation cycles to top the conventional cycles. The basic idea arises out of the
thermodynamic principle that improvement in the thermodynamic efficiency in a
process depends on the ratio of the highest to the lowest temperature in the cycle.
In this section therefore, we deal with the thermodynamic aspects of electric power
generation and the irreversibilities occurring for the seeded combustion plasmas in
magneto-gas-dynamic power generators by considering the enthalpy-entropy chart
and the electrical conductivity of the plasma. For countries with large coal reserve
such power generators operating with seeded combustion products of the coal or
various coal gasification products are of interest.

For operational reasons these gasification products of coal, like the water gas, the
Lurgi gas, the Kopper-Totzek gas, and the producer gas are to be preferred against
direct combustion of coal, to which various alkali seeds are added. For comparison
purpose these are compared with methane as the fuel gas. As oxidizer, in addition
to the natural air, which gives a comparatively low adiabatic flame temperature, also
the oxygen enrichment is considered. Among the gasification products of coal, the
water gas, burning with at least 50% oxygen enriched air and 1–3% seed to fuel gas
mass ratio, seems to give adequate electrical conductivity for further study of the
magneto-gas-dynamic process.

12.9.1 1D MGD Equation

In a Faraday generator in which the gas flows with velocity V in x-direction and
there is an externally applied magnetic induction B in y-direction, an electric field
VB is induced in the z-direction. For short-circuited electrodes a current density
j D‹VB flows in the z-direction. In case, however, the electrodes are not connected
(open circuit), an induced electric field E is produced in �z-direction. Thus if the
electric current is allowed to flow over a load, the electric current density is given
by the relation

j D �.VB � E/ D �VB.1 �K/; (12.93)

where the load factor,K D E=.VB/, is the ratio of the electric field to the maximum
induced electric field and the electric power density (PWD) extracted per unit
volume of the gas through the external circuit is then
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P D j �E D �V 2B2K.1 �K/: (12.94)

One-dimensional steady flow equations for continuity, momentum, energy, and
entropy in a channel flow with variable cross section, A(x), are

d�

�
C dV

V
C dA

A
D 0; (12.95)

�V dV D �dp � �VB2.1 �K/dx; (12.96)

�V dh D V dp C �V 2B2.1 �K/2dx; (12.97)

�V dho D ��V 2B2K.1 �K/dx D �P dx; (12.98)

T ds D dh � 1

�
dp D �

�
VB2.1 �K/2dx; (12.99)

where h and ho are static and stagnation enthalpy, respectively, and P is the
volumetric energy extraction (Wm�3). Thus it is seen that if energy is extracted
(electric generator: P > 0), the change of stagnation enthalpy is negative, but if
external energy is added (flow accelerator: P < 0), then the change of stagnation
enthalpy is positive, although such changes in V and p are not obvious. However,
from standard gas-dynamic procedure, these changes can be determined. The
change in entropy in flow direction is always positive (note: the friction effects have
not been considered in developing these equations).

In order to understand the flow further, we consider an ideal plasma, in which
the specific heat, cp , and electrical conductivity, � , are kept constant, and the ideal
state gas law, p D �=.RT /, is valid. Accordingly we can define the specific
heat ratio, � D cp=.cp � R/, and the local Mach number, M , as a function
of the local stagnation and static temperature and pressure. We can, thus, derive
the following set of equations by standard gas-dynamic procedure for the change
of steady flow velocity, pressure, density, temperature, Mach number, stagnation
temperature, stagnation pressure, and entropy:

dV

V
D 1

M2 � 1

"
dA

A
� .�.1 �K/CK

�

�VB2

p
.1 �K/dx

#
;

d�

�
D 1

M2 � 1

"
�M2 dA

A
C .�.1 �K/CK

�

�VB2

p
.1 �K/dx

#
;

dp

p
D 1

M2 � 1

"
��M2 dA

A
C Œ1C .� � 1/.1 �K/M2�

�VB2

p
.1 �K/dx
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dT
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D 1

M2 � 1
�
�.� � 1/M2 dA
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C .� � 1/Œ1C �.1 �K/M2�

�

�VB2

p
.1 �K/dx;
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dM
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D 1
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2
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D �
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1C 1
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#
�VB2

p
.1 �K/dx;

ds

R
D �VB2

p
.1 �K/dx:

It is shown once again that the stagnation temperature and stagnation pressure
always decrease but the entropy increases in the flow direction independent of the
distribution of the cross section. However, the flow velocity, static pressure, density,
static temperature, and Mach number are dependent on the cross-section distribution
and the parameter � D �VB2.1 � K/=p, with the unit of inverse of the length,
and local Mach number; for constant channel cross section, dA D 0, and Faraday
generator (K < 1), these change according to the following scheme:

M < 1 W dp < 0; dV > 0; d� < 0; dT < 0; dM > 0 and

M > 1 W dp > 0; dV < 0; d� > 0; dT > 0; dM < 0;

and for constant cross-section channel and subsonic entry a choking will occur at
the exit and there will be feedback upstream, but for supersonic inlet there has to be
a shock to make the flow first subsonic and then accelerating it to have a choking
at the exit. It is, therefore, necessary to determine the flow Mach number at the
entrance of a Faraday generator channel. While the exit flow conditions are usually
determined by extrapolation, at the inlet the flow conditions, except the stagnation
pressure and temperature, are to be changed if the inlet is subsonic.

It is important to argue that the parameter � determines the length of a constant
area channel for flow acceleration and the change in all flow properties before
possible choking, and in such a case one has to reduce its value to prevent choking in
the entire length of the channel; this is, therefore, an important criterion especially
for a subsonic flow for fixing the boundary conditions. It is obvious that the inlet
flow velocity and static temperature, for given stagnation pressure and stagnation
temperature, are important to determine the electrical conductivity distribution in
the flow direction in a channel. Such analysis was done for stagnation pressure
po D 20 bar, two stagnation temperatures T o D 12;000K and 14,000 K for
equilibrium argon plasma, and various inlet flow velocities between 100ms�1 and
2;000ms�1 to determine the inlet static temperature static pressure and the electrical
conductivity, and the respective results are shown for argon plasma in Fig. 12.18.
The goals in these at the inlet are: (a) the electrical conductivity in the entire
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Fig. 12.18 Inlet pressures,
temperatures, Mach number
and electrical conductivity as
function of inlet velocity [26]

channel needs to be as high as possible and (b) the flow velocity need be as high as
possible. These two requirements are somewhat contradictory, since for large inlet
velocity, the inlet electrical conductivity may also be small, decreasing further in the
MHD channel. Considering these requirements we take the nominal inlet velocity
as 2,000 m/s, with two stagnation temperatures, namely 14,000 and 12,000 K. The
stagnation pressure is kept at 20 bar in both the cases. We can show, therefore,
that the inlet Mach number is mostly subsonic in the stagnation temperature range
between 12,000 and 14,000 K at fairly large inlet velocity considered. However, to
avoid choking condition in a channel of constant cross section it is necessary to start
with a comparatively small inlet flow velocity (small inlet Mach number), which
will increase to local sonic speed depending on the product of � and the length of
the tube. For testing this, we write down first, for 1D flow analysis in a channel flow
of constant cross-section A, the equations of continuity, momentum, and energy:

�t C .�u/x D 0

.�u/t C �
�u2 C p

�
x

C �uB2.1 �K/ D 0

.�eo/t C .�uho/x C �.uB/2K.1 �K/ D 0
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Fig. 12.19 Temperatures,
pressures, velocity, and Mach
number vs. axial length [26]

and solve these. In order to avoid choking in the channel, the effects of the inlet flow
velocity, inlet stagnation temperature, and magnetic induction were studied and after
some iteration, the following variables were selected: length of the channel D 0:4m,
inlet stagnation pressure D 20 bar, inlet stagnation temperature D 6;000K, inlet
flow velocity D 20ms�1, inlet magnetic induction D 2,000 G, and load factor
K D 0:5. CFL selected was 0.2 and two time steps of 40,000 and 60,000 were taken
to verify that the dependent variables had practically converged. In order to have
constant external electric field the product of axial length and magnetic induction
was kept constant at 4Vm�1, so that the external electric field was 2 V/m. The flow
Mach number in the inlet and exit plane was 0.0142 and 0.769, respectively. Results
of calculation have been plotted in Figs. 12.19 and 12.20 after nondimensionalizing
all values. For this purpose, the axial lengths were divided by maximum channel
length, the pressures were divided by inlet stagnation pressure, the temperatures
by inlet stagnation temperature, flow velocity by maximum velocity 949ms�1,
electrical conductivity by inlet value 17:5A.Vm/�1, power density by maximum
(inlet) value 70:1Wm�3, and current density by maximum (inlet) value 35:1Am�2.
The results show obviously that the maximum power extraction is only in initial
one-fifth of the channel length.

The disadvantages of an 1D analysis are now obvious. Firstly the electric field
computed is continuous and does not take into account the existence of multiple
segmented electrodes, and secondly, the conditions for divergence-free current and
field (both electric and magnetic) fields are not considered. Hence a 3D analysis is
employed and described in Sect. 12.9.2 below.



452 12 Some Practical Examples

Fig. 12.20 Normalized
electric field, PWD, current
density, electrical
conductivity, and external
magnetic induction vs.
reduced axial length [26]

12.9.2 Two Basic MGD Generators

As explained earlier in Sect. 12.6, there are basically two types of magnetogas-
dynamic generators. In both of these two types the induced voltage (due to the
integrated electric field through the gas) is the driving force for the electric current
through the external electric circuit, and hence the external electric current direction
is in the opposite direction of that in the gas. In a Faraday-type magneto-gas-
dynamic channel flow, as it is well known, a hot electrical conducting gas is allowed
through a rectangular channel, in which a magnetic field is applied in one direction
and an induced electric field is generated in the direction perpendicular to both the
gas flow and the magnetic field directions (Fig. 12.13). In the Hall-type generator the
opposite electrodes are short-circuited to enable a current flow, which interacts with
the magnetic field to induce an electric field in the flow direction (Fig. 12.14). Thus
in the Hall type of generator the electric power can be extracted from the potential
difference between the first electrode and the last electrode.

The extracted electric power per unit length of the channel in a Faraday generator
is dependent on the gas flow velocity, the externally applied magnetic induction,
and the electrical conductivity of the flowing gas. Generation of high gas velocity
in the magneto-gas-dynamic channel is of no consequence if during the expansion
process to generate high gas velocity the gas is cooled and the electrical conductivity
is reduced beyond an acceptable limit. For this purpose, we consider the one-
dimensional channel flow process, as shown in Fig. 12.13 for Faraday generators,
in which the gas flows in x-direction with velocity V D U and the externally
applied magnetic induction B is in the y-direction. Thus an electric field UB is
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induced in the �z-direction, and for short-circuited electrodes a current density
j D �UB flows in the �z-direction (the electrons move in the �z direction). In case,
however, the electrodes are not connected (open circuit), an induced electric field E
is produced in the �z direction to retard the electron flow. Thus, if the current is
allowed to flow over a load, which is symbolically represented in Fig. 12.13 by a
resistance, the electric current density is given by the relation

j D �.UB �E/ D �UB.1 �K/; (12.100)

where the load factor

K D E

UB
(12.101)

is the ratio of the actual electric field to the maximum induced electric field, and it
is less than or equal to one. Note that K D 0 is for short-circuited electrodes and
K D 1 is if there is an open-circuit situation. The induced voltage is the line integral
inside the gas of UB.1 �K/ and the electric power extracted from the gas per unit
volume of the gas through the external circuit is then

P D j � E D �U 2B2K.1 �K/ (12.102)

which shows that the maximum extraction of the electric power is when K D 1=2.
An electromagnetodynamic volume force in x-direction, F D j � B D
�UB2K.1�K/, will oppose the flow. Further, the state change in a one-dimensional
magneto-gas-dynamic channel flow is obtained from the equations of momentum
and energy as (Bose [16])

�U
dU

dx
D �dp

dx
� �UB2.1 �K/; (12.103)

�U
dh

dx
D U

dp

dx
C �U 2B2.1 �K/2; and (12.104)

�U
dho

dx
D ��U 2B2K.1 �K/ D �P: (12.105)

Note that the stagnation enthalpy ho is related to the static enthalpy h and the gas
velocity U by the relation

ho D hC U 2

2
(12.106)

and, therefore, we get (12.105) by multiplying (12.103) withU and add the resultant
equation with (12.104). Further from (12.104) and the laws of thermodynamics we
write down a relation for entropy s by

T
ds

dx
D dh

dx
� 1

�

dp

dx
D �UB2.1 �K/2=� . (12.107)
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From (12.105) and (12.107), we can, therefore, write

ds

dho
D K � 1

KT
(12.108)

which is dependent on K; it is 0 if externally open-circuited (K D 1) and is
�1=T if K D 1=2. This slope of the entropy change with respect to the total
enthalpy change for K D 1=2 is now plotted schematically into the enthalpy-
entropy chart (Fig. 12.16) for proper understanding of the direction in which the
magnetogasdynamic power generation process takes place. It can also be shown
from (12.105) and (12.108) that for both the extraction of the electric power per
unit channel volume and the reduction of the relative entropy change with respect to
the total enthalpy change (and less loss due to irreversibility in the thermodynamic
sense), the temperature must be kept as high as possible.

An estimate of the change in the thermodynamic properties can now be done on
the basis of the above equations. For an open-circuit situation, K D 1 and ds D 0,
which is evident, since no current flows. On the other hand, for short circuit,K D 0

and dho D 0, and ds=dx can be calculated from (12.107). This entropy change is
always positive, as expected, and as is explained in Fig. 12.15.

Further to the general statement made above regarding the entropy change, the
two special cases are now considered, namely U remains constant along the channel
and p remains constant. For the first case, that is, dU=dx D 0,

dp

dx
D ��UB2.1 �K/ (12.109)

and

�U
dh

dx
D ��U 2B2K.1 �K/ D �

dho

dx
(12.110)

and hence, both the static pressure and the enthalpy (both static and stagnation)
decrease in the flow direction depending on the value of the electrical conductivity,
if the other parameters are kept constant. Similarly for the case p remaining constant
in the flow direction, we get

�U
dU

dx
D ��UB2.1 �K/ (12.111)

and

�U
dh

dx
D ��U 2B2.1 �K/2 (12.112)

and hence, while the flow velocity decreases in the flow direction, the static enthalpy
increases. These two special cases for an ideal gas are shown in the schematic sketch
of an enthalpy-entropy chart in Fig. 12.16. It can be seen that the exit static pressure
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is higher than the constant velocity case with the result that the plasma in the channel
has adequate electrical conductivity; the maximum kinetic energy of the flow is,
however, restricted. On the other hand for the constant velocity case, the temperature
and thus the electrical conductivity may fall fast, so that no electromagnetic
interaction is possible. Thus the comparison brings to focus the dilemma of using
the two limiting cases for a seeded combustion plasma in a magneto-gas-dynamic
generator. While in the constant pressure case the extracted power per unit channel
length becomes smaller and smaller as U tends to zero, in the constant velocity case
this happens due to the electrical conductivity becoming smaller and smaller inspite
of decreasing pressure as the static temperature is decreased. For such studies it
is, therefore, necessary to plot the electrical conductivity into the enthalpy-entropy
chart of the flowing gas, as shown in Fig. 12.16 for equilibrium water gas (typically,
49.5% H2, 37.5% CO, 5.5% N2, and 7.0% CO2 as volume fraction) burnt with 25%
oxygen enriched air (adiabatic flame temperature 2,510 K at one bar pressure) to
which 1% potassium (per mass fraction) is added to generate sufficient electrical
conductivity in the plasma.

We would now discuss the case of the Hall generator. While in the Faraday
generator, separate and parallel load current is obtained in z-direction, in the Hall
generator the opposite electrodes in z-direction are short-circuited, but the load is
applied between the electrodes at extreme ends of the generator in x-direction. For
this let us consider full Ohm’s law equation, without the third pressure gradient
term, as follows:

j
�

D E C V � B � 1

ene
j � B: (12.113)

For the short-circuited opposite electrodes in the z-direction, there will be electric
current density, jz D �UB , and if the electrodes at the opposite ends in z-direction
are short-circuited, there will be electric current density in x-direction:

jx D � �

ene
j � B D �2

ene
UB2 D �beUB

2; (12.114)

where be � �=.ene/ is the mobility coefficient of the electrons. Once again if
additionally the electrodes in the opposite sides in the x-direction are not closed
(open circuit), there will be an induced electric field

Ex D ��UB
2

ene
D �beUB2: (12.115)

Between these two extremes the load will be replaced by actual electric field, K D
eneEx=.�UB

2/; the electric current density in x-direction and the extracted electric
power per unit volume of the gas are
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jx D �2UB2

ene
.1 �K/; (12.116)

P D �.beUB/
2.1 �K/K: (12.117)

For optimum power again K D 1=2 and further analysis follows the Faraday
generator.

Contrary to two generators discussed already, where there is no externally applied
electric field but the induced electric field depends on the extracted load, in Faraday
accelerator (Bose [20]) an external electric field is imposed in z-direction and
the external magnetic induction is imposed in �y-direction (Fig. 12.17). Hence,
an induced electric field, Eind D �UB , is obtained in �z-direction. An electric
current density in Cz-direction, j D �.E � UB/ D �UB.K � 1/, flows so long
K D E=.UB/ > 1, where K is a computed property changing from point to
point, and there is an accelerating volumetric electromagnetic force in x-direction,
�U 2B2.K � 1/. The corresponding equations of (12.103)–(12.105) remain valid
and obviously, due to flow acceleration (energy introduced), stagnation enthalpy of
the flow will increase.

12.10 Hall and Ion Thruster

In this section one-dimensional calculation procedure of an ion thruster for pure
noble gases for a steady case by an iterative procedure is discussed. First-order
differential equations are solved from the end where the values are prescribed.
Initial profiles of number density, temperature, and velocity of various charged
and neutral particles for argon and xenon gas, electric potential distribution inside
thruster tube, and the radial magnetic induction are prescribed which are iterated,
and some parametric values considered are anode potential, gas mass flow rate,
anode temperature, tube exit electron temperature, and tube geometry. Conservation
of gas mass flow rate and (diffusive) discharge current is maintained, the latter to
determine the electric field distribution within the prescribed anode potential. Role
of the reverse reaction is examined and numerical results are discussed [23].

For propulsion of small satellites, both ion and Hall thrusters have been consid-
ered, and the latter is the subject of the present discussion first. These thrusters in
kW class are used for station keeping in orbit, and bigger thrusters in 10 kW class
are supposed to be used for orbit insertion, repositioning, and primary propulsion.
A 10 kW Hall thruster built by TRW had the efficiency of 65% and a specific thrust
of 2,200 s.

A Hall thruster is an electric propulsion device, in which the ions are electrically
accelerated in axial direction, but the electrons are trapped in the (radial) magnetic
field. Such devices were proposed in the 1960s [140, 143], and since 1971 the
Russians have flown many thrusters in their spacecrafts based on the Hall thruster
technology to provide thrust in the range 5–35 mN with 0.5–2.0 mg/s xenon flow
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Fig. 12.21 Schematic sketch
of (a) ion thruster and (b)
magnetic induction
distribution

rate through the anode and a small fraction through the cathode, and 50–840 W
of power, corresponding to specific thrust between 800 and 1,750 s and overall
efficiency between 0.3 and 0.6; the discharge current changed from 0.5 to 2 A and
the discharge voltage changed between 100 and 320 V; the chamber pressure is a
small fraction of a Torr. In such a device, it is necessary to have the Larmor radius
of the ions much larger than the length of the acceleration channel, so that the ions
can accelerate in the axial direction without getting affected by the magnetic field.
On the other hand the electrons, which are emitted by the cathode, must have its
Larmor radius much smaller, and thus they get trapped.

Overall schematic geometry and typical (radial) magnetic induction distribution
are shown in Fig. 12.21 respectively, in which there is an axial electric field and
radial magnetic field, the latter having a maximum value near the exit plane. The
gas is at a highly nonequilibrium state (both chemically and thermally) and also
at a very low pressure. The crossed electromagnetic fields produce a net current
in the BXE direction (azimuthal into the paper) known as the Hall current, while
the electrons, which move initially from the cathode to the anode, are “trapped”
inside the tube since the Larmor (or cyclotron) radius is very small, but they
pick up energy in the electric field. However, the ions, which are produced due
to collision between the electrons and neutrals introduced through the anode, are
accelerated in the electric field; the neutrals are also accelerated due to collision
with ions. The electrons emanating from the (heated) cathode generally move to the
anode, although some of them may move in the other direction in order to maintain
overall charge neutrality and the continuity of the discharge current in the discharge
annulus. The ion velocity increases strongly all the way from the anode to the
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cathode. The ion current (given by convective ion current) to the discharge current
ratio starts from a very small value near the anode, increasing strongly (especially
for positive gradient of Br) and decreasing, at the thruster exit to a smaller value; the
electron current to the discharge current ratio is the complement of the ion current
ratio.

While many papers dealing with theoretical and experimental aspects of the
hall thruster have been published (for detailed list, see [23]), a cohesive theory,
even in one dimension, and standard experimental data are still to come. While
the present study is based somewhat on [152] and [4], there are several important
differences. Firstly in the present case the electric field is determined from the
condition of conservation of discharge current in the annulus, while [93] uses an
equation of electric field without making sufficient check on the conservation of
either the electric current or the mass flow rate. The resultant determination of the
electron (diffusive) velocity in the present case is, therefore, straightforward. Further
the energy equations of the electrons and heavies contain energy exchange term
due to collision and allow determination of both electron and heavies temperature
distribution. The electrons flow from the cathode to the anode and the electron
temperature increases all the way from the cathode (at about 1,000 K) to a very large
value at the anode. Finally we consider one-dimensional, steady-state case, where
the equations are of first order and integration can be done as initial value problem
by a relaxation method without any instability; this last issue of stable solution is one
big highlight of the present analysis. The numerical results for various gases, like
argon and xenon, are discussed and the role of the reverse reaction is highlighted.

12.10.1 Theory

We assume the local quasi-neutrality and write down the following equations:

Continuity Equation for Atoms:

@na

@t
C @

@z
.naua/ D �S C ne�w

D �ne
h
Qea

�
k0
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rneni

	
� �w
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D �S 0 �m�3s�1� :

(12.118)

Continuity Equation for Ions:

@ni
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.niui / D S � ne�w

D ne

h
Qea

�
k0
f na � k0

rneni

	
� �w
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(12.119)
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In above, �w, with the unit of frequency, takes care of radial diffusion of the
electrons and ions to the (nonconducting) wall and recombines there to produce
neutrals. For its estimation, the expression given in [114] is

�w D 2cBohm

�
Sz;

where � is the gap, S.z/ < 1 is an axial shape factor to take care of less than
maximum electron flux to the wall, and the Bohm velocity is given by the relation

cBohm D
s
kBTe

Mi

�
ms�1� : (12.120)

Further in (12.118) the primed forward and reverse reaction rate coefficients are
those the same but divided by the collision cross section for neutral-electron
collision and are given by the expressions

k0
f D kf =Qen D ˛e exp�Ei=.kBTe/ �ms�1� ;
k0
r D kr

Kn

�
m4 s�1� ;

Kn D CT 3=2e exp �Ei=.kBTe/
�
ms�1� ;

where � is the steric factor and Ei is the ionization energy. In [93] the
ionization rate relation “is derived assuming a Maxwellian electron distribution,
a non-elastic ionization cross-section : : :, and integrating over all energies.”
A comparison of the ionization rate relation of [93] with the above forward rate
expression gives the value of � at different temperatures; an average value of
� D 0:1 has been used in this paper. The constant C [m�3K�1:5] has the value
2:408 � 1021 for He and 1:92655 � 1022 for other noble gases. By evaluating
the three terms in the right-hand side of (12.118) and (12.119), it was found that
for small gap the term due to collision frequency to the wall can overwhelm the
other two terms, since here a diffusive flux term for a multidimensional problem
is replaced by electron free-fall flux term. Hence, for one-dimensional analysis,
without better knowledge of the physics of the problem, the collision frequency
term is dropped. Further in [4], only the forward reaction was considered
and the forward reaction coefficient relation was modified by multiplying the
nondimensional relation with

�
1C 2kBTe

Ei

�
:

Incidentally we tried both the forward reaction case and the reverse reaction
case. For steady-state case, (12.118) and (12.119) can be integrated easily in
one-dimensional space for given velocity distribution determined from the two
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momentum equations of atom and ions (the electron number density is obtained
by assuming quasi-neutrality), from the (known) boundary value; these are
obtained for both neutrals and ions for specified ratio at the anode, for example,
.ni=na/Anode D 0:007.

Momentum Equation for Atoms: (We neglect pressure gradient term and interac-
tion with electrons and assume the mass of atoms is equal to the mass of ions):

Mana
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dt
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0
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where, from (12.119), the relative speed is the kinetic speed of the ions:

gia D ca D
s
8kBTh

Ma

;ms�1:

Momentum Equation for Ions: (We neglect pressure gradient term and interaction
with electrons and assume the mass of atoms is equal to the mass of ions):
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which reduces to
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�
D .ui � ua/ nigiaQai C eniEz: (12.122)

The initial velocities of atoms and ions are put equal to the sonic speed of atoms at
the anode surface temperature. The atom-ion collision cross section and relative
speed,Qai and gai , are obtained from the heavy particle temperature distribution
(either prescribed or computed).

Electric Field Equation: We write down first the definition of the (diffusive)
electric current as

Id

A
D j D ene .be C bi /Ez:

Assuming the conservation of the electric current we integrate it from cathode
to anode and by putting the two boundary conditions for potential (at cathode,
' D 0 and at anode ' D 'Anode we get the relations for (discharge) electric
current density and potential distribution as follows:



12.10 Hall and Ion Thruster 461
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The electric field can now be obtained from the gradient of potential, which is
positive in the entire field between the electrodes, and the electron drift velocity
is given by the relation

� ue D be

�
Ez C kB

ene

d

dz
.neTe/

�
(12.123)

which is obtained also from the electron momentum equation.
Energy Equations for Heavies and Electrons: These equations are written for

steady state and by neglecting the pressure gradient term, in addition to neglect-
ing the effect of electric field on the energy equation for heavies. The resultant
equations are now
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For evaluation of the numerical data, the thrust, electric power, propellant
utilization efficiency, and specific thrust are defined as follows:

Thrust D AMa

�
nau2a C niu

2
i

�
exit ŒN �I

Electric Power D Id'AnodeŒW �I
Propellant utilization efficiency D MiA.niui /exit= PmI

Specific thrust D Thrust= Pm:

12.10.2 Numerical Procedure and Results

Equations (12.118)–(12.125) are first-order differential equations which are solved
as initial boundary value problem, while (12.123) is solved to obtain the electron
(drift) velocity. For two typical generic cases the geometry, magnetic induction dis-
tribution parameters, and initial values are given in Table 12.3 and the expressions to
compute the properties are given in Sect. 12.1, in which case A is for a comparatively
lower power rating and case B is for a higher power rating. Initially the number
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Table 12.3 Geometry and initial values for two cases

Description Case A Case B

Gas Ar Xe

Geometry
Tube length [m] 0.008 0.130
Annulus outer diameter [m] 0.024 0.156
Annulus inner diameter [m] 0.020 0.090
Distance anode to cathode [m] 0.016 0.140
Number of grid points 81 141

Magnetic induction parameters
BIN [Vsm�2] 0.093 0.002
BMAX [Vsm�2] 0.105 0.003
BEX [Vsm�2] 0.100 0.0025
�ZBMX [m] 0.007 0.110

Flow parameters
Overall mass flow rate [kgs�1] 8:283� 10�7 9:0� 10�7

Anode surface temperature (estimation)[K] 1,000 1,000
Cathode elec. temperature (estimation)[K] 11,600 11,600
Anode potential [V] 180 200–500
Anode .ni =na/ ratio 0.007 0.007
Reaction steric factor 0.1 0.1

Table 12.4 Effect of grid points for argon with heavies
temperature change and reverse reaction allowed

Number of Grid Points

Variables 41 81 101

Number of reaction 185 724 2,025
Te;anodeŒK� 8.591e5 8.524e5 8.513e5
Th;cathodeŒK� 1.141e5 1.159e5 1.160e5
ua;cathodeŒms�1� 670.4 670.8 670.9
ui;cathodeŒms�1� 26,464 26,340 26,320
na;cathodeŒm�3� 1.524e20 1.322e20 1.322e20
ni;cathodeŒm�3� 6.787e16 6.594e16 6.564e16

densities are kept constant and variables like electron and ion temperature, ion and
atom velocity, and electric potential are distributed linearly between the electrodes.
In order to examine the grid dependency in case A, different grid numbers were
considered; for example, for argon grid numbers considered were 41, 81, and 101.
Sample results are given in Table 12.4. Beyond grid number of 101 for argon for
the present geometry, calculations were very unsteady. Computation was carried
out till the change of atom velocity was less than 0.001. Mass flow rate in the
entire thruster was examined and in a stable operation mass flow rate remained
practically constant. In order to examine the invariance of results in different grids
several variables were examined and Figs. 12.22 and 12.23 show typical results for
the electron temperature in argon plasma at two different grid numbers. Thus we
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Fig. 12.22 Electron
temperature distribution for
argon at two different
numbers and points

Fig. 12.23 Electric field
distribution for argon at two
different numbers and points

conclude that the number of grids has a very marginal effect, and for xenon plasma
(case B) we considered uniformly a grid number of 141.

Some of the authors have not given importance to change in the heavy particle
temperature by prescribing (linear and fixed) temperature distribution. We wanted to
examine this. Some authors have also considered forward reaction only. However,
it is conjectured that consideration of reverse reaction may have significant effect
on the performance. When reverse reaction is considered, it is presumed that it
takes place at a very fast rate, so that chemical equilibrium is reached very fast.
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Fig. 12.24 Argon atom
number density for four
subcases (a)–(d)

At high electron temperatures it means that there is considerable high number
density of atoms but comparatively less ions, which are further depleted as the
ions are accelerated in the ion thruster tube also. The question is, therefore, if we
could consider the other limiting situation when the reverse reaction is completely
switched off.

In order to study these issues for each of these cases, the following four sets of
subcases were studied:

(a) Heavies temperature is not iterated and reverse reaction allowed.
(b) Heavies temperature change and reverse reaction allowed.
(c) Heavies temperature change and reverse reaction not allowed.
(d) Heavies temperature change allowed, reverse reaction not allowed.

Figures 12.24 and 12.25 show, as examples, the argon atom and ion number density
profiles for the above four subcases to show considerable difference depending
on whether the reverse reaction is considered or not. Also shown in Table 12.5
are the results of typical variables and performance parameters for argon, from
which it appears that if the reverse reaction is not allowed, there can be a
considerable improvement in propellant utilization efficiency and electric power,
and the numerical results are more toward the experimental results. Not shown here
is the numerical instability we encountered for xenon plasma, especially at higher
anode potentials, if the reverse reaction is completely disabled. Thus the actual
situation is somewhat in between and further work will be necessary in the future.

However, for the present we consider further the subcase (b) only, for which
a comparative summary of results of calculation for argon and xenon plasma at
respective anode voltage are given in Table 12.6. In addition we have shown, for
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Fig. 12.25 Argon ion
number density for four
subcases (a)–(d)

Table 12.5 Results for argon for four subcases (a)–(d)

Case A, subcases (a)–(d)

Variables a b c d

Number of iteration 672 724 453 604
Te;anode [K] 8.591e5 8.524e5 8.366e5 8.572e5
Th;cathode [K] 1.160e5 1.159e5 1.160e5 1.138e5
ua;cathodeŒms�1� 614.1 621.1 774.7 811.0
ui;cathodeŒms�1� 15,540 16,340 21,490 21,590
na;cathodeŒm�3� 1.451e20 1.435e20 9.518e19 9.147e19
ni;cathodeŒm�3� 8.217e16 7.833e16 7.752e17 7.510e17
Power [W] 46.48 39.07 305.7 271.8
Specific thrust [ms�1] 8,24.9 843.7 4,592 4,538
Propellant utilization efficiency 0.0141 0.0142 0.1842 0.1794
Thermodynamic efficiency 0.0943 0.1096 0.1155 0.1277

xenon plasma, the ion number density and electron temperature distribution for
different anode potentials (Figs. 12.26, 12.27, 12.28, 12.29, 12.30, 12.31).

12.10.3 Conclusion

A one-dimensional ion thruster has been analyzed for argon and xenon plasma for
different conditions, and the following conclusions can be drawn:

1. The steady-state relaxation method is stable and gives reasonable results within
the mass flow rate, geometry, number of grid points, and anode potential range
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Table 12.6 Comparative
summary of results of
calculation for argon and
xenon

Description Argon Xenon

Number of grid points 81 141
Anode voltage [V] 180 500
Te;anode [K] 8.524e5 2.339e6
Th;cathode [K] 1.142e5 1.160e5
ua;cathodeŒms�1� 621.1 329.1
ui;cathodeŒms�1� 16,340 24,810
na;cathodeŒm�3� 1.455e20 9.772e17
ni;cathodeŒm�3� 7.833e16 9.577e13
Discharge current Id [A] 0.2171 0.7659
Thrust [mN] 0.6989 0.7458
Specific thrust [ms�1] 843.7 508.6
Power [W] 39.07 383.0
Propellant utilization efficiency 0.0142 0.007

Fig. 12.26 Electric field
distribution for xenon for
different anode potentials

considered. For any given geometry, increasing any of the other variables may
lead to unstable and oscillatory solution behavior for which time-dependent
solutions have to be considered.

2. The reverse reaction has an important role to play, and there is a need of
examination of this further along with the necessity of a stable solution.

3. In order to design an efficient ion thruster in terms of thermodynamic efficient
and specific thrust it is necessary to have a high ion to atom mass-flux ratio and
ion velocity at the thruster exit, which further depend on the rate of ion formation,
anode potential, and the length of the ionization chamber of the thruster.
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Fig. 12.27 Total current for
xenon for different anode
potentials

Fig. 12.28 Xenon ion
number density for different
anode potentials

12.10.4 Property Calculations

(a) Collision cross sections: computed as described in [17].
(b) Mean kinetic speed of j th species:

cj D
q
8kBTj =.�Mj /ms�1:
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Fig. 12.29 Potential
distribution for xenon at
different anode potentials

Fig. 12.30 Electron
temperature distribution for
xenon at different anode
potentials

(c) Relative speed:

gaaDcaIgiiDmci I cejDceIgaiD1

6

�
jcaCci jCjca�ci jC4

q
c2aCc2i

�
ms�1:

(d) Collision frequency of a single electron or ion:

�j D nk
X
k

gjkQjk; s
�1:
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(e) Binary volumetric collision frequency:

� 0
j D nj

X
k

gjkQjk;m
�3s�1:

(f) Electron cyclotron frequency [s�1] and frequency ratio:

!ce D eB=MeI � D !ce=�e:

(g) Mobility coefficients of ions and electrons:

bi D e= .Mi�i / I be D e=
�
Me�e

�
1C x2i

��
:

(h) Electrical conductivity:

� D e .nebe C nibi / : (12.126)

12.11 Faraday Generator: 3D Analysis

An MHD channel flow (40 � 5 � 5 cm) is now being considered [26], in which
the main flow vector V.u; v;w/ is in x-direction, to which an external magnetic
induction,Bo.x/, is applied (Fig. 12.31). Depending on the load factorK, an electric
field Ez D ŰKuBo will be induced in the z-direction, an integral value of which in
the z-direction will determine the required anode potential necessary for our calcu-
lations (K D 0:5, Ez D �2 [Vm�1] were selected). The inlet values are stagnation
temperature D 6;000K, stagnation pressure D 20 bar, and flow velocity D 20

[ms�1], and inlet magnetic induction is 2,000 G D 0:2 [Vsm�2].This comparatively

Fig. 12.31 Faraday
generator channel flow
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small value of inlet flow velocity and magnetic induction is to insure that the exit
flow condition will remain well inside the subsonic region. Thus the product of the
flow velocity and magnetic induction gives an induced electric field of 4 [Vm�1],
and keeping the load factor as 0.5, the externally applied electric field is 2Vm�1
(constant potential applied between the anode and the cathode for the channel height
of 0.05 m is 0.1 V).

The gas-dynamic equations are written for inviscid, non-heat-conducting fluid as
follows:

@�

@t
C r � .�V/ D 0; (12.127)

@.�V /

@t
C r � .�VV/ D �rp C r � � C j � B; (12.128)

@

@t
.�ho � p/C r � .�hoV/ D j � E: (12.129)

In addition we need to write Ohm’s law

j D �.E C V � B/ D �.E C Eind/ ! jz D �uBo.1 �K/ (12.130)

and the Maxwell equations under quasi-neutral condition [20]:

r � j D 0;r � B D 0;r � B D �ej;r � E D �@B=@t; and r � E D 0;

where �e is the magnetic permeability, and the equations have to be solved under
appropriate boundary conditions. Among the five sub-equations in the preceding
equation, the fifth sub-equation is actually derived from the original four Maxwell
equations. Now taking the curl of the first sub-equation and taking the next three
sub-equations into account, we obtain the magnetic induction equation

@B
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C 1

��e
Œr � .r � B/� � r � .V � B/ D 0

@B
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� 1

��e
r 2B � .B � r/V C .V � r/B C B.r � V / D 0 (12.131)

which can be written for three coordinate directions or in vector form as it is. We
write the magnetic induction as the sum of an externally applied magnetic induction
B.0; Boy; 0/ and an induced magnetic induction b.bx; by; bz/, and (12.131) becomes

@b
@t

C .V � r/b D 1

��e
r 2b C .Bo C b/r � V C Œ.Bo C b/��V � B.r � V /Bo� D 0:

(12.132)

Neglecting the time-dependent term in (12.132), we rewrite it for the three
components of the Cartesian coordinate as

r 2b D ��e Œ.V � r/b � .Bo C b/r � V � Œ.Bo C b/��V C .V � r/Bo� : (12.133)
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It is in the form of the Poisson equation for each of the three components, and they
are solved under the boundary conditions as follows: (a) normal component to the
wall is put equal to zero, and (b) the tangential component D 0 if insulated wall and
gradient of tangential component D 0 if conducting wall.

Now, we have to make sure that the electric current density and the magnetic
induction are divergence-free. The first, because of the channel flow, will have
both electrical conducting and nonconducting boundaries, both the electric current
density and externally applied electric field will get perturbed (designated by putting
prime); and (12.130) now becomes

j C j0 D �.E C E0 C Eind/ D �.Ec C Eind/: (12.134)

We have to satisfy the condition that r � .j C j0/ D 0. Let the perturbed current
density be defined in terms of a “perturbed current potential”, j0 D �r'J . Taking
the divergence of (12.132), we write now

r2'J D r � j � �r � .Ec C Eind/ � Œ.Ec C Eind/�r � �: (12.135)

The boundary condition all around is 'J D 0. Since this is the Neumann boundary
condition, which does not make the solution unique, a unique solution is obtained
by subtracting the solution value by the value at a reference point. In addition some
of the additional conditions for the current geometry are

Eind;xDEind;yDo;Eind;z D uBo;Ez D �KuBo; 'cathode D 0; 'anode D K

Z
uBodz:

We also have to make sure that divergence of b is zero. If it is not zero, let a
correction b0 be added such that the divergence of the sum of both is zero. Let
us now introduce a perturbed magnetic potential 'M , such that b0 D �r'M , and
we obtain the correction by solving the Poisson equation

r2'M D �r � b:

While elaborate calculations have been done for the 3D case also, only very sample
results can be given within the limited scope of this paper. First we show in
Fig. 12.32 a comparison of the anode potential in the 3D case with the anode
potential for the 1D case with the same channel width 0.1 m.

At the outset, it may be pointed out that in the present context the right-hand side
of (12.130) is zero, and hence, with zero boundary condition for the solution of the
equation, obviously b D 0. It can, therefore, be shown that both current density and
magnetic field induction and consequently also the electric field are divergence-free.

Further, we are presenting some sample results of externally applied electric field
and induced electric field in (x; z) plane at mid-y in Figs. 12.33 and 12.34.

It is obvious that extraction of electric power in a Faraday generator is reduction
of stagnation and static temperature and pressure in the flow direction. Distribution
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Fig. 12.32 Externally
applied potential distribution

Fig. 12.33 Externally
applied electric field vector
distribution

of the stagnation enthalpy in (x; z) plane (Fig. 12.35) and in (x; y) plane (Fig. 12.36)
and distribution of static pressure in (x; z) plane for argon plasma are shown in
(Fig. 12.37). With the reduction of temperature, there would be strong reduction in
the value of electrical conductivity. As a result, the electric current density vector as
it can be seen for argon plasma in Fig. 12.38 reduces drastically in flow direction.
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Fig. 12.34 Induced electric
field vector distribution

Fig. 12.35 Stagnation
enthalpy distribution for
argon plasma in x; z plane

12.12 AJAX Project

In recent years numerous agencies within the United States and Russia had
displayed a resurgence of interest in the use of MHDs for high-speed flow
control [35, 37]. Specifically, high-speed vehicle designs suffer from rapid loss of
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Fig. 12.36 Stagnation
enthalpy distribution for
argon plasma in x; y plane

Fig. 12.37 Static pressure
distribution for argon plasma

performance at off-design conditions and reduced efficiencies at hypersonic Mach
numbers. Issues such as supersonic mixing in scramjets have remained elusive
despite decades of research. It has been surmised that MHD can provide solutions
such as enhanced mass capture, reduced shock losses, avoiding flow separation, and
inlet unstart. The benefits of using MHD extend even as far as thrust vector control,
turbulence suppression, and vehicle attitude control. These various possibilities
rely upon the premise that sufficient interaction between the fluid mechanics and
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Fig. 12.38 Electrical current
density [Am�2] vs. axial
length

electromagnetic force is achievable. This depends upon the electrical conductivity
and the strength of electric and magnetic fields used onboard target missions.

The effect of an electromagnetic field upon conducting gases is threefold. Firstly,
a nonconservative force system (the Lorentz force) is set up, acting upon the field,
which accelerates or decelerates the flow and causes a pressure change. Second,
the flow is heated by means of high-energy electron collisions (Joule heating),
as a natural result of a current flowing in an electric field. Third, the electrical
conductivity (and thereby other flow quantities) is altered anisotropically by the
action of a magnetic field on free charge. Together, these effects alter shock-jump
conditions in supersonic flows, enabling a direct control over the dominant air
ingestion mechanism in high-speed flows. They are capable of suppressing flow
turbulence and cause vortex fields which may be used to enhance supersonic mixing.
Differential application of MHD on the airframe can cause control forces without
the need for surface deflection. Further, a conducting fluid flow in a magnetic field
causes the production of current, which is readily usable as an auxiliary power
source on board. Likewise, the application of an appropriate electric field can cause
flow acceleration in nozzles, enhancing thrust.

A thermodynamic study of rocket-ramjet ejector system, in which the ejector
effect is enhanced through MHDs, has been conducted by Cambier [38], and also a
simplified analysis code was developed by him. In the very preliminary analysis
that was conducted, it was shown that the overall thrust increases by extracting
energy from the stream with the highest velocity and applying to the stream with
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the lowest velocity. “It has been shown that the thrust augmentation is more efficient
in the subsonic regime, due to the inevitable rise in gas temperature during power
application” [38]. The principle was apparently considered in the design of the
Russian AJAX system [37, 52].

The word AJAX may refer to many things to many people. In mythology, AJAX,
son of Telamon, ruler of Salamis, was a hero in the Trojan war. In information
technology Ajax is a programming language (Asynchronous Javascript and XML), a
technique used in web application development. There are also several soccer teams
in Europe, South Africa, and North and South America.

Ajax hypersonic vehicles with MHD propulsion research aimed at a hypersonic
aircraft called Ajax have stimulated US studies of similar development of the Ajax
hypersonic flight vehicles with magnetohydrodynamic (MHD) propulsion initiated
at the Leninets Design Bureau in the late 1980s. Russian researchers were said to
have done concept studies for such an aircraft in the early 1990s of the previous
century, under the name of Ajax.

It is mentioned that in Russian and Ukranian literature, beginning in the 1980s,
the Soviet scientists began to explore a new type of aircraft which would do wide
range of missions in the mesosphere. The exact upper and the lower boundaries of
the mesosphere vary with altitude and with season, but the lower boundary of the
mesosphere is usually located at heights of 50 km above the Earth’s atmosphere and
extends to around 100 km. Within the mesosphere the temperature decreases with
increasing altitude due to decreasing solar heating and increasing CO2 radiation
emission. Temperature in the upper mesosphere is as low 173 K, varying according
to latitude and season.

It is very difficult to fly in the mesosphere since the air is too rarefied for aircraft
wings to generate lift, but sufficiently dense to cause atmospheric drag on satellites.
In addition, part of the mesosphere falls inside the ionosphere, meaning the air is
ionized due to ionized solar radiation.

According to the data presented at the 2001 Moscow Airshow, the specifications
of their magneto-plasmo-chemical engine are:

Maximum takeoff weight 200–267 tons, usual loaded weight 85–113 tons,
empty weight 76 tons, magneto-plasmo-chemical engine 4 to 6, thrust per engine
14–40 tons, service ceiling 36 km, practical range at M D 8–10, height of 30 km,
and maximum speed 4,000–4,600 ms�1 (15–30 Mach numbers).

The main components of this AJAX system are as follows [35, 43, 52]
(Fig. 12.39):

1. An external ionizer to generate partially weakly ionized airflow rate through a
channel of the magneto-plasma-chemical-engine (MPCE). The flow compression
in MPD controlled inlet, however, is determined by combined action of gas-
dynamic multi-shock compression and MPD compression.

2. Reforming of the hydrogen fuel, increasing its concentration.
3. MHD generator, integrated into the engine inlet, extracts energy in the form

of electrical power, slowing down the incoming flow stream and increasing
the pressure while lowering the temperature (the reduction in temperature and
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Fig. 12.39 Schematic view of an AJAX aircraft

increasing the pressure before the combustor are required to allow injection
of sufficient fuel without dissociation), which is required by the combustor
afterward.

4. Combustion chamber for mixing of fuel and air and combustion.
5. An MPD accelerator, in which the energy extracted from the generator is used to

accelerate the gas (provided there is sufficient ionization).
6. Gas-dynamic acceleration, probably partly in nozzle and partly externally.

The flow variables in the AJAX aircraft can be described as follows:

(a) In the region of oblique and normal shocks, the stagnation temperature remains
constant, but the static temperature and pressure are increased with correspond-
ing lowering of the flow velocity.

(b) In the MGD generator region, the electric power is extracted with corresponding
lowering of temperature and pressure.

(c) In combustion chamber, static and stagnation temperatures are increased with
very little drop in the static and stagnation pressures.

(d) In the MGD acceleration region, the stagnation and static temperature and static
and stagnation pressure are further increased due to addition of energy from
MGD generator.

(e) Further in MGD accelerator region and nozzle, static temperature and pressure
are decreased with corresponding increase in the velocity, much more than
without MGD effect.

Thus the propulsion unit of an AJAX aircraft is basically a ramjet engine without
moving parts in the flow and has the same type of limitations as in an ordinary
ramjet, for example, one would need a minimum flight velocity to work effectively,
in addition to sufficient electrical conductivity.
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12.13 Exercise

12.10.1 Mercury, as a liquid metal at room temperature, is attractive as an MHD
flow medium for which the following properties are estimated at 300 K:
density D 13;510kgm�3, dynamic viscosity D 0:00204kgm�1s�1, spe-
cific heat D 140Jkg�1K�1, electrical conductivity D 1:09e6AV�1m�1,
and thermal conductivity D 8:0Wm�1K�1.
Let us consider an MHD channel of 2 m long, 0.1 m width, and 0.1 m
depth and channel inlet fluid velocity D 20ms�1. The externally applied
magnetic induction is Bo D 10;000 Gauss D 1Vsm�2.

For Faraday generator and constant fluid velocity compute (a) 	p
in flow direction (drop in pressure is due to conversion into electrical
power), (b) voltage across electrodes, (c) electric power generated, and
(d) total current. (Ans: (a) 	p D �218 bar, (b) 1 V, (c) 2.18 MW, and (d)
2.18e6 A). Show further that the constant pressure case is not feasible.

12.13.2 In a plasma tube of tube radius D 5mm and wall temperature D 500K
with fully developed arc plasma (Elenbaas-Heller problem) the following
plasma properties are given: average heat conductivity coefficient D
0:1Wm�1K�1 and electrical conductivity � D 0 if T < 10;000K
and � D 10;000AV�1m�1 if T > 10;000K. Compute (by using a
computer, if necessary) the center line temperature and axial electric
field for electric currents 100 A and 200 A. (Ans: I D 100A: center
line temperature D 21;785K, E D 279:5Vm�1; I D 200A: center line
temperature D 40;736K, E D 348:3Vm�1).

12.13.3 For a Hartmann flow with semi-channel width L D 5mm and the rest
of the data from Exercise 12.10.1, compute Re, RH , R� , and Rh. (Ans:
Re D 6:622e5, RH D 0:1473, R� D 0:137, Rh D 115:6)

12.13.4 Compute the Alfven speed in mercury flow in a channel with magnetic
induction 10,000 Gauss. (Ans: 7.6748 ms�1)

12.13.5 For the MHD channel of Exercise 12.10.1, but for a Faraday accelerator
and K D 2, compute the change of p C �U 2=2. (Ans: 218 bar)

12.13.6 Calculate the typical residence time in a thermal plasma of alumina
particle of 10
m diameter to enable complete melting of the particles.
(Ans: 1.4e-4 s)

12.13.7 Compute the properties given in Sect. 12.10.4, for a typical plasma (mole
mass of heavies D 40) at pressure 0.01 bar, temperature 10,000 K,
electron mole fraction 0.2, magnetic induction D 10; 000G, and electron
heavy collision cross section D 5:0 [Å2].

12.13.8 Sketch schematically the stagnation and static enthalpy and pressure
distribution in the AJAX ramjet system.



Appendix A
Statistical Weights and Energy (cm�1)
for Selected Atoms and Molecules

gi Ei gi Ei gi Ei gi Ei

He-I
4 0.000000e0 3 1.598500e5 13 1.693380e5 36 1.856980e5
122 1.927810e5 252 1.962160e5 117 1.973040e5 142 1.976860e5
159 1.979860e5 inf 1.983050e5

He-II
2 0.000000e5 8 3.291820e5 22 4.114780e5 32 4.114780e5
32 4.213530e5 44 4.267170e5 58 4.299520e5 74 4.320510e5
92 4.334900e5 112 4.345200e5 34 4.352810e5 158 4.358610e5
184 4.363170e5 212 4.366690e5 242 4.569570e5 inf 4.389087e5

He-III
1 0.000000e0

Ne-I
1 0.000000e0 12 1.346750e5 36 1.501980e5 72 1.613990e5
36 1.631800e5 52 1.668110e5 88 1.673410e5 36 1.678590e5
140 1.696770e5 36 1.700790e5 72 1.710710e5 84 1.711420e5
36 1.713110e5 72 1.719080e5 84 1.719510e5 136 1.720530e5
72 1.724470e5 84 1.724760e5 36 1.725510e5 120 1.727200e5
96 1.729670e5 124 1.731890e5 20 1.732800e5 inf 1.739317e5

Ne-II
4 0.000000e0 2 7.820000e2 2 2.170500e5 18 2.210590e5
42 2.478110e5 22 2.524940e5 52 2.771340e5 88 2.811120e5

(continued)
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gi Ei gi Ei gi Ei gi Ei

64 3.036350e5 76 3.043050e5 36 3.071100e5 10 3.279600e5
inf 3.331350e5

Ne-III
5 0.000000e0 3 6.500000e2 1 9.270000e2 5 2.584100e5
1 5.574700e4 9 2.045890e5 11 3.088650e5 44 3.542910e5
9 3.744480e5 39 3.896440e5 15 3.982020e5 33 3.988360e5
15 4.098480e5 12 4.117700e5 21 4.355810e5 27 4.365830e5
15 4.368410e5 12 4.397510e5 inf 5.141480e5

Ne-IV
4 0.000000e0 10 4.096000e3 6 6.216370e4 12 1.842220e5
10 2.538130e5 8 3.148260e5 12 4.793020e5 6 4.849440e5
6 4.886880e5 26 5.209080e5 18 5.738420e5 26 5.796470e5
14 5.871670e5 32 6.086390e5 18 6.347890e5 36 6.435590e5
56 6.705850e5 10 6.735230e5 12 6.939330e5 40 7.017030e5
34 7.400400e5 inf 7.838800e5

Ne-V
1 0.000000e0 3 4.140000e2 5 1.112000e3 5 3.029400e4
1 6.390000e4 5 8.834200e4 15 1.758760e5 9 2.081610e5
11 2.820320e5 9 4.130670e5 12 5.991050e5 35 6.972460e5
12 7.020620e5 16 7.154800e5 24 7.977590e5 69 8.417367e5
inf 1.019950e6

Ne-VI
2 0.000000e0 4 1.816000e3 12 9.930000e4 10 1.790070e5
8 2.455260e5 2 7.226100e5 6 7.639820e5 22 8.260640e5
18 8.965370e5 20 9.247910e5

Ar-I
1 0.000000e0 12 8.481040e4 36 1.062775e5 60 1.136065e5
12 1.140062e5 36 1.175092e5 60 1.197577e5 12 1.201898e5
84 1.206991e5 36 1.216811e5 60 1.226248e5 12 1.229299e5
84 1.231810e5 36 1.237068e5 60 1.242093e5 12 1.243933e5
84 1.245278e5 36 1.248225e5 60 1.251242e5 12 1.252537e5
68 1.252621e5 92 1.253397e5 56 1.253903e5 24 1.255242e5
56 1.257525e5 12 1.258542e5 48 1.258998e5 4 1.260799e5
60 1.261767e5 4 1.262700e5 60 1.263878e5 48 1.265466e5
60 1.266650e5 48 1.267666e5 12 1.268067e5 inf 1.271099e5

(continued)
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gi Ei gi Ei gi Ei gi Ei

Ar-II
4 0.000000e0 2 1.432000e3 2 1.087220e5 20 1.324761e5
12 1.347507e5 30 1.358289e3 6 1.385827e5 28 1.427057e5
12 1.476447e5 10 1.487544e5 36 1.572430e5 18 1.595845e5
2 1.673087e5 30 1.718305e5 14 1.786369e5 12 1.820306e5
6 1.833664e5 60 1.852312e5 30 1.896173e5 18 1.906258e5
6 1.920948e5 48 1.932663e5 10 1.958665e5 16 1.963616e5
12 1.991381e5 50 1.996970e5 6 2.003631e5 16 2.045355e5
10 2.129337e5 inf 2.228200e5

Ar-III
5 0.000000e0 3 1.112400e3 1 1.570200e3 5 1.401000e4
1 3.326700e4 9 1.143027e5 28 1.447980e5 15 1.569427e5
5 1.743750e5 3 1.806790e5 48 1.885667e5 30 2.006705e5
9 2.073817e5 9 2.091452e5 24 2.120236e5 45 2.270996e5
27 2.411425e5 48 2.489451e5 75 2.684358e5 15 2.722054e5
45 2.824358e5 9 2.859470e5 inf 3.299650e5

Ar-IV
4 0.000000e0 4 2.109000e4 6 2.121900e4 2 3.485400e4
4 3.503500e4 12 1.181268e5 18 1.564257e5 18 2.531922e5
10 2.681594e5 36 2.880277e5 18 2.935964e5 24 3.050657e5
inf 4.824000e5

Ar-V
1 0.000000e0 3 7.650000e2 5 2.032000e3 5 1.630100e4
15 1.217304e5 12 1.542103e5 3 1.953560e5 24 2.220659e5
9 2.971060e5 3 3.013000e5 inf 6.051000e5

Ar-VI
2 0.000000e0 4 2.210000e3 12 1.012843e5 8 1.797843e5
10 2.186300e5 36 2.853321e5 2 3.422860e5 24 2.220659e5
10 4.547900e5 10 5.555650e5 inf 7.366000e5

Ar-VII
1 0.000000e0 9 1.147444e5 3 1.707200e5 9 2.716566e5
15 3.241506e5 3 5.140830e5 3 5.663620e5 15 6.346494e5
21 6.600920e5 15 7.723340e5 inf 1.000400e6

(continued)
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gi Ei gi Ei gi Ei gi Ei

Ar-VIII
2 0.000000e0 6 1.418700e5 10 3.326666e5 2 5.759100e5
6 6.289047e5 10 6.975172e5 14 7.168374e5 2 8.124220e5
6 8.325423e5 10 8.651002e5 14 8.752646e5 10 9.555600e5
inf 1.157400e6

Ar-IX
1 0.000000e0 8 2.033500e6 4 2.052120e6 inf 3.395360e6

Kr-I
1 0.000000e0 12 8.191260e4 36 9.407450e4 60 9.984360e4
12 1.012830e5 36 1.047200e5 60 1.064220e5 24 1.069070e5
12 1.072030e5 68 1.079560e5 56 1.079580e5 48 1.085660e5
24 1.088630e5 56 1.095830e5 12 1.098650e5 24 1.099530e5
48 1.101340e5 56 1.103950e5 12 1.106390e5 40 1.109200e5
48 1.110950e5 12 1.112800e5 35 1.112820e5 40 1.115410e5
45 1.117460e5 49 1.120600e5 12 1.121220e5 48 1.123540e5
12 1.126750e5 12 1.130470e5 24 1.134670e5 24 1.136220e5
3 1.176250e5 inf 1.182847e5

Kr-II
4 0.000000e0 42 5.364590e3 20 1.150470e5 20 1.203010e5
10 1.274500e5 28 1.275720e5 42 1.326720e5 42 1.356380e5
24 1.409390e5 62 1.487310e5 16 1.517810e5 80 1.614430e5
40 1.665800e5 86 1.680380e5 34 1.707010e5 58 1.727250e5
54 1.768020e5 36 1.784000e5 26 1.824380e5 inf 1.981820e5

Kr-III
5 0.000000e0 4 4.739250e3 5 1.464400e4 1 3.307900e4
9 1.177050e5 25 1.385430e5 47 1.508900e5 82 1.655580e5
36 1.754570e5 43 1.809950e5 63 1.932540e5 49 2.073440e5
30 2.163860e5 18 2.197570e5 42 2.352310e5 12 2.507180e5
inf 2.980200e5

Kr-IV
4 0.000000e0 12 1.208730e5 76 1.638600e5 32 1.722200e5
14 1.791580e5 36 2.080790e5 30 2.111740e5

Xe-I
1 0.000000e1 8 4.678729e4 28 5.431762e4 52 5.759861e4
28 6.240280e4 76 6.266208e4 68 6.348980e4 72 6.500350e4

(continued)
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gi Ei gi Ei gi Ei gi Ei

68 6.523037e4 164 6.617834e4 68 6.711069e4 48 6.735241e4
133 6.743130e4 72 6.765255e4 111 6.768198e4 inf 6.787909e4

Xe-II
4 0.000000e1 2 7.310949e3 14 6.555224e4 48 6.813448e4
34 7.395317e4 52 7.827079e4 48 8.346817e4 38 9.022247e4
26 9.254537e4 70 9.486895e4 64 9.590760e4 36 9.801819e4
26 1.000878e5 30 1.023199e5 30 1.034626e5 22 1.075589e5
inf 1.186900e5

Xe-III
5 0.000000e1 4 6.507302e3 5 1.186426e4 1 2.594734e4
9 7.026693e4 25 7.756865e4 23 8.453387e4 31 8.798005e4
44 9.176344e4 15 9.560232e4 20 9.886395e4 13 1.014921e5
22 1.030497e5 26 1.055232e5 77 1.137331e5 23 1.214824e5
45 1.238871e5 28 1.355536e5 3 1.387979e5 inf 1.797601e5

Xe-IV
4 0.000000e1 10 1.097229e4 6 2.585666e4 10 6.914850e4
12 7.445480e4 14 8.635375e4 24 9.386362e4 40 1.052249e5
14 1.142916e5 54 1.221894e5

Li-I
2 0.000000e0 6 1.490390e4 2 2.790612e4 6 3.092588e4
10 3.128310e4 2 3.501210e4 30 3.659580e4 32 3.903450e4
20 4.043150e4 44 4.150130e4 44 4.234350e4 40 4.286020e4
156 4.332940e4 inf 4.348720e4

Li-II
1 0.000000e0 3 4.760460e5 1 4.900790e5 9 4.942730e5
3 5.018160e5 13 5.583516e5 23 5.613175e5 64 5.823981e5
64 5.923997e5 61 5.978077e5 inf 6.100790e5

Li-III
2 0.000000e0 8 7.407466e5 14 8.779235e5 22 9.259335e5
32 9.481546e5 44 9.602247e5 58 9.675033e5 inf 9.876578e5

Li-IV
1 0.000000e0

Na-I
2 0.000000e0 6 1.696760e4 2 2.573990e4 10 2.917290e4
6 3.027060e4 2 3.320000e4 10 3.454880e4 14 3.458860e4

(continued)
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gi Ei gi Ei gi Ei gi Ei

6 3.504200e4 2 3.637260e4 10 3.703680e4 32 3.705910e4
6 3.729730e4 2 3.801210e4 10 3.838730e4 44 3.844680e4
56 3.945440e4 40 4.005790e4 202 4.083170e4 186 4.138230e4
inf 4.144960e4

Na-II
1 0.000000e0 12 2.661921e5 32 2.981160e5 13 3.220644e5
31 3.314210e5 32 3.326090e5 15 3.537466e5 12 3.669370e5
inf 3.815280e5

Na-III

4 0.000000e0 2 1.364000e3 2 2.644490e5 12 3.669370e5
6 3.739825e5 10 3.991807e5 12 4.064338e5 20 4.114726e5
22 4.163931e5 2 4.350310e5 30 4.424186e5 84 4.628204e5
24 4.686671e5 50 4.938069e5 26 5.135455e5 10 5.294782e5
16 5.445451e5 inf 5.780330e5

Na-IV
5 0.000000e0 3 1.106000e3 1 1.576000e3 5 3.111800e4
1 6.678000e4 9 2.441902e5 3 3.439720e5 3 4.866480e5
15 5.251130e5 5 5.316960e5 9 5.501760e5 3 5.570810e5
15 5.949171e5 15 6.388750e5 3 6.414680e5 9 6.431614e5
18 6.451852e5 39 6.653351e5 35 6.878936e5 12 7.153960e5
42 7.322296e5 42 7.554009e5 15 7.724150e5 inf 7.977410e5

Na-V
4 0.000000e0 10 4.758000e4 6 7.248000e4 12 2.164687e5
10 2.971296e5 2 3.499870e5 6 3.721670e5 6 5.678543e5
12 6.721645e5 6 6.832720e5 10 7.092770e5 2 7.486400e5
2 7.925077e5 26 7.971288e5 20 7.984764e5 4 8.019500e5
24 8.203303e5 16 8.342139e5 14 8.467573e5 10 8.667800e5
20 8.782880e5 22 8.936323e5 26 9.059545e5 22 9.190700e5
10 9.280530e5 6 9.376690e5 26 9.394225e5 44 9.445159e5
24 9.736408e5 36 1.007071e6 14 1.010292e6 24 1.038473e6
inf 1.118170e6

Na-VI
1 0.000000e0 3 6.980000e2 5 1.160000e3 5 3.535800e4
1 7.427400e4 5 1.035080e5 15 2.041870e5 9 2.413140e5
11 3.248350e5 9 4.779260e5 5 5.393100e5 12 8.105050e5

(continued)
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gi Ei gi Ei gi Ei gi Ei

9 8.729710e5 56 9.236850e5 28 9.436380e5 47 1.006740e6
55 1.042526e6 9 1.047717e6 21 1.054678e6 22 1.069282e6
5 1.077752e6 9 1.090756e6 42 1.127008e6 29 1.132548e6
49 1.140464e6 15 1.205485e6 9 1.214191e6 15 1.228205e6
9 1.228882e6 7 1.230972e6 51 1.254288e6 16 1.271887e6
60 1.337564e6 inf 1.390558e6
Na-VII
2 0.000000e0 4 2.139000e3 12 1.163310e5 10 2.054260e5
2 2.644000e5 6 2.847490e5 4 3.674810e5 10 4.123450e5
6 4.650800e5 2 9.513470e5 16 1.041064e6 12 1.078733e6
22 1.133839e6 44 1.187701e6 26 1.209374e6 18 1.252500e6
44 1.296564e6 62 1.339932e6 64 1.387741e6 22 1.419680e6
42 1.437607e6 72 1.465991e6 122 1.576964e6 52 1.655867e6
inf 1.681679e6

Na-VIII
1 0.000000e0 9 1.275930e5 3 2.432330e5 9 3.291830e5
5 3.610460e5 1 4.460990e5 7 1.266601e6 15 1.327485e6
5 1.347756e6 12 1.407657e6 21 1.441520e6 35 1.475264e6
19 1.501436e6 7 1.660863e6 20 1.685157e6 94 1.832896e6
119 2.015301e6 inf 2.131139e6

Na-IV
1 0.000000e0 4 1.460260e5 1 1.375944e6 12 1.425393e6
13 1.858963e6 13 2.061031e6 12 2.170878e6 12 2.236732e6
inf 2.418520e6

K-I
2 0.000000e0 6 1.302370e4 12 2.145060e4 6 2.471390e4
12 2.740360e4 14 2.812770e4 6 2.900490e4 44 3.050080e4
6 3.107300e4 66 3.191300e4 18 3.248090e4 20 3.281760e4
42 3.334460e4 40 3.377100e4 42 3.427860e4 90 3.478430e4
150 3.494590e4 132 3.498450e4 inf 3.500980e4

K-II
1 0.000000e0 12 1.638983e4 40 1.692018e5 36 1.878370e5
57 2.166564e5 8 2.231241e5 inf 2.566370e5 inf 2.566370e5

(continued)
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gi Ei gi Ei gi Ei gi Ei

K-III
4 0.000000e0 2 2.162000e3 2 1.306090e5 14 2.011650e5
18 2.098651e5 10 2.250634e5 12 2.378026e5 28 2.414857e5
32 2.449523e5 6 2.631420e5 10 2.894460e5 10 3.030032e5
inf 3.690000e5

K-IV
5 0.000000e0 3 1.673000e3 1 2.324000e3 5 1.638600e4
1 3.854800e4 9 1.349261e5 3 1.711400e5 15 1.906595e5
19 2.261404e5 9 2.565948e5 21 2.623971e5 20 2.767794e5
5 2.823730e5 12 2.947338e5 3 3.678900e5 inf 4.913000e5

K-V
4 0.000000e0 10 2.414220e4 6 3.995770e4 12 1.374678e5
36 2.050615e5 20 2.224702e5 12 2.586455e5 30 2.628215e5
10 2.810240e5 34 3.787764e5 12 3.382390e5 6 3.449260e5
10 3.570090e5 inf 6.423190e5

K-VI
1 0.000000e0 3 1.131000e3 5 2.924000e3 5 1.897300e4
15 1.408647e5 9 1.634340e5 3 2.183160e5 3 2.238400e5
9 2.529072e5 9 3.893587e5 inf 8.045130e5

K-VII
2 0.000000e0 4 3.129000e3 12 1.158172e5 10 1.519822e5
2 1.930790e5 6 2.077917e5 10 2.507394e5 4 3.074790e5
20 3.657026e5 2 4.392970e5 12 5.672208e5 10 5.709062e5
inf 9.502000e5

K-VIII
1 0.000000e0 9 1.302742e5 3 1.925402e5 14 3.043858e5
15 3.680824e5 3 6.316540e5 15 7.703068e5 21 8.015110e5
inf 1.247000e6

K-IX
2 0.000000e0 6 1.596697e5 10 3.749632e5 2 6.989020e5
6 7.591347e5 10 8.367978e5 14 8.608081e5 2 9.799010e5
18 1.044271e6 10 1.049150e6 14 1.061150e6 inf 1.419425e6

(continued)
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gi Ei gi Ei gi Ei gi Ei

K-X
1 0.000000e0 8 2.407300e6 4 2.430300e6 4 2.760200e6
6 2.813600e6 12 3.214200e6 9 3.219400e6 3 3.237600e6
6 3.368050e6 inf 4.064300e6

K-XI
4 0.000000e0 2 2.347500e4 12 2.646700e6 6 2.671300e6
10 2.727880e6 inf 5.000000e6

Cs-I
2 0.000000e0 6 1.154765e4 10 1.155804e4 2 1.853551e4
6 2.188632e4 10 2.261465e4 2 2.431717e4 14 2.447234e4
6 2.576423e4 10 2.606044e4 16 2.696388e4 18 2.467695e4
56 2.834454e4 16 2.880012e4 16 2.914591e4 16 2.945033e4
16 2.967734e4 16 2.988441e4 74 3.028814e4 100 3.077632e4
120 3.116480e4 228 3.135760e4 inf 3.140670e4

Cs-II
1 0.000000e0 8 1.075846e5 8 1.146494e5 71 1.232424e5
9 1.307725e5 20 1.307725e5 64 1.549105e5 74 1.648669e5
61 1.713786e5 46 1.937207e5 inf 2.022630e5

Cs-III
4 0.000000e0 2 1.388400e4 2 1.277860e5 4 1.372995e5
6 1.561890e5 6 1.843660e5 inf 2.788167e7

H-I
2 0.000000e0 8 8.225910e4 14 9.749230e4 22 1.028239e5
32 1.052916e5 44 1.066322e5 58 1.070404e5 74 1.079650e5
92 1.083247e5 112 1.085820e5 134 1.087723e5 158 1.089171e5
184 1.090298e5 212 1.091192e5 242 1.091913e5 274 1.092503e5
308 1.092992e5 344 1.093402e5 382 1.093749e5 422 1.094046e5
464 1.094301e5 508 1.094521e5 554 1.094714e5 602 1.094883e5
652 1.095033e5 704 1.095165e5 758 1.095283e5 814 1.095389e5
872 1.095483e5 932 1.095569e5 994 1.095646e5 1058 1.095716e5
1124 1.095780e5 1192 1.095839e5 1262 1.095892e5 1334 1.095941e5
1408 1.095986e5 1484 1.096028e5 1562 1.096066e5 1642 1.096102e5
inf 1.096788e5

H-II
1 0.000000e0

(continued)
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gi Ei gi Ei gi Ei gi Ei

N-I
4 0.000000e0 10 1.922620e4 6 2.884000e4 12 8.333700e4
6 8.619260e4 12 8.813470e4 22 9.472480e4 12 9.551100e4
20 9.710540e4 10 9.966200e4 52 1.044129e5 56 1.049732e5
22 1.067937e5 16 1.071238e5 46 1.101350e5 40 1.103052e5
32 1.104516e5 6 1.123121e5 12 1.126391e5 6 1.127937e5
68 1.128310e5 22 1.129127e5 46 1.141432e5 32 1.140042e5
38 1.149550e5 42 1.150530e5 18 1.154820e5 62 1.155594e5
80 1.159091e5 58 1.161477e5 22 1.162504e5 58 1.163456e5
28 1.164448e5 18 1.165547e5 inf 1.173450e5

N-II
1 0.000000e0 3 4.910000e1 5 1.313000e2 5 1.531570e4
1 3.268710e4 5 4.716770e4 15 9.224537e4 9 9.224537e4
17 1.476253e5 21 1.669627e5 9 1.706371e5 6 1.748898e5
21 1.865926e5 15 1.874717e5 19 1.892460e5 12 1.969549e5
27 2.028721e5 24 2.056074e5 26 2.097929e5 59 2.108099e5
59 2.113811e5 18 2.130639e5 18 2.197355e5 64 2.211921e5
25 2.241139e5 20 2.270759e5 inf 2.388467e5

N-III
2 0.000000e0 4 1.745000e2 12 5.728260e4 10 1.010269e5
6 1.459497e5 10 2.030789e5 8 2.281310e5 6 2.456897e5
10 2.672420e5 12 2.876459e5 8 2.981911e5 26 3.096363e5
10 3.127143e5 36 3.186141e5 12 3.220348e5 50 3.314659e5
36 3.371626e5 72 3.434019e5 30 3.605828e5 36 3.755521e5
32 3.784746e5 inf 3.826255e5

N-IV
1 0.000000e0 9 6.727270e4 14 1.803433e5 4 3.801190e5
12 4.055754e5 20 4.222703e5 12 4.672948e5 21 4.843854e5
40 4.983909e5 34 5.043555e5 60 5.151320e5 60 5.589172e5
20 5.930232e5 inf 6.248510e5

N-V
2 0.000000e0 6 8.063720e4 16 4.819484e5 18 3.801190e5
18 6.785998e5 50 7.130835e5 66 7.334304e5 76 7.466041e5
inf 7.895329e5

(continued)
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gi Ei gi Ei gi Ei gi Ei

N-VI
1 0.000000e0 3 3.385890e6 12 3.447277e6 3 4.016390e6
3 4.206810e6 inf 4.452800e6

N-VII
2 0.000000e0 8 4.034991e6 inf 5.379860e6

N-VIII
1 0.000000e0

O-I
5 0.000000e0 3 1.585000e2 1 2.265000e1 5 1.586770e4
1 3.379240e4 5 7.376781e4 3 7.679469e4 15 8.662870e4
9 8.863070e4 8 9.575730e4 45 9.744300e4 24 9.931370e4
15 1.011431e5 8 1.022270e5 45 1.028568e5 9 1.038694e5
57 1.054307e5 48 1.067266e5 48 1.075580e5 96 1.082809e5
48 1.087264e5 inf 1.098367e5

O-II
4 0.000000e0 10 2.681680e4 6 4.046740e4 12 1.199331e5
10 1.659910e5 18 1.866044e5 4 1.998263e5 30 2.069204e5
22 2.098877e5 16 2.131127e5 26 2.290604e5 46 2.315247e5
34 2.328051e5 34 2.368648e5 42 2.460057e5 82 2.529922e5
88 2.553483e5 132 2.566015e5 108 2.638625e5 124 2.661565e5
122 2.759224e5 inf 2.825509e5

O-III
1 0.000000e0 3 1.134000e2 5 3.068000e2 5 2.027100e4
1 4.318350e4 5 6.031210e5 15 1.200411e5 9 1.423838e5
11 1.961712e5 12 2.689073e5 12 2.856390e5 23 2.954467e5
15 3.033392e5 50 3.263474e5 26 3.363648e5 21 3.543195e5
61 3.667750e5 85 3.761343e5 19 3.807940e5 62 3.944139e5
40 3.982972e5 66 4.035813e5 39 4.197078e5 76 4.371319e5
inf 4.431935e5

O-IV
2 0.000000e0 4 3.865000e2 12 7.137880e4 10 1.269419e5
2 1.643669e5 6 1.806435e5 20 2.605456e5 18 4.028878e5
18 4.435446e5 42 4.717141e5 12 4.833212e5 50 4.966937e5
22 5.028312e5 36 5.126577e5 18 5.472778e5 26 5.524662e5

(continued)
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gi Ei gi Ei gi Ei gi Ei

12 5.688740e5 58 5.743090e5 30 5.819077e5 104 5.944537e5
56 6.063844e5 inf 6.243965e5

O-V
1 0.000000e0 9 8.241280e4 3 1.587980e5 9 2.139294e5
5 2.317220e5 1 2.879090e5 3 5.471500e5 1 5.612780e5
12 5.825006e5 20 6.038618e5 12 6.561974e5 18 6.768152e5
12 6.883757e5 10 6.959080e5 25 7.059422e5 13 7.166614e5
13 7.361814e5 27 7.450587e5 26 8.052798e5 46 8.335356e5
65 8.424197e5 41 8.677600e5 59 9.023789e5 inf 9.187020e5

O-VI
2 0.000000e0 6 9.673000e4 2 6.400398e5 6 6.662176e5
10 6.746564e5 2 8.526960e5 30 8.662785e5 18 9.544678e5
62 1.004011e6 168 1.043634e6 inf 1.113999e6

O-VII
1 0.000000e0 3 4.525340e6 12 4.597197e6 31 5.362835e6
3 5.628100e6 3 5.748450e6 3 5.813950e6 inf 5.963000e6

O-VIII
2 0.000000e0 8 5.271141e6 inf 7.027970e6

O-IX
1 0.000000e0

H2

1 0.000000e0 9 1.386150e5 54 1.590950e5 15 1.667350e5
inf 1.791000e5

O2

1 0.000000e0 1 1.141000e4 1 1.901500e4 3 5.201400e4
3 7.176500e4 9 1.351400e5 inf 1.417000e5

N2

1 0.000000e0 6 7.913400e4 1 9.984700e4 12 1.384700e5
8 1.522840e5 8 1.673790e5 inf 1.809000e5

CO
1 0.000000e0 6 7.535600e4 4 9.077300e4 12 1.320000e5
3 1.548800e5 inf 1.626000e5

(continued)
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gi Ei gi Ei gi Ei gi Ei

OH
2 0.000000e0 2 4.710000e4

NO
2 0.000000e0 2 1.750000e2 10 7.371000e4
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Appendix C
Entropy (MJ/kmol) for Different Gases
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List of Symbols

The more commonly used symbols are given below followed by units.

A Surface area, m2

A0 Surface element area, m2

Amn Coefficient for probability of spontaneous emission, 1 or s�1

A Tube flow cross-section area m2

a A constant
as Isentropic sonic speed, ms�1

B Magnetic induction, Vsm�2

Bp Blowing parameter
Bmn Coefficient for probability of induced emission, m2J�1

Bnm Coefficient for probability of absorption, m2J�1

B
 Spectral intensity of radiation per unit wavelength,Wm�3

B� Spectral intensity of radiation per unit frequency, Jm�2

B� Total intensity of equilibrium radiation, Wm�2

B�


 Spectral intensity of equilibrium radiation per unit wave length, Wm�3

B�

� Spectral intensity of equilibrium radiation per unit frequency, Jm�2

b Distance, m
bj Mobility coefficient of j th species, m2V�1s�1

C Capacitance, AsV�1

C1, C2 Constants
Cp , Cv Molar specific heat at constant pressure and constant volume, respectively,

J(kmoleK)�1

c Velocity of light in vacuum, ms�1

cA Alfven speed, ms�1

c Circumference, m
cf Friction coefficient
cj Kinetic speed of j th species (j D i; e)
cBohm Bohm velocity, ms�1

cp , cv Specific heat at constant pressure and constant volume, respectively, J(kgK)�1

cp;eff Effective specific heat at constant pressure, J(kgK)�1

D Electric displacement vector, Asm�2
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D Diameter or hydraulic diameter, m
Dj Diffusion coefficient of j th species, m2s�1

Djk Binary diffusion coefficient between j th and kth species, m2s�1

Do Characteristic diameter, m
Damb Ambipolar diffusion coefficient, m2s�1

d or dp Diameter of a rigid particle, m
E (Total) electric field, Vm�1, 7
E0 Externally applied electric field, Vm�1

Eamb Ambipolar electric field, Vm�1

E Poynting vector
E (Total) electric field, Vm�1

E0 Externally applied electric field, Vm�1

Eamb Ambi-polar electric field, Vm�1

E Energy, J
E Exchange factor
E Specific internal energy, Jkg�1

Ea
 Spectral absorption efficiency
Es
 Spectral scattering efficiency
Eac Activation energy, J
ED Dissociation energy, J
EJ Energy of a rotor, J
Elim Cut-off energy, J
Eo Total specific internal energy, Jkg�1

Emi Ionization potential (energy) per unit mass ion, Jkg�1

Ei Ionization energy, J
Ez Electric field in z-direction, Vm�1

Erot Total rotational energy, J
Ev Vibrational energy of a single oscillator, J
Evib Total vibrational energy, J
E Emissive power, Wm�2

e Elementary charge = 1:602� 10�19 As
ėa Absorbed radiant energy, Wm�3 or Wm�3sterad�1

ėe Emitted radiant energy, Wm�3

ėi Radiant energy release by induced emission, Jm�3sterad�1

ės Radiant energy release by spontaneous emission, Jm�2sterad�1

ėR Volumetric radiation energy release, W or Wm�3 or Wm�3sterad�1

ė� Spectral volumetric radiative energy release, Jm�3 or J/m�3sterad�1

F Force, N
F Volumetric force, Nm�3

F View factor
F A function of electron mole fraction
F Free energy, J(kgK)�1 or J(kmoleK)�1

G Mass averaged speed, ms�1

G Free enthalpy, J(kgK)�1 or J(kmoleK)�1

g Earth gravitation vector, ms�2

g Statistical weight
g Number of boxes (energy levels)
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g Relative speed, ms�1

gj Mass fraction of j th species
H Magnetic field, Am�1

H Molar enthalpy, Jkmole�1

h Specific enthalpy, Jkg�1

h Planck’s constant, Js
I Electric current, A
Ii Ionization potential
I
 Angular spectral intensity of radiation with respect to wave length, Wm�3sterad�1

I� Angular spectral intensity of radiation with respect to frequency, Jm�2sterad�1

I� Total intensity of angular equilibrium radiation,Wm�2sterad�1

I�


 Angular spectral intensity of equilibrium radiation with respect to wavelength,
Wm�3sterad�1

I�

� Angular spectral intensity of equilibrium radiation with respect to frequency,
Jm�2sterad�1

IL Intensity of line radiation, Wm�2sterad�1

i Ionization state
i Index for primary components
i Volumetric line intensity, Wm�3sterad�1

J Rotational quantum number
j Index for all components
j Emission coefficient, Wm�3sterad�1

jc Conduction current density, Am�2

jj Current density of the j th species, Am�2

j Spectral mass emission coefficient, Jm�3sterad�1

Kx Equilibrium constant based on mole fraction
Kn Equilibrium constant based on number density
Kp Equilibrium constant based on partial pressure
k Electric current unit vector
kc Convection electric current vector
k (Total) thermal conductivity coefficient, Wm�1K�1

k Imaginary component of (complex) refractive index
k Spring constant, kgs�2

k Reaction rate constant, m2s�1 or s�1

kB Boltzmann constant, JK�1

kc Thermal conductivity by pure conduction, Wm�1K�1

kD Diffusive (reactive) thermal conductivity coefficient, Wm�1K�1

kR Radiative thermal conductivity coefficient, Wm�1K�1

keff Effective thermal conductivity coefficient, Wm�1K�1

kcj Contribution of j th species to the total heat conductivity coefficient, Wm�1K�1,
L A characteristic length, m
L Inductance, VsA�1

L Latent heat of vaporization of electrons, Jkmole�1

Lo Latent heat of vaporization of electrons at absolute zero temperature, Jkmole�1

Le Lewis number
l Directional cosine
l Optical thickness of a radiating gas, m
M Mach number
M Mass of a particle, kg
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MA Alfven Mach number
Mj Mass of the j th species, kg
Mp Magnetic blowing parameter
m Average mole mass
mj Mole mass of the j th species, kgkmole�1

mR Mass rate of production, kgm�3s�1

ṁ Mass flow rate, kgs�1

N Dimensionless number
N Number of balls (particles)
N Number density, m�3

NA Avogadro number, kmole�1

n Principal quantum number
n Number density of the gas, m�3

n Total number of components
n Refractive index
Nn Complex refractive index
nc Charge density, Asm�3, 7
nj Number density of the j th species, m�3

nR Number density of photons, m�3

ṅ Flux of particles, m�2s�1

ṅf Flux of photons, m�2s�1

Pr Prandtl number
p Pressure, bar or Nm�2

p Particle momentum, kgms�1

p� Spectral radiative pressure, Jsm�3sterad�1

p� Total equilibrium radiative pressure, Nm�2

p�

� Spectral radiative pressure for equilibrium radiation, Jsm�3sterad�1

Q Collision cross-section, m2

Q Total or integrated radiation, W
Qjf Energy production in electromagnetic field, Wm�3

Qj;coll Energy production due to collision, Wm�3

Qs
 Scattering cross-section, m�2

q Heat flux, Wm�2

qb Heat flux at free-fall edge, Wm�2

qw Heat flux to the wall, Wm�2

qR Radiant heat flux, Wm�2

q Electric charge, As
q Production rate of electron-ion pair, m�3s�1

qk Primary mole fraction ratio
qeff Effective charge, As
qeff Effective charge number
R External resistance, VA�1

R Radiosity, Wm�2

Rj Reaction rate of j th species, m�3s�1

Rj Gas constant of j th species, Jkg�1K�1

R� Universal gas constant, Jkmole�1K�1

RH Rydberg constant, m�1

Re Reynolds number
RH Magnetic pressure parameter
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R Magnetic Reynolds number
Rd Radiation parameter
Rh Hartmann number
Rcj Larmor or cyclotron radius, m
r Radial distance, m
r Distance between two particles, m
r Reflective coefficient
r Number of primary components
rd Reflectance due to diffuse coefficients
rs Reflectance due to specular components
S Molar entropy, Jkmole�1K�1

S Saha function
S Magnetic force parameter
Sc Schmidt number
S Source function, Wm�2sterad�1

S� Entropy of equilibrium radiation
s Line element, m
s Spin quantum
T Temperature, K
Tj Translational temperature of the j th species, K
Td Characteristic dissociation temperature, K
t Time, s
U Characteristic velocity, ms�1

U Velocity vector, ms�1

U Electric potential, V
Uo Externally applied potential, V
u Potential drop, V, 9
u Gas velocity in x-coordinate direction, ms�1,
u� Total equilibrium radiative energy, Jm�3, 6
u Spectral internal energy of radiation, Jsm�3sterad�1

u�

� Spectral equilibrium internal radiative energy, Jsm�3sterad�1

V Fluid velocity, ms�1

Vj Velocity of the j th species, ms�1

V0

j Relative diffusive velocity of j th species, ms�1

Vfj Mass-average velocity of j th species in the electro-magnetic field, ms�1

V� Molar volume, m3kmole�1

v Vibration quantum number
v Kinetic speed of a single particle, ms�1

v Reduced kinetic speed, ms�1, 3
v0,v00 Kinetic speed of a single particle before and after collision, respectively, ms�1

W Number of possibilities
wj Velocity of a single particle of j th species, ms�1

x Coordinate, m
x A measure for anharmonicity
xj Mole fraction of the j th species
Z Partition function
z Number of interferometric fringes
˛ Influence coefficient for vibration on characteristic rotational temperature, K
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˛ Number of ionizing collision per unit distance, m�1

˛ Number of ionizing collision per unit time, s�1

˛ Inverse Alfven Mach number
˛i Degree of ionization
ˇ Positive ion coefficient, m�1, 9
� Collision frequency, s�1, 5
� 0 Volumetric collision frequency, m�3s�1, 5
� Specific heat ratio, 1
	ho Heat of reaction, Jkmole�1

	ė Gain (or loss) of heat flux in free-fall region, Wm�2

ı Length of the gas column, m
ırs Kronecker delta
� Arc deflection, m
� Emissivity coefficient
� Dielectric of a medium, AsV�1m�1

�o Dielectric constant in vacuum, AsV�1m�1

�R Radiative energy gain (or loss), Wm�3

� Dynamic viscosity coefficient, kgm�1s�1

˚ Phase function
� Potential (energy), J
� Steric factor
� Dissipation function, Nm�2s�1

� Heat conductivity potential, Wm�1

' Azimuthal angle
' Line shape factor
' Velocity potential, s�1

' Radiation flux potential, Wm�1

�o Work function, V
�w Wall potential, V
�r Characteristic rotational temperature, K
�v Characteristic vibrational temperature, K
� Temperature ratio
� Angle
� Extinction coefficient
N� Average absorption coefficient, m�1s�1

�� Spectral absorption coefficient, m�1

�R Rosseland mean absorption coefficient,m�1


 Wavelength, m

 Lagrange first undetermined multiplier

 Mean free path, m

D Debye shielding distance, m
� Reduced mass, kg
� Lagrange second undetermined multiplier
� Permittivity of gas
� Dynamic viscosity coefficient, kgm�1s�1

� Mass-flux rate, kgm�2s�1

� Refractive index
�o Magnetic permeability in vacuum, VsA�1m�1

� Frequency of radiation, s�1
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N� Wave number, m�1

� A matrix of chemical valency
�d Frequency of discharge, s�1

�j Chemical valency of the j th component
�p Plasma frequency, s�1

�orb Orbiting frequency, s�1

� Radian cyclotron frequency to collision frequency ratio
�jk Kinetic velocity function for binary collision, ms�1

� Density, kgm�3

�d Characteristic density for a dissociated gas, kgm�3

� Boltzmann constant of radiation, Wm�2K�4

� Electrical conductivity, AV�1m�1

�o Scalar electrical conductivity, AV�1m�1

� Radiative momentum flux, Jsm�3

� Optical length
� Relaxation time, s
� Shear stress, Nm�2

� Potential (energy), J
� Steric factor
� Dissipation function, Nm�2s�1

� Heat conductivity potential, Wm�1

' Line shape factor
�o Work function, V
�w Wall potential, V
� Angle of deflection
 Collision angle
 Wave function
 Solid angle, steradian
! Coefficient matrix
! Velocity gradient or vorticity, s�1

!o Radian cyclotron frequency, radians s�1

Subscripts

a Atom
e Electron
h Heavy particles
i Singly charged ion
j j th species
w Wall condition



Index

A
Abel’s inversion method, 349
absolute enthalpy, 231
absolute method, 347
absorption coefficient, 110
absorption cross-section, 77, 101
absorption efficiency factor, 110
accelerating field, 308
activation energy, 214
adiabatic flame temperature, 229, 311
albedo, 161
albedo of scattering, 133
albedo of single scattering, 151
ambi-polar diffusion, 356, 358
ambi-polar diffusion coefficient, 307
ambi-polar diffusion type approach, 386
ambipolar diffusion, 304
ambipolar diffusion coefficient, 275
angle of deflection, 98
angular insity of equilibrium radiation, 147
angular intensity of equilibrium radiation, 67
angular intensity of radiation, 62
angular quantum number, 11
angular spectral intensity of equilibrium

radiation, 150
angular spectral intensity of radiation, 133
angular volumetric special emission, 150
anharmonic oscillator, 20, 48
anharmonicity constant, 23, 48
anisotropic scattering, 135, 152
anode fall, 309
apparent absorptions coefficient, 77
arc-heated tunnels, 446
area rule, 98
Arrhenius equation, 215
Associated Legendre Polynomial, 165
associated Legendre polynomial, 163

asymmetric top molecule, 15, 43
atom fraction, 366
average absorptions coefficient, 105
average speed, 57
Avogadro hypothesis, 5
Avogadro number, 36

B
Balmer series, 9
band emission, 87
Basset history term, 423
Beer’s law, 84
Bessel function, 295
Bio number, 421, 428
black body radiation, 64, 141
Bohm velocity, 459
Bohr’s hypothesis, 7
Boltzmann constant of radiation, 68, 150
Boltzmann statistic, 25, 33
bomb calorimeter, 230
Bose statistic, 25, 33
bound-bound radiation, 102
bracket integral, 276
Bracket series, 9
Bremsstrahlung, 96
bremsstrahlung, 83

C
characteristic density of dissociation, 235
characteristic dissociation pressure, 235
characteristic dissociation temperature, 235
characteristic line, 381
characteristic optical path, 139
characteristic rotational temperature, 14, 41,
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characteristic vibrational temperature, 18
charge number density, 386
chemically frozen gas, 289
Clapeyron equation, 292
coherent light, 350
collision line broadening, 83
collision to radian cyclotron frequency, 365
collisional energy exchange term, 391
collisional volume force, 359
complex refractive index, 106, 109, 110, 379
compression ratio, 312
continuum emission, 347
Contour Integration, 125
Couette Flow, 436, 437
Coulomb forces, 6
Coulomb’s law, 260
critical Reynolds number, 447
critical specific volume, 198
cutoff energy, 52
cyclotron frequency, 263
cyclotron radius, 263

D
Debye shielding distance, 209, 301
decelerating field, 307
degeneracy, 20, 33
dielectric constant, 260
dielectric medium, 106
differential fluxes of radiant momentum, 63
differential fluxes of radiant spectral energy, 63
diffuse reflectance, 132
diffusion coefficient, 268, 270
Diffusive Model, 386
diffusive reaction, 139
diffusive speed, 304
diffusive-reactive heat conduction, 282
Dirichlet condition, 158
discrete ordinate model, 148
discrete transfer and discrete ordinate methods,

156
dissipation function, 364
dissociation enthalpy, 235
distribution function, 55
divergence of radiant heat flux vector, 135
Doppler broadening, 84, 347
Doppler principle, 69
DTRM model, 145
dynamic viscosity coefficient, 267, 269

E
eccentricity, 98
ecliptic plane, 188

effective charge number, 52
effective diffusion coefficient, 273
effective scattering area, 110
effective specific heat, 237
eigen value, 38
eigenfunction, 13
Einstein’s coefficients for probability of

transition, 73
electric displacement, 260
electric field, 260
electrical conductivity, 280, 286
electromagnetic force, 359
electron (drift) velocity, 461
electron number density, 52
electron orbit radius, 195
electron radian cyclotron frequency, 365
Elsasser model, 87
Emissive power, 61
energy of dissociation, 234
enthalpy, 37
entropy, 34, 37
entropy of radiation, 69
equation of heat balance, 332
equation of state, 39
equatorial plane, 188
equilibrium constant, 217
Equilibrium Model, 386
equilibrium radiation, 64
equinox, 188
Eucken method, 267
Eucken’s formula, 279
exchange factor, 128
exponential repulsive potential, 205
extinction coefficient, 106, 109, 161, 379

F
Fanno equation, 318, 383
Faraday accelerator, 443, 456
Faraday generator, 438, 452
Faraday’s law of induction, 262
Felske-Tien theory, 116
Fermi limiting energy, 34
Fermi statistic, 25, 33
Fick’s law, 268
field diffusion velocity, 307
field drift velocity, 268
field velocity, 357, 388
Finite volume method, 418
first law of thermodynamics, 230, 315
floating potential, 302, 303, 343
fly ash, 106
Fourier’s law, 267
fourth state of matter, 3
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free energy, 37
free enthalpy, 37, 227
free-bound transitions, 83
free-fall edge, 304
free-free transitions, 83
frequency of oscillation, 18, 19
Fresnel diffraction, 108
frozen chemistry, 387
frozen composition, 390
frozen specific heat, 237

G
gamma function, 116
gas plasma, 4
Gaunt factor, 99, 100
Gauss theorem, 261
generalized Ohm’s law, 288, 364, 368
global absorptivity coefficient, 90
global coordinates, 117
global energy equation, 362
global momentum equation, 361
Gram-Schmidt Ortho-normalization technique,

394
Gray and Multiband Models, 187
greenhouse effect, 187
grid independence, 390
Guldberg’s rule, 198

H
Hall effect, 368
Hall generator, 442, 455
Hall thruster, 370
Hankel transformation, 295
harmonic oscillator, 17
Hartmann flow, 436, 437
Hartmann number, 394, 405, 437
heat conduction coefficient, 138
heat conduction, reactive, 304
heat conductivity coefficient, 267, 269
heat of reaction, 226, 229
Hermite equation, 18
heteropolar molecules, 41
homopolar molecules, 41
Hottel’s Cross-String Method, 124
hyperbolic function, 295

I
impingement distance, 119
index of refraction, 108
induced emission, 73
induced electric field, 376

infrared spectroscopy, 339
integral density of radiation, 61
integrated radiation, 61
intensity of line radiation, 102
internal energy, 37
ion radian cyclotron frequency, 365
ion slip, 368
ionization energy, 459
ionization potential, 52, 247, 388
isentropic sonic speed, 57
isotropic radiation, 63, 162
isotropic scattering, 135

K
kinetic speed, 55
Kirchhoff’s law of radiation, 75
Kirchoff’s law, 154
Kirchoff’s law of radiation, 76
Knudsen number, 428
Kronecker delta, 174

L
Lagrange multiplier, 30, 31
Lagrange undetermined multiplier, 65
Lambert’s cosine law, 144, 153
Langmuir model, 300
Laplace equation, 160, 174
Larmor radius, 263
lasers, 73
latent heat of evaporation, 425
latent heat of evaporation of electrons, 292
latent heat of melting, 425
law of electrolysis, 5
law of mass action, 228
law of scattering, 98
least mean square method, 111
Legendre Polynomial, 164
Lewis number, 289
Lighthill gas, 288
limiting maximum energy, 248
line absorption area, 75
line broadening, 347
line oscillator strength, 75
line reversal technique, 344
line shape, 85
line shape factor, 86
line strength, 85
line, band and continuous spectra, 6
linear molecules, 14, 43
linear polyatomic molecules, 44
load factor, 439, 453
local coordinates, 117
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longitudinal shocks, 382
Lorentz shape, 87
lowering the potential, 247
Lyman series, 9

M
magnetic induction, 261
magnetic induction equation, 470
magnetic permeability, 261, 370, 470
magnetic potential, 376
magnetic quantum number, 11
magneto-plasmo-chemical engine, 476
Marshak boundary condition, 178
mass absorption coefficient, 89
mass moment of inertia, 14, 40
mass-average velocity, 271
mass-averaged speed, 193
mass-diffusion coefficient, 357
mass-energy equivalence, 12
Maxwell equations, 470
Maxwell’s equations, 262, 370
Maxwell-Boltzmann equation, 84
mean energy density, 135
mean free path, 276
mean kinetic speed, 308
mechanical theory of heat, 5
Mie scattering, 106, 108, 136
Mie scattering theory, 115
Mie theory, 107
mobility coefficient, 268, 285, 388
mobility coefficients, 389
molar average velocity, 386
moments of intensity, 161, 162
momentum flux, 266
Montecarlo model, 142
most probable speed, 57
multi-flux method, 156
multiple-flux model, 140

N
natural line broadening, 83
Newton’s law, 267
Newton-Raphson method, 131, 404, 407
normal shocks, 382
normal vector, 125
number of possibilities, 26, 34
Nusselt number, 423

O
opacity, 134
optical length, 79, 134

optical path length, 103
optical pyrometer, 339
optical thin model, 139
optically thick, 4, 79
optically thin, 4, 79, 413
orbital radian frequency, 7
Orr-Sommerfeld equation, 395, 404
ortho-normality conditions, 407
orthogonality property, 164
overall absorption coefficient, 150
overall emissivity coefficient, 82
overall radiative transfer, 150
overall scattering coefficient, 150

P
P-N equation, 163
P-N model, 160
particle average velocity, 271
particle flux, 269
particle-wave dualism, 6
partition function, 33, 37
partition function, rotational, 40
Paschen series, 9
Paschen’s law, 330
path of the least resistance, 434
Pauli principle, 11, 25
pencil of rays, 133
Penta-Gamma function, 116
Periodic Tables, 5
permittivity, 260
perturbed current potential, 471
perturbed vorticity function, 402
Pfund series, 9
phase function, 109, 115, 133, 135, 160
photo-deexcitation, 95
photo-excitation, 95
photo-ionization, 95
photo-recombination, 95
Planck constant, 34
Planck mean absorption coefficient, 140
Planck’s law, 70
Planck’s radiation law, 5, 15
Planck’s spectral distribution of equilibrium

radiation intensity, 133
plane equation, 119
plasma frequency, 334, 351
plasma potential, 303
Poiseuille Flow, 394
Poisson equation, 160, 175, 261, 300, 387
positive column, 332
potential barrier, 11, 44
Poynting vector, 110, 380
Prandtl-Glauert transformation, 382
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precession, 188
pressure broadening, 85
pressure diffusion, 270
pressure, radiative, 64
primary components, 238
principal axes, 14
principal moments of inertia, 14
principal quantum number, 11
Propellant utilization efficiency, 461
pseudo equilibrium, 225
purification, 407
purification technique, 409

Q
quasi-neutral plasma, 358
quasi-neutrality, 366

R
radiant energy density, 68
radiant heat conductivity coefficient, 139
radiation, isotropic, 63
radiation, unpolarized, 66
radiative absorption cross-section, 77
radiative conduction coeficient, 138
radiative flux, 134
radiative flux potential, 158
radiative heat conductivity coefficient, 285
Radiative pressure, 163
radiative pressure, 64
radiative thermal conductivity coefficient, 94
radiosity data, 90
Ramsauer effect, 203
random numbers, 142, 145
Rankine-Hugoniot curve, 319
Rankine-Hugoniot equation, 318, 383
Rayleigh equation, 318, 383
Rayleigh Scattering, 136
Rayleigh scattering, 108
Rayleigh theory, 108
Rayleigh-Jean law, 5, 64, 70
reacted components, 225
reacting components, 225
reaction rate constant, 215
reactive heat conductivity coefficient, 254
reciprocity relation, 121
reduced mass, 14, 20, 40, 194
refractive index, 379
relaxation time, 221
resistance thermometer, 337
Riemann zeta function, 295
rigid symmetric top molecule, 44

root mean square of speed, 57
Rosseland mean absorption coefficient, 94,

105, 138, 139
Rosseland model, 138
rotational partition function, 42
rotational quantum number, 14
Runge-Kutta method, 404
Rutherford model of atomic structure, 7
Rydberg constant, 9

S
Saha equation, 100
scalar electrical conductivity, 368
scattering, 160
scattering coefficient, 108, 110, 160
scattering cross-section, 108, 110
scattering efficiency factor, 108, 110
second law of thermodynamics, 76
self-diffusion coefficient, 269
sheath edge, 302
shock stand-off distance, 390
size parameter, 108, 110
small perturbation flow, 381
sonine polynomial, 197
source function, 72, 134
source term, 162
space potential, 303
species energy equation, 361
species momentum equation, 360
specific heat, 37
spectral absorption coefficient, 73, 103, 149
spectral intensity of equilibrium radiation, 135
spectral intensity of radiation, 61
spectral internal energy of radiation, 64
spectral mass emission coefficients, 72
spectral optical path, 151, 162
spectral radiative energy, 66
spectral radiative pressure, 64, 66
spectral scattering coefficient, 149
spectral source function, 149
spectral transmissivity, 82
spectrum analyzer, 353
specular Reflection, 128
spherical harmonics, 166
spherical top molecule, 15, 43, 44
spin quantum, 11
spontaneous emission, 73, 346
spontaneous radiation, 104
standing wave, 38
statistical weight, 33
Steenbeck’s minimization principle, 434
Stefan-Boltzmann law, 68
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steric factor, 215, 459
Stirling formula, 29
Stokes theorem, 125, 126, 262
straight line equation, 118
substantive differential quotient, 360
supernova, 189
symmetric top, 15
symmetric top molecule, 43
symmetry factor, 41, 234

T
Taylor expansion series, 157
temperature gradient, 270
temperature ratio, 312
theory of relativity, 5
thermal conductivity, 280
thermocouple, 337
thermodiffusion coefficient, 280
thermodynamic charts, 314
thermoionic emission, 291
three-body recombination, 96
timedependent vorticity equation, 402
total absorption coefficient, 151, 161
total heat conduction coefficient, 138
total heat conductivity coefficient, 139
total intensity of equilibrium radiation,

67
total intensity of radiation, 63
total refractivity, 351
transition probability, 346
transition probability coefficient, 102
transmissivity coefficient, 79
transverse shocks, 382
tunnel effect, 11
two-flux method, 156

U
ultra-simplified theory, 266
uncertainty principle, 83
universal gas constant, 36, 232, 388
unpolarized radiation, 66

V
Vant’ Hoff model, 225
vibrational ladder, 223
view factor, 119, 120
Voigt line shape, 85
volumetric collision frequency, 213, 388
volumetric energy emission, 100
volumetric energy extraction, 448
volumetric energy release, 139
volumetric radiation energy, 148
volumetric radiative energy gain/loss, 158
von Neumann condition, 158

W
Watson expressions, 295
wave equation, 13, 18, 377
wave function, 13
wave guide, 333
wave-particle dualism, 12, 38
wavelength, 38
Wien’s displacement law, 69, 116
Wien’s law, 5, 64, 70
work function, 293, 308

Z
Zeeman effect, 11
zonal model, 137
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