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Preface

In many demanding applications such as automotive or aerospace, common engi-
neering materials reaching their limits and new developments are required to fulfill
the increasing demands on performance, characteristics, and functions. The proper-
ties of materials can be increased, for example, by combining different materials to
achieve better properties than a single constituent or by shaping the material or
constituents into a specific structure. Many of these new materials reveal a much
more complex behavior than traditional engineering materials due to their advanced
structure or composition. The purpose of this book is to cover one of the important
physical characteristics, that is thermal properties, in detail from different points of
view. This book aims to provide readers not only with a good understanding of the
fundamentals but also with an awareness of recent advances in properties determi-
nation and applications of multiphase materials. The book contains 14 chapters
written by experts in the relevant fields from academia and from major national
laboratories/research institutes.

The first part of the book covers materials where two or more solid phases form
the composite. The second part is related to porous and cellular materials where two
or more solid phases form certain shapes of cells with an empty or air-filled space.
Typical representatives of this group are foamed polymers or metals, which have a
significant potential in multifunctional applications. The last part of the book covers
problem where fluids in a solid structure fulfill technical functions — such as in the
case of combustion — or significantly determining the overall characteristics of the
material.

The editors wish to thank all the chapter authors for their participation and
cooperation, which made this text possible.

Finally, we would like to thank the team at Springer, especially Dr. Christoph
Baumann, for their excellent cooperation during the whole phase of the project.

January 2011 Andreas Ochsner
Graeme E. Murch
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Continuum Modeling of Diffusive Transport
in Inhomogeneous Solids

Helmut J. Bohm, Heinz E. Pettermann, and Sergio Nogales

Abstract General features of homogenization and localization in studying the
conduction behavior of inhomogeneous materials are introduced and two groups
of methods for solving such problems are presented. First, mean field and bounding
approaches are discussed and comparisons between the predictions of relevant
methods are given. Next, modeling approaches to studying discrete microstructures
are covered, the main emphasis being put on periodic homogenization and window-
ing procedures. Finally, an application of the methods to diamond particle rein-
forced aluminum is presented, in which interfacial effects play an important role.

1 Introduction

The mathematical description of diffusive transport rests, on the one hand, on Fick’s
first law, which postulates that the diffusive flux goes from regions of high values of
some conserved quantity, @, to regions of low values. It can be written formally as

ix) =->(x)gx), (D

where j(x) is the vector of the diffusive flux, g(x) = V@(x) is the gradient of the
conserved quantity (also referred to as intensity), and © (x) is a scalar diffusivity or
a diffusivity tensor of order two describing a position dependent material behavior.
In the absence of sources and sinks, the flux is divergence-free, Vj(x) = 0, which,
in combination with (1) leads to the description of diffusive phenomena by Laplace
equations of the type

V(7 (x) VO(x)) = 0. )
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In combination with appropriate boundary conditions and, where appropriate,
interfacial conditions, the partial differential equation (2) pertains to steady-state
diffusive transport in both homogeneous and inhomogeneous media.

A number of phenomena in inhomogeneous solids, among them thermal and
electrical conduction, electrostatic and magnetostatic behaviors, species diffusion
(including moisture diffusion giving rise to hygral strains and stresses in polymeric
constituents of composites), and antiplane elasticity can be described by formalisms
of the above type, see, e.g., [22, 42, 59]. In what follows the emphasis is put on the
thermal conduction behavior, i.e., the conserved quantity, @, is enthalpy and the
equations are typically written in terms of the temperature, 7. The flux vector then is
the heat flux, q, the gradient vector is the temperature gradient, d = V7, and the
material property tensor is the conductivity tensor, . 77, its inverse being referred to
as the resistivity tensor, .~ = ./ ~!. All results pertaining to thermal conduction
can be directly applied to the other diffusion phenomena listed above by switching
in the appropriate variables.

The present chapter provides a basic discussion of models for studying thermal
conduction in inhomogeneous materials showing at least two, well separated, char-
acteristic length scales, viz., a macroscale pertinent to samples, components and
structures, at which the heterogeneity of the media is not evident, and a microscale,
where regions occupied by the different constituents (or phases) are clearly distin-
guishable. Pertinent materials are, e.g., composite materials, which typically dis-
play a matrix—inclusion topology on the microscale, polycrystals, all grains of
which are topologically equivalent, and porous as well as cellular materials, the
void phase of which is usually treated as being non-conducting.

On the one hand, the thermal conductivity of inhomogeneous media that
consist of dissimilar constituents with conductivities .~ is to be described in
terms of the behavior of an energetically equivalent, homogeneous “comparison
material” that shows an effective conductivity . ~~*. The task of deducing ./"™*
from the spatial arrangement as well as the material properties of the phases (and,
where appropriate, from the behavior of the interfaces between them) is referred
to as homogenization. On the other hand the fluxes and gradients on the micro-
scale (referred to as the microfields) are to be obtained for given conditions on the
macroscale, a task referred to as localization. These two main tasks in analyzing
the behavior inhomogeneous solids are accomplished by applying continuum-
level models.

Estimates of the macroscopic conduction properties of inhomogeneous materials
have elicited scientific interest for some 135 years, and a fair number of theoretical
and semi-empirical models have been devised [22, 52, 59]. In modeling work
published over the past 50 years two strands of development have played important
roles. On the one hand, analytical and semi-analytical estimates and bounds have
been developed that explicitly or implicitly use statistical information on the phase
geometry within some representative volume element. Some of the resulting mean
field estimates and bounding methods will be discussed in Sect. 2. On the other
hand, the thermal fields in specific phase arrangements may be evaluated at high
accuracy, in most cases by using numerical engineering methods. Such “discrete
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microfield approaches” are presented in Sect. 3 and are discussed in detail in other
chapters of the present work.

All methods discussed in the following have close analogues in continuum
micromechanics of materials, see, e.g., [5, 7], a research field that focuses on
modeling the mechanical behavior of inhomogeneous materials. Due to the lower
order of the tensors involved in describing diffusion phenomena the latter tend,
however, to be somewhat simpler to model than (thermo)mechanical behaviors. In
addition, the effects of material symmetries are less complex in conduction pro-
blems, with, e.g., geometries of cubic symmetry giving rise to macroscopically
isotropic conduction behavior [46].

Throughout the present chapter scalars are denoted by variables typeset in italic
fonts or by Greek letters. For vectors and tensors (of order 2) minor case letters in
bold and upper case letters in calligraphic fonts, respectively, are used. Volume
averages are denoted as

() = Qi / 742 3

where () is a suitable volume element. Provided this volume element is sufficiently
large and shows no significant macroscopic gradients of composition or of the heat
flux and intensity fields, the latter can be split into “slow” and “fast” contributions,

q(x) =(q) +q'(x) and d(x) = (d)+d'(x), )

respectively. Here (q) and (d) are the macroscopic (slow) fields, whereas ¢'(x) and
d'(x) stand for the microscopic fluctuations, for which the relation (q') = (d') = 0
holds.

In the present chapter special emphasis is put on interactions between effective
material properties and microstructure that go beyond phase volume fraction effects;
in the case of composites they involve the topology of the phase arrangement, the
shapes and positions of inhomogeneities as well as their orientation and size
distributions. The discussion focuses mainly on engineering-relevant issues and is
neither intended to provide a formal review of the state of the art in conduction
modeling nor to go into mathematical details of the methods. Readers interested in
the latter aspects are referred to the books by Torquato [59] and Milton [42] as well
as to [19] and [35].

2 Mean Field Estimates and Bounds for Conduction Properties

Mean field estimates and many bounding methods for studying the thermal con-
duction behavior of inhomogeneous materials are formulated in terms of phase
averaged gradients and fluxes,
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1
0P

1
):—/ d(x)dQ and () =
QP

)
(d) Q)

[ awee
QP

respectively, where the superscript (p) denotes a constituent and QP the volume
occupied by it. From the definition of phase averaging the relations between the
macroscopic fields and the phase averaged (or mean) microscopic fields follow
immediately as

d) = Z g‘;(p)<d>(r>) and (q) = Z a(p)<q>(p)7 (6)
(p) (p)

provided the interfaces between the phases are perfect. Here (f(p) = QW) / Z(k) QW
stands for the volume fraction of constituent (p) and the sums run over all phases.

The phase averaged fields are linked to the macroscopic fields by the (phase
averaged) gradient and flux concentration tensors, 7('0) and /" , defined via the
relations

<d> () _ 7(P)<d> and <q><p) = —//(p)<q>7 (7

respectively. Obviously, the concentration tensors depend on both the phase
arrangement and the phase properties. From (6) and (7) the concentration tensors
can be seen to fulfill the relationships

S = and e = ®)
®) ()

where 7 denotes the unit tensor of rank two.
In the present section linear conduction behavior is assumed at the phase and
macroscopic levels, i.e.,

<q>(p) — _ (d) (p) (d) ® — _ ) <q>(p)
(@) = —27"(d) (d) =—~7"(q)
in accordance with (1). The superscript asterisk is used to denote effective properties.

With the exception of Sects. 2.6 and 4 the interfaces between phases are assumed
to be perfect, i.e., there are no temperature jumps across interfaces.

€))

2.1 General Relations

By using (6)—(9) the effective conductivity and resistivity tensors of an inhomoge-
neous material can be obtained from the phase properties and concentration tensors as

o Zé<p)‘/;/.(p)7(p) and 7* = Zé(P)»I(P)?(P)' (10)
®) (p)
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Accordingly, once the phase concentration tensors are known both the homoge-
nization and localization problems are solved within the mean field framework,
which explains the central role of the concentration tensors in the present section.

The gradient and flux concentration tensors of a given phase (p) are linked by the
equations

7P = 0 50 o and P = @) 11)

If the effective and phase conductivity tensors of a two-phase composite are
known, they can be used to generate phase concentration tensors via relations of
the type

é(m)7<m) — ( /‘/-(m) _ _/‘/'(i))—l ( A (l))é(l>7(l>

%
(A/‘/'(i) . _/}f(m))—l(_/-/.* _ A//,.(m))7 (12)

where (m) and (i) denote the matrix and reinforcement (fibers, particles) phases.

2.2 Dilute Inhomogeneities

In order to generate expressions for the gradient and flux concentration tensors
required in mean field methods, recourse is typically made to inclusions or inhomo-
geneities of ellipsoidal shape. When a uniform “free” gradient dg is first induced in an
inclusion and the latter is then placed into a gradient-free matrix of equal conductivity,
a uniform in-situ inclusion gradient, d., results that can be described by the expression

d. = 7d, (13)

by analogy to Eshelby’s [15] relation in elasticity. The tensor ./ is referred to as the
depolarization tensor, diffusion Eshelby tensor or conduction Eshelby tensor. For
spheroidal inclusions that are embedded in an isotropic matrix or a transversally
isotropic matrix (the out-of-plane axis of which corresponds to the spheroid’s axis
of rotation), the non-diagonal terms of the depolarization tensor vanish in the
material frame of reference and the diagonal components can be expressed as

S(1,1)=1-g() and $(2,2) =S(3,3) :%, (14)

where g(¢) takes the form

B 1 t i+ -1
g(t)—1+t2_1 [12021)1/2 ln<t—(t2—1)1/2 (15)
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fort > 1 and

() =1+—— |1 ! - ki (16)
= — arctan

§ 2—1 (1—p)"? t

for t < 1 [20]. Here the parameter ¢ is defined as

m)

(
t:a%, (17)
KA

where K/(:n> and K%m) are the axial and transverse conductivities of the matrix
material, respectively. a is the aspect ratio of the inclusions, with a > 1 denoting
prolate (or fiber-like) and a < 1 oblate (or platelet-like) ellipsoids of revolution.
For isotropic matrix behavior (17) reduces to ¢ = a, so that the depolarization
tensor depends only on the shape of the inclusion. For the special case of a spherical
inclusion, ¢ = 1, in an isotropic matrix the non-zero terms of the depolarization
tensor are

S(1,1) = 5(2,2) = 5(3,3) :%. (18)

Proceeding by analogy to Eshelby’s equivalent inclusion approach [15], the
fields in inhomogeneous inclusions embedded in a matrix — referred to as
inhomogeneities — can be evaluated on the basis of (13). The inhomogeneity
gradient and flux concentration tensors pertaining to a single ellipsoidal inclusion
(i) embedded in a matrix (m), known as dilute concentration tensors, are then
obtained as

) = (g m) )] i) p(m ]}* (19
R A A E R
by analogy to Hill [29] and Benveniste [4]. Here the designators .~/ ((jii’lm), //((111 ) and

7 (bm) are used to stress that the concentration and depolarization tensors pertain to
an inhomogeneity (i) embedded in matrix (m). The corresponding matrix concen-
tration tensors can be obtained via (8).

When inserted into (10) the above concentration tensors allow describing the
thermal conduction behavior of inhomogeneous materials of matrix—inclusion topo-
logy, non-ellipsoidal inhomogeneities being approximated by suitable ellipsoidal or
spheroidal shapes. However, because the Eshelby formalism pertains to single
inhomogeneities that are not subject to perturbation effects due to the presence of
neighbors, such models are restricted to dilute inhomogeneity volume fractions of a
few percent.
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2.3 Non-Dilute Inhomogeneities

In order to obtain methods for studying heterogeneous materials with freely
selectable inhomogeneity volume fractions, the interactions between neighboring
inhomogeneities must be accounted for. Within the mean field framework these
interactions are typically dealt with in a collective way. This is done either by
modifying the mean gradient and flux fields individual inhomogeneities are sub-
jected to, which gives rise to effective field methods, or by adapting the behavior of
the embedding medium, which leads to effective medium approaches. Because
individual two- or many-particle interactions are not resolved in such methods, they
are often referred to as non-interacting models.

2.3.1 Mori-Tanaka Methods

Mori-Tanaka methods [43] follow the effective field strategy, i.e., they subject
dilute inhomogeneities to (a-priori unknown) matrix fields that differ from the
macroscopic gradients and fluxes. In terms of concentration tensors this ansatz
translates into the relationships

— () . i;m)——(m) S0 (i,m)—(m)

e = a e e = A e (20)
linking the non-dilute (Mori-Tanaka) inhomogeneity concentration tensors, 71(\%
and - Zyyp, the dllute inhomogeneity concentration tensors described in Sect. 2.2,

m
54 ((1111 and . /| 41", and the unknown Mori-Tanaka matrix concentration tensors,

4 1(\TT) and -’/"l(vlT)’ respectively [4]. By plugging (20) into (8), the Mori—-Tanaka
concentration tensors are obtained as
—m ) Amy-t =70 0 em) £l - Gmy ™!
wr = | + Z gv, 7 il = il + Z ]
(3)#(m)
— -1
( ™+ Z g /'dn '/’/](VI)T_ /'du ™+ Z £0
(i)#(m) (3)#(m)
2D

from which the effective conductivity and resistivity tensors can be evaluated via
(10) as

e =€ ™ 4 Z eV, d11 ™+ Z 0. du
ar = [¢ ™ 4 Z é /'dll ™ 2+ Z 5 %((;ﬁm I

(i)7(m)
(22)
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Mori-Tanaka modeling schemes are explicit, fairly simple and obviously distin-
guish between a matrix phase and one or more inhomogeneity phases. Accordingly,
they pertain to materials consisting of a contiguous matrix that is reinforced
by (disconnected) aligned ellipsoidal inhomogeneities, typical examples being
“classical” composites and closed-cell porous materials. Whereas in elasticity
multi-phase Mori—Tanaka models of composites containing aligned reinforcements
of different aspect ratios and different stiffnesses may give rise to invalid effective
elastic tensors [16], no such difficulties are encountered for diffusive behavior due
to the lower order of the tensors involved.

Mori-Tanaka methods were first applied to conduction problems by Hatta and
Taya [27], who obtained scalar expressions of the type

K(m)([((i> — K(m))
3K 4 (1 — &) (KO — Km))

Ky = K™ 43¢0 (23)

for the effective coefficients of conductivity of macroscopically isotropic com-
posites consisting of an isotropic matrix reinforced by isotropic spherical particles.

Mori-Tanaka methods can be extended in an ad-hoc way to studying composites
reinforced by non-aligned inhomogeneities. For this purpose the dilute gradient con-
centration tensors pertaining to individual inhomogeneities, .~/ dll’lm> are rotated from
their local coordinate system, which is described by the Euler angles ¢, i and 0, to the
global coordinate system, to give ./ ((h>] (¢, ¥, 0). A concentration tensor pertaining
to dilute inhomogeneities of all orientations present in the material can then be
evaluated by orientational averaging as

2n 2n 0w

(G / / / S 0,0) plo, 0,0 dpdpdo,  (24)

where the orientation distribution function p is normalized such that (p) = 1.
Applying this concept of orientational averaging to (22) gives the effective con-
ductivity tensor as

*

. ¢(m . m i)/\\1—1
i = {1 D @O E™ 7+ E g @)
all inhomogeneities being subsumed into a single phase (i). The pertinent phase
gradient concentration tensors can be written as

——(m) i)/\\1— —( - (m

T = 7+ OGN and = (/RN T @6)

Being an orientational average over all inhomogeneities, the concentration

t —(1) . .. . . . . .
ensor .~/ 1s of limited practical use in localization. However, following [11],
concentration tensors

o, 0) = /0 @7)
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can be introduced to find the temperature gradient in individual inhomogeneities of
any given orientation. Even though “extended Mori—Tanaka models” following
(24)—(27) — like their equivalents formulated in terms of the flux concentration
tensors //51)1 (¢,¥,0) — do not fulfill the condition of aligned inhomogeneities
inherent in the Mori-Tanaka concept, they provide satisfactory results in most
situations. More flexible but more complex modeling schemes were proposed by
Ponte Castafieda and Willis [51] and further developed by other authors [10].

2.3.2 Classical Self-Consistent Schemes

The simplest effective medium approaches are classical self-consistent schemes,
which are based on embedding inhomogeneities directly into the effective medium.
In terms of conductivity, resistivity and concentration tensors the core statement of
such models can be denoted as

A se = Z ¢v SE or e = Zé e )

The above relationships are implicit because the dilute concentration tensors of
an ellipsoidal inhomogeneity embedded in the effective medium, .7/ ((m ) and

/‘f“ ), as well as the depolarization tensor . (P*) used in describing them via
(19), must be evaluated with respect to the unknown effective tensors ./ 5 and
'/"gc- Solutions can be obtained by self-consistent iteration, in which, e.g., steps
n — 1 and n for the first expression in (28) are linked by the equations

//ECH Z 7P+ /< )/SCn (7 ~(p) _ Hsen-1)]” 1

(29)

Lk -1
'%);C,n = (‘/’/SC,H) .

For aligned spheroidal, but non-spherical inhomogeneities that show transver-
sally isotropic or higher material symmetry, the . /" §c , are typically transversally
isotropic; this case can be handled by the expressions for . (P*) given in (15)
and (16).

In contrast to Mori—Tanaka methods (28) and (29) are symmetrical in terms of
their constituents. Accordingly, classical self-consistent schemes do not generally
describe a contiguous matrix phase into which inhomogeneities are embedded. As a
consequence, such methods are best suited to modeling heterogeneous materials
that do not show a matrix—inclusion microtopology over at least part of their range
of phase volume fractions, typical examples being polycrystals and composites with
interwoven phase topologies.

Classical self-consistent descriptions for the effective conductivity of inhomo-
geneous materials were introduced by Bruggemann [8]. For the special case of
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a macroscopically isotropic solid consisting of two isotropic constituents, (1) and
(2), the classical self-consistent scheme leads to the nonlinear equation

1) K — Ksc
KM + 2K

@ Kic —K?

< KO 1 2Ki,

=< (30)

in the effective coefficients of conductivity K. In (30) either phase percolates
if its volume fraction exceeds a value of % This makes classical self-consis-
tent methods unsuitable for describing porous materials with high pore volume
fractions.

2.3.3 Differential Schemes

A further effective medium approach is based on successive steps of homogenizing
dilute volume fractions of inhomogeneities in an effective medium consisting of the
matrix plus previously processed, smaller inhomogeneities. In the resulting differ-
ential schemes the effective conductivity tensor can be described by analogy to [23]
by the system of differential equations

d 7 I g w1 i
dé(i;):@['/' W~ 75l /fﬁl) 3D
using the initial conditions
7 ED = 0) = ), (32)

This initial value problem can be integrated numerically by algorithms such as
Runge—Kutta methods and for many cases analytical solutions are available [50].
As the numerical solution proceeds the depolarization tensor . (*) and the dilute
concentration tensor .~/ gﬁ*) must be re-evaluated at each step to account for the
current, in general anisotropic, effective medium by analogy to the classical self-
consistent scheme.

Being based on multiple successive homogenization steps, differential schemes
implicitly assume a very wide distribution of inhomogeneity sizes. They pertain to
matrix—inclusion composites by construction.

The special case of isotropic spherical particles in an isotropic matrix results in a
scalar initial value problem which can be integrated analytically to give the
nonlinear equation

1
K ~ K}, K (m)\3
—_ g(m)
K@ — g(m) (KE ) =< (33)

for the effective coefficients of conductivity K7, [8].
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2.3.4 Other Estimates

A number of models based on single-inclusion solutions have been proposed that
do not fall into the above categories of mean field descriptions. Probably the best
known of them is the Maxwell-Garnett approximation [39], the results of which
coincide with the Mori-Tanaka solutions for the appropriate phase geometries.
Kerner [33] proposed a generalized self-consistent scheme, in which spherical or
cylindrical inhomogeneities are coated in a layer of matrix material of uniform
thickness, the latter being chosen to obtain the proper phase volume fractions of the
composite, and embedded in the effective medium. The estimates for the effective
conductivity recovered by this approach again coincide with the Mori—Tanaka
predictions.

Advanced effective field estimates, which can include pair interactions of
inhomogeneities, are provided by multi-particle effective field methods [9].

Torquato [58] proposed estimates for the effective conductivity of macroscop-
ically isotropic inhomogeneous materials on the base of expansions. Information on
details of the phase arrangement is introduced into these estimates via the three-
point microstructural parameter { (é(i)), which is also used in three-point bounds,
compare the following Sect. 2.4.

2.4 Bounds

Bounds on the effective properties of inhomogeneous materials have been based on
minimum energy principles. They introduce statistical information on the micro-
structure via n-point correlation functions, which describe, e.g., the probability of
finding n randomly positioned points simultaneously in the same phase. The more
microstructural information that is incorporated into the bounds, the tighter they
become.

The simplest bounds on the effective conductivity are the Wiener [62] bounds,

-1

Z é(P)_//(P) <7< Z f(P)_/'/'(P)7 (34)
(p) (P)

which use constant flux and gradient fields, respectively. Being one-point bounds,
they contain microstructural information only in the form of the phase volume
fractions ¢, They are too slack to be of practical use in most situations.
Considerably tighter bounds, which are sensitive to the macroscopic symmetry of
inhomogeneous materials, can be obtained by combining the variational principle due
to Hashin and Shtrikman [24] with phase-wise uniform trial fields. In their original
form these bounds pertain to macroscopically isotropic materials, such as composites
reinforced by particles or by randomly oriented fibers. They were extended to
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materials containing aligned ellipsoidal inhomogeneities [63] and, for the case of
two-phase solids, were shown to coincide with Mori—Tanaka estimates [61].

Three-point bounds on the effective conductivity [3] can be expressed in terms
of a three-point microstructural parameter {(¢& (i)), which depends on the shapes, size
distributions and arrangement of inhomogeneities and has been evaluated for a
number of configurations relevant to two-phase particle and fiber reinforced com-
posites, see, e.g., [59]. Such “improved bounds” are considerably tighter than
Hashin—Shtrikman-type bounds.

Most bounds on the effective conductivities of inhomogeneous materials pertain
to perfect interfaces between the constituents. However, bounds are also available
for the special cases of imperfect and superconducting interfaces [34, 60]. For
porous materials the lower bounds are typically trivial and equal to zero.

2.5 Comparisons of Predictions

In this section selected results are presented on the overall thermal conduction
behavior of two-phase composites in dependence on the reinforcement volume
fraction é(i). For macroscopically isotropic particle reinforced composites the
comparisons are based on spherical particulates of Al,O; embedded in a matrix
of pure silver, see Table 1 for the material parameters. For these constituents the
thermal conductivity contrast, ¢ = K /K (m) takes a value of approximately 0.088.

Figure 1 shows predictions for the effective conductivities obtained for the
above composite. The one-point Wiener bounds can be seen to be very slack,
whereas the two-point Hashin—Shtrikman (H/S) bounds are considerably tighter.
Because the matrix shows a higher conductivity than the reinforcements the Mori—
Tanaka method (MTM) corresponds to the upper Hashin—Shtrikman bound, as do
the generalized self-consistent scheme and Maxwell-Garnet estimates. The three-
point bounds (3PB) and Torquato’s three-point estimates (3PE) were evaluated for
randomly positioned, non-overlapping spherical particles of equal size using
expressions for the statistical parameter { (f(i)) given by Miller and Torquato
[41], which are available for ¢)<0.6. The three-point bounds are much tighter
than the Hashin—Shtrikman bounds and the three-point estimates nearly coincide
with the upper three-point bound. The classical self-consistent estimates (CSCS)
show the typical behavior of closely approaching one Hashin—Shtrikman bound at
low inhomogeneity volume fractions and the other for high values of i(i). These
estimates do not fall within the three-point bounds for & > 0.3 because they do not
describe matrix—inclusion microtopologies for all volume fractions, as noted in

Table 1 Constituent K (W/mK)
conductivities of the silver matrix 427.0
matrix and the Al,O; particles  particles 37.7

used in generating Fig. 1.
Both constituents are taken to
be isotropic
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Fig. 1 Comparison of selected estimates and bounds for the effective conductivity of a silver
matrix reinforced by equiaxed Al,O3 particles (see text for designators of models)

Table 2 Constituent K (W/mK) Kt (W/mK)
conductivities of the Matrix 0.22 0.22
polyetherimide matrix and the  Fibers 8.40 0.84

T-300 graphite fibers used in
generating Figs. 2 and 3 [21]

Sect. 2.3.2. Finally, the differential scheme (DS) leads to predictions that are
markedly lower than the three-point estimates, but do not violate the three-point
bounds for the composite considered. All estimates discussed in Sect. 2.3 can be
seen to comply with the Hashin—Shtrikman bounds.

A second set of comparisons pertains to a polyetherimide matrix reinforced
by aligned short T-300 graphite fibers of aspect ratio a = 10, compare Table 2. This
composite shows a transversally isotropic macroscopic response. The thermal
conduction behavior of the graphite fibers is strongly anisotropic, so that the axial
and transverse thermal conductivity contrasts take values of cp = 38.2 and
cr = 3.82, respectively.

Figures 2 and 3 compare selected estimates and bounds for the effective axial
and transverse conductivities, respectively, of the above composite. Due to the
macroscopic transverse isotropy of the material clear qualitative differences are
evident between the two sets of curves. It is interesting to note that the upper
Wiener bound, which is a rule-of-mixture expression, closely approaches the upper
Hashin—Shtrikman bound for the axial conductivity, i.e., despite the rather
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Fig. 2 Comparison of selected mean field estimates and bounds for the effective axial conductivity
of a polyetherimide matrix reinforced by aligned short fibers (¢ = 10) (see text for designators of
models)
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Fig. 3 Comparison of selected mean field estimates and bounds for the effective transverse
conductivity of a polyetherimide matrix reinforced by aligned short fibers (a = 10) (see text for
designators of models)
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moderate aspect ratio of a = 10 the axial conduction behavior of the short fiber
composite is very similar to that of a continuously reinforced material. Because the
axial and transverse conductivities of the graphite fibers exceed that of the matrix,
the Mori—-Tanaka estimates coincide with the lower Hashin—Shtrikman bounds in
axial and transverse conduction.

Expressions for the statistical parameter {(¢") are not available for configura-
tions of the type studied in Figs. 2 and 3, so that neither three-point bounds nor
three-point estimates are given. The behaviors predicted by the classical self-
consistent and differential schemes are qualitatively similar to the ones shown in
Fig. 1 and these two estimates comply with the Hashin—Shtrikman bounds.

2.6 Imperfect Interfaces and Non-Spherical Inhomogeneities

The mean field and bounding expressions presented in Sects. 2.2-2.4 pertain to
composites with perfect interfaces and give predictions that are independent of the
absolute size of the inhomogeneities. The presence of finite interfacial conduc-
tances, however, is well known to give rise to a marked size effect in the macro-
scopic conductivities [25].

Unless the distribution of the interfacial conductances is confocal with a given
ellipsoidal inhomogeneity, they lead to the loss of the Eshelby property, i.e., the
microfields are inhomogeneous. The same holds for inhomogeneities of non-ellip-
soidal shapes. These two cases can be handled in a two-phase setting by the semi-
analytical “replacement tensor” approach developed by Duschlbauer et al. [12, 13].
This modeling strategy is based on numerically evaluating the effective conductivity,
%> as well as the gradient and flux fields of a configuration consisting of a single
inhomogeneity that is embedded in the matrix at a very low volume fraction of, say,

&% < 1073, The inhomogeneous fields in the inhomogeneity, which are due to a

non-ellipsoidal shape and/or to finite interfacial conductances, are volume averaged
. " . 5y _(mr) .

and the resulting “replacement concentration tensor”, ./, is extracted.

Furthermore, a “replacement inhomogeneity conductivity”, .7~ 5", must be eval-

uated from the relationship

. 1 i,mr) —

0 = G L = ) )T (35)
Cail
which ensures that (10) is fulfilled. By replacing . @) and .~ ™ with ./~ @ and
/1) respectively, in mean field methods of the types presented in Sect. 2.3,
estimates are obtained for the effective conductivity of materials containing non-
ellipsoidal inhomogeneities and/or showing finite interfacial conductivities.

The replacement tensor approach is well suited to Mori-Tanaka methods. For
spherical isotropic inhomogeneities this combination allows to recover the well-
known results of Hasselman and Johnson [26],
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K*—K(m)zg(i)(%_%—l)+§(_§j)+%+2

(1~ K+ ) + K 2

(36)

K(m

where d stands for the diameter of the particles and /4 for the interfacial conduc-
tance. Applications of the replacement tensor approach to effective medium models
are feasible but not particularly attractive, because they require carrying out the
numerical evaluation of the replacement tensors with respect to the new reference
material after each iteration.

3 Discrete Microstructure Models for Conduction Properties

Discrete microstructure models of thermal conduction in inhomogeneous solids aim
at precisely evaluating the temperature, gradient and flux fields in specific, well
defined phase geometries. As sketched in Fig. 4, which pertains to a transverse
section of a unidirectionally reinforced composite, there are three major types
of discrete microstructure models, viz., periodic microfield models, embedding
models and windowing models. These methods use different approximations for

PHASE ARRANGEMENT PERIODIC APPROXIMATION,
UNIT CELL

EMBEDDED CONFIGURATION WINDOW

Fig. 4 Schematic sketch of a random matrix—inclusion microstructure and of the volume elements
used by a periodic microfield method, an embedding scheme and a windowing approach for
studying this inhomogeneous material [6]
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studying volume elements of limited size and typically employ numerical engi-
neering methods for evaluating the microfields. The following discussion mainly
assumes the use of Finite Element (FE) methods for this purpose; for a more
detailed discussion of its application to problems involving inhomogeneous materi-
als see, e.g., [5, 7]. FE approaches are well suited to describing complex phase
geometries and many implementations are capable of handling finite interfacial
conductances. An alternative solution approach, the Lattice Monte Carlo method, is
discussed in detail in [17].

In the ideal case, the volume elements used in discrete microstructure models are
representative volume elements (RVESs), the size of which is sufficient for contain-
ing all relevant statistical information on the actual phase arrangement to be
studied. In practice, however, limitations in computer power have tended to restrict
simulations to smaller volume elements, which typically are only approximations to
proper RVEs.

Volume elements used for studying composite materials range from very simple,
such as cubic arrays of spherical reinforcements, to highly complex phase arrange-
ments that are generated by computer codes or extracted from experimental data.
Computer generated microstructures may, on the one hand, involve a considerable
number of randomly positioned and, where applicable, randomly oriented inhomo-
geneities, Voronoi cells based on suitable “clouds” of points, or similar constructs.
On the other hand, experimentally determined statistical descriptors of phase
arrangements can be used to generate microstructures that are statistically equiva-
lent to some target material, a process known as statistical reconstruction [53].
Experimental procedures for generating “real structure” phase arrangement have
included serial sectioning, compare [57], and computed tomography, see, e.g., [32].
It is worth noting that identical geometrical models using identical discretizations
can be used for both thermal and mechanical analysis.

3.1 Periodic Homogenization

Periodic microfield (or periodic homogenization) methods describe periodic model
materials, the effective properties of which are used to approximate the behavior of
actual, non-periodic inhomogeneous materials. Such approaches typically represent
a tradeoff between basing the model on a relatively small volume element, the
periodic unit cell, and being restricted to periodic phase arrangements. For unit cells
that are sufficiently large to be RVEs no approximation in terms of phase arrange-
ment statistics is involved.

Unit cells are volume elements with periodic phase arrangements that tile the
computational space by translation and this way provide a complete description of
infinitely extended periodic media. In n-dimensional space each unit cell is asso-
ciated with n linearly independent translation vectors, p;. Whereas the volume of
the smallest unit of periodicity is uniquely defined, the p; describing such volumes
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Fig. 5 Planar periodic phase Q Q
arrangement with unit cell Q Q Q Q Q

and periodicity vectors

and the shapes of unit cells of minimal size (“minimum unit cells”’) are non-unique.
Figure 5 shows a planar periodic phase arrangement with a minimum unit cell
and the corresponding translation vectors, p; and p,. The vectors p, & p, are also
valid translation vectors and may be used in building other unit cells of different
shapes.

The surface of a unit cell can be split into at least n regions, Iy, each of which
consists of two parallel surface elements, I';- and I';+, that are separated by a vector
of the type ), m;p;, where the m; are integer numbers. In the case of quadrilateral
or hexahedral unit cells, each region I'; is uniquely associated with the translation
vector p,. For example, in Fig. 5 there are two surface regions, I'; consisting of
faces W and E separated by the periodicity vector p;, as well as I'; consisting of
faces N and S separated by p,. The surface elements do not have to be planar.

Boundary conditions must be prescribed to the unit cells in such a way that the
periodicity of gradients and fluxes is ensured. For quadrilateral or hexahedral unit
cells this is done by coupling the temperatures on corresponding points of the
surface elements I'y- and I'y+, Ty~ and T+, according to the relationship

ATy =T — T = (d) py, 37

i.e., the temperature difference in the direction of a periodicity vector depends
directly on the macroscopic temperature gradient, (d). The symmetry and antisym-
metry boundary conditions often employed in mechanical analysis of inhomoge-
neous materials [5, 7] are of limited use in periodic homogenization of diffusive
transport.

In typical Finite Element practice (37) can be implemented in terms of “multi-
point constraints” that link four temperature degrees of freedom. For the configura-
tion shown in Fig. 5 one node, say, SW, acts as an “anchor node” the temperature of
which is fixed. The temperature differences according to (37), AT, and AT,, are
carried by the “master nodes”, SE and NW, which are used to couple the tempera-
tures of nodes on the “slave faces”, E and N, to those of the corresponding nodes on
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the “master faces”, W and S, respectively. In such a scheme the master nodes
control the macroscopic gradients, the master faces handle the microscopic fluctua-
tions, and the slaves are used to enforce periodicity. For example, when local
coordinates § are employed on the E and W faces, the constraint equations for
surface region I'; in Fig. 5 result as

Te(5) — Tw(5) = Tsg — Tsw = AT}. (38)

Obviously, the meshing of the two surface elements making up a surface region
I', must be compatible to allow the application of (38) in terms of nodal constraints.
The above implementation of the periodicity boundary conditions can be easily
extended to three-dimensional unit cells using, e.g., the naming scheme sketched in
Fig. 6.

Once the unit cells have been defined and appropriate periodicity boundary
conditions applied, the volume elements must be subjected to appropriate loads
corresponding to macroscopic gradients or fluxes. This can be done, on the one
hand, by using the mathematical framework known as asymptotic homogenization
or “homogenization theory”, which is based on explicitly introducing macroscopic
and microscopic coordinates into the formulation of the problem, see, e.g., [1, 2, 36,
37, 49]. Such asymptotic homogenization approaches are discussed in detail in [38]
of the present work and have typically required specialized analysis software.

Alternatively, the “method of macroscopic degrees of freedom” [40] can be
adapted to prescribing appropriate thermal conduction load cases to unit cells. It
makes use of the fact that in constraint equations such as (38) the macroscopic fields
are carried by the master nodes, which can, accordingly, be employed to apply
macroscopic gradients and fluxes to the unit cell. Prescribing macroscopic gradients
is straightforward: An appropriate temperature difference AT} is evaluated from

North

Y NET

Fig. 6 Cube-shaped periodic
unit cell containing 15
randomly positioned
spherical particles of equal
size at a volume fraction of g ;
eV =0.15. Designators of O NEB
the six faces (East, West, N
North, South, Top, Bottom)
and of the vertices are
given [7] Bottom " SEB
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(37) and applied via appropriate temperatures of the master and anchor nodes in an
equivalent of (38). With analysis codes that can handle concentrated nodal fluxes, a
method proposed by Smit et al. [56] for mechanical unit cell analysis can be adapted
to specify a given far-field flux q* to the unit cell. This encompasses evaluating the
thermal power passing through a slave surface, scaling it for the cell’s cross
sectional area, and applying it as a concentrated nodal flux to the associated master
node. The direction of this nodal flux is normal to the orientation of the slave face.
For example, the concentrated flux in vertical direction to be prescribed to master
node SE of the unit cell sketched in Fig. 5 takes the form

1 .
G52 = (") np(x)dr. (39)
N Jry

The volume averaged temperature gradient vector, (d), set up in a unit cell
loaded by prescribed macroscopic fluxes can be be evaluated directly by inserting
the temperatures of the anchor and master nodes into (37). If loading was done by
prescribed macroscopic gradients, the resulting macroscopic fluxes can be obtained
from the “reaction fluxes” at the master nodes, by surface integration over the nodal
fluxes at the cell boundaries, or by numerically approximating the volume average
of the components of the flux vector as specified by (3). Applications of the method
of macroscopic degrees of freedom to modeling the conduction behavior of com-
posites can be found, e.g., in [6, 14].

For evaluating volume averages of scalars or the components of vectors and
tensors algorithms of the type

«>—i/f<x>d9~iif9 (40)
_Qs o NQ [ s4]

S =1

can be used to advantage with many Finite Element codes. Here f; and 2, are the
function value and the integration weight (in terms of the volume pertaining to the
integration point), respectively, associated with the /-th integration point within a
given integration volume €2 that contains N integration points. Equation (40) can
obviously also be used to evaluate phase averages, which is of interest for direct
comparisons between mean field and discrete microfield models.

Both asymptotic homogenization and the method of macroscopic degrees
of freedom require n linearly independent load cases for obtaining the full conduc-
tivity tensor of an n-dimensional unit cell from (9). Because, as stated in (37), the
temperature increments accumulate along the periodicity vectors, models that
combine periodicity boundary conditions with temperature dependent phase con-
ductivities cannot be unequivocally interpreted in terms of infinitely extended
periodic materials.

Periodic homogenization has proved to be a very flexible modeling tool and has
been the most commonly used discrete microstructure approach to studying the
conduction behavior of inhomogeneous solids.
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3.2 [Embedding Methods

Embedding methods combine a geometrically highly resolved core with a sur-
rounding outer region that is described by some smeared-out model, compare
Fig. 4 (lower left). Such modeling approaches do not require any periodicity
constraints but give rise to boundary layers of perturbed fields where core and
embedding regions meet.

The conduction response of the outer region may, on the one hand, be approxi-
mated via some analytical method, such as one of the mean field schemes discussed in
Sect. 2.3. The resulting models are well suited to studying the microfields in problems
that involve macroscopic gradients of the microstructure or of the fields, e.g., the
diffusion behavior in graded materials, or nonlinear phase conductivities. On the other
hand, the conduction behavior of the embedding region can be set equal to the
averaged response of the core, which gives rise to self-consistent schemes for
evaluating the effective conductivity of inhomogeneous materials with linear phase
behavior.

Both of the above approaches have been fairly widely employed in continuum
micromechanics, especially for “zooming in” on regions of interest such as crack
tips. However, little use appears to have been made of embedding schemes involving
complex core regions in studying the conduction behavior of inhomogeneous
materials.

3.3 Windowing Methods

Whereas periodic homogenization aims at describing the macroscopic constitutive
behavior of inhomogeneous materials in the limit of very large samples, windowing
methods concentrate on evaluating the responses of finite sized samples or “win-
dows”, the results being referred to as apparent (rather than effective) properties.
Windows are volume elements of simple shape, are extracted from the inhomoge-
neous medium at random positions and with random orientations, as sketched in
Fig. 7, and are typically too small to be proper representative volumes.

By analogy to [28] the evaluation of the macroscopic properties of a window
may be based on an integral version of the Hill condition [30] in thermal conduc-
tion,

/F [la(x) = ()] nr(x)][T(x) - (d)'x]dI" =0, (41)

which is a formal statement of the energetic equivalence of microscopic (resolved
at the phase level) and macroscopic (homogenized) descriptions.

The above condition can be fulfilled by applying appropriate boundary condi-
tions to a given window. Two ways of doing so consist of prescribing either uniform
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Fig. 7 Schematic depiction
of a planar phase arrangement
and four rectangular windows
of equal size [6]
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fluxes, ¢?, or uniform gradients, d*, to the whole surface of the window, so that the
normal fluxes, ¢,, or the temperatures, T, on the boundaries vary as

(%) = (¢) nr(x) or T(x)=(d)'x, 42)

respectively. This way either the first or the second term of (41) is set identically to
zero by the uniform Neumann (UNBC) and uniform Dirichlet (UDBC) boundary
conditions, respectively. Macrohomogeneous boundary conditions following (42)
have been shown to give rise to lower and upper estimates for the thermal conduc-
tivity of a given volume element, and ensemble averages over such estimates
provide bounds on the apparent conductivity tensor [48]. Hierarchies of bounds
can be generated from sets of windows of different sizes [47], bringing out effects
of the size of the volume elements.

Alternatively, the Hill condition (41) can be enforced by making the product
under the integral vanish separately for each face of the volume element. This
can be achieved by prescribing either uniform normal flux components ¢ or
uniform tangential gradient components d} to each face i of the window. There
are a fair number of possible choices for such mixed uniform boundary condi-
tions (MUBC). One of them provides estimates that have been found to agree
with the results of periodic homogenization for periodic volume elements of
orthotropic or higher symmetry and to tend to provide reasonable results for
lower symmetries. This set of load cases, which was first proposed by Jiang
et al. [31] and has been referred to as “periodicity compatible mixed uniform
boundary conditions” [7], is listed in Table 3. It provides a convenient window-
ing procedure for obtaining estimates of the apparent conductivity tensor from
regularly shaped samples of inhomogeneous solids with linear phase conducti-
vities. Because it is formulated in terms of nonzero tangential gradients and
zero normal fluxes, it is also suitable for handling porous materials, but cannot
deal with phases of infinite conductivity. Furthermore, it was found to be
compatible with models employing finite interfacial conductances [44]. The
applicability of the scheme to nonlinear conduction behavior has not been
investigated in depth yet.
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Table 3 The three linearly independent uniform gradient load cases constituting the periodicity
compatible mixed uniform boundary conditions for thermal conduction [7]

Load case 1 Load case 2 Load case 3
East T =di, /2 qi =0 qi =0
West T =—-di/2 qi =0 q1 =0
North ¢ =0 T =dsl/2 ¢5=0
South ¢ =0 T =—-dih/2 q5=0
Top q5 = 5=0 T =dils/2
Bottom q5=0 q35=0 T =—-dj3/2

The nomenclature of the faces follows Fig. 6, the window is assumed to be of hexahedral shape and
aligned with the coordinate directions, and the /; are the window’s side lengths

It may be noted that for the case of periodic phase arrangements there is a fourth
approach to fulfilling (41). It consists of making the fluctuations of the non-uniform
boundary fields cancel out on paired parallel faces that show identical fluctuations
but face normals of opposite orientations. This strategy leads directly to the
periodicity boundary conditions discussed in Sect. 3.1.

4 Sample Application

Metal matrix composites (MMCs) consisting of diamond particles embedded in
aluminum or copper matrices are of considerable technological interest for use as
heat sink materials, because they promise effective conductivities exceeding those
of the metallic matrices. Due to the presence of finite conductances at the interfaces
between matrix and reinforcements the macroscopic conductivities of such compo-
sites show a marked dependence on the particle size.

Because, on the one hand, the diamond particles are of cubo-octahedral shape
and, on the other hand, there is experimental evidence that the diamonds show
different interfacial conductances on their {100} and {111} faces [54], such
composites are interesting targets for mean field and discrete microfield modeling.
In the following, values of /{90, = 100 MW/m’K and hiiiy = 20 MW/m’K are
assumed for the interfacial conductances at the two sets of faces. The isotropic
conductivities of particles and matrix are chosen as k<’ = 1800 W/mK and
k™ = 237 W/mK, respectively. For particles that are regular tetrakaidekahedra
of 200 pm diameter an “equivalent” homogeneous interfacial conductance of
Mhom200 = 27.7 MW/m’K was evaluated numerically [44].

Discrete microfield studies were carried out with both unit cell and windowing
models. Periodic phase arrangements were generated by first setting up periodic
arrays of 20 randomly positioned, equally sized spherical particles using the two-
step algorithm of Segurado [55]. Randomly oriented regular tetrakaidekahedra
were then inscribed into the spheres. Figure 8 shows three of the resulting unit
cells, the particles being tetrakaidekahedra in two of them and spheres in the third.
The particle centers are identical in the three phase arrangements and the particle
sizes were adjusted to give an inhomogeneity volume fraction of &Y = 0.34 in each
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Fig. 8 Three unit cells of nominal particle volume fraction EW = 0.34 used for modeling the
thermal conduction behavior of diamond reinforced aluminum [45]

Fig. 9 Non-periodic volume
element of particle volume
fraction W = 0.445 [44]

case. Inhomogeneous interfacial conductances were specified for the tetrakaideka-
hedra, whereas the equivalent homogeneous conductance /iom 200 Was used for the
spheres. The windowing studies were based on non-periodic volume elements
containing some 26 particles. Such geometries are less prone to geometrical
jamming than are periodic unit cells, so that phase arrangements with higher
particle volume fractions can be generated [18]. A volume element of this type
with a particle volume fraction of ¢ @ = 0.445 is shown in Fig. 9.

Within the mean field framework, the Mori—Tanaka method in combination with
the replacement tensor approach presented in Sect. 2.6 is suitable for handling the
effects of the inhomogeneous interfacial conductances and the polyhedral particle
shape. In order to properly handle the size effect, the replacement tensors must be
evaluated separately for each size of inclusion studied. Because the tetrakaidekahe-
dra with inhomogeneous interfacial conductances show cubic symmetry, the
replacement tensors in conductivity are isotropic, so that no angular averaging is
required for modeling randomly oriented particles.

For spherical inhomogeneities that show a uniform interfacial conductance % the
components of the replacement tensors (which are isotropic diagonal tensors under
these conditions) can be evaluated analytically, the replacement conductivity for
particles of diameter d being given by
) dh

K =g0 ——
dh + 2K

(43)
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Furthermore, a critical diameter of the particles, d., at which the replacement
conductivity of the inhomogeneity is equal to the matrix conductivity, can be
evaluated as

(44)

compare, e.g., [6]. Particles exceeding this critical radius improve the effective
conductivity compared to the matrix, whereas smaller particles lead to a deteriora-
tion of the macroscopic conductivity. For the present material parameters this
critical diameter evaluates as d. ~ 19.7 pm.

Figure 10 presents various predictions for the dependence of the macroscopic
conductivity of diamond—aluminum composites on the particle diameter [45] at a
particle volume fraction of f(i) = 0.34. The Mori—Tanaka results for conductivities
obtained for spheres with ideal interfaces (MTM, perfect) and for fully debonded
reinforcements (MTM/voids), which behave like spherical voids, are independent
of the particle diameter. The three-point bounds of Torquato and Rintoul [60],
evaluated for spherical particles of equal size having a homogeneous interfacial
conductance of /ihom 200, are marked as 3PB, hom. The two bounds can be seen to
“cross over” at d = d., and the lower bound approaches the Mori-Tanaka model

500 .
v v v
el
¥ 400 F ,
z MTM, voids —&—
= MTM, perfect —w»—
= MTM/RT, hom —&—
5 300 MTM/RT, inh —6— |
S 3PB, hom ——
S UCDA ¥
2 200 .
N
g
100 | .
0 1 1 1
1 10 100 1000 10000

Particle diameter [um]

Fig. 10 Predictions of the effective conductivity of diamond—aluminum MMCs [45]. Mori—
Tanaka results for fully debonded (MTM, voids) and perfectly bonded (MTM, perfect) spherical
particles, three-point bounds (3PB, hom) for spherical particles with interfacial conductances,
Mori-Tanaka predictions using the replacement tensor algorithm for particles with homogeneous
(MTM/RT, hom) and inhomogeneous (MTM/RT, inh) interfaces, as well as unit cell results
(UCDA) for tetrakaidekahedral particles are shown. The reinforcement volume fraction is

eV =034
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with a perfect interface for d > d.. The Mori-Tanaka method using the replace-
ment tensor scheme was evaluated both for the homogeneous interfacial conduc-
tance of hpomo00 (MTM/RT, hom) and for the inhomogeneous conductances
(MTM/RT, inh). The latter model can be seen to give slightly higher effective
conductances for values of d of the same order of magnitude as d.. The unit cell
predictions, marked as UCDA, agree closely with the “MTM/RT, inh” results and
tend to lie slightly above them. Taken together, the results shown in Fig. 10 indicate
that the influence of the tetrakaidekahedral particle shape and of the inhomogeneity
of the interfacial conductances on the macroscopic conduction behavior of the
diamond—aluminum composites is rather limited.

The apparent conductivities predicted by windowing models and the effective
conductivities obtained by combining the replacement tensor approach with the
Mori-Tanaka method are compared in Table 4 for different particle sizes and a
fixed particle volume fraction of 50) = 0.445. The windowing studies are based on
the non-periodic volume element shown in Fig. 9 and employ the three types of
boundary conditions discussed in Sect. 3.3, viz., uniform Neumann (UNBC),
uniform Dirichlet (UDBC) and mixed uniform (MUBC) boundary conditions, the
latter being prescribed according to Table 3. All models pertain to tetrakaidekahe-
dral particles of equal size having inhomogeneous interfacial conductances and all
windowing results are directional averages over three load cases.

As expected, the UNBC consistently provide lower and the UDBC upper
estimates. Although among the windowing results the mixed uniform boundary
conditions provide the best agreement with the RT/MTM estimates for all particle
sizes, the difference between the predictions of the two models exceed 10% for the
largest particles considered. An important reason for this rather large difference
probably lies in the small size of the volume element used, the influence of which
becomes more important as the contrast between the inhomogeneities’ replacement
conductivity and the matrix conductivity grows with increasing particle size. This
interpretation is supported by the marked differences between the lower (UNBC)
and upper (UDBC) estimates, which exceed 50% for all particle sizes — for proper
representative volume elements these differences should approach zero. Consider-
ably larger volume elements, which could mitigate this discrepancy, on the one
hand have high requirements for computational resources and, on the other hand,
are expensive in terms of analysts’ time for preprocessing.

Table 4 Comparison of apparent and effective conductivities K (W/mK) of a diamond—aluminum
MMC with tetrakaidekahedral particles of volume fraction EW = 0.445 at four different particle
sizes [45]

UNBC MUBC UDBC RT/MTM
d=2pm < d. 87.2 128.7 277.5 129.2
d=20pum ~ d. 189.9 266.7 378.7 253.1
d =200 um > d, 337.0 492.0 571.9 466.8
d =2,000 pm > d. 397.2 602.4 669.2 546.2

Windowing results obtained with the volume element shown in Fig. 9 pertain to uniform Neumann
(UNBC), uniform Dirichlet (UDBC) and mixed uniform (MUBC) boundary conditions. RT/MTM
denotes effective conductivities evaluated with a Mori-Tanaka scheme using replacement tensors
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Discrete microstructure approaches can provide detailed information on the
macroscopic responses and microfields of composites provided the sizes of the
reinforcements do not differ drastically. For polydisperse inhomogeneity sizes
spanning more than, say, an order of magnitude the need for discretizations that
are sufficiently fine to resolve the smallest reinforcements makes discrete micro-
structure models based on numerical engineering methods prohibitively expensive.
In many cases, however, estimates of the influence of the size effect in composites
reinforced by polydispersely sized particles with imperfect interfacial conductances
can be obtained with mean field methods.

The different inhomogeneity phases in the Mori—Tanaka expressions for the
effective conductivity, (22), may be interpreted as pertaining to particles of
N different size classes, the inhomogeneity volume fractions g being used to
account for the particle size distribution. Judging from Fig. 10, no gross errors are
introduced by approximating the particles of diamond—aluminum MMCs by
spheres with suitable homogeneous interfacial conductances. This allows the
use of simple expressions for the replacement tensors, compare (43), and for the
depolarization tensor, compare (18), which can be plugged into (22) to obtain
a Mori-Tanaka expression for the effective coefficient of conductivity in the
form [6]

X K KA
SRED LI

Kipp = K™ , (45)

where the replacement dilute gradient concentration factor is obtained from (19) as

3K (m)

2K 1 K (46)

(i;
Adlilr) =

Equation (45) is sufficiently simple to allow resolving particle size distributions
by hundreds of size classes. It was used study the influence of monomodal and
bimodal particle size distributions on the overall conduction response of diamond—
aluminum MMCs [6, 44].

5 Closing Remarks

In the present chapter two groups of models were discussed that are capable of
providing estimates of the macroscopic diffusive transport behavior of inhomoge-
neous solids in dependence of the microstructure, the constituent properties and,
where applicable, the behavior of the interfaces between the phases. The different
modeling schemes cover considerable ranges in terms of complexity, flexibility,
spatial resolution, capability and computational cost, allowing a suitable modeling
approach to be found for most problems.
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The majority of the methods are “bidirectional” in terms of the length scales

involved, i.e., they are capable of handling both homogenization and localization.
The input parameters of the models can be neatly separated into geometrical
descriptors and material parameters of the constituents, which is very helpful in
carrying out “virtual experiments”.
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Thermal Residual Stresses in Aluminium
Matrix Composites

F. Teixeira-Dias and L.F. Menezes

Abstract It is well known that residual stresses strongly influence the behaviour of
most materials and, in particular, of composite materials. This chapter presents one
approach to the numerical determination of thermal residual stresses in metal
matrix composites (MMC). The subject of residual stresses is introduced and the
corresponding mathematical and constitutive models are described in detail. It is
considered that the reinforcement material is elastic and that the metallic matrix
may exhibit thermoelastic-viscoplastic behaviour. A progressive gradient based
time-integration algorithm is described that leads to the implementation of the
proposed constitutive models in a finite element analysis code. The corresponding
variational formulation and discretisation into finite elements is also described. In
order to guarantee stabilised convergence and to increase the precision of results,
the authors also propose a time-step optimisation algorithm. All the formalisms are
tested measuring the influence of the reinforcement volume fraction and cooling
rate on the resulting residual stresses.

1 Introduction

Nowadays, metal matrix composite materials (MMC) are highly relevant materials
in the scope of engineering applications mostly due to their mechanical properties
and characteristics. In general terms, these materials often have very high specific
stiffness, strength and low density. Most of the manufacturing processes associated
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to MMC imply that the material must, at some stage, go through high temperatures
and temperature gradients. These temperatures are most of the time close, or even
above, the melting temperature of the metallic matrix material. This fact determines
most of the mechanical properties of the final material. Consequently, it is of utmost
importance that adequate numerical methods and models are developed that can
represent the behaviour of MMC over the whole temperature range. Additionally,
due to the fact that the constituent materials will have distinct coefficients of
thermal expansion (CTE) and their constitutive behaviour will be different it is
possible that residual stresses may arise when the MMC is subjected to high
amplitude temperature changes. These residual stresses (and consequent residual
strains) will affect the final properties and behaviour of the MMC [1-8].

The high specific stiffness and strength of metal matrix composite materials, and
their thermal properties are good enough reasons to justify the high strategic interest
in these engineering materials. Presently there is a wide variety of modelling
approaches to the behaviour of MMC. Most approaches are based on the distinct
properties of the constituent materials — the matrix and the reinforcement materials
[9—11]. Most of these models are micromechanical models and are thus also based
on the topology and geometrical distribution of the reinforcement components.

The overall behaviour of a metal matrix composite material is often dependent
on the temperature and is highly sensitive to its variations. This is due to two main
reasons: (1) the behaviour of the metallic matrix is temperature dependent and (2)
temperature changes induce residual stress and strain fields within the MMC, due to
the mismatch of coefficients of thermal expansion [12, 13]. Nonetheless, residual
stresses in MMC may also have a mechanical origin: these stresses may be due to
the non-homogeneous flow of matrix material around the reinforcement elements.

In general terms, metallic materials used as matrix in metal matrix composites
have coefficients of thermal expansion that are often one order of magnitude higher
than the CTE of the ceramic reinforcement material. It is then predictable that when
cooling down the MMC from fabrication temperature thermal residual stress fields
may arise [14, 15].

2 Mathematical Modelling and Algorithms

The following paragraphs introduce the continua kinematics approach used to
describe the thermal and mechanical behaviour of metal matrix composites. The
constitutive models used for both MMC constituent materials are also presented
and detailed. The section ends with a description of the time-integration procedures.

2.1 Constitutive Modelling

When a multiphase material is submitted to changes in temperature residual stress
fields may be generated. These may be generated by the differences in the
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coefficients of thermal expansion (CTE) of the constituent materials. The behaviour
of materials under these conditions has been studied by many researchers often
using experimental techniques [16-27].

2.1.1 Continua Kinematics

Within this text, an updated Lagrangian approach is proposed in order to continu-
ously follow the evolution and movement of all material points in a particular
medium. The goal is to determine the present configuration of the material, C,,
starting from the reference configuration on a previous instant, Co. Let P be a
material point in the continuous medium Q and p and x the position vectors of
this material point in the configurations Cy and C;, respectively, then

P =p(x,1), (D
x = X(p, 1), ()
X =p-+u(p,1), (3)

where u(p,) represents the displacement of the material point P between the
configurations Cy and C,. The gradient F of the point transformation x can be
defined as:

Lo D
F(p7t) =F = 8_px(p7t) - I+%u(pvl‘)> (4)

where I is the second order identity tensor. The velocity field associated with this
transformation is

X(p.1) = X(px 1.0) = 5 x(p.1) ®)

to which corresponds the velocity gradient L, defined as
0 J . 0
Lix,1) = gradly(x,0)] = Zv(x.0) = (0.0 5 p(x,1) ©)

where grad is the gradient operator relative to x, keeping ¢ constant. According to
(4), the previous relation can also be written as

L =FF . (7
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Fig. 1 Schematic representation of the decomposition of transformation gradient F

From this point it is important to distinguish the thermoelastic and viscoplastic
contributions to the transformation gradient F, between instants ¢y and ¢. In order to
do this one must analyse the infinitesimal neighbourhoods of material point P in
both configurations Cy and Cy, as shown in Fig. 1. The following configurations
must also be defined: I'y — the configuration of the infinitesimal neighbourhood of P
at instant 7o; [ — the configuration obtained after elastic relaxation of I'y; I', — the
configuration of the infinitesimal neighbourhood of P at instant #; and ft — the
configuration obtained after elastic relaxation of I';.

Let dp be the position vector of material point P, in the infinitesimal neighbour-
hood of P, relative to P itself. Consequently, dp, dx and dx are the transformations of
vector dp within the configurations I',T,andT, respectively. Thus, the following
three transformation gradients can be defined in the neighbourhood of P: Fg —
the transformation gradignt fo; FP — the transformation gradient I : and F' — the
transformation gradient l"t. It is now possible to relate vectors dp and dx based on
these definitions, that is,

dx = F°FP(FS) ' dp. (8)
Relating the previous equation to (4) gradient F can be redefined as
F =F°F(F;) . )
Replacing F in (7) it is possible to obtain

L =F°(F) "' + FFP(F?) ' (F°)"' =L® + L, (10)
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where L' = l'?‘[e(F‘e)f1 and LP = FF"(F?) "' (F*)"" are the thermoelastic and
viscoplastic parts of the velocity gradient tensor L, respectively. However, L can
still be decomposed to its strain rate (D) and rotation rate (W) tensors [28], as

L=D+W. (11)

These tensors correspond to the symmetric (LS) and anti-symmetric (L*) parts
of L, that is,

1

D(x,7) = L% =2 (L+L7), (12)
W(x,7) =LA :%(L—LT). (13)

2.1.2 Material Behaviour

The goal of this text is to model the development of residual stresses in metal matrix
composites (MMC). These stress fields can arise, for example, from the cooling
down stage that is imposed on the MMC during the manufacturing process. Let T be
the cooling rate, considered constant. It will also be assumed that the temperature
field T(¢) is homogeneous within the material. Its evolution can then be described by

T(t) =Ty + Tt. (14)

T is the initial temperature value, at time instant ¢ = fy. The material is considered to
be stress free at ¢ = ¢y, which is a reasonable consideration due to the manufacturing
temperatures of most metal matrix composites [29]. In technological processes
involving the cooling down of two or more distinct materials (e.g. reinforcement
and matrix) it is important to distinguish each behaviour model. This distinction will
be made relating the melting (decomposition) temperature of each material (7™) and
the process temperature. This relation is designated by homologous temperature (T")
and can be defined as

T
h
= (15)

2.1.3 Constitutive Modelling of the Reinforcement

The maximum temperature levels reached during the manufacturing processes
of most MMCs are much lower than the decomposition temperature of the
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reinforcement materials, thus the homologous temperature is often T" < 1. Facing
this it is reasonable to consider that the reinforcement material exhibits thermo-
elastic behaviour. As a consequence, the following hypotheses are assumed [30]:
(1) elastic strains are small; (2) elastic behaviour is isotropic; and (3) the influence
of plastic strain on the elastic constants can be neglected. The reinforcement
behaviour can then be described by Hooke’s hyperelastic law [31], i.e.

6 =CS: D", (16)

where ¢ is the time derivative of Cauchy’s stress tensor and Cy, is the elastic tensor
of the reinforcement material which, assuming isotropic behaviour, can be defined
as [32]

Cs = 2upl + ARI® 1, (17)

where 1 is the fourth order identity tensor. ui and Ag are Lamé’s coefficients for the
reinforcement material and D¢ is the elastic part of the thermoelastic strain rate
tensor, given by

D = D¢ + D" (18)

The thermal part of the strain rate tensor is D' = ocRTI and og is the thermal
expansion coefficient of the reinforcement. Combining and manipulating (16)—(18)
it can be determined that

2 .
¢ = 2ugD"* + KkR — §MR> trace(D') — 3kgorT |1, (19)
with

ke = AR + = fig. (20)

2.1.4 Constitutive Modelling of the Matrix

The maximum temperature reached during the manufacturing process of the MMC
is often of the same order of magnitude as the melting temperature of the matrix
material. For this reason the matrix homologous temperature is 7" ~ 1. It is then
admitted that the material behaviour is both temperature and strain rate dependent.
Several constitutive models have been proposed for such situations. However, the
authors will focus on a material model that uses an internal state variable that will
allow the description of the static and dynamic recovery of the matrix material.
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This model is developed based on the assumptions that plastic strains are highly
dependent on the strain rate and that the internal state of the material determines its
behaviour. The proposed model will allow the modelling of phenomena such as: (1)
the effects of strain rate and temperature; (2) static and dynamic recovery and
recrystallisation processes; (3) internal damage and its evolution; and (4) crystalline
structure and its evolution.

When formulating the constitutive model it is necessary to identify the internal
state variables. The proposed approach uses only one internal state variable, s,
representing the resistance to plastic flow. This is clearly a limiting approach but it
is nonetheless possible to model both hardening and sensitivity to strain rate and
temperature with such a law [33]. The proposed model is based on the following
decomposition of the strain rate tensor:

D =D+ D'+ D", Q1)

where D® and D' = ocMTI are the elastic and thermal parts of the strain rate tensor,
respectively. oy is the temperature dependent thermal expansion coefficient of the
matrix material. D'P is the viscoplastic strain rate tensor considered to be isochoric,
that is, trace(D'?) = 0.

In the technological processes to be modelled it can be considered that strains are
small when compared to 1 and that rotations can be neglected. Thus, the small
strains approach is used and the evolution law of Cauchy’s stress tensor is consid-
ered identical to the reinforcement material law, that is,

6 =CS,:D°, (22)

where the evolution of the material tensor C},; will be described by
. 2 .
6 =2uy(D—DP) + | km — 3 trace(D) — 3kyomT | 1. (23)

Lamé’s coefficients for the matrix material are temperature dependent, i.e.,
iy = iy (T) and Ay = AM(T). The constitutive relation for DYP, or flow law, is
described by [33]

3¢
DP=2"g 24)
20

In the previous relation, ¢’ is Cauchy’s stress deviatoric tensor and & is von
Mises’ equivalent stress. The equivalent plastic strain rate, &, is

@ =f(5,sT). 25)
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It is necessary to define the function governing the evolution of the internal state
variable s. This function is itself dependent on &, s and T, that is,

s=g(a,s,T). (26)

The state variable in (25) can be directly related to the equivalent stress in such a
way that

& =f=.7). @7

This condition agrees with previous dislocation slipping activation models [34].
It is also assumed that the evolution of the internal state variable can be defined by
[35-37]

§ =g(5,s,T) = eh(a,s,T) — i(s,T). (28)

In this equation, A(a, s, T) is associated with the hardening and dynamic restora-
tion phenomena. Static restoration phenomena are described by 7 (s, T).

The independence of function 7 (s, T) from the equivalent stress reflects the fact
that this function represents phenomena occurring within the material in the
absence of applied stress. After experimental analyses it can be concluded that
different materials have distinct functional dependences of (a,s,T) and 7(s, T).
Experimental tests done on aluminium show that a power law is the most adequate.
As for Fe-2%3Si the best dependence of the strain rate with the stress is exponential.
Based on these observations the following combined exponential and power depen-
dence between strain rate and stress can be stated:

# = Aexp (- 1%) {sinh (5 %)} v (29)

8

where A, O, m and ¢ are material constants: A is the pre-exponential factor, m is
the strain rate sensitivity, Q is the activation energy and R, is the perfect gas
constant. A relevant consequence of (29) is the proportional relation between the
internal variable s and the equivalent stress &, that is, ¢ = c¢s where

=P m
c= é sinh™! {% exp <R%) ] . 30)
8

With the previous relation it is now possible to indirectly determine variable s.
The proportionality between s and ¢ can be used to determine the static restoration
function 7(s,T) and the hardening function %(a,s,T). However, previous experi-
mental studies have proved that the influence of static restoration phenomena on the
strain resistance is less than 1% of the overall strain resistance. Based on these
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results, 7(s, T) will be neglected on the following considerations. The adopted form
for the hardening function is

_ 5|4 s
h(,s,T) :ho‘l 77' sgn(l ff*) G1)
s s
with @ > 1. Introducing (31) in relation (28) results in
s =i [of1 -2 sen(1-2))] (32)
s s

where A is the hardening rate and s* is a saturation value for the scalar variable s,
associated with a determined temperature and strain rate, such that

_JE (2]

The constants /g, a, s and n are once more material parameters.

2.2 Time-Integration of the Constitutive Model

Differential equations describing the evolution of state variables of most physical
processes with identical complexity of the ones described in this text can only be
integrated numerically [38]. Several numerical integration approaches can be used
with strain rate constitutive laws. These integration methods are often referred to as:
(1) totally explicit or progressive methods; (2) totally implicit or regressive methods;
or (3) semi-implicit or progressive gradient methods.

The constitutive relations used herein are numerically stable. However, when
using a fully explicit Euler-type time integration scheme it is often necessary to
significantly reduce the time step in order to guarantee numerical stability [35].
Using a semi-implicit integration algorithm is one way to overcome this question.
These algorithms approximate the fully-implicit methods using Taylor series’
developments of the constitutive functions and tolerate significantly larger time-
steps [16]. The most relevant disadvantage of the progressive gradient methods is
the fact that their precision deteriorates when large time increments are used in high
gradient stages of the simulation. As a consequence, it is necessary to associate
careful time-step control algorithms with these integration procedures [28, 38].

2.2.1 Progressive Gradient Integration Method

The set of constitutive equations proposed here has, among other, the advantage of
using a scalar parameter s that represents the internal state of the material and
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models the resistance of the material to plastic flow. The time integration of these
equations can be made with a progressive gradient integration method [28, 39].
The main goal of the integration method is to determine the configuration C,;
starting from the initial step configuration C,,, at a time interval Az. The known state
variables at C, are g, s, and T,,. The state variables at C,, | are 6,11, S,+1 and T, .
The first step is to integrate the viscoplastic strain rate tensor D'? along the time
increment At in order to determine the plastic strain increment AeP, that is,

Int1
AP = / D'Pdr. (34)
I

This integration can be made using the approximation
AeP =D At (35)

where D" is the viscoplastic strain rate tensor weighted from the limit time instants
of the increment, that is,

— Dy + oD, - DY), (36)
® is a scalar parameter defined in the interval [0, 1] and represents the weighting
factor for the integration. D" | is determined using a first order truncated Taylor
approximation in such a way that

D'P D'P D'P
D;L:D;u@; Af+a A +aa’jA’ (37)

Performing the partial derivatives in the previous relation leads to

¥ s, 3%

\% 3n
Dnil 2 n Af+_fn ( )A + f

(38)

where the equivalent viscoplastic strain increment is the increment of the function
f(@,s,T), that is,

U o afn L
Af = 6’ 8 —As+— aT AT (39)
and the equivalent stress increment is
AG = U tAd. (40)

Oo’
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Performing the derivatives with respect to ¢’ one obtains

o 13, N, 3,
3% =3 (Ea" : a"> (3d)) = 25, O (4D

Introducing the previous relation in (40) results in

3
A7 =
=%,

o : Ad'. 42)

In order to determine the increment of the deviatoric Cauchy stress tensor, Ad’, it
is first necessary to calculate the deviatoric part of the stress rate tensor ¢. Introdu-
cing tensor ¢ and calculating its deviatoric part results in

& = 2uy (D’ . DVP). 43)

Integrating along At the increment of the deviatoric Cauchy stress tensor
becomes

Ad’ = 2up (A — AeP), (44)

where the total strain increment and its deviatoric part are
t,+At 1
Ae = / Ddr and A& = Ae— gtrace(Ae)I, (45)
tn

respectively. Manipulating relations (35)—(38) it is possible to derive the following
relation to determine the plastic strain increment:

30, U~ O I
P — n A n Jn
Ae (26,,) |:fn +o <8<‘7 AG + s As + T AT )| At (46)
3f, 3d/,
+ CDZ—J;H |:AO'/ — (O-;z : AG/) 2—0_2:| At, (47)

or, in a more compact form

3¢’ 3 3q,
AP — AzP <2§:) + o [Ao—’ — (0, : Ad’) 224, (48)
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where the scalar 4 is

6—11
h = 4
' af A “9)
and the equivalent plastic strain increment is
~ fa fn I
AP = |f, + D Ac As AT | | At. 50
3 [f + < % + s + = or (50)

Performing the scalar product between the deviatoric stress tensor o), and the
plastic strain increment A¢P, defined in (48), leads to

AN 30, : o
o), i AP = AeP <O-£a,,an> +2Tl1 {o; : Ad’ — (d), : Ad”) 62"626”]. (51)

Combining relations (42) and (44) it is possible to derive the following expres-
sion for the equivalent stress increment:

A = 3“M 0 A& — 3y AR (52)

Gn

The scalar product ¢/, : A¢’ can be simplified replacing ¢/, and A¢’ by its defini-
tions, that is,

ol A = [a,, — %trace(an)l} : [As — %trace(Aa)I} (53)
leading to
o,:Ad =0, : Ae — %trace(an)l :Ae or a,:Ad =0 : Ae (54)
Consequently, relation (52) can be rewritten in the form
AG = 3'uM o'+ Ae — 3 AP, (55)

On

Replacing the equivalent stress increment Ag (55) in the formulation of the
equivalent plastic strain increment (50), recalling that the increment of the internal
state variable is As = AgPh and performing some algebraic manipulation leads to

AP —

3:uM afn / fn
<n 0 :Ae —HDaTAT, (56)

On

1+
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where the scalar variable v, is

o . - o 0k,
v = OSLGAT with Gy =3uy — (ﬁ/%) (57)

Inserting the deviatoric stress increment Ag’, given by relation (44), in (48), that
defines the plastic strain increment, results in

/
AeP = AP <ZZ"> + 2%!1 [ZMM(AS’ — AeP) — 3:—;4 (o), : Ad) a'n} : (58)

Finally replacing the deviatoric strain increment A¢’ and rearranging all terms
leads to

— / - 1
AeP = % (1 + 3’u—M) &Aép + 3& [As — gtrace(As)]

h 26, h
HM97 1 o 1 (59)
- hl’g«z (0, : Ae)a),
where
_ Hm
=™ 60
o T B/ ©0

2.2.2 Elasto-Plastic Secant Modulus

In order to determine the increment of the stress tensor it is necessary to integrate
the previously defined constitutive law along the whole time increment Ar =
[tn, tas1], that is,

2 .
6 =2uyD + (kM — gﬂM> trace(D)I — 24 D*? — 3kpomTL (61)

Linearising the previous differential equation along the time increment Az,
replacing the plastic strain increment (59) and recalling relations (34) and (45), it
is possible to obtain
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n T 30— 9lun 3:uM 3,uM . afn
Ao = 2uyAe — 2,u,,( o, n) {fn + (D( ; (_7% ol Ae %
oY

At _ 3um
_op 2PM
CorA | T, ~ 2,

AT} {As - %trace(As)} (62)

9 2
+2p, 2h#h,42 () : Ae)al, + (kM - SMM) trace(Ae)l — 3knmon (AT)I.

or, in a more compact way,
Ao = 2y Ae + 2, trace(Ae)l — K, (0, : Ae)a), — Kro', — 3kmom(AT)L.  (63)

In the previous relation

3 Vn 3,“%/[ _
= — (g — 64
| [1 . G, (v — 1) |5 (64)
. 2
K, = : 8f SEAT 3N and 7y =k — 2o (65)
1+v, +v On 3

Finally, performing some algebraic rearrangement of (63) leads to
Ac = M : A¢ — K2(7:1 — 3kMOCM(AT)I (66)

In the previous relation, M**° is the elasto-plastic secant modulus, that can be
defined by its components as

M5 = 700kl + 1, (3udjl + Sadjk) — Kio 0y, (67)

where ¢;; is the Kronecker delta.

2.3 Variational Formulation and Discretisation

Performing numerical simulations using the finite element method (FEM) is essen-
tially an approximation to determine the behaviour of a real system. This task can
be done solving a limited set of equations that describe the real system.

2.3.1 Equilibrium Equations and Boundary Conditions

The system to be modelled is a solid deformable body that occupies a physical
space designated by Q delimited by an exterior surface 2. As this work concerns
metal matrix composites (MMC), Q is built from zones from distinct materials, one
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metallic — the metal matrix, Qy — and the other ceramic — the reinforcement, Qg.
Q can thus be defined by the following relations:

Qr = U,‘Qk and Q = Qy U Qg. (68)

It is supposed that at time instant ¢, Q is subjected to a set of diverse external
loads: volume and surface loads, temperature variations, etc. The exterior surface of
Q is divided in a set of surfaces X; such that ¥ = U;Z; in which velocities and/or
loads are known and prescribed. Thus, neglecting the effect of volumetric loads, it
is possible to formulate the equilibrium of Q as follows:

dive = 0, in Q. (69)

The boundary conditions to which the deformable body Q is subjected can also
be listed as follows:

v=vionX, t=t'onX, and v=v' At=t"onX,, (70)

where v and v* are generic and prescribed velocities, respectively, and t and t* are
generic and prescribed Cauchy stress vectors, respectively. If n is the unit external
normal vector that defines X, then t = on. Boundary conditions are considered to be
unaltered during the whole duration of the process.

2.3.2 Variational Formulation

The generic problem defined by (69) and (70) is satisfied only on the condition that
the principle of virtual work (PVW) is also satisfied whatever the virtual velocity
field dv, that is,

/o—:éDdQ:/ t*évd2+/ t*ovdX. (71)
Q ; s

However, once this work concerns only the development of residual stresses in
MMC due to the cooling down process, the effects of external loads are not
considered. Consequently, the PVW becomes

/ ¢ : DA = 0, (72)
Q

where oD is the symmetric part of the virtual velocity gradient tensor. The virtual
velocity field is continuously differentiable and confines to the boundary conditions
defined in Z,.
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The principle of virtual work is written in two distinct forms: (1) total Lagrangian
and (2) updated Lagrangian. On the first approach all integrations of the PVW are
relative to the initial configuration of the system, Cy. The updated Lagrangian
approach is computationally more expensive because the integrations are per-
formed relative to a reference configuration C,, which is the initial configuration
of each time increment [¢,# 4+ A¢]. This last approach is the one adopted within this
work and will be described on the following paragraphs.

The configuration of the deformable body Q at time instant ¢ is the reference
configuration, Cy, for the current time step [¢, 7 + Af]. The final configuration at the
end of the current time increment, C, is then the reference configuration for the next
step. Thus, (72) becomes

/ s, SDAQ = 0, (73)
Q(Co)

where g, is Cauchy’s stress tensor at the start of the increment (instant 7). Assuming
that only small strains and rotations occur between two consecutive configurations
it is possible to subtract the PVW from the initial and ending instant of the time step,
resulting in

/ Granr : 0DAQ — / o, : oDdQ = 0. (74)
Q(C) Q(Co)

The previous relation can be simplified as

/ Ao : 6DAQ = 0. (75)
Q(Cy—C)

2.3.3 Discretisation of the Principle of Virtual Work
The implementation of the principle of virtual work (PVW) with the finite element

method (FEM) starts by performing the discretisation of the virtual strain rate tensor
oD, in the form

op_ L {3(5V) + {WV)} T} or oD = [grad(5V). (76)

2 BX() 8x0

Once the deformable body Q is discretised in finite elements the virtual velocity
field Jv is discretised as follows:

Sv(x,1) = > Na(x)ova(2). (77)
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NN is the total number of nodes in the finite element mesh, N4 (x) are the shape
functions and dv, are the virtual velocities determined at the mesh nodes. Inserting
the velocity field Jv in relation (76) leads to

NN S
oD = { grad | Y "Ny (x)ova (t)] } = " Ba(x)0va(?), (78)
A=1 A=1

where B, (x) is the derivative of the shape function matrix.
Introducing the virtual strain rate tensor 6D in the principle of virtual work, and
after some algebraic manipulation, results in

NN
> ovy / BIAcdQ = 0. (79)
A=1 Q

Once the principle of virtual work is valid whatever the virtual velocity field v,
(79) becomes

/B}AadgzonA with  A=1,...,NN. (80)
Q

However, once the present work concerns sets of distinct materials, the stress
increment Ao must be determined separately for x € Qg or x € Q. Consequently,
the following two relations are valid distinctly for the two materials:

Q% = / BlAordQ and Q) = / B} AoydQ. (81)
Qr Qy

2.3.4 Finite Elements

As an example, the deformable body Q is discretised in isoparametric 8-node
hexaedric elements with trilinear interpolation functions. This particular finite
element has eight integration points for full integration and one for reduced
integration [40, 41]. However, this isoparametric finite element has deficient beha-
viour when used to solve problems involving plastic strain [42, 43]. Using this finite
element with full integration — using all the integration points — significantly
increases the global stiffness of the element, leading to abnormal hydrostatic
stresses and deteriorating the final solution. This particular phenomenon is asso-
ciated with the fact that plastic strain is isochoric. Nonetheless, it is possible to
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correct this by reducing the number of integration points used in each element. This
technique is designated by uniform reduced integration.

The discretisation of the velocity and virtual velocity fields v and Jv, respec-
tively, are given by

NE NE
V= ZNZVZ and v = Z;NZ(SVZ. (82)

v¢ and Jv¢ on the previous relations are the nodal and virtual nodal velocities of
node a, respectively. From relations (82) it is possible to write the velocity gradient
tensor L and the virtual velocity gradient tensor oL as

v KON A(0v) <& ON¢
L = —_— a € L = = a €
ox = 0x Va and 0 ox &= ox Vo 83)

respectively. When using full integration, tensors L and JL are determined on all
Gauss integration points. When using uniform reduced integration L and oL are
calculated only on the reduced integration point — the center of the finite element.
However, this technique leads to reduced stiffness, may lead to the appearance of
eigenmodes and deteriorates the final solution. One way to avoid all these problems
is to implement a reduced selective integration approach [44—47]. In the process,
frequently designated by B, reduced integration is selectively applied only to some
terms of the stiffness matrix. The hydrostatic components of tensors L and oL are
considered constant within the whole element and are thus calculated only on the
reduced integration point. For this purpose, L is decomposed on its deviatoric and
hydrostatic components as

1
L=L+L" where L"= gtrace(L)I. (84)
The tensor L can then be replaced by a tensor designated by L, such that

L=L+L"—Lh (85)

ch . . . . . . L
and L is determined only on the central integration point. Thus, the discretisation
of L leads to

_ B (NG, 1[ON¢ . ON¢ .
L= ; { o Ve + 3 {8)‘ trace(v$) — ox trace(va)] } (86)

where NZ corresponds to N¢ determined at the central point of the finite element.
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2.3.5 Element Equations
Integrating (19) along the whole time increment [¢, # + A¢] and considering relation

(45) it becomes possible to determine the stress increment in the reinforcement
material Aog, that is,

2
Aor = 2ugAe + [(kR - 3,uR> trace(Ae) — 3krar (AT) | L. (87)

After some algebraic manipulation the previous relation becomes
AO'R = CERAS — 3kRCXR(AT)I (88)

where Cg, defined in (17), is time- and temperature-independent. Inserting the
stress increment Agg in the formulation of the principle of virtual work leads to

Q¥ = [ B][CiAe — 3krog (AT)I]dQ. (89)
Qr

The discretisation of the incremental strain field A¢ results in
NE
Ae = Z B, Au,. (90)
b=1
Introducing A¢ given by the previous relation in expression (89) one obtains
NE
Qt=>" ( / BgceRBbdQ) Auy, — 3kgog (AT) / B'1dQ, 1)
b=1 \JOr Or
or, written in a compacted form,
NE
QF =0="> K5 Au, — AfY. (92)
b=1

Expression (92) is the generic equilibrium system of equations of a finite
element of reinforcement material, where

KR = / BIC;B,dQ and AfR = 3kgor(AT) / BI1dQ. 93)
QR QR

are the stiffness matrix and the second member for the reinforcement material finite
elements, respectively.



52 F. Teixeira-Dias and L.F. Menezes

According to previous sections, the matrix material exhibits thermoelastic-
viscoplastic behaviour. Thus, the increments of plastic strain AeP and stress Aoy
were determined in Sect. 2.2.1. Inserting this stress increment in the principle of
virtual work, as given in (81), leads to

QY = / BT M5 A¢ — Ky0!, — 3k (AT)I]dQ2. (94)
Qm

Performing once again the discretisation of the incremental strain field A¢ in
accordance to (90) and accounting for relation (94) leads to

NE
QY = Z ( / BZMS“BbdQ> Auy, (95)
Qm

b=1
- K> / B¢’ dQ — 3o (AT) / B1dQ,  (96)
Qp Qy

or, written in a compacted form,
NE
QY = 0= KMAu, — AR 97)
b=1
The previous expression is the generic equilibrium system of equations of a
finite element of matrix material, where
kY = / B, M*B,dQ (98)
Qy
and
AM = K, / Bl o/ dQ + 3kyon (AT) / B! 1dQ (99)
Qup Qum

are the stiffness matrix and the second member for the matrix material finite
elements, respectively.

According to the previously described formulations and considering the element
equilibrium equation systems (92) and (97), the global system of equations that
must be solved is

Q*+Q"=0. (100)
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This system of equations can still be solved as

NN

ZKABAuB = AF, (101)
B=1

where K4p is the global stiffness matrix, Aug is the increment displacement vector
at the current time instant and AFy is the global second member vector. A and B
designate the global numbering of the nodes in the finite element mesh.

2.4 Time-Step Optimisation

The constitutive equations described in previous sections, relative to the matrix
material, are highly non-linear. As a consequence, using a constant time-step size
can be an inadequate approach to obtain good numerical results. Doing so, the time-
step should be sufficiently small to guarantee the stability of the numerical approach
during the whole process simulation. Thus, it is of utmost importance to use a variable
time-step size algorithm when implementing the formulations described [35].

The progressive gradient integration method is relatively simple to implement due
to the fact that it is not necessary to iterate to determine the state variables on each
increment. However, when rapid changes in the plastic strain rate occur, the results
obtained with the progressive gradient integration method can become inaccurate.
Nonetheless, this problem can be minimised by implementing an additional and com-
plementary algorithm to automatically control the time-step size on each increment.
The proposed control algorithm is based on the variations of the plastic strain rate.

The control parameter in this automatic time-step algorithm is the maximum
increment of plastic strain in all the integration points of the finite element dis-
cretisation during the current time increment. Two distinct criteria are defined in
order to do so. The first criterion is based on r¢, which is the parameter that controls
the variations on the equivalent plastic strain rate, that is,

Cmax

re = with  Cpax = max
tol i=lng

p _ap
Cintl — Cin

(102)

where Cpax 18 the maximum equivalent plastic strain rate variation in the current
time increment among all the integration Gauss points. Cy, is a predefined (user-
defined) control parameter that can be determined as

S0

Ciol = 5E (103)

M
ng and ¢ €]0, 1] on the previous relations are the total number of Gauss points of the
domain and a scalar parameter, respectively. Ey and sg are the elastic modulus and
the initial value of the state variable s, respectively.
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The second criterion limits the equivalent plastic strain rate increment directly in
such a way as to avoid too large plastic strain increments. To achieve this rp is
defined as

rp =—— with Dp,x = max AE? (104)
tol i=1,ng

where Dy, is a predefined (user-defined) control parameter.

Based on the previously defined criteria, it is now possible to choose the
dominant criterion, calculating the parameter ry,x = max{rc,rp} and determining
if the solution from the current increment is acceptable or not, modifying the time-
step size whenever needed.

In order to perform this optimisation automatically it is possible to use an
algorithm in which each increment is optimised for the following increment. The
parameters that control this optimisation algorithm are the scalars wo < 1, w; > 1
and g; < 1 withi = 1,...,n. If these parameters are chosen correctly it is possible
to reach a compromise between total CPU simulation of the process and the
precision of the obtained results.

With the proposed time step optimisation algorithm it is possible to adjust the
increment size to be small in the stages where strong gradients are developed and to
be large enough when the strain rate does not change significantly. Scalar values g;
define a finite set of intervals in which the correction factors w; are applied, with
i=1,...,n. Additionally, it is even possible to develop a continuous step optimi-
sation process, performing a numerical fitting to the set of values (g;,w;). The
following generic equation leads to the referred numerical adjustment and to the
generation of several optimisation profiles controlling only the scalar parameter F,

exp(Fe )

ewp(Fo) — 1 10>

w=w; + (W, —wy)

3 Implementation and Results

The models and approaches proposed in previous sections are now tested in the
determination of residual stresses in specific metal matrix composite materials. For
the sake of example, these models are tested using an Aluminium matrix composite,
with SiC reinforcement.

It is natural to suppose that technological questions associated with the
manufacturing of metal matrix composites (MMC) may influence their response
in service within a particular structural application. Thus, it is of utmost importance
and relevance to study and investigate the role of the manufacturing technological
parameters on the final properties and characteristics of MMC and in particular on
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the development and elimination of residual thermal stress fields. The particular
aspects studied and presented on this section are: (1) the effect of the reinforcement
volume fraction, Fy, on the final distribution of residual stresses and other state
variables; and (2) the effect of the cooling rate, T, on the levels of residual stresses.
Other tecnological issues such as, for example, those related to the distribution,
orientation, and morphology of the reinforcement are also very important and have
been studied by other authors, such as Stautter et al. [48], Sorensen et al. [49], Watt
et al. [50] and Pettermann et al. [51].

As an example of application of the models proposed and described in previous
sections a set of numerical simulations was performed to test their the numerical
efficiency. Results are shown concerning (1) the effect of the metal matrix compos-
ite reinforcement volume fraction and (2) the effect of the cooling rate. Numerical
simulations are performed on a unidirectional fibre reinforced MMC. The geomet-
rical model of this MMC and the corresponding representative unit cell are sche-
matically represented in Fig. 2a, b, respectively.

Boundary conditions are such that the coordinate planes in the representative
unit cell (RUC) are planes of symmetry. All finite element simulations were
performed considering an Al-SiC composite. The material properties — elastic
modulus, Lamé coefficients and CTE — for the aluminium matrix are temperature
dependent and given as [14]

Ew (T) = 73474 — 43.48T[MPa],
ting (T) = 27041 — 17.057T[MPa, (106)
an (T) = 28.7 x 1078 +2.47 x 1078T[K™!],

Fig. 2 Unidirectional fibre reinforced metal matrix composite (MMC): (a) geometrical model and
(b) representative unit cell (RUC)
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respectively, where T is the temperature in degrees Kelvin. The elastic modulus,
Lamé coefficients and CTE for the reinforcement material are

Egr = 41 x 10* MPa,
g = 16.532 x 10* MPa, (107)
ag =043 x 109K,

respectively. Material parameters used in the constitutive model are given by
Tei-xeira-Dias and Menezes [14]. A constant cool rate is considered in all simula-
tions and the resulting homogeneous temperature field is given by

T(t) =T, +Tt, (108)

where 7 is the time. The initial and final temperatures are T; = 933 K and Ty = 293 K,
respectively.

3.1 Reinforcement Volume Fraction

The reinforcement volume fraction F, is one of the manufacturing and technologi-
cal parameters that influences most the mechanical and thermal characteristics of
the composite material [26, 29, 52, 53]. Thus, the study of the influence of this
parameter is particularly interesting as it can be defined and controlled both on the
design and on the manufacturing stages in such a way as to achieve a set of desired
mechanical properties for the MMC.

Numerical simulations were made on the referred representative unit cell using
the constitutive models and numerical approaches described on previous sections.
The o, and oy, stress profiles along Oy are shown in Figs. 3 and 4 for reinforcement
volume fractions in the range of 5-35%. A constant cooling rate |T| = 100 Ks™!
was considered. These results concern a representative unit cell (RUC) of a
unidirectional fibre metal matrix composite, such as the one represented in Fig. 2.
Directions Ox and Oy are the length and width of the RUC.

As expected, both the o, and the g, stress components are compressive within
the reinforcement material and correspond to an hydrostatic stress state. It can also
be observed that the compressive levels of o, in the reinforcement decrease for
increasing volume fraction. The same tendency can be observed for g,,. However,
the levels of ¢, increase with the volume fraction, that is, as the distance between
reinforcement elements decreases. It can be seen that the equivalent stress that
arises from the results presented is almost independent of the reinforcement volume
fraction, reaching its maximum values near the matrix-reinforcement interface. The
maximum value of the equivalent stress is close to 70 MPa at room temperature.
This value is above the yield stress of the matrix material, which is close to 40 MPa.
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This fact reflects the presence of hardening effects during the cooling down stages
of the manufacturing process, as a consequence of the development of plastic
strain.

3.2 Cooling Rate

As was stated before, most of the manufacturing processes used in the production of
metal matrix composites (MMC) induce high temperature levels and gradients in
the metallic matrix, often close to (or even above) its melting temperature. During
the posterior cooling down stage, residual stresses may arise due to the mismatch
between the coefficients of thermal expansion (CTE) of the constituent materials.
Consequently, the cooling down stage is expected to have a determinant effect on
the levels of residual stresses at room temperature within the MMC. Absolute
cooling rates in the range of 0.1 to 500 Ks~! were tested considering that
the material is stress-free at fabrication temperature (T;). The dependence of the
equivalent stress oeq, internal parameter s and equivalent plastic strain & on the
cooling rate are shown in Fig. 5.

In these results it can be clearly observed that there is a gradual decrease of both

Oeq and s with |T'| and also that this effect increases for absolute cooling rates below
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Fig. 5 Dependence of the equivalent stress o, state variable s and equivalent plastic strain &P on
the cooling rate (7))
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50 Ks~!. Nonetheless, in global terms, it can be stated that the cooling rate has a
limited effect on the residual stress levels at room temperature. The effect of
changing the cooling rate is mostly felt on the relatively low stresses generated at
higher temperatures.

4 Final Remarks

The authors presented a full numerical approach to the determination of residual
stresses in dual-phase microstructured materials, with applications to metal matrix
composites (MMC). The model is applied in a finite element algorithm and tested
with some numerical examples in order to prove its effectiveness and evaluate the
effect of the reinforcement volume fraction and of the cooling rate on the levels of
residual stresses at room temperature. Residual stress fields are determined in
a representative unit cell (RUC) associated with a unidirectional fibre reinforced
Al-SiC composite with volume fractions ranging from 5 to 35%.

It is shown that both normal stress components o, and ¢, are compressive in
nature resulting in a hydrostatic stress state in the reinforcement. The levels of
compressive stress decrease for the higher volume fractions. Nonetheless, the ten-
dency is opposite in the metallic matrix with higher values of a,, for increasing
reinforcement volume fractions. The equivalent stress reaches values above the
yield limit, leading to the development of plastic strain near the matrix-reinforcement
interface.

The influence of the cooling rate on the residual stresses at room temperature is
not evident. This influence is only significant for absolute cooling rates under
50 Ks~!. This can be explained by the fact that the residual stresses at room
temperature are mostly generated at the lower temperature range, that is, under
600 K, where the viscoplastic behaviour of the aluminium matrix is less sensitive to
the strain rate.
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Heat Conduction in Two-Phase Composite
Materials with Three-Dimensional
Microstructures and Interfacial

Thermal Resistance

Carlos Frederico Matt and Manuel Ernani Cruz

Abstract The goals envisioned for the current chapter are threefold. First, it gives a
general overview of heat conduction in two-phase composite materials with three
dimensional microstructures and interfacial thermal resistance. Second, it describes
the application of homogenization theory to the multiscale heat conduction problem
in the composite medium in order to derive the boundary-value problem defined on
a representative volume element of the composite microstructure (the cell problem)
and an expression for the composite effective thermal conductivity. Third, it
describes a finite-element-based computational scheme to calculate the effective
thermal conductivity of composite materials with general 3-D microstructures and
interfacial thermal resistance. Numerical results for the effective conductivity are
presented and, when possible, compared with available analytical predictions. The
numerical results reported here confirm that computational approaches are a helpful
tool for understanding the complex macroscopic thermal behavior of composite
materials.

1 Introduction

Two-phase composite materials are a special class of multicomponent or hetero-
geneous media defined as systems composed of two constituents (or phases)
with distinct macroscopic properties. In general, one of the constituents may
be dispersed as particles (as in particulate composites) or fibers (as in fibrous or
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short-fiber composites) inside a continuous matrix of the other constituent; the
former constituent is referred to as the dispersed phase whereas the latter one is
simply referred to as the matrix. The constituents may be a solid, a liquid, a gas or a
combination thereof; nevertheless, only two-phase composites with solid constitu-
ents are discussed in this chapter.

The size, shape, distribution and orientation of the dispersed phase inside the
matrix define the microstructure of a composite material. The dispersed phase in
particulate composites are generally modeled as spheres. The spheres may be
orderly or randomly distributed within the matrix. Hence, depending on the particle
distribution, the microstructure for a particulate composite is represented by an
ordered or a random array of spheres. The dispersed phase in fibrous or short-fiber
composites comprises geometrical shapes slender in one direction; it is usually
approximated by cylinders or ellipsoids of revolution. The fibers may also be
orderly or randomly distributed within the matrix as in particulate composites;
nevertheless, in fibrous or short-fiber composites, fiber orientation also plays an
important role in the composite microstructure. During the manufacturing process
of a fibrous or short-fiber composite, the matrix and the fibers are compressed
together such that the fibers tend to distribute themselves in planes normal to the
applied pressure. If all the fibers have the same orientation in those planes, one says
that they are longitudinally-aligned; otherwise, they are transversely-aligned.

Generally, three characteristic length scales may be identified in a composite
material, namely, the size of the dispersed phase (the microscale); the size of the
microstructure (the mesoscale) and the physical dimensions of the composite itself
(the macroscale). The size of the microstructure is also referred to as the character-
istic length of the representative volume element of the composite microstructure.
Frequently, these length scales possess widely different orders of magnitude; one
says that they are well-separated. There are a variety of transport phenomena in
composite materials with wide engineering applicability, such as heat conduction,
fluid dynamics, forced and natural convection, and radiation, to name just a few.
The discussion addressed here will be restricted to heat conduction. Heat conduc-
tion in composite materials with well-separated length scales are mathematically
described by partial differential equations with rapidly-varying coefficients. Even
with the actual computational resources, classical analytical and/or numerical
treatments to these equations are difficult. Hence, developments of analytical and/
or numerical schemes that alleviate the difficulties (stiffness) associated with the
well-separated length scales are desirable and have been the subject of research
efforts during recent years.

The application of composite materials in industry has remarkably increased in
recent years, due to their ease and low cost of fabrication, and the tailorability of
their mechanical and thermal properties. Composite materials are generally classi-
fied as organic matrix composites, metal matrix composites or ceramic matrix
composites, depending on the matrix material. In organic matrix composites,
reinforcements with high thermal conductivity are embedded in an electrically
insulating matrix, such as polymers and thermoplastics. They have become attrac-
tive materials for electronic packaging applications due to a combination of
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properties like high thermal conductivity, low thermal expansion coefficient, ther-
mal stability and low dielectric constant [18]. Metal matrix composites have also
been widely used in electronic packaging applications because of their high thermal
conductivity and the tailorability of their coefficient of thermal expansion [9, 38].
An adjustable coefficient of thermal expansion is a desirable feature because a
mismatch of that property between heat sink and substrate gives rise to thermally
induced stresses, which contribute to device failure. Furthermore, the recent minia-
turization of electronic components with increasingly higher energy densities
requires highly conducting materials as the performance of those electronic devices
depends on maintaining appropriate environment temperatures [9]. Ceramic matrix
composites represent a new class of refractory composites for high-temperature
environments in which glasses, glass-ceramics and ceramic matrices are reinforced
with fibers [16]. Ceramic matrix composites are attractive materials because they
possess improved fracture toughness, impact resistance, greatly increased tolerance
to mechanical damage compared to many single brittle materials and wide versatil-
ity of thermal properties [16]. In a high-temperature environment, materials with
superior thermal properties become desirable. For instance, heat exchangers
operating at high temperatures require materials with high thermal conductivity
and high thermal diffusivity in order to improve resistance to thermal shock; on the
other hand, other equipments require materials with extremely low thermal con-
ductivity in order to minimize heat losses.

As stated previously, owing to the usual complex microstructures, the detailed
(local) study of heat conduction in composite materials is a hard task. Therefore,
engineering analyses focus on the macroscopic behavior of such materials, dictated
by the so-called effective properties, such as the effective thermal conductivity. The
determination of the latter in terms of the microstructure, individual properties of
the phases, and other relevant physical parameters has scientific and practical
importance [13, 27, 37]. Because most fabrication processes of composite materials
do not ensure a perfect thermal contact between the constituent phases, the effective
thermal conductivity depends on the interfacial thermal resistance between the
matrix and the dispersed phase. This interfacial, or contact, resistance is due to
poor chemical and/or mechanical adherence, caused by different thermal expansion
coefficients of the phases, and presence of roughness, waving and impurities at the
interface [6, 9, 10, 14, 28]. Physically, the contact resistance tends to thermally
insulate the dispersed phase, and may dramatically reduce the composite effective
conductivity. Manufacturing processes of composite materials may also lead to
other defects such as voids inside the matrix which also contribute to reduce their
effective conductivities.

Recent reviews of analytical [10, 13, 27, 28], computational [7, 19, 22, 33], and
experimental [8, 28] techniques for the study of heat conduction in composite
materials are available. Analytical [15, 27] and phenomenological [5, 11] treat-
ments of heat conduction in composites are generally restricted to single spheroidal
particles embedded in an infinite matrix, to dilute dispersed-phase volume fractions,
or to the validity of ‘ad-hoc’ assumptions; the majority of analytical and phenome-
nological approaches neglects the interfacial thermal resistance and the ones which
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account for it are usually restricted to the above-mentioned simple microstructures.
Accurate results for the effective conductivity of ordered arrays of spheres (low-to-
moderate volume fractions) without interfacial thermal resistance may be obtained
from the works of Sangani and Acrivos [34] and McPhedran and McKenzie [26].
For ordered and random arrays of spheres with uniform interfacial thermal resis-
tance the reader should consult, respectively, the works of Cheng and Torquato [6]
and Benveniste [5]. The works of Hatta and Taya [17], Furmanski [12] and Dunn
et al. [8] provide analytical expressions for the effective thermal conductivity of
arrays of perfectly-aligned and misoriented short fibers without interfacial resis-
tance. The vast majority of computational approaches [19, 21, 22, 33], despite their
increased flexibility to treat more complex physics and microstructural geometries,
calculate the effective thermal conductivity exclusively in terms of the individual
properties of the constituents, and the volume fraction, shape, and spatial distribu-
tion of the dispersed phase. There are numerical approaches which account exactly
for an interfacial thermal resistance (see, for example, the works of Duschlbauer
and his co-workers [9, 10]); however, some of them are not flexible enough to also
account for other complexities, such as dispersed voids in the matrix and large
volume fractions, close to the maximum packing.

To sum up, purely analytical treatments of heat conduction in composite
materials provide important expressions for the effective conductivity, from
which the effects of dispersed-phase volume fraction, shape, and spatial distribu-
tion are easily quantified, but they are restricted in most cases to simple micro-
structures, and to dilute and moderate volume fractions. Phenomenological
approaches are a valuable aid to investigate complex physics and microstructural
geometries, nevertheless they adopt heuristic assumptions regarding the tem-
perature distribution inside the matrix, which are not easily verified in practice.
Computational methodologies, in principle, appear now to be the most appropri-
ate means to treat heat conduction in composites, because their inherent flexibility
permits gradual improvement of the physical and geometrical modeling of such
materials. On the other hand, the composite microstructure must be prescribed a
priori, and it remains nontrivial to reproduce computationally all the details of an
actual composite microstructure.

The goals envisioned for the current chapter are threefold. First, it gives a general
overview of heat conduction in two-phase composite materials with three dimensional
microstructures and interfacial thermal resistance. Second, it describes the application
of homogenization theory to the multiscale heat conduction problem in the composite
medium in order to derive the boundary-value problem defined on a representative
volume element of the composite microstructure (the cell problem) and an expression
for the composite effective thermal conductivity. Third, it describes a finite-element-
based computational scheme to calculate the effective thermal conductivity of com-
posite materials with general 3-D microstructures and interfacial thermal resistance.
Numerical results for the effective conductivity are presented and, when possible,
compared with available analytical predictions. The numerical results reported here
confirm that computational approaches are a helpful tool for understanding the
complex macroscopic thermal behavior of composite materials.
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2 Formulation of Heat Conduction Problem

Here a statistically homogeneous composite [37] is considered, illustrated in Fig. 1,
whose continuous and dispersed phases are, respectively, a solid homogeneous
matrix of thermal conductivity k¢ occupying domain ., and solid homogeneous
particles/fibers of tensorial thermal conductivity kf’j, i,j =1,2,3, occupying domain
Q. The particles/fibers have arbitrary shapes and orientations, and are orderly or
randomly distributed within the matrix. An interfacial thermal resistance function
R; is present at the interface 0€Q; (a disconnected set) between the matrix and
the dispersed phase. The composite extends throughout a macroscale region
Q = Q. UQ, of characteristic dimension L, over which an external temperature
gradient AT/L is imposed. The representative volume element (RVE) of the
composite microstructure is the locally-periodic cell €., which contains several
particles and/or fibers of characteristic dimension ¢ (the microscale). The charac-
teristic dimension of the RVE is referred to as the mesoscale, and denoted by 4. The
composite length scales are assumed to be well-separated and, given statistical
homogeneity, one can define the small parameter ¢ = 1/L < 1 for the medium.

2.1 Strong Form

For steady state heat conduction in the medium described above, the non-
dimensional strong form of the boundary value problem is given by [32]

_i<89 > =G, in Qm (H
Ayi

X

Fig. 1 Statistically homogeneous composite with 3-D microstructure
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0 bl
— k=) = in Qy, 2
By, ( ij 8yj> Gy in Qy 2)
o0° o0?
By, n; Kij o, n; on o€, 3)
- 29 nt = Bi(0° — 07) = Bi[0,],q ondQ, 4)
Vi *

where summation over repeated indices is implied; y = x*/4, and x*, x* € IR3, is the
macroscale coordinate or slow space variable, whose components are x;, j = 1,2, 3;
0, =T, /AT,G = g'/12 /(kAT), and T, and ¢ are, respectively, the temperature field
and the volumetric rate of heat generation at the microscale; 6 = 0,] 0. 04 =0, | o,
G = Gl , and G4 = Gl ; n¢ is the unit vector locally normal to J€ and pointing
to the outside of Q.; k;; = kl‘-j/k" is the conductivity ratio, i,j = 1,2,3; Bi = h1/k*
is the Biot number, and & = 1/R; is the interfacial thermal conductance function
(also referred to in the literature as the interface parameter or skin constant), which
specifies locally the ratio of the heat flux to the temperature jump at the interface
0Q. The current definition of the Biot number is based on / rather than on £ as done
by other researchers [5, 6]; moreover, it is related to the Kapitza radius, k¢/h,
defined in [11]. The notation [¢],q denotes the jump ¢ — ¢“ of the function ¢ at
0€Q. Tt is typical in measurements of thermal conductivity with macroscopic
samples of composite materials, to impose different temperatures at 0€, the
external boundaries of Q, such that the field 6, can be regarded as subjected to
Dirichlet boundary conditions. Later on, it will be demonstrated that the composite
effective conductivity does not depend upon the boundary conditions applied at
0Q, which is physically reasonable.

2.2 Weak Form

For subsequent treatment by the finite element method, it is more convenient to
work with the equivalent weak form of the heat conduction problem, which
naturally enforces the continuity of the heat flux at 0Q, (3). Following the detailed
derivation in [32] for isotropic composites, one arrives at the following weak form:
given {;,i,j = 1,2,3, Biand G, find 0, € X'(Q) such that

ov 80
Cii / Bi[v 0, ds:/de YWweX(Q), (5
/ ij 8y, 8y, o, Han[ ]agx o y Q)

where (;;(y) =9d; if y€Q, and {(y) =xy if y€Qq, i,j=1,2,3; X' (Q) =
{wlwlg, =w € HI(QC),W|QH =w! e H'(Q,), Wloo, = B €IR};  X(Q) = {we
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X'(Q)} NHY(Q); H'(Q) is the space of all functions for which both the function and
derivative are square-integrable over Q [31], and the functions in H}(Q) C H'(Q)
vanish on 0Q. It is clear from (5) that the formulation permits that the Biot number, in
general, will vary spatially over the interface 0Q;, i.e., Bi = Bi(y).

2.3 Application of Homogenization Theory

Even with the actual computational resources, traditional analytical and/or numeri-
cal methods have difficulties in solving the weak form (5). The coefficients {;(y),
Bi(y) and G(y) are rapidly-varying functions of the space coordinate y due to the
well-separated length scales and to the large number of particles/fibers within the
matrix. Analytical and/or numerical methods able to decouple such a multiscale
boundary-value problem into a boundary-value problem defined on an equivalent
homogeneous medium that behaves identically as the original multiscale medium
are thus suitable to handle partial differential equations with rapidly-varying coef-
ficients, as (5); homogenization theory is one of such methods. To apply homo-
genization theory [1, 4] to (5), asymptotic developments for the temperature field in
terms of characteristic length scales of the phenomenon under investigation have
revealed itself as an attractive strategy.

The first task in applying the homogenization theory to the weak form (5) is to
write 0, and v as functions of two space variables, namely, the fast or microscopic
variable y and the slow or macroscopic variable x = x*/L = ¢y. Note that for the
problem under investigation, only spatial scales enter the formulation. The second
task is to introduce multiple-scale asymptotic expansions, here needed up to the
second-order term in ¢ only; in other words, the temperature field and the weight
function are expanded as

2

Z «(X,y) and v—Zavkxy) (6)

Substituting the asymptotic expansions given by (6) into the weak form (5) and
then applying the chain rule for differentiation, one derives the following expres-
sion [32]

aV() aV() 8v1 (’)v1 2 8\)2 800 600 801
/C”< 8x,<+ 8y1+ 8x,+8 6yi> <Byj+88xj+88yj

0 0
+ 268 1+ gz)d +/ Bi|:V0+8V1+82V2:| |:00+891+82(‘)2:| ds
X Vi 9, 0, oQ

:/ <V0+8V1+82V2>Gdy Yvo, Vi,V GX(Q).
Q
(7
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Five different homogenization processes are possible [1], corresponding to five
different orders of magnitude for the Biot number: Bi = O(¢%),a € {-1,0,1,2,3}.
Here, only the physically relevant model corresponding to a = 0 will be discussed;
such a model is associated with a finite value of the interfacial thermal resistance R;,
i.e., 0 < Bi < oo. Note that Bi = 0 represents a perfect insulating interface, while
Bi — oo represents perfect interfacial thermal contact.

The third task in applying the homogenization theory is to collect systematically
equal powers of ¢ in (7). For instance, by collecting equal powers of ° in (7) one
arrives at the following equation

aV(] (99() .
B = X(Q).
oG Gy [ Bl nds =0 Hoex@. @

Note that (8) is valid for all weight functions vy € X(Q). Hence, one may choose
a weight function such that [vo],q = 0. By substituting [vo],o = 0 into (8) one
immediately concludes that 00,/3dy; = 0. Now, by substituting 06,/9dy; = 0 into
(8), one immediately has [60] a0, = 0, from which one concludes that 0y = 0o(x),
i.e., 0y does not depend on the microscopic space variable y. Physically, the
temperature expansion coefficient 0y(x) represents the macroscopic temperature
field defined on the equivalent homogeneous medium.

By collecting equal powers of ¢! and by taking into account the previous con-
clusions, one arrives at the trivial identity 0 = 0; in other words, no new informa-
tion is gained when collecting equal powers of ¢'. Finally, by collecting equal
powers of &2 in (7) and by taking into account all the aforementioned conclusions,
one derives the following equation

(900 8\/0 801 (9\7() 800 6\/1 801 8v1
Joas ot B oo ooy 30"

+/ Bi[vl]agx[ﬂl}ag:ds:/vOGdy ©)
0Q; Q

Vv € X"(Q),Vv; € X(Q). The function space X" (Q) is a subset of X(Q) in which
a member function has no jump across the interface 0€);. Equation (9) may be
broken into two equations. Firstly, by arbitrarily choosing v; = 0 € X(Q) one
derives

600 801 6\/0 17
= X' (Q). 1
il + ) o= [omoer wmexi@n o

Secondly, by arbitrarily choosing vo = 0 € X”(Q) one derives

800 801 avl . -
/C'j<8xj 8yj> D, dy—i-/agzv Bl[vl]mx[ﬁl]mxdsfo Vv € X(Q).  (11)
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As one shall demonstrate in the next paragraphs, (10) and (11) will give rise
to the homogenized and cell problems, respectively. The next step is to assume a
separation of variables for 0;(x,y) in the form

00y

0x,

01(x,y) = =1, (¥) 75— (x). (12)

By substituting (12) into (11) yields

890 aXp 890 8v1 . 800
Y e S it} _ Bi —2 v 1 - 1
/Q Y (8}9 dy; 0Ox,) Oy; v /()Q ' Ox, ilon, [’C”]dﬂsds 0 (13)

or, alternatively,

90y 0y \ O . 000
/zu < ip 3y,> Ayi dy — /0& Bi — ax, [VI]QQ [/(p] dv 0 (14)

Vv € X(Q). If the composite microstructure is further assumed to be periodic
then one may apply the periodicity property [1, 32]. The periodicity property relates
the integral of a quantity over the composite multiscale domain Q with the integral
of the average of such quantity over a representative volume element of the
composite microstructure (the periodic cell). The periodicity property for compo-
sites with finite interfacial thermal resistance is mathematically described by [32]

lim, o (/Qf(x,y)der/mxg(x,Y)dS) /QIQPCI / f(xy dy+/ (x, y)ﬂ’S} dy

(15)
where the functions f and g are periodic in y € IR%; the function g has dis-
continuities across 0Q; ,. denotes the periodic cell and I' is the portion of
0Q inside Q.. The symbol |Q,.| denotes the volume of the periodic cell, i.e.,

Q] = [ dy.

pe

By subsequently applying the periodicity property given by (15) into (14) yields
390 a/(p (9\/1
dy od
/Q{ / élj 8Xp < ! Oyi e
= / {— / Bi 2%, [;{p]rds}dy (16)
o U@l Jr o 9%

Vvy € X(Q). Note that the macroscopic temperature gradient 90y /0x, depends
only on the macroscopic space variable x; hence, it may be put outside
the integrals over Q,. and I'. Equation (16) must hold for all weight functions




72 C.F. Matt and M.E. Cruz

vi € X(Q); hence, one must have (henceforth, the subscript under the weight
function is abandoned)

8Xp ov .
/Q,,(. G <5jp - 8_y]) ; dy = /FB1[ Ie(2p)pds Vv e Y(Qu) (17)

or, alternatively,

1, Ov
/Q L2 o, 8yld +/B1[] 7] ds—/ c,pa dy YveY(Qu). (18)

The unknown function y,,, p € {1,2, 3}, is a periodic solution corresponding to
a unit temperature gradient imposed in the x, direction; the function space Y (Qpe)
defined as

Y(Qpe) = {W‘W‘Qm_( =n'e Halé,t(QI?C-,C)vamd =w'e H;#(Qpad)a Wl = B € IR}

is the space of all triply-periodic functions in €,. with period C;4 along the y;
direction, C; € IR, j = 1,2, 3, for which both the function and derivative are square-
integrable over Q,.; Q¢ and Q, 4 are the continuous and dispersed subdomains of
Q.. Equation (18) represents mathematically the cell problem for composites with
finite interfacial thermal resistance. Note that due to the interfacial thermal resis-
tance both the temperature and weight functions have jumps across the interface I'.
Note that the coefficients {;;(y) and Bi(y) are not rapidly-varying functions inside
Q,,.. Note also that the solution of the cell problem depends neither on the boundary
conditions prescribed at JQ nor on the rate of volumetric heat generation G(y); it
depends only on the geometry of the periodic cell, the particles/fibers-to-matrix
conductivity ratios and the magnitude of the interfacial thermal resistance. The
function Lp in (18) is determined up to a free constant; thus, it is further required for
uniqueness that Lp has zero volumetric average, i.e.,

/ 1, dy = 0. (19)
Qe

Now, substituting (12) into (10) one arrives at the following expression

0
/ Cu 00 ( » 717) o dy = / wGdy Yo € X'(Q). 20)
Q

Oox;

Finally, by applying the periodicity property to (20) one derives the following
expression for the weak form of the homogenized problem

a/(p 00y Ovy
_4p P v = 21
/ {|Q,,C|/ f”(”’ ay,) y}ax,, ads= |, |Q,,C|/ oG pay @D
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Vv € X”(Q). From inspection of (21), one identifies the term inside brackets on

the left-hand side as the (tensorial) effective thermal conductivity .,
p,q = 1,2,3; hence,

ke‘pq 1 / < 3}@,) 1 / 3;{;’
Keps =7 =79 1 Gi Oig — o )Y = 75— Opi| Oig — 5 |d
=k 1] Jo, TN By )Y T 10 o, T B )Y

pe.c

+ / Kpi 51,,—% dy (22)
Qpea 8}’;‘

where y, = X‘i|Qﬁu and XZ = X‘{‘Qpc.d. Note that, once the cell problem is solved,
the composite etfective conductivity is computed with the aid of (22). The main
goal of the next section is to discuss in detail the finite element solution of cell
problem (18). The solution of the homogenized problem, given by (21), will not be
addressed here. Once the composite effective conductivity has been computed, the
solution of the homogenized problem for a given volumetric rate of heat generation
G and boundary conditions at JQ is straightforward.

3 Finite Element Solution

Numerical solution of the cell problem, a boundary-value problem with periodic
boundary conditions, by the finite element method requires three steps: (1) domain
and mesh generation, (2) finite-element discretization of (18), and (3) solution
of the resultant linear system of algebraic equations. Each of these three steps is
described in what follows.

3.1 Domain and Mesh Generation

Domain generation comprises the construction of the geometry of the periodic cell.
The microstructures discussed in this chapter are ordered arrays of spheres, ordered
arrays of perfectly-aligned prolate ellipsoids of revolution, ordered arrays of
circular cylinders, random arrays of spheres, and random arrays of misoriented
circular cylinders. Mesh generation comprises the subdivision of the cell domain
Q,. into Ng nonoverlapping conforming finite elements, each with domain Q,,
e=1,...,Ng, such that Q,., = UleVilQe is the discrete approximation to the
domain €Q,,; the total number of global mesh nodes is denoted by Ngn.

Over each finite element, the solution of the cell problem is approximated by the
interpolation of its values at the nodes. An isoparametric discretization implies that
both the geometry €2, and the periodic temperature field y,, are approximated by

the same interpolation functions [31]. Here, quadratic polynomials are employed as
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the interpolants; hence, the finite element meshes are composed of ten-node qua-
dratic tetrahedra, a generic example of which is illustrated in Fig. 2a. The use of
quadratic interpolation functions provides an improved representation of 3-D
curved surfaces (spherical, ellipsoidal, and cylindrical) and an accurate numerical
solution, especially for composites with a high thermal contrast between the
constituent phases [23]. The adopted domain and mesh generation procedures,

a Fy,YoYs) i Qec IR QIR

R V1:Y2:Yg) = (& 1. D) 9

y3
)4
FYEN O : Qpc IRP— Q,c IR?
(& 1. 9) > (V4.Y2¥3)
b CONTINUOUS PHASE DISPERSED PHASE

© CORNER NODES ON T ©CORNER NODES NOTONT @ CORNER NODES ONT OCORNER NODES NOT ONT
= MIDSIDE NODES ON " OMIDSIDE NODES NOTONT  mMIDSIDE NODES ONT OMIDSIDE NODES NOT ON T

Fig. 2 (a) Schematic illustration of the isoparametric mapping between a generic ten-node
quadratic tetrahedron (/eft) and the master quadratic tetrahedron (right) (b) Duplication of degrees
of freedom corresponding to global mesh nodes at I'. Nodes A and A, B and B', and so on are
geometrically coincident
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and mesh quality evaluation, are described in detail elsewhere [20-22], and exploit
the resourceful third-party 2-D/3-D mesh generator NETGEN [35].

3.2 Isoparametric Second-Order Discretization

The isoparametric second-order discretization applied to solve the cell problem is a
modification of the usual Galerkin method, in order to account for the disconti-
nuities of v and y,, across the interface I'; the cell problem weak form is repeated
here for convenience,

v Oy, . B Ov
/ i 7 v D, dy + /r Bi[v]p (7, ds = /Q Cip . dy WevY(@Q,). (23)

Two remarks should be highlighted. First, the usual continuity of the primary
variable (here, the temperature) at nodes shared by adjoining tetrahedra must be
enforced, only if those nodes are not at I'; on the other hand, the balance of the
secondary variable (the heat flux) at a surface shared by two adjoining tetrahedra
must always be enforced. Second, in order to account for the interfacial resistance
effect, each global mesh node at I' must store two values of y,,: one correspondmg
to the continuous phase, yp, and the other corresponding to the dispersed phase, /p,
such that the jump [y,] . is given by y; — x%. Thus, it is necessary to duplicate the
degrees of freedom correspondmg to global nodes (corner and midside) at I': as
shown in Fig. 2b, a duplicate A’ of the generic node A is created, such that A and A’
correspond to the same geometric point in 3-D space, but store two different values
(degrees of freedom) for the temperature, 74 = 7,ln0qe4 a0 Xar = Zplnogear- The
connectivities of the tetrahedra belonging to €, » and having at least one node at I'
must then be modified accordingly, to correctly assemble the elemental equations.
After the duplication procedure, the number of degrees of freedom increases by Nr,
where Nt is the number of global finite element mesh nodes at I'; the total number
of degrees of freedom (i.e., values of the solution %p to be calculated) is NpoE.

3.2.1 Numerical Treatment of the Volume Integrals

The cell problem may be written on an elemental level as

% -
/ Ct/ 5)’1 3),] /1_Q Bi‘[v ]rgl [Vp d / C,,, 8 dy, (24)

where Q,, e =1,2,... Ng, is a quadratic tetrahedron of the mesh, C,‘, = Z_f,:,«|Qy,
i,j=1,2,3 (ij =0; if Q. C Q. and ij =Ky if Qo CQuea); Bi° =Bilp, ;
Ve = V|Qe and y;, = %,|q,; and I'g, is the portion of the boundary of Q.onT (e,




76 C.F. Matt and M.E. Cruz

I'g, = 0Q, NT). In the finite element solution of (24), one seeks to approximate v*
and y;, by

10 10
V=D i and g =) 7V (25)
b=1 a=1

where y! (y), ¥;(y), a,b =1,2,...,10, are the Lagrange interpolation functions
for Q,, and x;’a is the value of the temperature %, at the local node a of Q,. The
usual practice with finite elements [31], as shown in the following paragraphs,
is to express the Lagrange interpolation functions in terms of a reference
coordinate system, related explicitly to the original system y. Each local node
a of each ten-node tetrahedron €, is associated with a corresponding global
node A, A €{1,2,...,Ngn}. Equation (24) applies for all tetrahedra of the
mesh (with zero, one, two, or three corner nodes at I'); the surface integral in
(24), however, must be computed only for those tetrahedra with exactly three
corner nodes at I'.

For tetrahedra with zero, one, or two corner nodes at I (i.e., tetrahedra for which,
respectively, I'q, is an empty set, a point, or a straight line segment in 3-D), ds = 0;
hence, (24) is simplified to

where Q,, ¢ = 1,2,...,Ng, is a generic tetrahedron with at most two corner nodes
at I, and Ng (Wg < Ng) is the number of such tetrahedra in the mesh. Substituting
the finite element approximations for v* and y;,, one arrives at the following system
of linear algebraic equations for each tetrahedron Q,,

10
> ksatya =Ty 27
a=1
b=1,2,...,10.In(27), k;fa and f[f , are, respectively, the elemental stiffness matrix

and elemental forcing vector, given by

e 6 a a (4 e
Ky = / & 8?” ‘i/ dy and f7, = / & a%d (28)

note that k¢, is symmetric.

The integrals in (28) are evaluated with the help of an isoparametric mapping
between the actual tetrahedron Q,, e = 1,2, ..., Ng, and the standard (or master)
quadratic tetrahedron Q,, : {(&,n,9) €IR}|0 < (< 1;0<n<1-&0<9 <
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1 — & — n}, as illustrated in Fig. 2a; (£, n, ¥) are the volume coordinate§ [3] of the
standard tetrahedron, related to the spatial coordinates (y;,y,,y3) over Q, by

¥i(&m,d Zy1 o(&m,9), (29)
(&m0 Zyz JAEm), (30)
y3 é na Z)@ é 777 ) (31)

where y{ (@)’ y2 (@)’ and yg( ) are, respectively, the y;, y,, and y; coordinates of local

node a, a=1,2,...,10, belonging to the tetrahedron Q,. The isoparametric
mapping F~ (f m, ) Q,,—Q, thus yields

o NS e (O O Oy O O, )
"”“‘/o// é"’<353y,+6n8yl+ 29 oy,

><<5l// 3§+3¢ on v,
oc Oy, On 6)’1 a9 Oy;

)d tJ¢ d¥dndé (32)

O I T N T A
ph_/ / / ”’(85 87)7,4—% aiyl—F% 0y,>detJ dﬂdﬁdﬁ,

(33)

where the abbreviated symbols 1/, = Ve (€,m,9),y2(E,m,9),y3(E,m, ), v, =
WZ()’l(fﬂ?, 19)3)@(53777 19)7)’3(53777 ﬂ))’ aab = 1a2a~-'a 10, are the standard
Lagrange interpolation functions, or shape functions, of the master tetrahedron,
and J° stands for the elemental Jacobian matrix of the isoparametric mapping,

Je = aéy(‘fy,; g“ [31]. The shape functions are given by the following expressions in

the coordinate system (&, 7, ) [3]:

Ui (Em,0) = (1—28 =27 —20)(1 — & —n—9)

Ua(Em,9) = EQ2E = 1), Y3 (Em,0) = (20— 1),y (&, 0) =9 (29 — 1)
Us(E,m,0) =4E(1 — & —n— 1), Y(E,m,0) = 4¢n

Uo(Em,0) =dan(1 =& —n—9) (& n0) =40(1 = E—n—1)
Yo(E,m,0) =420 1y0(E,m,9) = 4.
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The components of the Jacobian matrix, J¢
given by:

Jg’j, and J§

3 j=1,2,3, are thus

1j°

10 10

10 ~
e € alpa (l a
Jij = Z;)ﬁ(a) 9¢; Sy = Z)’z and J5; = Z)’s 851 (34)

with & = & & = n,and & = 0

The integrals appearing in (32) and (33) are evaluated numerically using the
Gauss quadrature rule with five points [3]. The derivatives of &,  and ¢ with respect
to yi, y» and y3 are computed from the inverse of the Jacobian matrix. The elemental
stiffness matrices and elemental forcing vectors are finally assembled to construct
the global matrix K’ and forcing vector F,,. The assembling, or direct stiffness
summation, procedure enforces (1) continuity of the temperature at nodes shared by
adjoining tetrahedra, provided that such nodes are not located at I", (2) balance of
the heat flux at the surfaces shared by adjoining tetrahedra, and (3) periodicity at
corresponding boundary nodes lying on the external surfaces of the cell Q..

3.2.2 Numerical Treatment of the Surface Integral

For a generic tetrahedron fle with exactly three corner nodes at I', e = 1, 2,...,Ng,
Ng = Ng+ Ng, (24) can be rewritten as

XI’ e f,,e e e v
B y = . .
/ Clj 6}’; ayj d + /1_ 1 [V ]FQ( |:/{p:| F(,_Fds /szu Clp ayl dy (35)

Qe

The finite element discretization of the two volume integrals in (35) follows the
procedure described in the previous section, and using (32) and (33), will give rise
to the corresponding elemental stiffness matrices and elemental forcing vectors.
However, for tetrahedron QE, one must still discretize the surface integral on the
left-hand side of (35), which accounts for the discontinuities of the weight function
and temperature at FQ, e =1,2,...,Ng. Henceforth, the Biot number is assumed
to be constant over the interface I" and it will be written outside the integrals.

Differently from the treatment of the volume integrals, as a much smaller
number of elements are involved (i.e., only those tetrahedra with three corner
nodes at I), it is more convenient to discretize the surface integral in (23) globally,
rather than elementally using (35). Therefore, it is more computationally efficient to
sum directly the surface integral contributions to the appropriate entries of the
global matrix K’, rather than to incorporate elemental contributions into the ele-
mental stiffness matrices, and then perform direct stiffness summation with these
elemental data structures. Once all surface integral contributions are incorporated
into K’, one finally obtains the global stiffness matrix K.
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For the degrees of freedom corresponding to global nodes at I', discontinuous
weight functions are used, for which the jump f at the interface is nonzero. It will be
seen that, for a generic global node at I, the resulting surface integrals depend on the
Biot number and on the areas of the tetrahedra faces lying on I" and sharing that node.
For example, for the generic corner node A shown in Fig. 2b, located on the continuous
phase side of I and shared by five tetrahedra (denoted in Fig. 2b by Q,, Qf, f}g, Q, and
Q. e.f g hie{l,23,. 1\75} the resulting surface integrals depend on Bi and
on the areas of the faces F T T . T'g andI'g shared, respectively, by the pairs
of tetrahedra Q and QL s Qf and FQ s Q andI'g , Qh and Qyy, and Q; and Q; . In the
unstructured tetrahedral meshes generated by NETGEN the number of tetrahedra
with exactly three nodes at a surface and sharing a common corner node varies from
four to seven. In the following, for the sake of completeness, the scheme to calculate
the contributions arising from the surface integral in (23) is described for both a
generic corner node A and a generic midside node M at I" (see Fig. 2b).

The finite dimensional subspace Yj,(Q,c;) of Y(Qp 5), in which the weight
function v lies, is defined such that Y;,(Qpc) = Y(Qpen) NP2(Q,), e =1,2,...,
NE, and P,(Q,) is the space of all quadratic polynomials defined on tetrahedron Q,.
The weight function v, for a generic corner node A is thus v4 = ¢, € Y4(Qpe ),
where ¢4 is the standard quadratic interpolant. For implementation simplicity and
without loss of generality, it is convenient to choose f§ = 1, so that [vA]l- = 1. Now,
defining ¢ A|r =y |r as the restriction of v4 to the surface FQ of tetrahedron

Q.. ec {1, 2,. NE} (note that ¢A\r =Var,: » where a is the local node of

tetrahedron Q, correspondmg to global node A), the restriction of the temperature
%p to I'q can be written as

Iplr,, = 2aPalry, + 18 ¢5lr, +xcPclr, +tmbulr, +ivdnlr, +1rérlr,-
(36)

To compute the jumps of the weight function and temperature across the surface
', , one must also consider the tetrahedron Q, € Qpea. ¢ €{1,2,... ,NE}, which
shares with €, the surface I' or, equivalently, the surface FQ(J' From the definition
of vy, it follows that v, r, = = 0. Similarly to (36), the expression for the tempera-

ture y,, restricted to the surface F | is

Xl"ng, = Ya Palr. +apOplr, +1c0bclr. +tw Gwlr.
e Q, Q, Q, Q,

+ A ¢)N’|FQ/ + 1p Ppr |rfz R 37

From (36) and (37), the jumps of v4 and y,, across the surface I'g are respec-
tively deduced to be
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Valr,, = valr,, = valr,, = valr, = dalr,» (38)

[Xp]rﬁp =X ¢A|1"m + s ¢B|1‘m +ic ¢C|Fm +m d)M‘l‘m + Iy ¢N|Fm
+xp ¢P|rﬁe — X ¢A/|r§2), — Iy ¢B'|rﬁj/ —Xc ¢C’|FQJ

— M ¢M’|l"ﬁ/ — AN ¢N’|1"Q/ — Xp ¢P’|1'Q K (39)

As dictated by (23), one must now integrate the product of the jumps of v4 and y,
across I'g, , yielding

/ Bilvalr, [1lr, dsBi{XA/ ¢A|FQ‘¢A|FQdS+XB/ Palr,, ®slr, ds
I, . ’ I, ) . I, . .
+Xc/ Palr,, Pclr, dS+XM/ Galr,, Pulr, ds
FQE € € l—‘ﬁe € €
+XN/ Palr,, ¢N|rﬁ)ds+lp/ Galr, Pplr, ds
T, . ) T, ) )
_XA// ¢A|ré) 4)A'|rfz dS_XB’/ ¢A|ré) ‘f’B"rﬁ ds
FQ( e ./ FQ(» e ./

—Jlc / b4 \FQU b \rﬁl ds = 1w / Pa |FQ( Pur ‘F(z, ds
Ta, ¢ Ta, ¢

—XN'/ ¢A\rﬂ( ¢N’|rﬂ, ds — XP’/ ¢A|Fgc ¢rlr, , ds}
Lo, ¢ Ta, ¢

=Bi Z 1L Da |rQ ¢L|Fﬁe ds

Le{AB,C MNP} L,

- Z XL'/ ¢A|rﬁ,¢u|rﬂld5
} Tg, ‘ ¢

L'e{A",B'.C' M' N' P’
(40)

For the generic corner node A depicted in Fig. 2b, four more expressions similar
to (40) must be written, due to the jumps of v4 and y, across the neighboring

surfaces FQI_, ng, Iy, and 'y shared, respectively, by the pairs of tetrahedra ﬁf

and f!f«, Q, and Qg, Q) and Qy, and Q; and Q; (in general for a node at I', one must
generate as many expressions as the number of tetrahedra in the mesh that share that
node). For an interested reader, the remaining four expressions for node A are
presented in Matt and Cruz [24]. The complete procedure just described for the
generic corner node A must be repeated for all the corner nodes of the mesh lying at
I', including the duplicates. The resulting surface integrals, such as the ones
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appearing in (40), must be summed to the appropriate components of the global
matrix K’ so as to form K, as explained next.

Three auxiliary data arrays for the construction of the global stiffness matrix
K and forcing vector F are used: (1) the array IEN(a,e), a =1,2,...,10,
e=1,2,...,Ng, which associates to each local mesh node a of a tetrahedron Q,
the corresponding global node (this array is first provided by the mesh generator
NETGEN, and later altered according to the duplication procedure illustrated in
Fig. 2b); (2) the vector ID(A), A € {1,2,...,Ngn + Nr}, which associates to each
global node the corresponding equation number ID(A), ID(A) € {1,2,...,Npor},
where Npor is the total number of equations or degrees of freedom (for generic
periodic nodes G and H lying on distinct external surfaces of Q,,., ID(G) = ID(H)
is enforced); and (3) the array LM(a, ¢) = ID(IEN(q, ¢)), which associates to each
local mesh node a of a tetrahedron €, the corresponding equation number.

From the equations associated with corner node A, one must sum to the compo-
nents of the global matrix K{D( A)ID(A) and K{D( 4)ID(A')* respectively, the contributions

Bi{/ ¢A|F§e qull"QedS—‘r/ Galr, Palr, ds

+/# ¢A|rﬂg ¢A|1‘ﬂg ds —|—/‘ ¢A|rﬂh ¢A|Fﬁh ds—&-/ﬂ ¢A|rﬂi ¢A|rﬂi ds }7
Ta, Ta, Ta
(41)

—Bi {/ Galr, Pulr, ds+/ Palr, Palr, ds
l—ﬂy ¢ e rﬁf ! 7

+/ Galr, Palr, ds+/ Palr, balr, dS"‘/ Palr, dulr, a’s}.
Ta, s g Ta, Z 4 Ty, i 4

(42)
To the components K{D( 4)ID(B) and KI’D< A4)ID()» ONE MUSE sum, respectively, the
contributions
Bi { / Palr,, Pslr, dS+/ Galr, Pslr, ds }7 (43)
Fﬁe ‘ ¢ rﬂi d i
—Bi { / balr, ¢wlr, der/ Palr, bplr, ds } (44)
Lo, ‘ ¢ T, ' g

The remaining 28 expressions to be summed to the components of the global
matrix K’ associated with corner node A are easily derived, similarly to (41)—(44).
With reference to Fig. 2b, eight expressions are associated with the neighboring
corner nodes C, D, E, F and corresponding duplicates; ten expressions are asso-
ciated with the midside nodes M, P, R, T, V and corresponding duplicates, shared by
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two neighboring tetrahedra; and, finally, ten more expressions are associated with
the midside nodes N, Q, S, U, W and corresponding duplicates.

For a generic midside node at I', the computations of the jumps of the weight
function and temperature are analogous to the ones just described for a generic
corner node. All midside nodes at I" are always shared by only two tetrahedra with
exactly three corner nodes at I', thus reducing significantly the number of equations.
For the generic midside node M depicted in Fig. 2b, one must only compute the
Jumps of vy and y, across the surfaces I'y and I'g, shared, respectively, by
the pairs of tetrahedra Q, and Q,, and Q; and Q. The two resulting expressions
for the integrals of the products of the jumps are

/ Bill, [l 45 =i {

- > 1w /F ¢>M|rm¢ulrﬂ/ds}, (45)
Qe ¢

L'e{A' B'.C'M'N' P’}

/CL/ ¢M|r ¢L|r ds

LE{ABCMNP}

J

i

Bi[VM]rﬂi[Xp}rﬂidS:Bi{ oou /r ulr, Pelr, ds
&

Le{A,F.BV,W.M}

- Z XL//r ¢M|Fﬂi ¢L"r§_/ ds}, 46)

L'e{A' F' B V' W' M}

Hence, from (45) and (46), it is clear that one must sum to the components
D(M) ID(M) and K{D(M) D) respectively, the contributions

Bi { / ¢M|rﬂ: ¢M‘Fﬁ,ds +/ ¢M|rﬁ, ¢M|1‘Q, ds }7 47)
Ta l l T, ' !
— Bi { /1" ¢M|Fﬁe ¢M/|FQ, ds +/1_ ¢M|Fﬂ ¢M’|Fﬂ‘I ds } . (48)
Qe e & i ;

Tq thg components K{D(M) (p) and K{D(m ip(p) ONE must sum, respectively, the
contributions

K

Bi /1_ ¢M|FQC ¢P|Fm ds and — Bi /1_ ¢M|rﬁg ¢P'|rgl ds. (49)
o o, ¢

The remaining 14 expressions to be summed to the components of the global
matrix K’ associated with midside node M are easily derived, similarly to (47)—(49).
With reference to Fig. 2b, six expressions are associated with the neighboring
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midside nodes V, N, W and corresponding duplicates; and eight expressions are
associated with the neighboring corner nodes A, B, C, F and corresponding dupli-
cates. The procedure described above for node M must be repeated for all the
midside nodes of the mesh lying at I', including the duplicates.

To close this section, it is important to remark that surface integrals such as the
integral over I' are evaluated numerically through a 12-point Gauss quadrature
rule [3], by employlng an isoparametric mapping between I'g (actual domain
of integration) and the standard quadratic triangle (computatlonal domain of
integration).

3.3 Iterative Solution of Discrete System

The resulting linear system of algebraic equations may be cast in the following
form

K}(p:F7

(50)
where K = [Ky],F = [F/],1,J = 1,2, ..., Npor, are the previously obtained global
stiffness matrix and forcing vector, and , = [y, ;] is the vector of unknown nodal
values of the temperature y,. The uniqueness condition, given in continuous form
by fQ %p dy = 0, is imposed discretely by requiring that y, has zero algebraic
average The system given by (50) is solved iteratively using the minimum residual
method, described in detail in [30]. The minimum residual method is suitable for
symmetric semi-definite systems of linear equations. After the incorporation of all
contributions which result from the surface integral in (23) to the appropriate
components of the global stiffness matrix, the latter remains symmetric, but not
necessarily positive-definite for arbitrary choices of Bi. The iteration proceeds until
the square of the ratio of the Euclidean norm of the residual to the Euclidean norm
of the initial residual falls below a user-prescribed tolerance, 2.

Finally, after the numerical determination of the field y,, p = 1,2, 3, the com-
ponents of the effective thermal conductivity tensor, KI;{[, 4> are computed numeri-
cally through the equivalent discrete form of (22), i.e.,

8,(q
qu |Qpch| /mhcpl < l)dy
e ﬁ
|Q|Z/C,,,(,q i) y (51)
; dy,
|Q|Z/ Pl< q Z'{qﬂ i) y
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where {7, = 0 if Qe C Qpee, {7 = 1 if Qp C Qe g, and |Q,| denotes the volume
of tetrahedron Q,, e =1,2,...,Ng.

4 Numerical Results for the Effective Conductivity

In this section, numerical results for the effective thermal conductivity of ordered
and random arrays are presented and, when possible, validated against previous
analytical predictions. The results demonstrate the accuracy and flexibility of the
computational approach previously discussed. For the ordered and random arrays
investigated here, it is assumed that the dispersed phase is thermally-isotropic, i.e.,
ki = Ky, 1,j = 1,2,3; thus, henceforth, the symbol « denotes the phase conduc-
tivity ratio.

4.1 Particulate Composites

Particulate composites are a special class of composite materials designed for
applications that do not require strong directionality. The dispersed phase is usually
modeled as spheres. The spheres may be orderly or randomly distributed within the
matrix; in the former case, one has the ordered arrays of spheres, among which
the most widely known are the simple cubic (SC), the body centered (BCC) and the
face centered (FCC); in the latter case, one has the random arrays of spheres.
Analytical and semi-analytical expressions for the effective conductivity of ordered
and random arrays of spheres are available in the literature; many of them may be
encountered in the works of Batchelor and O’Brien [2], McPhedran and McKenzie
[26], McKenzie et al. [25], Sangani and Acrivos [34], Hasselman and Johnson [15],
Cheng and Torquato [6], to name just a few. There are expressions for the effective
conductivity of ordered arrays of spheres with uniform interfacial thermal resis-
tance; on the other hand, for the random arrays of spheres, the majority of expres-
sions developed for the effective conductivity assumes perfect thermal contact at
the particle/matrix interface. The numerical results for the effective conductivity of
particulate composites are presented and validated for the simple cubic array of
spheres and for random arrays of spheres.

4.1.1 Simple Cubic Array of Spheres

The first set of results has been computed for the simple cubic array of spheres with
an uniform interfacial resistance. The periodic cell is composed of a cubic matrix of
side 4, at which geometric center lies one sphere of diameter d, as illustrated in
Fig. 3a. For a given concentration ¢, . and d are related by ¢ = (nd®)/(62°).
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Fig. 3 Ordered arrays of (a) spheres: illustration of geometry (/eft), and finite element mesh for
¢ = 0.50 (right), with 247,857 global mesh nodes and 177,502 quadratic tetrahedra; (b) prolate
ellipsoids of revolution: geometry (left), and mesh for ¢ = 0.30 and pp = 1.30 (right), with 72,401
global nodes and 48,582 tetrahedra; (c) circular cylinders: geometry (/eft), and mesh for ¢ = 0.30,

pp =2 and p; = 3 (right), with 237,820 global nodes and 169,361 tetrahedra

Because, by symmetry, K11 = Kep = Ke33 =K, and K.pq =0, p #q, p,q=
1,2, 3, for the simple cubic array of spheres, the effective conductivity tensor is
completely described by the scalar x,.

Table 1 shows the mesh refinement analysis performed in order to set the
nominal mesh spacing, hj = ho/A, for subsequent numerical computations of the
effective conductivity. The mesh-independence study reported in Table 1 has been
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Table 1 Numerical convergence analysis for the finite element computation of the effective
conductivity of the simple cubic array of spheres with ¢ =0.30, x =100 and
Bi € {1072,10°, 10%}

/’l(ﬁ NE NGN KE'
Bi = 1072 Bi = 10° Bi = 10?

0.20 786 1,381 0.6088 0.788 2.1450
0.15 1,344 2,405 0.6085 0.791 2.1460
0.10 3,634 6,209 0.6084 0.793 2.1485
0.08 5,938 9,891 0.6083 0.794 2.1490
0.06 26,414 38,837 0.6078 0.795 2.145
0.05 39,667 58,920 0.6078 0.795 2.145
0.04 67,002 98,233 0.6078 0.795 2.145

Table 2 Numerical, lceN, and semi-analytical, KET and KEA, results for the effective conductivity of
the ordered array of spheres as a function of Bi, for three values of ¢, ¢ € {0.10,0.30,0.50}, and
K = 100

Bi ¢=0.10 ¢=0.30 ¢=0.50

N +CT N +CT N +CT

e e (4 e (4 e

107 1.3227 1.3227 2.275 2.272 5.350 4.651
10° 13227 1.3226 2.275 2.272 5.348 4.650
10° 1.3190 1.3190 2.261 2.258 5.202 4.583
107" 0.8629 0.8629 0.6269 0.6269 0.412 0.412
1073 0.8572 0.8572 0.6059 0.6058 0.374 0.373
107 0.8571 0.8571 0.6057 0.6056 0.374 0.373
1077 0.8571 0.8571 0.6057 0.6056 0.374 0.373
0 0.8571 0.8571 0.6057 0.6056 0.374 0.373

KA =0) 154k =100) Ak =0) 132k =100) x3A(k=0) KA (x = 100)

0.8571 1.3227 0.6057 2.274 0.376 4.892

done for the simple cubic array of spheres with ¢ = 0.30, ¥ = 100 and for three
distinct values of the Biot number, Bi € {1072,10°, 10?}.

After the numerical convergence study reported in Table 1, the nominal mesh
spacing chosen for all subsequent computations of the effective conductivity is
0.05. The chosen tolerance ¢? of the minimum residual method is 1073, These
values ensure the numerical results are correct to the significant digits presented,
and that the incomplete-iteration error is much less than the discretization error
[20-22].

In Table 2, the numerical predictions, KEI, are shown together with the semi-
analytical ones by Cheng and Torquato [6], KST, and by Sangani and Acrivos [34],
K5A, for three values of ¢, ¢ € {0.10,0.30,0.50}, k = 100, and several values of Bi.
Cheng and Torquato [6] derived an approximate equation for the effective conduc-
tivity of the simple cubic array of spheres as a function of ¢, x, and a contact
resistance parameter R, related to the Biot number by R = (24/d) (/Bi). Sangani
and Acrivos [34] also derived an approximate expression for the effective
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conductivity of the same array as a function of ¢ and x, but for composites with a
perfect thermal contact between the phases (i.e., Bi — 00). It is observed from the
analysis of Table 2, that the numerical predictions x\ agree very well with kT for
¢ = 0.10 and ¢ = 0.30, for all values of Bi. Furthermore, for these concentration
values, as Bi is increased to larger and larger values, both «¥ and kST approach 52,
Also, for ¢ = 0.10 and ¢ = 0.30, when Bi = 0, both k) and «ST match k54 for
x = 0, i.e., for thermally-insulating spheres. This behavior is expected, because
Bi = 0 means an infinite thermal resistance at the surface of the spheres, which
prohibits heat transfer between the matrix and the spheres.

On the other hand, when ¢ = 0.50, the numerical predictions show that the
analytical values of Cheng and Torquato [6] for Bi € {10%,103,107} significantly
underestimate the effective conductivity; the maximum relative deviation encoun-
tered, E, = |K) — kST|/kCT, is approximately 15% for ¢ = 0.50 and Bi= 107. Also,
for Bi= 107, a large discrepancy is verified between ¥ and KEA. First, it is well
known that the approximate expression of Cheng and Torquato [6] for the effective
conductivity does not provide accurate results for large values of Bi in the moder-
ate-to-high range of concentration values. Second, as previously pointed out in [21],
the approximate expression of Sangani and Acrivos [34] is inaccurate for ¢ > 0.45
and k > 10. Therefore, while a fairly good agreement is verified between x) and
kSA for Kk = 0, the same is not observed for k=100. Finally, because analytical
predictions are available for this array geometry, some of the data in Table 2 are
plotted in Fig. 4 to further substantiate the validation of the numerical calculations.

10 1

g ] Analytical, Cheng and Torquato (1997)

7 Analytical, Sangani and Acrivos (1983) 0.9 1

S [— Analytical, Milton (2002) n-

51 Numerical, present work Bi=oo 08 |
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g H
3 S
] 206
° 8
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0.4 1
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m  Numerical, present work _
Analytical, Cheng and Torquato (1997)
Analytical, Sangani and Acrivos (1983)
o1+ T7——7 03 +—T—FT——T—— 77— "7
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6
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Fig. 4 Analytical and numerical values for the effective thermal conductivity as a function of the
volume fraction of spheres; x = 100 and Bi € {0, 107!, co}. The right plot is a magnification of
the left plot for the Bi € {0,107} curves
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It is clearly seen from the plots that the present scheme leads to correct values for
the effective thermal conductivity over the entire ranges of the volume fraction and
Biot number.

4.1.2 Random Array of Spheres

The second set of results has been computed for random arrays of spheres without
voids and with voids. The random array of spheres without voids comprises a cube
of side A containing in its interior three identical nonoverlapping whole spheres of
diameter d’, d = O(d). On the other hand, the random array of spheres with voids
comprises a cube of side A containing in its interior six nonoverlapping whole
spheres, three of diameter d' representing the particles, and three of diameter d’/3
representing the voids inside the matrix. The spatial positions of the centers of the
spheres in both random arrays are sequentially and randomly chosen from a
uniform distribution over the available (inner) space of the cube. The periodic
cells for the random arrays of spheres without and with voids are illustrated in
Fig. 5.

For both random arrays of spheres, the numerical results for the effective
conductivity have been obtained for samples of ten different cell configurations
each, C € {1,...,10}. Each cell configuration corresponds to different positions of
the centers of the spheres. Table 3 provides the numerical results, KI: (C), for such
arrays, together with the mean and standard deviation for each sample, respectively
denoted by @ and S,Cy. Table 3 also shows the results by Benveniste [5], K?, for
random arrays of spheres without voids and with finite interfacial thermal resis-
tance. The value of the concentration for all the arrays is fixed, ¢ = 0.15, and the
void content of the arrays with voids is 0.56%.

Based on a phenomenological model, Benveniste [5] derived the following
analytical expression for the effective thermal conductivity, nondimensionalized
with respect to k¢,

Y1

Fig. 5 Random arrays of spheres without and with voids (smaller, darker spheres) and associated
Cartesian coordinate system
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Table 3 Numerical results for the effective thermal conductivities of random arrays of spheres
without voids and with 0.56% voids, for ¢ = 0.15 and for various combinations of values of k and
R, k € {50,10000}, R € {30,60,5000,20000}. Each sample is made up of ten different cell
configurations, C € {1,..., 10}

Values of kY (C) for ¢ = 0.15

Kk =50, R. =49
Without voids With 0.56% voids

C R =30 R =060 R =30 R =060
1 1.0163 0.9253 1.0133 0.9217
2 1.0162 0.9242 1.0129 0.9213
3 1.0164 0.9269 1.0130 0.9238
4 1.0163 0.9255 1.0130 0.9225
5 1.0164 0.9265 1.0133 0.9234
6 1.0163 0.9260 1.0131 0.9227
7 1.0162 0.9240 1.0130 0.9205
8 1.0164 0.9263 1.0131 0.9223
9 1.0162 0.9228 1.0131 0.9194
10 1.0161 0.9211 1.0129 0.9180
@ 1.0163 0.925 1.0131 0.922

o 0.0001 0.002 0.0001 0.002
B 1.0187 0.927 — —

Values of «Y(C) for ¢ = 0.15

x = 10000, R. = 9999

Without voids With 0.56% voids
C R = 5000 R = 20000 R = 5000 R = 20000
1 1.0497 0.8789 1.0469 0.8751
2 1.0492 0.8761 1.0457 0.8733
3 1.0505 0.8831 1.0470 0.8802
4 1.0498 0.8795 1.0465 0.8766
5 1.0503 0.8821 1.0472 0.8790
6 1.0500 0.8807 1.0469 0.8774
7 1.0492 0.8758 1.0460 0.8721
8 1.0502 0.8816 1.0473 0.8772
9 1.0487 0.8724 1.0457 0.8688
10 1.0480 0.8678 1.0448 0.8646
@ 1.0496 0.878 1.0464 0.874
S 0.0008 0.005 0.0008 0.005
K? 1.0522 0.880 - -

2(1 — Bl +2¢ 4 2=2¢
SRR /LU s} 52)
2+c+ Pl —c+2

where f = (hd)/(2k°). It should be emphasized that the parameter § defined by
Benveniste [5] is related to the contact resistance parameter R defined by Cheng and
Torquato [6] and, consequently, to the Biot number Bi. In general terms, the results
presented in Table 3 show the combined effects on the effective thermal
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conductivity due to varying microstructures, particle size, and the presence of voids
inside the matrix; these effects are noticeable, despite the rather low values of both
the particle and void volume fractions. The results in Table 3 also highlight the
physical and geometrical flexibility of the previously described computational
approach.

By comparison between the results reported on Table 3 and the ones for
the simple cubic array of spheres with ¢ = 0.15 one may verify that, for fixed
values of k and Bi (or, equivalently, R or f3), the presence of three spheres inside
the cube, as opposed to one in the simple cubic array, tends to reduce the
composite effective conductivity. This tendency is expected, because, for a
fixed value of ¢, as the number of spheres inside the cube increases the
diameters of the spheres decrease, thus increasing their surface area to volume
ratio, equal to 6/d. Therefore, the contribution of the interfacial resistance
towards reducing the composite effective conductivity increases. It should
be emphasized that this particle size effect in composites with imperfect inter-
face has been verified by previous researchers [11, 15]. As to the presence of
voids inside the matrix, they clearly tend to reduce the effective conductivity,
because they act as barriers to heat flow, not unlike the interfacial thermal
resistance. Finally, it is interesting to note that, with our three-sphere random
arrays of simple construction (leading to low values of S,~), the numerical
results @ agree rather well with the results kB by Benveniste [5], particularly
for the higher value of the resistance parameter R for a given value of the
conductivity ratio k.

4.2 Short-Fiber Composites

Short-fiber composites are a special class of composite materials designed for
applications that require strong directionality. Short-fiber composites possess a
highly anisotropic thermal behavior even when both the matrix and the fibers
behave as thermally isotropic materials. The fibers possess elongated shapes
which are usually approximated by prolate or oblate ellipsoids of revolution, or
by circular cylinders. Optical micrographies taken from fabricated short-fiber
composites reveal that circular cylinders are indeed a better representation of the
geometrical shape of an actual fiber [28].

Compared with particulate composites, there are fewer works in the literature
that provide analytical expressions for the effective conductivity of short-fiber
composites; the reader should consult the works by Nomura and Chou [29], Hatta
and Taya [17], Furmaidiski [12], Dunn et al. [8], Duschlbauer et al. [9, 10], Mirmira
and Fletcher [28] to name just a few. Although the expressions obtained for the
effective conductivity account for relevant geometric parameters in short-fiber
composites such as fiber distribution, orientation and aspect ratio, the majority of
them neglects the interfacial thermal resistance. On the other hand, computational
approaches based on finite-element schemes (see, for example, Duschlbauer et al.
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[9], Matt and Cruz [24]), have the advantage of being flexible enough to account
for the aforementioned geometric parameters as well as for an interfacial thermal
resistance at the fibers’ surface. Numerical results for the effective conductivity of
ordered arrays of prolate ellipsoids of revolution (perfectly-aligned) and circular
cylinders (perfectly-aligned and misoriented) are presented in the last sections of
the chapter.

4.2.1 Ordered Array of Prolate Ellipsoids of Revolution

The third set of results, summarized in Table 4, has been computed for the ordered
array of perfectly-aligned prolate ellipsoids of revolution with an uniform inter-
facial resistance. It is composed of a cubic matrix of side 4, at which geometric
center lies one prolate ellipsoid, as illustrated in Fig. 3b. The semi-axes of the
ellipsoid along the y;, y, and y; directions have lengths ¢, d and d, respectively,
and the ellipsoid aspect ratio is defined by p, = ¢/d. For a given concentration
¢, 2, d and ¢ are related by ¢ = (4nd*¢)/(34). Because, by symmetry, k.2 =
Ke33 = KeTs Ke 1l = KeL, and Ky = 0, p # q, p,q = 1,2, 3, the effective conduc-
tivity tensor for the ordered array of ellipsoids is completely described by the two
scalars .1 and k., respectively designated henceforth as the longitudinal and
transverse effective conductivities.

Previous analytical expressions for the longitudinal and transverse conductiv-
ities were developed for random, rather than ordered, arrangements of perfectly-
aligned ellipsoids without interfacial thermal resistance [8, 12, 17]. Thus, to check
the accuracy of the present numerical predictions, the adopted procedure is to fix
the concentration, and gradually decrease the ellipsoid aspect ratio from a value
close to the maximum, py .., t0 p; = 1, when the ellipsoid becomes a sphere. The
maximum value p; .. corresponds to the value of p, for which the surface of the
ellipsoid touches two opposite faces of the cube; e.g., for ¢ = 0.30, p 0, ~ 1.32.

Table 4 Numerical results for the longitudinal, KS{L, and transverse, KS{T, effective conductivities
of the ordered array of prolate ellipsoids of revolution as functions of p., for ¢ = 0.30, x = 100,
and Bi € {107,10%,10%,1071,1073,1073, 1077, 0}; the symbol kST denotes the analytical predic-
tion provided by Cheng and Torquato [6] for the simple cubic array of spheres

Bi pr=13 pr=12 pr=11 pr=1
KI;L KI.,:I,T KL\I,L KET KS{L KS{T KEL "?IT KET

107 4.113 2.041 2.957 2.103 2.538 2.178 2.275 2.275 2272
10 4.111 2.041 2.957 2.103 2.538 2.178 2.275 2.275 2272
103 3.989 2.031 2.926 2.091 2.519 2.166 2.261 2.261 2.258
107" 0.6743 0.5952 0.6607 0.6067 0.6452 0.6169 0.6269 0.6269  0.6269
1073 0.6520 0.5738  0.639 0.5857 0.6239  0.596 0.6059  0.6059  0.6058
107> 0.6518 0.5736 0.6388 0.5854 0.6237 0.5958 0.6057 0.6057 0.6056
1077 0.6518 0.5736 0.6388 0.5854 0.6237 0.5958 0.6057 0.6057 0.6056
0 0.6518 0.5736  0.6388 0.5854 0.6237 0.5958 0.6057 0.6057 0.6056




92 C.F. Matt and M.E. Cruz

In Table 4, the numerical predictions for the longitudinal, KEL, and transverse,
KET, conductivities are presented as functions of Prs for ¢ = 0.30 and k = 100, and
for several values of Bi. Also presented are the semi-analytical predictions of
Cheng and Torquato [6], ST. Two important behaviors are noted from the analysis
of Table 4. First, as p, is progressively decreased to 1, KI:L approaches KIZT, as
expected. Second, for the limiting case p; = 1, both numerical predictions K?{L and
KS{T agree very well with KST for all values of Bi; hence, the accuracy of the

numerical predictions for the ordered array of ellipsoids is ascertained.

4.2.2 Ordered Array of Circular Cylinders

The fourth set of results, summarized in Table 5, has been computed for the ordered
array of circular cylinders with an uniform interfacial resistance. It is composed of a
parallelepiped of sides H, 4, and /4 along the y;, y, and y; directions, respectively,
and at which geometric center lies one circular cylindrical fiber of diameter d and
length ¢ along the y;-axis, as illustrated in Fig. 3c. The fiber and parallelepiped
aspect ratios are defined, respectively, by p, = £ /d and p, = H/ /. For a given
concentration ¢, A, H, d and ¢ are related by ¢ = (nd?()/(4/*H). Again, the
effective conductivity tensor is completely described by two scalars only: the
longitudinal, .1, and the transverse, k.r, effective conductivities. This

Table 5 Numerical results for the longitudinal, KEL, and transverse, KET, effective conductivities
of the ordered array of circular cylinders as functions of P for ¢ = 0.30, pp = 2, k = 100, and
Bi € {107,10%, 103,107',1073,107>,10~7,0}

Effective longitudinal conductivity KSIL, c=0.30,p, =2,k =100

Biot number Bi

pr 107 10° 10° 10-! 10-3 10-5 107 0

1.5 2249 2249 2242 06422 05855 05849 05849  0.5849
2.0 2964 2964 2951 0.6950 0.6308 0.6301 0.6301  0.6301
25 4246 4245 4217 07343 0.6601  0.6594 0.6594  0.6594
3.0 8.165 8.164 8046 7727  0.6870 0.6862  0.6862  0.6862

Prmar & 3243070 3070 3070 30.70 30.70 30.70 30.70 30.70

Effective longitudinal conductivity ¥’ (rule of mixtures), ¢ = 0.30, x = 100
KM = 30.70

Effective transverse conductivity KS{T, ¢ =0.30, pp = 2,k =100
Biot number Bi

pr 107 10° 10° 107! 103 10° 107 0

1.5 2399 2399 2383 06279 0.6053 0.6051 0.6051  0.6051
2.0 2145 2145 2133 06056 05834 05832 05832  0.5832
25 2007 2007 1997 05881 05662 05659 0.5659  0.5659
3.0 1892 1.892  1.884 05717 05495 05493 05493  0.5493

Prmar 324 1.836  1.836  1.827 0.5598 05380 0.5376 05376  0.5376

Effective transverse conductivity K?J (square array), ¢ = 0.30, x = 100
1.833 1.833 1.826  0.5600  0.5387  0.5385 0.5385  0.5385
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parallelepipedonal array has been studied in detail by Matt and Cruz [22] from the
perspective of conductivity enhancement, when the Biot number is infinite.

An analytical expression for the effective conductivities of arrangements of
finite-length circular cylinders is available for random distributions of the fibers
only, and not accounting for an interfacial thermal resistance [12]. Thus, to check
the accuracy of the present numerical predictions, the procedure is now to fix the
concentration ¢ and the parallelepiped aspect ratio p,,, while the fiber aspect ratio is
gradually increased to the maximum value possible, p; ., [22]. In this limiting
configuration, the two planar surfaces of the cylinder touch the parallelepiped faces
normal to the y;-axis, and the ordered array of circular cylinders becomes thermally
equivalent to the square arrangement of infinite-length circular cylinders. The latter
was previously studied by Hasselman and Johnson [15] and by Rocha and Cruz [32]
far from the maximum-packing limit. Furthermore, for the square arrangement, the
longitudinal conductivity is predicted by the rule of mixtures, k"™ =1 — ¢ + k¢,
independently of the interfacial resistance.

In Table 5, the numerical predictions for the longitudinal, KIZL, and transverse,
KE{T, conductivities are presented as functions of Prs for ¢ = '0.30, Py = 2 and

k = 100, and for several values of Bi. Also presented are the analytical predictions
derived from the rule of mixtures, KEM (exact), and those of Hasselman and Johnson
[15], V' (approximate). Two important facts are obtained from the analysis of
Table 5. First, as p; approaches py ... ko approaches i,”, as expected physically
and confirmed numerically. Second, for the limiting case p; = py 1., the numerical
predictions 1 and 1 agree very well with k5™ and «}, respectively, for all
values of Bi. The abrupt increase in kN, when py changes from 3.0 to p; .., = 3.24
is simple to explain: when p, = 3.0, the global nodes belonging to the two planar
surfaces of the fiber are the only ones that contribute to the interfacial thermal
resistance to heat flow in the longitudinal direction; on the other hand, when
P = Pfmar the aforementioned global nodes now lie on the opposite faces of the
parallelepiped normal to the longitudinal direction, where periodic boundary con-
ditions are enforced, and the nodes no longer prohibit heat flow in the fiber in that
direction. Therefore, k)| exactly matches k*M for P = Pf.max> €ven in the presence
of a finite interfacial thermal resistance at the lateral surface of the fiber.

4.2.3 Random Array of Misoriented Circular Cylinders

To highlight the flexibility of the present computational scheme, numerical results
are computed for the effective conductivity of a complex, random array of mis-
oriented circular cylinders. The intention here is not to compare the numerical
predictions with experimental measurements, but rather to show that the scheme
can indeed be applied to realistic microstructures. The geometry and the associated
finite element mesh for the random array considered here are shown in Fig. 6.

It is composed by a parallelepipedonal cell, containing in its interior eight
misoriented circular cylinders and two empty spheres. The spheres are
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— Spherical
void

Fiber B FloerA

Fig. 6 Random array with misoriented fibers and voids: geometry and corresponding finite
element mesh, with 50,603 global mesh nodes and 27,685 quadratic tetrahedra

Table 6 Characteristic dimensions, in um, for the random array shown in Fig. 6

Array element Amount Characteristic dimension (pm)

Length Height Thickness Diameter
Fiber A 2 800 - - 100
Fiber B 6 300 - - 60
Void 2 - - - 120
Parallelepiped 1 850 900 280 -

Table 7 Numerical results for the effective conductivities, k5, ngz
and D, of the random array shown in Fig. 6 as functions of the Biot

number

K =100

Bi Ko ngz @{33
1073 0.874 0.872 0.858
1073 0.874 0.873 0.858
107! 0.883 0.882 0.859
10° 0.958 0.959 0.868
10! 1.334 1.379 0.936
10° 2.020 2.132 1.199
10° 2.051 2.162 1.213

representative of voids, or microcracks, in the composite matrix, which may be
induced during the manufacturing process due to a mismatch in the thermal
expansion coefficients of the composite constituents [8]. There are two types of
cylindrical fibers, denoted Fiber A and Fiber B, with aspect ratios equal to 8 and 5,
respectively. Typical characteristic dimensions for the parallelepiped, the fibers and
the spherical voids are shown in Table 6.
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The random array shown in Fig. 6 may be thought of as a model microstructure
for hybrid short-fiber composites, those with reinforcements of different types [8].
As pointed out in [8], hybrid short-fiber composites have become attractive materi-
als for electronic packaging applications, because, due to their higher thermal
conductivities, they may withstand very high heat fluxes while maintaining a low
temperature operating environment. The higher thermal conductivities of such
materials originate from the fact, that higher volume fractions can be obtained by
combining different reinforcements of different characteristic sizes [36].

In Table 7, the numerical predictions for the effective thermal conductivities,
KN 1, kN, and KS{%, are shown as functions of the Biot number, for k = 100. The

fiber volume fraction is ¢ = 0.082, and the void content is 0.8%. The values of ¢, Prs
K, and void content used in the computations are representative of typical data
reported in the literature. The data in Table 7 indicate that the random array has a
transversely isotropic behavior in the y;—y, plane, and that the effect of the Biot
number is more pronounced on the in-plane conductivities, KE{H and x,,, than on
the out-of-plane conductivity, K3 55. '

To sum up, the accuracy and flexibility of the computational scheme discussed in
detail in this chapter has been demonstrated by effecting truly three-dimensional
calculations of the effective thermal conductivity of composites with ordered and
random (periodic) microstructures, accounting for the presence of a thermal resis-
tance at the particle/fiber-matrix interface. The numerical predictions have been
validated against analytical results for ordered and random arrays of spheres, and
for the limiting cases when the ordered arrays of perfectly-aligned prolate ellipsoids
of revolution and circular cylinders are thermally equivalent, respectively, to the
simple cubic array of spheres and the square array of unidirectional fibers. The
results show that the magnitude of the interfacial thermal resistance significantly
affects the effective conductivity of composite materials. The computational
approach discussed here is flexible, applicable to complex, realistic three-dimen-
sional microstructural models, and it is also able to account for an interfacial
thermal resistance (uniform or not) and for the presence of voids inside the matrix.

Up to date, reliable comparisons between analytical, phenomenological and
numerical predictions with experimental measurements remain a non-trivial effort,
due to the difficulty in ascertaining the composite microstructure, and to the lack of
information regarding the magnitudes of various physical effects, such as the
interfacial thermal resistance and void content in real composites. Hence, in order
to improve the accuracy of numerical predictions, research efforts must be con-
certed in two important directions. First, more realistic geometric models for the
composite microstructure must be developed; these geometric models must be
flexible enough to include, for example, fibers with random orientations and distinct
aspect ratios. Second, experimental techniques or prediction methods must be
developed and/or improved, in order to obtain good estimates for the interfacial
thermal resistance. Computational approaches shall be a helpful tool in the future
for a better understanding of the thermal behavior of composite materials.
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Heat Transfer in Graphitic Foams

Anthony G. Straatman

Abstract Porous graphitic foam possesses unique characteristics that make it an
interesting material for consideration in heat transfer applications. The present
chapter summarizes work that has been done over the past several years to charac-
terize graphitic foams that are permeable to fluid flow for eventual use in applica-
tions requiring convective heat transfer enhancement. The work covers:
engineering models describing the structure of the foam, models of effective
thermal conductivity, experimental work that quantifies enhancements in various
flow orientations, and computational work that has been undertaken to explore the
hydraulic and thermal behaviour of graphitic foam at both the pore-level and the
macroscopic level.

1 Introduction

Porous graphitic foam (hereinafter referred to as GF) is a spherical void phase
porous material that has unique thermo-physical and geometric characteristics [1]
making it suitable for widespread use in heat transfer applications in microelec-
tronics and power generation. The unique characteristics include:

1. A high effective thermal conductivity of between 40 and 180 W/m K [2, 3]. The
high effective conductivity is a result of the extremely high conductivity of the
graphitized carbon material (k = 800-1,900 W/m K). In comparison, similar
porosity aluminum foams have effective conductivities of approximately
2-26 W/m K, which result from solid-phase conductivities of 140-237 W/m K
(for aluminum alloys).
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2. An open, inter-connected void structure that permits fluid infiltration such that
substantial increases in surface area are available (5,000-50,000 mz/m3) for
enhanced convective heat exchange.

3. A low density (from 0.2 to 0.6 g/cm®, depending upon porosity), which makes
the material suitable for compact and lightweight applications. In comparison,
aluminum foam has a density of 0.3-0.8 g/cm?, depending upon porosity.

4. An increase in exposed or plan surface area and a rough open structure that
promotes increased mixing at the external fluid interface.

The combination of high solid-phase conductivity and moderate porosity
enables GF to entrain heat from adjacent surfaces and conduct it deep into the
solid structure of the foam to be swept away by fluid that infiltrates the structure.
The internal surface area serves to reduce the convective resistance thereby foster-
ing excellent energy exchange at the pore level. It is this combination of high
material conductivity, moderate porosity and high internal surface area that makes
GF attractive as a heat transfer material for both single and multiphase applications.

This chapter describes recent efforts to characterize graphitic foam as a material
for use in convective heat transfer applications. The chapter is organized such that
geometric characterization is considered first, followed by experimental work and
computational work. The final sections provide comparisons of graphitic foam to
other highly-porous metal foams under forced convection conditions and provide
concluding remarks for the chapter.

2 Geometric Characterization of Graphitic Foam

There are essentially two types of porous solids: those produced by packing or
sintering solid particles or cylinders together and those produced by casting or
foaming a material during solidification. In both cases, the final product consists of
interspersed regions of solid and fluid (or void). Depending on the final structure,
the void regions may be isolated from one another (trapped phase) or continuous, as
in the case of an interconnected pore structure. Graphitic foam fabricated using the
ORNL patented process [1] is a case of near-spherical interconnected pores, as
shown in Fig. 1. The figure illustrates the open, interconnected structure of the foam
and the near-homogeneous distribution of void size.

2.1 The Unit Cube Geometric ldealization

A geometric model of the foam structure is required to permit calculation of
geometric parameters, thereby enabling the exploration of flow and heat transfer,
and optimization of the foam structure for different applications. A geometric
model is required regardless of whether it is pore-level or volume-averaged flow



Heat Transfer in Graphitic Foams 103

Fig. 1 (a) Scanning electron micrograph of the carbon foam surface [1]; (b) scanning electron
micrograph of the carbon foam surface of a single pore

and heat transfer that is sought, or whether it is a numerical or experimental tool
being used to study the foam. In any case, local calculation of the interface area and
estimates of the pore window size and ligament dimensions is necessary. Based on
the geometry characteristics of the GF under consideration [1-3], Yu et al. [4] used
the following assumptions to formulate a geometric model:

1. The entire foam is assumed to have a single and uniform void (pore) diameter.

2. The pores are considered to be spherical and centred inside unit-cubes.

3. The pores are regularly arranged in space, and each pore connects with six
adjacent pores on the six surfaces of the unit cube.

Figure 2a shows a three-dimensional CAD image of the unit-cube geometry
proposed by Yu et al. [4] for a spherical void phase material. Figure 2b shows a pore
block of unit-cubes with exposed pore surfaces that are cut at the center plane of the
cube at the sides, front and top of the pore block. Figure 3 compares the internal
geometry of the idealized geometry model with similar images of the GF obtained
from ORNL.

The images illustrate that the idealized geometry model successfully captures
the main features of the internal structure of the GF. Figure 4 shows the detailed
dimensions of the unit-cube model proposed by Yu et al. [4]. Here, D is the pore
(void phase) diameter; H = f{D,¢) is the height of a unit-cube defined by the given
pore diameter and the porosity; & = (D — H)/2 is the spherical cap height of the
pore; d = VD? — H? is the interconnected pore window diameter; and ¢ = (H-d)/2
is the width of the corner strut at the centre plane of the unit cube (also called the
ligament width).

In this geometric model, the size of a unit-cube is not universally constant, rather
it is determined by setting the desired porosity and pore diameter. By the definition
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Fig. 2 CAD illustrations showing the unit-cube model developed in Yu et al. [4]: (a) a single unit-
cube with spherical void; (b) a pore block containing a number of interconnected pores

of porosity (volume of void space/total volume), an expression relating the cube
height H, the porosity ¢ and the pore diameter D was derived [4]:

3nD? 4nD3
H? — H =0 1
(4e+ ) +3(48+7Z) M

The dimension of the unit-cube H is thus obtained by solving (1) for given values
of ¢ and D. Once the size of the unit-cube is established, the geometry is fixed and
the remaining geometric parameters can be evaluated. Since we are mainly inter-
ested in using the foam for convective enhancement, the GF must have an
interconnected pore structure, and thus we are only interested in the range of pore
window sizes: 0 < d < H (0.52 < ¢ < 0.96). When d < 0, the unit-spheres are
isolated from one another and for d > H, ¢ < 0 meaning that the ligaments con-
necting the solid phase are broken.

For a general application where fluid passes both across and through the porous
material, information on the geometry is required for the internal structure and for
the external interface between the porous material and the fluid. The internal
structure is described in [4] in terms of an area to volume ratio. The external
geometry is described in terms of the exposed surface area factor and the absolute
roughness of the exposed surface. The external geometry parameters are only
required for cases where fluid flows across the exposed surface, and the reader is
referred to the original paper [4] for their description.

The interior surface area to volume ratio f§ quantifies the internal surface area
available for convective heat transfer. For a solid unit-cube, ¢ = 0, which represents
the lower limit. For porous graphitic foam made by the ORNL process [1], this
value can be as high as 5,000-50,000 m*/m?, depending upon the porosity and void
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Fig. 3 A comparison of the idealized geometry proposed by Yu et al. [4] (a and b) with the
structure of GF (¢ and d) obtained from ORNL [1]

diameter. The ratio f§ for the proposed unit-cube geometry is expressed as:
B = Sint—wair /H3, where S;,,...; 1S the void interior surface area in a single unit-
cube obtained from:

Sint_want = nD* — 6(nDh) = nD(3H — 2D) )

giving the final expression:

D
B = (3H —2D) 3)
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Fig. 4 Detailed dimensions of the Unit Cube Geometry Model at a cross-section cut at the centre plane
of the unit cube. Used with permission from Yu et al. [4] and from the ASME Journal of Heat Transfer

Figure 5 shows the variation of f§ for different D over the range 0.52 < ¢ < 0.96,
which corresponds to the limits described following (1). Here it is evident that f8
decreases with increasing porosity and with increasing void diameter. For high
porosities, § decreases sharply due to the decrease in available solid material inside
the foam. For a convective heat transfer application, the optimal value for f§ is
evaluated by comparison of the thermal and hydrodynamic resistances. The higher
the value of f§ the higher the area available for internal heat exchange but this also
results in higher net viscous losses resulting in a higher fluid pressure drop.

2.2 An Effective Conductivity Model

A complete thermal model consists of two parts: (a) an effective thermal conduc-
tivity model, which is required to quantify the rate at which energy can be entrained
into the foam structure, and (b) a convective exchange model to quantify the rate at
which energy can be removed by the infiltrated fluid. A model for the effective
thermal conductivity of GF can be devised mathematically based on the unit cube
geometric model, while the model for convective exchange will be given in a
subsequent section related to experiments.

The effective or stagnant thermal conductivity of a porous material is a function
of the thermal conductivities of the solid and the fluid, the porosity and the structure
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Fig. 5 Internal surface area to volume ratio, f3, plotted as a function of porosity for three different
spherical void (pore) diameters

of the foam, and is another important parameter characterizing the porous material.
The equivalency technique has been applied by Yu et al. [4] to the solid phase
volume since the solid phase is the controlling factor for the effective thermal
conductivity of the GF material. The effective thermal conductivity derived by [4]
is based on the following assumptions:

1. The air inside the void structure of the foam is stagnant. Thus, no convective
exchange between the air and the solid takes place in the pore channel.

2. Radiation heat transfer in the inter-connected pore channel is negligible.

3. Local thermal equilibrium exists between the solid and fluid phases at the pore
level.

An equivalency process was then used to simplify the pore-level geometry
while preserving the volume ratio of solid/fluid (porosity), and the resulting square
bar size of a simple unit cell can be determined by solving the following cubic
equation [4]:

@ - ———H =0 “4)

Figure 6 shows the details of the equivalency and electrical analogy processes
used by Yu et al. [4] to obtain the effective thermal conductivity of the graphitic
foam. The equivalent square bar structure is first divided into parallel and series
parts as shown in Fig. 6b. The parallel and series parts are then converted into the
simple forms shown in Fig. 6¢ by applying the equivalency method to the volume.
The top view of Fig. 7d shows the equivalent heat transfer circuit that represents the
parallel part, and the bottom view shows the equivalent heat transfer circuit that
represents the series segment. The simplified parallel part is presented as a pure
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Fig. 7 Plot showing the effective thermal conductivity of GF as a function of porosity for
ky = 1,300 W/m K

parallel circuit consisting of the solid and void parts as shown in the top view of
Fig. 6d, and its effective thermal conductivity k., is calculated as:

Tk 5)
| f

where k¢is the thermal conductivity of the fluid and k; for the solid, 7 = 2a/H is the
normalized thickness of the square bar, and ¢ is the ratio of the thermal conductivity
of the solid phase to the fluid phase: ¢ = k,/k. The simplified series part is repre-
sented as a pure series circuit consisting of the solid and void parts as shown in the
bottom view of Fig. 6d, and its effective thermal conductivity k., is calculated as:

ks
kes = m (6)

The effective thermal conductivity of a porous material is given by:
ke = 8ekep + (1 - Se)kes (7)

where ¢, is the volume ratio of the parallel part to the sum of the series part and the
parallel part, and is determined by:

ge =1—2t+2¢ (8)
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When (5), (6) and (8) are substituted into (7), the final expression for the
effective thermal conductivity of the spherical void porous material is obtained:

_ (G-1'+0), , 20-1
kg—(1—2t—2t2)<(%_1)2+1 kf+(1_t)o+tks ©)

Figure 7 shows the variation of k, with ¢ as predicted by (9) (solid line). The
effective conductivity is seen to decrease with increasing porosity due to the
reduction of solid phase material with increasing ¢. Included in Fig. 7 is measured
data reported by Klett et al. [5]; the data was converted from density to porosity form
assuming a ligament density of 2.23 g/cm? [5]. Figure 7 also compares predictions of
the model relation developed by Klett et al. [S]. It is clear from the figure that both
models are in good agreement with the measured data. Important to note is that in the
Yu et al. [4] model there are no parameters to adjust; the predicted result is obtained
using the geometry of the foam and the solid and fluid phase thermal conductivities
only. As such, the proposed model can be applied in engineering heat transfer
models and in computational fluid dynamics codes without special tuning.

It is important to note that the heat transfer is not dictated by the effective
conductivity alone. That is, for low porosity, the effective conductivity is high
which means that heat is readily transferred into the porous material, but it is difficult
for fluid to penetrate the foam resulting in lower convection and an imbalance in the
conductive-convective resistances. For high porosity, the effective conductivity is
low meaning that conduction into the foam is low, but it is easy for fluid to penetrate
the foam so the convective resistance is lower. As such, the optimal porosity must be
obtained by considering the rate at which heat is transferred into the foam and the
rate at which heat can be removed by internal convection. Also note that this
optimum is not universal, rather it is very application dependent. An analogy can
be drawn here to fluid machinery, where optimal performance occurs at the design
point and performance drops off for higher and lower flows.

3 Experimental Studies

Several studies exist in the literature describing the characterization of foams that
could be considered for convective heat transfer enhancement. Antohe et al. [6],
Paek et al. [7] and Boomsma and Poulikakos [8] all report on the hydraulic losses of
as-cast and compressed aluminum foams and provide information quantifying the
permeability and form drag coefficients for foams of different porosity. In this
manner, pressure losses can be characterized using the classical Darcy-Forchheimer
law. Calmidi and Mahajan [9] studied forced convection of air in high porosity
aluminum foams using experiments combined with computational fluid dynamics.
In their experiments, large (196 mm x 63 mm x 45 mm-thick) aluminum foam
blocks of different porosity were mounted into a channel and heated from one side
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while air was forced through the foam. Since the effective conductivity of the
aluminum foam was relatively low (maximum 7.4 W/m K), the extended-surface
efficiency of the blocks was very low and convective heat transfer was only found
to occur in a thin layer of foam directly adjacent to the heated substrate. Boomsma
et al. [10] studied the effect of foam-compression on the flow and heat transfer
characteristics of aluminum foams. Compression of the foam essentially increases
the internal area to volume ratio of the foam and was done as an attempt to reduce
the internal convective resistance and thereby reduce the volume of foam required
to remove a given amount of energy. In this case, 40 mm X 40 mm X 2 mm-thick
blocks of foam were heated from one side while water was forced through the foam
structure. Compression of the foam was shown to increase the heat transfer effec-
tiveness by up to a factor of two, however with an associated increase in the
pressure drop.

Relatively little information is available in the open literature on the characteri-
zation of graphitic foams. Gallego and Klett [2] provided some of the first data on
the pressure drop and heat transfer for graphitic foam. Their study provided
estimates of the influence of configuration on the heat transfer and pressure drop,
but little detail was provided to assess the influence of porosity, pore diameter and
Flow. Yu et al. [4] proposed a sphere-centered unit-cube geometry model to
characterize the internal structure of a spherical void-phase porous material, as
described in the previous section. The model developed by Yu et al. [4] has been
utilized in several subsequent studies carried out to quantify the convective heat
transfer and pressure drop obtained in different flow configurations. The following
sections present recent experimental data obtained for graphitic foam in parallel,
impinging and forced flow arrangements.

3.1 Experiments in Parallel Flow

Experiments characterizing the heat transfer enhancement achieved by passing air
across a surface of graphitic foam were carried out by Straatman et al. [11]. The
study sought to establish the convective enhancement achieved by bonding layers
of graphitic foam to a heated aluminum substrate. All results of the study are
expressed as a ratio of the heat transfer for the foam surface with respect to the
heat transfer measured for the bare (impermeable) substrate, i.e.,

_ Nufoam _ NuL,fuam
IW Ni uy,

E

10)

Figure 8 shows results of enhancement as a function of foam thickness for foams
219 Top and 217 Top (see Table 1 for foam properties). The observations of heat
transfer with respect to foam thickness suggest two things: that the depth of
penetration of air into the foam is relatively small for parallel flow conditions,
and that on average, there is no decisive advantage for using more than 3 mm of
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Fig. 8 Results showing the effect of foam thickness and Reynolds numbers for graphitic foams of:
(a) 219-Top (89% porosity), and (b) 217-Top (78% porosity)

Table 1 Summary of properties for the carbon foam specimens tested in parallel, impinging and
forced convection experiments

Specimen Porosity (%) Average void Highest frequency kegr (W/m K)
dia. (um) void dia.

219 Top 89 633 800 30
217 Top 78 341 350 68
221-1 85 410 400 98
219-1 90 560 450-500 50
219-2 88 400 350450 65
219-3 86 350 350 72
219-3-3 88 400 350450 61
218-3 88 400 400 61
poco™ 82 500 510 120

foam. This means that the depth of penetration of air into the foam is as little as 3-5
pore-diameters (assuming that the first 1 mm of foam is filled with bonding
material). Though the penetration depth of air is certainly dependent upon the
pore diameter and porosity of the foam, it is difficult to resolve this influence due
the non-uniformity of pore diameter and the difficulty of machining the foam
thickness to within small fractions of a millimeter. Thus 3 mm serves as a first
approximation for the desired thickness of GF for parallel flow arrangements. It is
important to note that the depth of penetration of air into the foam is expected to be
a strong function of the incidence of the foam surface with respect to the air flow,
i.e. in the limit of an impinging airflow, the air would penetrate the foam surface
much more deeply leading to much higher enhancements in convective heat
transfer.

Concerning the dependence on Re;, the enhancements shown in Fig. § are seen
to be higher for low air speeds (about 1.28 on average) and lower for high air speeds
(about 1.10 on average), with an approximately monotonic variation. This trend
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was explained in [11] in terms of the near-surface activity and the relative air flows
in and across the GF. In a parallel flow, the air is not forced or driven into the foam,
but rather the roughness of the foam surface produces disturbances of the sub-layer
resulting in the production of near-surface eddies. The turbulent eddies actively
penetrate the foam setting up weak pressure gradients near the foam surface,
thereby causing air to pass through the interconnected pore structure before return-
ing to the free stream. The air that passes through the foam is exposed to the large
internal surface area thereby enhancing the net convective heat transfer of the
specimen. At low air speeds, the momentum of the near-surface eddies is low,
but the relative amount of air passing through the foam is significant with respect to
the air flow across the exposed surface of the foam. At high air speeds, the near-
surface eddies are very energetic, but the amount of air passing through the foam is
small with respect to the external flow. As such, the enhancement of convective
heat transfer is higher at low air speeds and lower at high air speeds. It is likely that
at very high air speeds, the enhancement in heat transfer performance would be due
only to the increased roughness and exposed surface area. It is also clear from Fig. 8
that the GF properties have an effect on the convective enhancement achieved. In
this case, the more porous foam with the larger void diameter (219) provided
increases that were nearly 20% higher than the lower porosity and smaller void
diameter 221 foam. In this flow arrangement where the infiltration is passive, it is
not surprising that a higher advantage is obtained from the more permeable
specimen.

3.2 Experiments in Impinging Flow

As mentioned in the previous section, the effect of incidence angle on the air flow
across a foam surface is of interest. A study of direct impingement has been carried
out by Sultan et al. [12] to explore the heat transfer enhancement achieved by
bonding layers of GF to a heated aluminum substrate. While only direct (normal)
impingment was studied, enhancements were explored for both embedded and
protruding layers of graphitic foam. Figure 9 compares the heat transfer enhance-
ment obtained with the upper surface of the foam sample flush to the surface of the
mounting apparatus (flat), and for the whole foam layer protruding above the
plywood sheet (extended), both for unconfined impinging flow directed normal to
the foam surface. The figure shows that the enhancement achieved by the extended
foam layers is higher for all foam thicknesses, suggesting that the air infiltration into
the foam is higher when the edges of the foam are open and a path exists for
infiltrated air to pass freely out of the foam. The figure also shows that for the
extended foam layers the convective enhancement is higher for thicker layers of
foam indicating that the infiltration of air into the structure of the GF is substantial.
Enhancements of 30—40% over that of the bare aluminum substrate were measured
for extended GF layers of 2—6 mm, respectively. This is 4-12% higher than similar
enhancements achieved by setting the foam surface to be flush with the impingement
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Fig. 9 Plot showing the impact of foam protrusion from the impingement surface on the convec-
tive heat transfer enhancement. See Table 1 for graphitic foam properties

surface. Figure 9 also shows that the convective enhancement for the flat cases are
essentially independent of foam thickness, suggesting that very little air infiltration
occurs when there is no escape route for the infiltrated air. In this case, the heat
transfer enhancement is simply due to the larger surface area available at the exposed
foam surface.

Figure 10 shows the influence of foam thickness and impingement air speed on
convective enhancement for two of the graphitic foam specimens shown in Table 1.
The plots indicate that enhancements of 30—70% are obtained over the range of air
speed considered by varying the thickness of the different foam specimens. In
terms of impingement air speed, the enhancement is higher at the highest velocity
than the lowest, but for a significant number of the cases shown in Fig. 10, the
lowest enhancement was observed at the intermediate air speed. Sultan et al. [12]
explained this effect on the basis that the net convective enhancement is due to
complementary influences resulting from the increased plan surface area of the
foam over the bare substrate, and the exposure to internal surface area for infil-
trated air.

While the plan surface area is constant for a given foam, the exposure to internal
area depends upon the flow condition. Flow through the foam is driven by the pressure
gradient set up by the (near) stagnation pressure at the surface and the pressure at the
edge of the specimen. Since the influence of the enhanced plan area with Re is
effectively linear (over the range of Re considered in [12]), the influence of flow
through the foam must be larger at the low air speed. That is, if the trend for the higher
air speeds is considered to be increasing linearly due to a continuous increase in the
stagnation pressure, then the enhancement at the lowest air speed is higher (for all but
1 condition) than would be predicted by extrapolating backwards from the higher air
speeds. This simply implies that the infiltration has a stronger influence on the net
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Fig. 10 Plots showing the influence of foam thickness on convective enhancement. See Table 1
for graphitic foam properties

convective enhancement at lower flow speeds. A similar phenomena was noted in [11]
for the parallel flow condition, where it was argued that the relative amounts of
parallel flow verses infiltrated flow affected the trend in the convective enhancement.
The difference in the impingement case is that increases in the air speed eventually
cause the enhancement to grow due to the higher and higher infiltration of air through
the foam. In terms of the foam thickness, the trend for all specimens is that the highest
convective enhancement occurs for the thickest foam layers, suggesting that air
infiltrates the GF deep beneath the exposed surface. It is also observed that the largest
increases occur between 2 and 6—8 mm; in most cases the difference between 8 and
10 mm of GF is relatively small, suggesting that the infiltration limit may be reached
for the air speeds considered. Thicker specimens were not tested due to the limitation
of the foam specimens available.
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3.3 Experiments in Forced Flow: The Porous Plug

Experiments on forced flow are reported by Straatman et al. [13], in which water
was passed through a channel blocked by a graphitic foam plug. Results for the
pressure drop as a function of clear channel velocity U are shown in Fig. 11 for GF
specimens described in Table 1. It is clear from Fig. 11 that the permeability and
thus the pressure drop is very different for the four specimens tested, with the 219-3
foam having the highest fluid pressure drop and POCO™ having the lowest. The
large differences in pressure drop between the foam specimens can only be
reconciled by considering the properties in Table 1. Consider, for example the
difference between the 219-3 and POCO™ foams. The porosity of the 219-3 is
higher, which might otherwise indicate a lower pressure drop, but the void diame-
ter of 219-3 is smaller and consequently the internal area is larger thereby increas-
ing the internal resistance to fluid flow. However, the 20% increase in internal
surface area does not alone account for the more-than twofold increase in pressure
drop. It was also clear from Scanning Electron Microscope (SEM) images (given in
[13]) that the cell windows in the 219-3 foam are, on average, considerably smaller
than those in the POCO™ foam, and thus there is a much higher hydraulic loss in
the 219-3 foam due to the sudden contraction/expansion of fluid through the pore
windows.

The Nusselt number measured in [13] is plotted in Fig. 12 as a function of the
Reynolds number, Rep,. The figure indicates that for most conditions the 219-3-3
and POCO™ foams have the highest internal heat transfer followed by 219-3 and
218-3. The differences between the specimens can be reconciled by considering
the different geometric parameters and effective conductivities summarized in
Table 1.

\\>
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Fig. 11 Plot showing the pressure drop as a function of the filter velocity for the GF specimens
considered. Adapted from Straatman et al. [13]
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4 Computational Studies of Graphitic Foam

Computations of the flow and heat transfer in porous media are of great interest due
to the advantage of being able to conduct parametric studies in a fast and efficient
manner in comparison to similar activity done experimentally. In this section, two
levels of computational study are presented: simulations of the pore-level fluid flow
and energy transfer in GF, and simulations conducted using a volume-averaging
approach. While the volume-averaging approach has seen much more widespread
use in the past, computations of this nature require closure models to approximate
the unresolved activity at the pore level, and such models can only be dervied by
experimentation and better-resolved solutions from the pore-level.

4.1 Computations at the Pore Level

Pore level computations are done by simply solving the Navier-Stokes equations
combined with the conservations of mass and energy on a domain that represents
the pore structure of the porous media in question. The conservation equations for
mass and momentum are given, respectively as:

pp(V-u) =0 (11)

9
o [8’: +V- (uu)} = —VP+ wVu+ pf (12)
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Under the additional assumption that the effects of viscous dissipation and heat
generation may be neglected, the heat transfer portion of the problem is governed
by the following form of the energy equation:

oT
PrCp.f [5 + V- (MT):| = kfva (13)

These equations were solved in the idealized spherical foam geometric model
furnished by Yu et al. [4] by Karimian and Straatman [14, 15]. Computations were
carried out for unidirectional flow [14] and for arbitrary flow direction [14] for a
small section of pores considered to be inside a generic section of an idealized GF
foam block, which is ideally composed of hundreds of identical cells in each
direction. It is reasonable to assume that the flow in a generic section inside the
foam is periodic in nature and thus, only a representative portion of the domain
required modeling. In the unidirectional case, the pore-windows were assumed to
be aligned with the inlet flow leading to a flow field that loosely mimicked that of
flow through a duct with geometric periodicity. To simulate the most generic multi-
directional, periodic flow [15], a domain consisting of a cluster of idealized cells
was (mathematically) constructed such that a spatially periodic flow could be
simulated for an incoming velocity of 45° in all principle directions with respect
to the pore-window planes. It was felt that 45° represents the average orientation of
the windows with respect to the incoming flow. The resulting domain was com-
prised of two consecutive, interconnected cells in each direction x, y and z, with
three pore windows as periodic sections in each direction. To complete the formu-
lation, the periodic boundary conditions of Karimian and Straatman [16] based on
the double-periodic cell geometry formulation of El Soukkary and Straatman [17]
were extended to three directions. Figure 13 shows an outline of the computational
domain for an idealized graphitic foam cell with porosity of € = 0.80. The flow and
temperature fields shown in Figs. 14 and 15 show the periodicity of the flow
and temperature fields predicted using the formulation described. Symmetric flow
and temperature fields can be clearly seen in Figs. 14 and 15 where streamlines are
illustrated, coloured by the temperature variation.

More quantitatively, the results of the simulations are formulated in terms of the
Reynolds number, Rey, the normalized pressure drop, gy, and pore-level Nusselt
number, Nuy, which are defined as:

VineH AP H? hH
p ! ,HH:7>< NuH:—

Rey = —
e H 8,LLV,'m ’ k

where V;,, is the intrinsic velocity magnitude, H is the side length of the unit cube,
AP is the pressure drop across a single pore, € is the porosity of the foam, / is the
average convective heat transfer coefficient, and  is the fluid conductivity.

Two major regimes were defined for steady laminar flow in porous media: Darcy
or creeping flow, which is dominated by viscous forces, and inertial flow, in which
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Fig. 13 Computational domain and grid for simulations done at the pore-level (Karimian and
Straatman [15])
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Fig. 14 Two-dimensional streamlines at a cross-section in the main-flow direction, the lines color
variation indicates the local temperature
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Fig. 15 Three-dimensional rakes of streamlines starting from inlets of the first cell until the flow
exits the domain

the effect of inertia forces start to dominate. The Darcy-Forchheimer law governs
the relation between pressure drop and velocity in terms of viscous and inertia
forces:

P C
BV e + \/—J;

ds «x
Here, V,,, is the extrinsic (clear channel) velocity, s is the axis parallel to flow
direction, x is the permeability and C; is the inertia coefficient. To define the
form of dependency of these two parameters to the internal structure of graphitic
foams, an Ergun-like [8], semi-empirical relation was proposed by Karimian and
Straatman [15]:

2
PV

ae [ & A(l —¢)" B
- a (1 — 8) = d2 :uvext + Epvezxt

where parameters m, A and B were determined using the data from a series of
numerical simulations across a wide range of Reynolds numbers in the stationary
laminar regime. Also d, a proper length scale, was determined as a function of
equivalent particle diameter (Yu et al. [4]).
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To model heat transfer in spherical void phase foams, a general form of Nusselt
number proposed by Kaviany [8] is used:

Nu =D + EPr"Re™

where D and E are functions of internal geometry. Note that the constant D is the
asymptote of the model in the stagnant condition where conduction is the only
means of heat transfer. D, E, n and m are once again determined by fitting the data
from the numerical simulations for a range of Reynolds numbers in the stationary
laminar regime.

Figures 16 and 17 show that the form of the models given in the above expres-
sions is correct. In both cases, the model shows an excellent agreement with the
experimental data over the range shown. However, there was still a considerable
difference between the simulations and the experimental results for the porous plug
(see Sect. 3.3), two coefficients were introduced by Karimian and Straatman [15] to
reconcile the difference and to enable the use of the model expressions in the
characterization of experimental data. The model was “calibrated” using an acces-
sibility factor and a blockage ratio. Introduction of these coefficients (see [15] for
details) resulted in a very good fit between the calibrated model and the experimen-
tal data for several different graphitic foams, as seen in Fig. 18.
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Fig. 16 Comparison of the normalized pressure drop as a function of Reynolds number. Symbols
represent experimental results while the /ines correspond to the model of Karimian and Straatman [15]
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Fig. 17 Comparison of the heat transfer model with available experimental data. Symbols repre-
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4.2 Computations at the Volume-Averaged Level

Comparisons of the thermal and hydraulic performance of porous metals is most
efficiently done in a computational framework by solving the volume-averaged
form of the governing transport equations. While much more information on the
details of the flow and energy transfer is provided from the pore-level calculations
described in Sect. 4.1, the volume-averaged framework enables investigations of
much larger foam domains. Energy transfer in porous materials is typically studied
in the volume-averaged framework by invoking the assumption of local thermal
equilibrium between the solid and fluid phases, however for porous metals and
graphitic foams, this assumption is not valid because of the large difference
between the solid and fluid phase thermal conductivities. To this end, Calmidi
and Mahajan [9] used a thermal non-equilibrium model to carry out calculations of
forced convection in uncompressed aluminum foams. In their study, models for
interstitial convective exchange and thermal dispersion were proposed and then
used to simulate the heat transfer for several different specimens of aluminum
foam. Betchen et al. [18] developed a complete three-dimensional conjugate heat
transfer code for studying fluid/porous/solid domains, which also incorporates a
thermal non-equilibrium model inside the porous domain. The models for intersti-
tial exchange and thermal dispersion proposed by Calmidi and Mahajan [9] were
implemented in the code and simulations of uncompressed aluminum foam con-
firmed the validity of the code and the accuracy of the models.
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Fig. 18 Comparison of calibrated pressure (a) and heat transfer (b) models with experimental data

The framework for the volume-averaged formulation generally considers the
laminar, incompressible flow of a single-phase fluid with constant thermophysical
properties. The volume-averaged continuity equation may be expressed in extrinsic

form as [18]:
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pp(V - () = 0 (14)

Subject to appropriate length scale constraints, the volume averaged momentum
equations expressed in extrinsic form take the form [18]:

pf%#_%v'((u)(u)):—8V<P>f+ﬂ3v2<u>_%<u> (15)
- ‘°’pf[‘f ()| (u) + epyf

where the Darcy and Forchheimer terms are used to close the set of equations,
replacing the information characterizing the viscous and form drag interaction
between the fluid and solid constituents, which is lost in volume averaging the
velocity field. The second term on the right hand side of (15) represents the
macroscopic viscous effects, and is historically referred to as the Brinkman term.

Under the assumption of local thermal non-equilibrium, <Tf>f = (T,)* =(T) is
not assumed at a given point. This gives rise to extrinsic volume averaged energy
equations of the form [15]:

oTy)

PrCp [g% v (<u><Tf>f) =V (kﬁ,V<Tf>f)

+ hyAyy (<Ts>s - <Tf>f) (16)

(1- g)pscx@ = V- (ke V(T,)) — hyAy (<TS>S - <Tf>f) 17)

for the fluid and solid constituents, respectively. In (16), the fluid phase effective
thermal conductivity ks, may include a component accounting for the effects of
thermal dispersion, in addition to the stagnant portion of the conductivity which is
typically determined from a model of the pore geometry. Note also that the
effective thermal conductivities in a porous medium are often anisotropic, and
thus &, and k,, may in general be matrices, although in such a case we shall assume
that all off-diagonal elements of these matrices are zero. The second term on the
right hand side of (16) and (17) represent the heat transfer between the fluid and
solid constituents.

The heat exchange between the fluid and solid constituents is modeled using an
interstitial convective exchange model. It is worthy of note that interstitial
exchange is not equivalent to bulk convective heat transfer unless thermal disper-
sion is negligible. Thermal dispersion arises in the fluid energy equation as a result
of volume-averaging and accounts essentially for transport effects due to fluctua-
tions in the temperature field about the volume-averaged temperature. Thermal
dispersion is modeled as an enhancement to the molecular conductivity of the fluid
and can thereby contribute significantly to the bulk heat transfer within a porous
media. Thermal dispersion is typically modeled using the expression developed by
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Calmidi and Mahajan [9]. The interstitial convective exchange coefficient %; is
obtained locally from an expression of the form:

Nu; = hiL = CRe"PY", (18)
ke

which can be calibrated using experimental results to give the correct overall heat
transfer for any type of porous media. In (18), L is simply the length scale used for
the definition of the Nusselt number. For simulations of aluminum foam, the
expression for internal surface area and the parameters C, m and n were obtained
from Calmidi and Mahajan [9]; the length scale used was the ligament diameter.
For simulations of graphitic foam, the internal surface area was obtained using
A = V (Yu et al. [4]), where V is the volume of the cell, and the parameters C, m
and n were obtained by calibration with the results for POCO™ foam (see Table 1).
In this case the length scale used was the equivalent particle diameter, D,. Darcy
and Forchheimer coefficients for aluminum foam were obtained from Boomsma
et al. [10] and for GF from Straatman et al. [13, Table 2].

The calibrated model was used to explore differences between POCO™ foam
and the aluminum foams considered by Calmidi and Mahajan [9] and by Boomsma
et al. [10]. Figures 19 and 20 show the pressure drop and heat transfer as a function
of extrinsic velocity for POCO™ foam and for an uncompressed Aluminum
T-6201 foam with a porosity of 90% and effective conductivity 7.19 W/m K, as
reported in Calmidi and Mahajan. The plots are shown in terms of the extrinsic
velocity instead of Rep, to make the differences at a given flow condition more
clear; differences between the internal structures of GF and aluminum foam yield
very different ranges of values, which make direct comparisons difficult.
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Fig. 19 Plot of the pressure drop as a function of the extrinsic velocity for POCO™ foam and for
Al T6201 foam. Adapted from [13]
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Fig. 20 Plot of the heat transfer as a function of extrinsic velocity for POCO™ foam and for Al
T6201 foam. Adapted from [13]

The results shown in Figs. 19 and 20, are for the same heating condition (set using a
specified base and inlet temperature) over a range of bulk velocities. On the basis of
Fig. 19, it is clear that the aluminum foam has a considerably lower pressure drop
than GF over the entire range tested [13]. This is largely due to differences between
the porosities and internal structures of the aluminum foam and GF: the aluminum
foam has a high porosity and is comprised of thin fused strands and large open cell
windows, but relatively little internal surface area. The GF has a moderate porosity
and is comprised of spherical voids and small(er) cell windows, but with a lower
porosity and much larger internal surface area.

Figure 20 shows the heat transfer for 6 mm-thick and 12 mm-thick blocks of
POCO™ and Al T-6201 foams computed using the same bulk velocity and heating
conditions. At a 6 mm thickness, the Al T-6201 foam has a higher heat transfer
across the full range of conditions considered. However, when the thickness of the
Al T-6201 foam is doubled, no increases in heat transfer are realized at any flow
rate. In contrast, doubling the thickness of the POCO™ foam leads to increases in
heat transfer from 85% at low velocity to 50% at high velocity. These observations
can be explained by considering the balance between heat conduction into the foam
and the convective exchange between the foam and the fluid. The fact that doubling
the thickness results in no increases in heat transfer in the Al foams confirms that
heat is not entrained deeply into the foam and that the maximum possible heat
transfer for a given base surface area is achieved using a very thin layer of
aluminum foam (as described in Sect. 3 with respect to the Calmidi and Mahajan
[9] experiments). For POCO™ foam, the pore-level convective heat transfer
coefficient is considerably smaller than that for aluminum foam, but the lower
porosity and higher conductivity serve to conduct heat much more deeply into the



Heat Transfer in Graphitic Foams 127

foam, thereby making use of much more interior surface area. At 6 mm thick,
POCO™ foam removes less heat than Al T-6201 foam, but at 12 mm, the heat
transfer has increased above that of aluminum foam, without yet reaching its
maximum possible heat dissipation.

Comparisons were also made in Straatman et al. [13] between the compressed
aluminum specimens considered by Boomsma et al. [10] by conducting simulations
of 40 x 40 x 2 mm-thick blocks of POCO™ foam and processing the predicted
pressure drops and Nusselt numbers as done in [10]. Comparisons were done in this
manner because no expressions for interstitial exchange exist to facilitate computa-
tional modeling of compressed aluminum foams. Figure 21 compares the pressure
drop of POCO™ with that of three different compressed aluminum foams: 92-02,
92-03 and 92-06, where the -0X indicates the compression ratio based on the
volume. Figure 21 makes it clear that compression decreases the permeability of
the foam, but the pressure drop is still significantly lower than that of POCO™ over
the same range of bulk velocities, again owing to the large hydraulic loss associated
with the contraction/expansion of fluid through the cell windows present in GF.
Figure 22 shows the Nusselt number based upon the heated area and the tempera-
ture difference between the heated base and the fluid inlet. The heat transfer for the
compressed aluminum samples is seen to approach that of POCO™ foam for high
compression ratios. It is expected that under compression, the local convective heat
transfer coefficient decreases, but this is off-set by the increase in available internal
surface area, thereby giving a lower net thermal resistance. On the basis of Figs. 21
and 22, it appears that the highly compressed aluminum offers an equivalent heat
transfer for a significantly lower pressure drop, but it is important to note that this will
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Fig. 21 Plot of the pressure drop as a function of extrinsic velocity for POCO™ foam compared to
three different compressed aluminum foams as reported in Boomsma et al. [10]
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Fig. 22 Plot of the Nusselt number (as defined in Boomsma et al. [10]) as a function of extrinsic
velocity for POCO™ foam compared to three different compressed aluminum foams as reported
in Boomsma et al. [10]

only be the case for very thin layers of foam. As shown in the comparison with
uncompressed aluminum foams, if the thickness of the samples was doubled or tripled,
the POCO™ foam would yield significantly higher heat transfer than any derivative of
compressed aluminum foam due to its high extended surface efficiency.

5 Summary

A brief survey of the most recent work on spherical void phase graphitic foams has
been presented. The chapter presents work related to geometric characterization of
the GF structure, experiments exploring convective heat transfer enhancements
obtained in parallel, impinging and forced flow arrangements, and recent computa-
tional work done at both the pore-level and using a volume-averaged framework.
It is evident from the body of work presented that while the graphitic foam
possesses a unique set of material and geometric properties, the foams tested and
described did not yield a universal benefit over commonly used aluminium foams,
mostly due to the pressure drop generated by passing a fluid through the GF
structure. Fortunately, the work described deals exclusively with some of the
original foams developed at ORNL, which have since been replaced by graphitic
foams that retain the spherical void phase while having a much more permeable
structure that is more amenable to fluid flow. Such foams are being tested and
characterized using the tools and models presented herein and will undoubtedly see
far-reaching application in industry.
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Heat Transfer in Polyolefin Foams

Marcelo Antunes, José Ignacio Velasco, Eusebio Solorzano,
and Miguel Angel Rodriguez-Pérez

Abstract This chapter is dedicated to the study of heat transfer in polyolefin-based
foams, particularly thermal conductivity, as a function of their structure and
chemical composition. A small review of the main experimental techniques used
to measure the thermal conductivity of these materials is also given, focusing on the
transient plane source method (TPS), as well as different theoretical models com-
monly used for estimating its value. Alongside cellular structure (cell size, anisot-
ropy, etc) and composition considerations, particular importance is given to the
analysis of the presence of micrometric and nanometric-sized fillers in the resulting
cellular composite thermal properties. This is a novel research field of particular
interest, thought to extend the application range of these lightweight materials by
tailoring their conductivity.

1 Introduction

It is well known that heat transfer is one the most important fields of research for
cellular polymers due to the wide number of applications and uses of these
materials as thermal insulators. Heat transfer in these materials strongly depends
on relative density, cellular characteristics such as cell size, cell density, cell
anisotropy, etc, and presence of additional phases and/or fillers (concentration,
orientation and dispersion of these additional phases) [1-3].
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This chapter is focused on the study of heat transfer in polyolefin-based foams,
although most of the concepts and trends presented are applicable to most of the
polymeric cellular materials available in the market. It displays the main tendencies
of heat transfer, focusing on thermal conductivity, as a function of the structure and
chemical composition for different types of polyethylene and polypropylene foams
with densities ranging from 20 to 600 kg/m>. It also shows some strategies to
modify the thermal conductivity in terms of structure, compounding and production
techniques. A small review of the main experimental techniques to measure the
thermal conductivity of these materials is also given and different theoretical
models commonly used for determining the thermal conductivity of polymer
foams have been applied.

Part of the chapter is dedicated to the analysis of the presence of third phases
(micrometric and nanometric-sized fillers) in the resulting cellular composite ther-
mal properties. This is a novel research field of particular interest, thought to extend
the application range of lightweight materials by tailoring their conductivity, and
actually scarce information about the thermal behaviour of thermoplastic foams
with conductive fillers has been published [3-5].

1.1 The Concept of Cellular Solid

A cellular solid is a two-phase material in which a gas has been dispersed in a solid
continuous matrix. If the matrix is polymeric in nature, the material is known as
cellular polymer or polymer foam.

Among the most important parameters that modify the physical and transport
properties of these materials are the nature and morphology of the base material,
type of gas entrapped inside the cells, density, and the cellular architecture and
topology, such as cell connectivity (closed, open or partially interconnected cells),
cell size (¢) and distribution of cell sizes, cell wall thickness (J) and respective
distribution, fraction of solid in the cell struts (f;) and cell geometry and shape [6].
Some of these basic parameters used to characterize the cellular structure are
related by the following expression:

L

o(1 _fs)ﬂs

= (9, ey

where p/ps is the so-called relative density of the cellular material (p: density of
the foam and p: density of the respective unfoamed solid matrix) and C is a
constant that depends on the cell’s shape and geometry. For instance, this constant
has a value of 3.46 for pentagonal dodecahedron [1] and 3.35 for tetrakaidecahedral
cells [7].

The concept of foam as a two-phase material is important to understand their
behaviour as that resulting from the combination of the properties of both phases
and their relative content. Due to this reason, the relative density, and analogously
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the expansion ratio, ER (ER = p/p), is a crucial parameter when studying these
materials, being directly related to the relative volume fraction of both phases:
Vgas = (ps - P)/(Ps - pgas) ~1 - P/Ps and Vi = (P - pgas)/(ps - pgas) ~ P/
ps. It is important to mention that these approximations are only valid for relative
densities over 5%.

1.2 Polyolefin Foams: Production Techniques

In order to fully understand how the thermal properties vary with the structure, it
is also necessary to explain the production methods of these materials. A small
introduction on the most common foaming processes and typical resulting cellular
structures is presented here. Polyolefins such as polypropylene (PP) or polyethyl-
ene (PE) are commercially foamed using one of the basic foaming processes
described in this section [8]. All results and microstructures shown here for the PP
foams come from lab-produced materials, whereas PE foams results were mainly
obtained from commercially available materials. As we will see, cellular structure
variations induced by the different processing techniques or by process parameter
modifications may slightly modify the thermal conduction behaviour of the whole
system.

— Foaming by direct extrusion, the foam is directly obtained by a sudden decom-
pression at the exit of an extrusion die, normally using a physical blowing agent
(PBA) such as CO, or n-butane [9, 10] as seen in Fig. 1a. The physically foamed
extruded foams tend to show a rather anisotropic cellular structure with cells
elongated in the flow direction due to the stresses applied during the extrusion
process.

— Foaming by injection moulding, the polymer expansion is adjusted by
controlling chemical blowing agent (CBA) thermal decomposition or PBA
expansion inside a closed injection mould. A variation of the conventional
injection moulding is the microcellular injection moulding or Mucell™ tech-
nique. In this method, supercritical N, or CO, is introduced in the plasticizing
injection unit and mixed with the melted polymer before injecting in the mould
[11] (see Fig. 1b). Small cell sizes are typically obtained, although this foaming
technique is limited to rather high density materials (>300 kg/m?).

— Foaming by compression-moulding, the material is foamed by simultaneously
applying heat and pressure in order to decompose the CBA, nucleate the cells
and subsequently expand the material by sudden decompression, as depicted in
Fig. lc. This process commonly uses exothermic CBAs such as azodicarbona-
mide (ADC) [12]. Generally speaking, foams produced using this technique
present small cell sizes and certain cell-size gradients, with smaller cells close to
the mould’s surface.

— Gas dissolution foaming, the material is foamed inside an autoclave by a high-
pressure gas dissolution process. This process, commercially developed by
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Fig. 1 Schematics showing (a) direct extrusion, (b) injection moulding, (¢) compression-mould-
ing and (d) CO, dissolution pressure-quench foaming processes

Zotefoams [13], uses N, or CO, as physical blowing agent dissolving the gas in
the polymer in a semi-solid state and afterwards allowing the material to expand
by heating at a temperature above the softening temperature of the polymer—gas
mixture. Although not available commercially, a second strategy, known as the
pressure-quench method (see Fig. 1d), considers a one-step gas dissolution
process. In this method, the material is nucleated and foamed by carefully



Heat Transfer in Polyolefin Foams 135

T
N
=4

Compression F 3
Moulding-PP L o
71__Injection-PP. - 1

= ion-
'/,"/,'()}}}?'/ ExtrUﬂon PPI [

10000

£ 10004
% :

100. . . h W Injection-PP

0.5 0.6
Relative density

Fig. 2 Cell size, ¢, and anisotropy ratio, AR (AR = ¢yp/dwp, VD: vertical direction of foaming;
WD: width direction) versus relative density for the analyzed foams

controlling the sudden pressure drop and pressure drop rate applied during gas
decompression [14]. This was the strategy used for preparing the PP lab-
produced foams analyzed in this chapter.

The main cellular characteristics (average cell size, ¢, and anisotropy ratio, AR)
of the polypropylene and polyethylene based foams analyzed in this chapter are
summarized in Fig. 2.

Regarding the characteristic cellular anisotropies exhibited in Fig. 2, it is impor-
tant to mention that lab scale-produced PP foams were particularly conditioned to this
kind of anisotropies (with special mention to the ones prepared by the pressure
quench method). Similar processes in other laboratories or industrial-scaled ones
based on similar techniques may not exhibit such anisotropic cellular structures.

Scanning electron micrographs showing typical cellular structures for the differ-
ent processing techniques are shown in Fig. 3 for the lab-produced PP-based foams
and in Fig. 4 for the PE-based commercial ones.

1.3 Composite Polyolefin Foams: Production Techniques

Polymeric cellular materials can also incorporate fillers, i.e., secondary solid
phases, commonly inorganic, with the intention of extending their applicability
window. We will focus our attention on the effects of the incorporation of these
fillers in the thermal conduction behaviour of the foams.
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Fig. 3 SEM micrographs of the lab scale PP foams produced using different foaming processes:
(a) direct extrusion, (b) injection-moulding, (¢, d) compression-moulding, and (e, f) pressure-
quench CO, batch foaming

Fig. 4 SEM micrographs showing typical cellular structures of commercial PE foams prepared by
(a) compression-moulding and (b) N, dissolution

Polyolefin composites were initially prepared by melt-compounding the differ-
ent fillers in a twin-screw extruder with a polypropylene-based matrix and a CBA
(azodicarbonamide). The resulting composites were subsequently foamed by com-
pression-moulding chemical foaming. Particularly, the influence of two different
highly conductive fillers was experimentally evaluated:

1. Incorporation of high amounts (50 and 70 wt.%) of a micrometric-sized filler,
magnesium hydroxide (Mg(OH),) (Fig. 5), commonly used as flame retardant
[15, 16]. This kind of filler typically exhibits a particle size in the range of a few
micrometers (<10 pm). The maximum theoretical thermal conductivity is
assumed to be approximately 130 W m~' K~' [17], although this value depends
highly on the crystalline orientation.
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Fig. 5 SEM micrograph
showing the typical
hexagonal shape of Mg(OH),
particles

Fig. 6 (a, b) Transmission electron micrographs and (c¢) schematic showing the stacked-cup
structure of the sub-micron vapour grown carbon nanofibres

2. Incorporation of different amounts of carbon nanofibres (from 5 to 20 wt.%),
a theoretically highly thermally conductive filler (>2,000 W m~' K™") [18].
This fibrous-like nanometric filler was added with the objective of obtaining
PP-based cellular materials with improved thermal conductivities [19, 20].
The carbon nanofibres used here were sub-micron vapour grown carbon fibres
(s-VGCF) with a stacked-cup structure produced using a floating catalyst tech-
nique with a diameter of 20-80 nm, a fibre length higher than 30 um and a
graphitization degree of 70%. These nanofibres were kindly supplied by Grupo
Antolin (Burgos, Spain). Figure 6 presents two different magnification transmis-
sion electron micrographs, as well as a schematic displaying the stacked-cup
structure of the carbon nanofibres.

A graph indicating the main cellular structure characteristics, cell size and
anisotropy, of these materials is shown in Fig. 7.

It can be observed that the materials filled with Mg(OH), showed an expansion
ratio between 2 and 3 and anisotropy ratios up to 3. The PP-CNF composite foams
were intentionally produced with a fixed density (ER = 3), although foams with
lower densities could have been produced.
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Fig.7 Characteristic cell size, ¢, and anisotropy ratio, AR (AR = ¢vp/dwp, VD: vertical direction

of foaming; WD: width direction) versus relative density for the composite foams analyzed in this
chapter

Fig. 8 SEM pictures of the 50 wt.% Mg(OH),-PP foams: (a) 0.20 and (b) 0.23 relative density and
70 wt.% Mg(OH),-PP foams: (c) 0.47 and (d) 0.55 of relative density

Figure 8 shows some examples of the cellular structure of Mg(OH), foams.
Contrary to the foams filled with 70 wt.% Mg(OH), that show isometric-like cell
structures with small cell sizes (=180 pum), the foams with a 50 wt.% Mg(OH),
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Fig. 9 Characteristic SEM pictures of (a) 5 and (b) 20 wt.% carbon nanofibre-reinforced polypro-
pylene foams

present higher cell sizes (from 700 to almost 1,000 um) and increasingly higher cell
anisotropies for lower relative densities.

Some examples of the typical cellular structures of PP-CNF foams are shown
in Fig. 9. The foamed nanocomposites were prepared with closed-cell structures
and typical expansion ratios of 3. Isometric-like cellular structures (AR ~ 1) with
increasingly smaller cell sizes with gradually increasing the concentration of carbon
nanofibres were obtained. For instance, the 5 wt.% CNF foam displayed an average
cell size slightly above 500 pm, its value decreasing to 400 and around 250 pm
respectively for the 10 and 20 wt.% CNF foams.

2 Experimental Methods to Determine Thermal Conductivity

The use of polymer foams is widespread in thousands of industrial applications and
there is a continuous interest in regulating their thermal properties, in most cases
with the objective of reducing the thermal conductivity. A wide variety of different
experimental techniques to measure this property have been developed for different
experimental conditions and materials [21, 22]. The process of measuring this
property is complicated by the fact that in several practical situations most of the
heat transfer mechanisms (conduction, convection and radiation) have to be con-
sidered. Thus, for each material it is necessary to identify the ideal measuring
procedure considering factors such as the expected conductivity, shape of the
material, available sample size, density, etc.

Generally speaking, in order to measure the thermal conductivity or a related
property by a steady state or a transient method, the experimental arrangement must
simulate a solution of the basic heat conduction equation:

101 _ vzT_|_A(x,y,z, t)

—_— 2
k Ot A ’ @
where k and /4 are respectively the thermal diffusivity and conductivity, T is the
temperature, ¢ is the time, and A (x,y,z,f) is the heat generated per volume and time.
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For longitudinal unidirectional heat flow, no radial losses and disregarding the
existence of a heat source into the solid, the analysis of the steady-state term leads
to a linear dependence between temperature and dimension in the heat flow
direction. The heat per area and time through a sample can be determined using
Fourier’s law:

AT

Q.= 0177 3)

where Q, is the heat flow generated by the application of a temperature difference
between the two sides of the material (A7), separated over a distance d (the material
thickness), and G is a constant, determined by calibration for each given apparatus.
Figure 10 shows a schematic diagram of the typical plate-like steady state equip-
ment for determining the thermal conductivity.

The steady state techniques are the most commonly used methods, and there are
several standard methods (ISO and ASTM) based on this procedure [23, 24].
Nonetheless, in some cases not all the heat generated in the upper plate is conducted
to the lower one, thus being necessary to account for heat losses. Moreover, the heat
flow is not always normal to the heat surfaces and there is a small gap between both
heater surfaces and the surfaces of the sample. This gap contributes to the reduction
of the effective transferred heat (interfacial heat transfer resistance). On the other
hand, although this equipment is relatively fast in operation, there is still a need to
reduce such times, particularly for quality control applications.

Alternatively, transient methods based on the analysis of the transient term
solution of (2) which relates change in temperature with time, are used. Transient
hot wire, transient hot strip, transient plane source and laser flash methods are
probably the most important techniques based on measuring the sample’s thermal
behaviour under a transient heat flow regime. The laser flash method differs from
the others since it is a non contact method and determines the thermal diffusivity of
the sample instead of the thermal conductivity. Transient Plane Source (TPS) can
be considered as the evolution of both transient hot wire and transient hot strip (by
combining some aspects of the transient hot probe method, not mentioned before).

Hot Plate

v

Thermocouple 1

Sample

Thermocouple 2

v

Heat flow
meter

Cold Plate

Fig. 10 Schematic diagram of typical standard equipment for determining the thermal
conductivity based on Fourier’s law
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Therefore we can consider the TPS method as the most representative of these
transient contact methods.

In the TPS method a round and plane heat source is used (see Fig. 11, left). It acts
as a transient plane source working simultaneously as a temperature sensor. This
element consists of an electrical conducting pattern of thin nickel foil in the form of
a double spiral inserted between two insulating plastic layers. The total thickness of
this sensor is only a few tens of micrometers. The TPS element is placed between
two samples with both sensor faces in contact with the two samples surfaces as
depicted in Fig. 11, left. Two samples of similar characteristics are required for this
purpose. During testing a constant electric power is supplied to the sensor and the
temperature increase is recorded. To relate the change in temperature with time, the
equation for the heat conduction assuming the conditions reported by Log et al. and
Gustavsson et al. is applied [25, 26]. Although less known, this method also enables
the possibility of detecting possible thermal anisotropies [27].

Finally, the laser flash system is based in a laser beam pulse (typically <1 ms)
focused on one of the faces of a relatively thin sample while the temperature
increase in the opposite parallel face is recorded by a contactless method (IR
pyrometer). From this temperature increase it is possible to determine the thermal
diffusivity of the sample. The schematic description of the measurement procedure
is shown in Fig. 11, right [28].

Transitory methods present several advantages compared to steady state ones.
For example, it is possible to simultaneously obtain values of the thermal conduc-
tivity, thermal diffusivity and specific heat. The range of measurement comprises
five orders of magnitude (0.01-400 W m~' K™ '). These methods are also faster,
can be used to determine the influence of material inhomogeneities and/or aniso-
tropic characteristics and offer the ability to measure in small samples compared to
the thick samples conventionally needed for the steady state methods.

On the other hand, it is important to remark that transient methods are not fully
standardized. Nevertheless, in the last years some standard procedures have been
approved for determining the thermal properties by the laser flash method [29, 30]
and several efforts are being developed to standardize the TPS method [31]. It is

Sample Sample

Sensor _

IR pyrometer

Laser pulse

ﬁ

Sample

<l
i

Fig. 11 Schematic diagrams for transient plane source (/eft) and laser flash (right) methods
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also interesting to comment that the thermal properties of non-conventional new
materials have been studied in the last years by using transient methods [32—40]. In
addition, several works have shown that these transient techniques give comparable
results to the steady state ones [41, 42].

3 Mechanisms and Models of Heat Transfer in Polymer Foams

Generally speaking, the heat transfer in any cellular material is the result of a
contribution of three different mechanisms, conduction, convection and radiation,
and therefore the overall thermal conductivity can be depicted as the result of four
additive terms:

/lfoam = ;“an + )vfnd + ;er + jvcnvv 4

where 25, and /% jare respectively the thermal conductivities due to conduction
through the solid and gas phases and A4 and A,y the radiation and convection
terms.

3.1 Convection

Convection due to gas movement inside the cells may be disregarded for cellular
structures with cell sizes of less than 4-5 mm [1]. Considering that almost all
polymer-based foams, independently of the final relative density, present cell sizes
that are clearly below these values, heat transfer due to the movement of the gas
molecules entrapped inside the cells (convection) can be considered minimal when
compared to conduction and radiation.

3.2 Conduction

Several theoretical models have been proposed to estimate the conduction term of
cellular polymers. Nonetheless, even the most recent ones, which take into account
for instance arbitrary cell orientations or anisotropy geometrical parameters, tend to
consider rather simple geometrical-shaped arrays representing the cellular structure
(cubic or polyhedral-like) [1, 41, 43—45]. On the other hand, foams exhibit in many
cases cell imperfections, gradients and inhomogeneities, far away from regular
geometries, especially in the case of low density foams. Nevertheless, the following
formula has been proven to give reasonable compliance for the prediction of the
thermal conduction term [1]:
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where f; is the fraction of solid in the cell struts and AR is the geometrical anisotropy
ratio, i.e., the quotient between the highest and smallest cell size in the direction of
the heat flux (Fig. 12).

In the particular case of isotropic-like cellular structures, (5) is reduced to the
following equation:

Vsol
)vfoam = }Lgasvgas + }vsol 5

3 ; ®)

2 f
A= )*'gasvgas + (3 - ?) ;vsolvsol (6)

According to some other authors the thermal conductivity of a cellular solid can
be modelled as:

A= )ugangas + é;bsolvsola (7)

where ¢ is the tortuosity, a parameter directly related to the foam’s inherent
irregularity. The concept of tortuosity goes beyond the conventional geometrical
tortuosity [46] and implicitly considers the effect of cellular structure (cell size, cell
density and cell wall thickness, f;). This last equation is particularly interesting in
the case of materials with an unknown f; parameter. On the other hand, in the
particular case of anisotropic structures it is possible to consider the effect of
anisotropic tortuosity in the different material directions, so under anisotropic
conditions we could also talk about equivalency between (5) and (7).

The influence of this mechanism can be modified by incorporating sec-
ond phase constituents with different thermal conductivities, thus varying the
expected conductivity, especially in the case of high density foams (higher
contribution of the solid phase). Such is the case of the fillers considered in
some of the next sections of this chapter. Particularly, the model used for these
composite foams will be based on the experimental thermal conductivity of the
solid composite (i.e., replacing A and V variables shown in previous equations by
those of the corresponding composites).

+“—r

?z/‘
o, I Heat flux

Fig. 12 Schematic showing
cell anisotropy for a cubic cell AR = ¢,/ ¢,
geometry and the definition
of AR
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3.3 Radiation

To estimate this mechanism, the model proposed by Williams and Aldao will be
adopted in this chapter. The reason is that this model has a high compliance with
experimental results as has been shown in previous investigations [47—49]. One
of its main advantages lies on the use of measured values for the cellular
structure characteristics and polymer matrix properties instead of non-intuitive
adjustable parameters. The model is based on a radiation term predicted as
follows:

. 46T3L
TN 1))
1+ (5) (- 1)

where ¢ is the Stefan—Boltzmann constant, T is the temperature, L is the material
thickness, ¢ is the cell size and Ty is the fraction of radiant energy sent forward by a
solid membrane of thickness L. This energy fraction is given by:

(=) f(d=r)-t (1—t)
TN_(]—rt){(l—i—rt)Jr 2 }’ ©)

®)

where r is the fraction of incident energy reflected by each gas—solid interface. This
quantity is related to the refractive index of the solid matrix (w):

w—1 2
=< — 10
! {w + 1} (10
The coefficient ¢ is the fraction of energy transmitted through the solid mem-
brane of thickness L (cell wall thickness), which is given by:

t = exp(—alLs), (11)

where a is the absorption coefficient of the solid matrix.

3.4 Evaluation of the Weight of the Different Terms

This section considers the theoretical evaluation of the contribution of each heat
transfer mechanism for PE foams as a function of relative density. The particular
example uses real values, experimentally obtained for these materials. The follow-
ing equation and the values presented in Table 1 were considered for the predictions
of the overall thermal conductivity.
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Table 1 Properties of the Property Value
foam considered for Jgas 0.0263 (W m~!' K™}
predicting the overall Asol 0.30 (LDPE) (W m ' K™}
thermal conductivity Cell type Closed cell

Cell size, ¢ 150-500 pm

Cell wall, Ly (um) (I —£)-¢-3.5347p,

fs 0.2-0.4

Total material thickness 10 mm

Temperature 300 K

w 1.51

a 661 cm™!

100

{1 ——— Gas conduction

Solid conduction

Radiation

Contribution (%)

Relative density

Fig. 13 Contribution of each heat transfer mechanism in the thermal conductivity for LDPE based
foams

46T?
L 1
(5% -1)

A relation between cell size and cell wall thickness with density such as the one
shown in (1) was taken into account [1, 48, 50]. All the calculations were consid-
ered at room temperature by selecting those values for the properties of the solid
materials and air at this temperature. An increase of temperature would change the
predicted contributions for each heat transfer mechanism. This evaluation could
be done using the same equations proposed here by introducing the variation of the
properties of both gas and solid phases with temperature.

The predicted results are shown in Fig. 13. All three contributions play a
significant role for relative densities below 0.2, and the contribution of the radiation

. 2 A
A= AgasVgas + <_ Y (12)

3 3 > ;Lsol Vsol +
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mechanism becomes significant below this density. For higher relative densities
only conduction (both gas and solid contributions) should be considered because
the expected contribution of radiation is below 5%.

Taking into account these results it is reasonable to consider different models for
relative densities below and above 0.2. For low densities, all the main mechanisms
(except convection) have to be considered and for higher densities only conduction
plays a significant role.

4 Methodologies Employed for Tailoring the Thermal
Conductivity

The need of new cellular plastics for novel very specific applications forced the
development of advanced materials with tailored properties adjusted for each
particular application. This section summarizes most of the possibilities in terms
of thermal conductivity modification. We will explain them, from the simplest to
the most advanced methods.

4.1 Modification of the Gas or Polymer Matrix

One of the easiest ways to control the final thermal properties comes through the
modification of the raw materials employed, i.e., solid and/or gaseous phase.
Figure 14 shows both the thermal conductivity of several polymers and different
gases used as blowing agent.

In this sense, the final density of the foam will determine the most effective
strategy in order to modify the thermal conductivity. Considering the results plotted

92 ~
)
Polymer Type Gas Type <

Fig. 14 Thermal conductivity of different polymeric materials (/eft) and some of the most used
blowing agents (right)
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in Fig. 13, it seems evident that it is strongly recommended to modify the gas
thermal conductivity for relative densities below 0.2. Even in the 0.2-0.4 range it
could also be effective to use a different gas as blowing agent in order to regulate
these properties, whereas conduction through the solid phase begins to be predomi-
nant for higher relative densities.

The gas modification is a well known topic in the production of ultralow density
XPS and rigid PU foams, since a significant part of the research dedicated to these
materials has been focused on reducing conduction through the gas phase. The
initial solution consisted in using high molecular weight gases with low thermal
conductivities, traditionally CFCs and HCFCs (Fig. 14, right). Nonetheless and due
to environmental restrictions, their use has been limited and the development of
new environmentally friendly gases with low Global Warming Potential (GWP) is
on the rise. On the other hand, two of the most used gases to produce polymer foams
are N, and CO,, although their permeability in polymers cause a more rapid gas
escape from the cells when compared to CFC and HCFCs.

As mentioned, the other possibility lies in the modification of the solid polymer
matrix. Figure 15 evaluates the influence of the polymer on the solid phase
conduction through the second term of (6) and considering a particular model
with an f; variation similar to the one shown in Table 1 adapted for higher densities.
It is important to take into account that for relative densities over 0.2 this term is the
one with the highest influence on the global conductivity. It can be observed that for
relative densities above 0.6 the differences between polymers become important,
meaning that in this range it is really important to select a proper polymer in order to
regulate the thermal conductivity.

|l—LDPE -
- - HDPE

0.6 0.8 1.0
Relative density

Fig. 15 Effect of the polymer on the conduction term for high density polymer foams (relative
density > 0.2)



148 M. Antunes et al.

0.045
0.044 -
0.043 -
0.042 -
0.041 -
0.040 - °
0.039
0.038 .
0.037 1
0.036 -

0.035 T T T T T T T T
25 30 35 40 45

Density (kg/m?)

o White foams
® Black foams

o

A (W-m LK)

Fig. 16 Experimental data for low density polyethylene (white and black foams) with similar
cellular structures and densities [48]

The limitation of the use of low thermal conductivity blowing agents and the
small influence of solid matrix properties for low and ultralow density foams has
made it necessary to search for alternative solutions handling the remaining active
heat transfer mechanism: radiation. To this end, the thermal conductivity of low
density foams is commonly modified by additives that alter the optical properties
of the solid matrix (i.e., its refractive index and/or the absorption coefficient).
A strong effect of the absorption coefficient on the radiation term is to be expected.
Among others, carbon black is one of the most used additives. Figure 16 shows
experimental data [48] for low density polyethylene foams with similar cellular
structures and densities. The main difference between the two series is the presence
of 2% carbon black content in the so-called black foams, significantly reducing the
effective thermal conductivity.

Further examples of the importance of the solid matrix formulation can be found
in Sect. 4.4, where the effects of the incorporation of a secondary phase are
discussed in more detail.

4.2 Thickness Influence: Size Effects in the Macro-Scale

Contrary to the expected trend, it is possible to alter the effective thermal con-
ductivity by modifying the dimensions of the material used, particularly its thick-
ness, especially in the case of low density foams. Examples of this behaviour can be
found in Fig. 17.
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0.046
] Theoretical prediction (1)
0.044 - Theoretical prediction (2)
|-e- Exp. data (1)
0.042 |-~ Exp. data (2) .
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Fig. 17 Effect of foam thickness on the effective thermal conductivity for several low density
polyethylene foams. (1) —relative density = 0.017 and ¢ = 313 pum; (2) —relative density = 0.036
and ¢ = 424 um

Both experimental and theoretical data (calculated using (12)) follow a sim-
ilar trend. The conductivity value rapidly increases with the thickness up to
10 mm and then stabilizes, reaching a nearly constant value. This interesting
phenomenon demonstrates again the strong influence of radiation in the thermal
conductivity, as radiation is the only mechanism depending on sample size

(see (8)).

4.3 Effect of Processing

4.3.1 Influence of the Processing Technique

From the different foaming preparation methods described in the introduction, it is
possible to identify suitable techniques for each relative density range (Fig. 2) and,
as is well known, the relative density is the main parameter influencing the overall
thermal conductivity. For the sake of illustration, we will analyze the thermal
conductivity results of the polypropylene-based cellular materials produced by
the four different lab techniques explained in Sect. 1.2.

Figure 18 displays the thermal conductivity as a function of relative density for
foams produced using different methods. There is clear change in the trend for
relative densities below 0.2, corresponding to the density threshold below which
conduction through the gas phase and radiation become significant. As can be
observed, different processing techniques give very similar thermal conductivities
in the high density range (relative density > 0.2).
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Fig. 18 Thermal conductivity versus relative density for the unfilled polypropylene foams

produced using different foaming processes
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Fig. 19 Experimental normalized data and theoretical model fitting according to (7) and (12)

Model fitting using (7) and (12) are plotted together with the normalized ther-
mal conductivity experimental values in Fig. 19. In the case of (7) (tortuosity, &,
dependent) two different constant values for tortuosity, ¢ = 1 and & = 2/3, are
proposed. Please note that in the case of £ = 1 (7) is reduced to the simple parallel
model or mixtures rule [2]. In contrast to (7), (12) also considers the radiation

contribution.
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A value of & = 2/3 clearly underestimates the conductivity data, while a value of
1 fits with good accuracy the conductivity values for the foams in the relative
density range above 0.2, thus enabling the use of the mixtures rule to predict the
conductivity of high relative density foams.

Nevertheless, for relative densities below 0.2, (7) clearly underestimates the
conductivity data even for a tortuosity value of 1. This is due to the fact that
this equation does not consider the radiation term. On the other hand, (12)
exhibits a reasonable compliance with experimental data for the whole density
range although the prediction seems to be better in the case of low density
foams. This fact is based on theoretical model considerations, developed for
low density cellular plastics [1]. Although not presented here, other models
such as Russell’s or Maxwell’s would have offered a good compliance with the
experimental data [39].

4.3.2 Influence of the Process Parameters: Structure Modification

It is known that the thermal conductivity of low density polymer foams (relative
densities below 0.2) is influenced by their cellular structure [1, 2, 51-58]. The effect
of cell size, fraction of mass in the cell struts and anisotropy is explained in this
section.

Figure 20 shows the theoretical thermal conductivity evolution with relative
density for foams based on closed-cell low density polyethylene with the following
characteristics: f; = 0.2, ¢ = 880 um, and total thickness, L = 10 mm. The calcu-
lations were performed based on (12) at room temperature. Contrary to the expected

0.052 1

0.048 -

A(Wm K™

0.044 -

0.040

0.01 0.1
Relative density

Fig. 20 Theoretical thermal conductivity versus relative density for closed-cell low density
polyethylene foams with constant cell size and fraction of mass in the cell struts
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Fig. 21 Theoretical and experimental thermal conductivities versus cell size for low density
polyethylene foams with the same chemical composition and relative density

trend, below a relative density of 0.05 the overall conductivity increases. This
behaviour can be explained due to the strong influence of radiation at very low
densities. This unexpected behaviour has to be taken into account in the case of real
thermal insulation applications, selecting the optimum conditions corresponding to
the minimum in the curve.

On the other hand, Fig. 21 shows the theoretical predictions of the influence of
the fraction of material in the cell struts (f;) and cell size compared to experimental
data for low density polyethylene foams with a relative density of 0.046. An
increase in cell size and f; increases the total conductivity, since both factors
contribute to an enhancement of the radiation term. Reducing the cell size keeping
density constant introduces a higher number of cell walls in the heat flow path and
walls are the main cause of scattering and absorption of the radiative heat flow. The
plotted predictions are in close agreement with the experimental data [38] (relative
density = 0.046 and f; ~ 0.3), validating the above statements.

The influence of f; is more complicated to explain, since it plays a role in solid
conduction (6) and radiation (8), this last due to the dependence of L, with f;
(Table 1). Reducing f;, i.e., increasing cell wall thickness and building a more
homogeneous distribution of the solid phase, reduces the radiative contribution and
increases the conduction contribution. Since in the low density range radiation has a
higher weight than conduction, the overall effect of f; manifests reducing conduc-
tivity when this value decreases.

Figure 22 (bottom) shows the experimental thermal conductivity data obtained
using the anisotropy mode of the TPS method versus relative density for the PP
foams produced by the CO, dissolution pressure quench foaming process. While
foams with high relative densities are thermally isotropic, i.e., Auxial & Aradial> the
ones with low relative densities (<0.2) are clearly anisotropic (see Fig. 22, top).
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Fig. 22 Radial and axial experimental thermal conductivities (bottom) and ratio between the axial
and radial thermal conductivities (fop) versus relative density for the PP foams produced by the
CO, dissolution pressure quench foaming process

Fig. 23 Honeycomb-like
cellular structure of a low
density foam produced by the
CO, dissolution pressure
quench foaming process

(AR ~ 9)

1 mm

The lower the density, the higher the difference between radial and axial experi-
mental thermal conductivities. Figure 22 (top) shows the experimental and theoret-
ical data, determined based on (5), for the ratio between the axial and radial thermal
conductivities. In this case, it can be appreciated that the mismatch among experi-
mental and theoretical values is higher for the foam with the lower density,
corresponding to the one with the higher cellular anisotropy ratio (AR = 9, see
Fig. 23). This is due to the model used to predict these conductivities, which only



154 M. Antunes et al.

accounts for conduction. As has previously been shown, for relative densities below
0.2, radiation plays a significant role in the heat transfer, and thus should be taken
into account.

4.4 Incorporation of Secondary Phases: Micrometric
and Nanometric-Sized Fillers

As stated previously, another strategy to modify the thermal conductivity of
polymeric cellular materials and extend their applicability window consists in the
incorporation of secondary solid phases, conventionally inorganic in nature.

4.4.1 Incorporation of High Amounts of a Micrometric-Sized Filler
(Mg(OH),)

Mineral reinforcements are frequently incorporated into solid polymers. Depending
on the type and amount, these would allow adjusting properties such as mechanical
behaviour, flame retardancy or thermal and electrical conductivities. This is the
case of magnesium hydroxide (Mg(OH),), a well know PP flame retardant mineral
filler.

This filler is typically added to solid polymers and only a few research works
dedicated to the use of similar metal hydroxides in foams with the main objective of
improving their flame retardancy can be found [59]. In order to understand its
influence on the thermal transport behaviour of foamed materials it is necessary to
initially evaluate the evolution of thermal conductivity with filler content in the
solid polymer. Experimental results are shown in Fig. 24. As can be seen, the

1.00 4 o
T; 0.75 -
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2 0.50 1
<

0254 ©

0.00 1— . . . .
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Concentration of Mg(OH), (wt.%)

Fig. 24 Evolution of the experimental thermal conductivity of solid PP-Mg(OH), composites as a
function of Mg(OH), concentration
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Fig. 25 Comparative experimental thermal conductivities for different composite foams filled
with Mg(OH), and fitting to (7)

evolution is not linear; this kind of non-linear behaviour is expected according to
percolation theory [60]. The values measured for each solid material will be later on
used to model the thermal conductivity of the foamed composites.

Figure 25 shows the experimental data for PP foams and PP-Mg(OH), as a
function of relative density. Using 50 and 70 wt.% of this filler it is possible to
increase to a significant extent the conductivity of these materials, especially when
adding the highest amount of filler. For instance, a three time increase is detected
for foams with relative densities of 0.5 when a 70 wt.% content is used. Equation (7)
has been used to predict the values, in this particular case substituting V; and
As by the respective values corresponding to the solid composites (Fig. 24). As
shown in Fig. 25, the optimum fitting value for tortuosity is again approximately 1,
in accordance with the results obtained for the unfilled foams (Fig. 19).

4.4.2 Incorporation of Carbon Nanofibres

Nanometric-sized fillers are coming more and more important as polymer fillers,
despite having started to be commercially used in polymers just a few years ago. On
the other hand, nanocomposite foams are relatively new compared to solid nano-
composites.

The influence of incorporating fibrous-like conductive nanofillers (carbon nano-
fibres, CNF) on the transport properties of solid PP is again evaluated prior to the
results for foamed composites (Fig. 26). As the amount of filler incorporated is
rather low compared to magnesium hydroxide (see previous section), the influence
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Fig. 26 Evolution of the experimental thermal conductivity of solid PP-CNF composites as a
function of CNF concentration

on the overall thermal conductivity of the composite is quite poor, which was not
expected considering the extremely high theoretical thermal conductivity assumed
for this kind of filler (>2,000 W m~! K_l).

In this case, the trend observed for the thermal conductivity as a function of CNF
concentration is almost linear. A linear fitting of the data (mixtures rule) lead to a
very small value for the filler thermal conductivity (around 20 W m~' K~ '). These
discrepancies could be due to both a failure of the model and a probable real value
of the conductivity of these CNFs one or two orders of magnitude lower than that
expected theoretically. Actually, although theoretical predictions have shown that
the axial thermal conductivity of carbon nanotubes is between 2,000 and 6,000
W m~ ' K™' [18, 61-63], depending on the type of structure and wall disposition,
there are considerable discrepancies in the literature, with some authors reporting
values as low as 20 W m~ ! K~! [64]. In our case, the thermal conductivity of the
carbon nanofibres is thought to be less than that expected for CNTs due to their
inner less perfection and surface, commonly displaying defects due to graphitic
edge terminations [65]. Therefore, a conservative value of 20 W m~ ' K, seems
to be proper for our analysis.

In Fig. 27 we have plotted the comparative behaviour of both unfilled and CNF
composite foams as a function of relative density. The addition of this type of
highly conductive nanofiller in percentages below 15 wt.% does not significantly
modify the thermal properties of the original polymeric foams.

It is not simple to support this kind of behaviour by only focusing on conven-
tional models (even assuming rather low thermal conductivity values); therefore,
additional effects have to be considered. The large difference between single
nanotube measurements and the ones done in the as-produced composites suggests
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Fig. 27 Thermal conductivity versus relative density for the unfilled and CNF-reinforced PP foams

that highly resistive thermal junctions between the nanotubes due to entanglements
and cluster formations dominate the thermal conduction in the composites, thus
reducing the expected thermal conductivity. Therefore, low values of thermal
conductivity of the nanofibres, possible mechanical damage of this filler during
melt-compounding, bad dispersion and interfacial bonding between filler and
matrix could be the main reasons behind the unexpected low thermal conductivity
for these composites. On the other hand, the electrical conductivity of these
materials increases with the carbon nanofibres content [19], suggesting that
mechanisms controlling these two properties are very different.

4.4.3 Comparative Analysis

The previous analysis has proven that the addition of highly conductive fillers does
not significantly improve the thermal conductivity. Fillers used are representative
of both micro and nanoscale and in both cases the observed enhancement is not high
compared to the thermal conductivity obtained for the unfilled reference materials.
Apart from the reasons exposed above for nanofibres (part of them also applicable
to magnesium hydroxide), we would like to mention the thermal resistance problem
associated with the physical contact between filler and polymer. As a first approach,
considering that the used fillers present a different thermal conductivity it was to be
expected solid composites with different thermal conductivities for the same filler
content or different trends for both types of materials. Nevertheless, as is shown in
Fig. 28, this is not the case, and the values of the thermal conductivity for all solid
composites follow the same trend. This seems to confirm that due to thermal
resistance the low thermally conductive matrix controls the overall thermal
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Fig. 28 Solid PP-CNF and PP-Mg(OH), composites thermal conductivity versus filler concentration

conductivity, and that the influence of fillers only starts to be relevant when high
amounts are added.

Composite foams exhibited a similar behaviour, although the comparison is not
so simple due to density variations between materials.

5 Conclusions

This chapter shows that the possibility of varying density, cellular structure, raw
materials employed (polymer matrix and gas), and even the incorporation of fillers,
creates an enormous combination of possibilities that enables to regulate the
thermal conductivity of polymer foams. The main aim was to offer a first approach
to understand the mechanisms controlling this property and the methods that can be
used to tailor it. With that in mind, the theoretical analysis carried out was based on
simple models to predict the different thermal conductivity trends, despite much
more advanced models can be found in the literature. The last part of this chapter
has been intentionally focused on new emerging types of composite and nanocom-
posite foams, which are nowadays in the cutting edge of the research in this field.
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Heat Transfer in Polymer Composites Filled
with Inorganic Hollow Micro-Spheres
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Abstract The advances in studies on the heat transfer in polymer composites filled
with inorganic hollow microsphere were reviewed, and the heat transfer process
and mechanisms in the polymer/inorganic hollow microsphere composites was
described in this chapter. On the basis of the law of minimal thermal resistance
and the equal law of the specific equivalent thermal conductivity, a theoretical
model of heat transfer in polymer/inorganic hollow micro-sphere composites was
established and the corresponding equation of effective thermal conductivity was
derived. The simulation of the heat transfer in the polymer/inorganic hollow
microsphere composites was made by means of a finite element method. The
measurement instrument and methodology of the effective thermal conductivity
of the polymer/inorganic hollow microsphere composites were introduced, and the
effective thermal conductivity (k.z) of polypropylene composites filled with hol-
low glass bead (HGB) was measured. It was found that the effective thermal
conductivity decreased linearly with an addition of the volume fraction (¢ of
the beads. The simulated keff of the PP/HGB composites decreases also as a linear
function with an increase of ¢, and are roughly close to the experimental measured
data, the k.; with a 3D model are higher than those with a 2D model, and the
difference between them increases with an increase of ¢, Moreover, good agree-
ment was showed between the measurements from the PP/HGB composites within
the ¢, range from 0 to 20 % and the theoretical predictions by means of this
equation.
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1 Introduction

1.1 Outline

Heat transfer in polymer composites is a complicated process, especially for the
inorganic hollow micro-sphere filled polymer composite systems. In this chapter,
the heat transfer process and mechanisms in polymer composites filled with
inorganic hollow micro-spheres are analyzed and studied, measurement methods
of the thermal conductivity of the composite systems are described, and experi-
mental results are discussed. Moreover, the relevant theoretical models of the heat
transfer as well as mathematical models of the effective thermal conductivity for
these composites are established.

This chapter includes four sections: section one is an introduction; section two is
concerned with heat transfer theory in polymer/inorganic hollow microsphere
composites; section three is concerned with the measurement of the effective
thermal conductivity of polymer/inorganic hollow microsphere composites and
section four is concerned with the simulation of heat transfer in polymer/inorganic
hollow microsphere composites.

1.2 Background

Foamed or porous plastics are one of the polymers usually used as thermal insulation
and sound insulation materials. However, their application as engineering structural
materials is considerably limited due to their poor mechanical properties such as
tensile and flexural strength, impact fracture toughness as well as stiffness. The
research focus, therefore, is how to fabricate a kind of porous plastic that is light,
has a good mechanical strength and toughness, as well as good thermal and sound
insulation properties. Rigid hollow micro-spheres (e.g. hollow glass beads, hollow
ceramic beads, rigid hollow plastic beads, and so on) contain inertia gas and have some
advantages such as a low thermal conductivity coefficient, sound insulation and low
weight. In addition, owing to their smooth spherical surface, these micro-particles do
not generate important stress concentration in the interface between the fillers and the
matrix. As a result, a new type of filler material has been developed recently and has
been used in industries, especially in the polymer industry, shipbuilding industry and
construction industry. If they are used to fill and modify resins, then polymer/hollow
micro-sphere composites having thermal insulation, sound insulation, low weight and
good mechanical properties may be prepared [1]. Now, these kind of composites are
applied in building materials, space-flight and aviation industry and so on.

1.3 Research Progress

The effective thermal conductivity is an important characterization of heat transfer
properties of materials. However, there have been few studies on the measurement
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and characterization of the effective thermal conductivity for polymer/hollow
microsphere composites. In 2006, Liang and Li [2] investigated the influence
of the filler size and content on the thermal conductivity of hollow glass bead filled
polypropylene composites. The results showed that the thermal conductivity
decreased nonlinearly with increasing volume fraction of the hollow glass beads,
while it increased with reducing the particle diameter under the same test condi-
tions. More recently, Yung and a colleague [3] measured the thermal conductivity
of hollow glass microsphere-filled epoxy-matrix composites and also found that the
thermal conductivity of the composites decreased nonlinearly with increasing
volume fraction of the hollow glass microspheres.

As stated above, the heat transfer process and mechanisms in porous materi-
als and polymer composites are very complicated, especially for polymer/hol-
low microsphere composites. It is quite important, therefore, to present some
equations or expressions for predicting or estimating the effective thermal
conductivity during heat transfer process in polymer composites. For porous mate-
rials, several researchers [4, 5] have recently derived respectively effective thermal
conductivity equations based on the Maxwell expression, or have established a
more accurate formula for calculating the effective thermal conductivity of
porous materials [6]. Relatively, the models proposed respectively by Nielsen
[7] and Cheng-Vochon [8] may better estimate the effective thermal conductivity
of filled composite materials, while the Agari-Nagai equation can predict the
effective thermal conductivity of composites with high-loading [9]. Liang [10]
analyzed the thermal conductivity of a porous material with closed spherical
and cylindrical holes. Suvorov et al. [11] studied the thermal conductivity of
hollow emery filled composites. Recently, Hill and Supancic [12] proposed an
indirect method to determine this interfacial boundary resistance by preparing
large-scale “macromodel” simulations of the polymer-ceramic interface. They
also investigated the effects of similar size and shape of platelet-shaped particles
on the thermal conductivity of polymer/ceramic composite materials [13].
Yu et al. [14] measured the thermal conductivity of polystyrene-aluminum nitride
composites and found that the thermal conductivity of the composites was
higher for a polystyrene particle size of 2 mm than that for a particle size of
0.15 turn. The thermal conductivity of the composite was five times that of
pure polystyrene at about 20% volume fraction containing aluminum nitride
(AIN) for the composite containing 2 mm polystyrene particle size. Recently,
Liang and Li [15] studied the heat transfer in polymer composites filled with
inorganic hollow micro-spheres and proposed a theoretical model. On the basis of
this model, they presented an equation of the thermal conductivity for polymer/
hollow microsphere composites. More recently, Liang and Liu [16] researched
heat transfer in phenolic composites filled respectively with aluminium powder
and graphite powder and established a new theoretical model of heat transfer
in the particulate-filled polymer composite systems based on the law of
minimal thermal resistance and the equal law of the specific equivalent thermal
conductivity.
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1.4 Study Sense

In general, solid particulate-filled polymer composites are two or multiple-element
composite systems, while a polymer filled with rigid hollow micro-spheres belongs to
the kind of multiple-phase composite systems, because these particles contain inertia
gas. Consequently, the heat transfer process and mechanisms in the polymer/rigid
hollow micro-sphere composites are more complicated than those in polymer/solid
particle composites. In the polymer industry, inorganic hollow micro-spheres are used
as filler extensively more and more due to their low cost, good physical-chemical and
mechanical performances, as well as good processing properties. As a result, it is quite
meaningful for the development and for the engineering application of the heat
transfer theory in polymeric materials that one understands the heat transfer process
and mechanisms in the polymer/rigid hollow micro-sphere composites as well as
providing for a quantitative description of the thermal properties of these materials.

2 Heat Transfer Theory in Polymer/Inorganic Hollow
Micro-Spheres

2.1 Heat Transfer Mechanisms

In general, the thermal conductivity in thermal insulation materials is the synthetic
effect of heat conduction, convection and radiation. According to the second law of
thermodynamics, heat always transfers spontaneously from a high temperature
body to a low temperature one. Namely, heat transfer will conduct where there is
a difference in temperature. Generally, insulation materials only reduce the strength
of heat exchange, and have a property of blocking heat transfer. As stated above,
polymer/hollow micro-spheres composite is a kind of ternary composite, it includes
three phases, namely resin, gas and sphere shell. During heat transfer in polymer/
hollow micro-spheres composites, when the heat quantity is close to a hollow
micro-sphere, only a small part of the heat quantity will conduct by it, while a
greater part of the heat quantity will move around it due to its low conductivity, as
shown in Fig. 1. Because of the low thermal conductive coefficient of the hollow
micro-spheres and longer heat transfer route and complication in the filled systems,
the thermal conductivity of these composites will be reduced.

It can be seen from Fig. 1 that heat transport in inorganic hollow micro-sphere filled
polymer composites has three kinds of ways: (1) thermal conduction by solid; (2) heat
radiation on the surface between neighboring hollow particles; (3) the natural
thermal convection of gas in the hollow particles. After finishing the experiments,
Skochdopole [17] pointed out that the natural thermal convection of the gas in
a micro-bubble would not occur when the bubble diameter was less than 4 mm.
Because the diameter of the hollow micro-spheres as fillers is usually less than 0.1 mm,
the natural thermal convection of the gas in it may be neglected. Furthermore,
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Fig. 1 Diagram of heat transfer in polymer/hollow microsphere composites

a polymer composite works usually under lower temperature conditions where the
proportion of the thermal radiation in the total heat transfer is very small, hence
thermal radiation may also be neglected.

Generally, the heat transfer process in inorganic hollow micro-spheres filled
polymer composites is more complicated than that in other solid particulate-filled
polymer composite systems because the former is a type of material with three
phases, namely resin, gas and sphere shell.

2.2 Heat Transfer Analysis

As discussed above, the heat transport in inorganic hollow micro-sphere filled poly-
mer composites has three kinds of ways. Namely solid thermal conduction, heat
radiation on the surface between neighboring hollow particles, as well as the natural
thermal convection in the hollow particles. According to the experiments by Skochdo-
pole [17], the natural thermal convection of the gas in a micro-bubble would not occur
when the bubble diameter was less than 4 mm, thus the natural thermal convection of
the gas in it may be neglected. Furthermore, polymer composite works usually under
lower temperature conditions, the proportion of the thermal radiation in the total heat
is very small, the thermal radiation, therefore, may be not considered.

2.3 Basic Equations of Thermal Conduction in Composites

Now the basic equations of thermal conduction usually used in composites are
mainly two kinds of types: series model and parallel model. For a binary composite
system, two simple expressions can be written respectively,
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Series model:

ke = (1= 0y ke + dyka (1)
Parallel model:

L_1=d &

2

ke ke kq @
where k, is the thermal conductivity of composite, k. and k; are the thermal
conductivity of the matrix and the filler respectively, ¢, is the volume fraction of
the filler. In fact, one can use the series model or parallel model alone, or use both
the two models, according to practical circumstance.

2.4 Heat Transfer Element Analysis

According to the above discussion, the theoretical analysis of the heat transfer in
this section is based on the following suppositions: (1) the structure change of the
composites is periodicity, and the ratio of this periodicity to the whole composite
materials very small; (2) the temperature distribution along the direction of heat
flow is linear. Because a periodical element is very small to the total body, the
influence of this hypothesis on the total heat transfer is insignificant. Figure 2 shows
a physical model of the heat transfer process of a hollow micro-sphere filled
polymer composite. Now we select an element from the composite for analysis.
The element is a straight cube with side length of H, and there is a hollow micro-
sphere with internal radius of » and external radius of R in the element. The element
is divided into polymer phase, the micro-sphere shell phase and the gas phase.
The heat quantity Q transfers from the bottom to the top.

2.5 Mathematical Model

The element analysis of heat transfer in a polymer/hollow micro-sphere composite
is shown in Fig. 3. The temperature in the materials is lower than the softening
point temperature of the resins. The element is divided into two parts: part I and
part II. Part I represents the pure polymer, and the height is #; namely #; = H — 2R.
Part I is the compound with the polymer and a hollow micro-sphere, and the height
is hy (hp = 2R). According to the law of minimal resistance and the equal law of
the specific equivalent thermal conductivity [18], if constituting the heat resis-
tances of these two parts, one may get the heat resistance of the whole element.
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Fig. 3 Element analysis of heat transfer

Consequently, the equivalent thermal conductivity of the whole element may be
determined.
Part I:

ki = kp 3
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Part II: Taking a thin piece with thickness of dy, according to Fourier’s theorem,
k> is given by:

dr
ky = (Qp + Qg + Qa)/(di)) ' S)

S, S¢S,
Py, g,
g TR

“)
=k
rs
where, T is the temperature, S is the area of whole across-section. k,, k, and k, are
the thermal conductivity of polymer matrix phase, micro-sphere shell phase and gas
phase, respectively. S, S, and S, are respectively the cross section area of polymer,
micro-sphere shell and internal micro-sphere. Q,, O, and Q,, are the heat quantity
through the polymer matrix, micro-sphere shell and gas, respectively.

Because of the linear distribution of temperature, the average thermal

conductivity of each section may be first obtained as:
Part I:

ky = /kldy/hl =k, (5)

hy

Part II:

o S, S, S
k=— ky L+ kg% + k2 |d
b hz/(15+g5+ S)y

ha (6)

1
= s (kpVp + kgVe + kaVa)

where V), V, and V, are the volume of the polymer matrix, micro-sphere shell and
gas, respectively.

According to the series theorem of heat resistance, the effective thermal
conductivity of the composite, k.4 is given by:

L _H__H
RS (R +Ry)S
H (7

kpS " kyVptkgVetkaVa

where R is the total heat resistance of the element, R; and R, are respectively
the heat resistances of Part I and Part II. For the hollow micro-spheres, we have that:

Vgpg + (Vs - Vg)pa = Vipy ®)
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where p,, p, and p; are the effective density of sphere shell, gas and micro-sphere
respectively, V is the total volume of the hollow micro-spheres. Thus, one can get
the expressions among the volume and density of each composition as well as the
volume fraction (¢, of the hollow micro-spheres. Finally, substituting these
expressions into Equation (8), we have that:

o 1 6(]5]0 % 4z }
kefr= E( —T> +21 &, <%> )

2.6 Theoretical Estimation

The composites investigated in this section were a polypropylene (PP) composite
system filled with two kinds of hollow glass beads (TK35 and TK70). These hollow
glass beads (HGB) were supplied by Eco. & Chimie Co. Ltd. (Guangzhou, China), and
the mean diameters and effective density of TK35 were 35 pm and 680 kg/m?, the
mean diameters and effective density of TK70 were 70 pm and 210 kg/m’, respec-
tively. The density of the sphere shell was 2,210 kg/m®, and the thermal conductivity
was 0.179 W/m K. The gas in the beads was an inert gas, and the density and thermal
conductivity were 0.0899 kg/m® and 0.0228 W/m K. The thermal conductivity and
density of the PP resin were 0.2 W/m K and 915 kg/m® respectively.

Substituting respectively the stated above data of the two filled systems into
Equation (9), one may estimate the effective thermal conductivity k.z of the
composites corresponding to different volume fraction of hollow glass beads, and
the results are shown in Fig. 4. With an addition of the HGB volume fraction, the
theoretical estimations of k. of PP/HGB composites decreases linearly, and the
values of k.4 for the PP/TK35 system are slightly higher than those for the PP/TK70
system under the same conditions.

3 Measurement of Effective Thermal Conductivity

3.1 Raw Materials

An injection grade of polypropylene (PP) with trade mark of CJS-700, supplied by
Guangzhou petrochemical Co. Ltd in China, was used as the matrix resin, the
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density and melt flow index (230°C, 2.16 kg) of the resin were 910 kg/m> and
12 g/10 min, respectively.

Two kinds of hollow glass beads (HGB) supplied by Moliis Co. Ltd in Germany,
TK35 and TK70, with different size were used as the fillers in this section. The mean
diameters of the fillers were 35 and 70 pum, and the density was 680 and 210 kg/m”>,
respectively. The surface of the particles was pretreated with silane coupling agent.
The particle size distribution of the fillers was measured by means of a laser size
instrument (Model LS-C(I) supplied by Omik Co. Ltd in Zhuhai, China.

3.2 Sample Preparation

After simple mixing, the PP resin and the HGB with different proportions were
compounded in a twin-screw extruder. The blending was conducted in a tempera-
ture range of 160-230°C and a screw speed of 25 r/min, and then the extrudate was
granulated to produce the composites. The volume fractions of the HGB were 0, 5,
10, 15 and 20%, respectively. The specimens for thermal conductivity measure-
ment were molded by using an injection molding machine in the temperature range
of 160-240°C after drying the composites. The geometry of these specimens
includes a diameter of 50 mm and a thickness of 6 mm.

3.3 Apparatus and Methodology

The thermal conductivity of the composites was measured by means of a protecting
heat plate method in this test, and the main apparatus was a protecting heat flow
type of thermal conductivity instrument (model NF-7) supplied by South China
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University of Technology (see [2]). The environmental temperature for the test was
27°C. The specimens were plates with a length of 50 mm, a width of 50 mm and a
thickness of 6 mm. Four measuring points were set up equally on a plate, and the
average was reported for each specimen.

3.4 Results and Discussion

3.4.1 Experimental Results

Figure 5 shows the dependence of the effective thermal conductivity (k) of PP/
TK35 and PP/TK70 composite systems on the volume fraction (¢;). It can be seen
that the k. of the composites decreases with an increase of ¢,. When ¢, is less than
15%, the values of k. of PP/35 filled system are greater than those of PP/70 filled
system. This indicates that the heat insulation properties for the composite systems
with filled bigger diameter of hollow micro-spheres are good at lower inclusion
concentrations. This comes about because when the thickness to diameter ratio of
the hollow micro-spheres is fixed, the bigger the particle size, there is more gas in it
(density reduction) under constant range of particle diameter, resulting in a reduc-
tion of the effective thermal conductivity. When ¢, is more than 15%, the values of
key of the PP/35 filled system are lower than those of the PP/70 filled system.
It might be that the number of the TK35 with small particle diameter increases
obviously at higher filler concentration, leading to improvement of the heat insulation
properties of the material.

0.30
= PP/TK35
« PP/TK70
0.25
—_ |
T \ .
x_ [ ]
T : .
€ 020} PP
; A
~ n
N
015}
010 1 " 1 " 1 " 1 " 1 "
0 5 10 15 20 25

o (%)

Fig. 5 Dependence of effective thermal conductivity on HGB volume fraction of composites
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3.4.2 Theoretical Prediction

The composites investigated in this section were also a polypropylene (PP) filled
with two kinds of hollow glass beads (TK35 and TK70). These hollow glass beads
(HGB) were supplied by Eco. & Chimie Co. Ltd. (Guangzhou, China). The mean
diameter and effective density were 35 um and 680 kg/m> for TK35, and 70 pm and
210 kg/m* for TK70 respectively. The density of the sphere shell was 2,210 kg/m?,
and the thermal conductivity was 0.179 (W/mK). The gas in the beads was an inert
gas, and the density and thermal conductivity were 0.0899 kg/m? and 0.0228 W/m K,
respectively. The thermal conductivity and density of the PP resin were 0.2 W/m K
and 915 kg/m?, respectively.

Substituting this data for the two filled systems into Equation (9), one may estimate
the effective thermal conductivity kg of the composites corresponding to different
volume fraction of hollow glass beads, and the results are shown in Figs. 6 and 7. With
an increase of the HGB volume fraction, the theoretical estimations of k.;of PP/HGB
composites decrease linearly, and the values of k. for PP/TK35 system are slightly
higher than those for the PP/TK70 system under the same conditions.

3.5 Comparison Between Predictions and Measurements

Plotting respectively the measured data of the effective thermal conductivity from
the experimental of these two filled PP composite systems (as shown in Fig. 5) in
Figs. 6 and 7, one may verify preliminarily Equation (9). It can be seen that the
theoretical estimations of the effective thermal conductivity are good and consistent

0.30
theory
= experiment
0.25
v
£ 020}
=3 .
K
0.15
010 1 n 1 n 1 n 1 n 1 n
0 5 10 15 20 25

b (%)

Fig. 6 Comparison between predictions and measured data of the effective thermal conductivity
(PP/TK35 system)
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Fig. 7 Comparison between predictions and measured data of the effective thermal conductivity
(PP/TK70 system)

with the measured data, and kg decreases linearly with an increase of q,'>f, except for
an individual data point. In the previous work, the authors [19] simulated the two
dimensional heat transfer process in these filled systems stated above by using the
finite element software ANSYS, and the results showed that the trend of the
simulations are similar to the theoretical predictions. This indicates that the mathe-
matical model (9) may describe better the relationship between the effective
thermal conductivity of inorganic hollow micro-spheres filled polymer composites
and material parameters when the concentration of the particles is low and the
dispersion of these inclusions in the resin matrix is uniform.

4 Simulation of Heat Transfer in Polymer/Inorganic
Hollow Microspheres

4.1 Basic Equation of Temperature Field

For a general 3D temperature field, if the quantity of heat required for raising the
temperature by a micro-element body and the quantity of heat generated by the heat
source in the micro-element body is at equilibrium, then the variables of tempera-
ture filed [T(x, y, z, ¢)] in a right angle coordinate system satisfy the following heat
equilibrium equation:

PT T T ¢ 10T

a2 T ar TR T aoe (10)
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where ¢ is the heat flow density, W/mz; o is the thermal diffusivity, W/mz-K; Ads
the thermal conductivity, W/m-K; 1 is the heat conduction time, h. Three kinds of
heat conduction boundary conditions and initial conditions can be assigned as
follows [20]:

The first kind of boundary condition:

{T|r iy (11)
T|F = F(X,y,[)

where is the body boundary, the direction is reverse clock hands, T is the known
wall temperature, K, F (x, y, ?) is the known temperature function (variation with
time and position).

The second kind of boundary condition:

_ kO =
g;‘l‘ q2 (12)
_km‘r = g(xvya t)

where g(x, y, ?) is the heat flow density function.
The third kind of boundary condition:

or
—k%h—:a(T—Tf)\r (13)

where o and Ty may be constants, and may also be the function varying with time
and position. If o and Ty are not constants, then the average values are usually
separately taken as constants in the numerical calculation.
Initial condition
{T|r—0 =To (14)
T|imo = ([)(x,y)

where T is the beginning temperature, K; ¢ (x, y) is the temperature function.

4.2 Finite Element Analysis of Heat Transfer

4.2.1 Physical Model

The heat transfer process in a hollow micro-sphere filled polymer composite may also
be investigated with a numerical simulation method based on the fundamental equa-
tions discussed above. Supposing that these hollow micro-spheres are distributed
uniformly in the polymer matrix, and considering their geometry symmetry, then
the 3D temperature field may be simplified as a 2D heat transfer problem. Figure 8
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Fig. 8 An element model of
heat transfer (PP/TK35)

shows the geometry of the physical real thermal model for a unit cell in the composite.
It can be seen that the polymer/hollow microsphere composite is a ternary or three-
phase composite system, namely, resin phase, micro-sphere wall phase and gas phase.
A quantity of heat is transferred into the polymer from outside to produce thermal
conduction. When the thermal current encounters the hollow sphere, a smaller part of
quantity of heat carries out thermal conduction, while a greater part of it goes around
the sphere due to the low conductivity of the sphere. In this case, the route of heat
transfer in the composite becomes longer and complicated, leading to a reduction of
the heat transfer properties of the composite. Therefore, the heat transfer process in a
polymer/ hollow micro-sphere composite carries out the following three major ways:
(1) thermal conduction through solid and gas; (2) thermal radiation between hollow
micro-sphere surfaces; (3) natural convection of gas in hollow micro-sphere. Accord-
ing to the experimental studies, Skochdopole [16] pointed out that the natural convec-
tion of the gas in hollow sphere did not happened when the diameter of the hollow
sphere was less than 4 mm. Because the diameter of hollow micro-sphere is from
several micrometer to hundreds micrometer, the natural convection of gas may not be
considered. Furthermore, the thermal radiation is not considered owing to its
quite small proportion in total quantity of heat transfer under the high temperature
condition.

4.2.2 Physical Property Parameter

Polypropylene composites filled respectively with two type of hollow micro-sphere
(TK 35 and TK 70) were investigated in this section. These hollow micro-spheres
were supplied by MOLUS company in Germany, it was a silicate, the density was
2,210 kg/m3 and the thermal conductivity was 0.179 (W/m-K). There was an inertia
gas in the micro-sphere, the density and thermal conductivity were 0.0899 kg/m’
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and 0.0228 (W/m-K). The average diameter of TK35 was 35 um, and the effective
density was 680 kg/m’; the average diameter and effective density of TK70 were
70 pum and 210 kg/m?, respectively. The thermal conductivity of the PP resin was
0.2 (W/m-K).

4.2.3 Finite Element Model

In this section, the commercial ANSYS software was used to reform the numerical
simulation of the heat transfer in the hollow glass bead filled PP composites. For this
type of thermal analysis, the element type for the thermal analysis was the 2D
element PLANE35 with six nodes. For a steady heat transfer problem, it is only
required to define the thermal conductivity for the PP/TK35 and the PP/TK70
composite systems. Apart from assigning above stated physical parameters, the
internal diameter and external diameter of the hollow glass bead was modeled
respectively. The unit edge length was calculated according to the volume fraction
(¢ = 20%) of the bead, and then the length was assigned into the software
to generate the geometry model. The quantity of heat was transferred from the
bottom to the top. Bringing the first boundary conditions to the bottom, and temper-
ature is 30°C; bringing the second boundary conditions to the top, and environment
temperature is 25°C. The conductive heat transfer coefficient was 25 W/(m?K), the
right and left boundaries were thermal insulation boundary conditions.

4.2.4 Element Mesh Division

The meshes were divided automatically by means of intelligence. The parameters
were three, and the element type was a triangle. The results of the mesh division are
shown in Fig. 9.

A 3D heat transfer model was established by using the similar method to better
represent the heat transfer process in this kind of composite. In this chapter, a 3D
model of the heat transfer in the unit cell of the PP/TK35 composite system was
made.

4.3 Results and Discussion

4.3.1 Temperature Field

After solving the system of equations by a solver, this heat transfer simulation was
done by means of a solver and then entered into a post-processor, the temperature
cloud charts were drawn, as shown in Fig. 10. The temperature cloud chart
illustrates imaginarily the temperature field in a unit cell. It can be seen in Fig. 10
that the temperature variation in the hollow glass bead is faster than outside of
the bead.
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Fig. 9 Element mesh division
(PP/TK35)
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Fig. 10 Temperature cloud chart (PP/TK35)

To reflect the direction and size of the thermal current in a unit cell, a thermal
current vector chart in a unit cell was drawn (see Fig. 11). The direction of the
arrows represents the thermal current direction, the length of arrow represents the
strength of the thermal current. It can be seen in Fig. 11 that the quantity of heat is
divided as two parts when it encounters a bead: a smaller part of it flows into the
sphere, the other flows along the sphere wall.
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Fig. 11 Thermal current vector charts in an element (PP/TK35)

4.3.2 Radial Distribution of Temperature

Figures 12 and 13 display respectively the radial distribution of temperature for
the PP/TK35 and the PP/TK70 composite systems. It can be observed that the
temperature drops down slightly at both sides of the hollow glass bead, whereas the
temperature reduces quickly in the bead. This indicates that the heat resistance at
the inner of the micro-sphere is quite high. Namely, the hollow glass bead has
a good thermal insulation property. Comparatively, the radial distribution of
temperature of the PP/TK70 system is similar to the PP/TK35 system.

4.3.3 Effective Thermal Conductivity

As stated above, the effective thermal conductivity is an important parameter for
characterizing the thermal properties of materials. The total quantity of heat may
be obtained by applying the computer order “List Results > Reaction Solu”, and
then the difference in temperature is determined from the temperature cloud chart.
Finally, the effective thermal conductivity (k.z) for each unit cell of the composite
materials could be calculated according to Fourier’s law. When the volume
fraction of the hollow glass beads in the composites is 5, 10, 15 and 20%
respectively, the relevant geometry models are set up, determining physical para-
meters and boundary conditions, dividing meshes and solving, and then
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Fig. 12 Radial distribution of temperature (PP/TK35)
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Fig. 14 Relationship between k.4 and ¢

calculating corresponding k. The results are shown in Fig. 14. Figure 14 illus-
trates the relationship between kg and ¢y. It can be seen that k., decreases linearly
with an increase of ¢. For the same value of ¢, the value of k4 for the PP/TK35
system is higher than that of the PP/TK70 system. This indicates that the thermal
insulation and heat preservation properties of the small size hollow micro-sphere
filled system is relatively good.

It can also be seen from Fig. 14 that the values of k. of the 3D model simulation
are higher than those of 2D model simulation for the PP/TK35 composite system,
and the difference between them increases with an increase of ¢y This might be that
the 3D model is relatively close to the practical heat transfer process in the polymer/
hollow micro-sphere composites.

4.4 Comparison Between Simulations and Measurements

In the previous work, Liang and Li [2] measured the thermal conductivity of hollow
glass-bead filled polypropylene composites by means of a protecting heat plate
method. Figure 15 shows the comparison between the finite element simulations
and the measured data of the thermal conductivity of PP/TK35 composite system.
It can be seen that the FEM simulations are roughly close to the experimental
measured data of k.4 Relatively, the simulations with 3D model are closer to the
experimental measured data of k.4 than those with the 2D model. Figure 16 shows
the comparison between the finite element simulations and the measured data of the
thermal conductivity of PP/TK70 composite system. Similarly, the FEM simula-
tions are also roughly close to the experimental measured data of k.4 and the
simulations with 3D model are relatively closer to the experimental measured data
of k. than those with the 2D model. This illustrates that the finite element
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Fig. 15 Comparison between simulations and measured k.4 of PP/TK35 composite
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simulation of the heat transfer in hollow glass bead filled PP composites is possible
by using the ANSYS software in this case.

5 Conclusions

A polymer/hollow micro-sphere composite is a three-phase system, and the heat
transfer process is carried out in general by the following three ways: (1) thermal
conduction through solid and gas; (2) thermal radiation between hollow micro-sphere
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surfaces; (3) natural convection of gas in hollow micro-sphere. However, the heat
transfer is made mainly by the first way. The quantity of heat is divided into two parts
when the thermal current encounters a bead: the smaller part of quantity of heat flows
into the sphere, the other flows along the sphere wall. The temperature variation inside
the sphere is faster than that outside of the sphere.

A theoretical model of heat transfer in polymer/inorganic hollow micro-sphere
composites was established and the corresponding equation of effective thermal
conductivity was derived based on the law of minimal thermal resistance, the equal
law of the specific equivalent thermal conductivity, and previous work.

The heat insulation property of polymeric materials may be improved by filling
with inorganic hollow micro-spheres. Under the experimental conditions, the
effective thermal conductivity of hollow glass bead filled polypropylene compo-
sites decreased linearly with an addition of the volume fraction of the beads.

The simulated k.4 of PP/Tk35 and PP/TK70 composites decreases as a linear
function with an increase of the volume fraction of hollow glass beads, and it
reduces somewhat with an increase of the bead diameter. In addition, the simulated
values of k.4 with a 3D model are higher than those with a 2D model for PP/TK35
system, and the difference between them increases with an increase of ¢y.

Furthermore, the FEM simulations are roughly close to the experimental
measured data of k.4, and the simulations with the 3D model are relatively closer
to the experimental measured data of k. than those with a 2D model. This indicates
that the simulation of the heat transfer in PP/HGB composites made by the finite
element software ANSYS is possible.

It was found that the theoretical estimations were roughly similar to the finite
element simulations of the effective thermal conductivity of hollow glass bead
filled polypropylene composites at lower concentration of the particles (¢ < 20%).
With increase of ¢y, k., decreased linearly, and k4 decreased slightly with increase
of the HGB diameter when ¢, was constant.

It is beneficial to improve the heat insulation property of the composite systems
if the content of the hollow glass beads is not high and the distribution of the beads
in the PP matrix is uniform. The results showed that the effective thermal conduc-
tivity of PP/HGB composites decreased with an increase of the HGB diameter when
the concentration of the hollow glass beads was not too high.
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Radiative Transfer in Two-Phase
Dispersed Materials

Jaona Randrianalisoa, Rémi Coquard, and Dominique Baillis

Abstract This chapter presents the treatment of radiative transfer in two-phase
dispersed media in the framework of radiative transfer theory. With this aim, two
modeling approaches, under the geometric optic hypothesis, are described and then
compared. The first one is the traditional treatment of dispersed media as continu-
ous and homogeneous systems, referred to here as the Homogeneous Phase
Approach (HPA). The radiation propagation is characterized by effective radiative
properties and modeled by the conventional Radiative Transfer Equation (RTE).
The second approach is based on a separate treatment of radiative transfer in the
continuous and dispersed phases, referred as the Multi-Phase Approach (MPA). In
this approach, each constituting phase has its own effective radiative properties and
temperatures. For each approach, the methods for predicting the radiative properties
are reviewed. The radiative transfers through typical two-phase dispersed media,
such as glass containing bubbles, packed bed of opaque spheres, and packed-bed of
semitransparent spheres, are analyzed. The results of transmittances and reflec-
tances from these predictive approaches are compared with available experimental
data or Monte Carlo (MC) simulation.

Through this contribution, it is shown that the HPA is satisfactory for analyzing
radiative transfer in two-phase dispersed media provided that the effective radiative
properties are correctly predicted. For practical purpose, it is recommended to use
first the well-known independent scattering theory when dispersed contents (or
scatterers) are largely spaced or when their volume fraction is small. An example of
these media is the glass containing bubbles studied herein. Then, the correlated
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scattering theory proposed by Brewster or Singh and Kaviany is the simplest model
when the continuous phase is non-absorbing and the dispersed phase is constituted
of opaque spheres. Finally, the ray-tracing (RT) based method can be used for
arbitrary dispersed materials fulfilling the geometric optic regime.

Concerning the MPA, it is generally a suitable approach, as exemplified with
glass containing bubbles and packed bed of opaque particles. It is however inaccu-
rate for a few cases for which the scattering pattern presents strong peaks (known as
rainbow peaks) due to the correlation between the rays incident on a scatterer and
those transmitted through it after undergoing several internal reflections. This
problem may occur only when (1) the continuum is less refracting than the
scatterers; (2) the scatterers are weakly absorbing; and (3) the scatterer boundaries
are specular and regular in shape. It is, for example, the case with a packed-bed of
semitransparent specularly reflecting spheres.

Nomenclature

a Particle radius, m

A Surface area, m~2

c Interparticle distance, m

C Particle cross section, m~?

Ci, Cy Constants in (3)

d Particle diameter, m

dy Transportation length of radiation inside a scatterer, m

dist Sum of extinction distances traveled by N.,, radiation bundles, m

distpq.; Mean distance between successive interactions of a ray bundle
with the boundary of the substance i

ds; Direction vector of the ray bundle at the ith interaction point on

the continuum-particle interface
ER,0), E'(R,0) Proportions of ray bundles emitting from the center of a spherical
medium of radius R and leaving it into a direction of angle 6

f Fraction of ray bundles undergoing scattering or absorption

fy Dispersed phase volume fraction

1 Radiation intensity, W m 2 sr™ !

Iy Blackbody radiation intensity, W m ™2 s~

K, K, Constants in (52)

l Characteristic length, m

L Sample thickness, m

l; Mean-free-path corresponding to the event of type i or traveled
path of a ray from its emission to the point i, m

m(a) Number of particle per unit volume having size in the range a and
a + da, m~*

n Refraction index or real part of the complex refractive index

N Number
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Total number of particle per volume unit in the sample, m >

Radiation flux, W m 2

Particle efficiency factor

Radius of a spherical dispersed medium, in m, or hemispherical
reflectance

Position vector, position vector at the ith interaction point,
respectively, m

Position vector of the ray at the absorption point in the continuum
Scaling factor of non-point scattering

Unit normal to surface area

Temperature (in K) or hemispherical transmittance

Volume, m>

Number of ray bundles scattered in the angular interval ® and
® +dO

Particle size parameter

Abscise of the radiation intensity along the sample thickness
direction, m

Greek Symbols

X ™ R

<

€T = /e b X

S A
>
=
]
11

Effective absorption coefficient, m~!

Effective extinction coefficient, m ™

Angle between the ray direction incoming on a particle and the outward
normal to the particle surface, rad

Angle between the ray direction transmitted into a particle and the inward
normal to the particle surface, rad

Kroneker delta function

Direction vector

Porosity or error function in (13)

Scattering phase function of a single particle

Effective scattering phase function of the dispersed medium

Scaling factor of the non-point scattering in (6)

Azimuth angle, rad

Absorption index or imaginary part of the complex refractive index
Radiation wavelength in vacuum, dominant radiation wavelength,
respectively, m

Cosine of angles 0 and ', respectively

Scattering anisotropy factor

Ratio between the real refractive indexes of the dispersed and continuous
phases

Cumulative probabilities of extinction or absorption

Polar angle, transmittance or reflectance angle, rad

Scattering angle defined in (16), rad
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0, p' Hemispherical and directional reflectivities, respectively

o Effective scattering coefficient, m!

) Scattering albedo

Q Solid angle, sr

Subscripts

a Refers to absorption

dir  Refers to the number of discrete directions in the angular interval [0,r]

e Refers to extinction

equ Refers to the real refractive index of the equivalent homogeneous medium

h Refers to hemispherical transmittance or reflectance

i Refers to parameters characterizing the radiative transfer in the ith phase

inc  Refers to incident radiation penetrating the sample

ind  Refers to radiative properties under the independent scattering hypothesis

Ji Refers to parameters characterizing the radiative transfer from the jth phase
to the ith phase

N Refers to the normal transmittance

pos Refers to the number of discrete positions.

ray  Refers to the number of rays to be tracked in the Ray-tracing algorithm

S Refers to scattering

tr Refers to the radiative properties in the transport approximation defined in
(29)

A Refers to spectral or wavelength dependent quantities

0 Refers to the continuous substance surrounding the scatterers

1 Refers to the dispersed phase

32  Refers to the mean scatterer radius defined in (24)

1 Introduction

In this contribution, we consider the case of heterogeneous two-phase materials
constituted by one rigid, impermeable solid phase and one fluid (liquid or gaseous)
phase. The characteristic dimension of each phase, denoted herein by d, is assumed
much larger than the radiation wavelength, denoted herein by 4. The radiative heat
transfer in such media is of major importance in many engineering processes and
systems. Some examples of these systems are porous burners [1, 2], solid oxide fuel
cells [3], thermochemical reactor [4], thermal insulation [5, 6]. While most text-
books such as [7, 8] are focused on the heat and mass transfer problem in two-phase
systems, few are devoted to the treatment of radiative transfer in two-phase media
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[9-11]. The current chapter aims to recall the existing approaches to solve radiative
transfer problems in two-phase dispersed media and to discuss their limits of
applicability. Particularly, it reports the recent advances concerning the treatment
of such problems. Finally, it shows the application of the discussed approaches to
some types of two-phase dispersed materials.

The exact solution of the radiative transfer in two-phase media should be
determined from first principles consisting in the resolution of the Maxwell equa-
tions for the electromagnetic field in the entire domain. However, such an approach
is only suitable for small systems, because of the limits imposed by modern
computers. The alternative method frequently encountered is to treat the radiative
problem in the framework of radiative transfer theory. It consists in the resolution of
the Radiative Transfer Equation (RTE). The RTE has been derived from the
equations of multiple scattering of waves [12—17] although it was originally estab-
lished from the energy balance of corpuscles in an elementary volume [18-22].
Recall that the RTE is suitable only if the system dimension, denoted herein by L, is
much larger than the radiation wavelength A so that the wave interferences occur in
a random way. Such a criterion is fulfilled because we deal with materials char-
acterized by d > A and L > d. There has been long experience on the modeling of
radiative transfer in dispersed media, i.e. a continuous medium containing a collec-
tion of particles (or scatterers). It constitutes the starting point of modeling of
radiative transfer in two-phase materials. In fact, two-phase materials can be viewed
as dispersed media. For packed (or fluidized) beds, the particles are the dispersed
phase while the fluid substance is the continuous phase. For low porosity closed cell
foams, bubbles or cavities are the dispersed phase while the substance surrounding
pores is the continuous phase. Therefore, the theories established for dispersed
media can be suitable. They are discussed in the following paragraphs.

The main parameters of the RTE are the propagation constants called “radiative
properties”. The applicability conditions of the RTE to dispersed media are now
established as can be found in the series of papers and textbooks by Mischenko et al.
[17]. One of these criteria is the Far-field approximation (FFA), which imposes that
(1) the scatterers must be located far from each other; and (2) the distance between
the scatterers and the observation point must be much greater than the radiation
wavelength [23].

1. For dispersed media with low packing fraction of scatterers, the FFA is generally
fulfilled and the RTE is suitable. Moreover, the interferences between scattered
waves occur in a random way, and the dispersed phase can be viewed as point
scatterers. In other words, the radiation interaction with scatterers is a point
scattering. Therefore, the exact solution of the radiative transfer problem is
expected because the radiative properties can be also determined, for example
from the interaction of a plane electromagnetic wave with an isolated scatterer
known as “Independent scattering theory” [24-26].

2. For dispersed media with a high packing fraction, leading to closely spaced
scatterers, the radiative transfer problem becomes more complex. Generally
speaking, the RTE cannot be used due particularly to the failure of the FFA.
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Other approaches such as the full wave Monte Carlo [27] and the T-matrix [28]
or different techniques based on the multiple scattering of waves (such as
Foldy’s, [12] Twersky’s, [29] and Quasicrystalline approximations [30]) can
be adopted. These methods have been shown to be straightforward for scatterers
with size smaller than or comparable to the radiation wavelength. However, they
are not convenient when the scatterers are very large compared to the wave-
length due to excessive computation time and memory consumption. Since an
exact solution of the radiative transfer problem in such systems cannot be
obtained, at least in the near future, coarse approximations are necessary. The
most common assumption is to consider the dispersed medium as continuous
and homogeneous and to use the standard RTE with “effective radiative pro-
perties” [31-36] which differs from the radiative properties of dilute media
[24-26]. This approximate method is referred herein to as the “Homogeneous
Phase Approach” (HPA). In thermal engineering problems, the thermal equilib-
rium between the continuous and dispersed phases is often assumed through the
HPA. To deal with multi-temperature phases, additional terms should be intro-
duced in the RTE which render it more complex [37, 38].

For scatterers with size much larger than the radiation wavelength, each elemen-
tary volume contains only portions of scatterers but not collections of them. An
elementary volume can be therefore treated as a two-phase medium in which an
energy balance can be performed in each phase. In this point of view, another
modeling method detailed in this contribution is the ‘“Multi-Phase Approach”
(MPA), which consists in assigning to each phase their own transport equation
(but coupled to each other) and their own effective radiative properties [39—41].
Through the MPA, each phase can thus have its own temperature. Note that such an
approach is rather new in radiative transfer treatment; however, it is a common
practice in multi-phase heat and mass transfer problems [7, §8].

For practical reasons, the approximate HPA and MPA appears the most useful
solution method of radiative transfer in two-phase media. In these approaches, the
knowledge of effective radiative properties is crucial. For convenience, they are
referred to just as radiative properties in the following. As discussed above, the
radiative properties of media constituted of sufficiently spaced scatterers can be
correctly obtained through the Independent scattering theory while those of densely
packed scatterers are quite complex due to “dependent scattering” phenomena.
They include:

¢ “Interference effects,” i.e. the radiation incoming on each scatterer (or particle)
undergoes an interference with the radiation scattered by neighboring particles

e “Multiple scattering effects,” i.e. in an elementary volume, the radiation scat-
tered by a particle is incident on another particle to be scattered again

e “Non-point scattering,” which is a purely geometric effect due especially to the
proximity of particles compared to their size

e And “radiation transportation,” which is also a geometric effect due to the
transportation of radiation beams across substantial distances (through the par-
ticles) compared to the interparticle distance
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To overcome such theoretical difficulties, the most straightforward models of
radiative properties, in the large scatterer limit, are based on the Geometric Optic
Approximations (GOA) by neglecting the interference of waves and the diffraction
patterns as detailed later. The radiation is then treated as a “straight-ray.”

In this framework, several prediction models of radiative properties are now
available depending on the radiative transfer approaches.

e In the HPA, correlated scattering theories consisting in scaling the independent
scattering results by scaling factors are suggested. Different scaling factors are
given, for instance, for spheres [35, 36, 42] and cylinders [43] randomly dis-
persed in a transparent continuous phase. Currently, predictions based on ray-
tracing techniques are developed. They have the advantage to be suitable for
media with complex shapes of scatterer and in the presence of transparent [44] or
semitransparent continuous phase [39, 41, 45, 46]. Other techniques of charac-
terization of radiative properties are based on inverse (or identification) method
requiring measurements of radiative quantities such as transmittance, reflec-
tance, and/or emittance [47, 48].

¢ Inthe MPA, the ray-tracing method [39] and the correlated scattering theory [40]
have been used.

This chapter is divided into two main parts. The first one details the theoretical
foundation of the homogeneous phase and multi-phase approaches of the radiative
transfer. The prediction of radiative properties involved in both approaches is
described. The second part concerns the application of both radiative transfer
approaches to two examples of two-phase materials such as glass matrix containing
bubbles, and packed beds.

2 Theoretical Basis

2.1 General Hypothesis

Let us denote by, c the interparticle (i.e. surface-to-surface) distance, and »n; and n
the refraction indexes of scatterers and continuous substance, respectively. The
current HPA and MPA use the GOA of electromagnetic waves; thus, it neglects the
wave effects such as interferences and diffraction. Therefore, the radiation is treated
as a superposition of pencils of rays propagating according to a straight line. In
order for this assumption to be valid, we only focus our attention on the following
cases:

e The size of scatterers d is much greater than the wavelength (known as the limit
of large particles). The practical criteria is x = md/4 > 1 where x is called size
parameter. The phase change of radiation passing through the scatterer is large,
i.e. x|ni/ng — 1| > 1 (known as the limit of hard particles). Therefore, the
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propagation of the radiation within the scatterer can be modeled using the
geometric optic laws of reflection and refraction.

¢ The interparticle distance ¢ is much greater than the wavelength, i.e. ¢ > 4, and
the scatterers are randomly dispersed in space, therefore there are no interference
effects. Such a criterion is fulfilled when dealing with media of dispersed large
particles encountered in engineering problems.

e Only the half of the total scattering corresponding to the scattering due to
reflection and refraction is considered. The other half, i.e. scattering due to
diffraction, is neglected. In fact, the diffraction by large scatterers is expected
to be close to the incoming direction. Thus, the diffraction can be treated as
transmitted radiation.

In addition to the above assumptions, we also considered that:

e The thermal conductivity of scatterers are not too high so that the radiation
absorbed at one face of a scatterer is not emitted from the other face

e The scatterer size d is much smaller than the linear size of the system L. Then the
radiative properties can be averaged over a representative elementary volume
with a linear dimension / so that d < | < L

e The radiative properties are independent of the azimuth angle. Thus, radiative
transfer in presence of azimuthal symmetry is assumed

2.2 Homogeneous Phase Approach

2.2.1 Principle

Most studies dealing with radiation propagation in two-phase materials are based
on the so-called Homogeneous Phase Approach (HPA). This approach implies that
the radiative behaviour of a dispersed material can be matched faithfully by an
equivalent homogeneous semitransparent medium. Therefore, the radiation propa-
gation is described using a unique homogenized spectral radiation intensity /; (s, A)
at the abscise s along the direction A, defined as the energy flux in the direction A
per units of projected area dA cosf, solid angle dQ, and wavelength dA [20-22].

Li(s,A) = L — (D
N dA.cos 0.dQ.dJ.

with 6 the angle between intensity direction A and the normal to the surface area
t (Fig. 1).

The spectral radiant intensity field is governed by the Radiative Transfer Equa-
tion (RTE) which takes into account the emission, absorption and scattering of the
radiation by the two-phase material. The derivation of this equation can be found in
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Fig. 1 Definition of the
radiation intensity

standard textbooks [18, 20-22]. For a 1D radiation heat transfer in the presence of
azimuthal symmetry, this equation is:

s

+ Bl (z, 1) = oy 1 (T) + % /q)i(l/ — ) X Lz, ))dy (2)
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where z is the abscise of Intensity I along the z-axis of Cartesian reference, p is
the cosine of angle between [ and z-axis. I, 4(T) is the spectral radiation intensity
emitted by a black body at temperature T and can be expressed as:
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_ qu
1) = 5 et 1)

(in W/m?) 3
with 7eq, the refraction index of the equivalent homogeneous material, with
Ci =0.59544 x 10 W pm* m~2 and C, = 1.4388 x 10" pum K. In (3), A is
the vacuum wavelength.

The RTE brings into play four different properties defined for each wavelength
and which entirely describe the radiative behaviour of the material:

 The monochromatic extinction coefficient 8, (in m ') describing the ability of
radiation to interact with a material. This coefficient corresponds to the inverse
of the mean-free-path of photons in the material before extinction f5; = 1/1, .

¢ The monochromatic absorption and scattering coefficients o (in m~ ") and g,(in
m~") describing the ability of the material to absorb and scatter radiation,
respectively. Absorption and scattering are the two types of extinction, thus
we have: f, = o, + 7.

¢ The scattering phase function ®, (¢’ — ) describing the angular repartition of
the energy scattered by the medium from the directions with direction cosine u’
to the direction with direction cosine p. This scattering phase function simplifies
to @,(®). O being the angle between the incident and scattering directions, when
the assumption of azimuthal symmetry is valid.

However, it must not be forgotten that these properties are those of the equiva-
lent homogeneous semi-transparent material whose radiative behavior must closely
match that of the two-phase material.
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In order to determine these characteristics, two different methodologies can be
envisaged as evoked in the introduction section:

¢ Predictive methods based on theoretical models allowing us to quantify directly
the interaction of the material with radiation from the knowledge of its internal
structure and of the optical properties of the constituents. These methods are
particularly suitable for the thermal optimisation of the materials.

e Experimental identification methods based on spectrometric measurements of
the transmittance, reflectance or emittance by the studied material.

2.2.2 Prediction of the Equivalent Properties
Independent Scattering

The method of prediction of radiative properties which is the most widely employed
for two-phase materials considers that it can be regarded as a dispersion of particles
in an homogeneous purely absorbing or transparent matrix. The particles shapes
and sizes must be chosen so as to reproduce faithfully the structural morphology of
the two-phase material. If the distance between these particles is sufficient, they can
be considered as point scatterers, which scatter radiation independently. Therefore,
the key-point is to know how the incident radiation interacts with each of them.
Their interaction with radiation is described by the extinction, absorption and
scattering cross-sections (denoted by C,, C, and Cj, respectively) and the individual
scattering phase function (denoted by ¢ ;). The radiative properties of the dispersed
material are then computed by simply adding the contributions of all the particles
comprised in a unit-volume of material with the absorption coefficient o, ; of the
homogeneous matrix [49]:

Nt

i

o), Oto,r*-g Co)
i=1

Nt
i
0 = E :Cs,).
i=1

N 4
Br=o+0;=00,+ chem'
=1
Nt

>-ClL,(0)
(@) =

0

In (4), Nt denotes the total number of particles per unit volume. The individual
radiative characteristics of the particle (C, 4, Cs; and C,; = C,; + C; ) and the
individual scattering phase function (¢ ) are obtained by analyzing their interaction
with a plane incident wave. When considering the general hypothesis of Sect. 2.2.1,



Radiative Transfer in Two-Phase Dispersed Materials 197

this interaction can be treated using the Geometric Optic (GO) laws. The particles
are generally considered as randomly oriented. This method has been applied by a
large number of researchers to a wide variety of two phase materials.

Fluidized or packed beds are generally represented as arrangements of spheres
with constant size in a transparent fluid phase. The individual cross sections and
scattering phase functions of these spheres can be calculated analytically when the
GOA is valid. The independent scattering assumption is generally assumed to
predict the radiative properties of high porosity media like fluidized beds of
magnetite (Fe;0,4) particles [50], beds of metallic particles [51] or water spray
curtains [52]. In this latter, the fluid phase was considered as absorbing.

Finally, independent scattering hypothesis is also widely used to model radiative
properties of glass foams which have been studied by numerous researchers, from a
thermal point of view, since they cover the molten glass surface in glass melting
furnaces. Viskanta and Fedorov [53] modeled these foams as arrangements of
spherical bubbles of transparent gas in a liquid glass matrix with void fractions
close to 0.7. The absorption coefficient is computed by summing the contributions
of glass and bubble absorption; this results in an absorption proportional to the solid
volume fraction while the scattering properties only take into account the contribu-
tion of the gas bubbles (no scattering by the glass matrix). The computation takes
into account the size distribution of bubbles. The radiative characteristics of gas
bubbles were derived by analyzing the radiative heat transfer through a semitrans-
parent (absorbing and scattering) foam blanket for bubbles large compared to the
wavelength of radiation (x > 1) in the limiting case of anomalous diffraction.

Beyond the Independent Scattering Limit

In numerous dispersed media with relatively low porosities, the previous assump-
tion of independent scattering between each particle cannot be considered valid.
Actually, a major challenge for two-phase materials is to determine whether the
independent scattering hypothesis is valid or if dependent scattering effects have to
be accounted for. The limits of applicability of the theory of independent scattering
have been experimentally investigated by several authors, including Hottel et al.
[54], Ishimaru and Kuga [55], and Brewster and Tien [56]. Yamada et al. [32],
Brewster and Tien [56], and more recently Ivezic and Menguc [57] proposed a
single criterion based on the value of the dimensionless number ¢/A.Their results
indicated that no far-field effect occurs as long as ¢/4 > 0.3 or 0.5. Other criterions
have been proposed. For example, Singh and Kaviany [58] examined dependent
scattering in packed beds of large-size particles (x > 1, i.e. GO domain) by
carrying out Monte Carlo simulations. The Monte Carlo simulations for different
porosities are compared with available experimental results and with the results of
independent scattering hypothesis. The independent theory is shown to fail for
porosities as high as 0.935 and even when the ¢// criterion is satisfied. For this kind
of materials, the near-field effect (multiple scattering) was assumed as responsible
for the dependent scattering. The failure is more drastic for transmission through
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beds of opaque spheres than for transparent and semi-transparent spheres. Coquard
et al. conducted a similar study on beds of opaque spherical particles [44] and
fibrous materials made of large cylinders [43] and stated that multiple scattering
and shadowing effect only affect the particles’ cross sections and become a signifi-
cant (error >10%) as soon as the porosity becomes lower than 94% and 90%
respectively.

To evaluate the radiative properties when dependent scattering occur, a common
approach is to use analytical correlations correcting the characteristics stemming
from the independent scattering hypothesis. For example, Kaviany and Singh [36,
58] proposed a correlation for the dependent characteristics of beds of opaque
spheres by simply scaling the optical thickness obtained from independent scatter-
ing (i.e. f = P;,4S,) while leaving the albedo and the phase function unchanged.
The scaling factor S, depends only on the porosity and is almost independent of the
emissivity:

S,=14+184x(1—¢)—315x (1—¢)?+72x (1—¢)fore>03 (5

Kamiuto [35] also proposed an heuristic correlated-scattering theory for packed
of relatively large spheres that scales the extinction coefficient and the albedo while
the absorption coefficient and scattering phase function are left unchanged:

1_wind
Y (6)
y=143/2x (1 —¢)—3/4 x (1 —¢)*fore < 0.921

B=7xppsandw =1—

More recently, Brewster [42] shows through a mean-beam-length concept that
the main dependent scattering mechanism of radiation in packed beds of large
opaque sphere is the non-vanishing volume scattering (called also non-point scat-
tering as opposed to point scattering in the Independent scattering theory) rather
than multiple scattering stated by previous researchers. A simple scaling factor
correcting the extinction coefficient from Independent scattering is obtained for this
kind of particles:

S, =1/¢ (7)

Ray-Tracing (RT) Techniques

Recently, due to the rapid improvement of the performances of standard computers,
there is a growing interest in ray-tracing methods. They consist in tracking the
histories of a great number of radiation bundles (or ray packets) propagating
through the two-phase medium under investigation. During the travel of bundles,
absorption, reflections or refractions can occur and their histories are stored. They
are then used to deduce the radiative properties using statistic and probability laws
[39, 4346, 59, 60]. The interaction of rays with the solid or fluid phases is dictated
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by the GOA, i.e. they are only applicable to materials for which the size of
scatterers is much greater than the wavelength. They can be used in conjunction
with X-ray tomography analysis. In this case, they permit theoretically to take into
account the real morphology of the materials analyzed and thus, to avoid the
simplifications generally made by the other methods. Zeghondy et al. [39, 59]
were the first to apply a radiative properties computation directly to the representa-
tion of the porous structure obtained from X-ray tomography. They applied
the Radiative Distribution Function Identification (RDFI) originally proposed by
Tancrez and Taine [45] to a tomographic representation of open-cell mullite foams.
They validated their approach by comparing measured experimental reflectance to
that predicted for a homogenized semitransparent material whose anisotropic
radiative properties have been obtained by the RDFI. Just about the same time,
Petrasch et al. [60] applied another Monte Carlo ray tracing procedure to reticulate
porous ceramics to calculate the extinction coefficients and scattering phase func-
tions based on the newly developed probabilistic distribution functions of the
extinction path-length and of the directional cosine of incident radiation. The
authors take into account purely diffuse or perfectly specular surfaces.

In the RDFI method [39, 45], the extinction and absorption coefficients are
retrieved by minimizing the following system of equations:

pus pa s

> (M () = To(B, 1) Z 10, ( (®

Npos Npos

> M () = (o, B, 1) ZH 9)

where II. and II, are respectively Cumulative probabilities of extinction and
absorption of ray bundles after traveling a distance /; from their emission locations.
They are constructed using ray histories from the RT on the two-phase medium.
e = 1 — exp(—pI) and IT' s = a[1 — exp(—pI;)]/p are respectively the theo-
retical cumulative probability of extinction and absorption at the distance /; in
which the unknown parameters are o and 8. Ny, refers to the number of positions
at which the cumulative probabilities are evaluated.

In the Coquard and Baillis’ method, the extinction coefficient f3 is retrieved from
the probability of rays to travel a large distance R (i.e. R > d) without being extinct
[43, 44]:

exp(—fR) = P(R) (10)

P(R) is determined through the RT technique on the two-phase medium and
corresponds, in practice, to the fraction of rays, which can travel a distance R
without either being absorbed or scattered. The scattering phase function is calcu-
lated from the knowledge of the number of scattering events occurring in each
scattering angle. In fact, if W(®) denotes the fraction of rays scattered in the angle
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interval ® and ® + dO® measured from the incoming of rays, the scattering phase
function can be given by:

__ Ww(e)
(®) = = W (@)d0 (1D

The integration in (11) is performed over 4w steradians (i.e. over all directions)
with dQ = sin®@d®dy as the unit solid angle.  refers to the azimuthal angle defined
in the interval 0 to 2. This scattering phase function is also normalized as follows:

1 4

=) o@de= (12)

The scattering albedo o is determined by minimizing the following error function:
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where E is the proportion of rays leaving the sphere (of the two-phase medium) of
radius R in a direction of angle 6; measured from the incoming of rays. E’ refers to
the same quantity as E but obtained from the RT on an equivalent continuous
homogeneous spherical medium of parameters f§ [from (10)], @ [from (11)], and the
unknown ®. Ny;; is the number of directions considered in the angular interval [0,].

Recently, Randrianalisoa and Baillis suggest another algorithm so that the
absorption and scattering coefficients are retrieved from analysis of absorption
and scattering mean-free-paths while the scattering phase function is obtained
from (11) [41, 46]. If £, and f; denote respectively the fraction of rays undergoing
absorption and scattering events after tracking Ny,, rays on the dispersed medium so
that f, + f; = 1, and dist designates the sum of absorption and scattering paths
travelled by N,,, bundles, the absorption and scattering coefficients can be given by:

Nray Nra
=f do = 2 14
“=J dist anda = f; dist (14)
Or, in terms of extinction coefficient and scattering albedo,
. Nray fv
= ) — do = 15
b=+t dist ¢ fs +1a (15)

2.2.3 Identification of the Equivalent Properties from Spectrometric
Measurements

Contrary to the predictive models, these methods do not permit the optimisation of
the materials, but they have the advantage of providing properties that are closely
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related to the real material without any assumptions concerning its structure or the
optical properties of the constituents. Moreover, most of the two-phase materials
can be characterized using a similar identification protocol. They are based on
spectrometric measurements on samples of the material studied. The principle is to
minimize the differences between these spectral values and the results obtained
from numerical resolution of the RTE in a homogeneous semi-transparent material
with varying radiative properties. The minimum number of measurements required
is equal to the number of parameters used to model the radiative behaviour of the
material studied. An extensive review of the different methodologies commonly
used for the identification of the radiative properties has been conducted by Baillis
and Sacadura [61]. They analyzed strategies based on collimated or diffuse
incident beam shape and directional or hemispherical detection systems and paid
some attention to the development of RTE solution models with increasing num-
bers of parameters to identify. The authors showed that the success of the identifi-
cation depends on the chosen physical model, on the experimental data set
(number of measurement points and angular direction choice) and on the detector
noise level.

For a closed cell glass foam with 4% of void fraction, Randrianalisoa et al. [48]
characterized radiative properties such as the extinction coefficient, scattering
albedo, and three parameters of an approximate phase function using measurements
of bidirectional transmittances and reflectances in the spectral region 1.7-4 pm. For
the same material, Dombrovsky et al. [62] determined the transport extinction
coefficient and scattering albedo from combination of Mie theory and hemispheri-
cal reflectance measurement. Comparison of identification results with predicting
models shows that the Independent scattering approximation is suitable for analyz-
ing radiative transfer in this low porosity closed cell porous medium.

Finally, the radiative properties of fluidized and packed beds have been inves-
tigated experimentally by Jones et al. [47] who measured the spectral and direc-
tional emission of non-isothermal packed bed of monodispersed, opaque, large
spherical particles (1 mm diameter, porosity of 0.37) using a radiometric technique.
In a more recent work, Baillis and Sacadura [63] measured the directional spectral
emissivity of an isothermal medium made of a dispersion of large oxidised bronze
(opaque) spherical particles. Comparison with predictive models tends to show that
correlated scattering theory, particularly based on the Singh and Kaviany’s correla-
tion (5), is suitable and necessary.

2.3 Multi Phase Approach

Another way for treating the radiative transfer problems in dispersed materials is
the so-called Multi-Phase Approach (MPA). However, although, it is widely used
for the resolution of heat conduction or flow transfer in multi-phase materials, it is
rather new in the field of radiative transfer. In the literature, Gusarov [40] and
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Randrianalisoa and Baillis [41] have applied the MPA to investigate radiative
transfer in dispersed media of opaque and semitransparent particles in transparent
or absorbing fluid substance.

2.3.1 The Multiphase Radiative Transfer Equation

Let us consider a thin slab of a two phase medium constituted of a continuous phase
and a dispersed phase (modeled by spherical particles for simplicity) illustrated by
Fig. 2a. As before, c is the nearest distance between the particles and d is the typical
size of particles. The characteristic sizes ¢ and d are assumed much greater than the
dominant wavelength 4 so that the geometric optic treatment of the radiation is
applicable. The main idea behind the Multiphase approach is (1) to assume that
each phase (continuous or dispersed) is a homogeneous and continuous medium;
and (2) the radiative transfer in each phase is modeled by a local transport equation,
coupled to each other. The solutions of these transport equations can enable to
retrieve the radiation intensity and temperature fields in each phase. The Fig. 2b
schematizes the treatment of the radiation transfer in the two-phase medium
according to the MPA. It can be noted that with this model, the thermal equilibrium
between the continuous and dispersed phases is not imposed.

The different mechanisms of radiation extinctions in the continuous and dis-
persed substance are schematized by Fig. 3a, b, respectively. When the radiation
intensity /; propagates in the substance i (i = continuous or dispersed), it may be

Fig. 2 (a) Schematization of a thin slab of a heterogeneous medium. (b) Modeling of a thin slab of
heterogeneous medium according to the MPA
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Fig. 3 (a) Radiation extinction in the matrix substance at the abscise z. Absorption (left);
scattering by reflection (center); and scattering by transmission (right). (b) Radiation extinction
in the particle substance at the abscise z. Absorption (/eft); scattering by reflection (center); and
scattering by transmission (right)

absorbed (see left figure) or scattered (see center and right figures) by an interface
between the phases. During scattering, if the interface between the phases is totally
reflecting, the intensity /; is entirely reflected back to the phase i (see center figure),
else an amount of it is transmitted to the neighboring phase (see right figure).
Assuming that the scatterers are randomly dispersed in the continuous substance,
the extinction of the radiation in the substance i (continuous or dispersed) can be
characterized by an absorption coefficient «;, a scattering coefficient g;, and phase
function @;. Moreover, the energy reinforcement from the neighboring phase can be
also characterized by a scattering coefficient ¢; and a phase function @;. Such
radiation transfer mechanisms are similar to that in the conventional radiative
theory except for the possibility of energy exchange between phases. Therefore,
the transport equation in each phase can be derived in a similar manner as for the
usual RTE by taking into account the additional energy exchange between phases.

To do this, let us denotes by I,(z,u) the radiation intensity propagating in the
phase i at a linear position z and in the direction of cosines u with respect to the z
axis (see Fig. 2a). I(z + dz,u) refers to the intensity of this radiation after traveling
an elementary volume of linear thickness dz. During the travel of dz:

e An energy amount of —u;/,dz is absorbed

¢ An energy amount ol dz is spontaneously emitted where Iy, ; is the blackbody
intensity defined similarly as in (3) but now 7; and #; (instead of T and n,) are
respectively the temperature and real refractive index of the phase i

e An energy amount of —g;/;dz is scattered
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Moreover, the intensity in the direction of cosine u is increased by

e An amount of

o
L | " @, Q'
o i (z,1) @i(@) d

4n

because of in-scattering from all directions from the phase i,
¢ And by an amount of

aji

4z

4n

I (z, 1) @;:(©) dy

because of in-scattering from all directions from the neighboring phase j. As before,
O is the angle between the incident and the scattered radiation directions. For plane
parallel slab geometries as shown in Fig. 2a, the angle ® is connected to the
incidence direction (characterized by a cosine y' and an azimuthal angle ') and
the scattering direction (characterized by a cosine of direction x4 and an azimuthal
angle ¢) by

O =yu+/1—p\/1—pcos(p—¢) (16)

The balance of radiation energy in volume element of linear thickness dz enables
to establish the transport equation in each phase called here as the Multiphase
Radiative Transfer Equation (MRTE). In the case of 1D geometry and with
azimuthal symmetry, the MRTE in the steady state regime

¢ In the continuous substance, indexed hereafter by 0, is

L 810(27 /1)

0 —(ot0 4 00)lo(z, 1) + colop(z, To)

1
g
+2 [ )@ a4 1o (D)
-1

¢ In the dispersed substance, indexed hereafter by 1, is

ol (z,
p ) oyt ) + ol (=, T)

1
+2 /11 (2, 1) ®1(©) dit + o1 (2, ). (18)
i
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with

0ji

1
Ij,‘(Z,,ll) :7 / ]j (z,,u')(Dji((B) du'fori = 0,]: landi = 17J: 0 (19)
-1

Note that these equations have a similar form as the usual RTE except for the
presence of the exchange terms 7, and /.

2.3.2 Determination of Radiative Properties

The determination of radiative properties for the MPA is quite new. In the literature,
the radiative properties of packed bed of spheres for the MPA have been obtained
from theoretical analysis of radiation intensity propagation through a thin layer of
the two-phase medium [40]. For more complex geometries, the RT approach has
been suggested. For example, Tancrez and Taine [45] and later Zhegondy et al. [39]
used the RDFI method to calculate the radiative properties of cellular ceramics
from X-ray tomography image analysis.

When the microstructure of the two-phase medium and their optical properties
are known, the radiative properties involved in (17)—(19) can be determined by
analyzing the propagations of radiation in the continuous and dispersed phases,
respectively. When the radiation of intensity /; travels a distance dz in the substance
i bounded by the substance j, it is attenuated,

¢ Due to absorption according to the Beer’s law: I;(z + dz,u) = I(z,p)exp(—4nlx;/
A) in which [ = dz/u is the traveled path and k; is the absorption index (i.e. the
imaginary part of the complex refractive index) of the substance i. It can be
acknowledged that the absorption coefficient is just that of the constitutive
substance because such phase is continuous and homogeneous. Hence,

47'CK1'

o = fori =0and 1 (20)

¢ Due to scattering at interfaces between the current and neighboring phases. If
distyq,; designates the mean distance between the boundaries of the substance i
and p; is the interface hemispherical reflectivity, the mean-free-path (mfp) in-
between of scattering, [ ;, is the ratio distyq; to p; so that when the boundaries are
totally transparent (i.e. p; = 0), [;; = co and when they are totally reflecting (i.e.
pi = 1), ly; = distpq;. Now, remembering that the scattering coefficient is the
inverse of the scattering mfp, the scattering coefficient for the radiation propa-
gation in the substance i due to boundary reflections can be given by

p;fori =0and 1 (21)

0 = —
! dlst},d’,‘
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The scattering coefficient for a radiation in the substance i transmitted to the
substance j due to refraction can be derived in a similar manner as the scattering
coefficients due to reflections in the substance i except that the hemispherical
interface transmittivity 1—p; is involved instead of the reflectivity p;:

1
o dl'S[;,dJ

(1—p)fori=0,j=1andi=1,j=0 (22)

Tij

To evaluate the scattering phase functions, we can proceed by analyzing the
scattering (reflection and refraction) of an intensity distributed over a thin pencil of
rays of solid angle dQ by a large scatterer, and then applying the conventional
definition of the scattering phase function [20-22]:

D(O)=——— (23)

where /(®) refers to the intensity scattered in the angle ® measured from the
incoming intensity. Such analysis enables to obtain closed forms of scattering
phase functions for regular scatterers such as spheres as given later; however, it
becomes complex when the scatterer shape is irregular. Another practical approach
enabling to determine the scattering phase function of arbitrary large scatterers is
the ray-tracing method through the definition (11). For example, the scattering
phase function due to reflections, i.e. @;, is obtained from the fraction of rays
initially in the substance i and reflected back to it (into the angular interval ® and
® + dO measured from the incoming directions) by the interface between the
substances i and j. The scattering phase function due to transmissions, i.e. ®;;, is
determined from the fraction of rays originating from the substance i and transmit-
ted to the substance j into the angular interval ® and ® + d®, again measured from
the incoming directions.

3 Applications to Dispersed Materials

3.1 Low Porosity Closed Cell Foams (Glass Foams)

This medium is taken here to illustrate the behaviour of two phase materials where
the dispersed phase is constituted of air gas while the continuous phase is con-
stituted of solid matrix. In this case, the particle refraction index is generally less
than the host medium refraction index (i.e. n; < ng).

Glasses containing gas bubbles are encountered in practice in the glass furnaces
where gas bubbles are created in the glass melt due to chemical reactions between
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the melt and gas combustion [53, 64]. The radiative transfer is the main energy
transfer mode in this high temperature process. The understanding of the radiative
transfer in such material is then of primary importance because it enables (1) to
quantify the energy to be delivered by the combustion room thus reducing the
energy consumption, and (2) to control the melt temperature thus improving the
quality of products. The study of the radiative transfer in such medium has attracted
much attention [48, 53, 62, 64, 65]. In this contribution, the radiative transfer
through a sample of fused quartz containing bubbles is reported.

3.1.1 Microstructure and Optical Properties

The porous fused quartz sample was cut from a large piece of quartz collected
during the shutdown of an industrial furnace in which the fused quartz is electrically
heated in an inert atmosphere of helium and hydrogen. The sample surfaces were
polished so that they are plane, parallel and the roughness of the quartz surface are
sufficiently small compared to the dominant radiation wavelengths of interest
(Zmax &~ 2 pm at 1,500 K). The sample void fraction is of 4 £ 0.5% obtained
from density measurements. The sample thickness is 9.9 mm and the cross section
is 5 X 5 cm so that the width-to-thickness ratio is large enough to ensure one-
dimensional radiative transfer. Figure 4 shows a photograph of a typical sample. As
can be noted, the bubbles are mainly spherical in shape and they have a size
distribution. A scanning electron micrograph analysis shows that the roughness of
bubble surfaces is also very small compared to the dominant wavelength. Figure 5
depicts the corresponding normalized size distribution determined from an image

Fig. 4 Photograph of fused
quartz containing bubbles
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Fig. 5 Bubble normalized
size distribution, m/Nt
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analysis of the total number of bubbles. The corresponding bubble average radius
defined in (24) below is about 0.64 mm.

|

ap =g ——— (24)
J
0

where m(a) (in m ™) corresponds to the number of bubbles per unit volume having

size between a and a + da so that the total bubble number per unit volume is
o0

Nt = [ m(a)da (in m ).
0

Optical properties of fused quartz (nq and k), required in the radiative properties
calculations, have been extensively studied for different spectral regions as dis-
cussed in [48, 62]. Concerning the refraction index ng, the three-term Sellmeier
equation proposed by Malitson [66] [(25) below] is the most commonly accepted
expression in the literature for the spectral range from 0.21 to 6.7 um at ambient
temperature.

0.696 /> 0.40772 0.897)%
ny = \/ 1 - (25)

+ +
200682 22-0.114> 2> —-9.8912

The spectral value of x, was recovered from the normal spectral transmittance data
(performed on fused quartz sample without bubble), denoted by Ty, according to:

4 2 .2 "2
1 L—p) +4Typ” —(1—p
[Va-w (1-p)

o= 747‘EL//1 2Ty p'?

(26)
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where L is the sample thickness and p’ is the Fresnel (directional) reflectivity at the
air—glass interface for normally incident radiation [20-22]:

! (1 - n0)2

P (1 +n0)2 ( )

Figures 6 and 7 depict the optical properties of fused quartz retrieved from
relations (25) and (26). The data of k from literature [67—-69] are also plotted.

3.1.2 Computation of Radiative Properties for HPA
In the literature, the effective radiative properties of glass foams were determined

from the Independent scattering theory in which bubble efficiency factors and
scattering phase function are either from Mie [70] or Diffraction anomalous theory
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[53]. Identification methods based on measurements of bidirectional [48] or hemi-
spherical transmittances and/or reflectances [71] were also used.

In order to investigate the competition between the MPA and HPA, radiative
properties predictions using the GOA are suggested. Since the bubble volume
fraction is small, we adopt Independent scattering theory.

Remembering that for an optically large scatterer (x > 1), the single particle

properties Cg, C,, and ¢ become independent of size [24, 26] and using tho% definitions
of the bubble average radius a3, and bubble volume fractionf, = (4/3)n [ a’m(a)da,

0
it can be shown that the Independent scattering model (4) reduces to [49, 62, 72]:

o, = oo, + 0.75 £,04/azx
0, =0.75£,0/az (28)
©;(0) = ¢,(0)

with o ; = 4nkg ; /1. Qs = Cyna® and Q, = C,p/na” are respectively the scatter-
ing and absorption efficiencies of bubble of radius a = az,. Note that in the
presence of an absorbing host medium («y > 0), Q, is negative for non-absorbing
particles such as bubbles [73]. In the GO regime (x = 27mas; /A >> 1 here) and
weakly absorbing host medium (xxo < 1), Q, = —8xxy /3 gives a good approxi-
mation [49, 62]. In addition, for non-absorbing scatterers and without a diffraction
contribution Q; =1 [20-22]. Therefore, the absorption coefficient is just
oy (1 — f,) while the scattering coefficient is 0.75f,/as;>. The scattering phase
function at a typical wavelength 4 = 1.7 um predicted by the GO theory [26] is
reported in Fig. 8 versus the scattering angle. It tends to show that the scattering by
an optically large bubble is essentially forward (i.e. 0 < @ < 1/2).

In order to compare the above radiative properties with the experimental data from
the identification method, which include the wave nature of radiation such as diffrac-
tion, we analyze the evolution of transport properties such as the transport extinction,
denoted by f, and the transport scattering albedo, denoted by w,,, defined by [49, 71]:

g
B

py,=0a+0[l— <u>landw, = [1— < u>] (29)

10 4

Scattering phase function

Fig. 8 Scattering phase 0.14
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where <u> is the scattering anisotropy factor given by [20-22]:

<u >:% /(D(@) sin ®dO (30)
0

Figures 9 and 10 depict respectively the transport extinction coefficient and
scattering albedo according to the radiation wavelength of current porous fused
quartz. Lines are results from the prediction model while symbols are experimental
results after introducing original data from reference [48] in (29) and (30). The
abrupt increase of extinction coefficient and decrease of scattering albedo around
2.7 um is due to absorption of hydroxyl contents in the fused quartz matrix. Above
3.5 um, glasses have generally high absorption. This results in an increase of the
extinction and a decrease of the scattering albedo. As can be noted, the predicted
transport radiative properties match well the experimental data proving the ade-
quacy of the Independent scattering theory under the GOA in the current case.
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3.1.3 Computation of Radiative Properties for MPA

The radiative properties of each phase constituting the two-phase materials are
determined using (20)—(23). The absorption coefficient of the glass matrix o is
simply given by (20) in which values of k, are reported in Fig. 7. The absorption
coefficient of bubble contents is taken to be zero as consistent with the HPA.

The scattering coefficients require the knowledge of average paths between
successive radiation interactions with boundaries distyq; in the substance i. For
spherical and uniform scatterer size, the average paths in-between scattering of
radiation distpq; (for i = 0 and 1) can be retrieved using the famous Mean-beam-
length approach [42, 74]:

%_ a 1—f
Ay 075 f,

4V
and distpg 1 = BALIE L (31)
) Al

disthd’o =

where V and Ag refer respectively to the volume and surface of the continuous
phase while V| = 4na®/3 and A| = 4n a* are respectively the volume and surface
of a sphere of radius a. Note that the Mean-beam-approach has been previously
applied to predict the extinction coefficient of packed bed of opaque spheres and the
result is exactly that given by the left equation in (31). The result for the radiation
propagation inside bubbles is rather new but it has been confirmed by (1) theoretical
analysis of radiation intensity crossing a thin layer of similarly dispersed medium
[40] and (2) the Ray-tracing method carried out inside a sphere [41, 46]. Now, using
the definitions (21) and (22), we obtain the scattering coefficients for the MPA:

075 f, 075 f,
o) = Pos 001 = —— (1 —Po)»
a 1-f"° YT a 1—, 0) (32)
0.75 0.75
or=——p;, and olp=—-(1-py)

with f, the bubble volume fraction (or porosity) and a = a3, = 0.64 mm the
average bubble radius calculated from the particle size distribution (Fig. 5). We
can acknowledge that the quantity 1/(1 — f,) in (32) corresponds to the Brewster’s
non-point scattering scaling factor Sg in (7). po and p; are respectively the hemi-
spherical reflectivities at the glass/bubble and bubble/glass interfaces defined as
follows:

1
pi:2/p’,~cos;5dcosx fori =0 and 1 (33)

0
In (33), pi is the Fresnel reflectivity and depends on wavelength through the

optical refractive indexes and on the angle between the incoming radiation and the
outward normal to the interaction surface, denoted here by y [20-22].
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For current fixed porosity and bubble size, the scattering coefficients follow the
evolution of py, 1 — pg, p1, 0or 1 — p; with wavelength as in Fig. 11. For bubbles of
radius a, the scattering phase functions can be obtained analytically. Let denote by
1(®) the intensity of solid angle dQ reflected to the substance i into the angle ®
from the incoming direction (see Fig. 12). For a specularly reflecting sphere, this
scattered intensity can be expressed per incident intensity unit as:

L(©) = pi(x) (34)

where y is related to the scattering angle ® by the specular reflection law 2y = &t
— O. Integrating (34) over all scattering directions and using (33) gives:

4 7'5/2
/ 1;(©)dQ = Sn/ 0'i(x) siny cos ydy = 4np; (35)
0 0

In (35), the following relationship dQ = sin2yd(2y)dy was used. Now, the
scattering phase functions in the substance i due to reflections is retrieved using
the conventional definition (23):

N
0:(0) = 219 fori — 0and 1 (36)

Pi
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The derivation of scattering phase functions due to transmissions from one phase
to other requires the analysis of refracted rays at interfaces using the reflection and
refraction laws. The energy flux transmitted through an element area dA = a’siny
dy dy to the phase j per incident intensity unit is [26]:

[1—p]cosydA (37)

The intensity transmitted at a large distance / (far from dA) in a solid angle sin®
dO® dy [21, 26]:

1 —p'cosy sinydy
1(©) = ! 38
0) = G ede (38)

with y = ® + y' and y’ the corresponding refraction angle. Integration of (38) over
all scattering angles gives:

n/2
/ 2

4n

a . a
/ 1}(©)aQ = Zn,—z/ [1 = piJcos g singdy = m (1 = pj] (39)
0 0

Again using the definition (23), we obtain the scattering phase function due to
refractions:

1 — p! cosysinyd
Pi COSTIMLAL g —0,j=1andi=1land j=0  (40)

D; =
i(®) 41—/)1» sin® dO®

In Fig. 13 is depicted the evolution of these scattering phase functions of porous
fused quartz at the wavelength A = 1.7 pm for which n;/ny ~ 1/1.44. It can be
observed that for spherical bubbles, the scattering phase functions due to transmis-
sions are identical, i.e. @,y = P;. The scattering phase function due to reflection in
the glass matrix @, reaches a constant maximum value at scattering angles @ < 7
— 2 arcsin(n/ng) = 92.3° for ng/n; = 1.44 due to total internal reflection. The
same phenomenon is responsible for zero values of @9 = &y, at @ > n/2 — arc-
sin(n/ng) = 46.01° for no/n; = 1.44.

3.1.4 Validity of Both Approaches

The radiative transfer in low porosity closed cell foams is illustrated here. The
results of hemispherical transmittance and reflectance are used to study the compe-
tition between both prediction approaches in such material. The configuration is 1D
sample exposed to a collimated radiation in one side. The experimental data
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Fig. 13 Scattering phase
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corresponding to the above porous fused quartz sample are obtained from a Fourier
transform infrared (FTIR) spectrometer, which uses unpolarized radiation and
disregards the sample emission thanks to the radiation modulation and the phase
sensitive detection. The hemispherical reflectance and transmittance are respec-
tively defined by [20]:

0
2 [ 1(0, p)udp

Rp=—— (41)
Ginc

and

1
2n [I(L, p)udp

Ty=—0 (42)
inc

The denominator g, = I;,AQ;, designates the incoming collimated radiation
flux of intensity /;,. and a divergence solid angle AQ;,. It enters the sample
perpendicularly to its surface at the abscise z = 0. The numerators correspond
respectively to the radiation flux leaving the sample from the entering and opposite
faces. In the prediction approaches, I(z,u) corresponds to the intensity (solution of
the transport equations without a self-emission contribution) leaving the sample at
the abscise z with a direction of cosine y measured from the normal to the sample
surface. The values of 4 > 0 and u < 0 concern respectively the transmittance and
reflectance.

To solve the transport equations in both approaches, the famous Discrete Ordi-
nate Method (DOM) is adopted. It consists of subdividing (1) the angular domain
into discretized angles following a quadrature (e.g. a Gauss quadrature [21, 22] of
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12 orders is sufficient); and (2) the space into control volumes. This method is well-
described in the radiation transfer textbooks [18, 20—22] and not detailed here. Note
that in the MPA, the intensity /(z,ut) includes the radiation from both continuous and
dispersed phases. Its expression as a function of /y(z,u) and /;(z,u) depends on the
treatment of boundary conditions. For instance, we assume that the sample surfaces
are optically smooth, which neglects the presence of bubble slices (which occupy
4-8% of the entire sample surface). In this case, only the continuous phase is
considered present at the face exposed to the external radiation source. The
boundary conditions of the MRTE are:

¢ For the continuous phase [48]
i\ 2
o0, ) = 81 (1 — )i (—) IO, ) forO<p<1  (43)

Io(L,p) = p'Io(L, —p) for =1 < p <0 (44)

e For the dispersed phase

11(0, 1) = p'11 (0, =) for 0 < u <1 (45)

L(L,p) = p'li(L, —p) for =1 < u <0 (46)

where p’ is the Fresnel reflectivity of sample boundaries. It depends on the angle
between the current incident intensity and the inward normal to the boundary. J,,
is the Kroneker delta function, which is equal to 1 if g = g’ and O elsewhere.
According to (43), the continuous phase receives all transmitted radiation from the
external source. Only after scattering, an amount of this radiation is transferred to
the dispersed phase via (19). It is clear that the intensity that leaves a sample
boundary is just the intensity leaving the continuous phase since we assume that
no bubble cuts boundaries [48].

2
, n
1(0, 1) = 01 4p'Iinc + (n—?> (1= p"Mo(0,p) for —1 < pu<0 (47)

I(L, ) = (1 = p")lo(L, ) for 0 < p <1 (48)

In the HPA, I(z,u) in (41)—(42) are the solutions of the usual RTE, calculated at
each of the boundaries. The corresponding boundary conditions follow the (43),
(44), (47) and (48) in which the intensities I, are substituted by the intensities in the
single homogeneous and continuous medium.

In Figs. 14 and 15, the transmittance and reflectance computed from the HPA
and MPA are compared with the experimental data of the porous fused quartz
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sample. It can be observed that the predictions from both approaches are globally
close to each other. In the near infrared region (/4 < 3.5 pum), the transmittance
(resp. reflectance) result from HPA is slightly lower (resp. higher) than the trans-
mittance (resp. reflectance) result from MPA. It may be attributed to the dependent
scattering effects neglected in the HPA (with which the Independent scattering
theory is adopted here) while they are accounted for in the MPA. Moreover, in
the spectral region where fused quartz becomes significantly absorbing (i.e. 4 >
3.5 um), the predictions are overlapped. In this case, the evolution of transmittances
and reflectances is mainly governed by the absorption of fused quartz because the
scattering albedo approaches zero. The calculated transmittances and reflectances
agree with the experimental data since they fall within the experimental uncertainty
envelope. As a conclusion, the HPA (using Independent scattering theory) and
MPA appear both suitable to model the radiative transfer in low porosity (f, < 1)
closed cell foams under the GO regime, especially concerning the hemispherical
transmittance and reflectance.
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3.2 Packed Beds

Usually, packed or fluidized beds are used as fuel particles in combustors or
reacting particles in chemical reactors. In both applications, heat transfer within
the particle bed becomes the limiting controlling mechanism. Moreover, the radia-
tive transfer is generally the dominant heat transfer mode within the beds due to
high temperature involved; therefore, it should be evaluated with accuracy to
optimize the system efficiency. Depending on the application, the beds may be
constituted of opaque particles, semitransparent particles, or a combination of these
types of particles [75].

The radiative problem in such media has been widely studied. Currently, various
prediction approaches are suggested. Most of them use the HPA in which the
radiative properties are either derived from the Independent scattering theory
[50-52], the correlated scattering theories [35, 36, 42], or the Ray-tracing techni-
ques [41, 44, 46]. Each of these methods has its own weaknesses and advantages.
For example, the Independent scattering theory, although practical, is restricted to
very low volume fraction of scatterers. The correlated scattering approaches
improve the prediction from the Independent scattering model. The current knowl-
edge concerns however beds of spherical scatterers in non-absorbing substance.
The Ray-tracing methods are suitable for beds of arbitrary geometry but restricted
by the GOA. Moreover, they are more time consuming than the preceding predict-
ing models.

In this section, the radiative transfer in typical packed bed media, and more
precisely through samples of opaque or semitransparent particles, is analyzed in the
framework of the HPA and MPA. Moreover, the prediction models of radiative
properties in the HPA, presented above, are compared. In this aim, we limit our
attention to transparent surrounding substances (i.e. «y = 0). Analysis of radiative
properties of packed bed in presence of a semitransparent host medium can be
found elsewhere [41, 46].

3.2.1 Bed Microstructure and Optical Properties

As for porous fused quartz, the internal structure of packed (or fluidized) beds is
relatively simple. They are generally represented as arrangements of spherical
particles with constant or dispersed size in a fluid substance. The distance between
two neighboring particles controls the porosity of the medium.

For simplicity, radiative transfer through packed beds of uniform particle size d
and wavelength fulfilling the criterion x = md/A = 100 > 1 is analyzed. The
sample thicknesses and the packing fractions are in the range 2 < L/d < 16 and
0 < fy < 0.45, respectively. For beds of opaque particles, the optical properties can
be represented by the particle reflectivities pg, po’, p1, and py’, the refraction index
of the surrounding substance 7, and the particle absorption index ;. For beds of
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Table 1 Properties of opaque  po, P1 0.6 0.9
particle so that x = 100 no 1
K1 0.05
oa 10
Table 2 Properties of ng 1
semitransparent particle so ny 1.5
that x = 100 K1 0 0.00025 0.001 0.0025
oa 0 0.05 0.2 0.5
0, 0 0.083 0.287 0.552
O 1 0.917 0.713 0.448

semitransparent particles, the optical properties are represented by the refraction
indexes of two substances, n; and ng, and the particle absorption index ;. The
Tables 1 and 2 summarize the properties of packed bed media analyzed hereafter.
To be consistent with analysis reported in literature, we restrict our study to the case
of specular reflecting particles. The directional reflectivities of opaque particles
(p} = p, and pj = p,) are assumed angle independent. Moreover, we assume that
the external and internal reflectivities are identical (p; = p).

3.2.2 Computation of Radiative Properties for HPA
Bed of Opaque Particles

The Independent scattering theory (28) can be considered as the zeroth order
approximation. In this model, the unknowns are the scattering Q, and absorption
efficiencies Q, and the single scattering phase function ¢. In the limit of optically
large particles and without a diffraction contribution, when a radiation beam
interacts with the particle, it is either reflected at the continuum-particle interface
or totally absorbed in the particle. As a consequence, the efficiency factors are just
Qs = py and Q, = 1 — p,. Since az, = a for monodispersed size, the extinction
coefficient and scattering albedo are given by:

075,

p and w = p, (49)

The scattering phase function is mainly governed by the angular distribution of
the reflected radiation [20—22]. In the case of specular reflection with the reflectivity
independent of the angle, the scattering phase function is isotropic, i.e.

—1 (50)
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Remark: for diffuse reflecting particles, the extinction coefficient and scattering
albedo are unchanged while scattering phase function is anisotropic and follows the
well-known formula: [20-22]:

3 (sin® — O cos ®) (51)

$(0) =
The correlated scattering theories scale the Independent scattering theory by
introducing the dependent scattering corrections. For large opaque particles, the
dependent scattering phenomena reduce to the non-point scattering and can be
handled by multiplying the above extinction coefficient and/or scattering albedo in
(49) by scaling factors while the scattering phase function is unchanged. The
resulting radiative properties are summarized below according to the authors:
Singh and Kaviany [36]: f = 0.75f,/a x S, and w = p, with S; given by (5)
Brewster [56]: f = 0.75f,/a x S, and w = p, with S, given by (7)
Kamiuto [35]:f = 0.75f,/a x y and @ = 1 — (1 — p,)/y with y given by (6)
The RT method applied to opaque particle beds in the HPA was first developed
by Coquard and Baillis [44]. Later, a simpler algorithm has been suggested by
Randrianalisoa and Baillis [41, 46] and this last is adopted in this chapter. The RT
method is performed on a packed bed medium reconstructed from X-ray tomogra-
phy image analysis [76] or approached by an arrangement of particles [44]. In the
last case, the particle shapes, sizes and arrangement must be chosen so as to
reproduce faithfully the structural morphology of the real medium. Usually, a 3D
random arrangement of spheres is sufficient to model packed beds of spherical
particles. In practice, the particle arrangement is generated within a finite cubic box
of dimensions much greater than the particle size. For instance, a ratio of box size to
particle diameter of 10 is sufficient. In Fig. 16 we illustrate a typical packed bed

Fig. 16 Typical 3D bed of
spherical particles
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where the gray spheres represent the particles whereas the black font represents the
surrounding substance. This particle arrangement is generated using the algorithm
detailed in reference [44].

Recall that the aim of the RT algorithm is for analyzing the histories of a great
number (N,,) of radiation bundles propagating inside this medium and then to
calculate the total extinction distance (disf), the fraction of bundles undergoing
scattering (f;), and the angular fraction of scattered bundles W(®). As previously
described, the radiative properties are determined from these quantities through the
formula (11), (14), and (15). Hereafter, the main steps in the RT method are
summarized. For clarity purpose, the RT algorithm is illustrated in 2-D on
Fig. 17. More details can be found in reference [46].

For a given radiation bundle, the RT process consists in:

(S1) — Select, in a random way, the initial location of the bundle on a particle
surface (e.g. the point sy in Fig. 17) and the initial direction, oriented toward the
surrounding medium as it has been scattered (e.g. the vector ds, in Fig. 17). The
particle, from which the bundle path starts, is randomly chosen among the existing
particles.

(S2) — Track the bundle path through the sample until it undergoes extinction.
The type of the extinction event (i.e. scattering or absorption) is chosen by consid-
ering the most probable one through classical Monte Carlo tests [20-22]. The
bundle may be absorbed in a particle (e.g. at the position s; in Fig. 17). Therefore,
the absorption distance is given by the path traveled between the initial position sq
and the absorption location s;. For opaque particles, the scattering event is consid-
ered when the ray is reflected at a particle surface (e.g. at the position s, in Fig. 17).

Fig. 17 Illustration of the Ray-tracing algorithm on a 2D dispersed medium [41, 46]
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In this case, the scattering distance is just the distance from the initial position s, to
the location at which the ray interacts with the external particle surface, i.e. s;. The
extinction distance (either the scattering or absorption distance) is stored. When a
scattering event occurs, the angle ® between the incoming ray (i.e. dsg) and the
direction of the ray after scattering (i.e. ds; in Fig. 17) is also stored. The track of the
path of the bundle is stopped after the extinction event.

The steps (S1) and (S2) are carried out for N, different bundles. Through this
algorithm, dist is the sum of extinction distances traveled by the N.,,, bundles; f; is
the ratio of the number of scattering events to the total number of extinction events,
which is N,,y; therefore f, = 1 — f; corresponds to the fraction absorption events.
W(O) is the ratio between rays scattered into the angular interval ® and ® + d®
from the incoming direction and the total scattered rays, which is f; X Ny,y. dO is
the elementary angle.

Figure 18 summarizes the dimensionless extinction coefficient, § X a, as a
function of the packing fraction calculated from the above prediction models. As
we can note, the RT method, the correlated theories of Singh and Kaviany and that
of Brewster are in close agreement. This means that these models capture appro-
priately the non-point scattering phenomenon. On the other hand, the Independent
scattering theory, which does not take into account the non-point scattering phe-
nomenon, and the Kamiuto correlated theory fails when the particle concentration is
greater than 0.1 and 0.3, respectively. Remember that the Kamiuto theory is based
on comparisons of the extinction and scattering coefficients from the Independent
scattering theory and those from the multiple scattering of waves under the Keller’s
approximation (i.e. by considering only the first and second scattering terms in the
multiple scattering diagrams) [77]. The failure of the Kamiuto theory can be
explained by the fact that, at large packing fractions (f, > 0.3), high orders of
scattering terms (third and higher) are significant but are not accounted for by the
Kamiuto scaling factor ). The scattering albedo from Kamiuto theory normalized
by the scattering albedo from Independent scattering is reported in Fig. 19 for
po = 0.9 and 0.6. We observe that the lower the particle reflectivity and the higher
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the packing fraction are, the greater the deviation of the Kamiuto theory. However,
both theories converge at low packing fractions.

Bed of Semitransparent Particles

The radiative properties of semitransparent particle beds are first studied through
the Independent scattering theory. The extinction coefficient is identical to that of
opaque particle (i.e. f = 0.75f,/a) and the scattering albedo is equal to Q. The
scattering and absorption efficiencies Qg and O, are summarized in Table 2 for each
particle optical properties. As expected, the higher the particle absorption index is,
the greater the absorption efficiency and the smaller the scattering efficiency. The
corresponding scattering phase functions are plotted in Fig. 20. The scattering
phase function presents rainbow peaks in various scattering angles in the backward
angular region. They correspond to rays scattered after undergoing internal reflec-
tions inside particles. When the particle becomes more absorbing, internal trans-
versals are attenuated by absorption and the magnitude of rainbow peaks decreases.
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The suitability of the Kamiuto correlated theory is also studied. The model
is given by (6) in which the scattering albedo from Independent theory to scale
is Qs (Table 2). The scattering phase function is that from Independent theory
(Fig. 20).

In beds of semitransparent or transparent particles, the dependent scattering
phenomena include the non-point scattering and the radiation transportation.
Remember that this latter is due to the transportation of radiation beams across
substantial distances (through the particles) compared to the interparticle distance
[10, 36]. Few methods enable to account for both non-point scattering and radiation
transportation. The first one is the Dependence included discrete ordinate method
(DIDOM) or the Singh and Kaviany correlated theory for semitransparent particles
[10, 36]. It differs from the usual RTE (in the HPA) by the in-scattering term
containing the scattering phase function. In fact, to account for the radiation
transportation effect, the DIDOM employs an unusual scattering phase function,
which depends not only on the scattering angle but also on the exit point of the
scattering and the number of internal reflections. The non-point scattering has been
taken into account by scaling the extinction coefficient from Independent scattering
as in the bed of opaque particles.

The second method is the RT described in the above section. However, in the
presence of semitransparent particles, the algorithm is slightly different, especially
in the step (S2), since scattering does not occur uniquely at the external particle
surface as was the case for opaque particles. In fact, the ray bundles can be scattered
by crossing the particle after one or multiple internal transversals. In the step (S2) of
the above algorithm, the scattering event is considered when the ray is reflected at a
particle surface (e.g. at the position s; in Fig. 17) or when it crosses a particle (e.g. at
the position s, or s3 in Fig. 17 by representing only the two first interior transver-
sals). Generally, the surface reflection and the two or three first internal reflections
contain most of the scattered energy. When the ray is reflected at the particle surface
(e.g. at s) or exits from the same side as it first enters the particle (e.g. at s3), the
scattering distance is just the distance from the initial position sq to the location at
which the ray interacts with the external particle surface, i.e. s;. Now, when the ray
crosses the particle from one side (e.g. at s;) to the opposite side (e.g. at s;), the
scattering distance is given by the distance s;—s( plus a transportation distance,
denoted by d,,. For specularly spherical particles, it was shown that d,, only depends
on the particle size d and on the ratio of the refraction indexes of the particles and
the host medium, defined by 1 = n;/ny, according to (52) [41, 46]. According to
these considerations, d,, is about 0.72d with n;/ng = 1.5.

dy/d = { 1.02 —exp [—(1,(,—;—[(2)} for 05<n<landl <n<8 (52)
1 elsewhere

with K| = 320 and K, = 1.47for0.5 < n < 1and K| = 2.89 and K, = 0.72 while
for 1 < n < 8. Note that the result of the (52) reaches a minimal value when the
contrast of refraction indexes is small (i.e. n tends to 1); it increases as long as 7
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moves away from 1; and finally, it converges to the asymptotic value about 1 for
n > 8 and n < 0.5. In fact, when > 8 or n < 0.5, the rays striking a particle far
from its center undergo a surface reflection because the local reflectivity approaches
1. Only the incident rays approximately normal to the particle surface have a signifi-
cant probability to be refracted inside the particle; they travel at a distance about d
before exiting this particle. For 1) approaching 1, the reflectivity approaches zero, thus
almost all the rays interacting with the particle cross it without being reflected. In
addition, the ray directions are not much altered. As a result, the calculated average
distance traveled by these rays inside the particle tends to approach the theoretical
value of the mean distance of scattering inside a particle, 2d/3.

The evolution of the dimensionless extinction coefficient (f multiplied by the
particle radius for convenience) according to the particle volume fraction is shown
in Fig. 21 for an absorption index x; = 0.001. At small packing fractions at which
the dependent scattering effects are insignificant, we observe that both predictions
converge to 0.75 X f,. At high packing fractions: (1) the DIDOM gives extinction
coefficients identical to that of opaque particles but much greater than the extinction
coefficients from other predictions. Note that the DIDOM extinction coefficient has
not the same significance as that predicted from other models. In fact, it takes into
account only the non-point scattering effects while the RT extinction coefficient,
for example, includes both non-point scattering and the ray transportation effects.
(2) The RT results are slightly greater than the Independent scattering predictions.
This means that the non-point scattering effect prevails but also that it is weaker
for semitransparent particles than for opaque particles due to the ray transporta-
tion effect. In fact, this latter tends to increase the extinction mean-free-path and
consequently, it gives opposite effects to the non-point scattering. The failure
of the Independent scattering model is more noticeable at high packing fraction.
The deviation between the Independent scattering and the current RT method
is insignificant as soon as f, < 0.20. In this case, the non-point scattering and ray
transportation effects are either insignificant or cancelled out. (3) At moderate
and high particle volume fractions, the extinction coefficient from the Kamiuto
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correlated theory is greater than that from the RT. Note that this extinction coeffi-
cient does not include the ray transportation correction. Finally, both prediction
methods give identical scattering albedo, ® ~ 0.71, which equals the scattering
efficiency reported in Table 2. The scattering phase function from the RT method is
identical to that of Independent scattering depicted in Fig. 20.

3.2.3 Computation of Radiative Properties for MPA

The formulae (32), (36) and (40) established in the above section are applicable to
dispersed media constituted of spherical scatterers. In the following, they are
applied to calculate the radiative properties of beds of opaque and semitransparent
particles with parameters summarized in Tables 1 and 2.

For opaque particles with uniform reflectivities p, = p, = p| = p, (=0.6 or 0.9)
and uniform size of radius a: (1) the scattering coefficients in the continuous phase,
due to radiation reflections ¢y and transmissions ¢q;, vary proportionately to
0.75/a x f,/ (1 —f,). It can be shown that the evolution of this factor versus
packing fraction is identical to the scaled extinction coefficients of opaque particles
in the HPA depicted in Fig. 18. The scattering coefficients in the dispersed phase are
constant: 61 = 0.75p,/a and a9 = 0.75(1 — p,)/a. (2) The scattering phase func-
tions due to reflections are isotropic: @y = ®; = 1 (Fig. 22). For highly reflecting
particles, the refraction index ratio n;/n is generally much greater than 1. In this
case, the refraction angle ' is small, and the incidence y and scattering angles ® are
quasi-identical. Therefore, the scattering phase functions due to transmissions vary
approximately as @9 = ®p; = 4 cos ® for 0 < ® < w/2 and are null elsewhere as
plotted in Fig. 22. Moreover, the comparison of the scattering phase functions
Dy, = D49 of porous fused quartz (in Fig. 13) and that of bed of semitransparent
particles tends to show that the higher the ratio n,/ng, the larger the angular interval
over which the scattering occurs (®o; = P19 > 0).

For semitransparent particle beds, the scattering coefficients are similar to that of
opaque particles but with the following reflectivities p, ~ 0.091 and p; =~ 0.596 for
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ni/ng = 1.5. In addition, the scattering phase functions are similar to that of porous
fused quartz (Fig. 13) except that @, and @, are interchanged because n,/ng = 1.5
here (instead of 1/1.44). The scattering phase function @; due to reflections within
the particle reaches a constant maximum value at scattering angles ® < m — 2
arcsin(ng/ny) = 96.4° while the scattering phase function due to transmissions
@9 = g, decreases to zero at @ > m/2 — arcsin(ng/n;) = 48.2°.

3.2.4 Validity of Both Approaches
Bed of Opaque Particles

The hemispherical transmittances through samples of specularly opaque particle
beds are analyzed using the HPA and MPA. Consistent with data reported in
literature, the configuration adopted is a plane parallel slab of packed bed exposed
on one side to diffuse incident radiation. In both prediction approaches, we assumed
that no particle crosses the sample surfaces; therefore, the boundary conditions
(43)—(48) can be applied but with p’ = 0 when ny = 1. In the HPA, the results
based on radiative properties predicted by the correlated theories of Singh and
Kaviany, and Kamiuto, and the Ray-tracing method are reported. The results for
MPA are taken from reference [40]. In each case, the reference data are from the
well-known direct MC simulation, similar to that described elsewhere [78, 79]. In
Figs. 23 and 24, the transmittances versus the reduced sample thickness L/d are
shown for particle reflectivities of 0.6 and 0.9 and a particle volume fraction of
0.278. When the slab thickness increases, the medium optical thickness increases
and, as a result, the transmittances decreases. We can note that in all cases, the
results of HPA based on the RT method and on the Singh and Kaviany correlated
theory are close to the MC simulation whereas the results based on the Kamiuto
correlated theory overestimate the MC solution noticeably. The significant devia-
tion of the Kamiuto results may be attributed to the overestimation of the albedo
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(see Fig. 22). Concerning the MPA, it predicts satisfactorily the MC solutions. This
can be explained as follows. For opaque particles, the RTE in the dispersed phase
(i.e. within particles) of the MPA (18) becomes useless since the radiation intensity in
this substance approximates zero due to the infinite absorptivity of opaque particles
(ja = 10 > 1). The MPA reduces therefore to a single RTE with radiative proper-
ties identical to that from Brewster correlated theory. In other words, the MPA
tends to reduce to the HPA in the case of dispersed media with opaque scatterers.

Bed of Semitransparent Particles

To illustrate the competition between the HPA and MPA for analyzing the radiative
transfer calculation in beds of non-opaque particles, the hemispherical transmit-
tances through samples of specularly reflecting particles with refraction index
n; = 1.5 and concentration f, = 0.278 in transparent host medium are shown in
Figs. 25 and 26 as a function of the reduced sample thickness L/d. The results for
transparent particles (x; = 0 or oj;a = 0), weakly absorbing particles with
K1 = 0.00025 (or o;a = 0.05), and highly absorbing particles with x; = 0.001
(or oya = 0.2) and x; = 0.0025 (or oya < 0.5) are depicted. The data from direct
MC simulation are still considered as reference. The results of the HPA calculation
based on the Independent scattering theory, the DIDOM, the Kamiuto correlated
theory, and the RT methods are shown. The MPA results are still taken from
reference [40]. As in the case of opaque particles, the transmittances decrease
when the slab thickness increases. Once again, we can note that generally, the
results from the DIDOM and RT method are in close agreement with the MC data.
This also shows that these two prediction methods are the most suitable for
analyzing the radiative transfer in semitransparent medium embedding densely
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packed semitransparent particles. According to the considered simulation para-
meters (in particular f, = 0.278 and n = 1.5), the Independent scattering theory
model is suitable as soon as particles are slightly absorbing (oa < 0.05 here).
These results tend to confirm previous experimental observations which pointed out
(through analyzes of transmittances and reflectances of latex or glass particles in
transparent water or air) that the dependent scattering effects are negligible even for
fv = 0.7 when dealing with optically large weakly absorbing or transparent parti-
cles. [32, 56] However, our analysis also points out that the Independent scattering
theory breakdowns when particles are more absorbing (x;a > 0.2 for example). In
fact, given that the ray transportation effects become less significant, it overesti-
mates the transmittance due to the lack of the non-point scattering correction. The
Kamiuto model underestimates the transmittance for non-absorbing particles and
overestimates the transmittance for absorbing particles. The failure of the Kamiuto
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model for absorbing particles can be explained in a similar manner as for opaque
particles. However, when the particles are transparent, the transmittance from the
Kamiuto theory is under-evaluated probably due to the overestimation of the
extinction coefficient (see Fig. 21). The MPA underestimates the transmittances.
The deviation is more pronounced for weakly absorbing particles (e.g. «ya < 0.2
here) than for strongly absorbing particles (e.g. o;a = 0.5). The models of scatter-
ing phase functions in the MPA are probably the main sources of inaccuracy
because they do not reproduce correctly the scattering pattern of spherical semi-
transparent particles. In fact, we showed that the scattering pattern of semitranspar-
ent particles presents rainbow peaks corresponding to the rays scattered after
undergoing internal reflections inside particles. Therefore, there exists a strong
correlation between the rays incident on the particle and those transmitted through
the particle. This correlation between incident and scattered rays is captured in HPA
prediction models because they use or predict rigorously the scattering phase
function of a single particle. However, this is disregarded in the MPA, which splits
the scattering pattern into four uncorrelated scattering phase functions [namely @,
@, &gy, and P¢]. For refractive index ratios n,/ny > 1 and transparent or slightly
absorbing particles (o;a < 0.2 here), the order of magnitude of these rainbow peaks
is significant. Neglecting them leads to an underestimation of the scattering albedo
o [40] and, as a consequence, to an underestimation of the transmittances. Since the
rainbow peaks are absent for refraction index ratios n/ny < 1 (see Fig. 8) and much
attenuated for absorbing particles (see Fig. 20 for x; = 0.0025), this explains why
the MPA is better in these cases.

4 Conclusions

In the present study, we have shown the ability of the conventional Homogeneous
Phase Approach (HPA) and the recently developed Multi-Phase Approach (MPA)
to model the radiative transfer in two-phase dispersed media. For each approach,
the simplest and realistic radiative properties models are identified. The competi-
tion between the HPA and MPA for predicting the radiative transfer through glass
containing bubbles, packed beds of semitransparent or opaque spheres is high-
lighted through their comparison with experimental data or Monte Carlo simulation
of hemispherical transmittance and reflectance. The following conclusions can be
drawn.

Although exact solutions of radiative transfer in dispersed media constituted of
closely spaced scatterers are not expected theoretically through the radiative trans-
fer theory, prior investigations and the current one (including both experimental and
numerical analysis) have shown its suitability by using the notion of effective
radiative properties which differ from radiative properties of dilute media.

The traditional HPA is suitable for a wide range of two-phase materials provided
that their effective radiative properties are accurately known and that the thermal
equilibrium can be assumed. The simple and well-known independent scattering
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theory gives accurate prediction as long as the dispersed phase volume fraction is
small or the scatterers are far from each other. Otherwise, more advanced models
such as the correlated scattering theory or ray-tracing methods, enabling to approx-
imate the complex dependent scattering phenomena, should be used. For dispersed
media constituted of spherical opaque scatterers in non-absorbing environment, the
Brewster or Singh and Kaviany correlated model are the most useful, otherwise the
ray-tracing methods are an alternative solution. The practical one is the Randria-
nalisoa and Baillis’ algorithm based on mean-free-path analysis.

In the MPA, the effective radiative properties can be predicted analytically for
spherical scatterers; while the recourse to ray-tracing technique is indispensable for
complex scatterer shape. The MPA is generally suitable for two-phase dispersed
media as shown by the analysis on packed beds of opaque particles and glass
embedding bubbles. It can however be inaccurate for the case of continuum less
refracting than scatterers, and weakly absorbing scatterers with regular and specu-
larly reflecting boundaries. In fact, these scatterers present rainbow peaks influen-
cing the radiative transfer but not modeled by the current MPA. An example of
these media is packed beds of semitransparent and specularly reflecting spheres.
The MPA needs some improvements to be well competitive. Further analysis
should be conducted on the modeling of radiative properties, notably to specify
how to take into account, in the scattering phase functions, the correlations between
radiations incident on the scatterer and those scattered.
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Predictions of Effective Thermal Conductivity
of Complex Materials

Ramvir Singh

Abstract In this review, a comprehensive and systematic effort is made to incor-
porate the most significant and popular models for calculation of the effective
thermal conductivity of complex materials and discuss their limitations. A brief
review of the numerical techniques for prediction of the effective thermal conduc-
tivity of multi-phase materials is presented and discussed. The real structures and
geometries around us are so vast and vivid, that one cannot use a single model to
estimate effective thermal conductivity of complex materials in the whole range
due to their inherent limitations.

1 Introduction

The approach of thermo-mechanical properties of conventional materials to their
optimum value does not allow the fulfillment of the needs of new age requirements.
Therefore, there is an urgent need to develop a new class of materials to fulfill
requirements of the present millennium. Hence, we need tailored materials made up
of a combination of two or more materials with controlled volume fractions. Such
materials are treated as composite materials for analysis purposes. Accurate predic-
tion of effective thermo-mechanical properties of these materials still remains a
challenging task for engineers and scientists working in the field of materials
science.

Multi-phase materials are made up of more than one phases which are rarely
distributed uniformly, and each component has its own properties and proportion,
and thus contributes towards the effective system. Once mixed together, the
components of different types will more or less interact with each other and the
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properties at the interfacial region will exhibit a transition from one component to
the other. Such effects usually turn even more complicated when the components
are at different phase states, such as in a semi-frozen soil system. Multi-phase
materials are increasingly used in various fields, but analysis and investigation
efforts are severely lagging behind. The challenges in studying complex multi-
phase materials come mainly from the inherent variety and randomness of their
internal microstructures, and the coupling between the components of different
phases. For systems with three or more phases, the microstructures or the phase
distribution can become much more complicated. Even in a two-component alloy,
if there are pores or small fractures inside, they should be treated as three-phase
materials for analysis purposes. Yet other often-encountered multi-phase structure
is that of unsaturated porous soils.

The basic parameters needed to be studied in the context of the heat transfer
through complex materials are (1) thermal conductivity, (2) thermal diffusivity and
(3) volumetric specific heat. These parameters are interrelated to each other.
Complete thermophysical behaviour of a material can be obtained by knowledge
of any two of the above parameters.

The thermal conductivity of a material is defined by Fourier’s equation [1],

do
0=-7A (dx) (1)

where Q is the rate of heat flow, (d0/dx) is the temperature gradient, Q and (d0/dx)
both are normal to the area A of the specimen.

For multi-phase materials the effective value of the thermophysical parameter
lies in between that of the constituent phases and is denoted by adding a suffix ‘e’
throughout the chapter. The effective value of a parameter is found to depend upon
following geometrical factors,

. Thermal conductivities of the constituents

. Fractional volumes of the constituents

. Size and morphology of the constituent particles
. Structure of the material

. Inter phase interactions of the constituents

| O R S

Beside these physical conditions e.g. pressure and temperature also affect the
effective property of these complex materials.

The study of heat transfer in complex materials has inspired a large number of
workers to derive theoretical expressions for evaluating effective thermo-physical
properties. Further, due to the advancement of computing technology in recent times,
there has been a rapid development of powerful numerical methods to evaluate
effective parameters of such materials. Among all the thermo-physical properties,
the thermal conductivity is mostly studied due to its significance and wide applica-
tions in heat transfer problems. So this chapter is devoted to the prediction of
effective thermal conductivity (ETC) of multi-phase complex materials.
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2 Complex Materials

Complex materials are multi-phase systems in which nearly all the phases are
distributed randomly. As such, the behaviour of these materials are dictated by
each and every component of the different phases, i.e. its overall macroscopic
property is not equal to that of any single constituent, rather it is a collective one
contributed by all components forming the system. Therefore, the effective prop-
erty is actually the equivalent property. Inclusion of other components into a basic
material can be beneficial, acting as reinforcement or supplements to improve the
performance of the material and by combining them we can obtain a tailored
behaviour as a final result. Alloys, cellular structures, and fiber reinforced polymer
composites are just such examples. In the present era of emerging new technologi-
cal materials most of them are complex multi-phase materials in terms of both
physics and structures, thus increasing the urgency for more robust theoretical and
computational tools.

3 Mathematical Modeling

Mathematical modeling of multi-phase materials for prediction of thermo-physical
coefficients are still preferred because of low cost, easy and quick to use, and
reasonable accuracy for certain specific cases, especially when the microstructure
can be simplified. In the present chapter, more emphasis has been given to the
significant and popular models and the author also reviews some recent progresses
in numerical modeling of effective thermal properties for multi-phase materials.

3.1 Models for Two-Phase Materials

In this section, theoretical models for calculation of the thermal conductivity of two
phase materials are discussed. In the following discussion, a comprehensive and
systematic effort is made to incorporate most of the popular models and discuss
their limitations.

The earliest model in this direction was given by Maxwell [2] for the prediction
of the effective thermal conductivity by assuming random size spheres dispersed
into a continuous medium. The effective thermal conductivity for such a system can
be represented as

ie [2/16 + ld*zd)d(/lc*/ld)]

= 0 T 74 T e = 1)) @
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where /. is the thermal conductivity of the continuous phase, A, is the thermal
conductivity of dispersed phase and ¢, is the volume fraction of the dispersed
phase respectively.

Fricke [3] and Burger [4] independently modified the Maxwell’s equation for
particles having ellipsoidal shape. The expression obtained by Fricke and Burger is

1 = ;W‘d)(,' + }“d(l - ¢L)F
¢ d)c + (1 - d)c)F

L3 Jd -1 3
where F = 52} [l + { <Z> — 1}g,} and Zlg,- =1

They assumed that particles were noninteracting. F is the ratio of the average
temperature gradients in the two phases and g; are the semi principal axes of the
ellipsoid.

De Vries [5] in his derivation of the effective thermal conductivity used
g1 =g = 1/8 and gz = 3/4. This implies that the two minor axes of ellipsoid
are the same and the major axis is three times that of the minor axis.

Bruggeman [6] used Maxwell’s model for cylindrical particles. He obtained an
expression for the effective thermal conductivity in the following form:

(-2
e = - )

[14 (0 = Dyl

(©)

Here ¢, is the fractional volume of inclusions and ¢ is determined from /. and 4.

The value of d is 2% for spherical particles, 35&““"’ for cylindrical particles,

e Ve Det7a
and % for plates and scales.
d

ct+a)
Lord Rayleigh [7] assumed that particles are spherical in shape and they are

arranged in a cubical array. The expression for the effective thermal conductivity
given by Rayleigh was:

A [1 2k — 1.65(¢>)10/3Ak]
[1 k- 1.65(qb)10/3Ak}

fe = (&)

Here & = (55=7¢; and A = (534

Rayleigh’s model was so rigid and artificial that it could not predict the 4, of
mixtures in practical cases.

Wiener [8] developed a model based on the resistors concept. This concept was a
turning point in theoretical models for the effective thermal conductivity. Wiener
considered the system to be made of alternate layers of solid and fluid in the form of
slabs. These slabs can be arranged in different configurations with respect to the

direction of heat flux (Fig. 1).
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Fig. 1 Model of dispersed resistors giving extreme conductivity values (45 and 1,)

Parallel configuration: In this configuration the plane of equivalent slabs is
parallel to the direction of heat flow i.e. the two phases are thermally parallel to
the heat flux. The effective thermal conductivity for parallel configuration 4 can be
expressed as the weighted arithmetic mean of the conductivities of the solid and
fluid phases and is written as

A= [h + (1= )] (6)

The parallel configuration offers minimum insulation resulting in a maximum
value of the effective thermal conductivity.

Perpendicular configuration: When the direction of heat flow is perpendicular to
the plane of slabs, then it offers maximum insulation and the value of the effective
thermal conductivity is a minimum. In this configuration, the constituent phases are
thermally in series with the direction of heat flow. Effective thermal conductivity in
this case is represented as 4, and is given by the weighted harmonic mean of the
conductivities of the constituent phases.

—+

-1
Ao s

The above equations for the effective thermal conductivity are the limiting
formulae for all possible conductivities of phases for a given value of the porosity ¢.

Later, Woodside and Messmer [9] analyzed these relations more critically and
concluded that for both the distributions (parallel and perpendicular configura-
tions), one should have

dle]
; =(1-9) (®)
[dﬂs s=hf

Hence (8) should be satisfied by different relations for the effective thermal
conductivity applicable to different kinds of distributions.
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In a dispersed system, the conductivity of the aggregate depends on the relative
magnitude of the conductivity of the continuous and dispersed phases. This infor-
mation is important, particularly when there is a substantial difference between the
conductivities of the two phases. Both the schemes [8] of phase distribution assume
either ideal contact (in the case of ) or no contact of phases at all (as in the case
of A, ) and as such these schemes do not reflect the true state of phase distribution in
a natural system.

In this series, Bernshtein [10] gave the following relation assuming the material
is in the form of plates placed in a chessboard-like order:

A_;f[“(llj:;_@u((p—n] $>05

and

41 -4¢)

J= :
! 147

+¢(1—2¢)1 <05 ©)
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These schemes gave a considerable improvement over Wiener’s model, yet are
quite far from the realistic structure of granular materials.

Lichtenecker [11] has given an empirical relation to express the behavior of a
two-phase system that has been named the “Logarithmic law of mixing”. The
expression for the effective thermal conductivity as per this law can be written as

log(2.) = ¢y log () + ¢, log(4s) (10)

where the respective conductivities and corresponding volume fractions are repre-
sented by subscripts s and f. The effective thermal conductivity of a mixture should
be found between upper and lower limiting values for distinctly dispersion type of
systems. This equation can also be written in a different form as:

Je = (20) " (35)" (11)

For a mixture of n components its general form will be
log A, = Z ¢;log(A;) (12)
i=1

Equation (11) is intended only for particles having two-directional randomiza-
tion and oriented in the third direction. Bruggeman [6] has extended Lichtenecker’s
relation by randomizing the phases in three dimensions.

Russel [12] developed a model for predicting the effective thermal conductivity
by assuming that the cubes of one phase are arranged in a cubic array into other
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a b
Air ya Solid

Air

Solid

Fig. 2 Russel’s model for the effective thermal conductivity of porous media: (a) Cubes of air
with solid substance in between (b) Cubes of solid separated by air spaces

phase (Fig. 2). If the dispersed cubes are solid and the continuous phase is fluid,

then
i+ @)(1-07)]
{((,5&)% — .+ (%) (1 s - (/)S%)]

Ao = 13)

In the opposite case, when the dispersed phase is fluid and the solid phase is
continuous one, then (13) is modified to

(ORI

Ae = (14)

RCRRCIGAS)

For porous materials, Ribaud [13] later proposed an equation by assuming that
the pores are joined in a cubical manner resulting into an expression for £, as

1

Fe = 1n(9)5 + g ()] (1)

A natural system, however, is not as simple as predicted by these formulae, for
there are always contacts among the particles. Ignoring this important fact restricts
the applicability of these relations to natural systems.

Powers [14] has made a survey of methods for calculating the thermal conduc-
tivity of aggregates of almost any type. He has shown that when there is an increase
in porosity of the dispersed phase to nearly 50%, the dispersed phase can no longer
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be regarded as discontinuous phase but it behaves as a continuous phase. In several
cases having concentrations between 25 and 75%, both phases can be a dispersed
phase. Such systems are termed as mixtures. Powers concluded (for mixtures) that
the particles are no longer distributed systematically, but may be elongated in one
or more directions and oriented randomly.

Bogomolov [15] developed a similar kind of expression by taking into account
that solid spheres are packed into a tetrahedral packing. The resultant expression so
obtained has been extensively used for determination of the effective thermal
conductivity:

(16)

o= 3y n [0.43 + 0.31¢]

¢ —0.26

Assad [16] gave an expression for effective thermal conductivity of sandstone
rocks. His relation was an empirical one.

e B¢
Je = s H (17)

where B is a constant and is related to the characteristics of sandstone.

More developments in the expressions of heat conduction took place with the
new models and formulations resulting in new kinds of application.

Kunni and Smith [17] took a practical approach and proposed a relation for
effective thermal conductivity of loose granular materials as

Je =y

¢+ p1—¢)
e+ (2]»f/3)uy)‘| (18)

where f§ is an adjustable parameter ranging between 0.9 and land

—0.259
e=e+ VOZH} (ey —e) (19)

Here ¢, and e, are dependent on values of ¢ for loose and compact packing.

When ¢ < 0.259 then e = ¢, and when ¢ > 0.476 then e = e;.

Woodside and Messmer [9] proposed three modes of heat conduction using the
resistor approach. They assumed that there is solid to solid conduction, fluid to fluid
conduction and solid to fluid conduction and vice-versa. Their expression for the
effective thermal conductivity is

Doy

de = o|—— |4 BA 4+ (20)
Ls(l -7+ if“/] !
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where o + f+y=1land oy + f = (1 — ). o, 5,y are parameters for cube forma-
tion and ¢ is reciprocal of formation factor F which is equal to ¢p — 0.03.

The estimation of the effective thermal conductivity using a curve-fitting tech-
nique has been presented by Sugawara et al. [18, 19]. The expression given by them
for the measurement of effective thermal conductivity of soil, rocks and other
granular materials is:

de =[(1 = A)2s + Aly] 1)

where
2)1

SRReTIESY

1= (14+¢)"

and n represents an empirical number.

Chaudhary and Bhandari [20] extended the Lichtnecker model by considering the
series and parallel resistors concept for a two-phase system. The random distribution
of series and parallel resistors is represented by an empirical factor n, which denotes
the probability of orientation of parallel resistors in the direction of heat flow.
The resultant expression for the effective thermal conductivity is given by:

e = (2)"(20)"™" (22)
where
A= ¢ + (1 = ¢)A]
-1
AL = |:/ii;+ (1 ;¢):|
and

. k(1 —log ¢)
ox o1 - 9)(3)

here k is an empirical constant.

In this vein Cheng and Vachon [21] proposed a model for randomly distributed
particles in a continuous phase. Their model is represented by the equation for the
effective thermal conductivity as:

5
I d 1-B
g} 23
7 / L T BOa— i) —C20a—i| T A 23)
0

1 1
where B = %Z,C:4%2andq’>:¢d

Here x is thé dimension of dispersed phase along the x axis.
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This expression was found to be suitable for values of ¢ < 0.667.

Later on, a bound technique with lower and upper bound came due to the lack
of a general expression for determination of the effective thermal conductivity. The
technique estimates the closest optimum value of effective thermal conductivity.
A general set of bounds were given by Hashin and Strikman [22] incorporating a
variational principle for particles having cylindrical geometry as:

Af+¢¢<}e<lé+L

Prager [23] presented a solution for the bounds for particles having cylindrical
geometry using effective thermal conductivity values of some other materials
whose conductivity ratios are the same but the constituent phases may be different.
A set of bounds have been derived by Schulgasser [24] for fibrous reinforced
materials applying symmetry considerations. His bounds are expressed as

¢{@ (4 — )v)z}
¢@;ﬂu + (4 = 4)
(25)

(24)

-1

¢ M /L _;Ls :
Dodg |t — NERCAON Uelshy | A —

T+ ()l

where I and I, are geometry dependent factors. These can be evaluated considering
statistically three dimensional isotropic medium.

Using statistical properties of materials and generalized functions, Hori [25]
developed a model for effective constants of a heterogeneous medium. Under
specific conditions his theory yielded bounds obtained by Weiner [8] as well as
by Hashin and Strikman [22].

Kumar and Chaudhary [26] developed a model by presenting an empirical bound
for the effective thermal conductivity based on random distribution of series and
parallel resistors.

Their expression for ETC with lower and upper bound is written as

s (1 - qsf) {;fzse("(mr—l) }ﬂ < e

) [X =y (1= ) {arise o) ﬂ

(26)

where
A=A (1 — (;Sf) e 4 qusfe*“’(l*(!’f)
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and

w = [%—1] for Ay < A4

As
w= [1 —T] for Ay > A,
Af

This model was further modified by Pande et al. [27]. The proposed model of
Pande is written mathematically in terms of bounds as

1
m [(/lf — )»ertp + /lseh—)tf] > ;Le
1

Tl =)

[ — 25)e" + 2ge"—is] 27

Jp—As Py
where g = |L—= and b= [* }
[(;.Sa/)‘/ 2} PR

Zimmerman [28] modified the Fricke [3] relation for fluid saturated rocks having
different types of pores. For very small porosity, Fricke [3] showed that the
effective thermal conductivity is given as:

= (- p9) (28)

where

1—r 4 1
3 20 —0M T Tr =00 -M)

Here r = A/, and M is a factor that depends on the aspect ratio of the pore.
Zimmerman [28] gave a more interesting and useful analytical expressions for f§ for
three limiting cases as:

For thin cracks § — w

3(1-r)
24r

And for needle like pores 8 — %

Torquato and Rintoul [29] developed rigorous bounds for the effective thermal
conductivity of dispersions that are given in terms of the phase contrast between the
inclusion and matrix, the interface strength, volume fraction, and higher order
morphological information, including morphological information. Their bounds
give very accurate predictions of effective thermal conductivity for dispersions of
metallic particles in epoxy matrices. Their upper and lower bounds are:

For spherical pores ff —

E
T <Dy(C) =1+ (2 +3C - 1)¢sfF—U (29)
i v
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where
E(U) = qss{qsf [C(s — 50— 6C) — (o — 1)2} - 30}2
and
F(U)=6C + (2 — 1+ 2C)* + [3qsf F(a—1) (mqsf + ¢,%)}

+Chy (o —1+ 2C)2 X {196+ 3p,(1+ ¢2)} + 3C[d)f(oc —142C)+ 1]2

‘s p (C){1+(1—1)¢ EL}I (30)
= o tOFL

where

EL= o, [2¢f(cx C1420)(a— 1) + 6C]2

and

Fr = 6<x2{3C+6C2 + o, [(cx 12— 402” + (o0 — o)

X {4 [@,(a —c-1)- 3C(/)s}2 + 28y — 1+ 2C)2}

The parameters C, o and ¢ are defined in Torquato and Rintoul [29].

Pande et al. [30] also gave an expression for the prediction of effective thermal
conductivity of a granular system by considering regular geometry of dispersed
phase.

B ks =2\ 253
s [1 37396 (W) o G1)

This represents the interaction between gas and solid particles up to sixth order
for two-phase systems. The higher orders are negligible due to their very small
contribution. According to the ratios of thermal conductivities of the constituents,
the above relation is represented as:

2
Je =Jg {1 + 3.844((1))3] for 7y >> s

2
}vg = }vf |:1 — 1154((1))3] for /13 << /lf

Je = ¢ | 142307 b = (</))§ for 1y = Af
e — f . /1Y+2;»f s — N
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Pande and Chaudhary [31] further modified these equations for effective contin-
uous medium as:

2
Je = 0.6132(;f/15)%{1 - 1.154(¢f)3} for = ¢, — 0.5  (32)

and

1 2
Je = 0.6132(,1f/15)2{1 + 3.844(%)3} for , = |, — 0.5]

Here ¢, and ¢ are the volume fractions of solid and fluid phases.

Hadley [32] in his contribution for the determination of effective thermal
conductivity gave a model by taking into account the average of temperature field
over different phases. The expression so obtained for effective thermal conductivity
is written as

R O L A o]
C[-ta-ea-Ry+2a-9)0-P)

(33)

The value of F lies between 0 and 1.
The expression (33) for effective thermal conductivity is modified for packed
metal powders as:

s [1={(1=9)(1 = Fo)} +%(1 = ¢)(1 = Fo)]

2
j’?
[2 (

¢+ (2)5- 2¢)}

+a ; 34)
[a-0 )+
Fy is a parameter like F above and f3 represents the degree of consolidation.
Verma et al. [33] concluded that the parameter F could be expressed as
PANE
F = exp [—w (f> (35)
s

Here 1 is the sphericity of the particles. The value of F given by Verma et al. is
0.82 for granular systems and 0.75 for emulsion like systems. They have also
applied a resistor model to obtain the expression for effective thermal conductivity
of two-phase systems with spherical inclusions.

[af{2.598¢‘/3 (hs — 7¢) + 3.2z4¢>—'/3zf}]
{(1 - 1.2407¢1/3) {2.5985¢>1/3 (2s— 1) + 3.224¢71/31f} N Af}

he = (36)
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where ¢ is the volume fraction of the solid phase.
Later, Misra et al. [34] improved this relation by replacing ¢ by the porosity
correction term F,, and provided a relation for 4, as

[4¢{2.598F, '3 (25 — J¢) +3.224F, '3} }]
[(1 — 1.2407F,'3) {2.5985F,' /3 (45 — J¢) + 3.224F, 32} + Jy]

e = (37)

where F), = exp {—Cz(l - ¢)2/3]

The value of constant C; can be further expressed as
Cy = 2.736¢ 00405/ )

Based on a lumped-parameter method, Hsu et al. [35] developed algebraic
expressions for the stagnant thermal conductivity of two and three dimensional
periodic media. Geometries considered were arrays of touching and non-touching
in line square and circular cylinders. Their expression for stagnant thermal
conductivity for two dimensional arrays of square cylinders having a square
cross section a X a and a width of ¢ as shown in Fig. 3a is given as:

de _VaVe va(l—“/(-)+ (1 =7,

+ 38a
A Ao 1+ (G=1y, 1+0GA=1Dyy. (382)
For in-line cubes the expression for thermal conductivity (Fig. 3b) is
2,2 2 2.2
e VaVe (Va - yayc>
22 = (1 =98 = 20000 + 2007;) + -6+ ——
o ) Tt 1P
Wy oy — 2
(veVa = 7e73) (38b)

(1 — Ya¥e + Vayc/ﬁ)

where y, = a/l, y. = ¢/a and f§ is the ratio of solid to fluid thermal conductivity
respectively. A comparison of the results based on equation (38b) with existing
experimental data shows that they are in excellent agreement with the experimental
data if the contact resistance parameter y, = 0.13 is chosen at a porosity of 0.36.
However, no comparison with experimental data at different porosities was given.
In fact, the two parameters, y, and y,. are related to the porosity through a nonlinear
equation. It appears that the two parameters, y, and y, are a function of porosity, but
no functional dependence was reported by them.
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Fig. 3 (a) An array of touching square cylinders (above) and its unit cell (below). (b) In-line
touching cubes (above) and their unit cell (below)

!

Singh et al. [36] presented a geometrical model for estimation of the effective
thermal conductivity by using the resistors approach of two-phase systems with
spherical inclusions. Their expressions for spherical and cubic particles are:

P [2¢ {2 + 0.8060F/3 (45 — 7¢) }] 39)
[+ F23{0.8060 (4, — i) (1 — 1.2407F/3) }]

({2 + F*P (4 — 4) }]

b S Ty PR — ) (1 - P

(40)

where F, the porosity correction, is written as
F=[1—exp{—0.92¢>In(’//y)}]

Boomsma and Poulikakos [37] have developed a model for the effective thermal
conductivity of saturated porous metal foams based on three-dimensional geometry
for unit cell termed the tetrakaidecahedron (Fig. 4). The foam structure was
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Fig. 4 The tetrakaidecahedron geometry with cylindrical ligaments and cubic nodes. The unit cell
is shown on the right as a solid block located in a single tetrakaidecahedron cell

represented with cylindrical ligaments attached to cubical nodes at their centers.
The resultant expression for effective thermal conductivity so obtained is

V2
fe = 2[Rs + Rp + Rc + Rp] “h
h R. — 4F
WACTE A T T T k(1 — o) + {4 — 2¢ — 7F(1 — €)} o]

R — (e — 2F)?

B 7 (e = 2F)e? 1 + {2¢ — 4F — (e — 2F)e? } o]
o (V2 -2¢)’

T [{2nF? (1= 2v2e) i} + 2{V2 — 2¢ — nF? (1 — 2\/2¢) } o]

2e

Rp =

[€241 + (4 — €?) 3]

F V2{2— (5/8)e3v2 —2(1 — $)}
B (3—46\/§—e)n

and e = 0.339 respectively.
Calmidi and Mahajan [38] developed a model for high porosity fibrous metal
foams based on the structure of a metal foam matrix. They assumed that the
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Intersection

Unit Cell \

Fig. 5 Hexagonal structure of metal foam matrix

structure of a metal foam consisted of dodecahedron like cells with 12—14 hexago-
nal faces (Fig. 5). The lumping of material at the point of intersection of the fibers
was taken into account as square. The expression for effective thermal conductivity
is written as

-1

where = ; .,
Ho-r(1+3)}
Here r is defined as the area ratio.
An analytical model was given by Bhattacharya, Calmidi and Mahajan [39] for
highly porous metal foams. With the hexagonal geometry and two-dimensional
array of hexagonal cells, the expression for 4, is

i vi_]!
2 (L? +2L (43)
V3 |+ A

VA B+ -9)(V3-5)

8

1+\/L§ §
and . =F{¢;A1 + (1 — )i} + (1=F)

o, 00
where F = 0.35 A1 12

Ae =

t
where I
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Fig. 6 Unit cell of a hexagonal honeycomb (a) with uniform thickness cell walls and (b) with non
uniform thickness cell walls

Lu and Chen [40] presented a theoretical approach by considering a system
made of hexagonal honeycombs (Fig. 6). The conductivities of a hexagonal honey-
comb are in general anisotropic and can be represented by a second order tensor.
The resulting conductivities expressed in the (x, y, z) directions are

Cos?0
N 44
SR T 44
h/l+ Sin0\*
Ay = pa (ALY
’ p’“‘( 1+ A/l )

fr = pis

(L+h/Dt/1
CosO(h/1+ Sin0)

Recently, a generalized model was derived by Feng et al. [41] for the effective
thermal conductivity of porous media based on the fact that statistical self-similar-
ity exists in porous media. The proposed model assumes that porous media consist
of two portions: randomly distributed non-touching particles and self-similarly
distributed particles contacting each other with resistance. The latter are simulated
by Sierpinski carpets with side length L = 13 and cutout size C = 3, 5, 7 and 9,
respectively, depending upon the porosity concerned. Recursive formulae are pre-
sented and expressed as a function of porosity, ratio of areas, ratio of component
thermal conductivities and contact resistance. There is no empirical constant and
every parameter has a clear physical meaning. The model predictions are compared
with the existing experimental data, and good agreement is found in a wide range of
porosity of 0.14-0.80, and this verifies the validity of the proposed model. Their

where p =
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expression for the dimensionless effective thermal conductivity of porous media for
randomly and self-similarly distributed non-touching particles is

c "7 A A
An — /1= vi—¢ _Aw i
A (1 ! ¢)+1+(1/ﬁ—1)\/1“—“¢]+<1 A)”‘“' @

Here A is the total area of a representative cross section and A, is an equivalent
area of a cross section having the same porosity as the non-touching particles, with

0<A,/A<LI.
For non-touching particles, Hsu et al. [35] gave the following expression as:

== (VT VT /1 18 1)

e I’lf

For an n-stage carpet (Fig. 7), the dimensionless effective thermal conductivity

n/rn n -1 n 0 n—
2 s given by 47D (t+1(ﬁ,qc7{)L+1 +Cn<ﬂn€1)+u) , where " = 8 /lju Y and

e,sc e,sc

the superscript n = 1, 2, .. .. This equation represents a recursive algorithm for the
thermal conductivity of self-similar porous media.

Singh et al. [42] developed an empirical relation or quick estimation of effective
thermal conductivity of highly porous systems. The matrix is supposed to be made
up of layers oriented parallel and perpendicular to the direction of heat flow.
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Fig. 7 The thermal conductivity model and the thermal—electrical analogy for a one-stage carpet
with L = 13 and C = 5 (a) The thermal conductivity model for a one-stage carpet and (b) The
network of the thermal—electrical analogy for the one-stage carpet
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In order to incorporate varying individual geometries and non linear flow of heat
flux lines generated by the difference in thermal conductivity of the constituent
phases, a correlation term has been introduced. Their expression is:

de=i a0 F>0, 0<F<1 (46)

where i = ¢pAr + (1 — ¢p)Ayand 1) = Mﬁ are upper and lower bounds on
the effective thermal conductivity respectively and F is given by:

A
F= c{o.3o31 +0.0623 1n(¢7) }
‘f

where C is a numerical constant and depends on the nature of the material.
Jagjiwanram et al. [43] generalized Singh and colleagues model assuming
inclined slabs with the heat flux lines and derived a relation as:

22328in20 1/2
S . (47)
(¢4 + (1 — ¢)1)

where Sin%0 = C,¢'/? In(7,/%) + C, and constants C; and C, are different for
each type of material.

Singh and Sharma [44] developed a model for predicting the effective thermal
conductivity of particle filled polymer composites assuming spherical inclusions
arranged in a three dimensional cylindrical array (Fig. 8). A Green’s function
technique has been applied to determine the value of effective thermal conductivity.

Recently, Singh et al. [45] extended Hadley’s model to predict effective thermal
conductivity of cellular and polymer composites considering random flow of heat
flux lines. The parameter F introduced was obtained using the laws of statistical
mechanics. Relations given by them are given below:

(0= 9F - - 9)F)
R -A R F)

(¢25 + (1 — ¢) ) Cos?0 +

5
Le =

(48)

e

where F is given by the expressions for packed metal composites, polymer compo-
sites and for foam-like materials respectively:
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Fig. 8 Dispersion around source and sensor in an X-Y plane
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3.2 Models for Multi-Phase Materials

A large number of theoretical models were developed for prediction of effective
properties of multi-phase materials. Roughly, these models can be classified into
three major categories:

e Models based on empirical equations
e Models based on mixing of phases
¢ Analytical solutions from physical laws

The most straightforward theoretical models for the calculation of effective
thermal conductivity in heterogeneous multi-phase materials are the parallel and
series models, which are formulated as

b= > g (49)
i=1

and
1

)”(’f =
S
i=

(50)
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respectively. Note that > ¢, = 1. Since the calculation in the present work does not
take into account the heat transfer modes other than heat conduction, (49) and (50)
define the lower and upper bounds also referred as the Wiener bounds of the
effective thermal conductivity in heterogeneous multi-phase materials.

The Krischer [46] formulated a model which is, essentially, a weighted harmonic
combination of the series and parallel models, as

1
Jo = _ (51)

2y %+ (1-2)/ gl

where, the weighting parameter (Z) is often called as the “distribution factor”.
When Z = 0, the Krischer’s model is reduced to the parallel model, and when
Z = 1, itis reduced to the series model. Hence, by adjusting Z between 0 and 1, the
predicted effective thermal conductivity may take any value bounded by the Wiener
bounds [8]. The Krischer’s [46] model finds its greatest use in food engineering.
Carson et al. [47] using renowned effective medium theory, developed following
formulation for the effective thermal conductivity of multi-phase media as

e
Z¢A,+2) (52)

The derivation of (52) is based on the exact solution of the Laplace’s heat
transfer equation applied to a single sphere of thermal conductivity 4; being
embedded in a larger continuous medium of conductivity /Z,, which is subjected
to a steady temperature gradient in one Cartesian-coordinate direction. The only
assumption made in the derivation procedure is that the distribution of the embed-
ded components is completely random such that the resultant temperature gradient
within the material is uniform, which is rather idealized.

Various empirical equations have been proposed to connect the effective prop-
erty to the volume fractions of the multiple phase components, by means of fitting
the experimental data [48—59]. One such empirical equation developed by Cosenza
et al. [51] valid over the solids thermal conductivity (/) ranging from 2 to
5Wm 'K, porosity (¢) from 0.4 to 0.6, and the volumetric water content (0)
from 0.1 to 0.4 is given as

Je = (0.8908 — 1.0959¢)4, + (1.2236 — 0.3485¢))0 (53)

Such equations have proved to be useful in targeted cases only.

Based on the two-phase fundamental models, two schemes have been imple-
mented for the multiphase case. The first is to extend the two-phase basic models
directly to multiphase cases. For example, the Parallel and Series equations were
adopted to develop a simple linear relationship between the thermal conductivity
and the degree of saturation, which provided a satisfactory correlation for the data
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measured as well as those reported recently for sandy and clay loams [60]. For
three-phase media, Woodside and Messmer [9] proposed the ‘quadratic parallel’
model for the effective conductivity. Their expression is given as

o= (3 /1}/2¢,.)2 (54)

where 4; with i = {1, 2, 3} is the conductivity of each phase and ¢, the
corresponding volume fraction. This model appears to be applicable when i > 3.
Various weighted average models have also been proposed for such multiphase
mixtures [61].

Maxwell’s model has been extended by Brailsford and Major [62] for a wide
range of dispersions. In this model, the constituent phases are mixed in a definite
proportion for a two-phase system. This mixture is then embedded in a random
mixture of the same two phases having conductivity equal to the average value of
the conductivity of two phase system. Thus the effective thermal conductivity of
such a three-phase system can be determined as

. |:}~cd)c + ;‘dl (zbdl (ﬁ) + /ld2 d)dz (ﬁ)]
Jo =
3, 3,
[¢C + (bdl (2’1(*/1‘“) + d)dz (2;*"+;L"| )}

where subscript ¢ and d represent continuous and dispersed phases, respectively.
Chaudhary and Bhandari [63] extended Woodside and Messmer’s model [9] for
three-phase systems using the resistor approach. Their expression was given as:

(55)

Do = A2, (77 (56)

where n was obtained by the best fit technique using experimental values of
calcareous sand stone [18]. When the three-phases are thermally in parallel or in
series with the direction of heat flow the parallel and series effective thermal
conductivity of the material are given as:

dn=Yhyw+ (d =)+ (1 = )4

-1
/h=(%+¢;w+1;¢>

This model was further extended by Singh et al. [64] by calculating n empiri-
cally.

The second route is to treat two of the multiple phases as one single phase with
their own effective properties and then to mix this effective phase with another new
phase, i.e. dividing a multiphase material into combination of several two-phase
systems. The Maxwell models are the most suitable for developing such mixture
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models in general, and the Maxwell-De Loor model in particular is widely used, for
it requires no geometrical parameters [65, 66]. Dobson et al. [67] rewrote this model
for a four-phase system in to:

_ BA+2(dy — ¢3)(Aa — A1) +2¢5(A3—41) + 2(hs — §5)(hs — A1)]
O BH2(py = 3) (A1) A2 = 1)+ b3 (A1) 2 — 1) + (g — P2) (41 /Aa — 1)]
(57)

As the Maxwell models are based on the assumption that the dispersed phases
are independently distributed in the continuous phase with negligible interactions
with each other, these types of models fail to work properly if there exists any
strong phase interactions inside the materials, unless some empirical parameters are
introduced to account for those influences [67].

Verma et al. [68] has extended Hadley’s model for three-phase materials by
putting

‘151<VT1>1 + </’2<VT2>2 = (1 + $2)(VT))'

and
M (VT + oy (Vo) = Ji(¢y + ) (VT)

in basic equations of two-phase materials, we obtain
V(T) = (§1 + $2)(VT))' + §3(VTs)’ (58)

ANV(T) = 4y + $) (VT + d3s(VT3)’ (59)

Equations (58) and (59) show that a three-phase problem has been reduced to a
two-phase problem, one phase being the intermediate phase having an average
temperature gradient (V7;)' and the second phase being the remainder with an
average temperature gradient <VT3)3 . If we compare (58) and (59) with the
equations for two-phase materials, we see that the volume fraction and thermal

conductivity of the intermediate phase should be given by

;= ¢+ Py
and
gy
Ji =
1+ ¢,

The usefulness of this method depends upon the proper pairing of different
phases. No selection rules for the pairing of different phases have been given by
Hadley, but they suggest the following guidelines for composing the phases.
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e When the amount of dispersed phase is small, the continuous phase should be
treated as independent and the rest should be combined to form an intermediate
phase.

e If the fractional volumes of phases are comparable, the intermediate phase
should be formed in such a manner as to reduce the ratio of thermal conductiv-
ities of intermediate and independent phases.

e To define the intermediate thermal conductivity, the constituent of the pair
playing a greater role in conduction should be considered. This has to be decided
judiciously by considering the concentration and thermal conductivity of the
constituents within the pair itself. It can be judged by comparing the products of
their concentration and respective thermal conductivity. Thus the intermediate
thermal conductivity can also be defined by

la6hy
i =
)

Beniwal et al. [69] extended the work of Pande et al. for statistically homoge-
neous and regular multi-phase systems. The solution of Poisson’s equation was
used for effective neighboring interactions and modified field which thereafter
yields the effective thermal conductivity of multi-phase systems as

, , 1|/ e, — hdy — e
Ae:/hc{1+3.844¢c 3{(xdd+2) >¢d, (Add+2 )qsdzH (60)

when there is a very dilute dispersion of both the phases, the interactions may not
spread over a large distance. Therefore, expression (59) has the form

N 1 /117 /127
ie—ﬂc{l+3.489¢c 3{(2;’”))%, (AddH )%H 61)

Singh et al. [70] have developed a model for moist soil like materials. In the case
of soil there are two possibilities. (1) The soil is dry or fully saturated, i.e. the
system is a two-phase system or (2) the system is moist, i.e. the system is a three-
phase system made of solid, liquid and gas phases. Let us express ¥,,, as the volume
fraction of moisture in the pore space. In the case when the dispersion of the water
in the air is small, i.e. 0 < lﬁmaz/ 3 < 0.4, the thermal conductivity of moist air (i
within the pore space is expressed by

ma )

A — A
ﬂma = )va 1 1. 884u 2/3 62
A < +1.3 /lw T 2/“1 l//ma ( )

When ,,,%/* lies between 0.4 and 1.0, the 1, of moist soil air becomes

_ M _ 2/3
Xma—;LW<1+1.3884)M+%(1 Y ina )) (63)
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where /4, and /,, are the thermal conductivity of air and water respectively
If ,,, be the volume fraction of moisture and v, the volume fraction of air in the
sample, then y,,,, the volume fraction of moisture in the pore space will be

_ lpm
lpma - %

where ,, = (m/M)y,. Here m and M represent the varying moisture content and
moisture content at saturation by weight per cent respectively and y, is the volume
fraction of air. Then the effective thermal conductivity of moist soil is expressed,
using (63), and putting &, =, — 0.5, as

Aw — AECM , 2 3)
o = 4 1+ 1.3884 2 ZECHM £ 2/3 64
, = AECM ( o T 2hecn ¢ (64)
Jow — AECM . 23
Jo = duent [ 14 1.3884 L0 —LECM - 65
ECM < + FR Y — ¢ ) (65)

where &, = 0.5 —,. Here y, &; and &, denote the volume fraction of the solid
phase, solid phase dispersion and air phase dispersion in the soil respectively. The
effective thermal conductivity of the effective continuous medium is defined by
Singh et al. [71] as

j-ECM = P(j-sima)l/2

where P is the coefficient which depends on the order of phase interaction.

Moosavi and Sarkomaa [72] presented a theoretical expression for estimating
effective thermal conductivity of three-phase composite materials by incorporating
circular cylindrical geometry. Their expression is written as

1 % - 22 (66)

(Mda = E18) /(A= &) (Mdr —E8) /(M = &)

1
where Ai = y_ +cif; — C2Vfi4 - C3V275,ﬂzfif2375,.2
éi = C4fi —Cs (yfz4 + y2*5i2fif23—(5i2)

1 —k;
1+k

Yi=

where /; is the thermal conductivity of the ith phase, f; is the volume fraction of the
ith phase and ¢; (i = 1-5) are constants.

Recently, Gori and Corasaniti [73] built up a cubic cell model for the thermal
conductivity of three-phase porous media. Water absorbed was considered to
either cover the solid particles or form liquid-bridges between different particles.
Analytical models were thus derived. Unfortunately, the critical water content for
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liquid-bridge formation was unknown and had to be determined empirically, hence
causing gross errors in predictions. In a three-phase olivine system, the water
distribution is different according to the amount of water content. If the water
content W is lower than W, = 0.083, which is an empirical value proposed in [74]
the water is adsorbed around the solid particle and no water bridges are established
among the adjacent particles (Fig. 9b). In this case the expression for the effective
thermal conductivity given by them is

1 _B=1-6/3 i
2z Bl 3[2c(B = 1) + 4]
p
+ 67
Js +2/380 + 2o (B — 1 —2/35) ©7
where
4 lwa

It W> W, Fig. 9c, d, the amount of water accumulated among the solid
particles is the funicular one, V,/V,. In order to simplify the model, V,/V; is
assumed linearly proportional to the real porosity of the porous medium between
0.183, for ¢ = 0.4764, and 0.226, for ¢ = 0.2595. The resulting expression is

0.226 — 0.183

Vg Vi
0.4764 — 0.2595

Vi VW,

(f—D—PU%+ W““—@kﬁ—ﬁ

where the variables are given as

Wf

wf/V
V B—7)

In the configuration of Fig. 9¢c, where y, < 1, A is given by

'\.|:

1 B =By N By — B
AT x(ﬁ—ﬁ)+mﬁ (B =92) + 2o
B— ﬁVf
: 68
+¢w?fwy+m@27n+4 (68)
/”Vf

TP T4 2By~ 2y) 4 A
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water

solid

fluid air

b [ |l I

Fig. 9 (a) Unit cell (b) Water adsorbed around the solid particle (¢) Cubic cell model with water
around the solid particle, according to absorption and capillarity among the adjacent particles
(d) Water adsorbed around the solid particle and disposed among adjacent particles

where A = A, (ﬁ2 — 92 4 2By + 2wf)
For y > 1, Fig. 9d, A7 has the following expression

1 Pp B - By,
o Ge(B =)+ 4B =)+ A
ﬁVf -B
N (69)
2e(BF =% = 2Bys + 2975) + (2 + 2By — 2v%)
B

_l’_
As + 2w (72 = 1+ 2By — 297¢) + Ae (B — 92 = 2By, + 2975)
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Ma et al. [75, 76] have developed approximate fractal geometry models, for the
effective thermal conductivity of saturated/unsaturated porous media based on the
thermal—electrical analogy technique (Fig. 10) and on statistical self-similarity of
porous media. The proposed thermal conductivity models were expressed as a
function of porosity, ratio of areas, ratio of component thermal conductivities,

%

jQ

Fig. 10 The thermal conductivity model and the thermal—electrical analogy for a O-stage and one-
stage carpet in three phases (a) the thermal conductivity model for O-stage carpet (b) the network
of the thermal—electrical analogy for 0-stage carpet, and (c¢) the thermal conductivity model for
one-stage carpet
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and saturation. A quite simple recursive algorithm for the effective thermal con-
ductivity for three-phase porous medium is thus presented as:

)L,e Aﬂ
}“::)_ r):m‘ ( )j':sc
“8
Je Ay
== )+ A —1,2.3, 70
/’Lg “e.nt ( A> e,sc 7n =y~ ( )

Here A is the total area of a representative cross section and A, is an equivalent
area of a cross section having the same porosity as the nontouching particles, with
0 < A,/A < 1. The dimensionless thermal conductivity for the nontouching parti-
cle portion )e wt = Pent / )Lg and for n-stage carpet, the dimensionless effective
thermal conductivity 47" is given respectively as:

e,sc

+ l

Ay =
M RA g

_B-1-F2 F s 1
B 2| - 1)+ﬁwg] B+ FBye/2+ (B —1-F/2)
2/3—r+ + r+ -1
+ [1 _ g+ T\ pn — T
) D) [t e + (L =19)]  (1/34+7r")BL, +(2/3 = 1) an
e,sc e,sc l/2—t+ t+

+ T g 2 g3 T g o)
2/3 =t BUlrt + B /3 28003+ B3

where

At - lt x 1 ﬁwg - lw’/)g’ﬂsg = //‘Lﬁ”ﬂfvg = ﬁ?vg/):rsf K and ﬁ”l ﬁ?;,/):rsf )
respectively. Equation (71) represents the recursive algorithm for thermal conduc-
tivity of self-similarly unsaturated or three-phase porous media [76].

Gerstner et al. [77] proposed a Lumped parameter model for effective thermal
conductivity of three-phase paper coatings. In the lumped parameter model by Hsu
et al. [35], a unit cell is used which represents the simplified structure of the porous
medium. The solid phases of the unit cells are finitely connected by a contact plate
and surrounded by the fluid phase. They adapted the model of Hsu et al. [35] model
(Fig. 3) using a square cylindrical solid phase (4y;), representing the pigment, and
introduce a second solid phase (Ay) for the connecting plates, representing the
binder, the fluid phase being air when representing a dry coating or a chosen liquid/
mix of liquids when considering either a wet coating or one that has absorbed ink
vehicle, for example. The width of the binder bridge is ¢ and can be related to the
pigment size a as the contact parameter y = ca—1. The unit cell can be split into
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1/2

_ | | al2 |

i
[\
A\
(a-c)/2 ‘T‘C/2|<_

(-a)/2

Fig. 11 Modified three-phase unit cell based on the lumped parameter model [35] and its
decomposition into serial and parallel layers (I-1II) of thermal resistors

three parallel layers (Fig. 11 I-III), consisting of the relative combinations of solid
phases and each solid phase with the fluid phase, respectively. Their expression for
the overall effective thermal conductivity of the unit cell is:

Ae va 11—y l—a
Ze— +— + 72
o (A—wa+p (A-1a+1 (u—1)ya+1 (72)

where /. is the effective thermal conductivity of the unit cell, /s the thermal
conductivity of the fluid phase, 2 = A¢/As the conductivity ratio of the fluid
phase to the pigment phase, and u = s/ the conductivity ratio of the fluid
phase to the binder phase.

3.3 Numerical Methods

Rapid development of computational techniques in the past decades and the limited
power of the existing theoretical models in dealing with the complex materials have
tremendously enhanced numerical capabilities in modeling the thermo-physical
behaviors of multi-phase materials.

A complete numerical determination of the effective properties of a multi-phase
material has to include two major steps:

e To reproduce properly the multi-scale microstructures using computer algo-
rithms, and then

e To solve the relevant partial differential equations for effective thermal conduc-
tivity of a multi-phase material with acceptable efficiency and accuracy

As the rapid development of the microscopy techniques, several methods have
been proposed to reconstruct the microstructures of multi-phase materials using
computers [78-83]. However, none of them can deal well with the interactions
between the grains, thus unsuitable for energy transfer problems that are extremely
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sensitive to contacts. As the microscopy instruments and the observation techno-
logies are also well developed now, the image mapping has become a highly
powerful tool for approaching the real structures in more geometric details such
as the element shapes, orientations and connections, on the materials properties
[84, 85]. Better reconstruction processes have been used to generate two-phase [86,
87] and multi-phase [88, 89] random structures of porous materials based on the
digital micro-tomographic information and statistical correlation functions. More
about these reconstruction methods based on image mapping can be found in some
excellent review papers [90, 91] and books [92, 93]. For fibrous porous materials,
Pan et al. [94, 95] have done a series of analyses to theoretically characterize the
microstructure using statistical density distribution function approaches.

Moreover, for multi-phase materials, their microstructures can be influenced by
the phase interactions. When such interactions are non-negligible, approaches have
to be developed to reflect the influences during structure generation. Losic et al.
[88] proposed a reconstruction process with given phase probabilities and an overall
correlation function to form lamellar clay films on solid surfaces and dispersed clay
dots on solid structures. Mohanty [96] adopted a Monte Carlo annealing algorithm
to generate unsaturated porous media by using the law of lowest interfacial energy,
but it failed to differentiate various liquid—solid interactions.

Wang et al. [97-99] have done excellent work in this direction. A three-dimen-
sional mesoscopic method was developed and discussed by them for predicting the
effective thermal conductivity of multiphase random porous media. The energy
transport equations were solved using the Lattice Boltzmann method [100-102] for
multi-phase conjugate heat transfer through a porous structure whose morphology
was characterized by a random generation-growth algorithm. This method was
designed to reproduce structural assembles of elements with random sizes, loca-
tions and orientations, and connections, each of which grows from randomly
distributed seeds and the growth is guided by a few given probabilistic growth
rates. They suggested that for different types of microstructures (granular, fibrous or
netlike), the algorithms will be different but still bear the same principles. The
temperature and the heat flux were calculated according to [103] as:

T= Zga
0= e (— = 0-5)
o 8

here g, is the equilibrium distribution in each direction, e, the discrete lattice
velocity and 7, the dimensionless relaxation time for each phase.

After solving the temperature field their expression for effective thermal con-
ductivity is given as

_ L. Jq.dA

‘AT [dA (73
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where g is the steady heat flux through the media cross section area dA between the
temperature difference AT with a distance L. All of these parameters can be
theoretically determined, and there were no empirical factors existed in this model.

4 Limitations of the Theoretical Models and Discussion

We have briefly reviewed several existing models available in the literature for
predicting effective thermal conductivity of complex materials. A number of
different structures were considered. The real structures and geometries of materi-
als around us are so vast and vivid, that one cannot use a single model to explain the
thermal behaviour of various systems due to their inherent limitations. In real
systems, the kind of structure we face does not match with the geometries discussed
in various models. Therefore, results of these models vary with the experimental
values. Particularly, when the ratio of thermal conductivities of solid to fluid phase
was large. The limitations in the existing models, and thus challenges in developing
new ones, are summarized below:

Almost all the models discussed here are based on simplified physics and are
developed either using the concept of modified flux or considering the phases made
up of different resistors with certain over-idealized assumptions. Therefore, they
are incapable of dealing with the issue of phase interactions in real structures. This
may make the models easy and quick to use, but the simplifications also restrict the
applicability to simple structures and unable to tackle directly the effects of
morphological changes in the microstructure on the material properties. Any efforts
in combining the models for more complex structures will lead to escalating
complexity in the model. Most modifications to improve the accuracy of the models
will in turn narrow their applicability. In recently developed models, the empirical
parameters have been introduced with no valid physical significance, whose values
have to be determined case by case based on experimental data, thus their applica-
bility is limited and become powerless for wider applications. Even for the rela-
tively successful theoretical models, one can only calculate the properties of
existing materials, rather than make predictions for new class of materials. There-
fore, there are not of much value in optimizations or design for novel materials The
resistor concept embodies linear flow of heat where Ohm’s law is followed, while
the flux concept is based on material field from external or internal sources and thus
the flux density and its path depends upon the conductivity of the material through
which the heat flow is maintained. These models do not describe the behavior of an
actual system. The resistor model is an exact solution for a two-phase system
arranged in the form of slabs while the flux model is an exact solution whose
micro geometry and phase distribution is completely prescribed like spheres in
cubic array with lattice type structures. In general, the materials around us do not
belong to either category as their phase distribution and grain arrangement is
completely undefined. Therefore, the models developed using these concepts can-
not be directly applied to natural two phase materials. However, at the same time,
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the resistor model yields the maximum and minimum limits on the effective
thermal conductivity. Similarly, the flux model gives an insight as to how the flux
modification takes place in a periodic structure like beads which are statistically
homogeneous but locally heterogeneous. The difference between real and assumed
situations increases rapidly as the ratio of component conductivity increases or
decreases from a moderate value. This led to a new idea i.e. randomization of phase
distribution. The resulting expression for the effective thermal conductivity
depends upon the method of randomization applied.

The idea of random phase distribution using the flux concept resulted in Maxwell’s
relation [2], Fricke’s relation [3], the Bruggeman theory [6] of variable dispersion
and Brailsford and Major’s relation [62]. The relation established by Maxwell is
suitable for dilute dispersion and moderate conductivity ratios. The results of
Maxwell’s [2] formula are satisfactory for ¢ = 0.5. The concept of randomization
used in resistor models with averaging techniques is better reflected in models of
Woodside and Messmer [9], Chaudhary and Bhandari [20], Cheng and Vachon [21],
and Kumar and Chaudhary [26].

The model developed by Lichtnecker [11] does not incorporate structure and
mode of packing of a system. It is suitable at very low and very high dispersions.
When the ratio of thermal conductivities of solid and fluid phase is more than 20,
the value predicted for the effective thermal conductivity is overestimated. The
expression of Rayleigh [7] is restricted to cellular materials and emulsions. Fricke
[3] and Burger’s [4] relation gives a good result for packed systems of quartz sand,
glass beads in different fluids only. The expression of Kunni and Smith [17]
provides a lower value of the effective thermal conductivity for lower ratio of
thermal conductivities of solid and fluid phase. Sugawara and Yoshizawa [18]
provided an empirical relation for effective thermal conductivity, which yields
correct values of /, for soils. They used n = 6.5 in their equation (21).

The bound technique is really useful in estimating the closest optimum value of
the effective thermal conductivity of two-phase systems. The Hashin-Strikman
bound [22] is a most general bound which predicts the effective thermal conductiv-
ity with the least possible knowledge about the two phase system. The Hashin-
Strikman bound is of wider use in the range 0.1 < A,/4. < 10. Moreover, when the
ratio (44/4.) becomes too large or too low, the Hashin-Strikman bound becomes
broader and turns out to be unrealistic. The Kumar and Chaudhary bound [26] is
equally well in the region 0.1 < A4/, < 10 but at the same time it is narrower than
the Hashin-Strikman bound when 4,/4. < 1072 in the case of sands and soils.

The expressions developed on the basis of an averaging technique seem to be
more relevant than the models, which are the outcome of rigorous mathematics. As
an example, the results of Hadley’s model [32] are better than Lichtnecker [11],
Brailsford [62] and Pande [27]. Pande’s model is better when the fluid phase is air in
a two-phase system. The model developed by Boomsma and Poulikakos [37] is
based on the idealized three-dimensional basic cell geometry of foam, the tetra-
kaidecahedron. This geometric shape results from filling a given space with cells of
equal size yielding minimal surface energy. The foam structure was represented
with cylindrical ligaments, which attach to cubic nodes at their centers. It was found
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that the model estimated the effective thermal conductivity very well for these
experimental configurations. This three dimensional model fits the experimental
data very well for the parameter range experienced in metal foams. Calmidi and
Mahajan [38], Bhattacharya [39] in their models considered that the structure
consists of a two dimensional array of hexagonal cells where the fibers form the
sides of the hexagons and a circular blob of the metal at the intersection of the
fibers. Their analysis reflected that the effective thermal conductivity depends
strongly on the porosity and the ratio of the cross sections of the fiber and intersec-
tion. The Ma et al. models [75, 76] have only two parameters, A,,/A and r* in which
every parameter has a clear physical meaning whereas other models contain several
empirical constants without physical interpretation. This model is analytically
related to several variables, such as ¢, f8, " and A,,/A, whereas other numerical
solutions cannot provide such an analytical relationship. The recursive algorithm
for the thermal conductivity obtained using this model was also quite simple. The
advantage of this model over the others is, thus, quite evident.

Now, due to rapid developments in computational techniques to reconstruct the
microstructures of multi-phase complex materials, the effect of microstructure on
thermo-mechanical properties of the material can be calculated more precisely.
Therefore, numerical methods are more accurate and robust approaches in predic-
tion and design of new class of materials to fulfill requirements of the present
millennium. As a result, these techniques are becoming increasingly popular and
more widely used in the materials science and engineering. In the present review,
we presented only a glimpse of the technique developed for the prediction of the
effective thermal conductivity of multi-phase complex materials and a lot of work
remains to be done in this direction.
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Lattice Monte Carlo Analysis of Thermal
Diffusion in Multi-Phase Materials

T. Fiedler, L.V. Belova, A. Ochsner, and G.E. Murch

Abstract This Chapter addresses the numerical simulation of thermal diffusion in
multi-phase materials. A Lattice Monte Carlo method is used in the analysis of two-
and three-dimensional calculation models. The composites considered are assem-
bled by two or three phases, each exhibiting different thermal conductivities. First,
a random distribution of phases is considered and the dependence of the effective
thermal conductivity on the phase composition is investigated. The second part of
this analysis uses a random-growth algorithm that simulates the influence of surface
energy on the formation of composite materials. The effective thermal conductivity
of these structures is investigated and compared to random structures. The final part
of the Chapter addresses percolation analyses. It is shown that the simulation of
surface energy distinctly affects the percolation behavior and therefore the thermal
properties of composite materials.

1 Introduction

The thermal properties of multi-phase materials (cf. Fig. 1) are of great importance
in modern science. Next to common examples such as fiber-reinforced composites
or thermal insulators, examples stretch from the characterization of frozen food
[2, 3] to advanced phase change composites used for thermal energy storage [4, 5].

The thermal properties of multi-phase materials are of great importance in
modern science. Next to common examples such as binary metallic mixtures or
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Fig. 1 Multi-phase materials: (a) cellular material, (b) fiber-reinforced composite [1]

thermal insulators, examples stretch from the characterization of frozen food [2, 3]
to advanced phase change composites used for thermal energy storage [4, 5]. Due to
the importance of this subject, conductivity properties of multi-phase materials
have been the subject of intensive research. It should be highlighted here that
although the current Chapter strictly addresses thermal properties, the mathematical
models for electric conduction and mass diffusion are equivalent and with some
caution can be used interchangeably. Landauer [6] addressed the electrical resis-
tance of binary metallic mixtures using the effective medium theory. He investi-
gated two-phase random mixtures similar to some of the models addressed in
the current study. The comparison of his mathematical results with experimental
data showed good agreement. Ben-Amoz [7] addressed the effective thermal
properties of two-phase solids. He introduced improved Voigt and Reuss estimates
as bounds for the effective thermal conductivities and diffusivities. Glatzmaier and
Ramirez [8] conducted experimental measurements using the transient hot wire
method. They suggested a mathematical volume averaging model in order to
predict the effective thermal conductivity. Good agreement between their mathe-
matical model and experimental measurements was observed for a glass beads
packed bed, oil shale and coal. Rio et al. [9] introduced an approximate formula for
the effective electrical conductivity of two-dimensional two-phase materials based
on Keller’s reciprocity theorem and observed good agreement with experimental
data. Samantray et al. [10] addressed the effective thermal conductivity of two-
phase materials. They suggested different models depending on the conductivity
ratio of matrix and dispersed phase. Maxwell approaches were found to be accurate
for phase fractions @ < 0.1 and @ > 0.9 where one phase is isolated and does not
form an interconnected long range network. For the remaining phase fractions,
three correlations for different conductivity ratios were introduced. Good agree-
ment with extensive experimental data was found. Karthikeyan and Reddy [11]
focused on composites with phase fractions between 0.1 and 0.9. They conducted a
unit cell approach for conductivity ratios r = Apin/Amax > 0.05. Wang et al. [12]
used random generation-growth methods to mimic real multi-phase structures.
Using these models, they subsequently conducted Lattice Boltzmann analyses to
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solve the energy transport equations and obtain effective thermal properties. Good
agreement with experimental data was found for copper-solder and water-sand
composites. Their work was continued in [13] where also metallic foam materials
and fibrous structures were analyzed.

The current work uses a modified Lattice Monte Carlo method towards thermal
analysis of multi-phase materials. The Lattice Monte Carlo method for thermal
analysis is elucidated in Sect. 2 of this Chapter. In Sect. 3, the effective thermal con-
ductivities of materials with randomly dispersed species are obtained with high
accuracy and compared to existing analytical relations. Furthermore, a random
growth algorithm is introduced in order to simulate the effect of surface energy
on thermal properties. Section 4 briefly addresses the effective thermal conductivity
of three-phase systems. In Sect. 5, percolation analysis on the previously considered
structures is performed and a close connection between percolation behavior and
thermal properties is found.

2 Lattice Monte Carlo Method

The Lattice Monte Carlo method has proven to be an elegant approach to address a
wide range of thermal or mass diffusion problems [14]. Previous publications
dealing with thermal properties of materials have focused on the effective thermal
conductivity of hollow sphere structures [15, 16], random shaped cellular alumin-
ium [17], non-linear thermal material properties in composite structures [18] and
transient heat transfer in phase change materials [19].

In the Lattice Monte Carlo (LMC) method, thermal diffusion is simulated by
random walks of ‘virtual’ particles that represent very small — but finite — energy
quantities. The random walks are directed by jump probabilities p; which are in fact
scaled thermal diffusivities D. In the case of a successful jump attempt, energy is
transferred from a lattice node to a neighbor and the local temperatures T in the
volumes represented by the nodes are changed. The arrangement of lattice nodes
can be chosen arbitrarily and for reasons of simplicity a simple cubic arrangement
with a constant jump length s is typically selected for this analysis.

A flow diagram of the Lattice Monte Carlo algorithm is shown in Fig. 2. At the
beginning of a simulation, the initial conditions are implemented, i.e. a large
population of ‘virtual particles’ is randomly distributed in the lattice model. Subse-
quently, in two random steps a particle is selected and its jump direction deter-
mined. Based on the thermal diffusivities of the origin and the destination nodes, a
jump probability p; is calculated. This value is then compared to a uniformly
distributed random number 0 < y < 1. If the jump probability is larger than
the random number, the ‘virtual’ particle coordinates are updated. The calculation
time ¢ is directly incremented before the next particle is chosen. The accuracy of
Lattice Monte Carlo analysis is governed by the number Np of ‘virtual’ energy
particles. The error can be estimated by ¢ ~ +1/+/Np. As an example, a population
of 10° particles results in an error of approximately + 0.1%. However, the
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Fig. 2 Flow diagram for Lattice Monte Carlo analysis

calculation time increases with the number of particles N, and therefore a balance
between accuracy and computational load needs to be found. In addition, a suffi-
cient long calculation time ¢ must be simulated in order to ensure numerical
convergence of the results. This can be guaranteed by a simple convergence
analysis of the target value, i.e. the effective thermal conductivity.

At the end of a LMC random walk simulation, the particle displacements R are
known for a large number N, of particles. In order to determine the effective
thermal diffusivity D.s of a d-dimensional structure, the average mean square
displacement <R2> is calculated and inserted into the Einstein equation:

R2
Dess = 2<. d?t' (D

The effective thermal conductivity A is then obtained using the formula:

Dest

— 2
pavg - Cegr

Deft =

where p,, is the average density and Ces the effective specific heat of the multi-
phase material. The solution of thermal steady-state problems such as the current
analysis is independent of the material parameters p and C and accordingly, these
can be chosen arbitrarily for each phase i. For simplicity, p; = C; = 1 is selected
and according to (2) the effective thermal conductivity is then identical to the
effective diffusivity Aer = Degy.

3 Two-Phase Systems

In this Section, systems assembled by two species A and B with corresponding
thermal conductivities A, > Ag are considered. Several conductivity ratios
r = Agl/ia < 1 are addressed and calculation models are generated for a range of
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volume fractions @y = 1 — P,. Thereby, random distributions and modified dis-
tributions mimicking the effect of surface energy can be distinguished. A set of ten
structures is generated for each configuration in order to monitor a possible
scattering of results and ensure statistically representative results. If not mentioned
differently, the displayed results are averaged values.

3.1 Random Distribution

First, random distributions are considered where two phases are dispersed in a
simple cubic lattice model. During the model generation, no interaction occurs
between members of the same or opposite species. Random distributions are
generated according to the following procedure: initially, all lattice sites are
assigned to species A (P, = 1, Pg = 1 — &, = 0). A lattice site of A is randomly
selected and assigned to species B. In the next step, the volume fraction @5 is
updated. This procedure is repeated until the target volume fraction of species B is
reached. Three examples of random distributions for the phase fractions @5 = 0.3,
0.5, 0.7 are shown in Fig. 3. In the Figure, black pixels correspond to phase A and
white pixels to phase B.

3.1.1 Two-Dimensional Analysis
System Size

The first series of calculations addresses the impact of the system size on the results
of the numerical analysis. At the corners (two dimensions) or surfaces (three
dimensions) of the calculation models, periodic boundary conditions are prescribed,
i.e. the geometry is repeated. Small models that are repeated several times develop
characteristic patterns and are unsuitable for representing random multi-phase

- l::{ "\
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é‘:— :

1
&
3
&
%

Fig. 3 Random distributions: (a) ®g = 0.3, (b) &g = 0.5, (¢) P = 0.7
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structures. An increase of the system size diminishes the influence of the periodic
boundary conditions. Accordingly, preliminary investigations aim towards the
determination of minimum system sizes to represent random distributions in the
subsequent analysis.

Figure 4a shows the effective thermal conductivity of a two-phase system
(r = 0.1) plotted versus the phase fraction ®g. The results obtained for the largest
system (10,0007 lattice sites) are drawn as a full line. Significant scattering of the
results is only found for the smallest (10 lattice sites) of the considered models.
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Fig. 4 Study of the effect of the system size: (a) Effective thermal conductivities plotted versus the
area fraction @, (b) Standard deviation of the effective thermal conductivity
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This observation can be quantified by comparing the standard deviation ¢ (calcu-
lated for n = 10 independent observations) of the effective thermal conductivity

I
> (Aeftn — Aett)

L e @

The variable A is the average effective thermal conductivity for a given system
size and phase fraction. The results are shown in Fig. 4b. It can clearly be seen that
the standard deviation of the effective thermal conductivity 6 decreases with
increasing system size. The standard deviation also shows a dependency on the
area fraction and maximum scattering is observed for &g = 0.2. Comparing the
results of the two largest systems (1,0002 and 10,0002 nodes) no systematic change
in the standard deviation can be observed. Accordingly, calculation models with
1,0007 lattice nodes are chosen as the standard for the following two-dimensional
analysis. A similar study was performed on three-dimensional models and 100°
nodes was identified as a suitable system size.

Conductivity Ratio

In the following, the effective thermal conductivity of random two-phase systems is
analysed in two dimensions. Four different conductivity ratios » = 0.1, 0.01, 0.001
and O are considered. Figure 5 shows the evolution of the effective thermal
conductivity over the phase fraction @g. The conductivity is given in terms of Ap
and accordingly for @ = 0 (P4 = 1) the value 1 is obtained. An increase of the
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Fig. 5 Effective thermal conductivity of random two-phase systems (2D)
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phase fraction @y results in a decrease of A.¢ due to the lower thermal conductivity
/p of phase B. The gradient of the curves is initially constant and its absolute
value increases with the conductivity ratio r. The site percolation threshold for
two-dimensional simple cubic structures (@ = 1 — 0.59274621 [20]) marks the
transition to low effective thermal conductivities. Beyond this phase fraction,
the conducting phase A fails to form interconnected long-range networks. Further
increase of the phase fraction @y shows fast convergence towards the effective
thermal conductivity of species B: g = r Ja.

3.1.2 Three-Dimensional Analysis

Results of the three-dimensional analysis of randomly dispersed two-phase systems
are shown in Fig. 6. A non-linear dependence of the effective thermal conductivity
on the phase fraction ®@g can be observed. Analogous to the two-dimensional
analysis, the four conductivity ratios = 0.1, 0.01, 0.001 and O are considered.
The results for the minimum ratio » = 0 can be used to confirm the site percolation
threshold of three-dimensional simple cubic structures: the best value has been
estimated in the literature as 0.3116004 [21]. The effective thermal conductivity of
two-phase materials becomes zero since the conducting phase A fails to form
interconnected long-range networks.

For three-dimensional random structures, analytical models for the calculation
of the effective thermal conductivity have been suggested in the literature. Figures 7
and 8 show a comparison of the LMC results with these analytical approaches for
the conductivity rations r = 0.1 and 0.001. The effective thermal conductivity can
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Fig. 6 Effective thermal conductivity of random two-phase systems (3D)
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Fig. 7 Comparison between numerical simulation (LMC) and analytical models results for three-

dimensional random distributions (» = 0.1)
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Fig. 8 Comparison between numerical simulation (LMC) and analytical models results for three-

dimensional random distributions (» = 0.001)

be estimated using the effective medium theory (EMT) model [22] by the solution

of the equation:

}LA - ieff

1—®
( B) Ja + et

;”B - ;”eff _
B 2B + 2 et

=0.

“4)



284 T. Fiedler et al.

Comparison with the LMC results reveals that the EMT model predicts system-
atically higher values, in particular for » = 0.001. A Maxwell approach for the
range 0 < @ < 0.1 [10] can be expressed as:

1 +2pdg

m A )

Aeff =

and the phase-inverse Maxwell model for 0.9 < &g < 1 as:

(1+2p)(1 — f+2p®Ps)
(1= p)(1+28 — pdg)

Dt = Ja (6)

with f = (¢« — 1)/(a + 2) and o = Agj¢/Acon- The subscripts ‘dis’ and ‘con’ are
abbreviations for the continuous and dispersed phase respectively. Reasonable
agreement with the LMC results is found within these intervals. The reciprocity
model based on the reciprocity theorem [9] is given by:

1+ (yVo—1)Dg
1+(\/g—1)c1>3

Because of the close similarity of the current problem to the correlation effect
problem during the random walks of tracer atoms on the corresponding crystal
lattice, we suggest the following expression for the A

et = e @)

Jett = (Patafa + Pelnfs)/fo, ®)

where fa and fg are the tracer correlation factors that can be calculated using the
almost exact Moleko, Allnatt and Allnatt (MAA) diffusion kinetics theory [23]

. H, O Hg
fA_21A+HA’fB_2AB +Hp' ©)
Hi = 1Mo (}j :I—f,/lv)H + 2/}1/‘Ljf, 7
(ﬁ/u,‘ + /L)H + 2/L,‘iﬁ
Aj +fidn)H 4 202 i
Hy = 2gMy TR & 2012, (10)

(fiki + DH + 2221’
where the function H is defined as a positive solution to the equation:

H? + 2/H = Mo(AH + 2;2)), (11)
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where 4 = @g Ao + @p Ag and 4, = @ A5 + DPg A, My = 2fo/(1 — fy), and for
the simple cubic lattice the geometric correlation factor fy = 0.654.... It can be
shown that H/M,,, with H defined as a positive solution to (11) and with fy = 2/3 is
identical to A.g given by the EMT (4).

In Figs. 7 and 8 a comparison between the LMC calculations and the analytical
models is shown. Figure 7 shows results for the moderate value of » = 0.1, whereas
Fig. 8 shows results for the small value of r = 0.001. It can be seen that for
moderate r the EMT expression gives the best agreement and for small values of
r the MAA model works the best. Overall, results shown in Figs. 7 and 8 indicate a
very good qualitative agreement between the LMC data and the model derived
from the MAA theory.

3.2 Modified Distribution

The creation of modified distributions is in principle similar to the procedure used
for random distributions. However, a generation probability p is introduced as a
function of the free surface area As. The general idea is to capture the generic
structure of two-phase materials where a high surface energy causes ‘clustering’ of
the growing phase. Figure 9 shows an example of normalized surface areas in a two-
dimensional lattice. The matrix (initial phase) is represented by white squares and
the growing phase with a high surface energy by black squares. Cursive numbers
indicate that the surface area is altered due to periodic boundary conditions. Let us

Fig. 9 Normalized surface
areas As/s2 in a two-
dimensional lattice
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consider a lattice site where all neighbors belong to the starting phase (i.e. are white
squares). Thus, the surface area Ag exhibits its maximum value A,,x which is 4 52
(two-dimensional) or 6 s (three-dimensional), respectively. The symbol s is the
distance between two adjoining lattice nodes (which are located in the centre of a
square or cube). The generation probability p(A,.x) assigned to the maximum
surface area is called the initialization probability pjp;.

In the compass of the present study, a linear probability function p(Ag) is
proposed. Considering the boundary conditions p(0) = 1 and p(Amnax) = Pinit the
following relation is obtained:

ini -1
plAs) == As+1. (12)

Analogous to the algorithm used to generate random distributions (cf. Sect. 3.1),
each lattice site is originally assigned to the matrix phase. A lattice site is then
randomly chosen and the generation probability p(As) is calculated in dependence
on its surface energy. The result is compared to a uniformly distributed random
number 0 < y < 1. If the random number y is smaller than the function value of p,
the lattice site is assigned to the second phase. Otherwise, the site is rejected for the
current attempt and a new lattice site is randomly chosen. The procedure is repeated
until the target phase fraction is reached.

Figure 10 shows several examples of modified structures for different initializa-
tion properties pin;.- A low value of p;,;; causes ‘clustering’ of the second species,
since the phase is more likely to grow in the vicinity of seeds where the free surface
area is reduced. In the limiting case, p;,;; = 0 a starting seed must be provided prior
to the model generation and only one approximately circular (two-dimensional) or
spherical (three-dimensional) cluster is formed. Deviations from this shape are
caused by the finite system size used in the numerical analysis. An increase of
Pinic Tesults in a more homogenous dispersion of the growing phase. The second
limiting case p;,;; = 1 corresponds to the random distributions considered in the
previous Sect. 3.1. In the subsequent analysis, two cases with different thermal
properties can be distinguished. First, a thermally insulating phase with a large
surface energy grows inside a conducting matrix. In the inverse problem, the
conducting phase has a large surface energy and grows inside a thermally low
conducting matrix. For all analyses within this Section, a constant conductivity
ratio r = Jg/la = 0.01 is presumed.

3.2.1 Two-Dimensional Analysis

First, two-dimensional geometries with an insulating (1g) phase growing inside a
thermally conducting (1,) matrix are considered. The results are shown in Fig. 11.
In addition to the simulation of surface energy (pjni; < 1), the results of Sect. 3.1.1
for random distributions (pj,;; = 1) are added for comparison. It can be observed
that the random structures exhibit the smallest thermal conductivities among the
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Fig. 10 Surface energy models (®, = &g = 0.5, resolution 1,000? lattice nodes): (a) Pinic = 0.1,
(b) Pinic = 0.01, () pinic = 0.001, (d) pinyr = 0

considered geometries. A decrease of the initialization probability causes an
increase of the effective thermal conductivity. A likely explanation is that the
clustering of the thermal insulator B promotes the formation of long range networks
of the conducting phase A. It will be shown in Sect. 5 that the percolation threshold
is in fact affected by the initialization probability p;,;.. The minimum value p;,;; = 0
is considered as a special case: as indicated in Fig. 10, the insulating phase B (black
pixels) forms a single approximately circular cluster inside the conducting matrix A
(white pixels). In this case, the percolation threshold of phase B can be calculated
by dividing the area of the circular inclusion (diameter d) by the area of the square
formed by tangents of the circle: @perc g = 7 (d/2 )2/d2 = 7/4. In a two-dimensional
structure, only one percolating network can exist at any time. In other words, the
conducting phase A cannot form any long-range networks beyond this threshold
and as a consequence the effective thermal conductivity drops towards the lower
values of the other structures. In addition to the LMC data, finite element results of
two-dimensional models with spherical inclusions are added as square markers in
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Fig. 11 Effective thermal conductivity and surface energy (2D): thermal insulator growing inside
conducting matrix

Fig. 11. More information on this finite element approach can be found elsewhere
[24]. An excellent agreement with the LMC results (p;,;; = 0) is obtained.

The second set of models addresses the inverse problem where a thermally high
conducting phase (4,) grows within an insulating matrix (Ag). The effective
thermal conductivities are shown in Fig. 12. It is interesting to compare the results
of the initialization probabilities p;,; = 0.1, 0.01, 0.001 to random structures
(Pinit = 1): for phase fractions @5 > 0.31 a small increase of the effective thermal
conductivity can be observed. A likely explanation is that the surface energy causes
clustering of the conducting phase which supports the formation of short-range
networks. Interestingly, these structures exhibit slightly lower thermal conductiv-
ities than random structures for @g < 0.31. This phase fraction corresponds to the
percolation threshold of the conducting phase in random distributions. However, it
can also be noted that the impact of the parameter p;,;; (> 0) on the effective thermal
conductivity is small and may be disregarded in most cases.

An interesting behavior is found for the limiting case p;,;; = 0. The conducting
phase A is unable to form an interconnected long range network beyond &5 > 1
— m/4, i.e. the circular clusters do not touch and the structures exhibit very low
thermal conductivities. After percolation (i.e. g < 1 — 7/4), the thermal conduc-
tivity increases to the level of the other structures. Due to its importance for thermal
conduction in composites, percolation will be considered separately in Sect. 5.
Analogous to Fig. 11, finite element results (simulating geometries for p;,;; = 0) are
indicated by square markers and a good agreement with the corresponding Lattice
Monte Carlo results is found.
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Fig. 12 Effective thermal conductivity and surface energy (2D): thermal conductor growing
inside an insulating matrix
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Fig. 13 Effective thermal conductivity and surface energy (3D): thermal insulator growing inside
conducting matrix

3.2.2 Three-Dimensional Analysis

In this Subsection, three-dimensional analyses of the influence of surface energy
on the effective thermal conductivity are performed. Analogous to the two-
dimensional case, first a thermal insulator growing inside a conducting matrix is
considered. The results are shown in Fig. 13. The random structure (i, = 1)
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exhibits the lowest conductivities at all phase fractions ®g. A decrease of the
initialization probability causes clustering of the thermal insulator and as already
observed in the two-dimensional structures promotes the formation of conducting
long-range networks. As a consequence, the effective thermal conductivity
increases. In the limiting case p;,;; = 0, the insulator forms spherical clusters inside
the conducting matrix. At the phase fraction @5 = /6, the insulating phase B starts
to percolate. Unlike the two-dimensional case no significant change in the effective
thermal conductivity is observed. The explanation is that in three dimensions two
percolating networks can coexist. An example for such a geometry is given in
Fig. 13. Assuming a perfectly spherical growth of phase B, phase A percolates for
all phase fractions @5 < 0.965.

In Fig. 14, the inverse case (a thermal conductor growing inside an insulating
matrix) is considered. As a reference, the effective thermal conductivities of
random distributions are plotted as a dashed line. For phase fractions &g < 0.4,
no strong dependence on the parameter p;,;; is found. In the range 0.4 < &5 < 0.8,
an increase of the effective thermal conductivity with decreasing values of p;,; (>0)
can be observed. Similar to the two-dimensional structures, the two phases segre-
gate due to the simulation of surface energy. As a result, the formation of conduct-
ing short-range networks is promoted resulting in a slightly increased conductivity.
A different behavior is observed for the limiting case pj,; = 0. At low phase
fractions of the conductor ®, = 1 — &g, clustering of phase A inhibits the con-
nection of the conducting phase, i.e. neighboring spheres do not touch. Accord-
ingly, the effective thermal conductivity is low in comparison to the other
geometries. However, approaching the critical phase fraction 1 — 7/6, the (approx-
imately) spherical clusters start to connect and the conductivity increases rapidly.
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Fig. 14 Effective thermal conductivity and surface energy (3D): thermal conductor growing
inside an insulating matrix
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4 Three-Phase Systems

Due to the increased complexity of three-phase systems, only random distributions
(cf. Sect. 3.1) are investigated. Three species with volume fractions @, @ and P
and corresponding thermal conductivities 415, Ag and Ac are considered. The
thermal conductivities A4 > 0, A5 = 0.5 44 and Ac = 0.01 A are constant through-
out the analysis. As in the previous Sections, values of the effective thermal
conductivities are expressed as ratios of ..

4.1 Two-Dimensional Three-Phase Systems

First, two-dimensional models are considered. The results of the analysis are
shown in the ternary plot Fig. 15a. Phase compositions of identical effective
thermal conductivities (i.e. Ae;r = 0.1 A4) are connected by lines. The circular
markers in the graph correspond to results of the Lattice Monte Carlo calculations.
It can be observed that all ‘iso-conductivity’ lines are in fact straight lines.
Composites with a high fraction @ exhibit low thermal conductivities due to the
low value of Ac. As required, the iso-line A.;; = 0.5 A4, intersects with 100% ®g.
High effective thermal conductivities, i.e. Ay > 0.9 44 can only be observed for
very high phase fractions @,.

4.2 Three-Dimensional Three-Phase Systems

Next, three-dimensional three-phase systems are considered. The results are shown
in the ternary plot Fig. 15b. Similar to Fig. 15a, phase compositions with identical
effective thermal conductivities can be connected by straight lines. The comparison
with the results of the two-dimensional analysis (cf. Fig. 15a) reveals distinctly
higher effective thermal conductivities. A likely explanation is the formation of
long-range networks (percolation) of the conducting phases (A and B) at relatively
low phase fractions in comparison to the two-dimensional case. The percolation
behavior of two-dimensional and three-dimensional structures is considered in the
next Sect. 5 of this Chapter.

5 Percolation

The results of Sect. 3.2 indicate that the simulation of surface energy (i, < 1)
during the model generation distinctly changes the thermal properties of such struc-
tures. For identical phase compositions, different effective thermal conductivities are
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a he =0.01 2y

b Ae=0.01 A

Ay = 0.5 Ay "

Fig. 15 Effective thermal conductivity of ternary systems: (a) two-dimensional, (b) three-dimen-
sional
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obtained. A likely explanation is a change of the percolation of the conducting phase
threshold due to the surface energy. Let us consider a composite beyond this
percolation threshold: no conducting long-range networks can be formed and the
effective thermal conductivity exhibits low values in comparison to a percolating
structure. This Section addresses percolation thresholds for random and modified
two-phase structures. First, the algorithm used for the analysis is introduced. Second,
the order of percolation and the influence of the system size are discussed. After-
wards, random distributions are considered and results are compared to values readily
available in literature. In the final part of this Section, the dependence of the
percolation threshold on the initialization probability p;,; is investigated.

5.1 Percolation Algorithm

Figure 16 shows the algorithm used for percolation analysis on a simple two-
dimensional lattice for one direction — the procedure for the orthogonal direction
(s) is identical. The investigated phase, in the following referred to as species A, is
represented by black boxes; all remaining phases are white boxes. In the first step,
nodes of phase A inside the starting plane, i.e. x = 1, are identified (marked as light
grey boxed in Fig. 16a. The selected nodes act as seeds for the following analysis.
A seed is chosen and neighboring nodes of the same species A are marked as
additional seeds (cf. Fig. 16b). It should be mentioned here that for the identification
of neighbors, periodic boundary conditions are considered. In the next step, the

Fig. 16 Percolation algorithm on a two-dimensional lattice: investigated phase (black), other
phases (white), active seeds (light gray), inactive seeds (dark gray)
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previously used seed is erased, i.e. assigned to a different phase, so that it is not
reused and thereby decreases the efficiency of the algorithm. Subsequently, a new
seed is activated. In principal, any seed could be selected. However, in order to
improve efficiency, the seed with the maximum distance to the starting plane is
chosen. As before, neighboring nodes of phase A are registered as additional seeds
and the old seed is erased (cf. Fig. 16c). This procedure is repeated until (1) the
opposite plane is reached (percolation, cf. Fig. 16d) or (2) no more seeds are
available (no percolation).

A range of different phase fractions is considered and for each fraction at least
100 different models are investigated. The amount of percolating structures divided
by the total number of models is then used to calculate the percolation probability at
the particular phase fraction. The obtained percolation probabilities are then plotted
versus the phase fractions (for an example cf. Fig. 17).

5.2 Order of Percolation

In the case of finite systems a percolation order can be introduced. For simple cubic
grid models, it is useful to distinguish three different orders (directions) of percola-
tion. For first order, percolation is observed in at least one out of the three
orthogonal x, y and z directions. Second and third order means percolation in two
or three directions, respectively. In the context of thermal properties, first or second
order percolation introduce anisotropic behavior. In Fig. 17, two different system
sizes, namely 100° and 400° nodes are shown. Let us first consider the smaller
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Fig. 17 Percolation order for system sizes 100> and 400°
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system. Percolation of the first order is already observed for relatively small phase
fractions. The percolation probability exhibits values greater than zero for
@, > 0.302. Second order percolation starts at @, > 0.306 and third order perco-
lation only at @, > 0.308. The results for the larger system (400> nodes) indicate
that the nth order (n = 1, 2, 3) percolation probabilities converge for increasing
system size. In the case of an infinite system, the concept of percolation order
becomes irrelevant and a singular percolation threshold of 0.3116004 [21] (dotted
line) is obtained. As a consequence, only third order percolation on sufficiently
large systems is considered in the following analysis.

5.3 System Size

The previous Subsection already indicates that the system size has a strong impact
on the percolation behavior of finite systems. Therefore, the (third order) percola-
tion behavior of models containing 1003 s 2003, 400% and 800> nodes is now
addressed. It can be observed that the percolation band, i.e. the range of phase
fractions where the percolation probability is larger than 0 and smaller than 1,
distinctly decreases with increasing system size. Convergence towards a step
function at the reference solution (infinite system size) is observed. It is interesting
to note that the solution of different system sizes intersects in close proximity to this
reference solution. This behavior will be utilized in subsequent analysis: the
percolation behavior of systems with the sizes 400 and 800 will be calculated
and the phase fraction at the intersection of the probability curves will be assigned
to the percolation threshold of the particular structure.

In principle, the results shown in Fig. 18 can also be interpreted as a ‘size effect’.
Smaller structures exhibit a lower percolation probability (e.g. of a thermal con-
ductor) at a particular phase fraction which will affect their thermal properties (e.g.
decrease the effective conductivity).

5.4 Random Distributions

First, the percolation threshold of random distributions in simple cubic arrange-
ments is considered. Figure 18 can be utilized to obtain the percolation threshold of
three-dimensional structures. The probability curves for the system sizes 400° and
800° pixels intersect at ®, = 0.3116(4). The comparison with the reference solu-
tion given in literature with 0.3116004 [21] shows excellent agreement. The
analysis is repeated for the two-dimensional case. Figure 19 shows the percolation
probabilities for the system sizes 8002, 1,6002, 3,2002 and 6,4002. Intersection of
the curves assigned to the largest system sizes is observed at @4 = 0.5927(1) which
corresponds to a deviation of less than 0.006% to the reference solution [20].
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Fig. 18 Percolation behavior of random structures for different system sizes (3D)
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Fig. 19 Percolation behavior of random structures for different system sizes (2D)

The comparison of the two- and three-dimensional percolation thresholds
reveals that three-dimensional structures percolate at lower phase fractions. This
explains that three-dimensional structures exhibit higher thermal conductivities for
similar phase compositions (for example cf. Fig. 15). Percolation of the conducting
phase and therefore the formation of conducting long-range networks is achieved
‘earlier’ (i.e. at a lower phase fraction) than in two-dimensional structures resulting
in higher effective conductivities.
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5.5 Modified Distributions

In the following, the percolation behavior of modified distributions that simulate the
influence of surface energy during the model generation is investigated.

5.5.1 Two-Dimensional Structures

First, the two-dimensional case is considered. In modified structures, a new phase
(subscript ‘N’) with a high surface energy grows inside the matrix (subscript ‘M’).
The model generation is elucidated in Sect. 3.2 of this Chapter and controlled by the
initialization probability p;,;.. Figure 10 shows the influence of the parameter on the
geometry of the two-phase composites. Let us first consider the limiting cases:
random structures (pi,i; = 1) were already addressed in the previous Sect. 5.4. The
case pinir = 0 corresponds to a single circular cluster of the growing phase. Any
deviation from the circular shape (cf. Fig. 10) is due to a limited model size of the
calculation models. Accordingly, the percolation threshold of infinite structures can
be calculated according t0 Ppere = Acircle/Asquare = ?/(2r)* = 7/4, which is the
highest value among the considered composites (cf. Table 1). The percolation
behavior of the structures with p;,;; = 0.1, 0.01 and 0.001 is obtained using the
algorithm explained in Sect. 5.1. A decrease of the percolation threshold with
decreasing initialization probabilities (pi,;; > 0) is observed. It is interesting to
study the connection between percolation threshold and thermal properties: Fig. 12
shows results for a conducting phase growing inside a thermal insulating matrix. In
the case of py,i = 0, a distinct decrease in the effective thermal conductivity is
observed. Only after reaching the (high) percolation threshold of the conducting
phase ®Ppe,c o = /4, the effective thermal conductivity increases towards the values
of the random structures that percolate at a much lower fractions @, = 0.3116.
Therefore, it is a likely conclusion that the decrease in thermal conductivity for
Pinit = 0 is caused by the high percolation threshold of the conducting phase.

The simulation of the surface energy of the growing phase also affects the
percolation behaviour of the (remaining) matrix. Low values of p;,; trigger strong
clustering of the growing phase and cause the conservation of long range networks
inside the matrix. This interdependence of clustering and percolation behaviour was
already observed by Kikuchi [25]. This can be observed in Table 2 where the
percolation threshold of the matrix continuously decreases with decreasing values
of pinir- The percolation threshold of the limiting case p;,;; = 0 (circular clusters) is

Table 1 Percolation Pinit Py
behaviour of the growing 0 n/4 = 0.785
phase for different 0.001 0.5579
initialization probabilities 0.01 0.53273
Pinit 2D) 0.1 0.54722

1 0.59271
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Table 2 Percolation Dinit Dy
behaviour of the matrix phase () 1 — /4 =0.215
for different initialization 0.001 0.4655
probabilities pjpi; (2D) 0.01 0.51700

0.1 0.55285

1 0.59271
Table 3 Percolation Pinit P
behaviour of the growing 0 /6 = 0.524
phase for different 0.001 0.1506
initialization probabilities 0.01 0.17930
Pinit 3D) 0.1 0.24289

1 0.3116004 [21]

calculated according t0 @Ppere = (Asquare — Acircte)/Asquare = 1 — 7/4, all other
values are obtained numerically. Again, it is of interest to study the interdependence
of percolation behavior of the conducting phase and thermal properties. Figure 11
shows the effective thermal conductivities of structures where a thermal insulator
grows inside a thermally conducting matrix. Comparison with Table 2 reveals that
the effective thermal conductivity increases for low percolation thresholds of the
conducting matrix, i.e. the maximum thermal conductivities are found for the
minimum percolation threshold (p;,i; = 0, Ppee = 0.215).

5.5.2 Three-Dimensional Structures

Next, the three-dimensional case is considered. Table 3 shows the percolation
behavior of the growing phase in modified structures. The largest percolation
threshold is found for p;,;; = 0 where spherical clusters form inside the matrix
phase. Assuming a perfectly spherical growth, geometrical analysis yields
Ppere = Vsphere/Veube = 4/3nr°/(2r)® = 7/6. For initialization probabilities larger
than 0, a decrease of the percolation threshold in comparison to random structures is
found. This behavior is very similar to the two-dimensional case (cf. Table 1).
However, in three dimensions, distinctly lower percolation thresholds are obtained.
The comparison of Fig. 14 and Table 3 reveals an increase of the effective thermal
conductivity with decreasing values of the corresponding percolation threshold.
This confirms the connection observed earlier for the two-dimensional case.

The percolation behaviour of the matrix phase is shown in Table 4. Analogous to
the two-dimensional case (Table 2), the percolation threshold decreases with
decreasing values of the initialization probability p;,;. The smallest value is
found for p;,;; = 0, where the growing phase forms spherical clusters inside the
matrix phase. Assuming a perfect spherical growth (even after neighbouring clus-
ters touch) geometrical analysis reveals a percolation threshold of 0.035. Again,
comparison with the two-dimensional equivalent (cf. Table 2) reveals distinctly
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Table 4 Percolation Dinit Dy
behaviour of the matrix phase () ~ 0.035
for different initialization 0.001 0.1248
probabilities p;,i; (3D) 0.01 0.18137
0.1 0.23818
1 0.3116004

lower percolation thresholds in three dimensions. The comparative analysis of
Table 4 and Fig. 13 shows an increase of the effective thermal conductivity for
decreasing percolation thresholds of the conducting matrix.

6 Conclusions

In this Chapter numerical simulations of thermal diffusion in multi-phase materials
were performed. A Lattice Monte Carlo (LMC) method was used towards the
analysis of two- and three-dimensional model structures. The considered compo-
sites are assembled by two or three phases, each exhibiting different thermal
conductivities. First, a random distribution of phases was considered and the
dependence of the effective thermal conductivity on the phase composition was
investigated. The comparison between LMC results and analytical solutions
showed good agreement, in particular for a model derived from the Moleko, Allnatt
and Allnatt diffusion kinetics theory. The second part of this Chapter focused on a
random-growth algorithm simulating the influence of surface energy on the forma-
tion of composite materials. The effective thermal conductivity of these structures
was determined and distinct deviations from random structures (i.e. structures
generated without the simulation of surface energy) were observed. In the final
part of this Chapter, percolation analyses were performed on random and modified
structures. A systematic connection between thermal properties and percolation
behavior was found for two- and three-dimensional structures. A low percolation
threshold of the conducting phase causes an increase in thermal conductivity and
vice versa. The physical explanation is the existence of interconnected long-range
networks that distinctly increase the thermal energy transfer. Three-dimensional
structures exhibit lower percolation thresholds than of two-dimensional ones.
Accordingly, they have higher effective thermal conductivities for similar phase
compositions.
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Abstract Lattice block materials (LBMs) are periodic cellular materials, made of
truss-like unit cells, which usually present a significant enhancement in mechan-
ical performance when compared to their parent material. This improvement is
generally measured by their low weight to strength ratio but several other desirable
properties can also be considered, including high capacity for kinetic energy
absorption, enhanced vibrational and damping characteristics, acoustic noise
attenuation, shear strength, fracture strength, and directional heat conduction or
insulation. Using optimization techniques, it is possible to tailor LBMs for specific
multifunctional needs, combining good performance in different, and sometimes
competing, properties. This work presents a particular approach for a systematic
design of unit periodic cells of LBMs aiming at enhanced simultaneous stiffness
and heat transfer homogenized properties. The homogenization is developed using
an asymptotic expansion in two scales, the unit cells are modeled using linear pin-
jointed truss finite elements and the optimization algorithm employed is Sequential
Linear Programming (SLP). Nodal coordinates and cross sectional areas might be
adopted as design variables simultaneously and the necessary sensitivities are
obtained analytically. Illustrative 2D and 3D examples are included.
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1 Introduction

Modern technological challenges increasingly demand new materials optimized
for specific needs which oftentimes require competing properties. In this sense,
for instance, a material can be required to be light and to show a high stiffness/
conductivity ratio at the same time, or to support shear while being able to absorb
impact energy efficiently. This kind of multifunctionality is best performed by
porous or composite materials, which use the different properties of their
constituents for an enhanced response to different types of simultaneous external
loads [1].

Materials that present multifunctional response are observed in nature; for
example, both complex and simple forms of life, like human bone and diatoms,
exhibit cellular patterns which make them optimally suited for their tasks [2].
Examples of man-manufactured materials which try to exploit intelligently cellular
structures for engineering applications are displayed in Fig. 1. Figure 1a shows the
material used in a ceramic filter made of silicon carbide, alumina and zirconia.
This application requires not only mechanical strength to withstand high tem-
perature flow, but also to yield low pressure loss, erosion resistance, and chemical
and thermal stability to avoid reaction with the molten metal being filtered. On the
other hand, Figure 1b presents an open cell material, made up of truss-like unit
cells which are distributed spatially in a periodic pattern. Materials formed by this
kind of arrangement have been known as lattice block materials (LBMs), lattice-
truss structures, lattice-block structures and cellular lattices.

LBMs are light and present good mechanical properties, particularly high
stiffness and resistance to failure. Their greatest potential of use is foreseen in
multifunctional applications ranging from automotive and aerospace components
to biomedical, civil, sportive and domestic industry [3—6]. It is worth remarking
that the development of high-precision manufacturing processes, such as rapid
prototyping (e.g., Selective Laser Sintering, Digital Light Processing and Micro-
stereolithography [7, 8]) has motivated growing industrial interest in truss
microstructures aiming at high-performance applications. Practical high level
engineering applications include sandwich beams and plates [9-11], photonic and
phononic devices [12-14] and military equipment such as ship doors [15] and
missiles [16]. At the same time, research on LBMs has gained attention from the
scientific community, focusing on aspects such as their analysis at macro and
microscopic levels [2, 17-21], further manufacturing possibilities [22-25], and
their optimized design [6, 26-28].

Studies on well suited topologies for LBMs have a classical reference in the
work of Gibson and Ashby [3]. More recently, Luxner et al. [17] have studied
effective properties, elastoplastic behavior and localization phenomenon in LBMs
resulting from different unit cell topologies, such as those shown in Fig. 2.

Manufacturing methods of LBMs are at present an active research field.
Different technologies have been devised and continue to be proposed, so that an
apparently complicated layout or topology of a particular unit cell should not be
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(a) ()

Fig. 1 Open cell structures. a ceramic foam filter used to remove impurities from liquid metals
in casting [29], b Lattice Block Material made up of an aluminum alloy [26]

disregarded for production, although certainly an aspect of concern. As a conse-
quence of these new manufacturing methods, efforts have been placed in the study
of the structural behavior of LBMs resulting from particular fabrication procedures
[31-33]. On the other hand, the possibility to manufacture a wide range of unit cell
configurations opens the way for the application of optimization techniques to
determine ideal layouts and topologies for LBMs withstanding multifunctional
requirements. The optimization of a LBM can be defined as the determination of
the best geometrical configuration of its unit cell, in order to maximize or mini-
mize a given functional, or multifunctional, criterion. Techniques such as inverse
analysis can be adopted for this purpose, although oftentimes the problem does not
present solution unicity. In general, the functional criterion to be extremized
corresponds to a macroscopic, average, or homogenized property. Homogenization
for periodic microstructures is a well established theory, and classical references
include Sanchez-Palencia [34] and Hassani and Hinton [35].

Hyun and Torquato [36] used standard topology optimization based on the
Simple Isotropic Material with Penalization (SIMP) approach to obtain easily
manufacturable two dimensional isotropic optimal cellular solids for effective bulk
and shear moduli over the entire density range. Although their formulation was
based in 2D elasticity, their results led to the conclusion that at intermediate
densities, the optimal structures are given by Kagomé lattices. The authors suggest
the possibilities of multifunctional applications of Kagomé structures based on

LK iﬁ
(@) (b) (© (d) (e

Fig. 2 Unit cells of periodic materials studied by [30] a Simple cubic (SC), b Translated simple
cubic (TSC), ¢ Body centered cubic (BCC), d Reinforced body centered cubic RBCC), e Gibson
Ashby (GA)
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their superior strength to elastic buckling when compared to triangular-like cell
structures.

Sigmund [37] pioneered the use of homogenization methods to obtain and
optimize macroscopic constitutive properties dealing directly with truss-like
microstructures, i.e., employing truss and frame finite elements. His work intended
to design materials with prescribed constitutive tensors. He adopted the usual
topology optimization approach for trusses, in which a ground structure of bars
with fixed coordinates is taken as the initial design, and only the cross sectional
areas are allowed to change. In Sigmund [38] truss-like and frame-like cells are
compared to optimize macroscopic constitutive properties. No apparent difference
was observed in the topology of the optimized cells. Hence, it was assumed that
truss elements can be used for the optimizing procedure with great computational
advantage, especially in 3D cases, where the number of degrees of freedom per
element in frames is twice that of the truss case. Further, Deshpande et al. [39]
showed that stretching-dominated cellular solids are more weight efficient for
structural applications than bending-dominated ones. In this regard, Evans et al.
[40] and Suralvo et al. [24] mention that the absence of bending allows the
stiffness and strength to vary linearly with relative density of the cell. In
stretching-dominated structures the resultant strength-to-weight and stiffness-to-
weight ratios are improved and the relative density can be reduced to as low as
2-3% [24]. Therefore, preliminary use of pin-jointed trusses in optimization is
justified, although qualitative results obtained should be verified using cells formed
by frame elements.

Yan et al. [26] presented an approach which optimized a LBM unit cell, having
only nodal coordinates as design variables. They developed the formulation for 3D
and 2D elasticity but presented results only for plane stress. The example shown
concerned the maximization of the homogenized elastic tensor component asso-
ciated to shear, that is, E1;,. The expressions for analytical sensitivities were
detailed. More recently, Lippermann et al. [27] made an original contribution
optimizing unit cells made of Euler—Bernoulli beam elements with respect to a
resistance criterion at the microscale, which is known as stress localization. In this
case there was no need for homogenized properties. They particularized the cross
sections to be rectangular with one of the dimensions equal to unity. Thus, they
adopted as design variables both the free dimension defining the cross section and
nodal coordinates. 2D applications were presented showing the presence of local
minima. Starting from different initial designs, the results converged systemati-
cally to one of the three configurations: squares with two diagonals, equilateral
triangles and Kagomé grids, all of which being stretching-dominated structures.

A different application for LBMs was exploited by Prasad and Diaz [41], who
devised the design of 2D bistable compliant periodic structures using nonlinear
beam elements. The key idea in this case was to make use of the snap-through
behavior of the slender beam elements in the unit cell. This concept had been
presented before by Ohsaki and Nishiwaki [42], although restricted to the shape or
layout design of regular compliant mechanisms, rather than to the design of a
periodic material with bistable properties.
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Dede and Hulbert [43, 44] introduced an original technique to optimize periodic
lattice structures in order to obtain enhanced vibro-acoustic characteristics. The
authors employed topology optimization aiming to design frame-made unit cells
acting as compliant mechanisms to be integrated in large scale structures rendering
improved dynamic response. To solve this problem, due to the existence of many
local minima, the authors adopted a genetic algorithm. The possibility to obtain
multifunctional properties exploiting lattice structures made of non-metallic
materials, such as polymers, is highlighted in their work.

Gonella et al. [13] introduced a novel idea to design multifunctional LBMs
combining ultralight characteristics, superior mechanical wave filtering properties
and energy harvesting capabilities. The key issue is to introduce piezoelectric
cantilevers in the unit lattice cells, so that, in addition to a bandgap desired
behavior, the structure allows the conversion of localized kinetic energy into
electrical energy. Foreseen applications include self-powered microelectrome-
chanical systems (MEMS).

The present Chapter has its focus in the layout optimization of LBMs for
enhanced response to simultaneous thermal and mechanical loading. Linear pin-
jointed 3D bar elements are employed. Design variables include both, size (cross
sectional areas) and shape (nodal coordinates) parameters simultaneously, thus
reducing the number of bars needed in a ground structure. As explained above, one
of the few research works to adopt this approach was presented by Lippermann
et al. [27] but in a different context. All the sensitivities are developed analytically
and the optimization is performed using Sequential Linear Programming (SLP).
The formulation developed comprehends 3D and 2D structures. Examples of both
cases are included.

The outline of the Chapter is as follows: Sect. 2 reviews briefly the concept of
homogenization of materials with periodic microstructure using an asymptotic
expansion; Sects. 3 and 4 particularize the application of this theory to obtain
macroscopic thermal and mechanical properties of a continuous body based on a
truss-like 3D unit cell; Sect. 5 shows the procedure adopted for applying periodic
boundary conditions; Sect. 6 discusses the use of area and coordinate design
variables at the same time; Sect. 7 defines the optimization problems, including
the proposed multifunctional objective functions; Sect. 8 describes briefly the ana-
lytical sensitivity analysis approach adopted; Sect. 9 shows 2D and 3D numerical
results; and Sect. 10 synthesizes the most important aspects of the work.

2 Homogenization of Materials with Periodic Microstructure

Among the wide range of existing materials, a particular group which exhibits
regular and periodic structure can be identified. This means that any physical,
mechanical or thermal property must obey the relation

F(x+NY) =F(x) (D
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F(x) F(x)

(a) (b)

Fig. 3 Behavior of property F(x): a global, macroscopic or average behavior and b local or
microscopic behavior

where F is the property, x = [x;, x», x3]" is the position vector of a given point,
N is a3 3 diagonal matrix of arbitrary integer numbers

n 0 0
N=|0 m 0 @)
0 0 ns

and Y = [Y,, V>, Y3]T is a constant vector which determines the period of the
structure, i.e., the dimension of the base cell. The period is usually very small
when compared to the dimension of the global domain. Hence, the average
physical, mechanical and thermal properties suffer rapid oscillations in the
neighborhood of a given point x, as shown in Fig. 3.

Figure 3 displays the same function in two scales: (a) a global, or macroscopic
one, where the coordinates are given by x; and a local, or microscopic one, where
the coordinates are given by y. Both scales are related by Eq. 3 through the
parameter &, which is typically very small.

y=1 3)
€

The macroscopic behavior can be obtained from the microscopic one using
homogenization theory based on an asymptotic expansion in two (or more) scales.

3 Homogenization of Mechanical Properties

In this Section the basic homogenization equations for mechanical properties will
be reviewed in the special perspective of a truss-like unit cell. The notation will
follow Fonseca [45]. A similar, though more concise development can be found in
Yan et al. [26].

Considering that the displacement field is expanded in two scales, one has

u(x,y) :uo(x)Jrsul(x,y) “4)
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where u; is periodic in the dimension Y of the cell and the lower indexes “0” and
“1” refer to the macro and microscale contributions, respectively.
If ® = O(x, y) is a function where y depends implicitly of x, it follows that

Ao 90  9d0dy

e e 5
dx Ox Oydx )
and replacing Eq. 3 into Eq. 5 one gets
dd 00 100
i g 6
dx Ox * e dy ©

The stress—strain and strain—displacement relations are given respectively by

oij = Ejuey @)
- 1 auk (9”1
= 2 (8x, + Bxk) (8)

for which a more convenient notation is adopted, as given in Egs. 9 and 10.

c=E-e ©))
190  90)
k== |—=—+-= 10
a 2 < (‘)x[ + 6Xk ( )
The principle of virtual work is given by
/a-&edQ—/b-(SudQ—/t-éudF:O You € Vg (11)
Q Q r

where b is the body force, ¢ is the surface force acting on I' (boundaries of the
domain Q), u is the displacement suffered by the structure and Vg, is the set of
kinematically admissible displacements. It is assumed that there are no tractions
acting on the internal borders of the base cell.

Using the same expansion applied in Eq. 4, it follows that e and de can be
written as

e = Oup + €0y + Oyuy (12)
oe = 00uy + €0.0u; + Oyou; (13)

which, considering ¢ — 0, reduce to
e = Ocup + Oyuy (14)
de = O;dugy + 0,0u, (15)
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Replacing Eqs. 9, 14 and 15 in the first term of Eq. 11, this part can be rewritten
as

/ ((’Lug + 8yu1) -E - (&Céuo + 8y5u1)d§2 (16)
Q

which, considering the existence of periodic cells in the domain, becomes

/%/ (a\-uo + 8yu1) -E - (8X5u0 + 8y5u1)deQ 17
Q Y

where Y is the cell period and |Y! is the total volume of the cell. In Eq. 17, the
equality

/(D(x,y)dQ:;//d)(x,y)deQ (18)
Q Qv

was used.
Since du is arbitrary, one can choose ou; = 0 and Jduy # 0, particularizing
Eq. 17 to

1
/ maxéuo / E - (Duo + Oyuy ) dYdQ (19)
Q Y

which corresponds to the macroscopic term in Eq. 17.
On the other hand, choosing duy = 0 and du; # 0 in Eq. 17, it yields

1
/7|/ Oyou, - E - (ax-uo + 8yu1)deQ Vou, periodicinY (20)
Q Y

which corresponds to the microscopic term in Eq. 17.

In order to account for the external loading in the macroscopic part of the
principle of virtual work contained in Eq. 11, it is considered that body forces obey
the relation

/ b SudQ = / (b) - SuodQ Q1)

Q Q

where (-) is the average of (-) in the cell, that is,

1
0= / ()Y 22)
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At the same time, by hypothesis, no surface loads are assumed at the micro-
scopic scale, resulting in

/t-éudl" = /t-&uodl" (23)

r r

Thus, the macroscopic equation can be expressed as

1
/ma,ﬁuo/E (8Xu0 + 8yu1)deQ — / <b> - OupdQ — /t ~oupdll =0
Q

Y Q r
24
while the microscopic equation is given by
/Illfl/ Oyouy - E - (dug + Oyuy )dYdQ = 0 (25)
Q Y
At this point, it is possible to adopt the convenient separation of variables
wip =~ (%, ) O (x) (26)
which, introduced in Eq. 14, provides
e = Ocug + Oyuy = Oty — Oy ) Oxltp 27

where y are the characteristic displacements of the unit cell, to be determined in a
later stage.
Replacing Eq. 27 into Eq. 25, results in

1
/maxuo : /8},5u1 E- (I —0,7)dYdQ =0 (28)
Q Y
and the satisfaction of Eq. 28 implies that

/8y5u1 E - dyydyY = /ayéu1 E-IdY (29)
Y Y

where I is the 4th order identity tensor.

It is possible to find a family of functions y (according to an additive constant)
which satisfy Eq. 29. However, since the equations developed require only the
derivatives of y, given by dyy, the value of the constant is indifferent. Therefore, by
virtue of Eq. 27, the macroscopic equation given by Eq. 24 can be solved to yield

/ O:oug - E™ - 0,updQ — / (b) - SupdQ — / t-Supdl =0 (30)
Q Q r
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where

EHzly/E-(I—ay;{)dY 31)
Y

is the homogenized constitutive tensor which, following Hassani et al. [35, 46],
can be rewritten in indicial notation as

!
oy
Eﬁkl |Y| / < ikl = lqua p>dY (32)

or in a compact form

D (x) — |_;|/ (D-D[s0 ... (NO])ay (33)
Y
that is,
1 /)

Y

where D; is the constitutive tensor organized in compact matrix notation, &P is the
strain field (organized in vector form) resulting from the &/ “load case” of Eq. 29
(see Egs. 32 and 36), and NLC stands for the number of columns of D.
The compact and full notations are related by the following replacements:

01 = 011,02 = 023,03 = 033,04 = G[2,05 = 023,06 = 03]
& =e11,8& = e€x,83 = €33, (35)

&4 = 2e12 = V12,85 = 2€23 = Vp3,86 = 2€31 = Y3,
and
Dy p) = Eipuy (36)

where the correspondence between Greek and Latin subscripts is given in Table 1.
It is important to notice that the resulting micro and macroscopic problems are
uncoupled and their solution can be summarized as follows:

1. Find y solving Eq. 29 and determine 0,y;
2. Calculate the homogenized tensor using Eq. 31;
3. Build the macroscopic equation given by Eq. 30.

Table 1 Correspondence of indexes in tensorial and compact notations
ij or kI 11 22 33 12 23 31
oorf 1 2 3 4 5 6
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3.1 Numerical Determination of x

In order to find y, Eq. 29 may be solved numerically using the Finite Element
Method, as first proposed by Guedes and Kikuchi [47]. The present particular
approach considers truss-like unit cells, so that the discretization employs 3D
linear bar elements. Following the usual procedure yields the system of equations
below, also described by Yan et al. [26],

Ky=P 37

where
K= Z / B'DBdY*¢ (38)
e e
fe
and
P=>" / B'Day¢ (39)
4 o

B is the strain—displacement matrix and D is the constitutive matrix of the bar
element referred to its global reference system of coordinates. K is the homoge-
nized global stiffness matrix and P is a matrix containing global load cases
resulting from the homogenization development. Each column of matrix P is a
force vector related to an imposed unit strain given in a particular direction over
the unit cell, as can be seen by inspection of Eq. 29.

The solution of Eq. 37 requires the application of periodic boundary conditions
on the boundaries of the cell, which can be accomplished numerically by different
means. The particular approach adopted in the present work will be discussed in
Sect. 5.

3.2 Determination of the Mechanical Matrix B

Matrix B contains the derivatives of the interpolation functions that describe the
global displacement field in the finite elements adopted. For the 3D bar elements
employed, the isoparametric approach approximates both displacements and
geometry using the same linear interpolation functions, parameterized by ¢ in the
range —1 < & < 1, as shown in Fig. 4.

The local displacement and geometry approximations are thus given by

(1= &+ 2 (1 + &)y 40)

u(@) = .

| =
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Fig. 4 Truss element show- Y
ing its local parameterized
reference system
X u
L ¥ Node 2 (local)
y i
1 x=x=L
E u=u
g =+l
L ¥'Node 1 (local)
v x =x=0 :
E u=u; '
g =-1 i
1 [} o X
X] X2
1 1 .
x(&) :E(l —5)X1+§(1 +&xy (41)
and the global counterparts are given by
1 1
U(é)ZE(l—i)UlJrE(lJré)Uz (42)
1 1
X(i)zi(l_é)xl+§(l+é)x2 (43)
1 . 1
V(¢ = 5(1 = Vi +§(1 + V2 (44)
1 1
Y(E) =51 =N +5(1+0Ys (45)
1 1
(&) :E(l - OWi +§(1+5)W2 (46)
1 1
2(6) =51 =0z +5(1+ 82 (47)

where U(E) describes the displacement field in the global direction X, while U, and

U, are the nodal displacements

in this direction. Analogous descriptions are

applied to the displacements V(&) and W(¢&), associated to the directions Y and Z,
respectively. The same approach is applied to geometry parameterization. The
interpolation functions used are identified as

Ni (&) = (1

N =

=& and Ny(¢) =5 (1+¢) (48)

N =
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The Jacobian of the local coordinate transformation is given by

d 1 1 1
J = X(f) = —=X1+t=xr =

_L 49
dé Ffitan=5n-x)=7 (49)

2

where L is the element length.
The relation between local and global coordinates in the bar elements is given
by

X = Xl] + le +Z}’l1 (50)

where [}, m; and /; are the direction cosines of the angles «,  and 7y between the
local x axis and the global X, Y and Z axes, as shown in Fig. 5.

From the definition of the strain tensor (organized in a column vector), and
replacing the analytical displacements by the interpolated fields, one has

&y oU/oX
&y ov /oYy
e | ow oz _
T () oUjOY +0v/ox = BU Gb
Ty OV OZ + OW | OY
Vor OW |OX + U /0Z
where
0 QI\S;Q) 0 0 81\(’92&) 0
Mm@ M g M e (52)
Y 0X Y 0X
0 ON:1 (&)  ON1(§) 0 N> (&) IN2 (&)
0z Y 0z oY
ON,(£) 0 ON1(E)  ON2(E) 0 N2 (&)
L 0Z 0X 0z ox J
Fig. 5 Local and global Y&
coordinates of an arbitrary
bar element
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and U=[U, V; W, Uy Vo W ]T are the element nodal global
displacements.

By using Eqgs. 48-50 and the chain rule of differentiation, the components of
the matrix displayed in Eq. 52 can be found as follows

ON; (&)  ON:(&)0E ox . . Lo Iy

oxX 9 oxox =l opiti=2=7 &9
ON; (&) ON;(&) 9& ox .. mo... n

oY ) 4 ifi=1=—mili=2=7 oY
ON;(&) ON;(&) 9& ox . M m

Y4 & ox 0z Hi=1=-7 =2 L o

3.3 Determination of Matrix D

The one-dimensional elastic constitutive relation for a bar element in the local
reference system can be written as

c=D¢ (56)
or
- E 00 0 0 0](a
’, 00000 O0|]|e
o, 0O 0 0 0 00 &
= (57)
Gy 00000 0|)n,
oy 00000 O,
o) L0000 0 0y

where D’ is the constitutive matrix of the bar element in its local reference system,
as displayed in Fig. 5. Note that the same boldface notation o is used for the stress
tensor when organized in tensor or vector form. However, Eqgs. 38 and 39 need the
constitutive matrix to be referred to the global reference system. Since D" is a 4th
order tensor, it is rotated as

D=TDTsp (58)

where T3p is the transformation matrix given by
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[ l% m% n% limy min; nly T
l% m% I’l% lzi’)’lz nony nzlg
l% m% I’l% 12}’)12 msns ns l3

T =
b 20, 2mimy  2niny  Lymo + Lhmy o myny + mony  nyly + naly

213 2moms  2nyn3  bLhms + limy  mons +mzny npls 4 nzlp

| 21y 2msmy  2n3ny Lmy 4+ Lims mzng +minz nzly + nyls
(59)

in which /;, m; and n; with i € {1, 2, 3} are the direction cosines between the local
x, y and z axes and the global X, Y and Z axes, respectively.

4 Homogenization of Thermal Properties

This Section shows the development of homogenization equations for heat transfer
following the main guidelines described in Sect. 2. This time, as a deliberate
equivalent option, an energetic approach is used instead of the principle of virtual
work [48] adopted in Sect. 3. Once more, the homogenization equations are fol-
lowed by their numerical counterparts via the finite element method particularized
to truss-like unit cells.

The starting point is the definition of the thermal conductivity Kt as a periodic
property in the domain

Kt(x,y) =Kt(x,y+Y)andy =x/g, ¢ >0 (60)
The temperature field is expanded asymptotically in two scales, yielding
T =T(x,y) = To(x) + T (x,y) (61)

where T is periodic in the dimension Y of the cell.
The temperature gradient is given by

V.T = V,To(x) + eV.T1(x,y) + V,T1 (x,) (62)
where V, and V, are defined by

(V0,0) = 5 ana (7)) = 5 €

so that an energy functional for the average thermal conductivity can be written as

G(T) = —% / V. T)" KV, TdQ + / gTdr (64)

Q r
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where ¢ is the heat flux on the surface, which is assumed to be independent of the
scale ¢, and Q and I' are the domain and the boundary of the macroscopic
structure, respectively.

Substituting Eqs. 60-62 in Eq. 64,

G(1) =~ [ [ViT) + VTi )] e [V:To(x) + 9,71 3.0
Q

_g/wmuyﬁm@wwuuw+wn@wpg
Q

[ T K VLT a0
Q

€
2

+ [atowdr +¢ [ qri(x.p)ar

T

——

(65)

Differentiating G(T) and passing to the limit ¢ — 0,

}gr& {0G(T*)} = —/ [V 0To(x) + V0T (x,y)]TKt(x,y) [V To(x) + V,T(x,y)]
Q

dQ + / qSTo(x)dT
r
(66)

where T, and 0T, are periodic in the dimension Y of the cell. Thus, in order to
satisfy Eq. 54, and using the relation given by Eq. 18, it follows that

_/—|117|/ I:VVTO(x)+V)Tl(xuy):lTKt(xvy)[vxéTO(x)]deQ+/qéTO(x)dr:O
Q Y 4
(67)

for every admissible dT(x), and

_ / ﬁ / [V.To(x) + V,T1(x,y)] Kt(x,y)[V.0T (x,)|dYdQ =0 (68)
Q Y

for every admissible 6T (x, y), periodic in the dimension Y of the cell.
Equations 67 and 68 stand for macro and microscopic terms, respectively.
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Assuming a convenient separation of variables for T,(x, y), one obtains

9Ty

Ti(x,y) = —R"(x, Vo

= VyTi(x,y) = —=V,R(x,y)V.To(x)  (69)

where R(x, y) are the characteristic temperatures of the unit cell.
Replacing Eq. 69 into the microscopic Eq. 68,

- / |71‘ / [V.To(x) — V,R(x,)V.To(x)] Kt(x,y)[V.0T) (x,y)]dYdQ = 0
Q Y

VoT, periodic in Y (70)

which is satisfied if R(x, y) is the solution of

|Y|/ — V,R(x y)] Kt(x,y)[Vy0T;(x,y)]dY =0 (71)

On the other hand, substituting Eq. 69 into the macroscopic Eq. 67, one has

- / |_117|/ [V.To(x) = V,R(x,3)ViTo(x)] Kt(x, y)[V:0To (x)|d¥dQ
Q Y

(72)
+ /qéTo(X)dF =0

r

which induces that, in analogy with Egs. 30 and 31, the homogenized thermal
conductivity tensor is defined by

1
H
= m/Kt(x,y) [I — VyR(x,y)}dY (73)
or in indicial notation,
1 OR/
Kl = — / (Kzf — K1 —> dy (74)
) 4 J ! "Oyp

4.1 Numerical Determination of R

The determination of R follows a development completely analogous to the one
presented in Sects. 3.1-3.3 for y. Hence, in order to find R, Eq. 71 must be solved.
Again, the finite element method is employed to discretize a truss-like unit cell
using linear 3D bar elements. The procedure leads to the following linear system,
similar to the one described by Eq. 37,
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CR=0 (75)
where
c=> / BTKtBdY*® (76)
e Qe
and
0=> / BTKtdy* (77)
e Qe

B is the matrix containing the derivatives of the interpolation functions and K¢
is the thermal conductivity matrix of the bar element in its global reference system,
C is the homogenized global thermal conductivity matrix and @ is a matrix con-
taining load cases resulting from the homogenization development. Each column
of matrix @ is related to an imposed unit thermal gradient vector given in a
particular direction over the unit cell, as can be seen inspecting Eq. 71.

The solution of Eq. 75 requires the application of periodic boundary conditions,
which will be discussed in Sect. 5.

4.2 Determination of the Thermal Matrix B

The three-dimensional Fourier Law for heat conduction is

dT (X)
—q(X) =Kt 78
q(X) X (78)
so that in the global domain of the unit cell it can be written as
dr
qx ktyi ktip ki | | X
—Q qy = |kt ki ki3 | % (79)
qz kt3y  kt3p  kt33 dr
dz

Using the linear interpolation functions given by Eq. 48 to approximate the
temperature field, which is invariant for a change of frame, one gets

ar N1 (&) ONA2(&)

X 0X 0X T

G I TS A S !

g\ |me ow { n } (80)
dr ONL (&) ONA(E)

dz oz oz
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where T and T, are the nodal temperatures and the thermal matrix B is given by

ONi(&)  INx()

0X 0X

B= |2 (81)
NI N (&)
0z 27

with its terms given by Eqgs. 53-55.

4.3 Determination of Matrix Kt

Equation 78 particularized for an element bar with reference to its local system of
coordinates is given by

dr
G k0 0]«
—Q gy =100 0|0 % (82)
g: 00 0]|a
dz
where
k 0 0
Kf=|0 0 0 (83)
0 0O

and Kt” is the thermal conductivity matrix with reference to the bar’s local system
of coordinates. Equations 76 and 77 need K¢” to be rotated to the global reference
system. This is done through Eq. 84

Kt =TI K{'T;p (84)

where T, is the transformation matrix for a 2nd order tensor, given by

11 nmp n
Top=|hL m m (85)
I3 m3 n

in which /;, m; and n; with i € {1, 2, 3} are the direction cosines between the local
x, y and z axes and the global X, Y and Z axes, respectively.
5 Periodic Boundary Conditions

The linear systems resulting from the mechanical and thermal problems defined by
Eqgs. 37 and 75 must respect the periodicity condition over the whole domain,
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Fig. 6 Periodic boundary
conditions on the base cell

which introduces a kinematic constraint on the unit cell. The imposed constraint
enforces that displacement or temperature fields must display equal values on
opposite borders of the cell, as depicted in Fig. 6.

After discretization of the base cell, several methods can be used to ensure the
aforementioned constraint, including Lagrange multipliers, penalization [49] and
condensation or reduction. This work employs the method of condensation as
described by Yang et al. [50]. Initially, any prescribed displacement or temperature
value is applied to one of the cell vertices (at least one must be constrained). The
application of equality constraints between the proper degrees of freedom is
accomplished by the use of a transformation matrix T, relating all the degrees of
freedom (y or R), represented generically by u, to the unconstrained ones (¥ or R),
represented generically by u.

In Fig. 7 it is assumed that there are 2p nodes on the upper and lower faces, 2q
nodes on the other two sides. The multi-point constrains for the unit cell can be
expressed by

Ui = Ujtp (l: 1727"'7p) (86)
on the upper and lower sides, and
Uj = Ujrg (]:1,2,,(]) (87)

on the right and left sides.
This relation can be written as

U = Tansil (88)
Fig. 7 Application of peri- p+l i+p 2p
odic boundary conditions on q e . . 2q
degrees of freedom of oppo-
site sides in the base cell ] [
je ejtq
L] [ ]
1 - . . q+l

—
-
L)
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For instance, in a system containing “n” degrees of freedom and the single
constraint u; = u;, the transformation matrix will have dimension “n x (n — 1)”
and will look like Eq. 89.

1 2 - 1 - J - n-1
P 0o - 0 - 0 - 0 | 1
0 1 0 0 0 | 2
Tians = 89
trans O 0 . 1 . O . O | I ( )
|
0 0 1 0 0 | J
|
Lo o - o - 0 - 1 | n]
Thus, the global systems to be solved (Eqgs. 37 and 75) become
Ki=P 90
where, for the mechanical problem,
K = TgansKTtrans (91)
p=1t P (92)

and after solving Eq. 90 for #, the value of u is recovered by means of Eq. 88. The
thermal problem is treated by analogy with Egs. 91 and 92, through condensation
of C and Q.

The 2D asymmetric problem shown in Fig. 8 is taken from Yang et al. [50].
It consists of a 3 2 units cell containing an asymmetric hole in which the
dimensions are given by “a”. Figures 9 and 10 display the characteristic dis-
placements and temperatures ¥ and R resulting from the respective 2D load
cases. Each column of matrix P in Eqgs. 37 and 39 corresponds to a load vector
resulting from a particular imposed unit strain field. Similarly, each column of
matrix Q in Eqs. 75 and 77 corresponds to a load vector resulting from a
particular imposed unit thermal gradient field. The scale ratio in the figures
is 1:4.

Fig. 8 Geometry and a

dimensions of an asymmetric )
cell adopted to show the N 2 2a
application of periodic a

boundary conditions
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(b) () (d)

Fig. 9 Characteristic displacements a initial mesh, b unit €,, ¢ unit €, d unit y,,

0018136
Q026773

(a)

Fig. 10 Characteristic temperatures a unit d7/dX, b unit dT/dY

6 Design Variables: Why Areas and Coordinates Together?

The most common approach for dealing with trusses in structural optimization
(usually topology optimization) uses densely populated ground structures [51, 52],
and allows only cross sectional areas to be modified. Hence, a large amount of bars
are needed to obtain realistic results. On the other hand, presumably, a combi-
nation of nodal coordinates and cross sectional areas would require much less
design variables to lead to an acceptable optimized structure.

In order to show the point, consider the square design displayed in Fig. 11, in
which the left edge has symmetry conditions. The structure is simply supported
and subject to a single prescribed force. 42 bars with the same cross section and
material are employed in the model. The objective is to minimize the weight while
respecting the allowable stresses in every bar.

It is intuitive that starting from overestimated cross sectional areas and using
only nodal coordinates as design variables, only a very limited improvement on
weight can be attained. This case is characterized by Fig. 12a. On the other hand,
if only areas are adopted as design variables, the weight decrease is dramatic,
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Fig. 11 Initial configuration
for the weight minimization
problem

although the geometry becomes complex, as in Fig. 12b. It can be seen in
Figs. 12c—e that the introduction of coordinates provides a further enhancement
in weight while rendering much simpler geometrical configurations.

Classical research works point out convergence difficulties when a combination
of areas and coordinates is adopted as design variables, stress constraints are
imposed, and SLP is adopted for weight optimization. Nevertheless, this problem
has been successfully solved by Vanderplaats [53] and, in the different application
considered in this Chapter no stress constraints are imposed. Hence, the joint
adoption of areas and coordinates as design variables was shown to be effective.

7 Definition of the Optimization Problems

The study developed in this work considered 4 different optimization problems,
i.e., 4 different objective functions. They correspond to maximize or minimize
given components of the homogenized mechanical or thermal constitutive tensors,
or their combinations to account for multifunctional responses. The design vari-
ables adopted can be any combination of cross sectional areas and nodal coor-
dinates. Hence, the optimization problems can be defined as

Optimization problem 1: For given i, j, k, I, maximize the corresponding
component of the mechanical homogenized constitutive tensor Ef,(k,

Optimization problem 2: For given i, j, maximize or minimize the corre-
sponding component of the thermal homogenized constitutive tensor K,’f .

Optimization problem 3: For given i, j, k, [, m, n, maximize the ratio of the
corresponding components of the mechanical and thermal homogenized consti-
tutive tensors, E{fk, (x)/Kt2 (x).

Optimization problem 4: For given i, j, k, [, m, n, maximize the product of the
corresponding components of the mechanical and thermal homogenized consti-
tutive tensors, Ef}k, (x) - Kt (x).

In the optimization problems 1-4 the following constraints are applied:
fo- Vo<V <fy-Vo (93)

Al <AT<A m=1,... nap 94)

mi
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10° . . . . . .
/'r | U
10* 4 -
z o X and Y Coordinates only
= « Areas only
[
= —— Areas and X or Y Coordinates
103 —--- Areas, X and Y Coordinates
10? T T T T T T
0 50 100 150 200 250 300 350
Number of iterations
700 1 1 1 1 1 1 1 1 1 1

« Areas only

— Areas and X or Y Coordinates
—--- Areas, X and Y Coordinates

500 L

Number of itgrations

(@)

Fig. 12 Effect of using different combinations of areas and nodal coordinates as design variables
in a weight minimization problem. a only X and Y nodal coordinates, b only areas, ¢ areas and X
nodal coordinates, d areas and Y nodal coordinates, e areas and X and Y nodal coordinates
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Ximn <X < X:nax m=1,... ncopx 95)
Yl <Y <Y m=1,...,ncopy (96)
Zl<Z'<Z  m=1,... ncopz O7)

where nap, ncopx, ncopy and ncopz are the number of design variables associated
to areas, and X, Y and Z coordinates, respectively. f; and f;; are lower and upper
bounding factors on volume. In all the examples discussed in Sect. 9, these factors
were chosen in order to preserve a constant volume.

In this work, the optimization task is performed using SLP as previously done
by Pedersen [54] and others for truss layout optimization. In this method the
objective function and the constraints are linearized with respect to the current
design point, defining an associated linear programming sub-problem. The opti-
mum point for this sub-problem is adopted as the new current design project and
the updated objective function and constraints are linearized again, now with
respect to this point. The procedure continues iteratively until convergence. Hence
a non-linear optimization problem is replaced by a sequence of linear program-
ming problems. As a termination criterion, it can be established that the relative
difference between two iterations should be less than a prescribed tolerance, for
both the objective function and the design variables.

7.1 Linearization of the Objective Function and Volume
Constraint

In order to apply SLP it is necessary to linearize the expressions for the homog-
enized mechanical and thermal coefficients. This is accomplished by performing a
Taylor series expansion truncated in first order terms. As shown in Eqs. 98-100,
the gradients with respect to the design variables are needed and their analytical
determination will be detailed in Sect. 8.

nap 9

H ljk[
Eij = Ijk[O + E , A,

ncopz a Egkl

ncopx 8

AAm Z 8 ljkl

ncopy a

AXm Z a i jkl

AZ, 8
+ Zl Al 98)
nap KIH ncopx aKtH mopvaKH

y 11
Kt = KtZ’0+Z:la AA,, Z x| Ao Z v | An
m m=
11L0[178KtH

L (99)

+Zazu
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VV0+§1;682; AA,,,+M§Y§; AXermpyg:; AY"ZJF%EJBZ‘; AZ, (100)

m= 0 m=1 0 =1 0 m=1 0

where
AA, = A" — AT (101)
AX,, = X" — XJ (102)
AY,, =Y" =Y (103)
AZ, =2" -Zj (104)

In Eqgs. 98-104 the lower index zero stands for values in the current design
point.

7.2 Move Limits

The adequate and stable behavior of SLP demands introduction of move limits on
the design variables [54, 55]. The move limits update scheme is external to the
mathematical programming algorithm and affects strongly the process conver-
gence and efficiency. The problems presented herein showed instabilities (con-
vergence difficulties) with respect to different update strategies for move limits,
especially regarding area design variables. Hence, initial move limits were made
very small for all the design variables, and a different treatment was given for their
update strategy, according to the design variable nature. Area move limits were
kept constant, while coordinate move limits were updated in a very conservative
fashion, with different update factors for each example presented. This strategy
hindered efficiency on behalf of effectivity, as will become clear in the numerical
examples presented in Sect. 9. It is worth remarking that Sigmund [37] mentions
similar difficulties and recommends the use of small move limits to ensure final
convergence. For the purpose of this work, efficiency was not a major concern and
other optimization algorithms would probably result in faster convergence. This
kind of study is left for future development.

8 Sensitivity Analysis

Sensitivity analysis deals with the determination of gradients. The focus in the
present case are the derivatives resulting from the linearizations present in
Eqgs. 98-100. The gradients are found by means of analytical differentiation and
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validated via central finite differences. The main guidelines for the operational
work involved is sketched below, but full development is not included in this text
due to space limitations. All the detailed steps for the task can be found in Carniel
et al. 2009 [56].

8.1 Gradients Related to the Mechanical Problem

EH

8.1.1 Computation of A”“

Particularization of Eq. 33 to a cell discretized using bar elements, yields

nel

(D—D[M) .. NOT]) AL 105
|Y|Z & ) (105)
nel
D (x) |Y|Z (D-DB[;» ... ,WLOT)"A"L" (106)
i 13" 0\" gnyn
Dy (x) = |Y|Z (Du DiBiay; ) A"L (107)

and by differentiating analytically with respect to the m-th design area,

aDH nel nel (i nel 875 j)n
lJ_ nn npn, \J)rn nynpn pn
T |Y| ZD L"Sm ZleBk,X, L3, —;A L'DjBja—| (108)
where §,,, is the Kronecker delta,
_J1 if n=m
Onm = {0 if ntm (109)

H

ap :/Al
. and
0Ap A

Table 1 provides the correspondence between

8.1.2 Computation of é)aTZ,,,

In order to obtain the characteristic displacements gradient, Eq. 37 is differentiated
with respect to the design areas, resulting in

y K,<ap oK >

A a

0Aym OAp (110)

which is obtained easily with the aid of Egs. 38 and 39.
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apH arH
8.1.3 Computation of ”“ P and i
p v O P,

The development of expressions for sensitivities with respect to nodal coordinates
is sketched in this section only for X components. The extension to Y and Z
coordinates is straightforward by analogy. The development is done using compact
notation and Table 1 provides the correspondence between D and E.

After some manipulation, the expression for 9D"/9X,, yields

8DH nel nel AL" nel oD
_ lJA Ln DnAn AnLn lan ( )’7
0Xm |Y\ Z X, + Z X, Z: ox,, Kk
nel nel
n 0
_ZAnDlnk 8X kl vj) ZAnLnD:szZI 871 (111)

Notice that the complete determination of the desired sensitivity requires
the evaluation of OD"/0X,,, OL"/0X,,,, O(L"B")/0X,, and Ox"/0X,,. The sensitivities
OD"/0X,, and O(L"B")/0X,, can be obtained by differentiation of Eq. 58 and Eq. 52,
respectively. On the other hand, the sensitivity dx"/0X,, can be obtained by
analogy with the procedure presented in Sect. 8.1.1.1. The sensitivity 6L"/0X,, can
be evaluated with the aid of the expression

L=\ (= X)) (v = V) (2 - 21)° (112)

where X", Y;" and Z;" are the global coordinates of the i-th local node belonging to
the n-th element.

8.2 Gradients Related to the Thermal Problem

Particularization of Eq. 74 to a cell discretized using bar elements, yields

nel

1 Nanyn
KtH(x):mZ(Kt—KtB[R“) . RMNO )AL (113)
n=1
[
K (x) = Z (Kt — KtyBuRY )) AL (114)
ij |Y‘ ij ikDkl

where NLC in Eq. 113 stands for the number of load cases. Differentiating ana-
lytically with respect to the m-th design area, results
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8KtH nel nel () nel 8R
iy
oA = |Y| § KeiL" S — § K4 BLR"L" 8 — § A"L"K{} B} —+— oA

=1 n=1

(115)

where 0, is the Kronecker delta, defined by Eq. 109.

8.2.2 Computation of &

Starting from Eq. 75, that is., CR = Q, the determination of the characteristic
temperatures gradient is obtained by analogy with the equations presented in Sect.
8.1.2.

th“ oKl

8.2.3 Computation of ~ oy, and o7~

As in Sect. 8.1.2, only the development of expressions for sensitivities with respect
to nodal X coordinates is sketched in this Section. The extension to Y and Z
coordinates is straightforward by analogy.

After some manipulation, the expression for 9K¢"'/0X,, yields

6KI‘H 1 nel oKt nel nel oKt
2l UAnLn KlnAn AnLn ik
W, S|, _y

nel nel (/)n
o ZAnKtlka(gXBkl)Rg n Z ALK B" 8R
n=1

X Bk
(116)

ik~ kl aX

n=1

Notice that the complete determination of the desired sensitivity requires the
evaluation of 9Kt"/0X,,, OL"/0X,,, O(L"B")/0X,, and OR"/0X,,. The partial deriva-
tives OKt"/0X,, and O(L"B")/0X,, can be obtained by differentiation of Eqs. 84 and
81, respectively. On the other hand, the sensitivity OR"/0X,, can be obtained by
analogy with the procedure presented in Sect. 8.1.1.1. The sensitivity OL"/0X,, can
be evaluated with the aid of Eq. 112.

8.3 Gradients of the Volume Constraint

Having in mind that the total volume occupied by the bars in the cell is given by

nel

V= ZA"L'“ (117)
n=1
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the derivatives with respect to the m-th area or coordinate are easily identified as

nel nel
gAV o => ol = (118)

and

oV oL,
— =) A" 119
0X, =" "0X, (119)

nel

ZA 8Y,,, (120)

nel

ZA"@Z,,, (121)

where OL"/0X,,, OL"/0Y,, and OL"/0Z,, can be evaluated with the aid of Eq. 112.

9 Numerical Applications

Numerical results obtained using the formulation proposed are presented in this
Section. Although these results can be considered preliminary, one differential
with respect to previous developments reported in the literature is the inclusion of
a 3D example. All the four objective functions proposed were tested and some of
the results allowed qualitative validation by visual inspection or comparison to
previously published work. The initial cells are formed by truss elements in which
Young’s modulus, thermal conductivity and cross sectional areas are given by
E = 210 [GPa], k = 50 [W/m°C] and A = 10> [m?], respectively. During the
optimization process, lower bounds on areas and element lengths are prescribed to
be equal to 1077 [mz] and 107* [m], respectively. In all the examples, the total
volume of the unit cell is constrained to remain unchanged. The cells have equal
dimension sides: in 2D cases each side equals 0.1 [m] and in 3D cases they equal
0.075 [m], resulting in relative densities of 49 and 33.5% respectively.

9.1 2D Examples

The initial 2D unit cell chosen for optimization is displayed in Fig. 13. In order to
apply the method described, one component from the mechanical and one
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Fig. 13 Initial cell and
corresponding periodic material

‘%% v X ‘B

component from thermal homogenized tensors were selected to be considered in
the objective functions. These were the shear (E%S12) component and the thermal
conductivity component in direction X (KE).

In the cell external vertical (right and left) edges, only the Y coordinates are
chosen as design variables. Accordingly, in the cell external horizontal (upper and
lower) edges, only the X coordinates are adopted as design variables. Opposite
nodes in these edges are constrained to move equally (same displacements) and the
four vertices are prescribed to keep unchanged.

Normalized diagrams showing the effect of rotations on Eff  and Kt are
displayed in all the examples. The reference for normalization is the largest value
of the tensorial component in a 360° rotation. These diagrams help to interpret the
optimization results obtained. For the initial cell, they are displayed in Fig. 14. It is
apparent that the largest normal and shear stiffness of the periodic structure
material are oriented at 0° and 45 © degrees with respect to the horizontal (X) axis,
respectively. The heat conduction behavior is isotropic.

The homogenized mechanical and thermal constitutive tensors for this initial cell
are given, respectively, by

0.1150 0.02706 0
E" =10.02706 0.1150 0 (GPa] and
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Fig. 14 Rotated tensorial components aEf |, bER,, and cKtf! normalized with respect to
Ef%11=0.1150 [GPa], E1};,= 0.04397 [GPa] and Kt{] = 0.03897 [W/m°C]



332 P.A. Mufioz-Rojas et al.

Fig. 15 Optimized cell and
corresponding periodic
material

'''' 1
0.03897 0
Tl et [W/m°C)
0 0.03897
where the values of the components E le and Ktﬁ are indicated.
For comparative purpose in the optimization cases to be studied, it is interesting
to quantify the values of the four objective functions proposed for this initial cell:

Objective function 1: Efh;,= 0.02405[GPal;

Objective function 2: KtlHl =0.03897 [W/m°C];

— Objective function 3: E{},,/Kt{] = 0.617 [GPa m °C/W]
Objective function 4: E{3,,- Kt{1 = 0.937 [MPa W/m°C]

9.1.1 Maximization of Shear Stiffness (Eﬁn)

In this case the shear component of the homogenized mechanical tensor £ . was
maximized keeping the overall volume of the cell unchanged (fy, = 1). All the
element cross sectional areas and the coordinates X and Y of the internal nodes
were adopted as design variables. Figure 15 depicts the optimized unit cell and the
periodic material obtained. The cell is formed by a square rotated 45° with respect
to the horizontal axis, and linked to the cell vertices by thin bars. This linking
resulted due to the combination of the initial cell adopted (Fig. 13) and the fact
that the homogeneous prescribed displacements (which avoid rigid motion) were
applied to the nodes at the vertices.
The obtained homogenized mechanical tensor is given by

0.09124 0.08886  —0.001027
E" =| 0.08886 0.09124  —0.001026 | [GPa]

oo e
-0.001027 -0.001026 10.09060:

where the shear component Eflez is indicated. Hence, the objective function 1
equals £ > = 0.09060 [GPa], which is 3.76 times higher than the initial value.
The negative components in the homogenized tensor are caused small asym-
metries in the unit cell, as will be discussed later. Two orthogonal planes of
symmetry yield orthotropy and allow the negative components to be eliminated.
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Fig. 16 Diagrams of the ! !
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Figure 16 shows the normalized diagrams for the rotated EIHI 11 and Efélz com-
ponents in the interpreted orthotropic cell.

Figure 17 presents the evolution of the objective function through the optimiza-
tion process. The large amount of iterations is due to a very small value pre-
scribed for move limits, as discussed in Sect. 6. Since the same qualitative
convergence behavior is repeated in all the forthcoming examples, and due to
conciseness requirements, the evolution of the objective function is presented only
here and in the last example, for a 3D problem.

9.1.2 Maximization of Heat Conduction in Direction X (Ktﬁ)

In this example, the homogenized thermal conductivity tensor component asso-
ciated to conduction in direction X (Kt{1) is optimized for constant cell volume. All
the cross sectional areas and the X and Y coordinates of the internal nodes in the cell
are adopted as design variables. The optimal cell found is displayed in Fig. 18
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Fig. 18 Optimized cell and
corresponding periodic
material

NN NN

as well as the corresponding periodic material. In this example, the ratio between
the thicker and thinner cross sections is approximately 25.3, however thin bars
should have vanished. Hence, the importance of results interpretation should not
be underestimated.

The homogenized thermal tensor is given by

H d 6 9- .._ .5 : 0 o
Kt" = [W/m°C)
0 0.002921

where the value of the objective function 2 is recognized as Kri1 = 0.0845
[W/m°C], which is 2.16 times higher than the initial value.

Figure 19 displays the normalized diagram for the rotated Kt{{ component.

Analyzing Fig. 18, it can be noticed that the initially internal bars were dis-
placed to meet the upper and lower edges of the cell. At the same time, their cross
sectional areas became larger, which is clearly in accordance with maximization of
heat transfer in direction X. Figure 19 displays that, as a consequence, a negligible
conductivity results in the vertical direction (aligned with the Y axis), thus favoring
insulation.

9.1.3 Maximization of the Ratio Between Shear Stiffness and Thermal
Conductivity in Direction X (Ef2,,/Kt{])

This example aims to maximize the ratio between the shear £ B> and Kti! thermal
conductivity components, keeping a constant cell volume. Therefore, the

Fig. 19 Rotated tensorial 1
component Kz}’ normalized 08

with respect to K¢i} = 0.0845 0e
[W/m°C] o4 ~ T

0.2

2 o

-0.2

-0.4

-06

-0.8

-1 08 -06 04 -02 0 02 04 06 08 1
[1o0]
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Fig. 20 Optimized cell for
maximization of the ratio
between the mechanical and
thermal homogenized tenso-

rial components shown, and i : w A .

. . . ‘)
corresponding periodic "5’. d | b/
structure

procedure tends to maximize the mechanical component and minimize the thermal
one. This problem is more complex than the previous ones since the two different
properties considered may compete for the determination of the optimal cell. Only
cross sectional areas are adopted as design variables and the optimized cell is
displayed in Fig. 20.

The homogenized mechanical and thermal tensors are, respectively

0.05910 0.05910 0
E" =[0.05910 0.0889 ¢ [GPa] and

0 0 ’0059I0'

S () 02933, 0 .
Kt" =f----- [W/m~C]
0 0.04083

In this case, the objective function 3 adopts the value Eﬁlz/Ktﬁ = 2.015
[GPa-m-°C/W]. Comparing to the values of the initial cell, the objective function
is 3.26 times higher, while the ratios Eglz/Efélz_i,,l-,ia, = 2.46 and Kﬁ_ml—,m,/
K 11‘{ = 1.33. Therefore, there is a considerable gain both, in the ratio and in each
individual component.

Rotations of the mechanical and thermal homogenized tensors provide the
normalized plotted values for Ele and E ﬁ in Fig. 21, which evince an orthotropic
behavior.

1 1 1
0.8 . 0.8 0.8
0.6 0.6 0.6
0.4 k ) 0.4 0.4
S 02 S 02 S 02 / \
5 o z o 5 o] |
02 0.2 -0.2 \ /
0.4 04 04
-0.6 ( \ 0.6 0.6
0.8 T~ 0.8 0.8
K -1 -08-06-04-02 0 02 04 06 08 1 K -1 -08-06-04-02 0 0.2 04 06 08 1 K -1 -08-06-04-02 0 02 04 06 08 1
[100] [100] [100]
(a) (b) (c)

Flg 21 Rotated tensorial components a Eﬁll, b Eﬁlz and ¢ Ktﬁ normalized with respect to
Eff,, = 0.1266 [GPa], Ef},, = 0.0591 [GPa] and K/} = 0.04083 [W/m°C]
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9.1.4 Maximization of the Product Between Shear Stiffness and Thermal
Conductivity in Direction X (Ef3,, - Kt{])

This example deals with the maximization of the product between the shear
Efl, and the Kr{{ thermal conductivity components, keeping a constant cell
volume. This way, both mechanical and thermal components will compete in order
to obtain the optimal cell. For the solution of this problem, all the cross sectional
areas and the X and Y coordinates of the internal nodes in the cell are adopted as
design variables. Figure 22 shows the optimized cell and the corresponding
periodic material.
The homogenized mechanical and thermal tensors are, respectively

0.089540 0.07867 0
E" =| 007867 0.09282 0 [GPa] and

0 0 | 0.08451

0.044391 0
K" =|---== ; [W/m°C)
0  0.04288

and in this example, the final value of objective function 4 is given by
E 312 . Ktlfl[ = 3.751 [MPa W/m°C], which is 4 times higher than the initial value.
Furthermore, the ratios E {3, /E{éuf,»,,,‘,m,: 3.51 and K{{ /Kﬁ,mm'az = 1.13, show-
ing gain for the product and for each component independently.

Figure 23 shows the normalized diagrams for rotated E 11{ 1. E 11’2'12 and Ktﬁ .

The same problem was solved, this time adopting only cross sectional areas as
design variables. The optimal cell found is displayed in Fig. 24 together with the
corresponding periodic material.

The homogenized mechanical and thermal tensors are, respectively

0.09859 0.09447 0
E" =10.09447 0.09447 0 [GPa] and

0 0 1 1 0.09447

Fig. 22 Optimized cell for
maximization of the ratio
between the mechanical and
thermal homogenized tenso-
rial components shown, and
corresponding periodic
structure
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Fig. 23 Rotated tensorial components a Ef ., b ER, and ¢ Kt normalized with respect to
Ef | =0.1694 [GPa], Ef5,, = 0.08451 [GPa] and K7i} = 0.04439 [W/m°C]

Fig. 24 Optimized cell for
maximization of the ratio
between the mechanical and
thermal homogenized tenso-
rial components shown, and
corresponding periodic
structure

Kt" = '99&6_0;2: Y
0 0.04504

] [W/m°C]

and the objective function 4 is given by E{3, - Kt{ = 4.347 [MPa W/m°C], which
is 4.64 times higher than the initial value. The ratios E{315/E{312 inisia = 3.93 and
Kk f{_l—,,,-tm, = 1.16. Note that this case, which employs less design variables than
the former, led to a better result. This could possibly be attributed to the move limits
adopted or to non unicity of the solution.

Rotations of the mechanical and thermal homogenized tensors provide the
normalized plotted values for Eﬁll, Eﬁlz and Kt{'{ in Fig. 25 which evince an
orthotropic behavior.

9.2 3D Example

9.2.1 Maximization of the Product Between Shear Stiffness and Thermal
Conductivity in Direction X (EE,, - Kt

A 3D example is presented, which aims to maximize the product between the
homogenized constitutive component related to shear (E {1212) and heat conduction
in X (Kt direction, keeping a constant cell volume. The initial 3D unit cell
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Fig. 25 Rotated tensorial components a Ef 0, b ER, and cKr| normalized with respect to
Eft,; =0.189 [GPal, E{5,, = 0.09447 [GPa] and Kt/} = 0.04602 [W/m°C]

chosen for optimization is displayed in Fig. 26. All the cross sectional areas were
adopted as design variables, and their initial value was set to A =2 107> [m?].

The mechanical and thermal homogenized tensors of the initial cell are iden-
tified, respectively, as

(1541 3466 3.466 0 0 0
3466 1541 3466 0 0 0
- 3466 3466 1541 0 0 0 ”
Y - T [GPa] and

0 0 0 " ._".,3(13_ : 0 0
0 0 0 0 2.702 0

| 0 0 0 0 0 2.702]

5421, 0 0
K" =[ 0 5.421 0 [W/m°C]
0 5421

From the tensors above, the initial value of the objective function 4 provides
El, - Kt =14.647 [GPa-W/m°C].

Fig. 26 a Initial 3D cell. b
View of planes XoY, XoZ and
YoZ
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The homogenized mechanical and thermal homogenized tensors for the opti-
mized material are, respectively

2332 5828 S841 002793 -0.008291 -0.04669
5909 5.840 002793 -0008292 -0.04669
£ 5.945 [0.02793! ~0008292 -0.04669 [GPs] snd
5838 —0.04669 -0008293
Sym 5.788 0.02792
5.790

8.343 | 0.01996 —0.03335
Kt" = 4.197  -0.05920| [W/m°C].
Sym 4.203

The final value of the objective function 4 is given by E%, , - K| = 48.71
[GPa W/m°C], a value 3.32 times higher than for the initial cell. In addition, the
ratios Efy 1y /Et 1y i = 2-16 and KT /KT i = 1.54.

The optimized cell obtained is depicted in Fig. 27 and the normalized graphs in
Figs. 28, 29 and 30 display the material properties behavior through rotations of
the homogenized mechanical and thermal constitutive tensors. The components
analyzed are Ef L, ESo, ER 5, Kith and Kib5, and the rotations are displayed in
polar coordinates with respect to planes XoY ([1 0 0] and [0 1 0]), XoZ ([1 0 0] and
[0 0 1]) and YoZ ([0 1 0] and [0 O 1]).

It should be noted that slight asymmetries in the cell render anisotropic terms in
the homogenized tensors. Since no variable linking was imposed in the optimi-
zation process, minor asymmetries are expected even if the proper result is to be
perfectly symmetric. Hence, an interpretation of the optimized cell result becomes
necessary. In the homogenized optimum tensors obtained, many terms should be
zero, including the negative ones. This would lead to orthotropic and isotropic

Fig. 27 Optimized 3D cell

Planes XoY and XoZ Plane YoZ
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Fig. 29 Rotated E{5,, (normalization value). a Plane XoY (5.8380 [GPa]), b Plane XoZ (5.8380
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Fig. 30 Rotated K (normalization value). a Plane XoY (8.343 [W/m°C]), b Plane XoZ
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Fig. 31 Convergence of the 25
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tensors for the mechanical and thermal cases, respectively. Among all the Figs. 28,
29 and 30, only Fig. 30c reveals graphically a subtle effect of the numerical litter
that causes anisotropy of the thermal tensor.

Hence, if it is known beforehand that for the application desired, the optimized
material should be orthotropic, corresponding geometric symmetry conditions (in
two orthogonal planes) and variable linking should be imposed in the unit cell.
This would avoid spurious terms in the homogenized constitutive tensor.

Figure 31 shows the objective function evolution through the optimization
process. Notice that approximately 2500 iterations are necessary for convergence.
However, it should be remarked that the convergence criterion applied (in all the
cases studied) considers oscillations in the objective function and also in the design
variables.

Figure 32 displays the periodic structure formed by the optimized cell. Notice
that horizontal bars favoring heat transfer appeared in the X direction, and no
analogous bars showed up aligned to Y or Z directions. Thus, the structure is
effectively tailored for the multifunctional task to which it was designed.

10 Concluding Remarks

The Chapter initially describes the homogenization theory applied to periodic
materials made of truss-like unit cells. These materials, frequently referred to as
Lattice Block Materials (LBMs), have been the focus of recent research especially
for high performance engineering applications. A finite element code was
implemented for the determination of their homogenized mechanical and thermal
properties in either 2D or 3D situations.

In the sequence, a layout optimization procedure was proposed for obtaining
tailored LBMs for multifunctional thermal and mechanical requirements. The main
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Fig. 32 Material resulting
from the periodic
arrangement of cells
displayed in Fig. 27
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particularities of the proposed approach are (i) the simultaneous use of size and
shape design variables, thus reducing the size usually required for a ground struc-
ture; (ii) the definition of a multifunctional objective function; (iii) the development
of analytical sensitivities with respect to the two types of design variables considered
and (iv) the presentation of 3D results.

SLP was employed as the optimization algorithm. Although limitations were
encountered with respect to stability for automatic schemes of move limits update,
the method rendered good results provided very small move limits were adopted
(constant for area variables). However, a more elaborate mathematical program-
ming method is recommended for achieving better efficiency.

Promising preliminary results were obtained and the code implementation gives
generality for further investigations. One interesting issue to be evaluated in the
future is the effect of flexural and torsional stiffness in the material response, since
the use of bar elements does not account for this aspect.
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Computational Model of Porous Media Using
True 3-D Images

Khairul Alam, Mihnea S. Anghelescu, and Adrian Bradu

Abstract Thermally conductive foams are being developed for many engineering
applications; and there is a need to develop analytical models to predict the thermal
properties of such porous media. Most of the current models are based on volume
averaging techniques, and often assume simple, ideal shapes for the pore geometry.
The method described in this chapter focuses on modeling the thermal and flow
properties of foams on the basis of its true microstructure. The approach is to take a
three dimensional solid model of a real foam, obtained by imaging techniques, and
use it as the basis for the numerical solution of the transport phenomena. This is a
micro-model, in which the thermal phenomena are modeled at the pore level of the
foam. The model is computationally intensive, as can be expected; but it does not
require semi-empirical or experimentally derived constants such as permeability
to derive a solution. By incorporating the effect of the true pore geometry on the
thermal transport and fluid flow in the foam, this model is able to determine the
thermal conductivity, permeability, friction factor and heat transfer coefficients.
Graphitic carbon and silicon carbide foams are used in this study, but the approach
that is described is quite general and can be applied to other porous media; it may
also be applied to composites that contain phases with distinct boundaries at the
micro-level.

1 Introduction

Foams are porous materials which are attractive for many engineering applica-
tions because their properties can be customized by varying the manufacturing
process. Polymeric foams and metal foams are quite common in many engineering
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applications. Recent developments in foams have generated a new class of ther-
mally conductive foams which have potential applications in thermal management
and heat exchangers. For example, there are a variety of graphitic foams that can be
produced in a range of densities by varying the porosity. The thermal conductivity
of the foam can be also altered by changing the intrinsic conductivity of the solid
phase through variations in heat treatment. By controlling these two dominant
parameters, it is possible to produce foams of desired thermal conductivity over a
wide range of values. Another example of conductive foam for thermal applications
is the silicon carbide foam, which can be used at higher temperatures. The porosity
of the silicon carbide foam and the intrinsic conductivity of the silicon carbide can
also be varied to produce a desired bulk thermal property.

Conductive foams can greatly enhance heat transfer to a coolant flowing through
the foam pores. In traditional heat sinks, a heat spreader with finned structures has
been used to improve convective heat flux. Foams are similar to finned surfaces,
but can support much higher heat flux because of the higher surface area. With the
emergence of thermally conductive non-metallic foams, the design of thermal
management strategies will require the development of new models that incorpo-
rate the unique characteristics of these new foams. It is important to note that these
foams can be very different from the traditional metal foams that have been used in
heat sinks. For example, the microstructure of the graphitic carbon foam varies due
to the manufacturing process and heat treatments. This can lead to very different
thermal transport and flow behavior within the foams. The pressure drop for flow
through foam is a critical parameter for heat transfer applications; and it depends on
the complex geometry of the foam at the pore level. The nature of the fluid flow
and the thermal properties of the foam will determine the heat transfer effectiveness
of the system. However, a highly random geometry at pore level makes it very
difficult to analyze the properties and the behavior of this material by simple
empirical formula. Because of the complex geometry, the transport properties of
the foam are dependent on the three-dimensional geometry. It is difficult to
replicate the thermal transport behavior by using a two-dimensional model, espe-
cially when a fluid flow in the foam is to be analyzed.

In this chapter, the approach focuses on modeling the thermal and flow proper-
ties of foams on the basis of its true microstructure, without using an averaging
process or a simple pore geometry. The approach is to take a three dimensional
solid model, obtained by imaging techniques, based on an accurate representation
of the real geometry of carbon foam at the pore level. This is a micro-model, in
which the thermal phenomena are modeled at the pore level of the foam. The solid
model developed from the imaging process is then meshed and a numerical solution
is obtained to predict the thermal behavior of the foam. The model is computation-
ally intensive, as can be expected; but it forms a theoretical basis for the determi-
nation of the thermal conductivity, diffusivity, fluid friction and convective heat
transfer coefficients. Such a model incorporates the effect of the pore geometry
on the thermal transport and the fluid flow. As a result, the pore level model
can provide the surface area of the foam (per unit volume) and the theoretical
value of the permeability; in contrast, the traditional models require permeability as
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a parameter for the solution, determined either experimentally, or by semi-empiri-
cal methods.

Graphitic carbon foams and silicon carbide foams are used in this study, but the
approach that is described is quite general and can be applied to other porous media;
it can also be applied to composites that contain phases with distinct boundaries
at the micro-level. Special attention will be given to the modeling of the carbon
foam because of its complex microstructure that presents unique challenges to solid
modeling, and numerical solution. The silicon carbide foam has a simpler micro-
structure, and the 3-D model for silicon carbide was developed to evaluate the success
of this approach. It is important to note that a unique aspect of this approach is the
development of the accurate solid model representation of 3D carbon foam micro-
structure, which can be used to investigate the bulk thermal, mechanical or other
properties of porous media and to study the fluid flow and heat transfer phenomena
through the porous media without the use of experimental or empirical parameters.

2 Silicon Carbide and Carbon Foams

The thermal conductivity of metals makes them a good candidate for enhancing
heat transfer; while, non-metallic foams, such as polymeric foams tend to be
insulators. Open cell conductive foams can be used as extended surfaces to improve
the heat flux in a flow system and such foams will be the focus of this chapter. Open
cell silicon carbide (SiC) foams have been used in high temperature systems.
Recent developments include SiC coated foams that are made by chemical vapor
deposition on a carbon foam skeleton [1]. The coating is thick enough that the foam
properties are virtually as if the carbon skeleton was absent, and the deposition
parameters can be controlled to improve the thermal properties of the foam.
Figure la shows an SEM picture of a silicon carbide foam. The pores of this
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Fig. 1 (a) Silicon carbide foam
(Source: [1]) and (b) SEM picture of graphitic carbon foam
(Source: AFRL, Dayton, OH, USA)
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foam are bigger than the pores of the carbon foam next to it; however, it should be
noted that carbon foam comes in many different pore sizes.

Carbon foams are very versatile in that they can work as insulators as well as
excellent conductors, and the cell structure can be open or closed. For example,
reticulated vitreous carbon foam (RVC), which is produced by pyrolyzing a poly-
mer, is an insulator. On the other hand, carbon foams made from mesophase pitches
will have low thermal conductivity after carbonization, but can be graphitized by
heat treatment to produce a highly conductive graphitic foam. The graphitic foams
are also distinct from the RVC foams and metal foams in their microstructure.
In RVC and metal foams, the pores are contained within ligaments that are similar
to struts [2] and the size of the pore is similar to the size of the openings that
interconnect the pores.

The graphitic carbon foam in Fig. 1b was made at the Air Force Research
Laboratory (AFRL, Dayton, OH, USA). It can be seen that the microstructure of
the two foams are very different. Graphitic foams tend to have bubble-shaped pores,
and the pore wall structure is similar to stretched membranes, with thicker cross
section at the junctions between the cells. The pore window in the wall membrane is
typically smaller than the pore size. Another level of complexity is added when the
anisotropy of the graphitic microstructure is considered. This is due to the higher
degree of alignment of the graphene planes in the walls (ligaments) of the pores;
while the junctions (nodes) have a disrupted, less graphitic structure. As a result, the
thermal conductivity is anisotropic and inhomogeneous at the pore level of gra-
phitic foams. Even at the bulk level, there is often a significant difference in the
thermal conductivity between the vertical and the horizontal directions of the
processing chamber where the foam is produced [3].

The microstructure of the carbon foam can be tailored by changing the precursor,
the foaming process and the heat treatment conditions [4]. In addition, the low
density and low coefficient of thermal expansion (CTE) of carbon foams make them
suitable for utilization in many engineering applications. However, the wide range
of microstructures of the carbon foam makes it a complex media that is harder to
model and analyze. The following paragraphs describe the processing steps that
produce the unique characteristics of the graphitic carbon foam.

The first carbon foams were developed by W. Ford in the 1960s as reticulated
vitreous carbon foams by carbonizing thermosetting polymer foams [5]. In the
1990s, scientists at Air Force Research Laboratory (AFRL, Dayton, OH) developed
graphitic carbon foams by heating a mesophase pitch precursor to the melting point
while being pressurized in an inert atmosphere; this is then followed by “blowing”,
a process of releasing the gas pressure [6, 7]. The blowing process produces pores
from bubbles which grow to form either a closed cell or an open cell structure; in
the latter case the walls between the cells have openings that can allow a flow
through the structure (Fig. 1). After the foaming process, the carbon foam is usually
stabilized at approximately 170°C and a heat treatment consisting of carbonization
at 1,000°C and graphitization at 2,700°C is applied [7]. Thermal conductivity
of graphitic carbon foams generally range between 1 and 250 W/m°C depending
on the microstructure, porosity and process parameters. From the SEM picture of
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a graphitic carbon foam produced at AFRL in Fig. 1, it can be seen that the pores of
this foam are spherical or elliptical with diameter ranging between 100 and 350 pum.

Current producers of carbon foams in USA includes Graftech International
(Parma, OH), Koppers (Pittsburg, PA), Poco Graphite (Decatur, TX), and Touchstone
Research Laboratories (Triadelphia, WV). Graphitic foam development at the Oak
Ridge National Laboratory has been described in several publications [5]. A method
to manufacture carbon foams from precursors such as coal, petroleum pitch, coal tar
pitch has been reported by researchers at West Virginia University [8]. Potential
utilizations of non-graphitic carbon foams include structural applications such as
tooling for composite materials manufacturing [9], stiffener inserts and core materials
for composite sandwich structures. Non-graphitic carbon foams are also attractive
as thermal protection materials, as they can be produced with very low thermal
conductivity [10].

3 Model of Foams: The Macro-Model

Studies on the analysis of foams have generally employed two approaches to
analyze porous media. The first is the classical macro-approach, in which the effect
of the pores on the foam properties are averaged over a representative volume, or
unit cell. A further simplification in the macro approach that is often adopted is to
assume thermal equilibrium between the foam and the fluid in the pores which
makes it easier to develop analytical solutions. The second approach, developed
more recently, uses an idealized foam model in which the pore microstructure is
built up by defining ligaments of simple geometry, which are then joined together,
or selecting pores of specific shape, distributed uniformly throughout a volume;
this may be termed the idealized micro-approach. These two approaches will be
discussed is the following sections.

3.1 Macro-Model for Thermal Conductivity

The classical approach to modeling porous media is based on averaging the effect
of randomly distributed pores, typically spherical in shape. An averaging method
was used by Bauer [11] to determine the bulk (or effective) thermal conductivity of
foams. The most important parameter for the conductivity is the porosity (void
content) of a porous material, defined as [12]:

V. V.
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where Vis the volume of the pores and V is the volume of the solid phase.
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Experimental determination of porosity is generally done by measuring the bulk
density and then using the following relation:

(%) = (1 —&> - 100 @)

Ps

where p,, is the bulk (or effective) density and p; is the solid phase density.
The surface area per unit volume of a porous material is defined as:
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where Ay is the total pore surface area. It should be mentioned that experimental
determination of surface area per unit volume of a porous material can be quite
difficult. However, the 3-D model that will be described in a later section can be
used to determine this value quite readily.

The traditional model for the bulk thermal conductivity of a foam as a function
of the density was presented by Bauer [11] and also by Gibson and Ashby [2]:

k q
w-be)
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In the above equation, &, is the effective thermal conductivity, k; is the intrinsic
solid phase thermal conductivity (also called the ligament conductivity), and k. is
the non-dimensional ratio of the two values. The exponent g is usually between 1
and 2; this exponent represents the effect of the microstructure on the path of heat
flow. A preferred representation is to use the exponent 1/n as shown below [3]:
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In this form, the bulk thermal conductivity &, is higher as n increases; with the
maximum possible value of k;, at n = 1. Therefore n represents the effectiveness of
the pore geometry at different relative densities for heat flow through the foam and it
can be called the “pore conduction shape factor” [13]. The value of n is generally
significantly less than unity for most foams, and the lower limit is typically about 0.5.

When the porosity is very low, the value of n has been theoretically shown to be
2/3 (i.e., 0.667) for spherical pores [14]. A study by Bauer [11] suggested a value of
n = 0.77 for liquid foams with porosity in the range of 60-95%. According to
Ashby et al. [15], the exponent (1/n) is generally between 1.8 and 1.65 for metal
foams, so that:
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On the basis of experimental results of graphitic carbon foams, Klett et al. [16]
modified (2) by adding a multiplier f = 0.734 to account for pore shape, and used
the pore conduction shape factor n = 0.701:

1
ke = i—’: - ﬁ(@) - 0.734(1 - i)‘” ! %)

It should be noted that the above equation is a volume-averaged result, in which
the inhomogeneous graphene alignment is assumed to be isotropic at the bulk level.
As discussed earlier, the graphitic foams may not be isotropic even at the bulk level;
therefore, (2) must be used with an appropriate modifier to account for bulk
anisotropy.

3.2 Volume-Averaged Model

The classical macro-approach of volume averaging has been used extensively when
the thermal transport takes place in the solid and fluid phases. Under this approach,
the quantities associated with the thermal transport and fluid flow phenomena are
averaged over a representative elementary volume consisting of both the interstitial
fluid and porous material [17]. For highly conductive foams, the two energy
equation approach must be used (one for each phase) and the temperatures should
be averaged separately for solid phase and fluid phase [18]. However, a thermal
equilibrium assumption is often made in order to obtain analytical solutions. This
approach has been described by Nield and Bejan [19] and Kaviany [20] and has
been used in several studies for modeling fluid flow and convection through foams.

This averaging approach reduces the complexity of the general problem, but
information about the transport phenomena at pore level and the influence on the
overall transport phenomena are lost [17, 18, 46]. Such models typically need
experimental values or semi-empirical parameters to compensate for the loss of
information. In the case of fluid flow, the parameters are the permeability and the
inertial coefficient of the porous media. The results are often presented as non-
dimensional numbers such as friction factor, Reynolds number and Nusselt number
which are based on the geometric parameters of the foam.

3.3 Volume-Averaged Fluid Flow Model

The steady state mass and momentum conservation equations for incompressible
flow through porous media are [21]:

V-(u)=0 (8)
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where () is the volume average symbol, u is the fluid velocity vector, p is the fluid
pressure, p is the fluid density, p is the fluid viscosity, ¢ is the porous media
porosity, K is the porous media permeability and ¢ is the porous media inertial
coefficient. The mass and momentum conservation equations can be solved numer-
ically for pressure and velocity fields provided that ¢, K and ¢y are known.

It should be mentioned that in comparison to Navier-Stokes equations, the
momentum conservation equation for flow through porous media contains two
extra terms, which are the last two terms on the right hand side of (9). They account
for additional pressure loss due to the presence of the porous media. Since this
equation is not amenable to analytical solution, it is often simplified to the case of a
steady state, fully developed flow, without the effect of boundary walls. This leads
to the Darcy-Forchheimer equation, which is the one dimensional momentum con-
servation equation for flow through porous media. It gives the following expression
for the pressure drop:
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Ap 2
Ar E”D+\/1?D

(10)

where the Darcy velocity (uniform filter velocity) in the porous media is given by:
m

pAch

up = (103.)

and Ax is the length of the porous region in the direction of the flow, 71 is the mass
flow rate and A, is the cross sectional area of the channel before it is filled with
porous material.

The fluid flow regime in pipes and channels with constant flow area is established
as either laminar or turbulent using the Reynolds number based on the equivalent
hydraulic diameter as the length scale of the flow. In porous channels it is difficult to
define an equivalent hydraulic diameter because the geometry is complex and the
flow area is continuously changing. The square root of the permeability (\/E ) can be
used as the length scale of flow through porous media, and has been incorporated in
the definition of the “modified” Reynolds number [22-24]:

VK
Reyx = 2PV 2 (11)
I

The fluid flow in porous media is in the “Darcy regime” when the velocities are
small enough so that the inertial effects are insignificant and the quadratic term in
the Darcy-Forchheimer equation is negligible. At high velocities, the quadratic term
in the Darcy-Forchheimer equation cannot be neglected and the flow regime is
“non-Darcy”.
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Equation (10) has been used to determine K and ¢, from experimental measure-
ments of pressure drop and uniform filter velocity for a large variety of porous
materials: aluminum, nickel and carbon foams [21], compressed aluminum foam
[25] and carbon foam [26]. Experimental testing on aluminum foams showed that
permeability of a porous material is a strong function of porosity and pore size and
inertial coefficient is influenced by the solid phase shape and pore structure [23].

In an attempt to unify the pressure loss characteristics for various porous media,
a dimensionless friction coefficient has been used [22, 23]

A
& /K
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pup
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Equation (12) was used to determine f from experimental measurements of
pressure drop and the Darcy velocity for aluminum foams [23] and Foametal [27].

Beavers and Sparrow [22] combined together (10)-(12) and obtained the
following relation for friction coefficient:

1

f=6+ e (13)
Equation (10) describes the flow behavior of porous media and is widely used by
researchers. It must be noticed that in the Darcy flow regime, the quadratic term in
(10) can be neglected, so that the friction coefficient becomes equal to the inverse of
the Reynolds number. The inertial coefficient and the permeability have been
determined experimentally for aluminum foams by Paek et al. [23], and the results

are described by the following equation:

1
f=0.105+— (14)
Re[(

For a high porosity foam (Foametal), the experimental results by Vafai and Tien
[27] produced the following relationship:

1
f=0.057 +— (15)
RCK

The analysis of heat transfer due to flow through the foam is quite complex, and
results from the volume-averaged equations and experiments are usually correlated
in terms of the Nusselt number, Reynolds number and the Prandtl number [28].
Many forced convection studies for simple flows use the general Nusselt number
correlation of the form:

Nu = CPe™ (16)

where C is a constant, Pe is the Peclet number (product of the Reynolds and Prandtl
numbers) and m is an exponent. In general, the solution for convection heat transfer
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requires the determination of the permeability (typically experimentally or semi-
empirically) which determines the fluid flow. In addition, an effective conductivity
and a representative length dimension have to be determined or estimated so that
the Reynolds number and the Prandtl number can be defined. The complex nature of
thermo-fluid transport in conductive foam has led to the development of numerical
models that are based on pores of ideal shape. This is discussed in the following
section.

4 Idealized Pore-Level Model

The development of pore-level micro-models for analyzing porous media is
relatively recent, and has been made possible by the combination of advances in
computational fluid dynamics (CFD), and enhancement in computer capabilities.
Due to its complexity and randomness in the pore shape, dimensions and distribution
in the solid matrix, the accurate representation of 3-D microstructure of foams as a
solid model is computationally intensive. Therefore, studies have been carried out in
which foam microstructure is often approximated by idealized geometry. Metal
foams used for heat exchanger, (such as Duocel® produced by ERG Aerospace)
have an open reticulated structure. It is generally reasonable to model reticulated
structures as a set of ligaments with a geometric relationship [18]. Silicon carbide
foam can also be modeled as a set of ligaments. Carbon foam, however, presents a
special challenge because of the complex microstructure; and many different models
have been proposed that are based on simple pore geometries.

Some of the carbon foam geometries that have been proposed for an idealized
pore model are shown in Fig. 2, along with the SEM picture of a graphitic carbon
foam. Sihn and Roy [29] approximated the carbon foam with a unit cell which is
obtained by subtracting four identical spheres from a regular tetrahedron (Fig. 2a).
The porosity of the unit cell is a function of the sphere diameter. Druma et al.
[13, 30] proposed a body centered cubic (BCC) type structure for the unit cell of
carbon foam, as shown in Fig. 2b. They also used ellipses (horizontal and vertical)
to create the pores (Fig. 2c, d). Yu et al. [31] used a pore at the center of a cubic cell
to form the model. A tetrakaidecahedral unit cell for carbon foam was used by
Li et al. [32].

Using these idealized pore models, it is possible to determine the surface area
and the thermal conductivity analytically [31, 48], or by numerical analysis.

The advantage of using a numerical micro-model that simulates the process at
the pore level is that it can predict the experimental or semi-empirical parameter
such as the “density exponent” (5). Druma et al. [13] showed that the plot for (5) for
n = 0.67 matches the numerical solution only at very low porosities (below 10%);
this is to be expected since this exponent was derived for low porosities. In general,
a constant value of this exponent is not appropriate for a full range of porosity.
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a b

Fig. 2 Ideal pore models used to approximate carbon foam microstructure: (a) tetrahedron
(Source: [29]), (b) BCC type cube (Source: [13]), (¢) and (d) BCC type ellipse, vertical and horizontal
(Source: [30]), (e) SEM picture of graphitic carbon foam (Source: Graftech International)

A plot of the numerical value of the exponent n has been presented by Druma [6] by
writing (5) in the following form:

_In(l ~ )



358 K. Alam et al.

0.9

0.85

o
©

0.75

o
]

Pore shape factor (n)

0.65

0.6 . : T . . ‘ : : T
0 10 20 30 40 50 60 70 80 90 100
Porosity [%]

Fig. 3 Variation of “conduction parameter” with porosity for constant pore size for pores of
100 pm diameter (Source: [6])

The plot is reproduced in Fig. 3. It is obvious that for this case of a porous media
with uniformly distributed 100 pum pores, the density exponent # is not constant, but
varies between 0.65 and 0.88. A constant (average) density exponent can only be
used for a limited porosity range. The maximum value is obtained before the pores
become interconnected, since interconnected pores result in pockets of material
that are not in good contact, and therefore not very effective in heat transfer. The
exponent is not strongly affected by the size of the pores. However, the shape of the
pores (e.g., spherical vs. elliptical) and the arrangement of the pores (face centered
vs. body entered) will affect the density exponent. These conclusions demonstrate
the usefulness of the numerical, pore level model.

A natural extension of the numerical analysis of a pore level model would be the
study of the fluid flow and heat transfer in a porous media. Yu et al. [31], and
Krishnan et al. [33] have developed numerical solutions for fluid flow and convec-
tion heat transfer using idealized pore level models. Yu et al. [31] used a cubic cell
geometry to determine the interior surface area, and developed analytical expres-
sions for the effective thermal conductivity and convective heat transfer. Karimian
and Straatman[34, 35] followed up this study by numerically solving the fluid flow
and heat transfer for the same body centered cubic cell geometry. Krishnan et al.
[33] and Anghelescu [36] used the numerical model to determine the permeability,
and friction factor due to fluid flow.

Anghelescu et al. [12] extended the pore level modeling approach to true three-
dimensional structures of carbon foams. It is important to recognize that develop-
ment of a solid three-dimensional image involves several steps before the numerical
simulation can be undertaken. This is addressed in the following section.
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5 Development of the True 3-D Image

The development of the 3-D microstructure of two different foams will be discussed
in this section. The first is a silicon carbide foam made at Ultramet Inc. (Pacoima,
CA, USA), and the second is a graphitic carbon foam manufactured at the Air Force
Research Laboratory (AFRL, Dayton, OH, USA). The silicon carbide foam, as
shown in Fig. 1 has a simpler microstructure. The carbon foam microstructure is
more complex. Two different imaging processes have been used for the two foams.
One approach [37] is to combine a light microscopy system with a highly accurate
serial sectioning of the sample. A 90% porous graphitic carbon foam (similar to that
shown in Fig. 1) which was produced at the Air Force Research Laboratory (AFRL,
WPAFB, Dayton, Ohio) was first infiltrated with a polymer (epoxy) under vacuum.
The 3 mm diameter sample was then analyzed by a novel instrument (Robo-
Met.3D) which uses a diamond lapping film to polish the sample at about 3.5 pm
per slice. The sample is imaged by bright field light microscopy after each slicing
operation.

A second method is to do scanning by X-ray tomography to produce the images of
the slices; this was the procedure used with the silicon carbide foam. This method
has also been used on aluminum foams by Fiedler et al. [38], and by Hugo et al. [39].
The slices are separated by at least one voxel size of the specific instrument; this is
the limit of the image resolution for this technology. The images produced either by
Robo-Met.3D or by X-ray tomography, are then processed in a number of steps
to provide the solid model. At the beginning, the image files of the slices are subject
to a segmentation operation, which consists of defining the boundaries between the
solid (the foam) and background in each slice, and is done manually and/or auto-
matically. This can be done by customized or commercial software, such as the
medical imaging software Amira [40]. Amira can also be used for the next step,
which is the triangulation step. This step defines the entire surface of the foam by
using a large set of triangles. After this step, the results are saved as STL files.

Atthis stage of the surface reconstruction, the point cloud is wrapped in a polygonal
surface made of triangles and there are some choices for the software which can define
the surface by fitting appropriate surfaces through the points defined by the triangula-
tion. In the Geomagic Studio software, the regions of high curvature are identified and
marked with curvature lines. The triangulated surface is divided into a number
of areas, each of them bounded by curvature lines. Each of these areas is then divided
into a number of patches. A patch is a convex quadrilateral which is manipulated in
order to obtain acceptable warpage, skewness and aspect ratio. A geometric grid is
generated for each quadrilateral patch and a Non-Uniform Rational B-Spline
(NURBS) mathematical representation is calculated for each patch, using the grid
as control points. The result is a file containing a closed surface, made of patches, that
resembles the geometry of the foam microstructure. The NURBS patches are stitched
together and the solid 3D carbon foam model is generated.

After NURBS fitting, the resulting surface can be saved as an IGES, STEP or
other file format and transferred to the solid modeling software. This is the preferred
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mode if the foam and the fluid in the pores are to be meshed for fluid flow through
the pores. Using Boolean operations such as “subtract” and “unite”, the solid model
of the foam and fluid can be combined using a software, such as SolidEdge. For
example, in order to produce the solid model of the foam and the fluid in Fig. 4,
a Boolean operation was carried out to subtract the shape of the foam from a
parallelepiped representing the fluid. The foam is subsequently fitted into this
empty space and aligned to the sides to produce the assembly consisting of carbon
foam saturated with fluid.

The solid models were then used to generate the mesh using the software product
HyperMesh. Another way to generate the solid mesh is to use the NURBS only
(without constructing the solid model). The NURBS are loaded in HyperMesh
where a volumetric mesh procedure is applied to the surface. The solid meshes
for the two foams are shown in Fig. 5. The silicon carbide foam model has the
dimensions of 1.50 x 1.44 x 1.40; the graphitic carbon foam dimensions are
1.50 x 1.48 x 1.54 (dimensions in mm).

The computational model with the mesh for the porous channel and the foam is
discussed later in the development of the fluid flow model. The combination of the
foam structure and the fluid makes the numerical model significantly bigger. As the
number of elements and nodes increase far above one million, the issue of compu-
tational capabilities becomes important. One of the limiting factors of the modeling
effort is the computational effort required to set up and run a model that reflects
accurate details at the pore level of the microstructure. In order to have a model that
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Fig. 4 3D solid model of porous carbon foam and fluid [36]
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Fig. 5 Meshed solid models of 3D foam microstructure (a) Silicon carbide foam from Ultramet,
83% porous, with 6,611 m>?/m> of surface area (b) Graphitic carbon foam from AFRL, 90%
porous, with 4,340 m?/m? of surface area

is representative of the bulk material, the model should be large enough to have the
same properties (density, thermal and mechanical properties, etc.) as the bulk
material. It is important to note that the bulk properties of the foam depend on the
pore geometry as well as the intrinsic (solid phase) properties of the foam liga-
ments. But the properties of the ligaments can vary from point to point, and are very
difficult to measure. To keep the computational effort reasonable, the small volume
of the model in this study was selected on the basis of similarity to the bulk porosity,
which can be measured by the bulk density. The typical model size is in the order of
cubic millimeters. This can present some difficulty in the simulation of fluid flow
and heat transfer, which is discussed later.

A high performance computer (or super-computer) is generally needed for solid
modeling of the foam. The number of elements in the model is typically one million
or more, especially when the fluid flow is included. The numerical solution must be
checked to make sure that it is mesh-independent, which also increases the compu-
tational requirements. With the continuous improvement in the capabilities of
computational systems, it is expected that larger volume models would be handled
more easily in future work and this would result in greater confidence in the results
of the numerical model.

6 Thermal Conductivity Modeling with True 3-D Image

After the solid model is produced, it is quite straight forward for the solid modeling
software to determine the porosity and the surface area per unit volume of the porous
media. As mentioned earlier, the silicon carbide foam model has the dimensions of
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1.50 x 1.44 x 1.40 and the graphitic carbon foam dimensions are 1.50 x 1.48 x
1.54 (dimensions in mm). The two meshed models shown in Fig. 5 were determined
to have surface areas of 6,611 m*/m’ (SiC Foam, 83% porosity), and 4,340 m*/m’
for the graphitic carbon foam (90% porosity). The porosity of the real foam images
were compared with the bulk density results and found to be within 1-2% of the
measured value. This was taken to be an indication of the similarity of the 3-D
image sample to the bulk material. The next step is to set up an appropriate model to
determine thermal conduction, fluid flow and convective heat transfer.

To determine the thermal conductivity of the bulk (carbon) foam, the foam
microstructure is subjected to a temperature gradient by sandwiching it between
two solid plates, and the system is then analyzed by the finite element method.
The temperature gradient is established by defining perfect thermal contact
between the foam and the two solid plates which are maintained at two different
temperatures. The temperature field in the system (carbon foam microstructure
and plates) is governed by the steady state conduction heat transfer equation
given by:

o ( ar _ . .
o <k3_x,> =0 i=1,2,3 (indexnotation) (18)

where T is the temperature and k is the thermal conductivity of the domain
analyzed.
The following assumptions have been made in the analysis:

¢ The foam properties are constant
e The fluid in the pores has negligible effect on the bulk conductivity
e Convection and radiation are neglected.

The problem definition is completed by defining the boundary conditions as
follows:

¢ A uniform heat flux is applied on the top surface of the upper plate

¢ A uniform temperature is specified on the bottom surface of lower plate

e Temperature and heat flux are continuous at the interface of the plate and carbon
foam microstructure

e No heat transfer takes place at all on the other surfaces

The carbon foam model was analyzed with 519,397 elements. To evaluate mesh
independence, the model was solved again with 1,357,568 elements; and it was
determined that the two thermal conductivity results varied by less than 0.1%. For
additional details of the carbon foam simulation, the reader is referred to the article
by Anghelescu et al. [12] or the dissertation by Anghelescu [36]. The SiC foam in
Fig. 5 was analyzed in the same manner. The model of the SiC foam contains
1,015,839 quadratic tetrahedral elements, which corresponds to 1,588,867 nodes.
The plates, due to their simple geometry, have only 3,600 brick elements, with
5,766 nodes.
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From the solution of the temperature field in the foam, the thermal conductivity
is calculated by applying Fourier’s law:

dr AT
qx il (19)

where ¢, is the heat flux applied on the top surface of the upper plate, AT is the
temperature difference between the two solid plates and Ax is the thickness of the
carbon foam in the heat flux direction.

The intrinsic conductivity of the solid phase in the foam may not be known
accurately, or can be very difficult to measure. Therefore, the non-dimensional bulk
thermal conductivity is determined in the solution; this is defined as:

kg = (20)

Three separate analyses are carried out in the x- y- and z-directions of the 3D
solid model of foams to account for randomness in pore shape, dimensions and
distribution. Figure 6a, b show the temperature distributions in two foam micro-
structures when the heat flux is applied on the top plate. Because of the boundary
conditions applied, the heat transfer is predominantly one dimensional, in the heat
flux direction. The heat flux distributions are shown in Fig. 7a, b. The heat flux has
higher values in the thin ligaments of the two foams; these areas tend to be bottle
necks in the thermal transport.

The thermal analysis results are summarized in Table 1 along with analytical and
experimental results from other studies. It can be seen that the numerical models
based on real foam geometry have much lower thermal conductivity k.4 as com-
pared to the analytical or numerical values (based on idealized pores). In compari-
son to the values obtained from the pore level model, the value predicted by Bauer

Fig. 6 Temperature distribution in SiC (a) and carbon foam (b)



364 K. Alam et al.

ine

Fig. 7 Heat flux distribution in SiC (a) and carbon foam (b)

Table 1 Thermal conductivity results from different foam models

. keff
- Source Type of analysis (% of solid phase) n
g Bauer Analytical
9.89 0.77
§ (1993) (spherical pores)
Q
= 5.55 0.61
v Present FEM on true foam X 6.30
) analysis eometr y | 7.3 (average) 0.68
o
% Y geometty 7z | 595 & 063
Bauer Analytical
4.86 0.77
(1993) (spherical pores)
herical
sprerica 6.25 0.84
pores
FEMon | ellipsoidal
§ Druma et ideal pores — 2.20 0.61
| al. (2004) | geome- horizontal
5] P
Jé% try ellipsoidal
2 pores — 9.20 0.98
IS .
= vertical
> 1
Klett et
E i 1 2.62 .64
. (2004) Xperimenta 6 0.6
- 2.78 0.65
Anghe FEM on true foam X 2.72
lescu et cometr y | 293 (average) 0.66
al. (2009) geometry z | 244 £ 062

[11] is about 60-80% higher. On the other hand, the conductivity values obtained
by FEM analysis on the true geometry of carbon foam microstructure show good
agreement with the experimental results in Klett et al. [16].

From Table 1, it can be seen that both foams demonstrate a higher value of k4in

the “y” direction compared to the other two directions. In particular, the “y
direction for the two foams has significantly higher conductivity (about 20%)
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than the other two directions. These differences show that this particular solid
model of carbon foam microstructure is not geometrically isotropic. This may be
due to bulk geometric anisotropy, or unique sample characteristics. Graphitic
carbon foams are known to exhibit higher bulk conductivity [3] in the vertical
direction of the reactor; which can be due to geometric anisotropy and/or due to
directional anisotropy of graphene alignment within the solid phase. The numerical
results can only reflect the geometrical anisotropy in the 3-D image; therefore
it is difficult to resolve this issue of anisotropy without examining images of
multiple samples.

On the basis of the results shown in Table 1, it can be concluded that the
accuracy of semi-empirical models depends on the adjustable parameter (such as
the “density exponent”, n); while ideal geometries (which do not have an adjustable
parameter) may significantly over-predict the bulk thermal conductivity due to the
geometric regularity of the model. The lower value of the non-dimensional con-
ductivity in the true geometry is probably due to the higher tortuosity of the heat
flux vectors caused by the randomness in pore shape, dimensions and distribution.

Fiedler et al. [38] obtained similar results in their study of thermal conductivity
of aluminum foams. They analyzed the thermal conductivity of the foam by
applying a lattice Monte Carlo method to a true foam image obtained by X-ray
tomography. Their results showed that analytical or semi-empirical formulas can
significantly over predict the experimental measurements as well as the numerical
values obtained by the Monte Carlo simulation. On the other hand, the experimental
and numerical simulation results were in good agreement.

Therefore, the numerical model of the true 3-D image can be expected to provide
an accurate value of the thermal conductivity ratio k.4 This is a useful quantity for
heat transfer analysis since it relates the bulk conductivity value to the average solid
phase conductivity (also known as the ligament conductivity). Once k. is calcu-
lated, the value of the average ligament conductivity can be calculated from known
(measured) bulk conductivity; and (5) can be used to determine the relative density
exponent (n). This exponent is a measure of the effectiveness of the pore geometry
in thermal transport.

7 Fluid Flow and Heat Transfer in Real 3-D Foam

The interconnected pore structure of porous materials can be used as channels for
fluid flow which offers a significant increase in surface area available for convective
heat transfer. Highly porous aluminum foams have been investigated as possible
solutions for thermal management of electronics [41, 42]. Hugo et al. [39] used a
true 3-D image of an aluminum foam for a heat exchanger application. They used
the iMorph software for developing the image output from X-ray tomography and
carried out heat transfer and fluid flow calculations using StarCCM+ software. The
aluminum foam used by Hugo et al. [39] is an ERG foam, with pore diameters of
4.5 mm (20 PPI) and a porosity of 92%; the larger pore size and the simpler
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microstructure can reduce the computational effort for constructing a solid model
for numerical solution.

The small pore size and the complex microstructure make carbon foam model-
ing a challenging task. However, because of its light weight and very high thermal
conductivity, graphitic carbon foam is an attractive candidate for heat sinks and
heat exchanger core. Silicon carbide foam has potential for high temperature heat
exchanger applications. This section addresses some of the issues in developing the
model for a porous media heat exchange system consisting of a channel filled with
an open cell porous material and saturated with a coolant flowing through the pores.

The analysis of fluid flow at the pore level of a real 3-D image of porous channel
has the advantage of using basic fluid flow and heat transfer equations; additional
terms (such as permeability, inertial coefficient) are not needed. Therefore, the
model can be implemented with the governing equations of a Newtonian fluid by
using one of several computational fluid dynamics (CFD) software products. The
numerical simulations used in the following studies were obtained by the finite
volume method as implemented in the FLUENT software [43]. It is important
to note that the solid model of carbon foam used in the following simulations
represents a very short flow length; and this may not represent the flow properties of
the bulk foam. Even if periodic boundary conditions [33, 34] are used, the issue of a
representative volume should be addressed because the true 3-D image has irregu-
lar, randomly distributed pores. It was discussed earlier that the volume of the
model has the same porosity as the bulk; but the geometrical features of a small
solid model may not be representative and may not provide accurate permeability
and inertial coefficients. Therefore, in the following fluid flow analysis, a longer
SiC solid model is used. The flow equations are solved for both foams by using
symmetric boundary conditions on the four sides so that the effect of channel walls
is avoided. The convective heat transfer study in a later section is carried out with
flow through a carbon foam with emphasis on the effect of the foam ligament
conductivity on the convective heat transfer.

The velocity and pressure fields of an incompressible, steady state, Newtonian
fluid flow in laminar regime are governed by the mass conservation equation

8ul~

Fi 0 i=1,2,3 (indexnotation) 2D

and the Navier-Stokes equations for momentum conservation, given (in index
notation) by

8u,~ - 8[? 0 8u,~ ——
pulaix] - Ox; + :uax] (3)6,) L, j=1,2,3 (22)

where u; are the fluid velocities, p is the fluid pressure, u is the fluid viscosity and p
is the fluid density. The fluid flow is assumed viscous and the body forces on the
fluid are neglected. Due to the complexity of the geometry, a large number of finite
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Fig. 8 Computational model for carbon foam in the flow channel

volume elements have to be used. Therefore, to reduce computational effort, the
properties of the fluid are assumed constant with temperature.

The solid model assembly of porous channel (carbon foam microstructure and
interstitial fluid) is discretized using unstructured tetrahedral mesh in commercial
software HyperMesh [44] as shown in Fig. 8. The mesh created is imported into
computational fluid dynamics (CFD) software FLUENT for fluid flow and heat
transfer calculations. The unstructured tetrahedral mesh is first converted to polyhe-
dral mesh in order to improve the mesh quality (eliminate bad elements) and reduce
the computational time. In the polyhedral mesh 367,462 elements are generated
for the solid phase and 1,148,766 elements for the fluid. The second order upwind
scheme is used for discretizing the momentum and fluid energy conservation
equations. The SIMPLE algorithm is used for pressure-velocity coupling.

Mesh independence of the finite volume solution was established by solving the
problem using a different mesh density: 355,088 elements for solid and 756,387 for
fluid. The difference between the two discretizations in terms of permeability and
inertial coefficient of carbon foam microstructure is 1.6%, and 1.1%, respectively.
The results presented in this chapter are obtained using the finer mesh.

The fluid flow equations (21) and (22) are for laminar flow regime because the
Reynolds number calculated based on the equivalent hydraulic diameter of the flow
channel is smaller than critical Reynolds number Re., = 2,320 for the entire range
of velocities used in simulations. In order to account for the possibility of
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Fig. 9 Fluid flow pathlines (in the porous channel of carbon foam) colored by velocity magnitude
for a Darcy velocity of 0.5 m/s [6]

turbulence due to the tortuous geometry, the simulations were also run by including
turbulence in the flow model. The fluid flow turbulence was modeled using
the Reynolds-Averaged Navier-Stokes (RANS) method. The turbulent viscosity
and turbulence kinetic energy were modeled by employing the k-¢ method as
implemented in the commercial code FLUENT [43]. The difference between the
laminar and turbulent flow simulation results in terms of permeability and inertial
coefficient of carbon foam microstructure is 0.7% and 5.3%, respectively.

Fluid flow simulations for inlet (Darcy) velocities ranging between 0.01 and
1.5 m/s are run in order to determine the pressure drop as the flow moves across the
solid model. Fluid (air) thermo-physical properties at 20°C are used in the simula-
tions. Figure 9 shows the fluid flow pathlines in the carbon foam with velocity
magnitudes shown in color; this simulation is for a Darcy fluid velocity of 0.5 m/s.
The fluid flows along the positive x-axis to the right of the figure. The presence of
the carbon foam in the channel reduces the cross-sectional area available for fluid
flow and increases the fluid velocity. It can be noticed that the maximum fluid
velocity in the porous channel is about 3.6 times higher than free stream velocity.
This, in turn increases the pressure drop and the heat transfer. The tortuosity of the
fluid flow pathlines around the foam ligaments can be observed in the simulations.

For the silicon carbide foam, the meshing process was also done in HyperMesh.
Two models were created, with different element densities in order to check
the mesh independence of the solution. The solid model for the SiC foam has the
following dimensions: 2.9 mm length, 1.44 mm width and 1.40 mm height. The flow
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Fig. 10 Cross-sectional view through the HyperMesh models (a) 9,319,575 elements and
(b) 14,012,640 elements

length in the fluid flow simulation model is approximately double the length of what
was used in the thermal conductivity model. This longer model was used so that the
flow is not significantly affected by end effects, such as penetration depth. The first
model has the fluid domain discretized into 9,319,575 tetrahedral elements, while
the second one has 14,012,640 elements. This model is bigger than what was used
for analysis of thermal conductivity. Cross sectional views of the two models are
shown in Fig. 10a, b.

After the models were loaded into FLUENT, the domain was converted into a
polyhedral mesh to give a better mesh quality and improve the memory utilization.
After the polyhedral conversion, the first SiC foam model was reduced to 1,179,862
polyhedral cells and the second one was reduced to 2,150,609 cells. The problem
was then solved by the FLUENT code, and the fluid flow pathlines in the SiC foam
are shown in Fig. 11. It can be seen that the pathlines are qualitatively more tortuous
than higher porosity carbon foam.

The simulation results of pressure drop per unit length across the two different
foams as a function of the Darcy velocity are shown in Fig. 12; along with the
quadratic curves fitted through the data points. By comparing the plots in Fig. 12
with the Darcy-Forchheimer equation (10), the values of permeability and the
inertial coefficient for the SiC foam can be determined. The permeability for
the SiC foam was determined to be 2.1 x 10~ m? and the inertial coefficient
was calculated to be 0.14.

The value of permeability, and the heat transfer results obtained from the 3-D
image were determined to be very similar to the values obtained by experimental
measurements of the bulk SiC foam [45], which provides additional validation of
the numerical model. Even though the foam model is only 2.9 mm long, the
penetration depth is of the order of the square root of the permeability (v/K),
which is much smaller than the flow length. Therefore, the flow model from a
small 3-D image can be used to predict the bulk flow behavior in a porous media.
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Fig. 11 Fluid flow pathlines through the SiC foam for a Darcy velocity of 1.5 m/s
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Fig. 12 Pressure drop in the two foams as a function of Darcy velocity
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Fig. 13 Friction coefficient for flow in the SiC foam as a function of the modified Reynolds number

It is also important to note that the permeability was obtained from the 3-D image
model without any adjustable parameters.

Figure 12 shows an unexpected result — the fluid pressure drop in the carbon foam is
less than the pressure drop in the SiC foam. In general, carbon foam structure tends
to be more tortuous then this silicon carbide foam. Therefore, the pressure drop in the
carbon foam could have been expected to be higher than in the silicon carbide foam.
However, in this case, the carbon foam has only 10% solid vs. 17% for the SiC foam.
At very low densities, the pore structure and the resulting fluid flow can be signifi-
cantly different from higher density foams of the same material. Figure 13 is a plot of
the friction coefficient calculated from (12), versus the modified Reynolds number
(11), for the SiC foam. This curve for the SiC foam is based on the permeability and
inertial coefficient calculated from Fig. 12. It can be seen that the flow is in the Darcy
regime for these simulations. For the purpose of comparison, the experimental correla-
tions from Paek et al. [23] (14) and Vafai and Tien [27] (15) are also plotted. The plots
are quite comparable over the range of the modified Reynolds number values.

7.1 Heat Transfer Calculation

Heat transfer calculations in a highly conductive porous medium are complex
because of non-equilibrium thermal conditions. Therefore the equations are often
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simplified and combined with experimental results to develop Nusselt number
correlations of the type shown in (16). Krishnan et al. [33] assumed a constant
heat flux condition on the foam surfaces in an idealized pore model (referred to as a
“direct simulation”) and derived the heat transfer coefficient.

For heat transfer simulation with the true 3-D images, the results shown here
were derived with the carbon foam [36]. A constant temperature heat source is
applied on the upper surface of the channel that is in contact with the carbon foam
and the interstitial fluid. The surfaces belonging to channel inlet and outlet are not
heated. Heat is transferred by convection from the channel upper wall to the fluid
in contact, and also by conduction through the solid phase of the foam. The heat
flux through the solid is then convected from the pore walls to the fluid. The
system is analyzed considering steady state fluid flow and heat transfer by
numerical simulation of convection in the 3-D image model. Fluid velocity and
pressure distributions, as well as temperature distribution in carbon foam and fluid
at pore level are obtained from numerical simulation by commercial software
FLUENT [43]. The mathematical model used for heat transfer calculations, as
implemented in FLUENT is summarized here. This approach is similar to what
was adopted in a preliminary study on carbon foam by Anghelescu and Alam [46]
and by Alam [47] for a study of convection in SiC foam.

The steady state fluid temperature distribution in laminar flow regime is gov-
erned by the energy conservation equation

9 a(k%

Pep Ox; (wTy) ox; s 8)(_,-) i=1,2,3 (indexnotation) (23)

where k;is the fluid thermal conductivity.
The steady state temperature distribution in the carbon foam is governed by the
conduction equation

0 T . .
8_xj (ks 8x_,-> =0 i=1,2,3 (indexnotation) 24)
where k; is the thermal conductivity of the solid phase.

The following boundary conditions are applied for heat transfer analysis:

¢ Constant temperature on the upper surface of the porous channel (carbon foam
and fluid)

e Constant fluid temperature at the inlet of the channel

¢ Symmetry on the sides and lower surface of the channel

e Temperature and heat flux are continuous at the solid—fluid interface

A wall boundary condition is used on the top surface of the porous channel in
order to represent the constant temperature heat source. The two energy equa-
tions solved together yield the temperature distributions in carbon foam and fluid
as a function of space coordinates x, y and z. The fluid flow computational model
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Fig. 14 Fluid temperature distribution in (a) clear channel (no foam) and in (b) porous channel
with carbon foam for a Darcy velocity of 0.5 m/s
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provides the velocity distributions necessary for solving fluid energy conserva-
tion equation. The thermo-physical properties of the fluid (air) are assumed
constant with temperature during the convection heat transfer analysis so that
the fluid flow governing equations and the energy conservation equations can be
decoupled and solved independently. For additional details, readers are referred
to Anghelescu [36].

Simulations are carried out by varying the solid phase (ligament) thermal
conductivity in the carbon foam to study its influence on the effective heat transfer
coefficient in the porous channel. Figure 14a shows the temperature distribution in
the fluid in a channel without any foam, and Fig. 14b shows the temperature
distribution in the porous channel (containing carbon foam of solid phase thermal
conductivity of 50 W/m°C) for an inlet fluid velocity of 0.5 m/s.

7.2 Effect of Foam Ligament Conductivity

As can be expected, the fluid average temperature at the channel outlet is signifi-
cantly higher for the porous channel in comparison with the clear channel. The plots
in Fig. 15 are drawn to compare the average heat transfer per unit area, which can be
represented by the “effective heat transfer coefficient” based on the heater area. The
heat transfer is plotted as a function of Darcy flow velocity and the solid phase
(ligament) thermal conductivity of the foam. Three different values for thermal
conductivity of the solid phase in carbon foam are used in simulations, which are
10, 50 and 100 W/m°C. The results, as shown in Fig. 15, demonstrate the influence
of the thermal conductivity of the foam ligaments on the effective heat transfer
coefficient. A simulation of convection heat transfer in clear channel (no foam)
was also performed in order to provide a baseline that would show the enhancement
in the effective heat transfer coefficient due to the presence of carbon foam in the
channel.

The results show that, for an air velocity of 1 m/s, the thin layer of foam can
increase the heat transfer by a factor of three even if the foam ligaments have a
conductivity of only 10 W/mK. The reason is that the ligaments are working as
highly efficient fins [26]. The heat transfer in the porous channel is enhanced by the
higher velocity due to restrictions in flow area and the thermal conductivity of
the foam ligaments; but in this case the primary cause for the enhancement is the
extended surface area available for convection. Beyond a thermal conductivity
value of 100 W/mK, there is very little change in the heat transfer because the
foam ligaments are almost isothermal across the small height of the thin channel. It
should be noted that graphitic foam ligaments can have thermal conductivity
exceeding 500 W/mK. If the flow channel height is extended further, using such
high thermal conductivity foam would be highly effective in enhancing the
heat transfer.
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Fig. 15 Effective heat transfer coefficient as a function of Darcy velocity and foam ligament
thermal conductivity

8 Summary

The analysis of porous media has been addressed through new techniques for
obtaining true three-dimensional images of true foam geometry at the pore level.
This allows the development of pore level models that can be modeled without the
use of experimental or semi-empirical parameters such as permeability, friction
coefficient, and heat transfer coefficient. Instead, the pore level solid model can be
used to determine these parameters by applying the fundamental transport equa-
tions for a simple channel flow. The SiC model studied in this chapter has been
used successfully by the authors to predict the fluid flow, permeability and heat
transfer for a heat sink application. It can be concluded that a pore level model
using true 3-D images has the potential to determine the thermal conductivity,
fluid flow behavior within the foam and the convection due to fluid flow without
using experimental results or semi-empirical parameters. Therefore, this tech-
nique provides a tool for prediction and design of transport processes in porous
media. This is particularly useful for complex microstructures, such as graphitic
carbon foam, for which the accuracy of classical volume averaged equations is not
well established. Current work on this modeling effort is focused on the design
and development of heat sinks and heat exchangers based on flow through high
conductivity foams.
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Thermal Instabilities in a Fluid Saturated
Porous Medium

A. Barletta

Abstract This chapter contains a review of the thermoconvective instabilities that
may occur in a fluid saturated porous medium. Reference is made to a horizontal
porous layer. The macroscopic description of the fluid flow in a porous medium is
outlined. Then, the mass, momentum and energy balance equations for porous
media are described and discussed. As a first basic example of convective instabili-
ties, the classical Darcy-Bénard problem is studied in order to highlight the main
characteristics of the linear stability analysis. Extensions of the Darcy-Bénard
problem based on the Forchheimer model and on the Brinkman model of momen-
tum flow are analysed. Moreover, the effects of either a horizontal or a vertical
throughflow in the layer are discussed. The contribution of the effect of viscous
dissipation is investigated as a possible cause of convective instabilities.

1 Introduction

Fluid flow in porous media is of paramount importance both for geophysical
applications such as filtration of water, hydrocarbons and gases in the soil and for
engineering. For instance, one may point out the interest of porous media with
reference to the hydrology of aquifers, underground repositories used for seques-
tering nuclear waste, heat pipes, underground spreading of chemical waste, drain-
age and irrigation in agriculture, thermal insulation engineering, enhanced recovery
of petroleum reservoirs, grain storage, water flow in geothermal reservoirs. Several
treatises on the fluid dynamics in porous media have been published. A complete
and updated review of the present knowledge in this field, oriented to convection
flows, is the textbook by Nield and Bejan [24].
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Fig. 1 A sketch of the Al

Rayleigh-Bénard problem
/ TL' < Th

The onset of convective instabilities induced by temperature gradients is a well
known phenomenon both for clear fluids and for fluid saturated porous media. A
classical reference case is the Rayleigh-Bénard problem of a horizontal fluid layer
heated from below [7, 8, 19]. Comprehensive discussions of the Rayleigh-Bénard
modes of instability and the study of the critical conditions for the onset of
convection cells can be found, for instance, in Normand and Pomeau [25], as
well as in the textbooks by Drazin and Reid [12] and by Gebhart et al. [13]. In a
simplified formulation of the Rayleigh-Bénard problem, one assumes an infinitely
wide horizontal fluid layer with thickness L, bounded by two isothermal planes (see
Fig. 1). The fluid is at rest in the undisturbed basic state. The lower boundary plane
is kept isothermal at a temperature T, while the upper boundary plane is kept
isothermal at a temperature 7, < T},. As is well known, convective cells may appear
when the difference T, — T, becomes greater than a threshold value. In fact, the
analysis of the Rayleigh-Bénard problem reveals that the onset of convective rolls
occurs when the Rayleigh number,

. 3
Ra = SPTTL 0

exceeds the critical value Ra., = 1707.76 (see, for instance, [13]). Here, g is the
modulus of the gravitational acceleration g, while 5, v and o are respectively the
coefficient of isobaric thermal expansion, the kinematic viscosity and the thermal
diffusivity of the fluid. The critical value of the Rayleigh number is obtained by a
linear stability analysis. This means that a small disturbance of the basic rest state is
assumed having the form of a plane wave oriented in any horizontal direction. Since
the disturbance has a small amplitude, one keeps only the linear terms in the
governing balance equations, while the higher order terms are neglected [12].

In the fluid dynamics of saturated porous media, an issue analogous to the
Rayleigh-Bénard problem of clear fluids is the Darcy-Bénard problem, well
known also as the Horton-Rogers-Lapwood problem. The former denomination
refers to the pioneer of the theory of fluid flow in porous media, Henry Philibert
Gaspard Darcy (1803-1858), and to the pioneer of the experiments on convection
cells in a fluid layer, Henri Bénard (1874—1939). The latter denomination refers to
the forerunners of the investigations on the linear stability analysis of a horizontal
fluid saturated porous layer heated from below [14, 18]. In its classical formulation,
the Darcy-Bénard problem shares the same geometry, basic state and thermal
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boundary conditions as the Rayleigh-Bénard problem. The only difference is in the
momentum balance being expressed by Darcy’s law of porous media instead of
the Navier-Stokes equation of clear fluids. The Darcy-Bénard problem is just the
simplest of a wide class of convective instability problems in porous media. For
previous reviews of the literature on this subject we refer to Nield and Bejan [24],
Rees [27] and Tyvand [34]. A remarkable feature of the original Darcy-Bénard
problem is that it admits an exact solution. In fact, a fluid saturated porous layer
with thickness L has a linearly stable rest state as long as the Darcy-Rayleigh
number,

- gp(T, —T.)LK

R= ; @

vo

does not exceed the critical value 47%. Here, K is a property of the porous medium
called permeability, while a is the average thermal diffusivity of the fluid saturated
porous medium.

2 Models of Flow in a Fluid Saturated Porous Medium

In this section, the basic elements for the macroscopic description of fluid flow in a
saturated porous medium are discussed. Then, the mathematical models for the
expression of the local mass, momentum and energy balance equations are
described.

The oldest, the simplest and the most widely employed model of fluid flow in
porous media is named after Darcy (see Fig. 2), a French scientist with a strong
professional interest in hydraulics. During his life, he was a civil engineer in the city
of Dijon in France. He designed and built a pressurized water distribution system in
Dijon. A few years before his death, he conducted the experiments that allowed him
to formulate what today is well known as Darcy’s law. His publication The Public
Fountains of the City of Dijon contains an appendix written in 1856 entitled

Fig. 2 Henry Philibert
Gaspard Darcy (1803-1858)
[Portrait by F. Perrodin,
Bibliothéque Municipale de
Dijon]
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Fig. 3 Flow in a porous
medium
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Determination of the Laws of Water Flow Through Sand where his law is formu-
lated [11]. A historical survey of Darcy’s scientific works and discoveries is given
in the paper by Brown [9].

Before formulating Darcy’s law, let us review the main features of the macro-
scopic description of fluid flow in porous media. A porous medium is a solid
material with void inner structures saturated by a fluid, liquid or gas. One can

think to sand, pebbles or to a metallic foam. One can imagine that the void spaces
within the solid are entirely filled by the moving fluid (see Fig. 3).

2.1 Porosity, Volume Averages and the Seepage Velocity

A basic quantity for the description of a porous medium is the ratio between the
volume occupied by the fluid (voids) and the total volume including voids and solid.
Referring to Fig. 4, one can consider a representative volume V, small on a
macroscopic scale even if large on the scale of the single grain, pebble or micro-
channel that may be present inside the porous medium. If V} is the void part of V,
then let us call porosity, o, the ratio

Y

v 3)

12

The porosity is a dimensionless quantity strictly smaller than unity, whose
value can range from ~ 0.88 = 0.93 of fiberglass to ~ 0.12 = 0.34 of bricks.
Sand, the material originally considered in Darcy’s experiments, has a porosity
¢ ~0.37 =+ 0.50.

The study of convection in porous media is based on the assumption that a fluid
saturated porous medium can be described as a continuum. This means that, in the
representative volume V of the system, the number of pores is very high. Therefore,
one can define a local fluid velocity field as an average value of the local fluid
velocity #*. There are two possible average values of i usually introduced: the
intrinsic velocity, namely
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Fig. 4 Representative
volume

U=y [ @ dv, “)

and the seepage velocity (also known as Darcy velocity), namely

1
= — i]*dv. 5
7 V/Vu ®))

The intrinsic velocity is defined as an average performed in the void part Vy of
the representative volume V. Since i* = 0 in the part of V not included in V/, the
two integrals on the right hand sides of (4) and (5) are equal. Then, one can establish
a very simple relationship between U and i,

—

ii=pU. (©)

This equation is well known as the Dupuit-Forchheimer relationship.

The local value of the seepage velocity i depends on the shape and the size of the
pores as well as on the causes that determine the fluid motion. The relationship
between the local value of if and the forces acting on the fluid could be deduced by
an appropriate local average over the representative volume of the Navier-Stokes
momentum balance. However, due to the complexity of the system, in most cases this
relationship is postulated through a constitutive equation validated experimentally.

2.2 Mass Balance

By employing a local volume-averaging procedure, the local mass balance equation
of a fluid saturated porous medium can be expressed as

dp

@E+V~(pu):0, (7
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where p is the fluid mass density and ¢ is the time. Let us note that the local mass
balance equation for a fluid saturated porous medium formally coincides with that
of a clear fluid when the flow is stationary, 9p/dt = 0. Incidentally, the termino-
logy clear fluids is used when dealing with fluid saturated porous media, to denote
the limiting case when the solid matrix is absent and the fluid occupies all the
available space.

2.3 Darcy’s Law

The simplest constitutive equation expressing the local seepage velocity is Darcy’s
law ( ~ 1856), namely

i=—Vp+f, 8)

=Xl=

where K is a property of the system called permeability, p is the dynamic viscosity
of the fluid, p is the fluid pressure and f?is the external body force per unit volume
applied to the fluid (in the simplest case, the gravitational body force p g).

The ratio behind the assumption given by (8) relies on the observation that a
porous medium can be thought of as a network of microscopic ducts where the fluid
flows. In the absence of external body forces, the pressure gradient along a duct is
proportional to the average fluid velocity in the duct itself, if the flow is laminar. On
the other hand, if the flow is highly turbulent (hydraulic regime), the pressure gradient
along a duct is proportional to the square of the average fluid velocity in the duct
itself. Darcy’s law refers to the case of laminar flow within the pores, so that the
permeability K is considered as a property of the medium depending on the number of
pores per unit area present in a cross-section transverse to the fluid flow, on the shape
of the pores and on their size. The units of permeability are m?. Values range from
~ 4.8 x 10715 =22 x 107®m? of a brick to ~ 1.1 x 10~"m? of a cigarette.

EXAMPLE - Let us consider a porous medium such that the pores form an
ordered array of parallel infinitely-long circular ducts each with a diameter D
(see Fig. 5). Let z be the axis parallel to the ducts and let the number of ducts
per unit area in a transverse section of the medium be 7.

Then, by comparison with the relationship between average velocity u;,
and pressure drop Ap in this kind of ducts, it is easily verified that
K = nnD*/128. In fact, it is well known that the average velocity uy,, of
fully developed laminar flow in a circular duct (Poiseuille flow) is given by

D? dp

R Y
(continued)
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One may notice that u;, = U, i.e. u,, coincides with the intrinsic velocity
U. Moreover, the porosity is given by ¢ = nnD?/4. Then, on account of the
Dupuit-Forchheimer relationship, the Darcy velocity u is given by

nnD?

nnD* dp
%= — ot

4 " T T8 d

As a consequence of (8), one obtains the expression of K.

Fig. 5 Drawing of the
ordered array of parallel ducts
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2.4 Form-Drag Effects: Darcy-Forchheimer’s Model

If the hypothesis of laminar fully developed flow in the pores cannot be applied, then
proportionality between acting forces and resulting fluid velocity must be released in
favour of a gradual transition towards an hydraulic regime where acting forces are
proportional to the square of the fluid velocity in each pore. An extended form of
(8) has been proposed which accounts for this effect, i.e. Darcy-Forchheimer’s model
(~ 1901),

K

/K . .
“<1+C*;F|ﬁ|>ﬁ=—vp+f, 9)

In (9), v = p/p is the kinematic viscosity, |i| is the modulus of #, p is the fluid
mass density and ¢ is a property of the porous medium called form-drag coefficient.
It is easily verified that ¢ is dimensionless. Some authors sustained that the form-
drag coefficient ¢y is a universal constant, ¢ = 0.55, but later it has been shown that
¢f depends on the porous material and one can have, in the case of metal foams,
cr =2 0.1 [24].

Obviously, Darcy-Forchheimer’s model includes Darcy’s law as a special case,
i.e. in the limit ¢; — 0. On the other hand, whenever c; |ii]v/K /v >> 1, the transition
to an hydraulic regime for the fluid flow inside the pores occurs. A widely accepted
criterion to establish when Darcy’s law must be abandoned in favour of Darcy-
Forchheimer’s model is constructed with the permeability-based Reynolds number,
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|id| VK

v

Rex = (10)

Darcy’s law gradually loses its validity when Rex ~ 10? or greater. A clever
way to apply the criterion is to take |i| as the maximum value in the domain.

2.5 Brinkman’s Model

A common feature of Darcy’s law and of Forchheimer’s extension of this law is that
they refer to a tight packed solid with a fluid flowing in very small pores. Indeed,
this is a circumstance very far from a free flowing fluid. When one applies the curl
operator to the left hand sides of (8) and (9), in order to encompass the dependence
on the pressure field, one is lead to first order differential equations for the seepage
velocity. More precisely, from (8) one obtains

ﬁx(%ﬁ—f):o, (11)

while from (9) one has
. VK .
v x [%(1+Ct:}/‘ﬁ>b_t'—f:| —0. (12)

Being first order, one can complete either (11) or (12) with just one velocity
boundary condition on each boundary surface. This boundary condition can be, for
instance, impermeability (i -7 =0, where 7 is the unit vector normal to the
surface). However, one cannot allow also a no-slip condition on the same surface,
as the problem would be over-conditioned. This feature is similar to that arising in
perfect clear fluids (Euler’s equation). The impossibility to prescribe no-slip con-
ditions at the boundary walls creates a sharp distinction between the Navier-Stokes
fluid model and the models of fluid saturated porous media based either on Darcy’s
law or on Forchheimer’s extension of this law.

In some cases a continuous transition from the momentum balance equation of a
clear fluid (Navier-Stokes equation) to Darcy’s law is considered as realistic. In this
direction it has been proposed the so-called Brinkman’s model ( ~ 1948) for fluid
flow in a porous medium. This model allows one to prescribe no-slip wall condi-
tions as for a Navier-Stokes clear fluid. According to Brinkman’s model (8) must be
replaced by

i — Vi =—Vp+f, 13)

>I=

the quantity ji is called effective viscosity: it depends on the fluid viscosity p and
on the porosity of the medium where the fluid flows. A commonly employed
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correlation for the effective viscosity is Einstein’s formula for dilute suspensions of
uncharged spherical colloidal particles, namely

= pl+2501-9)) (14)

If the porosity is equal to 1, one has a clear fluid and (14) implies that it = u. If
¢ = 1, (13) reduces to the Navier-Stokes equation without the inertial contribution
(negligible acceleration), provided that the limit of infinite permeability is also
taken (K — o0). On the other hand, in the limit of a very small permeability
(K — 0), the first term on the left hand side of (13), uii/K, becomes much larger
than the second term, ﬁvzﬁ. Therefore, in the limit K — 0, Brinkman’s model
reduces to Darcy’s law, (8). It must be pointed out that the limit K — 0 yields a
singular behavior next to the impermeable boundaries where the no-slip conditions
cannot be adjusted anymore.

2.6 The Energy Balance

A local volume-averaging procedure for the fluid and solid phases, similar to that
used for the local mass balance (7), yields the local energy balance equation

T - -
pc<a aat+ﬁ'~VT> = kVT + g, + @, (15)

valid under the assumption of constant thermal conductivities of the solid and of the
fluid phases. In (15), c is the heat capacity per unit mass and ¢ is the heat capacity
ratio defined as

o= ppc+ (l — @)pscS
pe

) (16)

while £ is the effective thermal conductivity of the fluid saturated porous medium
defined as

k=gpk+(1—@)k. (17)

The effective thermal diffusivity is then defined as & = k /(pc). In (16) and (17),
the properties p, ¢ and k refer to the fluid, while p, ¢, and k; refer to the solid
matrix.

The term g, in (15) is the power that may be generated per unit volume in the
porous medium by, for instance, Joule heating or chemical reactions. The last term
on the right hand side of (15), ®@, is the power per unit volume generated by viscous
dissipation.
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The expression of ® depends on the momentum balance model employed. As
pointed out in Nield [22], the term ® can be evaluated according to the general rule

O=F, i, (18)
where
Fi=—-Vp+f (19)

is the drag force. The drag force has an expression that depends on the model
adopted:

Darcy’s law  — Fy :% i (20)
. VK
Darcy-Forchheimer’s model —  Fy :Iﬁ( (1 + VK 17|>12' (1)
v
Brinkman’s model — F, = Ll a2 (22)

Nield’s rule expressed by (18) has been the subject of a debate especially with
reference to its application in the case of Brinkman’s model. Let us refer for
simplicity to the case of incompressible flow, V - it = 0. One would expect that,
in the limiting case of an infinite permeability K — oo, the expression of ® implied
by (18) and (22) is consistent with the expression of the viscous dissipation term for
a Navier-Stokes clear fluid, namely

o 1 (Ou; Ou,
o = 2,U, f//‘,'j g//,'j, where f/,j = 5 <a—xj + axj) (23)

is the (i, /) component of the strain tensor and the summation over repeated indices
is assumed. On the contrary, in the limit K — oo and ¢ — 1, (18) and (22) yield

® = —pii- V2, (24)

where [ = p in the limiting case of a clear fluid as it is implied by (14). The
difference between the expressions of ®@ given in (23) and (24) is apparent as (23)
yields an expression containing only first order derivatives of the velocity compo-
nents, while the right hand side of (24) contains second order derivatives of the
velocity components. Moreover, while ® given by (23) can be only positive or zero,
there can be flows such that the right hand side of (24) is negative.

Recently, Al-Hadhrami et al. [1] proposed a different expression of @ in the case
of Brinkman’s model, namely

o=Eiit209;9; (25)

=1
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The advantage in the expression of ® given by (25) is that ® cannot be negative
and that the limiting cases of Darcy’s law (K — 0) and of Navier-Stokes clear fluid
(K — 00, ¢ — 1) are correctly recovered. On the other hand, it has been noted that
(25) is “an ad hoc formula” generated by the sum of two dissipation terms: one valid
in a regime of a very small permeability (Darcy) and the other in a domain of an
extremely large permeability (Navier-Stokes) [22].

3 The Darcy-Bénard Problem

As it has been pointed out in Sect. 1, the Darcy-Bénard problem is the study of the
conditions for the onset of convective instabilities in a plane porous layer with
isothermal impermeable boundaries heated from below. As is well known, convec-
tive instabilities are caused by the buoyancy force acting on the fluid. The conceptual
scheme for describing buoyant flows is the Oberbeck-Boussinesq approximation
[2, 13]. This scheme consists in neglecting the temperature changes of all the fluid
properties except for the fluid density. The change of the latter property is considered
only with respect to the gravitational body force term f = pg, where it is assumed to
be a linear function of the temperature,

p = po[l — B(T — To)]. (26)

The reference density p, corresponds to the reference temperature Tj.

3.1 A Horizontal Porous Layer Heated from Below

In analogy with the Rayleigh-Bénard problem, let us consider a horizontal fluid
saturated porous layer having thickness L, bounded by two impermeable planes.
The lower boundary plane is maintained at temperature 7, while the upper
boundary plane has a uniform temperature 7, < Tj. By assuming the validity of
the Oberbeck-Boussinesq approximation, as well as of Darcy’s law, the following
local balance equations hold:

V-ii=0, 27
%ﬁ:—ﬁP+pﬂg(T—Ta)5y, (28)
or _ = ~ 5 |
el VT | = T+Z i 2
Pc(o, 8t+u V) kY +KM u, (29)
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Fig. 6 The Darcy-Bénard ¥
problem l_

L T-T,<T,

0 T=T, o

where €| is the unit vector along the y-axis. The reference temperature T has been
chosen as the temperature of the cold boundary, 7., and the corresponding reference
density has been denoted as p for simplicity’s sake. In (28), P is the difference
between the pressure p and the hydrostatic pressure —pgy, while &, is the unit
vector in the y-direction (see Fig. 6). Let us denote as (u,v,w) the Cartesian
components of the vector i. Then, the boundary conditions are

y=0: v=0, T=T,, 30)
y=L: v =0, T=T.. (31)

Equations (27)—(31) can be written in a dimensionless form on defining the
following transformation

(3 2)r— (32, L

X Z)—— (X VA — — u —-——u

7y7 L ’y77 6L2 b & b 32

T—T, K (32)
— T, P ——P.

Th—Tc ou

Moreover, let us introduce the Darcy-Rayleigh number, (2), and the Darcy-
Brinkman number,

va

Br = Ke(Ty —T.)" (33)

Then, (27)—(31) are rewritten as
V-ii =0, (34)
il = — VP +RTE,, (35)

aTr -
E_Fﬁ.VT:VZT—FBVII'ﬁ, (36)
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y=0: v=0, T=1, 37
y=1: v=0, T=o0 (38)

In order to carry out the stability analysis of the basic state, let us determine the
stationary solution of the governing equations (34)—(38) under the assumption of a
rest state, i = 0,

=0, Ty=1-y, Pr=Ry(1-3), (39)

where the subscript B stands for “basic solution”. One may notice that the field P
appears in (34)—(38) only through its gradient. Hence, this field can be determined
only up to an arbitrary additive constant. In (39), this constant is fixed so that
Pg=0aty=0.

3.2 A Benard-Like Problem in a Porous Medium

Starting from the basic solution (39), one can define small perturbations of the
velocity, temperature and pressure fields,

—

i=iip+eU, T=Tp+e0, P=Pg+e?, (40)
where ¢ is an arbitrarily small perturbation parameter and U= (U,V,W).

On substituting (39) and (40) into (34)—(38) and neglecting terms of order &2, one
obtains

V-U=0, (41)
U=-V?+R0E, (42)

a0 )
V= 4
5~V V0, (43)
y=0,1: V=0, 0=0. (44)

Equations (41)—(44) reveal an interesting result. The basic solution and the linear
disturbances of this solution are not influenced by the effect of viscous dissipation. In
fact, the Darcy-Brinkman number Br does not appear either in (39) or in (41)—(44).
Obviously, a role of viscous dissipation may arise when a nonlinear disturbance
analysis is carried out, i.e. when terms of order &2 are taken into account.
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3.3 Onset of Convective Instabilities

The solution of (41)—(44) is sought in the form of standing plane waves oriented along
an arbitrary direction orthogonal to the y-axis. The basic solution as well as the physics
and geometry of the system examined are invariant under rotations around the y-axis.
This means that the effect of a wave disturbance oriented along a direction orthogonal
to the y-axis is independent of the particular direction selected. Therefore, without any
loss of generality, one may choose a plane wave disturbance oriented along the
x-direction. This choice implies that the analysis of the disturbances has the form of
a 2D problem referred to the (x, y)-plane. On writing (41)—(44) in a 2D form one has

ou oV
a—i—a—y: 0, (45)
0P
v=-2, (46)
P
V= —%y + RO, 47)
a0 0%0  0%0
E— V:@—i_@_yz’ (48)
y=0,1: V=0, 0=0. (49)

One can easily encompass the dependence on Z” in (46) and (47) by differentiat-
ing (46) with respect to y, differentiating (47) with respect to x and then subtracting
the second resulting equation from the first one,

ou oV 00
By or R0 (50)

Let us now introduce a dimensionless streamfunction ¥ (x, y, #), such that

oF oF
v=5 Y o 1)

Then, (45) is identically satisfied, while (50) and (48) yield respectively,

PY Y 90
ety Ra (52)
90 0¥ 0 &0

o e e (53)
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The boundary conditions (49) can be rewritten as

oY

=0,1: —
y ) x

=0, 0=0. (54)

Let us seek a solution in the form of a standing wave oriented along the x-axis,
namely

¥ = f(y)e*'sin(ax), 0 = h(y)e*'cos(ax). (55)

In (55), a is the dimensionless wave number, while / is an exponential coeffi-
cient. If 1 > 0, the amplitude of the wave increases exponentially in time, thus
implying an unstable behaviour of the system. If 2 < 0, the wave undergoes an
exponential damping in time, thus implying a stable behaviour of the system.
Finally, the case 4 = 0 represents the demarcation between stability and instability.
Disturbances such that 2 = 0 are called neutrally stable or marginally stable as they
correspond to a threshold condition for instability.

By substituting (55) into (52)—(54), one transforms a partial differential prob-
lem in an ordinary differential problem in the unknown functions f(y) and A(y),
namely

f"(y) — a*f(y) — aRh(y) =0, (56)
H'(y) — (a* + A)h(y) — af(y) =0, (57)
y=0,1: f=0, h=0, (58)

where the primes denote differentiation with respect to y. The ordinary differential
problem defined by (56)—(58) is homogeneous. This means that whatever are the
prescribed values of the parameters (a, 4,R), (56)—(58) always admit the trivial
solution f = & = 0. However, for any prescribed pair (a, 1), (56)-(58) may also
admit nontrivial solutions for special values of R. These special values of R are
called eigenvalues. Since one is interested in the nontrivial solutions of (56)—(58),
the problem to be solved is an eigenvalue problem.

In order to fulfil the boundary conditions (58), f(y) and A(y) can be expressed as

= X:Fnsin(mry)7 h(y) = ZH,,sin(nny). (59)
n=1 n=1
The coefficients F,, and H,, are such that (56) and (57) are satisfied, namely

Z a* + ) F, + aRH,,] sin(nmy) = 0, (60)

n=1
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[(a* + A+ n*n*)H, + aF,]sin(nmy) = 0. (61)

n=1

Due to the orthogonality relationship between sine functions,

1 0, m#n
/ sin(mmny) sin(nmy)dy = { 1 (62)
0 o
2

m=n,

Equations (60) and (61) are fulfilled if and only if all the coefficients of the series
vanish. Then, one obtains the algebraic equations

(a2 + nznz)F,, +aRH, =0, (63)
(a2 + A+ nznz)Hn +aF,=0. (64)

From (64), one has
H, = — a F. (65)

(@* + A+ n?n?)
Then, by substituting (65) in (63) and simplifying F,,, one obtains an expression

of the eigenvalue R,

(@ + n’n?) (a* + A+ n’n?)

R =
a?

. on=1,23,.... (66)

Let us note that simplifying F, means that F, is not vanishing, i.e. that we are
seeking a solution (f, &) that is not identically zero.

There are different kinds of instabilities: one for each value of n. The lower one
being that for n = 1. Unstable roll disturbances (4 > 0) are such that

(a® + n2)2

R >
a2

(67)

One can easily see that the right hand side of the inequality (67) is the eigenvalue
R corresponding to neutral stability (A = 0) for n = 1. As a consequence, in the
parametric plane (a,R), unstable states correspond to the region above the lower
(n = 1) neutral stability curve

2 22
P G tr v (68)
a
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while stable states lie below this curve. One can easily recognize these features in
Fig. 7. This figure reveals that the stability of the rest state depends on the wave
number a of the roll disturbance. No instability can arise when

R < R, = 4n* ~39.4784, (69)

where R, = 472 is determined as the minimum of function R(a) defined by (68), i.
e. the minimum of the lower (n = 1) neutral stability curve. It is easily verified that
the minimum R = R, occurs for

a=ay, =Tm. (70)

The physical significance of the integer n, labeling the different neutral stability
curves represented in Fig. 7, relies in the different kind of instabilities that can be
activated at increasing values of the Darcy-Rayleigh number R. The lower neutral
stability curve, n = 1, defines the first kind of instability to be onset, namely the
single row of adjacent convective cells shown in Fig. 8. The second neutral stability
curve, n = 2, defines a more complicated kind of instability, namely two vertical
superposed rows of adjacent convective cells as shown in Fig. 9. One can imagine
that, for higher n, new kind of instabilities are activated consisting of an increasing
number of vertically superposed rows of adjacent convective cells. As it is easily
inferred from (66) by setting 2 = 0, the minimum of each neutral stability curve
corresponds to

a=nm, R = 4n*n°. 71)

It has been recalled that the critical value of the Rayleigh number equation (1)
for the onset of convective cells in Rayleigh-Bénard convection is 1707.76. If one

1000

500

200

100

50 |

0 5 10 15 a 20 25 30

Fig. 7 Stable (gray region) and unstable (white region) states in the parametric plane (a, R)
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Fig. 8 Streamlines ¥ = constant (solid lines) and isotherms 6 = constant (dashed lines) for
.=0,a=a, =nandR =R, = 4n®

1.0
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0.4
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0.0

0.0 0.5 1.0 X 1.5 2.0

Fig. 9 Streamlines ¥ = constant (solid lines) and isotherms 6 = constant (dashed lines) for
A=0,a=nnand R = 4n’n? (with n = 2)

compares this result with (69), the first glance conclusion is that it is easier to have
convective instabilities in a Darcy porous medium than in a clear fluid. However,
this is false as the Rayleigh number Ra is proportional to L3, while the Darcy-
Rayleigh number R is proportional to K L. Since the permeability K is usually very
small, it is more common for a clear fluid to have Ra > 1707.76, than for a fluid
saturated porous medium to have R > 472,
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The classical Darcy-Bénard problem has been recently revisited by Nield and
Barletta [23]. In this study, the pressure work has been taken into account in the local
energy balance and its effects on the onset conditions for convective instability have
been assessed. It has been shown that the pressure work contribution has a stabiliz-
ing effect leading to a critical value of R higher than 472

4 Extensions of the Darcy-Bénard Problem, Beyond
Darcy’s Law

The discussion of the Darcy-Bénard problem carried out in Sect. 3 is based on the
assumption that the local momentum balance equation for the fluid saturated porous
medium is correctly expressed by Darcy’s law. However, we know that this law
may need to be replaced by either the Darcy-Forchheimer model, when the form-
drag effects are important, or by the Brinkman model, when the permeability of the
porous medium is very large. In this section, the possible changes induced in the
analysis of the Darcy-Bénard problem by the use of the Darcy-Forchheimer model
and by the use of the Brinkman model are investigated. The absence of any role
played by the effect of viscous dissipation in this analysis, proved in Sect. 3 with
reference to Darcy’s law, holds also for non-Darcy models of momentum transfer.
Thus, without any loss of generality, the forthcoming analysis is performed by
dropping the viscous dissipation term in the energy balance from the beginning.

4.1 Form-Drag Effects

Let us assume that the Darcy-Bénard problem is defined by (27)—(31) with (28)
replaced by

“(Hm/l?
K v

|ﬁ|)ﬁ= P4+ pBe(T—Te, )

where (9) has been used. Thus, the dimensionless equations (34)—(38) still hold
with (35) replaced by

i#(1+ A |il]) = — VP +RTE, (73)
where the dimensionless parameter A is defined as

A:Cf&\/[?.

L (74)
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One can easily verify that the basic rest state is still described by (39). Then, on
introducing the small perturbations of the basic state defined by (40), substituting
(39) and (40) into (34), (73), (36)—(38) and finally neglecting terms of order ¢2, one
obtains again (41)—(44). This means that the disturbance equations in the linear
theory are not affected by the form-drag term. In other words, the stability analysis
carried out in Sect. 3 still holds even if the Forchheimer correction of Darcy’s law is
taken into account. Obviously, the reason of that is the linearisation of the govern-
ing equations. Then, the linear stability theory of the Darcy-Bénard problem is not
affected by the form-drag effect inasmuch as it is not affected by the effect of
viscous dissipation.

4.2 Brinkman’s Model Approach to the Onset Conditions

If one uses Brinkman’s model, (13), instead of Darcy’s law, then (27)-(31) still
hold with (28) replaced by

il — V%= —VP+pBg(T —T.)e,. (75)

==

In a dimensionless form, (34)—(38) still hold with (35) replaced by
it —Da,, V*i=— VP +RTé,, (76)

where Da,, is the modified Darcy number, well-known also as Brinkman coef-
ficient [24],

Da,, == Da =

= I=
==

K
72 (77)

and Da = K/L? is the Darcy number. One must recognize that the boundary
conditions, (38), now include also the no-slip condition # = w = 0. Again, the
basic rest state is described by (39). Then, on introducing the small perturbations
of the basic state defined by (40), substituting (39) and (40) into (34), (76),
(36)—(38) and finally neglecting terms of order &2, one obtains

V-U=0, (78)

U - Da, VU =—-V2?+R0E, (79)
a0 5

E—v_va (80)

y=0,1: U=V=W=0, 6=0. (81)
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One can eliminate the dependence on & by taking the curl of both sides of (79),
namely

00 5X+Rafz e:, (82)

ﬁxﬁ—Dasz(ﬁxﬁ):—Rg 3

where €, and €, are the unit vectors along the x- and the z-axes. Let us now assume,
as in the analysis of Sect. 3, that the disturbances are 2D and lie in the (x,y)-plane.
Then, only the z-component of V x U is nonzero and the dimensionless stream-
function ¥ (x, y, ) defined by (51) is such that

(Vx0)-&=-vv. (83)

Then, (78) is identically satisfied, while (82), (80), (81) yield respectively

V¥ D, V (V) = RO (84)
X
90 ov _,
=V 85
ot =V 85
oY ovY
—0,1: E_9Y_ 0=0.
y =0, =2y =0 0 (86)

Then, by assuming plane wave disturbances given by (55), (56)—(58) are now
replaced by

Da,, f""(y) — (2Dana* + 1) f"(y) + @* (Dana® + 1) f(y) + aRh(y) =0, (87)

W' (y) = (a® + 2)h(y) — af (y) = 0, (88)
y=0,1: f=f =0, h=0. (89)

Unlike (56), (87) is a fourth-order differential equation. The eigenvalue problem,
(87)—(89), can be solved numerically. The procedure is as follows. One prescribes the
input values of (a, 4, Day,), guesses the eigenvalue R and solves (87) and (88) by, for
instance, a Runge-Kutta method under the initial conditions

y=0: f=f =0, f'=A, f"=B, h=0, K=1  (90)

In (90), A and B are guessed constant values and the additional condition /' =
is perfectly legitimate in order to fix the scale of the eigenfunctions (f, /), other-
wise undetermined. The guessed values (R, A, B) are finally determined through a
shooting method by employing the three constraint conditions

y=1: f=f=0 - h=0. 1)
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With 1 = 0, this numerical procedure allows one to develop a function R(a)
describing the lowest neutral stability curve. As it has been pointed out in Sect. 3,
the lowest neutral stability curve is one where the minimum corresponds to the
critical conditions for the onset of the first instability mode. More precisely, the
critical values (a.,R,.) are determined numerically by seeking the minimum of
R(a). On account of (87)—(89), both function R(a) and the critical values (d., R.)
depend parametrically on the modified Darcy number, Da,,.

This study of linear stability was carried out by Walker and Homsy [35] and,
more recently, by Rees [28].

The special feature of Brinkman’s model is that it represents a bridge from
Darcy’s law to the Navier-Stokes model of a clear fluid. These limiting cases are
recovered as Da,, — 0 (Darcy) and Da,, — oo (clear fluid). With reference to the
critical conditions for the onset of convective instabilities, it is well known that a
Darcy porous medium has a critical Darcy-Rayleigh number, R, equal to 47, while
a clear fluid has a critical Rayleigh number, Ra, equal to 1707.67. One may easily
verify that

1 = Ra. 92
Dfl,illloo Da,, “ ©2)

Therefore, one expects that R../Da,,, evaluated from (87)-(89), tends to
1707.67 when Da,, — oco. This asymptotic behaviour is confirmed by Figs. 10
and 11. These figures display the plot of either R../Da,, or R versus Day,
compared with the two asymptotes: that for Darcy’s law behaviour (dashed
line, R, = 4n?) and that for a clear fluid (dashed line, R, = 1707.67Da,,).

7000

R

cr

3000

2000

1500

1074 0.001 0.01 0.1 Da,, 1 10

Fig. 10 Critical values of R/Da,, versus Da,, for the Brinkman model formulation of the Darcy-
Bénard problem (solid line). The asymptotic cases of Darcy’s law (R, = 47%) and of Navier-
Stokes clear fluid (R, /Da,, = 1707.67) are given as dashed lines
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Fig. 11 Critical values of R versus Da,, for the Brinkman model formulation of the Darcy-Bénard
problem (solid line). The asymptotic cases of Darcy’s law (R, = 47%) and of Navier-Stokes clear
fluid (R., = 1707.67Da,,) are given as dashed lines

1077 107 0.001  pg 0.1 10

Fig. 12 Critical values of a versus Da,, for the Brinkman model formulation of the Darcy-Bénard
problem (solid line). The asymptotic cases of Darcy’s law (a., = m) and of Navier-Stokes clear
fluid (@, = 3.116) are given as dashed lines

Figure 12 shows the plot of a. versus Da,. This figure highlights the two
asymptotic behaviours: the limit Da,, — 0 corresponding to Darcy’s law (dashed
line, a., = m); the limit Da,, — oo of a clear fluid (dashed line, a., = 3.116). An
interesting feature is the existence of a maximum of the critical wave number,
aer = 3.239, for Da,, = 4.895 - 107>,
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Very useful asymptotic expansions of (a.,, R.) have been obtained by Rees [28]
in a range of extremely small values of Da,,,

8y A ﬂ:(l + \/DTM), 93)

Ro ~ 412 ( 1 +2+/Day, +28. 1337Dam) . (94)

S Horizontal and Vertical Throughflow

An important variant of the Darcy-Bénard problem arises when a horizontal (Prats
problem [26]) or a vertical basic throughflow is assumed instead of the rest state. In
the following, it will be shown that the presence of a basic flow modifies the critical
conditions for the onset of convective roll instabilities only in the case of a vertical
throughflow. The analysis presented in this section is based on Darcy’s law, as well
as on the assumption of a negligible effect of viscous dissipation.

5.1 Prats Problem

Let us consider the same horizontal fluid layer considered in the study of the Darcy-
Bénard problem carried out in Sect. 3. The governing equations and the boundary
conditions are again (27)—(31), where we assume as negligible the contribution of
viscous dissipation, i - if/K, in the local energy balance, (29). Then, in a dimen-
sionless form, these equations are written as

-

V-i=0, 95)

ii = —VP+RTé, (96)
%ﬂr VT = V°T, 97)
y=0: v=0, T=1, 98)
y=1: v=0, T=0, 99)

where the definitions, (32), have been used. A stationary solution of the governing
equations (95)—(99) exists under the assumption of a horizontal uniform through-
flow in the x-direction, if = Pe &,

iiy—Ped, Ty—1-—y, PB:—Pex—i—Ry(l—%). (100)
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Here, Pe is the Péclet number, namely the ratio between the dimensional
throughflow velocity in the x-direction and the quantity /L.

One can switch from the rest reference frame to a comoving reference frame
defined by

~ ! (101)

Here, X is the position vector and the tilded quantities are those defined in the
comoving frame. Under the transformation defined by (101), the governing equa-
tions (95)—(99) are left invariant, while the basic solution (100) is transformed into
the basic solution of the Darcy-Bénard problem, (39). This means that the linear
stability analysis of the Prats problem yields exactly the same results obtained for
the Darcy-Bénard problem. In other words, the critical conditions for the onset of
convective roll instabilities are still given by

ay =7, R, =4n" (102)

Moreover, the linear stability analysis is independent of the particular direction in
the horizontal (x, z)-plane for the propagation of the disturbance plane waves. In fact,
in the comoving reference frame, one has an invariance of the governing equations
and of the basic solution under arbitrary rotations around the vertical y-axis.

5.2 Effects of a Vertical Throughflow

If the effect of a horizontal uniform throughflow as described in the Prats problem
does not lead to novel features with respect to the Darcy-Bénard problem, the effect
of a vertical throughflow is a less trivial phenomenon. Classical studies on this
subject where carried out by Sutton [32] and Nield [21]. Quite recently, this subject
has been revisited by Barletta et al. [5].

The governing equations for this problem are just the same as for the Darcy-
Bénard problem and for the Prats problem and, therefore, are given again in a
dimensionless form by (95)—(97). On the contrary, the velocity boundary conditions
are changed with respect to (98) and (99) as the horizontal boundaries are no more
impermeable but subject to a uniform throughflow, namely

y=0: v = Pe, T=1, (103)
y:l: v:Pe7 TZO (104)

The steady-state basic solution is more complicated than in the Prats problem
and is expressed as
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RePey

- - e
MB:Peey, TB: ﬁ—PE')y_m' (105)

The linear disturbance equations for small perturbations defined by means of
(40) are now written as

vV-U=0, (106)
U=-V?+R0é, (107)
o0 a0
— — PeVF Pe —=V? 1
o eVF(y)+ Pe B AVAL (108)
y=0,1: V=0 0=0, (109)

where F(y) is a function defined as

F(y) = (110)

As for the Darcy-Bénard problem, it is not restrictive seeking two-dimensional
solutions of the disturbance equations in the (x,y)-plane. In fact, the system is
invariant under rotations around the y-axis, so that every horizontal direction is
equivalent. Then, one may set W = 0 and the components U and V of the distur-
bance velocity can be expressed through the streamfunction ¥ defined by (51).
Again we assume plane standing wave disturbances defined by (55). If one is
interested in the neutral stability condition, 4 = 0, (56)—(58) are now replaced by

f"(y) —af(y) —aRh(y) =0, (111)
h'(y) = Pell (y) — a*h(y) — aPeF(y)f(y) =0, (112)
y=0,1: f=0 h=0. (113)

Then, (111)—(113) can be solved numerically as an eigenvalue problem by the
procedure described in Sect. 4.2. Important features of the numerical solution are that
the critical value of the wave number, a,,, and the critical value of the Darcy-Rayleigh
number, R, depend on the absolute value of Pe, but not on the sign of Pe [5, 32]. This
means that the direction of the vertical throughflow, upward or downward, does not
influence the onset of the convective instabilities. A table of (a.,, R.r) versus Pe is
reported in Table 1. This table reveals that the effect of the vertical throughflow,
whatever be its direction, is stabilizing. In fact, R, is an increasing function of |Pe|.
The critical conditions for the onset of instabilities obtained for the Darcy-Bénard
problem are recovered when the limit Pe — 0 is approached.
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Table 1 Vertical throughflow: critical conditions for the onset of
convective instabilities [5]

Pe Aer R,

0 T 472

1073 3.14159 39.4784
107! 3.14196 39.4924
1 3.17868 40.8751
2 3.29218 45.0776
5 4.19616 73.4146
8 6.09212 114.833
10 7.59035 143.518
15 11.3830 215.283

6 Viscous Dissipation

The effect of the viscous dissipation can be important in the analysis of the onset of
convective instabilities. Therefore, its correct modelization with respect to the local
energy balance in the framework of the Oberbeck-Boussinesq approximation of
buoyant flows is a significant point. This subject is often underestimated or mis-
understood by several authors. A recent analysis of this topic [2] is here outlined
first with reference to a clear fluid and then extended to the case of a fluid saturated
porous medium.

6.1 The Oberbeck-Boussinesq Approximation and
the Local Energy Balance

Let us consider a clear fluid, one whose momentum balance is given by the Navier-
Stokes equation. The nature of the Oberbeck-Boussinesq approximation has been
already recalled at the beginning of Sect. 3. The assumption is that the fluid
properties are considered as constants with the only exception of the density,
whose change is taken into account only in the gravitational body force term of
the momentum balance. The linear equation of state (26) implies that the density is
evaluated at constant pressure and that the temperature changes are very small.
Thus, the mass and momentum balance equations are given by

V-ii=0, (114)

L, . 1 .
O gvi— - VP — (T — To)B3 + vV7il. (115)
ot Po

Equations (114) and (115) must be completed with the energy balance in order to
achieve the closure of the problem. In the literature, there is a manifold answer to
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the question of the proper formulation of the local energy balance. In fact, one may
have Chandrasekhar’s [10] and White’s [36] formulation

ar - _
0o a,(E—l—ﬁ-VT) :kV2T+qg+2ﬂ£%,-j—f/)ij, (116)

where c, is the specific heat at constant volume and & is the strain tensor, (23).
The source term in (116), 2 u &;; 7, is the thermal power generated by the
viscous dissipation.
One may have the enthalpy formulation [20, 33]

or . - ) .
Do cp(at—i-i[- VT) =kVT + gy + 21 Dy (/,;,»+ﬁT<812+L7- vp), (117)

where ¢, is the specific heat at constant pressure and the last term on the right hand
side is an additional source term: the pressure work acting on the fluid element.

Finally, one may have Landau-Lifshitz’s [17], Bejan’s [6] and Kundu-Cohen’s
[16] formulation

aT - _
Po C1,<8t+lx_t" VT) :kV2T+qg+2u @ij _C//‘,'j. (118)

Equations (116), (117) and (118) are different answers to the same question:
which is the correct formulation of the local energy balance with respect to the
Oberbeck-Boussinesq approximation? An analysis of the different procedures
usually followed in the literature in order to answer this question and the common
logical pitfalls in these deductions have been recently discussed by Barletta [2]. In
this recent paper, a thermodynamic reasoning is presented in order to prove that the
correct formulation of the local energy balance with respect to the Oberbeck-
Boussinesq approximation is

a . - ,
Poc(at+ﬁ~VT>kV2T+qg+2#@zjf9/ij- (119)

In (119), the heat capacity per unit mass ¢ does not coincide in general either
with ¢, or with ¢, but it is defined as

c:c,,—p—ﬁ. (120)

Po

The heat capacity per unit mass ¢ coincides with the specific heat at constant
volume, ¢y, for a perfect gas and it is definitely well approximated by the specific
heat at constant pressure, c,, for a liquid [2].
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6.2 From the Clear Fluid to the Fluid Saturated
Porous Medium

The analysis presented in Sect. 6.1 is easily extended to a fluid saturated porous
medium [2]. In cases of local thermal equilibrium between the solid phase and the
fluid phase, the correct formulation of the local energy balance with respect to the
Oberbeck-Boussinesq approximation is

T - _
poc<0' E+[[-VT) =kV°’T + g, + @, (121)

where c is again given by (120).

7 Dissipation-Induced Instabilities

An important feature of the Darcy-Bénard problem and of its variants investigated
in the preceding sections is that the convective instabilities are a consequence of the
thermal boundary conditions prescribed. In fact, the thermal boundary conditions
assigned are such that a vertical temperature gradient is present in the system.
When, this gradient is sufficiently intense, the basic solution becomes unstable.
There is another important cause of possibly unstable temperature gradients in the
basic flow: the effect of viscous dissipation. The viscous dissipation, being a
mechanism of internal heat generation due to the fluid friction, may contribute to
the instability of the flow in porous media or possibly may be the sole cause of this
instability.

7.1 Viscous Dissipation as the Sole Cause of Convective
Instabilities

In the analysis of the Darcy-Bénard problem presented in Sect. 3, it has been
pointed out that the viscous dissipation does not affect the linear stability analysis.
The reason is that the basic solution assumed for the Darcy-Bénard problem is such
that the velocity field is zero. This feature implies that the effect of viscous
dissipation becomes of order ¢ and can thus be neglected with respect to the linear
terms of order ¢. Obviously, this argument cannot be invoked if a basic throughflow
occurs in the fluid layer. In fact, a basic throughflow may result in a contribution of
order ¢ in the local energy balance due to the effect of viscous dissipation.
Conditions may exist such that no temperature gradient is impressed in the
system through the external environment. This circumstance may occur when the
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external environment is kept at a uniform temperature, or if one or more system
boundaries are thermally insulated, i.e. adiabatic. This is not the case of the Darcy-
Bénard problem and of its variants discussed in the preceding sections. In fact, the
temperature difference between the horizontal boundary planes means exactly an
externally induced thermal forcing on the system. On the other hand, no external
thermal forcing is present if the boundary planes are kept at the same temperature,
or if one or both planes are kept adiabatic. In the absence of thermal forcing caused
by the boundary conditions, the viscous dissipation may possibly become the sole
cause of thermal gradients within the fluid. As a consequence, viscous dissipation
alone may be the cause of convective instabilities. This simple physical fact has
been recognized in the papers by Joseph [15], Sukanek et al. [31] and Subrahma-
niam et al. [30] with reference to clear fluid flows. Recently, several studies of the
dissipation-induced instabilities in fluid saturated porous media have been carried
out [3-5, 29]. In the following sections, the dissipation-induced instabilities are
discussed for the cases of horizontal and vertical basic throughflow in a plane
porous layer.

7.2 Plane Layer with Horizontal Throughflow

Let us consider an horizontal fluid saturated porous layer with infinite width and
thickness L. Let us assume that the boundary planes are impermeable: the bottom
boundary is adiabatic, while the top boundary is isothermal with temperature 7.
(see Fig. 13). The validity of Darcy’s law and of the Oberbeck-Boussinesq approx-
imation is assumed.

The governing equations are given by (27)—(29), while the velocity and temper-
ature boundary conditions are expressed as

oT
y=0: v:O:a—, y=L: v=0, T=T.. (122)
y

Fig. 13 Boundary conditions
considered in the analysis

of dissipation-induced
instabilities in a porous layer
with horizontal basic 0 aTay =0 X
throughflow [4]
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Equations (27)—(29) and (122) can be written in a dimensionless form by the
following transformation:

o L Kc
ra ' s ) I — t, _iT _‘, T_Tciﬁ, T 123
(3= (6n2), (ot @E—d (T-T) ST (123)

V-i=0, (124)
Vxii=GeV x (Té), (125)
%+ﬁ'~§T:V2T+IZ~ﬁ, (126)

T
y=0: v=0, a—:O, y=1: v=0, T=0, (127)

Jy

where
L

Ge = 8PL (128)

c

is the Gebhart number. The thermal boundary conditions are such that no thermal
forcing is applied on the system from the external environment. This circumstance
is evident since no characteristic temperature difference arises from the thermal
boundary conditions.

The basic solution of (124)—(127), which is analysed for stability, is given by

Pe? 2
up =Pe, vp=0, wp=0, TB:T(lfy). (129)

A vertical temperature gradient appears in the basic state caused only by
the frictional heating. This effect produces a bottom boundary temperature,
T3(0) = Pe?/2, higher than the top boundary temperature, T5(1) = 0. Hence, the
basic state is possibly unstable to convective rolls for a sufficiently intense viscous
dissipation. One expects that instabilities arise when the Péclet number becomes
sufficiently high, so that the bottom to top boundary temperature difference, Pe?/2,
exceeds the threshold value for convection rolls to take place. This critical value of
the Péclet number is a function of the dimensionless parameter Ge and has been
determined through a linear stability analysis by Barletta et al. [4].

The analysis has been carried out by assuming two-dimensional disturbances in
the form of plane waves travelling in any arbitrary direction in the horizontal (x, z)-
plane. Let us note that, in the present problem, the possible horizontal directions are
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not equivalent, as in the Darcy Bénard problem. In fact, a preferred direction is
defined by the basic flow direction, namely the x-axis. Thence, one defines a general
oblique roll disturbance as a plane wave propagating in a direction lying in the
(x,z)-plane and inclined with respect to the x-axis of an arbitrary angle y. When
% = 0, namely when the plane waves propagate along the x-direction, one speaks of
transverse rolls. When y = /2, namely when the plane waves propagate along the
z-direction, one speaks of longitudinal rolls.

Barletta et al. [4] proved that the basic solution (129) is more unstable to
transverse rolls than to any other kind of oblique rolls. The critical values
(acr, Pe.,) for the onset of transverse rolls are given approximately by

7.8655
VGe )

Equation (130) holds if Ge is sufficiently small. This is not an unphysical
restriction since, for most convection problems involving liquids, Ge can hardly
be greater than 107°, unless L =2 1m or higher. For values of Ge approximately
greater than 1073, (130) yields an overestimate of both a., and Pe,,.

acr = 2.4483, Pe. = (130)

7.3 Plane Layer with Vertical Throughflow

The vertical throughflow system defined in the studies by Sutton [32] and Nield [21]
have been recently extended to the case of non negligible effects of viscous
dissipation [5].

The system examined is exactly the same as that described in Sect. 5.2. The only
difference is that the local energy balance equation includes the viscous dissipation
term, pif - if/K. This difference implies that the basic solution is more complicated
than (105). In particular, by employing the dimensionless formulation defined
through (32), the basic velocity and temperature fields are expressed as

(131)

. . efe —efeY  GePe ey —1
up = Pe €y7 TB(y) = + — 1 .

ePe — 1 R ePe —

The effect of viscous dissipation breaks the symmetry between upward through-
flow, Pe > 0, and downward throughflow, Pe < 0. For downward throughflow,
there are two competing effects: the forced convection due to the throughflow, and
the viscous dissipation. The former effect causes the cooling of the system due to
the fluid input from the upper environment at temperature 7,.. The latter effect
causes an internal heating of the layer. The competition may yield a perfect balance
between these effects when Ge Pe = —R. In this case, (131) yields the basic linear
temperature profile (39), as in the Darcy-Bénard problem.

When the viscous dissipation is taken into account, the sign of Pe affects the
critical conditions for the onset of convective instabilities. Increasing values of Ge,
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namely a more and more intense viscous dissipation, imply a stabilizing effect in
the case of downward throughflow and a destabilizing effect in the case of upward
throughflow. The destabilizing effect for Pe > 0 may be so intense that the critical
value of the Darcy-Rayleigh number for the onset of convective rolls, R, becomes
zero. This phenomenon however may take place only when Ge > 4.67910. Values
of Ge in this range are definitely unrealistic in practical cases. Then, in the case of
vertical throughflow, the effect of viscous dissipation is unlikely to be the sole cause
of convective instabilities. This conclusion, drawn by Barletta et al. [5], marks a
sharp difference with respect to the case of horizontal throughflow.

8 Concluding Remarks

In this review, some remarkable topics within the wide literature on the convective
instabilities of fluid saturated porous media have been outlined. The amount of
published papers and book chapters on this subject is really large, so that this review
is definitely far from being exhaustive. The aim has been the general description of
the basic phenomena behind the thermoconvective roll instabilities in a porous
medium. With this in mind, a detailed analysis of the Darcy-Bénard problem and
of its most important extensions has been carried out. We mentioned the use of non-
Darcy models of momentum transfer and the possible presence of a horizontal or
vertical throughflow. An important recent topic is the analysis of the effect of viscous
dissipation with respect to the onset conditions of the convective instability. This
effect arises when the basic state is a throughflow state. The role played by viscous
dissipation in the onset of the instability may be a mere interplay with the effect of the
basic thermal gradients induced by the boundary conditions. In some cases, the
viscous dissipation may be the sole cause of the instability. The continuing explora-
tion of this possibility is an interesting opportunity for future research.
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New Bio-Inspired Multiphase Thermal
Functional Fluid

José L. Lage

Abstract Efforts in harvesting the potential benefits of mimicking the gas
exchange in alveolar capillary for channel heat transfer processes has led to a
new bio-inspired multiphase thermal functional fluid (MTFF). This MTFF is
originally conceived as encapsulated phase-change material particles, with diame-
ter comparable to the channel size, flowing with the cooling liquid. The two main
benefits of this new MTFF are not only the phase-change effect of the particles in
the heat transfer process, but also the specific geometry of the particle and channel
leading to the sweeping of the boundary layer in the channel. This last effect is
believed to be responsible for the very high efficiency of the gas exchange taking
place in the alveolar capillaries. Preliminary numerical simulation results seem to
confirm the benefit of both effects. A groundbreaking experimental apparatus,
designed as a pumpless flow loop, uses vortical effects created by a magnetic stirrer
to set the liquid and particles of the MTFF in motion, overcoming the settling and
clogging difficulties so characteristic of a multiphase fluid flow. Experimental tests,
with octadecane paraffin (EPCM) particles or with acrylonitrile butadiene styrene
(ABS) plastic particles (with no latent heat capacity), both flowing in water, have
been performed and the results compared to results obtained with clear (of par-
ticulates) water flow. All tests indicate the advantages of using the MTFF in
comparison to clear water, even at relatively low particle concentrations. Moreover,
the tests seem to confirm the same behavior found in capillary blood flow, namely
the detrimental effect of increasing the particle concentration beyond an optimum
concentration, either leading to a reduction in the boundary layer sweeping effect or
to an increased competition among particles for the heat transfer. This effort high-
lights the importance of learning from efficient biological systems.
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1 Introduction

The quest for increasing the amount of heat transfer in channel flow has been driven
by many engineering applications. Electronics, in particular, have dominated the
interest of thermal engineers in the past few years with great challenges. The
tremendous increase in the power-flux dissipated by electronics, from about
1.0 W/em? by the logic chips manufactured in the mid 1980s to about 100 W/cm?
by the microprocessors produced in the 2000s [1], led to the increase in the working
temperature of the devices. To understand how significant this electronics power-
flux strength is, consider the now projected power-flux dissipation in the near future
of over 1,000 W/cm? and realize this value goes beyond typical values of power-
flux found in nuclear reactors (about 100 W/cm?) and in rocket nozzles (slightly
below 1,000 W/cm?). The increased temperature caused by the increase in power-
flux affect negatively the reliability of the electronics. Hence, the cooling problem
is essentially a reliability problem. An additional challenge posed by the cooling of
electronics is the very small area in which the power-flux is dissipated, requiring
small cooling devices with very small channels.

The same main challenging characteristics found in electronics, i.e. to have more
heat transferred through a limited real-estate, have been confronted by thermal
engineers in many other engineering areas for years. In trying to mitigate these
challenges, thermal engineers have focused on creating new, more efficient fluid
flow heat exchangers by applying new passive and active design techniques [2].
Passive techniques involve mainly channel shape modification, such as changing
the channel curvature, roughing the channel surface, introducing flow disruption
elements in the channel, and including constrictions and expansions along the
channel. Active techniques, which tend to be more elaborated and costly, include
flow pulsation and/or vibration, usually induced by piezoelectric or electric actua-
tors placed along the walls of the channel. The objective of all these techniques has
been to create enough mixing in the flow to break the thermal boundary layer that
otherwise forms along the channel wall and hinders the heat transfer process. By
doing so, the amount of heat transferred between the channel wall and the fluid
flowing in it would then increase.

An important additional passive technique for channel heat transfer augmenta-
tion is the use of additives in the fluid flow. A dominant sub-group in this realm is
the use of phase-change particles (the dispersed phase) to flow together with the
flowing fluid (the continuous phase) forming a multiphase heat transfer agent called
latent functionally thermal fluid (LFTF). Compared with the conventional single
phase fluid with no particles, the LFTF provides high energy storage density and
small temperature variation during the heat transfer process. The use of LFTFs was
shown to yield 1.5—4 times more efficient heat transfer than single phase flow under
ideal conditions [3], making this alternative very attractive for several application
[3-18].

Recent advances in the production of encapsulated phase change materials,
especially micrometer and nanometer scale particles [19-26], have broadened the
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possible engineering applications and revived interest in LFTFs [27-33]. A very
particular characteristic of the recent LFTF thrust is the use of a very large number
of small (microscale or nanoscale) particles mixed with the fluid, in a slurry form.
The LFTF slurry is advantageous for the particles being very small and, as such,
flowing easily with the fluid, facilitating the pumping and minimizing the clogging
of the solid particles. Nevertheless, the slurry presents a few disadvantages of its
own, including the inefficiency of having particles flowing far away from the
channel heat exchange surface (the thermally active particles tend to be restricted
to a region adjacent to the heated channel surface), the high pump-power required
to circulate the slurry, and the settling of the particles in the recirculation or dead
zones formed along the flow loop.

Notwithstanding, the recent interest in LFTF slurry flows brings back interest to
the more general particulate flow, a class of multiphase flow in which particles (not
necessarily of phase change material) flow with a fluid. This flow class is not
restricted to channel heat exchangers, but found very often in many engineering
processes, such as in chemical reactions (fluidized beds), spray-painting, coating (of
solid particles), combustion (fuel-injection), and packaging (of cereals, grains), and
in several natural processes as well, for instance in rain fall, river flow (particle
sedimentation, erosion), and blood flow (red and white cells flowing with plasma).

The last process, i.e. the biological process of blood flow, is of great interest
here, more particularly the alveolar capillary blood flow. The gas exchange process
between the alveolar region of the lungs (filled with air) and the blood (containing
liquid plasma and red blood cells, RBCs) flowing through an alveolar capillary is
one of the most efficient mass transfer processes known. A distinctive characteristic
of the alveolar capillary blood flow is the similarity between the diameter of the
RBCs and the size of the capillaries (measured as the distance between top and
bottom capillary membranes). This particulate multiphase flow is quite different
from that obtained with an LFTF slurry: the number of particles (RBCs) in the
alveolar capillary flow is much smaller and their size much bigger than in LFTF
slurry flows. Nevertheless, the strong analogy between heat and mass transfer, and
the particular role played by the RBCs in alveolar gas exchange warranted further
examination of this biological mass transfer process.

2 Alveolar Capillary: The Biological Gas Exchanger

Respiration is perhaps one of the most important functions of the human body.
Moreover, the gas exchange process in the human lungs is one of the most efficient
exchange processes known to humans.

In studying the respiration process in humans, it is essential to identify the gas
transport path inside the lungs. This path can be divided into two, namely a gas-path
and a liquid-path. The gas-path begins at the nose and mouth, from where the gas
flows through the trachea, to then follow through about 23 bifurcations, Fig. 1. The
first bifurcation (z = 1) is from the trachea to the primary bronchial tubes, which
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Fig. 1 Lung gas-path: a Generation
sequence of 23 bifurcation Trachea: 0
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take the air to each of the two lungs. The gas-path then bifurcates further, taking the
gas to the secondary bronchi, to the bronchioles, and eventually to the terminal
bronchioles, at bifurcation generation z = 16.

The terminal bronchioles mark an important transition location inside the gas-
path of the lungs. Because the gas-path of the lungs is a dead-end path, and because
of the increased flow area provided by the bifurcations (the available flow area
increases as 27> after each bifurcation, where z is the bifurcation generation number
past the trachea, where z = 0), the gas speed progressively decreases as it flows into
the lungs. Hence, the convection that drives the gas into the lungs through the
mouth/nose eventually subsides, becoming negligible at around z = 16, the termi-
nal bronchioles. From there, with the transport being diffusion dominated, the gas
still has to go past the respiratory bronchioles, through bifurcations 17-19, to
eventually reach the respiratory zone, or the alveolar region located in bifurcations
20 through 23.

It is in the alveolar region that the path changes from a gas-path to a liquid-path.
Figure 2a shows a cast of the air-path of the human lungs. Subsequent shots, shown
clockwise, details the gas-path as the gas goes deep into the lungs all the way to the
alveolar region, Fig. 2d. Once in the alveolus, the gas has nowhere else to go (dead-
end gas-path) but to enter the capillary bed.

At this stage, the alveolar gas transport process evolves from diffusion in the gas
region of the alveolus to dissolution of the gas into the alveolar membrane. After
dissolving into the membrane, the gas then flows by diffusion through the intersti-
tial fluid and the capillary membrane, to eventually reach the liquid-path provided
by the blood.

The alveolar membrane, the interstitial fluid and the capillary membrane form a
barrier separating the gas-path from the liquid-path of the lung. From the capillary
membrane the gas transport process switches again to convection, but this time the
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Fig. 2 Scaling of human respiratory system from entire lungs (a), to acinus (b), to alveolar region
(c), to alveolar capillary (d). The drawn detail in (d) highlights the parallel-plate nature of the
capillary, as opposed to a circular pipe; the dashed line shows a red blood cell. (¢) and (d) are lung
micrographs provided by Prof. E. Weibel

convection takes place in the liquid-path provided by the plasma of the blood.
Notice that some gases, such as carbon-dioxide, convects away from the alveolar
capillary mainly dissolved in the blood plasma. Other gases, such as oxygen and
carbon-monoxide, go beyond the plasma, also permeating through the red blood
cell membrane into the red blood cell to eventually attach to the hemoglobin. Once
in the blood, the gas is then transported out of the alveolus to other parts of the body
by convection.

Observe the alveolar respiration process is driven essentially by two potentials,
namely the gas concentration in the gas region of the alveolus and the gas concen-
tration inside the blood, either in the plasma or in the red blood cells. Studies of the
three-dimensional, unsteady gas diffusion process in the lungs without concern to
the blood flow effect, [34—39], have demonstrated the importance of the red cells
location vis-a-vis the lung diffusing capacity, which is a measure of the overall lung
diffusivity. Perhaps one of the most significant results from these efforts is the
observation of the shielding effect caused by red blood cells located near the gas
source. These cells effectively shield from the gas other cells placed further away
from the gas source, making them less effective participants in the overall gas
transport process. This same effect might explain why the cells passing through an
alveolar capillary do so in a single string fashion — to avoid shielding!

More detail studies of alveolar gas exchange, focusing in the alveolar capillary,
were performed recently, [40—42]. These studies were conducted considering the
transport of carbon-monoxide, which is the gas choice for measuring the lung diffusing
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Fig. 3 Numerical simulation results of carbon monoxide diffusion in alveolar capillary, showing
the isoconcentration lines in the capillary wall (alveolar membrane, interstitial fluid and capillary
membrane) and in the plasma, for one (a), three (b), and eight (c) red blood cells in the capillary.
Observe (c¢) has been amplified for better viewing. Only the top half of each capillary is shown

capacity in the laboratory. The same interference between closely spaced red blood
cells, leading to the shielding effect, has been identified in the alveolar capillary in
the case of pure diffusion — no blood flow, Fig. 3.

The results in Fig. 3, for diffusion of carbon monoxide in an alveolar capillary
(only half-capillary is presented for simplicity), show the distribution of the iso-
concentration lines from the alveolar membrane, where the gas concentration is
unity, to the RBCs, where the gas concentration is zero (observe the RBCs are
considered an infinite sink for CO). Observe further the resistance to gas transport is
much smaller in the gas region than in the capillary wall or in the blood plasma,
making the gas concentration uniform and equal to unity there. The top display,
Fig. 3a, shows the concentration distribution for the case of a single RBC in the
capillary. Observe how the isolines progress almost radially from the RBCs toward
the alveolar gas region in this case, wrapping the RBC completely with ellipses.
When more RBCs are placed inside the same capillary, as seen in Fig. 3b with three
RBC:s for instance, the isolines get flattened in the region in between two RBCs,
with a few isolines not wrapping completely around each RBC anymore. This
aspect is more pronounced in Fig. 3c, where the amplified view shows two of the
eight RBCs placed in the same capillary. The close proximity of the RBCs make
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them compete for the gas being transferred from the alveolar membrane, that is why
the isolines tend to flatten out in between the RBCs.

Figure 4 shows the result of the RBCs competition effect, obtained by [40] and
[43], in quantitative fashion in terms of the long diffusing capacity Dy [in pm?/
(s Torr)] versus the number of RBCs in the capillary, Nggc. The curves are distinct
for being affected by the value of the specific rate of CO uptake by a single RBC,
Oco, in pm3/(s TorrRBC), as a result of the competition between CO and O, used in
the simulations. Observe in Fig. 5 the inclusion of results for the case Oco — 0.

71 [41], 6co> o
6] 140 Oco=2.41 .
= [40], Oco= 0.86 .
54 o [41], Oco= 2.41 : v P
—— [41], 6co= 0.86
44
DL
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0 1 2 3 4 5 6 7 8 9 10 11 12
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Fig. 4 Pure diffusion (no blood flow) results, from [40] and [41], of lung diffusing capacity Dy
versus the number of circular red blood cells inside the capillary Nggc. [0co is the specific rate of
CO uptake by a single RBC, as a result of the competition between CO and O,, at different
alveolus oxygen tension levels in um3/(s TorrRBC) and Dy in um3/(s Torr)]
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This limiting case, in which oxygen does not compete with CO, is included to show
the consistent trend of the results as O-¢ increases to a limit value.

More importantly in Fig. 4, observe how the increase in Dy with the number of
RBCs in the capillary is not linear, as one might expect. Rather, the Dy value tends
to flatten out when Nypc grows beyond six red cells in the capillary — a result of the
competing effect of the red cells for the diffusing gas.

Now, when the blood flow effect is taken into consideration, the results are quite
different [41], as shown in Fig. 5. The effect on the lung diffusing capacity in terms
of the percentage relative difference ¢ between the Dy 4 for the pure diffusion case
(no blood flow, U = 0, with 6co — o0) and the Dy . for the convection case (with
blood flow), namely

Dy —D
SZ‘M x 100 (1)

Ld

for several percent hematocrit Ht values, point out that the blood convection effect
on Dy increases with the blood velocity U, as expected. However, the flow velocity
effect decreases with an increase in the hematocrit. Notice the percent blood
hematocrit, Ht, defined as the percentage volume occupied by the RBCs in the
capillary, (VggcNrpe), divided by the total capillary volume, V qpiitary, is directly
related to the number of RBCs in the capillary Nrgc as: Ht = 100(VrgcNrpc)/
Veapittary = (4.8Ngpc)%. Observe that three blood velocities are considered, namely
U=1,5, and 10 mm/s.

The results of Fig. 5 are quite remarkable as they seem to indicate the com-
peting effect of the red blood cells placed close to each other is also present when
the blood is flowing, that is, when convection effects are present in the alveolar
capillary.

Figure 6, [41], shows for the case of a single circular RBC in the capillary, three
sets of isolines from top to bottom, namely for: (a) U = 1 mm/s, (b) U = 5 mm/s,
and (c) U = 10 mm/s. Each set shows at the top the isoconcentration lines (same
CO partial pressure) and at the bottom the corresponding streamlines, in the
membrane and plasma regions.

The streamlines of Fig. 6 are plotted from the point-of-view of an observer
traveling with the RBCs. Observable for all speeds are characteristic circulating
cells inside the capillary, before and after the RBC, within the plasma region. For
the case of U = 1 mm/s the blood convection seems to have little effect on the
transport of CO to the RBC: observe the symmetry of the isoconcentration lines
with respect to a vertical line passing through the RBC center. However, the dis-
tortion on the symmetry of the isoconcentration lines when U increases, Fig. 6b and
6¢, is evident. Only the plasma flow could be responsible for this distortion. Evident
in Fig. 6¢ is a squeeze of the isoconcentration lines (i.e., the lines become more
closely spaced) along the anterior (left) face of the RBC, indicating an enhanced
transport of CO, and a slight expansion of the lines (i.e., the lines become spaced far
apart) along the posterior (right) face of the RBC.
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Fig. 6 Convection results for a single RBC in the capillary, for: (a) U = 1 mm/s, (b) U = 5 mm/s,
and (¢) U = 10 mm/s [41]. Each set shows at the top the isoconcentration lines (same CO partial
pressure) and at the bottom the corresponding streamlines, in the membrane and plasma regions.
U is the speed of the RBC in the capillary

Figure 7, [41], depicts results for when eleven RBCs, Nggc = 11 or
Ht = 52.8%, are placed side by side in the capillary channel, and set to move
with speed U = 10 mm/s. The figure shows the resulting isoconcentration lines,
Fig. 7a, streamlines, Fig. 7b, and velocity vectors, Fig. 7c. In this case, with a large
number of red blood cells in the capillary, the flow circulation in the plasma region
is subdued in comparison to the results shown in Fig. 6, by the proximity of the red
cells. Consequently, there is little distortion in the isoconcentration lines due to the
convection effect, with the effect being restricted to the small region available for
plasma flow in between the red cells. Finally, observe the small gap between the red
cells and the capillary membrane allow for some plasma to flow through (see the
velocity vector plot, Fig. 7c).
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Fig. 7 Numerical simulation results, [41], for the blood convection, with 11 uniformly distributed
RBC:s inside the capillary channel, moving with speed U = 10 mm/s: (a) isoconcentration lines,
(b) streamlines, (c) velocity vector distribution

Fig. 8 Alveolar capillary showing three parachute shaped red cells under gas diffusion only
(U = 0). Shown also are isoconcentration lines, [43], for Ht = 52.8%

Another aspect considered in studying convection in the alveolar capillary is the
effect of the RBC shape. By simulating the more common parachute shape of
RBCs, as depicted in Fig. 8, results were obtained by [43] showing the shape effect
as compared to spherical RBCs, Fig. 9.
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Fig. 9 Numerical simulation results, [41, 43], in terms of lung diffusing capacity per unit of red
cell in the capillary, Dy _rpc, versus the total number of red cell in the capillary, Nggc, for diffusion
(U = 0) and blood convection (U > 0), with parachute and circular shaped RBCs

The shape effect on the diffusion process is expected because the red cells are
participants in the diffusion process (recall the red cell has the low potential for
CO diffusion), and by changing their shape the gas exchange surface area changes
as well. In the case of the parachute shape RBCs the surface area is slightly larger
than the surface area for the circular RBC case. Not so evident is the blood flow
effect. Notice how the convection effect gets more pronounced as the number of
red cells is small in the capillary. When the Ngpc increases too much, not enough
space is available in between consecutive red cells for a strong convection effect
to develop.

The three-dimensional effect of a flowing parachute-shaped red cell is seen in
Fig. 10, from [44], with the top capillary surface and only half the capillary (and red
cell) being shown. The sweeping effect of the flowing RBC is remarkable, as is the
effect of the trailing edge (extra mixing) also seen in the figure.

Perhaps the most remarkable aspect of the alveolar capillary blood flow is not
the diffusion aspect, or the convection effect of blood flow. Rather, the most
striking detail is the fact that the capillary allows for a single train of red blood
cells to flow through it. That is, the capillary does not accommodate layers of
red cells flowing parallel to each other between the top and bottom capillary
membranes.

From an engineering designer point-of-view, considering the red cells as the
transporters of the gas (in the cases of oxygen and carbon monoxide gases, for
instance) the larger the number of red cells inside the capillary, the higher should
the efficiency of the process be. For some reason, however, alveolar capillaries are
designed to function with a single train of red cells passing through it, Fig. 8. This is
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Fig. 10 Sample numerical simulation results of a single parachute-shaped red-blood cell flowing
through a capillary. Only the top half of the capillary is shown for simplicity. The lines are
isoconcentration lines [44]

one of the key factors believed to be responsible for the high gas transfer efficiency
of the lungs [42].

True that the alveolar capillaries do not allow for larger white cells (leukocytes),
for instance, entering the alveolar capillary when providing a snug fit to the red cells
(notice the most common leukocytes, called neutrophils, have diameter about twice
the 6-9 um diameter of RBCs). However, if the capillaries were large enough to
allow larger cells to flow through, then the number of red cells would increase as
well, and not all cells would be near the capillary membrane. Keep in mind that in
liquid flow through a straight pipe, solid particles with diameter less than the pipe
diameter would tend to flow along the center of the pipe, a region with the least flow
resistance. Then, if several red cells were to fill the capillary, most cells would flow
along the center of the capillary, far from the capillary membrane where the gas
exchange takes place.

Moreover, if the capillaries were large enough to allow several layers of red cells
flowing parallel to each other, the cell in the center of the capillary would be
shielded from the capillary membrane by the red cells flowing near the membrane.
The resulting gas exchange process, on a per RBC basis, would be less efficient.

In conclusion, the tendency to flow along the center of the capillary and the
shielding effect are two important reasons for not allowing more than one single
train of red cells to flow through the capillary. Another aspect can be considered as
well: the sweeping effect the red cells have along the capillary membrane as they
flow snugly through the capillary.

Specifically, it is conceivable that a solid particle with diameter comparable to
the channel dimension would act like a broom sweeping along the channel surface,
mixing (“breaking”) the boundary layer, reducing the transport resistance, and
enhancing the convection process. This aspect is considered in more detail in the
next section.
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3 Mimicking an Alveolar Capillary: The Sweep Heat Exchanger

In studying the gas exchange in the alveolar capillary, [41-43] showed the effects of
blood flow in the gas exchange. In particular, every time an RBC flows through a
capillary, the particle sweeps the capillary wall breaking the boundary layer formed
along it, as shown in Fig. 11, from [44].

The figure shows the flowing of a single RBC with blood plasma through a
capillary conceived as a parallel-plate channel. Only the top half of the channel is
shown for simplicity. The plasma and the RBC enter the capillary with zero
concentration of the transferring gas (zero partial pressure Pcp), in this case
carbon-monoxide, CO, coming from the capillary surface (labeled as tissue in the
figure). The tissue separates the gas region of the alveolus from the liquid region in
the capillary, and it has a uniform gas concentration, equivalent to Pco = 1 Torr at
the top surface (the alveolar membrane).

The lines in Fig. 11, in the capillary and tissue regions, show isoconcentration
lines. Three regions are of importance. The first is the region to the left of the
flowing RBC, around the inlet region of the capillary. There the isolines develop by
the flowing effect of the plasma alone, and indicate the growth of the mass transfer
boundary layer along the capillary. The second region is downstream, to the right of
the RBC, where the furthest away isoline extends itself towards the outlet of the
capillary. Finally, the third region is the region around the RBC, where the isolines
are squeezed against the capillary membrane and the tissue. This squeezing effect
characterizes the sweeping of the boundary layer by the flowing RBC. This effect is
easy to understand if we consider first the flow of plasma alone (with no RBC) in the
capillary.

In a parallel-plate channel, the plasma flow would eventually develop either into
a parabolic velocity profile, in the case of laminar flow, or into a more flatten
profile, in the case of turbulent flow. It is worth pointing out here that laminar flow
predominates within the small dimensions encountered in alveolar capillary. Not-
withstanding, the flow induces the convection mass transfer process from the

Top Boundary

(Pco=1Torr)

L=50 um | Tem  75um

" N 7
— 7u
>! i RE I::
R JPE, | SESSOSEERE, . T, W, SRS (B8] o o oon 01 L0 U SR WSS, S
Fnlet PRBC:OTOF'I' S m)]:netr Qutlet

Pco=0Torr yline y

Fig. 11 Numerically obtained isoconcentration CO lines inside an alveolar capillary modeled as a
parallel-plate channel (only the top-half of the channel is shown), with a single red blood cell
(RBC) flowing through it. The channel top boundary (alveolar membrane) has uniform CO
concentration while the flowing fluid — plasma and RBC particle — enters the channel with zero
CO concentration [44]
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capillary membrane, with a mass transfer boundary layer developing downstream
the channel. Eventually the mass transfer process reaches a steady-state, and from
this point on the mass transfer distribution is set with a high transfer rate along the
inlet section of the capillary, where the mass boundary layer still develops, and a
lower transfer rate from where the boundary layer converges at the center of the
channel.

Although resulting from a natural and unavoidable process caused by the mass
diffusion and convection in the fluid, the boundary layer demarcates a region within
the flow of high mass transfer resistance because the potential driving the mass
transfer process, which at the entrance of the channel is zero, is now a value closer
to the alveolar membrane potential. Hence, the effective potential difference
driving the mass transfer decreases as the fluid flows downstream the capillary,
hindering the mass transfer process. Ideally, one would like for the fluid potential to
remain zero throughout the entire capillary, but this is impossible as the fluid
absorbs some gas. However, the concentration gradient across the boundary layer
is contrary to an efficient mass transfer process.

Now, when a solid particle, such as an RBC, enters the capillary with a certain
speed, it forces an accommodation of the fluid velocity profile because the entire
solid particle travels with the same speed. That is, the portion of the particle
traveling near the stationary boundaries of the channel, where the fluid originally
has low speed, will induce an acceleration of the fluid in this region, while
decelerating the fluid in a region near the center of the channel, where the fluid
originally flows faster. The net effect is the flattening of the fluid velocity profile,
similar to the profile transitioning from laminar to turbulent as the fluid speed
increases. This aspect, by itself, would already benefit the heat or mass transfer
convection process, similar to the benefit achieved by turbulent flow. However, the
solid imposes an additional effect: the mixing of the fluid nearby, inducing
the breaking of the mass transfer boundary layer. Keep in mind the acceleration
of the fluid by the solid particle does not carry the same pump-power penalty the
transition from laminar to turbulent carries because the particle sweeps the channel
surface only intermittently, when it pass along it. The pressure-drop penalty of
turbulent flow, on the other hand, is continuous in time as the flow is always
turbulent along the channel (unless, of course, the flow is made intermittent).

The resulting effect of the particle sweeping the channel surface is better
appreciated by considering the graph in Fig. 12, from [44], showing the lung
diffusing capacity Dy [in um?/(s Torr)] versus time t (in seconds), for a capillary
having a single RBC flowing with plasma at different speeds U.

Observe the effect of U on the different shapes the curves have. When the speed
is low, U = 1 mm/s, the convection process increases when the RBC enters the
channel, reaches a plateau as the RBC travels inside the capillary, then it decreases
as the RBC leaves the channel. The plateau period is not so long when the RBC
speed increases to 5 and 10 mmy/s. That is because the RBC flows too fast through
the capillary for the process to reach a pseudo steady-state and form a long plateau
as in the case of U = 1 mm/s. Notice also the cyclic nature of the curves reflecting
the entering and exiting of red cells in the capillary. The Dy difference between
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Fig. 12 Effect of a single flowing RBC in and out of an alveolar capillary, in terms of lung
diffusing capacity Dy and time, for three distinct RBC speeds U. Notice a new RBC only enters the
capillary when the one in the channel leaves it; hence, one, and only one RBC is in the capillary at
any given time [44]
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Fig. 13 Effect of increasing the number of RBCs flowing through a capillary, with fixed speed
U = 1 mm/s [44]

peaks and valleys represent the RBC flowing effect — if only plasma flows in the
capillary, the resulting D; would be yet lower than the lowest value in the valley of
each curve (the simulations are set for the capillary to always have one RBC in it, so
the plasma-only convection configuration never sets in completely).

Another interesting similar result is shown in Fig. 13, from [44]. In this case, the
results are for the same RBC speed, U = 1 mmy/s, but for different numbers of
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RBCs flowing with plasma, shown in terms of percent hematocrit Ht (note: Ht
= 8.49Nggc). As can be seen by the reducing amplitude of the curves, the flow
effect is less pronounced when the number of RBCs flowing inside the capillary is
large. This observation confirms some of the previous results: too large a number of
RBCs inside the capillary leads to direct competition among them for the gas
transfer, reducing the overall efficiency of the process. Moreover, when too many
RBCs are present, the distortion in the plasma velocity profile will be less because
of the small spacing between consecutive RBCs, which tend to dump the convec-
tion effect of the RBCs.

From all these studies of gas exchange in an alveolar capillary, a few important
observations emerge: (1) the similarity between the dimension of the capillary and of
the flowing particle (RBC) seems paramount to an efficient gas transport process for
it avoids the shielding effect and it induces a higher flow speed near the surfaces of
the channel and the sweeping of the mass/heat boundary layer; (2) the RBC is a
participative component of the convection transport, playing the role of an infinite
sink for the transporting gas (CO in the studies reviewed here); (3) in the context of
(1) and (2), the plasma and the RBCs would form a multiphase functional fluid for the
mass transfer process in the capillary; (4) a large number of RBCs flowing in the
capillary, equivalent to a high hematocrit, is detrimental to the efficiency of the gas
transfer process as the RBCs tend to compete with each other for the gas and the
accelerating convection effect becomes less evident in this case as well; (5) increas-
ing the speed of the RBCs tend to increase the gas transfer efficiency, with this effect
being less dramatic when large numbers of RBCs flow through the capillary.

These observations, together with the strong analogy between mass transfer and
heat transfer, can form the backbone of an audacious effort, namely that of building
a cold plate similar to an alveolar capillary, [45—48], to be cooled by a new, bio-
inspired multiphase thermal functional fluid, such as the blood. Because of the gas-
absorbing, infinite-sink role played by the red blood cells in the mass transfer
process in the alveolar capillary (in the case of carbon monoxide), a good equiva-
lent particle candidate was determined to be spherical encapsulated phase-change
material. The phase-change material would make the particles behave similarly to
the red cells in the equivalent heat transfer configuration. During heat transfer, the
particles temperature would reach the melting point, during which the temperature
tends to remain constant (although in practice the temperature during melting varies
within a small range), as if the particles were an infinite sink for heat. True that
when all the phase-change material melts, the particles lose the infinite sink
characteristic; nevertheless, the phase-change material encapsulated particle
seems to be the best alternative in mimicking the red blood cells. Observe that
even in the carbon monoxide capillary gas exchange, the red cells would eventually
saturate with the gas if left through the capillary long enough.

Preliminary modeling and numerical simulations were performed by [45], con-
sidering a square cross section channel mimicking an alveolar capillary, heated
uniformly from the top and bottom surfaces, and filled with liquid water flowing
with encapsulated phase-change particles, such as the one depicted in Fig. 14. It is
interesting that a configuration similar to the one shown in Fig. 14 was considered
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phase-change material particles flowing with the liquid. The front and back surfaces of the channel

inspired multi-phase thermal functional fluid. The circles inside the channel are the encapsulated
are assumed adiabatic

Fig. 14 Sketch of top and bottom uniformly heated square-cross section channel cooled by a bio-
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simulations [45]

Fig. 15 Sample grid used for numerical

for the flow of ice and water through a circular pipe in a train like

bl

recently, [49-51]

fashion.

The diameter of the spherical particles was chosen as to allow only one particle
to occupy the cross section of the channel. That is, particles could flow in a train line

configuration (one after the other

side. The inlet tempera-

by

Fig. 14) but not side

bl

ture of the liquid and of the particles was assumed uniform and slightly below the

melting point of the phase

change material inside the particles.

The simulations were performed in a frame of reference attached to the particles,
with the channel surfaces moving with a constant speed. This choice of frame of

reference allowed for the simulations to be performed with a fixed, unstructured
grid. Had a frame of reference been attached to the surfaces of the channel instead,
the simulation of the moving particles would require a moving mesh, which would
make the numerical requirements for the simulations much tougher. Although the

choice of reference frame helped alleviate the numerical requirements, it also
limited the simulations to the case of an infinitely long channel. Nevertheless, the

simulations were very intense, with very fine grid (see Fig. 15) and time-step

necessary for capturing the phenomena.
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Recall the particles are filled with phase-change material, and the simulations
accounted for the melting process inside them. In this regard, the material chosen
for the particles was octadecane, which has a melting range of 298-308 K. Hence,
the simulations were very realistic when it comes to the melting effect.

The number of particles used in the simulations varied, with N = 3,6, 11 and 23,
or equivalently in terms of volume-fraction (hematocrit equivalent) as ¢ = 3.6%,
7.3%, 13.3% and 27.9%, respectively. As the number of particles changes in the
channel, so does the flow field around the particles, Fig. 16.

Observe in the top picture, the flow field when N = 3 shows circulation to the
right of the particles, but not to the left. This is because the distance between
consecutive particles is relatively large with a low number of particles in the

Fig. 16 Flow velocity distribution within the channel with particles, for particle speed equal to
0.03 m/s. The rop picture is for N = 3 (¢ = 3.6 %), and the bottom is for N = 11 (¢ = 13.3 %).
Only one particle is shown for detailing the flow field [45]
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Fig. 17 Effect of particle concentration in the surface-averaged heat transfer coefficient h [45]

channel. However, when the number of particles is large, they get closer together
and the circulation becomes evident upstream and downstream of the particles (see
bottom picture, for N = 11). This same behavior was observed in the case of the
RBCs.

The time-varying surface-average heat transfer coefficient h is affected by the
number of particles in the channel, as indicated in Fig. 17. When the particles
increase, from N = 3 to 11, to 23, the heat transfer coefficient first increases (from 3
to 11), but then decreases (from 11 to 23). This aspect is quite interesting because it
seems to confirm for the heat transfer process with phase-change particles the same
phenomenon observed with the mass transfer process in a capillary: if the number
of particles in the channel is too large, the process eventually becomes less efficient.
This efficiency decrease, shown in Fig. 17 in terms of h, can be due to the
competition between the particles for the heat coming from the channel surfaces,
and by the change in the flow velocity profile caused by the particles getting closer
to each other when N increases (see Fig. 16).

The results obtained through the numerical simulations provided support for
another preliminary effort, that of building a cold plate for experimental testing.

4 Preliminary Bio-Inspired MTFF Performance

The design and construction of an experimental apparatus for testing the perfor-
mance of the bio-inspired multi-phase thermal functional fluid, [48], faced tremen-
dous challenges. A first design was proposed, shown in Fig. 18, as a closed loop, in
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Fig. 18 Flow apparatus for testing new bio-inspired multiphase thermal functional fluid [48]

which the liquid water would flow with the particles through the heated channel,
being collected at the exit reservoir. From there, the particles would be separated
from the liquid, which would then circulate through a circulating bath (chiller) to be
brought back to the required temperature. The required particles would be housed in
a separate reservoir, and from there flow down through auxiliary channels
connected to the main flow channel leading to the heated channel. This preliminary
design did not work mainly because the particles would clog the restriction from the
particle reservoir to the auxiliary channels, and stop flowing through it.

An alternative design was tested, Fig. 19, this time with the particles reservoir
placed underneath the heated channel, and having straighteners to reduce the
clogging problem. This design did not work either, and for the same reason:
particles tend to clog near the entrance of the auxiliary channels. It became clear
that the flow of the particles was key for the success of any design.

After further observation of the previous designs, it became apparent that the
clogging problem would only be resolved if the particles were dispersed in the liquid
prior to entering a restriction. An additional problem to be tackled was the need for
having the particles circulating with the liquid, and not removed from the flow loop as
the initial designs were set up. An ingenious final pumpless design was proposed for
eliminating both problems, Fig. 20 [46].

The flow apparatus shown in Fig. 20, [46], has a heated channel (the testing
section), heated electrically from the bottom and insulated at the top and sides, with
several thermocouples distributed uniformly along the bottom surface for tempera-
ture monitoring. From the heated channel, the multiphase thermal functional fluid
(MTFF) exits to a reservoir (exit reservoir) having a suction pipe placed flush with
the liquid level inside the reservoir. This pipe transfers the fluid back to the inlet
reservoir, through a heat exchanger to recondition the fluid and the flowing particles
back to their original state.
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Fig. 20 Final, pumpless flow apparatus for testing new bio-inspired multiphase thermal func-
tional fluid [46]

Once in the inlet reservoir, the particles are stirred by a rotating magnet set in
motion by a magnetically coupled stirrer. Notice that the stirring of the MTFF
accomplishes several tasks. It not only disperses the particles very uniformly in the
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liquid while in the inlet reservoir, avoiding the clogging effect, but the vortex
induced by the stirring creates also a suction effect pulling the MTFF from the
tube linked to the exit reservoir. This last aspect sets the MTFF in motion through
the heated channel, circulating in the flow loop without the need for a mechanical
pump. The dispensing of a mechanical pump has another positive effect: without
mechanical contact with any moving parts, the particles do not suffer an accelerated
degrading effect (a course metal grid is placed around the rotating stirrer in the inlet
reservoir to make sure the particles do not get in contact with it).

Moreover, the speed with which the fluid flows through the channel is easily
controlled by selecting the speed of the stirrer as well. Finally, the excellent
dispersion of the particles achieved inside the inlet channel yields an almost
uniform feeding of the particles to the heated channel. A very simple metallic
grid gate was included at the inlet of the channel, the positioning of which allows
for more or less particles to flow through it, for the same flow speed. Hence,
different particle concentration inside the channel is possible, all with the same
flow speed. (Although the apparatus does not allow for the precise control of the
number of particles entering the channel, this can be accomplished with a simple
electronic gate that can be installed at the entrance of the channel.) A picture of the
final apparatus is shown in Fig. 21 [48].

Observe the channel is built as a parallel-plate channel, with the vertical distance
between the plates being slightly larger than the diameter of the particles. Therefore,
only a single layer of particles flows through the channel, in a snug fit, as shown
in Fig. 22. An important parameter affecting the performance of the heat transfer
process is the concentration of particles inside the channel. This concentration,
equivalent to the hematocrit or the volume-fraction of the particles inside the channel,

Fig. 21 Final apparatus showing the inlet reservoir (left), testing channel (center) and outlet
reservoir (right), with liquid water and microencapsulated phase-change particles, as the bio-
inspired multiphase thermal functional fluid, flowing by the exclusive action of the magnetic stirrer
placed underneath the inlet reservoir (left) [48]



New Bio-Inspired Multiphase Thermal Functional Fluid 437

Fig. 22 Flow visualization: top view of testing heated channel. The top channel surface being
made of Plexiglas allows for the visualization of the particles (octadecane paraffin, C;gHsg,
microencapsulated in a thin melamine shell), flowing with water, and the calculation of the particle
density inside the channel [46]

is determined by counting the number of particles inside the channel at any instant
in time. Tests have shown this number to be fairly constant (except by the exit
and entrance effects) once a flow speed and a position for the inlet gate are chosen.

The experimental results, [46], were obtained in terms of the surface averaged
temperature along the heated section of the channel, shown in Fig. 23, for several
particle concentration and a fixed flow speed. Observe the flow concentration is
relatively low, varying from 1.15% to 4.2%, a result of using a parallel-plate
channel. Also noteworthy is the inclusion of results for zero particle concentration,
i.e., for flow of clear (of particles) fluid.

Aside from the fact the average surface temperature increases with the increase
in the heat flux at the channel surface, as expected, the effect of increasing the
particle concentration in the channel is of great interest. Observe the highest
channel surface temperatures are obtained for zero concentration (clear water),
indicating the worst performance of all tests is when no particles are used. The
introduction of particles always lowers the surface temperature, as compared to
clear fluid, indicating the benefit of using the bio-inspired MTFF.

What would not be expected perhaps is the effect of increasing the particle
concentration: as the particle concentration increases the temperature decreases, but
from 1.9% to 2.7% concentration the surface temperature increases, instead of
decreasing as one would expect. That is, the benefit of continuously increasing
the number of particles flowing with the liquid inside the heated channel seems to
have a limit in achieving high heat transfer efficiency. There seems to exist an
optimum particle concentration, beyond which the addition of more particles has a
lesser and somewhat detrimental effect to the heat transfer process (see how the
curves for particle concentration greater than 1.9% are closer together). Even more
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Fig. 23 Surface averaged temperature results versus surface heat flux, for flow speed equal to
0.35 cm/s and several particle concentrations

surprising is that the beneficial effect of adding more particles seems to return as the
particle concentration increases again from 2.7 to 3.45 and finally to 4.2%.

Using what was learned in the alveolar capillary, it is conjectured the presence of
two effects play a role in the behavior of the curves in Fig. 23. One effect is the
reduction in the effectiveness of the extra mixing induced by the particles in the channel
when the number of particles increases too much. The other effect is the melting
power of the particles: for the same heat flux, a small number of particles could melt
completely before exiting the heated channel, whereas a large number of particles
might not. This phenomenon would explain the decrease in surface temperature
when the particle concentration increases from 2.7 to 3.45 and 4.2%: the large
number of particles flowing in the channel allows for more heat to be absorbed as
latent heat, decreasing the average surface temperature.

In trying to elucidate further the complex interplay between the phase-change
effect and the flow mixing effect, further tests were made with solid particles made
of plastic, without phase change capabilities within the temperatures achieved in
the testing section [47]. Results shown in Fig. 24, for particle concentration equal to
3%, seem enlightening.

First, the results with plastic particles seem to parallel the results with clear
water, but with a higher average heat transfer coefficient. This behavior seems to
indicate the sweeping effect of the particles in the flow field (observe the thermal
conductivity of the plastic is less than that of the water, so the plastic particles would
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Fig. 24 Surface averaged heat transfer coefficient versus flow speed, for 14 kW/m? heat flux,
clear water, or 3% concentration plastic or paraffin (phase-change) particles [47]

tend to hinder the heat transfer process). Second, the heat transfer coefficient of the
microencapsulated phase-change particles, although higher than that for the plastic
particles, does not parallel the heat transfer behavior for clear water. In fact, when the
phase-change particles are used, an initial increase in speed leads to a decrease in the
heat transfer coefficient, likely because of the smaller latent heat effect as the particles
spend less time in the channel. However, as the speed increases further, even though
the particles spend less time in the channel the heat transfer coefficient between the
liquid and the particles would increase as well (because of the more mixing at higher
speed), getting the phase-change effect by the particles to predominate again. Notice
the heat transfer coefficient increases, in respect to the value obtained with clear
water, by about 20% for the configuration shown in Fig. 24, with about 9% increase
estimated to be due to the mixing effect by the particles alone.

5 Summary and Conclusion

A new bio-inspired multiphase thermal functional fluid (MTFF) is proposed for
heat transfer in line with the main characteristics found in the alveolar capillaries,
namely liquid and particles, with the particles having dimensions similar to the
dimensions of the channel through which the exchange takes place.
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Preliminary numerical simulations and experimental tests with microencapsu-
lated phase-change material particles flowing with water seem to confirm the
suitability of the new MTFF as heat transfer fluid combining the boundary layer
sweeping effect and the phase-change effect yielding substantially higher transfer
efficiency with minimum pump-power penalty.

Finally, the scalability of the MTFF and the flow system opens up the opportu-
nity for resolving a few of the issues pertaining to the use of nanofluids (or slurries),
as to obtain yet much more efficient results.
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Simulation of Turbulent Combustion in Porous
Materials with One- and Two-Energy Equation
Models

Marcelo J.S. de Lemos

Abstract The objective of this chapter is to present one- and two-dimensional
numerical simulations of combustion of an air/methane mixture in porous materials
using a mathematical model that explicitly considers the intra-pore levels of
turbulent kinetic energy. Transport equations are written in their time-and-volume-
averaged form and a volume-based statistical turbulence model is applied to
simulate turbulence generation due to the porous matrix. Four different thermo-
mechanical models are compared, namely Laminar, Laminar with Radiation Trans-
port, Turbulent, Turbulent with Radiation Transport. Combustion is modeled via a
unique simple closure. Preliminary testing results indicate that a substantially
different temperature distribution is obtained depending on the model used. In
addition, for high excess air peak gas temperature are reduced and the flame front
moves towards the exit of the burner. Also, increasing the inlet flow rate for
stoichiometric mixture pushes the flame out of the porous material.
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cp Specific heat
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Dyisp s Dispersion tensor due to turbulence
D Effective mass transport tensor

b Damping function

fu Damping function

K Permeability

ky Fluid thermal conductivity

ks Solid thermal conductivity

K. Effective Conductivity tensor

ny Mass fraction of species /

Pr Prandtl number

St Rate of fuel consumption

T Temperature

u Microscopic velocity

up Darcy or superficial velocity (volume average of u)

Greek Characters

o Thermal diffusivity

B Extinction coefficient

AV Representative elementary volume
AV;  Fluid volume inside AV

AH  Heat of combustion

u Dynamic viscosity

v Kinematic viscosity

0 Density of air/fuel mixture

¢ ¢ = AVf/AV, Porosity

4 Excess air-to-fuel ratio

Special Characters

© General variable

(@) Intrinsic average

(p)"  Volume average

ip Spatial deviation

¢ Time average

ip Spatial deviation

| ] Absolute value (Abs)
[0 Vector general variable

Solid/fluid
Effective value, ¢y + (1 — @),
Macroscopic value
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1 Introduction

Flow with chemical reaction in inert porous media has been extensively investi-
gated due to the many engineering applications and demand for developing high-
efficiency power production devices. The growing use of efficient radiant burners
can be encountered in the power and process industries and, as such, proper
mathematical models of flow, heat and mass transfer in porous media under
combustion can benefit the development of such engineering equipment.

Accordingly, the advantages of having a combustion process inside an inert
porous matrix are today well documented in the literature [1-8], including recent
reviews on combustion of gases [9] and liquids [10] in such burners. Hsu et al. [11]
points out some of its benefits including higher burning speed and volumetric
energy release rates, higher combustion stability and the ability to burn gases of a
low energy content. Driven by this motivation, the effects on porous ceramics
inserts have been investigated in Peard et al. [12], among others.

Turbulence modeling of combustion within inert porous media has been con-
ducted by Lim and Matthews [13] on the basis of an extension of the standard k-¢
model of Jones and Launder [14]. Work on direct simulation of turbulence in
premixed flames, for the case when the porous dimension is of the order of the
flame thickness, has also been reported in Sahraoui and Kaviany [15].

Further, non-reactive turbulence flow in porous media has been the subject of
several studies [16—18], including many applications such as flow though porous
baffles [19], channels with porous inserts [20] and buoyant flows [21]. In such line
of work, intra-pore turbulence is accounted for in all transport equations, but only
non-reactive flow has been previously investigated in [16-21].

Motivated by the foregoing, this chapter extends previous work on turbulence
modeling in porous media to include simulation of reactive flows. Computations are
carried out for inert porous material considering one- and two-dimensional turbu-
lent flows with one- and two-energy equation closures. Four different thermo-
mechanical models are here compared, namely Laminar Flow, Laminar Flow
with Radiation Transport, Turbulent Flow and Turbulent Flow with Radiation
Transport. As such, this contribution compares the effects of radiation and turbu-
lence in smoothing temperature distributions within porous burners.

2 Macroscopic Mathematical Model

As mentioned, the thermo-mechanical model here employed is based on the
“double-decomposition” concept [16, 17], which has been also described in detail
in a book [18]. In that work, transport equations are volume averaged according to
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the Volume Averaging Theorem [22-24] in addition of using time decomposition
of flow variables followed by standard time-averaging procedure for treating
turbulence. As the entire equation set is already fully available in the open litera-
ture, these equations will be reproduced here and details about their derivations
can be obtained in the aforementioned references. Essentially, in all the above-
mentioned work the flow variables are decomposed in a volume mean and a deviation
(classical porous media analysis) in addition to being also decomposed in a time-
mean and a fluctuation (classical turbulent flow treatment).
These final equations in their steady-state form are:

2.1 Continuity Equation

V.pup =0 (D
where, Uip is the average surface velocity (also known as seepage, superficial, filter

or Darcy velocity) and p is the fluid density. Equation (1) represents the macro-
scopic continuity equation for the gas.

2.2 Momentum Equation

V- <p uDuD) = *V(ﬁﬁ(ﬁ)") +uViip + V- (—qu(WY) + dpg

¢

where the last two terms in (2), represent the Darcy and Forchheimer contributions.

The symbol K is the porous medium permeability, ¢ = 0.55 is the form drag

coefficient, (p)’' is the intrinsic (fluid phase averaged) pressure of the fluid, u

represents the fluid viscosity and ¢ is the porosity of the porous medium.
Turbulence is handled via a macroscopic k£ — ¢ model given by:

. (pﬁD<k>j) —v. [(u+i—tz)V(¢<k>i)]

— p(wu) : Viip + cm%

B
— pp(e)’
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v. (pﬁD<8>i) —-v. Ku+‘;’:)v(¢<g>l‘)} to (—p(W}i :VﬁD) <</3

+ Czckp% —cp <<8k>>l,-2 4)
where
PO = 1, 2(D)" ~ 2 p(k) 5)
and
oy = Py <<’;>>’i2 ©)

Details on the derivation of the above equations can be found in [18].

2.3 Macroscopic Energy Models

There are two possibilities to handle energy transport across porous burners. In the
simplified model, we assume the so-called “Local Thermal Equilibrium Model —
LTE”, in which the average solid temperature is seen to be numerically equal to the
mean gas temperature. When the solid and the gas temperate differ by a consider-
able amount, the “Local Non-thermal Equilibrium Model — LNTE” applies and
distinct energy balances become mandatory for each phase. Transport equations for
both models follow below.

2.3.1 One Energy Equation Model (LTE)

Although the Local Thermal Equilibrium hypothesis (LTE) is known to be inap-
propriate to handle large temperature differences between the solid matrix and the
burning gas, this simple mathematical framework may provide insight for investi-
gating the role of the mechanisms of turbulence and radiation, ultimately contribut-
ing to the developments of more advanced and sophisticated simulation tools. As an
example, one energy equation models have been applied for analyzing combustion
in porous media by Mohamad et al. [8] and de Neef et al. [25].
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The governing equation for energy transport is:

A[pcp &+ pycp (1 — ST
ot

+V - (peps - up 1)) = o

V- { Ky - V(T)' } + pAH S,

where, <T)i is the averaged temperature for both the solid and the liquid, K.z,
given by:

radiation

. e |

conduction ( <T> i ) 3

——— 160
Keff: ¢kf+(1_¢) [kS+T] |
+ Kmr + Kdisp + Kr + Kdixp‘,t (8)

~—~ N~ ————

fortuosity  dispersion turbulence

is the effective conductivity tensor, AH is the heat of combustion [J/kg], f, is the
extinction coefficient [1/m], ¢ is the Stephan-Boltzmann constant, Sy, is the rate of
fuel consumption [kg/m’s] to be commented below and I is the unit tensor. In (8) all
mechanisms contributing to heat transfer within the medium, together with turbu-
lence and radiation, are included in order to compare their effect on temperature
distribution.

A steady state form of (7) reads:

V- (peyiin(T)) = V- {Keﬂ- (T } + AH S, )

where all additional mechanisms of transfer, as mentioned, are included in K.

2.3.2 Two Energy Equation Model (NLTE)

In cases where average temperatures in distinct phases are substantially different,
macroscopic energy equations are obtained for both fluid and solid phases by also
applying time- and volume- average operators to the instantaneous local equations
[26]. As in the flow case, volume integration is performed over a Representative
Elementary Volume (REV). After including the heat released due to the combustion
reaction, one gets for both phases:
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Gas:
V- (pr ey up(Ty)) = V - {Keff;f' V(T } + hiai<<Ts>i - <Tf>i)
+ ¢ AH Sy, (10)
Solid:
0=V { Ko - VT } =, ((T) = (1)), a1
where, a; = A;/AV is the interfacial area per unit volume, #; is the film coefficient

for interfacial transport, K.z rand Kz are the effective conductivity tensors for
fluid and solid, respectively, given by:

conduction

—~ =
Kygr=1< ¢k I+ Kry  + Kayp +K 4+ Ky, (12)
local conduction  dispersion turbulence
radiation
conduction _ ;.3
16¢((T))

——
Keps = (1-19) [ks + ] I+ K; s (13)

local conduction

3B,

In (12) and (13) all mechanisms contributing to heat transfer within the medium,
together with turbulence and radiation, are here also included in order to compare
their effect on temperature distribution. Further, such distinct contributions of
various mechanisms are the outcome of the application of gradient type diffusion
models, in the form (see [26] for details).

Turbulent heat flux:

—(pa), (¢ W)TY)) =K, V(T (14)

Thermal dispersion:

— (o), (@ (0T ) = Kay - VT, (15)

Turbulent thermal dispersion:
= (pen), ((’b <i“'iT'f>l) = Kaigp - V(7). (16)

Local conduction:
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AVt L /ll[ kafdA = Kf,s : V<TV>I
Ai
- : 17

-V Av/“"k“TsdA =K,y - V(Ty)’
A

The sum of the two terms in (17) gives rise to the tortuosity tensor appearing in
(8). For the sake of simplicity, theses terms are here neglected. In (10) and (11) the
heat transferred between the two phases was modeled by means of a film coefficient
h;. A numerical correlation for the interfacial convective heat transfer coefficient
was proposed by Kuwahara et al. [27] for laminar flow as:

h:D 4(1 — 1 1/3
- = (1 +%> +50 - ¢)*RepPr valid for 0.2 < ¢ <0.9 (18)
1

For turbulent flow, the following expression was proposed in Saito and de
Lemos [26]:

hD Rep\ *® R
— 0.08 <e’)) Pri/3; for 1.0x10% < 2 < 2.0x107  valid for
kf ¢ ¢ (19)

02<¢ <09,

2.4 Mass Transport

Transport equation for the fuel reads:

V- (pup(mu)) =V - pDey - V(d(mz) ) — ¢ Sy (20)

where (rﬁﬁ,>i is the mass fraction for the fuel. The effective mass transport tensor,
D, is defined as:

diffusion
~= 1 Ky My,
Deﬁ‘ = Ddisp + Ddlff +D; + Ddisp,t = Ddisp +—+ I
—— —_——— P SC[ S(,‘gv,
dispersion turbulence
1 /u, ef
=Dy +— [ 2L )1 21
disp P (SC[@C ( )
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where Sc, and Scy, are the laminar and turbulent Schmidt numbers for species 2,
respectively, and “ef” denotes an effective value.

2.5 Simple Chemistry

In this work, for simplicity, the chemical exothermic reaction is assumed to be
instantaneous and to occur in a single step, kinetic-controlled, which, for combus-
tion of a mixture air/methane, is given by the chemical reaction [8]:

CHy + 2(1 + W) (0, + 3.76N;) — CO, + 2H,0 + 2¥0, +7.52(1 + V)N,

(22)
For N-heptane, a similar equation reads [28]:
C7H16 + 11(1 + ¥)(02 + 3.76N,) — 7CO; + 8H,0 + 11Y 0, (23)
+41.36(1 + P)N,
and for Octane, one has:
CsHis + 12.5(1 + ¥)(0, 4+ 3.76N,) — 8CO, + 9H,0 + 12.5¥ O, (24)

+47(1 + ¥)N;

where W is the excess air in the reactant stream at the inlet of the porous foam. For
the stoichiometric ratio, ¥ = 0. In all of these equations, the reaction is then
assumed to be kinetically controlled and occurring infinitely fast. A general expres-
sion for them can be derived as:

C,H>, + (n + %)(1 + lP)(OQ + 376N2) — nCO, + mH,0

(25
+(n+5Y 0y + (n+%5)3.76(1 + V)N,
where the coefficients “n” and “m” can be found in Table 1. Equation (25) is here
assumed to hold for the particular examples given in the table.
The rate of fuel consumption over the total volume (gas plus solid) was deter-
mined by a one step Arrhenius reaction [29] given by:

o Niso i .
St = p~A () (Mox)" exp[—E/R (T)'] (26)
Table 1 Coefficients in the Gas n m (n + mf2) (n+mj2) x 3.76
general combustion equation  Methane 1 2 2 7.52
(25) N-heptane 7 8 11 41.36
Octane 8 9 12.5 47
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where <r71ﬁ,>i and <r710x>" are the volume-time averaged mass fractions for the fuel
and oxidant, respectively, A is the pre-exponential factor [1 X 10'° m3/(kg s)] and
E is the activation energy [1.4 x 10® J/kmol], where all values used are the ones
commonly used in the literature for combustion of methane. The heat generation
rate is calculated as:

0 = AH Sy, (27)

where Sy, is computed by (26).
Density p in the above equations is determined from the perfect gas equation for
a mixture of perfect gases:

P,
p=— (28)

4
RTy 21:;”7‘[

where P, is the absolute pressure, R is the universal gas constant [8.134 J/(mol K)]
and M, is the molecular weight of species /.

3 Results and Discussion

For two-dimensional cases using the LTE model, the set of equations above, in
Sects 2.2 and 2.3.1, were solved for a two dimensional combustor whereas for the
NLTE model, detailed in Sect. 2.3.2, one-dimensional flow was considered.

For one-dimensional cases and the NLTE model, simulations assumed given
temperatures (solid and gas) and fuel mass fraction at inlet, x = 0. At exit,
x = 12cm, a zero diffusion condition J( )/dx = 0 for all variables was consid-
ered. For the solid temperature, a balance between the energy conducted to the
exit of the burner and the radiation leaving the porous material to the environment
was applied. Further, an initial length of 2 cm was considered to be made of a
material that prevents flash back of the flame, which is commonly referred to in
the literature as “flame trap” [30]. Ignition, is existing, was then calculated for
x> 2cm.

In both 1D and 2D cases, the finite—volume technique was employed to dis-
cretize the transport equations. The resulting algebraic equation set was relaxed
using the well-known segregated method SIMPLE. Further, the flame front position
was the sole outcome of the solution process and no artificial numerical set-up was
implemented for holding the flame at some particular location.

As mentioned, two sets of results are reported below, namely those obtained with
the LTE hypotheses, for 2D flows in a burner, and additional computations using
the NLTE approach, for simple 1D calculation.
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Insulated walls

Porous Burner

H=0.05

ﬁ

Air + Fuel
mixture

Fig. 1 Two-dimensional combustor model, LTE model

3.1 Two-Dimensinal Flow: LTE Model

For the first set of results, the problem considered consists in having a porous media
confined in a channel, through which a mixture of fuel and air enters from the left,
as shown in Fig. 1. The fuel/air mixture is injected through an inlet clearance of size
less than the burner height, so that flow expansion occurs past the chamber
entrance.

Figure 2a shows the effect of inlet velocity Uj, on the flame front, whose location
is here assumed to be related with the heat release rate computed by (26). Figure 2b
repeats same simulation of Fig. 2a, using now a higher air-to-fuel ratio, ¥ = 0.8.
Combustion of a lean mixture reveals that the flame front is more sensitive to the
incoming mass flow rate and that the flame front is pushed towards the exit, leading
eventually to the opening of the combustion front for higher velocities. As such,
unburned gas leaves the chamber for higher mass flow rates.

Finally, Fig. 2c presents the effect of air-to-fuel ratio while keeping the total
mass flow rate constant through the combustor. As the mixture becomes leaner, the
flame front is pushed towards the right, and the effect seen above, the opening of the
combustion front, is observed. Consequently, unburned fuel leaves the chamber.
This effect is more pronounced as ¥ increases, a result which is coherent when
comparing Fig. 2a, b.

3.2 One-Dimensinal Flow: NLTE Model

For one-dimensional flow using the Non-Thermal Equilibrium model NLTE, the
computational grid was generated with a concentration of points close to the
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a Turbulence and Radiation Models
¥=0.0, ¢=0.8

u, =1.25m/s

b Turbulence and Radiation Models
¥=0.8, $=0.8
v, =0.5m/s
c Turbulence and Radiation Models

uj, =1.25m/s, ¢=0.8

Fig. 2 Flame front location for turbulence and radiation models, ¢ = 0.8: (a) effect of inlet
velocity, ¥ = 0.0, (b) effect of inlet velocity, ¥ = 0.8, (c) effect of excess air ¥, U;, = 1.25 m/s

beginning of the combustion section (x = 2 cm), where steep temperature and
species gradients were expected to appear. Two grids were employed with 120
and 240 nodes in the x direction, respectively. Figure 3 shows temperature profiles
calculated with both mentioned grids and indicates that no detectable differences
exists between the two sets of results. For this reason, all simulations in this work
make use of the 120 node stretched grid.



Simulation of Turbulent Combustion in Porous Materials with One-Energy 455

3000

¥=0.0
2500 EEfif}f5f3i3+34a—EL{;43—E++3—E}—E+49——
2000

Ts, Tp [K]
o
o
o

T,, Grid: 120x4

Ty, Grid: 120x4

m] T;, Grid: 240x4

1000 O T, Grid: 240x4

500
0 1 1 1 ] 1 1 1 ] 1 1 1 ]
0 0.02 0.04 0.06
x[m]

Fig. 3 Grid independence studies for one-dimensional cases, NLTE model

Figure 4a shows the effect of excess air ¥ on the gas temperature, 77, and solid
temperature, T),. Temperature levels for the stoichiometric case and for ¥ = 0.8
gave numerical values close to those from [31]. Likewise, mass fraction behavior of
species CHy, CO, (Fig. 4b) and H,O, O, (Fig. 4c) follow closely those reported by
[31], for the one-equation simple combustion model here presented. Excess air
reduces the final mass fraction of CO, and water and raises the amount of oxygen
not participating in the combustion reaction. These results are the outcome of the
single step reaction (22) that links the consumption and production rates of indivi-
dual constituents of the mixture.

Figure 5 shows the dependence of temperature levels on inlet velocities U;,. As
axial flow is increased, one can note a slight reduction of peak values of tempera-
tures, follow by the movement of the flame towards the exit of the burner. Although
the movement of the flame front is in accordance with simulations by [32], here a
reduction on the maximum values of temperatures was calculated, which is in
disagreement with findings in the literature [32] where the temperature rises as
the inlet mass flow rate is increased. One possible explanation for this contrary
behavior is that there are a number of distinct parameters and assumptions in both
calculations sets, here and in [32], spanning from mathematical to numerical
modeling hypotheses, which might affect the final results.

Four different thermo-mechanical models are now compared, namely Laminar,
Laminar with Radiation Transport, Turbulent, Turbulent with Radiation Transport.
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Fig. 4 Effect of excess air

Y for U;, = 0.1 m/s on: (a)
temperature fields, (b) fuel
and carbon dioxide, (c¢) water
and oxygen
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Fig. 5 Effect of inlet gas velocity on temperature fields

Radiation model is included by considering the radiation transport term in the 7}, —
equation (13). Turbulence modeling is handled by resolving the k¥ —¢ model
equations (3) and (4) in addition to solving for the macroscopic turbulent eddy
viscosity 4, , equation (6). In all cases, combustion is simulated via a unique simple
closure, which is presented by equations (22) and (26).

Numerical simulations obtained with different models are presented in Fig. 6
for two values of Uj;,. Figure 6a shows that for a low value of U,,, the flame (solid
lines) stabilizes close to the beginning of the burning section (x = 2 cm), inde-
pendently of the mathematical model applied. Solid temperature are influenced by
radiation transport, which tends to smooth out temperature differences within the
solid matrix, enhancing, as such, the regenerative advantage of porous burners
(dashed lines). Regeneration is achieved by preheating the gas prior to the
combustion zone. In fact, the use of a turbulence model in conjunction with
radiation transport gives the higher temperature peak of the gas temperature at
the flame position. Increasing the inlet mass flow rate (Fig. 6b), the flame is
pushed towards the burners exit, regardless of the model used. Here also radiation
transport substantially affects the solid temperature distribution, but definitive
conclusions on the appropriateness of each model can only be reached after
careful comparison with experimental measurements. This shall be the subject
of future research efforts.
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4 Concluding Remarks

This chapter presented two- and one-dimensional simulations for a mixture of air
and methane burning in a porous material. Both LTE and NLTE models were
applied. Four different thermo-mechanical models were compared along with a
unique simple closure for combustion. Results indicate that a substantially different
temperature distribution pattern is obtained depending on the model used. For high
excess air or gas velocity, the flame front moves towards the exit of the burner.
Results herein motivates further research work on the subject of reactive turbulent
flow in porous burners and should be seen as a preliminary step towards reliable
simulation of real porous combustors.
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