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Preface

The subject of this book is the approximation of curves in two dimensions
and surfaces in three dimensions from a set of sample points. This problem,
called reconstruction, appears in various engineering applications and scientific
studies. What is special about the problem is that it offers an application where
mathematical disciplines such as differential geometry and topology interact
with computational disciplines such as discrete and computational geometry.
One of my goals in writing this book has been to collect and disseminate the
results obtained by this confluence. The research on geometry and topology
of shapes in the discrete setting has gained a momentum through the study of
the reconstruction problem. This book, I hope, will serve as a prelude to this
exciting new line of research.

To maintain the focus and brevity I chose a few algorithms that have provable
guarantees. It happens to be, though quite naturally, they all use the well-known
data structures of the Voronoi diagram and the Delaunay triangulation. Actually,
these discrete geometric data structures offer discrete counterparts to many of
the geometric and topological properties of shapes. Naturally, the Voronoi and
Delaunay diagrams have been a common thread for the materials in the book.

This book originated from the class notes of a seminar course “Sample-Based
Geometric Modeling” that I taught for four years at the graduate level in the
computer science department of The Ohio State University. Graduate students
entering or doing research in geometric modeling, computational geometry,
computer graphics, computer vision, and any other field involving computations
on geometric shapes should benefit from this book. Also, teachers in these
areas should find this book helpful in introducing materials from differential
geometry, topology, and discrete and computational geometry. I have made
efforts to explain the concepts intuitively whenever needed, but I have retained
the mathematical rigor in presenting the results. Lemmas and theorems have
been used to state the results precisely. Most of them are equipped with proofs

xi



xii Preface

that bring out the insights. For the most part, the materials are self-explanatory.
A motivated graduate student should be able to grasp the concepts through
a careful reading. The exercises are set to stimulate innovative thoughts, and
readers are strongly urged to solve them as they read.

The first chaper describes the necessary basic concepts in topology, Delaunay
and Voronoi diagrams, local feature size, and ε-sampling of curves and surfaces.
The second chapter is devoted to curve reconstruction in two dimensions. Some
general results based on ε-sampling are presented first followed by two algo-
rithms and their proofs of correctness. Chapter 3 presents results connecting
surface geometries and topologies with ε-sampling. For example, it is shown
that the normals and the topology of the surface can be recovered from the
samples as long as the input is sufficiently dense. Based on these results, an
algorithm for surface reconstruction is described in Chapter 4 with its proofs
of guarantees. Chapter 5 contains results on undersampling. It presents a mod-
ification of the algorithm presented in Chapter 4. Chapter 6 is on computing
watertight surfaces. Two algorithms are described for the problem. Chapter 7 in-
troduces the case where sampling is corrupted by noise. It is shown that, under a
reasonable noise model, the normals and the medial axis of a surface can still be
approximated from a noisy input. Using these results a reconstruction method
for noisy samples is presented in Chapter 8. The results in Chapter 7 are also used
in Chapter 9 where a method to smooth out the noise is described. This smooth-
ing is achieved by projecting the points on an implicit surface defined with a
variation of the least squares method. Chapter 10, the last chapter, is devoted
to reconstruction algorithms based on Morse theoretic ideas. Discretization of
Morse theory using Voronoi and Delaunay diagrams is the focus of this chapter.

A book is not created in isolation. I am indebted to many people without
whose work and help this book would not be a reality. First, my sincere gratitude
goes to Nina Amenta, Dominique Attali, Marshall Bern, Jean-Daniel Boisson-
nat, Frederic Cazals, Frédéric Chazal, Siu-Wing Cheng, Herbert Edelsbrunner,
David Eppstein, Joachim Giesen, Ravi Kolluri, André Lieutier, and Edgar
Ramos whose beautiful work has inspired writing this book. I thank my stu-
dents Samrat Goswami, James Hudson, Jian Sun, Tathagata Ray, Hyuckje Woo,
Wulue Zhao, and Luke Molnar for implementing and experimenting with var-
ious reconstruction algorithms, which provided new insights into the problem.
Special mention is due the CGAL project that offered a beautiful platform for
these experiments. Joachim Giesen, Joshua Levine, and Jian Sun did an ex-
cellent job giving me the feedback on their experiences in reading through the
drafts of various chapters. Rephael Wenger, my colleague at Ohio State, pro-
vided many valuable comments about the book and detected errors in early
drafts.
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Last but not least, I thank my other half, Kajari Dey, and our children Soumi
Dey (Rumpa) and Sounak Dey (Raja) who suffered for diminished family atten-
tion while writing this book, but still provided their unfailing selfless support.
Truly, their emotional support and encouragement kept me engaged with the
book for more than four years.





1
Basics

Simply stated, the problem we study in this book is: how to approximate a shape
from the coordinates of a given set of points from the shape. The set of points is
called a point sample, or simply a sample of the shape. The specific shape that
we will deal with are curves in two dimensions and surfaces in three dimensions.
The problem is motivated by the availability of modern scanning devices that
can generate a point sample from the surface of a geometric object. For example,
a range scanner can provide the depth values of the sampled points on a surface
from which the three-dimensional coordinates can be extracted. Advanced hand
held laser scanners can scan a machine or a body part to provide a dense sample
of the surfaces. A number of applications in computer-aided design, medical
imaging, geographic data processing, and drug designs, to name a few, can take
advantage of the scanning technology to produce samples and then compute a
digital model of a geometric shape with reconstruction algorithms. Figure 1.1
shows such an example for a sample on a surface which is approximated by a
triangulated surface interpolating the input points.

The reconstruction algorithms described in this book produce a piecewise
linear approximation of the sampled curves and surfaces. By approximation
we mean that the output captures the topology and geometry of the sam-
pled shape. This requires some concepts from topology which are covered in
Section 1.1.

Clearly, a curve or a surface cannot be approximated from a sample unless
it is dense enough to capture the features of the shape. The notions of features
and dense sampling are formalized in Section 1.2.

All reconstruction algorithms described in this book use the data structures
called Voronoi diagrams and their duals called Delaunay triangulations. The
key properties of these data structures are described in Section 1.3.

1



2 1 Basics

(a) (b)

(c)

Figure 1.1. (a) A sample of Mannequin, (b) a reconstruction, and (c) rendered
Mannequin model.

1.1 Shapes

The term shape can circumscribe a wide variety of meaning depending on the
context. We define a shape to be a subset of an Euclidean space. Even this class
is too broad for our purpose. So, we focus on a specific type of shapes called
smooth manifolds and limit ourselves only up to three dimensions.

A global yardstick measuring similarities and differences in shapes is pro-
vided by topology. It deals with the connectivity of spaces. Various shapes are
compared with respect to their connectivities by comparing functions over them
called maps.
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1.1.1 Spaces and Maps

In point set topology a topological space is defined to a be a point set T with a
system of subsets T so that the following conditions hold.

1. ∅, T ∈ T ,
2. U ⊆ T implies that the union of U is in T ,
3. U ⊆ T and U finite implies that the intersection of U is in T .

The system T is the topology on the set T and its sets are open in T. The
closed sets of T are the subsets whose complements are open in T. Consider
the k-dimensional Euclidean space R

k and let us examine a topology on it. An
open ball is the set of all points closer than a certain Euclidean distance to a
given point. Define T as the set of open sets that are a union of a set of open
balls. This system defines a topology on R

k .
A subset T

′ ⊆ T with a subspace topology T ′ defines a topological subspace
where T ′ consists of all intersections between T

′ and the open sets in the
topology T of T. Topological spaces that we will consider are subsets of R

k

which inherits their topology as a subspace topology. Let x denote a point
in R

k , that is, x = {x1, x2, . . . , xk} and ‖x‖ = (x2
1 + x2

2 + · · · + x2
k )

1
2 denote

its distance from the origin. Example of subspace topology are the k-ball B
k ,

k-sphere S
k , the halfspace H

k , and the open k-ball B
k
o where

B
k = {x ∈ R

k | ‖x‖ ≤ 1}
S

k = {x ∈ R
k+1 | ‖x‖ = 1}

H
k = {x ∈ R

k | xk ≥ 0}
B

k
o = B

k \ S
k .

It is often important to distinguish topological spaces that can be covered with
finitely many open balls. A covering of a topological space T is a collection
of open sets whose union is T. The topological space T is called compact if
every covering of T can be covered with finitely many open sets included in the
covering. An example of a compact topological space is the k-ball B

k . However,
the open k-ball is not compact. The closure of a topological space X ⊆ T is the
smallest closed set ClX containing X.

Continuous functions between topological spaces play a significant role to
define their similarities. A function g : T1 → T2 from a topological space T1

to a topological space T2 is continuous if for every open set U ⊆ T2, the set
g−1(U ) is open in T1. Continuous functions are called maps.



4 1 Basics

Homeomorphism

Broadly speaking, two topological spaces are considered the same if one has a
correspondence to the other which keeps the connectivity same. For example,
the surface of a cube can be deformed into a sphere without any incision or
attachment during the process. They have the same topology. A precise defini-
tion for this topological equality is given by a map called homeomorphism. A
homeomorphism between two topological spaces is a map h : T1 → T2 which
is bijective and has a continuous inverse. The explicit requirement of contin-
uous inverse can be dropped if both T1 and T2 are compact. This is because
any bijective map between two compact spaces must have a continuous inverse.
This fact helps us proving homeomorphisms for spaces considered in this book
which are mostly compact.

Two topological spaces are homeomorphic if there exists a homeomorphism
between them. Homeomorphism defines an equivalence relation among topo-
logical spaces. That is why two homeomorphic topological spaces are also
called topologically equivalent. For example, the open k-ball is topologically
equivalent to R

k . Figure 1.2 shows some more topological spaces some of which
are homeomorphic.

Homotopy

There is another notion of similarity among topological spaces which is weaker
than homeomorphism. Intuitively, it relates spaces that can be continuously
deformed to one another but may not be homeomorphic. A map g : T1 → T2 is
homotopic to another map h : T1 → T2 if there is a map H : T1 × [0, 1] → T2

so that H (x, 0) = g(x) and H (x, 1) = h(x). The map H is called a homotopy
between g and h.

Two spaces T1 and T2 are homotopy equivalent if there exist maps g : T1 →
T2 and h : T2 → T1 so that h ◦ g is homotopic to the identity map ι1 : T1 → T1

and g ◦ h is homotopic to the identity map ι2 : T2 → T2. If T2 ⊂ T1, then T2 is
a deformation retract of T1 if there is a map r : T1 → T2 which is homotopic
to ι1 by a homotopy that fixes points of T2. In this case T1 and T2 are homotopy
equivalent. Notice that homotopy relates two maps while homotopy equivalence
relates two spaces. A curve and a point are not homotopy equivalent. However,
one can define maps from a 1-sphere S

1 to a curve and a point in the plane
which have a homotopy.

One difference between homeomorphism and homotopy is that homeomor-
phic spaces have same dimension while homotopy equivalent spaces need not
have same dimension. For example, the 2-ball shown in Figure 1.2(e) is homo-
topy equivalent to a single point though they are not homeomorphic. Any of
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(a) (b) (c)

(f)(e)(d)

Figure 1.2. (a) 1-ball, (b) and (c) spaces homeomorphic to the 1-sphere, (d) and (e)
spaces homeomorphic to the 2-ball, and (f) an open 2-ball which is not homeomorphic
to the 2-ball in (e).

the end vertices of the segment in Figure 1.2(a) is a deformation retract of the
segment.

Isotopy

Homeomorphism and homotopy together bring a notion of similarity in spaces
which, in some sense, is stronger than each one of them individually. For ex-
ample, consider a standard torus embedded in R

3. One can knot the torus (like
a knotted rope) which still embeds in R

3. The standard torus and the knotted
one are both homeomorphic. However, there is no continuous deformation of
one to the other while maintaining the property of embedding. The reason is
that the complement spaces of the two tori are not homotopy equivalent. This
requires the notion of isotopy.

An isotopy between two spaces T1 ⊆ R
k and T2 ⊆ R

k is a map ξ : T1 ×
[0, 1] → R

k such that ξ (T1, 0) is the identity of T1, ξ (T1, 1) = T2 and for
each t ∈ [0, 1], ξ (·, t) is a homeomorphism onto its image. An ambient isotopy
between T1 and T2 is a map ξ : R

k × [0, 1] → R
k such that ξ (·, 0) is the identity

of R
k , ξ (T1, 1) = T2 and for each t ∈ [0, 1], ξ (·, t) is a homeomorphism of R

k .
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Observe that ambient isotopy also implies isotopy. It is also known that two
spaces that have an isotopy between them also have an ambient isotopy between
them. So, these two notions are equivalent. We will call T1 and T2 isotopic if
they have an isotopy between them.

When we talk about reconstructing surfaces from sample points, we would
like to claim that the reconstructed surface is not only homeomorphic to the
sampled one but is also isotopic to it.

1.1.2 Manifolds

Curves and surfaces are a particular type of topological space called manifolds.
A neighborhood of a point x ∈ T is an open set that contains x . A topological
space is a k-manifold if each of its points has a neighborhood homeomorphic
to the open k-ball which in turn is homeomorphic to R

k . We will consider only
k-manifolds that are subspaces of some Euclidean space.

The plane is a 2-manifold though not compact. Another example of a 2-
manifold is the sphere S

2 which is compact. Other compact 2-manifolds include
torus with one through-hole and double torus with two through-holes. One
can glue g tori together, called summing g tori, to form a 2-manifold with g
through-holes. The number of through-holes in a 2-manifold is called its genus.
A remarkable result in topology is that all compact 2-manifolds in R

3 must be
either a sphere or a sum of g tori for some g ≥ 1.

Boundary

Surfaces in R
3 as we know them often have boundaries. These surfaces have the

property that each point has a neighborhood homeomorphic to R
2 except the

ones on the boundary. These surfaces are 2-manifolds with boundary. In general,
a k-manifold with boundary has points with neighborhood homeomorphic to
either R

k , called the interior points, or the halfspace H
k , called the boundary

points. The boundary of a manifold M , bd M , consists of all boundary points.
By this definition a manifold as defined earlier has a boundary, namely an empty
one. The interior of M consists of all interior points and is denoted Int M .

It is a nice property of manifolds that if M is a k-manifold with boundary,
bd M is a (k − 1)-manifold unless it is empty. The k-ball B

k is an example
of a k-manifold with boundary where bd B

k = S
k−1 is the (k − 1)-sphere and

its interior Int B
k is the the open k-ball. On the other hand, bd S

k = ∅ and
Int S

k = S
k . In Figure 1.2(a), the segment is a 1-ball where the boundary is a 0-

sphere consisting of the two endpoints. In Figure 1.2(e), the 2-ball is a manifold
with boundary and its boundary is the circle, a 1-sphere.
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Orientability

A 2-manifold with or without boundary can be either orientable or nonori-
entable. We will only give an intuitive explanation of this notion. If one travels
along any curve on a 2-manifold starting at a point, say p, and considers the
oriented normals at each point along the curve, then one gets the same oriented
normal at p when he returns to p. All 2-manifolds in R

3 are orientable. However,
2-manifolds in R

3 that have boundaries may not be orientable. For example, the
Möbius strip, obtained by gluing the opposite edges of a rectangle with a twist,
is nonorientable. The 2-manifolds embedded in four and higher dimensions
may not be orientable no matter whether they have boundaries or not.

1.1.3 Complexes

Because of finite storage within a computer, a shape is often approximated with
finitely many simple pieces such as vertices, edges, triangles, and tetrahedra. It
is convenient and sometimes necessary to borrow the definitions and concepts
from combinatorial topology for this representation.

An affine combination of a set of points P = {p0, p1, . . . , pn} ⊂ R
k is a

point p ∈ R
k where p = �n

i=0αi pi , �iαi = 1 and each αi is a real number. In
addition, if each αi is nonnegative, the point p is a convex combination. The
affine hull of P is the set of points that are an affine combination of P . The
convex hull Conv P is the set of points that are a convex combination of P . For
example, three noncollinear points in the plane have the entire R

2 as the affine
hull and the triangle with the three points as vertices as the convex hull.

A set of points is affinely independent if none of them is an affine combination
of the others. A k-polytope is the convex hull of a set of points which has at
least k + 1 affinely independent points. The affine hull aff µ of a polytope µ is
the affine hull of its vertices.

A k-simplex σ is the convex hull of exactly k + 1 affinely independent points
P . Thus, a vertex is a 0-simplex, an edge is a 1-simplex, a triangle is a 2-simplex,
and a tetrahedron is a 3-simplex. A simplex σ ′ = Conv T for a nonempty subset
T ⊆ P is called a face of σ . Conversely, σ is called a coface of σ ′. A face σ ′ ⊂ σ

is proper if the vertices of σ ′ are a proper subset of σ . In this case σ is a proper
coface of σ ′.

A collection K of simplices is called a simplicial complex if the following
conditions hold.

(i) σ ′ ∈ K if σ ′ is a face of any simplex σ ∈ K.
(ii) For any two simplices σ, σ ′ ∈ K, σ ∩ σ ′ is a face of both unless it is empty.
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(a) (b)

Figure 1.3. (a) A simplicial complex and (b) not a simplicial complex.

The above two conditions imply that the simplices meet nicely. The simplices
in Figure 1.3(a) form a simplicial complex whereas the ones in Figure 1.3(b)
do not.

Triangulation

A triangulation of a topological space T is a simplicial complex K whose
underlying point set is T. Figure 1.1(b) shows a triangulation of a 2-manifold
with boundary.

Cell Complex

We also use a generalized version of simplicial complexes in this book. The
definition of a cell complex is exactly same as that of the simplicial complex with
simplices replaced by polytopes. A cell complex is a collection of polytopes
and their faces where any two intersecting polytopes meet in a face which is
also in the collection. A cell complex is a k-complex if the largest dimension
of any polytope in the complex is k. We also say that two elements in a cell
complex are incident if they intersect.

1.2 Feature Size and Sampling

We will mainly concentrate on smooth curves in R
2 and smooth surfaces in

R
3 as the sampled spaces. The notation � will be used to denote this generic

sampled space throughout this book. We will defer the definition of smoothness
until Chapter 2 for curves and Chapter 3 for surfaces. It is sufficient to assume
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(a) (b)

(c)

Figure 1.4. (a) A curve in the plane, (b) a sample of it, and (c) the reconstructed curve.

that � is a 1-manifold in R
2 and a 2-manifold in R

3 for the definitions and
results described in this chapter.

Obviously, it is not possible to extract any meaningful information about
� if it is not sufficiently sampled. This means features of � should be rep-
resented with sufficiently many sample points. Figure 1.4 shows a curve
in the plane which is reconstructed from a sufficiently dense sample. But,
this brings up the question of defining features. We aim for a measure that
can tell us how complicated � is around each point x ∈ �. A geomet-
ric structure called the medial axis turns out to be useful to define such a
measure.
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Before we define the medial axis, let us fix some notations about distances
and balls that will be used throughout the rest of this book. The Euclidean
distance between two points p = (p1, p2, . . . , pk) and x = (x1, x2, . . . , xk) in
R

k is the length ‖p − x‖ of the vector −→xp = (p − x) where

‖p − x‖ = {
(p1 − x1)2 + (p2 − x2)2 + · · · + (pk − xk)2

} 1
2 .

Also, we have

‖p − x‖ = {(p − x)T (p − x)} 1
2

= {pT p − 2pT x + xT x} 1
2

= {‖p‖2 − 2pT x + ‖x‖2} 1
2 .

For a set P ⊆ R
k and a point x ∈ R

k , let d(x, P) denote the Euclidean
distance of x from P; that is,

d(x, P) = inf
p∈P

{‖p − x‖}.

We will also consider distances called Hausdorff distances between two sets.
For X, Y ⊆ R

k this distance is given by

max{sup
x∈X

d(x, Y ), sup
y∈Y

d(y, X )}.

Roughly speaking, the Hausdorff distance tells how much one set needs to be
moved to be identical with the other set.

The set Bx,r = {y | y ∈ R
k, ‖y − x‖ ≤ r} is a ball with center x and radius

r . By definition Bx,r and its boundary are homeomorphic to B
k and S

k−1 re-
spectively.

1.2.1 Medial Axis

The medial axis of a curve or a surface � is meant to capture the middle of the
shape bounded by �. There are slightly different definitions of the medial axis
in the literature. We adopt one of them and mention the differences with the
others.

Assume that � is embedded in R
k . A ball B ⊂ R

k is empty if the interior
of B is empty of points from �. A ball B is maximal if every empty ball that
contains B equals B. The skeleton Sk� of � is the set of centers of all maximal
balls. Let Mo

� be the set of points in R
k whose distance to � is realized by at

least two points in �. The closure of Mo
� is M� , that is, M� = Cl Mo

� . The
following inclusions hold:

Mo
� ⊆ Sk� ⊆ M�.
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vu

(a) (b)

x=−1 x=0 x=1

Figure 1.5. (a) The two endpoints on the middle segment are not in Mo
� , but are in Sk�

and M� , and (b) right half of the bottom curve is y = x3 sin 1
x . Sk� does not include the

segment in M� at x = 0.

There are examples where the inclusions are strict. For example, consider
the curve in Figure 1.5(a). The two endpoints u and v are not in Mo

� though
they are in Sk� . These are the centers of the curvature balls that meet the curve
only at a single point. Consider the curve in Figure 1.5(b):

y =
{

0 if −1 ≤ x ≤ 0
x3 sin 1

x if 0 < x ≤ 1.

The two endpoints (−1, 0) and (1, sin 1) can be connected with a smooth
curve so that the resulting curve � is closed, that is, without any boundary
point, see Figure 1.5(b). The set Mo

� has infinitely many branches, namely one
for each oscillation of the y = x3 sin 1

x curve. The closure of Mo
� has a vertical

segment at x = 0, which is not part of Sk� and thus Sk� is a strict subset of M� .
However, this example is a bit pathological since it is known that a large class
of curves and surfaces have Sk� = M� . All curves and surfaces that are at least
C2-smooth1 have Sk� = M� . The example we considered in Figure 1.5(b) is
a C1-smooth curve which is tangent continuous but not curvature continuous.

In our case we will consider only the class of curves and surfaces where
Sk� = M� and thus define the medial axis of � as M� . For simplicity we
write M in place of M� .

Definition 1.1. The medial axis M of a curve (surface) � ⊂ R
k is the closure

of the set of points in R
k that have at least two closest points in �.

Each point of M is the center of a ball that meets � only tangentially. We
call each ball Bx,r , x ∈ M , a medial ball where r = d(x, �). If a medial ball
Bx,r is tangent to � at p ∈ �, we say Bx,r is a medial ball at p.

1 See the definition of Ci -smoothness for curves in Chapter 2 and for surfaces in Chapter 3.
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Figure 1.6. (a) A subset of the medial axis of the curve in Figure 1.4 and (b) medial ball
centered at v touches the curve in three points, whereas the ones with centers u and w
touch it in only one point and coincide with the curvature ball.

Figure 1.6(a) shows a subset of the medial axis of a curve. Notice that the
medial axis may have a branching point such as v and boundary points such as
u and w. Also, the medial axis need not be connected. For example, the part of
the medial axis in the region bounded by the curve may be disjoint from the rest
(see Figure 1.6(a)). In fact, if � is C2-smooth, the two parts of the medial axis
are indeed disjoint. The subset of the medial axis residing in the unbounded
component of R

2 \ � is called the outer medial axis. The rest is called the inner
medial axis.

It follows from the definition that if one grows a ball around a point on
the medial axis, it will meet � for the first time tangentially in one or more
points (see Figure 1.6(b)). Conversely, for a point x ∈ � one can start growing
a ball keeping it tangent to � at x until it hits another point y ∈ � or becomes
maximally empty. At this moment the ball is medial and the segments joining
the center m to x and y are normal to � at x and y respectively (see Figure 1.6).

If we move along the medial axis and consider the medial balls as we
move, the radius of the medial balls increases or decreases accordingly to
maintain the tangency with �. At the boundaries it coincides with the ra-
dius of the curvature ball where all tangent points merge into a single one
(see Figure 1.6(b)).

It will be useful for our proofs later to know the following property of balls
intersecting the sampled space �. The proof of the lemma assumes that �
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y

x

B

B

Figure 1.7. The ball B intersecting the upper right lobe is shrunk till it becomes tangent
to another point other than x . The new ball B ′ intersects the medial axis. The ball B
intersecting the lower lobe is shrunk radially to the ball B ′ that is tangent to the curve at
y and also intersects the curve in other points. B ′ can further be shrunk till it meets the
curve only tangentially.

is either a smooth curve or a smooth surface whose definitions are given in
later chapters. Also, the proof uses some concepts from differential topol-
ogy (critical point theory) some of which are exposed in Chapter 10. The
readers may skip the proof at this point if they are not familiar with these
concepts.

We say that a topological space is a k-ball or a k-sphere if it is homeomorphic
to B

k or S
k respectively.

Lemma 1.1 (Feature Ball). If a d-ball B = Bc,r intersects a k-manifold � ⊂
R

d at more than one point where either (i) B ∩ � is not a k-ball or (ii) bd (B ∩
�) is not a (k − 1)-sphere, then a medial axis point is in B.

Proof. First we show that if B intersects � at more than one point and B is
tangent to � at some point, B contains a medial axis point. Let x be the point
of this tangency. Shrink B further keeping it tangent to � at x . This means the
center of B moves toward x along a normal direction at x . We stop when B
meets � only tangentially. Observe that, since B ∩ � 
= x to start with, this
happens eventually when B is maximally empty. At this moment B becomes a
medial ball and its center is a medial axis point which must lie in the original
ball B, refer to Figure 1.7.

Now consider when condition (ii) holds. Define a function h : B ∩ � → R

where h(x) is the distance of x from the center c of B. The function h is a scalar
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function defined over a smooth manifold. At the critical points of h where its
gradient vanishes the ball B becomes tangent to � when shrunk appropriately.

Let m be a point in � so that h(m) is a global minimum. If there is
more than one such global minimum, the ball B meets � only tangentially
at more than one point when radially shrunk to a radius of h(m). Then, B be-
comes a medial ball which implies that the original B contains a medial axis
point, namely its center. So, assume that there is only global minimum m of
h.

We claim that the function h has a critical point p in Int (B ∩ �) other
than m where B becomes tangent to �. If not, as we shrink B centrally the
level set bd (B ∩ �) does not change topology until it reaches the minimum m
when it vanishes. This follows from the Morse theory of smooth functions over
smooth manifolds.2 Since m is a minimum, there is a small enough δ > 0 so that
Bc,h(m)+δ ∩ � is a k-ball. The boundary of this k-ball given by (bd Bc,h(m)+δ) ∩ �

should be a (k − 1)-sphere. This contradicts the fact that bd (B ∩ �) is not a
(k − 1)-sphere and remains that way till the end. Therefore, there is a critical
point, say y 
= m of h in Int (B ∩ �). At this point y, the ball Bc,‖y−c‖ becomes
tangent to �, see also Figure 1.7. Now we can apply our previous argument to
claim that B contains a medial axis point.

Next, consider when condition (i) holds. If condition (ii) also holds, we have
the previous argument. So, assume that bd (B ∩ �) is a (k − 1)-sphere and
B ∩ � is not a k-ball. Again, we claim that the function h as defined earlier has
a critical point other than m. If not, consider the subset of � swept by B while
shrinking it till it meets � only at m. This subset is homeomorphic to a space
which is formed by taking the product of S

k−1 with the closed unit interval I in
R and then collapsing one of its boundary to a single point, that is, the quotient
space (Sk−1 × I )/(Sk−1 × {0}). This space is a k-ball which contradicts the fact
that B ∩ � is not a k-ball to begin with. Therefore, as B is continually shrunk, it
becomes tangent to � at a point y 
= m. Apply the previous argument to claim
that B has a medial axis point. �

Figure 1.8 illustrates the different cases of Feature Ball Lemma in R
2.

1.2.2 Local Feature Size

The medial axis M with the distance to � at each point m ∈ M captures the
shape of �. In fact, � is the boundary of the union of all medial balls centering
points of the inner (or outer) medial axis. So, as a first attempt to capture local
feature size one may define the following two functions on �.

2 See Milnor (1963) for an exposition on Morse theory.
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(a) (b)

(c)

Figure 1.8. (a) B ∩ � is not a 1-ball, (b) B ∩ � is a 1-ball, but bd B ∩ � is not a 0-sphere,
and (c) bd B ∩ � is a 0-sphere, but B ∩ � is not a 1-ball.

ρi , ρo : � → R where ρi (x), ρo(x) are the radii of the inner and outer medial
balls respectively both of which are tangent to � at x .

The functions ρi and ρo are continuous for a large class of curves and surfaces.
However, we need a stronger form of continuity on the local feature size function
to carry out the proofs. This property, called the Lipschitz property, stipulates
that the difference in the function values at two points is bounded by a constant
times the distance between the points. Keeping this in mind we define the
following.

Definition 1.2. The local feature size at a point x ∈ � is the value of a function

f : � → R where f (x) = d(x, M).

In words, f (x) is the distance of x ∈ � to the medial axis M.

Figure 1.9 illustrates how the local feature size can vary over a shape. As
one can observe, the local feature sizes at the leg and tail are much smaller than
the local feature sizes at the middle in accordance with our intuitive notion of
features. For example, f (b) is much smaller than f (a). Local feature size can
be determined either by the inner or outer medial axis. For example, f (c) is
determined by the outer medial axis whereas f (d) is determined by the inner
one.
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d

a

b

c

Figure 1.9. Local feature sizes f (a), f (b), f (c), and f (d) are the lengths of the corre-
sponding dotted line segments.

It follows from the definitions that f (x) ≤ min{ρi (x), ρo(x)}. In Figure 1.9,
f (d) is much smaller than the radius of the drawn medial ball at d. Lipschitz
property of the local feature size function f follows easily from the definition.

Lemma 1.2 (Lipschitz Continuity). f (x) ≤ f (y) + ‖x − y‖ for any two
points x and y in �.

Proof. Let m be a point on the medial axis so that f (y) = ‖y − m‖. By trian-
gular inequality,

‖x − m‖ ≤ ‖y − m‖ + ‖x − y‖, and

f (x) ≤ ‖x − m‖ ≤ f (y) + ‖x − y‖.
�

1.2.3 Sampling

A sample P of � is a set of points from �. Once we have quantized the feature
size, we would require the sample respect the features, that is, we require more
sample points where the local feature size is small compared to the regions
where it is not.

Definition 1.3. A sample P of � is a ε-sample if each point x ∈ � has a sample
point p ∈ P so that ‖x − p‖ ≤ ε f (x).

The value of ε has to be smaller than 1 to have a dense sample. In fact, practical
experiments suggest that ε < 0.4 constitutes a dense sample for reconstructing
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r

Figure 1.10. Local feature size at any point on the circle is equal to the radius r . Each
point on the circle has a sample point within 0.2r distance.

� from P . A ε-sample is also a ε′-sample for any ε′ > ε. The definition of
ε-sample allows a sample to be arbitrarily dense anywhere on �. It only puts a
lower bound on the density. Figure 1.10 illustrates a sample of a circle which
is a 0.2-sample. By definition, it is also a 0.3-sample of the same.

A useful application of the Lipschitz Continuity Lemma 1.2 is that the dis-
tance between two points expressed in terms of the local feature size of one can
be expressed in terms of that of the other.

Lemma 1.3 (Feature Translation). For any two points x, y in � with ‖x −
y‖ ≤ ε f (x) and ε < 1 we have

(i) f (x) ≤ 1
1−ε

f (y) and
(ii) ‖x − y‖ ≤ ε

1−ε
f (y).

Proof. We have

f (x) ≤ f (y) + ‖x − y‖
or, f (x) ≤ f (y) + ε f (x).

For ε < 1 the above inequality gives

f (x) ≤ 1

1 − ε
f (y) proving (i).

Plug the above inequality in ‖x − y‖ ≤ ε f (x) to obtain (ii). �

Uniform Sampling

The definition of ε-sample allows nonuniform sampling over �. A globally
uniform sampling is more restrictive. It means that the sample is equally dense
everywhere. Local feature size does not play a role in such sampling. There
could be various definitions of globally uniform samples. We will say a sample
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P ⊂ � is globally δ-uniform if any point x ∈ � has a point in P within δ >

0 distance. In between globally uniform and nonuniform samplings, there is
another one called the locally uniform sampling. This sampling respects feature
sizes and is uniform only locally. We say P ⊂ � is locally (ε, δ)-uniform for
δ > 1 > ε > 0 if each point x ∈ � has a point in P within ε f (x) distance and
no point p ∈ P has another point q ∈ P within ε

δ
f (p) distance. This definition

does not allow two points to be arbitrarily close which may become a severe
restriction for sampling in practice. So, there is an alternate definition of local
uniformity. A sample P is locally (ε, κ)-uniform for some ε > 0 and κ ≥ 1
if each point x ∈ � has at least one and no more than κ points within ε f (x)
distance.

Õ(ε) notation

Our analysis for different algorithms obviously involve the sampling param-
eter ε. To ease these analyses, sometimes we resort to Õ notation which
provides the asymptotic dependences on ε. A value is Õ(ε) if there exist
two constants ε0 > 0 and c > 0 so that the value is less than cε for any
positive ε ≤ ε0. Notice that Õ notation is slightly different from the well-
known big-O notation since the latter would require ε greater than or equal to
ε0.

1.3 Voronoi Diagram and Delaunay Triangulation

Voronoi diagrams and Delaunay triangulations are important geometric data
structures that are built on the notion of “nearness.” Many differential properties
of curves and surfaces are defined on local neighborhoods. Voronoi diagrams
and their duals, Delaunay triangulations, provide a tool to approximate these
neighborhoods in the discrete domain. They are defined for a point set in any
Euclidean space. We define them in two dimensions and mention the extensions
to three dimensions since the curve and surface reconstruction algorithms as
dealt in this book are concerned with these two Euclidean spaces. Before the
definitions we state a nondegeneracy condition for the point set P defining
the Voronoi and Delaunay diagrams. This nondegeneracy condition not only
makes the definitions less complicated but also makes the algorithms avoid
special cases.

Definition 1.4. A point set P ⊂ R
k is nondegenerate if (i) the affine hull of any

� points from P with 1 ≤ � ≤ k is homeomorphic to R
�−1 and (ii) no k + 2

points are cospherical.
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Figure 1.11. (a) The Voronoi diagram and (b) the Delaunay triangulation of a point set
in the plane.

1.3.1 Two Dimensions

Let P be a set of nondegenerate points in the plane R
2.

Voronoi Diagrams

The Voronoi cell Vp for each point p ∈ P is given as

Vp = {x ∈ R
2 | d(x, P) = ‖x − p‖}.

In words, Vp is the set of all points in the plane that have no other point in P
closer to it than p. For any two points p, q the set of points closer to p than q
are demarked by the perpendicular bisector of the segment pq. This means the
Voronoi cell Vp is the intersection of the closed half-planes determined by the
perpendicular bisectors between p and each other point q ∈ P . An implication
of this observation is that each Voronoi cell is a convex polygon since the
intersection of convex sets remains convex.

Voronoi cells have Voronoi faces of different dimensions. A Voronoi face
of dimension k is the intersection of 3 − k Voronoi cells. This means a
k-dimensional Voronoi face for k ≤ 2 is the set of all points that are equidistant
from 3 − k points in P . A zero-dimensional Voronoi face, called Voronoi vertex
is equidistant from three points in P , whereas a one-dimensional Voronoi face,
called Voronoi edge contains points that are equidistant from two points in P .
A Voronoi cell is a two-dimensional Voronoi face.

Definition 1.5. The Voronoi diagram Vor P of P is the cell complex formed by
Voronoi faces.

Figure 1.11(a) shows a Voronoi diagram of a point set in the plane where u
and v are two Voronoi vertices and uv is a Voronoi edge.
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Some of the Voronoi cells may be unbounded with unbounded edges. It
is a straightforward consequence of the definition that a Voronoi cell Vp is
unbounded if and only if p is on the boundary of the convex hull of P . In
Figure 1.11(a), Vp and Vq are unbounded and p and q are on the convex hull
boundary.

Delaunay Triangulations

There is a dual structure to the Voronoi diagram Vor P , called the Delaunay
triangulation.

Definition 1.6. The Delaunay triangulation of P is a simplicial complex

Del P = {σ = Conv T |
⋂

p∈T⊆P

Vp 
= ∅}.

In words, k + 1 points in P form a Delaunay k-simplex in Del P if their
Voronoi cells have nonempty intersection. We know that k + 1 Voronoi cells
meet in a (2 − k)-dimensional Voronoi face. So, each k-simplex in Del P is
dual to a (2 − k)-dimensional Voronoi face. Thus, each Delaunay triangle pqr
in Del P is dual to a Voronoi vertex where Vp, Vq , and Vr meet, each Delaunay
edge pq is dual to a Voronoi edge shared by Voronoi cells Vp and Vq , and each
vertex p is dual to its corresponding Voronoi cell Vp. In Figure 1.11(b), the
Delaunay triangle pqr is dual to the Voronoi vertex v and the Delaunay edge
pr is dual to the Voronoi edge uv. In general, when µ is a dual Voronoi face of
a Delaunay simplex σ we say µ = dual σ and conversely σ = dual µ.

A circumscribing ball of a simplex σ is a ball whose boundary contains
the vertices of the simplex. The smallest circumscribing ball of σ is called its
diametric ball. A triangle in the plane has only one circumscribing ball, namely
the diametric one. However, an edge has infinitely many circumscribing balls
among which the diametric one is unique, namely the one with the center on
the edge.

A dual Voronoi vertex of a Delaunay triangle is equidistant from its three
vertices. This means that the center of the circumscribing ball of a Delaunay
triangle is the dual Voronoi vertex. It implies that no point from P can lie in
the interior of the circumscribing ball of a Delaunay triangle. These balls are
called Delaunay. A ball is empty if its interior does not contain any point from
P . Clearly, the Delaunay balls are empty. The converse also holds.

Property 1.1 (Triangle Emptiness). A triangle is in the Delaunay triangula-
tion if and only if its circumscribing ball is empty.
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The triangle emptiness property of Delaunay triangles also implies a similar
emptiness for Delaunay edges. Clearly, each Delaunay edge has an empty cir-
cumscribing ball passing through its endpoints. It turns out that the converse is
also true, that is, any edge pq with an empty circumscribing ball must also be
in the Delaunay triangulation. To see this, grow the empty ball of pq always
keeping p, q on its boundary. If it never meets any other point from P , the
edge pq is on the boundary of Conv P and is in the Delaunay triangulation
since Vp and Vq has to share an edge extending to infinity. Otherwise, when
it meets a third point, say r from P , we have an empty circumscribing ball
passing through p, q , and r . By the triangle emptiness property pqr must be
in the Delaunay triangulation and hence the edge pq.

Property 1.2 (Edge Emptiness). An edge is in the Delaunay triangulation if
and only if the edge has an empty circumscribing ball.

The Delaunay triangulation form a planar graph since no two Delaunay edges
intersect in their interiors. It follows from the property of planar graphs that the
number of Delaunay edges is at most 3n − 6 for a set of n points. The number
of Delaunay triangles is at most 2n − 4. This means that the dual Voronoi
diagram also has at most 3n − 6 Voronoi edges and 2n − 4 Voronoi vertices.
The Voronoi diagram and the Delaunay triangulation of a set of n points in the
plane can be computed in O(n log n) time and O(n) space.

Restricted Voronoi Diagrams

When the input point set P is a sample of a curve or a surface �, the Voronoi
diagram Vor P imposes a structure on �. It turns out that this diagram plays an
important role in reconstructing � from P . Formally, a restricted Voronoi cell
Vp|� is defined as the intersection of the Voronoi cell Vp in Vor P with �, that
is,

Vp|� = Vp ∩ � where p ∈ P.

Similar to the Voronoi faces, we can define restricted Voronoi faces as the
intersection of the restricted Voronoi cells. They can also be viewed as the inter-
section of Voronoi faces with �. In Figure 1.12(a), the white circles represent
restricted Voronoi faces of dimension zero. The curve segments between them
are restricted Voronoi faces of dimension one which are restricted Voronoi cells
in this case. Notice that the restricted Voronoi cell Vp|� in the figure consists
of two curve segments whereas Vr |� consists of a single curve segment.
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Figure 1.12. (a) Restricted Voronoi diagram for a point set on a curve and (b) the
corresponding restricted Delaunay triangulation.

Definition 1.7. The restricted Voronoi diagram Vor P|� of P with respect to
� is the collection of all restricted Voronoi faces.

Restricted Delaunay Triangulations.

As with Voronoi diagrams we can define a simplicial complex dual to a restricted
Voronoi diagram Vor P|� .

Definition 1.8. The restricted Delaunay triangulation of P with respect to �

is a simplicial complex Del P|� where a k-simplex with k + 1 vertices, R ⊆ P,
is in this complex if and only if⋂

Vp|� 
= ∅, for p ∈ R.

In words, a simplex in Del P is in Del P|� if and only if its dual Voronoi face
intersects �. The simplicial complex Del P|� is called the restricted Delaunay
triangulation of P with respect to �. Figure 1.12(b) shows the restricted De-
launay triangulation for the restricted Voronoi diagram in (a). The vertex p is
connected to q and r in the restricted Delaunay triangulation since Vp|� meets
both Vq |� and Vr |� . However, the triangle pqr is not in the triangulation since
Vp|� , Vq |� and Vr |� do not meet at a point.

1.3.2 Three Dimensions

We chose the plane to explain the concepts of the Voronoi diagrams and the
Delaunay triangulations in the previous subsection. However, these concepts
extend to arbitrary dimensions. We will mention these extensions for three
dimensions which will be important for later expositions.

Voronoi cells of a point set P in R
3 are three-dimensional convex polytopes

some of which are unbounded. There are four types of Voronoi faces: Voronoi
vertices, Voronoi edges, Voronoi facets, and Voronoi cells in increasing order
of dimension starting with zero and ending with three. Four Voronoi cells meet
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Figure 1.13. (a) The restricted Voronoi diagram and (b) the restricted Delaunay trian-
gulation for a sample on a surface.

at a Voronoi vertex which is equidistant from four points in P . Three Voronoi
cells meet at a Voronoi edge, and two Voronoi cells meet at a Voronoi facet.

The Delaunay triangulation of P contains four types of simplices dual to each
of the four types of Voronoi faces. The vertices are dual to the Voronoi cells,
the Delaunay edges are dual to the Voronoi facets, the Delaunay triangles are
dual to the Voronoi edges, and the Delaunay tetrahedra are dual to the Voronoi
vertices. The circumscribing ball of each tetrahedron is empty. Conversely, any
tetrahedron with empty circumscribing ball is in the Delaunay triangulation.
Further, each Delaunay triangle and edge has an empty circumscribing ball.
Conversely, an edge or a triangle belongs to the Delaunay triangulation if there
exists an empty ball circumscribing it.

The number of edges, triangles, and tetrahedra in the Delaunay triangulation
of a set of n points in three dimensions can be O(n2) in the worst case. By
duality the Voronoi diagram can also have O(n2) Voronoi faces. Both of the
diagrams can be computed in O(n2) time and space.

We can define the restricted Voronoi diagram and its dual restricted Delaunay
triangulation for a point sample on a surface in R

3 in the same way as we did
for a curve in R

2. Figure 1.13 shows the restricted Voronoi diagram and its dual
restricted Delaunay triangulation for a set of points on a surface. The triangle
pqr is in the restricted Delaunay triangulation since Vp|� , Vq |� , and Vr |� meet
at a common point v.

1.4 Notes and Exercises

The books by Munkres [71] and Weeks [81] are standard books on point set
topology where the definitions of topological spaces and maps can be found in
details. Munkres [72] and Stillwell [79] are good sources for algebraic and com-
binatorial topology where simplicial complexes and their use in triangulation
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of topological spaces are described. A number of useful definitions in topology
are collected in the survey paper by Dey, Edelsbrunner, and Guha [29].

The concept of the medial axis was introduced by Blum [14] in the context of
image analysis. Variants of this concept as discussed in the Medial axis section
appeared later. Choi, Choi, and Moon [25] established that the medial axis of a
piecewise real analytic curve is a finite graph. Chazal and Soufflet [21] extended
this result to semianalytic curves. See Matheron [66], Wolter [82], and Chazal
and Lieutier [20] for more expositions on the medial axis.

The concept of local feature size was first used by Ruppert [76] for meshing
a polygonal domain with guaranteed qualities. His definition was somewhat
different from the one described in this chapter. The local feature size as defined
in this chapter and used throughout the book appeared in Amenta, Bern, and
Eppstein [5].

The Voronoi diagrams and the Delaunay triangulations are well-known data
structures named after Georges Voronoi [80] and Boris Delaunay [28] respec-
tively. They are frequently used in various computational problems. A good
source for the materials on the Delaunay triangulation is Edelsbrunner [43].
Voronoi diagrams are discussed in great detail in Okabe, Boots, and
Sugihara [74]. Various references to the algorithms for computing Voronoi di-
agrams and Delaunay triangulations can be found in the Handbook of Discrete
and Computational Geometry [50]. The concepts of the restricted Voronoi and
Delaunay diagrams were used by Chew [24] for meshing surfaces. Edelsbrunner
and Shah [48] formalized the notion.

Exercises

1. Construct an explicit deformation retraction of R
k \ {0} onto S

k−1. Also,
show R

k ∪ {∞} is homeomorphic to S
k .

2. Deduce that homeomorphism is an equivalence relation. Show that the
relation of homotopy among maps is an equivalence relation.

3. Construct a triangulation of S
2 and verify that v − e + f = 2 where v is

the number of vertices, e is the number of edges, and f is the number of
triangles. Prove that the number v − e + f (Euler characteristic) is always
2 for any triangulation of S

2.
4. Let p be a vertex in Del P in three dimensions. Show that a point x ∈ Vp if

and only if ‖p − x‖ ≤ ‖q − x‖ for each vertex q where pq is a Delaunay
edge.

5. Show that for any Delaunay simplexσ and its dual Voronoi faceµ = dual σ ,
the affine hulls aff µ and aff σ intersect orthogonally.
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6. An edge e in a triangulation T (P) of a point set P ⊂ R
2 is called locally

Delaunay if e is a convex hull edge or the circumscribing ball of one triangle
incident to e does not contain the other triangle incident to e completely
inside. Show that T (P) = Del P if and only if each edge of T (P) is locally
Delaunay.

7. Given a point set P ⊂ R
2, an edge connecting two points p, q in P is called

a nearest neighbor edge if no point in P is closer to q than p is. Show that
pq is a Delaunay edge.

8. Given a point set P ⊂ R
2, an edge connecting two points in P is called

Gabriel if its diametric ball is empty. The Gabriel graph for P is the graph
induced by all Gabriel edges. Give an O(n log n) algorithm to compute the
Gabriel graph for P where P has n points.

9. Let pq be a Delaunay edge in Del P for a point set P ⊂ R
3. Show that if

pq does not intersect its dual Voronoi facet g = dual pq, the line of pq
does not intersect g either.

10. For α > 0, a function f : � → R is called α-Lipschitz if f (x) ≤ f (y) +
α‖x − y‖ for any two points x, y in �. Given an arbitrary function f : � →
R, consider the functions

fm(x) = min
p∈�

{ f (p) + α‖x − p‖},
fM (x) = max

p∈�
{ f (p) − α‖x − p‖}.

Show that both fm and fM are α-Lipschitz.
11. Consider the functions ρi and ρo as in Section 1.2.2. Show that these func-

tions may be continuous but not 1-Lipschitz.



2
Curve Reconstruction

The simplest class of manifolds that pose nontrivial reconstruction problems are
curves in the plane. We will describe two algorithms for curve reconstruction,
Crust and NN-Crust in this chapter. First, we will develop some general
results that will be applied to prove the correctness of the both algorithms.

A single curve in the plane is defined by a map ξ : [0, 1] → R
2 where [0, 1] is

the closed interval between 0 and 1 on the real line. The function ξ is one-to-one
everywhere except at the endpoints where ξ (0) = ξ (1). The curve is C1-smooth
if ξ has a continuous nonzero first derivative in the interior of [0, 1] and the
right derivative at 0 is same as the left derivative at 1 both being nonzero. If ξ

has continuous i th derivatives, i ≥ 1, at each point as well, the curve is called
Ci -smooth. When we refer to a curve � in the plane, we actually mean the
image of one or more such maps. By definition � does not self-intersect though
it can have multiple components each of which is a closed curve, that is, without
any endpoint.

For a finite sample to be a ε-sample for some ε > 0, it is essential that the
local feature size f is strictly positive everywhere. While this is true for all
C2-smooth curves, there are C1-smooth curves with zero local feature size at
some point. For example, consider the curve

y = |x | 4
3 for −1 ≤ x ≤ 1

and join the endpoints (−1, 1) and (1, 1) with a smooth curve. This curve is C1-
smooth at (0, 0) and its medial axis passes through the point (0, 0). Therefore,
the local feature size is zero at (0, 0).

We learnt that C1-smooth curves do not necessarily have positive minimum
local feature size while C2-smooth curves do. Are there curves in between C1-
and C2-smooth classes with positive local feature size everywhere? Indeed,
there is a class called C1,1-smooth curves with this property. These curves are
C1-smooth and have normals satisfying a Lipschitz continuity property. To

26
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(a) (b)

Figure 2.1. (a) A smooth curve and (b) its reconstruction from a sample shown with
solid edges.

avoid confusions about narrowing down the class, we explicitly assume that �

has strictly positive local feature size everywhere.
For any two points x, y in � define two curve segments, γ (x, y) and γ ′(x, y)

between x and y, that is, � = γ (x, y) ∪ γ ′(x, y) and γ (x, y) ∩ γ ′(x, y) =
{x, y}. Let P be a set of sample points from �. We say a curve segment is
empty if its interior does not contain any point from P . An edge connecting
two sample points, say p and q , is called correct if either γ (p, q) or γ ′(p, q) is
empty. In other words, p and q are two consecutive sample points on �. Any
edge that is not correct is called incorrect. The goal of curve reconstruction is
to compute a piecewise linear curve consisting of all and only correct edges. In
Figure 2.1(b), all solid edges are correct and dotted edges are incorrect.

We will describe Crust in Subsection 2.2 and NN-Crust in Subsection 2.3.
Some general results are presented in Subsection 2.1 which are used later to
claim the correctness of the algorithms.

2.1 Consequences of ε-Sampling

Let P be a ε-sample of �. For sufficiently small ε > 0, several properties can
be proved.

Lemma 2.1 (Empty Segment). Let p ∈ P and x ∈ � so that γ (p, x) is empty.
Let the perpendicular bisector of px intersect the empty segment γ (p, x) at z.
If ε < 1 then

(i) the ball Bz,‖p−z‖ intersects � only in γ (p, x),
(ii) the ball Bz,‖p−z‖ is empty, and

(iii) ‖p − z‖ ≤ ε f (z).

Proof. Let B = Bz,‖p−z‖ and γ = γ (p, x). Suppose B ∩ � 
= γ (see
Figure 2.2). Shrink B continuously centering z until Int B ∩ � becomes a
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Figure 2.2. Illustration for the Empty Segment Lemma 2.1. The picture on the left is
impossible while the one on the right is correct.

1-ball and it is tangent to some other point of �. Let B ′ be the shrunken
ball. The ball B ′ exists as Bz,δ ∩ � is a 1-ball for some sufficiently small
δ > 0 and B ∩ � is not a 1-ball. The ball B ′ is empty of any sample point as
Int B ′ intersects � only in a subset of γ which is empty. But, since B ′ ∩ � is
not a 1-ball, it contains a medial axis point by the Feature Ball Lemma 1.1.
Thus, its radius is at least f (z). The point z does not have any sample point
within f (z) distance as B ′ is empty. This contradicts that P is a ε-sample of �

where ε < 1. Therefore, B intersects � only in γ (p, x) completing the proof
of (i).

Property (ii) follows immediately as γ (p, x) is empty and B intersects �

only in γ (p, x). By ε-sampling, the nearest sample point p to z is within ε f (z)
distance establishing (iii). �

The Empty Segment Lemma 2.1 implies that points in an empty segment are
close and any correct edge is Delaunay when ε is small.

Lemma 2.2 (Small Segment). Let x, y be any two points so that γ (x, y) is
empty. Then ‖x − y‖ ≤ 2ε

1−ε
f (x) for ε < 1.

Proof. Since γ (x, y) is empty, it is a subset of an empty segment γ (p, q) for
two sample points p and q . Let z be the point where the perpendicular bisector
of pq meets γ (p, q). Consider the ball B = Bz,‖p−z‖. Since γ (p, q) is empty,
the ball B has the properties stated in the Empty Segment Lemma 2.1. Since
B contains γ (p, q), both x and y are in B. Therefore, ‖z − x‖ ≤ ε f (z) by the
ε-sampling condition. By the Feature Translation Lemma 1.3 f (z) ≤ f (x)

1−ε
. We

have

‖x − y‖ ≤ 2‖p − z‖ ≤ 2ε f (z)

≤ 2ε

1 − ε
f (x).

�
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Figure 2.3. Illustration for the Segment Angle Lemma 2.4.

Lemma 2.3 (Small Edge). Let pq be a correct edge. For ε < 1,

(i) ‖p − q‖ ≤ 2ε
1−ε

f (p) and
(ii) pq is Delaunay.

Proof. Any correct edge pq has the property that either γ (q, p) or γ (p, q)
is empty. Therefore, (i) is immediate from the Small Segment Lemma 2.2. It
follows from property (ii) of the Empty Segment Lemma 2.1 that there exists
an empty ball circumscribing the correct edge pq proving (ii). �

If three points x , y, and z on � are sufficiently close, the segments xy and
yz make small angles with the tangent at y. This implies that the angle ∠xyz
is close to π . As a corollary two adjacent correct edges make an angle close
to π .

Lemma 2.4 (Segment Angle). Let x, y, and z be three points on � with ‖x −
y‖ and ‖y − z‖ being no more than 2ε

1−ε
f (y) for ε < 1

2 . Let α be the angle
between the tangent to � at y and the line segment yz. One has

(i) α ≤ arcsin ε
1−ε

and
(ii) ∠xyz ≥ π − 2 arcsin ε

1−ε
.

Proof. Consider the two medial balls sandwiching � at y as in Figure 2.3. Let
α be the angle between the tangent at y and the segment yz. Since z lies outside
the medial balls, the length of the segment yz′ is no more than that of yz where
z′ is the point of intersection of yz and a medial ball as shown.
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In that case,

α ≤ arcsin

((‖y − z′‖
2

)
/ (‖m − y‖)

)

= arcsin

((‖y − z‖
2

)
/ (‖m − y‖)

)
.

It is given that ‖y − z‖ ≤ 2ε
1−ε

f (y) where ε < 1
2 . Also, ‖m − y‖ ≥ f (y) since

m is a medial axis point. Plugging in these values we get

α ≤ arcsin
ε

1 − ε

completing the proof of (i). We have

∠myz ≥ π

2
− α

∠myz ≥ π

2
− arcsin

ε

1 − ε
.

Similarly, it can be shown that ∠myx ≥ π
2 − arcsin ε

1−ε
. Property (ii) follows

immediately as ∠xyz = ∠myz + ∠myx . �

Since any correct edge pq has a length no more than 2ε
1−ε

f (p) for ε < 1
(Small Edge Lemma 2.3), we have the following result.

Lemma 2.5 (Edge Angle). Let pq and pr be two correct edges incident to p.
We have ∠qpr ≥ π − 2 arcsin ε

1−ε
for ε < 1

2 .

2.2 Crust

We have already seen that all correct edges connecting consecutive sample
points in a ε-sample are present in the Delaunay triangulation of the sample
points if ε < 1. The main algorithmic challenge is to distinguish these edges
from the rest of the Delaunay edges. The Crust algorithm achieves this by
observing some properties of the Voronoi vertices.

2.2.1 Algorithm

Consider Figure 2.4. The left picture shows the Voronoi diagram clipped within
a box for a dense sample of a curve. The picture on the right shows the Voronoi
vertices separately. A careful observation reveals that the Voronoi vertices lie
near the medial axis of the curve (Exercise 8). The Crust algorithm exploits this
fact. All empty balls circumscribing incorrect edges in Del P cross the medial
axis and hence contain Voronoi vertices inside. Therefore, they cannot appear



2.2 Crust 31

Figure 2.4. Voronoi vertices approximate the medial axis of a curve in the plane. The
Voronoi vertices are shown with hollow circles in the right picture.

in the Delaunay triangulation of P ∪ V where V is the set of Voronoi vertices in
Vor P . On the other hand, all correct edges still survive in Del (P ∪ V ). So, the
algorithm first computes Vor P and then computes the Delaunay triangulation
of P ∪ V where V is the set of Voronoi vertices of Vor P . The Delaunay edges
of Del (P ∪ V ) that connect two points in P are output. It is proved that an
edge is output if and only if it is correct.

Crust(P)
1 compute Vor P;
2 let V be the Voronoi vertices of Vor P;
3 compute Del (P ∪ V );
4 E := ∅;
5 for each edge pq ∈ Del(P ∪ V ) do
6 if p ∈ P and q ∈ P
7 E := E ∪ pq;
8 endif

9 output E .

The Voronoi and the Delaunay diagrams of a set of n points in the plane
can be computed in O(n log n) time and O(n) space. The second Delaunay
triangulation in step 3 deals with O(n) points as the Voronoi diagram of n points
can have at most 2n Voronoi vertices. Therefore, Crust runs in O(n log n) time
and takes O(n) space.
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Figure 2.5. Illustration for the Correct Edge Lemma 2.6.

2.2.2 Correctness

The correctness of Crust is proved in two parts. First, it is shown that each
correct edge is present in the output of Crust (Correct Edge Lemma 2.6). Then,
it is shown that no incorrect edge is output (Incorrect Edge Lemma 2.7).

Lemma 2.6 (Correct Edge). Each correct edge is output by Crust when
ε < 1

5 .

Proof. Let pq be a correct edge. Let z be the point where the perpendicular
bisector of pq intersects the empty segment γ (p, q). Consider the ball B =
Bz,‖p−z‖. This ball is empty of any point from P when ε < 1 (Empty Segment
Lemma 2.1 (i)). We show that this ball does not contain any Voronoi vertex of
VorP either.

Suppose that B contains a Voronoi vertex, say v, from V (Figure 2.5). Then
by simple circle geometry the maximum distance of v from p is 2‖p − z‖.
Thus, ‖p − v‖ ≤ 2‖p − z‖. Since ‖p − z‖ ≤ ε f (z) by the Empty Segment
Lemma 2.1(iii), we have

‖p − v‖ ≤ 2ε f (z) ≤ 2ε

1 − ε
f (p).

The Delaunay ball B ′ centering v contains three points from P on its boundary.
This means bdB ′ ∩ � is not a 0-sphere. So, B ′ contains a medial axis point by
the Feature Ball Lemma 1.1. As the Delaunay ball B ′ is empty, p cannot lie in
Int B ′. So, the medial axis point in B ′ lies within 2‖p − v‖ distance from p.
Therefore, 2‖p − v‖ ≥ f (p). But, ‖p − v‖ ≤ 2ε

1−ε
f (p) enabling us to reach a

contradiction when 2ε
1−ε

< 1
2 , that is, when ε < 1

5 .
Therefore, for ε < 1

5 , there is a circumscribing ball of pq empty of any point
from P ∪ V . So, it appears in Del (P ∪ V ) and is output by Crust as it connects
two points from P . �
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Figure 2.6. Illustration for the Incorrect Edge Lemma 2.7.

Lemma 2.7 (Incorrect Edge). No incorrect edge is output by Crust when
ε < 1/5.

Proof. We need to show that there is no ball, empty of both sample points and
Voronoi vertices, circumscribing an incorrect edge between two sample points,
say p and q . For the sake of contradiction, assume that D is such a ball.

Let v and v′ be the two points where the perpendicular bisector of pq inter-
sects the boundary of D (see Figure 2.6). Consider the two balls B = Bv,r and
B ′ = Bv′,r ′ that circumscribe pq .

We claim that both B and B ′ are empty of any sample points. Suppose on the
contrary, any one of them, say B, contains a sample point. Then, one can push D
continually toward B by moving its center on the perpendicular bisector of pq
and keeping p, q on its boundary. During this motion, the deformed D would
hit a sample point s for the first time before its center reaches v. At that moment
p, q, and s define a ball empty of any other sample points. The center of this
ball is a Voronoi vertex in VorP which resides inside D. This is a contradiction
as D is empty of any Voronoi vertex from V .

The angle ∠vpv′ is π/2 as vv′ is a diameter of D. The tangents to the
boundary circles of B and B ′ at p are perpendicular to vp and v′ p respectively.
Therefore, the tangents make an angle of π/2. This implies that � cannot be
tangent to both B and B ′ at p.

First, consider the case where � is tangent neither to B nor to B ′ at p. Let
p1 and p2 be the points of intersection of � with the boundaries of B and B ′

respectively that are consecutive to p among all such intersections. Our goal
will be to show that either the curve segment pp1 or the curve segment pp2

intersects B or B ′ rather deeply and thereby contributing a long empty segment
which is prohibited by the sampling condition.
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The curve segment between p and p1 and the curve segment between p and
p2 do not have any sample point other than p. By the Small Segment Lemma 2.2
both ‖p − p1‖ and ‖p − p2‖ are no more than 2ε

1−ε
f (p) for ε < 1

5 . So by the
Segment Angle Lemma 2.4, ∠p1 pp2 ≤ π − 2 arcsin 2ε

1−ε
.

Without loss of generality, let the angle between pp1 and the tangent to B at
p be larger than the angle between pp2 and the tangent to B ′ at p. Then, pp1

makes an angle α with the tangent to B at p where

α ≥ 1

2

((
π − 2 arcsin

ε

1 − ε

)
− π

2

)

= π

4
− arcsin

ε

1 − ε
.

Consider the other case where � is tangent to one of the two balls B and B ′

at p. Without loss of generality, assume that it is tangent to B ′ at p. Again the
lower bound on the angle α as stated above holds.

Let x be the point where the perpendicular bisector of pp1 intersects the
curve segment between p and p1. Clearly, x is in B. Since B intersects � at
p and q which are not consecutive sample points, it cannot contain γ (p, q) or
γ ′(p, q) inside completely. This means B ∩ � cannot be a 1-ball. So, by the
Feature Ball Lemma 1.1, B has a medial axis point and thus its radius r is at
least f (x)/2. By simple geometry, one gets that

‖p − x‖ ≥ 1

2
‖p − p1‖

= r sin α

≥ 1

2
f (x) sin α.

By property (iii) of the Empty Segment Lemma 2.1 ‖p − x‖ ≤ ε f (x). We reach
a contradiction if

2ε < sin

(
π

4
− arcsin

ε

1 − ε

)
.

For ε < 1
5 , this inequality is satisfied. �

Combining the Correct Edge Lemma 2.6 and the Incorrect Edge Lemma 2.7
we get the following theorem.

Theorem 2.1. For ε < 1
5 , Crust outputs all and only correct edges.
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Figure 2.7. (a) Only nearest neighbor edges may not reconstruct a curve and (b) half
neighbor edges such as pr fill up the gaps.

2.3 NN-Crust

The next algorithm for curve reconstruction is based on the concept of nearest
neighbors. A point p ∈ P is a nearest neighbor of q ∈ P if there is no other
point s ∈ P \ {p, q} with ‖q − s‖ < ‖q − p‖. Notice that p being a nearest
neighbor of q does not necessarily mean that q is a nearest neighbor of p.

We first observe that edges that connect nearest neighbors in P must be
correct edges if P is sufficiently dense. But, all correct edges do not connect
nearest neighbors. Figure 2.7 shows all edges that connect nearest neighbors.
The missing correct edges in this example connect points that are not nearest
neighbors. However, these correct edges connect points that are not very far
from being nearest neighbors. We capture them in NN-Crust using the notion
of half neighbors.

2.3.1 Algorithm

Let pq be an edge connecting p to its nearest neighbor q and −→pq be the vector
from p to q. Consider the closed half-plane H bounded by the line passing
through p with −→pq as outward normal. Clearly, q 
∈ H . The nearest neighbor
to p in the set H ∩ P is called its half neighbor. In Figure 2.7(b), r is the half
neighbor of p. It can be shown that two correct edges incident to a sample point
connect it to its nearest and half neighbors.

The above discussion immediately suggests an algorithm for curve recon-
struction. But, we need efficient algorithms to compute nearest neighbor and
half neighbor for each sample point. The Delaunay triangulation DelP turns
out to be useful for this computation as all correct edges are Delaunay if P is
sufficiently dense. The Small Edge Lemma 2.3 implies that, for each sample
point p, it is sufficient to check only the Delaunay edges to determine correct
edges. We check all edges incident to p in Del P and determine the shortest
edge connecting it to its nearest neighbor, say q. Next, we check all other edges
incident to p which make at least π

2 angle with pq at p and choose the shortest
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Figure 2.8. Diametric ball of pq intersects � in (a) two components and (b) single
component.

among them. This second edge connects p to its half neighbor. The entire com-
putation can be done in time proportional to the number of edges incident to p.
Since the sum of the number of incident edges over all vertices in the Delaunay
triangulation is O(n) where |P| = n, correct edge computation takes only O(n)
time once Del P is computed. The Delaunay triangulation of a set of n points
in the plane can be computed in O(n log n) time which implies that NN-crust
takes O(n log n) time.

NN-Crust(P)
1 compute Del P;
2 E = ∅;
3 for each p ∈ P do

4 compute the shortest edge pq in Del P;
5 compute the shortest edge ps so that ∠pqs ≥ π

2 ;
6 E = E ∪ {pq, ps};
7 endfor

8 output E .

2.3.2 Correctness

As we discussed before, NN-Crust computes edges connecting each sample
point to its nearest and half neighbors. The correctness of NN-Crust follows
from the proofs that these edges are correct.

Lemma 2.8 (Neighbor). Let p ∈ P be any sample point and q be its nearest
neighbor. The edge pq is correct for ε < 1

3 .

Proof. Consider the ball B with pq as diameter. If B does not intersect �

in a 1-ball, it contains a medial axis point by the Feature Ball Lemma 1.1
(see Figure 2.8(a)). This means ‖p − q‖ > f (p). A correct edge ps satisfies



2.3 NN-Crust 37

q
r

m

s

p
γ

q
r

p
s γ

(a) (b)

Figure 2.9. Diametric ball of pq intersects � in (a) more than one component and (b) a
single component.

‖p − s‖ ≤ 2ε
1−ε

f (p) by the Small Edge Lemma 2.3. Thus, for ε < 1
3 we have

‖p − s‖ < ‖p − q‖, a contradiction to the fact that q is the nearest neighbor
to p.

So, B intersects � in a 1-ball, namely γ = γ (p, q) as shown in Figure 2.8(b).
If pq is not correct, γ contains a sample point, say s, between p and q inside
B. Again, we reach a contradiction as ‖p − s‖ < ‖p − q‖. �

Next we show that edges connecting a sample point to its half neighbors are
also correct.

Lemma 2.9 (Half Neighbor). An edge pq where q is a half neighbor of p is
correct when ε < 1

3 .

Proof. Let r be the nearest neighbor of p. According to the definition −→pq makes
at least π

2 angle with −→pr .
If pq is not correct, consider the correct edge ps incident to p other than

pr . By the Edge Angle Lemma 2.5, −→ps also makes at least π
2 angle with −→pr for

ε < 1/3. We show that s is closer to p than q. This contradicts that q is the half
neighbor of p since both −→ps and −→pq make an angle at least π

2 with −→pr .
Consider the ball B with pq as a diameter. If B does not intersect �

in a 1-ball (Figure 2.9(a)), it would contain a medial axis point and thus
‖p − q‖ ≥ f (p). On the other hand, for ε < 1

3 , ‖p − s‖ ≤ 2ε
1−ε

f (p) by the
Small Edge Lemma 2.3. We get ‖p − s‖ < ‖p − q‖ for ε < 1

3 as required for
contradiction. Next, assume that B intersects � in a 1-ball, namely in γ (p, q),
as in Figure 2.9(b). Since pq is not a correct edge, s must be on this curve
segment. It implies ‖p − s‖ < ‖p − q‖ as required for contradiction. �

Theorem 2.2. NN-Crust computes all and only correct edges when ε < 1
3 .
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Proof. By the Small Edge Lemma 2.3 all correct edges are Delaunay. Steps 4 and
5 assure that all edges joining sample points to their nearest and half neighbors
are computed as output. These edges are correct by the Neighbor Lemma 2.8 and
the Half Neighbor Lemma 2.9 when ε < 1

3 . Also, there is no other correct edges
since each sample point can only be incident to exactly two correct edges. �

2.4 Notes and Exercises

In its simplest form the curve reconstruction problem appears in applications
such as pattern recognition, image boundary detection, and cluster analysis. In
the 1980s, several geometric graphs connecting a set of points in the plane were
discovered which reveal a pattern among the points. The influence graph of
Toussaint [11]; the β-skeleton of Kirkpatrick and Radke [62]; and the α-shapes
of Edelsbrunner, Kirkpatrick, and Seidel [46] are such graphs.

Recall that a sample of a curve � is called globally δ-uniform if each point
x ∈ � has a sample point within a fixed distance δ. Several algorithms were
devised to reconstruct curves from δ-uniform samples with δ being sufficiently
small. Attali proposed a Delaunay-based reconstruction for such samples [9]
(Exercise 3). de Figueiredo and de Miranda Gomes [27] showed that Euclidean
minimum spanning tree (EMST) can reconstruct curves with boundaries from
sufficiently dense uniform sample.

For a point set P ⊂ R
2, let N denote the space of all points covered by

open 2-balls of radius α around each point in P . The α-shape of P defined
by Edelsbrunner, Kirkpatrick, and Seidel [46] is the underlying space of the
restricted Delaunay triangulation Del P|N. Bernardini and Bajaj [12] proved
that the α-shapes reconstruct curves from globally uniform samples that is
sufficiently dense (Exercise 6).

The first breakthrough in reconstructing curves from nonuniform samples
was made by Amenta, Bern, and Eppstein [5]. The presented Crust algorithm
is taken from this paper with some modifications in the proofs. Following the
development of Crust, Dey and Kumar devised the NN-Crust algorithm [36].
The presented NN-Crust algorithm is taken from this paper again with some
modifications in the proofs. This algorithm also can reconstruct curves in three
and higher dimensions, albeit with appropriate modifications of the proofs (Ex-
ercise 4).

The Crust and NN-Crust assume that the sample is derived from a smooth
curve without boundaries. The questions of reconstructing nonsmooth curves
and curves with boundaries have also been studied.

Giesen [54] showed that a fairly large class of nonsmooth curves can be
reconstructed by Traveling Salesman Path (or Tour). A curve � is called benign
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if the left tangent and the right tangent exist at each point and make an angle
less than π . Giesen proved that, a benign curve � can be reconstructed from a
sufficiently dense uniform sample by the Traveling Salesman Path (or Tour) in
case � has a boundary (or no boundary). The uniform sampling condition was
later removed by Althaus and Mehlhorn [3], who also gave a polynomial time
algorithm to compute the Traveling Salesman Path (or Tour) in the special case
of curve reconstruction. The Traveling Salesman approach cannot handle curves
with multiple components. Also, the sample points representing the boundaries
need to be known a priori to choose between a path or a tour.

Dey, Mehlhorn, and Ramos [38] presented an algorithm named Conserva-
tive crust that provably reconstructs smooth curves with boundaries. Any
algorithm for handling curves with boundaries faces a dilemma when an in-
put point set samples a curve without boundary densely and simultaneously
samples densely another curve with boundary. This dilemma is resolved in
Conservative crust by a justification on the output. For any input point set
P , the graph output by the algorithm is guaranteed to be the reconstruction of a
smooth curve possibly with boundary for which P is a dense sample. The main
idea of the algorithm is that an edge pq is output only if its diametric ball is
empty of all Voronoi vertices in Vor P . The rationale behind this choice is that
these edges are small enough with respect to local feature size of the sampled
curve since the Voronoi vertices approximate the medial axis. With a sampling
condition tailored to handle nonsmooth curves, Funke and Ramos [52] and Dey
and Wenger [41] proposed algorithms to reconstruct nonsmooth curves. The
algorithm of Funke and Ramos can handle boundaries as well.

Exercises

(The exercise numbers with the superscript h and o indicate hard and open
questions respectively.)

1. Give an example of a point set P such that P is a 1-sample of two curves
for which the correct reconstructions are different.

2. Given a 1
4 -sample P of a C2-smooth curve, show that all correct edges are

Gabriel in Del (P ∪ V ) where V is the set of Voronoi vertices in Vor P .
3. Let P be a ε-sample of a C2-smooth curve without boundary. Let ηpq be the

sum of the angles opposite to pq in the two (or one if pq is a convex hull
edge) triangles incident to pq in Del P . Prove that there is a ε for which
pq is correct if and only if ηpq < π .

4. Show that the NN-Crust algorithm can reconstruct curves in three dimen-
sions from sufficiently dense samples.
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5. The Correct Edge Lemma 2.6 is proved for ε < 1
5 . Show that it also holds for

ε ≤ 1
5 . Similarly, show that the Neighbor Lemma 2.8 and the Half Neighbor

Lemma 2.9 hold for ε ≤ 1
3 .

6h . Establish conditions for α and δ to guarantee that an α-shape reconstructs
a C2-smooth curve in the plane from a globally δ-uniform sample.

7o. Gold and Snoeyink [58] showed that the Crust algorithm can be modified
to guarantee a reconstruction with ε < 0.42. Althaus [2] showed that the
NN-Crust algorithm can be proved to reconstruct curves from ε-samples
for ε < 0.5. Can this bound on ε be improved? What is the largest value of
ε for which curves can be reconstructed from ε-samples?

8h . Let v ∈ Vp be a Voronoi vertex in the Voronoi diagram Vor P of a ε-sample
P of a C2-smooth curve �. Show that there exists a point m in the medial
axis of � so that ‖m − v‖ = Õ(ε) f (p) when ε is sufficiently small (see
Section 1.2.3 for Õ definition).



3
Surface Samples

In this chapter we introduce some of the properties of surfaces and their sam-
ples in three dimensions. The results developed in this chapter are used in later
chapters to design algorithms for surface reconstruction and prove their guaran-
tees. Before we talk about these results, let us explain what we mean by smooth
surfaces.

Consider a map π : U → V where U and V are the open sets in R
2

and R
3 respectively. The map π has three components, namely π (x) =

(π1(x), π2(x), π3(x)) where x = (x1, x2) is a point in R
2. The three by two

matrix of first-order partial derivatives ( ∂πi (x)
∂x j

)i, j is called the Jacobian of π at
x . We say π is regular if its Jacobian at each point of U has rank 2. The map π

is Ci -continuous if the ith order (i > 0) partial derivatives of π are continuous.
For i > 0, a subset � ⊂ R

3 is a Ci -smooth surface if each point x ∈
� satisfies the following condition. There is a neighborhood W ⊂ R

3 of
x and a map π : U → W ∩ � of an open set U ⊂ R

2 onto W ∩ � so
that

(i) π is Ci -continuous,
(ii) π is a homeomorphism, and

(iii) π is regular.

The first condition says that π is continuously differentiable at least up
to ith order. The second condition imposes one-to-one property which elim-
inates self-intersections of �. The third condition together with the first ac-
tually enforce the smoothness. It makes sure that the tangent plane at each
point in � is well defined. All of these three conditions together imply that
the functions like π defined in the neighborhood of each point of � overlap
smoothly. There are two extremes of smoothness. If the partial derivatives of
π of all orders are continuous, we say � is C∞-smooth. On the other hand,

41
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Figure 3.1. (a) Tangent plane and the normal at a point on a smooth surface and (b) a
long thin Voronoi cell elongated along the normal direction.

if � is not C1-smooth but is at least a 2-manifold, we say it is C0-smooth or
nonsmooth.

In this chapter and the chapters to follow, we assume that � is a C2-smooth
surface. Notice that, by the definition of smoothness (condition (ii)) � is a
2-manifold without boundary. We also assume that � is compact since we are
interested in approximating � with a finite simplicial complex. We need one
more assumption. Just like the curves, for a finite point set to be a ε-sample for
some ε > 0, we need that f (x) > 0 for any point x in �. It is known that C2-
smooth surfaces necessarily have positive feature size everywhere. The example
in Chapter 2 for curves can be extended to surfaces to claim that a C1-smooth
surface may not have nonzero local feature sizes everywhere.

As a C2-smooth surface � has a tangent plane τx and a normal nx defined
at each point x ∈ �. We assume that the normals are oriented outward. More
precisely, nx points locally to the unbounded component of R

3 \ �. If � is not
connected, nx points locally to the unbounded component of R

3 \ �′ where x
is in �′, a connected component of �.

An important fact used in surface reconstruction is that, disregarding the
orientation, the direction of the surface normals can be approximated from the
sample. An illustration in R

2 is helpful here. See Figure 2.4 in Chapter 2 which
shows the Voronoi diagram of a dense sample on a smooth curve. This Voronoi
diagram has a specific structure. Each Voronoi cell is elongated along the normal
direction at the sample points. Fortunately, the same holds in three dimensions.
The three-dimensional Voronoi cells are long, thin, and the direction of the
elongation matches with the normal direction at the sample points when the
sample is dense (see Figure 3.1).
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Figure 3.2. Medial axis points m1 and m2 are in the Voronoi cell Vp .

3.1 Normals

Let P ⊂ R
3 be a ε-sample of �. If P is all we know about �, it is impossible

to know the line of direction of np exactly at a point p ∈ P . However, it is
conceivable that as P gets denser, we should have more accurate idea about the
direction of np by looking at the adjacent points. This is what is done using the
Voronoi cells in Vor P .

For further developments we will often need to talk about how one vec-
tor approximates another one in terms of the angles between them. We de-
note the angle between two vectors u and v as ∠(u, v). For vector approx-
imations that disregard the orientation, we use a slightly different notation.
This approximation measures the acute angle between the lines containing
the vectors. We use ∠a(u, v) to denote this acute angle between two vec-
tors u and v. Since any such angle is acute, we have the triangular inequality
∠a(u, v) ≤ ∠a(u, w) + ∠a(v, w) for any three vectors u, v, and w.

3.1.1 Approximation of Normals

It turns out that the structure of the Voronoi cells contains information about
normals. Indeed, if the sample is sufficiently dense, the Voronoi cells become
long and thin along the direction of the normals at the sample points. One
reason for this structural property is that a Voronoi cell Vp must contain the
medial axis points that are the centers of the medial balls tangent to � at p (see
Figure 3.2).

Lemma 3.1 (Medial). Let m1 and m2 be the centers of the two medial balls
tangent to � at p. The Voronoi cell Vp contains m1 and m2.
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Figure 3.3. Illustration for the Normal Lemma 3.2.

Proof. Denote the medial ball with center m1 as B. The ball B meets the surface
� only tangentially at points, one of which is p. Thus, B is empty of any point
from � and P in particular. Therefore, the center m1 has p as the nearest point
in P . By definition of Voronoi cells, m1 is in Vp. A similar argument applies to
the other medial axis point m2. �

We have already mentioned that the Voronoi cells are long and thin and they
are elongated along the direction of the normals. The next lemma formalizes
this statement by asserting that as we go further from p within Vp, the direction
to p becomes closer to the normal direction.

Lemma 3.2 (Normal). For µ > 0 let v 
∈ � be a point in Vp with ‖v − p‖ >

µ f (p). For ε < 1, ∠a(−→vp, np) ≤ arcsin ε
µ(1−ε) + arcsin ε

1−ε
.

Proof. Let m1 and m2 be the two centers of the medial balls tangent to � at
p where m1 is on the same side of � as v is. Both m1 and m2 are in Vp by
the Medial Lemma 3.1. The line joining m1 and p is normal to � at p by the
definition of medial balls. Similarly, the line joining m2 and p is also normal
to � at p. Therefore, m1, m2, and p are colinear (see Figure 3.3). Consider
the triangle pvm2. We are interested in the angle ∠m1 pv which is equal to
∠a(−→pv, np). From the triangle pvm2 we have

∠m1 pv = ∠pvm2 + ∠vm2 p.

To measure the two angles on the right-hand side, drop the perpendicular px
from p onto the segment vm2. The line segment vm2 intersects �, say at y,
since m1 and m2 and hence v and m2 lie on opposite sides of �. Furthermore,
y must lie inside Vp since any point on the segment joining two points v and
m2 in a convex set Vp must lie within the same convex set. This means y has p
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as the nearest sample point and thus

‖x − p‖ ≤ ‖y − p‖ ≤ ε f (y) by the ε-sampling condition.

Using the Feature Translation Lemma 1.3 we get

‖x − p‖ ≤ ε

1 − ε
f (p)

when ε < 1. We have

∠pvm2 = arcsin
‖x − p‖
‖v − p‖ ≤ arcsin

ε

µ(1 − ε)
as ‖v − p‖ ≥ µ f (p).

Similarly,

∠vm2 p = arcsin
‖x − p‖
‖m2 − p‖ ≤ arcsin

ε

1 − ε
as ‖m2 − p‖ ≥ f (p).

The assertion of the lemma follows immediately. �

3.1.2 Normal Variation

The directions of the normals at nearby points on � cannot vary too abruptly.
In other words, the surface looks flat locally. This fact is used later in many
proofs.

Lemma 3.3 (Normal Variation). If x, y ∈ � are any two points with ‖x −
y‖ ≤ ρ f (x) for ρ < 1

3 , ∠(nx , ny) ≤ ρ

1−3ρ
.

Proof. Let �(t) denote any point on the segment xy parameterized by its distance
t from x . Let x(t) be the nearest point on � from �(t). The rate of change of
normal nx(t) at x(t) is n′

t = dx(t)
dt as t changes. The total variation in normals

between x and y is

∠(nx , ny) ≤
∫

xy
|n′

t |dt ≤ ‖x − y‖ max
t

|n′
t |.

The surface � is squeezed locally in-between two medial ball that are tangent to
� at x(t). The radius of the smaller medial ball cannot be larger than the radius
of curvature of � at x(t). This means � cannot turn faster than the smaller of
the two medial balls at x(t). Referring to Figure 3.4, we have

dt = (‖m2 − x(t)‖ − ‖x(t) − �(t)‖) tan dθ

≥ ( f (x(t)) − ‖x(t) − �(t)‖) tan dθ.



46 3 Surface Samples

1m

m2

yxΣ x(t)

dθ

l(t) dt

Figure 3.4. Illustration for the Normal Variation Lemma 3.3.

As

lim
dθ→0

tan dθ

dθ
= 1

and

‖x(t) − �(t)‖ ≤ ‖x − �(t)‖ ≤ ‖x − y‖ ≤ ρ f (x)

we get

|n′
t | = lim

dθ→0

∣∣∣∣dθ

dt

∣∣∣∣ ≤ 1

( f (x(t)) − ‖x(t) − �(t)‖)
≤ 1

( f (x(t)) − ρ f (x))

provided f (x(t)) − ρ f (x) > 0. Also,

‖x(t) − x‖ ≤ ‖x(t) − �(t)‖ + ‖x − �(t)‖ ≤ 2ρ f (x).

By the Lipschitz Continuity Lemma 1.2, f (x(t)) ≥ (1 − 2ρ) f (x). Therefore,

|n′
t | ≤ 1

(1 − 3ρ) f (x)
and ∠(nx , ny) ≤ ρ

1 − 3ρ

provided

f (x(t)) − ρ f (x) > 0

or, (1 − 3ρ) f (x) > 0

or, ρ <
1

3
.

�
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Figure 3.5. Illustration for the Edge Normal Lemma 3.4.

3.1.3 Edge and Triangle Normals

In Section 2.1, we saw that edges joining nearby points on a curve are almost
parallel to the tangents at the endpoints of the edge. Similar results also hold for
triangles connecting points on surfaces. But, the size is measured by circumra-
dius. In fact, a triangle connecting three nearby points on a surface but with a
large circumradius may lie almost perpendicular to the surface. However, if its
circumradius is small compared to the local feature sizes at its vertices, it has
to lie almost parallel to the surface. For an edge, half of its length is the same
as its circumradius. Therefore, a small edge lies almost parallel to the surface.
In essence if an edge or a triangle has a small circumradius, it must lie flat to
the surface. We quantify these claims in the next two lemmas.

Lemma 3.4 (Edge Normal). For an edge pq with ‖p − q‖ ≤ 2 f (p), the an-
gle ∠a(−→pq, np) is at least π

2 − arcsin ‖p−q‖
2 f (p) .

Proof. Consider the two medial balls sandwiching the surface � at p. The point
q cannot lie inside any of these two balls as they are empty of points from �.
So, the smallest angle pq makes with np cannot be smaller than the angle pq
makes with np when q is on the boundary of any of these two balls. In this
case let θ be the angle between pq and the tangent plane at p. Clearly, (see
Figure 3.5)

sin θ = ‖p − q‖
2‖m − p‖

≤ ‖p − q‖
2 f (p)

.
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Figure 3.6. Illustration for the Triangle Normal Lemma 3.5. The two great arcs on the
right picture are the intersections of the unit sphere with the planes containing C and C ′.

Therefore,

∠a(−→pq, np) = π

2
− θ

≥ π

2
− arcsin

‖p − q‖
2 f (p)

.
�

It follows immediately from the Edge Normal Lemma 3.4 that small edges
make a large angle with the surface normals at the vertices. For example, if
pq has a length less than ρ f (p) for ρ < 2, the angle ∠a(−→pq, np) is more than
π
2 − arcsin ρ

2 .
Next consider a triangle t = pqr where p is the vertex subtending a maximal

angle in pqr . Let Rpqr denote the circumradius of pqr .

Lemma 3.5 (Triangle Normal). If Rpqr ≤ f (p)√
2

,

∠a(npqr , np) ≤ arcsin
Rpqr

f (p)
+ arcsin

(
2√
3

sin

(
2 arcsin

Rpqr

f (p)

))

where npqr is the normal of pqr.

Proof. Consider the medial balls B = Bm,� and B ′ = Bm ′,�′ that are tangent to
� at p. Let D be the diametric ball of t (smallest circumscribing ball); refer
to Figure 3.6. The radius of D is Rpqr . Let C and C ′ be the circles in which
the boundary of D intersects the boundaries of B and B ′ respectively. The line
normal to � at p passes through m, the center of B. Let α be the larger of the
two angles this normal line makes with the normals to the planes containing C
and C ′. Since the radii of C and C ′ are at most Rpqr we have

α ≤ arcsin
Rpqr

‖p − m‖ ≤ arcsin
Rpqr

f (p)
.
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It follows from the definition of α that the planes containing C and C ′ make a
wedge, say W , with an acute dihedral angle no more than 2α.

The other two vertices q, r of t cannot lie inside B or B ′. This implies that t
lies completely in the wedge W . Let πt , π , and π ′ denote the planes containing
t , C , and C ′ respectively. Consider a unit sphere centered at p. This sphere
intersects the line π ∩ π ′ at two points, say u and u′. Within W let the lines
πt ∩ π and πt ∩ π ′ intersect the unit sphere at v and w respectively. See the
picture on the right in Figure 3.6. Without loss of generality, assume that the
angle ∠uvw ≤ ∠uwv. Consider the spherical triangle uvw. We are interested
in the spherical angle θ = ∠uvw which is also the acute dihedral angle between
the planes containing t and C . We have the following facts. The arc length of
wv, denoted |wv|, is at least π/3 since p subtends the largest angle in t and t
is in the wedge W . The spherical angle ∠vuw is less than or equal to 2α. By
standard sine laws in spherical geometry, we have

sin θ = sin |uw| sin ∠vuw

sin |wv| ≤ sin |uw| sin 2α

sin |wv| .

If π/3 ≤ |wv| ≤ 2π/3, we have

sin |wv| ≥
√

3/2

and hence

θ ≤ arcsin

(
2√
3

sin 2α

)
.

For the range 2π/3 < |wv| < π , we use the fact that |uw| + |wv| ≤ π . The arc
length |wv| cannot be longer than both |wu′| and |vu′| since ∠vu′w ≤ 2α <

π/2 for Rpqr ≤ f (p)√
2

. If |wv| ≤ |wu′|, we have

|uw| + |wv| ≤ |uu′| = π.

Otherwise, |wv| ≤ |vu′|. Then, we use the fact that |uw| ≤ |uv| as ∠uvw ≤
∠uwv. So, again

|uw| + |wv| ≤ |uu′| = π.

Therefore, when |wv| > 2π
3 , we get

sin |uw|
sin |wv| < 1.

Thus, θ ≤ arcsin
(

2√
3

sin 2α
)

.

The normals to t and � at p make an acute angle at most α + θ proving the
lemma. �
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3.2 Topology

The sample P as a set of discrete points does not have the topology of �.
A connection between the topology of � and P can be established through
the restricted Voronoi and Delaunay diagrams. In particular, one can show
that the underlying space of the restricted Delaunay triangulation Del P|� is
homeomorphic to � if the sample P is sufficiently dense. Although we will
not be able to compute Del P|� , the fact that it is homeomorphic to � will be
useful in the surface reconstruction later.

3.2.1 Topological Ball Property

The underlying space of Del P|� becomes homeomorphic to � when the
Voronoi diagram Vor P intersects � nicely. This condition is formalized by
the topological ball property which says that the restricted Voronoi cells in each
dimension is a ball.

Definition 3.1. Let F denote any Voronoi face of dimension k, 0 ≤ k ≤ 3, in
VorP which intersects � and F |� = F ∩ � be the corresponding restricted
Voronoi face. The face F satisfies the topological ball property if F |� is a (i)
(k − 1)-ball and (ii) Int F ∩ � = Int F |� . The pair (P, �) satisfies the topo-
logical ball property if all Voronoi faces F ∈ Vor P satisfy the topological ball
property.

Condition (i) means that � intersects a Voronoi cell in a single topological
disk, a Voronoi facet in a single curve segment, a Voronoi edge in a single point,
and does not intersect any Voronoi vertex (see Figure 3.7). Condition (ii) avoids
any tangential intersection between a Voronoi face and �.

The following theorem is an important result relating the topology of a surface
to a point sample.

Theorem 3.1. The underlying space of DelP|� is homeomorphic to � if the
pair (P, �) satisfies the topological ball property.

Our aim is to show that, when P is a dense sample, the topology of � can
be captured from P . Specifically, we prove that the pair (P, �) satisfies the
topological ball property when ε is sufficiently small. The proof frequently
uses the next two lemmas to reach a contradiction. The first one says that the
points in a restricted Voronoi cell, that is, the points of � in a Voronoi cell,
cannot be far apart. The second one says that any line almost normal to the
surface cannot intersect it twice within a small distance.
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Figure 3.7. (a) A surface � intersects a Voronoi cell and its faces with the topological
ball property, (b) a surface not intersecting a Voronoi facet in a 1-ball, and (c) a surface
not intersecting a Voronoi edge in a 0-ball.

Lemma 3.6 (Short Distance). Let x and y be any two points in a restricted
Voronoi cell Vp|� . For ε < 1, we have

(i) ‖x − p‖ ≤ ε
1−ε

f (p) and
(ii) ‖x − y‖ ≤ 2ε

1−ε
f (x).

Proof. Since x has p as the nearest sample point, ‖x − p‖ ≤ ε f (x) for ε < 1.
Apply the Feature Translation Lemma 1.3 to claim (i). For (ii), observe that

‖x − y‖ ≤ ‖x − p‖ + ‖y − p‖
≤ ε( f (x) + f (y))

By the Lipschitz Continuity Lemma 1.2

f (y) ≤ f (x) + ‖x − y‖
≤ f (x) + ε( f (x) + f (y)), or

(1 − ε) f (y) ≤ (1 + ε) f (x).

Therefore, for ε < 1,

‖x − y‖ ≤ ε

(
1 + 1 + ε

1 − ε

)
f (x) ≤ 2ε

1 − ε
f (x).

�

A restricted Delaunay edge pq is dual to a Voronoi facet that intersects�. Any
such intersection point, say x , is within ε

1−ε
f (p) distance from p by the Short
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Figure 3.8. The circumradius of a triangle which is also the radius of its diametric ball
(shown with solid circle) is no more than the radius of a circumscribing ball (shown
with dotted circle).

Distance Lemma 3.6. The length of pq cannot be more than twice the distance
between x and p. Hence, ‖p − q‖ ≤ 2ε

1−ε
f (p). We can extend this argument to

the restricted Delaunay triangles too. A restricted Delaunay triangle t is dual to
a Voronoi edge e that intersects �. The intersection point, say x , belongs to the
Voronoi cells adjacent to e. Let Vp be any such cell. The point x is the center of a
circumscribing ball of the triangle dual to e. By the Short Distance Lemma 3.6,
x is within ε

1−ε
f (p) distance from p. The ball Bx,‖x−p‖ circumscribes t . The

circumradius of t is no more than ‖x − p‖ as the circumradius of a triangle
cannot be more than any of its circumscribing ball (see Figure 3.8). Thus, the
following corollary is immediate from the Short Distance Lemma 3.6.

Corollary 3.1. For ε < 1, we have

(i) the length of a restricted Delaunay edge e is at most 2ε
1−ε

f (p) where p is
any vertex of e and

(ii) the circumradius of any restricted Delaunay triangle t is at most ε
1−ε

f (p)
where p is any vertex of t .

Lemma 3.7 (Long Distance). Suppose a line intersects � in two points x and
y and makes an angle no more than ξ with nx . One has ‖x − y‖ ≥ 2 f (x) cos ξ .

Proof. Consider the two medial balls at x as in Figure 3.9. The line meets the
boundaries of these two balls at x and at points that must be at least 2r cos ξ

distance away from x where r is the radius of the smaller of the two balls.
Since r ≥ f (x), the result follows as y cannot lie inside any of the two medial
balls. �
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Figure 3.9. Illustration for the Long Distance Lemma 3.7.

1
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Figure 3.10. The graphs of the two functions on the left and right hand sides of the
inequality in Condition A.

3.2.2 Voronoi Faces

Next we consider in turn the Voronoi edges, Voronoi facets, and Voronoi cells
and show that they indeed satisfy the topological ball property if ε satisfies
Condition A as stated below. For ε < 1

3 , let

α(ε) = ε

1 − 3ε

β(ε) = arcsin
ε

1 − ε
+ arcsin

(
2√
3

sin

(
2 arcsin

ε

1 − ε

))
.

Condition A ε <
1

3
and cos (α(ε) + β(ε)) >

ε

1 − ε
.

Figure 3.10 shows that in the range 0 < ε ≤ 1
3 , Condition A holds for ε a

little less than 0.2. So, for example, ε ≤ 0.18 is a safe choice. Since Condition
A stipulates ε < 1

3 , lemmas such as Normal Variation, Long Distance, Short
Distance, and Corollary 3.1 can be applied under Condition A.
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Figure 3.11. Illustration for the Voronoi Edge Lemma 3.8. A Voronoi edge intersecting
the surface (a) at two points and (b) tangentially in a single point.

Lemma 3.8 (Voronoi Edge). A Voronoi edge intersects � transversally in a
single point if Condition A holds.

Proof. Suppose for the sake of contradiction there is a Voronoi edge e in a
Voronoi cell Vp intersecting � at two points x and y, or at a single point tan-
gentially (see Figure 3.11). The dual Delaunay triangle, say pqr , is a restricted
Delaunay triangle. By Corollary 3.1, its circumradius is no more than ε

1−ε
f (p).

By the Triangle Normal Lemma 3.5, ∠a(npqr , np) ≤ β(ε) if

1√
2

>
ε

1 − ε

a restriction satisfied by Condition A.
The Normal Variation Lemma 3.3 puts an upper bound of α(ε) on the angle

between the normals at p and x as ‖x − p‖ ≤ ε f (x). Let ξ denote the angle
between nx and the Voronoi edge e. We have

ξ = ∠a(nx , npqr ) ≤ ∠a(nx , np) + ∠a(np, npqr )

≤ α(ε) + β(ε). (3.1)

If e intersects � tangentially at x , we have ξ = π
2 requiring α(ε) + β(ε) ≥ π

2 .
Condition A requires ε < 0.2 which gives α(ε) + β(ε) < π

2 . Therefore, when
Condition A is satisfied, e cannot intersect � tangentially. So, assume that e
intersects � at two points x and y.

By the Short Distance Lemma 3.6, ‖x − y‖ ≤ 2ε
1−ε

f (x) and by the Long
Distance Lemma 3.7, ‖x − y‖ ≥ 2 f (x) cos ξ . A contradiction is reached when
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Figure 3.12. A Voronoi facet intersecting � (a) in a cycle and (b) in two segments.

2 cos ξ > 2ε
1−ε

, or

cos(α(ε) + β(ε)) >
ε

1 − ε
. (3.2)

Condition A satisfies Inequality 3.2 giving the required contradiction. �

Lemma 3.9 (Voronoi Facet). A Voronoi facet F intersects � transversally in
a 1-ball if Condition A is satisfied.

Proof. The intersection of F with � may contradict the assertion of the lemma
if (i) � touches F tangentially at a point, (ii) � intersects F in a 1-sphere, that
is, a cycle, or (iii) � intersects F in more than one component.

The dual Delaunay edge, say pq , of F is in the restricted Delaunay triangu-
lation. Let nF denote the normal to F . Its direction is the same as that of pq up
to orientation. We have ‖p − q‖ ≤ 2ε

1−ε
f (p) by Corollary 3.1. Therefore, the

Edge Normal Lemma 3.4 gives

∠a(np, nF ) ≥ π

2
− arcsin

ε

1 − ε

as long as ε < 1.
If � meets F tangentially at a point x , we have ∠a(nx , nF ) = 0 and by the

Normal Variation Lemma 3.3 ∠np, nx ≤ ε
1−3ε

when ε < 1
3 . This means, for

ε < 1
3 , we have

π

2
− arcsin

ε

1 − ε
≤ ∠a(np, nF ) ≤ ε

1 − 3ε
= α(ε).

The above inequality contradicts the upper bound for ε given by Condition A.
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If � meets F in a cycle, let x be any point on it and L be the line on F
intersecting the cycle at x orthogonally (see Figure 3.12(a)). This line must
meet the cycle in another point, say y. The angle between L and nx satisfies
∠a(L , nx ) ≤ ∠a(L ′, nx ) for any other line L ′ on F passing through x . Choose
L ′ that minimizes the angle with np. The line L ′ being on the Voronoi facet
F makes exactly π

2 angle with the dual restricted Delaunay edge, say pq . We
know by the Edge Normal Lemma 3.4

∠a(−→pq, np) ≥ π

2
− arcsin

ε

1 − ε
.

Therefore, for ε < 1,

∠a(L ′, np) = π

2
− ∠a(−→pq, np) ≤ arcsin

ε

1 − ε
.

These facts with the Normal Variation Lemma 3.3 give

∠a(L ′, nx ) ≤ ∠a(L ′, np) + ∠(np, nx ) ≤ arcsin
ε

1 − ε
+ α(ε) (3.3)

for ε < 1
3 .

The right-hand side of Inequality 3.3 is less than the upper bound for ξ in the
proof of the Voronoi Edge Lemma 3.8. Thus, we reach a contradiction between
distances implied by the Short Distance Lemma 3.6 and the Long Distance
Lemma 3.7 when Condition A holds.

In the case � meets F in two or more components as in Figure 3.12(b),
consider any point x in one of the components. Let y be the closest point
to x on any other component, say C . If the line L joining x and y meets C
orthogonally at y we have the situation as in the previous case with only x and
y interchanged. In the other case, y lies on the boundary of C on a Voronoi edge.
The angle between L and ny is less than the angle between the Voronoi edge and
ny which is no more than α(ε) + β(ε) as proved in the Voronoi Edge Lemma 3.8
(Inequality 3.1). We reach a contradiction again between two distances using
the same argument. �

Lemma 3.10 (Voronoi Cell). A Voronoi cell Vp intersects � in a 2-ball if
Condition A holds.

Proof. We have W = Vp ∩ � contained in a ball B of radius ε
1−ε

f (p) by the
Short Distance Lemma 3.6. If W is a manifold without boundary, B contains a
medial axis point m by the Feature Ball Lemma 1.1. Then the radius of B is at
least

‖m − p‖
2

≥ f (p)

2
.
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We reach a contradiction if ε < 1
3 which is satisfied by Condition A. So, as-

sume that W is a manifold with boundary. It may not be a 2-ball only if it is
nonorientable, has a handle, or has more than one boundary cycle. If W were
nonorientable, so would be �, which is impossible. In case W has a handle,
B ∩ � is not a 2-ball. By the Feature Ball Lemma 1.1, it contains a medial axis
point reaching a contradiction again for ε < 1

3 which is satisfied by Condition A.
The only possibility left is that W has more than one boundary cycles. Let L

be the line of the normal at p. Consider a plane that contains L and intersects at
least two boundary cycles. Such a plane exists since otherwise L must intersect
W at a point other than p and we reach a contradiction between two distance
lemmas. The plane intersects Vp in a convex polygon and W in at least two
curves. We can argue as in the proof of the Voronoi Facet Lemma 3.9 to reach
a contradiction between two distance lemmas. �

Condition A holds for ε ≤ 0.18. Therefore, the Voronoi Edge Lemma, Facet
Lemma, and Cell Lemma hold for ε ≤ 0.18. Then, Theorem 3.1 leads to the
following result.

Theorem 3.2 (Topological Ball.). Let P be an ε-sample of a smooth surface
�. For ε ≤ 0.18, (P, �) satisfies the topological ball property and hence the
underlying space of DelP|� is homeomorphic to �.

3.3 Notes and exercises

The remarkable connection between ε-samples of a smooth surface and the
Voronoi diagram of the sample points was first discovered by Amenta and Bern
[4]. The Normal Lemma 3.2 and the Normal Variation Lemma 3.3 are two key
observations made in this paper. The topological ball property that ensures the
homeomorphism between the restricted Delaunay triangulation and the surface
was discovered by Edelsbrunner and Shah [48]. Amenta and Bern observed
that the Voronoi diagram of a sufficiently dense sample satisfies the topological
ball property though the proof was not as rigorous as presented here. The proof
presented here is adapted from Cheng, Dey, Edelsbrunner, and Sullivan [23].

Exercises

1. Let the restricted Voronoi cell Vp|� be adjacent to the restricted Voronoi
cell Vq |� in the restricted Voronoi diagram VorP|�. Show that the distance
between any two points x and y from the union of V p|� and V q|� is
Õ(ε) f (x) when ε is sufficiently small.
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2. A version of the Edge Normal Lemma 3.4 can be derived from the Triangle
Normal Lemma 3.5, albeit with a slightly worse angle bound. Derive this
angle bound and carry out the proof of the topological ball property with
this bound. Find out an upper bound on ε for the proof.

3. The topological ball property is a sufficient but not a necessary condition for
the homeomorphism between a sampled surface and a restricted Delaunay
triangulation of it. Establish this fact by an example.

4. Show an example where
(i) all Voronoi edges satisfy the topological ball property, but the Voronoi

cell does not,
(ii) all Voronoi facets satisfy the topological ball property, but the Voronoi

cell does not.
5. Show that for any n > 0, there exists a C2-smooth surface for which a

sample with n points has the Voronoi diagram where no Voronoi edge
intersects the surface.

6h . Let F be a Voronoi facet in the Voronoi diagram Vor P where P is an ε-
sample of a C2-smooth surface �. Let � intersect F in a single interval and
the intersection points with the Voronoi edges lie within ε f (p) away from
p where F ⊂ Vp. Show that all points of F ∩ � lie within ε f (p) distance
when ε is sufficiently small.

7. Let F and � be as described in Exercise 6, but F ∩ � contains two or more
topological intervals. Show that there exists a Voronoi edge e ∈ F so that
e ∩ � is at least λ f (p) away from p where λ > 0 is an appropriate constant.

8o. Let the pair (P, �) satisfy the topological ball property. We know that the
underlying space of Del P|� and � are homeomorphic. Prove or disprove
that they are isotopic.



4
Surface Reconstruction

In the previous chapter we learned that the restricted Delaunay triangulation is
a good approximation of a densely sampled surface � from both topological
and geometric view point. Unfortunately, we cannot compute this triangulation
because the restricted Voronoi diagram Vor P|� cannot be computed without
knowing �. As a remedy we approximate the restricted Voronoi diagram and
compute a set of triangles that is a superset of all restricted Delaunay trian-
gles. This set is pruned to extract a manifold surface which is output as an
approximation to the sampled surface �.

4.1 Algorithm

First, we observe that each restricted Voronoi cell Vp|� = Vp ∩ � is almost
flat if the sample is sufficiently dense. This follows from the Normal Variation
Lemma 3.3 as the points in Vp|� cannot be far apart if ε is small. In particular,
Vp|� lies within a thin neighborhood of the tangent plane τp at p. So, we need
two approximations: (i) an approximation to τp or equivalently to np and (ii)
an approximation to Vp|� based on the approximation to np. The following
definitions of poles and cocones are used for these two approximations.

4.1.1 Poles and Cocones

Definition 4.1 (Poles). The farthest Voronoi vertex, denoted p+, in Vp is called
the positive pole of p. The negative pole of p is the farthest point p− ∈ Vp from
p so that the two vectors from p to p+ and p− make an angle more than π

2 .
We call vp = p+ − p, the pole vector for p. If Vp is unbounded, p+ is taken
at infinity and the direction of vp is taken as the average of all directions given
by the unbounded Voronoi edges.

59
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The following lemma is a direct consequence of the Normal Lemma 3.2. It
says that the pole vectors approximate the true normals at the sample points.

Lemma 4.1 (Pole). For ε < 1, the angle between the normal np at p and the
pole vector vp satisfies the inequality

∠a(np, vp) ≤ 2 arcsin
ε

1 − ε
.

Proof. First, consider the case where Vp is bounded. Since the Voronoi cell Vp

contains the centers of the medial balls at p, we have ‖p+ − p‖ ≥ f (p). Thus,
plugging µ = 1 in the Normal Lemma 3.2 we obtain the result immediately.

Next, consider the case where Vp is unbounded. In this case vp is computed as
the average of the directions of the infinite Voronoi edges. The angle ∠a(vp, np)
in this case cannot be more than the worst angle made by an infinite Voronoi
edge with np. An infinite Voronoi edge e makes the same angle with np as the
vector −−→pp∞ does, where the infinite endpoint of e is taken at p∞. Again we
have ‖p − p∞‖ ≥ f (p) and the Normal Lemma 3.2 can be applied with µ = 1
to give the result. �

The Pole Lemma 4.1 says that the pole vector approximates the normal np.
Thus, the plane τ̃p passing through p with the pole vector as normal approxi-
mates the tangent plane τp. The following definition of cocone accommodates
a thin neighborhood around τ̃p to account for the small uncertainty in the esti-
mation of np.

Definition 4.2 (Cocone). The set C p = {y ∈ Vp : ∠a(−→py, vp) ≥ 3π
8 } is called

the cocone of p. In words, C p is the complement of a double cone that is clipped
within Vp. This double cone has p as the apex, the pole vector vp as the axis,
and an opening angle of 3π

8 with the axis. See Figure 4.1 for an example of a
cocone.

As an approximation to Vp|� , cocones meet all Voronoi edges that are inter-
sected by �. So, if we compute all triangles dual to the Voronoi edges intersected
by cocones, we obtain all restricted Delaunay triangles and possibly a few oth-
ers. We call this set of triangles cocone triangles. We will see later that all
cocone triangles lie very close to �. A cleaning step is necessary to weed out
some triangles from the set of cocone triangles so that a 2-manifold is computed
as output. This is accomplished by a manifold extraction step.
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Σ
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b

Figure 4.1. The positive pole p+ helps estimating the normal. The double cone forming
the cocone has the apex at p and axis pp+. The Voronoi edge ab intersects the cocone.
Its dual Delaunay triangle is a cocone triangle.

Cocone(P)
1 compute Vor P;
2 T = ∅;
3 for each Voronoi edge e ∈ VorP do

4 if CoconeTriangles(e)
5 T := T ∪ dual e;
6 endfor

7 E :=ExtractManifold(T );
8 output E .

Let us now look into the details of the two steps CoconeTriangles and
ExtractManifold.

To check if a Voronoi edge e = (a, b) intersects C p we consider the three

vectors vp, a = −→pa, b = −→
pb, and three conditions I, II, and III:

I.
|vT

p a|
‖vp‖‖a‖ ≤ cos

3π

8
or

|vT
p b|

‖vp‖‖b‖ ≤ cos
3π

8
,

II.
vT

p a

‖vp‖‖a‖ < 0 and
−vT

p b

‖vp‖‖b‖ < 0,

III.
vT

p a

‖vp‖‖a‖ > 0 and
−vT

p b

‖vp‖‖b‖ > 0.

Condition I checks if any of the vertices a and b of the Voronoi edge e lies
inside C p. Conditions II and III check if both a and b lie outside C p, but the
edge e crosses it. The triangle t = dual e is marked as a cocone triangle only if
e intersects cocones of all three vertices of t .
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CoconeTriangles(e)
1 t := dual e;
2 flag := true;
3 for each vertex p of t do
4 if none of Conditions I, II, and III holds
5 flag:= false;
6 endfor

7 return flag.

The set T of cocone triangles enjoys some interesting geometric properties
which we exploit in the manifold extraction step as well as in the proofs of
geometric and topological guarantees of Cocone. Of course, the sample has to
be sufficiently dense for these properties to hold. In the rest of the chapter we
assume that ε ≤ 0.05 which satisfies Condition A stated in Chapter 3, enabling
us to apply the results therein.

4.1.2 Cocone Triangles

First, we show that each triangle in T has a small empty ball circumscribing it,
that is, the radius of this ball is small compared to the local feature sizes at their
vertices. Notice that the diametric ball of a triangle may not be empty. Hence,
the smallest empty ball circumscribing a triangle may not be its diametric ball.
Nevertheless, a small empty circumscribing ball also means that the circum-
radius of the triangle is small. This fact together with the Triangle Normal
Lemma 3.5 implies that all cocone triangles lie almost flat to the surface.

Lemma 4.2 (Small Triangle). Let t be any cocone triangle and r denote the
radius of the smallest empty ball circumscribing t. For each vertex p of t and
ε ≤ 0.05, one has

(i) r ≤ 1.18ε
1−ε

f (p) and
(ii) circumradius of t is at most 1.18ε

1−ε
f (p).

Proof. Let z be any point in Vp so that

∠a(n p,
−→pz) ≥ 3π

8
− 2 arcsin

ε

1 − ε
. (4.1)

First, we claim that for any such point z, we have ‖z − p‖ ≤ 1.18 ε
1−ε

f (p) if
ε ≤ 0.05.
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If ∠a(np,
−→pz) > θ = arcsin ε

µ(1−ε) + arcsin ε
1−ε

, then ‖z − p‖ ≤ µ f (p) ac-

cording to the Normal Lemma 3.2. With µ = 1.18ε
1−ε

and ε ≤ 0.05 we have

θ = arcsin
1

1.18
+ arcsin

ε

1 − ε
<

3π

8
− 2 arcsin

ε

1 − ε
. (4.2)

Thus, from Inequalities 4.1 and 4.2 we have

∠a(np,
−→pz) ≥ 3π

8
− 2 arcsin

ε

1 − ε
> θ. (4.3)

Therefore, any point z ∈ Vp satisfying Inequality 4.1 also satisfies

‖z − p‖ ≤ 1.18ε

1 − ε
f (p).

Now let t be any cocone triangle with p being any of its vertices and e = dual t
being its dual Voronoi edge. For t to be a cocone triangle, it is necessary that
there is a point y ∈ e so that ∠a(vp,

−→py) ≥ 3π
8 . Taking into account the angle

∠a(vp, np), this necessary condition implies

∠a(np,
−→py) ≥ 3π

8
− 2 arcsin

ε

1 − ε

which satisfies Inequality 4.1. Hence, we have

‖y − p‖ ≤ 1.18 ε

1 − ε
f (p) for ε ≤ 0.05.

The ball By,‖y−p‖ is empty and circumscribes t proving (i). The claim in
(ii) follows immediately from (i) as the circumradius of t cannot be larger than
the radius of any ball circumscribing it. �

The next lemma proves that all cocone triangles lie almost parallel to the
surface. The angle bounds are expressed in terms of α(ε) and β(ε) that are
defined in Chapter 3.

Lemma 4.3 (Cocone Triangle Normal). Let t be any cocone triangle and nt

be its normal. For any vertex p of t one has ∠a(np, nt ) ≤ α( 2.36ε
1−ε

) + β (1.18ε)
when ε ≤ 0.05.

Proof. Let q be a vertex of t with a maximal angle of t . The circumradius of t
is at most 1.18ε

1−ε
f (q) by the Small Triangle Lemma 4.2. Then, by the Triangle
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e e

Figure 4.2. The edge e is not sharp in the left picture; it is sharp in the right picture.

Normal Lemma 3.5,

∠a(nq , nt ) ≤ arcsin
1.18ε

1 − ε
+ arcsin

(
2√
3

sin

(
2 arcsin

1.18ε

1 − ε

))

≤ arcsin
1.18ε

1 − 1.18ε
+ arcsin

(
2√
3

sin

(
2 arcsin

1.18ε

1 − 1.18ε

))
= β (1.18ε) for ε ≤ 0.05.

The distance between p and q is no more than the diameter of the circle cir-
cumscribing t , that is, ‖p − q‖ ≤ 2.36ε

1−ε
f (p) (Small Triangle Lemma 4.2). By

the Normal Variation Lemma 3.3, ∠(np, nq ) ≤ α( 2.36ε
1−ε

). The desired bound for
∠a(np, nt ) follows since it is no more than the sum ∠(np, nq ) + ∠a(nq , nt ).

�

4.1.3 Pruning

Prior to the extraction of a 2-manifold from the set of cocone triangles, some
of them are pruned. An edge e is sharp if any two consecutive cocone triangles
around it form an angle more than 3π

2 (see Figure 4.2). Edges with a single
triangle incident to them are also sharp by default. We will show later that
the cocone triangles include all restricted Delaunay triangles when a sample is
sufficiently dense. The set of restricted Delaunay triangles cannot be incident
to sharp edges. This implies that we can prune triangles incident to sharp edges
and still retain the set of restricted Delaunay triangles. In fact, we can carry out
this pruning in a cascaded manner. By deleting one triangle incident to a sharp
edge, we may create other sharp edges. Since no restricted Delaunay triangle
is pruned, none of their edges become sharp. Therefore, it is safe to delete the
new sharp edges with all of their incident triangles.

This pruning step weeds out all triangles incident to sharp edges, but the
remaining triangles still may not form a surface. They may form layers of thin
pockets creating a nonmanifold. A manifold surface is extracted from this pos-
sibly layered set by walking outside the space covered by them (see Figure 4.3).
The manifold extraction step depends on the fact that cocone triangles contain
all restricted Delaunay triangles none of whose edges is sharp. We prove this
fact below.
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Figure 4.3. Thin pockets left after pruning, a manifold is obtained by walking on the
outside indicated by the dotted curve.

Theorem 4.1 (Restricted Delaunay). For ε ≤ 0.05, the following conditions
hold:

(i) cocone triangles contain all restricted Delaunay triangles and
(ii) no restricted Delaunay triangle has a sharp edge.

Proof. Consider (i). Let y be any point in any restricted Voronoi cell Vp|� .
We claim that ∠a(np,

−→py) is larger than π
2 − arcsin ε

2(1−ε) . We have ‖y − p‖ ≤
ε f (y) since y ∈ Vp|� and P is an ε-sample of �. By the Feature Translation
Lemma 1.3, ‖y − p‖ ≤ ε

1−ε
f (p). We can therefore apply the proof of the Edge

Normal Lemma 3.4 to establish that

∠a(np,
−→py) ≥ π

2
− arcsin

ε

2(1 − ε)
.

Let t be any restricted Delaunay triangle and e = dual t be the dual Voronoi
edge. Consider the point y = e ∩ �. We have y ∈ Vp|� for each of the three
points p ∈ P determining e. For each such p, the angle ∠a(np,

−→py) is larger
than π/2 − arcsin ε

2(1−ε) . Therefore,

∠a(−→py, vp) ≥ ∠a(−→py, np) − ∠a(np, vp)

≥ π

2
− arcsin

ε

2(1 − ε)
− ∠a(np, vp). (4.4)

By the Pole Lemma 4.1 we have

∠a(np, vp) + arcsin
ε

2(1 − ε)
≤ 2 arcsin

ε

1 − ε
+ arcsin

ε

2(1 − ε)

<
π

8
for ε ≤ 0.05.

So, by Inequality 4.4, ∠a(−→py, vp) > 3π
8 . Therefore, the point y is in the cocone

C p by definition. Hence, t is a cocone triangle.
Consider (ii). Let t1 and t2 be adjacent triangles in the restricted Delaunay

triangulation with e as their shared edge and let p ∈ e be any of their shared
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Figure 4.4. Illustration for the Restricted Delaunay Theorem 4.1.

vertices. Since t1 and t2 belong to the restricted Delaunay triangulation, they
have circumscribing empty balls B1 and B2, respectively, centered at points,
say v1 and v2 of �.

The boundaries of B1 and B2 intersect in a circle C contained in a plane H ,
with e ⊂ H . The plane H separates t1 and t2, since the third vertex of each
triangle lies on the boundary of its circumscribing ball, and B1 ⊆ B2 on one
side of H , while B2 ⊆ B1 on the other (see Figure 4.4). The line through v1, v2

is perpendicular to H . Both v1 and v2 belong to the Voronoi facet dual to e. This
means v1 and v2 belong to a restricted Voronoi cell and the distance ‖v1 − v2‖ ≤

2ε
(1−ε) f (v1) by the Short Distance Lemma 3.6. So, the segment v1v2 forms an
angle of at least π/2 − arcsin ε

1−ε
with nv1 (Edge Normal Lemma 3.4). This

normal differs, in turn, from np by an angle of at most ε
1−3ε

(Normal Variation
Lemma 3.3). So, the angle between H and np is at most ε

1−3ε
+ arcsin ε

1−ε
. For

small ε, they are nearly parallel. In particular, if ε ≤ 0.05, H makes at most 7◦

with np. Similarly, plugging ε ≤ 0.05 in the angle upper bound of the Cocone
Triangle Normal Lemma 4.3, one gets that the normals of both t1 and t2 differ
from the surface normal at p by at most 24◦.

Thus, we have t1 on one side of H , t2 on the other and the smaller angle
between H and either triangle is at least 59◦. Hence, the smaller angle between
t1 and t2 is at least 118◦ and e is not sharp. �

4.1.4 Manifold Extraction

A simplicial complex with an underlying space of a 2-manifold is extracted out
of the pruned set of cocone triangles. Let �′ ⊆ � be any connected compo-
nent of the sampled surface. Since cocone triangles are small (Small Triangle
Lemma 4.2), they cannot join points from different components of �. Let T ′ be
the pruned set of cocone triangles with vertices in �′. Consider the medial axis
of �′. The triangles of T ′ lie much closer to �′ than to its medial axis. Further-
more, T ′ includes the restricted Delaunay triangulation Del P|�′ (Restricted
Delaunay Theorem 4.1). Therefore, if |T ′| denotes the underlying space of T ′,
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the space R
3 \ |T ′| has precisely two disjoint open sets Oin and Oout containing

the inner and outer medial axis of �′ respectively. The manifold extraction step
computes the boundary of the closure of Oout, which we simply refer to as the
boundary of Oout.

Let E ′ be the boundary of Oout. We claim that E ′ is a 2-manifold. Let p be
any vertex of E ′. Orient the normal np so that it points toward Oout. Consider a
sufficiently small ball B centering p. Call the point where the ray of np intersects
the boundary of B the north pole. Obviously, the north pole is in Oout. Let Tp

denote the set of triangles in T ′ which are visible from the north pole within B.
The triangles of Tp are in the boundary of Oout. Since there is no sharp edge
in T ′, the set of triangles Tp makes a topological disk. We argue that Tp is the
only set of triangles in the boundary of Oout which are incident to p.

Let q 
= p be a vertex of a triangle t ∈ Tp. The triangle t is in Tq . If not, the
line of the normal np, when moved parallelly through the edge pq toward q,
must hit an edge in T ′ that is sharp. The assumption to this claim is that the
normals np and nq are almost parallel and hence the visibility directions at p
and q are almost parallel. Since T ′ does not have any sharp edge, t is in Tq . This
means that all topological disks at the vertices of E ′ are compatible and they
form a 2-manifold. This 2-manifold separates Oout from T ′ implying that E ′

cannot have any other triangles from T ′ other than the ones in the topological
disks described above.

We compute E ′ from T ′ as a collection of triangles by a depth first walk in the
Delaunay triangulation Del P . Recall that T ′ is disjoint from any other triangles
on a component of � different from �′. The walk starts with a seed triangle
in T ′. The routine Seed computes this seed triangle for each component T ′ of
the pruned set by another depth first walk in the Delaunay triangulation. At any
generic step, Seed comes to a triangle t via a tetrahedron σ and performs the
following steps. First, it checks if t is a cocone triangle. If so, it checks if it
belongs to a component T ′ for which a seed has not yet been picked. If so, the pair
(σ, t), also called the seed pair, is put into the seed set. Then, it marks all triangles
of T ′ so that any subsequent check can identify that a seed for T ′ has been picked.
The walk continues through the triangles and their adjacent tetrahedra in a depth
first manner till a seed pair for each component such as T ′ of T is found. In a
seed pair (σ, t) for a component T ′, the tetrahedron σ and the triangle t should
be in Oout and on its boundary E ′ respectively. To ensure it Seed starts the
walk from any convex hull triangle in Del P and continues till it hits a cocone
triangle. The initiation of the walk from a convex hull triangle ensures that the
first triangle encountered in a component is on the outside of that component
or equivalently on the boundary of Oout defined for that component. Assuming
the function Seed, a high-level description of ExtractManifold is given.
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ExtractManifold(T )
1 T := pruned T ;
2 SD := Seed(T );
3 for each tuple (σ, t) ∈ SD do

4 E ′ := SurfTriangles(σ ,t);
5 E := E ∪ E ′;
6 endfor

7 return the simplicial complex of E .

The main task in ExtractManifold is done by SurfTriangles which
takes a seed pair (σ, t) as input. First, we initialize the surface E ′ with the
seed triangle t which is definitely in E ′ (line 1). Next, we initialize a stack
Pending with the triple (σ, t, e) where e is an edge of t (lines 3 and 4). As
long as the stack Pending is not empty, we pop its top element (σ, t, e). If
the edge e is not already processed we call the function SurfaceNeighbor
to compute a tetrahedron–triangle pair (σ ′, t ′) (line 9). The tetrahedron σ ′ is
adjacent to t ′ and intersects Oout where t ′ is in E ′ and is adjacent to t via e. The
triangle t ′ is inserted in E ′. Then two new triples (σ ′, t ′, e′) are pushed on the
stack pending for each edge e′ 
= e of t ′ (lines 11–13). Finally, we return E ′

(line 16).

SurfTriangles (σ ,t)
1 E ′ := {t};
2 Pending := ∅;
3 pick any edge e of t ;
4 push (σ, t, e) on Pending;
5 while Pending 
= ∅ do

6 pop (σ, t, e) from Pending;
7 if e is not marked processed
8 mark e processed;
9 (σ ′, t ′) := SurfaceNeighbor (σ, t, e);

10 E ′ := E ′ ∪ {t ′};
11 for each edge e′ 
= e of t ′ do
12 push (σ ′, t ′, e) on Pending;
13 endfor

14 endif

15 endwhile

16 return E ′.
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Figure 4.5. A stable computation of SurfaceNeighbor (left), a zoom on a recon-
struction after an unstable computation with numerical errors (middle), and a stable
computation without any numerical error (right).

The question is how to implement the function SurfaceNeighbor. It has to
output a tuple (σ ′, t ′) where t ′ is the neighbor of t on the surface given by E ′ and
σ ′ is an adjacent tetrahedron intersecting Oout. One can compute the surface
neighbor t ′ of t using some numerical computations involving some dot product
computations of vectors. However, these computations often run into trouble
due to numerical errors with finite precision arithmetics. In particular, triangles
of certain types of flat tetrahedra called slivers tend to contribute to these nu-
merical errors and slivers are not uncommon in the Delaunay triangulation of
a sample from a surface.

A robust and faster implementation of the function SurfaceNeighbor
avoids numerical computations by exploiting the combinatorial structure of
the Delaunay triangulation. Every triangle in the Delaunay triangulation has
two incident tetrahedra if we account for the infinite ones incident to the con-
vex hull triangles. SurfaceNeighbor is called with a triple (σ, t, e). It circles
over the tetrahedra and triangles incident to the edge e starting from t and go-
ing toward the other triangle of σ incident to e. This circular walk stops when
another cocone triangle t ′ is reached. If t ′ is reached via the tetrahedron σ ′, we
output the pair (σ ′, t ′). Assuming inductively that σ intersects Oout, the tetrahe-
dron σ ′ also intersects Oout. For example, in Figure 4.5, SurfaceNeighbor is
passed on the triple (σ1, t, e) and then it circles through the tetrahedra σ1, σ2, σ3,
and their triangles till it reaches t ′. At this point it returns (σ3, t ′) where both
σ1 and σ3 lie outside, that is, in Oout. SurfTriangles with this implementa-
tion of SurfaceNeighbor is robust since no numerical decisions are involved
(see Figure 4.5). Combinatorial computations instead of numerical ones make
SurfTriangles fast provided the Delaunay triangulation is given in a form
which allows to answer queries for neighboring tetrahedra quickly.



70 4 Surface Reconstruction

Σ

~
U

U

x
x~

n~x

M

Figure 4.6. Illustration for the map ν.

4.2 Geometric Guarantees

In this section we establish more properties of the cocone triangles which are
eventually used to prove the geometric and topological guarantees of the output
of Cocone. We introduce a map ν that takes each point x ∈ R

3 to its closest
point in �. Notice that ν is well defined everywhere in R

3 except at the medial
axis M of �. Mathematically, ν : R

3 \ M → � where ν(x) ∈ � is closest
to x . Observe that the line containing x and ν(x) is normal to � at x . The
map ν will be used at many places in this chapter and the chapters to follow.
Let

x̃ = ν(x) for any point x ∈ R
3 \ M and

Ũ = {x̃ : x ∈ U } for any set U ⊂ R
3 \ M .

See Figure 4.6 for an illustration.
First, we show that all points of the cocone triangles lie close to the surface.

This, in turn, allows us to extend the Cocone Triangle Normal Lemma 4.3 to
the interior points of the cocone triangles. The restriction of ν to the underlying
space |T | of the set of cocone triangles T is a well-defined function; refer to
Figure 4.7. For if some point x had more than one closest point on the surface
when ε ≤ 0.05, x would be a point of the medial axis giving ‖p − x‖ ≥ f (p)
for any vertex p of a triangle in T ; but by the Small Triangle Lemma 4.2
every point q ∈ |T | is within 1.18 ε

1−ε
f (p) distance of a triangle vertex p ∈ � for

ε ≤ 0.05.

In the next two lemmas and also later we use the notation Õ(ε) defined in
Section 1.2.3.

Lemma 4.4. Let q be any point in a cocone triangle t ∈ T . The distance be-
tween q and the point q̃ is Õ(ε) f (q̃) and is at most 0.08 f (q̃) for ε ≤ 0.05.
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Figure 4.7. The map ν restricted to |T |.

Proof. By the Small Triangle Lemma 4.2 the circumradius of t is at most
µ f (p) where µ = 1.18 ε

1−ε
≤ .07 and p is any of its vertices. Let p be a vertex

of t subtending a maximal angle of t . Since there is a sample point, namely
a vertex of t , within µ f (p) distance from q, we have ‖q − q̃‖ ≤ µ f (p). We
are interested in expressing this bound in terms of f (q̃), so we need an upper
bound on ‖p − q̃‖.

The triangle vertex p has to lie outside the medial balls at q̃, while, since q̃
is the nearest surface point to q , q must lie on the segment between q̃ and the
center of one of these medial balls. For any fixed ‖p − q‖, these facts imply that
‖p − q̃‖ is maximized when the angle ∠pqq̃ is a right angle. Thus, ‖p − q̃‖ ≤√

5µ f (p) ≤ 0.14 f (p) for ε ≤ 0.05. This implies that f (p) = Õ(ε) f (q̃) and
in particular f (p) ≤ 1.17 f (q̃) by Lipschitz property of f . We have ‖q − q̃‖ ≤
µ f (p) = Õ(ε) f (q̃) and ‖q − q̃‖ ≤ 0.08 f (q̃) in particular. �

With a little more work, we can also show that the triangle normal agrees
with the surface normal at q̃ .

Lemma 4.5. Let q be a point on triangle t ∈ T . The angle ∠(nq̃ , np) is at most
14◦ where p is a vertex of t with a maximal angle. Also, the angle ∠a(nq̃ , nt ) is
Õ(ε) and is at most 38◦ for ε ≤ 0.05.

Proof. We have already seen in the proof of Lemma 4.4 that ‖p − q̃‖ =
Õ(ε) f (p). In particular, ‖p − q̃‖ ≤ 0.14 f (p) when ε ≤ 0.05. Applying the
Normal Variation Lemma 3.3, and taking ρ = Õ(ε) (ρ = 0.14 in particular),
shows that the angle between nq̃ and np is Õ(ε) and is less than 14◦. The angle
between nt and np is Õ(ε) and is less than 24◦ for ε ≤ 0.05 by the Cocone Tri-
angle Normal Lemma 4.3. Thus, the triangle normal and nq̃ make Õ(ε) angle
which is at most 38◦ for ε ≤ 0.05. �

Lemma 4.2, Lemma 4.4, and Lemma 4.5 imply that the output surface |E | of
Cocone is close to � both point-wise and normal-wise. The following theorem
states this precisely.
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Theorem 4.2. The surface |E | output by Cocone satisfies the following geo-
metric properties for ε ≤ 0.05.

(i) Each point p ∈ |E | is within Õ(ε) f (x) distance of a point x ∈ �. Con-
versely, each point x ∈ � is within Õ(ε) f (x) distance of a point in |E |.

(ii) Each point p in a triangle t ∈ E satisfies ∠a(n p̃, nt ) = Õ(ε).

4.2.1 Additional Properties

We argued in Section 4.1.4 that the underlying space of the simplicial complex
output by Cocone is a 2-manifold. Let E be this simplicial complex output
by Cocone. A pair of triangles t1, t2 ∈ E are adjacent if they share at least
one common vertex p. Since the normals to all triangles sharing p differ from
the surface normal at p by at most 24◦ (apply the Cocone Triangle Normal
Lemma 4.3), and that normal in turn differs from the pole vector at p by less
than 7◦ (apply the Pole Lemma 4.1), we can orient the triangles sharing p,
arbitrarily but consistently. We call the normal facing the positive pole the
inside normal and the normal facing away from it the outside normal. Let θ be
the angle between the two inside normals of t1, t2. We define the angle at which
the two triangles meet at p to be π − θ .

Property I: Every two adjacent triangles in E meet at their common vertex at
an angle greater than π/2.

Requiring this property excludes manifolds which contain sharp folds and, for
instance, flat tunnels. Since the cocone triangles are all nearly perpendicular to
the surface normals at their vertices (Cocone Triangle Normal Lemma 4.3) and
the manifold extraction step eliminates triangles adjacent to sharp edges, E has
this property.

Property II: Every point in P is a vertex of E .

The Restricted Delaunay Theorem 4.1 ensures that the set T of cocone triangles
contains all restricted Delaunay triangles even after the pruning. Therefore at
this point T contains a triangle adjacent to every sample point in P . Lemma 4.6
below says that each sample point is exposed to the outside for the component
of T to which it belongs. This ensures that at least one triangle is selected for
each sample point by the manifold extraction step. This implies that E has the
second property as well.

Lemma 4.6 (Exposed). Let p be a sample point and let m be the center of a
medial ball B tangent to � at p. No cocone triangle intersects the interior of
the segment pm for ε ≤ 0.05.
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Figure 4.8. Illustration for the exposed lemma.

Proof. To intersect the segment pm, a cocone triangle t would have to intersect
B and so would the smallest empty ball circumscribing t. Call it D. Let H be the
plane of the circle where the boundaries of B and D intersect (see Figure 4.8).
We argue that H separates the interior of pm and t .

On one side of H , B is contained in D and on the other, D is contained in B.
Since the vertices of t lie on � and hence not in the interior of B, t has to lie in
the open halfspace, call it H+, in which D is outside B. Since D is empty, p
cannot lie in the interior of D; but since p lies on the boundary of B, it therefore
cannot lie in H+. We claim that m 
∈ H+ either.

Since m ∈ B, if it lay in H+, m would be contained in D. Since m is a point
of the medial axis, the radius of D would be at least f (p′)

2 for any vertex p′ of t .
For ε ≤ 0.05, this contradicts the Small Triangle Lemma 4.2. Therefore p, m,
and hence the segment pm cannot lie in H+ and H separates t and pm. �

4.3 Topological Guarantee

Recall that a function h : X → Y defines a homeomorphism between two com-
pact Euclidean subspaces X and Y if h is continuous, one-to-one, and onto. In
this section, we will show a homeomorphism between � and any piecewise-
linear 2-manifold made up of cocone triangles from T . The piecewise-linear
manifold E selected by the manifold extraction step is such a space thus com-
pleting the proof of homeomorphism.

4.3.1 The Map ν

We define the homeomorphism explicitly, using the function ν : R
3 \ M → �,

as defined earlier. We will consider the restriction ν ′ of ν to the underlying space
|E | of E , that is, ν ′ : |E | → �. Our approach will be first to show that ν ′ is
well-behaved on the sample points themselves and then show that this property
extends in the interior of each triangle in E .

Lemma 4.7. For ε ≤ 0.05, ν ′ : |E | → � is a well-defined continuous function.
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Figure 4.9. ν ′ maps y and q to the same point which is impossible.

Proof. By the Small Triangle Lemma 4.2, every point q ∈ |E | is within
1.18ε
1−ε

f (p) of a triangle vertex p ∈ � when ε ≤ 0.05. Therefore, |E | ⊂ R
3 \ M

for ε ≤ 0.05. It follows that ν ′ is well defined. It is continuous since it is a
restriction of a continuous function. �

Let q be any point such that q̃ is a sample point p. By the Exposed Lemma 4.6,
q lies on the segment pm where m is the center of a medial ball touching � at
p. We have the following.

Corollary 4.1. For ε ≤ 0.05, the function ν ′ is one-to-one from |E | to every
sample point p.

In what follows, we will show that ν ′ is indeed one-to-one on all of |E |. The
proof proceeds in three short steps. We show that ν ′ induces a homeomorphism
on each triangle, then on each pair of adjacent triangles and finally on |E | as a
whole.

Lemma 4.8. Let U be a region contained within one triangle t ∈ E or in
adjacent triangles of E. For ε ≤ 0.05, the function ν ′ defines a homeomorphism
between U and Ũ ⊂ �.

Proof. We know that ν ′ is well defined and continuous on U , so it only remains
to show that it is one-to-one. First, we prove that if U is in one triangle t , ν ′ is
one-to-one. For a point q ∈ t , the vector nq from q̃ to q is perpendicular to the
surface at q̃; since � is smooth, the direction of nq is unique and well defined. If
there were some y ∈ t with ỹ = q̃ , then q , q̃ , and y would all be collinear and t
itself would have to contain the line segment between q and y (see Figure 4.9).
This implies that the normal nq is parallel to the plane of t . In other words,
nq is orthogonal to the normal of t , contradicting the Cocone Triangle Normal
Lemma 4.3 which says that the normal of t is nearly parallel to nq .
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Now, we consider the case in which U is contained in more than one triangle.
Let q and y be two points in U such that q̃ = ỹ = x and let v be a common
vertex of the triangles that contain U . Since ν ′ is one-to-one in one triangle,
q and y must lie in the two distinct triangles tq and ty . The line l through x
with direction nx pierces the patch U at least twice; if y and q are not adjacent
intersections along l, redefine q so that this is true (q̃ = x for any intersection
q of l with U ). Now consider the orientation of the patch U according to the
direction to the positive pole at v. Either l passes from inside to outside and back
to inside when crossing y and q, or from outside to inside and back to outside.

The acute angles between the triangle normals of tq , ty , and nx are less than
38◦ (Lemma 4.5), that is, the triangles are stabbed nearly perpendicularly by
nx . But since the orientation of U is opposite at the two intersections, the angle
between the two oriented triangle normals is greater than 104◦, meaning that
tq and ty must meet at v at an acute angle. This would contradict Property I,
which is that tq and ty meet at v at an obtuse angle. Hence, there are no two
points y, q in U with q̃ = ỹ. �

4.3.2 Homeomorphism Proof

We finish the proof for homeomorphism guarantee using a theorem from
topology.

Theorem 4.3 (Homeomorphism). The map ν ′ defines a homeomorphism from
the surface |E | computed by Cocone to the surface � for ε ≤ 0.05.

Proof. Let �′ ⊂ � be ν ′(|E |). We first show that (|E |, ν ′) is a covering space
of �′. Informally, (|E |, ν ′) is a covering space for �′ if ν ′ maps |E | onto �′,
with no folds or other singularities. Showing that (|E |, ν ′) is a covering space
is weaker than showing that ν ′ defines a homeomorphism, since, for instance, it
does not preclude several connected components of |E | mapping onto the same
component of �′, or more interesting behavior, such as a torus wrapping twice
around another torus to form a double covering.

For a set X ⊆ �′, let τ (X ) denote the set in |E | so that ν ′(τ (X )) = X . For-
mally, the (|E |, ν ′) is a covering space of �′ if, for every x ∈ �′, there is a
path-connected elementary neighborhood Vx around x such that each path-
connected component of τ (Vx ) is mapped homeomorphically onto Vx by ν ′.

To construct such an elementary neighborhood, note that the set of points
τ (x) corresponding to a point x ∈ �′ is nonzero and finite, since ν ′ is one-to-one
on each triangle of E and there are only a finite number of triangles. For each
point q ∈ τ (x), we choose an open neighborhood Uq of q , homeomorphic to a
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Figure 4.10. Proof of the Homeomorphism Theorem 4.3; τ (x) = {q1, q2, q3}.

disk and small enough so that Uq is contained only in triangles that contain q .
(see Figure 4.10).

We claim that ν ′ maps each Uq homeomorphically onto Ũq . This is because
it is continuous, it is onto Ũq by definition, and, since any two points x and y
in Uq are in adjacent triangles, it is one-to-one by Lemma 4.8.

Let U ′(x) = ⋂
q∈τ (x) ν

′(Uq ), the intersection of the maps of each of the Uq .
U ′(x) is the intersection of a finite number of open neighborhoods, each con-
taining x , so we can find an open disk Vx around x . Vx is path connected
and each component of τ (Vx ) is a subset of some Uq and hence is mapped
homeomorphically onto Vx by ν ′. Thus, (|E |, ν ′) is a covering space for �′.

We now show that ν ′ defines a homeomorphism between |E | and �′. Since
ν ′ : |E | → �′ is onto by definition, we need only that ν ′ is one-to-one. Consider
one connected component G of �′. A theorem of algebraic topology says that
when (|E |, ν ′) is a covering space of �′, the sets τ (x) for all x ∈ G have the
same cardinality. We now use Corollary 4.1, that ν ′ is one-to-one at every
sample point. Since each connected component of � contains some sample
points, it must be the case that ν ′ is everywhere one-to-one and |E | and �′ are
homeomorphic.

Finally, we show that �′ = �. Since |E | is a 2-manifold without boundary
and is compact, �′ must be as well. So, �′ cannot include part of a connected
component of �, and hence �′ must consist of a subset of the connected com-
ponents of �. Since every connected component of � contains a sample p
(actually many sample points) and ν ′(p) = p, all components of � belong to
�′. Therefore, �′ = � and |E | and � are homeomorphic. �

It can also be shown that |E | and � are isotopic (Exercise 7). We will show
a technique to prove isotopy in Section 6.1.3.

4.4 Notes and Exercises

The problem of reconstructing surfaces from samples dates back to the early
1980s. First, the problem appeared in the form of contour surface reconstruction
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in medical imaging. A set of cross sections obtained via CAT scan or MRI need
to be joined with a surface in this application. The points on the boundary of
the cross sections are already joined by a polygonal curve. The problem is to
connect these curves in consecutive cross sections. A dynamic programming-
based solution for two such consecutive curves was first proposed by Fuchs,
Kedem, and Uselton [51]. A result by Gitlin, O’Rourke, and Subramanian [57]
shows that, in general, two polygonal curves cannot be joined by nonself in-
tersecting surface with only those vertices; even deciding its possibility is NP-
hard. Several solutions with the addition of Steiner points have been proposed
to overcome the problem, see Meyers, Skinner, and Sloan [68]. A Delaunay-
based solution for the problem was proposed by Boissonnat [15] which is the
first Delaunay-based algorithm proposed for a surface reconstruction problem.
Later the Delaunay-based method was refined by Boissonnat and Geiger [17]
and Cheng and Dey [22].

The most general version of surface reconstruction where no input infor-
mation other than the point coordinates is used became popular to handle the
data from range and laser scanners. In the context of computer graphics and
vision, this problem has been investigated intensely in the past decade with em-
phasis on practical performance. The early work by Hoppe et al. [61], Curless
and Levoy [26] and the recent works by Alexa et al. [1], Carr et al. [18], and
Ohtake et al. [73] are a few such examples. The α-shape by Edelsbrunner and
Mücke [47] is the first popular Delaunay-based surface reconstruction method.
It is the generalization of the α-shape concept described in Section 2.4 of Chap-
ter 2. Depending on an input parameter α, Delaunay simplices are filtered based
on their circumscribing Delaunay ball sizes. The main drawback of this method
is that it is not suitable for nonuniform samples. Also, with the uniform samples,
the user is burdened with the selection of an appropriate α.

The first algorithm for surface reconstruction with proved guarantees was
devised by Amenta and Bern [4]. They generalized the Crust algorithm for
curve reconstruction to the surface reconstruction problem. The idea of poles
and approximating the normals with the pole vector was a significant break-
through. The crust triangles (Exercise 2) enjoy some nice properties that help
the reconstruction. The Cocone algorithm as described here is a successor of
Crust. Devised by Amenta, Choi, Dey, and Leekha [6], this algorithm sim-
plified the Crust algorithm and its proof of correctness. Cocone eliminated
one of the two Voronoi diagram computations of Crust and also a normal
filtering step. The homeomorphism between the reconstructed surface and the
original sampled surface was first established by Amenta et al. [6]. Boissonnat
and Cazals [16] devised another algorithm for surface reconstruction using the
natural neighbor coordinates (see Section 9.7) and proved its correctness using
the framework of Crust. Since the Deluanay triangulations of n points in three



78 4 Surface Reconstruction

dimensions take O(n2) time and space in the worst case, the complexity of all
these algorithms is O(n2). Funke and Ramos [53] showed how the Cocone
algorithm can be adapted to run in O(n log n) time. Unfortunately, the modified
algorithm is not very practical.

Although the Delaunay triangulation of n points in three dimensions may
produce�(n2) simplices in the worst case, such complexities are rarely observed
for point samples of surfaces in practice. Erickson [49] started the investigation
of determining the complexity of the Delaunay triangulations for points on
surfaces. Attali, Boissonnat, and Lieutier [10] proved that indeed the Delaunay
triangulation has O(n log n) complexity if the point sample is locally uniform
for a certain class of smooth surfaces.

Exercises

1. We know that Voronoi vertices for a dense sample from a curve in the
plane lie near the medial axis. The same is not true for surfaces in three
dimensions. Show an example where a Voronoi vertex for an arbitrarily
dense sample lies arbitrarily close to the surface.

2h . Let P be a sample from a C2-smooth surface � and V be the set of poles
in Vor P . Consider the following generalization of the Crust. A triangle in
the Del (P ∪ V ) is a crust triangle if all of its vertices are in P . Show the
following when P is an ε-sample for a sufficiently small ε.
(i) All restricted Delaunay triangles in Del (P ∪ V )|� are crust triangles.

(ii) All crust triangles have circumradius Õ(ε) f (p) where p is a vertex of
the triangle.

3. Let t be a triangle in Del P where B = Bv,r and B ′ = B ′
v′,r ′ are two

Delaunay balls circumscribing t . Let x be any point on the circle where
the boundaries of B and B ′ intersect. Show that, if ∠vxv′ > π

2 , the triangle
normal of t makes an angle of Õ(ε) with the normals to � at its vertices
when P is an ε-sample of � for a sufficiently small ε.

4. Recall that P is a locally (ε, δ)-uniform sample of a smooth surface � if P
is an ε-sample of � and each sample point p ∈ P is at least ε

δ
f (p) distance

away from all other points in P where δ > 1 is a constant. Show that each
triangle in the surface output by Cocone for such a sample has a bounded
aspect ratio (circumradius to edge length ratio). Also, prove that each vertex
has no more than a constant number (determined by ε and δ) of triangles
on the surface.

5h . Let t be a cocone triangle. We showed that any point x ∈ t is Õ(ε) f (x̃)
away from its closest point x̃ in �. Prove that the bound can be improved
to Õ(ε2) f (x̃).
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6. We defined a Delaunay triangle t as a cocone triangle if dual t intersects
cocones of all of its three vertices. Relax the condition by defining t as a
cocone triangle if dual t intersects the cocone of any of its vertices. Carry
out the proofs of different properties of cocone triangles with this modified
definition.

7. We showed that the surface |E | computed by Cocone is homeomorphic to
� when ε is sufficiently small. Prove that |E | is indeed isotopic to �.



5
Undersampling

The surface reconstruction algorithm in the previous chapter assumes that the
sample is sufficiently dense, that is, ε is sufficiently small. However, the cases of
undersampling where this density condition is not met are prevalent in practice.
The input data may be dense only in parts of the sampled surface. Regions
with small features such as high curvatures are often not well sampled. When
sampled with scanners, occluded regions are not sampled at all. Nonsmooth
surfaces such as the ones considered in CAD are bound to have undersampling
since no finite point set can sample nonsmooth regions to satisfy the ε-sampling
condition for a strictly positive ε. Even some surfaces with boundaries can be
viewed as a case of undersampling. If � is a surface without boundary and
�′ ⊂ � is a surface with boundary, a sample of �′ is also a sample of �. This
sample may be dense for �′ and not for �.

In this chapter we describe an algorithm that detects the regions of undersam-
pling. This detection helps in reconstructing surfaces with boundaries. Later,
we will see that this detection also helps in repairing the unwanted holes created
in the reconstructed surface due to undersampling.

5.1 Samples and Boundaries

Let P be an input point set that samples a surface � where � does not have any
boundary. The set P does not necessarily sample � equally well everywhere,
but it does so for a subset (patches) of � which we call �ε. The complement
� \ �ε are undersampled regions. The boundaries of �ε coincide with those
of the undersampled regions. The goal is to reconstruct these boundaries from
the input sample P . Since only P is known, we have to define the notion of
boundary also with respect to P .

80
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Σ

Σε

p

q

Figure 5.1. ε-sampled patches are shaded darker.

5.1.1 Boundary Sample Points

Definition 5.1. For any ε > 0, an ε-sampled patch �ε ⊆ � is the closure of
the set {x | Bx,ε f (x) ∩ P 
= ∅}.

In the above definition f : � → R is the local feature size function of � and
not of �ε. Figure 5.1 illustrates the notion of ε-sampled patches for a small
ε. Notice that �ε is orientable as it is a subset of a surface � ⊂ R

3 without
boundary which must be orientable. Also, by definition, �ε is compact.

In any compact surface, interior points are distinguished from boundary
points by their neighborhoods. An interior point has a neighborhood homeomor-
phic to the plane R

2. A boundary point, on the other hand, has a neighborhood
homeomorphic to the half plane H

2
+ = {(x1, x2) ∈ R

2 x1 ≥ 0}. Even though
all sample points in P may be interior points of the well-sampled patch �ε, the
existence of the nonempty boundary should be evident from the arrangement of
points in P . We aim for a classification of interior and boundary sample points
that capture the intuitive difference between interior and boundary points. We
use the intersection of �ε with the Voronoi diagrams to make this distinction.
Let Fε

p = (IntVp) ∩ �ε. The set Fε
p consists of all points in �ε that have p as

their nearest sample point. In other words, p is a discrete representative of the
surface patch Fε

p . Or, conversely, Fε
p can be taken as the neighborhood of p.

Using this notion of neighborhood, we define the interior and boundary sample
points.

Definition 5.2. A sample point p from a sample P of �ε is called interior if
Fε

p does not have a boundary point of �ε. Points in P that are not interior are
called boundary sample points.

Observe that if p is a boundary sample point, the boundary of �ε intersects
the interior of Vp. In Figure 5.1, p is an interior sample point whereas q is a
boundary sample point.



82 5 Undersampling

5.1.2 Flat Sample Points

The definitions of interior and boundary sample points are useless for com-
putations since the restricted Voronoi diagram Vor P|�ε cannot be computed
using only P . Therefore, we need a characterization of the sample points so
that they can be distinguished algorithmically. To this end we define a flatness
condition that can be checked with P while �ε being unknown. It is shown
that, under some mild assumptions, the boundary sample points cannot be flat
whereas most of the interior sample points are flat.

The definition of flatness is motivated by the observation that the interior
sample points have their Voronoi cells skinny and elongated along the normal,
a property not satisfied by the boundary sample points. So, we need a measure
to determine the “skinnyness” of the Voronoi cells. This motivates the following
definitions of radius and height.

Definition 5.3. The radius rp of a Voronoi cell Vp is the radius of the cocone C p,
that is, rp = max{‖y − p‖ | y ∈ C p}. The height h p is the distance ‖p − p−‖
where p− is the negative pole defined in Section 4.1.

The radius captures how “fat” the Voronoi cell is, whereas the height captures
how “long” it is. The ratio of the radius over the height gives a measure how
“skinny” the Voronoi cell is. It is important that the height be defined as the
distance to the negative pole rather than to the positive one. Otherwise, a Voronoi
cell only stretched toward the positive pole may qualify for a skinny cell, a
structure not supported by interior sample points.

Not only do we want to capture the “skinnyness” of the Voronoi cells, but
also the direction of their elongation. In case of an interior sample point p, the
direction of elongation direction follows the direction of np. This means that
the pole vector vp or its opposite vector match with those at the neighboring
sample points in directions. We take the cocone neighbors for this check. The
set of points in P whose Voronoi cells intersect the cocone of p are called the
cocone neighbors of p. Formally, the set

Np = {q ∈ P : C p ∩ Vq 
= ∅}
is the cocone neighbors of p.

The flatness condition is defined relative to two parameters ρ and α.

Definition 5.4. A sample point p ∈ P is called (ρ, α)-flat if the following two
conditions hold:

(i) Ratio condition: rp ≤ ρh p,
(ii) Normal condition: ∀q with p ∈ Nq , ∠a(vp, vq ) ≤ α.
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Ratio condition imposes that the Voronoi cell is long and thin in the direction
of vp. The normal condition stipulates that the direction of elongation of Vp

matches that of the Voronoi cell of any sample point whose cocone neighbor is
p. For the theoretical guarantees, we use ρ = 1.3ε and α = 0.14.

We will need the Normal Lemma 3.2 for further analysis. Since we proved
this lemma for surfaces without boundary, we cannot apply it to each sample
point in P since P only samples �ε well which may have boundaries. However,
we can adopt the result for interior sample points as stated below. We can copy
the entire proof for the Normal Lemma 3.2 since each point x of �ε in Vp is
within ε f (x) distance from p.

Lemma 5.1 (Interior Normal). Let p be an interior sample point in an ε-
sampled patch �ε with the surface normal np at p. Let y be any point in the
Voronoi cell Vp such that ||y − p|| > µ f (p) for some µ > 0. For ε < 1, one has

∠a(−→py, np) ≤ arcsin

(
ε

µ(1 − ε)

)
+ arcsin

(
ε

1 − ε

)
.

5.2 Flatness Analysis

Our goal is to exploit the definition of flat sample points in a boundary detection
algorithm. We prove two theorems that form the basis of this algorithm. The
Interior Sample Theorem 5.1 says that the interior sample points with well-
sampled neighborhoods are flat and the Boundary Sample Theorem 5.2 says
that the boundary sample points cannot be flat.

Lemma 5.2 (Ratio). Interior sample points satisfy the ratio condition for ρ =
1.3ε and ε ≤ 0.01.

Proof. Let p be any interior sample point. Letting µ = 1 and y equal a pole of
p in the Interior Normal Lemma 5.1 we get, for ε ≤ 0.01,

φ = ∠a(vp, np)

≤ 2 arcsin

(
ε

1 − ε

)
.

Let y be any point in C p. By definition ∠a(vp,
−→yp) ≥ 3π

8 . From the Interior
Normal Lemma 5.1 (applying the contrapositive of the implication stated there)
we get ||y − p|| ≤ µ f (p) where µ fulfills the inequality

arcsin

(
ε

µ(1 − ε)

)
+ arcsin

(
ε

1 − ε

)
+ φ ≤ 3π

8
. (5.1)
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One can deduce that µ ≤ 1.3ε satisfies Inequality 5.1 for ε ≤ 0.01. That is, the
radius of the Voronoi cell Vp is at most 1.3ε f (p), that is, rp ≤ 1.3ε f (p).

Next, we show that the height h p = ||p− − p|| is at least f (p). Recall that
p− is the farthest point in Vp from p so that (p− − p)T vp < 0. Since np makes a
small angle up to orientation with vp, one of the two medial balls going through
p has its center m such that the vector −→mp does not point in the same direction
as vp, that is, (m − p)T vp < 0. We know that ||m − p|| ≥ f (p) and m ∈ Vp.
This means that there is a Voronoi vertex v ∈ Vp with ‖v − p‖ ≥ ‖m − p‖
and (v − p)T vp < 0. This immediately implies that such a Voronoi vertex p−,
which is furthest from p, is at least f (p) away from p. Therefore, h p ≥ f (p) ≥

rp

1.3ε
. Thus, the ratio condition is fulfilled for ρ = 1.3ε where ε ≤ 0.01. �

Although the ratio condition holds for all interior sample points, the normal
condition may not hold for all of them. Nevertheless, interior sample points
with well-sampled neighborhoods satisfy the normal condition. To be precise
we introduce the following definition.

Definition 5.5. An interior sample point p is deep if there is no boundary
sample point with p as its cocone neighbor.

Theorem 5.1 (Interior Sample). All deep interior sample points are (ρ, α)-
flat for ρ = 1.3ε, α = 0.14, and ε ≤ 0.01.

Proof. It follows from the Ratio Lemma 5.2 that for ε ≤ 0.01, deep interior
sample points satisfy the ratio condition. We show that they satisfy the normal
condition as well. Let q be any Voronoi neighbor of p so that p ∈ Nq . The
sample point q is interior by definition. Therefore, we can apply the Interior
Normal Lemma 5.1 to assert that ∠a(vq , nq ) ≤ 2 arcsin ε

1−ε
. Also, by the Ratio

Lemma 5.2 any point x ∈ Cq satisfies ‖x − q‖ ≤ 1.3ε f (q). In particular, there
is such a point x ∈ Vp ∩ Vq since p ∈ Nq . With ||x − q|| ≤ 1.3ε f (q) and x ∈
Vp ∩ Vq we have ||p − q|| ≤ 2.6ε f (q). For ε ≤ 0.01 we can apply the Normal
Variation Lemma 3.3 to deduce ∠(np, nq ) ≤ 0.03. Thus, we have

∠a(vq , vp) ≤ ∠a(vq , nq ) + ∠(nq , np) + ∠a(np, vp)

≤ 0.14

which satisfies the normal condition for α = 0.14. �

Next, we aim to prove the converse of the above theorem, that is, a (ρ, α)-flat
sample point is an interior sample when ρ and α are sufficiently small. In other
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Figure 5.2. �ε shown with the solid curves whereas �δ is shown with the dotted curve.
The point p is a boundary sample point in �ε because of the small hole. This point
may turn into an interior sample point for �δ in which the hole may disappear. This
is prohibited by the Boundary Assumption 5.1(i). The point q is a boundary sample
point whose restricted Voronoi cell does not intersect that of any interior sample point
violating the Boundary Assumption 5.1(ii).

words, these sample points cannot be boundary samples. This is the statement
of the Boundary Sample Theorem 5.2.

For further development we will need to relate h p with the local feature size
f (p). Since the Voronoi cell Vp contains the centers of the two medial balls at
p, h p is an upper bound on f (p). Actually, for surfaces without boundary, it can
be shown that h p approximates the radius of the smaller of the two medial balls
at p within a small factor of Õ(ε

2
3 ) (Exercise 3 in Chapter 6). We need a similar

property for surfaces with boundary. However, for such surfaces h p may not
approximate f (p) within a small factor dependent on ε. Nevertheless, we can
bound the error with a surface-dependent constant which we use in the proof.
Let �p = h p

f (p) . We have an upper bound on h p = ||p− − p|| assuming that not
all data points lie on a plane. By our assumption that � is compact and has a
positive local feature size everywhere, f (p) is greater than a surface-dependent
constant. Thus, we have a surface-dependent constant, say �, so that �p ≤ �

for all p ∈ �.
The proof that the boundary sample points cannot be flat needs some as-

sumptions. The first assumption (i) says that boundary sample points remain as
boundary even if �ε is expanded with a small collar around its boundary (see
Figure 5.2). Assumption (ii) stipulates that the boundaries are “well separated”
disallowing situations as shown in Figure 5.2.

Assumption 5.1 (Boundary Assumption).

(i) We assume that both surfaces �ε and �δ define the same set of boundary
sample points when δ = 1.3�ε and � = max �p.

(ii) The restricted Voronoi cell of each boundary sample point in Vor P|�ε

intersects the restricted Voronoi cell of at least one interior sample
point.
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The Boundary Assumption 5.1(i) is used to show the next lemma which
leads to the Boundary Sample Theorem 5.2. This lemma says that a sample
point satisfying the ratio condition that has a pole vector approximating the
normal is an interior sample. Suppose p is such a sample point. The surface �

has to lie within the cocone in Vp because of the ratio condition and the pole
vector approximating the normal. This means that the subset of �ε in Vp is
small and, in particular, when expanded with a collar intersects Vp completely.
This violates the Boundary Assumption 5.1(i) if p is a boundary sample. We
formalize this argument now.

Lemma 5.3 (Interior). Let p be a sample point which satisfies the ratio con-
dition for ρ = 1.3ε. If ∠a(vp, np) ≤ 0.2, p is an interior sample point when
ε ≤ 0.01

1.3�
.

Proof. Suppose, on the contrary, p is a boundary sample point. Since the ratio
condition holds, we have ||x − p|| ≤ ρh p = ρ�p f (p) for any point x ∈ C p.
With ρ = 1.3ε, we have ||x − p|| ≤ δ f (p) where δ = �ρ = 1.3�ε. Therefore,
for any x ∈ C p we have

‖x − p‖ ≤ δ f (p). (5.2)

Let y be any point on � with ||y − p|| ≤ δ f (p). The condition ε ≤ 0.01
1.3�

gives δ < 2. We can apply the proof of the Edge Normal Lemma 3.4 to claim
∠a(−→py, np) ≥ π

2 − arcsin δ
2 . Since∠a(vp, np) ≤ 0.2 by condition of the lemma,

we have

∠a(vp,
−→py) ≥ π

2
− arcsin

δ

2
− 0.2

>
3π

8
.

It implies that any point y ∈ � with ||y − p|| ≤ δ f (p) cannot lie on the bound-
ary of the double cone defining C p. In other words, � ∩ Vp ∈ C p. Therefore, by
Inequality 5.2 any point y ∈ � ∩ Vp satisfies ||y − p|| ≤ δ f (p). According to
the Boundary Assumption 5.1 the surface �δ ⊇ �ε must define p as a bound-
ary sample point. But, that would require a boundary point of �δ to be in the
interior of Vp. This would in turn require a point y ∈ � with ||y − p|| > δ f (p)
to be in Vp. We reach a contradiction as each point y ∈ � ∩ Vp is at most δ f (p)
distance away from p. �

Theorem 5.2 (Boundary Sample). Boundary sample points cannot be (ρ, α)-
flat for ρ = 1.3ε, α = 0.14, and ε ≤ 0.01

1.3�
.
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Proof. Let p be a boundary sample point. Suppose that, on the contrary, p is
(1.3ε, 0.14)-flat. Consider an interior sample point q so that Vq |� ∩ Vp|� 
= ∅
(Boundary Assumption 5.1(ii)). The sample point p is a cocone neighbor of
q since Cq ∩ � = Vq ∩ �. The normal condition requires that ∠a(vp, vq ) ≤
0.14. Also, ||q − p|| ≤ 2.6ε f (q) due to the ratio condition. It implies that
∠(np, nq ) ≤ 0.03 (Normal Variation Lemma 3.3). Thus,

∠a(vp, np) ≤ ∠a(vp, vq ) + ∠a(vq , nq ) + ∠(nq , np)

≤ 0.14 + 0.021 + 0.03 = 0.191.

Thus, p satisfies the conditions of the Interior Lemma 5.3 and hence is an
interior sample point reaching a contradiction. �

5.3 Boundary Detection

The algorithm for boundary detection first computes the set of interior sample
points, R, that are (ρ, α)-flat where ρ and α are two user-supplied parameters to
check the ratio and normal conditions. If ρ and α are small enough, the Interior
Sample Theorem 5.1 guarantees that R is not empty. In a subsequent phase R
is expanded to include all interior sample points in an iterative procedure. A
generic iteration proceeds as follows. Let p be any cocone neighbor of a sample
point q ∈ R so that p 
∈ R and p satisfies the ratio condition. If vp and vq make
small angle up to orientation, that is, if ∠a(vp, vq ) ≤ α, we include p in R. If
no such sample point can be found, the iteration stops.

There is a subtle difference between the initial phase and the expansion phase
of the boundary detection. The initial phase checks the normal condition for all
cocone neighbors (step 3 in isFlat) whereas the expansion phase checks this
condition only for cocone neighbors that have already been detected as interior
(step 6 in Boundary). We argue that R includes all and only interior sample
points at the end. The rest of the sample points are detected as boundary ones.

The following routine isFlat checks the ratio and normal conditions to detect
flat sample points. The input is a sample point p ∈ P with two parameters ρ

and α. The return value is true if p is (ρ, α)-flat and false otherwise. The
routine Boundary uses isFlat to detect the boundary sample points.

isFlat(p ∈ P , α, ρ)
1 compute the radius rp and the height h p;
2 if rp ≤ ρh p

3 if ∠a(vp, vq ) ≤ α ∀q with p ∈ Nq

4 return true;
5 return false.
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Boundary(P , α, ρ)
1 R := ∅;
2 for all p ∈ P do

3 if isFlat(p, α, ρ)
4 R := R ∪ p;
5 endfor

6 while (∃p 
∈ R) and (∃q ∈ R with p ∈ Nq ) do
and (rp ≤ ρh p) and (∠a(vp, vq ) ≤ α)

7 R := R ∪ p;
8 endwhile

9 return P \ R.

5.3.1 Justification

Now we argue that Boundary outputs all and only boundary sample points.
We need an interior assumption that says that all interior sample points have
well-sampled neighborhoods.

Assumption 5.2 (Interior Assumption). Each interior sample point is path
connected to a deep interior sample point where the path lies only inside the
restricted Voronoi cells of the interior sample points.

Theorem 5.3. Boundary outputs all and only boundary sample points when
ρ = 1.3ε, α = 0.14, and ε ≤ 0.01

1.3�
.

Proof. Inductively assume that the set R computed by Boundary contains
only interior sample points. Initially, the assumption is valid since steps 2 and
3 compute the set of flat sample points, R, which must be interior due to the
Boundary Sample Theorem 5.2. The Boundary Assumption 5.1(ii) and the
Interior Assumption 5.2 imply that each component of �ε must have a deep
interior sample point. Thus, R cannot be empty initially. In the while loop if a
sample point p is included in the set R, it must satisfy the ratio condition. Also,
there exists q ∈ R so that ∠a(vp, vq ) ≤ 0.14 since α = 0.14 radians. Since q
is an interior sample point by inductive assumption ∠a(vq , nq ) ≤ 2 arcsin ε

1−ε

(Interior Normal Lemma 5.1). It follows that ∠a(vp, nq ) ≤ 0.161. Since p is
a cocone neighbor of q, we have ||q − p|| ≤ 2.6ε f (q). Applying the Normal
Variation Lemma 3.3 we get ∠(nq , np) ≤ 0.03 for ε ≤ 0.01. Therefore,

∠a(vp, np) ≤ ∠a(vp, nq ) + ∠(nq , np) ≤ 0.2.

It follows from the Interior Lemma 5.3 that q is an interior sample point proving
the inductive hypothesis.
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Now we argue that each interior sample point p is included in R at the end
of the while loop. The Interior Assumption 5.2 implies that one can reach p
walking through adjacent cocones from a deep interior sample point. The proof
of the Interior Sample Theorem 5.1 can be applied to show that any interior
sample point that is a cocone neighbor of a sample point in R satisfies the
condition of the while loop. It follows that p is encountered in the while loop
during some iteration and is included in R. �

5.3.2 Reconstruction

The Cocone algorithm described in Chapter 4 can be used to complete the
surface reconstruction after the boundary sample points are detected. In the
Cocone algorithm a sample point p chooses all triangles incident to it whose
dual Voronoi edges are intersected by the cocone C p. But, this causes the
boundary sample points to choose undesirable triangles since the estimated
normals at these sample points are not correct. So, in the modified algorithm
BoundCocone, the boundary sample points are not allowed to choose any
triangles. The desired triangles incident to boundary sample points are chosen by
some interior sample points. As a result “garbage” triangles are eliminated and
clean holes appear at the undersampled regions. Also, the manifold extraction
step needs to be slightly modified so that it does not prune any boundary triangle
incident to a boundary sample point.

BoundCocone(P , α, ρ)
1 compute Vor P;
2 B :=Boundary(P , α, ρ);
3 for each p ∈ P \ B do

4 mark the triangle dual e where e ∩ C p 
= ∅;
5 endfor

6 T := ∅;
7 for each σ ∈ DelP do

8 if σ is marked by all its vertices not in B
9 T :=T ∪ σ ;

10 endif

11 endfor

12 extract a manifold from T using pruning and walking.

Figure 5.3 shows some examples of the boundary detection using
BoundCocone. Obviously, in practice, sometimes the assumptions made for
BoundCocone do not hold and the output may produce some artifacts.
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(a)

(c)

(b)

(d)

Figure 5.3. Reconstruction of the dataset Foot: (a) without boundary detection; the big
hole above the ankle is covered with triangles and (b) with boundary detection using the
algorithm BoundCocone; the hole above the ankle is well detected. Monkey saddle:
(c) without boundary detection and (d) with boundary detection.

5.4 Notes and Exercises

The material for this chapter is taken from Dey and Giesen [30]. Undersampling
is one of the major problems for surface reconstruction in practice. Systematic
treatment of undersampling is scarce in the literature. Dey and Giesen gave the
first provable algorithm for undersampling detection under some reasonable
assumptions. The questions of relaxing these conditions and proving homeo-
morphisms between the reconstructed and original surfaces remain open. In
practice, when BoundCocone is applied to reconstruct surfaces with bound-
aries sometimes it detects small holes in undersampled regions along with the
intended boundaries. Theoretically, these small holes are correctly detected.
However, often applications require that only the intended boundaries and not
these small holes be detected. It would be interesting to find a solution which
can recognize only distinct boundaries.
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Recall that the presented theory is based on the assumption that the sampled
surface � is C2-smooth. However, it is observed that the boundary detection
algorithm also detects undersampling in nonsmooth surfaces. The ability to
handle nonsmooth surfaces stems from the fact that nonsmooth surfaces may
be approximated with a smooth one that interpolates the sample points. Such
a surface exists by a well-known result in mathematics that the class of C2-
smooth surfaces is dense in the class of C0-smooth surfaces. For example, one
can resort to the implicit surface that is C2-smooth and interpolates the sample
points using natural coordinates as explained in Boissonnat and Cazals [16]
(see Section 9.7). These smooth surfaces have high curvatures near the sharp
features of the original nonsmooth surface. The theory can be applied to the
approximating smooth surface to ascertain that the sample points in the vicin-
ity of sharp features act as boundary sample points in the vicinity of high
curvatures for the smooth surface. Reconstructing nonsmooth surfaces with
topological guarantees under the ε-sampling theory becomes difficult since
the local feature size becomes zero at nonsmooth regions. Recently, Chazal,
Cohen-Steiner, and Lieutier [19] proposed a sampling theory that alleviates this
problem.

We assumed that the input point set samples a subset of a surface without
boundary. It is not true that all surfaces with boundaries can be viewed as a subset
of a surface without boundary. For example, nonorientable surfaces in R

3 such
as Möbius strip cannot be a subset of any surface without boundary. It remains
open to develop a general reconstruction algorithm for any C2-smooth, compact
surface with boundaries (Exercise 6). Also, we did not prove any topological
equivalence between the output and input surfaces. It remains open to develop
an algorithm with such guarantees (Exercise 2).

Exercises

1. Let P oversample a C2-smooth surface �, that is, P is unnecessarily dense.
Devise an algorithm to eliminate points from P so that � can still be
reconstructed from the decimated P .

2o. Let � be a C2-smooth surface with a boundary C . Suppose P is an ε-
sample of � where the local feature size function is defined with respect
to the medial axis of � taking C into account. Also, assume that the points
P ′ ⊂ P that sample C are known. Design an algorithm to reconstruct �

from P with a proof of homeomorphism.
3o. Devise an algorithm to detect the boundary sample points whose proof does

not depend upon a global constant like �.
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4o. Prove or disprove that only the ratio condition as presented in this chapter
is sufficient for detection of the boundary sample points.

5. Prove the Voronoi Cell Lemma 3.10 for �ε when ε is sufficiently small.
6o. BoundCocone and its proof depends on the fact that the surface �ε is

orientable. Devise an algorithm for reconstructing nonorientable surfaces.



6
Watertight Reconstructions

Most of the surface reconstruction algorithms face a difficulty when dealing with
undersampled surfaces and noise. While the algorithm described in Chapter 5
can detect undersampling, it leaves holes in the surface near the undersampled
regions. Although this may be desirable for reconstructing surfaces with bound-
aries, many applications such as CAD designs require that the output surface
be watertight, that is, a surface that bounds a solid. Ideally, this means that
the watertight surface should be a compact 2-manifold without any boundary.
The two algorithms that are described in this chapter produce these types of
surfaces when the input sample is sufficiently dense. However, the algorithms
are designed keeping in mind that the sample may not be sufficiently dense
everywhere. So, in practice, the algorithms may not produce a perfect manifold
surface but their output is watertight in the following sense:

Watertight surface: A 2-complex embedded in R
3 whose underly-

ing space is a boundary of the closure of a 3-manifold in R
3.

Notice that the above definition allows the watertight surface to be nonmanifold.
The closure of a 3-manifold can indeed introduce nonmanifold property; for
example, a surface pinched at a point can be in the closure of a 3-manifold.

6.1 Power Crust

In Chapter 4, we have seen that the poles for a dense point sample lie quite
far away from all samples (proof of the Pole Lemma 4.1) and hence from the
surface. Indeed, they lie close to the medial axis. The Delaunay balls circum-
scribing the tetrahedra that are dual to the poles are called polar balls. These
balls have their centers at the poles and they approximate the medial balls. The

93



94 6 Watertight Reconstructions

PowerCrust algorithm is based on the observation that a solid is equal to the
union of all the inner (outer) medial balls of its bounding surface. Since the
polar balls approximate the medial balls, the boundary of the union of inner
(outer) polar balls approximates the bounding surface.

For simplicity and also for a technical reason we assume that the sampled
surface � has a single component in this section. Also, assume that � does
not have any boundary. Such a surface partitions R

3 into two components. The
unbounded component of R

3\� is denoted �O . The rest, that is, R
3 \ �O is

denoted �I . Notice that �O is open where �I is closed with � on its boundary.
For the analysis we need the normals of � oriented. As before we orient the
normal nx at any point x ∈ � outward, that is, toward �O .

When � is connected, there are two sets of medial balls. The inner medial
balls have their centers in �I while the outer medial balls have their centers
in �O . The surface � bounds the union of both sets of medial balls. In other
words, � consists of points where the inner medial balls meet with the outer
ones. Likewise we can separate the polar balls into inner and outer ones. The
inner ones have their centers in �I whereas the outer ones have their centers
in �O . The union of inner polar balls does not necessarily meet the union of
outer polar balls in a surface. Nevertheless, the points lying in both unions and
the points lying in neither of the unions are close to �. A surface is extracted
out of these points by using power diagrams of the polar balls.

6.1.1 Definition

Power Diagrams

A power diagram is a generalization of the Voronoi diagram where the in-
put points and distances are weighted. A weighted point p̂ is a point p ∈ R

3

with a weight wp, that is, p̂ = (p, wp). The weighted point p̂ can be thought
of as a ball Bp,wp . Conversely, a ball Bp,r can be thought as a weighted
point p̂ = (p, r ). The power distance between two points p̂ and q̂ is given
by

π ( p̂, q̂) = ‖p − q‖2 − w2
p − w2

q .

See Figure 6.1 for a geometric interpretation of the power distance of an un-
weighted point x̂ = (x, 0) from a weighted one in R

2. Let P̂ denote a set of
weighted points where P is the set of corresponding unweighted points. A
power cell Vp̂ for a weighted point p̂ ∈ P̂ is defined as

Vp̂ = {x ∈ R
3 | π (x, p̂) ≤ π(x, q̂) ∀q̂ ∈ P̂}.
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Figure 6.1. (a) π (x, ĉ) is the squared length of the tangent xz. (b) The cells of ĉ1 and
ĉ2 are the half planes on the left and right respectively of the solid line. The line passes
through the intersection of the two circles. (c) Similar to (b), the dividing line passes
through the midpoints u and v of the bitangents.

The facets and hence all faces of a power cell are linear. A point x in such a
facet satisfies the equation

‖p − x‖2 − w2
p = ‖q − x‖2 − w2

q

or, ‖p‖2 − 2pT x − w2
p = ‖q‖2 − 2qT x − w2

q

which is an equation of a plane.

Definition 6.1. For a set of weighted points P̂ ⊂ R
3, the power diagram Pow P̂

is the 3-complex made by the faces of the power cells {Vp̂ | p̂ ∈ P̂}.

If the two balls corresponding to the two weighted points determining a facet
meet, the facet lies on the plane passing through the circle where the boundaries
of the two balls meet. As the ordinary unweighted Voronoi diagram, the power
diagram defines a dual triangulation called the weighted Delaunay triangulation.
Precisely, for a weighted point set P̂ , the weighted Delaunay triangulation is a
simplicial complex where a simplex σ is in the triangulation if the power cells
in Pow P̂ for the vertices of σ have a nonempty intersection.

See Figure 6.2 for a power diagram of a set of points in the plane. Notice that
the power cell of a weighted point may be empty or may not contain the point.
However, such anomalies occur only when a weighted point lies completely
inside another one. In our case these situations will not arise.

Let P be a sufficiently dense sample of �. Recall that each sample point
p ∈ P defines two poles in the Voronoi diagram Vor P . These two poles lie
in different components of R

3 separated by �. The pole in the unbounded
component �O is called the outer pole and the pole in the bounded component
�I is called the inner pole. The set of inner poles, CI , defines a weighted point set
ĈI where the weight of each pole is equal to the radius of the corresponding polar
ball. Similarly, the set of outer poles, CO , defines a weighted point set Ĉ O . The
entire set of poles C = CI ∪ CO defines the weighted point set Ĉ = Ĉ I ∪ Ĉ O .
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u

Figure 6.2. Power diagram of a set of points in the plane. A power cell of a weighted
point may be empty or may not contain the point; û is such a weighted point.

Figure 6.3. Power crust of a set of points in the plane: (left) the Voronoi diagram of
the points, (middle) the polar balls including the infinite ones; the inner polar balls are
shaded, (right) the inner power cells are shaded; the power crust edges drawn with thick
segments separate the inner cells from the outer ones.

Definition 6.2. The power crust PwcP of P is defined as the subcomplex in
Pow Ĉ where a face F ∈ Pow Ĉ is in PwcP if a cell corresponding to an inner
pole and a cell corresponding to an outer pole meet in F.

Figure 6.3 illustrates the concept of the power crust for a set of points in the
plane.

According to the definition, PwcP is a collection of vertices, edges, and
facets where a cell for an inner pole meets a cell for an outer pole. Consider
such an edge. The sequence of cells around it should at least change from an
inner pole to an outer one and again from an outer pole to an inner one. This
implies the following lemma.

Lemma 6.1. Each edge in PwcP has an even number (greater than zero) of
facets incident to it.
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The above lemma implies that PwcP cannot have an edge with a single or
no facets incident to it. This contributes to the watertightness of PwcP . Also,
since each point of P has an inner pole and an outer pole, it is incident to cells in
Pow Ĉ where at least one corresponds to an inner pole and another corresponds
to an outer pole. Therefore, we have:

Lemma 6.2. Each point of a ε-sample P belongs to Pwc P if ε is sufficiently
small.

6.1.2 Proximity

The power crust PwcP is geometrically close to �. Also, the normals to the
facets of PwcP match closely with the normals of � at nearby points. We will
see that these properties together ensure that the underlying space of PwcP is
homeomorphic to �.

The union of the inner and outer polar balls plays a vital role in establishing
the geometric and normal proximity of PwcP to �. Let UI and UO denote the
union of the inner and outer polar balls respectively.

Geometric Proximity

First, observe that any point on Pwc P is either in both of UI and UO or in
neither of them. Specifically, let x be any point on a facet F in PwcP . The facet
F belongs to two cells for two poles, say c1 ∈ CI and c2 ∈ CO . By the property
of the power diagram, the facet F is either in both polar balls if they intersect,
or in neither of them if they do not. In the first case, clearly x ∈ UI ∩ UO . In the
other case x cannot belong to any polar ball since the power distance π(x, ĉ1)
of x for the polar ball ĉ1 is minimum among all poles and it is positive.

The next lemma states that points which belong to both of UI and UO or
to neither of their interiors are very close to �. We will skip the proof (see
Exercise 8).

Lemma 6.3. Let x be a point so that either x ∈ UI ∩ UO or x 
∈ IntUI ∪ IntUO.
For a sufficiently small ε, ‖x − p‖ = Õ(ε) f (p) where p ∈ P is the nearest
sample point to x.

We already know that any point in the underlying space |PwcP| of PwcP
is in either UI ∩ UO or in R

3 \ (UI ∪ UO ). Therefore, the above lemma along
with the ε-sampling condition leads to the following theorem.

Theorem 6.1 (PC-Hausdorff). For a sufficiently small ε, let P be a ε-sample
of �. Each point x ∈ |PwcP| is within Õ(ε) f (x̃) distance of � where x̃ is
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the closest point to x on �. Conversely, each point x ∈ � is within Õ(ε) f (x)
distance of |PwcP|.

Normal Proximity

The boundaries of UI and UO remain almost parallel to the surface �. To
describe this phenomenon precisely, we need to define a normal for each point
on the union boundaries. For a polar ball, orient the normal to its boundary to
point outward, that is, away from the center. The normals on the boundaries of
UI and UO are well defined for points that belong to a single polar ball. The
points that belong to more than one polar ball do not have well defined normals.
Therefore, when we talk about a normal at a point x on the boundary of UI

(or UO ), we mean the normal to the boundary of any polar ball incident to x .
The following lemma is the key to establishing the normal proximity. We will
not prove this lemma here though a general version of this lemma is proved
in Section 7.3 in the context of noisy samples. The corollary of the General
Normal Theorem 7.1 has the same condition as that of the following lemma
with δ = Õ(ε).

Lemma 6.4. Let x be any point in an inner polar ball Bc,r where ‖x − x̃‖ =
Õ(ε) f (x̃) for a sufficiently small ε. One has ∠(nx̃ ,

−→cx ) = Õ(
√

ε).

In the above lemma, Bc,r is an inner polar ball containing x . It is possible
that x does not belong to the cell of c ∈ CI . The next lemma considers the polar
ball whose power distance to x is the least, that is, x belongs to the cell of the
center of that polar ball.

Lemma 6.5. For a sufficiently small ε, let x be a point within Õ(ε) f (x̃) distance
from its closest point x̃ in �. If c is the inner pole where x belongs to the cell
of c, ∠(nx̃ ,

−→cx ) = Õ(
√

ε).

Proof. Let Bc,r be the inner polar ball centering c. If x ∈ Bc,r , Lemma 6.4
establishes the claim.

Consider the other case when x does not belong to Bc,r . In that case it can
be shown that the distance of x to Bc,r is Õ(ε) f (x̃). The closest point of x to
Bc,r lies on the segment xc. Let this point be z. The point z is Õ(ε) f (x̃) away
from its closest point z̃ on � since this distance is no more than the sum of the
distances of x from � and of z from x . By Lipschitz property of f this distance
is also no more than Õ(ε) f (z̃). Now Lemma 6.4 applied to z gives that the
angle between nz̃ and −→cz is Õ(

√
ε). Since the normals at z̃ and x̃ make at most

Õ(ε) angle (Normal Variation Lemma 3.3), the claimed bound follows. �
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Notice that the above Lemma also holds for outer poles.
The above lemma and some more observations together lead to the following

result about the normals of the facets in Pwc P .

Theorem 6.2 (PC-Normal). Let P be an ε-sample of � where ε is sufficiently
small. Let nF be the normal to any facet F in Pwc P and x be the point in �

closest to F. Then, ∠a(nF , nx ) = Õ(
√

ε).

Proof. Let y be the point in F closest to x . We know from PC-Hausdorff
Theorem 6.1 that ‖x − y‖ = Õ(ε) f (x). Let c and c′ be the inner and outer
poles respectively whose cells share F . Lemma 6.5 implies ∠(nx ,

−→cy ) = Õ(
√

ε)

and ∠(nx ,
−→
yc′) = Õ(

√
ε). This implies that ∠(−→cy ,

−→
c′y) = π − Õ(

√
ε) which

also means ∠(
−→
cc′, −→cy ) = Õ(

√
ε). We are done since the line containing cc′ is

perpendicular to the plane of F and hence

∠a(nF , nx ) = ∠a(
−→
cc′, nx ) ≤ ∠a(

−→
cc′, −→cy ) + ∠a(−→cy , nx )

= Õ(
√

ε).

�

6.1.3 Homeomorphism and Isotopy

Lemma 6.5 is the key to establishing the homeomorphism between � and
|Pwc P|, the underlying space of Pwc P . Consider the functionν : R

3 \ M → �

where ν(x) = x̃ and M is the medial axis of �. We show that the restriction of
ν to |Pwc P| realizes this homeomorphism.

Theorem 6.3. |Pwc P| is homeomorphic to � where P is a sufficiently dense
sample of �.

Proof. Consider the restriction ν ′ : |Pwc P| → � of ν. Since |Pwc P| avoids the
medial axis (PC-Hausdorff Theorem 6.1) for a sufficiently small ε, the map ν ′ is
well defined. It is also continuous since ν is. We show that ν ′ is one-to-one. If not,
at least two points x, x ′ exist on |Pwc P| where ν ′(x) = ν ′(x ′) = x̃ . The point
x , x ′, and x̃ lie on the line � normal to � at x̃ . By PC-Hausdorff Theorem 6.1,
both x and x ′ are within Õ(ε) f (x̃) distance from x̃ . We claim that � intersects
|Pwc P| only at a single point within Õ(ε) f (x̃) distance, thereby contradicting
the existence of x and x ′ as assumed. To prove the claim assume without loss of
generality that x is further from x̃ than x ′ is. Consider two functions �I and �O

that assign to each point z ∈ R
3 the minimum power distance to any pole in CI
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and CO respectively. Consider moving a point z from x̃ toward x . Lemma 6.5
implies that the vectors from the nearest (in terms of power distance) pole in
CI and CO to z make an angle Õ(

√
ε) with the line �. This means that either

the function �I monotonically increases while �O monotonically decreases
or �I monotonically increases while �O monotonically decreases as z moves
from x̃ to x . It follows that the two functions become equal only at a single
point. Since each point on |Pwc P| has equal minimum power distances to the
poles in CI and to the poles in CO , we must have x = x ′.

Consider the set �′ = ν ′(|Pwc P|). Obviously, ν ′ maps |Pwc P| surjectively
onto �′. Since |Pwc P| is compact, so is �′. The inverse map of ν ′ from �′

to |Pwc P| is continuous since the inverse of a continuous map between two
compact spaces is also continuous. Therefore, ν ′ is a homeomorphism between
|Pwc P| and �′. The only thing that remains to be shown is that �′ = �.

Notice that �′ is a manifold without boundary since Pwc P does not have
any edge with a single facet incident on it (Lemma 6.1). Then �′ being a
submanifold of � can differ from it by a component. But, that is impossible
since we assume that � has a single component. �

We already indicated in Section 1.1 that two homeomorphic surfaces can be
embedded in R

3 in ways that are fundamentally different. So, it is desirable
that we prove a stronger topological relation between � and |Pwc P|. We show
that, not only are they homeomorphic but are isotopic as well. This means one
can deform R

3 continuously so that |Pwc P| is taken to �.

Theorem 6.4 (PC-Isotopy). Let P be an ε-sample of �. |Pwc P| is isotopic
to � if ε is sufficiently small.

Proof. For isotopy we define a map ξ : R
3 × [0, 1] → R

3 so that
ξ (|Pwc P|, 0) = |Pwc P| and ξ (|Pwc P|, 1) = � and ξ (·, t) is a continuous,
one-to-one, and onto map for all t ∈ [0, 1]. Consider a tubular neighborhood
N� of � as

N� = {x | d(x, �) ≤ cε f (x̃)}
where each point y of |Pwc P| is within cε f (ỹ) distance and cε < 1 is suffi-
ciently small. For a sufficiently small ε, such a c exists by the PC-Hausdorff
Theorem 6.1. In R

3 \ N� we define ξ to be identity for all t ∈ [0, 1]. For any
point x ∈ N� we define ξ as follows. Consider the line segment g passing
through x and normal to � with endpoints gi and go on the two boundaries
of N� . Since cε < 1, the tubular neighborhood N� avoids the medial axis and
hence g intersects � in exactly one point, say at u. Also, by arguments in the
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Figure 6.4. Shallow intersection (left) and deep intersection (right) between two balls.

proof of Theorem 6.3, g intersects |Pwc P| only at a single point, say at w.
In N� we define wt = ξ (w, t) = tu + (1 − t)w and let ξ (·, t) linearly map the
segments giw to giwt , and wgo to wt go. That is,

ξ (x, t) = wt + (x − w)
gi − wt

gi − w
, x is in giw

= wt + (x − w)
go − wt

go − w
, x is in gow.

Clearly, ξ is continuous, one-to-one, and onto for each t ∈ [0, 1] with

ξ (|Pwc P|, 0) = |Pwc P| and ξ (|Pwc P|, 1) = �.

�

6.1.4 Algorithm

We compute the power crust by identifying the cells corresponding to the inner
and outer poles and then computing the facets separating a cell of an inner pole
from a cell of an outer pole. The poles are labeled inner or outer by computing
how deeply the corresponding polar balls intersect. It is important for this
labeling algorithm that the surface � has a single connected component.

The labeling algorithm is a simple traversal of the Delaunay graph structure.
It utilizes the following properties of the polar balls. If two polar balls intersect,
their depth of intersection depends on their types. If one of them is inner and
the other is outer, the intersection is shallow. On the other hand, if both of them
are inner or outer, the intersection is deep . We formalize this idea.

Let two balls B1 and B2 intersect and x be any point on the circle in which
their boundaries intersect. We say that B1 and B2 intersect at an angle α if the
vectors −→c1x and −→c2x make an angle α where c1 and c2 are the centers of B1 and
B2 respectively (see Figure 6.4).

Lemma 6.6. Let B1 and B2 be two polar balls that intersect. For a sufficiently
small ε the following hold.
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(i) If B1 is an inner and B2 is an outer polar ball, they intersect at an angle of
π − Õ(

√
ε).

(ii) If both of B1 and B2 are inner or outer polar balls, and there is a facet
F in Pow Ĉ between the cells of c1 and c2 with a point x ∈ F where
‖x − x̃‖ = Õ(ε) f (x̃), then B1 and B2 intersect at an angle of Õ(

√
ε).

Proof. Consider (i). Let y be a point on the circle where the boundaries of
B1 and B2 intersect. Since y belongs to UI ∩ UO , Lemma 6.3 asserts that
‖y − ỹ‖ = Õ(ε) f (ỹ).

Let nỹ be the oriented outer normal. By Lemma 6.4 we get that the angle
between nỹ and the vector −→ci x is Õ(

√
ε) if ci is an inner pole, and the angle is

π − Õ(
√

ε) if ci is an outer pole. Since c1 and c2 are poles with opposite labels
in case (i), the claimed angle bound follows.

Consider (ii). The poles have same labels, say inner in case (ii). Both polar
balls have a point, namely x with ‖x − x̃‖ = Õ(ε) f (x̃). Therefore, the vectors−→c1x and −→c2x make an angle of Õ(

√
ε) with nx̃ according to Lemma 6.4. The

claimed angle bound is immediate. �

Now we describe the labeling algorithm for the poles. The angle at which
two polar balls centering c and c′ intersect is denoted ∠c, c′.

LabelPole(Vor P ,C ,Pow Ĉ)
1 label all poles in C outer;
2 choose any sample p on Conv P;
3 mark the finite pole c of p inner;
4 push c into a stack S;
5 while S 
= ∅ do

6 c := pop S;
7 mark c processed;
8 for each pole c′ adjacent to c in Pow Ĉ do

9 if (∠c, c′ > 2π
3 ) and (c′ is not processed)

10 label c′ inner;
11 push c′ into S;
12 endif

13 endfor

14 endwhile

15 return C with labels.

Notice that we chose an angle threshold of 2π
3 somewhat arbitrarily to decide

if two balls are intersecting deeply or not. The point is that any angle Õ(
√

ε)
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will work as long as ε is sufficiently small. Assuming ε < 0.1, the angle of 2π
3

is a safe choice. The correctness of LabelPoles follows from the next lemma.

Lemma 6.7 (Label). Each pole is labeled correctly by LabelPole.

Proof. Consider the graph of the power crust edges. Since � has a single com-
ponent, this graph is connected. We call two inner polar balls adjacent if they
contribute a facet in Pow Ĉ and the facet has an edge in the power crust.

The first inner polar ball marked by LabelPole is correctly labeled as the
finite pole of a sample point on the convex hull is necessarily inner. This sample
point, as all others, lie on the power crust. Since the graph of the power crust
edges is connected, all inner polar balls contributing an edge on the power crust
are labeled by LabelPole. Also, since each polar ball has a sample point on
its boundary which appears as an endpoint of a power crust edge, Lemma 6.6
can be applied assuring that all of them are labeled correctly. �

Now we enumerate the steps of the power crust.

PowerCrust(P)
1 compute Vor P;
2 compute all poles C in Vor P;
3 compute Pow Ĉ ;
4 C :=LabelPole(Vor P , C , Pow Ĉ);
5 mark each facet of Pow Ĉ separating a cell of an

inner pole from that of an outer pole;
6 output the 2-complex made by the marked facets.

The PC-Hausdorff Theorem 6.1, the PC-Normal Theorem 6.2, the PC-
Isotopy Theorem 6.4, and the Label Lemma 6.7 make the following theorem.

Theorem 6.5. Given an ε-sample of a smooth, compact surface � without
boundary, the PowerCrust computes a 2-complex Pwc P with the following
properties if ε is sufficiently small.

(i) Each point x ∈ |Pwc P| has ‖x − x̃‖ = Õ(ε) f (x̃).
(ii) Each facet F ∈ Pwc P has a normal nF with ∠a(nF , nx ) = Õ(

√
ε) where

x is the point in � closest to F.
(iii) |Pwc P| is isotopic to �.

The PowerCrust algorithm computes two Voronoi diagrams. The first one
in step 1 takes O(n2) time and space in the worst case for a set of n points.
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The power diagram computation in step 3 takes O(m2) time and space if m
is the number of poles. Since we have at most two poles for each input point,
we have m ≤ 2n. Therefore, step 3 takes O(n2) time and space in the worst
case. The complexity of all other steps are dominated by the Voronoi diagram
computations. Therefore, PowerCrust runs in O(n2) time and space in the
worst case.

6.2 Tight Cocone

The output of PowerCrust has each input sample point as a vertex. However,
each of the vertices of Pwc P is not necessarily a point in P . The vertices of
the power crust facets are the points whose nearest power distance to the poles
is determined by three or more poles. Each sample point satisfies this property
and so do other points. As a result, the number of vertices in the output surface
is usually greater than the number of input points. In some cases, this increase
in size can be a prohibitive bottleneck, especially when dealing with large data
sets. Further, the power crust is a subcomplex of a Voronoi diagram and is not
necessarily triangular. Of course, its polygonal facets can be triangulated but at
the expense of increased size and many coplanar triangles. These limitations of
PowerCrust are remedied by the TightCocone algorithm.

The overall idea of TightCocone is to label the Delaunay tetrahedra com-
puted from the input sample as in or out according to an initial approximation of
the surface and then peeling off all out tetrahedra. This leaves the in tetrahedra,
the boundary of whose union is output as the watertight surface. The output
of BoundCocone described in Chapter 5 is taken as the initial approximated
surface possibly with holes and other artifacts.

Since the output of TightCocone is the boundary of the union of a set
of tetrahedra, it is watertight by definition. However, apart from being water-
tight, the output also should approximate the geometry of the original sampled
surface. For any such theoretical guarantee, we need the sample to be dense
enough. Since the main motivation for designing TightCocone is to consider
undersampled point sets, we do not prove any guarantee about TightCocone
except that all guarantees for Cocone also hold for TightCocone when the
sample is sufficiently dense.

Although we do not attempt to design TightCocone with theoretical guar-
antees, we make some decisions in the algorithm based on the assumption that
the undersampling is not arbitrary. This means that BoundCocone computes
most of the intended surface except with holes that are locally repairable. Of
course, if this assumption is not obeyed, the output surface, though watertight
may not be close to the original one and may even be empty.
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Figure 6.5. The umbrella of p has three triangles pqr, prs, and pqs. This um-
brella separates the tetrahedra incident to p into two clusters: the upper cluster
{absp, asqp, abpq, bqrp, brsp} and the lower cluster {cqrp, csrp, cqsp}. Suppose the
walk entered p with the pair (p, bprs). The right picture shows that the unexplored
point q has an umbrella. Therefore, the pair (q, bprq) is entered into the stack since q is
a good and unexplored point.

6.2.1 Marking

The BoundCocone algorithm as described in Chapter 5 computes a prelimi-
nary surface possibly with holes and other artifacts at the undersampled regions.
The sample points in the well-sampled regions have their neighborhoods well
approximated. Specifically, the set of surface triangles incident to these points
form a topological disk. We call the points good whose incident surface triangles
form a topological disk. The rest of the points are called poor.

Definition 6.3. The union of surface triangles incident to a good point p is
called its umbrella denoted as Up.

The algorithm to mark tetrahedra walks through the Delaunay triangulation
in a depth first manner using the vertex and triangle adjacencies. It maintains a
stack of pairs (p, σ ) where p is a good point and σ is a tetrahedron incident to
p which has been marked out. Suppose the pair (p, σ ) is currently popped out
from the stack. The umbrella Up locally separates the tetrahedra incident to p
into two clusters, one on each side (see Figure 6.5). The cluster that contains σ

is marked out since σ is already marked out. The other cluster gets the marking
in. This is done by initiating a local walk from σ that traverses all tetrahedra
through triangle adjacency without ever crossing a triangle in Up and marking
each tetrahedron as out. The rest of the tetrahedra that are not encountered in
this walk get the in marking. During this local walk in the out cluster, when a
vertex q of Up is reached through a tetrahedron σ ′, the pair (q, σ ′) is pushed
into the stack if q is good and is not explored yet (see Figure 6.5).

Now we face the question of initiating the stack. For this we assume that
Del P is augmented with “infinite” tetrahedra that are incident to a triangle on
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the convex hull of P and a point at infinity. The stack is initiated with a good
point on the convex hull paired with an incident infinite tetrahedron.

Mark(Del P)
1 push an infinite tetrahedron incident to a good point

on the convex hull to stack S;
2 let Tp be the set of tetrahedra incident to p in Del P;
3 while S 
= ∅ do

4 (p, σ ) := pop S;
5 mark p processed;
6 G := {σ };
7 while (∃σ ∈ G) and (σ ′ ∈ Tp \ G) and (σ ∩ σ ′ 
∈ Up) do
8 G := G ∪ {σ ′};
9 for all good vertex q of σ ′ do

10 if (q ∈ Up) and (q not processed)
11 push (q, σ ′) to S;
12 endfor

13 endwhile

14 mark each σ ∈ G out;
15 mark each σ ∈ Tp \ G in;
16 endwhile.

For most of the data in practice, the surface computed by BoundCocone
is well connected, that is, all triangles incident to good points can be reached
from any other good point via a series of triangle adjacencies. Assuming this
connectivity of the preliminary surface computed by BoundCocone, the above
procedure marks all tetrahedra that are incident to at least one good sample point.
However, the tetrahedra whose vertices are all poor are not marked by this step.
We call them poor tetrahedra. The intended output surface is the boundary
of the union of a set of tetrahedra. Accordingly, the poor tetrahedra should be
marked in or out. We follow a heuristic here based on the assumption that the
undersampling is local.

In the justification of poor tetrahedra marking we assume an intended ideal
surface that is the boundary of a set of tetrahedra. These tetrahedra are referred
as the ones lying inside the intended surface and the rest lying in its outside.
Of course, here we deviate from the mathematical precision, but it makes the
description more intuitive.

The poor tetrahedra whose vertices lie in a single undersampled region tend
to be small when undersampling is local. We choose to mark them in and the
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Figure 6.6. The four vertices marked with dark circles border a hole. The poor tetrahe-
dron with these four vertices is marked in. The sharp tip p of the long tetrahedron is a
good point which marks it out. When this tetrahedron is peeled, the triangle opposite
to p fills the hole partially. The other triangle of the hole also gets into the output by a
similar peeling.

peeling process later is not allowed to peel them away. This allows the surface
to get repaired in the undersampled region. See Figure 6.6 for an illustration.

Other poor tetrahedra that connect vertices from different undersampled re-
gions tend to be big. If such a big poor tetrahedron lies outside the intended
surface, we need to take it out. So, it should be marked out. On the other hand,
if this big poor tetrahedron lies inside the intended surface, we need to mark it
as in. Otherwise, a large void/tunnel in the surface is created by taking out this
tetrahedron. We eliminate this dilemma using the assumption that undersam-
pling is local. Call a triangle in a tetrahedron small if its circumradius is the
least among all triangles in the tetrahedron. If a poor tetrahedron has a triangle
with vertices from the same undersampled region, then that triangle is small.
The poor tetrahedra lying inside the intended surface have to be reached by the
peeling process that peels away all out marked tetrahedra. This means that the
inner poor tetrahedra have to be reached through the small triangle. We take this
observation into account during peeling while dealing with the poor tetrahedra
and defer designating them during the marking step.

6.2.2 Peeling

After the marking step, a walk is initiated to peel off the tetrahedra that are
marked out and some others. The boundary of the union of the remaining
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Figure 6.7. The boundary of the union of peeled tetrahedra as peeling process progresses.

tetrahedra form the watertight surface. This is also the surface of the union of
the peeled tetrahedra (see Figure 6.7).

The walk maintains a stack of surface triangles that form the boundary of the
union of the tetrahedra peeled so far. It is initiated with all convex hull triangles.
At any generic step, a triangle, say t , is popped out from the stack. One of the
tetrahedra incident to t is already peeled. If the other incident tetrahedron, say
σ , is also already peeled the triangle t separates two out tetrahedra and is not
put in the output. Otherwise, there are two possibilities. If σ is not poor and
marked in, we put t in the output list. In the other case either σ is marked out
or σ is poor. When σ is marked out the walk should move into σ through t ,
which is done by replacing t with the other three triangles of σ into the stack.
If σ is a poor tetrahedron, the walk is also allowed to move into σ through t
only if t is not the small triangle in σ . This is done to protect peeling of the
inner poor tetrahedra as we discussed before. Notice that if σ is a poor tetrahe-
dron outside the intended surface, it will be eventually reached by the peeling
process at triangles other than the small one. But, if σ is a poor tetrahedron
inside, it can only be reached from outside through its small triangle due to the
assumption that undersampling is local. The walk terminates with the surface
triangles in the output list when there are no more triangles to process from the
stack.

Peel(Del P)
1 push all convex hull triangles in Del P to stack S;
2 mark all infinite tetrahedra peeled;
3 T := ∅;
4 while S 
= ∅ do

5 t := pop S;
6 if ∃ σ ∈ Del P incident to t and not marked peeled
7 if (σ is not poor) and (marked in)
8 T := T ∪ t ;
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9 else

10 if (σ is marked out) or (σ is poor and t is
not the small triangle in σ )

11 mark σ peeled;
12 push all triangles of σ other than t to S;
13 endif

14 endif

15 endif

16 endwhile

17 return T .

TightCocone(P)
1 compute Del P;
2 Mark(Del P);
3 T := Peel(Del P);
4 output T .

The complexity of TightCocone is dominated by the Delaunay triangula-
tion computation in step 1. The marking and peeling steps are mere traversal of
the Delaunay triangulation data structure. Therefore, in the worst case Tight-
Cocone takes O(n2) time and space for a set of n input points. However,
unlike PowerCrust, it computes the Delaunay/Voronoi data structure only
once.

6.3 Experimental Results

In Figure 6.8, we show the results of PowerCrust and TightCocone on
two data sets. In Mannequin there are undersamplings in eyes, lips, and ears
which produce holes. TightCocone closes all these holes. In particular, in the
ear there is a relatively large hole since points cannot be sampled for occlusion.
This hole is nicely filled. The Pig data has severe undersampling in the hoofs,
ears, and nose. They are mostly due to the fact that these thin and highly curved
regions should have more sample points to capture the features properly. Pow-
erCrust fills all holes and produces a watertight surface for this difficult data
set.

The time and space complexities of both TightCocone and PowerCrust
are O(n2) where n is the number of input points. However, in practice this
quadratic behavior is not observed. Table 6.1 shows the timings of PowerCrust
and TightCocone for four data sets on a PC with 733 MHz Pentium III CPU
and 512 MB memory.
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Figure 6.8. Results of PowerCrust and TightCocone. Holes in the surface computed
by BoundCocone are filled. Triangles bordering the holes are shaded darker.
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Table 6.1. Time data

# points PowerCrust TightCocone
Object (s) (s)

Pig 3,511 11 5
Manneq 12,772 54 23
Club 16,864 55 43
Horse 48,485 163 152

6.4 Notes and Exercises

Amenta, Choi, and Kolluri [7] designed the PowerCrust algorithm. The ma-
terial on the power crust in this chapter is taken from this paper. The labeling
algorithm in the original paper is intended for surfaces with multiple compo-
nents. However, the proof given in the paper does not work for surfaces with
multiple components. This is why we choose to describe the algorithm for
surfaces with a single component.

In the paper [7], Amenta, Choi, and Kolluri also prove that the poles approx-
imate a subset of the medial axis. Specifically, the Hausdorff distance between
the poles and the medial axis approaches zero as ε does so. In a simultaneous
work Boissonnat and Cazals [16] also establish this result. The Exercises 3 and
4 are set keeping this result in mind. In Chapter 7, we will establish a similar
result for noisy samples.

The material on the TightCocone algorithm is taken from the paper by Dey
and Goswami [33]. The main advantage of this algorithm is that it does not
introduce any extra points as vertices in the output surface. The PowerCrust,
on the other hand, introduces extra points. For example, for the Pig data set,
PowerCrust generates 28,801 points from an input set of 3,511 points.

Both PowerCrust and TightCocone can handle a small amount of noise.
However, it may happen that these algorithms fail completely when the noise
is beyond a certain limit.

Exercises

1. Prove that the plane of a facet shared by two cells of ĉ and ĉ′ in a power
diagram is perpendicular to the line containing c and c′.

2. Let bd UI denote the boundary of the union of inner polar balls. Show that
bd UI is homeomorphic to � when the input sample P is sufficiently dense.

3h . Let Bm,r be a finite medial ball which touches � at x1 and x2. Let ∠x1mx2 ≥
ε

1
3 . Let p be the nearest sample point to m. Prove that the distance of m to
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the nearest pole of p is Õ(ε
2
3 )r where the sampling density ε is sufficiently

small.
4. Prove the converse of the statement in 3, that is, if c is the center of a polar

ball, then there is a medial ball Bm,r so that the distance of m to c is Õ(ε
2
3 )r

when ε is sufficiently small.
5. Prove or disprove that any 2-complex is watertight if and only if each edge

has even number of facets incident to it.
6. Prove that the output of TightCocone is homeomorphic to � if the input

point set P is sufficiently dense.
7. Redesign TightCocone so that the marking and peeling phases are com-

bined, that is, both are done simultaneously.
8. Prove Lemma 6.3 and Lemma 6.4 [7].

9o. Design a labeling algorithm for poles where the sampled surface may have
multiple components. Prove that the algorithm labels all poles correctly.



7
Noisy Samples

In the previous chapters we have assumed that the input points lie exactly on
the sampled surface. Unfortunately, in practice, the input sample often does
not satisfy this constraint. Noise introduced by measurement errors scatters the
sample points away from the surface. Consequently, all analysis as presented
in the previous chapters becomes invalid for such input points. In this chapter
we develop a noise model that accounts for the scatter of the inputs and then
analyze noisy samples based on this model. We will see that, as in the noise-free
case, some key properties of the sampled surface can be computed from the
Delaunay triangulation of a noisy sample. Specifically, we show that normals of
the sampled surface can still be estimated from the Delaunay/Voronoi diagrams.
Furthermore, the medial axis and hence the local feature sizes of the sampled
surface can also be estimated from these diagrams. These results will be used
in Chapters 8 and 9 where we present algorithms to reconstruct surfaces from
noisy samples.

7.1 Noise Model

In the noise-free case ε-sampling requires each point on the surface have a
sample point within a distance of ε times the local feature size. When noise is
allowed, the sample points need not lie exactly on the surface and may scatter
around it. Therefore, the sampling model needs to specify both a tangential
scatter, that is, the sparseness of the points along the tangential directions of
the surface and also a normal scatter, that is, the sparseness of the points along
the normal directions. We use two independent parameters ε and δ for these
two scatters to reveal the dependence of the approximation errors on these two
parameters separately.

We also need a third parameter to specify a local uniformity condition in the
sampling. In the noise-free case we do not need any such condition. However, in

113
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the noisy case, the points can collaborate to form a dense sample of a spurious
surface. For example, a set of points near the actual sampled surface can form
a dense sample of a spurious toroidal handle. In that case, an ambiguity creeps
in as the input becomes a dense sample of two topologically different surfaces.
We prevent this ambiguity by a local uniformity condition.

As before we assume that the sampled surface � ⊂ R
3 is a compact C2-

smooth surface without boundary. Recall that for any point x ∈ R
3 \ M , x̃

denotes its closest point on �.

Definition 7.1. A point set P ⊂ R
3 is a (ε, δ, κ)-sample of � if the following

conditions hold.

(i) P̃ = { p̃}p∈P is a ε-sample of �,
(ii) ‖p − p̃‖ ≤ δ f ( p̃),

(iii) ‖p − q‖ ≥ ε f ( p̃) for any point p ∈ P and its κth nearest sample point q.

The first condition says that the projection of the input point set P on the
surface makes a dense sample and the second one says that P is close to the
surface. The third condition enforces the sample to be locally uniform. We
will see that the third condition is not needed for the analyses of the normal
and medial axis approximation results in Sections 7.3 and 7.4 respectively.
However, it is needed for the algorithms that estimate the normals and features
based on these analyses. When the third condition is ignored, we say P is a
(ε, δ, −)-sample.

The analysis that we are going to present holds for surfaces that may not
be connected. However, for simplicity in presentation, we assume that � is
connected. We have already observed that such a surface partitions R

3 into two
components, �I and �O where �O is the unbounded component of R

3 \ �

and �I = R
3 \ �O . As before assume the normal nx at any point x ∈ � to be

directed locally outward, that is, toward �O .
In the analysis we concentrate only on the bounded component �I together

with the inner medial axis. The results also hold for the unbounded component
and outer medial axis except for the points at infinity. To avoid these points,
one can take a large enough bounded open set containing � and then extend
the results to the outer medial axis defined with maximal empty balls within the
bounded set. This does not make any change to the inner medial axis though.
For a point x ∈ �, let mx denote the center of the inner medial ball meeting �

at x and ρx its radius. In what follows assume that P is a (ε, δ, κ)-sample of �

for 0 < ε < 1, 0 < δ < 1, and κ ≥ 1.
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It follows almost immediately from the sampling conditions that all points
of � and all points not far away from � have sample points nearby. The Close
Sample Lemma 7.1 and Corollary 7.1 formalize this idea.

Lemma 7.1 (Close Sample). Any point x ∈ � has a sample point within
ε1 f (x) distance where ε1 = (δ + ε + δε).

Proof. From the sampling condition (i), we must have a sample point p so that
‖x − p̃‖ ≤ ε f (x). Also, ‖p − p̃‖ ≤ δ f ( p̃) ≤ δ(1 + ε) f (x). Thus,

‖x − p‖ ≤ ‖x − p̃‖ + ‖ p̃ − p‖
≤ ε f (x) + δ(1 + ε) f (x)

= (δ + ε + δε) f (x).

�

Since f (x) ≤ ρx for any point x ∈ �, the following corollary is immediate.

Corollary 7.1. Any point y ∈ R
3 with‖y − ỹ‖ ≤ δρỹ has a sample point within

ε2ρỹ distance where ε2 = (2δ + ε + δε).

7.2 Empty Balls

A main ingredient in our analysis will be the existence of large balls that re-
main empty of the points from P . They in turn lead to the existence of large
Delaunay balls that circumscribe Delaunay tetrahedra in Del P . The centers of
such Delaunay balls which are also Voronoi vertices in Vor P play crucial roles
in the algorithms for normal and feature approximations. In this section, we
present two lemmas that assure the existence of large empty balls with certain
conditions.

The Empty Ball Lemma 7.2 below assures that for each point x ∈ � there is
a large empty ball of radius almost as large as (i) f (x) and (ii) ρx . Notice the
differences between the distances of these balls from x . Also, see Figure 7.1.

Lemma 7.2 (Empty Ball). Let Bm,r be a ball and x ∈ � be a point so that
either

(i) m̃ = x, ‖m − x‖ = f (x), and r = (1 − 3δ) f (x), or
(ii) m = mx and r = (1 − δ)ρx .

Then, Bm,r is empty of points in P.
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(1−δ)ρx
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f(x)(1−3δ)

Figure 7.1. Illustration for the Empty Ball Lemma 7.2. The dotted big balls are not
empty of sample points but their slightly shrunk copies (shown with solid boundaries)
are.

Proof. Let p be any point in P (Figure 7.1). For (i) we have

f ( p̃) ≤ f (x) + ‖x − p̃‖
≤ f (x) + ‖x − m‖ + ‖m − p̃‖
= 2 f (x) + ‖m − p̃‖.

Therefore,

‖m − p‖ ≥ ‖m − p̃‖ − ‖p − p̃‖
≥ ‖m − p̃‖ − δ f ( p̃)

≥ ‖m − p̃‖ − δ(2 f (x) + ‖m − p̃‖)

= (1 − δ)‖m − p̃‖ − 2δ f (x)

≥ (1 − 3δ) f (x)

as ‖m − p̃‖ ≥ ‖m − x‖ = f (x). Hence, p cannot be in the interior of Bm,r .
Now consider (ii). We get

‖mx − p‖ ≥ ‖mx − p̃‖ − ‖p − p̃‖
≥ ‖mx − p̃‖ − δ f ( p̃)

≥ ‖mx − p̃‖ − δ‖mx − p̃‖
= (1 − δ)‖mx − p̃‖
≥ (1 − δ)ρx

as ‖mx − p̃‖ ≥ ‖mx − x‖ = ρx . Again, p cannot lie in the interior of Bm,r .

�

Next, we show that, for each point x of �, there is a nearby large ball which
is not only empty but also has a boundary that passes through a sample point
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Figure 7.2. Illustration for the Deformed Ball Lemma 7.3.

close to x . Eventually this ball will be deformed to a Delaunay ball for medial
axis point approximations.

Lemma 7.3 (Deformed Ball). For each point x ∈ � there is an empty ball Bc,r

with c ∈ �I that enjoys the following properties when ε and δ are sufficiently
small.

(i) mx is in Bc,r , (1 − 2
√

ε2)ρx ≤ r ≤ ρx , and ‖c − mx‖ ≤ 2
√

ε2ρx where
ε2 = Õ(ε + δ) is defined in Corollary 7.1,

(ii) The boundary of Bc,r contains a sample point p within a distance ε3ρx

from x where ε3 = 2ε2
1
4 + δ.

Proof. We describe a construction of Bc,r which is also used later. Consider
the empty ball B = Bmx ,R whose boundary passes through a point y where
ỹ = x , ‖y − x‖ = δρx , and R = (1 − δ)ρx . Such a ball exists by the Empty
Ball Lemma 7.2.

Shrinking: Let Bβ = Bmx ,β R for β < 1. The ball Bβ is obtained by shrinking
B by a factor of β. The ball B and hence Bβ are empty.

Rigid motion: Translate Bβ rigidly by moving the center along the direction−−→mx x until its boundary hits a sample point p ∈ P . Let this new ball be denoted
Bc,r , refer to Figure 7.2.

Obviously, r = β R. Let d = ‖c − mx‖. First, we claim

(1 − β)R ≤ d ≤ (1 − β)R + ε2ρx . (7.1)

The first half of the inequality holds since B is empty of sample points and
hence Bβ has to move out of it to hit a sample point. The second half of the
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inequality holds since from Corollary 7.1, a ball centered at y with radius ε2ρx

cannot be empty of sample points.
Next, we obtain an upper bound on ‖y − p‖. Since

‖p′ − q‖2 = ‖c − p′‖2 − ‖c − q‖2 = ‖mx − p′‖2 − ‖mx − q‖2,

we have

r2 − ‖c − q‖2 = R2 − ‖mx − q‖2

or, r2 − ‖c − q‖2 = R2 − (d + ‖c − q‖)2

or, r2 = R2 − d2 − 2d‖c − q‖
or, ‖c − q‖ = R2 − r2 − d2

2d
.

Hence,

‖y − p‖2 ≤ ‖y − p′‖2 = ‖p′ − q‖2 + ‖q − y‖2

= R2 − (d + ‖c − q‖)2 + (R − (d + ‖c − q‖))2

= 2R2 − Rd − R

d
(R2 − r2)

which, by Inequality 7.1, gives

‖y − p‖2 ≤ ε2(1 + β)

(1 − δ)(1 − β) + ε2
R2. (7.2)

Since we want both‖c − mx‖ and‖x − p‖ to be small, we takeβ = 1 − √
ε2.

Hence, with R = (1 − δ)ρx ,

r = β R = (1 − δ)(1 − √
ε2)ρx

which gives, for sufficiently small δ and ε,

(1 − 2
√

ε2)ρx ≤ r ≤ ρx .

Also,

‖c − mx‖ = d

≤ (1 − β)R + ε2ρx

≤ ((1 − δ)
√

ε2 + ε2)ρx

≤ 2
√

ε2ρx

for ε2 < 1, δ < 1. Given that ε and δ are sufficiently small,
√

ε2ρx is small
implying that mx stays inside Bc,r . In addition, from Inequality 7.2 we have

‖y − p‖ ≤
√(

2 − √
ε2

1 − δ + √
ε2

)
ε

1
4
2 R ≤ 2ε

1
4
2 ρx .
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Figure 7.3. Black dots are the centers of Delaunay balls. Left: the normals are esti-
mated correctly by pole vectors in the noise-free case. Left-middle: pole vectors do not
estimate the normals correctly when noise is present. Right: vectors from the sample
points to the center of the big Delaunay balls estimate the normals even when noise is
present.

The bound on ‖p − x‖ follows as ‖x − y‖ = δρx and ‖p − x‖ ≤ ‖y − p‖ +
‖x − y‖. �

In the above proof, if we make the ball Bc,r smaller, we will get a sample
point closer to x . For example, if we choose β to be a constant, say 3

4 , the above
proof gives ε3 = Õ(

√
ε2) = Õ(

√
ε + δ). Also, the entire proof remains valid

when we replace ρx with f (x). We will use this version of the lemma in the
next chapter.

7.3 Normal Approximation

In noise-free case we saw that poles help approximate the normals (Pole
Lemma 4.1). When noise is present poles may come arbitrarily close to the
surface and the pole vector may not approximate the normals. Figure 7.3 il-
lustrates this point. Nevertheless, some Voronoi vertices that are the centers of
some large Delaunay balls still help in estimating the normal directions. This
idea is formalized in the analysis below.

7.3.1 Analysis

The normal approximation theorem says that if there is a large empty ball
incident to a sample point p, then the vector from p to the center of the ball
approximates the normal direction n p̃. The idea is that one cannot tilt a large
ball too much and keep it empty if it is anchored at p and has its center in the
direction of n p̃.
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in

out

Figure 7.4. Illustration for the General Normal Theorem 7.1.

Theorem 7.1 (General Normal). Let p ∈ P be incident to a ball Bc,r empty
of sample points where r = λ f ( p̃) and c ∈ �I . One has

sin ∠(−→cp, n p̃) ≤
(

4 + 3√
λ

) √
δ +

(
2 + 3

λ

)
ε1

for a sufficiently small ε > 0 and δ > 0.

Proof. Let B = Bc,r and β = ∠(−→cp, n p̃). Let Bin and Bout be two balls with
radius f ( p̃) that tangentially meet the surface at point p̃ as in Figure 7.4. Let
m be the center of Bout. We know the surface � is outside these two balls. By
the Empty Ball Lemma 7.2, the ball B ′ = Bm,(1−3δ) f ( p̃), a shrunk copy of Bout,
is empty of sample points. Therefore, no sample point is inside the shaded area
of Figure 7.4.

Observation A. Let D be the disk bounded by the circle in which the bound-
aries of B and B ′ intersect. Let cm intersect D at q. As β increases, the radius
of D increases, that is, ‖w − q‖ increases and vice versa.

Observation B. Suppose that sin β has the claimed bound when ‖w − q‖ =√
2ε1 f ( p̃). Then, if we show ‖w − q‖ <

√
2ε1 f ( p̃), we are done following

Observation A.

Assume ‖w − q‖ = √
2ε1 f ( p̃). Let z be the intersection point between �

and the segment mc.
Consider the triangle formed by p, m, and c. We have

(1 − δ) f ( p̃) ≤ ‖m − p‖ ≤ (1 + δ) f ( p̃)

and

‖c − p‖ = ‖c − w‖ = λ f ( p̃)
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and also

‖c − m‖ =
√

‖c − w‖2 − ‖w − q‖2 +
√

‖m − w‖2 − ‖w − q‖2.

We obtain

cos β = ‖c − m‖2 − ‖c − p‖2 − ‖m − p‖2

2‖c − p‖‖m − p‖

≥

(√
λ2 − 2ε2

1 +
√

(1 − 3δ)2 − 2ε2
1

)2

− λ2 − (1 + δ)2

2λ(1 + δ)

which after some calculations gives

1 − cos β ≤
(

7 + 4

λ

)
δ + 2

(
1 + 2

λ2

)
ε2

1.

Hence,

sin β ≤ 2 sin
β

2
=

√
2(1 − cos β)

≤
√(

14 + 8

λ

)
δ + 4

(
1 + 2

λ2

)
ε2

1

≤
(

4 + 3√
λ

) √
δ +

(
2 + 3

λ

)
ε1. (7.3)

Now we show that ‖w − q‖ <
√

2ε1 f ( p̃) as required by Observation B.
Again, first assume that ‖w − q‖ = √

2ε1 f ( p̃). One can show ‖ p̃ − z‖ ≤
3‖ p̃ − m‖ tan β. Therefore, from equation 7.3 ‖ p̃ − z‖ = Õ(ε1 + 2

√
δ) f ( p̃)

which by Lipschitz property gives f (z) <
√

2 f ( p̃) given a sufficiently small δ

and ε. We know Bz = Bz,ε1 f (z) with radius ε1 f (z) <
√

2ε1 f ( p̃) has to contain at
least one sample point by the Close Sample Lemma 7.1. This is impossible since
Bz has a radius at most

√
2ε1 f ( p̃) = ‖w − q‖ which means it lies completely

in the shaded area. Therefore, ‖w − q‖ 
= √
2ε1 f ( p̃). Now consider increasing

‖w − q‖ beyond this distance while keeping z fixed. Notice that now z is not the
intersection point between � and the segment mc. It is obvious that Bz remains
inside the shaded area. Therefore, again we reach a contradiction to the Close
Sample Lemma 7.1. Hence, ‖w − q‖ cannot be larger than

√
2ε1 f ( p̃). �

The General Normal Theorem 7.1 gives a general form of the normal approx-
imation under a fairly general sampling assumption. One can derive different
normal approximation bounds under different sampling assumptions from this
general result. For example, if P is a (ε, ε2, −)-sample we get an Õ(ε) bound
on the normal approximation error for a large Delaunay ball with λ = �(1).
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In the case where P is a (ε, ε,−)-sample, this error bound becomes Õ(
√

ε).
When there is no noise, that is, P is a (ε, 0, −)-sample, we obtain Õ(ε) error
bound that agrees with the Normal Lemma 3.2. Another important implication
of the General Normal Theorem is that the Delaunay balls need not be too big
to give good normal estimates. One can observe that if λ is only

√
max{ε, δ},

we get Õ(ε
1
2 + δ

1
4 ) error. The algorithmic implication of this fact is that a lot

of Delaunay balls can qualify for normal approximation.
We also observe that the proof of the General Normal Theorem 7.1 remains

valid even if the sample point p is replaced with any point x ∈ R
3 meeting

the conditions as stated in the corollary below. We use this fact later in feature
approximation.

Corollary 7.2. Let x ∈ R
3 be any point with ‖x − x̃‖ ≤ δρx̃ and Bc,r be any

empty ball incident to x so that r = �(ρx̃ ) and c ∈ �I . Then, ∠(−→cx , nx̃ ) =
Õ(ε + √

δ) for sufficiently small ε and δ.

7.3.2 Algorithm

We know from the General Normal Theorem 7.1 that if there is a big Delaunay
ball incident to a sample point p, the vector from the center of the ball to p
estimates the normal direction at the point p̃. On the other hand, the Deformed
Ball Lemma 7.3 assures that, for each point x ∈ �, there is a sample point p
within Õ(ε

1
4 + δ

1
4 ) f (x) distance with an empty ball of radius �( f (x)). This

means there is a big Delaunay ball incident to p where the vector −→cp approxi-
mates n p̃ and hence nx . Algorithmically we can exploit this fact by picking up
sample points that are incident to big Delaunay balls only if we have a scale
to measure “big” Delaunay balls. For this we assume the third condition in the
sampling which says that the sample is locally uniform.

Let dp be the distance of p to its κth nearest neighbor. The locally uniform
condition in the noise model gives dp ≥ ε f ( p̃). Therefore, any Delaunay ball
incident to p with radius more than τdp will give a normal approximation with
an error

Õ

((
1 + 1√

τε

) √
δ +

(
1 + 1

τε

)
ε

)

according to the General Normal Theorem 7.1. If we assume that P is a
(ε, ε2, κ)-sample, the error bound is Õ(ε + 1

τ
+ √

ε
τ

). Notice that the error de-
creases as τ increases. However, we cannot increase τ arbitrarily since then no
Delaunay ball may meet the condition that its radius is at least as large as τdp.
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In fact, we also need an upper bound on dp to assert that it is not arbitrarily
large.

Lemma 7.4 (κ-Neighbor). dp ≤ ε′ f ( p̃) where ε′ = (
ε + 4κ+ε

1−4κε

)
ε.

Proof. Consider the sample P̃ which is locally uniform. It is an easy conse-
quence of the sampling condition (i) and the Lipschitz property of f that, for
each x ∈ � there exists a sample point p so that ‖ p̃ − x‖ ≤ ε

1−ε
f ( p̃). This

means that, for sufficiently small ε, balls of radius 2ε f ( p̃) > ε
1−ε

f ( p̃) around
each point p̃ ∈ P̃ cover �. Consider the graph where a point p̃ ∈ P̃ is joined
with q̃ ∈ P̃ with an edge if the balls Bp̃,r1 and Bq̃,r2 intersect where r1 = 2ε f ( p̃)
and r2 = 2ε f (q̃). Take a simple path � of κ edges in this graph with one end-
point at p̃. An edge between any two points q̃i and q̃ j in the graph has a length
at most 2ε( f (q̃i ) + f (q̃ j )). The path � thus has length at most

� = 2ε( f ( p̃) + 2 f (q̃1) + · · · + 2 f (q̃κ−1) + f (q̃κ ))

where q̃i , i = 1, . . . , κ are the vertices ordered along the path. Denoting fmax

as the maximum of the feature sizes of all vertices on the considered path we
get

� ≤ 4κε fmax

≤ 4κε

1 − 4κε
f ( p̃).

The distance from p to the farthest point, say q , among the κ closest points to
p cannot be more than the distance

‖p − p̃‖ + ‖ p̃ − q̃‖ + ‖q̃ − q‖
which is no more than

ε2 f ( p̃) + 4κε

1 − 4κε
f ( p̃) + ε2

1 − 4κε
f ( p̃) ≤ ε′ f ( p̃).

�

The previous lemma and the locally uniform sampling condition together
confirm that a Delaunay ball with radius τdp has at least τε f ( p̃) radius and at
most τ Õ(ε) f ( p̃) radius. The quantity τdp can be made as small as

√
ε f ( p̃)

to give an Õ(
√

ε) error. This means the Delaunay ball with radius as small
as

√
ε f ( p̃) provides a good approximation of the true normal. This explains

why a large number of Delaunay balls give good normal approximations in
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practice. See Figure 7.3 for an illustration in two dimensions. Thus, we have
the following algorithm:

ApproximateNormal(P ,τ )
1 compute Del P;
2 for each p ∈ P do

3 compute dp;
4 if there is a Delaunay ball incident to p with radius larger than τdp

5 compute the largest Delaunay ball Bc,r incident to p;
6 store the normal direction at p as pc;
7 endif

8 endfor.

Notice that, alternatively we could have eliminated the parameter τ in the
algorithm by looking for the largest Delaunay ball incident to a set of k-
nearest neighbors of p for some suitable k. Again, thanks to the Deformed
Ball Lemma 7.3, we are assured that for a suitable k, one or more neighbors
have Delaunay balls with radius almost equal to the medial balls. However, this
approach limits the number of sample points where the normals are estimated.
Because of our earlier observation, the normals can be estimated at more points
where the Delaunay ball is big but not necessarily as big as the medial balls.
However, as we see next, for feature approximation we need the Delaunay balls
almost as big as the medial ones.

7.4 Feature Approximation

We approximate the local feature size at a sample point p by first approximating
the medial axis with a set of discrete points and then measuring the distance of
p from this set. In the noise-free case it is known that poles approximate the
medial axis. Therefore, feature sizes can be estimated by computing distance to
the poles. Unfortunately, as we have seen already, the poles do not necessarily
lie near the medial axis when noise is present. We circumvented this difficulty by
considering big Delaunay balls for normal approximations. The big Delaunay
balls were chosen by an input threshold. The case for feature approximations
is more difficult. This is because unlike normal approximations, not all centers
of the big Delaunay balls approximate the medial axis. Only the centers of the
Delaunay balls that approximate the medial balls lie near the medial axis. These
Delaunay balls are difficult to choose with a size threshold. If the threshold
is relatively small, a number of centers remain which do not approximate the
medial axis. See the right picture in Figure 7.3. On the other hand, if the threshold
is large, the medial axis for some parts of the models may not be approximated
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Figure 7.5. Left: poles approximate the medial axis when no noise is present. Middle:
Delaunay balls of big size are selected to eliminate unwanted centers, some significant
parts of the medial axis are not approximated. Right: centers of polar balls chosen with
the nearest neighbors approach approximate the medial axis everywhere. Approximated
feature sizes are indicated in the highlighted boxes.

at all; see the middle picture in Figure 7.5. As a result no threshold may exist for
which large Delaunay balls’ centers approximate the medial axis. The Horse
data in Figure 7.9 is another such example in three dimensions.

We design a different algorithm to choose the Delaunay balls for approxi-
mating the medial axis. We consider k-nearest neighbors for some k and take
the largest polar ball’s center among these neighbors to approximate the medial
axis. Our analysis leads to this algorithm. It frees the user from the burden
of choosing a size threshold. Experiments suggest that k can be chosen fairly
easily, generally in the range of 5–10. The most important thing is that a k can
be found for which the medial axis is well approximated where no such size
threshold may exist.

We are guaranteed by the Deformed Ball Lemma 7.3 that there are lots of
sample points which are incident to big Delaunay balls. The furthest Voronoi
vertices from these sample points in �I and �O approximate the inner and
outer medial axis respectively. For a point p ∈ P , we call the furthest Voronoi
vertex from p in Vp ∩ �I as the inner pole p+ of p. Similarly, one may define
the outer pole p− of p which resides in �O .

It turns out that the entire medial axis cannot be approximated by poles.
Certain parts of the medial axis needs to be excluded. This exclusion is also
present in the medial axis approximations with poles in the noise-free case
(Exercises 3 and 4 in Chapter 6). Of course, the excluded part is small. In fact,
it vanishes to zero in the limit that ε and δ go to zero. Let x and x ′ be two points
where the medial ball B centered at m meets �. Call ∠xmx ′ the medial angle
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w

v

u

Figure 7.6. The medial angles at u, v are indicated. The medial angle at w is zero. Mα

for a small α is shown with thicker curves.

at m if it is the largest angle less than π made by any two such points of B ∩ �.
Let Mα ⊆ M be the subset where each point m ∈ Mα has a medial angle at
least α (see Figure 7.6).

7.4.1 Analysis

We show that each medial axis point mx with a large enough medial angle is
approximated by a pole. The idea is as follows. Consider the large ball incident
to a sample point p guaranteed by the Deformed Ball Lemma 7.3. We deform
it to a large Delaunay ball centering the pole p+. First, during this deformation
the ball cannot be tilted too much since the vector from the center to p has to
approximate the normal n p̃ by the General Normal Theorem 7.1. Second, the
center in the tilted direction cannot move too much due to Lemma 7.5 as stated
below. The result of these constraints is that the center p+ of the Delaunay ball
remains close to the center of the original ball which in turn is close to mx .

Lemma 7.5. Let B = Bc,r be an empty ball whose boundary passes through a
sample point p. Let z be a point on � and the distance from z to the boundary of
B be less than ε′ρz . Suppose B is expanded to an empty ball B ′ = Bc′,r ′ where
c′ is on the ray −→pc and bd B ′ passes through p (Figure 7.7). If βρz ≤ r ≤ ρz ,
one has

‖c − c′‖ ≤ (ε1 + ε′)(2 + ε′)
2β(1 − cos ∠pcz) − 2ε1 − 2ε′ cos ∠pcz

ρz .
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Figure 7.7. Illustration for Lemma 7.5.

Proof. Let y be the closest point to z on the boundary of B. Obviously, y,
c, and z are collinear. Let z′ be the point where the line of c′z intersects the
boundary of B ′ (see Figure 7.7). We have ‖y − z‖ ≤ ε′ρz . Since a ball centered
at z with radius ε1 f (z) cannot be empty of sample points by the Close Sample
Lemma 7.1, we have ‖z′ − z‖ ≤ ε1 f (z) ≤ ε1ρz .

Consider the triangle made by c, c′, and z. For convenience write ∠pcz = α,
‖c − c′‖ = �c, ‖z − z′‖ = �z, and ‖y − z‖ = �y.

‖c′ − z‖2 = (�c)2 + ‖c − z‖2 + 2�c‖c − z‖ cos α

or, (r + �c − �z)2 = (�c)2 + (r + �y)2 + 2�c(r + �y) cos α

from which we get

�c = (r + �y)2 − (r − �z)2

2(r − �z) − 2(r + �y) cos α

= (�y + �z)(2r + �y − �z)

2r (1 − cos α) − 2�z − 2�y cos α

≤ (ε1 + ε′)(2 + ε′)
2β(1 − cos α) − 2ε1 − 2ε′ cos α

ρz .

by plugging in �z ≤ ε1ρz , �y ≤ ε′ρz , and βρz ≤ r ≤ ρz . �

Theorem 7.2 (Medial Axis Approximation). For each point mx ∈ Mα in �I

where α = ε
1
4 + δ

1
4 with ε and δ being sufficiently small, there is a sample

point p within Õ(ε
1
4 + δ

1
4 )ρx distance of x so that the pole p+ lies within

Õ(ε
1
4 + δ

1
4 )ρx distance from mx .
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Figure 7.8. Illustration for the Medial Axis Approximation Theorem 7.2. The ball Bc,r

is deformed to the Delaunay ball B ′ = Bp+,r ′ . The ball B ′′ = Bc′,‖p−c′‖ on the right is a
shrunk version of B ′.

Proof. Consider the ball B = Bc,r guaranteed by the Deformed Ball Lemma 7.3
whose boundary passes through a sample point p. We have

r ≥ (1 − 2
√

ε2)ρx ,

‖p − x‖ ≤ ε3ρx , and

‖c − mx‖ ≤ 2
√

ε2ρx .

Let B ′ = Bp+,r ′ where p+ is the inner pole of p and r ′ = ‖p − p+‖. The ball
B ′ is Delaunay and has radius r ′ ≥ r ≥ (1 − 2

√
ε2)ρx .

Focus on the two balls B and B ′ passing through p (see Figure 7.8). The ball
B has mx inside it which means that its radius is at least (1 − δ) f ( p̃)/2. So, the
radius of B ′ being bigger than that of B is also at least (1 − δ) f ( p̃)/2. Therefore,
by plugging λ = �(1) in the General Normal Theorem 7.1, the vectors −→pc and−−→
pp+ make Õ(ε + √

δ) angle with n p̃ and at most double of this angle among
them. Let c′ be the point on the segment pp+ so that pc′ has the same length
as pc. Clearly,

‖c − c′‖ ≤ ‖p − c‖∠cpc′ ≤ (1 − 2
√

ε2)Õ(ε +
√

δ)ρx . (7.4)

Now we can bound the distance ‖c − p+‖ if we have a bound on ‖c′ − p+‖.
We will apply Lemma 7.5 to the ball B ′′ = Bc′,‖p−c′‖ to bound ‖c′ − p+‖. Since
mx ∈ Mα there are two points x and x ′ in � so that ∠xmx x ′ ≥ α. Take z in
Lemma 7.5 as the point x or x ′ which makes the angle ∠zmx p at least α/2.

With this set up we show that β and ε′ in Lemma 7.5 are 1 − Õ(
√

ε + √
δ)

and Õ(
√

ε + √
δ) respectively. Since the radius of B ′′ is r ≥ (1 − 2

√
ε2)ρx =

(1 − 2
√

ε2)ρz , the claim for β follows.
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For ε′, consider the point y where the ray
−→
c′z meets the boundary of B ′′, refer

to Figure 7.8. We have ‖mx − c′‖ ≤ ‖c − mx‖ + ‖c − c′‖ = Õ(
√

ε + √
δ)ρx

and hence

‖y − z‖ = ‖c′ − z‖ − ‖c′ − y‖ ≤ ‖mx − z‖ + ‖c′ − mx‖ − ‖c′ − y‖
≤ ρz + Õ(

√
ε +

√
δ)ρz − (1 − 2

√
ε2)ρz

= Õ(
√

ε +
√

δ)ρz .

So, we can apply Lemma 7.5 with ε′ = Õ(
√

ε + √
δ) and β = 1 − Õ(

√
ε +√

δ). Observe that, since the points c′ and mx are nearby, the angle ∠pc′y
is almost equal to ∠zmx p. So, we can take ∠pc′y ≥ α

4 . With α = ε
1
4 + δ

1
4 ,

Lemma 7.5 gives

‖p+ − c′‖ = (Õ(
√

ε +
√

δ)/�(ε
1
4 + δ

1
4 ))ρz = Õ(ε

1
4 + δ

1
4 )ρz .

The claim of the theorem follows as

‖p+ − mx‖ ≤ ‖p+ − c′‖ + ‖c′ − mx‖
= Õ(ε

1
4 + δ

1
4 )ρx + Õ(ε

1
2 + δ

1
2 )ρx

= Õ(ε
1
4 + δ

1
4 )ρx .

�

For each point x ∈ � where mx ∈ Mα , the previous theorem guarantees the
existence of a sample point p whose pole approximates mx . Actually, the proof
technique can be used to show that any Delaunay ball with radius almost as big
as ρx and incident to a sample point close to x has its center close to mx .

Theorem 7.3 (Feature). Let x ∈ � be a point so that mx ∈ Mα for α = ε
1
4 +

δ
1
4 where ε and δ are sufficiently small. For any point p ∈ P within ε3ρx distance

of x and with an incident Delaunay ball of radius at least (1 − Õ(
√

ε + √
δ))ρx ,

the pole p+ lies within Õ(ε
1
8 + δ

1
8 )ρx distance from mx .

Proof. [sketch]. Notice that if n p̃ and nx make small angle, we will be done.
Then, we have two segments pp+ and xmx almost parallel where p and x are
close. Also, these segments can be shown to be of almost same lengths by the
given condition and a proof similar to that of the Medial Axis Approximation
Theorem 7.2. This would imply mx and p+ are close.

Observe that we cannot assert that∠(n p̃, nx ) is small directly from the Normal
Variation Lemma 3.3. We could have applied this lemma had the distance
between p̃ and x been Õ(ε) f (x). The Deformed Ball Lemma 7.3 only gives
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that this distance is at most Õ(ε)ρx and not Õ(ε) f (x). Since p and x are at most
ε3ρx apart and the distance of p+ to p and hence to x is �(ρx ), ∠pp+x = Õ(ε3).
By Corollary 7.2, it can be shown that p+x makes Õ(

√
ε3) angle with nx .

Therefore, pp+ makes Õ(
√

ε3) angle with nx . It is easy to show that ρx is at
least �( f ( p̃)). So, the angle between pp+ and n p̃ is Õ(

√
ε3) completing the

claim that ∠(n p̃, nx ) = Õ(
√

ε3) = Õ(ε
1
8 + δ

1
8 ). �

7.4.2 Algorithm

The Medial Axis Approximation Theorem 7.2 and the Feature Theorem 7.3 sug-
gest the following algorithm for feature approximation at points x ∈ � where
mx ∈ M

ε
1
4
. The Medial Axis Approximation Theorem 7.2 says that x has a

sample point p within a neighborhood of ε3ρx whose pole p+ approximates
mx . Also, the Feature Theorem 7.3 says that all sample points within ε3ρx

neighborhood of x with a large enough Delaunay ball have their poles approx-
imate mx . Therefore, if we take the pole of a sample point q whose distance to
q is largest among all sample points within a small neighborhood of x , we will
get an approximation of mx .

We search the neighborhood of x by taking k nearest neighbors of a sample
point s close to x . If we assume that P is a (ε, ε, κ)-sample for some κ ≥ 1,
k nearest neighbors cannot be arbitrarily close to x . Notice that if we do not
prevent oversampling by the third condition of noisy sampling, we cannot make
this assertion. In the algorithm, we simply allow a user supplied parameter k
to search the k nearest neighbors. Since we want to cover all points of �, we
simply take all points of P and carry out the following computations.

For each point p ∈ P we select k-nearest neighbors for a suitable k. Let
Np be this set of neighbors. First, for each q ∈ Np, we determine the Voronoi
vertex vq in Vq which is furthest from q . This is one of the poles of q . Let
�1(q) = ‖vq − q‖. Select the point p1 ∈ Np so that �1(p1) is maximum among
all points in Np. By Medial Axis Approximation Theorem 7.2 and the Feature
Theorem 7.3, vp1 approximates a medial axis point mx if x ∈ M

ε
1
4
. However,

we do not know if mx is an inner medial axis point or an outer one. Without loss
of generality assume that mx is an inner medial axis point. To approximate the
outer medial axis point for x , we determine the Voronoi vertex uq in Vq for each
q ∈ Np so that −→quq makes more than π

2 angle with −−−→p1vp1 . Let �2(q) = ‖uq − q‖.
Then, we select the point p2 ∈ Np so that �2(p2) is maximum among all points
in Np. Again, appealing to the Medial Axis Approximation Theorem 7.2 and the
Feature Theorem 7.3 for outer medial axis, we can assert that u p2 approximates
a medial axis point for x .
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Figure 7.9. Left: medial axis approximated by centers of big Delaunay balls for a noisy
Horse. For a chosen threshold, some parts of the legs do not have medial axis approx-
imated though still many centers lie near the surface. Right: medial axis well approxi-
mated by the poles as computed by ApproximateFeature.

ApproximateFeature(P ,k)
1 compute Del P;
2 L := ∅;
3 for each p ∈ P compute k nearest neighbors Np;
4 compute p1 ∈ Np whose distance to one of its pole vp1

is maximum among all points in Np;
5 compute p2 ∈ Np with a pole vp2 so that ∠(−−−→p2vp2 ,

−−−→p1vp1 ) ≥ π
2

and ‖p2 − vp2‖ is maximum among all such points p2 ∈ Np;
6 L := L ∪ {vp1 , vp2};
7 endfor

8 for each p ∈ P store the distance of p to L .

As we have observed already, a subset of the medial axis is not approximated
by the poles. These are exactly the points on the medial axis which have a
small medial angle. The implication of this exclusion is that features cannot
be properly estimated for points whose closest point on the medial axis resides
in the excluded part. However, if the sampling is sufficiently dense, the ex-
cluded part is indeed small in most cases. Figure 7.9 shows the result of feature
approximations for a three-dimensional model.

7.5 Notes and Exercises

The material in this chapter is taken from Dey and Sun [39]. The noise model
with a condition for each of tangential scatter, normal scatter, and local uni-
formity was first proposed by Dey and Goswami [34]. They used the same
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parameter ε for both the scatters. Later, Kolluri [63] proposed a slightly differ-
ent model in the context of smoothing noisy point samples.

In the noise-free case normals can be approximated by poles as we have seen
already. Amenta, Choi, and Kolluri [7] as well as Boissonnat and Cazals [16]
showed independently that poles also approximate the medial axis. Later, Dey
and Zhao [42] and Chazal and Lieutier [20] showed how to approximate the
medial axis with a subset of Voronoi facets and not necessarily with a set of
discrete points.

In case of noise, an analysis of normals with big Delaunay balls appeared
in Dey and Sun [40] and also in Mederos et al. [67]. Normal approximation
under the general noise model as adopted in this chapter was put forward by
Dey and Sun [39]. They also provided the analysis and the algorithm for feature
approximation under this noise model.

For noisy point samples, optimization-based techniques also work well for
normal approximations in practice. See, for example, Mitra, Nguyen, and
Guibas [69] and Pauly, Keiser, Kobbelt, and Gross [75]. A comparison be-
tween the optimization and the Delaunay-based approaches can be found in
Dey, Li, and Sun [37].

Exercises

1. Show an example where a point set P is a (ε, δ, −)-sample of two topolog-
ically different surfaces.

2. Call a point set P a (ε, κ)-sample of � if (i) each point x ∈ � has a point in P
within ε f (x) distance and (ii) each point p ∈ P has its κth nearest neighbor
at least ε f ( p̃) distance away. Show that P is also a (ε′, ε′′, κ)-sample of �

for some ε′ and ε′′ dependent upon ε.
3. Formulate and prove a version of the Empty Ball Lemma 7.2 when P is a

(ε, κ)-sample.
4. In the proof of the Deformed Ball Lemma 7.3 if we choose β to be a fraction,

say 3
4 , what bound do we get for ε3?

5. Derive from the General Normal Theorem 7.1 that the pole vectors in noise-
free samples approximate the normals within an angle of arcsin 5ε when ε

is sufficiently small.
6. Prove Feature Theorem 7.3 rigorously.



8
Noise and Reconstruction

The algorithms for surface reconstruction in previous chapters assume that the
input is noise-free. Although in practice all of them can handle some amount
of displacements of the points away from the surface, they are not designed
in principle to handle such data sets. As a result when the points are scattered
around the sampled surface, these algorithms are likely to fail. In this chapter
we describe an algorithm that is designed to tolerate noise in data.

The algorithm works with the Delaunay/Voronoi diagrams of the input points
and draws upon some of the principles of the power crust algorithm. The power
crust algorithm exploits the fact that the union of the polar balls approximates
the solid bounded by the sampled surface. Obviously, this property does not
hold in the presence of noise. Nevertheless, we have observed in Chapter 7
that, under some reasonable noise model, some of the Delaunay balls remain
relatively big and can play the role of the polar balls. These balls are identified
and partitioned into inner and outer balls. We show that the boundary of the
union of the outer (or inner) big Delaunay balls is homeomorphic to the sampled
surface. This immediately gives a homeomorphic surface reconstruction though
the reconstructed surface may not interpolate the sample points. The algorithm
can be extended to compute a homeomorphic surface interpolating a subset of
the input sample points. These points reside on the outer (or inner) big Delaunay
balls. The rest of the points are deleted. The Delaunay triangulation of the chosen
sample points restricted to the boundary of the chosen big Delaunay balls is
output as an approximation to the sampled surface. Figure 8.1 illustrates this
algorithm in two dimensions.

8.1 Preliminaries

As before we will assume that the sampled surface � is smooth, compact, and
has no boundary. Also, we will assume that � is connected. The requirement

133
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Figure 8.1. Step 1: big Delaunay balls (shaded) are separated from small ones (un-
shaded), Step 2: outer and inner big Delaunay balls are separated, Step 3: only the points
on the outer balls are retained and the curve (surface) is reconstructed from them.

of connectedness is no more for mere simplicity but is indeed needed for the
algorithm. Inner and outer big Delaunay balls are separated by a labeling step
similar to that of PowerCrust, which we already know requires � to be con-
nected. As in Chapter 7, we use the notations �O to denote the unbounded
component of R

3 \ � and �I = R
3 \ �O . The normals of � are oriented to

point outside, that is, toward �O .
We will follow the noise model presented in Chapter 7. This noise model

allows two separate parameters for the horizontal and the normal scatters. For
simplicity we will make this general noise model a little more specific by
assuming P to be a (ε, ε2, κ)-sample of �. First, this removes one parameter
from the general model. Second, the quadratic dependence of the normal scatter
on ε makes the presentation simpler. Notice that the analysis we are going to
present can be extended to the general model by carrying around an extra
parameter δ in all calculations.
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Figure 8.2. Feature balls for three different positions for x are shown with the dotted
boundary. The points x , x̃ , and the center m are collinear.

Recall that, for a point x ∈ R
3 that is not on the medial axis, x̃ denotes its

closest point in �. Under the assumed noise model, the following claims follow
from the Close Sample Lemma 7.1 and the κ-Neighbor Lemma 7.4.

Lemma 8.1 (Sampling).

(i) Any point x ∈ � has a sample point within ε1 f (x) distance where ε1 =
ε(1 + ε + ε2).

(ii) Any sample point p ∈ P has its κth closest sample point within ε2 f ( p̃)
distance where ε2 = (

ε + 4κ+ε
1−4κε

)
ε = Õ(ε).

From this point onward we consider �I to state all definitions and results
unless specified otherwise. It should be clear that they also hold for �O . We
have already seen in the previous chapter (Empty Ball Lemma 7.2) that there
are empty balls with radius almost as large as local feature sizes and with a
boundary point close to �. These balls, which we call feature balls (Figure 8.2)
will play an important role in the proofs. Because of their importance in the
proofs, we give a formal definition of them.

Definition 8.1. Let Bm,r be the ball with the following conditions:

(i) m ∈ �I ; the boundary of Bm,r has a point x where ‖x − x̃‖ ≤ 3ε2 f (x̃),
(ii) r = (1 − 3ε2) f (x̃), and

(iii) the center m lies on the line of nx̃ . In other words, m̃ = x̃ .

Call Bm,r a feature ball.

The particular choice of the term 3ε2 in the definition of the feature balls is
motivated by the Empty Ball Lemma 7.2. One can substitute δ with ε2 in this
lemma to claim that the feature balls are empty.

Also, the following observation will be helpful for our proofs. It says that if
a ball with two points x and y on its boundary is big relative to the feature size
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of x̃ , it remains big relative to the feature size of ỹ if x and y are close to �.
The parameters λ and ε′ will be close to 1 and ε respectively when we use this
lemma later.

Lemma 8.2. Let B = Bc,r be a ball with two points x and y on its boundary
where ‖x − x̃‖ ≤ ε′ f (x̃), ‖y − ỹ‖ ≤ ε′ f (ỹ). Then, r ≥ λ(1−ε′)

1+2λ+ε′ f (ỹ) given that
r ≥ λ f (x̃) for λ > 0.

Proof. We get

r ≥ λ f (x̃)

≥ λ( f (ỹ) − ‖x̃ − ỹ‖)

≥ λ( f (ỹ) − ‖x − x̃‖ − ‖x − y‖ − ‖y − ỹ‖)

≥ λ( f (ỹ) − ε′ f (x̃) − 2r − ε′ f (ỹ))

from which it follows that

(1 + 2λ + ε′)r ≥ λ(1 − ε′) f (ỹ)

or, r ≥ λ(1 − ε′)
1 + 2λ + ε′ f (ỹ).

�

8.2 Union of Balls

As we indicated before, our goal is to filter out a subset of points from P
that lie on big Delaunay balls. We do this by choosing Delaunay balls that
are big compared to the distances between sample points and their κth nearest
neighbors. Let dp denote the distance to the κth nearest neighbor of a sample
point p ∈ P . For an appropriate constant K > 0, we define

B(K ) = set of Delaunay balls Bc,r where r > K dp for all points p ∈ P
incident on the boundary of Bc,r .

Since we know that dp ≥ ε f ( p̃) by the sampling condition, we have

Observation 8.1. Let Bc,r ∈ B(K ) be a Delaunay ball with p ∈ P on its bound-
ary. Then, r > K ε f ( p̃).

By definition R
3 = �I ∪ �O . So, we can write B(K ) = BI ∪ BO where BI

is the set of balls having their centers in �I and BO is the set of balls with their
centers in �O . We call the balls in BI the inner big Delaunay balls and the ones
in BO the outer big Delaunay balls.
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We will filter out those points from P that lie on the balls in B(K ). A decom-
position of B(K ) induces a decomposition on these points, namely

PI = {p ∈ P ∩ B | B ∈ BI } and PO = {p ∈ P ∩ B | B ∈ BO}.
Notice that PI and PO may not be disjoint and they decompose only the set

of points incident to the balls in B(K ) and not necessarily the set P .
In the analysis to follow we will assume that ε is a sufficiently small positive

value no more than 0.01. With this assumption we have

ε1 = ε(1 + ε + ε2) ≤ 1.1ε.

We will use the General Normal Theorem 7.1 in the analysis. Substituting
δ = 3ε2 and ε1 ≤ 1.1ε we get the following corollary.

Corollary 8.1. Let Bc,r be a Delaunay ball whose boundary contains a sample
point p ∈ P. Let c lie in �I . If r = λ f ( p̃) then the sin of the angle the vector−→cp makes with n p is at most(

2.2 + 4
√

3 + 3
√

3√
λ

+ 3.3

λ

)
ε

when ε ≤ 0.01 is sufficiently small.

In the rest of the chapter we use

ε3 = ε1 + 3ε2 and ε4 =
(

7ε3

(1 − 3ε2) + 4ε3

) 1
2

(1 − 3ε2).

Notice that ε3 = Õ(ε) and ε4 = Õ(
√

ε).
The next lemma shows that not only do we have large Delaunay balls in

Del P but also many of them covering almost the entire �I .

Lemma 8.3 (Delaunay Ball). For each point x ∈ �I with ‖x − x̃‖ =
3ε2 f (x̃), there is a Delaunay ball that enjoys the following properties when
ε is sufficiently small.

(i) The radius of the Delaunay ball is at least 3
4 (1 − 3ε2) f (x̃).

(ii) The boundary of the Delaunay ball contains a sample point p ∈ PI within
a distance ε4 f (x̃) = Õ(

√
ε) f (x̃) from x.

Proof. Consider the feature ball B = Bm,r whose boundary meets x . By defi-
nition,

r = (1 − 3ε2) f (x̃).

We construct the Delaunay ball as claimed by deforming B as follows.
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Figure 8.3. Deformation of B to B ′.

Shrinking: Let B3/4 = Bm,3r/4 be a shrunk copy of B. The ball B and hence
B3/4 are empty.

Translation: Translate B3/4 rigidly by moving the center m along the direction−→mx until its boundary hits a sample point p ∈ P . Let this new ball be B ′ = B ′
m ′,r ′ ,

refer to Figure 8.3.

Delaunay deformation: Deform B ′ further to a larger Delaunay ball B ′′ =
Bm ′′,r ′′ which we show has the claimed properties. The center m ′ of B ′ belongs
to the Voronoi cell Vp since B ′ is empty of points from P . Move the center m ′

of B ′ continuously in Vp always increasing the distance ‖m ′ − p‖ till m ′ meets
a Voronoi vertex, say m ′′, in Vp. This motion is possible as the distance function
from p reaches its maxima only at the Voronoi vertices.

Let x ′ be the closest point to x on the boundary of B ′. The Sampling
Lemma 8.1(i) implies that the point x has a sample point within (ε1 + 3ε2) f (x̃)
distance. We have

‖x ′ − x‖ ≤ (ε1 + 3ε2) f (x̃) = ε3 f (x̃) (8.1)

since otherwise there is an empty ball centering x with radius ε3 f (x̃).

Claim 8.1. ‖x − p‖ ≤ ε4 f (x̃).

First, we observe that both B and B ′ contain their centers in their intersection.
Since B ′ has a radius smaller than B, it is sufficient to show that B ′ contains m
inside. During the rigid translation when the ball B3/4 touches B at x , its center
moves by 1

4r distance. After that, we move B3/4 by the distance ‖x ′ − x‖ ≤
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ε3 f (x̃) (Inequality 8.1). Thus,

‖m − m ′‖ ≤ 1

4
r + ε3 f (x̃). (8.2)

Therefore, the distance between m and m ′ is less than 3
4r for sufficiently small

ε implying that m is in B ′.
Now we prove the claimed bound for ‖x − p‖. The point p can only be on

that part of the boundary of B ′ which is outside the empty ball B. This with the
fact that the centers of B and B ′ are in their intersection imply that the largest
distance from x to p is realized when p is on the circle where the boundaries
of B and B ′ intersect. Consider this situation as in Figure 8.3.

Let d = ‖m ′ − m‖. First, observe that

1

4
r ≤ d ≤ 1

4
r + ε3 f (x̃). (8.3)

The first half of the inequality holds since B is empty of samples and hence B
3
4

has to move out of it to hit a sample point. The second half of the inequality
follows from Inequality 8.2. Since

‖p − q‖2 = ‖m − p‖2 − ‖m − q‖2,

= r2 − (‖m ′ − q‖ + d)2

and also

‖p − q‖2 = ‖m ′ − p‖2 − ‖m ′ − q‖2,

= (r ′)2 − ‖m ′ − q‖2

we have

‖m ′ − q‖ = r2 − (r ′)2 − d2

2d
.

Hence,

‖x − p‖2 = ‖p − q‖2 + ‖q − x‖2

= r2 − (d + ‖m ′ − q‖)2

+(r − (d + ‖m ′ − q‖))2

= 2r2 − rd − r

d
(r2 − r ′2)

Ineq. 8.3≤ ε3(1 + 3
4 )

1
4 (1 − 3ε2) + ε3

r2

≤ ε4 f (x̃).
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Figure 8.4. The balls B ′ and D incident to p. The reduced ball D′ shown with dotted
circle contains m.

Claim 8.2. m ′′ ∈ �I .

To prove this claim we first show that the radius r ′ of B ′, which is 3
4r =

3
4 (1 − 3ε2) f (x̃), is also large compared to f ( p̃). Observe that ‖x ′ − x̃‖ is at
most ε3 f (x̃) if x̃ lies between x and x ′ (Inequality 8.1). If x̃ does not lie
between x and x ′, the distance ‖x ′ − x̃‖ is no more than ‖x − x̃‖ which and is
at most 3ε2 f (x̃) since B is a feature ball (refer to Figure 8.2). Hence, ‖x ′ − x̃‖
≤ max{ε3, 3ε2} f (x̃). We have ε3 > 3ε2. Therefore, we can say ‖x ′ − x̃‖ ≤
ε3 f (x̃). We know ‖p − p̃‖ ≤ ε2 f ( p̃). So, we can apply Lemma 8.2 with ε′ = ε3

and λ = 3
4 (1 − 3ε2) to deduce that r ′ = ‖p − m ′‖ ≥ β f ( p̃) where

β = 3

10

(1 − 3ε2)(1 − ε3)

1 + Õ(ε)
.

This means

r ′ ≥
(

3

10
− Õ(ε)

)
f ( p̃). (8.4)

Now we show that the center of B ′ cannot reach a point in � during its
deformation to B ′′ establishing m ′′ ∈ �I . Suppose not, that is, the center of B ′

reaches a point y ∈ � during the deformation. Then, we reach a contradiction.
First, observe that m ′ is in �I as it is only within 1

4r + ε3 f (x̃) distance
away from m. Next, consider the two balls B ′ and D = By,‖y−p‖ meeting at
p (Figure 8.4). Both have radii larger than ( 3

10 − Õ(ε)) f ( p̃) (Inequality 8.4)

which is at least f ( p̃)
4 for sufficiently small ε. Both vectors −→yp and

−−→
m ′ p make

at most 35ε angle with n p̃ (Corollary 8.1) and hence make an angle of at most
70ε among themselves. Consider a smaller version of D by moving its center
towards p till its radius becomes same as that of B ′. Let this new ball be
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D′ = Bc,‖p−c‖ (Figure 8.4). We show that this D′ and hence D contain m. We
have

‖m − c‖ ≤ ‖m − m ′‖ + ‖m ′ − c‖
≤ 1

4
(1 − 3ε2) f (x̃) + ε3 f (x̃) + 70εr ′

=
(

1

4
+ Õ(ε)

)
(1 − 3ε2) f (x̃).

On the other hand, the radius ‖p − c‖ of D′ is r ′ = 3
4 (1 − 3ε2) f (x̃). There-

fore, ‖m − c‖ is smaller than this radius for a sufficiently small ε. Hence, m is
in D′ and therefore in D. Now we claim that y and m are far away and thus y
cannot have any sample point nearby contradicting the Sampling Lemma 8.1.
Let z be the point on the medial axis so that ‖x̃ − m‖ = f (x̃) = ‖x̃ − z‖.
Then, ‖y − m‖ + 2‖x̃ − m‖ ≥ ‖y − z‖ ≥ f (y) giving 3‖y − m‖ ≥ f (y) or
‖y − m‖ ≥ f (y)/3. Since D contains m, the ball centered at y with radius
‖y − m‖ lies completely inside D and thus cannot contain any sample point.
This means y cannot have a sample point within f (y)/3 distance, a contradic-
tion to the Sampling Lemma 8.1 when ε is sufficiently small. This completes
the claim that the center of B ′ always remains in �I while deforming B ′ to B ′′.

Claim 8.3. B ′′ ∈ BI .

The ball B ′′ contains four sample points including p on its boundary. For
any of these sample points u, we have ‖u − ũ‖ ≤ ε2 f (ũ) by the sampling
condition. Therefore, applying Lemma 8.2 to B ′′ with points p, u 
= p, and
λ = ( 3

10 − Õ(ε)) we get

r ′′ ≥ λ(1 − ε2)

1 + 2λ + ε2
f (ũ) ≥

(
3

16
− Õ(ε)

)
f (ũ).

Also, we have du ≤ ε2 f (ũ) from the Sampling Lemma 8.1. Thus, B ′′ is inB(K )
if

( 3
16 − Õ(ε))

2
> K ε2, or 1 > Õ(ε) + 11K ε2,

a condition which is satisfied for a sufficiently small ε. Since m ′′ ∈ �I by Claim
8.2, we have B ′′ ∈ BI .

Lemma claims: Clearly,

r ′′ ≥ r ′ ≥ 3

4
(1 − 3ε2) f (x̃).
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This proves (i). Claim 8.3 proves p ∈ PI which together with the Claim 8.1
gives (ii). �

8.3 Proximity

We aim to prove that the boundary of
⋃BI is homeomorphic and close to

�. The proof can be adapted in a straightforward manner for a similar result
between the boundary of

⋃BO and �. We define

SI = bd
(⋃

BI

)
,

SO = bd
(⋃

BO

)
.

In the next two lemmas we establish that each point in SI has a nearby point
on �.

Lemma 8.4. Let x be a point lying in �O where x ∈ SI . Then, ‖x − x̃‖ ≤
ε1

1−2ε1
f (x̃).

Proof. Let x ∈ Bc,r where Bc,r ∈ BI . The line segment joining x and c must
intersect � since c lies in �I while x lies in �O . Let this intersection point be z.
We claim that ‖x − z‖ ≤ ε1 f (z). Otherwise, there is a ball inside Bc,r centering
z and radius at least ε1 f (z). This ball is empty since Bc,r is empty. This violates
the Sampling Lemma 8.1 for z. This means that the closest point x̃ ∈ � to x has
a distance ‖x − x̃‖ ≤ ‖x − z‖ ≤ ε1 f (z). We also have ‖z − x̃‖ ≤ 2‖x − z‖.
Applying the Lipschitz property of f , we get the desired bound for ‖x − x̃‖.

�

Lemma 8.5. Let x be a point lying in �I where x ∈ SI . Then, for a sufficiently
small ε, ‖x − x̃‖ ≤ 36ε f (x̃).

Proof. Let y ∈ �I be a point where ỹ = x̃ and ‖y − x̃‖ = 3ε2 f (x̃). Observe
that x , y, and x̃ are collinear. If x lies between x̃ and y, then ‖x − x̃‖ ≤ 3ε2 f (x̃)
which is no more than 36ε f (x̃).

So, assume that x is further away from x̃ than y is. Consider a Delaunay ball
B = Bc,r ∈ BI for y guaranteed by the Delaunay Ball Lemma 8.3. This ball has
a sample point p ∈ P on the boundary so that ‖y − p‖ ≤ ε4 f (x̃). Moreover,
r ≥ 3

4 (1 − 3ε2) f (x̃). This ball was obtained by deforming a ball B ′ = Bm ′,r ′

whose boundary passes through p and a point x ′ where ‖y − x ′‖ ≤ ε3 f (x̃).
Also, r ′ = 3

4 (1 − 3ε2) f (x̃). Focus on the two balls B and B ′ incident to p.
Since y and p and hence x̃ and p are close, both B and B ′ have radii larger
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Figure 8.5. The balls B and B ′ incident to p. The point x ′ is furthest from x when B is
the smallest possible.

than 3
5 f ( p̃) when ε is sufficiently small. By Corollary 8.1, we obtain that the

vectors −→pc and
−−→
pm ′ make 23ε angle with −n p̃ and hence make an angle of 46ε

among them.
We know that B has a radius at least as large as B ′ (proof of the Delaunay

Ball Lemma 8.3). The points x, x ′, x̃ , and y are collinear and y separates x
and x ′. Further, x cannot lie inside a Delaunay ball. With these constraints,
the distance between x and x ′ is the most when x lies on the boundary of B
and B is the smallest possible (see Figure 8.5). This means we can assume
that both B and B ′ have the same radius to estimate the worst upper bound on
‖x − x ′‖. In that configuration, ‖x − x ′‖ ≤ ‖c − m ′‖ ≤ 46r ′ε which is at most
34ε(1 − 3ε2) f (x̃). Therefore,

‖x − x̃‖ ≤ ‖x − y‖ + ‖y − x̃‖
≤ ‖x − x ′‖ + ‖x ′ − x̃‖
≤ (34ε(1 − 3ε2) + ε3) f (x̃)

≤ 36ε f (x̃).

�

From Lemma 8.4 and Lemma 8.5 we get the following theorem.

Theorem 8.1 (Small Hausdorff). For a sufficiently small ε, each point x on
SI has a point in � within 36ε f (x̃) distance.

Lemma 8.6. Let x be any point on the boundary of a ball Bc,r ∈ BI , we have
r ≥ (K/2)ε f (x̃) for a sufficiently small ε.

Proof. Suppose the claim is not true. Then, consider a vertex p ∈ PI on the
Delaunay ball Bc,r . Since this ball is in BI , we have r ≥ K ε f ( p̃). Since
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‖x − p‖ ≤ 2r , we have ‖x − p‖ ≤ K ε f (x̃) by our assumption. This means
‖x − p̃‖ ≤ K ε f (x̃) + ε2 f ( p̃). Since x̃ is closer to x than p̃, we have

‖x̃ − p̃‖ ≤ ‖x̃ − x‖ + ‖x − p̃‖
≤ 2

(
K ε f (x̃) + ε2 f ( p̃)

)
.

Using the Lipschitz property of f we get

f (x̃) ≤
(

1 + 2ε2

1 − 2K ε

)
f ( p̃).

Therefore by our assumption,

r <

(
K

2

) (
1 + 2ε2

1 − 2K ε

)
ε f ( p̃).

We reach a contradiction if K (1+2ε2)
2(1−2K ε) ≤ K , a condition which is satisfied for a

sufficiently small ε. �

Theorem 8.2 (Normal Approximation). Let x be a point in SI where Bc,r ∈
BI contains x. For a sufficiently small ε, ∠(nx̃ ,

−→cx ) = 25
√

ε + 26√
K

+ 8
K .

Proof. We apply the General Normal Theorem 7.1 to x . Lemma 8.6 gives
λ = K ε

2 and the Small Hausdorff Theorem 8.1 gives δ = 36ε. With these sub-
stitutions we get the required angle bound. �

8.4 Topological Equivalence

We have all ingredients to establish a homeomorphism between � and SI using
the map ν. Recall that ν maps all points of R

3 except the medial axis points of
� to their closest point in �.

Although the next theorem is stated for a large K , it is not as large in practice.
The large value of K is due to the slacks introduced at various places of the
analysis.

Theorem 8.3. For any K > 400 there exists a ε > 0 and κ ≥ 1 so that if P
is a (ε, ε2, κ)-sample of a surface �, the restriction ν ′ of ν to SI defines a
homeomorphism between SI and �.

Proof. For any fixed K > 0, Lemmas 8.3 to 8.6 hold for a sufficiently small ε.
In particular, the Small Hausdorff Theorem 8.1 asserts that each point x in SI is
within Õ(ε) f (x̃) distance from x̃ . Therefore, all points of SI are far away from
the medial axis when ε is sufficiently small. Thus ν ′ is well defined. Since SI
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and � are both compact we only need to show that ν ′ is continuous, one-to-one,
and onto. The continuity of ν ′ follows from the continuity of ν.

To prove that ν ′ is one-to-one, assume on the contrary that there are points x
and x ′ in SI so that x̃ = ν ′(x) = ν ′(x ′). Without loss of generality assume x ′ is
further away from x̃ than x is. Let x ∈ Bc,r where Bc,r ∈ BI . The line �x passing
through x and x ′ is normal to � at x̃ and according to the Normal Approximation
Theorem 8.2, �x makes an angle of at most α = 25

√
ε + 26√

K
+ 8

K with the

vector −→cx . This angle is less than π
2 for K > 400. Thus, while walking on the

line �x toward the inner medial axis starting from x̃ , we encounter a segment of
length at least 2r cos α inside Bc,r . By the Small Hausdorff Theorem 8.1 both x
and x ′ are within 36ε f (x̃) distance from x̃ . We reach a contradiction if 2r cos α

is more than 72ε f (x̃). Since r > (K/2)ε f (x̃) this contradiction can be reached
for a sufficiently small ε. Then, x and x ′ are the same.

The map ν ′ is also onto. Since SI is a closed, compact surface without bound-
ary and ν ′ maps SI continuously to �, ν ′(SI ) must consist of closed connected
components of �. By our assumption � is connected. This means ν ′(SI ) = �

and hence ν ′ is onto. �

We can also show an isotopy between SI and � using the proof technique
of the PC-Isotopy Theorem 6.4 in Section 6.1. To carry out the proof we need
(i) SI lives in a small tubular neighborhood of � which is ensured by the
Small Hausdorff Theorem 8.1 and (ii) the normals to � intersects SI in exactly
one point within this neighborhood which is shown in the proof of the above
theorem.

8.4.1 Labeling

To apply the previous results, we need to label the balls inBI and the ones inBO .
As in PowerCrust we achieve this by looking at how deeply the balls intersect.
A ball in BI can have only a shallow intersection with a ball in BO . However,
adjacent balls in BI or in BO intersect deeply. In the case of PowerCrust we
took two balls adjacent if they contribute a facet in the power diagram. Here
we will define the adjacency slightly differently without referring to the power
diagram. We call two balls in BI (BO ) adjacent if their boundaries intersect at a
point lying in SI (SO respectively). The adjacent balls in BI or in BO intersect
deeply. We measure the depth of intersection as before, that is, by the angle at
which two balls intersect. We say a ball B1 intersects another ball B2 at an angle
α if there is a point x in the intersection of their boundaries and ∠(−→c1x,

−→c2x) = α

where c1 and c2 are the centers of B1 and B2 respectively.
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Lemma 8.7. Any two adjacent balls B1 and B2 in BI intersect at an angle of
at most 50

√
ε + 52√

K
+ 16

K when ε is sufficiently small.

Proof. Let x ∈ B1 ∩ B2 be a point in SI . The angle at which B1 and B2 intersect
at x is equal to the angle between the vectors −→c1x and −→c2x where c1 and c2 are the
centers of B1 and B2 respectively. By the Normal Approximation Theorem 8.2
both ∠(nx̃ ,

−→c1x) and ∠(nx̃ ,
−→c2x) are at most 25

√
ε + 26√

K
+ 8

K . This implies

∠(−→c1x,
−→c2x) is no more than the claimed bound. �

Lemma 8.8. For a sufficiently small ε, any ball B1 ∈ BI intersects any other
ball B2 ∈ BO at an angle more than π/2 − arcsin((2/K )(1 + Õ(ε))).

Proof. The line segment joining the center c1 of B1 and the center c2 of B2

intersects � as c1 lies in �I where c2 lies in �O . Let this intersection point be
x . Without loss of generality, assume that x lies inside B1. Let C be the circle
of intersection of the boundaries of B1 and B2 and d be its radius. Clearly, d is
smaller than the distance of x to the closest sample point as B1 is empty. This
fact and the Sampling Lemma 8.1 imply

d ≤ ε1 f (x). (8.5)

Next, we obtain a lower bound on the radius of B1 in terms of f (x). Let
the segment c1c2 intersect the boundary of B1 at y. The Sampling Lemma 8.1
implies ‖x − y‖ ≤ ε1 f (x). This also means ‖x − ỹ‖ ≤ 2ε1 f (x). By Lipschitz
property of f , we have

f (ỹ) ≥ (1 − 2ε1) f (x).

The radius r of B1 satisfies (Lemma 8.6)

r ≥ (K/2)ε f (ỹ)

≥ (K/2)ε(1 − 2ε1) f (x). (8.6)

Combining Inequalities 8.5 and 8.6 we obtain that, for a point z on the circle
C , −→zc1 makes an angle at least π/2 − arcsin((2/K )(1 + Õ(ε))) with the plane
of C . The angle at which B1 and B2 intersect is greater than this angle. �

Lemmas 8.7 and 8.8 say that, for a sufficiently large K and a small ε, one
can find an angle θ > 0 so that the adjacent balls in BI and BO intersect at
an angle less than θ whereas a ball from BI intersects a ball from BO at an
angle larger than θ . This becomes the basis of separating the inner balls from
the outer ones. The boundary of the union of the outer balls, or the inner big
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balls can be output as the approximated surface. Alternatively, one can apply
a technique to smooth this boundary. In fact, it is known how to produce a
surface from the union of a set of balls with C2-smoothness. These surfaces
are called skin surfaces. However, these surfaces may not interpolate the input
points. We take the help of the restricted Delaunay triangulation to compute a
surface interpolating through the points on the outer (or inner) big Delaunay
balls. The restricted Delaunay surfaces Del PI |SI and Del PO |SO can be shown
to be homeomorphic to SI and SO respectively by showing that (SI , PI ) and
(SO , PO ) satisfy the topological ball property when ε is sufficiently small.

Theorem 8.4. For sufficiently small ε > 0, Del PI |SI is homeomorphic to �.
Further, each point x in Del PI |SI has a point in � within Õ(

√
ε) f (x̃) distance

and conversely, each point x in � has a point in Del PI |SI within Õ(
√

ε) f (x)
distance.

8.4.2 Algorithm

Now we have all ingredients to design an algorithm that computes a surface
homeomorphic to �. We will describe the algorithm to compute Del PO |SO .
Clearly, it can be adapted to compute Del PI |SI as well. The algorithm uses
three user-supplied parameters, κ , K , and θ . It first chooses each Delaunay ball
whose radius is bigger than K times the distance between any sample point p
on its boundary and the κth nearest sample point of p. Then, it starts walking
from an infinite Delaunay ball circumscribing an infinite tetrahedron formed by
a convex hull triangle and a point at infinity. This Delaunay ball is outer. The
angle of intersection between an infinite Delaunay ball and other Delaunay balls
intersecting it needs to be properly interpreted taking infinity into account. The
algorithm continues to collect all big balls that intersect a ball already marked
outer at an angle more than a threshold angle θ . Once all outer big Delaunay
balls are identified, the set PO is constructed.

To compute Del PI |SI we first compute Del PI and then determine the Voronoi
edges of Vor PI that intersect SI . The dual Delaunay triangles of these Voronoi
edges along with their vertices and edges form Del PI |SI .

RobustCocone(P ,κ ,K ,θ )
1 compute Del P;
2 mark all infinite Dealuany balls;
3 for each tetrahedron pqrs ∈ Del P do

4 let Bc,r be the Delaunay ball of pqrs;
5 let the smallest κth neighbor distance for p, q, r , and s be d;
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Figure 8.6. Surface reconstruction by RobustCocone from a noise-free sample.

6 if r ≥ Kd then mark Bc,r ;
7 endfor

8 initialize a stack S and a set U with all infinite Delaunay balls;
9 while S 
= ∅ do

10 B:= pop S;
11 for each marked ball B ′ 
∈ U do

12 if B 
= B ′, and B and B ′ intersect at an angle less than θ

13 U :=U ∪ B ′;
14 push B ′ into S;
15 endif

16 endfor

17 endwhile

18 let PO be the vertex set of tetrahedra circumscribed by balls in U ;
19 compute Vor PO ;
20 E := ∅;
21 for each Voronoi edge e ∈ Vor PO do

22 if one vertex of e is in a ball in U and
the other is in none of them

23 E :=E ∪ dual e;
24 endif

25 endfor

26 output E .

In Figures 8.6 and 8.7, we show the results of a slightly modified Robust-
Cocone. It first filters the points as described using the parameters K = 0.5
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Figure 8.7. Reconstruction by RobustCocone on noisy samples.

and κ = 3. Then, instead of computing the restricted Delaunay triangulation
Del PO |SO , it applies TightCocone on the filtered point set. RobustCocone
performs much better than TightCocone alone on noisy data where noise is
reasonably high. One aspect of the algorithm is that it tends to produce much
less nonmanifold vertices and edges. It should be clear that the RobustCocone
is able to handle noise-free data sets as well. Figure 8.6 shows an example.

8.5 Notes and Exercises

The RobustCocone algorithm presented in this chapter is taken from Dey and
Goswami [34]. This paper showed that the idea of power crust can be applied
to noisy point cloud data.
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The noise model is reasonable though variations in the sampling conditions
are certainly possible. The sampling condition (ii) requires a quadratic de-
pendence (ε2) on the sampling parameter. One can relax this condition to be
linearly dependent on ε by trading off the normal approximation guarantee.
Corollary 8.1 will give an Õ(

√
ε) approximation to normals at the sample

points. This will in turn give an Õ(
√

ε) f (x̃) bound on the distances between
any point x in SI and x̃ in � in Lemma 8.5. As a consequence the Normal
Approximation Theorem 8.2 will provide an Õ(ε

1
4 + 1√

K
√

ε
+ 1

K
√

ε
) approx-

imation for the normals which will mean that K
√

ε has to be large, or K
has to be large, say �( 1

ε
), to have a good normal approximations. This ob-

servation suggests that larger the noise amplitude, the bigger the parameter K
should be for choosing big Delaunay balls. It would be interesting to see what
kind of other tradeoffs can be achieved between the guarantees and the noise
models.

We have assumed � to be connected. All definitions and proofs can be easily
extended to the case when � has multiple components. However, it is not clear
how to extend the labeling algorithm to separate the balls on two sides of a
component of � when it has multiple components. It is important that all the
big Delaunay balls on one side remain connected through the adjacency relation
as defined in Section 8.4.1. When � has multiple components, we cannot appeal
to Theorem 8.3 to claim the connectedness among the big Delaunay balls since
the surface SI may not be connected as � is not. This is also a bottleneck for
the PowerCrust algorithm [7]. It would be interesting to devise a labeling
algorithm which can handle multiple components with guarantee.

The RobustCocone algorithm requires that the sampled surface have no
boundary. It is not clear how the algorithm should be adapted for surfaces with
boundary. A reconstruction of surfaces with boundaries from noiseless point
samples can be done by the BoundCocone algorithm described in Chapter 5.
However, noise together with boundaries pose a difficult challenge. The spectral
crust of Kolluri, O’Brien, and Shewchuk [64] is shown to work well for such
data sets though no proofs are given.

Exercises

1h . Consider the set of inner and outer big Delaunay balls BI and BO respec-
tively. Consider the following algorithm for reconstructing �. Compute the
power diagram of the centers of the balls in BI ∪ BO with their radii as the
weights. Then output the facets that separate a power cell of an inner ball
center from that of an outer ball center. Show that the surface output by this
algorithm is homeomorphic to � if the sample is sufficiently dense.
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2. Let φ(x) = (x − x̃)T nx̃ for a point x ∈ R
3. Consider the offset surface �−ε

defined as:

�−ε = {x | |φ(x)| = ε f (x) and φ(x) is negative}.
(i) Is φ(x) continuous if � is C1-smooth? What if � is C2-smooth?

(ii) Give an example that shows �−ε is not necessarily C1-smooth even if
� is.

(iii) Prove that �−ε is homeomorphic to � for a sufficiently small ε.
3. Suppose one adopts the following intersection depth check to collect all

outer big Delaunay balls. Let B be any big Delaunay ball that has been
already collected. Let t be the tetrahedron circumscribed by B. For depth
intersection with B check all the balls circumscribing the tetrahedra sharing
a triangle with t . Does this algorithm work?

4h . Carry out the entire analysis of topological and geometric guarantees of SI

assuming that P is a (ε, ε, κ)-sample for suitable ε and κ .
5o. Prove that the Cocone algorithm applied to the points on the union of inner

big Delaunay balls produces a surface homeomorphic to � for a sufficiently
small ε in the noise model.

6. Instead of choosing big Delaunay balls with a threshold in RobustCocone
one can choose the largest polar balls among k-nearest neighbors for some
k ≥ 1 as in the feature approximation algorithm in Chapter 7. Show that,
for a (ε, ε2, κ)-sample, the surface SI defined with these balls is isotopic to
the sampled surface if k is close to κ and ε is sufficiently small.
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Implicit Surface-Based Reconstructions

In surface reconstruction, if the input point cloud is noisy, a surface fitting
through the points can be too bumpy for practical use. A remedy to this problem
is to define a target smooth implicit surface and project or generate points on this
implicit surface for reconstruction. Of course, the main problem is to choose
a suitable implicit surface that resembles the original surface which the input
point cloud presumably sampled. This means we should prove that the chosen
implicit surface is homeomorphic (isotopic) to the sampled surface and is also
geometrically close to it. First, we outline a generic approach to achieve this
and then specialize the approach to a specific type of implicit surface called
MLS surface.

9.1 Generic Approach

Suppose N : R
3 → R is an implicit function whose zero-level set N−1(0) is

of interest for approximating the sampled surface �. The gradient of N at x is

∇N (x) =
(

∂N
∂x1

(x)
∂N
∂x2

(x)
∂N
∂x3

(x)

)
.

As before let � ⊂ R
3 be a compact, smooth surface without boundary. For

simplicity assume that � has a single connected component. As in previous
chapters �O denotes the unbounded component of R

3 \ � and �I denotes R
3 \

�O . For a point z ∈ �, nz denotes the oriented normal of � at z where nz points
locally toward the unbounded component �O . Let M be the medial axis of �.

The entire set N−1(0) may not approximate �. Instead, only the subset of
N−1(0) close to � will be the implicit surface of our interest. For this we define
a thickening of �.

Recall that, for a point x ∈ R
3 \ M , x̃ denotes its closest point in �. Let φ(x)

denote the signed distance of a point x to �, that is, φ(x) = (x − x̃)T nx̃ . For a

152
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Figure 9.1. The set δ�, medial axis, and normals.

real δ ≥ 0, define offset surfaces �+δ and �−δ where

�+δ = {x ∈ R
3 | φ(x) = +δ f (x̃)}

�−δ = {x ∈ R
3 | φ(x) = −δ f (x̃)}.

Let δ� be the region between �−δ and �+δ , that is,

δ� = {x ∈ R
3 | − δ f (x̃) ≤ φ(x) ≤ δ f (x̃)}.

Figure 9.1 illustrates the above concepts.
We want to focus on the subset of the zero-level set N−1(0) near �. So, we

define W = N−1(0) ∩ δ� for a small δ > 0. The proofs of topological equiv-
alence and geometric approximation between W and � use two key properties
of N .

9.1.1 Implicit Function Properties

Hausdorff property. We say that N has the Hausdorff property for δ and δ′

if δ′ < δ and

N (x) > 0 when x ∈ (δ� \ δ′�) ∩ �O

< 0 when x ∈ (δ� \ δ′�) ∩ �I .

The above inequalities mean that N (x) crosses zero value in δ� only when x
is in δ′�. This implies that N−1(0) ∩ δ� indeed resides in δ′�.

Gradient property. Let z be any point in �. Let �nz be the oriented line
containing the normal nz to � at z. Let [u]N (x) be the directional derivative
of N at x along the vector u, that is, [u]N (x) is uT ∇N (x). We say N has the
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gradient property for δ if

[nz]N (x) > 0 for any x ∈ �nz ∩ δ�.

The directional derivative [nz]N (x) is the projection of the gradient ∇N (x)
along �nz . Therefore, the gradient property implies that ∇N (x) is not zero in
δ�.

9.1.2 Homeomorphism Proof

We show that if N has the Hausdorff property for δ and δ′, and the gradient
property for δ′ where δ′ < δ < 1, the subset

W = N−1(0) ∩ δ�

is homeomorphic to �. First, observe that Hausdorff property implies W is
indeed a subset of δ′�. Second, the gradient property implies that ∇N does
not vanish in δ′�. Therefore, by the implicit function theorem in differential
topology, W is a compact, smooth 2-manifold.

Consider the map ν : R
3 \ M → � that takes a point x ∈ R

3 to its closest
point in �. We show that ν defines a homeomorphism when restricted to W .
Let ν ′ denote this restriction.

Lemma 9.1. If N has the Hausdorff property for δ and δ′ where δ < 1, ν ′ is
well defined and surjective.

Proof. Since δ < 1, W avoids M as all points of W are in δ� by definition.
Therefore, ν ′ avoids M and hence is well defined.

Let z be any point in �. The normal line �nz , through z along the normal
nz , intersects N−1(0) within δ�, thanks to the Hausdorff property. Thus, by
definition of W , it intersects W at a point. Therefore, for each point z ∈ �, there
is a point in W which is mapped by ν ′ to z. �

Lemma 9.2. IfN has the Hausdorff property for δ and δ′ as well as the gradient
property for δ′ where δ′ < δ < 1, ν ′ is injective.

Proof. To prove the injectivity of ν ′, assume for the sake of contradiction that
there are two points w and w′ in W so that ν ′(w) = ν ′(w′) = z. This means
�nz intersects W at w and w′ within δ′� (Hausdorff property). Without loss of
generality assume that w and w′ are two such consecutive intersection points. It
follows that the oriented line �nz makes at least π

2 angle with one of the normals
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to W at w and w′. But, that is impossible since the gradient property implies that

∠(nz, ∇N (x)) <
π

2

for any point x ∈ �nz ∩ δ′�. �

Theorem 9.1. If N has the Hausdorff property for δ and δ′ as well as the
gradient property for δ′ where δ′ < δ < 1, ν ′ is a homeomorphism.

Proof. The function ν ′ is continuous since ν is. Since W is compact, it is
sufficient to establish that ν ′ is surjective and injective which are the statements
of Lemma 9.1 and Lemma 9.2 respectively. �

Several implicit surfaces have been proposed with different algorithms for
their computations in the literature. Among them we focus on the class of
surfaces defined by a technique called moving least squares. These surfaces,
generically, are called MLS surfaces.

9.2 MLS Surfaces

Our goal is to formulate an implicit surface that fits the input points well. In
particular, we would like to prove the Hausdorff and the gradient property
for the implicit function that defines the implicit surface. Least squares is a
numerical technique developed to fit a function to a given input data. Let a
function � : R

3 → R be sampled at the points in P ⊂ R
3. This means each

point p ∈ P has an associated function value φp = �(p). Suppose we wish
to design an implicit function I : R

3 → R that fits the data points as close as
possible with respect to some metric. If this metric is the sum of the squares
of the errors at the data points, we get the well-known least squares solution.
Specifically, we minimize the error

�p∈P (I(p) − φp)2 (9.1)

to obtain a solution for I. In our case we would like the implicit surface given
by I−1(0) to fit the given input points P . We modify the basic least squares
technique as follows. First, each function value φp is replaced with a function
φp : R

3 → R where φp(p) = 0. Then, taking

I(x) = �n
i=1ci bi (x) (9.2)

where ci is the coefficient for the ith basis function bi (x), one can minimize

�p∈P (I(x) − φp(x))2 (9.3)
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over the unknown coefficients. The intention here is that the resulting solution I
fits each functionφp(x) well and in particular when x is near p. Sinceφp(p) = 0,
this would mean that the implicit surface given by I−1(0) fits the points in P .
However, this does not happen in general as the least square fit given by the
minimization of the expression in 9.3 does not give any preference to φp(x)
when x is near p. We achieve this goal by weighting the contributions of the
errors differently. We use a weight function θp : R

3 → R for the point p so
that it takes a larger value than all other weight functions when x is near p. So,
we minimize

�p∈P (I(x) − φp(x))2θp(x).

The effects of the weights make the least square fit change or “move” which
lead to the terminology moving least squares or MLS in short for the resulting
implicit surface.

For simplicity we choose I(x) = c0 letting all other ci = 0 in Equation 9.2.
Notice that c0 will be a function of x instead of a constant. The minimization
leads to the equation

�p∈P 2(c0 − φp(x))θp(x) = 0

or, I(x) = c0 = �p∈Pφp(x)θp(x)

�p∈Pθp(x)
.

We would like the implicit surface I−1(0) not only match the sampled surface
in Hausdorff distance but also match its normals. So, we assume that each
sample point is equipped with an estimated normal. Let vp denote the assigned
normal to the sample point p. Then, the gradient ∇I(p) should approximate
vp. Keeping this in mind we choose

φp(x) = (x − p)T vp.

With these choices the MLS surface is the zero-level set of

I(x) = �p∈P ((x − p)T vp)θp(x)

�p∈Pθp(x)
. (9.4)

9.2.1 Adaptive MLS Surfaces

Weighting Functions

The implicit function value I(x) at a point x should be primarily decided by
the nearby sample points. That is exactly the reason why the MLS function
weighs the sample points differently in a sum instead of giving them equal
weights. We will adopt the noise model as in Chapter 8, that is, a (ε, ε2, −)-
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Figure 9.2. The solid curves and the dash–dot lines represent part of the surface and its
medial axis respectively.

sample for a suitably small ε > 0. This model implies that the sample points
within a sufficiently small neighborhood of a point x near � are predictably
distributed within a small slab (Lemma 9.4). However, the surface � and its
sample points outside this neighborhood could be arbitrarily distributed. Hence,
we should design a weighting function such that the sample points outside the
neighborhood have much less effect on the implicit function than those inside.

Our first step to meet the above requirements is to choose Gaussian functions
as the weights since their widths can control the influence of the sample points.
Therefore, the weighting function θp(x) is chosen as a Gaussian function with
a support width h around p, that is,

θp(x) = exp‖x−p‖2/h2
. (9.5)

Essentially, h determines the neighborhood from where the sample points have
dominant effects on the implicit function. To make the implicit surface sensitive
to features of �, one may take h to be a fraction of the local feature size.
However, one needs to be more careful. If we simply take a fraction of f (x̃) as

the width, that is, take exp
− ‖x−p‖2

[ρ f (x̃)]2 as the weighting function for some ρ < 1, we
cannot bound the effect of the far away sample points. Consider the left picture
in Figure 9.2. The local feature size at the point p̃ can be arbitrarily small re-
quiring the number of sample points around p̃ to be arbitrarily large to meet the
sampling conditions. Consequently, the summation of the weights over those
sample points which are outside Bx, f (x̃) becomes too large to be dominated by
the contributions of the sample points in the neighborhood Bx, f (x̃) of x .

An alternative option is to take a fraction of f ( p̃) as the width, that is, take

exp
− ‖x−p‖2

[ρ f ( p̃)]2 as the weighting function. However, it also fails as illustrated in
the right picture in Figure 9.2. The sample points such as p has a constant

weight exp
− 1

[ρ cos β]2 . As the summation extends outside the neighborhood of x ,
the contribution of the sample points remains constant instead of decreasing.
As a result, one cannot hope to bound the outside contribution.

We overcome the difficulty by using a combination of the above two op-
tions, that is, by taking a fraction of

√
f (x̃) f ( p̃) as the width of the Gaussian
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Figure 9.3. The solid and the dash–dot lines represent part of the surface and its medial
axis respectively.

weighting functions. This takes into account the effects from both members,

the contribution sender p and the contribution receiver x . Unlike exp
− ‖x−p‖2

[ρ f ( p̃)]2 ,
such form of weighting function decreases as p goes away from x . In addition,
such form of weighting function assigns a small value to the points that sample
small features, which in turn cancels out the effect that small features require
more sample points.

There is still one more difficulty. The function f , though continuous, is not
smooth everywhere on �. The nonsmoothness appears where � intersects the
medial axis of its own medial axis M . To make the implicit function smooth,
we use a smooth function σ arbitrarily close to f where

|σ (x) − f (x)| ≤ β f (x) (9.6)

for arbitrarily small β > 0. This is doable since the family of real-valued smooth
functions over smooth manifolds is dense in the family of continuous functions
and the minimal feature size is strictly positive for any manifold that is at least
C2-smooth. Finally, we choose a fraction (given by ρ) of

√
σ (x̃)σ ( p̃) as the

width of the Gaussian weighting functions. Specifically, we take

ln θp(x) = −
√

2‖x − p‖2

ρ2σ ( p̃)σ (x̃)
. (9.7)

The factor
√

2 in the exponent is for the convenience in proofs as one may see
later. In general, it is known that larger values of ρ make the MLS surface look
smoother. To have a sense of appropriate values of ρ, consider the case where
x is on the surface �. The sample points such as p in Figure 9.3 across the
medial axis to point x should have little effect on the implicit function value at
x . Taking ρ ≤ 0.4 makes the weight of p at x less than exp−25

√
2 ≈ 5 × 10−16

since ‖x − p‖ ≥ 2 max{ f (x̃), f ( p̃)}.

AMLS Function

With the weighting function given by Equation 9.7 we define the implicit func-
tion. Since the weights adapt to the local feature size, we call this function
adaptive MLS or AMLS in short. The implicit surface given by the AMLS
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function is referred as AMLS surface. Let

N (x) =
∑
p∈P

((x − p)T vp)θp(x) (9.8)

where θp is given by Equation 9.7. The AMLS function is given by

I(x) = N (x)

W(x)

where

W(x) =
∑
p∈P

θp(x).

Obviously, the implicit functions N and I have exactly the same zero-level set,
that is, I−1(0) = N−1(0). Therefore, we could have taken N instead of I for
AMLS, but we observe in Section 9.6.3 that I has a significant computational
advantage since Newton iteration for I has a much larger convergent domain
than the one for N . However, the function N has a simpler form to analyze.
Hence, we analyze the zero-level set of I via the function N .

9.3 Sampling Assumptions and Consequences

Our goal is to establish that the function N as defined in Equation 9.8 has the
Hausdorff and gradient properties. This would require that the input point set
P sample � densely though possibly with noise. Following the definition of
noisy sample in Chapter 7 we assume that the input P is a (ε, ε2, κ)-sample of
� for some ε < 1 and κ ≥ 1. In addition, we assume that each sample point is
equipped with a normal with the following condition.

Normal assignment. The normal vp assigned to a point p ∈ P makes an angle
of at most ε with the normal n p̃ at its closest point p̃ on �.

The sampling assumptions lead to the following result which would be used
in our analysis.

Lemma 9.3. For ε < 0.01 and any x ∈ R
3, the number of sample points inside

a ball Bx, ε
2 f (x̃) is less than 10κ .

Proof. Let p be any sample point in Bx, ε
2 f (x̃). We have

‖x − p‖ ≤ ε

2
f (x̃)

or, ‖x − p̃‖ ≤ ε

2
f (x̃) + ε2 f ( p̃)
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and

‖x̃ − p̃‖ ≤ ‖x − x̃‖ + ‖x − p̃‖
≤ 2‖x − p̃‖
≤ ε f (x̃) + 2ε2 f ( p̃). (9.9)

From the Lipschitz property of f and Inequality 9.9 we get

1 − ε

1 + 2ε2
f (x̃) ≤ f ( p̃) ≤ 1 + ε

1 − 2ε2
f (x̃). (9.10)

By sampling condition the ball B = Bp,ε f ( p̃) contains at mostκ sample points.
Thus, B can count for at most κ sample points in Bx, ε

2 f (x̃). To count other sample
points we can take a sample point, say q , outside B and again consider the ball
Bq,ε f (q̃). We can continue this process each time choosing a center outside all
the balls so far considered till we cover all sample points. We determine an
upper bound on the number of such balls that are needed to cover all sample
points.

We claim that the center, say p, of such a ball is at least ε′ f ( p̃) away from
any other center q where

ε′ = ε(1 − ε − ε2)

1 + ε2
.

If q is introduced after p, we have ‖p − q‖ ≥ ε f ( p̃) which is more than the
claimed bound. When p is introduced after q , it is at least ε f (q̃) away from q .
If ‖p − q‖ > ε f ( p̃) we are done. So, assume ‖p − q‖ ≤ ε f ( p̃). Then,

f (q̃) ≥ f ( p̃) − ‖ p̃ − q̃‖
≥ f ( p̃) − ‖ p̃ − p‖ − ‖p − q‖ − ‖q − q̃‖
≥ f ( p̃) − ε2 f ( p̃) − ε f ( p̃) − ε2 f (q̃)

which gives

f (q̃) ≥ (1 − ε − ε2)

1 + ε2
f ( p̃).

Since ‖p − q‖ ≥ ε f (q̃), the claimed bound is immediate.
So, if we consider balls of half the size, that is, for a center p if we consider

a ball of size ε′
2 f ( p̃) they will be disjoint. From Inequality 9.10 each such ball

has a radius at least

r = ε′(1 − ε)

2(1 + 2ε2)
f (x̃).
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Figure 9.4. Illustration for Lemma 9.4: η is the angle between x̃m and p̃m where m is
the center of the medial ball.

Also, each such ball will be inside the ball B ′ = Bx, ε
2 f (x̃)+ ε′

2 f ( p̃). Inequality 9.10

provides that the radius of B ′ is at most

R = ε(1 − 2ε2) + ε′(1 + ε)

2(1 − 2ε2)
f (x̃).

One can pack at most R3

r3 balls of radius r inside a ball of radius R. This implies

that there are at most R3

r3 κ sample points inside the ball Bx, ε
2 f (x̃). We have

R3

r3
κ =

(
(ε(1 − 2ε2) + ε′(1 + ε))(1 + 2ε2)

ε′(1 − 2ε2)(1 − ε)

)3

κ

≤ 10κ for ε < 0.01.

�

For our proofs we need a result that all sample points near a point x in a small
tubular neighborhood of � lie within a small slab centering x̃ . Denote Sx,r to
be the boundary of Bx,r . Consider any point x on �+δ or �−δ and a ball Bx,r f (x̃)

with a small radius r < 1. Let P L+ and P L− be two planes perpendicular to
nx̃ and at a small distance ω f (x̃) from x̃ (Figure 9.4). We show that if ω is of
the order of ε2 + r2, all points of P within the ball Bx,r f (x̃) lie within the slab
made by P L+ and P L−.

Lemma 9.4. For δ < 0.5 and ε < 0.1, let x be a point on �+δ or �−δ and
p be any sample point inside Bx,r f (x̃) where δ < r < 1. Let R(r ) = (δ + r ) +
1+r+δ
1−ε2 ε2. The following facts hold.
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(i) If R(r ) < 1
3 then ∠(nx̃ , vp) < R(r )

1−3R(r ) + ε.
(ii) p lies inside the slab bounded by two planes P L+ and P L− which are

perpendicular to nx̃ and at a distance of ω(r ) f (x̃) from x̃ where ω(r ) =
R(r )2

2 + 1+r+δ
1−ε2 ε2.

Proof. Let B be the ball Bx,r f (x̃). We have

‖ p̃ − x̃‖ ≤ (δ + r ) f (x̃) + ε2 f ( p̃). (9.11)

From Lipschitz property of f , we obtain

f ( p̃) ≤ 1 + r + δ

1 − ε2
f (x̃). (9.12)

It follows from Inequalities 9.11 and 9.12 that

‖x̃ − p̃‖ ≤ R(r ) f (x̃). (9.13)

If R(r ) < 1
3 , ∠(nx̃ , n p̃) < R(r )

1−3R(r ) by the Normal Variation Lemma 3.3 which
together with ∠(n p̃, vp) < ε shows (i).

Let γ be the radius of either of the two medial balls Bout or Bin at x̃ . Obviously,
γ ≥ f (x̃). Furthermore, we have

sin
η

2
≤ ‖x̃ − p̃‖

2γ
(9.14)

where η is the angle illustrated in Figure 9.4. The distance from p̃ to the tangent
plane at x̃ is less than γ (1 − cos η) = 2γ sin2 η

2 . Hence, the distance from p
to the tangent plane at x̃ is less than 2γ sin2 η

2 + ε2 f ( p̃), which shows (ii) by
substituting Inequalities 9.12, 9.13, and 9.14. �

9.3.1 Influence of Samples

We have formulated the implicit function I keeping in mind that, for any point
x ∈ R

3, the effect of the distant sample points on I(x) and hence onN (x) could
be bounded. We establish this result formally in this section. For this result we
will need an upper bound on the number of points that can reside inside a small
ball Bx,

ρ

2 f (x̃) for some small ρ. Let λ = λ(ρ) be this number. Notice that we
have already derived an upper bound on λ for ρ = ε in Lemma 9.3. We will
use this specific value of ρ later in our proof. At this stage we work without
specifying any particular value for ρ and use λ for the number of points inside
Bx,

ρ

2 f (x̃).
In various claims, the contribution of a sample point p to the implicit function

N or its derivative at a point x will be bounded from above by an expression
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Figure 9.5. The nested shells and the hierarchical subdivision tree.

that involves the term

Ip(x) = exp
−

√
2‖x−p‖2

ρ2σ ( p̃)σ (x̃) · ‖x − p‖s

[ ρ2√
2
σ ( p̃)σ (x̃)]t

.

The values of s and t will vary between 0 to 2 and 0 to 1 respectively in various
equations where Ip is used. For instance, the contribution of a sample point p
to the function N at x can be bounded by Ip(x) with s = 1 and t = 0.

Our strategy for bounding Ip(x) will be to decompose the space into spher-
ical shells centering x . Theorem 9.2 shows that the total contribution from all
sample points in the shells decreases as their distances from x increase. Let
Sx (w, ρ) be the shell region between the spheres Sx,w f (x̃) and Sx,(w+ρ) f (x̃). For
i = 0, 1, . . . consider the nested shells given by Sx (wi , ρ) where wi = r + iρ
(Figure 9.5). To prove Theorem 9.2 we need a result that bounds the to-
tal contribution of the sample points lying within the intersection of a small
ball of radius ρ

2 f (x̃) and the shell Sx (wi , ρ). Let D ρ

2
be any such ball. We

would like to bound the sum
∑

p∈D ρ
2
∩Sx (wi ,ρ) Ip(x). The ball D ρ

2
has a ra-

dius ρ

2 f (x̃) though its center is not necessarily x . Therefore, we cannot use
λ = λ(ρ) to bound the number of sample points inside D ρ

2
. We overcome this

difficulty by using a hierarchical subdivision of the smallest cube NC1 con-
taining D ρ

2
. The subdivision divides a cube unless it can be covered with a

ball Bc,r where r is a fraction of f (c̃). Then, one can use λ = λ(ρ) to bound
the number of sample points in Bc,r and hence in the cubes of the subdivi-
sion. Therefore, we can bound the number of sample points in D ρ

2
using the

number of the leaf nodes in its corresponding subdivision tree. Notice that we
do not have an explicit bound for the number of sample points in any D ρ

2

since at different positions D ρ

2
may have different subdivision trees adapting



164 9 Implicit Surface-Based Reconstructions

to the local geometry of the surface. However, we do have an explicit upper
bound for the total weights from the sample points inside any D ρ

2
as proved in

Lemma 9.5.
Assume a hierarchical subdivision tree HST of NC1 as follows. Let c1 be

the center of the bounding cube NC1. Subdivide NC1 into 27 subcubes of size
ρ

3 f (x̃) if f (c̃1) < f (x̃). Let NC2 be any such subcube. It can be covered by
a ball D ρ

22
= Bc2,

ρ

22 f (x̃) where c2 is the center of NC2. Subdivide NC2 in the

same way if f (c̃2) < 1
2 f (x̃). In general, keep subdividing a subcube NCk at the

kth level if f (c̃k) < 1
2k−1 f (x̃) where ck is the center of NCk . Observe that NCk

is covered by D ρ

2k
= Bck ,

ρ

2k f (x̃). Figure 9.5 shows an HST in two dimensions.
We use NCk to also denote its intersection with D ρ

2k
.

Lemma 9.5. If ρ ≤ 0.4, ε ≤ 0.1, and r ≥ 5ρ, then

∑
p∈D ρ

2
∩Sx (wi ,ρ)

Ip(x) ≤ λ exp
− rwi

(1+2r )ρ2 · w
s
i

ρ2t
σ (x̃)s−2t

where 0 ≤ s ≤ 2, 0 ≤ t ≤ 1, wi = r + iρ and λ is defined earlier.

Proof. Case 1: f (c̃1) ≥ f (x̃): HST has only one node NC1. Let p be any sample
point in D ρ

2
. Observe that‖ p̃ − c̃1‖ ≤ 2‖ p̃ − c1‖ ≤ 2(‖ p̃ − p‖ + ‖p − c1‖) ≤

2ε2 f ( p̃) + ρ f (c̃1). By Lipschitz property of f ,

f ( p̃) ≥ 1 − ρ

1 + 2ε2
f (x̃).

From Inequality 9.6 we have

σ ( p̃) ≥ 1 − ρ

β ′(1 + 2ε2)
σ (x̃)

where β ′ = 1+β

1−β
. Similarly, from condition ‖x − p‖ ≥ r f (x̃) (p lies in

Sx (wi , ρ)) and the fact ‖x̃ − p̃‖ ≤ 2(‖x − p‖ + ‖p − p̃‖) ≤ 2‖x − p‖ +
2ε2 f ( p̃) we obtain

σ ( p̃) ≤ (1 + β)
1 + 2r

r (1 − 2ε2)
‖x − p‖.

Hence,

Ip(x) ≤ exp
−

√
2(1−2ε2)

(1+β)(1+2r )
r‖x−p‖
ρ2σ (x̃) ·

[√
2β ′(1 + 2ε2)

1 − ρ

]t

· ‖x − p‖s

[ρσ (x̃)]2t
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which is a decreasing function of ‖x − p‖ when ‖x − p‖ ≥ 4ρσ (x̃). Since
‖x − p‖ ≥ wi σ (x̃)

1+β
, we have

Ip(x) ≤ exp
−

√
2(1−2ε2)

(1+β)2(1+2r )

rwi
ρ2 · [

√
2β ′(1 + 2ε2)]t

(1 − ρ)t (1 + β)s
· ws

i

ρ2t
σ (x̃)s−2t

≤ exp
− rwi

(1+2r )ρ2 · ws
i

ρ2t
σ (x̃)s−2t .

It is not hard to verify the second inequality under the given conditions. The
lemma follows from the fact that Bc1,

ρ

2 f (c̃1) covers D ρ

2
and hence the number of

sample points inside D ρ

2
is less than λ.

Case 2: f (c̃1) < f (x̃): Consider a leaf node NCk at the kth level which is
covered by D ρ

2k
in HST. We have f (c̃k) ≥ 1

2k−1 f (x̃). Let p be any sample point
inside the node. Since ‖ p̃ − c̃k‖ ≤ 2‖ p̃ − ck‖, we obtain

σ ( p̃) ≥ 1 − ρ

β ′(1 + 2ε2)
· 1

2k−1
σ (x̃).

On the other hand, p is also inside the parent node NCk−1 covered by D ρ

2k−1
in

HST. Since ‖ p̃ − c̃k−1‖ ≤ 2‖ p̃ − ck−1‖ and f (c̃k−1) < 1
2k−2 f (x̃), we obtain

σ ( p̃) ≤ β ′(1 + ρ)

1 − 2ε2
· 1

2k−2
σ (x̃).

Hence, for the given value of ρ and ε, we have

Ip(x)

≤ exp
−2k−2

√
2(1−2ε2)
β′ (1+ρ)

‖x−p‖2

[ρσ (x̃)]2 · 2t(k−2)

[
2
√

2β ′(1 + 2ε2)

1 − ρ

]t

· ‖x − p‖s

[ρσ (x̃)]2t

≤ 1

27
exp

−2k−2 rwi
(1+2r )ρ2 · 2t(k−2) · ws

i

ρ2t
σ (x̃)s−2t .

Since Bck ,
ρ

2 f (c̃k ) covers D ρ

2k
and hence the number of sample points inside the

leaf node NCk is less than λ, we have

∑
p∈NCk

Ip(x) ≤ 1

27
· λ exp

−2k−2 rwi
(1+2r )ρ2 · 2t(k−2) · ws

i

ρ2t
σ (x̃)s−2t . (9.15)

The above equation gives the bound for contributions of the sample points
inside a single leaf node NCk at any level k ≥ 2. We use induction to establish
that the bound also holds for any internal node. Let NCk be an internal node.
Then, by induction we can assume that each of the 27 children of NCk satisfy
Inequality 9.15 with k = k + 1. Summing over this 27 children and replacing



166 9 Implicit Surface-Based Reconstructions

k with k + 1 in Inequality 9.15, we get∑
p∈NCk

Ip(x) ≤ λ exp
−2k−1 rwi

(1+2r )ρ2 · 2t(k−1) · ws
i

ρ2t
σ (x̃)s−2t

≤ 1

27
· λ exp

−2k−2 rwi
(1+2r )ρ2 · 2t(k−2) · ws

i

ρ2t
σ (x̃)s−2t .

The lemma follows from the fact that 27 NC2s partition D ρ

2
. �

Theorem 9.2. If ρ ≤ 0.4, ε ≤ 0.1, and r ≥ 5ρ, then for any x ∈ R
3

∑
p/∈Bx,r f (x̃)

Ip(x) ≤ C1λ · r2 + rρ + ρ2

ρ2
exp

− r2

(1+2r )ρ2 · r s

ρ2t
σ (x̃)s−2t

where 0 ≤ s ≤ 2, 0 ≤ t ≤ 1, and C1 = 180
√

3π .

Proof. The space outside Bx,r f (x̃) can be decomposed by (Sx (wi , ρ))∞i=0 where

wi = r + iρ. Each Sx (wi , ρ) can be covered by less than 36
√

3π (w2
i +wi ρ+ρ2)
ρ2 balls

of radius ρ

2 f (x̃). From Lemma 9.5 the contribution from the sample points inside
each of these balls are bounded. Hence,

∑
p/∈Bx,r f (x̃)

Ip(x) =
∞∑

i=0

∑
p∈Sx (wi ,ρ)

Ip(x)

≤ C1λ

5

∞∑
i=0

w2
i + wiρ + ρ2

ρ2
exp

− rwi
(1+2r )ρ2 · ws

i

ρ2t
σ (x̃)s−2t

≤ C1λ · r2 + rρ + ρ2

ρ2
exp

− r2

(1+2r )ρ2 · r s

ρ2t
σ (x̃)s−2t .

The last inequality holds because the series is bounded from above by a geo-
metric series with common ratio less than 0.8. �

9.4 Surface Properties

Although we prove Theorem 9.2 with the hypothesis that ρ ≤ 0.4 and ε ≤ 0.1
which is plausible in practice, our proof for topological guarantees uses the
setting ε ≤ 4 × 10−3 and ρ = ε. Also, we assume κ = 5 in our calculations.
The requirement for such small ε is probably an artifact of the proof technique.
There is room to improve these constants though the proofs become more
complicated (see the discussion at the end of the section). We focus more on
demonstrating the ideas behind the proofs rather than tightening the constants.
In practice, AMLS surfaces work well on data sets sparser than the one required
by theory, see some examples in Section 9.5.
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Figure 9.6. All marked distances are in unit of f (x̃). η is the angle between nx̃ and vp .

Recall that, for the homeomorphism claim, we only have to show that there
exist δ and δ′ with δ′ < δ < 1 so that N has the Hausdorff property for some δ

and δ′ and the gradient property for δ′. We establish these properties for δ = 0.1
and δ′ = 0.3ε. Then, by definition, W = N−1(0)

⋂
0.1� is the implicit surface

of our interest. We establish the Hausdorff property in Lemma 9.7 and the
gradient property in Lemma 9.8.

Since function values f and σ are very close to each other, the difference
between the values of these two functions will not affect the result of the proof
as we already demonstrate in the proof of Lemma 9.5. For the sake of simplicity,
we make no difference between the values of these two functions for the proofs
in the rest of this section.

9.4.1 Hausdorff Property

In our proof of the Hausdorff property, Lemma 9.4 plays a crucial role. We
summarize the statement of the lemma once more here. As Figure 9.6 shows,
for a point x on �+δ or �−δ , all sample points inside Bx,r f (x̃) are inside a narrow
slab bounded by two planes P L+ and P L− with ω(r ) distance to x̃ if δ and r
are small. In addition, the proof of Lemma 9.4 implies that the distance between
x̃ and p̃ is less than R(r ) (see Lemma 9.4 for definitions of R(r ) and ω(r )). For
brevity write R = R(r ) and ω = ω(r ).

The following lemma is used in proving the Hausdorff property. Let τ =
√

2
1−ε

.

Lemma 9.6. Let x be a point on �±δ and p be any sample point inside B =
Bx,r f (x̃) where r = √

2τδ + 5ρ. If 0.3ε ≤ δ ≤ 0.1 then

(x − p)T vp ≥ (0.9δ − 45ε2) f (x̃) if x ∈ �+δ

≤ (−0.9δ + 45ε2) f (x̃) if x ∈ �−δ
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Proof. We prove the first half. The second half can be proved similarly. Since
x̃ − p̃ ≤ R f (x̃) (Inequality 9.13) we have

(1 − R) f (x̃) ≤ f ( p̃) ≤ (1 + R) f (x̃).

Under the given values for the parameters, we have R < 0.18. In Figure 9.7,
B ′ is the medial ball at p̃ on the side of � not containing x . Let q be the
center of B ′. We have ‖q − p̃‖ ≥ f ( p̃), δ f (x̃) ≤ ‖x − p̃‖ ≤ r f (x̃) + ε2 f ( p̃),
and ‖x − p‖ ≥ ‖x − p̃‖ − ε2 f ( p̃).

Let ξ be the angle between x p̃ and the normal at p̃, and ζ be the angle between
xp and x p̃. Hence, the angle between xp and vp is less than ζ + ξ + ε. Since
‖x − p̃‖ ≥ ‖x − x̃‖ ≥ 0.3ε f (x̃) and ‖p − p̃‖ ≤ ε2 f ( p̃), we have ζ ≤ 4ε. In
addition

‖x − q‖2 = (‖x − p̃‖ cos ξ + ‖q − p̃‖)2 + ‖x − p̃‖2 sin2 ξ.

Since B ′ is on the side of � not containing x , we have ‖x − q‖ ≥ ‖x − x̃‖ +
‖q − p̃‖. Hence,

cos ξ ≥ 2‖x − x̃‖‖q − p̃‖ + ‖x − x̃‖2 − ‖x − p̃‖2

2‖x − p̃‖‖q − p̃‖ .

Therefore,

(x − p)T vp ≥ ‖x − p‖ cos(ξ + 5ε)

≥ (‖x − p̃‖ − (1 + R)ε2 f (x̃))(cos ξ − 5ε)

≥ ‖x − p̃‖ cos ξ − 5ε‖x − p̃‖ − 2ε2 f (x̃)

which leads to the first half of the lemma by carefully substituting the inequal-
ities we derived. �
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Lemma 9.7. For ρ = ε, ε ≤ 4 × 10−3, and κ = 5

N (x) > 0 if x ∈ (0.1� \ 0.3ε�) ∩ �O

< 0 if x ∈ (0.1� \ 0.3ε�) ∩ �I .

Proof. We prove the first half of the lemma. The other half can be proved
similarly. Assume x ∈ �+δ for 0.3ε ≤ δ ≤ 0.1. Let r = √

2τδ + 5ρ and B =
Bx,r f (x̃). For any sample point p inside B, we have from Lemma 9.6

((x − p)T vp)θp(x) ≥ θp(x) · 0.09ε f (x̃) > 0. (9.16)

From the sampling condition (i), there exists a sample point p0 so that
‖ p̃0 − x̃‖ ≤ ε f (x̃) and hence f ( p̃0) ≥ (1 − ε) f (x̃). In addition we have
‖x − p0‖ ≤ (δ + ε1) f (x̃) where ε1 = (ε + δ + δε) obtained from the Close
Sample Lemma 7.1. Thus,∑

p∈B

((x − p)T vp)θp(x) > exp
− τ (δ+ε1)2

ρ2 ·0.09ε f (x̃).

Writing

� =

∣∣∣∑p/∈B((x − p)T vp)θp(x)
∣∣∣∑

p∈B((x − p)T vp)θp(x)

we have

N (x) >
∑
p∈B

((x − p)T vp)θp(x)(1 − �).

If we show � < 1, we are done since N (x) > 0 in that case.
Consider the sample points outside B. With s = 1 and t = 0 in Theorem 9.2

we have

|
∑
p/∈B

((x − p)T vp)θp(x)| ≤
∑
p/∈B

exp
−

√
2‖x−p‖2

ρ2σ ( p̃)σ (x̃) ‖x − p‖

≤ C1λ
r2 + rρ + ρ2

ρ2
exp

− r2

(1+2r )ρ2 ·rσ (x̃).

Hence,

� ≤ C1λ
r2 + rρ + ρ2

ρ2
exp

− (
√

2τδ+5ρ)2

(1+2r )ρ2 + τ (δ+ε1)2

ρ2 · r

0.09ε

≤ C1λ
r2 + rρ + ρ2

ρ2
exp

− (
√

2τδ+5ρ)2

2ρ2 + τ (δ+ε1)2

ρ2 · r

0.09ε
(9.17)

since (1 + 2r ) < 2. Since the ball Bx,
ρ

2 f (x̃) = Bx, ε
2 f (x̃) contains at most 10κ

sample points from Lemma 9.3 we have λ ≤ 10κ ≤ 50. The quantity on the



170 9 Implicit Surface-Based Reconstructions

right of Inequality 9.17 reaches maximum when δ attains its minimum 0.3ε.
So, substituting all values we obtain

� = | ∑p/∈B

(
(x − p)T vp

)
θp(x)|∑

p∈B

(
(x − p)T vp

)
θp(x)

< 1

as we are supposed to show. �

9.4.2 Gradient Property

In the following lemma we prove the gradient property of N for δ = 0.3ε.

Lemma 9.8. Let z be any point on �, then for any x ∈ �nz ∩ 0.3ε�

[nz]N (x) > 0

for ρ = ε, ε ≤ 4 × 10−3, and κ = 5.

Proof. Recall x̃ = ν(x) and hence σ (x̃) = f ◦ ν(x). Obviously, since x avoids
the medial axis of �, [nx̃ ]( f ◦ ν)(x) = 0. Since z = x̃ , we have

[nz]N (x) =
∑
p∈P

[nz]((x − p)T vpθp(x))

=
∑
p∈P

θp(x)

(
nT

x̃ vp − 2

√
2(x − p)T vp · (x − p)T nx̃

ρ2σ ( p̃)σ (x̃)

)
.

Let

r =
√

2τ (δ + ε1)2 + 25ρ2. (9.18)

and B = Bx,r f (x̃). For any sample point p inside B, we know it is inside the slab
bounded by two planes from Lemma 9.4 as Figure 9.6 shows. In addition we
have f ( p̃) ≥ (1 − R) f (x̃) from Inequality 9.13. We observe from Figure 9.6
that |(x − p)T nz| ≤ (ω + δ) f (x̃) and |(x − p)T vp| ≤ (ω + δ + rη) f (x̃). Un-
der the given values for the parameters, we have r < 5.68ε and R < 6ε. Hence,
from Lemma 9.4 ω < 20ε2 and η < 0.03. Using these values we get

θp(x)

(
nT

x̃ vp − 2

√
2|(x − p)T vp| · |(x − p)T nx̃ |

ρ2(1 − R) f 2(x̃)

)
≥ 0.4θp(x). (9.19)

Hence,

[nz](((x − p)T vp)θp(x)) ≥ 0.4θp(x) > 0.

In particular, there exists a sample point p0 so that ‖ p̃0 − x̃‖ ≤ ε f (x̃) and hence
f ( p̃0) ≥ (1 − ε) f (x̃). In addition we have ‖x − p0‖ ≤ (δ + ε1) f (x̃) where
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ε1 = (ε + δ + δε) is obtained from the Close Sample Lemma 7.1. Hence,∑
p∈B

[nz]((x − p)T vpθp(x)) > 0.4 exp
− τ (δ+ε1)2

ρ2 .

Writing

� =

∣∣∣∑p/∈B[nz]
((

(x − p)T vp
)
θp(x)

)∣∣∣∑
p∈B[nz]

((
(x − p)T vp

)
θp(x)

)
we have

[nz]N (x) >
∑
p∈B

[nz]((x − p)T vpθp(x))(1 − �).

If we show � < 1 we are done since [nz]N (x) > 0 in that case.
Consider the sample points outside B. We have∣∣∣∣∣

∑
p/∈B

[nz]((x − p)T vpθp(x))

∣∣∣∣∣
=

∑
p/∈B

θp(x)

(
nT

x̃ vp − 2

√
2(x − p)T vp · (x − p)T nx̃

ρ2σ ( p̃)σ (x̃)

)

≤
∑
p/∈B

exp
−

√
2‖x−p‖2

ρ2σ ( p̃)σ (x̃)

(
1 + 2

√
2‖x − p‖2

ρ2σ ( p̃)σ (x̃)

)
. (9.20)

From Theorem 9.2 the right side in Inequality 9.20 is no more than

C1λ
r2 + rρ + ρ2

ρ2
· exp

− r2

(1+2r )ρ2

(
1 + 2

r2

ρ2

)
.

Therefore,

� <
C1λ

0.4

r2 + rρ + ρ2

ρ2
· exp− 25

1+2r

(
1 + 2

r2

ρ2

)

which is less than 1 when r is evaluated for ρ = ε ≤ 4 × 10−3 from relation 9.18
and λ is plugged in from Lemma 9.3. �

The requirement for small ε is mainly because of the following fact. Our proof
requires that Inequalities 9.16 and 9.19 be true for all the sample points inside
B. This means all the sample points inside B make positive contribution to the
implicit function and its derivative. However, one can relax this requirement by
further classifying the sample points inside B and allowing the sample points
close to the boundary of B to make negative contributions. Since these sample
points have small weights, their contributions do not change the positivity of
the entire contribution from the sample points inside B.



172 9 Implicit Surface-Based Reconstructions

We have proved that W and � are homeomorphic. It can also be proved
that they are isotopic. Since W lives in a small tubular neighborhood of �

and the segments normal to � intersect W in a single point within this tubular
neighborhood, one can define an isotopy connecting W and �. This construction
is exactly the same as the one used to prove that the power crust and the sampled
surface are isotopic in the PC-Isotopy Theorem 6.4.

9.5 Algorithm and Implementation

In this section we summarize different steps of the algorithm for reconstructing
with AMLS surfaces. We already know that the definition of AMLS involves
the local feature sizes of the sampled surface �. In absence of � one cannot
compute f (x̃) and hence σ (x̃) for a point x exactly. Due to this difficulty,
we describe an implementation that can only approximate the AMLS surface.
Recall that each sample point p is assumed to have an associated normal vp

that approximates the normal at p̃. So, for a sample P without any normal
information, the approximation of the AMLS surface also needs to estimate the
normals at the sample points.

9.5.1 Normal and Feature Approximation

In Chapter 7, we have already presented the algorithms for the normal and fea-
ture approximations from noisy point samples. The routine ApproximateNor-
mal takes P and a threshold τ to decide which Delaunay balls in Del P are big
enough to give good approximation of normals.

The normals computed by ApproximateNormal are not consistently ori-
ented. The input points should be equipped with oriented normals for AMLS
approximation. We orient the normals by walking over the points and propa-
gating the orientation in the neighborhoods. We compute a minimum spanning
tree of the points. It can be shown that any edge in the minimum spanning
tree must connect two points p, q that are only Õ(ε) max{ f (p), f (q)} distance
apart. This means the true normals n p̃ and nq̃ differ only by a small amount
and hence vp and vq should be similarly oriented. If during the walk we move
from p to q where the normal vp has been oriented, we orient vq as follows. If
a normal has not been computed by ApproximateNormal at q , we transport
vp to q. This means we set vq to be parallel to vp and orient it the same way
as vp. In case ApproximateNormal has computed a normal at q, we orient
vq so that vT

p vq is positive. One can show easily that this procedure orients the
normal at any point p so that vp and n p̃ make an angle less than π

2 thereby
ensuring a consistent orientation.
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OrientNormal(P ,τ )
1 ApproximateNormal(P ,τ );
2 compute a minimum spanning tree T of P;
3 let r be any point assigned a normal by ApproximateNormal;
4 carry out a depth-first search in T starting at r ;
5 let q be a point reached from p by edge pq ∈ T ;
6 if q is assigned normal vq by ApproximateNormal
7 orient vq so that vT

p vq > 0;
8 else

9 vq = vp;
10 endif.

We use the routine ApproximateFeature from Chapter 7 to approximate the
feature sizes. The routine ApproximateFeature takes P and a user parameter
k to determine the poles approximating the medial axis by searching the k-
nearest neighbors of the sample points. Then, it estimates the local feature
size by computing the distances of the sample points to these poles. We use
OrientNormal and ApproximateFeature to preprocess P and then apply a
projection procedure to move a point in P to the AMLS surface.

9.5.2 Projection

The sample points are moved to the AMLS surface by the Newton projection
method. It is an iterative procedure in which we move a point p to a new point
p′ along ∇I(p) where

p′ = p − I(p)

‖∇I(p)‖2
∇I(p). (9.21)

This iteration continues until the distance between p and p′ becomes smaller
than a given threshold τ ′. To compute I(p) and ∇I(p), one may take the
sample points inside the ball with radius a small multiple of the width of the
Gaussian weighting function since the sample points outside this ball have little
effect on the function. We supply the parameter ρ which appear in the com-
putations of I(p) and ∇I(p). We see in the examples that the Newton itera-
tion for AMLS surface converges quickly and has a big convergent domain in
Section 9.6.

Finally, the projected set of points are fed to a reconstruction algorithm, say
Cocone, to produce the output. Figure 9.8 shows the results of this algorithm
applied on Max-Planck and Bighand point clouds.
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Figure 9.8. Reconstruction results before (left) and after (right) smoothing with AMLS.
ρ = 0.75 for both models. The reason a bigger ρ is chosen than the one (0.4) we suggest
in Section 9.2.1 is that the feature approximation method tends to compute a feature size
slightly smaller than the exact one.

AMLS(P ,τ ,k,τ ′,ρ)
1 OrientNormal(P ,τ );
2 ApproximateFeature(P ,k);
3 for each p ∈ P do

4 compute p′ by equation 9.21;
5 if ‖p − p′‖ > τ ′

6 go to 4 with p := p′;
7 endfor

8 let P ′ be the projected point set;
9 Cocone(P ′).
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9.6 Other MLS Surfaces

9.6.1 Projection MLS

There is another implicit surface which is popularly known as an MLS surface
in graphics. This surface was originally defined procedurally. Later an implicit
formulation was discovered. To differentiate this surface from the one we just
described, we call this surface projection MLS or PMLS in short.

The PMLS surface is defined as the stationary set of a map φ : R
3 → R

3, that
is, the points x ∈ R

3 with φ(x) = x . The map φ at a point x ∈ R
3 is defined

procedurally. Let E : R
3 × R

3 → R
3 be the following map. Given a vector

v ∈ R
3 and a point y = x + tv for some real t ∈ R, E(y, v) is defined to be the

sum of the weighted distances of all points in P from a plane with normal v
and the point y. Specifically,

E(y, v) = �p∈P ((y − p)T v)2θp(y) (9.22)

where θp is a weighting function. The nearest point to x where E is minimized
over all directions v and all reals t defining y is φ(x).

This minimization procedure can be decomposed into two optimization steps.
The first one finds an optimum direction and the second one uses this optimum
direction to find the required minimum. For a point x let n(x) be the optimum
direction found by the first optimization, that is,

n(x) = arg minvE(y, v). (9.23)

Let �n(x) denote the line of the vector n(x).
For x let E(y, n(x)) achieve a local minimum at xm over the set y ∈ �n(x).

Mathematically, this implies

n(x)T

(
∂E(y, n(x))

∂y
|xm

)
= 0. (9.24)

The following result is known.

Fact 9.1. x is a stationary point of φ if x = xm.

From the above results one gets a projection procedure by which points can
be projected onto a PMLS surface. Starting from a point x , the local minimum
xm is computed. Then x is replaced with xm and the iteration continues till the
distance between x and xm drops below a threshold. Notice that the optimization
is done over the set y ∈ �n(x) where E depends on y. This makes the optimization
procedure nonlinear and hence computationally hard.
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One can conclude from Equation 9.24 and Fact 9.1 that the set of stationary
points is actually the zero-level set of the implicit function

J (x) = n(x)T

(
∂E(y, n(x))

∂y
|x

)
.

One needs to be a little more careful. Equation 9.24 does not only hold
for minima of E but also for all of its other extrema including the maxima.
Therefore, in general, all components of J −1(0) are not in PMLS surface. The
ones where E reaches local minimum need to be identified for reconstruction
purpose. One can verify that when the weighting function θp is a Gaussian as
in Equation 9.5, the implicit function J takes the following form:

J (x) =
∑
p∈P

(x − p)T n(x)

(
1 −

(
(x − p)T n(x)

h

)2
)

θp(x). (9.25)

Notice that, instead of computing n(x) as in Equation 9.23, one may assume
that the input points are equipped with some normals from which a normal field
n : R

3 → R
3 can be derived, say by a simple linear interpolation.

9.6.2 Variation

The expression for J is a little cumbersome for projecting points as it leads
to nonlinear optimizations. It can be simplified if we modify E slightly. Ob-
serve that the weighting function θp varies with y in the expression for E in
Equation 9.22. Instead, we can vary θp with x . Then, we get a slightly different
implicit function G than J :

G(x) =
∑
p∈P

[(x − p)T n(x)]θp(x). (9.26)

The surface given by G−1(0) is a variation of the PMLS surface and hence
we call it VMLS surface. An advantage of the VMLS surface is that, unlike
the standard PMLS surfaces, its inherent projection procedure does not require
any nonlinear optimization, which makes the algorithm faster, more stable and
easier to implement.

9.6.3 Computational Issues

We have chosen I instead of N to define the AMLS surface though the topo-
logical and geometric guarantees can be worked out with both. The reason is
mainly a practical consideration. Newton projections have larger convergent
domain for I than N . Figure 9.9 illustrates this fact.
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Figure 9.9. The left and right columns show the result of NP on I and N respectively.
The top row shows the function values and the gradient field. The darker the shade, the
higher the absolute value; it is negative inside and positive outside. In the bottom, the
lines connect input gray points to their corresponding stationary points of NP.

Advantages of Newton Projections

Although the projection procedure of VMLS surfaces is more efficient than the
PMLS surfaces, it turns out that the Newton projections are even better. The
VMLS projection can be described as follows. Project x along n(x) to a new
position

x ′ = x − G(x)∑
p∈P θp(x)

n(x) (9.27)

and iterate until a stationary point is reached. Due to its linear nature we refer
to this projection as Linear Projection or LP in short. The Newton projection
for AMLS surfaces is referred to as NP in short. We argue that NP is better
than LP in two respects: convergence rate and timing. As Table 9.1 shows, NP,
in general, uses less iterations to project a point onto the implicit surface. This
is not surprising as ∇I(x) with x close to the implicit surface can estimate the
normal more accurately at its closest point on the implicit surface. In addition,
one has to compute n(x) before evaluating G(x) . Hence to compute the new
position using LP, one has to iterate twice over its neighboring points which
makes LP slower than NP even in each iteration.
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Table 9.1. Time data for NP and LP. |P| is the number of points
in the point cloud.

Model |P| Method #nb #iter Time

Max- 49137 NP 1000 3.1 94
planck LP 1108 7.2 310
Bighand 38214 NP 1392 3.2 109

LP 1527 8.6 400

#iter is the number of iterations in the average sense, i.e., we add up the
number of iterations used to project all the input points and divide it by
|P| to get #iter. Similarly, #nb is the average number of points considered
as neighbors. τ ′ = 10−25 for these experiments. Times (second) are for
projecting all the input points (PC with a 2.8 GHz P4 CPU and 1 GB
RAM).

Figure 9.10. The leftmost and the middle pictures show zero-level sets of the standard
PMLS under two different noise levels. The noise level in the middle is higher. Thicker
curves represent the zero-level set J −1(0) where E reaches minima while the thinner
curves are zero-level sets where the energy function reaches maxima. The rightmost
picture shows the zero-level setI−1(0) under the same noise level as in the middle picture.

Zero-Level Sets

In the definition of PMLS, the actual PMLS surface is only a subset of the
zero-level set J −1(0) where the energy function E reaches a minimum along
the normal direction. As one can deduce from Equation 9.25, there are two
other layers of zero-level sets of the implicit function J on both sides of the
PMLS surface, where the energy function E reaches the local maximum; see
the left most picture in Figure 9.10. We refer to these two layers as maxima
layers. The distance between these layers could be extremely small at places
where either the local feature size is small or the noise level is high or both. In
that case, computations on the PMLS surface become difficult.

First of all, many existing implicit surface techniques such as raytracing and
polygonizing become hard to apply on the PMLS surface since one needs to
distinguish different zero-level sets. When the maxima layers come close to the
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true PMLS surface, the marching step in a raytracer and the size of the cubes
in a polygonizer may become impractically small.

Second, the projection procedure for the PMLS surface requires a non-
linear optimization, specifically an one-dimensional minimization. The one-
dimensional minimization algorithms usually begin with an interval known to
contain a minimum guess m such that the function value at m must be less than
the function values at the ends of the interval. Finding such a minimum guess
m could be hard if the two maxima layers come close.

Third, the PMLS surface is more sensitive to the noise. When the noise level
for position or normal or both increases, the three layers of the zero-level sets
(one for minima and two for maxima) could easily interfere with each other. In
the middle picture of Figure 9.10, the zero-level set for minima gets merged with
those for maxima. As a result, the PMLS could give an implicit surface with
holes or disconnectness. However, under the same level of noise, the AMLS
still gives the proper implicit surface, see the rightmost picture in Figure 9.10.

9.7 Voronoi-Based Implicit Surface

There is a Voronoi diagram-based implicit surface that can be used for surface
reconstruction. This method can also be proved to have output guarantees using
the ε-sampling theory. We will briefly describe the function definition but will
skip the proof of guarantees.

Given an input point set P ⊂ R
3, the natural neighbors Nx,P of a point

x ∈ R
3 are the Delaunay neighbors of x in Del (P ∪ x). Letting V (x) denote

the Voronoi cell of x in VP∪x , this means

Nx,P = {p ∈ P | V (x) ∩ Vp 
= ∅}.
Let A(x, p) denote the volume stolen by x from Vp, that is,

A(x, p) = V (x) ∩ Vp.

The natural coordinate associated with a point p is a continuous function λp :
R

3 → R where

λp(x) = A(x, p)

�q∈P A(x, q)
.

Some of the interesting properties of λp are that it is continuously differentiable
everywhere except at p and any point x ∈ R

3 is a convex combination of its
natural neighbors, that is, �p∈Nx,P λp(x)p = x . Assume that each point p is
equipped with a unit normal np which can either be computed via pole vectors,
or be part of the input. A distance function h p : R

3 → R for each point p
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is defined as h p(x) = (p − x)T np. A global distance function h : R
3 → R is

defined by interpolating these local distance functions with natural coordinates.
Specifically,

h(x) = �p∈Pλp(x)h p(x).

One difficulty of working with such h is that it is not continuously differentiable
everywhere as λp is not. To overcome this difficulty one may choose a smooth
function arbitrarily close to λp and make h smooth everywhere. By definition,
h(x) locally approximates the signed distance from the tangent plane at each
point p ∈ P and, in particular, h(p) = 0.

When h is made continuously differentiable, �̂ = h−1(0) is a smooth surface
unless 0 is a critical value. A discrete approximation of �̂ can be computed from
the restricted Delaunay triangulation Del P|�̂ . All Voronoi edges that intersect
�̂ are computed via the sign of h at their two endpoints. The dual Delaunay
triangles of these Voronoi edges constitute a piecewise linear approximation
of �̂. If the input sample P is a ε-sample of a surface � for sufficiently small
ε, then it can be shown that �̂ is geometrically close and is also topologically
equivalent to �.

9.8 Notes and Exercises

The definition of MLS surfaces as described in Section 9.2 is taken from Shen,
O’Brien, and Shewchuk [77]. The adaptive MLS surface definition and its proofs
of guarantees are taken from Dey and Sun [40]. Historically, these definitions
were proposed later than the PMLS definition. Levin [65] pioneered the PMLS
definition. This definition and its variants such as the VMLS are popularly
known as MLS surfaces in graphics. Alexa et al. [1] brought the PMLS surface to
the attention of the graphics community in the context of surface reconstruction.
Later, it was used for different modeling applications [75]. Zwicker, Pauly,
Knoll, and Gross [83] implemented the VMLS definition in a modeling software
called Pointshop 3D. The understanding of the PMLS surfaces became much
more clear after the work of Amenta and Kil [8] who explained its relation to
extremal surfaces and gave its implicit form.

Theoretical guarantees about the MLS surfaces in terms of sampling density
were not proved until the work of Kolluri [63]. He showed that the MLS sur-
face given by Equation 9.4 has same topology and approximate geometry of
the sampled surface under a uniform sampling condition. Subsequently Dey,
Goswami, and Sun [35] proved similar guarantees about the PMLS surface. Fol-
lowing these developments Dey and Sun [40] proposed the AMLS definition
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and proved geometric and topological guarantees using an adaptive sampling
condition.

The natural neighbor-based implicit surface described in Section 9.7 was
proposed by Boissonnat and Cazals [16]. The proof of geometric and topological
guarantees for this surface is given for noise-free dense samples.

Other than MLS and natural neighbor surfaces, a few other implicit surfaces
have been proposed for smooth surface reconstruction. The radial basis function
of Carr et al. [18] and the multilevel partition of unity of Ohtake et al. [73] are
examples of such surfaces, to name a few. Theoretical guarantees about these
surfaces have not been shown.

Exercises

1. In Equation 9.3, we could take φp = 0 in anticipation that I −1(0) fits the
points in the input point sample P . What is the difficulty one faces with
this choice? How can it be overcome?

2. Recall the definition of λ(ρ) in Section 9.3.1. Prove that there is a constant
c so that λ(ρ) ≤ cρ3κ

ε3 where ρ and ε are sufficiently small.
3h . We assume P to be a (ε, ε2, −)-sample to prove that the AMLS surface is

isotopic to �. Show the same when P is a (ε, ε, −)-sample.
4. Prove Inequality 9.13.
5. Consider the minimum spanning tree T of a (ε, ε2, −)-sample. Prove that

for any edge pq ∈ T , the angle ∠(n p̃, nq̃ ) is Õ(ε).
6h . Prove that the projection method for PMLS converges [35].
7. Prove Fact 9.1.
8. Improve the bound on ‖x̃ − p̃‖ in the proof of Lemma 9.4. Specifically,

show that

‖x̃ − p̃‖ ≤
√

‖x − p̃‖2 − (δ f (x̃))2

1 − δ f (x̃)/γ

from which derive improved bounds on R(r ) and ω(r ).
9h . Carry out the entire proof of the homeomorphism between � and the

AMLS surface with an improved ε, say ε < 0.05.
10o. Prove that the Newton projection for AMLS surfaces converges.
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Morse Theoretic Reconstructions

In this chapter we describe algorithms for surface reconstruction that are based
on Morse Theory, a well-known topic in differential topology. We describe two
algorithms which are similar in principle though are different in details. We
will not go over the proofs of geometric and topological guarantees of these
algorithms as in previous chapters. Instead, we will emphasize their novel use
of the Voronoi and Delaunay diagrams with Morse theoretic interpretations. In
practice, for reasonably dense samples, these algorithms produce comparable
results with other provable algorithms.

10.1 Morse Functions and Flows

Let h : R
3 → R be a smooth function. The smoothness means that h is con-

tinuous and infinitely often differentiable. The gradient ∇h of h at a point x is
given by

∇h(x) =
(

∂h

∂x1
(x)

∂h

∂x2
(x)

∂h

∂x3
(x)

)
.

This gradient induces a vector field v : R
3 → R

3 where v(x) = ∇h(x). This
vector field is smooth since h is so. A point x is critical if ∇h(x) = (0, 0, 0).
The Hessian of h at x is the three by three matrix


∂2h
∂x2

1

∂2h
∂x1∂x2

∂2h
∂x1∂x3

∂2h
∂x2∂x1

∂2h
∂x2

2

∂2h
∂x2∂x3

∂2h
∂x3δx1

∂2h
∂x3∂x2

∂2h
∂x2

3


 evaluated at x.

A critical point of h is nondegenerate if the Hessian at that point is not singular.
The function h is called a nondegenerate Morse function if all its critical points
are nondegenerate. Nondegenerate critical points are necessarily isolated. They

182
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are characterized by the celebrated Morse Lemma which says that each critical
point x has a local coordinate system with the origin at x so that

h(y) = h(x = 0) ± x2
1 ± x2

2 ± x2
3

for all y = (x1, x2, x3) in a neighborhood of x . The number of minus signs in
the above expression is the index of x . The critical points of index 0 are the
local minima, and the critical points of index 3 are the local maxima of h. The
rest of the critical points are saddle points which may have index 1 or 2.

The gradient vector field v gives rise to an ordinary differential equation

d

dt
φ(t, x) = v(φ(t, x)).

The solution of the equation is a map φ : R × R
3 → R

3 which has the following
two properties:

(i) φ(0, x) = x
(ii) φ(t, φ(s, x)) = φ((t + s), x).

The function φ is called a flow on R
3. Its first parameter can be thought of

as time and the mapping itself tells how points in R
3 move in time with the

vector field v. The first property says that points have not moved yet at time
zero. The second property says that a point after time t + s moves to a position
where φ(s, x) moves after time t . The points which do not move at all, that is,
where φ(t, x) = x for all t ∈ R are called the fixed points of φ. It turns out that
the critical points of h are the fixed points of φ.

An embedding of the real line R into R
3 can be obtained from φ for each x by

keeping the second parameter fixed to x . The curve φx : R → R
3 where φx (t) =

φ(t, x) is called the flow curve of x . The flow curve φx describes how the point x
moves in time which could be negative. This motion always follows the steepest
ascent of the function h, that is the direction in which h increases the most. In
other words, the flow curves are the integral curves of the gradient vector field
v (see Figure 10.1). A natural orientation can be imposed on the flow curves
with increasing value of h. The flow curves are open and as such do not have
endpoints. However, if a flow curve is not flowing into infinity, its closure will
have two critical points at the ends, one where it originates, the other where it
terminates. The first one is called the origin and the second one is called the
destination of the flow curve. To be uniform, we introduce a critical point p∞
at infinity so that all flow curves have an origin and a destination.

Let C(h) be the set of critical points of h. For a critical point c ∈ C(h) we are
interested in the points that are flowing into c. This means it is the set of points
covered by the flow curves that have c as their destination. This motivates the
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Figure 10.1. Flow curves drawn on the graph of a function from R
2 to R. The peaks of

the two humps correspond to two maxima p and q. The point s corresponds to a saddle
and u, w correspond to minima. The flow curve φx originates at u and terminates at p.
On right the flow curves are drawn on the domain R

2. The stable and unstable manifolds
of s are drawn with thicker curves, S(s) = us ∪ ws, U (s) = ps ∪ qs.

definition of stable manifold of c as

S(c) = {c} ∪ {y ∈ R
3 | c is the destination of φy}.

If c is a minimum, that is, its index is 0, then S(c) = {c} since no flow curve has
c as a destination. If the index of c is j > 0, the stable manifold S(c) consists
of c and a ( j − 1)-dimensional sphere of flow curves which means S(c) is
j-dimensional. For all c, S(c) is the image of an injective map from R

j to R
3.

It is homeomorphic to R
j although its closure may not be homeomorphic to a

closed ball B
j . This exception can happen only if the closure of two flow curves

coming into c share the starting point. The stable manifold S(p∞) is the image
of an injective map from the punctured three-dimensional sphere, R

3 \ {0}, to
R

3. The stable manifolds are mutually disjoint open sets and they cover the
entire R

3, that is,

(i) S(c) ∩ S(c′) = ∅ for any c 
= c′,
(ii)

⋃
c∈C(h)

S(c) = R
3.

Similar to the stable manifolds, one may define unstable manifolds for the
critical points. These are the spaces of flow curves that originates at the critical
points. Formally, the unstable manifold U (c) for a critical point c ∈ C(h) is
given by

U (c) = {c} ∪ {y ∈ R
3 | c is the origin of φy}.

The dimensions of the stable and unstable manifolds add up to the dimension
of the domain, that is, U (c) is (3 − j)-dimensional if c has index j . This means
a minimum has an unstable manifold of dimension 3 and a maximum has an
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y

w
vu

Figure 10.2. In this example the point set P is a sample from a curve � ⊂ R
2. The sets

A(x) are shown with hollow circles for four points x = u, v, w, y ∈ R
2. The convex

hulls of A(x) are lightly shaded. The driver of the point w is the smaller black circle.
The driver of the point y is the single point in A(y). The points u and v are critical since
they are contained in H (u) and H (v) respectively. The points w and y are regular. The
direction of steepest ascent of the distance function at w and y is indicated by an arrow.

unstable manifold of dimension 0. Similar to the stable manifolds, we have the
following properties for the unstable ones:

(i) U (c) ∩ U (c′) = ∅ for any c 
= c′,
(ii)

⋃
c∈C(h)

U (c) = R
3.

10.2 Discretization

In surface reconstruction from a point sample P ⊂ �, we have a distance
function d : R

3 → R where d(x) is the squared distance of x to the nearest point
in P , that is, d(x) = d(x, P)2. Unfortunately, we cannot use the setup developed
for the smooth functions since d is not necessarily smooth. In particular, d is not
smooth at the Voronoi facets, edges, and vertices of Vor P though it remains
smooth in the interior of each Voronoi cell. Therefore, we cannot apply the
theory of ordinary differential equations to get the flow curves and the associated
stable manifolds. Nevertheless, there is a unique direction of steepest ascent of
d at each point of R

3 except at the critical points of d . This is what is used to
define a vector field and the associated flow curves.

10.2.1 Vector Field

We need to determine the direction of the steepest ascent of d as well as its
critical points. The following definitions are helpful to determine them. See
Figure 10.2 for illustrations of the terms.
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Definition 10.1. For every point x ∈ R
3, let A(x) be the set of points in P with

minimum distance to x, that is, A(x) = argminp∈P‖p − x‖. Let H (x) be the
convex hull of A(x). The point x is critical if x ∈ H (x) and is regular otherwise.

Definition 10.2. For any point x ∈ R
3, let r (x) be the point in H (x) closest to

x. The point r (x) is called the driver of x.

The following lemma plays a key role in defining a flow from d . To keep the
discussion simple we assume that no four points are co-circular.

Lemma 10.1 (Flow). For any regular point x ∈ R
3 let r (x) be the driver of x.

The steepest ascent of the distance function d at x is in the direction of x − r (x).

Proof. Let v(x) be the vector along which d increases the most at x . Without
loss of generality assume v(x) is a unit vector. Let p be any point in A(x).
Let dp(x) = d(x, p)2. The directional derivative of dp(x) along v(x) is given
by v(x)T (x − p) = ‖x − p‖ cos θp where θp is the angle between v(x) and
xp = x − p. Since x is regular, x 
∈ H (x) and thus 0 ≤ θp < π . Also, ‖x − p‖
is same for all p ∈ A(x). These facts imply that v(x) is along a direction that
minimizes the maximum of the angles θp over all p ∈ A(x). The negated vector,
−v(x), is along the direction which minimizes the maximum of the angles made
by −v(x) and vectors −xp for each p ∈ A(x).

Consider the ball B = Bx,d(x). The ball B contains all points of A(x) on its
boundary. Let the ray of −v(x) intersect the boundary of B at v′. Normalizing
B to a unit sphere, the angle θp is given by the length of the spherical arc
v′ p. Therefore, v′ minimizes the maximum spherical arc distances v′ p to each
p ∈ A(x).

Consider the unbounded polyhedral cone Cx formed by all rays originating
from x and going through the points of H (x). The convex hull of any subset
A′(x) ⊆ A(x) is projected radially on the boundary of B by this cone. Call
this the spherical hull of A′(x). In particular, the polytope H (x) is projected
on the boundary of B by this cone. Denote the spherical hull of H (x) with
H ′(x). Notice that the vertex set of H (x) and H ′(x) is the same. From our
previous discussion, it is clear that v′ has to lie within H ′(x) to minimize the
maximum arc distances to the vertices of H ′(x). Let the minmax distance of
v′ from the vertices of H ′(x) be realized by a subset A′(x) ⊆ A(x) of vertices.
We claim that v′ lies on the spherical hull of A′(x). If not, v′ can be moved
ever slightly to decrease the minmax distance. This means the ray of −v(x)
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(b) (c)(a)

x xx
v(x)v(x)v(x)

Figure 10.3. The vector v(x) for one-, two-, and three-dimensional H (x) is shown (from
left to right). The hollow circle on H (x) is the driver r (x).

intersects the convex hull of A′(x), say at z, where z is the center of the smallest
disk circumscribing the vertices of A′(x).

We claim that z is the closest point of H (x) to x , that is, z = r (x) and v(x)
is along the direction x − r (x) as z lies on the ray −v(x).

The spherical disk centering v′ and with the vertices of A′(x) on the bound-
ary contains all other vertices of A(x) inside. This means that the smallest
(Euclidean) disk, say D, circumscribing the vertices of A′(x) contains all other
points of A(x) (if any) on the side that does not contain x . Then, each point of
H (x) lies either on D or on the side of D which does not contain x . The center
z of D is the closest point to x among all such points. �

The convex hull H (x) can be zero-, one-, two-, and three-dimensional. Let us
look at the Flow Lemma 10.1 for these different cases of H (x) where x 
∈ H (x).

(i) H (x) is a single point p. In this case trivially r (x) = p.
(ii) H (x) is one-dimensional, that is, A(x) = {p, q}. In this case r (x) is the

midpoint of the segment pq [Figure 10.3(a)].
(iii) H (x) is two-dimensional. Consider the disk containing the points of A(x)

on the boundary. Let z be the center of this disk. If z is contained in H (x),
then r (x) = z (Figure 10.3(b)). If z lies outside H (x), then the midpoint
of the edge of H (x) which is closest to x is r (x).

(iv) H (x) is three-dimensional. The closest point to x on the boundary of
H (x) is r (x). It is the circumcenter of either a facet or an edge of H (x)
(Figure 10.3(c)).

10.2.2 Discrete Flow

The Flow Lemma 10.1 prompts us to define a vector field v : R
3 → R

3 as

v(x) = x − r (x)

‖x − r (x)‖ if x 
= r (x) and 0 otherwise.
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Note that the vector field vanishes exactly at the critical points since x 
= r (x)
holds for all regular points. The flow induced by the vector field v is a function
φ : R

+ × R
3 → R

3 such that the right derivative at every point x ∈ R
3 satisfies

the following equation:

lim
t ↓ t0

φ(t, x) − φ(t0, x)

t − t0
= v(φ(t0, x)).

Notice that here we use R
+ instead of R for the domain of t . The reason will

be clear in a moment.
Let us explain how φ varies with t and x to obtain a more intuitive idea. For

any critical point x

φ(t, x) = x, for all t ∈ R

since r (x) = x gives v(x) = 0. When x is not critical, let R be the ray originating
at x and shooting in the direction x − r (x). Let z be the first point on R where
r (z) is different from r (x). If z does not exist, replace it by the point p∞ at
infinity. Then, for t ∈ [0, ‖z − x‖],

φ(t, x) = x + t
x − r (x)

‖x − r (x)‖ .

When t > ‖z − x‖ the flow is

φ(t, x) = φ(t − ‖z − x‖ + ‖z − x‖, x)

= φ(t − ‖z − x‖, φ(‖z − x‖, x)).

It can be shown that φ has the following properties as in the smooth case:

(i) φ is well defined on R
+ × R

3

(ii) φ(0, x) = x
(iii) φ(t, φ(s, x)) = φ(t + s, x).

The definition of φ(t, x) is valid only for positive t . In the discrete case, it
may happen that flows overlap. As a result, for a point x there may not be a
unique flow curve for negative t . This makes the definition of a flow curve a
little more difficult. An open curve γ : R → R

3 is a flow curve originating at a
critical point c if the following holds. For any ε > 0, there is a point y ∈ Bc,ε

so that φ(t, y) is contained in γ . The critical point limt→∞ φ(t, y) is called the
destination of the flow curve γ .

Our definition implies that the closure of a flow curve is a piecewise linear
curve starting and ending at critical points. Each line segment of this flow curve
is along the direction determined by any point on the segment and its driver. The
flow curve changes the direction precisely at the points where driver changes
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Figure 10.4. Some subsets of the flow curves induced by a set of points in R
2. Flow

curves originating at two bottom-most points merge and reach a Voronoi vertex which
is a maximum after changing directions twice.

Figure 10.5. An example of an index 2 saddle point (doubly circled) whose stable
manifold contains a Voronoi vertex (hollow circle). The points flowing to this Voronoi
vertex constitute a three-dimensional region. So, the stable manifold contains both two-
and three-dimensional parts. Solid circles are minima, that is, points from P .

(see Figure 10.4). Flow curves may overlap but never cross each other. Also, the
Flow Lemma 10.1 implies that, once they overlap they remain so. This is because
at each regular point, there is a unique direction along which v is defined. We can
now talk about the stable manifolds of the critical points of d . For reconstruction,
we will use stable manifolds in Section 10.3. In the sequel, we describe several
properties related to the stable manifolds. The readers should observe that they
also hold for unstable ones with appropriate modifications.

Just as in the smooth case we look into the regions whose points flow into a
critical point of d. Recall that the critical points of d are the fixed points of φ.
Let c be a critical point of d which means c belongs to the convex hull H (c).
The dimension of H (c) is the index of c. The stable manifold S(c) of c is again
defined as the space of c and all flow curves with destination c. Let c have
index j . We expect that S(c) is j-dimensional. However, it may happen that
S(c) has points with neighborhoods homeomorphic to R

k where k > j , (see
Figure 10.5). This is attributed to certain kind of nondegeneracies which we
eliminate for simpler discussions.



190 10 Morse Theoretic Reconstructions

Figure 10.6. The stable manifold S(c) where c is a maximum (marked as ⊕) is shaded
on the left and S∗(c) is shown on the right. The points of P are minima (marked as �).
Voronoi vertices are hollow circles.

Nondegeneracy Assumption

For any critical point c, S(c) has no points with k-dimensional neighborhood
where k > j , the index of c.

We will compute the closures of S(c) in R
3 which we denote as S∗(c). We

call S∗(c) the closed stable manifold of c. Figure 10.6 illustrates the effect of
taking these closures.

10.2.3 Relations to Voronoi/Delaunay Diagrams

The critical points of the distance function d and their stable manifolds associ-
ated with the discrete flow are intimately related to the Voronoi and Delaunay
diagrams. This enables us to compute them from these diagrams.

Lemma 10.2 (Driver). Let x ∈ R
3 be any point and µ be the lowest dimen-

sional Voronoi face in Vor P containing x. The driver r (x) is the closest point
to x on the Delaunay simplex dual to µ.

Proof. It follows from the definitions that each point p ∈ A(x) has x in Vp. This
means µ = ⋂

p∈A(x) Vp. Also, Conv A(x) = H (x) is the Delaunay simplex dual
to µ by definition. The driver r (x) is the closest point to x in H (x) = dual µ. �

The following lemma is key in identifying the critical points and their stable
manifolds.
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Lemma 10.3 (Critical Point). A point x is critical for the function d if and only
if there is a Voronoi face µ ∈ Vor P and its dual Delaunay simplex σ ∈ Del P
so that x = σ ∩ µ. Also, the index of x is the dimension of σ .

Proof. If x = σ ∩ µ, we have x ∈ µ. For each point x ∈ µ, σ = dual µ ⊆
H (x). Since x ∈ σ ⊆ H (x), x is critical by definition.

To show the other direction assume that x is critical and µ be the lowest
dimensional Voronoi face containing x . By definition of critical points, x ∈
H (x). Also, by definition, H (x) is the dual Delaunay simplex σ of µ. Therefore,
x ∈ σ ∩ µ.

The index of x is the dimension of H (x) = σ . �

We can make the following observations about the stable manifolds of dif-
ferent types of critical points.

Index 0 Critical Points

These are the points of P which are local minima of the distance function d .
They can also be thought of as intersections among Voronoi cells and their
dual Delaunay vertices. The stable manifolds of these points are the points
themselves.

Index 1 Critical Points

These are the critical points where a Delaunay edge intersects its dual Voronoi
face. The interior of the Delaunay edge is the stable manifold of the corre-
sponding critical point. These types of critical points are also called saddles
of index 1. Recall that the Delaunay edges that intersect their dual Voronoi
face (facet in three dimensions) are called Gabriel edges. Therefore, the closed
stable manifolds of index 1 saddles are comprised of the Gabriel graph.

Index 2 Critical Points

These critical points are also called index 2 saddles. These are the points where a
Delaunay triangle intersects its dual Voronoi edge. The stable manifold of such
a saddle point is a piecewise linear surface bounded by the stable manifolds
of the index 1 saddles together with the minima which are nothing but Gabriel
edges. The stable manifolds of index 2 saddles play a vital role in the surface
reconstruction procedure described in Section 10.3.

Index 3 Critical Points

These are the maxima of d . They are the Voronoi vertices contained in their
dual Delaunay tetrahedra. The stable manifolds of these maxima are the
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Figure 10.7. Construction of S∗(c) when v = c. In the left picture pq is not Gabriel. In
the right picture, pq is Gabriel.

three-dimensional cells bounded by the stable manifolds of index 2 saddles
and their boundaries.

10.3 Reconstruction with Flow Complex

The surface reconstruction that we are about to describe uses the closed stable
manifolds of the index 2 saddles. These stable manifolds are simplicial 2-
complexes which decompose R

3 into chambers, the stable manifolds of the
maxima. This simplicial 2-complex is called the flow complex for P . The closed
stable manifolds of index 2 saddles are best described procedurally which also
leads to an algorithm to compute them.

10.3.1 Flow Complex Construction

Let c be an index 2 saddle. We will build S∗(c) incrementally. At any generic
step, it is a simplicial 2-complex where the vertices are points from P , the
midpoints of the Gabriel edges, and some other points on the Voronoi edges.
The boundary of S∗(c) lies on the Gabriel edges. Let v be any vertex on the
boundary of the 2-complex constructed so far where v is on a Voronoi edge
e. Assuming general positions, e has three Voronoi facets incident on it. For
each such facet µ, one or two triangles with its edges and vertices are added
to the complex. Let pq = dual µ be the dual Delaunay edge of µ. Let r be
the midpoint of the edge pq . If pq is a Gabriel edge, add the triangle pvq
to S∗(c), see the picture on right in Figure 10.7. Otherwise, the driver of the
interior points of µ is r . In that case let v′ be the point where the ray from r to v

intersects µ for the first time. Add the triangles pvv′ and qvv′ with their edges
and vertices to the 2-complex S∗(c). See the picture on left in Figure 10.7. The
process goes on as long as there is a point v on the boundary of the constructed
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2-complex which is on a Voronoi edge. The above construction of S∗(c) starts
with v = c and the Voronoi edge e containing c.

FlowComplex(P)
1 T :=∅;
2 compute Vor P and Del P;
3 compute the set C of index 2 saddles;
4 for each c ∈ C do

5 σ := Delaunay triangle containing c;
6 for each Delaunay edge e incident to σ do

7 push (c, e) into stack S;
8 endfor

9 while S 
= ∅ do

10 (v, e):= pop S;
11 mark e processed;
12 p, q:= endpoints of e;
13 if e contains a saddle of index 1
14 T :=T ∪ {pvq};
15 else

16 µ:= dual e;
17 r := driver of the interior of µ;
18 v′:= the first point −→rv intersects µ;
19 T := T ∪ {vv′ p, vv′q};
20 σ ′:= Delaunay triangle dual to the Voronoi edge containing v′;
21 for each edge e′ 
= e incident to σ ′ do
22 i f (e′ not processed) push (v′, e′) into S;
23 endfor

24 endif

25 endwhile

26 endfor

27 output Fl P:= 2-complex made by T .

10.3.2 Merging

The flow complex Fl P decomposes R
3 into cells which are the closed stable

manifolds of the maxima including the maximum p∞ at infinity. We merge
these cells in order to get a manifold surface.

We know that the closed stable manifolds have recursive structures in the
sense that a closed stable manifold of index j critical point has the closed
stable manifolds of the index j − 1 critical points on its boundary. We use this
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recursive structure of closed stable manifolds for merging. Let a and b be two
maxima where S∗(a) and S∗(b) share a closed stable manifold S∗(c) of an index
2 saddle. Merging a and b means to remove S∗(c) from the flow complex Fl P .
Of course it is not appropriate to merge maxima in arbitrary order nor does it
make sense to merge every pair of adjacent maxima.

The order in which the pairs of maxima are merged is determined as follows.
Let a and b be a pair with S∗(c) on the common boundary of S∗(a) and S∗(b).
Associate the value max{d(a) − d(c), d(b) − d(c)} with the pair (a, b) as its
weight. The weight of a pair signifies how deep the maxima are relative to
the boundary shared by their closed stable manifolds. Deep maxima capture
the shape represented by P more significantly. Therefore, the merging process
merges the pairs of maxima in the increasing order of their weights up to a
threshold. The 2-complex resulting from the merging process is output. Clearly,
this reconstruction depends on the user supplied threshold. The choice of a
threshold is not easy in practice. Heuristics such as enforcing a topological disk
neighborhood for each sample point while eroding the flow complex may be
used to improve the output quality.

10.3.3 Critical Point Separation

The difficulty in merging the cells in the flow complex can be bypassed with
a different approach that exploits the separation property of the critical points.
This property says that the critical points are of two categories, ones that stay
near the surface and the other ones that stay near the medial axis. This property
holds when the sample P is sufficiently dense for a surface �. As before, we
will assume � is compact, connected, C2-smooth, and without boundary. Let
M denote its medial axis.

Recall that, for a point x ∈ R
3 \ M , x̃ denotes its closest point in �. Consider

the medial ball at x̃ on the side of � as x is. Let ρ(x) and m(x) be the radius
and the center of this medial ball. The following lemma states the separation
property of the critical points. We will skip the proof (Exercise 5).

Lemma 10.4 (Separation). Let d be the distance function defined for a ε-
sample P of � where ε ≤ 1

3 . A point x ∈ R
3 \ M is critical for d only if ‖x −

x̃‖ ≤ ε2 f (x̃) or ‖x − m(x)‖ ≤ 2ερ(x).

Motivated by the Separation Lemma 10.4, we call a critical point c of d
surface critical if ‖c − c̃‖ ≤ ε2 f (c̃) and medial axis critical otherwise. Since
a medial axis critical point c is far away from the surface, the vector −→pc from
its closest sample point p makes a small angle with the normal np (Normal
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Lemma 3.2) and hence with the pole vector vp. On the other hand, a surface
critical point c being close to the surface makes the vector −→pc almost parallel to
the surface (Exercise 5). This becomes the basis of the algorithm for separating
the two types of the critical points.

Lemma 10.5 (Angle Separation). Let c be a critical point of d and p ∈ P be
a sample point closest to c. For ε ≤ 0.1, the angle ∠a(−→pc, vp) is at least 75.5◦

if c is surface critical and is at most 28◦ if c is medial axis critical.

The Angle Separation Lemma 10.5 motivates the following algorithm.

Separate(Vor P ,C)
1 for each p ∈ P do

2 for all critical points c ∈ C in Vp do

3 if ∠a(−→pc, vp) < π
4

4 label c surface critical;
5 else

6 label c medial axis critical;
7 endif

8 endfor

9 endfor.

Once the critical points are separated, one can take the closed stable manifolds
of the medial axis critical points and produce the boundary of their union. Of
course, one has to differentiate the critical points residing near the inner medial
axis from those near the outer one. The boundary of

⋃
S∗(c) approximates the

surface where c is taken over any one of these two classes. We use a union-find
data structure U on the set of medial axis critical points to collect either all inner
medial axis critical points or the outer ones. Suppose c is a maximum near the
inner medial axis. The boundary of S∗(c) has the stable manifolds of index 1
and index 2 saddles. If any of these saddles are medial axis critical, we collect
them in the same group using the union-find data structure.

The routine CritSep returns all outer medial axis critical points.

CritSep(Vor P)
1 compute the set of critical points C ;
2 Separate(Vor P , C);
3 let CM be the set of medial axis critical points

including p∞;
4 initialize a union-find data structure U with all c ∈ CM ;
5 for each c ∈ CM do
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6 for all c′ ∈ (bd S∗(c)) ∩ CM do

7 U.union(c, c′);
8 endfor

9 endfor

10 return the component of the union containing p∞.

Once all outer medial axis critical points are collected, one can output the
boundary of the union of their closed stable manifolds as the output surface.

SmRecon(P)
1 compute Vor P;
2 C :=CritSep(Vor P);
3 output bd (

⋃
c∈C S∗(c)).

It can be proved that the output of SmRecon is homeomorphic to � if P is
sufficiently dense and is locally uniform (Exercise 6).

10.4 Reconstruction with a Delaunay Subcomplex

The flow complex computes the stable manifolds for the index 2 saddles exactly
from the Delaunay triangulation. Since these stable manifolds are not neces-
sarily a subcomplex of the Delaunay triangulation, the output surface triangles
are not necessarily Delaunay. The exact complexity of the flow complex is not
known. Certainly, it introduces extra points in the output other than the input
ones. However, it is not clear if the number of extra vertices could be too many.
Also, computing the triangles for the index 2 saddles is somewhat cumber-
some. From a practical viewpoint it is much simpler and sometimes desirable
to compute the output as a Delaunay subcomplex. In this section we describe
an algorithm called Wrap that computes the output surface as a Delaunay sub-
complex. The Morse theoretic framework used for the flow complex remains
the same though some different interpretations are needed.

10.4.1 Distance from Delaunay Balls

We will use a different distance function in this section. A Delaunay ball Bc,r

is treated as a weighted point ĉ = (c, r ). Recall from Section 6.1 that the power
distance of a point x from a weighted point ĉ is

π(x, ĉ) = ‖x − c‖2 − r2.

For a point set P ⊂ R
3, let C denote the centers of the Delaunay balls in Del P

and Ĉ denote the set of weighted points corresponding to these Delaunay balls.
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These Delaunay balls also include the ones that circumscribe the infinite tetra-
hedra in Del P . These infinite tetrahedra are formed by a convex hull triangle
together with the point p∞. Obviously, their centers are at infinity and they have
infinite radii. Define a distance function g : R

3 → R as

g(x) = min
ĉ∈Ĉ

π (x, ĉ).

Recall from Section 6.1 that the power diagram Pow Ĉ is the decomposi-
tion of R

3 into cells and their faces determined by the power distance. When
the weighted points are the centers of the Delaunay balls with their radii as
weights, the power diagram coincides with the Delaunay triangulation. This
means Pow Ĉ = Del P (Exercise 9). So, if a point x ∈ R

3 lies in a Delaunay
tetrahedron σ ∈ Del P , g(x) is exactly equal to π (x, ĉ) where c is the center of
the Delaunay ball of σ . The distance function g is continuous but not smooth.
The nonsmoothness occurs at the triangle, edges, and vertices of the Delaunay
tetrahedra. Notice that the minima of this distance function occur at the centers
of the Delaunay balls which are the Voronoi vertices. Not all Voronoi vertices
but only the ones contained in their dual Delaunay tetrahedra are minima. The
function g is negative everywhere except at the Delaunay vertices, that is, at
the points of P . The points of P reside on the boundary of the Delaunay balls
and thus have the value of g as zero. They become the maxima of the distance
function g.

Similar to the distance function d defined in Section 10.2, we can introduce
a flow induced by g. This calls for the notion of driver for each point under the
function g.

Definition 10.3. For every point x ∈ R
3, let H (x) be the convex hull of the

points in C with the minimum power distance to x. The driver r (x) of x is
defined as the point in H (x) closest to x. The point x is critical if x ∈ H (x) and
is regular otherwise.

We have a counterpart of the Flow Lemma 10.1 for g.

Lemma 10.6 (Second Flow Lemma). For any regular point x ∈ R
3 the steep-

est ascent of g at x is in the direction of x − r (x).

We have a vector field v : R
3 → R

3 as before defined by the steepest ascent
direction of g and a flow φ : R

+ × R
3 → R

3 induced by it. Again, the flow
curves derived from φ are piecewise linear curves and these flow curves have
the property that they are either disjoint or overlap, but they never cross each
other. Also, the Second Flow Lemma 10.6 implies that, once they join together
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Figure 10.8. The dotted simplex is σ , an edge on the left, and a triangle on the right. The
black arrow shows the flow direction from predecessor τ toward the successor ξ of σ .

they remain so. To be consistent with the smooth case we will denote a flow
curve passing through a point x as φx .

The minima of g occur at a subset of Voronoi vertices. We are interested in the
unstable manifold of these minima. In particular, we compute an approximation
of the closed unstable manifold U ∗(p∞) = Cl U (p∞) of the minimum p∞. The
boundary of this approximation is the reconstructed surface. In general, this
boundary is a subcomplex of Del P which we refer as the wrap complex.

10.4.2 Classifying and Ordering Simplices

The flow curves lead to an acyclic relation over the set of Delaunay simplices.
The wrap complex is constructed by collapsing simplices following the order
induced by this relation.

Flow Relation

Assume a dummy simplex σ∞ that represents the outside, or the complement
of Conv P . It replaces all infinite tetrahedra formed by the convex hull triangles
and the point p∞. All these tetrahedra have similar flow behavior and can be
treated uniformly. Let D = Del P ∪ {σ∞}. The flow relation ≺ on D mimics
the behavior of the flow curves.

Definition 10.4. We say τ ≺ σ ≺ ξ if σ is a proper face of τ and of ξ and
there is a point x ∈ Int σ with φx passing from Int τ through x to Int ξ . We
refer this as τ precedes σ and σ precedes ξ . The condition implies that every
neighborhood of x contains a nonempty subset of φx ∩ Int τ and a nonempty
subset of φx ∩ Int ξ . We call τ a predecessor and ξ a successor of σ .

Notice that predecessor successor relations are defined for σ . It is not true that
if τ is a predecessor (successor) of σ , then σ is a successor (predecessor) of τ .

Figure 10.8 illustrates the predecessor and successor relation for an edge and
a triangle. Based on the relation ≺ we also define the descendents and ancestors
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Figure 10.9. Different types of flow through edges.

of a simplex. Basically, the descendents of a simplex are a set of simplices that
can be reached from σ by transitive closure of ≺. The ancestors are the simplices
which can reach σ by transitive closure of ≺.

Definition 10.5. For a simplex σ , the descendents, Des σ , are defined as

Des σ = {σ } ∪
⋃
σ≺ξ

Des ξ.

The ancestors, Anc σ , are defined as

Anc σ = {σ } ∪
⋃
τ≺σ

Anc τ.

The flow curves intersect the Delaunay simplices either in intervals or in
single points. Any point x in the interior of a Delaunay simplexσ has the Voronoi
face dual σ as H (x). Therefore, all interior points in σ have the same driver
r (x). This means that the intersections of all flow curves with the interior of a
Delaunay simplex are similar, that is, either all of them are points, or all of them
are intervals. According to the pattern of these intersections and associated flows
we classify the Delaunay simplices into three categories. The three categories
are mutually exclusive and exhaust all possible Delaunay simplices.

Centered Simplices

A simplex σ ∈ Del P is centered if and only if its interior intersects the interior
of the dual Voronoi face µ = dual σ . The intersection point y = Int σ ∩ Int µ is
a critical point and its index is the dimension of µ. The flow curves intersecting
centered simplices have the property that the portion of φx succeeding x ∈
Int σ is contained in Int σ . Consequently, centered simplices do not have any
predecessor or successor. The leftmost edge of Figure 10.9 and the leftmost
triangle in Figure 10.10 are centered.
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Figure 10.10. Different flow types for triangles.

Confident Simplices

A simplex σ ∈ Del P is confident if and only if it is not centered and its affine
hull intersects the interior of µ = dual σ . Confident simplices are similar to
the centered ones, in the sense that they would be centered if they covered
large enough portion of their affine hulls. The neighborhoods of the flow curves
succeeding any interior point of a confident simplex remain in the interior of
the simplex. The edge in the middle of Figure 10.9 and the middle triangle in
Figure 10.10 are confident.

All simplices that have a confident simplex σ as a predecessor or successor
are faces of σ . We call them predecessor and successor faces of σ . The successor
faces can be determined as follows. Let z = aff σ ∩ Int µ. The point z is the
center of the smallest ball circumscribing σ . Let k = dim σ . Consider each
(k − 1)-dimensional face ξ of σ . The aff ξ either separates z from the interior
of σ or both z and Int σ lie on the same side of aff ξ . We assume here the general
positions which preclude z lying on aff ξ . A face ξ of σ is a predecessor if and
only if the affine hulls of all (k − 1)-dimensional faces containing ξ separate z
from the interior of σ . Each confident simplex has a unique lowest dimensional
predecessor face v contained in all predecessor faces of σ .

Equivocal Simplices

A simplex σ ∈ Del P is equivocal if and only if its affine hull does not intersect
the interior of the dual Voronoi face µ = dual σ . The flow curves intersect
equivocal simplices in a single point. The rightmost edge of Figure 10.9 and
the rightmost triangle in Figure 10.10 are equivocal.

All predecessors and successors of an equivocal simplex σ are cofaces of
σ . They are either centered or confident. An equivocal simplex can have more
than one predecessors but only one successor.



10.4 Reconstruction with a Delaunay Subcomplex 201

Lemma 10.7 (Successor Lemma). Each equivocal simplex has exactly one
successor.

Proof. Let σ be an equivocal simplex and x ∈ Int σ . Consider the flow curves
passing through x . Because of the Second Flow Lemma 10.6, we know that
all flow curves leave x along the same direction. Since after x all flow curves
are the same in a sufficiently small neighborhood, consider the flow curve φx

and a small portion immediately succeeding x . This portion is a line segment
contained in the interior of a simplex ξ where σ ≺ ξ . The simplex ξ is confident.
Every flow curve that intersects ξ does so in a portion of a line passing through
the center z of the smallest ball circumscribing ξ . It follows that for each point
x ∈ σ , a sufficiently small portion of φx succeeding x lies on the line joining x
and z and therefore in Int ξ . This implies that each x identifies the same simplex
ξ which becomes the only successor of σ . �

The successor ξ of σ can be computed as follows. Let µ be the dual Voronoi
face of σ . The closest point of µ to ξ is z which resides on the boundary of µ.
Testing over all boundary Voronoi faces of µ, the Voronoi face µ′ containing z
can be determined. The successor ξ is the dual Delaunay simplex of µ′.

10.4.3 Reconstruction

The basic construction of the Wrap algorithm computes a subcomplex X from
Del P whose boundary is output as the wrap surface W . In general this surface
is homotopy equivalent to S

2 though other topologies can be accommodated
with some postprocessing. It is constructed by peeling away simplices dictated
by the flow relation.

A source is a simplex σ ∈ Del P without any predecessor in the flow relation.
The sources are exactly the centered simplices including σ∞. We are interested
in computing an approximation of the closed unstable manifold of p∞. This
approximation is obtained by following the flow relation. A very important
property of the flow relation is that it is acyclic. A cycle is a sequence of
simplices σ1 ≺ σ2 ≺ · · · ≺ σ�, with � ≥ 3 and σ1 = σ�.

Lemma 10.8 (Acyclicity). The flow relation ≺ is acyclic.

Proof. Let σi ∈ Del P and Bi = Bci ,ri be the smallest empty ball circumscribing
σi . Consider σi ≺ σ j . Clearly, σ j cannot be centered. If σ j is confident then σi

is equivocal and we have Bi = B j and dim σi < dim σ j . If σ j is equivocal then
σi is centered or confident. Hence, ci 
= c j and r2

i > r2
j . We assign to each σi
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b
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c

Figure 10.11. Collapsing an edge triangle pair.

the pair (r2
i , − dim σi ). The pairs decrease lexicographically along the chain

preventing a cycle in it. �

The sources and their descendent sets are analogous to the critical points
and their unstable manifolds respectively. However, they are not exactly same.
Approximations of the unstable manifolds with Delaunay subcomplexes face
a difficulty with simplices that have more than one predecessor. Their exis-
tence causes possible overlap of the descendent sets. This is in contrast with the
unstable manifolds of smooth functions which are necessarily disjoint though
their closures may overlap. Equivocal edges may have more than one predeces-
sor. Similarly, confident tetrahedra may have more than one predecessor face.
Despite the possibility of overlapping descendent sets, a useful containment
property for unstable manifolds holds. Let σ and τ be the centered simplices
with the critical points y ∈ Int σ and z ∈ Int τ .

Lemma 10.9 (Descendent). U (z) ⊆ Cl U (y) implies Des τ ⊆ Cl Des σ .

The set X whose boundary is output as the wrapping surface is constructed
from Del P by taking out a conservative subset of Des σ∞. The simplices in
Des σ∞ which have more than one predecessor are eliminated to define the
conservative descendent subset. By looking at the complement, we can say that
X is exactly equal to the union of the descendent sets of all sources except that
of σ∞. In other words, the wrapping surface W is the boundary of

X =
⋃

sources σ 
=σ∞

Des σ.

10.4.4 Algorithm

The algorithm for constructing W removes simplices from Del P using col-
lapses (see Figure 10.11). Let K be a simplicial complex and let σ be a simplex
with exactly one proper coface τ ∈ K. The removal of the pair (σ, τ ) from
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K is called an elementary collapse. It is known that the underlying space of
K1 = K \ {σ, τ } is homotopy equivalent to that of K.

An �-simplex σ is free if there is a k-simplex τ in K with k > � so that all
cofaces of σ are faces of τ . The collapses shrink a subcomplex Y starting from
the full Delaunay complex Del P . Call a simplex σ collapsible if

(i) σ ∈ Y is free and equivocal and
(ii) τ is the highest dimensional coface of σ in Y where σ ≺ τ and σ is the

lowest dimensional predecessor face of τ .

A free collapse is an operation where a collapsible simplex is removed together
with its cofaces. Observe that a free collapse can be implemented with a se-
quence of elementary collapses. The following algorithm Collapse carries out
a sequence of free collapses on a given simplicial complex Y ⊆ Del P as long
as there are collapsible simplices.

Collapse (Y ,σ )
1 for each face τ of σ do

2 push τ into stack S;
3 endfor

4 while S 
= ∅ do

5 σ := pop S;
6 if σ collapsible
7 for each coface ξ of σ do

8 Y := Y \ ξ ;
9 endfor

10 Let τ be the highest dimensional coface of σ ;
11 for each face ξ of τ that is not a coface of σ do

12 push ξ into S;
13 endfor

14 endif

15 endwhile

16 return Y .

The algorithm Wrap uses the Collapse routine on the Delaunay triangula-
tion Del P . It starts the collapse with the faces of σ∞ which are the simplices
on the convex hull of P .

Wrap(P)
1 compute Del P;
2 output Collapse(Del P , σ∞).
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The following theorem asserts that no matter which free collapses are chosen
among many, the final output Y of Wrap is actually X .

Theorem 10.1. Wrap outputs X .

The outputX of Wrap is obtained from the Delaunay complex Del P through
elementary collapses. Since each elementary collapse maintains the homotopy
type, the underlying space |X | ofX is homotopy equivalent to that of Del P and
hence to a ball. Notice that |X |may not be homeomorphic to a three-dimensional
ball though is homotopy equivalent to it. In case |X | is a ball, its boundary is
homeomorphic to a sphere. This means that the basic construction of Wrap can
reconstruct surfaces that are topologically 2-spheres. To accommodate other
topologies, the basic construction needs some modifications.

The idea is to collapse simplices not only from the descendent set of σ∞ but
also from the descendent sets of other significant sources. For a source σ define
its size |σ | by the value |g(y)| where y ∈ σ is the corresponding critical point
of the centered simplex σ . By definition, g(y) is the negated squared radius of
the diametric ball of σ . It is intuitive that large sizes of sources indicate the
space through which the wrapping surface should be pushed. Keeping this in
mind, we sort the sources in order of decreasing size |σ0| > |σ1| > · · · > |σm |,
where σ0 = σ∞ and thus |σ0| = ∞. For each index 0 ≤ j ≤ m, define

X j =
m⋃

i= j+1

Cl Des σi .

Define W j = bd |X j |. The X j form a nested sequence of subcomplexes

X = X0 ⊇ X1 ⊇ · · · ⊇ Xm = ∅.

Correspondingly, the W j form a nested sequence of wrapping surfaces. The
operation that removes a principal simplex from a simplicial complex K is
called deletion. In contrast to a collapse, a deletion changes the homotopy type
of |K|. A particular X j is constructed from Del P by a series of deletions and
collapses. A source is deleted which is followed by a sequence of collapses
taking out all simplices in the descendent set of the source. The complex X j

is computed by repeating these two operations j + 1 times, once for each of
σ0, σ1, . . . , σ j .

Alternatively, one may resort to the separation property of the critical points as
in Subsection 10.3.3. The distance functions d and g have the same set of critical
points (Exercise 11). Therefore, we can use CritSep routine to obtain the set of
outer medial axis critical points. All sources (Voronoi vertices) in this filtered set
can trigger a deletion of its dual tetrahedron and a series of collapse thereafter.
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ModifiedWrap(P)
1 C :=CritSep(P);
2 Y:=Del P;
3 sort sources containing c ∈ C in decreasing order of size;
4 for each source σ in the sorted order
5 Y:= Collapse(Y , σ );
6 endfor

7 output Y .

10.5 Notes and Exercises

Morse theory is a widely studied subject in mathematics. Milnor [70] and
Guillemin and Pollack [60] are two standard books on the subject. The flow
induced by distance functions as described in this chapter is relatively new and
can be found in Grove [59]. The connection between Morse theory and the
Voronoi diagrams was discovered by Edelsbrunner, Facello, and Liang [45]
and Siersma [78] in different contexts.

Morse theoretic reconstruction was first discovered by Edelsbrunner in 1995
though it was not published until 2003 [44] due to propriety rights. In this
work Edelsbrunner proposed the Wrap algorithm as described in Section 10.4.
To circumvent the problem of nonsmooth vector field, he used the fact that a
nonsmooth vector field can be approximated by a smooth one with arbitrary
precision. Here we used the concept of driver introduced by Giesen and John [55,
56]. They used drivers to apply the idea of the flow in Grove [59] for distance
functions induced by a set of discrete points. The flow complex computation
as described in Section 10.3 is taken from this work [56]. The separation of
critical points as described in Subsection 10.3.3 was discovered by Dey, Giesen,
Ramos, and Sadri [32]. The Separation Lemma 10.4 and the Angle Separation
Lemma 10.5 were proved in this paper. We took the leverage of this result to
introduce ModifiedWrap.

The idea of computing flow and their approximations through Delaunay
subcomplexes was further investigated by Dey, Giesen, and Goswami [31]
for shape segmentation and shape matching. The Flow Lemma 10.1 and a
preliminary proof of it is included there.

Exercises

1. Let P be a set of points in R
2. Characterize the flow complex Fl P when

P is unweighted and weighted.
2. Consider the function d as used for the flow complex. Describe the unstable

manifolds of the minima of this function.
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3. Design an algorithm to compute the unstable manifolds of the index 2
critical points of d .

4. Consider the function d . Design an algorithm to compute the boundary
of the stable manifold of p∞. How should this boundary be modified to
improve the reconstruction?

5. Prove the Separation Lemma 10.4 and the Angle Separation Lemma 10.5
[32].

6h . Prove that the output of SmRecon is homeomorphic to � if P is locally
uniform and is sufficiently dense [32].

7o. Prove or disprove 6 when P is a nonuniform sample.
8o. Determine the worst case optimal complexity of the flow complex.
9. Let Ĉ be the weighted points corresponding to the Delaunay balls in Del P .

Show that Pow Ĉ = Del P .
10. Consider the function g used for the wrap complex. Describe the stable

manifolds of the maxima of g.
11. Prove that the functions d and g have the same set of critical points.
12. Prove the Descendent Lemma 10.9 [44].
13. Give a proof of the Wrap Theorem 10.1 [44].

14o. Prove that the output of ModifiedWrap is homeomorphic to � if the
input P is sufficiently dense for �.
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(ε, δ, κ)-sample, 114
Ci -smooth

curve, 26
surface, 41

α-shape, 38, 77
∠a(u, v), 43
∠(u, v), 43
Õ notation, 18
ε-sample, 17

ball
circumscribing, 20
Delaunay, 20, 119, 133, 196
diametric, 20
empty, 20
open, 3
polar, 93

boundary, 6, 80, 81

closure, 3
cocone, 60, 77, 78, 89

tight, 104, 149
triangles, 60

coface, 7
compact, 3
complex

cell, 8
flow, 192
simplicial, 7
wrap, 198

condition A, 53
continuous function, 3
critical point, 182
crust, 30, 77, 78

conservative, 39
NN, 35
power, 134

Delaunay
edge, 20

triangle, 20
triangulation, 20

distance
Euclidean, 10
Hausdorff, 10

driver, 186

face, 7
flow, 183, 187

Gabriel edge, 191
Gaussian function, 157
gradient, 152, 153, 182

Hausdorff, 143, 153
homeomorphism, 4, 73, 99, 144, 154
homotopy, 4
hull

affine, 7
convex, 7, 185

implicit
function, 152
surface, 152, 179

incident, 8
interior, 6, 81
isotopy, 5, 100, 145

labeling, 101, 134, 145
Lipschitz property, 15, 16
local feature size, 15, 124, 157

manifold, 6
stable, 184
unstable

manifold extraction, 66
map ν, 70, 73
maps, 3
medial angle, 125
medial axis, 11, 111, 124, 132
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medial ball, 11
MLS

adaptive, 156, 158
projective, 175
surface, 155

natural neighbor, 77, 179
negative pole, 59
neighborhood, 6
noise, 113, 133
nonsmooth, 42
normal, 42

edge, 47
triangle, 48
variation, 45

orientability, 7

pole, 59, 95
positive pole, 59
power

cell, 94
crust, 94
diagram, 94, 95, 197
distance, 94

proper coface, 7
proper face, 7, 198

regular point, 186

restricted
Delaunay triangulation, 22, 23, 147
Voronoi diagram, 21, 23

sample, 1
sampling

locally uniform, 18, 78, 122
uniform, 17, 38

sets
closed, 3
open, 3

simplex, 7
spaces

homeomorphic, 4
isotopic, 6

topological ball property, 50, 147
topological space, 3
triangulation, 8

vector field, 185
Voronoi

cell, 19
diagram, 19, 179, 190
edge, 19
face, 19

watertight, 93
wrap, 201, 203

zero-level set, 153, 178
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