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Preface 

The word 'basic' in the title of this text could be substituted by 'elementary' or by 
'an introduction to'; such are the contents. We have chosen the word 'basic' in order 
to emphasise our objective, which is to provide in a reasonably compact and readable 
form a rigorous first course that covers all of the material on linear algebra to which 
every student of mathematics should be exposed at an early stage. 

By developing the algebra of matrices before proceeding to the abstract notion of 
a vector space, we present the pedagogical progression as a smooth transition from 
the computational to the general, from the concrete to the abstract. In so doing we 
have included more than 125 illustrative and worked examples, these being presented 
immediately following definitions and new results. We have also included more 
than 300 exercises. In order to consolidate the student's understanding, many of 
these appear strategically placed throughout the text. They are ideal for self-tutorial 
purposes. Supplementary exercises are grouped at the end of each chapter. Many of 
these are 'cumulative' in the sense that they require a knowledge of material covered 
in previous chapters. Solutions to the exercises are provided at the conclusion of the 
text. 

In preparing this second edition we decided to take the opportunity of including, 
as in our companion volume Further Linear Algebra in this series, a chapter that 
gives a brief introduction to the use of MAPLE) in dealing with numerical and alge­
braic problems in linear algebra. We have also included some additional exercises 
at the end of each chapter. No solutions are provided for these as they are intended 
for assignment purposes. 

T.S.B., E.ER. 

1 MAPLE™ is a registered trademark of Waterloo Maple Inc .• 57 Erb Street West. Waterloo. Ontario. 
Canada. N2L 6C2. www.maplesoft.com 



Foreword 

The early development of matrices on the one hand, and linear spaces on the other, 
was occasioned by the need to solve specific problems, not only in mathematics but 

also in other branches of science. It is fair to say that the first known example of 
matrix methods is in the text Nine Chapters of the Mathematical Art written during 
the Han Dynasty. Here the following problem is considered: 

There are three types of corn, of which three bundles of the first, two bundles 

of the second, and one of the third make 39 measures. Two of the first, three of the 

second, and one of the third make 34 measures. And one of the first, two of the 

second, and three of the third make 26 measures. How many measures of corn are 

contained in one bundle of each type? 

In considering this problem the author, writing in 200BC, does something that is 
quite remarkable. He sets up the coefficients of the system of three linear equations 
in three unknowns as a table on a 'counting board' 

1 2 3 
2 3 2 
3 1 1 

26 34 39 

and instructs the reader to multiply the middle column by 3 and subtract the right 

column as many times as possible. The same instruction applied in respect of the 
first column gives 

003 
452 
8 1 1 

392439 

Next, the leftmost column is multiplied by 5 and the middle column subtracted from 
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it as many times as possible, giving 

003 
052 

36 1 1 
992439 

Basic Linear Algebra 

from which the solution can now be found for the third type of com, then for the 
second and finally the first by back substitution. This method, now sometimes known 
as gaussian elimination, would not become well-known until the 19th Century. 

The idea of a determinant first appeared in Japan in 1683 when Seki published his 
Method of solving the dissimulated problems which contains matrix methods written 
as tables like the Chinese method described above. Using his 'determinants' (he had 
no word for them), Seki was able to compute the determinants of 5 x 5 matrices 
and apply his techniques to the solution of equations. Somewhat remarkably, also in 
1683, Leibniz explained in a letter to de l'Hopital that the system of equations 

has a solution if 

10 + llx + 12y = 0 
20 + 21x + 22y = 0 
30 + 31x + 32y = 0 

10 .21.32 + 11.22.30 + 12.20.31 = 10 .22 .31 + 11.20.32 + 12.21.30. 

Bearing in mind that Leibniz was not using numerical coefficients but rather 

two characters, the first marking in which equation it occurs, the second marking 
which letter it belongs to 

we see that the above condition is precisely the condition that the coefficient matrix 
has determinant O. Nowadays we might write, for example, a21 for 21 in the above. 

The concept of a vector can be traced to the beginning of the 19th Century in the 
work of Bolzano. In 1804 he published Betrachtungen iiber einige Gegenstiinde der 
Elementargeometrie in which he considers points, lines and planes as undefined ob­
jects and introduces operations on them. This was an important step in the axiomati­
sation of geometry and an early move towards the necessary abstraction required for 
the later development of the concept of a linear space. The first axiomatic definition 
of a linear space was provided by Peano in 1888 when he published Calcolo geo­
metrico secondo I'Ausdehnungslehre de H. Grassmann preceduto dalle operazioni 
della logica deduttiva. Peano credits the work of Leibniz, Mobius, Grassmann and 
Hamilton as having provided him with the ideas which led to his formal calculus. 
In this remarkable book, Peano introduces what subsequently took a long time to 
become standard notation for basic set theory. 
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Peano's axioms for a linear space are 

1. a = b if and only if b = a, if a = b and b = c then a = c. 

2. The sum of two objects a and b is defined, i.e. an object is defined denoted by 

a + b, also belonging to the system, which satisfies 

If a = b then a + c = b + c, a + b = b + a, a + (b + c) = (a + b) + c, and the common 

value of the last equality is denoted by a + b + c. 

3. If a is an object of the system and m a positive integer, then we understand by 

ma the sum of m objects equal to a. It is easy to see that for objects a, b, ... of the 

system and positive integers m, n, ... one has 

If a = b then ma = mb, m(a + b) = ma + mb, (m + n)a = ma + na, m(na) = mna, 

la = a. 

We suppose that for any real number m the notation ma has a meaning such that the 

preceding equations are valid. 

Peano also postulated the existence of a zero object 0 and used the notation a - b 
for a + (-b). By introducing the notions of dependent and independent objects, he 

defined the notion of dimension, showed that finite-dimensional spaces have a basis 
and gave examples of infinite-dimensional linear spaces. 

If one considers only functions of degree n, then these functions form a linear 

system with n + 1 dimensions, the entire functions of arbitrary degree form a linear 

system with infinitely many dimensions. 

Peano also introduced linear operators on a linear space and showed that by using 

coordinates one obtains a matrix. 

With the passage of time, much concrete has set on these foundations. Tech­

niques and notation have become more refined and the range of applications greatly 
enlarged. Nowadays Linear Algebra, comprising matrices and vector spaces, plays 

a major role in the mathematical curriculum. Notwithstanding the fact that many im­
portant and powerful computer packages exist to solve problems in linear algebra, 

it is our contention that a sound knowledge of the basic concepts and techniques is 
essential. 
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1 
The Algebra of Matrices 

If m and n are positive integers then by a matrix of size m by n, or an m x n matrix, 
we shall mean a rectangular array consisting of mn numbers in a boxed display con­
sisting of m rows and n columns. Simple examples of such objects are the following: 

size 1 x 5 : [10 9 8 7 6] size 3 x 2 : 

size 3 x 1 size 4 x 4 : r~ n ~1 
4 5 6 7 

In general we shall display an m x n matrix as 

Xli x12 Xl3 ... xln 

X21 X22 X23 ••• X2n 

x31 x32 x33 •.• x3n 

[;1 426] 

[O~] 

• Note that the first suffix gives the number ofthe row and the second suffix that 
of the column, so that Xij appears at the intersection of the i-th row and the 
j-th column. 

We shall often find it convenient to abbreviate the above display to simply 

[Xij]mxn 

and refer to Xij as the (i,j)-th element or the (i,j)-th entry ofthe matrix . 

• Thus the expression X = [Xij]mxn will be taken to mean that 'X is the m x n 
matrix whose (i,j)-th element is x;/. 
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Example 1.1 

The 3 x 3 matrix X = [23
1 i2 i3l can be expressed as X = [Xjj hx3 where Xij = i j • 

32 33 

Example 1.2 

The 3 x 3 matrixK = [~ ~ : 1 can be expressed asK = [x"k, where 

Example 1.3 

The n x n matrix 

{
a ifi~j; 

Xjj = 0 otherwise. 

0 0 ... 0 

e 0 ... 0 

X= e2 e ... 0 

can be expressed as X = [Xij]nxn where 

Xij = {e~-j if i ~j; 

otherwise. 

EXERCISES 

1.1 Write out the 3 x 3 matrix whose entries are given by Xij = i + j. 

1.2 Write out the 3 x 3 matrix whose entries are given by 

x .. = { 1 if i + j is even; 
I) 0 otherwise. 

1.3 Write out the 3 x 3 matrix whose entries are given by x ij = (-1 )i-j . 

1.4 Write out the n x n matrix whose entries are given by 

{
-I 

Xij = 0 
I 

if i > j; 

ifi = j; 
ifi < j. 



1. The Algebra of Matrices 

1.5 Write out the 6 x 6 matrix A = [aij] in which aij is given by 

(1) the least common multiple of i and j; 

(2) the greatest common divisor of i andj. 

3 

1.6 Given the n x n matrix A = [aij]' describe the n x n matrix B = [bij ] 
which is such that bij = aj,n+l-j' 

Before we can develop an algebra for matrices, it is essential that we decide 
what is meant by saying that two matrices are equal. Common sense dictates that 
this should happen only if the matrices in question are of the same size and have 
corresponding entries equal. 

Definition 

If A = [ajj]mxn and B = [bij]pxq then we shall say that A and B are equal (and write 
A = B) if and only if 

(1) m = p and n = q; 

(2) aij = bij for all i ,j. 

The algebraic system that we shall develop for matrices will have many of the 
familiar properties enjoyed by the system of real numbers. However, as we shall see, 
there are some very striking differences. 

Definition 

Given m x n matrices A = [aij] and B = [bij ], we define the sum A + B to be the 
m x n matrix whose (i,j)-th element is aij + bij' 

Note that the sum A + B is defined only when A and B are of the same size; and 
to obtain this sum we simply add corresponding entries, thereby obtaining a matrix 
again of the same size. Thus, for instance, 

[-1 0 ] [1 2 ] [0 2 ] 
2 -2 + -1 0 = 1 -2 . 

Theorem 1.1 

Addition of matrices is 
(1) commutative [in the sense that if A, B are of the same size then we have 

A +B= B +A]; 
(2) associative [in the sense that if A, B, C are of the same size then we have 

A + (B + C) = (A + B) + C]. 

Proof 

(1) If A and B are each of size m x n then A + Band B + A are also of size m x n 
and by the above definition we have 

A + B = [aij + bij], 
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Since addition of numbers is commutative we have aij + bij = bij + aij for all i,j 
and so, by the definition of equality for matrices, we conclude that A + B = B + A. 

(2) If A, B, C are each of size m x n then so are A + (B + C) and (A + B) + C. 
Now the (i ,j)-th element of A + (B + C) is aij + (bij + cij) whereas that of (A + B) + C 
is (aij + bij) + cij' Since addition of numbers is associative we have aij + (bij + Ci) = 
(aij +bi)+c;j for all i,j and so, by the definition of equality for matrices, we conclude 
that A + (B + C) = (A + B) + C. 0 

Because of Theorem 1.1 (2) we agree, as with numbers, to write A + B + C for 
either A + (B + C) or (A + B) + C. 

Theorem 1.2 

There is a unique m x n matrix M such that, for every m x n matrix A, A + M = A. 

Proof 

Consider the matrix M = [m;j]mxn all of whose entries are 0; i.e. mij = 0 for all i ,j. 
For every matrix A = [a;j]mxn we have 

A + M = [aij + mij]mxn = [a;j + O]mxn = [aij]mxn = A. 

To establish the uniqueness of this matrix M, suppose that B = [bij]mxn is also such 
that A + B = A for every m x n matrix A. Then in particular we have M + B = M. 
But, taking B instead of A in the property for M, we have B + M = B. It now follows 
by Theorem 1.1(1) that B = M. 0 

Definition 

The unique matrix arising in Theorem 1.2 is called the m x n zero matrix and will 
be denoted by 0mxn, or simply by 0 if no confusion arises. 

Theorem 1.3 

For every m x n matrix A there is a unique m x n matrix B such that A + B = O. 

Proof 

Given A = [aij]mxn, consider B = [-aij]mxn, i.e. the matrix whose (i,j)-th element 
is the additive inverse of the (i,j)-th element of A. Clearly, we have 

A + B = [a;j + (-a;j)]mxn = O. 

To establish the uniqueness of such a matrix B, suppose that C = [cij]mxn is also such 
that A + C = O. Then for all i,j we have aij + Cij = 0 and consequently cij = -aij 
which means, by the above definition of equality, that C = B. 0 

Definition 

The unique matrix B arising in Theorem 1.3 is caIled the additive inverse of A 
and will be denoted by -A. Thus -A is the matrix whose elements are the additive 
inverses of the corresponding elements of A. 
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Given numbers x, y the difference x - y is defined to be x + (-y). For matrices 
A, B of the same size we shall similarly write A - B for A + (-B), the operation'-' 
so defined being called subtraction of matrices. 

EXERCISES 

1.7 Show that subtraction of matrices is neither commutative nor associa­
tive. 

1.8 Prove that if A and Bare ofthe same size then -(A + B) = -A - B. 

1.9 Simplify [x - y y - z z - w] _ [x - w y - x Z - y]. 
w-x x-y y-z y-x z-y w-z 

So far our matrix algebra has been confined to the operation of addition. This is 
a simple extension of the same notion for numbers, for we can think of 1 x 1 ma­
trices as behaving essentially as numbers. We shall now investigate how the notion 
of multiplication for numbers can be extended to matrices. This, however, is not 
quite so straightforward. There are in fact two distinct 'multiplications' that can be 
defined. The first 'multiplies' a matrix by a number, and the second 'multiplies' a 
matrix by another matrix. 

Definition 

Given a matrix A and a number). we define the product of A by ). to be the matrix, 
denoted by )'A, that is obtained from A by multiplying every element of A by ).. 

Thus, if A = [aij]mxn then)'A = [).aij]mxn' 

This operation is traditionally called multiplying a matrix by a scalar (where 
the word scalar is taken to be synonymous with number). Such multiplication by 
scalars may also be thought of as scalars acting on matrices. The principal properties 
of this action are as follows. 

Theorem 1.4 
If A and Bare m x n matrices then, for any scalars). and J..I., 

(1) )'(A + B) = )'A + )'B; 
(2) (). + J..I.)A = )'A + J..I.A; 
(3) )'(J..I.A) = ().J..I.)A; 
(4) (-I)A = -A; 
(5) OA = Omxn. 

Proof 

Let A = [aij]mxn and B = [bij]mxn' Then the above equalities follow from the obser­
vations 

(1) ).(aij + bij ) = ).aij + ).bij. 
(2) (). + J..I.)aij = ).aij + J..I.aij' 
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(3) ).(/Jaij) = (A/J)aij' 
(4) (-l)aij = -aij' 
(5) Oaij = O. 0 

Observe that for every positive integer n we have 

nA=A+A+···+A (n tenns). 

Basic Linear Algebra 

This follows immediately from the definition of the product )'A; for the (i,j)-th el­
ement of nA is naij = aij + aij + ... + aij' there being n tenns in the summation. 

EXERCISES 

l.10 Given any m X n matrices A and B, solve the matrix equation 

3(X + !A) = 5(X - ~B). 

1.11 Given the matrices 

[1 0 0] 
A= 0 1 0 , 

001 

solve the matrix equation X + A = 2(X - B). 

We shall now describe the operation that is called matrix multiplication. This 
is the 'multiplication' of one matrix by another. At first sight this concept (due origi­
nally to Cayley) appears to be a most curious one. Whilst it has in fact a very natural 
interpretation in an algebraic context that we shall see later, we shall for the present 
simply accept it without asking how it arises. Having said this, however, we shall 
illustrate its importance in Chapter 2, particularly in the applications of matrix alge­
bra. 

Definition 

Let A = [aij]mxlI and B = [bij]nxp (note the sizes!). Then we define the product AB 
to be the m x p matrix whose (i ,j)-th element is 

[AB]ij = ail blj + ai2b2j + ai3b3j + ... + aillbllj' 

In other words, the (i,j)-th element of the product AB is obtained by summing the 
products of the elements in the i-th row of A with the corresponding elements in the 
j-th column of B. 

The above expression for [AB]ij can be written in abbreviated fonn using the 
so-called 1: -notation: 

II 

[ABlj = L ai/cbkj' 
k=l 
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The process for computing products can be pictorially summarised as follows: 

j-th column of B 

b 1j --+ ailblj 

b 2j --+ ai2b2j 

b 3j --+ ai3b 3j 

b nj --+ ainbnj 

n 

L aikbkj 
k=1 

i-th row of A 

It is important to note that, in forming these sums of products, there are no ele­
ments that are 'left over' since in the definition of the product AB the number n of 
columns of A is the same as the number of rows of B. 

Example 1.4 

Consider the matrices 

A=[010], 
231 

The product AB is defined since A is of size 2 x 3 and B is of size 3 x 2; moreover, 
AB is of size 2 x 2. We have 

AB= [0.2 + 1·1 +0·1 0·0 + 1·2 +0.1] = [1 2]. 
2.2+3.1+1.12.0+3.2+1.1 87 

Note that in this case the product BA is also defined (since B has the same number 
of columns as A has rows). The product BA is of size 3 x 3: 

[
2.0+0.22.1+0.32.0+0.1] [020] BA= 1·0+2·2 1·1+2·3 1·0+2·1 = 4 7 2 . 
1·0+1·21·1+1·31·0+1·1 241 

The above example exhibits a curious fact concerning matrix multiplication, 
namely that if AB and BA are defined then these products need not be equal. In­
deed, as we have just seen, AB and BA need not even be of the same size. It is also 
possible for AB and BA to be defined and of the same size and still be not equal: 
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Example 1.5 

The matrices 

A = [~ ~], B= [~ ~] 
are such that AB = 0 and BA = A. 

We thus observe that in general matrix multiplication is not commutative. 

EXERCISES 

1.12 Compute the matrix product 

[; -~ -~l [~ -~ ~l· 
-1 1 2 0 1 2 

1.13 Compute the matrix product 

[i 1 1][: q] 
1.14 Compute the matrix products 

4 

1.15 Given the matrices 

A= H ~l [4 -1] 
B= 0 2 ' 

compute the products (AB}C and A{BC). 

We now consider the basic properties of matrix multiplication. 

Theorem 1.5 
Matrix multiplication is associative [in the sense that, when the products are defined, 

A{BC) = (AB}C). 

Proof 

For A{BC) to be defined we require the respective sizes to be m x n, n x p, p x q 

in which case the product A{BC} is also defined, and conversely. Computing the 
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(i,j)-th element of this product, we obtain 

If we now compute the (i,j}-th element of (AB)C, we obtain the same: 
p p n 

[(AB}C]ij = L[AB]iIC,j = L (L aikbk/)c,j 
1=1 1=1 k=1 

P n 

= L L aikbkIC,j' 
1=1 k=1 

Consequently we see that A(BC) = (AB}C. 0 

9 

Because of Theorem 1.5 we shall write ABC for either A(BC) or (AB}C. Also, 
for every positive integer n we shall write An for the product AA ... A (n terms). 

EXERCISES 

1.16 Compute the matrix product 

Hence express in matrix notation the equations 

(I) x2 + 9xy + y2 + 8x + 5y + 2 = 0; 
x2 y2 

(2) 012 + {32 = 1; 

(3) xy = 012; 

(4) y2 = 4ax. 

1.17 ComputeA2 andA3 where A = [~ ~ :2]. 
000 

Matrix multiplication and matrix addition are connected by the following dis­
tributive laws. 

Theorem 1.6 

When the relevant sums and products are defined, we have 

A(B + C} = AB + AC, (B+C}A = BA + CA. 
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Proof 

For the first equality we require A to be of size m x nand B, C to be of size n x p, in 
which case 

n n 

[A(B + C)]ij = L aik[B + C]kj = L ajk(bkj + Ckj) 
k=l k=l 

n n 

= L ajkbkj + L ajkckj 
k=l k=l 

= [AB]jj + [AC]jj 

= [AB + AC]ij 

and it follows that A(B + C) = AB + AC. 
For the second equality, in which we require B, C to be of size m x n and A to be 

of size n x p, a similar argument applies. 0 

Matrix multiplication is also connected with multiplication by scalars. 

Theorem 1.7 

If AB is defined then for all scalars>' we have 

>'(AB) = (>'A)B = A(>.B). 

Proof 

The (i,j)-th elements of the three mixed products are 
n n n 

>.( L ajkbkj) = L(>'aik)bkj = L ajk()..bk), 
k=l k=l k=l 

from which the result follows. 0 

EXERCISES 

1.18 Consider the matrices 

A = [~ !], = [-1 -1] BOO . 

Prove that 

but that 

Definition 
A matrix is said to be square if it is of size n x n; i.e. has the same number of rows 
and columns. 
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Our next result is the multiplicative analogue of Theorem 1.2, but the reader 
should note that it applies only in the case of square matrices. 

Theorem 1.8 
There is a unique n x n matrix M with the property that, for every n x n matrix A, 

AM=A= MA. 

Proof 
Consider the n x n matrix 

1 00 ... 0 
o 1 0 ... 0 

M= 001 ... 0 

000 ... 1 

More precisely, if we define the Kronecker symbol Oij by 

{
I ifi =j; 

0·· = 
IJ 0 otherwise, 

n 

then we have M = [Oij]nxn. If A = [aij]nxn then [AM]ij = L aikOkj = aij' the last 
k=1 

equality following from the fact that every term in the summation is 0 except that 
in which k = j, and this term is aijl = aij. We deduce, therefore, that AM = A. 
Similarly, we can show that M A = A. This then establishes the existence of a matrix 
M with the stated property. 

To show that such a matrix M is unique, suppose that P is also an n x n matrix 
such that AP = A = PA for every n x n matrix A. Then in particular we have 
MP = M = PM. But, by the same property for M, we have PM = P = MP. Thus 
we seethatP = M. 0 

Definition 
The unique matrix M described in Theorem 1.8 is called the n x n identity matrix 
and will be denoted by In. 

Note that In has all of its 'diagonal' entries equal to 1 and all other entries O. This 
is a special case of the following important type of square matrix. 

Definition 

A square matrix D = [dij]nxn is said to be diagonal if dij = 0 whenever i ". j. Less 
formally. D is diagonal when all the entries off the main diagonal are O. 

EXERCISES 

1.19 If A and B are n x n diagonal matrices prove that so also is AB. 
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1.20 If A and B are n x n diagonal matrices prove that so also is AP Bq for all 
positive integers p, q. 

There is no multiplicative analogue of Theorem 1.3; for example, if 

A = [~ ~] 
then we have 

[a b] [0 1] = [0 a] 
cd 00 Oc' 

so there is no matrix M such that MA = 12• 

Note also that several of the familiar laws of high-school algebra break down 
in this new algebraic system. This is illustrated in particular in Example 1.5 and 
Exercise 1.14 above. 

Definition 

We say that matrices A, B commute if AB = BA. Note that for A, B to commute it is 
necessary that they be square and of the same size. 

EXERCISES 

1.21 If A and B commute, prove that so also do Am and Bn for all positive 
integers m and n. 

1.22 Using an inductive argument, prove that if A and B commute then the 
usual binomial expansion is valid for (A + B)n. 

There are other curious properties of matrix multiplication. We mention in par­
ticular the following examples, which illustrate in a very simple way the fact that 
matrix multiplication has to be treated with some care. 

Example 1.6 

If >. is a non-zero real number then the equality 

shows that 12 has infinitely many square roots! 

Example 1.7 

It follows by Theorem 1.4(5) that the matrix Onxn has the property that 0nxnA = 
0nxn = AOnxn for every n x n matrix A. In Example 1.5 we have seen that it is 
possible for the product of two non-zero matrices to be the zero matrix. 
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Definition 
If A is an m x n matrix then by the transpose of A we mean the n x m matrix A' 
whose {i,j)-th element is the (j, i)-th element of A. More precisely, if A = [aij]mxn 
then A' = [aj;lnxm. 

The principal properties of transposition of matrices are summarised in the fol­
lowing result. 

Theorem 1.9 

When the relevant sums and products are defined, we have 

(A')' = A, (A + B)' = A' + B', ()'A), = ).A', (AB)' = 11 A'. 

Proof 

The first three equalities follow immediately from the definitions. To prove that 
(AB)' = B' A' (note the reversal!), suppose that A = [aij]mxn and B = [bij]nxp- Then 
(AB)' and B' A' are each of size p x m. Since 

" " [B' A']ij = L bkjajk = L ajkbki = [AB]ji 
k=1 k=1 

we deduce that (AB)' = B' A'. 0 

EXERCISES 

1.23 Prove that, when either expression is meaningful, 

[A{B + C)]' = B'A' + C'A'. 

1.24 Prove by induction that (A"), = (A')" for every positive integer n. 

1.25 If A and B commute, prove that so also do A' and B'. 

1.26 Let X = [a b c] and 

Definition 

A= [1 ~ -i] 
where a2 + b2 + c2 = 1. 

(1) Show that A2 = X'X -12• 

(2) Prove thatA3 = -A. 

(3) Find A4 in terms of X. 

A square matrix A is symmetric if A = A'; and skew-symmetric if A = -A'. 
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Example 1.8 

For every square matrix A the matrix A + A' is symmetric, and the matrix A - A' is 
skew-symmetric. In fact, by Theorem 1.9, we have 

(A + A'), = A' + (A')' = A' + A; 

(A -A')' = A' -(A')' = A'-A = -(A -A'). 

Theorem 1.10 
Every square matrix can be expressed uniquely as the sum of a symmetric matrix and 
a skew-symmetric matrix. 

Proof 
The equality 

A= HA+A')+ HA-A'), 

together with Example 1.8, shows that such an expression exists. As for uniqueness, 
suppose that A = B + C where B is symmetric and C is skew-symmetric. Then 
A' = B' + C' = B - C. It follows from these equations that B = HA + A') and 

C= HA-A'). 0 

EXERCISES 

1.27 Prove that the zero square matrices are the only matrices that are both 
symmetric and skew-symmetric. 

1.28 Let A, B be of size n x n with A symmetric and B skew-symmetric. 
Determine which of the following are symmetric and which are skew­
symmetric: 

AB + BA, AB - BA, A2, B2, APIJ'lAP (p, q positive integers). 

SUPPLEMENTARY EXERCISES 

1.29 Let x and y be n x 1 matrices. Show that the matrix 

A=xy'-yx' 

is of size n x n and is skew-symmetric. Show also that x'y and y'x are 
of size 1 x 1 and are equal. 

If xx = yy = [1] and xy = yx = [k], prove that A3 = (e - I )A. 
1.30 Show that if A and B are 2 x 2 matrices then the sum of the diagonal 

elements of AB - BA is zero. 

If E is a 2 x 2 matrix and the sum of the diagonal elements of E is zero, 
show that E2 = >"/2 for some scalar >... 
Deduce from the above that if A, B, C are 2 x 2 matrices then 

(AB -BA)2C = C(AB -BA)2. 
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1.31 Determine all 2 x 2 matrices X with real entries such that X2 = /2' 

1.32 Show that there are infinitely many real 2 x 2 matrices A with A 2 = -/2' 

1.33 Let A be the matrix 

[
0 a a

2 
a

3
] 

00 a a2 

000 a . 
000 0 

Define the matrix B by 

B = A - ~A2 + ~A3 - !A4 + .... 
Show that this series has only finitely many terms different from zero 
and calculate B. Show also that the series 

B IB2 IB3 +21' +31' + ... 

has only finitely many non-zero terms and that its sum is A. 

[
COS 19 sin 19] [ cos IP sin IP] 1.34 If A = '.0 .0 and B =. prove that 

-sm v cos v -sm IP cos IP 

AB = [ cos(19 + IP) sin (19 + IP)] 
- sin (19 + IP) cos (19 + IP) . 

1.35 If A = [ c~s 19 sin 19] prove that An = [ c~s niJ sin nl9]. 
- sm 19 cos 19 - sm nl9 cos niJ 

1.36 Prove that, for every positive integer n, 

[~ ! ~ 1 n = [~n n::- I tn(:~n~~an-2l. 
o 0 a 0 0 an 

1.37 If A and B are n x n matrices, define the Lie product 

[AB] = AB - BA. 

Establish the following identities: 

(1) [[AB]C] + [[BC]A] + [[CA]B] = 0; 

(2) [(A + B)C] = [AC] + [BC]; 

(3) [[[AB]C]D] + ([[BC]D]A] + [[[CD]A]B] + ([[DA]B]C] = O. 

Show by means of an example that in general [[AB]C] :f [A[BC)). 
aly+a2 b lz+b2 CIZ+C2 

1.38 Given that x = and Y = b b prove that x = -=--...!:. 
a3Y + a4 3Z + 4 C3Z + C4 

where 
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ASSIGNMENT EXERCISES 

( 1) For each x E IR define 

A = [COSh x sinh x] . 
x sinh x cosh x 

Prove that, for all x, y E lA, AxAy = Ax+y" 

(2) For each real polynomial p(X) = ao + a,X + ... + anxn denote its derivative 
by Dp(X) and let 

[ p(O) 0] 
Mp = Dp(O) p(O) . 

Prove that, for all polynomials P(X) and q(X), 

Mp + Mq = Mp+q and M~q = Mpq. 

(3) A square matrix A is nilpotent if AP = 0 for some positive integer p; and 
unipotent if In - A is nilpotent. If N is nilpotent and U is unipotent define 

exp N = In + N + frN + ... + tNk + ... 

log U = -(In - U) - HIn - U)2 - ... -l(In - U)k - .... 

[Here the notation reflects that for the series expansions of the functions eX and 
log(1 + x) from analysis, but in this situation there is no question of 'convergence' 
since each expression is in fact a finite sum.] 

For the matrices 

[0 a b] 
N= 0 0 c , 

000 

verify that exp log U = U and log exp N = N. 
For each real number t define U(t) = exp tM where 

M=[HH]. 
0000 

Determine U(t) and verify that U(s)U(t) = U(s + t) for all s, t E IR. 



2 
Some Applications of Matrices 

We shall now give brief descriptions of some situations to which matrix theory finds 
a natural application, and some problems to which the solutions are detennined by 
the algebra that we have developed. Some of these applications will be dealt with in 
greater detail in later chapters. 

1. Analytic geometry 

In analytic geometry, various transformations of the coordinate axes may be de­
scribed using matrices. By way of example, suppose that in the two-dimensional 
cartesian plane we rotate the coordinate axes in an anti-clockwise direction through 
an angle 19, as illustrated in the following diagram: 

Let us compute the new coordinates (x' ,y') of the point P whose old coordinates 
were (x,y). 
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From the diagram we have x = r cos a and y = r sin a so 

x' = rcos(a - t9} = rcos a cos t9 + rsin a sin t9 

= x cos 19 + y sin 19; 

y'=rsin(a-19} = rsinacos19-rcosasin19 

= ycos 19 - x sin 19. 

These equations give x', y' in terms of x, y and 19. They can be expressed jn the 
matrix form 

[X;] = [ c~s t9 sin 19] [x] . 
y -sm19 cost9 y 

The 2 x 2 matrix 
R = [ cos t9 sin t9] 

{) -sin 19 cos t9 

is called the rotation matrix associated with 19. It has the following property: 

R{)R~ = 12 = R~R{). 
In fact, we have 

[
COS 19 sin 19] [COS 19 - sin 19] 

R{)R~ = _ sin t9 cos t9 sin t9 cos t9 

= [ cos2 19 + sin2 19 -cos t9 sin 19 + sin t9 cos 19 ] 
- sin 19 cos 19 + cos 19 sin 19 sin 2 19 + cos 2 19 

= [~ ~], 
and similarly, as the reader can verify, R~R{) = 12, 

This leads us more generally to the following notion. 

Definition 

An n x n matrix A is said to be orthogonal if 

AA' = In = A'A. 

It follows from the above that to every rotation of axes in two dimensions we 
can associate a real orthogonal matrix ('real' in the sense that its elements are real 
numbers). 

EXERCISES 

2.1 If A is an orthogonal n x n matrix prove that A' is also orthogonal. 

2.2 If A and B are orthogonal n x n matrices prove that AB is also orthogonal. 
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2.3 Prove that a real 2 x 2 matrix is orthogonal if and only if it is of one of 
the forms 

Consider now the effect of one rotation followed by another. Suppose that we 
transform (x,y) into (x',y') by a rotation through 19, then (x',y') into (x",y") by a 
rotation through 'fJ. Then we have 

[~::] = [-:~:: :~::] [~:] 
= [ cos 'fJ sin 'fJ] [ cos 19 sin 19] [x] 

-sin'fJ cos'fJ -sin 19 cos 19 y' 

This suggests that the effect of one rotation followed by another can be described by 
the product of the corresponding rotation matrices. Now it is intuitively clear that the 
order in which we perform the rotations does not matter, the final frame of reference 
being the same whether we first rotate through 19 and then through 'fJ or whether we 
rotate first through 'fJ and then through 19. Intuitively, therefore, we can assert that 
rotation matrices commute. That this is indeed the case follows from the identities 

R"Rf{J = R"+f{J = Rf{JR" 

which the reader can easily verify as an exercise using the standard identities for 
cos( 19 + 'fJ) and sin (19 + 'fJ). 

Examp/e2.1 

Consider the hyperbola whose equation is x2 - y2 = 1. If this is rotated through 45 0 

anti-clockwise about the origin, what does its new equation become? 
To answer this, observe first that rotating the hyperbola anti-clockwise through 

45 0 is equivalent to rotating the axes clockwise through 45 0 • Thus we have 

Now since 

R1r/ 4R-1I/4 = Rff / 4- ff / 4 = Ro = 12 

we can multiply the above equation by R1r/ 4 to obtain 

so that 
x = I x' + I y' 

Vi Vi' Y =_I X'+ Iy' Vi Vi' 
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Thus the equation x2 -y2 = 1 transforms to 

( IX' + I y,) 2 _ (_ I x' + I y,) 2 = 1 
J2 J2 J2 J2 ' 

i.e. to 2x'y' = 1. 

EXERCISES 

2.4 Two similar sheets of graph paper are pinned together at the origin and 
the sheets are rotated. If the point (1,0) of the top sheet is directly above 
the point ( fi, H) of the bottom sheet, above what point of the bottom 
sheet does the point (2,3) of the top sheet lie? 

2.5 For every point (x, y) of the cartesian plane let (x', y') be its reflection 
in the x-axis. Prove that 

2.6 In the cartesian plane let L be a line passing through the origin and mak­
ing an angle {J with the x-axis. For every point (x, y) of the plane let 
(XL, YL) be its reflection in the line L. Prove that 

[XL] _ [cos 2{J sin 2{J] [x] 
YL - sin 2{J -cos 2{J y' 

2.7 In the cartesian plane let L be a line passing through the origin and mak­
ing an angle {J with the x-axis. For every point (x, y) of the plane let 
(x*, y*) be the projection of (x, y) onto L (Le. the foot of the perpendic­
ular from (x, y) to L). Prove that 

[x*] [COS2 t9 sin {J cos {J] [x] 
y* = sin {J cos {J sin 2 t9 y' 

2. Systems of linear equations 

As we have seen above, a pair of equations of the form 

allxl + a'2x2 = bl> a2'x, + a22x2 = b2 

can be expressed in the matrix form Ax = b where 

A=[:~: :~~], x=[;~], b=[:~]. 
Let us now consider the general case. 
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Definition 

By a system of m linear equations in the n unknowns x I, ... , X n we shall mean a 
list of equations of the fonn 

allxl + al2x 2 + al3x 3 + ... + alnXn = bl 

a21 x l + a22 x 2 + a23x 3 + ... + a2nx n = b2 

a3l x l + a32x 2 + a33x 3 + ... + a3nx n = b3 

where the aij and the bi are numbers. 

Since clearly 

all al2 al3 

a21 a22 a23 

a3l a32 a33 

aln XI allxl + a12x 2 + al3x 3 + ... + alnxn 

a2n x2 a21 x l + a22x 2 + a23x 3 + ... + a2n x n 

a3n x3 = a3l x l + a32x 2 + a33x 3 + ... + a3n x n 

we see that this system can be expressed succinctly in the matrix fonn Ax = b where 
A = [aij]mxn and x, b are the column matrices 

The m x n matrix A is called the coefficient matrix of the system. Note that it 
transfonns a column matrix of length n into a column matrix of length m. 

In the case where b = 0 (i.e. where every bi = 0) we say that the system is 
homogeneous. 

If we adjoin to A the column b then we obtain an m x (n + 1) matrix which we 
write as Alb and call the augmented matrix of the system. 

Whether or not a given system of linear equations has a solution depends heavily 
on the augmented matrix of the system. How to determine all the solutions (when 
they exist) will be the objective in Chapter 3. 

EXERCISES 

2.8 If, for given A and b, the matrix equation Ax = b has more than one 
solution, prove that it has infinitely many solutions. 

[Hint. If Xl and X2 are solutions, show that so also is PXl + qX2 where 
P + q = 1.] 
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3. Equilibrium-seeking systems 

Consider the following situation. In normal population movement, a certain pro­
portion of city dwellers move into the country every year and a certain proportion of 
country dwellers decide to become city dwellers. A similar situation occurs in na­
tional employment where a certain percentage of unemployed people find jobs and a 
certain percentage of employed people become unemployed. Mathematically, these 
situations are essentially the same. The problem of how to describe them in a con­
crete mathematical way, and to answer the obvious question of whether or not such 
changes can ever reach a 'steady state' is one that we shall now illustrate. 

To be more specific, let us suppose that 75% of the unemployed at the begin­
ning of a year find jobs during that year, and that 5% of people with jobs become 
unemployed during the year. These proportions are of course somewhat optimistic, 
and might lead one to conjecture that 'sooner or later' everyone will have ajob. But 
these figures are chosen to illustrate the point that we want to make, namely that the 
system 'settles down' to fixed proportions. 

The system can be described compactly by the following matrix and its obvious 
interpretation: 

unemployed employed 

into unemployment 

into employment 

I 
4 
3 
4 

I 
2ii 
19 
2ii 

Suppose now that the fraction of the population that is originally unemployed is Lo 
and that the fraction that is originally employed is Mo = 1 - Lo. We represent this 
state of affairs by the matrix 

More generally, we let the matrix 

signify the proportions of the unemployed/employed population at the end of the i-th 
year. At the end of the first year we therefore have 

LI = 1Lo + ~Mo 

MI = ~Lo+ ~Mo 
and we can express these equations in the matrix form 

[tJ = [i ~] [t:] 
which involves the 2 x 2 matrix introduced above. 
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Similarly, at the end of the second year we have 

L2 = !LI + iMI 

M2 = ~LI +~MI 

and consequently 

[t:] = [i ~] [tlJ = [t ~r [t:] . 

23 

Using induction, we can say that at the end of the k-th year the relationship between 

Lk,M" and Lo,Mo is given by 

[t:] = [i ~r [t:] . 
Now it can be shown (and we shall be able to do so much later) that, for all positive 
integers k, we have 

[! i]k _ 1 [ 1 + ~ 1 - -lr ] 
~ ~ - 16 15(1 - -lr) 15 + -lr . 

This is rather like pulling a rabbit out of a hat, for we are far from having the machin­
ery at our disposal to obtain this result; but the reader will at least be able to verify 
it by induction. From this formula we can see that, the larger k becomes, the closer 
is the approximation 

[ ~ i]k [h 
1 12 '" II 
4 20 16 

1 ] 16 
ll· 
16 

Since Lo + M 0 = 1, we therefore have 

[Lk] '" [k k] [Lo] = [k] Mk II II Mo ll· 
16 16 16 

Put another way, irrespective of the initial values of Lo and Mo, we see that the 
system is 'equilibrium-seeking' in the sense that 'eventually' one sixteenth of the 
population remains unemployed. Of course, the lack of any notion of a limit for 
a sequence of matriceS precludes any rigorous description of what is meant by an 
'equilibrium-seeking' system. However, only the reader's intuition is called on to 
appreciate this particular application. 

4. DitTerence equations 

The system of pairs of equations 

Xn+1 = ax,. + by,. 

Yn+1 = eXn + dYn 
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is called a system of linear difference equations. Associated with such a system 
are the sequences {Xn)n>.:l and {Yn)n>.:l' and the problem is to determine the general 

r r 

values of Xn, Yn given the initial values of xl, Yl. 
The above system can be written in the matrix form zn+l = AZn where 

_ [Xn] A _ [a b] 
zn - Yn' - cd· 

Clearly, we have z2 = Azl , z3 = AZ2 = A2zl , and inductively we see that 

zn+l = Anzl · 

Thus a solution can be found if an expression for An is known. 
The problem of determining the high powers of a matrix is one that will also be 

dealt with later. 

5. A definition of complex numbers 

Complex numbers are usually introduced at an elementary level by saying that 
a complex number is 'a number of the form x + iy where x, yare real numbers and 
i2 = -1'. Complex numbers add and multiply as follows: 

(x + iy) + (x' + iy') = (x + x') + i(y + y'); 

(x + iy)(X' + iy') = (xx' - yy') + i{xy' + x'y). 

Also, for every real number A we have 

A(x + iy) = Ax + iAy. 

This will be familiar to the reader, even though (s)he may have little idea as to 
what this number system is! For example, i = v=r is not a real number, so what 
does the product iy mean? Is iO = O? If so then every real number x can be written 
as x = x + iO, which is familiar. This heuristic approach to complex numbers can 
be confusing. However, there is a simple approach that uses 2 x 2 matrices which 
is more illuminating and which we shall now describe. Of course, at this level we 
have to contend with the fact that the reader will be equally unsure about what a rea) 
number is, but let us proceed on the understanding that the real number system is 
that to which the reader has been accustomed throughout herlhis schooldays. 

The essential idea behind complex numbers is to develop an algebraic system of 
objects (called complex numbers) that is 'larger' than the real number system, in the 
sense that it contains a replica of this system, and in which the equation x2 + I = 0 
has a solution. This equation is, of course, insoluble in the real number system. 

There are several ways of 'extending' the real number system in this way, and the 
one we shall describe uses 2 x 2 matrices. For this purpose, consider the collection 
C2 of all 2 x 2 matrices of the form 

M(a, b) = [~b !], 
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where a and b are real numbers. Invoking Theorem 1.10, we can write M(a, b) 
uniquely as the sum of a symmetric matrix and a skew-symmetric matrix: 

Thus, if we define 

J2 = [~1 ~], 
we see that every such matrix M(a, b) can be written uniquely in the form 

M(a, b) = al2 + bJ2. 

Observe now that the collection R2 of all 2 x 2 matrices in C2 that are of the form 
M(a,O) = al2 is a replica of the real number system; for the matrices of this type 
add and multiply as follows: 

[
X + YO] 

xl2 + yl2 = 0 x + y = (x + y)/2; [ Xy 0] 
xl2 . yl2 = 0 xy = (xy)12' 

and the replication is given by associating with every real number x the matrix xl2 = 
M(x,O). Moreover, the identity matrix 12 = 1 .12 belongs to R2, and we have 

J~ = [~1 ~] [~1 ~] = [~1 ~1] = -/2, 

so that J~ + 12 = O. In other words, in the system C2 the equation x2 + 1 = ° has a 
solution (namely J2). 

The usual notation for complex numbers can be derived from C2 by writing each 
al2 as simply a, writingJ2 as i, and then writing al2 +bJ2 as a+bi. Since clearly, for 
each scalar b, we can define J2b to be the same as bJ2 we have that a + bi = a + ib. 

Observe that in the system C2 we have 

M(a,b) +M(a',b') = [~b !] + [~~, !:] =M(a+a',b+b'); 

M(a, b)M(a', b') = [~b !] [~~, !:] = M(aa' - bb', ab' + ba'). 

Under the association 
M(a, b) +-+ a + ib, 

the above equalities reflect the usual definitions of addition and multiplication in the 
system C of complex numbers. 

This is far from being the entire story about a::, the most remarkable feature of 
which is that every equation of the form 

anXn + an_\Xn-\ + ... + a\X + ao = 0, 

where each ai E a::, has a solution. 
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EXERCISES 

2.9 Let A be a complex 2 x 2 matrix, i.e. the entries of A are complex num­
bers. Prove that if A 2 = ° then A is necessarily of the form 

[ ZW Z2] 
_W2 -zw 

for some z, wE C. By considering the matrix 

[~ ~], 
show that the same is not true for real 2 x 2 matrices. 

2.10 The conjugate of a complex number z = x + iy is the complex number 
Z = x-iy. The conjugate ofa complex matrix A = [Zij]mxn is the matrix 

It = [zij]mxn' Prove that A = A' and that, when the sums and products 
are defined, A + B = It + Ii and AB = It Ii. 

2.11 A square complex matrix A is hermitian if A' = A, and skew-hermitian 
if A' = -A. Prove that A + A' is hermitian and that A - A' is skew­
hermitian. Prove also that every square complex matrix can be written 
as the sum of a hermitian matrix and a skew-hermitian matrix. 

ASSIGNMENT EXERCISES 

(I) A quaternion is a matrix of complex numbers of the form 

H = [ a + ib c + id] 
-c + id a - ib . 

Prove that the set of quaternions is closed under the operations of addition and multi­
plication. Writing 

[1 0] , [i 0] 
1 = ° 1 ' I = 0 -i ' J' = [0 I] [0 i] 

-1 0 ' k = i 0 ' 

show that H = al + bi + cj + dk and that 

i2 = j2 = k2 = -1, ij = -ji = k, jk = -kj = i, ki = -ik = j. 
(2) If H is a quaternion, prove that 

HH = HH = (a2 + b2 + c2 + d2)1. 

If n(H) = HH prove that n(HK) = n(H}n(K). 

(3) Show that the system of quaternions can be represented as a system of real 
matrices of size 4 x 4. 



8 
Systems of Linear Equations 

We shall now consider in some detail a systematic method of solving systems of 
linear equations. In working with such systems, there are three basic operations 
involved: 

(I) interchanging two equations (usually for convenience); 
(2) mUltiplying an equation by a non-zero scalar; 
(3) forming a new equation by adding one equation to another. 

The operation of adding a multiple of one equation to another can be achieved by a 
combination of (2) and (3). 

We begin by considering the following three examples. 

Example 3.1 

To solve the system 
y + 2z = 1 (I) 

x - 2y + z = 0 (2) 
3y - 4z = 23 (3) 

we multiply equation {I} by 3 and subtract the new equation from equation {3} to 
obtain -10z = 20, whence we see that z = -2. It then follows from equation (I) 
that y = 5, and then by equation (2) that x = 2y - z = 12. 

Example 3.2 

Consider the system 
x - 2y - 4z = 0 {I} 

-2x + 4y + 3z = 1 {2} 
-x + 2y - z = 1 {3} 

If we add together equations {I} and {2}, we obtain equation (3), which is therefore 
superfluous. Thus we have only two equations in three unknowns. What do we mean 
by a solution in this case? 
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Example 3.3 

Consider the system 

x + y + z + t = 1 (1) 
x - y - z + t = 3 (2) 

-x - y + z - t = 1 (3) 
-3x + y - 3z - 3t = 4 (4) 

Adding equations (1) and (2), we obtain x + t = 2, whence it follows that y + z = 
-1. Adding equations (1) and (3), we obtain z = 1 and consequently y = -2. 
Substituting in equation (4), we obtain - 3x - 3t = 9 so that x + t = -3, which is not 
consistent with x + t = 2. 

This system therefore does not have a solution. Expressed in another way, given 
the 4 x 4 matrix 

-1 -1 
-1 1 

1 -3 

there are no numbers x, y, Z, t that satisfy the matrix equation 

The above three examples were chosen to provoke the question: is there a sys-
tematic method of tackling systems of linear equations that 

(a) avoids a haphazard manipulation of the equations; 
(b) yields all the solutions when they exist; 
(c) makes it clear when no solution exists? 

In what follows our objective will be to obtain a complete answer to this question. 
We note first that in dealing with systems of linear equations the 'unknowns' 

playa secondary role. It is in fact the coefficients (which are usually integers) that 
are important. Indeed, each such system is completely determined by its augmented 
matrix. In order to work solely with this, we consider the following elementary row 
operations on this matrix: 

( 1) interchange two rows; 
(2) multiply a row by a non-zero scalar; 
(3) add one row to another. 

These elementary row operations clearly correspond to the basic operations on equa­
tions listed above. 
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It is important to observe that these elementary row operations do not affect the 
solutions (if any) of the system. In fact, if the original system of equations has a 
solution then this solution is also a solution of the system obtained by applying any 
of the operations (I), (2), (3); and since we can in each case perform the 'inverse' 
operation and thereby obtain the original system, the converse is also true. 

We begin by showing that the above elementary row operations have a funda­
mental interpretation in terms of matrix products. 

Theorem 3.1 

Let P be the m x m matrix that is obtained from the identity matrix 1m by permuting 
its rows in some way. Then for any m x n matrix A the matrix PA is the matrix 
obtainedfrom A by permuting its rows in precisely the same way. 

Proof 
Suppose that the i-th row of Pis thej-th row of 1m' Then we have 

(k = 1, ... ,m) 

Consequently, for every value of k, 
m m 

[PA]ik = L.,Pilark = L., 0jrark = ajk> 
r=1 1=1 

whence we see that the i-th row of PA is thej-th row of A. 0 

Example 3.4 

Consider the matrix 

P= [H n], 
000 1 

obtained from 14 by permuting the second and third rows. If we consider any 4 x 2 
matrix 

and we compute the product 

[~ ~ 0 ~] [:~ :~]_ [:: ::] 
o 1 0 0 a3 b3 - a2 b2 ' 

o 0 0 1 a4 b4 a4 b4 

PA= 

we see that the effect of multiplying A on the Jeft by P is to permute the second and 
third rows of A. 
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EXERCISES 

3.1 Explain the effect of left multiplication by the matrix 

p= [P ~ ~] 
3.2 Explain the effect of left mUltiplication by the matrix 

p= [n ~ ~] 
Theorem 3.2 
Let A be an m x m matrix and let D be the m x m diagonal matrix 

Then DA is obtained from A by multiplying the i -th row of A by A ;lor i = 1, ... , m. 

Proof 
Clearly, we have djj = AjOjj. Consequently, 

m m 

[DAtj = L djkakj = L AjOjkakj = Ajajj, 
k=1 k=1 

and so the i-th row of DA is simply Aj times the i-th row of A. 0 

Example3.S 

Consider the matrix 

D= [~ ~ n], 
000 1 

obtained from 14 by multiplying the second row by O! and the third row by {3. If 
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and we compute the product 

DA::::; [~ ~ ~ ~] [:: ::] ::::; [a:: a::] o 0 {3 0 a3 b3 {3a3 {3b3 
o 0 0 1 a4 b4 a4 b4 

we see that the effect of multiplying A on the left by D is to multiply the second row 
of A by a and the third row by {3. 

EXERCISES 

3.3 Explain the effect of left multiplication by the matrix 

p::::; [~ n ~]. 
o {3 0 0 

Theorem 3.3 

Let P be the m x m matrix that is obtainedfrom 1m by adding A times the,s-th row to 
the r-th row (where r, s are fixed with r::f s). Thenforany m x n matrix A the matrix 
PA is the matrix that is obtained from A by adding A times the s-th row of A to the 
r-th row of A. 

Proof 

Let E~s denote the m x m matrix that has A in the (r, s)-th position and 0 elsewhere. 
Then we have 

if i ::::; r,j ::::; s; 

otherwise. 

Since, by definition, p::::; 1m + E~s' it follows that 

Thus we see that PA is obtained from A by adding A times the s-th row to the r-th 
row. 0 
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Example 3.6 

Consider the matrix 

p = [~ ~ ~] 
which is obtained from 13 by adding). times the second row of 13 to the first row. If 

and we compute the product 

we see that the effect of multiplying A on the left by P is to add), times the second 
row of A to the first row. 

EXERCISES 

3.4 Explain the effect of left multiplication by the matrix 

[H ~] 
Definition 
By an elementary matrix of size n x n we shall mean a matrix that is obtained from 
the identity matrix In by applying to it a single elementary row operation. 

In what follows we use the 'punning notation' Pi to mean 'row i'. 

Example 3.7 

The following are examples of 3 x 3 elementary matrices: 

[~ ~ ;] (2p,); 

[~ : ~] (PI + P3) 
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Definition 

In a product AB we shall say that B is pre-multiplied by A or, equivalently, that A 
is post-multiplied by B. 

The following result is now an immediate consequence of Theorems 3.1, 3.2 and 
3.3: 

Theorem 3.4 

An elementary row operation on an m x n matrix A is achieved on pre-multiplying A 
by a suitable elementary matrix. The elementary matrix in question is precisely that 
obtained by applying the same elementary row operation to 1m. 0 

Having observed this important point, let us return to the system of equations 
described in matrix form by Ax = b. It is clear that when we perform a basic op­
eration on the equations all we do is to perform an elementary row operation on 
the augmented matrix Alb. It therefore follows from Theorem 3.4 that performing 
a basic operation on the equations is the same as changing the system Ax = b to 
the system EAx = Eb where E is some elementary matrix. Moreover, the system 
of equations that corresponds to the matrix equation EAx = Eb is equivalent to the 
original system in the sense that it has the same set of solutions (if any). 

Proceeding in this way, we see that to every string of k basic operations there 
corresponds a string of elementary matrices E" ... , Ek such that the the resulting 
system is represented by 

Ek ·• ·E2E,Ax = Ek ·• .E2E,b, 

which is of the form Bx = c and is equivalent to the original system. 

Now the whole idea of applying matrices to solve systems of linear equations is 
to obtain a simple systematic method of determining a convenient final matrix B so 
that the solutions (if any) of the system Bx = c can be found easily, such solutions 
being precisely the solutions of the original system Ax = b. 

Our objective is to develop such a method. We shall insist that the method 

(1) will avoid having to write down explicitly the elementary matrices involved 
at each stage; 

(2) will determine automatically whether or not a solution exists; 

(3) will provide all the solutions. 

In this connection, there are two main problems that we have to deal with, namely 

(a) what form should the matrix B have?; 

(b) can our method be designed to remove all equations that may be superfluous? 

These requirements add up to a tall order perhaps, but we shall see in due course 
that the method we shall describe meets all of them. 

We begin by considering the following type of matrix. 



34 Basic Linear Algebra 

Definition 

By a row-echelon (or stairstep) matrix we shall mean a matrix of the general form 

o ... 0 * 

in which all the entries 'under the stairstep' are zero, all the 'comer entries' (those 
marked *) are non-zero, and all other entries are arbitrary . 

• Note that the 'stairstep' descends one row at a time and that a 'step' may tra­
verse several columns. 

Example 3.8 

The 5 x 8 matrix 
0 9 0 
0 3 5 1 
0 I 1 
0 0 0 0 
0 0 0 o 0 

is a row-echelon matrix. 

Example 3.9 

The 3 x 3 matrix 

~2 3] 
045 
006 

is a row-echelon matrix. 

Example 3.10 

Every diagonal matrix in which the diagonal entries are non-zero is a row-echelon 
matrix. 

Theorem 3.5 

By means of elementary row operations, a non-zero matrix can be transformed to a 
row-echelon matrix. 

Proof 

Suppose that A = [aij]mxn is a given non-zero matrix. Reading from the left, the first 
non-zero column of A contains at least one non-zero element. By a suitable change 
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of rows if necessary, we can move the row containing this non-zero entry so that it 

becomes the first row, thereby obtaining a matrix of the form 

[

0 ... 0 bll bl2 ... blkl 
o ... 0 b21 b22 ... b2k 

B= . .. . . .. . . .. . 
o 0 bml bm2 bmk 

in which bl1 :f O. 
Now for i = 2,3, ... , n subtract from the i-th row bil / bll times the first row. 

This is a combination of elementary row operations and transforms B to the matrix 

[

0 ... 0 ~ bl2 ... blkl 
o ... 0 0 C22 ... C2k 

c= . .. . . .. . . .. . 
o ... 0 0 Cm2 Cmk 

in which we see the beginning of the stairstep. 
Now leave the first row alone and concentrate on the (m - 1) x (k - 1) matrix 

[cij]. Applying the above argument to this submatrix, we can extend the stairstep 
by another row. Clearly, after at most m applications of this process we arrive at a 
row-echelon matrix. 0 

The above proof yields a practical method of reducing a given matrix to a row 
echelon matrix. This process is often known as Gaussian elimination. 

Example 3.11 

[1 
0 1 0 

il ~ ~o 
0 

-Jl 
0 0 o 1 -1 0 P2 -PI 

1 o 1 -2 P3 - 3PI 
1 2 o 1 2 

~I 
0 

-~l o 1 -1 0 
'\h o 0 -1 P3 -P2 

o 0 3 P4 -P2 

0 0 I] 0 1 
'\h 

-3 
4 -8 P4 + 3P3 

It should be noted carefully that the stairstep need not in general reach the bottom 
row, as the following examples show. 
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Example 3.12 

U 
0 j] [j 

-1 

J] PI -P2 
-1 '\,t 0 

fii 1] '\,t 002 
o 0 -3 P3 +PI 

1 -1 1 
'\,t 0 0 2 

0 0 0 3 
P3 + 'fP2 

Example 3. 13 

U 
-2 

-n 
1 -2 

-4 '\,t 0 0 0 P2 -2pl 
2 0 0 0 P3 + PI 

EXERCISES 

3.5 Reduce to row-echelon fonn the following matrices: 

[1 2 3] 
312 , 
558 

3.6 Reduce to row-echelon fonn the following matrix: 

[1 2 0 3 1] 1 2 3 3 3 
1 0 1 3 . 

1 1 2 1 

3.7 Given the matrix 

A= [~ 
1 0 1 4] 0 0 4 7 

05' 
-3 -1 -10 c¥ 

detennine the value of c¥ such that, in a row-echelon fonn of A, the 
stairstep reaches the bottom. 
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Definition 

By an Hermite (or reduced row-echelon) matrix we mean a row-echelon matrix in 
which every comer entry is 1 and every entry lying above a comer entry is O. 

An Hermite matrix therefore has the general form 

o 0 
o O~---:"" 
o 0 '---=----::-""1 

o 0 '-::--~ 

o 
o 

o 
o 

,,-=---~ 

o 

in which the unmarked entries lying above the stairstep are arbitrary. 

Example 3.14 

The 4 x 9 matrix 
1 0 1 0 2 2 0 0 1 
0 1 0 0 0 2 0 1 0 
0 0 0 0 0 0 1 2 1 
0 0 0 0 0 0 0 0 0 

is an Hermite matrix. 

Example 3. 15 

The identity matrix In is an Hermite matrix. 

Theorem 3.6 

Every non-zero matrix A can be transformed to an Hermite matrix by means of ele­
mentary row operations. 

Proof 

Let Z be a row-echelon matrix obtained from A by the process described in Theorem 
3.5. Divide each non-zero row of Z by the (non-zero) comer entry in that row. This 
makes each of the comer entries 1. Now subtract suitable multiples of every such 
non-zero row from every row above it to obtain an Hermite matrix. 0 

The systematic procedure that is described in the proof of Theorem 3.6 is best 
illustrated by an example. 
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Example 3.16 

[I 2 2 

n ~I 2 I] 
2 4 4 8 'Vt 002 4 2 P2-2PI 
3 6 5 7 002 1 4 P3 - 3pI 

2 2 I] 
'Vt 4 2 row-echelon 

-3 2 P3 -P2 

2 

-i] 'Vt 2 I 
'2P2 
-tp3 

2 0 

J] 
PI -2P3 

'Vt 0 P2 -2P3 

2 0 0 

-i] 
PI -P2 

'Vt 0 Hermite 

EXERCISES 

3.8 Reduce to Hennite fonn the matrix 

[I -I 0 -I -5 -I] 2 1 -1 -4 1 -1 
1 1 1-4 -6 3 . 

1 4 2 -8 -5 8 

3.9 Reduce to Hennite fonn the matrices 

[00 0 I] 
[1 

1 

1] o 0 1 0 0 
o 1 0 0 ' 0 1 
1 000 1 

3.10 Reduce to Hennite fonn the matrices 
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The astute reader will have observed that we have refrained from talking about 
the row-echelon form of a matrix. In fact, there is no unique row-echelon form. To 
see this, it suffices to observe that we can begin the process of reduction to row­
echelon form by moving any non-zero row to become the first row. However, we 
can talk of the Hermite form since, as we shall see, this is unique. In fact, it is 
precisely because of this that such matrices are the focus of our attention. As far as 
the problem in hand is concerned, namely the solution of Ax = b, we can reveal that 
the Hermite form of A is precisely the matrix that will satisfy the requirements we 
have listed above. In order to establish these facts, however, we must develop some 
new ideas. For this purpose, we introduce the following notation. 

Given an m x n matrix A = [ajj] we shall use the notation 

Ai=[ail ai2 ... ain], 

and quite often we shall not distinguish this from the i-th row of A. Similarly, the 
i-th column of A will often be confused with the column matrix 

[
ali] a2i 

ai = . . 

ami 

Definition 
By a linear combination of the rows (columns) of A we shall mean an expression 
of the form 

>'IXI + >'2X2 + ... + >'pxp 

where each Xi is a row (column) of A. 

Example 3. 17 

The row matrix [2 - 3 1] can be written in the form 

2[1 0 0] - 3[0 1 0] + 1[0 0 1] 

and so is a linear combination of the rows of 13, 

Example 3.18 

The column matrix 

can be written 

U] 
4[!] -2[~] 

and so is a linear combination of the columns of 13, 
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Example 3.19 

The column matrix 

is not a linear combination of the columns of the matrix 

[P !J 
Definition 

If XI, ••• , xp are rows (columns) of A then we shall say that XI"'" xp are linearly 
independent if the only scalars A I, •.. , Ap which are such that 

AIXI + A2X2 + ... + ApXp = 0 

are AI = A2 = ... = Ap = O. 
Expressed in an equivalent way, the rows (columns) XI, ••• , xp are linearly in­

dependent if the only way that the zero row (column) 0 can be expressed as a linear 
combination of XI," • ,xp is the trivial way, namely 

0= OXI + OX2 + ... + OXp• 

If XI, ••• , xp are not linearly independent then they are linearly dependent. 

Example 3.20 

The columns of the identity matrix In are linearly independent. In fact, we have 

1 0 0 0 AI 
0 1 0 0 A2 

AI 0 + A2 0 + A3 + ... + An 0 = A3 

0 0 0 n An 

and this is the zero column if and only if AI = A2 = ... = An = O. 
Similarly, the rows of In are linearly independent. 

Example 3.21 

In the matrix 

A= [~ 
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the columns are not linearly independent. Indeed, the second and fourth columns are 
the same, so that 82 = ~ which we can write in the form 182 - 1a4 = O. However, 
the first three columns of A are linearly independent. To see this, suppose that we 
have )'lal + A282 + A383 = O. Then 

and consequently 
Al + 2A2 = 0 

A2 + A3 = 0 
Al + A3 = 0 

from which it is easily seen that Al = A2 = A3 = O. 

EXERCISES 

3.11 Prove that in the matrix 

[~ ~ n 
the rows are linearly independent. 

3.12 For the matrix 

[1 ~ ! f 1 
determine the maximum number of linearly independent rows and the 
maximum number of linearly independent columns. 

Theorem 3.7 

If the rows/columns x I, ... , x p are linearly independent then none can be zero. 

Proof 
If we had Xi = 0 then we could write 

OXl + ... + OXH + Ixi + OXi+! + ... + OXp = 0, 

so that x I , ... , x p would not be independent. 0 

Theorem 3.8 

The following statements are equivalent: 

(1) Xl"", Xp (P ~ 2) are linearly dependent; 
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(2) one of the Xi can be expressed as a linear combination of the others. 

Proof 

(1) '* (2) : Suppose that x I I ••• I X P are dependent, where p ~ 2. Then there exist 

A I I ... I A p such that 

AIXI + ... + ApXp = 0 

with at least one of the Ai not zero. Suppose that Ak t- o. Then the above equation 
can be rewritten in the form 

Xk = _hxI - ... - ~x 
>'k >'k pI 

i.e. Xk is a linear combination of XI I'" I Xk-I I xk+l I'" I xp' 

(2) '* (1) : Conversely, suppose that 

Xk = J.'IXI + ... + J.'k-IXk-1 + J.'k+IXk+1 + '" + J.'pxp, 

Then this can be written in the form 

J.'IXI + ... + J.'k-IXk-1 + (-I)xt + J.'k+IXk+1 + ... + J.'pxp = 0 

where the left-hand side is a non-trivial linear combination of XI, ••• ,xp' Thus 
X I , ... I X P are linearly dependent. 0 

Corollary 

The rows of a matrix are linearly dependent if and only if one can be obtained from 
the others by means of elementary row operations. 

Proof 

It suffices to observe that every linear combination of the rows is, by its very defini­
tion, obtained by a sequence of elementary row operations. 0 

Example 3.22 

The rows of the matrix 

[1 2 0 0] 
A = 2 1 -1 1 

5 4 -2 2 

are linearly dependent. This follows from the fact that A3 = Al + 2A2 and from the 

Corollary to Theorem 3.8. 

We now consider the following important notion. 

Definition 
By the row rank of a matrix we mean the maximum number of linearly independent 
rows in the matrix. 
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Example 3.23 

The matrix A of the previous example is of row rank 2. To see this, recall that the 
three rows A), A2, A3 are dependent. But the rows A) and A2 are independent since 

A)A) + A2A2 = [A) + 2A2 2A) + A2 - A2 A2] 

and this is zero if and only if A) = A2 = O. Hence the maximum number of indepen­
dent rows is 2. 

Example 3.24 

The identity matrix In has row rank n. 

Example 3.25 

By Theorem 3.7, a zero matrix has row rank O. 

EXERCISES 

3.13 Determine the row rank of the matrix 

[~ -~ -~] 
It turns out that the row rank of the augmented matrix Alb of the system Ax = b 
determines precisely how many of the equations in the system are not superfluous, 
so it is important to have a simple method of determining the row rank of a matrix. 
The next result provides the key to obtaining such a method. 

Theorem 3.9 

Elementary row operations do not affect row rank. 

Proof 
It is clear that the interchange of two rows has no effect on the maximum number of 
independent rows, i.e. the row rank. 

If now the k-th row Ak is a linear combination of p other rows, which by the 
above we may assume to be the rows A), ... ,Ap' then clearly so is AAk for every 
non-zero scalar A. It follows by Theorem 3.8 that multiplying a row by a non-zero 
scalar has no effect on the row rank. 

Finally, suppose that we add the i-th row to the j-th row to obtain a new j-th row, 
say Aj = A; + Aj • Since then 

A)A) + ... + A;A; + ... + AjAj + ... + ApAp 

= A)A) + ... + (A; + Aj)Aj + ... + AjAj + ... + ApAp, 
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it is clear that if AI, ... , Ai, ... , Aj , ••• , Ap are linearly independent then so also are 
AI, ... , Ai' ... , A;, ... , Ap' Thus the addition of one row to another has no effect on 
row rank. 0 

Definition 

A matrix B is said to be row-equivalent to a matrix A if B can be obtained from A 
by means of a finite sequence of elementary row operations. 

By Theorem 3.4, we can equally assert that B is row-equivalent to A if there is a 
product F of elementary matrices such that B = FA. 

Since row operations are reversible, we have that if an m x n matrix B is row­
equivalent to the m x n matrix A then A is row-equivalent to B. The relation of 
being row-equivalent is therefore a symmetric relation on the set of m x n matrices. 
It is trivially reflexive; and it is transitive since if F and G are each products of 
elementary matrices then clearly so is FG. Thus the relation of being row equivalent 
is an equivalence relation on the set of m x n matrices. 

The following result is an immediate consequence of Theorem 3.9. 

Theorem 3.10 

Row-equivalent matrices have the same row rank. 0 

The above concepts allow us now to establish: 

Theorem 3.11 

Every non-zero matrix can be reduced by means of elementary row operations to a 

unique Hennite matrix. 

Proof 

By Theorem 3.6, every non-zero matrix M can be transformed by row operations 
to an Hermite matrix. Any two Hermite matrices obtained from M in this way are 
clearly row-equivalent. It suffices, therefore, to prove that if A and B are each Her­
mite matrices and if A and B are row-equivalent then A = B. This we do by induction 
on the number of columns. 

We begin by observing that the only m x 1 Hermite matrix is the column matrix 

o 

o 
so the result is trivial in this case. Suppose, by way of induction, that all row­
equivalent Hermite matrices of size m x (n - 1) are identical and let A and B be 
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row-equivalent Hermite matrices of size m x n. Then by Theorem 3.4 there is an 
m x n matrix F, which is a product of elementary matrices, such that B = FA. 

Let A and Ii be the m x (n - 1) matrices that consist of the first n - 1 columns of 
A, B respectively. Then we have Ii = FA and so A and Ii are row-equivalent. By the 
induction hypothesis, therefore, we have A = Ii. The result will now follow if we 
can show that the n-th columns of A and B are the same. 

For this purpose, we observe that in an Hermite matrix every non-zero row con­
tains a comer entry I, and these comer entries are the only non-zero entries in their 
respective columns. The non-zero rows of such a matrix are therefore linearly in­
dependent, and the number of such rows (equally, the number of comer entries) is 
therefore the row rank of the matrix. 

Now since the Hermite matrices A and B are row-equivalent, they have the same 
row rank and therefore the same number of corner entries. If this is r then the row 
rank of A = Ii must be either r or r - 1. In the latter case, the n-th columns of A and 
B consist of a corner entry 1 in the r-th row and 0 elsewhere, so these columns are 
equal and hence in this case A = B. In the former case, we deduce from B = FA 
that, for 1 ~ i ~ r, 

(1) 
r 

[bil ... bin] = l:>'k[akl ... akn]. 
k=1 

In particular, for the matrix A = Ii we have 
r 

[ail ... ai,n-I] = [bil ... bi,n-I] = L Ak[akl ... ak,n-I]. 
k=1 

But since the first r rows of A are independent we deduce from this that Ai = 1 and 
Ak = 0 for k =I i. It now follows from (1) that 

[bil . . . bin] = [ail . . . ain] 

and hence that bin = ain' Thus the n-th columns of A and B coincide and so A = B 
also in this case. 0 

Corollary 
The row rank of a matrix is the number of non-zero rows in any row-echelon form of 
the matrix. 

Proof 
Let B be a row-echelon form of A and let H be the Hermite form obtained from B. 
Since H is unique, the number of non-zero rows of B is precisely the number of 
non-zero rows of H, which is the row rank of A. 0 

The uniqueness of the Hermite form means that two given matrices are row­
equivalent if and only if they have the same Hermite form. The Hermite form of 
A is therefore a particularly important 'representative' in the equivalence class of A 
relative to the relation of being row-equivalent. 
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EXERCISES 

3.14 Consider the matrix 

1 1 1 4 

A= 
1 A 1 4 

1 1 A 3 -A 6 

2 2 2 A 6 

Show that if >. 'f: 1, 2 then the row rank of A is 4. What is the row rank 
of A when>. = I, and when>. = 27 

3.1S Determine whether or not the matrices 

[n n· [ ~ ~ =:j 
-3 -2 3 

are row-equivalent. 

Similar to the concept of an elementary row operation is that of an elementary 
column operation. To obtain this we simply replace 'row' by 'column' in the defi­
nition. 

It should be noted immediately that such column operations cannot be used in 
the same way as row operations to solve systems of linear equations since they do 
not produce an equivalent system. 

However, there are results concerning column operations that are 'dual' to those 
concerning row operations. This is because column operations on a matrix can be 
regarded as row operations on the transpose of the matrix. For example, from the 
column analogues of Theorems 3.1, 3.2 and 3.3 (proved by transposition) we have 
the analogue of Theorem 3.4: 

Theorem 3.12 
An elementary column operation on an m x n matrix can be achieved by post­
multiplication by a suitable elementary matrix, namely that obtained from I II by ap­
plying to 1 fI precisely the same column operation. 0 

The notion of column-equivalence is dual to that of row-equivalence. 

Definition 
The column rank of a matrix is defined to be the maximum number of linearly 
independent columns in the matrix. 

The dual of Theorem 3.9 holds, namely: 

Theorem 3.13 
Column operations do not affect column rank. 0 
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Since it is clear that column operations can have no effect on the independence of 
rows, it follows that column operations have no effect on row rank. We can therefore 
assert: 

Theorem 3.14 

Rowand column rank are invariant under both row and column operations. 0 

EXERCISES 

3.16 Determine the row and column ranks of the matrix 

[
0 2 3 -4 1] 
00234 
2 2 -5 2 4 . 
20-6 97 

We now ask if there is any connection between the row rank and the column rank 
of a matrix; i.e. if the maximum number of linearly independent rows is connected in 
any way with the maximum number of linearly independent columns. The answer 
is perhaps surprising, and bears out what the reader should have observed in the 
previous exercise. 

Theorem 3.15 

Row rank and column rank are the same. 

Proof 
Given a non-zero m x n matrix A, let H(A) be its Hermite form. Since H(A) is 
obtained from A by row operations it has the same row rank, p say, as A. Also, we 
can apply column operations to H(A) without changing this row rank. Also, both 
A and H(A) have the same column rank, since row operations do not affect column 
rank. 

Now by suitable rearrangement of its columns H(A) can be transformed into the 
the general form 

[ Ip ? 1 
Om_poP 0m-p,n-p , 

in which the submatrix marked? is unknown but can be reduced to ° by further col­
umn operations using the first p columns. Thus H(A) can be transformed by column 
operations into the matrix 

Now by its construction this matrix has the same row rank and the same column 
rank as A. But clearly the row rank and the column rank of this matrix are each p. It 
therefore follows that the row rank and the column rank of A are the same. 0 
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Because of Theorem 3.15 we shall talk simply of the rank of a matrix, meaning 
by this the row rank or the column rank, whichever is appropriate. The following is 
now immediate: 

Corollary 

rank A = rank A'. 0 

If we reflect on the proof of Theorem 3.15 we see that every non-zero m x n 
matrix A can be reduced by means of elementary row and column operations to a 
matrix of the form 

[
/ p 0] 
o 0 ' 

the integer p being the rank of A. 

Invoking Theorems 3.4 and 3.12, we can therefore assert that there is an m x m 
matrix P and an n x n matrix Q, each of which is a product of elementary matrices, 
such that 

PAQ= [~ ~] 
The matrix on the right-hand side of this equation is often called the normal form 
ofA. 

How can we find matrices P, Q such that PAQ is in normal form without having 
to write down at each stage the elementary row and column matrices involved? 

If A is of size m x n, an expedient way is to work with the array 

InL 
AlZ 

as follows. In reducing A, we apply each row operation to the bottom m rows of this 
array, and each column operation to the first n columns of this array. The general 
stage will be an array of the form 

~ _ FI F2 · .. Fs 

XAYfX - E,·. ·E2E I AFI F2 •• ·Fs E,·· ·E2E I 

where E I ,E2 , ••• ,E, are elementary matrices corresponding to the row operations 
and FI , F2 , ••• ,Fs are elementary matrices corresponding to the column operations. 
If N is the normal form of A, the final configuration is 

~Ip· 
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Example 3.26 

Consider the matrix 

A= H 2 -1 -2] -1 1 I . 
1 2 1 

Applying row and column operations as described above. we obtain 

1 0 0 0 
0 1 0 0 
0 0 1 0 

'\h 0 0 0 1 

-1 -1 1 0 1 0 0 1 0 -1 1 1 0 
0 1 2 0 0 1 0 1 2 1 0 0 1 

1 0 0 0 
0 1 0 0 
0 0 1 0 

'\h 0 0 0 1 

0 1 0 -1 1 1 0 
0 0 2 2 -1 -1 1 

1 0 0 
0 0 0 
0 1 0 

'\h 0 0 1 
1 
0 1 0 -1 0 
0 0 1 1 -t _1 1 

2 2" 
1 -2 1 2 
0 1 0 0 
0 0 1 0 

'\h 0 0 0 1 
1 
0 1 0 -1 0 
0 0 1 _1 _1 1 

2 2 2" 

'\h 

0 1 0 0 0 
0 0 1 1 -1 _1 1 

2 2 2" 
1 -2 1 -1 
0 1 0 1 
0 0 1 -1 

'\h 0 0 0 1 

0 1 0 0 0 
0 0 1 0 _1 _1 1 

2 2 2" 
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Thus we see that 

so that A is of rank 3; and 

[ 1 0 0] 
P= 1 1 0 ) 

I I I 
-2 -2 2 

Q= [~ -~ ~ -:] 
o 0 1 -1 . 
o 0 0 1 

A simple computation on the reader's part will verify that PAQ = N . 

• It should be noted that the matrices P and Q which render PAQ = N are not 
in general uniquely determined. The reader should do the above example in a 
different way (e.g. reduce A to Hermite form before doing column operations) 
to obtain different P and Q. 

EXERCISES 

3.17 Show that the matrix 

A = [~ -~ -~] 
5 -2 -3 

is of rank 2 and find matrices P, Q such that 

PAQ= [~2 ~]. 
3.18 Write down all the normal forms that are possible for non-zero 4 x 5 

matrices. 

3.19 Suppose that A is an n x n matrix and that m rows of A are selected to 
form an m x n submatrix B. By considering the number of zero rows in 
the normal form, prove that rank B ~ m - n + rank A. 

Definition 
We say that two m x n matrices are equivalent if they have the same normal form. 

Since the rank of matrix is the number of non-zero rows in its normal form, it is 
clear from the above that two m x n matrices are equivalent if and only if they have 
the same rank. 

The reader can easily check that the relation of being equivalent is an equivalence 
relation on the set of m x n matrices. The normal form of A is a particularly simple 
representative of the equivalence class of A. 
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EXERCISES 

3.20 Prove that if A and B are row-equivalent then they are equivalent. 

3.21 Prove that every square matrix is equivalent to its transpose. 

3.22 Show that the following matrices are equivalent: 

[-! ~ ~ -~ -l~l' [~~ ~ -~ -il· 
1 2 4 -1 -6 1 0 0 3 4 
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We now have to hand enough machinery to solve the problem in hand. This is 
dealt with in the next three results. 

Theorem 3.16 

If A is an m x n matrix then the homogeneous system of equations Ax = 0 has a 
non-trivial solution if and only if rank A < n. 

Proof 
Let ai be the i-th column of A. Then there is a non-zero column matrix 

x= 

such that Ax = 0 if and only if 

xlal + x2a2 + ... + xnan = 0; 

for, as is readily seen, the left-hand side of this equation is simply Ax. Hence a 
non-trivial (=non-zero) solution x exists if and only if the columns of A are linearly 
dependent. Since A has n columns in all, this is the case if and only if the (column) 
rank of A is less than n. 0 

Theorem 3.17 

A non-homogeneous system Ax = b has a solution if and only if rank A = rank Alb. 

Proof 
If A is of size m x n then there is an n x 1 matrix x such that Ax = b if and only if 
there are scalars Xl, ••• , X n such that 

xlal + x2a2 + ... + xn&n = b. 

This is the case if and only if b is linearly dependent on the columns of A, which is 
the case if and only if the augmented matrix Alb is column-equivalent to A, i.e. has 
the same (column) rank as A. 0 
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Definition 
We shall say that a system of linear equations is consistent if it has a solution (which, 
in the homogeneous case, is non-trivial); otherwise we shall say that it is inconsistent. 

Theorem 3.18 
Let a consistent system of linear equations have as coefficient matrix the m x n 
matrix A. If rank A = p then n - p of the unknowns can be assigned arbitrarily and 
the equations can be solved in terms of them as parameters. 

Proof 
Working with the augmented matrix A Ib, or simply with A in the homogeneous case, 
perform row operations to transform A to Hermite form. We thus obtain a matrix of 
the form H{A}lc in which, if the rank of A is p, there are p non-zero rows. The 
corresponding system of equations H{A}x = c is equivalent to the original system, 
and its form allows us to assign n - p of the unknowns as solution parameters. 0 

The final statement in the above proof depends on the form of H{A). The as­
signment of unknowns as solution parameters is best illustrated by examples. This 
we shall now do. It should be noted that in practice there is no need to test first 
for consistency using Theorem 3.17 since the method of solution will determine this 
automatically. 

Example 3.27 

Let us determine for what values of a the system 

x+ y+ z=l 
2x - y + 2z= 1 
x+2y+ z=a 

has a solution. 
By Theorem 3.17, a solution exists if and only if the rank of the coefficient matrix 

of the system is the same as the rank of the augmented matrix, these ranks being 
determined by the number of non-zero rows in any row-echelon form. 

So we begin by reducing the augmented matrix to row-echelon form: 

[~ ~1 ~ !] ~ I~ ~3 ~ ~1] 
1 2 1 a lo lOa - 1 

[~ 
1 1 JJ ~ 0 

0 

~1 1 
1 

1 1 ~ 0 1 0 1 
3' . 

o 0 0 a-t 
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It is clear that the ranks are the same (and hence a solution exists) if and only if 
"'=! .... 3 • 

In this case the rank is 2 (the number of non-zero rows), and the Hermite form is 

Using Theorem 3.18, we can assign 3 - 2 = 1 of the unknowns as a solution param­
eter. Since the corresponding system of equations is 

x+z=£. 3 

Y = t 
we may take as the general solution y = ~ and x = ~ - z where z is arbitrary. 

Example 3.28 

Consider now the system 

x+ y+ z+ t=4 
x + {3y + z + t = 4 
x + y + {3z + (3 - {3}t = 6 

2x + 2y + 2z {3t = 6. 

The augmented matrix of the system is 

[1 1 4] 1 {3 1 1 4 
1 1 {3 3-{3 6 
2 2 2 {3 6 

which can be reduced to row-echelon form by the operations P2 - PI' P3 - PI' and 

P4 -2Pl' 
We obtain 

(2) 

1 
o 0 

{3-12-{3 
o {3-2 

~ ]. 
-2 

Now if {3 :f 1, 2 then the rank of the coefficient matrix is clearly 4, as is that of the 
augmented matrix. By Theorem 3.18, therefore, a unique solution exists (there being 
no unknowns that we can assign as solution parameters). 
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To find the solution, we reduce the above row-echelon matrix to Hennite fonn: 

[~ 
I I I 4 ] 1 0 o 0 

'\h 
0 1 ?::::£ 2 

{j-I {j-I 

0 0 I-=£.. 
{j-2 

[~ 
1 

4] 1 0 0 0 
'\h 

0 0 0 1 
0 0 1 -2 

{j-2 

0 0 0 
I 0 0 [~ '\h 0 0 1 0 

4+o'~' 1 
o . 

0 0 0 -2 
{j-2 

The system of equations that corresponds to this is 

x = 4 + /-2 
Y = 0 

z = 0 
t = -2 

{j-2 

which gives the solution immediately. 
Consider now the exceptional values. First, let f3 = 2. Then the matrix (2) 

becomes 

[
1 1 I 1 41 o 100 0 
o 0 1 0 2 ' 
o 0 0 0 -2 

and in the system of equations that corresponds to this augmented matrix the final 
equation is 

Ox + Oy + Oz + Ot = -2, 

which is impossible. Thus when f3 = 2 the system is inconsistent. 

If now f3 = 1 then the matrix (2) becomes 

[~ ~ ~ 000 
000 

1 4] o 0 
1 2' 

-1 -2 
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which reduces to the Hennite fonn 

[~ n ~ ~] 
The corresponding system of equations is 

x + y + Z = 2, 

t = 2. 
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Here the coefficient matrix is of rank 2 and so we can assign 4 - 2 = 2 of the 
unknowns as solution parameters. We may therefore take as the solution 

t = 2, 

x=2-y-z 

where y and z are arbitrary. 

EXERCISES 

3.23 Show that the system of equations 

x + 2y + 3z + 3t = 3 
x + 2y + 3t = 1 
x + z + t = 3 
x + y + z + 2t = 

has no solution. 

3.24 For what value of a does the system of equations 

x - 3y - z - lOt = a 
x + y + z = 5 

2x 4t = 7 
x + y + = 4 

have a solution? Find the general solution when a takes this value. 

3.25 Show that the equations 

2x + y + z = -6a 
2x + y + (13+ l}z = 4 
j3x + 3y + 2z = 2a 

has a unique solution except when 13 = 0 and when 13 = 6. 

If 13 = 0 prove that there is only one value of a for which a solution 
exists, and find the general solution in this case. 

Discuss the situation when 13 = 6. 
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SUPPLEMENTARY EXERCISES 

3.26 Let A be a real 4 x 3 matrix. Determine the elementary matrices which, 
as post-multipliers, represent each of the following operations 

(1) multiplication of the third column by -2; 

(2) interchange of the second and third columns; 

(3) addition of -2 times the first column to the second column. 

3.27 If the real matrix 

[~ ~ a ~ ~ ~l 
OOeleO 
000 dId 

has rank r, prove that 

(1) r> 2; 

(2) r = 3 if and only if a = d = 0 and be = 1; 

(3) r = 4 in all other cases. 

3.28 Given the real matrices 

[3 2 -1 5] 
A = I -I 2 2 , 

057a 
B= [~ -1] 

prove that the matrix equation AX = B has a solution if and only if 

a = -1. 

3.29 Show that the equations 

x - y - u - 5t = a 
2x + y - Z - 4u + t ~ 

x + y + z - 4u - 6t = "'1 
x + 4y + 2z - 8u - 5t = 8 

have a solution if and only if 

8a - ~ -11"'1 + 58 = O. 

Find the general solution whena = ~ = -1, "'1 = 3,8 = 8. 

3.30 Discuss the system of equations 

-2x + (j,£ + 3)y - )'Z = -3 
x + )'Z = I 

2x + 4y + 3)'z = -).. 

3.31 How many different normal forms are there in the set of m x n matrices? 
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3.32 Give an example of a matrix that cannot be reduced to normal form by 
means of row operations alone. 

3.33 Give an example of two matrices that are equivalent but are not row­
equivalent. 

3.34 Prove that two matrices are equivalent if and only if one can be obtained 
from the other by a finite sequence of row and column operations. 

3.35 Determine the values of a, b, c for which the parabola y = ax2 + bx + c 
passes through the three points (-1,1), (0, 2), (1,3). 

3.36 Determine the set of integer solutions of the system 

3Xl + X2 + 2x3 - X4 =5 1 
2xl + x2 + 4X3 + 3X4 + 2X5 =5 1 

Xl 2X2 + 3x4 + X5 =5 3 
Xl - X3 - X4 + 3X5 =5 

2Xl + 3X2 + 3X3 - x4 - X5 =5 

in which =5 denotes congruence modulo 5. 

ASSIGNMENT EXERCISES 

( 1) Determine the rank of the matrix 

[0 2 4 2 n 4 4 4 8 
8 2 0 10 
6 3 2 9 

(2) If r is the rank ofthe matrix 

show that 
(a) r> 1; 
(b) r = 2 if and only if a,B = -1 and')' = 8 = 0; 
(c) r = 3 if and only if either,), = 8 ora,B = -1 and,)" 8 are not both zero. 

(3) If A, B, C are (rectangular) matrices such that A = BC prove that 

rank A ~ min {rank B, rank C}. 



58 Basic Linear Algebra 

(4) Let A be an m x n matrix. Prove that the rank of A is the smallest integer p 
such that A can be written as a product BC where B is m x p and C is p x n. 

(5) Show that if ). 'f 0 then the system of equations 

{ 
n ).x; + a;Xn+1 : b; (i = 1, ... ,n) 

L a;x; + ).Xn+1 - b n+1 
;=1 

n 
has a unique solution if and only if), 2 - L a; 'f O. 

;=1 

(6) Consider on the one hand the system S I of n linear equations in n unknowns: 

allxl + aI2 x 2 + aI3x 3 + ... + alnXn = bl; 

a21 x I + a22 x 2 + a23 x 3 + ... + a2n x n = b 2; 

a31 x I + a32 x 2 + a33 x 3 + ... + a3n x n = b 3; 

and on the other hand the homogeneous system S2 of n linear equations in n + 1 
unknowns: 

allYl + aI2Y2 + aI3Y3 + ... + alnYn - blYn+1 = 0; 

a21YI + a22Y2 + a23Y3 + ... + a2nYn - b 2Yn+1 = 0; 

a31YI + a32Y2 + a33Y3 + ... + a3nYn - b 3Yn+1 = 0; 

anlYI + a n2Y2 + a n3Y3 + ... + annYn - bnYn+1 = O. 

Show that the homogeneous system associated with S I has only the trivial solu­
tion if and only if every non-trivial solution of S2 is such that Yn+1 'f O. 
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Invertible Matrices 

In Theorem 1.3 we showed that every m x n matrix A has an additive inverse, denoted 
by -A, which is the unique m x n matrix X that satisfies the equation A + X = O. We 
shall now consider the mUltiplicative analogue of this. 

Definition 

Let A be an m x n matrix. Then an n x m matrix X is said to be a left inverse of A if 
it satisfies the equation XA = In; and a right inverse of A if it satisfies the equation 
AX = 1m' 

Example 4.1 

Consider the matrices 

A= [i !l' [-3 1 0 a] 
Xa,b = -3 0 1 b . 

A simple computation shows that Xa,bA = 12, and so A has infinitely many left in­
verses. In contrast, A has no right inverse. To see this, it suffices to observe that if 
Y were a 2 x 4 matrix such that AY = 14 then we would require [AY]4,4 = 1 which is 
not possible since all the entries in the fourth row of A are 0 . 

Example 4.2 

The matrix 

[~ ~ ~] 
has a common unique left inverse and unique right inverse, namely 

[~ t ~l· o 0 ~ 
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Theorem 4.1 
Let A be an m x n matrix. Then 

(1) A has a right inverse if and only if rank A = m; 
(2) A has a left inverse if and only if rank A = n. 

Proof 

Basic Linear Algebra 

(1) Suppose that the n x m matrix X is a right inverse of A, so that we have AX = 
1m. If X; denotes the i-th column of X then this equation can be expanded to the m 
equations 

(i=l, ... ,m) 

where tl; denotes the i-th column of 1m. 
Now each of the matrix equations Ax; = tl; represents a consistent system of m 

equations in n unknowns and so, by Theorem 3.17, for each i we have 

rank A = rank Altl;. 

Since tl, , ... , tlm are linearly independent, it foIlows by considering column ranks 
that 

rank A = rank Altl, 
= rank Altl,l~ 
= ... 
= rank Altl,ltl21 ... Itln = rank Allm = m. 

Conversely, suppose that the rank of A is m. Then necessarily we have that n ~ m. 
Consider the Hermite form of A'. Since H(A') is an n x m matrix and 

rank H(A') = rank A' = rank A = m, 

we see that H(A') is of the form 

H(A') = [ 1m l. 
On-mom 

As this is row-equivalent to A', there exists an n x n matrix f such that 

fA' = [ 1m l. 
On-mom 

Taking transposes, we obtain 

Af' = [1m Omon-m). 

Now let Z be the n x m matrix consisting of the first m columns of f'. Then from 
the form of the immediately preceding equation we see that AZ = 1m, whence Z is a 
right inverse of A. 

(2) It is an immediate consequence of Theorem 1.9 that A has a left inverse if 
and only if its transpose has a right inverse. The result therefore follows by applying 
(1) to the transpose of A. 0 



4. Invertible Matrices 

EXERCISES 

4.1 Show that the matrix 

~ n i] 
has neither a left inverse nor a right inverse. 

Theorem 4.2 

If a matrix A has both a left inverse X and a right inverse Y then necessarily 
(1) A is square; 
(2) X = Y. 

Proof 
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(1) Suppose that A is of size m x n. Then by Theorem 4.1 the existence of a right 
inverse forces rank A = m, and the existence of a left inverse forces rank A = n. 
Hence m = n and so A is square. 

(2) If A is of size p x p then XA = I p = AY gives, by the associativity of matrix 
multiplication, 

X = Xlp = X(AY) = (XA)Y = IpY = Y. 0 

For square matrices we have the following stronger situation. 

Theorem 4.3 

If A is an n x n matrix then the following statements are equivalent: 
(1) A has a left inverse; 
(2) A has a right inverse; 
(3) A is of rank n; 
(4) the Hermite form of A is In; 
(5) A is a product of elementary matrices. 

Proof 
We first establish the equivalence of (1), (2), (3), (4). That (1), (2), (3) are equivalent 
is immediate from Theorem 4.1. 

(3) => (4) : If A is of rank n then the Hermite form of A must have n non-zero 
rows, hence n comer entries 1. The only possibility is In. 

(4) => (3) : This is clear from the fact that rank In = n. 
We complete the proof by showing that (3) => (5) and (5) => (3). 

(3) => (5) : If A is of rank n then, since (3) => (1), A has a left inverse X. Since 
XA = In we see that X has a right inverse A so, since (2) => (4), there is a finite 
string of elementary matrices F \ , F 2, •.. , F q such that 

Fq ... F2F\X = In. 
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Consequently, we have 

A = InA = (Fq ... F2FIX)A = Fq . .. F2FI (XA) = Fq ... F2FI 

and so A is a product of elementary matrices. 
(5) =} (3): Suppose now that A = EIE2 ... Ep where each Ej is an elementary 

matrix. Observe that E p is of rank n since it is obtained from In by a single elementary 
operation which has no effect on rank. Also, pre-multiplication by an elementary 
matrix is equivalent to an elementary row operation, which has no effect on rank. It 
follows that the rank of the product E I E2 ... E p is the same as the rank of E p' which 
is n. Thus the rank of A is n. 0 

It is immediate from the above important result that if a square matrix A has a 
one-sided inverse then this is a two-sided inverse (i.e. both a left inverse and a right 
inverse). In what follows we shall always use the word 'inverse' to mean two-sided 
inverse. By Theorem 4.2, inverses that exist are unique. When it exists, we denote 
the unique inverse of the square matrix A by A -I. 

Definition 

If A has an inverse then we say that A is invertible. 

If A is an invertible n x n matrix then so is A -I. In fact, since AA -I = In = A-I A 
and inverses are unique, we have that A is an inverse of A -I and so (A -I t l = A. 

We note at this juncture that since, by Theorem 4.3, every product of elementary 
matrices is invertible, we can assert that B is row-equivalent to A if and only if there 
is an invertible matrix E such that B = EA. 

Another useful feature of Theorem 4.3 is that it provides a relatively simple 
method of determining whether or not A has an inverse, and of computing A -I when 
it does exist. The method consists of reducing A to Hermite form: if this turns out to 
be In then A is invertible; and if the Hermite form is not In then A has no inverse. 

In practice, just as we have seen in dealing with normal forms, there is no need 
to compute the elementary matrices required at each stage. We simply begin with 
the array Al/n and apply the elementary row operations to the entire array. In this 
way the process can be described by 

Al/n '\n EIAIEI '\n E2EIAIE2EI '\n ... 

At each stage we have an array of the form 

SIQ == Ej .. ·E2EIAIEj ... E2EI 

in which QA = S. If A has an inverse then the Hermite form of A will be In and the 
final configuration will be 

InIEp" ·E2EI 

so thatEp" ·E2EIA = In and consequently A-I = Ep" ·E2EI. 
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Examp/e4.3 

Consider the matrix 

[1 
2 

:] 3 
4 

Applying the above procedure, we obtain 

1 2 3 1 0 0 1 2 3 1 0 0 
1 3 4 0 1 0 "vt 0 1 1 -1 1 0 
1 4 4 0 0 1 0 2 1 -1 0 1 

1 2 3 1 o 0 
"vt 0 1 1 -1 1 0 

0 0 -1 1 -2 1 

1 2 3 1 o 0 
"vt 0 1 0 0 -1 1 

0 0 -1 1 -2 1 

1 2 0 4 -63 
"vt 0 1 0 0 -1 1 

0 0 -1 1 -2 1 

1 0 0 4 -4 1 
"vt 0 1 0 0 -1 1 

0 0 1 -1 2 -1 

so A has an inverse, namely 

[ -~ 
-4 l -1 
2 -1 

EXERCISES 

4.2 Determine which of the following matrices are invertible and find the 
inverses: 

[l 
1 

~] , [1 2 
n' [1 

2 2] 2 1 3 3 1 ) 
1 1 0 1 3 

[1 
1 1 1] [1 1 1] 2 -1 2 1 3 1 2 

-1 2 1 ' 1 2 -1 1 . 
3 3 2 5 9 1 6 

4.3 If A is an n x n matrix prove that the homogeneous system Ax = 0 has 
only the trivial solution x = 0 if and only if A is invertible. 
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4.4 Prove that the real 2 x 2 matrix 

A=[: ~] 
is invertible if and only if ad - bc f 0, in which case find its inverse. 

4.5 Determine for which values of G' the matrix 

A = 1 0 0 [1 1 0] 
1 2 G' 

is invertible and describe A -I. 

We shall see later other methods of finding inverses of square matrices. For the 
present, we consider some further results concerning inverses. 

We first note that if A and B are invertible n x n matrices then in general A + B is 
not invertible. This is easily illustrated by taking A = In and B = -In and observing 
that the zero n x n matrix is not invertible. However, as the following result shows, 
products of invertible matrices are invertible. 

Theorem 4.4 

Let A and B be n x n matrices. If A and B are invertible then so is AB; moreover, 

(ABtl = B-1 A -I. 

Proof 

It suffices to observe that 

ABB-IA-I = AInA-1 = AA-I = In 

whence B-1 A -I is a right inverse of AB. By Theorem 4.3, AB therefore has an in­
verse, and (ABtl = B-1 A -I. 0 

Corollary 

If A is invertible then so is Am for every positive integer m; moreover, 

(Amr l = (A-I)m. 

Proof 

The proof is by induction. The result is trivial for m = 1. As for the inductive step, 
suppose that it holds for m. Then, using Theorem 4.4, we have 

(A-I)m+1 = A-I(A-I)m = A-I (Amr l = (AmArI = (Am+lrl , 

whence it holds for m + 1. 0 
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Theorem 4.5 

If A is invertible then so is its transpose A'; moreover. 

(A'rl = (A -I)'. 

Proof 
By Theorem 4.4 we have 

In = I~ = (AA-I), = (A-I)'A' 

and so (A -I)' is a left inverse, hence the inverse, of A'. 0 

EXERCISES 

65 

4.6 If A I ,A2 , ... ,Ap are invertible n x n matrices prove that so also is the 
product A I A2 ... Ap, and that 

(AIA2 ... Aprl = A;I ... A21 All. 

4.7 Let 19 be a fixed real number and let 

A= -1 0 [ 
0 1 - sin 19] 

cos {) . 
- sin {) cos 19 o 

Show that A3 = O. 

For each real number x define the 3 x 3 matrix A x by 

Ax = 13 + xA + tx2A2. 

Prove that AxAy = Ax+y and deduce that each Ax is invertible with A~I = 

A-x· 

4.8 For each integer n let 

A = [1 -n -n]. 
n n 1 + n 

Prove that AnAm = An+m' Deduce that An is invertible with A~I = A_n. 
Do the same for the matrices 

_ [1 -2n 
Bn - -4n 

What is the inverse of AnBm ? 

Recall that an n x n matrix is orthogonal if it is such that 

AA' = In = A'A. 

By Theorem 4.3, we see that in fact only one of these equalities is necessary. An 
orthogonal matrix is therefore an invertible matrix whose inverse is its transpose. 
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Example 4.4 

A 2 x 2 matrix is orthogonal if and only if it is of one of the fonns 

in which a2 + b2 = 1. 
In fact, suppose that 

A = [: ~] 
is orthogonal. Then from the equation 

[a b] [a c] = AA' = I 
c d b d 2 

we obtain 

a2 + b2 = 1, ac + bd = 0, c2 + d2 = 1. 

The first two equations show that if a = 0 then d = 0, and the second and third 
equations show that if d = 0 then a = O. 

Now when a = d = 0 the equations give b = ±.l and c = ± 1. 
On the other hand, when a and d are not zero the middle equation gi ves c / d = 

-(b / a), so either c = -b, d = a or c = b, d = -a. 
It follows that in all cases the matrix is of one of the stated fonns. Note that the 

one on the left is a rotation matrix (take a = cos {j and b = sin {j). 

Example 4.5 

The matrix 

is orthogonal. 

[
1/./3 1/v'6 -1/.;2] 
1/./3 -2/v'6 0 
1/0 1/v'6 1/V2 

If P and A are n x n matrices with P invertible then for all positive integers m 
we have 

(p-1AP)m = p-IAmp. 

The proof of this is by induction. In fact the result is trivial for m = 1; and the 
inductive step follows from 

(p-I AP)m+1 = p-I AP(p-1 AP)m 
= P-1APP-1Amp 
= P-IAlnAmp 
= p-1Am+lp. 



4. Invertible Matrices 67 

In certain applications it is important to be able to find an invertible matrix P 
such that p-I AP is of a particularly simple form. 

Consider, for example, the case where P can be found such that p-I AP is a di­
agonal matrix D. Then from the above formula we have 

D'" = (p-1AP)m = p-IAmp. 

Consequently, by multiplying the above equation on the left by P and on the right 
by p-I, we see that 

Since lY" is easy to compute for a diagonal matrix D (simply take the m-th power of 
the diagonal entries), it is then an easy matter to compute Am. 

The problem of computing high powers of a matrix is one that we have seen 
before, in the 'equilibrium-seeking' example in Chapter 2, and this is precisely the 
method that is used to compute Ak in that example. 

Of course, how to determine precisely when we can find an invertible matrix P 
such that p-l AP is a diagonal matrix (or some other 'nice' matrix) is quite another 
problem. A similar problem is that of finding under what conditions there exists an 
orthogonal matrix P such that pi AP is a diagonal matrix. 

Why we should want to be able to do this, and how to do it, are two of the 
most important questions in the whole of linear algebra. A full answer is very deep 
and has remarkable implications as far as both the theoretical and practical sides are 
concerned. 

EXERCISES 

4.9 If A is an n x n matrix such that In + A is invertible prove that 

(In -A)(ln +At1 = (In + At'(ln -A). 

Deduce that if 

then P is orthogonal when A is skew-symmetric. 

Given that 

prove that 

[
0 cos 19 

A = -cos 19 0 
o -sin 19 

[ 
sin219 

P= cos 19 
sin 19 cos 19 

-cos 19 
o 

sin 19 

+], 
sin 19 cos 19 ] 

- sin 19 . 
cos2 19 
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SUPPLEMENTARY EXERCISES 

4.10 Find the inverse of 

4.11 Let A and B be row-equivalent n x n matrices. If A is invertible, prove 
that so also is B. 

4.12 Let A and B be n x n matrices. If the product AB is invertible, prove that 
both A and B are invertible. 

4.13 If A and Bare n x n matrices with A invertible, prove that 

(A + B)A-I(A -B) = (A - B)A-I(A + B). 

4.14 If A is an n x n matrix establish the identity 

In _Ak+1 = (In -A)(Jn +A +A2 + ... +Ak). 

Deduce that if some power of A is the zero matrix then In -A is invertible. 

Suppose now that 

A= [-~ ~ -~ -~l 
-1 -1 1 0 . 
o 1 -1 1 

Compute the powers (/4 - A)i for i = 1,2,3,4 and, by considering 
A = 14 - (/4 - A), prove that A is invertible and determine A -I. 

4.15 Let A and B be n x n matrices such that AB -In is invertible. Show that 

(BA -In)[B(AB -IntI A -In] = In 

and deduce that BA -In is also invertible. 

ASSIGNMENT EXERCISES 

(1) If A E Mat nxn IA is such that ajj = 0 for i = j and aij = 1 for i =f j, show 
that A satisfies a polynomial equation of degree 2. Hence determine A -I. 

(2) Determine the inverse of the complex matrix 

[011 1 + i -i 1 
1 ~2i . 



5 
Vector Spaces 

In order to proceed further with matrices we have to take a wider view of matters. 
This we do through the following important notion. 

Definition 

By a vector space we shall mean a set Von which there are defined two operations, 
one called 'addition' and the other called 'multiplication by scalars', such that the 
following properties hold: 

(V I) X + Y = Y + x for all x, y E V; 
(V2) (x + y) + z = x + (y + z) for all x,y,z E V; 
(V 3) there exists an element 0 E V such that x + 0 = x for every x E V; 
(V4) for every x E V there exists -x E V such that x + (-x) = 0; 
(Vs) A(X + y} = Ax + AY for all X,y E Vandall scalars A; 
(V6) (A + (..L}x = Ax + (..Lx for all x E V and all scalars A, (..L; 
(V7) (Aj.L)X = A (j.Lx) for all x E V and all scalars A, j.L; 
(Va) Ix = x for all x E V. 

When the scalars are all real numbers we shall often talk of a real vector space; and 
when the scalars are all complex numbers we shall talk of a complex vector space. 

• It should be noted that in the definition of a vector space the scalars need not be 
restricted to be real or complex numbers. They can in fact belong to any 'field' 
F (which may be regarded informally as a number system in which every non­
zero element has a multiplicative inverse). Although in what follows we shall 
find it convenient to say that 'V is a vector space over a field F' to indicate that 
the scalars come from a field F, we shall in fact normally assume (Le. unless 
explicitly mentioned otherwise) that F is either the field IR of real numbers or 
the field C of complex numbers . 

• Axioms (VI) to (V4) above can be summarised by saying that the algebraic 
structure (V; +) is an abelian group. If we denote by F the field of scalars 
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(usually IR or t) then multiplication by scalars can be considered as an action 
by F on V, described by (A, x) I---t Ax, which relates the operations in F (ad­
dition and multiplication) to that of V (addition) in the way described by the 
axioms (Vs) to (Vs). 

Example 5.1 

Let Mat mXII IR be the set of all m x n matrices with real entries. Then Theorems 
1.1 to 1.4 collectively show that MatmxlIlR is a real vector space under the usual 
operations of addition of matrices and multiplication by scalars. 

Example 5.2 

The set IR" of n-tuples (XI, ... , XII) of real numbers is a real vector space under the 
following component-wise definitions of addition and mutiplication by scalars; 

(XI, .. · ,XII) + (YI,·" 'YII) = (XI + YI,"· ,XII + YII)' 

A(X" ... ,XII} = (AX" ... , AXil)' 

Geometrically, IR2 represents the cartesian plane, whereas IR3 represents three­
dimensional space. 

Similarly, the set til of n-tuples of complex numbers can be made into both a 
real vector space (with the scalars real numbers) or a complex vector space (with the 
scalars complex numbers). 

ExampleS.S 

Let Map(IR, IR) be the set of all mappings I ; IR -+ IA. For two such mappings I, g 
define 1+ g : IR -+ IR to be the mapping given by the prescription 

(f + g)(x} = I(x} + g(x), 

and for every scalar A E FI define V : IR -+ IR to be the mapping given by the 
prescription 

(V)(X) = A/(x}. 

Then it is readily verified that (VI) to (Vs) are satisfied, with the role ofthe vector 0 
taken by the zero mapping (i.e. the mapping {} such that {}(x) = 0 for every X E IR) 
and -I the mapping given by (-f)(x) = -f(x} for every X E IR. These operations 
therefore make Map (IR, IR} into a real vector space. 

Example 5.4 

Let IRII[X] be the set of polynomials of degree at most n with real coefficients. The 
reader will recognise this as the set of objects of the form 

ao + a I X + a2X2 + ... + anX" 
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where each aj E IR and X is an 'indetenninate', the largest suffix i for which aj :f 0 

being the degree of the polynomial. 
We can define an addition on IRn[X] by setting 

(ao + a,X + ... + anxn) + (bo + b,X + ... + bnX") 

= (ao + bo) + (a, + b,)X + ... + (an + bn)xn 

and a multiplication by scalars by 

A(ao + a,X + ... + anxn) = Aao + Aa,X + ... + AanXn. 

In this way 1Rn[X] has the structure of a real vector space. 
We now list some basic properties of the multiplication by scalars. For clarity, 

we shall denote (at least for awhile) the additive identity element of V by 0v and that 
of F (i.e. IR or C) by OF. We also use the symbol Vas an abbreviation of 'for all'. 

Theorem 5.1 
If V is a vector space over a field F then 

(1) (VA E F) AOv = 0v; 
(2) (Vx E V) 0FX = Ov; 
(3) if AX = Ov then either A = OF or X = Ov; 
(4) (Vx E V)(VA E F) (-A)X = -(Ax) = A(-X) .. 

Proof 
(1) By (V3) and (Vs) we have 

AOv = A(OV + Ov} = AOv + AOv· 

Now add -(AOv) to each side. 
(2) By (V6) we have 

0FX = (OF + 0F)X = 0Fx + 0Fx. 

Now add -(OFX) to each side. 
(3) Suppose that AX = Ov and that A :f OF. Then A has a multiplicative inverse 

A -, and so, by (V7 ) and (1), X = I Fx = (A -, A)X = A -'(Ax) = A -lOy = Ov. 
(4) By (2) and (V6) we have 

Ov = [A + (->.)]x = Ax + (->.)x. 

Now add -(Ax) to each side. Also, by (I) and (Vs) we have 

Ov = >.[x + (-x)] = Ax + A(-X). 

Now add -( Ax) to each side. 0 

EXERCISES 

5.1 Verify the various items of Theorem 5.1 in the particular case of the 
vector space Mat mxn R. 



72 Basic Linear Algebra 

In order to study vector spaces we begin by concentrating on the substructures, 
i.e. those subsets that are themselves vector spaces. 

Definition 

Let V be a vector space over a field F. By a subspace of V we shall mean a non-empty 
subset W of V that is closed under the operations of V, in the sense that 

(1) if x,y E W then x + YEW; 
(2) if x E Wand>. E F then AX E W. 

Note that (1) says that sums of elements ofW belong also to W, and (2) says that 
scalar multiples of elements of W also belong to W. When these properties hold, W 
inherits from the parent space V all the other properties required in the definition of 
a vector space. For example, by taking>. = -IF in (2) we see that if x E W then 
-x E W; and then, by taking y = -x in (I), we obtain Oy E W. 

Example 5.5 

Every vector space V is (trivially) a subspace of itself. V itself is therefore the biggest 
subspace of V. 

Example 5.6 

By Theorem 5.1(1), the singleton subset {Oy} is a subspace of V. This is then the 
smallest subspace of V since, as observed above, we have that Oy E W for every 
subspace W of V. 

Example 5.7 

IR is a subspace of the real vector space C. In fact. it is clear that properties (1) and 
(2) above hold with W = FI and F = FI. 

Example 5.8 

In the real vector space IR2 the set X = {(x, 0) ; x E IR} is a subspace; for we have 

(XI,O) + (X2' 0) = (Xl + X2, 0); 

>.(x,O) = (h,O), 

and so X is closed under addition and multiplication by scalars. Thus (1) and (2) are 
satisfied. This subspace is simply the 'x-axis' in the cartesian plane 1R2. Similarly, 
the 'y-axis' 

y= {(O,y); Y E IR} 

is a subspace of Fl2. 
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Example 5.9 

We can expand on the previous example. In the cartesian plane IR2 every line L 
through the origin has a description in the form of a particular subset of 1R2, namely 

L = {(x,y) ; ax + {3y = a}. 

If L makes an angle 19 with the x-axis then the gradient of L is given by tan 19 = 
-aff3· 

Now if(xlt YI) ELand (X2, Y2) E L then we have aXI = -f3YI andax2 = -(3Y2 
whence a(xI + X2) = -f3(YI + Y2) and therefore 

(XI, YI) + (X2, Y2) = (XI + X2, YI + Y2) E L; 

and if (XI, YI) E L then aXI = -f3YI gives aAxI = -f3AYI for every A E lA, so that 

A(XIt YI) = (Ax l , AYI) E L. 

Thus we see that every line L that passes through the origin is a subspace of IR2. 
As we shall see later, apart from {(O,O)} and 1A2 itself, these are the only sub­

spaces of IR2. 

Example 5.10 

In the cartesian space 1A3 every plane through the origin has a description in the form 

P = {(x,y, z) ; ax + {3y + '1Z = OJ. 

To see the geometry of this, observe that if we fix z, say z = k, then 'the plane z = k' 
(i.e. the set {(x, y, k) ; x, Y E IR}) slices through P in the line 

{(x,y,k); ax+{3y=--yk}. 

Now if (XI' YI, Zl) E P and (X2, Y2, Z2) E P then it is readily seen that 

(XI' YI, ZI) + (X2,Y2, Z2) = (XI + X2,YI + Y2, ZI + Z2) E P; 

and if (Xlt Ylt ZI) E P then, for every A E lA, 

A(XIt YI, ZI) = (Ax l , AYIt AZI) E P. 

Thus we see that every plane through the origin is a subspace of Fl3. 
We shall see later that, apart from {(O, 0, O)} and IR3 itself, the only subspaces 

of IR3 are lines through the origin and planes through the origin. 

Example 5. 11 

An n x n matrix over a field F is said to be lower triangular if it is of the form 

al1 0 0 0 
a21 a22 0 0 
a31 a32 a33 0 
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i.e. if aij = 0 whenever i < j. 
The set of lower triangular n x n matrices is a subspace of the vector space 

Mat PlxPI F. In fact, if A and B are lower triangular then clearly so is A + B and so is 
AA. 

EXERCISES 

5.2 In the vector space Fr of 4-tuples of real numbers, determine which of 
the following subsets are subspaces: 

(1) {(x,y,z,t); x = y, z = t}; 

(2) {(x,y,z,t); x + y + z + t = O}; 
(3) {(x,y,z,t); x = I}; 

(4) {(x,y,z,t); xt= yz}. 

5.3 Consider the set Con (lA, IA) of all continuous functions f : IR _ IR. 
What well-known theorems from analysis ensure that Con (IR, IR) is a 
subspace of the vector space Map(IR, IR)? 

5.4 Let Diff (IR, IA) be the subset of Con (IR, IR) consisting of all differen­
tiable functions f : IA - IR. What well-known theorems from analysis 
ensure that Diff (lA, IR) is a subspace of the vector space Con (IR, IR)? 

5.5 Determine which of the following are subspaces of the vector space 
MatPlxPlIR: 

(1) the set of symmetric n x n matrices; 
(2) the set of invertible n x n matrices; 

(3) the set of non-invertible n x n matrices. 

5.6 If A is a real m x n matrix prove that the solutions of the homogeneous 
system Ax = 0 form a subspace of the vector space Mat PIX I IR. 

5.7 Show that a line in IR3 that does not pass through the origin cannot be a 
subspace of IR3. 

As the above examples illustrate, in order to show that a given set with operations 
is a vector space it is often very easy to do so by proving that it is a subspace of some 
well-known and considerably larger vector space. 

Suppose now that A and B are subspaces of a vector space V over a field F and 
consider their intersection A n B. Since Ov must belong to every subspace we have 
that Ov E A and Ov E B, and therefore Ov E A n B so that A n B f 0. Now if 
X,y E A nB then x,y E A gives x + YEA, and X,y E B gives x + y E B, whence 
we have that x + YEA n B. Likewise, if x E An B then x E A gives AX E A, and 
x E B gives AX E B, whence we have that AX E An B. Thus we see that An B is 
also a subspace of V. 
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We can in fact prove a much more general statement: 

Theorem 5.2 

The intersection of any set of subspaces of a vector space V is a subspace of v. 
Proof 

Let C be a set of subspaces of V and let T be their intersection. Then T t- 0 since 
every subspace of V (and therefore every subspace in C) contains Ov, whence so also 
does T. 

Suppose now that x, YET. Since x and y belong to every subspace W in the 
set C, so does x + y and hence x + YET. Also, if x E T then x belongs to every 
subspace W in the set C, whence so does). x and so ). x E T. Thus we see that T is a 
subspace of V. 0 

In contrast with the above situation, we note that the union of a set of subspaces 
of a vector space V need not be a subspace of V: 

Example 5.12 

In IR2 the x-axis X and the y-axis Y are subspaces, but X U Y is not. For example, 
we have (1,0) E X and (0, 1) E Y, but 

(1,0) + (0, 1) = (1, 1) ~ XU Y 

so the subset X U Y is not closed under addition and therefore cannot be a subspace. 

Suppose now that we are given a subset S of a vector space V (with no restric­
tions, so that S may be empty if we wish). The collection C of all the subs paces of 
V that contain S is not empty, for clearly V itself belongs to C. By Theorem 5.2, the 
intersection of all the subspaces in C is also a subspace of V, and clearly this inter­
section also contains S. This intersection is therefore the smallest subspace of V that 
contains S (and is, of course, S itself whenever S is a subspace). We shall denote 
this subspace by (S). 

Example 5.13 

In IR2 consider the singleton subset S = {(x, y)}. Then (S) is the line joining (x, y) 
to the origin. 

Our immediate objective is to characterise the subspace (S) in a useful alternative 
way. For this purpose, we consider first the case where S is not empty and introduce 
the following notion. 

Definition 

Let V be a vector space over a field F and let S be a non-empty subset of V. Then we 
say that v E V is a linear combination of elements of S if there exist x I , ... , X n E S 
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and AI,"" An E F such that 
n 

V = AIXI + ... + AnXII = L AjXj. 
j=, 

II m 

Basic Linear Algebra 

It is clear that if v = L AjXj and w = L /J.jYj are linear combinations of elements 
j=1 j=1 

of S then so is v + w; moreover, so is A v for every A E F. Thus the set of linear 
combinations of elements of S is a subspace of V. We call this the subspace spanned 
by S and denote it by Span S. 

The above notions come together in the following result. 

Theorem 5.3 

(S) = Span S. 

Proof 
For every XES we have x = 1 FX E Span S and therefore we see that S ~ Span S. 
Since, by definition, (S) is the smallest subspace that contains S, and since Span S 
is a subspace, we see that (S) ~ Span S. 

For the reverse inclusion, let x" .. . ,xn E S and A I, •.. ,An E F. If W is any 
subspace of V that contains S we clearly have x, , ... , X nEW and 

AIX, + ... + AIIXII E W. 

Consequently we see that Span S ~ W. Taking W in particular to be (S), we obtain 
the result. 0 

An important special case of the above arises when Span S is the whole of V. In 
this case we often say that S is a spanning set of V. 

Example 5. 14 

Consider the subset S = {( 1 , 0), (0, I)} of the cartesian plane 1R2. For every (x, y) E 
1R2 we have 

(X,y) = (x,O) + (O,y) = x(I,O) + y(O, 1), 

so that every element of JR2 is a linear combination of elements of S. Thus S is a 
spanning set of 1R2. 

Example 5.15 

More generally, if the n-tuple 

ej = (0, ... ,0,1,0, ... ,0) 

has the 1 in the i-th position then for every (XI' ... ,XII) E IAn we have 

(Xl, ... ,XII) = xle, + ... + xllell · 

Consequently, {e" ... ,ell} spans IRII. 
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Example 5.16 

In IR3 we have 

Span{(I,O,O)} = {),(l,O,O); ), E IR} = {()"O,O); ), E IR}; 

i.e. the subspace of 1R3 spanned by the singleton {(I, 0, O)} is the x-axis. 

Example 5.17 

In IR3 we have 

Span{(l,O,O),(O,O,l)} = {x(l,O,O)+z(O,O,l); x,ZEIR} 

= {(x,O,z); x,z E IR}; 
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i.e. the subspace of 1R3 spanned by the subset {(I, 0, 0), (0, 0, I)} is the 'x, z-plane'. 

EXERCISES 

5.8 Show that for all a, b, c E IR the system of equations 

x+ y+ z=a 
x + 2y + 3z = b 
x + 3y + 2z = c 

is consistent. Deduce that the column matrices 

span the vector space Mat 3x 1 It 

5.9 Let 1R2[X] be the vector space of all real polynomials of degree at most 
2. Consider the following elements of 1R2[X] : 

p(X) = 1 + 2X + X2, q(X) = 2 + X2. 

Does {p(X), q(X)} span 1R2[X]? 

5.10 Does the set 

{[~ ~],[~ ~],[~ ~],[~ !]} 
span the vector space Mat 2x2 lR? 

We now formalise, for an arbitrary vector space, a notion that we have seen before 
in dealing with matrices. 
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Definition 

Let S be a non-empty subset of a vector space V over a field F. Then S is said to be 
linearly independent if the only way of expressing Ov as a linear combination of 
elements of S is the trivial way (in which all scalars are OF)' 

Equivalently, S is linearly independent if, for any given x., ... , Xn E S, we have 

>'1 x • + ... + >'nxn = Ov =} >.. = ... = >'n = OF' 

Example 5.18 

The subset {(I, 0), (0, I)} ofIR2 is linearly independent. For, in. (1,0) + >'2(0,1) = 
(0,0) then (>. .. >'2) = (0,0) and hence >.. = >'2 = OF' 

Example 5.19 

More generally, if ej = (0, ... ,0,1,0, ... ,0) with the 1 in the i-th position then 
{ e. , ... , en} is a linearly independent subset of the vector space IAn. 

Example 5.20 

Every singleton subset {x} of a vector space V with x 'f 0 is linearly independent. 
This is immediate from Theorem 5.1(3). 

The following result is proved exactly as in Theorem 3.7: 

Theorem 5.4 
No linearly independent subset of a vector space V can contain Ov. 0 

A subset that is not linearly independent is said to be linearly dependent. 
Note that, by the last example above, every dependent subset other than {Ov} 

must contain at least two elements. 
Linearly dependent subsets can be characterised in the following useful way, the 

proof of which is exactly as in that of Theorem 3.8: 

Theorem 5.5 
Let V be a vector space over afield F. IjS is a subset of V that contains at least two 
elements then the following statements are equivalent: 

(1) S is linearly dependent; 
(2) at least one element of S can be expressed as a linear combination of the 

other elements of S. 0 

Example 5.21 

The subset {(I, 1,0), (2, 5, 3), (0, 1, I)} oflA3 is linearly dependent. In fact, we have 

(2,5,3) = 2(1,1,0) + 3(0, 1, 1). 
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Example 5.22 

In the vector space IR2[X] consider 

p(X) = 2 + X + X2, q(X) = X + 2X2, r(X) = 2 + 2X + 3X2. 

A general linear combination 

of these vectors is 

2AI + 2A3 + (AI + A2 + 2A3)X + (AI + 2A2 + 3A3)X2. 

This is the zero polynomial if and only if each of the coefficients is 0; i.e. if and only 
if 

The reader can easily verify that the above coefficient matrix is of rank 2 so that, by 
Theorem 3.16, a non-trivial solution exists. Hence there are scalars AI, A 2, A 3 which 
are not all zero such that 

AIP(X) + A2Q(X) + A 3r(X) = 0 

and so the given set is linearly dependent. 

EXERCISES 

5.11 Let S I and S2 be non-empty subsets of a vector space such that S I ~ S2. 
Prove that 

(1) if S2 is linearly independent then so is S\; 

(2) if S I is linearly dependent then so is S2. 

5.12 Determine which of the following subsets of Mat 3x I IR are linearly de­
pendent. For those that are, express one vector as a linear combination 
of the others: 
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5.l3 Detennine which of the following subsets of Mat 2x2 IA are linearly de­
pendent. For those that are, express one matrix as a linear combination 
of the others: 

(1) {[~ ~],[~ ~],[~ ~]}; 

(2) {[~ ~], [~ ~], [~ ~], [~ ~]}; 

(3) {[~ ~],[~ ~],[~ ~],[~ ~]}. 
5.l4 Detennine which of the following subsets of IA2[X] are linearly depen­

dent. For those that are, express one vector as a linear combination of 
the others: 

(1) {X,3 + X2,X + 2X2}; 

(2) {-2+X,3+X,I+X2}; 
(3) {-5 + X + 3X2, 13 + X, I + X + 2X2}. 

We now combine the notions of linearly independent set and spanning set to 
obtain the following important concept. 

Definition 

A basis of a vector space V is a linearly independent subset of V that spans V. 

Example 5.23 

The subset {(I, 0), (0, I)} is a basis of the cartesian plane IA2. Likewise, the subset 
{(I, 0, 0), (0, 1,0), (0,0, I)} is a basis oflA3• More generally, {e\, ... ,en} is a basis 
for IAn where 

ej= (0, ... ,0,1,0, ... ,0), 

the 1 being in the i-th position. 
These bases are called the natural (or canonical) bases. 

Example 5.24 

In IA2 the subset 
{(I, 1), (I, -I)} 

is a basis. In fact, for every (x, y) E IA2 we have 

(x,y) = .A\(I, 1) + .A2(1, -1) 

where.A\ = t(x + y) and.A2 = !(x - y). Thus {(I, I), (I, -I)} spans IA2; and if 

ar(l, I) + {3(1, -I) = (0,0) 
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then cd.B = 0 and a -.B = 0 whence a = .B = 0, so {(I, I), (I, -I)} is also linearly 
independent. 

EXERCISES 

5.15 Prove that the monomials I,X, ... ,Xn form a basis (the natural basis) 
for IRn[X]. 

5.16 Prove that the m x n matrices Epq described by 

{
I if i = p, j = q; 

[E ] .. = 
pq I} 0 otherwise 

form a basis (the natural basis) for Mat mxn IR. 

5.17 Prove that the diagonal n x n matrices form a subspace of Mat nxn IR and 
determine a basis of it. 

5.18 An n x n matrix all of whose diagonal entries are the same is called a 
Toeplitz matrix. Prove that the set of Toeplitz matrices is a subspace of 
Mat nxn IR and exhibit a basis for this subspace. 

5.19 Letf, g, h : IR -.. IR be the mappings given by 

f{x) = cos2 X, g{x) = sin2 x, h{x} = cos 2x. 

Consider the subspace of Diff{IR, IR) given by W = Span if, g, h}. Find 
a basis for W. 

A fundamental characterisation of bases is the following. 

Theorem 5.6 

A non-empty subset S of a vector space V is a basis of V if and only if every element 
of V can be expressed in a unique way as a linear combination of elements of S. 

Proof 

=> : Suppose first that S is a basis of V. Then V = Span S and so, by Theorem 
5.3, every x E V is a linear combination of elements of S. Now since S is linearly 
independent, only one such linear combination is possible for each x E V; for if 
L AiXi = L J1.i X i where Xi E S then L{Ai - J1.i)Xi = Ov whence each Ai - J1.i = Ov 
and therefore Ai = J1. i for each i. 

{= : Conversely, suppose that every element of V can be expressed in a unique 
way as a linear combination of elements of S. Then, by Theorem 5.3, Span S is the 
whole of V. Moreover, by the hypothesis, Ov can be expressed in only one way as 
a linear combination of elements of S. This can only be the linear combination in 
which all the scalars are OF' It follows, therefore, that S is also linearly independent. 
Hence S is a basis of V. 0 
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Example 5.25 

For i = 1, ... , n let 

Then the set {aI' ... ,an} is a basis of IAn if and only if the matrix A = [ajj]nxn is 
invertible (or, equivalently, has maximum rank n). 

To see this, let x = (XI, ... , XII) E IAII and consider the equation 

X = >'1al + A2a2 + ... + Anan. 

By equating corresponding components, we see that this is equivalent to the system 

XI = Al all + A2a21 + ... + Ananl 

X2 = Al al2 + A2a22 + ... + Anan2 

i.e. to the system 

where A = [aij]nxn' 
From these observations we see that every X E IAn can be written uniquely as a 

linear combination of a I, ••• , an if and only if the above matrix equation has a unique 
solution. This is so if and only if A' is invertible, which is the case if and only if A is 
invertible (equivalently, A has maximum rank n). 

Example 5.26 

Consider the set Seq IR of all real sequences 

of real numbers. We can make Seq IR into a real vector space in an obvious way, 
namely by defining an addition and a mUltiplication by scalars as follows: 

(an)n~1 + (bll)n~1 = (an + bn)n~l; "'., '" 
A(all)n~1 = (Aan)n~I' 

Define a sequence to be finite if there is some element am of the sequence such 
that ap = 0 for all p > m; put another way, if there are only finitely many non-zero 
elements in the sequence. 
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The set Seq! IR of all finite sequences is clearly closed under the above addition 
and multiplication by scalars and so is a subspace of Seq IR. Consider the (finite) 
sequences that are represented as follows: 

el == 1,0,0,0, .. . 

e2 == 0,1,0,0, .. . 

e3 == 0,0,1,0, .. . 

ej == 0,0,0,0, ... ,0,1,0,0, ... 
'-..,-.' 

j-) 

Clearly, every finite sequence can be expressed in a unique way as a linear combi­
nation of el> e2, e3, .... Consequently, {el> e2, e3""} forms a basis for the subspace 
Seq! IR of finite sequences. 

Note that this basis is infinite. 

EXERCISES 

5.20 Determine which of the following are bases of 1R3: 

(1) {(1,1,1),(1,2,3),(2,-1,1)}; 
(2) {(1,1,2),(1,2,5),(5,3,4)}. 

5.21 Show that 

{(I, 1,0,0), (-1, -1, 1,2), (1, -1, 1,3), (0,1, -1, -3)} 

is a basis of JR4 and express a general vector (a, b, c, d) as a linear com­
bination of these basis elements. 

5.22 Show that 

are bases for the same subspace of Mat 3 x I IR. 

Our objective now is to prove that if a vector space V has a finite basis B then 
every basis of V is finite and has the same number of elements as B. This is a conse­
quence of the following result. 

Theorem 5.7 

Let V be a vector space that is spanned by the finite set G = {VI,"" vn}. If I = 
{WI,'" , wm} is a linearly independent subset of V then necessarily m ~ n. 
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Proof 
Consider WI E I. Since G is a spanning set of V, there exist scalars). I , ... , ). n such 
that 

and at least one of the Ai is non-zero (otherwise every Ai = 0 whence WI = Ov and 
this contradicts Theorem 5.4). By a suitable change of indices if necessary, we may 
assume without loss that AI 'f: O. We then have 

\~ \~\ \~\ VI=AI WI-AI A2V2-···- A , AnVn, 

which shows that 

V= SpanG= Span{VI>V2, ... ,Vn} ~ Span{wl,v2,V3, .•• ,Vn }. 

It follows that 
V= Span {WI' V2, V3, .•• , v n }· 

Now w2 can be written as a linear combination of W" V2, ••• , V n in which at least one 
of the coefficients of the Vj is non-zero (otherwise W2 is a linear combination of WI' 
a contradiction). Repeating the above argument we therefore obtain 

V = Span{wl' W2, V3, •• ·' vn }. 

Continuing in this way, we see that if p = min {m, n} then 

V= Span{w" ... , wp , vp+" ... ' vn }. 

Now we see that m > n is impossible; for in this case p = n and we would 
have V = Span {WI> ... , wn } whence the elements Wn+I> ... , Wm would be linear 
combinations of WI, ... , Wn and this would contradict the fact that I is independent. 
Thus we conclude that m ~ n. 0 

Corollary 1 
If V has a finite basis B then every basis of V is finite and has the same number of 
elements as B. 

Proof 
Suppose that B* were an infinite basis of V. Since, clearly, every subset of a linearly 
independent set is also linearly independent, every subset of B* is linearly indepen­
dent Now B*, being infinite, contains finite subsets that have more elements than B. 
There would therefore exist a finite independent subset having more elements than 
B. Since this contradicts Theorem 5.7, we conclude that all bases of V must be finite. 

Suppose now that the basis B has n elements and let B* be a basis with n* ele­
ments. By Theorem 5.7, we have n* ~ n. But, inverting the roles of Band B*, we 
deduce also that n ~ n*. Thus n* = n and so all bases have the same number of 
elements. 0 
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Corollary 2 

If v has a finite basis then all linearly independent subsets of V are finite. 

Proof 

If V has a finite basis of n elements and if there existed an infinite independent subset 
then this would contain an independent subset of n + 1 elements, and by the above 
this is not possible. 0 

Definition 

By a finite-dimensional vector space we shall mean a vector space V that has a finite 
basis. The number of elements in any basis of V is called the dimension of V and 
will be denoted by dim V. 

Example 5.27 

The vector space IRn has dimension n. In fact, as we have seen before, {el,'" , en} 
is a basis. 

Example 5.28 

The vector space Mat mxn IR is of dimension mn. To see this, observe that if E;j is 
the m x n matrix that has 1 in the (i ,j)-th position and 0 elsewhere then 

{E;j; i= 1, ... ,m, j= 1, ... ,n} 

is a basis for Mat mxn IR. 

Example 5.29 

The vector space IRn[X] of real polynomials of degree at most n is of dimension n + 1. 
In fact, {1, X, X2 , ... , xn} is a basis for this space. 

Example 5.30 

The set V of complex matrices of the form 

forms a real vector space of dimension 6. 
In fact, V is a subspace of the real vector space Mat 2x2 C. Morover, the matrix 

[
CI! 13] [a + ib c + id] 
"'I -Q! = e + if -a - ib 

can be written as 

a [~ _~] + b [~ _~] + c [~ ~] + d [~ ~] + e [~ ~] + f[~ ~] 
and as the six matrices involved in this belong to V and are clearly linearly indepen­
dent over IR, they form a basis of the subspace that they span, which is V. 
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Example 5.31 

The set W of complex matrices of the form 

is a real vector space of dimension 4. 
In fact, W is a subspace of the real vector space Mat 2x2 C. Morover, the matrix 

[ 
01 (3] [a + ib c + id] 

-73 -Qi = -c + id -a - ib 

can be written as 

a[~ _~] +b[~ _~] +c[_~ ~] +d[~ ~] 
and as the four matrices involved in this linear combination belong to Wand are 
clearly linearly independent over IR, they form a basis of the subspace that they span, 
which is W. 

EXERCISES 

5.23 Let V be a vector space of dimension 2. If {VI, v2} is a basis of V and if 
WI, W2 E V prove that the following statements are equivalent: 

(I) Span {WI> W2} = V; 

(2) there is an invertible matrix A such that 

5.24 In the vector space IR4 let 

A = Span {(I ,2,0, I), (-1, 1, 1, I)}, 

B = Span{(O,O, I, I)}, (2,2,2,2)}. 

Determine A n B and compute its dimension. 

5.25 If V is a vector space over C of dimension n, prove that V can be regarded 
as a vector space over IR of dimension 2n. 

[Hint. Consider {VI, ... , Vn> iVI' ... ,ivn } where {VI' ... , vn } is a basis 
over C.] 

The reader will recall that the notion of linear independence was defined for a 
non-empty subset of a vector space. Now it is convenient to extend to the empty set 
o the courtesy of being linearly independent, the justification for this being that the 
condition for a set of elements to be linearly independent can be viewed as being 

satisfied 'vacuously' by 0. 
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Since we know that the smallest subspace of V is the singleton {Ov}, and since 
this is clearly the smallest subspace to contain 0, we can also regard the zero subspace 
as being spanned by 0. 

These courtesies concerning 0 mean that we can usefully regard 0 as a basis 
for the zero subspace, which we can then say has dimension O. This we shall do 
henceforth. 

We shall now establish some important facts concerning bases. 

Theorem 5.8 

Let V be a finite-dimensional vector space. If G is a finite spanning set of V and if 
I is a linearly independent subset of V such that I ~ G then there is a basis B of V 
such that Ie BeG. 

Proof 

Observe first that if I also spans V then I is a basis of V and there is nothing to prove. 
Suppose then that V 'f Span I. Then we must have leG (for otherwise I = G 

and is a spanning set of V). 
We note first that there exists gl E G\I such that gl f/:. Span I; for otherwise 

every element of G\I belongs to Span I whence V = Span G ~ Span I and we have 
the contradiction V = Span I. We then observe that I U {g I} is linearly independent; 
otherwise we have the contradiction gl E Span I. 

Now if IU {gl} spans V then it is a basis, in which case no more proof is required 
since we can take B = I U {gl}' If I U {gIl does not span V then we can repeat the 
above argument to produce an element g2 E G\ (I U {gl}) with I U {gl, g2} linearly 
independent. 

Proceeding in this way we see, since G is finite by hypothesis, that for some m 
the set B = I U {gl' 82,'" , 8m} is a basis of V with Ie B ~ G. 0 

Corollary 1 

Every linearly independent subset I of a finite-dimensional vector space V can be 
extended to form a basis. 

Proof 

By Corollary 2 of Theorem 5.7, I is finite. Take G = I U B where B is any basis of 
V. Then by the above there is a basis B* with I ~ B* ~ I U B. 0 

Corollary 2 

If V is of dimension n then every linearly independent set consisting of n elements is 
a basis of V. 

Proof 

This is immediate by Corollary 1 and Corollary 1 to Theorem 5.7. 0 



88 Basic Linear Algebra 

Corollary 3 

If S is a subset of V then the following statements are equivalent: 
(1) S is a basis; 
(2) S is a maximal independent subset (in the sense that if I is an independent 

subset with S ~ I then S = I); 
(3) S is a minimal spanning set (in the sense that if G spans V and G ~ S then 

G= S). 

Proof 

(1) => (2) : If I is independent with S ~ I then by Corollary 1 there is a basis B such 
that I ~ B. Since S is a basis, and since all bases have the same number of elements, 
we deduce that S = B = I. 

(2) => (1) : By CorolIary 1 there is a basis B with S ~ B. But B is also indepen­
dent so, by (2), we have S = B and therefore S is a basis. 

(1) => (3) : If G spans V then (recalling that 0 is independent) there is a basis B 

with 0 ~ B ~ G. If G ~ S then B ~ S and both are bases. Again since bases have 
the same number of elements, we deduce that B = G = S. 

(3) => (1) : There is a basis B with 0 ~ B ~ S. But B also spans V so, by (3), 
we have B = S and so S is a basis. 0 

Corollary 4 

If V is of dimension n then every subset containing more than n elements is linearly 
dependent. No subset containing fewer than n elements can span V. 

Proof 

This is immediate from Corollary 3. 0 

As for subspaces of finite-dimensional vector spaces, we have the following con­
sequence. 

Theorem 5.9 

Let V be a finite-dimensional vector space. If W is a subspace of V then W is also 
of finite dimension, and 

dim W~ dim V. 

Moreover, we have 
dim W= dim V *=> W= V. 

Proof 

Suppose that V is of dimension n. If I is a linearly independent subset of W then, 
by Theorem 5.7, I has at most n elements. A maximal such subset B is then, by 
Corollary 3 of Theorem 5.8, a basis of W. Hence W is also of finite dimension, and 
dim W~ dim V. 
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Finally, if dim W = dim V = n then B is a linearly independent subset of V 
having n elements whence, by Corollary 2 of Theorem 5.8, B is a basis of V. Hence 
W = Span B = V. 0 

Example 5.32 

Consider the real vector space IA2. This is of dimension 2 and so if W is a subspace 
of IA2 then by Theorem 5.9 the dimension of W is either 0, 1, or 2. 

If dim W = ° then we have W = {(O, On. 
If dim W = 2 then, by Theorem 5.9, we have W = IA2. 
If dim W = 1 then W has a basis of a single non-zero element (x, y), so that 

W = {),(x,y) ; ), E IA} = {(Ax, ),y); ), E IA}, 

which is none other than the line passing through the origin (0, 0) and the point (x, y). 

Example 5.33 

Arguing in a similar way to the above, we can show that the subspaces of IA3, corre­
sponding to the dimensions 0,1,2,3, are: 

the zero subspace {(O, 0, On; 
any line through the origin; 
any plane through the origin; 
IA3 itself. 

Example 5.34 

If V is a vector space with dim V = 10 and X, Yare subspaces of V with dim X = 8 
and dim Y = 9 then the smallest possible value of dim (X n Y) is 7. 

To see this, begin with a basis {VI' ... , vp } of X n Y and, using Corollary 1 of 
Theorem 5.8, extend this on the one hand to a basis 

{VI"'" vp' Vp+I,···, VB} 
of X, and on the other hand to a basis 

of Y. Observe that none of W p+\' ••. , W9 belongs to X (for otherwise it belongs to 
X n Y, a contradiction), and so 

{VI,"" vp' vp+l, "', VB, Wp+I "'" W9} 

is linearly independent (otherwise one of the vectors wp+I,'" , W9 would belong to 
Span {VI,'" , VB} = X, a contradiction). Since dim V = 10, this set contains at most 
10 elements. For this we must have p ~ 7. 

To see that this lower bound of 7 is attainable, consider V = IA IO and take for X 
the subspace consisting of those lO-tuples whose first and third components are 0, 
and for Y the subspace consisting of those 10-tuples whose second component is 0. 
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EXERCISES 

5.26 Consider the subset of IR4 given by 

X = {(2, 2,1,3), (7, 5, 5, 5), (3,2,2,1), (2,1,2, I)}. 

Find a basis of Span X and extend this to a basis of IR4. 

5.27 Find a basis for Mat 3x 1 IR that contains both the vectors 

5.28 Find a basis of 1R3[X] containing the polynomials 1 + X + X2 and X - X3. 

SUPPLEMENTARY EXERCISES 

5.29 For each of the following statements give a proof if it is true and a 
counter-example if it is false: 

(1) If V is a vector space over a field F then a non-empty subset W of V 
is a subspace of V if and only if 

(Vx,y E W)(V).,p. E F) Ax + p.y E W. 

(2) The subspace {(x, x, x); x E IR} of IR3 is of dimension 3. 

(3) Every spanning set contains a basis. 
(4) The subspace of IR3 spanned by {(I, 2,1), (2, 2, I)} is 

(a) {(a + 2b, 2a + 2b, a + b) ; a,b E IR}. 

(b) {(x + y, 2y, y) ; X,y E IR}; 

(5) If P, Q are subspaces of a finite dimensional vector space then 
(a) P ~ Q implies dim P::;;; dim Q; 

(b) dim P::;;; dim Q implies P ~ Q. 
(6) If {x, y, z} is a basis of 1R3 and w is a non-zero vector in IR3 then 
{w + x, y, z} is also a basis of IR3. 

5.30 Determine whether or not the following subsets of IR4 are subspaces: 

(1) {(a, b, c, d); a + b = c + d}; 

(2) {(a,b,c,d); a + b = I}; 

(3) {(a,b,c,d); a2 +b2 =0}; 

(4) {(a,b,c,d); a2 +b2 = I}. 

5.31 Determine whether or not the following subsets of IR4 are subspaces: 

(I) {(x+2y,0,2x-y,y); x,YEIR}; 

(2) {(x+2y,x,2x-y,y); x,YEIR}. 
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5.32 Prove that the subset 

{(3 - i, 2 + 2i, 4), (2,2 + 4i, 3), (1 - i, -2i, -I)} 

is a basis of the complex vector space «;3. 
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Express each of the vectors (1,0,0), (0, 1,0), (0,0,1) as a linear com­
bination of these basis vectors. 

5.33 Find a basis for the solution space of the homogeneous system 

[1 2 2 1 -1] [Xl [0] ° 2 2 -1 -2 Y = ° 
2621-4 Z 0' 

1 4 ° ° -3 t ° w 

5.34 Let V be a finite-dimensional vector space. If A, Bare subspaces of V, 
prove that so also is the set 

A + B = {a + b; a E A, bE B}. 

Prove further that if C is any subspace of V such that A ~ C and B ~ C 
then A + B ~ C (in other words, A + B is the smallest subspace of V that 
contains both A and B). 

If L, M, N are subspaces of V prove that 

L n [M + (L n N)] = (L n M) + (L n N). 

Give an example to show that in general 

L n (M + N) :j: (L n M) + (L n N). 

5.35 Let n be a positive integer and let En be the set of mappingsf : IR -> IR 
that are given by a prescription of the form 

n 
f(x) = ao + Z(ak cos kx + bk sin kx) 

k=1 

where all bk E IR for each k. 

Prove that En is a subspace of Map(lR, IR). 

Iff E En is the zero mapping, prove that all the coefficients ak, bk must 
beO. 

[Hint. Proceed by induction. For this, find a prescription for D2f + n2f.] 

Deduce that the 2n + 1 functions 

xt-+1, xt-+coskx, xt-+sinkx (k=l, ... ,n) 

form a basis for En' 
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5.36 Let a, (3 E IR with a "f (3 and let r, s be fixed positive integers. Show 
that the set of rational functions I : IR -+ IA given by a prescription of 
the fonn 

+ + + ,+s-( 
I(x) = ao a(x ... a,+s_(x 

(x - a )'(x - (3)s 

where each ai E lA, is a subspace of Map (lA, IA) of dimension r + s. 
[Hint. Show that the functions 

Xi 
X 1-+ J. (x) = ~---,--,--.,-

I (x - a)'(x - (3)s 

for i = 0, ... , r + s -1 constitute a basis.] 

Show also that if 8i and hj are given by 

then 

is also a basis. 

[Hint. It suffices to prove that B is independent.] 

5.37 For each positive integer k let/" : IR -+ IA be given by 

I,,(x) = exp rkx 

where each r" E IR. Prove that (f;)( ~; ~ n is linearly independent if and 
only if r(, ... , rn are distinct. 

5.38 Let Po(X),p(X), ... ,Pn(X) be polynomials in IAn [X] such that. for 
each i. the degree of Pi(X) is i. Prove that 

{Po(X),p(X), ... , Pn(X)} 

is a basis of IAn[X]. 

5.39 A net over the closed interval [0,1] of IR is a finite sequence (ai)O'::i.::n+( 
'" '" such that 

A step function on the semi-open interval [0, 1[ is a map/: [0,1[-+ IA 
for which there is a net (a;)O'::i.::n+( over [0,1] and a finite sequence 

'" '" 
(b;)O~i~n such that 

(\Ix E [a;,ai+(D I(x)::; bi' 

Sketch a picture of a step function. 

Show that the set E of step functions on [0, 1 [ is a vector space. 
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Show also that a basis of E is the set of functions ek : [0, 1 [~ IR given 
by 

e,{xl = {~ ifO:(: x < k; 

if k :(: x < l. 

A piecewise linear function on [0, 1 [ is a map f : [0, 1 [~ IR for which 

there is a net (ai)O~i~n+1 and finite sequences (bi)O~i~n' (Cj)O~j,,;;n such 
that 

f(x) = bjx + Cj. 

Sketch a picture of a piecewise linear function. 

Show that the set F of piecewise linear functions on [0, 1 [ is a vector 
space. 

If G is the subset of F consisting of those piecewise linear functions g 
that are continuous with g(O) = 0, show that G is a subspace of F. 

Show also that a basis of G is the set of functions gk : [0, I [~ IR given 
by 

ifO:(:x<k; 

if k:(: x < l. 

Show finally that every f E F can be written uniquely in the form g + e 
where g E G and e E E. 

ASSIGNMENT EXERCISES 

(1) By a magic matrix we mean a real square matrix in which all row sums, all 
column sums, and both diagonal sums are equal to some value (J. 

If M = [mijhx3 is magic, prove that (J = 3m22' 
Deduce that, given a, b, C E IR there is a unique 3 x 3 magic matrix M(a, b, c) 

such that 

m22=a, mll=a+b, m31=a+c. 

Show that {M(a,b,c); a,b,c E IR} is asubspaceofMat3x31R and that 

B = {M(I,O,O),M(O, 1,0),M(0,0, In 

is a basis of this subspace. 
By a pseudomagic matrix we mean a real square matrix in which all row sums 

and all column sums are equal to some value (J (no requirement being made about 
the diagonal sums). 

Prove that a matrix A is pseudomagic if and only if AJ = J A = (JJ where J is the 
matrix all of whose elements are 1. 
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Deduce that if A, Bare pseudomagic matrices of the same size then so also are 
xA + yB andAB. 

In contrast, provide an example to show that the product of two magic matrices 
need not be magic. 

(2) If A is a non-empty subset of IR show that Map (A, IR) is a subspace of the 

vector space Map (IR, IR). If, for each a E A, the mapping fa : A -+ IR is given by 

{ I if x = a; 
fa(x) = 0 if x i a, 

prove that {la ; a E A} is a basis of Map(A, IR). 

(3) Let V be the real vector space of all polynomial functions f : IR -+ IR of 
degree at most 2, i.e. functions of the form 

f(x) = ao + a.x + a2x2 

where ao, a., a2 E IR. If r is a fixed real number define f. '/2'/3 : IR -+ IR by the 
prescriptions 

f.(x) = 1, f2(X) = X + r, fJ(x) = (x + rf 

Prove that B = {I. ,h,fJ} is a basis for V. 
Iff: IR -+ IR is given by 

f(x) = ao + a.x + a2x2, 

express f as a linear combination of the elements in B. 

(4) Let F be the vector space of infinitely differentiable functions f : C -+ C 
and let Pn be the subspace consisting of the complex polynomial functions of degree 
at most n. For each a E C define 

Pn,Q = {eQZp(z) ; p(z) E Pn}· 

Show that Pn,Q is a subspace of F and that 

i 
B={eQZkT; k=O, ... ,n} 

is a basis of Pn,Q' 
If D denotes the differentiation mapping, prove that 

V(e-Qzf) = e-QZ{D - a idlY 



6 
Linear Mappings 

In the study of any algebraic structure there are two concepts that are of paramount 
importance. The first is that of a substructure (i.e. a subset with the same type of 
structure), and the second is that of a morphism (i.e. a mapping from one structure 
to another of the same kind that is 'structure-preserving'). 

So far, we have encountered the notion of a substructure for a vector space; this is 
called a subspace. In this chapter we shall consider the notion of a morphism between 
vector spaces, i.e. a mapping from one vector space to another that is 'structure­
preserving' in the following sense. 

Definition 

If V and W are vector spaces over the same field F then by a linear mapping (or 
linear transformation) from V to W we shall mean a mapping f : V -+ W such that 

(1) ('v'x,y E V) f(x + y) = f(x) + f(y); 
(2) ('v'x E V)('v'>' E F) f(h) = V(x). 

• Iff: V -+ W is linear then V is sometimes called the departure space and W 
the arrival space off. 

Example 6.1 

The mappingf: IR2 -+ IR3 given by 

f( a, b) = (a + b, a - b, b) 

is linear. In fact, for all (a, b) and (ai, b') in IR2 we have 

f((a, b) + (ai, b'») = f(a + ai, b + b') 

= (a + a' + b + b' , a + a' - b - b' , b + b') 

= (a + b, a - b, b) + (a' + b' , a' - b' , b') 

= f(a,b) + f(a',b' ) 
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and, for all (a, b) E IA2 and all A E lA, 

Example 6.2 

I{A(a,b)) = I(Aa,Ab} 

= (Aa + Ab, Aa - Ab, Ab) 

= A(a+b,a-b,b) 

= A/(a,b). 

The mapping pr i : IAn -+ IA described by 

pri(xl,···,Xn) = Xi 

(i.e. the mapping that picks out the i-th coordinate) is called the i·th projection of 
IAn onto IR. It is readily seen that (1) and (2) above are satisfied, so that pr i is linear. 

Example 6.3 

Consider the differentiation map D : IAn[X] -+ IAn[X] given by 

D(ao + alX + ... + anxn) = al + 2a2X + ... + nanXn-l. 

This mapping is linear; for if p(X) and q(X) are polynomials then we know from anal­
ysis that D(P(X) + q(X») = Dp(X) + Dq(X) and that, for every scalar A, D{Ap(X») = 
A Dp(X). 

EXERCISES 

6.1 Decide which of the following mappings I : IA3 -+ IA3 are linear: 

(1) I(x,y,z) = (y,z,O); 
(2) I(x,y,z} = (z,-y,x); 
(3) I(x, y, z) = (Ix I. -Z, 0); 
(4) I(x,y,z} = (x -l,x,y); 

(5) I(x, y, z) = (x + y, z, 0); 

(6) I(x,y,z) = (2x,y -2,4y). 

6.2 Let B E Mat nxn IA be fixed and non-zero. Which of the following map­
pings TB : Mat nxn IA -+ Mat nxn IA are linear? 

(1) TB(X) = XB -BX; 
(2) TB(X) = XB2 + BX; 
(3) TB(X} = XB2 _BX2. 

6.3 Which of the following mappings are linear? 
(I) I: IRn[X] -+ ~3[X] given by /(P{X») = p(O)X2 + Dp(O)X3; 

(2) I: IAn [X] -+ IRn+I[X] given by 1{P(X») = p(O) + Xp(X); 
(3) I: IAn[X] -+ IAn+I[X] given by 1{P(X») = 1 + Xp(X). 
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6.4 Let A be a given real m x n matrix. Prove that the mapping 

fA: MatnxllR ~ MatmxllR 

described by fA (x) = Ax is linear. 

6.5 Let I: IRnlX] ~ IR be the integration map defined by 

1(P(X)) = 11 p(X). 

Prove that I is linear. 
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6.6 For an m x n matrix A letf(A) be the Hermite form of A if A ::f 0, and 
letf(O) = 0. Isf linear? 

The following result contains two important properties of linear mappings that 
will be used constantly in what follows. 

Theorem 6.1 

If the mapping f : V -+ W is linear then 

(I) f(Ov) = Ow; 
(2) (\:Ix E V) f(-x) = -f(x). 

Proof 

(I) We havef(Ov) = f(OFOV) = OFf(Ov) = Ow. 
(2) Using (1) we have, for every x E V, 

f(x) + f( -x) = f[x + (-x)] = f(Ov) = Ow 

from which the result follows on adding -f(x) to each side. 0 

EXERCISES 

6.7 Let B E Mat nxn IR be fixed and non-zero. Prove that the mapping TB : 
Mat nxn IR ~ Mat nxn IR given by 

TB(A) = (A + B)2 - (A + 2B)(A - 3B) 

is linear if and only if B2 = O. 

We shall now consider some important subsets that are associated with linear 
mappings. For this purpose we introduce the following notation. 

If f : V ~ W is linear then for every subset X of V we define f~ (X) to be the 
subset of W given by 

r(X) = {!(x) ; x EX}; 

and for every subset Y of W we define f+- (Y) to be the subset of V given by 

r(Y) = {x E V; f(x) E Y}. 

We often call t-.. (X) the direct image of X under f, and f+- (Y) the inverse image of 

Yunderf· 
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• The reader should be warned that this is not 'standard' notation, in the sense 
that most authors write f(X} for F""'(X}, andrl (Y) for r-(Y}. We introduce 
this notation in order to reserve the notation r l as the standard notation for 
the inverse of a bijection. 

One advantage that this non-standard notation has to offer is that it gives a 
visually appealing reminder thatf-+ sends subsets of V to subsets of W, and 
r- lifts back subsets of W to subsets of V. 

EXERCISES 

6.8 Consider the differentiation map D : 1Rn[X] -+ 1Rn[X]. Describe the sets 
D-+(IRn[X]) and D+--(O}. 

6.9 Prove that f-+ = f-+ 0 f+-- 0 f-+ and that f .... = f .... 0 f-+ 0 f ..... 

The mappingsf-+ andf .... are each inclusion-preserving in the sense that 

(a) Xl ~ X2 9 f-+(Xd ~ f-+(X2}· 

For,ifyEf-+(Xl}theny=f(Xl}whereXI EXI ~X2' 

(b) Yl ~ Y2 9 f+--(Yd ~ f .... (Y2}. 
For, if x E f .... (Yl} thenf(x} E Yl ~ Y2. 

Moreover, each of these mappings carries subs paces to subspaces: 

Theorem 6.2 
Let f : V -+ W be linear. If X is a subspace of V then f-+(X} is a subspace of W; 
and if Y is a subspace of W then f+-- (Y) is a subspace of v. 

Proof 
Observe first that if X is a subspace of V then we have Ov E X and therefore Ow = 
f(Ov} E f-+(X}. Thusf-+(X} " 0. 

If now Yl, Y2 E f-+(X} then Yl = f(Xl} and Y2 = f(x2} for some Xl, X2 E X. 
Consequently, since X is a subspace of V, 

Yl + Y2 = f(Xl} + f(X2} = f(XI + X2} E r(X}; 

and, for every scalar A, 

AYI = V(Xl} = f(h l) E r(X). 

Thusf-+(X} is a subspace ofW. 
Suppose now that Y is a subspace of W. Observe thatf(Ov} = Ow E Y gives 

Ov E f .... (Y}, and therefore f+--(Y} " 0. 
IfnowxJ,x2 Ef+--(Y}thenf(xl},/(X2} E Yandtherefore 

f(xJ + X2} = f(Xl} + f(x2} E Y 
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whence x I + X 2 E f+- ( Y); and, for every scalar )" 

f(),xl} = V(XI} E Y 

whence),xl E f+-(Y}. Thusf+-(Y) is a subspace of V. 0 

EXERCISES 
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6.10 Show that the subset X of polynomials in IR2n[X] all of whose odd co­
efficients a2i+1 are zero forms a subspace of IR2n[Xl Describe D->(X} 
and D+-(X). 

6.11 Show that the mapping f : IR2 --+ IR2 given by 

f(x,y)=(x+y,x-y} 

is linear. For each subspace X of IR2 describef->(X} andf+-(X). 

6.12 Let f : V --+ W be linear. If X is a subspace of V and Y is a subspace of 
W, prove that 

f->[X nf+-(Y)] = r(X) n Y. 

Deduce that 

Of particular importance relative to any linear mapping f : V --+ Ware the 
biggest possible direct image and the smallest possible inverse image. 

The former is f->(V); it is called the image (or range) of f and is denoted by 
Imj. 

The latter isf+-( {Ow}); it is called the kernel (or null-space) off and is denoted 
by Ker j. 

Pictorially, these sets can be depicted as follows: 

Imf 

Kerf 

V W 
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Example 6.4 

Consider the i-th projection prj: IAn --. IR. Recall that prj(x., ... , xn) = Xj. The 
image of prj is therefore the whole of IR; and the kernel of prj is the set of n-tuples 
whose i -th component is O. 

Example 6.5 

Consider the differentiation map D : IRn[X] --. IRn[X]. Its image is the set of all 
polynomials of degree at most n - 1; in other words, it is IRn- 1 [X]. The kernel of D 
is the set of polynomials whose derivative is zero; in other words it is IR. 

Example 6.6 

If A is a given real n x n matrix, consider the linear mapping 

fA: MatnxllR --. MatnxllR 

described by fA (x) = Ax. The image of fA consists of all n x 1 column matrices 

y = [;:J fo' which there exists x = [}:J such that Ax = y; i.e. the set of all y such 

that there exist Xl, ••• , X n with 

Y = xlal + ... + xnan· 

In other words, 1m fA is the subspace of Mat nx 1 IR that is spanned by the columns of 
A. 

As for the kernel off A' this is the subspace ofMat nx1 IR consisting of the column 
matrices x such that Ax = 0; i.e. the solution space of the system Ax = O. 

Example 6.7 

Consider the subspace of Map(IR, IR) that is given by 

V = Span { sin, cos} , 

i.e. the set of all real functions f given by a prescription of the form 

f(x) = a sin x + bcos x. 

Let I: V --. IR be given by 

l(f) = l1r f. 
Using basic properties of integrals, we see that I is linear. 

Now iff(x) = a sin x + b cos x thenf E Ker I if and only if 

l 1r
(asin x + bcos x)dx = O. 

This is the case if and only if a = O. Consequently, we see that Ker I = Span { cos}. 
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Example 6.8 

Consider the mapping I: 1R4 ~ 1R3 given by 

I(a,b,c,d) = (a + b,b -c,a + d). 

Since 

(a + b, b - c, a + d) = a ( 1 , 0, 1) + b( 1, 1, 0) + c (0, -1 , 0) + d (0, 0, 1) 

we see that 

1m I = Span {(I, 0,1), (1, 1,0), (0, -1,0), (0, 0, I)}. 
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To find a basis for 1m I. proceed as follows. Observe that 1m I is the subspace 
spanned by the rows of the matrix 

[1 0 1] 1 1 0 
A = 0 -1 0 . 

001 

The Hermite form of A is 

[1 0 0] 010 
o 0 1 . 
000 

Since the rows of this matrix span the same subspace. and since they are linearly 
independent, we deduce that a basis for 1m I is 

{(I, 0,1), (1,1,0), (0, -1, O)}. 

EXERCISES 

6.13 Find 1m I and Ker I when I : IR3 ~ IR3 is given by 

I(a,b,c) = (a+b,b+c,a+c). 

6.14 If I: 1R2 ~ IR2 is given by I(a, b) = (b, 0), prove that 1m I = Ker I. 

6.15 Give an example of a linear mapping for which 1m I c Ker I; and an 
example where Ker I c 1m f. 

6.16 Let/: IRs ~ IR4 be given by 

I( a, b, c, d, e) = (a - c + 3d - e, a + 2d - e, 2a - c + 5d - e, -c + d). 

Find bases for 1m I and Ker f. 
6.17 Let/: IR2[X] ~ IR3[X] be given by 

1(P(X») = X2 Dp(X). 

Prove that I is linear and determine bases for 1m I and Ker I. 
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6.18 Consider the subspace A of IFr given by 

A = {(x,O,z,O); x,Z E IR}. 

Determine linearmappingsf,g: IR4 -+ IR4 such that 

(1) Imf= A; 

(2) Ker g = A. 

Definition 

A linear mapping f : V -+ W is said to be surjective if 1m f = W (in other words, 
if every element of W is the image under f of some element of V); and injective if 
f(x) :f f(y) whenever x :f y (in other words, iff carries distinct elements to distinct 
elements). We say thatf is bijective if it is both injective and surjective. 

Example 6.9 

The i-th projection prj : IRn -+ IR is surjective but not injective. 

Example 6. 10 

The linear mappingf: IR2 -+ IR3 given by 

f(x, y) = (y, 0, x) 

is injective but not surjective. 

Example 6.11 

The differentiation map D : IRn[X) -+ IRn[X) is neither injective nor surjective. 

From the above definition, a linear mapping f : V -+ W is surjective if 1m f is 
as large as it can be, namely W. Dually, we can show thatf : V -+ W is injective if 
Ker f is as small as it can be, namely {Ov}: 

Theorem 6.3 

If f : V -+ W is linear then the following statements are equivalent: 
( 1) f is injective; 
(2) Kerf= {O}. 

Proof 

(1) * (2) : Suppose thatf is injective. Thenf is such that 

x :f y * f(x) :f f(y) 

or, equivalently, 

f(x) = f(y) * x = y. 

Suppose now that x E Ker f. Then we have 

f(x) = Ow = f(Ov) 
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whence we see that x = Ov and consequently Ker f = {o}. 
(2) =? (1) : Suppose that Ker f = {O} and letf(x) = f(y). Then 

f(x - y} = flx + (-y)] = f(x) + f( -y) = f(x) - f(y) = Ow 

so that x - y E Ker f = {Ov} and hence x = y, i.e.f is injective. 0 

Example 6.12 

The linear mappingf : IR3 --+ IR3 given by 

f(x, y, z) = (x + z, x + y + 2z, 2x + y + 3z) 

is neither surjective nor injective. 
In fact, we have that (a, b, c) E 1m f if and only if the system of equations 

x + z = a 
x + y + 2z = b 

2x + y + 3z = c 

is consistent. The augmented matrix of the system is 

[i ! ; !] 
and this has Hermite form 

[6 ~ ~ b ~ a ]. 
o 0 0 c-b-a 
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We deduce from this that (a, b, c) E 1m f if and only if c = a + b, whencef is not 
surjective. 

Now (x, y, z) E Ker f if and only if 

x + z = 0 
x + y + 2z = 0, 

2x + y + 3z = 0 

which is the associated homogeneous system of equations. By Theorem 6.3, for 
Ker f to be the zero subspace we require this system to have a unique solution 
(namely the trivial solution (0,0,0»). But, from the above Hermite form, the coeffi­
cient matrix has rank 2 and so, by Theorem 3.16, non-trivial solutions exist. Hence 
f is not injective. 

EXERCISES 

6.19 Show that the linear mapping f: IR3 --+ IR3 given by 

f(x, y, z) = (x + y + z, 2x - y - z, x + 2y - z) 

is both surjective and injective. 
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6.20 Prove that if the linear mappingf : V -+ W is injective and {VI,"', vn } 

is a linearly independent subset of V then {f( VI), ... J( vn )} is a linearly 
independent subset of W. 

In the case of finite-dimensional vector spaces there is an important connection 
between the dimensions of the subspaces 1m f and Ker f. 

Theorem 6.4 

[Dimension Theorem] Let V and W be vector spaces of finite dimension over a field 
F. If f : V -+ W is linear then 

dim V = dim Imf + dim Ker f. 

Proof 

Let {WI>"" wm } be a basis oflmf. and let {VI>"" vn } be a basis ofKer f. Since 
each W; E 1m f. we can choose vi, ... , v:. E V such thatf(vj) = wi for i = 1, ... , m. 
We shall show that 

is a basis of V. whence the result follows. 
Suppose that x E V. Sincef(x) E 1m f there exist A I,'" , Am E F such that 

m m m m 
f(x) = L AiWi = L AJ(Vj) = Lf(A;vi) = f( L AiVi). 

i=1 i=1 i=1 ;=1 
It follows that 

m 

X - L Aivi E Ker f 
j=1 

and so there exist J.l.1 , ... , J.I. n E F such that 
m n 

X-LAjvi= LJ.l.jVj' 
j=1 j=1 

Thus every x E V is a linear combination of vi, ... , v:., v I> ••• , V n and so 

V = Span {vt, ... , v~, vl>"" vn}. 

Suppose now that 
m n 

(1) LAjvi + LJ.l.jVj = O. 
;=1 j=1 

Then we have 
m n 

L Ajvi = - L J.l.jVj E Ker f 
;=1 j=1 

and consequently 
m m m 

L AjW; = L AJ(Vj) = f( L Ajvi) = 0 
;=1 ;=1 ;=1 



6. Linear Mappings 105 

whence).1 = ... = ).m = 0 since {WI, ... , wm } is a basis of 1m f. It now follows 
n 

from (1) that L J.LjVj = 0 whence J.LI = ... = J.Ln = 0 since {VI, ... , vn } is a basis of 
j=\ 

Ker f. Thus we see that the spanning set 

{vi, ... , v~, VI,"" vn } 

is also linearly independent and is therefore a basis of V. 0 

Definition 

Iff is a linear mapping then dim 1m f is called the rank off; and dim Ker f is called 
the nullity of f. 

With this terminology, the dimension theorem above can be stated in the form: 

rank + nullity = dimension of departure space. 

Example 6.13 

Consider pr\ : IR3 -. IR given by pr\ (x, y, z) = x. We have 1m prl = IR which is of 
dimension 1 since {I} is a basis of the real vector space IR; so prl is of rank 1. Also, 
Ker pr\ is the y, z-plane which is of dimension 2. Thus prl is of nullity 2. 

EXERCISES 

6.21 Let V be a vector space of dimension n ~ 1. Iff: V -. V is linear, prove 
that the following statements are equivalent: 

(1) Imf= Kerf; 

(2) f:f o,.f = 0, n is even, and the rank off is tn. 
6.22 Give an example of a vector space V and a linear mapping f : V -. V 

with the property that not every element of V can be written as the sum 
of an element of 1m f and an element of Ker f. 

6.23 In the vector space of real continuous functions let 

W = Span {sin, cos}. 

Determine the nullity of t9 : W -+ IR when t9 is given by 

(1) t9(f) = 111 f; 

[2'1f 
(2) t9(f) = Jo f; 

(3) {)(f) = Df(O). 
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6.24 In the vector space of real continuous functions let 

W = Span{f,g,h} 

where 
f(x) = eX, g(x) = e-x , hex) = x. 

Let T : W -+ W be the linear mapping given by 

T(19) = D219 -19. 

Determine the rank and nullity of T. 

As an application of the dimension theorem, we now establish another result that 
is somewhat surprising. 

Theorem 6.5 

Let V and W be vector spaces each of dimension n over a field F. If f : V -+ W is 
linear then the following statements are equivalent: 

(1) f is injective; 
(2) f is surjective; 
(3) f is bijective; 

(4) f carries bases to bases, in the sense that if {VI,'" , vn} is a basis of V then 

{f(VI),'" J(vn}} is a basis of W. 

Proof 

(l) => (3) : Suppose thatf is injective. Then Ker f = {O} and so dim Ker f = O. 
By Theorem 6.4, it follows that 

dim 1m f = n = dim V = dim W. 

It now follows by Theorem 5.9 that 1m f = Wand so f is also surjective, and hence 
is bijective. 

(2) => (3) : Suppose thatf is surjective. Then 1m f = Wand so, by Theorem 
6.4, 

dim Imf= dim W= n = dim V= dim Imf + dim Kerf 

whence dim Ker f = O. Thus Ker f = {O} and so, by Theorem 6.3,f is also injec­
tive, and hence is bijective. 

(3) => (1) and (3) => (2) are clear. 
(1) => (4) : Suppose thatf is injective. If {VI, ... , vn} is a basis of V then the 

n n 

elements f(VI),'" J(vn) are distinct. If now L AJ(V;) = 0 then f( L A;V;) = 0 
;=1 ;=1 

n 
and so, since Kerf = {O}, we have LAjVj = 0 and hence Al = ... = An = O. 

;=1 
Thus {f(VI),'" J(vn}} is linearly independent. That it is now a basis follows from 
Corollary 2 of Theorem 5.8. 
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(4) => (2) : Since every linear combination of I(VI),'" ,j(vn ) belongs to 1m I, 
it is clear from (4) that 1m I = Wand so I is surjective. 0 

Definition 

A bijective linear mapping is called a linear isomorphism, or simply an isomor­
phism. We say that vector spaces V, Ware isomorphic, and write V ~ W, if there 
is an isomorphism I : V -t W. 

Example 6. 14 

LetA = {(x, y, 0) ; x, y E IR} be the x, y-planein IR3, and letB = {(x, 0, z) ; x, z E 
IR} be the x, z-plane. Consider the mapping I : A -t B given by 

l(x,y,O) = (x,O,y). 

Clearly, I is linear and bijective. Thus I is an isomorphism and so A ~ B. 

This example is a particular case of the following general situation. 

Theorem 6.6 

Let V be a vector space 01 dimension n ~ lover a field F. Then V is isomorphic to 
the vector space Fn. 

Proof 

Let {VI' ... , vn } be a basis of V. Consider the mapping I : V -t Fn given by the 
prescription 

n 
Since for every x E V there are unique scalars AI> •.. , A n such that x = L A i Vi' it is 

i=1 
clear that I is a bijection. It is clear that I is linear. Hence I is an isomorphism. 0 

Corollary 

If V and Ware vector spaces 01 the same dimension n over F then V and Ware 
isomorphic. 

Proof 

There are isomorphisms Iv : V -t F" and Iw : W -t F". Since the inverse of 
an isomorphism is clearly also an isomorphism, so then is the composite mapping 
!wI 0 Iv : V -t W. 0 

EXERCISES 

6.25 Exhibit an isomorphism from IRn[X) to IRn+l. 
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6.26 Iff: IA -+ IA is linear and -8 : 1A2 -+ 1A2 is defined by 

-8{x,y) = (x, y - f{x»), 

prove that -8 is an isomorphism. 

Our next objective is to prove that a linear mapping enjoys the property of being 
completely and uniquely determined by its action on a basis. This is a consequence 
of the following result. 

Theorem 6.7 
Let V and W be vector spaces over a field F. If {VI' ... , vn} is a basis of V and 
WI, ••• , Wn are elements of W (not necessarily distinct) then there is a unique linear 
mapping f : V -+ W such that 

(i= l, ... ,n) f{vJ = wi' 

Proof 
n 

Since every element of V can be expressed uniquely in the form L ,\v;. we can 
;=1 

define a mapping f : V -+ W by the prescription 
n n 

f( L A;V;) = L A;Wj, 
;=1 ;=1 

i.e. taking x as a linear combination of the basis elements, define f( x) to be the same 
linear combination of the elements wI, ••• , W n' 

It is readily verified thatf is linear. Moreover, for each i, we have 
n n 

f(v;) = f( L OijVj) = L O;jWj = Wi' 
j=1 j=1 

As for the uniqueness, suppose that g : V -+ W is also linear and such that 
n 

g(v;) = Wi for each i. Given x E V, say x = L AjVj, we have 
;=1 

n n n 

g(x) = g( L A;V;) = L A;g{VJ = L AjWj = f(x) 
;=1 ;=1 j=1 

whence g = f. 0 

Corollary 1 
A linear mapping is completely and uniquely determined by its action on a basis. 

Proof 
If f : V -+ W is linear and B = {VI, ... , vn} is a basis of V let w; = f(v;) for each 
i. Then by the above f is the only linear mapping that sends Vi to Wi' Moreover, 
knowing the action of f on the basis B, we can compute f(x) for every x; for x = 
n n 

L A;Vj givesf{x) = L AJ(V;). 0 
i=1 i=1 
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Corollary 2 

Two linear mappings I, g : V -+ Ware equal if and only if they agree on any basis 
olV. 

Proof 

If/(v;) = g(Vi) for every basis element Vi then by the above uniqueness we have that 
I=g. 0 

Example 6. 15 

Consider the liasis {(I, 1,0), (I, 0, I), (0, I, I)} of IR3. If I: IR3 -+ IR2 is linear and 
such that 

1(1,1,0) = (1,2), 1(1,0,1) = (0,0), 1(0,1,1) = (2,1), 

then we can determine 1 completely. 
In fact, we have 

and therefore 

Likewise, 

give 

(1,0,0) = !(1, 1,0) + !(1,O,I) - HO, 1,1) 

1(1,0,0) = !/(1, 1,0) + ~/(1,0, 1) - !/(O,I, 1) 

= Hl,2) + HO,O) - t(2,I) 

= (-!,!>. 

(0,1,0) = t(I,I,O) - t(1,O,I) + HO,I,I), 

(0,0,1) = -Hl,I,O) + Hl,O,I) + HO,I,I) 

1(0, 1,0) = Hl,2) + H2, 1) = (!,!) 
1(0,0,1) = -Hl,2) + H2,1) = (!,-t)· 

Consequently, 1 is given by 

I(x,y,z) = flx(l,O,O) + y(O,I,O) + z(O,O, 1)] 

= x/(l,O,O) + Y/(O,I,O) + if(O,O,l) 

= x(-t,~) + y(!,!) + z(t,-t) 

= (t(-x+3y+z), Hx+3y-z»). 

Note that, alternatively, we could first have expressed (x, y, z) as a linear com­
bination of the given basis elements by solving an appropriate system of equations, 
then using the given data. 

Finally, let us note that Theorem 6.5 is not true for vector spaces of infinite di­
mension: 
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Example 6.16 

Let v = Seq! IR be the infinite-dimensional vector space of finite sequences of real 
numbers described in Example 5.26. Since every element of V is a (finite) linear 
combination of basis elements, we can define a linear mapping f : V -+ V by speci­
fyingf(ej) for the basis elements e), e2, e3, ... and extending to all of V by linearity. 

Consider then the definition 

f(e;) = { 
0 if i is odd; 

e I . if i is even. 
I' 

Since f(el) = 0 = f(e3) we see thatf is not injective. But, given any basis element 
ell we have ell = f(e211) E 1m f, so the subspace spanned by these elements (namely, 
the whole of V) is contained in 1m f. Hence 1m f = V and so f is surjective. 

If we define g : V -+ V by specifying g(ei) = e2i for every i then we obtain an 
injective linear mapping that is not surjective. 

EXERCISES 

6.27 Showthat{(I,I,I),(1,2,3),(I,I,2)}isabasisofIR3• Iff: IR3 -+ IR3 

is linear and such that 

f(l, 1,1) = (1,1,1), f(l, 2,3) = (-1, -2, -3), f(l, 1,2) = (2,2,4), 

determine f(x, y, z) for all (x, y, z) E IR3. 

6.28 Iff: 1R2[X] -+ 1R3[X] is linear and such thatf(l) = 1,J(X) = X2 and 
f(X2) = X + X3, determinef(a + bX + cX2). 

SUPPLEMENTARY EXERCISES 

6.29 Letf: C -+ Cbe given by f(x+iy) = x-iy. Prove thatifC is considered 
as a real vector space then f is linear. whereas if C is considered as a 
complex vector space f is not linear. 

6.30 Let V be a vector space of dimension 3 with {VI, v2, V3} a basis. Let W 
be a vector space of dimension 2 with {WI, W2} a basis. Letf : V -+ W 

be defined by 

fP'lvI + A2 V2 + A3 V3) = (AI + J.£)w) + (A2 + A3)W2· 

Determine the values of J.£ for which f is linear. For these values of J.£, 
determine a basis of Ker f. 

6.31 For the linear mappingf : 1R3 -+ 1R3 given by 

f(x,y,z) = (x + y, 0, y -z) 

determine 1m f, Ker f. and a basis of each. 

If A is the subspace {(x,y,z) E 1R3; X = y}, deterrniner-(A) and a 
basis of it. 
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6.32 Let I: IR3 ~ IR3[X] be the linear mapping such that 

1(1,0,0) = 2X + X3; 
1(0,1,0) = -2X +X2; 
1(0,0,1) = X2 +X3. 

Determine 

(1) I(x,y,z) for all (x,y,z) E 1R3; 

(2) 1m I and a basis of it; 

(3) Ker I and a basis of it. 

Extend the basis of (3) to a basis of IR3. 

6.33 Show that {a, b, c} is a basis of 1R3 where 

a=(-I,I,I), b=(I,-I,I), c=(I,I,-I). 

Let I: IR3 ~ IR4 be the linear mapping such that 

I(a) = (I,O,I,A), I(b) = (0,1,-1,0), I(c) = (1,-I,A,-I). 

(1) Determine/(x,y,z) for all (x,y,z) E IR3. 

(2) For which values 00 isl injective? 
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(3) Consider the subspace W of IR4 given by W = Span {J(a},j(b)}. 
Determine dim W when A = -1. 

(4) With A = 2 determine/(I, 1,0) and/+-{(I, I,O,O)}. 

6.34 A non-empty subset S of a vector space is convex if tx + (1 - t}y E S 
for all x,y E S and all t E [0,1]. 
Prove that if S is a convex subset of IRn and I : IRn ~ IRn is linear then 
I-+(S) is also convex. 

6.35 A diagram of finite-dimensional vector spaces and linear mappings of 
the form 

is called an exact sequence if 

(1) II is injective; 

(2) In is sUIjective; 

(3) (i=I, ... ,n-l) Imfi=Kerfi+l' 

Prove that, for such an exact sequence, 

n+1 
I:(-I); dim V; = 0. 
;=1 

6.36 Determine the rank and nullity of the linear mapping 

I: Mat 3xI IR ~ Mat 3xl lR 
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given by f(x) = Ax where 

A = [~~ ;]. 
o 1 -2 

6.37 Iff: V --+ W and g : W --+ X are linear, prove that 

(1) 1m (g of) ~ 1m g; 
(2) Ker f ~ Ker(g of); 

Basic Linear Algebra 

(3) rank f + rank g - dim W ~ rank go f ~ min {rank f, rank g}. 

6.38 Determine the rank and nullity off: 1R3[X] --+ 1R3[X] given by 

f(p(X») = (X -1)D3p(X). 

6.39 Given x = (X"X2,X3) and Y = (Y',Y2,Y3) in IR3, define the wedge 
product of x, Y by 

x 1\ Y = (X2Y3 - X3Y2, X3Y' - x'Y3, x,Y2 - X2Y')' 

Define fy : 1R3 --+ IR3 by fy (x) = x 1\ y. Show that fy is linear. If Y =j: 0, 
prove that Ker fy is the subspace spanned by {y}. 

6.40 Let V be the real vector space of 2 x 2 hermitian matrices. Prove that 
the mapping f: IR4 --+ V gi ven by 

is an isomorphism. 

f(x,y,z,W) = [w+.x 
Y -IZ 

Y + iZ] 
w-x 

ASSIGNMENT EXERCISES 

(1) Let A, B be subspaces of a finite-dimensional vector space V. Recall from 
Exercise 5.34 that the smallest subspace of V that contains A U B is given by 

A + B = {a + b; a E A, b E B}. 

Consider the mappingf: A x B --+ V that is given by f(a, b) ::;; a + b. Prove that 
Ker f::;; {(x, -x) ; x E A n B} and use the Dimension Theorem to show that 

dim(A + B) = dim A + dim B - dim (A n B). 

(2) Show that the set E of real numbers of the form 

a + bV2 + cV4 (a,b,c E 4) 

is a vector space over 4). 

Prove that for a, b, c E 4) the polynomials a + bX + cX2 and X3 - 2 have no 
common factor. 

Hence establish a vector space isomorphismf: E --+ 4)3. 
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The Matrix Connection 

We shall now proceed to show how a linear mapping from one finite-dimensional 
vector space to another can be represented by a matrix. For this purpose, we require 
the following notion. 

Definition 

Let V be a finite-dimensional vector space over a field F. By an ordered basis of V 

we shall mean a finite sequence (VJI~i~n of elements of V such that {VI,"', vn } is 
a basis of V. 

Note that every basis of n elements gives rise to n! distinct ordered bases, for 
there are n! permutations on a set of n elements, and therefore n! distinct ways of 
ordering the elements VI, ... , vn• 

In what follows we shall find it convenient to abbreviate (V;}I ,::;,en to simply 
'" '" (Vi)n' 

Suppose now that V and Ware vector spaces of dimensions m and n respectively 
over a field F. Let (Vj)m, (w;}n be given ordered bases of V, Wand letf : V ---+ W be 
linear. We know from Corollary I of Theorem 6.7 thatf is completely and uniquely 
determined by its action on the basis (Vi)m' This action is described by expressing 
eachf(v j ) as a linear combination of elements from the basis (Wi)n: 

f(vl) = xllwi + xI2w2 + ... + xlnwn; 

f(V2) = x21 wI + x22w2 + ... + x2nwn; 

f(vm) = Xmiwi + xm2w2 + ... + XmnWn· 

The action of f on (Vi)m is therefore determined by the mn scalars Xij appearing in 
the above equations. Put another way, the action off is completely determined by a 
knowledge of the m x n matrix X = [Xij]' 

For technical reasons that will be explained later, the transpose of this matrix X 
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is called the matrix of/relative to the fixed ordered bases (v;)m, (Wi)n. When it is 
clear what these fixed ordered bases are, we denote the matrix in question by Mat /. 

• The reader should note carefully that it is an n x m matrix that represents 
a linear mapping from an m-dimensional vector space to an n-dimensional 
vector space. 

Example 7.1 

Consider the linear mapping/: IR3 --+ 1R2 given by 

/(x,y,z) = (2x - 3y + z, 3x -2y). 

The action of / on the natural basis of 1R3 is described in terms of the natural basis 
of IR2 as follows : 

/(1,0,0)= (2,3)= 2(1,0)+3(0,1) 

/(0,1,0) = (-3,-2) = -3(1,0) -2(0, 1) 

/(0,0,1)= (1,0)= 1(1,0)+0(0,1) 

and so we see that the matrix of/ relative to the natural ordered bases of IR3 and IR2 
is the transpose of the above coefficient matrix, namely the 2 x 3 matrix 

[; =; 6]· 
• Note how the rows of this matrix relate to the definition off. 

Example 7.2 

The vector space 1Rn[X] is of dimension n + 1 and has the natural ordered basis 

{I, X, X2 , ••• , xn}. 

The differentiation mapping D : IRn[X] --+ IRn[X] is linear, and 

D1 = 0 . 1 + 0 . X + ... + 0 . Xn- I + 0 . xn 
DX = 1 . 1 + 0 . X + ... + 0 . Xn- I + 0 . xn 

DX2 = 0 . 1 + 2 . X + ... + 0 . Xn- I + 0 . xn 

DX" = 0 . 1 + 0 . X + ... + n . Xn- I + 0 . X" 

so the matrix ofD relative to the natural ordered basis of 1Rn[X] is the (n+ 1) x (n+ 1) 
matrix 
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EXERCISES 

7.1 Consider the linear mapping I: IR2 -t 1A3 given by 

I(x,y) = (x+2y, 2x-y, -x). 

Determine the matrix of I 
(1) relative to the natural ordered bases; 

(2) relative to the ordered bases 

{(0,1),(1,1)} and {(0,0,1),(0,1,1),{l,1,1)}. 

7.2 Consider the linear mapping I : 1A3 -t IR2 given by 

I(x,y, z) = (2x - y, 2y - z). 

Determine the matrix of I 
(1) relative to the natural ordered bases; 

(2) relative to the ordered bases 

{(I, 1, 1), (0, 1, 1), (0,0, I)} and {(O, 1), (1, I)}. 

7.3 Consider the linear mapping I : IR3 -t IR3 given by 

I(x,y,z) = (2x + z, y -x + z, 3z). 

Determine the matrix of I with respect to the ordered basis 

{(I, -1,0), (1,0, -1), (1,0,0)}. 

7.4 Suppose that the mapping I : IR3 -t 1A3 is linear and such that 

1(1,0,0) = (2,3,-2); 

1(1,1,0) = (4,1,4); 

1(1,1,1) = (5,1,-7). 

Find the matrix of I relative to the natural ordered basis of IR3. 
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It is natural to ask what are the matrices that represent sums and scalar multiples 
of linear mappings. The answer is as follows. 

Theorem 7.1 

If V, Ware 01 dimensions m, n respectively and if I, g : V -t Ware linear then, 
relative to fixed ordered bases, 

Mat(f + g) = Mati + Mat g 

and, lor every scalar A, 
Mat Ai= A Mati. 
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Proof 

Let Mat f = [Xij]lIxm and Mat g = [Yij]lIxm relative to fixed ordered bases (v;)m of V 
and (W;)II ofW. Then for i = 1, ... , m we have (recalling the transposition involved) 

It follows that 

" f(Vi) = E Xj;Wj' 
j=1 

n 

n 

g(Vi) = EYjiWj' 
j=1 

(f + g)(v;) = E(Xji + Yj;)Wj 
j=1 

and therefore Mat(f + g) = [Xij + Yij]nxm = Matf + Mat g. 
Similarly, for every scalar A we have 

n 
(Af)(V;) = E AxjiWj 

j=1 

and so Mat At = A Matf. 0 

We can express Theorem 7.1 in a neater way as follows. 
Consider the set Linm,n(V, W) of linear mappings from a vector space V of di­

mension m to a vector space W of dimension n (each over the same field F). It is 
clear that, under the usual addition and multiplication by scalars, Linm,n(V, W) is a 
vector space. Consider now the mapping 

t9 : Linm,n(V, W) -+ Mat"xm F 

given by 
t9(f) = Matf 

where V and Ware referred to fixed ordered bases (v;)m and (w;)" throughout. 
This mapping t9 is surjective. To see this, observe that given any n x m matrix 

M = [mjj]' we can define 

" (i = 1, ... ,m) f(v;) = Emjjwj. 
j=1 

By Theorem 6.7, this produces a linear mappingf : V -+ W; and clearly we have 
Matf=M. 

Moreover, t9 is injective. This follows immediately from Corollary 2 of Theorem 
6.7 and the definition of the matrix of a linear mapping. 

Thus t9 is a bijection and, by Theorem 7.1, is such that t9(f + g) = t9(f) + t9(g) 
and t9(Af) = At9(f). In other words, t9 is a vector space isomorphism and we have: 

Theorem 7.2 

If v, Ware of dimensions m, n respectively over F then 

Linm,,,(V, W) ~ Mat nxm F. 0 
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It is reasonable to ask if, for given ordered bases (Vi)m of V and (wi)n of W, there 
is a 'natural' basis for the vector space Linm,n(V, W). Indeed there is, and this can be 
obtained from the natural basis of Mat nxm F, namely 

{Epq; p= 1, ... ,n and q= 1, ... ,m} 

where Epq is the matrix that has 1 in the (p, q)-th position and 0 elsewhere. 
To see this, consider the linear mappingjpq : V -+ W given by 

Then we have 

if i = q; 

otherwise. 

jpq(Vm) = OWl + ... + OWp + ... + OWn 

from which we see that Matjpq = Epq , i.e. that {)(fpq) = Epq. 
Now since the inverse of an isomorphism is also an isomorphism, it follows by 

Theorem 6.5 that a (natural) basis for Linm,n(V, W) is 

{J pq ; p = 1, ... , nand q = 1, ... , m}. 

We now tum our attention to the matrix that represents the composite of two 
linear mappings. It is precisely in investigating this that we shall see how the defini­
tion of a matrix product arises in a natural way, and why we have chosen to use the 
transpose in the definition of the matrix of a linear mapping. 

Consider the following situation: 

j;A g;B 
U; (Ui)m ~ V; (vi)n ~ W; (w;}p 

in which the notation U; (Ui}m for example denotes a vector space U with a fixed 
ordered basis (Ui)m andj;A denotes a linear mappingj represented, relative to the 
fixed bases, by the matrix A. 

The composite mapping is described by 

What is the matrix of this composite linear mapping? 
It is natural to expect that this will depend on A and B. That this is so is the 

substance of the following result. 

Theorem 7.3 

Mat(g of) = Mat g. Mat/. 
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Proof 

To find Mat (g 0 I) we must express each image (g o/)(u;) in terms of the ordered 
basis (w;}p of W. Now since Mati = A we have 

(i = 1, ... , m) 
n 

I(Ui) = L ajivj, 
j=1 

and since Mat g = B we have 

p 

U = 1, ... ,n) g(Vj) = L bkjWk o 

k=1 

Thus, for each i, 
n n 

g(f(Ui)] = g( L ajiVj) = L ajig(vj ) 
j=1 j=1 

n p 

= L aA L bkjWk) 
j=1 k=1 
P n 

= L (L bkjaji)wk o 

k=1 j=1 

n 

Consequently the (k, i)-th element of Mat (g 0 I) is L bkjaji' which is precisely the 
j=1 

(k, i)-th element of BA = Mat g 0 Mati. 0 

Corollary 

A square matrix is invertible if and only if it represents an isomorphism. 

Proof 

Suppose that A is an n x n matrix that is invertible. Then there is an n x n matrix B 
such that BA = In' Let V be a vector space of dimension n and let (Vi)n be a fixed 
ordered basis of V. If I, g : V -. V are linear mappings that are represented by A, B 
respectively then by Theorem 7.3 we have that g 0 I is represented by BA = In. It 
follows that g 0 1= idy whence, by Theorem 6.5, I is an isomorphism. 

Conversely, if I : V -. V is an isomorphism that is represented by the matrix A 

then the existence of r l such thatrl 0 1= idy implies the existence of a matrix B 
(namely that representingrl ) such that BA = In' whence A is invertible. 0 

Example 7.3 

Consider IR3 referred to the natural ordered basis. If we change reference to the 
ordered basis 

{(I, 1,0),(1,0, 1),(0, 1, In 
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then the matrix of the identity mapping is obtained from the equations 

i.e. it is 

id{I,O,O);;;; {1,0,0);;;; !(1, 1,0) + !(1,0, 1) - !(O, 1, 1) 

id{O, 1,0) ;;;; {O, 1,0);;;; !(l, 1,0) - !(l,0, 1) + HO, 1, 1) 

id{O,O, 1) ;;;; (O,O, 1) = -HI, 1,0) + HI,O, 1) + !(O, 1, 1) 

[ 
1 1 -1] ! 1 -1 1 . 

-1 1 1 

The identity mapping being an isomorphism, this matrix is invertible. 

• The reader should note that it is to maintain the same order in which g,f appear 
in Theorem 7.3 that we choose to call the transpose of the coefficient matrix 
the matrix of the linear mapping. If, as some authors do, we were to write 
mappings on the right (i.e. write xl instead of I{x)) then this convention is 
unnecessary. 

EXERCISES 

7.5 A linear mapping I : IR3 -+ IR3 is such that 

1{1,0,0) = (O,O, 1), 1{1, 1,0) = (O, 1, 1), I{l, 1, 1) = (I, 1, 1). 

Determine I{x, y, z) for all (x, y, z) E IR3 and compute the matrix of I 
relative to the ordered basis 

B= {(1,2,0),{2, 1,0),{0,2, I)}. 

If g : IR3 -+ IR3 is the linear mapping given by 

g{x, y, z) = (2x, y + z, -x), 

compute the matrix of log 0 I relative to the ordered basis B. 

7.6 Show that the matrix 

A= H ! -}] 
is invertible. If I : IR3 -+ IR3 is a linear mapping whose matrix rela­
tive to the natural ordered basis of IR3 is A, determine the matrix of r l 

relative to the same ordered basis. 

7.7 If a linear mapping I : V -+ V is represented by the matrix A prove that 
r is represented by An. 
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We now consider the following important question. Suppose that we have the 
situation 

If we refer V to a new ordered basis (vDm and W to a new ordered basis (wDn then 
clearly the matrix off will change. How does it change? 

To see how we can proceed, consider the particular case where W = V and f is 
the identity mapping on V. We then have the situation 

idv;A 
V; (vJm-----'----+1 V; (vDm 

i i 
old basis new basis 

• This is precisely the situation described in the previous example. 

We call A the transition matrix from the basis (v;)m to the basis (vDm. 

The following result is clear from the Corollary of Theorem 7.3: 

Theorem 7.4 

Transition matrices are invertible. 0 

We can now describe how a change of bases is governed by the transition matrices 
that are involved. 

Theorem 7.5 

[Change of bases] II a linear mapping I : V -+ W is represented relative to ordered 
bases (vi)m, (w;)n by the n xm matrix A then relative to new ordered bases (vDm, (wDn 
the matrix representing I is the n x m matrix Q-l AP where Q is the transition matrix 
from (wDn to (w;)n and P is the transition matrixfrom (vDm to (vJm· 

Proof 
Using the notation introduced above, consider the diagram 

We have to determine the matrix X. 
Now this diagram is 'commutative' in the sense that travelling from the south­

west comer to the north-east comer is independent of whichever route we choose; 
for, clearly, I 0 idv = I = idw 0 f. It therefore follows by Theorem 7.3 that the 
matrices representing these routes are equal, i.e. that AP = QX. But Q. being a 
transition matrix, is invertible by Theorem 7.4 and so X = Q-l AP. 0 
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Example 7.4 

Suppose that! : IR3 -... IR3 is the linear mapping whose matrix relative to the natural 
ordered basis is 

A= [i =~ ~] 
and let us compute the matrix of! when IR3 is referred to the ordered basis 

B= {(1,-1,1),(1,-2,2),(1,-2,1)}. 

We apply Theorem 7.5 with W = V = IR3, (Wi) = (Vi) =the natural ordered basis, 
and (wD = (vD =the new ordered basis B. 

The transition matrix from the new ordered basis to the old is 

p= H -~ -~l 
• Note that this is obtained by taking the elements of B and turning them into 

the columns of P. This becomes clear on observing that we have 

id(I,-I, 1) = (1,-1,1) = 1(1,0,0) -1(0, 1,0) + 1(0,0,1) 

id(I,-2,2)= (1,-2,2)= 1(1,0,0)-2(0,1,0)+2(0,0,1) 

id(l, -2, 1) = (1, -2, 1) = 1 (1,0,0) - 2(0,1,0) + 1 (0,0, 1) 

and the transition matrix is the transpose of the coefficient matrix. 

Now P is invertible (by Theorem 7.4) and the reader can easily verify that 

p-1 = [-~ ~ ~l· o -1 -1 

The matrix of! relati ve to the new ordered basis B is then, by Theorem 7.5. 

[
15 25 23] 

P-lAP = -8 -11 -12 . 
-2 -5 -3 

Example 7.5 

Suppose that the linear mapping! : IR3 -+ 1R2 is represented. relative to the ordered 
bases {(I, 0, -1), (0,2,0), (1,2, 3)} of IR3 and {( -1,1), (2, O)} of IR2. by the matrix 

A = [; ~1 ~]. 
To determine the matrices that represent! relative to the natural ordered bases. we 
first determine the transition matrices P, Q from the natural ordered bases to the 
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given ordered bases. Making use of the observation in the previous example, we can 
say immediately that 

p-I = [~ ~ ~]. 
-I 0 3 

The reader can easily verify that 

p=lH o -1] 2 -1 
o 1 

and hence that the required matrix is 

Q-1AP = ! [3 3 -5] 
2 5 -1 I . 

We now establish the converse of Theorem 7.5. 

Theorem 7.6 
Let (vJm, (wj)n be ordered bases 01 vector spaces V, W respectively. Suppose that 
A, Bare n x m matrices such that there are invertible matrices P, Q such that B = 
Q-1AP. Then there are ordered bases (vDm, (wDn 01 V, Wand a linear mapping 
I: V ~ W such that A is the matrix 01 I relative to (Vj)m, (wJn and B is the matrix 
01 I relative to (vDm, (wDn· 

Proof 

If P = [pjj]mxm and Q = [qij]nxn, define 
m n 

(i=I, ... ,m) v;=LPjjVj; (i=I, ... ,n) w;=LqjjWj. 
j=1 j=1 

Since P is invertible there is, by the Corollary of Theorem 7.3, an isomorphism 
Ip : V ~ V that is represented by P relative to the ordered basis (vj)m. Since by 
definition v; = Ip(vJ for each i, it follows that (vDm is an ordered basis of V and that 
P is the transition matrix from (vDm to (Vj)m. Similarly, (wDn is an ordered basis of 
Wand Q is the transition matrix from (wDn to (Wj)n. 

Now lett : V ~ W be the linear mapping whose matrix, relative to the ordered 
bases (Vj)m and (wJn is A. Then by Theorem 7.5 the matrix of I relative to the 
ordered bases (vDm and (wDn is Q-1AP = B. 0 

EXERCISES 

7.8 Determine the transition matrix from the ordered basis 

{(I, 0, 0,1), (0, 0, 0, 1), (1, 1,0,0), (0, 1,1, O)} 

of IR4 to the natural ordered basis of IR4. 
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7.9 Consider the linear mapping! : IR3 -+ IR3 given by 

!(x,y,z) = (y,-x,z). 
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Compute the matrix A of! relative to the natural ordered basis and the 
B matrix of! relative to the ordered basis 

{(I, 1, O), (0, 1, 1), (1,0, I)}. 

Determine an invertible matrix X such that A = X-I BX. 

7.10 Let! : 1R3 -+ IR3 be a linear mapping which is represented relative to 
the natural ordered basis by the matrix A. If P is the invertible matrix 

p = [! ~ 1] 
determine an ordered basis of IR3 with respect to which the matrix of f 
is P-IAP. 

We have seen in Chapter 3 that a matrix of rank p can be transformed by means 
of row and column operations to the normal form 

[lp 0] 
o 0 . 

We can also deduce this as follows from the results we have established for linear 
mappings. The proof is of course more sophisticated. 

Let V and W be of dimensions m and n respectively and letf : V -+ W be a linear 
mapping with dim 1m ! = p. By Theorem 6.4, we have 

dim Ker f = dim V - dim 1m f = m - p, 

so let {VI, ... , vm-p } be a basis of Ker f. Using Corollary 1 of Theorem 5.8, extend 
this to a basis 

of V. Observe now that 

p p 

is linearly independent. In fact, if L AJ(Ui} = 0 then!( L AiUi) = 0 and so 
~I ~I 

p p m-p 

L AiUi E Kerf whence L AiUi = L J.LjVj. Then 
i=1 i=1 j=1 

P m-p 

L\Ui-LJ.LjVj=O 
;=1 j=1 

and so, since B is a basis, every Ai and every J.Lj is O. 
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It follows by Corollary 2 of Theorem 5.8 that {J(u\), ... ,j(up)} is a basis of the 
subspace 1m f. Now extend this, courtesy of Corollary I of Theorem 5.8, to a basis 

C = {f(ud, ... ,j(up), W\, ... , wn-p} 

ofW. Then, sincef(v\) = ... = f(vm- p) = 0, we have 

f(u\) = 1/(u\) + 0f(U2) + ... + Of (up) + ... + OWn_p; 

f(U2) = Of( u\) + 1/( U2) + ... + Of (up) + ... + OWn_p; 

f(up) = Of( u\) + Of( U2) + ... + 1/(up) + ... + OWn_p; 

f(v\) = 0f(u\) + 0f(U2) + ... + Of (up) + ... + OWn_p; 

f(vm- p) = 0f(Ul) + 0f(U2) + ... + Of (up) + ... + OWn_po 

The matrix off relative to the ordered bases Band C is then 

[Ip 0] 
o 0 ' 

where p is the rank off. 
Suppose now that A is a given n x m matrix. If, relative to fixed ordered bases 

Bv, Bw this matrix represents the linear mapping f : V -+ W then, Q and P being 
the appropriate transition matrices from the bases B, C to the fixed ordered bases Bv 
and Bw, we have 

Now since transition matrices are invertible they are products of elementary matrices. 
This means, therefore, that A can be reduced by means of row and column operations 
to the form 

[Ip 0] 
o 0 . 

The above discussion shows, incidentally, that the rank of a linear mapping f is 
the same as the rank of any matrix that represents f. 

Definition 

If A, B are n x n matrices then B is said to be similar to A if there is an invertible 
matrix P such that B = p-\ AP. 

It is clear that if B is similar to A then A is similar to B; for then 

A = PBr1 = (r\r1Ar1. 
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Also, if B is similar to A and C is similar to B then C is similar to A; for B = p-I AP 
and C = Q-l BQ give 

C = Q-l p-l APQ = (PQt1 APQ. 

Thus the relation of being similar is an equivalence relation on the set of n x n 
matrices. 

The importance of similarity is reflected in the following result. 

Theorem 7.7 

Two n x n matrices A, B are similar if and only if they represent the same linear 
mapping relative to possibly different ordered bases. 

Proof 
This is immediate from Theorems 7.5 and 7.6 on taking W = V and, for every i, 
Wi = Vi and w; = v;. 0 

Corollary 
Similar matrices have the same rank. 0 

The notion of similar matrices brings us back in a more concrete way to the 
discussion, at the end of Chapter 4, concerning the problem of deciding when (in our 
new terminology) a square matrix is similar to a diagonal matrix; or, equivalently, 
when a linear mapping can be represented by a diagonal matrix. We are not yet in 
a position to answer this question, but will proceed in the next chapter to develop 
some machinery that will help us towards this objective. 

EXERCISES 

7.11 Show that if matrices A, B are similar then so are A' , B'. 

7.12 Prove that if A, B are similar then so are Ak, Bk for all positive integers 
k. 

7.13 Prove that, for every 19 E IR, the complex matrices 

[
COS {) - sin {)] 
sin {) cos 19 ' [ei

" 0.] ° e-'" 
are similar. 

SUPPLEMENTARY EXERCISES 

7.14 Determine the matrix of the differentiation map D on IRn[X] relative to 
the ordered bases 

(1) {1,X,X2, ... ,xn}; 
(2) {Xn,Xn-I, ... ,X,l}; 

(3) {1,I+X,I+X2, ... ,I+Xn}. 
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7.15 Let V be a vector space of dimension n over a field F. A linear mapping 
f : V -t V is said to be nilpotent if jP = 0 for some positive integer p. 
The smallest such integer p is called the index of nilpotency off. 

Suppose thatf is nilpotent of index p. If x E V is such thatfp- I (x) " 0, 
prove that 

{x ,f(x),l(x), ... ,jP-I (x)} 

is linearly independent. 

Hence prove thatf is nilpotent of index n if and only if there is an ordered 
basis (Vi)n of V such that the matrix of! relative to (vi)n is of the form 

o 0 0 0 0 
10000 
o 1 0 0 0 
o 0 0 0 

o 0 0 0 

7.16 Letf: IRn[X] -t IRn[X] be given by 

f(P(X») = p(X + I). 

Prove that f is linear and find the matrix off relative to the natural or­
dered basis {1,X, ... ,xn}. 

7.17 Consider the mappingf: 1R2[X] -t Mat 2x2 1R given by 

f(a + bX + CX2) = [b; C :]. 

Show that f is linear and determine the matrix off relati ve to the ordered 
bases {I ,X, 1 + X2} of IR2[X] and 

{[~ ~],[~ ~],[~ ~],[~ ~]} 
ofMat 2x2 1R. Describe also 1m f and Ker f. 

7.18 Letf: 1R3[X] -t 1R3[X] be given by 

f(a + bX + cX2 + dX3) = a + (d -c -a)X + (d -c)X3. 

Show that f is linear and determine the matrix off relative to 

(I) the natural ordered basis {I , X, X2 , X3}; 

(2) the ordered basis {I + X3, X, X + X3, X2 + X3}. 

7.19 If A = [aij]nxn then the trace of A is defined to be the sum of the diagonal 
elements of A : 

n 

tr A = Lau. 
i=1 
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Prove that 

(1) tr(AA); A tr A; 

(2) tr(A + B) = tr A + tr B; 

(3) tr(AB) = tr(BA). 
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Deduce from (3) that if A and B are similar then they have the same 
trace. Give an example of two matrices that have the same trace but are 
not similar. 

ASSIGNMENT EXERCISES 

(1) If f : Mat nxn IR -+ IR is linear, prove that the following statements are 
equivalent: 

(a) f(AB) = f(BA) for all A, BE Mat nxn IR; 

(b) f is a scalar multiple of the trace function. 

Deduce that X E Mat nxn IR can be written as a sum of matrices of the form AB - BA 
if and only if tr(X) = O. 

(2) Consider the linear mapping f : IR3 -+ IR3 whose matrix rel~tive to the 
natural basis {e), e2, e3} is 

A = [~1 ~ 
- sin -8 cos-8 

- sin -8] 
cos -8 . 

o 
Show that {e~ , e2, e3} is a basis of IR3 where 

e'l = e) cos -8 + e2 sin fl, e~ = f(e), e~; f(e2)' 

Determine the matrix of f relative to this basis. 

(3) Let V be the real vector space of functions q : IR2 -+ IR given by a prescrip­
tion of the form 

q(x,y) = ax2 + bxy + ci + dx + ey + f. 

Let cp : V -+ V be the mapping described by setting 

cp(q) = :x jq(x,Y)dY + :y jq(x,Y)dX. 

Show that cp is linear. Determine the matrix that represents cp relative to the ordered 
basis B of V given by 
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(4) Let V be a finite-dimensional vector space and let B = {VI, ... , vn} be an 
ordered basis of V. Let C be the ordered basis of V that is obtained from B by inter­
changing Vi and Vi+1 in the ordering. If!: V -+ Vis linear, explain how Mate! is 
related to Mat B f. 

Describe in general the effect on Mat B! that is caused by a change in the ordering 
ofB. 

(5) Let V be a finite-dimensional vector space over IR and let! ; V -> V be a 
linear mapping such thatj2 = -idv. Extend the action oflR on V to an action of {; 
on V by defining, for all x E V and all a + ib E {;, 

(a + ib}x = ax - b!(x). 

Show that in this way V becomes a vector space over C. 
Use the identity 

r r r 

2:) at -ibt}vt = Latvt + LbJ(vt} 
~I ~I ~I 

to show that if {VI, ... , vr } is a linearly independent subset of the C-vector space 
V then {VI' ... , Vn!(VI}, .. • J(vr}} is a linearly independent subset of the IR-vector 
space V. 

Deduce that the dimension of V as a complex vector space is finite and that 

dimFl V = 2 dime V. 

Hence show that a 2n x 2n matrix A over IR is such that A 2 = -/2n if and only if 
A is similar to the matrix 



8 
Determinants 

In what follows it will be convenient to write an n x n matrix A in the form 

where, as before, a i represents the i-th column of A. Also, the letter F will signify 
either the field IR of real numbers or the field C of complex numbers. 

Definition 

A mapping D : Mat IIXII F -t F is detenninantal if it is 

(a) multilinear (or a linear function of each column) in the sense that 

(D\) D[ ... , b i + Ci' ... ] = D[ ... , b i , ... ] + D[ ... , Ci, ... ]; 

(Dz) D[ ... , Xai''''] = XD[ ... , ai," .]; 

(b) alternating in the sense that 

(D3) D[ ... , ai' ... , aj' ... ] = -D[ ... , aj' ... , ai' ... ]; 

(c) i-preserving in the sense that 

(D4) D(I,,) = IF' 

We first observe that, in the presence of property (D\), property (D3) can be 
expressed in another way. 

Theorem 8.1 

If D satisfies property (D\) then D satisfies property (D3) if and only if it satisfies the 
property 

(D3) D(A) = 0 whenever A has two identical columns. 

Proof 

=} : Suppose that A has two identical columns, say ai = aj with i :f j. Then by (D3) 
we have D(A) = -D(A) whence D(A) = O. 
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{= : Suppose now that D satisfies (D,) and (D;). Then we have 

(D;) o = D[ ... , aj + aj, ... , aj + aj, ... ] 

(~) D[ ... , a j •.•. , a j + aj , ... ] + D[ ... ,aj, ... , 8j + 8j, ... ] 

(~I) D[ ... , 8j, ... , aj, ... ] + D[ ... , 8i, ... , aj , ••• ] 

+D[ ... , aj, ... , ai,"'] + D[ ... , aj, ... , aj , ... ] 
(0;) = D[ ... , 8i, ... , aj, ... ] + D[ ... , aj, ... , ai, ... ] 

whence (D3) follows. 0 

Corollary 

D is determinantal if and only if it satisfies (D,), (D2), (D;), (D4)' 0 

ExampleB.1 

Let D : Mat 2x2 F ~ F be given by 

D [all a'2] = all a22 - al2a2" 
a2l a22 

Then it is an easy exercise to show thatD satisfies the properties (D,),(D2),(D3),(D4) 
and so is detenninantal. 

In fact, as we shall now show, this is the only determinantal mapping definable 
on Mat 2x2 F. 

For this purpose, let 

so that every A E Mat 2x2 F can be written in the form 

A = [allOt + a2'02, a'20, + a2202]. 

Suppose thatf: Mat 2x2 F ~ F is detenninantal. Then, by (D,) we have 

f(A) = J[allO" a'20, + a2202] + J[a2l 02, al201 + a2202]. 

Applying (D I ) again, the first summand can be expanded to 

f[allo" a'20,] + f[allo" a2282] 

which, by (D2)' is 
a ll a'2J[OI,OI] + all a22J[O,,02]. 

By (D3) and (D4)' this reduces to al1a22' 
As for the second summand, by (D,) this can be expanded to 

J[a2,82• a'28,] + J[a2,82• a2282] 
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which, by (D2), is 

a21 a12J[82, 81] + a21 a22i[82, 82]. 

By (D~) and (D4), this reduces to -a2Ia12. 
Thusf(A) ;;;: al1 a22 -a12a21 and we conclude thatthere is a unique detenninantal 

mapping on Mat 2x2 F. 

In what follows our objective will be to extend the above observation to Mat nxn F 
for every positive integer n. The case where n ;;;: 1 is of course trivial, for if A is 
the 1 x 1 matrix [a] then clearly the only deterrninantal mapping is that given by 
D(A);;;: a. 

For every A E Mat nxn F we denote by Aij the (n -1) x (n -1) matrix obtained 
from A by deleting the i-th row and the j-th column of A (i.e. the row and column 
containing aij). 

The following result shows how we can construct deterrninantal mappings on the 
set of n x n matrices from a given detenninantal mapping on the set of (n-l) x (n-l) 
matrices. 

Theorem 8.2 

For n ~ 3 let D : Mat (n-I)x(n-I) F ~ F be determinantal, andfor i ;;;: 1, ... ,n define 
/;: MatnxnF ~ F by 

n 
/;(A);;;: L)-I)i+iaijD(Aij ). 

j=1 

Then each /; is determinantal. 

Proof 

It is clear that D(Aij ) is independent ofthej-th column of A and so aijD(Aij) depends 
linearly on the j-th column of A. Consequently, we see that /; depends linearly on 
the columns of A, i.e. that the properties (DI) and (D2) hold for fi. 

We now show that /; satisfies (D~). For this purpose, suppose that A has two 
identical columns, say the p-th and the q-th columns with p r q. Then for j r p and 
j r q the (n - 1) x (n - 1) matrix Aij has two identical columns and so, since D is 
deterrninantal by hypothesis, we have 

U r p,q) D(Aij);;;: O. 

It follows that the above expression for /;(A) reduces to 

/;(A) = (-I)i+PaipD(AiP) + (-I)i+qaiqD(Aiq). 

Suppose, without loss of generality, that p < q. Then it is clear that Aiq can be 
transfonned into Aip by effecting q - 1 - p interchanges of adjacent columns; so, by 
(D3) for D, we have 
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Since aip = aiq by hypothesis, we thus have 

fi(A) = [(_l)i+p + (-l)i+q(-l)q-I-P]aipD(AiP) 

which reduces to 0 since 

(_I)i+p + (-I)i+q(-I)q-I-p = (-I)i+p[1 + (_1)2q-2p-l] 

= (-I)i+p[1 + (-I)] 

= O. 

Finally, fi satisfies (04 ) since if A = In then aij = 0ij and Ajj = In_I, so that 

fi(In) = (-I)I+iOjjD(In_l) = 1. 

Thus fi is determinantal for every i. 0 

Corollary 

For every positive integer n there is at least one determinantal mapping on Mat nxn F. 

Proof 

We proceed by induction. By Example 8.1, the result is true for n = 2. The inductive 
step is Theorem 8.2 which shows that a determinantal mapping can be defined on 
Mat nxn F from a given determinantal mapping on Mat (n-I)x(n-I) F. 0 

ExampJeB.2 

If D is the determinantal mapping on the set Mat 2x2 F, i.e. if 

then by Theorem 8.2 the mapping!1 : Mat 3x3 F ---+ F given by 

is determinantal. Likewise, so are!2 and!3 given by 
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EXERCISES 

8.1 Using the formula 

evaluate each offl (A),f2(A),f3(A) in the above example. What do you 
observe? 

8.2 Show that the mappingf: Mat 3x3 F --+ F given by 

is determinantal. 

Our objective now is to establish the uniqueness of a determinantal mapping on 
Mat nxn F for every positive integer n. For this purpose, it is necessary to digress a 
little and consider certain properties of permutations (= bijections) on a finite set. 

On the set {I, ... , n} it is useful to write a permutation f in the form 

(
123 ... n) 

f(l) f(2) f(3) '" fen) 

ExampleB.3 

Thepermutationf on {O, ... , 9} described by f(x) = x+ 1 modulo 9 can be described 
by 

f= (0123456789). 
1 2 345 6 7 890 
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Example 8.4 

The pennutation on {I, 2,3,4, 5} described by 

1=(12345) 
1245 3 

'fixes' 1 and 2, and pennutes cyclically 3,4,5. 

Given pennutations 1,8 on {I, ... , n} we can compute the composite pennuta­
tion g 0 I by simply treating them as mappings: 

(,;1):: .~n)) 0 (/;1) :::/~)) = (.If:1)] ::: 'lf~n)]) . 
ExampleB.5 

Consider the pennutations 

1=(123456), 
164 3 5 2 

8=(123456). 
265 3 1 4 

Working from the right, we compute the composite pennutation 8 0 I as follows: 

80 1= (123456) 0 (12 3456) = (123456). 
265314 164352 243516 

EXERCISES 

8.3 Compute the products 

( 1 2345 67 8) 0 (1 2345 67 8) ; 
8623145 7 567 1 8 4 3 2 

(
12345678)0(12345678). 
86231457 53467281 

Definition 

By a transposition on the set { 1 , 2, ... , n} we mean a pennutation that interchanges 
two elements and fixes the other elements. More precisely, a transposition is a per­
mutation T such that, for some i ,j with i ::f j, 

T(i)=j, TV)=i, and (Vx:j:i,j) T(X)=X. 
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We shall sometimes denote the transposition 7 that interchanges i and j by the 
notation 

Clearly, the inverse of a transposition is also a transposition. 
The set of permutations on {I, 2, ... ,n} will be denoted by Pn• 

Theorem 8.3 

If n > 2 then every a E Pn can be expressed as a composite of transpositions. 

Proof 

We establish the result by induction on n. When n = 2 it is clear that a is itself a 
transposition, in which case there is nothing to prove. 

Suppose, by way of induction, that n > 2 and that the result holds for all permu­
tations in Pn- I • Let a E Pn and suppose that a(n) = k. Let 7 be the transposition 

7 : n +-+ k. 

Then 70 a is such that (70 a)(n) = n; i.e. 70 a fixes n, and so induces a permutation, 
(70 a)* say, in Pn- I • By the induction hypothesis, there are transpositions 7j, ... , 7; 

in Pn- I such that (7 0 a)* = 7j 0 ... 0 7;. Clearly, 7j, ... , 7; induce transpositions 
in Pn , say 71, ... , 7 r , each of which fixes n, and 7 0 a = 71 0 ... 0 T r • It follows that 

a = 7-1 0710' .. 0 Tr 

as required. 0 

Gi ven a E Pn let! (a) be the number of inversions in a, i.e. the number of pairs 
(i ,j) with i < j and aU) < a(i). 

Definition 

For every a E PII the signum (or signature) of a is defined by ea = (_1)/(a). 

Theorem 8.4 

(Vp,aEPn) epa=epea· 

Proof 

Consider the product 

For every a E Pn define 

VII = IIU -i). 
kj 

a(Vn) = II[aU) - a(i)]. 
i<j 

Since a is a bijection, every factor of VII occurs precisely once in a(Vn), up to a 
possible change in sign. Consequently we have 

a(V.) = (-I)/(a)v. = e V. n n a n° 
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Given p, (J E Pn we have similarly P(J(Vn) = ep(J(Vn). Consequently, 

epa Vn = P(J(Vn) = ep(J(Vn) = epe" Vn 

whence, since Vn =I 0, we obtain epa = epe". 0 

Corollary 

If (J E Pn then e" = ± 1 and e,,-I = ea· 

Proof 

It is clear that e .. = -1 for every transposition T. It follows from Theorems 8.3 and 
8.4 that ea = ± 1 for every pennutation (J. Moreover, since the signum of the identity 
pennutation is clearly 1, we deduce from e"e,,-I = e"oa-I = 1 that e,,-I = e". 0 

We say that (J is an even pennutation if ea = I, and an odd pennutation if e" = 
-I. An even pennutation is therefore one that has an even number of transpositions, 
whereas an odd pennutation is one with an odd number of transpositions. This notion 
of parity is therefore an invariant associated with a pennutation. 

ExampleB.6 

Consider the pennutation 

1=(123456). 
16435 2 

If we join each i on the top line with the corresponding i on the bottom line we obtain 
the diagram 

2X 
6 4 352 

In this the number of distinct crossings gives the number of inversions. This is 8, 
which is even. The pennutation is therefore even. 

EXERCISES 

8.4 Determine the parity of each of the following pennutations: 

( 123456), (123456). 
614253 543612 



8. Determinants 137 

Theorem 8.5 

There is a unique determinantal map D : Mat nxn F -+ F, and it can be described by 

D(A) = L e,Ar(l),1 ... aa(n),n' 
aEP. 

Proof 
We know by the Corollary of Theorem 8.2 that at least one detenninantal mapping 
D exists on Mat nxn F. If we write 0; for the i-th column of In then we can represent 
an n x n matrix A = [a;j] by 

A = [a1lOI + ... + anIOn' ••...• , alnOI + ... + annOn]. 

Using property (01) we can write D(A) as a sum of tenns of the fonn 

D[ aa(I),IOa(I), •.• , aa(n),nOa(n)] ' 

where 1 :::; O'(i):::; n for every i. Using property (02) we can then write each ofthese 
tenns as 

aa(I),1 ... aa(n),nD[Oa(l) , ... ,Oa(n)]. 

But, by property (D;), each such expression is 0 except those in which we have 

O'(i) f O'U) for i f j; i.e. those in which 0' is a pennutation on {I, ... , n}. Thus we 
have that 

Now the columns Oa(I), ... , 0a(n) occur in the pennutation 0' of the standard arrange­
ment 01, ••• ,On' If, using Theorem 8.3, we write 0' as a composite oftranspositions, 
say 

then we have 
-I -I -I 

0' = Tk 0'" 0 TI 

Restoring the standard arrangement of the columns by applying TIl, ... , Til we see, 
by property (D3) and the fact that ea = ea-I, that 

D[Oa(l) , ... , Oa(n)] = eaD[OI,··· ,On]' 

But by property (04) we have D[OI' ... , On] = D(In) = 1. We therefore conclude 
that 

The above argument also shows that D is unique. 0 

An important consequence of the above is that the expression/or fi(A) given in 
Theorem 8.2 is independent olio 
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Definition 
The unique detenninantal mapping on Mat nxn F will be denoted by det. By the 

determinant of A = [ajj]nxn we shall mean det A. 

By Theorem 8.5, we have that 

det A = E euau(l),1 ... au(n),n' 
uEP. 

Alternatively, by Theorem 8.2, we have that, for i = 1, ... , n, 
n 

det A = E( -1 )i+j ajj det Ajj , 
j=1 

which is called the Laplace expansion along the i-th row. 

• Note that, as pointed out above, the Laplace expansion is independent of the 
row chosen. 

ExampleB.7 

Consider the matrix 

A = [~ 1 -~l. 
1 -5 1 

Using a Laplace expansion along the first row, we have 

detA=I.det[_! ~J-l.det[~ ~J+(-I).det[~ -!J 

= 16-(-1)-(-11}=28. 

Expanding along the second row, we obtain 

det A = -2 . det [_! -: J + 1 . det [! 
= -2(-4) + 2 - 3( -{j) = 28. 

Finally, expanding along the third row we obtain 

[1 -1] [1 det A = 1 . det 1 3 - (-5) . det 2 

=4+5·5+(-1)=28. 

EXERCISES 

-1] [1 1] 1 - 3· det 1 -5 

-1] [1 1] 3 +1·det 21 

8.5 Compute, via a third row Laplace expansion, 

[ 1 2 -3 4] 
-4 2 1 3 

det 3 0 -2 0 . 
1 0 2-5 
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8.6 Determine 

[
1 - A 

det ; 

Theorem 8.6 
If A is a square matrix then det A = det A'. 

Proof 

3 
-1 - A 

o 
2 1 3 . 

I-A 
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If a E Pn then whenever a(i) = j we have i = a-IU) and therefore aa(i),i = aj,a-1U). 

Consequently, 

aa(I),1 ... aa(n),n = al,a-I(I) ... an,a-I(n) = [A']a-I(I),I ... [A']a-I(n),n. 

Now as a ranges over Pn so does a-I; and e a = ea-I. Thus 

det A = I: eaaa(l),1 ... aa(n),n = I: ea-I [A']a-I(I),I ... [A']a-I(n),n = det A' . 0 
aEP. a-IEP. 

Corollary 
For j = 1, ... , n we have 

Proof 
We have 

n 

det A = I:( _1)i+j aij det Aij . 
i=1 

n 

detA=detA' = I:(-I)i+jajidetAji 
j=1 
n 

= I:(-I)i+jaijdetAij. 
i=1 

the second summation being obtained from the first summation by interchanging i 
andj. 0 

The reader should note that in the above Corollary the summation is over the first 

index whereas in Theorem 8.2 it is over the second index. 
We can thus assert that Laplace expansions via columns are also valid. 

EXERCISES 

8.7 For the matrix A of the previous example, find det A by Laplace expan­
sion via each of the three columns. 

8.8 Compute 

-; ! ~1 o -8 9 . 
0010 
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It is useful to know how row and column operations on a square matrix effect the 
determinant of that matrix. It is clear from property (D3) that 

• if B is obtained from A by interchanging two columns of A then det B = 
-det A. 

Also, from property (D2) it follows that 

• if B is obtained from A by multiplying a column of A by some scalar ). then 
det B = ). det A. 

Finally, if B is obtained from A by adding). times the i-th column of A to the j-th 
column then, by properties (D\) and (D~), we have 

det B = det [ ... , 8j, ... ,8j + ).8j, .•. ] 

= det [ ... , 8 j , ... , 8j, ... ] + det [ ... , 8j, ... , ). 8j, .•. ] 

= detA+).det[ ... ,8j, ... ,8j,"'] 

= det A +),0 

= det A. 

Thus we have that 

• if B is obtained from A by adding to any column of A a multiple of another 

column then det B = det A. 

Since row operations on A are simply column operations on At, and since det At = 
det A, it is clear from the above that similar observations holdfor row operations. 

Example 8.8 

Any square matrix that has a zero row or a zero column has a zero determinant. To 
see this, simply perform a Laplace expansion along that zero row or column. 

Example 8.9 

Consider again the matrix 

A = [~ ~ -;]. 
I -5 I 

Using row operations, we have 

1 1 
det A = det 0 -1 

o -6 

= det -1 5] 
-6 2 

= -2 + 30 = 28. 

by first column Laplace 
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Example 8.10 

Consider the matrix 

A = [~ ~ -~l. 
1 -5 1 

By a Laplace expansion using the second column, we have 

Example 8.11 

For the matrix 

we have 

EXERCISES 

det A = -(-5}det G -~] = 5·5 = 25. 

A= ri -~ ~ J] 
detA = r~ -~ ~ j] ~~=~~l 

o 8 -8 -16 P4 -5pI 

= det [~ ~ ~l by first column Laplace 
8 -8 -16 

=4.8.det[~ -~ =~l 
1 -1 -2 

= 32 det [~ -! -~l P2 - 3PI 
o 0 -1 P3 - PI 

= 32(-4) = -128. 

8.9 What is the determinant of an n x n elementary matrix? 
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8.10 Prove that the determinant of an n x n upper triangular matrix is the 
product of its diagonal elements. 

8.11 Determine the values of x for which det A::f 0 where 

rx 2 0 3] 
1 233 

A= 1 0 1 1 . 
1 113 
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8.12 Using row and column operations, show that 

0 a 0 0 0 0 
f 0 b 0 0 0 

det 
0 g o c 0 0 = -acefhm. 
0 0 h 0 d 0 
0 0 0 k 0 e 
0 0 0 0 m 0 

8.13 Compute the determinant of the matrix 

1 2 3 n 
-1 0 3 n 
-1 -2 0 n 

-1 -2 -3 0 

8.14 Compute the determinant of the matrix A = [aijlnxn given by 

a .. = {I 
IJ 0 

if i + j = n + 1; 

otherwise. 

8.15 Consider the complex matrix 

A= [l~i 
1 -2i 

Show that det A = 6. 

1 + i 
o 

2 + 3i 

1 + 2i] 
2 -3i . 

o 

We now consider some further important properties of determinants. 

Theorem 8.7 

If A, BE Mat nxn F then 

det AB = det A· det B. 

Proof 

If C = AB then the k-th column of C can be written 

Ck = bual + ... + b"kan' 

To see this, observe that the i-th element of Ck is 
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Thus we have that 

det AB = det C 

Corollary 

= det[bllal + ... + bnlan, ... , blnal + ... + bnnan1 
= L det[ba(I),laa(I)' ... , ba(n),naa(n)1 

aEP. 

= L ba(I),I·· .ba(n),n det [aa(I),···,aa(n)1 
aEP. 

= L ba(I),1 ... ba(n),nfa det [all··· , an] 
aEP. 

= det A . det B. 0 

1 
If A is invertible then det A =I 0 and det A-I = det A· 

Proof 
This follows from det A . det A-I = det AA-I = det In = 1. 0 

EXERCISES 

8.16 Given the matrices 

[ 
b + 8c 

A= 4c-4a 
2b -2a 

2c -2b 4b -4C] 
c + 8b 2a -2c , 
4a-4b a+8b p= [H !] 

find p-I and compute p-I AP. Hence determine det A. 

143 

8.17 If A is a square matrix such that AP = 0 for some positive integer p, 

prove that det A = o. 

If A is an invertible n x n matrix then we have seen above that det A =I O. Our 
objective now is to show that the converse of this holds. This will not only provide 
a useful way of determining when a matrix is invertible but will also give a new way 
of computing inverses. For this purpose, we require the following notion. 

Definition 

If A E Mat nxn F then the adjugate (or adjoint) of A is the n x n matrix adj A given 
by 

[adj A];j = (_l)i+i det Aji . 

• It is important to note the reversal of the suffices in the above definition. 
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The adjugate matrix has the following useful property. 

Theorem 8.8 

For every n x n matrix A, 

Proof 
We have 

A· adj A = {det A}In = adj A·A. 

n 
[A . adj Alj = L aik[adj A]kj 

k=1 
n 

= L aile det Aile 
k=1 

= {deot A if i = j; 

ifi r j, 

Basic Linear Algebra 

the last equality resulting from the fact that when i r j the expression represents the 
determinant of a matrix whosej-th row is the same as its i-th row. Thus A . adj A is 
a diagonal matrix all of whose diagonal entries is det A; in other words, A . adj A = 
{det A}In• The second equality is established similarly. 0 

EXERCISES 

8.18 Compute the adjugate of each of the following matrices: 

[a b] 
cd' 

[
a h g] 
h b f , 
g f c 

[-~ -~ -~]. 
-1 0-1 

Theorem 8.9 
A square matrix A is invertible if and only if det A r 0, in which case the inverse is 
given by 

Proof 

A_lId' A 
=detAa~ . 

If det A r 0 then by Theorem 8.8 we have 

A . _1_ adj A = I 
det A n 

whence A is invertible with A-I = de! A adj A. 

Conversely, if A -I exists then, as we have observed above, it follows from The­
orem 8.7 that det A r O. 0 
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Theorem 8.9 provides a new way of computing inverses. In purely numerical 
examples, one can become quite skilful in its use. However, the adjugate matrix has 
to be constructed with some care! In particular, notice should be taken of the factor 
(-1 )i+j = ± 1. The sign is given according to the scheme 

+ - + - ... 

- + - + ... 

+ - + - ... 
· .. . · .. . · .. . 

Example 8.12 

We have seen previously that the matrix 

A= [~ j -:] 
is such that det A = 28. By Theorem 8.9, A is therefore invertible. Now the adjugate 
matrix is 

det [_~ ~] -det [_~ -!] det [! -~] 

-det [~ ~] det [! -!] -det [~ -~] , 

det [~ _~] -det [! -~] det [~ !] 
i.e. it is the following matrix (which with practice can be worked out mentally): 

B = [ 1~ ~ _~]. 
-11 6 -1 

It follows by Theorem 8.9 that A -I = 218 B, which can of course be verified by direct 

multiplication. 

EXERCISES 

8.19 For each of the following matrices, compute its adjugate and then its 
inverse: 

[3 1 2] 
1 2 1 , 
111 

[5 3 2] 
2 3 1 , 
753 
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8.20 For the matrix 

show that adj A = A. 

8.21 If A is an invertible n x n matrix prove that 

det adj A = (det A}n-l. 

8.22 If A and B are invertible n x n matrices prove that 

adj AB = adj B . adj A. 

8.23 If A is an invertible n x n matrix prove that 

adj (adj A) = (det A)n-2 A. 

Deduce that, for n = 2, adj (adj A) = A. 

Basic Linear Algebra 

8.24 If A is an upper triangular matrix prove that so also is adj A. 

8.25 If A is a symmetric matrix prove that so also is adj A. 

8.26 If A is an hermitian matrix prove that so also is adj A. 

There are other methods of evaluating determinants that are often useful, depend­
ing on the matrices involved. For example, there is the so-called 'inspection method' 
which is best illustrated by example. 

Example 8. 13 

Consider the matrix 

A = [~ ~ ;~l. 
1 z Z2 

Observe that if we set x = y then the first two rows are equal and so the determinant 
of A reduces to zero. Thus x - y is a factor of det A. Similarly, so are x - z and 
y - z. Consider now the L -expansion of det A as in Theorem 8.5. Every term 

a 
in this expansion consists of a product of entries that come from distinct rows and 
columns (since we are dealing with a permutation a). Now the highest power of 
x, y, z appearing in this expansion is 2. Consequently, we can say that 

det A = k(x - y}(y - z)(x - z) 

for some constant k. To determine k, observe that the product of the diagonal entries, 
namely yz2, is a term in the L -expansion (namely, that which corresponds to the 

a 
identity permutation). But the term involving yz2 in the above expression for det A 
is -kYZ2. We conclude therefore that k = -1 and so 

det A = (x - y)(y - z}(z - x). 
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Example 8.14 

Consider the matrix 

a2 

A= b+c+d 
[

a 

bcd 

b 
b2 

c+d+a 
cda 

C 

c2 

d+a+b 
dab 

By the 'inspection method', factors of det A are 

d ] d2 

a+b+c . 
abc 

a-b, a-c, a-d, b-c, b-d, c-d. 
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Now the product of the diagonal entries, namely a2b3c(d + a + b), is a term in the 
L -expansion. But this is only partially represented in the product 
(f 

(a - Q}<'~ - c)(!! - d)(!z. - c)(!z. - d)(f. - d), 

which suggests that we have to find anoth6r factor. This can be discovered by adding 
row 1 to row 3: this clearly produces the factor a + b + c + d. Thus we have 

det A = k(a - b)(a - c)(a - d)(b - c)(b - d)(c - d)(a + b + c + d) 

forsomeconstantk. Comparing this with the product a2b3c(d+a+b) of the diagonal 
elements, we see that k = -1. 

Example 8. 15 

Consider the matrix 

A = [i ~ ~ :] 
YZ2 Z2 Z 1 . 
yzt zt t 1 

If x == y then the first column is y times the second column whence the determinant 
is zero and so x - y is a factor of det A. If z = t then the third and fourth rows are 
the same, so Z - t is also a factor of det A. If now y = z then we have 

detA = det[$ ~:~] 
Z2t zt t 1 

[

X 1 a b] 
=detZ2Z1 c 

Z3 Z2 Z 1 
o 0 0 1 -Ic 

= (l-tC)da[i: ,; :] 
= 0 since P3 = ZP2' 
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Thus we see that y - z is also a factor. It now follows that 

det A = k(x - y)(y - z)(z - t) 

Basic Linear Algebra 

for some constant k, and comparison with the product of the diagonal elements gives 
k = 1. 

EXERCISES 

8.27 For the matrix 

A = [:, :. ~ :,1 
a3 x 3 b3 c3 

express det A as a product of linear factors. 

8.28 Solve the equation 

~ : :1 = O. a x a 
a a x 

8.29 Consider the real matrix 

[f" ;, ~ :1· 
yzt2 zt2 t2 t 

Show that, whatever the entries marked ? may be, this matrix has deter­
minant 

(x - ay)(y - az)(z - at)t. 

SUPPLEMENTARY EXERCISES 

8.30 Let An be the n x n matrix given by 

ail = {~ 
Prove that det An = (_I)n-l(n -1). 

8.31 Consider the n x n matrix 
a+b 

a 
A= a 

a 

a 
a+b 

a 

a 

Prove that det A = bn-1(na + b). 

if i = j; 
otherwise. 

a 
a 

a+b 

a 

a 
a 
a 

a+b 
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8.32 Solve the equation 

I-x 

det I 2-x 

n-x 

8.33 Consider the n x n matrix 

b b b b b 
a b b b b 

-b a b b b 
B = n 

-b -b -b b b 
-b -b -b a b 

Prove that 
det Bn = (-1)n+lb(a - b)n-I. 

Hence show that if An is the n x n matrix 

a b b 
-b a b 
-b -b a 

-b -b -b 

then 

b 
b 
b 

a 

= O. 

det An = (a + b) det All_I - b(a - b)n-I. 

Deduce that 

8.34 Let An be the n x n matrix given by 

aij = { ~ 
2 cos 19 

If an = det An' prove that 

if Ii - jl > 1; 

ifli-jl=I; 

if i = j. 

an+2 - 2 cos 19 an+1 + an = O. 

Hence show by induction that, for 0 < 19 < 1l', 

d A _sin(n+1)19 
et n - '.Q • 

SIn v 

149 
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8.35 Let An be the n x n matrix given by 

{
b, ifi :j:j; 

aij = ai ~ bi if i = j < n; 

bn if i = j = n. 

n-I 

Prove that det An = bn II ai' 
i=1 

If Bn is given by 

b·· = I {
b. 

IJ ai + bi 

ifi:j:j; 

if i = j, 
prove that det Bn = det An + an det Bn_l • Hence show that 

8.36 If A and B are square matrices of the same size, prove that 

det[~ ~] =det(A+B)det(A-B). 

8.37 LetM= [= ;] whereP,Q,R,Saresquarematricesofthesamesize 

and P is invertible. Find a matrix N of the form [~ ~] such that 

[ I P-1Q] 
NM = 0 S _ RP-I Q . 

Hence show that if P and R commute then det M = det (PS - RQ); and 
that if P and Q commute then det M = det (SP - RQ). 

8.38 [pivotal condensation] Let A E Matnxn IR and suppose that apq :j: O. 
Let B be the (n - 1) x (n - 1) matrix constructed from A by defining 

det [=~ 1=: J 
det [aiq aij ] I apq I apj 

det [apj I apq ~ 
aij aiq 

det [I apq I api ] 
aiq aij 

Prove that det A = ak det B. ,., 

if 1 ~ i ~ p - 1, 1 ~ j ~ q - 1 ; 

if 1 ~ i ~ p - 1, q + 1 ~ j ~ n; 

if p + 1 ~ i ~ n, 1 ~ j ~ q - 1; 

if P + 1 ~ i ~ n, q + 1 ~ j ~ n. 
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[Hint. Begin by dividing the p-th row by apq to obtain a matrix X in 

which xpq = 1. Now subtract suitable mUltiples of the q-th column of 
X from the other columns of X to make the elements of the p-th row 

o except for xpq = 1, thereby obtaining a matrix Y. Observe how the 
structure of the matrix B arises. Now consider a Laplace expansion of 

Y via the p-th row.] 

• The (n -1) x (n -1) matrix B is called the matrix obtained/rom A 
by pivotal condensation using apq as a pivot. This useful (and little 
publicised) result provides a simple recursive way of computing 
the determinants of matrices and is particularly effective when they 
have integer entries. The size of the matrix reduces at each step and 
the calculations are simple since they involve 2 x 2 submatrices, and 
are made easier if it can be arranged that a 1 is chosen as a pivot. 

Forexampl~ det [! ~ ~ = ~det [~ =~l = ~17 
Compute, via pivotal condensation, the determinants of 

1 2 3 n 
-1 0 3 n 
-1 -2 0 n 

-1 -2 -3 0 

ASSIGNMENT EXERCISES 

(1) Given a real square matrix A == [aij]nxn, consider a system Ax = b of n linear 
equations in n unknowns. Suppose that A is invertible. Then the system has a unique 
solution, namely 

x = A-lb. 

If (Ai; b) denotes the matrix that is obtained from A by replacing the i-th column of 
A by b, use Theorem 8.9 to prove that the components of x are given by 

det(A i ; b) 
x·=-....:....-~..:. 

, det A . 

These equations, known as Cramer's formulae, give the solution to Ax = b in 

the case where A is invertible. They are of theoretical interest, though somewhat 

impractical in computing solutions except when n is very small. Try the method on 
the system 

{ 
2x + 4 Y - 3z = -1; 

x + y - 3z = 2; 
3x + 5y + 5z = 3. 
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(2) If A is an invertible matrix with integer entries and det A = ± l, use Cramer's 
formulae to show that A -I also has integer entries. 

(3) In IR2 consider the line pair 

{ ax + by + c = 0; 
a'x + b'y + c' = O. 

Show that the lines intersect if and only if the matrix 

is invertible. In this case, use Cramer's formulae to obtain the point of intersection. 

(4) If a triangle in IR2 has vertices (XI,YI), (X2,Y2), (X3,Y3) prove that its area 
is the absolute value of 

~ det [;~ ~~ ~l. 
X3 Y3 1 

Three lines, given by the system of equations 

{ 
alx + bly + CI = 0; 
a2x + b2y + C2 = 0; 
a3x + b3y + C3 = 0, 

bound a triangle. Prove that its area is the absolute value of 

t(det A)2 

(a 1b2 -a2b l)(a2b3 -a3b2)(a3b l -a l b3) 

where A is the coefficient matrix of the system. 
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Eigenvalues and Eigenvectors 

Recall that an n x n matrix B is similar to an n x n matrix A if there is an invertible 
n x n matrix P such that B = p-1 AP. Our objective now is to determine under what 
conditions an n x n matrix is similar to a diagonal matrix. In so doing we shall draw 
together all of the notions that have been previously developed. Unless otherwise 
specified, A will denote an n x n matrix over IR or C. 

Definition 
By an eigenvalue (or latent root) of A we shall mean a scalar A for which there 
exists a non-zero n x 1 matrix x such that Ax = AX. Such a (column) matrix x is 
called an eigenvector (or latent vector) associated with A . 

• Note that eigenvectors are by definition non-zero. 

Theorem 9.1 
A scalar A is an eigenvalue of A if and only if 

det (A - Un) = O. 

Proof 
Observe that Ax = AX can be written in the form 

(A - AIn)x = O. 

Then A is an eigenvalue of A if and only if the homogeneous system of equations 

(A - Un)x = 0 

has a non-zero solution. By Theorems 3.16 and 4.3, this is the case if and only if the 
matrix A - AI n is not invertible, and by Theorem 8.9 this is equivalent to det (A - Un) 
being zero. 0 

Corollary 
Similar matrices have the same eigenvalues. 
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Proof 

It suffices to observe that, by Theorem 8.7, 

det (p-I AP - AIn) = det[p-I (A - AIn)Pl 

= det p-I . det(A - .AIn) . det P 

= det(A - .AIn }. 0 

Note that with A = [aijlnxn we have 

r
all - A 

a21 
det(A -.AIn } = det : 

ani 

and, recalling that the product of the diagonal elements is a term in the L -expansion, 
(J 

we see that this is a polynomial of degree n in A. We call this the characteristic 
polynomial of A. By the characteristic equation of A we mean the equation 

det(A - A/n) = O. 

Thus Theorem 9.1 can be expressed by saying that the eigenvalues of A are the 
roots of the characteristic equation. 

Recall that over the field C of complex numbers this equation has n roots, some 
of which may be repeated. 

If A I, ... , Ak are the distinct roots (= eigenvalues) then the characteristic poly­
nomial factorises in the form 

We call r I , ... , rk the algebraic multiplicities of A I , ... , A k' 

Example 9.1 

Consider the matrix 

We have 

[-A I] det(A -.AI2} = det -I -A = A2 + 1. 

Since A 2 + 1 has no real roots, we see that A has no real eigenvalues. However, if 
we regard A as a matrix over C then A has two eigenvalues, namely i and -i, each 
being of algebraic multiplicity 1. 
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Example 9.2 

Consider the matrix 

Using the obvious row/column operations, we compute the characteristic polynomial 

of A as follows: 

det(A ->-1,) = det [-3i >- 5 ~ >- -2=1 >-] 

=det[=;O=: 5~>- _2=iJ 

= -(2 + >-)det [1 5 ~ >- -2=U 

= -(2 + ).) det [00
1 

4 ~ ). ~l] 
6 -2 -). 

= -(2+).)(4-).)(-2-).) 

= (2 + ).)2(4 - ).). 

It follows that the eigenvalues are 4 (of algebraic multiplicity 1) and -2 (of algebraic 
mUltiplicity 2). 

EXERCISES 

9.1 For each of the following matrices, determine the eigenvalues and their 
algebraic multiplicity: 

[! ~ -!], 
223 

[0 1 0] o 0 1 , 
1 -3 3 

[2-i 0 i] o l+i 0 . 
i 0 2-i 

9.2 If >. is an eigenvalue of an invertible matrix A prove that). 'f 0 and that 
>. -1 is an eigenvalue of A-I. 

9.3 Prove that if >. is an eigenvalue of A then, for every polynomial p(X), 
p(>.) is an eigenvalue of p(A). 
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If A is an eigenvalue of A then the set 

E). = {x E Mat nxl F; Ax = Ax} 

i.e. the set of eigenvectors associated with the eigenvalue A together with the zero 
column 0, is readily seen to be a subspace of the vector space Mat nxl F. 

This subspace of eigenvectors is called the eigenspace associated with the eigen­
value A. 

The dimension of the eigenspace E). is called the geometric multiplicity of the 
eigenvalue A. 

Example 9.3 

Consider the matrix A of the previous example. The eigenvalues are 4 and -2. To 
determine the eigenspace E4 we must solve the system (A - 4/3)x = 0, i.e. 

The corresponding system of equations reduces to x = 0, y - z = 0 and so E4 is 
spanned by 

where y t= 0 since by definition eigenvectors are non-zero. Consequently we see that 
the eigenspace E4 is of dimension 1 with basis 

W]) 
As for the eigenspace E_2' we solve (A + 2/3)x = 0, i.e. 

The corresponding system of equations reduces to x = y, Z = 0 and so E-2 is spanned 
by 

where x t= o. Thus E-2 is also of dimension 1 with basis 

W]) 
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EXERCISES 

9.4 For each of the following matrices determine the eigenvalues and a basis 
of each of the corresponding eigenspaces: 

9.5 Show that the matrix 

[=i -~ =ij 
5 5 6 

has only two distinct eigenvalues. Determine a basis of each of the cor­
responding eigenspaces. 

The notions of eigenvalue and eigenvector can also be defined for linear map­
pings. 

Definition 

If f : V ---. W is linear then a scalar A is said to be an eigenvalue of f if there is a 
non-zero x E V such that f{x) :;;;; AX, such an element X being called an eigenvector 

associated with A. 

The connection with matrices is as follows. Given an n x n matrix A, we can 
consider the linear mapping 

fA: Mat nxl F ---. Mat nxl F 

given by fA (x) :;;;; Ax. It can readily be verified that, relative to the natural ordered 
basis of Mat nx I F, we have Mat fA :;;;; A. Clearly, the matrix A and the linear mapping 
fA have the same eigenvalues. 

Example 9.4 

Consider the vector space Diff(lA, IA) of all real differentiable functions. The dif­
ferentiation map D : Diff(lR, IA) ---. Map (IR, IR) is linear. An eigenvector of D is a 
non-zero differentiable functionf such that, for some real A, Df:;;;; '>.j. By the theory 

of first-order differential equations we see that the eigenvectors of D are therefore 
the functions f given by f{x) :;;;; keAx , where k :f 0 since, we recall, eigenvectors are 
by definition non-zero. 

Example 9.5 

Consider the linear mappingf : IR3 ---. IR3 given by 

f(x,y,z):;;;; (y+z, x+z, x+y). 
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Relative to the natural ordered basis of IR3 the matrix of I is 

A; [H 1] 
The reader can readily verify that 

det (A - }.f,) ; det [-1 -~ 
The eigenvalues of A, and hence those of I, are therefore 2 and -1, the latter being 

of algebraic multiplicity 2. 

EXERCISES 

9.6 Determine the eigenvalues, and their algebraic multiplicities, of the lin­
ear mapping I: IR3 -+ 1R3 given by 

(1) I(x,y,z) = (x + 2y + 2z, 2y + Z, -x + 2y + 2z); 

(2) I(x,y,z) = (y + Z, 0, x + y). 

Theorem 9.2 
Eigenvectors corresponding to distinct eigenvalues are linearly independent. 

Proof 

The proof is by induction. If I : V -+ V has only one eigenvalue and if x is a cor­
responding eigenvector then since x t= 0 we know that {x} is linearly independent. 
For the inductive step, suppose that every set of n eigenvectors that correspond to 
n distinct eigenvalues is linearly independent. Let XI,'" ,xn+1 be eigenvectors that 
correspond to distinct eigenvalues AI, ... , A n+ I' If we have 

(1) 

then, applying! and using the fact that/(xj) = AjXj, we obtain 

(2) 

Now take (2) - An+1 (1) to get 

al (AI - An+I)XI + ... + an(An - An+.}Xn = 0. 

By the induction hypothesis and the fact that AI, ... ,A n+1 are distinct, we deduce 
that 

al = ... = an = 0. 

It now follows by (1) that an+lxn+1 = ° whence, since xn+1 t= 0, we also have an+1 = 
O. Hence XI,'" 'Xn+1 are linearly independent and the result follows. 0 
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Definition 

A linear mappingf : V -+ V is said to be diagonalisable if there is an ordered basis 

(Vi)n of V with repect to which the matrix of f is a diagonal matrix. 

Thus f is diagonalisable if and only if there is an ordered basis (vi)n of V such 

that 
f(vI)=).IVI 
f(V2) = ).2V2 

f(vn) = ).nvn 

in which case the ). i are the eigenvalues off. We can therefore assert the following: 

Theorem 9.3 

A linear mapping f : V -+ V is diagonalisable if and only if V has a basis consisting 

of eigenvectors of f. 0 

Equivalently, if we define a square matrix to be diagonalisable when it is similar 
to a diagonal matrix then as a result on matrices Theorem 9.3 translates into the 
following result: 

Theorem 9.4 

An n x n matrix is diagonalisable if and only if it admits n linearly iiuJependent 
eigenvectors. 0 

We now proceed to show that f : V -+ V is diagonalisable if and only if, for 
every eigenvalue)., the geometric and algebraic multiplicities of ). coincide. For 
this purpose we require the following results. 

Theorem 9.5 

Let V be of dimension n. If).I,""). k are the eigenvalues of f : V -+ V and if 
d l , ••• ,dk are their geometric multiplicities then 

d l + ... + dk ~ n 

with equality if and only if f is diagonalisable. 

Proof 

For each i let Bi be a basis of E Ai' Observe first that if 

VI + ... + Vk = 0 

where each Vi E Bi then necessarily each Vi = O. This follows from Theorem 9.2. 
k 

Observe next that UBi is linearly independent. In fact, if Bi = {eil,··" eid,} 
i=1 

and 
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k 

then L Vi = 0 gives, from the above, each Vi = 0 whence all the coefficients I-tij = O. 
i=1 

Since the Bi are pairwise disjoint, it follows that 

d l + ... + dk = IU Bil ~ n . 
• =1 

Finally, equality occurs if and only if V has n linearly independent eigenvectors, 
i.e. by Theorem 9.3, if and only iff is diagonalisable. 0 

Theorem 9.6 

If'\ is an eigenvalue off: V --+ V then the geometric multiplicity of'\ is less than 
or equal to the algebraic multiplicity of,\. 

Proof 

Let {el,"" ed} be a basis of E).. and extend this to a basis B = {el,"" en} of V. 
The matrix off relative to B is of the form 

M=['\~d ~]. 
The characteristic polynomial of M is of the form (,\ - X)dp(X) where p(X) is a 
polynomial of degree n - d. It follows that d is less than or equal to the algebraic 
multiplicity of,\ . 0 

We can now deduce from the above the following necessary and sufficient con­
dition for f : V --+ V to be diagonalisable. 

Theorem 9.7 

The following statements are equivalent: 
( 1) f: V --+ V is diagonalisable; 
(2) for every eigenvalue ,\ of f, the geometric multiplicity of'\ coincides with 

the algebraic multiplicity of'\. 

Proof 

The sum of the algebraic multiplicities of the eigenValues is the degree of the charac­
teristic polynomial, namely n = dim V. The result therefore follows from Theorems 
9.5 and 9.6. 0 

Example 9.6 

As observed in Example 9.2 above, the matrix 

A = [=~ ; =~l 
-6 6 -2 
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has only two distinct eigenvalues, namely 4 and -2. The latter is of algebraic mul­
tiplicity 2. To determine the eigenspace E_2' we solve (A + 213)x = 0, i.e. 

The corresponding system of equations reduces to 

x -y = 0, 

z=o 
so the rank of the coefficient matrix is 2 and consequently the solution space is of 
dimension 3 - 2 = 1. Thus the eigenvalue -2 is of geometric multiplicity 1. 

It follows by Theorem 9.7 that A is not diagonalisable. 

Example 9.7 

Consider the matrix 

The reader can readily verify that 

det(B->.I3) = (4-A)(A +2)2, 

so the eigenvalues are 4 and -2, these being of respective algebraic multiplicities I 
and 2. 

To determine the eigenspace E-2 we solve (B + 213)x = 0, i.e. 

The corresponding system of equations reduces to x - y + Z = 0, so the coefficient 
matrix is of rank 1 and so the dimension of the solution space is 3 - 1 = 2. Thus the 
eigenvalue -2 is of geometric multiplicity 2. 

As for the eigenvalue 4, since its algebraic multiplicity is 1, it follows by Theorem 
9.6 that its geometric multiplicity is also 1. It now follows by Theorem 9.7 that B is 
diagonalisable. 

If A is similar to a diagonal matrix D then there is an invertible matrix P such 
that p-1 AP = D where the diagonal entries of D are the eigenvalues of A. We shall 
now consider the problem of determining such a matrix P. 
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First we observe that the equation p-I AP = D can be written AP = PD. Let the 
columns of P be PI, ... , Pn and let 

where AI, ... ,An are the eigenvalues of A. Comparing the i-th columns of each side 
of the equation AP = PD, we obtain 

(i=l, ... ,n) APi = AiPi· 

In other words, the i-th column of P is an eigenvector of A corresponding to the 
eigenvalue Ai. 

Example 9.8 

Consider again the previous example. Any two linearly independent eigenvectors in 
E_2 constitute a basis for E_2. For these we can choose, for example, 

Any single non-zero vector in E4 constitutes a basis for E4. We can choose, for 
example, 

[! 1. 
2J 

Clearly, the three eigenvectors 

are linearly independent. Pasting these eigenvectors together, we obtain the matrix 

p: [L~ 1], 
and this is such that 

P-IBP = [-~ -~ ~]. 
o 0 4 

• Note that, in order to obtain a particular arrangement of the eigenvalues down 
the diagonal of the matrix D, it suffices to select the same arrangement of the 
columns of P. 
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EXERCISES 

9.7 For each of the matrices A given by 

[1 0 1] o 1 0 , 
1 0 1 

[-3 -7 19] 
-2 -1 8 , 
-2 -3 10 

find a matrix P such that p-I AP is diagonal. 

Let us now return to the problems of equilibrium-seeking systems and difference 
equations as outlined in Chapter 2. In each of these, the matrix in question is of size 
2 x 2, so we first prove a simple result that will allow us to cut a few comers. 

Theorem 9.8 

If the 2 x 2 matrix 

A=[: !] 
has distinct eigenvalues AI, A2 then it is diagonalisable. When b t= 0, an invertible 
matrix P such that 

is the matrix 

Proof 

The first statement is immediate from Theorems 9.2 and 9.4. As for the second 
statement, we observe that 

det [a : Ad: A] = A 2 - (a + d)A + ad - bc 

and so the eigenvalues of A are 

AI = Wa + d) + v(a -d)2 + 4bc], 

A2 = Wa + d) - v(a -d)2 + 4bc]. 

Consider the column matrix 

XI= [ b ] 
AI - a 
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in which, by hypothesis, b -:f O. We have 

[: !] [AI~a] = [eb+!t;l-a}] = Al [AI~a]' 
the final equality resulting from the fact that 

AI(AI -a} -eb -d(AI -a} = Ai - (a + d}A\ + ad -be = O. 

Thus XI is an eigenvector associated with A I' Similarly, we can show that 

X2 = [A2 ~ a] 
is an eigenvector associated with A2' Pasting these eigenvectors together, we ob­
tained the required matrix P. 0 

Example 9.9 

Consider the equilibrium-seeking system as described in Chapter 2. The matrix in 
question is 

[! ~] ~ !2 . 
4 20 

The eigenvalues of A are the roots of the equation 

(!-A)(~-A}-~=O. 

The reader will easily check that this reduces to 

(5 A-l)( A-I} = 0 

so that the eigenvalues are t and 1. It follows by Theorem 9.8 that A is diagonalis­
able, that an eigenvector associated with A I = t is 

and that an eigenvector associated with A2 = 1 is 

We can therefore assert that the matrix P = [_! l~] is invertible and such that 

P-IAP=[! ~]. 
Since, as is readily seen, 

-I I [15 -1] 
P =16 1 l' 
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[
1 O]n 

we can compute An = p g 1 p-I. We have 

I [1 An = i6 -1 

Example 9. 10 

Consider the Fibonacci sequence (aj)j~O defined recursively by ao = 0, al = 1, 
r 

and 

We can write this as a system of difference equations in the following way: 

a n+2 = an+1 + bn+1 

bn+2 = an+l· 

This we can represent in the matrix form xn+2 = AXn+1 where 

Xn = [::] and A = [~ ~]. 
The eigenvalues of A are the solutions of), 2 - ). - 1 = 0, namely 

AI = t(1 + 0), A2 = t(1-0). 

By Theorem 9.8, A is diagonalisable, and corresponding eigenvectors are 

Then the matrix P = [-~2 _~ J is invertible and such that 

Now clearly 
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and so, using the fact that ).1).2 = -1, we can compute 

An = A2~Al [-~2 -~J [~~ ~i] [-~: -!] 

_ I [).i+I-).rl ).i-).~] 
- A2-Al ).n _).n ).n-I _).n-I . 

2 I 2 I 

Since it is given that b l = ao = 0 and al = 1, we can now assert that 

[ an+l] = Anx = An [1] = _1_ [).r l 
- ).r l

] 
bn+l I 0 A2-Al ).i-).7 

and hence we see that 

an = A2~Al ().i -).1) = tsH(1 + y's)]n -7sH(1 - v'sW· 

Example 9.11 

Consider the sequence of fractions 
1 

2, 2+!, 2+--1 , 
2+2" 

1 
2 + l' 

2+--
2+1 

2 

... , 

This is a particular example of what is called a continued fraction. If we denote the 

n-th term in this sqeuence by :n then we have 
n 

an+1 = 2 + _1_ = 2an + bn 
bn+1 an an 

b" 
and so we can consider the difference equations 

The matrix of the system is 

an+1 = 2a" + bn 

bn+1 = an· 

A = [~ ~] 
and we can write the system as xlI+I = AXil where 

XII = [~:] . 
Now al = 2 and b l = 1, so we can compute xn+1 from 

xn+1 = An [i] . 
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The eigenvalues of A are the solutions of A 2 - 2A - I = 0, namely 

A,=I+v2, A2=1-v2. 

By Theorem 9.8, the matrix 

p= [-1 ~ V2 -1 ~V2J = [-A: -A:J 

is invertible and such that 

P-'AP= [1 +V2 0]. 
o I-V2 

Now it is readily seen that 

r' ~ ~ [ _: : ~ _:] ~ ~ [-~: -:1 
Consequently, 

, [At' -At1 Ai -Ai] 
= i7z An _ An An- 1 _A n- 1 

I 2 I 2 

and so we deduce from [~:::] = An [i] that 

an+l 2[(1 + V2)n+l - (1 - V2)n+l] + (1 + V2)n - (1 - V2)n 

bn+1 = 2[(1 + V2)n - (1 - V2)n] + (1 + V2)n-l - (1 - V2)n-l 

(1 + V2)n(3 + 2V2) - (1 - V2)n(3 - 2V2) = ~--~~~--~--~~~~--~~ 
(1 + V2)n-l(3 + 2V2) - (1 - V2)n-l(3 - 2V2)' 

Since 1 - V2 = -1 f;; and 3 - 2V2 = 1 . f;;' this can be written 
1 + v2 3 + 2v2 

from which we see that 

1 + V2 - (-II"{l+V'i)!'-1(3+2Ji)2 

1 - (-11"-1(I+Ji~2'-2(3+2Ji)2 

lim an+l = 1 + v2. 
n-+oo bn+1 

167 
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Example 9. 12 

If ql is a positive rational, define 

Then it is easy to show that 

12 -q~1 < 12 -qrl· 
In other words, if ql is an approximation to .;2 then q2 is a better approximation. 
Starting with ql = 1 and applying this observation repeatedly, we obtain the sequence 

3 7 17 41 99 
1, 2' 5' 12' 29' 70' 

We can use the techniques described above to determine the general term in this 
sequence and show that it does indeed converge to.;2. Denoting the n-th term by 
an h h' we ave 

n 

2 + an 
all+! bn 2bll + an 

bn+1 = 1 + an = bn + an 

bn 

and so the sequence can be described by the system of difference equations 

The matrix of the system is 

an+1 = an + 2bn 

bn+ 1 = an + bn• 

A= U n 
and its characteristic equation is >. 2 - 2A - I = 0, so that the eigenvalues are 

Al = 1 + v'2, A2 = I -v'2. 
By Theorem 9.8, the matrix 

is invertible and such that 

p-I AP = [1 + .;2 0]. 
o 1-.;2 

Now it is readily seen that 

p-I = 1[1 .;2]. 
4 1 -.;2 
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Consequently, 

A' = I[Jz -Jzl [~i ~ll [: j] 
I [2 2] [>.. i v'2>.. i 1 

= 4 v'2 -v'2 >.. ~ -v'2>.. ~ 

= ! [ 2>" i + 2>"~ 2v'2>.. i - 2v'2>..~l 
4 v'2>"7-v'2>"2 2>"7+ 2>"2 

and so we deduce from 

that 
an+1 2(1 + v'2)n+1 + 2(1 - v'2)n+1 = v'2. 1 + (~)n+1 
bn+1 = v'2(1 + v'2)n+1 - v'2(1 - v'2)n+1 1 - (:~1)n+1 ' 

from which we see that 
lim an = Vi. 
n-+oo bn 

169 

It is of course possible for problems such as the above to involve a (non-diagonal) 
2 x 2 matrix A whose eigenvalues are not distinct. In this case A is not diagonalisable; 
for if >.. is the only eigenvalue then the system of equations (A - H 2)X = 0 reduces 
to a single equation and the dimension of the solution space is 2 - 1 = 1, so there 
cannot exist two linearly independent eigenvectors. To find high powers of A in this 
case we have to proceed in a different manner. If 

A= [: ~] 
then the characteristic polynomial of A is 

Observe now that 

I(X) = X2 - (a + d)X + ad - be. 

A2 = [a2 + be b(a + d)] 
e(a + d) be + d2 

= (a +d) [: !] -(ad -be) [~ ~] 
= (a + d)A - (ad - be)12 

and so we see that I(A) = O. For n ~ 2 consider the euclidean division of xn by 
I(X). Since I is of degree 2 we have 
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(3) 

Substituting A for X in this polynomial identity we obtain, by the above observation, 

An = alA + 012/2. 

We can determine 011 and 012 as follows. If we differentiate (3) and substitute A 
(the single eigenvalue of A) for X then, sincef(A} = 0, we obtain 

nAn-I = 011. 

Also, substituting A for X in (3) and again usingf(A} = 0, we obtain 

An = alA + 012 = nAn + 012 

and so 

It now follows that 

Example 9. 13 

Consider the n x n tridiagonal matrix 

2 1 0 0 0 0 
1 2 1 0 0 0 
0 1 2 1 0 0 

A = n 

0 0 0 0 2 1 
0 0 0 0 2 

Writing an = det An we have, using a Laplace expansion along the first row, 

0210 ... 0 1 1 0 0 ... 01 

a = 2a - det 0 1 2 1 . .. 0 n n-I · . . '. . · . . . . . · . . . .. 
0000 ... 2 

= 2an_1 - an-2· 

Expressing this recurrence relation in the usual way as a system of difference equa­
tions 

an = 2an_1 - bn- I 

bn = an_I 

we consider the system Xn = AXn_1 where 



9. Eigenvalues and Eigenvectors 171 

Now 

and so A has the single eigenvalue 1 of algebraic multiplicity 2. We can compute An 
as in the above: 

An=nA+(1-n)12= [n:1 1~n]' 
Consequently we have 

[~:] = An- 2 [~~] 

= [:=~ ~n:n2] [;] 
= [n: 1] 

and hence we see that 

EXERCISES 

9.8 Consider the tridiagonal matrix 

1 -4 0 0 
5 1 -4 0 
0 5 1 0 

A = n 

0 0 0 1 
0 0 0 5 

Prove that 

SUPPLEMENTARY EXERCISES 

9.9 Determine the characteristic polynomials of 

[1 2 3] [1 1 0] o 1 2, -1 1 1 , 
o 0 1 0 1 -1 

0 
0 
0 

-4 
1 

=i ~2]. 
-2 
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9.10 Suppose that A and B are n x n matrices such that In - AB is invertible. 
Prove that so also is In - BA with 

(In -BAr l = In + B(In -AB)-IA. 

Deduce that XY and YX have the same eigenvalues. 

9.11 Show that [!] and [n are eigenvectors of A = [_ ~~: ~ 

[ 1 i] If P = i 1 compute the product p-I AP. 

sin 19]. 
cos t9 

9.12 For each of the following matrices determine an in vertible matrix P such 
that p-I AP is diagonal with the diagonal entries in increasing order of 
magnitude: 

[0 1 0] 
1 0 1 , 
o 1 0 

[ 
3 -1 

-1 3 
o 0 

9.13 Consider the system of recurrence relations 

If the matrix [7 ~] has distinct eigenvalues ~ I , ~2 prove that 

~n ~n 

Un = ~(UI - ~2uO) - ~(UI - AI uo)· 
1\1 -1\2 1\1 -1\2 

What is the situation when the eigenvalues are not distinct? 

9.14 Determine the n-th power of the matrix 

[Hl 
9.15 Solve the system of equations 

xn+1 = 2xn + 6Yn 
Yn+1 = 6xn - 3Yn 

given that XI = 0 and YI = -1. 

9.16 Given the matrix 

A: [-~! 
find a matrix B such that B2 = A. 
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9.17 Given A E Mat nxn IA let k = max JajJ Prove that, for all positive 
integers r, 

I[ATljl::;;; kTnT- I . 

For every scalar f3, associate with A the infinite series 

Sp(A) == In + f3A + f32A2 + ... + f3T AT + '" . 

We say that Sp(A) converges if each of the series 

oij + f3[A];j + f32[A2]jj + ... + f3T[AT]jj + ... 

converges. Prove that 

(I) S p(A) converges if 1f31 < :k; 
(2) if S p(A) converges then In - f3A has an inverse which is the sum of 
the series. 

Deduce that if A is a real n x n matrix and), is an eigenvalue of A then 

1).1::;;; nmax lajjl· 

ASSIGNMENT EXERCISES 

( 1) Determine the characteristic polynomial of the matrix 

A = [~ ~ -~l. 
513 

Is A diagonalisable? 

(2) Determine the characteristic polynomial of the n x n matrix 

o a 0 0 0 
o 0 a 0 0 
o 0 0 0 0 

o 0 0 0 a 
a 0 0 0 0 

(3) If a, b, c, d E IR determine the characteristc polynomial of the matrix 

[ ~ Hl]. 
-d-c b a 

[Hint. Look back at quatemions in the assignment exercises for Chapter 2.] 
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(3) For the matrix 

[2 0 4] 
A = 3 -4 12 

1 -2 5 

determine an invertible matrix P such that p-I AP is diagonal. 

(4) Consider the continued fraction 

x, l X+­
x' 

Determine its limit. 

y2 
X + 2' 

Y X+--
x + i. x 

(5) Solve the system of equations 

given that Xl = 0 and Yl = 1. 

XII+I = tXII + (1 -t)YII 
YII+I = (1 - t)xlI + tYn 

Basic Linear Algebra 

... , 

(6) If A E Mat llxlI FI define the i-th row sum Pi(A) and the j-th column sum 
J.£j(A) respectively by 

II II 

Pi(A) = L laijl, J.£j(A) = L laiJ 
j=1 ;=1 

Prove that if >. is an eigenvalue of A then 

1>'1 ~ min{maxp;(A),maxJ.£j(A)}. 



10 
The Minimum Polynomial 

In Chapter 9 we introduced the notions of eigenvalue and eigenvector of a matrix or 
of a linear mapping. There we concentrated our attention on showing the importance 
of these notions in solving particular problems. Here we shall take a closer algebraic 
look. 

We begin by considering again the vector space Mat nxn F which, as we know, 
has the natural basis {Eij ; i ,j = 1, ... , n} and so is of dimension n2• Thus, recalling 
Corollary 3 of Theorem 5.8, we have that every set of n2 + 1 elements of Mat nxn F 
must be linearly dependent. In partiCUlar, given any A E Mat nxn F, the n2 + 1 powers 

AO = In, A, A2, A3 , ••• ,An2 

are linearly dependent and so there is a non-zero polynomial 

p(X) = ao + alX + a2X2 + ... + an2xn2 E F[X] 

such that p(A) = O. The same is of course true for any f E Lin (V, V) where V is of 
dimension n; for, by Theorem 7.2, we have Lin (V, V) ~ Mat nxn F. 

But we can do better than this: there is in fact a polynomial p(X) which is of 
degree at most n and such that p(A) = O. 

This is the celebrated Cayley-Hamilton Theorem which we shall now establish. 
Since we choose to work in Mat nxn F, the proof that we shall give is considered 
'elementary'. There are other (much more 'elegant') proofs which use Lin (V, V). 

Recall that if A E Mat nxn F then the characteristic polynomial of A is 

CA(>') = det(A -AIn) 

and that C A (>.) is of degree n in the indeterminate>.. 

Theorem 10.1 

[Cayley-Hamilton] cA(A) = O. 

Proof 

Let B = A - AI nand 

CA('>") = det B = bo + b l >' + ... + bn.>..n. 
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Consider the adjugate matrix adj B. By definition. this is an n x n matrix whose 
entries are polynomials in A of degree at most n - 1. and so we have 

adj B = Bo + B,A + ... + B,,_IA,,-I 

for some n x n matrices Bo •...• B,,_I' Recalling from Theorem 8.8 that B . adj B = 
(det B)I". we have 

(det B)I" = B . adj B = (A - AI,,) adj B = A adj B - A adj B, 

i.e. we have the polynomial identity 

boI +bIIA+ .. ·+bIA"=ABo+ .. ·+AB ,A,,-I_BoA- ... -B IAn n n n n n- n- . 

Equating coefficients of like powers, we obtain 

boI" = ABo 
b,I" = ABI -Bo 

b"_,I,, = AB,,_I -B,,_2 
b"I" = -B,,_,. 

Multiplying the first equation on the left by AO = I", the second by A, the third by 
A 2, and so on, we obtain 

boI" = ABo 
b,A = A2B, -ABo 

b,,_lA,,-1 = A"B,,_, - A"-' B,,-2 
b"A" = -A"B,,_,. 

Adding these equations together, we obtain cA(A) = O. 0 

The Cayley-Hamilton Theorem is really quite remarkable, it being far from ob­
vious that an n x n matrix should satisfy a polynomial equation of degree n. 

Suppose now that k is the lowest degree for which a polynomial p(X) exists 
such that p(A) = O. Dividing p(X) by its leading coefficient. we obtain a monic 
polynomial m(X) of degree k which has A as a zero. Suppose that m' (X) is another 
monic polynomial of degree k such that m'(A) = O. Then m(X) - m'(X) is a non­
zero polynomial of degree less than k which has A as a zero. This contradicts the 
above assumption on k. Consequently, m(X) is the unique monic polynomial ofleast 
degree having A as a zero. This leads to the following: 

Definition 
If A E Mat /IX" F then the minimum polynomial of A is the monic polynomial mA (X) 
of least degree such that mA (A) = o. 
Theorem 10.2 
If p(X) is a polynomial such that p(A) = 0 then the minimum polynomial mA (X) 
divides p(X). 
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Proof 

By euclidean division, there are polynomials q(X), r(X) such that 

p(X) = mA(X)q(X) + r(X) 

with r(X) = 0 or deg r(X) < deg mA(X). Now by hypothesis p(A) = 0, and by 
definition mA(A) = O. Consequently, we have r(A) = O. By the definition of mA(X) 
we cannot then have deg r(X) < deg mA (X), and so we must have r(X) = O. It 
follows that p(X) = mA (X)q(X) and so mA (X) divides p(X). 0 

Corollary 

mA(X) divides CA(X). 0 

It is immediate from the above Corollary that every zero of mA (X) is a zero of 
C A (X). The converse is also true: 

Theorem 10.3 

mA(X) and CA(X) have the same zeros. 

Proof 

Observe that if A is a zero of C A (X) then A is an eigenvalue of A and so there is a 
non-zero x E Mat nx J F such that Ax = ), x. Given any 

h(X) = ao + aJX + ... + akXk 

we then have 

h(A)x = aox + aJAx + ... + akAkx 

= aox + aJAX + ... + akAkx 

= h(A)X 

whence h(A) is an eigenvalue of h(A). Thus h(A) is a zero of Ch(A)(X). 
Now take h(X) to be mA (X). Then for every zero A of C A (X) we have that mA (A) 

is a zero of 

CmA(A)(X) = co(X) = det(-Xln) = (_1)nxn. 

Since the only zeros of this are 0, we have mA(A) = 0 so A is a zero of mA(X). 0 

Example 10. 1 

The characteristic polynomial of 

A=[j ~ il 
is cA(X) = (X -2)3. Since A -2/3 r 0 and (A -2/3)2 r 0, we have mA(X) = CA(X). 
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Example 10.2 

For the matrix 

A= H J J] 
we have C A (X) = (X - I) (X - 2)2. By Theorem 10.3, the minimum polynomial is 
therefore either (X -I)(X - 2)2 or (X -I)(X - 2). Since (A -/3)(A - 2/3) = 0, it 
follows that mA (X) = (X - I)(X - 2). 

Theorem 10.4 

A square matrix is invertible if and only if the constant term in its characteristic 
polynomial is not zero. 

Proof 

If A is invertible then, by Theorem 9.1, 0 is not an eigenvalue of A, and therefore 0 
is not a zero of the characteristic polynomial. The constant term in the characteristic 
polynomial c A (.).) is then non-zero. 

Conversely, suppose that the constant term of CA(>-) is non-zero. By Cayley­
Hamilton we have cA(A) = 0 which, by the hypothesis, can be written in the form 
A p(A) = In for some polynomial p. Hence A is invertible. 0 

Example 10.3 

The matrix 

A= [~ 1 l] 
is such that CA(X) = (X -IP. Thus, applying the Cayley-Hamilton Theorem, we 
have that 0 = (A -/3)3 = A3 - 3A2 + 3A -/3 which gives 

A(A2 - 3A + 3/3) = 13 

whence we see that 

EXERCISES 

10.1 If A E Mat nxn F is invertible and deg mA (X) = p, prove that A -I is a 
linear combination of In, A, A 2, ••• ,AP-I . 
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10.2 Determine the characteristic and minimum polynomials of each of the 
following matrices: 

[
1 2 3] [1 1 o 1 2, -1 1 
o 0 1 0 1 

~] , 
-I [U -:] 

10.3 Prove that the constant tenn in the characteristic polynomial of A is 
detA. 

10.4 Determine the minimum polynomial of the rotation matrix 

R = [ cos 19 sin 19] 
q - sin 19 cos 19 . 

Show that if 19 is not an integer multiple of 1l' then Rq has no real eigen­
values. 

The notion of characteristic polynomial can be defined fora linear mapping as 
follows. 

Given a vector space V of dimension n over F and a linear mapping f : V ---> V, 
let A be the matrix off relative to some fixed ordered basis of V. Then the matrix off 
relative to any other ordered basis is of the fonn p-I AP where P is the transition ma­
trix from the new basis to the old basis (recall Theorem 7.5). Now the characteristic 
polynomial of p-I AP is 

i.e. we have 

det(p-1AP - A1n} = det [P-I(A - AIn}P] 

= det p-I . det(A - A1n} . det P 

= det(A - >.In), 

It follows that the characteristic polynomial is independent of the choice of basis, so 
we can define the characteristic polynomial of f to be the characteristic polynomial 
of any matrix that represents f. 

A similar definition applies to the notion of the minimum polynomial of a lin­
ear mapping, namely as the minimum polynomial of any matrix that represents the 
mapping. 

EXERCISES 

10.5 Determine the characteristic and minimum polynomial of the differen­
tiation map D : IRn[X] ---> IRn[X]. 
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10.6 Detennine the minimum polynomial of the linearmappingl : IR2 -t IR2 
given by 

I(x,y) = (x + 4y, !x - y). 

The full significance of the minimum polynomial is something that we shall not 
develop here. The interested reader may care to consult more advanced texts (see, 
for example Further Linear Algebra in the SUMS series) that deal with the notions 
of invariant subspace and direct sum of subspaces. To whet the appetite, let us 
say simply that if the minimum polynomial of I is 

[PI (XW' [P2 (X) r2 ••• [Pt(XWt 

where the p;(X) are distinct irreducible polynomials then each of the subspaces V; = 
Ker[p;(f)]~; is I-invariant and bases of the V; can be pasted together to form a basis 
of V. The matrix of I is then of the block diagonal form 

r A, J. 
This fundamental result is known as the Primary Decomposition Theorem. 

In the case where each p;(X) is linear (i.e. all of the eigenvalues of I lie in F), 
the matrix of I is a Jordan matrix. In this, each of the A; is a Jordan block, i.e. is 
of the form 

["" J 
in which each J; is an elementary Jordan matrix, i.e is of the form 

A 1 
A 1 

A 1 

If the characteristic and minimum polynomials are 

k I: 

cf(X) = II(X - A;)d;, 
;=1 

mf(X} = II(X - A;)~; 
;=1 

then in the Jordan form the eigenvalue A; appears d; times in the diagonal, and the 
number of elementary Jordan matrices associated with A; is the geometric multiplic­
ity of A;. with at least one being of size e; x ej. 
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As a particular case of this, we obtain another solution to the diagonalisability 

problem: 

Theorem 10.5 
If V is a non-zero finite-dimensional vector space over afield F then a linear mapping 
f : V -+ V (respectively, a square matrix over F) is diagonalisable if and only if its 
minimum polynomial is a product of distinct linear factors. 0 

Example 10.4 

The matrix of Example 10.2 is diagonalisable. 

EXERCISES 

10.7 Consider the linear mappingf : IR3 -+ IR3 given by 

f(x,y,z)= (x+z, 2y+z, -x+3z). 

Prove thatf is not diagonalisable. 

SUPPLEMENTARY EXERCISES 

10.8 Let A, B be square matrices over C and suppose that there exist rectan­
gular matrices P, Q over C such that A = PQ and B = QP. . 

If heX) is any polynomial with complex coefficients, prove that 

Ah(A) = Ph(B)Q. 

Hence show that AmB(A) = 0 = BmA (B). Deduce that one of the fol­
lowing holds: 

mA(X) = mB(X), mA(X) = XmB(X), mB(X) = XmA(X). 

10.9 Express the r x r matrix 

[~ ~ ~1 
r r r 

as the product of a column matrix and a row matrix. Hence find its 
minimum polynomial. 

10.10 Letf: C2[X] -+ C2[X] be linear and such that 

f(l) = -1 + 2X2 

f( 1 + X) = 2 + 2X + 3X2 

f( 1 + X - X2) = 2 + 2X + 4X2. 

Find the eigenvalues and the minimum polynomial of f. 
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ASSIGNMENT EXERCISES 

(1) Determine the minimum polynomial of the matrix 

[ cos2 '19 sin '19 cos '19] 

sin '19 cos '19 sin 2 '19 . 

(2) Let V be a vector space with dim V ~ 2. Iff: V -+ V is linear and of rank 1 
prove that the minimum polynomial off is of the form X2 - QX for some scalar Q. 

(3) Let V be a vector space of dimension n over C and letf : V -+ V be a linear 
mapping that is represented, relative to some ordered basis of V, by the matrix 

o 0 ... 0 QI 

o 0 .,. Q2 0 

o Qn-I '" 0 0 
Q n 0 ... 0 0 

Determine the minimum polynomial of f2. 
Deduce thatf is diagonalisable if and only if, for each k, 

Qk = 0 {:::::::> Qn+l-k = O. 



11 
Computer Assistance 

Many applications of linear algebra require careful, and sometimes rather tedious, 
calculations by hand. As the reader will be aware, these can often be subject to 
error. The use of a computer is therefore called for. As far as computation in algebra 
is concerned, there are several packages that have been developed specifically for 
this purpose. In this chapter we give a brief introduction, by way of a tutorial, to the 
package 'LinearAlgebra' in MAPLE 7. Having mastered the techniques, the reader 
may freely check some of the answers to previous questions! 
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Having opened MAPLE, begin with the following input: 

> with (LinearAlgebra) : 

(1) . Matrices 

Basic Linear Algebra 

There are several different ways to input a matrix. Here is the first, which merely 
gives the matrix as a list of its rows (the matrix palette may also be used to do this). 
At each stage the MAPLE output is generated immediately following the semi-colon 
on pressing the ENTER key. 

For example, we can input the matrices from Exercise 1.12 as follows: for the first, 
we do 

input: 

> ml:=Matrix([[3,l,-2], [2,-2,0], [-1,1,211); 

output: 

ml := [ ~ -~ -~ 1 
-1 1 2 

In order to illustrate how to do matrix algebra with MAPLE, let us input the 
second matrix of Exercise 1.12: 

> m2: =Matrix ( [ [1, I, 11, [1, -I, 11, [0, 1,211 ) ; 

m2:= [~ -~ ~ 1 
012 

One way of adding these matrices is by using the 'Add' command: 

> m3:=Add(ml,m2); 

m3:= [ ~ -~ - ~ 1 
-I 2 4 

As for mUltiplying matrices, this can be achieved by using the 'Multiply' com­
mand. To multiply the above matrices, for example, input: 

> m4:=Multiply(ml,m2); 

[
4 0 0 1 

m4:= 040 
004 

Now 'Add' also allows linear combinations to be computed. Here, for example, 
is how to obtain 3ml + 4m2: 
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> Add(ml,m2,3,4)i 

[13 7 -2] 
10 -10 4 
-3 7 14 

(2) A simpler method 

An more convenient way to input commands is to use algebraic operations. 

> ml+m2i 

[ ~ -~ -~] 
-1 2 4 

Multiplication by scalars is obtained by using a '*': 

> 3*ml+4*m2i 

[ ~~ -l~ -;] 
-3 7 14 

Multiplication of matrices is obtained by using a '.' : 

> ml.m2i 

[4 0 0] 
040 
004 

As for a more complicated expression: 

> ml. (4*m2-5*mlA2)i 

(3) Inverses 

[
-219 -25 2301 
-110 86 60 

85 -25 -74 
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Inverses of square matrices can be achieved by using the 'MatrixInverse' command: 

> Matrixlnverse(ml)i 

[ 1 1 1] 4" 4" 4" 
t -t t 
o 1 1 

4 2 

Alternatively we can input the following (here it is necessary to insert brackets round 
the -1): 
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> ml"(-l); 

Note that we can use negative powers in products: 

> ml A ( - 3) . m2" 3 ; 

(4) Determinants 

[! n 
4S 6S 
64 64 

~l 32 
201 
64 

Basic Linear Algebra 

To compute the determinant of a square matrix, use the 'Determinant' command: 

> Determinant(ml); 

-16 

Of course the determinant of a product is the product of the determinants: 

> Determinant(ml.m2); 

64 

> Determinant(ml)*Determinant(m2); 

64 

(5) More on defining matrices 

We now look at other ways of defining a matrix. We start with a clean sheet (to 
remove all previous definitions): 

> restart; 
> with (LinearAlgebra) : 

We can enter a matrix as a row of columns: 

> MO:= «a,b,c>l<d,e,f>l<g,h,i»; 

MO:= [: : ~l 
cll 

or as a column of rows (which can also be done using the matrix palette): 



11. Computer Assistance 

> Ml:= «a I b I c> , <d I elf> , <g I h Ii»; 

[
a b e] 

MI:= de! 
g h I 

Then, for example, we have 

> Ml"2; 

[ 
a2 + bd + eg 
da + ed + fg 
ga + hd + ig 

> Determinant(Ml); 

ab + be + eh ae + bf + ci ] 
bd + e2 + fh de + ef + fi 
gb + he + ih eg + fh + i 2 

aei - afh + deh - dbi + gbf - gee 
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Particular types of matrix can be dealt with, For example, consider the upper 
triangular matrix given in Exercise 1.33, 

> A:=Matrix(4, [[O,a,a"2,a"3l, [O,O,a,a"2l, [O,O,O,al, 
> [0,0,0,0]], shape=triangular[upper]); 

[
0 a a2 a3

] 

A '= 0 0 a a2 

, 0 0 0 a 

00 0 0 

> print(A"2,A"3,A"4); 

[
0 0 a2 2a3

] o 0 0 a2 

o 0 0 0 ' 
o 0 0 0 

[
0 0 0 a

3
] [0 0 0 0] 0000 0000 

0000' 0000 
0000 0000 

Consider now the matrix B, Since only the first three powers of A are non-zero, we 
have: 

> B := A-(1/2)*A"2+(1/3)*A"3i 

[
0 a ta2 ~a3] o 0 a la2 

B '- 2 ,- 0 0 0 a 

o 0 0 0 
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[
0 0 a2 a3

] o 0 0 a2 

o 0 0 0 ' 
o 0 0 0 

[ 
0 0 0 a

3
] [0 0 0 0] 0000 0000 

0000' 0000 
0000 0000 

We now check that the sum of the series for B gives the matrix A: 

[
0 a a2 a3

] o 0 a a2 

o 0 0 a 

o 0 0 0 

To input symmetric matrices we can proceed, for example, as follows: 

> M:=Matrix(3,3,shape=symmetric)i 

[0 0 0] 
M:= 000 

000 

then input, for example, 

> M[l,lJ :=2i M[1,3J :=23i M[2,3J :=Pii 

> Mi 

> Determinant(M)i 

MI,1 := 2 
M I ,3 := 23 
M 2,3 := 7r 

[
2 0 23] o 0 7r 

23 7r 0 

We now take a look at Exercise 1.26. 

> A:=Matrix(3,3,shape=antisymmetric)i 



11. Computer Assistance 

A:= [~ ~ ~ 1 
000 

> A[1,2] :=-Cj A[l,3] :=bi A[2,3] :=-ai 

> Ai 

> A"3+Ai 

AI ,2 := -c 
AI ,3 := b 
A2,3 := -a 

[ 
0 -c b] 
c O-a 

-b a 0 
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[ (_c2 - a2)~ - cb2 + c 
c2b - (_b2 - a2)b - b 

-( -c2 - b2)c + ca2 - c 
o 

-c2a + (_b2 - a2)a + a 

(-C2 -b2 )b-ba2 +b] 
b2a - (-c2 - a2)a - a 

o 
Now the question gives us: 

>c:=sqrt(l-a"2-b"2)i 

> A"3+Ai 

[ 
. 0 

H + b2)%I- %lb2 + %1 
(l-a2-b2)b-f;-b2-a2)b-b 

%1 := VI -a2 -b2 

> sirnplify(A"3+A)i 

c:=V1-a2 -b2 

-H + a2)%1 + %1 a2-%1 

o 
-(1-a2-b2)a + f;-b2-a2)a + a 

[0 ° 0] 000 
000 

(6) Systems of linear equations 

H + a2)b-ba2 + b 1 
b2a-H + b2 )a-a 

o 

To illustrate the use of MAPLE in solving systems oflinear equations, let us consider 
Example 3.11. 

> restarti 
> with (LinearAlgebra) : 
> A:= «1,1,3,0>1<0,1,1,1>1<1,0,1,2>1<0,0,1,1>1 
> <1,2,1,2»i 
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[
10101] 
1 1 002 

A:= 3 1 1 1 1 

o 1 2 1 2 

> GaussianElimination(A); 

Consider now Example 3.16. 

[
10 10 1] o 1 -1 0 1 
o 0 -1 1 -3 
0004-8 

Basic Linear Algebra 

> B:= «1,2,3>1<2,4,6>1<1,4,5>1<2,8,7>1<1,4,7»; 

[
12121] 

B:= 24484 
36577 

> GaussianElimination(B); 

[
12121] 
002 42 
000 -32 

> ReducedRowEchelonForm(B); 

[ ~ ~ ~ ~ ~] 
000 1 -3 

Next, let us consider the system of equations in Example 3.27. 

> restart; 
> with (LinearAlgebra) : 
> sys := [ x+y+z=1,2*x-y+2*z=1,x+2*y+z=alpha 1: 
> var := [ x,y,z 1: 
> (A,b) := GenerateMatrix(sys,var); 

A,b:= [H ~].[!] 
> GaussianElimination«Alb»; 

[
111 1 ] 
o -30 -1 
o 000i-~ 

3 

Consider separately the cases Oi t= ~ and Oi = ~: 
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> assume(alpha<>4/3); 
> ReducedRowEchelonForm«Alb»; 

[
1010] o 100 
000 1 

> alpha:=4/3: 
> ReducedRowEchelonForm«Alb»; 

(7) Writing procedures 

[
101 j] 
010 ! 

3 
0000 
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We now show how to input matrices whose (i,j)-th entry is a function of i andj. 

> M:=Matrix(6,6, (i,j)->i*j); 

M ·-.-

23456 
2 4 6 8 10 12 
3 6 9 12 15 18 
4 8 12 16 20 24 
5 10 15 20 25 30 
6 12 18 24 30 36 

More complicated functions can be produced by writing a procedure. The fol­
lowing example illustrates a very simple procedure in order to define the identity 
matrix: 

> f:=proc(i,j); 
> if i=j then 1 else 0 end if; 
> end proc; 

f := proc(i,j) if i = j then 1 else 0 end if end proc 

> Ml:=Matrix(6,6,f); 

Ml := 

100000 
o 1 0 000 
o 0 1 000 
000 100 
o 0 0 0 1 0 
000001 

Here is a more complicated procedure: 
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> f:=proc(i,j)i 
> if i>j then x else if i=j then 0 else -y end if 
> end ifi 
> end prOCi 

f := proc(i,j) if j < i then x else if i = j then 0 else - yend if end if end proc 

> M2:=Matrix(6,6,f)i 

M2:= 

o -y -y -y -y -y 
x 0 -y -y -y -y 
x x 0 -y -y -y 

x f x 0 -y -y 
x x x x O-y 
x x x x x 0 

> d:=Determinant(M2)i 

> expand(d*(x+y)); 

x6y+ xl 
Hence d = (x6y + xy6)/(x + y). Let us examine further cases: 

> for n from 2 to 8 do 
> M2:=Matrix(n,n,f)i 
> d:=Deterrninant(M2); 
> print(cat(' size ',n,' gives'),expand(d*(x+y))); 
> end do: 

size 2 gives yx2 + l x 
size 3 gives -yx3 + y3x 
size 4 gives y X4 + y4 x 

size 5 gives _yxS + ySx 
size 6 gives yx6 + y6 x 

size 7 gives _yx7 + y1 x 
size 8 gives yx8 + y8 X 

The general theorem should be easy to spot. Try to prove it. 

Another way of inputting matrices uses the command 'BandMatrix' which we 
illustrate by referring to Exercise 8.34. Consider first the case where n = 6. 

> M3:=BandMatrix([1,2*cos(x),l],1,6,6)i 
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2 cos (x) 1 0 0 0 0 
1 2 cos{x) 0 0 0 

M3:= 
0 1 2 cos (x) 0 0 
0 0 1 2 cos{x) 0 
0 0 0 1 2 cos (x) 
0 0 0 0 1 2 cos (x) 

> d:=Determinant(M3); 

d := 64 COS(x)6 - 80 cos (x)4 + 24 COS{x)2 - 1 

> expand(sin(7*x)/sin(x))i 

64 COS{x)6 - 80 cos (x)4 + 24 cos (X)2 - 1 

The following procedure will verify the identity of Exercise 8.34 for n taking the 
values from 2 to 10, but may be used for any range of values of n. Try it out! 

> for n from 2 to 10 do 
> mat:=BandMatrix([1,2*cos(x),1],1,n,n); 
> d:=Determinant(mat)i 
> d1:=expand(sin((n+1)*x)/sin(x))i 
> print(cat('case of ',n, 'x',n,' matrix'))i 
> print(cat(' det = '), d); 
> print(cat(' sin(',n+1, 'x)/sin(x) = '), d1)i 
> print (' ') i 
> end do: 

(8) More on determinants 

We now consider a generalisation of Exercise 8.28. 

> restart; 
> with (LinearAlgebra) : 
> f:=proc(i,j)i 
> if i=j then x else a end ifi 
> end prOCi 

f := proc(i ,j) if i = j then x else a end if end proc 

> m:=Matrix(3,3,f)i 

[
X a a] 

m:= a x a 
a a x 
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> d:=Determinant(m)j 

d := x3 - 3xa2 + 2a3 

> factor (d) j 

(2a + x}(a - x)2 

> so 1 ve ( d= 0 , x) ; 
-2a,a,a 

We can now do this for any range of values of n. For example: 

> for n from 2 to 12 do 
> m:=Matrix(n,n,f)j 
> d:=Determinant(m}j 
> print(solve(d=O,x))j 
> end do: 

-a,a 
-2a,a,a 

-3a,a,a,a 
-4a,a,a,a,a 

-5a,a,a,a,a,a 
-6a,a,a,a,a,a,a 

-7a,a,a,a,a,a,a,a 
-8a,a,a,a,a,a,a,a,a 

-9a,a,a,a,a,a,a,a,a,a 
-lOa,a,a,a,a,a,a,a,a,a,a 

-lla,a,a,a,a,a,a,a,a,a,a,a 

Consider now the matrix An of Exercise 8.33. This we can investigate, first for 
n = 6, as follows. 

> f:=proc(i,j)j 
> if i=j then a else if i<j then b else -b end if 
> end if j 
> end prOCj 

f := proc(i ,j) if i = j then a else if i < j then b else - b end if end if end proc 

> m:=Matrix(6,6,f); 

m ·-.-

a b b b bb 
-ba bbbb 
-b-babbb 
-b-b-b a bb 
-b-b-b-b ab 
-b-b-b-b-b a 
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> d:=Determinant(m); 

d := a6 + ISa4b2 + ISb4a2 + b6 

The following procedure does the same job for n = 2 to n = 8: 

> for n from 2 to 8 do 
> m:=Matrix(n,n,f)i 
> d:=Determinant(m)i 
> print (d) i 

> end do: 

a2 + b2 

a3 + 3ab2 

a4 + 6a2b2 + b4 

as + lOa3b2 + Sab4 

a6 + lSa4b2 + lSa2b4 + b6 

a7 + 21asb2 + 3Sa3b4 + 7ab6 

a8 + 28a6b2 + 70a4b4 + 28a2 b6 + b8 

Now carry out the following procedure to obtain the same display: 

> for i from 2 to 8 do 
> expand(((a+b)Ai+(a-b)Ai)/2); 
> end do; 

(9) Matrices with subscripted entries 

Consider now a matrix of the type given in Example 8.13. 

> m:=Matrix(3,3, (i,j)->b[i]A(j-l))i 

> d:=Determinant(m); 

d:= b2b32 -b/b3 + b3b\2 -b\b32 + b\b/ -b2b\2 

> factor (d) i 

-( -b3 + b2)(b\ - b2)(b\ - b3) 
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Of course MAPLE can find the determinant of matrices of this type for much 
larger dimensions. For example, try the following: 

> factor (Determinant (Matrix(6,6, (i,j)->b[i]A(j-l))))i 
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(10) Circulant matrices 

We now show how to define the entries of a matrix by using a function that depends 
on certain preset global variables. 

> restart; 
> with (LinearAlgebra) : 
> a:=5i b:=8; 
> f:=proc(i,j) global a, b; 
> if i>j then a else if i=j then a+b else b end if 
> end if; 
> end proc; 

f := proc(i,j) 
globala,b; 

a:= 5 
b:= 8 

ifj < i then a else if i = j then a + b else b end if end if 
end proc 

> m:=Matrix(6,6,f); 

13 8 8 8 8 8 
5 13 8 8 8 8 
5 5 13 8 8 8 

m:= 
5 5 5 13 8 8 
5 5 5 5 13 8 
5 5 5 5 5 13 

By a circulant matrix we shall mean a square matrix A = [aij]nxn with the 
property that aij = ai+lj+l. the subscripts being reduced modulo n. For example, 
the matrix P of Exercise 3.1 is circulant. 

We shall now describe a procedure that defines an n x n circulant matrix with 
three non-zero entries in each row, namely 1, 1, -1, whose positions in the first row 
of the matrix are at columns a, b, c respectively. 

> a:=l: b:=2: c:=3: n:=6: 
> g:=proc(i,j) global a, b, c, ni 

> if i mod n = (j-a+l) mod n then 1 else 
> if i mod n (j-b+1) mod n then 1 else 
> if i mod n = (j-c+1) mod n then -1 else 0 end if 
> end if end if i 
> end proc; 
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g := proc{i,j) 
global a, b, c, n; 

if i mod n = U - a + 1) mod n then 1 
else 

if i mod n = U - b + 1) mod n then 1 
else if i mod n = U - c + 1) mod n then - 1 else 0 end if 
end if 

end if 
end proc 

Here is the 6 x 6 circulant matrix that this defines: 

> ml:=Matrix(6,6,g); 

1 1 -1 0 
0 1 1 -1 

0 0 
0 0 

ml := 
0 0 1 1 -1 0 
0 0 0 1 1 -1 

-1 0 0 0 1 
1 -1 0 0 0 
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We now compute the sequence of absolute values of the determinants of the above 
matrices from size 1 x 1 to 20 x 20. 

> sl:=[seq(abs(Determinant(Matrix(n,n,g))), n=1 .. 20)]; 

sl := [1, 0, 4, 5,11,16,29,45,76,121,199,320,521,841, 
1364,2205,3571,5776,9349, 15125] 

Can this sequence be suitably described? For this purpose, consider the sequence 
{.en)n~l of Lucas numbers defined recursively as follows: 

.el = 1, .e2 = 3, (n ~ 3) .en = .en-I + .en-2' 

The Lucas sequence has the same recursive definition as the Fibonacci sequence 
except for the second term, which is 1 for Fibonacci. 

We can get MAPLE to remember the Lucas sequence as follows: 

> lucas:=proc(x) option remember; 
> if x = 1 then 1 else if x = 2 then 3 else 
> lucas(x-l)+lucas(x-2) end if end if; 
> end proc; 

lucas := proc{x) 
option remember; 

if x = 1 then 1 else if x = 2 then 3 else lucas{x -1) + lucas{x - 2) end if 
end if 

end proc 

Here then are the first 20 Lucas numbers: 
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> s2:=[seq(lucas(i),i=1 .. 20)]; 

s2:= [1,3,4,7, 11, 18,29,47,76,123, 199,322,521,843, 
1364,2207, 3571, 5778, 9349, 15127] 

By comparing the sequences sl and s2, make a guess at the value of the deter­
minant of the above circulant matrix for arbitrary n. Then try to prove your answer. 

(II) Vector spaces 

We shall now illustrate how MAPLE can tackle vector space problems. First we 
compute bases for subspaces A, B spanned by given row vectors, and for An B. 

> restart; 
> with (LinearAlgebra) : 
> v1 .- <2121113>; 
> v2 .- <7151515>; 
> v3 .- <3121211>; 
> v4 .- <2111211>; 

vI := [2, 2, 1,3] 
v2 := [7,5,5,5] 
v3 := [3, 2, 2, 1] 
v4:= [2, 1,2, 1] 

> Basis([v1,v2,v3,v4]); 

> xl .-
> x2 .-
> x3 .-
> x4 . -

[[2,2, 1,3], [7, 5, 5, 5J, [3,2,2,1]] 

<212/311>; 
<5/7/515>; 
<2131211>; 
<315/214>; 

xl := [2, 2, 3, I] 
x2 := [5, 7, 5, 5] 
x3 := [2, 3, 2, I] 
x4 := [3, 5, 2,4] 

> Basis([x1,x2,x3,x4]); 

[[2,2,3, I], [5, 7, 5, 5], [2,3,2, I]] 

> IntersectionBasis([ [v1,v2,v3,v4], [x1,x2,x3,x4] I); 

[ [ I I 7 I ] [ 3 5 I 23] ] 
-4' 4' -"8, -"8 ' 4' 4' "8, '8 
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Now let us consider the matrix of a linear mapping. We start with an example in 
which we determine the matrix of a linear mapping relative to a 3-element basis. The 
method follows that of hand calculation, in that we obtain the linear equations that 
express the images of the basis vectors as linear combinations of the basis vectors 
and construct a matrix whose columns are the coefficients in each of the equations. 
The example we use is the mapping and the basis of Exercise 7.5. 

> restart; 
> with (LinearAlgebra) : 
> f:=(x,Y,z) -> <Z,y,X>i 

> bl:=1,2,O: 
> b2:=2,1,O: 
> b3:=O,2,1: 
> B:=«bl>l<b2>I<b3»: 
> Ml:=<LinearSolve(B,f(bl)) ILinearSolve(B,f(b2)) I 
> LinearSolve(B,f(b3))>; 

f := (x, y, z) -t (z, y, x) 

Ml := [~ -~ ~l 
1 20 

Of course, in this example we have f 0 f = id and so the square of its matrix 
should be the identity matrix: 

> Ml"2i 

[ ~ ~ ~ 1 
001 

As for the mapping g of Exercise 7.5, we compute its matrix similarly: 

> g:=(x,y,z) -> <2*x,y+Z,-X>i 

> bl:=1,2,O: 
> b2:=2,1,O: 
> b3:=O,2,1: 
> B:=«bl>l<b2>I<b3»: 
> M2:=<LinearSolve(B,g(bl)) ILinearSolve(B,g(b2)) I 
> LinearSolve(B,g(b3))>; 

g:= (x, y, z) -t (2x, y+ z, -x) 

M2:= [~ ; -; 1 
-I -2 0 

The composite mapping fog 0 f then has matrix Ml . M2 . M 1: 
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> M1.M2.Mi; 

r 
2 2 -1] 

-1 -1 0 

002 

Here now is an example in which we verify that. relative to a given ordered basis. 
the matrix of f2 is the square of the matrix off. 

> f:=(x,y,z,w) 
-> <2*x-y+2*z-3*w,3*x-7*y+z-w,-x+y-z+5*w,x+y-z-w>; 

> bl:=O,l,l,O: 
> b2:=1,O,1,O: 
> b3:=1,1,O,O: 
> b4:=1,O,O,1: 
> B:=«bl>l<b2>I<b3>I<b4»: 
> M:=<LinearSolve(B,f(bl)) ILinearSolve(B,f(b2)) I 
> LinearSolve(B,f(b3)) ILinearSolve(B,f(b4))>i 

f := (x, y, z, w) 
-t (2x - y + 2z - 3w, 3x -7y + z - w, -x + Y - z + 5w, x + Y - z - w) 

[
_1 -1 _1 1] 222 

1 -1 1 ! 
M .= 2 2 2 

. 5 5 3 
-2 5 -2 -2 
o 0 2 0 

We now consider the composite f 0 f. 

> fi:=(x,y,z,w) -> <f(f(x,y,z,w))>: 
> bl:=O,l,l,O: 
> b2:=1,O,1,O: 
> b3:=1,1,O,O: 
> b4:=1,O,O,1: 
> B:=«bi>l<b2>I<b3>I<b4»: 
> Ml:=<LinearSolve(B,fl(bl)) ILinearSolve(B,fl(b2)) I 
> LinearSolve(B,fi(b3)) ILinearSolve(B,fi(b4))>i 

[ ~ -3 ~_ll] 222 
_12 5 _12 12 

._ 2 2 2 
Ml .- ~ -15 ~ _1 

2 2 2 

-5 10 -5 -3 

We invite the reader to use MAPLE to check that MI = M2. 
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(12) Eigenvalues and eigenvectors 

We now illustrate how to find eigenvalues and eigenvectors. The following is self­
explanatory. 

> a: =Ma t r ix ( [ [ - 2 , - 3 , - 3), [-1, 0, -1), [5, 5, 6)) ) i 

a ·-.- [-2 -3 -3] 
-1 0-1 

5 5 6 

> e:=Eigenvalues(a)i 

e:= [:] 

> print(e[l),e[2)'e[3)) i 

2,1,1 

> ch:=CharacteristicPolynomial(a,X)i 

ch := 5X _4X2 -2 + X3 

> factor (ch) i 

(X -2)(X _1)2 

> solve(ch=O,X) i 

2, 1, 1 

> ev1:=Eigenvectors(a)i 

In this display the column vector gives the eigenvalues of a and the matrix has 
eigenvectors as its columns. 

Although MAPLE always finds correct eigenvectors it may find different ones 
from the same code. For example, consider the following input which provides more 
information: 
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> ev2:=Eigenvectors(a, output='list')i 

Here MAPLE returns a list of lists, each of the fonn lei, mi, {v[l, i], ... , v[n;, i]}] 
where ej is an eigenvalue, m; is its algebraic multiplicity, and {v[l, i], ... , v[n;, in 
gives ni linearly independent eigenvectors where nj is the geometric multiplicity. 
Thus, for example, the eigenvalue I has algebraic multiplicity 2 with 

as two linearly independent eigenvectors. 
The corresponding eigenspaces can be determined by using the 'Nullspace' com­

mand: 

> id:=IdentityMatrix(3): 
> kl:=NullSpace(a-l*idli 

kl ,= {[ -l] , [ -!]} 
> k2:=NullSpace(a-2*id)i 

k2,= {U]} 
> p:=Matrix([kl[1],kl[2],k2[1]]li 

p:= [-~ -~ i] 
I 0-5 

We can now verify that p reduces the matrix a to diagonal fonn: 

> pl\(-ll .a.pi 

[
1 00] o 1 0 
002 

Finally, we can illustrate Theorem 10.3 for a particular 5 x 5 matrix. 
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> A: =Ma t r ix ( [ [5 , -1 , - 3 , 2 , - 5] , [0, 2 , 0 , 0 , 0] , [1, 0 , 1 , 1 , - 2] , 
> [0,-1,0,3,1], [1,-1,-1,1,1]]); 

5 -I -32 -5 
o 2 00 0 

A:= 1 0 1 1 -2 
o -1 0 3 
1 -1 -1 1 

> factor(CharacteristicPolynomial(A,X)); 

> factor(MinimalPolynomial(A,X)); 

EXERCISES 
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ILl In the description of a circulant matrix, try changing the values of a, b, c 
and compute the corresponding determinants. 

11.2 Find the eigenvalues and corresponding eigenvectors of 

[ I -2 3-4] 
-5 6 -7 8 

9 -10 II -12 . 
-13 14 -15 16 

11.3 Find the determinant and the inverse of the matrix 

1 234 5 6 

11.4 Consider the matrix 

2 345 6 1 
34561 2 
456 1 2 3 
5 6 I 234 
612345 

A= [ !~~~] 1 0 1 . 

x 1 I 3 

Determine the values of x for which A is invertible. 
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11.5 In the diagram 

205 208 4 

206 207 6 

204 200 196 

20 193 400 

192 k 

each column and each row and each main diagonal sums to 1000. Com­
plete the square with positive integers and find what range of values may 
replace k. 

ASSIGNMENT EXERCISES 

(1) Consider the n x n version An of the matrix in Exercise 11.3. Devise a pro­
cedure similar to that employed for circulant matrices to determine the sequence of 

values of det An for n = I to n = 10. 
By observing that, for each of these, det All has a factor tn2(n + 1), guess the 

general form of A;! . 

(2) Write a procedure which, for a given positive integer n, returns the n x n 
I 

matrix A whose (i,j)-th entry is. . 
1+] -I 

Incorporate your procedure in a program which, for n = I to n = 6, carries out 
the following calculation: 

It finds e = Ab where b is the n x 1 matrix all of whose entries are l. It then 
calculates the matrix X which is defined as A except that the entries are lO-digit 
floating point numbers rather than rational numbers. Finally, it calculates x = X-Ie 

and displays the answer x. 

Comment on the output of the program. 
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Solutions to the Exercises 

0 1 

[2 34] [I 0 I] 
13 [-i -1 

-ll 
-1 0 1 

1.1 3 4 5 . 1.2 o 1 0 . 1 1A -1 -1 0 

456 1 0 1 -1 

-1 -1 -1 0 

1 2 3 4 5 6 1 1 1 1 1 aln al2 all 
2 2 6 4 10 6 1 2 1 2 2 
3 6 3 12 15 6 1 1 3 1 3 aln a22 a21 

1.5 
4 4 12 4 20 12 ' 1 2 1 4 1 2 

. 1.6 

5 10 15 20 5 30 1 1 1 1 5 1 
6 6 6 12 30 6 1 2 3 2 1 6 aM an2 anI 

[w- y X-z y-w] 1.7 Real numbers are 1 x 1 matrices. 1.8 Theorem 1.3. 1.9 . 
w-y x-z y-w 

1.10 X = ~A + Y.B. 1.11 X = A + 2B = [i ; i]. 1.12 [~ ~ ~]. 
22300 4 

1.13 [i i !]. 1.14 [i: : 1~1' [30]. 1.15 Each is [1: -~i 1 ~]. 
1 1 1 4 8 12 16 7 17 13 

1.16 The product is the 1 x 1 matrix [I] where 1 = ax2 + 2hxy + by2 + 2gx + 2fy + c. Each of 

the ", ... tioDS can '" writren In the fonn Ix y 11M m = 101 wi'" "_vel,, M the "";re, 

[~ f 1], [*; ~], [! t ~], [~ ~ -~a]. 
4 i 2 0 0 -} 0 0 -ot2 -2a 0 0 

1.17 A2 = [~ ~ ~], A3 = O. 
o 0 0 
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1.18 WehaveAB;::: 0,A2 ;::: A,B2;::: -B,and(A+B)2;::: 12. Ontheotherhand,A2+2AB+B2;::: 

[~ n. Since (A + B)2 ;::: h we have (A + B)3 ;::: (A + B)(A + B)2 ;::: A + B; and since AB ;::: 0, 

A3 ;::: A,B3;::: B we have A3 + 3A2B+ 3AB2 + B3;::: A +B. 
1.19 We have aij ;::: 0 and bij ;::: 0 whenever i :f j and so [AB]ij ;::: L aikbkj ;::: 0 if i :f j. 

k 
1.20 By Exercise 1.19 and induction, if A is diagonal then so is AP. 
1.21 If A and B commute then a simple inductive argument shows that Am and B commute for 
every positive integer m. Fixing m, the same induction shows that B" commutes with Am for 
every positive integer n. 

" 1.22 The proof is the same as for the binomial theorem (x + y)n ;::: L (;)xry.-r and is by 
r=O 

induction, using properties ofthe binomial coefficients and the hypothesis that xy;::: yx. 
1.23 [A(B + C)]';::: [AB]' + [AC]';::: [B'A'] + [C'A']. 
1.24 The result is trivial for n;::: 1. Suppose it holds for n. Then (A"+l)' ;::: (A"A)' ;::: A'(A")' ;::: 
A'(A')" ;::: (A,)"+l, 
1.25 If AB ;::: BA then A' B' ;::: (BA)' ;::: (AB)' ;::: B' A'. 

1.26 Using a2 + b2 + c2 ;::: 1 we have A2;::: [a2a~ 1 /~ 1 :~ 1 ;::: X'X - h Multiplying 
ac be e2-1 

on the left by A then gives A3 ;::: -A. Finally, A4 ;::: _A2 where A2 is as above. 
1.27 If A is both symmetric and skew-symmetric then aij ;::: aji and aij ;::: -aji whence aij ;::: o. 
1.28 A';::: A and B' ;::: -B. Thus 

(AB + BA)';::: B'A' + A'B';::: -BA - AB;::: -(AB + BA) 

and soAB+ BA is skew-symmetric. Similarly, AB-BA is symmetric. Next, (A2)' ;::: (A')2 ;::: A2 
so A2 is symmetric. Similarly, B2 is symmetric. Finally, 

(APBqAP),;::: (A')P(B,)q(A')p;::: AP(-B)qAP 

and so APBqAP is symmetric if q is even, and skew-symmetric if q is odd. 

U. A' ~ (sf -yx'Y ~ yx' - sf ~ -A. If. ~ [] ond Y ~ uJ then <y ~ t. x,y, ~ 1'L 

If now xx;::: y'y;::: [1] and xy;::: y'x;::: [k] then 

A2;::: (xy' - yx)(xy' - yx') ;::: xy'xy' - yx'xy' - xy'yx' + yx'yx' ;::: kxy' - yy' - xx' + kyx' 

and hence 

A 3 = (kxy' - yy' - xx' + kyX)(xy' - yx') 

= by'xy' - yy'xy' - xx'xy' + kyx'xy' - kxy'yx' + yy'yx' + xx'yx' - kyx'yx' 

;::: k2xy' - kyy' - xy' + kyy' - kxx' + yx' + kxx' - k2yx' 

= k2(xy' -yx') -xy' + yx' 

= (tl -1)A. 

1.30 [AB - BA]lI = a12b21 - a21b12 and [AB - BAb = a21b12 - a12b21 so the sum of the 

[a b] [a2 + be 0] diagonal elements is O. If E = then E2 = 2 b = (a2 + be)h. 
c-a 0 a+c 
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For the last part, observe from the above that (AB - BA)2 = )../2 and therefore commutes 
with every C. 

1.31 Let X = [: :]. Then X2 = h if and only if 

a2 +bc=I, b(a+d)=O, c(a+d)=O, cb+d2 =1. 

Suppose that b = O. Then these equations reduce to a2 = 1, c(a + d) = 0, d2 = 1 from which 
we see that either a = d = 1, c = 0; ora = d = -1, c = 0; ora = 1, d = -1, c arbitrary; or 
a = -1, d = 1, c arbitrary. 

If b:f 0 then we must have a + d = 0 whence d = -a and c = (1 - a2)/b. 
Thus the possibilities for X are 

[~ ~], [-~ -~], [~-~], [-~~], [(1-:2)/b ~a]' 
1.32 If (x, y) lies on the curve y2 - x2 = 1 then A = [x y] is such that A2 = -/2, so there 

-y -x 
are infinitely many such matrices. 
1.33 Simple calculations reveal that A4 = 0 whence An = 0 for n ~ 4 and so 

B = A -lA2 + lA3 = [~ ~ t:2 t::] 
2 3 000 a' 

o 0 0 0 

Likewise, ~ = 0 and so Bn = 0 for n ~ 4. Thus 

1.34 The result follows from the standard formulae cos( 19 + 'P) = cos 19 cos 'P - sin t'J sin 'P 
and sin (19 + 'P) = sin 19 cos 'P + cos 19 sin 'P. 
1.35 For the inductive step, use the previous exercise: 

An = AnA = = +1 
[

COS nt'J sin n19] [ cos 19 sin 19] [cos(n + 1)19 
- sin n19 cos n19 - sin 19 cos 19 - sin (n + 1)19 

sin(n+ 1)19] 
cos(n + 1)19 . 

1.36 Let Bn be the matrix on the right. Then clearly BI = A so the result is true for n = 1. For 
the inductive step, observe that BnA = Bn+ l • 

1.37 [[AB]C] = (AB - BA)C - C(AB - BA) = ABC + CBA - BAC - CAB; and similarly 
[[BC]A] = BCA + ACB - CBA - ABC, [[CA]B] = CAB + BAC - ACB - BCA. The first 
result follows by adding these expressions together. As for the second, we have [(A + B)C] = 
(A + B)C - C(A + B) = AC - CA + BC - CB = [AC] + [BC]. The third result follows by 
expanding as in the first. 

Take A = B = [~ ~] ,C = [~ ~]. Then [(AB]C] = 0, [A[BC)] = [~ _~]. 
1.38 Substitute for y in the expression for x and compare with the expression for x in terms of 
z. We have CI = albl + a2b3, etc. 



208 Basic Linear Algebra 

2.1 If A is orthogonal then AA' = In = A'A. Since A = (A')" we then have A' (A')' = In = 
(A')' A' so that A' is orthogonal. 
2.2 (AB)'AB = B'A'AB = B'lnB = In and similarly AB(AB)' = In. 
2.3 See Example 4.3 of the text. 
2.4 Let the top sheet be the (x, y)-plane and the bottom sheet the (x', y')-plane. If 19 is the angle 
of anti-clockwise rotation of the top sheet, we have 

[fi] = R-4 [1] = [c~s 19 - sin 19] [1] = [C?S 19] 
TI 0 sm19 cos 19 0 sm19 

and so cos 19 = -& and sin 19 = *. The point (x', y') above which the point (2, 3) lies is then 

given by [;:] = [U -~] [~]'i.e. (x',y') = (-2,3). 

2.S Clearly x' = x and y' = -y, so [;:] = [~ _ ~] [;]. The other matrix is [-~ ~]. 
2.6 To obtain (xL,yd, rotate the axes through 19, take the reflection in the new x-axis, then 
rotate through -19. The matrix in question is R_,MR, where M is the matrix of the previous 

[
COS 219 sin 219] exercise. A simple calculation shows that this product is . .Q • 

sm 219 -cos 2v 

2.7 Rotate the axes through 19, project onto the new x-axis, then rotate the axes through -19. 
The required matrix is 

[
COS 19 - sin 19] [1 0] [ cos 19 sin 19] = [ cos 2 19 sin 19 cos 19] 
sin 19 cos 19 0 ° -sin 19 cos 19 sin 19 cos 19 sin 2 19 . 

2.8 A(pxI + QX2) = pAxl + (I - P)AX2 = pb + (I - p)b = b. 

2.9 If X = [; ~] is such thatX2 = ° then we have a2 + be = 0, b(a +d) = 0, e(a + d) = 0, 

be + d2 = 0. If b = ° then clearly a = d = ° and X = [~ ~] which is of the required form. 

If b =f ° then d = -a and a2 + be = ° which gives X = [-:Z/b ~a]' Writing z = Vb and 

w = a/Vb, we see that X is again of the required form. The result fails for real matrices since, 

for example, A = [~ ~] is such that A 2 = 0 but there is no b such that -b2 = I. 

2.10 [A]u = Zj; = [A'];j. That A + B = A + Band AB = BA follow immediately from similar 
properties of complex numbers. 

2.11 (A + A')' = A' + (A')' = A' + A = i\7 + A. Hence A + AT is hermitian. Similarly, A - A' 
is skew-hermitian. For the last part, follow exactly the proof of Theorem 1.10. 

3.1 P3 becomes PI; P4 becomes P2; PI becomes P3; P2 becomes P4. 
3.2 P3 becomes PI; PI becomes P2; P2 becomes P3; P4 remains the same. 
3.3 PI becomes "(P3; P2 becomes8p4;P3 becomesapl;P4 becomes,BP2' 
3.4 PI becomes ap2 + P3; P2 becomes ,BP2; P3 becomes PI + ,,(P2' 
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3.5 [~ ~ ~] ...... [~. -~ -;] ...... [~ -~ -;]; [~ ~ ~] ...... [~ -~ -;] ...... [~ -~ -;]. 
5 5 8 0 -5 -7 0 0 0 2 3 1 0 -1 -5 0 O-¥ 

3.6 [i ~ ~ ~ ij ...... [~ j ~ j ~j ...... [~ =! 1 =1 ~l""" 
1 1 1 2 1 0 -1 1 -1 0 0 0 3 0 2 

[ ~ -~ ~ -~ ~j ...... [~-~ ~ -~ ~j 
o 0 -1 0 2 0 0 -1 0 2 . 
o 0 302 0 0 0 0 8 

3.7 O! :;:: 1. 3.8 [~ ! ~ =1 ~~ !j. 3.9 Each is h 3.10 Each is [i ! ! ij. 
000000 0000 

3.11 ).IPI + ).2P2 + ).3P3:;:: 0 gives).1 +).3:;:: 0:;:: 2).1 +).2:;:: ).2 + ).3, the only solution of 
which is).1 :;:: ).2:;:: ).3:;:: o. 
3.12 The maximum number of independent rows (and columns) is 3. 

::: Th[ f n~ C' : j...... [~ ). ~ 1 ). ~ 1 2 ~ ). ~ j so if), :f 1, 2 then the row rank 

2 2 2 ). 6 0 0 0), - 2 -2 
is 4. When). :;:: 1 the row rank is 2, and when). :;:: 2 the row rank is 4. 
3.15 The Hermite form of each matrix is 13 so they are row-equivalent. 

:::: :: :;::~":':1:72:: p = [=1 J :] "d Q = [~ -! :] do ili, 

trick. (Th[I. e ;]oIUtiOn is not unique, so check your answer by direct multiplication.) 

3.18 0 0 forn:;:: 1,2,3,4. 

3.19 The number of zero rows in the normal form of A is n - rank A and the number of zero 
rows in the normal form of B is m - rank B. Since the latter must be less than the former we 
have n - rank A ~ m - rank B whence rank B ~ m - n + rank A. 
3.20 By Theorem 3.10, row-equivalent matrices have the same rank and so are equivalent. 
3.21 Both A and A' have the same normal form. 3.22 Each has normal form [13 0]. 
3.23 The coefficient matrix has rank 3 whereas the augmented matrix has rank 4. There is 
therefore no solution (Theorem 3.17). 
3.24 A row-echelon form of the augmented matrix is 

[~ ~2 ~ ~ o 0 1 -1 
o 000 

4 j -1 
1 . 

O! -1 

Thus the coefficient matrix and the augmented matrix have the same rank (Le. the system has a 
solution) only when O! :;:: 1. In this case, since the rank is 3 and the number of unknowns is 4 we 
can assign 4 - 3 :;:: 1 solution parameter. Taking this to be 1, the general solution is x :;:: 21 + ~, 
y:;::-31+~,z:;::I+1. 
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3.25 In the augmented matrix interchange the first two columns and the first two rows. This has 
no effect on the rank. A row-echelon form of the resulting matrix is 

[~ (3 ~ 6 ~ 1 ;~:]. 
o 0 (3 4+601 

Thus if (3 :f 6, 0 the rank of the coefficient matrix is 3, as is that of the augmented matrix. Hence 
a unique solution exists (Theorem 3.18). When (3 = 0 the last line of the above matrix becomes 
[0 0 0 4 + 601] so a solution exists only if 01 = -~. In this case the solution is x = -~z + ~ 
and y = -~z - ~ where z is a parameter. When (3 = 6 the above matrix becomes 

[
1 2 1 -601 ] [1 2 1 -601] o 0 -1 2001 'Vt 0 0 -1 2001 . 
o 0 6 4 + 601 0 0 0 4 + 12601 

In this case a solution exists if and only if 01 = -13 and the general solution is x = -~y - ~, 
z = 1Q 

3.26 63['~ ~ ~]; [~~~]; 
o 0 -2 0 1 0 

3.27 It is readily seen that rows 1,3,4 are linearly independent, so r ~ 3. If r = 3 then the 
second row must be a linear combination of rows 1,3,4. This is the case if and only if a = 0 = d 
and be = 1. 
3.28 If AX = B then necessarily X is of size 3 x 2. Let the columns of X be Xl and X2' Then 
AX = B is equivalent to the two equations AXI = 0 (homogeneous) and AX2 = b2 (non­
homogeneous). By the usual reduction method the latter is easily seen to be consistent if and 
only if 01 = -1. 
3.29 

[

1 -1 
2 1 
1 1 
1 4 

o -1 -5 01] [I -1 0 -I -5 01 ] 
-1 -4 1 (3 'Vt 0 1 -2 1 12 (3-01-"1 
1 -4 --6 "1 0 0 5 -5 -25 01 - 2(3 + 3"1 
2 -8 -5 6 0 0 0 0 0 801 - (3 -11"1 + 56 

so a solution exists if and only if 801 - (3 - 11"1 + 56 = 0, and in this case the rank of the matrix 
is 3. When 01 = (3 = -1, "1 = 3,6= 8 the solution is x = 2u+ 3t,y = 1 +u-2t, z = 2+u + 5f 
where u, t are parameters. 
3.30 Interchange the second and third columns, and the first and second rows. The matrix be-
comes 

[ I ,\ 0 1 ] [1,\ 0 I] 
-2 -,\ J.l + 3 -3 'Vt 0 ,\ J.l + 3 -1 . 
2 3'\ 4 -,\ 0 0 I - J.l -,\ - I 

If J.l :f I then the rank is 3 and a unique solution exists. If J.l = 1 then a solution exists if and 

:: i~n::'~) In tlri::: rr~ r 2 ond fu, geoem wIution involv" 00< "rom"" 

3.33 Consider A = [_ ~ - ~] and B = [~ ~]. The normal form of A is B so these matrices 

are equivalent. But they are clearly not row-equivalent. 
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3.34 Let A and B be equivalent. Then A can be transformed into normal form N by a sequence 
of row and column operations, and then N can be transformed into B by a sequence of row 
and column operations (namely the 'inverses' of those that transform B into N). Hence A can 
be transformed into B by a sequence of row and column operations. Conversely, if A can be 
obtained from B by a sequence of row and column operations then A and B must have the same 
normal form. 

3.35 a = 0, b = I, e = 2. 
3.36 Treat the system as a system of equations in which all calculations are done modulo 5. For 
example, adding the first row to the second gives [0 2 1 2 2 2]. 

4.1 The given matrix has rank 2. By Theorem 4.1, it therefore has neither a left inverse nor a 
right inverse. 

4.2 Proceed as in Example 4.3: 

[O! i !]-I = [ ! -~ -i]; 
I I -1 I-I 

[! ; i]-I = 
I 0 I 

[: : 
[l-j 1 11-1 [~-~ -~ -~1 -1 2 ~ -! -~ ! _ 9999. 

2 1 - -~ -~ ~ ~' 
3 2 -~ ~ ~ ~ 

[

1 1 
I 3 
I 2 
5 9 

-ll 

1 11 _! ~ has rank 3 so is not invertible. 

1 6 

4.3 The product Ax can be written as XI81 + X282 + ... + xn8n, i.e. as a linear combination 
of the columns of A. Then Ax = 0 has only the trivial solution if and only if 81, ... ,an are 
linearly independent, which is the case if and only if A has rank n. which is so if and only if A is 
invertible. 

4.4 If e :::: 0 we have A:::: [~ !] which is of rank 2 (Le. A is invertible) if and only if a t 0, 

d t 0 which is equivalent to ad t O. If a = 0 then A 'V> [~ :] which is of rank 2 if and only 

if be t O. If a rf 0 and e rf 0 then [a db] 'V> [oa db b ] which is of rank 2 if 
e a - e ap2 - ep I 

and only if ad - be rf o. In this case we have A -I = a/-be [_~ -:]. 

4.5 [! ~ ~] 'V> [~ ~ ~] which is of rank 3 if and only if a rf O. In this case, by the 
12a OOa 

process of Example 4.3, A-I = [ ~ -~ ~]. 
_1 1 1 

a a a 

4.6 The proof is by induction. The result is trivial for p:::: 1. By Theorem 4.4, the inductive 
step is (AI" . ApAp+ltl :::: A~I(AI" . Aptl :::: A~IA;I ... All. 
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4.7 That A3 :;;; 0 is routine. Using this fact, we have 

AxAy :;;; (I3 + xA + !x2A2)(I3 + yA + !y2A2) 

:;;; h + xA + !x2A2 + yA + xyA2 + !y2A2 

:;;; 13 + (x + y)A + !(x + y)2A2 

It follows that AxA-x = Ao = h whence Ax is invertible with A;I = A-x. 

Basic Linear Algebra 

4.8 That AnAm = An+m is routine. It follows that AnA-n = Ao = h so An is invertible with 
A;I = A-n. Similarly, BnBm = Bn+m and B;I = B_n. 

Finally, by Theorem 4.4, (AnBm)-1 = B-mA-n. 
4.9 Since (In + A)(In - A) = In - A2 = (In - A)(In + A) we have that 

(In + A)(ln - A)(In + Arl = (In - A)(In + A)(/n + Arl :;;; In - A 

and so (In - A)(/n + A)-I = (In + Arl(/n - A). 
If A is skew-symmetric then A' = -A and we have 

PP' = (In - A)(In + Arl [(In - A)(In + Arl]' 

= (In + Arl(/n - A)(/n + A'rl(/n - A') 

= (In + Arl(In -A)(/n -Arl(In + A) 

It follows that P is invertible with p- I = P', i.e. P is orthogonal. 
For the given matrix A it is readily seen that 

In-A= cos" 1 -sin", (In+Arl = ~cos" 2 ~ -~sin" [
I-cos" 0 1 [~(l + sin 2 ,,) -! cos" ~ sin" cos" 1 
o sin t9 I t sin" cos" t sin" W + cos2 ") 

::~l' J ~ T 1]red 
1 _! _1 _! 
5 2 S 5 

4.11 If B is row-equivalent to A then there is an elementary matrix P such that B = PA. Thus, 
if A is invertible, we have that B is a product of invertible matrices and so is also invertible. 
4.12 If AB is invertible then there exist elementary matrices P, Q such that PABQ = In. It 
follows that PA and QB are invertible, and from (PA)-lpA = In and BQ(BQrl = In we see 
that A and B are invertible. 
4.13 (A + B)A-1(A -B) = (In + BA-I)(A -B) = A -B + B -BA-IB = A -BA-1B, and 
similarly (A - B)A -I (A + B) = A - BA -I B whence we have the required equality. 
4.14 Expand the right-hand product using the distributive law. The resulting sum is the left-hand 
side. If now A' = 0 then A,+I = 0 and the equality gives 

In = (In -A)(ln + A + A2 + ... + A,-I) 

whence In - A is invertible. 
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F~ fu, I", .... '.\low fu, m,uuoti •• , A -. = r! ; t ~ Il 
4.15 We have 

(BA -In)[B(AB -lntlA -In] 

= BAB(AB -I.)-IA -BA -B(AB -1.tIA + I • ......,.., 
= [B(AB -I.) + B](AB -1.tIA - BA - B(AB -I.tl A + In 
"--"' 

= BA + B(AB-I.tIA -BA -B(AB -1.tIA + I. 

= I •. 
Hence BA -I. is also invertible. 

5.2 (I) and (2) are subspaces; (3) is not since it does not contain (0, 0, 0, 0); (4) is not a subspace 
since, for example, (I, -I, I, -I) and (0, 0, 0, I) belong to the set but their sum (I, -1,1,0) does 
not. 
5.3 The sum of two continuous functions is continuous, and every scalar multiple of a continu­
ous function is continuous. 
5.4 The sum of two differentiable functions is differentiable, and every scalar multiple of a 
differentiable function is differentiable. 
5.5 (I) If A and B are symmetric n x n then so is A + B; and so is >"A for every >... Hence the 
set of symmetric n x n matrices is a subspace. 

(2) The set of invertible n x n matrices is not a subspace since every subspace of Mat nxn IR 
must contain the zero matrix, and this is not invertible. 

(3) The matrices [~ ~] and [~ ~] are not invertible, but their sum is h which is invert­

ible. Hence the set of non-invertible matrices is not a subspace. 
5.6 If Ax = 0 and Ay = 0 then A(x + y) = Ax + Ay = 0, and A(h) = >..Ax = >"0 = O. Thus 
the solutions of Ax = 0 form a subspace ofMatmxl IR. 
5.7 Every subspace must contain the zero of the parent space. 
5.8 The rank of the coefficient matrix is 3 and so for all given a, b, c the system is consistent. 

Tho, .. ''''Y m E Mot '" R fu,re "',, ,,,I'ffi A •• A,. A, .. ci> , .. " 

whence the three column matrices span Mat 3x I IR. 
5.9 No; for example, the constant polynomial 1 cannot be expressed as a linear combination of 
the two given polynomials. 

5.10 LetE I = [~ ~lE2= [~~]'E3= [~ ~]'E4= [~ ~lThenwehave 

[: :] = xE I + yE2 + ZE3 + tE4 
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if and only if x + z ;:: a, x + t ;:: b, y + t ;:: c, y + z + t ;:: d. The coefficient matrix of this 
system of equations is 

A= [n n] 
which is of rank 4 (hence invertible). The system therefore has a solution (which is in fact 
unique). Hence the given set is a spanning set. 

k 

5.11 (I) Suppose that L AiXi ;:: 0 where each Xi E SI. Since SI ~ S2 we have that each 
i=1 

Xi E S2 and so, since S2 is linearly independent (by hypothesis), every Ai ;:: O. Hence SI is 
linearly independent. 

(2) If SI is linearly dependent then by Theorem 5.5 at least one element of SI can be ex­
pressed as a linear combination of other elements in S I. But S I ~ S2, so all of these elements 
belong to S2' By Theorem 5.5 again, therefore, S2 is linearly dependent. 
5.12 The sets (I) and (2) are linearly independent since the 3 x 3 matrices formed from them 
are each of rank 3. As for (3), this set is linearly dependent; the third column matrix is the sum 
of the first two. 
5.13 (1) Linearly independent; consider the entries in the (2, 1) position. 

(2) Linearly independent; take a linear combination of the four matrices to be equal to the 
zero matrix and solve the corresponding equations (only the zero solution possible). 

(3) Linearly dependent; we have 

[2 3] ;:: ! [1 0] + 1 [1 1] + ! [0 3] 
43 2 02 2 21 2 21' 

5.14 Follow the process in Example 5.22. (1) and (2) are linearly independent. (3) is linearly 
dependent; we have 

13 + X;:: 3(1 + X + 2X2) - 2( -5 + X + 3X2). 

5.15 Every p(X) E IAn IX] can be written uniquely in the form 

p(X);:: ao + alX + a2X2 + ... + anx". 
m n 

5.16 Every A E Mat mxn IA can be written uniquely in the form A;:: L L apqEpq. 
p=1q=1 

5.17 The sum of two diagonal matrices is a digonal matrix, and every scalar multiple of a diag­
onal matrix is a diagonal matrix. Hence the diagonal matrices form a subspace. A basis for this 
subspace is the set of diagonal matrices E pp of the previous exercise. 
S.lS The set of Toeplitz matrices is clearly closed under addition and multiplication by scalars, 
and so forms a subspace. A basis consists of the Toeplitz matrices Epq where p =f q and the 
Toeplitz matrix In. 
5.19 Since cos 2x ;:: cos 2 x-sin 2 X we have that W;:: Span{f, g}. Now f;:: cos 2 andg;:: sin 2 

are linearly independent. To see this, let 

AI cos2 x +).2 sin2 x;:: O. 

Differentiate to get P'I - A2) sin x cos x ;:: O. Since this must hold for all x we must have 
AI ;:: ).2, and since the original equation holds for all x this means that ).1 ;:: ).2 ;:: O. Hence a 
basis for W is {cos2 , sin 2}. 

5.20 Apply the process of Example 5.25. (1) is a basis; (2) is not. 
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5.21 Apply the process of Example 5.25. The matrix 

is invertible so the given set is a basis. Since 

[ ~ -~ ; =~l 
-I -2 1 
-I 0 0 

we deduce that 

(a, b, c, d) = >q (1,1,0,0) + ),2(-1, -1, 1,2) + ),3(1, -1,1,3) + ),4(0, 1, -I, -3) 

where),1 = 2a -b + 5c -d,)'2 = 3c -d,)'3 = -a + b -2c + d,),4 = -a + b. 

5.22 Writing X = {XI, xd and Y = {YI, Y2} we observe thatYI = HX2 -XI) and Y2 = 2X2-XI' 
It follows that Y ~ Span X and therefore Span Y ~ Span X. Similarly, XI = Y2 - 4YI and 
X2 = Y2 - 2YI whence we have the reverse inclusion Span X ~ Span Y. 

5.23 (1) =* (2) : Since {VI, vd is a basis we can write WI and W2 as unique linear combinations 

of WI, W2 and so there is a matrix A such that [::] = A [::] . Since Span {WI, W2} = V, we can 

write VI, V2 as linear combinations of WI , W2 and so there is a matrix B such that [:~] = B [:~] . 

Consequently we have [:~] = BA [:~]. Since {VI, V2} is a basis we must have BA = 12 whence 

A is invertible. 

(2) '* (1):If [:~] = A [:~] with A invertible then we have [:J = A-I [:~] whence 

{VI, V2} ~ Span {WI , W2}' Since {VI, V2} isa basisofVit follows that V= Span{wl' W2}' 
5.24 Suppose that X E A n B. Then X = ), I a I + ),2 a2 where a I ,a2 are the elements of the 
given spanning set of A, and similarly X = ),3bl + ),4b2 where bl , b2 are the elements of the 
given spanning set of B. Consequently we have ),Ial + ),2a2 - ),3bl - ),4b2 = O. But, as can 
readily be verified, the elements ai, a2, bl, b2 are linearly independent. Hence each),; = 0 and 
consequently X = O. Thus we see that An B = {O} and so has dimension O. 
5.25 If {VI, ... , v.} is a basis of V as a vector space over C then every X E V can be written 

n 

uniquely as X = L OIt Vt where each OIt E C. Writing OIl = ak + ibk where ak, bk E IR we 
k=1 

• n 

have X = L at Vt + L bk(iVk). Thus {VI, ... , Vn, iVI' ... , ivn } is a spanning set of V over IR. 
k=1 k=1 

• n n 
This spanning set is linearly independent, for if L ak Vk + L bk(ivk) = 0 then L ak Vk = 0 and 

k=1 k=1 k=1 
• 

i L bkVk = 0 whence at = 0 = bk for each k since {VI"'" vn } is a basis over C. Hence the 
k=1 

above set is a basis for V over IR in which case V is a real vector space of dimension 2n. 
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5.26 We have that (a, b, c, d) E Span X if and only if the system 

[nnW]=m 
is consistent. Now, by the usual reduction method, 

[
2 7 3 2 aJ [1 5 2 2 2521b 0101 
1 5 2 2 c ...,. 0 0 2 -2 

3511d 0000 

C J -2a+b+2c 
lOa -6b -8c . 
-lOa + lOb + 6c - 2d 

For consistency, we therefore require 5a - 5b - 3c + d = O. 
The first three vectors of X form a basis for Span X. Since 1R4 is of dimension 4, any vector 

not dependent on these three vectors (Le. any vector not satisfying the above condition) may be 
added to obtain a basis for IF!" , e.g. the vector (0, 1, 1, 0). 

5.>7 "', !h;n! b";,.,,In,. m ";11 do. 

5.28 Recall from Exercise 5.15 that 1Rn[Xj is of dimension n + 1. A possible basis is obtained 
by adding the monomials X2 and X3. 
5.29 (1) is true. The standard conditions are x + yEW and Ax E W. These together imply 
), x + t-I YEW. Conversely, if the latter holds, take), = t-I = I, then t-I = 0, to obtain the former. 

(2) is false; the subspace has dimension 1 with basis {( 1, 1, 1 n. 
(3) is true. If the given spanning set is also linearly independent then it forms a basis and 

there is nothing to prove. If not, then at least one element is a linear combination of others. 
Removing this element, we still have a spanning set. Continuing in this way we discard elements 
one by one, obtaining a smaller spanning set each time. Do this until the remaining set is also 
linearly independent (in the worst case this will have only one element); it will then form a basis. 

(4a) is true. We have a(l, 2,1) + b(2, 2,1) = (a + 2b,2a + 2b, a + b). Taking a + b = Y 
and b = x we see that so also is (4b). 

(5a) is true. We can extend a basis of P to a basis of Q. 
(5b) is false. For example, consider P = {(x, x, x) ; x E IR}. Q = {(x, y, 0) ; x, y E IR}. 

We have dim P = 1 (see (2) above) and dim Q = 2, but P \?: Q. 
(6) is false. For example, take w = -x and recall that 0 cannot belong to a basis. 

5.30 (1) Yes. (2) No. For example (1,0,0,0) and (0, 1,0,0) belong to the set but their sum 
does not. (3) Yes. The set is {(O, 0, c,d) ; c, dE IR}. (4) No. For example, (1,0,0,0) and 
(0, 1, 0, 0) belong to the set but their sum does not. 
5.31 Both sets are closed under addition and multiplication by scalars, so are subspaces. 
5.32 Given 01, {3, "'/ E C, to determine)" t-I, II E C such that 

(01, {3, ",/) = ),(3 - i,2 + 2i,4) + t-I(2,2 + 4i, 3) + 11(1 - i, -2i, -1), 

solve the resulting equations for)" t-I, II to obtain the unique solution 

1 2 - 6i -7 + 5i 6 + 6i {3. [
-2 + 2i 5 - 3i --6 - 6i] [01] 

12+12i -2-lOi -1+-3i 6+6i "'/ 

This shows that the given set is a basis. Moreover, taking 01 = I, {3 = "'/ = 0 we obtain (1 , 0, 0) 
in terms of the basis, and similarly for the others. 
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5.33 We have 

[

1 2 2 
022 
262 
140 

The general solution is therefore 

o ~ _~ _!] 
o 1 0 0 . 
o 0 0 0 

rt~t;:1 rt21 r~11 x= 0 =t 0 +w 0 . 
t 1 0 
w 0 1 

The solution space is therefore of dimension 2. 
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5.34 As defined, A + B is closed under addition and multiplication by scalars, so is a subspace. 
If C is a subspace such that A ~ C and B C;;; C then for a E A and bE B we have a, bE C and 
so a + b E C. Hence A + B C;;; C. 

To establish the equality we show that LHS;2RHS and LHSC;;;RHS. For the former, observe 
that LHS ;2 L n M and LHS ;2 L n N whence, by the above, LHS;2RHS. As for the latter, 
if x E RHS then x = y + z where y E L n M and z E L n N. Since y, z E L we have 
x = y + z E L. Moreover, since y E M we have x = y + z E M + (L n N). It follows that 
x E L n [M + (L n M)] =LHS. 

For the last part, take 

L={(x,x,O);x,yEIR}, M={(O,y,z); y,ZEIR}, N={(x,O,O); XEIR}. 

ThenM+N= IR3,Ln(M+N)= L, LnM= {(O,O,O)}, LnN= {(O,O,O)},andthe 
stated inequality holds. 
5.35 It is readily verified that En is closed under addition and multiplication by scalars and so 
is a subspace of Map(IR, IR). 

Suppose now that f is the zero map in E I. Then we have 

('Ix E IR) ao + al cos x + bl sin x = o. 
Taking x = 0 we obtain ao + al = 0, and taking x = 11/2 we obtain ao + bl = o. Thus 
al = bl = -ao· Taking x = 11/4 we obtain ao + ial + ibl = 0 whence ao = al = bl = O. 

Suppose now, by way of induction, that the zero map of En- I (with n ~ 2) has all its coefficients 
o and letfbe the zero map of En. It is readily verified that 02f + n2fis given by the prescription 

n-I 
(02f + n2f)(x) = n2ao + L::(n2 - k2)(ak cos kx + bk sin kx) 

k=1 

and sincefis the zero map of En we have that 02f+n2fisthe zero map of En-Jo By the induction 
hypothesis, therefore, we have that all the coefficients ao, al, ... , an-I, bl, ... , bn- I are 0 and the 
formula for f reduces to 

('Ix E R) o = f(x) = an cos x + bn sin x. 

Taking x = 0 we obtain an = 0, and taking x = 11/2n we obtain bn = O. Thus all the coefficients 
of fare 0 and the result follows by induction. 

It is clear that the 2n + 1 functions generate En. Moreover, by what we have just proved, the 
only linear combination of these 2n + 1 functions that is zero is the trivial linear combination. 
Hence these functions constitute a basis for En. 
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5.36 Let M be the set of rational functions described. Then clearly M is closed under addition 
and multiplication by scalars, so is a subspace of Map (IR, IR). 

Following the hint, observe that eachf EM can be written uniquely in the form 

f = aofo + ... + ar+s-Iir+s-I 

and so the fj form a basis of M. 
For the last part, it suffices by the hint (and by Corollary 2 of Theorem 5.8) to show that B 

is linearly independent. For this purpose, suppose that 

al ar bl bs --+ .. ·+---+--+ .. ·+---=0 x-a (x-a)' x-f3 (x-f3)'s' 

Multiplying both sides by (x - a)'(x - f3)S we obtain 

al (x - ay-I(x - f3)S + a2(x - aY-2(x - f3)S + ... + ar(x - f3)S + 
bl(x -aY(x - f3)s-1 + b2(x -a)'(x - f3),-2 + ... + br(x -aY = O. 

Taking the term ar(x - f3)' over to the RHS, what remains on the LHS is divisible by x - a and, 
since a t- f3, we deduce that ar = O. Similarly, we see that b, = O. Extracting a resultant factor 
(x -a)(x - f3), we can repeat this argument to obtain ar-I = 0 = b,_I' Continuing in this way, 
we see that every coefficient is 0 and therefore that B is linearly independent. Hence B is a basis. 
5.37 The result is trivial if n = I since It is non-zero. By way of induction, suppose that 
(fj)1 '::j'::n-I is linearly independent whenever rl, ... , rn-I are distinct. Consider (fj)I'::i'::n and 
sup~s; that rl, ... , r n are distinct. If A Iii + ... + Anln = 0 then '" '" 

(Vx E IR) 

Dividing by eT • X (which is non-zero) and differentiating, we obtain 

AI(rl -rn)e(TI-T.)X + ... + An-I (rn-I -rn)e(r.-1-r.)x = O. 

Since the n - 1 real numbers rl - rn, ... , rn-I - rn are distinct, the induction hypothesis shows 
that Al = ... = An-I = O. Consequently, Anln = 0 and hence An = 0 (since er•x t- 0). Thus 
fl' ... ,tn are linearly independent. Hence the result by induction. Conversely, if the rj are not 
distinct then rj = rj for some i, j whence fj = fj and the fj are dependent. 

n 
5.38 Suppose that L AiPi(X) = O. Since deg pj(X) = i we have, on differentiating n times, 

i=O 
n-I 

An = 0 whence L AjPj(X) = O. Differentiating n - 1 times, we deduce that An-I = O. 
i=O 

Continuing in this way we see that every coefficient Ai = 0 and therefore the given set is linearly 
independent. Since dim Rn[X] = n + 1 and there are n + 1 such functions, they therefore form 
a basis (recall Corollary 2 of Theorem 5.8). 
5.39 Since sums and scalar mUltiples of step functions are also step functions it is clear that the 
set E is a subspace of the real vector space of all mappings from R to IR. Given 11 E E, the 
step function 11j that agrees with 11 on the interval [aj, ai+ I [ and is zero elsewhere is given by the 
prescription 

n+1 
Since then 11 = L 11 j it follows that {e k ; k E [0, 1 [} spans E. Since the functions e k are 

j=O 
linearly independent they therefore form a basis of E. 

Similarly, the set F of piecewise linear functions is a vector space. 
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That G is a subspace is clear since it is closed under addition and multiplication by scalars. 
That {gk ; k E [0, 1 [} is a basis of G is similar to the above. 

That every f E F can be expressed uniquely in the form g + e where g E G and e E E can 
be seen from geometric considerations. A typical f E F can be depicted as in the diagram 

Now think of strips of wood that can slide up and down and thereby manufacture g via e. 

6.1 (1), (2), and (5) are linear; (3) is not linear since f(I, 0, 0) + f( -1, ° 0) f f(O, 0, 0); (4) 
and (6) are not linear since in each case, for example,f12(0, 0, 0)] f 2f(0, 0, 0). 
6.2 (1) and (2) are linear. (3) is not linear since in general T B(>"I.) 'f >.. T B(I.). 

6.3 (I) and (2) are linear; (3) is not linear since in generalf(>"p(X)) 'f V(p(X)). 
6.4 fA(X + y) = A(x + y) = Ax + Ay = JA(x) + fA(y) andfA{>..x) = Ah = >..Ax = VA(X). 
6.5 By theorems in analysis, J(P + q) = J p + J q and J >..p = >.. J p. 

6.6 No. A and -A have the same Hermite form, sof(A) = f(-A) whencef(A) - f(-A) = 0. 
Butf(A - (-A)) = f(2A) = f(A) since 2A has the same Hermite form as A. 

6.7 Observe that T(O) = 7 B2 so if T is linear we must have B2 = 0. Conversely, if B2 = ° then 
T(A) = AB + BA - 2BA + 3AB = 4AB - BA which is linear. 
6.8 D-->(IR.[Xj) = IR.-1[X] and D-({O}) = IR (the set of constant polynomials). 
6.9 We have that rf-r(A) = {f(b) ; b E f-r(A)} = {f(b) ; f(b) E r(A)} = 
{f(b) ; f(b) = f(a) for some a E A} = r(A), andf-rf-(B) = {a ; f(a) E rf-(B)} = 
{a; f(a) = f(x) wheref(x) E B} = {a ; f(a) E B} = r(B). 

6.10 D-->(X) is the set of polynomials whose even coefficients are zero. D-(X) is the set of 
polynOmials whose even coefficients, except possibly the constant term, are zero. 
6.11 The image of the x-axis is the line y = x; the image of the y-axis is the line y = -x; and 
the image of the line y = mx where m 'f I is the line y = :~: x. 

6.12 Observe that if x E f-(Y) thenf(x) E Y and therefore we have f-->(r-(Y)) ~ Y. Since 
r is inclusion-preserving, it follows thatr[X nf-(y)] ~ r(X) nr(r-(y)) ~ r(X) n Y. 
For the reverse inclusion observe that if a E f-->(X) n Y then there exists b E X such that 
f(b) = a E Y whence bE x nr(Y) and so a = f(b) Er[X nf-(Y)]. 

6.13 f(a, b, e) = a(I, 0, 1)+b(l, I, O)+e(O, 1,1). 1m f = Span{(l, 0, I), (I, 1,0), (0,1, I)} = 
IR3,andKerf= {(O,O,O)}. 
6.14 Kerf= {(a, b) E IR2; b = O} = Imj. 

6.15 f: 1R3 --+ IR3 given by f(a, b,e) = (C, 0, 0) is such that 1m f c Ker f; and g : IR3 --+ IR3 

given by g(a,b,e) = (b,e,O) is such that Ker g elm g. 
6.16 f(a,b, e,d,e) = a(l, 1,2,0) + e(-I, 0, -I, -I) + d(3, 2,5, I) + e(-I, -I, -1,0) and so 
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1m f is spanned by the rows of the matrix 

[ 
1 1 2 01 -1 ° -1 -1 
3 2 5 1 

-1 -1 -1 ° 
° ° ° ° 

which has Hermite fonn [~J ~ -l1. 
° ° ° ° ° ° ° ° 

A basis ofIm f is {(l, 1,2,0), (-1,0, -1, -1), (-1, -1, -1, O)}. It is readily seen that Ker f = 
{(-2e,b,e,e,0); b,e E R}, soa basis for Kerf is {(a, 1,0,0,0),(-2,0, 1, I,O)}. 
6.17 Abasisoflmfis{X2,X3};Kerf= IA. 

:::: ::~~'~':~:l~x~~~~'::ti~gdt::~:~ ::: ([or~(~!l is invertible. 

1 2-1 
n n n 

6.20 Suppose that L aJ(v;) = 0. Thenf( L a;v;) = ° whence,fbeing injective, L a;v; = 0. 
;=1 ;=1 i=l 

The fact that aJ, .. " an are linearly independent gives each a; = ° whence f(vJ), ... J(vn) are 
linearly independent. 
6.21 (1) '* (2) : If (1) holds then for every x E V we have f(x) E 1m f = Ker f whence 
j2(x) = 0, so that j2 = 0. Iff = ° then Ker f = V whence the contradiction n = dim V = 
dim Kerf = dim Imf= 0. Hencefrf 0. By Theorem 6.4 we haven = dim V= dim Kerf+ 
dim 1m f = 2 dim 1m f so n is even and the rank off is ~ n. 

(2) '* (1) : If (2) holds thenj2(x) = ° givesf(x) E Kerf whence Imf ~ Kerf. By the 
Dimension Theorem, dim V = rank + nullity, i.e. n = ~n + nullity. Hence dim Ker f = ~n = 
dim 1m f. It follows by Theorem 5.9 that Ker [= 1m [. 
6.22 Consider the differentiation map D : IR2[XJ -> IR2[XJ. It is not possible to write X2 as the 
sum of an element of 1m D and an element of Ker D. 
6.23 Writingf(x) = a sin x + bcos x we have 

(1) {}(f) = 2a so [ E Ker {} if and only if a = 0. Hence Ker {} = Span {cos} and the 
nullity is 1. 

(2) {}(f) = ° so Ker f) = Wand the nullity is 2. 
(3) f)(f) = ° if and only if a = ° in which case the nullity is 1. 

6.24 If {} = af + bg + eh then T(f))(x) = -ex so rank T = 1. Ker T = {at + bg; a, bE fR} 
so the nullity of T is 2. 

6.25 Takef(ta;X;) = (ao, ... ,an). 
;=0 

6.26 If (x, y) E Ker f) then (x, y - [(x)) = (0,0) and so x = ° and y = f(x) = [(0) = 0. 
Hence Ker f) = {(O, O)} and so f) is injective. By Theorem 6.5, {} is an isomorphism. 

6.27 Recall Example 5.25: the matrix [~ ~ ~l is invertible, so {(I, I, 1),(1,2,3),(1, 1,2)} 
I I 2 

is a basis of IR3. Proceed as in Example 6.15 to obtain 

f(x,y,z) = (4x -4y + z, 5x - 5y + z, 8x -lOy + 3z). 

6.28 f(a + bX + eX2) = a[(I) + b[(X) + e[(X2) = a + eX + bX2 + eX3. 
6.29 If C is considered as a complex vector space, then for>. = 1 - i we havef(>.(1 + i)) = 
[(2) = 2 whereas >.[(1 + i) = (1 - i)(1 - i) = -2i, so thatf is not linear. 
6.30 f is linear if and only if 

[(>'JvJ + >'2V2 + ).3V3) = >.tf(vJ) + ).2!(V2) + ).If(V3), 
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i.e. if and only if 

(>\1 + j1)WI + P'2 + ).3)W2 = ).1(1 + j1)WI + ).2(j1WI + W2) + ).3(j1WI + W2). 

This is the case if and only if j1 = 0. Then/(xvi + YV2 + ZV3) = ° if and only if x = 0, y + Z = ° 
and so Ker/= {a(v2 -V3); a E F}. ThusabasisofKer/is{v2 -V3}. 
6.31 A basis ofIml is {(I,O,O),(I,O, I)} and a basis of Kerl is {(I,-I,-I)}. r(A) = 
{(x, -x, z) ; x, Z E R}, a basis of which is {(I, -1,0), (0,0, I)}. 
6.32 I(x,y, z) = 2(x-y)X +(y+z)X2+(x+Z)X3. A basisoflm/is {2X +X3, -2X +X2}. A 
basis of Ker I is {(I, 1, -I)}. This can be extended to the basis {(I, 1, -1), (1,0,0), (1,1, O)}. 

6.33 The matrix [~I ~ 1 ~ 1 is invertible so { a, b, c} is a basis. We have 
1 -1 

(x,y,z) = ~(y + z)a + Hx + z)b + ~(x + y)c 

and so 

I(x, y, z) = (y + ~(x + z), ~(z - y), H(). - I)x + (). + I)y], H<). - I)y - x + ).z]). 

I is injective if ). t= - 1 and ). t= 2. The dimension of W is 2. If). = 2 then I( 1, 1,0) = 
U, -L2,0) andr{(I, I,O,O)} = (2, -j, n. 
6.34 If x =/(sl) andy =/(S2) wheresl,s2 E S then fort E [0, I] we have 

tx + (1 - t)y = JltSI + (1 - t)S2] Er(S) 

and sof"'(S) is also convex. 
6.35 By the Dimension Theorem (6.4) we have 

n 

L(-I); dim Vi = 
;=1 

- dim 1m II - dim Ker II 

+ dim 1m 12 + dim Ker 12 
- dim 1m !J - dim Ker 13 

+( _1)n dim 1m f" + (-I)n dim Ker In 

Since the sequence is exact, dim Ker II = 0 and 1m f" = Vn+ I. Moreover, 1m /; = Ker /;+ I. The 
n 

above display therefore reduces to L( -1); dim Vi = (-I)n dim Vn+ I whence the result follows. 
;=1 

6.36 The rank is 2 so the nullity is 1. 
6.37 (1) (g of)(x) = g(y) where y = I(x) so 1m (g of) s: 1m g. 
(2) If/(x) = ° then g[f(x)] = g(O) = ° so Ker IS: Ker(g of). 
(3) By (1) we have rank (g of) ~ rank g. By (2) and Theorem 6.4, we have 

rank (g 0 I) = dim V - dim Ker(g 0 f) ~ dim V - dim Ker I = rank I. 

Hence rank (g 0 f) ~ min { rank I, rank g}. 
Let {el, ... , en} be a basis of V. Let m = dim Wand S = rank f. As basis for W we can 

take {{(el), ... ,j(es), Ws+I, .. ·, wm}. Then 

Img = Span{gf'(el), ... ,gf'(es),g(ws+I), ... ,g(wm)} 

= Span {gf'(el), ... ,gf'(ep),g(ws+il, ... ,g(wm)} 

where p = rank gf'. It follows that 

rank g~p+ m -s = rank gf'+ dim W -rank/. 
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6.38 {1,X,X2,X3} is a basis ofIR3[X] and/(l) = O,f(X) = 0,f(X2) = 0,f(X3) = 6(X -1). 
So the nullity of 1 is 3 and the rank is 4 - 3 = 1. 
6.39 If {el,e2,e3} is the natural basis ofR3 then/y(ed = (0, -Y3,Y2),/y(e2) = (Y3,0,-YI), 
ly(e3) = (-Y2, YI, 0). Since Y :f 0 we can assume that YI :f O. Then we have 

/y(el) = _Y2 !y(e2) - Y3 !y(e3) 
YI YI 

where l y(e2),/y(e3) are linearly independent. Hence a basis for 1m Iy is {fy(e2),fy(e3)} so 
rank /y = 2. It follows that dim Ker Iy = 3 -2 = 1 whence Ker Iy = Span {y} since/y(Y) = O. 

6.40 1(1,0,0,0) = ,/(0,1,0,0) = ,/(0,0,1,0) = . ,f(0,0,0, 1) = [ I 0] [0 1] [0 i] o -I 1 0 -I 0 

[~ ~]. So 1 carries a basis to a basis and therefore, by Theorem 6.5, is an isomorphism. 

7.1 U -!} H =~l 7~ [~ =; ~Il [~ ':1 ~Il· 73 [~ J H 
;:~ :~~~)1~:: ~~I~~:x ~:~I:e~~t~:e:o ::~ ~:::ala::s~(:~ ~~::s=[/r' ~t _~]/~I' 1,0) = 

-2 6 3 

~:t~~X:'[~ =-tr]':)' Matsg = [~ ~ _~]; Matslgf= [_~ _~ -~]. 
1 2 0 -1 -2 0 0 0 2 

7" A h.",,,k 3 .mho i, .",,"hl,. Th' ... trix orr' i, A -'. ~Iy ri 1 jl 
7.7 Use Theorem 7.3 and induction. 7.8 [~ ~ 1 !]. 

1 1 0 0 

7.9 A = [-~ ~ ~]; B = [-~ ~ - ~]. The matrix X represents the identity map relative 
o 0 1 I 1 1 

to a change of reference from the first basis to the second. Since 

(1,0,0): t(l, 1,0) - t(O, 1, 1) + t(I,O, 1) 
(0,1,0):::: i(l, 1,0) + i(O, I, I) - ~(1,0, 1) 
(0,0,1) - -2(1,1,0) + 2(0,1, I) + 2(1,0, I) 

[ 1 1 -1] 
we see that X = ~ -1 I I. 

1 -1 1 
7.10 We have to determine an ordered basis B = {bl, b2 , b3} of Fl3 such that P is the transition 
matrix fromB to the natural ordered basis {el,e2,e3}. B = {e2 + e3,el + e3,el + e2}' 
7.11 If A is similar to B then there is an invertible matrix P such that A = p-I BP. Since P is 
invertible, so is P'. Then A' = pIBI(p-I)' = [(p-I)']-IB'(p-I)' and so A' is similar to B'. 
7.12 If A = P-IBP then by inductionAk = P-IBkp. 



12. Solutions to the Exercises 223 

7.13 [:~:~ -:::~] = [~ ~rl[e~6 e~i6][~ ~l 
7.14 The respective matrices are 

0100 ... 0 00 o 
o 
o 

... 00 

... 0 0 

... 00 

... 00 

o 1 -2 -3 ... -n 
0020 ... 0 nO 0020 ... 0 
0003 ... 0 On-l 0003 ... 0 

(1) (2) 0 0 n-2 (3) 

OOOO ... n 0000 ... n 
0000 ... 0 o 0 o 1 0 0000 ... 0 

7.15 If x :f 0 is such thatjl'-l(x) :f 0 then for every k ~ p - 1 we have !(x) :f O. To show 
that {x,f(x), ... ,rl(x)} is linearly independent, suppose that 

),ox + ), J.f(x) + ... + ),p_J"-I(X) = O. 

Applyingr1 to this we obtain ),~I(X) = 0 whence),o = O. Thus we have 

),J.f(x) + ... + )'p-J"-I(X) = O. 

Applying jI'-2 to this we obtain similarly), 1 = O. Continuing in this way we see that every 
),i = 0 and consequently the set is linearly independent. 

If/is nilpotent of index n = dim V then {x,f(x), ... ,r-1(x)} is a basis ofV. The matrix 
of I relative to this ordered basis is then that in the question. Conversely, if there is an ordered 
basis with respect to which the matrix of I is of the given form then to see that I is nilpotent of 
index n it suffices to observe that the matrix. M in question is such that Mn = 0 and Mn- 1 :f O. 
7.16 We have 

1(1) = 
I(X) = 1 + X 

I(X2) = (1 + X)2 = 1 + 2X + X2 

I(xn) = (l + x)n = 1 + (~)X + (;)X2 + ... + xn 

1111 ... 1 
0123 ... (7) 

and so the matrix of I is 0 0 1 3 ... (;) 

7.17 We have 
o 0 0 0 ... 

1(1) = 

I(X) = 

1(1 + X) = 

o 1 1 0 

1 0 

1 

o = 

1 1 

o 0 
1 1 

o 0 

1 _ 1 1 + [1 1] 
o 0 1 0 1 1 

and so Mat I = ~ -! _! . The rank of this matrix is 3 and so dim Ker I = O. [
-1 1 0 1 
001 
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1m f = Span { [~ ~] , [~ ~], [~ ~]}. 

[ 
'1 0 0 0] [1 0 0 0] -1 0 -1 1 0 0 0 0 

7.18 0 0 0 0; 0 0 1 0 ' 

o 0 -1 1 0 0 0 0 
7.19 (1), (2), (3) are routine, If A and B are similar then there is an invertible P such that 
A = P-1BP. By (3), tr(A) = tr(P-1BP) = tr(P-1pB) = tr(B). For the last part, observe for 

example that tr [~ _ ~] = 0 = tr [~ ~] but these matrices are not similar. 

8.1 All expressions are the same. 8.2 Routine. 

( 1 2 3 4 5 6 7 8) (1 2 345 6 7 8) 
8.314587326; 12345678' 
8.4 Even; odd. 8.5 -28. 8.626 + 13>' + >.2 - >.3. 8.8 400. 
8.9 If the elementary matrix is obtained by interchanging two rows (columns) then the determi­
nant is -1; by multiplying a row (column) by >. it is >.; and by adding>. times one row (column) 
to another it is 1. 
8.10 By induction. For the inductive step, use a Laplace expansion via the first column. 
8.11 x::f t· 
8.12 Use a Laplace expansion via the first row, then via the first column of the resulting 5 x 5 
matrix, then by the first row of the resulting 4 x 4 matrix, and so on. 
8.13 Add the first row to all the others; the answer is n!. 

00000 1 
000 010 
o 0 0 0 0 

1 = (_1)(.-1)+(.-2)+ .. +1 = (-1)2.(·-1). 8.14 det 

001 
010 

o 0 

000 
000 
000 

:::: :~: :am[!t ~!e pi]-::: ::::: a[;a!,ar er]~SiO:~i: :e :::~:~lumn. 
4 1 -2 0 0 9c 

8.17 det AP = (det A)P = 0 and so det A = O. 

8.18 [~c ~b]; [;; = C ~~ =!~ ~ = !~] ; [~~ -~]. 
hf-bg gh-af ab-h2 -10 1 

8.19 The first two have determinant 1 so adjugate=inverse; these are respectively 

[ ~ ~ =i]; [ 1 ~ =i]. 
-1 -2 5 -11 -4 9 

The thUd "" dot_ 6 ond i ...... 1 H 
8.21 Since A· adj A = (det A)l. we have 

o 0] 
3 0 . 

-2 2 

(det A)(det adj A) = det[(det A)l.l = (det A)'. 
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A being invertible, det A t= 0 and so det adj A = (det A)·-I. 
8.22 AB adj AB = (det AB)I. = (det A det B)/. and so adj AB = B-1 A-I det A det B = 
B-1 adj A det B = B-1 det B adj A = adj B adj A. 

I 
8.23 adj (adj A) = det adj A- (adj Atl. By Exercise 8.21 and the fact that (adj Atl = -d-A 

etA 
we obtain adj(adj A) = (det A)·-2A. 
8.24 If A is upper triangular then aij = 0 when i > j. Thus, for i < j we have det Aij = O. 
Consequently, for i > j, [adj Alj = (-1 )i+j det Aji = 0 and so adj A is also upper triangular. 

8.25 For a symmetric matrix, Aij = Aji . 

8.26 Observe that [adj Alji = (-I)i+j det Aji = (-I)i+j det A;j = [adj Alj and so adj A' = 
adj if = adj A. 
8.27 det A = (x - a)(x - b)(x - c)(a - b)(b - c)(c - a). 
8.28 det = (x - a)3(x + 3a) so the solutions are x = a and x = -3a. 
8.29 Start with CI - YC2. 

8.30 Begin by adding all the rows to the first row, thereby obtaining a factor n - 1. Then, for 

i> I,takepi-PI' 
8.31 Begin by adding all the rows to the first row, thereby obtaining a factor na + b. Then, for 
i> 1, take Pi - apl. 

8.32 Begin by subtracting the first column from the others. Then do Laplace expansions via the 
rows. The solutions are x = 0, ... ,n - 1. 

8.33 For det B. first subtract the first row from the other rows, then subtract the last column 
from the other columns. 

For det A. first add the last column to the first column. Now do a Laplace expansion via the 
new first column and use the result for det B. -I. 

For the last part, use the previous formula and induction. 

8.34 Use a Laplace expansion via the first row of A.+2• The last part follows by induction and 
basic trigonometry. 

8.35 For det A. subtract the last column of A. from the other columns and then use a Laplace 
expansion via the first row. 

For the recurrence formula for det B. use a Laplace expansion via the last column. 
For the last part use induction. 

8.36 We have 

det [~ ~] =det [B~A A~B] A+B B] = det o A-B 

1 B [A+B 0] = det o A -B 0 1 

1 B [A+B ~] = det det 0 o A-B 

= det (A - B) det (A + B). 

8.37 Clearly, [~ ~][ = ~] = [BP ~ CR BQ
A3 cs] and this is of the given form if and 

only if 

A = p-I, BP + CR = 0, BQ +CS = S -RP-IQ. 
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Since B = -CRP-I we have C(S - RP-IQ) = S - RP-IQ, so we can choose C = 1 and then 
B = -RP- I • Now clearly 

[I P-IQ] [I 0 ] detNdetM=det 0 S-Rp-IQ =det 0 S-Rp-IQ =det(S-Rp-IQ) 

i.e. det p-I det M = det (S - RP-IQ), so 

det M = det Pdet(S - Rp-IQ) = det(PS - PRp-IQ). 

If now PR = RP then PRP-I = R and so det M = det(PS -RQ). Likewise, we also have 

det M = det (S - RP-I Q) det P = det (SP - RP-I QP) 

so if PQ = QP then det M = det (SP - RQ). 
8.38 Follow the hint. 28; -18; nL 

9.1 (1) The eigenvalues are 1,2,3 each of algebraic multiplicity 1. 
(2) The only eigenvalue is 1, of algebraic multiplicity 3. 
(3) The eigenvalues are 2,1 + i, 2 - 2i, each of algebraic multiplicity 1. 

9.2 Suppose that Ax = Ax where x 'f o. If). were 0 then we would have the contradiction 
x = A-lAx = A-IO = O. Hence). 'f O. 

Now x = A-lAx = A-I).x = )'A-Ix and so A-IX = ). -IX; i.e. ). -I is an eigenvalue of A-I. 
9.3 If Ax = ).x then by induction we have Alx = ).lX. Thus, for any polynomial p(X) = 
ao + alX + ... + a.X· we have P(A)x = p().)x whence p().) is an eigenvalue of p(A). 
9.4 Proceed as in Example 9.3. 
(1) The eigenvalues are 0, 1, 2, each of algebraic multiplicity 1. 

E,= SpM WJ ; xFO} w.bW,h mn 
E, = SpM W] ;x FO} w.bW,i, {[!n 
E, = SpM W] ; x FO} ... bW,h wn 

(2) The eigenvalues are 0,1, -1, each of algebraic multiplicity 1. 

E, = SpM { [7] ; x F o} ... ~m i. m n 
E, = SpM Wfx] ; x F o} ... btii'h {[ ~;]} 

E_, = SpM {[~;] ; x F o} ... bW.h mn 
9.5 The eigenvalues are 1 and 2, of algebraic multiplicities 2, 1 respectively. 

E, ~. hom, m] , [m ond E, "" btii, Ws]} 
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... (I) Reb,;" to Ib"""", o""red b,,;, of II' the m,"" of n. [j ~ II Tho d" .. 

values are I, 2 of algebraic multiplicities 1,2. 

(2) Rel,ti" to Ib, ""turn! onIored b..;, 0,",' the ..,.;, ofr;, [~ f ~]. Tho d,,",oI",, 
are 0, I, -I each of algebraic multiplicity 1. 

::el~e[ fit r!]m::ce[~ r ;r~ ~]f ~xercise 9.4. Suitable matrices P are therefore, respec-

-I 0 I I I I 

[i ~r11ee:~: [Si!larl[ ~r] ~he other two, we see that suitable matrices P are, respectively, 

I I I -I -2 5 
9.8 Let det A. ;;;; a •. Use a Laplace expansion via the first column to obtain the recurrence 
relation a. ;;;; a._1 + 20a.-2. Consider therefore the system of difference equations 

a. ;;;; a._1 + 20b._1 
b. ;;;; a.-I. 

The matrix of the system is A;;;; [! 2~] which has two distinct eigenvalues, -4 and 5. By 

Theorem 9.8, the matrix p;;;; [20 20] is invertible and such that P-IAP;;;; [-4 0]. Now 
-5 4 0 5 

1 [4 -20] p-I ;;;; 180 5 20 and so 

A';;;; P pI;;;; _ [
(-4)' 0] _ I [5.+1 - (-4).+1 4.5.+1 + 5.(-4).+1] 

o 5' 9 4.5'+5.(-4)' 4S+5·(-4t . 

Finally, [::] ;;;;A·-2 [:~] ;;;;A"-2 [211];;;; ~ [5';~=~=:rl] from which the result follows. 

9.9 (l-X)3; X3 _X2 -x + 3; X3 + 3X2 + lOX + 30. 
9.10 We have 

(I. -BA)[/. + B(In -AB)-IAl ;;;; In -BA + (I. -BA)B(In -AB)-IA 
;;;; In - BA + (B - BAB}(/. - AB)-I A 
;;;; In - BA + B(ln - AB}(/n - AB)-I A 
;;;; In-BA+BA 

= III' 

Hence (In - BAtl ;;;; In + B(I. -AB)-IA. 

The last part follows from the fact that>. is an eigenvalue of XY if and only if XY - >.In is 
not invertible which, in the case where>. :f 0, is equivalent to I. - >. -I XY being not invertible. 

9.11 p-IAP;;;; [ei~ ~i~]. 9.12 p;;;; [-J -~ J]; p;;;; [~ ! -!]. 
o e I 11 100 
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[
1 1 0] [1 1 -1] [4 0 0] P= 1 -11, p-I= I-I 0, D= 090. 
001 001 004 

Now the matrix E = 0 3 0 is such that E2 = D and consequently the matrix B = PEP-I [2 0 0] 
002 

[ 
S I I] 

has the property B2 = A. A simple computation shows that B = -I -I -I . 
002 

9.17 For the first part. use induction. The result clearly holds for r = 1. Suppose that it holds 
for r. Then 

n n n n 
IW+I)ul = IE aj,[A')til ~ E laj,II[A'),jl ~ E k·k'n,-I = k,+ln,-1 E 1 = k'+ln'. 

t=1 t=1 t=1 ,=1 

1 
(1) IfI.B1 < nk then 

1 + 1.BII[Ajj)1 + 1.B2I I [A2);i I + ... + 1.B'IIW);il + '" 
~ 1 + kl.B1 + k2nl.Bf + ... + k'n,-II.BI' + ... 
= 1 + kl.Bl(l + knl.B1 + ... + k,-ln,-II.BI,-1 + .. .) 

which is less than or equal to a geometric series which converges. Thus we see that if I.BI < ~k 
the Sp(A) is absolutely convergent. hence convergent. 

(2) If Sp(A) is convergent then limt--+oo.B'A' = 0 so 

(In - .BA)(/n + .BA + .B2A2 + ... ) = lim,->oo(/n - .BA)(/n + .BA + ... + bnA') 
= lim,->oo(l. - .B,+IA'+I) 
= I •. 

Consequently I. - .BA has an inverse which is the sum of the series. 
For the last part, let). be an eigenvalue of A. Then).I. - A is not invertible. Suppose, 

by way of obtaining a contradiction. that 1).1 > nk. Then I~ I < ~k' Consequently. if we let 

.B = ). -I we have. by (1). thatSp(A) converges and so. by (2).1. -.BA = I. -). -IA is invertible. 
It follows that ),/. - A is invertible. a contradiction. Hence we must have 1).1 ~ nk. 

10.1 mA(X) = ao + alX + ... + apXp. We must have ao 'f 0 since otherwise 0 = mA(A) = 
alA + ... + ApAP and therefore. since A is invertible. all. + a2A + ... + apAp-1 = 0 which 
contradicts the fact that mA (X) is the minimum polynomial of A. 
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Now 0 = aoI. + alA + ... + apAP can be written A(al + a2A + ... + apAp-l) = -aoI. 
1 

whence, since A is invertible, we have A-I = --(al + a2A + '" + apAp-I). Thus A-I is a 
ao 

linear combination of I., A, ... , Ap-I . 
10.2 For each of the matrices the characteristic and minimum polynomials coincide; they are 
respectively (X - 1)3; _X3 + X2 + X - 3; _X3 + X2 - X + 2. 

10.3 CA(X) = det[A - XI.] = ao + alX + ... + A.X·. Taking X = 0 we obtain det A = ao. 
10.4 We have 

CRI (X) = X2 - 2X cos 11 + 1 = (X - cos 11 - i sin I1)(X - cos 11 + i sin 11). 

Then CR, (X) = mRI (X). If 11 is not an integer multiple of 11" then i sin 11 t- 0 and so r~ has no 
real eigenvalues. 
10.5 CD (X) = (-I)·-IX·-I; mD(X) = X·-I. 

10.6 The matrix of / relative to the natural ordered basis {(1,0),(0, In is A = [1 4] t -1 . 

m,(X) = mA (X) = X2 - 3. 

. [ 1 0 1] 
10.7 Consider the matrix 0 2 1 . The only eigenvalue is 2 (of algebraic multiplicity 3). 

-1 0 3 
The geometric multiplicity of this eigenvalue is 2 so / is not diagonalisable. 
10.8 For all positive integers i we have Ai+-l = (PQ)i+1 = p(QP)iQ = PBiQ. If now h(X) = 
lo + llX + ... + l.X· then we have 

Ah(A) = loA + z\A2 + ... + z.A·+1 

= zoPQ + zlPBQ + ... + l.PB·Q 
= P(zoI. + liB + ... + l.B")Q 
= Ph(B)Q. 

It follows immediately that AmB(A) = PmB(B)Q = O. Similarly, we have BmA(B) = O. Con­
sequently, mA(X)IXmB(X) and mB(X)IXmA(X), and so we can write XmB(X) = p(X)mA(X) and 
XmA(X) = q(X)mB(X). Comparing the degrees of each of these equations, we deduce that 
deg p + deg q = 2. Thus, either deg p = 0 in which case p(X) = 1 and XmB(X) = mA (X), or 
deg q = 0 in which case q(X) = 1 and XmA (X) = mB(X), or deg p = deg q = 1 in which case 
mA(X) = mB(X). 
10.9 The matrix can be written as a product PQ where P is the column matrix [1 2 ... r]' 
and Q is the row matrix [1 1 ... 1]. Note that then B = QP is the 1 x 1 matrix whose entry is 
Hr+ 1). We havemB(X) = -tr(r+ 1)+ X. Clearly,mA(X) t- mB(X) andmB(X) t- XmA(X), 
Thus, by the previous exercise, we must have mA(X) = XmB(X) = -~r(r + I)X + X2. 
10.10 The matrix of/relative to the ordered basis {I, 1 + X,I + X - X2} is 

A = [-~ ~ ~]. 
-2 -3 -4 

CA(X) = (X - 2)(X + 1)2 = mA(X), 

11.2 The eigenvalues are 0,0,6 ± 2v'i7. 
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11.3 The determinant is -27216 and the inverse is 

-20 
1 1 

1 1 1 
126 22 

1 22 -20 
22 -20 

11.4 x = ±V6. 
11.5 The MAPLE input is 

> eql:=205+a+20a+4+b=1000; 
> eq2:=c+206+d+207+6=1000; 
> eq3:=204+e+200+f+196=1000; 
> eq4:=20+193+g+h+400=lOOO; 
> eq5:=i+j+192+k+l=lOOO; 
> eq6:=205+c+204+20+i=lOOO; 
> eq7:=a+206+e+193+j=lOOO; 
> eqa:=20a+d+200+g+192=lOOO; 
> eq9:=4+207+f+h+k=lOOO; 
> eqlO:=b+6+196+400+1=lOOO; 
> eqll:=205+206+200+h+l=lOOO; 
> eq12:=b+207+200+193+i=1000; 

1 

1 
22 

-20 

Basic Linear Algebra 

1 22 
22 -20 

-20 1 
1 

> solve({eql,eq2,eq3,eq4,eq5,eq6,eq7,eqa,eq9,eqlO,eqll,eq12}, 
{a,b,c,d,e,f,g,h,i,j,k,l}); 

The solutionis given in the formh = 194, g = 193, c = 374, j = j, b = 203, i = 197, a = 
380, 1= 195, e = 221 - j,f= 179 + j, k = -j + 416. 

It follows that the range of values of k is 196 ::;; k ::;; 415. 



abelian group 69 
action 70 
additive inverse 4 
adjoint 143 
ad jugate 143 
algebraic multiplicity 154 
alternating 129 
arrival space 95 
augmented matrix 21 

bijective 102 

canonical basis 80 
Cayley-Hamilton Theorem, 175 
characteristic equation/polynomial 154 
circulant matrix 196 
coefficient matrix 21 
column 1 
column rank 46 
commute 12 
complex numbers 25 
complex vector space 69 
conjugate 26 
consistent system 52 
continued fraction 166 
convex 111 
Cramer's formulae 151 

departure space 95 
determinantal 129 
diagonal matrix 11 
diagonalisable 159 
difference equations 24 
dimension 85 

direct image 97 
direct sum 180 
distributive laws 9 

eigenspace 156 
eigenvalue 153, 157 
eigenvector 153, 157 
elementary matrix 32 
elementary row operations 28 
element 1 
entry 1 
equal matrices 3 
equivalent matrices 50 
exact sequence 111 

Index 

Fibonacci sequence 165 
finite-dimensional vector space 85 

Gaussian elimination 35 
geometric multiplicity 156 

Hermite matrix 37 
hermitian 26 
homogeneous 21 

identity matrix II 
image 99 
inclusion-preserving 98 
injective 102 
invariant subspace 180 
inverse image 97 
inversion 135 
invertible matrix 62 
isomorphism 107 

Jordan matrix 180 



Index 

kernel 99 
Kronecker symbol II 
Laplace expansion 138 

latent rooUvector 153 
left inverse 59 
Lie product 15 
linear combination 39, 75 
linear equations 20 
linear mapping/transformation 95 
linearly (in)dependent 40, 78 
lower triangular matrix 73 
Lucas numbers 197 

magic matrix 93 
matrix 1 
MAPLE 183 
matrix multiplication 6 
matrix of a linear mapping 114 
minimum polynomial 176 
morphism 95 
multilinear 129 
multiplication by a scalar 5 

natural basis 80 
net 92 
nilpotent 16, 126 
normal form 48 
null-space 99 
nullity 105 

ordered basis 113 
orthogonal matrix 18, 65 

piecewise linear function 93 
pivotal condensation 150 
post(pre)-multiplied 33 
Primary Decomposition Theorem 180 
product 6 
projection 96 
pseudomagic matrix 93 

quatemions 26 

range 99 
rank 48,105 
real vector space 69 
reduced row-echelon 37 
right inverse 59 
rotation matrix 18 
row 1 
row rank 42 
row-echelon 34 
row-equivalent matrices 44 

signum/signature 135 
similar 124 
skew-hermitian 26 
skew-symmetric 13 
solution space 100 
spanning set 76 
square matrix 10 
stairstep 34 
step function 92 
subspace 72 
substructure 95 
subtraction 5 
surjective 102 
sum 3 
symmetric 13 

Toeplitz matrix 81 
transition matrix 120 
transpose 13 
transposition 134 
tridiagonal matrix 170 

unipotent 16 

vector space 69 

wedge product 112 

zero matrix 4 
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