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Preface

This book highlights the latest advances in engineering mathematics with a main
focus on the mathematical models, structures, concepts, problems and computa-
tional methods and algorithms most relevant for applications in modern technolo-
gies and engineering. It addresses mathematical methods of noncommutative
algebra, applied matrix analysis, operator analysis, probability theory and stochastic
processes, geometry, computational mathematics, optimization and operations
research with applications in network analysis, ranking in networks, networks in
bioinformatics, genetic analysis and cancer research, data mining and classification,
production logistics optimization.

The individual chapters cover both theory and applications, and include a wealth
of figures, schemes, algorithms, tables and results of data analysis and simulation.
Presenting new methods and results, reviews of cutting-edge research, and open
problems for future research, they equip readers to develop new mathematical
methods and concepts of their own, and to further compare and analyze the methods
and results discussed.

Chapter “Classification of Low Dimensional 3-Lie Superalgebras” by Viktor
Abramov and Priit Litt is concerned with extension of a notion of n-Lie algebra to
Z,-graded structures by means of a graded Filippov identity giving a notion of
n-Lie superalgebra. Classification of low dimensional 3-Lie superalgebras is pro-
posed, and it is shown that given an n-Lie superalgebra equipped with a supertrace
one can construct the (n+ 1)-Lie superalgebra which is referred to as the induced
(n+ 1)-Lie superalgebra. Based on Clifford algebra which, when endowed with a
Z,-graded structure and a graded commutator, can be viewed as the Lie superal-
gebra and supertrace defined via its matrix representation, the 3-Lie superalgebras
are constructed and explicitly described by their ternary commutators. In
Chap. “Semi-Commutative Galois Extension and Reduced Quantum Plane” by
Viktor Abramov and Md. Raknuzzaman, it is shown that a semi-commutative
Galois extension of associative unital algebra by means of an element 7, which
satisfies ¥ = 1 (1 is the identity element of an algebra and N >2 is an integer)
induces a structure of graded g-differential algebra, where g is a primitive Nth
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root of unity. The graded g-differential algebra is constructed and its first order
noncommutative differential calculus is studied. Moreover, the higher order non-
commutative differential calculus induced by a semi-commutative Galois extension
of associative unital algebra is studied, and it is shown that a reduced quantum
plane can be viewed as a semi-commutative Galois extension of a fractional
one-dimensional space. Chapter “Valued Custom Skew Fields with Generalised
PBW Property from Power Series Construction” describes an interesting con-
struction of associative algebras with a number of useful properties. The con-
struction is basically that of a power series algebra with given commutation
relation. The constructed algebras have a Poincaré—Birkhoff-Witt type basis, are
equipped with a norm (actually an ultranorm) that is trivial to compute for basis
elements, are topologically complete, and satisfy their given commutation relation.
In addition, parameters can be chosen so that the algebras will in fact turn out to be
skew fields and the norms become valuations. Chapter “Computing Burchnall-
Chaundy Polynomials with Determinants” by Johan Richter and Sergei Silvestrov
concerned with generalization of a method of computing the Burchnall-Chaundy
polynomial of two commuting differential operators based on Burchnall-Chaundy
eliminant determinant construction to the class of rings known as Ore extensions. It
is shown that the eliminant construction partially generalizes and also counterex-
amples showing that these generalizations do not always retain all desired prop-
erties are provided. In Chap. “Centralizers and Pseudo-Degree Functions” by Johan
Richter, a generalization of a proof of certain results by Hellstrém and Silvestrov on
centralizers in graded algebras is presented, centralizers in certain algebras with
valuations are considered and a proof that the centralizer of an element in these
algebras is a free module over a certain ring is given. Under further assumptions it is
also shown that the centralizer is also commutative. In Chap. “Crossed Product
Algebras for Piece-Wise Constant Functions” by Johan Richter, Sergei Silvestrov,
Vincent Ssembatya and Alex Behakanira Tumwesigye, algebras of functions that
are constant on the sets of a partition are considered together with their crossed
product algebras with the group of integers and the commutant of the function
algebra in the crossed product algebra. In Chap. “Commutants in Crossed Product
Algebras for Piece-Wise Constant Functions” by Johan Richter, Sergei Silvestrov
and Alex Behakanira Tumwesigye, crossed product algebras of algebras of
piece-wise constant functions on the real line with the group of integers are con-
sidered, and for an increasing sequence of algebras the set difference between the
corresponding commutants is described.

Chapter “Asymptotic Expansions for Moment Functionals of Perturbed Discrete
Time Semi-Markov Processes” by Mikael Petersson is devoted to the study of
moment functionals of mixed power-exponential type for nonlinearly perturbed
semi-Markov processes in discrete time. Conditions under which the moment
functionals of interest can be expanded in asymptotic power series with respect to
the perturbation parameter are given and it is shown how the coefficients in these
expansions can be computed from explicit recursive formulas. The results of
this chapter have applications for studies of quasi-stationary distributions.
In Chap. “Asymptotics for Quasi-Stationary Distributions of Perturbed Discrete
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Time Semi-Markov Processes” by Mikael Petersson, quasi-stationary distributions
of nonlinearly perturbed semi-Markov processes in discrete time are studied. This
type of distributions is of interest for analysis of stochastic systems which have
finite lifetimes but are expected to persist for a long time. Asymptotic power series
expansions for quasi-stationary distributions are obtained, it is shown how the
coefficients in these expansions can be computed from a recursive algorithm, and a
numerical example for a discrete time Markov chain is presented as an illustration
of this algorithm. Chapter “Asymptotic Expansions for Stationary Distributions of
Perturbed Semi-Markov Processes” by Dmitrii Silvestrov and Sergei Silvestrov
presents new algorithms for computing asymptotic expansions for stationary dis-
tributions of nonlinearly perturbed semi-Markov processes based on special tech-
niques of sequential phase space reduction, which can be applied to processes with
asymptotically coupled and uncoupled finite phase spaces. Chapter “PageRank, a
Look at Small Changes in a Line of Nodes and the Complete Graph” is about the
PageRank algorithm used as part of the ranking process of different Internet pages
in search engines, ranking in citation networks as well as other information,
communication and big data networks. The chapter focuses on the behavior of
PageRank as the system dynamically changes either by contracting or expanding
such as when subtracting or adding nodes or links or groups of nodes or links.
PageRank is considered as the solution of a linear system of equations and
examined in both the ordinary normalized version of PageRank as well as the
non-normalized version, and explicit formulas for the PageRank of some simple
link structures are obtained. Chapter “PageRank, Connecting a Line of Nodes with
a Complete Graph” is focused on the PageRank algorithm following original def-
inition of PageRank by Sergey Brin and Larry Page as the stationary distribution of
a certain random walk on a graph used to rank homepages on the Internet.
Specifically, this chapter is concerned with PageRank changes after adding or
removing edge between otherwise disjoint subgraphs, for example link structures
consisting of a line of nodes or a complete graph and different ways to combine the
two. Both the ordinary normalized version of PageRank as well as a
non-normalized version of PageRank can be found by solving corresponding linear
system, and it is demonstrated that it is possible to find moreover explicit formulas
for the PageRank in some simple link structures and using these formulas take a
more in-depth look at the behavior of the ranking as the system changes. Chapter
“Graph Centrality Based Prediction of Cancer Genes” by Holger Weishaupt, Patrik
Johansson, Christopher Engstrom, Sven Nelander, Sergei Silvestrov and Fredrik
J. Swartling focuses on how graph centralities obtained from biological networks
have been used to predict cancer genes. As current cancer therapies including
surgery, radiotherapy and chemotherapy are often plagued by high failure rates,
designing more targeted and personalized treatment strategies requires a detailed
understanding of druggable tumor driver genes. Specifically, the chapter begins
with describing the current problems in cancer therapy and the reasoning behind
using network based cancer gene prediction, followed by an outline of biological
networks, their generation and properties, and finely by a review of major concepts,
recent results as well as future challenges regarding the use of graph centralities in
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cancer gene prediction. Chapter “Output Rate Variation Problem: Some Heuristic
Paradigms and Dynamic Programming” by Gyan Bahadur Thapa and Sergei
Silvestrov is concerned with the output rate variation problem, which is one of the
important research directions in the area of multi-level just-in-time production
systems. A short survey of the mathematical models of this problem is provided
together with consideration of its NP-hardness, a brief review of heuristic
approaches to the problem, the discussion on the dynamic programming approach
and pegging assumption reducing the multi-level problem to weighted single-level
problem as well as some open problems.

In Chap. “IL”-Boundedness of Two Singular Integral Operators of Convolution
Type” by Sten Kaijser and John Musonda, boundedness properties investigated for
two singular integral operators defined on L”-spaces (1 <p<oc) on the real line,
both as convolution operators on L”(R) and on the weighted spaces L?(w), where
o(x) = 1/(2coshZx). In the Chap. “Fractional-Wavelet Analysis of Positive
definite Distributions and Wavelets on Z'(C)” by Emanuel Guariglia and Sergei
Silvestrov, a wavelet expansion theory for positive definite distributions over the
real line is considered and a fractional derivative operator for complex functions in
the distribution sense is defined. The Ortigueira—Caputo fractional derivative
operator is rewritten as a convolution according to the fractional calculus of real
distributions, and the fractional derivatives of the complex Shannon wavelet and
Gabor-Morlet wavelet are computed together with their plots and main properties.
Chapters “Linear Classification of Data with Support Vector Machines and
Generalized Support Vector Machines” and “Linear and Nonlinear Classifiers of
Data with Support Vector Machines and Generalized Support Vector Machines” by
Talat Nazir, Xiaomin Qi and Sergei Silvestrov are devoted to support vector
machine for linear and nonlinear classification of data. Generalized support vector
machine for classification of data is introduced, and it is shown that the problem of
generalized support vector machine is equivalent to the problem of generalized
variational inequality. Various results for the existence of solutions are established
and several examples are constructed. In Chaps. “Common Fixed Points of Weakly
Commuting Multivalued Mappings on a Domain of Sets Endowed with Directed
Graph” and “Common Fixed Point Results for Family of Generalized Multivalued
F-contraction Mappings in Ordered Metric Spaces” by Talat Nazir and Sergei
Silvestrov, the existence of coincidence points and common fixed points for mul-
tivalued mappings satisfying certain graphic y-contraction contractive conditions
with set-valued domain endowed with a graph, without appealing to continuity, is
established, the existence of common fixed points of family of multivalued map-
pings satisfying generalized F-contractive conditions in ordered metric spaces is
also investigated.

The book consists of carefully selected and refereed contributed chapters cov-
ering research developed as a result of a focused international seminar series on
mathematics and applied mathematics and a series of three focused international
research workshops on engineering mathematics organized by the Research
Environment in Mathematics and Applied Mathematics at Milardalen University
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from autumn 2014 to autumn 2015: the International Workshop on Engineering
Mathematics for Electromagnetics and Health Technology; the International
Workshop on Engineering Mathematics, Algebra, Analysis and Electromagnetics;
and the 1st Swedish-Estonian International Workshop on Engineering Mathematics,
Algebra, Analysis and Applications.

This book project has been realized, thanks to the strategic support by
Milardalen University to the research and research education in Mathematics,
which is conducted by the research environment Mathematics and Applied
Mathematics (MAM), in the established research area of Educational Sciences and
Mathematics at the School of Education, Culture and Communication at Mélardalen
University. We are grateful also to the EU Erasmus Mundus projects FUSION,
EUROWEB and IDEAS, the Swedish International Development Cooperation
Agency (Sida) and International Science Programme in Mathematical Sciences,
Swedish Mathematical Society, Linda Peetre Memorial Foundation, as well as other
national and international funding organizations and the research and education
environments and institutions of the individual researchers and research teams that
contributed to this book.

We hope that this book will serve as a source of inspiration for a broad spectrum
of researchers and research students in mathematics and applied mathematics, as
well as in the areas of applications of mathematics considered in the book.

Visteras, Sweden Sergei Silvestrov
July 2016 Milica Rancié
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Classification of Low Dimensional 3-Lie
Superalgebras

Viktor Abramov and Priit Latt

Abstract A notion of n-Lie algebra introduced by V.T. Filippov can be viewed
as a generalization of a concept of binary Lie algebra to the algebras with n-ary
multiplication law. A notion of Lie algebra can be extended to Z,-graded structures
giving a notion of Lie superalgebra. Analogously a notion of n-Lie algebra can be
extended to Z,-graded structures by means of a graded Filippov identity giving a
notion of n-Lie superalgebra. We propose a classification of low dimensional 3-Lie
superalgebras. We show that given an n-Lie superalgebra equipped with a supertrace
one can construct the (n + 1)-Lie superalgebra which is referred to as the induced
(n 4 1)-Lie superalgebra. A Clifford algebra endowed with a Z,-graded structure
and a graded commutator can be viewed as the Lie superalgebra. It is well known
that this Lie superalgebra has a matrix representation which allows to introduce a
supertrace. We apply the method of induced Lie superalgebras to a Clifford algebra
to construct the 3-Lie superalgebras and give their explicit description by ternary
commutators.

Keywords n-Lie algebras - n-Lie superalgebras * Clifford algebras - Induced n-Lie
superalgebras

1 Introduction

Recently, there was markedly increased interest of theoretical physics towards the
algebras with n-ary multiplication law. Due to the fact that the Lie algebras play a
crucial role in theoretical physics, it seems that development of n-ary analog of a
concept of Lie algebra is especially important. In [5] V.T. Filippov proposed a notion
of n-Lie algebra which can be considered as a possible generalization of a concept
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2 V. Abramov and P. Litt

of Lie algebra to structures with n-ary multiplication law. In approach proposed by
V.T. Filippov an n-ary commutator of n-Lie algebra is skew-symmetric and satisfies
an n-ary analog of Jacobi identity which is now called Filippov identity. It is worth to
mention that there is an approach different from the one proposed by V.T. Filippov,
where a ternary commutator is not skew-symmetric but it obeys a symmetry based on
a representation of the group of cyclic permutations Z3 by cubic roots of unity [2]. It
is well known that a concept of Lie algebra can be extended to Z,-graded structures
with the help of graded commutator and graded Jacoby identity, and a corresponding
structure is known under the name of Lie superalgebra.

In the present paper we show that a notion of n-Lie algebra proposed by
V.T. Filippov can be extended to Z,-graded structures by means of graded
n-commutator and a graded analog of Filippov identity. This Z,-graded n-Lie alge-
bra will be referred to as a n-Lie superalgebra. We show that a method of induced
n-Lie algebras proposed in [3] and based on an analog of a trace can be applied to
n-Lie superalgebras if instead of a trace we will be using a supertrace. We introduce
the notions such as an ideal of n-Lie superalgebra, subalgebra of n-Lie superalgebra,
descending series and prove several results analogous to the results proved in [3] for
n-Lie algebras. We propose a classification of low dimensional 3-Lie superalgebras
and find their commutation relations. A Clifford algebra can be used to construct a
Lie superalgebra if one equips it with a graded commutator. This Lie superalgebra
has a matrix representation called supermodule of spinors and this representation
can be endowed with a supertrace. Thus we have all basic components of a method
of induced n-Lie superalgebras and applying this method we construct a series of
3-Lie superalgebras.

2 Supertrace and Induced r-Lie Superalgebras

A notion of Lie algebra can be extended from binary algebras to algebras with n-ary
multiplication law with the help of a notion of n-Lie algebra, where n is any integer
greater or equal to 2. This approach was proposed by V. T. Filippov in [5], and it is
based on n-ary analog of Jacobi identity which is now called the Filippov identity.
It is well known that a concept of binary Lie algebra can be extended to Z,-graded
structures giving a notion of Lie superalgebra. Similarly a notion of n-Lie algebra
can be extended to Z,-graded structures giving a structure which we call an n-Lie
superalgebra [1, 4]. In this section we give the definitions of n-Lie algebra, n-Lie
superalgebra and show that a structure of induced n-Lie algebra based on an analog
of trace [3] can be extended to n-Lie superalgebras with the help of supertrace.

Definition 1 Vector space g endowed with a mapping [-, ..., ] : g" — gis said to
be an-Lie algebra, if [+, . . ., -] is n-linear, skew-symmetric and satisfies the identity

n

[xla"-’-xn—h[yl"'-’yn]]:Z[yla"-’[-x17'-'axn—lvyi]’-"ayn]v (1)
i=1
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where x1, ..., Xy—1, Y1, --+» Yn € .

In the definition of n-Lie algebra the identity (1) is called the Filippov identity
[5]. It is clear that for n = 2 Filippov identity yields the classical Jacobi identity of
a binary Lie algebra.

Definition 2 Let¢ : g" — g. Alinearmap t : g — Kwill be referred to as a ¢-trace
if t (p(x1,...,x,))=0forall x;,...,x, €g.

In [3] the authors proposed a method based on ¢-trace which can be applied to
an n-Lie algebra to construct the (n + 1)-Lie algebra.

Theorem 1 Let (g, [-, ..., ]) beann-Liealgebraandt beal-, ..., -1-trace. Define
[y ]e t g™ — gby

n+1
[ s e = D (=D T s X, Xt X )

i=1
Then (g, [-, ..., -1y) is the (n + 1)-Lie algebra.

It was shown in [1] that a similar method based on a notion of a supertrace can be
used in the case of n-Lie superagebras, and given an n-Lie superalgebra one can apply
this method to induce the (n + 1)-Lie superalgebra. Let us remind that super vector
space is a direct sum of two vector spaces, i.e. V = V;; @ V7. The dimension of finite
dimensional super vector space is denoted as m|n if dimVz = m and dim Vg = n.
Element x € V \ {0} is said to be homogeneous if either x € V or x € V7. For
homogeneous elements we can define parity by

_ 6, xEVa,
={T Tew ®

In what follows we will assume that element x is homogeneous whenever |x]| is
used.

Definition 3 We say that super vector space g endowed with n-linearmap [-, ..., -] :
g" — gisn-Lie superalgebra if forall xi, ..., X, Y1, ..., Yu—1 € @
Lol xll = 200 1xl,
20 (X0 s Xy Xigts s X = = (=D,
3' [)’17~~~’yn—17 [XL,...,xn]] =
== Z?zl(_l)‘x‘iillwuil [.X], ey Xi—1, [)’17 LI yn—17 xi]7 xi+la ey xl‘l]?

where x = (x1,...,X,),y = (Y1, -.., Yn-1), and |x;| = 211:1 |x;].

Definition 4 Let V = V5 @ Vy be a super vector space and let¢ : V" — V. We say
that linear map S : V — Kiis a ¢-supertrace if
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1. S(¢p(x1,...,x,))=0forall xy,...,x, €V,
2. S(x)=0forallx € V7.
Given an n-Lie superalgebra endowed with a supertrace (which satisfies the con-

ditions of the previous definition with respect to a graded commutator of this algebra)
we can construct the (n + 1)-Lie superalgebra by means of a method described in [1].

Theorem 2 Let (g, [, ..., ]) be a n-Lie superalgebra and let S : g — K be a
[, ...,-]-supertrace. Define [-, ..., -]s : g"T' — g by
n+1
(X1, oy Xnr1ls = Z(—l)lil(—l)‘x"”x"'"S(Xi)[xh s X1y XLy e Xnp1]-
i=l
“)
Then (g, [-, ..., 1s) isa (n + 1)-Lie superalgebra.

3 Properties of Induced n-Lie Superalgebras

In this section we study a structure of induced n-Lie superalgebra, and introducing
the notions such as ideal of an n-Lie superalgebra, derived series, subalgebra of n-Lie
superalgebra we prove several results which are analogous to the results proved in
[3] in the case of n-Lie algebras.

Definition 5 Let (g, [+, ..., -]) be a n-Lie superalgebra and let h be a subspace of g.
We say that §j is an ideal of g, if for all h € b and for all xy, ..., x,_; € g, it holds
that [A, x1, ..., x,_1] €.

Definition 6 Let (g, [-, ..., ]) be a n-Lie superalgebra and let ) be an ideal of g.

Derived series of by is defined as
D°(h) = and D"*'(h) =[D"(h),....D"(H], peN,
and the descending central series of ) as

C’(h) =h and CP*'(h) =[CP(h),h,....h], peN.

Anideal b of n-Lie superalgebra g is said to be solvable if there exists p € N such
that D?(h) = {0}, and we call h nilpotent if C?(h) = {0} for some p € N.

Proposition 1 Let (g, [+, ..., -]) be a n-Lie superalgebra and let ) C g be a subal-
gebra. If S is supertrace of [-, .. ., -1, then b is also subalgebra of (g, [+, ..., ]s).

Proof Leth be subalgebra of n-Lie superalgebra (g, [+, ..., ]), X1, ..., X401 € hand
assume S is a supertrace of [, ..., -]. Then [xq, ..., x,4+1]s is a linear combination
of elements of § as desired. (I
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Proposition 2 Let h be an ideal of (g, [-, ..., ]) and assume S is supertrace of
[-,...,) Then b is ideal of (g, [-,...,-1ls) if and only if [g,9,...,8] S horh C
ker S.

Proof Leth € hand xy, ..., x, € g. Then

n
1o, Al = D (=D T =PI Gy, g X e BT ()

i=1

(=D (=DM s(m)[xy, .. xu]. (6)

Since b is ideal we have [xy, ..., x;—1, Xjx1, ..., Xy, k] € hforalli =1,...,n.
Thus [x, ..., Xx,, hls € b is equivalent to

(=D (=) S () [xy, ..., x,] € B,

which clearly holds when S(h) =0 or [xy, ..., x,] € h. (Il
Proposition 3 Let (g, [-, ..., -]) be n-Lie superalgebra and let S be supertrace of
[, ..., ). Then induced (n + 1)-Lie superalgebra (gs, [, ..., -1s) is solvable.
Proof Assume (g, [, ..., -]) isan-Lie superalgebra and S is supertrace of [-, ..., -],
and let xq, ..., x,41 € D'(gs).

Thenforeveryi = 1,...,n+ 1wehavexi1, o x;H'l € gsuchthatx; = [xl.l, e
x5, in which case

[x1, . s Xpp1ls =

n+l1

D= En sl T ) X X X ] =0,
i=1

O

In the light of the last proposition we can immediately see that if (g, [-, ..., ])
is an n-Lie superalgebra, then for the induced (n + 1)-Lie superalgebra it holds
D?(gs) = {0}, whenever p > 2.

Proposition 4 Let (g, [, ..., -]) be n-Lie superalgebra, S supertrace of [-, ..., -]
and assume (n + 1)-Lie superalgebra (gs, [+, ...,-ls) is induced by S. Denote
descending central series of g by (C? (g))zozo and denote descending central series

of gs by (C?(gs)) )=y Then
C’(gs) € CP(g) forall peN.
Ifthere exists g € gsuchthat[g, xi, ..., x,ls = [x1, ..., xy] holds forall x, x3, . . .,

X, € g, then
CP(gs) = CP(g) forall peN.
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Proof Case p = 0 is trivial. Note that for p = 1 any x =[x, ..., X,41]s € C'(gs)
can be expressed as

n+1

x =D (=D =DM e L X X X,

i=1

meaning x is a linear combination in C'(g).

Assume now that there exists g € g such that for all y, ..., y, € g it holds that
[g, yis-- s Yuls =[is--.s yul. Then x =[xy, ..., x,] € Cl(g) can be written as
[g,x1,...,X,]s and thus x € C'(gs).

Next assume that the statement holds for some p € Nandletx € C?*!(gg). Then
there are x1,...,x, € gand g € CP(gs) such that

X =18, X1,y Xyls = (D)W  x,, gls =
n

= (=S ) =PI S e e X X X g,
i=1

since g can be expressed as a bracket of some elements, and hence S(g) = 0. On
the other hand, as g € C”(gs), by our inductive assumption g € C”(g), and thus

x € CPtl(g).
To complete the proof, assume that there exists g € gsuchthatforall y;, ..., y, €
g equality [g, yi, ..., Yuls = [V1s ..., yu] holds. If x € CP*!(g), then x = [h, x|,
ey Xy—1], where xq, ..., x,_1 € gand h € C”(g). Altogether we have
x=[hxi,....xal=lghx, ... xls = —(=D¥"[h g, x, . x s
At the same time h € CP(g) = C”(gs), which gives us [k, g, X1, ..., X,—1]s €
CP*!(gs), meaning x € CPT!(gy), as desired. O

4 Low Dimensional Ternary Lie Superalgebras

In this section we propose a classification of low dimensional ternary Lie superalge-
bras.

First of all we find the number of different (non-isomorphic) 3-Lie superalgebras
over C of dimension m|n where m +n < 5. We also find the explicit commuta-
tion relations of these 3-Lie superalgebras. We use a method which is based on the
structure constants of an n-Lie superalgebra.

Definition 7 Let g = gy ® g7 be n-Lie superalgebra, denote

'B:{E],...,em,fl,--wfn}
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and assume {ej, ..., ey} spans gz and {fi,..., f,} spans g7. Elements Kfl___An
defined by
B
[zas -5 24,1 = Ky, 4,28,
where z4,, ..., za,, 25 € B, are said to be structure constants of g with respect to B.

Assume we have a 3-Lie superalgebra (g, [-, -, -]) of dimension m|n over C.
Denote

3:{617-~-vemvf1’-~-vﬁz}:{Zlv---»Zm+n}

and assume ¢,, 1 < o < m, spans the even part of g and f;, | <i < n, spans the
odd part of g. Additionaly, let z4 = e4, when 1 < A <m, and z4 = fa—n, When
m < A <m+ n. Since |[z1, 22, z3]| = |z1] + |z2| + |z3] we can express the values
of commutator on generators using structure constants in the following form:

[ea,eﬁ,ey] = Kéﬁye;\,
[ea’ €g, fi] = Kojtﬂifj’
[eou Jis fj] = K:fijeﬁ’
[fi? fj’ fk] = Kiljkfl’

wherea < B < yandi < j < k. Asall other possible orderings and combinations of
generators can be transformed into one of these four forms by graded skew-symmetry
of [+, -, -], we will not consider them.

As a next step we can eliminate the combinations that are trivial. To find such
brackets we can observe different permutations of arguments. If some permutation
yields the initial ordering without preserving the sign, then this bracket must be zero,
as in

ler, e1, fil = —(=D)er, er, i1 = —ler, er, fi].

Finally we can use the graded Filippov identity. Observe [z4, 25, zc] = K 25
zp #0,where 1 < A < B < C <m + n, and calculate

[ze, 2F. [24, 28, 2c]]

using two different paths. Firstly use what is known and write

D
[ze,2F, [24, 2B 2cll = K pclzEs 2F, 2D].

Then transform bracket [zg,zp,zp] to (—=D)OP¥[zp, zp, zp], where
(D,E,F}={D',E',F'}, but D' < E' < F’, and (—1)©7¢ gives the sign that
comes from graded skew-symmetry. Note that [zp, zg, 2] can be expressed
using structure constants and generators as well and thus we have [zp/, 2z, 5] =
K} o pzi, which means that on the one hand

r D o H
[ze, 2F, (24, 28, 2c)] = (= DO KR K vz
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On the other hand we can use Filippov identity to calculate [zg, zF, [z4, 28, 2c]]:
[z£.2r.[za.28.2c)]) = [[zE. 2F. 2a). 2. 2] + (= DFAIREFRFD [0y (2p 2p 2p) 20 ] +

(—)(ZAFHRBDEIHED [y 2 (op. 25 201]

In every summand we can apply the same construction as described above. To
do that, let us denote zagr = |zal(lze| + |zF|) and zaper = (Izal + (28D (|zE| +
|zr|). Now reorder the arguments in increasing order and replace the result with
linear combination of generators and structure constants. By doing so we end up
having

o6 kG H

[zE.2F. (240 28, 2c]] = (=) Ot Owe KG o L K G 2n+
(_1)ZAEF+OBEF+OA’C/G/ Kg’E’F’ Kf’[g’G/ n+
(_1)2ABEF+OCEF+OA/B/G/ KCG"E’F’KA/B’G’ 7H.

In other words the following system of quadratic equations emerges:

D pH e kG H

(— 1)ODEF KipcKpppzn = (— I)OAEF+OE Ky Kgeg tHt
(_])ZAEF+OBEF+OA/C’G/ Kl(?;’E’F’ KEC’G’ n+

(— 1)2ABEF+OCEF+OA/B/G’ KCC‘;/E/F/ KfI\-I’B/G’ ZH,

where generators zy are known and structure constants K 7 - are unknown. Further

more, for every H € {1,2,...,m + n} we have

(=D K Rpc K pp = (=Dt Ores K b K il ot
(- I)ZAEF"FOBEF"FOA’C/G/ KIC?;’E’F’ KEC’G”"
(-1 )ZABEF+OCEF +Ourp¢r Kg’E’F’ KEB’G’ ,

In summary, we have a system of quadratic equations whose solutions are possible
structure constants for m|n-dimensional 3-Lie superalgebra. We note however, that
the structure constants are depending on the choice of basis for the super vector space
and thus invariant solutions have to be removed case by case.

Applying the described algorithm to concrete cases gives us the following theo-
rems.

Theorem 3 3-Lie superalgebras over C, whose super vector space dimension is 0|1
or 1|1, is Abelian.

Theorem 4 3-Lie superalgebras over C, whose super vector space dimension is 0|2
or 112, are either Abelian or isomorphic to 3-Lie superalgebra b whose non-trivial
commutation relations are
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Lfi, fi, fil = = fi + fa,

Lf1, fi, 2l == fi+ fa, _
e o ol = —fi+ . or [f1, f1, fil = fa,
Lf2s f2, 2l=—=fi+ fa.

where fi, f> are odd generators of b.

Theorem 5 3-Lie superalgebras over C, whose super vector space dimension is
2|1, are either Abelian or isomorphic to 3-Lie superalgebra )y whose non-trivial
commutation relations are

[[61, fi, fil =e1 + ey,

les. fi. fil = —e1 — e, ler, ez, fil = fi, or [fi, fi, fil = fi,

where ey, ey are even generators of by and f is odd generator of b.

S Supermodule Over Clifford Algebra

In this section we apply the method described in Sect. 2 to a Clifford algebra. Itis well
known that a Clifford algebra can be equipped with the structure of superalgebra if
one associates degree 1 to each generator of Clifford algebra and defines the degree of
product of generators as the sum of degrees of its factors. Then making use of a graded
commutator we can consider a Clifford algebra as the Lie superalgebra. A Clifford
algebra has a matrix representation and this allows to introduce a supertrace. Hence
we have a Lie superalgebra endowed with a supertrace, and we can apply the method
described in Theorem 2 to construct the 3-Lie superalgebra. In this section we will
give an explicit description of the structure of this constructed 3-Lie superalgebra.

A Clifford algebra C, is the unital associative algebra over C generated by
Y1, V2, - - - » Yo Which obey the relations

yly]+ylyl:281jev lv]:1’2vsn7 (7)
where e is the unit element of Clifford algebra. Let N = {1, 2, ..., n} be the set of
integers from 1 ton. If I isasubsetof N,i.e. I = {ij, ip, ..., i} wherel <ij <ip <

- < I; < n,then one can associate to this subset / the monomial y; = y;, v, . . - Vi,
If I = { one defines yy = e. The number of elements of a subset / will be denoted
by |I]. It is obvious that the vector space of Clifford algebra C, is spanned by the
monomials y;, where I € N. Hence the dimension of this vector space is 2" and any
element x € C, can be expressed in terms of these monomials as

X = Zalyh

ICN
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wherea; = a;,;, ; isacomplex number. Itis easy to see that one can endow a Clifford
algebra C, with the Z,-graded structure by assigning the degree |y;| = |I| (mod 2)
to monomial y;. Then a Clifford algebra C, can be considered as the superalgebra
since for any two monomials it holds |y, ;| = |yi| + vs].

Another way to construct this superalgebra which does not contain explicit refer-
ence to Clifford algebra is given by the following theorem.

Theorem 6 Let I be a subset of N = {1,2,...,n}, and y; be a symbol associated
to 1. Let C,, be the vector space spanned by the symbols y;. Define the degree of y;
by |yr| = |I1(mod?2), where |1| is the number of elements of I, and the product of
Y1, v by

vivi =Dy, (®)

where o (1, J) = Zjej o(l, j), o(l, j) is the number of elements of I which are
greater than j € J, and I AJ is the symmetric difference of two subsets. Then C,, is
the unital associative superalgebra, where the unit element e is yy.

This theorem can be proved by means of the properties of symmetric difference
of two subsets. We remind a reader that the symmetric difference is commutative
I1®J=J&I, associative (IAJ)AK = IA(JAK) and I AQY = PAI. The latter
shows that yy is the unit element of this superalgebra. The symmetric difference also
satisfies [ AJ| = |I| + |J| (mod2). Hence C, is the superalgebra.

The superalgebra C, can be considered as the super Lie algebra if for any two
homogeneous elements x, y of this superalgebra one introduces the graded commu-
tator [x, y] = xy — (—1)P¥?yx and extends it by linearity to a whole superalgebra
C,. We will denote this super Lie algebra by €,. Then {y;};c are the generators
of this super Lie algebra €,, and its structure is entirely determined by the graded
commutators of y;. Then for any two generators y;, y; we have

i vil= fU.J) vias, )
where f (1, J) is the integer-valued function of two subsets of N defined by
fU D) = D7D (1 = =i,

Itis easy to verify that the degree of graded commutator is consistent with the degrees
of generators, i.e. [y, y7] = |yi| + |ys|. Indeed the function o (Z, J) satisfies

o, )y=|IIIJ|-UINJ|—ac(,J),
and

fWJ, 1) = (_1)0(1,1)(1 _ (—1)‘””')
= (_1)III|J\—\mJ|—a(1J)(1 _ (_1)|1m\)

— (_1)I1IIJ\(_1)0(1J)((_1)\mll _ 1) — _(_1)\1H1\f(17 J).
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Hence [y;, 71 = —(=D!"WI[y;, y;1 which shows that the relation (9) is consis-
tent with the symmetries of graded commutator. It is obvious that if the intersection of
subsets /, J contains an even number of elements then f(/, J) = 0, and the graded
commutator of y;, y;, is trivial. Particularly if at least one of two subsets /, J is the
empty set then f(/, J) = 0. Thus any graded commutator (9) containing e is trivial.

As an example, consider the super Lie algebra &,. Its underlying vector space is
4-dimensional and ¢, is generated by two even degree generators e, y;, and two odd
degree generators y, ¥». The non-trivial relations of this Lie superalgebra are given
by

yi, il = [v2, ol =2e, [v1, vi2l =22, [y2, Y12l = =2 1. (10)

Now we assume that n = 2m, m > 1 is an even integer. The Lie superalgebra €,
has a matrix representation which can be described as follows. Fix n = 2 and identify
the generators y;, y» with the Pauli matrices o7, 07, i.e.

1 .
”1:((1)0)’ )’22(? 01)' (1D

Then y1, = y1y» =i 03 where

()
\o-1)"

Let S? be the 2-dimensional complex super vector space C?> with the odd degree
operators (11), where the Z,-graded structure of 52 is determined by o3 = i_l)/lz.
Then C, ~ End (§?), and S? can be considered as a supermodule over the superal-
gebra Cy. Let $" = > ® §? ® ... ® S?(m — times). Then S” can be viewed as a
supermodule over the m-fold tensor product of C,, which can be identified with C,
by identifying yy, y» in the jth factor with y»;_1, ¥ in C,,. This C,,-supermodule S"
is called the supermodule of spinors [6]. Hence we have the matrix representation
for the Clifford algebra C,,, and this matrix representation or supermodule of spinors
allows one to consider the supertrace, and it can be proved [6] that

SN = | iy i1 (12)

Now we have the Lie superalgebra &, with the graded commutator defined in
(9) and its matrix representation based on the supermodule of spinors. Hence we
can construct a 3-Lie superalgebra by making use of graded ternary commutator (4).
Applying the formula (4) we define the graded ternary commutator for any triple
v, Vs, Yk of elements of basis for €, by
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[yi, vi. el = Ste(yr) [vs, vl — (=D"VISte(yy) [yr, v
+ (=DKWt (v ) [yr, val, (13)

where the binary graded commutator at the right-hand side of this formula is defined
by (9). According to Theorem 2 the vector space spanned by y;, I C N and equipped
with the ternary graded commutator (13) is the 3-Lie superalgebra which will be
denoted by €3, Making use of (9) we can write the expression at the right-hand side
of the above formula in the form

i, v, vkl = f(J, K)St(yr) viax — (D" E (L, K)Ste(yy) viak
+(=DEITHID (7 N Stre(yk) yiag-

From the formula for supertrace (12) it follows immediately that the above graded
ternary commutator is trivial if none of subsets y;, y,, yx is equal to N. Similarly
this graded ternary commutator is also trivial if all three subsets /, J, K are equal to
N,ie. I =J = K =N, or two of them are equal to N.

Proposition 5 The graded ternary commutators of the generators y;, I € N of the
3-Lie superalgebra € are given by

Q" fU, Nyyras if I #N,J #N, K =N,

in all other cases . (14)

lvi,vi, vkl = I
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and Reduced Quantum Plane
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Abstract In this paper we show that a semi-commutative Galois extension of asso-
ciative unital algebra by means of an element t, which satisfies ¥ = 1 (1 is the
identity element of an algebra and N > 2 is an integer) induces a structure of graded
g-differential algebra, where g is a primitive N'th root of unity. A graded g-differential
algebra with differential d, which satisfies dV =0,N > 2, can be viewed as a gen-
eralization of graded differential algebra. The subalgebra of elements of degree zero
and the subspace of elements of degree one of a graded g-differential algebra together
with a differential d can be considered as a first order noncommutative differential
calculus. In this paper we assume that we are given a semi-commutative Galois
extension of associative unital algebra, then we show how one can construct the
graded g-differential algebra and when this algebra is constructed we study its first
order noncommutative differential calculus. We also study the subspaces of graded
g-differential algebra of degree greater than one which we call the higher order non-
commutative differential calculus induced by a semi-commutative Galois extension
of associative unital algebra. We also study the subspaces of graded g-differential
algebra of degree greater than one which we call the higher order noncommutative
differential calculus induced by a semi-commutative Galois extension of associative
unital algebra. Finally we show that a reduced quantum plane can be viewed as a
semi-commutative Galois extension of a fractional one-dimensional space and we
apply the noncommutative differential calculus developed in the previous sections
to a reduced quantum plane.
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1 Introduction

Let us briqﬂy remind a definition of noncommutatiye Galois extension [12-15].
Suppose &7 is an associative unital C-algebra, .«f' C .o/ is its subalgebra, and there is
an element 7 € o/ which satisfies 7 ¢ o, ¥ =1, where N > 2 is an integer and
1 is the identity element of <7/ . A noncommutative Galois extension of .7 by means
of 7 is the smallest subalgebra <7[7] C o such that & C «/[t], and T € []. It
should be pointed out that a concept of noncommutative Galois extension can be
applied not only to associative unital algebra with a binary multiplication law but
as well as to the algebra with a ternary multiplication law, for instant to a ternary
analog of Grassmann and Clifford algebra [6, 14, 15], and this approach can be used
in particle physics to construct an elegant algebraic model for quarks.

A graded g-differential algebra can be viewed as a generalization of a notion of
graded differential algebra if we use a more general equation ¥ = 0, N > 2 than the
basic equation d> = 0 of a graded differential algebra. This idea was proposed and
developed within the framework of noncommutative geometry [10], where the author
introduced the notions of N-complex, generalized cohomologies of N-complex and
making use of an Nth primitive root of unity constructed an analog of an algebra
of differential forms in n-dimensional space with exterior differential satisfying the
relation V¥ = 0. Later this idea was developed in the paper [9], where the authors
introduced and studied a notion of graded g-differential algebra. It was shown [1, 2,
4, 5] that a notion of graded g-differential algebra can be applied in noncommutative
geometry in order to construct a noncommutative generalization of differential forms
and a concept of connection.

In this paper we will study a special case of noncommutative Galois extension
which is called a semi-commutative Galois extension. A noncommutative Galois
extension is referred to as a semi-commutative Galois extension [15] if for any
element x € o7 there exists an element x” € .o such that x T = 7 x’. In this paper we
show that a semi-commutative Galois extension can be endowed with a structure of
a graded algebra if we assign degree zero to elements of subalgebra <7 and degree
one to t. This is the first step on a way to construct the graded g-differential algebra
if we are given a semi-commutative Galois extension. The second step is the theorem
which states that if there exists an element v of graded associative unital C-algebra
which satisfies the relation vV = 1 then this algebra can be endowed with the structure
of graded g-differential algebra. We can apply this theorem to a semi-commutative
Galois extension because we have an element T with the property ¥ = 1, and this
allows us to equip a semi-commutative Galois extension with the structure of graded
g-differential algebra. Then we study the first and higher order noncommutative
differential calculus induced by the N-differential of graded g-differential algebra.
We introduce a derivative and differential with the help of first order noncommutative
differential calculus developed in the papers [3, 7]. We also study the higher order
noncommutative differential calculus and in this case we consider a differential d
as an analog of exterior differential and the elements of higher order differential
calculus as analogs of differential forms. Finally we apply our calculus to reduced
quantum plane [8].
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2 Graded g-Differential Algebra Structure
of Noncommutative Galois Extension

In this section we remind a definition of noncommutative Galois extension, semi-
commutative Galois extension, and show that given a semi-commutative Galois
extension we can construct the graded g-differential algebra.

First of all we remind a notion of a noncommutative Galois extension [12—15].

Definition 1 Let < be an associative unital C-algebra and & C o be its subalge-
bra. If there exist an element T € 2/ and an integer N > 2 such that

G) o = +1,
(i) ¥ ¢ o7 for any integer 1 <k <N — 1,

then the smallest subalgebra o/[7] of o/ which satisfies

(i) o C A[1],
(iv) Tt € 1],

is called the noncommutative Galois extension of .« by means of t.

In this paper we will study a particular case of a noncommutative Galois extension
which is called a semi-commutative Galois extension [15]. A noncommutative Galois
extension is referred to as a semi-commutative Galois extension if for any element
x € of thereexists anelementx’ € o7 suchthatx r = t x’. We will give this definition
in terms of left and right .&/-modules generated by 7. Let ;2%11 [t] and erl [z] be
respectively the left and right .«/-modules generated by 7. Obviously we have

A'lr] C Alt], &'lt] C lx].

Definition 2 A noncommutative Galois extension </[t] is said to be a right
(left) semi-commutative Galois extension if ! [t] C mfll[r] (.Q/ll[‘f] C ). If
,ﬂrl[r] = %1[1] then a noncommutative Galois extension will be referred to as a

semi-commutative Galois extension, and in this case «7![t] = szrl[t] = m/ll[r] is
the .o7-bimodule.

It is well known that a bimodule over an associative unital algebra </ freely
generated by elements of its basis induces the endomorphism from an algebra <7
to the algebra of square matrices over 7. In the case of semi-commutative Galois
extension we have only one generator t and it induces the endomorphism of an
algebra o7 Indeed let <7/[t] be a semi-commutative Galois extension and .7'[7]
be its .o/-bimodule generated by [r]. Any element of the right .«7-module <%'[7]
can be written as t x, where x € .oZ. On the other hand .&7/[t] is a semi-commutative
Galois extension which means ,;zfr‘ [tr] = ,Q%ll [7], and hence each element x T of the
left o7-module can be expressed as T ¢, (x), where ¢, (x) € <7. It is easy to verify
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that the linear mapping ¢ : x — ¢, (x) is the endomorphism of subalgebra <7, i.e.
for any elements x, y € 2 we have ¢, (xy) = ¢, (x)¢.(y). This endomorphism will
play an important role in our differential calculus, and in what follows we will also
use the notation ¢, (x) = x;. Thus

UT =T P (x), UT =T Uy.

It is clear that
Y =idy, un =u,

N

because for any u € &7 it holds ut" = vV ¢" () and taking into account that

™ =1 we get ¢ (u) = u.

Proposition 1 Let o/ [t] be a semi-commutative Galois extension of </ by means
of T, and 427/‘[1], 1] be respectively the left and right <7 -modules generated by
8 wherek =1,2,...,N — 1. Then .szflk[t] = ;zf,l‘[t] = o/*[1] is the o7 -bimodule,
and

At =@y )= re [t @ &V [1],

where o/°[t] = .

Evidently the endomorphism of . induced by the .7 -bimodule structure of A*[7]
is ¢, where ¢ : &/ — < is the endomorphism induced by the .7 -bimodule .«7'[].
We will also use the notation ¢* (x) = x.

It follows from Proposition 1 that a semi-commutative Galois extension .2/ [7] has
anatural Zy-graded structure which can be defined as follows: we assign degree zero
to each element of subalgebra o7, degree 1 to t and extend this graded structure to
a semi-commutative Galois extension .27 [7] by determining the degree of a product
of two elements as the sum of degree of its factors. The degree of a homogeneous
element of <7[7] will be denoted by | |. Hence |u| = O for any u € & and |7| = 1.

Now our aim is to show that given a noncommutative Galois extension we can
construct a graded g-differential algebra, where ¢ is a primitive Nth root of unity.
First of all we remind some basic notions, structures and theorems of theory of graded
g-differential algebras.

Let & = @pez, 7* = 7° D ' @ --- ® /N~ be a Zy-graded associative uni-
tal C-algebra with identity element denoted by 1. Obviously the subspace .<7° of
elements of degree 0 is the subalgebra of a graded algebra 7. Every subspace .7
of homogeneous elements of degree k > 0 can be viewed as the .o/ 0_bimodule. The
graded g-commutator of two homogeneous elements u, v € o7 is defined by

v,uly=vu— g"Mlyy.
A graded g-derivation of degree m of a graded algebra <7 is a linear mapping

d: o — of ofdegreem,ie.d: /' — </ which satisfies the graded ¢-Leibniz
rule
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duv) =dw) v+ ¢"ud®v), (1)

where u is a homogeneous element of degree /, i.e. u € .27'. A graded g-derivation d
of degree m is called an inner graded g-derivation of degree m induced by an element
ved"if

ml

du) =[v,uly=vu—q"uv, 2)

where u € <7,
Now let g be a primitive Nth root of unity, for instant ¢ = ¢**/N. Then

qN=1, 1+q—|—-~-+qN_l=O.

A graded g-differential algebra is a graded associative unital algebra <7 endowed
with a graded g-derivation d of degree one which satisfies " = 0. In what follows
a graded g-derivation d of a graded g-differential algebra <7 will be referred to as
a graded N-differential. Thus a graded N-differential d of a graded g-differential
algebra is a linear mapping of degree one which satisfies a graded g-Leibniz rule
and d¥ = 0. It is useful to remind that a graded differential algebra is a graded
associative unital algebra equipped with a differential d which satisfies the graded
Leibniz rule and d*> = 0. Hence it is easy to see that a graded differential algebra
is a particular case of a graded g-differential algebra when N =2, g = —1, and in
this sense we can consider a graded g-differential algebra as a generalization of a
concept of graded differential algebra. Given a graded associative algebra ./ we can
consider the vector space of inner graded g-derivations of degree one of this algebra
and put the question: under what conditions an inner graded g-derivation of degree
one is a graded N-differential? The following theorem gives answer to this question.

Theorem 1 Let o7 be a Zy-graded associative unital C-algebra and d(u) = [v, ul,
be its inner graded q-derivation induced by an element v € o/". The inner graded
g-derivation d is the N-differential, i.e. it satisfies d¥ = 0, if and only if VW = +1.

Now our goal is apply this theorem to a semi-commutative Galois extension to
construct a graded g-differential algebra with N-differential satisfying 4V = 0.

Proposition 2 Let g be a primitive Nth root of unity. A semi-commutative Galois
extension </ [t], equipped with the Zy-graded structure described above and with
the inner graded q-derivation d = [, |, induced by 7, is the graded qg-differential
algebra, and d is its N-differential. For any element § of semi-commutative Galois
extension </ [t] written as a sum of elements of right o7 -modules <7/*[t]

N—1
&= E My =Tug+tu +12ur+ ™V un_y, w € A,
k=0
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it holds

N—-1

dg = > T w — g (), 3)

k=0

where u, — (uy), is the endomorphism of </ induced by the bimodule structure of

F[7].

3 First Order Differential Calculus over Associative Unital
Algebra

In this section we describe a first order differential calculus over associative unital
algebra [7]. If an associative unital algebra is generated by a family of variables,
which obey commutation relations, then one can construct a coordinate first order
differential calculus over this algebra. A coordinate first differential calculus induces
the partial derivatives with respect to generators of algebra and these partial deriva-
tives satisfy the twisted Leibniz rule.

A first order differential calculus is a triple (<7, .# , d) where </ is an associative
unital algebra, .# is an <7 -bimodule, and d, which is called a differential of first order
differential calculus, is a linear mapping d : @/ — ./ satisfying the Leibniz rule
d(fh) = dfh + fdh, where f, h € o/. A first order differential calculus (o7, ., d)
is referred to as a coordinate first order differential calculus if an algebra o is
generated by the variables x' x%, ..., x" which satisfy the commutation relations,
and an &/-bimodule ./, considered as a right </-module, is freely generated by
dx', dx?, ..., dx". It is worth to mention that a first order differential calculus was
developed within the framework of noncommutative geometry, and an algebra <7
is usually considered as the algebra of functions of a noncommutative space, the
generators x', x?, ..., x" of this algebra are usually interpreted as coordinates of this
noncommutative space, and an .o/ -bimodule . plays the role of space of differential
forms of degree one. In this paper we will use the corresponding terminology in order
to stress a relation with noncommutative geometry.

Let us consider a structure of coordinate first order differential calculus. This
differential calculus induces the differentials dx', dx2, ..., dx" of the generators
x',x?, ..., x". Evidently dx',dx?,...,dx" € .#. .# is a bimodule, i.e. it has a
structure of left «/-module and right »7-module. Hence for any two elements
f,he o andw € .# itholds (fw)h = f(wh). According to the definition of a coor-
dinate first order differential calculus the right .o/-module .# is freely generated
by the differentials of generators dx!, dx?, ..., dx". Thus for any w € .# we have
o = dx'fi + dx*f + ...+ dxX"f, where fi,f>,....f, € &/. A coordinate first order
differential calculus (&7, .#, d) is an algebraic structure, which extends to noncom-
mutative case the classical differential structure of a manifold. From the point of view
of noncommutative geometry 2/ can be viewed as an algebra of smooth functions,
d is the exterior differential, and .# is the bimodule of differential 1-forms. In order



Semi-commutative Galois Extension ... 19

to stress this analogy we will call the elements of algebra ./ “functions” and the
elements of &7-bimodule .# “1-forms”.

Because . is o7-bimodule, for any function f € .« we have two products f dx’
and dx'f. Since dx', dx?, ..., dx" is the basis for the right .«7-module .#, each
element of .# can be expressed as linear combination of dxl, dx?, ..., dx" multiplied
by the functions from the right. Hence the element fdx’ € .# can be expressed in
this way, i.e.

Jax' = dx'r(f) + dry(f) + - 4 dX"r (f) = dri(f), 4)

where ri (f, ré (f)s ..., r.(f) € o are the functions. Making use of these functions
we can compose the square matrix

() rf) - )
RNH=@M=| + =+
r () rEf) - TS

It is worth to point out that an entry rj’ (f) stands on intersection of i-th column
and j-th row. This square matrix determines the mapping R : &/ — Mat, (<) where
Mat, (/) is the algebra of n order square matrices over an algebra <. It can be
proved

Proposition 3 R : &7 — Mat, (<) is the homomorphism of algebras.

Proof We need to prove that for any f, g € o7 it holds R(fg) = R(f)R(g). Now
according to the Eq. (4) we have

(fe)dx' = dx’ r; (fg).
The left hand side of the above relation can be written as
Flgdx) = f(dri(g)) = (fd)ri(g) = (dx*r(f)ri(e) = dx (. ()ri(g)).
Now we can write
dxri(fe) = dx* (rl(f)ri(9)) = ri(f3) = rl(f)ri(g).
or in matrix form R(fg) = R(f)R(g), which ends the proof. O

Let o/, . #,d be a coordinate first order differential calculus such that right
&/-module .# is a finite freely generated by the differentials of coordinates {dx;}}_,.
The mappings o : &/ — 7, where k € {1, 2, ..., n}, uniquely defined by

df =dx* o (f), fed, (5)
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are called the right partial derivatives of a coordinate first order differential calculus.
It can be proved

Proposition 4 If o/, #,d is a coordinate first order differential calculus over an
algebra of such that ./ is a finite freely generated right o7 -module with a basis
{dx;Y_, then the right partial derivatives d : &/ — ' of this differential calculus
satisfy

K (f8) = 0 (f) & + r(f); 0:i(Q). (6)

The property (6) is called the twisted (with homomorphism R) Leibniz rule for
partial derivatives.

If o is a graded g-differential algebra with differential d then evidently the sub-
space of elements of degree zero .27 is the subalgebra of .27, the subspace of elements
of degree one o7 ! is the .«7°-bimodule, a differential d : &7° — 7! satisfies the Leib-
niz rule. Consequently we have the first order differential calculus (279, 27!, d) of a
graded g-differential algebra .o7. If &7 is generated by some set of variables then we
can construct a coordinate first order differential calculus with corresponding right
partial derivatives.

4 First Order Differential Calculus of Semi-commutative
Galois Extension

Itis shownin Sect. 2 that given a semi-commutative Galois extension we can construct
a graded g-differential algebra. In the previous section we described the structure of
a coordinate first order differential calculus over an associative unital algebra, and
at the end of this section we also mentioned that the subspaces .«7°, 7! of a graded
g-differential algebra together with differential d of this algebra can be viewed as a
first order differential calculus over .7°. In this section we apply an approach of first
order differential calculus to a graded g-differential algebra of a semi-commutative
Galois extension.

Let o7/[7] be a semi-commutative Galois extension of an algebra ./ by means
of 7. Thus we have an algebra .«7 and .«7-bimodule .27'[7]. Next we have the N-
differential d : «/[t] — &/[t] induced by 7, and if we restrict this N-differential
to the subalgebra .7 of Galois extension .</[r] then d : &/ — o/'[1] satisfies the
Leibniz rule. Consequently we have the first order differential calculus which can
be written as the triple (<7, d, </ '[t]). In order to describe the structure of this first
order differential calculus we will need the vector space endomorphism A : &/ — &7
defined by

Au=u—u,, ucd.

For any elements u, v € <7 this endomorphism satisfies

A(uv) = A(w) v+ u; A(w).
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Let us assume that there exists an element x € .2/ such that the element Ax € o7
is invertible, and the inverse element will be denoted by Ax~!. The differential dx
of an element x can be written in the form dx = v Ax which clearly shows that dx
has degree one, i.e. dx € <7'[t], and hence dx can be used as generator for the right
o/-module «7'[t]. Let us denote by ¢y, : u — ¢gc (1) = ug, the endomorphism of
<7 induced by bimodule structure of .'[7] in the basis dx. Then

Ugy = Ax~! Uy Ax = Adp, u;. (7)

Definition 3 For any element u € &/ we define the right derivative % € o/ (with

respect to x) by the formula

du
du = dx —. 8
u=dx— (3

Analogously one can define the left derivative with respect to x by means of the
left o7 -module structure of .<7'[7]. Further we will only use the right derivative which
will be referred to as the derivative and often will be denoted by u. Thus we have
the linear mapping

d
E:d_)%’ Eur—)u;

Proposition 5 For any element u € o/ we have

du
— = Ax"! Au. 9)
dx
The derivative (8) satisfies the twisted Leibniz rule, i.e. for any two elements
u,v € & it holds

%(uv) = Z—z v+ ¢ar (1) % = Z—ZV—}—AdAxur %

‘We have constructed the first order differential calculus with one variable x, and it
is natural to study a transformation rule of the derivative of this calculus if we choose
another variable. From the point of view of differential geometry we will study a
change of coordinate in one dimensional space. Let y € . be an element of .« such
that Ay = y — y, is invertible.

Proposition 6 Let x, y be elements of of such that A x, Ay are invertible elements
of /. Then

d d
dy=dxy, —=y,—, de=dyx, —= ;
VEME e gy T dy rTas dy Y dx

where x, = (/)7L
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Indeed we have dy =t Ay, dx =1 Ax. Hence T = dx Ax~! and
dy =dx (Ax~'Ay) =dxy..
If u is any element of <7 the for the derivatives we have

du

du 1 —1 —1 /
=Ax Au=(Ax" Ay)(Ay A”)=yxd_'
y

=

As an example of the structure of graded g-differential algebra induced by d; on a
semi-commutative Galois extension we can consider the quaternion algebra H. The
quaternion algebra H is associative unital algebra generated over R by i, j, k which
are subjected to the relations

P==kt=-1,ij=—ji=k jk=—kj=i, ki=—ik=}j,
where 1 is the unity element of H. Given a quaternion
g=al4+aii+ayj+ask

we can write it in the form q = (ag 1 + a»j) + i (a; + aszj). Hence if we consider the
coefficients of the previous expression zo = ag 1 + a2 j, z1 = a; + azj as complex
numbers then q = zp 1 4 i z; which clearly shows that the quaternion algebra H can
be viewed as the semi-commutative Galois extension C[{]. Evidently in this case we
have N = 2, g = —1, and Z,-graded structure defined by |1| = 0, |i| = 1. Hence we
can use the terminology of superalgebras. It is easy to see that the subspace of odd
elements (degree 1) can be considered as the bimodule over the subalgebra of even
elements a 1 + bj and this bimodule induces the endomorphism ¢ : C — C, where
¢ (z) = z. Let d be the differential of degree one (odd degree operator) induced by i.
Then making use of (3) for any quaternion g we have

dq=d(zol+iz)) =—(1 +z1) L

Obviously d?q = 0.

S Higher Order Differential Calculus
of Semi-commutative Galois Extension

Our aim in this section is to develop a higher order differential calculus of a
semi-commutative Galois extension 7 [t]. This higher order differential calculus
is induced by the graded g-differential algebra structure. In Sect.?2 it is mentioned
that a graded g-differential algebra can be viewed as a generalization of a concept of
graded differential algebra if we take N = 2, ¢ = —1. It is well known that one of the
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most important realizations of graded differential algebra is the algebra of differen-
tial forms on a smooth manifold. Hence we can consider the elements of the graded
g-differential algebra constructed by means of a semi-commutative Galois extension
o/[t] and expressed in terms of differential dx as noncommutative analogs of differ-
ential forms with exterior differential d which satisfies ¥ = 0. In order to stress this
analogy we will consider an element x € .27 as analog of coordinate, the elements of
degree zero as analogs of functions, elements of degree k as analogs of k-forms, and
we will use the corresponding terminology. It should be pointed out that because of
the equation dN = 0 there are higher order differentials dx, d%x,...,d""'x in this
algebra of differential forms.

Before we describe the structure of higher order differentials forms it is useful to
introduce the polynomials Py (x), Qi (x), where k = 1,2, ..., N. Let us remind that
Ax = x — x; € o/. Applying the endomorphism T we can generate the sequence of
elements

AXy = Xp — X2, AXg2 = X2 — Xg3, oy AXgN—1 = Xon-1 — X.

Obviously each element of this sequence is invertible. Now we define the sequence
of polynomials Q; (x), Q>(x), ..., Oy (x), where

Or(x) = Axpe1 Axpr— . .. Axp Ax.
These polynomials can be defined by means of the recurrent relation
OQr1(x) = (Qr(x)) Ax.
It should be mentioned that Qy (x) is the invertible element and
Q)™= Axtax; L Ax
We define the sequence of elements Py (x), P> (x), ..., Py(x) € <7 by the recurrent
formula

Pri1(x) = Py(x) — ¢" (Pr(x))e, k=1,2,...,N—1,

and P (x) = Ax. Clearly P;(x) = Qx) and for the k = 2, 3 a straightforward calcu-
lation gives

Py(x) =x—(14+¢q) x; + gxp2,
Pi)=x—(14+qg+g)x +(@+¢ +q) x> — ¢ x5

Proposition 7 If g is a primitive Nth root of unity then there are the identities

Py_1(x) + (Py-1(0)e + -+ (Py—1(X))v1 =0, Py(x) =0.
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Now we will describe the structure of higher order differential forms. It follows
from the previous section that any 1-form w, i.e. an element of .27'[], can be written
in the form @ = dxu, where u € <7. Evidently d : &/ — </'[1], dw = dx u).. The
elements of .«72[t] will be referred to as 2-forms. In this case there are two choices
for a basis for the right .<7-module .27?[7]. We can take either 72 or (dx)? as a basis
for «7°[r]. Indeed we have

(d0)? = 7° 0 ().

It is worth mentioning that the second order differential d*x can be used as the
basis for @7?[t] only in the case when P, (x) is invertible. Indeed we have

d’x = T2 Py(x), d*x = (d)* 0y (X)Pr(x).

If we choose (dx)? as the basis for the module of 2-forms .z7[t] then any 2-form
o can be written as w = (dx)? u, where u € <7. Now the differential of any 1-form
w = dxu, where u € o7, can be expressed as follows

dw = (dx)* (qu, + Q5 (X)Pr(x) u). (10)

It should be pointed out that the second factor of the right-hand side of the above
formula resembles a covariant derivative in classical differential geometry. Hence
we can introduce the linear operator D : &/ — <7 by the formula

Du=qu,+Q,' (WPy(x)u, uec. (11)
Ifw=4dv,v e ,ie. wisan exact form, then
do = d*v = (dx)> DV, = (dx)* (qv + 05 ' (x)P2(x) V).
If we consider the simplest case N = 2, ¢ = —1 then
d*>v=0, P,(x) =0, (dx)*#0,

and from the above formula it follows that VZ =0.

Proposition 8 Let <7 [1] be a semi-commutative Galois extension of algebra <f by
means of T, which satisfies > = 1, and d be the differential of the graded differential
algebra induced by an element T as it is shown in Proposition 2. Let x € < be an
element such that Ax is invertible. Then for any element u € o/ it holds u] = 0,
where U, is the derivative (8) induced by d. Hence any element of an algebra </ is
linear with respect to x.

The quaternions considered as the noncommutative Galois extension of complex
numbers (Sect.3) provides a simple example for the above proposition. Indeed in
this case T = i, &/ = C, where the imaginary unit is identified withj, (a 1 + bj), =
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al —bj. Hence we can choose x = a 1 + bj iff b # 0. Indeed in this case Ax =
x—x;=al+bj—al+bj=2bj, and Ax is invertible iff b # 0. Now any z =
¢ 1+ dj € of can be uniquely written in the form z = ¢ 1 4 d x iff

=b#£0.

la
0b

Thus any z € &7 is linear with respect to x.

Now we will describe the structure of module of k-forms 7*[t]. We choose
(dx)* as the basis for the right «7-module &7 k[r], then any k-form w can be written
® = (dx)* u, u € o/. We have the following relations

@o* =" 0rx), d*x = F P (x).

In order to get a formula for the exterior differential of a k-form o we need
the polynomials @ (x), ®,(x), ..., Py_1(x) which can be defined by the recurrent
relation

@1 (x) = Adpc(Pp) + ¢ ' (x), k=1,2,...,N—1, (12)

where @(x) = Q5 '(x)P,(x). These polynomials satisfy the relations d(dx)* =
(dx)*'d,(x) and given a k-form w = (dx)*u, u € o/ we find its exterior differ-
ential as

dw::(dxv+1(qku;+-¢kuou):=(dxﬁ+lzﬂ“u.

The linear operator D® o —~ of k=1,2,...,N — 1 introduced in the previ-
ous formula has the form
DPu =g v 4+ &p(x)u, (13)

and, as it was mentioned before, this operator resembles a covariant derivative of
classical differential geometry. It is easy to see that the operator (11) is the particular
case of (13), i.e. DV = D.

6 Semi-commutative Galois Extension Approach
to Reduced Quantum Plane

In this section we show that a reduced quantum plane can be considered as a semi-
commutative Galois extension. We study a first order and higher order differential
calculus of a semi-commutative Galois extension in the particular case of a reduced
quantum plane.
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Let x, y be two variables which obey the commutation relation
Xy=4qYyx, (14)

where g # 0, 1 is a complex number. These two variables generate the algebra of
polynomials over the complex numbers. This algebra is an associative algebra of
polynomials over C and the identity element of this algebra will be denoted by 1.
In noncommutative geometry and theoretical physics a polynomial of this algebra
is interpreted as a function of a quantum plane with two noncommuting coordinate
functions x, y and the algebra of polynomials is interpreted as the algebra of (poly-
nomial) functions of a quantum plane. If we fix an integer N > 2 and impose the
additional condition

» =y =1, (15)

then a quantum plane is referred to as a reduced quantum plane and this polynomial
algebra will be denoted by <7 [x, y].

Let us mention that from an algebraic point of view an algebra of functions
on a reduced quantum plane may be identified with the generalized Clifford alge-
bra €)' with two generators x, y. Indeed a generalized Clifford algebra is an asso-
ciative unital algebra generated by variables xi, x2, ..., x, obeying the relations
xixj = ¢58U D x;x;, xV = 1, where sg is the sign function.

Itis well known that the generalized Clifford algebras have matrix representations,
and, in the particular case of the algebra .27 [x, y], the generators of this algebra x, y
can be identified with the square matrices of order N

10 0 ... O 0 010...00
0g' 0 ... 0 0 001...00
00g¢g2... 0 0 000...00
00 0 ...¢q7%2 0 000...01
00 O 0 g ®D 100...00

where ¢ is a primitive Nth root of unity. As the matrices (16) generate the algebra
Maty (C) of square matrices of order N we can identify the algebra of functions on
areduced quantum plane with the algebra of matrices Maty (C).

The set of monomials B = {1, v, x, x2, yx, y>, ..., ¥y, ...,y 1x¥~1} can be
taken as the basis for the vector space of the algebra .27 [x, y]. We can endow this
vector space with an Zy-graded structure if we assign degree zero to the identity
element 1 and variable x and we assign degree one to the variable y. As usual we
define the degree of a product of two variables x, y as the sum of degrees of factors.

Then a polynomial
N-1

w=> By'x, B eC, (17)

1=0
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will be a homogeneous polynomial with degree k. Let us denote the degree of a homo-
geneous polynomial w by |w| and the subspace of the homogeneous polynomials of
degree k by sziqk [x, ¥]. It is obvious that

Aylx, y] = &)1, Y1 @ 7 [x, )] @ - & ) [x, y]. (18)

In particular a polynomial r of degree zero can be written as follows
N-1
r=>Y px', B eC. redxyl (19)
1=0

Obviously the subspace of elements of degree zero %0 [x, y] is the subalgebra of
“/,[x, y] generated by the variable x. Evidently the polynomial algebra 27 [x, y] of
polynomials of a reduced quantum plane can be considered as a semi-commutative
Galois extension of the subalgebra %O[x, y] by means of the element y which sat-
isfies the relation yV = 1. The commutation relation xy = ¢ yx gives us a semi-
commutativity of this extension.

Now we can endow the polynomial algebra .27 [x, y] with an N-differential d.
Making use of Theorem 1 we define the N-differential by the following formula

dw=[y,wly =yw— g™ wy, (20)

where ¢ is a primitive Nth root of unity and w € 7, [x, y]. Hence the algebra o7 [x, y]
equipped with the N-differential d is a graded g-differential algebra.

In order to give a differential-geometric interpretation to the graded g-differential
algebra structure of <7,[x, y] induced by the N-differential d, we interpret the com-
mutative subalgebra %0 [x, y] of the x-polynomials (19) of .<7,[x, y] as an algebra of
polynomial functions on a one dimensional space with coordinate x. Since %k [x, ¥]
fork>0is a %O[x, y]-bimodule we interpret this %O[x, y]-bimodule of the ele-
ments of degree k as a bimodule of differential forms of degree k and we shall call
an element of this bimodule a differential k-form on a one dimensional space with
coordinate x. The N-differential d can be interpreted as an exterior differential.

It is easy to show that in one dimensional case we have a simple situation when
every bimodule ,;afq" [x, y], kK > O of the differential k-forms is a free right module
over the commutative algebra of functions %0 [x, y]. Indeed if we write a differential
k-form w as follows

N—1 N—1
w=y> gl =y r=> gl € @Lx v, @1)
=0

=0 =

and take into account that the polynomial r = (y*)~'w = yV%w is uniquely deter-
mined then we can conclude that 42%(," [x,y] is a free right module over %0 [x, y]

generated by y.



28 V. Abramov and Md. Raknuzzaman

As it was mentioned before a bimodule structure of a free right module over an
algebra BB generated freely by p generators is uniquely determined by the homomor-
phism from an algebra B to the algebra of (p x p)-matrices over B. In the case of a
reduced quantum plane every right module Mq" [x, ¥] is freely generated by one gen-

erator (for instant we can take y* as a generator of this module). Thus its bimodule
structure induces an endomorphism of the algebra of functions %0 [x, y] and denot-
ing this endomorphism in the case of the generator yk by Ay : dqo[x, y] — ,sz{qo [x, y]
we get

r yk = yk Ay (r), (nosummation over k) (22)

for any function r € %0 [x, y]. Making use of the commutation relations of vari-
ables x, y we easily find that Az (x) = ¢* x. Since the algebra of functions .27 [x, y]
may be viewed as a bimodule over the same algebra we can consider the func-
tions as degree zero differential forms, and the corresponding endomorphism is
the identity mapping of <[x,y], i.e. Ao =1, where [ : %O[x, y] — quo[x,y] is
the identity mapping. Thus the bimodule structures of the free right modules
%0 [x, y1, ,szfq' Xy, .. ., ,saqu ~![x, y] of differential forms induce the associated endo-
morphisms Ag, Ay, ..., Ay_; of the algebra Jz{qo[x, y]. It is easy to see that for any k
it holds A; = A%.

Let us start with the first order differential calculus (szqo[x, vl, ,Qf/;; [x,v], d)
over the algebra of functions dqo[x, y] induced by the N-differential d, where
d: %O[x, y] — ,Qiql [x,y] and ,qul [x,y] is the bimodule over %O[x, y]. For any
w e %O[x, y] we have

dw =yw —wy =yw —yAi(w) = y(w — A1 (W)) =y Ay(w), (23)

where A, =1 —A; : o)[x,y] = )[x,y]. It is easy to verify that for any two
functions w, w' € szfqo [x, y] the mapping A, has the following properties

Ayww') = A,(ww" + A (w) A, (W), (24)
AN = (1 = @)Lkl x~. (25)

Particularly dx = yA,(x), and this formula shows that dx can be taken as a gen-
erator for the free right module %1 [x, y].

Since the bimodule %1 [x, y] of the first order differential calculus (ﬁfq‘)[x, yl,
;zf/;; [x, y], d) is a free right module we have a coordinate first order differential calcu-
lus over the algebra %0 [x, y], and in the case of a calculus of this kind the differen-
tial induces the derivative 9 : %O[x, y] = ,quo [x, y] which is defined by the formula

dw =dx dw, Yw € %0 [x, y]. Using this definition we find that for any function w
it holds
dw=(1-g) "x""A,w). (26)
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From this formula and (24), (25) it follows that this derivative satisfies the twisted
Leibniz rule
aww) =a(w) -w +A;(w) - d(W), 27

and
axk = [k], X1 (28)

Let us study the structure of the higher order exterior calculus on a reduced quan-
tum plane or, by other words, the structure of the bimodule ,Q/qk [x, y] of differential
k-forms, when k > 1. In this case we have a choice for the generator of the free right
module. Indeed since the kth power of the exterior differential d is not equal to zero
when k < N, i.e. d* # 0for k < N, a differential k-form w may be expressed either
by means of (dx)* or by means of d*x. Straightforward calculation shows that we
have the following relation between these generators

[k]q
[R)

q 2

d*x = (dx)* x'F, (29)

We will use the generator (dx)* of the free right module %k [x, y] as a basis in
our calculations with differential k-forms. For any differential k-form w € ;zqu [x, y]
we have dw € %k+l [x, y]. Let us express these two differential forms in terms of
the generators of the modules @/qk [x, y] and %k+1 [x, y]. We have w = (dx)*r, dw =
(dx)*' 7, where r, 7 € %o [x, y] are the functions. Making use of the definition of
the exterior differential d we calculate the relation between the functions r, 7 which
is

F= (A0 (g7 r = 4 A (), (30)

where A is the endomorphism of the algebra of functions ,szfqo [x, y]. This relation
shows that the exterior differential d considered in the case of the differential k-forms
induces the mapping Afik) : 421{10 [x,y] — %0 [x, y] of the algebra of the function which
is defined by the formula

dw = (d0) ' AP (r), GD
where
w= (dx)k r. (32)
It is obvious that
AP (r) = (Ax) (g r — 4" A (1)), (33)

Itis obvious that for k = 0 the mapping A;O) coincides with the derivative induced
by the differential d in the first order calculus, i.e.
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AL (r) = 3r = (Ag0) ™' (r — Ay (). (34)

The higher order mappings A", which we do not have in the case of a classical
exterior calculus on a one dimensional space, have the derivation type property

AL )y = AP ) 1 + 4" A1) AV (), (35)

where k =0,1,2,..., N — 1. A higher order mapping Afi") can be expressed in
terms of the derivative 9 as a differential operator on the algebra of functions as
follows » .

-4 _,
—_—x .

AP = gt +ql—q (36)

Thus we see that exterior calculus on a one dimensional space with coordinate x
satisfying xV = 1 generated by the exterior differential d satisfying " = 0 has the
differential forms of higher order which are not presented in the case of a classical
exterior calculus with d> = 0. The formula for the exterior differential of differential
forms can be defined by means of contains not an a derivative which satisfies the
twisted Leibniz rule (36).
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Valued Custom Skew Fields with Generalised
PBW Property from Power Series
Construction

Lars Hellstrom

Abstract This chapter describes a construction of associative algebras that, despite
starting from a commutation relation that the user may customize quite extensively,
still manages to produce algebras with a number of useful properties: they have a
Poincaré—Birkhoff—Witt type basis, they are equipped with a norm (actually an ultra-
norm) that is trivial to compute for basis elements, they are topologically complete,
and they satisfy their given commutation relation. In addition, parameters can be
chosen so that the algebras will in fact turn out to be skew fields and the norms
become valuations. The construction is basically that of a power series algebra with
given commutation relation, stated to be effective enough that the other properties
can be derived. What is worked out in detail here is the case of algebras with two
generators, but only the analysis of the commutation relation is specific for that case.

Keywords Diamond Lemma - Commutation relation - Skew field construction -
Ultranorm - Valuation - Irrational weighting of variables

1 Introduction

Power series is one of those concepts which can turn out to be very different things
in different branches of mathematics. In algebra, power series is one of many con-
structions of new rings from old ones; depending on one’s point of view, the results
may be anywhere from exciting to rather trivial. A combinatorialist regards a power
series mostly as a fancy way to present a sequence, which none the less is quite
useful since it comes with a host of dirty tricks that boil down to bold applications of
elementary algebra. Pre-modern calculus used power series all over the place, mixing
spectacular successes with equally spectacular failures that eventually earned them
a bad reputation. But in modern analysis, which was born out of the need to put
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calculus on a rigorous foundation, the power series is just a special case of series: it
only means something if it converges, and the ultimate judge of convergence is the
(point-set) topology.

My need for the power series considered below arose in the context [3, pp. 100—
101] of looking for commuting homogeneous elements in a ¢g-deformed Heisenberg—
Weyl algebra; concretely that algebra had two generators A and B satisfying the
commutation relation AB — g BA = 1 for some nonzero scalar g, and the question
was when two elements on the form

min{k,/}

z rinfiAlfi

i=0

(for different values of k, [, and scalars r;) would commute with each other; the
product of two such homogeneous elements is again a homogeneous element, and
arbitrary algebra elements can be written as finite sums of homogeneous elements.
It turns out that there is a simple necessary condition in terms of the exponents in the
leading terms, and that when this condition is met and one homogeneous element is
given, the problem of determining the scalars in the other element is a straightforward
linear equation system with what is essentially a lower triangular matrix. The system
is however overdetermined — after getting to the equation that determines the last
scalar rminix.}, there remained a couple of equations that needed to be satisfied, which
they sometimes were and at other times were not; there did not seem to be a simple
condition that could determine beforehand in which case one would end up. But what
if there were no last scalar? If there in each new equation is also a new r; to absorb
whatever remains after having substituted known values of all r; with j < i, then
the system will always have a solution and the known necessary condition becomes
sufficient! This would however mean looking for a homogeneous element on the
form >°° r; B~ A"™", which is not something that can be found in the original
algebra. Considering negative powers of the generators A and B may seem odd, but
is actually not unheard of in the literature on this problem. Making the sum infinite
is another matter: the proposed form is that of some kind of Laurent series— in two
noncommuting variables! Does that even exist?

In Sweden, 20th century mathematics was very much dominated by analysis, and
the shape that the following construction took is in a way a consequence of this:
anything that looked like an infinite sum had to be rigorously justified, and the one
true framework was that of analysis! Or so I believed, as a Ph.d. student; I have
subsequently learnt of other ways, mathematically no less rigorous, in which that
initial goal could have been achieved, but this very analytically flavoured approach
to noncommutative power series turned out to have some unexpected advantages. In
particular, several additional properties of the constructed object— some of which
were called for in the motivating problem about commuting elements, whereas others
were unexpected discoveries— follow with little extra effort once the foundation
has been laid. The following result provides a nice sample of what can be had.
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Theorem 1 Consider the commutation relation

AB — qBA = iri lm_i[Bk,-J-A[,-j (1)

i=1  j=1

where n is a positive integer, {m;}!_, C Z, the coefficients g # 0 and {r;}}_, are
mi;
j=
If there exists a straight line in R? such that the point (1, 1) is on one side of

kij, ZTZI lij)fori =1, ..., n are on the other, then

scalars taken from some field R, and the exponents {k;;, l;;}"('._, C Z are arbitrary.

the line and all points (Z'j":l
there exists an R-algebra A, a function a — |ja| : A — R, two distinct elements

A, B € A, and two constants a, B € R such that:

The commutation relation (1) holds in A.

The algebra A is a skew field, i.e., all nonzero elements in A are invertible.

Il is an ultranorm on A and ||a|| ||b|| = ||ab]| for all a, b € A.

A is complete in the topology induced by ||-||.

The set { B¥A! Yk.iez is an orthogonal Hilbert basis for A and || BkA! || = latkp
Every nonzero a € A has a unique leading term r B¥A!, i.e., there exist unique
r € Randk,l € Z such that ||a — rBFA! || < lall.

QAR B~

It should be pointed out that this theorem does not exhaust the power of the
construction, but rather provides a sample of the conclusions that can be drawn in the
more advanced cases. Several variations are possible, such as relaxing the condition
on the degrees in the right hand side at the price of instead adding conditions on
the scalar coefficients of those terms. Not all conditions are needed for all of the
conclusions, although the order in which the various conclusions are established
comes with a couple of surprises.

Aslong as the intentis only to construct the algebra A, itis even possible to proceed
with only a few twists in addition to those anyway needed to produce some algebra
with two elements A and B satisfying (1). Recall that the classical construction would
be to:

1. Construct the free algebra R(X) where X = {a, a, b, 5} is a set of four formal
variables. Variables a and b will give rise to the named elements A and B, whereas
a and b are used to ensure that these have multiplicative inverses.
This free associative algebra R(X)— the algebra of “noncommutative poly-
nomials” on X over R— is in the literature also known as the tensor algebra
T(Spang (X)), but that would be a far more awkward way of looking at it, con-
sidering what lies ahead.

2. Quotient R(X) by the two-sided ideal J generated by the five elements

m;

ab—qba—iri

=1 j=

bhiali, aa—1,aa—1, bb—1, bb—1.
1
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Then A =a+J € R(X)/J and B =b +J € R(X)/J trivially satisfy (1). The
quotient R(X /3 is however typically nowhere near satisfying the other claims
of Theorem 1.

The power series construction lengthens the above to:

1. Construct the free algebra R(X) where X = {a, a, b, 5} is a set of four formal
variables (as before).

2. Let a,B,y € R be constants such that a/ﬂ eR\Q, a+ 8>y, and
B2 kij+a >l iy <y foralli=1,...,n; this means Bk +al =y is
the equation of one such line in the kI- plane as was required. Let R be normed
by the trivial norm (3). Define v: X — R by v(a) = —v(a) = « and v(b) =
—v(b) = B, and let ||-|| be the v-degree norm on R(X) (see Definition 3).

3. Construct the topological completion R(X) of R{X) with respect to the norm ||-||.
This completion is an R-algebra containing R(X), and in particular containing
the elements a, a, b, and b.

4. Quotient R(X) by the topological closure J of the two-sided ideal in R(X) that
is generated by the five elements

ab—gba— > ri[[ba", ada—~1,8aa~1,bb—1,bb—1. (2

i=1 j=1

Then A =a+7J e R(X /ﬁ] and B=b+JeR(X /J trivially satisfy (1), and
less trivially also the other claims of Theorem 1.

In short, the extra steps are to construct a norm on R(X), to form the completion
R(X), and to remember to take the closure of the ideal before forming the quotient.

The rest of this chapter is essentially a long proof of Theorem 1, with numerous
interspersed definitions of concepts that become relevant and (often informal) dis-
cussions of techniques that are employed. Section 2 introduces the analysis-inspired
foundations for this power series algebra construction. Section3 employs the Dia-
mond Lemma for power series algebras to analyze the result, which in particular
exhibits a basis of the quotient. The final Sect.4 completes the proof, and goes on to
sketch some generalizations of the argument.

2 Normed Algebras

The material in this section is essentially standard (even if it may be hard to find
a Mathematics Subject Classification covering this body of knowledge). Therefore
focus is primarily on giving full definitions for easy reference and secondarily on
pointing out important features of the concepts defined. Proofs are mostly left as
exercises to the reader, but the curious may find them in [4, Sect. 2.2-2.3].
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Definition 1 Let R be a ring and let ||-|| be a function from R to R. Then R is said
to be a ring with norm ||-|| if the following conditions are satisfied:

1. Jla]| = Oforalla € R, and ||a|| = 0 if and only if a = 0.
2. |la —=b| < |lall + ||b]| for alla, b € R.
3. |lab] < |la|l |b|| forall a, b € R.

If R is a ring with norm ||-||, but the norm is known from the context, then one may
simply say that R is a normed ring. If R is a ring with norm ||-|| then the function
|I-]| is called the ring norm or simply the norm.

Condition 2 above is just a more compact combination of two more intuitive
properties. One is that || —b|| = ||b| for all b € R, since ||—b|| = |0 — b|| < ||0]| +
16|l = ||b||. This property is needed for the corresponding metric o (a, b) = |la — b||
to be symmetric. The other is the normal triangle inequality, which holds since
la+ bl = lla — (=D)Il < llall + [I=bll = llall + 1161l

Functional analysis provides plenty of examples of normed rings, for example
as Banach algebras, but those examples are not the ones which are of interest here.
Instead, the following norm will be frequently used:

0 ifa=0,
lall = . 3)
1 otherwise.

This norm, which is called the trivial norm, is a ring norm for all rings R. The
topology it introduces on the ring is not the trivial topology (where only & and R
itself are open sets) however, but the discrete topology (all subsets of R are open).

Definition 2 Let R be an associative and commutative normed ring with unit, and
let |-| be the norm on R. Let A be an associative R-algebra. Then A is said to be
a normed R-algebra if there exists a function ||-||: A —> R, called the norm or
more precisely R-algebra norm, such that A is a normed ring with ring norm |- ||
and

rall < Irllall “)

forallr € Randa € A.

Analogously, an R-module M is said to be a normed R-module if there exists a
function ||-]|: M — R, called the norm or more precisely R-module norm, such
that the following conditions are satisfied:

1. |la]| = O foralla € M, and ||a|| = 0 if and only if a = 0.
2. |la =b| < |lall + ||| forall a, b € M.
3. |lrall < |r||la| forall r € R and a € M.

It is easily checked that if A is any associative R-algebra, and ||| and |-| are the
trivial ring norms on A and R respectively, then A will be a normed R-algebra with
norm [|-]|. The only normed modules that will be of interest here are normed algebras
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or submodules of normed algebras, but some of the concepts needed are more natural
to define for normed modules in general.

The fact that (4) is an inequality, and not an equality, might seem strange at first.
It is necessary in the case of a general ring R however, since if 7|, r, € Randa € A
are nonzero and satisfy r;r, = 0 then

0 =0l = 10all = lIrirall < |rillirall < |rillr2lllall > 0.

The class of norms that will be most important in this paper are the v-degree
norms, which are easy to define on the free algebra R(X). By definition every element
a € R({X) has aunique presentation as a sum Zuex* ru b, Where X* C R(X) denotes
the free monoid on X (i.e., the set of monomials in the noncommutative polynomial
ring R(X), or equivalently the set of all elements in R(X) that are finite products of
elements of X) and {r, } ,ex- € R are the coefficients of those monomials; these sums
are furthermore finite, in the sense that r, = 0 for all but a finite set of monomials .

Definition 3 Let an associative and commutative ring with unit R be given, and let
|I-|l be a norm on R. Let X be a set and consider the free associative algebra R{X).
Any function v: X —> R can be used as the seed function of a corresponding v-
degree norm. Since X* is the free monoid on X, the function v extends uniquely to
a monoid homomorphism (X*, -) —> (R, +). Then the v-degree norm on R(X) is
defined by

D rup| = max|r, 2" 5)
pex* pneX

where the maximum is surely attained since |r,| can be nonzero only for finitely
many (4 € X*.

The trivial norm is recovered when v(x) = O for all x € X. Variables x for which
v(x) < 0 are power-series-like in that higher powers get smaller (in norm) whereas
variables with v(x) > 0 behave more like the variables of an ordinary polynomial
ring.

Definition 4 Let R be an associative unital ring with norm |-|. Let M be an R-module
with norm ||-||.

A subset U € M is an open subset in the topology induced by the norm ||-||
if there for every a € U exists some real number ¢ > 0 such that any b € M with
lla — b|| < e satisfies b € U.

A sequence {a,};-; € M is said to be a convergent sequence if there exists
some b € M, called the limit of the sequence, with the property that there for every
& > ( exists some integer N such that ||a, — b|| < ¢ forevery n > N. A limit point
of aset U C M is some a € M with the property that there for every ¢ > 0 exists
some b € U \ {a} suchthat |la — b|| < e. Aset U C M is closed set in the topology
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induced by the norm |- if every limit point of U is an element of U. The topological
closure of U € M, denoted U, is the smallest closed subset of M that contains U.

The usual laws of general topology hold with the definitions above: a subset
is closed if and only if its complement is open, an arbitrary union of open sets is
again open, but only finite intersections of open sets will necessarily be open, and so
on. Using more properties of a norm, one may show that the algebra operations—
addition, subtraction, ring multiplication, scalar multiple, and even the norm itself —
are all continuous with respect to the topology the norm induces; the algebraic and
the topological structures play very nice together.

On the matter of continuity, it is also worth pointing out that the condition for
this can be simplified considerably in the case of linear maps: an R-linear map
f: M — M is continuous if there for every ¢ > 0 exists some § > 0 such that
any b € M with ||b|| < & satisfies H f() ” < &; what happens is that continuity at 0
implies (uniform) continuity everywhere. The same thing happens for equicontinuity;
normally a family F' of maps M — M is said to be equicontinuous if there for
every ¢ > ( exists some § > 0 such that it for all f € F and a, b € M satisfying
|lb — al| < § holds that ||f(b) — f(a) || < &, but when all the maps in F are linear
(indeed, it suffices that they are homomorphisms of the additive group) it is sufficient
to require this fora = 0.

Definition 5 Let R be an associative unital ring with norm |-|. Let M be an R-module
with norm ||-||. A sequence {a,};>; € M is said to be a Cauchy sequence if there
for every ¢ > 0 exists some integer N such that ||a, — a,|| < ¢ for all m,n > N.
The set M is said to be topologically complete if every Cauchy sequence in it has a
limit in M. A subset S € M is said to be dense in M if there for every a € M and

every ¢ > 0 exists some b € S such that |b — al| < ¢.

A key component in the power series algebra construction is the standard con-
struction of the completion of a normed module (which can also be carried out in
the greater generality of a metric space or alternatively that of a topological abelian
group), which given any module M produces a topologically complete module M
containing M as a dense subspace; writing M for the completion is borderline an
abuse of notation, but as soon as one accepts that the completion exists as a topo-
logical space and contains M, then it follows from M being dense in the completion
that the completion is equal to the closure M. A nice feature of the completion is that
any continuous map from the original set M to a topologically complete set extends
uniquely to a continuous map defined on the whole completion. This can be used
to extend the algebraic operations to the completion. Moreover, the continuity then
implies that they still satisfy all the algebraic identities they had before extension,
so the completion R of a normed ring R is again a normed ring, the completion M
of a normed R-module M is again a normed R-module, and the completion A of a
normed R-algebra A is again a normed R-algebra.

Set-theoretically, the completion of M can be constructed as a set of equivalence
classes of Cauchy sequences in M, where two sequences {a,}52, and {b,} 2, are
equivalent if lim,_, o, (a, — b,) = 0. The elements of M are then not strictly elements
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of the completion, but there is a canonical embedding of M into M that maps a € M
to the equivalence class of the Cauchy sequence where all elements are a.

Definition 6 A module (or ring) norm ||-|| defined on some module M (or ring R)
is said to be a (module/ring) ultranorm if it satisfies the strong triangle inequality

lla + bl < max{llal, 5]} (6)

forall a, b € M (or R).

The trivial norm is obviously an ultranorm. A v-degree norm will also be an
ultranorm whenever the norm on the scalars is an ultranorm. Ultranorms are some-
times said to be non-Archimedean, since they have the property that any sequence
{Z?:l a}zozl of integer multiples of an element a will be bounded. Classical alge-
braic examples of ultranorms are provided by the p-adic valuations on QQ (and more
generally on the field of p-adic numbers Q).

A very striking property of ultrametric topology is the following “freshman’s
dream:”

Lemma 1 If M is the completion of the module M with respect to an ultranorm |-,
then the extension of this norm to M is also an ultranorm and a series > - | a, with
terms in M converges if and only if lim,_,  |la,| = 0.

In a sense, that is how one wants formal power series to behave: that there be no
risk of divergence due to interactions between terms. The price one pays for this is
however that the space becomes totally disconnected: every open e-neighbourhood
{ beM ‘ b —al <e } of a point a is also topologically closed (since it is the com-
plement of the union of all e-neighbourhoods that do not contain a)! A good intuitive
understanding of what an ultrametric space looks like can be had by imagining it as
a Cantor set.

Topology aside, there is a concept of algebraic providence that is quite close to
that of an ultranorm, namely that of a valuation, so it should be sorted out how the
two compare. One advantage of norms is that the notation is more standardised.

codomain  Norms assume values in R, whereas the definition of valuations typically
permit an arbitrary totally ordered group, or even semigroup [6], as codomain of
the valuation map.
This may seem like a significant generalisation, but in practice it is not. The
reason is mainly that a total order on a semigroup gives rise to a canonical order-
preserving homomorphism to the real numbers [4, Theorem 3.40], essentially
via the Eudoxian theory of proportion. (Book V of The Elements, with Euclid’s
original proofs rather than modern arithmetic substitutes, becomes much more
interesting if one allows oneself to consider magnitudes for which addition need
not be commutative.)
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direction of order For norms, it is a well established standard that small elements
have small norms (as measured by the standard order on R). For a valuation V, it
rather depends on the author; we find some writing V (a) > V (b) to mean that b
is smaller than a, whereas others take it to mean that ¢ is smaller than b, and the
strong triangle inequality might be written

V(a+b) <max{V(a), V(b)} or V(a+b)>=min{V(a), V(b)}

with the latter probably being more common.

notation for group operation  For norms, it is a well established standard that mul-
tiplication in the ring corresponds to multiplication in R, as in the inequality
llab|| < |lall ||b||. For valuations, there is a variation in that some authors denote
the group operation as addition whereas others denote it as multiplication. Here,
it is addition that probably is the more common convention.

treatment of zero  For norms, there is a clear convention that the norm of 0 is 0. For
valuations, one may either leave the valuation V a partial function not defined for
0, or adjoin an extra element to the group to serve as V (0). Under the small element
has big value convention, it may be convenient to name that extra element co.

equality  For valuations (and assuming the additive convention), there is a strong
preference that the multiplication axiom should be an equality: V (ab) = V(a) +
V(b); a consequence is that the existence of a valuation implies the absence of
zero divisors. For norms, it is rather quite common that the multiplication axiom
is an inequality, and a notable feature if something satisfies it with equality.
In the present construction, it is only at the very end that equality turns out to hold
in the multiplication axiom for norms, so it makes sense to work with a concept
that does not seem to imply it from the start. The main reason that one cannot
assume equality is the step of forming the quotient.

The main advantage of using norms here and now is rather that they have real numbers
as values, because elementary mathematics lets us do so much with real numbers; it
is trivial to state | B¥A!| = 2'“**# and require that o/ is irrational.

Definition 7 Let M be a normed R-module with norm ||-||, and let N be a submodule
of M. Then the quotient norm ||-|[5,¢/y on M/N is defined by

la +Nlagoy = inf lla+cl foralla € M. (7)
ce

The quotient norm is an R-module norm if and only if N is topologically closed.
It will be an R-algebra norm if M is a normed R-algebra and N is a two-sided ideal.

The final piece of terminology in Theorem 1 that needs to be defined is that about
the orthogonal basis. Here it is useful to first write down a definition of a Hilbert
basis, since that is the basis concept that is predominant in this chapter. The concept of
Hilbert basis should be contrasted to that of a Hamel basis, where one only considers
finite linear combinations of basis elements.
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Definition 8 Let R be an associative ring with unit and let M be a topological R-
module. Let Z € M be arbitrary. Recall that the notation Span(Z) denotes the set
of all finite linear combinations of elements of Z. It is often convenient to have a
simple notation for the topological closure of this set as well. Therefore define

Cspan(Z) = Span(Z) for all sets Z.

Linear independence also needs a topologized counterpart. Define the set Z to be
topologically linearly independent if it is linearly independent and every countably
infinite sequence {y1;}{2, of distinct elements from Z is such that: 0 € M is a limit
point of the sequence {37, r;p; }neZ>0’ where {r;}2°, C R, if and only if r; = 0 for
alli € Z-¢. The set Z is said to be a Hilbert basis for M if it is topologically linearly
independent and M = Cspan(Z).

In many cases, the most convenient way of showing that a set is a Hilbert basis
is to show that it is an orthogonal basis. Contrary to popular opinion, the concept of
orthogonality does not require an inner product; it can be defined in arbitrary normed
spaces. The theory of orthogonality in normed spaces is however in many aspects
different from the theory for inner product spaces. In particular the focus is shifted
from elements to sets.

Definition 9 Let M be an R-module with norm ||-||. A submodule N; € M is said
to be orthogonal to a submodule N, € M if ||a + b|| > |la]| for all a € N and
b € N,. A subset Y of M is said to be orthogonal if for every bipartition Y; U Y, of
Y (Y1 N Y, = @) the module Span(Y}) is orthogonal to Span(Y5).

An important example of an orthogonal set is the set X* of monomials in the
free algebra R(X), when that is normed by a v-degree norm. A Hamel basis Y of a
module M that is orthogonal with respect to the norm on M will be a Hilbert basis
of the completion M.

One notable property of orthogonal bases that the present norm-derived concept
shares with its counterpart in Hilbert spaces is the existence of an associated dual
basis, or more informally of “Fourier coefficients” for every module element. Con-
cretely, let R be a topologically complete normed associative ring with unit and
M be a normed R-module with orthogonal basis Y. Then there exists for every
i € Y acontinuous R-module homomorphism f, : M —> R such that fulpn) =1
and f,,(p) =0forall p € Y \ {u}; the dual basis consists of the family {f,,}, ey of
these maps. The continuity of these maps is relied upon in (8) below, to prove that
reductions are also continuous.

3 Rewriting and the Diamond Lemma

Rewriting is usually classified as a branch of computer science, but it touches upon
fundamental logic enough to be relevant for all of mathematics, especially combi-
natorial algebra. What it contributes is in particular a framework for making certain
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operations effective and thus decidable, where the traditional constructions of abstract
algebra would only produce an infinite set with no obvious algorithm for deciding
membership. The application of rewriting that is of interest here is called equational
reasoning, and addresses the quotient operation; we shall in particular deal with the
quotient of an algebra by a two-sided ideal.

A key feature in rewriting is the use of rewrite rules, which abstractly is a relation
— stating that the left hand side “may be changed into” the right hand side. In the
case of equational reasoning, the external justification for having a particular rule is
that both sides of the relation are equivalent, so applying a rule preserves everything
of interest. On the other hand, there is also an expectation that the right hand side
(in some, not necessarily obvious, way) is simpler than the left hand side, so that the
application of a rule can be viewed as a step of algebraic simplification.

Rewriting comes in many flavours, distinguished by what the basic objects are
that one rewrites. The one that corresponds to associative algebra (but also group
theory) is called word rewriting since it operates on words, which in this case are
defined to be finite sequences of symbols from some ground set X; those familiar
with programming might find it more intuitive to read ‘word’ as ‘string’, since that
is essentially what it is. For X = {a, b}, the first couple of words are 1 (the empty
word, a sequence of length zero), a, b, aa = a2, ab, ba, bb = b2, a3, and so on.
The set of all words on X is in abstract algebra known as the free monoid on X, and
conversely the operation of concatenating two words is denoted as multiplication
because concatenation is the multiplication operation in the free monoid.

A standard trick for rewriting, when one aims to show something about an R-
algebra of some kind [1, 2], is to work not with the bare words, but with formal
linear combinations of words; rewrite rules then end up transforming elements of
R(X) into other elements of R(X). In the present setting, where the quotient to
examine is not one of R(X) but one of its completion R(X), it is necessary to take
that one step further and add also a topological structure to the objects being rewritten.
The end result is however not too bad, since the three structures (monoid, linear, and
topological) combine quite nicely.

Getting more into the technicalities, it is convenient to consider a formalism
where a rewrite rule is a pair (u, a), where the left hand side w is a word, but
the corresponding right hand side a can be an arbitrary element of R(X). A rule is
allowed to act upon any element of R(X) where p occurs as a subexpression.

Definition 10 A rewrite system for R(X) is a set § C X* x R(X). The elements
of § are called rules. Given any rule s € S, the first component of s (also called the
left hand side) will be written p, and the second component (also called the right
hand side) will be written ay; thus s = (g, ay).

For every rewrite system S is defined the corresponding ideal J(S), which is the
least topologically closed two-sided ideal in R{X) that contains { u;, —a; |s € S}.

The rewrite system that will be of interest here has 8 rules, which for consistency
with [4] will be named s; through sg. We have almost seen five of those rules already,
namely
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n m;
s; = (ab,gba+c¢) where ¢ = Zri ku'falif,

i=l  j=1
55 = (b5,1), ss = (ad, 1),
5= (Bb.1), s6 = (aa, 1);

the five elements (2) generating the ideal by which we wish to quotient are exactly
s, — as, fori =1,2,3,5, 6. The remaining rules are, with the same c as in sy,

Sq4 = (aB, q_lf)a — q_ll_)ct_)) R
57 = (éb, g 'ba — q_lécé) ,
53 = (éf), qBé + éBcBé) .
These are needed for technical reasons that will be apparent later, but
I({s1. 52, 83, 84, 85, S6. 57, 88}) = I({s1, 52, 53, 55, S6})

so they do not change the constructed quotient algebra; concretely

Jy, — a5, = — q B, — a;)b — (s, — as)ab + ¢~ 'ba(uy, — ay,),
Hs, —ds; = — qilé(ﬂsl - asl)é- - éb(ﬂv; - GS5) + qil(MXG - asE)bé’
Msg — dsg = — qé(/’LM - aS4)é— - é-b(l/«s_; - as5) + Q(/Ls(‘ — asﬁ)bé.

Collectively, the purpose of rules s; through sg is to provide a rewrite simplification
for every monomial that does not fit the PBW pattern— in this instance that pattern
is BKA!, so “first everything B, then everything A”— by on the one hand moving
any a or a to the left of a b or b to the right side of it (rules s1, s4, 57, and s3) and on the
other hand making a b adjacent to b or a adjacent to a cancel each other out (rules s,
53, 85, and s¢). Rule sg might seem like it partially fails to do this, on account of the
ab factor in the second term of its right hand side, but it will be all right in the limit.
The more general pattern is that one needs two rules for every named generator of
the algebra (s5 and s¢ for A, s, and s3 for B), and four rules for every commutation
relation. Rewriting can be used to study also algebras whose defining relations are
not simply commutation relations, but then the resulting basis will typically not be
of PBW-type.

Of course, whereas the concept of some p occurring as a subexpression might
seem clear for something written down on paper, it is not obviously applicable for
general elements of the completion R(X). Hence it is convenient to also have an
alternative presentation in terms of a family of maps called reductions.

Definition 11 Let S be a rewriting system. Let s = (uy, a;) € S be an arbitrary rule
andlet A, p € X* be arbitrary monomials. Let f;5,: R(X) — R(X) be defined by
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that

tsp(B) = b+ frpp(D)ias — ps)p forall b € R(X) ®)

(where f;,,, denotes one of the maps in the dual basis for R(X)). This function
tsp can alternatively be characterised as being the unique continuous R-module

homomorphism R(X) —> R(X) which satisfies

rasp if p= Apsp
" otherwise

t)»sp(:“*) = ’
forall u € X*.
Let Tp(S) = {id}, where id: R(X) —> R(X) is the identity map. Let
Ti(S) ={tip |2, p € X ands € S }.
Recursively define
To1(S) ={non|tneTi(S)andn, € T,(S)}
foralln € Z*. Set
T(S) = U T,(S).
neN

The elements of 7'(S) are called reductions and the elements of 7 (S) are called
simple reductions. If 7(b) = b for some b € R(X) then the reduction ¢ € T (S) is
said to act trivially on b.

In the reduction formalism, the counterpart of stating that b rewrites to b’ is that
there is some reduction ¢ for which 7(b) = b’. The fact that the simple reductions
only act nontrivially on one monomial each and also only rewrite one occurrence
of the rule’s left hand side there implies that rewriting by reductions gives a very
fine control of which rewrite steps are taken, something which will be useful later.
There exist alternative rewriting formalisms which offer less control, for example
requiring that all occurrences of a left hand side are recursively rewritten in each step
(so-called generalised division) or requiring that it is always the leftmost occurrence
of a left hand side in a monomial that is rewritten; such variations may remove
some complications from the theory but introduce others (e.g. a leftmost occurrence
rule may make it unclear whether the corresponding ideal automatically becomes
two-sided).

It follows from the way reductions are defined that a — ¢ (a) € J(S) for every
a € R(X) and t € T(S). The ultimate point of the rewriting process is to exhibit
a simplest expression for any element of the quotient algebra, or more technically,
to find a unique representative in R(X) for every equivalence class in the quotient
R(X) / J(S). The way to recognise these representatives is that all reductions act
trivially on them; if one cannot rewrite them to anything else, then apparently there
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is not anything simpler. Or can there be? In general, there are indeed ways that it
can go wrong! The Diamond Lemma provides a checkable set of conditions which
ensure that everything works out right.

Definition 12 Let a rewriting system S be given; the concepts defined below are all
with respect to a particular rewriting system. Denote by B, (b) the e-neighbourhood

{aefR ‘||a—b||<£}ofsomebefR( ).

Ana € R(X) is said to be irreducible if  (a) = a for all t € T(S). The set of all
irreducible elements in R(X) is denoted Irr(S).

Ana € R(X) is said to be stuck in F € R(X) if (a) € F forall t € T(S). An
a € R({X) is said to be persistently reducible if there for every t;, € T(S) and ¢ > 0
exists some t, € T'(S) and b € Irr(S) such that #, (t1 (a)) is stuck in B, (b). The set of
all elements in R(X) that are persistently reducible is denoted Per(S).

An a € R(X) is said to be uniquely reducible if, for all ¢, 1, € T(S), by, by €
Irr(S), and & > 0 such that 7, (a) is stuck in B, (b;) and #,(a) is stuck in B,(b,), it
holds that ||b; — by|| < e. The set of all a € R(X) which are both persistently and
uniquely reducible is denoted Red(S).

A rewriting system S for which Red(S) = R(X) is said to be confluent. The map
t5: Red(S) —> Irr(S) is defined by that, for any a € Red(S) and ¢ > 0, there exists
some ¢ € T(S) such that (a) is stuck in B, (ts(a)). The element ¢5(a) is called the
normal form of a.

The map ¢5 constitutes akind of limit of the set of all reductions 7' (S); if t5(b) = b’
then b’ is the unique limit point in Irr(S) of {t (b)} [T (5)" For a confluent rewriting
system, 1% becomes a projection of R(X) = Red(S) onto Irr(S) and ker 5 =9(S).

Hence Irr(S) is in that case isomorphic to the quotient R(X / J(S) as an R-module,
but much simpler to describe. In the case S = {s1, 52, 3, 54, S5, S6, 57, S8},

Trr(S) = Cspan([ bial, Biaj, bia/, Bié-f ‘ i,j€ Z>0} u {bi, Bi, al,al|ie Z>0} U {1}), 9)

which is how it will follow that R(X /J(S) has a basis on the form {B¥A'}; ;cz. But
it still remains to prove that this rewriting system S is confluent.

The main obstacle is to prove unique reducibility, but there are some smaller ones
that will need to be dealt with before that. First, it is useful to observe that ||| =
llag|| foralls € S = {s1, 52, 53, 54, S5, S¢, 57, Sg}; this is no accident, but the result of
a deliberate design. For the formal inverse rules s;, 53, s5, and sg, it straightforwardly
follows from v(b) = —v(b) and v(a) = —v(a). For the commutation relation sy,
it instead follows from |lab|| = |lgbal| > ||c||, and the inequality here is a direct
consequence of the condition in Theorem 1 about a straight line separating (1, 1)
from a bunch of other points. The significance of (1, 1) here is that it is the (bi)degree
of ab and ba, whereas the other points are the (bi)degrees of the terms making up c.
The constants « = v(a) and 8 = v(b) were chosen so that ||c|| < ||gba]||, which by
the strong triangle inequality makes ||as1 ” = |lgba]||. (That «/8 is irrational is not
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important for this step, but will be important later.) The corresponding calculations
for 54, 57, and sg are slightly embellished forms of that for s;.

A consequence of this is that ||t(b) “ < ||| forall b € R(X) and ¢ € T(S) (first
prove it for ¢ € T1(S) using (8); it is not possible to get equality since terms may
cancel). In a confluent system, this implies that the infimum overa € J(S) of ||b + a||
is attained for b 4+ a = t5(b), so the quotient norm on R(X) / J(S) can be calculated
from the norm of the normal form representative. This completes the claims in point 5
of Theorem 1.

A further consequence is that 7'(S) is equicontinuous, which is a technical require-
ment in the topologized Diamond Lemma. Among other things, it ensures that Per(S)
and Red(S) are topologically closed, and that 5 is continuous. It follows already
from their definitions that Irr(S), Per(S) and Red(S) are R-modules, that Irr(S) is
topologically closed, and that 5 is an R-module homomorphism and projection.

The second obstacle is to prove that Per(S) = R(X), which morally constitutes
the claim that there for every b € R(X) and ¢ > 0 exists some sequence of rewrite
steps which will remove all non-irreducible terms larger than ¢ from b; technically the
definition of persistent reducibility has some extra twists to it, but those are there to
make it more convenient in proofs. The way that this is proved is by induction over the
monomials, since it given the above follows from X* C Per(S) that Per(S) = R(X).

More precisely, the induction is a form of well-founded induction, so it is carried
out with respect to a partial order P on X*. This partial order is what determines
what it means for one expression or element of R(X) to be ‘simpler’ than another.
A rewrite system S is said to be compatible with a partial order P if its right hand
sides are smaller than its left hand sides.

Definition 13 Let P be a partial order on X*. The down-set module of some u € X*
with respect to P is the set

DSM(y, P) = Cspan({p € X* | p < uin P }),

where ‘p < w in P’ means ‘p is strictly less than u according to the partial order
P’. Arewriterule s = (i, a,) is said to be compatible with P if a; € DSM(u;, P).
A rewrite system is compatible with P if all rules in it are compatible with P.

What is needed for proving persistent reducibility is however that (u) € {u} U
DSM(u, P) for all © € X* and ¢t € T(S). Transitivity of P makes this follow for
general reductions once it has been established for simple reductions #,, but the step
from rules to simple reductions require a bit more from the partial order P, namely
that it is preserved under “padding” by arbitrary monomials A and p.

Definition 14 A partial order P on a semigroup 8 is said to be a semigroup partial
order if for all , v, A € Sitholdthat u < v in P implies A < Av in P and puX <
vAin P.

The construction of semigroup partial orders with which a given rewriting system
can be compatible is something of an art in itself, but a useful technique is to layer
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different ordering criteria on top of each other, so that if the first ordering criterion
does not distinguish two elements then the second is tried, and if that too considers
them equal then a third is used, and so on. A convenient way to formalise this is to
describe each layer as a semigroup quasi-order from a “toolbox” of simple generic
constructions; the detail fitting to a particular rewriting system is achieved by on the
one hand choosing parameters in the definitions of these quasi-orders, and on the
other choosing how to combine the quasi-orders. See [4, Sect. 3.4] for a detailed
treatment of this.

In the present case, there is one more concern that needs to be taken into account
when designing P, namely the well-foundedness that is the basis for the induction.
Technically, the condition that needs to be satisfied is the following.

Definition 15 If P is a partial order on some M C R(X) such that every strictly
P-descending sequence {p,},2, & M — thatis, p, > ppy1 in P foralln € Z.o—
satisfies || p, || — 0 as n — oo, then P is said to satisfy the descending chain con-
dition in norm, or to be DCC in norm for short.

This descending chain condition supports induction on the following form: if
L C M is a set such that

(basis) any p € M with || p| < ¢ satisfies p € L, and
(step) if p € M is such that any o < p in P satisfies 0 € L (a kind of condition
close to membership in DSM(p, P)), then p € L

then L = M. The descending chain form is however often more intuitive in an algo-
rithmic setting: rewriting p; might produce p,, which in turn might rewrite to ps,
and so on; then the descending chain condition implies that in the limit the non-
irreducible terms vanish, or more technically that a finite number of rewrite steps
suffice for getting rid of all non-irreducible terms of norm larger than some arbitrary
¢ > 0. The linear structure adds some complications in that a rewrite step getting
rid of one term may introduce several new terms, which will require tracing several
descending chains, but this ends up not being a problem.

Thus having presented all the constraints on the partial order P, it is time to
present its exact definition. First, one must choose some real number 6 > 1 such that
lcll & < ||lab]|. Then u < p in P for some p, p € X* in the following three cases:

Ao < ol
2. |lull = |lp]l but the length of the word w is strictly less than the length of the word
p, or
3. |lull = llpll and w is the same length as p, but u comes before p in the word

lexicographic order which has b < b<a<a.

Compatibility-wise, case 1 takes care of the second terms of ay,, ay,, as,, and
ay,, i.e., it implies that ¢ € DSM(p;,, P), —q~'bcb € DSM(py,, P), —g~'aca ¢
DSM(us,, P), and abcba e DSM(uy,, P). Case 2 takes care of ay,, dy,, dy,, and ay,

since 1 has word length 0 whereas p;, = bb, sy = bb, Wss = @a, and pu,, = aaall
have word length 2. Finally case 3 takes case of the first terms of ay,, ay,, ay,, and
ay,; the referenced lexicographic order orders the length 2 monomials as
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bb < bb < ba < ba <bb <bb <ba <ba <ab <ab <aa <aa<ab<ab<aa<aa

although for the composite order P it is likely that case 1 has preference for pairs of
words that contain different sets of letters.

That the partial order P so defined is a semigroup partial order follows from its
presentation as a lexicographic composition of semigroup quasi-orders, and will not
be shown explicitly; see [4, Sect. 3.4] for the details of how itis done. More interesting
is the way in which P gets to be DCC in norm. Basically, the combination of cases 2
and 3— the so-called length-lexicographic order — ends up being a well-order of
X*; hence any infinite P-descending chain must have infinitely many steps at which
the strict descent is ruled according to case 1. Whenever that happens, the norm must
decrease by a factor #~! < 1, so in the limit the norm tends to 0. But why must this
0 be explicit?

Had o/ 8 been a rational number, then the set of possible norms would have been
discrete, and the quotient between two distinct norm values would have been bounded
away from 1; it would have been possible to state case 1 as |||l < ||pll, since that
would automatically have implied || t|| @ < ||p|| for some fixed 6 > 1 depending on
o and 8. But when «/ 8 is irrational the set of possible norms becomes dense in R ;
without an explicit minimal step 6, the order P would not have become DCC in
norm. This has the consequence that P does not relate two elements of distinct but
almost equal norm, so P is not a total order. This comes with a slight penalty, in that
it precludes the use of some rewriting formalisms, in particular the standard bases
formalism of Mora [6], for analysing the present power series algebra construction,
but that seems unavoidable. Indeed, it turns out that several claims in Theorem 1
are true precisely in those cases which cannot be analysed using a monomial order
that is both total and DCC in norm! Hence the use of partial rather than fotal orders
really provides a practical advantage.

The above has cleared the second obstacle to confluence, so we can now go on
to the main obstacle, which is the uniqueness of the normal forms. With respect to a
random rewrite system, it is quite possible to find a, b; = #,(a) for some reduction
t1, and by = t;(a) for some other reduction #, such that b; # b, are both irreducible;
the rewrite system {sy, s, s3} with ¢ = 1 exhibits this for a = abb. That there can in
general be several different reductions which act nontrivially on an element facilitates
the formation of such forks in the rewriting process.

The observation on which the Diamond Lemma is based is that such forks are not
a problem unless they are final; as long as there is some common successor in both
paths, we have not yet made an irrevocable decision on whether to go to b; or to b;.
Hence if no decision ever was final, then there could not be two distinct normal forms
to choose between, and thus the normal forms would have to be unique! The classical
‘diamond condition’ (also known as local confluence) for which the Diamond Lemma
is named states that for every element a (the apex of the diamond; ‘diamond’ here
simply means the geometric figure of a quadrilateral standing on a corner) and pair
of simple reductions t;, #, acting nontrivially on a there exists general reductions
13, 14 such that 3 (11 (a)) = t4(t2(a)); the elements a, 1 (a), and 1, (a) are the top three
corners of the diamond, whereas 3 and ¢4 contributes two additional sides that meet
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at the fourth corner 13(t1(a)) = t4(t2(a)), thereby “closing the diamond”. Though
strictly speaking, in this topologized setting one can only count on the two sides
getting arbitrarily close, so the condition rather has to be that there for every ¢ > 0

exists general reductions 73, f4 such that ”t3 (t1 (a)) — Uy (tz (a)) ” < ¢. There are as

always some technicalities involved, but by combining the diamond condition with
induction over the monomials one can prove the unique reducibility of all elements
of R(X).

The way in which one verifies the diamond condition is ultimately to do explicit
calculations, but it would be impossible to do so for all a € R(X). It is, in view
of how induction was used to establish persistent reducibility, probably no surprise
that it suffices to verify the diamond condition for monomials a, but that would still
leave infinitely many cases to check. Each such case would however be of the form
that a monomial p is acted nontrivially on by two simple reductions #; and 7, — an
arrangement which is called an ambiguity. Since #; and 1, are simple reductions, they
can be expressed more explicitly as t; = #;5,p, and o = t;,4,,,, and since they both
act nontrivially on p it must be the case that A; s, p1 = 0 = Aaps, 2. Additional
restrictions can be imposed on the monomial factors Aj, g, p1, A2, Us,, and pa,
because a lot of the separate cases that can be considered are in fact “padded”
versions of a simpler case, where any common prefix of A; and X, (and similarly any
common suffix of p; and p,) has been shaved off; thanks to the fine control provided
by the minimalistic definition of reductions, it is always possible to insert arbitrary
padding into all four sides of a known diamond.

In the end, it turns out that the only cases one needs to check explicitly can be
specified as a quintuplet (s, 52, v1, V2, v3) where sy, s, € S arerules and vy, vo, v3 €
X* are monomials. The product vjv,v3 is the apex corner of the diamond, v; is
the part of this monomial which is acted upon by s; but not s;, v, is the part of this
monomial which is acted upon by both rules, and vs is again a part acted upon by only
one of the rules (usually s, in practice, but s, is theoretically possible). Hence either
s, = vivy and ug, = vpv3, with the two simple reductions being t#1y,,, and t,,,1,
or Ly, = Vivov3 and py, = vy, with the two simple reductions being #4151 and £,,y,,,.
This means in particular that there for any given pair of rules (sy, s;) is only a finite
number of ambiguities that need to be checked explicitly, so for any finite rewrite
system S the number of cases to check is finite. For S = {s, 2, 53, 54, S5, S¢, 57, S8},
there turns out to be twelve of them.

What does it mean to perform such a check, though? It would suffice to produce
reductions #3 and #4 to close the diamond, but in the case of this reduction system it
turns out that this in some cases requires going to the limit, which is a bit awkward
presentation-wise and also would require dealing with the explicit value of c. There
is an alternative condition called relative resolvability which as far as the Diamond
Lemma is concerned suffices just as well, but which requires introducing a few more
concepts.

Definition 16 Let S be a rewriting system for R(X) and let P be a partial order
on X*. The down-set ideal section of p € X* with respect to P and S is denoted
DIS(p, P,S) and is characterised as being the least topologically closed
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R-submodule of R{X) that contains all A(u; — a,)v such that Ausv < p in P for
A, v € X*and s € S. An ambiguity (¢, i, 1) is said to be resolvable relative to P
if f1(n) — () € DIS(u, P, S).

Informally the difference between relative resolvability and the ordinary resolv-
ability using a diamond is that instead of having a lower half with two sides meeting
each other in one minimum, the two horizontal extrema are joined with a jagged
line, that sometimes goes up and sometimes down; this will still be fine provided all
intermediate peaks are strictly below the apex of the upper half (as measured by the
partial order P).

Practically, a demonstration of relative resolvability can be presented in lines on
the form

(51, 52, v1, V2, V3) as,v3 — vias, = simplified = DIS-form

where the quintuplet identifies the ambiguity (#15,,,, V1V2V3, f,5,1) being resolved.
Then comes an expression which is the difference #14,,, (V1 v2v3) — £,,5,1 (V1 V2v3), and
in the next step that is simplified. The final step gives a presentation of that same
element of R(X) which makes it obvious that it belongs to DIS(vyv,vs, P, S). More
precisely, it is expressed as a linear combination of terms where each term contains
a factor e; := p;, — a,,, and also each term is labelled with a reason why this term
is in DSM(v;vpv3, P): ‘Norm’ refers to case 1 on p. 46 and ‘Lex’ refers to case 3; it
turns out case 2 never comes into play in these comparisons.

(sl, 57,4, b, B) as, b— aay, = qbaB +cb—a= gbeg + eza — exch
Lex Lex Norm
(S2,S3,b, b, b) as,b —bag; =b—-b=0
(53,52,5,b,5) as3575a32:57520
(54, s3,a, b, b) ag,b —aag, = q_lk_)ab — q_lk_)ck_)b —a= q_lk_)el +e3a— q_15ce3
Lex Lex Norm
(s5, 56, Q, 4, Q) assa—aag, =a—a=>0
(s5s,57,a,a,b) asxb—aay, =b—g~ laba +q ~laaca = —q e1@ lela —bes +q esca 1e5ca
Lex Lex Norm
(55, sg, a, a, 5) asst_) —aag, = b— ané — aabcba = —geqa — 5e5 — e55c5§1
Lex Lex Norm
(s6, 51,2, a,b) asgb — aag, = b — gaba — ac = —geya — beg + aceq
Lex Lex Norm
(56,54,é, a, B) asﬁf)—éam :E)—q_léf)a—f—q_léf)cf):
=—q "egd ega — b€6 —q~ abcbe6
Lex Lex Norm
(s6, 55, a, a, ) as;@ —aag, =a—a=>~0
(s7, 52,8, b,b) as,b — @ay, = ¢~ 'bab — g~ 'acab —a =

= q_lbeg + epa@ — e7bcba + deycba — q_léceg
Lex Lex Norm Norm Norm
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(sg, 53, 4, b, b) asgb —aag; = ql_)éb + abcbab — 3 =
= de7 + e3a + abcbey + qiléBce\;é + qilegcé

Lex Lex Norm Norm Norm

This fulfils the last condition in the Diamond Lemma, so it is hereby established that
R(X) = Irr(S) @ I(S) and hence that the quotient W/U(S) = Irr(S) as a vector
space.

For clarity, it might however be worth giving a more exact reference to the par-
ticular Diamond Lemma that would be used. Theorem 3.30 of [4] will suffice, but it
should be pointed out that the terminology used in this section is probably more in
line with that of the later paper [5] where the two disagree. It is alternatively possible
to use the more general Theorem 5.11 of [5] to establish the above conclusion; in that
case one would make use of [5, Sect. 7] to set up the topological framework and [5,
Ex. 6.10] to analyse the ambiguities. In both those statements of a Diamond Lemma,
the first and second obstacles above address explicit conditions in the theorem state-
ment, whereas the “main” obstacle appears as one of several claims equivalent to
confluence and R(X) = Irr(S) & I(S).

Another point that should addressed in this context is how the norm on the scalars
affects the set-up of the Diamond Lemma machinery. As long as that scalar norm is
trivial, it is sufficient to define P as a partial order on the set of monomials X*, but
if it is not then P rather has to be defined as a partial order on the set of all ferms ru
where r € R\ {0} and u € X*; this is needed because a term with large ||| might
still be made small by a tiny |r| (and vice versa). This setting of ordering the terms
is explicitly that which was used in [4], whereas [5] takes a more abstract route, but
for this chapter it seemed an additional complication that readers for the most part
were better off without.

4 The Unreasonable Usefulness of Irrationality

Having pushed through the rather daunting mounds of technicalities in the previous
section, this seems like a good place to pause and evaluate where we are with respect
to proving the claims in Theorem 1. The algebra A is constructed as R(X) /f] (8), and

it carries a quotient norm ||-|| inherited from the v-degree norm on R(X). The algebra
A furthermore has two named elements A = a + J(S) and B = b + J(S). With that
in mind, the claims were:

1. The commutation relation (1) holds in A.
That one has been obvious since Sect. 1.

2. The algebra A is a skew field, i.e., all nonzero elements in A are invertible.
That one has conversely seen no progress at all.

3. |I'll is an ultranorm on A and ||a|| ||b]| = ||lab|| for all a, b € A.
Here, there is partial progress. It was established in Sect.3 that the quotient
norm on A is in fact equal to the norm on Irr(S) (composed with the isomor-
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phism between the two R-modules) so it will be an ultranorm, but the claim that
llall I1b]| = |lab]| still needs to be proved.

4. A is complete in the topology induced by ||-||.

This follows from the isomorphism with Irr(S).

5. The set {BkAl}k,lez is an orthogonal Hilbert basis for A and || BFA! || = Dlatkp
This, too, follows from the isomorphism with Irr(S). It is in many ways the main
conclusion from applying the Diamond Lemma machinery.

6. Every nonzero a € A has a unique leading term r BXA!, i.e., there exist unique
r € Rand k,l € Z such that Ha —rBfA! || < |lal.

This has not been proved, but we are now ready to do it!

And the key to getting further is the irrationality of /8 that up to this point has
rather been a complication.

An immediate consequence of the ratio of o to B being irrational is that the
mapZ x Z — R : (k,l) — la + kP is injective, and thus the map Z x Z — R :
(k,1) — | B*A!| is injective as well. Hence every element of the basis for A has
a distinct norm, from which the unique leading term property immediately follows.
Every a € A has, by the status of {B*A! }x.1ez as a Hilbert basis, a unique presentation
on the form

a= Z rk,,BkAl for some {ry }xicz € R. (10)
kl€Z

For any ¢ > 0, the set of (k,/) such that ||rkJBkAl || > ¢ is finite (because oth-
erwise the series (10) would not converge) and for every a # O there is thus a
unique term ry; B¥ A’ that is maximal in norm. Since all other terms have strictly
smaller norm, it follows from the strong triangle inequality that ||a|| = || Tkl Bk A! || >
”a - rklekAl ” .

Unique leading terms, invertibility of basis elements, and invertibility of scalars
is then all that is needed to prove invertibility of arbitrary nonzero elements, by using
the old trick of viewing the formula for the sum of a geometric series as a formula
for the inverse of things close to 1. Concretely, if [la|| = |rB*A’| > |a — rBFA!||
then

a=rB"A' — (rB*A' —a) = (1 = (1 —r'aA™'B™")) . rB*A! (11)

where ||1 — r’laA’lB’k” < ||erAl —a|| HA” || ||r’1B’k|| < 1 and thus
o0
rATBT Y (1 —rlaAT' BTN (12)
n=0

converges. It follows from (11) that (12) is in fact the multiplicative inverse of a, and
therefore any a € A \ {0} is invertible. Thus A is a skew field.
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A second consequence of the expression (12) is that ”a“ ” < llall ™", since

o0
Pt AT BT (A —rlaAT BT <
n=0

> A —rlaAT By

n=0
= |r[ 22 = | r B AN = Jlall

< aT B

On the other hand,

L= 1] = [aa”"| < lall |a”"| < llall lal~" =1,
so it must in fact be the case that Ha‘l H = ||la||”". This makes it easy to prove that
llall I1b]] = llab|| for all a, b € A. If a or b is O then that claim is trivial, whereas if

a and b are both invertible then

_ _ —1
lal 161 = o= |~ 511" = (Jo | a7']) <

<|p~'a " = @)t = labll,

forcing equality also in this case; the algebra A is valued in the sense that the

norm gives rise to a valuation, in the strict interpretation which requires equality
in the multiplication axiom. This concludes the proof of claim 3, and thus also of
Theorem 1 as a whole.

If instead of having the norm |-| on the field R be trivial one allows it to be an
arbitrary valuation (ultranorm satisfying the multiplication axiom with equality), then
the degree conditions on the terms in the remainder ¢ can be relaxed. There is still
the requirement that ||c|| 6 < ||ab|| for some 6 > 1, but now that only boils down to
Ir| k]l € < ||abl| for every term ru in ¢, and if |r| is small then that may compensate
for || || being large, but also vice versa. The coefficient ¢ in the term gba must satisfy
lg| = 1, since rewriting requires both [|abl| > lgbal and HaBH > Hq—‘BaH.

That R is a field really only becomes important in the penultimate step of proving
that A is a skew field; the uniqueness of the leading term follows even for a general
coefficient ring R. That ¢ is invertible is on the other hand necessary already for
setting up the rewriting system, since rules s4 and s7 in a sense have the roles of left
hand side and leading term of the right hand side reversed from what they are in s;.

From the point of view of non-power-series rewriting, it is somewhat surprising
that the exact value of the “remainder” ¢ turns out not to matter— as long as it is
smaller (in norm) than the other terms ab and gba of the commutation relation, it
can be whatever one wants! Part of this is due to only having two generators A and
B, since having several commutation relations can lead to them interacting with each
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other in nontrivial ways, but part of it is also due to the simplifying ability of power
series; a finite sum ) ;_, rix* is only a polynomial, but an infinite sum > rixk
can reproduce any analytical function.
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Computing Burchnall-Chaundy Polynomials
with Determinants

Johan Richter and Sergei Silvestrov

Abstract In this expository paper we discuss a way of computing the Burchnall—
Chaundy polynomial of two commuting differential operators using a determinant.
We describe how the algorithm can be generalized to general Ore extensions, and
which properties of the algorithm that are preserved.

Keywords Ore extensions - Burchnall-Chaundy theory - Determinants

1 Introduction

It is a classical result, going back to [2—4], that all pairs of commuting elements in
the Weyl (Heisenberg) algebra are algebraically dependent over C. This result was
later rediscovered and applied to the study of non-linear partial differential equations
[9, 10, 12].

In this paper we will describe a method, the Burchnall-Chaundy eliminant con-
struction, for computing explicitly the algebraic relation satisfied by two commuting
elements, and consider the generalisation to the class of rings known as Ore exten-
sions. We will describe results showing that the eliminant construction partially
generalises. We will also give counterexamples showing that these generalisations
do not always retain all desired properties.
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2 Definitions

We recall the following definition.

Definition 1 Let R be a ring, o an endomorphism of R and § an additive function,
R — R, satisfying
§(ab) = o (a)d(b) + 8(a)b

foralla, b € R. (Such §:s are known as o -derivations.) The Ore extension R[x; o, 8]
is the polynomial ring R[x] equipped with a new multiplication such that xr =
o(r)x + 8(r) for all » € R. Every element of R[x; o, §] can be written uniquely as
> a;x' for some a; € R.

Ifo = id then R[x; idg, 8]is called a differential operator ring If P = > '_ a; x",
with a, # 0, we say that P has degree n. We say that the zero element has degree
—00.

Ore extensions were defined by the Norwegian mathematician Ore [13] as a non-
commutative analogue of polynomial rings.

Definition 2 The Wey! (or Heisenberg) algebra, can be defined as the Ore extension
Cly][x; id, 8] where § is the usual algebraic derivative on C[y].

The g-deformed Weyl algebra can be defined as the Ore extension C[y][x; o, §]
where o (o) = @ and § () = O for all « € C and where o (y) = gy and 6(y) = 1.

We will simply refer to a g-deformed Weyl algebra as a g-Weyl algebra.
A g-Weyl algebra is thus an algebra over C with two generators, x and y, such
that xy = gyx + 1. The Weyl algebra is the special case when g = 1.

If A is any algebra over a ring R and P, Q are two commuting elements of A
then we say that P, Q are algebraically dependent if (P, Q) = 0 for some non-
zero polynomial f (s, t) € R[s, t] in two central indeterminates s and ¢ over R. The
polynomial f is called an annihilating polynomial.

3 Algebraic Dependence

In a series of papers in the 1920s and 30s [2—4], Burchnall and Chaundy studied
the properties of commuting pairs of ordinary differential operators. The following
theorem is essentially found in their papers. (Their paper is somewhat imprecise on
formal details.)

Theorem 1 Let P =37 piD' and Q = 3"_ q; D’ be two commuting elements
of T with constant leading coefficients. Then there is a non-zero polynomial f(s,t)
in two commuting variables over C such that (P, Q) = 0. Note that the fact that
P and Q commute guarantees that f (P, Q) is well-defined.
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Burchnall’s and Chaundy’s work rely on analytical facts, such as the existence
theorem for solutions of linear ordinary differential equations. However, it is possible
to give algebraic proofs for the existence of the annihilating polynomial. This was
done later by authors such as Amitsur [1] and Goodearl [5, 8]. Once one casts
Burchnall’s and Chaundy’s results in an algebraic form one can also generalize them
to a broader class of rings.

More specifically, one can prove Burchnall’s and Chaundy’s result for certain
types of Ore extensions. We cite an important early result by Amitsur as an example.

Amitsur [1, Theorem 1] (following work of Flanders [7]) studied the case when
R is a field of characteristic zero and § is an arbitrary derivation on R. He obtained
the following theorem.

Theorem 2 Let K be a field of characteristic zero with a derivation §. Let F denote
the subfield of constants. Form the differential operator ring S = K|x; id, 8], and
let P be an element of S of degree n. Denote by by F[P] the ring of polynomials
in P with constant coefficients, F[P] = {Z';’:O bij | bj € F}. Then Cs(P) is a
commutative subring of S and a free F[P)-module of rank at most n.

The next corollary can be found in [1, Corollary 2].

Corollary 1 Let P and Q be two commuting elements of K [x; id, §], where k is a
field of characteristic zero. Then there is a nonzero polynomial f (s, t), with coeffi-
cients in F, such that f(P, Q) = 0.

Proof Let P have degree n. Since Q belongs to Cg(P) we know that 1, Q, ..., Q"
are linearly dependent over F[P] by Theorem 2. But this tells us that there are
elements ¢o(P), ¢1(P), ...¢,(P), in F[P], of which not all are zero, such that

$o(P) + 91 (P)Q + -+ ¢u(P)Q" = 0.

Setting f (s, 1) = > i_, ¢i(s)t' the corollary is proved. O

4 The Determinant Construction

The cited result by Amitsur is an existence proof, but Burchnall and Chaundy also
gave an algorithm for computing the annihilating polynomial in the case of differ-
ential operators. In this section we will describe this algorithm for the similar case
of the g-Weyl algebra.

Let P =37 pi(y)x' and Q =37 ¢;(y)x/ be commuting elements in a
q-Weyl algebra. Fore =0, 1, ...m — 1 compute

n+m—1

(P =)= D piely,9)x'
i=0
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and similarly, for/ =0, 1,...n — 1 compute

n+m—1

dQ-n= > qub.nx.

Jj=0

Here the computation is done in the ring C[y][x; o, §][s, ], the polynomial ring
in two central indeterminates over C[y][x; o, §]. Form a square matrix of size n + m
with p; . as the element in row e 4 1 and column n 4+ m — i. We let ¢ ; be the matrix
element in row [ +m + 1 and column n 4+ m — j. The determinant of this matrix
will be called the eliminant (of P and Q) and denoted Ap ¢.

De Jeu, Svensson and Silvestrov [6] prove the following theorem.

Theorem 3 Let K be a field, and q an element of K such that vazo q' # 0 for
all natural numbers N. (Note that such a q only exists if K is an infinite field.) Let
Ap g denote the eliminant constructed above. (A polynomial in y, s and t.) Write
Apog =2 fi(s,1)y". Then

(1) at least one of the f; are non-zero;

i) fi(P, Q) =0foralli.

In the case when K = R and ¢ = 1, this is the same method as Burchnall and
Chaundy describe.

Example 4 That a condition on g is needed in the theorem can be seen as follows:
if g is a primitive nth root of unity, where n > 1, then x" and y" both belong to the
center of C[y][x; o, §]. But there is no non-zero polynomial over C that annihilates
x" and y".

Example 5 We describe an example of the eliminant when ¢ = 1. Let P = yx and

Q = y*>x?. Then
xO(P —5) =yx —s,

x'(P—s) = yx?+ (1 —s)x,

and
xO(Q —t) = yzx2 —t.
Thus
0 y =
Apg=|y (1—s) 0|=(@+s(l—s5)y".
y:2 0 —t

Since indeed Q% + P(1 — P) = 0, this is consistent with Theorem 3.

Example 6 We can describe a similar example in the g-Weyl algebra. Set P = yx
and Q = y2x?2, again. One can check that
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PQ = QP =gy'x*+ (g + Dy’x".

The eliminant becomes

0 y =
Apg=|qy (1—5) 0|=(gt+s(l—s)y".
y: 0 —t

As expected we recover the result of the previous example by setting g = 1.

5 Generalisation to Ore Extensions

The eliminant construction can be generalised to any Ore extension in an obvious
way. This was done by Larsson in [11] and described in more detail in [15].

To elaborate slightly, suppose that P and Q are commuting elements of some
Ore extension R[x; o, §] with P having degree n and Q having degree m. For e =
0,1,...m — 1 compute

n+m—1

X(P=s)= D piel)r,
=0

and similarly, for/ =0, 1, ...n — 1 compute

n+m—1

AQ-0= D qunx.

Jj=0

Then use the coefficients p; . and g;; to form the determinant like before.
The question whether the eliminant still computes an annihilating polynomial is
answered in the following theorem, found in [15].

Theorem 7 If P and Q are commuting elements of R[x; o, 8] then

f(s,t) =Ap (s, 1)

is a polynomial in two commuting variables such that f (P, Q) = 0. If R is anintegral
domain and o is an injective function then Ap (s, t) is a non-zero polynomial.

We will illustrate the eliminant construction in a special class of Ore extensions.
They will be of the form K[y][x; o, §] where K is a field, o and é are K-linear and
deg,(o(y)) > 1. This is closely similar to the construction of the ¢g-Weyl algebra.
Instead of the relation xy = gyx + 1, wenow havearelationxy = f(y)x + 1, where
f () is some polynomial of degree larger than 1.
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Example 8 Consider the case when o (y) = y*> and §(y) = 1. Then P = yx and
Q = y3x? commute. The eliminant becomes

0 y =S
Apo=|y>(1—5) 0|=(+s1—-s)y
y 0 -t

It is true that Q + P — P? = 0 so the result is consistent with Theorem 7.

Example 9 Take R = K[y] as before, and set o (y) = y*> + 1 and 8(y) = 0. Then
P = y2x —land Q = (yzx)2 commute. We find that Q = yz(y2 + 1)2x? and that
the eliminant is

0 y2 1—s
Ap o = (y2+1)2 (1—y) 0 :(;+(S_1)2)y2(y2+1)2_
YOER+D2 0 _

We note that in the preceding examples we actually found an annihilating poly-
nomial over K, not just K[y]. In [14] one can find it proven that such a polynomial
always exist for commuting elements P and Q.

Theorem 10 Let K be a field. Let o be an endomorphism of K [y] such that o (y) =
p(y), where deg(p) > 1, and let § be a o-derivation. Suppose that o (a) = o and
() =0foralla € k. Let P, Q be two commuting elements of K[y][x; o, ]. Then
there is a nonzero polynomial f (s, t) € K[s, t] such that f(P, Q) =0.

One might hope that the eliminant construction might allow us to always compute
an annihilating polynomial in the same way as in Theorem 3. We conjecture that this
is true but have not been able to prove it.

We finish with an example where we do not have a theorem like Theorem 3.

Example 11 Consider the g-Weyl algebrawithg = —1.Then P = y?x?and Q = x*
commute. The eliminant becomes

Ap o(s, 1) = —(s* — tyH2.

This is still an annihilating polynomial over K[y] but it does not give us an annihi-
lating polynomial over K, which is expected since no such polynomial exists.
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Centralizers and Pseudo-Degree Functions

Johan Richter

Abstract This paper generalizes a proof of certain results by Hellstrom and
Silvestrov (J Algebr 314:17-41, 2007, [8]) on centralizers in graded algebras. We
study centralizers in certain algebras with valuations. We prove that the centralizer
of an element in these algebras is a free module over a certain ring. Under further
assumptions we obtain that the centralizer is also commutative.

Keywords Ore extensions - Algebraic dependence + Commutative subrings

1 Introduction

The British mathematicians Burchnall and Chaundy studied, in a series of papers in
the 1920s and 30s [3-5], the properties of commuting pairs of ordinary differential
operators. The following theorem is essentially found in their papers.

Theorem 1 Let P = 3/ pi D' and Q = 3 q; D’ be two commuting elements
of T with constant leading coefficients. Then there is a non-zero polynomial f (s, t)
in two commuting variables over C such that (P, Q) = 0. Note that the fact that
P and Q commute guarantees that f (P, Q) is well-defined.

The result of Burchnall and Chaundy was rediscovered independently during the
70s by researchers in the area of PDE:s. It turns out that several important equations
can be equivalently formulated as a condition that a pair of differential operators
commute. These differential equations are completely integrable as a result, which
roughly means that they possess an infinite number of conservation laws. In fact
Theorem 1 was rediscovered by Kricherver [9] as part of his research into integrable
systems.

To state some generalizations of Burchnall’s and Chaundy’s result we shall recall
a definition.
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Definition 1 Let R be aring, o an endomorphism of R and § an additive function,
R — R, satisfying
8(ab) = o (a)s(D) + 5(a)b

foralla, b € R. (Such §:s are known as o -derivations.) The Ore extension R[x; o, §]
is the polynomial ring R[x] equipped with a new multiplication such that xr =
o(r)x 4+ 8(r) for all » € R. Every element of R[x; o, §] can be written uniquely as
> a;x' for some a; € R.

If o = idthen R[x; idg, 8]is called a differential operator ring. If P = Z?:o a;xt,
witha, # 0, we say that P has degree n. The degree of the the zero element is defined
to be —oo.

The ring of differential operators studied by Burchnall and Chaundy can be taken
to be the Ore extension T = C* (R, C)[D; id, 8], where § is the ordinary derivation.
In a paper by Amitsur [1] one can find the following theorem.

Theorem 2 Let K be a field of characteristic zero with a derivation §. Let F denote
the subfield of constants. (By a constant we mean an element that is mapped to
zero by the derivation.) Form the differential operator ring S = K|[x; id, 8], and let
P be an element of S of degree n > 0. Set F[P] = {Z']’LO bjP/ | bj € F }, the
ring of polynomials in P with constant coefficients. Then the centralizer of P is a
commutative subring of S and a free F[P)-module of rank at most n.

Later authors have found other contexts where Amitsur’s method of proof can
be made to work. We mention an article by Goodearl and Carlson [6], and one by
Goodearl alone [7], that generalize Amitsur’s result to a wider class of rings. The
proof has also been generalized by Bavula [2], Mazorchouk [10] and Tang [11],
among other authors. As a corollary of these results, one can recover Theorem 1.

This paper is most directly inspired by a paper by Hellstrom and Silvestrov [8],
however. Hellstrom and Silvestrov study graded algebras satisfying a condition they
call /-BDHC (short for “Bounded-Dimension Homogeneous Centralizers™).

Definition 2 Let K be a field, € a positive integer and S a Z-graded K -algebra. The
homogeneous components of the gradation are denoted S,,, form € Z.LetCen(n, a),
for n € Z and a € S, denote the elements in §, that commute with a. We say that
S has £-BDHC if for all n € Z, nonzero m € Z and nonzero a € S,,, it holds that
dimg Cen(n, a) < L.

Hellstrom and Silvestrov apply the ideas of Amitsur’s proof. They need to modify
them however, especially to handle the case when ¢ > 1.

To explain their results further, we introduce some more of their notation. Denote
by m, the projection, defined in the obvious way, from § to S,. Hellstrom and
Silvestrov define a function x : A\ {0} — Z by

x(a) =max{n € Z|m,(a) # 0},

and set x (0) = —oo. Set further 77 (a) = 75, (a).
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Now we have introduced enough notation to state the relevant results. The fol-
lowing result is the main part of Lemma 2.5 in their paper.

Theorem 3 Assume S is a K-algebra with [-BDHC and that there are no zero
divisorsin S. If a € S\ Sy is such that x(a) = m > 0 and 7 (a) is not invertible in
S, then there exists a finite K [a]-module basis {by, ..., b} for the centralizer of a.
Furthermore k < ml.

The reason they refer to it as a lemma is that their main interest is in the following
corollary of this result, (which is proved the same way as Corollary 1 in this paper).

Theorem 4 Let K be a field and assume the K -algebra S has [-BDHC and that there
are no zero divisors in S. If a € S\ So and b € S are such that ab = ba, (a) > 0
and 7 (a) is not invertible in S, then there exists a nonzero polynomial P in two
commuting variables with coefficients from K such that P(a, b) = 0.

Theorem 4 is directly analogous to Theorem 1.
Hellstrom and Silvestrov also have a result asserting that certain centralizers are
commutative. Their proof can be made to work in the case when A has 1-BDHC.

Theorem 5 Assume the K -algebra S has 1-BDHC and that there are no zero divisors
inS. Ifa € S\ Sy satisfies x(a) = m > 0 and 7w (a) is not invertible in S, then there
exists a finite K [a]-module basis {by, . .., b} for the centralizer of a. The cardinality,
k, of the basis divides m. Furthermore the centralizer of a is commutative.

It shall be the goal of this paper to generalize the results we have cited from [8].

1.1 Notation and Conventions

Z will denote the integers.

If R is a ring then R[xy, x3, ... x,] denotes the ring of polynomials over R in
central indeterminates x;, xo, ..., X,.

All rings and algebras are assumed to be associative and unital.

Let R be a commutative ring and S an R-algebra. Two commuting elements,
p,q € S, are said to be algebraically dependent (over R) if there is a non-zero
polynomial, f(s,t) € R[s, t], such that f(p, g) = 0, in which case f is called an
annihilating polynomial.

If S is aring and a is an element in S, the centralizer of a, denoted Cg(a), is the
set of all elements in S that commute with a.

By K we will always denote a field.
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2 Centralizers in Algebras with Degree Functions

Upon reading the proofs in [8] closely it turns out that they are based upon certain
properties of the function x they define. We shall axiomatize the properties that are
needed to make their proof work.

Definition 3 Let K be a field and let S be a K-algebra. A function, yx, from S to
Z U {—o0} is called a pseudo-degree function if it satisfies the following conditions:

x(a) = —ocoiffa =0,

x(ab) = x(a) + x(b) foralla, b € S,
x(a +b) <max(x(a), x (b)),
x(a+b) = x(a)if x(b) < x(a).

This is essentially a special case of the concept of a valuation.
We also need a condition that can replace /-BDHC. We formulate it next.

Definition 4 Let K be a field and S a K-algebra with a pseudo-degree function,
X, and let ¢ be a positive integer. A subalgebra, B C A, is said to satisfy condition
D) if x (b) = 0 for all non-zero b € B and if, whenever we have £ 4+ 1 elements
bi, ..., b+ € B,all mapped to the same integer by y, there exist oy, ..., 2o € K,

not all zero, such that x (Zi: ot,-bi) < x(by1).

Remark 1 Note that the requirement thato, . . ., o4 are mapped to the same integer
by x excludes the possibility that they are equal to 0.

Remark 2 Suppose that S is a K-algebra and a € S is such that Cg(a) satisfies
condition D(£) for some £. If b is an invertible element then x (b~') = —x (b). So
all invertible elements of Cg(a) must be mapped to zero by x. In particular the
non-zero scalars are all mapped to zero by x.

Lemma 1 Suppose that S is an K -algebra and x is a pseudo-degree function on S
that maps all the non-zero scalars to zero. Thenifa, b € S are suchthat x (b) < x(a),
the identity

x(@+b)=x(a) (1)
holds.

Proof On the one hand we find x (a + b) < max(x(a), x (b)) = x(a). On the other
hand x(a) = x(a + b — b) < max(x(a + b), x(b)) Since x(b) < x(a) we must
have x(a) < x(a + b). U

We now proceed to prove an analogue of Theorem 3, using just the existence of
some pseudo-degree function and the condition D(¥).
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Theorem 6 Let K be a field and let S be a K-algebra. Suppose S has a pseudo-
degree function, .

Let a be an element of S, withm = x (a) > 0, such that Cs(a) satisfies condition
D (£) for some positive integer £. Then Cs(a) is a free K [a]-module of rank at most
Lm.

Proof Construct a sequence by, b, ... by setting by = 1 and choosing by € Cs(a)
such that x (bg+1) is minimal subject to the restriction that by ; does not lie in the
K[a]-linear span of {b, ..., b }. We will show later in the proof that such a sequence
has at most /m elements.

‘We first claim that

k
X (Z ¢,~b,-) = max (x (¢) + x (b)), @
i=1 -

for any ¢i,...¢r € K[a]. We show this by induction on n = max;<(x (¢;) +
x (b;)). It is clear that the left-hand side of (2) is never greater than the right-hand
side. When n = —oo Eq. (2) holds since in that case all ¢; = 0. If n = 0, Equation
(2) holds since x (b) > 0 for all non-zero b € Cgs(a). That x (b) > 0 for all non-zero
b in Cg(a) also means that no value of n between —oo and 0 is possible.

For the induction step, assume (2) holds when the right-hand side is strictly
less than n. To verify that it holds for n as well, we can assume without loss
of generality that y (¢r) + x(bx) = n, since if x(¢;b;) < n for some term ¢;b;
we can drop it without affecting either side of (2), by Lemma 1. If ¢, € K
then x(¢r) = 0, by Remark 2, and thus x(b;) = n. By the choice of by it then
follows that X(Zle ¢:b;) > n, as otherwise Zle ¢:b; would have been picked
instead of by. If ¢ ¢ K, then x(by) < n and thus x(b;) <n fori =1,...k. Let
ri,...,r € Kand &,...,& € K[a] be such that ¢; = a&; +r; fori =1,..., k.
We have X(Zf;l r;b;) < n and thus by Lemma 1 and the assumptions on x we get

k k k k k
bt <Z¢ibi> =X (Za&bz‘ +Z”ibi> =X (az&bi) =m+x (Z&h‘) :
i1 i=1 i=1 i=1

i=1

We also have that max; <, (x (¢i) + x (b;)) = m + max; < (x (&) + x (b;)). By the
induction hypothesis

k
X (Z ab,-) = max(x (&) + x (b)),
i=1 -

which completes the induction step.

We now show that if x(b;) = x(b;) for some i < j then j —i < [. Suppose
by, ..., b4 all are mapped to zero by x. Then there exists o, ..., o4, not all
zero, such that
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I+1
X (Zaibi) <0,
i=1

which is impossible since Zf;’ll a;b; € Cs(a).

Suppose now instead that b, .. ., b;; are all mapped to the same positive integer,
q, by x. Then there exists o, ..., a1y € K, not all zero, such that
J+

X Z(xibi <q.
i=j

But this contradicts (2).

It remains only to show that the sequence (b;) contains only Im elements. We will
prove that every residue class (mod m) can only contain at most / elements. Suppose
to the contrary, that we had elements cy, ..., ¢+, belonging to the sequence (b;)
and all satisfying that x(c;) =n (modm). Set k = max;<;<;4+1(x(c;)) and define
Y = aq#. Then x (yic;) =k, foralli € {1,...,[+ 1}, which implies that there
exists aq, ..., 041 € K, such that

jH
X Zai)’ici < k.
i=j

But this once again contradicts (2). O

We can also prove a result on the algebraic dependence of pairs of commuting
elements.

Corollary 1 Let S be a K-algebra with a pseudo-degree function, x. Let a € S
be such that Cs(a) satisfies Condition D(l) for some l > 0. Let b be any element in
Cs(a). Then there exists a nonzero polynomial P(s,t) € K|[s, t] suchthat K (a, b) =
0. (Note that K (a, b) is well-defined when a, b commute.)

Proof Since Cg(a) has finite rank as a K [a]-module the elements b, b7, . . . cannot all

be linearly independent over K [a]. Thus there exists fi(x), ..., fr(x) € K[x],notall
zero, such that 3°¥_ fi(a)b' = 0.Then P(s, 1) = 3*_, fi(s)t' = 0is a polynomial
with the desired property. (]

We can also prove a result asserting that certain centralizers are commutative,
though for that we need to assume that Cg(a) satisfies condition D(1).

Theorem 7 Let K be a field and suppose S is a K -algebra. Let S have a pseudo-
degree function, x. If a € S satisfies x (a) = m > 0 and Cs(a) satisfies condition
D(1) then:
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1. Cg(a) has a finite basis as a K[a]-module, the cardinality of which divides m.
2. Cgs(a) is a commutative algebra.

Proof By Theorem 6 it is clear that there is a subset H of {1, ..., m} and elements
(bi)icy such that the b; form a basis for Cg(a). By the proof of Theorem 6 it is
also clear that y (b;) # x(b;) if i # j. Without loss of generality we can assume
x(b;) =iforalli € H. We can map H into Z,, in a natural way. Denote the image
by G. We want to show G is a subgroup, for which it is enough to show that it is
closed under addition.

Suppose g, h € G.Thereexistsi, j € H,withi = g (modm)and j = h (mod m).
We can write b;b; = >, _,; ¢xby, for some {b;}. It follows that

g+h=i+j= xbib;) =max(x(¢) + x(br)) = x (b)) = k (modm)

for some k € H.

Since G is a subgroup of Z,, it is clear that the cardinality of G, which is also the
cardinality of H, must divide m.

G is cyclic. Let g be a generator of G. Consider the algebra generated by b; and
a, where i = g (modm). It is a commutative algebra and a sub-K -vector space of
Cs(a). Denote it by E. If ¢ is any element of Cg(a) we can write ¢ = e + f, where
e € E and x(f) < mi, since if x(c) > mi then there exists k < m and j € N such
that X(ajbf) = x(c) and thus there exists @ € K such that x (¢ — aajbl’f) < x (o).

Thus the quotient Cg(a)/E is finite-dimensional. Each f € K[a] gives rise to
an endomorphism on Cg(a)/E, by the action of multiplication by f. Since K[a] is
infinite-dimensional and the endomorphism ring of Cg(a)/E is finite-dimensional,
there is some nonzero ¢ € K [a] that induces the zero endomorphism. But this means
that ¢c € E for any ¢ € Cs(a).

Now let ¢y, ¢; be two arbitrary elements of Cg(a). Since E is commutative, and
everything in Cs(a) commutes with ¢, it follows that

p*cicr = pey - per = pea - pey = prercy.

Since Cg(a) is a domain it follows that c;c; = ¢;¢; and thus that Cg(a) is commu-
tative. (I

3 Examples

Theorems 3, 4 and 5 follow from our results combined with Lemmas 2.2 and 2.5 in
[8]. But our results can also be applied in certain situations that are not covered by
the results in [8].

Proposition 1 Let K be a field. Set R = K[y], let 0 be an endomorphism of R
such that s = degy (o (y)) > 1 and let § be a o-derivation. Form the Ore extension
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S =R[x;0,8]. Ifa e S\ K then Cs(a) is a free K[a]-module of finite rank and a
commutative subalgebra of S.

Proof If a € K[y] \ K then Cs(a) = K[y] and the claim is true. So suppose that
a ¢ K[y]. We shall apply Theorem 7. To do so we need a pseudo-degree function.

The notion of the degree of an element in S with respect to x was defined in the
introduction of this article. Denote the degree of an element b by x (b). It is easy to
see that x satisfies all the requirement to be a pseudo-degree function. We proceed
to show that Cg(a) satisfies condition D(1). Certainly it is true that x (b) > 0 for all
nonzero b € Cg(a).

Let b be a nonzero element of S that commutes with a, such that y (b) = n.
Suppose x (a) = m. By equating the highest order coefficient of ab and ba we find
that

amam(bn) = bngn(am), €))

where a,, and b,, denote the highest order coefficients of a and b, respectively. (Recall
that these are polynomials in y.) We equate the degree in y of both sides of (3) and
find that

degy (am) + s degy (bn) = degy (bn) + 5" degy(am)»

which determines the degree of b,, uniquely. It follows that the solutions of (3) form
a K-sub space of K[y] that is at most one-dimensional. This in turn implies that
condition D(1) is fulfilled.

We have now verified all the hypothesis necessary to apply Theorem 7. ]
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Crossed Product Algebras for Piece-Wise
Constant Functions

Johan Richter, Sergei Silvestrov, Vincent Ssembatya
and Alex Behakanira Tumwesigye

Abstract Inthis paper we consider algebras of functions that are constant on the sets
of a partition. We describe the crossed product algebras of the mentioned algebras
with Z. We show that the function algebra is isomorphic to the algebra of all functions
on some set. We also describe the commutant of the function algebra and finish by
giving an example of piece-wise constant functions on a real line.

Keywords Piecewise constant + Crossed products - Maximal commutative subal-
gebra

1 Introduction

An important direction of investigation for any class of non-commutative algebras
and rings, is the description of commutative subalgebras and commutative subrings.
This is because such a description allows one to relate representation theory, non-
commutative properties, graded structures, ideals and subalgebras, homological and
other properties of non-commutative algebras to spectral theory, duality, algebraic
geometry and topology naturally associated with commutative algebras. In represen-
tation theory, for example, semi-direct products or crossed products play a central
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role in the construction and classification of representations using the method of
induced representations. When a non-commutative algebra is given, one looks for
a subalgebra such that its representations can be studied and classified more easily
and such that the whole algebra can be decomposed as a crossed product of this
subalgebra by a suitable action.

When one has found a way to present a non-commutative algebra as a crossed
product of a commutative subalgebra by some action on it, then it is important to
know whether the subalgebra is maximal commutative, or if not, to find a maximal
commutative subalgebra containing the given subalgebra. This maximality of a com-
mutative subalgebra and related properties of the action are intimately related to the
description and classification of representations of the non-commutative algebra.

Some work has been done in this direction [2, 4, 6] where the interplay between
topological dynamics of the action on one had and the algebraic property of the
commutative subalgebra in the C*—crossed product algebra C(X) x Z being max-
imal commutative on the other hand are considered. In [4], an explicit description
of the (unique) maximal commutative subalgebra containing a subalgebra A of CX
is given. In [3], properties of commutative subrings and ideals in non-commutative
algebraic crossed products by arbitrary groups are investigated and a description of
the commutant of the base coefficient subring in the crossed product ring is given.
More results on commutants in crossed products and dynamical systems can be found
in [1, 5] and the references therein.

In this article, we take a slightly different approach. We consider algebras of func-
tions that are constant on the sets of a partition, describe the crossed product algebras
of the mentioned algebras with Z and show that the function algebra is isomorphic
to the algebra of all functions on some set. We also describe the commutant of the
function algebra and finish by giving an example of piece-wise constant functions
on a real line.

2 Definitions and a Preliminary Result

Let A be any commutative algebra. Using the notation in [4], we let ¢ : A — A be
any algebra automorphism on A and define

Axy Z:={f:7Z— A: f(n) =0 except for a finite number of n}.

It can be proved that A X, Z is an associative C—algebra with respect to point-wise
addition, scalar multiplication and multiplication defined by twisted convolution, *
as follows;

(f*9)m) = fR9 (g n k),

keZ

where /% denotes the k—fold composition of 1 with itself for positive k and we use
the obvious definition for £ < 0.
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Definition 1 A x 7 as described above is called the crossed product algebra of
A and Z under .

A useful and convenient way of working with A X, Z, is to write elements f, g €
A xy Zinthe form f =" , f,6"and g = >, _, gn8™ where f, = f(n), gn =

g(m) and
1, ifk=
Sy =1 T
0, ifk #n.

Then addition and scalar multiplication are canonically defined and multiplication
is determined by the relation

(fu8") % (gmd"™) = fu¥r" (gm)8" ™", (1
where m,n € Z and f,, g € A.

Definition 2 By the commutant A" of A in A X, Z we mean
A ={feAx,Z: fg=gf forevery g € A}.

It has been proven [4] that the commutant A’ is commutative and thus, is the
unique maximal commutative subalgebra containing A. For any f, g € A Xy, Z,

thatis, f =2, , fud"andg =2 _, g.8", then fg = gf if and only if

Vr: an¢n(gr—m) = ng¢m(.fr—tn)-

nez mez

Now let X be any set and A an algebra of complex valued functions on X. Let
o : X — X beany bijection such that A is invariant under o and o ~!, that s for every
heA, hoo e Aandhoo~! € A. Then (X, o) is a discrete dynamical system and
o induces an automorphism ¢ : A — A defined by,

6(f)=foo .

Our goal is to describe the commutant of A in the crossed product algebra A x5 Z
for the case where A is the algebra of functions that are constant on the sets of a
partition. First we have the following results.

Definition 3 For any nonzero n € Z, we set
Seph(X)={xeX|3dheA : hix)#c"(h)(x)}. 2)

The following theorem has been proven in [4].

Theorem 1 The unique maximal commutative subalgebra of A X 7 that contains
A is precisely the set of elements
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A= [Z fud" | foralln € Z: fulsep, x) = 0] : 3)
nez

We observe that since 6 (f) = f oo !, then
() =6(foo h=(foo Hoo™ = foo,

and hence foreveryn € Z,6"(f) = f o o~". Therefore, by taking X = R and A as
the algebra of constant functions on X we have: for every x € X and every h € A,

6" (h)(x) :=hoo™"(x) =h(c™"(x)) = h(x),

since A is a constant function. It follows that in this case Sep”; (X) = . Therefore
in this case, A’ = A x5 Z.

3 Algebra of Piece-Wise Constant Functions

Let X be any set, J a countable set and P = {X; : j € J} be a partition of X; that
isX =U,e;X, where X, #@and X, N X,, =@ ifr £ r'.
Let A be the algebra of piece-wise constant complex-valued functions on X. That
is
A={heC¥: forevery j € J: h(X;) = {c;}}.

Let o0 : X — X be a bijection on X. The lemma below gives the necessary and
sufficient conditions for (X, o) to be a dynamical system.

Lemma 1 The following are equivalent.

1. The algebra A is invariant under ¢ and o~
2. Foreveryi € J there exists j € J such that o (X;) = X ;.

Proof We recall that the algebra A is invariant under o if and only if for every
heA, hoo e A.

Obviously, if for every i € J there exists a unique j € J such that o(X;) = X
then

Jo
(hoo)(X;) = h(o(X;)) = h(X;) = {c;}.

Thus hoo € A.
Conversely, suppose A is invariant under o but 2. does not hold. Let x;, x5 €
X; and X,, X,» € P such that 6 (x;) € X, and 0(x2) € X,. Let h : X — C be the

function defined by
1 if X,
hx) = { ifx €

0 otherwise.
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Thenh € A.Buthoo(x;) =1and h oo (x;) = 0. Thus i ¢ A, which contradicts
the assumption. O

The following lemma asserts that any bijection o, : X — X that preserves the
structure of a partition essentially produces the same algebra of functions.

Lemma?2 LetPy ={X; : je J}andP, ={Y; : j € J} be partitions of the sets
X and Y respectively, and let

Ax ={h e CX : forevery j e J: h(X;) ={c;}},

and
Ay ={h € C" : forevery j € J: h(Y;) = {d;}}.

Then Ax is isomorphic to Ay.

Proof Choose points x; € X and y; € Y suchthatx; € X;ifandonlyify; € Y; Vi €
J and let i : Ax — Ay be a function defined by

uw(H) = fx)ifyeY;, Yjeld. 4

It is enough to prove that w is an algebra isomorphism.

o letf,ge Axandletw, B € C. Thenify € Y, theny € Y; forsomei € J, there-
fore,

plef + Bg)(y) = (af + Bg)(x:)
=oaf(x;)+ Bg(x;)
=an(f)(y)+ Br(g) )

= lan(f) + Bur(@I1y).

Therefore p is linear since y was arbitrary.
e Forevery f,ge Ayandy e Y (y € 1)),

n(fe)(y) = (fg)(xi)
= f(xi)g(x:)
= u(HMrEQ)
= [(HHrn@1y).
Thus p is a multiplicative homomorphism.
e Now, suppose f, g € Ax such that f # g. Then there exists i € J such that
f(xi) # g(x;), x; € X;. Therefore, if y € 17,

w(H) = fx) #gxi) = u(gy.
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Therefore  is injective.
e Finally, suppose & € Ay and let f € Ay be defined by f(x) =h(y;). If y e Y,
then y € Y; for some i € J, and hence,

h(y) =h(Qi) = f(x) = fx) = pu(fH).

It follows that p is onto and hence an algebra isomorphism.
O

Theorem 2 Let Py = {X;: j € J}and P, = {Y;: j € J} be partitions of two sets
X and Y and Ax and Ay be algebras of functions that are constant on the sets of the
partitions Py and P, respectively. Letoy: X — X ando,: Y — Y be bijections such
that A is invariant under o (and Ufl) and Ay is invariant under oy (and o, Y and
that o1(X;) = X; whenever 02(Y;) =Y foralli, j € J. Suppose 5y : Ax — Ay is
the automorphism on Ay induced by oy, and o, : Ay — Ay is the automorphism
on Ay induced by o,. Then

0720/1,:#0071. (5)

where w is given by (4). Moreover, for every n € 7,
6" opn=poa". (6)
Proof Lety € X such that y € ¥; for some i € J. Then for every f € A,

(G20 W(F)() = (uf) 005 ' ()
= (uf) (o5 ' (»)

= f(o] ' (x))

= (f ooy H(x)

= u(foa;Hy)

= plai (HIY)

= [ o G1(H ().

Since y is arbitrary, we have
(020)(f ) = pooi(f)
for every f € A. And since f is arbitrary,
00 [l = Lo 0].

Now from (5), we have

GHlop=cr0(Gon) =co(nod)) = (Gou)od =(Lod])od =pod
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Therefore the relation (6) holds for n = 2.
Now suppose the relation (6) holds for k. Then:

k

AMopu=do0@ op)=do(nod¥)=(Ron od* =(nod)od* =pod .

Therefore, from the induction principle,
6" opu=poao". O

Remark 1 From Theorem 2 above, we get two nice results. The firstis thatif P; = P,
are partitions of X and o}, 0, : X — X are bijections on X which preserve the
structure of the partition, they will give rise to the same automorphism. That is,
suppose Py = {X; : j € J} is a partition of X and 01,0, : X — X are bijections
on X such that, if 01 (X;) = X, then 0o (X;) = X, foralli, j € J. Lets : A — A
be the automorphism on induced by o, that is, for every & € A,

G(h)y=hoo !,

Then for every [ € A,
o1(f) = a2 (f).

This is given by the fact that if P} = P,, then in (5), we can take u = id.
The second is the following important theorem.

Theorem 3 Let Py ={X;: j € JYand P, ={Y;: j € J} be partitions of two sets
X and Y and Ax and Ay be algebras of functions that are constant on the sets of the
partitions Py and P, respectively. Letoy: X — X andoy: Y — Y be bijections such
that Ay is invariant under o (and (71_]) and Ay is invariant under o, (and 02_1) and
that o1(X;) = X whenever o»(Y;) =Y foralli, j € J. Suppose 51 : Ax — Ax is
the automorphism on Ay induced by o1, and o, : Ay — Ay is the automorphism
on Ay induced by 0,. Then the crossed product algebras A X 7 and A Xg, Z are
isomorphic.

Proof We need to construct the an isomorphism between the crossed product algebras
Ax Xg Z and Ay x4 Z. Using the notation in [4], we let f := znez fn6" be an
element in Ay X4 Z. Define a function u : Ay X5 Z — Ay Xg, Z be defined by

i (Z fmST) =D u(f)3, (7)

nez nez

where p is defined in (4). Then, since p is an algebra isomorphism, it is enough
to prove that /i is multiplicative. To this end, we let f :=>" _, f,8] and g :=
> ez &md|" be arbitrary elementsin Ay X4 Z, then we prove that [t is multiplicative
on the generators f,6] and g,,67" respectively. Using (1) we have
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A(C£u8) % (8n8) = A f 61" (gm)STT™)
= w(f 61" (gm))5 "

= [ (f) (G (fru))185 "

= w(f)&" (1 (fu))85T" by (6)

= (fu8) * A(fudD).

Therefore /i is multiplicative on the generators f,8" and since w is linear, it is
multiplicative on the elements f = > _, f,6" € Ax X5 Z. O

Remark 2 In Lemma 1 we proved the necessary and sufficient condition on a bijec-
tiono : X — X such that the algebra Ay is invariant under o, thatis, forevery i € J
there exists j € J such that o (X;) = X; where the X; form a partition for X. From
this, it can be shown that A is isomorphic to C’, where by C’ we denote the space of
complex sequences indexed by J. This can be done by constructing an isomorphism
between Ay and C’ via o as follows.

Let T : J — J be a map such that 7(i) = j is equivalent to o (X;) = X for all
i, j € J. Then 7 is a bijection that plays the same role as 0, in Lemma 2. Therefore,
using the same Lemma, we deduce that the algebra A is isomorphic to C”. In Theo-
rem 3, we have shown a method of constructing an isomorphism between the crossed
product algebras Ay x4 Z and Ay x4, Z, when Ax and Ay are isomorphic. It fol-
lows that the crossed product algebra Ay x5, Z is isomorphic to C’ x; Z, where T
follows the same definition as &.

In the next section we describe the commutant of our algebra Ay in the crossed
product algebra Ax x5 Z.

3.1 Maximal Commutative Subalgebra

We take the same partition P = U< ; X ; and a bijection o : X — X such that for all
i € J, there exists j € J such that o (X;) = X ;. For k € Z., let

Cy = {x € X | k is the smallest positive integer such that x, ak(x) €eX; (8

for some j € J}.

According to Theorem 1, the unique maximal commutative subalgebra of A x5 Z
that contains A is precisely the set of elements

A’:[ancS”lforallneZ: fn'SL’p:’q(X)EO]a (9)

nez
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where Sep”; (X) is given by (2). We have the following theorem which gives the
description of Sep’; (X) in this case and is crucial in the description if the maximal
commutative subalgebra.

Theorem 4 Let o : X — X be a bijection on X as given above, ¢ : Ax — Ax be
the automorphism on Ay induced by o and Cy be given by (8). Then for everyn € Z,

Sepy () =1lJGucst, (10)
ktn

where
Coo=1{X; €P : o"(X;) # X; Vk > 1}.

Proof 1. If n =0 (mod k) and x € X; € Cy, the we can write n = mk for some
m € Z. Then, since 0¥(X;) = X; it follows that o *(X;) = X; and therefore
forevery h € A,

6" (h)(x) = 6" (h)(x) = (ho o ™) (x) = h(o "™ (x)) = h(x),

since x and 0 " (x) € X forallm € Z.
2. If n #£0 (mod k), we can write n = mk 4+ j where m, j € Z with 1 < j < k.
It follows that for every x € X; € Cy,

6" (h)(x) = 6" (h) (x)
= (hoo ™) (x)
= h(oc ™" (x))

=67 (h)(x).
But & is the smallest integer such that ok (X ;) = X . Therefore since j < k,
&7 (h)(x) # h(x).
Hence

Sep’ (X) ={x € X |3h € A:h(x) #6"(h)(x)}

- Ui xee X} ifn=0 (mod k),
{Uj:x,ecX;} ifn#0 (mod k),

and if x € C, then obviously x € Sep”; for every n > 1, or simply

Sep’y (R) = | J Cr U C.
kin
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From the above theorem, the description of the maximal commutative subalgebra
in A x5 Z can be done as follows.

Theorem 5 Let Ay be the algebra of piece-wise constant functions f : X — C,
o : X = X any bijectionon X, 6 : Ax — Ax the automorphism on A induced by
o and Cy be as described above. Then the unique maximal commutative subalgebra
of Ax X Z that contains Ay is given by

.A/ = Z Z aj, Xxjn 8"

neZ : kin \ ju€J

Proof From (9) we have that the unique maximal commutative subalgebra of Ax x5
Z that contains Ay is precisely the set of elements

A = {ana" |foralln € Z: fulsep, (x) 50],

nez

and from (2),

Sep’y(R) = Cr. (11)
kin

Combining the two results and using the definition of 4, € Ay as

hn = E aanXjn,

Jn€J

we get

A = Z Z aj, xx, o

neZ : kln \ ju€J
O

It can be observed from the results in Theorem 4 that it is possible to have
Sep”y (X) = X for all n € Z. For example, suppose J is infinite and let o : X — X
be a bijection such that o (X ;) = X4, forevery j € J. Then it is easily seen that in
in this case Sep’, (X) = X. However, this is not possible if J is finite since in this
case o acts like a permutation on a finite group. In the following section, we treat one
such a case. We let X = R and Ay be the algebra of piece-wise constant functions
on R with N fixed jump points, where N > 1 is an integer. In order to work in the
setting described before, we treat jump points as intervals of zero length. Then R is
partitioned into 2N + 1 sub-intervals.
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4 Algebra of Piece-Wise Constant Functions on the Real
Line with N Fixed Jump Points

Let A be the algebra of piece-wise constant functions f : R — R with Nfixed jumps

at points t1, tp, ..., ty. Partition R into N + 1 intervals Iy, I, ..., [y where I, =
1ty tyr1[ With tg = —o0 and ty4; = 0o. By looking at jump points as intervals of
zero length, we can write R = U1, where I, is as described above fora =0, 1,... N

and I, = {t,} if « > N. Then for every i € A we have

2N
h(x) =D aux1, (x), (12)
a=0

where x;, is the characteristic function of /,. As in the preceding section, we let
o : R — R be any bijection on R and let 6 : A — A be the automorphism on A
induced by o. Then we have the following lemma which gives the necessary and
sufficient conditions for (R, o) to be a discrete dynamical system.

Lemma 3 The algebra A is invariant under both o and o~ if and only if the
following conditions hold.

1. o (and o~") maps the each jump pointt,,, k = 1, ..., N onto another jump point.
2. o maps every interval I,, o = 0, 1, ... N bijectively onto any of the other inter-
vals I(), I[ e IN.

Proof Obviously, if the two conditions hold, then A is invariant under o. So we
suppose that A is invariant under o and prove that the two conditions must hold.

1. Suppose o (ty) =ty ¢ {t1,t2, ..., ty} forsome k € {1,2, ..., N}. Then, since o
is onto, there exists xo € R such that o (xg) = f;, that is, there exists a non jump
point that is mapped onto a jump point. We show that this is not possible.

Let
1 if x =1
hoy =] "=
0 otherwise.

Then h € A. But

0 otherwise, 0 otherwise.

hoa(x):[l if o(x) =1, 2[1 it x = xo,

Therefore h o o ¢ A which is a contradiction, implying that o does not map a
non jump point onto a jump point, proving the first condition.



86 J. Richter et al.
2. Consider the bijection o : R — R defined by

x if x £t ore,

o(x) =11, ifx=t, (13)
n ifx=t,
where t,; € I and t,: € Iy forsomek € {1,2,..., N}. Then o is a bijection that

permutes the jump points. Let 4 € A. Then using (12) and for the o in Eq.(13)
above, we have:
h(x) if x #1, ort,
o(x) ={a1 ifx=t,

a  ifx=1.

Therefore, h o o has jumps at points ¢, .. ., ty, t,;, t,: implying that h o o ¢ A.
O

The following theorem gives the description of Sep”; (R) for any n € Z.

Theorem 6 Let A be an algebra of piece-wise constant functions with N fixed jumps
atpointsty, ..., ty, o0 : R — R be any bijection on R such that A is invariant under
o and let 6 : A — A be the automorphism on A induced by o. Let

Cy = {x € R | k is the smallest positive integer such that x, o*(x) € I, (14)
for somea =0,...2N}.

Then for everyn € 7,

Sep’y (R) = | Cu. (15)
kin
Proof See Theorem 4 and observe that C, = ¢/ in this case. O

Example 1 Let A be the algebra of piece-wise constant functions with 4—fixed jump
points atty, f, 3, t4. Partition R into five subintervals Iy, .. ., Is where I, =]z, ty41[
with fy = —o0 and t5 = 0.

Let 0 : R — R be a bijection such that o (ly) = I;, o(l}) = L, o(l) = Iy,
o(I3) = Iy and o (I;) = I5. It follows that o3 (ly) = Iy, o>(I;) = I} and 6> (L) =
L.Buto/(I,) #I,fora =0,1,2and 1 < j < 3.

Alsoo?(l3) = Is, 02(I) = I buto/ (1) # I, if j £ 0 (mod 2) witha = 3, 4.
Therefore:

Sep” (R) = {x e R|3h € A: h(x) # 6" (h)(x)}
=R\ {{LUILJU{te: o*(t0) =, k=1,2,3,4)}ifn=0 (mod 2)
={lbULUDLYU{te: 02(te) 1, k=1,2,3,4}ifn=0 (mod 2),
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and

Sep (R) = {x e R|Th € A: h(x) # 6" (h)(x)}
=R\ {lU{LULU{te: 0>(t) =te, k=1,2,3,4}ifn=0 (mod 3)
={LUIJU{te: o) # 4, k=1,2,3,4}ifn=0 (mod 3).

From these results we have the following theorem.

Theorem 7 Let A be the algebra of piece-wise constant functions f : R — R with
N fixed jumps at points ty, ta, . . ., ty. Partition Rinto N + 1 intervals Iy, Iy, . .., Iy
where I, =]ty, tor1[Withty = —occandtyy = ocoand Iy = {ty}for N +1 < M <
2N. Let 0 : R — R be any bijection on R such that A is invariant under o and let
o : A — A be the automorphism on A induced by o. Let

Cr = {x € R | k is the smallest positive integer such that x, Gk(x) el, (16)
for somea =0,...2N}.

Then the unique maximal commutative subalgebra of A X 7Z that contains A is
given by

2N
A = z (Z aanxlw”)B"

nez : kln \o, =0

Proof From (9) we have that the unique maximal commutative subalgebraof A x; Z
that contains A is precisely the set of elements

A = Ianan |foralln € Z: fylsepr x) = o] ,

nez

and from (11),

Sep™, (R) = U Cy.
kin

Combining the two results and using the definition of , € A as
2N
hn = Z Ao, X1y, 5
a,=0

we get

2N
A = Z (z aanx,nn)ﬁn

neZ : kln \o,=0
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5 Some Examples

In this section we give some examples of how our results hold for well known simple
cases. We treat two cases of piece-wise constant functions on the real line; those with
one fixed jump point and those with two fixed jump points.

5.1 Piece-Wise Constant Functions with One Jump Point

Let A be the collection of all piece-wise constant functions on the real line with one
fixed jump point #y. Following the methods in the previous section R is partitioned
into three intervals Iy = (—o0, ty), I} = (ty, 00) and I, = {ty}. Then we can write

heAas
2

h = Z%XI.X =aoxr, +aixrn +axxp. (17
a=0

Leto : R — Rbe any bijection on R and let ¢ be the automorphism on A induced
by o. Note that by the first part of Lemma 3, invariance of the algebra A implies that
o (ty) = to. It follows therefore that o (ly) = Iy or o (ly) = I;. We treat these two
cases below.

5.1.1 O’(Io) = Io

In this case (and by bijectivity of o), we have that o (/) = I; and since o (fy) = 1y,
then foreveryx e R, h e Aandn € Z

G"h(x) = hoo"(x) = h(x),

since x and o " (x) will lie in the same interval. Therefore, all intervals I,, o =
0, 1, 2 belong to C; and hence

Seply(R) = J G = 0.
kin

Therefore, the maximal commutative subalgebra will be given by

A = [ana" |foralln € Z: fulsep, x) = 0]

nez

= A x5 7.
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5.1.2 O'(I()) = I]

In this case (and by bijectivity of o), we have that o (/) = Iy and since o (fy) = fy,
then for every x € R, h € A and n € Z such that 2 | n we have

0"h(x) :=hoo "(x) = h(x),

since x and o ~"(x) will lie in the same interval. And for odd n, 6" (h)(x) = h(x) if
and only if x = #(. Therefore, we have,

Ci={lalo() = I} =D,

and
Cr={l,|0°(y) =L} =L UI.
Therefore,
C, ifk=1,
Sep” (R) =| | ¢, =
Pa®) g" [@ ifk = 2.

Therefore, the maximal commutative subalgebra will be given by

2
A = Z (Z aanxla”)é”

neZ : kln \o,=0

2
- E Ay, X1, 5"
neZ : 2ln \a=0

- Z(ao‘mXIO +armxn + a2v’71X12)82m + Z (aZ,th) 62m+]] .

mez mez

5.2 Piece-Wise Constant Functions with Two Jump Points

Let A be the collection of all piece-wise constant functions on the real line with
two fixed jump points at 7y and #;. Following the methods in the previous section R
is partitioned into intervals Iy =] — oo, o[, I} =lto, il I =]t1, 00[, I3 = {tp}
and I = {#;}. Then we can write h € A as

4
h:Zaaxla. (18)
a=0
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Leto : R — Rbe any bijection on R and let & be the automorphism on A induced
by o. Note that by the first part of Lemma 3, invariance of the algebra A implies that
o(ty) =ty (and o (t;) = t;) or o (ty) = t; (in which case o (t;) = ty). Below we give
a description for the maximal commutative subalgebra of A x; Z for different types
of 0.

521 oy)=1I1,foralla =0,...,4
This case is similar to the one in Sect. 5.1.1 in the sense that, foreveryx e R, h € A
andn € Z

6"h(x) :==hoo"(x) = h(x),

since x and o " (x) will lie in the same interval. Therefore, all intervals I,, a =
0, ..., 4 belong to C; and hence

Sepy(R) = J Cc = 0.
kin

Therefore, the maximal commutative subalgebra will be given by

A = [ana" |foralln € Z: fulsep, x) = 0]

nez
=A A& 7.
522 ol =1, o(})=Iyando(l) = I,, « =2,3,4

In this case (and by bijectivity of o), we have that o (1;) = Iy and therefore for every
x €R, h € Aandn € Z such that 2 | n we have

0"h(x) :=hoo "(x) = h(x),

since x and o 7" (x) will lie in the same interval. And for odd n, 6" (h)(x) = h(x) if
and only if x € I, U I3 U I. Therefore, we have,

C, = {Iot | o(ly) = Ia} =LULUI,

and
Co={I,|0*(Iy) =I,} = b U I.

Therefore,
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Sepu®) = | J Cv =

[C2 ifk=1,
kin

¢ ifk=2.

It follows that for n € Z such that 2 | n, the maximal commutative subalgebra
will be given by

2N
Al = Z (Z aanXIa,,)‘Sn

neZ : kln \a,=0

> (% aanxzw)f?”

nez : 2ln \a,=0

4
= z (Z aa,m)(,a)(szm.

meZ \a=0

And for odd n, we have

A/z = Z(aZ.mXb + a3 m X1 + a4,mX14)8n-

n

Therefore, the commutant A’ is given by:

4
‘A = {Z(Z aa,le‘,)Szm + Z(almXIg + a3,mXI3 + a4,le4)82m+]] .

meZ \a=0 mez

Similar results can be obtained for the following cases

. O'(I()) = 11, O’(Il) = ](), (7(13) = 14, 0’(14) = 13 and (7(12) = ]2.
o) =h, o(b)=Ilando(,) =1, a=1,3,4.

. O'(I()) = 12, 0‘(12) = 10, 0‘(13) = 14 0'(14) = 13 and 0'(11) = 11.
. 0(11)212, 0’(12)211 al’ldO'(Ia)ZIa 0[20,3,4.

. O’(I]) = 12, 0(12) = 11, 0'(13) = 14, 0'(14) = 13 and O'(I()) = I().

[ O I S R

Since in all these cases, 62(I,) = I,, « =0, ..., 4.

523 oUy)=L,o)=1L,0()=Ijando(l,) =1,, « =3,4
In this case, using similar methods we have,

Ci={lyloly) =1} =ULUl, C;=4/,
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and
Cy={ly | 0°(y) =I,} = UL UDL.

Therefore,

ifk #3,
Seply(R) = | J €k = [ T
pr if k = 3.

It follows that for n € Z such that 3 | n, the maximal commutative subalgebra
will be given by

Al = Z (Z aanxla”)S”

nez : kin

|2 (az%m)

neZ : 3ln
meZ
If 3 t n, then
Ay =D (a3 n X1, + danxi)8".
Therefore:
e iz(zamx, )53"’ DY }
meZ \a=0

524 oy =h,0) =5, c(h)=hando(l3) =13, o(Iy) =15
In this case, using similar methods we have,
Ci=0, Cra=LUlI,

and
Cy={l,|0°Uy) =I,} =L UL UL.

Therefore,
R\ C; ifk =3,
SepyR) = JCe = {R\C, ifk =2,
K R itk =1.
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It follows that for n € Z such that 3 | n, the maximal commutative subalgebra
will be given by

2N
A/l = z Z aan len Sn

neZ : kln \o,=0

2N
Z Z A, X1,, 8"

neZ : 3ln \o,=0

= Z (aO,mXI() +aimxn + a2,mX12) 5.

mez

If 2 | n, then
b= (@mxs, + asmx1)8™",

meZ

and for all other values of n, A’ = A. Hence:

A = Z (@0mx1, + @vmxn, + a2mxn) 8" + Z(aS,mXI3 + g x1,)87"

mez mez
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Commutants in Crossed Product Algebras
for Piece-Wise Constant Functions

Johan Richter, Sergei Silvestrov and Alex Behakanira Tumwesigye

Abstract In this paper we consider crossed product algebras of algebras of
piece-wise constant functions on the real line with Z. For an increasing sequence of
algebras (in which case the commutants form a decreasing sequence), we describe
the set difference between the corresponding commutants.

Keywords Piecewise constant + Crossed products - Commutant

1 Introduction

An important direction of investigation for any class of non-commutative algebras
and rings, is the description of commutative subalgebras and commutative subrings.
This is because such a description allows one to relate representation theory, non-
commutative properties, graded structures, ideals and subalgebras, homological and
other properties of non-commutative algebras to spectral theory, duality, algebraic
geometry and topology naturally associated with commutative algebras. In represen-
tation theory, for example, semi-direct products or crossed products play a central
role in the construction and classification of representations using the method of
induced representations. When a non-commutative algebra is given, one looks for
a subalgebra such that its representations can be studied and classified more easily
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and such that the whole algebra can be decomposed as a crossed product of this
subalgebra by a suitable action.

When one has found a way to present a non-commutative algebra as a crossed
product of a commutative subalgebra by some action on it, then it is important to
know whether the subalgebra is maximal commutative, or if not, to find a maximal
commutative subalgebra containing the given subalgebra. This maximality of a
commutative subalgebra and related properties of the action are intimately related to
the description and classification of representations of the non-commutative algebra.

Some work has been done in this direction [2, 4, 6] where the interplay between
topological dynamics of the action on one hand and the algebraic property of the
commutative subalgebra in the C*—crossed product algebra C(X) x Z being max-
imal commutative on the other hand are considered. In [4], an explicit description
of the (unique) maximal commutative subalgebra containing a subalgebra A of CX
is given. In [3], properties of commutative subrings and ideals in non-commutative
algebraic crossed products by arbitrary groups are investigated and a description of
the commutant of the base coefficient subring in the crossed product ring is given.
More results on commutants in crossed products and dynamical systems can be found
in [1, 5] and the references therein.

In this article, we consider algebras of piece-wise constant functions on the real
line. In [7], a description of the maximal commutative subalgebra of the crossed prod-
uct algebra of the said algebra with Z was given for the case where we have Nfixed
jumps. Given the algebras A, of piece-wise constant functions with a fixed jump at
t; we take a sum of M such algebras. This yields an algebra of piece-wise constant
functions with at most M jumps at points 1, ..., ty. Since A, ., k=1,..., M
is an increasing sequence of algebras, the commutants A; ., k=1,..., M form
a decreasing sequence of algebras so we compute the difference between the said
commutants.

2 Definitions and a Preliminary Result

Let A be any commutative algebra. Using the notation in [4], we let ¢ : A — A be
any algebra automorphism on A and define

AxgZ :={f:Z— A: f(n) =0 except for a finite number of n}.

It can be shown that A x4 Z is an associative C— algebra with respect to point-wise
addition, scalar multiplication and multiplication defined by twisted convolution, *
as follows:

(f x@)n) =D f)p*(g(n — k),

keZ

where ¢* denotes the k—fold composition of ¢ with itself for positive k and we use
the obvious definition for k£ < 0.
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Definition 1 A x4 Z as described above is called the crossed product algebra of A
and Z under ¢.

A useful and convenient way of working with A x4 Z, is to write elements f, g €
A Xy Zinthe form f =3 _, fu8"and g = >, gmd” where f, = f(n), gn =

g(m) and
1, ifk =
sy = | 1 =
0, ifk #n.

Inthesum ), _, f,8", we implicitly assume that f, = 0 except for a finite number
of n. Addition and scalar multiplication are canonically defined by the usual pointwise
operations and multiplication is determined by the relation

(fn‘sn) * (gm(Sm) = fn¢n (gm)8n+m’ (1)

where m,n € Z and f,, g, € A.

Definition 2 By the commutant A'of A in A x4 Z we mean
A i={feAxyZ: fg=gf forevery g € A}.

It has been proven [4] that the commutant A’ is commutative and thus, is the
unique maximal commutative subalgebra containing A. For any f, g € A %y Z,

thatis, f =2, ., fu8"andg = > _, 8,8", fg = gf if and only if

Vr an(bn(gr—m) = Zgln¢m(fr—m)~

nez mez

Now let X be any set and A an algebra of complex valued functions on X.
Let o : X — X be any bijection such that A is invariant under o and o ~', that is
foreveryh € A, hoo e Aandho o~ € A. Then (X, o) is a discrete dynamical
system and o induces an automorphism & : A — A defined by, 6(f) = f oo~ !.
In [7], a description of the commutant of A’ in the crossed product algebra A x5 Z
for the case where A is the algebra of functions that are constant on the sets of a
partition was given. Below are some definitions and results that will be important in
our study. The proofs of the theorems can be found in [7] and the references in there.

Definition 3 For any nonzero n € Z, we set
Sephi(X)={xeX|IheA : hx)#c"(h)(x)}, )

The following theorem has been proven in [4].

Theorem 1 The unique maximal commutative subalgebra of A X 7 that contains
A is precisely the set of elements
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nez

A = ansn |foralln € Z: f,|Sep’y (X) = ()] . 3)

We observe that since & = f oo ~!, then
20~ 1 -1 1 )
0 (f)=0(foo )=(foo )oo = foo ",

and hence 6" (f) = f oo ™".

3 Algebra of Piece-Wise Constant Functions on the Real
Line with N Fixed Jump Points

Let A be the algebra of piece-wise constant functions f : R — R with N fixed jumps

at points ¢, tp, ..., ty. Partition R into N + 1 intervals Iy, I, ..., Iy where I, =
(ty, ty+1) Withfy = —ooand ty 4 = 0o. By looking at jump points as intervals of zero
length, we can write R = Ul, where I, is as described above fora« =0, 1,..., N

and Iy = {t,} for N + 1 < M < 2N. Then for every h € A we have

2N
h(x) = D" auxi, (), )
a=0

where x;, is the characteristic function of 7, and a, are some constants. As in the
preceding section, we let 0 : R — R be any bijection on R such that A is invariant
under o and let 6 : A — A be the automorphism on A induced by o. Then we have
the following lemma which gives the necessary and sufficient conditions for (R, o)
to be a discrete dynamical system.

Lemma 1 The algebra A is invariant under both o and o~ if and only if the
following conditions hold.

1. o (and o~") maps each jump point ty, k =1, ..., N onto another jump point.
2. o maps every interval I,, o« =0,1,..., N bijectively onto any of the other
intervals Iy, I, ..., Iy.

The following theorem gives the description of Sep’) (R) for any n € Z.

Theorem 2 Let o : R — R be any bijection on R and let 6 : A — A be the auto-
morphism on A induced by o. Let

Cy = {x € R | k is the smallest positive integer such that x, ok x)el, (5
forsomea =0,1,...,2N}.
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Then for everyn € Z,

Sep”y (R) = U Cy. (6)
kin

Theorem 3 Let A be the algebra of piece-wise constant functions f :R — R
with N fixed jumps at points t|, ta, ..., ty. We partition R into N + 1 intervals
Iy, I, ..., Iy where I, = (ty, tyy1) Withty = —coand tyy; = 00. Leto : R - R
be any bijection on R such that A is invariant under both o and o~ and let
o : A — A be the automorphism on A induced by o. Then the unique maximal
commutative subalgebra of A X 7 that contains A is given by,

A = [an6”|fn500nck z:fk)(n},

nez
where Cy is as defined in (5).

Proof From Theorem 1, we have that the unique maximal commutative subalgebra
of A % Z that contains A is precisely the set of elements

A = Ianan |foralln € Z: fulsep x) = o] ,
nez
and from (6),

Sep’y (R) = | Cr.
kin

Combining the two results, we get

A = [an8”|anOoanifkfn}.

nez

4 Comparison of Commutants

In this section, we give an explicit description of the set difference between commu-
tants of an increasing finite sequence of algebras of piece-wise constant functions.
Starting with an algebra of piece-wise constant functions with N fixed jumps at points
t, ..., tns Agy, iy We add a finite number of jump points into one of the intervals
(without loss of generality, the last one) and then take the sum of Ay, ;) and the
algebras of piece-wise constant functions at these points. In this way, we obtain a
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finite increasing sequence of algebras whose commutants (under some conditions),
form a decreasing sequence. We give the description as follows.

Let T ={ti,...,tn,tN+1, ..., ty+m) for some N, M € N such that ; < ¢; if
i < j. Fort, €T, let A, be the algebra of piece-wise constant functions with a
fixed jump at 7, and for K € {1,..., N + M}, let

K
Aoty :=HZfa; wherefaeAla].

a=1

That is,
K
A cix) = Zﬂzu-
a=I1
Then Ay, ... consists of piece-wise constant functions with at most K jump

points at points fy, ..., fx. It follows immediately that Ay, ;) € Ay,
therefore the commutants satisfy the relation Ay, € A, , forevery J, K €
{1,2,..., N + M} suchthat J < K. Observe that if A is a subalgebra of an algebra
B of functions and o is a bijection such that both A and B are invariant under o, then

A X Z is a subalgebra of B x5 Z. In our case, we take A = Ay, ;. the algebra

.....

of piece-wise constant functions with jumps at #;, ...,y and B = Ay, .., the
algebra of piece-wise constant functions with jumps atty, ..., fy4+y.In Lemma 2 we
give a sufficient condition on o such that the algebras Ay, . ;) and Ay, sy, are

both invariant under o. In this case Ay, 1} X6 Z S Ay,,....txont X6 Z and therefore
we can compare the commutants Ait 1y and .A/{l 1o TESPECtiVELy.
Toeees N . TseesIN+M
Fora € {0, 1,..., N}, let I, = (ty, tyy1) With fo = —o0 and 7y = 400 such
that Iy = (ty,o00) andfori =0,1,..., M, let I]lv = (tN+i> INwit1) With ty gy =
00. In order to be in the setting in [7], we define, fora = 1,..., N, Iy1o = {ty} and
fori =1,..., M, I,]\‘,”’ = {ty+i}. Then we have the following.

y are both

.......... N
invariant under o. Then o (Iy) = Iy.

Proof Supposeo (Iy) # Iy.ThenbyLemmal,o(Iy) = I, forsomex € {0, 1, ...,

N — 1} and since ty4; € Iy foreachi =1,..., M, andsince Ay, . ,.,,) 1S invariant
under o (and o (Iy) # Iy), then o (ty4;) € {t1, ..., ty} forevery i € {1,..., M}.
Butalsoo(t,) € {t;,...,ty}foralla =1,..., N.

Therefore o ({t1,...,tN,tN21, ..., tnem)) = {t1,...,txy} Wwhich contradicts
bijectivity of o. (]

Below we give a comparison of the commutants A}, , and A, .. Let
o1 Aoy = A,y be the automorphism on Ay, ;) induced by o, that is
for every f € Ay,...1» 01(f) = f oo ~!. Similarly we define the automorphism
o2 on Ay, .1yt induced by o. Consider the following sets

.....
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and

Sepln, R):=={x eR[Ih € Ap,.iyuny | h(X) # 65 (M) ()}

sendNaM Y

Then it can easily be seen that

Sep‘r;"(q,.,.,r,v)(R) C Sep.%m,.. (R)

SIN4M)
Using the notation in [7], we let

Cy = {x € R | k is the smallest positive integer such that x, % (x) € I,
forsomea =0,1,...,2N}.

Let also

C~‘k = {x € Iy | k is the smallest positive integer such that x, ok(x) € I,’;,
forsomei =1,..., M}.
Then we have the following Theorem 4.
Theorem 4

1. Foreveryn € Z

Sepluy o ®=5epl  ® | (UinCi)

< IN+M)
2. and therefore the commutants satisfy:

'Aiz, AAAAA ivem] = itl ) \ [anan | for somen € Z, f, #0

.....
nez

on some Cy, with k{n} .

Proof

1. By Lemma 2, o (Iy) = Iy and hence Iy ¢ Sepfq( )(R) for any n € Z. Also,
1l
for every n € Z,

Seplty o ® = (UnC) [ (Vi€

=S, B (UinCi).

2. Now let us consider the commutants. By Theorem 1, the commutant Ay,
given by

v} 1S
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‘A/{tl ,,,,, tn} = [anSn | foralln € Z : fnlSep"A[] W(R) = 0] .
nez

Since Iy ¢ Sepfq( }(R) for any n € 7Z, therefore,
ol N

[anan | fu(x) #0ifx € IN} CAL -

.....
nez

Now

‘A/{tl .... i) = {Z fn(S” | foralln € Z : fn|S8p’;l(r|,..”rN+M)(R) = O]

nez

=Al ) [ansn | forsomen € Z, f, #0

nez

on some Cy with k } n} .

4.1 An Example

As application of our results, we consider the case when only one jump point is
introduced and give an explicit description. Suppose Ay, 4,1y} and A, are
algebras defined respectively as follows:

----- N4l

N
Al bt} = [Zﬁ | fieA,, i= 1,...,N},

i=1

and

N
Attt} = [Zfz | fieAr, i=1,...,N+ 1} = A nyy + AT
i=1

Corollary 1 Let 0: R — R be a bijection such that Ay, 1y, vy and Ay .. tv.1)
are both invariant under o. Let I}, = (ty, ty+1) and I}y = (ty41, 00). Then, we have
the following.
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1. Sepﬁhrmwtm(R) - Sepfq( (R) for every n € Z and moreover

N4 1)

9, ifoly) = Iy,

IVUIY, ifo(y) =1}
Sepfqm_rz _____ o ®R) \ Sepi'qm_l2 ..... o R) = and n is odd,

g, ifo(ly) =1y

and n is even.

2. Ifo(Iy) = Iy, then

Al tseetni) = Altrtpei) | HZ 8™ | fomyr #0on I U 11/\//] .

mez

Proof

1. Since Ay, 1,,...0x1 @and Ay, 4,,..1v.,) are both invariant under o, then by Lemma

2 we have that o(Iy) = Iy and hence o (ty+1) = ty4+1 Where Iy = (ty, 00).

It follows therefore that Iy ¢ Sepﬁl( )(R) foreveryn € Z.Observe thatif [; C
.ty

Sepj‘q( )(R)forsomen €eZ, k=0,1,...,N — l,then[kCSepfq( )(R).
.ty et N1
Now consider the action of o on Iy and let I}, = (tn, ty4+1) and Iy = (ty41, 00).

Then we have the following:

a. If o(Iy) = I}, then since o (ty11) = ty+1 (and o is a bijection), then Iy ¢
Sep”A( )(]R) for every n € Z and hence,
nentN 4

Sepy, . R)=Seply (R

ot 41)

for every n € Z.
b. If o (1)) = I}, then I}, I}, C Sequ( )(R) and hence
st N1

Iy, Iy C Sepﬁl“nmw](R)
for each odd n € Z. It follows therefore that
Sep«’;{(tl.lz ,,,,, /N)(R) g Sep;llul.lz,.,.,wﬂ)(R)

for every n € Z.

2. Using Theorem 1, the commutant Aitl’&mwmis given by

'Airl,rZ,,,,,rNH} = [Z fnan I f”'SEPZ%(,,,@,. ®R) = 0¢.

- IN1)
nez
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We have the following cases:

a. If o(Iy) = I, then

Sep.lllq(l,l ..... v (R) = Sep\r/l[(rn ,,,,, ’N+]) (R)
for every n € Z, and hence
Ai =A,

1,0, tN g1} {t1.t2,..0tn )"

b. If o (I},) = I}, then

2m+1 2m+1
Sepi’(’rnmwm(R) = SepA"(’fn IN)(R) U (Iz/v U 11/\;) ,

and hence

Ait17t2~,----tN+l} = ‘Aitl,tz,m.,lzv} \ [Z fn8" | for some m € Z,

mez

fom+1 7 Oon II/V U ]]/\;} .

5 Description of the Center

Below we give the description of the center of our crossed product algebra A x5 Z.
This center will be the commutant of some subset of the crossed product as can be
seen from Remark 1 below. The lemma below will be important in our considerations.

Lemma 3 Let B C A be a subset of an associative C—algebra A and let B be the
algebra generated by B. Then B’ = B’ where B’ and B’ denote the commutants of
B and B respectively.

The following theorem whose proof can be found in [4], gives the description of
the center of a crossed product algebra A x5 Z where A = CX.

Theorem 5 Let A € C¥ beanalgebra of functions that is invariant under a bijection
o: X — X. Anelement g =3, _, g.8" isin Z(A X Z) if and only if both of the
following conditions are satisfied:

1. forallm € Z, g, is Z—invariant, and
2. forallm € 7Z, gm|5€,,r;l x) =0.

In the theorem below we give the description of the center Z(A x; Z) for the
case when A is the algebra of piece-wise constant functions with N jumps. First we
make a few observations.
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Recall the definition of Cj as given by (5). By Lemma 1 and bijectivity of o, if
I, C Cy, then o*(1,) = I,. Therefore each Cy consists of cycles of intervals which
we denote by 0,’;, and each 0,‘; can be written as

O, =1{I,.....I,}

s Loy

such that O’(I(ij) =1, forj=1,....k—1ando(I}) = I . Using these cycles

Ojt1
and Theorem 5 we gi\lie a description of the center below.
Theorem 6 Let A be the algebra of piece-wise constant functions f : R — R with
N fixed jumps at points t|, t2, ..., ty as described in section 3. Let 0 : R — R be
any bijection on R such that A is invariant under o and o =" and let 5 : A — A be
the automorphism on A induced by o. Then

ZA X 7)) = [Z £.8" | f. is constant on every cycle O} in Cy,
nez

for all k such that k | n} .

Proof By the second part of Theorem 5, an element f = >, f,8" € Z(A x5 Z)
only if forall m € Z, gulsepn (x) = 0. From (6), we have that Sep’) (R) = Ukm Cy.
Therefore, f € Z(A % Z)onlyif f, =0on I, : " (l,) # I,.Orequivalently, f €
Z(A x5 Z) only if f, = 0on Cy forall k { n.

Also by the first part of Theorem 5, assuming the condition above holds, then f €
Z(A x4 Z) if and only if for all n € Z, f, is Z—invariant, that is, for all n € Z
and all x € R, f,(o(x)) = f,(x). From above, f, = 0 on each Cy such that k { n.
Now consider Cy such that k | n. As observed above, such Cy consists of cycles of
intervals of length k denoted by O}, where each O} can be written as

Of =i, 1},)
suchthato (1)) = I, for j=1,....,k —lando () = I;,. Since foreachn, f,
is a piece-wise constant function and f, = 0 on each Cy, for which & { n, then f,
being Z—invariant is equivalent to saying f, takes a constant value on each of the
cycles O} in Cy. O

Remark 1 One question of interest would be to compare the set difference of the
commutant Ay, \ A}, with the commutant (A,
the crossed product algebra Ay, } X 2.

Observe that (Ay,

xzZ. By Lemma 3, if B is any subset of an associative C—algebra A and B is
the algebra generated by B then B’ = B’. Therefore if we let A = A, X 7
and B = Ay, iy Yo L\ Ay, w X& Z, then the commutant B’ = B’ where B is
the algebra generated by B. Now, it is easily seen that if C = A, ;. \ A ys
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then the algebra C generated by C is Ay, . .., It follows therefore that the algebra
generated by B is the whole crossed product algebra A;, .., X Z. Therefore to
find the commutant B’ of B is the equivalent to finding the center Z (A,, Xg 7).

----- INyM

6 Jump Points Added into Different Intervals

Let {z;, ..., 1y} be aset of points in R such that 1, <, < ... < ty and let A be an
algebra of piece-wise constant functions with N fixed jumps at points #1, . .., fy. Let
S={s1,....,su}beasetinR, m < Nsuchthatt;_| <s; <t;, j=1,...,m.Let
As;» J =1,..., mbe the algebra of piece-wise constant with a fixed jump at s; and
define Ag by

As = A+ iﬂsj.
j=1

Then Ay is the algebra of piece-wise constant functions with at most N + m jumps
atpoints t1, ..., ty, S1, ..., S,. It can be seen obviously that A C Ay and therefore
A’y C A’, (under some conditions), where A’ and A5 denote the commutant for A
and Ag respectively. In this section we describe the set of separation points for Ag
and then compare the commutants A’ and A%.

Using the methods in [7], let I, = (ty, ty+1) fora = 0,1, ..., N with ) = —o0
and fyy; =00 and Iyigy1 = {ta}, « =1,..., N. Now, for functions in Ag, a
jump point is introduced in each of the intervals I,, o =0,...,m, therefore

each of these intervals is divided into three subintervals I, = (ty, S¢+1), I, =
(Sat+15 tat1), and 1" = {sy4+1}. We have the following.

Lemmad4 Leto: R — R be a bijection such that the algebras A and Ag are both
invariant under o. Then
o (Ul_ola) =VUl_o1,.

Proof Suppose for some « € {0, 1,...,m}, o(l,) = Iz for some B > m. Since
Sat+1 € Iy, then 0 (sq11) € I. By invariance of Ag under o, 0 (s¢+1) must be jump
point for some function f € Ag, which is a contradiction. O

6.1 Description of Sepﬁls (R) and the Commutant A’

Below we give a description of SepZLS (R) in terms of Sep”; (R) forn € Z. As before,
we let Cy be as defined in (5), that is

Cy = {x € R | k is the smallest positive integer such that x, ok(x) eI,
forsomea =0,1,...,2N}.
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Let also

Cy = {x € Cy | k is the smallest positive integer such that x, ok(x) e,
forsomea =0,1,...,2N},

and

Cv = {x € Cy | 2k is the smallest positive integer such that x, o (x) e I,
forsomea =0,1,...,2N}.

We give the descriptions in the following theorem.

Theorem 7 For everyn € Z

Sepl (R) = U (ék U C_‘k/z) , @)
kin

and the commutant is given by

Ag = A"\ [Z fu8" | for some n, k such that k is even, k { n and k | 2n

nez

fa #00n Cep}. (8)

Proof Using (6), we have that

Sep’y (R) = | Cu.
kin

From the definitions of (fk and Cy it follows immediately that
Cr = Gy U Cypa,

and this proves (7). Now consider the commutant A’.
Again, from Theorem 1, we have

AIZ[angn | foralln € Z : fnlSepfq(X)EO], 9)
nez

Looking at (7), we observe that if k is odd, then C; 2 = ¥ and nothing changes
on the commutant. Therefore taking even k and combining (7) and (9), we get
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c=A\ anS” | for some n, k such that k is even, k { n and k | 2n,

nez

fu #0o0n Cyp}.
O
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Asymptotic Expansions for Moment
Functionals of Perturbed Discrete Time
Semi-Markov Processes

Mikael Petersson

Abstract In this paper we study moment functionals of mixed power-exponential
type for non-linearly perturbed semi-Markov processes in discrete time. Conditions
under which the moment functionals of interest can be expanded in asymptotic power
series with respect to the perturbation parameter are given. We show how the coef-
ficients in these expansions can be computed from explicit recursive formulas. In
particular, the results of the present paper have applications for studies of quasi-
stationary distributions.

Keywords Semi-Markov process - Perturbation - Asymptotic expansion * Renewal
equation - Solidarity property - First hitting time

1 Introduction

The aim of this paper is to present asymptotic power series expansions for some
important moment functionals of non-linearly perturbed semi-Markov processes in
discrete time and to show how the coefficients in these expansions can be calculated
from explicit recursive formulas. These asymptotic expansions play a fundamental
role for the main result in [6], which is a sequel of the present paper.

For each ¢ > 0, we let £¥(n), n =0, 1, ..., be a discrete time semi-Markov
process on the state space X = {0, 1, ..., N}. It is assumed that the process £@ (n)
depends on ¢ in the sense that its transition probabilities ij) (n) are continuous at
¢ = 0 when considered as a function of ¢. Thus, we can, for ¢ > 0, interpret the
process £ (n) as a perturbation of £ (n).

Throughout the paper, we consider the case where the states {1,..., N} is a
communicating class of states for ¢ small enough. Transitions to state 0 may, or may
not, be possible both for the perturbed process and the limiting process. It will also
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be natural to consider state 0 as an absorbing state but the results hold even if this is
not the case.

Our main objects of study are the following mixed power-exponential moment
functionals,

(o] o0
Do.r) =D n e g, wfl(p.r) =D n"eMhEm), (1)
n=0 n=0

where p e R,r =0,1,...,i,j,5s € X,
g ) = Pifuf” = n, pug” > 1),
B = PEOm) = 5. n A > n),

and “5‘8) is the first hitting time of state j.

As is well known, power moments, exponential moments, and, as in (1), a mixture
of power and exponential moments, often play important roles in various applications.
One reason that the moments defined by Eq. (1) is of interest is that the probabili-
ties Pi(jg) (n) = P{E® ) = j, u((f) > 0} satisfy the following discrete time renewal
equation,

n

P () = h;)n)+ D P (n— kgl (). n=0,1,....
k=0

This can, for example, be used in studies of quasi-stationary distributions as is illus-

trated in [6].

Under the assumption that mixed power-exponential moments for transition prob-
abilities can be expanded in asymptotic power series with respect to the perturbation
parameter, we obtain corresponding asymptotic expansions for the moment func-
tionals in Eq. (1). These expansions together with explicit formulas for calculating
the coefficients in the expansions are the main results of this paper.

In order to achieve this, we use methods from [2] where corresponding moment
functionals for continuous time semi-Markov processes are studied. These meth-
ods are based on first deriving recursive systems of linear equations connecting the
moments of interest with moments of transition probabilities and then successively
build expansions for solutions of such systems.

Analysis of perturbed Markov chains and semi-Markov processes constitutes a
large branch of research in applied probability, see, for example, the books [2—4, 7],
and [1]. More detailed comments on this and additional references are given in [6].

Let us now briefly outline the structure of the present paper. In Sect.2 we define
perturbed discrete time semi-Markov processes and formulate our basic conditions.
Then, systems of linear equations for exponential moment functionals are derived
in Sect.3 and in Sect.4 we show convergence for the solutions of these systems.
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Finally, in Sect. 5, we present the main results which give asymptotic expansions for
mixed power-exponential moment functionals.

2 Perturbed Semi-Markov Processes

In this section we define perturbed discrete time semi-Markov processes and formu-
late some basic conditions.

For every ¢ > 0, let (n®), k¥),n = 0, 1, ..., be a discrete time Markov renewal
process, i.e., a homogeneous Markov chain with state space X x N, where X =
{0,1,..., N} and N = {1, 2, ...}, an initial distribution Q(e) P{n(s) =i}, i € X,
and transition probabilities which do not depend on the current value of the second
component, given by

0y =Py = j. ki =k1n® =i, kO =1}, kI, i, jeX.

In this case, it is known that n@ n=20,1, , 1s also a Markov chain with state
space X and transition probabilities,

Py =P{n =iy =i} = ZQ%«) ivjeX.

Let us define ¥ (0) = 0and ¥ (n) = K](S) + -+ K,(f), forn € N. Furthermore,
forn =0, 1,..., wedefine v® (n) = max{k : 7 (k) < n}. The discrete time semi-
Markov process assocmted with the Markov renewal process (1, k() is defined
by the following relation,

QM) =l n=01,...,
and we will refer to ij) (k) as the transition probabilities of this process.

In the semi-Markov process defined above, we have that (i) K,ES) are the times
between successive moments of jumps, (ii) 7*)(n) are the moments of the jumps,
(iii) v® (n) are the number of jumps in the interval [0, n], and (iv) n'® is the embedded
Markov chain.

Itis sometimes convenient to write the transition probabilities of the semi-Markov
process as QST) (k) = pfjs) flis) (k), where

fi(jg)(k)=P{ y(li)l—km(g)_l ’7;(12121}’ keN, i jeX,

are the conditional distributions of transition times.
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We now define random variables for first hitting times. For each j € X, let v(g)

min{n > 1: 7% = j} and “5') = r(vj(.g)). Then, v](.) and ,u;) are the first hlttmg

times of state j for the embedded Markov chain and the semi-Markov process,
(&) (&)

respectively. Note that the random variables v, and ', which may be improper,
take values in the set {1, 2, ..., oo}.
Let us define
glj)(n) { © _ p, vé‘s)>v(€)},n=0,l,...,i,jeX,

and
gl(j) =P; {v((f) > v(p)], i,jeX.

Here, and in what follows, we write P; (4®)) = P{A® | r;((f) = i} for any event A®).
Corresponding notation for conditional expectation will also be used.
Moment generating functions for distributions of first hitting times are defined by

(o]

¢I.(;) (p) = Ze"’”glj)(n) ep”;g)x (v(()g) (5)) peR, i,jeX. (2
n=0

Furthermore, let us define the following exponential moment functionals for tran-
sition probabilities,

P (p) = Ze”"fo)(n), peR, i jeX,

where we define ij) 0) = 0.
Let us now introduce the following conditions, which we will refer to frequently
throughout the paper:

A: (a) pl(f) — pl(?),ass —0,i #0,j € X.
) ) — (). ase > 0,n €N, i #£0, j € X.
B: g >0,i,j#0.
C: There exists 8 > 0 such that:
(a) limsupy_, .o p{;(B) < oo, foralli #0, j € X.
(b) ¢ (B) € (1, 00), for some i # 0 and B; < B.
It follows from conditions A and B that {1, ..., N} is a communicating class of

states for sufficiently small €. Let us also remark that if pl(g) = 0foralli # 0, it can
be shown that part (b) of condition C always holds under conditions A, B, and C(a).
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3 Systems of Linear Equations

In this section we derive systems of linear equations for exponential moment func-
tionals.
We first consider the moment generating functions ¢i(;) (p), defined by Eq. (2). By

conditioning on (;71 , Kl ) we get for each i, j # 0,

¢i(;>(p) ZZE (ew, X( ) _ (s))M(e) =1,k = )Q(E)(k) 3)

leX k=1

_ Z"’ka(E)(") T Z ZEM(HW) (u((f) - V]ge)) Q(S)(k).

1#£0,j k=1

Relation (3) gives us the following system of linear equations,

$2(0) = p )+ > PP ()8 (0). i, j #0. @

10, j

In what follows it will often be convenient to use matrix notation. Let us introduce
the following column vectors,

T

O (p) = [ (0) -+ d)()| . J#0, 5)
T

P =[Pl 0) - p)] L e X, (©)

For each j # 0, we alsodefine N x N- matrlcesjP(S) (p) = ||1P,/i)(:0)|| where the
elements are given by

(&) : .
£) P () i=1,....,N, k# ],
i (p) = [0 i=1. N k=] (7

Using (5)—(7), we can write the system (4) in the following matrix form,

() = (p) + PO (p). j # 0. ®

Note that the relations given above hold for all p € R even in the case where some
of the quantities involved take the value infinity. In this case we use the convention
0 - oo = 0 and the equalities may take the form co = oo.

Let us now derive a similar type of system for the following exponential moment
functionals,
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o0
wz(jgz(p) = Zepnpi {S(S)(n) =39, Még) A /‘Lj } , P € R? iv j’ s e X.
First, note that

0
o)) =B > ey (890 =5, u Au > n)

u /\M“) 1

=E D, xEYm =y

n=0

We now decompose o' (,0) into two parts,

ijs
-1 e Apl =1

o) (p)=E D "xEPm =5)+E D "xEPm=s5). )
n=0 n:K{”

Let us first rewrite the first term on the right hand side of Eq. (9). By conditioning

on Kl(s) we get, fori, s # 0,

(&)
K —1

Ei D e xE9m) =)
n=0
K1(5)71

=§:E,- > epnx(g@)(n):s))xf”—k Pi{k” =k}

k=1 n=0

It follows that

(6) 1

Ei Z " Y (ED(n) =5) =8, )9, (p), i,s #0, (10)
n=0
where o
(&) . ElK]S p =0,
" (p)_l@ P! 1)/ — 1) p 0. (“)

Let us now cons1der the second term on the right hand side of Eq. (9). By condi-
tioning on (77l LKy )) we get, for i, j, s # 0,
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MBS)AH;€)71
E D, ¢"xE9m) =5
n=Kl(s)
o0 ng A =1
=D D E| X aEPm=9n" =1 " =k| 0 ®
1#0,j k=1 n=x®
. ME)S)/\M;S)71
=> D> E| D MrEYm =9 | 0 k).
170, k=1 n=0
It follows that
ud Au;") —1
Ei D "xGYm=9=2 p 0 (p), i, j.s #0.  (12)
n=rc® 1#0, j

From (9), (10), and (12) we now get the following system of linear equations,

0 (p) = 8. )07 (D) + D pl (D) )(p). i, j.s #0. (13)
1£0,

In order to write this system in matrix form, let us define the following column
vectors,

99 (0) = [51. 90 () - 8N, )9 (p)]" 5 #0, (14)
T
2 (p) = [0l (0) -+ o) )] . Jos #0. (15)

Using (7), (14), and (15), the system (13) can be written in the following matrix
form,

Q) (0) =9 (p) + ;PO (PR (p), j,s #0. (16)
We close this section with a lemma which will be important in what follows.

Lemma 1 Assume that we for some ¢ > 0 and p € R have that gl.(,f) >0,i,k#0
and p;,i)(,o) < 00,1 #0, k € X. Then, for any j # 0, the following statements are
equivalent:

(@) @ (p) < oo,
(b) Q) (p) < 00,5 #0.

(¢) The inverse matrix (I — jP(s) (p) ! exists.
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Proof For each j # 0, let us define a matrix valued function | A(S) (p) =llja (8) « O
by the relation

A () =T+ Pp) + (PV(p) + -, peR. (17)

Since each term on the right hand side of (17) is non-negative, it follows that
the elements ]a (,0) are well defined and take values in the set [0, oo]. Further-
more, the elements can be written in the following form which gives a probabilistic
interpretation,

o0
Iaz(i)(p) — Ei Zeprm(n)x(vés) A U;a) > n, n’(qe) — k), i k # 0. (18)
n=0
Let us now show that
" (p) = ;A0 (p). p €R. j #0. (19)
In order to do this, first note that, for j # 0,
KO =) = 33 () A = =k =) @O
n=0 k0

Using (20) and the regenerative property of the semi-Markov process, the follow-
ing is obtained, for i, j # 0,

50 = > S B ) (o A P =k i =)

n=0 k0

_ ZZE 07 () ( © A <s> >0, n® = k) Pk)(/))
J

n=0 k#0

From (18) and (21) we get

¢ (0) =D ja ()p (p), i, #0, (22)

k#£0

and this proves (19).
Let us now define

9]
o (0) =X o) = D" Pi ) Al = nf pe R ij 0. @3)
s#0 =
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Then, we have

0 (p) = Ei (g’ A ) p =0, o4
Y (E;e? 5" M5 — 1) (P — 1) p # 0.

Also notice that

(&)

(&) (&) (&)
Eje?®o) = Eie” x (v > vi) + Eie” x (v < v, i, j #0. (29)

Using similar calculations as above, it can be shown that
(&) .o
Eie” x(vy” <v) =" ja (0)pi (p), i, j # 0. (26)
k0
It follows from (22), (25), and (26) that
(g) (&) ° e ..
Bt =3 (o) (p ) + PR @) i j#0. @)
k£0
Let us now show that (a) implies (b).
By iterating relation (8) we obtain,
O (p) = (14 PO p) + -+ (PO0)") B (0) (28)

n+1 °
+(P9)"T (), n=1,2,...

Since ' (p) < o0, it follows from (28) that
A n+1
(jP( )(p)) @;8)(,0) — 0, asn — oo. (29)

The assumptions of the lemma guarantee that d>;€> (p) > 0. From this and relation

(29) we can conclude that (jP(E) (p)"T! — 0,as n — oo. It is known that this holds
if and only if the matrix series (17) converges in norms, that is, jA(a)(,o) is finite.
From this and relations (23), (24), and (27) it follows that (b) holds.

Next we show that (b) implies (c).

By summing over all s # 0 in relation (16) it follows that

Q¥ (p) = 0 (p) + P (02 (p). p €R, (30)

where ;
2 (p) = [0l (0) - wfj(p)] . J #0.
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and .
?90) = [ () - o] -

By iterating relation (30) we get

Q7 (p) = @+ ;P (p) + -+ + (PO ()9 (p) 31
+GPO )R (o) n=1.2.

It follows from (b) and the definition of wfj) (p) that 0 < Qg.g) (p) < oc. So, letting
n — ooin (31) and using similar arguments as above, it follows that the matrix series
(17) converges in norms. It is then known that the inverse matrix (I — J-P(S)(,o))_1
exists, that is, (c¢) holds.

Let us finally argue that (c¢) implies (a).

If (- jP“) (p)) ! exists, then the following relation holds,

A= P~ =1+ ;P9 (p)A— P (p))"". (32)
Iteration of (32) gives

A — PN =1+ P9) + PO+ -+ GPO>)"  (33)
+(GPO ()™ A= PO n=1,2,....

Letting n — oo in (33) it follows that ;A (p) = (I — ;P (p))~" < co. From (19)
we now see that (a) holds. ([l

4 Convergence of Moment Functionals

In this section it is shown that the solutions of the systems derived in Sect. 3 converge
as the perturbation parameter tends to zero. In addition, we prove some properties
for the solution of a characteristic equation.

Let us define

(&)
@ (p) = Eie™ x (0 v =), peR, i, jkeX.

If the states {1, ..., N}is a communicating class and ¢;;” (p) < 1 for somei # 0,
then it can be shown (see, for example, [5]) that the following relation holds for all

J#0,

(&)
ii

(1-¢9@) (1=05 @) = (1-95 @) (1- 05 0). G4
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Relation (34) is useful in order to prove various solidarity properties for semi-
Markov processes. In particular, if ¢>i(f) (p) = 1, relation (34) reduces to

(1-e5'@) (1-5850) =o. (35)
From the regenerative property of the semi-Markov process it follows that
(&) — 4® (&) (&) : :
3 (0) = 10 (0) + 105 (0)8(0). j #0.1. (36)
Since {1, ..., N}isacommunicating class, we haveiqﬁfj) (p) > Oand ¢;f) (p) > 0.

So, if ¢i(f) (p) = 1 it follows from (36) that _,-¢§f) (p) < 1. From this and (35) we can
conclude that (]5](.;) (p) = 1 forall j # 0. Thus, we have the following lemma:

Lemma 2 Assume that we for some ¢ > 0 have that g,S) > Oforallk, j # 0. Then,

if we for some i # 0 and p € R, have that ¢i(f) (p) = 1, it follows that ¢](i~) (p)=1
forall j #0. '

Let us now define the following characteristic equation,
¢ () =1, (37)

where i # 0 is arbitrary. The root of Eq. (37) plays an important role for the asymp-
totic behaviour of the corresponding semi-Markov process, see, for example, [6].

The following lemma gives limits of moment functionals and properties for the
root of the characteristic equation.

Lemma 3 Ifconditions A—C hold, then there exists § € (0, B]such that the following
holds:

@ ¢ () = ¢ (p) <o ase = 0,p <8,k j#0.
(i) o) (p) > wi(p) < oo, ase — 0,p <8, k. j.s#0.
(iii) ¢7(8) € (1,00), j # 0.

(iv) For sufficiently small €, there exists a unique non-negative root p® of the
characteristic equation (37) which does not depend on i.

W) p® = p® <sase — 0.

Proof Let i # 0 and B; < B be the values given in condition C. It follows from
conditions B and C that ¢’,(,0 )(,0) is a continuous and strictly increasing function for

p < B;.Since ¢z‘(?) 0) = gi(?) < 1and ¢i(?) (B;) > 1, there exists a unique p’ € [0, 5;)
such that ¢l.(?) (p’) = 1. Moreover, by Lemma 2,

V() =1, j#0. (38)
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For all j # 0, we have

¢\ (") =105 (o) + ;85 (D) (). k #0, j. (39)
It follows from (38) and (39), and condition B, that
¢ (p) < 00, k. j #0. (40)

From (40) and Lemma 1 we get that det(I — ;P®(0")) # 0, for j # 0. Under
condition C, the elements of I — jP(O) (p) are continuous functions for p < B. This
implies that we for each j # O can find B; € (p’, B;] such that det(I — P(O) (Bj)) #

0. By condition C we also have that pkj)(,B]) <oofork #0,j € X. It now follows

from Lemma 1 that ¢kj)(/31) < 00, k, j # 0. If we define § = min{By, ..., By}, it
follows that
¢ (p) <00, p <8, k. j#0. (41)

Now, let p < § be fixed. Relation (41) and Lemma 1 imply that
det(I— ;PV(p)) #0, j #0. (42)

Note that we have
P (o) = pi Zeﬂ" (). k. jeX. (43)
Since fk(js) (n) are proper probability distributions, it follows from (43) and con-
ditions A and C that
pk])(p)—>pk]>(p)<oo ase - 0, k #£0, j € X. (44)

It follows from (42) and (44) that there exists £; > 0 such that we for all ¢ < &,
have that det(I — ;P (p)) # 0 and p“) (p) < oo, forall k, j # 0. Using Lemma 1

once again, it now follows that ¢,§j) (p) <00, k, j#0,forall ¢ < e;. Moreover, in
this case, the system of linear equations (8) has a unique solution for ¢ < ¢; given
b
’ o (p) = A~ PP (o). j #0. (45)
From (44) and (45) it follows that
$i (0) = ¢ (p) < 00, ase — 0, k. j #0.

This completes the proof of part (i).
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For the proof of part (ii) we first note that, since ¢(8) (p) < ocofore < e1,k, j #0,

it follows from Lemma 1 that w(‘g) (p) <oofore <ey,k, j,s #0. From this, and
arguments given above, we see that the system of linear equations given by relation
(16) has a unique solution for ¢ < g; given by

Q) = A= ;P9) '8 (p), j.s #0. (46)

Now, since E;e?t” = D ex pl;) (p), it follows from (11) and (44) that <p(£) (p) =
gol.(o) (p) < ocoase — 0,i # 0. Using this and relations (44) and (46) we can conclude
that part (ii) holds.

By part (i) we have, in particular, ¢§.j) 8) — ¢>;(;) (8) < occase — 0,forall j £ 0.
Furthermore, since p’ < § and qu(.(;) (p) is strictly increasing for p < 4§, it follows from
(38) that ¢ (8) > 1, j # 0. This proves part (ii).

Let us now prove part (iv).

It follows from (i) and (iii) that we can find &, > O such that ¢_§j> ¥) € (1, 00),
Jj #0, for all & <¢&,. By conditions A and B there exists 3 > 0 such that, for
each i # 0 and ¢ < g3, the function gl(f ) (n) is not concentrated at zero. Thus, for
every i # 0 and ¢ < min{e,, €3}, we have that ¢(£) (p) is a continuous and strictly
increasing function for p € [0, §]. Since qbl(f )(0) = gl(f ) <1 and ¢)l(f )(8) > 1, there
exists a unique p* € [0, §) such that ¢ (o) = 1. By Lemma 2, the root of the
characteristic equation does not depend on i so we can write p'® instead of ,oi(s). This
proves part (iv).

Finally, we show that p® — p©@ as e — 0.

Let y > 0 such that p©® +y < § be arbitrary. Then qbi(?) (@ —y) <1 and
¢>i(?> (p©@ + y) > 1. From this and part (i) we get that there exists &4 > 0 such
that ¢ (p©@ —y) <1 and " (0@ +y) > 1, for all & < &,. So, it follows that
|p® — p©@] <y for e < min{es, 3, £4}. This completes the proof of Lemma 3. [J

S Expansions of Moment Functionals

In this section, asymptotic expansions for mixed power-exponential moment func-
tionals are constructed. The main results are given by Theorems 1 and 2.

Let us define the following mixed power-exponential moment functionals for
distributions of first hitting times,

¢y (0, r) = Zn g (), peR, r=0,1,.... i, jeX

By definition, ¢%'(p. 0) = ¢ ().
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We also define the following mixed power-exponential moment functionals for
transition probabilities,

P (p.r) = Zn O ), peR, r=0,1,.... 10 j€eX.

By definition, pji' (. 0) = pjj’ (o).
It follows from conditions A—C and Lemma 3 that, for p < § and sufficiently
small ¢, the functions ¢i(;) (p) and pls) (p) are arbitrarily many times differentiable

with respect to p, and the derivatives of order r are given by ¢i ; (p, r) and pl.( j)(,o, r),
respectively.
Recall from Sect. 3 that the following system of linear equations holds,

o (0) = pi () + D pii ()0 (p). i j #0. (47)

10, j

Differentiating relation (47) gives

3 (0. 1) =100 1)+ D p (gl (o). r=1,2, i j #£0, (48)
1#0,j

where
4 r
M0,y =pS 0.+ (m) > i (0. (o, r —m).  (49)
m= 150, j

In order to write relations (47)—(49) in matrix form, let us define the following
column vectors,

T
O (p.r) = (6 (0.r) - dii) (0.1 L J £0. (50)
T
P (0. = [P0 00 | 20, (51
Ao, r) = [0 1) - 200 ] L #0. (52)

Let us also, for j # 0, define N x N-matrices P(a)(,o r) = ||Jp(g) (p, r)|| where
the elements are given by

£) .
. (5) _ plk(p V)l—l .,N,k;é_],
.Ipzk(pvr)_[o l_l,...,N,ij. (53)
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Using (47)—(53) we can for any j # O write the following recursive systems of
linear equations,

7 (p) =p\”(p) + ;PO (0)DF (p), (54)
and, forr =1,2,...,
(0. r) = AT (p.r) + PO(0) @ (p. 1), (55)
where

- r
AP0, 1) =p (0, 1) + ) (m)jP@(p, m® (o, r —m).  (56)
m=1

Let us now introduce the following perturbation condition, which is assumed to
hold for some p < 8, where § is the parameter in Lemma 3:

Pi p(p.r) = p (0. 1)+ pilp.r e + -+ pilo. r k — rlek + o(e5),
for r =0,...,k, i #0, j € X, where |p;j[p,r,n]| < oo, for r =0,...,k,
n=1,...,k—r,i #0,j € X.

For convenience, we denote pl.(?) (p,r) = pijlp,r, 0], forr =0,... k.
Note that if condition P} holds, then, for r =0, ..., k, we have the following
asymptotic matrix expansions,

PO, r) = Plp,r,01+ ;Plp,r, le+---+ ;Plp, r.k — rle"™ +o(e" ™),
(57)
pg-s)(p, ry=pjlp,r. 01 +pjlp,r, e +---+pjlp,rk —rle"" +o(e" ).
(58)
Here, and in what follows, o(¢”) denotes a matrix-valued function of & where
all elements are of order o(e”). The coefficients in (57) are N x N-matrices
iPlo,r,nl = |;p;.[p,r, n]|| with elements given by

A _ | pulp.ronli=1,....N, k # j,
iPiulo,rin]l = 0 i=1,...,N, k=],

and the coefficients in (58) are column vectors defined by

T
pjlo.r.nl = [pijlp.r.n] -+ pnjlp.r.nl]

Let us now define the following matrix, which will play an important role in what
follows,

JU(p) = (= ;PO (p)) "

Under conditions A—C, it follows from Lemmas 1 and 3 that jU(s) (p) is well defined
for p < ¢ and sufficiently small ¢.
The following lemma gives an asymptotic expansion for jU(‘g)(p).
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Lemma 4 Assume that conditions A—C and Py, hold. Then we have the following
asymptotic expansion,

;U9 (p) = ;Ulp, 01+ ;Ulp, 1]e + - - - + ;Ulp, kle* + o(e"), (59)
where
@ ;PO(p)! n=0,
Ulp,n] = J . 60
iUlp.nl jULp. 013 iP[p.0.ql;Ulp.n —qln=1,... k. (60)

Proof As already mentioned above, conditions A—C ensure us that the inverse
jU(a) (p) exists for sufficiently small €. In this case, it is known that the expan-
sion (59) exists under condition Py. To see that the coefficients are given by (60),
first note that

I=d- ;P9p)); U (p) (61)
=1 — ;PO%p) — ;Plp,0, 1]e —--- — ;Pp, 0, kle" + o(c"))
x(;Ulp, 0]+ ;Ulp, 1le + - -- + ;Ulp, kle* + o(")).

By first expanding both sides of Eq.(61) and then, for n =0, 1, ..., k, equating
coefficients of " in the left and right hand sides, we get formula (60). ]

We are now ready to construct asymptotic expansions for CDf) (p,r).
Theorem 1 Assume that conditions A—C and P} hold. Then:

(i) We have the following asymptotic expansion,

' (p) = @;[p. 0,01+ ,[p.0, 1]e + - + ®,[p, 0. kle* + o(e"),

where
@ (p) n=0
D[ ,0,n]=I {n ’
e 2 g=0Ulp.qlpjlp,0.n —qln=1,... k.
(ii) Forr =1,...,k, we have the following asymptotic expansions,

' (p.r) = jlp. 1,01+ ®;lp. 7, e+ -+ ®jlp. rk — ek + ok ™),
where

P (p.r) n=0,

Q). =
ilp.r.nl IZZ=0jU[/0,Q]Aj[/0,r,n—q]n= L....k—r,
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and, fort =0,...,k—r,

r t
r
A',o,,t——p<,0,,t+E E Plo,m,ql®[p,r —m,t —ql.
j[ ' ] j[ ' ] m=1 (“l) 61:0/ [ ] j[ ' ]

Before proceeding with the proof of Theorem 1 we would like to comment on the
reason that the theorem is stated in such a way that q);s) (p,r),forr =1,...,k, has
an expansion of order k — r. The reason is that this is exactly what we need for the
main result in [6], which, we remind, is a sequel of the present paper. However, it is
possible to construct asymptotic expansions of different orders than the ones stated
in the theorem. In that case, appropriate changes in the perturbation condition should
be made. The same remark applies to Lemma 5 and Theorem 2.

Proof Under conditions A—C, we have, for sufficiently small ¢, that the recursive
systems of linear equations given by relations (54)—(56), all have finite components.
Moreover, the inverse matrix jU(E) (p)=1A- jP(E) (p))~! exists, so these systems
have unique solutions.

It follows from (54), Lemma 4, and condition P} that

o (p) = ;U ()P} () (62)
= (;Ulp. 0] + ;Ulp. e + - - + ;Ulp, kl* + o("))
x(p;10,0.01+p;[p, 0, 1]e +--- + p;[p, 0, kle* + o(e")).

By expanding the right hand side of Eq.(62), we see that part (i) of Theorem 1

holds.
With r = 1, relation (56) takes the form

AP, 1) =p (. )+ P, DO (p). (63)

From (63), condition Py, and part (i), we get

A.(iS)(p’ 1) =pilp, 1,01+ +p;lp, 1,k — 1165~" + o(ek 1) (64)
+(Plp, 1,01+ -+ ;Plp, I,k — 11e*"" +o(e* "))
X(q)f[p’ 07 O] + M + q)j[p, 0, k — 1]8k71 + O(Skil)).

Expanding the right hand side of (64) gives

AP, 1) = Ajlp. 1,01+ Ajlp. 1 1e + -+ Ajlp, Lk — 1]e +o(e" ),
(65)
where

t

Ajlp. 111 =pjlp. 1.t1+ D Plp. 1.q1®;[p. 0.t —ql, t =0, ... .k — 1.
g=0
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It now follows from (55), (65), and Lemma 4 that

P (p. 1) = ;U (0)AT (0. 1) (66)
= (jUlp, 01+ -+ + ;Ulp, k — 11e""" + 0" 1))
x(Aj[p, 1,01+ ---+ Ajlp, 1,k — 1]e"" +o(e* ™).

By expanding the right hand side of Eq. (66) we get the expansion in part (ii) for
r = 1. If k = 1, this concludes the proof. If k > 2, we can repeat the steps above,
successively, for r = 2, ..., k. This gives the expansions and formulas given in part
(ii). O

Let us now define the following mixed power exponential moment functionals,
fori, j,s € X,

o0
a)i(js)(,o, r) = ane”"Pi{S(s)(n) =, ;L((f) A u&s) >n}, peR, r=0,1,....
n=0
Noti (&) N )]
otice that W5 (p,0) = W5 (p).

It follows from conditions A—C and Lemma 3 that for p < é and sufficiently
small ¢, the functions {;)(p) and p(p) are arbitrarily many times differen-
tiable with respect to p, and the derivatives of order r are given by w,(;) (p,1)
and pi(_f) (p, r), respectively. Under these conditions we also have that the functions
(pl.(s) (p), defined by Eq. (11), are differentiable. Let us denote the corresponding deriv-
atives by <pi(‘€) (p,r).

Recall from Sect. 3 that the functions w') (p) satisfy the following system of linear

ijs
equations,
o)) =8, )9 (0) + D Pl (D)) (p), i, j,s # 0. (67)
1#£0,j
Differentiating relation (67) gives
o0, 1) =050, 1)+ D P (o) (p, ), r=1,2,.... i, j,s #0, (68)
1#0,)
where

& . & 4 r & &
05 (p.r) =8G.)p (p.r)+ D (m) D i (pomwp) (o, r —m).  (69)

m=1 1#0, j

In order to rewrite these systems in matrix form, we define the following column
vectors,
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Q9. 1) = [0 L ® T 20 70
_iS Py - a)]js(par) a)NjS(IO9r) ’ ],S # ’ ( )
0% (p.1r) = |6 0 " s #0 71

js ,O,r)— ]_]'S(psr) st(par) ’ ]7S;é ’ ( )

290, 1) =[6(1, 99 (0. r) - (N, (0. )], s £0.  (72)

Using (53) and (67)—(72), we can for each j, s # 0 write the following recursive
systems of linear equations,

Q) () =) + /PO (0 (p), (73)
and, forr =1,2,...,
Q% (p.r) = 0% (0. 1) + P (0)Q) (0. 1), (74)

where

(& . r £
0% (0. 1) =" (0. 1)+ D (m)jP< "o.m)Q) (o r —m).  (75)
m=1

In order to construct asymptotic expansions for the vectors QE? (p,r), we can use
the same technique as in Theorem 1. However, a preliminary step needed in this case
is to construct asymptotic expansions for the functions (pis) (p, r). In order to do this,
we first derive an expression for these functions.

Let us define

U p.r) =D n" e Pilk) =n}, peR, r=0,1,.... i € X. (76)
n=0

Note that

v =2 p o), peR, r=01,.... i €X. (77)
jex

Thus, the functions wi(g) (p, 0) are arbitrarily many times differentiable with respect
to p and the corresponding derivatives are given by 1/’1'(8) (p,r).
The function (pi(g) (p), defined by Eq. (11), can be written as

(&) _
0.1 p=0. 8)

(e) —
g (p) = [ (Wf”(ﬂ»o) — D/’ —1) p#0.

From (76) and (78) it follows that
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¥ (p.0) = (" — D" (p) + 1. p e R. (79)
Differentiating both sides of (79) gives
r—1

v (p.r) = (" = Do (p.r) + e > (r)wf”(p, m), r=12... (80)
m

m=0

If p = 0, Eq. (80) implies

r—=2
¥20, 1) =re 0.5 — 1)+ Z (r)‘/’i(s)((), m), r=2,3,....
m=0 m

From this it follows that, forr = 1,2, ...,

‘ L e STGRY
<ﬂ,-()(0’r)=m(‘/f;()(o’r+l)_z( N )gpl.()(o,m)). (81)

m=0

If p # 0, Eq.(80) gives, forr = 1,2, ...,

& 1 & - r &
670 = —— (w} "(p. 1) —eﬂ%‘)(m)cpf ><p,m)). (82)

Using relations (77), (81), and (82), we can recursively calculate the derivatives
of (pi(g) (p). Furthermore, it follows directly from these formulas that we can construct
asymptotic expansions for these derivatives. The formulas are given in the following
lemma.

Lemma 5 Assume that conditions A—C hold.

(1) If, in addition, condition P}, holds, then for each i #0 andr =0, ...,k we
have the following asymptotic expansion,

¥ (0, r) = Yilp, 01+ Yilp, 1 e + -+ Wilp, r, k = rle"™" + 0(e" ),
where
'(p'l-[lo’r’n] :Zpij[p,r,n], I/Z:O,...,k—r-

jeX

(ii) If, in addition, p = 0 and condition P]";H holds, then for each i # 0 and r =
0, ..., k we have the following asymptotic expansion,

9,70, r) = @i[0, 7,01 + @i[0, 7, e + - + @i[0, r. k — r]e"™ + o(e* ™),

where, forn =0, ...,k —r,
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0ot = ——(wat0.r + 101= 3 (7 Yort0mm
0i[0,r,n = ¥ [0, r ,n " 0;i[0,m,n] }.

m=0

(iii) If, in addition, p # 0 and condition P} holds, then for each i # 0 and r =
0, ..., k we have the following asymptotic expansion,

0" (0.r) = @ilp. 1. 01+ gilp.r. 1e + -+ + @ilp. 1. k — rle"™ + 0(e5),

where, forn =0, ...,k —r,

1 r—1
(pi[pvrvn] = e — 1 (‘/fi[p,r’”] _ePZ (’;)(pl[pvmvn])

m=0
Using (72) and Lemma 5 we can now construct the following asymptotic expan-

sions, forr =0, ...,k,and s # 0,

P (0.r) =@ lp. 01+ @,lp. 1. e+ +@lp. rk —rle™ +o(" ™).
(83)
The next lemma gives asymptotic expansions for Q;i) (p,r).

Theorem 2 Assume that conditions A—C hold. If p = 0, we also assume that con-
dition Py holds. If p # 0, we also assume that condition Py holds. Then:

(i) We have the following asymptotic expansion,

Q) (p) = Qjs[p. 0,01+ Qjs[p. 0. Le + -+ + Qj,[p. 0, k¥ + 0(e"),

where
Q) (o) n=0
Q’S[ 905’1]:[ Jhy -~ ’
s 2=0Ulp. q19,[p,0.n —gqln=1,... k.
(i) Forr =1,...,k, we have the following asymptotic expansions,

Q) (0, 1) = Qjlp, 7, 01+ Qjslp, Ve + -+ Qjglp, rok = r1ek ™ + ok ™),
where

Q) (p.r) n=0,

Q's , T, = n
e S Ul 10 lp i —gln =1 k=,

and, fort =0,...,k—r,



130 M. Petersson

r t
R r
Ojilo, 1t =@,lp,r 1+ ) (m) > iPlp.m. q1Qlp.r —m.t —ql.

m=1 q=0

Proof Under conditions A—C, we have, for sufficiently small ¢, that the recursive
systems of linear equations given by relations (73)—(75), all have finite components.
Moreover, the inverse matrix J-U(E) (p)=~1A- jP(E) (p))~! exists, so these systems
have unique solutions. Since we, by Lemma 5, have the expansions given in Eq. (83),
the proof is from this point analogous to the proof of Theorem 1. (]

References

1. Avrachenkov, K.E., Filar, J.A., Howlett, P.G.: Analytic Perturbation Theory and Its Applications.
SIAM, Philadelphia (2013)

2. Gyllenberg, M., Silvestrov, D.S.: Quasi-Stationary Phenomena in Nonlinearly Perturbed Sto-

chastic Systems. De Gruyter Expositions in Mathematics, vol. 44. Walter de Gruyter, Berlin

(2008)

Kartashov, M. V.: Strong Stable Markov Chains. VSP, Utrecht and TBiMC, Kiev (1996)

4. Koroliuk, V.S., Limnios, N.: Stochastic Systems in Merging Phase Space. World Scientific,
Singapore (2005)

5. Petersson, M.: Quasi-stationary asymptotics for perturbed semi-Markov processes in discrete
time. Research Report 2015:2, Department of Mathematics, Stockholm University, 36 pp. (2015)

6. Petersson, M.: Asymptotics for quasi-stationary distributions of perturbed discrete time semi-
Markov processes. In: Silvestrov, S., Ranci¢, M. (eds.) Engineering Mathematics II. Algebraic,
Stochastic and Analysis Structures for Networks, Data Classification and Optimization. Springer,
Berlin (2016)

7. Yin, G., Zhang, Q.: Continuous-Time Markov chains and applications. A Singular Perturbation
Approach. Applications of Mathematics, vol. 37. Springer, New York (1998)

(98]



Asymptotics for Quasi-stationary
Distributions of Perturbed Discrete Time
Semi-Markov Processes

Mikael Petersson

Abstract In this paper we study quasi-stationary distributions of non-linearly per-
turbed semi-Markov processes in discrete time. This type of distributions are of inter-
est for analysis of stochastic systems which have finite lifetimes but are expected to
persist for a long time. We obtain asymptotic power series expansions for quasi-
stationary distributions and it is shown how the coefficients in these expansions can
be computed from a recursive algorithm. As an illustration of this algorithm, we
present a numerical example for a discrete time Markov chain.

Keywords Semi-Markov process - Perturbation - Quasi-stationary distribution -
Asymptotic expansion - Renewal equation - Markov chain

1 Introduction

This paper is a sequel of [22] where recursive algorithms for computing asymp-
totic expansions of moment functionals for non-linearly perturbed semi-Markov
processes in discrete time are presented. Here, these expansions play a fundamen-
tal role for constructing asymptotic expansions of quasi-stationary distributions for
such processes. Let us remark that all notation, conditions, and key results which we
need here are repeated. However, some extensive formulas needed for computation
of coefficients in certain asymptotic expansions are not repeated. Thus, the present
paper is essentially self-contained.

Quasi-stationary distributions are useful for studies of stochastic systems with
random lifetimes. Usually, for such systems, the evolution of some quantity of interest
is described by some stochastic process and the lifetime of the system is the first time
this process hits some absorbing subset of the state space. For such processes, the
stationary distribution will be concentrated on this absorbing subset. However, if we
expect that the system will persist for a long time, the stationary distribution may
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not be an appropriate measure for describing the long time behaviour of the process.
Instead, it might be more relevant to consider so-called quasi-stationary distributions.
This type of distributions is obtained by taking limits of transition probabilities which
are conditioned on the event that the process has not yet been absorbed.

Models of the type described above arise in many areas of applications such
as epidemics, genetics, population dynamics, queuing theory, reliability, and risk
theory. For example, in population dynamics models the number of individuals may
be modelled by some stochastic process and we can consider the extinction time
of the population as the lifetime. In epidemic models, the process may describe the
evolution of the number of infected individuals and we can regard the end of the
epidemic as the lifetime.

We consider, for every ¢ > 0, a discrete time semi-Markov process £© ),
n=0,1,...,onafinite state space X = {0, 1, ..., N}.Itis assumed that the process
£®(n) depends on ¢ in such a way that its transition probabilities are functions of
¢ which converge pointwise to the transition probabilities for the limiting process
£ (n). Thus, we can interpret £ (n), for ¢ > 0, as a perturbation of £© (n). Fur-
thermore, it is assumed that the states {1, ..., N} is a communicating class for ¢
small enough.

Under conditions mentioned above, some additional assumptions of finite expo-
nential moments of distributions of transition times, and a condition which guarantees
that the limiting semi-Markov process is non-periodic, a unique quasi-stationary dis-
tribution, independent of the initial state, can be defined for each sufficiently small
¢ by the following relation,

7 = tim P g0 = jlu§’ = n). i j#0,
n—00

where /,L(()E) is the first hitting time of state 0.

In the present paper, we are interested in the asymptotic behaviour of the quasi-
stationary distribution as the perturbation parameter ¢ tends to zero. Specifically, an
asymptotic power series expansion of the quasi-stationary distribution is constructed.

We allow for nonlinear perturbations, i.e., the transition probabilities may be
nonlinear functions of ¢. We do, however, restrict our consideration to smooth per-
turbations by assuming that certain mixed power-exponential moment functionals
for transition probabilities, up to some order k, can be expanded in asymptotic power
series with respect to ¢.

In this case, we show that the quasi-stationary distribution has the following
asymptotic expansion,

7 =x® 4 millle + -+ 7m;klek + o). j #0. (1)
where the coefficients 7;[1], ..., 7;[k], can be calculated from explicit recursive

formulas. These formulas are functions of the coefficients in the expansions of the
moment functionals mentioned above. The existence of the expansion (1) and the
algorithm for computing the coefficients in this expansion is the main result of this

paper.
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It is worth mentioning that the asymptotic relation given by Eq. (1) simultane-
ously cover three different cases. In the simplest case, there exists &9 > 0 such that
transitions to state 0 are not possible for any ¢ € [0, g]. In this case, relation (1) gives
asymptotic expansions for stationary distributions. Then, we have an intermediate
case where transitions to state 0 are possible for all ¢ € (0, o] but not possible for
¢ = 0. In this case we have that ,u((f) — 00 in probability as ¢ — 0. In the math-
ematically most difficult case, we have that transitions to state 0 are possible for
all ¢ € [0, go]. In this case, the random variables ;Lg“?) are stochastically bounded as
e — 0.

The expansion (1) is given for continuous time semi-Markov processes in [13, 14].
However, the discrete time case is interesting in its own right and deserves a special
treatment. In particular, a discrete time model is often a natural choice in applications
where measures of some quantity of interest are only available at given time points,
for example days or months. The proof of the result for the continuous time case,
as well as the proofs in the present paper, is based on the theory of non-linearly
perturbed renewal equations. For results related to continuous time in this line of
research, we refer to the comprehensive book [14], which also contains an extensive
bibliography of work in related areas. The corresponding theory for discrete time
renewal equations has been developed in [9, 12, 19-21, 25].

Quasi-stationary distributions have been studied extensively since the 1960s. For
some of the early works on Markov chains and semi-Markov processes, see, for
example, [4, 5, 7, 10, 16, 24, 30]. A survey of quasi-stationary distributions for
models with discrete state spaces and more references can be found in [29].

Studies of asymptotic properties for first hitting times, stationary distributions,
and other characteristics for Markov chains with linear, polynomial, and analytic
perturbations have attracted a lot of attention, see, for example, [1-3, 6, 8, 11, 15,
17, 18, 23, 27, 28, 31, 32]. Recently, some of the results of these papers have
been extended to non-linearly perturbed semi-Markov processes. Using a method of
sequential phase space reduction, asymptotic expansions for expected first hitting
times and stationary distributions are given in [26]. This paper also contains an
extensive bibliography.

Let us now briefly comment on the structure of the present paper. In Sect. 2, most
of the notation we need are introduced and the main result is formulated. We apply
the discrete time renewal theorem in order to get a formula for the quasi-stationary
distribution in Sect.3 and then the proof of the main result is presented in Sect. 4.
Finally, in Sect. 5, we illustrate the results in the special case of discrete time Markov
chains.

2 Main Result

In this section we first introduce most of the notation that will be used in the present
paper and then we formulate the main result.
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Foreache > 0,1et£® (n),n =0, 1, ..., be adiscrete time semi-Markov process
on the state space X = {0, 1, ..., N}, generated by the discrete time Markov renewal
process (n(s) K,(f)), n=0,1,..., having state space X x {1, 2, ...} and transition
probabilities
0t =P {0l = j. k& =k1n =i, k" =1} ki=1.2.. i jex.

We can write the transition probabilities as Q(F) (k) = pff) fij ©) (k), where p(g)

transition probabilities for the embedded Markov chain n{®) and

000 =Pl =k =i 0 =i} k=12, ijeX

are conditional distributions of transition times.

Let us here remark that definitions of discrete time semi-Markov processes and
Markov renewal processes can be found in, for example, [22].

For each j € X, let v(. =min{n > 1: ¥ = j} and ,u(s) = +. —l—K(i?)

By definition, P ; ) and [L are the first hitting times of state j for the embedded
Markov chain and the semi-Markov process, respectively.

In what follows, we use P; and E; to denote probabilities and expectations con-
ditioned on the event {n((f) =i).

Let us define

g”)(n) { (8)—n v((f)>v(5)},n:O,l,...,i,jeX,

and
gff) =P; {v((f) > v(s)}, i,jeX.

The functions g;; (€) (n) define discrete probability distributions which may be improper,

ie, >0 Ogl;)(n) =g <1
Let us also define the following mixed power-exponential moment functionals,

pp. 1) = Zn’eP“ij)(n), peR, r=01,....1ij€X,
n=0

o0
¢ (p.r) =D g (n). peR, r=0.1,....i.j€X,
n=0

o0
a)f;),(p,r) = Zn'ep”hl(jz(n), peR, r=0,1,...,i,j,s €X,
n=0
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where hsz n) = P{E® W) =5, M(()E) A uﬁ.g) > n}. For convenience, we denote

P (o) =p(0.0), ¢ (0) = (p.0). o )(p) = wf)p.0).
We now introduce the following conditions:

A: @) p) = p)ase > 0,i £0,j € X.

®) ) —> fPm).ase > 0.n=1,2,....i £0,j € X.
B: g) > 0,i.j#0.
C: There exists 8 > 0 such that:

(a) limsupy_, .o pS;(B) < oo, foralli #0, j € X.

(b) ¢ (B) € (1, 00), for some i # 0 and B; < f.
D: glff)) (n) is a non-periodic distribution for some i # 0.

Under the conditions stated above, there exists, for sufficiently small ¢, so-called
quasi-stationary distributions, which are independent of the initial state i # 0, and
given by the relation

7 = lim Py {600 = jlu§’ = n|. j#0. )

An important role for the quasi-stationary distribution is played by the following
characteristic equation,

o (p) =1, 3)

where i # 0 is arbitrary.
The following lemma summarizes some important properties for the root of
Eq. (3). A proof is given in [22].

Lemma 9.1 Under conditions A—C there exists, for sufficiently small e, a unique
non-negative solution p'® of the characteristic equation (3) which is independent of
i. Moreover, p©® — p©@ ase — 0.

In order to construct an asymptotic expansion for the quasi-stationary distribution,
we need a perturbation condition for the transition probabilities Qs) (k) which is
stronger than A. This condition is formulated in terms of the moment functionals

Pl (0. 1).

P i (0. ) = pl (0. 1)+ pijlp® . r Nle + - + pylp©@, ke — rle T +
o(ek"), for r =0,...,k, i #0, j € X, where |p;;[p”, r, n]| < oo, for r =
0,....k,n=1,....k—r,i#0,j€X.

The following theorem is the main result of this paper. The proof is given in
Sect. 4.
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Theorem 9.1 [f conditions A-D and Py 1 hold, then we have the following asymp-
totic expansion,
7 =a® 4l + -+ 7mlklek + o). j #0.

where wi[n], n=1,...,k, j #0, can be calculated from a recursive algorithm
which is described in Sect. 4.

3 Quasi-stationary Distributions

In this section we use renewal theory in order to get a formula for the quasi-stationary
distribution.

The probabilities P\’ (n) = P;{©(n) = j, pui’ > n}. i, j # 0, satisfy the fol-
lowing discrete time renewal equation,

P ) =h )+ D PP — kg k), n=0,1,..., “)
k=0

where
hE ) = PHEO ) = j. u§ Al > n).

Since 3°°, &\ (n) = g\ < 1, relation (4) defines a possibly improper renewal
equation.

Let us now, foreachn = 0, 1, ..., multiply both sides of (4) by e"m”, where p©
is the root of the characteristic equation ¢l(f ) (p) = 1. Then, we get

PO ) =h () + D P (n =g k), n=0,1,..., )
k=0

where
S (&) 7 (&) —~ (&)
Pl.(j&) (n) =€’ ”Pi(f)(n), h;;f)(n) =e’ ”hfj)(n), g[(f) (n) =€’ ”gi(f)(n).

By the definition of the root of the characteristic equation, relation (5) defines a
proper renewal equation.

In order to prove our next result, we first formulate an auxiliary lemma. A proof
can be found in [22].

Lemma 9.2 Assume that conditions A—C hold. Then there exists § > p© such that:

@) ¢ () > ¢y (p) <00, ase — 0, p <8, k, j #0.

(i) o) (p) > wh(p) <oo,ase —0,p <8k, j.s#0.
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We can now use the classical discrete time renewal theorem in order to get a
formula for the quasi-stationary distribution.

Lemma 9.3 Assume that conditions A-D hold. Then:

(i) For sufficiently small ¢, the quasi stationary distribution JT , gzven by relation
(2), have the following representation,

(6) (&)
(0*)
(&) _ @iij .o
7! LB #0. (©)
L0509 4+ ol (0®)

@ii) For j=1,..., N, we have

nj(.s) — nj(-o), ase — 0.

Proof Under condition D, the functions gi(?) (n) are non-periodic for all i # 0. By
Lemma 9.2 we have that ¢(5) (p) — ¢(o)(p) as ¢ — 0, for p <6, i # 0. From this
it follows that glf ) (n) — g(0> (n)ase — 0,forn > 0,i # 0. Thus, we can conclude
that there exists £; > 0 such that the functions gif)(n), i # 0, are non-periodic for
all e < ¢y.

Now choose y such that p® < y < §. Using Lemmas 9.1 and 9.2, we get the
following for all i # 0,

lim sup Z nge (n) < limsup Z ne?" g (n)

0<e—0 "~ 0<e—0
n=0 n=0

< (sup ne_(‘s_”)") ¢(0)(8) < 0.

n>0

Thus, there exists &, > 0 such that the distributions g(s) (n), i # 0, have finite mean
forall ¢ < &5.
Furthermore, it follows from Lemmas 9.1 and 9.2 that, for all i, j # 0,

lim suth(‘E) (n) < lim supZeanh(F)(n) = a)l(?j)(S) < 00,

0<e—0 =0 0<e—0 =0

so there exists &3 > 0 such that >~ 711(;) (n) <oo,i,j #0,forall & < é3.
Now, let &g = min{ey, &;, €3}. For all ¢ < g, the assumptions of the discrete time
renewal theorem are satisfied for the renewal equation defined by (5). This yields

>icoh (k)

S SN ez 0

B () —
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Note that we have

Py ()
P{S(E)(n)—]lu(5)>n}= NJ~(£) 7n=0,1,,.,,l.,jyé(). (8)
2 k=1 P’ ()
It follows from (7) and (8) that, for ¢ < &,
(8) (&)
iij (;0 )

PHED M) = j g’ > n} > 5 —.
Tl @l (0)

asn — oo, i, j #0.

This proves part (i).
For the proof of part (ii), first note that,

0 < lim supZe" "h“)(n) )
0<e—0 n=N

< limsu eV”h(F) (n)
0<.9—>(? Z

< e*(“*V)wal(‘)}(cS) <00, N=1,2,...,1,j #0.

Relation (9) implies that

g (€) _ ..
Nlﬂnoolg;i“pzep hE () =0, i, j #0. (10)
It follows from Lemma 9.1 that
p© = p© ase — 0. (11)
Since hff) (n), foreachn =0, 1, ..., can be written as a finite sum where each
term in the sum is a continuous function of the quantities given in condition A, we
have
S (n) — b (n), ase — 0, i, j #0. (12)
It now follows from (10)—(12) that
o (0) = o) (p© 0,i,j#0 13
iij \P w,’,‘j(p ), ase — 0, i,j#0. (13)

Relations (6) and (13) show that part (ii) of Lemma 9.3 holds. O
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4 Proof of the Main Result

In this section we prove Theorem 9.1.

Throughout this section, it is assumed that conditions A-D and Py hold.

The proof is given in a sequence of lemmas. For the proof of the first lemma, we
refer to [22].

Lemma 9.4 Forr =0,...,kandi, j # 0we have the following asymptotic expan-
sions,

a)((o)(p(o)’ r) = aij[rs 0] + aij[r, 1]8 + st + aij[r’ k - r]gk_r + 0(8k_r)7 (14)

iij
© (0 N _ , s k=T k—r
¢)ii (IO sr)_bl[r70]+bl[r11]8+ +bl[rvk r]8 +0(8 )» (15)

where the coefficients in these expansions can be calculated from lemmas and theo-
rems given in [22].

Let us now recall from Sect. 3 that the quasi-stationary distribution, for sufficiently
small &, has the following representation,

(OFING)
© _ @iy () i=1...N (16)
j - (F) (8) (F) (8) ’ ] - 9 e e ey .
;1 (p) + -+ oy ()

The construction of the asymptotic expansion for the quasi-stationary distribution
will be realized in three steps. First, we use the coefficients in the expansions given by
(15) to build an asymptotic expansion for p®, the root of the characteristic equation.
Then, the coefficients in this expansion and the coefficients in the expansions given
by (14) are used to construct asymptotic expansions for a’,(f, (0®). Finally, relation
(16) is used to complete the proof.

We formulate these steps in the following three lemmas. Let us here remark that
the proof of Lemma 9.5 is given in [25] in the context of general discrete time renewal
equations and the proofs of Lemmas 9.6 and 9.7 are given in [20] in the context of
quasi-stationary distributions for discrete time regenerative processes. In order to
make the paper more self-contained, we also give the proofs here, in slightly reduced
forms.

Lemma 9.5 The root of the characteristic equation has the following asymptotic
expansion,
PO =pO fie 4+ ek + o),

where c; = —b;[0, 1]/b;[1,0] and, forn =2, ...k,
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n—1

1
¢, =————|b;[0,n] + bi[l,n —q]c
bill, 0] ; “
n n q—1 n
IDIDITNEVEED J | 1 P
m=2q=m Niyeefg_1€Dy 4 p= lnp'

where D,, 4 is the set of all non-negative integer solutions of the system
ni+--+n,g=m, n+2n+---+(@-n,; =q.

Proof Let A® = p® — p© Ttfollows from the Taylor expansion of the exponential
function that, forn =0, 1, ...,

k

o o, (A(s))rnr (A(s))k+lnk+ Ny

e (Z At e e ). an
r=0 ' '

where 0 < g“kH(n) <L
If we multiply both sides of (17) by g(g) (n), sum over all n, and use that p® is
the root of the characteristic equation, we get

(A ) .
1 = 2 ¢l(l8)(p(0) )+ (A( ))k+1M(8) ; (18)
r=0
where
1
(e) k+1 _(p©04]A® n (8) (&)
My = k + 1)! Z ey h1(m)g;; " (n). (19)

Let § > p© be the value from Lemma 9.2. It follows from Lemma 9.1 that
[A®| — 0ase — 0, so there exist 8 > 0 and &;(8) > 0 such that

p P +1AC < B <8 e <er(p). (20)
Since 8 < 8, Lemma 9.2 implies that there exists £,(8) > 0 such that
¢ (B.r) <00, r=0,1,.... & <ex(p). 1)

Let 9 = €9(B) = min{e;(B), €2(B)}. Then, relations (19)—(21) imply that

1
(&) (&)
M7, < i 1)'¢”8 (B, k+1) <00, € <eg. (22)
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It follows from (22) that we can rewrite (18) as

k r
(A®) ) (&) k+1 O)
1=>" o (0, ) + (A p ) (23)

r!
r=0

where My = sup, _,, M,fi)l <ooand 0 < {k(j-)l <1

From relation (23) we can successively construct the asymptotic expansion for
the root of the characteristic equation.
Let us first assume that k = 1. In this case (23) implies that

1=¢7(0,0)+ A9 (0, 1) + (A@)20(1). (24)
Using (15), (24), and that A® 5 0ase — 0, it follows that
— b;[0, 11 = AD (B;[1, 0] + o(1)) + o(e). (25)

Dividing both sides of Eq.(25) by ¢ and letting ¢ tend to zero, we can conclude
that A® /e — —b;[0, 1]/b;[1, 0] as ¢ — 0. From this it follows that we have the
representation

A® =g 4 AV, (26)

where ¢; = —b;]0, 1]/b;[1, 0] and AES)/E —0ase — 0.
This proves Lemma 9.5 for the case k = 1.
Let us now assume that k& = 2. In this case relation (23) implies that

A(e) 2
1=¢®,0)+ A4®¢ (pO, 1) + %@?(p@% 2) + (A9 0(). (27)

Using (15) and (26) in relation (27) and rearranging gives

bi[2, 0l

- (bi[O, 2]+ bi[1, ey + >

) g2 = A Bi[1,0] + o(1) + 0(e?). (28)

Dividing both sides of Eq.(28) by &? and letting ¢ tend to zero, we can conclude
that AEE)/sz — ¢y as € — 0, where

1
oL (b,.[o, 20+ bill, ey +

bil2, O]c%)
bi[1, 0] '

2

From this and (26) it follows that we have the representation
A = cre + cp8? + AP,

where AY /g2 — 0ase — 0.
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This proves Lemma 9.5 for the case k = 2.

Continuing in this way we can prove the lemma for any positive integer k. How-
ever, once it is known that the expansion exists, the coefficients can be obtained in a
simpler way. From (15) and (23) we get the following formal equation,

— (bi[0, 1e + b;[0,2]e* + - --) (29)
= (c1e+ 26’ + - )(Bill, 01+ bi[1, 1]e + - --)
+(1/2)(cre + 28 4+ - )2 (Bi[2,0] + bi[2, 1]e 4+ ) 4 --- .

By expanding the right hand side of (29) and then equating coefficients of equal

powers of ¢ in the left and right hand sides, we obtain the formulas given in Lemma
9.5. O

Lemma 9.6 Foranyi, j # 0, we have the following asymptotic expansion,
o) (p©) = o) (p) +di;[1)e + - - + dy[kle* + o(eh),

where d;j[1] = a;;[0, 1] + a;;[1, Olcy, and, forn =2, ...k,

n n n qg—1 np

c
dijln) = aij[0.n]+ > ajjll.n = qleg + > > ajjlm.n —ql- > H%
q=1 m=2q=m n,estg_1€Dm g p=1 p

where D,, 4 is the set of all non-negative integer solutions of the system
ni+-+ngp=m, n+2nm+---+(@—Dng1=gq.

Proof Let us again use relation (17) given in the proof of Lemma 9.5. Multiplying
both sides of (17) by h;j)(n) and summing over all n we get

(©) (A9 ) 0
Wl (0 = 3 el (00, 1)+ (A, (30)
r=0 :
where
7 1 o k+1 ,(pO+]A®)n . () (e)
M,ii)l = E nftlelr "o (mh (n).
| +1 ij
(k+ 1)! —

Using similar arguments as in the proof of Lemma 9.5 we can rewrite (30) as

k
: 49y -
i) (0) = D =0 (00, 1) + (A M) E))
r=0 '

where A7Ik+1 = Sup, M,Ei)] < 00, for some gy > 0,and 0 < §k(i)1 <1.
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From Lemma 9.5 we have the following asymptotic expansion,
A® =cie+ -+ cpe® + o(h). (32)
Substituting the expansions (14) and (32) into relation (31) yields

o) (p®) = o) () + a;;[0, 11e + - - + a;; [0, kle* + o(e") (33)
+(cre + -+ cre* +o(h))
x(a;j[1,0] + a;j[1, 1e + - - + a;j[1, k — 115! + o(e571)
IS
+(1/kD(cre + - + exe® + o)  (@ijlk, 01+ o(1)).

By expanding the right hand side of (33) and grouping coefficients of equal powers
of ¢ we get the expansions and formulas given in Lemma 9.6. (I

Lemma 9.7 For any j # 0, we have the following asymptotic expansion,

7 =a® +mi[l)e + -+ m;[kle* + 0(e"). (34)

The coefficients tj[n]l,n =1, ..., k, j # 0, are for anyi # 0 given by the following
recursive formulas,

n—1

dijlnl = Y eiln —qlmjlgl |, n=1,... K,
q=0

1

where 1;[0] = 7{](.0), d;;[0] = a)fg-) (0", and e;[n] =

j;é()dij[n]) n=0,...,k

Proof 1t follows from formula (16) and Lemma 9.6 that we for all i, j # 0 have

© _ dij[014djj[1]e + - - - + dy;[k]e" + o(e")
I 0]+ ei[le + - - - + ei[klek +o(ek)

(35)

Since ¢;[0] > 0, it follows from (35) that the expansion (34) exists. From this and
(35) we get the following equation,

(eil01+ eil1le + - - - + ei[k]e" + 0(¢")) (36)
x(m;[0] + 7;[1]e + - - - + 7;[k1ek + o(eh))
= dij[0] + djj[1]e + -+ + dyj[K]e" + o(e").
By expanding the left hand side of (36) and then equating coefficients of equal

powers of ¢ in the left and right hand sides, we obtain the coefficients given in
Lemma 9.7. U
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5 Perturbed Markov Chains

In this section it is shown how the results of the present paper can be applied in the
special case of perturbed discrete time Markov chains. As an illustration, we present
a simple numerical example.

For every ¢ > 0, let r;,(f), n=0,1,..., be ahomogeneous discrete time Markov
chain with state space X = {0, 1, ..., N}, an initial distribution pl.(a) = P{n((f) =i},

i € X, and transition probabilities
py =Pl =m0 =i}, ijex.

This model is a particular case of a semi-Markov process. In this case, the transition
probabilities are given by

00m) =pxn=1),n=1,2,...,1ij€X.

Furthermore, mixed power-exponential moment functionals for transition proba-
bilities take the following form,

o0
pi(ja-)(p, r) = Zn’e”"Q}j)(n) = eppfj-), peR, r=0,1,...,i,jeX. (37
n=0

Conditions A-D and Py imposed in Sect.2 now hold if the following conditions
are satisfied:

A gl.(j(.)) >0,i,j #0.

B gl.(?) (n) is non-periodic for some i # 0.

P p = pl + pyllle + - + pilkle + 0(eb), i, j # 0, where |pi;[n]] < oo,
n=1,....ki, j#0.

Let us here remark that in order to construct an asymptotic expansion of order k
for the quasi-stationary distribution of a Markov chain, it is sufficient to assume that
the perturbation condition holds for the parameter k, and not for k 4 1 as needed for
semi-Markov processes. The stronger perturbation condition with parameter k + 1 is
needed in order to construct the asymptotic expansions given in Eq. (14). However,
for Markov chains these expansions can be constructed under the weaker perturbation
condition. This follows from results given in [22].

It follows from (37) and P;_that the coefficients in the perturbation condition Py
are given by

p,-j[p(o),r,n] :e”(o)p,-j[n], r=0,....k,n=0,....k—r,i,j #0. (38)

Let us illustrate the remarks made above by means of a simple numerical example
where we compute the asymptotic expansion of second order for the quasi-stationary
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distribution of a Markov chain with four states. We consider the simplest case where
transitions to state 0 is not possible for the limiting Markov chain. In this case, exact
computations can be made and we can focus on the algorithm itself and need not
need to consider possible numerical issues.

We consider a perturbed Markov chain n(€> n=20,1,..., on the state space

n

X = {0, 1, 2, 3} with a matrix of transition probabilities given by

1 0 0 o0
©y _ 1—e¢ 0 e® 0
o R B (39)
1—e 2 16726 L,=2¢
2 2

First, using the well known asymptotic expansion for the exponential function,
we obtain the coefficients in condition P} . The non-zero coefficients in this condition
take the following numerical values,

pi2l0l =1, pas[0l=1, p3[0] =1/2, p3[0] =1/2,
pulll = =1, pxs[l]=—1, psi[l]l = —1, p3p[l]= -1, (40)
pil21 =172, px[2] =1/2, p5121 =1, pxnl2]l=1.

Then, the root of the characteristic equation for the limiting Markov chain needs to
be found. Since ¢\ (0) = P;{v{” > v{”} = 1, we have p© = 0. In the case where
transitions to state 0 is possible also for the limiting Markov chain, the root ,0(0) needs
to be computed numerically.

Now, using that p©® = 0 and relations (38) and (40), we obtain the coefficients
in condition Py.

Next step is to determine the coefficients in the expansions given in Eqgs.(14)
and (15) for the case where k = 2 and i is some fixed state which we can choose
arbitrarily. Let us choose i = 1. In order to compute these coefficients we apply the
results given in [22]. According to these results, we can, based on the coefficients in
condition Pg, compute the following asymptotic vector expansions,

®(0,0) = [0, 0, 0] + [0, 0, 1]e + ®,[0, 0, 2]e + o(?), (41)
90, 1) = @,[0, 1, 0] 4+ ®4[0, 1, 1] + o(e),
®1”(0,2) = ©4[0, 2, 0] + o(1),

and, for j =1, 2, 3,

9(1?(0, 0) = 4,0, 0, 0] + 24;[0, 0, 1]e + 24,10, 0, 2]e + o(e?), 42)
Q0. 1) = Q4;[0, 1, 0] + 4,10, 1, 1]e + o(e),
Q17(0.2) = Q;[0. 2, 0] + o(1),
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where .
@{”(0,r) = [¢90,r) ¢ 0, r) {0, ] . r=0,1,2,

and
Q0,r) = [a)l?j(o r) o) 0, r) o0, r)] =012, j=1,2,3.

For example, the coefficients in (41) take the following numerical values,

1 —7 [67/2
®,[0,0,0]= | 1], ®,[0,0,1]=| -6, &;[0,0,2]1=| 27 |,
1 =5 | 43/2
(43)
5] [—47 [33
®[0,1,0]= | 4|, &,[0,1,1]1= | =36 |, ©,[0,2,0] = | 24
El | —27 |17

In particular, from (41) and (42) we can extract the following asymptotic expan-
sions,

“(0,0) = b1[0, 0] + b1 [0, 11e + b1 [0, 2]e> + o(e?),
¢ 0, 1) = bi[1,0] + bi[1, 1]e + o(e).
©0,2) = b1[2, 0] + o(1),

and, for j = 1,2, 3,

“’11) (0,0) = ay;[0, 0] + ay;[0, 1le + ay;[0, 2]e* + o(e?),
o0, 1) = ay[1,01 + ay[1, 1e + o(e),
")11) 0,2) = a1;[2,0] + o(1).

From (41) and (43) it follows that

b1[0,0] =1, b4[0,1] = =7, b,[0,2] =67/2, (44)
b1[1,0]1 =5, by[1, 1] = —-47, b1[2,0] = 33.
By first calculating the coefficients in (42), we then get the following numerical

values,
anl0,0] =1, ap[0,01 =2,  a13[0,0] =2,
an[O, 1] = 0, au[O, 1] = —8, Cl13[0, 1] = —10,
011[0, 2] = O, alz[O, 2] = 34, Cl13[0, 2] = 43,
anll,01 =0, ap[1,0] =6, ai3[1,0] =8,
all[l, 1] = 0, 012[1, 1] = —48, a13[1, 1] = —
ai1[2,0] =0, ap[2,0] =34, aj3[2,0] =48.

(45)
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The asymptotic expansion for the quasi-stationary distribution can now be com-
puted from the coefficients in Eqs. (44) and (45) by applying the lemmas in Sect.4.

From Lemma 9.5 we get that the asymptotic expansion for the root of the char-
acteristic equation is given by

P = cie + c2e” + 0(e?),

where

bi[0,1] 7 bi[0, 2]+ bi[1, ey + bi[2, 0]cf/2 1
— = =, CH — — = -
bi[1,0] 5 : bi[1, 0] 125
(46)

C1

Then, Lemma 9.6 gives us the following asymptotic expansions,

o\ (p®) = dy;[0] + dy;[1]e + dy ;121> + o(e?), j =1,2,3,

115

where

dy;[0] = ay,[0, 0], 47
dy;j[1] = ay;[0, 1] + ay;[1, Olcy,
di;[2] = a1;10, 2] + ay,[1, ey +ay;[1, 0lea + ay;[2, 0]c3 /2.

From (45)—(47), we calculate

di[0] =1, d»[0] =2, di3[0] =2,
di[11 =0, di2[1]1 =2/5, di3[1] =6/5, (48)
di1[2] =0, d»[2] = 9/125, di3[2] = 47/125.

Finally, let us use Lemma 9.7. First, using (48), we get

e1[0] = d,1[0] + d12[0] + di3[0] = 5, 49)
ei[1] =dn[1] +dpp[1] + diz[1] = 8/5,
e1[2] = di1[2] + d12[2] + d13[2] = 56/125.

Then, we can construct the asymptotic expansion for the quasi-stationary distri-
bution,
7 = 7;[0] 4+ 7;[1]e + 7;[216% + o(e?), j =1.2.3,

where

7;[0] = dy;[0]/e:[0], (50)
7;i[1] = (di;[1] — ei[1]7;[0]) /e1 0],
;121 = (dj[2] — e1[2]7;[0] — ey [1]7;[1]) /e [O].
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Using (48)—(50), the following numerical values are obtained,

ml0l=1/5,  m[0] =2/5, m3[0] = 2/5,
mi[1] = —8/125, m[1] = —6/125,  m3[1] = 14/125,
mi[2] = 8/3125, mp[2] = —19/3125, 73[2] = 11/3125.

Note here that (;r;[0], m2[0], 73[0]) is the stationary distribution of the limiting
Markov chain. It is also worth noticing that 77y [n] + m2[n] + w3[n] = O forn = 1, 2,
as expected.
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Abstract New algorithms for computing asymptotic expansions for stationary
distributions of nonlinearly perturbed semi-Markov processes are presented. The
algorithms are based on special techniques of sequential phase space reduction,
which can be applied to processes with asymptotically coupled and uncoupled finite
phase spaces.
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1 Introduction

In this paper, we present new algorithms for construction asymptotic expansions for
stationary distributions of nonlinearly perturbed semi-Markov processes with a finite
phase space.

We consider models, where the phase space of embedded Markov chains for
pre-limiting perturbed semi-Markov processes is one class of communicative states,
while the phase space for the limiting embedded Markov chain can consist of one
or several closed classes of communicative states and, possibly, a class of transient
states.

The initial perturbation conditions are formulated in the forms of Taylor asymp-
totic expansions for transition probabilities of the corresponding embedded Markov
chains and Laurent asymptotic expansions for expectations of sojourn times for
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perturbed semi-Markov processes. Two forms of these expansions are considered,
with remainders given without or with explicit upper bounds.

The algorithms are based on special time-space screening procedures for sequen-
tial phase space reduction and algorithms for re-calculation of asymptotic expansions
and upper bounds for remainders, which constitute perturbation conditions for the
semi-Markov processes with reduced phase spaces.

The final asymptotic expansions for stationary distributions of nonlinearly per-
turbed semi-Markov processes are given in the form of Taylor asymptotic expansions
with remainders given without or with explicit upper bounds.

The model of perturbed Markov chains and semi-Markov processes, in particu-
lar, in the most difficult case of so-called singularly perturbed Markov chains and
semi-Markov processes with absorption and asymptotically uncoupled phase spaces,
attracted attention of researchers in the mid of the 20th century.

The first works related to asymptotical problems for the above models are
Meshalkin [221], Simon and Ando [323], Hanen [106-109], Kingman [169],
Darroch and Seneta [65, 66], Keilson [160, 161], Seneta [273-275], Schweitzer
[265] and Korolyuk [177].

Here and henceforth, references in groups are given in the chronological order.

The methods used for construction of asymptotic expansions for stationary dis-
tributions and related functionals such as moments of hitting times can be split in
three groups.

The first and the most widely used methods are based on analysis of generalized
matrix and operator inverses of resolvent type for transition matrices and operators
for singularly perturbed Markov chains and semi-Markov processes. Mainly mod-
els with linear, polynomial and analytic perturbations have been objects of studies.
We refer here to works by Schweitzer [265], Turbin [345], Polis¢uk and Turbin
[256], Koroljuk, Brodi and Turbin [179], Pervozvanskiiand Smirnov [247], Courtois
and Louchard [59], Korolyuk and Turbin [195, 196], Courtois [57], Latouche and
Louchard [209], Kokotovié, Phillips and Javid [170], Korolyuk, Penev and Turbin
[190], Phillips and Kokotovi¢ [253], Delebecque [67], Abadov [1], Silvestrov and
Abadov [310-312], Kartashov [151, 158], Haviv [112], Korolyuk [178], Stewart and
Sun [339], Haviv, Ritov and Rothblum [121], Haviv and Ritov [119], Schweitzer
and Stewart [272], Stewart [335, 336], Yin and Zhang [354-357], Avrachenkov
[26, 27], Avrachenkov and Lasserre [34], Korolyuk, V.S. and Korolyuk, V.V. [180],
Yin, G., Zhang, Yang and Yin, K. [359], Avrachenkov and Haviv [31, 32], Craven
[64], Bini, Latouche and Meini [46], Korolyuk and Limnios [187] and Avrachenkov,
Filar and Howlett [30].

Aggregation/disaggregation methods based on various modification of Gauss
elimination method and space screening procedures for perturbed Markov chains
have been employed for approximation of stationary distributions for Markov chains
in works by Coderch, Willsky, Sastry and Castafion [53], Delebecque [67], Gaitsgori
and Pervozvanskii [89], Chatelin and Miranker [52], Courtois and Semal [61], Seneta
[277], Cao and Stewart [51], Vantilborgh [347], Feinberg and Chiu [82], Haviv [113,
115, 116], Sumita and Reiders [342], Meyer [224], Schweitzer [269], Stewart and
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Zhang [340], Stewart [333], Kim and Smith [168], Marek and Pultarov4 [218], Marek,
Mayer and Pultarova [217] and Avrachenkov, Filar and Howlett [30].

Alternatively, the methods based on regenerative properties of Markov chains
and semi-Markov processes, in particular, relations which link stationary probabil-
ities and expectations of return times have been used for getting approximations
for expectations of hitting times and stationary distributions in works by Grassman,
Taksar and Heyman [94], Hassin and Haviv [111] and Hunter [140]. Also, the above
mentioned relations and methods based on asymptotic expansions for nonlinearly
perturbed regenerative processes developed in works by Silvestrov [301, 304, 305],
Englund and Silvestrov [77], Gyllenberg and Silvestrov [99, 100, 102, 104], Englund
[75, 76], Ni, Silvestrov and Malyarenko [243], Ni [238-242], Petersson [248, 252]
and Silvestrov and Petersson [318] have been used for getting asymptotic expansions
for stationary and quasi-stationary distributions for nonlinearly perturbed Markov
chains and semi-Markov processes with absorption.

We would like to mention that the present paper contains also a more extended
bibliography of works in the area supplemented by short bibliographical remarks
given in the last section of the paper.

In the present paper, we combine methods based on stochastic aggregation/disag-
gregation approach with methods based on asymptotic expansions for perturbed
regenerative processes applied to perturbed semi-Markov processes.

In the above mentioned works based on stochastic aggregation/disaggregation
approach, space screening procedures for discrete time Markov chains are used. A
Markov chain with a reduced phase space is constructed from the initial one as
the sequence of its states at sequential moment of hitting into the reduced phase
space. Times between sequential hitting of a reduced phase space are ignored. Such
screening procedure preserves ratios of hitting frequencies for states from the reduced
phase space and, thus, the ratios of stationary probabilities are the same for the initial
and the reduced Markov chains. This implies that the stationary probabilities for the
reduced Markov chain coincide with the corresponding stationary probabilities for
the initial Markov chain up to the change of the corresponding normalizing factors.

We use another more complex type of time-space screening procedures for semi-
Markov processes. In this case, a semi-Markov process with a reduced phase space
is constructed from the initial one as the sequence of its states at sequential moment
of hitting into the reduced phase space and times between sequential jumps of the
reduced semi-Markov process are times between sequential hitting of the reduced
space by the initial semi-Markov process. Such screening procedure preserves tran-
sition times between states from the reduced phase space, i.e., these times and, thus,
their expectations are the same for the initial and the reduced semi-Markov processes.

We also formulate perturbation conditions in terms of asymptotic expansions
for transition characteristics of perturbed semi-Markov processes. The remainders
in these expansions and, thus, the transition characteristics of perturbed semi-
Markov processes can be non-analytical functions of perturbation parameters that
makes difference with the results for models with linear, polynomial and analytical
perturbations.
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We employ the methods of asymptotic analysis for nonlinearly perturbed regener-
ative processes developed in works by Silvestrov [301, 304, 305] and Gyllenberg and
Silvestrov [99, 100, 102, 104] and applied to nonlinearly perturbed semi-Markov
processes. However, we use techniques of more general Laurent asymptotic expan-
sions instead of Taylor asymptotic expansions used in the above mentioned works
and combine these methods with the aggregation/disaggregation approach instead of
using the approach based on generalized matrix inverses. This permits us consider
perturbed semi-Markov processes with an arbitrary communication structure of the
phase space for the limiting semi-Markov process, including the general case, where
this phase space may consist from one or several closed classes of communicative
states and, possibly, a class of transient states.

Another new element is that we consider asymptotic expansions with remainders
given not only in the form o(-), but, also, with explicit upper bounds.

It should be mentioned that the semi-Markov setting is an adequate and necessary
element of the method proposed in the paper. Even in the case, where the initial
process is a discrete or continuous time Markov chain, the time-space screening
procedure of phase space reduction results in a semi-Markov process, since times
between sequential hitting of the reduced space by the initial process have distribu-
tions which can differ of geometrical or exponential ones.

Also, the use of Laurent asymptotic expansions for expectations of sojourn times
of perturbed semi-Markov processes is also a necessary element of the method.
Indeed, even in the case, where expectations of sojourn times for all states of the
initial semi-Markov process are asymptotically bounded and represented by Taylor
asymptotic expansions, the exclusion of an asymptotically absorbing state from the
initial phase space can cause appearance of states with asymptotically unbounded
expectations of sojourn times represented by Laurent asymptotic expansions, for the
reduced semi-Markov processes.

The method proposed in the paper can be considered as a stochastic analogue of
the Gauss elimination method. It is based on the procedure of sequential exclusion
of states from the phase space of a perturbed semi-Markov process accompanied
by re-calculation of asymptotic expansions penetrating perturbation conditions for
semi-Markov processes with reduced phase spaces. The corresponding algorithms
are based on some kind of “operational calculus” for Laurent asymptotic expansions
with remainders given in two forms, without or with explicit upper bounds.

The corresponding computational algorithms have an universal character. As was
mentioned above, they can be applied to perturbed semi-Markov processes with an
arbitrary asymptotic communicative structure and are computationally effective due
to recurrent character of computational procedures.

In conclusion, we would like to point out that, by our opinion, the results presented
in the paper have a good potential for continuation of studies (asymptotic expansions
for high order power and exponential moments for hitting times, aggregated time-
space screening procedures, asymptotic expansions for quasi-stationary distributions,
etc.). We comment some prospective directions for future studies in the end of the

paper.
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The paper includes seven sections. In Sect.2, we present so-called operational
rules for Laurent asymptotic expansions. In Sect. 3, we formulate basic perturbation
conditions for Markov chains and semi-Markov processes and give basic formulas for
stationary distributions for semi-Markov processes, in particular, formulas connect-
ing stationary distributions with expectations of return times. In Sect.4, we present
an one-step procedure of phase space reduction for semi-Markov processes and algo-
rithms for re-calculation of asymptotic expansions for transition characteristics of
perturbed semi-Markov processes with a reduced phase space. In Sect. 5, we present
algorithms of sequential reduction of phase space for semi-Markov processes. In
Sect. 6, we present algorithms for construction of asymptotic expansions for station-
ary distributions for nonlinearly perturbed semi-Markov processes and main results
of this paper formulated in Theorems 10.8 and 10.9. In Sect.7, we present some
directions for future studies and short bibliographical remarks concerned works in
the area.

We would like to conclude the introduction with the remark that the present
paper is a slightly improved version of the research report Silvestrov, D. and
Silvestrov S. [320].

2 Laurent Asymptotic Expansions

In this section, we present so-called operational rules for Laurent asymptotic expan-
sions. We consider the corresponding results as possibly known, except, some of
explicit formulas for remainders, in particular, those related to product, reciprocal
and quotient rules.

2.1 Definition of Laurent Asymptotic Expansions

Let A(e) be areal-valued function defined on an interval (0, &g], forsome 0 < gy < 1,
and given on this interval by a Laurent asymptotic expansion,

Ae) = ap,e™ + -+ ap, e + 04(eM), (1)

where (a) —0o < hy < k4 < oo are integers, (b) the coefficients ay,, . . ., ai, arereal
numbers, (¢) function o4 (¢%) /ekA — 0ase — 0.

We refer to such Laurent asymptotic expansion as a (h4, k4 )-expansion.

We say that (414, ks)-expansion A(e) is pivotal if it is known that a;, 7# 0.

A Laurent asymptotic expansion A(e) can also be referred as a Taylor asymptotic
expansion if iy > 0.

We also say that (h4, k4)-expansion A(e) is a (ha, ka, 64, Ga, €4)-expansion if its
remainder oy (¢¥) satisfies the following inequalities (d) |o4(¢¥)| < G4&**94, for
0<e<egq,where (e)0 <64 <1,0 <Gy <ocand 0 < g4 < &.
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In what follows, [a] is the integer part of a real number a.

Also, the indicator of relation A = B is denoted as /(A = B). It equals to 1, if
A=B,or0,if A #B.

It is useful to note that there is no sense to consider, it seems, a more general case
of upper bounds for the remainder o4 (¢*), with parameter §4 > 1. Indeed, let us
define k;x =ka + [84] — I(84 = [84]) and 81/4 =084 — [84] +1(64 = [64]) € (0, 1].

The (ha, ka, 84, Ga, €4)-expansion (1) can be re-written in the equivalent form of
the (h4, k), 8, Ga, £4)-expansion,

A(e) = ap, "™ + -+ a, € + 0 4. 4068 + 0/, (64), )

with the remainder term 0/, (¢"1) = 04(¢*), which satisfies inequalities |0/, (¢%)| =
loa(ek)| < Gaekatds = Guekatoh for 0 < & < g4.

Relation (2) implies that the asymptotic expansion A(e) can be represented in
different forms. In such cases, we consider a more informative form with larger
parameters ii4 and k4. As far as parameters 84, G4 and g4 are concerned, we consider
as a more informative form, first, with larger value of parameter 84, second, with
smaller values of parameter G4 and, third, with the larger values of parameter 4.

In what follows, a V b = max(a, b), a A b = min(a, b), for real numbers a and b.

It is useful to note that formula (1) uniquely defines coefficients ay,, . . ., a, .

Lemma 10.1 If  function — A(e) = a), e 4. 4 a, ek + 0, (k) = az’xshﬁ( +
ceet aZ/,‘/ekX + o) (€K, & € (0, &0] can be represented as, respectively, (Hy, ky)- and
(1}, kY)-expansion, then the asymptotic expansion for function A(e) can be rep-
resented in the following the most informative form A(e) = aj, e + --- + a, " +
o4("), & € (0, 89l of (ha, ka)-expansion, with parameters hy = Wy vV Ry, kg =ky v
kj, and coefficients ay, , . . . , ax, and remainder o, (e%) given by the following rela-
tions:

() aj,a/ =0, forl < hy.
(i) ay=d =a forhs <l<ka=Kk AK].
(i) @ =af,forkys =k, <1 <kyifk) <Kkl
(V) @ =ad), forkys =k <1 <kyifkj <K,
(V) The remainder term o4 () is given by the following relation,

oX(akX) ifk, <kj,
oa(e") = 1 0 (") = o[ (%) ik, =K, 3)
0/, (") ifk, > k.

The latter asymptotical expansion is pivotal if and only if ap, = a;lA = aZA % 0.

It is useful to make some additional remarks.

The case ka < hy is possible. In this case, the set of integers / such that
ha <1 < ky is empty. This can happen if k), < &/ or k; < k. In the first case, all
coefficients a; = 0,1 = h);, ..., kj while hy = h){,k =k, a] = a;,1 = hy, ..., ks.
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In the second case, all coefficients a] = 0,1 = h, ..., kj while hy = h, ky =k},
alzag,lzhA,...,kA.

If k), = kj then hy < ks = k, and the set of integers / such that ky <1 <kyis
empty. In this case, all coefficients a; = a; = a}, [ = ha, ..., ka.

If a}“ # 0 then hy = K, and a;, = a;lA #0.If aZX # 0 then hy = k) and a;, =

a;l/,'{ # 0. IfaLA, aZX # Othen hy = h)y = K and a;, = a;lA = HZX # 0.
The following proposition supplements Lemma 10.1.

, ) , p

Lemma 10.2 If Ae) =dj "+ +a, e + 0, (") =a), e+ + a;c//’(
A A A

ekl 4 o (&%), & € (0, g9] can be represented as, respectively, (y, ky, 8, Gy, €)-

and (W, ky, 8%, G, €1)-expansion, then:

(i) The asymptotic expansion A(g) = ahAshA 4+ 4 akAsk + oa(e"), & € (0, g]
given in Lemma 10.1 is an (ha, ka, 84, Ga, €4)-expansion with parameters
Gy, 84 and g4 which can be chosen in the following way consistent with the
priority order described above:

8, G, &) ifk, < k.
8, G, &)) ifK, =K. 8, <5,

8a. Garea) = { (8, =8, G\ NG ey ne)) ifky =Kl 8, =81, (4
(8, Gy, €)) ifk, =k, 8, > 8,
8, G, ) ifk, > k.

(i) The asymptotic expansion A(g) can also be represented in the form A(e) =
a;lAshA —1— St a;iAskA + o4 (M) ofan (ha, ka, Sf’ Gj" &4)-expansion, with para-
meters hy = hy, ka = k) A ki and parameters 54, G4, €4 given by the following
formulas,

5, ifk, <k,

Sa =18y A8y ifky =K},
8y ifk, > kj,

1k, 5] K88,

4 !/ A A 11 ZA A A A / "

Gy A (Zk;,dgkj; lay|e, + G484 ) ifky <k,

G = / ~ 8, —Ba 11~ 85 —84 o1

! Caea” _ 1Ot 1=k —5 Ky+8, k] = ia =k,
s T

" / ‘A A / A A A A / "

Gi A iy <i=, )18 +Gyés ) kg > k.

Ea =€) NE). (5)

iii) The remainders o/, (€*+), 0"/ (¥), 04 (6" and o, (") are connected by the fol-
A A y P
lowing relations:

Ba(e") = 0(e") + Z ae!

ka<l<ky
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0/, (k) ifk, <kj,
= 1 04 (") = o[ (e") ifk) =K, (6)
ox(e) ifkj > kj.

2.2 Operational Rules for Laurent Asymptotic Expansions

Let us consider four Laurent asymptotic expansions, A(g) = aye™ +---+
ap, " + 04(eM),  B(e) = byye™ + - + by, e" + op(eht), C(e) = cpeh + -
+ cr.&" + oc(e¥¢), and D(g) = dj, " + - - - + di, " + op(e"?) defined for 0 <
&g < gp,forsome 0 < g9 < 1.

The following lemma presents “operational” rules for Laurent asymptotic expan-
sions.

Lemma 10.3 The above asymptotic expansions have the following operational rules
for computing coefficients:

() If A(e), e € (0, &) is a (ha, ka)-expansion and c is a constant, then C(g) =
cA(e), e € (0, e0] is a (he, ke)-expansion with parameters he = ha, ke = ka
and coefficients,

Chetr = Capeyr, ¥ =0, ..., ke — hc. (7)

This expansion is pivotal if and only if ¢, = cay, # 0.

(ii) IfA(e), e € (0, g0] is a (ha, ka)-expansion and B(g), ¢ € (0, eo] is a (hg, kp)-
expansion, then C(e) = A(e) + B(e), € € (0, &9l is a (hc, k¢)-expansion with
parameters hc = ha A hp, kc = ka N kg, and coefficients,

Chedr = Aper + thJrr, r=0,..., kC - th (8)

where ap.4r = 0for0 <r < hy —hc and by, =0 for 0 <r < hg — hc.
This expansion is pivotal if and only if cj. = ap. + by, # 0.

(iii) IfA(e), e € (0, &9 is a (ha, ka)-expansion and B(e), ¢ € (0, &) is a (hg, kp)-
expansion, then C(e) = A(e) - B(¢), e € (0, &] is a (hc, kc)-expansion with
parameters he = ha + hg, ke = (ha + k) A (hg + ka), and coefficients,

Chesr = D @nypibhyir—inr =0,... ke — h. ©)

O<i<r

This expansion is pivotal if and only if cj,. = ap, by, # 0.

(iv) IfB(e), € € (0, ol is apivotal (hg, kg)-expansion, then there exists 0 < &) < &g
such that B(e) # 0, ¢ € (0, &y], and C(e) = 1/B(¢), ¢ € (0, gy] is a pivotal
(he, kc)-expansion with parameters hc = —hp, kc = kg — 2hg and coeffi-
cients,



Asymptotic Expansions for Stationary Distributions ... 159

Che = byl Cher = =by! D bugricheprinr=1,....kc —hc.  (10)

1<i<r

) If A(e),e € (0,&0] is a (ha, ka)-expansion B(e), e € (0,¢&9] is a pivotal
(hg, kp)-expansion, then, there exists 0 < &, < &y such that B(e) #0, ¢ €
(0, 5], and D(g) = A(e)/B(¢), ¢ € (0, gyl is a (hp, kp)-expansion with para-
meters hp = ha — hp, kp = (ka — hg) N (ha + kg — 2hp), and coefficients,

dnyir = D Chesilhysrist =0, ... kp — hp, (11)
o<i<r
wherecy.4j,j =0, ..., kc — hc are coefficients of the (hc, kc)-expansion C(g) =

1/B(¢) given in the above proposition (iv), or by formulas,

dyyir = by, (ahA+r -> bhﬁ,-dhw_i) =0, kp—hp.  (12)

1<i<r
This expansion is pivotal if and only if d,, = ap,cp. = ap, [bp, 7F 0.

The following proposition presents “operational” rules for computing parameters
of upper bounds for remainders of Laurent asymptotic expansions.

Lemma 10.4 The above asymptotic expansions have the following operational rules
for computing remainders:

() IfA(e), e € (0, &0l is a (ha, ka, 64, Ga, €4)-expansion and c is a constant, then
C(e) =cA(e), e € (0,¢&9) isa (he, ke, 8¢, Ge, c)-expansion with parameters
he = ha, kc = ka, coefficients ¢, r = hc, ..., kc given in proposition (i) of
Lemma 10.3, and parameters 8¢, G¢, ec given by the following formulas,

3¢ =84, Gc = c|Ga, ec = &4. (13)

(ii) IfA(e), e € (0, &0l is a (ha, ka, Sa, Ga, €4)-expansion and B(e), ¢ € (0, ] is
a (hg, kg, S, Gp, ep)-expansion, then C(¢) = A(e) + B(¢), € € (0, ¢&0] is a
(he, ke, 8¢, Ge, ec)-expansion with parameters he = hy A hg, ke = ka N kg,
coefficients c,,r = h¢, ..., kc given in proposition (ii) of Lemma10.3, and
parameters S¢c, Ge, €c given by the following formulas,

8a ifkc = ka < kp,
8¢ =10a N8 ifkc =ka =k,
S ifkc = kp < ka,

> 04 A 63,
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ka+84—kc—38 i—kc—§
GC:GASC{H_A c C+ E |ai|8lcc c

ke<i<ky
ky+8p—ke—8¢ Z i—kc—3
+GB€C? B—KC (+ |bj|glcc C’
kc<j<kg
gc = €4 N Ep. (14)

(iii) If A(e),e € (0,89] is a (ha, ka, 84, Ga, €a)-expansion and B(e), ¢ € (0, &]
is a (hg, kg, 0p, Gp, ep)-expansion, then C(g) = A(e) - B(¢), ¢ € (0, go] is
a (he, ke, ¢, Ge, ec)-expansion with parameters he = hy + hp, kc = (hs +
kg)A (hg + ka), coefficients c,,r = hc, ..., kc given in proposition (iii) of
Lemma 10.3, and parameters 5¢, G, ec given by the following formulas,

da ifkc = hp +ka < ha + kg,
8¢ =10aAN8 ifkc =hp+ka = ha+ kg,
g ifkc = ha +kp < hg + ka,

> 84 N O,

i+j—ke—¢
Ge = E |ai||bjlec
ke <i+j,ha<i<ka,hp<j<kp
4Gy Z by —ke b
J1ec
hp<j<kg
+ GB |a‘|8i+k5+53—kc—ﬁc
: / tec
ha<i<ka

ka~+kp+064+0p—kc—6
+GAGB5‘CA s+ to—kc—dc
Ec = €4 N EB. (15)

(iv) IfB(e), e € (0, &) is a pivotal (hg, kg, 8, G, €p)-expansion, then, there exist
ec < gy < &g such that B(e) # 0, ¢ € (0, &)1, and C(e) = 1/B(¢), ¢ € (0, &)]
is a pivotal (hc, ke, 8¢, Ge, €c)-expansion with parameters he = —hp, ke =
kg — 2hg, coefficients c,,r = hc, ..., kc given in proposition (iv) of
Lemma 10.3, and parameters 8¢, G¢, ec given by the following formulas,

3¢ = 8,
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|bhl}| - i+j—kp+hpg—6,
Ge = (7 > |bilcjlec” oo

kg—hp<i+j,hg<i<kp,hc <j<kc

j+h
+Gp D leled™ ),

hesj<kc

[Dng | i—hg—1
= (Zh,;«'gk,; |bileg ™

—1
Ec = &g N + GBSEB+BB_hB_l) lth < kB,
€L
(?ITB;) B if hg = kp.

161

(16)

) If A(e), e € (0,8] is a (ha, ka, 64, Ga, e4)-expansion, B(e), e € (0,¢&0] is a
pivotal (hg, kg, 8, G, €p)-expansion, then, there exist ep < 86 < gg such that
B(e) #0,e € (0,¢)], and D(g) =A(e)/B(e) is a (hp,kp, Sp.Gp, €p)-
expansion with parameters hp = hy + hc = ha — hp, kp = (ka + he) A

(ha + kc) = (ka — hp) A (ha + kg — 2hg), coefficients d,,r = hp, ..

. kp

given in proposition (v) of Lemma 10.3, and parameters 8p, Gp, €p given by

the following formulas,

da ifkp = hc + ka < ha + k¢
Sp =1 64 Ndc ikaZhC'FkA:hA'ch,
8c ifkp = ha + ke < he + ka,

> 04 ASc = 84 N g,

i+j—kp—8
Gp = > laillejlep”

kp <i+j,ha<i<ka,hc<j<kc

+ Gy Z Ic'|gj+kA+6A7k1)781)
J'“D

he<j<kc
i+kc+8c—kp—9$,
+Ge z |a; el c+8c—kp—3p

ha<i<ka

ka+kc+8a+3c—kp—3,
+GAGC8DA ctoatoc—kp=op

Ep = €A N EC,

a7)

where coefficients c,,r = hc, ..., kc and parameters hc, kc, 8¢, Ge, ec are
given for the (he, ke, 8¢, Ge, ec)-expansion of function C(e) = 1/B(¢) in

proposition (iv), or by formulas,

8A l:kaIkA—hB<hA+kB—2]’lB,
Sp = 1 04 A dp l:ka:kA—hBZhA—FkB—ZhB,
S ifkp = hy 4+ kg — 2hg < ky — hg,
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> 84 A g,

|b | ! i—hg—kp—3dp
GD==(—§L > Jailefy "7

kaA(ha+kg—hg)<i<ks
i+j—kp—hg—8
+ > lail|djlepy? "

kaN(ha+kp—hp) <i+j,hy <i<ks,hp=<j<kp

+ GAEkA+5A—hB—kD—5D + Gp 2 |d'|€/‘+k8+88_h8_kD_5D)
D 71D ’
hp=<j<kp

1D | i—hg—1
—= (Zhg<i§kg |biley ™

—1
e = ex nep A |+ Gyely ) ifh < . ()
1
1bag |\ 38 ; —
(223) if hg = kg.

In what follows, the following two lemmas, which present recurrent operational
rules for computing coefficients and remainders for multiple summations and mul-
tiplications of Laurent asymptotic expansions, will also be used. These lemmas are
direct corollaries of Lemmas 10.3 and 10.4.

Let  A,(e) = ap, me™ + - +ag, ne +o("n), e €0,6] be a
(ha,,, ka,)-expansion, for m=1,...,N, B,(e) =A1(e) +---+A,(e), e €
(0,¢&0],and C,,(e) = Ay(e) x --- x A,(e), e € (0,¢9],forn=1,...,N.

The following two lemmas follow, respectively, from Lemmas 10.3 and 10.4 and
recurrentrelations B, (¢) = B,_1(¢) + A, (¢),e € (0,&0],n =2,...,NandC,(¢) =
Ch1(e)-Ay(e),e € (0,80],n=2,..., N, which hold for any N > 2.

Lemma 10.5 The above asymptotic expansions have the following operational rules
for computing coefficients:

(i) IfA,(e), e € (0,0l is a (ha,, ka,)-expansion form =1, ..., N where N > 2,

m

then B, (&) = by, n&" + -+ 4 by, 1" + o(e), & € (0, &0l is a (hp,, kp,)-

expansion, forn =1, ..., N, withhg, = ha,, kg, = ko, and hg, = min(hy,, ...,
hAn) = th_] AN ]’lA“, an = min(kA], ey kAn) = kB”_l N kA”, n= 2, ey N and
the coefficients given by formulas by, 111 = an, +11,1 =0, ... kg —

hg, = ka, — ha, and, forl =0, ..., kg, —hp,,n=2,...,N, by formulas,

Dy, i = Qhg 1,1 + -+ + Gny, 4105 (19)

or
big, +1,n = bny,_ +1n-1+ Ay, 10 (20)
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where by, 11,1 =0,1=0,..., hg,_, —hg, and ap, 11m =0,1=0,...
hA,,, —th,mz 1,...,1’1.
Expansions B,(¢),n=1,...,N are pivotal if and only if by, » = Qpy, 1+
'~'+ClhAn,n #O,}’l: 1,...,N.

(i) IfAn(e), e € (0,0l is a (ha,, ka,)-expansion form =1, ..., N where N > 2,
then C,(¢) = chaﬂneh@ 4+ 4 ckcn,nekcn + o(ekan), e € (0, &) is a (he,, kc,)-
expansion, forn =1, ..., N, with hc, = ha,, kc, = ka, and h¢c, = ha, + -+ - +

hA,, = hC,,,l + /’lA", kC,, = min(kA, + Zlfrfn,r;él hA,a [ = 1,...,n) =
(he, | +ka) N (ke, , +ha,).n=2,...,N and coefficients given by formu-
las, chClJrl’l = ahAlJr]’l, [ = O, e, kC1 — /’lcl = kAl — hAl and, for = 0, ey

kc, —hc,,n=2,...,N, by formulas,

Chey +1n = > IT anyi.i- 1)

Iy =10l <k, ~ha, i=1,..on 1Sisn

or
Chey+ln = E Che, |+ n—1Gy, +1—1'n- (22)
0<r'<i
Expansions Cy(e),n=1,...,N are pivotal if and only if ¢y, n = ap, 1 X

exap, n#F0n=1,...,N.

(iii) Asymptotic  expansions  for  functions B,(e) =Ai(e) + .-+ A,(e),
n=1,...,N and C,(¢) =A1(e) x --- xA,(e),n=1,...,N are invariant
with respect to any permutation, respectively, of summation and multiplication
order in the above formulas (19) and (21).

Lemma 10.6 The above asymptotic expansions have the following operational rules
for computing remainders:
, €A )-expansion for m =1,

(i) I,f Am(g)vg € (Oa 80] is a (hAmvama 8Am» GAm m
....N where N > 2, then B,(¢),¢c € (0,&] is a (hg,.kp,,ds,, Gp,, €B,)-

expansion, forn =1, ..., N, with parameters hg, = hy,, kg, = ka, and hg, =
min(hA] S I’lA“) = th—l AN hA”, an = min(kAl, e, kA”) = kB,,,] AN kA”,
n=2,...,N, coefficients bhsﬁl,n’ [=0,...,kg, —hp,,n=1,...,N givenin
proposition (i) of Lemma 10.5 and parameters Gg,, 8p,, €g,,n = 1, ..., N given

by formulas 8p, = 84, > 6y = minj<;<, 64
n=2,...,N, by formulas,

Gp, = Ga,, g, = €4, and, for

m?

: *
8, = min 8, > Sy,

mek,
where K, ={m:1 <m <n, k,, =min(ky, ..., k,)},
ka;+384,—kp, —3p, j—kp, —0p
G, = E (GA,'SB” + E laa, jleg, " "),
I<i<n ks, <j<ka;

ep, =min(ey,, ..., €a,), (23)
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or by alternative recurrent formulas,

8B, ifkp, = kg, , < ka,,
8, = min 84, = 1 g, , A da, ifkp, = kg, , =ka,,
ek, .
e 8a, if kg, = ka, < kg, ,,
> 85

an—l +83n71 —kg, —0p, i—kg, —0g,
GBn = GBn—l &g, + E |bB,,,| ,i|83n

kg, <i<kp,_,
ka, +84, —kp, —0p 2 : j—kp, —0p
+ GA” 8Bn“ n n n + |aA,l,j |8]B” n n ,
kg, <j<kay,
EB, = €B,_; N\ €A, (24)

(i) If An(e),e€(0,e0] is a (ha,,ka,,0a,,Ga,, €a,)-expansion for m =1,
....N where N > 2, then C,(¢),e € (0,¢] is a (hc,, kc,, d¢c,, Ge,, €cy)-
expansion, for n=1,...,N, with parameters hc, = ha,, ke, = ka, and
hc, = he, , +ha, = ha, + -+ ha,, ke, = (he,_, +ka) N (ke,., + ha,) =
ming <<, (ka, + lersn,r;&l ha,),n=2,...,N, coefficients cp, 11, =0,
weoske, —he,,n=1,...,N given in proposition (ii) of Lemma 10.5 and
parameters éc,, Ge,, &c,,n=1,...,N given by formulas 5c, = 84, = 8y =
min <<, 64, Ge, = Ga,, &c, = €4, and, forn =2, ..., N, by formulas,

m?

(SC” = min 8Am > 3;‘:],
mel,

where

L, m:1<m<n, | ks, + Z ha,

1<r<n,r#m

= min | k4, + Z ha, ,

1<i<n
1<r<n,r#l
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li+-+l—kc, —dc,
Ge, = > [T taasled ™

key <liteeetly g, <li<kagi=1,...n 1<i<n

+Z H ( Z las,ileg,

1<j<n 1<isni#j  ha <I<ka,

kAi +5Ai kA/ +8Aj —kc, —d¢cy
+Gaee, ")Gas,

9

&c, = Min &y,. (25)
1<i<n

or by alternative recurrent formulas,

8¢, ifkc, = ha, + k¢, , <hc, | +ka,,
8¢, = 1 0a, Nbc, , ifkc, =hp +ka = ha + kg,
8a, ifkc, = hc, , +ka, < ha, +kc,,,
> 8y,
i+j—kc,—dc,
G, = > lee, v illan, jlec

ke, <i+j,he,_, <i<ke,_ | ha, Si<ka,

J+ke,_, +éc,_, —kc, —dc,
+Ge, ., D lag,jleg

hAn ﬁjka,,
i+ka, +8a, —kc, —dcy
+ Gay E lce, .ilec,
he,_, si<kc,_
ka, +kcn71 +84,, +3Cn,1 —kc, —d¢c,
+ Ga, G, &, ,
Ec, = Ec,; N EA,- (26)
(iii) Parameters éc,, Gc,, ¢c,,n = 1, ..., N in upper bounds for remainders in the

asymptotic expansions for functions B,(¢) =Ai(e)+---+A(e),n=
1,...,N and C,(e) = A1(e) x --- x Ay(e),n=1, ..., N are invariant with
respect to any permutation, respectively, of summation and multiplication order
in the above formulas (23) and (25).

It should be noted that formulas (23) and (25) give, in general, the values, which
are less or equal than the values for these constants given in alternative formulas,
respectively, (24) and (26).
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2.3 Proofs of Lemmas 10.1-10.6

The formulas given in Lemmas 10.1 and 10.2 are quite obvious. The same relate to
formulas and in propositions (i)—(ii) (the multiplication by a constant and summation
rules) of Lemmas 10.3 and 10.4. They can be obtained by simple accumulation of
coefficients for different powers of ¢ and terms accumulated in the corresponding
remainders, as well obvious upper bounds for absolute values of sums of terms
accumulated in the corresponding remainders. Lemmas 10.5 and 10.6 are corollaries
of Lemmas 10.3 and 10.4.

Let us, therefore, give short proofs of propositions (iii)—(v) of Lemmas 10.3
and 10.4.

Multiplication of asymptotic expansions A(¢) and B(e) penetrating proposition
(iii) of Lemma 10.3 and accumulation of coefficients for powers elforl = he, ... ke
yields the following relation,

C(e) = A(e)B(e)

— ha ka ka hp kg kg
= (ap, "™ + -+ +ag e +0a(e™))(bpye™ + - + brye™ + op(e™?))
S D ST

he=<l<kc i+j=l,ha<i<ka,hp<j<kp

bl ti
+ Z a;bje
ke <i+j,ha<i<ka,hp<j<kp

+ Z bigloa (k) + z aie'op(e") + 04 (") op(e*8)

hp<j<kg ha<i<ka
= Z cre! + o (5¢), (27)
he<l<kc
where
Oc(skc) = Z aibj8i+j + Z bj&‘jOA (8kA)
ke <i+j,ha<i<ka,hp<j<kp hg<j<kp
+ D aiglop(e™) + oa(€)op(e"). (28)
ha<i<ka
Obviously,
gke
OC(kC ) 0as0<e 0. (29)
&

It should be noted that the accumulation of coefficients for powers &/ can be made
in (27) only up to the maximal value | = k¢ = (hy + kg) A (hg + ka), because of
the presence in the expression for the remainder oc(g*) terms bhEShBoA(ekA) and

ha ks
ap, €™ op(e™?).

Also, relation (28) readily implies relation (15), which determines parameters
3¢, G, &c in proposition (iii) of Lemma 10.4.
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The assumptions of proposition (iv) in Lemma 10.3 imply that the following
relation holds,
e "™ B(e) - by, #0as0 < & — 0. (30)

This relation implies that there exists 0 < &( < g such that B(¢) # 0 for ¢ €
(0, &;]1, and, thus, function C(g) = zﬁ is well defined for ¢ € (0, g;].
The assumptions of proposition (iv) of Lemma 10.3 also imply that,

1
hp —
eC(e) =
®) bhy + by 18 -+ - + by ehs=he + op(ehs)e~hs
1
- —=c,.a0<e—0. a3

by,

This relation means that function & C(¢) can be represented in the form e C(e)
= cp. +o(1), where ¢, = b;BI, or, equivalently, that the following representation
holds,

C(e) = cpee ™ + Ci(e), & € (0, &)1, (32)
where c
@—)Oa50<8—>0. 33)
8_ 'B

Relations (32) and (33) prove proposition (iv) of Lemma 10.3 for the case, where
hp = kg that is equivalent to the relation hc = —hp = k¢ = kg — 2h;p.

Note that, in the case hg = kg, the asymptotic expansion (32) for function C(¢)
can not be extended. Indeed,

e"71Ci(e) = "N (C(e) — chee™)

— Che OB (8h8)87hB (34)
by, +op(ehs)g—hs e
The term 2E2™ on the right hand side in (34) has an uncertain asymptotic
behaviour as 0 < ¢ — 0.
Let us now assume that 1z + 1 = kg that is equivalent to the relation he = —hp =

ke — 1 =kp —2hg — 1.
In this case, the assumptions of proposition (iv) of Lemma 10.3 and relations (32),
(33) and (34) imply that

" 1C () = "7 (C(e) — cpoe)
_ —bngqicn. — op(e" e ey,
bpy + bpyr1€ + op(ghstyehs

N —bp,41Che
by,

=cp+1as0<e — 0. 35)



168 D. Silvestrov and S. Silvestrov

This relation means that function £#~1C,(¢) can be represented in the form
e=1C(e) = Che+1 +0o(1), where cp.q1 = b;BIthHchC, or, equivalently, that the
following representation holds,

C(e) = cnee ™™ + cper1e ™ + Ca(e), e € (0, &), (36)
where c
#—waso«;—w. (37)
g—hst1

Relations (36) and (37) yields proposition (iv) of Lemma 10.3 for the case, where
hg + 1 = kg.

Note that, in the case hg + 1 = kp, the asymptotic expansion (36) for function
C(¢e) can not be extended. Indeed,

"0y (e) = " T2(Cle) — cnee ™™ — cpepre

_ Che 03(81“‘“)87]1871. (38)
th + th_H{;‘ + 03(8h3+1)8_h5 £

The term M

behaviour as 0 < ¢ — 0.
Repeating the above arguments, we can prove that function C(g) can be rep-
resented in the form of (h¢, k¢)-expansion, with parameters hc, k¢ and coeffi-

on the right hand side in (38) has an uncertain asymptotic

cients ¢y, ..., Cx. given in proposition (iii) of Lemma 10.3, for the general case,
where hp + n = kg, or, equivalently, h¢ = —hg = k¢ —n = kg — 2hg — n, for any
n=0,1,....

The (h¢, k¢)-expansion for function C(e) = BL can be rewritten in the equivalent

(e)
form of the following relation, ’
L= (b€ + -+ + by, e" + 0p(e™)) (e + -+ ence™ +0c(e")). (39)

Proposition (iii) of Lemma 10.3, applied to the product on the right hand side
in (39), permits to represent this product in the form of (h, k)-expansion with para-
meters h = hg + hc = hg —hg =0and k = (hg + kc) A (kg + he) = (kg — hg) A
(kg — 2hp + hp) = kp — hp.

By canceling coefficient for &' on the left and right hand sides in (39), for [ =
0, ..., kg — hg and then solving equation (39) with respect to the remainder o¢ (%)
permits to find the following formula for this remainder,
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ool t] of kg
ZkB*hB<i+j,hBSiSkthC§iSkc b‘CJE + thsjﬁkc Gj€e op(e"™)

kc —
oc(e™) bhgehg 4 kang + 03(8"3)

.ol ti—hp
kg hy<itjhgsiskshosi<ke PiCiE
bhg + -+ kagkR—hB + 03(5/(3)8—}18
i—h k
thgjgkc cje! " op(e™)

o th + .o + kang*hB + OB(ng)E*hB :

(40)

The assumptions made in proposition (iv) of Lemma 10.4, imply that B(g) # 0
and the following inequality holds for 0 < ¢ < g¢, where e is given in relation (16),

b
|bpy + -+ + bi, €7 + op(e*)e | > '%

> 0, (41)
The assumptions made in proposition (iv) of Lemma 10.4 and inequality (41)
finally imply that the following inequality holds, for 0 < ¢ < ¢,

-1
by,
|0c(8kc)| < ghs—2hs+3s (—| 2'3|

x > |bilcjle g e

kp—hp <i+j,hp<i<kp,hc <j<kc

+Gp Y lglet™ ] . (42)

he<j<kc

This inequality proofs the proposition (iv) of Lemma 10.4.

The first statement of proposition (v) in Lemma 10.3 states that function D(¢g)
can be represented as (hp, kp)-expansion with parameters hp, kp and coefficients
dp,, ..., dy, given in this proposition and relation (11). It is the direct corollary
of propositions (iii) and (iv) of Lemma 10.3, which, just, should be applied to the
product D(g) = A(e) - %, e € (0, g].

Note that, in this case, parameters hp = hy + he = hy — hg and kp = (ks +
hc) A (ha + kc) = (ka — hg) A (ha + kg — 2hp).

Now, when it is already proved that D(e) is (hp, kp)-expansion, its coefficients
can be also computed by equalising coefficients for for powers & for I = hp, ..., kp
on the left and right hand sides of relation,

A(e) = B(e)D(¢)
= (thehB +---+ thgk" + OB(EkB))
X (dhpehD + -+ thEkD + OD(SkD)). 43)
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This procedure yields the second statement of proposition (v) in Lemma 10.3 and
the corresponding formulas given in relation (12).

The first statement of proposition proposition (v) in Lemma 10.4 and relations
(17) can be obtained by direct application of propositions (iii) and (iv) and relations
(15) and (16) given in Lemma 10.4, to the product D(e) = A(¢) - ﬁ.

Proposition (iii) of Lemma 10.3, applied to the product on the right hand side in
(43), permits to represent this product in the form of (h, k)-expansion with parameters
h=hpg+hp = hg + hy —hg = hy and k = (hg + kp) A (kp + hp) = (hp + (ks —
hg) A (ha + kg — 2hp)) A (kg + ha — hg) = ka A (kg +

ha — hp).
By canceling coefficient for &’ on the left and right hand sides in (43), for [ =
ha, ..., ka A (kg + ha — hp) and then solving Eq. (43) with respect to the remainder

op(e*?) yields the following formula for this remainder,

) ka
2 ko Ak —ha) <1<ky UE T 0 (™)

kpy
8 =
op(e™) bpye"s + - - + by, ek + op(eks)

. oiti
2k Ak ) <it. i<k i<k DidiE
bpyes + - + by, ek + op(eks)
e (ks
2y <jcky 4 05(€")

B th€hE + -+ thSkB + OB(SkB)

I—hg k, —hg
 Dkanthks tha—hg)<izk, UE P F 0a(e7)E
th 4.4 kang—hB + OB(ng)g—hE
. citi—hs
_ ZkAA(kg"rhA_h8)<i+jvh85i§k8>hD§iSkD b’djg
bhg + -+ kang—hB + 03(5/(8)8—}13
i—h, k,
Zhniiikn dje’ " op(e™)

- th + . e + bkkng*hB + OB(ng)S*hB

(44)

The assumptions made in proposition (v) of Lemma 10.4 and inequality (41)
finally imply that the following inequality holds, for 0 < & < ¢p given in relation

(18),

bl
lop(e!)] < et (=) ™!

l—kp—hg—34,
% Z |Cl[|8D p—hp—dp

kaA(kg+ha—hp) <I<kp

i+j—kp—hp—3
+ > |bil|djley? 7"

kaA(kg+ha—hy) <i+j,hg<i<kg,hp<j<kp

+ Gy ekA +84—hp—kp—3dp
D
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+Gp Z |dj |}, io=on (45)

hp<j<kp

2.4 Algebraic and Related Properties of Operational Rules
Jor Laurent Asymptotic Expansions

Let us also introduce parameter wy = ks — hy, which is alength of a Laurent asymp-
totic expansion A(g) = ape™ 4+ -+ ape® + o, (eM).
The following useful lemma takes place.

Lemma 10.7 The following relations hold for Laurent asymptotic expansions pen-
etrating Lemma 10.3:

(i) If C(e) = cA(e), then we = wa.
(ii) If C(e) = A(e) + B(e), thenwa Awg < we < Wy V wp.
(iii) If C(e) = A(e) - B(e), then we = wa A wp.
(iv) If C(e) = 1/B(e), then we = wp.
) IfD(e) = A(e)/B(e), then wp = wa A wp.
(vi) Ifwa = wp = w then we = wp = w for all Laurent asymptotic expansions pe-
netrating Lemma 10.3.

The proof of this simple lemma readily follows from formulas for parameters i
and k penetrating propositions (i)—(v) of Lemma 10.3.

Let us again consider four Laurent asymptotic expansions, A(g) = a, & + --- +
akAskA +o4(e"), B(e) = thShB + -4+ bkgsk" +op(e*), C(e) =chC8hC+ -ee
ckcskC +oc(e*), and D(¢) = dj e + - - - + dy, % + op(e*?) defined for 0 < & <
&p, for some 0 < g9 < 1.

Below, sums Z;‘:h d; are counted as 0 if k < h.

The following lemma is also a corollary of Lemma 10.3.

Lemma 10.8 The summation and multiplication operations for the Laurent asymp-
totic expansions penetrating propositions (ii) and (iii) in Lemma 10.3 possess the
following algebraic properties, which should be understood as identities for the

corresponding asymptotic expansions:
(i) The summation operation is commutative, i.e., C(¢) = A(e) + B(¢) = B(¢e) +
A(e), wherehe = haip = hpya = ha A hp, k¢ = kayp = kpia = ka A kp, and,

kc—hc
Cle) = D (et + bacs)e" ™ +oc(e"), (46)
1=0

where ap.4; = 0for 0 <1 < hsy — he, byo41 =0 for 0 <1 < hg — he.
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(i) The summation operation is associative, i.e., D(¢) = (A(e) + B(¢)) + C(e) =
A(e) + (B(e) + C(e)) = A(e) + B(e) + C(e),  where  hp = huypyrc =
hay@+c) = hagprc = ha Nhp N he, kp = kaypy+c = kariro) =

A+B+C = ka A kg A kc, and,
kp—hp

DE) = D (a1 + b1 + cnp D™t 4+ 0p (), (47)
=0

where ap,+; = 0for0 <1 < hy — hp, by, =0for0 <1 < hg — hp, cpy+1 =
OfOFOS [ < hec — hp.

(iii) The multiplication operation is commutative, i.e., C(g)=A(e)-
B(é‘) = B(S) -A(S), where I’lC = hA~B = hB-A = l’lA + hB, kc = kA-B = kB-A =
(ha + k) A (ka + hp), and,

kc—hc
C(e) = Z ( Z Ay +1, bhqu) ShCH +0c(8kL). (48)
I+

=0 =1,01,lb>0

(iv) The multiplication operation is associative, i.e., D(¢) = (A(e) - B(e)) - C(e) =
A(e) - (B(e) - C(e)) = A(e) - B(g) - C(e), where hp = hu.p).c = ha.@p.c) =
ha.p.c = ha +hg +he, kp = kw.p.c = ka.g.cy = ka.p.c = (ha + hp +
kc) A (hA —+ kB + /’lc) A (kA + hB =+ /’lc), and,

kp—hp

hp+l k
D)= Y > gty Pty Chevis | €°7 + op(™P). (49)
lh+h+B=L1,5,3=0

1=0

(v) The summation and multiplication operations possess distributive property,
i.e., D(e) = (A(e) +B(g))-C(e) =A(e) - C(e) + B(e) - C(g), where hp =
h@+p).c = ha.crp.c =ha ANhg +he = (ha + he) A (hg + he),
kp = katn).c = ka.cep.c = (ha Nhg +ke) N (ka Nkp 4+ he) = (ha + k)

A (ko 4+ he) A (hg +ke) A (kg + he), and,

kp—hp

D(e) = z ( Z (ahA/\hH+1|

=0 h+h=L1,b>0

-+ k
+ bhAAhBJrll)ChCHg)g P +op(e™)

kp—ha—hc

ha+hc+l
= Y Z )

1=0 h+h=L1,L>0

kp—hp—hc

+ z ( z b/13+zlchc+zz)€h’3+hc+l+OD(8kD)v (50)

1=0 L+h=L1,L>0

where apppg+1 = 0. for 0 <1 < hy — ha A hp, by, ang+1 = 0, for0 <1 < hg —
ha A hp.

The summation and multiplication rules for computing of upper bounds remain-
ders penetrating propositions (ii) and (iii) in Lemma 10.4 possess the communicative
property. This follows from formulas (23) and (25) given in Lemma 10.6.
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However, the summation and multiplication rules for computing of upper bounds
for remainders presented in propositions (ii) and (iii) of Lemma 10.4 do not possess
associative and distributional properties. The question about the form of upper bounds
for the corresponding remainders, which would possess these properties, remains
open.

As follows from Lemma 10.4, operational rules presented in this lemma possess
special property that let one give an effective low bounds for parameter 4 for any
(ha, ka, 4, Ga, €4)-expansion A(¢e) obtained as the result of a finite sequence of oper-
ations (multiplication by a constant, summation, multiplication, and division) per-
formed with (hg4,, ka,, 84,, Ga,, €a,)-expansions A;(¢),i = 1, ..., N from some finite
set of such expansions.

The following lemma takes place.

Lemma 10.9 The operational rules for computing remainders of asymptotic expan-
sions with explicit upper bounds for remainders presented in propositions (ii) and
(iii) of Lemma 10.4 possess the following properties:

(i) IfC(e) = A(e) + B(e) = B(e) + A(e) then 8¢ = Sp1p = Op+a, Gc = Garp =
Gpia and ec = €p1p = Epya, Where parameters ¢, Ge and ec are given by
Jormula (14) in proposition (ii) of Lemma 10.4.

(li) IfC(E) = A(S) -B([;‘) = B(E) A(S) then 5C = 5A-B = SB»Aa Gc = GA-B = GB-A
and ec = ea.p = €p.a, Where parameters 5¢, G¢e and ec are given by formula
(15) in proposition (iii) of Lemma 10.4.

(iii) If A(e) is (ha, ka, Sa, Ga, €4)-expansion obtained as the result of a finite
sequence of operations (multiplication by a constant, summation, multiplica-
tion, and quotient) performed with (ha,, ka,, 8,, Ga,, €a,)-expansi-onsA;(e), i =
1,..., N from some finite set of such expansions, then §4 > 8y, = minj<;<y 04,
that makes it possible to rewrite A(e) as the (ha,ka, 0y, G; N

. . 84—
ga)-expansion, with parameter G¥ \, = Gae,' ™.

3 Perturbed Markov Chains and Semi-Markov Processes

In this section, we formulate basic perturbation conditions for Markov chains and
semi-Markov processes and give basic formulas for stationary distributions for semi-
Markov processes, in particular, formulas connecting stationary distributions with
expectations of return times.

3.1 Perturbed Markov Chains

LetX ={l,...,N}and n'®,n =0, 1, ... be, for every & € (0, &], a homogeneous
Markov chain with a phase space X, an initial distribution p}g) = P{n((f) =i}, ieX
and transition probabilities defined for i, j € X,
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pie) = P{n) = j/m® =i} (51)

Let us assume that the following condition holds:

A: Thereexistsets Y; C X, i € Xandgy € (0, 1] such that: (a) probabilities pij(e) >
0,j €Y, ieX, for ¢ € (0, g]; (b) probabilities p;i(e) =0,/ € Y,, i € X, for
e € (0, gl; (c) there existn; > 1 and achain of states i = l;;0, lij 1, .. ., lu,m/ =]
such that [;; ; € Y, iy €Y for every pair of states i, j € X.

§,02 """ ijngj—17?

We refer to sets Y;, i € X as transition sets.

Conditions A implies that all sets Y; # @, 7 € X, since matrix ||p;;(¢)|| is stochas-
tic, for every ¢ € (0, &].

We now assume that the following perturbation condition holds:

+
B: pj(e) = Zj - ajllle’ + 0;(e i), where ajll;1>0and 0 < [; < l;r < oo, for
jeY,ie X,andoij(e"i)/sif — 0ase — 0,forj e Y;,i e X.

Some additional conditions should be imposed on parameters ¢y € (0, 1] and
l;,j €Y,,i € X, and coefficients ag;[l],] = ll;, R lu ,J € Y;,i € X, penetrating
the asymptotic expansions condition B, in order this condition would be consistent
with the model assumption that matrix [|p;(¢)]| is stochastic, for every ¢ € (0, &,
and with condition A.

Condition B implies that there exits gy € (0, 1] such that the following relation
holds,

l+
pije) = Za,,[z e +0;)>0,jeY, ieX, e (08 (52)
I=l;

Thus, condition B is consistent with condition A (a).
The model assumption that matrix ||p;;(¢)|| is stochastic is, under conditions A
(a) and (b), equivalent to the following relation,

D pie)=1.jeYiieX, &€ (0, &) (53)
JjeY;

Condition B and proposition (i) (the multiple summation rule) of Lemma 10.5
imply that sum 2>, p;;(¢) can, for every subset Z C Y; and i € X, be represented
in the form of the following asymptotic expansion,

hiz
> pite) = D aizllle' + 0iz(e"), (54)
jet 1=,
where
lZ_minll], lZ_miznl (55)
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and
a7l = Za,»j[l], I=1,,....1, (56)

JEZ

where q;;[I] =0, for0 <[ < ll;-,j € 7, and

It l ¥
0iz(e" ) =" D allle' + 05(e") | . (57)
JEL \If, <1<l
In terms of asymptotic expansions, constant 1 can be represented, for every n =
0, 1, ..., in the form of the following pivotal (0, n)-expansion,

l=14+0e+---0" + 0,(e"), (58)

where remainders 0,(¢") =0,n =0, 1, .. ..

Moreover, the above expansionisa (0, n, 1, G, gp)-expansion forany 0 < G < oo
andn=20,1,....

Relation (53) permits us apply Lemma 10.2 to the asymptotic expansions given
in relations (54) and (58). Not that, in this case, [;3, = 0, otherwise the expression
on the right hand side in (54) would converge to zero as ¢ — 0. Let us take n = l:“Yi
in relation (58). In this case h; = O and k; = ZZ”Y[ in the asymptotic expansion given
in relation (58).

Lemma 10.2 and the model stochasticity assumption (53) imply that, in this case,
the following condition should hold for the coefficients of asymptotic expansions
penetrating condition B:

C: @) aylll =,y ailll = 10 =0), 0 <l <0, ieX, where a;ll] =0,

for0 <!/ < ll;,j eVY;,ieX; () oi,yi(slf‘f,‘) = 0,&‘(81&:') =0,ieX.

Remark 10.1 1t is possible to prove that conditions A—C and the model stochas-
ticity assumption (53) imply that the asymptotic expansion in (54) satisfy, for
every Z C Y, and i € X, one of the following additional conditions: (a) Z;Z > 0;
(b) l;z =0,a;7z[0] < I; (c¢) l;Z =0,a;7[0] =1 and there exists 0 < /;z < le
such thata; z[/] = 0,0 < [ < [; 7z, but a; z[l; 7] < 0; or (d) ll.TZ =0,a;7[0] =1 and

a;zll]=0,0 <1< l:rZ, but the remainder oi,z(slff%) is a nonpositive function of ¢.

e . . I,
The above proposition implies that there exists &y € (0, 1] such that Zl"_“i_
7

a; zlle’
+oi,Z(81rZ) <1,ZCY;,ieX, ¢ee(0,eg]. Thus, conditions A—C are also consis-
tent with the relations Zjezp[j(e) <1,ZCY,;,ieX, ¢ee(0,eg], which follows
from the model stochasticity assumption (53).

In the case, where the asymptotic expansions penetrating condition B are supposed
to be given in the form of asymptotic expansions with explicit upper bounds for

remainders, we replace it by the following stronger perturbation condition:
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pij(e) = Zi’:l; a,-j[l]sl + oij(al;),where a,-j[ll.;] > 0and0 < ll.; < l; < o0, for

. . + + e . .
jeY;ieX and Io,:,-(al"f)l < G,-jal"f +5,,’ 0 <e<gy forjeV, ieX, where
0<6;<1,0<G; <ooand0 < g; < g.

3.2 Perturbed Semi-Markov Processes

LetX = {1,...,N}and (n©, k{®),n =0, 1, ... be, for every ¢ € (0, 1], a Markov
renewal process i.e., ahomogeneous Markov chain with the phase space X x [0, 00),
an initial distribution p(F) Pinl =i, k¥ =0y =Py =i},i € X and transi-
tion probabilities defined for (i, s), (j, 1) € X x [0, 00),

0 (1) =P, =j. k), <t/ =ikl =s). (59)
In this case, the random sequence 77,(18), n=0,1,... is also a homogeneous

(embedded) Markov chain with the phase space X and transition probabilities defined
fori,j e X,

pi(e) = Pl =j/nf =i} = 0} (c0). (60)

We assume that condition A holds. This implies that Markov chain 1) has one
class of communicative states, for every ¢ € (0, go].
We also assume that the following condition excluding instant transitions holds:

D: ng)(O) =0, i,j € X, forevery ¢ € (0, &].

Let us now introduce a semi-Markov process,

) =0l 12 0. ©1)
where
v (@) =max(n>0:¢® <), 1 >0, (62)

is a number of jumps in the time interval [0, ¢], and
(O =P+, n=0,1, (63)

are sequential moments of jumps for the semi-Markov process n'® (¢).

If Q?f) ()= (1 —e ONpi(e),t >0,i,j € X, thenn®(¢), t > 0is acontinuous
time homogeneous Markov chain.

If Ql.(;)(t) =1(t > Dp;(e),t > 0,i,j € X, then n© (1) = nff]), ¢t > 0 is a discrete
time homogeneous Markov chain embedded in continuous time.

Let us also introduce expectations of sojourn times,
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oo
ei(e) = Ex\V 1\ = j) = / 105 (dr), i.j € X. (64)
0

We also assume that the following condition holds:
E: ¢;(e) <00, i,j e X, fore € (0, g].

Here and henceforth, notations P; and E; are used for conditional probabilities
and expectations under condition n((f) =1

In the case of continuous time Markov chain, ¢;;(¢) = %(S)p,;,- (e),i,je X

In the case of discrete time Markov chain, e;i(¢) = p;i(e), i,j € X.

Conditions A and D imply that, for every ¢ € (0, &o], expectations e;;(¢) > 0, for
jeY,ieX ande;(e) =0, forje Y, ieX

We now assume that the following perturbation condition holds:

F: ¢;(e) = ’ln:”m, bij[l]sl + bij(sm;), where b,-j[mi;] >0 and —o0 < m; <

. . . + + . .
m;r < oo, forj e Y; ieXando;(e"i)/e" — 0ase — 0,forje VY;,ieX

In particular, in the case of discrete time Markov chain, condition B implies
condition F to hold, since, in this case, expectations e;i(¢) = p;;(¢),j € Y;,i € X.
Condition F implies that there exits g € (0, 1] such that the following relation
holds,
ej(e) >0,jeY;, ieX, e (0,¢] (65)

This is consistent with condition D.

In the case, where the asymptotic expansions penetration condition F are given
in the form of asymptotic expansions with explicit upper bounds for remainders, we
assume that the following stringer perturbation condition holds:

+ +
F:  ej(e) = Z;”:’m; bllle' + 0(™), where bijll;1>0 and —oo <m; <

. . . + .
m; < o0, for j €Y, i €X, and [0;(c")| < Gye

Y,-,ieX,whereO<S,j§ 1,O<Gij<ooand0<éij§80.

PR . .
T 0 < e < gy, for je

It is also worse to note that the perturbation conditions B and F are independent.

To see this, let us take arbitrary functions pj(e),j € Y;,i € X and ¢;(¢),j €
Y;, i € X satisfying, respectively, conditions B and F, and, also, relations (52), (53)
and (65). Then, there exist semi-Markov transition probabilities ijg) ®,t>0,je
Y;,i € X such that Qi(;)(oo) =pje),j €Y, ieX and [;° tQi(f) (dt) = ej(e),j €
Y;,i € X, forevery ¢ € (0, go].

Itis readily seen that, for example, semi-Markov transition probabilities ijg) (1) =
I(t > ¢;(e)/pij(e))pij(e),t = 0,j € Y;, i € X satisfy the above relations.
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3.3 Stationary Distributions for Semi-Markov Processes

Condition A guarantees that the phase space X is one class of communicative states
for Markov chain n{®), for every ¢ € (0, ], i.e., the Markov chain ' is ergodic,
and, thus, for every ¢ € (0, &¢], there exist the unique stationary distribution p(g) =
(p1(8), ..., pn(€)), which is given by the following ergodic relation, for i € X,

i = Zl(n“) — i) - pi(e) asn — oo. (66)

It is useful to note that the ergodic relation (66) holds for any initial distribution
79 =\, ...p%¥) and the stationary distribution 5(g) does not depend on the
initial dlstrlbutlon

As known, p;(¢), i € X is the unique positive solution for the system of linear

equations,

< pi(€) = D ix Pi(e)pii(e).j € X, 67)
Diex pi =1

Conditions A, D and E imply that, for every ¢ € (0, &¢], the semi-Markov process
n® (¢) is also ergodic and its stationary distribution 7 (¢) = (1 (g), ..., my(e)) is

given by the following ergodic relation, for i € X,

MY ' ) (y _ : P
w) = " I1(n'¥(s) = i)ds —> mi(e) ast — o0. (68)
0

As in (66), the ergodic relation (68) holds for any initial distribution p®’ and the
stationary distribution 77 (¢) does not depend on the initial distribution.

The stationary distributions for the semi-Markov process 7' (¢) and the embedded
Markov chain 1® are connected by the following relation,

pi(&)ei(e) )
() = 0 e X, 69
T = S e ©
where
ei(e) = E? =D ej(e). i e X. (70)
jex

Condition B implies that there exist limits,
(1,:]'[0] lfllj_ = 0,] S Y,‘, i € X,

pyO) = limp;(e) = | 0 ifl; >0jeViieX (71)
o 0 ifjeY.,ieX.
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Matrix ||p;;(e)| is stochastic, for every ¢ € (0, g9] and, thus, matrix ||p;(0)| is
also stochastic.

However, it is possible that matrix ||p;(0)]| has more zero elements than matrices
Ipy @)1l

Therefore, a Markov chain n¥, n =0, 1, ..., with the phase space X and the
matrix of transition probabilities ||p;;(0)|| can be not ergodic, and its phase space X
can consist of one or several closed classes of communicative states plus, possibly,
a class of transient states.

Condition F implies that there exist limits,

00 ifmi;<0,jeY,-,ieX,
byl0] ifmy; =0,j € Y, i€X,
0 ifmi;>0,jeY,-,ieX,
0 ifjeY;,ieX.

e;j(0) = gi_% ej(e) = (72)

Out goal is to design an effective algorithm for constructing asymptotic expansions
for stationary probabilities ;(¢), i € X, under assumption that conditions A-F hold.

As we shall see, the proposed algorithm, based on a special techniques of sequen-
tial phase space reduction, can be applied for models with asymptotically coupled
and uncoupled phase spaces and all types of asymptotic behavior of expected sojourn
times.

The models of continuous and discrete Markov chains are particular cases.

In particular, asymptotic expansions for stationary probabilities p;(¢), i € X coin-
cide with expansions for stationary probabilities ;(¢), i € X, for the discrete time
Markov chain, where expectations e;i(e) = p;;(¢),i,j € X.

3.4 Expected Hitting Times and Stationary Probabilities
Jor Semi-Markov Processes

Let us define hitting times, which are random variables given by the following rela-
tion, forj € X,

»®
t =3k, (73)
n=1
where
vj(g) =min(n > 1: 7% =j). (74)
Let us denote,
Eje) =B, ijeX (75)

As is known, conditions A, D and E imply that, for every ¢ € (0, &],
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0< Elj(s) < o0, I,j e X (76)

Moreover, under the above conditions, the expectations Ej;(¢), i € X are, forevery
J € X, the unique solution for the following system of linear equations,

{Eij(e) = ei(e) + D pir(e)Ey(e), i € X. (77)
ré#j

The following relation plays an important role in what follows,

,ieX. (78)

In fact this formula is an alternative form of relation (69). Indeed, as is known,
Ei(e) = ZjeX ej(e)fiij (&), where f;; j(¢) is the expected number of visits by the
Markov chain n{® the state j between two sequential visits of the state i. As also
known, f;; ;(¢) = p;(e)/pi(e),i,j € X.

Formula (78) permits reduce the problem of constructing asymptotic expansions
for semi-Markov stationary probabilities 7; (¢) to the problem of constructing Laurent
asymptotic expansions for expectation of hitting times Ej;(¢).

4 Semi-Markov Processes with Reduced Phase Spaces

In this section, we present a procedure for one-step procedure of phase space reduc-
tion for semi-Markov processes and algorithms for re-calculation of asymptotic
expansions for perturbed semi-Markov processes with reduced phase spaces.

4.1 Reduction of a Phase Space for Semi-Markov Process

Let us choose some state » and consider the reduced phase space , X = {i € X, i # r},
with the state r excluded from the phase space X.

Let us assume that p* = P{n{’ = r} = 0 and define the sequential moments of
hitting the reduced space ,X by the embedded Markov chain n'®,

&0 =mintk > £, 00 € X), n=12,.... " =0. (79

Now, let us define the random sequence,

(&) £ (e) _
(), ey = | Tt 2l o) orm=12 g
0¥, 0) forn = 0.
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This sequence is also a Markov renewal process with a phase space ,X x [0, 00),
the initial distribution p* = P{5{" = i},i € ,X (remind that p*) = 0), and transi-

tion probabilities defined for (i, s), (j, ) € X x [0, 00),
rQE;)(t) = P{ r’?,(ii] =J, rK,(lj_)l =< t/rn’(f) =1, rK/(1€) = s5}. (81)

Respectively, one can define the transformed semi-Markov process with the
reduced phase space X,
MW =m0 (82)

where
W) =max(n > 0: ,58 <1), 1>0, (83)

is a number of jumps at time interval [0, 7], and

ré‘yES)z rK1(£)+"‘+ rK,(18)’ nzoslv"'3 (84)
are sequential moments of jumps for the semi-Markov process ,7® (¢).
The transition probabilities ,fo) () are expressed via the transition probabilities

Ql(.ja) (t) by the following formula, fori,j € ,X,t >0,

0 (1) = 0F (1) + D05 (1) % 0 (1) % 01 (1). (85)

n=0

Here, symbol * is used to denote a convolution of distribution functions (possibly
improper) and Q'®*"(¢) is the n times convolution of the distribution function Q'€ ()
given by the following recurrent formula, for r € X,

Q=D — $)0©(ds) fort>0andn > 1,

I(t = 0) fort >0andn = 0. (86)

Qif)*n(t) — [ fot

Relation (85) directly implies the following formula for transition probabilities
of the embedded Markov chain ,n®, fori,j € ,X,

pii(e) = 0} (00)

= pij(&) + D pir(e)prr(e)"pyj ()

n=0

prj(g)

= pij(e) +pir(e) T n(®) (87)

Let us denote,
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Y;:UeYi:j#r},i,rGX. (88)

and
Y,=(e X:ireVY,jeVY,}, ie X (89)

Condition A implies that sets Y} # ¢, r € X.
Thus, probabilities 1 — p,,(¢) > 0, r € X, for every ¢ € (0, &].
That is why,

Yi={je  X: pji) >0¢e€(0,el}
={je X:jeYjulje X:reVY,jeY,},
= Y?: uY,, ie X (90)
Relation (87) and condition A, assumed to hold for the Markov chain n,(f), imply
that condition A also holds for the Markov chain ,7'®), with the sets ,Y;,i € ,X.
Indeed, let i € ,X. If j € Y} then pij(e) > 0 and, thus, ,p;(e) > 0. If j € Y,
then p;.(¢), pj(¢) > 0 and, again, ,p;(e) > 0.1f j ¢ Y;; U Y/, then p;(¢) =0 and
pir(€) - pri(e) = 0. By relation (87), this implies that .p;;(e) = 0.
Leti e X, IfY;T # (@ then ,Y; # 0. Iij; = @ then r € Y, and, thus, p;.(¢) > 0.
Then, Y, = {j € ,X: p,j(e) > 0} = Y} # (. Therefore, sets ,Y; # @,i € ,X.
Thus, conditions A (a) and (b) assumed to hold for the Markov chain n,(f), imply
that these conditions also hold for the Markov chain ,nﬁf), with sets ,Y;,i € X
replacing sets Y;, i € X.

Also, let i,j € ,X and i = Iy, [, ""lnu =j be a chain of states such that
LheYy,....l, e Y,”/_FI. As was remarked above, we can always to assume that
states [y, ..., l,,—1 are different and that [y, ..., ,,—1 # i, j. This implies that either
I, ..., l,,,.j,l # r or there exist at most one 1 <k < n; — 1 such that iy =r. In
the first case, [} € Yy, ..., 1, € ,Y;Wl. In the second case, [} € , Y, ..., 1 €
rYlk,zv lk—l € rYlk+l’ ey ln;j € rYZUifl.

Thus, condition A (c) assumed to hold for the Markov chain 1'®, imply that this
condition also holds for the Markov chain 7.
Let us define distribution functions,

FP()=> 071,120, ijeX oD
jex
and

FO 0 = [ 0 (0)/py(e) for 1 = 0if py(e) > 0, o)

Fl.(s) (t) fort > 0if p;(e) = 0.

Obviously,
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- T e | ei(e)/pie) if py(e) > 0,
2y(e) = /0 (F) (dr) _< e Lote) = 5 (93)

and -
ei(e) = / tFdr), i e X. (94)
0

Also, let us introduce expectations,

o0
ey(e) = / (09, i.j e X (95)
0

Relation (85) directly implies the following formula for expectations ,e;;(¢), i,
j E rX,

reij (&) = e (e)p(e) + Z (€ir(e) + ne, (&) + (&) pir (€)prr ()" prj(e)

n=0
e (e) + e ()21
=e;i(e) + e (¢) 1= po(e)
pir(e)  pri(e) oy Pir(®)
e O T T o

Relation (96) implies that conditions D and E, assumed to hold for the semi-
Markov process 1®(¢), imply that these conditions also hold for the semi-Markov
process 1@ (¢).

4.2 Hitting Times for Reduced Semi-Markov Processes

The first hitting times to a state j # r are connected for Markov chains ¥ and ,n®
by the following relation,

v =min(n > 1: 0 =)
=min(&0 = 1: 1 =j) = £, ©7)
7']‘
where
,vj(g) =min(n > 1: .7 =)). (98)

Relations (97) and (98) imply that the following relation hold for the first hitting
times to a state j # r for the semi-Markov processes 7® (¢) and ,n® (1),
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(&)
oo 50

J
(&) _ (&) _ (&)
A WTED W
n=1 n=1

(&)
rV;

=2 =17 (99)

n=1

Let us summarize the above remarks in the following theorem, which play the
key role in what follows.

Theorem 10.1 Let conditions A, D and E hold and the initial distribution satisfies
the assumption, pﬁa) =0, for every € € (0, &y]. Then, for any state j # r, the first

hitting times tj(g) and ,rj(g) to the state j, respectively, for semi-Markov processes

n® () and ,n'® (1), coincide.

4.3 Asymptotic Expansions for Non-absorption Probabilities

As was mentioned above, condition A implies that the non-absorption probability
pi(e) =1 —pii(e) >0,i € X, ¢ € (0, &o].
Let us introduce the set,
Y={ieX:ieY;} (100)

Algorithm 1. This is an algorithm for constructing asymptotic expansions for
non-absorption probabilities p;;(¢), i € X.

Casel:ieY.

Let us use the following relation, which holds, for every i € Y and ¢ € (0, &],

Pile) =1 —pue) = D pij(e) (101)

jey;

1.1. To construct the (%}, k;)-expansion for the non-absorption probability p;;(¢) =

1 — p;i(e) by applying the propositions (i) (the multiplication by a constant rule) and
(ii) (the summation rule) of Lemma 10.3 to the ([, l;)-expansion for transition
probability p; (&) given in condition B (first, this expansion is multiplied by constant
—1 and, second, is summated with constant 1 represented as (0, [;})-expansion given
in relation (58)). In this case, parameters 4} = 0, k, = [\

1.2. To construct the (h}, k’)-expansion for the non-absorption probability

12

pii(e) = ZJ.EW pij(¢) using the corresponding asymptotic expansions for transition

probabilities p;i(e),j € Y;{ given in condition B, and the proposition (i) (the multi-

ple summation rule) of Lemma 10.5. In this case, parameters i = minjd{; li]_. Sk =

. + . . . . .
min;ey+ l,;,' . This asymptotic expansion is pivotal.
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1.3. To construct the (il,‘, lE,-)—expansion for the non-absorption probability p;;(¢)
using relation (101), and propositions (i)—(iv) of Lemma 10.1. In this case, parame-
ters h; =0V h! = h, k; = KvEK =05V min;ey+ l;’ This asymptotic expansion
is pivotal.

It should be noted that (/;, lf )-expansion for the transition probability p;;(¢)
given in condition B and (4], k!')-expansion for function p;(¢) = > jev? Pij (e) given
in Step 1.2, satisfy, for every i € X, additional conditions given in Remark 10.1,
respectively, for set Z = {i} and set Z = Y.

Case2:icY.

1.4. In this case, the non-absorption probability p;(e) = 1. If necessary, it can
be represented in the form of (0, n)-expansion given by relation (58), for any n =
0,1,...

The above remarks can be summarized in the following lemma.

Lemma 10.10 Let conditions A, B and C hold. Then, the asymptotic expansions for
the non-absorption probabilities p;;(¢), i € X are given in Algorithm 1.

Algorithm 2. This is an algorithm for computing upper bounds for remainders of
asymptotic expansions for non-absorption probabilities p;;(¢), i € X.

Casel:ieY.

2.1. To construct (h, k., 8!, G', !)-expansion for the non-absorption probability
pii(e) = 1 — p;i(e) by applying the propositions (i) (the multiplication by a constant
rule) and (ii (the summation rule) of Lemma 10.4 to the (/;; l:’ 8ii, Gii, €ii)-eXpansion
for the transition probability p;;(¢) given in condition B” and (first, this expansion is
multiplied by constant —1 and, second, is summated with constant 1 represented as
(0, l;.”, 1, G, gp)-expansion given in relation (58)), third, constant G can be replaced
by 0, since it can be taken an arbitrary small. In this case, parameters §; = §;;, G; =
Gii7 81{ = &ji.

2.2. To construct the (h}, k!, 8, G/, &/')-expansion for the non-absorption prob-
ability p;;(¢) = ZjeY;,T pij(¢) using the (ll.;-, l;.r, 3ij, Gij, &;j)-expansions for transition
probabilities p;i(¢),j € Y; given in condition B’, and the proposition (i) (the multi-
ple summation rule) of Lemma 10.6. In this case, parameters 8., G/, ¢/ are given by
the corresponding variant of relation (24).

2.3. To construct the (i_t,», /Ei, 5, G;, &;)-expansion for the non-absorption proba-
bility p;;(¢) using relation (101), and proposition (i) of Lemma 10.2. In this case,
parameters &;, G;, & are given by the corresponding variant of relation (4).

Case2:icY.

2.4. In this case, the non-absorption probability p;;(¢) = 1. If necessary, it can be
represented in the form of (0, n, 1, G, gp)-expansion given by relation (58), for any
0<G<oocandn=0,1,....

The above remarks can be summarized in the following lemma.

Lemma 10.11 Let conditions A, B’ and C hold. Then, the asymptotic expansions for
the non-absorption probabilities p;; (¢), i € X with explicit upper bounds for remain-
ders are given in Algorithm 2.
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4.4 Asymptotic Expansions for Transition Probabilities
of Reduced Embedded Markov Chains

Relation (87) can be re-written in the following form more convenient for construct-
ing asymptotic expansions for probabilities ,p;;(¢),i,j € X,

pir(e) + pir(e) 229 ifj e YiNY;,

1=p;r(g)
ii(e ifje Y* nY,
wPij(8) = p](p?j(s) f] Y. ny; (102)
Pir®) S, eV, NV,
0 ifj e Y[r inr =,Y,.

Algorithm 3. This is an algorithm for constructing asymptotic expansions for
transition probabilities ,p;;(¢),1,j € ,X.

Casel:reY. o
3.1. To construct (h,;, k,j)-expansions for conditional probabilities p,;(e) =
; 2 fo()g), Jj € Y} usingthe (I, 1 A)-expansions for transition probabilities p,; (¢) given

in condition B, the (/,, k,)-expansion for the non-absorption probability p,.(g) = 1 —
prr(€) givenin Algorithm 1, and the proposition (v) (the division rule) of Lemma 10.3.
In this case, parameters hr] = l* hy, k= (l —h A (l + k — 2h ), j € Y
These asymptotic expansions are pivotal.

3.2. To construct (izi,j, l\ci,j)-expansions for products p;,(€) = pi- ()P (e) = pir(€)
' Zj»(s()ew
pir(¢) given in condition B, the (h,j, k,j)-expansions for conditional probabilities
Drj(€) given in the above Step 3.1 and the proposition (iii) (the multiplication rule)

of Lemma 10.3. In this case, parameters iz,-rj =1, + fzrj, /\qrj =, + l~c,j) A (l;; +
hy). j €Y, hese
3.3. To construct (hy;, kiy)-expansions for sums p;.;(e) = p;i(e) + puj(e) =

pij(&) + pir(e) - 1f;ff()£), jeYiny; i

transition probabilities pij(¢) given in condition B, the (h,,j, m) expansions for
quantities p;,j(¢) given in the above Step 3.2 and the proposmon (11) (the summation

j€Y;, ie X, using the (I, [;)-expansions for transition probabilities

ir? ir’

i € ,X. These asymptotic expansions are pivotal.

ir?

i € X, using the (I -)—expansions for

ir?

rule) of Lemma 10.3. In this case, parameters hlrj = l A h,,j, k,,] = l A k,,], Jj€
Y., i € ;X These asymptotrc expansions are pivotal.

(2

3.4. To construct (,I;; gor y) expansions for transition probabilities ,p;i(e) =

N
Zrln s raijlle! +o(e'lh), ij € X, using the (I;

e .)-expanswns for transition

i
probabilities p;;(¢) given in condition B, the (h,,,, k,-,.j)—expansions for quantities
Dirj(€) and (fl,-rj , l%irj)—expansions for quantities Dirj(€) given,
respectively, in the above Steps 3.2 and 3.3, and the corresponding variants of
formulas for transition probabilities +pij(e) given in relation (102). In this case,

ie X or by =1, i =17

parameters lu = h,r], ’lu = k,,, if j e Y NnY:; il

ir?
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ifjeYiNY,. ie X or ly =hiy, If =kyifjeY,NY,
asymptotic expansions are pivotal.

Case2:r e Y.

3.5. The corresponding algorithm is a particular case of the algorithm given in
Steps 3.1-3.4. In this case the non-absorption probability p,.(¢) =1 —p,(e) =1

and, thus, conditional probabilities p,;(¢) = 1p Z(E()E) = pyi(e),j € Y. This permits

i € ;X. These

ir’

one replace the (}Nzrj, l;,.j)—expansions for conditional probabilities p,j(¢) by the
(L l;;)—expansions for transition probabilities p,;(e). This is the only change in
the algorithm for construction of asymptotic expansions for transition probabilities
pij(€),i,j € X given in Steps 3.1-3.4, which is required.

The above remarks can be summarized in the following theorem.

Theorem 10.2 Conditions A, B and C assumed to hold for the Markov chain
n®, also hold for the reduced Markov chain .1, for every r € X. The asymp-
totic expansions penetrating condition B are given for transition probabilities
ij).j € Y, i€ X, reXinAlgorithm 3.

Algorithm 4. This is an algorithm for computing upper bounds for remainders in
asymptotic expansmns for transition probabilities ,p;;(¢),i,j € X.
4.1. To construct (h,,, k

1j
Pri(€) = lf;fi)g), j €Y/ using the (I

8,,, G,,, 8,]) expans1ons for conditional probabilities

., 8,7, Gj, £-)-expansions for transition

7 r/ ’
probabilities p,;(¢) given in condition B’, the (h,, k,, (Srj, Grj, &,j)-expansion for the
non-absorption probability p,,.(¢) = 1 — p,-(¢) given in Algorithm 2, and the propo-
sition (v) (the division rule) of Lemma 10.4. In this case, parameters SU-, G,.j, £y, J €
Y are given by the correspondmg varlants of relation (17).

4.2. To construct (h,,,,klr],&,j, W,e,,j) expansions for products p;;(e) =

Pir(@)p(e) =pirle) {2205, jeY,, i€ X, using the (1}, 8, G, &)

22

expans1ons for transition probabilities p;.(¢) given in condition B’, the (h,,, kr],
8,7, G,j, &,;)-expansions for conditional probabilities p,;(¢) given in the above Step
4.1 and the proposition (iii) (the multiplication rule) of Lemma 10.4. In this case,
parameters Sirj, Gy, &irj, j € Y;,, i € ,Xare given by the corresponding variants of
relation (15). o

4.3. To construct (hy, ki, Si,j, Gi,j, &i;j)-expansions for sums p;,(e) =
pii(€) + Pii(€) = py(e) + pir(e) - lf;ffgg), jeYinNY,, ie,X, using the

(ll; , lU , S,j, Gjj, &;j)-expansions for transition probabilities p;;(¢) given in condition

B’, the (hirj, I\c,-,j, Sirj, Gi,j, &;,7)-expansions for quantities p;,;(¢) given in the above
Step 4.2 and the proposition (ii) (the summation rule) of Lemma 10.4. In this case,
parameters Sirj, G,,j iy, J € Y;,, i € ,Xare given by the corresponding variants of
relation (14).

4.4. To construct (,.[;; o rl;, 8ij» rGij, r&;)-expansions for transition probabil-

(Sijv Gij, 8,‘j)-

ir’

ir?

. i
ities ,p;(e) = 1] - ,a,j[l]s + o(e” u) i,j € ;X using the (l”, i

expansions for transition probabilities p;;(¢) given in condition B’, the (ili,j, I\c,-rj,
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Biri» Girj» £irj)-expansions for quantities py;(e) and (i, ks 8iyj» Girj, 6irj)-expan-
sions for quantities p;,(¢) given, respectively, in the above Steps 4.2 and 4.3,
and the corresponding variants of formulas for transition probabilities ,p;;(¢) given
in relation (102). In this case, parameters ,§; = Sirj, +Gij = Girj, rEij = é,-,j if j e
Y OY”, i€ X, or, 8 =36 ,Gj= G,], e =e; ifjeYinyY,
r8ij = 5,,], +Gij = G,,J, rEij = &y if j € Y ny,, ie X

Case2:r e Y.

4.5. The corresponding algorithm is a particular case of the algorithm given in
Steps 4.1-4.4. In this case the non-absorption probability p,.(¢) =1 —p,(e) =1

and, thus, conditional probabilities p,;(¢) = f ;’7(5()8) = py(e),i € Y. This permits

ie X, or

ir’

ir?

one replace the (ilrj, l;rj, Srj, Grj, &yj)-expansions for conditional probabilities p,;(e)
by the (l,j, oz d,i, G,j, €,5)-expansions for transition probabilities p,;(¢). This is the
only change in the algorithm for construction of asymptotic expansions for transition
probabilities ,p;;(¢), i, j € X given in Steps 4.1-4.4, which is required.

The above remarks can be summarized in the following theorem.

Theorem 10.3 Conditions A, B' and C assumed to hold for the Markov chain n'®,
also hold for the reduced Markov chain ,n'®, for every r € X. The upper bounds for
remainders in asymptotic expansions penetrating condition B’ are given for transition
probabilities ,pi(e),j € ,Y;, i € X, r € XinAlgorithm 4.

4.5 Asymptotic Expansions for Expectations of Sojourn
Times for Reduced Semi-Markov Processes

Relation (96) can be re-written in the following form more convenient for construct-
ing the corresponding asymptotic expansions probabilities ,e;i(¢), 1, j € X,

611(5) + e (8) lf;j)fi)g)

pule)  py(e)
+en(@)s (@ T ®)
+e,i(e) 1”; 38) ifj e Y Ny,
e;i(e) ifj e Y+ N Y

rei®) =1 """ e (103)

€r(8) 1,

pir(&) Dij(€)
ten(®) i, 5T e
+e;(e) 152,(,6()5) ifj e Y ny;,
0 ifj e Yirinr'

Algorithm 5. This is an algorithm for computing asymptotic expansions for
expectations ,e;(¢),i,j € X
Casel:reY.
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5.1. To construct (izi,, lAci,)-expansions for quantities p;.(g) = [’;—8 = lfp—(g()g),
i € /X, using the ([, I)-expansions for transition probabilities p;-(¢) given in
condition B, the (/,, k.)-expansion for the non-absorption probability p,(¢) = 1 —
prr(€) given in Algorithm 1, and proposition (v) (the division rule) of Lemma 10.3.
In this case, parameters h,, = h; — h,, k,, =y +k — 2h DA (ki — h 5, 1€ X,
These asymptotic expansions are pivotal.
5.2. To construct (izi,j, Ivci,j)-expansions for products p;j(e) = pi-(e)p,i(e) =
pir(e) _pij(e)

T (@ T (@ jeY,, ie X using (izi,., lAq,.)-expansions given in the above Step
5.1, the (fz,], kyj)-expansions for conditional probabilities p,i(e) = p LG ()8) given

in Step 3.1 of Algorithm 3, and the proposition (iii) (the multlphcatlon rule)
of Lemma 10.3. In this case, parameters h;, = h; + hrj, k,, = (h,r + k) A (k,, +
hy). jeY,
5.3. To construct (ﬁirj, ~,4,1-)—expamsions for products e;,j(e) = e;-(e)p,i(e) =

eir(e) 1f ;(8()8) jeY;,, ie X, using the (m,, m ;)-expansions for expectations

ir?

i € ,X. These asymptotic expansions are pivotal.

e;r (&) given in condition F, the (h,j, k,_,-)—expansmns for conditional probabilities

Dij(e) = f;(g()s) given in Step 3.1 of Algorithm 3, and the proposition (iii) (the

multlphcatlon rule) of Lemma 10.3. In this case, parameters h,rj =m; + h,j, k,rj =
(m;, + k, i) A (mit +hr,) ]eY
5.4. To construct (h,-,j, ,-,j)-expansions for products é;,(¢) = e,-(g) Pirj(e) =

pirle)  pyle)
e ()1 & Topr@: € Yir

tations e,,(¢) given in condition F, the (hi,j, ,-,j)-expansions for quantities p;y; ()
given in the above Step 5.2, and the proposition (iii) (the multiplication rule) of

i € ,X. These asymptotic expansions are pivotal.

ir?

i € ,X, using the (m,,, m;)-expansions for expec-

ir?

Lemma 10.3. In this case, parameters lvzi,j =m, + izi,j, lvqrj = (m,, + lvci,j) A (mf +

l,j) jeY;, ie X These asymptotic expansions are pivotal.

ir’
5.5. To construct (izi,j Airj)—expansions for products ¢;,(¢) = e,;(e) -pir(e) =

e () 16;;(8()5)* jeY,, ie X, using the (m,;, :]f)—expansions for expectations

e,i(¢) given in condition F, the (hi,, ki,)-expanswns for quantities p;.(¢) given in the
above Step 5.1, and the proposition (iii) (the multiplication rule) of Lemma 10.3. In
this case, parameters hlr] =m,; + h,,, k,,, = (m + k,,) A (m + h,,) jeY, i
+X. These asymptotic expanswns are pivotal.
5.6. To construct (h,,], kirj)-expansions for sums é;,(e) = e;;(e) + e,rj (8) +

- Pr(€) ir P (&) ir
Girj(€) = €ir (6) T2 + €0r(6) T2 10+ ei(e) 122605, using the (B, Ki)-

expansions for quantities ¢;,(¢), the (izi,j, lvcirj)-expansions for quantities ¢&;,;(¢) and

the (fz,,j, A,,]) expansions for quantities &;,;(¢) given, respectively, in the above Steps
5.3, 5.4 and 5.5, and the proposmon (1) (the summatlon rule) of Lemma 10.5. In

this case, parameters h,rj = h,,j A h,,j A h,,j, k,,j = k,,j A k,rj A k,,j, jeY. , ie X

These asymptotic expansions are pivotal.

ir’
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5.7. To construct (‘I;['irj, 'l'c'i,j)-expansions for sums €;,;(e) = e;i(¢) + €;,i(¢) =

P () ir (€ Pij (&) ir (€ :
ej(€) +en(e) 12, G +en(e) 1f,,,(.f()g) oo T €(®) lfp,(j()a)’ using  (m;;,

expansions for expectations e;;(¢) given in condition F, the (ﬁirj, iéi,j)-expan510ns-
expansions for quantities é;;(¢) given in the above Step 5.6, and the proposition
(ii) (the summation rule) of Lemma 10.3. In this case, parameters h;; = m; A

+
m; )-

h,rj, k,rj = m A k,rj, jeY,., ie X These asymptotic expansions are pivotal.
5.8. To construct (,m .J, Py - -expansions for probabilities ,e;(e) =

ir?

it
Zl_" _ rbyll] xel + o(e’mV) i,j € ;X using the asymptotic expansions for expec-
m;j

tations  ¢jj (e) given in condition F, the (h,,j ,rj) expansions for quantities é;,;(¢) and
(hi irj» kir -)-expansions for quantities ‘¢ ;,;(¢) given, respectively, in Steps 5.6 and 5.7,
and the corresponding variants of formulas for expectatlons re;j(€) given in relation

(103). In this case, parameters ,m = h,,], ,m = k,,j if j e Y+ nyY,, ie X,
or m] = mlj, rm; m if j e Y+ OY ie X, or rmij = hirj, rm,-j = k.irj if
Jj€ Y ny,, ie X These asymptotic expansions are pivotal.

Case 2:reV.

5.9. The corresponding algorithm is a particular case of the algorithm given in

Steps 5.1-5.8. In this case the non-absorption probability p,.(¢) =1 —p,(e) =1

and, thus, conditional probabilities p,(e) = 1f "p’(‘_g()s) =p;e), jeY, and

Pir(€)
1=pyr(e)
expansions for conditional probabilities p p,J (¢) by the (I

quantities p;,(g) = = pir(e), i € ,X. This permits one replace the (ilrj, /E,j)-

o rj) expansions for tran-

smon probabllmes Dij(e) and the (hrj, k,j) expansions for quantities p,;(e) by the
(I, I')-expansions for transition probabilities p;,(¢). These are the only changes in
the algonthm for construction of asymptotic expansions for expectations
reij(e),1,j € X given in Steps 5.1-5.8, which are required.

The above remarks can be summarized in the following theorem.

Theorem 10.4 Conditions A-F assumed to hold for the semi-Markov process
n® (1), also hold for the reduced semi-Markov process .1 (t), for every r € X.
The asymptotic expansions penetrating conditions B and F are given for transition
probabilities ,p;(e),j € ,Y;, i € X, r € X and expectations ,e;j(€),j € ,Y;, i €
X, r € Xin Algorithms 3 and 5.

Algorithm 6. This is an algorithm for computing upper bounds for remainders in
asymptotic expansions for expectations ,e;;(¢),i,j € ,X.
6.1. To construct (h;, ki, 6, Gir, é,,) -expansions  for  quantities

Dir(e) = 58 lp;(a()a), i € X, using the (I, 8ij, Gij, &;)-expansions for tran-

sition probabilities p;.(¢) givenin condition B', the (hy, ky, 8ir, Gir, Eir)- -expansion for
the non-absorption probability p,(¢) = 1 — p,.(¢) givenin Algorithm 2, and proposi-
tion (v) (the division rule) of Lemma 10.4. In this case, parameters gi,, G,-r, &, i€ ,X
are given by the correspondlng variants of relation (17).

6.2. To construct (h,,j, irjs 5,,1, G,,j, &;,7)-expansions for products p,,J () = pir(e)

g ir r( )
(o) = 205 220 jeY,, i€ ,X, using (G, ki, 8ir, Gir, ir)-

ir’ ll’
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expansions given in the above Step 6.1, the (/,;, /E,j, 8,7, G, &,;)-expansions for con-
ditional probabilities p,;(e) = ; 2 I;(E()S) given in Step 4.1 of Algorithm 4, and the
groposition (iii) (the multiplication rule) of Lemma 10.4. In this case, parameters
Sir» Girj, €, j € Y, i € X are given by the corresponding variants of relation
(15). ) )

6.3. To construct (h,,j irjs 8[,j Girj, é,-,j)-expansions for products e, (¢) = e;-(¢)

Pile) =€), jeY,, i€ X, using the (m, ml, 8, Gy, &)

ir?

expansions for expectations e;,(¢) given in condition F’, the (h,j kyj 8,j, G,j, Erj)-

s
expansions for conditional probabilities p,i(e) = lf ”(E()E) given in Step 4.1 of

Algorithm 4, and the proposmon (iii) (the multlphcatlpon rule) of Lemma 10.4. In

this case, parameters 8,,,, G,,,, Eirj, J €Y,
variants of relation (15).

i € X are given by the corresponding

ir’

6.4. To construct (h,rj, k,,j,&,],Girj,é,-,.j)-expansions for products é&;;(e)

Pir(e) _Pi(e)
en (&) Pirj(e) = en ()T 5105 J €Y, . .
8r» G,r, &,r)-expansions for expectations e, (¢) given in condition F’, the
(hirj, kirj, 8irj, Girj, €irj)-expansions for quantities p;,;(¢) given in the above Step 6.2,

and the proposmon (iii) (the multiplication rule) of Lemma 10.4. In this case, para-

a 1€ ,X, using the (m,, m/},

meters S,rj, G,,j 8,,/) jeY,, ie X are given by the corresponding variants of
relation (15).

6.5. To construct (hy, kiyj, Sirj, Girj, £irj)-expansions for products e;,(e)

i (€):Pir(6) = ey () 2555, j € Yy, i€ /X, using the (m,, my. 85, Grjs &)~

expansions for expectations e,;(g) given in condition F’, the (h[,, ki,, (Sir, Gi,, &ir)-
expansions for quantities p;.(¢) given in the above Step 6.1, and the proposition (iii)

(the multiplication rule) of Lemma 10.4. In this case, parameters 3,-, s 6,-,7-, éi,j), j €
Y, i € ;X are given by the corresponding variants of relation (15).

i’

6.6. To construct (h,,], Kirjs 8irjs Girj, Eirj)-expansions  for sums  &;;(e) =

~ i (&) ir i (€) ir
uj (&) + &5 (2) + &5 (2) = eir(e) A+ e (8) T2 T2 e (e) T2,

usmg the (h,,],kl,,,&,j, Gi,j,é,-,j)-expansions for quantities éirj(s), the (hy;, ki,

8,,1,6”1, 8,,1) expansions for quantities é;;(¢) and the (h,,j, k,,j,gl-,j, Girj,éirj)-
expansions for quantities ¢;,(¢) given, respectively, in the above Steps 6.3, 6.4 and
6.5, and the proposition (i) (the summation rule) of Lemma 10.6. In this case, parame-
ters 8},_,-, iris €irj» ] € Y, i € ,Xare given by the corresponding variants of relation
24).

6.7. To construct (.}'l.,-,j, .].C.irja .S'i,j, @irj, &j)-expansions for sums ¢;,(e) =
e;j(e) +él~,j<s> = e(e) + eir(6) 2L + €, (2) 220 L1 g (e) 1255 using

—prr(€) L=py(€) 1=pr(e) I 1=p (&)

(ml], i 8,,, ii» €i7)-expansions for expectations e;;(¢) given in condition F', the
(h,,j k,, > Oirj G,-,j, £irj)-expansions for quantities €;,(¢) given in the above Step 6.6,
and the proposmon (ii) (the summation rule) of Lemma 10.4. In this case, parameters
Si irjs G,,], €5, j €Y, i € Xare given by the corresponding variants of relation
(14).

ir?
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6.8. To construct (,m u’ i 8,,-, +Gij, r&ij)-expansions expansions for expecta-

ijor

i

tions .e;(e) = I m

e bil1e! +0(8’mv) i,j € X, usingthe (m;; (SU,GU,EU)-

ij M ij >
expansions for expectations e;;(¢) given in condition F’, the (h,-,j, k,-,.j, 6;,1-, G;,j, Eirj)-
expansions for quantities é;;(¢) and the ('}'z'i,j, '];'i,j, '8',',7, @,7, €yj)-expansions for
quantities ¢;;(g) given, respectively, in Steps 6.6 and 6.7, and the corresponding
variants of formulas for expectatlons re;(¢) given in relation (103). In this case,
parameters ,8; = 8 i, ,Gij = Girj» 165 = €4 it j€ Y NY,, i€ X, or 4
8, +Gyj = sz» =gy ifjeYiny,
8,rj1f]€Y nY.,ie X

Case2: r €Y.

6.9. The corresponding algorithm is a particular case of the algorithm given in
Steps 5.1-5.8. In this case the non-absorption probability p,.(¢) =1 —p,.(¢) = 1
and, thus, conditional probabilities p,;(¢) = 1" ;( ()8) =p,i(e),j € Y and quantities

p,,(s) = % pir(e), i € X This permits one replace the

i€ X, or r8ij = Sirjv rGij = Girj’ r€ij =

ir?

ir’

(h,j K 3, G,j &r)-expansions for conditional probabilities p,j(¢) by the
(lrl, r],S,j,G,j,e,j) -expansions for transition probabilities p,;(¢) and the

(h,],k,,,S,], G,], &,)-expansions for quantities p,j(¢) by the (I, l;,&,, Gi, €ir)-
expansions for transition probabilities p;,(¢). These are the only changes in the algo-
rithm for construction of asymptotic expansions for expectations ,e;(¢),i,j € ;X
given in Steps 6.1-6.8, which are required.

The above remarks can be summarized in the following theorem.

Theorem 10.5 Conditions A, B', C-E, F' assumed to hold for the semi-Markov
process 19 (t), also hold for the reduced semi-Markov process .n® (t), for every r €
X. The upper bounds for remainders in expansions penetrating conditions B' and ¥’
are given for transition probabilities ,p;(¢), j € ,Y;, i € X, r € Xand expectations
reij(e),j € Y;, i € X, r € XinAlgorithms 4 and 6.

5 Sequential Reduction of Phase Space
for Semi-Markov Processes

In this section, we present algorithms of sequential reduction of phase spaces for
semi-Markov processes.
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5.1 Algorithms of Sequential Reduction of Phase Spaces
Jor Semi-Markov Processes

Let ¥ (¢) be a semi-Markov process with the phase space X = {1, ..., N}, which
satisfy conditions A-F.

Let (rq, ..., ry) is a permutation of the sequence (1, ...,N), and r,, = (ry, ...,
rm), n=1,..., N is the corresponding sequence of growing chains of states from
space X.

Let us choose state i € X, and a permutation (7, ..., ry) such that ry = i.

( )Let us also assume that initial distribution p(e) is concentrated in the state i, i.e.,
o =1.

Algorithm 7. This is an algorithm for sequential reduction of the phase space
for the semi-Markov process ) (¢) and constructing asymptotic expansions for
transition probabilities and expectation of sojourn times for semi-Markov processes
with reduced phase spaces.

7.1. Let 7, n®(#) = ,,n'®(r) be the reduced semi-Markov process which is the
result of reduction of state r; for the semi-Markov process n®(¢). This semi-
Markov process has the phase space 7 X = X'\ {r}, transition probabilities of the
embedded Markov chain 7 p;;(¢), i, j € X and expectations of transition times
ery(e),7,j € X, which are determined by the transition probabilities and the
expectations of transition times for the process 7® () via relations (87) and (96).
According Theorem 10.1, the expectations of hitting times E;; (¢), i’,j' € 7 X coin-
cide for the semi-Markov processes 1'®(¢) and 7, 1®)(r). According Theorems 10.2
and 10.4, the semi-Markov process 7 1®)(¢) satisfy conditions A-F. The transi-
tion sets 5, Yy = ,, Yy, i’ € 7 X are determined for the process 7 n® (1) by condition
A and relation (90). Therefore, the (5, l,-Tj,, 7 ljj,)—expansions for transition proba-
bilities 7 pyj(e),j € 7 Yy, i € 5 X and (5, My, 7y m;’j,)-expansions for expectations
merp(e),j € 7Yy, i € ;X can be constructed by applying Algorithms 1, 3 and
5 to the (liTj,, l;j,)-expansions for transition probabilities py; (¢),j € Yy, i’ € X and
(miTj,, m;fj,)—expansions forexpectations e;; (¢), /' € Yy, i € X. These expansions are
pivotal.

7.2. Lety, 1n® (¢) be the reduced semi-Markov process which is the result of reduc-
tion of state r, for the semi-Markov process 7, 7®)(¢). This semi-Markov process
has the phase space 7, X = X\ {r, 2}, the transition probabilities of the embed-
ded Markov chain 7p;;(¢),i,j €, X and the expectations of transition times
merj(e),1,j € ,X, which are determined by the transition probabilities and the
expectations of transition times for the process 7, n®(¢) via relations (87) and (96).
According to Theorem 10.1, the expectations of hitting times Ey; (¢), i, € X
coincide for the semi-Markov processes 1 (¢), 7 ‘¥ (t) and ;7,7 (¢). According
Theorems 10.2 and 10.4, the transition probabilities of the embedded Markov chain
»prp(e),1,j € X and the expectations of transition times j,e;;(¢),i,j € 7 X
satisfy conditions A-F. The transition sets 7, Y;, i’ € X are determined for the
process ;277(8) (1) by condition A and relation (90) in the same way as the transi-
tion sets 7 Yy, i’ € ,, X are determined by condition A and relation (90) for the
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process ,ln“) (t). Therefore, the (7, y +)-expansions for transition probabil-

i’ rz lj
ities 5,pyj(e),j € %Yy, i’ € 5, X and (rm v i,j,)-expansmns for expectations
merp(e),j € ,ZY i’ € 3, X can be constructed by applying Algorithms 1,3and 5to
the (71 i 7 ll )- expansrons for transition probabilities 7 pyj (¢),j € 7 Yy, i € ;X
and (7 m; i rlm .)-expansions for expectations 7 e;;(¢),j’ € 7 Yy, i € 7 X. These
expans10ns ara p1v0tal

7.3. By continuing the above procedure of phase space reduction for states
r3, ..., ry_1, we construct the semi-Markov process 7, _, n® (¢) with the phase space
v X =X\ {ry, r, ..., ry—1} = {i} (which is a one-point set), the transition prob-
abilities of the embedded Markov chain 7, ,p;i(¢) = 1, and the expectations of tran-
sition times 7, ,e;(¢), which are determined by the transition probabilities and
the expectations of transition times of the process 7, ,n® (¢) via relations (87)
and (96). According to Theorem 10.1, the expectations of hitting times Ej;(¢) for
the semi-Markov processes 1 (), ;7 (), ..., 7,_,n®(#) coincide. According
to Theorems 10.2 and 10.4, the transition probabilities of the embedded Markov
chain 7, ,p;i(¢) = 1 and the expectations of transition times 7, ,e;i(¢) satisfy con-
ditions A-F. In this case, the transition set 7, ,Y; = {i}, for every i € X. There-
fore, the G, Ly 7y L; j) expansions for transition probablhtles mopip(e) =1,j €

v, Yy, i € 7, X (which take the form of relation (58)) and (5,_, My Fy- lmj;
expansions for expectations 7, ey (€),j € ,N IY,/,Z € 7, ,X can be constructed by
applying Algorithms 1, 3 and 5 to the Gz, ,1;;, 7y,/; j) -expansions for transition
probabilities 7, ,pij(e), j/ € 7,,Yr, i' € 5, , X and (5,_,m ],, P 2m,,) expansions
for expectations 7, ,e;y(¢),j" € 5, ,Ys, 1 € 7, ,X. These expansions ara pivotal.
7.4. The semi-Markov process 7, ,1®)(t) has the one-point phase space 7, , X =
{i} and, thus, the transition probability 7, ,pii(¢) = 1, while the expectation of tran-
sition time 7, ,e;;(¢) = Ej;i(¢). The above algorithm of sequential reduction of phase
space should be repeated for every i € X. In this way, the Laurent asymptotic expan-
sions for quantities E;;(¢), i € X can be written down. These asymptotic expansions

have the following form,

M+
Ei(e) = ), Billle' + 6:i(e™0), i € X, (104)
=M

where parameters MF =
M, ... .M

u i

7. My, 1 € X and the coefficients B;[l] = 7,  b;[l], | =
ieX, Where P ]b,, [/] are coefficients in the corresponding (5, | i,j,,
;N_]mj,'j/)-expansrons for expectations eij(e),j € 7, Yy, i € 5, ,X. These

expansions are pivotal.

N-1

It should be noted that, for every n = 1,..., N — 1, the reduced semi-Markov
process 7,1®)(¢) is invariant with respect to any permutation 7, = (r}, ..., r}) of the
the sequence 7, = (r1, ..., 7,).

Indeed, for every such permutation 7, = (r{, ..., r;), the corresponding reduced

semi-Markov process ;;Xn(g) (#) is constructed from the initial semi-Markov process
n® (1), as the sequence of its states at sequential moment of hitting into the same
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reduced phase space »X =X\ {r},...,r} = X=X\ {r,...,r,} and times
between sequential jumps of the reduced semi-Markov process ;m(g) (t) which are
times between sequential hitting of the above reduced space by the initial semi-
Markov process 1® (z).

This implies that the expectation of transition time 7,e;; (¢) is, for every i, €
7#Xandn =1,...,N — 1, invariant with respect to any permutation 7, = (r{, ...,
r1) of the sequence 7, = (ry, ..., ).

Moreover, as follows from the Algorithms 1-7, the expectation of transition time
7€y (¢) isarational function of initial transition probabilities p;; (¢), j € Y;, i € Xand
expectations ¢;;(¢),j € Y;, i € X (aquotient of two sums of products of some of these
probabilities and expectations), which, according the above remarks, is invariant with
respect to any permutation 7, = (r{, ..., r,) of the sequence 7, = (ry, ..., 1p).

By using identical arithmetical transformations (disclosure of brackets, imposition
of a common factor out of the brackets, bringing a fractional expression to acommon
denominator, permutation of summands or multipliers, elimination of expression
with equal absolute values and opposite signs in the sums and elimination of equal
expressions in the quotients, etc.) the rational function 7 ey (&) given by Algorithm
7 can be transformed in the rational function 7, e;; (¢) given by Algorithm 7 and vice
versa.

By Lemma 10.8, these transformations do not affect the corresponding asymptotic
expansions for expectation ;, eyj (¢) given by Algorithm 7, and, thus, these asymptotic
expansions are invariant with respect to any permutation 7, = (r{, ..., r,) of the
sequence 1, = (ry, ..., I'p).

The above remarks can be summarized in the following theorem.

Theorem 10.6 Let conditions A-F hold for semi-Markov processes 1® (t). Then,
foreveryi € X, the Laurent asymptotic expansion (104) for the expectation of hitting
times E;;(g) given by Algorithm 7 can be written down. This expansion is invariant
with respect to the choice of permutation (ry, ..., ry_1,1) of sequence (1, ..., N),
in the above algorithm.

Let us now assume that conditions A, B’, C-E, F’ hold for the semi-Markov
process n®)(1).

Algorithm 8. This is an algorithm for computing upper bounds for remainders in
asymptotic expansions for transition probabilities and expectation of sojourn times
for semi-Markov processes with reduced phase spaces.

8.1. Let -, n®(¢) = ,,n'®(r) be be the reduced semi-Markov process, which is
constructed as this is described in Step 7.1 of Algorithm 7. According to Theo-
rems 10.3 and 10.5, the semi-Markov process 7, n® (¢) satisfies conditions A, B’, C-E,
F'. Therefore, (;, ll.Tj,, 7 l;,“j,, #0rj, 7, Gijr, 7 €rj)-expansions for transition probabili-
ties 7, pij(e),j € 7 Yy, i € ;; X and Gmy ;s ;lmlfj,, #0i7, 7 Gy, 7 €ij)-eXxpansions
for expectations 7 ey (¢),j € 7 Yy, i’ € 7 X can be constructed by applying Algo-
rithms 1-5 to the (liTj,, l;,“j,, 8y, Gy, grj)-expansions for transition probabilities
pij(€),j € Yy, i € X and (my. m;;, S,v_,v, G,»/_,v, éyj)-expansions for expectations
e,-/j/(s),j’ €Yy, i eX.
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8.2. Let 7,n®(¢) be the reduced semi-Markov process, which is constructed
as this is described in Step 7.2 of Algorithm 7. According to Theorems 10.3
and 10.5, the semi-Markov process ;zn(a)(t) satisfies conditions A, B’, C-E, F'.
Therefore, (;zliTj,, ;2ljj,, #»0ij, »Gij, 7&ry)-expansions for transition probabilities
Rpiy(e),J € nYy i € n X and Gymyy, mmjy, 781, Gy, 7éiy)-expansions for
expectations ;, ey (8) j’ € 7Yy, i € X canbe constructed by applying Algorithms
1-5 to the (,,l o l,],, 70, 7 Gij, 7 €rj)-expansions for transition probabili-

+
My, 7,

ties pyjy(e),J € Y, 1€ ;X and (5m l.,j,, 7
expectations ey (¢),j € 7Yy, i € 5 X.
8.3. Finally, let ;Nfln(s)(t) be the reduced semi-Markov process, which is con-
structed as this is described in Step 7.2 of Algorithm 7. According to Theo-
rems 10.3 and 10.5, the semi-Markov process 7, ,1n'®)(¢) satisfies conditions A, B/,

/ + 3
C-E, F'. Therefore, (3, ,/ U,, P ]llj s i Oijts 7y Girjs 7y Eirjr)-€xpansions for tran-
Sjs

o IG,/J, 7y_1 €1 )-expansions for expectations 7, _, ey (8) ] € o Yo, 0 e Ay X can
be constructed by applying Algorithms 1-5 to the G, _,/;;, - zl;,, vz Sivjrs iy Girjrs
#y_,Ej)-expansions for transition probabilities p;j(e),;j € Yy,i" € 5, ,X and
Gy zml/J,, e zm:,; ;Nfzé,vjr, Fva G,-r,-r, 7y, &j)-expansions for expectations e;; (¢), " €
;N_2Y i’ e rN—ZX'

8.4. Finally, due to equalities 7, ,e;i(¢) = Eji(¢), i € X, we get that the asymp-
totic expansion (104) for expectations Ej;(¢), i € X, given in the Step 7.4 of Algo-
rithm7 isa(M; ,M:, 8;, G;, Z)-expansion with parameters M;; = 7, m;; ,M+
N- mu > 83 = erl(Sll’ G;)z = erlGl‘l" E?i = ;N—Iéii'

In this case, the invariance of explicit upper bounds for remainders given by Algo-
rithm 8, with respect to the choice of any permutation (ry, ..., ry—_i, i) of sequence
(1, ..., N), can not be guaranteed.

However, Lemma 10.9 guarantees that the following inequalities hold for the
parameters 45, i € X,

87, 7, Gy, 7, é0jr)-expansions for

sition probabilities 7, ,pij(€),j € #_,Yi, i € 5, ,Xand (,_,

— B + B
ij” rN—]mi’j” 'N—1

8= 8°= min (8 A 8j). (105)

jeY;,ieX
The following theorem takes place.

Theorem 10.7 Let conditions A, B', C-E, ¥’ hold for semi-Markov processes n® (t).
Then, for everyi € X, the (M;; , M} )-expansion (104) for the expectations of hitting
&;)-expansion, with para-

times Ej;(¢), given by Algorithm 7, is a (M; ,M:, 8, Gi,
meters 0;, G5, € given in Algorithm 8. The inequality (105) holds for parameters

i’ i’

82,ie X

i’
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5.2 Laurent Asymptotic Expansions for Expectations
of Hitting Times

Algorithms presented above yields the Laurent asymptotic expansions for expec-
tations of hitting times Ej;(¢), i,j € X. Indeed, let choose two states i, j € X and a
chain of states ry_» = (r, ..., "'N=2), 1, ..., IN—2 £ I, ].

According to Theorem 10.1 and Algorithm 8 the expectations Ej;(¢) coincides
for the initial semi-Markov process 1 (r) and the semi-Markov process 7, ,1n® (¢).
The semi-Markov process 7, ,n® (¢) has a two-points phase space 7, ,X = {i, j}.
The expectations of hitting times E;; (¢), i’ € {i,j} can be found by solving, for
every j' € {i, j}, the system of (two, in this case) linear equations (77) that yields the
following formulas, for every j' € {i, j},

Eij(e) = 5y ,ei(€) - m, (106)
iv_aDjir (€)
Ejji(e) = 7y_ep(e) + n,ei(e) - %
where i’ # j" in both equations in (106) and,
vl (8) = 5y ,eni(€) + 5y ,eni(e), i € (i, j}. (107)

The corresponding asymptotic expansions for Ej(e) can be constructing by
using the asymptotic expansions for transition probabilities p; (¢) and expectations
#v_,€i(¢) givenin Algorithms 7 and 8 and the operational rules for Laurent asymptotic
expansions presented in Lemmas 10.1-10.9.

6 Asymptotic Expansions for Stationary Distributions
In this section, we present algorithms for construction of asymptotic expansions for

stationary distributions of nonlinearly perturbed semi-Markov processes.

6.1 Asymptotic Expansions for Stationary Probabilities
of Perturbed Semi-Markov Processes

Let us recall relation (78) for stationary probabilities of the semi-Markov process
(&)
ne (),

,ieX. (108)
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Algorithm 9. This is an algorithm for constructing asymptotic expansions for
stationary probabilities of perturbed semi-Markov processes.

9.1. Conditions A-F and proposition (i) (the multiple summation rule) of
Lemma 10.5, permits one can construct (m; , m;")-expansions for expectations
ei(e),i € X, which take the following forms,

ei(e) = > e;(e)

JeY;
=D 22 balle! + oy(e™)
JeY; I=m;
=S billle! +oi(e™), i € X, (109)
I=m;
where
m; =minm;, m = minm}, i € X, (110)
! jevy, Y ! jey: Y
and
bilm; +11=D " bylm; +1. 1=0,....m5 —m, ieX (111)
JjeYi

where bj[m; +1]=0,for0 <[ < m; —-m;,je Y, ieX

The above asymptotic expansions are pivotal for all i € X.

9.2. Conditions A-F, relation (108) and proposition (v) (the division rule) of
Lemma 10.3, permits us construct (n; , n;")-expansions for stationary probabilities
m;(e), i € X, which take the following forms,

+
n;

mi(e) = > cillle’ + 0i(e"), i e X, (112)

I=n;

n. =m, —M;

i i i

nt = (mf —M7) A (m7 + M7 —2M;), ieX,  (113)
and

bilm; + 11 = 21—y BulMy + N eiln; +1—1']
B;i[M;; ]
1=0,....nf —n", ieX. (114)

ciln; +1] =

’
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Since m;(¢) > 0,i € X, ¢ € (0, g9], the asymptotic expansions (109) are pivotal,
i.e., coefficients,
ciln; 1= bilm;1/Bi[M;1> 0, i e X. (115)

By the definition, e;(e) < Ej;(¢), i € X, ¢ € (0, &o]. This implies that parameters
M; <m;,i e X and thus, parameters

n; >0, ieX (116)
Moreover, since ZieX mi(e) = 1, for every € € (0, go], the parameters n?:, ieX

and coefficients ¢;[I], I =n; , ..., nl.*, i € X satisfies the following relations,
n~ =minn; =0, (117)

ieX
and
1 for/ =0,

= clll = |O for 0 < [ < n* = miniex ni (118)

ieX

Let us introduce sets,
Xo=1{ieX:n =0}

By the above remarks, the following relation takes place,

. N ¢;[0] > 0 ifi € Xy,
7i(0) = lim 7i(e) ‘[ 0 ifig¢ X, (119)

Theorem 10.8 Let conditions A-F hold for semi-Markov processes 1® (t). Then,
the (n;, n;’)—expansions (112), for the stationary probabilities m;(¢),i € X given
by Algorithm 9, can be written down. This expansion is invariant with respect to
the choice of permutation (ry, ..., ry_1,i) of sequence (1,...,N), in the above
algorithm. Relations (115)—(119) hold for these expansions.

6.2 Asymptotic Expansions for Stationary Probabilities
of Perturbed Semi-Markov Processes with Explicit Upper
Bounds for Remainders

Algorithm 10. This is an algorithm for computing upper bounds for remainders
in asymptotic expansions for stationary probabilities of perturbed semi-Markov
processes.

10.1. Conditions A, B’, C-E, F’ and the proposition (i) (the multiple summation
rule) of Lemma 10.6 imply that the (m; m;“)-expansions for expectations ¢;(¢), i €
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Xare (m;, ml-+, Si, Gi, &;)-expansions, with parameters Si, Gi, &;, 1 € X given by the
following formulas,

8,’ = min S[j,
JjeY;, m;:m:r

i 48—mf =5 5
6= (6 £ e,
jeyY; m <j<mf

=m;

JEY;

10.2. Conditions A, B’, C-E, F’ and the propositions (iv) (the reciprocal rule)
and (v) (the division rule) of Lemma 10.6 imply that the (n;, n;’)-expansions
for expectanons mi(e),i e X are (n;, n; ,81 , G, ¢f')-expansions, with parameters

8F, G7, e, i € X given by the following formulas,

§; ifnj':mf—M;<ni_ —i—Mﬂ' 2M:

i’

8 = S;/\Si"i ifn = i+—M_<n_—i—M+ 2M;

i i

dp ifnf:nf —i—Mi+ 2M; <m - M,

" B;i[M; ] - sl M5
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(121)

Theorem 10.9 Let conditions A, B, C-E, ¥ hold for semi-Markov processes
n© (). Then, the (n;, n; ,81* , G, €})-expansions (112) for the stationary probabili-

ties wi(e), i € X given by Algorlthms 9 and 10 can be written down. The inequalities
87 > 8°,i € X hold, where parameter 8° is given in relation (105).
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7 Future Studies and Bibliographical Remarks

In this section, we present some directions for future studies and short bibliographical
remarks concerned works in the area.

7.1 Directions for Future Studies

The method of sequential reduction of a phase space presented in the paper can also
be applied for getting asymptotic expansions for high order power and exponential
moments of hitting times, for nonlinearly perturbed semi-Markov processes.

In the present paper, we consider the model, where the pre-limiting perturbed
semi-Markov processes have a phase space which is one class of communicative
states, while the limiting unperturbed semi-Markov process has a phase space which
consists of one or several classes of communicative states and possibly a class of
transient states. However, the method of sequential reduction of the phase space can
also be applied to nonlinearly perturbed semi-Markov processes with absorption and,
therefore, to the model, where the pre-limiting semi-Markov processes also have a
phase space, which consists of several classes of communicative states and a class
of transient states.

We are quite sure that combination of results in the above two directions with
the methods of asymptotic analysis for nonlinearly perturbed regenerative processes
developed in Silvestrov [301, 304, 305] and Gyllenberg and Silvestrov [99, 100,
102, 104] will make it possible to expand results concerned asymptotic expansions
for quasi-stationary distributions and other characteristics for nonlinearly perturbed
semi-Markov processes with absorption, where the limiting semi-Markov process
has a phase space which consists of one class of communicative states and a class
of transient states, to a general case, where the limiting semi-Markov process has a
phase space, which consists of several classes of communicative states and a class
of transient states. Some additional results and examples can be found in the recent
paper by Silvestrov, D. and Silvestrov, S. [321].

The problems of aggregation of steps in the time-space screening procedures
for semi-Markov processes, tracing pivotal orders for different groups of states as
well as getting explicit matrix formulas, for coefficients and parameters of upper
bounds for remainders in the corresponding asymptotic expansions for stationary
distributions and moments of hitting times, do require additional studies. It can be
expected that such formulas can be obtained, for example, for birth-death type semi-
Markov processes, for which the proposed algorithms of reduction of a phase space
preserve the birth-death structure for reduced semi-Markov processes. Some initial
results in this direction are presented in the recent paper by Silvestrov, Petersson and
Hossjer [319].

We are going to present results concerned Laurent asymptotic expansions for
power and exponential moments of hitting times, quasi-stationary distributions and
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explicit formulas for coefficients and parameters of upper bounds for remainders
for some specific classes of semi-Markov models, as well as applications to some
models of population genetics, information networks and queuing systems, in future
publications.

7.2 Bibliographical Remarks

Note first of all that the model of perturbed discrete time Markov chains, at least, in the
most difficult case of so-called singularly perturbed Markov chains and semi-Markov
processes with absorption and asymptotically uncoupled phase spaces, attracted
attention of researchers in the mid of the 20th century.

The methods used for construction of asymptotic expansions for stationary dis-
tributions and related functionals such as moments of hitting times can be split in
three groups.

(1) The first works related to asymptotical problems for the above models are
Meshalkin [221], Simon and Ando [323], Hanen [106—109], Kingman [169], Dar-
roch and Seneta [65, 66], Keilson [160, 161], Seneta [273-276], Schweitzer [265],
Korolyuk [177], Silvestrov [287-293], Anisimov [11-15], Korolyuk and Turbin
[193, 194], Gusak and Korolyuk [96], Turbin [344, 345], Korolyuk, Penev and
Turbin [189], Kovalenko [199, 200], Polis¢uk and Turbin [256], Korolyuk, Brodi
and Turbin [179], Pervozvanskii and Smirnov [247], Courtois [56] and Gaitsgori
and Pervozvanskii [88].

(2) Convergence results, for distributions and moments of hitting times, eigenval-
ues, eigenvectors, stationary and quasi-stationary distributions, Perron roots, coef-
ficients of ergodicity, etc. have been studied in works by Meshalkin [221], Hanen,
[106-109], Kingman [169], Darroch and Seneta [65, 66], Keilson [160, 161], Seneta
[273-276, 282], Schweitzer [265, 266], Korolyuk [177, 178], Silvestrov [287-289,
291, 293-297, 300, 303, 309], Anisimov [11-19], Korolyuk and Turbin [193-196],
Gusak and Korolyuk [96], Turbin [344], Korolyuk, Penev and Turbin [189], Masol
and Silvestrov [222], Zakusilo [360, 361], Kovalenko [199, 200], Korolyuk, Brodi
and Turbin [179], Gaitsgori and Pervozvanskiy [88, 89], Allen, Anderssen and Seneta
[8], Kaplan [146, 147], Korolyuk, Turbin and Tomusjak [197], Shurenkov [285, 286],
Anisimov and Chernyak [20], Anisimov, Voina and Lebedev [21], Coderch, Willsky,
Sastry and Castafion [53], Korolyuk, D. [174], Korolyuk, D. and Silvestrov [175,
176], Stewart [329], Koury, McAllister and Stewart [198], McAllister, Stewart and
Stewart, W. [220], Cao and Stewart [51], Kartashov [152, 153, 155], Korolyuk and
Tadzhiev [192], Burnley [49], Gibson and Seneta [90], Haviv [113], Haviv, Ritov
and Rothblum [121], Rohlichek [259], Rohlicek and Willsky [260, 261], Silvestrov
and Velikii [322], Alimov and Shurenkov [6, 7], Hunter [138], Latouche [208],
Pollett and Stewart [257], Motsa and Silvestrov [223], Hoppensteadt, Salehi and
Skorokhod [127], Kalashnikov [143], Korolyuk and Limnios [181, 187], Marek and
Mayer [216], Yin and Zhang [354-357], Craven [64], Herndndez-Lerma and Lasserre
[125], Yin, Zhang and Badowski [358], Silvestrov and Drozdenko [313, 314], Kupsa
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and Lacroix [204], Drozdenko [70-72], Barbour and Pollett [38, 39], Glynn [91],
Benois, Landim and Mourragui [42], Serlet [283] and Meyer [227].

(3) Rates of convergence, errors of approximation, sensitivity and related stability
theorems for Markov chains and related models of stochastic processes have been
studied in works by Schweitzer [265, 267-269], Silvestrov [287, 290, 292], Seneta
[276-282], Courtois [56, 58], Gaitsgori and Pervozvanskiy [88, 89], Kovalenko
[200], Kalashnikov [142—144], Latouche and Louchard [209] (1978), Berman and
Plemmons [43], Meyer [225, 228], Kalashnikov and Anichkin [145], Bobrova [47],
Louchard and Latouche [214, 215], Stewart [327-329, 331-337], Courtois and
Semal [60—63], Haviv and Rothblum [123], Haviv and Van der Heyden [124], Koury,
McAllister and Stewart [198], McAllister, Stewart, G. and Stewart, W. [220], Funder-
lic and Meyer [87], Kartashov [148-150, 152—155, 157], Vantilborgh [347], Haviv
[112, 115, 117], Haviv and Ritov [118, 120], Rohlichek [259], Rohlicek and Will-
sky [260, 261], Stewart and Sun [339], Hunter [137-139, 141], Stewart and Zhang
[340], Hassin and Haviv [111], Barlow [40], Meyn and Tweedie [230], Lasserre
[206], Pollett and Stewart [257], Stewart, G., Stewart, W. and McAllister [338],
Borovkov [48], Yin and Zhang [354-357], Li, Yin, G., Yin, K. and Zhang [213],
Craven [64], Kontoyiannis and Meyn [173], Mitrophanov [231-234], Zhang and Yin
[362], Mitrophanov, Lomsadze and Borodovsky [235], Guo [95] and Sirl, Zhang and
Pollett [324].

(4) Asymptotic expansions for distributions of hitting times, moments of hitting
times, resolvents, eigenvalues, eigenvectors, stationary and quasi-stationary distri-
butions, Perron roots, etc., have been studied in works by Turbin [345], Polisc¢uk
and Turbin [256], Koroljuk, Brodi and Turbin [179], Pervozvanskii and Smirnov
[247], Courtois and Louchard [59], Korolyuk and Turbin [195, 196], Courtois [57],
Latouche and Louchard [209], Kokotovi¢, Phillips and Javid [170], Korolyuk, Penev
and Turbin [190], Phillips and Kokotovi¢ [253], Delebecque [67], Abadov [1], Kar-
tashov [151, 155], Haviv [112], Korolyuk [178], Stewart and Sun [339], Silvestrov
and Abadov [311, 312], Haviv, Ritov and Rothblum [122], Haviv and Ritov [119],
Schweitzer and Stewart [272], (1993), Silvestrov [301, 304, 305], Englund and Sil-
vestrov [77], Gyllenberg and Silvestrov [99, 100, 102, 104], Korolyuk and Limnios
[181-187], Stewart [335, 336], Yin and Zhang [354, 356, 357], Avrachenkov [26,
27], Avrachenkov and Lasserre [34], Korolyuk, V.S. and Korolyuk, V.V. [180],
Englund [75, 76], Yin, G., Zhang, Yang and Yin, K. [359], Avrachenkov and Haviv
[31, 32], Craven [64], Avrachenkov, Filar and Howlett [30], Petersson [248-252],
Silvestrov, D. and Silvestrov, S. [320, 321] and Silvestrov, Petersson and Hossjer
[319].

(5) Asymptotic expansions for other characteristics of Markov type processes
are presented in works by Nagaev [236, 237], Leadbetter [211], Polis¢uk and Turbin
[256], Quadrat [258], Abadov [1], Silvestrov and Abadov [310-312], Stewart and Sun
[339], Kartashov [155, 158], Khasminskii, Yin and Zhang [165, 166], Wentzell [350,
351], Cao [50], Gyllenberg and Silvestrov, [99, 100, 102, 104], Fuh and Lai [86],
Kontoyiannis and Meyn [173], Fuh [84, 85], Samoilenko [263, 264], Silvestrov [301,
304, 305], Ni [238-242]. Ni, Silvestrov and Malyarenko [243], Albeverio, Koroliuk
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and Samoilenko [3], (2009) and Avrachenkov, Filar and Howlett [30], Petersson
[248] and Silvestrov and Petersson [318].

(6) We would like especially to mention books including problems on perturbed
Markov chains, semi-Markov processes and related problems. These are Seneta [276,
282], Silvestrov [293], Korolyuk and Turbin [194, 195], Courtois [57], Kalashnikov
[142, 144], Anisimov [18, 19], Stewart and Sun [339], Korolyuk and Swishchuk
[191], Meyn and Tweedie [230], Kartashov [155], Borovkov [48], Stewart [335,
336], Yin and Zhang [355-357], Korolyuk, V.S. and Korolyuk, V.V. [180], Bini,
Latouche and Meini [46], Koroliuk and Limnios [187], Gyllenberg and Silvestrov
[104] and Avrachenkov, Filar and Howlett [30].

(7) General results of perturbation theory of matrices and linear operators are
presented in works by Vishik and Lyusternik [349], Wilkinson [353], Stewart [325—
327, 330, 335, 336], Plotkin and Turbin [254, 255], Korolyuk and Turbin [195, 196],
Berman and Plemmons [43], Wentzell and Freidlin [352], Haviv [114], Meyer and
Stewart [229], Bielecki and Stettner [44], Delebecque [68], Stewart and Sun [339],
Hunter [139, 141], Haviv and Ritov [120], Lasserre [206], Kartashov [155], Hoppen-
steadt, Salehi and Skorokhod [129], Avrachenkov [26], Korolyuk, V.S. and Korolyuk,
V.V. [180], Li and Stewart [212], Avrachenkov, Haviv and Howlett [33], Howlett
and Avrachenkov [134], Howlett, Pearce and Torokhti [136], Torokhti, Howlett and
Pearce [343], Verhulst [348], Howlett, Avrachenkov, Pearce and Ejov [135], Howlett,
Albrecht and Pearce [133], Albrecht, Howlett and Pearce [4, 5] and Avrachenkov and
Lasserre [35]. In particular, we would like to mention some books, which contains
materials on general perturbation matrix and operator theory. These are Erdélyi [81],
Kato [159], Cole [54], Korolyuk and Turbin [195, 196], Wentzell and Freidlin [352],
Kevorkian and Cole [163, 164], Baumgirtel [41], Stewart [335, 336], Korolyuk, V.S.
and Korolyuk, V.V. [180], Konstantinov, Gu, Mehrmann and Petkov [171], Verhulst
[348], Gyllenberg and Silvestrov [104] and Avrachenkov, Filar and Howlett [30].

(8) Applications of results on perturbed Markov type processes to the control the-
ory, decision processes, Internet, queuing theory, mathematical genetics, population
dynamics and epidemic models, insurance and financial mathematics are presented in
works by Simon and Ando [323], Kovalenko [200, 201], Courtois [57], Kalashnikov
[142, 144], Delebecque and Quadrat [69], Kovalenko and Kuznetsov [202], Quadrat
[258], Gut and Holst [97], Schweitzer [266], Anisimov, Zakusilo and Donchenko
[22], Latouche [207], Pervozvanskii and Gaitsgori [246], Meyer [224], Ho and Cao
[126], Asmussen [23, 24], Gyllenberg and Silvestrov [98, 101, 103, 104], Pollett
and Stewart [257], Abbad and Filar [2], Hoppensteadt, Salehi and Skorokhod [128],
Kijima[167], Kovalenko, Kuznetsov, and Pegg [203], Borovkov [48], Yin and Zhang
[354-357], Englund [73, 74], Yin, G., Zhang, Yang and Yin, K. [359], Avrachenkov,
Filar and Haviv [29], Altman, Avrachenkov and Nufiez-Queija [9], Langville and
Meyer [205], Silvestrov and Drozdenko [314], Avrachenkov, Litvak, and Son Pham
[36, 37], Drozdenko [70, 72], Andersson and Silvestrov, S. [10], Anisimov [19],
Konstantinov and Petkov [172], Avrachenkov, Borkar and Nemirovsky [28], Bar-
bour and Pollett [38, 39], Blanchet and Zwart [45], Hossjer [130, 131], Engstrém
and Silvestrov, S. [78-80], Hossjer and Ryman [132], Ni [242], Petersson [249, 252],
Silvestrov [306-308] and Silvestrov, Petersson and Hossjer [319]. In particular, we
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would like to mention some books in this area that are Kovalenko [200], Kalashnikov
[142, 144], Anisimov, Zakusilo and Donchenko [22], Pervozvanskii and Gaitsgori
[246], Kijima [167], Kovalenko, Kuznetsov, and Pegg [203], Asmussen [24], Anisi-
mov [19], Gyllenberg and Silvestrov [104], Koroliuk and Limnios [188], Asmussen
and Albrecher [25], Avrachenkov, Filar and Howlett [30], Silvestrov [307, 308].

(9) Exact and related approximative computational methods for stationary and
quasi-stationary distributions of Markov chains and semi-Markov processes and
related problems are presented in works by Romanovskii [262], Feller [83], Kemeny
and Snell [162], Golub and Seneta [92], Seneta [276, 282], Paige, Styan and Wachter
[245], Silvestrov [298, 299, 302], Chatelin and Miranker [52], Harrod and Plemmons
[110], Schweitzer [266, 269], Grassman, Taksar and Heyman [94], Schweitzer, Put-
erman and Kindle [271], Sheskin [284], Hunter [137, 138], Schweitzer and Kindle
[270], Feinberg and Chiu [82], Haviv [113, 115], Haviv, Ritov and Rothblum [121],
Sumita and Reiders [342], Mattingly and Meyer [219], Stewart, W. [341], Kim and
Smith [168], Stewart [335, 336], Latouche and Ramaswami [210], Kartashov [156],
Meyer [226], Higgstrom [105], Bini, Latouche and Meini [46], Golub and Van
Loan [93], Silvestrov, Manca and Silvestrova [317], Van Doorn and Pollett [346]
and Silvestrov and Manca [315, 316]. In particular, we would like to mention some
related books that are Romanovskii [262], Feller [83], Kemeny and Snell [162],
Golub and Seneta [92], Seneta [276, 282], Berman and Plemmons [43], Silvestrov
[298], Meyer [226], Haggstrom [105], Bini, Latouche and Meini [46], Meyn and
Tweedie [230], Herndndez-Lerma and Lasserre, [125], Gyllenberg and Silvestrov
[104], Nasell [244], Avrachenkov, Filar and Howlett [30] and Collet, Martinez and
San Martin [55].
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PageRank, a Look at Small Changes
in a Line of Nodes and the Complete Graph

Christopher Engstrom and Sergei Silvestrov

Abstract In this article we will look at the PageRank algorithm used as part of the
ranking process of different Internet pages in search engines by for example Google.
This article has its main focus in the understanding of the behavior of PageRank as
the system dynamically changes either by contracting or expanding such as when
adding or subtracting nodes or links or groups of nodes or links. In particular we will
take a look at link structures consisting of a line of nodes or a complete graph where
every node links to all others. We will look at PageRank as the solution of a linear
system of equations and do our examination in both the ordinary normalized version
of PageRank as well as the non-normalized version found by solving corresponding
linear system. We will show that using two different methods we can find explicit
formulas for the PageRank of some simple link structures.

Keywords PageRank + Graph - Random walk - Block matrix

1 Introduction

PageRank is a method in which we can rank nodes in different link structures such
as Internet pages on the Web in order of “importance” given the link structure of
the complete system. It is important that the method is extremely fast since there is
a huge number of Internet pages. It is also important that the algorithm returns the
most relevant results first since very few people will look through more than a couple
of pages when doing a search in a search engine, [6].

While PageRank was originally constructed for use in search engines, there
are other uses of PageRank or similar methods, for example in the EigenTrust
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algorithm for reputation management to decrease distribution of unauthentic files
in P2P networks, [14].

Calculating PageRank is usually done using the Power method which can be
implemented very efficiently, even for very large systems. The convergence speed
of the Power method and it’s dependence on certain parameters have been studied
to some extent. For example the Power method on a graph structure such as that
created by the Web will converge with a convergence rate of ¢, where ¢ is one
of the parameters used in the definition [11], and the problem is well conditioned
unless c is very close to 1 [13]. However since the number of pages on the Web is
huge, extensive work has been done in trying to improve the computation time of
PageRank even further. One example is by aggregating webpages that are “close” and
are expected to have a similar PageRank as in [12]. Another method used to speed up
calculations is found in [18] where they do not compute the PageRank of pages that
have already converged in every iteration. Other methods to speed up calculations
include removing “dangling nodes” before computing PageRank and then calculate
them at the end or explore other methods such as using a power series formulation
of PageRank [2].

There are also work done on the large scale using PageRank and other measures
in order to learn more about the Web, for example looking at the distribution of
PageRank both theoretically and experimentally such as in [8].

While the theory behind PageRank is well understood from Perron—Frobenius the-
ory for non-negative irreducible matrices [3, 10, 15] and the study of Markov chains
[16, 17], how PageRank is affected from changes in the the system or parameters is
not as well known.

In this article we start by giving a short introduction on PageRank and some nota-
tion and definitions used throughout the article. We will look at PageRank as the solu-
tion to a linear system of equations and what we can learn using this representation.
Looking at some common graph structures we want to gain a better understanding
of the changes in PageRank as the graph structure changes. This could for example
be used in finding good approximations of PageRank of certain structures in order
to speed up calculations further.

We will look at both the “ordinary” normalized version of PageRank as well as
a non-normalized version we get by solving the linear system. We will see how this
non-normalized version corresponds to the probabilities of a random walk through
the graph and how we can use this to find the PageRank of some systems using this
perspective rather than solving the system or computing the dominant eigenvector.

Mainly two different structures, first a simple line in Sect.5 and later a complete
graph in Sect. 6 will be examined. In both cases we will see that we can find explicit
expressions for the PageRank depending on the number of nodes. In both cases of
the “ordinary” PageRank as well as a non-normalized version expressions for the
PageRank will be found for both the structure itself as well as the PageRank after
doing some simple modifications.
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2 Calculating PageRank

Starting with a number of nodes (Internet pages) and the non-negative matrix A with
every element a;; # 0 corresponding to a link from node i to node j. The value of
element a;; = 1/n where n is the number of outgoing links from node i. An example
of a graph and corresponding matrix can be seen in Fig. 1.

By convention we do not allow any loops (nodes linking to themselves). We also
need that no nodes have zero outgoing links (dangling nodes) resulting in a row with
all zeros. For now we assume that none of these dangling nodes are present in the
link matrix. This means that every row will sum to one in the link matrix A.

The PageRank vector R we want for ranking the nodes (pages) is the eigenvector
corresponding to the dominant eigenvalue with value one of matrix M:

M=cAT + (1 —c)ue',

where 0 < ¢ < 1, usually ¢ &~ 0.85, A is the link matrix, e is a column vector of the
same length as the number of nodes (n) filled with ones and u is a column vector
of the same length with elements u;, 0 < u; < 1 such that ||u||; = 1. For u we will
usually use the uniform vector (all elements equal) with u; = 1/n where n is the
number of nodes. The result after calculating the PageRank of the example matrix
for the system in Fig. I can be seen below:

0.3328
0.3763
0.1974
0.0934

This can be seen as a random walk where we start in a random node depending
on the weight vector u. Then with a probability ¢ we go to any of the nodes linked to
from that node and with a probability 1 — ¢ we instead go to a random (in the case of
uniform u) new node. The PageRank vector can be seen as the probability that you
after a long time is located in the node in question [2]. More on why an eigenvector
with eigenvalue 1 always exists can be seen in for example [7].

Fig. 1 Directed graph and
corresponding matrix system G G
matrix A

0100
1/201/20
1/31/3 0 1/3

@ 10 0 0

A=
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Role of c.

Looking at the formula it is not immediately obvious why we demand 0 < ¢ < 1
and what role ¢ holds. We can easily see what happens at the limits, if ¢ = 0 the
PageRank is decided only by the initial weights u. However if ¢ = 1 the weights have
no role and the algorithm used for calculating PageRank might not even converge.
As c increases, nodes further and further away have an impact on the PageRank of
individual nodes. And the opposite for low ¢, the lower ¢ is the more important is
the immediate surrounding of a node in deciding its PageRank. The parameter c is
also a very important factor in how fast the algorithms used to calculate PageRank
converges, the higher c is the slower the algorithm will converge.

Handling of dangling nodes.

If A contains dangling nodes, corresponding row no longer sums to one and there
therefor will probably not be any eigenvector with eigenvalue equal to one. The
method we use in order to fix this is to instead assume that the dangling nodes
link to all nodes equally (or some other distribution over the nodes). This gives us:
T = A+ gw', where g is a column vector with elements equal to one for a dangling
node and zero for all other nodes. Here w is the distribution according to how we
make the dangling nodes link to other nodes (usually uniform or equal to u). In this
work we always use w = u to simplify calculations.

There are other ways to handle dangling nodes, for example by adding one new
node linking only to itself and let all dangling nodes link to this node. Assuming
w = u these methods should be essentially the same apart from implementation [5].

3 Notation and Definitions

Here we give some notes on the notation used through the rest of the article in order
to clarify which variation of PageRank is used as well as some overall notation and
the definition of some common important link structures. We will repeatedly use the
L' norm in comparing the size of different vectors or (parts of) matrices.

First some overall notation:

e Si: The system of nodes and links for which we want to calculate PageRank,
contains the system matrix Ag as well as a weight vector v. Subindex G can be
either a capital letter or a number in the case of multiple systems.

e n: The number of nodes in system Sg.

e Ag: System matrix where a zero element a;; means there is no link from node i to
node j. Non-zero elements are equal to 1/r7; where r; is the number of links from
node i. Size ng X ng.

e vi: Non-negative weight vector, not necessary with sum one. Size ng x 1.

e ug: The weight vector v normalized such that ||lug||; = 1. We note that ug is
proportional to vg (ug « vi). Size ng x 1.

e ¢: Parameter 0 < ¢ < 1 for calculating PageRank, usually ¢ = 0.85.

e g;: Vector with elements equal to one for dangling nodes and zero for all other in
S(;. Size ng X 1.
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e Mg: Modified system matrix, Mg = c(Ag + goul) " + (1 — c)uge " used to cal-
culate PageRank, where e is the unit vector. Size ng X ng.

In the cases where there is only one possible system the subindex G will often be
omitted.

From earlier we saw how we could calculate PageRank for a system S, we also
make the assumption that w = u both since it simplifies calculations as well as having
no obvious disadvantages since both vectors play largely the same role in that they
can be used to penalize or promote certain certain nodes.

We will use two different ways to define different versions of PageRank using the
notation R(Gl) where 7 is the type of PageRank used, G is the graph or part of graph
for which R is the PageRank. Often G is the whole graph in which case the subindex
is usually omitted R®.

We will sometimes give the formula for a specific node j in this case it will be
noted as RE.’). When normalizing the resulting elements such that their sum equal to
one we get the traditional PageRank:

Defnition 1 R(Gl) for system S¢ is defined as the eigenvector with eigenvalue one to
the matrix Mg = ¢(Ag + g(;ug)T + (1 —c)uge'.

Note that we always have [|[R®||; = 1 and that non-zero elements in R{ are all

positive. The fact that ||[R™"||; = 1 is generally not the case in other versions of
PageRank. When instead setting up the resulting equation system and solving it we
get the second definition, the result is multiplied with n in order to get multiplication
with the one vector in case of uniform ug.

Defnition 2 Rg) for system Sg is defined as R(GZ) = (- cAg)’lnGuG
We note that generally ||[R@®||; # 1 as well as Rg) * nGRg) unless there are no

dangling nodes in the system. However the two versions of PageRank are proportional
to each other (Rg) (¢’ Rg)).

Defnition 3 A simple line is a graph with n; nodes where node n, links to node
ny—; which in turn links to node n_, all the way until node n, link to node n;.

The link matrix A, and graph for system S;, consisting of a simple line with 5 nodes
can be seen in Fig. 2.

Defnition 4 A complete graph is a group of nodes in which all nodes in the group
links to all other nodes in the group.

The link matrix Ag for system Sg consisting of a complete graph with 5 nodes can
be seen in Fig. 3.

00000

Q /\ m /\ 10000
ni N9 n3 ng ns AL = {01000
u U u 00100

00010

Fig. 2 The simple line with 5 nodes and corresponding system matrix
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Fig. 3 A complete graph @
with five nodes and
corresponding system matrix / \
(] () o1
. 1 10111
Ac = |11011

11101
(s f—{s) 1110
4 Calculating Non-normalized PageRank

While ordinary normalized PageRank RV is usually calculated using the Power
method or some other similar iterative method, in order to find nice analytic forms
using non-normalized PageRank we will use a number of different ways to calculate
it. From now we will assume uniform u which simplifies calculations significantly.

In this article we will look at two methods two calculate PageRank (R®), while
neither method is especially useful for calculating PageRank of large systems, they
give exact answers as compared to the usual iterative methods. The goal is to use
these in order to learn something about the behavior of some common typical graph
structures within a system. From earlier we have:

RY =MRY = (¢c(A+gu")" + (1 — c)ueHRW. (1)
Calculating the dominant eigenvector RV is the same as solving the linear system:
RY =MRY & (A" — DRV = —(cug" + (1 — c)ue HR™". 2)

Since every column of ug " is either equal to u or zero and all columns equal to u
for ue” we can see that —(cug' + (1 — c)ue” )R will be proportional to u. This
can be written as: (cAT — DR® = ku.

We choose k = —n in order to get ku equal to the one vector in the case of uniform
u, the minus sign to get positive rank and solving the system we get:

R® = (—-cA") 'nu. (3)

To get the rank to sum to one it is a simple matter of normalizing the result.
R® =R®/|IRP||; [5]. We note the similarity with this formulation of PageRank
(solution to R® = cATR® 4 nu) with the one for the potential of a Markov chain
with a discounted cost (solution to R® = «AR® + ¢), where 0 < o < 1 is the
discount factor and c is a cost vector, [16].

Note that we do not need to take any care of the dangling nodes when calculating
the PageRank in this way but obviously a lot slower than using the Power method or
other conventional methods of calculating PageRank since we need to invert a large
sparse matrix. Although we do not need to change A for dangling nodes, the result
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when doing so is changed (but still proportional to R™"). We will never change A
for dangling nodes when solving the linear system and only use the version defined
above. Note that while solving the equation system is slow it is possible to get to this
or similar non-normalized version of PageRank using another PageRank algorithm,
such as using a power series formulation as in [1] or by first calculating the ordinary
normalized PageRank and then scale it appropriately [9].

The following theorem explains how PageRank (R®) can be computed and how
it can be interpret from a probabilistic viewpoint using random walks on a graph and
the hitting probabilities of said random walks.

Theorem 1 Consider a random walk on a graph described by cA described as
before. We walk to a new node with probability ¢ and stop with probability 1 — c.
PageRank R® of a node when using uniform u can be written:

R;z) = Z P(e; —> ej)+ 1 (Z (P(ej — ej))k), “4)

e;€S,e;#e; k=0

where P(e; — e;) is the probability to hit node e; in a random walk starting in node
e; described as above. This can be seen as the expected number of visits to e; if we
do multiple random walks, starting in every node once.

Proof (CAT)f.‘j is the probability to be in node e; starting in node e; after k steps.
Multiplying with the unit vector e (vector with all elements equal to one) therefor
gives the sum of all the probabilities to be in node e; after k steps starting in every
node once. The expected total number of visits is the sum of all probabilities to be
in node e¢; for every step starting in every node:

R = ((Z (cAT)k) e) ) 5)
k=0 j

> i, (cAT)* is the Neumann series of (I — cAT)~! which is guaranteed to converge
since cAT is non-negative and have column sum < 1. If u is uniform we get by the
definition:

R?=(1-cADH)'nu=(1—-cAN)le= (Z (cAT)k)e (6)

k=0

SRY = > Ple—en+1 (Z(P(ejaej))k). (7)

e,'ES,e,'yéej' k=0

]
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5 Changes in the Simple Line

Using the simple line as defined earlier we recall that we had the link matrix with an
image of the system in Fig.2

00000
10000
A={01000
00100
00010

By setting up the system of equations we get the inverse (I — cAT)~! as:
I-cADH'=1]00

Note that this needs only to be multiplied with nu or a multiple of u for us to get
a meaningful ranking. This gives us R® (for uniform u):

R(z):[l+c+c2—|—c3+c4,l+c+cz+c3,l+c+cz,l+c, l]T.

If wanted to get the common normalized ranking R™" we need to normalize the
result to sum to one. Looking at the elements a;; of (I — c¢AT)~! and considering
the example with a random walk through the graph, we can see the value of every
element a;; as the probability to get from node ¢; to node e;. In the case where the
link matrix contain nodes with paths back to itself we will later see that it is actually
not the probability to get there but the sum of all probabilities to get from e; to e;
corresponding to Theorem 1. We can motivate this further by looking at the same
line but adding a link back from the first node to the second node.

5.1 The Simple Line with Node One Linking to Node Two

Letting node one link to node two in the earlier example gives us the graph in Fig. 4.
The resulting inverse can be written as

s sc SC2 SC3 SC4

sc s sc sc? sc?
(I—cAT)_lz 00 1 ¢ 2|,

00 0 1 ¢

00 0 O 1
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01000
10000

"3 4 5 A = {01000

00100

00010

Fig. 4 Simple line where the first node links to the second and corresponding system matrix

where s = Z;io k= ﬁ is the sum of all the probabilities of getting from node
1 or 2 back to itself.
From this we can see that the following observations seem to be true.

e The sum of a column c; is at most > o ck = ﬁ when using uniform u, with
equality if there are no paths to any dangling node from node j and node j is not
a dangling node itself.

e A diagonal element is equal to one if the node have no paths leading back to itself.

e Setting one element in u; to zero only effects the influence of a random walk
starting in the corresponding node.

e Every non zero element in the same row can be written as the diagonal element
on the same line times the sum of probabilities of getting from all other nodes to
the node corresponding to the current line.

e Each element ¢;; of (I—cAT)™! contains the sum of probabilities of all paths
starting in node j and ending in node i. When doing a random walk by choosing

a random link with probability ¢ and stopping with probability 1 — c.

This is consistent with the statement that the normalized PageRank R'" of a node
is the probability that a surfer that starts in a random node (page) and keeps clicking
links with probability ¢ or starts at a new random page with probability (1-c) is
in a given node. However here we can explicitly see all the probabilities and their
influence on the ranking, [7].

5.2 Removing a Link Between Two Nodes

When removing a link between two nodes in the simple line we end up with two
smaller disjoint lines instead. We note that these could be calculated separately and
we would still have the same relation between them. This is interesting since when
using the “Power method” or straight calculating R this is not possible since more
nodes in a system obviously means a lower mean rank since we in that case normalize
the result to one.

Especially in the inverse (I — cAT)~! we see that when we remove one link, we
remove all the elements in the upper right corresponding to paths from nodes above
the removed link to all the ones below it. An example of what the new inverse looks
like when removing the link between the third node and the second node in Fig.2
can be seen below:
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1¢000
01000
(I=cAH'=]001cc?
0001 ¢
00001

’

with PageRank: R®=[1+4c¢ 1,14+c+c*1+c, 1] and normalizing constant
N =5+ 3c + ¢?, when using a uniform u.

5.3 Adding a New Node Pointing at One Node
in the Simple Line

A more interesting example is when looking at what happens when we add a single
new node, linking to one other node in the simple line. Since we make no changes in
the line that part of the inverse will stay the same. We will however add a new row
and column. The non diagonal element of the new column can be found immediately
as ¢ times the column corresponding to the node our new node links to. This since
we got the probability ¢ to get to that node instead of 1 when we start in it. At last
we need to add the one at the new element in the diagonal. An example of what the
inverse looks like after adding a new node pointing at node 3 in Fig.2 can be seen
below

lect3 et P
01 ¢ 23 c?
ATl 001 ¢ c?c
(=AD" =10001¢o0
000010
000 001

From this easy example we can immediately get an expression for the PageRank
of a simple line with one or more added nodes linking to any of the nodes in the
simple line.

Theorem 2 The PageRank of a node e; belonging to the line in a system containing
a simple line with one outside node linking to one of the nodes in the line when using
uniform weight vector u can be written:

np—i np—i+1

—c
R(z) Z " +bjj=———+b; 8)

1—c

o/t l’ ] >
bij = [0, j<i 2
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where ny is the number of nodes in the line and the new node link to node j. The
new node has rank 1. After normalization we get the PageRank of node i as:

1L =i+l

RO — .t
' ng+ 140, — Do+ —2)c2+ -4 ont 4 =<

(10)

where Rf]), sz) is the PageRank of one of the nodes in the original line, L is the
number of nodes on the line, j is the number of the node linked to be the new node.
Additionally adding new nodes linking to the line means adding additional b;;

1—¢/
I—c

parts and adding the corresponding part to the normalizing constant.

Proof From Theorem 1 PageRank for a node when using uniform u can be written
as:

Rl@ = Z Pej > e)+ 1 (Z (P(e;j — ei))k),

e;eS.ejFe; k=0

where P(e; — e;) is the probability to hit node e; starting in node e;. When we
consider a random walk on a graph given by cA described as before. We walk to a
new node with probability ¢ and stop with probability 1 — c.
The probability of getting to any node ¢; in the line from any other node ¢; in the
line once is:
Ple;, » e)=c™", j>i, (11)

and zero otherwise. Summation over all j > i gives

np—i _ anp—i+l

l—c
> Plejoetl=D 4=, 12
(ej = ei) + ¢+ —¢ (12)
e;€S,e;jFe; k=1

where L is the number of nodes in the line. With the first part shown we need to
show that the single outside node linking to node e; adds b;; = /-t j=>1i.We
get this probability in the same way by instead looking at the line created by the first
Jj nodes plus the extra node added linking to node j. We get the probability to reach
node ¢; as ¢ and then ¢? for the next and so on. If i > J, e; does not belong to this
line, and we obviously cannot reach it from e; hence b;; =0, i > j.

Last the PageRank of the “outside” node linking to a node in the line is obviously
1 since no node links to it. The normalized PageRank is found by dividing R® with
IR ;. i

We also give a proof using matrices but first we will need the following lemma
for blockwise inversion used repeatedly throughout the article. We note that we label
the blocks from B to E rather than from A to D in order to avoid confusion with the
system matrix A.
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Lemma 1
BC|' [ (B-CE'D! —(B—CE~'D)"'CE"!
DE ~|-E-'DB-CE'D)"! E'+E'DB-CE'D)'CE'|’
(13)
where B, E is square and E, (B — CE~'D) are nonsingular.
Proof To prove the Lemma it is enough to show that:
BC (B—-CE"'D)! —(B—-CE"'D)"!CE™! 7
DE||-E-'DB-CE'D)"! E'+E'DB-CE'D)'CE~!| ™ ™
(14)
Looking at the result blockwise we get:
BB—-CE'D)'—CE"'DB-CE'D)"! = (15)

=B-CE'D)B-CE'D)"' =1,

~-BB-CE'D)'CE"'+C(E'+E'DB-CE'D)"'CE™) = (16)
=CE'-(B-CE'D)B-CE'D)"'CE"! =CE~' —ICE"' =0,

DB —-CE'D)"' —EE"'D(B—-CE~'D)"!

= (17)
—D(B-CE"'D)"! ~D(B-CE"'D)"! =0,

~-DB-CE'D)'CE'+EE'"+E'DB-CE'D)"'CE) = (18)
=-DB-CE'D)'CE'+1+DB-CE'D)"!CE™! =1.

This gives:
BC (B — CE-'D)~! _(B— CE-'D)-'CE-! e
DE||-E-'DB-CE-'D)-' E-'+E-'DB-CE-'D)'ce-! |= 19

z[(')?]zL

Furthermore we need that E and (B — CE~'D) is nonsingular in order for the
matrix to be invertible, [4]. (I

When using Lemma 1 we will denote the individual blocks off the inverse matrix as
described in Definition 5.
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Defnition 5 Given a block matrix M we denote the inverse as:

inv inv inv
M Mo ... My, M MY LM
inv inv inv
Mot Moo Moy | | MEY MY MY
M=| . . s =] . . . (20)
inv inv inv
MWl,] MWl,2 s Mm,n Mm,l Mm,2 ce Mm,n

We can now give a matrix proof of Theorem 2 as well.

Proof (Proof of Theorem 2) We let B be the part of the matrix (I — ¢cAT) correspond-
ing to the nodes in the line which gives:

(- cAT) = [g ﬂ . @1)
We write oy i
(I—cAD)™! = [[B)mv E] (22)

Using Lemma 1 for blockwise inverse we get B™ = (B — CE~'D)~! =B~
Since B is the matrix for the simple line found earlier we get:

2 L—1

1 ¢ ¢ c
01 ¢ ...ctm
B — (- CAT)—I 100 1 ... k3 ’ (23)
0...... 0 1
where L is the total number of nodes in the line. C=[0 ... ¢0... 0]" where the
non-zero element c is at position j gives:
C"=_B™CE!'=-B™C=[c/c¢/"...c0...0]". (24)

Last, since D = O we get D™ = 0, EI™ = 1. Since the weight vector u is uniform
we get the PageRank of a node as the sum of corresponding row in (I — cAT)~!. For
the nodes in the line we get PageRank:

R = S0 e by = = 4y 25)
b _feizi 26
g - 0, j<i (26)

where the sum is the sum of the first n;, values and b;; is the value on the last column.
For the last row we obviously get sum 1.
We get the normalized PageRank R(" by dividing RV = R® /| R®||,. O
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6 Changes in a Complete Graph

Complete graphs or similar structures are common both as parts of a site and as a
way between different sites to try and gain a better rank. An image of a complete
graph with five nodes can be seen in Fig. 3. We recall that the system matrix for this
system is:

01111
10111
A=-]11011
11101
11110

Using this we get the inverse of this system as:

3c—4 —c —c —c —c
2+3c—4 243c—4 243c—4 243c—4 2+3c—4

—c 3c—4 —c —c —c
24+3c—4 2+3c—4 A+3c—4 A+3c—4 2+3c—4

(l _ CAT)—I — —c —c 3c—4 —c —c
2+3c—4 243c—4 243c—4 24+3c—4 2+3c—4

—c —c —c 3c—4 —c
2+3c—4 243c—4 243c—4 A+3c—4 2+3c—4
—c —c —c —c 3c—4
243c—4 24+3c—4 2+3c—4 2+3c—4 2+3c—4

After normalization we will obviously end up with REI) = 1/5 as PageRank for
every node i. However since there is not any dangling nodes in the complete graph all
the nodes will have maximum influence on the PageRank of the system. Additionally
since they only point to each other they will not share any of it with the outside in
the case of a bigger link matrix with a part of it being a complete graph. This makes
a complete graph similar to a dangling node in that it will not increase the rank of
anyone else, but with the addition of having a higher rank in itself since it can increase
its own rank to a certain extent.

Trying to find an expression for the elements in the inverse (I — cAT)~! for the
complete graph we formulate the following lemma:

Lemma 2 The diagonal element ag of the inverse (I — cAT) ™! of the complete graph
with n nodes is:

n—1)—cn-2)

= . 27
W= D —cn—2 —¢ @7

The non diagonal elements a;; can be written as:
- 28)

G ) —cn—2 -

Proof The diagonal element is the sum of the probabilities of all paths to node e,
from itself. This can be written as a geometric sum: a; = Z/(:io Pe; — ed)k, where
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P(eq — ey) is the probability of getting from node e; to node e;. The probability
P(e; — e;) can be written as:

2 3 ] 4 _22
Ples— ed) = ——+ C(n("_ 1)2) + C(’i"_ 1)3 oo (29)

. P c(n—2) k_ c?
_n—lz( n—1 ) T =D =—ctn=2)

k=0

This gives:

- c? k n—1)—cn —2)
ad:Z((n—l)—c(n—Z)) S -D-cn-2-a 9

k=0

For non-diagonal elements e;; we get e;; = P(e; — ej)ag, where P(e; — e;) is
the probability of getting from node e; to node e; where e; # e;. This probability
can be written as:

¢ Am—2) Am—2)>?
P(ei—>€j)—n_1+ 12 + 1) +--- (31

o > cn—2) k_ c
_n—lg( n—1 ) T =D —cn-2)

k=0

This gives:

c n—1)—cn-2) c

YT hmD - m-D—cn—2)— A
([

We give a matrix proof of Lemma 2 as well:

Proof (Proof of Lemma 2) We consider a general matrix A of the form:

a ...a
al a a
A=laa 1 a
aa a ...1

We use Gauss-Jordan elimination to find the inverse A~!:
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...al0 0 ...
..a01 0 ...

0
0
aal .a001 .0
.. 0
1

S
— Q
S

aa a ...100 0 ...
We add —ar; where r is the first row to every other row to eliminate the elements
below 1 on the first column:

1 a a ... a 1 00 ...
0l—a?a—d*>...a—a*—-al O ...

0
0
Oa—a*1—a® " a—a*—a01 .0
S ) L S0
Oa—a*a—da®>...1—-a*>—-a00 ...1

Next we eliminate the values to the right of the 1 on the first row. We add
—k D!, ri, where r; is row i to the first row giving the equation:

a=—k(l—a*+ (1 —2)a—ada>») (33)
—a
:}k: .
(I —a*>+ (n—2)(a—a?)
This gives:
1 0 0O ... 0 1—m—Dakk k ...k
01—a?a—-d*...a—d? —a 10...0
0Oa—a*1—a® " a—d? —a 01 .0
Do - 0
Oa—a*a—ad*...1—d> —a 00...1

We are now done calculating the first row of the inverse A~'. We get the other rows
using the same calculations if we start with another pivot element. For the inverse
matrix we get diagonal elementsd = 1 — (n — 1)ak and for all other elements e = k,
where n is the total number of rows giving a inverse like below:

1 —(n—1)ak k k e k
k 1 —(n— 1)ak k o k

Al = k k 1 —(n—ak .
: : , L

k k k 1 —(n—1ak
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Calculating for a = —c/(n — 1) as for a complete graph gives:
—a c

k= = , 34
1=a?4+m—-2)a—-a?») m—=1)—m—-=2)c—c? (34)

—D—m—=2Dc—c2—(n—1(- -1
d=1—(n—lak = n—1)—m—=2c—c"—n—1)(-c)/(n—-1c (35)

n—1)—{m—2)c—c?
. n—1)—(n—2)c
T =D —m—=2c—c2

And the proof is complete. (|

Using this we immediately get the PageRank (before normalization) of elements
in a complete graph with uniform u:

Theorem 3 Given a complete graph with n > 1 nodes, PageRank R® before nor-
malization can be written as:

1
R?Y = —. (36)
1—c¢

Proof From Lemma 2 We already have the inverse (I — cAT)~', We then find the
PageRank by summation of any row of the matrix (since all rows have equal sum).

R? =ay+ (n—Day, i#j, 37)
_(n—l)—c(n—2)+c(n—1)_ ct+(m—1) _ 1

m=—1D—cn—=2)—c2  m—-1D)—cn—=-2)—c2 1-=¢

O

We do note that since we have no dangling nodes all the probability from a node in
the complete graph is distributed within the complete graph. Also the size of the graph
isirrelevant for the individual nodes as long as none are linked to from outside sources
and it consists of at least two nodes. In the R(" sense the size obviously changes
the result since we would increase the overall number of nodes in the system by
increasing the size of the complete graph. Two things is important to note however:
The higher ones own PageRank before joining the complete graph (probability of
getting there from outside nodes) the more gain there is by joining a small complete
graph in order to maximize the probability of returning to itself. In the same way if a
node have a very low rank it gains much by joining a large complete graph of nodes
with higher rank than itself.
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6.1 Adding a Link Out of a Complete Graph

If we want to see how the complete graph changes when adding one link from one
node (node one) out of the complete graph we end up with the following system
matrix for the nodes in the complete graph:

1 —c/4 —c/4 —c/4 —c/4
—c/5 1 —c/4—c/4—c/4
(I—cATy=| —¢/5—c/4 1 —c/4—c/4
—c/5 —c/4 —c/4 1 —c/4
—c/5 —c/4 —c/4 —c/4 1

After taking the inverse and multiplying with —1 we get:

(I—cADH) 1=
F 1520 —Sc =S¢ =sc =S T
s K K K K
—dc  12¢°440c—80 _ 4c(5+0) _ 4c(5+0) _ 4c(5+0)
s (c+4)s (c+4)s (c+4)s (c+4)s
—dc  __4c(5+o)  12c2440c—80 _ 4c(5+¢)  _ 4c(5+o)
s (c+4)s (c+4)s (c+4)s (c+4)s P
—4c __4e(5+0) _ 4c(5+0) 12¢24+40c—80 _4e(5+0)
s (c+4)s (c+4)s (c+4)s (c+4)s
—4c _4c(5+e)  __4e(5te)  _4e(5+e)  12¢%440c—-80
| s (c+4)s (c+4)s (c+4)s (c+4)s

where s = 4¢? + 15¢ — 20.
We find the expression for the PageRank in a complete graph with one node
linking out to be the following assuming uniform u.

Theorem 4 The PageRank of the nodes in a complete graph with the first node
linking out of the complete graph, the PageRank can be written as:

R?) _ nn—1)+nc ’ (38)
nn—1) —m—1c2—nn—2)c
@ = ctn)@®—1) n>i>l, (39)

L am=D=m =Dt —nn -2 =~

where n is the number of nodes in the complete graph and node one links out of the
complete graph.

Proof We start by looking at the PageRank as a probability, we let e; be the node
linking out. The probability to get from e; back to itself is:
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cln—1) ¢ +c(n—1) c cn—2)

P = 40
(e1 = en) n n—1 n n—1 n—1 “0)
cn —1 -2\’
n (n ) ¢ c(n ) .
n n—l n—1
_c i c(n—2) c? n—1
_nk: =1 ) T h-D—cm—2
And we get the sum of all probabilities from e, back to itself as:
00 [} 6‘2 n—1 k
P k— - 41
g( (e1 — e1) g(n (n_l)_c(n_z)) (41)

_ n((m—1) —cn—2))
T an=D—=—cn=2)—=c2n—1)

iny

We remember that on the diagonal of (I — ¢cAT), we have the sums of probabilities
of nodes going back to themselves. So if we divide the matrix (I — cAT) in blocks:

. _[BC
<I—cA>—[DE],

( CAT) | |:Bzrw Cmv] .

and inverse matrix:

Dl}‘lV ElﬂV

We note that B is not the inverse of B but the part of the inverse (I — cAT)~!
corresponding to block B. We let B = [1] corresponding to the node linking out and
we get B as above.

For the elements C!"", i # 1 of C™" we find them as

cim = Z(P(e, — et 2 (Pler — e)) (42)

= k=0

_c i (c(n - 2))kBmv B cn
T n—1 n—1 T an=D—=—cn=2)—=-c2n—-1)"

k=0

Since E and DB~!C are both symmetric and have every non-diagonal element
equal as well as all diagonal elements equal, the inverse E"” = (E — DB~!C)~!
should be the same as well. Especially every row and column have the same sum.
From Lemma 1 for blockwise inversion we get:

C;‘nv — _n — ZEmv (43)
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n—1 n—1
D" = === > B = - > B (44)
k=1 k=1
Dinv _ (I’l - I)Ctmv
i - —7
n
- ; 45
- i Einv (I’l — I)Clmv ( )
ik = -
k=1 ¢
We get the PageRank as:

(2) _ pinv _ inv __ n((n—1) —c(n —2))
R =B+ = D = ) e =) — =D
n (n—1)cn _ nn—1)+nc
nn—D—cn=2)—c2n—1 nn—1)—=m—Dc2—nn-2)c’

(40)

2 ; 1 —DCinv; e
R = D™ 4 3] B = (=bam 0200 “7)
_ =DC™(etn) (c+nm)(n—1)
- ne — n(n—1)—m—-1)c2—n(n—-2)c"
And the proof is complete. (]

We give a matrix proof of Theorem 4 as well:

Proof (Proof of Theorem 4) We consider the square matrix A with n rows:

laa ...a
bl a ...a

A=I|ba 1 .'~Cl B
ba a ...a

where a = —c¢/(n — 1), b = —c/(n). We divide the matrix in blocks:

BG
A:[DE]

where B=1[1], C=[aa ... a]l, D=[bb ... b]" and E looks like the matrix for
a complete graph but of size (n — 1) x (n — 1):
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a ...a

al a a
E=laa 1 a
aa a a

In the same way as in the proof of Lemma 2 we find the elements of B, C by
choosing the top left element as pivot element. This gives

—a

(1 —ab) + (n —2)(a —ab)’

ka = (48)

We write A~! as blocks:

Binv Cinv
A - [Dlﬂ\/ EH‘IV] ’
and get: Bi" =1 — (n — )bk, and Cf"v =ky.
From the matrix proof of Lemma 2 we get the non-diagonal elements E, and
diagonal elements E; of E~! as

B — ko — —a . (n—1ec
TP T )t -3 a—a2) n—12—m-3)n—De—(n—2)c2’
(49)
n—0D*—m—-3)n-c
E;j=1—(n—2 = .
d (n=Dakp = T L T3 = De— (1 = 2) (50)
From Lemma 1 we then get:
B"™ = (B—-CE'D)™!' =1— (n— 1)bky, (51
C"=—(B—-CE'D)y"'CE™! (52)
= C"" =—(B—CE'D)'b(Eq+ (n — )E.) = kg,
D" = —E-'D(B—-CE~'D)”! (53)
inv -1 -1 bkA
= D" =—a(Eq+(n—2)E,))(B—CE ' D)” = —,
a

E" =E'+E'D(B—CE'D)"'CE™', (54)
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E/" =Es+b(E;+ (n —2)E,)(B—CE™'D) 'a(E; + (n — 2)E,)
=E;—b(Eq+ (n—2)Ec)ka
= inv -1 -1 (55)
E" =E,+b(Eq+ (n—2)E,)(B—CE"'D) a(E; + (n —2)E,)
=E, —b(Eq+ (n —2)E)ky
We replace a = —c¢/(n — 1) and b = —c/n as for our complete graph and get
inverse:
(I - CAT) l=
11— (n — l)bkA kA kA
bha 1 — (n —2)akp kp
= bhy kp 1—(n—2)akp -
bka kp kp 1 - (n — akp

For the PageRank of the node linking out we get:

R =B™ + (n — 1)C" = (56)
=1—(—Dbks+mn—Dka=1—m—1)(b— Dka
_(=ab)y+(n—-2)@—ab)+mn—1)b - 1a
n (1 —ab) + (n — 2)(a — ab)
_(l—ab)—(a—ab)—(n—l)a_ nn—1)+cn
T =—ab)+ (=@ —ab)  nn—=1)—nn—2)c—mn— 12

For all other nodes we get PageRank:

R(Z) Dmv + Emv +(n— Z)Eénv — (57)

bk 4
= —+Ed_b(Ed+(n_2)E Yea

t(n— 2)Ee — (n—2)b(Eq 4 (n — 2)E.)k4
=E;+m—-2)E,—(n—Db(Eg+ (n—2)E)ks + (b/a)ky
1—a —b
- (1—-a?>)+ (n—-3)a—a? + (1 —ab) + (n —2)(a — ab)
(n — Dab(1 —a)
((1 —a) + (n —3)(a —a?) (1 —ab) + (n — 2)(a — ab))
1—5b n—1m+c)
T l—ab+n—2a—ab) ni—1)—nn—2)c—mn—-1De

And the proof is complete. O

Just looking at the expression it is hard to say how the PageRank changes after
linking out. We can however note a couple of things: First of all the PageRank is
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lower than for the complete graph (since we now have a chance to escape the graph).
But more interesting, when comparing the node that links out with the others we
formulate the following theorem:

Theorem S In a complete graph not linked to from the outside but with one link out,
the node that links out will have the highest PageRank in the complete graph.

Proof Using the expression for PageRank in a complete graph with one link out we
want to prove R,(cz) > ngz) where R,(Cz) is the PageRank for the node linking out and

Rl@ is the PageRank of all the other nodes.

R > R
nin—1)+nc (c+n)y(n—1)
< >
nn—1D—-m—-Dc2—nn—2)c nmn—1)—@m—1)c?—nn—2)c
snn—1)+nc>(Cc+nm-—1)

<:>n2—|—nc—n>n2+nc—n—c

(58)
where 0 < ¢ < 1 and n > 1 is the number of nodes in the complete graph. This is
obviously true and the proof is complete. [

Apart from the knowledge that it is the node that links out of a complete graph
that loses the least from it we can also see that as the number of nodes in the complete
graph increases the difference between them decreases since we have a factor n? in
the denominator compared to only a difference of ¢ in the nominator.

6.2 Effects of Linking to a Complete Graph

In the case of a link to a complete graph without a link back from the complete
graph we can easily guess the result. From earlier we know that for a node linking to
one other node in a link matrix with no change of getting back to itself the column
corresponding to the node linking out is ¢ times the column of the node it links to.
Additionally we need to add a one to the diagonal element for that column.

The fact that there is no probability (or a very low if it is only close to complete) to
escape the complete graph and give any advantage to other parts of the system means
the complete graph as a whole get maximum benefit from the links to it. Looking at
how the additional probability ¢/(1 —c) =c + > 4+ > + - - - + ¢ get distributed
within the complete graph we realize that the node linked to gains all of the initial !,
then loses a part ¢ distributed among all other nodes in the complete graph, after that
the rest is close to evenly distributed between all the nodes in the complete graph.
As such we see that the node linked to is the node which gains the most from the
link (which is what we would expect).
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7 Conclusions

We have seen that we can solve the resulting equation system instead of using the
definition directly or using the Power method. While this method is significantly
slower it has made it possible to get a bigger understanding of the different roles of
the link matrix A and the weight vector u. We have seen how PageRank changes
when doing some small changes in a couple of simple systems. For these systems
we also found explicit expressions for the PageRank and in particular two ways to
find these. Either by solving the equation system itself or by using a probabilistic
perspective and calculate:

= 5 re ) (S wr)

e, €S, ejFeg k=0

where P(e; — e,) is the sum of probability of all paths from node e; to node e, and
the weight vector u is uniform.

One of the main advantages in using non-normalized PageRank over the ordinary
normalized version is that it is possible to split a large system into multiple disjoint
systems and calculate R® for every subsystem separately, something which cannot
be done as easily.
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PageRank, Connecting a Line of Nodes
with a Complete Graph

Christopher Engstrom and Sergei Silvestrov

Abstract The focus of this article is the PageRank algorithm originally defined by
S. Brin and L. Page as the stationary distribution of a certain random walk on a graph
used to rank homepages on the Internet. We will attempt to get a better understanding
of how PageRank changes after you make some changes to the graph such as adding
or removing edge between otherwise disjoint subgraphs. In particular we will take a
look at link structures consisting of a line of nodes or a complete graph where every
node links to all others and different ways to combine the two. Both the ordinary
normalized version of PageRank as well as a non-normalized version of PageRank
found by solving corresponding linear system will be considered. We will see that it
is possible to find explicit formulas for the PageRank in some simple link structures
and using these formulas take a more in-depth look at the behavior of the ranking as
the system changes.

Keywords PageRank - Graph - Random walk - Block matrix

1 Introduction

PageRank was initially used to rank homepages (nodes) based on the structure of
links between these pages. This is important in order to return the most relevant
results in for example search engines. Since the number of pages on the Internet is
huge and ever increasing it is important that the method is extremely fast but there
is also a heavy requirement on the quality of the ranking since very few people
will look through more than a couple of the highest ranked pages when looking for
something, [4].
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Some other applications of PageRank or similar methods include the EigenTrust
algorithm used for reputation management in P2P networks [12] and DebtRank for
evaluating risk in financial networks [1].

Calculating PageRank is usually calculated using the Power method which can
be implemented very efficiently, even for very large systems. The convergence speed
of the Power method and it’s dependence on certain parameters have been studied
to some extent. For example the Power method on a graph structure such as that
created by the Web will converge with a convergence rate of ¢, where c¢ is one of
the parameters used in the definition [9], and the problem is well conditioned unless
c is very close to 1 [11]. Many methods have been developed in order to speed up
the calculations of PageRank such as by aggregating webpages that are “close” and
are expected to have a similar PageRank as in [10] or by partitioning the graph into
different components as in [6].

There are also work done on the large scale using PageRank and other measures
in order to learn more about the Web, for example looking at the distribution of
PageRank both theoretically and experimentally such as in [5].

While the theory behind PageRank is well understood from Perron—Frobenius
theory for non-negative irreducible matrices [2, 8, 13] and the study of Markov
chains [14, 15], how PageRank is affected from changes in the system or parameters
is not as well known. We will start by giving some necessary definitions as well as
describing the notation used throughout the article. Before continuing to the main
part of the article we will also give some previous results described in [7] which will
be needed throughout the rest of the article. As in said previous work we will consider
PageRank as the solution to a linear system of equations as well as probabilities of a
random walk through the graph and see what we can learn from this. Both ordinary
normalized PageRank as well as non-normalized PageRank will be considered and
we will highlight some differences between the two as parameter c or the size of the
graph changes. In this article we will look at how PageRank changes as we combine
a line of vertices with edges in one direction with a complete graph in different ways
in Sect.3. And after that in Sects.4 and 5 we will take a closer look at the found
formulas for some of the examples mainly by looking at partial derivatives of the
PageRank. We will see one of the possible reasons why c is usually chosen to be
around ¢ & 0.85. PageRank for some nodes increases extremely fast while for some
other nodes decreases extremely fast for larger ¢, while for lower ¢ the difference
in PageRank between nodes is smaller the lower ¢ gets and the initial weight vector
have a much larger influence on the final ranking.

2 Notation, Definitions and Previous Results

‘We will start by describing the notation used throughout the article as well as describ-
ing some common link structures which will be used. At the end of this section we
will give a couple of lemmas and theorems without proofs summarizing previous
results.
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First some overall notation:

e Si: The system of nodes and links for which we want to calculate PageRank,
contains the system matrix Ag as well as a weight vector vg. Subindex G can be
either a capital letter or a number in the case of multiple systems.

e ng: The number of nodes in system Sg.

e Ag: System matrix where a zero element a;; means there is no link from node i to
node j. Non-zero elements are equal to 1/7; where 7; is the number of links from
node i. Size ng X ng.

e vi: Non-negative weight vector, not necessary with sum one. Size ng x 1.

e ug: The weight vector v normalized such that |[ug||; = 1. We note that ug is
proportional to v (ug  vg). Size ng x 1.

e c: Parameter 0 < ¢ < 1 for calculating PageRank, usually ¢ = 0.85.

e g;: Vector with elements equal to one for dangling nodes and zero for all other in
Sc. Size ng x 1.

e Mg: Modified system matrix, Mg = c(Ag + ggug)T + (1 —c)uge " used to cal-
culate PageRank, where e is the unit vector. Size ng X ng.

e S: Global system made up of multiple disjoint subsystems S = S; U S, ... U Sy,
where N is the number of subsystems.

e V: Global weight vector for system S, V = [VlT V; o V,T,]T, where N is the
number of subsystems.

In the cases where there is only one possible system the subindex G will often be
omitted. For the systems making up S we define disjoint systems in the following
way.

Definition 1 Two systems S, S, are disjoint if there are no paths from any nodes in
S} to S, or from any nodes in S, to S;.

Different versions of PageRank will be denoted as follows
RE Sy — S1,85 = Sk,

where 7 is the type of PageRank used, Sg C § is the nodes in the global system S for
which R is the PageRank. Often S¢ = S and we write it as R(S') . In the last part within
brackets we write possible connections between otherwise disjoint subsystems in S,
for example an arrow to the right means there are links from the left system to the
right system. How many and what type of links however needs to be specified for
every individual case.

We will sometimes give the formula for a specific node j in this case it will be
noted as R(Gt?j[SH — 81,87 — Sk....]. When it is obvious which system to use (for
example when only one is specified) and there are no connections between systems
S¢ as well as the brackets with connections between systems will usually be omitted
resulting in Rj@ . It should be obvious when this is the case. When normalizing the
resulting elements such that their sum is equal to one we get the traditional normalized
PageRank.
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Definition 2 Rg) for system S¢ is defined as the eigenvector with eigenvalue one
to the matrix Mg = ¢(Ag + ggug)T + (1 —c)uge'.

Note that M is a stochastic matrix and therefor PageRank itself can be seen as the sta-
tionary distribution of a Markov chain describing a random walk on a graph described
by A (with some correction for vertices with no outgoing edges) and a small random
chance (1 — ¢) to move to a random node depending on the distribution described
by u. By convention PageRank is normalized such that ||[R®V||; = 1 to get said sta-
tionary distribution and it is usually reasonable to assume M to be irreducible and
primitive hence Rg) will be a positive vector easily shown using Perron-Frobenius
theory for non-negative irreducible matrices [2, 8, 13]. The fact that ||[RM]|; =1
is generally not the case in our other version of PageRank. If we instead set up
the resulting equation system and solving it we get the second definition, the result
is multiplied with ng in order to get multiplication with the one vector in case of
uniform ug.

(€3]
G

Definition 3 Rg) for system Sg is defined as Ry = (I — cAg)‘lnGuG

We note that generally |[R®||; # 1 as well as RS’ # ngRY unless there are no
dangling nodes in the system. However the two versions of PageRank are proportional
to each other (Rg) o Rg)).

Another way to calculate PageRank using this second definition is from a prob-
abilistic perspective. For a proof of the theorem we refer to our earlier work [7].

Theorem 1 Consider a random walk on a graph described by cA described as
before. We walk to a new node with probability ¢ and stop with probability 1 — c.
PageRank R® of a node when using uniform u can be written:

R = > Ple—e)+1 (Z(P@ﬁemk)» ()

e,»eS,e,'#ej k=0

where P(e; — e;) is the probability to hit node e; in a random walk starting in node
e; described as above. This can be seen as the expected number of visits to e; if we
do multiple random walks, starting in every node once.

Two small graph-structures that will be used are the simple line and complete
graph.

Definition 4 A simple line is a graph with n; nodes where node n;, links to node
ny—1 which in turn links to node n;_; all the way until node 7, link to node n;.

Definition 5 A complete graph is a group of nodes in which all nodes in the group
links to all other nodes in the group.

The following well known lemma for blockwise inversion easily verified by cal-
culating the matrix with the inverse according to the lemma [3, 7].
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Lemma 1
BC|' [ (B-CE'D! —(B—CE"'D)"'CE"!
DE| ~|-E'DB-CE'D)! E~'+E'DB-CE'D)'CE" |’
)

where B, E is square and E, (B — CE~'D) are nonsingular.

Below follows two previous results regarding PageRank for the simple line and
complete graph by themselves, because of size considerations we refer to [7] for
proofs of both theorems.

Theorem 2 The PageRank of a node e; belonging to the line in a system containing
a simple line with one outside node linking to one of the nodes in the line when using
uniform weight vector u can be written:

@ £ k I —cmit
R; :ZC +bij:ﬁ+bijv (3)
k=0
Cj+1_i,j Z i,
by = [0, j<i @

where ny, is the number of nodes in the line and the new node link to node j. The new
node has rank 1.

Theorem 3 The PageRank of the nodes in a complete graph with the first node
linking out of the complete graph, the PageRank can be written as:

@ nn—1)+nc 5)
V" Tan—1D = (=1 —nn-2)’
R? = ctm—1) n>i>l, 6)

LT nn—=1D)—m—=D—nn—=2¢

where n is the number of nodes in the complete graph and node one links out of the
complete graph.

3 Changes in PageRank When Connecting the Simple Line
with the Complete Graph

Looking at some simple structures and how PageRank changes as we change them,
the goal is to learn something in how and why the rank changes as it does. This in
an attempt to answer questions such as: How do I connect my two sites or within my
one site in such a way that I won’t get any undesired results? In all these examples
we will assume uniform u (which means we can multiply the inverse (I — cAT)™!
with the one vector in order to get R®).
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Here we will look at what happens when we connect a complete graph with a
simple line in various ways. This way we can get some information on what type of
structure is most effective in getting a high PageRank and see how they interact with
each other.

3.1 Connecting the Simple Line with a Link from a Node
in the Complete Graph to a Node in the Line

Looking at the system where we let one node in a complete graph link to one node in
a simple line we get a system similar to the case where we added a single node to the
line (complete graph with one node). An example of what the system could look like
can be seen in Fig. 1. We have the two systems Sz, S¢ as the original systems for the
simple line and complete graph respectively. We want to find the new PageRank of
these nodes after creating our new system S by adding a link from the first node in the
complete graph e, | tonode e; ; in the simple line. Whenusingn; = 5,ng =5,j =3
we get the system with (I — cAT) seen in Fig. 1.

Assuming uniform u the PageRank in the simple line after adding the link from
the complete graph R(Lz) [S¢ — Sp] can still be written in about the same way:

Theorem 4 Observing the nodes in a system S made up of two systems, a simple
line Sp, with n; nodes and a complete graph S with ng nodes where we add one link
from node e in the complete graph to node e; in the simple line. Assuming uniform u

we get the PageRank R(LZf [Sc — SL] for the nodes in the line after the new link and
Rg)l [Sc — Sr] for the nodes in the complete graph after the new link as:

Fig. 1 Simple line with one
link from a complete graph

to one node in the line
TN
VS
OO
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np—i 1— C”L_H‘]
@ k
RL,i[SG»SL]=§c by = ———— +by, (7)
b — — it c+(ng—1) I
Y (ng — D% + ng(ng —2)c —ngng —1)" 7 =
bij = 0, j < 1.

For the nodes in the complete graph we get:

ng(ng — 1) + ngc

?2) I
RG,I[SG - SL] - (nG _ 1)C2 + nG(nG — 2)C — nG(nG - 1) ' (8)
RZ[S; — 5,1 = (¢ +ng) (g — 1) ©)

ng(ng — 1) — (ng — 1)c? — ng(ng — 2)c’

where Rg )] [S¢ — Sp]is PageRank for the node in the complete graph linking to the
line and Rg}[SG — 81 ] is the PageRank of the other nodes in the complete graph.

Proof For the nodes in the complete graph we get the PageRank immediately from
Theorem 3.

For the nodes in the line we get a similar result as when adding a link from a
single node to the line in Theorem 2. We get the same PageRank for the nodes we
can not reach from the complete graph (b; = 0, j < i). For the nodes we can reach
we need to modify b;;. The sum of all probability to reach the node in the complete
graph linking to the line is found in (5) in Theorem 3.

ng(ng — 1) + ngc
(ng — )c? + ng(ng — 2)c — ng(ng — 1)

RS (S — Sp] = —
The probability to reach the linked to node in the line ¢; is then
¢ @
(E) RV S — SLl.

and for any further node in the line we need to multiply with ¢ for every extra step.
This gives:

. —1
bij — _ijli nG(nG ) + nge (10)
ng (ng — 1)c? + ng(ng — 2)c — ng(ng — 1)
— c+(ng—1) izi
(ng — De? +ng(ng — 2)c —ng(ng — )" ~ =7
and the proof is complete. (]

Another way to prove the theorem is by setting up the linear system and using
the lemma for blockwise inversion (Lemma 1). If we want to know the common
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normalized PageRank we find the normalizing constant as the sum of the PageRank
of all the nodes:

ny c(l—c")

l—c  (1-c)7?
c(l=c""")(c+ng—1)

=0 (1o — D+ g (16 — 2 ¢ — g (1 — D)

+ng (nG — 1) + nge(ng — 1) ¢ +ng (ng — 2) ¢ = ng (ng — 1)

+n6 ((nG — 1) € + 2ng (ng — 1) = 1) ¢ + (ng (ng — 1))?)

N = (11)

(c ((nG — l)c2 + ng (ng —2) ¢ — ng (ng — 1))
-1
+ng ((ng — 1) ¢ + ng (ng — 2) ¢ — ng (ng — 1)) — 1) :

which can be used to get the normalized PageRank:

RV[Sg — S.1=RP[Sg — S.I/N. (12)

3.2 Connecting the Simple Line with a Complete Graph
by Adding a Link from a Node in the Line
to a Node in the Complete Graph

When we instead let one node e; in the simple line link to one node in the complete
graph we get a system that could look like the system in Fig. 2.
For the PageRank we formulate the following:

Theorem 5 Observing the nodes in a system S made up of two systems, a simple
line Sy, with ny, nodes and a complete graph S with ng nodes where we add one

Fig. 2 Simple line with one
node in the line linking to a

node in a complete graph
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link from node e; in the line to node e, in the complete graph. Assuming uniform u
we get the PageRank sz [SL — S¢] for the nodes in the line after the new link and
Rg); [S;, — Sc] for the nodes in the complete graph after the new link as:

1— CnL-H—i

R[S, — Sgl = P>, (13)

1—c¢

c(l - C"””)) ( ((ng = 1) —clng —2)) ) n 1

RY [S, — Sgl = (

2(1 —¢) ((ng — 1) —c(ng —2)) — c2 1-¢’
(14)
2 1))
@ e = ) ( 1 ) 1
Re.ilSt = Sel = ( 2(1 —¢) (o—1D—co—2)—-2) T1=¢
(15)
1—d™ T\ 1 —cmmtt

Proof We divide the matrix (I — cAT) in blocks:

BC
(I_CAT): |:D E]ﬂ

where B is the part corresponding to the line, C is a zero matrix (since we have no

links from nodes in the complete graph to the line). D is a zero matrix except for one

element D, ; = —c/2, where ¢; is j:th the node in the line linking to the complete

graph and e, is the g:th node in the graph linked to by node e;. We note that j, g

are the internal number for the complete graph and line respectively and not their

“number” in the combined graph. E is the part corresponding to the complete graph.
In the same way we divide the inverse in blocks:

Tl Binv Cinv
(I-cA')" = |:Dinv Einv

Using Lemma 1 for blockwise inversion we get:

B™ =B-DE'C)"' =B, (17)
C"™=-B-DE'C)"'CE™' =0,
D™ =-E"'DB-DE'C)"' =E"'DB',
E"=E"'+E'DB-DE'C)"'CE"'=E™".

Since one of the nodes in the line links out we get B divided in blocks:

_ |Bs Be
S
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M —c 0 ... 0
. 0 ... 0
01 —c - o
Bs=|oo0 1 .0/ Be=| =~ |
. 0 -t
N —¢/2 0 ...0
0...0 0 1

where Bp is a zero matrix and Bg looks the same as Bp although possibly with a
different size. The size of the blocksare:Bg : G — 1) x j —1),Bc: G — 1) x (n, —
J+D,Bp:(np—j+ 1) x(G—1)andBg: (np —j+1) x (n, —j+ 1), where ng,
is the total number of nodes in the line.

For the blocks of the inverse we get:

B =B, (18)

B = —B,'BcB; ',

By =0,

BiEnv — E—l
Bg’v and Bg‘v are found as the inverse for the simple line, leaving BZ’V to be computed.
The only difference compared to a simple line is that the only non-zero element in
B¢ is —c/2 rather than —c. In other words B! is exactly as it would have been for

a simple line, except block corresponding to B which is multiplied with 0.5.
We can now find the PageRank of the nodes in the line:

RIS, — S¢l = ZB,k _ZB +ZB (19)
_ Ck 1— Cj i iji 1— CanjJrl
_Z 7= —+(5) =

j—i—1

-z

For the nodes in the complete graph we first need to find D™, to do so we start by
calculating DB~ Since only one element D,; of D is non-zero, only row g of DB~!
can be non-zero. We get row g as:

¢ 2

(DBil)rowg = __[O ... 1lcc

> .cL—j],

where there are j — 1 zeros before the 1, (B~! upper triangular). Multiplying this
with E~! gives:
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[0...0s c¢s ... s
c 0...0scs...c”L_fl's
—E”DB”:E 0...0dcd...c"7d |,
0...0sc¢s...c"n s
_0...0scs...c”L_js_
¢ (ng — 1) —c(ng —2)
S = y = .
(ng—1) —clng —2) — c? (ng—1) —clng —2) — c?

E—! was calculated in one of our previous works [7, Lemma 2, p. 14-17] where we
considered the problem of a complete graph without any additional connections, E~!
can be seen at the end of this proof.

We can now find the PageRank of the nodes in the complete graph by summation
of corresponding row:

nL ny nL

, ‘ . 1
REISL — Sel= D DI + > ER = > "Di' + — (20)
k=1 k=1 k=1

We separate between the node in the complete graph linked to from the line and
the other nodes in the complete graph.

nL—j

1
R[S, > Sel=<> bs+ —— (@1
G.ilSL = 8¢l 2;6§+1—c 21

e =T c 1 .
_( 21— o) )((na—1>—c(na—2)—c2)+1—c’”ég’

np—j
1
REIS. = Sgl== > cd 22
G,g[L Gl 2k:OC +1—C ( )

_ (e =) (ng = 1) —clng —2)) n 1
S\ 2(1-0 ((ng—1) —clng—2)—c*)  1—c
And the proof is complete. For completeness we include the complete inverse as

well:
lec...cn72

01 ¢ ...c"72)2
(I - CAT)71 = |:[B)I"’W (E:invi| ’ 871 0 O 1 B : )
D c/2
00...0 1
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.

Fig. 3 Simple line with one node in the line being a part of a complete graph

0...0
Cc!l= et D! = —E’lDB’I(seen above),
0...0
1 — (ng — Dak k k k
k 1—(ng — 1)ak k k
E-! = k k 1—(ng— Dak " ,
: : . k
k k k 1— (ng— 1ak

—da

Q1-—a2+m—-2)(a—a?)’

a=—c/(n—1), k=

O

This could also have been showed using a similar method as the one used to
prove Theorem 4. The normalizing constant can then be found by summation of the
individual PageRank of all the nodes in order to get the normalized PageRank R,

We note that while the node in the line that links to the complete graph does not
lose anything from the new link, the nodes below it in the line do lose quite a lot
because of it. Likewise the PageRank of the node thats linked to gains more from
the new link than the others in the complete graph.

3.3 Connecting the Simple Line with a Complete Graph
by Letting One Node in the Line Be Part
of the Complete Graph

If we instead let one node in the line be part of the complete graph we get another
interesting example to look at. An example of what the system could look like can
be seen in Fig. 3.

We formulate the following theorem for the PageRank of the given example:
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Theorem 6 The PageRank of the nodes in system Sy, made up of a simple line and
system Sg made up of a complete graph after one of the nodes e; € Sy, becomes part
of the complete graph assuming uniform u can be written:

2 1— Cl’l[ﬁ‘rl*l' ) )
RL,,-[SL < Sg] = 1—_6, t>], (23)
1 — et cng — 1)
RIS, < Sgl = 24
LSz < Sl 1—c (ng—1) —clng —2) @4

( ng((ng — 1) —clng —2)) )
ng((ng — 1) — c(ng = 2)) = Ang — 1))’

ijin; 1 — i

RIS, < Sl =
' ng 1—c

,i <], (25)

_ (ctng) (ng = 1) (1 =) + (ng — De*(1 — ")
(= 00gng — 1) — (ng — De? — nglng — 2)¢)

(26)

RG S, <> Sql

where Rg’)l-[SL < S¢] is the PageRank for the nodes in the complete graph (except

the node also being a part of the line) and R(Lzz [Sy <> Sg] is the PageRank of nodes
in the line. ng, ny is the number of nodes in the complete graph and simple line
respectively after making one node in the line part of the complete graph.

Proof For the proof of the nodes e; € Sy, i > j we get the PageRank for a simple
line. In order to find R(sz) [S;, <> Si] we first use Theorem 1 to write it as:

RIS, < Sel=| > Ple—e)+1 (Z(P(e.ﬁe»)")’ @7

e;€S,eiF#e; k=0

where P(e; — e;) is the probability of getting from node e; to node e;.

i c & fetg -2\
> Pe—se)+l= > Fr@m-1 12( G 1 ) (28)
cieS.eite; k=0 ng — 1=\ (ng = 1)

1 — el N cng —1)
1—c¢ (ng—1) —clng —2)°
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Ple; — ¢) = clng—1) ¢ n cng—1)clng—2) ¢ (29)
ng ng—1 ng ng—1 ng—1
cing — 1) *ng —2)* ¢
ng (ng—12 ng—1 7
_ A& clng —2) k _ g —1)
_”Gko( n—1 )  ngllng — 1) — clng —2))’

ng((ng —1) —clng —2))

D (Pl — ) =

5 . (30)
a nG((ng — 1) — clng — 2)) — 2(ng — 1)
Multiplication of the results from Egs. (29) and (30) gives
1 —cutl= cng —1)
RS, < Sg] = 31
L4152 < Scl [ (e —1) — c(ng — 2) D

( ng((ng — 1) — c(ng —2)) )
ng((ng — 1) —c(ng —2)) = ng— 1))

For the nodes below the one in the complete graph we can write the PageRank as:

j—i—1
RS, < Sl =R7ISL < SclP(ej — e) + D . i<j.  (32)
k=0

T
Ple; — e;) = —. (33)
ng
This gives:
RIS, < S6] 1 — o

ng 1—c¢

R[S, < Sgl = i< (34)

Left to prove we have the formula for the nodes in the complete graph not directly
connected to the line R(Gz)l [SL < Sg]. We do not need to consider the part of the line
following the complete graph, since we can not get from this part of the graph back
to the complete graph. We already have the PageRank for the nodes not linking out
in the complete graph in the case where we have no line of nodes linking to the
complete graph from Theorem 3.

Since all paths P(e; — ¢;) where ¢; € Sy need to go through node e; we can write
these as a product of the probability to get to node e; times the probability to from
there get to node e; for which we want to calculate PageRank.
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RG[S, < Sg] = (Z (P(e; > e,->>k) (35)

k=0

E P(ek—>ej)+1 P(e]—>e,)+1~|— E P(ek—>e,-)
epESy, eESG
exe) erFe) e

Looking at the part depending on e; we get

| | 00 . A c(nG— 1)
P(e; — ) (z (P(e; — €)) ) " nglng — 1) — ng(ng — 2)c — (ng — 1)’

k=0
(36)
This can be either in the matrix proof of Theorem 3 in [7] or by calculating
corresponding hitting probabilities. Using this we can decompose the PageRank into
two parts

R(Gz,),-[SL < Sel=+|1+ Z P(ey — €;) (Z (P(e; — ei))k) 37

ek €SG k=0
ek#ej',e,-
00
Z P(ey — ¢j)) + 1| P(ej — e;) (Z (P(e; — e,-))k).
epeSy k=0

(23 #Ej

Decomposing the PageRank for a complete graph with links out and the PageRank
for a simple line for the part corresponding to the line we get

(ng — D (ng +¢)

RS < Sl = o = Do — (= @ 8
N (c(] — c”L_-f)) c(ng —1)
1-c¢ ng(ng — 1) — ng(ng — 2)c — (ng — 1)c?
e+ ng) (ng — 1) (1 — ) + (ng — D1 — )
(=0l — 1) — (ng — 1)e? — ng(ng — 2)c)
O

Theorem 7 The normalizing constant N for the simple line with one node being
part of a complete graph using uniform u can be written as:
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np—1
N = (n6 — DRGy[S1 < Sal + REJISL < Sel + 1 — (39)
c(l—cn)y c(l=dh) c(l=d7") Rfj‘[SL < 5S¢l

= (1-0? n (1—c)
where:
. Rg)i[SL < Sg] is the PageRank of nodes in the complete graph,
° R(Lz; [S, <> Si] is for the node in both the line and complete graph, and
° R(Lzz [S, <> Si] is for the nodes in the line.
Proof The normalizing constant is equal to the sum of the non-normalized PageRank
of all nodes.

We got ng nodes in the complete graph, (n — 1) not directly connected to the line
and one connected to the line. This gives:

N = (n—DRGIS, < Sgl+RES, < Se1+ D> RPS, < Sgl. (40)
i#]

where Rf]) [S, <> Si] is the PageRank of individual nodes in the line except for the

node node j in the line for which we have Rfj [Sz <> Sg]. For those nodes we got
PageRank:

1— CnL-H—i
, 1>,
RIS, <> o] = , e 1)
L,j ]—IRE) | — o
J , <]
ng 1—c¢
The sum of all nodes for which i > j can be written:
ny, n — i c(1 =cn
> RPISL < Sol = 7 - : o ) “2)
i=jt1 (1—0)
where we use that the second part Zﬁj ’Cln L_ZH is a geometric sum. Calculating the

sum for i < j in the same way we get:

j—1 . i—1 i—1 )
-1 c(1=d™) c(-d )R
RS, o So1=7 "~ _ Lo 43
Z L,_I[ L g G] 1 —c (1 _ C)2 + nG (1 _ C) ( )

i=1
Summation of all individual parts completes the proof.
Now that we have an explicit formula for this example we can look at what happens

when we change various parameters like ¢ or the size of either the line or complete
graph.
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4 A Closer Look at the Formulas for PageRank
in Our Examples

Now that we have formulas for the PageRank of a couple different graph structures
we are going to take a short look at what happens when we change some parameters.
We will also take a look at the partial derivative with respect to c.

4.1 Partial Derivatives with Respect to C

In the case of the simple line with formula as seen earlier we get the derivative with
respect to ¢ as:

T (g — i 4 1) c—itl

RO = (1 -2 -

. 44
dc c(l—o¢) (1—=¢)? “44)
Rewriting it and looking to see if it is positive we get:
1 np—i(; 1— )
Um0 L g i) -0 F ——) =0, @5)
(—140¢) et
& >y -l —c) & o > (np — i)l & ick > (ng — i)c"E7E (46)
CnL—i - L 1l—c — L et L .

k=0

Since we have 0 < ¢ < 1, n; > i we have that & > ¢**! the first n;, — i elements
of the left sum is at least as large as ¢" 7', this gives:

l’lL—i

o0
PIAED WA R (7
k=0 k=1

For our case with a line connected to a complete graph by letting one node in the

complete graph be part of the line we get the following derivative with respect to c:

9

ac

(140 nc*+ (—1+)?ng— ) (~1+ ) ng —2c+ 1) LG (0)) ng
(1 +0)ng? + (=1 + 0P ng — 2’

—((g =D (¢ (=24 ) n6 +2=20) G (0) = (nG = 1) (ng + ¢*))) ng
(“1+ ) ng+ (=1 +0c)’ng — c2)2

R[S, < Sg]  (48)

s
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1— np—j+1
Gle) = ———,
1—c¢
a n;—j+1 _ s 1 L—j+1
—G(c):(l—c)_z—c -yt _ ¢ 5
dac c(l—o) (1-o0)

The derivatives have about the same shape as the original function. As c gets large
so does the derivative and as ng increases the slope gets steeper for large c.

Looking at the other nodes in the complete graph we get the derivative with respect
to c as:

d

dc
(16— 1) (1 =€) = (c =16 (nG = D + 2 (ng; = D e (1 = )

N (1-0) (nG (nG — 1) — (nG — 1) % — ng (nG — 2)c)

B (ng = 1) M (n, — j)

(1=0) (ng(ng — 1) — (ng — 1) ? = ng (nGg — 2) ¢)
(c+n6) (nG = 1) (1 = &) + (nG = D e (1 = ")
i (ng (ng — 1) = (ng — 1) 2 = ng (ng — 2) )
((c tn6) (g — DA —¢) + (nG — 1) 2 (1 - c"L—f)) Qe+ (2= 2¢ — ng)ng)

(1 =0 (ng (ng — 1) — (ng — 1) = ng (ng — 2) ¢)*

RGOS, < 5] (49)

4.1.1 Changes in the Size of the Complete Graph for Our Last Example

When we change the size of the complete graph we can see for example what size
would be the most effective for increasing ones PageRank. In all these examples we
will use n;, = 10, j = 6, ¢ = 0.85 and ng will wary between 1 and 50. First we note
that the part above the complete graph is unaffected by the change of n¢. It is obvious
however that as ng increases the normalizing constant in the normalized PageRank
will likely get larger resulting in a lower PageRank as long as it is part of a small
system.

For the nodes in the complete graph we get the result in Fig. 4.

Here we see something curious, the nodes seems to be gaining rank in the begin-
ning while starting to fall after a while and possibly converging towards a single
value depending on if it links out of the complete graph or not. The reason we get
a local maximum is the fact that for a moderately large ng we maximize the prob-
ability of Rfj) getting back to itself while keeping the complete graph lare enough
to keep most probability for itself. Here we can see that it is not always a good idea
for an individual node to join a complete graph. If the node in question already have
larger PageRank than the other nodes in the complete graph it actually might lose
PageRank from joining it.
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Fig. 4 R®@ of the nodes in the complete graph not part of the line (leff) and part of the line (right)
as a function of ng

The result for the node below the complete graph we get the result in Fig. 5.

Here we see the great loser as ng increases. Since the chance of escaping the
complete graph depends on R(S?j[SL < Sgl/nc as ng increases so does this nodes
PageRank as well. From this we see a clear example of the effects of complete graphs
on its surrounding nodes. A complete graph can be seen as a type of sink, all links to
the complete graph will be used to maximum effect within the complete graph. And
even worse, even if the complete graph have some nodes that point out of it their
influence will be very small since the nodes in the complete graph having a large
number of links the chance of escaping is low.

Fig. 5 R® of the nodes in
the line below the complete
graph as a function of ng

2.54
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5 A Look at the Normalized PageRank for the Line
Connected with a Complete Graph

Looking at the normalized PageRank in our last example with a simple line with one
node being part of a complete graph we want to see how the PageRank changes as ¢
or the relation between the size of the line or complete graph changes.

5.1 Dependence on C

Plotting the PageRank with ng = 10, n;, = 10, j = 6 and ¢ € [0.01, 0.99] we get the
following results. For the nodes in the line above and part of the complete graph
RélL)’i[SL < Sgl, i = 7 we get the result in Fig. 6.

Looking at the results for the nodes above the complete graph we see that the func-
tion seems to have a max at about ¢ = 0.55 after which it decreases faster the closer
to ¢ = 1 it gets. Looking at the node part of the complete graph we see the great
“winner” as c increases. Do note the difference in the axis for the different images,
since this at its lowest point is actually about the same as the highest for the node
above the complete graph.

We find the ¢ which maximize the function for some other different parameters
ng, nr, j, i in Table 1. All the local max/min is calculated using the optimization tool
in Maple 15. For the nodes above the complete graph the location of the maximum
seems to be moving towards the left as ng increases and towards the right as ny,
increases. In the same manner it moves towards the left as i get closer to n;. The
value of the maximum is only included out of completeness, it is natural that they
decrease as either ng or ny, increases as we in those cases get a larger number of total
nodes in the system. It is interesting to note that the max seems to be going towards
the right as both ng, n; increases as well.

.00

0074
0.02

0.064

01 02 03 04 05 06 07 08 09 21 02 03 04 03 06 07 08 09
C [

Fig. 6 R of the node above the complete graph (lef) and of the node in the line being a part of
the complete graph (right) as a function of ¢
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Table 1 Maximum PageRank R() of node i “above” the complete graph and node j depending on
¢ for various changes in the graph where one node in a simple line is part of a complete graph

nG ng J i arg, max ngl) max REI) arg, max R;l) max R;l)
5 10 6 7 0.349 0.073 1 0.164

10 10 6 7 0.300 0.053 0.894 0.099

20 10 6 7 0.248 0.035 0.776 0.059

10 20 6 7 0.751 0.370 1 0.096

20 20 6 7 0.721 0.027 0.929 0.056

50 50 6 7 0.874 0.010 0.965 0.023

10 10 9 10 0.000 0.053 1 0.091

10 10 3 4 0.515 0.054 0.893 0.107

10 10 6 9 0.300 0.053 - -

For the node in the line that is part of the complete graph the PageRank of this
node is the largest when c is large, sometimes with a local maximum and sometimes
not. It seems to be that as the number of nodes in the complete graph increases we
are more likely to find a local maximum than not.

For the node just below the complete graph as well as the nodes in the complete
graph not part of the line we get the results in Fig. 7.

PageRank of the node below the complete graph decreases as ¢ increases, but
compared to the nodes above the complete graph not as fast for large c. This since
the PageRank of the nodes in the complete graph increase so fast for large ¢ that even
the comparatively small influence it have on the nodes out of it is enough to at least
stop the extremely rapid loss of rank as for the nodes above the complete graph.

As with the node in both the line and complete graph, PageRank of the other
nodes in the complete graph increases very fast for large c. We once again see a hint
to why a to large c could be problematic, it is for large ¢ we get the largest relative

0.054 0.09+

0.044 0.08

T T T T T T T T T T T T T T
01 02 03 04 05 06 07 08 09 0.1 02 03 04 05 06 07 08 09
C c

Fig.7 RO of the node below the complete graph (left) and of a node in the complete graph as a
function of ¢
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changes in PageRank between nodes. We have no min/max here, instead PageRank
increases faster and faster the larger ¢ gets.

We note that these local maximum and minimum are not always present. In these
cases we have a PageRank thats decreasing as c increases for the whole interval. If
the one exist we can expect the other to as well (since we expect the rank to decrease
at the end of the interval). It is hard to say anything conclusive about the location
or existence of local maximum or minimum points, but we do note that they exist.
There is also a large difference in how PageRank changes for different (especially
large) ¢, we can therefor expect c to have an effect not only in the final rank and the
computational aspect, but also the final ranking order of pages.

5.2 A Look at the Partial Derivatives with Respect to C

Since we have the formulas for the normalized PageRank it is also possible to find
the partial derivatives. Since the partial derivatives result in very large expressions
(multiple pages each) they are not included here. By setting ng = n;, = 10,j = 6 we
get the result after taking the partial derivative with respect to ¢ for 0.05 < ¢ < 0.95
for the node ¢, 7 above the complete graph as well as the node in the line part of the
complete graph in Fig. 8.

We see the derivative falling faster as ¢ increases. Here as well we see the more
dramatic changes in large ¢ above about 0.8. Apart from seeing the maximum at
around ¢ = 0.3 in the original function we can also see that the derivative seems to
briefly increase in the beginning, reaching a maximum at about ¢ = 0.1. For the node
part of both the line and the complete graph we get the result in Fig. 8.

We can see a high derivative all the way until we get to very large ¢ where it
finally starts going down. We can clearly see the maximum at about ¢ & 0.9 in the
original function. For the node on the line below the complete graph we get the result
in Fig.9.

T~ T T T T T 0.06
0.1 02 03 0305 0.6 0.7 0.8 0.9

~0.054 0.044

0.02
0.104

T
0.1 02 03 04 05 0.6 0.7 0.8 04
c

-0.25-

Fig. 8 Partial derivative with respect to ¢ of normalized PageRank of the node in the line above
the complete graph (left) and of the node in the line part of the complete graph (right)
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\\\\\\\\\
0.1 02 03 04 05 0.6 0.7 0.8 09

c
-0.014 0.144

-0.044

0.1 02 03 04 05 0.6 0.7 08 0.9

~0.064 c

Fig. 9 Partial derivative with respect to ¢ of normalized PageRank of the node in the line below
the complete graph (left) and of a node in the complete graph not part of the line (right)

Although the derivative is decreasing for all ¢, the derivative have a local maximum
at about ¢ =~ 0.6. Worth to note is that the axis can be a little misleading, the partial
derivative is in fact not that close to O at the local maximum. As before the largest
changes are at high c. Worth to note that the derivative is decreasing for all c. For the
nodes in the complete graph not part of the line we get the result found in Fig. 9.

As before the largest changes are found at large c. Compared to the node part of
both the complete graph and the line the derivative for the ones only in the complete
graph continue to increase as c increases, however the PageRank itself is not actually
ever higher for the ones not part of the line. We have seen that although it is possible
to find symbolic expressions for the PageRank and derivative for some simple graphs,
as the complexity of the graph increases it becomes very hard to do. Already for these
simple examples the partial derivatives a rather large and complicated expressions.
Finding more general symbolic expressions for when the derivative is zero should
be possible although problematic given the constraints and size of the problem.

5.3 A Comparison of Normalized and Non-normalized
PageRank

Here we will take a short look at the difference between normalized (R") and non
normalized (R®) PageRank in order to get a bigger understanding of the differences
between them. We already know that R? oc RV so there will always be the same
relation between the PageRank of two nodes. Here we will take a look at how the
absolute difference between nodes and the two types of PageRank differ instead.
Since the PageRank is normalized to one in R\ we obviously get that the PageR-
ank will decrease as the number of nodes increases, potentially making for problems
with number-representation for extremely large graphs unless it is taken into account
when making the implementation. This problem is not as large a problem for R®
since most nodes will have approximately the same size regardless of the size of the
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Fig. 10 A complete graph
(left) and a system made of @ @ @ @

four dangling nodes (right)

o ®

graph. However the possible huge relative difference between nodes is still needed
to take into consideration. We note however that with the current way to calculate
R®@ by solving the equation system such large systems that could potentially be a
problem in R is simply to large for us to solve in a timely manner.

We also have one other main difference between the normalized and non-
normalized PageRank and that is with dangling nodes and how they effect the global
PageRank. In R® a dangling nodes means some of the “probability” escape the graph
resulting in a lower total PageRank (but still proportional to R"). In R however
dangling nodes can be seen as linking to all nodes and in fact behaves exactly as
if they did. We illustrate the difference in a rather extreme example with a graph
composed of only four dangling nodes as well as a complete graph composed of four
nodes.

An image of the systems can be seen in Fig. 10 below. When computing R of
both systems assuming uniform weight vector u they are both obviously equal with
PageRank R = [1/4, 1/4, 1/4, 1/4], it does not even matter what ¢ we chose as
long as it is between zero and one for convergence. However for the non normal-
ized PageRank we get a large difference between the PageRank of the two systems
where we for the complete graph get the PageRank R? = [1/1 — ¢, 1/1 — ¢, 1/1 —
¢, 1/1 — c] as seen in [7]. However for the graph made up of only dangling nodes we
get the PageRank R;z) =[1, 1, 1, 1] regardless of c¢. We see that while they might
be proportional to each other, the non normalized version behaves differently for
dangling nodes making a distinction between dangling nodes and nodes that link to
all nodes (including itself which we normally do not allow). While this distinction
might seem unnecessary since nodes that link to all nodes do not normally exist or
similar nodes such as a node that links to all or most other nodes should either be
extremely uncommon or plain do not exist as well, this might not be the case if work-
ing with smaller link structures where such a distinction might be useful. It is also
this distinction that makes it possible to make comparisons of PageRank between
different systems in R® while not generally possible in R).

6 Conclusions

We have seen that we can solve the resulting equation system instead of using the
definition directly or using an iterative method such as the Power method. While this
method is significantly slower it has made it possible to get a bigger understanding
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of the different roles of the link matrix A and how the parameter ¢ influence the
ranking. We have seen how PageRank changes when connecting two systems: a line
of nodes and a complete graph in various ways. For these systems we also found
explicit expressions for the PageRank and showed two different ways to find these.
Either by solving the equation system itself or by calculating:

> Plei—>e)+ 1| D Pleg > et ).

e;€S, ejFe, k=0

where P(e; — eg) is the sum of probability of all paths from node e; to node e, and
the weight vector u is uniform.

Given the expressions for PageRank we looked at the results when changing
some parameters. While it is hard to say anything specific, two things seem to be
true overall: The most dramatic changes happens as ¢ get large, usually somewhere
where ¢ > 0.8 some nodes get dramatically larger PageRank compared to the other.
We also see that complete graphs, while not gaining a larger rank if the graph is
larger, it becomes a lot more reliable (as in not as effected in changes of individual
nodes) in keeping its large PageRank as the structure get larger.

We saw that if using uniform V it is possible to split a large system S into multiple
disjoint systems Sy, S, ..., Sy it is possible to calculate R® for every subsystem
itself and they will not differ from R apart from a normalizing constant that is
the same across all subsystems. This is a property we would like to if possible have
when using the power method as well. This since it could potentially greatly reduce
the work needed primary when doing updates in the system.
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Graph Centrality Based Prediction
of Cancer Genes

Holger Weishaupt, Patrik Johansson, Christopher Engstrom, Sven Nelander,
Sergei Silvestrov and Fredrik J. Swartling

Abstract Current cancer therapies including surgery, radiotherapy and
chemotherapy are often plagued by high failure rates. Designing more targeted
and personalized treatment strategies requires a detailed understanding of druggable
tumor driver genes. As a consequence, the detection of cancer driver genes has
evolved to a critical scientific field integrating both high-throughput experimental
screens as well as computational and statistical strategies. Among such approaches,
network based prediction tools have recently been accentuated and received major
focus due to their potential to model various aspects of the role of cancer genes in
a biological system. In this chapter, we focus on how graph centralities obtained
from biological networks have been used to predict cancer genes. Specifically, we
start by discussing the current problems in cancer therapy and the reasoning behind
using network based cancer gene prediction, followed by an outline of biological
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networks, their generation and properties. Finally, we review major concepts, recent
results as well as future challenges regarding the use of graph centralities in cancer
gene prediction.

Keywords Biological networks - Graph centrality - Disease genes *+ Gene prioriti-
zation

1 Introduction

Efforts towards understanding and treating cancer have received major research focus
for many decades. However, despite tremendous progress made during this time,
mortality rates among cancer patients still remain high [149], implicating cancer as
one of the leading causes for human deaths [7].

The recent technological advancements that facilitate high-throughput simulta-
neous measurements of thousands of biological entities have now given researchers
access to an even more detailed insight into the mechanisms underlying cancer.
While such data have enabled the identification of numerous genes and pathways
mis-regulated in and potentially causing cancer, related analyses at this resolution
have also demonstrated that cancer is much more diverse and complex than what
was initially expected.

Specifically, transcriptional and epigenetic studies have revealed that individual
tumor types can manifest in a multitude of different molecular appearances, also
referred to as subtypes or subgroups [61, 153, 159, 165, 174]. While it was often
assumed that each patient could be assigned to one unique such subgroup, recent
studies in the malignant brain tumor Glioblastoma have further demonstrated that
different subgroups of tumors might coexist in different regions [154] or even inter-
variably change from cell to cell [120] in the same patient. Additionally, the bulk
tumor might constitute numerous different cancer cell clones [110, 154], each of
which in turn could entail a hierarchy of cancer related progeny cells [109], as well
as other cell types from the tumor micro-environment [10]. In summary, cancer has
presented itself as a rather heterogeneous disease not only at an inter- but also at an
intratumoral level (compare also reviews [109, 197]).

While the presence of different tumor subtypes with varying clinical prognoses
suggests a need for more personalized therapies on one hand [32, 36], the afore-
mentioned intratumor heterogeneity on the other hand presents one of the greatest
obstacles towards the development of any successful treatment option. Specifically,
considering the high degree of cellular diversity in the tumor mass, it is not only
difficult to determine the individual tumor driving cells, but also to predict tumor
plasticity due to sub-clonal interactions and dynamics upon targeted treatment [92,
105, 108]. A recent study in the malignant childhood brain tumor Medulloblastoma
has for instance demonstrated that between diagnosis and relapse there is often a very
low agreement between genomic events and thus likely also dominant clones [115].
Coupled to a persisting lack of understanding of what drives the abnormal growth
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of many such cancer cells, it remains still a challenge to design drug treatments that
can effectively eliminate specific let alone all cancer cells in a patient. Ultimately,
it is assumed that cancer treatments currently often face the problem that only part
of the tumor bulk will be removed, while the remaining cells either inherently or
through selective pressure acquiring resistance will survive treatment and ultimately
constitute the tumor relapse [105, 108].

Towards overcoming these failures in current therapy, improved strategies will be
required, which likely comprise combination drug treatments alone or in connection
with other treatment options [39, 92, 115, 200]. Implementing such strategies in turn
requires a better knowledge about the drug targetable cancer genes that enable cells
to drive the tumor development, metastatic dissemination and to facilitate treatment
resistances.

Given the ease of access to high-throughput ‘omic’s data, cancer related genes
can nowadays be predicted in a variety of different ways, the preferred alternative of
which is often the direct determination of genomic abnormalities in cancer patients
using sequencing or microarray based platforms. In particular, a related systematic
approach that has rapidly grown in importance during the last decade is the genome
wide association study (GWAS), in which the frequency of genetic variants, often in
the form of single-nucleotide polymorphisms (SNPs), are investigated in patient and
control cohorts to identify associations between phenotypes and candidate genes [66].
As aresult of such efforts, more than 10,000 of such associations have been registered
so far [124].

However, the direct detection of candidate genes as exemplified by targeted re-
sequencing or GWAS is often dependent on large cohort size for the detection of
genetic variants as well as the validation of significant associations [66]. For rarer
diseases or traits such a strategy might hence not be possible without extensive pool-
ing of international biobanks. In those cases however, one might fall back on patient
derived cell lines or animal models when available, in which one can then exploit sev-
eral screens for candidate gene identification. Specifically, forward genetic screens
attempt to discover the genetic event causing a given phenotype, e.g. a transforma-
tion causing tumor initiation, progression or treatment resistance, by introducing a
multitude of random sequence variations [114], using for instance transposon based
mutagenesis [168] or retroviral mutagenesis [169]. Reverse genetic screens on the
other hand are designed to determine the phenotype caused by a given gene alteration
through targeted modification of the gene’s function [64], for instance trough RNA
interference [150] or use of the CRISPR-Cas system [138].

Nevertheless, despite recent advances in the detection of disease specific genetic
variants, it has also become clear that oftentimes driver events might not be readily
distinguishable. Rather, many diseases have been shown to be polygenic [131, 184],
i.e. exhibiting a large number of variations with only modest effects on susceptibility
with the disease phenotype being shaped by interactions or complementary effects
of the respective loci. For cancer, the identification of dominant driver genes is fur-
ther complicated by genetic heterogeneity owing to genomic stability, which causes
increased rates of mutations and structural aberrations [26, 50]. Specifically, while
the determination of genomic landscapes in various tumors has produced a number
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of recurrently mutated gene loci, they have also demonstrated the genomic diversity
within cancer types with the presence of many infrequent events among patients and
multiple distinct events within patients [82, 176]. To identify the disease-driving
mechanism among the mass of low penetrance variants, it has been suggested to
study the over-representation of functional pathways [128, 181] among the affected
genes. However, as disease development and subsequent phenotypes are likely being
shaped also by other factors, such as signals from the cellular microenvironment or
life style and environmental influences, driving mechanisms might need to be studied
in an even greater context of entire biological systems and molecular networks [128,
141, 143, 175].

Importantly, biological networks not only present a highly adaptive means of
illustrating the various aspects of intrinsic relationships and interactions of biological
entities captured in diverse experimental data sets, but they also provide a power-
ful basis for mathematical and bioinformatic studies of the underlying topological
structures (compare reviews by [2, 100, 175, 199, 199, 204]). Specifically, during
the last decade a number of graph theory based methods where suggested for the
prediction of disease genes from various types of molecular networks, as reviewed
in [13, 185, 189].

In this chapter we will review some techniques and aspects of network based gene
selection with a focus on graph centrality related methods, how such methods have
been employed in cancer and disease gene screens and point out some challenges
and future perspectives pertaining to such an approach. For the remainder of this text,
depending on the context and source, we will include results and conceptions from
both cancer network analysis as well as other disease network analyses. However,
for the purpose of cancer gene identification, these two terms can here be considered
equivalent.

2 Biological Networks

During the last decades, networks have gradually evolved to one of the most important
tools in systems biology. The ubiquitous use of networks in biological science relies
on the fact that they can be designed to model a great variety of relationships under-
lying biological processes, including for instance direct physical interactions, causal
dependencies, functional relatedness, as well as the co-regulation or cooperation of
molecular entities. As a consequence, networks represent one of the most promis-
ing resources for studying and understanding the complex dynamics of biological
systems. Specifically, it has been suggested that, while more and more individual
genomic variation are being linked to specific diseases, the actual disease pheno-
types might be a result of large-scale perturbations of the entire biological system
[141, 175]. Hence, the characterization of the underlying biological networks will be
a crucial step in unraveling the intricate connections between genetic events, system
wide alterations and disease outcomes.
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2.1 Network Types

Specific relational data has been gathered from smaller scale studies throughout the
world for many decades now. In addition, the recent dawn of modern high-throughput
analysis techniques has further facilitated affordable and fast large-scale screens of
related biological data. Together, these resources have allowed the establishment of
networks in various biological fields and modeling a multitude of different biological
relationships. The major types of biological networks spawned by these advances
are listed below.

Gene co-expression networks attempt to model how genes are regulated together in
certain signaling pathways by displaying genes as nodes and linking them by an edge
if they show a correlation of expression values over a set of conditions or tissues [28,
158, 202].

Genetic interaction networks (GIN), which depict the dependency of genomic
variations in causing certain phenotypes by modeling genes as nodes and linking
them by an edge if a simultaneous alteration of both is required to obtain a given
biological outcome, such as lethality [166, 167].

Insertion site interaction networks for forward genetic screens, in which nodes
represent genomic loci and/or genes that are targeted by the integration of a trans-
poson or virus into the host genome and edges depict some type of relationship
between these sites. Specifically, insertion sites might be linked to each other and to
proximal genes, if the genomic distance between these loci is below some threshold
thus identifying regions of highly clustered integration sites, which are commonly
referred to as common integration sites (CIS) [49]. Alternatively, nodes could also
depict the gene targets of a CIS and edges might depict the co-occurrence or mutual
exclusivity of these CISs in a given sample of cells [88, 103, 170].

Metabolic networks, which can model biochemical processes as relationships
between enzymes, substrates and/or metabolic reactions in various ways based on
the specific choice of node and edge representations [74, 76, 179].

Pan-disease networks, in which nodes represent genes and edges connect genes that
have been implicated in the same disease [55].

Protein domain networks, with nodes representing protein domains and a link indi-
cating the presence of the two connected domains in the same protein
[190, 191].

Protein phosphorilation networks, attempt to model the protein phosphorylation
cascades in a cell by modeling proteins as nodes with directed edges indicating
a phosphorylation of the target protein (substrate) catalyzed by the source protein
(kinase) [125].
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Protein-protein interaction networks (PPIN), in which nodes are representing
proteins and indirect edges are indicating a direct physical binding of two proteins [52,
75, 95, 157, 196].

Protein-RNA binding networks, which depict the physical interaction of RNA-
binding proteins with their target RNAs [8, 93].

RNA-RNA interaction networks aim to capture transcriptional regulatory interac-
tions similar to the TRNs but instead focus on the posttranscriptional regulation of
micro RNAs (miRNAs) or non-coding RNAs (ncRNA) and their interaction with
each other or with other RNA components of the gene regulatory machinery [71,
93].

Transcriptional/gene regulatory networks (TRN/GRN), with nodes representing
genes and directed edges indicating a regulatory relationship, in which the protein
product of the first gene, usually a transcription factor (TF), binds to a DNA regulatory
region of the second gene to affect a transcriptional activation or repression [9, 60,
130, 139].

Functional Association/Linkage networks (FAN/FLN), in which nodes represent
genes or gene products and edges indicate a potential functional similarity, which
is determined based on association evidence usually gathered from an integrated
collection of other types of biological data [67, 97, 98].

2.2 Generation of Biological Networks

The interactions represented in biological networks should preferably be derived
from curated and validated experimental data in order to ensure biological soundness
of the modeled relationships. For instance, there exists a plethora of methods for
the targeted study of individual protein-protein interactions [111, 121]. However,
while such traditional methods have produced valuable collections of high-quality
interaction data during the last decades, their low-throughput nature often makes
them time consuming and expensive to perform for thousands of biological entities.

On the other hand, the onset of high-throughput technologies has opened up
another route to predict biological interactions through large-scale experimental
screens. For instance, transcription factor binding sites can be experimentally stud-
ied through chromatin immunoprecipitation (ChIP) analyses [42, 173], while tran-
scriptional regulatory interactions can be estimated by combining ChIP and gene
expression data alone [126, 183] or in combination with other genomic data [182].
For the detection of PPIs a multitude of different high-throughput methods have
been discussed [15]. In addition, with the increasing amount of high-throughput
data made available, there have also been substantial advances of methodology
for the computational prediction of biological interactions. Specifically, putative
TF binding sites (TFBSs) can for instance be computationally predicted using
nucleotide position weight matrices of known TF binding motifs [25], as those made
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Fig. 1 Structural organization of two biological networks. The figure shows the topology of a
BioGrid network including only links of the ‘Phenotype Enhancement’ or ‘Phenotype Suppression’
type (a) and a BioGrid network including only links of the ‘PCA’ type (b)

available for instance through the TRANSFAC [107] and JASPAR [137] databases,
or by related models [106, 148]. For the prediction of Protein-Protein Interactions
(PPIs) a plethora of different approaches have been developed, as reviewed in [146,
171]. Finally, the last decade has also seen the development of numerous algorithms
for the reverse engineering of TRNs from expression data [4, 44, 65, 68, 69, 104,
151].

Together, the contributions from low-throughput, high-throughput and compu-
tational efforts have produced a multitude of resources comprising relationships
between biological entities, which are presented as pathways, interaction or reac-
tion data in databases such as the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [81], the Reactome pathway knowledge base [43], the Biological General
Repository for Interaction Datasets (BioGRID) [156], the STRING database [73],
Pathway Commons (PC) [29], the Human Protein Reference Database (HPRD) [123],
the Database of Interaction Proteins (DIP) [136], or the IntAct Molecular Interac-
tion Database [85], the majority of which are also integrated in the multi-resource
ConsensusPathDB interaction database [80].

2.3 Properties of Biological Networks

Biological networks generated according to the different approaches and depicting
different types of interactions will typically look quite different (compare for instance
Fig. 1), and do not necessarily exhibit the same edges between any given pair of
genes/proteins.
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Nevertheless the majority of biological networks are still considered to exhibit
certain ubiquitous topological properties, which have been reviewed frequently [2,
12, 13, 100, 175, 199, 204].

Specifically, biological networks have been found to exhibit higher clustering
coefficients than random networks [179, 190, 196], which in turn implies a clustered
organization with regions with a higher interconnectivity than intra-connectivity
to the rest of the network, compare also Fig.1. A related modular organization
has been demonstrated for PPINs [132, 155], metabolic networks [129] and TRNs
[37, 60, 130].

As demonstrated by studies on TRNs [112, 144], PPINs [193], as well as com-
posite PPINs and TRNs [195], the topology of biological networks is furthermore
enriched for certain typical patterns of connectivity, referred to as network motifs.

Additionally, metabolic networks [74, 179], PPINs [52, 75, 95, 157, 196], PDNs
[190], TRNs [60, 99, 139], gene co-expression networks [28] and GINs [167] have
also been found to be scale-free, i.e. they are not dominated by nodes with a specific
number of connections but the distribution of connections per node follows instead
a power law with a large number of nodes having very few connections and a small
number of nodes presenting with large number of connections [3], compare Fig. 2.

Scale-free networks are also expected to exhibit the small world characteristic
[5, 31], which has for instance been demonstrated for PPINs [52, 95, 196],
PDNs [190] and metabolic networks [179]. The small world property implies that
the majority of nodes in the network can be reached from any starting node in the
network by traversing only a small number of links [186].

Given the nature and properties of these networks, certain topological network
analyses present themselves as powerful tools for extracting particular biological
features from the respective underlying data, compare for instance the chapters by
[2, 100, 199]. Specifically, due to the scale-free property, one can always find nodes

o data o data
——  power law fit: P(k) = 1.0k ™!

——  power law fit: P(k) = 0.3k 4%
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k k

Fig.2 Scale-free property of two biological networks. The figure shows the estimated probabilities
P (k) of a node being connected with k other nodes for a BioGrid network including only links of
the ‘Phenotype Enhancment’ or ‘Phenotype Suppression’ type (a) and a BioGrid network including
only links of the ‘PCA’ type (b). Gray dots indicate measured probabilities and red lines represent
power law fits
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‘ @  Highest degree @ Highest betweenness @ Highest closeness ‘

Fig. 3 Illustration of central nodes in a network. The figure shows a scale free network, in which
the nodes with highest degree centrality (red), highest betweenness centrality (blue) and highest
closeness centrality (green) have been highlighted

in those networks that appear more central with respect to certain parameters as
compared to other nodes in the network, compare Fig. 3.

The existence of high degree, i.e. hub, genes in biological systems has early
on been recognized a potential avenue for the development of targeted drug treat-
ments [11], but the distinct topological properties of such networks have also been
suggested to lead to the discovery of novel disease genes and thus also therapy
options. The next section will discuss how such properties might be utilized for
cancer gene discovery.

3 Candidate Gene Prediction Using Graph Centralities

During the last decade numerous computational methods have been suggested for
the network based prediction of disease and cancer genes. Among those techniques
a large number assume a “guilt-by-association” [113, 185, 203] or “guilt-by-
proximity” framework [189] and predict new candidate genes or pathways based
on their direct functional linkage or network proximity (e.g. presence within the
same network module) to known disease genes (compare for instance reviews and
chapters [13, 185, 189]). As a consequence however, these methods rely on prior
knowledge about existing disease genes in order to predict novel genes.
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In this chapter, we focus on centrality ranking as an alternative network based
approach, which has the potential benefit of not requiring prior knowledge about
existing disease genes for a specific or similar disorder. Instead, one assumes that
disease genes have very characteristic and determinable positions in their respec-
tive network. Specifically, considering that highly central nodes, as a more integral
component of the particular information flow in the network, also engage in more
important roles in the underlying biology, it is of interest to be able to identify such
nodes from biological networks. Considering such networks as mathematical graphs,
avariety of related centrality equations have been defined and applied to extract nodes
with specific connectivity characteristics.

After introducing certain general notations to define mathematical networks and
graphs, this section will review some of the more widely used centrality methods
and discuss their applicability to biological networks.

3.1 Some Prerequisites to Centralities

In mathematics a network is described by a graph structure G(V, E), where the set
V = {vi, v, ..., v,} represents the individual nodes, also called vertices, and the
set E = {e;;}, 1, j € [1, n] denotes the edges that connect certain pairs of vertices.
Specifically, an edge e¢;; will imply that node v; has a link to node v;. Such a graph
with n nodes can then always be described by a n x n matrix A, with element (i, j)
representing the value of edge ¢;; between nodes i and j, where the specific choice of
these edge values dictates the particular type of graph we are modeling. Specifically,
we will here distinguish between directed and undirected, weighted and unweighted
networks as well as between graph structures allowing or forbidding self loops.

In an undirected network, we will always have e;; = e;; and a symmetric matrix
A, i.e. any edge in the network works in both directions in exactly the same fashion,
while in a directed network we might encounter pairs of nodes v;, v; for which
e;j # ej; and the matrix A is potentially non-symmetric. The respective undirected
graph is usually drawn without any arrow heads, while in the directed graph edges
will be replaced by arrows in order to indicate direction.

In an unweighted network, we always have e;; € {0, 1}, implying that the edge
between nodes v; and v; either exists or not, while in a weighted network the respec-
tive matrix entries will correspond to so called weights w; ; and can take any value
from a predefined interval, e.g. w;; € [—1, 1]. These weights are then meant to indi-
cate the strength of the connection described by the edge or in the case of negative and
positive weights can also distinguish between an inhibitory and stimulating meaning
of edges. In the case of a unweighted network the matrix A will also be denoted as
adjacency matrix, while for a weighted network depending on convention one might
refer to A as weighted adjacency matrix.

Self loops designate edges e;; from node v; to it self. In some types of graphs
these self loops are allowed, while other explicitly prohibit them. In the adjacency
matrix A this decision will dictate whether the diagonal is always zero.
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Finally, another network property that must be considered here is the so called con-
nectedness of the underlying matrix. Specifically, we say that a network is (strongly)
connected, if it is possible to reach any other node j # i from node i by traversing
the existing edges of the network. If this is true for the directed graph it is strongly
connected, while if it is true only for the undirected graph is is merely connected,
if neither is true we say that the network is disconnected. This is of importance,
because if the network is connected we can define a number of additional network
properties, which do not make sense for a disconnected network. Specifically, we can
here mention (1) the distance, also referred to as shortest path, between two nodes i
and j, which is denoted by d(i, j) or dist(i, j) and is defined as the smallest number
of edges that would have to be traversed in order to travel from node i to j and (2) the
diameter diam(G) of the network, which is simply the largest value of d(7, j). The
diameter and some distances are obviously not computably in disconnected network,
in which case they are often set to d(i, j) = 0o or diam(G) = oco.

Above it was mentioned that graphs can be connected or disconnected, weighted
or unweighted as well as directed or undirected. Different centrality measures might
make specific assumptions about the particular organization of the underlying net-
work and since one might be interested in analyzing more than one type of network
configuration with the same centrality measure it will often be necessary to expand
the given centrality method to also work on other types of networks that the centrality
measure was not perhaps intended for according to its original definition. We have in
the following section tried to describe the original definition of centrality measures
and its requirements or assumptions regarding underlying network structures, but
also attempted to gather potential approaches to modify the given method for other
types of network structures.

The majority of centrality measures will produce centrality measures of some
absolute magnitude, the specific values of which will depend directly on for instance
network size. Comparing these measures between networks of different sizes is
therefore not meaningful, but requires a normalization step to transform the absolute
centralities to relative centralities. We have attempted to gather proposed normal-
ization schemes for each of the represented centrality measures in the following
section.

3.2 Definitions and Visualization of Common Centrality
Measures

As of today more than 110 different centralities have been described in the literature. !
The majority of the centrality measures have been developed in other research fields
for other purposes. Still, depending on the choice of interaction data, many of these
centrality measures can directly or with slight modifications be applied to biological
networks (see also Sects.3.3 and 6.1 for discussions about applicability and mean-

'A comprehensive list of centralities can be found in the CentiServer (http://www.centiserver.
org/) [72].
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Table 1 Centrality measures based on shortest path*

Centrality measure Equation Reference
. 1

Closeness centrality S G [47, 135]

Stress centrality Zk#i 21,4_;‘ o1 (vi) [23, 145]

Betweenness centrality Dkt Dl ""L’T—fj') [23, 46]

Flow betweenness [48]

Load centrality [23, 54]

Eccentricity centrality X0V EV] [62]

(D+1—d(;,v;
Radiality/integration centrality w [172]

*Where o is defined as in Sect.3.3.3, D is the diameter of the graph and d(v;, v;) is the distance
from vertex v; to vertex v;

Table 2 Centrality measures based on powers of the adjacency matrix*

Centrality measure Equation Reference
Degree centrality >lioiai -
Eigenvector centrality % Z'}Zl ai jCoig(vVj) [19]
Katz status Dot 2 ak (A [84]
Page rank I —aMT)~lv [24]
Cumulative nomination I+ A)"e [122]

*Where A is the adjacency matrix M is a scaled and slightly modified adjacency matrix. «, 8 are
scalar parameters chosen appropriately and e, v are the one vector and a non-zero weight vector,
respectively

Table 3 Other centrality measures™

Centrality measure Equation Reference
Centroid value min{f(v;,v;) :v; € V/v;} [152, 192]
Clustering coefficient W [186]
Topological coefficient Crc(vi) = avelJ vivp) [157]

ki

*Where f (v;, v;) is the difference between the number of vertices closer to v; than v; and the number
of vertices closer to v; than v;, k; is the number of neighbors of vertex v; and J (v;, v;) defined only
for vertices which share at least one neighbor is the number of neighbors shared between v;, v; plus
one if there is an edge between v; and ¢;

ingfulness of centralities in biological networks). Here we list the definitions and
show visualizations for some of the centrality measures most frequently applied to
candidate gene prediction from biological networks. Specifically, we are separating
the centralities here into those methods based on shortest path calculations (Table 1,
Fig.4), based on the calculations of powers of the adjacency matrix (Table 2, Fig.5)
and other centralities (Table 3, Fig. 6).
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Fig. 4 Illustration of centrality measures based on shortest path
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Degree Eigenvector

Katz status PageRank

Cumulative nomination

° o o O @

min max

Centralities

Fig. 5 Illustration of centrality measures based on powers of the adjacency matrix

3.3 Applicability to Biological Networks

As briefly noted above, the implementation and design of individual centralities make
them more or less applicable to certain network types. In this section we will discuss
some of the factors that impede general applicability of centralities and discuss some
modifications and remedies to these problems. Of the centrality measures applied
to the identification of biologically important nodes, degree, betweenness as well
as closeness centrality are by far the most frequently utilized and studied methods.
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Fig. 6 Illustration of other centralities

Thus, we will start with a more in detail illustration of such considerations about
applicability on the example of these three centralities, before concluding this section
with a summarization of similar reflections for the other centrality measures.

3.3.1 Degree Centrality

Degree centrality is one of the simplest and most straightforward measures of graph
centrality and is based only on the number of edges connected to a specific node.
Specifically, for an undirected network with no loops, the degree centrality deg(v;)
of a node v; is equal to the number of edges connected to the node.

Caeg(vi) = Z a;,j-

j=1

If the network has loops, these are typically either ignored (only interested in number
of neighbors) or counted twice (once for each end of the loop touching the vertex).
For directed, i.e. asymmetric, networks we define in-degree and out-degree to be
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Table 4 Modifications of degree centrality

Directed network Weighted network Normalization
Ctleg[y, (Vi) = z';:1 aj.i Cdegw (Vi) = z’}:] Wi, j Cdegnnrm (Vi) = %
n .
Caegon 1) = X1y ai Cuegpon () = =
Ctleg,o,a/ i) =
i1+ 2o di

the number of incoming or outgoing edges of the node, respectively, as well as the
total-degree, which is the sum of in-degree and out-degree.

It should be obvious that degree centrality can be calculated on disconnected and
weighted networks as well since it only counts the number of edges connected to
a node. However if working with a weighted network then it makes sense to take
these weights into consideration by instead calculating the sum of the weights of all
connected edges.

Several aspects of normalization have been outlined in [187]. Specifically, we
normalize by scaling the centrality measures by the maximal possible degree cen-
trality value obtainable in a network depending on the size of the network, this gives
a scaling factor 1/(N — 1) if no self-loops are allowed. For the weighted network it
is common to normalize by dividing by the maximal degree of the non-normalized
degree.

A summary of the discussed modifications can be found in Table 4.

3.3.2 Closeness Centrality

Closeness centrality [47, 135] is commonly defined as:

1

C.(vi) zv]-;év,» TORDY
The original definition of closeness centrality as defined above only makes sense
for connected undirected networks where the distance d(v;, v;) is well defined. If
the network is undirected then it is possible that d(v;, v;) # d(v;, v;) and if it is not
(strongly) connected then the distance between some nodes will be undefined.

For disconnected networks, a number of potential modifications to the original
method have been proposed, some of which have been reviewed in [18]. Throughout
this discussion we will assume that the distance between two vertices is infinite if
there is no path between them.

A simple solution is achieved by ignoring all unreachable nodes in the computation
of closeness [18]. Another solution was proposed by Chavdar Dangalchev [34], by
moving the sum out of the quotient and more heavily penalizing long distances by tak-
ing powers of two. A third solution goes back to the work of Nan Lin (1976) [96], who
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Table 5 Modifications of closeness centrality

Disconnected network Ref. Normalization Ref.
cV) = m [187] Cre(v) = iy (14, 47]
P () = > W [34] Cnc(vi) = % [187]
Critv) = % [96]

Cuti) =Xizj a7 [133]

redefined closeness centrality based on so called “nonempty coreachable sets” [18],
producing a measure also referred to as Lin’s index. Finally, the probably most com-
monly used alternative definition is the so called “harmonic centrality index” or
simply “harmonic centrality” [18, 133]. This latter measure is similar to the one
introduced by Chavdar Dangalchev, but the ordinary distance between the nodes is
used instead.

A common method to deal with directed graphs is by calculating either in-
closeness (using d(v;, v;)) or out-closeness (using d(v;, v;)) similarly to how we
calculate degree centrality for directed graphs [187].

The question if closeness can be applied to weighted networks depends on the
choice of distance function, the most common distance used being the shortest path
which can easily be adapted to weighted graphs by regarding edge weights as costs
and finding the path with minimum cost.

A scaled version of closeness centrality was proposed by Beauchamp in 1965 [14]
and rediscussed by Freeman in 1979 [47] in his definition of closeness centrality,
by multiplying the absolute Closeness with N — 1 to get the average closeness.
Furthermore, [187] extends this normalization to weighted networks by dividing the
non-normalized centrality by the maximum possible value.

A summary of the modifications discussed here can be found in Table 5.

3.3.3 Betweenness Centrality

Betweenness centrality [23, 46] can be seen as a measure of how important a node is
for the communication between other nodes in the network by estimating how often
it is visited when finding shortest paths between other nodes.

If we let oy; denote the number of shortest paths between two nodes v and v,
and let oy (v;) denote the number of shortest paths between two nodes v, and v;
that traverse through node v; then betweenness centrality for a connected, directed,
unweighted network can be formally defined as

o (Vi)
Cherween (Vi) = Z kl—

o
kgl M
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Since we are calculating shortest paths, disconnected networks pose a problem.
While we have not found a documented solution in the literature, a simple solution
is to set "k(’;—ilv) = 0if d (v, v;) = oo similar to how we did for closeness centrality.

The above holds for both directed and undirected networks, although for undi-
rected networks where 222 (V’) = U0 it makes sense to divide the total with 2 since
we would otherwise count ‘each path twice or modify the algorithm to only calculate
shortest paths for one symmetric half of the network [187].

Similar to closeness, weighted networks can be handled in a similar way by
viewing edge weights as the cost of traversing said edge and finding the path with
the smallest cost.

Again, we normalize the raw betweenness centrality values by division with the
maximum possible centralities. The respective maximum values have been given
in [187], which considered the current node to be the center of a star-network
according to [46, 47]. Specifically, for a undirected network the maximum possi-
ble centrality value becomes C}'* = ”_3—"” while for a directed network the

between —

: : : max 2
normalization factor is Cp.f}.,, =1 3n + 2.

3.3.4 Summary of Applicability Considerations

Table 6 summarizes for all included centralities, whether they are applicable to
directed, weighted and disconnected networks, respectively. A method that can be
used on directed but not disconnected networks needs it to be strongly connected
in the directed graph unless noted otherwise. Some methods have problems with
single unconnected vertices but otherwise work for disconnected networks, in this
case centrality is usually set to zero (or some other suitable value) hence we consider
these applicable to disconnected networks as well. Similarly most methods relying
on shortest paths can easily be used on weighted graphs by instead using the shortest
distance on the weighted graph instead.

3.4 Linear Combinations of Centralities

It has been mentioned that different centralities might operate differently or are not
defined on certain network types, such as disconnected or directed networks. In addi-
tion, when using a set of centralities, one should also consider possible redundancies
between certain centralities.

For example on many weighted networks it is reasonable to assume there is only
one shortest path between any pair of vertices, which would imply that betweenness,
stress and load centrality will in this case all be the same. Another example is Katz
Status which can be rewritten as (I — a A7)~ — I)e using a Neuman series and it
is obvious that Katz Status is equivalent to Bonacich Alpha/Beta centrality minus 1.
Similarly, if « is small (close to 0), then Katz status and Degree centrality give a
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Table 6 Applicability of centrality measures

Centrality measure Disconnected | Directed | Weighted Normalization*

Closeness centrality [18, 34, 96, [187] [116] [14, 47, 187]
133]

Stress centrality Yes Yes [127] Yes(o)

Betweenness centrality Yes [187] [116] [23, 187]

Flow betweenness Yes Yes Yes Yes(t)

Load centrality Yes Yes [23] [23]

Eccentricity centrality Yes Yes Yes Yes(t)

Radiality/integration centrality | [172] Yes [116] [172]

Degree centrality Yes Yes Yes [187]

Eigenvector centrality No Yes [20, 21] [134, 187]

Katz status Yes Yes Yes Yes(0)

Page rank Yes Yes Yes Yes(p)

Cumulative nomination [122] Yes Yes Yes(o)

Centroid value No Yest Yes No

Clustering coefficient Yes Yes No Yes(t)

Topological coefficient Yes No No Yes(t)

*Where (1) denotes normalization using a theoretical maximum, (o) denotes normalization using the
observed maximum using corresponding non-normalized centrality and (p) denotes normalization
into a probability density (non-negative ranks with sum one)

TRequires a choice of direction for “distance” calculations and the network to be strongly connected
instead of simply connected

similar ranking since higher order terms in the sum disappear quickly when calcu-
lating Katz Status.

Thus, depending on the network context, centralities might be redundant due
to highly similar enrichment profiles or they could act complementary. In order to
quantify these ranking similarities on a given network and between a set of centralities
one can for instance inspect a correlation matrix [89, 90] (compare Fig.7), where
one would preferably employ a ranking correlation coefficient such as Kendall’s tau
which allows for ties.

As a consequence of the observed differences in centrality based enrichment
patterns, it has been suggested that multiple centralities should be employed when
ranking genes in biological networks [89]. Importantly, it can even be argued that
linear combinations of certain centrality measures can act complementary and allow
for the enrichment of novel, distinct sets of nodes. For instance combining degree and
betweenness centrality can lead to the enrichment of specific nodes that are central
in terms of connections but also shortest path within the network, compare Fig. 8.
Thus, inspections of complementary enrichment patterns and investigations of linear
combinations of centrality measures might be beneficial also in the identification of
cancer genes.
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Fig. 7 Rank correlation between centrality rankings. The figure shows a heatmap of the pairwise
Kendall’s tau rank correlation coefficient between centralities calculated on the BioGrid network
including only links of the ‘Synthetic Haploinsufficiency’. For the computation of centralities, only
the largest symmetrized adjacency matrix of the largest network component was included

Specifically, a number of studies have employed combined centralities for the pri-
oritization of genes, sometimes even stating combinations as a requirement in order
to see a centrality based enrichment of genes with a certain phenotype association.
Siddani et al. [147] have used a combination of ten centralities to identify novel
candidate genes for the Systemic Lupus Erythematosus disease. Bhattacharyya and
Chakrabarti [16] prioritized proteins in PPI networks of Plasmodium falciparum and
argued that integrating all employed centrality measures was necessary for identi-
fying “truly central proteins”. del Rio et al. [35] investigated the centrality based
prediction of essential genes from metabolic networks of Saccharomyces cerevisiae
and found that at least two centrality measures had to be employed together in order
to achieve a statistically significant identification of essential genes.

3.5 Implementation

Seeing the general applicability of centrality measures, a wide variety of packages
and standalone softwares not specifically tailored for a biological use can be found
for the R or MATLAB platforms, such as the R packages sna [27], igraph, [33]
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‘ [©] Highest degree [} Highest betweenness [} High degree & betweenness ‘

Fig. 8 Illustration of central nodes in a network. The figure shows a scale free network, in which
the nodes with highest degree centrality (red), highest betweenness centrality (blue) and nodes with
the a high simultaneous score in both centralities (violet) have been highlighted

and CePa [58] or the MatlabBGL package [53]. In addition, inspired by the growing
importance of centrality related questions in biological networks, numerous modules
specifically intended for the use on biological networks have been introduced during
the last years, including for instance the CentiBin [79] and CentiLib [57] software
tools as well as the CentiScape plugin [140] for the widely used biological network
illustration tool CyfoScape [160]. A more comprehensive list of centrality software
resources can even be found on the CentiServer (http://www.centiserver.org/), a
recently published tool for the calculation of a very large collection of network
centralities through the use of a web interface or R package [72].

4 Determining Enrichment of Cancer Genes Among High
Centrality Nodes

Despite a substantial body of investigations during recent years, the exact relation-
ship between cancer genes and graph centralities remains largely unresolved. Hence,
before utilizing centrality measures to nominate gene targets from regulatory net-
works, we must evaluate to which extent the selection of high centrality nodes will
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lead to an enrichment of cancer genes. The extent of such a relationship may well
vary between different settings and should be considered carefully on a case-by-case
basis.

One important consideration is which genes we regard as cancer genes. For this
purpose, one can make use of a number of resources and databases in order to classify
genes into cancer related and cancer unrelated subsets. Examples of such databases
are the Catalogue Of Somatic Mutations In Cancer (COSMIC) [45], the pathways
in cancer set of genes from the KEGG database [81], the Candidate Cancer Gene
Database [1], the Network of Cancer Genes (NCG) [6], or the IntOGen-mutations
platform [56]. However, it should be noted that any list of genes can be used. The
gene list used to evaluate the performance of a network inference method or cen-
trality measure should be chosen so that nominating similar genes is of interest for
downstream analysis.

When investigating the relationship between centralities and cancer gene status,
there are two main questions that can be addressed and represent different forms of
enrichment. Specifically, one might investigate (1) if the most central genes are more
often cancer genes or (2) if there is a tendency towards cancer genes having a higher
centrality.

To answer the first question researchers often simply compare the mean or median
centrality value between phenotype-related and phenotype-unrelated genes [63, 70,
77, 117, 194] or select a number of top scored genes [117, 147] among which one
could quantify the over-representation of phenotype related genes. The comparison
of means or medians can be performed using standard tests. The enrichment of
cancer genes among the top central genes can be quantified using a hypergeometric
or Fisher’s exact test.

The first question is thus straightforward to answer, and it might be informative
for nominating gene targets, but it lacks nuance since it does not take into account the
distribution of centrality values. The second question may therefore be more useful
as a performance benchmark.

The analysis of enrichment of centrality values bears a strong resemblance to gene
set enrichment analysis often considered when interpreting gene expression in rela-
tion to some measured phenotype. In this setting the question considered is whether
a measured phenotype has a significant association with the expression of genes in
a certain category (e.g. pathway membership or functional annotation). Many meth-
ods exist for this purpose (e.g. [38, 86, 161, 164]). Such methods generally work by
first quantifying the association of individual genes with the phenotype, in essence
creating a ranking of the genes, and then quantifying the difference in distribution of
these associations, comparing genes contained in a category and those not contained
in that category. In our case the ranking of genes is the ranking of centralities, and
the gene category in question is the set of genes considered to be cancer related.

To measure the significance of centrality enrichment among cancer genes, we
here propose a simple method based on the enrichment statistic used in the GSEA
method [38]. First, we start by sorting the centralities in decreasing order, then iterate
along this ranked list while keeping a running sum that is incremented when we
encounter a gene that is cancer related, and decremented when we encounter a gene
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that is not. From the set of vertices V = {vi, v2, ..., Vi, ..., v,}, ordered according
to the magnitude of their centralities C(v;), and a set of nodes S € V, we obtain the
size of each term in the sum as:

1/1S1, if v; in S,
L/(vi—1SD, if v; notin S.

The test statistic (or, enrichment score (ES)) is defined as the largest absolute value
of the running sum obtained throughout this iteration. An empirical p-value for the
enrichment is obtained by comparing the observed test statistic to a null-distribution
obtained by repeated random permutation of the ranked list and calculation of the ES
for each permutation. In Fig. 9 we illustrate one application of this method using the
BioGrid network in Fig. 1a and the COSMIC cancer genes. However, this approach
can be used with any set of genes, for instance GO or KEGG to determine whether
a ranking of centrality enriches for genes with a particular biological function.

x10°

Centrality
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max ES: p =0.0010
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Fig. 9 Test for enrichment of cancer status among high centrality genes. The figure shows the
enrichment of COSMIC genes among high page rank scores in the BioGrid network including only
links of the ‘Phenotype Enhancement’ or ‘Phenotype Suppression’ type. Top panel distribution of
degree values; middle panel cancer status of genes; bottom panel step function, where at each step
the enrichment score (ES) increases if the gene is a cancer gene or decreases if the gene is unrelated.
The p values is estimated by calculating the percentage of permutations of cancer gene affiliations
with ES scores greater than the one observed. For the computation of the centrality, only the largest
symmetrized adjacency matrix of the largest network component was included
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5 Recent Results and Progress in Centrality Based
Prioritization of Disease and Cancer Genes

Since the first emergence of studies investigating the centrality in biological net-
works, the further development and application of related methods has grown to an
established field of biological research. Advancements in this field have been made
in basically two directions, which however progress hand in hand. These directions
comprise on one hand the development of novel centrality measures and software
facilitating centrality application to biological networks and on the other hand include
evermore intricate studies exploring the use of centralities for the ranking of biolog-
ical entities with certain properties.

Specifically, initial findings relating centralities to important genes or proteins
were established using general centrality measures that have previously been defined
from other scientific areas such as social sciences. However, recent years have
also seen the dawn of many novel centrality measures, inspired by or explicitly
defined for ranking problems in biological networks [83, 91, 94, 162, 163]. In addi-
tion, a number of software tools or extensions more tailored for the investigation
of centralities in biological networks have been developed, including for instance
the CentiBin [79] and CentiLib [57] standalone implementations, the CentiScape
plugin [140] for CytoScape [160], or the web interface and R package provided by
the CentiServer [72].

The interest in investigating the relationship between disease gene status and
graph centralities was likely inspired by the initial observation in model systems
suggesting that there might exist a correlation between the essentiality of a protein
and its centrality in a PPI [40, 41, 63, 75, 78]. While the identification of essential
proteins by the use of centrality measures has continued to draw scientific interest
until today [35, 87, 94, 142, 163], these initial findings where subsequently also
succeeded by a number of experiments that more closely studied the association of
centralities with disease or cancer gene status.

Specifically, a study on lung squamous cell carcinoma tissue has reported that
genes with upregulated expression in the cancer tissues showed a higher degree
than genes with unaltered expression levels [178]. Similarly, Jonson and Bates [77]
showed that in human PPIs consensus cancer genes, i.e. genes with reported muta-
tions in cancer, have a higher degree centrality than genes not found mutated in
cancer. Another study investigated the centrality of OMIM derived disease-genes
obtained in literature-curated PPIs and found the disease genes to exhibit a higher
degree centrality than non-disease genes [194]. Using a small number of prostate can-
cer genes from the OMIM database as seed genes in a literature-mined interaction
network, Ozgiir et al. [119] found that centrality ranking could be used to enrich for
genes with known prostate cancer association. A study of disease genes for primary
immunodeficiency (PID) combined network centralities and GO ontologies to rank
genes in a human immunome network and was able to identify a number of already
known PID genes [117]. Similarly, Sidanni et al. [147] predicted Systemic Lupus
Erythematosus (SLE) genes from two different Human immunome networks also
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using a combination of centralities and GO ontologies and found a large proportion
of the predicted genes to represent known SLE genes. Starting with a large dataset
of PPIs from the HPRD database, Izudheen and Sheena [70] performed centrality
comparisons between cancer, cancer-chance and non-cancer genes in smaller sub-
sampled networks and found that cancer and non-cancer genes differed in several
centrality measures.

One often cited study that debates the use of particularly degree centrality for the
enrichment of disease genes is the work by Goh et al. [55]. The authors established a
“disease gene network” by connecting any pair of disease genes obtained from the
Online Mendelian Inheritance in Man (OMIM) database, which was found associated
with the same disease. While disease genes where found to account for high degree
nodes in this network, this trend disappeared when excluding disease genes that are
also embryonically or postnatally lethal. Particularly, Goh et al. suggest that essential
genes in their pan-disease network are likely to form hubs, while the majority of
disease genes, being non-essential, are located in the periphery with low degree
centrality. However, the authors also report that disease genes caused by somatic
mutations actually show a higher degree centrality and tendency to coincide with
hubs. In addition, while this study has raised some concerns regarding the separation
of essential genes and disease genes and the use of degree centrality to predict disease
genes, one should bear in mind that the study investigated only one type of centrality
in a pan-disease networks rather than direct molecular interaction network. Thus,
the results may not exclude the possibility for associations between centralities and
disease genes in other network types.

6 Open Questions and Future Challenges

6.1 Which Network to Choose

When attempting to address a certain biological question, some network types might
be more appropriate than others. However, in addition one should also consider how
such data analyses might be influenced by the way in which the related networks
have been generated.

As mentioned above, the interactions of many biological networks can be derived
in a variety of ways, the exact choice of which might bear some influence on the
accuracy and completeness of the network. Specifically, networks solely established
from low-throughput experimental data might exhibit low false-positive rates, but a
large number of false negatives and additionally present with a bias towards interac-
tions of molecules which are of greater scientific interest [51], such as for instance
disease proteins [118]. High-throughput methods, as exemplified by protein-protein
interaction assays, on the other hand might exhibit larger false-positive rates and
could further be influenced by a variety of different biases [17, 51, 177].
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Another important factor to consider is the generic nature of many interaction
and predominantly PPI databases. Specifically, as such databases often represent
aggregations of data from various sources, such as tissues, laboratories or methods,
the contained interactions might be considered as a collection of possible interac-
tions in an organism, but often providing insufficient information about when and
where a given interaction is present or not. Since such temporal and spatial patterns
of interaction might differ substantially between different tissues and diseases, such
databases might only be of limited use when attempting to prioritize disease genes
for a specific disorder. In order to remedy this lack of tissue-specificity in generic
databases, several integrative methods have been suggested during the last years
[22, 59, 101, 180]. For other types of interaction data, such as transcriptional regula-
tory relationships, transcription factor binding or genetic interactions, many tissue-
and disease-specific datasets are publicly available and can be utilized to estimate
the underlying networks. For instance, as mentioned above, a number of different
methods exist for the inference of gene regulatory networks from expression data
[4, 44, 65, 68, 69, 104, 151]. Individual techniques and especially community inte-
grations of various techniques achieve ever increasing accuracies for the prediction
of individual interactions [102]. However, it is still largely unexplored how well
these methods can reconstruct the overall topology and thus also centralities in such
estimated networks [188].

6.2 How to Determine Phenotype Specific Candidate Genes?

Above it was discussed that depending on the choice of interaction resource, net-
works utilized for cancer gene prioritization might lack tissue-specificity. However,
even when prioritizing genes from a tissue- and disease-specific network, there still
remains the question of whether the high centrality observed for a candidate gene is
due to its association with the given phenotype.

Specifically, it can be assumed that genes and proteins with central roles in the
normal cell’s function also take central positions in respective biological networks,
for instance master/global regulators in GRNs [90]. If those genes play crucial roles
for cellular function and survival in the healthy tissue, it is reasonable to expect that
a proportion of those genes, such as essential proteins and housekeeping genes [55],
even has high centrality in the disease network without being actually linked to the
disease phenotype. Hence a selection of network nodes with high centrality would
naturally also include a number of genes which play a central role in the cells function,
regardless of whether it belongs to a cancer or healthy individual. The underlying
topological overlap between networks of healthy and disease phenotype creates a
marked problem for the prediction of candidate cancer genes.

In order to overcome such a contamination by genes always central in a cell’s
molecular system, one approach might be to scale or modify centralities observed in
acancer derived network based on the centralities of the equivalent genes in a network
derived from the healthy counterpart. Alternative approaches could also make use
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of the fact that molecular networks are often enriched for small regulatory motifs
[37, 112, 144, 195, 198] and that part of cancer development can be understood as a
perturbation of the interactions in the healthy network [175, 185]. Thus, identification
of cancer specific candidates could involve the identification of changes to central
network structures and motifs [175, 185, 201] or the identification of cancer network
enriched motifs [30].

6.3 Biological Context of Centralities

As discussed in Sect.3.3, given a certain network type, it is in most cases straight
forward to make a selection of centrality measures that are mathematically applica-
ble and meaningful. However, less is known about the biological meaning associated
with individual centralities. Specifically, one has to wonder what principles of dis-
tance, neighborhood or information flow as used by centralities would signify in a
biological context and if there can actually be some biological property correlat-
ing with these centralities. Cases, in which centrality ranking actually leads to the
over-representation of cancer or disease genes might provide direct feedback about
a potential functional or phenotypical association. However, this particular type of
cancer gene prioritization would certainly gain in scientific soundness, if centralities
could be shown beforehand to have a biological meaning.

There are some mentions of a further distinction of biologically useful centralities
in the literature. For instance, from a exhaustive collection of centralities discussed
and implemented in the CentiServer, the authors presented a subset of measures
more appropriate for biological networks [72], although it is unclear, whether this
selection was made due to applicability considerations from a mathematical or bio-
logical perspective. On the other hand, the publication introducing the CentiScaPe
plug-in for Cytoscape provides interpretations of the potential biological meaning
represented by a number of centrality measures [140]. However, these efforts only
cover a small number of the existing centralities. Considering furthermore the vast
variety of biological networks and the complex interaction dynamics of the under-
lying systems, it appears that we have just begun to link the concept of centralities
with biological functions. Considering interpretations as such provided by [140], it
remains to be shown how one could quantitatively validate a novel interpretation let
alone identify such an interpretation for a yet uncharacterized centrality measure.

One potential avenue for associating biological properties and centrality mea-
sures could be the exploration of functional annotations such Gene Ontology terms
in the context of centrality rankings. It has previously been shown that prioritiza-
tion based on centrality and GO terms can be combined for the identification of
essential proteins [87] or disease genes [117, 147]. Additionally, some studies have
investigated the enrichment of functional annotations in centrality prioritized gene
signatures. Specifically, Siddani et al. [147] performed GO enrichment analyses on
top centrality scored genes in a human immunome network and found an enrich-
ment of important immunology related functional annotations. Wang et al. [180]
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performed a GO and KEGG pathway enrichment analysis on different centrality
based gene sets obtained from a context-constrained breast cancer network, which
was obtained by projecting multiple breast cancer signature genes onto a PPI net-
work. The authors investigated for each centrality the KEGG pathway and GO
term with highest significance and interestingly found the “pathways in cancer”
as the top KEGG category enriched in all centrality derived signatures. Ortutay and
Vihinen [117] investigated GO enrichment among the 50 highest ranking genes
extracted from a human immunome network. However, the authors only reported a
few of the top ranking GO categories and noted the presence of the top scored term
in all three centrality selected datasets.

It would be interesting to expand on such investigations, to explore whether and
which types of functional annotations could be associated with individual centrality
signatures in various types of networks and tissues.

7 Conclusion

Network based ranking methods have emerged as important tools for the prioriti-
zation of targetable cancer driver genes. However, many of such techniques rely on
“guilt-by-association” approaches in order to predict genes or pathways related to
known disease genes, which represents with limitations and bias due to the require-
ment of prior knowledge. Here we review an alternative approach that operates
without the requirement of prior knowledge through the use of network centrali-
ties. While such topological ranking methods are commonly used, the relationship
between centralities in various network types and cancer gene status is still poorly
understood. The centrality measure used, and to which network it is applied, impacts
how we should interpret the results, and care must be taken when validating each
approach. For these purposes it is essential to understand what the network repre-
sents, and how different measures of centrality reflect various biological contexts. As
always, even though much has been written on the topic, much work remains before
we properly understand how network centrality can be used to prioritize targetable
cancer driver genes. Two important pieces of this puzzle are the reference gene set
used and what measure is employed to benchmark different methods, making them
important topics for further study.
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Output Rate Variation Problem: Some
Heuristic Paradigms and Dynamic
Programming

Gyan Bahadur Thapa and Sergei Silvestrov

Abstract The output rate variation problem stands as one of the important research
directions in the area of multi-level just-in-time production system. In this short
survey, we present the mathematical models of the problem followed by consideration
of its NP-hardness. We further carry out the brief review of heuristic approaches that
are devised to solve the problem. The dynamic programming approach and pegging
assumption are also briefly discussed. The pegging assumption reduces the multi-
level problem into weighted single-level problem. A couple of the open problems
regarding ORVP are listed at the end.

Keywords Just-in-time - Objectives - Constraints - Heuristics + Dynamic
programming

1 Introduction

The output rate variation problem is the multi-level production sequencing prob-
lem in just-in-time (JIT) work environment. Toyota company in Japan invented the
just-in-time production systems (JITPS) and mostly benefited around the decade of
sixties-seventies. The problems in JITPS are categorized in two parts, namely single-
level, called production rate variation problem (PRVP) and multi-level, called output
rate variation problem (ORVP). The PRVP has been richly studied, for example in
[3, 13, 28]. The PRVP deals only with the final assembly line, having polynomial
time solutions whereas the multi-level problem deals with overall systems from raw
materials to final customers. The ORVP consists of several levels in the production

G.B. Thapa (X)

Pulchowk Campus, Institute of Engineering, Tribhuvan University, P.O. Box 19758,
Kathmandu, Nepal

e-mail: thapagbt@ioe.edu.np

S. Silvestrov

Division of Applied Mathematics, School of Education,

Culture and Communication, Milardalen University, Box 883, 721 23 Visteras, Sweden
e-mail: sergei.silvestrov@mdh.se

© Springer International Publishing Switzerland 2016 313
S. Silvestrov and M. Ranci¢ (eds.), Engineering Mathematics I1,

Springer Proceedings in Mathematics & Statistics 179,

DOI 10.1007/978-3-319-42105-6_14



314 G.B. Thapa and S. Silvestrov

supply chain, for example, raw materials — components — sub-assemblies — prod-
ucts — distribution centers — retailers — customers. In this supply chain system,
the multiple copies of different models are produced at the final assembly level,
which is interlinked with several upstream production levels where raw materials are
procured, stored and fabricated to produce the final products [2] and with several
downstream distribution levels where final products are stored and distributed to the
retailers and then to the customers.

The whole body of supply chain consists of inbound logistics along the production
levels and outbound logistics along the distribution levels. The synchronized view
of seven levels of production and supply chain network has been presented in [27].
There may be several sub-levels in between any two production levels. Therefore,
the formulation of the ORVP contains L, (I =1,2,...,L) levels.

The rest of the paper is organized as follows: Sect.2 presents the mathematical
formulations of ORVP followed by its NP-hardness. Section3 describes the Goal
chasing heuristics developed by Toyota. The pegging assumption to convert the
ORVP in terms of weighted PRVP is exhibited in Sect.4, whereas the dynamic
programming solution is reported in Sect.5. Finally, Sect.6 concludes the paper
pointing out some of the open problems.

2 Mathematical Formulation of ORVP

Assume that the mixed-model multi-level JITSP (i.e., ORVP) consists of L levels
of manufacturing operations, indexed by [, / = 1,2, ..., L with the first product
level 1. The number of different part types and the demand of item i in level / are
denoted by n; and d;; respectively, where i = 1, 2, ..., n;. The number of total units

of item i at level / required to produce one unit of product p is denoted by #;, such
n

that d;; = Z tipdp is the dependent demand for item i at level / determined by the
p=1
final product demands d,1,p =1,2,...,nand/ = 1,2, ..., L. Note that t;, = 1 if

n
i = p and 0 if otherwise. Finally, D; = Z d;; denotes the total demand at level /, and

i=1

n
the ratio r; = g—": gives the demand rate for item i of level / such that Z ri=1at

i=1
eachlevell = 1,2, ..., L. Itis noteworthy that the model of ORVP is assumed to be
non-preemptive; that is, once commenced production of a product at level 1 must be
completed prior to switch into another unit. This creates the concept of various stages
or cycles in the production system. The production schedule at level 1 consists of
D stages in total and at each stage a single unit of an end-product can be processed.
An item is said to be in stage k, (k = 1,2, ..., D), if k units of product have been
produced at level 1 and there will be k complete units of various products p at level
1 during the first k£ time units.
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Let x;;; be the necessary quantity of item i produced at level / during the time units
ny

1 through k and yj, = inlk be the cumulative quantity of item ¢ produced at level

i=1
n

[ during the same time units such that y;; = Zx“ r = k. Due to the pull nature of

i=1
the JITPS, the particular combination of the highest level products produced during
the k time units (the x,1; values) determines the necessary cumulative production

at every other level. Thus, the required cumulative production for item i at level /
ny

with [ > 2 through k time units is given by x; = z tipXp1k- For a unimodal convex
p=1

penalty function F;,i = 1, ..., n; with minimum O at 0, the maximum deviation and

the sum deviation multi-level JIT sequencing problems in mixed-model systems (i.e.,

ORVP) are mathematically formulated to minimize the objectives Z,,,, and Z,, as

the followings [14, 18]:

Zpaxy = min max Fi(xix — ywrin), 9]
D] L ny

Zoum = min D> >" Fi(xi — yura), (@)
k=1 =1 i=1

subject to

n

X = Dtk i=1,...m, I=1,... L k=1,...D, (3
p=1

ny

Y= > Xm» [=2,3,...,L k=1,...D, 4
ln:ll

yie= D %=k k=12,...D, (5)
p=1

Xplk = Xpl(k—1)» p=1,2,...,n1, k=1,2,...,Dy, (6)

Xpip, =dp1, Xp10=0, p=1,2,...,m, (7)

X > 0 integer, i=1,...,m, I=1,...,L, k=1,...,D;. (8)

Here the constraint (3) ensures that the necessary cumulative production of part i of
level [ by the end of time unit & is determined explicitly by the quantity of products
produced at level 1. Constraints (4) and (5) show the total cumulative production
of level [ and level 1 respectively during the time slots 1 through k. Constraint (6)
ensures that the total production of every product over k time units is a non-decreasing
function of k. Constraint (7) guarantees that the demands for each product are met
exactly, and (8) is the integrality constraint. The constraints (5), (6), (8) jointly ensure



316 G.B. Thapa and S. Silvestrov

that exactly one unit of a product is scheduled during one time unit in the product
level.

The particular cases of the objectives (1) and (2) are studied in literature [2, 27]
as absolute and squared deviation objectives in both cases as follows:

Zy 4 = min max lxik — ywral , 9)
s . 2
Zyyqx = Min T}lfllz‘(xﬂk — Yiri), (10)

ny

D, L
Zo =min D> xi — yueral . (11)

k=1 I=1 i=1

D, L n
Zyin = Min Z Z Z(xilk — yura). (12)

k=1 [=1 i=1

The ORVP is a nonlinear integer programming problem, whose objective func-
tions describe the sequence dependent nature of the schedule for lower parts. The
required cumulative productions x;;’s, [ > 1 are calculated directly from the assem-
bly sequence of the products x;i;’s, and the desired production goal for model i in
level [ is calculated as the ideal proportion (r;;) of the total cumulative production
quantity (yy) of level I. Balanced schedules are generated by keeping the required
production of all parts and products as close to this goal as possible.

The min-max objectives of ORVP aim to find a smooth schedule in every time
period for every output. This is the basic concept underlying Toyota’s sequencing
algorithm [20]. Moreover, the value of the objective function Z¢ . represents an
applicable physical application, providing the maximum overproduction or under-
production (the maximum inventory or shortage) from the desired quantity of pro-
duction that occurs at any time in the schedule. This fact may be used to determine the
number of kanbans (or the necessary safety stocks) used [16]. The min-sum objec-
tives of ORVP seek optimal schedules that may have relatively large deviation in a
single period or for a certain output while having the lowest possible total deviation.

2.1 The NP-Hardness of ORVP

For an input size n of a problem P, a generally accepted minimum requirement for
an algorithm to be considered as efficient is that its running time is polynomial in
n, denoted by O(n¢) for some constant ¢. A decision problem is a problem whose
output is a single Boolean value: yes or no, true or false, on or off etc. Based on
this definition, there are three classes of decision problems: P (solvable in polyno-
mial time), NP (Non-deterministic polynomial) and Co-NP (complements of prob-
lems in NP). To this end, the stunning conjecture is whether P is equal to NP.
For a detail literature of computational complexity classes, we recommend [6, 7, 17,
22, 26].
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The crux of a combinatorial problem is to develop an algorithm that guarantees
identifying an optimal solution for every instance of the problem. Unfortunately as
illustrated above, not all combinatorial problems possess an algorithm with small
amount of computer time. For example, Steiner tree problem, 3-partition problem,
exact 3-dimensional matching problem are some intractable problems.

The ORVP with the sum of the square deviation objective has been shown to
be NP-hard in the ordinary sense [13]. This result has been achieved by reducing
the scheduling around the shortest job (SASJ) problem to the ORVP. The scheduling
around the shortest job problem finds a schedule, on a single machine, of independent

n

jobsi,i=1,2,...,n, that minimizes the sum Z(Ci — C1)2, where C; is comple-
tion time of job i, i = 1,2, ..., n with processlinlg times p; < p> <... <py. The
SASJ problem is NP-hard in the ordinary sense [12]. Moreover, the min-sum ORVP
problem is computationally more difficult and the results established so far on the
completion time variance minimization problem indicate that even special cases of
ORVP are NP-hard.

Furthermore, bottleneck ORVP with absolute-deviation objective that considers
only two levels of production has been proved to be NP-hard in the strong sense. An
instance of the 3-partition problem can be reduced into an instance of ORVP with two
levels in pseudo-polynomial time [16]. The 3-partition problem is to decide whether
a given multiset of integers can be partitioned into triples that all have the same sum.
That is, for 3m integers, is there a partition {A;, A,, ..., A,,} of theset {1, 2, ..., 3m}
such that Za; = B, 1 <i < m, where q; is a positive integer, 1 <i < 3m and B

ieA;
3m

is a bound such that Za; =mB, ¥ < a; <% ? The well-known fact is that the

i=1
3-partition problem is strongly NP-complete [22].

3 Heuristics Paradigms for ORVP

A number of sequencing methods as heuristics has been developed and reported
with comparison in the literature due to the popularity of JITPS evolved during the
1980s [4, 24, 25]. It is noteworthy that the heuristic approach for PRVP has been
recently reported in [29]. In this work, we report the heuristics for ORVP. A complex
heuristic for selecting the production sequence when the objective is to minimize
the chance of stopping the line due to overloading individual stations is proposed
in [21]. In this heuristic, the authors suggest a procedure which uses many different
initial sequences. For each initial sequence, an improvement routine is applied in
which jobs are moved until no improvement occurs, followed by an interchange of
jobs until no improvement occurs. The best of the several sequences is the solution.
The empirical results are presented for problems with up to 100 jobs, which suggest
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that the heuristic performs almost as well as a branch and bound procedure with a
CPU time trap of 2 seconds (see [9] also).

Monden [20] developed the two greedy heuristics at Toyota, which he referred as
goal chasing methods: GCM I and GCM I (see [11] too). The heuristics GCM I and
GCM I, designed with product level and sub-assembly level, constructed a sequence
filling one position at a time from first slot to the last one, considering the variability at
the sub-assembly level. In comparison of GCM I, the GCM Il represented a decrease
in computational time, since the sum is formed only on the components of a given
product [24]. However, the comparative research in [24] and in [25] showed that
GCM I performed better than GCM II when compared on the basis of maintaining
a constant usage of component parts. These heuristics has been found to yield very
good results in the Toyota [10].

Hyundai’s heuristic (HH) used an alternative way, which was developed to approx-
imate the result given by GCM I while reducing the steps of computation. Duplaga
and Bragg [4] concluded that the reduction in computational effort related to HH
may be significant in situations similar to automobile assembly where many options
and choices are available for final product configurations.

The GCM has been advanced to the extended goal chasing method (EGCM) to
consider all levels in a multi-level production system [18] and introduced another
polynomial heuristic to reduce the myopic nature of the previous heuristic. Moreover,
the myopic nature of the GCM I has been reduced and an exact procedure based
on the bounded dynamic programming is developed in [1]. In the following three
Subsections, we briefly formalize the goal chasing heuristics.

3.1 Goal Chasing Method 1

The goal chasing method I (GCM I) was developed and used by Toyota to schedule
automobile final assembly lines. It constructs a sequence filling one time unit at a time
from first slot to the last one. This method is designed with the two levels: the product
level and the sub-assembly level, considering the variability at the sub-assembly level
only, whereas the variability is ignored at the final level [18].

For a stage k, the objective function used in GCM I to schedule the product i is

n
minimize |:GCMI = Z [xi2 + tiok — y2kri2]2:| . (13)

i=1

The GCM Iis amyopic heuristic. This heuristic yields infeasible sequence frequently
but if it yields a feasible sequence, then the sequence is necessarily optimal too [24].
The time complexity of GCM 1 is O(mnD).
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3.2 Goal Chasing Method Il

As in the case of GCM I, the GCM 1I constructs a sequence filling one time unit at
a time from first slot to last one. The GCM Il is designed to decrease computational
time because the sum is formed only on the components of a given model [18].
This indicates that the computational time can be considerably saved if a model
encompasses only a small fraction of the total number of parts [25].

For stage k, the objective function used in GCM 1I to schedule the product i is

minimize |:GCM II= Z [x,-Zk — yzkri2]2:| , (14)
ieC

where C is the set of components of a given model. If C contains a small fraction of
total number of components, the computational time is substantially reduced. This
heuristic is also myopic and frequently generates infeasible sequence.

The goal chasing method has been extended to consider all levels in [18], which
is called extended goal chasing method (EGCM). It can be said that the GCM I and
GCM 1I are special cases of the EGCM.

3.3 Extended Goal Chasing Method

The extended goal chasing method (EGCM) is also a heuristic for multi-level problem
since it includes more levels [ 18]. For a stage k, the objective function used in EGCM
to schedule the product i is

D, L n
minimize [EGCM => > > wilxuk — yu m)2] : (15)

k=1 I=1 i=1

where the weight w; determines the relative importance of a level [. The heuristic
sequences model i at time unit k with minimum

L

nj
Z Z(xilk + tik — Yuri)*. (16)

=1 i=l

This is also a myopic polynomial heuristic. There exist two heuristics for the solution
of the problem in [18].
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4 The Pegging Assumption

The output rate variation problem is NP-hard combinatorial problem. However, this
can be solved in pseudo-polynomial time under the pegging assumption, which sep-
arates each part at the lower production levels into distinct groups for each product
into which that part will be assembled. The pegging process reduces the ORVP into
weighted case of the product rate variation problem [8, 23].

Inthe pegging assumption, parts of outputiatlevel [,/ = 2, 3, ..., L, are dedicated
or pegged to be assembled into the particular model at level 1. The parts dedicated
to be assembled into the different models are distinct in pegging i.e., 4 # p implies
tiun # tj, Tor each output 7 at level [. Pegging is useful for high quality model pro-
duction because high quality parts are required for high quality model and such parts
can be used under this assumption. The mathematical formulation of pegging in a
JIT production environment has been firstly developed in [8], where some heuristic
procedures for the pegged multi-level min-sum model are also presented.

The sequencing model of the pegged ORVP with absolute deviation objective
[23] is to minimize the following weighted deviation:

min maxp; i (Wnt 1Xnix — kracl, Wi IXnixtin — Ktanral} (17)

where h=1,2,...,n;i=1,2,...,n3k=1,2,...,D1;1=2,3,..., L subject
to the constraints in single-level case [27].

For I=1,2,...,L, ty, =1 if i = h and O otherwise, the objective function
is reduced to min maxp,; j k {Wil(lilh) |xi1x — kri1|}. With \71/7 = max; {wy (tilh)}s the
pegged ORVP is transformed into the following formulation:

min max; i w |xg — kri (18)

with constraints in single-level case [27].

Clearly, this is the weighted product rate variation problem formulation [23].
The pegged ORVP with total deviation objective can analogously be reduced to a
weighted PRVP with total deviation objective [23]. The optimal schedules for the
weighted PRVP with total deviation objective can be obtained using the assignment
approach [13-15].

S Dynamic Programming Solution

The efficient algorithms for the solutions of ORVP are unlikely to exist due to the NP-
hardness of the problem. Nevertheless, the dynamic programming (DP) procedure
gives rise to optimal solutions [16] for small number of products. The DP algorithm
has been applied for the problem with the objective that simultaneously minimizes
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the variability in the usage of parts and smooths the workload in the final assembly
process [19].

The DP procedure for ORVP is developed in [16], which is polynomial in D,
and consequently seems to be effective for small number of products n; even when
the total product demand D is large. During the enumeration process, an excessive
amount of time or space is reduced by using some fast heuristic as a filter which
eliminates any states from DP’s state space that would lead to no optimality. Two
myopic heuristics to generate the filter are proposed in [16]. If the heuristics yield
near-optimal sequences, then the state space size can be reduced.

The weighted case of output rate variation problem with the two sequencing

Dy L n
objective functions minmax,-,l,kw,-l |xi1k — ylkr,-ll and mmz Z Zwﬂ(xﬂk — y[kril)z

k=1 I=1 i=1
can be concisely transformed into the matrix representation and can be implemented

the transformation for the solution of ORVP using DP procedure [16].
First we consider the min-max objective function max; ;Wi |Xix — yiri| and

L
with n = Zn/, where y;, represents the
=1

denote the deviation matrix /" = [y”]nxnl

-1
an + 1 Jth row and pth column element.

m=1
Now we have,

max; Wit Xk — Yiritl

ny ny
= max; 4 E wit(tipXp1x — it z tipXp1k)

p=1 i=1

n n

= max; s E wi(tipy — rar E titp ) Xp1k
=1 i1

n
= max; E YilpXp1k
p=1

m
where yy, = wy(ty, — mztup).
i=1
T .

Let the column vector X; = (Xnk, XLk « + s Xny 1k) to be the cumulative produc-
tion at level 1 during the time period 1 through k. Hence the objective function
Zi o = minmax; ; x wi |xyx — yiral at the time unit k over all parts, is transformed
into matrix representation as follows:

minimize max Wy |Xjgx — yirig] = min max | Xelly s

L,
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where the norm ||.||; is defined as
maximum ||all; = max;|a;|, i=1,2,...,n,
for a vector a = (a1, az, . .., a,).

Let the demand vector atlevel 1 bed = (d 1,d2, ..., dy, ) and the states in a sched-

ny
ule be X = (x1,x2, ..., x,,) with cardinality |X| = in where x; is the cumulative
i=1
production of model i, x; < d;. Let ¢; be the unit vector with n; entries all of which
are zero except for a single 1 in the ith row.

Define ¢ (X) to be the minimum of the maximum absolute deviation for all parts
and models over all partial schedules of X and || /"X |, is the maximum of the deviation
of actual production from the ideal production over all parts and models when X is
the amount of model produced.

The DP recursion for ¢ (X) is as follows [16]:

@) =¢pX:X=0)=0,

¢X) =min{max{p X —e), IIX|,}:i=1,...,n, x; > 1}.

For any state X, it is observed that ¢ (X) > Oand ||I" (X : X = d)||; = 0.
D1 L ny

Now we consider the objective function Z Z ZWﬂ (i — ywerin)*

. k=1 I=1 i=I
That is,

D1 L ny

2
E E Ewil (i — Yierin)
k=1 =1 i=1

ny

2
wit(tipXp1x — it E LipXp1k)
=1 I=1 i=1 i1

D,
= > (12X,

k=1

Il
M
M=
M=

1 "’
where Q = w;; dip, dip = tijp — mZtﬂp.
i=1
The euclidean norm ||. ||, is defined as [lal, = />, ai2 for a vector a = (ay,
ceey Ay).
Let @ (X) to be the minimum of the total square deviation respectively for all
parts and models over all partial schedules of X. The term (|| 2X]l,)? is the sum of
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square deviations of actual production from the ideal production over all parts and
models when X is the amount of model produced.
The DP recursion for @ (X) is as follows [16]:

D@) =Dd(X:X=0) =0,

®(X) =min {® (X — ) + (1QX[)*,i=1,2,...,n, x; > 1}.

It is always true that @(X) > 0 and @ (X : X = d) = 0 for any state X. In any
state of X, x; can have any of the values 0, 1, ..., d;. The number of states in the DP

ny
recursion is H (d; +1).
i=1
Any state X can be generated from n; states. The computation time for || 7"X||,
L

or (|QX|,)? is O (nin), n = an The space and time complexities of the DP

m=1

ni n
procedures are O (H(di + 1)) and O (nlnH(di + 1)) respectively [19].

i=1 i=1

The number of feasible schedules for any problem instance is -t

| .
4y, This
is considerably larger than the number of states in the DP recursion. The inequality

ny D n
H d+1)< ( L+ ) shows that the DP algorithm is effective for small num-

; n
i)elr of products even with large copies.

An excessive amount of time or that of space can be reduced by using some
fast heuristics as a filter. The filter eliminates any states from DP’s state space
that would lead to no optimality. Two myopic heuristics exist for generating the
filter [16]. One of the two heuristics shows that model i becomes next model to
be scheduled if that minimizes ||/'(X + ¢;)||; and the other shows to minimize
max {IlF(X + el , min; ||F(X + e + e;)“l}.

The DP algorithm progresses through the state space in the forward direction of
increasing the cardinality as the procedure generates all states X with |X| = k before
Xl=k+1,k=1,2,...,D; [16].

It is noteworthy that the output rate variation problem with a commutative aggre-
gation function that aggregates deviations over all production cycles which is known
as the symmetric output rate variation problem has been solved by the dynamic
programming procedure [5].

6 Conclusion

The mixed-model just-in-time sequencing problem has been widely studied with
various mathematical formulations and solution strategies. However, it is still a chal-
lenging area due to its interesting base model of theoretical value and wide real-world
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applications. The PRVP is solvable in pseudo-polynomial time, but the ORVP is NP-
hard. The problem whether cyclic sequences are optimal for ORVP also remains
open. The input-output matrix analysis could be another approach to deal the multi-
level problem. The simultaneous study of production and logistics is a challenging
area having many research issues [30]. Our further work will be focused on synchro-
nized study of production and logistics to balance overall supply chain systems. It is
thus, this paper not only provides the review of existing literature but also opens the
floor to be worked forward.
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L?-Boundedness of Two Singular Integral
Operators of Convolution Type

Sten Kaijser and John Musonda

Abstract We investigate boundedness properties of two singular integral operators
defined on L”-spaces (1 < p < 00) on the real line, both as convolution operators
on L?(R) and on the spaces L”(w), where w(x) = 1/(2cosh %x). It is proved that
both operators are bounded on these spaces and estimates of the norms are obtained.
This is achieved by first proving boundedness for p = 2 and weak boundedness for
p = 1, and then using interpolation to obtain boundedness for 1 < p < 2. To obtain
boundedness also for 2 < p < 0o, we use duality in the translation invariant case,
while the weighted case is partly based on the expositions on the conjugate function
operator in (M. Riesz, Mathematische Zeitschrift, 27, 218-244, 1928) [7].

Keywords Convolution operators + Sech (function) + Hilbert transform + Hardy
space *+ Weak type estimates

1 Introduction

In [4, 5], three systems of orthogonal polynomials belonging to the class of Meixner—
Pollaczek polynomials were described together with some operators connecting
them. The first system was the special case of the Meixner—Pollaczek polynomials
[3, 6] with parameter A = 1/2, a system that can also be described as the orthogonal
polynomials obtained from the weight function w(x) = 1/(2 cosh %x). The Second
system was a limiting case of the Meixner—Pollaczek polynomials with the parameter
A tending to 0. That system could also be described as the polynomials orthogonal
in the strip S = {z € C :|Im z| < 1} with respect to the Poisson measure for the
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origin. In the third system, the polynomials were orthogonal with respect to the
weight wy(x) = w x w(x) = x/(2sinh Fx).

These systems are connected by two operators R and J (see [1] or [2]) mapping
functions in the strip S to functions on the real line R, defined by

Ja+D+fx -0 and Jf(x) = f(X+i)—f(x—i).

Rf) = 2 2

Besides these two operators, the operators B = R~! and S = JR~! turn out to
have interesting properties with respect to these systems of polynomials. Both oper-
ators can be represented as convolution operators

Bf(z) = /°° __Jwdr and Sf(x) = lim fndt

0 2cosh 3 (z — 1) 60 Jiy_rj=e 28inh T (x — 1)’
leading to the Fourier transforms
Bf(t) =secht f(t) and Sf(t) =itanht f(t).

These two operators can be studied in the context of either real or complex analysis,
and in this paper we consider the operator B as an operator from functions on the
real line R to functions in the strip S, while the operator S is studied as an operator
on functions on R. Function spaces on R are denoted by L and those on S by H.
For an arbitrary non-negative and locally integrable function w on R, L”(w) denotes
measurable functions on R with

||f||ip(w) =/ |f(x)|pa)(x)dx < 00,

and H?(w) analytic functions on S with

ooy = sup/ |f (x +ia)Po(x) dx < .

—l<a<l oo
Furthermore, L”(R) = L?(1) and H?”(S) = H?(1). Unless stated otherwise, we
assume throughout that 1 < p < oo, F = Bf and w(x) = 1/(2 cosh %x).
We investigate boundedness properties of B and S, both as convolution operators

in the translation invariant case and for the weight w(x) = 1/(2 cosh Z.x). Our main
results are the following.

Theorem 1 For 1 < p < oo, the operator B is linear and bounded from
(a) LP(R)to HP(R),
(b) LP(w)to HP (w).

Theorem 2 For 1 < p < oo, the operator S is linear and bounded on the spaces
LP(R) and L? (w).
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For p = 2, both of these results were proved in [5]. In this paper we first prove
weak boundedness for p = 1, and then use interpolation to obtain boundedness
for 1 < p < 2. To obtain boundedness also for 2 < p < oo, we use duality in the
translation invariant case and the method of M. Riesz [7] in the weighted case.

2 Weak Boundedness for p =1

We denote the Lebesgue measure of a measurable set E of real numbers by | E| if
given by dx, and by| E|,, if given by w (x) dx. We further write Ao(S) to denote the
space of functions f that are analytic in the strip S, continuous on the closed strip S
and such that | f| — O when |z| — oo.

We shall prove the following result which, perhaps, is interesting in its own right.

Proposition 1 Let A > 0and E; = {x : |Bf (x +i)| > A} If f € L'(R), then

16
Bl = — [ fllp

and if f € L' (w), then
|Eslw <

w —

16
TH‘f“Ll(a))'
Corollary 1 Let » > 0 and ES = {x : |Sf(x)| > A}. If f € L'(R), then

16
|Ef| = T“fHL‘(JR)’
and if f € L' (w), then
16
s
|3 lw < T”f”Ll(w)‘
The main idea is to first consider the case when f is positive, and we have then
the following.

Lemma 1 Ler f be a continuously differentiable function on R with compact sup-
port, . > 0and E; = {x : |Bf (x £i)| > A}. If f is such that

/oof(X)dX=l,

then|E,| < 2/X, and if f is such that

/c><> fo(x)dx =1,

oo

then|E,|, < 2/A.
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Proof The first part of the proof is the same for both assertions, and we start by
denoting
R f(@) = Bf (2) = F( >—/°° Aol
9= == —oo 2coshZ(z—1)
We observe that F' is analytic in S, and using partial integration, we see that F is
continuous on the closed strip and that F € Ay(S). It is obvious that F(Z) = F(z)
and that F is real-valued on R. Furthermore, we have

1 cosh(x —iy) coshx cosy —isinhxsiny

cosh(x + iy) - |cosh(x +iy)|? cosh2x + cos2y

)

and this implies that Re(F(z)) > 0 in S. Let further for a given A > 0,

0(2) = Y

Itis easy to see that ¢, maps the real line to itself, leaves the origin fixed and maps
oo to 1. This implies that the imaginary axis is mapped to the circle |z — 1/2| = 1/2.
It is also clear that the circle |z| = A is mapped to the line Re(z) = 1/2 so that
the right half-plane is mapped to the interior of the circle |z — 1/2| = 1/2 and that
|z| > A implies that Re(g; (2)) > 1/2.

We now consider the first assertion of the lemma, and for this, we use Cauchy’s
theorem. We observe therefore that for all —1 < a < 1, we have

o0 o0
/ F(x+ia)dx=/ F(x)dx = 1.
—0Q —00
The next step is to see that
/OOG()d /oo (F(x))d /Oo Fo <1/OOF()d !
= = ———dx < — X = —.
e T LT | Fo T T e T
It follows again from Cauchy’s theorem that also
o0 o0 1
/ G(x:l:i)dx:/ Gx)dx < —
—o0 —0 A

so that by Chebyshev’s inequality,

[{x :Re(G(x £1)) > 1/2}] < % = %
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However, as observed above,
{x:Re(G(x £i)) > 12} ={x: |[F(x £i)| > A} = E;,
and this proves the first assertion.
To prove the second assertion, we need the fact that the measure w (x) dx is closely

related to the Poisson measure for S; see [8]. In fact, we have for u harmonic in S,
continuous on S and such that |u(x)| < ¢?"! for some a, 0 < a < /2 that

u(0) = /00 ue +)+ulx - i)a)(x) dx = /OO Ru(x)w(x)dx.

oo 2 oo

Applying this to the function F, we see that

F(0) =/°o RR7' f(x)w(x)dx = /oo fwx)dx = 1.

o0
‘We next observe that

F(0) 1

CO=ro+r T T

Since G(x — i) = G(x +1), it follows that

o]

G(0) = /700 RG(x)w(x)dx = /700 Re(G(x +1))w(x)dx = o

Therefore, by the same argument as before, it follows that |E; |, < 2/A, and this
proves the lemma. (]

If f is real-valued, then
Bf(x £i) = f(x) £iSf(x),

so the same conclusion holds a fortiori for the set ES = {x : [Sf(x)| > A}.
We can now prove the proposition.

Proof of Proposition 1 We prove only the first assertion since the proof of the
second assertion is exactly the same. We first consider the case when f is real-
valued. We write f+ = max(f,0), f~ = max(—f,0) and hence f = f" — f~.
We observe that in order to have |Bf| > A, we have to have either |Bf ™| > A/2 or
|Bf~| > 1/2,andsince || f|| = || /Il 4+ || f|l, this implies that | E;| < 4/A.If f is
complex-valued, we write f = g + ih and essentially the same argument as above
implies that

|E|<E’
M=

[l -
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and this proves the proposition (under the assumption that f is continuously differ-
entiable with compact support, but since such functions are dense in L', the same
holds by continuity for all functions in L'). Again the same result holds for the
operator S. (]

3 TheCasel < p <2

In [5], it was proved that the operator B is bounded from L? to H? with norm less
than or equal to 2 (both in the translation invariant case and for the weight w), and
that S is bounded on L? with norm 1 (again in both cases). Using the Marcinkiewicz
interpolation theorem, we can now prove the following.

Lemma 2 The operators B and S are strongly bounded for 1 < p < 2 with norm
at most
16p

(r=DH2-p)
Proof This follows immediately from the Marcinkiewicz interpolation theorem. []
Choosing p = 4/3, we see that for T = B or T = S, we have

T a3 < 96.

We can now use the Riesz—Thorin theorem [9] for 4/3 < p < 2 to obtain the
following result.

Proposition 2 Let 1 < p <2.

(a) The operator S is bounded as an operator from LP to HP with norm at most

"(G=va-)
mm{\ -———
(r—=DE2—-p)

for1l < p <4/3, and at most
967 ()

where 0(p) =4/p —2ford/3 < p <2.
(b) The operator B is bounded as an operator from LP to H? with norm at most

*(G=va=n)
mmy{\-—————"
(p—D2-p)

for 1 < p < 4/3 and at most

969(ﬂ) . 21—9(17)

where 0(p) =4/p —2for4/3 < p <2.
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Proof For 1 < p < 4/3, this was the preceding lemma. For 4/3 < p < 2, it follows
from the Riesz—Thorin theorem. O

4 TheCase2 <P <

We first observe that in the translation invariant case the operator S is self-adjoint so
that by duality we have immediately the following result.

Proposition 3 (a) The operator S is bounded on the space L*(R) with norm at
most 24p for 2 < p < 4, and with norm at most 96°P) where 6(p) =2 —4/p
ford < p < oo.

(b) The operator B is bounded as an operator from L?(R) to H? (S) with norm at
most 1 4+ ||S] .

Proof (a) follows from duality while () follows from the fact that on the boundary
of S, we have Bf = f +iSf sothat |Bf|| < |l fIl + IISfI. O

To prove boundedness also on the space L? (w) for 2 < p < 0o, we use the same
ideathat M. Riesz used when proving boundedness of the conjugate function operator,
i.e. by considering even powers.

Proposition 4 Let f € L be real-valued and such that | f || . ) = 1. Then

2n
S () < —— " () -
1SSz @) < 10g2||f||L2( )

Proof Let F = Bf, then
F(0)" = /0o R(F(xX)™w(x)dx = /oo Re(f(x) +iSf(x)*w(x)dx.
Denoting Sf by g, we have

n

Re(f +iSf)™ =Re(f +ig)" = (Z’;) (=D 0 g0,

k=0

and this implies that

0= F0)" = / D GZ)(—1)"f(X)2”‘2"g(X)2"w(X) dx < 1.

X k=0
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Writing X for || g||2,, we see that

oo h—1
X < / Z(Zk)f(x)”‘g(x)z" 2 41— FO)™.

k=1

From Holder’s inequality, It follows that

2n—1
2n
X2n< Xk: X 12}1_X2Vl’
_z(k) X+ 1)

and therefore 2X%" < (X + 1)** sothat2'/"X < X + lor 2!/ — 1)X < 1. Since
(212" — 1) > log 2/2n, it follows that X < 2n/log?2. O

Remark 1 A more careful analysis at the binomial sum shows that it is actually
possible to have at least
3x2n < (X + 1)2}1,

which shows that the denominator log 2 can easily be replaced by log 3.

Remark 2 Using Cauchy’s theorem, essentially the same idea can also be used in
the translation invariant case. One observes that if f is real-valued and || f |2, = 1,
then |w * f 2, < 1, and since

[e¢]

/ oo(f(x) +iSf(x)"dx = / (@ f(x)dx <1,

o0

we see again that ||Sf |2, < 2n/log?2. If we do not assume f to be real-valued, it
follows that

1S ll2n = l_”f”Zn

Using the Riesz—Thorin theorem, we see that for 2 < p < oo,

4p
I1S£I, < @”f”p

so that || S]], < 4p/log2.

Remark 3 In the translation invariant case, we can now use duality to move from
2 < p <ootol < p <2 and thus obtain the better estimate that
’
p
ISl <
log?2

where p' = p/(p — 1).
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Finally as above, we have that for all | < p < oo,

1Bl < 14 1ISlp-
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Fractional-Wavelet Analysis of Positive
definite Distributions and Wavelets on &’ (C)

Emanuel Guariglia and Sergei Silvestrov

Abstract In this chapter we describe a wavelet expansion theory for positive definite
distributions over the real line and define a fractional derivative operator for complex
functions in the distribution sense. In order to obtain a characterization of the complex
fractional derivative through the distribution theory, the Ortigueira-Caputo fractional
derivative operator cD* [13] is rewritten as a convolution product according to the
fractional calculus of real distributions [8]. In particular, the fractional derivative of
the Gabor—Morlet wavelet is computed together with its plots and main properties.

Keywords Wavelet basis - Positive definite distribution + Complex fractional deriv-
ative + Gabor—Morlet wavelet

1 Introduction

In recent years, wavelet analysis and fractional calculus have shown to be a powerful
tool in several areas of mathematics. Indeed, the time-frequency localization property
provided by the wavelet approach gives the possibility to use a wavelet basis as a
mathematical microscope in order to better investigate the behavior of a function by
the well-known Heisenberg box [18] located in the time-frequency plane.

Wavelet expansions are used to characterize different function spaces, such as L7-
spaces, Sobolev spaces, Morrey—Campanato spaces, etc. [19]. In particular, several
key concepts of wavelet analysis, such as the wavelet transform, can be extended to
the space of tempered distributions .7 (R).

E. Guariglia (<)

Department of Physics “E. R. Caianiello”, University of Salerno,
Via Giovanni Paolo II, 84084 Fisciano, Italy

e-mail: eguariglia@unisa.it

E. Guariglia - S. Silvestrov

Division of Applied Mathematics, School of Education, Culture and Communication,
Milardalen University, Box 883, 721 23 Visteras, Sweden

e-mail: sergei.silvestrov@mdh.se

© Springer International Publishing Switzerland 2016 337
S. Silvestrov and M. Ran¢i¢ (eds.), Engineering Mathematics I1,

Springer Proceedings in Mathematics & Statistics 179,

DOI 10.1007/978-3-319-42105-6_16



338 E. Guariglia and S. Silvestrov

In this chapter, a wavelet expansion for the family of positive definite distribu-
tions is presented. It has many applications in different areas of both pure and applied
mathematics (Lie groups, maximum entropy methods, etc.) [7, 14] and can be gen-
eralized for the class of tempered distributions [16]. Furthermore, an open problem
about the reconstruction formula for Shannon wavelets in the distribution sense is
proposed.

In [3, 4] a generalization to complex functions of the distribution theory is pre-
sented. In particular, these two papers provide a generalization of the classical Dirac
delta in the complex plane which gives the possibility to rewrite the complex frac-
tional derivative in the distribution sense.

Indeed, the fractional derivative of complex functions is provided by the Ortigue-
ira-Caputo fractional derivative ¢cD* [13], which can be written as a convolution of
the given complex function with a suitable function that defines a regular distribution
on C (see (30) and (31)).

The authors have computed the fractional derivative of the Gabor—-Morlet wavelet
through the Ortigueira-Caputo operator. It represents a wavelet family with several
applications in signal theory and geophysics.

This chapter is organized as follows: some preliminaries and notations on function
spaces and wavelet analysis are provided in Sect.2. A wavelet expansion for the
positive definite distributions is shown in Sect.3. The fractional differentiation in
the complex plane, together with the complex-variable distribution theory, is given
in the first part of the Sect.4, while in the second part it is widely explained how
the Ortigueira-Caputo fractional derivative can be rewritten in the distribution sense.
The fractional derivative of the Gabor—Morlet wavelet is computed in Sect. 5.

2 Preliminaries and Notations

In this chapter, n will denote an element of Ny = N U {0}, and i the imaginary unit.
The fractional and the integer parts of a real number x will be indicated by {x } and
| x ], respectively. The Heaviside step function u and the sinc function are defined,
respectively, by

1, >0,
“(X)Z[o t=0 W

sin(rx)  e* —eiTX

2

sinc(x) = ;
TX 2imx

The L*-inner product for complex-valued functions on an interval [a, b] is given

by
b

(f.g)= / f(0)g(x)dx, 3)

a
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where the Dirac bracket notation is adopted (in order to emphasize the action of any
tempered distribution on a test function). Suppose that f, g € LlloC (R), the convolu-
tion of f and g is defined by

(f*9)x) = /f(f)g(t — 1)dr, 4)

ire. (fxgx) = <f(r), g(—(r — t))>. The dual of a normed space V () will be indi-
cated with V' (IF).

2.1 Space Functions, Orthogonal Wavelets and Wavelet
Transform of Distributions

The distributions over R are defined as the dual space of the test functions Z(R),
namely 2’ (R) is the space of all linear and continuous functionals on the space of the
test functions. Similarly, the tempered distribution is the dual of the Schwartz space
7 (R). In other words, . (R) is the space of all linear and continuous functionals
on . (R), namely the set of all functions

f:R) - F,

where F is usually R or C [17]. In this chapter it will always be taken F = C.
The space of highly time-frequency localized functions over R is denoted by
Z(R) and defined as the space of the functions ¢ € % (IR) such that all the moments

vanish, namely
o0

/x”qﬁ(x)dx =0, Vn € Ny, 5)

—0Q

where the topology on this function space is defined in the classical way [11].
Let ¢ € #(R) be a wavelet mother and let

_ 1 t—>b
Wa.b(t)—% ( P )

be its correspondent daughter wavelet [18]. The wavelet transform of f € . (R)
with respect to v is given by

1 T t—b
Wy fa, b) = {f(), Yup(®) = Ta /f(t) v (T)dt’
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in which (a, b) € R.y x R since a and b correspond to the scale factor and time
shift, respectively. It is clear that this integral transform represents a 4’ *°-function
on the half-plane R.y x R.

In [11] it is shown that Wy : S (R) — .(R) is a continuous linear map.
Naturally, since ¥ € % (R) the wavelet transform above can be also defined for
fe M@ 1.

Some concepts about the theory of orthonormal wavelet bases of L?(R) are briefly
recalled below [5]. An orthonormal wavelet on R is a function ¥ € L?(R) such that
the family {wm’"}m,nez represents an orthonormal basis of L?(IR), where ¥, ,(x) =
224 (2" x — m) withm, n € Z.

The reconstruction formula for orthogonal wavelets claims that every f € L?*(R)

can be written as
F=>" D V) Vw0 1l 6)

meZ nel

The series in (6) is often called wavelet series of f. In the literature, the wavelet
coefficients of / with respect to y are denoted by ¢, (f), i.e.

Cmn(f) = (fv Wm,n)LZ(R) = /f(x) Y, (x) dx. (N

The notation ¢, ,(f) does not provide information about the particular family of
wavelets chosen. In order to take into account that the coefficients can refer to the
wavelet ¥ (instead of V), in this chapter the symbol . (f) will be used. The wavelet
coefficients ¢, ,(f) and the wavelet transform of f are linked [16] by

Cnn(f) =272 Wy f (n27",27™). (8)

In this chapter we are interested in wavelet expansions of positive distributions,
i.e. tempered distributions (see Schwartz theorem in the next subsection), hence we
need the orthonormal wavelets have to belong to ./(R). In [10] it is shown that an
orthonormal wavelet from . (R) is an element of .#,(R). The existence of these
wavelets, the construction of orthonormal wavelets ¥ € .%(R) such that 1} e 2(R)
and the corresponding multidimensional wavelets can be found in [12].

2.2 Tempered and Positive Definite Distributions

In the distribution theory it is convenient to have the regularizing functions ¢ as pos-
itive definite test functions (rarely functions of positive type). In brief, this is realized
by passing from the test function ¢ to ¢ * 5, where 35_(\x/) = ¢ (—x). It is possible to
assume that the regularizing function ¢ is a test function which is both even, positive
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and definite positive with a never vanishing Fourier transform having the same prop-
erties [6]. The classical Bochner’s theorem is an important result since it links this
family of functions with the Radon measure, thus providing a full characterization
of positive definite functions.

A generalization of this mathematical concept can be provided via distribution
theory.

Definition 1 (Positive definite distribution) A distribution T on R such that T (¢> * 5
> 0, for every test function ¢, is called positive definite distribution (rarely of positive
type).

The definition above generalizes clearly the concept of positive function, i.e. every
positive definite function is also a positive definite distribution. The given definition
is not constructive and does not provide much information about the position of
this family of distributions in the distribution theory. A generalization of Bochner’s
theorem, as derived by Schwartz, goes in this direction.

Theorem 1 (Schwartz) A distribution T on R is definite positive if and only if T €
' (R) and its Fourier transform is a positive Radon measure.

Proof Tt follows from the Bochner’s theorem (see [6]). |

Three remarkable examples of positive definite distributions are the Dirac impulse 8,
the Cantor measure on the Cantor set and the distribution associated to the Poisson
summation formula (see [6]).

3 Wavelet Expansions of Positive Definite Distributions

In this section, a theorem concerning the wavelet decomposition in the function space
S (R) is presented in order to obtain an its suitable generalization for a tempered
distribution. In the last subsection an interesting example is presented and discussed.

3.1 Main Results About the Wavelet Decomposition in . (R)

A brief summary of the wavelet expansion theory for the space .#,(R) is presented.
The following statement provides different results with regard to this purpose.

Theorem 2 (Wavelet expansion on ./ (R)) Let ¢ € A R), f € 7 o(R) and let
Y € S (R) be an orthonormal wavelet. Then

=2 D cunl® Vin, ©)

meZ nel

1. ¢ can be expressed as

with convergence in .H(R);
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2. the wavelet expansion series of f, namely

f= ZZ Cmn(F) Y, (10

meZ nel

converges in . o(R);
3.

(f’ ¢> = Z Z Cm,n(f) C,Cﬁ,n((ﬁ)-

meZ nel

Proof The first property follows from the definition of wavelet coefficient provided
in (8). The second and third properties are direct consequences of (9) (for more
details see [16]). m]

The previous theorem shows the convergence of the wavelet series on the function
spaces .75 (R) and .7 (R). In the next subsection we will try to extend these results
to the case of a tempered distribution f.

3.2 Wavelet Decomposition for Positive Definite Distributions

In Sect. 2.1 the functional space .7, (R) has been defined as the space of the functions
¢ € L (R) such that all the moments vanish, namely (5) holds. Therefore .#(R) is
a closed subspace of ./(R). From the Theorem 2 the following convergence result
for the wavelet expansions of positive definite distributions follows.

Theorem 3 Let ¢ € AR), f € ' (R) and let € S (R) be an orthonormal
wavelet. Under these hypotheses it is

(F 0y =" cnnlf) (@) (1)

meZ neZ

Proof Since ¢ € #H(R), it follows that the product (f, ¢) is an element of A (R).
This means that even if the property 2 of the Theorem 2 does not hold, the left-hand
side of (11) belonging to .#(IR) exists in the sense of the Theorem 2. By using (9),
and taking into account that ¢ € .7,(R), we get

F=2"2" cnn(®) Yo
meZ ne’

therefore

o) =D > e () (- Vmnd = D D ) (P ).

meZ neZ meZ neZ

The proof follows directly by recalling the meaning of c;, , (see Sect.2.1). O
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If all the hypotheses of the previous theorem are satisfied and the Fourier transform
of f is a positive Radon measure, according to the Schwartz theorem (see Sect.2.2) f
is nothing but a positive definite distribution. Therefore the thesis of the Theorem 3
holds for every positive definite distribution.

3.3 Example and Open Problem

Let us consider the distribution associated to the Poisson summation formula [6],
namely the distribution 7 given by

o0 ei)(k
T = = 12
fx) k:Z_:oock = (12)

where f € LL_(R) is a 2-periodic function, ¢ are its Fourier coefficients and the

Fourier transform of f is defined by

Flw) = % / F) e d. (13)

In [6] it is shown that T is a positive definite distribution. In order to apply the
Theorem 3 to this distribution, a wavelet family belonging to the function space
o (R) has to be chosen. The Shannon wavelet is defined [2] by

Yo (X) = sinc(x — 1/2) — 2sinc(2x — 1), (14)

Since its scaling function is simply given by ¢ (x) = sinc(x) [2], this wavelet
family satisfies the hypotheses of the Theorem 3. Hence (11) holds, namely

(Fod) =D D" conlf) (@) (15)

meZ neZ

where the coefficient c;, ,(¢) can be easily computed being ¢ (x) = sinc(x). A

remarkable result [2] is that the reconstruction formula (6) for Shannon wavelets
enables to compute the derivatives of f in terms of the wavelet decomposition, i.e.

d! > d! e d!
@ :;‘ @ @qb,?(xw; kZ Bl 1 VR, (16)

if f € L*(R) and f € C? with g sufficiently high. In order to generalize the previous
equation, given that in our case f is a tempered distribution, it should be written in
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the distribution sense. At the state of the art, this is an open problem. Since (16)
enables us to approximate a function and its derivatives, the proposed problem might
provide interesting results.

4 Fractional Calculus of Complex Functions
in the distribution sense

In the first part of this section, the generalization of the distribution theory to any
complex-valued function of a complex variable is presented in order to lay the foun-
dations for a fractional-wavelet analysis of complex functions in the distribution
sense. In the second part, a definition of fractional derivative in the complex plane,
which can be reinterpreted in terms of the distribution theory, is presented.

4.1 A Complex-Variable Distribution Theory

A generalization of the distribution theory to C now becomes necessary. Luckily, this
topic is widely discussed in [4] and the basic properties of the complex generalized
functions are summarized in the following statement below.

Theorem 4 Let f, g, ¢, ¥ be complex-valued functions of a complex variable s,
a,b e C, y € Ry, and suppose that the inner products of (1)-(5) are defined and
convergent over (0, 00). If y € 2'(C), ¢ € 2(C) and 59 € C : R(sg) = oy, the fol-
lowing properties hold true.

1.

(F(),ad(s) + by () = alf (), $(5) + b ) Y&, o

[ (F(s) + g(5), 9 (5)) = (F(5), p(s)) + (g(5), P (5)), (linearity)

2.

{f(s =50, @) )gsy=0 = ) @G+ 50)(y)=0—0y-  (shift in C)
3.

1
Frs). ¢new=o = 7 <f(y), ¢ (1)> . (scaling)
v] 7] s
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4.
o+ioco
(f (s) * g(s), P ())gi(5)=0 =<f(y)’/ 85 =ye) dS> ;
o—ico R(y)=%
with y = £ 4+ iQ. (convolution)
5.

(derivation)

(f7(9), p(5)) = (=1)"(f(5), 6™ (5)),
{f"(9)8(s), 9(5)) = —{f(s), &' ()P (s)).
Proof These properties immediately follow from the definition of distribution (for
further details, see [4]). m|

The Dirac impulse § can be extended in the complex plane without any difficulties
introducing the generalized Dirac impulse £ by a definition based on its integral about
the origin [3]. The & impulse (or generalized impulse) is a complex-valued function
of the complex variable s = o + iw defined by

i90), o =0,
(&(s), D ())gi(5)=0 = {0’ _— (I7)
ie. )
&) =0, s#0,
/ E@w)dw =1, otherwise,
hence

E(iw) = 5(w). (18)

Its main properties (linearity, scaling, convolution, etc.) immediately follow from
the Theorem 4. Another important result is that the £ impulse can be viewed as the
limit of a progressively narrowing and increasing height sequence of functions as
& — 0, namely the same property which holds for § [3, 4]. In the classical theory, this
sequence is represented by a family of rectangular or Gaussian windows, while it is
provided by a cylindrical sequence in the complex domain (see Fig. 1). The Gaussian
sequence used to approximate the Dirac impulse is

1 2
— e ¥ /s’
80 =T
while its complex generalization is simphll given by
We(s) = —— e W7, (19)

J7e
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(b)

Fig.1 3D plots of the!ws (s=x+ iy)| fore = 1 (a)and & = 1072 (b). They provide a geometrical
interpretation of (20)

It is not hard to show [4] that

E(s) = lin}) we(s). (20)
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Figure 1 illustrates how w, approximates & for ¢ close to 0 according to the pre-
vious equation.
Let

= /g(s)¢(s)ds, 2D

1

be the integral along a straight line / in the complex plane. If the origin does not

belong to the line , it can be described by s = 5o + re’, where sy # 0 and s # 0

for every sg, r and 6. Both in this case and if the impulse is a Gaussian sequence,

I = 0 [4]. Hence, we have to consider only the case when the origin belongs to /.
If w, is a Gaussian or cylinder sequence, since s = r e it is [4]

[=¢" / 8(r)¢ (re’p) dr
therefore
£ (r eig) = 85(r) = E(iw) = 8(w). (22)

The previous equation justifies the definition (18). This generalization of the
distribution theory to C is suitable to several applications in Laplace, z transforms,
as well as in differential and difference equations [3, 4].

4.2 The Complex Fractional Derivative Operator
in the Distribution Sense

The well-know convolution method, due to Schwartz [17], is based on the possibility
to write the Riemann—Liouville fractional integral I* [15] with lower boundary a = 0
as a convolution, i.e.

oz 1

( )’

1f (x) & m / FO—0*'dt = f(x) *

(23)

where the function o
x§ = x%u(x), (24)

defines the regular distribution
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[e.]

CAES /X“¢>(X)dx, Vo € Z(R), (25)

0

fora > —1 (indeed, the integral above makes sense if 9(«) > —1) [8]. Formula (23)

can be written as a convolution without the restriction @ = 0 defining x§ = x* u(x —

a) instead of (24). Clearly (23) makes sense if the associated convolution is valid.
Following the same approach provided for the real fractional calculus (distribution

sense) [8], we can denote
1

o
Po(x) = T'(@) ,

(26)

and hence (23) becomes

If(x) = (x) * ¢a (x). 27

Formula (27) shows that I* is suitable to define real fractional derivatives in
the distribution sense. Moreover, ¢, (x) satisfies the semigroup property [8], i.e.
Do (X) * @y (X) = Poiy (x) if @ and n have real parts greater than zero.

Indeed, under these hypotheses it is

X

I(@) P () 6 0) % () = 22 5x] = /ya—l(x Cylay,

0
By a change of variables y = xt, the right-hand side (RHS) becomes

x 1

/(xt)“_] (x—xt)xdr = X! / A =) xdt = x2 B(a, )
0 0
_ et T@T ()

= ey = T @ T ) ey,

where B is the Euler beta function [1].

The close link between the Riemann—Liouville fractional integral and the Caputo
fractional derivative [15] justifies the reason for which the distribution theory can be
applied to the latter.

Ortigueira’s generalization of the a-order Caputo fractional derivative ¢cD” to the
complex plane is defined [13] by

i(mr—0)(a—m) (m) i0
def € fU (xe" + )
DYf(s) = dx
D) I'(m—a) xo—m+l

. (28)
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where f is a complex-valued function of the complex variable s, m — 1 <o <m €
Z*t and 6 € [O, 2mr). This fractional operator is defined such that the integral and
derivative signs can be exchanged [13], hence

00
ei(rr—@)(a—m) dm f(xeiﬁ +S)

I'(m—a) ds xo—m+l
0

9 =

i(nf%)(afm) dam . .
— e—_ f(Z + S) ZM7Dt71 eflO(i){fi)Eﬂﬁ’dZ
'm—ao) dsm
0

in

/ Fls =) (P (<18 = S gntnr
0

ein(a—m) dm

:F(m—(x)ds_’" I'(m—a)
dm I dm Sﬁ_a_l
.@(f(s)*s+ )= T (f(s)*—r(m_a) ,
where the function sﬁf"‘*l = 5" yu(R(s)) u(I(s)) is the complex counterpart of

(24). Indeed, the function sﬁfo‘*l defines the regular distribution

oo

(T @ () = / " p(s)ds, Vo € Z(0), (29)

0

in the sense of distribution theory for complex functions (see Theorem 4 in Sect.4.1).
This definition holds because m — o > 0 and makes sense if the associated convo-
lution is valid.

As in the real case, we can introduce the function

_ (30)
Pn—a(s) = m,
hence -
@) = ds—m(ﬂs) * G (9)). 31)

Therefore (31) is the complex counterpart of (27), namely it provides the fractional
derivative on the function space 2’ (C).

In this case the semigroup property is not satisfied, i.e. ¢,—q(s) * ¢,_g(s) #
Om-ain-p()ifm—1<a<meZrandn—1<p <nel'.

Indeed,
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Fm—a) I'(n—B) Guals) * ppp = 54" x5 7P

(o]

— /Zmal(s _ Z)nfﬂfl dZ. (32)

0

By a change of variables z = sw, the RHS becomes

[ee]

00
/(Sw)m—oz—l(s _ Sw)n—ﬁ—l sdw = sij:—a-kn—ﬁ—l '/Wm—(x—](] _ W)n—f}—l dw
0

0
1

sﬁ—a-kn—ﬁ—l/wm—a—l(l _ W)n—ﬁ—l dw

0
=5} B —a,n— ) =Tm—a) T (1= B) bnainp-

The semigroup property does not hold since in (28) the upper limit of integration
is infinity, hence the last computation does not provide the Euler beta function.

5 Fractional Derivative of Complex Wavelets

The aim of this section is to show the power of the Ortigueira-Caputo fractional
derivative by computing the fractional derivative of the Gabor—Morlet wavelet.

5.1 Gabor-Morlet Wavelet

The Gabor—Morlet wavelet (sometimes Gabor wavelet or complex Morlet wavelet)
is a complex wavelet widely used in geophysical applications. It is given [18] by

1 2
VYo, (X) = N o= gi2fex o)
b

. o 5 .
In the current literature, a common choice is taking f, = 2 and f, = > since the
b4

value w, = 27f. = 5 is often used in the applications. Hence, we get

—x%/2

1 .
Yo (X) = Ee e, (34)

Its fractional derivative is provided by the following statement.
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Fig.2 Real part (solid curve) and imaginary part (dashed curve) for the a-order fractional derivative

of the Gabor-Morlet wavelet with @« = 0.4 (a) and «

= 1.4 (b)
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Theorem 5 Lets € C such thatR(s) =0and letm —1 <a <m € ZT. The a-
order fractional derivative of the Gabor—Morlet wavelet is given by

wéx)(s) — i2mlel 0% Y, (5). (35)

Proof 1Tt is easy to show this property with a direct computation following the same
approach given in [9] for the Riemann ¢ function. Indeed, since

(o]

\/e(yeingix)wf - lm+] dy — efiﬂ(mfa) eich(_wc)afm F(m _ 0[),
yo-

0
we get

1 , dam ,
1/&? (s = ix) = ——e/>™ e /2 porm (es“’") =™y (5).  (36)

V2 < dsm
m]

This theorem shows that the «-order fractional derivative of the Gabor—Morlet
wavelet is nothing more than the product of the same wavelet ¥, (s = ix) and the
complex factor ™7 )%,

Therefore the real and imaginary parts of this fractional derivative still belong to
the family of Gabor—Morlet wavelets, as shown in Fig. 2.

6 Conclusion

In this chapter, a wavelet expansion of positive definite distributions is provided.
The Ortigueira-Caputo fractional operator, which provides the fractional derivative
of a complex function, is rewritten in the distribution sense. The fractional derivative
of the Gabor—Morlet wavelet is computed. An open problem, concerning the pos-
sibility to generalize the reconstruction formula for Shannon wavelets through the
distribution theory, is proposed. This fractional derivative operator has already given
some results in analytic number theory (see for instance [9]) and could be able to
describe different physical phenomena, while the proposed wavelet expansion could
be applied to other distribution families in order to obtain another generalization of
the Theorem 2.
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Linear Classification of Data with Support
Vector Machines and Generalized Support
Vector Machines

Talat Nazir, Xiaomin Qi and Sergei Silvestrov

Abstract In this paper, we study the support vector machine and introduced the
notion of generalized support vector machine for classification of data. We show that
the problem of generalized support vector machine is equivalent to the problem of
generalized variational inequality and establish various results for the existence of
solutions. Moreover, we provide various examples to support our results.

Keywords Linear classification « Support vector machine - Generalized support
vector machine + Kernel function

1 Support Vector Machine

Over the last decade, support vector machines (SVMs) [2, 3, 13, 14, 18] have been
revealed as a powerful and important tool for pattern classification and regression. It
has been used in various applications such as text classification [5], facial expression
recognition [9], gene analysis [4] and many others [1, 6-8, 10-12, 15, 19-22].
Recently, Wang et al. [16] presented SVM based fault classifier design for a water
level control system. They also studied the SVM classifier based fault diagnosis for
a water level process [17].
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For the standard support vector classification (SVC), the basic idea is to find
the optimal separating hyperplane between the positive and negative examples. The
optimal hyperplane may be obtained by maximizing the margin between two parallel
hyperplanes, which involves the minimization of a quadratic programming problem.

Support Vector Machines are based on the concept of decision planes that define
decision boundaries. A decision plane is one that separates between a set of objects
having different class memberships.

Support Vector Machines can be thought of as a method for constructing a special
kind of rule, called a linear classifier, in a way that produces classifiers with theoretical
guarantees of good predictive performance (the quality of classification on unseen
data).

In this paper, we study the problems of support vector machine and define general-
ized support vector machine. We also show the sufficient conditions for the existence
of solutions for problems of generalized support vector machine. We also support
our results with various examples.

Thought this paper, by N, R, R” and R;" we denote the set of all natural numbers,
the set of all real numbers, the set of all n-tuples real numbers, the set of all n-tuples
of nonnegative real numbers, respectively.

Also, we consider ||-|| and < -, - > as Euclidean norm and usual inner product on
R", respectively.

Furthermore, for two vectors X,y € R”, we say that x <y if and only if x; < y;
foralli € {1, 2, ..., n}, where x; and y; are the components of x and y, respectively.

2 Linear Classifiers

Binary classification is frequently performed by using a function f : R” — R in
the following way: the input x = (x, ..., x,) is assigned to the positive class if,
f (x) > 0 and otherwise to the negative class. We consider the case where f (X) is
a linear function of x, so that it can be written as

&) =(w.x)+b=

= i wix; + b,
i=1

where w € R”, b € R are the parameters that control the function and the decision
rule is given by sgn (f (x)). The learning methodology implies that these parameters
must be learned from the data.

Definition 1 We define the functional margin of an example (Xx, y;) with respect
to a hyperplane (w, b) to be the quantity

Vi = Yt (W, X¢) +b),
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where y; € {—1, 1}. Note that y; > 0 implies correct classification of (xx, yi). If we
replace functional margin by geometric margin we obtain the equivalent quantity

for the normalized linear function (“%”w Mb) , which therefore measures the

Euclidean distances of the points from the decision boundary in the input space.

Actually geometric margin can be written as

To find the hyperplane which has maximal geometric margin for a training set S
means to find maximal y . For convenience, we let y = 1, the objective function can

be written as |

max —-.
Iwl
Of course, there are some constraints for the optimization problem. According to

the definition of margin, we have y; ((w,x¢) +b) > 1, k =1, ..., 1. We rewrite the
equivalent formation of the objective function with the constraints as

1
min 3 Iwl? st ye(w,xe)+b)>1,k=1,...,1

We denote this problem by SVM.

3 Generalized Support Vector Machines

We replace w, b by W, B respectively. The control function F : R” — R" is defined
as
F(x)=Wx+ B, @))

where W € R"*" B € R" are the parameters of control function.
Define
7=y (Wx,+B)>1 for k=1,2,...,1, )

where y; € {(—1,—1,...,—=1), (1, 1,..., 1)} is n-dimensional vector.

Definition 2 We define amap G : R" — R/, by
G (w) = (Iw:ll, lwill ... llwi ) for i=1,2,....n, 3)

where w; are the rows of W,,, fori =1,2,...,n.
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The problem is to find w; € R” that satisfy

min G (w;) s.t. n >0, €]

w,eW
where n =y (Wx; + B) — 1.

We call this problem a Generalized Support Vector Machine (GSVM).
The GSVM is equivalent to

find w; e W: (G'(W),v—w;) >0 forall veR" with n>0,
or more specifically
find w; e W: (nG'(w;)),v—w;)>0 forall veR" (5)

Hence the problem of GSVM becomes the problem of generalized variational
inequality.

Example 1 Letus take the group of points of positive class (1, 0) , (0, 1) and negative
class (—1, 0), (0, —1).

First we use SVM to solve this problem to find the hyperplane < w, x > +b =0
that separates these two kinds of points. Obviously, we know that the hyperplane is
H which is shown in the Fig. 1.

Fig.1 Example 1 A

(0, 1)

(1, 0)
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For two positive points, we have

1
(w1, w2) [O] +b=1,
0
(W1,W2)|:1]+b= 1,
which implies

wi+b=1,
wy+b=1.

For two negative points, we have
wrown) | | +p=—1
Wi, Wa O - ’
0
(Wi, w2) [_1] +b=-1,
which implies that

—wi+b=-1,
—wy +b=—1.

From the equations, we get w = (1, 1) and b = 0. The result is |w| = V2.
Now we apply GSVM for this data. For two positive points, we have

e lo]+ (] =[1]
e ][9]+ ] =]
el [n]=0] o 2]+ [n)-[1 @

For two negative points, we have

b e R

which gives
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and

which provides

IR A Y e e

From (6) and (7), we get
|11 b |0
w=ii] e=[a]-[0)

min G (w;) = min {G (W), G (W2)} = (+/2, V2).

Thus

Hence we get w = (1, 1) that minimizes G (w;) fori =1, 2.

Remark 1 The above example shows that we get the same result by applying any
method SVM and GSVM.

In the next example, we consider the two distinct groups of data, first solve both
data for separate cases and then solve it for combined case for both methods SVM
and GSVM.

Example 2 Let us consider the three categories of data.

Situation 1 Suppose that, we have data (1, 0), (0, 1) as positive class and data
(—1/2,0), (0, —1/2) as negative class shown in Fig. 2.

Using SVM to solve this problem, we have

(w1, wa) |:(l):| +b=1,

and

(Wi, wa) |:(1)] +b=1,

which implies
wi+b=1 and wr+b=1. (8)

For two negative points, we have

(Wi, wa) [_5)/2] +b=-1,
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Fig. 2 Example 2, A
situation 1

(1, 0
>
(-1/2, 0
(0, -1/2)
and
( ) 0 +b=-1
Wi, W2 ~1/2 =—1
which gives
wi w2
——+b=—-1 and — —+b=-1. 9
5t an, 5 T ©))

From (8) and (9), we get w = (%, ‘3‘) with b = ’Tl, where ||w| = @

For situation 2, we consider the data (%, 0) and (O, %) as positive class, data
(=2, 0) and (0, —2) as negative class shown in Fig. 3.

Using SVM to solve this problem, we have

(w1, wa) [1(/)2] +b=1,

and
0
(Wl,Wz)[l/z] +b=1,

which implies

1 1
switb=1 and swy+b=1. (10)

From the negative points, we have

(w1, wa) [_02] +b=—1,
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Fig. 3 Example 2, A
situation 2
> | ](0. 1/2)
2 0 (1/2, 0)
—0 i,
b

and
(w1, w2) [_02] th=-1,

implies that
—2wi+b=—-1 and —2w,+b=—1. (11)

From (10) and (11), we getw = (£, %) and b = 2 with ||w]| = @
In the next situation 3, we combine these two groups of data. Now, we have data
(1/2,0), (0, 1/2), (1,0), (0, 1) as positive class and (—1/2, 0), (0, —1/2), (=2, 0),

(0, —2) as negative class shown in Fig. 4.
Using SVM to solve this problem, we have

(wl,w»[l{)z]w: L

and
0
(Wl,Wz)I:l/z] +b=1,

which implies
wi/24+b=1 and wy/2+4+b=1. (12)

For two negative points, we have

(wy, wn) [_%)/2] +b=-—1,
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Fig. 4 Example 2, A
situation 3

2, 0
Q)
K (-1/2,
0, 2) (I)
and
( ) 0 +b=-1
Wi, W2 ~1/2 =—1
implies that
1 1
—§w1+b:—1 and —sz—l—b:—l. (13)

From (12) and (13), we obtain w = (2, 2) and b = 0, where ||w| = 2+/2.
Now we solve the same problem for all three situations by using GSVM.
For two positive points of situation 1, we have

wipwig || 1 b 1
e] Lol +[R] =1
wiptwiz [| 0 bi| _[1
e] U+ [R] =[]
which implies
Wi by |1 Wiz by| |1
) R R ) R 1 H AT

Again, for the negative points, we have

Wi w —1/2 by| | -1
e |7+ (] =12
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Wil Wi L K
Wo1 Woo —1/2 bz B —1 |’
which gives
—%Wu by -1 —%le b, -1
1 + b | = | and | + b | = uE 15)
— W21 2 - —>Wn 2 -

From (14) and (15), we get
:| and B = |:_ :|

|
42 42

iy G =557 5

and

Wk Wik

TIFSERITS
W= W=

Thus we get

Hence we get w = (;—‘, %‘) that minimize G (w;) fori = 1, 2.
Now, for positive points of situation 2, we have

wi1 W12 1/2 + b] _ 1

W1 W 0 by |1]’

Wi w2 0 n bi| [1

war w || 1/2 bL| |1
which gives

1 1
W1 bl _[1 W12 bi|_ |1
e [n]-00 e (] [n]-0] o

For two negative points for this case, we have

B il R P
R | A o

and

and
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which gives

—2W1] b] —1 —2W12 b] —1
|:—2w21:|+[b2:|=|:—1:| and |:—2W22]+|:b2]=|:—1:|' an

Thus, we obtain that

Thus we get

ie(l,2}

min G (w;) = (4& ﬂ)

Hence we getw = (‘5—‘, ‘51) that minimize G (w;) fori =1, 2.
For the positive points of the combined data for situation 3, we have

wirwia || 1/2 + bi| |1

Wa1 W2 0 by | |1|°

wi1 W12 0 + bl _ 1

wor wa || 1/2 by| | 1|
which gives

1 1
Wi bl _[1 W12 by| |1
e [0 e e [n]=[] o

For two negative points for this case, we have

e+ ] =[5

and

and

which gives

; 1
—5Wi1 by | —1 1w bl [-1
|:_%W21:|+[b2}_|:_1} and [—%w22:|+[b2}_[—1] (19)
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From this, we obtain that
22 0
W—|:22] and B—[Oi|.

g{lli%} G (W) = (2v/2,2V2).

Thus we get

Hence we get w = (2, 2) that minimizes G (w;) fori =1, 2.

Proposition 1 Let G : R" — R’ be a differentiable operator. An element w* € R"
minimize G if and only if G' (W*) = 0, that is, w* € R" solves GSVM if and only if
G’ (w*) =0.

Proof Let G’ (w*) = 0, then for all v € R”",
<nG' (W), v—w'>=<0,v—w'> = 0.
Consequently, the inequality
<nG' (W), v—w'>=<0,v—w'> >0

holds for all v € R". Hence w* € R” solves the problem of GSVM.
Conversely, assume that w* € R” satisfies

<nG (W),v—w'> >0V veR"
Taking v = w* — G’ (w*) in the above inequality implies that
<nG' (wW"),-G' (w*) > = 0,

which further implies
—nIG'WHIP = o.

Since n > 0, we get G'(w*) = 0. O

Definition 3 Let K be a closed and convex subset of R”. Then, for every point
x € R", there exists a unique nearest point in K, denoted by Pk (x), such that
Ix — Pg (x)|| < |Ix —y]|l for all y € K and also note that Py (x) = xifx € K. The
mapping Pk is called the metric projection of R" onto K. It is well known that
Py : R" — K is characterized by the properties:

(i) Pr(x) =zforx e R"ifandonlyif <z,y—z>><x,y—z>forally e
RI‘L;
(i) Foreveryx,y € R", [|Px (X) = Px WI* < < x =y, Px (X) = Pk (¥) >;
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(iii) ||Pgx (x) — Px ()|l < |Ix —y]||, for every x, y € R", that is, Px is a nonexpan-
sive map.

Proposition 2 Let G : R" — R’ be a differentiable operator. An element w* € R"
minimizes mapping G defined in (3) if and only if w* is the fixed point of map

Pry (I — pG') :R" > R, forany p > 0.
that is,

w* = Prr (I — pG') (W)
= Pay (W = pG' (W),

: - H n n
where Py is a projection map from R" to R, .

Proof Suppose w* € R’ is solution of GSV M. Then for > 0, we have
<nG' (W), w—w"> > 0 forall weR".
Adding < w*, w — w* > on both sides, we get
<wiw-—w'> +<nG (W), w—w">><w"w—w"> forall weR"
which further implies that
<w,wW—w'>> <w'—nG (W), w—w"> forall weR"
which is possible only if W* = Pg» (w* — pG’ (w*)), that is, w* is the fixed point
of G'.
Conversely, let w* = Pp: (W* — pG’ (w*)). Then we have
<wSwW—w'>> <w'—nG' (W), w—w"> forall weR"
which implies
<WW—Ww'>—<w -G (W), w—w">> 0 forall weR"

and so
<nG' (W), w—w">> 0 forall weR".

Thus w* € ", is the solution of GSVM. O

Definition 4 A map G : R” — R” is said to be
(I) L-Lipschitz if for every L > 0,

IGx) —-GWI =Llx—yl foral x,yeR"
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(IT) monotone if
<GXxX)—G(y),x—y> >0 forall x,y e R".
(1) strictly monotone if
<GXx)—G(y),x—y> > 0 forall x,yeR" with x #Yy.
(IV) a-strongly monotone if
<GX) —G(y),x—y> > a|x—y|> forall x,yeR"

Note that, every a-strongly monotone map G : R” — R” is strictly monotone and
every strictly monotone map is monotone.

Example 3 Let G : R" — R” be a mapping defined as
G (Wl) = aWw; + ,3,

where « is any non negative scalar and B is any real number. Then G is Lipschitz
continuous with Lipschitz constant L = «.
Also, for any x,y € R",

<GX -Gy, x—y> = alx—yl?,

which shows that G is a-strongly monotone.

Theorem 1 Let K CR" be closed and convex and G’ :R" — K is strictly
monotone. If there exists a W* € K which is the solution of GSV M, then w* is
unique in K.

Proof Suppose that w}, w; € K withw] # wj be the two solutions of GSV M. Then
we have
<nG' (wi),w—wj> > 0 forall weR" (20)

and
<nG/(w§),w—w§> > (0 forall weR", 2D

where 1 > 0. Putting w = wj in (20) and w = w7 in (21), we get
< nG’ (WT) , Wy —wi > > 0, (22)

and
<nG' (w3).,wj—ws> > 0. (23)

Equation (22) can be further written as
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<-—nG' (W), wi—ws> > 0.

Adding (23) and (24) implies that

v
L

<0G’ (w3) —nG' (wi). Wi —wj >

which implies
n<G (W) —G' (wW3),wj—ws> < 0,

or equivalently,
<G (W) =G (w3).wj—ws> < 0.

Since G’ is strictly monotone, we must have
<G (W) =G (W3) . wi—wj > > 0,

which contradicts (25). Thus wj = w3.

369

(24)

(25)

(26)

O

Theorem 2 Let K C R" be closed and convex. If the map G’ : R" — K is L-
Lipchitz and o-strongly monotone, then there exists a unique w* € K which is the

solution of GSVM.

Proof Uniqueness: Suppose that wi, w; € K be the two solutions of GSV M, then

for n > 0, we have

<nG' (wj),w—wj> > 0 forall weR"

and

<nG' (wW3),w—wj; > > 0 forall weR"

Putting w = wj in (27) and w = wj in (28), we get
<nG' (W), ws—wi> > 0

and

*_

< nG’ (W;) , Wi —ws > > 0.
Equation (29) can be further written as
<-—nG' (W), wf—w;> > 0.
Adding (30) and (31) implies that

<nG' (w3) —nG' (W}),wi —w; > > 0,

27)

(28)

(29)

(30)

€29

(32)
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which implies
n<G (W) —G' (w5),wj—ws> < 0. (33)

Since G’ is «-strongly monotone, we have

an |wi—wi[* =0 < G (W) = G’ (w3) . wi —w; >
E O’
which implies that
an HWT —W; ”2 < 0.
As an > 0, we conclude ||w’f —w; H = 0 and hence w} = wj3.

Existence: As we know, if w* € R/, is solution of GSV M, then for n > 0 we
have
<nG' (W), w—w"> > 0 forall weR",

if and only if

W* = Ppt (W — pG'(W")) (34)
=F (w*) (say).

Now for any wy, w; € R, we have

|F(wh) = Fw)[” 39
= || Prr (W} — pG'(W))) — Pre (W} — pG' (W)
< |w; = 0G'W}) — (W} — pG' (Wi
= | (w} —w3) — p[G' W) — G’ w1
=< (Wj=w3) — p[G'(W})=G'(W3)], (W] —W3) — p[G'(W))—G'(W3)] >
= |wi—w; ||2 —2p < wi—w3, G'(W)—G'(w3) >

1G'wvp—G' W’

+0?

Since G’ is L-Lipchitz and «-strongly monotone, we get

[ (wi) = F (w3)]” < Wi = wi | = 200 | W} —wi
+L [t — i
= (14 p’L* —2pa) |w} — w} \2

)

that is
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|7 (w) = F(w) ]| <0 wi—w;

; (36)

where = /1 + p2L? — 2pa. Since p > 0, so that when p € (0, i—%‘), then we get
6 € [0, 1). Now, by using Banach contraction principle,, we obtain the fixed point
of map F, that is, there exists a unique w* € R’} such that

F (W) = Pay (W — pG'(W)

*

=w".

Hence w* € R, is the solution of GSVM. O
Example 4 Let us take the group of data of positive class (o, @, ..., ¢,—1,0),
(1,00, .00, 00-2,0,0,),...,(0, 22, 3, ..., oty) and negative class (kay, kay, . . .,
ka,_1,0), (kay, kas, ... kay_5,0, ko), ..., 0, kaz, kas, ...,

ka,) forn > 2, where each o; # O fori € Rand k # 1.
Amap G : R" — R is given by

G wi) = will lwill, - liwil) for i =1,2,...,n,

where w; are the rows of W,,, fori =1, 2, ..., n. Then we have

1
G (wj)=——w; for i=1,2,...,n.

[[will

Now from the given data, we get

2 o) o a,
W= —o
=D =k |
S .
o) o oy
and so we have
G (w;) 2 1+1+ +1(11 1) for i=1,2
W,)) = —FmFm——F7—7— | —= — — or = PR /)
' (n=1D A=k a% a% af T o
and
, 1 1 1 1 )
G (w;) = - 1 = = for i=1,2,...,n.
1, L\ o oy,
alz—i-a%—i- + 1 &2

Note that, for any w;, w, € W,
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|G W) = G (wa)| =0 = LIlwi — wa
is satisfied, where L is any nonnegative real number. Also

<G (w) =G (W), Wi —wr > > 0,

which shows that G’ is monotone operator. Moreover, w = ;(l, L, e, L
(n=1)(1—=k) ‘a1’ @ ay

. . : _ 2 1 1 1

is the solution of GSVM with ||w]| = m\/g + 7 R e

Example 5 Let us take the group of data of positive class («q, a2, ..., &y, 0,0, ...,

O)’ (O7a27a37"'5am+170507"‘70)7"‘7 (Ol],()[z,...,Olm_l,(),o,...,(),oln) and

negative class (koyp, koo, ..., k0,,0,0,...,0), (0,kar, ko3, ..., KQyt1, 0,

0,...,0),..., (kay,kas, ...,k —1,0,0,...,0,ka,) forn > m > 1, where each

a; #0fori e Nandx # 1.

Amap G : R" — R is given by
G (w;) = (Iw:ll, [Iwill ... llwg ) for i =1,2,...,n,
where w; are the rows of W,,, fori =1, 2, ..., n. Then we have

1
G (wj)=——w; for i=1,2,...,n.

[[will

Now from the given data, we get

) o a_L

U A

2 o o
m (1 —k)

S N

o] o oy

and so we have

2 1 1 1 .
G(WZ)Zm\/—Z-F—z-F—Fa—Z(I,I,,l) for l=1,2,...,n,

o o) n
and
/ 1 11 1 ,
G (w;) = ——,...,— ) for i=1,2,...,n.
\/ale+aL%+...+a]_3 o o o

It is easy to verify that G’ is monotone and Lipchitz continuous operator. The vector
11 1 _ 2 1 1 1
. a—”) solves GSVM and ||w| = m\/E + s R

2 (L L 1
m(l—k) ‘a1 an’ " "‘;21.

W =
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Example 6 Consider («1,0,0), (0,07,0), (0,0,a3), (B1,0,0), (0,B,0),
(0,0, B3) as data of positive class and (kay, 0, 0), (0, kan, 0), (0,0, k), (kB
0,0), (0, kB>, 0), (0, 0, kB3) as negative class of data, where «;, B; and k are positive
real numbers with each o; < 8; fori = 1,2,3 and k # 1.

The map G : R* — R| is given as

G wi) = will lwill, - liwill) for i =1,2,....n,

where w; are the rows of W53 fori = 1, 2, 3. Then we have

1
G (wj))=——w,; for i=1,2,3.
flw: |l

Now from the given data, we get

2 11 1
W =
(l _ k) o a2 a3

and so we have

G (w) 2(1+1+1 1+1+1 1+1+1)
Wi = 5 ) T 5 ) o ) ) 5 )
A=k Vel oF ' Val o d'\Vo? o o

and

, 1 1 1 1
G W)=, —, — ).
L4 L4 1L \op oz a3
a3
Note that, for any w;, w, € W,
|G" (W) = G"(w2)| =0=L|w; —ws]
is satisfied for L > 0. Also

<G (W) =G (W), wi—wr> > 0

2

is satisfied, which shows that G’ is monotone operator. Moreover, w = o

L1 1y : : _ 2 1 1 1
2" o a3) is the solution of GSVM with [|w| = 555 /a_f +ato

Example 7 Let us take the group of data of positive class (1, 0, 0), (1, 1,0), (0, 1, 1)

and negative class (—%, 0,0), (—%, —%, 0), (0, =1, —1). Now from the given data,

2072
we have
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E
W=|3%01%
303
with 4
G(wi)=§<ﬁ,ﬁ,ﬁ) for i=1,2,3,
and

L
V2

It is easy to verify that G’ is monotone operator and Lipchitz continuous. Moreover,
w = (2,0, 3) is the solution of GSVM with [|w|| = 3+/2.

G (w;)) = —(1,0,1) for i=1,23.

4 Conclusion

Recently many results appeared in the literature addressing the problems related
to the support vector machine and its applications. In this paper, we initiated the
study of generalized support vector machine and presented linear classification of
data by using support vector machine and generalized support vector machine. We
also provided sufficient conditions under which the solution of generalized support
vector machine exists. Various examples are also presented to show the validity of
these results. Furthermore, one can study the results of generalized support vector
machine for nonlinear classification of data.

Acknowledgements Talat Nazir and Xiaomin Qi are grateful to the Erasmus Mundus project
FUSION for supporting the research visit to Milardalen University, Sweden, and to the Research
environment MAM in Mathematics and Applied Mathematics, Division of Applied Mathemat-
ics, the School of Education, Culture and Communication of Mélardalen University for creating
excellent research environment.

References

1. Adankon, M.M., Cheriet, M.: Model selection for the LS-SVM. Application to handwriting
recognition. Pattern Recognit. 42(12), 3264-3270 (2009)

2. Cortes, C., Vapnik, V.N.: Support-vector networks. Mach. Learn. 20(3), 273-297 (1995)

3. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other Kernel
Based Learning Methods. Cambridge University Press, Cambridge (2000)

4. Guyon, ., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using
support vector machines. Mach. Learn. 46(1-3), 389-422 (2002)

5. Joachims, T.: Text categorization with support vector machines: learning with many relevant
features. In: Proceedings of the European Conference on Machine Learning. Springer (1998)



Linear Classification of Data with Support Vector Machines ... 375

6.

7.

8.

9.

10.

12.
13.
14.
15.

16.

18.

19.

20.

21.

22.

Khan, N., Ksantini, R., Ahmad, I., Boufama, B.: A novel SVM+NDA model for classification
with an application to face recognition. Pattern Recognit. 45(1), 66-79 (2012)

Li, S., Kwok, J.T., Zhu, H., Wang, Y.: Texture classification using the support vector machines.
Pattern Recognit. 36(12), 2883-2893 (2003)

Liu, R., Wang, Y., Baba, T., Masumoto, D., Nagata, S.: SVM-based active feedback in image
retrieval using clustering and unlabeled data. Pattern Recognit. 41(8), 2645-2655 (2008)
Michel, P., Kaliouby, R. E.: Real time facial expresion recognition in video using support vector
machines. In: Proceedings of ICMI 2003, pp. 258-264 (2003)

Noble, W.S.: Support Vector Machine Applications in Computational Biology. MIT Press,
Cambridge (2004)

. Shao, Y., Lunetta, R.S.: Comparison of support vector machine, neural network, and CART

algorithms for the land-cover classification using limited training data points. ISPRS J. Pho-
togramm. Remote Sens. 70, 78-87 (2012)

Shao, Y.H., Chen, W.J., Deng, N.Y.: Nonparallel hyperplane support vector machine for binary
classification problems. Inf. Sci. 263, 22-35 (2014)

Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1996)

Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

Wang, X.Y., Wang, T., Bu, J.: Color image segmentation using pixel wise support vector
machine classification. Pattern Recognit. 44(4), 777-787 (2011)

Wang, D., Qi, X., Wen, S., Deng., M.: SVM based fault classifier design for a water level
control system. In: Proceedings of 2013 International Conference on Advanced Mechatronic
Systems, Luoyang, China, pp. 152-157 (2013)

. Wang, D, Qi, X., Wen, S., Dan, Y., Ouyang, L., Deng, M.: Robust nonlinear control and SVM

classifier based fault diagnosis for a water level process. ICIC Express Lett. 5(1), 767-774
(2014)

Weston, J., Watkins, C.: Multi-class Support Vector Machines. Technical report CSD-TR-
98-04, Department of Computer Science, Royal Holloway, University of London (1998)

Wu, Y.C., Lee, Y.-S., Yang, J.-C.: Robust and efficient multiclass SVM models for phrase
pattern recognition. Pattern Recognit. 41(9), 2874-2889 (2008)

Xue, Z., Ming, D., Song, W., Wan, B., Jin, S.: Infrared gait recognition based on wavelet
transform and support vector machine. Pattern Recognit. 43(8), 2904-2910 (2010)

Zhao, Z., Liu, J., Cox, J.: Safe and efficient screening for sparse support vector machine. In:
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD, New York, NY, USA, vol. 14, pp. 542-551 (2014)

Zuo, R., Carranza, E.J.M.: Support vector machine: a tool for mapping mineral prospectivity.
Comput. Geosci. 37(12), 1967-1975 (2011)



Linear and Nonlinear Classifiers of Data
with Support Vector Machines

and Generalized Support Vector
Machines

Talat Nazir, Xiaomin Qi and Sergei Silvestrov

Abstract The support vector machine for linear and nonlinear classification of data
is studied. The notion of generalized support vector machine for data classifications is
used. The problem of generalized support vector machine is shown to be equivalent to
the problem of generalized variational inequality and various results for the existence
of solutions are established. Moreover, examples supporting the results are provided.

Keywords Linear and nonlinear classification + Support vector machine - General-
ized support vector machine - Kernel function

1 Support Vector Machine

Support vector machines (SVM) [2, 3, 13, 14, 18] were developed by Vapnik et al.
(1995) and are gaining popularity due to many attractive features. As a very powerful
tool for data classification and regression, it has been used in many fields, such as
text classification [5], facial expression recognition [9], gene analysis [4] and many
others [1, 6-8, 10-12, 17, 19-22]. Recently, it has been used for faults classification
in a water level control system [15]. And a faults classifier based SVM is used to
diagnose the faults for a water level control process [16].

T. Nazir (X)) - X. Qi - S. Silvestrov

Division of Applied Mathematics, School of Education, Culture and Communication,
Milardalen University, Box 883, 721 23 Visteras, Sweden

e-mail: talat@ciit.net.pk

X. Qi
e-mail: xiaomin.qi @mdh.se

S. Silvestrov
e-mail: sergei.silvestrov@mdh.se

T. Nazir
Department of Mathematics, COMSATS Institute of Information Technology,
Abbottabad 22060, Pakistan

© Springer International Publishing Switzerland 2016 377
S. Silvestrov and M. Ranci¢ (eds.), Engineering Mathematics I1,

Springer Proceedings in Mathematics & Statistics 179,

DOI 10.1007/978-3-319-42105-6_18



378 T. Nazir et al.

The classification problems can be restricted to consideration of the two-class
problems without loss of generality. The goal of support vector classification (SVC)
is to separate the two classes by a hyperplane which can also work well on unseen
examples. The method is to find the optimal hyperplane that maximizes the margin
between two classes of data. The set of data is said to be optimally separated by the
hyperplane if it is separated without error and the distance between the closest data
is maximal. Support vector classification can be thought of a process using given
data to find the decision plane which can guarantee good predictive performance on
unseen data. And the process of finding the decision plane is a quadratic programming
process.

In this paper, we study the problems of support vector machine and generalized
support vector machine. We also show the sufficient conditions for the existence
of solutions for problems of generalized support vector machine. We also present
various examples to support these results.

Throughout this paper, by N, R, R"” and R} we denote the set of all natural
numbers, the set of all real numbers, the set of all n-tuples real numbers, the set of
all n-tuples of nonnegative real numbers, respectively.

Also, we consider ||-|| and < -, - > as Euclidean norm and usual inner product
on R”, respectively, such as, < X,y >=X.y = x1y; + X2y + - - + x,,, forall x =
(x1, %2, ..., X)), Y = V1, Y2, - - -, ¥) in R". Furthermore, for any two vectors X, y €
R", we say that x <yifandonlyifx; <y;foralli € {1,2,...,n}, where x; and y;
are the components of x and y, respectively.

1.1 Data Classification

Actually, complex real-world applications are always not linearly separable. Kernel
representations offer an alternative solution by projecting the data into a higher
dimensional feature space to increase the computational power of the linear learning
machine.

In order to learn linear or non-linear relations with a linear machine, a set of non-
linear features is selected. This is equivalent to applying a fixed non-linear mapping
function @ that transforms data in input space X to data in feature space f , in which
the linear machine can be used. For this classification, both spaces X and / need
to be vector spaces, where dimension of these two spaces may or may not be same.
When the given data is linearly separable, we consider @ as identity operator. For
binary classification of data, we consider the decision function f : R” — R, where
the input x = (xy, ..., x,) is assigned to the positive class if, f (x) > 0 and otherwise
to the negative class. The decision function is defined as

fX)=<w,® (X) > +b. (D)
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This means two steps will be built for non-linear machine: first a fixed non-linear
mapping of the data to a feature space, and then a linear machine is used to classify
them in the feature space.

In addition, the vector w is a linear combination of the support vectors in the
training data and can be written as

W= 0 (%), @

where each «; is Lagrange multiplier of the support vectors.
So the decision function can be rewritten as

fx) =0 (Z o (P (x) - @ (x)) + b), 3)

where o is a sign function.
The Kernel K has an associated feature with mapping @ , and it takes two inputs
and give their similarity in feature space f, thatis, K : f x f — R s defined as

KX, x) =@ (x;) - @ (X). 4)

Thus, the decision function from (3) becomes

f ) =0 aiK(xi,X) +b). 5)

Some useful kernels for real valued vectors are defined below:

(I) Linear kernel
K(x;,X) =Xx; - X.

(II) Polynomial kernel (of degree p)
Kxi,x) =& -x) or (x;-x+1)",

where p is a tunable parameter.
(IIT) Radial Basis Function (RBF) kernel

K (x;,x) = exp[—yIx; — x|]’],
where y is a hyperparameter (also called kernel bandwidth). The RBF kernel
corresponds to an infinite feature space.
(IV) Sigmoid Kernel
K(x;,x) = tanh (kx; - x4+ 6),

where k is a scalar and 6 is the displacement.
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(V) Inverse multi-quadratic kernel

_on—1/2
Kxi,x) = (Ix —xI>+y %) "7,

where y is a hyperparameter (also called kernel bandwidth).

Now, from (1), we define the functional margin of an example (@ (x;), y;) with
respect to a hyperplane (w, b) to be the quantity

vi =i ((w, @ (x;)) +b),

where y; € {—1, 1}. Note that y; > 0 implies correct classification of (x;, y;) . If we
replace functional margin by geometric margin we obtain the equivalent quantity for
the normalized linear function (m w, mb)’ which therefore measures the Euclidean
distances of the points from the decision boundary in the input space.

Actually geometric margin can be written as

1
Y=gy
wll

To find the hyperplane which has maximal geometric margin for a training set S
means to find maximal y. For convenience, we let y = 1, the objective function can
be written as

max —.
[Iwll

Of course, there are some constraints for the optimization problem. According to
the definition of margin, we have y; ((w, @ (x;)) + b) > 1,i =1, ..., [. We rewrite
in the equivalent form the objective function with the constraints as

1
min§||w||2 suchthat y; (W, ® (x))+b)>1,i=1,...,L (6)

We denote this problem by SVM for data classification.

Example 1 Let’s take the group of points (0, 2),(0,-2), (1, 1), (1, —1),
(—=1,1), (=1, —1) as positive class and the group of points (2, 0), (=2, 0), (2, 1),
2,-1), (-2,1), (-2, —1) as negative class shown in Fig. .

By using the mapping function

D (x) = (xf, «/Exlxz, x%) ,

which transforms data from two-dimensional input space to three-dimensional
feature space, that is (1, ﬁ 1, (1, —«/E, 1) and (0, 0, 4) as positive class and
4, 2«/5, 1), @4, —Zﬁ, 1) and (4, 0, 0) as negative data shown in Fig.2.
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Fig. 1 The data points given
in Example 1

L - = @

x
@ @D
@ - [ @

Fig. 2 The data separation
in three dimensional feature
space

Now by using this data in three dimensional feature space, we consider the fol-
lowing: For positive points, we have

1

Wi, wa,w3) | V2 | +b>1,
1

Wi, wa,w3) | =2 | +b=>1,

1
NG
1
0
wi,wa,w3) | 0 | +b>1,
4

which implies

W1+«/§W2+W3+bz 1,
Wl—«/zW2+W3+bZ 1,
4wz + b > 1.
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For negative points, we have

4
Wi, wa,w3) | 242 | +b < —1,
1

4
Wi, wa, w3) | =242 | +b < —1,
1 -
47
(W19W27W3) 0 +b§—l,
0

implying that

4wy +2\/§W2+W3+b < -1,
4wy —2\/§W2+W3+b < -1,
4W1 +b < —1.

From the equations, we get w = (—0.6667, 0, 0) with ||w|| = 0.6667 and shown
in Fig. 3.

Further, if we use Radial Basis Function (RBF) Kernel K (x;, X) = exp[—y||x; —
x||?], with y = 1/3, we get w = (0.0031, 0.0012) which is shown in Fig.4.

Also if we use Sigmoid Kernel K (x;, X) = tanh (kx; - x + 6) with k = 1/3 and
0 = 2.85, we get w = (0, 0) shown in Fig.5.

Example 2 Let us look at another example. The positive data be shown as red square
and the negative data be shown as blue circle respectively as shown in Fig. 6.

It is also a non-linear separable problem. Now, if we transfer the original data into
the feature space by using the mapping function @ (x), we can see that the data in
the feature space is linear separable see Fig.7.

Fig. 3 The data separation 2 o
using Polynomial Kernel of
degree 2
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Fig. 4 The data separation 7. . =
using Radial Basis Function
(RBF) 1.5} :

16 ] [ ] L

Oe o

'
M

'
-
oR
-
[\S]

Fig. 5 The data separation 2 . o
using Sigmoid Kernel

] o
] o
9 . - .
-2 -1 0 1 2

Fig. 6 The data points given L N
in Example 2

- . I - .

mie o m
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Fig. 7 The data separation
in feature space of

Example 2
Fig. 8 The data separation 3 o = =
of Example 2 using
Polynomial Kernel 2
= =
1
Om -
At 1
- [ ]
2} |
-3 =] @ =
-3 2 -1 0 G} 2 3
Fig. 9 The data separation 3 . @ .
of Example 2 using RBF
Kernel 2
1
O
-1
-2
-3 - - =
-3 -2 1 0 1 2 3

Using Polynomial Kernel with p = 2, we get w = (—0.4898, —0.1633) which is
shown in Fig. 8.

Next if we use Radial Basis Function (RBF) Kernel K (x;, X) = exp[—y||x; —
x||?], with y =2, we get w = (—0.0016, 0.0014) as shown in Fig.9.

Example 3 Consider the points (0, 0), (1, 0), (—1, 0) as positive class and points
(2,0), (3,0, (—2,0), (—3, 0) as negative class see in Fig. 10.
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Fig. 10 The data points A
given in Example 3 )

Fig. 11 Data separation of

Example 3 by using
Polynomial Kernel of
degree 2 "
gm, 0, 0) x
—o—Oo—>»
i 9.0, 0

Note that, no linear separator exists for this data in the input space. Now, if we
use @ (x) = (x%, ﬁxlxz, x%), then it transforms two-dimensional data into three-
dimensional feature space, which can be separated by hyperplane H as shown in the
Fig.11.

2 Generalized Support Vector Machines

Consider a new control function F : R” — R” defined as
F(x)=Wo (x) + B, (7)
where W € RP*? B € RP are parameters and p is the dimension of feature space. In

addition, W contains the w; as a row, where each w; is the linear combination of the
support vectors in the feature space and can be written as

wi=> oo (x), (®)
J

where @ is a mapping that transforms data in input space X to data in feature space
F . From (7), we obtain
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i jaj(l)q§ (Xj)
F(x) = : P (x)+B
L J'O[j(p)gzj (Xf)
jol @ (x)) @ (x)
= : +B
[ 30 (%) @ (0
jaj(l)K(xj, X)
= : +B
jaj(p)l((xj, X)
—Z- L
j
= : K(x;, x) + B,
)
[ 259

where K (x;, x) is the kernel having associated feature with mapping &.
Define

Ve =Yk (WP (x4) + B)
o)
j %
= Vi ; K(x;,X) + B
)
j %

=KX, x)+B)>1 for k=1,2,...,1,

wherey, € {(=1,-1,...,-1),(1,1,..., 1)} is a p-dimensional vector, K(x;, X) =
(1)

j %

@ (x) D (x;) and ¢ =

w
Zjo"(p
Definition 1 We define a map G : R” — R/, by
G(wl)z(”wl”s”wl”v»”wl”) for i=1729"'1p» (9)
where w; are the rows of Wy, fori =1,2,...,p.

Now, the problem is to find w; € R” that satisfy

min G (w;) suchthat n >0, (10)

W,’EW

where 1 = y; ({K(xj, X) +B) — 1.
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We call this problem as the Generalized Support Vector Machine (GSVM).

s o
j
Note that, if : K(xj, x) = —B, then n = —1 and we obtain no solution
Zj o
of GSVM problem.

Example 4 Consider the data of points for positive and negative class as given in
Example 1. Then by using polynomial Kernel of degree two, we obtain (1, v/2, 1),
(1, =2, 1), (0,0, 4) the vectors of positive data and (4,2+/2, 1), (4, —2+/2, 1),
(4, 0, 0) the vector negative data in feature space. From positive data points, we have

wiwipwis | [ 1 b, ] 1
Wa1 W22 W23 2+ b =1,
W31 W32 W33 | 1 | | b3 | 1]
wnwowa | [ L [b ] [17]
Wa1 W2 W3 2|+ |b|=]|1],
witwpwiz | [ 1] | b3 | 1]
Wil Wiz Wi3 0] [bm1 [17
Wal W2 Wa3 O+ |b| > ,
W31 W3z W33 4 ] | b | 1]
which gives
wir + «/Ewlz +wiz+b >1,
wa +V2wx +was + by = 1,
w31 + V2w + w3z + by > 1,

wip — 2w +wis + by >
war — V2wx +was + by = 1,
Wil — 2wy + w3 + by >

dwiz + by > 1,
4wz + by > 1,
dwsz + b3 > 1
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Also from negative data points,

Wil Wiz Wi3 4 b -1
Wa1 Wy W3 22 |+ b | < | 1],
W31 W32 W33 | L] b -1
wnwows | [ 4 ] [ ] [—1]
Wa1 Wao W3 22 |+ | b | <|-1],
waiwawss || 1 | | bs]| | -1
Wit Wi2 Wi3 471 [b] [ —1]
Wa1 W W3 Of(+|b| =<|—1],
W31 W32 W33 0] |bs] |-l

which gives

4wy 4 2v2wi +wis + by < 1,
4wyt 4 2v2wx + was + by < —1,
4wsy + 22wz + was 4+ by < —1,
4wy — 22w + wis + by < —1,
4wyt — 24/ 2wm + was + by < —1,
4wy — 2v/ 2wy + w3z + by < —1,
4wy + by < —1,
4w, + by < —1,
dwiz + by < —1.
By solving these equations, we get
—1.39 —-0.512 —0.627 3.742
W =1 0.667 0 —0.667 and B=| 1.047 |,
0.667 0 0 1.51

with smallest norm of w;

min G (w;) = (0.667, 0.667, 0.667).
w,eW

Hence we get w = (0.667, 0, 0) that minimize G (w;) fori =1, 2, 3.
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Fig. 12 Data for situation 1 . v
in Example 5 o :

O
>

If we are dealing with the data that can linearly separable, then in the process of
GSVM, map @ deals as identity operator. The next example we show the situations
for this case.

Example 5 Let us consider the three categories of data:

Situation 1 Suppose that we have data (2, 0), (0, 2), (2, 1) as positive class and
data (—1,0), (0, —1), (—1, —1/2) as negative class shown in Fig. 12.

For positive points, we have (2, 0), (0, 2), (2, 1), so

wiwiz || 2 [ b ] 1
_W21 W22_ _0_+_b2_ - _1_’
[wiwi [[O] , [0 ] _ [1]
| w21 waa | | 2] + | b2 | = 1]’
-W”W]z- -2-+-b|- - -1-,
| wawn | [1]  |b2] 7 [ 1]

which implies
2W11- -bl- -1-
|:2W21_+_b2_ = _1_7
2W12_ _bl_ _1_
[2W22_+_b2_ = _1_’

2w +wi | [ ] [1]

>

|:2W21+W22_+_b2_ - _1_

Again, for the negative points, we have (—1, 0), (0, —1), (—1, —1/2) and

wanwi | [=1], [b] _[-1]
|:W21 sz}[ 0 + | b2 | = | -1
Wil Wiz o1 [b]_[-1]
|:W21 W22:||:—1_+_b2_ = _—1_’
wi1 Wiz -1 _+—b1_ < _—1_
Wa1 W2 —1/2_ _b2_ - __1_ ’
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Fig. 13 The data separation F Wy
for situation 2

which gives

_W11_+-b1_ - [—1
—W21 | _bg___—l ’
—wi |, 1] _[-1
|:—W22_+_b2_ < __1i|,
L2 L ¢
—Wi1 — ;W12 by 1
|:—w L | T T 1i|'
20— 3wl [02] L

From above equations, we get

Thus we get

. 2V2 242
min G (w;)) = —, — |.
w;eW 3 3

Hence we getw = (%, %) that minimizes G (w;) fori =1, 2.

Situation 2 We consider the data (1, 0), (0, 1), (1/2, 1) as positive class, data
(—4,0), (0, —4), (=2, —4) as negative class which is shown in Fig. 13.

Now, for positive points of Situation 2, we have (1, 0), (0, 1), (1/2, 1) and

wipwig || 1 b 1
_W21 W22_ _0_+_b2 = _1_’
-W1]W12- -0-+-b]- - -1-’
| wawn | [1] b2 7 [ 1]
- TE1T .3 £l
wirtwiz || 3 by 1
| w21 wa | [ 1] + | b2 | = 1]’
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which gives
w11
war |
w12
w22 |
1 _
|: Wi+ Wi
1
FWa1 + wos |

For negative points for this case, we have

[ w1 win | [ —4 bi| _
[ wawn || 0| [ba] ™
fwiw [[ 0], [b -
[ wawn | [ 4] | b2] T
[wiiw [[—27, [b -
[wawn || 4] |b]| ™~
which gives
—4W11 i _bl <
—4wy, i _bz -
—4W12_ _bl <
—4W22_ _b2 -
—2W1] — 4W12_ _b1 <
—2W21 — 4W22 i _b2 -
Thus, we obtain that
22
W= [g g:| and B = [
55
Thus we get
272 242
min G (w;) = i L_)
ie{1,2} 5
2 2

Hence we getw = (5, £

v

v

v

) that minimize G (w;) fori =1, 2.
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Fig. 14 The data separation ¥
for situation 3

4

In the next Situation 3, we combine of this two groups of data. Now, we have data
2,0),(0,2),(2,1),(,0), (0, 1), (1/2, 1) as positive class and (—1, 0), (0, —1),
(—1,—-1/2), (—4,0), (0, —4), (—2, —4) as negative class see Fig. 14.

For the positive points of the combination, we have

e Lo]+ ] =[1]
e ][9] ] =]
= ln)=1] e D]+ [0 ]=10)

For negative points for this case, we have

wi1 Wiz -1 + b] _ -1

Wi W 0 by| |[-1]

witwiz [| 0 n bi| | -1

war w || —1 by| | -1}
which gives

L= e 2] =[5

which gives

and
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From this, we obtain that
11 0
W—|:11:| and B_[O]

min G (W) = (V2,v2).

Thus we get

Hence we get w = (1, 1) that minimize G (w;) fori =1, 2.

The problem of GSVM defined in (10) is equivalent to
find wie W: (G'(w),v—w;)>0 forall veR’ with n>0. (l1)

Hence the problem of GSVM becomes to the problem of generalized variational
inequality.
Note that it we take G’ (W;) = -, then from (11), we obtain

find w,e W: (w;,v—w;) >0 forall ve R’ with n >0, (12)

or
find w; e W: (w;,v)>|w]? forall veR’ with n>0. (13)

We study the sufficient conditions for the existence of solutions for GSVM prob-
lems.

Proposition 1 Let G : R” — R’ be a differentiable operator. An element w* € RP
minimizes G if and only if G' (W*) = 0, that is, w* € R? solves GSVM if and only if
G' (w*) =0.

Proof Let G’ (w*) = 0, then for all v € R? with n = y, (;K(xj, X) + B) —1>0,

Fe>=<0,v—w'>= 0,

<G (W), v—w
and consequently, the inequality

<G (W), v—w"'>>0

holds for all v € R”. Hence w* € R” solves problem of GSVM.
Conversely, assume that w* € R” satisfies

<G (W), v—w">>0VveR" suchthat n>0.
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Taking v = w* — G’ (w*) in the above inequality implies that
<G (W*) , =G’ (W*) >> 0,

which further implies
—IG'WHII* = 0,

and we get G'(w*) = 0. O

Remark 1 Note thatif G’ (w*) = 0 atsome w* € R”, then we obtain ﬁ = 0 which

implies w* = 0. Thus it follows from Proposition 2.4 that if G’ (w*) = 0 at some
w* € RP, then w* = 0 solves GSVM problem.

Remark 2 1If w* = 0, then from (8), we obtain
2 o7 (x) =0,
J

which implies
> (x) @ (x) =0,

J

that is
> oK (x;,x) = 0. (14)
J

Since ozj(*) > 0 for all j, so we have
K (xj, x) =0.

Definition 2 Let K be a closed and convex subset of R". Then, for every point
x € R", there exists a unique nearest point in K, denoted by Pk (x), such that
Ix — Px (x)|| < |Ix —y]|l for all y € K and also note that Pgx (x) = x if x € K. Pg
is called the metric projection of R” onto K. It is well known that P : R" — K is
characterized by the properties:

(i) Pxk(x) =zforx e R"ifandonlyif <z—x,y—z > >0forally € R";
(ii) Forevery x,y € R", [Pk (x) — Px (0)|I* < <x —y, Px (x) — Px (y) >;
(iii) ||Px (x) — Px ()|l < |lx —yl|, for every x, y € R”, that is, Pg is nonexpansive
map.

Proposition 2 Let G : R? — R’ be a differentiable operator. An element w* € R?
minimize mapping G defined in (11) if and only if w* is the fixed point of map

Pgy (I — pG') : R? — R, for any p > 0,
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that is,
* ) _ l *
W_PR@(I ,oG)(W)

= Py, (W* = pG" (w")),

where Py is a projection map from R? to R” and n =y ({K(xj, X) + B) —1>0.

Proof Suppose w* € R/, is solution of GSVM. Then for n = yx ({K(x;, X) + B) —
1 >0, we have

<G (W), w—w"'>=> 0 forall weR.
Adding < w*, w — w* > on both sides, we get
<w'w—w"'>+ < G/(w*),w—w* >> <w',w—w"> forall welR?,
which further implies that
<w'— (W'=G' (W), w—w">> 0 forall weR”
which is possible only if W* = Pgs. (w* — pG’ (w*)), that is, w* is the fixed point
of G'.

Conversely, let w* = Pgy (W* — pG’ (W*)) with n = y; ((K(x;,X) +B) — 1 >
0, then we have

<w*—(w*—G’(w*)),w—w*>z 0 forall welR?,

which implies
<G (W), w—w">> 0 forall weR’,

and so w* € R’ is the solution of GSVM. g

3 Conclusion

The linear and nonlinear data classifications by using support vector machine and
generalized support vector machine have been studied. We also studied the sufficient
conditions for existence of the solution of generalized support vector machine. Some
examples are shown for supporting these results.
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Common Fixed Points of Weakly Commuting
Multivalued Mappings on a Domain of Sets
Endowed with Directed Graph

Talat Nazir and Sergei Silvestrov

Abstract In this paper, the existence of coincidence points and common fixed points
for multivalued mappings satisfying certain graphic y-contraction contractive condi-
tions with set-valued domain endowed with a graph, without appealing to continuity,
is established. Some examples are presented to support the results proved herein.
Our results unify, generalize and extend various results in the existing literature.

Keywords Common fixed point - Multivalued mapping + Graphic contraction *
Directed graph

1 Introduction and Preliminaries

Order oriented fixed point theory is studied in an environment created by a class of
partially ordered sets with appropriate mappings satisfying certain order condition
like monotonicity, expansivity or order continuity. Existence of fixed points in par-
tially ordered metric spaces has been studied by Ran and Reurings [26]. Recently,
many researchers have obtained fixed point results for single and multivalued map-
pings defined on partially ordered metrics spaces (see, e.g., [0, 8, 18, 25]). Jachymski
and Jozwik [20] introduced a new approach in metric fixed point theory by replac-
ing the order structure with a graph structure on a metric space. In this way, the
results proved in ordered metric spaces are generalized (see also [19] and the refer-
ence therein); in fact, in 2010, Gwodzdz-Lukawska and Jachymski [17], developed
the Hutchinson-Barnsley theory for finite families of mappings on a metric space
endowed with a directed graph. Abbas and Nazir [2] obtained some fixed point
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results for power graph contraction pair endowed with a graph. Bojor [13] proved
fixed point theorems for Reich type contractions on metric spaces with a graph.
For more results in this direction, we refer to [4, 5, 12, 14, 15, 24] and reference
mentioned therein.

Beg and Butt [9] proved the existence of fixed points of multivalued mapping in
metric spaces endowed with a graph G. Recently, Abbas et al. [3] obtained fixed
points of multivalued mappings satisfying certain graphic contraction conditions
with set-valued domain endowed with a graph. Nicolae et al. [24] established some
fixed points of multivalued generalized contractions in metric spaces endowed with
a graph.

The aim of this paper is to prove some coincidence point and common fixed point
results for multivalued graphic i-contractive mappings defined on the family of
closed and bounded subsets of a metric space endowed with a graph G. These results
extend and strengthen various comparable results in the existing literature [3, 9, 12,
19, 20, 23].

We denote, the letters R, RT and N denote the set of all real numbers, the set of
all positive real numbers and the set of all natural numbers, respectively.

Consistent with Jachymski [19], let (X, d) be a metric space and A denotes the
diagonal of X x X.Let G be a directed graph, such that the set V (G) of its vertices
coincides with X and E(G) be the set of edges of the graph which contains all loops,
that is, A € E(G). Also assume that the graph G has no parallel edges and, thus,
one can identify G with the pair (V(G), E(G)).

Definition 1 [19] An operator f : X — X is called a Banach G-contraction or
simply G-contraction if

(a) f preserves edges of G; for each x,y € X with (x,y) € E(G), we have
(f(x), f(y) € EG),

(b) f decreases weights of edges of G; there exists o € (0, 1) such that for all
x,y € X with (x, y) € E(G), we have d(f(x), f(y)) < ad(x,y).

If x and y are vertices of G, then a path in G from x to y of length k € Nis a
finite sequence {x,} (n € {0, 1,2, ..., k}) of vertices such that xo = x, x; = y and
(xi—1,x;) € E(G) fori € {1,2,...,k}.

Notice that a graph G is connected if there is a directed path between any two
vertices and it is weakly connected if Gis connected, where G denotes the undirected
graph obtained from G by ignoring the direction of edges. Denote by G~! the graph
obtained from G by reversing the direction of edges. Thus,

E(G)={(x.y) eXxX:(y.x) € EG)}.

It is more convenient to treat G as a directed graph for which the set of its edges
is symmetric, under this convention; we have that

E(G) = E(G)UE(G™).



Common Fixed Points of Weakly Commuting Multivalued Mappings ... 399

In V(G), we define the relation R in the following way:
For x, y € V(G), we have x Ry if and only if, there is a path in G from x to y. If
G is such that E(G) is symmetric, then for x € V(G), the equivalence class [x]z in
V(G) defined by the relation R is V (G,).
Recall thatif f : X — X is an operator, then by F'y we denote the set of all fixed
points of f. Set
Xp={xeX:(x, f(x)) € E(G)}.

Jachymski [20] used the following property:
(P): for any sequence {x,} in X, if x, = x as n — oo and (x,, x,+1) € E(G),
then (x,, x) € E(G).

Theorem 1 [20] Let (X, d) be a complete metric space and G a directed graph such
that V(G) = X and f : X — X a G-contraction. Suppose that E(G) and the triplet
(X, d, G) have property (P). Then the following statements hold:

(i) Fy# @ ifand only if X # 0

(ii) if Xy # ¥ and G is weakly connected, then f is a Picard operator, i.e., Fy =
{x*} and sequence { f" (x)} — x* asn — oo, forall x € X;

(iii) forany x € Xy, f |5 is a Picard operator;

(iv) if Xy € E(G), then f is a weakly Picard operator, i.e., Fy # () and, for each
x € X, we have sequence { f"(x)} — x* € Fyasn — oo.

For detailed discussion on Picard operators, we refer to Berinde [10, 11].
Let (X, d) be a metric space and CB(X) a class of all nonempty closed and
bounded subsets of X. For A, B € CB(X), let

H(A, B) = max{supd (b, A), supd(a, B)},
beB acA

where d(x, B) = inf{d(x, b) : b € B} is the distance of a point x to the set B. The
mapping H is said to be the Pompeiu—Hausdorff metric induced by d.

Throughout this paper, we assume that a directed graph G has no parallel edges
and G is a weighted graph in the sense that each vertex x is assigned the weight
d(x,x) = 0 and each edge (x, y) is assigned the weight d(x, y). Since d is a met-
ric on X, the weight assigned to each vertex x to vertex y need not be zero and,
whenever a zero weight is assigned to some edge (x, y), it reduces to a loop (x, x)
having weight 0. Further, in Pompeiu—Hausdorff metric induced by metric d, the
Pompeiu—Hausdorff weight assigned to each U, V € CB (X) need not be zero (that
is, H (U, V) # 0) and, whenever a zero Pompeiu—Hausdorff weight is assigned to
some U,V € CB(X), thenitreducesto U = V.

Definition 2 [3] Let A and B be two nonempty subsets of X. Then by:

(a) ‘there is an edge between A and B’, we mean there is an edge between some
a € A and b € B which we denote by (A, B) C E (G).
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(b) ‘there is a path between A and B’, we mean that there is a path between some
acAandb € B.

In CB(X), we define a relation R in the following way: For A, B € CB(X), we
have AR B if and only if, there is a path between A and B. We say that the relation
R on CB (X) is transitive if there is a path between A and B, and there is a path
between B and C, then there is a path between A and C.

Consider the mapping 7 : CB(X) — CB(X) instead of a mapping T from X to
X or from X to CB(X).

For mappings T : CB (X) — CB (X), the set X7 is defined as

X7 :={U e CB(X): (U, T (U)) € E(G)}.

Recently, Abbas et al. [3] gave the following definition.

Definition 3 Let 7 : CB(X) — CB(X) be a multivalued mapping. The mapping 7
is said to be a graph ¢-contraction if the following conditions hold:

(i) There is an edge between A and B implies there is an edge between 7 (A) and
T (B) forall A, B € CB(X).
(i1) There is a path between A and B implies there is a path between 7 (A) and
T(B) forall A, B € CB(X).
(iii) There exists an upper semi-continuous and nondecreasing function ¢ : RT —
R* with ¢(¢) < t for each ¢ > 0 such that there is an edge between A and B
implies that

H (T (A), T (B)) < ¢(H(A, B)) forall A,B in CB(X).

Definition 4 Let S, 7 : CB(X) — CB(X) be two multivalued mappings. The set
U € CB(X) is said to be a coincidence point of S and 7,if S (U) =T (U) . Also, a
set A € CB(X) is said to be a fixed point of S if S(A) = A. The set of all coincidence
points of S and 7 is denoted by CP (S, T') and the set of all fixed points of S is denoted
by Fix (S).

Definition 5 Two maps S, T : CB(X) — CB(X) are said to be weakly compatible
if they commute at their coincidence point.

For more details to the weakly compatible maps, we refer the reader to
[1, 21, 22].

A subset I" of CB (X) is said to be complete if for any set X, Y € I, there is an
edge between X and Y.

Abbeas et al. [3] used the property P* stated as follows: A graph G is said to have
property

(P*): if for any sequence {X,} in CB(X) with X, — X as n — oo, there exists
edge between X+ and X, for n € N, implies that there is a subsequence {X,, } of
{X,} with an edge between X and X,,, forn € N.
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Theorem 2 [3] Let (X, d) be a complete metric space endowed with a directed graph
G such that V(G) = X and E(G) 2 A. If T : CB(X) — CB(X) is a graph ¢-
contraction mapping such that the relation R on CB (X) is transitive, then following
statements hold:

(a) if Fix (T) is complete, then the Pompeiu—Hausdorff weight assigned to the
U,V e Fix(T) is 0.

(b) Xt # O provided that Fix (T) # 0.

(c) If X7 # O and the weakly connected graph G satisfies the property (P*), then
T has a fixed point.

(d) Fix (T) is complete if and only if Fix (T) is a singleton.

We denote ¥ the set of all functions ¥ : Rt — R™, where v is nondecreasing
function with Z?i | ¥" () convergent. Itis easy to show thatif ¢ € ¥, thenyr (1) < ¢
for any r > 0. We give the following definition.

Definition 6 Let (X, d) be a metric space endowed with a directed graph G such
that V(G) = X, E(G) 2 A and for every U in CB(X), (S(U),U) € E(G) and
(U, T (U)) CE(G).Let S, T : CB(X) — CB(X) be two multivalued mappings.
The pair (S, T) of maps is said to be

(I) graph y;-contraction pair if there exists a € ¥ and there is an edge between
A and B such that

H (S(A),S(B)) <y¥(Mi(A, B))
holds, where
M (A, B) =max{H(T (A), T (B)), H(S(A), T (A)), H(S(B), T (B)),

H(S(A),T(B))+H(S(B),T(A))}
3 .

(II) graph yr;-contraction pair if there exists a ¢ € ¥ and there is an edge between
A and B such that

H (S(A),S(B)) < ¢ (Mx(A, B))
holds, where

M>(A, B) = aH(T (A), T (B)) + BH(S(A), T (A)) + yH(S(B).T (B))
+61H(S(A). T (B) +5,H(S(B), T (A)),

ando, B,y,61,8,>0,8 <éwitha+B+y+686+6 <1

It is obvious that if a pair (S, T') of multivalued mappings on CB(X) is a graph
Yr1-contraction or graph y,-contraction for graph G, then pair (S, T) is also graph
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Y1 -contraction or graph r,-contraction respectively, for the graphs G/, G and G,
here the graph Gy is defined by E(Gy) = X x X.

Definition 7 A metric space (X, d) is called an e-chainable metric space for some
e > 0 if for given x, y € X, there is n € N and a sequence {x, } such that

xo=x, x, =y and d(x;_1,x;) <¢e¢ for i=1,...,n.

For fixed point result of mappings defined on e-chainable metric space, we refer
to [9] and references mentioned therein. We also need of the following lemma of
Nadler [23] (see also [7]).

Lemma 1 Let (X, d) be a metric space. If U,V € CB(X) with H(U, V) < ¢, then
for each u € U there exists an element v € V such that d(u, v) < ¢.

2 Common Fixed Points

In this section, we obtain coincidence point and common fixed point results for
multivalued selfmaps on CB(X) satisfying graph ir-contraction conditions endowed
with a directed graph.

Theorem 3 Let (X, d) be a metric space endowed with a directed graph G such
that V(G) = X, E(G) 2 Aand S, T : CB(X) — CB (X) a graph yr,-contraction
pair such that the range of T contains the range of S. Then the following statements
hold:

(i) CP(S,T) # @ provided that G is weakly connected with satisfies the property
(P*) and T (X) is complete subspace of CB (X).
(ii) if CP (S, T) is complete, then the Pompeiu—Hausdorff weight assigned to the
SWU)and S(V)isOforallU,V € CP (S, T).
(iii) if CP (S, T) is complete and S and T are weakly compatible, then Fix (S) N
Fix (T) is a singleton.
(iv) Fix (S) N Fix (T) is complete if and only if Fix (S) N Fix (T) is a singleton.

Proof Toprove (i), let Ag be an arbitrary elementin CB(X). Since range of T contains
the range of S, chosen A; € CB (X) such that S (Ayg) = T (A,) . Continuing this
process, having chosen A, in CB (X) , weobtainan A, in CB (X) suchthat S(x,) =
T (x,41) forn € N. The inclusion (A, 11, T (A,41)) € E (G)and (T (A,11), Ay) =
(S(A,)), A, € E(G) implies that (A,4+1, Ay) € E(G).

We may assume that S (A,) # S (A,+1) for all n € N. If not, then S (Axy) =
S (Agk41) for some k, implies T (Az41) = S (Azy1), and thus Ay € CP (S, T).
Now, since (A,+1, A,) € E (G) for all n € N, and pair (S, T') form a graph -
contraction, so we have
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H(T (Ant1), T (Ap12)) = H(S (Ay) , S (Ant1))
= Iﬁ (Ml (Ans AnJrl)) s

where

My (An, Apy1) = max{H(T (An) . T (Aps1)). H (S (An) . T (An) . H (S (Aps1) . T (Ap1)) -
H(S(An), T (Apy1)) + H (S (Ang1) . T (An)) |
2

= max{H(T (An) . T (Ap1))s H (T (Aps1) . T (A0)) . H (T (Aps2) . T (An1)) -
H (T (An-H) , T (An+l)) +H (T (AIH—Z) , T (An))}

2
< max{H (T (An) . T (Ap41)) . H (T (Ans1) . T (Ang2)) .
HA(T (An2) T (A1) +H (T (A1) T (An),

2
= max{H (T (An) . T (Ap11)) . H (T (Ans1) . T (Ang2))}-

Thus, we have

HT (A1) . T (Ans2) < 0 (maxlH (T (A0). T (Arer)) . H (T (Anr) . T (A52)))
=Y (H (T (An), T (Ant1)))

for all n € N. Therefore fori = 1,2, ..., n, we have

H(T (Ai-), T (A)
H(T (Ai—2). T (Ai-1)

I/f(FI(14i—ls Ai))’
w(H(Ai729 Ai*l))s

=
=

H(T (Ag) . T (Ay) < Y (H(Ag, AD)),

and so we obtain
H(T (Ay), T (Apy1) < Y"(H(Ao, T (A1)
for alln € N. Now for m,n € Nwithm > n > 1, we have

H (T (A). T (Aw) < H(T (A) . T (Aui) + H(T (Aui1) . T (Api2)
oo+ H(T (A1) . T (Ap))
< Y"(H(Ao, T (AD)) +¥" T (H (Ao, T (A1)
4+ Y (H (Ao, T (A))).

By the convergence of the series Zf’il Yi(H (Ao, T (A1), we get H (T (A,),
T (A,)) — 0as n,m — oo. Therefore {T (A,)} is a Cauchy sequence in T (X) .
Since (T (X) , d) is complete in CB (X), we have T (A,) — V asn — oo for some
V € CB (X). Also, we can find U in CB (X) such that T(U) = V.
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We claim that S(U) = T (U). If not, then since (T (A,+1),7T (A,)) € E (G)
so by property (P*), there exists a subsequence {7 (Ank+1)} of {T (A,+1)} such
that (T ), T (Ank+1)) C E(G) for every n € N. As (U, T (U)) € E(G) and
(T (Ankﬂ) , Ank) = (S (A,lk) , A,lk) C E (G) implies that (U, Ank) C E(G). Now
H(SU), T (Ap11)) = HESU), S (Ay) < v (M (U, A)), ey

where

My (U, Ap,) = max [H(T(U) T (Ang)) HS(U), T (U)), H(S (Any) . T (Any)),

H(SU), T (Ag)) + H(S (Any) . T (U)) }
2

= max {H(T WU), T (An)) HSWU), T (U)), H(T (Ang41) > T (Ang))s

H(S (), T (An)) + H(T (Apt1) . T (U)) }
5 .

Now we consider the following cases:
If M, (U, A,u) =H{TWU),T (A,,k)), then on taking limit as k — oo in (1), we
have
HSU), TW) =y HT W), TU)),

a contradiction.
When M, (U, A,,) = H(S (U), T (U)), then

H(SU).TWU) =y (HSU),TWU)).,

gives a contradiction.
In case M, (U, A,,k) = H(T (A,,k_H) , T (A,,k)), then on taking limit as k — oo
in (1), we get
HSWU), TW) =y H(T W), TU)),

a contradiction.
Finally, if M, (U, A,,k) =
k — 00, we have

H T(Aw VAHT(Ay11).T o
@)1 k))+2 (T (Arg 1) @) then on taking limit as

H(S U, TU)+HTU),TU
H(S(U),T(U))sxp( (S W) ())w; (T (U) ()))

HSWU), TWU
=w( @ ())),

a contradiction.
Hence S (U) =T (U), thatis, U € CP (S, T).
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To prove (ii), suppose that CP (S, T') is complete setin G. Let U,V € CP (S, T)
and suppose that the Pompeiu—Hausdorff weight assign to the S (U) and S (V) is
not zero. Since pair (S, T') is a graph | -contraction, we obtain that

H(SU),S(V) =y M (U, V)
< Yymax{HT (U), T (V)), HSU), T (U)), HS (V). T (V)),
H(S(U),T(V))+H(S(V),T(U))})
2
= y(max{H (S (U),S(V)), HS U),S W), HES (V), T (V)),
H(S(U),S(V))+H(S(V),S(U))})
2
=y (HESU),SM)),

a contradiction as ¥ (t) < ¢ for all # > 0. Hence (ii) is proved.

To prove (iii), suppose the set CP (S, T') is weakly compatible. First we are to
show that Fix (T) N Fix(S) is nonempty. Let W = S (U) = T (U), then we have
TW)y=TSU)=ST U) =S (W), which shows that W € CP (S, T) . Thus the
Pompeiu—-Hausdorff weight assign to the S (U) and S (W) is zero (by ii). Hence W =
S(W)y=T (W), thatis, W € Fix (S) N Fix (T) . Since CP (S, T) is singleton set,
implies Fix (S) N Fix (T) is singleton.

Finally to prove (iv), suppose the set Fix (S) N Fix (T) is complete. We are
to show that Fix (T) N Fix(S) is singleton. Assume on contrary that there exist
U,V € CB(X)suchthat U,V € Fix (S) N Fix (T) and U # V. By completeness
of Fix (S) N Fix (T), there exists an edge between U and V. As pair (S, T) is a
graph 1 -contraction, so we have

HWU,V)=HSU),SV))
<y MU, V))
=Y (max{H(T (U),T (V)),HSU),T (U)), HS(V), T (V)),
H(S(U),T(V))JrH(S(V),T(U))})
2
= Yy(max{H U, V), HU,U), H\V, V),
HWU,V)+ H(V,U)
2 1))
=y (H(U,V)),

a contradiction. Hence U = V. Conversely, if Fix(S) N Fix(T) is singleton, then
since E(G) 2 A, so itis obvious that F(S) N F(T) is complete set. O

Example I LetX ={1,2,...,n} =V (G),n>2and E(G) ={(i,j)e X x X :
i < j}.Let V (G) be endowed with metricd : X x X — R™ defined by
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H({3}.{4}) =4/5

Fig. 1 Graph G defined in Example 1

0 fx=y,

d(x,y)=

==

if x e {1,2}withx #y,

n .
o otherwise.

Furthermore, the Pompeiu—Hausdorff metric is given by

1if A,BC{1,2} with A # B,

n

H(A, B) = ot if A or B orboth Q{I,Z} with A # B,
0 if A=B.

The Pompeiu—Hausdorff weights (for n = 4) assigned to A, B € CB (X) are
shown in the Fig. 1.

Define S, T : CB (X) — CB(X) as follows:

{1 U C{l,2},
S(U)‘[{l,z}, if UG I(1.2)
{1}, if U={1},
TWU) = {1,2,3}, if UC{2,63}
{1,2,...,n}, otherwise.

Note that, for all V € CB(X), (V,S(V)) C E(G)and (V,T (V)) C E (G).
Let ¢ : Ry — R, be defined by
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V(o) =

1
a+lr 2=

It is easy to verify that ¢ € ¥. Now forall A, B € CB (X) with S (A) # S (B),
we consider the following cases:

(i) If A C{1,2}and B = {3} with (A, B) C E (G), then we have

H(S(A),S(B)) = H ({1}, {1,2})
1

n
n

<
2n+1

:””(nil)

=y (H ({1,2},{1,2,3}))
=y (H(S(B),T (B))) = ¥ (M (A, B)).

(i) When A C {1,2} and B & {1, 2, 3} with (A, B) C E (G), implies that

H(S(A),S(B)) = H ({1},{1,2})
1

n
n

<
2n +1

:'/’(n—nrl)

=y (H ({1,2},{1,2,...,n})
=¥ (H(S(B).T (B)) = ¥ (M (A, B)).

(iii) Incase A = {3} and B C {1, 2} and with (A, B) C E (G), we have

H(S(A).S(B)) = H ({1,2}, {1})
1

n
n

<
2n +1

=1/f(n:l_1)

=y (H ({1,2},{1,2,3}))
=¥ (H(S(A).T (A)) =¥ (Mi(A, B)).
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(iv) When A ¢ {1,2,3}and B C {1, 2} with (A, B) C E (G), implies that

H(S(A),S(B)) = H ({12}, {1})
1

n
n

2n +1

=w(ni1)

=y (H ({1,2},{1,2,...,n})
=¥ (H(S(A).T (A)) =¥ (Mi(A, B)).

<

Hence pair (S, T') is graph yj-contraction. Thus the conditions of Theorem 3
hold. Moreover, {1} is the common fixed point of S and 7', and Fix (S) N Fix (T)
is complete.

In the next example we show that it is not necessary that given graph (V (G) , E (G))
will always be a complete graph.

Example 2 Let X ={1,2,...,n} =V (G),n > 2and

EG)={1,1),2,2),...,(n,n),
(1,2),...,(1,m}
On V (G), the metric d : X x X — R* and Pompeiu—Hausdorff metric H :

CB (X) — R™ are defined as in Example 1. The Pompeiu—Hausdorff weights (for
n = 4) assigned to A, B € CB (X) are shown in the Fig.2.

Fig. 2 Graph G defined in
Example 2
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Define S, T : CB (X) — CB(X) as follows:

[ o u=qy,
S(U"<{1,2}, if U # (1)

o, u=qy,
T(U)_[{l,...,n}, if U (1),

Note that, (S (A), A) € E (G) and (A, T (A)) C E (G) forall A € CB(X).
ta, @ €0, 1]

Take ¢ (@) =
a+l1 1
o azg

Note that ¢ € ¥. Now, for all A, B € CB (X) with S (A) # S (B), we consider
the following cases:
(D If A= {1}and B # {1}, then we have

1

H(S(A),S(B)) = .
2n+1

<

3n +

1
B n
_w(n—kl)

=Y (H(S(B).T (B)) = ¥(M (A, B)).

(II) If A # {1} and B = {1}, then we have

H(S(A),S(B)) =

- ()

=V (H(S(A),T(A)) =¥ (M (A, B)).

Hence pair (S, T') is graph ¥;-contraction. Thus all the conditions of Theorem 3
are satisfied. Moreover, S and 7" have a common fixed point and Fix (S) N Fix (T)

is complete in CB (X).
Theorem 4 Let (X, d) be a e-chainable complete metric space for some ¢ > 0
and S, T : CB (X) — CB(X) be multivalued mappings. Suppose that forall A, B €

CB(X),
O0<H(SA),SB)) <e¢

and there exists a W € ¥ such
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H(S(A),S(B) <y (M(A, B)),

hold where

M(A, B) = max [H(T (A),T(B)),H(S(A), T (A),H(S(B),T (B)),

H(S(A),T(B))+H(S(B),T(A))]
3 .

Then S and T have a common fixed point provided that S and T are weakly
compatible.

Proof By Lemma 1, from H (A, B) < ¢, we have foreacha € A, anelementb € B
such that d(a, b) < €. Consider the graph G as V(G) = X and

E(G)={@a,b)e X xX:0<d(a,b) <c¢e}.

Then the e-chainability of (X, d) implies that G is connected. For (A, B) C E(G),
we have from the hypothesis

H (S (A),S(B)) =¥ (M(A, B)),

where M (A, B) = max [H(S (A),T(B)),H(S(A),T (A),H(S(B), T (B)),

H(S(A),T(B))+H(S(B),T(A))]
2

implies that pair (S, T') is graph v —contraction.

Also, G has property (P*). Indeed, if {X,} in CB(X) with X, - X asn — o0
and (X,, X,11) C E(G) for n € N, implies that there is a subsequence {X,, } of
{X,,} such that (X,,, X) C E (G) for n € N. So by Theorem 3 (iii), S and T have a
common fixed point. O

Corollary 1 Let (X, d) be a complete metric space endowed with a directed graph
G such that V(G) = X and E(G) 2 A. Suppose that the mapping S : CB (X) —
CB (X) satisfies the following:

(a) foreveryV in CB(X), (V,S(V)) C E (G).
(b) There exists a > 0 suchthat for € [ thereis an edge between A and B implies
that
H(S(A),S(B)) <y (M (A, B)),
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where

M, (A, B) = max [H(A, B),H(A, S(A)), H(B, S (B)),

H(A, S(B)), H(B, S (A)) )
3 :

Then following statements hold:

(i) if Fix (S) is complete, then the Pompeiu—Hausdorff weight assigned to the
U,V e Fix (S)isO.
(ii) If the weakly connected graph G satisfies the property (P*), then S has a fixed
point.
(iii) Fix (S) is complete if and only if Fix (S) is a singleton.

Proof Take T =1 (identity map) in (I), then Corollary 1 follows from
Theorem 3. (]

Theorem S Let (X, d) be a metric space endowed with a directed graph G such
that V(G) = X, E(G) D Aand S, T : CB(X) — CB (X) a graph yr, -contraction
pair such that the range of T contains the range of S. Then the following statements
hold:

(i) CP (S, T) # ) provided that G is weakly connected with satisfies the property
(P*) and T (X) is complete subspace of CB (X).
(ii) if CP (S, T) is complete, then the Pompeiu—Hausdorff weight assigned to the
SW)yand S (V)isOforallU,V € CP(S,T).
(iii) if CP (S, T) is complete and S and T are weakly compatible, then Fix (S) N
Fix (T) is a singleton.
(iv) Fix (S)N Fix (T) is complete if and only if Fix (S) N Fix (T) is a singleton.

Proof Toprove (i), let Ag be an arbitrary elementin CB(X). Since range of T contains
the range of S, chosen A; € CB (X) such that S (Ag) = T (A;). Continuing this
process, having chosen A, in CB (X) , weobtainan A,,1; in CB (X) such that S(x,) =
T (x,41) forn € N. The inclusion (A, 11, T (A,41)) € E (G)and (T (A,11), Ay) =
(S(A)) ., A,) C E(G)implies that (A1, A,) € E(G).

We may assume that S (A,) # S (A,41) for all n € N. If not, then S (Ay) =
S (Agks1) for some k, implies T (Ax+1) = S (Ax+1) , and thus Ay € CP (S, T).
Now, since (A,+1, Ay) € E (G) for all n € N, and pair (S, T) form a graph v,-
contraction, so we have

H(T (Ap+1), T (Apt2)) = H(S (An) , S (An+1))
=< I// (MZ (Anv An+1)) s
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where

M; (An, Aps1)

=aH(T (Ay). T (Apy)) + BH (S (An) . T (Ap)) + v H (S (Ans), T (Any1))
S1H (S(An), T (Apt1) + 62H (S (A1), T (An))

=aH(T (Ay) . T (Apy1)) + BH (T (Ap11) . T (An) + Yy H (T (Any2) . T (Apy1))
S H (T (Aps1) s T (Ang)) + 82H (T (Aps2) . T (An))

<@+B)H (T (A),T (Apr1) + yH (T (Aps1) . T (Ans2))
S[H (T (Any2)» T (Aps1)) + H(T (Apt1) , T (An)]

=@+ B+80)H(T (A). T (Any1) + (v +62) H(T (A1), T (Any2)) -

Now, if H (T (Ay), T (An41)) <= H(T (Any1), T (Aps2)), we have

H(T (Ap41) . T (Ant2) < ¥ (max{H (T (An) , T (An+1)) s H (T (Ant1) . T (An12))})
= Y(H (T (An), T (Ant1)))

for all n € N. Therefore fori =1, 2, ..., n, we have

H(T (Ai—1), T (A) <Y (H(Ai—1, A))),
H(T (A=), T (A1) < Y (H(Ai—2, AiZ1)),

ce

H(T (Ao), T (A1) = ¥(H (Ao, A1),

and so we obtain
H(T (A,), T (A1) < Y"(H(Ao, T (A))))

foralln € N. Follows the similar argument to those in the proof of Theorem 3, we get
H (T (A,),T (A,)) - 0asn,m — oo. Therefore {T (A,)} is a Cauchy sequence
in T (X). Since (T (X), d) is complete in CB (X), wehave T (A,)) — V asn — oo
for some V € CB (X). Also, we can find U in CB (X) such that T(U) = V.

We claim that S(U) = T(U). If not, then since (T (A,+1),T (A,)) C E (G)
so by property (P*), there exists a subsequence {7 (A,,+1)} of {T (A,11)} such
that (T (U), T (An+1)) € E (G) for every n € N. As (U, T (U)) € E (G) and
(T (An+1) . An) = (S (Aw) . An,) € E (G) implies that (U, A,,) € E (G) . Now

H(S(U), T (An11)) = HS (U), S (An)) < ¥ (M2 (U, Ay)) @)
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where

My (U, Any) = «H(T (U), T (Ap,)) + BH(S (U), T (U)) + y H(S (Any) . T (Any))
+81HSWU), T (Any)) + 82H(S (Any) . T (U))
=aH(T (U), T (An)) + BH(S (U) + T (U)) + yH(T (Apy41) . T (Any))
+81H(S(U), T (An)) + 82H(T (Apy41) . T (U)).

On taking limit as k — oo in (2), we have

H(SU), TWU) =¥ (B+6)H (T W), T )))
<H(S ), T ),

a contradiction. Hence S (U) =T (U), thatis, U € CP (S, T).

To prove (ii), suppose that CP (S, T) is complete setin G.Let U, V € CP (S, T)
and suppose that the Pompeiu—Hausdorff weight assign to the S (U) and S (V) is
not zero. Since pair (S, T) is a graph i, -contraction, we obtain that

H(SU),S (V) =¥ (Mx(U, V)), 3)
where

My(U,V)) =aH(T (U), T (V))+BH(SU),. T U)+yHES V), T (V)
SIH(S(U) . T (V) +8H(S (V). T U))
=aH (SWU).SV)+BHSU).SWU)+yHS V), T (V)
=(a+8 +8)HESU),SV)),

thus

H(SU),S(V) = ¥((a+81+8) HIS(U), S(V))
<Y (HESWU),.S(V)).

a contradiction as ¥ (¢) < ¢ for all + > 0. Hence (ii) is proved.

To prove (iii), suppose the set CP (S, T') is weakly compatible. First we are to
show that Fix (T) N Fix(S) is nonempty. Let W = S (U) = T (U), then we have
TW)y=TSU)=ST U)=S (W), which shows that W € CP (S, T) . Thus the
Pompeiu—Hausdorff weight assign to the S (U) and S (W) is zero (by ii). Hence W =
S(W)y=T (W), thatis, W € Fix (S) N Fix (T) . Since CP (S, T) is singleton set,
implies Fix (S) N Fix (T) is singleton.

Finally to prove (iv), suppose the set Fix (S) N Fix (T) is complete. We are
to show that Fix (T) N Fix(S) is singleton. Assume on contrary that there exist
U,V e CB(X)suchthat U,V € Fix (S) N Fix (T) and U # V. By completeness
of Fix (S) N Fix (T), there exists an edge between U and V. As pair (S, 7T) is a
graph ,-contraction, so we have
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HU,V)=H(SU),SV))
=¥y (M2(U,V))
=y @HTU), T(V)+BHES W), TWU))+yHES V). TV))
+81H(S(U), T (V) +8H(S(V), T U))
=Y (@HWU,V)+BHWU,U)+yHV,V)+§HWU,V)+5H(V,U))
=V (HU, V),

a contradiction. Hence U = V. Conversely, if Fix(S) N Fix(T) is singleton, then
since E(G) 2 A, soitis obvious that F(S) N F(T) is complete set. U

Example 3 Let X =R, = V (G) be endowed with Euclidean metric d. Let f :

X — X be defined as f (x) = ;8’ i)fthxerewE'(z’elO] and (a, b) € E (G) for some

ac€ A, be Bifb= f(a).Define S, T : CB(X) — CB(X) as follows:

] 10,101, if U < [0, 10]
SW) = [[10, 20], otherwise,

__|[0,10], if U € [0, 10]
) = [ [5,25], otherwise.

Note that, forall V € CB(X), (S(V),V) C E(G)and (V,T (V)) C E (G).
Let ¢ : Ry — R, be defined by

3r0<t<l1
V(@) =

5
L 1 <t.

It is easy to verify that ¢ € ¥. Now forall A, B € CB (X) with S (A) # S (B), we
consider A C [0, 10] and B Q [0, 10] with (A, B) € E (G), implies

H(S(A),S(B)) = H ([0, 10], [10, 20])

100
=10 < —

= ¢ (15a + 58)
= ¥ (aH ([0, 10], [5, 25]) + y H ([10, 20], [5, 25]))
=Y (@H(T (A),T(B)+yH(S(B),T (B)) <y (My(A, B)),

wherea:%,y:%,/3:81:82=Oand

M>(A, B) = aH(T (A),T (B))+ BH(S(A).T (A) +yH(S(B).T (B))
+81H(S(A), T (B))+8,H(S(B), T (A))
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Hence pair (S, T) is graph y;-contraction. Thus all the conditions of Theorem 5
are satisfied. Moreover, the set [0, 10] is the common fixed point of S and 7', and
Fix (S)N Fix (T) is complete.

The following corollary generalizes and extends [3, Theorem 2.1].

Corollary 2 Let (X, d) be a complete metric space endowed with a directed graph G
such that V(G) = X and E(G) 2 A. Suppose that the mappings S, T : CB (X) —
CB (X) satisfies the following:

(a) foreveryV in CB(X), (S(V),V)C E(G)and (V,T (V)) C E(G).
(b) There exists € ¥ such that for all A, B € CB (X) with there is an edge
between A and B implies

H(S(A),S(B) =y (aH(T (A),T (B)+BH(S(A), T (A)+yH(S(B), T (B))

hold, where o, B, y are nonnegative real numbers with o + 8 +y < 1. If the
range of T contains the range of S, then the following statements hold:

(i) CP(S,T) # ¥ provided that G is weakly connected with satisfies the property
(P*) and T (X) is complete subspace of CB (X).
(ii) if CP (S, T) is complete, then the Pompeiu—Hausdorff weight assigned to the
SW)and S(V)isOforallU,V € CP(S,T).
(iii) if CP (S, T) is complete and S and T are weakly compatible, then Fix (S) N
Fix (T) is a singleton.
(iv) Fix (S)N Fix (T) is complete if and only if Fix (S) N Fix (T) is a singleton.

Corollary 3 Let (X, d) be a complete metric space endowed with a directed graph
G such that V(G) = X and E(G) 2 A. Suppose that the mappings S : CB (X) —
CB (X) satisfies the following:

(a) foreveryV in CB(X), (S(V),V)C E(G).
(b) There exists € ¥ such that for all A, B € CB (X) with there is an edge
between A and B implies

H(S(A).S(B)) <y (aH(A,B)+BH(S(A),A) +yH(B,S(B))

hold, where «, B, y are nonnegative real numbers with « + B+ y < 1. Then
the following statements hold:

(i) if Fix (S) is complete, then the Pompeiu—Hausdorff weight assigned to the
U,V e Fix(S)isO.
(ii) If the weakly connected graph G satisfies the property (P*), then S has a fixed
point.
(iii) Fix (S) is complete if and only if Fix (S) is a singleton.

Proof 1f we take T = I (identity map) in Corollary 2, the result follows. (I
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Remark 1 (1) If E(G) := X x X,thenclearly G is connected and our Theorem 2.1
improves and generalizes Theorem 2.1 in [3], Theorem 2.1 in [9], and Theorem
3.11in [20].

(2) If E(G) := X x X, then clearly G is connected and our Theorem 2.4 extends
and generalizes Theorem 2.5 in [9], Theorem 3.2 in [23], Theorem 5.1 in [16]
and Theorem 3.1 in [20].

(3) IfE(G) := X x X, thenclearly G is connected and our Corollary 2.5 improves
and generalizes Theorem 2.1 in [9], Theorem 3.2 in [23] and Theorem 3.1 in
[20].

3 Conclusion

Jachymski and Jozwik initiated the study of ordered structured metric fixed point the-
ory by using the ordered structured with a graph structure on a metric space. Recently
many results appeared in the literature giving the fixed point problems of mappings
endow with graph. We presented the common fixed points of a class of multivalued
maps with set-valued domain that are only commuting at their coincidence points
endow with a directed graph. We presented some examples to show the validity of
obtained results.
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Common Fixed Point Results for Family
of Generalized Multivalued F-Contraction
Mappings in Ordered Metric Spaces

Talat Nazir and Sergei Silvestrov

Abstract In this paper, we study the existence of common fixed points of family
of multivalued mappings satisfying generalized F-contractive conditions in ordered
metric spaces. These results establish some of the general common fixed point the-
orems for family of multivalued maps.

Keywords Common fixed point -+ Multivalued mapping - F-contraction - Ordered
metric space

1 Introduction and Preliminaries

Markin [16] initiated the study of fixed points for multivalued nonexpansive and
contractive maps. Later, a useful and interesting fixed point theory for such maps
was developed. Later, a rich and interesting fixed point theory for such multival-
ued maps was developed; see, for instance [6, 7, 9-11, 14, 15, 18-20, 23]. The
theory of multivalued maps has various applications in convex optimization, dynam-
ical systems, commutative algebra, differential equations and economics. Recently,
Wardowski [25] introduced a new contraction called F-contraction and proved a
fixed point result as a generalization of the Banach contraction principle. Abbas et
al. [3] obtained common fixed point results by employed the F-contraction condi-
tion. Further in this direction, Abbas et al. [4] introduced a notion of generalized
F-contraction mapping and employed there results to obtain a fixed point of a gener-
alized nonexpansive mappings on star shaped subsets of normed linear spaces. Minak
et al. [17] proved some fixed point results for Ciric type generalized F'-contractions

T. Nazir (<) - S. Silvestrov

Division of Applied Mathematics, School of Education, Culture and Communication,
Milardalen University, Box 883, 721 23 Visterds, Sweden

e-mail: talat@ciit.net.pk

T. Nazir

Department of Mathematics, COMSATS Institute of Information Technology,
Abbottabad 22060, Pakistan

e-mail: sergei.silvestrov@mdh.se

© Springer International Publishing Switzerland 2016 419
S. Silvestrov and M. Ran¢i¢ (eds.), Engineering Mathematics I1,

Springer Proceedings in Mathematics & Statistics 179,

DOI 10.1007/978-3-319-42105-6_20



420 T. Nazir and S. Silvestrov

on complete metric spaces. Recently, [S5] established some fixed point results for
multivalued F-contraction maps on complete metrics spaces.

The aim of this paper is to prove common fixed points theorems for family of
multivalued generalized F'-contraction mappings without using any commutativity
condition in partially ordered metric space. These results extend and unify various
comparable results in the literature [12, 13, 21, 22].

We begin with some basic known definitions and results which will be used in the
sequel. Throughout this article, N, R, R denote the set of natural numbers, the set
of positive real numbers and the set of real numbers, respectively.

Let F be the collection of all mappings F : RT™ — R that satisfy the following
conditions:

(Fy) F is strictly increasing, that is, for all @, b € R™ such that a < b implies that

F(a) < F(b).
(F,) For every sequence {a,} of positive real numbers, lim a, =0 and lim
n—oo n—oo
F (a,) = —oo are equivalent.

(F3) There exists A € (0, 1) such that linol+ a*F(A) =0.

Definition 20.1 ([25])Let (X, d) beametricspaceand F € [ . Amapping f : X —
X is said to be an F'-contraction on X if there exists T > 0 such thatd(fx, fy) > 0
implies that

forall x,y € X.
Wardowski [25] gave the following result.

Theorem 20.1 Let (X, d) be a complete metric space and mapping f : X — X be
and F —contraction. Then there exists a unique x in X such that x = fx. Moreover,
for any xo € X, the iterative sequence x,+1 = f (x,) converges to x.

Kannan [12] has proved a fixed point theorem for a single valued self mapping 7' of
a metric space X satisfying the property

d(Tx,Ty) < h{d(x,Tx) +d(y, Ty)}

for all x, y in X and for a fixed where i € [0, %).
Ciric [8] considered a mapping 7 : X — X satisfying the following contractive
condition:

d(Tx,Ty) < gmax{d(x,y),d(x,Tx),d(y, Ty),d(x,Ty),d(y, Tx)},

where ¢ € [0, 1). He proved the existence of a fixed point when X is a T-orbitally
complete metric space.

Latif and Beg [13] extended mappings considered by Kannan to multivalued map-
pings and introduced the notion of a K-multivalued mapping. Rus [21] coined the
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term R-multivalued mapping, which is a generalization of a K-multivalued map-
ping (see also, [2]). Abbas and Rhoades [1] studied common fixed point problems
for multivalued mappings and introduced the notion of generalized R-multivalued
mappings which in turn generalizes R-multivalued mappings.

Let (X, d) be a metric space. Denote by P(X) be the family of all nonempty
subsets of X, and by P (X) the family of all nonempty closed subsets of X.

A point x in X is called fixed point of a multivalued mapping 7 : X — P, (X)
provided x € Tx. The collection of all fixed point of T is denoted by Fix(T).

Recall that, a map 7' : X — P, (X) is said to be upper semicontinuous, if for
x, € X and y, € Tx, with x, = xg and y, — yo, implies yyo € Txq (see [24]).

Definition 20.2 Let X be a nonempty set. Then (X, d, <) is called partially ordered
metric space if and only if d is a metric on a partially ordered set (X, <).

We define Ay, A, € X x X as follows:

Ar={(x,y) e X x X 1x =<y},
Ay ={(x,y) e X x X 1x =<y}

Definition 20.3 A subset I of a partially ordered set X is said to be well-ordered if
every two elements of I" are comparable.

2 Common Fixed Point Theorems

In this section, we obtain common fixed point theorems for family of multivalued
mappings. We begin with the following result.

Theorem 20.2 Let (X, d, <) be an ordered complete metric space and {T;}_, :
X — P, (X) be family of multivalued mappings. Suppose that for every (x,y) € A,
and u, € T;(x), there exists u, € Tiy1(y) fori € {1,2,...,m} (with T, = T\ by
convention) such that, (i, uy) € A, implies

T+ F(d(uxa u),)) < F(M(x,y;uyx, uy)), (D

where T is a positive real number and

(x, uy) +d (y, uy) ]

d
M(xa yv MX,M_V)ZmaX d(xv y)vd(xaux)ad(y’uy)’ 2

Then the following statements hold:

(i) Fix(T)) #0 forany i € {1,2,...,m} if and only if Fix(T}) = Fix(T») =
o= Fix(Ty,) # 0.
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(ii) Fix(T\) = Fix(T») = --- = Fix(T,) # 0 provided that any one T; fori €
{1,2,...,m} is upper semicontinuous.
(iii) N, Fix(T;) is well-ordered if and only if N}, Fix(T;) is singleton set.

Proof To prove (i), let x* € Ty (x*) for any k € {1,2,...,m}. Assume that x* ¢
Tii1 (x*), then there exists an x € T, (x*) with (x*, x) € A, such that

T+ F (d(x*,x)) < F(M(x*, x*; x*, x)),

where

d *’ d *’ *
M(x*, x*; x*, x) = max {d(x*, x*), d(x*, x*), d(x, x¥), @70 +d x)]

2
=d(x, x"),

implies that
T+ F (d(x*,x)) < Fd(x*, x)),

a contradiction as t > 0. Thus x* = x. Thus x* € Ty (x*) and so Fix(Ty) C
Fix(Ty41). Similarly, we obtain that Fix(Tyy;) € Fix(T;4+2) and continuing this
way, we get Fix(T)) = Fix(T,) = --- = Fix(T}). The converse is straightforward.

To prove (ii), suppose that xg is an arbitrary point of X. If xo € Tj, (xo) for any
ko € {1, 2, ..., m}, then by using (i), the proof is finished. So we assume that x ¢
Ty, (xo) for any ko € {1,2,...,m}. Now fori € {1, 2, ..., m}, if x; € T;(xp), then
there exists x, € T;,1(x1) with (x1, x) € A, such that

T+ F (d(x1, x2)) < F(M(xo, x1; X1, X2)),

where

d(xo, d(xy,
M(xo, x1: x1, x2) =max[d(xo,xl),d(xo,xl),d(xl,xz), (x0, x2) + (s ’“)]

2
d(xo, x2)

= max [d(xo,xl),d(xl,xz), >

= max{d (xg, x1), d(x1, x2)}.
Now, if M (xq, x1; X1, x2) = d(x1, x) then
T+ F (d(x1, x2)) < F(d(x1, x2)),
a contradiction as T > 0. Therefore M (xq, x1; x1, X2) = d(xg, x1) and we have
T+ F (d(x1,x2)) < F (d(x0, x1)) .

Next for this x, € T;4+1 (x1) , there exists x3 € T;12(x3) with (x3, x3) € A, such that
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T+ F (d(x2, x3)) < F(M(x1, X2; X2, X3)),

where

d(xy, d(xs,
M(xl,xz;xz,x3)=max[d(xl,xz),d(xl,x2>,d(x2,x3), (r1, %3) + d (%2 m}

2
= max{d(x;, x2), d(x2, x3)}.

Now, if M (x1, x2; x2, x3) = d(x2, x3) then
T+ F (d(x2, x3)) < F(d(x2, x3)),
a contradiction as T > 0. Therefore M (x1, x; X3, x3) = d(x1, x») and we have
T+ F (d(x2,x3)) < F (d(x1,x2)) .

Continuing this process, for xz, € T;(x2,_1), there exist x2,41 € T4 (x2,) with
(X2, X2nt1) € A, such that

T+ F (d(x2, Xon41)) < F (M (X20-1, X203 X2n, X2041))

where

M(XZn—l s X2ns X2n, x2n+1) = max [d(XZn—l 5 x2n)a d(x2n—1 5 x2n)a d(x2na x2n+1)a

d(x2n—l ) x2n+l) + d(x2n’ x2n) ]
2

d(x2n—lvx2n+l)]

= [d(x2nlvx2n)s d (X2, X2n41), >

= d(xZn—l s in),

that is,
T+ F (d(x2, X2n41)) < F (d(x24—-1, X2)) .

Similarly, for x,41 € Tit1(x2,), there exist x2,42 € Tit2 (x2441) such that for
(X2n+41, X2n42) € Ao implies

T+ F (d(Xon41, X2n42)) < F (d(X20, X2n41)) -

Hence, we obtain a sequence {x,} in X such that for x, € T;(x,—1), there exist
Xn+1 € Tiq1 (x,) with (x,,, x,41) € Ay such that

T+ F(d(Xn, Xp41)) = F (d(xn-1, X)) -
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Therefore

F (d(xn—l’ xn)) —Tt=<F (d(xn—Zs xn—l)) -2t

F(d(xm er—l)) =<
< - = F(d(xo,x1)) —nt. 2

From (2), we obtain lim F (d(x,, x,4+1)) = —oo that together with (F,) gives
n—0oQ

lim d(x,, x,+1) = 0.
n— o0

From (F3), there exists A € (0, 1) such that
lim [d(xna xn-&-l)]xF (d(xnv xn+l)) =0.
n—o00

From (2), we have

[d (X, Xt DT F (d (s Xn11)) — [d (X, XDV F (d (X0, Xnt1))
< —nt[d(x,, x,11)]* < 0.

On taking limit as n — 0o we obtain

lim n[d(x,,, )Cn+1)])L =0.
n— 00

Hence lim n%d(xn, Xn+1) = 0 and there exists n; € Nsuch thatn%d(xn, Xnt1) <
n—0oQ
1 for all n > n;. So we have

1
nl/n

d(xn’ -xn-H) =<
for all n > n;. Now consider m, n € N such that m > n > n;, we have
d (Xn, xm) < d (-xn’ xn+1) + d (xn+1a xn+2) +-+ d (-xmfls xm)

— 1
= Z ilre
i=n

By the convergence of the series Zfil i,%, we getd (x,, x,,) = Oasn,m — oo.
Therefore {x,} is a Cauchy sequence in X. Since X is complete, there exists an
element x* € X such that x, — x* asn — o0.

Now, if T; is upper semicontinuous for any i € {1, 2, ..., m}, then as x,, € X,
Xon+1 € T; (x2,) with xp, — x* and xp,41 — x* as n — oo implies that x* €
T; (x*). Thus from (i), we getx* € T\ x*) =T, (x*) = --- =T, (x¥).

Finally to prove (iii), suppose the set N/_, Fix (T;) is a well-ordered. We are to
show that N?"_ | Fix (T;) is singleton. Assume on contrary that there exist # and v such
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thatu,v € N’ Fix (T;) but u # v. As (u,v) € A, so for (u,, v,) € A, implies

T4+ F(du,v)) < F(Mu,v;u,v))

= F(max [d(u, V), d(u, u),dv,v), d(u,v) —;—d (v, u) ])

= F(d(u,v)),

acontradiction as T > 0. Hence u = v. Conversely, if N/, Fix (T;) is singleton, then
it follows that N/, Fix (T;) is a well-ordered. O

The following corollary extends and generalizes Theorem 4.1 of [13] and Theorem
3.4 of [21] for two maps in ordered metric spaces.

Corollary 20.1 Let (X, d, <) be an ordered complete metric space and Ty, T :
X — P, (X) be two multivalued mappings. Suppose that for every (x,y) € A, and
uy € T;(x), there exists u, € T;(y) fori, j € {1,2} withi # j such that, (u,,u,) €
Ay implies

T+ F (d(uy,uy)) < F(M(x, y; uy, uy)), A3)

where T is a positive real number and

(x, uy) +d (y,uy) ]

d
M(x,y; uy, uy) = max [d(x,y),d(x,ux),d(y,uy), 2

Then the following statements hold:

(1) Fix(T;) # @ foranyi € {1,2} ifand only if Fix(T)) = Fix(T;) # 0.

(2) Fix(Ty) = Fix(Ty) # @ provided that Ty or T, is upper semicontinuous.

(3) Fix(Ty) N Fix(T,) iswell-orderedifand only if Fix(Ty) N Fix(T5) is singleton
set.

Example 20.1 LetX = {x, = w :n €{l,2,3,...}}endow with usual order < .

Let

A ={(x,y):x <y where x,y € X} and
Ay ={(x,y):x <y where x,y € X}.

Define T, 15 : X — P.;(X) as follows:
Ty (x) = {x1} for x € X,

Tz(X)Z[

{xl} , X = X1
{x1, %01}, x=x,, for n>1.
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Take F (¢) =Ina + o, @ > 0 and T = 1. For a Euclidean metric d on X, and
(ux, uy) € A,, we consider the following cases:

(1) If x =x1,y = x,, for m > 1, then for u, = x; € T} (x), there exists u, =
Xm—1 € Tp (y), such that

A, )t M ) < (1, et =0

_mz—m—2 o
- 2
2
m-+m-—2 _,
- =
2
:e’ld(x,y)

<e'M (x, Vi Uy, uy) .

(ii) If x =x,, y = xp41 withn > 1, then for u, = x; € T (x) , there exists u, =
X,—1 € T» (y), such that

3 ) d(ruy)+d(y)
d(umuy)ed(ux.uy) M (x.yiug.uy) Aty uy) —[ ==

IA

d(uy, uy)e

I’lz —n—2 _mo
2

=—-"%e
2
n? +4n 1
<
5 ¢
_ |:d (x, uy) +d (y, ux)i|
2

<e'M (x, ¥ Uy, uy) .

(iii) Whenx = x,, y = x,, withm > n > 1, thenforu, = x; € T} (x), there exists
uy = x,—1 € T (y), such that

d(l/lx, uv)ed(ux,ur\,)—M(x,y;ux,uy) < d(l/tx, uV)ed(uv,(,uy)—d(x,ux)
2

n-—n-—2 _,
= —%¢
2
n4+n-2 -
< ——¢
2
=e'd (x, uy)

< e 'M (x, Vi Uy, uy) .

Now we show that for x, y € X, u, € T> (x); there exists u, € T; (y) such that
(ux, uy) € A and (3) of Corollary 20.1 is satisfied. For this, we consider the fol-
lowing cases:
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1) If x =x,, y=x; with n > 1, we have for u, = x,_; € T» (x), there exists
uy =x1 € T (y), such that

d(u,, uy)ed(ux,uy)—M(x,y;ux,uy) < d(u,, uv)ed(ux,uy)—d(x,y)

n—n-=2 “n
=— ¢
2
n4+n-2 1
< — ¢
2

=e_ld(x,y)

< e 'M (x, Vi Uy, uy) .

(i) In case x = x,, y = x,,, with m > n > 1, then for u, = x,_; € T» (x), there
exists uy, = x; € T> (y), such that

d(u,, uV)ed(ux,u_v)—M(x,y;uﬂuv) < d(u,, uy)ed(ux,uy)—d(y,uy)

n—n—-2 ,

2
n-—n—m<°—m
e

2
m24+m-—2 -1
< e
2
:e"d(y,uy)

< e 'M (x, Vi Uy, uy) .

Hence all the conditions of Corollary 20.1 are satisfied. Moreover, x; = 1 is the
unique common fixed point of 77 and T, with Fix(T) = Fix(T»).

The following result generalizes Theorem 3.4 of [21] and Theorem 3.4 of [22].

Theorem 20.3 Let (X, d, <) be an ordered complete metric space and {T;}_, :

X — P, (X) be family of multivalued mappings. Suppose that for every (x,y) € A,
and u, € T;(x), there exists u, € Tiy1(y) fori € {1,2,...,m} (with T, = T\ by
convention) such that, (i, uy) € A, implies

f+F(d(u,h uy)) = F(Mz(x, Vi Ux, uy))’ (4)
where T is a positive real number and
Mo(x, y;ux, uy) = ad(x, y) + Bd(x, ux) + yd(y, uy) + 81d (x, uy) + 82d (v, ux)

anda, B,y,61,8, > 0,8 <& witha + B+ y + 81 + 8 < 1. Then the following
statements hold.:

(I) Fix(T;) # 0 for any i € {1,2,...,m} if and only if Fix(T\) = Fix(T») =
o= Fix(Ty) # 0.
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(II) Fix(T\) = Fix(T») = --- = Fix(T,) # 0 provided that any one T; fori €
{1,2,...,m} is upper semicontinuous.
(1) N, Fix(T;) is well-ordered if and only if N/L | Fix(T;) is singleton set.

Proof To prove (I), let x* € Ti.(x*) for any k € {1, 2, ..., m}. Assume that x* ¢
Tis1 (x*), then there exists an x € Ty4 (x*) with (x*, x) € A, such that

T4+ F (d(x*,x)) < F(My(x*, x*; x*, x)),
where

My(x*, x*; x*, x) = ad(x*, x*) + Bd (x*, x*) + yd(x, x*)
+ 81d (x*, x) + 8d (x*, x*)
= (y +8)d(x, x%),

implies that

T4 F (d(x*, 0) < F((y +8)d(x", x)
< F(d(&x*,x)),

a contradiction as t > 0. Thus x* = x. Thus x* € Ty (x*) and so Fix(Ty) C
Fix(Ty41). Similarly, we obtain that Fix(T;y;) € Fix(Ty4+2) and continuing this
way, we get Fix(T)) = Fix(T,) = --- = Fix(T). The converse is straightforward.

To prove (II), suppose that xq is an arbitrary point of X. If xo € T}, (xo) for
any ko € {1, 2, ..., m}, then by using (I), the proof is finishes. So we assume that
xo & T, (xo) forany kg € {1,2,...,m}. Now fori € {1, 2, ..., m}, if x; € T;(xo¢),
then there exists x, € T;1(x;) with (x1, x2) € A, such that

T+ F (d(x1, x2)) < F(My(xo, x1; X1, X2)),
where

My (xo, x15 X1, X2) = ad(xg, x1) + Bd(xo, x1) + yd(x1, x2)
+ 81d(x0, x2) + d2d (x1, x1)
< (a+ B +8)d(xo, x1) + (y +8)d(x1, x2).

Now, if d(xg, x1) < d(x1, x»), then we have

T+ F(d(x1,x2) < F((a + B+ y +281)d(x1, x2))
< F(d(x1, x2)),

a contradiction. Therefore

T+ F (d(x1,x2)) < F (d(x0, x1)) .
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Next for this x, € T;4+1 (x1), there exists x3 € T;1»(x3) with (x2, x3) € A, such that
T+ F (d(x2, x3)) < F(Ma(x1, x2; X2, X3)),

where

M (x1, x2; X2, X3) = ad(x1, x2) + Bd(x1, x2) + yd(x2, X3)
+ 81d(x1, x3) + 82d (x2, x2)
< (@4 B +8)d(x1, x2) + (y + 81)d(x2, x3).

Now, if d(x1, x2) < d(x2, x3) then

T+ F(d(x2,x3)) < F((a + B+ y +281)d(x2, x3))
< F(d(x2,x3)),

a contradiction as T > 0. Therefore
T+ F (d(x2,x3)) < F (d(x1, x2)) .

Continuing this process, for x,, € T;(x2,_1), there exist x2,41 € Ti41 (x2,) with
(X211, X2n+1) € Aj such that

T+ F (d(x2,, X2n41)) < F (Ma(X20—1, X2u} X2, X2n41)) »
where

Mo (X201, X2n; Xons Xont1) = od (X2u—1, X20) + Bd (X201, X24) + yd(X24, X2011)
+ 81d(x2n—1, Xon41) + 82d (X24, X21)
< (a+B+81)dxo—1,x0) + (¥ +81) d(x2n, X2n41)
< d(x2p—1, X2n),

that is,
T+ F (d(x2, X2n41)) < F (d (X201, X2)) .

Similarly, for x2,+1 € T;4+1(x2,), there exist xp,42 € Tiy2 (x2,41) such that for
(X2n+1, X2n42) € Ay implies

T+ F (d(X2041, X2n42)) < F (d(x2,, X2041)) -

Hence, we obtain a sequence {x,} in X such that for x, € T;(x,_;), there exist
Xn+1 € Tiv1 (x,) with (x,,, x,41) € A, such that

T+ F(d(xp, Xuq1)) < F (d(xp-1, X)) .
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Therefore

F (d(xn’ er—l)) F (d(xn—l’ xn)) —Tt=<F (d(xn—Zs xn—l)) -2t

=<
<. < F(d(xo, x1)) — nt. (&)

From (4), we obtain lim F (d(x,, x,+1)) = —oo that together with (F,) gives
n—0oQ

lim d(x,, x,+1) = 0.
n—o00
Follows the arguments those in proof of Theorem 20.2, {x,,} is a Cauchy sequence
in X. Since X is complete, there exists an element x* € X such that x, — x* as
n— oo.

Now, if T; is upper semicontinuous for any i € {1, 2, ..., m}, then as x,, € X,
Xont1 € T; (x2,) Wwith xp, = x™ and xp,41 — x* as n — oo implies that x* €
T; (x*) . Thus from (I), we get x* € T} (x*) =T, (x*) = --- = T, (x™).

Finally to prove (III), suppose the set N/, Fix (T;) is a well-ordered. We are to
show that N"_, Fix (T;) is singleton. Assume on contrary that there exist # and v such
thatu,v e N, Fix (T;) butu #v. As (u,v) € Ay, so for (u,,v,) € A, implies

T+ F(du,v) < F(My(u,v;u,v)),

where
My(u,v;u,v) = adu,v) + Bd, u) + yd(v,v)
4+ 81d (u, v) + 8od (v, u)
== ((X+(S] +52)d(x,}’)7
that is,

T+ F(du,v) < F((a+68 +8)d(x,y))
< Fdu,v),

acontradictionas T > 0. Hence u = v. Conversely, if N/"_, Fix (T;) is singleton, then
it follows that N/, Fix (T;) is a well-ordered. [l

The following corollary extends Theorem 3.1 of [21], in the case of family of
mappings in ordered metric space.

Corollary 20.2 Let (X, d, <) be an ordered complete metric space and {T;}_, :
X — P, (X) be family of multivalued mappings. Suppose that for every (x, y) € A,
and u, € T;(x), there exists u, € Tiy1(y) fori € {1,2,...,m} (with T, = T\ by
convention) such that, (uy, u,) € A, implies

T+ F (d(ug, uy)) < Flad (x,y) + Bd(x, u) + yd(y, uy))), (6)
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where T is a positive real number and o, B, y > 0 with «, B,y < 1. Then the con-
clusions obtained in Theorem 20.3 remains true.

The following corollary extends Theorem 4.1 of [13].

Corollary 20.3 Let (X, d, <) be an ordered complete metric space and {T;}!, :
X — P, (X) be family of multivalued mappings. Suppose that for every (x, y) € Ay
and uy € T;(x), there exists uy, € Ti1(y) fori € {1,2,...,m} (with T,y =Ty by
convention) such that, (uy, u,) € A, implies

T+ F (due, uy)) < F(hld(x, uy) +d(y, uy)]), (N

where T is a positive real number and h € [0, %]. Then the conclusions obtained in
Theorem 20.3 remain true.

Corollary 20.4 Let (X, d, <) be an ordered complete metric space and {T;}., :
X — P, (X) be family of multivalued mappings. Suppose that for every (x,y) € A,
and u, € T;(x), there exists u, € Tiy1(y) fori € {1,2,...,m} (with T, = T\ by
convention) such that, (uy, u,) € A, implies

T+ F (dug,uy)) < Fd(x, ), ®)

where T is a positive real number. Then the conclusions obtained in Theorem 20.3
remain true.

The above corollary extends Theorem 4.1 of [13].

3 Conclusion

Recently many results appeared in the literature giving the problems related to the
common fixed point for multivalued maps. In this paper we obtained the results for
existence of common fixed points of family of maps that satisfying generalized F-
contractions in ordered structured metric spaces. We presented some examples to
show the validity of established results.
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